|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""The Russian Spellcheck Benchmark""" |
|
|
|
import os |
|
import json |
|
import pandas as pd |
|
from typing import List, Dict, Optional |
|
|
|
import datasets |
|
|
|
|
|
_RUSSIAN_SPELLCHECK_BENCHMARK_DESCRIPTION = """ |
|
Russian Spellcheck Benchmark is a new benchmark for spelling correction in Russian language. |
|
It includes four datasets, each of which consists of pairs of sentences in Russian language. |
|
Each pair embodies sentence, which may contain spelling errors, and its corresponding correction. |
|
Datasets were gathered from various sources and domains including social networks, internet blogs, github commits, |
|
medical anamnesis, literature, news, reviews and more. |
|
""" |
|
|
|
_MULTIDOMAIN_GOLD_DESCRIPTION = """ |
|
MultidomainGold is a dataset of 3500 sentence pairs |
|
dedicated to a problem of automatic spelling correction in Russian language. |
|
The dataset is gathered from seven different domains including news, Russian classic literature, |
|
social media texts, open web, strategic documents, subtitles and reviews. |
|
It has been passed through two-stage manual labeling process with native speakers as annotators |
|
to correct spelling violation and preserve original style of text at the same time. |
|
""" |
|
|
|
_GITHUB_TYPO_CORPUS_RU_DESCRIPTION = """ |
|
GitHubTypoCorpusRu is a manually labeled part of GitHub Typo Corpus https://arxiv.org/abs/1911.12893. |
|
The sentences with "ru" tag attached to them have been extracted from GitHub Typo Corpus |
|
and pass them through manual labeling to ensure the corresponding corrections are right. |
|
""" |
|
|
|
_RUSPELLRU_DESCRIPTION = """ |
|
RUSpellRU is a first benchmark on the task of automatic spelling correction for Russian language |
|
introduced in https://www.dialog-21.ru/media/3427/sorokinaaetal.pdf. |
|
Original sentences are drawn from social media domain and labeled by |
|
human annotators. |
|
""" |
|
|
|
_MEDSPELLCHECK_DESCRIPTION = """ |
|
The dataset is taken from GitHub repo associated with eponymos project https://github.com/DmitryPogrebnoy/MedSpellChecker. |
|
Original sentences are taken from anonymized medical anamnesis and passed through |
|
two-stage manual labeling pipeline. |
|
""" |
|
|
|
_RUSSIAN_SPELLCHECK_BENCHMARK_CITATION = """ # TODO: add citation""" |
|
|
|
_MULTIDOMAIN_GOLD_CITATION = """ # TODO: add citation from Dialog""" |
|
|
|
_GITHUB_TYPO_CORPUS_RU_CITATION = """ |
|
@article{DBLP:journals/corr/abs-1911-12893, |
|
author = {Masato Hagiwara and |
|
Masato Mita}, |
|
title = {GitHub Typo Corpus: {A} Large-Scale Multilingual Dataset of Misspellings |
|
and Grammatical Errors}, |
|
journal = {CoRR}, |
|
volume = {abs/1911.12893}, |
|
year = {2019}, |
|
url = {http://arxiv.org/abs/1911.12893}, |
|
eprinttype = {arXiv}, |
|
eprint = {1911.12893}, |
|
timestamp = {Wed, 08 Jan 2020 15:28:22 +0100}, |
|
biburl = {https://dblp.org/rec/journals/corr/abs-1911-12893.bib}, |
|
bibsource = {dblp computer science bibliography, https://dblp.org} |
|
} |
|
""" |
|
|
|
_RUSPELLRU_CITATION = """ |
|
@inproceedings{Shavrina2016SpellRuevalT, |
|
title={SpellRueval : the FiRSt Competition on automatiC Spelling CoRReCtion FoR RuSSian}, |
|
author={Tatiana Shavrina and Россия Москва and Москва Яндекс and Россия and Россия Долгопрудный}, |
|
year={2016} |
|
} |
|
""" |
|
|
|
_LICENSE = "apache-2.0" |
|
|
|
|
|
class RussianSpellcheckBenchmarkConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for RussianSpellcheckBenchmark.""" |
