adfa5456 commited on
Commit
5236ead
ยท
verified ยท
1 Parent(s): a42735d

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes. ย  See raw diff
Files changed (50) hide show
  1. data/airplane/gt_filtered.ply +0 -0
  2. data/airplane/inference.ipynb +151 -0
  3. data/airplane/noisy_filtered.ply +110 -0
  4. data/airplane/random_rotate.ipynb +218 -0
  5. data/airplane/source.ply +0 -0
  6. data/airplane/target.ply +0 -0
  7. data/bottle/filter_tea.ipynb +245 -0
  8. data/bottle/inference.ipynb +209 -0
  9. data/bottle/tea_gt_filtered.ply +0 -0
  10. data/bottle/tea_noisy_filtered.ply +0 -0
  11. data/bottle_2/RMSE.ipynb +197 -0
  12. data/bottle_2/all_infer.ipynb +0 -0
  13. data/bottle_2/all_infer.py +109 -0
  14. data/bottle_2/bottle.csv +25 -0
  15. data/bottle_2/bottle2.csv +5 -0
  16. data/bottle_2/bottle2_data_num.csv +6 -0
  17. data/bottle_2/cut_files.json +7 -0
  18. data/bottle_2/dataset_pandas.ipynb +606 -0
  19. data/bottle_2/filename.txt +1 -0
  20. data/bottle_2/filter_tea .ipynb +459 -0
  21. data/bottle_2/filter_tea.py +400 -0
  22. data/bottle_2/generategt.ipynb +156 -0
  23. data/bottle_2/gt_Raw.ipynb +819 -0
  24. data/bottle_2/gt_filtered.ply +0 -0
  25. data/bottle_2/h +0 -0
  26. data/bottle_2/inference_ICP.ipynb +503 -0
  27. data/bottle_2/inference_ICP.py +298 -0
  28. data/bottle_2/initial_guess(kiss_match).ipynb +240 -0
  29. data/bottle_2/initial_guess(kiss_match).py +103 -0
  30. data/bottle_2/merged.py +496 -0
  31. data/bottle_2/output_trans.txt +0 -0
  32. data/bottle_2/ply_files.json +115 -0
  33. data/bottle_2/run_all.py +45 -0
  34. data/car/downsample_car.ipynb +351 -0
  35. data/car/inference.ipynb +214 -0
  36. data/glasses/all_infer.ipynb +0 -0
  37. data/glasses/bottle.csv +25 -0
  38. data/glasses/dataset_pandas.ipynb +668 -0
  39. data/glasses/eyeglasses.csv +25 -0
  40. data/glasses/eyeglasses_data_num.csv +6 -0
  41. data/glasses/filename.txt +1 -0
  42. data/glasses/filter_tea .ipynb +474 -0
  43. data/glasses/gt_Raw.ipynb +834 -0
  44. data/glasses/gt_filtered.ply +0 -0
  45. data/glasses/inference_ICP.ipynb +482 -0
  46. data/glasses/initial_guess(kiss_match).ipynb +238 -0
  47. data/glasses/merged.py +494 -0
  48. data/glasses/output_trans.txt +0 -0
  49. data/glasses/ply_files.json +117 -0
  50. data/glasses/run_all.py +45 -0
data/airplane/gt_filtered.ply ADDED
The diff for this file is too large to render. See raw diff
 
data/airplane/inference.ipynb ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 7,
6
+ "metadata": {},
7
+ "outputs": [
8
+ {
9
+ "name": "stdout",
10
+ "output_type": "stream",
11
+ "text": [
12
+ "\u001b[1;33m[Open3D WARNING] Read PLY failed: unable to read file: noisy_filtered.ply\u001b[0;m\n",
13
+ "Source shape: (50, 3)\n"
14
+ ]
15
+ },
16
+ {
17
+ "name": "stderr",
18
+ "output_type": "stream",
19
+ "text": [
20
+ "RPly: Unexpected end of file\n",
21
+ "RPly: Error reading 'view_px' of 'camera' number 0\n"
22
+ ]
23
+ }
24
+ ],
25
+ "source": [
26
+ "import open3d as o3d\n",
27
+ "import numpy as np\n",
28
+ "\n",
29
+ "source_path = \"noisy_filtered.ply\"\n",
30
+ "source_pcd = o3d.io.read_point_cloud(source_path)\n",
31
+ "\n",
32
+ "source_pcd_array = np.asarray(source_pcd.points)\n",
33
+ "print(\"Source shape:\", source_pcd_array.shape)\n",
34
+ "\n",
35
+ "# o3d.visualization.draw_geometries([source_pcd])"
36
+ ]
37
+ },
38
+ {
39
+ "cell_type": "code",
40
+ "execution_count": 8,
41
+ "metadata": {},
42
+ "outputs": [
43
+ {
44
+ "name": "stdout",
45
+ "output_type": "stream",
46
+ "text": [
47
+ "Transformed shape: (368, 3)\n"
48
+ ]
49
+ }
50
+ ],
51
+ "source": [
52
+ "transformed_path = \"res/m3reg_pc.ply\"\n",
53
+ "transformed_pcd = o3d.io.read_point_cloud(transformed_path)\n",
54
+ "\n",
55
+ "transformed_pcd_array = np.asarray(transformed_pcd.points)\n",
56
+ "print(\"Transformed shape:\", transformed_pcd_array.shape)\n",
57
+ "\n",
58
+ "# o3d.visualization.draw_geometries([transformed_pcd])"
59
+ ]
60
+ },
61
+ {
62
+ "cell_type": "code",
63
+ "execution_count": 9,
64
+ "metadata": {},
65
+ "outputs": [
66
+ {
67
+ "name": "stdout",
68
+ "output_type": "stream",
69
+ "text": [
70
+ "\u001b[1;33m[Open3D WARNING] Read PLY failed: unable to read file: gt_filtered.ply\u001b[0;m\n",
71
+ "Target shape: (2048, 3)\n"
72
+ ]
73
+ },
74
+ {
75
+ "name": "stderr",
76
+ "output_type": "stream",
77
+ "text": [
78
+ "RPly: Unexpected end of file\n",
79
+ "RPly: Error reading 'view_px' of 'camera' number 0\n"
80
+ ]
81
+ }
82
+ ],
83
+ "source": [
84
+ "target_path = \"gt_filtered.ply\"\n",
85
+ "target_pcd = o3d.io.read_point_cloud(target_path)\n",
86
+ "\n",
87
+ "target_pcd_array = np.asarray(target_pcd.points)\n",
88
+ "print(\"Target shape:\", target_pcd_array.shape)\n",
89
+ "\n",
90
+ "# o3d.visualization.draw_geometries([target_pcd])"
91
+ ]
92
+ },
93
+ {
94
+ "cell_type": "code",
95
+ "execution_count": 4,
96
+ "metadata": {},
97
+ "outputs": [],
98
+ "source": [
99
+ "source_pcd.paint_uniform_color([1, 0, 0])\n",
100
+ "target_pcd.paint_uniform_color([0, 1, 0])\n",
101
+ "\n",
102
+ "vis = o3d.visualization.Visualizer()\n",
103
+ "vis.create_window(window_name=\"Point Cloud Viewer\", width=1200, height=800, visible=True)\n",
104
+ "vis.add_geometry(source_pcd)\n",
105
+ "vis.add_geometry(target_pcd)\n",
106
+ "\n",
107
+ "vis.run()\n",
108
+ "vis.destroy_window()"
109
+ ]
110
+ },
111
+ {
112
+ "cell_type": "code",
113
+ "execution_count": 5,
114
+ "metadata": {},
115
+ "outputs": [],
116
+ "source": [
117
+ "transformed_pcd.paint_uniform_color([1, 0, 0])\n",
118
+ "target_pcd.paint_uniform_color([0, 1, 0])\n",
119
+ "\n",
120
+ "vis = o3d.visualization.Visualizer()\n",
121
+ "vis.create_window(window_name=\"Point Cloud Viewer\", width=1200, height=800, visible=True)\n",
122
+ "vis.add_geometry(transformed_pcd)\n",
123
+ "vis.add_geometry(target_pcd)\n",
124
+ "\n",
125
+ "vis.run()\n",
126
+ "vis.destroy_window()"
127
+ ]
128
+ }
129
+ ],
130
+ "metadata": {
131
+ "kernelspec": {
132
+ "display_name": "Python 3",
133
+ "language": "python",
134
+ "name": "python3"
135
+ },
136
+ "language_info": {
137
+ "codemirror_mode": {
138
+ "name": "ipython",
139
+ "version": 3
140
+ },
141
+ "file_extension": ".py",
142
+ "mimetype": "text/x-python",
143
+ "name": "python",
144
+ "nbconvert_exporter": "python",
145
+ "pygments_lexer": "ipython3",
146
+ "version": "3.10.12"
147
+ }
148
+ },
149
+ "nbformat": 4,
150
+ "nbformat_minor": 2
151
+ }
data/airplane/noisy_filtered.ply ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ply
2
+ format ascii 1.0
3
+ element vertex 50
4
+ property float x
5
+ property float y
6
+ property float z
7
+ element camera 1
8
+ property float view_px
9
+ property float view_py
10
+ property float view_pz
11
+ property float x_axisx
12
+ property float x_axisy
13
+ property float x_axisz
14
+ property float y_axisx
15
+ property float y_axisy
16
+ property float y_axisz
17
+ property float z_axisx
18
+ property float z_axisy
19
+ property float z_axisz
20
+ element phoxi_frame_params 1
21
+ property uint32 frame_width
22
+ property uint32 frame_height
23
+ property uint32 frame_index
24
+ property float frame_start_time
25
+ property float frame_duration
26
+ property float frame_computation_duration
27
+ property float frame_transfer_duration
28
+ property int32 total_scan_count
29
+ element camera_matrix 1
30
+ property float cm0
31
+ property float cm1
32
+ property float cm2
33
+ property float cm3
34
+ property float cm4
35
+ property float cm5
36
+ property float cm6
37
+ property float cm7
38
+ property float cm8
39
+ element distortion_matrix 1
40
+ property float dm0
41
+ property float dm1
42
+ property float dm2
43
+ property float dm3
44
+ property float dm4
45
+ property float dm5
46
+ property float dm6
47
+ property float dm7
48
+ property float dm8
49
+ property float dm9
50
+ property float dm10
51
+ property float dm11
52
+ property float dm12
53
+ property float dm13
54
+ element camera_resolution 1
55
+ property float width
56
+ property float height
57
+ element frame_binning 1
58
+ property float horizontal
59
+ property float vertical
60
+ end_header
61
+ 0.4184504662339592 1.561481561830392 2.4357119363584943
62
+ 0.28113543538848257 1.4354800945399746 2.711070098163805
63
+ 0.3537999879780671 1.464643107916649 2.676379194427658
64
+ 0.28582722515769604 1.4378941127081055 2.7072586234837295
65
+ 0.4029046553639043 1.4964752199864368 2.6170537256699675
66
+ 0.2752735024204427 1.438310353298161 2.698530079640078
67
+ 0.2747188603012154 1.438578145632901 2.697343572989956
68
+ 0.4151371462435055 1.5425405591608732 2.4894137593342722
69
+ 0.41421876936904484 1.5309202623204619 2.523151362679278
70
+ 0.2731159058596594 1.4393520841736387 2.6939144859465873
71
+ 0.37537708373261214 1.4867306062494385 2.6263388215053216
72
+ 0.2753290293564973 1.4429628521108748 2.684800575851574
73
+ 0.39420230218714425 1.5066147113295425 2.5808645743975993
74
+ 0.3942459435383868 1.546694463675788 2.462280612624996
75
+ 0.31040864685037306 1.4567370407562743 2.6689545514319883
76
+ 0.26896439608522765 1.4460358246536973 2.67118516613031
77
+ 0.36659617122401367 1.4939638825354855 2.5986947329169134
78
+ 0.3849645691585717 1.5157448547371306 2.5472822618453184
79
+ 0.26066886452867344 1.445361765269038 2.6672874109344438
80
+ 0.269561571397956 1.4484173957660484 2.66456116494064
81
+ 0.38224273664093117 1.5290882547524671 2.5058594080915437
82
+ 0.3123341721169729 1.467911257929097 2.6372525229282058
83
+ 0.2549985420164609 1.4480995106577055 2.6551572911042904
84
+ 0.3626152683280879 1.537589873320385 2.4667569934340174
85
+ 0.3465697206123827 1.4986680201436198 2.570547450673959
86
+ 0.3566323774538513 1.5150890514176694 2.5290977140853714
87
+ 0.31943822035078 1.4799521854685544 2.6066639802481992
88
+ 0.24596953114144968 1.4524588981235949 2.6358421668541694
89
+ 0.2692521008942427 1.464618498230568 2.6163946047113784
90
+ 0.2385636685930142 1.456034597036208 2.619999328997119
91
+ 0.3178338383804292 1.5242664150056848 2.474377545218438
92
+ 0.3199843640103215 1.5056645086649982 2.5309569887373202
93
+ 0.23408334184521973 1.4628770969431952 2.5965665942903327
94
+ 0.23902055948897444 1.4659853097294189 2.5908750053826806
95
+ 0.22339675105702242 1.4633574888920116 2.5875538152244206
96
+ 0.2858667818310713 1.4886963550099082 2.5569388361827206
97
+ 0.22195761043701737 1.4640523348355319 2.5844751635012595
98
+ 0.22114508844165356 1.4644446367444988 2.582736992674614
99
+ 0.21948928105974813 1.4652440937444435 2.579194841074788
100
+ 0.2574230662825241 1.4772575759703088 2.570586999050489
101
+ 0.29067513317078764 1.5010358689578727 2.5238359184470105
102
+ 0.2811918724253972 1.5100806731360605 2.490331757860455
103
+ 0.21626874640156896 1.4714783407739982 2.558457090467266
104
+ 0.24788976711561433 1.4851312354105584 2.5405132660882166
105
+ 0.20993514777223835 1.474536329169504 2.5449080709601026
106
+ 0.2529179196127833 1.5005729482210217 2.4983856059813405
107
+ 0.19948771978485783 1.474901248523302 2.536406915955533
108
+ 0.19541053181840906 1.4768697966137914 2.5276848761603428
109
+ 0.19920143521321854 1.4797187807846366 2.521946198988463
110
+ 0.23596469507905588 1.4947081822466521 2.5036997365937674
data/airplane/random_rotate.ipynb ADDED
@@ -0,0 +1,218 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 1,
6
+ "metadata": {},
7
+ "outputs": [
8
+ {
9
+ "name": "stdout",
10
+ "output_type": "stream",
11
+ "text": [
12
+ "Jupyter environment detected. Enabling Open3D WebVisualizer.\n",
13
+ "[Open3D INFO] WebRTC GUI backend enabled.\n",
14
+ "[Open3D INFO] WebRTCWindowSystem: HTTP handshake server disabled.\n",
15
+ "(50, 3)\n"
16
+ ]
17
+ }
18
+ ],
19
+ "source": [
20
+ "import open3d as o3d\n",
21
+ "import numpy as np\n",
22
+ "\n",
23
+ "GT = False\n",
24
+ "\n",
25
+ "if GT: ply_path = \"source.ply\"\n",
26
+ "else: ply_path = \"target.ply\"\n",
27
+ "pcd = o3d.io.read_point_cloud(ply_path)\n",
28
+ "\n",
29
+ "pcd_array = np.asarray(pcd.points)\n",
30
+ "print(pcd_array.shape)\n",
31
+ "\n",
32
+ "o3d.visualization.draw_geometries([pcd])"
33
+ ]
34
+ },
35
+ {
36
+ "cell_type": "code",
37
+ "execution_count": 2,
38
+ "metadata": {},
39
+ "outputs": [],
40
+ "source": [
41
+ "CHECK_PERTURB = not GT\n",
42
+ "\n",
43
+ "def random_rotation_matrix():\n",
44
+ " \"\"\"\n",
45
+ " Generate a random 3x3 rotation matrix (SO(3) matrix).\n",
46
+ " \n",
47
+ " Uses the method described by James Arvo in \"Fast Random Rotation Matrices\" (1992):\n",
48
+ " 1. Generate a random unit vector for rotation axis\n",
49
+ " 2. Generate a random angle\n",
50
+ " 3. Create rotation matrix using Rodriguez rotation formula\n",
51
+ " \n",
52
+ " Returns:\n",
53
+ " numpy.ndarray: A 3x3 random rotation matrix\n",
54
+ " \"\"\"\n",
55
+ " # Generate random angle between 0 and 2ฯ€\n",
56
+ " theta = np.random.uniform(0.5 * np.pi, np.pi)/5\n",
57
+ " \n",
58
+ " # Generate random unit vector for rotation axis\n",
59
+ " phi = np.random.uniform(0, 2 * np.pi)/5\n",
60
+ " cos_theta = np.random.uniform(-1, 1)\n",
61
+ " sin_theta = np.sqrt(1 - cos_theta**2)\n",
62
+ " \n",
63
+ " axis = np.array([\n",
64
+ " sin_theta * np.cos(phi),\n",
65
+ " sin_theta * np.sin(phi),\n",
66
+ " cos_theta\n",
67
+ " ])\n",
68
+ " \n",
69
+ " # Normalize to ensure it's a unit vector\n",
70
+ " axis = axis / np.linalg.norm(axis)\n",
71
+ " \n",
72
+ " # Create the cross-product matrix K\n",
73
+ " K = np.array([\n",
74
+ " [0, -axis[2], axis[1]],\n",
75
+ " [axis[2], 0, -axis[0]],\n",
76
+ " [-axis[1], axis[0], 0]\n",
77
+ " ])\n",
78
+ " \n",
79
+ " # Rodriguez rotation formula: R = I + sin(ฮธ)K + (1-cos(ฮธ))Kยฒ\n",
80
+ " R = (np.eye(3) + \n",
81
+ " np.sin(theta) * K + \n",
82
+ " (1 - np.cos(theta)) * np.dot(K, K))\n",
83
+ " \n",
84
+ " return R\n",
85
+ "\n",
86
+ "if CHECK_PERTURB:\n",
87
+ " R_pert = random_rotation_matrix()\n",
88
+ " t_pert = np.random.rand(3, 1)*3 #* 10\n",
89
+ " perturbed_pcd_array = np.dot(R_pert, pcd_array.T).T + t_pert.T\n",
90
+ "\n",
91
+ " perturbed_pcd = o3d.geometry.PointCloud()\n",
92
+ " perturbed_pcd.points = o3d.utility.Vector3dVector(perturbed_pcd_array)\n",
93
+ "\n",
94
+ " o3d.visualization.draw_geometries([perturbed_pcd])"
95
+ ]
96
+ },
97
+ {
98
+ "cell_type": "code",
99
+ "execution_count": 3,
100
+ "metadata": {},
101
+ "outputs": [
102
+ {
103
+ "name": "stdout",
104
+ "output_type": "stream",
105
+ "text": [
106
+ "True\n"
107
+ ]
108
+ }
109
+ ],
110
+ "source": [
111
+ "def write_ply(points, output_path):\n",
112
+ " \"\"\"\n",
113
+ " Write points and parameters to a PLY file\n",
114
+ " \n",
115
+ " Parameters:\n",
116
+ " points: numpy array of shape (N, 3) containing point coordinates\n",
117
+ " output_path: path to save the PLY file\n",
118
+ " \"\"\"\n",
119
+ " with open(output_path, 'w') as f:\n",
120
+ " # Write header\n",
121
+ " f.write(\"ply\\n\")\n",
122
+ " f.write(\"format ascii 1.0\\n\")\n",
123
+ " \n",
124
+ " # Write vertex element\n",
125
+ " f.write(f\"element vertex {len(points)}\\n\")\n",
126
+ " f.write(\"property float x\\n\")\n",
127
+ " f.write(\"property float y\\n\")\n",
128
+ " f.write(\"property float z\\n\")\n",
129
+ " \n",
130
+ " # Write camera element\n",
131
+ " f.write(\"element camera 1\\n\")\n",
132
+ " f.write(\"property float view_px\\n\")\n",
133
+ " f.write(\"property float view_py\\n\")\n",
134
+ " f.write(\"property float view_pz\\n\")\n",
135
+ " f.write(\"property float x_axisx\\n\")\n",
136
+ " f.write(\"property float x_axisy\\n\")\n",
137
+ " f.write(\"property float x_axisz\\n\")\n",
138
+ " f.write(\"property float y_axisx\\n\")\n",
139
+ " f.write(\"property float y_axisy\\n\")\n",
140
+ " f.write(\"property float y_axisz\\n\")\n",
141
+ " f.write(\"property float z_axisx\\n\")\n",
142
+ " f.write(\"property float z_axisy\\n\")\n",
143
+ " f.write(\"property float z_axisz\\n\")\n",
144
+ " \n",
145
+ " # Write phoxi frame parameters\n",
146
+ " f.write(\"element phoxi_frame_params 1\\n\")\n",
147
+ " f.write(\"property uint32 frame_width\\n\")\n",
148
+ " f.write(\"property uint32 frame_height\\n\")\n",
149
+ " f.write(\"property uint32 frame_index\\n\")\n",
150
+ " f.write(\"property float frame_start_time\\n\")\n",
151
+ " f.write(\"property float frame_duration\\n\")\n",
152
+ " f.write(\"property float frame_computation_duration\\n\")\n",
153
+ " f.write(\"property float frame_transfer_duration\\n\")\n",
154
+ " f.write(\"property int32 total_scan_count\\n\")\n",
155
+ " \n",
156
+ " # Write camera matrix\n",
157
+ " f.write(\"element camera_matrix 1\\n\")\n",
158
+ " for i in range(9):\n",
159
+ " f.write(f\"property float cm{i}\\n\")\n",
160
+ " \n",
161
+ " # Write distortion matrix\n",
162
+ " f.write(\"element distortion_matrix 1\\n\")\n",
163
+ " for i in range(14):\n",
164
+ " f.write(f\"property float dm{i}\\n\")\n",
165
+ " \n",
166
+ " # Write camera resolution\n",
167
+ " f.write(\"element camera_resolution 1\\n\")\n",
168
+ " f.write(\"property float width\\n\")\n",
169
+ " f.write(\"property float height\\n\")\n",
170
+ " \n",
171
+ " # Write frame binning\n",
172
+ " f.write(\"element frame_binning 1\\n\")\n",
173
+ " f.write(\"property float horizontal\\n\")\n",
174
+ " f.write(\"property float vertical\\n\")\n",
175
+ " \n",
176
+ " # End header\n",
177
+ " f.write(\"end_header\\n\")\n",
178
+ " \n",
179
+ " # Write vertex data\n",
180
+ " for point in points:\n",
181
+ " f.write(f\"{point[0]} {point[1]} {point[2]}\\n\")\n",
182
+ "\n",
183
+ " print(True)\n",
184
+ "\n",
185
+ "if GT: write_ply(pcd_array, \"gt_filtered.ply\")\n",
186
+ "else: write_ply(perturbed_pcd_array, \"noisy_filtered.ply\")"
187
+ ]
188
+ },
189
+ {
190
+ "cell_type": "code",
191
+ "execution_count": null,
192
+ "metadata": {},
193
+ "outputs": [],
194
+ "source": []
195
+ }
196
+ ],
197
+ "metadata": {
198
+ "kernelspec": {
199
+ "display_name": "vision",
200
+ "language": "python",
201
+ "name": "python3"
202
+ },
203
+ "language_info": {
204
+ "codemirror_mode": {
205
+ "name": "ipython",
206
+ "version": 3
207
+ },
208
+ "file_extension": ".py",
209
+ "mimetype": "text/x-python",
210
+ "name": "python",
211
+ "nbconvert_exporter": "python",
212
+ "pygments_lexer": "ipython3",
213
+ "version": "3.9.20"
214
+ }
215
+ },
216
+ "nbformat": 4,
217
+ "nbformat_minor": 2
218
+ }
data/airplane/source.ply ADDED
Binary file (49.3 kB). View file
 
data/airplane/target.ply ADDED
Binary file (1.35 kB). View file
 
data/bottle/filter_tea.ipynb ADDED
@@ -0,0 +1,245 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 8,
6
+ "metadata": {},
7
+ "outputs": [
8
+ {
9
+ "name": "stdout",
10
+ "output_type": "stream",
11
+ "text": [
12
+ "(896000, 3)\n"
13
+ ]
14
+ }
15
+ ],
16
+ "source": [
17
+ "import open3d as o3d\n",
18
+ "import numpy as np\n",
19
+ "\n",
20
+ "GT = False\n",
21
+ "\n",
22
+ "if GT: ply_path = \"tea_gt.ply\"\n",
23
+ "else: ply_path = \"dataset/100_1.ply\"\n",
24
+ "pcd = o3d.io.read_point_cloud(ply_path)\n",
25
+ "\n",
26
+ "pcd_array = np.asarray(pcd.points)\n",
27
+ "print(pcd_array.shape)\n",
28
+ "\n",
29
+ "o3d.visualization.draw_geometries([pcd])"
30
+ ]
31
+ },
32
+ {
33
+ "cell_type": "code",
34
+ "execution_count": null,
35
+ "metadata": {},
36
+ "outputs": [
37
+ {
38
+ "name": "stdout",
39
+ "output_type": "stream",
40
+ "text": [
41
+ "(5936, 3)\n"
42
+ ]
43
+ }
44
+ ],
45
+ "source": [
46
+ "new_pcd_array = np.unique(pcd_array, axis=0)\n",
47
+ "new_pcd_array = new_pcd_array[new_pcd_array[:, 2] < 500]\n",
48
+ "new_pcd_array = new_pcd_array[new_pcd_array[:, 1] < 200]\n",
49
+ "new_pcd_array = new_pcd_array[new_pcd_array[:, 1] > -100]\n",
50
+ "\n",
51
+ "new_pcd_array = new_pcd_array[new_pcd_array[:, 0] < 300]\n",
52
+ "\n",
53
+ "new_pcd_array -= np.mean(new_pcd_array, axis=0)\n",
54
+ "print(new_pcd_array.shape)\n",
55
+ "\n",
56
+ "new_pcd = o3d.geometry.PointCloud()\n",
57
+ "new_pcd.points = o3d.utility.Vector3dVector(new_pcd_array)\n",
58
+ "\n",
59
+ "o3d.visualization.draw_geometries([new_pcd])"
60
+ ]
61
+ },
62
+ {
63
+ "cell_type": "code",
64
+ "execution_count": 3,
65
+ "metadata": {},
66
+ "outputs": [],
67
+ "source": [
68
+ "CHECK_PERTURB = not GT\n",
69
+ "\n",
70
+ "def random_rotation_matrix():\n",
71
+ " \"\"\"\n",
72
+ " Generate a random 3x3 rotation matrix (SO(3) matrix).\n",
73
+ " \n",
74
+ " Uses the method described by James Arvo in \"Fast Random Rotation Matrices\" (1992):\n",
75
+ " 1. Generate a random unit vector for rotation axis\n",
76
+ " 2. Generate a random angle\n",
77
+ " 3. Create rotation matrix using Rodriguez rotation formula\n",
78
+ " \n",
79
+ " Returns:\n",
80
+ " numpy.ndarray: A 3x3 random rotation matrix\n",
81
+ " \"\"\"\n",
82
+ " # Generate random angle between 0 and 2ฯ€\n",
83
+ " theta = np.random.uniform(0.5 * np.pi, np.pi)/5\n",
84
+ " \n",
85
+ " # Generate random unit vector for rotation axis\n",
86
+ " phi = np.random.uniform(0, 2 * np.pi)/5\n",
87
+ " cos_theta = np.random.uniform(-1, 1)\n",
88
+ " sin_theta = np.sqrt(1 - cos_theta**2)\n",
89
+ " \n",
90
+ " axis = np.array([\n",
91
+ " sin_theta * np.cos(phi),\n",
92
+ " sin_theta * np.sin(phi),\n",
93
+ " cos_theta\n",
94
+ " ])\n",
95
+ " \n",
96
+ " # Normalize to ensure it's a unit vector\n",
97
+ " axis = axis / np.linalg.norm(axis)\n",
98
+ " \n",
99
+ " # Create the cross-product matrix K\n",
100
+ " K = np.array([\n",
101
+ " [0, -axis[2], axis[1]],\n",
102
+ " [axis[2], 0, -axis[0]],\n",
103
+ " [-axis[1], axis[0], 0]\n",
104
+ " ])\n",
105
+ " \n",
106
+ " # Rodriguez rotation formula: R = I + sin(ฮธ)K + (1-cos(ฮธ))Kยฒ\n",
107
+ " R = (np.eye(3) + \n",
108
+ " np.sin(theta) * K + \n",
109
+ " (1 - np.cos(theta)) * np.dot(K, K))\n",
110
+ " \n",
111
+ " return R\n",
112
+ "\n",
113
+ "if CHECK_PERTURB:\n",
114
+ " R_pert = random_rotation_matrix()\n",
115
+ " t_pert = np.random.rand(3, 1)*3 #* 10\n",
116
+ " perturbed_pcd_array = np.dot(R_pert, new_pcd_array.T).T + t_pert.T\n",
117
+ "\n",
118
+ " perturbed_pcd = o3d.geometry.PointCloud()\n",
119
+ " perturbed_pcd.points = o3d.utility.Vector3dVector(perturbed_pcd_array)\n",
120
+ "\n",
121
+ " o3d.visualization.draw_geometries([perturbed_pcd])"
122
+ ]
123
+ },
124
+ {
125
+ "cell_type": "code",
126
+ "execution_count": 4,
127
+ "metadata": {},
128
+ "outputs": [
129
+ {
130
+ "name": "stdout",
131
+ "output_type": "stream",
132
+ "text": [
133
+ "True\n"
134
+ ]
135
+ }
136
+ ],
137
+ "source": [
138
+ "def write_ply(points, output_path):\n",
139
+ " \"\"\"\n",
140
+ " Write points and parameters to a PLY file\n",
141
+ " \n",
142
+ " Parameters:\n",
143
+ " points: numpy array of shape (N, 3) containing point coordinates\n",
144
+ " output_path: path to save the PLY file\n",
145
+ " \"\"\"\n",
146
+ " with open(output_path, 'w') as f:\n",
147
+ " # Write header\n",
148
+ " f.write(\"ply\\n\")\n",
149
+ " f.write(\"format ascii 1.0\\n\")\n",
150
+ " \n",
151
+ " # Write vertex element\n",
152
+ " f.write(f\"element vertex {len(points)}\\n\")\n",
153
+ " f.write(\"property float x\\n\")\n",
154
+ " f.write(\"property float y\\n\")\n",
155
+ " f.write(\"property float z\\n\")\n",
156
+ " \n",
157
+ " # Write camera element\n",
158
+ " f.write(\"element camera 1\\n\")\n",
159
+ " f.write(\"property float view_px\\n\")\n",
160
+ " f.write(\"property float view_py\\n\")\n",
161
+ " f.write(\"property float view_pz\\n\")\n",
162
+ " f.write(\"property float x_axisx\\n\")\n",
163
+ " f.write(\"property float x_axisy\\n\")\n",
164
+ " f.write(\"property float x_axisz\\n\")\n",
165
+ " f.write(\"property float y_axisx\\n\")\n",
166
+ " f.write(\"property float y_axisy\\n\")\n",
167
+ " f.write(\"property float y_axisz\\n\")\n",
168
+ " f.write(\"property float z_axisx\\n\")\n",
169
+ " f.write(\"property float z_axisy\\n\")\n",
170
+ " f.write(\"property float z_axisz\\n\")\n",
171
+ " \n",
172
+ " # Write phoxi frame parameters\n",
173
+ " f.write(\"element phoxi_frame_params 1\\n\")\n",
174
+ " f.write(\"property uint32 frame_width\\n\")\n",
175
+ " f.write(\"property uint32 frame_height\\n\")\n",
176
+ " f.write(\"property uint32 frame_index\\n\")\n",
177
+ " f.write(\"property float frame_start_time\\n\")\n",
178
+ " f.write(\"property float frame_duration\\n\")\n",
179
+ " f.write(\"property float frame_computation_duration\\n\")\n",
180
+ " f.write(\"property float frame_transfer_duration\\n\")\n",
181
+ " f.write(\"property int32 total_scan_count\\n\")\n",
182
+ " \n",
183
+ " # Write camera matrix\n",
184
+ " f.write(\"element camera_matrix 1\\n\")\n",
185
+ " for i in range(9):\n",
186
+ " f.write(f\"property float cm{i}\\n\")\n",
187
+ " \n",
188
+ " # Write distortion matrix\n",
189
+ " f.write(\"element distortion_matrix 1\\n\")\n",
190
+ " for i in range(14):\n",
191
+ " f.write(f\"property float dm{i}\\n\")\n",
192
+ " \n",
193
+ " # Write camera resolution\n",
194
+ " f.write(\"element camera_resolution 1\\n\")\n",
195
+ " f.write(\"property float width\\n\")\n",
196
+ " f.write(\"property float height\\n\")\n",
197
+ " \n",
198
+ " # Write frame binning\n",
199
+ " f.write(\"element frame_binning 1\\n\")\n",
200
+ " f.write(\"property float horizontal\\n\")\n",
201
+ " f.write(\"property float vertical\\n\")\n",
202
+ " \n",
203
+ " # End header\n",
204
+ " f.write(\"end_header\\n\")\n",
205
+ " \n",
206
+ " # Write vertex data\n",
207
+ " for point in points:\n",
208
+ " f.write(f\"{point[0]} {point[1]} {point[2]}\\n\")\n",
209
+ "\n",
210
+ " print(True)\n",
211
+ "\n",
212
+ "if GT: write_ply(new_pcd_array, \"tea_gt_filtered.ply\")\n",
213
+ "else: write_ply(perturbed_pcd_array, \"tea_noisy_filtered.ply\")"
214
+ ]
215
+ },
216
+ {
217
+ "cell_type": "code",
218
+ "execution_count": null,
219
+ "metadata": {},
220
+ "outputs": [],
221
+ "source": []
222
+ }
223
+ ],
224
+ "metadata": {
225
+ "kernelspec": {
226
+ "display_name": "Python 3",
227
+ "language": "python",
228
+ "name": "python3"
229
+ },
230
+ "language_info": {
231
+ "codemirror_mode": {
232
+ "name": "ipython",
233
+ "version": 3
234
+ },
235
+ "file_extension": ".py",
236
+ "mimetype": "text/x-python",
237
+ "name": "python",
238
+ "nbconvert_exporter": "python",
239
+ "pygments_lexer": "ipython3",
240
+ "version": "3.10.12"
241
+ }
242
+ },
243
+ "nbformat": 4,
244
+ "nbformat_minor": 2
245
+ }
data/bottle/inference.ipynb ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 1,
6
+ "metadata": {},
7
+ "outputs": [],
8
+ "source": [
9
+ "# conda activate vision\n",
10
+ "# cd build\n",
11
+ "# cmake -DCMAKE_BUILD_TYPE=Release ..\n",
12
+ "# make\n",
13
+ "# ./FRICP ./data/bottle/tea_gt_filtered.ply ./data/bottle/tea_noisy_filtered.ply ./data/bottle/res/ 3"
14
+ ]
15
+ },
16
+ {
17
+ "cell_type": "markdown",
18
+ "metadata": {},
19
+ "source": [
20
+ "### Source PCD"
21
+ ]
22
+ },
23
+ {
24
+ "cell_type": "code",
25
+ "execution_count": 2,
26
+ "metadata": {},
27
+ "outputs": [
28
+ {
29
+ "name": "stdout",
30
+ "output_type": "stream",
31
+ "text": [
32
+ "Jupyter environment detected. Enabling Open3D WebVisualizer.\n",
33
+ "[Open3D INFO] WebRTC GUI backend enabled.\n",
34
+ "[Open3D INFO] WebRTCWindowSystem: HTTP handshake server disabled.\n",
35
+ "\u001b[1;33m[Open3D WARNING] Read PLY failed: unable to read file: tea_noisy_filtered.ply\u001b[0;m\n",
36
+ "Source shape: (23076, 3)\n"
37
+ ]
38
+ },
39
+ {
40
+ "name": "stderr",
41
+ "output_type": "stream",
42
+ "text": [
43
+ "RPly: Unexpected end of file\n",
44
+ "RPly: Error reading 'view_px' of 'camera' number 0\n"
45
+ ]
46
+ }
47
+ ],
48
+ "source": [
49
+ "import open3d as o3d\n",
50
+ "import numpy as np\n",
51
+ "\n",
52
+ "source_path = \"tea_noisy_filtered.ply\"\n",
53
+ "source_pcd = o3d.io.read_point_cloud(source_path)\n",
54
+ "\n",
55
+ "source_pcd_array = np.asarray(source_pcd.points)\n",
56
+ "print(\"Source shape:\", source_pcd_array.shape)\n",
57
+ "\n",
58
+ "o3d.visualization.draw_geometries([source_pcd])"
59
+ ]
60
+ },
61
+ {
62
+ "cell_type": "markdown",
63
+ "metadata": {},
64
+ "source": [
65
+ "### Target PCD"
66
+ ]
67
+ },
68
+ {
69
+ "cell_type": "code",
70
+ "execution_count": 7,
71
+ "metadata": {},
72
+ "outputs": [
73
+ {
74
+ "name": "stdout",
75
+ "output_type": "stream",
76
+ "text": [
77
+ "\u001b[1;33m[Open3D WARNING] Read PLY failed: unable to read file: tea_gt_filtered.ply\u001b[0;m\n",
78
+ "Target shape: (50363, 3)\n"
79
+ ]
80
+ },
81
+ {
82
+ "name": "stderr",
83
+ "output_type": "stream",
84
+ "text": [
85
+ "RPly: Unexpected end of file\n",
86
+ "RPly: Error reading 'view_px' of 'camera' number 0\n"
87
+ ]
88
+ }
89
+ ],
90
+ "source": [
91
+ "target_path = \"tea_gt_filtered.ply\"\n",
92
+ "target_pcd = o3d.io.read_point_cloud(target_path)\n",
93
+ "\n",
94
+ "target_pcd_array = np.asarray(target_pcd.points)\n",
95
+ "print(\"Target shape:\", target_pcd_array.shape)\n",
96
+ "\n",
97
+ "o3d.visualization.draw_geometries([target_pcd])"
98
+ ]
99
+ },
100
+ {
101
+ "cell_type": "markdown",
102
+ "metadata": {},
103
+ "source": [
104
+ "### Transformed Source PCD"
105
+ ]
106
+ },
107
+ {
108
+ "cell_type": "code",
109
+ "execution_count": 4,
110
+ "metadata": {},
111
+ "outputs": [
112
+ {
113
+ "name": "stdout",
114
+ "output_type": "stream",
115
+ "text": [
116
+ "Transformed shape: (23076, 3)\n"
117
+ ]
118
+ }
119
+ ],
120
+ "source": [
121
+ "transformed_path = \"res/m3reg_pc.ply\"\n",
122
+ "transformed_pcd = o3d.io.read_point_cloud(transformed_path)\n",
123
+ "\n",
124
+ "transformed_pcd_array = np.asarray(transformed_pcd.points)\n",
125
+ "print(\"Transformed shape:\", transformed_pcd_array.shape)\n",
126
+ "\n",
127
+ "o3d.visualization.draw_geometries([transformed_pcd])"
128
+ ]
129
+ },
130
+ {
131
+ "cell_type": "markdown",
132
+ "metadata": {},
133
+ "source": [
134
+ "### Source (Original) + Target"
135
+ ]
136
+ },
137
+ {
138
+ "cell_type": "code",
139
+ "execution_count": 5,
140
+ "metadata": {},
141
+ "outputs": [],
142
+ "source": [
143
+ "source_pcd.paint_uniform_color([1, 0, 0])\n",
144
+ "target_pcd.paint_uniform_color([0, 1, 0])\n",
145
+ "\n",
146
+ "vis = o3d.visualization.Visualizer()\n",
147
+ "vis.create_window(window_name=\"Point Cloud Viewer\", width=1200, height=800, visible=True)\n",
148
+ "vis.add_geometry(source_pcd)\n",
149
+ "vis.add_geometry(target_pcd)\n",
150
+ "\n",
151
+ "vis.run()\n",
152
+ "vis.destroy_window()"
153
+ ]
154
+ },
155
+ {
156
+ "cell_type": "markdown",
157
+ "metadata": {},
158
+ "source": [
159
+ "### Transformed + Target"
160
+ ]
161
+ },
162
+ {
163
+ "cell_type": "code",
164
+ "execution_count": 6,
165
+ "metadata": {},
166
+ "outputs": [],
167
+ "source": [
168
+ "transformed_pcd.paint_uniform_color([1, 0, 0])\n",
169
+ "target_pcd.paint_uniform_color([0, 1, 0])\n",
170
+ "\n",
171
+ "vis = o3d.visualization.Visualizer()\n",
172
+ "vis.create_window(window_name=\"Point Cloud Viewer\", width=1200, height=800, visible=True)\n",
173
+ "vis.add_geometry(transformed_pcd)\n",
174
+ "vis.add_geometry(target_pcd)\n",
175
+ "\n",
176
+ "vis.run()\n",
177
+ "vis.destroy_window()"
178
+ ]
179
+ },
180
+ {
181
+ "cell_type": "code",
182
+ "execution_count": null,
183
+ "metadata": {},
184
+ "outputs": [],
185
+ "source": []
186
+ }
187
+ ],
188
+ "metadata": {
189
+ "kernelspec": {
190
+ "display_name": "vision",
191
+ "language": "python",
192
+ "name": "python3"
193
+ },
194
+ "language_info": {
195
+ "codemirror_mode": {
196
+ "name": "ipython",
197
+ "version": 3
198
+ },
199
+ "file_extension": ".py",
200
+ "mimetype": "text/x-python",
201
+ "name": "python",
202
+ "nbconvert_exporter": "python",
203
+ "pygments_lexer": "ipython3",
204
+ "version": "3.9.20"
205
+ }
206
+ },
207
+ "nbformat": 4,
208
+ "nbformat_minor": 2
209
+ }
data/bottle/tea_gt_filtered.ply ADDED
The diff for this file is too large to render. See raw diff
 
data/bottle/tea_noisy_filtered.ply ADDED
The diff for this file is too large to render. See raw diff
 
data/bottle_2/RMSE.ipynb ADDED
@@ -0,0 +1,197 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "id": "5cf20b5b",
6
+ "metadata": {},
7
+ "source": [
8
+ "## Get Transformation file\n"
9
+ ]
10
+ },
11
+ {
12
+ "cell_type": "code",
13
+ "execution_count": null,
14
+ "id": "fe5a09ce",
15
+ "metadata": {},
16
+ "outputs": [],
17
+ "source": [
18
+ "import numpy as np\n",
19
+ "import math\n",
20
+ "import json\n",
21
+ "import os\n",
22
+ "\n",
23
+ "categories = ['bottle2', 'lightbulb', 'lighter', 'eyeglasses', 'magnifying_glass', 'spray']\n",
24
+ "fill_rate = ['100', '75', '50', '25', '0']\n",
25
+ "result_path = './Fast-Robust-ICP/Result/'\n",
26
+ "\n",
27
+ "# assign your folder \n",
28
+ "\n",
29
+ "category = categories[0]\n",
30
+ "\n",
31
+ "\n",
32
+ "result_path =result_path + category\n",
33
+ "\n",
34
+ "json_path = result_path + \"ply_files.json\"\n",
35
+ "\n",
36
+ "\n",
37
+ "### Generating T matrix list.\n",
38
+ "\n",
39
+ "# bring the filename json file.\n",
40
+ "try: \n",
41
+ " with open(json_path, \"r\", encoding=\"utf-8\") as f:\n",
42
+ " categorized_files = json.load(f)\n",
43
+ "\n",
44
+ "except FileNotFoundError:\n",
45
+ " print(f\"์˜ค๋ฅ˜: '{json_path}' ํŒŒ์ผ์„ ์ฐพ์„ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค. ๋จผ์ € ํŒŒ์ผ ๋ถ„๋ฅ˜ ์ฝ”๋“œ๋ฅผ ์‹คํ–‰ํ•ด ์ฃผ์„ธ์š”.\")\n",
46
+ " exit() # ํŒŒ์ผ์ด ์—†์œผ๋ฉด ํ”„๋กœ๊ทธ๋žจ ์ข…๋ฃŒ\n",
47
+ "\n",
48
+ "\n",
49
+ "## get GT\n",
50
+ "gt = []\n",
51
+ "\n",
52
+ "gt_T =[]\n",
53
+ "\n",
54
+ "for fill in fill_rate:\n",
55
+ " filenames = categorized_files.get(fill, [])\n",
56
+ " T_array = []\n",
57
+ "\n",
58
+ " for file in filenames:\n",
59
+ " gt_name = f\"gt_{file}.txt\"\n",
60
+ " matrix = np.loadtxt(gt_name)\n",
61
+ " T_array.append(matrix)\n",
62
+ " gt_T.append(T_array)\n",
63
+ "\n",
64
+ "\n",
65
+ "\n",
66
+ "print(np.gt_T)\n",
67
+ "\n",
68
+ "\n",
69
+ "\n",
70
+ "\n",
71
+ "\n",
72
+ "\n",
73
+ "\n",
74
+ "# get T matrix array\n",
75
+ "overall_T =[]\n",
76
+ "\n",
77
+ "for fill in fill_rate:\n",
78
+ " filenames = categorized_files.get(fill, [])\n",
79
+ " T_array = []\n",
80
+ "\n",
81
+ " for file in filenames:\n",
82
+ " matrix_path = result_path + file+\".txt\"\n",
83
+ " matrix = np.loadtxt(matrix_path)\n",
84
+ " T_array.append(matrix)\n",
85
+ " overall_T.append(T_array)\n",
86
+ "\n",
87
+ "\n",
88
+ "\n",
89
+ "print(np.overall_T.shape)\n",
90
+ "\n",
91
+ "\n"
92
+ ]
93
+ },
94
+ {
95
+ "cell_type": "markdown",
96
+ "id": "9a7cf4b9",
97
+ "metadata": {},
98
+ "source": [
99
+ "# compute RMSE\n"
100
+ ]
101
+ },
102
+ {
103
+ "cell_type": "code",
104
+ "execution_count": null,
105
+ "id": "758cc248",
106
+ "metadata": {},
107
+ "outputs": [],
108
+ "source": [
109
+ "def RMSE(T_star, T):\n",
110
+ " diff = T_star - T\n",
111
+ " sq_norms = np.sum(diff**2, axis =1)\n",
112
+ "\n",
113
+ " r = np.sqrt(np.mean(sq_norms))\n",
114
+ "\n",
115
+ " return r\n",
116
+ "\n",
117
+ "def mean(array):\n",
118
+ " return np.mean(array)\n",
119
+ "\n",
120
+ "\n",
121
+ "RMSE_mean = []\n",
122
+ "for gt, overall in zip(gt_T, overall_T):\n",
123
+ " rmse = []\n",
124
+ " for T_star, T in zip(gt, overall):\n",
125
+ " r= RMSE(T_star, T)\n",
126
+ " rmse.append(r)\n",
127
+ " RMSE_mean.append(mean(rmse))\n",
128
+ "\n"
129
+ ]
130
+ },
131
+ {
132
+ "cell_type": "markdown",
133
+ "id": "b859fdc3",
134
+ "metadata": {},
135
+ "source": [
136
+ "## Save in json\n",
137
+ " "
138
+ ]
139
+ },
140
+ {
141
+ "cell_type": "code",
142
+ "execution_count": 2,
143
+ "id": "8c0faa07",
144
+ "metadata": {},
145
+ "outputs": [
146
+ {
147
+ "ename": "NameError",
148
+ "evalue": "name 'RMSE_mean' is not defined",
149
+ "output_type": "error",
150
+ "traceback": [
151
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
152
+ "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
153
+ "Cell \u001b[0;32mIn[2], line 8\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m cat \u001b[38;5;129;01min\u001b[39;00m categories:\n\u001b[1;32m 7\u001b[0m rmse_dict[cat] \u001b[38;5;241m=\u001b[39m {}\n\u001b[0;32m----> 8\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m mean, fr \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mzip\u001b[39m(RMSE_mean,fill_rate):\n\u001b[1;32m 9\u001b[0m rmse_dict[cat][fr] \u001b[38;5;241m=\u001b[39m mean\n\u001b[1;32m 11\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mopen\u001b[39m(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mrmse_Results.json\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mw\u001b[39m\u001b[38;5;124m'\u001b[39m) \u001b[38;5;28;01mas\u001b[39;00m f:\n",
154
+ "\u001b[0;31mNameError\u001b[0m: name 'RMSE_mean' is not defined"
155
+ ]
156
+ }
157
+ ],
158
+ "source": [
159
+ "categories = ['bottle2', 'lightbulb', 'lighter', 'eyeglasses', 'magnifying_glass', 'spray']\n",
160
+ "fill_rate = ['100', '75', '50', '25', '0']\n",
161
+ "\n",
162
+ "rmse_dict = {}\n",
163
+ "\n",
164
+ "for cat in categories:\n",
165
+ " rmse_dict[cat] = {}\n",
166
+ " for mean, fr in zip(RMSE_mean,fill_rate):\n",
167
+ " rmse_dict[cat][fr] = mean\n",
168
+ "\n",
169
+ "with open('rmse_Results.json', 'w') as f:\n",
170
+ " json.dump(rmse_dict, f, indent=4)\n",
171
+ " \n",
172
+ "\n"
173
+ ]
174
+ }
175
+ ],
176
+ "metadata": {
177
+ "kernelspec": {
178
+ "display_name": "base",
179
+ "language": "python",
180
+ "name": "python3"
181
+ },
182
+ "language_info": {
183
+ "codemirror_mode": {
184
+ "name": "ipython",
185
+ "version": 3
186
+ },
187
+ "file_extension": ".py",
188
+ "mimetype": "text/x-python",
189
+ "name": "python",
190
+ "nbconvert_exporter": "python",
191
+ "pygments_lexer": "ipython3",
192
+ "version": "3.13.5"
193
+ }
194
+ },
195
+ "nbformat": 4,
196
+ "nbformat_minor": 5
197
+ }
data/bottle_2/all_infer.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
data/bottle_2/all_infer.py ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import open3d as o3d
2
+ import numpy as np
3
+ import json
4
+ import os
5
+ import subprocess
6
+ import shutil # shutil ์ž„ํฌํŠธ ์ถ”๊ฐ€
7
+
8
+ # ๋ฐ์ดํ„ฐ์…‹ ํด๋”์™€ JSON ํŒŒ์ผ ๊ฒฝ๋กœ
9
+ folder = "./dataset"
10
+ json_path = "ply_files.json"
11
+ categories= ['100', '75', '50', '25', '0']
12
+
13
+ try:
14
+ with open(json_path, "r", encoding="utf-8") as f:
15
+ categorized_files = json.load(f)
16
+ except FileNotFoundError:
17
+ print(f"์˜ค๋ฅ˜: '{json_path}' ํŒŒ์ผ์„ ์ฐพ์„ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค. ๋จผ์ € ํŒŒ์ผ ๋ถ„๋ฅ˜ ์ฝ”๋“œ๋ฅผ ์‹คํ–‰ํ•ด ์ฃผ์„ธ์š”.")
18
+ exit()
19
+
20
+ print("=== ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ ์‹œ์ž‘ ===")
21
+
22
+ for category in categories:
23
+ print(f"\n--- [์นดํ…Œ๊ณ ๋ฆฌ: {category} ์ฒ˜๋ฆฌ ์‹œ์ž‘ ---")
24
+
25
+ filenames_in_category = categorized_files.get(category, [])
26
+
27
+ if not filenames_in_category:
28
+ print("์ฒ˜๋ฆฌํ•  ํŒŒ์ผ์ด ์—†์Šต๋‹ˆ๋‹ค.")
29
+ continue
30
+
31
+ for filename in filenames_in_category:
32
+ print(f"\n>>> ํŒŒ์ผ ์ฒ˜๋ฆฌ ์ค‘: {filename}.ply")
33
+
34
+ # ... (์ด์ „ ํŒŒ์ผ ์ˆ˜์ • ๋ฐ ์ €์žฅ ์ฝ”๋“œ๋Š” ๊ทธ๋Œ€๋กœ) ...
35
+ # In[23] ๋ถ€๋ถ„์€ ์—ฌ๊ธฐ์— ๊ทธ๋Œ€๋กœ ๋‘ก๋‹ˆ๋‹ค.
36
+ # ...
37
+
38
+ # ### Execute terminal
39
+
40
+ # โญ๏ธ ํ•ด๊ฒฐ ๋ฐฉ๋ฒ• 1: FRICP ์‹คํ–‰ ์ „ ์ด์ „ ๊ฒฐ๊ณผ ํด๋” ์‚ญ์ œ
41
+ # ๊ฐ ๋ฃจํ”„๋งˆ๋‹ค ๊นจ๋—ํ•œ ์ƒํƒœ์—์„œ ์‹œ์ž‘ํ•˜๋„๋ก ๋ณด์žฅํ•ฉ๋‹ˆ๋‹ค.
42
+ if os.path.exists('./res'):
43
+ shutil.rmtree('./res')
44
+ print("์ด์ „ 'res' ํด๋”๋ฅผ ์‚ญ์ œํ–ˆ์Šต๋‹ˆ๋‹ค.")
45
+ source_path = f'./initialized_result/initial_{filename}.ply'
46
+ print(f"--- ๋กœ๋”ฉ ์‹œ๋„ ์ค‘์ธ ํŒŒ์ผ: {source_path}")
47
+ if not os.path.exists(source_path):
48
+ print("!!!!!! ์—๋Ÿฌ: ํ•ด๋‹น ๊ฒฝ๋กœ์— ํŒŒ์ผ์ด ์กด์žฌํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค!")
49
+ continue # ๋‹ค์Œ ํŒŒ์ผ๋กœ ๋„˜์–ด๊ฐ
50
+ cmd = [
51
+ '../../FRICP',
52
+ './gt_filtered.ply',
53
+ f'./noisy_result/noisy_filtered_{filename}.ply',
54
+ './res', # FRICP๋Š” ์ด ํด๋”์— ๊ฒฐ๊ณผ๋ฅผ ์ €์žฅํ•ฉ๋‹ˆ๋‹ค.
55
+ '3'
56
+ ]
57
+ print(cmd)
58
+
59
+ try:
60
+ result = subprocess.run(cmd, capture_output=True, text=True, check=True)
61
+ print("--- STDOUT (ํ‘œ์ค€ ์ถœ๋ ฅ) ---")
62
+ print("๋ช…๋ น์–ด๊ฐ€ ์„ฑ๊ณต์ ์œผ๋กœ ์‹คํ–‰๋˜์—ˆ์Šต๋‹ˆ๋‹ค.")
63
+ print(result.stdout)
64
+
65
+ except FileNotFoundError:
66
+ print("--- ์—๋Ÿฌ ๋ฐœ์ƒ! ---")
67
+ print(f"'{cmd[0]}' ํŒŒ์ผ์„ ์ฐพ์„ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.")
68
+ print("๊ฒฝ๋กœ๊ฐ€ ์˜ฌ๋ฐ”๋ฅธ์ง€, ํŒŒ์ผ์ด ๊ทธ ์œ„์น˜์— ์กด์žฌํ•˜๋Š”์ง€ ํ™•์ธํ•ด ์ฃผ์„ธ์š”.")
69
+
70
+ except subprocess.CalledProcessError as e:
71
+ print("--- ์—๋Ÿฌ ๋ฐœ์ƒ! ---")
72
+ print(f"๋ช…๋ น์–ด ์‹คํ–‰ ์ค‘ ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค. (์ข…๋ฃŒ ์ฝ”๋“œ: {e.returncode})")
73
+
74
+ # STDOUT๊ณผ STDERR์„ ๋ชจ๋‘ ์ถœ๋ ฅ
75
+ print("\n--- STDOUT (์˜ค๋ฅ˜ ๋ฐœ์ƒ ์ „ ํ‘œ์ค€ ์ถœ๋ ฅ) ---")
76
+ print(e.stdout)
77
+
78
+ print("\n--- STDERR (์—๋Ÿฌ ์›์ธ) ---")
79
+ print(e.stderr)
80
+
81
+ continue # ์˜ค๋ฅ˜ ๋ฐœ์ƒ ์‹œ ๋‹ค์Œ ํŒŒ์ผ๋กœ ๋„˜์–ด๊ฐ‘๋‹ˆ๋‹ค.
82
+
83
+ # ### Change the path for result
84
+
85
+ # โญ๏ธ ํ•ด๊ฒฐ ๋ฐฉ๋ฒ• 2: ์ •ํ™•ํ•œ ํŒŒ์ผ ๊ฒฝ๋กœ ์ง€์ •
86
+ # FRICP๊ฐ€ 'res' ํด๋” ์•ˆ์— ๊ฒฐ๊ณผ๋ฅผ ์ƒ์„ฑํ•˜๋ฏ€๋กœ, ๊ฒฝ๋กœ๋ฅผ ์ •ํ™•ํžˆ ๋ช…์‹œํ•ฉ๋‹ˆ๋‹ค.
87
+ transformed_path = "./resm3reg_pc.ply"
88
+ destination_path = f"./result/final_result_{filename}.ply"
89
+ transformed_path2 = "./resm3trans.txt"
90
+ destination_path2 = f"./result/final_result_{filename}.txt"
91
+
92
+ # ํŒŒ์ผ ์ด๋™ ์ „, ํŒŒ์ผ์ด ์‹ค์ œ๋กœ ์กด์žฌํ•˜๋Š”์ง€ ํ™•์ธํ•˜๋Š” ๊ฒƒ์ด ๋” ์•ˆ์ •์ ์ž…๋‹ˆ๋‹ค.
