Datasets:

Languages:
English
ArXiv:
License:
mattdeitke commited on
Commit
62cd5a4
·
1 Parent(s): 9b62880
objaverse_xl/__init__.py CHANGED
@@ -1,150 +1 @@
1
- import multiprocessing
2
- import os
3
- import uuid
4
- from functools import partial
5
- from multiprocessing import Pool
6
- from typing import Dict, List, Optional
7
-
8
- import fsspec
9
- import pandas as pd
10
- import requests
11
- from loguru import logger
12
- from tqdm import tqdm
13
-
14
-
15
- def get_uid_from_str(string: str) -> str:
16
- """Generates a UUID from a string.
17
-
18
- Args:
19
- string (str): String to generate a UUID from.
20
-
21
- Returns:
22
- str: UUID generated from the string.
23
- """
24
- namespace = uuid.NAMESPACE_DNS
25
- return str(uuid.uuid5(namespace, string))
26
-
27
-
28
- def load_smithsonian_metadata(
29
- download_dir: str = "~/.objaverse-xl",
30
- ) -> pd.DataFrame:
31
- """Loads the Smithsonian Object Metadata dataset as a Pandas DataFrame.
32
-
33
- Args:
34
- download_dir (str, optional): Directory to download the parquet metadata file.
35
- Supports all file systems supported by fsspec. Defaults to
36
- "~/.objaverse-xl".
37
-
38
- Returns:
39
- pd.DataFrame: Smithsonian Object Metadata dataset as a Pandas DataFrame with
40
- columns for the object "title", "url", "quality", "file_type", "uid", and
41
- "license". The quality is always Medium and the file_type is always glb.
42
- """
43
- dirname = os.path.expanduser(os.path.join(download_dir, "smithsonian"))
44
- filename = os.path.join(dirname, "object-metadata.parquet")
45
- fs, path = fsspec.core.url_to_fs(filename)
46
- if fs.protocol == "file":
47
- os.makedirs(dirname, exist_ok=True)
48
-
49
- if fs.exists(filename):
50
- df = pd.read_parquet(filename)
51
- return df
52
- else:
53
- url = "https://huggingface.co/datasets/allenai/objaverse-xl/resolve/main/smithsonian/object-metadata.parquet"
54
- response = requests.get(url)
55
- response.raise_for_status()
56
- with fs.open(filename, "wb") as file:
57
- file.write(response.content)
58
- df = pd.read_parquet(filename)
59
-
60
- df["uid"] = df["url"].apply(get_uid_from_str)
61
- df["license"] = "CC0"
62
- return df
63
-
64
-
65
- def download_smithsonian_object(url: str, download_dir: str = "~/.objaverse-xl") -> str:
66
- """Downloads a Smithsonian Object from a URL.
67
-
68
- Args:
69
- url (str): URL to download the Smithsonian Object from.
70
- download_dir (str, optional): Directory to download the Smithsonian Object to.
71
- Supports all file systems supported by fsspec. Defaults to
72
- "~/.objaverse-xl".
73
-
74
- Returns:
75
- str: Path to the downloaded Smithsonian Object.
76
- """
77
- uid = get_uid_from_str(url)
78
-
79
- dirname = os.path.expanduser(os.path.join(download_dir, "smithsonian", "objects"))
80
- filename = os.path.join(dirname, f"{uid}.glb")
81
- fs, path = fsspec.core.url_to_fs(filename)
82
- if fs.protocol == "file":
83
- os.makedirs(dirname, exist_ok=True)
84
-
85
- if not fs.exists(filename):
86
- tmp_path = os.path.join(dirname, f"{uid}.glb.tmp")
87
- response = requests.get(url)
88
-
89
- # check if the path is valid
90
- if response.status_code == 404:
91
- logger.warning(f"404 for {url}")
92
- return None
93
-
94
- # write to tmp path
95
- with fs.open(tmp_path, "wb") as file:
96
- for chunk in response.iter_content(chunk_size=8192):
97
- file.write(chunk)
98
-
99
- # rename to final path
100
- fs.rename(tmp_path, filename)
101
-
102
- return filename
103
-
104
-
105
- def download_smithsonian_objects(
106
- urls: Optional[str] = None,
107
- processes: Optional[int] = None,
108
- download_dir: str = "~/.objaverse-xl",
109
- ) -> List[Dict[str, str]]:
110
- """Downloads all Smithsonian Objects.
