Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
system HF staff commited on
Commit
97d2c88
0 Parent(s):

Update files from the datasets library (from 1.0.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.0.0

Files changed (4) hide show
  1. .gitattributes +27 -0
  2. dataset_infos.json +1 -0
  3. dummy/0.1.0/dummy_data.zip +3 -0
  4. qasc.py +115 -0
.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"default": {"description": "\nQASC is a question-answering dataset with a focus on sentence composition. It consists of 9,980 8-way multiple-choice \nquestions about grade school science (8,134 train, 926 dev, 920 test), and comes with a corpus of 17M sentences.\n", "citation": "@article{allenai:qasc,\n author = {Tushar Khot and Peter Clark and Michal Guerquin and Peter Jansen and Ashish Sabharwal},\n title = {QASC: A Dataset for Question Answering via Sentence Composition},\n journal = {arXiv:1910.11473v2},\n year = {2020},\n}\n", "homepage": "https://allenai.org/data/qasc", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "choices": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "answerKey": {"dtype": "string", "id": null, "_type": "Value"}, "fact1": {"dtype": "string", "id": null, "_type": "Value"}, "fact2": {"dtype": "string", "id": null, "_type": "Value"}, "combinedfact": {"dtype": "string", "id": null, "_type": "Value"}, "formatted_question": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "qasc", "config_name": "default", "version": {"version_str": "0.1.0", "description": null, "datasets_version_to_prepare": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 393683, "num_examples": 920, "dataset_name": "qasc"}, "train": {"name": "train", "num_bytes": 4919377, "num_examples": 8134, "dataset_name": "qasc"}, "validation": {"name": "validation", "num_bytes": 562352, "num_examples": 926, "dataset_name": "qasc"}}, "download_checksums": {"http://data.allenai.org/downloads/qasc/qasc_dataset.tar.gz": {"num_bytes": 1616514, "checksum": "a7b3f2244f768974c609fd621346c931a72715609f171cb5544fc1da2a2ad55c"}}, "download_size": 1616514, "dataset_size": 5875412, "size_in_bytes": 7491926}}
dummy/0.1.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19282b8004914c942e33e4da11227b3010552cc931b383c5bc59751c262db1d7
3
+ size 2427
qasc.py ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """TODO(qasc): Add a description here."""
2
+
3
+ from __future__ import absolute_import, division, print_function
4
+
5
+ import json
6
+ import os
7
+
8
+ import datasets
9
+
10
+
11
+ # TODO(qasc): BibTeX citation
12
+ _CITATION = """\
13
+ @article{allenai:qasc,
14
+ author = {Tushar Khot and Peter Clark and Michal Guerquin and Peter Jansen and Ashish Sabharwal},
15
+ title = {QASC: A Dataset for Question Answering via Sentence Composition},
16
+ journal = {arXiv:1910.11473v2},
17
+ year = {2020},
18
+ }
19
+ """
20
+
21
+ # TODO(qasc):
22
+ _DESCRIPTION = """
23
+ QASC is a question-answering dataset with a focus on sentence composition. It consists of 9,980 8-way multiple-choice
24
+ questions about grade school science (8,134 train, 926 dev, 920 test), and comes with a corpus of 17M sentences.
25
+ """
26
+ _URl = "http://data.allenai.org/downloads/qasc/qasc_dataset.tar.gz"
27
+
28
+
29
+ class Qasc(datasets.GeneratorBasedBuilder):
30
+ """TODO(qasc): Short description of my dataset."""
31
+
32
+ # TODO(qasc): Set up version.
33
+ VERSION = datasets.Version("0.1.0")
34
+
35
+ def _info(self):
36
+ # TODO(qasc): Specifies the datasets.DatasetInfo object
37
+ return datasets.DatasetInfo(
38
+ # This is the description that will appear on the datasets page.
39
+ description=_DESCRIPTION,
40
+ # datasets.features.FeatureConnectors
41
+ features=datasets.Features(
42
+ {
43
+ "id": datasets.Value("string"),
44
+ "question": datasets.Value("string"),
45
+ "choices": datasets.features.Sequence(
46
+ {"text": datasets.Value("string"), "label": datasets.Value("string")}
47
+ ),
48
+ "answerKey": datasets.Value("string"),
49
+ "fact1": datasets.Value("string"),
50
+ "fact2": datasets.Value("string"),
51
+ "combinedfact": datasets.Value("string"),
52
+ "formatted_question": datasets.Value("string"),
53
+ # These are the features of your dataset like images, labels ...
54
+ }
55
+ ),
56
+ # If there's a common (input, target) tuple from the features,
57
+ # specify them here. They'll be used if as_supervised=True in
58
+ # builder.as_dataset.
59
+ supervised_keys=None,
60
+ # Homepage of the dataset for documentation
61
+ homepage="https://allenai.org/data/qasc",
62
+ citation=_CITATION,
63
+ )
64
+
65
+ def _split_generators(self, dl_manager):
66
+ """Returns SplitGenerators."""
67
+ # TODO(qasc): Downloads the data and defines the splits
68
+ # dl_manager is a datasets.download.DownloadManager that can be used to
69
+ # download and extract URLs
70
+ dl_dir = dl_manager.download_and_extract(_URl)
71
+ data_dir = os.path.join(dl_dir, "QASC_Dataset")
72
+ return [
73
+ datasets.SplitGenerator(
74
+ name=datasets.Split.TRAIN,
75
+ # These kwargs will be passed to _generate_examples
76
+ gen_kwargs={"filepath": os.path.join(data_dir, "train.jsonl")},
77
+ ),
78
+ datasets.SplitGenerator(
79
+ name=datasets.Split.TEST,
80
+ # These kwargs will be passed to _generate_examples
81
+ gen_kwargs={"filepath": os.path.join(data_dir, "test.jsonl")},
82
+ ),
83
+ datasets.SplitGenerator(
84
+ name=datasets.Split.VALIDATION,
85
+ # These kwargs will be passed to _generate_examples
86
+ gen_kwargs={"filepath": os.path.join(data_dir, "dev.jsonl")},
87
+ ),
88
+ ]
89
+
90
+ def _generate_examples(self, filepath):
91
+ """Yields examples."""
92
+ # TODO(qasc): Yields (key, example) tuples from the dataset
93
+ with open(filepath, encoding="utf-8") as f:
94
+ for row in f:
95
+ data = json.loads(row)
96
+ answerkey = data.get("answerKey", "")
97
+ id_ = data["id"]
98
+ question = data["question"]["stem"]
99
+ choices = data["question"]["choices"]
100
+ text_choices = [choice["text"] for choice in choices]
101
+ label_choices = [choice["label"] for choice in choices]
102
+ fact1 = data.get("fact1", "")
103
+ fact2 = data.get("fact2", "")
104
+ combined_fact = data.get("combinedfact", "")
105
+ formatted_question = data.get("formatted_question", "")
106
+ yield id_, {
107
+ "id": id_,
108
+ "answerKey": answerkey,
109
+ "question": question,
110
+ "choices": {"text": text_choices, "label": label_choices},
111
+ "fact1": fact1,
112
+ "fact2": fact2,
113
+ "combinedfact": combined_fact,
114
+ "formatted_question": formatted_question,
115
+ }