93
+ if os.path.exists(transformed_path):
94
+ shutil.move(transformed_path, destination_path)
95
+ print(f"Successfully moved '{transformed_path}' to '{destination_path}'")
96
+ else:
97
+ print(f"์˜ค๋ฅ˜: '{transformed_path}' ํŒŒ์ผ์„ ์ฐพ์„ ์ˆ˜ ์—†์–ด ์ด๋™ํ•˜์ง€ ๋ชปํ–ˆ์Šต๋‹ˆ๋‹ค.")
98
+
99
+ if os.path.exists(transformed_path2):
100
+ shutil.move(transformed_path2, destination_path2)
101
+ print(f"Successfully moved '{transformed_path2}' to '{destination_path2}'")
102
+ else:
103
+ print(f"์˜ค๋ฅ˜: '{transformed_path2}' ํŒŒ์ผ์„ ์ฐพ์„ ์ˆ˜ ์—†์–ด ์ด๋™ํ•˜์ง€ ๋ชปํ–ˆ์Šต๋‹ˆ๋‹ค.")
104
+
105
+ # ... (์ดํ›„ ์‹œ๊ฐํ™” ์ฝ”๋“œ๋Š” ๊ทธ๋Œ€๋กœ) ...
106
+ # In[28], In[29], In[30] ๋ถ€๋ถ„์€ ์—ฌ๊ธฐ์— ๊ทธ๋Œ€๋กœ ๋‘ก๋‹ˆ๋‹ค.
107
+ # ...
108
+
109
+ print("\n\n=== ๋ชจ๋“  ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ ์™„๋ฃŒ! ===")
data/bottle_2/bottle.csv ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ,file_1,file_2,file_3,file_4,file_5,file_6,file_7,file_8,file_9,file_10,file_11,file_12,file_13,file_14,file_15,file_16,file_17,file_18,file_19,file_20,file_21,file_22,file_23,file_24,file_25,mean_Val
2
+ bottle_100_ICP,85.04128575425388,86.05326335360489,84.47635691229785,105.59225246637578,89.68881962097188,77.48888868075612,109.90142895087662,108.41158827464747,104.12338729492919,112.59540331960532,108.57939156883003,61.43662300798038,77.43625723382463,101.00628912848936,87.69185745030735,110.1171883980221,107.09749318118588,110.93064448147923,96.01056065110696,52.07204369198823,0.0,0.0,0.0,0.0,0.0,93.78755117107666
3
+ bottle_75_ICP,109.51695154262917,110.05432879513135,87.09602168795054,107.42510565438391,87.97775218715594,90.18008214964271,107.49642510138136,111.99004662196423,109.65780517399432,110.84820982160869,89.85400075280717,59.342682664850095,90.93817506352208,68.19630770224255,89.18749438130695,113.00008379096332,101.08964382624028,113.16925628472214,106.31775551859322,73.05012962149381,0.0,0.0,0.0,0.0,0.0,96.8194129171292
4
+ bottle_50_ICP,108.19988707450763,108.86639982617186,113.7658626011531,87.95524482799122,84.50313400458252,70.6670324093882,81.32191675937815,103.38106838315674,112.88583164302038,85.98483659718111,113.21596871750606,106.85055452694026,83.42222041172025,93.65132954986254,108.24618930633926,61.71279182076898,67.78796417836334,61.33756980244185,94.5127437017708,107.46030337711433,0.0,0.0,0.0,0.0,0.0,92.78644247596792
5
+ bottle_25_ICP,106.28665082567477,105.03500991805781,85.0842936924201,80.05463768235835,102.5157119364935,42.60840044408896,48.90137071810652,54.18483674044661,104.7672300934581,119.41459165731216,112.03161615580395,102.11945300087962,84.12946301195971,71.7070184123044,90.50514407935916,74.48994221635428,111.6279127246182,117.45599015468306,115.8960102820454,71.4591643972948,0.0,0.0,0.0,0.0,0.0,90.01372240718597
6
+ bottle_0_ICP,112.62597432625142,109.8973077605711,110.484548941997,94.04497548454427,76.34275229761651,34.7846151167867,47.72111874975935,31.61799726124414,90.48139287154483,90.31935268202618,122.65398326877047,0.0,91.10849067425075,79.80308353636845,75.17759836711434,70.72516962944377,0.0,100.87137611768568,118.24678207190455,78.59711788098687,122.18578126571407,85.76030582325366,89.98604431157688,0.0,0.0,87.30646516378147
7
+ bottle_100_FAST ICP,84.7012961566271,86.03440164364748,84.47551127602084,111.30492987046674,89.82886884057739,77.34804836912079,110.13503720394769,108.17647743057096,90.41699894975555,111.52369246196193,108.07993658996557,61.60536876947702,77.20546530825926,102.55830080977084,87.66446520570835,96.73624612146475,110.09185680128066,110.93877690835261,95.81097618356239,59.97001131889388,0.0,0.0,0.0,0.0,0.0,93.2303333109716
8
+ bottle_75_FAST ICP,108.91903083750711,110.14611476344476,87.0766408370491,88.91822265799456,86.67330421906041,89.73030954456551,103.91657749505872,112.06031719397869,109.6321756451082,111.65612149685393,90.01851702551402,59.00030048609143,90.10578244322001,105.47941343779007,89.20763098062307,112.52056825224021,88.03706066434097,113.15424261545164,106.42047041848046,103.79366203687644,0.0,0.0,0.0,0.0,0.0,98.32332315256247
9
+ bottle_50_FAST ICP,92.01737591167311,109.25003301164492,114.40436646225686,88.0188234885353,84.43710099121567,71.59584839577762,81.68548663620125,103.51632532593115,111.66974472329198,84.90005949571722,113.9904039875148,107.20528895255818,82.03003318491324,93.49498815798984,108.55895895166164,61.897191832460365,20.121940810489193,60.48798557051702,95.99154746543061,83.85823004859633,0.0,0.0,0.0,0.0,0.0,88.45658667021883
10
+ bottle_25_FAST ICP,108.62107887499435,106.62932754058345,85.0782101219815,80.05165638078077,97.3966801484607,46.59267483026011,38.79435977004901,54.5374253869146,108.34492155732819,113.63753808765595,110.34940611843918,100.21344801575309,83.70812696796126,72.17352747099841,90.58655718023181,70.0953858766288,108.58117921769693,116.41160652165263,117.73460642580609,71.20335800406437,0.0,0.0,0.0,0.0,0.0,89.03705372491206
11
+ bottle_0_FAST ICP,113.49972032300671,107.84338924548734,110.13650077505487,96.23734594085165,76.3513070271596,34.74384858215673,76.3265701038637,40.35838504020668,90.20588322140146,89.83927590668787,107.88731754397071,0.0,91.13245466695298,79.89456838259234,75.35401903641245,57.02607371022735,0.0,117.28994796803546,128.90243372842963,73.90202762120708,117.55854212928806,85.43391740704234,90.04361893576521,0.0,0.0,88.56986415694287
12
+ bottle_100_Robust ICP,81.70543470363305,82.39656376244879,80.09634283942138,111.18603815214006,79.56262675714508,81.525871385867,108.99878767337788,105.05008919172559,93.7531099700586,113.05580473344197,109.85216816503079,61.82723651422891,75.9341125490483,101.84710583012524,66.43210090246328,107.52198599079344,65.1420656529651,110.88598597109053,96.87432011114093,51.74274627309617,0.0,0.0,0.0,0.0,0.0,89.2695248564621
13
+ bottle_75_Robust ICP,112.74079014842333,113.97671069127504,81.1498410176695,102.31169626939742,83.48006574428902,93.32785615162496,104.4472195377852,111.92726166676424,113.26277874067482,109.67946531368244,80.64641992338044,46.46467323157595,91.85744681971214,71.02952087763815,91.82095626249375,114.12411176270146,108.7386756655741,114.61065779035664,107.71003970466465,99.08840813331993,0.0,0.0,0.0,0.0,0.0,97.61972977265016
14
+ bottle_50_Robust ICP,111.47069153618989,111.39110924258998,113.34206315059971,81.48689273332852,84.20602084772226,86.68698324337633,91.34275668397333,108.27653881118654,113.48448234485916,85.4559975898279,117.92588550020439,98.24020716938688,78.42448297082153,106.30037026331838,111.02478369595981,62.35282659674115,31.632497313776717,54.08884351296583,98.70260854219246,110.86054012630366,0.0,0.0,0.0,0.0,0.0,92.83482909376623
15
+ bottle_25_Robust ICP,106.82072836978332,106.4622018053545,81.32469793180212,94.04023934411366,95.93115254977074,50.12393614537032,29.66312970848825,54.753536496227,108.10992790888147,115.62596760465885,110.42669287336633,97.63358735071552,83.36255873758938,71.49869839764217,88.8559068451969,94.90119730111823,107.08644373383686,113.16466701066639,114.8377499998422,99.81545985680388,0.0,0.0,0.0,0.0,0.0,91.2219239985614
16
+ bottle_0_Robust ICP,115.26609033419432,109.6036922420519,94.49770725900457,94.21587989484117,79.61813020373685,30.72760435110564,15.881949746999696,47.17320353090825,67.4286317708186,100.31608672673835,126.7902516099921,0.0,75.23806788157623,55.91837949180391,77.27641205038687,61.51679877424573,0.0,63.70168502116878,123.13251672610497,65.67202122462396,122.56200660721422,78.88745981227382,88.25914633783503,0.0,0.0,80.65160579036309
17
+ bottle_100_Sparse ICP,77.81938558201557,79.23948919838341,82.57688321948443,98.90976816693983,84.78868462122259,83.5531335365124,108.3971242310478,107.34410276724469,106.69560467663753,107.16997062533052,102.88248072481444,49.7186328789136,51.094176706592265,77.5906493907245,87.86070843278522,104.43098296393003,108.63312093860273,109.53991810355184,77.04265027297463,57.084762229776,0.0,0.0,0.0,0.0,0.0,88.11861146337421
18
+ bottle_75_Sparse ICP,103.99827425295919,104.37779153144412,68.68538784551674,97.25552336920758,86.72701043524076,96.838347376969,112.54176904469927,103.41153891428786,109.4229441082182,105.86267701099024,76.11011397317024,66.80255904773338,63.606657059473896,79.03516238434135,90.4674735681281,107.43503004811424,102.50539303646858,111.67784215158278,102.32768487983813,70.99235565588936,0.0,0.0,0.0,0.0,0.0,93.00407678471365
19
+ bottle_50_Sparse ICP,101.79896199942294,102.11006337106423,113.3930555064267,86.26737303207376,55.34544027233182,69.95258338904436,91.26932325790018,100.65731202845619,114.30136008913202,95.54291618696308,108.01212505586417,101.53625000729649,93.2583135501972,100.08792520119134,91.25137477325299,77.6873279321758,48.24807263514985,75.32073439015521,74.30310381106145,103.111405745478,0.0,0.0,0.0,0.0,0.0,90.1727511117319
20
+ bottle_25_Sparse ICP,103.99712394949904,103.61349752389927,94.62256697094382,79.27976119635457,72.89199770216626,41.22770313658797,58.12239299579378,54.927784315056755,68.85909222780111,104.62830979553958,112.88382337654501,100.55198422936014,95.25869527118465,81.57718999018991,77.5592075454821,94.36985996430036,114.66205773160543,114.71204109488971,93.89082326379265,82.84512462503706,0.0,0.0,0.0,0.0,0.0,87.52405184530146
21
+ bottle_0_Sparse ICP,114.32680656953005,112.77026993397001,122.00792045466763,89.45524146678042,83.81796832644702,31.71932256121298,42.8170997722106,22.007086609697787,79.79521860696805,115.08496274365683,127.54274713138065,0.0,84.64138278343356,56.22417113226267,75.67829913140086,77.68010923546002,0.0,39.49974039202994,112.29732068998992,79.17847919424567,125.93509724997001,90.74655019608869,85.68044281521355,0.0,0.0,84.23363033317223
22
+ ICP,104.33414990466338,103.9812619307074,96.18141676716371,95.01444322313071,88.20563400936408,63.14580376013254,79.0684520559004,81.91710745629183,104.38312941538936,103.8324788155467,109.26699209274355,65.94986264013008,85.40692127905548,82.87280566585345,90.1616567168854,86.00903517111048,77.52060278208153,100.75296736820239,106.19677044508418,76.52775179377561,24.437156253142813,17.152061164650732,17.997208862315375,0.0,0.0,92.14271882702823
23
+ FAST ICP,101.55170042076168,103.9806532409616,96.23424589447264,92.90619566772581,86.93745224529475,64.00214594437617,82.17160624182407,83.72978607552042,102.05394481937707,102.31133748977538,106.06511625308084,65.60488124477595,84.83637251426134,90.72015965182831,90.27432627092746,79.65509315860429,65.36640749876156,103.65651191680188,108.97200684434183,78.54545780592763,23.511708425857613,17.086783481408467,18.00872378715304,0.0,0.0,91.52343220312157
24
+ FAST AND ROBUST ICP,105.60074701844478,104.76605554874405,90.08213043969945,96.64814927876417,84.55959922053277,68.47845025546886,70.06676867012487,85.43612593936233,99.20778614705853,104.8266643936699,109.1282836143948,60.833140853181455,80.96333379174952,81.31881497210557,87.08203195130012,88.08338408512,62.519936473230565,91.29036786124962,108.25144701678906,85.43583512282952,24.512401321442844,15.777491962454764,17.651829267567006,0.0,0.0,90.3195227023606
25
+ SPARSE ICP,100.38811047068536,100.4222223117522,96.25716279940787,90.23353344627124,76.7142202714817,64.65821800006536,82.62954186033033,77.66956492694867,95.81484394175138,105.65776727249605,105.4862580523549,63.721885232660725,77.57184507417631,78.90301961974194,84.56341269020986,92.32066202879608,74.80972886836533,90.15005522644189,91.97231658353135,78.64242549008522,25.187019449994004,18.149310039217738,17.136088563042712,0.0,0.0,88.6106243076587
data/bottle_2/bottle2.csv ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ ,mean_Val
2
+ ICP,59.67950506176781
3
+ FAST ICP,59.40161196875058
4
+ FAST AND ROBUST ICP,53.11171395265664
5
+ SPARSE ICP,57.38276739438777
data/bottle_2/bottle2_data_num.csv ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ ,Counts
2
+ bottle2_100_ICP,20
3
+ bottle2_75_ICP,20
4
+ bottle2_50_ICP,20
5
+ bottle2_25_ICP,20
6
+ bottle2_0_ICP,21
data/bottle_2/cut_files.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "25": [
3
+ "0_23",
4
+ "0_21",
5
+ "0_22"
6
+ ]
7
+ }
data/bottle_2/dataset_pandas.ipynb ADDED
@@ -0,0 +1,606 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "id": "781eee9c",
6
+ "metadata": {},
7
+ "source": [
8
+ "## using pandas\n"
9
+ ]
10
+ },
11
+ {
12
+ "cell_type": "code",
13
+ "execution_count": 9,
14
+ "id": "70fc5658",
15
+ "metadata": {},
16
+ "outputs": [],
17
+ "source": [
18
+ "import pandas as pd\n",
19
+ "import numpy as np\n",
20
+ "import os\n",
21
+ "import json\n",
22
+ "## column : file no 1~25\n",
23
+ "\n",
24
+ "# array 4X4\n",
25
+ "# for i in range(rows):\n",
26
+ "# for j in range(cols):\n",
27
+ "# object_array[i,j] = np.zeros((4,4))\n",
28
+ "\n",
29
+ "\n",
30
+ "data = np.zeros((20,25))\n",
31
+ "\n",
32
+ "\n",
33
+ "\n",
34
+ "## row : bottle_0, bottle_25 ... gt 0 25 --> 10 rows. \n",
35
+ "\n",
36
+ "categories = ['bottle2', 'lightbulb', 'lighter', 'eyeglasses', 'magnifying_glass', 'spray']\n",
37
+ "\n",
38
+ "category = categories[0]\n",
39
+ "fill_rate = ['100', '75', '50', '25', '0']\n",
40
+ "\n",
41
+ "columns = [f'file_{i}' for i in range(1,26)]\n",
42
+ "\n",
43
+ "\n",
44
+ "\n"
45
+ ]
46
+ },
47
+ {
48
+ "cell_type": "markdown",
49
+ "id": "22195309",
50
+ "metadata": {},
51
+ "source": [
52
+ "## Get transformation file "
53
+ ]
54
+ },
55
+ {
56
+ "cell_type": "code",
57
+ "execution_count": null,
58
+ "id": "d3dcc164",
59
+ "metadata": {},
60
+ "outputs": [],
61
+ "source": []
62
+ },
63
+ {
64
+ "cell_type": "code",
65
+ "execution_count": 10,
66
+ "id": "86c0ea73",
67
+ "metadata": {},
68
+ "outputs": [
69
+ {
70
+ "data": {
71
+ "text/plain": [
72
+ "<bound method DataFrame.info of file_1 file_2 file_3 file_4 file_5 file_6 file_7 file_8 file_9 file_10 file_11 file_12 file_13 file_14 file_15 file_16 file_17 file_18 file_19 file_20 file_21 file_22 file_23 file_24 file_25\n",
73
+ "bottle2_100_ICP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0\n",
74
+ "bottle2_75_ICP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0\n",
75
+ "bottle2_50_ICP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0\n",
76
+ "bottle2_25_ICP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0\n",
77
+ "bottle2_0_ICP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0\n",
78
+ "bottle2_100_FAST ICP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0\n",
79
+ "bottle2_75_FAST ICP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0\n",
80
+ "bottle2_50_FAST ICP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0\n",
81
+ "bottle2_25_FAST ICP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0\n",
82
+ "bottle2_0_FAST ICP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0\n",
83
+ "bottle2_100_Robust ICP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0\n",
84
+ "bottle2_75_Robust ICP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0\n",
85
+ "bottle2_50_Robust ICP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0\n",
86
+ "bottle2_25_Robust ICP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0\n",
87
+ "bottle2_0_Robust ICP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0\n",
88
+ "bottle2_100_Sparse ICP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0\n",
89
+ "bottle2_75_Sparse ICP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0\n",
90
+ "bottle2_50_Sparse ICP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0\n",
91
+ "bottle2_25_Sparse ICP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0\n",
92
+ "bottle2_0_Sparse ICP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0>"
93
+ ]
94
+ },
95
+ "execution_count": 10,
96
+ "metadata": {},
97
+ "output_type": "execute_result"
98
+ }
99
+ ],
100
+ "source": [
101
+ "## Tmatrix FOlder access -> save in pandas\n",
102
+ "robust_no = ['0','2','3','6']\n",
103
+ "new_row_names = []\n",
104
+ "# ๊ฒฐ๊ณผ๋ฅผ ์ €์žฅํ•  ๋”•์…”๋„ˆ๋ฆฌ๋ฅผ ์นดํ…Œ๊ณ ๋ฆฌ๋ณ„๋กœ ์ดˆ๊ธฐํ™”ํ•ฉ๋‹ˆ๋‹ค.\n",
105
+ "grouped_files = {fill: [] for fill in fill_rate}\n",
106
+ "\n",
107
+ "for no in robust_no:\n",
108
+ " \n",
109
+ " ## get txt file\n",
110
+ "\n",
111
+ " ######################## We got the txt file list#################\n",
112
+ " for fills in fill_rate:\n",
113
+ " \n",
114
+ " if no =='0':\n",
115
+ " name = \"ICP\"\n",
116
+ " elif no == '2':\n",
117
+ " name = \"FAST ICP\"\n",
118
+ " elif no =='3':\n",
119
+ " name = \"Robust ICP\"\n",
120
+ " else:\n",
121
+ " name = \"Sparse ICP\"\n",
122
+ "\n",
123
+ " new_row_names.append(f\"{category}_{fills}_{name}\")\n",
124
+ "\n",
125
+ "df = pd.DataFrame(data, index=new_row_names, columns=columns, dtype=object)\n",
126
+ "# 2. df.index์— ์ƒˆ๋กœ์šด ์ด๋ฆ„ ๋ฆฌ์ŠคํŠธ๋ฅผ ๋ฐ”๋กœ ํ• ๋‹น object for array 4x4\n",
127
+ "\n",
128
+ "df.info"
129
+ ]
130
+ },
131
+ {
132
+ "cell_type": "markdown",
133
+ "id": "173149df",
134
+ "metadata": {},
135
+ "source": [
136
+ "## RMSE function"
137
+ ]
138
+ },
139
+ {
140
+ "cell_type": "code",
141
+ "execution_count": 11,
142
+ "id": "5334ae14",
143
+ "metadata": {},
144
+ "outputs": [
145
+ {
146
+ "name": "stdout",
147
+ "output_type": "stream",
148
+ "text": [
149
+ "โš ๏ธ ๊ฒฝ๊ณ : './result3/result_3_100_1.txt' ๊ฒฝ๋กœ์— ํŒŒ์ผ์ด ์—†์Šต๋‹ˆ๋‹ค. ํ•ด๋‹น ์ฒ˜๋ฆฌ๋ฅผ ๊ฑด๋„ˆ๋œ๋‹ˆ๋‹ค.\n"
150
+ ]
151
+ }
152
+ ],
153
+ "source": [
154
+ "def RMSE(T_star, T):\n",
155
+ " diff = T_star - T\n",
156
+ " sq_norms = np.sum(diff**2, axis =1)\n",
157
+ "\n",
158
+ " r = np.sqrt(np.mean(sq_norms))\n",
159
+ "\n",
160
+ " return r\n",
161
+ "\n",
162
+ "## get T from Result Txt file\n",
163
+ "def get_T(file_path):\n",
164
+ "\n",
165
+ " try:\n",
166
+ " with open(file_path, 'r') as f:\n",
167
+ " T_matrix = np.loadtxt(file_path)\n",
168
+ " return T_matrix\n",
169
+ " except FileNotFoundError:\n",
170
+ " # try ๋ธ”๋ก์—์„œ FileNotFoundError๊ฐ€ ๋ฐœ์ƒํ–ˆ์„ ๋•Œ๋งŒ ์ด ์ฝ”๋“œ๊ฐ€ ์‹คํ–‰๋ฉ๋‹ˆ๋‹ค.\n",
171
+ " print(f\"โš ๏ธ ๊ฒฝ๊ณ : '{file_path}' ๊ฒฝ๋กœ์— ํŒŒ์ผ์ด ์—†์Šต๋‹ˆ๋‹ค. ํ•ด๋‹น ์ฒ˜๋ฆฌ๋ฅผ ๊ฑด๋„ˆ๋œ๋‹ˆ๋‹ค.\")\n",
172
+ " return None # ํŒŒ์ผ์ด ์—†์œผ๋ฏ€๋กœ None์„ ๋ฐ˜ํ™˜\n",
173
+ "\n",
174
+ "\n",
175
+ "\n",
176
+ "\n",
177
+ "def get_GT_T(file_path,data_name):\n",
178
+ "\n",
179
+ " try:\n",
180
+ " with open(file_path, 'r') as f:\n",
181
+ " loaded_data = json.load(f)\n",
182
+ " noisy_data = loaded_data[data_name]\n",
183
+ " T_matrix = noisy_data['matrix_world']\n",
184
+ " np.array(T_matrix)\n",
185
+ " return T_matrix\n",
186
+ "\n",
187
+ " except FileNotFoundError:\n",
188
+ " # try ๋ธ”๋ก์—์„œ FileNotFoundError๊ฐ€ ๋ฐœ์ƒํ–ˆ์„ ๋•Œ๋งŒ ์ด ์ฝ”๋“œ๊ฐ€ ์‹คํ–‰๋ฉ๋‹ˆ๋‹ค.\n",
189
+ " print(f\"โš ๏ธ ๊ฒฝ๊ณ : '{file_path}' ๊ฒฝ๋กœ์— ํŒŒ์ผ์ด ์—†์Šต๋‹ˆ๋‹ค. ํ•ด๋‹น ์ฒ˜๋ฆฌ๋ฅผ ๊ฑด๋„ˆ๋œ๋‹ˆ๋‹ค.\")\n",
190
+ " return None # ํŒŒ์ผ์ด ์—†์œผ๋ฏ€๋กœ None์„ ๋ฐ˜ํ™˜\n",
191
+ "\n",
192
+ " except KeyError as e:\n",
193
+ " # try ๋ธ”๋ก์—์„œ KeyError๊ฐ€ ๋ฐœ์ƒํ–ˆ์„ ๋•Œ ์‹คํ–‰๋ฉ๋‹ˆ๋‹ค. (e.g., 'matrix_world' ํ‚ค๊ฐ€ ์—†์Œ)\n",
194
+ " print(f\"โš ๏ธ ๊ฒฝ๊ณ : ํŒŒ์ผ '{os.path.basename(file_path)}' ์•ˆ์— ํ•„์š”ํ•œ ํ‚ค({e})๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค.\")\n",
195
+ " return None\n",
196
+ " \n",
197
+ " \n",
198
+ "\n",
199
+ "def compute_RMSE(gt_files):\n",
200
+ " \n",
201
+ " robust_no = ['0','2','3','6']\n",
202
+ " \n",
203
+ " for no in robust_no:\n",
204
+ " if no =='0':\n",
205
+ " name = \"ICP\"\n",
206
+ " elif no == '2':\n",
207
+ " name = \"FAST ICP\"\n",
208
+ " elif no =='3':\n",
209
+ " name = \"Robust ICP\"\n",
210
+ " else:\n",
211
+ " name = \"Sparse ICP\"\n",
212
+ "\n",
213
+ " for key, value_list in gt_files.items():\n",
214
+ " rmse = []\n",
215
+ " np.array(rmse)\n",
216
+ " # get gt_T and noisy_T\n",
217
+ " for value in value_list:\n",
218
+ " profix = value.split('_')[1]\n",
219
+ " gt_path = f\"./gt_raw/noisy_filtered_{key}_{profix}.json\"\n",
220
+ " gt_name = f\"noisy_filtered_{key}_{profix}\"\n",
221
+ "\n",
222
+ " #### RESULT FOLDER PATH.\n",
223
+ " result_path = f'./result{no}/result_{key}_{profix}.txt'\n",
224
+ " icp_T = get_T(result_path)\n",
225
+ " gt_T = get_GT_T(gt_path,gt_name)\n",
226
+ " \n",
227
+ " \n",
228
+ "\n",
229
+ " if (gt_T is None or icp_T is None):\n",
230
+ " df.loc[f'{category}_{key}_{name}',f'file_{profix}'] = 0.0\n",
231
+ "\n",
232
+ " else:\n",
233
+ " ## conpute rmse\n",
234
+ " r = RMSE(gt_T, icp_T)\n",
235
+ " \n",
236
+ " df.loc[f'{category}_{key}_{name}',f'file_{profix}'] = r\n",
237
+ "\n",
238
+ "\n",
239
+ "noisy_T = get_T(\"./result3/result_3_100_1.txt\")\n",
240
+ "gt_T = get_GT_T(\"./gt/noisy_filtered_100_1.json\",\"noisy_filtered_100_1\")\n",
241
+ "\n"
242
+ ]
243
+ },
244
+ {
245
+ "cell_type": "markdown",
246
+ "id": "587f5b2d",
247
+ "metadata": {},
248
+ "source": [
249
+ "## Bring GT"
250
+ ]
251
+ },
252
+ {
253
+ "cell_type": "code",
254
+ "execution_count": 12,
255
+ "id": "c4883f09",
256
+ "metadata": {},
257
+ "outputs": [
258
+ {
259
+ "name": "stdout",
260
+ "output_type": "stream",
261
+ "text": [
262
+ "โš ๏ธ ๊ฒฝ๊ณ : './gt_raw/noisy_filtered_0_12.json' ๊ฒฝ๋กœ์— ํŒŒ์ผ์ด ์—†์Šต๋‹ˆ๋‹ค. ํ•ด๋‹น ์ฒ˜๋ฆฌ๋ฅผ ๊ฑด๋„ˆ๋œ๋‹ˆ๋‹ค.\n",
263
+ "โš ๏ธ ๊ฒฝ๊ณ : './gt_raw/noisy_filtered_0_17.json' ๊ฒฝ๋กœ์— ํŒŒ์ผ์ด ์—†์Šต๋‹ˆ๋‹ค. ํ•ด๋‹น ์ฒ˜๋ฆฌ๋ฅผ ๊ฑด๋„ˆ๋œ๋‹ˆ๋‹ค.\n",
264
+ "โš ๏ธ ๊ฒฝ๊ณ : './gt_raw/noisy_filtered_0_12.json' ๊ฒฝ๋กœ์— ํŒŒ์ผ์ด ์—†์Šต๋‹ˆ๋‹ค. ํ•ด๋‹น ์ฒ˜๋ฆฌ๋ฅผ ๊ฑด๋„ˆ๋œ๋‹ˆ๋‹ค.\n",
265
+ "โš ๏ธ ๊ฒฝ๊ณ : './gt_raw/noisy_filtered_0_17.json' ๊ฒฝ๋กœ์— ํŒŒ์ผ์ด ์—†์Šต๋‹ˆ๋‹ค. ํ•ด๋‹น ์ฒ˜๋ฆฌ๋ฅผ ๊ฑด๋„ˆ๋œ๋‹ˆ๋‹ค.\n",
266
+ "โš ๏ธ ๊ฒฝ๊ณ : './gt_raw/noisy_filtered_0_12.json' ๊ฒฝ๋กœ์— ํŒŒ์ผ์ด ์—†์Šต๋‹ˆ๋‹ค. ํ•ด๋‹น ์ฒ˜๋ฆฌ๋ฅผ ๊ฑด๋„ˆ๋œ๋‹ˆ๋‹ค.\n",
267
+ "โš ๏ธ ๊ฒฝ๊ณ : './gt_raw/noisy_filtered_0_17.json' ๊ฒฝ๋กœ์— ํŒŒ์ผ์ด ์—†์Šต๋‹ˆ๋‹ค. ํ•ด๋‹น ์ฒ˜๋ฆฌ๋ฅผ ๊ฑด๋„ˆ๋œ๋‹ˆ๋‹ค.\n",
268
+ "โš ๏ธ ๊ฒฝ๊ณ : './gt_raw/noisy_filtered_0_12.json' ๊ฒฝ๋กœ์— ํŒŒ์ผ์ด ์—†์Šต๋‹ˆ๋‹ค. ํ•ด๋‹น ์ฒ˜๋ฆฌ๋ฅผ ๊ฑด๋„ˆ๋œ๋‹ˆ๋‹ค.\n",
269
+ "โš ๏ธ ๊ฒฝ๊ณ : './gt_raw/noisy_filtered_0_17.json' ๊ฒฝ๋กœ์— ํŒŒ์ผ์ด ์—†์Šต๋‹ˆ๋‹ค. ํ•ด๋‹น ์ฒ˜๋ฆฌ๋ฅผ ๊ฑด๋„ˆ๋œ๋‹ˆ๋‹ค.\n",
270
+ " file_1 file_2 file_3 file_4 file_5 file_6 file_7 file_8 file_9 file_10 file_11 file_12 file_13 file_14 file_15 file_16 file_17 file_18 file_19 file_20 file_21 file_22 file_23 file_24 file_25 mean_Val\n",
271
+ "bottle2_100_ICP 57.726431 58.073827 57.979086 69.954194 53.573036 52.09264 70.639847 66.144313 72.694435 72.247312 67.095363 39.427028 36.097347 51.937576 60.991109 70.36314 70.532546 72.729103 55.116216 54.524579 0.0 0.0 0.0 0.0 0.0 60.496956\n",
272
+ "bottle2_75_ICP 66.557193 67.623246 58.069773 68.352285 45.998694 63.978648 59.741997 71.648534 70.064837 53.158668 60.973961 38.136257 36.259578 55.429318 69.340292 69.000672 71.16037 60.483901 55.862601 66.854347 0.0 0.0 0.0 0.0 0.0 60.434759\n",
273
+ "bottle2_50_ICP 54.377858 53.393512 66.12583 47.561213 51.31821 57.560825 68.805384 55.289464 73.306761 70.184317 65.496406 71.789794 67.639152 54.298582 60.46459 38.607896 35.885329 37.012867 57.479033 71.525565 0.0 0.0 0.0 0.0 0.0 57.906129\n",
274
+ "bottle2_25_ICP 71.730017 70.795363 63.555661 67.25048 63.613194 51.285702 42.303407 39.39284 65.657843 67.373311 79.379446 51.375709 55.391288 51.114255 56.139717 53.657441 70.10359 71.862892 82.068982 67.205189 0.0 0.0 0.0 0.0 0.0 62.062816\n",
275
+ "bottle2_0_ICP 80.541255 78.927351 86.367711 51.188665 47.259758 23.529144 26.495752 26.307019 58.988365 87.186705 94.964133 0.0 60.931521 56.640394 30.727522 30.044528 0.0 89.849671 79.279781 24.165655 94.358841 33.815192 45.865195 0.0 0.0 57.496865\n",
276
+ "bottle2_100_FAST ICP 57.688938 58.073827 57.95261 69.895066 53.288431 52.095725 70.636632 66.160966 72.69402 72.207366 66.179926 39.479096 36.090186 51.322082 60.814999 70.445922 70.538539 72.740172 55.116972 54.539657 0.0 0.0 0.0 0.0 0.0 60.398057\n",
277
+ "bottle2_75_FAST ICP 44.860989 67.613803 58.069773 68.358055 46.042018 64.441146 59.721992 71.641551 70.052412 53.481736 60.979005 38.131182 55.091599 55.153897 69.289835 68.607169 71.218541 59.599214 55.860476 67.014762 0.0 0.0 0.0 0.0 0.0 60.261458\n",
278
+ "bottle2_50_FAST ICP 48.445113 53.266916 66.128142 47.394348 51.068578 57.519886 68.855187 66.043425 73.383533 70.153381 65.461271 71.790779 68.849646 54.293063 60.622404 38.606699 35.904505 36.900701 57.872143 72.136896 0.0 0.0 0.0 0.0 0.0 58.234831\n",
279
+ "bottle2_25_FAST ICP 71.730556 70.813613 48.390064 67.208482 63.630603 51.294102 42.303407 39.394111 65.684234 67.362821 79.37104 51.333991 51.569497 51.046581 56.147149 53.361444 67.824738 71.863382 82.072543 67.188839 0.0 0.0 0.0 0.0 0.0 60.979560\n",
280
+ "bottle2_0_FAST ICP 80.541086 78.927351 86.369584 49.968808 47.255769 23.557333 26.504626 26.359362 58.95614 87.183452 94.944673 0.0 60.904371 56.000499 30.738225 27.684303 0.0 89.849728 79.276977 22.581162 94.359098 33.984328 43.870373 0.0 0.0 57.134155\n",
281
+ "bottle2_100_Robust ICP 50.504351 49.133166 49.608769 65.247935 42.131387 43.924281 68.181318 59.094124 67.919525 67.379707 50.458574 52.717507 34.114118 54.92686 57.805806 65.611106 61.177957 65.368603 41.45572 50.579692 0.0 0.0 0.0 0.0 0.0 54.867025\n",
282
+ "bottle2_75_Robust ICP 65.171352 54.045867 36.901146 54.330906 47.420552 65.597031 55.602239 66.911923 67.495546 36.590494 52.79024 32.480709 50.646411 48.142464 56.953986 62.867727 57.595423 52.695511 51.982744 50.382476 0.0 0.0 0.0 0.0 0.0 53.330237\n",
283
+ "bottle2_50_Robust ICP 47.771693 45.012185 57.661057 42.412898 44.792427 56.455638 59.622745 50.11804 57.469541 62.813152 55.040781 61.801269 59.122552 53.439211 61.519585 28.646356 55.147605 37.786525 62.005449 61.623284 0.0 0.0 0.0 0.0 0.0 53.013100\n",
284
+ "bottle2_25_Robust ICP 68.372297 65.913029 60.802011 62.199418 62.664916 48.949447 49.991884 6.183673 49.365622 57.576716 59.482653 47.27592 61.409181 39.522688 46.994318 45.567914 57.165478 60.199405 58.092839 65.6003 0.0 0.0 0.0 0.0 0.0 53.666485\n",
285
+ "bottle2_0_Robust ICP 64.716537 62.513045 62.81728 49.088234 45.262582 33.32966 21.138026 11.118374 47.963994 76.110225 73.256406 0.0 60.237215 77.414676 49.737045 9.669534 0.0 73.509738 69.848925 36.882767 73.228013 19.113386 47.360497 0.0 0.0 50.681722\n",
286
+ "bottle2_100_Sparse ICP 53.412883 53.800208 52.790838 57.532525 53.838994 48.981065 62.133405 60.96027 76.258964 67.811151 60.9657 39.873357 41.373595 55.00382 59.390746 62.465343 67.976456 65.191948 52.286949 45.004554 0.0 0.0 0.0 0.0 0.0 56.852639\n",
287
+ "bottle2_75_Sparse ICP 60.758925 62.083034 53.335445 51.852443 48.473864 57.978259 61.524882 65.698803 66.304336 58.831034 56.198062 36.067757 44.468705 56.804776 63.106554 65.245407 69.781086 65.129953 65.362751 51.36387 0.0 0.0 0.0 0.0 0.0 58.018497\n",
288
+ "bottle2_50_Sparse ICP 63.234282 62.944344 65.182522 48.120253 52.935785 52.932735 55.108551 62.309733 76.492421 62.961988 66.740594 66.057711 64.091673 57.605262 52.913206 48.140719 39.945907 32.604047 50.441113 66.71904 0.0 0.0 0.0 0.0 0.0 57.374094\n",
289
+ "bottle2_25_Sparse ICP 68.338245 67.504931 60.979872 57.887682 58.421357 30.656694 31.248467 43.173549 62.545731 68.838698 78.791105 53.815284 47.591621 49.769237 52.289646 57.737586 62.937188 66.062745 79.519469 57.498068 0.0 0.0 0.0 0.0 0.0 57.780359\n",
290
+ "bottle2_0_Sparse ICP 74.964649 64.046069 72.359844 54.094445 53.676616 27.231209 23.413694 20.608975 55.196291 91.152314 82.327922 0.0 72.626788 63.141163 28.504973 23.181661 0.0 74.259527 74.642275 65.102882 82.026225 27.648789 64.4469 0.0 0.0 56.888248\n"
291
+ ]
292
+ },
293
+ {
294
+ "name": "stderr",
295
+ "output_type": "stream",
296
+ "text": [
297
+ "/tmp/ipykernel_270442/3042233176.py:18: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version. To retain the old behavior, explicitly call `result.infer_objects(copy=False)`. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
298
+ " df['mean_Val'] = df.replace(0, np.nan).mean(axis=1)\n"
299
+ ]
300
+ }
301
+ ],
302
+ "source": [
303
+ "json_path = \"ply_files.json\"\n",
304
+ "try: \n",
305
+ " with open(json_path, \"r\", encoding=\"utf-8\") as f:\n",
306
+ " gt_files = json.load(f)\n",
307
+ "except FileNotFoundError:\n",
308
+ " print(f\"์˜ค๋ฅ˜: '{json_path}' ํŒŒ์ผ์„ ์ฐพ์„ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค. ๋จผ์ € ํŒŒ์ผ ๋ถ„๋ฅ˜ ์ฝ”๋“œ๋ฅผ ์‹คํ–‰ํ•ด ์ฃผ์„ธ์š”.\")\n",
309
+ " exit() # ํŒŒ์ผ์ด ์—†์œผ๋ฉด ํ”„๋กœ๊ทธ๋žจ ์ข…๋ฃŒ\n",
310
+ "\n",
311
+ "\n",
312
+ "\n",
313
+ "### get \n",
314
+ "\n",
315
+ "\n",
316
+ "\n",
317
+ "compute_RMSE(gt_files)\n",
318
+ "\n",
319
+ "##get mean value\n",
320
+ "df['mean_Val'] = df.replace(0, np.nan).mean(axis=1)\n",
321
+ "\n",
322
+ "\n",
323
+ "\n",
324
+ "# ๋ชจ๋“  ํ–‰/์—ด์„ ์ „๋ถ€ ๋ณด์—ฌ์คŒ\n",
325
+ "pd.set_option('display.max_rows', None) # ํ–‰ ์ „์ฒด ์ถœ๋ ฅ\n",
326
+ "pd.set_option('display.max_columns', None) # ์—ด ์ „์ฒด ์ถœ๋ ฅ\n",
327
+ "\n",
328
+ "# ๊ฐ ์—ด์˜ ๋„ˆ๋น„ ์ œํ•œ ํ•ด์ œ (๊ธด ๋ฌธ์ž์—ด๋„ ์ž˜๋ฆฌ์ง€ ์•Š์Œ)\n",
329
+ "pd.set_option('display.max_colwidth', None)\n",
330
+ "\n",
331
+ "# ํ™”๋ฉด ๋„ˆ๋น„์— ๋”ฐ๋ผ ์ค„๋ฐ”๊ฟˆ์„ ํ• ์ง€ ๋ง์ง€\n",
332
+ "pd.set_option('display.width', None) # None์ด๋ฉด ์ž๋™์œผ๋กœ ์ฝ˜์†” ๋„ˆ๋น„๋ฅผ ์‚ฌ์šฉ\n",
333
+ "pd.set_option('display.expand_frame_repr', False) # True๋ฉด ์ค„๋ฐ”๊ฟˆ ํ—ˆ์šฉ, False๋ฉด ํ•œ ์ค„๋กœ ์ถœ๋ ฅ ์‹œ๋„\n",
334
+ "\n",
335
+ "# ์˜ˆ: DataFrame ์ถœ๋ ฅ\n",
336
+ "print(df)\n",
337
+ " \n",
338
+ "\n",
339
+ "\n"
340
+ ]
341
+ },
342
+ {
343
+ "cell_type": "markdown",
344
+ "id": "7493fb27",
345
+ "metadata": {},
346
+ "source": [
347
+ "## GET RMSE MEAN by ICP Methods\n",
348
+ "\n"
349
+ ]
350
+ },
351
+ {
352
+ "cell_type": "code",
353
+ "execution_count": 13,
354
+ "id": "e49285b9",
355
+ "metadata": {},
356
+ "outputs": [
357
+ {
358
+ "name": "stdout",
359
+ "output_type": "stream",
360
+ "text": [
361
+ "[0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3]\n",
362
+ " file_1 file_2 file_3 file_4 file_5 file_6 file_7 file_8 file_9 file_10 file_11 file_12 file_13 file_14 file_15 file_16 file_17 file_18 file_19 file_20 file_21 file_22 file_23 file_24 file_25 mean_Val\n",
363
+ "ICP 66.186551 65.76266 66.419612 60.861367 52.352578 49.689392 53.597278 51.756434 68.142448 70.030063 73.581862 40.145757 51.263777 53.884025 55.532646 52.334736 49.536367 66.387687 65.961323 56.855067 18.871768 6.763038 9.173039 0.0 0.0 59.679505\n",
364
+ "FAST ICP 60.653336 65.739102 63.382035 60.564952 52.25708 49.781638 53.604369 53.919883 68.154068 70.077751 73.387183 40.14701 54.50106 53.563224 55.522523 51.741107 49.097265 66.190639 66.039822 56.692263 18.87182 6.796866 8.774075 0.0 0.0 59.401612\n",
365
+ "FAST AND ROBUST ICP 59.307246 55.323458 53.558052 54.655878 48.454373 49.651212 50.907243 38.685227 58.042846 60.094059 58.205731 38.855081 53.105895 54.68918 54.602148 42.472527 46.217293 57.911956 56.677135 53.013704 14.645603 3.822677 9.472099 0.0 0.0 53.111714\n",
366
+ "SPARSE ICP 64.141797 62.075717 60.929704 53.89747 53.469323 43.555993 46.6858 50.550266 67.359549 69.919037 69.004677 39.162822 54.030476 56.464851 51.241025 51.354143 48.128127 60.649644 64.450511 57.137683 16.405245 5.529758 12.88938 0.0 0.0 57.382767\n",
367
+ "<class 'pandas.core.frame.DataFrame'>\n"
368
+ ]
369
+ }
370
+ ],
371
+ "source": [
372
+ "df_mean = np.zeros((5,5))\n",
373
+ "\n",
374
+ "## make 25 lengths array\n",
375
+ "\n",
376
+ "grouping = []\n",
377
+ "\n",
378
+ "for i in range(0,len(df)):\n",
379
+ " grouping.append(i)\n",
380
+ "\n",
381
+ "grouping = np.arange(len(df)) //5\n",
382
+ "\n",
383
+ "print(grouping)\n",
384
+ "block_avg_df = df.groupby(grouping).mean()\n",
385
+ "\n",
386
+ "\n",
387
+ "ICP_Method = ['ICP', 'FAST ICP', 'FAST AND ROBUST ICP', 'SPARSE ICP']\n",
388
+ "\n",
389
+ "\n",
390
+ "\n",
391
+ "block_avg_df.index = ICP_Method\n",
392
+ "\n",
393
+ "\n",
394
+ "print(block_avg_df)\n",
395
+ "\n",
396
+ "print(type(block_avg_df))\n",
397
+ "\n",
398
+ "\n"
399
+ ]
400
+ },
401
+ {
402
+ "cell_type": "code",
403
+ "execution_count": null,
404
+ "id": "14ebb074",
405
+ "metadata": {},
406
+ "outputs": [],
407
+ "source": []
408
+ },
409
+ {
410
+ "cell_type": "markdown",
411
+ "id": "d03a908e",
412
+ "metadata": {},
413
+ "source": [
414
+ "## merge in Pandas"
415
+ ]
416
+ },
417
+ {
418
+ "cell_type": "code",
419
+ "execution_count": 14,
420
+ "id": "92386801",
421
+ "metadata": {},
422
+ "outputs": [
423
+ {
424
+ "name": "stdout",
425
+ "output_type": "stream",
426
+ "text": [
427
+ " file_1 file_2 file_3 file_4 file_5 file_6 file_7 file_8 file_9 file_10 file_11 file_12 file_13 file_14 file_15 file_16 file_17 file_18 file_19 file_20 file_21 file_22 file_23 file_24 file_25 mean_Val\n",
428
+ "bottle2_100_ICP 57.726431 58.073827 57.979086 69.954194 53.573036 52.09264 70.639847 66.144313 72.694435 72.247312 67.095363 39.427028 36.097347 51.937576 60.991109 70.36314 70.532546 72.729103 55.116216 54.524579 0.0 0.0 0.0 0.0 0.0 60.496956\n",
429
+ "bottle2_75_ICP 66.557193 67.623246 58.069773 68.352285 45.998694 63.978648 59.741997 71.648534 70.064837 53.158668 60.973961 38.136257 36.259578 55.429318 69.340292 69.000672 71.16037 60.483901 55.862601 66.854347 0.0 0.0 0.0 0.0 0.0 60.434759\n",
430
+ "bottle2_50_ICP 54.377858 53.393512 66.12583 47.561213 51.31821 57.560825 68.805384 55.289464 73.306761 70.184317 65.496406 71.789794 67.639152 54.298582 60.46459 38.607896 35.885329 37.012867 57.479033 71.525565 0.0 0.0 0.0 0.0 0.0 57.906129\n",
431
+ "bottle2_25_ICP 71.730017 70.795363 63.555661 67.25048 63.613194 51.285702 42.303407 39.39284 65.657843 67.373311 79.379446 51.375709 55.391288 51.114255 56.139717 53.657441 70.10359 71.862892 82.068982 67.205189 0.0 0.0 0.0 0.0 0.0 62.062816\n",
432
+ "bottle2_0_ICP 80.541255 78.927351 86.367711 51.188665 47.259758 23.529144 26.495752 26.307019 58.988365 87.186705 94.964133 0.0 60.931521 56.640394 30.727522 30.044528 0.0 89.849671 79.279781 24.165655 94.358841 33.815192 45.865195 0.0 0.0 57.496865\n",
433
+ "bottle2_100_FAST ICP 57.688938 58.073827 57.95261 69.895066 53.288431 52.095725 70.636632 66.160966 72.69402 72.207366 66.179926 39.479096 36.090186 51.322082 60.814999 70.445922 70.538539 72.740172 55.116972 54.539657 0.0 0.0 0.0 0.0 0.0 60.398057\n",
434
+ "bottle2_75_FAST ICP 44.860989 67.613803 58.069773 68.358055 46.042018 64.441146 59.721992 71.641551 70.052412 53.481736 60.979005 38.131182 55.091599 55.153897 69.289835 68.607169 71.218541 59.599214 55.860476 67.014762 0.0 0.0 0.0 0.0 0.0 60.261458\n",
435
+ "bottle2_50_FAST ICP 48.445113 53.266916 66.128142 47.394348 51.068578 57.519886 68.855187 66.043425 73.383533 70.153381 65.461271 71.790779 68.849646 54.293063 60.622404 38.606699 35.904505 36.900701 57.872143 72.136896 0.0 0.0 0.0 0.0 0.0 58.234831\n",
436
+ "bottle2_25_FAST ICP 71.730556 70.813613 48.390064 67.208482 63.630603 51.294102 42.303407 39.394111 65.684234 67.362821 79.37104 51.333991 51.569497 51.046581 56.147149 53.361444 67.824738 71.863382 82.072543 67.188839 0.0 0.0 0.0 0.0 0.0 60.979560\n",
437
+ "bottle2_0_FAST ICP 80.541086 78.927351 86.369584 49.968808 47.255769 23.557333 26.504626 26.359362 58.95614 87.183452 94.944673 0.0 60.904371 56.000499 30.738225 27.684303 0.0 89.849728 79.276977 22.581162 94.359098 33.984328 43.870373 0.0 0.0 57.134155\n",