111
-
112
- Args:
113
- urls (Optional[str], optional): List of URLs to download the Smithsonian Objects
114
- from. If None, all Smithsonian Objects will be downloaded. Defaults to None.
115
- processes (Optional[int], optional): Number of processes to use for downloading
116
- the Smithsonian Objects. If None, the number of processes will be set to the
117
- number of CPUs on the machine (multiprocessing.cpu_count()). Defaults to
118
- None.
119
- download_dir (str, optional): Directory to download the Smithsonian Objects to.
120
- Supports all file systems supported by fsspec. Defaults to
121
- "~/.objaverse-xl".
122
-
123
- Returns:
124
- List[Dict[str, str]]: List of dictionaries with keys "download_path" and "url"
125
- for each downloaded object.
126
- """
127
- if processes is None:
128
- processes = multiprocessing.cpu_count()
129
- if urls is None:
130
- df = load_smithsonian_metadata(download_dir=download_dir)
131
- urls = df["url"].tolist()
132
-
133
- logger.info(f"Downloading {len(urls)} Smithsonian Objects with {processes=}")
134
- with Pool(processes=processes) as pool:
135
- results = list(
136
- tqdm(
137
- pool.imap_unordered(
138
- partial(download_smithsonian_object, download_dir=download_dir),
139
- urls,
140
- ),
141
- total=len(urls),
142
- desc="Downloading Smithsonian Objects",
143
- )
144
- )
145
- out = [
146
- {"download_path": download_path, "url": url}
147
- for download_path, url in zip(results, urls)
148
- if download_path is not None
149
- ]
150
- return out
 
1
+ from smithsonian import download_smithsonian_objects, load_smithsonian_metadata
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
objaverse_xl/smithsonian.py ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import multiprocessing
2
+ import os
3
+ import uuid
4
+ from functools import partial
5
+ from multiprocessing import Pool
6
+ from typing import Dict, List, Optional
7
+
8
+ import fsspec
9
+ import pandas as pd
10
+ import requests
11
+ from loguru import logger
12
+ from tqdm import tqdm
13
+ from utils import get_uid_from_str
14
+
15
+
16
+ def load_smithsonian_metadata(
17
+ download_dir: str = "~/.objaverse-xl",
18
+ ) -> pd.DataFrame:
19
+ """Loads the Smithsonian Object Metadata dataset as a Pandas DataFrame.
20
+
21
+ Args:
22
+ download_dir (str, optional): Directory to download the parquet metadata file.
23
+ Supports all file systems supported by fsspec. Defaults to
24
+ "~/.objaverse-xl".
25
+
26
+ Returns:
27
+ pd.DataFrame: Smithsonian Object Metadata dataset as a Pandas DataFrame with
28
+ columns for the object "title", "url", "quality", "file_type", "uid", and
29
+ "license". The quality is always Medium and the file_type is always glb.
30
+ """
31
+ dirname = os.path.expanduser(os.path.join(download_dir, "smithsonian"))
32
+ filename = os.path.join(dirname, "object-metadata.parquet")
33
+ fs, path = fsspec.core.url_to_fs(filename)
34
+ if fs.protocol == "file":
35
+ os.makedirs(dirname, exist_ok=True)
36
+
37
+ if fs.exists(filename):
38
+ df = pd.read_parquet(filename)
39
+ return df
40
+ else:
41
+ url = "https://huggingface.co/datasets/allenai/objaverse-xl/resolve/main/smithsonian/object-metadata.parquet"
42
+ response = requests.get(url)
43
+ response.raise_for_status()
44
+ with fs.open(filename, "wb") as file:
45
+ file.write(response.content)
46
+ df = pd.read_parquet(filename)
47
+
48
+ df["uid"] = df["url"].apply(get_uid_from_str)
49
+ df["license"] = "CC0"
50
+ return df
51
+
52
+
53
+ def download_smithsonian_object(url: str, download_dir: str = "~/.objaverse-xl") -> str:
54
+ """Downloads a Smithsonian Object from a URL.