|
|
|
def __init__( |
|
self, |
|
data_urls: Dict[str,str], |
|
features: List[str], |
|
citation: str, |
|
**kwargs): |
|
"""BuilderConfig for RussianSpellcheckBenchmark. |
|
Args: |
|
features: *list[string]*, list of the features that will appear in the |
|
feature dict. Should not include "label". |
|
data_urls: *dict[string]*, urls to download the zip file from. |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(RussianSpellcheckBenchmarkConfig, self).__init__(version=datasets.Version("0.0.1"), **kwargs) |
|
self.data_urls = data_urls |
|
self.features = features |
|
self.citation = citation |
|
|
|
|
|
class RussianSpellcheckBenchmark(datasets.GeneratorBasedBuilder): |
|
"""Russian Spellcheck Benchmark.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
RussianSpellcheckBenchmarkConfig( |
|
name="GitHubTypoCorpusRu", |
|
description = _GITHUB_TYPO_CORPUS_RU_DESCRIPTION, |
|
data_urls={ |
|
"test": "data/GitHubTypoCorpusRu/test.json", |
|
}, |
|
features=["source", "correction", "domain"], |
|
citation=_GITHUB_TYPO_CORPUS_RU_CITATION, |
|
), |
|
RussianSpellcheckBenchmarkConfig( |
|
name="MedSpellchecker", |
|
description = _MEDSPELLCHECK_DESCRIPTION, |
|
data_urls={ |
|
"test": "data/MedSpellchecker/test.json", |
|
}, |
|
features=["source", "correction", "domain"], |
|
citation="", |
|
), |
|
RussianSpellcheckBenchmarkConfig( |
|
name="MultidomainGold", |
|
description = _MULTIDOMAIN_GOLD_DESCRIPTION, |
|
data_urls={ |
|
"train": "data/MultidomainGold/train.json", |
|
"test": "data/MultidomainGold/test.json", |
|
}, |
|
features=["source", "correction", "domain"], |
|
citation=_MULTIDOMAIN_GOLD_CITATION, |
|
), |
|
RussianSpellcheckBenchmarkConfig( |
|
name="RUSpellRU", |
|
description = _RUSPELLRU_DESCRIPTION, |
|
data_urls={ |
|
"test": "data/RUSpellRU/test.json", |
|
"train": "data/RUSpellRU/train.json", |
|
}, |
|
features=["source", "correction", "domain"], |
|
citation=_RUSPELLRU_CITATION, |
|
), |
|
] |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
features = { |
|
"source": datasets.Value("string"), |
|
"correction": datasets.Value("string"), |
|
"domain": datasets.Value("string"), |
|
} |
|
|
|
return datasets.DatasetInfo( |
|
features=datasets.Features(features), |
|
description=_RUSSIAN_SPELLCHECK_BENCHMARK_DESCRIPTION + self.config.description, |
|
license=_LICENSE, |
|
citation=self.config.citation + "\n" + _RUSSIAN_SPELLCHECK_BENCHMARK_CITATION, |
|
) |
|
|
|
def _split_generators( |
|
self, dl_manager: datasets.DownloadManager |
|
) -> List[datasets.SplitGenerator]: |
|
urls_to_download = self.config.data_urls |
|
downloaded_files = dl_manager.download_and_extract(urls_to_download) |
|
if self.config.name == "GitHubTypoCorpusRu" or \ |
|
self.config.name == "MedSpellchecker": |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"data_file": downloaded_files["test"], |
|
"split": datasets.Split.TEST, |
|
}, |
|
) |
|
] |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"data_file": downloaded_files["train"], |
|
"split": datasets.Split.TRAIN, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"data_file": downloaded_files["test"], |
|
"split": datasets.Split.TEST, |
|
}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, data_file, split): |
|
with open(data_file, encoding="utf-8") as f: |
|
key = 0 |
|
for line in f: |
|
row = json.loads(line) |
|
example = {feature: row[feature] for feature in self.config.features} |
|
yield key, example |
|
key += 1 |
|
|