438
+ "bottle2_100_Robust ICP 50.504351 49.133166 49.608769 65.247935 42.131387 43.924281 68.181318 59.094124 67.919525 67.379707 50.458574 52.717507 34.114118 54.92686 57.805806 65.611106 61.177957 65.368603 41.45572 50.579692 0.0 0.0 0.0 0.0 0.0 54.867025\n",
439
+ "bottle2_75_Robust ICP 65.171352 54.045867 36.901146 54.330906 47.420552 65.597031 55.602239 66.911923 67.495546 36.590494 52.79024 32.480709 50.646411 48.142464 56.953986 62.867727 57.595423 52.695511 51.982744 50.382476 0.0 0.0 0.0 0.0 0.0 53.330237\n",
440
+ "bottle2_50_Robust ICP 47.771693 45.012185 57.661057 42.412898 44.792427 56.455638 59.622745 50.11804 57.469541 62.813152 55.040781 61.801269 59.122552 53.439211 61.519585 28.646356 55.147605 37.786525 62.005449 61.623284 0.0 0.0 0.0 0.0 0.0 53.013100\n",
441
+ "bottle2_25_Robust ICP 68.372297 65.913029 60.802011 62.199418 62.664916 48.949447 49.991884 6.183673 49.365622 57.576716 59.482653 47.27592 61.409181 39.522688 46.994318 45.567914 57.165478 60.199405 58.092839 65.6003 0.0 0.0 0.0 0.0 0.0 53.666485\n",
442
+ "bottle2_0_Robust ICP 64.716537 62.513045 62.81728 49.088234 45.262582 33.32966 21.138026 11.118374 47.963994 76.110225 73.256406 0.0 60.237215 77.414676 49.737045 9.669534 0.0 73.509738 69.848925 36.882767 73.228013 19.113386 47.360497 0.0 0.0 50.681722\n",
443
+ "bottle2_100_Sparse ICP 53.412883 53.800208 52.790838 57.532525 53.838994 48.981065 62.133405 60.96027 76.258964 67.811151 60.9657 39.873357 41.373595 55.00382 59.390746 62.465343 67.976456 65.191948 52.286949 45.004554 0.0 0.0 0.0 0.0 0.0 56.852639\n",
444
+ "bottle2_75_Sparse ICP 60.758925 62.083034 53.335445 51.852443 48.473864 57.978259 61.524882 65.698803 66.304336 58.831034 56.198062 36.067757 44.468705 56.804776 63.106554 65.245407 69.781086 65.129953 65.362751 51.36387 0.0 0.0 0.0 0.0 0.0 58.018497\n",
445
+ "bottle2_50_Sparse ICP 63.234282 62.944344 65.182522 48.120253 52.935785 52.932735 55.108551 62.309733 76.492421 62.961988 66.740594 66.057711 64.091673 57.605262 52.913206 48.140719 39.945907 32.604047 50.441113 66.71904 0.0 0.0 0.0 0.0 0.0 57.374094\n",
446
+ "bottle2_25_Sparse ICP 68.338245 67.504931 60.979872 57.887682 58.421357 30.656694 31.248467 43.173549 62.545731 68.838698 78.791105 53.815284 47.591621 49.769237 52.289646 57.737586 62.937188 66.062745 79.519469 57.498068 0.0 0.0 0.0 0.0 0.0 57.780359\n",
447
+ "bottle2_0_Sparse ICP 74.964649 64.046069 72.359844 54.094445 53.676616 27.231209 23.413694 20.608975 55.196291 91.152314 82.327922 0.0 72.626788 63.141163 28.504973 23.181661 0.0 74.259527 74.642275 65.102882 82.026225 27.648789 64.4469 0.0 0.0 56.888248\n",
448
+ "ICP 66.186551 65.76266 66.419612 60.861367 52.352578 49.689392 53.597278 51.756434 68.142448 70.030063 73.581862 40.145757 51.263777 53.884025 55.532646 52.334736 49.536367 66.387687 65.961323 56.855067 18.871768 6.763038 9.173039 0.0 0.0 59.679505\n",
449
+ "FAST ICP 60.653336 65.739102 63.382035 60.564952 52.25708 49.781638 53.604369 53.919883 68.154068 70.077751 73.387183 40.14701 54.50106 53.563224 55.522523 51.741107 49.097265 66.190639 66.039822 56.692263 18.87182 6.796866 8.774075 0.0 0.0 59.401612\n",
450
+ "FAST AND ROBUST ICP 59.307246 55.323458 53.558052 54.655878 48.454373 49.651212 50.907243 38.685227 58.042846 60.094059 58.205731 38.855081 53.105895 54.68918 54.602148 42.472527 46.217293 57.911956 56.677135 53.013704 14.645603 3.822677 9.472099 0.0 0.0 53.111714\n",
451
+ "SPARSE ICP 64.141797 62.075717 60.929704 53.89747 53.469323 43.555993 46.6858 50.550266 67.359549 69.919037 69.004677 39.162822 54.030476 56.464851 51.241025 51.354143 48.128127 60.649644 64.450511 57.137683 16.405245 5.529758 12.88938 0.0 0.0 57.382767\n"
452
+ ]
453
+ }
454
+ ],
455
+ "source": [
456
+ "combined_df = pd.concat([df, block_avg_df], ignore_index=False)\n",
457
+ "\n",
458
+ "# ๋ชจ๋“  ํ–‰/์—ด์„ ์ „๋ถ€ ๋ณด์—ฌ์คŒ\n",
459
+ "pd.set_option('display.max_rows', None) # ํ–‰ ์ „์ฒด ์ถœ๋ ฅ\n",
460
+ "pd.set_option('display.max_columns', None) # ์—ด ์ „์ฒด ์ถœ๋ ฅ\n",
461
+ "\n",
462
+ "# ๊ฐ ์—ด์˜ ๋„ˆ๋น„ ์ œํ•œ ํ•ด์ œ (๊ธด ๋ฌธ์ž์—ด๋„ ์ž˜๋ฆฌ์ง€ ์•Š์Œ)\n",
463
+ "pd.set_option('display.max_colwidth', None)\n",
464
+ "\n",
465
+ "# ํ™”๋ฉด ๋„ˆ๋น„์— ๋”ฐ๋ผ ์ค„๋ฐ”๊ฟˆ์„ ํ• ์ง€ ๋ง์ง€\n",
466
+ "pd.set_option('display.width', None) # None์ด๋ฉด ์ž๋™์œผ๋กœ ์ฝ˜์†” ๋„ˆ๋น„๋ฅผ ์‚ฌ์šฉ\n",
467
+ "pd.set_option('display.expand_frame_repr', False) # True๋ฉด ์ค„๋ฐ”๊ฟˆ ํ—ˆ์šฉ, False๋ฉด ํ•œ ์ค„๋กœ ์ถœ๋ ฅ ์‹œ๋„\n",
468
+ "\n",
469
+ "print(combined_df)"
470
+ ]
471
+ },
472
+ {
473
+ "cell_type": "markdown",
474
+ "id": "a9b19689",
475
+ "metadata": {},
476
+ "source": [
477
+ "## Save bottle csv"
478
+ ]
479
+ },
480
+ {
481
+ "cell_type": "code",
482
+ "execution_count": 15,
483
+ "id": "9e8dcfae",
484
+ "metadata": {},
485
+ "outputs": [
486
+ {
487
+ "name": "stdout",
488
+ "output_type": "stream",
489
+ "text": [
490
+ "ICP 59.679505\n",
491
+ "FAST ICP 59.401612\n",
492
+ "FAST AND ROBUST ICP 53.111714\n",
493
+ "SPARSE ICP 57.382767\n",
494
+ "Name: mean_Val, dtype: float64\n"
495
+ ]
496
+ }
497
+ ],
498
+ "source": [
499
+ "sliced_data = combined_df.loc['ICP':'SPARSE ICP', 'mean_Val']\n",
500
+ "print(sliced_data)\n",
501
+ "sliced_data.to_csv(f'{category}.csv', index=True)"
502
+ ]
503
+ },
504
+ {
505
+ "cell_type": "markdown",
506
+ "id": "fdbb5b00",
507
+ "metadata": {},
508
+ "source": [
509
+ "## Load num of dataset in each category. + save array"
510
+ ]
511
+ },
512
+ {
513
+ "cell_type": "code",
514
+ "execution_count": 16,
515
+ "id": "7461379a",
516
+ "metadata": {},
517
+ "outputs": [
518
+ {
519
+ "name": "stdout",
520
+ "output_type": "stream",
521
+ "text": [
522
+ " file_1 file_2 file_3 file_4 file_5 file_6 file_7 file_8 file_9 file_10 file_11 file_12 file_13 file_14 file_15 file_16 file_17 file_18 file_19 file_20 file_21 file_22 file_23 file_24 file_25 mean_Val Counts\n",
523
+ "bottle2_100_ICP 57.726431 58.073827 57.979086 69.954194 53.573036 52.09264 70.639847 66.144313 72.694435 72.247312 67.095363 39.427028 36.097347 51.937576 60.991109 70.36314 70.532546 72.729103 55.116216 54.524579 0.0 0.0 0.0 0.0 0.0 60.496956 20\n",
524
+ "bottle2_75_ICP 66.557193 67.623246 58.069773 68.352285 45.998694 63.978648 59.741997 71.648534 70.064837 53.158668 60.973961 38.136257 36.259578 55.429318 69.340292 69.000672 71.16037 60.483901 55.862601 66.854347 0.0 0.0 0.0 0.0 0.0 60.434759 20\n",
525
+ "bottle2_50_ICP 54.377858 53.393512 66.12583 47.561213 51.31821 57.560825 68.805384 55.289464 73.306761 70.184317 65.496406 71.789794 67.639152 54.298582 60.46459 38.607896 35.885329 37.012867 57.479033 71.525565 0.0 0.0 0.0 0.0 0.0 57.906129 20\n",
526
+ "bottle2_25_ICP 71.730017 70.795363 63.555661 67.25048 63.613194 51.285702 42.303407 39.39284 65.657843 67.373311 79.379446 51.375709 55.391288 51.114255 56.139717 53.657441 70.10359 71.862892 82.068982 67.205189 0.0 0.0 0.0 0.0 0.0 62.062816 20\n",
527
+ "bottle2_0_ICP 80.541255 78.927351 86.367711 51.188665 47.259758 23.529144 26.495752 26.307019 58.988365 87.186705 94.964133 0.0 60.931521 56.640394 30.727522 30.044528 0.0 89.849671 79.279781 24.165655 94.358841 33.815192 45.865195 0.0 0.0 57.496865 21\n",
528
+ "bottle2_100_FAST ICP 57.688938 58.073827 57.95261 69.895066 53.288431 52.095725 70.636632 66.160966 72.69402 72.207366 66.179926 39.479096 36.090186 51.322082 60.814999 70.445922 70.538539 72.740172 55.116972 54.539657 0.0 0.0 0.0 0.0 0.0 60.398057 20\n",
529
+ "bottle2_75_FAST ICP 44.860989 67.613803 58.069773 68.358055 46.042018 64.441146 59.721992 71.641551 70.052412 53.481736 60.979005 38.131182 55.091599 55.153897 69.289835 68.607169 71.218541 59.599214 55.860476 67.014762 0.0 0.0 0.0 0.0 0.0 60.261458 20\n",
530
+ "bottle2_50_FAST ICP 48.445113 53.266916 66.128142 47.394348 51.068578 57.519886 68.855187 66.043425 73.383533 70.153381 65.461271 71.790779 68.849646 54.293063 60.622404 38.606699 35.904505 36.900701 57.872143 72.136896 0.0 0.0 0.0 0.0 0.0 58.234831 20\n",
531
+ "bottle2_25_FAST ICP 71.730556 70.813613 48.390064 67.208482 63.630603 51.294102 42.303407 39.394111 65.684234 67.362821 79.37104 51.333991 51.569497 51.046581 56.147149 53.361444 67.824738 71.863382 82.072543 67.188839 0.0 0.0 0.0 0.0 0.0 60.979560 20\n",
532
+ "bottle2_0_FAST ICP 80.541086 78.927351 86.369584 49.968808 47.255769 23.557333 26.504626 26.359362 58.95614 87.183452 94.944673 0.0 60.904371 56.000499 30.738225 27.684303 0.0 89.849728 79.276977 22.581162 94.359098 33.984328 43.870373 0.0 0.0 57.134155 21\n",
533
+ "bottle2_100_Robust ICP 50.504351 49.133166 49.608769 65.247935 42.131387 43.924281 68.181318 59.094124 67.919525 67.379707 50.458574 52.717507 34.114118 54.92686 57.805806 65.611106 61.177957 65.368603 41.45572 50.579692 0.0 0.0 0.0 0.0 0.0 54.867025 20\n",
534
+ "bottle2_75_Robust ICP 65.171352 54.045867 36.901146 54.330906 47.420552 65.597031 55.602239 66.911923 67.495546 36.590494 52.79024 32.480709 50.646411 48.142464 56.953986 62.867727 57.595423 52.695511 51.982744 50.382476 0.0 0.0 0.0 0.0 0.0 53.330237 20\n",
535
+ "bottle2_50_Robust ICP 47.771693 45.012185 57.661057 42.412898 44.792427 56.455638 59.622745 50.11804 57.469541 62.813152 55.040781 61.801269 59.122552 53.439211 61.519585 28.646356 55.147605 37.786525 62.005449 61.623284 0.0 0.0 0.0 0.0 0.0 53.013100 20\n",
536
+ "bottle2_25_Robust ICP 68.372297 65.913029 60.802011 62.199418 62.664916 48.949447 49.991884 6.183673 49.365622 57.576716 59.482653 47.27592 61.409181 39.522688 46.994318 45.567914 57.165478 60.199405 58.092839 65.6003 0.0 0.0 0.0 0.0 0.0 53.666485 20\n",
537
+ "bottle2_0_Robust ICP 64.716537 62.513045 62.81728 49.088234 45.262582 33.32966 21.138026 11.118374 47.963994 76.110225 73.256406 0.0 60.237215 77.414676 49.737045 9.669534 0.0 73.509738 69.848925 36.882767 73.228013 19.113386 47.360497 0.0 0.0 50.681722 21\n",
538
+ "bottle2_100_Sparse ICP 53.412883 53.800208 52.790838 57.532525 53.838994 48.981065 62.133405 60.96027 76.258964 67.811151 60.9657 39.873357 41.373595 55.00382 59.390746 62.465343 67.976456 65.191948 52.286949 45.004554 0.0 0.0 0.0 0.0 0.0 56.852639 20\n",
539
+ "bottle2_75_Sparse ICP 60.758925 62.083034 53.335445 51.852443 48.473864 57.978259 61.524882 65.698803 66.304336 58.831034 56.198062 36.067757 44.468705 56.804776 63.106554 65.245407 69.781086 65.129953 65.362751 51.36387 0.0 0.0 0.0 0.0 0.0 58.018497 20\n",
540
+ "bottle2_50_Sparse ICP 63.234282 62.944344 65.182522 48.120253 52.935785 52.932735 55.108551 62.309733 76.492421 62.961988 66.740594 66.057711 64.091673 57.605262 52.913206 48.140719 39.945907 32.604047 50.441113 66.71904 0.0 0.0 0.0 0.0 0.0 57.374094 20\n",
541
+ "bottle2_25_Sparse ICP 68.338245 67.504931 60.979872 57.887682 58.421357 30.656694 31.248467 43.173549 62.545731 68.838698 78.791105 53.815284 47.591621 49.769237 52.289646 57.737586 62.937188 66.062745 79.519469 57.498068 0.0 0.0 0.0 0.0 0.0 57.780359 20\n",
542
+ "bottle2_0_Sparse ICP 74.964649 64.046069 72.359844 54.094445 53.676616 27.231209 23.413694 20.608975 55.196291 91.152314 82.327922 0.0 72.626788 63.141163 28.504973 23.181661 0.0 74.259527 74.642275 65.102882 82.026225 27.648789 64.4469 0.0 0.0 56.888248 21\n",
543
+ "###################\n",
544
+ "bottle2_100_ICP 20\n",
545
+ "bottle2_75_ICP 20\n",
546
+ "bottle2_50_ICP 20\n",
547
+ "bottle2_25_ICP 20\n",
548
+ "bottle2_0_ICP 21\n",
549
+ "Name: Counts, dtype: int64\n"
550
+ ]
551
+ }
552
+ ],
553
+ "source": [
554
+ "\n",
555
+ "\n",
556
+ "df['Counts'] = (df != 0).sum(axis=1)-1\n",
557
+ "\n",
558
+ "# ๋ชจ๋“  ํ–‰/์—ด์„ ์ „๋ถ€ ๋ณด์—ฌ์คŒ\n",
559
+ "pd.set_option('display.max_rows', None) # ํ–‰ ์ „์ฒด ์ถœ๋ ฅ\n",
560
+ "pd.set_option('display.max_columns', None) # ์—ด ์ „์ฒด ์ถœ๋ ฅ\n",
561
+ "\n",
562
+ "# ๊ฐ ์—ด์˜ ๋„ˆ๋น„ ์ œํ•œ ํ•ด์ œ (๊ธด ๋ฌธ์ž์—ด๋„ ์ž˜๋ฆฌ์ง€ ์•Š์Œ)\n",
563
+ "pd.set_option('display.max_colwidth', None)\n",
564
+ "\n",
565
+ "# ํ™”๋ฉด ๋„ˆ๋น„์— ๋”ฐ๋ผ ์ค„๋ฐ”๊ฟˆ์„ ํ• ์ง€ ๋ง์ง€\n",
566
+ "pd.set_option('display.width', None) # None์ด๋ฉด ์ž๋™์œผ๋กœ ์ฝ˜์†” ๋„ˆ๋น„๋ฅผ ์‚ฌ์šฉ\n",
567
+ "pd.set_option('display.expand_frame_repr', False) # True๋ฉด ์ค„๋ฐ”๊ฟˆ ํ—ˆ์šฉ, False๋ฉด ํ•œ ์ค„๋กœ ์ถœ๋ ฅ ์‹œ๋„\n",
568
+ "\n",
569
+ "print(df)\n",
570
+ "\n",
571
+ "\n",
572
+ "\n",
573
+ "sliced_data = df.loc['bottle2_100_ICP':'bottle2_0_ICP', 'Counts']\n",
574
+ "print(f\"###################\\n{sliced_data}\")\n",
575
+ "sliced_data.to_csv(f'{category}_data_num.csv', index=True)"
576
+ ]
577
+ },
578
+ {
579
+ "cell_type": "markdown",
580
+ "id": "530262b0",
581
+ "metadata": {},
582
+ "source": []
583
+ }
584
+ ],
585
+ "metadata": {
586
+ "kernelspec": {
587
+ "display_name": "icp",
588
+ "language": "python",
589
+ "name": "python3"
590
+ },
591
+ "language_info": {
592
+ "codemirror_mode": {
593
+ "name": "ipython",
594
+ "version": 3
595
+ },
596
+ "file_extension": ".py",
597
+ "mimetype": "text/x-python",
598
+ "name": "python",
599
+ "nbconvert_exporter": "python",
600
+ "pygments_lexer": "ipython3",
601
+ "version": "3.10.19"
602
+ }
603
+ },
604
+ "nbformat": 4,
605
+ "nbformat_minor": 5
606
+ }
data/bottle_2/filename.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ 100_7
data/bottle_2/filter_tea .ipynb ADDED
@@ -0,0 +1,459 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 1,
6
+ "metadata": {},
7
+ "outputs": [
8
+ {
9
+ "name": "stdout",
10
+ "output_type": "stream",
11
+ "text": [
12
+ "Jupyter environment detected. Enabling Open3D WebVisualizer.\n",
13
+ "[Open3D INFO] WebRTC GUI backend enabled.\n",
14
+ "[Open3D INFO] WebRTCWindowSystem: HTTP handshake server disabled.\n",
15
+ "[-0.92560461 61.60377172 58.09118409]\n"
16
+ ]
17
+ }
18
+ ],
19
+ "source": [
20
+ "import open3d as o3d\n",
21
+ "import numpy as np\n",
22
+ "\n",
23
+ "GT = False\n",
24
+ "\n",
25
+ "mesh = o3d.io.read_triangle_mesh(\"./bottle.stl\")\n",
26
+ "pointcloud = mesh.sample_points_poisson_disk(50000)\n",
27
+ "coord_frame = o3d.geometry.TriangleMesh.create_coordinate_frame(size=50.0, origin=[0, 0, 0])\n",
28
+ "mesh.compute_vertex_normals()\n",
29
+ "mesh_triangles = np.asarray(mesh.triangles)\n",
30
+ "vertex_positions = np.asarray(mesh.vertices)\n",
31
+ "triangle_normals = np.asarray(mesh.triangle_normals)\n",
32
+ "# ๊ฐ์ฒด์˜ ์ค‘์‹ฌ์  ๊ณ„์‚ฐ\n",
33
+ "centroid = mesh.get_center()\n",
34
+ "print(centroid)\n",
35
+ "filtered_triangles = []\n",
36
+ "for i, triangle in enumerate(mesh_triangles):\n",
37
+ " # ์‚ผ๊ฐํ˜•์˜ ์ค‘์‹ฌ์  ๊ณ„์‚ฐ\n",
38
+ " tri_center = vertex_positions[triangle].mean(axis=0)\n",
39
+ " # ๊ฐ์ฒด ์ค‘์‹ฌ์—์„œ ์‚ผ๊ฐํ˜• ์ค‘์‹ฌ์œผ๋กœ ํ–ฅํ•˜๋Š” ๋ฒกํ„ฐ\n",
40
+ " vec_to_center = tri_center - centroid\n",
41
+ " # ๋ฒ•์„  ๋ฒกํ„ฐ์™€ ๋ฐฉํ–ฅ ๋ฒกํ„ฐ๋ฅผ ๋‚ด์ \n",
42
+ " dot_product = np.dot(triangle_normals[i], vec_to_center)\n",
43
+ " # ๋‚ด์  ๊ฐ’์ด ์–‘์ˆ˜์ด๋ฉด ๋ฐ”๊นฅ์ชฝ ๋ฉด์œผ๋กœ ํŒ๋‹จ\n",
44
+ " if dot_product > 0:\n",
45
+ " filtered_triangles.append(triangle)\n",
46
+ "# 3. ํ•„ํ„ฐ๋ง๋œ ๋ฉด์œผ๋กœ ์ƒˆ๋กœ์šด ๋ฉ”์‰ฌ ์ƒ์„ฑ\n",
47
+ "outer_mesh = o3d.geometry.TriangleMesh()\n",
48
+ "outer_mesh.vertices = mesh.vertices\n",
49
+ "outer_mesh.triangles = o3d.utility.Vector3iVector(np.array(filtered_triangles))\n",
50
+ "# 4. ์ƒˆ๋กœ์šด ๋ฉ”์‰ฌ์—์„œ ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ ์ƒ˜ํ”Œ๋ง\n",
51
+ "# n_points๋Š” ์ƒ˜ํ”Œ๋งํ•  ํฌ์ธํŠธ ๊ฐœ์ˆ˜\n",
52
+ "pcd = outer_mesh.sample_points_uniformly(number_of_points=50000)\n",
53
+ "# ๊ฒฐ๊ณผ ์‹œ๊ฐํ™”\n",
54
+ "# o3d.visualization.draw_geometries([pcd,coord_frame ])\n",
55
+ "pcd_array = np.asarray(pcd.points)"
56
+ ]
57
+ },
58
+ {
59
+ "cell_type": "code",
60
+ "execution_count": 2,
61
+ "metadata": {},
62
+ "outputs": [
63
+ {
64
+ "name": "stdout",
65
+ "output_type": "stream",
66
+ "text": [
67
+ "100_7\n",
68
+ "(896000, 3)\n"
69
+ ]
70
+ }
71
+ ],
72
+ "source": [
73
+ "import open3d as o3d\n",
74
+ "import numpy as np\n",
75
+ "\n",
76
+ "GT = False\n",
77
+ "file_names = []\n",
78
+ "with open('filename.txt', 'r') as f:\n",
79
+ " for line in f:\n",
80
+ " file_names.append(line.strip())\n",
81
+ "filename = file_names[0]\n",
82
+ "print(filename)\n",
83
+ "\n",
84
+ "\n",
85
+ "\n",
86
+ "\n",
87
+ "if not GT: \n",
88
+ " ply_path = f\"./dataset/{filename}.ply\"\n",
89
+ "\n",
90
+ " pcd = o3d.io.read_point_cloud(ply_path)\n",
91
+ "\n",
92
+ "\n",
93
+ "\n",
94
+ "pcd_array = np.asarray(pcd.points)\n",
95
+ "print(pcd_array.shape)\n",
96
+ "\n",
97
+ "coord_frame = o3d.geometry.TriangleMesh.create_coordinate_frame(size=50.0, origin=[0, 0, 0])\n",
98
+ "o3d.visualization.draw_geometries([pcd, coord_frame])"
99
+ ]
100
+ },
101
+ {
102
+ "cell_type": "code",
103
+ "execution_count": 3,
104
+ "metadata": {},
105
+ "outputs": [
106
+ {
107
+ "name": "stdout",
108
+ "output_type": "stream",
109
+ "text": [
110
+ "[ 16.7051863 -37.94668466 564.59663212]\n"
111
+ ]
112
+ }
113
+ ],
114
+ "source": [
115
+ " \n",
116
+ "if GT==False:\n",
117
+ "\n",
118
+ " new_pcd_array = np.unique(pcd_array, axis=0)\n",
119
+ "\n",
120
+ " # new_pcd_array = new_pcd_array[new_pcd_array[:, 2] < 580]\n",
121
+ " new_pcd_array = new_pcd_array[new_pcd_array[:, 2] < 1000]\n",
122
+ "\n",
123
+ " # new_pcd_array = new_pcd_array[new_pcd_array[:, 1] > -100] \n",
124
+ " new_pcd_array = new_pcd_array[new_pcd_array[:, 1] > -1000] #diagonal\n",
125
+ " new_pcd_array = new_pcd_array[new_pcd_array[:, 1] < 120]\n",
126
+ " new_pcd_array = new_pcd_array[new_pcd_array[:, 0] > -1000]\n",
127
+ " new_pcd_array = new_pcd_array[new_pcd_array[:, 0] < 1000] #diagonal\n",
128
+ " # new_pcd_array = new_pcd_array[new_pcd_array[:, 0] < 100] \n",
129
+ " # new_pcd_array -= np.mean(new_pcd_array, axis=0)\n",
130
+ " print(np.mean(new_pcd_array, axis=0))\n",
131
+ "\n",
132
+ " new_pcd = o3d.geometry.PointCloud()\n",
133
+ " new_pcd.points = o3d.utility.Vector3dVector(new_pcd_array)\n",
134
+ "\n",
135
+ " theta = np.radians(90)\n",
136
+ " # theta = np.radians(-90)\n",
137
+ "\n",
138
+ "\n",
139
+ " rotation_y = np.array([\n",
140
+ " [np.cos(theta), 0, np.sin(theta)],\n",
141
+ " [0, 1, 0 ],\n",
142
+ " [-np.sin(theta),0, np.cos(theta)]\n",
143
+ " ])\n",
144
+ "\n",
145
+ " rotation_x = np.array([\n",
146
+ " [1, 0, 0 ],\n",
147
+ " [0, np.cos(theta), -np.sin(theta)],\n",
148
+ " [0, np.sin(theta), np.cos(theta)]\n",
149
+ "\n",
150
+ " ])\n",
151
+ " rotation_z = np.array([\n",
152
+ " [np.cos(theta), -np.sin(theta), 0],\n",
153
+ " [np.sin(theta), np.cos(theta), 0],\n",
154
+ " [0, 0, 1]\n",
155
+ "\n",
156
+ " ])\n",
157
+ "\n",
158
+ "\n",
159
+ " new_pcd_array = np.asarray(new_pcd.points)\n",
160
+ "\n",
161
+ " coord_frame = o3d.geometry.TriangleMesh.create_coordinate_frame(size=50.0, origin=[0, 0, 0])\n",
162
+ " o3d.visualization.draw_geometries([new_pcd, coord_frame])"
163
+ ]
164
+ },
165
+ {
166
+ "cell_type": "markdown",
167
+ "metadata": {},
168
+ "source": [
169
+ "## Delete ground plane "
170
+ ]
171
+ },
172
+ {
173
+ "cell_type": "code",
174
+ "execution_count": 4,
175
+ "metadata": {},
176
+ "outputs": [
177
+ {
178
+ "name": "stdout",
179
+ "output_type": "stream",
180
+ "text": [
181
+ "Plane equation: -0.01x + -0.00y + 1.00z + -579.50 = 0\n"
182
+ ]
183
+ }
184
+ ],
185
+ "source": [
186
+ " \n",
187
+ "if GT==False:\n",
188
+ " \n",
189
+ " plane_model, inliers = new_pcd.segment_plane(distance_threshold=2.5,\n",
190
+ " ransac_n=10,\n",
191
+ " num_iterations=1000)\n",
192
+ " [a, b, c, d] = plane_model\n",
193
+ " print(f\"Plane equation: {a:.2f}x + {b:.2f}y + {c:.2f}z + {d:.2f} = 0\")\n",
194
+ " \n",
195
+ " \n",
196
+ " \n",
197
+ " inlier_cloud = new_pcd.select_by_index(inliers)\n",
198
+ " inlier_cloud.paint_uniform_color([1.0, 0, 1.0])\n",
199
+ " outlier_cloud = new_pcd.select_by_index(inliers, invert=True)\n",
200
+ " o3d.visualization.draw_geometries([inlier_cloud, outlier_cloud],\n",
201
+ " zoom=0.8,\n",
202
+ " front=[-0.4999, -0.1659, -0.8499],\n",
203
+ " lookat=[2.1813, 2.0619, 2.0999],\n",
204
+ " up=[0.1204, -0.9852, 0.1215])\n",
205
+ " \n",
206
+ " new_pcd = outlier_cloud\n",
207
+ "\n",
208
+ " new_pcd_array = np.asarray(new_pcd.points)\n",
209
+ "\n",
210
+ "\n",
211
+ " \n",
212
+ " \n",
213
+ " "
214
+ ]
215
+ },
216
+ {
217
+ "cell_type": "markdown",
218
+ "metadata": {},
219
+ "source": [
220
+ "### Changing the source position \"gt_filtered\"\n"
221
+ ]
222
+ },
223
+ {
224
+ "cell_type": "code",
225
+ "execution_count": 8,
226
+ "metadata": {},
227
+ "outputs": [],
228
+ "source": [
229
+ "\n",
230
+ "CHECK_PERTURB = GT\n",
231
+ "GT = False\n",
232
+ "def random_rotation_matrix():\n",
233
+ " \"\"\"\n",
234
+ " Generate a random 3x3 rotation matrix (SO(3) matrix).\n",
235
+ " \n",
236
+ " Uses the method described by James Arvo in \"Fast Random Rotation Matrices\" (1992):\n",
237
+ " 1. Generate a random unit vector for rotation axis\n",
238
+ " 2. Generate a random angle\n",
239
+ " 3. Create rotation matrix using Rodriguez rotation formula\n",
240
+ " \n",
241
+ " Returns:\n",
242
+ " numpy.ndarray: A 3x3 random rotation matrix\n",
243
+ " \"\"\"\n",
244
+ " ## for ground target\n",
245
+ " # Generate random angle ฯ€/2\n",
246
+ " theta = 0\n",
247
+ "\n",
248
+ " \n",
249
+ " # axis is -y\n",
250
+ " axis = np.array([\n",
251
+ " 1,\n",
252
+ " 0,\n",
253
+ " 0,\n",
254
+ " ])\n",
255
+ " \n",
256
+ " # for lying target\n",
257
+ " # theta will be pi/2\n",
258
+ " # theta = np.pi/2\n",
259
+ " # axis = np.array([\n",
260
+ " # 0,\n",
261
+ " # 1,\n",
262
+ " # 0,\n",
263
+ " # ])\n",
264
+ " \n",
265
+ "\n",
266
+ "\n",
267
+ "\n",
268
+ " # Normalize to ensure it's a unit vector\n",
269
+ " axis = axis / np.linalg.norm(axis)\n",
270
+ " \n",
271
+ "\n",
272
+ "\n",
273
+ " # Create the cross-product matrix K skew-symmetric\n",
274
+ " K = np.array([\n",
275
+ " [0, -axis[2], axis[1]],\n",
276
+ " [axis[2], 0, -axis[0]],\n",
277
+ " [-axis[1], axis[0], 0]\n",
278
+ " ])\n",
279
+ " \n",
280
+ " # Rodriguez rotation formula: R = I + sin(ฮธ)K + (1-cos(ฮธ))Kยฒ\n",
281
+ " R = (np.eye(3) + \n",
282
+ " np.sin(theta) * K + \n",
283
+ " (1 - np.cos(theta)) * np.dot(K, K))\n",
284
+ " \n",
285
+ " return R\n",
286
+ "\n",
287
+ "if CHECK_PERTURB:\n",
288
+ " R_pert = random_rotation_matrix()\n",
289
+ " print(R_pert)\n",
290
+ " t_pert = np.array([\n",
291
+ " 0,\n",
292
+ " 0,\n",
293
+ " 0\n",
294
+ " ])\n",
295
+ "\n",
296
+ " \n",
297
+ " perturbed_pcd_array = np.dot(R_pert, pcd_array.T).T + t_pert.T\n",
298
+ "\n",
299
+ "\n",
300
+ " perturbed_pcd = o3d.geometry.PointCloud()\n",
301
+ " perturbed_pcd.points = o3d.utility.Vector3dVector(perturbed_pcd_array)\n",
302
+ " coord_frame = o3d.geometry.TriangleMesh.create_coordinate_frame(size=50.0, origin=[0, 0, 0])\n",
303
+ " o3d.visualization.draw_geometries([perturbed_pcd, coord_frame])"
304
+ ]
305
+ },
306
+ {
307
+ "cell_type": "markdown",
308
+ "metadata": {},
309
+ "source": [
310
+ "### Rotate randomly in Target \"noisy filtered\""
311
+ ]
312
+ },
313
+ {
314
+ "cell_type": "code",
315
+ "execution_count": 9,
316
+ "metadata": {},
317
+ "outputs": [],
318
+ "source": [
319
+ "CHECK_PERTURB = not GT\n",
320
+ "\n",
321
+ "if CHECK_PERTURB:\n",
322
+ " # R_pert = random_rotation_matrix()\n",
323
+ " # print(R_pert)\n",
324
+ " # t_pert = np.random.rand(3, 1)*3 #* 10\n",
325
+ "\n",
326
+ " \n",
327
+ " # perturbed_pcd_array = np.dot(R_pert, new_pcd_array.T).T + t_pert.T\n",
328
+ " perturbed_pcd_array = new_pcd_array\n",
329
+ " perturbed_pcd = o3d.geometry.PointCloud()\n",
330
+ " perturbed_pcd.points = o3d.utility.Vector3dVector(perturbed_pcd_array)\n",
331
+ " \n",
332
+ " # ๊ฐ์ฒด์˜ ์ค‘์‹ฌ์„ (0, 0, 0)์œผ๋กœ ๋ฐ”๋กœ ์ด๋™\n",
333
+ " \n",
334
+ "\n",
335
+ " perturbed_pcd_array = np.asarray(perturbed_pcd.points)\n",
336
+ " coord_frame = o3d.geometry.TriangleMesh.create_coordinate_frame(size=50.0, origin=[0, 0, 0])\n",
337
+ "\n",
338
+ "\n",
339
+ "\n",
340
+ "\n",
341
+ " o3d.visualization.draw_geometries([perturbed_pcd, coord_frame])\n"
342
+ ]
343
+ },
344
+ {
345
+ "cell_type": "code",
346
+ "execution_count": 7,
347
+ "metadata": {},
348
+ "outputs": [
349
+ {
350
+ "name": "stdout",
351
+ "output_type": "stream",
352
+ "text": [
353
+ "True\n"
354
+ ]
355
+ }
356
+ ],
357
+ "source": [
358
+ "def write_ply(points, output_path):\n",
359
+ " \"\"\"\n",
360
+ " Write points and parameters to a PLY file\n",
361
+ " \n",
362
+ " Parameters:\n",
363
+ " points: numpy array of shape (N, 3) containing point coordinates\n",
364
+ " output_path: path to save the PLY file\n",
365
+ " \"\"\"\n",
366
+ " with open(output_path, 'w') as f:\n",
367
+ " # Write header\n",
368
+ " f.write(\"ply\\n\")\n",
369
+ " f.write(\"format ascii 1.0\\n\")\n",
370
+ " \n",
371
+ " # Write vertex element\n",
372
+ " f.write(f\"element vertex {len(points)}\\n\")\n",
373
+ " f.write(\"property float x\\n\")\n",
374
+ " f.write(\"property float y\\n\")\n",
375
+ " f.write(\"property float z\\n\")\n",
376
+ " \n",
377
+ " # Write camera element\n",
378
+ " f.write(\"element camera 1\\n\")\n",
379
+ " f.write(\"property float view_px\\n\")\n",
380
+ " f.write(\"property float view_py\\n\")\n",
381
+ " f.write(\"property float view_pz\\n\")\n",
382
+ " f.write(\"property float x_axisx\\n\")\n",
383
+ " f.write(\"property float x_axisy\\n\")\n",
384
+ " f.write(\"property float x_axisz\\n\")\n",
385
+ " f.write(\"property float y_axisx\\n\")\n",
386
+ " f.write(\"property float y_axisy\\n\")\n",
387
+ " f.write(\"property float y_axisz\\n\")\n",
388
+ " f.write(\"property float z_axisx\\n\")\n",
389
+ " f.write(\"property float z_axisy\\n\")\n",
390
+ " f.write(\"property float z_axisz\\n\")\n",
391
+ " \n",
392
+ " # Write phoxi frame parameters\n",
393
+ " f.write(\"element phoxi_frame_params 1\\n\")\n",
394
+ " f.write(\"property uint32 frame_width\\n\")\n",
395
+ " f.write(\"property uint32 frame_height\\n\")\n",
396
+ " f.write(\"property uint32 frame_index\\n\")\n",
397
+ " f.write(\"property float frame_start_time\\n\")\n",
398
+ " f.write(\"property float frame_duration\\n\")\n",
399
+ " f.write(\"property float frame_computation_duration\\n\")\n",
400
+ " f.write(\"property float frame_transfer_duration\\n\")\n",
401
+ " f.write(\"property int32 total_scan_count\\n\")\n",
402
+ " \n",
403
+ " # Write camera matrix\n",
404
+ " f.write(\"element camera_matrix 1\\n\")\n",
405
+ " for i in range(9):\n",
406
+ " f.write(f\"property float cm{i}\\n\")\n",
407
+ " \n",
408
+ " # Write distortion matrix\n",
409
+ " f.write(\"element distortion_matrix 1\\n\")\n",
410
+ " for i in range(14):\n",
411
+ " f.write(f\"property float dm{i}\\n\")\n",
412
+ " \n",
413
+ " # Write camera resolution\n",
414
+ " f.write(\"element camera_resolution 1\\n\")\n",
415
+ " f.write(\"property float width\\n\")\n",
416
+ " f.write(\"property float height\\n\")\n",
417
+ " \n",
418
+ " # Write frame binning\n",
419
+ " f.write(\"element frame_binning 1\\n\")\n",
420
+ " f.write(\"property float horizontal\\n\")\n",
421
+ " f.write(\"property float vertical\\n\")\n",
422
+ " \n",
423
+ " # End header\n",
424
+ " f.write(\"end_header\\n\")\n",
425
+ " \n",
426
+ " # Write vertex data\n",
427
+ " for point in points:\n",
428
+ " f.write(f\"{point[0]} {point[1]} {point[2]}\\n\")\n",
429
+ "\n",
430
+ " print(True)\n",
431
+ "\n",
432
+ "if GT: write_ply(perturbed_pcd_array, f\"gt_filtered.ply\")\n",
433
+ "else: write_ply(perturbed_pcd_array, f\"./noisy_result/noisy_filtered_{filename}.ply\")\n",
434
+ "# write_ply(new_pcd_array, \"gt_filtered.ply\")"
435
+ ]
436
+ }
437
+ ],
438
+ "metadata": {
439
+ "kernelspec": {
440
+ "display_name": "icp",
441
+ "language": "python",
442
+ "name": "python3"
443
+ },
444
+ "language_info": {
445
+ "codemirror_mode": {
446
+ "name": "ipython",
447
+ "version": 3
448
+ },
449
+ "file_extension": ".py",
450
+ "mimetype": "text/x-python",
451
+ "name": "python",
452
+ "nbconvert_exporter": "python",
453
+ "pygments_lexer": "ipython3",
454
+ "version": "3.10.19"
455
+ }
456
+ },
457
+ "nbformat": 4,
458
+ "nbformat_minor": 2
459
+ }
data/bottle_2/filter_tea.py ADDED
@@ -0,0 +1,400 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding: utf-8
3
+
4
+ # In[ ]:
5
+
6
+
7
+ import open3d as o3d
8
+ import numpy as np
9
+
10
+ GT = False
11
+ if GT==True:
12
+ mesh = o3d.io.read_triangle_mesh("./bottle2.stl")
13
+ pointcloud = mesh.sample_points_poisson_disk(50000)
14
+ coord_frame = o3d.geometry.TriangleMesh.create_coordinate_frame(size=50.0, origin=[0, 0, 0])
15
+
16
+ mesh.compute_vertex_normals()
17
+ mesh_triangles = np.asarray(mesh.triangles)
18
+ vertex_positions = np.asarray(mesh.vertices)
19
+ triangle_normals = np.asarray(mesh.triangle_normals)
20
+
21
+ # ๊ฐ์ฒด์˜ ์ค‘์‹ฌ์  ๊ณ„์‚ฐ
22
+ centroid = mesh.get_center()
23
+ filtered_triangles = []
24
+ for i, triangle in enumerate(mesh_triangles):
25
+ # ์‚ผ๊ฐํ˜•์˜ ์ค‘์‹ฌ์  ๊ณ„์‚ฐ
26
+ tri_center = vertex_positions[triangle].mean(axis=0)
27
+ # ๊ฐ์ฒด ์ค‘์‹ฌ์—์„œ ์‚ผ๊ฐํ˜• ์ค‘์‹ฌ์œผ๋กœ ํ–ฅํ•˜๋Š” ๋ฒกํ„ฐ
28
+ vec_to_center = tri_center - centroid
29
+ # ๋ฒ•์„  ๋ฒกํ„ฐ์™€ ๋ฐฉํ–ฅ ๋ฒกํ„ฐ๋ฅผ ๋‚ด์ 
30
+ dot_product = np.dot(triangle_normals[i], vec_to_center)
31
+ # ๋‚ด์  ๊ฐ’์ด ์–‘์ˆ˜์ด๋ฉด ๋ฐ”๊นฅ์ชฝ ๋ฉด์œผ๋กœ ํŒ๋‹จ
32
+ if dot_product > 0:
33
+ filtered_triangles.append(triangle)
34
+ # 3. ํ•„ํ„ฐ๋ง๋œ ๋ฉด์œผ๋กœ ์ƒˆ๋กœ์šด ๋ฉ”์‰ฌ ์ƒ์„ฑ
35
+ outer_mesh = o3d.geometry.TriangleMesh()
36
+ outer_mesh.vertices = mesh.vertices
37
+ outer_mesh.triangles = o3d.utility.Vector3iVector(np.array(filtered_triangles))
38
+ # 4. ์ƒˆ๋กœ์šด ๋ฉ”์‰ฌ์—์„œ ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ ์ƒ˜ํ”Œ๋ง
39
+ # n_points๋Š” ์ƒ˜ํ”Œ๋งํ•  ํฌ์ธํŠธ ๊ฐœ์ˆ˜
40
+ pcd = outer_mesh.sample_points_uniformly(number_of_points=50000)
41
+ # ๊ฒฐ๊ณผ ์‹œ๊ฐํ™”
42
+ o3d.visualization.draw_geometries([pcd,coord_frame ])
43
+
44
+
45
+
46
+
47
+ pcd_array = np.asarray(pcd.points)
48
+
49
+
50
+ # In[160]:
51
+
52
+
53
+ import open3d as o3d
54
+ import numpy as np
55
+
56
+ file_names = []
57
+ with open('filename.txt', 'r') as f:
58
+ for line in f:
59
+ file_names.append(line.strip())
60
+ filename = file_names[0]
61
+ print(filename)
62
+
63
+
64
+
65
+
66
+ if not GT:
67
+ ply_path = f"./dataset/{filename}.ply"
68
+
69
+ pcd = o3d.io.read_point_cloud(ply_path)
70
+
71
+
72
+
73
+ pcd_array = np.asarray(pcd.points)
74
+ print(pcd_array.shape)
75
+
76
+ coord_frame = o3d.geometry.TriangleMesh.create_coordinate_frame(size=50.0, origin=[0, 0, 0])
77
+ o3d.visualization.draw_geometries([pcd, coord_frame])
78
+
79
+
80
+ # In[161]:
81
+
82
+
83
+ if GT==False:
84
+
85
+ new_pcd_array = np.unique(pcd_array, axis=0)
86
+
87
+ # new_pcd_array = new_pcd_array[new_pcd_array[:, 2] < 580]
88
+ new_pcd_array = new_pcd_array[new_pcd_array[:, 2] < 1000]
89
+
90
+ # new_pcd_array = new_pcd_array[new_pcd_array[:, 1] > -100]
91
+ new_pcd_array = new_pcd_array[new_pcd_array[:, 1] > -1000] #diagonal
92
+ new_pcd_array = new_pcd_array[new_pcd_array[:, 1] < 120]
93
+ new_pcd_array = new_pcd_array[new_pcd_array[:, 0] > -1000]
94
+ new_pcd_array = new_pcd_array[new_pcd_array[:, 0] < 1000] #diagonal
95
+ # new_pcd_array = new_pcd_array[new_pcd_array[:, 0] < 100]
96
+ # new_pcd_array -= np.mean(new_pcd_array, axis=0)
97
+ print(np.mean(new_pcd_array, axis=0))
98
+
99
+ new_pcd = o3d.geometry.PointCloud()
100
+ new_pcd.points = o3d.utility.Vector3dVector(new_pcd_array)
101
+
102
+ theta = np.radians(90)
103
+ # theta = np.radians(-90)
104
+
105
+
106
+ rotation_y = np.array([
107
+ [np.cos(theta), 0, np.sin(theta)],
108
+ [0, 1, 0 ],
109
+ [-np.sin(theta),0, np.cos(theta)]
110
+ ])
111
+
112
+ rotation_x = np.array([
113
+ [1, 0, 0 ],
114
+ [0, np.cos(theta), -np.sin(theta)],
115
+ [0, np.sin(theta), np.cos(theta)]
116
+
117
+ ])
118
+ rotation_z = np.array([
119
+ [np.cos(theta), -np.sin(theta), 0],
120
+ [np.sin(theta), np.cos(theta), 0],
121
+ [0, 0, 1]
122
+
123
+ ])
124
+
125
+
126
+ new_pcd_array = np.asarray(new_pcd.points)
127
+
128
+ coord_frame = o3d.geometry.TriangleMesh.create_coordinate_frame(size=50.0, origin=[0, 0, 0])
129
+ o3d.visualization.draw_geometries([new_pcd, coord_frame])
130
+
131
+
132
+ # ## Delete ground plane
133
+
134
+ # In[162]:
135
+
136
+
137
+ if GT==False:
138
+
139
+ plane_model, inliers = new_pcd.segment_plane(distance_threshold=2.5,
140
+ ransac_n=10,
141
+ num_iterations=1000)
142
+ [a, b, c, d] = plane_model
143
+ print(f"Plane equation: {a:.2f}x + {b:.2f}y + {c:.2f}z + {d:.2f} = 0")
144
+
145
+
146
+
147
+ inlier_cloud = new_pcd.select_by_index(inliers)
148
+ inlier_cloud.paint_uniform_color([1.0, 0, 1.0])
149
+ outlier_cloud = new_pcd.select_by_index(inliers, invert=True)
150
+ o3d.visualization.draw_geometries([inlier_cloud, outlier_cloud],
151
+ zoom=0.8,
152
+ front=[-0.4999, -0.1659, -0.8499],
153
+ lookat=[2.1813, 2.0619, 2.0999],
154
+ up=[0.1204, -0.9852, 0.1215])
155
+
156
+ new_pcd = outlier_cloud
157
+
158
+ new_pcd_array = np.asarray(new_pcd.points)
159
+
160
+
161
+
162
+
163
+ # ### Changing the source position "gt_filtered"
164
+ #
165
+
166
+ # In[163]:
167
+
168
+
169
+ CHECK_PERTURB = GT
170
+
171
+ def random_rotation_matrix():
172
+ """
173
+ Generate a random 3x3 rotation matrix (SO(3) matrix).
174
+
175
+ Uses the method described by James Arvo in "Fast Random Rotation Matrices" (1992):
176
+ 1. Generate a random unit vector for rotation axis
177
+ 2. Generate a random angle
178
+ 3. Create rotation matrix using Rodriguez rotation formula
179
+
180
+ Returns:
181
+ numpy.ndarray: A 3x3 random rotation matrix
182
+ """
183
+ ## for ground target
184
+ # Generate random angle ฯ€/2
185
+ theta = -np.pi/2
186
+
187
+
188
+ # axis is -y
189
+ axis = np.array([
190
+ 1,
191
+ 0,
192
+ 0,
193
+ ])
194
+
195
+ # for lying target
196
+ # theta will be pi/2
197
+ # theta = np.pi/2
198
+ # axis = np.array([
199
+ # 0,
200
+ # 1,
201
+ # 0,
202
+ # ])
203
+
204
+
205
+
206
+
207
+ # Normalize to ensure it's a unit vector
208
+ axis = axis / np.linalg.norm(axis)
209
+
210
+
211
+
212
+ # Create the cross-product matrix K skew-symmetric
213
+ K = np.array([
214
+ [0, -axis[2], axis[1]],
215
+ [axis[2], 0, -axis[0]],
216
+ [-axis[1], axis[0], 0]
217
+ ])
218
+
219
+ # Rodriguez rotation formula: R = I + sin(ฮธ)K + (1-cos(ฮธ))Kยฒ
220
+ R = (np.eye(3) +
221
+ np.sin(theta) * K +
222
+ (1 - np.cos(theta)) * np.dot(K, K))
223
+
224
+ return R
225
+
226
+ if CHECK_PERTURB:
227
+ R_pert = random_rotation_matrix()
228
+ print(R_pert)
229
+ t_pert = np.array([
230
+ 0,
231
+ 0,
232
+ 0
233
+ ])
234
+
235
+
236
+ perturbed_pcd_array = np.dot(R_pert, pcd_array.T).T + t_pert.T
237
+
238
+
239
+ perturbed_pcd = o3d.geometry.PointCloud()
240
+ perturbed_pcd.points = o3d.utility.Vector3dVector(perturbed_pcd_array)
241
+ coord_frame = o3d.geometry.TriangleMesh.create_coordinate_frame(size=50.0, origin=[0, 0, 0])
242
+ o3d.visualization.draw_geometries([perturbed_pcd, coord_frame])
243
+
244
+
245
+ # ### Rotate randomly in Target "noisy filtered"
246
+
247
+ # In[164]:
248
+
249
+
250
+ CHECK_PERTURB = not GT
251
+
252
+ def random_rotation_matrix():
253
+ """
254
+ Generate a random 3x3 rotation matrix (SO(3) matrix).
