Datasets:
metadata
annotations_creators:
- found
language_creators:
- found
language:
- en
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- summarization
paperswithcode_id: multi-xscience
pretty_name: Multi-XScience
This is a copy of the Multi-XScience dataset, except the input source documents of its train
, validation
and test
splits have been replaced by a dense retriever. The retrieval pipeline used:
- query: The
related_work
field of each example - corpus: The union of all documents in the
train
,validation
andtest
splits - retriever:
facebook/contriever-msmarco
via PyTerrier with default settings - top-k strategy:
"max"
, i.e. the number of documents retrieved,k
, is set as the maximum number of documents seen across examples in this dataset, in this casek==4
Retrieval results on the train
set:
Recall@100 | Rprec | Precision@k | Recall@k |
---|---|---|---|
0.5270 | 0.2005 | 0.1551 | 0.2357 |
Retrieval results on the validation
set:
Recall@100 | Rprec | Precision@k | Recall@k |
---|---|---|---|
0.5310 | 0.2026 | 0.1603 | 0.2432 |
Retrieval results on the test
set:
Recall@100 | Rprec | Precision@k | Recall@k |
---|---|---|---|
0.5229 | 0.2081 | 0.1612 | 0.2440 |