Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
albertvillanova HF staff commited on
Commit
35e0625
1 Parent(s): d972dc6

Delete loading script

Browse files
Files changed (1) hide show
  1. qasc.py +0 -123
qasc.py DELETED
@@ -1,123 +0,0 @@
1
- """TODO(qasc): Add a description here."""
2
-
3
-
4
- import json
5
-
6
- import datasets
7
-
8
-
9
- # TODO(qasc): BibTeX citation
10
- _CITATION = """\
11
- @article{allenai:qasc,
12
- author = {Tushar Khot and Peter Clark and Michal Guerquin and Peter Jansen and Ashish Sabharwal},
13
- title = {QASC: A Dataset for Question Answering via Sentence Composition},
14
- journal = {arXiv:1910.11473v2},
15
- year = {2020},
16
- }
17
- """
18
-
19
- # TODO(qasc):
20
- _DESCRIPTION = """
21
- QASC is a question-answering dataset with a focus on sentence composition. It consists of 9,980 8-way multiple-choice
22
- questions about grade school science (8,134 train, 926 dev, 920 test), and comes with a corpus of 17M sentences.
23
- """
24
- _URl = "http://data.allenai.org/downloads/qasc/qasc_dataset.tar.gz"
25
-
26
-
27
- class Qasc(datasets.GeneratorBasedBuilder):
28
- """TODO(qasc): Short description of my dataset."""
29
-
30
- # TODO(qasc): Set up version.
31
- VERSION = datasets.Version("0.1.0")
32
-
33
- def _info(self):
34
- # TODO(qasc): Specifies the datasets.DatasetInfo object
35
- return datasets.DatasetInfo(
36
- # This is the description that will appear on the datasets page.
37
- description=_DESCRIPTION,
38
- # datasets.features.FeatureConnectors
39
- features=datasets.Features(
40
- {
41
- "id": datasets.Value("string"),
42
- "question": datasets.Value("string"),
43
- "choices": datasets.features.Sequence(
44
- {"text": datasets.Value("string"), "label": datasets.Value("string")}
45
- ),
46
- "answerKey": datasets.Value("string"),
47
- "fact1": datasets.Value("string"),
48
- "fact2": datasets.Value("string"),
49
- "combinedfact": datasets.Value("string"),
50
- "formatted_question": datasets.Value("string"),
51
- # These are the features of your dataset like images, labels ...
52
- }
53
- ),
54
- # If there's a common (input, target) tuple from the features,
55
- # specify them here. They'll be used if as_supervised=True in
56
- # builder.as_dataset.
57
- supervised_keys=None,
58
- # Homepage of the dataset for documentation
59
- homepage="https://allenai.org/data/qasc",
60
- citation=_CITATION,
61
- )
62
-
63
- def _split_generators(self, dl_manager):
64
- """Returns SplitGenerators."""
65
- # TODO(qasc): Downloads the data and defines the splits
66
- # dl_manager is a datasets.download.DownloadManager that can be used to
67
- # download and extract URLs
68
- archive = dl_manager.download(_URl)
69
- return [
70
- datasets.SplitGenerator(
71
- name=datasets.Split.TRAIN,
72
- # These kwargs will be passed to _generate_examples
73
- gen_kwargs={
74
- "filepath": "/".join(["QASC_Dataset", "train.jsonl"]),
75
- "files": dl_manager.iter_archive(archive),
76
- },
77
- ),
78
- datasets.SplitGenerator(
79
- name=datasets.Split.TEST,
80
- # These kwargs will be passed to _generate_examples
81
- gen_kwargs={
82
- "filepath": "/".join(["QASC_Dataset", "test.jsonl"]),
83
- "files": dl_manager.iter_archive(archive),
84
- },
85
- ),
86
- datasets.SplitGenerator(
87
- name=datasets.Split.VALIDATION,
88
- # These kwargs will be passed to _generate_examples
89
- gen_kwargs={
90
- "filepath": "/".join(["QASC_Dataset", "dev.jsonl"]),
91
- "files": dl_manager.iter_archive(archive),
92
- },
93
- ),
94
- ]
95
-
96
- def _generate_examples(self, filepath, files):
97
- """Yields examples."""
98
- # TODO(qasc): Yields (key, example) tuples from the dataset
99
- for path, f in files:
100
- if path == filepath:
101
- for row in f:
102
- data = json.loads(row.decode("utf-8"))
103
- answerkey = data.get("answerKey", "")
104
- id_ = data["id"]
105
- question = data["question"]["stem"]
106
- choices = data["question"]["choices"]
107
- text_choices = [choice["text"] for choice in choices]
108
- label_choices = [choice["label"] for choice in choices]
109
- fact1 = data.get("fact1", "")
110
- fact2 = data.get("fact2", "")
111
- combined_fact = data.get("combinedfact", "")
112
- formatted_question = data.get("formatted_question", "")
113
- yield id_, {
114
- "id": id_,
115
- "answerKey": answerkey,
116
- "question": question,
117
- "choices": {"text": text_choices, "label": label_choices},
118
- "fact1": fact1,
119
- "fact2": fact2,
120
- "combinedfact": combined_fact,
121
- "formatted_question": formatted_question,
122
- }
123
- break