255
+
256
+ Uses the method described by James Arvo in "Fast Random Rotation Matrices" (1992):
257
+ 1. Generate a random unit vector for rotation axis
258
+ 2. Generate a random angle
259
+ 3. Create rotation matrix using Rodriguez rotation formula
260
+
261
+ Returns:
262
+ numpy.ndarray: A 3x3 random rotation matrix
263
+ """
264
+ # # Generate random angle between 0 and 2ฯ€
265
+ # theta = np.random.uniform(0, 2 * np.pi)/4
266
+
267
+
268
+ # # Generate random unit vector for rotation axis
269
+ # phi = np.random.uniform(0, 2 * np.pi)/3
270
+ # cos_theta = np.random.uniform(-1, 1)/5
271
+ # sin_theta = np.sqrt(1 - cos_theta**2)
272
+
273
+ # axis = np.array([
274
+ # sin_theta * np.cos(phi),
275
+ # sin_theta * np.sin(phi),
276
+ # cos_theta
277
+ # ])
278
+
279
+ # # Normalize to ensure it's a unit vector
280
+ # axis = axis / np.linalg.norm(axis)
281
+
282
+
283
+
284
+ # # Create the cross-product matrix K skew-symmetric
285
+ # K = np.array([
286
+ # [0, -axis[2], axis[1]],
287
+ # [axis[2], 0, -axis[0]],
288
+ # [-axis[1], axis[0], 0]
289
+ # ])
290
+
291
+ # # Rodriguez rotation formula: R = I + sin(ฮธ)K + (1-cos(ฮธ))Kยฒ
292
+ # R = (np.eye(3) +
293
+ # np.sin(theta) * K +
294
+ # (1 - np.cos(theta)) * np.dot(K, K))
295
+
296
+ # return R
297
+
298
+ if CHECK_PERTURB:
299
+ # R_pert = random_rotation_matrix()
300
+ # print(R_pert)
301
+ # t_pert = np.random.rand(3, 1)*3 #* 10
302
+
303
+
304
+ # perturbed_pcd_array = np.dot(R_pert, new_pcd_array.T).T + t_pert.T
305
+ perturbed_pcd_array = new_pcd_array
306
+ perturbed_pcd = o3d.geometry.PointCloud()
307
+ perturbed_pcd.points = o3d.utility.Vector3dVector(perturbed_pcd_array)
308
+
309
+ # # ๊ฐ์ฒด์˜ ์ค‘์‹ฌ์„ (0, 0, 0)์œผ๋กœ ๋ฐ”๋กœ ์ด๋™
310
+ # perturbed_pcd.translate((0, 0, 0), relative=False)
311
+ # perturbed_pcd_array = np.asarray(perturbed_pcd.points)
312
+ # coord_frame = o3d.geometry.TriangleMesh.create_coordinate_frame(size=50.0, origin=[0, 0, 0])
313
+
314
+
315
+
316
+
317
+ o3d.visualization.draw_geometries([perturbed_pcd, coord_frame])
318
+
319
+
320
+ # In[165]:
321
+
322
+
323
+ def write_ply(points, output_path):
324
+ """
325
+ Write points and parameters to a PLY file
326
+
327
+ Parameters:
328
+ points: numpy array of shape (N, 3) containing point coordinates
329
+ output_path: path to save the PLY file
330
+ """
331
+ with open(output_path, 'w') as f:
332
+ # Write header
333
+ f.write("ply\n")
334
+ f.write("format ascii 1.0\n")
335
+
336
+ # Write vertex element
337
+ f.write(f"element vertex {len(points)}\n")
338
+ f.write("property float x\n")
339
+ f.write("property float y\n")
340
+ f.write("property float z\n")
341
+
342
+ # Write camera element
343
+ f.write("element camera 1\n")
344
+ f.write("property float view_px\n")
345
+ f.write("property float view_py\n")
346
+ f.write("property float view_pz\n")
347
+ f.write("property float x_axisx\n")
348
+ f.write("property float x_axisy\n")
349
+ f.write("property float x_axisz\n")
350
+ f.write("property float y_axisx\n")
351
+ f.write("property float y_axisy\n")
352
+ f.write("property float y_axisz\n")
353
+ f.write("property float z_axisx\n")
354
+ f.write("property float z_axisy\n")
355
+ f.write("property float z_axisz\n")
356
+
357
+ # Write phoxi frame parameters
358
+ f.write("element phoxi_frame_params 1\n")
359
+ f.write("property uint32 frame_width\n")
360
+ f.write("property uint32 frame_height\n")
361
+ f.write("property uint32 frame_index\n")
362
+ f.write("property float frame_start_time\n")
363
+ f.write("property float frame_duration\n")
364
+ f.write("property float frame_computation_duration\n")
365
+ f.write("property float frame_transfer_duration\n")
366
+ f.write("property int32 total_scan_count\n")
367
+
368
+ # Write camera matrix
369
+ f.write("element camera_matrix 1\n")
370
+ for i in range(9):
371
+ f.write(f"property float cm{i}\n")
372
+
373
+ # Write distortion matrix
374
+ f.write("element distortion_matrix 1\n")
375
+ for i in range(14):
376
+ f.write(f"property float dm{i}\n")
377
+
378
+ # Write camera resolution
379
+ f.write("element camera_resolution 1\n")
380
+ f.write("property float width\n")
381
+ f.write("property float height\n")
382
+
383
+ # Write frame binning
384
+ f.write("element frame_binning 1\n")
385
+ f.write("property float horizontal\n")
386
+ f.write("property float vertical\n")
387
+
388
+ # End header
389
+ f.write("end_header\n")
390
+
391
+ # Write vertex data
392
+ for point in points:
393
+ f.write(f"{point[0]} {point[1]} {point[2]}\n")
394
+
395
+ print(True)
396
+
397
+ if GT: write_ply(perturbed_pcd_array, f"gt_filtered.ply")
398
+ else: write_ply(perturbed_pcd_array, f"./noisy_result/noisy_filtered_{filename}.ply")
399
+ # write_ply(new_pcd_array, "gt_filtered.ply")
400
+
data/bottle_2/generategt.ipynb ADDED
@@ -0,0 +1,156 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "id": "0c5517fb",
6
+ "metadata": {},
7
+ "source": [
8
+ "## import Blender.txt\n",
9
+ "\n"
10
+ ]
11
+ },
12
+ {
13
+ "cell_type": "code",
14
+ "execution_count": 12,
15
+ "id": "fd9f6425",
16
+ "metadata": {},
17
+ "outputs": [
18
+ {
19
+ "name": "stdout",
20
+ "output_type": "stream",
21
+ "text": [
22
+ "100_13\n",
23
+ "[[ 9.98290e-01 1.27898e-02 -5.70343e-02 8.50504e-01]\n",
24
+ " [-2.31538e-02 9.82475e-01 -1.84952e-01 -8.78984e+00]\n",
25
+ " [ 5.36693e-02 1.85956e-01 9.81091e-01 -6.32466e+01]\n",
26
+ " [ 0.00000e+00 0.00000e+00 0.00000e+00 1.00000e+00]]\n",
27
+ "\u001b[1;33m[Open3D WARNING] Read PLY failed: unable to read file: ./gt_filtered.ply\u001b[0;m\n",
28
+ "\u001b[1;33m[Open3D WARNING] Read PLY failed: unable to read file: ./noisy_result/noisy_filtered_100_13.ply\u001b[0;m\n",
29
+ "\u001b[1;33m[Open3D WARNING] Read PLY failed: unable to read file: ./noisy_result/noisy_filtered_100_13.ply\u001b[0;m\n"
30
+ ]
31
+ },
32
+ {
33
+ "name": "stderr",
34
+ "output_type": "stream",
35
+ "text": [
36
+ "RPly: Unexpected end of file\n",
37
+ "RPly: Error reading 'view_px' of 'camera' number 0\n",
38
+ "RPly: Unexpected end of file\n",
39
+ "RPly: Error reading 'view_px' of 'camera' number 0\n",
40
+ "RPly: Unexpected end of file\n",
41
+ "RPly: Error reading 'view_px' of 'camera' number 0\n"
42
+ ]
43
+ }
44
+ ],
45
+ "source": [
46
+ "import json\n",
47
+ "import numpy as np\n",
48
+ "import open3d as o3d\n",
49
+ "\n",
50
+ "\n",
51
+ "def get_T(file_path):\n",
52
+ " with open(file_path, 'r') as f:\n",
53
+ " T_matrix = np.loadtxt(file_path)\n",
54
+ " print(T_matrix)\n",
55
+ " return T_matrix\n",
56
+ " \n",
57
+ "filenames = []\n",
58
+ "with open(\"filename.txt\", \"r\") as f:\n",
59
+ " for line in f:\n",
60
+ " filenames.append(line.strip())\n",
61
+ "\n",
62
+ "\n",
63
+ "filename = filenames[0]\n",
64
+ "print(filename)\n",
65
+ "\n",
66
+ "with open(f\"./gt/noisy_filtered_{filename}.json\", 'r') as f:\n",
67
+ " loaded_data = json.load(f)\n",
68
+ "\n",
69
+ "noisy_data = loaded_data[f'noisy_filtered_{filename}']\n",
70
+ "T_matrix = noisy_data['matrix_world']\n",
71
+ "\n",
72
+ " \n",
73
+ "infer_path = f\"./result3/result_{filename}.txt\"\n",
74
+ "infer_T = get_T(infer_path)\n",
75
+ "\n",
76
+ "\n",
77
+ "\n",
78
+ "##Translated\n",
79
+ "\n",
80
+ "gt_path = \"./gt_filtered.ply\"\n",
81
+ "noisy_path = f\"./noisy_result/noisy_filtered_{filename}.ply\"\n",
82
+ "\n",
83
+ "\n",
84
+ "gt_pcd = o3d.io.read_point_cloud(gt_path)\n",
85
+ "gt_pcd.paint_uniform_color([0,0,1])\n",
86
+ "noisy_pcd = o3d.io.read_point_cloud(noisy_path)\n",
87
+ "noisy_pcd.paint_uniform_color([1,0,0])\n",
88
+ "infer_pcd = o3d.io.read_point_cloud(noisy_path)\n",
89
+ "infer_pcd.paint_uniform_color([0,1,0])\n",
90
+ "\n",
91
+ "## move and check gt and noisy\n",
92
+ "\n",
93
+ "\n",
94
+ "\n",
95
+ "# infer_pcd.transform(infer_T)\n",
96
+ "noisy_pcd.transform(T_matrix)\n",
97
+ "\n",
98
+ "\n",
99
+ "o3d.visualization.draw_geometries([gt_pcd, noisy_pcd, infer_pcd])\n"
100
+ ]
101
+ },
102
+ {
103
+ "cell_type": "code",
104
+ "execution_count": null,
105
+ "id": "fbf13a76",
106
+ "metadata": {},
107
+ "outputs": [],
108
+ "source": []
109
+ },
110
+ {
111
+ "cell_type": "code",
112
+ "execution_count": null,
113
+ "id": "0509ac65",
114
+ "metadata": {},
115
+ "outputs": [],
116
+ "source": []
117
+ },
118
+ {
119
+ "cell_type": "markdown",
120
+ "id": "eccad9e9",
121
+ "metadata": {},
122
+ "source": [
123
+ "## write GT\n"
124
+ ]
125
+ },
126
+ {
127
+ "cell_type": "code",
128
+ "execution_count": null,
129
+ "id": "e0a339ca",
130
+ "metadata": {},
131
+ "outputs": [],
132
+ "source": []
133
+ }
134
+ ],
135
+ "metadata": {
136
+ "kernelspec": {
137
+ "display_name": "Python 3",
138
+ "language": "python",
139
+ "name": "python3"
140
+ },
141
+ "language_info": {
142
+ "codemirror_mode": {
143
+ "name": "ipython",
144
+ "version": 3
145
+ },
146
+ "file_extension": ".py",
147
+ "mimetype": "text/x-python",
148
+ "name": "python",
149
+ "nbconvert_exporter": "python",
150
+ "pygments_lexer": "ipython3",
151
+ "version": "3.10.12"
152
+ }
153
+ },
154
+ "nbformat": 4,
155
+ "nbformat_minor": 5
156
+ }
data/bottle_2/gt_Raw.ipynb ADDED
@@ -0,0 +1,819 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "id": "7d7011e4",
6
+ "metadata": {},
7
+ "source": [
8
+ "## load gt and translate"
9
+ ]
10
+ },
11
+ {
12
+ "cell_type": "code",
13
+ "execution_count": 1,
14
+ "id": "878f605d",
15
+ "metadata": {},
16
+ "outputs": [
17
+ {
18
+ "name": "stdout",
19
+ "output_type": "stream",
20
+ "text": [
21
+ "=== ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ ์‹œ์ž‘ ===\n",
22
+ "\n",
23
+ "--- [์นดํ…Œ๊ณ ๋ฆฌ: 100\n",
24
+ "100_19\n",
25
+ "<class 'numpy.ndarray'>\n",
26
+ "[ 51.19733434 -10.83484204 -387.45794023] [[-2.93318480e-01 -8.46543729e-01 4.44216162e-01 1.75000000e+01]\n",
27
+ " [ 5.14243305e-01 -5.31416714e-01 -6.73164248e-01 1.43500000e+02]\n",
28
+ " [ 8.05926859e-01 3.09836771e-02 5.91203749e-01 -2.00000000e+01]\n",
29
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
30
+ "100_10\n",
31
+ "<class 'numpy.ndarray'>\n",
32
+ "[ 25.67619933 -15.94907366 -345.08978903] [[-6.65230572e-01 3.54238040e-07 -7.46638000e-01 7.05000000e+01]\n",
33
+ " [ 7.46638000e-01 4.32703331e-07 -6.65230572e-01 1.19000000e+02]\n",
34
+ " [ 8.74227766e-08 -1.00000000e+00 -5.52335052e-07 1.10500000e+02]\n",
35
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
36
+ "100_1\n",
37
+ "<class 'numpy.ndarray'>\n",
38
+ "[ 54.14357065 -18.01762774 -324.78425313] [[ 7.28970468e-01 -3.22459824e-02 -6.83785200e-01 7.25000000e+01]\n",
39
+ " [ 6.84545159e-01 3.43387984e-02 7.28161275e-01 -2.25000000e+01]\n",
40
+ " [ 8.74227766e-08 -9.98889923e-01 4.71058004e-02 1.00000000e+02]\n",
41
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
42
+ "100_4\n",
43
+ "<class 'numpy.ndarray'>\n",
44
+ "[ 54.71764735 -17.40441832 -330.81992476] [[-2.38532797e-01 -5.08246794e-02 -9.69803572e-01 9.95000000e+01]\n",
45
+ " [ 9.71134424e-01 -1.24836117e-02 -2.38205910e-01 6.65000000e+01]\n",
46
+ " [ 8.74227766e-08 -9.98629570e-01 5.23353480e-02 1.03000000e+02]\n",
47
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
48
+ "100_6\n",
49
+ "<class 'numpy.ndarray'>\n",
50
+ "[ 24.2281063 -17.30561922 -347.65201352] [[ 4.06735718e-01 2.39131302e-02 9.13232863e-01 -8.50000000e+01]\n",
51
+ " [-9.13545847e-01 1.06466869e-02 4.06596333e-01 5.00000000e+00]\n",
52
+ " [ 8.74227766e-08 -9.99657333e-01 2.61761285e-02 1.04000000e+02]\n",
53
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
54
+ "100_5\n",
55
+ "<class 'numpy.ndarray'>\n",
56
+ "[ 31.02152667 -16.37354795 -337.47553193] [[ 8.05927813e-01 2.47906260e-02 5.91494560e-01 -5.90000000e+01]\n",
57
+ " [-5.92013836e-01 3.37481424e-02 8.05220902e-01 -3.25000000e+01]\n",
58
+ " [ 8.74227766e-08 -9.99122858e-01 4.18749601e-02 1.05000000e+02]\n",
59
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
60
+ "100_17\n",
61
+ "<class 'numpy.ndarray'>\n",
62
+ "[ 41.83540301 -11.42143584 -357.66950004] [[ 0.34551173 -0.83580726 0.42667067 16.5 ]\n",
63
+ " [ -0.52599114 -0.54902297 -0.64954376 156. ]\n",
64
+ " [ 0.77714539 0. -0.6293211 82.5 ]\n",
65
+ " [ 0. 0. 0. 1. ]]\n",
66
+ "100_15\n",
67
+ "<class 'numpy.ndarray'>\n",
68
+ "[ 24.84687131 -12.3077729 -366.56053808] [[ 4.75527972e-01 -8.59782219e-01 -1.86138809e-01 7.10000000e+01]\n",
69
+ " [-8.23639393e-01 -5.09470284e-01 2.49114692e-01 6.75000000e+01]\n",
70
+ " [-3.09016585e-01 3.48502435e-02 -9.50417936e-01 1.11000000e+02]\n",
71
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
72
+ "100_12\n",
73
+ "<class 'numpy.ndarray'>\n",
74
+ "[ 41.42189298 -14.12100997 -352.32385985] [[-4.44922507e-01 -8.68288934e-01 -2.19358906e-01 7.30000000e+01]\n",
75
+ " [ 7.17583358e-01 -4.92189586e-01 4.92771238e-01 4.00000000e+01]\n",
76
+ " [-5.35833955e-01 6.18367195e-02 8.42055917e-01 -4.00000000e+01]\n",
77
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
78
+ "100_16\n",
79
+ "<class 'numpy.ndarray'>\n",
80
+ "[ 35.45306223 -8.66726484 -360.26216223] [[ 5.50878942e-01 -8.34482431e-01 -1.30962841e-02 5.65000000e+01]\n",
81
+ " [-8.19793046e-01 -5.38107276e-01 -1.95907772e-01 1.04500000e+02]\n",
82
+ " [ 1.56434372e-01 1.18657708e-01 -9.80534852e-01 1.20000000e+02]\n",
83
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
84
+ "100_14\n",
85
+ "<class 'numpy.ndarray'>\n",
86
+ "[ -4.11060848 -10.1532769 -348.5691703 ] [[ 3.01073521e-01 -8.68400633e-01 -3.93998891e-01 9.70000000e+01]\n",
87
+ " [-6.39815569e-01 -4.90323544e-01 5.91792881e-01 2.20000000e+01]\n",
88
+ " [-7.07100272e-01 7.39134625e-02 -7.03239679e-01 9.00000000e+01]\n",
89
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
90
+ "100_7\n",
91
+ "<class 'numpy.ndarray'>\n",
92
+ "[ 41.27617588 -17.8722464 -352.18525802] [[-4.06179309e-01 7.38384351e-02 9.10805285e-01 -9.45000000e+01]\n",
93
+ " [-9.12293434e-01 2.43186895e-02 -4.08814460e-01 8.85000000e+01]\n",
94
+ " [-5.23358099e-02 -9.96973693e-01 5.74845709e-02 1.01000000e+02]\n",
95
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
96
+ "100_13\n",
97
+ "<class 'numpy.ndarray'>\n",
98
+ "[ 27.57481428 -11.96131775 -340.67913273] [[ 4.17015217e-02 -8.65965843e-01 -4.98361468e-01 1.05500000e+02]\n",
99
+ " [-6.64780587e-02 -5.00094891e-01 8.63415182e-01 -1.00000000e+00]\n",
100
+ " [-9.96916056e-01 -2.87562096e-03 -7.84224495e-02 4.65000000e+01]\n",
101
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
102
+ "100_9\n",
103
+ "<class 'numpy.ndarray'>\n",
104
+ "[ 33.07159082 -19.30269462 -355.05924509] [[-9.94521916e-01 -4.92398394e-03 -1.04412429e-01 2.00000000e+01]\n",
105
+ " [ 1.04528464e-01 -4.68477383e-02 -9.93417859e-01 1.55000000e+02]\n",
106
+ " [ 8.74227766e-08 -9.98889923e-01 4.71058004e-02 1.01000000e+02]\n",
107
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
108
+ "100_18\n",
109
+ "<class 'numpy.ndarray'>\n",
110
+ "[ 29.45425976 -10.39854392 -371.09839178] [[-1.61214992e-02 -9.00317252e-01 4.34935510e-01 1.65000000e+01]\n",
111
+ " [ 3.29080857e-02 -4.35234129e-01 -8.99715662e-01 1.68000000e+02]\n",
112
+ " [ 9.99328375e-01 -1.91871048e-04 3.66443433e-02 4.00000000e+01]\n",
113
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
114
+ "100_2\n",
115
+ "<class 'numpy.ndarray'>\n",
116
+ "[ 54.11831137 -18.01841884 -324.7759575 ] [[ 7.49945462e-01 -3.64737324e-02 -6.60493314e-01 7.10000000e+01]\n",
117
+ " [ 6.61168039e-01 9.71948169e-03 7.50174880e-01 -2.60000000e+01]\n",
118
+ " [-2.09420230e-02 -9.99287367e-01 3.14043462e-02 1.02500000e+02]\n",
119
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
120
+ "100_11\n",
121
+ "<class 'numpy.ndarray'>\n",
122
+ "[ 22.03579253 -17.03875545 -340.16779864] [[-5.23394831e-02 -4.70412374e-02 -9.97520804e-01 9.65000000e+01]\n",
123
+ " [ 9.98629332e-01 -2.46540597e-03 -5.22813834e-02 5.85000000e+01]\n",
124
+ " [ 8.74227766e-08 -9.98889923e-01 4.71058004e-02 1.01500000e+02]\n",
125
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
126
+ "100_20\n",
127
+ "<class 'numpy.ndarray'>\n",
128
+ "[ 50.40114729 -13.0845525 -351.94462587] [[-5.15631497e-01 -8.28933716e-01 2.16778919e-01 3.70000000e+01]\n",
129
+ " [ 8.41432929e-01 -5.37620902e-01 -5.43539152e-02 9.00000000e+01]\n",
130
+ " [ 1.61600679e-01 1.54378325e-01 9.74706411e-01 -6.50000000e+01]\n",
131
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
132
+ "100_3\n",
133
+ "<class 'numpy.ndarray'>\n",
134
+ "[ 41.17514239 -18.68515214 -329.11994646] [[ 8.91007781e-01 -2.37595402e-02 -4.53365833e-01 5.55000000e+01]\n",
135
+ " [ 4.53987986e-01 4.66312431e-02 8.89786720e-01 -3.70000000e+01]\n",
136
+ " [ 8.74227766e-08 -9.98629570e-01 5.23353480e-02 1.01500000e+02]\n",
137
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
138
+ "100_8\n",
139
+ "<class 'numpy.ndarray'>\n",
140
+ "[ 39.3421297 -18.34427337 -353.48498967] [[-8.57876718e-01 -2.60340068e-02 5.13195634e-01 -5.50000000e+01]\n",
141
+ " [-5.13428628e-01 2.72471388e-03 -8.58127952e-01 1.36000000e+02]\n",
142
+ " [ 2.09421981e-02 -9.99657333e-01 -1.57040730e-02 1.07500000e+02]\n",
143
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
144
+ "\n",
145
+ "--- [์นดํ…Œ๊ณ ๋ฆฌ: 75\n",
146
+ "75_6\n",
147
+ "<class 'numpy.ndarray'>\n",
148
+ "[ -10.28079148 -13.57670978 -333.97319473] [[ 2.84015656e-01 5.01801819e-02 9.57505643e-01 -9.55000000e+01]\n",
149
+ " [-9.58819628e-01 1.48639735e-02 2.83626437e-01 2.20000000e+01]\n",
150
+ " [ 8.74227766e-08 -9.98629570e-01 5.23353480e-02 1.07000000e+02]\n",
151
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
152
+ "75_12\n",
153
+ "<class 'numpy.ndarray'>\n",
154
+ "[ 53.5993972 -14.16602359 -353.43173679] [[-2.09197178e-01 -8.75313044e-01 -4.35962826e-01 1.03000000e+02]\n",
155
+ " [ 2.72632271e-01 -4.80357140e-01 8.33623827e-01 -3.00000000e+00]\n",
156
+ " [-9.39099669e-01 5.55342138e-02 3.39127928e-01 1.50000000e+01]\n",
157
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
158
+ "75_9\n",
159
+ "<class 'numpy.ndarray'>\n",
160
+ "[ -16.15560412 -16.54161382 -339.99475785] [[-6.33384287e-01 3.72045321e-07 -7.73837388e-01 7.65000000e+01]\n",
161
+ " [ 7.73837388e-01 4.17491378e-07 -6.33384287e-01 1.13500000e+02]\n",
162
+ " [ 8.74227766e-08 -1.00000000e+00 -5.52335052e-07 1.07000000e+02]\n",
163
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
164
+ "75_4\n",
165
+ "<class 'numpy.ndarray'>\n",
166
+ "[ 14.88823613 -16.12019282 -322.59421087] [[ 1.04506835e-01 -3.34254205e-02 -9.93962288e-01 9.75000000e+01]\n",
167
+ " [ 9.94303644e-01 -1.75337940e-02 1.05132356e-01 3.65000000e+01]\n",
168
+ " [-2.09420230e-02 -9.99287426e-01 3.14026177e-02 1.06000000e+02]\n",
169
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
170
+ "75_11\n",
171
+ "<class 'numpy.ndarray'>\n",
172
+ "[ 4.07306872 -16.04775377 -354.76939747] [[ 7.28970468e-01 1.43375667e-02 -6.84394956e-01 6.55000000e+01]\n",
173
+ " [ 6.84545159e-01 -1.52679132e-02 7.28810549e-01 -2.25000000e+01]\n",
174
+ " [ 8.74227766e-08 -9.99780655e-01 -2.09445693e-02 1.11500000e+02]\n",
175
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
176
+ "75_7\n",
177
+ "<class 'numpy.ndarray'>\n",
178
+ "[ -19.98757666 -19.97969048 -323.16157819] [[-6.57375097e-01 3.94375920e-02 7.52530813e-01 -7.65000000e+01]\n",
179
+ " [-7.53563523e-01 -3.44037041e-02 -6.56474233e-01 1.17000000e+02]\n",
180
+ " [ 8.74227766e-08 -9.98629570e-01 5.23348711e-02 9.80000000e+01]\n",
181
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
182
+ "75_14\n",
183
+ "<class 'numpy.ndarray'>\n",
184
+ "[ 2.75472692 -8.87751636 -360.52708487] [[ 3.65883231e-01 -8.72372746e-01 -3.24183911e-01 9.15000000e+01]\n",
185
+ " [-7.18088210e-01 -4.86214906e-01 4.97940153e-01 3.35000000e+01]\n",
186
+ " [-5.92012465e-01 5.06046824e-02 -8.04338455e-01 1.00000000e+02]\n",
187
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
188
+ "75_8\n",
189
+ "<class 'numpy.ndarray'>\n",
190
+ "[ 6.31429544 -20.70514197 -333.38406434] [[-9.98341978e-01 -2.10930570e-03 -5.75226769e-02 2.50000000e+01]\n",
191
+ " [ 5.75613379e-02 -3.65822129e-02 -9.97671485e-01 1.49000000e+02]\n",
192
+ " [ 8.74227766e-08 -9.99328434e-01 3.66429724e-02 1.00000000e+02]\n",
193
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
194
+ "75_16\n",
195
+ "<class 'numpy.ndarray'>\n",
196
+ "[ -18.92732154 -3.39734423 -361.08917408] [[ 4.85276163e-01 -8.50462437e-01 2.03028768e-01 4.70000000e+01]\n",
197
+ " [-7.47261703e-01 -5.23964822e-01 -4.08730775e-01 1.22000000e+02]\n",
198
+ " [ 4.53990102e-01 4.66316864e-02 -8.89785647e-01 1.16500000e+02]\n",
199
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
200
+ "75_17\n",
201
+ "<class 'numpy.ndarray'>\n",
202
+ "[ -9.48478114 -7.6458447 -376.1634084 ] [[ 3.70562911e-01 -8.56798828e-01 3.58579069e-01 2.75000000e+01]\n",
203
+ " [-4.77728516e-01 -5.06902754e-01 -7.17513144e-01 1.51000000e+02]\n",
204
+ " [ 7.96529114e-01 9.45803002e-02 -5.97156584e-01 8.05000000e+01]\n",
205
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
206
+ "75_2\n",
207
+ "<class 'numpy.ndarray'>\n",
208
+ "[ 40.87666511 -16.50623297 -345.97803966] [[-1.04529373e-01 -3.12379207e-02 -9.94031072e-01 9.45000000e+01]\n",
209
+ " [ 9.94521797e-01 -3.28317867e-03 -1.04477800e-01 7.05000000e+01]\n",
210
+ " [ 8.74227766e-08 -9.99506593e-01 3.14099826e-02 1.06500000e+02]\n",
211
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
212
+ "75_3\n",
213
+ "<class 'numpy.ndarray'>\n",
214
+ "[ 44.66045392 -16.332629 -318.40189155] [[ 5.31401873e-01 -1.33055728e-02 -8.47015381e-01 8.50000000e+01]\n",
215
+ " [ 8.47119868e-01 8.34674481e-03 5.31336308e-01 1.00000000e+00]\n",
216
+ " [ 8.74227766e-08 -9.99876618e-01 1.57068912e-02 1.06500000e+02]\n",
217
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
218
+ "75_1\n",
219
+ "<class 'numpy.ndarray'>\n",
220
+ "[ 41.09635179 -16.49375851 -345.7756453 ] [[-9.41086635e-02 -3.12710628e-02 -9.95070696e-01 9.85000000e+01]\n",
221
+ " [ 9.95561957e-01 -2.95590935e-03 -9.40622315e-02 6.60000000e+01]\n",
222
+ " [ 8.74227766e-08 -9.99506593e-01 3.14104594e-02 1.04000000e+02]\n",
223
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
224
+ "75_15\n",
225
+ "<class 'numpy.ndarray'>\n",
226
+ "[ -4.89271883 -12.75829091 -363.93432522] [[ 4.97526824e-01 -8.63186777e-01 -8.58815610e-02 6.35000000e+01]\n",
227
+ " [-8.61743987e-01 -5.03162324e-01 6.50001392e-02 7.60000000e+01]\n",
228
+ " [-9.93196219e-02 4.16686051e-02 -9.94182765e-01 1.13500000e+02]\n",
229
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
230
+ "75_20\n",
231
+ "<class 'numpy.ndarray'>\n",
232
+ "[ 8.30658836 -8.95998312 -370.69422623] [[-4.02583301e-01 -8.33207130e-01 3.79067987e-01 2.90000000e+01]\n",
233
+ " [ 6.64743483e-01 -5.50803840e-01 -5.04709125e-01 1.27000000e+02]\n",
234
+ " [ 6.29319310e-01 4.87955064e-02 7.75613427e-01 -3.65000000e+01]\n",
235
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
236
+ "75_10\n",
237
+ "<class 'numpy.ndarray'>\n",
238
+ "[ -12.03577189 -15.94498601 -348.25758199] [[-9.93204340e-02 -2.60467101e-02 -9.94714558e-01 9.65000000e+01]\n",
239
+ " [ 9.95055497e-01 -2.59973761e-03 -9.92864072e-02 6.40000000e+01]\n",
240
+ " [ 8.74227766e-08 -9.99657333e-01 2.61761285e-02 1.07000000e+02]\n",
241
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
242
+ "75_13\n",
243
+ "<class 'numpy.ndarray'>\n",
244
+ "[ 17.26730099 -11.93908139 -344.08557292] [[ 8.25190097e-02 -8.49209785e-01 -5.21568179e-01 1.08500000e+02]\n",
245
+ " [-3.43716562e-01 -5.15492618e-01 7.84937143e-01 8.00000000e+00]\n",
246
+ " [-9.35440838e-01 1.14499390e-01 -3.34425420e-01 5.80000000e+01]\n",
247
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
248
+ "75_5\n",
249
+ "<class 'numpy.ndarray'>\n",
250
+ "[ -13.14375458 -12.79746753 -336.26320302] [[ 8.30012262e-01 -1.16808610e-02 5.57622790e-01 -5.40000000e+01]\n",
251
+ " [-5.57745099e-01 -1.73831116e-02 8.29830229e-01 -2.95000000e+01]\n",
252
+ " [ 8.74227766e-08 -9.99780655e-01 -2.09431387e-02 1.13000000e+02]\n",
253
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
254
+ "75_19\n",
255
+ "<class 'numpy.ndarray'>\n",
256
+ "[ -5.15010367 -5.35148716 -376.2158517 ] [[-1.00854911e-01 -8.38657498e-01 5.35239995e-01 1.35000000e+01]\n",
257
+ " [ 2.54722267e-01 -5.41818321e-01 -8.00967813e-01 1.63000000e+02]\n",
258
+ " [ 9.61740553e-01 5.55559993e-02 2.68269777e-01 1.15000000e+01]\n",
259
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
260
+ "75_18\n",
261
+ "<class 'numpy.ndarray'>\n",
262
+ "[ -1.27348381 -3.52856113 -363.11010876] [[ 1.41220719e-01 -8.79481137e-01 4.54499364e-01 2.15000000e+01]\n",
263
+ " [-1.38294190e-01 -4.72124577e-01 -8.70616496e-01 1.68500000e+02]\n",
264
+ " [ 9.80271101e-01 6.00944757e-02 -1.88300893e-01 4.50000000e+01]\n",
265
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
266
+ "\n",
267
+ "--- [์นดํ…Œ๊ณ ๋ฆฌ: 50\n",
268
+ "50_18\n",
269
+ "<class 'numpy.ndarray'>\n",
270
+ "[ 28.26907896 -17.23835968 -360.79007548] [[-1.70527339e-01 -8.65532279e-01 -4.70929146e-01 1.02000000e+02]\n",
271
+ " [ 2.27120772e-01 -4.99586582e-01 8.35960150e-01 -5.50000000e+00]\n",
272
+ " [-9.58820403e-01 3.55962664e-02 2.81773537e-01 2.15000000e+01]\n",
273
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
274
+ "50_8\n",
275
+ "<class 'numpy.ndarray'>\n",
276
+ "[ 40.10537581 -17.06463583 -349.99374741] [[-4.77158964e-01 4.43686872e-07 -8.78817022e-01 7.70000000e+01]\n",
277
+ " [ 8.78817022e-01 3.40380240e-07 -4.77158964e-01 9.75000000e+01]\n",
278
+ " [ 8.74227766e-08 -1.00000000e+00 -5.52335052e-07 1.07500000e+02]\n",
279
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
280
+ "50_13\n",
281
+ "<class 'numpy.ndarray'>\n",
282
+ "[ 38.87510909 -16.11698246 -391.01243428] [[ 5.17667353e-01 8.54664147e-01 -3.96198146e-02 -4.90000000e+01]\n",
283
+ " [ 8.44749629e-01 -5.17910421e-01 -1.34784400e-01 9.60000000e+01]\n",
284
+ " [-1.35714903e-01 3.63046639e-02 -9.90082562e-01 1.15000000e+02]\n",
285
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
286
+ "50_15\n",
287
+ "<class 'numpy.ndarray'>\n",
288
+ "[ 9.54939332 -17.56393199 -373.96317135] [[ 2.90624380e-01 8.73271525e-01 3.91068190e-01 -9.30000000e+01]\n",
289
+ " [ 5.15770555e-01 -4.87224042e-01 7.04693913e-01 8.50000000e+00]\n",
290
+ " [ 8.05926919e-01 -3.09977727e-03 -5.92006922e-01 9.35000000e+01]\n",
291
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
292
+ "50_7\n",
293
+ "<class 'numpy.ndarray'>\n",
294
+ "[ 52.13405573 -16.19737249 -357.43718045] [[ 1.82236373e-01 5.59017678e-07 -9.83254731e-01 9.00000000e+01]\n",
295
+ " [ 9.83254731e-01 -1.46966714e-08 1.82236373e-01 3.20000000e+01]\n",
296
+ " [ 8.74227766e-08 -1.00000000e+00 -5.52335052e-07 1.09500000e+02]\n",
297
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
298
+ "50_4\n",
299
+ "<class 'numpy.ndarray'>\n",
300
+ "[ 42.48308957 -13.34240294 -343.44224666] [[ 4.76922661e-01 1.49888871e-02 8.78817439e-01 -8.05000000e+01]\n",
301
+ " [-8.78383815e-01 -2.76041720e-02 4.77158129e-01 2.50000000e+00]\n",
302
+ " [ 3.14110965e-02 -9.99506533e-01 9.41284725e-07 1.12500000e+02]\n",
303
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
304
+ "50_5\n",
305
+ "<class 'numpy.ndarray'>\n",
306
+ "[ 37.35970129 -14.24316042 -336.57444623] [[ 8.65977049e-01 1.40418659e-03 5.00081718e-01 -4.85000000e+01]\n",
307
+ " [-4.99974072e-01 2.33705416e-02 8.65724981e-01 -3.70000000e+01]\n",
308
+ " [-1.04715424e-02 -9.99725878e-01 2.09404100e-02 1.09000000e+02]\n",
309
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
310
+ "50_19\n",
311
+ "<class 'numpy.ndarray'>\n",
312
+ "[ 18.13099468 -15.09828699 -373.56972069] [[ 1.69344455e-01 -8.62255633e-01 -4.77323413e-01 1.02500000e+02]\n",
313
+ " [-3.75056893e-01 -5.04259884e-01 7.77852356e-01 3.50000000e+00]\n",
314
+ " [-9.11402643e-01 4.72984463e-02 -4.08788532e-01 6.85000000e+01]\n",
315
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
316
+ "50_16\n",
317
+ "<class 'numpy.ndarray'>\n",
318
+ "[ 54.96526723 -6.24934125 -372.58995266] [[-4.84127194e-01 -8.51330519e-01 2.02131584e-01 4.65000000e+01]\n",
319
+ " [ 8.18616331e-01 -5.22263169e-01 -2.38973722e-01 1.03000000e+02]\n",
320
+ " [ 3.09011519e-01 4.97745462e-02 9.49754894e-01 -5.35000000e+01]\n",
321
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
322
+ "50_20\n",
323
+ "<class 'numpy.ndarray'>\n",
324
+ "[ 6.9073331 -12.50545741 -376.94878724] [[ 4.52463269e-01 -8.56338322e-01 2.48921052e-01 3.45000000e+01]\n",
325
+ " [-6.88811421e-01 -5.12875915e-01 -5.12344778e-01 1.30000000e+02]\n",
326
+ " [ 5.66406071e-01 6.03575222e-02 -8.21913123e-01 1.10000000e+02]\n",
327
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
328
+ "50_14\n",
329
+ "<class 'numpy.ndarray'>\n",
330
+ "[ 26.84217318 -13.37724083 -373.07124676] [[ 4.91954267e-01 8.43542457e-01 2.15446383e-01 -7.50000000e+01]\n",
331
+ " [ 7.93443859e-01 -5.36261320e-01 2.87872612e-01 5.85000000e+01]\n",
332
+ " [ 3.58368307e-01 2.93244496e-02 -9.33119595e-01 1.23500000e+02]\n",
333
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
334
+ "50_12\n",
335
+ "<class 'numpy.ndarray'>\n",
336
+ "[ 59.89943686 -13.35773397 -398.58164983] [[ 4.00223613e-01 8.52581263e-01 -3.36045057e-01 -2.70000000e+01]\n",
337
+ " [ 6.09276235e-01 -5.21465302e-01 -5.97374618e-01 1.39000000e+02]\n",
338
+ " [-6.84546232e-01 3.43391597e-02 -7.28160203e-01 9.50000000e+01]\n",
339
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
340
+ "50_11\n",
341
+ "<class 'numpy.ndarray'>\n",
342
+ "[ 58.33317475 -12.89082022 -326.86482127] [[-7.99684465e-01 3.77000421e-02 5.99235713e-01 -5.95000000e+01]\n",
343
+ " [-6.00420475e-01 -5.02118543e-02 -7.98106492e-01 1.36500000e+02]\n",
344
+ " [ 8.74227766e-08 -9.98026788e-01 6.27895147e-02 1.06500000e+02]\n",
345
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
346
+ "50_9\n",
347
+ "<class 'numpy.ndarray'>\n",
348
+ "[ 27.92755044 -15.93361787 -333.39666851] [[-8.49892676e-01 -2.48230007e-02 -5.26370823e-01 4.90000000e+01]\n",
349
+ " [ 5.26955843e-01 -4.00352329e-02 -8.48949194e-01 1.45000000e+02]\n",
350
+ " [ 8.74227766e-08 -9.98889863e-01 4.71062772e-02 1.06500000e+02]\n",
351
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
352
+ "50_6\n",
353
+ "<class 'numpy.ndarray'>\n",
354
+ "[ 43.07009535 -13.964573 -345.44811509] [[ 9.99972582e-01 5.15297474e-03 5.31978253e-03 4.50000000e+00]\n",
355
+ " [-5.23811160e-03 -1.57352034e-02 9.99862492e-01 -4.85000000e+01]\n",
356
+ " [ 5.23597375e-03 -9.99862909e-01 -1.57077797e-02 1.12000000e+02]\n",
357
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
358
+ "50_17\n",
359
+ "<class 'numpy.ndarray'>\n",
360
+ "[ 21.19433361 -13.9616235 -385.61167404] [[-4.56769258e-01 -8.58143985e-01 -2.34415770e-01 7.85000000e+01]\n",
361
+ " [ 7.03364849e-01 -5.09721696e-01 4.95440930e-01 3.60000000e+01]\n",
362
+ " [-5.44646442e-01 6.14223853e-02 8.36413503e-01 -3.90000000e+01]\n",
363
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
364
+ "50_1\n",
365
+ "<class 'numpy.ndarray'>\n",
366
+ "[ 59.52117866 -15.3738714 -347.71641335] [[-1.19972751e-01 2.48980802e-02 9.92464900e-01 -9.15000000e+01]\n",
367
+ " [-9.91396725e-01 -5.57048060e-02 -1.18446149e-01 6.85000000e+01]\n",
368
+ " [ 5.23359850e-02 -9.98136818e-01 3.13669369e-02 1.08000000e+02]\n",
369
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
370
+ "50_10\n",
371
+ "<class 'numpy.ndarray'>\n",
372
+ "[ 38.45517695 -25.38650074 -331.90212336] [[-9.99602497e-01 8.94374773e-03 -2.67361123e-02 -3.00000000e+00]\n",
373
+ " [ 2.61755064e-02 -5.78178689e-02 -9.97983932e-01 1.55500000e+02]\n",
374
+ " [-1.04715424e-02 -9.98287082e-01 5.75607792e-02 9.30000000e+01]\n",
375
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
376
+ "50_3\n",
377
+ "<class 'numpy.ndarray'>\n",
378
+ "[ 47.77424912 -14.1188276 -331.79743582] [[-7.67154515e-01 2.28467248e-02 6.41055346e-01 -6.55000000e+01]\n",
379
+ " [-6.41440928e-01 -3.54810432e-02 -7.66351461e-01 1.31000000e+02]\n",
380
+ " [ 5.23668900e-03 -9.99109149e-01 4.18742672e-02 1.09000000e+02]\n",
381
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
382
+ "50_2\n",
383
+ "<class 'numpy.ndarray'>\n",
384
+ "[ 59.42157252 -15.51625781 -347.62839332] [[-1.14937671e-01 -5.58722718e-07 9.93372679e-01 -9.10000000e+01]\n",
385
+ " [-9.93372679e-01 -2.33593003e-08 -1.14937671e-01 6.45000000e+01]\n",
386
+ " [ 8.74227766e-08 -1.00000000e+00 -5.52335052e-07 1.10500000e+02]\n",
387
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
388
+ "\n",
389
+ "--- [์นดํ…Œ๊ณ ๋ฆฌ: 25\n",
390
+ "25_6\n",
391
+ "<class 'numpy.ndarray'>\n",
392
+ "[ 8.61615697 -31.8045368 -351.10071425] [[-2.61689126e-02 8.90969396e-01 4.53308612e-01 -9.00000000e+01]\n",
393
+ " [-4.53255996e-02 -4.54055071e-01 8.89819980e-01 -2.00000000e+01]\n",
394
+ " [ 9.98629451e-01 2.73913727e-03 5.22658490e-02 4.20000000e+01]\n",
395
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
396
+ "25_19\n",
397
+ "<class 'numpy.ndarray'>\n",
398
+ "[ -3.05976304 -13.79157959 -338.19754376] [[-7.10789740e-01 2.20553949e-02 -7.03058660e-01 5.30000000e+01]\n",
399
+ " [ 7.03385055e-01 2.97254249e-02 -7.10187197e-01 1.40500000e+02]\n",
400
+ " [ 5.23525849e-03 -9.99314725e-01 -3.66419628e-02 1.12000000e+02]\n",
401
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
402
+ "25_17\n",
403
+ "<class 'numpy.ndarray'>\n",
404
+ "[ 47.73491514 -7.13858754 -353.31326402] [[-8.57488573e-01 4.48732153e-02 5.12542367e-01 -4.95000000e+01]\n",
405
+ " [-5.13196528e-01 -3.64979031e-03 -8.58263373e-01 1.47000000e+02]\n",
406
+ " [-3.66423652e-02 -9.98986006e-01 2.61584315e-02 1.16000000e+02]\n",
407
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
408
+ "25_9\n",
409
+ "<class 'numpy.ndarray'>\n",
410
+ "[ 23.41583283 -14.79229727 -365.86318633] [[-4.22979087e-01 8.85387242e-01 -1.92816377e-01 -2.65000000e+01]\n",
411
+ " [-8.30143154e-01 -4.63932246e-01 -3.09239805e-01 1.27000000e+02]\n",
412
+ " [-3.63250703e-01 2.92632300e-02 9.31231737e-01 -3.05000000e+01]\n",
413
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
414
+ "25_11\n",
415
+ "<class 'numpy.ndarray'>\n",
416
+ "[ 31.82878222 -14.1290978 -328.08744427] [[-9.99931514e-01 -5.06819226e-03 1.05502456e-02 -7.50000000e+00]\n",
417
+ " [-1.04691898e-02 -1.57619193e-02 -9.99820948e-01 1.63500000e+02]\n",
418
+ " [ 5.23357699e-03 -9.99862909e-01 1.57077797e-02 1.07000000e+02]\n",
419
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
420
+ "25_20\n",
421
+ "<class 'numpy.ndarray'>\n",
422
+ "[ 19.60748626 -17.66528259 -358.65433521] [[ 3.66388112e-02 -4.76490818e-02 -9.98191953e-01 8.45000000e+01]\n",
423
+ " [ 9.99205112e-01 -1.39529109e-02 3.73420455e-02 4.75000000e+01]\n",
424
+ " [-1.57069974e-02 -9.98766661e-01 4.70999889e-02 1.05500000e+02]\n",
425
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
426
+ "25_14\n",
427
+ "<class 'numpy.ndarray'>\n",
428
+ "[ 19.89107552 -18.53665048 -356.73167077] [[ 9.50848758e-01 2.76911701e-03 -3.09643239e-01 2.90000000e+01]\n",
429
+ " [ 3.08946699e-01 -7.61085898e-02 9.48029220e-01 -5.15000000e+01]\n",
430
+ " [-2.09413078e-02 -9.97095704e-01 -7.32232705e-02 1.13000000e+02]\n",
431
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
432
+ "25_4\n",
433
+ "<class 'numpy.ndarray'>\n",
434
+ "[ 14.5972955 -19.92519179 -379.18381659] [[ 4.04507875e-01 8.49457979e-01 3.38813305e-01 -7.50000000e+01]\n",
435
+ " [ 7.00630009e-01 -5.25954723e-01 4.82171327e-01 4.40000000e+01]\n",
436
+ " [ 5.87784767e-01 4.23406847e-02 -8.07908595e-01 1.04500000e+02]\n",
437
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
438
+ "25_16\n",
439
+ "<class 'numpy.ndarray'>\n",
440
+ "[ 23.9261915 -6.66387486 -387.36830495] [[ 1.04527801e-01 -6.58727515e-07 9.94521976e-01 -8.20000000e+01]\n",
441
+ " [-9.94521976e-01 -1.57138928e-07 1.04527801e-01 4.30000000e+01]\n",
442
+ " [ 8.74227766e-08 -1.00000000e+00 -6.71544342e-07 1.20500000e+02]\n",
443
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
444
+ "25_5\n",
445
+ "<class 'numpy.ndarray'>\n",
446
+ "[ 6.65038734 -24.28279954 -377.78655465] [[ 3.07082146e-01 8.68339777e-01 3.89469624e-01 -7.95000000e+01]\n",
447
+ " [ 5.58580637e-01 -4.95790064e-01 6.64966106e-01 2.70000000e+01]\n",
448
+ " [ 7.70511687e-01 1.33509627e-02 -6.37286067e-01 9.70000000e+01]\n",
449
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
450
+ "25_2\n",
451
+ "<class 'numpy.ndarray'>\n",
452
+ "[ 50.34458922 -6.53171928 -392.03081776] [[ 2.70119667e-01 8.85806918e-01 -3.77334684e-01 -3.10000000e+01]\n",
453
+ " [ 4.20756996e-01 -4.61101443e-01 -7.81248391e-01 1.49500000e+02]\n",
454
+ " [-8.66024792e-01 5.22643477e-02 -4.97262031e-01 7.40000000e+01]\n",
455
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
456
+ "25_10\n",
457
+ "<class 'numpy.ndarray'>\n",
458
+ "[ 19.80598694 5.54998488 -349.78725865] [[-1.55652106e-01 9.53439653e-01 -2.58312285e-01 -3.90000000e+01]\n",
459
+ " [-3.49600285e-01 -2.97745287e-01 -8.88328433e-01 1.76500000e+02]\n",
460
+ " [-9.23878789e-01 -4.79641519e-02 3.79667461e-01 2.25000000e+01]\n",
461
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
462
+ "25_3\n",
463
+ "<class 'numpy.ndarray'>\n",
464
+ "[ 32.64899358 -13.09385106 -384.42097825] [[ 5.41654408e-01 8.39874089e-01 -3.49570401e-02 -5.20000000e+01]\n",
465
+ " [ 8.34076822e-01 -5.42156577e-01 -1.01892397e-01 9.55000000e+01]\n",
466
+ " [-1.04528971e-01 2.60336101e-02 -9.94181037e-01 1.14000000e+02]\n",
467
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
468
+ "25_8\n",
469
+ "<class 'numpy.ndarray'>\n",
470
+ "[ 2.7573541 -14.86633456 -356.21006468] [[-5.17571390e-01 8.51803780e-01 8.09332281e-02 -5.95000000e+01]\n",
471
+ " [-8.15557301e-01 -5.19725084e-01 2.54464358e-01 6.60000000e+01]\n",
472
+ " [ 2.58816719e-01 6.56977817e-02 9.63689625e-01 -5.30000000e+01]\n",
473
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
474
+ "25_13\n",
475
+ "<class 'numpy.ndarray'>\n",
476
+ "[ 27.29416278 -18.17496673 -357.47004385] [[ 3.43616605e-01 -1.52306622e-02 -9.38986480e-01 7.90000000e+01]\n",
477
+ " [ 9.38978672e-01 -1.11511489e-02 3.43794614e-01 -2.50000000e+00]\n",
478
+ " [-1.57069974e-02 -9.99821842e-01 1.04695475e-02 1.07000000e+02]\n",
479
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
480
+ "25_7\n",
481
+ "<class 'numpy.ndarray'>\n",
482
+ "[ -4.18285571 -33.39064946 -355.47568268] [[-3.12351257e-01 8.49359274e-01 4.25470978e-01 -8.05000000e+01]\n",
483
+ " [-4.97926295e-01 -5.27806222e-01 6.88106120e-01 1.00000000e+00]\n",
484
+ " [ 8.09015512e-01 3.07762506e-03 5.87779224e-01 5.00000000e-01]\n",
485
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
486
+ "25_12\n",
487
+ "<class 'numpy.ndarray'>\n",
488
+ "[ 14.94080716 -12.84743322 -362.73966275] [[-5.44161558e-01 -1.67256054e-02 -8.38813722e-01 6.25000000e+01]\n",
489
+ " [ 8.37934792e-01 -6.07356206e-02 -5.42380333e-01 1.09500000e+02]\n",
490
+ " [-4.18742336e-02 -9.98013735e-01 4.70649563e-02 1.07500000e+02]\n",
491
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
492
+ "25_1\n",
493
+ "<class 'numpy.ndarray'>\n",
494
+ "[ 50.87395532 -6.51268418 -391.69625226] [[ 0.36555567 0.85089946 -0.3772786 -27.5 ]\n",
495
+ " [ 0.35424927 -0.50201368 -0.78898019 154. ]\n",
496
+ " [ -0.86074185 0.15476552 -0.48494446 68.5 ]\n",
497
+ " [ 0. 0. 0. 1. ]]\n",
498
+ "25_15\n",
499
+ "<class 'numpy.ndarray'>\n",
500
+ "[ 13.02554317 -11.10753714 -382.33100474] [[ 7.05521405e-01 -4.03015725e-02 7.07541764e-01 -5.15000000e+01]\n",
501
+ " [-7.08676636e-01 -3.43199782e-02 7.04698205e-01 -2.55000000e+01]\n",
502
+ " [-4.11762809e-03 -9.98597980e-01 -5.27742617e-02 1.18500000e+02]\n",
503
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
504
+ "25_18\n",
505
+ "<class 'numpy.ndarray'>\n",
506
+ "[ 19.24908623 -10.19467014 -340.9759356 ] [[-9.92011368e-01 -5.07827625e-02 1.15475222e-01 -1.35000000e+01]\n",
507
+ " [-1.14779614e-01 -1.64168198e-02 -9.93255317e-01 1.63000000e+02]\n",
508
+ " [ 5.23359850e-02 -9.98574793e-01 1.04568461e-02 1.14000000e+02]\n",
509
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
510
+ "\n",
511
+ "--- [์นดํ…Œ๊ณ ๋ฆฌ: 0\n",
512
+ "0_12\n",
513
+ "0_17\n",
514
+ "0_16\n",
515
+ "<class 'numpy.ndarray'>\n",
516
+ "[ 30.33364947 -48.24128986 -365.61265488] [[-1.72922775e-01 9.19383526e-01 3.53315264e-01 -7.85000000e+01]\n",
517
+ " [-2.85529107e-01 -3.90108436e-01 8.75379086e-01 -4.05000000e+01]\n",
518
+ " [ 9.42640364e-01 5.04911914e-02 3.29969376e-01 2.40000000e+01]\n",
519
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
520
+ "0_15\n",
521
+ "<class 'numpy.ndarray'>\n",
522
+ "[ 47.83855301 -40.63630415 -374.67333886] [[-8.56738165e-02 -8.49586189e-01 -5.20445287e-01 8.50000000e+01]\n",
523
+ " [ 1.24656409e-01 -5.27401686e-01 8.40421438e-01 -1.55000000e+01]\n",
524
+ " [-9.88494217e-01 7.12527009e-03 1.51090875e-01 2.85000000e+01]\n",
525
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
526
+ "0_2\n",
527
+ "<class 'numpy.ndarray'>\n",
528
+ "[ 53.98529817 -23.34183389 -318.12190071] [[-9.96255994e-01 -8.23962316e-03 -8.60589445e-02 1.40000000e+01]\n",
529
+ " [ 8.63362178e-02 -4.32123058e-02 -9.95328486e-01 1.60500000e+02]\n",
530
+ " [ 4.48232563e-03 -9.99031961e-01 4.37618978e-02 9.40000000e+01]\n",
531
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
532
+ "0_5\n",
533
+ "<class 'numpy.ndarray'>\n",
534
+ "[ 52.34242901 -11.5680847 -364.04068114] [[ 2.73865104e-01 -5.74945211e-02 -9.60048079e-01 7.30000000e+01]\n",
535
+ " [ 9.61411834e-01 -1.08027589e-02 2.74901092e-01 1.25000000e+01]\n",
536
+ " [-2.61764750e-02 -9.98287380e-01 5.23174144e-02 1.10500000e+02]\n",
537
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
538
+ "0_14\n",
539
+ "<class 'numpy.ndarray'>\n",
540
+ "[ 32.66934429 -31.03419982 -419.4400454 ] [[ 3.93467128e-01 8.50530863e-01 3.48971128e-01 -4.90000000e+01]\n",
541
+ " [ 6.81505263e-01 -5.24617076e-01 5.10223031e-01 6.25000000e+01]\n",
542
+ " [ 6.17036641e-01 3.70696560e-02 -7.86060810e-01 8.50000000e+01]\n",
543
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
544
+ "0_9\n",
545
+ "<class 'numpy.ndarray'>\n",
546
+ "[ 33.45435988 -9.86960392 -390.26269769] [[-5.52335052e-07 1.57068912e-02 9.99876618e-01 -7.10000000e+01]\n",
547
+ " [-1.00000000e+00 -9.60874615e-08 -5.50893787e-07 6.00000000e+01]\n",
548
+ " [ 8.74227766e-08 -9.99876618e-01 1.57068912e-02 1.13500000e+02]\n",
549
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
550
+ "0_22\n",
551
+ "<class 'numpy.ndarray'>\n",
552
+ "[ 24.14234403 -44.48885363 -376.81869704] [[ 4.61720601e-02 -8.39288235e-01 -5.41722655e-01 8.65000000e+01]\n",
553
+ " [-1.94662526e-01 -5.39464176e-01 8.19197714e-01 -2.40000000e+01]\n",
554
+ " [-9.79782939e-01 6.76290542e-02 -1.88286141e-01 5.50000000e+01]\n",
555
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
556
+ "0_4\n",
557
+ "<class 'numpy.ndarray'>\n",
558
+ "[ 22.34787415 -12.38490572 -361.83273303] [[-2.43611336e-01 -4.94846478e-02 -9.68609691e-01 6.60000000e+01]\n",
559
+ " [ 9.69858825e-01 -1.78214479e-02 -2.43015021e-01 8.50000000e+01]\n",
560
+ " [-5.23651438e-03 -9.98615861e-01 5.23346290e-02 1.09500000e+02]\n",
561
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
562
+ "0_18\n",
563
+ "<class 'numpy.ndarray'>\n",
564
+ "[ 94.3018499 9.95712859 -403.02370763] [[-4.40655112e-01 8.44817400e-01 -3.03490698e-01 -3.35000000e+01]\n",
565
+ " [-7.63237119e-01 -5.30567527e-01 -3.68737340e-01 1.61000000e+02]\n",
566
+ " [-4.72538024e-01 6.91493675e-02 8.78593266e-01 -4.00000000e+00]\n",
567
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
568
+ "0_8\n",
569
+ "<class 'numpy.ndarray'>\n",
570
+ "[ 4.89130441 -10.65416859 -363.34594537] [[-6.29009902e-01 -2.90704630e-02 -7.76853561e-01 5.40000000e+01]\n",
571
+ " [-7.76762486e-01 6.38768151e-02 6.26545906e-01 -3.65000000e+01]\n",
572
+ " [ 3.14089544e-02 9.97534275e-01 -6.27599955e-02 -1.85000000e+01]\n",
573
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
574
+ "0_7\n",
575
+ "<class 'numpy.ndarray'>\n",
576
+ "[ 33.38694694 -8.22702268 -321.43350163] [[-9.99945164e-01 1.04718581e-02 -1.09615452e-04 -1.50000000e+00]\n",
577
+ " [ 0.00000000e+00 1.04670478e-02 9.99945223e-01 -8.50000000e+01]\n",
578
+ " [ 1.04724318e-02 9.99890387e-01 -1.04664741e-02 -2.30000000e+01]\n",
579
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
580
+ "0_11\n",
581
+ "<class 'numpy.ndarray'>\n",
582
+ "[ 39.39567817 -7.81152401 -331.79231827] [[-9.88440156e-01 1.50076434e-01 -2.15206817e-02 -9.00000000e+00]\n",
583
+ " [ 1.03513040e-02 -7.48123527e-02 -9.97143924e-01 1.81500000e+02]\n",
584
