url
stringlengths 36
36
| title
stringlengths 17
132
| abstract
stringlengths 112
1.92k
| venue
stringclasses 1
value | year
stringclasses 3
values |
---|---|---|---|---|
http://aclweb.org/anthology/D17-1146 | Memory-augmented Neural Machine Translation | We explore six challenges for neural machine translation: domain mismatch, amount of training data, rare words, long sentences, word alignment, and beam search. We show both deficiencies and improvements over the quality of phrase-based statistical machine translation. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1147 | Dynamic Data Selection for Neural Machine Translation | Intelligent selection of training data has proven a successful technique to simultaneously increase training efficiency and translation performance for phrase-based machine translation (PBMT). With the recent increase in popularity of neural machine translation (NMT), we explore in this paper to what extent and how NMT can also benefit from data selection. While state-of-the-art data selection (Axelrod et al., 2011) consistently performs well for PBMT, we show that gains are substantially lower for NMT. Next, we introduce dynamic data selection for NMT, a method in which we vary the selected subset of training data between different training epochs. Our experiments show that the best results are achieved when applying a technique we call gradual fine-tuning, with improvements up to +2.6 BLEU over the original data selection approach and up to +3.1 BLEU over a general baseline. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1148 | Neural Machine Translation Leveraging Phrase-based Models in a Hybrid Search | In this paper, we introduce a hybrid search for attention-based neural machine translation (NMT). A target phrase learned with statistical MT models extends a hypothesis in the NMT beam search when the attention of the NMT model focuses on the source words translated by this phrase. Phrases added in this way are scored with the NMT model, but also with SMT features including phrase-level translation probabilities and a target language model. Experimental results on German->English news domain and English->Russian e-commerce domain translation tasks show that using phrase-based models in NMT search improves MT quality by up to 2.3% BLEU absolute as compared to a strong NMT baseline. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1149 | Translating Phrases in Neural Machine Translation | Phrases play an important role in natural language understanding and machine translation (Sag et al., 2002; Villavicencio et al., 2005). However, it is difficult to integrate them into current neural machine translation (NMT) which reads and generates sentences word by word. In this work, we propose a method to translate phrases in NMT by integrating a phrase memory storing target phrases from a phrase-based statistical machine translation (SMT) system into the encoder-decoder architecture of NMT. At each decoding step, the phrase memory is first re-written by the SMT model, which dynamically generates relevant target phrases with contextual information provided by the NMT model. Then the proposed model reads the phrase memory to make probability estimations for all phrases in the phrase memory. If phrase generation is carried on, the NMT decoder selects an appropriate phrase from the memory to perform phrase translation and updates its decoding state by consuming the words in the selected phrase. Otherwise, the NMT decoder generates a word from the vocabulary as the general NMT decoder does. Experiment results on the Chinese to English translation show that the proposed model achieves significant improvements over the baseline on various test sets. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1151 | Massive Exploration of Neural Machine Translation Architectures | Neural machine translation (NMT) has been accelerated by deep learning neural networks over statistical-based approaches, due to the plethora and programmability of commodity heterogeneous computing architectures such as FPGAs and GPUs and the massive amount of training corpuses generated from news outlets, government agencies and social media. Training a learning classifier for neural networks entails tuning hyper-parameters that would yield the best performance. Unfortunately, the number of parameters for machine translation include discrete categories as well as continuous options, which makes for a combinatorial explosive problem. This research explores optimizing hyper-parameters when training deep learning neural networks for machine translation. Specifically, our work investigates training a language model with Marian NMT. Results compare NMT under various hyper-parameter settings across a variety of modern GPU architecture generations in single node and multi-node settings, revealing insights on which hyper-parameters matter most in terms of performance, such as words processed per second, convergence rates, and translation accuracy, and provides insights on how to best achieve high-performing NMT systems. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1152 | Learning Translations via Matrix Completion | We propose a statistical model for natural language that begins by considering language as a monoid, then representing it in complex matrices with a compatible translation invariant probability measure. We interpret the probability measure as arising via the Born rule from a translation invariant matrix product state. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1154 | Towards Compact and Fast Neural Machine Translation Using a Combined Method | We propose and compare methods for gradient-based domain adaptation of self-attentive neural machine translation models. We demonstrate that a large proportion of model parameters can be frozen during adaptation with minimal or no reduction in translation quality by encouraging structured sparsity in the set of offset tensors during learning via group lasso regularization. We evaluate this technique for both batch and incremental adaptation across multiple data sets and language pairs. Our system architecture - combining a state-of-the-art self-attentive model with compact domain adaptation - provides high quality personalized machine translation that is both space and time efficient. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1155 | Instance Weighting for Neural Machine Translation Domain Adaptation | Neural machine translation (NMT) is a deep learning based approach for machine translation, which yields the state-of-the-art translation performance in scenarios where large-scale parallel corpora are available. Although the high-quality and domain-specific translation is crucial in the real world, domain-specific corpora are usually scarce or nonexistent, and thus vanilla NMT performs poorly in such scenarios. Domain adaptation that leverages both out-of-domain parallel corpora as well as monolingual corpora for in-domain translation, is very important for domain-specific translation. In this paper, we give a comprehensive survey of the state-of-the-art domain adaptation techniques for NMT. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1156 | Regularization techniques for fine-tuning in neural machine translation | We investigate techniques for supervised domain adaptation for neural machine translation where an existing model trained on a large out-of-domain dataset is adapted to a small in-domain dataset. In this scenario, overfitting is a major challenge. We investigate a number of techniques to reduce overfitting and improve transfer learning, including regularization techniques such as dropout and L2-regularization towards an out-of-domain prior. In addition, we introduce tuneout, a novel regularization technique inspired by dropout. We apply these techniques, alone and in combination, to neural machine translation, obtaining improvements on IWSLT datasets for English->German and English->Russian. We also investigate the amounts of in-domain training data needed for domain adaptation in NMT, and find a logarithmic relationship between the amount of training data and gain in BLEU score. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1159 | Encoding Sentences with Graph Convolutional Networks for Semantic Role Labeling | Semantic role labeling (SRL) is the task of identifying the predicate-argument structure of a sentence. It is typically regarded as an important step in the standard NLP pipeline. As the semantic representations are closely related to syntactic ones, we exploit syntactic information in our model. We propose a version of graph convolutional networks (GCNs), a recent class of neural networks operating on graphs, suited to model syntactic dependency graphs. GCNs over syntactic dependency trees are used as sentence encoders, producing latent feature representations of words in a sentence. We observe that GCN layers are complementary to LSTM ones: when we stack both GCN and LSTM layers, we obtain a substantial improvement over an already state-of-the-art LSTM SRL model, resulting in the best reported scores on the standard benchmark (CoNLL-2009) both for Chinese and English. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1160 | Neural Semantic Parsing with Type Constraints for Semi-Structured Tables | The goal of semantic parsing is to map natural language to a machine interpretable meaning representation language (MRL). One of the constraints that limits full exploration of deep learning technologies for semantic parsing is the lack of sufficient annotation training data. In this paper, we propose using sequence-to-sequence in a multi-task setup for semantic parsing with a focus on transfer learning. We explore three multi-task architectures for sequence-to-sequence modeling and compare their performance with an independently trained model. Our experiments show that the multi-task setup aids transfer learning from an auxiliary task with large labeled data to a target task with smaller labeled data. We see absolute accuracy gains ranging from 1.0% to 4.4% in our in- house data set, and we also see good gains ranging from 2.5% to 7.0% on the ATIS semantic parsing tasks with syntactic and semantic auxiliary tasks. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1161 | Joint Concept Learning and Semantic Parsing from Natural Language Explanations | We present a framework that couples the syntax and semantics of natural language sentences in a generative model, in order to develop a semantic parser that jointly infers the syntactic, morphological, and semantic representations of a given sentence under the guidance of background knowledge. To generate a sentence in our framework, a semantic statement is first sampled from a prior, such as from a set of beliefs in a knowledge base. Given this semantic statement, a grammar probabilistically generates the output sentence. A joint semantic-syntactic parser is derived that returns the $k$-best semantic and syntactic parses for a given sentence. The semantic prior is flexible, and can be used to incorporate background knowledge during parsing, in ways unlike previous semantic parsing approaches. For example, semantic statements corresponding to beliefs in a knowledge base can be given higher prior probability, type-correct statements can be given somewhat lower probability, and beliefs outside the knowledge base can be given lower probability. The construction of our grammar invokes a novel application of hierarchical Dirichlet processes (HDPs), which in turn, requires a novel and efficient inference approach. We present experimental results showing, for a simple grammar, that our parser outperforms a state-of-the-art CCG semantic parser and scales to knowledge bases with millions of beliefs. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1164 | Asking too much? The rhetorical role of questions in political discourse | Questions play a prominent role in social interactions, performing rhetorical functions that go beyond that of simple informational exchange. The surface form of a question can signal the intention and background of the person asking it, as well as the nature of their relation with the interlocutor. While the informational nature of questions has been extensively examined in the context of question-answering applications, their rhetorical aspects have been largely understudied. In this work we introduce an unsupervised methodology for extracting surface motifs that recur in questions, and for grouping them according to their latent rhetorical role. By applying this framework to the setting of question sessions in the UK parliament, we show that the resulting typology encodes key aspects of the political discourse---such as the bifurcation in questioning behavior between government and opposition parties---and reveals new insights into the effects of a legislator's tenure and political career ambitions. