Datasets:
metadata
license: odc-by
task_categories:
- text-generation
language:
- en
tags:
- biology
- chemistry
- engineering
- computer science
- physics
- material science
- math
- psychology
- economics
- political science
- business
- geology
- sociology
- geography
- environmental science
- art
- history
- philosophy
pretty_name: PES2O
size_categories:
- 10B<n<100B
PES2O πΏπ
Pretraining Efficiently on S2ORC!
The PES2O dataset is a collection of ~40M creative commmon licensed academic papers, cleaned, filtered, and formatted for pre-training of language models. It is derived from the Semantic Scholar Open Research Corpus(Lo et al, 2020), or S2ORC.
We release multiple version of PES2O, each with different processing and knowledge cutoff date. We recommend you to use the latest version available.
Document Format
TODO
PES2O V1
Key Facts
- Knowledge cutoff: 2023-01-03
- Number of documents: 67.56M
- Number of whitespace-separated tokens*: 47,3M
Processing
TODO
Dataset | Split | # Documents | # Words |
---|---|---|---|
s2orc | train | 8,242,162 | 36,088,195,908 |
s2orc | valid | 51,323 | 255,139,074 |
s2ag | train | 59,382,301 | 11,009,123,378 |
s2ag | valid | 111,228 | 24,398,512 |
PES2O V2
Key Facts
- Knowledge cutoff: 2023-01-03
- Number of documents: 38.97M
- Number of whitespace-separated tokens*: 42,28
Processing
TODO
Dataset | Split | # Documents | # Words |
---|---|---|---|
s2orc | train | 8,242,162 | 36,088,195,908 |
s2orc | valid | 51,323 | 255,139,074 |
s2ag | train | 30,569,017 | 5,920,099,207 |
s2ag | valid | 109,709 | 24,029,459 |