+ " [-1.51257813e-01 -9.85839844e-01 7.23940507e-02 1.11000000e+02]\n",
585
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
586
+ "0_13\n",
587
+ "<class 'numpy.ndarray'>\n",
588
+ "[ 47.8849601 -21.10832864 -406.85110541] [[ 5.03184497e-01 8.54882419e-01 1.26417741e-01 -5.70000000e+01]\n",
589
+ " [ 8.50838244e-01 -5.15692055e-01 1.00677565e-01 7.25000000e+01]\n",
590
+ " [ 1.51260108e-01 5.69016635e-02 -9.86854911e-01 9.90000000e+01]\n",
591
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
592
+ "0_23\n",
593
+ "<class 'numpy.ndarray'>\n",
594
+ "[ 34.1425256 -13.99516051 -436.24154435] [[-3.52828532e-01 3.82114016e-02 -9.34907436e-01 5.45000000e+01]\n",
595
+ " [ 9.32251334e-01 -7.12009743e-02 -3.54736269e-01 9.50000000e+01]\n",
596
+ " [-8.01212862e-02 -9.96729791e-01 -1.05008949e-02 1.07500000e+02]\n",
597
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
598
+ "0_10\n",
599
+ "<class 'numpy.ndarray'>\n",
600
+ "[ 75.30314 -10.69616655 -360.85009292] [[-4.57888782e-01 -1.05290443e-01 8.82752419e-01 -5.35000000e+01]\n",
601
+ " [-8.87143850e-01 -1.01783918e-02 -4.61380690e-01 1.36000000e+02]\n",
602
+ " [ 5.75639792e-02 -9.94389415e-01 -8.87472034e-02 1.18000000e+02]\n",
603
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
604
+ "0_19\n",
605
+ "<class 'numpy.ndarray'>\n",
606
+ "[ 54.61536245 5.98952087 -390.19254055] [[-3.62248421e-02 9.26083982e-01 -3.75574470e-01 -2.85000000e+01]\n",
607
+ " [-1.19981252e-01 -3.77133012e-01 -9.18354630e-01 1.87000000e+02]\n",
608
+ " [-9.92115021e-01 1.17946425e-02 1.24774300e-01 3.80000000e+01]\n",
609
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
610
+ "0_1\n",
611
+ "<class 'numpy.ndarray'>\n",
612
+ "[ 54.25867277 -22.806361 -318.17092856] [[-9.64558959e-01 -1.13992482e-01 -2.37974271e-01 3.15000000e+01]\n",
613
+ " [ 2.42280513e-01 -2.53391284e-02 -9.69875276e-01 1.61000000e+02]\n",
614
+ " [ 1.04528435e-01 -9.93158400e-01 5.20592406e-02 9.80000000e+01]\n",
615
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
616
+ "0_6\n",
617
+ "<class 'numpy.ndarray'>\n",
618
+ "[ 77.66232163 -15.57184449 -330.88443051] [[-8.38258147e-01 7.89983943e-03 5.45216382e-01 -3.50000000e+01]\n",
619
+ " [ 5.44367671e-01 6.97381571e-02 8.35942805e-01 -6.90000000e+01]\n",
620
+ " [-3.14185731e-02 9.97534037e-01 -6.27589971e-02 -1.30000000e+01]\n",
621
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
622
+ "0_21\n",
623
+ "<class 'numpy.ndarray'>\n",
624
+ "[ 75.01018329 -10.05817754 -341.89935495] [[-9.92029309e-01 8.33121538e-02 9.45351794e-02 -1.25000000e+01]\n",
625
+ " [-1.02217443e-01 -9.33565423e-02 -9.90371704e-01 1.80000000e+02]\n",
626
+ " [-7.36845210e-02 -9.92140949e-01 1.01128384e-01 1.08500000e+02]\n",
627
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
628
+ "0_20\n",
629
+ "<class 'numpy.ndarray'>\n",
630
+ "[ 27.12234241 -2.73171326 -424.23229279] [[ 2.70503014e-01 8.54203105e-01 -4.44032878e-01 -4.10000000e+01]\n",
631
+ " [ 4.31221068e-01 -5.19878030e-01 -7.37411201e-01 1.32000000e+02]\n",
632
+ " [-8.60741854e-01 7.99562782e-03 -5.08978963e-01 6.45000000e+01]\n",
633
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
634
+ "0_3\n",
635
+ "<class 'numpy.ndarray'>\n",
636
+ "[ 18.07637881 -9.88668362 -329.27505922] [[-9.54033732e-01 -2.76956767e-01 -1.14518963e-01 3.10000000e+01]\n",
637
+ " [ 1.51104078e-01 -1.14518076e-01 -9.81862068e-01 1.76000000e+02]\n",
638
+ " [ 2.58818835e-01 -9.54033852e-01 1.51103407e-01 9.90000000e+01]\n",
639
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n"
640
+ ]
641
+ }
642
+ ],
643
+ "source": [
644
+ "import json\n",
645
+ "import numpy as np\n",
646
+ "\n",
647
+ "name = \"bottle2\"\n",
648
+ "folder = \"./dataset\"\n",
649
+ "json_path = \"ply_files.json\"\n",
650
+ "\n",
651
+ "try:\n",
652
+ " with open(json_path, \"r\", encoding=\"utf-8\") as f:\n",
653
+ " categorized_files = json.load(f)\n",
654
+ "except FileNotFoundError:\n",
655
+ " print(f\"์˜ค๋ฅ˜: '{json_path}' ํŒŒ์ผ์„ ์ฐพ์„ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค. ๋จผ์ € ํŒŒ์ผ ๋ถ„๋ฅ˜ ์ฝ”๋“œ๋ฅผ ์‹คํ–‰ํ•ด ์ฃผ์„ธ์š”.\")\n",
656
+ " exit() # ํŒŒ์ผ์ด ์—†์œผ๋ฉด ํ”„๋กœ๊ทธ๋žจ ์ข…๋ฃŒ\n",
657
+ "\n",
658
+ "# 3. ๋ชจ๋“  ์นดํ…Œ๊ณ ๋ฆฌ์™€ ํŒŒ์ผ์„ ์ˆœํšŒํ•˜๋Š” ๋ฐ˜๋ณต๋ฌธ\n",
659
+ "print(\"=== ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ ์‹œ์ž‘ ===\")\n",
660
+ "categories = [\"100\", \"75\", \"50\", \"25\", \"0\"]\n",
661
+ "\n",
662
+ "# resolutions ๋”•์…”๋„ˆ๋ฆฌ๋ฅผ ๊ธฐ์ค€์œผ๋กœ ์™ธ๋ถ€ ๋ฃจํ”„๋ฅผ ์‹คํ–‰ํ•ฉ๋‹ˆ๋‹ค.\n",
663
+ "for category in categories:\n",
664
+ " \n",
665
+ " print(f\"\\n--- [์นดํ…Œ๊ณ ๋ฆฌ: {category}\")\n",
666
+ " \n",
667
+ " # JSON์—์„œ ํ˜„์žฌ ์นดํ…Œ๊ณ ๋ฆฌ์— ํ•ด๋‹นํ•˜๋Š” ํŒŒ์ผ ๋ฆฌ์ŠคํŠธ๋ฅผ ๊ฐ€์ ธ์˜ต๋‹ˆ๋‹ค.\n",
668
+ " # .get(category, [])๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด JSON์— ํ•ด๋‹น ์นดํ…Œ๊ณ ๋ฆฌ๊ฐ€ ์—†์–ด๋„ ์˜ค๋ฅ˜ ์—†์ด ๋นˆ ๋ฆฌ์ŠคํŠธ๋ฅผ ๋ฐ˜ํ™˜ํ•ฉ๋‹ˆ๋‹ค.\n",
669
+ " filenames_in_category = categorized_files.get(category, [])\n",
670
+ " \n",
671
+ " if not filenames_in_category:\n",
672
+ " print(\"์ฒ˜๋ฆฌํ•  ํŒŒ์ผ์ด ์—†์Šต๋‹ˆ๋‹ค.\")\n",
673
+ " continue # ํŒŒ์ผ์ด ์—†์œผ๋ฉด ๋‹ค์Œ ์นดํ…Œ๊ณ ๋ฆฌ๋กœ ๋„˜์–ด๊ฐ\n",
674
+ "\n",
675
+ " # ๋‚ด๋ถ€ ๋ฃจํ”„์—์„œ ํ•ด๋‹น ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๋ชจ๋“  ํŒŒ์ผ์„ ํ•˜๋‚˜์”ฉ ์ฒ˜๋ฆฌํ•ฉ๋‹ˆ๋‹ค.\n",
676
+ " for filename in filenames_in_category:\n",
677
+ " gt_path =f\"./gt/noisy_filtered_{filename}.json\"\n",
678
+ " print(filename)\n",
679
+ " try:\n",
680
+ " with open(gt_path, \"r\", encoding='utf-8') as f:\n",
681
+ " gt_processed = json.load(f)\n",
682
+ " gt = np.array(gt_processed[f\"noisy_filtered_{filename}\"][\"matrix_world\"])\n",
683
+ "\n",
684
+ " print(type(gt))\n",
685
+ " ## get translted \n",
686
+ " center_path = f\"./centroid/{filename}.txt\"\n",
687
+ " translated = np.loadtxt(center_path) \n",
688
+ " print(translated, gt)\n",
689
+ " ## generate translate T\n",
690
+ " tran_T = np.eye(4)\n",
691
+ " tran_T[0:3,3] = translated\n",
692
+ " \n",
693
+ "\n",
694
+ " final_T = gt @ tran_T\n",
695
+ " real_final_T = np.linalg.inv(final_T)\n",
696
+ "\n",
697
+ " gt_list = real_final_T.tolist()\n",
698
+ " gt_processed[f\"noisy_filtered_{filename}\"][\"matrix_world\"] = gt_list\n",
699
+ "\n",
700
+ " with open(f'./gt_raw/noisy_filtered_{filename}.json', 'w', encoding='utf-8') as f:\n",
701
+ " json.dump(gt_processed, f, ensure_ascii=False, indent=4)\n",
702
+ "\n",
703
+ "\n",
704
+ " except FileNotFoundError:\n",
705
+ " continue"
706
+ ]
707
+ },
708
+ {
709
+ "cell_type": "markdown",
710
+ "id": "a0277328",
711
+ "metadata": {},
712
+ "source": [
713
+ "## verify"
714
+ ]
715
+ },
716
+ {
717
+ "cell_type": "code",
718
+ "execution_count": 10,
719
+ "id": "463b3159",
720
+ "metadata": {},
721
+ "outputs": [
722
+ {
723
+ "name": "stdout",
724
+ "output_type": "stream",
725
+ "text": [
726
+ "100_7\n",
727
+ "\u001b[1;33m[Open3D WARNING] Read PLY failed: unable to read file: ./gt_filtered.ply\u001b[0;m\n"
728
+ ]
729
+ },
730
+ {
731
+ "name": "stderr",
732
+ "output_type": "stream",
733
+ "text": [
734
+ "RPly: Unexpected end of file\n",
735
+ "RPly: Error reading 'view_px' of 'camera' number 0\n"
736
+ ]
737
+ }
738
+ ],
739
+ "source": [
740
+ "import json\n",
741
+ "import numpy as np\n",
742
+ "import open3d as o3d\n",
743
+ "\n",
744
+ "\n",
745
+ "def get_T(file_path):\n",
746
+ " with open(file_path, 'r') as f:\n",
747
+ " T_matrix = np.loadtxt(file_path)\n",
748
+ " print(T_matrix)\n",
749
+ " return T_matrix\n",
750
+ " \n",
751
+ "filenames = []\n",
752
+ "with open(\"filename.txt\", \"r\") as f:\n",
753
+ " for line in f:\n",
754
+ " filenames.append(line.strip())\n",
755
+ "\n",
756
+ "\n",
757
+ "filename = filenames[0]\n",
758
+ "print(filename)\n",
759
+ "\n",
760
+ "with open(f\"./gt_raw/noisy_filtered_{filename}.json\", 'r') as f:\n",
761
+ " loaded_data = json.load(f)\n",
762
+ "\n",
763
+ "\n",
764
+ "\n",
765
+ "noisy_data = loaded_data[f'noisy_filtered_{filename}']\n",
766
+ "T_matrix = noisy_data['matrix_world']\n",
767
+ "\n",
768
+ "\n",
769
+ "##Translated\n",
770
+ "\n",
771
+ "gt_path = \"./gt_filtered.ply\"\n",
772
+ "noisy_path = f\"./dataset/{filename}.ply\"\n",
773
+ "translated_path = f\"./result3/result_{filename}.ply\"\n",
774
+ "\n",
775
+ "\n",
776
+ "\n",
777
+ "gt_pcd = o3d.io.read_point_cloud(gt_path)\n",
778
+ "gt_pcd.paint_uniform_color([0,0,1])\n",
779
+ "noisy_pcd = o3d.io.read_point_cloud(noisy_path)\n",
780
+ "noisy_pcd.paint_uniform_color([1,0,0])\n",
781
+ "\n",
782
+ "translated_noisy_pcd = o3d.io.read_point_cloud(translated_path)\n",
783
+ "translated_noisy_pcd.paint_uniform_color([0,1,0])\n",
784
+ "\n",
785
+ "\n",
786
+ "gt = np.array(T_matrix)\n",
787
+ "\n",
788
+ "## move and check gt and noisy\n",
789
+ "\n",
790
+ "o3d.visualization.draw_geometries([gt_pcd, noisy_pcd, translated_noisy_pcd])\n",
791
+ "# noisy_pcd.transform(tran_T)\n",
792
+ "gt_pcd.transform(gt)\n",
793
+ "\n",
794
+ "o3d.visualization.draw_geometries([noisy_pcd, translated_noisy_pcd])\n"
795
+ ]
796
+ }
797
+ ],
798
+ "metadata": {
799
+ "kernelspec": {
800
+ "display_name": "Python 3",
801
+ "language": "python",
802
+ "name": "python3"
803
+ },
804
+ "language_info": {
805
+ "codemirror_mode": {
806
+ "name": "ipython",
807
+ "version": 3
808
+ },
809
+ "file_extension": ".py",
810
+ "mimetype": "text/x-python",
811
+ "name": "python",
812
+ "nbconvert_exporter": "python",
813
+ "pygments_lexer": "ipython3",
814
+ "version": "3.10.12"
815
+ }
816
+ },
817
+ "nbformat": 4,
818
+ "nbformat_minor": 5
819
+ }
data/bottle_2/gt_filtered.ply ADDED
The diff for this file is too large to render. See raw diff
 
data/bottle_2/h ADDED
File without changes
data/bottle_2/inference_ICP.ipynb ADDED
@@ -0,0 +1,503 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 32,
6
+ "metadata": {},
7
+ "outputs": [],
8
+ "source": [
9
+ "# conda activate vision\n",
10
+ "# cd build\n",
11
+ "# cmake -DCMAKE_BUILD_TYPE=Release ..\n",
12
+ "# make\n",
13
+ "# ./FRICP ./data/bottle/tea_gt_filtered.ply ./data/bottle/tea_noisy_filtered.ply ./data/bottle/res/ 3\n",
14
+ "\n",
15
+ "\n",
16
+ "# 100_16 is the best thing. "
17
+ ]
18
+ },
19
+ {
20
+ "cell_type": "code",
21
+ "execution_count": 2,
22
+ "metadata": {},
23
+ "outputs": [
24
+ {
25
+ "name": "stdout",
26
+ "output_type": "stream",
27
+ "text": [
28
+ "Jupyter environment detected. Enabling Open3D WebVisualizer.\n",
29
+ "[Open3D INFO] WebRTC GUI backend enabled.\n",
30
+ "[Open3D INFO] WebRTCWindowSystem: HTTP handshake server disabled.\n",
31
+ "100_19\n"
32
+ ]
33
+ }
34
+ ],
35
+ "source": [
36
+ "import open3d as o3d\n",
37
+ "import numpy as np\n",
38
+ "\n",
39
+ "file_names = []\n",
40
+ "with open('filename.txt', 'r') as f:\n",
41
+ " for line in f:\n",
42
+ " file_names.append(line.strip())\n",
43
+ "filename = file_names[0]\n",
44
+ "print(filename)\n",
45
+ "\n"
46
+ ]
47
+ },
48
+ {
49
+ "cell_type": "markdown",
50
+ "metadata": {},
51
+ "source": [
52
+ "# Modify initial file"
53
+ ]
54
+ },
55
+ {
56
+ "cell_type": "code",
57
+ "execution_count": 34,
58
+ "metadata": {},
59
+ "outputs": [
60
+ {
61
+ "name": "stdout",
62
+ "output_type": "stream",
63
+ "text": [
64
+ "\n",
65
+ "์ž‘์—… ์™„๋ฃŒ!\n",
66
+ "'./initialized_result/initial_100_4.ply' ํŒŒ์ผ์ด ์„ฑ๊ณต์ ์œผ๋กœ ์ƒ์„ฑ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.\n"
67
+ ]
68
+ }
69
+ ],
70
+ "source": [
71
+ "\n",
72
+ "output_filename = f'./initialized_result/initial_{filename}.ply'\n",
73
+ "\n",
74
+ "# 1. read file\n",
75
+ "\n",
76
+ "with open(f'./initialized_result/initial_{filename}.ply', 'r') as f:\n",
77
+ " lines = f.readlines()\n",
78
+ "\n",
79
+ "# 2. seperate data and header \n",
80
+ "header_lines = []\n",
81
+ "data_lines = []\n",
82
+ "is_header = True\n",
83
+ "\n",
84
+ "for line in lines:\n",
85
+ " if \"end_header\" in line:\n",
86
+ " is_header = False\n",
87
+ " continue\n",
88
+ " \n",
89
+ " if is_header:\n",
90
+ " header_lines.append(line)\n",
91
+ " \n",
92
+ " else: \n",
93
+ " parts = line.strip().split()\n",
94
+ " if len(parts) >= 3:\n",
95
+ " data_lines.append(f\"{parts[0]} {parts[1]} {parts[2]}\\n\")\n",
96
+ "\n",
97
+ "\n",
98
+ "# 3. modify header\n",
99
+ "# vertex\n",
100
+ "num_points = len(data_lines)\n",
101
+ "\n",
102
+ "# generate new header\n",
103
+ "\n",
104
+ "new_header = f\"\"\"ply\n",
105
+ "format ascii 1.0\n",
106
+ "element vertex {num_points}\n",
107
+ "property float x\n",
108
+ "property float y\n",
109
+ "property float z\n",
110
+ "element camera 1\n",
111
+ "property float view_px\n",
112
+ "property float view_py\n",
113
+ "property float view_pz\n",
114
+ "property float x_axisx\n",
115
+ "property float x_axisy\n",
116
+ "property float x_axisz\n",
117
+ "property float y_axisx\n",
118
+ "property float y_axisy\n",
119
+ "property float y_axisz\n",
120
+ "property float z_axisx\n",
121
+ "property float z_axisy\n",
122
+ "property float z_axisz\n",
123
+ "element phoxi_frame_params 1\n",
124
+ "property uint32 frame_width\n",
125
+ "property uint32 frame_height\n",
126
+ "property uint32 frame_index\n",
127
+ "property float frame_start_time\n",
128
+ "property float frame_duration\n",
129
+ "property float frame_computation_duration\n",
130
+ "property float frame_transfer_duration\n",
131
+ "property int32 total_scan_count\n",
132
+ "element camera_matrix 1\n",
133
+ "property float cm0\n",
134
+ "property float cm1\n",
135
+ "property float cm2\n",
136
+ "property float cm3\n",
137
+ "property float cm4\n",
138
+ "property float cm5\n",
139
+ "property float cm6\n",
140
+ "property float cm7\n",
141
+ "property float cm8\n",
142
+ "element distortion_matrix 1\n",
143
+ "property float dm0\n",
144
+ "property float dm1\n",
145
+ "property float dm2\n",
146
+ "property float dm3\n",
147
+ "property float dm4\n",
148
+ "property float dm5\n",
149
+ "property float dm6\n",
150
+ "property float dm7\n",
151
+ "property float dm8\n",
152
+ "property float dm9\n",
153
+ "property float dm10\n",
154
+ "property float dm11\n",
155
+ "property float dm12\n",
156
+ "property float dm13\n",
157
+ "element camera_resolution 1\n",
158
+ "property float width\n",
159
+ "property float height\n",
160
+ "element frame_binning 1\n",
161
+ "property float horizontal\n",
162
+ "property float vertical\n",
163
+ "end_header\n",
164
+ "\"\"\"\n",
165
+ "\n",
166
+ "#4. write 4file \n",
167
+ "\n",
168
+ "with open(output_filename,'w') as f:\n",
169
+ " f.write(new_header)\n",
170
+ "\n",
171
+ " for line in data_lines:\n",
172
+ " f.write(line)\n",
173
+ "\n",
174
+ "\n",
175
+ "print(\"\\n์ž‘์—… ์™„๋ฃŒ!\")\n",
176
+ "print(f\"'{output_filename}' ํŒŒ์ผ์ด ์„ฑ๊ณต์ ์œผ๋กœ ์ƒ์„ฑ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.\")\n"
177
+ ]
178
+ },
179
+ {
180
+ "cell_type": "markdown",
181
+ "metadata": {},
182
+ "source": [
183
+ "### Source PCD"
184
+ ]
185
+ },
186
+ {
187
+ "cell_type": "code",
188
+ "execution_count": null,
189
+ "metadata": {},
190
+ "outputs": [],
191
+ "source": []
192
+ },
193
+ {
194
+ "cell_type": "code",
195
+ "execution_count": 35,
196
+ "metadata": {},
197
+ "outputs": [
198
+ {
199
+ "name": "stdout",
200
+ "output_type": "stream",
201
+ "text": [
202
+ "\u001b[1;33m[Open3D WARNING] Read PLY failed: unable to read file: ./initialized_result/initial_100_4.ply\u001b[0;m\n",
203
+ "Source shape: (36526, 3)\n"
204
+ ]
205
+ },
206
+ {
207
+ "name": "stderr",
208
+ "output_type": "stream",
209
+ "text": [
210
+ "RPly: Unexpected end of file\n",
211
+ "RPly: Error reading 'view_px' of 'camera' number 0\n"
212
+ ]
213
+ }
214
+ ],
215
+ "source": [
216
+ "\n",
217
+ "\n",
218
+ "\n",
219
+ "source_path = f\"./initialized_result/initial_{filename}.ply\"\n",
220
+ "\n",
221
+ "source_pcd = o3d.io.read_point_cloud(source_path)\n",
222
+ "\n",
223
+ "\n",
224
+ "\n",
225
+ "source_pcd_array = np.asarray(source_pcd.points)\n",
226
+ "print(\"Source shape:\", source_pcd_array.shape)\n",
227
+ "\n",
228
+ "coord_frame = o3d.geometry.TriangleMesh.create_coordinate_frame(size=50.0, origin=[0, 0, 0])\n",
229
+ "o3d.visualization.draw_geometries([source_pcd,coord_frame])"
230
+ ]
231
+ },
232
+ {
233
+ "cell_type": "code",
234
+ "execution_count": null,
235
+ "metadata": {},
236
+ "outputs": [],
237
+ "source": []
238
+ },
239
+ {
240
+ "cell_type": "markdown",
241
+ "metadata": {},
242
+ "source": [
243
+ "### Target PCD"
244
+ ]
245
+ },
246
+ {
247
+ "cell_type": "code",
248
+ "execution_count": 13,
249
+ "metadata": {},
250
+ "outputs": [
251
+ {
252
+ "name": "stderr",
253
+ "output_type": "stream",
254
+ "text": [
255
+ "RPly: Unexpected end of file\n"
256
+ ]
257
+ },
258
+ {
259
+ "name": "stdout",
260
+ "output_type": "stream",
261
+ "text": [
262
+ "\u001b[1;33m[Open3D WARNING] Read PLY failed: unable to read file: gt_filtered.ply\u001b[0;m\n",
263
+ "Target shape: (50000, 3)\n"
264
+ ]
265
+ },
266
+ {
267
+ "name": "stderr",
268
+ "output_type": "stream",
269
+ "text": [
270
+ "RPly: Error reading 'view_px' of 'camera' number 0\n"
271
+ ]
272
+ }
273
+ ],
274
+ "source": [
275
+ "target_path = f\"gt_filtered.ply\"\n",
276
+ "target_pcd = o3d.io.read_point_cloud(target_path)\n",
277
+ "\n",
278
+ "target_pcd_array = np.asarray(target_pcd.points)\n",
279
+ "print(\"Target shape:\", target_pcd_array.shape)\n",
280
+ "\n",
281
+ "o3d.visualization.draw_geometries([target_pcd])"
282
+ ]
283
+ },
284
+ {
285
+ "cell_type": "markdown",
286
+ "metadata": {},
287
+ "source": [
288
+ "## Execute termianl"
289
+ ]
290
+ },
291
+ {
292
+ "cell_type": "code",
293
+ "execution_count": 3,
294
+ "metadata": {},
295
+ "outputs": [
296
+ {
297
+ "name": "stdout",
298
+ "output_type": "stream",
299
+ "text": [
300
+ "/home/cam/ICP_DATA/Fast-Robust-ICP/data/bottle_2\n",
301
+ "--- STDOUT (ํ‘œ์ค€ ์ถœ๋ ฅ) ---\n",
302
+ "๋ช…๋ น์–ด๊ฐ€ ์„ฑ๊ณต์ ์œผ๋กœ ์‹คํ–‰๋˜์—ˆ์Šต๋‹ˆ๋‹ค.\n",
303
+ "source: 3x58759\n",
304
+ "target: 3x50000\n",
305
+ "scale = 616.692\n",
306
+ "begin registration...\n",
307
+ "Registration done!\n",
308
+ "\n"
309
+ ]
310
+ }
311
+ ],
312
+ "source": [
313
+ "# ./FRICP ./data/bottle_2/gt_filtered.ply ./data/bottle_2/result/noisy_filtered_100_1.ply ./data/bottle_2/res 3 execute\n",
314
+ "import os\n",
315
+ "print(os.getcwd())\n",
316
+ "\n",
317
+ "import subprocess\n",
318
+ "\n",
319
+ "cmd = [\n",
320
+ " '../../FRICP',\n",
321
+ " './gt_filtered.ply',\n",
322
+ " f'./noisy_result/noisy_filtered_{filename}.ply',\n",
323
+ " './res',\n",
324
+ " '3'\n",
325
+ "]\n",
326
+ "\n",
327
+ "try:\n",
328
+ " result = subprocess.run(cmd, capture_output=True, text=True, check=True)\n",
329
+ "\n",
330
+ " print(\"--- STDOUT (ํ‘œ์ค€ ์ถœ๋ ฅ) ---\")\n",
331
+ " print(\"๋ช…๋ น์–ด๊ฐ€ ์„ฑ๊ณต์ ์œผ๋กœ ์‹คํ–‰๋˜์—ˆ์Šต๋‹ˆ๋‹ค.\")\n",
332
+ " print(result.stdout)\n",
333
+ "\n",
334
+ "except FileNotFoundError:\n",
335
+ " print(\"--- ์—๋Ÿฌ ๋ฐœ์ƒ! ---\")\n",
336
+ " print(f\"'{cmd[0]}' ํŒŒ์ผ์„ ์ฐพ์„ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.\")\n",
337
+ " print(\"๊ฒฝ๋กœ๊ฐ€ ์˜ฌ๋ฐ”๋ฅธ์ง€, ํŒŒ์ผ์ด ๊ทธ ์œ„์น˜์— ์กด์žฌํ•˜๋Š”์ง€ ํ™•์ธํ•ด ์ฃผ์„ธ์š”.\")\n",
338
+ "\n",
339
+ "except subprocess.CalledProcessError as e:\n",
340
+ " print(\"--- ์—๋Ÿฌ ๋ฐœ์ƒ! ---\")\n",
341
+ " print(f\"๋ช…๋ น์–ด ์‹คํ–‰ ์ค‘ ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค. (์ข…๋ฃŒ ์ฝ”๋“œ: {e.returncode})\")\n",
342
+ " print(\"\\n--- STDERR (์—๋Ÿฌ ์›์ธ) ---\")\n",
343
+ " print(e.stderr)\n"
344
+ ]
345
+ },
346
+ {
347
+ "cell_type": "markdown",
348
+ "metadata": {},
349
+ "source": [
350
+ "### Change the path for result\n"
351
+ ]
352
+ },
353
+ {
354
+ "cell_type": "code",
355
+ "execution_count": 7,
356
+ "metadata": {},
357
+ "outputs": [
358
+ {
359
+ "name": "stdout",
360
+ "output_type": "stream",
361
+ "text": [
362
+ "Successfully moved and renamed 'resm3reg_pc.ply' to './result/final_result_100_19.ply'\n",
363
+ "Successfully moved and renamed 'resm3trans.txt' to './result/final_result_100_19.txt'\n"
364
+ ]
365
+ }
366
+ ],
367
+ "source": [
368
+ "import shutil\n",
369
+ "import os\n",
370
+ "\n",
371
+ "transformed_path = \"resm3reg_pc.ply\"\n",
372
+ "destination_path = f\"./result/final_result_{filename}.ply\"\n",
373
+ "transformed_path2 = \"resm3trans.txt\"\n",
374
+ "destination_path2 = f\"./result/final_result_{filename}.txt\"\n",
375
+ "\n",
376
+ "shutil.move(transformed_path, destination_path)\n",
377
+ "print(f\"Successfully moved and renamed '{transformed_path}' to '{destination_path}'\")\n",
378
+ "\n",
379
+ "\n",
380
+ "\n",
381
+ "shutil.move(transformed_path2, destination_path2)\n",
382
+ "print(f\"Successfully moved and renamed '{transformed_path2}' to '{destination_path2}'\")\n",
383
+ "\n",
384
+ "\n"
385
+ ]
386
+ },
387
+ {
388
+ "cell_type": "markdown",
389
+ "metadata": {},
390
+ "source": [
391
+ "### Transformed Source PCD"
392
+ ]
393
+ },
394
+ {
395
+ "cell_type": "code",
396
+ "execution_count": 10,
397
+ "metadata": {},
398
+ "outputs": [
399
+ {
400
+ "name": "stdout",
401
+ "output_type": "stream",
402
+ "text": [
403
+ "Transformed shape: (58759, 3)\n"
404
+ ]
405
+ }
406
+ ],
407
+ "source": [
408
+ "\n",
409
+ "transformed_pcd = o3d.io.read_point_cloud(destination_path)\n",
410
+ "\n",
411
+ "transformed_pcd_array = np.asarray(transformed_pcd.points)\n",
412
+ "print(\"Transformed shape:\", transformed_pcd_array.shape)\n",
413
+ "\n",
414
+ "o3d.visualization.draw_geometries([transformed_pcd])"
415
+ ]
416
+ },
417
+ {
418
+ "cell_type": "markdown",
419
+ "metadata": {},
420
+ "source": [
421
+ "### Source (Original) + Target"
422
+ ]
423
+ },
424
+ {
425
+ "cell_type": "code",
426
+ "execution_count": 17,
427
+ "metadata": {},
428
+ "outputs": [
429
+ {
430
+ "ename": "NameError",
431
+ "evalue": "name 'source_pcd' is not defined",
432
+ "output_type": "error",
433
+ "traceback": [
434
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
435
+ "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
436
+ "Cell \u001b[0;32mIn[17], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43msource_pcd\u001b[49m\u001b[38;5;241m.\u001b[39mpaint_uniform_color([\u001b[38;5;241m1\u001b[39m, \u001b[38;5;241m0\u001b[39m, \u001b[38;5;241m0\u001b[39m])\n\u001b[1;32m 2\u001b[0m target_pcd\u001b[38;5;241m.\u001b[39mpaint_uniform_color([\u001b[38;5;241m0\u001b[39m, \u001b[38;5;241m1\u001b[39m, \u001b[38;5;241m0\u001b[39m])\n\u001b[1;32m 4\u001b[0m vis \u001b[38;5;241m=\u001b[39m o3d\u001b[38;5;241m.\u001b[39mvisualization\u001b[38;5;241m.\u001b[39mVisualizer()\n",
437
+ "\u001b[0;31mNameError\u001b[0m: name 'source_pcd' is not defined"
438
+ ]
439
+ }
440
+ ],
441
+ "source": [
442
+ "source_pcd.paint_uniform_color([1, 0, 0])\n",
443
+ "target_pcd.paint_uniform_color([0, 1, 0])\n",
444
+ "\n",
445
+ "vis = o3d.visualization.Visualizer()\n",
446
+ "vis.create_window(window_name=\"Point Cloud Viewer\", width=1200, height=800, visible=True)\n",
447
+ "vis.add_geometry(source_pcd)\n",
448
+ "vis.add_geometry(target_pcd)\n",
449
+ "vis.add_geometry(coord_frame)\n",
450
+ "vis.run()\n",
451
+ "\n",
452
+ "\n",
453
+ "vis.destroy_window()"
454
+ ]
455
+ },
456
+ {
457
+ "cell_type": "markdown",
458
+ "metadata": {},
459
+ "source": [
460
+ "### Transformed + Target"
461
+ ]
462
+ },
463
+ {
464
+ "cell_type": "code",
465
+ "execution_count": null,
466
+ "metadata": {},
467
+ "outputs": [],
468
+ "source": [
469
+ "transformed_pcd.paint_uniform_color([1, 0, 0])\n",
470
+ "target_pcd.paint_uniform_color([0, 1, 0])\n",
471
+ "\n",
472
+ "vis = o3d.visualization.Visualizer()\n",
473
+ "vis.create_window(window_name=\"Point Cloud Viewer\", width=1200, height=800, visible=True)\n",
474
+ "vis.add_geometry(transformed_pcd)\n",
475
+ "vis.add_geometry(target_pcd)\n",
476
+ "\n",
477
+ "vis.run()\n",
478
+ "vis.destroy_window()"
479
+ ]
480
+ }
481
+ ],
482
+ "metadata": {
483
+ "kernelspec": {
484
+ "display_name": "Python 3",
485
+ "language": "python",
486
+ "name": "python3"
487
+ },
488
+ "language_info": {
489
+ "codemirror_mode": {
490
+ "name": "ipython",
491
+ "version": 3
492
+ },
493
+ "file_extension": ".py",
494
+ "mimetype": "text/x-python",
495
+ "name": "python",
496
+ "nbconvert_exporter": "python",
497
+ "pygments_lexer": "ipython3",
498
+ "version": "3.10.12"
499
+ }
500
+ },
501
+ "nbformat": 4,
502
+ "nbformat_minor": 2
503
+ }
data/bottle_2/inference_ICP.py ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding: utf-8
3
+
4
+ # In[21]:
5
+
6
+
7
+ # conda activate vision
8
+ # cd build
9
+ # cmake -DCMAKE_BUILD_TYPE=Release ..
10
+ # make
11
+ # ./FRICP ./data/bottle/tea_gt_filtered.ply ./data/bottle/tea_noisy_filtered.ply ./data/bottle/res/ 3
12
+
13
+
14
+ # 100_16 is the best thing.
15
+
16
+
17
+ # In[22]:
18
+
19
+
20
+ import open3d as o3d
21
+ import numpy as np
22
+
23
+ file_names = []
24
+ with open('filename.txt', 'r') as f:
25
+ for line in f:
26
+ file_names.append(line.strip())
27
+ filename = file_names[0]
28
+ print(filename)
29
+
30
+
31
+
32
+ # # Modify initial file
33
+
34
+ # In[23]:
35
+
36
+
37
+ output_filename = f'./initialized_result/initial_{filename}.ply'
38
+
39
+ # 1. read file
40
+
41
+ with open(f'./initialized_result/initial_{filename}.ply', 'r') as f:
42
+ lines = f.readlines()
43
+
44
+ # 2. seperate data and header
45
+ header_lines = []
46
+ data_lines = []
47
+ is_header = True
48
+
49
+ for line in lines:
50
+ if "end_header" in line:
51
+ is_header = False
52
+ continue
53
+
54
+ if is_header:
55
+ header_lines.append(line)
56
+
57
+ else:
58
+ parts = line.strip().split()
59
+ if len(parts) >= 3:
60
+ data_lines.append(f"{parts[0]} {parts[1]} {parts[2]}\n")
61
+
62
+
63
+ # 3. modify header
64
+ # vertex
65
+ num_points = len(data_lines)
66
+
67
+ # generate new header
68
+
69
+ new_header = f"""ply
70
+ format ascii 1.0
71
+ element vertex {num_points}
72
+ property float x
73
+ property float y
74
+ property float z
75
+ element camera 1
76
+ property float view_px
77
+ property float view_py
78
+ property float view_pz
79
+ property float x_axisx
80
+ property float x_axisy
81
+ property float x_axisz
82
+ property float y_axisx
83
+ property float y_axisy
84
+ property float y_axisz
85
+ property float z_axisx
86
+ property float z_axisy
87
+ property float z_axisz
88
+ element phoxi_frame_params 1
89
+ property uint32 frame_width
90
+ property uint32 frame_height
91
+ property uint32 frame_index
92
+ property float frame_start_time
93
+ property float frame_duration
94
+ property float frame_computation_duration
95
+ property float frame_transfer_duration
96
+ property int32 total_scan_count
97
+ element camera_matrix 1
98
+ property float cm0
99
+ property float cm1
100
+ property float cm2
101
+ property float cm3
102
+ property float cm4
103
+ property float cm5
104
+ property float cm6
105
+ property float cm7
106
+ property float cm8
107
+ element distortion_matrix 1
108
+ property float dm0
109
+ property float dm1
110
+ property float dm2
111
+ property float dm3
112
+ property float dm4
113
+ property float dm5
114
+ property float dm6
115
+ property float dm7
116
+ property float dm8
117
+ property float dm9
118
+ property float dm10
119
+ property float dm11
120
+ property float dm12
121
+ property float dm13
122
+ element camera_resolution 1
123
+ property float width
124
+ property float height
125
+ element frame_binning 1
126
+ property float horizontal
127
+ property float vertical
128
+ end_header
129
+ """
130
+
131
+ #4. write 4file
132
+
133
+ with open(output_filename,'w') as f:
134
+ f.write(new_header)
135
+
136
+ for line in data_lines:
137
+ f.write(line)
138
+
139
+
140
+ print("\n์ž‘์—… ์™„๋ฃŒ!")
141
+ print(f"'{output_filename}' ํŒŒ์ผ์ด ์„ฑ๊ณต์ ์œผ๋กœ ์ƒ์„ฑ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.")
142
+
143
+
144
+ # ### Source PCD
145
+
146
+ # In[ ]:
147
+
148
+
149
+
150
+
151
+
152
+ # In[24]:
153
+
154
+
155
+ source_path = f"./initialized_result/initial_{filename}.ply"
156
+
157
+ source_pcd = o3d.io.read_point_cloud(source_path)
158
+
159
+
160
+
161
+ source_pcd_array = np.asarray(source_pcd.points)
162
+ print("Source shape:", source_pcd_array.shape)
163
+
164
+ coord_frame = o3d.geometry.TriangleMesh.create_coordinate_frame(size=50.0, origin=[0, 0, 0])
165
+ o3d.visualization.draw_geometries([source_pcd,coord_frame])
166
+
167
+
168
+ # In[ ]:
169
+
170
+
171
+
172
+
173
+
174
+ # ### Target PCD
175
+
176
+ # In[25]:
177
+
178
+
179
+ target_path = f"gt_filtered.ply"
180
+ target_pcd = o3d.io.read_point_cloud(target_path)
181
+
182
+ target_pcd_array = np.asarray(target_pcd.points)
183
+ print("Target shape:", target_pcd_array.shape)
184
+
185
+ o3d.visualization.draw_geometries([target_pcd, coord_frame])
186
+
187
+
188
+ # ## Execute termianl
189
+
190
+ # In[26]:
191
+
192
+
193
+ # ./FRICP ./data/bottle_2/gt_filtered.ply ./data/bottle_2/result/noisy_filtered_100_1.ply ./data/bottle_2/res 3 execute
194
+ import os
195
+ print(os.getcwd())
196
+
197
+ import subprocess
198
+
199
+ cmd = [
200
+ '../../FRICP',
201
+ './gt_filtered.ply',
202
+ f'./initialized_result/initial_{filename}.ply',
203
+ './res',
204
+ '3'
205
+ ]
206
+
207
+ try:
208
+ result = subprocess.run(cmd, capture_output=True, text=True, check=True)
209
+
210
+ print("--- STDOUT (ํ‘œ์ค€ ์ถœ๋ ฅ) ---")
211
+ print("๋ช…๋ น์–ด๊ฐ€ ์„ฑ๊ณต์ ์œผ๋กœ ์‹คํ–‰๋˜์—ˆ์Šต๋‹ˆ๋‹ค.")
212
+ print(result.stdout)
213
+
214
+ except FileNotFoundError:
215
+ print("--- ์—๋Ÿฌ ๋ฐœ์ƒ! ---")
216
+ print(f"'{cmd[0]}' ํŒŒ์ผ์„ ์ฐพ์„ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.")
217
+ print("๊ฒฝ๋กœ๊ฐ€ ์˜ฌ๋ฐ”๋ฅธ์ง€, ํŒŒ์ผ์ด ๊ทธ ์œ„์น˜์— ์กด์žฌํ•˜๋Š”์ง€ ํ™•์ธํ•ด ์ฃผ์„ธ์š”.")
218
+
219
+ except subprocess.CalledProcessError as e:
220
+ print("--- ์—๋Ÿฌ ๋ฐœ์ƒ! ---")
221
+ print(f"๋ช…๋ น์–ด ์‹คํ–‰ ์ค‘ ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค. (์ข…๋ฃŒ ์ฝ”๋“œ: {e.returncode})")
222
+ print("\n--- STDERR (์—๋Ÿฌ ์›์ธ) ---")
223
+ print(e.stderr)
224
+
225
+
226
+ # ### Change the path for result
227
+ #
228
+
229
+ # In[27]:
230
+
231
+
232
+ import shutil
233
+ import os
234
+
235
+ transformed_path = "resm3reg_pc.ply"
236
+ destination_path = f"./result/final_result_{filename}.ply"
237
+ transformed_path2 = "resm3trans.txt"
238
+ destination_path2 = f"./result/final_result_{filename}.txt"
239
+
240
+ shutil.move(transformed_path, destination_path)
241
+ print(f"Successfully moved and renamed '{transformed_path}' to '{destination_path}'")
242
+
243
+
244
+
245
+ shutil.move(transformed_path2, destination_path2)
246
+ print(f"Successfully moved and renamed '{transformed_path2}' to '{destination_path2}'")
247
+
248
+
249
+
250
+
251
+ # ### Transformed Source PCD
252
+
253
+ # In[28]:
254
+
255
+
256
+ transformed_pcd = o3d.io.read_point_cloud(destination_path)
257
+
258
+ transformed_pcd_array = np.asarray(transformed_pcd.points)
259
+ print("Transformed shape:", transformed_pcd_array.shape)
260
+
261
+ o3d.visualization.draw_geometries([transformed_pcd, coord_frame])
262
+
263
+
264
+ # ### Source (Original) + Target
265
+
266
+ # In[29]:
267
+
268
+
269
+ source_pcd.paint_uniform_color([1, 0, 0])
270
+ target_pcd.paint_uniform_color([0, 1, 0])
271
+
272
+ vis = o3d.visualization.Visualizer()
273
+ vis.create_window(window_name="Point Cloud Viewer", width=1200, height=800, visible=True)
274
+ vis.add_geometry(source_pcd)
275
+ vis.add_geometry(target_pcd)
276
+ vis.add_geometry(coord_frame)
277
+ vis.run()
278
+
279
+
280
+ vis.destroy_window()
281
+
282
+
283
+ # ### Transformed + Target
284
+
285
+ # In[30]:
286
+
287
+
288
+ transformed_pcd.paint_uniform_color([1, 0, 0])
289
+ target_pcd.paint_uniform_color([0, 1, 0])
290
+
291
+ vis = o3d.visualization.Visualizer()
292
+ vis.create_window(window_name="Point Cloud Viewer", width=1200, height=800, visible=True)
293
+ vis.add_geometry(transformed_pcd)
294
+ vis.add_geometry(target_pcd)
295
+ vis.add_geometry(coord_frame)
296
+ vis.run()
297
+ vis.destroy_window()
298
+
data/bottle_2/initial_guess(kiss_match).ipynb ADDED
@@ -0,0 +1,240 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "id": "c97d9003",
6
+ "metadata": {},
7
+ "source": [
8
+ "## PCD file transformation"
9
+ ]
10
+ },
11
+ {
12
+ "cell_type": "code",
13
+ "execution_count": 13,
14
+ "id": "57266b06",
15
+ "metadata": {},
16
+ "outputs": [
17
+ {
18
+ "name": "stdout",
19
+ "output_type": "stream",
20
+ "text": [
21
+ "0_23\n",
22
+ "\u001b[1;33m[Open3D WARNING] Read PLY failed: unable to read file: ./gt_filtered.ply\u001b[0;m\n",
23
+ "PLY ํŒŒ์ผ์ด PCD ํŒŒ์ผ๋กœ ์„ฑ๊ณต์ ์œผ๋กœ ๋ณ€ํ™˜๋˜์—ˆ์Šต๋‹ˆ๋‹ค.\n"
24
+ ]
25
+ },
26
+ {
27
+ "name": "stderr",
28
+ "output_type": "stream",
29
+ "text": [
30
+ "RPly: Unexpected end of file\n",
31
+ "RPly: Error reading 'view_px' of 'camera' number 0\n"
32
+ ]
33
+ }
34
+ ],
35
+ "source": [
36
+ "import open3d as o3d\n",
37
+ "import numpy as np\n",
38
+ "\n",
39
+ "file_names = []\n",
40
+ "with open('filename.txt', 'r') as f:\n",
41
+ " for line in f:\n",
42
+ " file_names.append(line.strip())\n",
43
+ "filename = file_names[0]\n",
44
+ "print(filename)\n",
45
+ "\n",
46
+ "\n",
47
+ "# PLY ํŒŒ์ผ ์ฝ๊ธฐ\n",
48
+ "pcd = o3d.io.read_point_cloud(\"./gt_filtered.ply\")\n",
49
+ "\n",
50
+ "# PCD ํŒŒ์ผ๋กœ ์ €์žฅ (๋ฐ”์ด๋„ˆ๋ฆฌ ํ˜•์‹)\n",
51
+ "o3d.io.write_point_cloud(\"./initialize_pcdfile/gt_filtered.pcd\", pcd)\n",
52
+ "\n",
53
+ "# ๋งŒ์•ฝ ASCII ํ˜•์‹์œผ๋กœ ์ €์žฅํ•˜๊ณ  ์‹ถ๋‹ค๋ฉด:\n",
54
+ "# o3d.io.write_point_cloud(\"output_ascii.pcd\", pcd, write_ascii=True)\n",
55
+ "\n",
56
+ "print(\"PLY ํŒŒ์ผ์ด PCD ํŒŒ์ผ๋กœ ์„ฑ๊ณต์ ์œผ๋กœ ๋ณ€ํ™˜๋˜์—ˆ์Šต๋‹ˆ๋‹ค.\")"
57
+ ]
58
+ },
59
+ {
60
+ "cell_type": "code",
61
+ "execution_count": 14,
62
+ "id": "8b0bc642",
63
+ "metadata": {},
64
+ "outputs": [
65
+ {
66
+ "name": "stdout",
67
+ "output_type": "stream",
68
+ "text": [
69
+ "\u001b[1;33m[Open3D WARNING] Read PLY failed: unable to read file: ./noisy_result/noisy_filtered_0_23.ply\u001b[0;m\n",
70
+ "PLY ํŒŒ์ผ์ด PCD ํŒŒ์ผ๋กœ ์„ฑ๊ณต์ ์œผ๋กœ ๋ณ€ํ™˜๋˜์—ˆ์Šต๋‹ˆ๋‹ค.\n"
71
+ ]
72
+ },
73
+ {
74
+ "name": "stderr",
75
+ "output_type": "stream",
76
+ "text": [
77
+ "RPly: Unexpected end of file\n",
78
+ "RPly: Error reading 'view_px' of 'camera' number 0\n"
79
+ ]
80
+ }
81
+ ],
82
+ "source": [
83
+ "# PLY ํŒŒ์ผ ์ฝ๊ธฐ\n",
84
+ "pcd = o3d.io.read_point_cloud(f\"./noisy_result/noisy_filtered_{filename}.ply\")\n",
85
+ "\n",
86
+ "# PCD ํŒŒ์ผ๋กœ ์ €์žฅ (๋ฐ”์ด๋„ˆ๋ฆฌ ํ˜•์‹)\n",
87
+ "o3d.io.write_point_cloud(f\"./initialize_pcdfile/first_{filename}.pcd\", pcd)\n",
88
+ "\n",
89
+ "# ๋งŒ์•ฝ ASCII ํ˜•์‹์œผ๋กœ ์ €์žฅํ•˜๊ณ  ์‹ถ๋‹ค๋ฉด:\n",
90
+ "# o3d.io.write_point_cloud(\"output_ascii.pcd\", pcd, write_ascii=True)\n",
91
+ "\n",
92
+ "print(\"PLY ํŒŒ์ผ์ด PCD ํŒŒ์ผ๋กœ ์„ฑ๊ณต์ ์œผ๋กœ ๋ณ€ํ™˜๋˜์—ˆ์Šต๋‹ˆ๋‹ค.\")"
93
+ ]
94
+ },
95
+ {
96
+ "cell_type": "markdown",
97
+ "id": "fcdc0f5e",
98
+ "metadata": {},
99
+ "source": [
100
+ "## Execute initial Guess"
101
+ ]
102
+ },
103
+ {
104
+ "cell_type": "code",
105
+ "execution_count": 15,
106
+ "id": "5d191e44",
107
+ "metadata": {},
108
+ "outputs": [
109
+ {
110
+ "name": "stdout",
111
+ "output_type": "stream",
112
+ "text": [
113
+ "/home/cam/Fast-Robust-ICP/data/bottle_2\n",
114
+ "--- STDOUT (ํ‘œ์ค€ ์ถœ๋ ฅ) ---\n",
115
+ "๋ช…๋ น์–ด๊ฐ€ ์„ฑ๊ณต์ ์œผ๋กœ ์‹คํ–‰๋˜์—ˆ์Šต๋‹ˆ๋‹ค.\n",
116
+ "Loaded source point cloud: (4980, 3)\n",
117
+ "Loaded target point cloud: (50000, 3)\n",
118
+ "Resolution: 1.0\n",
119
+ "Yaw Augmentation Angle: None\n",
120
+ "============== Time ==============\n",
121
+ "Voxelization: 0.00235131 sec\n",
122
+ "Extraction : 0.0493407 sec\n",
123
+ "Pruning : 0.00378771 sec\n",
124
+ "Matching : 0.0432693 sec\n",
125
+ "Solving : 8.312e-06 sec\n",
126
+ "----------------------------------\n",
127
+ "\u001b[1;32mTotal : 0.0987573 sec\u001b[0m\n",
128
+ "====== # of correspondences ======\n",
129
+ "# initial pairs : 88\n",
130
+ "# pruned pairs : 4\n",
131
+ "----------------------------------\n",
132
+ "\u001b[1;36m# rot inliers : 4\n",
133
+ "# trans inliers : 4\u001b[0m\n",
134
+ "==================================\n",
135
+ "\u001b[1;33m=> Registration might have failed :(\u001b[0m\n",
136
+ "\n",
137
+ "<_kiss_matcher.RegistrationSolution object at 0x76de1ebf2130>\n",
138
+ "ply complete.\n",
139
+ "1.0์ดˆ ๋™์•ˆ ์‹œ๊ฐํ™” ์ฐฝ์„ ํ‘œ์‹œํ•ฉ๋‹ˆ๋‹ค...\n",
140
+ "Visualization complete.\n",
141
+ "\n"
142
+ ]
143
+ }
144
+ ],
145
+ "source": [
146
+ "import os\n",
147
+ "print(os.getcwd())\n",
148
+ "\n",
149
+ "import subprocess\n",
150
+ "\n",
151
+ "cmd = [\n",
152
+ " 'python3',\n",
153
+ " '../../../KISS-Matcher/python/examples/run_kiss_matcher.py',\n",
154
+ " '--src_path',\n",
155
+ " f'./initialize_pcdfile/first_{filename}.pcd',\n",
156
+ " '--tgt_path',\n",
157
+ " './initialize_pcdfile/gt_filtered.pcd',\n",
158
+ " '--resolution',\n",
159
+ " '1'\n",
160
+ " \n",
161
+ "\n",
162
+ "\n",
163
+ "]\n",
164
+ "try:\n",
165
+ " result = subprocess.run(cmd, capture_output=True, text=True, check=True)\n",
166
+ "\n",
167
+ " print(\"--- STDOUT (ํ‘œ์ค€ ์ถœ๋ ฅ) ---\")\n",
168
+ " print(\"๋ช…๋ น์–ด๊ฐ€ ์„ฑ๊ณต์ ์œผ๋กœ ์‹คํ–‰๋˜์—ˆ์Šต๋‹ˆ๋‹ค.\")\n",
169
+ " print(result.stdout)\n",
170
+ "\n",
171
+ "except FileNotFoundError:\n",
172
+ " print(\"--- ์—๋Ÿฌ ๋ฐœ์ƒ! ---\")\n",
173
+ " print(f\"'{cmd[0]}' ํŒŒ์ผ์„ ์ฐพ์„ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.\")\n",
174
+ " print(\"๊ฒฝ๋กœ๊ฐ€ ์˜ฌ๋ฐ”๋ฅธ์ง€, ํŒŒ์ผ์ด ๊ทธ ์œ„์น˜์— ์กด์žฌํ•˜๋Š”์ง€ ํ™•์ธํ•ด ์ฃผ์„ธ์š”.\")\n",
175
+ "\n",
176
+ "except subprocess.CalledProcessError as e:\n",
177
+ " print(\"--- ์—๋Ÿฌ ๋ฐœ์ƒ! ---\")\n",
178
+ " print(f\"๋ช…๋ น์–ด ์‹คํ–‰ ์ค‘ ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค. (์ข…๋ฃŒ ์ฝ”๋“œ: {e.returncode})\")\n",
179
+ " print(\"\\n--- STDERR (์—๋Ÿฌ ์›์ธ) ---\")\n",
180
+ " print(e.stderr)\n"
181
+ ]
182
+ },
183
+ {
184
+ "cell_type": "markdown",
185
+ "id": "0128f9e3",
186
+ "metadata": {},
187
+ "source": [
188
+ "## Saving initialized data\n"
189
+ ]
190
+ },
191
+ {
192
+ "cell_type": "code",
193
+ "execution_count": 16,
194
+ "id": "63441612",
195
+ "metadata": {},
196
+ "outputs": [
197
+ {
198
+ "name": "stdout",
199
+ "output_type": "stream",
200
+ "text": [
201
+ "Successfully moved and renamed 'output.ply' to './initialized_result/initial_0_23.ply'\n"
202
+ ]
203
+ }
204
+ ],
205
+ "source": [
206
+ "import shutil\n",
207
+ "import os\n",
208
+ "\n",
209
+ "transformed_path = \"output.ply\"\n",
210
+ "destination_path = f\"./initialized_result/initial_{filename}.ply\"\n",
211
+ "\n",
212
+ "\n",
213
+ "shutil.move(transformed_path, destination_path)\n",
214
+ "print(f\"Successfully moved and renamed '{transformed_path}' to '{destination_path}'\")\n",
215
+ "\n"
216
+ ]
217
+ }
218
+ ],
219
+ "metadata": {
220
+ "kernelspec": {
221
+ "display_name": "Python 3",
222
+ "language": "python",
223
+ "name": "python3"
224
+ },
225
+ "language_info": {
226
+ "codemirror_mode": {
227
+ "name": "ipython",
228
+ "version": 3
229
+ },
230
+ "file_extension": ".py",
231
+ "mimetype": "text/x-python",
232
+ "name": "python",
233
+ "nbconvert_exporter": "python",
234
+ "pygments_lexer": "ipython3",
235
+ "version": "3.10.12"
236
+ }
237
+ },
238
+ "nbformat": 4,
239
+ "nbformat_minor": 5
240
+ }
data/bottle_2/initial_guess(kiss_match).py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding: utf-8
3
+
4
+ # ## PCD file transformation
5
+
6
+ # In[18]:
7
+
8
+
9
+ import open3d as o3d
10
+ import numpy as np
11
+
12
+ file_names = []
13
+ with open('filename.txt', 'r') as f:
14
+ for line in f:
15
+ file_names.append(line.strip())
16
+ filename = file_names[0]
17
+ print(filename)
18
+
19
+
20
+ # PLY ํŒŒ์ผ ์ฝ๊ธฐ
21
+ pcd = o3d.io.read_point_cloud("./gt_filtered.ply")
22
+
23
+ # PCD ํŒŒ์ผ๋กœ ์ €์žฅ (๋ฐ”์ด๋„ˆ๋ฆฌ ํ˜•์‹)
24
+ o3d.io.write_point_cloud("./initialize_pcdfile/gt_filtered.pcd", pcd)
25
+
26
+ # ๋งŒ์•ฝ ASCII ํ˜•์‹์œผ๋กœ ์ €์žฅํ•˜๊ณ  ์‹ถ๋‹ค๋ฉด:
27
+ # o3d.io.write_point_cloud("output_ascii.pcd", pcd, write_ascii=True)
28
+
29
+ print("PLY ํŒŒ์ผ์ด PCD ํŒŒ์ผ๋กœ ์„ฑ๊ณต์ ์œผ๋กœ ๋ณ€ํ™˜๋˜์—ˆ์Šต๋‹ˆ๋‹ค.")
30
+
31
+
32
+ # In[19]:
33
+
34
+
35
+ # PLY ํŒŒ์ผ ์ฝ๊ธฐ
36
+ pcd = o3d.io.read_point_cloud(f"./noisy_result/noisy_filtered_{filename}.ply")
37
+
38
+ # PCD ํŒŒ์ผ๋กœ ์ €์žฅ (๋ฐ”์ด๋„ˆ๋ฆฌ ํ˜•์‹)
39
+ o3d.io.write_point_cloud(f"./initialize_pcdfile/first_{filename}.pcd", pcd)
40
+
41
+ # ๋งŒ์•ฝ ASCII ํ˜•์‹์œผ๋กœ ์ €์žฅํ•˜๊ณ  ์‹ถ๋‹ค๋ฉด:
42
+ # o3d.io.write_point_cloud("output_ascii.pcd", pcd, write_ascii=True)
43
+
44
+ print("PLY ํŒŒ์ผ์ด PCD ํŒŒ์ผ๋กœ ์„ฑ๊ณต์ ์œผ๋กœ ๋ณ€ํ™˜๋˜์—ˆ์Šต๋‹ˆ๋‹ค.")
45
+
46
+
47
+ # ## Execute initial Guess
48
+
49
+ # In[20]:
50
+
51
+
52
+ import os
53
+ print(os.getcwd())
54
+
55
+ import subprocess
56
+
57
+ cmd = [
58
+ 'python3',
59
+ '../../../KISS-Matcher/python/examples/run_kiss_matcher.py',
60
+ '--src_path',
61
+ f'./initialize_pcdfile/first_{filename}.pcd',
62
+ '--tgt_path',
63
+ './initialize_pcdfile/gt_filtered.pcd',
64
+ '--resolution',
65
+ '1'
66
+
67
+ ]
68
+ try:
69
+ result = subprocess.run(cmd, capture_output=True, text=True, check=True)
70
+
71
+ print("--- STDOUT (ํ‘œ์ค€ ์ถœ๋ ฅ) ---")
72
+ print("๋ช…๋ น์–ด๊ฐ€ ์„ฑ๊ณต์ ์œผ๋กœ ์‹คํ–‰๋˜์—ˆ์Šต๋‹ˆ๋‹ค.")
73
+ print(result.stdout)
74
+
75
+ except FileNotFoundError:
76
+ print("--- ์—๋Ÿฌ ๋ฐœ์ƒ! ---")
77
+ print(f"'{cmd[0]}' ํŒŒ์ผ์„ ์ฐพ์„ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.")
78
+ print("๊ฒฝ๋กœ๊ฐ€ ์˜ฌ๋ฐ”๋ฅธ์ง€, ํŒŒ์ผ์ด ๊ทธ ์œ„์น˜์— ์กด์žฌํ•˜๋Š”์ง€ ํ™•์ธํ•ด ์ฃผ์„ธ์š”.")
79
+
80
+ except subprocess.CalledProcessError as e:
81
+ print("--- ์—๋Ÿฌ ๋ฐœ์ƒ! ---")
82
+ print(f"๋ช…๋ น์–ด ์‹คํ–‰ ์ค‘ ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค. (์ข…๋ฃŒ ์ฝ”๋“œ: {e.returncode})")
83
+ print("\n--- STDERR (์—๋Ÿฌ ์›์ธ) ---")
84
+ print(e.stderr)
85
+
86
+
87
+ # ## Saving initialized data
88
+ #
89
+
90
+ # In[21]:
91
+
92
+
93
+ import shutil
94
+ import os
95
+
96
+ transformed_path = "output.ply"
97
+ destination_path = f"./initialized_result/initial_{filename}.ply"
98
+
99
+
100
+ shutil.move(transformed_path, destination_path)
101
+ print(f"Successfully moved and renamed '{transformed_path}' to '{destination_path}'")
102
+
103
+
data/bottle_2/merged.py ADDED
@@ -0,0 +1,496 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding: utf-8
3
+
4
+ # In[ ]:
5
+
6
+ import json
7
+ import os
8
+ import open3d as o3d
9
+ import numpy as np
10
+
11
+
12
+ mesh = o3d.io.read_triangle_mesh("./bottle.stl")
13
+ pointcloud = mesh.sample_points_poisson_disk(50000)
14
+ coord_frame = o3d.geometry.TriangleMesh.create_coordinate_frame(size=50.0, origin=[0, 0, 0])
15
+ mesh.compute_vertex_normals()
16
+ mesh_triangles = np.asarray(mesh.triangles)
17
+ vertex_positions = np.asarray(mesh.vertices)
18
+ triangle_normals = np.asarray(mesh.triangle_normals)
19
+ # ๊ฐ์ฒด์˜ ์ค‘์‹ฌ์  ๊ณ„์‚ฐ
20
+ centroid = mesh.get_center()
21
+
22
+
23
+ # ๋ฐ์ดํ„ฐ์…‹ ํด๋”์™€ JSON ํŒŒ์ผ ๊ฒฝ๋กœ
24
+ folder = "./dataset"
25
+ json_path = "ply_files.json"
26
+
27
+ # 1. ๊ฐ ์นดํ…Œ๊ณ ๋ฆฌ์— ํ•ด๋‹นํ•˜๋Š” resolution ๊ฐ’์„ ๋”•์…”๋„ˆ๋ฆฌ๋กœ ์ •์˜ํ•ฉ๋‹ˆ๋‹ค.
28
+ # ์ด ๊ฐ’์„ ์กฐ์ ˆํ•˜์—ฌ ์นดํ…Œ๊ณ ๋ฆฌ๋ณ„ ์„ค์ •์„ ๋ณ€๊ฒฝํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
29
+ resolutions = {
30
+ "100": 1.0,
31
+ "75": 0.8,
32
+ "50": 0.8,
33
+ "25": 0.8,
34
+ "0": 0.8
35
+ }
36
+
37
+ # 2. ๋ถ„๋ฅ˜๋œ ํŒŒ์ผ ๋ชฉ๋ก์ด ๋‹ด๊ธด JSON ํŒŒ์ผ์„ ์ฝ์–ด์˜ต๋‹ˆ๋‹ค.
38
+ try:
39
+ with open(json_path, "r", encoding="utf-8") as f:
40
+ categorized_files = json.load(f)
41
+ except FileNotFoundError:
42
+ print(f"์˜ค๋ฅ˜: '{json_path}' ํŒŒ์ผ์„ ์ฐพ์„ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค. ๋จผ์ € ํŒŒ์ผ ๋ถ„๋ฅ˜ ์ฝ”๋“œ๋ฅผ ์‹คํ–‰ํ•ด ์ฃผ์„ธ์š”.")
43
+ exit() # ํŒŒ์ผ์ด ์—†์œผ๋ฉด ํ”„๋กœ๊ทธ๋žจ ์ข…๋ฃŒ
44
+
45
+ # 3. ๋ชจ๋“  ์นดํ…Œ๊ณ ๋ฆฌ์™€ ํŒŒ์ผ์„ ์ˆœํšŒํ•˜๋Š” ๋ฐ˜๋ณต๋ฌธ
46
+ print("=== ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ ์‹œ์ž‘ ===")
47
+
48
+ # resolutions ๋”•์…”๋„ˆ๋ฆฌ๋ฅผ ๊ธฐ์ค€์œผ๋กœ ์™ธ๋ถ€ ๋ฃจํ”„๋ฅผ ์‹คํ–‰ํ•ฉ๋‹ˆ๋‹ค.
49
+ for category, resolution in resolutions.items():
50
+
51
+ print(f"\n--- [์นดํ…Œ๊ณ ๋ฆฌ: {category}, ํ•ด์ƒ๋„: {resolution}] ์ฒ˜๋ฆฌ ์‹œ์ž‘ ---")
52
+
53
+ # JSON์—์„œ ํ˜„์žฌ ์นดํ…Œ๊ณ ๋ฆฌ์— ํ•ด๋‹นํ•˜๋Š” ํŒŒ์ผ ๋ฆฌ์ŠคํŠธ๋ฅผ ๊ฐ€์ ธ์˜ต๋‹ˆ๋‹ค.
54
+ # .get(category, [])๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด JSON์— ํ•ด๋‹น ์นดํ…Œ๊ณ ๋ฆฌ๊ฐ€ ์—†์–ด๋„ ์˜ค๋ฅ˜ ์—†์ด ๋นˆ ๋ฆฌ์ŠคํŠธ๋ฅผ ๋ฐ˜ํ™˜ํ•ฉ๋‹ˆ๋‹ค.
55
+ filenames_in_category = categorized_files.get(category, [])
56
+
57
+ if not filenames_in_category:
58
+ print("์ฒ˜๋ฆฌํ•  ํŒŒ์ผ์ด ์—†์Šต๋‹ˆ๋‹ค.")
59
+ continue # ํŒŒ์ผ์ด ์—†์œผ๋ฉด ๋‹ค์Œ ์นดํ…Œ๊ณ ๋ฆฌ๋กœ ๋„˜์–ด๊ฐ
60
+
61
+ # ๋‚ด๋ถ€ ๋ฃจํ”„์—์„œ ํ•ด๋‹น ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๋ชจ๋“  ํŒŒ์ผ์„ ํ•˜๋‚˜์”ฉ ์ฒ˜๋ฆฌํ•ฉ๋‹ˆ๋‹ค.
