Datasets:

Languages:
English
ArXiv:
License:
mattdeitke commited on
Commit
11fa1d5
·
1 Parent(s): 24cab06

add updated smithsonian support

Browse files
Files changed (2) hide show
  1. objaverse_xl/__init__.py +108 -6
  2. requirements.txt +4 -1
objaverse_xl/__init__.py CHANGED
@@ -1,22 +1,42 @@
 
1
  import os
 
 
 
 
2
 
3
  import pandas as pd
4
  import requests
 
 
5
 
6
 
7
- def load_smithsonian_df(
8
- download_dir: str = "~/.objaverse_xl",
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  ) -> pd.DataFrame:
10
  """Loads the Smithsonian Object Metadata dataset as a Pandas DataFrame.
11
 
12
  Args:
13
  download_dir (str, optional): Directory to download the parquet metadata file.
14
- Defaults to "~/.objaverse_xl".
15
 
16
  Returns:
17
  pd.DataFrame: Smithsonian Object Metadata dataset as a Pandas DataFrame with
18
- columns for the object "title", "url", "quality", and "file_type".
19
- The quality is always Medium and the file_type is always glb.
20
  """
21
  dirname = os.path.expanduser(os.path.join(download_dir, "smithsonian"))
22
  os.makedirs(dirname, exist_ok=True)
@@ -28,4 +48,86 @@ def load_smithsonian_df(
28
  with open(filename, "wb") as file:
29
  file.write(response.content)
30
 
31
- return pd.read_parquet(filename)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import multiprocessing
2
  import os
3
+ import uuid
4
+ from functools import partial
5
+ from multiprocessing import Pool
6
+ from typing import Dict, List, Optional
7
 
8
  import pandas as pd
9
  import requests
10
+ from loguru import logger
11
+ from tqdm import tqdm
12
 
13
 
14
+ def get_uid_from_str(string: str) -> str:
15
+ """Generates a UUID from a string.
16
+
17
+ Args:
18
+ string (str): String to generate a UUID from.
19
+
20
+ Returns:
21
+ str: UUID generated from the string.
22
+ """
23
+ namespace = uuid.NAMESPACE_DNS
24
+ return str(uuid.uuid5(namespace, string))
25
+
26
+
27
+ def load_smithsonian_metadata(
28
+ download_dir: str = "~/.objaverse-xl",
29
  ) -> pd.DataFrame:
30
  """Loads the Smithsonian Object Metadata dataset as a Pandas DataFrame.
31
 
32
  Args:
33
  download_dir (str, optional): Directory to download the parquet metadata file.
34
+ Defaults to "~/.objaverse-xl".
35
 
36
  Returns:
37
  pd.DataFrame: Smithsonian Object Metadata dataset as a Pandas DataFrame with
38
+ columns for the object "title", "url", "quality", "file_type", "uid", and
39
+ "license". The quality is always Medium and the file_type is always glb.
40
  """
41
  dirname = os.path.expanduser(os.path.join(download_dir, "smithsonian"))
42
  os.makedirs(dirname, exist_ok=True)
 
48
  with open(filename, "wb") as file:
49
  file.write(response.content)
50
 
51
+ df = pd.read_parquet(filename)
52
+ df["uid"] = df["url"].apply(get_uid_from_str)
53
+ df["license"] = "CC0"
54
+ return df
55
+
56
+
57
+ def download_smithsonian_object(url: str, download_dir: str = "~/.objaverse-xl") -> str:
58
+ """Downloads a Smithsonian Object from a URL.
59
+
60
+ Args:
61
+ url (str): URL to download the Smithsonian Object from.
62
+ download_dir (str, optional): Directory to download the Smithsonian Object to.
63
+ Defaults to "~/.objaverse-xl".
64
+
65
+ Returns:
66
+ str: Path to the downloaded Smithsonian Object.
67
+ """
68
+ uid = get_uid_from_str(url)
69
+
70
+ dirname = os.path.expanduser(os.path.join(download_dir, "smithsonian", "objects"))
71
+ os.makedirs(dirname, exist_ok=True)
72
+ filename = os.path.join(dirname, f"{uid}.glb")
73
+
74
+ if os.path.exists(filename):
75
+ return filename
76
+
77
+ tmp_path = os.path.join(dirname, f"{uid}.glb.tmp")
78
+ response = requests.get(url)
79
+ if response.status_code == 404:
80
+ logger.warning(f"404 for {url}")
81
+ return None
82
+ with open(tmp_path, "wb") as file:
83
+ for chunk in response.iter_content(chunk_size=8192):
84
+ file.write(chunk)
85
+ os.rename(tmp_path, filename)
86
+
87
+ return filename
88
+
89
+
90
+ def download_smithsonian_objects(
91
+ urls: Optional[str] = None,
92
+ processes: Optional[int] = None,
93
+ download_dir: str = "~/.objaverse-xl",
94
+ ) -> List[Dict[str, str]]:
95
+ """Downloads all Smithsonian Objects.
96
+
97
+ Args:
98
+ urls (Optional[str], optional): List of URLs to download the Smithsonian Objects
99
+ from. If None, all Smithsonian Objects will be downloaded. Defaults to None.
100
+ processes (Optional[int], optional): Number of processes to use for downloading
101
+ the Smithsonian Objects. If None, the number of processes will be set to the
102
+ number of CPUs on the machine (multiprocessing.cpu_count()). Defaults to None.
103
+ download_dir (str, optional): Directory to download the Smithsonian Objects to.
104
+ Defaults to "~/.objaverse-xl".
105
+
106
+ Returns:
107
+ List[Dict[str, str]]: List of dictionaries with keys "download_path" and "url"
108
+ for each downloaded object.
109
+ """
110
+ if processes is None:
111
+ processes = multiprocessing.cpu_count()
112
+ if urls is None:
113
+ df = load_smithsonian_metadata(download_dir=download_dir)
114
+ urls = df["url"].tolist()
115
+
116
+ logger.info(f"Downloading {len(urls)} Smithsonian Objects with {processes=}")
117
+ with Pool(processes=processes) as pool:
118
+ results = list(
119
+ tqdm(
120
+ pool.imap_unordered(
121
+ partial(download_smithsonian_object, download_dir=download_dir),
122
+ urls,
123
+ ),
124
+ total=len(urls),
125
+ desc="Downloading Smithsonian Objects",
126
+ )
127
+ )
128
+ out = [
129
+ {"download_path": download_path, "url": url}
130
+ for download_path, url in zip(results, urls)
131
+ if download_path is not None
132
+ ]
133
+ return out
requirements.txt CHANGED
@@ -1,2 +1,5 @@
 
1
  pandas
2
- pyarrow
 
 
 
1
+ requests
2
  pandas
3
+ pyarrow
4
+ tqdm
5
+ loguru