|
--- |
|
license: mit |
|
dataset_info: |
|
features: |
|
- name: code |
|
dtype: string |
|
- name: label |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 3851220 |
|
num_examples: 2493 |
|
download_size: 1555926 |
|
dataset_size: 3851220 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
--- |
|
# Python Linting Dataset |
|
Python Static Analysis Dataset created by running pylint on stack-v2 and manually labelling other issues not found by pylint. |
|
Data Augmentation is used on the manually labelled dataset using python's ast module to parse the code and modify name nodes. |
|
## Scripts to download more data or modify this dataset further: |
|
[Github Repository](https://github.com/ahmedhus22/llm4lint) |
|
- use augmentation.py to augment your manually labelled data. |
|
- run stackv2.py to download stackv2 python files with linenos < 200, then run genlabels.py to generate the lables from pylint. |
|
- append augmented dataset to this to get the combined dataset for training. |
|
- use train.py to fine-tune using unsloth. |
|
## [Model Trained on this dataset](https://huggingface.co/ahmedhus22/llm4lint-7B-Qwen2.5Coder) |
|
To use this Linter in CLI: |
|
- run ollama create llm4lint7b -f <Modelfile-Path> |
|
- `pip install llm4lint` |
|
To use it as a vscode extension: |
|
https://github.com/ahmedhus22/llm4lint-vsc-extension |