62
+ for filename in filenames_in_category:
63
+
64
+ # ์‹ค์ œ ํŒŒ์ผ ๊ฒฝ๋กœ๋ฅผ ๋งŒ๋“ญ๋‹ˆ๋‹ค. (JSON์—๋Š” ํ™•์žฅ์ž๊ฐ€ ์—†์œผ๋ฏ€๋กœ .ply๋ฅผ ๋ถ™์—ฌ์ค๋‹ˆ๋‹ค)
65
+ file_path = os.path.join(folder, f"{filename}.ply")
66
+
67
+ print(f" - ํŒŒ์ผ ์ฒ˜๋ฆฌ ์ค‘: {file_path} (ํ•ด์ƒ๋„: {resolution})")
68
+
69
+
70
+ filename = filename
71
+ # PLY ํŒŒ์ผ ๋กœ๋“œ
72
+ pcd = o3d.io.read_point_cloud(f"./dataset/{filename}.ply")
73
+
74
+ GT = False
75
+ if GT==True:
76
+ mesh = o3d.io.read_triangle_mesh("./bottle2.stl")
77
+ pointcloud = mesh.sample_points_poisson_disk(50000)
78
+ coord_frame = o3d.geometry.TriangleMesh.create_coordinate_frame(size=50.0, origin=[0, 0, 0])
79
+
80
+ mesh.compute_vertex_normals()
81
+ mesh_triangles = np.asarray(mesh.triangles)
82
+ vertex_positions = np.asarray(mesh.vertices)
83
+ triangle_normals = np.asarray(mesh.triangle_normals)
84
+
85
+ # ๊ฐ์ฒด์˜ ์ค‘์‹ฌ์  ๊ณ„์‚ฐ
86
+ centroid = mesh.get_center()
87
+ filtered_triangles = []
88
+ for i, triangle in enumerate(mesh_triangles):
89
+ # ์‚ผ๊ฐํ˜•์˜ ์ค‘์‹ฌ์  ๊ณ„์‚ฐ
90
+ tri_center = vertex_positions[triangle].mean(axis=0)
91
+ # ๊ฐ์ฒด ์ค‘์‹ฌ์—์„œ ์‚ผ๊ฐํ˜• ์ค‘์‹ฌ์œผ๋กœ ํ–ฅํ•˜๋Š” ๋ฒกํ„ฐ
92
+ vec_to_center = tri_center - centroid
93
+ # ๋ฒ•์„  ๋ฒกํ„ฐ์™€ ๋ฐฉํ–ฅ ๋ฒกํ„ฐ๋ฅผ ๋‚ด์ 
94
+ dot_product = np.dot(triangle_normals[i], vec_to_center)
95
+ # ๋‚ด์  ๊ฐ’์ด ์–‘์ˆ˜์ด๋ฉด ๋ฐ”๊นฅ์ชฝ ๋ฉด์œผ๋กœ ํŒ๋‹จ
96
+ if dot_product > 0:
97
+ filtered_triangles.append(triangle)
98
+ # 3. ํ•„ํ„ฐ๋ง๋œ ๋ฉด์œผ๋กœ ์ƒˆ๋กœ์šด ๋ฉ”์‰ฌ ์ƒ์„ฑ
99
+ outer_mesh = o3d.geometry.TriangleMesh()
100
+ outer_mesh.vertices = mesh.vertices
101
+ outer_mesh.triangles = o3d.utility.Vector3iVector(np.array(filtered_triangles))
102
+ # 4. ์ƒˆ๋กœ์šด ๋ฉ”์‰ฌ์—์„œ ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ ์ƒ˜ํ”Œ๋ง
103
+ # n_points๋Š” ์ƒ˜ํ”Œ๋งํ•  ํฌ์ธํŠธ ๊ฐœ์ˆ˜
104
+ pcd = outer_mesh.sample_points_uniformly(number_of_points=50000)
105
+ # ๊ฒฐ๊ณผ ์‹œ๊ฐํ™”
106
+ # o3d.visualization.draw_geometries([pcd,coord_frame ])
107
+
108
+
109
+
110
+
111
+ pcd_array = np.asarray(pcd.points)
112
+
113
+
114
+ # In[160]:
115
+
116
+
117
+ import open3d as o3d
118
+ import numpy as np
119
+
120
+
121
+ if not GT:
122
+ ply_path = f"./dataset/{filename}.ply"
123
+
124
+ pcd = o3d.io.read_point_cloud(ply_path)
125
+ print(ply_path)
126
+
127
+
128
+ pcd_array = np.asarray(pcd.points)
129
+ print(pcd_array.shape)
130
+
131
+ coord_frame = o3d.geometry.TriangleMesh.create_coordinate_frame(size=50.0, origin=[0, 0, 0])
132
+ # o3d.visualization.draw_geometries([pcd, coord_frame])
133
+
134
+
135
+ # In[161]:
136
+
137
+
138
+ if GT==False:
139
+
140
+ new_pcd_array = np.unique(pcd_array, axis=0)
141
+
142
+ # new_pcd_array = new_pcd_array[new_pcd_array[:, 2] < 580]
143
+ new_pcd_array = new_pcd_array[new_pcd_array[:, 2] < 1000]
144
+
145
+ # new_pcd_array = new_pcd_array[new_pcd_array[:, 1] > -100]
146
+ new_pcd_array = new_pcd_array[new_pcd_array[:, 1] > -1000] #diagonal
147
+ new_pcd_array = new_pcd_array[new_pcd_array[:, 1] < 120]
148
+ new_pcd_array = new_pcd_array[new_pcd_array[:, 0] > -1000]
149
+ new_pcd_array = new_pcd_array[new_pcd_array[:, 0] < 1000] #diagonal
150
+ # new_pcd_array = new_pcd_array[new_pcd_array[:, 0] < 100]
151
+ # new_pcd_array -= np.mean(new_pcd_array, axis=0)
152
+ print(np.mean(new_pcd_array, axis=0))
153
+
154
+ new_pcd = o3d.geometry.PointCloud()
155
+ new_pcd.points = o3d.utility.Vector3dVector(new_pcd_array)
156
+
157
+ theta = np.radians(90)
158
+ # theta = np.radians(-90)
159
+
160
+
161
+ new_pcd_array = np.asarray(new_pcd.points)
162
+
163
+ coord_frame = o3d.geometry.TriangleMesh.create_coordinate_frame(size=50.0, origin=[0, 0, 0])
164
+ # o3d.visualization.draw_geometries([new_pcd, coord_frame])
165
+
166
+
167
+ # ## Delete ground plane
168
+
169
+ # In[162]:
170
+
171
+
172
+ if GT==False:
173
+
174
+ plane_model, inliers = new_pcd.segment_plane(distance_threshold=1,
175
+ ransac_n=10,
176
+ num_iterations=1000)
177
+ [a, b, c, d] = plane_model
178
+ print(f"Plane equation: {a:.2f}x + {b:.2f}y + {c:.2f}z + {d:.2f} = 0")
179
+
180
+
181
+
182
+ inlier_cloud = new_pcd.select_by_index(inliers)
183
+ inlier_cloud.paint_uniform_color([1.0, 0, 1.0])
184
+ outlier_cloud = new_pcd.select_by_index(inliers, invert=True)
185
+ # o3d.visualization.draw_geometries([inlier_cloud, outlier_cloud],
186
+ # zoom=0.8,
187
+ # front=[-0.4999, -0.1659, -0.8499],
188
+ # lookat=[2.1813, 2.0619, 2.0999],
189
+ # up=[0.1204, -0.9852, 0.1215])
190
+
191
+ new_pcd = outlier_cloud
192
+
193
+ new_pcd_array = np.asarray(new_pcd.points)
194
+
195
+
196
+
197
+
198
+ # ### Changing the source position "gt_filtered"
199
+ #
200
+
201
+ # In[163]:
202
+
203
+
204
+ CHECK_PERTURB = GT
205
+
206
+ def random_rotation_matrix():
207
+ """
208
+ Generate a random 3x3 rotation matrix (SO(3) matrix).
209
+
210
+ Uses the method described by James Arvo in "Fast Random Rotation Matrices" (1992):
211
+ 1. Generate a random unit vector for rotation axis
212
+ 2. Generate a random angle
213
+ 3. Create rotation matrix using Rodriguez rotation formula
214
+
215
+ Returns:
216
+ numpy.ndarray: A 3x3 random rotation matrix
217
+ """
218
+ ## for ground target
219
+ # Generate random angle ฯ€/2
220
+ theta = 0
221
+
222
+
223
+ # axis is -y
224
+ axis = np.array([
225
+ 1,
226
+ 0,
227
+ 0,
228
+ ])
229
+
230
+ # for lying target
231
+ # theta will be pi/2
232
+ # theta = np.pi/2
233
+ # axis = np.array([
234
+ # 0,
235
+ # 1,
236
+ # 0,
237
+ # ])
238
+
239
+
240
+
241
+
242
+ # Normalize to ensure it's a unit vector
243
+ axis = axis / np.linalg.norm(axis)
244
+
245
+
246
+
247
+ # Create the cross-product matrix K skew-symmetric
248
+ K = np.array([
249
+ [0, -axis[2], axis[1]],
250
+ [axis[2], 0, -axis[0]],
251
+ [-axis[1], axis[0], 0]
252
+ ])
253
+
254
+ # Rodriguez rotation formula: R = I + sin(ฮธ)K + (1-cos(ฮธ))Kยฒ
255
+ R = (np.eye(3) +
256
+ np.sin(theta) * K +
257
+ (1 - np.cos(theta)) * np.dot(K, K))
258
+
259
+ return R
260
+
261
+ if CHECK_PERTURB:
262
+ R_pert = random_rotation_matrix()
263
+ print(R_pert)
264
+ t_pert = np.array([
265
+ 0,
266
+ 0,
267
+ 0
268
+ ])
269
+
270
+
271
+ perturbed_pcd_array = np.dot(R_pert, pcd_array.T).T + t_pert.T
272
+
273
+
274
+ perturbed_pcd = o3d.geometry.PointCloud()
275
+ perturbed_pcd.points = o3d.utility.Vector3dVector(perturbed_pcd_array)
276
+ coord_frame = o3d.geometry.TriangleMesh.create_coordinate_frame(size=50.0, origin=[0, 0, 0])
277
+ # o3d.visualization.draw_geometries([perturbed_pcd, coord_frame])
278
+
279
+
280
+ # ### Rotate randomly in Target "noisy filtered"
281
+
282
+ # In[164]:
283
+
284
+
285
+ CHECK_PERTURB = not GT
286
+
287
+
288
+ if CHECK_PERTURB:
289
+ # R_pert = random_rotation_matrix()
290
+ # print(R_pert)
291
+ # t_pert = np.random.rand(3, 1)*3 #* 10
292
+
293
+
294
+ # perturbed_pcd_array = np.dot(R_pert, new_pcd_array.T).T + t_pert.T
295
+ perturbed_pcd_array = new_pcd_array
296
+ perturbed_pcd = o3d.geometry.PointCloud()
297
+ perturbed_pcd.points = o3d.utility.Vector3dVector(perturbed_pcd_array)
298
+
299
+
300
+ now_centeroid = perturbed_pcd.get_center()
301
+ perturbed_pcd.translate(centroid, relative=False)
302
+
303
+ ## get centeroid vector
304
+
305
+ translation_vector = centroid - now_centeroid
306
+
307
+ np.savetxt(f"./centroid/{filename}.txt",translation_vector)
308
+
309
+ ##### changed
310
+
311
+ perturbed_pcd_array = np.asarray(perturbed_pcd.points)
312
+ coord_frame = o3d.geometry.TriangleMesh.create_coordinate_frame(size=50.0, origin=[0, 0, 0])
313
+
314
+
315
+
316
+
317
+
318
+ # o3d.visualization.draw_geometries([perturbed_pcd, coord_frame])
319
+
320
+
321
+ # In[165]:
322
+
323
+
324
+ def write_ply(points, output_path):
325
+ """
326
+ Write points and parameters to a PLY file
327
+
328
+ Parameters:
329
+ points: numpy array of shape (N, 3) containing point coordinates
330
+ output_path: path to save the PLY file
331
+ """
332
+ with open(output_path, 'w') as f:
333
+ # Write header
334
+ f.write("ply\n")
335
+ f.write("format ascii 1.0\n")
336
+
337
+ # Write vertex element
338
+ f.write(f"element vertex {len(points)}\n")
339
+ f.write("property float x\n")
340
+ f.write("property float y\n")
341
+ f.write("property float z\n")
342
+
343
+ # Write camera element
344
+ f.write("element camera 1\n")
345
+ f.write("property float view_px\n")
346
+ f.write("property float view_py\n")
347
+ f.write("property float view_pz\n")
348
+ f.write("property float x_axisx\n")
349
+ f.write("property float x_axisy\n")
350
+ f.write("property float x_axisz\n")
351
+ f.write("property float y_axisx\n")
352
+ f.write("property float y_axisy\n")
353
+ f.write("property float y_axisz\n")
354
+ f.write("property float z_axisx\n")
355
+ f.write("property float z_axisy\n")
356
+ f.write("property float z_axisz\n")
357
+
358
+ # Write phoxi frame parameters
359
+ f.write("element phoxi_frame_params 1\n")
360
+ f.write("property uint32 frame_width\n")
361
+ f.write("property uint32 frame_height\n")
362
+ f.write("property uint32 frame_index\n")
363
+ f.write("property float frame_start_time\n")
364
+ f.write("property float frame_duration\n")
365
+ f.write("property float frame_computation_duration\n")
366
+ f.write("property float frame_transfer_duration\n")
367
+ f.write("property int32 total_scan_count\n")
368
+
369
+ # Write camera matrix
370
+ f.write("element camera_matrix 1\n")
371
+ for i in range(9):
372
+ f.write(f"property float cm{i}\n")
373
+
374
+ # Write distortion matrix
375
+ f.write("element distortion_matrix 1\n")
376
+ for i in range(14):
377
+ f.write(f"property float dm{i}\n")
378
+
379
+ # Write camera resolution
380
+ f.write("element camera_resolution 1\n")
381
+ f.write("property float width\n")
382
+ f.write("property float height\n")
383
+
384
+ # Write frame binning
385
+ f.write("element frame_binning 1\n")
386
+ f.write("property float horizontal\n")
387
+ f.write("property float vertical\n")
388
+
389
+ # End header
390
+ f.write("end_header\n")
391
+
392
+ # Write vertex data
393
+ for point in points:
394
+ f.write(f"{point[0]} {point[1]} {point[2]}\n")
395
+
396
+ print(True)
397
+
398
+ if GT: write_ply(perturbed_pcd_array, f"gt_filtered.ply")
399
+ else:
400
+ write_ply(perturbed_pcd_array, f"./noisy_result/noisy_filtered_{filename}.ply")
401
+ write_ply(new_pcd_array,f"./noisy_raw/noisy_filtered_{filename}.ply")
402
+ # write_ply(new_pcd_array, "gt_filtered.ply")
403
+
404
+ #!/usr/bin/env python
405
+ # coding: utf-8
406
+
407
+ # ## PCD file transformation
408
+
409
+ # In[18]:
410
+
411
+
412
+ # PLY ํŒŒ์ผ ์ฝ๊ธฐ
413
+ pcd = o3d.io.read_point_cloud("./gt_filtered.ply")
414
+
415
+ # PCD ํŒŒ์ผ๋กœ ์ €์žฅ (๋ฐ”์ด๋„ˆ๋ฆฌ ํ˜•์‹)
416
+ o3d.io.write_point_cloud("./initialize_pcdfile/gt_filtered.pcd", pcd)
417
+
418
+ # ๋งŒ์•ฝ ASCII ํ˜•์‹์œผ๋กœ ์ €์žฅํ•˜๊ณ  ์‹ถ๋‹ค๋ฉด:
419
+ # o3d.io.write_point_cloud("output_ascii.pcd", pcd, write_ascii=True)
420
+
421
+ print("PLY ํŒŒ์ผ์ด PCD ํŒŒ์ผ๋กœ ์„ฑ๊ณต์ ์œผ๋กœ ๋ณ€ํ™˜๋˜์—ˆ์Šต๋‹ˆ๋‹ค.")
422
+
423
+
424
+ # In[19]:
425
+
426
+
427
+ # PLY ํŒŒ์ผ ์ฝ๊ธฐ
428
+ pcd = o3d.io.read_point_cloud(f"./noisy_result/noisy_filtered_{filename}.ply")
429
+
430
+ # PCD ํŒŒ์ผ๋กœ ์ €์žฅ (๋ฐ”์ด๋„ˆ๋ฆฌ ํ˜•์‹)
431
+ o3d.io.write_point_cloud(f"./initialize_pcdfile/first_{filename}.pcd", pcd)
432
+
433
+ # ๋งŒ์•ฝ ASCII ํ˜•์‹์œผ๋กœ ์ €์žฅํ•˜๊ณ  ์‹ถ๋‹ค๋ฉด:
434
+ # o3d.io.write_point_cloud("output_ascii.pcd", pcd, write_ascii=True)
435
+
436
+ print("PLY ํŒŒ์ผ์ด PCD ํŒŒ์ผ๋กœ ์„ฑ๊ณต์ ์œผ๋กœ ๋ณ€ํ™˜๋˜์—ˆ์Šต๋‹ˆ๋‹ค.")
437
+
438
+
439
+ # ## Execute initial Guess
440
+
441
+ # In[20]:
442
+
443
+
444
+ # import os
445
+ # print(os.getcwd())
446
+
447
+ # import subprocess
448
+
449
+ # cmd = [
450
+ # 'python3',
451
+ # '../../../KISS-Matcher/python/examples/run_kiss_matcher.py',
452
+ # '--src_path',
453
+ # f'./initialize_pcdfile/first_{filename}.pcd',
454
+ # '--tgt_path',
455
+ # './initialize_pcdfile/gt_filtered.pcd',
456
+ # '--resolution',
457
+ # '1'
458
+
459
+ # ]
460
+ # try:
461
+ # result = subprocess.run(cmd, capture_output=True, text=True, check=True)
462
+
463
+ # print("--- STDOUT (ํ‘œ์ค€ ์ถœ๋ ฅ) ---")
464
+ # print("๋ช…๋ น์–ด๊ฐ€ ์„ฑ๊ณต์ ์œผ๋กœ ์‹คํ–‰๋˜์—ˆ์Šต๋‹ˆ๋‹ค.")
465
+ # print(result.stdout)
466
+
467
+ # except FileNotFoundError:
468
+ # print("--- ์—๋Ÿฌ ๋ฐœ์ƒ! ---")
469
+ # print(f"'{cmd[0]}' ํŒŒ์ผ์„ ์ฐพ์„ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.")
470
+ # print("๊ฒฝ๋กœ๊ฐ€ ์˜ฌ๋ฐ”๋ฅธ์ง€, ํŒŒ์ผ์ด ๊ทธ ์œ„์น˜์— ์กด์žฌํ•˜๋Š”์ง€ ํ™•์ธํ•ด ์ฃผ์„ธ์š”.")
471
+
472
+ # except subprocess.CalledProcessError as e:
473
+ # print("--- ์—๋Ÿฌ ๋ฐœ์ƒ! ---")
474
+ # print(f"๋ช…๋ น์–ด ์‹คํ–‰ ์ค‘ ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค. (์ข…๋ฃŒ ์ฝ”๋“œ: {e.returncode})")
475
+ # print("\n--- STDERR (์—๋Ÿฌ ์›์ธ) ---")
476
+ # print(e.stderr)
477
+
478
+
479
+ # # ## Saving initialized data
480
+ # #
481
+
482
+ # # In[21]:
483
+
484
+
485
+ # import shutil
486
+ # import os
487
+
488
+ # transformed_path = "output.ply"
489
+ # destination_path = f"./initialized_result/initial_{filename}.ply"
490
+
491
+
492
+ # shutil.move(transformed_path, destination_path)
493
+ # print(f"Successfully moved and renamed '{transformed_path}' to '{destination_path}'")
494
+
495
+
496
+
data/bottle_2/output_trans.txt ADDED
The diff for this file is too large to render. See raw diff
 
data/bottle_2/ply_files.json ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "100": [
3
+ "100_19",
4
+ "100_10",
5
+ "100_1",
6
+ "100_4",
7
+ "100_6",
8
+ "100_5",
9
+ "100_17",
10
+ "100_15",
11
+ "100_12",
12
+ "100_16",
13
+ "100_14",
14
+ "100_7",
15
+ "100_13",
16
+ "100_9",
17
+ "100_18",
18
+ "100_2",
19
+ "100_11",
20
+ "100_20",
21
+ "100_3",
22
+ "100_8"
23
+ ],
24
+ "75": [
25
+ "75_6",
26
+ "75_12",
27
+ "75_9",
28
+ "75_4",
29
+ "75_11",
30
+ "75_7",
31
+ "75_14",
32
+ "75_8",
33
+ "75_16",
34
+ "75_17",
35
+ "75_2",
36
+ "75_3",
37
+ "75_1",
38
+ "75_15",
39
+ "75_20",
40
+ "75_10",
41
+ "75_13",
42
+ "75_5",
43
+ "75_19",
44
+ "75_18"
45
+ ],
46
+ "50": [
47
+ "50_18",
48
+ "50_8",
49
+ "50_13",
50
+ "50_15",
51
+ "50_7",
52
+ "50_4",
53
+ "50_5",
54
+ "50_19",
55
+ "50_16",
56
+ "50_20",
57
+ "50_14",
58
+ "50_12",
59
+ "50_11",
60
+ "50_9",
61
+ "50_6",
62
+ "50_17",
63
+ "50_1",
64
+ "50_10",
65
+ "50_3",
66
+ "50_2"
67
+ ],
68
+ "25": [
69
+ "25_6",
70
+ "25_19",
71
+ "25_17",
72
+ "25_9",
73
+ "25_11",
74
+ "25_20",
75
+ "25_14",
76
+ "25_4",
77
+ "25_16",
78
+ "25_5",
79
+ "25_2",
80
+ "25_10",
81
+ "25_3",
82
+ "25_8",
83
+ "25_13",
84
+ "25_7",
85
+ "25_12",
86
+ "25_1",
87
+ "25_15",
88
+ "25_18"
89
+ ],
90
+ "0": [
91
+ "0_12",
92
+ "0_17",
93
+ "0_16",
94
+ "0_15",
95
+ "0_2",
96
+ "0_5",
97
+ "0_14",
98
+ "0_9",
99
+ "0_22",
100
+ "0_4",
101
+ "0_18",
102
+ "0_8",
103
+ "0_7",
104
+ "0_11",
105
+ "0_13",
106
+ "0_23",
107
+ "0_10",
108
+ "0_19",
109
+ "0_1",
110
+ "0_6",
111
+ "0_21",
112
+ "0_20",
113
+ "0_3"
114
+ ]
115
+ }
data/bottle_2/run_all.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ import subprocess
4
+
5
+ import os
6
+ import json
7
+
8
+ # PLY ํŒŒ์ผ๋“ค์ด ๋“ค์–ด ์žˆ๋Š” ํด๋” ๊ฒฝ๋กœ
9
+ folder = "./dataset"
10
+
11
+ # ๋ถ„๋ฅ˜ํ•  ์นดํ…Œ๊ณ ๋ฆฌ๋ฅผ ๋ฏธ๋ฆฌ ์ •์˜ํ•ฉ๋‹ˆ๋‹ค.
12
+ categories = ["100", "75", "50", "25", "0"]
13
+
14
+ # ๊ฒฐ๊ณผ๋ฅผ ์ €์žฅํ•  ๋”•์…”๋„ˆ๋ฆฌ๋ฅผ ์นดํ…Œ๊ณ ๋ฆฌ๋ณ„๋กœ ์ดˆ๊ธฐํ™”ํ•ฉ๋‹ˆ๋‹ค.
15
+ grouped_files = {cat: [] for cat in categories}
16
+
17
+ # ํ™•์žฅ์ž๊ฐ€ .ply ์ธ ํŒŒ์ผ ๋ชฉ๋ก์„ ๊ฐ€์ ธ์˜ต๋‹ˆ๋‹ค.
18
+ try:
19
+ all_files = os.listdir(folder)
20
+ except FileNotFoundError:
21
+ print(f"์˜ค๋ฅ˜: '{folder}' ํด๋”๋ฅผ ์ฐพ์„ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.")
22
+ all_files = []
23
+
24
+ # ๊ฐ ํŒŒ์ผ์„ ์ˆœํšŒํ•˜๋ฉฐ ์ ์ ˆํ•œ ์นดํ…Œ๊ณ ๋ฆฌ์— ์ถ”๊ฐ€ํ•ฉ๋‹ˆ๋‹ค.
25
+ for filename_with_ext in all_files:
26
+ if filename_with_ext.endswith(".ply"):
27
+ # ํ™•์žฅ์ž(.ply)๋ฅผ ์ œ๊ฑฐํ•ฉ๋‹ˆ๋‹ค.
28
+ filename = filename_with_ext.removesuffix('.ply')
29
+
30
+ # ํŒŒ์ผ๋ช…์„ '_' ๊ธฐ์ค€์œผ๋กœ ๋ถ„๋ฆฌํ•˜์—ฌ ์ ‘๋‘์–ด(prefix)๋ฅผ ์–ป์Šต๋‹ˆ๋‹ค.
31
+ prefix = filename.split('_')[0]
32
+
33
+ # ์ ‘๋‘์–ด๊ฐ€ ์ •์˜๋œ ์นดํ…Œ๊ณ ๋ฆฌ ์ค‘ ํ•˜๋‚˜๋ผ๋ฉด, ํ•ด๋‹น ๋ฆฌ์ŠคํŠธ์— ํŒŒ์ผ๋ช…์„ ์ถ”๊ฐ€ํ•ฉ๋‹ˆ๋‹ค.
34
+ if prefix in grouped_files:
35
+ grouped_files[prefix].append(filename)
36
+
37
+ # ๋ถ„๋ฅ˜๋œ ๋”•์…”๋„ˆ๋ฆฌ๋ฅผ JSON ํŒŒ์ผ๋กœ ์ €์žฅํ•ฉ๋‹ˆ๋‹ค.
38
+ with open("ply_files.json", "w", encoding="utf-8") as f:
39
+ json.dump(grouped_files, f, ensure_ascii=False, indent=2)
40
+
41
+ print("JSON ์ €์žฅ ์™„๋ฃŒ! ์•„๋ž˜์™€ ๊ฐ™์ด ํŒŒ์ผ์ด ๋ถ„๋ฅ˜๋˜์—ˆ์Šต๋‹ˆ๋‹ค.")
42
+ print(json.dumps(grouped_files, indent=2))
43
+
44
+ # merged.py ์‹คํ–‰
45
+ subprocess.run(["python3", "merged.py"])
data/car/downsample_car.ipynb ADDED
@@ -0,0 +1,351 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 1,
6
+ "metadata": {},
7
+ "outputs": [
8
+ {
9
+ "name": "stdout",
10
+ "output_type": "stream",
11
+ "text": [
12
+ "Jupyter environment detected. Enabling Open3D WebVisualizer.\n",
13
+ "[Open3D INFO] WebRTC GUI backend enabled.\n",
14
+ "[Open3D INFO] WebRTCWindowSystem: HTTP handshake server disabled.\n",
15
+ "Reading point cloud from car_source.ply\n",
16
+ "Removing duplicate points (epsilon = 0.001)\n",
17
+ "Performing voxel downsampling with voxel size 0.05\n",
18
+ "\n",
19
+ "Point cloud statistics:\n",
20
+ "Original points: 2016000\n",
21
+ "Points after duplicate removal: 619908\n",
22
+ "Final points after downsampling: 619908\n",
23
+ "Duplicate removal reduction: 69.25%\n",
24
+ "Total reduction: 69.25%\n",
25
+ "Reading point cloud from car_target.ply\n",
26
+ "Removing duplicate points (epsilon = 0.001)\n",
27
+ "Performing voxel downsampling with voxel size 0.05\n",
28
+ "\n",
29
+ "Point cloud statistics:\n",
30
+ "Original points: 2016000\n",
31
+ "Points after duplicate removal: 873663\n",
32
+ "Final points after downsampling: 873663\n",
33
+ "Duplicate removal reduction: 56.66%\n",
34
+ "Total reduction: 56.66%\n"
35
+ ]
36
+ }
37
+ ],
38
+ "source": [
39
+ "import open3d as o3d\n",
40
+ "import numpy as np\n",
41
+ "\n",
42
+ "def write_ply(points, output_path):\n",
43
+ " \"\"\"\n",
44
+ " Write points and parameters to a PLY file\n",
45
+ " \n",
46
+ " Parameters:\n",
47
+ " points: numpy array of shape (N, 3) containing point coordinates\n",
48
+ " output_path: path to save the PLY file\n",
49
+ " \"\"\"\n",
50
+ " with open(output_path, 'w') as f:\n",
51
+ " # Write header\n",
52
+ " f.write(\"ply\\n\")\n",
53
+ " f.write(\"format ascii 1.0\\n\")\n",
54
+ " \n",
55
+ " # Write vertex element\n",
56
+ " f.write(f\"element vertex {len(points)}\\n\")\n",
57
+ " f.write(\"property float x\\n\")\n",
58
+ " f.write(\"property float y\\n\")\n",
59
+ " f.write(\"property float z\\n\")\n",
60
+ " \n",
61
+ " # Write camera element\n",
62
+ " f.write(\"element camera 1\\n\")\n",
63
+ " f.write(\"property float view_px\\n\")\n",
64
+ " f.write(\"property float view_py\\n\")\n",
65
+ " f.write(\"property float view_pz\\n\")\n",
66
+ " f.write(\"property float x_axisx\\n\")\n",
67
+ " f.write(\"property float x_axisy\\n\")\n",
68
+ " f.write(\"property float x_axisz\\n\")\n",
69
+ " f.write(\"property float y_axisx\\n\")\n",
70
+ " f.write(\"property float y_axisy\\n\")\n",
71
+ " f.write(\"property float y_axisz\\n\")\n",
72
+ " f.write(\"property float z_axisx\\n\")\n",
73
+ " f.write(\"property float z_axisy\\n\")\n",
74
+ " f.write(\"property float z_axisz\\n\")\n",
75
+ " \n",
76
+ " # Write phoxi frame parameters\n",
77
+ " f.write(\"element phoxi_frame_params 1\\n\")\n",
78
+ " f.write(\"property uint32 frame_width\\n\")\n",
79
+ " f.write(\"property uint32 frame_height\\n\")\n",
80
+ " f.write(\"property uint32 frame_index\\n\")\n",
81
+ " f.write(\"property float frame_start_time\\n\")\n",
82
+ " f.write(\"property float frame_duration\\n\")\n",
83
+ " f.write(\"property float frame_computation_duration\\n\")\n",
84
+ " f.write(\"property float frame_transfer_duration\\n\")\n",
85
+ " f.write(\"property int32 total_scan_count\\n\")\n",
86
+ " \n",
87
+ " # Write camera matrix\n",
88
+ " f.write(\"element camera_matrix 1\\n\")\n",
89
+ " for i in range(9):\n",
90
+ " f.write(f\"property float cm{i}\\n\")\n",
91
+ " \n",
92
+ " # Write distortion matrix\n",
93
+ " f.write(\"element distortion_matrix 1\\n\")\n",
94
+ " for i in range(14):\n",
95
+ " f.write(f\"property float dm{i}\\n\")\n",
96
+ " \n",
97
+ " # Write camera resolution\n",
98
+ " f.write(\"element camera_resolution 1\\n\")\n",
99
+ " f.write(\"property float width\\n\")\n",
100
+ " f.write(\"property float height\\n\")\n",
101
+ " \n",
102
+ " # Write frame binning\n",
103
+ " f.write(\"element frame_binning 1\\n\")\n",
104
+ " f.write(\"property float horizontal\\n\")\n",
105
+ " f.write(\"property float vertical\\n\")\n",
106
+ " \n",
107
+ " # End header\n",
108
+ " f.write(\"end_header\\n\")\n",
109
+ " \n",
110
+ " # Write vertex data\n",
111
+ " for point in points:\n",
112
+ " f.write(f\"{point[0]} {point[1]} {point[2]}\\n\")\n",
113
+ "\n",
114
+ " return True\n",
115
+ " \n",
116
+ "def random_rotation_matrix():\n",
117
+ " \"\"\"\n",
118
+ " Generate a random 3x3 rotation matrix (SO(3) matrix).\n",
119
+ " \n",
120
+ " Uses the method described by James Arvo in \"Fast Random Rotation Matrices\" (1992):\n",
121
+ " 1. Generate a random unit vector for rotation axis\n",
122
+ " 2. Generate a random angle\n",
123
+ " 3. Create rotation matrix using Rodriguez rotation formula\n",
124
+ " \n",
125
+ " Returns:\n",
126
+ " numpy.ndarray: A 3x3 random rotation matrix\n",
127
+ " \"\"\"\n",
128
+ " # Generate random angle between 0 and 2ฯ€\n",
129
+ " theta = np.random.uniform(0, 2 * np.pi)\n",
130
+ " \n",
131
+ " # Generate random unit vector for rotation axis\n",
132
+ " phi = np.random.uniform(0, 2 * np.pi)\n",
133
+ " cos_theta = np.random.uniform(-1, 1)\n",
134
+ " sin_theta = np.sqrt(1 - cos_theta**2)\n",
135
+ " \n",
136
+ " axis = np.array([\n",
137
+ " sin_theta * np.cos(phi),\n",
138
+ " sin_theta * np.sin(phi),\n",
139
+ " cos_theta\n",
140
+ " ])\n",
141
+ " \n",
142
+ " # Normalize to ensure it's a unit vector\n",
143
+ " axis = axis / np.linalg.norm(axis)\n",
144
+ " \n",
145
+ " # Create the cross-product matrix K\n",
146
+ " K = np.array([\n",
147
+ " [0, -axis[2], axis[1]],\n",
148
+ " [axis[2], 0, -axis[0]],\n",
149
+ " [-axis[1], axis[0], 0]\n",
150
+ " ])\n",
151
+ " \n",
152
+ " # Rodriguez rotation formula: R = I + sin(ฮธ)K + (1-cos(ฮธ))Kยฒ\n",
153
+ " R = (np.eye(3) + \n",
154
+ " np.sin(theta) * K + \n",
155
+ " (1 - np.cos(theta)) * np.dot(K, K))\n",
156
+ " \n",
157
+ " return R\n",
158
+ "\n",
159
+ "def remove_duplicates(pcd, eps=0.001):\n",
160
+ " \"\"\"\n",
161
+ " Remove duplicate points from point cloud within epsilon distance\n",
162
+ " \n",
163
+ " Parameters:\n",
164
+ " pcd: open3d.geometry.PointCloud\n",
165
+ " eps: float, maximum distance between points to be considered duplicates\n",
166
+ " \n",
167
+ " Returns:\n",
168
+ " open3d.geometry.PointCloud: Point cloud with duplicates removed\n",
169
+ " \"\"\"\n",
170
+ " # Convert to numpy array for processing\n",
171
+ " points = np.asarray(pcd.points)\n",
172
+ " colors = np.asarray(pcd.colors) if pcd.has_colors() else None\n",
173
+ " \n",
174
+ " # Use voxel downsampling with very small voxel size to remove duplicates\n",
175
+ " temp_pcd = o3d.geometry.PointCloud()\n",
176
+ " temp_pcd.points = o3d.utility.Vector3dVector(points)\n",
177
+ " if colors is not None:\n",
178
+ " temp_pcd.colors = o3d.utility.Vector3dVector(colors)\n",
179
+ " \n",
180
+ " # Use voxel downsampling with epsilon size to remove points within eps distance\n",
181
+ " deduped_pcd = temp_pcd.voxel_down_sample(voxel_size=eps)\n",
182
+ " \n",
183
+ " return deduped_pcd\n",
184
+ "\n",
185
+ "def downsample_ply(input_path, output_path, method='voxel', voxel_size=0.05, \n",
186
+ " every_k_points=5, remove_duplicates_eps=0.001, perturb = False):\n",
187
+ " \"\"\"\n",
188
+ " Remove duplicates and downsample a PLY file using different methods.\n",
189
+ " \n",
190
+ " Parameters:\n",
191
+ " input_path (str): Path to input PLY file\n",
192
+ " output_path (str): Path to save downsampled PLY file\n",
193
+ " method (str): Downsampling method ('voxel', 'uniform', or 'random')\n",
194
+ " voxel_size (float): Size of voxel for voxel downsampling\n",
195
+ " every_k_points (int): Keep every kth point for uniform downsampling\n",
196
+ " remove_duplicates_eps (float): Maximum distance between points to be considered duplicates\n",
197
+ " \n",
198
+ " Returns:\n",
199
+ " bool: True if successful, False otherwise\n",
200
+ " \"\"\"\n",
201
+ " try:\n",
202
+ " # Read point cloud\n",
203
+ " print(f\"Reading point cloud from {input_path}\")\n",
204
+ " pcd = o3d.io.read_point_cloud(input_path)\n",
205
+ " original_points = len(np.asarray(pcd.points))\n",
206
+ " \n",
207
+ " # Remove duplicates first\n",
208
+ " print(f\"Removing duplicate points (epsilon = {remove_duplicates_eps})\")\n",
209
+ " pcd = remove_duplicates(pcd, eps=remove_duplicates_eps)\n",
210
+ " after_dedup_points = len(np.asarray(pcd.points))\n",
211
+ " \n",
212
+ " # Perform downsampling based on selected method\n",
213
+ " if method == 'voxel':\n",
214
+ " print(f\"Performing voxel downsampling with voxel size {voxel_size}\")\n",
215
+ " downsampled_pcd = pcd.voxel_down_sample(voxel_size=voxel_size)\n",
216
+ " \n",
217
+ " elif method == 'uniform':\n",
218
+ " print(f\"Performing uniform downsampling, keeping every {every_k_points}th point\")\n",
219
+ " downsampled_pcd = pcd.uniform_down_sample(every_k_points=every_k_points)\n",
220
+ " \n",
221
+ " elif method == 'random':\n",
222
+ " points = np.asarray(pcd.points)\n",
223
+ " colors = np.asarray(pcd.colors) if pcd.has_colors() else None\n",
224
+ " indices = np.random.choice(\n",
225
+ " points.shape[0], \n",
226
+ " size=points.shape[0] // every_k_points, \n",
227
+ " replace=False\n",
228
+ " )\n",
229
+ " downsampled_pcd = o3d.geometry.PointCloud()\n",
230
+ " downsampled_pcd.points = o3d.utility.Vector3dVector(points[indices])\n",
231
+ " if colors is not None:\n",
232
+ " downsampled_pcd.colors = o3d.utility.Vector3dVector(colors[indices])\n",
233
+ " \n",
234
+ " else:\n",
235
+ " raise ValueError(f\"Unknown downsampling method: {method}\")\n",
236
+ " \n",
237
+ " point_cloud = np.asarray(downsampled_pcd.points)\n",
238
+ " if perturb:\n",
239
+ " R_perturb = random_rotation_matrix()\n",
240
+ " t_perturb = np.random.rand(3) * 0.01\n",
241
+ " point_cloud = np.dot(R_perturb, point_cloud.T).T + t_perturb.T\n",
242
+ "\n",
243
+ " # Save downsampled point cloud\n",
244
+ " success = write_ply(point_cloud, output_path)\n",
245
+ " \n",
246
+ " if not success:\n",
247
+ " raise Exception(\"Failed to write point cloud\")\n",
248
+ " \n",
249
+ " # Print statistics\n",
250
+ " final_points = len(np.asarray(downsampled_pcd.points))\n",
251
+ " dedup_reduction = (1 - after_dedup_points/original_points) * 100\n",
252
+ " total_reduction = (1 - final_points/original_points) * 100\n",
253
+ " \n",
254
+ " print(\"\\nPoint cloud statistics:\")\n",
255
+ " print(f\"Original points: {original_points}\")\n",
256
+ " print(f\"Points after duplicate removal: {after_dedup_points}\")\n",
257
+ " print(f\"Final points after downsampling: {final_points}\")\n",
258
+ " print(f\"Duplicate removal reduction: {dedup_reduction:.2f}%\")\n",
259
+ " print(f\"Total reduction: {total_reduction:.2f}%\")\n",
260
+ " \n",
261
+ " return True\n",
262
+ " \n",
263
+ " except Exception as e:\n",
264
+ " print(f\"Error during processing: {str(e)}\")\n",
265
+ " return False\n",
266
+ "\n",
267
+ "mode = 'downsample' # 'downsample', 'voxel', 'uniform'\n",
268
+ "\n",
269
+ "if mode == 'downsample':\n",
270
+ " # Voxel downsampling\n",
271
+ " downsample_ply(\n",
272
+ " \"car_source.ply\",\n",
273
+ " \"car_source_downsample.ply\",\n",
274
+ " method='voxel',\n",
275
+ " voxel_size=0.05,\n",
276
+ " remove_duplicates_eps=0.001,\n",
277
+ " perturb = True\n",
278
+ " )\n",
279
+ " downsample_ply(\n",
280
+ " \"car_target.ply\",\n",
281
+ " \"car_target_downsample.ply\",\n",
282
+ " method='voxel',\n",
283
+ " voxel_size=0.05,\n",
284
+ " remove_duplicates_eps=0.001\n",
285
+ " )\n",
286
+ "\n",
287
+ "if mode == 'voxel': \n",
288
+ " # Uniform downsampling\n",
289
+ " downsample_ply(\n",
290
+ " \"car_source.ply\",\n",
291
+ " \"car_source_downsample.ply\",\n",
292
+ " method='uniform',\n",
293
+ " every_k_points=5,\n",
294
+ " remove_duplicates_eps=0.001\n",
295
+ " )\n",
296
+ " downsample_ply(\n",
297
+ " \"car_target.ply\",\n",
298
+ " \"car_target_downsample.ply\",\n",
299
+ " method='uniform',\n",
300
+ " every_k_points=5,\n",
301
+ " remove_duplicates_eps=0.001\n",
302
+ " )\n",
303
+ "\n",
304
+ "if mode == 'uniform': \n",
305
+ " # Random downsampling\n",
306
+ " downsample_ply(\n",
307
+ " \"car_source.ply\",\n",
308
+ " \"car_source_downsample.ply\",\n",
309
+ " method='random',\n",
310
+ " every_k_points=5,\n",
311
+ " remove_duplicates_eps=0.001\n",
312
+ " )\n",
313
+ " downsample_ply(\n",
314
+ " \"car_target.ply\",\n",
315
+ " \"car_target_downsample.ply\",\n",
316
+ " method='random',\n",
317
+ " every_k_points=5,\n",
318
+ " remove_duplicates_eps=0.001\n",
319
+ " )"
320
+ ]
321
+ },
322
+ {
323
+ "cell_type": "code",
324
+ "execution_count": null,
325
+ "metadata": {},
326
+ "outputs": [],
327
+ "source": []
328
+ }
329
+ ],
330
+ "metadata": {
331
+ "kernelspec": {
332
+ "display_name": "Python 3",
333
+ "language": "python",
334
+ "name": "python3"
335
+ },
336
+ "language_info": {
337
+ "codemirror_mode": {
338
+ "name": "ipython",
339
+ "version": 3
340
+ },
341
+ "file_extension": ".py",
342
+ "mimetype": "text/x-python",
343
+ "name": "python",
344
+ "nbconvert_exporter": "python",
345
+ "pygments_lexer": "ipython3",
346
+ "version": "3.10.12"
347
+ }
348
+ },
349
+ "nbformat": 4,
350
+ "nbformat_minor": 2
351
+ }
data/car/inference.ipynb ADDED
@@ -0,0 +1,214 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 1,
6
+ "metadata": {},
7
+ "outputs": [],
8
+ "source": [
9
+ "# cd build\n",
10
+ "# cmake -DCMAKE_BUILD_TYPE=Release ..\n",
11
+ "# make\n",
12
+ "# ./FRICP ./data/car/car_target_downsample.ply ./data/car/car_source_downsample.ply ./data/car/res/ 3"
13
+ ]
14
+ },
15
+ {
16
+ "cell_type": "markdown",
17
+ "metadata": {},
18
+ "source": [
19
+ "### Source PCD"
20
+ ]
21
+ },
22
+ {
23
+ "cell_type": "code",
24
+ "execution_count": 1,
25
+ "metadata": {},
26
+ "outputs": [
27
+ {
28
+ "name": "stdout",
29
+ "output_type": "stream",
30
+ "text": [
31
+ "Jupyter environment detected. Enabling Open3D WebVisualizer.\n",
32
+ "[Open3D INFO] WebRTC GUI backend enabled.\n",
33
+ "[Open3D INFO] WebRTCWindowSystem: HTTP handshake server disabled.\n"
34
+ ]
35
+ },
36
+ {
37
+ "name": "stderr",
38
+ "output_type": "stream",
39
+ "text": [
40
+ "RPly: Unexpected end of file\n",
41
+ "RPly: Error reading 'view_px' of 'camera' number 0\n"
42
+ ]
43
+ },
44
+ {
45
+ "name": "stdout",
46
+ "output_type": "stream",
47
+ "text": [
48
+ "\u001b[1;33m[Open3D WARNING] Read PLY failed: unable to read file: car_source_downsample.ply\u001b[0;m\n",
49
+ "Source shape: (619908, 3)\n"
50
+ ]
51
+ }
52
+ ],
53
+ "source": [
54
+ "import open3d as o3d\n",
55
+ "import numpy as np\n",
56
+ "\n",
57
+ "source_path = \"car_source_downsample.ply\"\n",
58
+ "source_pcd = o3d.io.read_point_cloud(source_path)\n",
59
+ "\n",
60
+ "source_pcd_array = np.asarray(source_pcd.points)\n",
61
+ "print(\"Source shape:\", source_pcd_array.shape)\n",
62
+ "\n",
63
+ "o3d.visualization.draw_geometries([source_pcd])"
64
+ ]
65
+ },
66
+ {
67
+ "cell_type": "markdown",
68
+ "metadata": {},
69
+ "source": [
70
+ "### Target PCD"
71
+ ]
72
+ },
73
+ {
74
+ "cell_type": "code",
75
+ "execution_count": 2,
76
+ "metadata": {},
77
+ "outputs": [
78
+ {
79
+ "name": "stdout",
80
+ "output_type": "stream",
81
+ "text": [
82
+ "\u001b[1;33m[Open3D WARNING] Read PLY failed: unable to read file: car_target_downsample.ply\u001b[0;m\n",
83
+ "Target shape: (873663, 3)\n"
84
+ ]
85
+ },
86
+ {
87
+ "name": "stderr",
88
+ "output_type": "stream",
89
+ "text": [
90
+ "RPly: Unexpected end of file\n",
91
+ "RPly: Error reading 'view_px' of 'camera' number 0\n"
92
+ ]
93
+ }
94
+ ],
95
+ "source": [
96
+ "target_path = \"car_target_downsample.ply\"\n",
97
+ "target_pcd = o3d.io.read_point_cloud(target_path)\n",
98
+ "\n",
99
+ "target_pcd_array = np.asarray(target_pcd.points)\n",
100
+ "print(\"Target shape:\", target_pcd_array.shape)\n",
101
+ "\n",
102
+ "o3d.visualization.draw_geometries([target_pcd])"
103
+ ]
104
+ },
105
+ {
106
+ "cell_type": "markdown",
107
+ "metadata": {},
108
+ "source": [
109
+ "### Transformed Source PCD"
110
+ ]
111
+ },
112
+ {
113
+ "cell_type": "code",
114
+ "execution_count": 3,
115
+ "metadata": {},
116
+ "outputs": [
117
+ {
118
+ "name": "stdout",
119
+ "output_type": "stream",
120
+ "text": [
121
+ "Transformed shape: (619908, 3)\n"
122
+ ]
123
+ }
124
+ ],
125
+ "source": [
126
+ "transformed_path = \"res/m3reg_pc.ply\"\n",
127
+ "transformed_pcd = o3d.io.read_point_cloud(transformed_path)\n",
128
+ "\n",
129
+ "transformed_pcd_array = np.asarray(transformed_pcd.points)\n",
130
+ "print(\"Transformed shape:\", transformed_pcd_array.shape)\n",
131
+ "\n",
132
+ "o3d.visualization.draw_geometries([transformed_pcd])"
133
+ ]
134
+ },
135
+ {
136
+ "cell_type": "markdown",
137
+ "metadata": {},
138
+ "source": [
139
+ "### Source (Original) + Target"
140
+ ]
141
+ },
142
+ {
143
+ "cell_type": "code",
144
+ "execution_count": 4,
145
+ "metadata": {},
146
+ "outputs": [],
147
+ "source": [
148
+ "source_pcd.paint_uniform_color([1, 0, 0])\n",
149
+ "target_pcd.paint_uniform_color([0, 1, 0])\n",
150
+ "\n",
151
+ "vis = o3d.visualization.Visualizer()\n",
152
+ "vis.create_window(window_name=\"Point Cloud Viewer\", width=1200, height=800, visible=True)\n",
153
+ "vis.add_geometry(source_pcd)\n",
154
+ "vis.add_geometry(target_pcd)\n",
155
+ "\n",
156
+ "vis.run()\n",
157
+ "vis.destroy_window()"
158
+ ]
159
+ },
160
+ {
161
+ "cell_type": "markdown",
162
+ "metadata": {},
163
+ "source": [
164
+ "### Transformed + Target"
165
+ ]
166
+ },
167
+ {
168
+ "cell_type": "code",
169
+ "execution_count": 5,
170
+ "metadata": {},
171
+ "outputs": [],
172
+ "source": [
173
+ "transformed_pcd.paint_uniform_color([1, 0, 0])\n",
174
+ "target_pcd.paint_uniform_color([0, 1, 0])\n",
175
+ "\n",
176
+ "vis = o3d.visualization.Visualizer()\n",
177
+ "vis.create_window(window_name=\"Point Cloud Viewer\", width=1200, height=800, visible=True)\n",
178
+ "vis.add_geometry(transformed_pcd)\n",
179
+ "vis.add_geometry(target_pcd)\n",
180
+ "\n",
181
+ "vis.run()\n",
182
+ "vis.destroy_window()"
183
+ ]
184
+ },
185
+ {
186
+ "cell_type": "code",
187
+ "execution_count": null,
188
+ "metadata": {},
189
+ "outputs": [],
190
+ "source": []
191
+ }
192
+ ],
193
+ "metadata": {
194
+ "kernelspec": {
195
+ "display_name": "Python 3",
196
+ "language": "python",
197
+ "name": "python3"
198
+ },
199
+ "language_info": {
200
+ "codemirror_mode": {
201
+ "name": "ipython",
202
+ "version": 3
203
+ },
204
+ "file_extension": ".py",
205
+ "mimetype": "text/x-python",
206
+ "name": "python",
207
+ "nbconvert_exporter": "python",
208
+ "pygments_lexer": "ipython3",
209
+ "version": "3.10.12"
210
+ }
211
+ },
212
+ "nbformat": 4,
213
+ "nbformat_minor": 2
214
+ }
data/glasses/all_infer.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
data/glasses/bottle.csv ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ,file_1,file_2,file_3,file_4,file_5,file_6,file_7,file_8,file_9,file_10,file_11,file_12,file_13,file_14,file_15,file_16,file_17,file_18,file_19,file_20,file_21,file_22,file_23,file_24,file_25,mean_Val
2
+ eyeglasses_100_ICP,75.51653495394899,76.00103199004224,0.0,85.74346143402444,134.16012926507486,129.91987001484316,166.0664964244785,172.3590746833109,77.5675768710639,133.14287598624617,103.73415613056342,98.87027368011256,160.5835290777202,126.17170983418293,123.28168915483552,127.40001477836599,100.59098891564037,126.36969911638593,137.75334679266845,80.57292535399384,0.0,0.0,0.0,0.0,0.0,117.67396760302644
3
+ eyeglasses_75_ICP,102.51712203498685,102.71063672186233,2.5105762817824515,155.0313892300544,73.28915630087278,80.10142286182572,61.6642170552717,133.03230404536268,130.60315811579525,145.51109450361503,152.06334435452948,17.619102965832944,42.92461252779952,151.48193925390873,159.18454688606766,124.2966200861978,152.90101617418273,147.66220349142665,84.52304960168144,53.34520262686054,0.0,0.0,0.0,0.0,0.0,103.64863575599584
4
+ eyeglasses_50_ICP,0.6015741903834354,2.8452058285927064,110.51901319722636,56.28572654309218,53.32635161297196,61.741382380184966,85.95688825251894,121.5059962415175,158.22792441676737,120.48210280365721,163.26046311963538,109.41096489918088,72.88913708060892,38.3178073242256,143.68401792751254,163.7867666636524,135.8775688193156,168.33332742593984,155.0870413589984,153.26899611525445,0.0,0.0,0.0,0.0,0.0,103.77041281006184
5
+ eyeglasses_25_ICP,139.13864680025034,140.51052266668606,151.7093977712709,113.65244680744456,75.1106132184419,56.214407671431076,45.88685609333,130.76833214522333,164.28756894726808,157.78672295255376,144.15098598108406,103.92408061009746,97.0196179056392,45.70141433658228,134.73400503530502,157.3968890047997,112.38124958239436,165.99811915045157,123.34060946414556,155.2221077926652,0.0,0.0,0.0,0.0,0.0,120.74672969685321
6
+ eyeglasses_0_ICP,60.04991082566456,182.90415876501115,59.82950216871568,73.7625146358775,58.28419890950544,79.71643545431141,38.044308881264456,153.36281639968632,135.43326539048297,154.24876415823215,145.39590693775096,25.9106141015137,98.71536711906626,115.79991923606332,71.13979743679549,140.9382098036925,121.71112000247408,149.71217757669916,168.5029121108631,141.76709650392965,152.2609035201492,147.80916326732194,142.52520684702927,91.32113755437325,0.0,112.88105865026974
7
+ eyeglasses_100_FAST ICP,75.5187308434864,76.00496974122805,0.0,86.17471678825584,134.15888577513982,129.91221389336002,166.07323901399576,172.36082441941062,89.6243271911958,132.6794901473997,103.89959657538533,98.87085293288902,160.61277754271094,126.16977217179729,123.27745832745872,45.18673199758907,100.58689325690877,126.330072334676,137.75274333809836,80.5737513939449,0.0,0.0,0.0,0.0,0.0,113.98779198341737
8
+ eyeglasses_75_FAST ICP,102.42608192175467,102.69753459934931,2.840931270289013,155.03208726641134,75.8160345326146,80.10295241662858,61.63266855915283,133.0239563972094,130.49233178010883,145.5079568445103,152.24606133806714,17.620690880483043,42.955108336009914,151.59412455383557,159.1860297924438,124.2964959709984,152.91046244458744,147.66712168080346,84.52533860447731,53.34651226544358,0.0,0.0,0.0,0.0,0.0,103.79602407275893
9
+ eyeglasses_50_FAST ICP,1.5568122641527766,2.5124008238033793,107.10731327027244,57.7703049884877,53.32615621434432,61.7434399205845,85.96034561112776,121.50560896737548,158.22803344183083,120.40908235167409,163.26105285827163,104.76696058626732,72.88884273230175,38.28347404978611,143.68701010899792,163.56997268386675,135.8775595113068,168.33519924022247,155.19887976263263,153.26686036986206,0.0,0.0,0.0,0.0,0.0,103.46276548785845
10
+ eyeglasses_25_FAST ICP,125.73876818197037,122.01364089888638,151.7035979888734,113.99909527085833,77.07966426783474,56.22088237296886,45.883554801008415,130.76805635650382,109.26206578553587,139.0436878413092,144.15162504177013,103.93456808933466,26.27856225215323,45.7049245990998,134.13913279767138,157.8377875390067,112.38026791486097,165.99742936516162,123.36102795766949,155.24514405265427,0.0,0.0,0.0,0.0,0.0,112.03717416875656
11
+ eyeglasses_0_FAST ICP,60.22925039219409,182.91426682701464,59.000265687099265,74.16508873434424,58.2846768555866,79.71697593243557,38.044525599729496,153.36344057961946,135.64692996188683,154.35256865501708,145.39749491018858,26.121627493550182,98.73623949166469,115.79991923606332,71.86613773977069,140.33915878050433,120.86634784228097,149.7210621975309,168.02437633631175,140.21030565488817,151.93284733244684,91.15564581095389,142.5721738353796,91.34590790578044,0.0,110.4086347413434
12
+ eyeglasses_100_Robust ICP,75.75653848738223,76.18774923131436,0.0,79.1605772756743,133.62491286251668,121.68110193399859,157.08526506073426,126.51764298276913,1.691524835728188,154.72376907130626,118.99344836709355,10.038066122292635,160.01322907705529,120.50629571367567,111.25162077590228,125.94461111680737,99.58236331003572,139.26288159580326,137.84414167776615,76.2050844688691,0.0,0.0,0.0,0.0,0.0,106.63530652456447
13
+ eyeglasses_75_Robust ICP,139.472323041692,138.5975619501767,2.217538055916783,152.4279639938108,69.51305960052665,80.18208737513707,57.35927667959797,132.2775433456103,133.4462671230113,148.61241398060793,140.85055762318262,4.2035055350531465,0.9906031273796142,153.51478967747082,157.97682232625993,137.64442581324894,151.64815395202908,144.24224150055846,92.71004373151372,51.65168679359356,0.0,0.0,0.0,0.0,0.0,104.47694326131887
14
+ eyeglasses_50_Robust ICP,1.3755216460504922,2.1346436434518816,106.86398141897781,49.586724372839456,57.05111089595722,60.73855387255383,66.26513023496774,115.65777063879904,156.53618886178342,65.22727234347522,150.09296585681577,11.951002758396335,71.50841505279936,129.97907293385222,145.1082502386099,163.9889719060767,140.41499752641775,165.45304166929444,149.1606391681766,151.98766020836518,0.0,0.0,0.0,0.0,0.0,98.05409576238301