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1165 | Detecting Perspectives in Political Debates | As political polarization in the United States continues to rise, the question of whether polarized individuals can fruitfully cooperate becomes pressing. Although diversity of individual perspectives typically leads to superior team performance on complex tasks, strong political perspectives have been associated with conflict, misinformation and a reluctance to engage with people and perspectives beyond one's echo chamber. It is unclear whether self-selected teams of politically diverse individuals will create higher or lower quality outcomes. In this paper, we explore the effect of team political composition on performance through analysis of millions of edits to Wikipedia's Political, Social Issues, and Science articles. We measure editors' political alignments by their contributions to conservative versus liberal articles. A survey of editors validates that those who primarily edit liberal articles identify more strongly with the Democratic party and those who edit conservative ones with the Republican party. Our analysis then reveals that polarized teams---those consisting of a balanced set of politically diverse editors---create articles of higher quality than politically homogeneous teams. The effect appears most strongly in Wikipedia's Political articles, but is also observed in Social Issues and even Science articles. Analysis of article "talk pages" reveals that politically polarized teams engage in longer, more constructive, competitive, and substantively focused but linguistically diverse debates than political moderates. More intense use of Wikipedia policies by politically diverse teams suggests institutional design principles to help unleash the power of politically polarized teams. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1167 | A Question Answering Approach for Emotion Cause Extraction | Emotion cause extraction aims to identify the reasons behind a certain emotion expressed in text. It is a much more difficult task compared to emotion classification. Inspired by recent advances in using deep memory networks for question answering (QA), we propose a new approach which considers emotion cause identification as a reading comprehension task in QA. Inspired by convolutional neural networks, we propose a new mechanism to store relevant context in different memory slots to model context information. Our proposed approach can extract both word level sequence features and lexical features. Performance evaluation shows that our method achieves the state-of-the-art performance on a recently released emotion cause dataset, outperforming a number of competitive baselines by at least 3.01% in F-measure. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1168 | Story Comprehension for Predicting What Happens Next | Although there has been substantial research in software analytics for effort estimation in traditional software projects, little work has been done for estimation in agile projects, especially estimating user stories or issues. Story points are the most common unit of measure used for estimating the effort involved in implementing a user story or resolving an issue. In this paper, we offer for the \emph{first} time a comprehensive dataset for story points-based estimation that contains 23,313 issues from 16 open source projects. We also propose a prediction model for estimating story points based on a novel combination of two powerful deep learning architectures: long short-term memory and recurrent highway network. Our prediction system is \emph{end-to-end} trainable from raw input data to prediction outcomes without any manual feature engineering. An empirical evaluation demonstrates that our approach consistently outperforms three common effort estimation baselines and two alternatives in both Mean Absolute Error and the Standardized Accuracy. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1170 | Opinion Recommendation Using A Neural Model | We present opinion recommendation, a novel task of jointly predicting a custom review with a rating score that a certain user would give to a certain product or service, given existing reviews and rating scores to the product or service by other users, and the reviews that the user has given to other products and services. A characteristic of opinion recommendation is the reliance of multiple data sources for multi-task joint learning, which is the strength of neural models. We use a single neural network to model users and products, capturing their correlation and generating customised product representations using a deep memory network, from which customised ratings and reviews are constructed jointly. Results show that our opinion recommendation system gives ratings that are closer to real user ratings on Yelp.com data compared with Yelp's own ratings, and our methods give better results compared to several pipelines baselines using state-of-the-art sentiment rating and summarization systems. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1171 | CRF Autoencoder for Unsupervised Dependency Parsing | Unsupervised dependency parsing, which tries to discover linguistic dependency structures from unannotated data, is a very challenging task. Almost all previous work on this task focuses on learning generative models. In this paper, we develop an unsupervised dependency parsing model based on the CRF autoencoder. The encoder part of our model is discriminative and globally normalized which allows us to use rich features as well as universal linguistic priors. We propose an exact algorithm for parsing as well as a tractable learning algorithm. We evaluated the performance of our model on eight multilingual treebanks and found that our model achieved comparable performance with state-of-the-art approaches. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1173 | Incremental Graph-based Neural Dependency Parsing | Parsing sentences to linguistically-expressive semantic representations is a key goal of Natural Language Processing. Yet statistical parsing has focused almost exclusively on bilexical dependencies or domain-specific logical forms. We propose a neural encoder-decoder transition-based parser which is the first full-coverage semantic graph parser for Minimal Recursion Semantics (MRS). The model architecture uses stack-based embedding features, predicting graphs jointly with unlexicalized predicates and their token alignments. Our parser is more accurate than attention-based baselines on MRS, and on an additional Abstract Meaning Representation (AMR) benchmark, and GPU batch processing makes it an order of magnitude faster than a high-precision grammar-based parser. Further, the 86.69% Smatch score of our MRS parser is higher than the upper-bound on AMR parsing, making MRS an attractive choice as a semantic representation. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1174 | Neural Discontinuous Constituency Parsing | This paper describes adaptations for EaFi, a parser for easy-first parsing of discontinuous constituents, to adapt it to multiple languages as well as make use of the unlabeled data that was provided as part of the SPMRL shared task 2014. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1175 | Stack-based Multi-layer Attention for Transition-based Dependency Parsing | The addition of syntax-aware decoding in Neural Machine Translation (NMT) systems requires an effective tree-structured neural network, a syntax-aware attention model and a language generation model that is sensitive to sentence structure. We exploit a top-down tree-structured model called DRNN (Doubly-Recurrent Neural Networks) first proposed by Alvarez-Melis and Jaakola (2017) to create an NMT model called Seq2DRNN that combines a sequential encoder with tree-structured decoding augmented with a syntax-aware attention model. Unlike previous approaches to syntax-based NMT which use dependency parsing models our method uses constituency parsing which we argue provides useful information for translation. In addition, we use the syntactic structure of the sentence to add new connections to the tree-structured decoder neural network (Seq2DRNN+SynC). We compare our NMT model with sequential and state of the art syntax-based NMT models and show that our model produces more fluent translations with better reordering. Since our model is capable of doing translation and constituency parsing at the same time we also compare our parsing accuracy against other neural parsing models. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1176 | Dependency Grammar Induction with Neural Lexicalization and Big Training Data | We study the impact of big models (in terms of the degree of lexicalization) and big data (in terms of the training corpus size) on dependency grammar induction. We experimented with L-DMV, a lexicalized version of Dependency Model with Valence and L-NDMV, our lexicalized extension of the Neural Dependency Model with Valence. We find that L-DMV only benefits from very small degrees of lexicalization and moderate sizes of training corpora. L-NDMV can benefit from big training data and lexicalization of greater degrees, especially when enhanced with good model initialization, and it achieves a result that is competitive with the current state-of-the-art. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1178 | Effective Inference for Generative Neural Parsing | We describe SLING, a framework for parsing natural language into semantic frames. SLING supports general transition-based, neural-network parsing with bidirectional LSTM input encoding and a Transition Based Recurrent Unit (TBRU) for output decoding. The parsing model is trained end-to-end using only the text tokens as input. The transition system has been designed to output frame graphs directly without any intervening symbolic representation. The SLING framework includes an efficient and scalable frame store implementation as well as a neural network JIT compiler for fast inference during parsing. SLING is implemented in C++ and it is available for download on GitHub. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1179 | Semi-supervised Structured Prediction with Neural CRF Autoencoder | Conditional Random Field (CRF) and recurrent neural models have achieved success in structured prediction. More recently, there is a marriage of CRF and recurrent neural models, so that we can gain from both non-linear dense features and globally normalized CRF objective. These recurrent neural CRF models mainly focus on encode node features in CRF undirected graphs. However, edge features prove important to CRF in structured prediction. In this work, we introduce a new recurrent neural CRF model, which learns non-linear edge features, and thus makes non-linear features encoded completely. We compare our model with different neural models in well-known structured prediction tasks. Experiments show that our model outperforms state-of-the-art methods in NP chunking, shallow parsing, Chinese word segmentation and POS tagging. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1180 | TAG Parsing with Neural Networks and Vector Representations of Supertags | We present a graph-based Tree Adjoining Grammar (TAG) parser that uses BiLSTMs, highway connections, and character-level CNNs. Our best end-to-end parser, which jointly performs supertagging, POS tagging, and parsing, outperforms the previously reported best results by more than 2.2 LAS and UAS points. The graph-based parsing architecture allows for global inference and rich feature representations for TAG parsing, alleviating the fundamental trade-off between transition-based and graph-based parsing systems. We also demonstrate that the proposed parser achieves state-of-the-art performance in the downstream tasks of Parsing Evaluation using Textual Entailments (PETE) and Unbounded Dependency Recovery. This provides further support for the claim that TAG is a viable formalism for problems that require rich structural analysis of sentences. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1182 | End-to-End Neural Relation Extraction with Global Optimization | Multi objective (MO) optimization is an emerging field which is increasingly being implemented in many industries globally. In this work, the MO optimization of the extraction process of bioactive compounds from the Gardenia Jasminoides Ellis fruit was solved. Three swarm-based algorithms have been applied in conjunction with normal-boundary intersection (NBI) method to solve this MO problem. The gravitational search algorithm (GSA) and the particle swarm optimization (PSO) technique were implemented in this work. In addition, a novel Hopfield-enhanced particle swarm optimization was developed and applied to the extraction problem. By measuring the levels of dominance, the optimality of the approximate Pareto frontiers produced by all the algorithms were gauged and compared. Besides, by measuring the levels of convergence of the frontier, some understanding regarding the structure of the objective space in terms of its relation to the level of frontier dominance is uncovered. Detail comparative studies were conducted on all the algorithms employed and developed in this work. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1183 | KGEval: Accuracy Estimation of Automatically Constructed Knowledge Graphs | Automatic construction of large knowledge graphs (KG) by mining web-scale text datasets has received considerable attention recently. Estimating accuracy of such automatically constructed KGs is a challenging problem due to their size and diversity. This important problem has largely been ignored in prior research we fill this gap and propose KGEval. KGEval binds facts of a KG using coupling constraints and crowdsources the facts that infer correctness of large parts of the KG. We demonstrate that the objective optimized by KGEval is submodular and NP-hard, allowing guarantees for our approximation algorithm. Through extensive experiments on real-world datasets, we demonstrate that KGEval is able to estimate KG accuracy more accurately compared to other competitive baselines, while requiring significantly lesser number of human evaluations. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1184 | Sparsity and Noise: Where Knowledge Graph Embeddings Fall Short | Embedding learning, a.k.a. representation learning, has been shown to be able to model large-scale semantic knowledge graphs. A key concept is a mapping of the knowledge graph to a tensor representation whose entries are predicted by models using latent representations of generalized entities. Latent variable models are well suited to deal with the high dimensionality and sparsity of typical knowledge graphs. In recent publications the embedding models were extended to also consider time evolutions, time patterns and subsymbolic representations. In this paper we map embedding models, which were developed purely as solutions to technical problems for modelling temporal knowledge graphs, to various cognitive memory functions, in particular to semantic and concept memory, episodic memory, sensory memory, short-term memory, and working memory. We discuss learning, query answering, the path from sensory input to semantic decoding, and the relationship between episodic memory and semantic memory. We introduce a number of hypotheses on human memory that can be derived from the developed mathematical models. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1185 | Dual Tensor Model for Detecting Asymmetric Lexico-Semantic Relations | We construct the duality-symmetric actions for a large class of six-dimensional models describing hierarchies of non-Abelian scalar, vector and tensor fields related to each other by first-order (self-)duality equations that follow from these actions. In particular, this construction provides a Lorentz invariant action for non-Abelian self-dual tensor fields. The class of models includes the bosonic sectors of the 6d (1,0) superconformal models of interacting non-Abelian self-dual tensor, vector, and hypermultiplets. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1186 | Incorporating Relation Paths in Neural Relation Extraction | Distantly supervised relation extraction has been widely used to find novel relational facts from plain text. To predict the relation between a pair of two target entities, existing methods solely rely on those direct sentences containing both entities. In fact, there are also many sentences containing only one of the target entities, which provide rich and useful information for relation extraction. To address this issue, we build inference chains between two target entities via intermediate entities, and propose a path-based neural relation extraction model to encode the relational semantics from both direct sentences and inference chains. Experimental results on real-world datasets show that, our model can make full use of those sentences containing only one target entity, and achieves significant and consistent improvements on relation extraction as compared with baselines. The source code of this paper can be obtained from https: //github.com/thunlp/PathNRE. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1187 | Adversarial Training for Relation Extraction | Adversarial training (AT) is a regularization method that can be used to improve the robustness of neural network methods by adding small perturbations in the training data. We show how to use AT for the tasks of entity recognition and relation extraction. In particular, we demonstrate that applying AT to a general purpose baseline model for jointly extracting entities and relations, allows improving the state-of-the-art effectiveness on several datasets in different contexts (i.e., news, biomedical, and real estate data) and for different languages (English and Dutch). | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1188 | Context-Aware Representations for Knowledge Base Relation Extraction | The growing demand for structured knowledge has led to great interest in relation extraction, especially in cases with limited supervision. However, existing distance supervision approaches only extract relations expressed in single sentences. In general, cross-sentence relation extraction is under-explored, even in the supervised-learning setting. In this paper, we propose the first approach for applying distant supervision to cross- sentence relation extraction. At the core of our approach is a graph representation that can incorporate both standard dependencies and discourse relations, thus providing a unifying way to model relations within and across sentences. We extract features from multiple paths in this graph, increasing accuracy and robustness when confronted with linguistic variation and analysis error. Experiments on an important extraction task for precision medicine show that our approach can learn an accurate cross-sentence extractor, using only a small existing knowledge base and unlabeled text from biomedical research articles. Compared to the existing distant supervision paradigm, our approach extracted twice as many relations at similar precision, thus demonstrating the prevalence of cross-sentence relations and the promise of our approach. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1189 | A Soft-label Method for Noise-tolerant Distantly Supervised Relation Extraction | Distant supervision is a widely applied approach to automatic training of relation extraction systems and has the advantage that it can generate large amounts of labelled data with minimal effort. However, this data may contain errors and consequently systems trained using distant supervision tend not to perform as well as those based on manually labelled data. This work proposes a novel method for detecting potential false negative training examples using a knowledge inference method. Results show that our approach improves the performance of relation extraction systems trained using distantly supervised data. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1191 | Deep Residual Learning for Weakly-Supervised Relation Extraction | Deep residual learning (ResNet) is a new method for training very deep neural networks using identity map-ping for shortcut connections. ResNet has won the ImageNet ILSVRC 2015 classification task, and achieved state-of-the-art performances in many computer vision tasks. However, the effect of residual learning on noisy natural language processing tasks is still not well understood. In this paper, we design a novel convolutional neural network (CNN) with residual learning, and investigate its impacts on the task of distantly supervised noisy relation extraction. In contradictory to popular beliefs that ResNet only works well for very deep networks, we found that even with 9 layers of CNNs, using identity mapping could significantly improve the performance for distantly-supervised relation extraction. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1193 | Exploring Vector Spaces for Semantic Relations | Semantic Similarity is an important application which finds its use in many downstream NLP applications. Though the task is mathematically defined, semantic similarity's essence is to capture the notions of similarity impregnated in humans. Machines use some heuristics to calculate the similarity between words, but these are typically corpus dependent or are useful for specific domains. The difference between Semantic Similarity and Semantic Relatedness motivates the development of new algorithms. For a human, the word car and road are probably as related as car and bus. But this may not be the case for computational methods. Ontological methods are good at encoding Semantic Similarity and Vector Space models are better at encoding Semantic Relatedness. There is a dearth of methods which leverage ontologies to create better vector representations. The aim of this proposal is to explore in the direction of a hybrid method which combines statistical/vector space methods like Word2Vec and Ontological methods like WordNet to leverage the advantages provided by both. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1195 | Dynamic Entity Representations in Neural Language Models | Understanding a long document requires tracking how entities are introduced and evolve over time. We present a new type of language model, EntityNLM, that can explicitly model entities, dynamically update their representations, and contextually generate their mentions. Our model is generative and flexible; it can model an arbitrary number of entities in context while generating each entity mention at an arbitrary length. In addition, it can be used for several different tasks such as language modeling, coreference resolution, and entity prediction. Experimental results with all these tasks demonstrate that our model consistently outperforms strong baselines and prior work. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1196 | Towards Quantum Language Models | The field of quantum algorithms is vibrant. Still, there is currently a lack of programming languages for describing quantum computation on a practical scale, i.e., not just at the level of toy problems. We address this issue by introducing Quipper, a scalable, expressive, functional, higher-order quantum programming language. Quipper has been used to program a diverse set of non-trivial quantum algorithms, and can generate quantum gate representations using trillions of gates. It is geared towards a model of computation that uses a classical computer to control a quantum device, but is not dependent on any particular model of quantum hardware. Quipper has proven effective and easy to use, and opens the door towards using formal methods to analyze quantum algorithms. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1197 | Reference-Aware Language Models | We introduce a new measure of distance between languages based on word embedding, called word embedding language divergence (WELD). WELD is defined as divergence between unified similarity distribution of words between languages. Using such a measure, we perform language comparison for fifty natural languages and twelve genetic languages. Our natural language dataset is a collection of sentence-aligned parallel corpora from bible translations for fifty languages spanning a variety of language families. Although we use parallel corpora, which guarantees having the same content in all languages, interestingly in many cases languages within the same family cluster together. In addition to natural languages, we perform language comparison for the coding regions in the genomes of 12 different organisms (4 plants, 6 animals, and two human subjects). Our result confirms a significant high-level difference in the genetic language model of humans/animals versus plants. The proposed method is a step toward defining a quantitative measure of similarity between languages, with applications in languages classification, genre identification, dialect identification, and evaluation of translations. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1198 | A Simple Language Model based on PMI Matrix Approximations | In this study, we introduce a new approach for learning language models by training them to estimate word-context pointwise mutual information (PMI), and then deriving the desired conditional probabilities from PMI at test time. Specifically, we show that with minor modifications to word2vec's algorithm, we get principled language models that are closely related to the well-established Noise Contrastive Estimation (NCE) based language models. A compelling aspect of our approach is that our models are trained with the same simple negative sampling objective function that is commonly used in word2vec to learn word embeddings. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1199 | Syllable-aware Neural Language Models: A Failure to Beat Character-aware Ones | Syllabification does not seem to improve word-level RNN language modeling quality when compared to character-based segmentation. However, our best syllable-aware language model, achieving performance comparable to the competitive character-aware model, has 18%-33% fewer parameters and is trained 1.2-2.2 times faster. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1200 | Inducing Semantic Micro-Clusters from Deep Multi-View Representations of Novels | Incorporating semantic information into the codecs during image compression can significantly reduce the repetitive computation of fundamental semantic analysis (such as object recognition) in client-side applications. The same practice also enable the compressed code to carry the image semantic information during storage and transmission. In this paper, we propose a concept called Deep Semantic Image Compression (DeepSIC) and put forward two novel architectures that aim to reconstruct the compressed image and generate corresponding semantic representations at the same time. The first architecture performs semantic analysis in the encoding process by reserving a portion of the bits from the compressed code to store the semantic representations. The second performs semantic analysis in the decoding step with the feature maps that are embedded in the compressed code. In both architectures, the feature maps are shared by the compression and the semantic analytics modules. To validate our approaches, we conduct experiments on the publicly available benchmarking datasets and achieve promising results. We also provide a thorough analysis of the advantages and disadvantages of the proposed technique. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1202 | Shortest-Path Graph Kernels for Document Similarity | We define and study the link prediction problem in bipartite networks, specializing general link prediction algorithms to the bipartite case. In a graph, a link prediction function of two vertices denotes the similarity or proximity of the vertices. Common link prediction functions for general graphs are defined using paths of length two between two nodes. Since in a bipartite graph adjacency vertices can only be connected by paths of odd lengths, these functions do not apply to bipartite graphs. Instead, a certain class of graph kernels (spectral transformation kernels) can be generalized to bipartite graphs when the positive-semidefinite kernel constraint is relaxed. This generalization is realized by the odd component of the underlying spectral transformation. This construction leads to several new link prediction pseudokernels such as the matrix hyperbolic sine, which we examine for rating graphs, authorship graphs, folksonomies, document--feature networks and other types of bipartite networks. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1203 | Adapting Topic Models using Lexical Associations with Tree Priors | We present a probabilistic model that uses both prosodic and lexical cues for the automatic segmentation of speech into topically coherent units. We propose two methods for combining lexical and prosodic information using hidden Markov models and decision trees. Lexical information is obtained from a speech recognizer, and prosodic features are extracted automatically from speech waveforms. We evaluate our approach on the Broadcast News corpus, using the DARPA-TDT evaluation metrics. Results show that the prosodic model alone is competitive with word-based segmentation methods. Furthermore, we achieve a significant reduction in error by combining the prosodic and word-based knowledge sources. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1205 | CROWD-IN-THE-LOOP: A Hybrid Approach for Annotating Semantic Roles | The aim of this paper is to propose an approach based on the concept of annotation for supporting design communication. In this paper, we describe a co-operative design case study where we analyse some annotation practices, mainly focused on design minutes recorded during project reviews. We point out specific requirements concerning annotation needs. Based on these requirements, we propose an annotation model, inspired from the Speech Act Theory (SAT) to support communication in a 3D digital environment. We define two types of annotations in the engineering design context, locutionary and illocutionary annotations. The annotations we describe in this paper are materialised by a set of digital artefacts, which have a semantic dimension allowing express/record elements of technical justifications, traces of contradictory debates, etc. In this paper, we first clarify the semantic annotation concept, and we define general properties of annotations in the engineering design context, and the role of annotations in different design project situations. After the description of the case study, where we observe and analyse annotations usage during the design reviews and minute making, the last section is dedicated to present our approach. We then describe the SAT concept, and define the concept of annotation acts. We conclude with a description of basic annotation functionalities that are actually implemented in a software, based on our approach. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1206 | A Joint Many-Task Model: Growing a Neural Network for Multiple NLP Tasks | Transfer and multi-task learning have traditionally focused on either a single source-target pair or very few, similar tasks. Ideally, the linguistic levels of morphology, syntax and semantics would benefit each other by being trained in a single model. We introduce a joint many-task model together with a strategy for successively growing its depth to solve increasingly complex tasks. Higher layers include shortcut connections to lower-level task predictions to reflect linguistic hierarchies. We use a simple regularization term to allow for optimizing all model weights to improve one task's loss without exhibiting catastrophic interference of the other tasks. Our single end-to-end model obtains state-of-the-art or competitive results on five different tasks from tagging, parsing, relatedness, and entailment tasks. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1208 | Unfolding and Shrinking Neural Machine Translation Ensembles | Ensembling is a well-known technique in neural machine translation (NMT) to improve system performance. Instead of a single neural net, multiple neural nets with the same topology are trained separately, and the decoder generates predictions by averaging over the individual models. Ensembling often improves the quality of the generated translations drastically. However, it is not suitable for production systems because it is cumbersome and slow. This work aims to reduce the runtime to be on par with a single system without compromising the translation quality. First, we show that the ensemble can be unfolded into a single large neural network which imitates the output of the ensemble system. We show that unfolding can already improve the runtime in practice since more work can be done on the GPU. We proceed by describing a set of techniques to shrink the unfolded network by reducing the dimensionality of layers. On Japanese-English we report that the resulting network has the size and decoding speed of a single NMT network but performs on the level of a 3-ensemble system. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1209 | Graph Convolutional Encoders for Syntax-aware Neural Machine Translation | We present a simple and effective approach to incorporating syntactic structure into neural attention-based encoder-decoder models for machine translation. We rely on graph-convolutional networks (GCNs), a recent class of neural networks developed for modeling graph-structured data. Our GCNs use predicted syntactic dependency trees of source sentences to produce representations of words (i.e. hidden states of the encoder) that are sensitive to their syntactic neighborhoods. GCNs take word representations as input and produce word representations as output, so they can easily be incorporated as layers into standard encoders (e.g., on top of bidirectional RNNs or convolutional neural networks). We evaluate their effectiveness with English-German and English-Czech translation experiments for different types of encoders and observe substantial improvements over their syntax-agnostic versions in all the considered setups. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1210 | Trainable Greedy Decoding for Neural Machine Translation | Recent research in neural machine translation has largely focused on two aspects; neural network architectures and end-to-end learning algorithms. The problem of decoding, however, has received relatively little attention from the research community. In this paper, we solely focus on the problem of decoding given a trained neural machine translation model. Instead of trying to build a new decoding algorithm for any specific decoding objective, we propose the idea of trainable decoding algorithm in which we train a decoding algorithm to find a translation that maximizes an arbitrary decoding objective. More specifically, we design an actor that observes and manipulates the hidden state of the neural machine translation decoder and propose to train it using a variant of deterministic policy gradient. We extensively evaluate the proposed algorithm using four language pairs and two decoding objectives and show that we can indeed train a trainable greedy decoder that generates a better translation (in terms of a target decoding objective) with minimal computational overhead. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1212 | Fine Grained Citation Span for References in Wikipedia | \emph{Verifiability} is one of the core editing principles in Wikipedia, editors being encouraged to provide citations for the added content. For a Wikipedia article, determining the \emph{citation span} of a citation, i.e. what content is covered by a citation, is important as it helps decide for which content citations are still missing. We are the first to address the problem of determining the \emph{citation span} in Wikipedia articles. We approach this problem by classifying which textual fragments in an article are covered by a citation. We propose a sequence classification approach where for a paragraph and a citation, we determine the citation span at a fine-grained level. We provide a thorough experimental evaluation and compare our approach against baselines adopted from the scientific domain, where we show improvement for all evaluation metrics. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1213 | Identifying Semantic Edit Intentions from Revisions in Wikipedia | We propose a dynamic map of knowledge generated from Wikipedia pages and the Web URLs contained therein. GalaxySearch provides answers to the questions we don't know how to ask, by constructing a semantic network of the most relevant pages in Wikipedia related to a search term. This search graph is constructed based on the Wikipedia bidirectional link structure, the most recent edits on the pages, the importance of the page, and the article quality; search results are then ranked by the centrality of their network position. GalaxySearch provides the results in three related ways: (1) WikiSearch - identifying the most prominent Wikipedia pages and Weblinks for a chosen topic, (2) WikiMap - creating a visual temporal map of the changes in the semantic network generated by the search results over the lifetime of the returned Wikipedia articles, and (3) WikiPulse - finding the most recent and most relevant changes and updates about a topic. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1214 | Accurate Supervised and Semi-Supervised Machine Reading for Long Documents | In this paper, we introduce Iterative Text Summarization (ITS), an iteration-based model for supervised extractive text summarization, inspired by the observation that it is often necessary for a human to read an article multiple times in order to fully understand and summarize its contents. Current summarization approaches read through a document only once to generate a document representation, result- ing in a sub-optimal representation. To ad- dress this issue we introduce a model which iteratively polishes the document representation on many passes through the document. As part of our model, we also introduce a selective reading mechanism that decides more accurately the extent to which each sentence in the model should be updated. Experimental results on the CNN/DailyMail and DUC2002 datasets demonstrate that our model significantly outperforms state-of-the-art extractive systems when evaluated by machines and by humans. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1215 | Adversarial Examples for Evaluating Reading Comprehension Systems | Standard accuracy metrics indicate that reading comprehension systems are making rapid progress, but the extent to which these systems truly understand language remains unclear. To reward systems with real language understanding abilities, we propose an adversarial evaluation scheme for the Stanford Question Answering Dataset (SQuAD). Our method tests whether systems can answer questions about paragraphs that contain adversarially inserted sentences, which are automatically generated to distract computer systems without changing the correct answer or misleading humans. In this adversarial setting, the accuracy of sixteen published models drops from an average of $75\%$ F1 score to $36\%$; when the adversary is allowed to add ungrammatical sequences of words, average accuracy on four models decreases further to $7\%$. We hope our insights will motivate the development of new models that understand language more precisely. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1216 | Reasoning with Heterogeneous Knowledge for Commonsense Machine Comprehension | Commonsense reasoning is a long-standing challenge for deep learning. For example, it is difficult to use neural networks to tackle the Winograd Schema dataset~\cite{levesque2011winograd}. In this paper, we present a simple method for commonsense reasoning with neural networks, using unsupervised learning. Key to our method is the use of language models, trained on a massive amount of unlabled data, to score multiple choice questions posed by commonsense reasoning tests. On both Pronoun Disambiguation and Winograd Schema challenges, our models outperform previous state-of-the-art methods by a large margin, without using expensive annotated knowledge bases or hand-engineered features. We train an array of large RNN language models that operate at word or character level on LM-1-Billion, CommonCrawl, SQuAD, Gutenberg Books, and a customized corpus for this task and show that diversity of training data plays an important role in test performance. Further analysis also shows that our system successfully discovers important features of the context that decide the correct answer, indicating a good grasp of commonsense knowledge. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1217 | Document-Level Multi-Aspect Sentiment Classification as Machine Comprehension | Sentiment classification involves quantifying the affective reaction of a human to a document, media item or an event. Although researchers have investigated several methods to reliably infer sentiment from lexical, speech and body language cues, training a model with a small set of labeled datasets is still a challenge. For instance, in expanding sentiment analysis to new languages and cultures, it may not always be possible to obtain comprehensive labeled datasets. In this paper, we investigate the application of semi-supervised and transfer learning methods to improve performances on low resource sentiment classification tasks. We experiment with extracting dense feature representations, pre-training and manifold regularization in enhancing the performance of sentiment classification systems. Our goal is a coherent implementation of these methods and we evaluate the gains achieved by these methods in matched setting involving training and testing on a single corpus setting as well as two cross corpora settings. In both the cases, our experiments demonstrate that the proposed methods can significantly enhance the model performance against a purely supervised approach, particularly in cases involving a handful of training data. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1218 | What is the Essence of a Claim? Cross-Domain Claim Identification | Argument mining has become a popular research area in NLP. It typically includes the identification of argumentative components, e.g. claims, as the central component of an argument. We perform a qualitative analysis across six different datasets and show that these appear to conceptualize claims quite differently. To learn about the consequences of such different conceptualizations of claim for practical applications, we carried out extensive experiments using state-of-the-art feature-rich and deep learning systems, to identify claims in a cross-domain fashion. While the divergent perception of claims in different datasets is indeed harmful to cross-domain classification, we show that there are shared properties on the lexical level as well as system configurations that can help to overcome these gaps. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1220 | Break it Down for Me: A Study in Automated Lyric Annotation | Comprehending lyrics, as found in songs and poems, can pose a challenge to human and machine readers alike. This motivates the need for systems that can understand the ambiguity and jargon found in such creative texts, and provide commentary to aid readers in reaching the correct interpretation. We introduce the task of automated lyric annotation (ALA). Like text simplification, a goal of ALA is to rephrase the original text in a more easily understandable manner. However, in ALA the system must often include additional information to clarify niche terminology and abstract concepts. To stimulate research on this task, we release a large collection of crowdsourced annotations for song lyrics. We analyze the performance of translation and retrieval models on this task, measuring performance with both automated and human evaluation. We find that each model captures a unique type of information important to the task. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1222 | Deep Recurrent Generative Decoder for Abstractive Text Summarization | We propose a new framework for abstractive text summarization based on a sequence-to-sequence oriented encoder-decoder model equipped with a deep recurrent generative decoder (DRGN). Latent structure information implied in the target summaries is learned based on a recurrent latent random model for improving the summarization quality. Neural variational inference is employed to address the intractable posterior inference for the recurrent latent variables. Abstractive summaries are generated based on both the generative latent variables and the discriminative deterministic states. Extensive experiments on some benchmark datasets in different languages show that DRGN achieves improvements over the state-of-the-art methods. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1223 | Extractive Summarization Using Multi-Task Learning with Document Classification | Sequence to sequence (Seq2Seq) learning has recently been used for abstractive and extractive summarization. In current study, Seq2Seq models have been used for eBay product description summarization. We propose a novel Document-Context based Seq2Seq models using RNNs for abstractive and extractive summarizations. Intuitively, this is similar to humans reading the title, abstract or any other contextual information before reading the document. This gives humans a high-level idea of what the document is about. We use this idea and propose that Seq2Seq models should be started with contextual information at the first time-step of the input to obtain better summaries. In this manner, the output summaries are more document centric, than being generic, overcoming one of the major hurdles of using generative models. We generate document-context from user-behavior and seller provided information. We train and evaluate our models on human-extracted-golden-summaries. The document-contextual Seq2Seq models outperform standard Seq2Seq models. Moreover, generating human extracted summaries is prohibitively expensive to scale, we therefore propose a semi-supervised technique for extracting approximate summaries and using it for training Seq2Seq models at scale. Semi-supervised models are evaluated against human extracted summaries and are found to be of similar efficacy. We provide side by side comparison for abstractive and extractive summarizers (contextual and non-contextual) on same evaluation dataset. Overall, we provide methodologies to use and evaluate the proposed techniques for large document summarization. Furthermore, we found these techniques to be highly effective, which is not the case with existing techniques. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1224 | Towards Automatic Construction of News Overview Articles by News Synthesis | This paper proposes relational program synthesis, a new problem that concerns synthesizing one or more programs that collectively satisfy a relational specification. As a dual of relational program verification, relational program synthesis is an important problem that has many practical applications, such as automated program inversion and automatic generation of comparators. However, this relational synthesis problem introduces new challenges over its non-relational counterpart due to the combinatorially larger search space. As a first step towards solving this problem, this paper presents a synthesis technique that combines the counterexample-guided inductive synthesis framework with a novel inductive synthesis algorithm that is based on relational version space learning. We have implemented the proposed technique in a framework called Relish, which can be instantiated to different application domains by providing a suitable domain-specific language and the relevant relational specification. We have used the Relish framework to build relational synthesizers to automatically generate string encoders/decoders as well as comparators, and we evaluate our tool on several benchmarks taken from prior work and online forums. Our experimental results show that the proposed technique can solve almost all of these benchmarks and that it significantly outperforms EUSolver, a generic synthesis framework that won the general track of the most recent SyGuS competition. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1225 | Joint Syntacto-Discourse Parsing and the Syntacto-Discourse Treebank | Various treebanks have been released for dependency parsing. Despite that treebanks may belong to different languages or have different annotation schemes, they contain syntactic knowledge that is potential to benefit each other. This paper presents an universal framework for exploiting these multi-typed treebanks to improve parsing with deep multi-task learning. We consider two kinds of treebanks as source: the multilingual universal treebanks and the monolingual heterogeneous treebanks. Multiple treebanks are trained jointly and interacted with multi-level parameter sharing. Experiments on several benchmark datasets in various languages demonstrate that our approach can make effective use of arbitrary source treebanks to improve target parsing models. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1228 | Steering Output Style and Topic in Neural Response Generation | We propose simple and flexible training and decoding methods for influencing output style and topic in neural encoder-decoder based language generation. This capability is desirable in a variety of applications, including conversational systems, where successful agents need to produce language in a specific style and generate responses steered by a human puppeteer or external knowledge. We decompose the neural generation process into empirically easier sub-problems: a faithfulness model and a decoding method based on selective-sampling. We also describe training and sampling algorithms that bias the generation process with a specific language style restriction, or a topic restriction. Human evaluation results show that our proposed methods are able to restrict style and topic without degrading output quality in conversational tasks. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1229 | Preserving Distributional Information in Dialogue Act Classification | Recognising dialogue acts (DA) is important for many natural language processing tasks such as dialogue generation and intention recognition. In this paper, we propose a dual-attention hierarchical recurrent neural network for dialogue act classification. Our model is partially inspired by the observation that conversational utterances are normally associated with both a dialogue act and a topic, where the former captures the social act and the latter describes the subject matter. However, such a dependency between dialogue acts and topics has not been utilised by most existing systems for DA classification. With a novel dual task-specific attention mechanism, our model is able, for utterances, to capture information about both dialogue acts and topics, as well as information about the interactions between them. We evaluate the performance of our model on two publicly available datasets, i.e., Switchboard and DailyDialog. Experimental results show that by modelling topic as an auxiliary task, our model can significantly improve DA classification. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1230 | Adversarial Learning for Neural Dialogue Generation | In this paper, drawing intuition from the Turing test, we propose using adversarial training for open-domain dialogue generation: the system is trained to produce sequences that are indistinguishable from human-generated dialogue utterances. We cast the task as a reinforcement learning (RL) problem where we jointly train two systems, a generative model to produce response sequences, and a discriminator---analagous to the human evaluator in the Turing test--- to distinguish between the human-generated dialogues and the machine-generated ones. The outputs from the discriminator are then used as rewards for the generative model, pushing the system to generate dialogues that mostly resemble human dialogues. In addition to adversarial training we describe a model for adversarial {\em evaluation} that uses success in fooling an adversary as a dialogue evaluation metric, while avoiding a number of potential pitfalls. Experimental results on several metrics, including adversarial evaluation, demonstrate that the adversarially-trained system generates higher-quality responses than previous baselines. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1231 | Using Context Information for Dialog Act Classification in DNN Framework | Recent works have proposed neural models for dialog act classification in spoken dialogs. However, they have not explored the role and the usefulness of acoustic information. We propose a neural model that processes both lexical and acoustic features for classification. Our results on two benchmark datasets reveal that acoustic features are helpful in improving the overall accuracy. Finally, a deeper analysis shows that acoustic features are valuable in three cases: when a dialog act has sufficient data, when lexical information is limited and when strong lexical cues are not present. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1232 | Modeling Dialogue Acts with Content Word Filtering and Speaker Preferences | For the task of recognizing dialogue acts, we are applying the Transformation-Based Learning (TBL) machine learning algorithm. To circumvent a sparse data problem, we extract values of well-motivated features of utterances, such as speaker direction, punctuation marks, and a new feature, called dialogue act cues, which we find to be more effective than cue phrases and word n-grams in practice. We present strategies for constructing a set of dialogue act cues automatically by minimizing the entropy of the distribution of dialogue acts in a training corpus, filtering out irrelevant dialogue act cues, and clustering semantically-related words. In addition, to address limitations of TBL, we introduce a Monte Carlo strategy for training efficiently and a committee method for computing confidence measures. These ideas are combined in our working implementation, which labels held-out data as accurately as any other reported system for the dialogue act tagging task. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1234 | Affordable On-line Dialogue Policy Learning | Dialogue policy transfer enables us to build dialogue policies in a target domain with little data by leveraging knowledge from a source domain with plenty of data. Dialogue sentences are usually represented by speech-acts and domain slots, and the dialogue policy transfer is usually achieved by assigning a slot mapping matrix based on human heuristics. However, existing dialogue policy transfer methods cannot transfer across dialogue domains with different speech-acts, for example, between systems built by different companies. Also, they depend on either common slots or slot entropy, which are not available when the source and target slots are totally disjoint and no database is available to calculate the slot entropy. To solve this problem, we propose a Policy tRansfer across dOMaIns and SpEech-acts (PROMISE) model, which is able to transfer dialogue policies across domains with different speech-acts and disjoint slots. The PROMISE model can learn to align different speech-acts and slots simultaneously, and it does not require common slots or the calculation of the slot entropy. Experiments on both real-world dialogue data and simulations demonstrate that PROMISE model can effectively transfer dialogue policies across domains with different speech-acts and disjoint slots. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1238 | Why We Need New Evaluation Metrics for NLG | The majority of NLG evaluation relies on automatic metrics, such as BLEU . In this paper, we motivate the need for novel, system- and data-independent automatic evaluation methods: We investigate a wide range of metrics, including state-of-the-art word-based and novel grammar-based ones, and demonstrate that they only weakly reflect human judgements of system outputs as generated by data-driven, end-to-end NLG. We also show that metric performance is data- and system-specific. Nevertheless, our results also suggest that automatic metrics perform reliably at system-level and can support system development by finding cases where a system performs poorly. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1239 | Challenges in Data-to-Document Generation | Challenges for physical solitaire puzzle games are typically designed in advance by humans and limited in number. Alternately, some games incorporate stochastic setup rules, where the human solver randomly sets up the game board before solving the challenge, which can greatly increase the number of possible challenges. However, these setup rules can often generate unsolvable or uninteresting challenges. To better understand these setup processes, we apply a taxonomy for procedural content generation algorithms to solitaire puzzle games. In particular, for the game Fujisan, we examine how different stochastic challenge generation algorithms attempt to minimize undesirable challenges, and we report their affect on ease of physical setup, challenge solvability, and challenge difficulty. We find that algorithms can be simple for the solver yet generate solvable and difficult challenges, by constraining randomness through embedding sub-elements of the puzzle mechanics into the physical pieces of the game. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1242 | Demographic-aware word associations | We consider words coding exchange of three intervals with permutation (3,2,1), here called 3iet words. Recently, a characterization of substitution invariant 3iet words was provided. We study the opposite question: what are the morphisms fixing a 3iet word? We reveal a narrow connection of such morphisms and morphisms fixing Sturmian words using the new notion of amicability. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1244 | Dimensions of Interpersonal Relationships: Corpus and Experiments | Current theories from biosocial (e.g.: the role of neurotransmitters in behavioral features), ecological (e.g.: cultural, political, and institutional conditions), and interpersonal (e.g.: attachment) perspectives have grounded interpersonal and romantic relationships in normative social experiences. However, these theories have not been developed to the point of providing a solid theoretical understanding of the dynamics present in interpersonal and romantic relationships, and integrative theories are still lacking. In this paper, mathematical models are use to investigate the dynamics of interpersonal and romantic relationships, which are examined via ordinary and stochastic differential equations, in order to provide insight into the behaviors of love. The analysis starts with a deterministic model and progresses to nonlinear stochastic models capturing the stochastic rates and factors (e.g.: ecological factors, such as historical, cultural and community conditions) that affect proximal experiences and shape the patterns of relationship. Numerical examples are given to illustrate various dynamics of interpersonal and romantic behaviors (with emphasis placed on sustained oscillations, and transitions between locally stable equilibria) that are observable in stochastic models (closely related to real interpersonal dynamics), but absent in deterministic models. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1245 | Argument Mining on Twitter: Arguments, Facts and Sources | Internet users generate content at unprecedented rates. Building intelligent systems capable of discriminating useful content within this ocean of information is thus becoming a urgent need. In this paper, we aim to predict the usefulness of Amazon reviews, and to do this we exploit features coming from an off-the-shelf argumentation mining system. We argue that the usefulness of a review, in fact, is strictly related to its argumentative content, whereas the use of an already trained system avoids the costly need of relabeling a novel dataset. Results obtained on a large publicly available corpus support this hypothesis. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1246 | Distinguishing Japanese Non-standard Usages from Standard Ones | The most commonly used Japanese alphabets are Kanji, Hiragana and Katakana. The Kanji alphabet includes pictographs or ideographic characters that were adopted from the Chinese alphabet. Hiragana is used to spell words of Japanese origin, while Katakana is used to spell words of western or other foreign origin. Two methods are commonly used to input Japanese to the computer. One, the 'kana input method' that uses a keyboard having 46 Japanese iroha (or kana) letter keys. The other method is 'Roma-ji input method', where the Japanese letters are composed of English input from a standard QWERTY keyboard. Both the methods have their advantages and disadvantages. This article analyses two inventions on inputting Japanese language through a computer keyboard. One invention uses a standard English keyboard to input Japanese characters, the other invention uses a standard mobile phone key board to input the Japanese characters. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1247 | Connotation Frames of Power and Agency in Modern Films | Through a particular choice of a predicate (e.g., "x violated y"), a writer can subtly connote a range of implied sentiments and presupposed facts about the entities x and y: (1) writer's perspective: projecting x as an "antagonist"and y as a "victim", (2) entities' perspective: y probably dislikes x, (3) effect: something bad happened to y, (4) value: y is something valuable, and (5) mental state: y is distressed by the event. We introduce connotation frames as a representation formalism to organize these rich dimensions of connotation using typed relations. First, we investigate the feasibility of obtaining connotative labels through crowdsourcing experiments. We then present models for predicting the connotation frames of verb predicates based on their distributional word representations and the interplay between different types of connotative relations. Empirical results confirm that connotation frames can be induced from various data sources that reflect how people use language and give rise to the connotative meanings. We conclude with analytical results that show the potential use of connotation frames for analyzing subtle biases in online news media. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1248 | Controlling Human Perception of Basic User Traits | This article is a sequel to our earlier work [25]. The main objective of our research is to explore the potential of supervised machine learning in face-induced social computing and cognition, riding on the momentum of much heralded successes of face processing, analysis and recognition on the tasks of biometric-based identification. We present a case study of automated statistical inference on sociopsychological perceptions of female faces controlled for race, attractiveness, age and nationality. Our empirical evidences point to the possibility of training machine learning algorithms, using example face images characterized by internet users, to predict perceptions of personality traits and demeanors. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1249 | Topic Signatures in Political Campaign Speeches | The world's digital transformation has influenced not only the way we do business, but also the way we perform daily activities. In fact, the past Presidential elections in the United States as well as those in Great Britain (Brexit) and in Colombia (peace agreement referendum) are proof that social media play an important part in modern politics. In fact, this digital political field is filled by political movements and political candidates looking for popular support (number of followers), regular citizens' messages discussing social issues (trending topics flooding social media), or even political propaganda in favor or against politicians or political movements (advertisement). One of the issues with social media in this era is the presence of automatic accounts (bots) that artificially fill accounts with fake followers, create false trending topics, and share fake news or simply flood the net with propaganda. All this artificial information may influence people and sometimes may even censor people's real opinions undermining their freedom of speech. In this paper, we propose a methodology to track elections and a set of tools used to collect and analyze election data. In particular, this paper discusses our experiences during the Presidential Elections in Ecuador held in 2017. In fact, we show how all candidates prepared an online campaign in social media (Twitter) and how the political campaign altered a common follower rate subscription. We discuss that the high presence of followers during the period between the first and second round of elections may be altered by automatic accounts. Finally, we use bot detection systems and gathered more than 30,000 political motivated bots. In our data analysis, we show that these bots were mainly used for propaganda purposes in favor or against a particular candidate. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1250 | Assessing Objective Recommendation Quality through Political Forecasting | One goal of online social recommendation systems is to harness the wisdom of crowds in order to identify high quality content. Yet the sequential voting mechanisms that are commonly used by these systems are at odds with existing theoretical and empirical literature on optimal aggregation. This literature suggests that sequential voting will promote herding---the tendency for individuals to copy the decisions of others around them---and hence lead to suboptimal content recommendation. Is there a problem with our practice, or a problem with our theory? Previous attempts at answering this question have been limited by a lack of objective measurements of content quality. Quality is typically defined endogenously as the popularity of content in absence of social influence. The flaw of this metric is its presupposition that the preferences of the crowd are aligned with underlying quality. Domains in which content quality can be defined exogenously and measured objectively are thus needed in order to better assess the design choices of social recommendation systems. In this work, we look to the domain of education, where content quality can be measured via how well students are able to learn from the material presented to them. Through a behavioral experiment involving a simulated massive open online course (MOOC) run on Amazon Mechanical Turk, we show that sequential voting systems can surface better content than systems that elicit independent votes. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1253 | The Impact of Modeling Overall Argumentation with Tree Kernels | Methodological contributions: This paper introduces a family of kernels for analyzing (anatomical) trees endowed with vector valued measurements made along the tree. While state-of-the-art graph and tree kernels use combinatorial tree/graph structure with discrete node and edge labels, the kernels presented in this paper can include geometric information such as branch shape, branch radius or other vector valued properties. In addition to being flexible in their ability to model different types of attributes, the presented kernels are computationally efficient and some of them can easily be computed for large datasets (N of the order 10.000) of trees with 30-600 branches. Combining the kernels with standard machine learning tools enables us to analyze the relation between disease and anatomical tree structure and geometry. Experimental results: The kernels are used to compare airway trees segmented from low-dose CT, endowed with branch shape descriptors and airway wall area percentage measurements made along the tree. Using kernelized hypothesis testing we show that the geometric airway trees are significantly differently distributed in patients with Chronic Obstructive Pulmonary Disease (COPD) than in healthy individuals. The geometric tree kernels also give a significant increase in the classification accuracy of COPD from geometric tree structure endowed with airway wall thickness measurements in comparison with state-of-the-art methods, giving further insight into the relationship between airway wall thickness and COPD. Software: Software for computing kernels and statistical tests is available at http://image.diku.dk/aasa/software.php. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1254 | Learning Generic Sentence Representations Using Convolutional Neural Networks | We propose a new encoder-decoder approach to learn distributed sentence representations that are applicable to multiple purposes. The model is learned by using a convolutional neural network as an encoder to map an input sentence into a continuous vector, and using a long short-term memory recurrent neural network as a decoder. Several tasks are considered, including sentence reconstruction and future sentence prediction. Further, a hierarchical encoder-decoder model is proposed to encode a sentence to predict multiple future sentences. By training our models on a large collection of novels, we obtain a highly generic convolutional sentence encoder that performs well in practice. Experimental results on several benchmark datasets, and across a broad range of applications, demonstrate the superiority of the proposed model over competing methods. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1256 | Part-of-Speech Tagging for Twitter with Adversarial Neural Networks | We study cross-lingual sequence tagging with little or no labeled data in the target language. Adversarial training has previously been shown to be effective for training cross-lingual sentence classifiers. However, it is not clear if language-agnostic representations enforced by an adversarial language discriminator will also enable effective transfer for token-level prediction tasks. Therefore, we experiment with different types of adversarial training on two tasks: dependency parsing and sentence compression. We show that adversarial training consistently leads to improved cross-lingual performance on each task compared to a conventionally trained baseline. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1258 | Does syntax help discourse segmentation? Not so much | In recent years, more research has been devoted to studying the subtask of the complete shallow discourse parsing, such as indentifying discourse connective and arguments of connective. There is a need to design a full discourse parser to pull these subtasks together. So we develop a discourse parser turning the free text into discourse relations. The parser includes connective identifier, arguments identifier, sense classifier and non-explicit identifier, which connects with each other in pipeline. Each component applies the maximum entropy model with abundant lexical and syntax features extracted from the Penn Discourse Tree-bank. The head-based representation of the PDTB is adopted in the arguments identifier, which turns the problem of indentifying the arguments of discourse connective into finding the head and end of the arguments. In the non-explicit identifier, the contextual type features like words which have high frequency and can reflect the discourse relation are introduced to improve the performance of non-explicit identifier. Compared with other methods, experimental results achieve the considerable performance. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1259 | Deal or No Deal? End-to-End Learning of Negotiation Dialogues | Much of human dialogue occurs in semi-cooperative settings, where agents with different goals attempt to agree on common decisions. Negotiations require complex communication and reasoning skills, but success is easy to measure, making this an interesting task for AI. We gather a large dataset of human-human negotiations on a multi-issue bargaining task, where agents who cannot observe each other's reward functions must reach an agreement (or a deal) via natural language dialogue. For the first time, we show it is possible to train end-to-end models for negotiation, which must learn both linguistic and reasoning skills with no annotated dialogue states. We also introduce dialogue rollouts, in which the model plans ahead by simulating possible complete continuations of the conversation, and find that this technique dramatically improves performance. Our code and dataset are publicly available (https://github.com/facebookresearch/end-to-end-negotiator). | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1260 | Agent-Aware Dropout DQN for Safe and Efficient On-line Dialogue Policy Learning | In statistical dialogue management, the dialogue manager learns a policy that maps a belief state to an action for the system to perform. Efficient exploration is key to successful policy optimisation. Current deep reinforcement learning methods are very promising but rely on epsilon-greedy exploration, thus subjecting the user to a random choice of action during learning. Alternative approaches such as Gaussian Process SARSA (GPSARSA) estimate uncertainties and are sample efficient, leading to better user experience, but on the expense of a greater computational complexity. This paper examines approaches to extract uncertainty estimates from deep Q-networks (DQN) in the context of dialogue management. We perform an extensive benchmark of deep Bayesian methods to extract uncertainty estimates, namely Bayes-By-Backprop, dropout, its concrete variation, bootstrapped ensemble and alpha-divergences, combining it with DQN algorithm. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1261 | Towards Debate Automation: a Recurrent Model for Predicting Debate Winners | Debate and deliberation play essential roles in politics and government, but most models presume that debates are won mainly via superior style or agenda control. Ideally, however, debates would be won on the merits, as a function of which side has the stronger arguments. We propose a predictive model of debate that estimates the effects of linguistic features and the latent persuasive strengths of different topics, as well as the interactions between the two. Using a dataset of 118 Oxford-style debates, our model's combination of content (as latent topics) and style (as linguistic features) allows us to predict audience-adjudicated winners with 74% accuracy, significantly outperforming linguistic features alone (66%). Our model finds that winning sides employ stronger arguments, and allows us to identify the linguistic features associated with strong or weak arguments. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1263 | A Challenge Set Approach to Evaluating Machine Translation | Neural machine translation represents an exciting leap forward in translation quality. But what longstanding weaknesses does it resolve, and which remain? We address these questions with a challenge set approach to translation evaluation and error analysis. A challenge set consists of a small set of sentences, each hand-designed to probe a system's capacity to bridge a particular structural divergence between languages. To exemplify this approach, we present an English-French challenge set, and use it to analyze phrase-based and neural systems. The resulting analysis provides not only a more fine-grained picture of the strengths of neural systems, but also insight into which linguistic phenomena remain out of reach. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1264 | Knowledge Distillation for Bilingual Dictionary Induction | We present a method for learning bilingual translation dictionaries between English and Bantu languages. We show that exploiting the grammatical structure common to Bantu languages enables bilingual dictionary induction for languages where training data is unavailable. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1266 | Deciphering Related Languages | In this paper, we attempt to classify tweets into root categories of the Amazon browse node hierarchy using a set of tweets with browse node ID labels, a much larger set of tweets without labels, and a set of Amazon reviews. Examining twitter data presents unique challenges in that the samples are short (under 140 characters) and often contain misspellings or abbreviations that are trivial for a human to decipher but difficult for a computer to parse. A variety of query and document expansion techniques are implemented in an effort to improve information retrieval to modest success. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1267 | Identifying Cognate Sets Across Dictionaries of Related Languages | Out-Of-Vocabulary (OOV) words can pose serious challenges for machine translation (MT) tasks, and in particular, for Low-Resource Languages (LRLs). This paper adapts variants of seq2seq models to perform transduction of such words from Hindi to Bhojpuri (an LRL instance), learning from a set of cognate pairs built upon a bilingual dictionary of Hindi-Bhojpuri words. We demonstrate that our models can effectively be used for languages that have a limited amount of parallel corpora, by working at the character-level to grasp phonetic and orthographic similarities across multiple types of word adaptions, whether synchronic or diachronic, loan words or cognates. We provide a comprehensive overview over the training aspects of character-level NMT systems adapted to this task, combined with a detailed analysis of their respective error cases. Using our method, we achieve an improvement by over 6 BLEU on the Hindi-to-Bhojpuri translation task. Further, we show that such transductions generalize well to other languages by applying it successfully to Hindi-Bangla cognate pairs. Our work can be seen as an important step in the process of: (i) resolving the OOV words problem arising in MT tasks, (ii) creating effective parallel corpora for resource-constrained languages, and (iii) leveraging the enhanced semantic knowledge captured by word-level embeddings onto character-level tasks. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1268 | Learning Language Representations for Typology Prediction | Although linguistic typology has a long history, computational approaches have only recently gained popularity. The use of distributed representations in computational linguistics has also become increasingly popular. A recent development is to learn distributed representations of language, such that typologically similar languages are spatially close to one another. Although empirical successes have been shown for such language representations, they have not been subjected to much typological probing. In this paper, we first look at whether this type of language representations are empirically useful for model transfer between Uralic languages in deep neural networks. We then investigate which typological features are encoded in these representations by attempting to predict features in the World Atlas of Language Structures, at various stages of fine-tuning of the representations. We focus on Uralic languages, and find that some typological traits can be automatically inferred with accuracies well above a strong baseline. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1269 | Cheap Translation for Cross-Lingual Named Entity Recognition | Named Entity Recognition is always important when dealing with major Natural Language Processing tasks such as information extraction, question-answering, machine translation, document summarization etc so in this paper we put forward a survey of Named Entities in Indian Languages with particular reference to Assamese. There are various rule-based and machine learning approaches available for Named Entity Recognition. At the very first of the paper we give an idea of the available approaches for Named Entity Recognition and then we discuss about the related research in this field. Assamese like other Indian languages is agglutinative and suffers from lack of appropriate resources as Named Entity Recognition requires large data sets, gazetteer list, dictionary etc and some useful feature like capitalization as found in English cannot be found in Assamese. Apart from this we also describe some of the issues faced in Assamese while doing Named Entity Recognition. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1271 | Classification of telicity using cross-linguistic annotation projection | As a kind of meta-data feature, annotations have been formally introduced into Java since Java 5. Since the introduction, annotations have been widely used by the Java community for different purposes, such as compiler guidance and runtime processing. Despite the ever-growing use, there is still limited empirical evidence about how developers use annotations in practice and the impact of annotation use on software quality. To fill this gap, we perform the first large-scale empirical study about Java annotation uses on 1,094 open-source projects hosted on GitHub. Our study answers some fundamental questions about Java annotation use. First, we answer the question "annotate what?" and find that annotations are typically used to annotate 4 aspects of program elements. Second, we answer the question "how annotations evolve?" and identify 6 different annotation change types, their frequencies, and their characteristics. Third, we answer the question "who uses annotations?" and establish the relationships between annotation uses and code ownership and developer experience. In addition, we also use regression models to explore the correlation between annotation uses and code quality, and we find that annotations do have an impact on making code less error-prone. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1273 | Learning Fine-grained Relations from Chinese User Generated Categories | Coordinate relation refers to the relation between instances of a concept and the relation between the directly hyponyms of a concept. In this paper, we focus on the task of extracting terms which are coordinate with a user given seed term in Chinese, and grouping the terms which belong to different concepts if the seed term has several meanings. We propose a semi-supervised method that integrates manually defined linguistic patterns and automatically learned semi-structural patterns to extract coordinate terms in Chinese from web search results. In addition, terms are grouped into different concepts based on their co-occurring terms and contexts. We further calculate the saliency scores of extracted terms and rank them accordingly. Experimental results demonstrate that our proposed method generates results with high quality and wide coverage. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1277 | Deep Joint Entity Disambiguation with Local Neural Attention | We propose a novel deep learning model for joint document-level entity disambiguation, which leverages learned neural representations. Key components are entity embeddings, a neural attention mechanism over local context windows, and a differentiable joint inference stage for disambiguation. Our approach thereby combines benefits of deep learning with more traditional approaches such as graphical models and probabilistic mention-entity maps. Extensive experiments show that we are able to obtain competitive or state-of-the-art accuracy at moderate computational costs. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1278 | MinIE: Minimizing Facts in Open Information Extraction | Unlike extractive summarization, abstractive summarization has to fuse different parts of the source text, which inclines to create fake facts. Our preliminary study reveals nearly 30% of the outputs from a state-of-the-art neural summarization system suffer from this problem. While previous abstractive summarization approaches usually focus on the improvement of informativeness, we argue that faithfulness is also a vital prerequisite for a practical abstractive summarization system. To avoid generating fake facts in a summary, we leverage open information extraction and dependency parse technologies to extract actual fact descriptions from the source text. The dual-attention sequence-to-sequence framework is then proposed to force the generation conditioned on both the source text and the extracted fact descriptions. Experiments on the Gigaword benchmark dataset demonstrate that our model can greatly reduce fake summaries by 80%. Notably, the fact descriptions also bring significant improvement on informativeness since they often condense the meaning of the source text. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1279 | Scientific Information Extraction with Semi-supervised Neural Tagging | This paper addresses the problem of extracting keyphrases from scientific articles and categorizing them as corresponding to a task, process, or material. We cast the problem as sequence tagging and introduce semi-supervised methods to a neural tagging model, which builds on recent advances in named entity recognition. Since annotated training data is scarce in this domain, we introduce a graph-based semi-supervised algorithm together with a data selection scheme to leverage unannotated articles. Both inductive and transductive semi-supervised learning strategies outperform state-of-the-art information extraction performance on the 2017 SemEval Task 10 ScienceIE task. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1280 | NITE: A Neural Inductive Teaching Framework for Domain Specific NER | Most existing methods for biomedical entity recognition task rely on explicit feature engineering where many features either are specific to a particular task or depends on output of other existing NLP tools. Neural architectures have been shown across various domains that efforts for explicit feature design can be reduced. In this work we propose an unified framework using bi-directional long short term memory network (BLSTM) for named entity recognition (NER) tasks in biomedical and clinical domains. Three important characteristics of the framework are as follows - (1) model learns contextual as well as morphological features using two different BLSTM in hierarchy, (2) model uses first order linear conditional random field (CRF) in its output layer in cascade of BLSTM to infer label or tag sequence, (3) model does not use any domain specific features or dictionary, i.e., in another words, same set of features are used in the three NER tasks, namely, disease name recognition (Disease NER), drug name recognition (Drug NER) and clinical entity recognition (Clinical NER). We compare performance of the proposed model with existing state-of-the-art models on the standard benchmark datasets of the three tasks. We show empirically that the proposed framework outperforms all existing models. Further our analysis of CRF layer and word-embedding obtained using character based embedding show their importance. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1283 | Fast and Accurate Entity Recognition with Iterated Dilated Convolutions | Today when many practitioners run basic NLP on the entire web and large-volume traffic, faster methods are paramount to saving time and energy costs. Recent advances in GPU hardware have led to the emergence of bi-directional LSTMs as a standard method for obtaining per-token vector representations serving as input to labeling tasks such as NER (often followed by prediction in a linear-chain CRF). Though expressive and accurate, these models fail to fully exploit GPU parallelism, limiting their computational efficiency. This paper proposes a faster alternative to Bi-LSTMs for NER: Iterated Dilated Convolutional Neural Networks (ID-CNNs), which have better capacity than traditional CNNs for large context and structured prediction. Unlike LSTMs whose sequential processing on sentences of length N requires O(N) time even in the face of parallelism, ID-CNNs permit fixed-depth convolutions to run in parallel across entire documents. We describe a distinct combination of network structure, parameter sharing and training procedures that enable dramatic 14-20x test-time speedups while retaining accuracy comparable to the Bi-LSTM-CRF. Moreover, ID-CNNs trained to aggregate context from the entire document are even more accurate while maintaining 8x faster test time speeds. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1284 | Entity Linking via Joint Encoding of Types, Descriptions, and Context | Textual information is considered as significant supplement to knowledge representation learning (KRL). There are two main challenges for constructing knowledge representations from plain texts: (1) How to take full advantages of sequential contexts of entities in plain texts for KRL. (2) How to dynamically select those informative sentences of the corresponding entities for KRL. In this paper, we propose the Sequential Text-embodied Knowledge Representation Learning to build knowledge representations from multiple sentences. Given each reference sentence of an entity, we first utilize recurrent neural network with pooling or long short-term memory network to encode the semantic information of the sentence with respect to the entity. Then we further design an attention model to measure the informativeness of each sentence, and build text-based representations of entities. We evaluate our method on two tasks, including triple classification and link prediction. Experimental results demonstrate that our method outperforms other baselines on both tasks, which indicates that our method is capable of selecting informative sentences and encoding the textual information well into knowledge representations. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1285 | An Insight Extraction System on BioMedical Literature with Deep Neural Networks | Factoid question answering (QA) has recently benefited from the development of deep learning (DL) systems. Neural network models outperform traditional approaches in domains where large datasets exist, such as SQuAD (ca. 100,000 questions) for Wikipedia articles. However, these systems have not yet been applied to QA in more specific domains, such as biomedicine, because datasets are generally too small to train a DL system from scratch. For example, the BioASQ dataset for biomedical QA comprises less then 900 factoid (single answer) and list (multiple answers) QA instances. In this work, we adapt a neural QA system trained on a large open-domain dataset (SQuAD, source) to a biomedical dataset (BioASQ, target) by employing various transfer learning techniques. Our network architecture is based on a state-of-the-art QA system, extended with biomedical word embeddings and a novel mechanism to answer list questions. In contrast to existing biomedical QA systems, our system does not rely on domain-specific ontologies, parsers or entity taggers, which are expensive to create. Despite this fact, our systems achieve state-of-the-art results on factoid questions and competitive results on list questions. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1286 | Word Etymology as Native Language Interference | We propose a novel approach to learn word embeddings based on an extended version of the distributional hypothesis. Our model derives word embedding vectors using the etymological composition of words, rather than the context in which they appear. It has the strength of not requiring a large text corpus, but instead it requires reliable access to etymological roots of words, making it specially fit for languages with logographic writing systems. The model consists on three steps: (1) building an etymological graph, which is a bipartite network of words and etymological roots, (2) obtaining the biadjacency matrix of the etymological graph and reducing its dimensionality, (3) using columns/rows of the resulting matrices as embedding vectors. We test our model in the Chinese and Sino-Korean vocabularies. Our graphs are formed by a set of 117,000 Chinese words, and a set of 135,000 Sino-Korean words. In both cases we show that our model performs well in the task of synonym discovery. | EMNLP | 2017 |
http://aclweb.org/anthology/D17-1288 | Multi-modular domain-tailored OCR post-correction | Developing a Bangla OCR requires bunch of algorithm and methods. There were many effort went on for developing a Bangla OCR. But all of them failed to provide an error free Bangla OCR. Each of them has some lacking. We discussed about the problem scope of currently existing Bangla OCR's. In this paper, we present the basic steps required for developing a Bangla OCR and a complete workflow for development of a Bangla OCR with mentioning all the possible algorithms required. | EMNLP | 2017 |