55
+
56
+ Args:
57
+ url (str): URL to download the Smithsonian Object from.
58
+ download_dir (str, optional): Directory to download the Smithsonian Object to.
59
+ Supports all file systems supported by fsspec. Defaults to
60
+ "~/.objaverse-xl".
61
+
62
+ Returns:
63
+ str: Path to the downloaded Smithsonian Object.
64
+ """
65
+ uid = get_uid_from_str(url)
66
+
67
+ dirname = os.path.expanduser(os.path.join(download_dir, "smithsonian", "objects"))
68
+ filename = os.path.join(dirname, f"{uid}.glb")
69
+ fs, path = fsspec.core.url_to_fs(filename)
70
+ if fs.protocol == "file":
71
+ os.makedirs(dirname, exist_ok=True)
72
+
73
+ if not fs.exists(filename):
74
+ tmp_path = os.path.join(dirname, f"{uid}.glb.tmp")
75
+ response = requests.get(url)
76
+
77
+ # check if the path is valid
78
+ if response.status_code == 404:
79
+ logger.warning(f"404 for {url}")
80
+ return None
81
+
82
+ # write to tmp path
83
+ with fs.open(tmp_path, "wb") as file:
84
+ for chunk in response.iter_content(chunk_size=8192):
85
+ file.write(chunk)
86
+
87
+ # rename to final path
88
+ fs.rename(tmp_path, filename)
89
+
90
+ return filename
91
+
92
+
93
+ def download_smithsonian_objects(
94
+ urls: Optional[str] = None,
95
+ processes: Optional[int] = None,
96
+ download_dir: str = "~/.objaverse-xl",
97
+ ) -> List[Dict[str, str]]:
98
+ """Downloads all Smithsonian Objects.
99
+
100
+ Args:
101
+ urls (Optional[str], optional): List of URLs to download the Smithsonian Objects
102
+ from. If None, all Smithsonian Objects will be downloaded. Defaults to None.
103
+ processes (Optional[int], optional): Number of processes to use for downloading
104
+ the Smithsonian Objects. If None, the number of processes will be set to the
105
+ number of CPUs on the machine (multiprocessing.cpu_count()). Defaults to
106
+ None.
107
+ download_dir (str, optional): Directory to download the Smithsonian Objects to.
108
+ Supports all file systems supported by fsspec. Defaults to
109
+ "~/.objaverse-xl".
110
+
111
+ Returns:
112
+ List[Dict[str, str]]: List of dictionaries with keys "download_path" and "url"
113
+ for each downloaded object.
114
+ """
115
+ if processes is None:
116
+ processes = multiprocessing.cpu_count()
117
+ if urls is None:
118
+ df = load_smithsonian_metadata(download_dir=download_dir)
119
+ urls = df["url"].tolist()
120
+
121
+ logger.info(f"Downloading {len(urls)} Smithsonian Objects with {processes=}")
122
+ with Pool(processes=processes) as pool:
123
+ results = list(
124
+ tqdm(
125
+ pool.imap_unordered(
126
+ partial(download_smithsonian_object, download_dir=download_dir),
127
+ urls,
128
+ ),
129
+ total=len(urls),
130
+ desc="Downloading Smithsonian Objects",
131
+ )
132
+ )
133
+ out = [
134
+ {"download_path": download_path, "url": url}
135
+ for download_path, url in zip(results, urls)
136
+ if download_path is not None
137
+ ]
138
+ return out
objaverse_xl/utils.py ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import uuid
2
+
3
+
4
+ def get_uid_from_str(string: str) -> str:
5
+ """Generates a UUID from a string.
6
+
7
+ Args:
8
+ string (str): String to generate a UUID from.
9
+
10
+ Returns:
11
+ str: UUID generated from the string.
12
+ """
13
+ namespace = uuid.NAMESPACE_DNS
14
+ return str(uuid.uuid5(namespace, string))
requirements.txt CHANGED
@@ -3,4 +3,4 @@ pandas
3
  pyarrow
4
  tqdm
5
  loguru
6
- fsspec==2022.11.0
 
3
  pyarrow
4
  tqdm
5
  loguru
6
+ fsspec>=2022.11.0