15
+ eyeglasses_25_Robust ICP,124.00422804647823,122.29037724068283,149.5279088214046,103.8515675742576,60.78751301624003,61.451873136563044,44.36715633619058,124.4759652808121,161.5577327755834,140.68845568660743,124.65623044533673,1.907703964125683,2.943728424331599,48.640131069396894,137.43168507121374,146.51890330950468,130.88745850434591,164.68537861955838,120.9301984683491,153.28471614318437,0.0,0.0,0.0,0.0,0.0,106.24444559670835
16
+ eyeglasses_0_Robust ICP,57.73896334463609,174.5634197664402,53.77257745761977,72.23987867784734,60.77683349518314,78.12456409958408,29.164486290794365,151.39898819814792,125.05910366033528,153.60836127418486,139.84897701358068,57.13499174391295,66.96067838797823,78.43371918167516,85.21682627592233,145.4677167515239,84.80187685800591,150.56227891280508,148.18423554442214,138.44904232921172,151.97069566752944,91.47095491526541,146.96371631787102,96.73108905206605,0.0,105.77683230068929
17
+ eyeglasses_100_Sparse ICP,54.17899469739919,54.84785135599243,0.0,79.58295651810589,134.42487325951575,129.5912845285183,111.64873354301028,23.937578213767154,146.34177195227804,19.9163859850053,107.85626997860463,10.241442214310394,3.411256450114343,103.74267007605388,112.35391962260815,83.04203275581155,87.47674214527946,139.46578173028445,141.10823075861555,75.96047070568828,0.0,0.0,0.0,0.0,0.0,85.21732876268226
18
+ eyeglasses_75_Sparse ICP,138.6811860402104,137.5983484388318,10.689334316307113,153.63289804484566,70.67343477971835,60.3707409307818,55.10831909617402,132.331860324879,100.33363542959653,140.9804903562735,88.18570189664554,11.061523528347614,4.694564154331557,148.16072806383298,142.6530373582771,143.1530290534934,151.44309126091727,141.69349434780796,102.54688113191057,46.20934792951648,0.0,0.0,0.0,0.0,0.0,99.01008232413493
19
+ eyeglasses_50_Sparse ICP,3.5262388190194174,5.275081043252968,14.928834398675749,51.16753940868383,48.696201101808406,51.03699551521889,67.22049654631782,115.99281339473909,138.74063199884182,89.58094258111971,158.66161724027734,10.14631940894041,67.39075600290572,150.58801773016555,146.39841694974066,159.9879086408528,147.74844911512986,154.829275347152,147.90853162882757,152.43497118899742,0.0,0.0,0.0,0.0,0.0,94.11300190303336
20
+ eyeglasses_25_Sparse ICP,146.4329287208715,142.51736324418462,149.40720067750553,54.709018630468094,63.46820462112425,57.10632805261897,45.86612421856109,124.40161448144558,149.08774372270864,147.8530027425512,133.90307211836978,24.71464684602617,4.439883309268856,25.607231189008225,97.78549341493859,154.8641361148791,101.46744904405824,159.98903972864412,108.317885673641,152.13559639938507,0.0,0.0,0.0,0.0,0.0,102.20369814751292
21
+ eyeglasses_0_Sparse ICP,109.42336685149034,163.30377136246767,79.15294649993758,72.2072345027589,61.89620784296406,75.85447105176921,31.033353045087114,155.30034537684247,121.32632581984205,121.36576481925033,147.2143541501991,56.87302898049748,137.5654299402161,153.6719796505628,35.234936288114135,149.25144585122138,87.66829662458683,160.30954814766613,155.31398823277286,116.97368227080774,152.9389542387432,109.19550687608314,148.31948275618512,103.78073958433927,0.0,112.71563169851687
22
+ ICP,75.56475776104683,100.9943111944389,64.91369788379907,96.89510773009862,78.8340898613734,81.53870367651928,79.52375334137271,142.20570470302013,133.22389874827553,142.23431208086086,141.72097130471266,71.1470072513475,94.42645274216682,95.49455799699258,126.40481128810325,142.7637000673417,124.69238869880144,151.61510535218062,133.8413918656714,116.83526567854074,30.452180704029843,29.561832653464386,28.505041369405852,18.26422751087465,0.0,111.74416090324141
23
+ FAST ICP,73.09392872071166,97.22856257805635,64.13042164330683,97.42825860967149,79.73308352910402,81.5392929071955,79.51886671700285,142.20437734402375,124.65073763211163,138.39855716798206,141.79116614473656,70.26293999650485,80.2943060709681,95.51044292211643,126.43115375326852,126.24602939439305,124.52430619398899,151.6101769636789,133.7724731998379,116.5285147473586,30.38656946648937,18.231129162190776,28.51443476707592,18.269181581156086,0.0,108.73847809082694
24
+ FAST AND ROBUST ICP,79.66951491324781,102.75475036641319,62.47640115078379,91.4533423788859,76.35068597408475,80.43563608356732,70.84826292045697,130.0655820892277,115.6581634512883,132.57205447123633,134.88843586120188,17.04705402475615,60.48333081390882,106.21480171521414,127.39704093758164,143.91292577943233,121.46697003016686,152.84116445960393,129.76585171804555,114.3156379886448,30.394139133505888,18.29419098305308,29.392743263574204,19.34621781041321,0.0,104.23752468913281
25
+ SPARSE ICP,90.44854302579817,100.70848308894588,50.8356631784852,82.25992942097248,75.83178432102616,74.79196401578143,62.17540528983007,110.39284235833466,131.16602178465342,103.93931729684,127.16420307681929,22.607392195624413,43.500377971367314,116.35412534192469,106.88516072673572,138.05971048325165,115.16080563799433,151.2574278603109,131.0391034851535,108.74281369887899,30.587790847748643,21.83910137521663,29.663896551237023,20.756147916867853,0.0,98.65194856717606
data/glasses/dataset_pandas.ipynb ADDED
@@ -0,0 +1,668 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "id": "781eee9c",
6
+ "metadata": {},
7
+ "source": [
8
+ "## using pandas\n"
9
+ ]
10
+ },
11
+ {
12
+ "cell_type": "code",
13
+ "execution_count": 2,
14
+ "id": "70fc5658",
15
+ "metadata": {},
16
+ "outputs": [],
17
+ "source": [
18
+ "import pandas as pd\n",
19
+ "import numpy as np\n",
20
+ "import os\n",
21
+ "import json\n",
22
+ "## column : file no 1~25\n",
23
+ "\n",
24
+ "# array 4X4\n",
25
+ "# for i in range(rows):\n",
26
+ "# for j in range(cols):\n",
27
+ "# object_array[i,j] = np.zeros((4,4))\n",
28
+ "\n",
29
+ "\n",
30
+ "data = np.zeros((20,25))\n",
31
+ "\n",
32
+ "\n",
33
+ "\n",
34
+ "## row : bottle_0, bottle_25 ... gt 0 25 --> 10 rows. \n",
35
+ "\n",
36
+ "categories = ['bottle2', 'lightbulb', 'lighter', 'eyeglasses', 'magnifying_glass', 'spray']\n",
37
+ "\n",
38
+ "category = categories[3]\n",
39
+ "fill_rate = ['100', '75', '50', '25', '0']\n",
40
+ "\n",
41
+ "columns = [f'file_{i}' for i in range(1,26)]\n",
42
+ "\n",
43
+ "\n",
44
+ "\n"
45
+ ]
46
+ },
47
+ {
48
+ "cell_type": "markdown",
49
+ "id": "22195309",
50
+ "metadata": {},
51
+ "source": [
52
+ "## Get transformation file "
53
+ ]
54
+ },
55
+ {
56
+ "cell_type": "code",
57
+ "execution_count": null,
58
+ "id": "d3dcc164",
59
+ "metadata": {},
60
+ "outputs": [],
61
+ "source": []
62
+ },
63
+ {
64
+ "cell_type": "code",
65
+ "execution_count": 3,
66
+ "id": "86c0ea73",
67
+ "metadata": {},
68
+ "outputs": [
69
+ {
70
+ "data": {
71
+ "text/plain": [
72
+ "<bound method DataFrame.info of file_1 file_2 file_3 file_4 file_5 file_6 file_7 \\\n",
73
+ "eyeglasses_100_ICP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n",
74
+ "eyeglasses_75_ICP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n",
75
+ "eyeglasses_50_ICP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n",
76
+ "eyeglasses_25_ICP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n",
77
+ "eyeglasses_0_ICP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n",
78
+ "eyeglasses_100_FAST ICP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n",
79
+ "eyeglasses_75_FAST ICP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n",
80
+ "eyeglasses_50_FAST ICP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n",
81
+ "eyeglasses_25_FAST ICP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n",
82
+ "eyeglasses_0_FAST ICP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n",
83
+ "eyeglasses_100_Robust ICP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n",
84
+ "eyeglasses_75_Robust ICP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n",
85
+ "eyeglasses_50_Robust ICP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n",
86
+ "eyeglasses_25_Robust ICP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n",
87
+ "eyeglasses_0_Robust ICP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n",
88
+ "eyeglasses_100_Sparse ICP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n",
89
+ "eyeglasses_75_Sparse ICP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n",
90
+ "eyeglasses_50_Sparse ICP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n",
91
+ "eyeglasses_25_Sparse ICP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n",
92
+ "eyeglasses_0_Sparse ICP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \n",
93
+ "\n",
94
+ " file_8 file_9 file_10 ... file_16 file_17 file_18 \\\n",
95
+ "eyeglasses_100_ICP 0.0 0.0 0.0 ... 0.0 0.0 0.0 \n",
96
+ "eyeglasses_75_ICP 0.0 0.0 0.0 ... 0.0 0.0 0.0 \n",
97
+ "eyeglasses_50_ICP 0.0 0.0 0.0 ... 0.0 0.0 0.0 \n",
98
+ "eyeglasses_25_ICP 0.0 0.0 0.0 ... 0.0 0.0 0.0 \n",
99
+ "eyeglasses_0_ICP 0.0 0.0 0.0 ... 0.0 0.0 0.0 \n",
100
+ "eyeglasses_100_FAST ICP 0.0 0.0 0.0 ... 0.0 0.0 0.0 \n",
101
+ "eyeglasses_75_FAST ICP 0.0 0.0 0.0 ... 0.0 0.0 0.0 \n",
102
+ "eyeglasses_50_FAST ICP 0.0 0.0 0.0 ... 0.0 0.0 0.0 \n",
103
+ "eyeglasses_25_FAST ICP 0.0 0.0 0.0 ... 0.0 0.0 0.0 \n",
104
+ "eyeglasses_0_FAST ICP 0.0 0.0 0.0 ... 0.0 0.0 0.0 \n",
105
+ "eyeglasses_100_Robust ICP 0.0 0.0 0.0 ... 0.0 0.0 0.0 \n",
106
+ "eyeglasses_75_Robust ICP 0.0 0.0 0.0 ... 0.0 0.0 0.0 \n",
107
+ "eyeglasses_50_Robust ICP 0.0 0.0 0.0 ... 0.0 0.0 0.0 \n",
108
+ "eyeglasses_25_Robust ICP 0.0 0.0 0.0 ... 0.0 0.0 0.0 \n",
109
+ "eyeglasses_0_Robust ICP 0.0 0.0 0.0 ... 0.0 0.0 0.0 \n",
110
+ "eyeglasses_100_Sparse ICP 0.0 0.0 0.0 ... 0.0 0.0 0.0 \n",
111
+ "eyeglasses_75_Sparse ICP 0.0 0.0 0.0 ... 0.0 0.0 0.0 \n",
112
+ "eyeglasses_50_Sparse ICP 0.0 0.0 0.0 ... 0.0 0.0 0.0 \n",
113
+ "eyeglasses_25_Sparse ICP 0.0 0.0 0.0 ... 0.0 0.0 0.0 \n",
114
+ "eyeglasses_0_Sparse ICP 0.0 0.0 0.0 ... 0.0 0.0 0.0 \n",
115
+ "\n",
116
+ " file_19 file_20 file_21 file_22 file_23 file_24 \\\n",
117
+ "eyeglasses_100_ICP 0.0 0.0 0.0 0.0 0.0 0.0 \n",
118
+ "eyeglasses_75_ICP 0.0 0.0 0.0 0.0 0.0 0.0 \n",
119
+ "eyeglasses_50_ICP 0.0 0.0 0.0 0.0 0.0 0.0 \n",
120
+ "eyeglasses_25_ICP 0.0 0.0 0.0 0.0 0.0 0.0 \n",
121
+ "eyeglasses_0_ICP 0.0 0.0 0.0 0.0 0.0 0.0 \n",
122
+ "eyeglasses_100_FAST ICP 0.0 0.0 0.0 0.0 0.0 0.0 \n",
123
+ "eyeglasses_75_FAST ICP 0.0 0.0 0.0 0.0 0.0 0.0 \n",
124
+ "eyeglasses_50_FAST ICP 0.0 0.0 0.0 0.0 0.0 0.0 \n",
125
+ "eyeglasses_25_FAST ICP 0.0 0.0 0.0 0.0 0.0 0.0 \n",
126
+ "eyeglasses_0_FAST ICP 0.0 0.0 0.0 0.0 0.0 0.0 \n",
127
+ "eyeglasses_100_Robust ICP 0.0 0.0 0.0 0.0 0.0 0.0 \n",
128
+ "eyeglasses_75_Robust ICP 0.0 0.0 0.0 0.0 0.0 0.0 \n",
129
+ "eyeglasses_50_Robust ICP 0.0 0.0 0.0 0.0 0.0 0.0 \n",
130
+ "eyeglasses_25_Robust ICP 0.0 0.0 0.0 0.0 0.0 0.0 \n",
131
+ "eyeglasses_0_Robust ICP 0.0 0.0 0.0 0.0 0.0 0.0 \n",
132
+ "eyeglasses_100_Sparse ICP 0.0 0.0 0.0 0.0 0.0 0.0 \n",
133
+ "eyeglasses_75_Sparse ICP 0.0 0.0 0.0 0.0 0.0 0.0 \n",
134
+ "eyeglasses_50_Sparse ICP 0.0 0.0 0.0 0.0 0.0 0.0 \n",
135
+ "eyeglasses_25_Sparse ICP 0.0 0.0 0.0 0.0 0.0 0.0 \n",
136
+ "eyeglasses_0_Sparse ICP 0.0 0.0 0.0 0.0 0.0 0.0 \n",
137
+ "\n",
138
+ " file_25 \n",
139
+ "eyeglasses_100_ICP 0.0 \n",
140
+ "eyeglasses_75_ICP 0.0 \n",
141
+ "eyeglasses_50_ICP 0.0 \n",
142
+ "eyeglasses_25_ICP 0.0 \n",
143
+ "eyeglasses_0_ICP 0.0 \n",
144
+ "eyeglasses_100_FAST ICP 0.0 \n",
145
+ "eyeglasses_75_FAST ICP 0.0 \n",
146
+ "eyeglasses_50_FAST ICP 0.0 \n",
147
+ "eyeglasses_25_FAST ICP 0.0 \n",
148
+ "eyeglasses_0_FAST ICP 0.0 \n",
149
+ "eyeglasses_100_Robust ICP 0.0 \n",
150
+ "eyeglasses_75_Robust ICP 0.0 \n",
151
+ "eyeglasses_50_Robust ICP 0.0 \n",
152
+ "eyeglasses_25_Robust ICP 0.0 \n",
153
+ "eyeglasses_0_Robust ICP 0.0 \n",
154
+ "eyeglasses_100_Sparse ICP 0.0 \n",
155
+ "eyeglasses_75_Sparse ICP 0.0 \n",
156
+ "eyeglasses_50_Sparse ICP 0.0 \n",
157
+ "eyeglasses_25_Sparse ICP 0.0 \n",
158
+ "eyeglasses_0_Sparse ICP 0.0 \n",
159
+ "\n",
160
+ "[20 rows x 25 columns]>"
161
+ ]
162
+ },
163
+ "execution_count": 3,
164
+ "metadata": {},
165
+ "output_type": "execute_result"
166
+ }
167
+ ],
168
+ "source": [
169
+ "## Tmatrix FOlder access -> save in pandas\n",
170
+ "robust_no = ['0','2','3','6']\n",
171
+ "new_row_names = []\n",
172
+ "# ๊ฒฐ๊ณผ๋ฅผ ์ €์žฅํ•  ๋”•์…”๋„ˆ๋ฆฌ๋ฅผ ์นดํ…Œ๊ณ ๋ฆฌ๋ณ„๋กœ ์ดˆ๊ธฐํ™”ํ•ฉ๋‹ˆ๋‹ค.\n",
173
+ "grouped_files = {fill: [] for fill in fill_rate}\n",
174
+ "\n",
175
+ "for no in robust_no:\n",
176
+ " \n",
177
+ " ## get txt file\n",
178
+ "\n",
179
+ " ######################## We got the txt file list#################\n",
180
+ " for fills in fill_rate:\n",
181
+ " \n",
182
+ " if no =='0':\n",
183
+ " name = \"ICP\"\n",
184
+ " elif no == '2':\n",
185
+ " name = \"FAST ICP\"\n",
186
+ " elif no =='3':\n",
187
+ " name = \"Robust ICP\"\n",
188
+ " else:\n",
189
+ " name = \"Sparse ICP\"\n",
190
+ "\n",
191
+ " new_row_names.append(f\"{category}_{fills}_{name}\")\n",
192
+ "\n",
193
+ "df = pd.DataFrame(data, index=new_row_names, columns=columns, dtype=object)\n",
194
+ "# 2. df.index์— ์ƒˆ๋กœ์šด ์ด๋ฆ„ ๋ฆฌ์ŠคํŠธ๋ฅผ ๋ฐ”๋กœ ํ• ๋‹น object for array 4x4\n",
195
+ "\n",
196
+ "df.info"
197
+ ]
198
+ },
199
+ {
200
+ "cell_type": "markdown",
201
+ "id": "173149df",
202
+ "metadata": {},
203
+ "source": [
204
+ "## RMSE function"
205
+ ]
206
+ },
207
+ {
208
+ "cell_type": "code",
209
+ "execution_count": 4,
210
+ "id": "5334ae14",
211
+ "metadata": {},
212
+ "outputs": [
213
+ {
214
+ "name": "stdout",
215
+ "output_type": "stream",
216
+ "text": [
217
+ "โš ๏ธ ๊ฒฝ๊ณ : './result3/result_3_100_1.txt' ๊ฒฝ๋กœ์— ํŒŒ์ผ์ด ์—†์Šต๋‹ˆ๋‹ค. ํ•ด๋‹น ์ฒ˜๋ฆฌ๋ฅผ ๊ฑด๋„ˆ๋œ๋‹ˆ๋‹ค.\n"
218
+ ]
219
+ }
220
+ ],
221
+ "source": [
222
+ "def RMSE(T_star, T):\n",
223
+ " diff = T_star - T\n",
224
+ " sq_norms = np.sum(diff**2, axis =1)\n",
225
+ "\n",
226
+ " r = np.sqrt(np.mean(sq_norms))\n",
227
+ "\n",
228
+ " return r\n",
229
+ "\n",
230
+ "## get T from Result Txt file\n",
231
+ "def get_T(file_path):\n",
232
+ "\n",
233
+ " try:\n",
234
+ " with open(file_path, 'r') as f:\n",
235
+ " T_matrix = np.loadtxt(file_path)\n",
236
+ " return T_matrix\n",
237
+ " except FileNotFoundError:\n",
238
+ " # try ๋ธ”๋ก์—์„œ FileNotFoundError๊ฐ€ ๋ฐœ์ƒํ–ˆ์„ ๋•Œ๋งŒ ์ด ์ฝ”๋“œ๊ฐ€ ์‹คํ–‰๋ฉ๋‹ˆ๋‹ค.\n",
239
+ " print(f\"โš ๏ธ ๊ฒฝ๊ณ : '{file_path}' ๊ฒฝ๋กœ์— ํŒŒ์ผ์ด ์—†์Šต๋‹ˆ๋‹ค. ํ•ด๋‹น ์ฒ˜๋ฆฌ๋ฅผ ๊ฑด๋„ˆ๋œ๋‹ˆ๋‹ค.\")\n",
240
+ " return None # ํŒŒ์ผ์ด ์—†์œผ๋ฏ€๋กœ None์„ ๋ฐ˜ํ™˜\n",
241
+ "\n",
242
+ "\n",
243
+ "\n",
244
+ "\n",
245
+ "def get_GT_T(file_path,data_name):\n",
246
+ "\n",
247
+ " try:\n",
248
+ " with open(file_path, 'r') as f:\n",
249
+ " loaded_data = json.load(f)\n",
250
+ " noisy_data = loaded_data[data_name]\n",
251
+ " T_matrix = noisy_data['matrix_world']\n",
252
+ " np.array(T_matrix)\n",
253
+ " return T_matrix\n",
254
+ "\n",
255
+ " except FileNotFoundError:\n",
256
+ " # try ๋ธ”๋ก์—์„œ FileNotFoundError๊ฐ€ ๋ฐœ์ƒํ–ˆ์„ ๋•Œ๋งŒ ์ด ์ฝ”๋“œ๊ฐ€ ์‹คํ–‰๋ฉ๋‹ˆ๋‹ค.\n",
257
+ " print(f\"โš ๏ธ ๊ฒฝ๊ณ : '{file_path}' ๊ฒฝ๋กœ์— ํŒŒ์ผ์ด ์—†์Šต๋‹ˆ๋‹ค. ํ•ด๋‹น ์ฒ˜๋ฆฌ๋ฅผ ๊ฑด๋„ˆ๋œ๋‹ˆ๋‹ค.\")\n",
258
+ " return None # ํŒŒ์ผ์ด ์—†์œผ๋ฏ€๋กœ None์„ ๋ฐ˜ํ™˜\n",
259
+ "\n",
260
+ " except KeyError as e:\n",
261
+ " # try ๋ธ”๋ก์—์„œ KeyError๊ฐ€ ๋ฐœ์ƒํ–ˆ์„ ๋•Œ ์‹คํ–‰๋ฉ๋‹ˆ๋‹ค. (e.g., 'matrix_world' ํ‚ค๊ฐ€ ์—†์Œ)\n",
262
+ " print(f\"โš ๏ธ ๊ฒฝ๊ณ : ํŒŒ์ผ '{os.path.basename(file_path)}' ์•ˆ์— ํ•„์š”ํ•œ ํ‚ค({e})๊ฐ€ ์—†์Šต๋‹ˆ๋‹ค.\")\n",
263
+ " return None\n",
264
+ " \n",
265
+ " \n",
266
+ "\n",
267
+ "def compute_RMSE(gt_files):\n",
268
+ " \n",
269
+ " robust_no = ['0','2','3','6']\n",
270
+ " \n",
271
+ " for no in robust_no:\n",
272
+ " if no =='0':\n",
273
+ " name = \"ICP\"\n",
274
+ " elif no == '2':\n",
275
+ " name = \"FAST ICP\"\n",
276
+ " elif no =='3':\n",
277
+ " name = \"Robust ICP\"\n",
278
+ " else:\n",
279
+ " name = \"Sparse ICP\"\n",
280
+ "\n",
281
+ " for key, value_list in gt_files.items():\n",
282
+ " rmse = []\n",
283
+ " np.array(rmse)\n",
284
+ " # get gt_T and noisy_T\n",
285
+ " for value in value_list:\n",
286
+ " profix = value.split('_')[1]\n",
287
+ " gt_path = f\"./gt_raw/noisy_filtered_{key}_{profix}.json\"\n",
288
+ " gt_name = f\"noisy_filtered_{key}_{profix}\"\n",
289
+ "\n",
290
+ " #### RESULT FOLDER PATH.\n",
291
+ " result_path = f'./result{no}/result_{key}_{profix}.txt'\n",
292
+ " icp_T = get_T(result_path)\n",
293
+ " gt_T = get_GT_T(gt_path,gt_name)\n",
294
+ " \n",
295
+ " \n",
296
+ "\n",
297
+ " if (gt_T is None or icp_T is None):\n",
298
+ " df.loc[f'{category}_{key}_{name}',f'file_{profix}'] = 0.0\n",
299
+ "\n",
300
+ " else:\n",
301
+ " ## conpute rmse\n",
302
+ " r = RMSE(gt_T, icp_T)\n",
303
+ " \n",
304
+ " df.loc[f'{category}_{key}_{name}',f'file_{profix}'] = r\n",
305
+ "\n",
306
+ "\n",
307
+ "noisy_T = get_T(\"./result3/result_3_100_1.txt\")\n",
308
+ "gt_T = get_GT_T(\"./gt/noisy_filtered_100_1.json\",\"noisy_filtered_100_1\")\n",
309
+ "\n"
310
+ ]
311
+ },
312
+ {
313
+ "cell_type": "markdown",
314
+ "id": "587f5b2d",
315
+ "metadata": {},
316
+ "source": [
317
+ "## Bring GT"
318
+ ]
319
+ },
320
+ {
321
+ "cell_type": "code",
322
+ "execution_count": 5,
323
+ "id": "c4883f09",
324
+ "metadata": {},
325
+ "outputs": [
326
+ {
327
+ "name": "stdout",
328
+ "output_type": "stream",
329
+ "text": [
330
+ "โš ๏ธ ๊ฒฝ๊ณ : './gt_raw/noisy_filtered_100_3.json' ๊ฒฝ๋กœ์— ํŒŒ์ผ์ด ์—†์Šต๋‹ˆ๋‹ค. ํ•ด๋‹น ์ฒ˜๋ฆฌ๋ฅผ ๊ฑด๋„ˆ๋œ๋‹ˆ๋‹ค.\n",
331
+ "โš ๏ธ ๊ฒฝ๊ณ : './gt_raw/noisy_filtered_75_21.json' ๊ฒฝ๋กœ์— ํŒŒ์ผ์ด ์—†์Šต๋‹ˆ๋‹ค. ํ•ด๋‹น ์ฒ˜๋ฆฌ๋ฅผ ๊ฑด๋„ˆ๋œ๋‹ˆ๋‹ค.\n",
332
+ "โš ๏ธ ๊ฒฝ๊ณ : './gt_raw/noisy_filtered_100_3.json' ๊ฒฝ๋กœ์— ํŒŒ์ผ์ด ์—†์Šต๋‹ˆ๋‹ค. ํ•ด๋‹น ์ฒ˜๋ฆฌ๋ฅผ ๊ฑด๋„ˆ๋œ๋‹ˆ๋‹ค.\n",
333
+ "โš ๏ธ ๊ฒฝ๊ณ : './gt_raw/noisy_filtered_75_21.json' ๊ฒฝ๋กœ์— ํŒŒ์ผ์ด ์—†์Šต๋‹ˆ๋‹ค. ํ•ด๋‹น ์ฒ˜๋ฆฌ๋ฅผ ๊ฑด๋„ˆ๋œ๋‹ˆ๋‹ค.\n",
334
+ "โš ๏ธ ๊ฒฝ๊ณ : './gt_raw/noisy_filtered_100_3.json' ๊ฒฝ๋กœ์— ํŒŒ์ผ์ด ์—†์Šต๋‹ˆ๋‹ค. ํ•ด๋‹น ์ฒ˜๋ฆฌ๋ฅผ ๊ฑด๋„ˆ๋œ๋‹ˆ๋‹ค.\n",
335
+ "โš ๏ธ ๊ฒฝ๊ณ : './gt_raw/noisy_filtered_75_21.json' ๊ฒฝ๋กœ์— ํŒŒ์ผ์ด ์—†์Šต๋‹ˆ๋‹ค. ํ•ด๋‹น ์ฒ˜๋ฆฌ๋ฅผ ๊ฑด๋„ˆ๋œ๋‹ˆ๋‹ค.\n",
336
+ "โš ๏ธ ๊ฒฝ๊ณ : './gt_raw/noisy_filtered_100_3.json' ๊ฒฝ๋กœ์— ํŒŒ์ผ์ด ์—†์Šต๋‹ˆ๋‹ค. ํ•ด๋‹น ์ฒ˜๋ฆฌ๋ฅผ ๊ฑด๋„ˆ๋œ๋‹ˆ๋‹ค.\n",
337
+ "โš ๏ธ ๊ฒฝ๊ณ : './gt_raw/noisy_filtered_75_21.json' ๊ฒฝ๋กœ์— ํŒŒ์ผ์ด ์—†์Šต๋‹ˆ๋‹ค. ํ•ด๋‹น ์ฒ˜๋ฆฌ๋ฅผ ๊ฑด๋„ˆ๋œ๋‹ˆ๋‹ค.\n",
338
+ " file_1 file_2 file_3 file_4 file_5 file_6 file_7 file_8 file_9 file_10 file_11 file_12 file_13 file_14 file_15 file_16 file_17 file_18 file_19 file_20 file_21 file_22 file_23 file_24 file_25 mean_Val\n",
339
+ "eyeglasses_100_ICP 49.177524 49.806584 0.0 138.441225 87.915898 120.186261 120.15116 123.894466 89.380514 73.315877 48.166215 6.039374 115.531124 77.997241 88.023412 43.083893 96.244094 117.313122 122.726607 32.79982 0.0 0.0 0.0 0.0 0.0 84.220758\n",
340
+ "eyeglasses_75_ICP 87.588102 87.952244 86.888912 44.465704 43.706854 46.803776 83.053832 86.934602 119.085669 118.664201 127.226752 89.041529 25.653662 76.212343 116.570636 110.974039 121.662971 92.39682 92.948404 45.527907 0.0 0.0 0.0 0.0 0.0 85.167948\n",
341
+ "eyeglasses_50_ICP 86.077398 85.515931 56.203467 39.658613 55.964432 85.659654 81.994906 86.296592 125.03123 120.92935 120.172806 93.555076 53.094512 52.153707 95.846049 82.616041 85.503566 120.062881 3.460667 90.995474 0.0 0.0 0.0 0.0 0.0 81.039618\n",
342
+ "eyeglasses_25_ICP 88.437185 91.31789 47.286129 42.121124 43.6699 44.493015 50.610979 88.285632 121.91528 121.430682 117.920522 89.293436 77.573422 45.97554 43.442207 84.104947 94.560476 119.785534 121.267815 94.969581 0.0 0.0 0.0 0.0 0.0 81.423065\n",
343
+ "eyeglasses_0_ICP 115.42656 129.844337 44.737188 42.579934 43.417908 83.214014 29.491695 123.077669 118.621548 117.292488 123.34339 114.669807 47.984773 94.707256 41.521857 42.982327 84.91653 120.417353 133.505992 81.56058 117.780668 115.444352 91.911517 62.998183 0.0 88.393664\n",
344
+ "eyeglasses_100_FAST ICP 83.259331 83.645555 0.0 138.441165 87.915654 120.192528 120.16229 123.927474 89.380702 73.341829 48.162544 6.053365 115.531124 77.998005 88.023421 43.043867 96.244094 117.31153 122.726611 32.816015 0.0 0.0 0.0 0.0 0.0 87.798795\n",
345
+ "eyeglasses_75_FAST ICP 87.593486 87.954906 86.888759 44.470837 43.710619 46.793999 83.054473 86.934602 119.080369 118.665765 127.226687 89.043718 25.65575 76.255087 116.570636 78.510193 121.658091 92.397359 92.949963 45.527629 0.0 0.0 0.0 0.0 0.0 83.547146\n",
346
+ "eyeglasses_50_FAST ICP 86.076355 49.681895 56.206844 39.659207 55.970009 85.6618 81.995082 86.297193 125.030481 120.940702 119.333142 93.555076 53.094512 52.15224 95.846028 82.647037 85.484721 120.062273 3.460217 90.995474 0.0 0.0 0.0 0.0 0.0 79.207514\n",
347
+ "eyeglasses_25_FAST ICP 88.436958 91.355311 47.275427 42.120321 43.676167 44.498545 50.610979 88.284004 121.9152 121.430384 117.920431 89.292972 77.581779 45.975742 43.446218 84.110273 94.560495 119.779661 121.248484 94.965692 0.0 0.0 0.0 0.0 0.0 81.424252\n",
348
+ "eyeglasses_0_FAST ICP 115.42656 129.844985 44.736931 42.580005 43.418869 83.216159 29.491718 123.058863 118.619352 117.288364 123.345308 114.66969 47.983268 136.483019 41.523866 43.033534 84.913399 120.413866 133.497748 81.560175 117.777147 115.442671 91.834041 63.008174 0.0 90.131988\n",
349
+ "eyeglasses_100_Robust ICP 86.706648 87.550122 0.0 163.059025 88.657162 122.168079 122.876288 124.316046 2.024247 46.971363 48.601167 16.502839 3.776909 86.079746 71.630269 163.053315 89.672166 85.70942 124.58407 39.207876 0.0 0.0 0.0 0.0 0.0 82.797198\n",
350
+ "eyeglasses_75_Robust ICP 151.41524 150.31776 1.81071 51.252233 46.856081 90.632477 87.766717 88.139124 120.170606 121.48972 121.421837 3.040087 0.633951 92.450141 85.345478 84.340541 124.259725 3.88856 47.404646 50.859014 0.0 0.0 0.0 0.0 0.0 76.174732\n",
351
+ "eyeglasses_50_Robust ICP 1.56464 0.751704 52.268807 42.884698 50.529565 88.666486 85.292645 85.090955 123.343195 123.688799 123.172204 11.937183 58.305113 46.758012 85.425053 82.88777 83.149764 121.562022 5.581632 108.902694 0.0 0.0 0.0 0.0 0.0 69.088147\n",
352
+ "eyeglasses_25_Robust ICP 45.422566 60.675765 44.991866 48.96448 47.907548 49.815408 86.961364 88.40623 123.518214 123.869926 120.11876 2.261041 4.281067 51.381574 49.784994 88.151235 109.011523 120.460096 123.827282 92.882345 0.0 0.0 0.0 0.0 0.0 74.134664\n",
353
+ "eyeglasses_0_Robust ICP 123.234351 121.445912 53.025448 43.83628 52.887759 87.003592 51.652271 136.030958 120.702919 119.634498 122.65242 112.316815 57.562732 134.230881 49.144408 47.889125 83.13567 121.126821 134.682975 88.377431 119.872811 117.8035 84.55052 26.765552 0.0 92.065235\n",
354
+ "eyeglasses_100_Sparse ICP 78.881009 79.132542 0.0 161.702818 88.473492 122.745418 119.394692 80.692248 18.86516 36.50056 45.538846 8.924245 107.029653 43.537395 88.652852 69.197221 92.27113 84.338137 95.198425 21.550318 0.0 0.0 0.0 0.0 0.0 75.927693\n",
355
+ "eyeglasses_75_Sparse ICP 2.760445 2.500606 5.701879 48.877519 42.806559 52.169592 87.087468 88.496797 118.09202 117.066411 4.664192 4.772974 5.393414 85.533386 88.041404 81.56911 115.74126 3.103941 47.332934 43.208846 0.0 0.0 0.0 0.0 0.0 52.246038\n",
356
+ "eyeglasses_50_Sparse ICP 2.662489 8.362011 57.043531 42.963002 49.176657 83.142893 86.212548 84.757268 91.590711 117.766474 118.944513 14.286125 57.324034 122.92677 83.14378 80.079108 95.31367 115.935388 4.063046 103.015609 0.0 0.0 0.0 0.0 0.0 70.935481\n",
357
+ "eyeglasses_25_Sparse ICP 129.711864 110.97634 49.67125 41.613502 42.037786 48.471344 87.542938 88.77044 123.064149 118.953458 115.809029 5.083772 3.368678 45.859338 79.97394 83.047998 111.944448 90.690014 111.13601 1.443622 0.0 0.0 0.0 0.0 0.0 74.458496\n",
358
+ "eyeglasses_0_Sparse ICP 115.189712 119.835916 60.675744 43.585937 47.503253 47.556993 93.675667 123.237753 120.54543 116.717029 115.945411 109.501177 44.063482 94.247467 41.225771 46.006457 79.146285 124.16092 136.315118 85.654087 117.709611 115.315982 87.317356 37.100023 0.0 88.426357\n"
359
+ ]
360
+ },
361
+ {
362
+ "name": "stderr",
363
+ "output_type": "stream",
364
+ "text": [
365
+ "/tmp/ipykernel_285739/3042233176.py:18: FutureWarning: Downcasting behavior in `replace` is deprecated and will be removed in a future version. To retain the old behavior, explicitly call `result.infer_objects(copy=False)`. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
366
+ " df['mean_Val'] = df.replace(0, np.nan).mean(axis=1)\n"
367
+ ]
368
+ }
369
+ ],
370
+ "source": [
371
+ "json_path = \"ply_files.json\"\n",
372
+ "try: \n",
373
+ " with open(json_path, \"r\", encoding=\"utf-8\") as f:\n",
374
+ " gt_files = json.load(f)\n",
375
+ "except FileNotFoundError:\n",
376
+ " print(f\"์˜ค๋ฅ˜: '{json_path}' ํŒŒ์ผ์„ ์ฐพ์„ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค. ๋จผ์ € ํŒŒ์ผ ๋ถ„๋ฅ˜ ์ฝ”๋“œ๋ฅผ ์‹คํ–‰ํ•ด ์ฃผ์„ธ์š”.\")\n",
377
+ " exit() # ํŒŒ์ผ์ด ์—†์œผ๋ฉด ํ”„๋กœ๊ทธ๋žจ ์ข…๋ฃŒ\n",
378
+ "\n",
379
+ "\n",
380
+ "\n",
381
+ "### get \n",
382
+ "\n",
383
+ "\n",
384
+ "\n",
385
+ "compute_RMSE(gt_files)\n",
386
+ "\n",
387
+ "##get mean value\n",
388
+ "df['mean_Val'] = df.replace(0, np.nan).mean(axis=1)\n",
389
+ "\n",
390
+ "\n",
391
+ "\n",
392
+ "# ๋ชจ๋“  ํ–‰/์—ด์„ ์ „๋ถ€ ๋ณด์—ฌ์คŒ\n",
393
+ "pd.set_option('display.max_rows', None) # ํ–‰ ์ „์ฒด ์ถœ๋ ฅ\n",
394
+ "pd.set_option('display.max_columns', None) # ์—ด ์ „์ฒด ์ถœ๋ ฅ\n",
395
+ "\n",
396
+ "# ๊ฐ ์—ด์˜ ๋„ˆ๋น„ ์ œํ•œ ํ•ด์ œ (๊ธด ๋ฌธ์ž์—ด๋„ ์ž˜๋ฆฌ์ง€ ์•Š์Œ)\n",
397
+ "pd.set_option('display.max_colwidth', None)\n",
398
+ "\n",
399
+ "# ํ™”๋ฉด ๋„ˆ๋น„์— ๋”ฐ๋ผ ์ค„๋ฐ”๊ฟˆ์„ ํ• ์ง€ ๋ง์ง€\n",
400
+ "pd.set_option('display.width', None) # None์ด๋ฉด ์ž๋™์œผ๋กœ ์ฝ˜์†” ๋„ˆ๋น„๋ฅผ ์‚ฌ์šฉ\n",
401
+ "pd.set_option('display.expand_frame_repr', False) # True๋ฉด ์ค„๋ฐ”๊ฟˆ ํ—ˆ์šฉ, False๋ฉด ํ•œ ์ค„๋กœ ์ถœ๋ ฅ ์‹œ๋„\n",
402
+ "\n",
403
+ "# ์˜ˆ: DataFrame ์ถœ๋ ฅ\n",
404
+ "print(df)\n",
405
+ " \n",
406
+ "\n",
407
+ "\n"
408
+ ]
409
+ },
410
+ {
411
+ "cell_type": "markdown",
412
+ "id": "7493fb27",
413
+ "metadata": {},
414
+ "source": [
415
+ "## GET RMSE MEAN by ICP Methods\n",
416
+ "\n"
417
+ ]
418
+ },
419
+ {
420
+ "cell_type": "code",
421
+ "execution_count": 6,
422
+ "id": "e49285b9",
423
+ "metadata": {},
424
+ "outputs": [
425
+ {
426
+ "name": "stdout",
427
+ "output_type": "stream",
428
+ "text": [
429
+ "[0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3]\n",
430
+ " file_1 file_2 file_3 file_4 file_5 file_6 file_7 file_8 file_9 file_10 file_11 file_12 file_13 file_14 file_15 file_16 file_17 file_18 file_19 file_20 file_21 file_22 file_23 file_24 file_25 mean_Val\n",
431
+ "ICP 85.341354 88.887397 47.023139 61.45332 54.934998 76.071344 73.060515 101.697793 114.806848 110.32652 107.365937 78.519844 63.967499 69.409217 77.080832 72.752249 96.577527 113.995142 94.781897 69.170672 23.556134 23.08887 18.382303 12.599637 0.0 84.049010\n",
432
+ "FAST ICP 92.158538 88.49653 47.021592 61.454307 54.938263 76.072606 73.062909 101.700427 114.805221 110.333409 107.197623 78.522964 63.969287 77.772819 77.082034 66.268981 96.57216 113.992938 94.776605 69.172997 23.555429 23.088534 18.366808 12.601635 0.0 84.421939\n",
433
+ "FAST AND ROBUST ICP 81.668689 84.148253 30.419366 69.999343 57.367623 87.657208 86.909857 104.396662 97.951836 107.130861 107.193278 29.211593 24.911955 82.180071 68.26604 93.264397 97.84577 90.549384 87.216121 76.045872 23.974562 23.5607 16.910104 5.35311 0.0 78.851995\n",
434
+ "SPARSE ICP 65.841104 64.161483 34.618481 67.748556 53.99955 70.817248 94.782662 93.190901 94.431494 101.400787 80.180398 28.513659 43.435852 78.420871 76.207549 71.979979 98.883359 83.64568 78.809106 50.974496 23.541922 23.063196 17.463471 7.420005 0.0 72.398813\n",
435
+ "<class 'pandas.core.frame.DataFrame'>\n"
436
+ ]
437
+ }
438
+ ],
439
+ "source": [
440
+ "df_mean = np.zeros((5,5))\n",
441
+ "\n",
442
+ "## make 25 lengths array\n",
443
+ "\n",
444
+ "grouping = []\n",
445
+ "\n",
446
+ "for i in range(0,len(df)):\n",
447
+ " grouping.append(i)\n",
448
+ "\n",
449
+ "grouping = np.arange(len(df)) //5\n",
450
+ "\n",
451
+ "print(grouping)\n",
452
+ "block_avg_df = df.groupby(grouping).mean()\n",
453
+ "\n",
454
+ "\n",
455
+ "ICP_Method = ['ICP', 'FAST ICP', 'FAST AND ROBUST ICP', 'SPARSE ICP']\n",
456
+ "\n",
457
+ "\n",
458
+ "\n",
459
+ "block_avg_df.index = ICP_Method\n",
460
+ "\n",
461
+ "\n",
462
+ "print(block_avg_df)\n",
463
+ "\n",
464
+ "print(type(block_avg_df))\n",
465
+ "\n",
466
+ "\n"
467
+ ]
468
+ },
469
+ {
470
+ "cell_type": "code",
471
+ "execution_count": null,
472
+ "id": "14ebb074",
473
+ "metadata": {},
474
+ "outputs": [],
475
+ "source": []
476
+ },
477
+ {
478
+ "cell_type": "markdown",
479
+ "id": "d03a908e",
480
+ "metadata": {},
481
+ "source": [
482
+ "## merge in Pandas"
483
+ ]
484
+ },
485
+ {
486
+ "cell_type": "code",
487
+ "execution_count": 7,
488
+ "id": "92386801",
489
+ "metadata": {},
490
+ "outputs": [
491
+ {
492
+ "name": "stdout",
493
+ "output_type": "stream",
494
+ "text": [
495
+ " file_1 file_2 file_3 file_4 file_5 file_6 file_7 file_8 file_9 file_10 file_11 file_12 file_13 file_14 file_15 file_16 file_17 file_18 file_19 file_20 file_21 file_22 file_23 file_24 file_25 mean_Val\n",
496
+ "eyeglasses_100_ICP 49.177524 49.806584 0.0 138.441225 87.915898 120.186261 120.15116 123.894466 89.380514 73.315877 48.166215 6.039374 115.531124 77.997241 88.023412 43.083893 96.244094 117.313122 122.726607 32.79982 0.0 0.0 0.0 0.0 0.0 84.220758\n",
497
+ "eyeglasses_75_ICP 87.588102 87.952244 86.888912 44.465704 43.706854 46.803776 83.053832 86.934602 119.085669 118.664201 127.226752 89.041529 25.653662 76.212343 116.570636 110.974039 121.662971 92.39682 92.948404 45.527907 0.0 0.0 0.0 0.0 0.0 85.167948\n",
498
+ "eyeglasses_50_ICP 86.077398 85.515931 56.203467 39.658613 55.964432 85.659654 81.994906 86.296592 125.03123 120.92935 120.172806 93.555076 53.094512 52.153707 95.846049 82.616041 85.503566 120.062881 3.460667 90.995474 0.0 0.0 0.0 0.0 0.0 81.039618\n",
499
+ "eyeglasses_25_ICP 88.437185 91.31789 47.286129 42.121124 43.6699 44.493015 50.610979 88.285632 121.91528 121.430682 117.920522 89.293436 77.573422 45.97554 43.442207 84.104947 94.560476 119.785534 121.267815 94.969581 0.0 0.0 0.0 0.0 0.0 81.423065\n",
500
+ "eyeglasses_0_ICP 115.42656 129.844337 44.737188 42.579934 43.417908 83.214014 29.491695 123.077669 118.621548 117.292488 123.34339 114.669807 47.984773 94.707256 41.521857 42.982327 84.91653 120.417353 133.505992 81.56058 117.780668 115.444352 91.911517 62.998183 0.0 88.393664\n",
501
+ "eyeglasses_100_FAST ICP 83.259331 83.645555 0.0 138.441165 87.915654 120.192528 120.16229 123.927474 89.380702 73.341829 48.162544 6.053365 115.531124 77.998005 88.023421 43.043867 96.244094 117.31153 122.726611 32.816015 0.0 0.0 0.0 0.0 0.0 87.798795\n",
502
+ "eyeglasses_75_FAST ICP 87.593486 87.954906 86.888759 44.470837 43.710619 46.793999 83.054473 86.934602 119.080369 118.665765 127.226687 89.043718 25.65575 76.255087 116.570636 78.510193 121.658091 92.397359 92.949963 45.527629 0.0 0.0 0.0 0.0 0.0 83.547146\n",
503
+ "eyeglasses_50_FAST ICP 86.076355 49.681895 56.206844 39.659207 55.970009 85.6618 81.995082 86.297193 125.030481 120.940702 119.333142 93.555076 53.094512 52.15224 95.846028 82.647037 85.484721 120.062273 3.460217 90.995474 0.0 0.0 0.0 0.0 0.0 79.207514\n",
504
+ "eyeglasses_25_FAST ICP 88.436958 91.355311 47.275427 42.120321 43.676167 44.498545 50.610979 88.284004 121.9152 121.430384 117.920431 89.292972 77.581779 45.975742 43.446218 84.110273 94.560495 119.779661 121.248484 94.965692 0.0 0.0 0.0 0.0 0.0 81.424252\n",
505
+ "eyeglasses_0_FAST ICP 115.42656 129.844985 44.736931 42.580005 43.418869 83.216159 29.491718 123.058863 118.619352 117.288364 123.345308 114.66969 47.983268 136.483019 41.523866 43.033534 84.913399 120.413866 133.497748 81.560175 117.777147 115.442671 91.834041 63.008174 0.0 90.131988\n",
506
+ "eyeglasses_100_Robust ICP 86.706648 87.550122 0.0 163.059025 88.657162 122.168079 122.876288 124.316046 2.024247 46.971363 48.601167 16.502839 3.776909 86.079746 71.630269 163.053315 89.672166 85.70942 124.58407 39.207876 0.0 0.0 0.0 0.0 0.0 82.797198\n",
507
+ "eyeglasses_75_Robust ICP 151.41524 150.31776 1.81071 51.252233 46.856081 90.632477 87.766717 88.139124 120.170606 121.48972 121.421837 3.040087 0.633951 92.450141 85.345478 84.340541 124.259725 3.88856 47.404646 50.859014 0.0 0.0 0.0 0.0 0.0 76.174732\n",
508
+ "eyeglasses_50_Robust ICP 1.56464 0.751704 52.268807 42.884698 50.529565 88.666486 85.292645 85.090955 123.343195 123.688799 123.172204 11.937183 58.305113 46.758012 85.425053 82.88777 83.149764 121.562022 5.581632 108.902694 0.0 0.0 0.0 0.0 0.0 69.088147\n",
509
+ "eyeglasses_25_Robust ICP 45.422566 60.675765 44.991866 48.96448 47.907548 49.815408 86.961364 88.40623 123.518214 123.869926 120.11876 2.261041 4.281067 51.381574 49.784994 88.151235 109.011523 120.460096 123.827282 92.882345 0.0 0.0 0.0 0.0 0.0 74.134664\n",
510
+ "eyeglasses_0_Robust ICP 123.234351 121.445912 53.025448 43.83628 52.887759 87.003592 51.652271 136.030958 120.702919 119.634498 122.65242 112.316815 57.562732 134.230881 49.144408 47.889125 83.13567 121.126821 134.682975 88.377431 119.872811 117.8035 84.55052 26.765552 0.0 92.065235\n",
511
+ "eyeglasses_100_Sparse ICP 78.881009 79.132542 0.0 161.702818 88.473492 122.745418 119.394692 80.692248 18.86516 36.50056 45.538846 8.924245 107.029653 43.537395 88.652852 69.197221 92.27113 84.338137 95.198425 21.550318 0.0 0.0 0.0 0.0 0.0 75.927693\n",
512
+ "eyeglasses_75_Sparse ICP 2.760445 2.500606 5.701879 48.877519 42.806559 52.169592 87.087468 88.496797 118.09202 117.066411 4.664192 4.772974 5.393414 85.533386 88.041404 81.56911 115.74126 3.103941 47.332934 43.208846 0.0 0.0 0.0 0.0 0.0 52.246038\n",
513
+ "eyeglasses_50_Sparse ICP 2.662489 8.362011 57.043531 42.963002 49.176657 83.142893 86.212548 84.757268 91.590711 117.766474 118.944513 14.286125 57.324034 122.92677 83.14378 80.079108 95.31367 115.935388 4.063046 103.015609 0.0 0.0 0.0 0.0 0.0 70.935481\n",
514
+ "eyeglasses_25_Sparse ICP 129.711864 110.97634 49.67125 41.613502 42.037786 48.471344 87.542938 88.77044 123.064149 118.953458 115.809029 5.083772 3.368678 45.859338 79.97394 83.047998 111.944448 90.690014 111.13601 1.443622 0.0 0.0 0.0 0.0 0.0 74.458496\n",
515
+ "eyeglasses_0_Sparse ICP 115.189712 119.835916 60.675744 43.585937 47.503253 47.556993 93.675667 123.237753 120.54543 116.717029 115.945411 109.501177 44.063482 94.247467 41.225771 46.006457 79.146285 124.16092 136.315118 85.654087 117.709611 115.315982 87.317356 37.100023 0.0 88.426357\n",
516
+ "ICP 85.341354 88.887397 47.023139 61.45332 54.934998 76.071344 73.060515 101.697793 114.806848 110.32652 107.365937 78.519844 63.967499 69.409217 77.080832 72.752249 96.577527 113.995142 94.781897 69.170672 23.556134 23.08887 18.382303 12.599637 0.0 84.049010\n",
517
+ "FAST ICP 92.158538 88.49653 47.021592 61.454307 54.938263 76.072606 73.062909 101.700427 114.805221 110.333409 107.197623 78.522964 63.969287 77.772819 77.082034 66.268981 96.57216 113.992938 94.776605 69.172997 23.555429 23.088534 18.366808 12.601635 0.0 84.421939\n",
518
+ "FAST AND ROBUST ICP 81.668689 84.148253 30.419366 69.999343 57.367623 87.657208 86.909857 104.396662 97.951836 107.130861 107.193278 29.211593 24.911955 82.180071 68.26604 93.264397 97.84577 90.549384 87.216121 76.045872 23.974562 23.5607 16.910104 5.35311 0.0 78.851995\n",
519
+ "SPARSE ICP 65.841104 64.161483 34.618481 67.748556 53.99955 70.817248 94.782662 93.190901 94.431494 101.400787 80.180398 28.513659 43.435852 78.420871 76.207549 71.979979 98.883359 83.64568 78.809106 50.974496 23.541922 23.063196 17.463471 7.420005 0.0 72.398813\n"
520
+ ]
521
+ }
522
+ ],
523
+ "source": [
524
+ "combined_df = pd.concat([df, block_avg_df], ignore_index=False)\n",
525
+ "\n",
526
+ "# ๋ชจ๋“  ํ–‰/์—ด์„ ์ „๋ถ€ ๋ณด์—ฌ์คŒ\n",
527
+ "pd.set_option('display.max_rows', None) # ํ–‰ ์ „์ฒด ์ถœ๋ ฅ\n",
528
+ "pd.set_option('display.max_columns', None) # ์—ด ์ „์ฒด ์ถœ๋ ฅ\n",
529
+ "\n",
530
+ "# ๊ฐ ์—ด์˜ ๋„ˆ๋น„ ์ œํ•œ ํ•ด์ œ (๊ธด ๋ฌธ์ž์—ด๋„ ์ž˜๋ฆฌ์ง€ ์•Š์Œ)\n",
531
+ "pd.set_option('display.max_colwidth', None)\n",
532
+ "\n",
533
+ "# ํ™”๋ฉด ๋„ˆ๋น„์— ๋”ฐ๋ผ ์ค„๋ฐ”๊ฟˆ์„ ํ• ์ง€ ๋ง์ง€\n",
534
+ "pd.set_option('display.width', None) # None์ด๋ฉด ์ž๋™์œผ๋กœ ์ฝ˜์†” ๋„ˆ๋น„๋ฅผ ์‚ฌ์šฉ\n",
535
+ "pd.set_option('display.expand_frame_repr', False) # True๋ฉด ์ค„๋ฐ”๊ฟˆ ํ—ˆ์šฉ, False๋ฉด ํ•œ ์ค„๋กœ ์ถœ๋ ฅ ์‹œ๋„\n",
536
+ "\n",
537
+ "print(combined_df)"
538
+ ]
539
+ },
540
+ {
541
+ "cell_type": "markdown",
542
+ "id": "a9b19689",
543
+ "metadata": {},
544
+ "source": [
545
+ "## Save bottle csv"
546
+ ]
547
+ },
548
+ {
549
+ "cell_type": "code",
550
+ "execution_count": 8,
551
+ "id": "9e8dcfae",
552
+ "metadata": {},
553
+ "outputs": [
554
+ {
555
+ "name": "stdout",
556
+ "output_type": "stream",
557
+ "text": [
558
+ "ICP 84.049010\n",
559
+ "FAST ICP 84.421939\n",
560
+ "FAST AND ROBUST ICP 78.851995\n",
561
+ "SPARSE ICP 72.398813\n",
562
+ "Name: mean_Val, dtype: float64\n"
563
+ ]
564
+ }
565
+ ],
566
+ "source": [
567
+ "sliced_data = combined_df.loc['ICP':'SPARSE ICP', 'mean_Val']\n",
568
+ "print(sliced_data)\n",
569
+ "combined_df.to_csv(f'{category}.csv', index=True)"
570
+ ]
571
+ },
572
+ {
573
+ "cell_type": "markdown",
574
+ "id": "1c228eca",
575
+ "metadata": {},
576
+ "source": [
577
+ "## Load num of dataset in each category. + save array"
578
+ ]
579
+ },
580
+ {
581
+ "cell_type": "code",
582
+ "execution_count": 9,
583
+ "id": "e81b4de4",
584
+ "metadata": {},
585
+ "outputs": [
586
+ {
587
+ "name": "stdout",
588
+ "output_type": "stream",
589
+ "text": [
590
+ " file_1 file_2 file_3 file_4 file_5 file_6 file_7 file_8 file_9 file_10 file_11 file_12 file_13 file_14 file_15 file_16 file_17 file_18 file_19 file_20 file_21 file_22 file_23 file_24 file_25 mean_Val Counts\n",
591
+ "eyeglasses_100_ICP 49.177524 49.806584 0.0 138.441225 87.915898 120.186261 120.15116 123.894466 89.380514 73.315877 48.166215 6.039374 115.531124 77.997241 88.023412 43.083893 96.244094 117.313122 122.726607 32.79982 0.0 0.0 0.0 0.0 0.0 84.220758 19\n",
592
+ "eyeglasses_75_ICP 87.588102 87.952244 86.888912 44.465704 43.706854 46.803776 83.053832 86.934602 119.085669 118.664201 127.226752 89.041529 25.653662 76.212343 116.570636 110.974039 121.662971 92.39682 92.948404 45.527907 0.0 0.0 0.0 0.0 0.0 85.167948 20\n",
593
+ "eyeglasses_50_ICP 86.077398 85.515931 56.203467 39.658613 55.964432 85.659654 81.994906 86.296592 125.03123 120.92935 120.172806 93.555076 53.094512 52.153707 95.846049 82.616041 85.503566 120.062881 3.460667 90.995474 0.0 0.0 0.0 0.0 0.0 81.039618 20\n",
594
+ "eyeglasses_25_ICP 88.437185 91.31789 47.286129 42.121124 43.6699 44.493015 50.610979 88.285632 121.91528 121.430682 117.920522 89.293436 77.573422 45.97554 43.442207 84.104947 94.560476 119.785534 121.267815 94.969581 0.0 0.0 0.0 0.0 0.0 81.423065 20\n",
595
+ "eyeglasses_0_ICP 115.42656 129.844337 44.737188 42.579934 43.417908 83.214014 29.491695 123.077669 118.621548 117.292488 123.34339 114.669807 47.984773 94.707256 41.521857 42.982327 84.91653 120.417353 133.505992 81.56058 117.780668 115.444352 91.911517 62.998183 0.0 88.393664 24\n",
596
+ "eyeglasses_100_FAST ICP 83.259331 83.645555 0.0 138.441165 87.915654 120.192528 120.16229 123.927474 89.380702 73.341829 48.162544 6.053365 115.531124 77.998005 88.023421 43.043867 96.244094 117.31153 122.726611 32.816015 0.0 0.0 0.0 0.0 0.0 87.798795 19\n",
597
+ "eyeglasses_75_FAST ICP 87.593486 87.954906 86.888759 44.470837 43.710619 46.793999 83.054473 86.934602 119.080369 118.665765 127.226687 89.043718 25.65575 76.255087 116.570636 78.510193 121.658091 92.397359 92.949963 45.527629 0.0 0.0 0.0 0.0 0.0 83.547146 20\n",
598
+ "eyeglasses_50_FAST ICP 86.076355 49.681895 56.206844 39.659207 55.970009 85.6618 81.995082 86.297193 125.030481 120.940702 119.333142 93.555076 53.094512 52.15224 95.846028 82.647037 85.484721 120.062273 3.460217 90.995474 0.0 0.0 0.0 0.0 0.0 79.207514 20\n",
599
+ "eyeglasses_25_FAST ICP 88.436958 91.355311 47.275427 42.120321 43.676167 44.498545 50.610979 88.284004 121.9152 121.430384 117.920431 89.292972 77.581779 45.975742 43.446218 84.110273 94.560495 119.779661 121.248484 94.965692 0.0 0.0 0.0 0.0 0.0 81.424252 20\n",
600
+ "eyeglasses_0_FAST ICP 115.42656 129.844985 44.736931 42.580005 43.418869 83.216159 29.491718 123.058863 118.619352 117.288364 123.345308 114.66969 47.983268 136.483019 41.523866 43.033534 84.913399 120.413866 133.497748 81.560175 117.777147 115.442671 91.834041 63.008174 0.0 90.131988 24\n",
601
+ "eyeglasses_100_Robust ICP 86.706648 87.550122 0.0 163.059025 88.657162 122.168079 122.876288 124.316046 2.024247 46.971363 48.601167 16.502839 3.776909 86.079746 71.630269 163.053315 89.672166 85.70942 124.58407 39.207876 0.0 0.0 0.0 0.0 0.0 82.797198 19\n",
602
+ "eyeglasses_75_Robust ICP 151.41524 150.31776 1.81071 51.252233 46.856081 90.632477 87.766717 88.139124 120.170606 121.48972 121.421837 3.040087 0.633951 92.450141 85.345478 84.340541 124.259725 3.88856 47.404646 50.859014 0.0 0.0 0.0 0.0 0.0 76.174732 20\n",
603
+ "eyeglasses_50_Robust ICP 1.56464 0.751704 52.268807 42.884698 50.529565 88.666486 85.292645 85.090955 123.343195 123.688799 123.172204 11.937183 58.305113 46.758012 85.425053 82.88777 83.149764 121.562022 5.581632 108.902694 0.0 0.0 0.0 0.0 0.0 69.088147 20\n",
604
