Datasets:
Tasks:
Token Classification
Sub-tasks:
named-entity-recognition
Languages:
Yoruba
Size:
1K<n<10K
License:
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Introduction to the Yoruba GV NER dataset: A Yoruba Global Voices (News) Named Entity Recognition Dataset""" | |
import datasets | |
logger = datasets.logging.get_logger(__name__) | |
# TODO: Add BibTeX citation | |
# Find for instance the citation on arxiv or on the dataset repo/website | |
_CITATION = """\ | |
@inproceedings{alabi-etal-2020-massive, | |
title = "Massive vs. Curated Embeddings for Low-Resourced Languages: the Case of {Yorùbá} and {T}wi", | |
author = "Alabi, Jesujoba and | |
Amponsah-Kaakyire, Kwabena and | |
Adelani, David and | |
Espa{\\~n}a-Bonet, Cristina", | |
booktitle = "Proceedings of the 12th Language Resources and Evaluation Conference", | |
month = may, | |
year = "2020", | |
address = "Marseille, France", | |
publisher = "European Language Resources Association", | |
url = "https://www.aclweb.org/anthology/2020.lrec-1.335", | |
pages = "2754--2762", | |
language = "English", | |
ISBN = "979-10-95546-34-4", | |
} | |
""" | |
# TODO: Add description of the dataset here | |
# You can copy an official description | |
_DESCRIPTION = """\ | |
The Yoruba GV NER dataset is a labeled dataset for named entity recognition in Yoruba. The texts were obtained from | |
Yoruba Global Voices News articles https://yo.globalvoices.org/ . We concentrate on | |
four types of named entities: persons [PER], locations [LOC], organizations [ORG], and dates & time [DATE]. | |
The Yoruba GV NER data files contain 2 columns separated by a tab ('\t'). Each word has been put on a separate line and | |
there is an empty line after each sentences i.e the CoNLL format. The first item on each line is a word, the second | |
is the named entity tag. The named entity tags have the format I-TYPE which means that the word is inside a phrase | |
of type TYPE. For every multi-word expression like 'New York', the first word gets a tag B-TYPE and the subsequent words | |
have tags I-TYPE, a word with tag O is not part of a phrase. The dataset is in the BIO tagging scheme. | |
For more details, see https://www.aclweb.org/anthology/2020.lrec-1.335/ | |
""" | |
_URL = "https://github.com/ajesujoba/YorubaTwi-Embedding/raw/master/Yoruba/Yoruba-NER/" | |
_TRAINING_FILE = "train.tsv" | |
_DEV_FILE = "valid.tsv" | |
_TEST_FILE = "test.tsv" | |
class YorubaGvNerConfig(datasets.BuilderConfig): | |
"""BuilderConfig for YorubaGvNer""" | |
def __init__(self, **kwargs): | |
"""BuilderConfig for YorubaGvNer. | |
Args: | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(YorubaGvNerConfig, self).__init__(**kwargs) | |
class YorubaGvNer(datasets.GeneratorBasedBuilder): | |
"""Yoruba GV NER dataset.""" | |
BUILDER_CONFIGS = [ | |
YorubaGvNerConfig( | |
name="yoruba_gv_ner", version=datasets.Version("1.0.0"), description="Yoruba GV NER dataset" | |
), | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"tokens": datasets.Sequence(datasets.Value("string")), | |
"ner_tags": datasets.Sequence( | |
datasets.features.ClassLabel( | |
names=[ | |
"O", | |
"B-PER", | |
"I-PER", | |
"B-ORG", | |
"I-ORG", | |
"B-LOC", | |
"I-LOC", | |
"B-DATE", | |
"I-DATE", | |
] | |
) | |
), | |
} | |
), | |
supervised_keys=None, | |
homepage="https://www.aclweb.org/anthology/2020.lrec-1.335/", | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
urls_to_download = { | |
"train": f"{_URL}{_TRAINING_FILE}", | |
"dev": f"{_URL}{_DEV_FILE}", | |
"test": f"{_URL}{_TEST_FILE}", | |
} | |
downloaded_files = dl_manager.download_and_extract(urls_to_download) | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), | |
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), | |
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), | |
] | |
def _generate_examples(self, filepath): | |
logger.info("⏳ Generating examples from = %s", filepath) | |
with open(filepath, encoding="utf-8") as f: | |
guid = 0 | |
tokens = [] | |
ner_tags = [] | |
for line in f: | |
line = line.strip() | |
if line == "" or line == "\n": | |
if tokens: | |
yield guid, { | |
"id": str(guid), | |
"tokens": tokens, | |
"ner_tags": ner_tags, | |
} | |
guid += 1 | |
tokens = [] | |
ner_tags = [] | |
else: | |
# yoruba_gv_ner tokens are tab separated | |
splits = line.strip().split("\t") | |
tokens.append(splits[0]) | |
ner_tags.append(splits[1].rstrip()) | |
# last example | |
yield guid, { | |
"id": str(guid), | |
"tokens": tokens, | |
"ner_tags": ner_tags, | |
} | |