+ "eyeglasses_25_Robust ICP 45.422566 60.675765 44.991866 48.96448 47.907548 49.815408 86.961364 88.40623 123.518214 123.869926 120.11876 2.261041 4.281067 51.381574 49.784994 88.151235 109.011523 120.460096 123.827282 92.882345 0.0 0.0 0.0 0.0 0.0 74.134664 20\n",
605
+ "eyeglasses_0_Robust ICP 123.234351 121.445912 53.025448 43.83628 52.887759 87.003592 51.652271 136.030958 120.702919 119.634498 122.65242 112.316815 57.562732 134.230881 49.144408 47.889125 83.13567 121.126821 134.682975 88.377431 119.872811 117.8035 84.55052 26.765552 0.0 92.065235 24\n",
606
+ "eyeglasses_100_Sparse ICP 78.881009 79.132542 0.0 161.702818 88.473492 122.745418 119.394692 80.692248 18.86516 36.50056 45.538846 8.924245 107.029653 43.537395 88.652852 69.197221 92.27113 84.338137 95.198425 21.550318 0.0 0.0 0.0 0.0 0.0 75.927693 19\n",
607
+ "eyeglasses_75_Sparse ICP 2.760445 2.500606 5.701879 48.877519 42.806559 52.169592 87.087468 88.496797 118.09202 117.066411 4.664192 4.772974 5.393414 85.533386 88.041404 81.56911 115.74126 3.103941 47.332934 43.208846 0.0 0.0 0.0 0.0 0.0 52.246038 20\n",
608
+ "eyeglasses_50_Sparse ICP 2.662489 8.362011 57.043531 42.963002 49.176657 83.142893 86.212548 84.757268 91.590711 117.766474 118.944513 14.286125 57.324034 122.92677 83.14378 80.079108 95.31367 115.935388 4.063046 103.015609 0.0 0.0 0.0 0.0 0.0 70.935481 20\n",
609
+ "eyeglasses_25_Sparse ICP 129.711864 110.97634 49.67125 41.613502 42.037786 48.471344 87.542938 88.77044 123.064149 118.953458 115.809029 5.083772 3.368678 45.859338 79.97394 83.047998 111.944448 90.690014 111.13601 1.443622 0.0 0.0 0.0 0.0 0.0 74.458496 20\n",
610
+ "eyeglasses_0_Sparse ICP 115.189712 119.835916 60.675744 43.585937 47.503253 47.556993 93.675667 123.237753 120.54543 116.717029 115.945411 109.501177 44.063482 94.247467 41.225771 46.006457 79.146285 124.16092 136.315118 85.654087 117.709611 115.315982 87.317356 37.100023 0.0 88.426357 24\n",
611
+ "###################\n",
612
+ "eyeglasses_100_ICP 19\n",
613
+ "eyeglasses_75_ICP 20\n",
614
+ "eyeglasses_50_ICP 20\n",
615
+ "eyeglasses_25_ICP 20\n",
616
+ "eyeglasses_0_ICP 24\n",
617
+ "Name: Counts, dtype: int64\n"
618
+ ]
619
+ }
620
+ ],
621
+ "source": [
622
+ "\n",
623
+ "\n",
624
+ "df['Counts'] = (df != 0).sum(axis=1)-1\n",
625
+ "\n",
626
+ "# ๋ชจ๋“  ํ–‰/์—ด์„ ์ „๋ถ€ ๋ณด์—ฌ์คŒ\n",
627
+ "pd.set_option('display.max_rows', None) # ํ–‰ ์ „์ฒด ์ถœ๋ ฅ\n",
628
+ "pd.set_option('display.max_columns', None) # ์—ด ์ „์ฒด ์ถœ๋ ฅ\n",
629
+ "\n",
630
+ "# ๊ฐ ์—ด์˜ ๋„ˆ๋น„ ์ œํ•œ ํ•ด์ œ (๊ธด ๋ฌธ์ž์—ด๋„ ์ž˜๋ฆฌ์ง€ ์•Š์Œ)\n",
631
+ "pd.set_option('display.max_colwidth', None)\n",
632
+ "\n",
633
+ "# ํ™”๋ฉด ๋„ˆ๋น„์— ๋”ฐ๋ผ ์ค„๋ฐ”๏ฟฝ๏ฟฝ๏ฟฝ์„ ํ• ์ง€ ๋ง์ง€\n",
634
+ "pd.set_option('display.width', None) # None์ด๋ฉด ์ž๋™์œผ๋กœ ์ฝ˜์†” ๋„ˆ๋น„๋ฅผ ์‚ฌ์šฉ\n",
635
+ "pd.set_option('display.expand_frame_repr', False) # True๋ฉด ์ค„๋ฐ”๊ฟˆ ํ—ˆ์šฉ, False๋ฉด ํ•œ ์ค„๋กœ ์ถœ๋ ฅ ์‹œ๋„\n",
636
+ "\n",
637
+ "print(df)\n",
638
+ "\n",
639
+ "\n",
640
+ "\n",
641
+ "sliced_data = df.loc['eyeglasses_100_ICP':'eyeglasses_0_ICP', 'Counts']\n",
642
+ "print(f\"###################\\n{sliced_data}\")\n",
643
+ "sliced_data.to_csv(f'{category}_data_num.csv', index=True)"
644
+ ]
645
+ }
646
+ ],
647
+ "metadata": {
648
+ "kernelspec": {
649
+ "display_name": "icp",
650
+ "language": "python",
651
+ "name": "python3"
652
+ },
653
+ "language_info": {
654
+ "codemirror_mode": {
655
+ "name": "ipython",
656
+ "version": 3
657
+ },
658
+ "file_extension": ".py",
659
+ "mimetype": "text/x-python",
660
+ "name": "python",
661
+ "nbconvert_exporter": "python",
662
+ "pygments_lexer": "ipython3",
663
+ "version": "3.10.19"
664
+ }
665
+ },
666
+ "nbformat": 4,
667
+ "nbformat_minor": 5
668
+ }
data/glasses/eyeglasses.csv ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ,file_1,file_2,file_3,file_4,file_5,file_6,file_7,file_8,file_9,file_10,file_11,file_12,file_13,file_14,file_15,file_16,file_17,file_18,file_19,file_20,file_21,file_22,file_23,file_24,file_25,mean_Val
2
+ eyeglasses_100_ICP,49.17752379774512,49.806583865125546,0.0,138.44122465194937,87.91589778921198,120.18626136199036,120.15115993030028,123.89446624334863,89.3805137041566,73.31587653716802,48.16621452861571,6.039374146491476,115.53112399921835,77.99724092235948,88.02341225312288,43.08389328755267,96.24409415747118,117.31312215505255,122.72660693013857,32.799819643652135,0.0,0.0,0.0,0.0,0.0,84.22075841603531
3
+ eyeglasses_75_ICP,87.58810229011992,87.95224423257785,86.88891178891647,44.465703715949644,43.70685366708641,46.80377638552133,83.05383213012615,86.93460229603807,119.08566924703662,118.6642014464694,127.22675215273469,89.04152887828387,25.653661867266834,76.2123426514258,116.57063585495702,110.9740394162759,121.66297112409931,92.39681997996807,92.94840434116387,45.52790692470302,0.0,0.0,0.0,0.0,0.0,85.16794801953601
4
+ eyeglasses_50_ICP,86.07739781846578,85.51593128260045,56.20346741580735,39.658613317852165,55.96443155010566,85.65965410227459,81.99490633545153,86.29659242016291,125.03122971595887,120.92935006316522,120.17280593196269,93.55507599145504,53.09451237091268,52.15370742689203,95.84604948469631,82.61604145711769,85.50356577255059,120.0628808637047,3.4606666948134284,90.99547398802572,0.0,0.0,0.0,0.0,0.0,81.03961770019878
5
+ eyeglasses_25_ICP,88.43718490106615,91.31788965534798,47.28612899442477,42.12112366585242,43.669900073262006,44.49301503853161,50.61097931810664,88.28563224312408,121.91527963511011,121.43068155173343,117.92052154560032,89.29343565174771,77.57342184054598,45.97554012437388,43.44220674545128,84.10494650962362,94.56047600196041,119.78553412438167,121.2678151521993,94.96958147891239,0.0,0.0,0.0,0.0,0.0,81.4230647125678
6
+ eyeglasses_0_ICP,115.42655952774327,129.84433685670615,44.737188308064496,42.57993437851364,43.41790845717933,83.21401396984572,29.491695488730294,123.0776693891887,118.62154798266184,117.29248823060789,123.34338990239955,114.66980659721456,47.98477334193737,94.7072555599628,41.521857356262885,42.98232678008477,84.91652989595941,120.41735290776046,133.505991955395,81.56057963337318,117.78066764603615,115.44435245989825,91.91151697400441,62.998182525680775,0.0,88.39366358855045
7
+ eyeglasses_100_FAST ICP,83.25933052880839,83.6455549234024,0.0,138.441164617354,87.91565392206297,120.19252811407915,120.16229024965043,123.9274740368411,89.38070150013246,73.34182900709585,48.162544052730524,6.053365129834639,115.53112399921835,77.99800519479543,88.0234213204532,43.043867230841535,96.24409415789599,117.31152962984014,122.72661087779578,32.81601486837901,0.0,0.0,0.0,0.0,0.0,87.79879491374795
8
+ eyeglasses_75_FAST ICP,87.59348591652028,87.95490632510855,86.88875913091353,44.470836569747924,43.71061852053137,46.793998928083326,83.05447322760746,86.9346022982755,119.08036872456668,118.66576501373137,127.2266874783626,89.04371831256802,25.655750332101828,76.2550865148604,116.57063585495702,78.51019338414193,121.65809080630324,92.39735930197293,92.94996323126686,45.527628716770565,0.0,0.0,0.0,0.0,0.0,83.54714642941956
9
+ eyeglasses_50_FAST ICP,86.0763549694485,49.68189483541356,56.20684361842143,39.659207297431045,55.97000886332607,85.66180046090125,81.99508192645266,86.29719309174237,125.03048057649723,120.94070231940039,119.33314210743859,93.55507599220287,53.09451237091268,52.152240233865484,95.84602760694249,82.64703660623049,85.4847207515356,120.06227292950956,3.4602165949774615,90.99547399152466,0.0,0.0,0.0,0.0,0.0,79.20751435720872
10
+ eyeglasses_25_FAST ICP,88.43695786583005,91.355310607797,47.27542703372179,42.120320913797464,43.676167099741996,44.4985451099317,50.61097931810664,88.28400421737079,121.91519957430303,121.43038402556962,117.9204313500966,89.29297217263692,77.58177854517152,45.975742439891036,43.446218031717024,84.11027273071637,94.56049542373195,119.7796612581059,121.24848419679245,94.96569231273946,0.0,0.0,0.0,0.0,0.0,81.42425221138846
11
+ eyeglasses_0_FAST ICP,115.42655952850498,129.84498477775207,44.73693072210608,42.58000493333838,43.4188689874817,83.21615895179785,29.491718184127247,123.05886311431154,118.61935249506642,117.28836436147213,123.34530824484305,114.66968992422467,47.98326775052566,136.483018755102,41.52386553001874,43.033533759041056,84.91339922070132,120.41386622508821,133.49774824244366,81.56017477839804,117.7771468485543,115.44267056618092,91.83404140006382,63.00817377845625,0.0,90.13198796165
12
+ eyeglasses_100_Robust ICP,86.7066479705238,87.55012209547141,0.0,163.05902509452125,88.65716154166327,122.1680785583144,122.87628842880657,124.31604559750879,2.024246520883091,46.97136293004783,48.60116705472443,16.50283887635228,3.776908897688169,86.07974635425529,71.63026948684329,163.0533152664762,89.67216607377028,85.70942015233359,124.5840695676283,39.20787567956067,0.0,0.0,0.0,0.0,0.0,82.79719769196699
13
+ eyeglasses_75_Robust ICP,151.41523960749677,150.31776014678826,1.8107102879669095,51.252232982779475,46.85608080337175,90.63247674647141,87.76671691334438,88.13912441714463,120.1706060704092,121.48972047501763,121.42183729775677,3.0400867813622217,0.6339512365285208,92.45014091630793,85.34547804290855,84.34054076763374,124.2597246884901,3.8885597233421216,47.404646252979504,50.859014378653406,0.0,0.0,0.0,0.0,0.0,76.17473242683766
14
+ eyeglasses_50_Robust ICP,1.5646396083486813,0.7517041733763252,52.26880699234589,42.88469790905038,50.52956528672817,88.66648573278594,85.29264509936135,85.09095482747925,123.34319536178069,123.68879936065457,123.17220367511057,11.93718347991646,58.305112979828294,46.75801192489096,85.42505342317124,82.88776957004617,83.14976387682698,121.56202184115082,5.581632177525955,108.90269359538092,0.0,0.0,0.0,0.0,0.0,69.08814704478799
15
+ eyeglasses_25_Robust ICP,45.422566455623766,60.67576487285533,44.99186608199595,48.96448042615409,47.907548103137344,49.81540798069544,86.96136381912397,88.40622994799939,123.51821414252255,123.86992634239387,120.11875982226809,2.261041129221705,4.281067336092791,51.38157440768348,49.7849937440697,88.15123451007855,109.0115226471195,120.46009571560536,123.82728232097722,92.88234463063829,0.0,0.0,0.0,0.0,0.0,74.13466422181281
16
+ eyeglasses_0_Robust ICP,123.23435121891893,121.44591175895162,53.0254481266743,43.83627999991385,52.8877585552124,87.0035916828804,51.652271230158135,136.03095760976038,120.70291936078122,119.6344976909571,122.65242013978416,112.31681510033143,57.56273207066243,134.23088063506245,49.14440770442545,47.88912496228431,83.13567035357237,121.12682087418904,134.68297473868637,88.37743123125612,119.87281144471238,117.80349960266126,84.550520464908,26.76555227696616,0.0,92.06523536807127
17
+ eyeglasses_100_Sparse ICP,78.8810086912939,79.1325418477661,0.0,161.7028175083206,88.47349194782349,122.74541812265606,119.39469173428428,80.69224845877164,18.865159582534055,36.500560185094635,45.53884624027995,8.924245168251684,107.0296528873712,43.537395080498875,88.65285230062719,69.19722052009814,92.27113006058877,84.33813723792366,95.19842508372773,21.550317946954976,0.0,0.0,0.0,0.0,0.0,75.92769266341405
18
+ eyeglasses_75_Sparse ICP,2.7604454612085885,2.500605749267673,5.7018790212237525,48.87751943719046,42.806559404136586,52.169592375551765,87.08746768754162,88.49679658409723,118.09202033677094,117.06641055025895,4.6641921780474185,4.772973974434927,5.393413692206664,85.53338617197232,88.0414035897964,81.56911019785555,115.74125981030363,3.1039412157518758,47.33293357064003,43.20884558633797,0.0,0.0,0.0,0.0,0.0,52.24603782972972
19
+ eyeglasses_50_Sparse ICP,2.6624888716656145,8.362011269583268,57.043530879901965,42.9630016732886,49.17665687669085,83.1428928978546,86.21254803240139,84.75726782618939,91.5907108476903,117.7664744704949,118.94451314930882,14.286125464297012,57.324034387329306,122.92677018158575,83.1437795547307,80.07910783091864,95.3136696136579,115.93538772329832,4.063045598805345,103.01560861833316,0.0,0.0,0.0,0.0,0.0,70.93548128840129
20
+ eyeglasses_25_Sparse ICP,129.7118638101871,110.97633992402636,49.67124987100319,41.61350170549567,42.03778634019483,48.47134374394434,87.54293806970988,88.77044024724003,123.06414903305127,118.95345840022419,115.80902943668991,5.0837724121877255,3.3686777745541314,45.859338329893205,79.97394025028154,83.04799797058858,111.94444778050168,90.69001417810635,111.13600985242536,1.4436218850590348,0.0,0.0,0.0,0.0,0.0,74.45849605076822
21
+ eyeglasses_0_Sparse ICP,115.18971151856663,119.83591584311813,60.6757444125914,43.585937207755016,47.50325334329502,47.55699323350378,93.67566694135215,123.23775294522568,120.54542957227446,116.71702919691299,115.94541069002054,109.50117689362996,44.063481639195906,94.24746659642413,41.22577053843914,46.0064570088857,79.14628546589906,124.16091995053786,136.3151176040749,85.65408696480347,117.70961052333362,115.31598199207728,87.3173560231305,37.10002321073114,0.0,88.42635747149076
22
+ ICP,85.34135366702805,88.8873971784716,47.02313930144262,61.453319946023456,54.934998307369085,76.07134417163272,73.06051464054298,101.69779251837248,114.80684805698482,110.32651956582879,107.36593681226259,78.51984425303854,63.96749868397624,69.40921733700279,77.08083233889809,72.75224949013092,96.57752739040818,113.9951420061735,94.78189701474203,69.1706723337333,23.55613352920723,23.08887049197965,18.382303394800882,12.599636505136155,0.0,84.04901048737767
23
+ FAST ICP,92.15853776182243,88.49653029389472,47.02159210103257,61.454306866333766,54.938263478628826,76.07260631295865,73.06290858118888,101.70042735170826,114.80522057411315,110.33340894545385,107.19762264669427,78.52296430629343,63.969286599586006,77.77281862770288,77.08203366881769,66.26898074219427,96.57216007203361,113.99293786890334,94.77660462865524,69.17299693356236,23.555429369710858,23.088534113236186,18.366808280012766,12.60163475569125,0.0,84.42193917468293
24
+ FAST AND ROBUST ICP,81.6686889721824,84.1482526094886,30.419366297796607,69.9993432824838,57.367622858022585,87.65720814022953,86.90985709815888,104.39666247997847,97.95183629127534,107.13086135981419,107.1932775979288,29.21159307343682,24.911954504160043,82.18007084764001,68.26604048028364,93.2643970153038,97.84576952795584,90.54938366132419,87.21612101155947,76.04587190309789,23.974562288942476,23.56069992053225,16.9101040929816,5.3531104553932325,0.0,78.85199535069535
25
+ SPARSE ICP,65.84110367058437,64.16148292675231,34.61848083694406,67.74855550641007,53.99954958242815,70.8172480747021,94.78266249305787,93.1909012123048,94.4314938744642,101.40078656059714,80.18039833886932,28.513658782560263,43.43585207613144,78.42087127207486,76.20754924677499,71.97997870566932,98.8833585461902,83.64568006112361,78.80910634193467,50.97449620029772,23.541922104666725,23.063196398415457,17.4634712046261,7.420004642146227,0.0,72.39881306076082
data/glasses/eyeglasses_data_num.csv ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ ,Counts
2
+ eyeglasses_100_ICP,19
3
+ eyeglasses_75_ICP,20
4
+ eyeglasses_50_ICP,20
5
+ eyeglasses_25_ICP,20
6
+ eyeglasses_0_ICP,24
data/glasses/filename.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ 100_7
data/glasses/filter_tea .ipynb ADDED
@@ -0,0 +1,474 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 63,
6
+ "metadata": {},
7
+ "outputs": [],
8
+ "source": [
9
+ "import open3d as o3d\n",
10
+ "import numpy as np\n",
11
+ "\n",
12
+ "GT = False\n",
13
+ "if GT==True:\n",
14
+ " mesh = o3d.io.read_triangle_mesh(\"./source.stl\")\n",
15
+ " pointcloud = mesh.sample_points_poisson_disk(50000)\n",
16
+ " coord_frame = o3d.geometry.TriangleMesh.create_coordinate_frame(size=50.0, origin=[0, 0, 0])\n",
17
+ " mesh.compute_vertex_normals()\n",
18
+ " mesh_triangles = np.asarray(mesh.triangles)\n",
19
+ " vertex_positions = np.asarray(mesh.vertices)\n",
20
+ " triangle_normals = np.asarray(mesh.triangle_normals)\n",
21
+ " # ๊ฐ์ฒด์˜ ์ค‘์‹ฌ์  ๊ณ„์‚ฐ\n",
22
+ " centroid = mesh.get_center()\n",
23
+ "\n",
24
+ " \n",
25
+ " # n_points๋Š” ์ƒ˜ํ”Œ๋งํ•  ํฌ์ธํŠธ ๊ฐœ์ˆ˜\n",
26
+ " pcd = mesh.sample_points_uniformly(number_of_points=50000)\n",
27
+ " # ๊ฒฐ๊ณผ ์‹œ๊ฐํ™”\n",
28
+ " o3d.visualization.draw_geometries([pcd,coord_frame ])\n",
29
+ "\n",
30
+ "\n",
31
+ "\n",
32
+ "\n",
33
+ " pcd_array = np.asarray(pcd.points)"
34
+ ]
35
+ },
36
+ {
37
+ "cell_type": "code",
38
+ "execution_count": 70,
39
+ "metadata": {},
40
+ "outputs": [
41
+ {
42
+ "name": "stdout",
43
+ "output_type": "stream",
44
+ "text": [
45
+ "0_23\n",
46
+ "(896000, 3)\n"
47
+ ]
48
+ }
49
+ ],
50
+ "source": [
51
+ "import open3d as o3d\n",
52
+ "import numpy as np\n",
53
+ "GT = False\n",
54
+ "file_names = []\n",
55
+ "with open('filename.txt', 'r') as f:\n",
56
+ " for line in f:\n",
57
+ " file_names.append(line.strip())\n",
58
+ "filename = file_names[0]\n",
59
+ "print(filename)\n",
60
+ "\n",
61
+ "\n",
62
+ "if GT==False:\n",
63
+ "\n",
64
+ " if GT: ply_path = \"gt_filtered.ply\"\n",
65
+ " else: ply_path = f\"./dataset/{filename}.ply\"\n",
66
+ " \n",
67
+ " pcd = o3d.io.read_point_cloud(ply_path)\n",
68
+ "\n",
69
+ "\n",
70
+ "\n",
71
+ "pcd_array = np.asarray(pcd.points)\n",
72
+ "print(pcd_array.shape)\n",
73
+ "\n",
74
+ "coord_frame = o3d.geometry.TriangleMesh.create_coordinate_frame(size=50.0, origin=[0, 0, 0])\n",
75
+ "o3d.visualization.draw_geometries([pcd, coord_frame])"
76
+ ]
77
+ },
78
+ {
79
+ "cell_type": "code",
80
+ "execution_count": 65,
81
+ "metadata": {},
82
+ "outputs": [
83
+ {
84
+ "name": "stdout",
85
+ "output_type": "stream",
86
+ "text": [
87
+ "[ 17.76671151 -35.99837303 579.24060685]\n"
88
+ ]
89
+ }
90
+ ],
91
+ "source": [
92
+ "if GT==False:\n",
93
+ " \n",
94
+ " new_pcd_array = np.unique(pcd_array, axis=0)\n",
95
+ "\n",
96
+ " # new_pcd_array = new_pcd_array[new_pcd_array[:, 2] < 580]\n",
97
+ " new_pcd_array = new_pcd_array[new_pcd_array[:, 2] < 1000]\n",
98
+ " # new_pcd_array = new_pcd_array[new_pcd_array[:, 1] > -100] \n",
99
+ " new_pcd_array = new_pcd_array[new_pcd_array[:, 1] > -1000] #diagonal\n",
100
+ " new_pcd_array = new_pcd_array[new_pcd_array[:, 1] < 120]\n",
101
+ " new_pcd_array = new_pcd_array[new_pcd_array[:, 0] > -1000]\n",
102
+ " new_pcd_array = new_pcd_array[new_pcd_array[:, 0] < 1000] #diagonal\n",
103
+ " print(np.mean(new_pcd_array, axis=0))\n",
104
+ "\n",
105
+ " new_pcd = o3d.geometry.PointCloud()\n",
106
+ " new_pcd.points = o3d.utility.Vector3dVector(new_pcd_array)\n",
107
+ "\n",
108
+ " theta = np.radians(90)\n",
109
+ " # theta = np.radians(-90)\n",
110
+ "\n",
111
+ "\n",
112
+ " rotation_y = np.array([\n",
113
+ " [np.cos(theta), 0, np.sin(theta)],\n",
114
+ " [0, 1, 0 ],\n",
115
+ " [-np.sin(theta),0, np.cos(theta)]\n",
116
+ " ])\n",
117
+ "\n",
118
+ " rotation_x = np.array([\n",
119
+ " [1, 0, 0 ],\n",
120
+ " [0, np.cos(theta), -np.sin(theta)],\n",
121
+ " [0, np.sin(theta), np.cos(theta)]\n",
122
+ "\n",
123
+ " ])\n",
124
+ " rotation_z = np.array([\n",
125
+ " [np.cos(theta), -np.sin(theta), 0],\n",
126
+ " [np.sin(theta), np.cos(theta), 0],\n",
127
+ " [0, 0, 1]\n",
128
+ "\n",
129
+ " ])\n",
130
+ "\n",
131
+ "\n",
132
+ " new_pcd_array = np.asarray(new_pcd.points)\n",
133
+ "\n",
134
+ " coord_frame = o3d.geometry.TriangleMesh.create_coordinate_frame(size=50.0, origin=[0, 0, 0])\n",
135
+ " o3d.visualization.draw_geometries([new_pcd, coord_frame])"
136
+ ]
137
+ },
138
+ {
139
+ "cell_type": "markdown",
140
+ "metadata": {},
141
+ "source": [
142
+ "## Delete ground plane "
143
+ ]
144
+ },
145
+ {
146
+ "cell_type": "code",
147
+ "execution_count": 66,
148
+ "metadata": {},
149
+ "outputs": [
150
+ {
151
+ "name": "stdout",
152
+ "output_type": "stream",
153
+ "text": [
154
+ "Plane equation: -0.01x + -0.00y + 1.00z + -579.39 = 0\n"
155
+ ]
156
+ }
157
+ ],
158
+ "source": [
159
+ " \n",
160
+ "if GT==False:\n",
161
+ " \n",
162
+ " plane_model, inliers = new_pcd.segment_plane(distance_threshold=2,\n",
163
+ " ransac_n=100,\n",
164
+ " num_iterations=1000)\n",
165
+ " [a, b, c, d] = plane_model\n",
166
+ " print(f\"Plane equation: {a:.2f}x + {b:.2f}y + {c:.2f}z + {d:.2f} = 0\")\n",
167
+ " \n",
168
+ " \n",
169
+ " \n",
170
+ " inlier_cloud = new_pcd.select_by_index(inliers)\n",
171
+ " inlier_cloud.paint_uniform_color([1.0, 0, 1.0])\n",
172
+ " outlier_cloud = new_pcd.select_by_index(inliers, invert=True)\n",
173
+ " o3d.visualization.draw_geometries([inlier_cloud, outlier_cloud],\n",
174
+ " zoom=0.8,\n",
175
+ " front=[-0.4999, -0.1659, -0.8499],\n",
176
+ " lookat=[2.1813, 2.0619, 2.0999],\n",
177
+ " up=[0.1204, -0.9852, 0.1215])\n",
178
+ " \n",
179
+ " new_pcd = outlier_cloud\n",
180
+ "\n",
181
+ " new_pcd_array = np.asarray(new_pcd.points)\n",
182
+ " \n",
183
+ " "
184
+ ]
185
+ },
186
+ {
187
+ "cell_type": "markdown",
188
+ "metadata": {},
189
+ "source": [
190
+ "### Changing the source position \"gt_filtered\"\n"
191
+ ]
192
+ },
193
+ {
194
+ "cell_type": "code",
195
+ "execution_count": 67,
196
+ "metadata": {},
197
+ "outputs": [],
198
+ "source": [
199
+ "\n",
200
+ "CHECK_PERTURB = GT\n",
201
+ "\n",
202
+ "def random_rotation_matrix():\n",
203
+ " \"\"\"\n",
204
+ " Generate a random 3x3 rotation matrix (SO(3) matrix).\n",
205
+ " \n",
206
+ " Uses the method described by James Arvo in \"Fast Random Rotation Matrices\" (1992):\n",
207
+ " 1. Generate a random unit vector for rotation axis\n",
208
+ " 2. Generate a random angle\n",
209
+ " 3. Create rotation matrix using Rodriguez rotation formula\n",
210
+ " \n",
211
+ " Returns:\n",
212
+ " numpy.ndarray: A 3x3 random rotation matrix\n",
213
+ " \"\"\"\n",
214
+ " ## for ground target\n",
215
+ " # Generate random angle ฯ€/2\n",
216
+ " theta = 0\n",
217
+ "\n",
218
+ " \n",
219
+ " # axis is -y\n",
220
+ " axis = np.array([\n",
221
+ " 0,\n",
222
+ " 1,\n",
223
+ " 0,\n",
224
+ " ])\n",
225
+ " \n",
226
+ " # for lying target\n",
227
+ " # theta will be pi/2\n",
228
+ " # theta = -np.pi/2\n",
229
+ " # axis = np.array([\n",
230
+ " # 1,\n",
231
+ " # 0,\n",
232
+ " # 0,\n",
233
+ " # ])\n",
234
+ " \n",
235
+ "\n",
236
+ "\n",
237
+ "\n",
238
+ " # Normalize to ensure it's a unit vector\n",
239
+ " axis = axis / np.linalg.norm(axis)\n",
240
+ " \n",
241
+ "\n",
242
+ "\n",
243
+ " # Create the cross-product matrix K skew-symmetric\n",
244
+ " K = np.array([\n",
245
+ " [0, -axis[2], axis[1]],\n",
246
+ " [axis[2], 0, -axis[0]],\n",
247
+ " [-axis[1], axis[0], 0]\n",
248
+ " ])\n",
249
+ " \n",
250
+ " # Rodriguez rotation formula: R = I + sin(ฮธ)K + (1-cos(ฮธ))Kยฒ\n",
251
+ " R = (np.eye(3) + \n",
252
+ " np.sin(theta) * K + \n",
253
+ " (1 - np.cos(theta)) * np.dot(K, K))\n",
254
+ " \n",
255
+ " return R\n",
256
+ "\n",
257
+ "if CHECK_PERTURB:\n",
258
+ " R_pert = random_rotation_matrix()\n",
259
+ " print(R_pert)\n",
260
+ " t_pert = np.array([\n",
261
+ " 0,\n",
262
+ " 0,\n",
263
+ " 0\n",
264
+ " ])\n",
265
+ "\n",
266
+ " \n",
267
+ " perturbed_pcd_array = np.dot(R_pert, pcd_array.T).T + t_pert.T\n",
268
+ "\n",
269
+ "\n",
270
+ " perturbed_pcd = o3d.geometry.PointCloud()\n",
271
+ " perturbed_pcd.points = o3d.utility.Vector3dVector(perturbed_pcd_array)\n",
272
+ " coord_frame = o3d.geometry.TriangleMesh.create_coordinate_frame(size=50.0, origin=[0, 0, 0])\n",
273
+ " o3d.visualization.draw_geometries([perturbed_pcd, coord_frame])"
274
+ ]
275
+ },
276
+ {
277
+ "cell_type": "markdown",
278
+ "metadata": {},
279
+ "source": [
280
+ "### Rotate randomly in Target \"noisy filtered\""
281
+ ]
282
+ },
283
+ {
284
+ "cell_type": "code",
285
+ "execution_count": 68,
286
+ "metadata": {},
287
+ "outputs": [],
288
+ "source": [
289
+ "CHECK_PERTURB = not GT\n",
290
+ "\n",
291
+ "def random_rotation_matrix():\n",
292
+ " \"\"\"\n",
293
+ " Generate a random 3x3 rotation matrix (SO(3) matrix).\n",
294
+ " \n",
295
+ " Uses the method described by James Arvo in \"Fast Random Rotation Matrices\" (1992):\n",
296
+ " 1. Generate a random unit vector for rotation axis\n",
297
+ " 2. Generate a random angle\n",
298
+ " 3. Create rotation matrix using Rodriguez rotation formula\n",
299
+ " \n",
300
+ " Returns:\n",
301
+ " numpy.ndarray: A 3x3 random rotation matrix\n",
302
+ " \"\"\"\n",
303
+ "# # Generate random angle between 0 and 2ฯ€\n",
304
+ "# theta = np.random.uniform(0, 2 * np.pi)/4\n",
305
+ " \n",
306
+ "\n",
307
+ "# # Generate random unit vector for rotation axis\n",
308
+ "# phi = np.random.uniform(0, 2 * np.pi)/3\n",
309
+ "# cos_theta = np.random.uniform(-1, 1)/5\n",
310
+ "# sin_theta = np.sqrt(1 - cos_theta**2)\n",
311
+ " \n",
312
+ "# axis = np.array([\n",
313
+ "# sin_theta * np.cos(phi),\n",
314
+ "# sin_theta * np.sin(phi),\n",
315
+ "# cos_theta\n",
316
+ "# ])\n",
317
+ " \n",
318
+ "# # Normalize to ensure it's a unit vector\n",
319
+ "# axis = axis / np.linalg.norm(axis)\n",
320
+ " \n",
321
+ "\n",
322
+ "\n",
323
+ "# # Create the cross-product matrix K skew-symmetric\n",
324
+ "# K = np.array([\n",
325
+ "# [0, -axis[2], axis[1]],\n",
326
+ "# [axis[2], 0, -axis[0]],\n",
327
+ "# [-axis[1], axis[0], 0]\n",
328
+ "# ])\n",
329
+ " \n",
330
+ "# # Rodriguez rotation formula: R = I + sin(ฮธ)K + (1-cos(ฮธ))Kยฒ\n",
331
+ "# R = (np.eye(3) + \n",
332
+ "# np.sin(theta) * K + \n",
333
+ "# (1 - np.cos(theta)) * np.dot(K, K))\n",
334
+ " \n",
335
+ "# return R\n",
336
+ "\n",
337
+ "if CHECK_PERTURB:\n",
338
+ " # R_pert = random_rotation_matrix()\n",
339
+ " # print(R_pert)\n",
340
+ " # t_pert = np.random.rand(3, 1)*3 #* 10\n",
341
+ "\n",
342
+ " \n",
343
+ " # perturbed_pcd_array = np.dot(R_pert, new_pcd_array.T).T + t_pert.T\n",
344
+ " perturbed_pcd_array = new_pcd_array\n",
345
+ " perturbed_pcd = o3d.geometry.PointCloud()\n",
346
+ " perturbed_pcd.points = o3d.utility.Vector3dVector(perturbed_pcd_array)\n",
347
+ " \n",
348
+ " # # ๊ฐ์ฒด์˜ ์ค‘์‹ฌ์„ (0, 0, 0)์œผ๋กœ ๋ฐ”๋กœ ์ด๋™\n",
349
+ " # perturbed_pcd.translate((0, 0, 0), relative=False)\n",
350
+ " # perturbed_pcd_array = np.asarray(perturbed_pcd.points)\n",
351
+ " # coord_frame = o3d.geometry.TriangleMesh.create_coordinate_frame(size=50.0, origin=[0, 0, 0])\n",
352
+ "\n",
353
+ "\n",
354
+ "\n",
355
+ "\n",
356
+ " o3d.visualization.draw_geometries([perturbed_pcd, coord_frame])\n"
357
+ ]
358
+ },
359
+ {
360
+ "cell_type": "code",
361
+ "execution_count": 69,
362
+ "metadata": {},
363
+ "outputs": [
364
+ {
365
+ "name": "stdout",
366
+ "output_type": "stream",
367
+ "text": [
368
+ "True\n"
369
+ ]
370
+ }
371
+ ],
372
+ "source": [
373
+ "def write_ply(points, output_path):\n",
374
+ " \"\"\"\n",
375
+ " Write points and parameters to a PLY file\n",
376
+ " \n",
377
+ " Parameters:\n",
378
+ " points: numpy array of shape (N, 3) containing point coordinates\n",
379
+ " output_path: path to save the PLY file\n",
380
+ " \"\"\"\n",
381
+ " with open(output_path, 'w') as f:\n",
382
+ " # Write header\n",
383
+ " f.write(\"ply\\n\")\n",
384
+ " f.write(\"format ascii 1.0\\n\")\n",
385
+ " \n",
386
+ " # Write vertex element\n",
387
+ " f.write(f\"element vertex {len(points)}\\n\")\n",
388
+ " f.write(\"property float x\\n\")\n",
389
+ " f.write(\"property float y\\n\")\n",
390
+ " f.write(\"property float z\\n\")\n",
391
+ " \n",
392
+ " # Write camera element\n",
393
+ " f.write(\"element camera 1\\n\")\n",
394
+ " f.write(\"property float view_px\\n\")\n",
395
+ " f.write(\"property float view_py\\n\")\n",
396
+ " f.write(\"property float view_pz\\n\")\n",
397
+ " f.write(\"property float x_axisx\\n\")\n",
398
+ " f.write(\"property float x_axisy\\n\")\n",
399
+ " f.write(\"property float x_axisz\\n\")\n",
400
+ " f.write(\"property float y_axisx\\n\")\n",
401
+ " f.write(\"property float y_axisy\\n\")\n",
402
+ " f.write(\"property float y_axisz\\n\")\n",
403
+ " f.write(\"property float z_axisx\\n\")\n",
404
+ " f.write(\"property float z_axisy\\n\")\n",
405
+ " f.write(\"property float z_axisz\\n\")\n",
406
+ " \n",
407
+ " # Write phoxi frame parameters\n",
408
+ " f.write(\"element phoxi_frame_params 1\\n\")\n",
409
+ " f.write(\"property uint32 frame_width\\n\")\n",
410
+ " f.write(\"property uint32 frame_height\\n\")\n",
411
+ " f.write(\"property uint32 frame_index\\n\")\n",
412
+ " f.write(\"property float frame_start_time\\n\")\n",
413
+ " f.write(\"property float frame_duration\\n\")\n",
414
+ " f.write(\"property float frame_computation_duration\\n\")\n",
415
+ " f.write(\"property float frame_transfer_duration\\n\")\n",
416
+ " f.write(\"property int32 total_scan_count\\n\")\n",
417
+ " \n",
418
+ " # Write camera matrix\n",
419
+ " f.write(\"element camera_matrix 1\\n\")\n",
420
+ " for i in range(9):\n",
421
+ " f.write(f\"property float cm{i}\\n\")\n",
422
+ " \n",
423
+ " # Write distortion matrix\n",
424
+ " f.write(\"element distortion_matrix 1\\n\")\n",
425
+ " for i in range(14):\n",
426
+ " f.write(f\"property float dm{i}\\n\")\n",
427
+ " \n",
428
+ " # Write camera resolution\n",
429
+ " f.write(\"element camera_resolution 1\\n\")\n",
430
+ " f.write(\"property float width\\n\")\n",
431
+ " f.write(\"property float height\\n\")\n",
432
+ " \n",
433
+ " # Write frame binning\n",
434
+ " f.write(\"element frame_binning 1\\n\")\n",
435
+ " f.write(\"property float horizontal\\n\")\n",
436
+ " f.write(\"property float vertical\\n\")\n",
437
+ " \n",
438
+ " # End header\n",
439
+ " f.write(\"end_header\\n\")\n",
440
+ " \n",
441
+ " # Write vertex data\n",
442
+ " for point in points:\n",
443
+ " f.write(f\"{point[0]} {point[1]} {point[2]}\\n\")\n",
444
+ "\n",
445
+ " print(True)\n",
446
+ "\n",
447
+ "if GT: write_ply(perturbed_pcd_array, f\"gt_filtered.ply\")\n",
448
+ "else: write_ply(perturbed_pcd_array, f\"./noisy_result/noisy_filtered_{filename}.ply\")\n",
449
+ "# write_ply(new_pcd_array, \"gt_filtered.ply\")"
450
+ ]
451
+ }
452
+ ],
453
+ "metadata": {
454
+ "kernelspec": {
455
+ "display_name": "Python 3",
456
+ "language": "python",
457
+ "name": "python3"
458
+ },
459
+ "language_info": {
460
+ "codemirror_mode": {
461
+ "name": "ipython",
462
+ "version": 3
463
+ },
464
+ "file_extension": ".py",
465
+ "mimetype": "text/x-python",
466
+ "name": "python",
467
+ "nbconvert_exporter": "python",
468
+ "pygments_lexer": "ipython3",
469
+ "version": "3.10.12"
470
+ }
471
+ },
472
+ "nbformat": 4,
473
+ "nbformat_minor": 2
474
+ }
data/glasses/gt_Raw.ipynb ADDED
@@ -0,0 +1,834 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "id": "7d7011e4",
6
+ "metadata": {},
7
+ "source": [
8
+ "## load gt and translate"
9
+ ]
10
+ },
11
+ {
12
+ "cell_type": "code",
13
+ "execution_count": 1,
14
+ "id": "878f605d",
15
+ "metadata": {},
16
+ "outputs": [
17
+ {
18
+ "name": "stdout",
19
+ "output_type": "stream",
20
+ "text": [
21
+ "=== ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ ์‹œ์ž‘ ===\n",
22
+ "\n",
23
+ "--- [์นดํ…Œ๊ณ ๋ฆฌ: 100\n",
24
+ "100_19\n",
25
+ "<class 'numpy.ndarray'>\n",
26
+ "[ 98.59357157 -6.32276816 -341.62408849] [[ 6.26526415e-01 -1.82541218e-02 -7.79186368e-01 1.39500000e+02]\n",
27
+ " [-7.73697793e-01 -1.35277703e-01 -6.18943989e-01 1.87500000e+02]\n",
28
+ " [-9.41082612e-02 9.90639567e-01 -9.88782272e-02 5.00000000e+01]\n",
29
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
30
+ "100_10\n",
31
+ "<class 'numpy.ndarray'>\n",
32
+ "[ 50.19192299 -58.71015024 -264.5484671 ] [[ 9.27836180e-01 1.56168127e-02 3.72660846e-01 -3.50000000e+00]\n",
33
+ " [-2.13101976e-06 -9.99122858e-01 4.18747813e-02 8.85000000e+01]\n",
34
+ " [ 3.72987926e-01 -3.88537347e-02 -9.27022338e-01 2.18500000e+02]\n",
35
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
36
+ "100_1\n",
37
+ "<class 'numpy.ndarray'>\n",
38
+ "[ 88.12391552 -58.39092539 -316.82673925] [[-5.53394675e-01 4.35812259e-03 8.32907736e-01 1.30000000e+01]\n",
39
+ " [ 1.66683515e-06 -9.99986291e-01 5.23345498e-03 9.40000000e+01]\n",
40
+ " [ 8.32919180e-01 2.89755454e-03 5.53387105e-01 -2.25000000e+01]\n",
41
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
42
+ "100_4\n",
43
+ "<class 'numpy.ndarray'>\n",
44
+ "[ 104.15825554 -60.33874486 -369.14952375] [[-9.99602556e-01 -8.95392802e-03 2.67306473e-02 1.41000000e+02]\n",
45
+ " [ 1.04742153e-02 -9.98302817e-01 5.72870970e-02 8.55000000e+01]\n",
46
+ " [ 2.61723343e-02 5.75443096e-02 9.97999847e-01 1.15000000e+01]\n",
47
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
48
+ "100_6\n",
49
+ "<class 'numpy.ndarray'>\n",
50
+ "[ 134.15064934 -59.17156509 -304.83953668] [[-4.57408637e-01 -5.83576597e-03 -8.89237463e-01 2.35500000e+02]\n",
51
+ " [-3.35887671e-02 -9.99151468e-01 2.38345843e-02 9.05000000e+01]\n",
52
+ " [-8.88622046e-01 4.07705344e-02 4.56824511e-01 9.35000000e+01]\n",
53
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
54
+ "100_5\n",
55
+ "<class 'numpy.ndarray'>\n",
56
+ "[ 131.89516322 -60.2417556 -352.05552997] [[-8.99081409e-01 -2.95190793e-02 -4.36785132e-01 1.97000000e+02]\n",
57
+ " [ 4.71208766e-02 -9.98453021e-01 -2.95158681e-02 9.55000000e+01]\n",
58
+ " [-4.35238153e-01 -4.71188650e-02 8.99081528e-01 4.05000000e+01]\n",
59
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
60
+ "100_17\n",
61
+ "<class 'numpy.ndarray'>\n",
62
+ "[ 121.09198072 -62.03935281 -352.47422775] [[-9.99876618e-01 -8.21960624e-04 1.56857967e-02 1.59000000e+02]\n",
63
+ " [ 1.57073177e-02 -5.23288921e-02 9.98506367e-01 -7.05000000e+01]\n",
64
+ " [ 8.74227766e-08 9.98629570e-01 5.23353480e-02 8.00000000e+01]\n",
65
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
66
+ "100_15\n",
67
+ "<class 'numpy.ndarray'>\n",
68
+ "[ 73.34256178 -29.90910132 -413.87732065] [[ 9.62318420e-01 2.23134970e-03 2.71915883e-01 -9.00000000e+00]\n",
69
+ " [ 2.68681288e-01 -1.61794901e-01 -9.49543476e-01 1.59000000e+02]\n",
70
+ " [ 4.18758392e-02 9.86821890e-01 -1.56297728e-01 7.10000000e+01]\n",
71
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
72
+ "100_12\n",
73
+ "<class 'numpy.ndarray'>\n",
74
+ "[ 125.69436664 -60.83634681 -371.48473793] [[ 9.99506593e-01 -2.55091935e-02 1.83273889e-02 1.00000000e+01]\n",
75
+ " [-2.29562966e-06 -5.83541214e-01 -8.12083542e-01 1.85000000e+02]\n",
76
+ " [ 3.14103812e-02 8.11682820e-01 -5.83253324e-01 1.71500000e+02]\n",
77
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
78
+ "100_16\n",
79
+ "<class 'numpy.ndarray'>\n",
80
+ "[ 142.86966267 -16.62744349 -391.25003021] [[-6.25872910e-01 -3.21382843e-02 7.79262602e-01 3.35000000e+01]\n",
81
+ " [ 7.72888660e-01 -1.59467459e-01 6.14176869e-01 -7.40000000e+01]\n",
82
+ " [ 1.04528435e-01 9.86679912e-01 1.24645680e-01 1.75000000e+01]\n",
83
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
84
+ "100_14\n",
85
+ "<class 'numpy.ndarray'>\n",
86
+ "[ 71.60248918 -30.41133971 -392.86407208] [[ 9.25410628e-01 -5.97307906e-02 3.74229133e-01 -1.35000000e+01]\n",
87
+ " [ 3.16840649e-01 -4.19823438e-01 -8.50505888e-01 1.57000000e+02]\n",
88
+ " [ 2.07911551e-01 9.05638158e-01 -3.69583935e-01 9.35000000e+01]\n",
89
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
90
+ "100_7\n",
91
+ "<class 'numpy.ndarray'>\n",
92
+ "[ 95.88993614 -58.09814223 -283.45344633] [[ 1.04437985e-01 -1.01815052e-02 -9.94479299e-01 2.16500000e+02]\n",
93
+ " [ 4.37764870e-03 -9.99933183e-01 1.06970733e-02 9.60000000e+01]\n",
94
+ " [-9.94521737e-01 -5.47066191e-03 -1.04386441e-01 1.55500000e+02]\n",
95
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
96
+ "100_13\n",
97
+ "<class 'numpy.ndarray'>\n",
98
+ "[ 145.73667176 -47.08891079 -393.46364069] [[ 9.23676431e-01 -2.07779948e-02 -3.82609576e-01 4.80000000e+01]\n",
99
+ " [-3.82601708e-01 -1.04534402e-01 -9.17980671e-01 2.06000000e+02]\n",
100
+ " [-2.09220648e-02 9.94304180e-01 -1.04505658e-01 8.55000000e+01]\n",
101
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
102
+ "100_9\n",
103
+ "<class 'numpy.ndarray'>\n",
104
+ "[ 164.97914298 -60.50444111 -248.16947062] [[ 9.80012476e-01 -6.11204542e-02 -1.89314187e-01 -5.00000000e+00]\n",
105
+ " [-6.68118149e-02 -9.97481167e-01 -2.38223728e-02 1.00000000e+02]\n",
106
+ " [-1.87381297e-01 3.59946452e-02 -9.81627524e-01 2.78000000e+02]\n",
107
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
108
+ "100_18\n",
109
+ "<class 'numpy.ndarray'>\n",
110
+ "[ 104.98714587 -4.08525447 -348.89350193] [[-7.33996809e-01 -4.92214896e-02 -6.77366912e-01 2.09000000e+02]\n",
111
+ " [-6.60891116e-01 -1.77965611e-01 7.29075551e-01 2.30000000e+01]\n",
112
+ " [-1.56434208e-01 9.82804894e-01 9.80961472e-02 2.75000000e+01]\n",
113
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
114
+ "100_2\n",
115
+ "<class 'numpy.ndarray'>\n",
116
+ "[ 87.98107134 -58.40312697 -316.64902162] [[-5.53325236e-01 1.57047901e-02 8.32817256e-01 1.20000000e+01]\n",
117
+ " [-8.69092811e-03 -9.99876678e-01 1.30808335e-02 9.40000000e+01]\n",
118
+ " [ 8.32919955e-01 8.06319955e-10 5.53393483e-01 -2.35000000e+01]\n",
119
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
120
+ "100_11\n",
121
+ "<class 'numpy.ndarray'>\n",
122
+ "[ 64.44118133 -57.9869393 -300.9743561 ] [[ 6.84547305e-01 -3.05283237e-02 7.28328884e-01 -5.30000000e+01]\n",
123
+ " [-1.57224292e-06 -9.99122739e-01 -4.18773256e-02 9.75000000e+01]\n",
124
+ " [ 7.28968441e-01 2.86658667e-02 -6.83946848e-01 1.16500000e+02]\n",
125
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
126
+ "100_20\n",
127
+ "<class 'numpy.ndarray'>\n",
128
+ "[ 85.41922326 -25.33664865 -371.38923199] [[ 8.56643319e-01 -1.43507272e-02 5.15709519e-01 -1.55000000e+01]\n",
129
+ " [ 5.12687683e-01 -8.78546461e-02 -8.54068458e-01 1.16500000e+02]\n",
130
+ " [ 5.75639792e-02 9.96029913e-01 -6.79026544e-02 5.30000000e+01]\n",
131
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
132
+ "100_3\n",
133
+ "100_8\n",
134
+ "<class 'numpy.ndarray'>\n",
135
+ "[ 159.65836874 -59.75579578 -280.65958206] [[ 7.60312915e-01 -4.96730916e-02 -6.47654891e-01 9.30000000e+01]\n",
136
+ " [-1.19455205e-02 -9.97972369e-01 6.25179261e-02 8.80000000e+01]\n",
137
+ " [-6.49447083e-01 -3.97966132e-02 -7.59364665e-01 2.66500000e+02]\n",
138
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
139
+ "\n",
140
+ "--- [์นดํ…Œ๊ณ ๋ฆฌ: 75\n",
141
+ "75_6\n",
142
+ "<class 'numpy.ndarray'>\n",
143
+ "[ 97.13165139 -58.31263565 -314.62474149] [[-5.48994720e-01 1.04693333e-02 8.35760236e-01 1.10000000e+01]\n",
144
+ " [-5.74792363e-03 -9.99945223e-01 8.75033159e-03 9.55000000e+01]\n",
145
+ " [ 8.35806072e-01 0.00000000e+00 5.49024820e-01 -3.35000000e+01]\n",
146
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
147
+ "75_12\n",
148
+ "<class 'numpy.ndarray'>\n",
149
+ "[ 126.93695474 -65.73688892 -353.4484599 ] [[ 9.99945164e-01 6.58894656e-03 8.13681073e-03 5.00000000e+00]\n",
150
+ " [ 1.04700476e-02 -6.29285872e-01 -7.77103364e-01 1.78000000e+02]\n",
151
+ " [ 8.74227766e-08 7.77145982e-01 -6.29320383e-01 1.88000000e+02]\n",
152
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
153
+ "75_9\n",
154
+ "<class 'numpy.ndarray'>\n",
155
+ "[ 83.075614 -59.45950321 -299.97387383] [[-2.07864061e-01 2.09459476e-02 -9.77933407e-01 2.33500000e+02]\n",
156
+ " [-4.35486529e-03 -9.99780595e-01 -2.04882380e-02 9.75000000e+01]\n",
157
+ " [-9.78148043e-01 0.00000000e+00 2.07909673e-01 1.05500000e+02]\n",
158
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
159
+ "75_4\n",
160
+ "<class 'numpy.ndarray'>\n",
161
+ "[ 92.95012853 -59.04869088 -291.74401717] [[ 6.88345969e-01 4.69864905e-02 7.23859191e-01 -7.70000000e+01]\n",
162
+ " [ 3.60720884e-03 -9.98109281e-01 6.13581277e-02 8.85000000e+01]\n",
163
+ " [ 7.25373566e-01 -3.96245085e-02 -6.87214017e-01 1.50000000e+02]\n",
164
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
165
+ "75_11\n",
166
+ "<class 'numpy.ndarray'>\n",
167
+ "[ 138.01304835 -59.82580012 -277.86206363] [[ 8.31779957e-01 3.20479311e-02 -5.54179609e-01 8.00000000e+01]\n",
168
+ " [ 4.35897745e-02 -9.99020219e-01 7.65197631e-03 8.85000000e+01]\n",
169
+ " [-5.53391397e-01 -3.05213258e-02 -8.32361937e-01 2.75000000e+02]\n",
170
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
171
+ "75_7\n",
172
+ "<class 'numpy.ndarray'>\n",
173
+ "[ 98.3507269 -60.24520538 -358.93410354] [[-9.37168419e-01 1.02299070e-02 3.48727226e-01 9.80000000e+01]\n",
174
+ " [-1.47211887e-02 -9.99839306e-01 -1.02314092e-02 9.70000000e+01]\n",
175
+ " [ 3.48566502e-01 -1.47222327e-02 9.37168419e-01 -1.50000000e+01]\n",
176
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
177
+ "75_14\n",
178
+ "<class 'numpy.ndarray'>\n",
179
+ "[ 184.81895417 -61.75061707 -371.32786333] [[-9.92757320e-01 -2.49779616e-02 1.17511526e-01 1.69500000e+02]\n",
180
+ " [ 1.20136827e-01 -2.06407487e-01 9.71062839e-01 -7.00000000e+01]\n",
181
+ " [ 8.74227766e-08 9.78147268e-01 2.07913324e-01 6.05000000e+01]\n",
182
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
183
+ "75_8\n",
184
+ "<class 'numpy.ndarray'>\n",
185
+ "[ 146.38192024 -60.81455952 -353.00143029] [[-9.38268304e-01 -4.18780446e-02 -3.43364030e-01 1.99000000e+02]\n",
186
+ " [ 3.93273421e-02 -9.99122739e-01 1.43920397e-02 8.70000000e+01]\n",
187
+ " [-3.43665510e-01 3.80894656e-11 9.39092100e-01 2.30000000e+01]\n",
188
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
189
+ "75_16\n",
190
+ "<class 'numpy.ndarray'>\n",
191
+ "[ 107.62420136 -0.65789312 -293.25539163] [[ 3.64422388e-02 -4.84764427e-02 -9.98159289e-01 2.45000000e+02]\n",
192
+ " [-9.93854046e-01 -1.06232673e-01 -3.11257783e-02 1.30500000e+02]\n",
193
+ " [-1.04528263e-01 9.93158937e-01 -5.20498641e-02 3.75000000e+01]\n",
194
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
195
+ "75_17\n",
196
+ "<class 'numpy.ndarray'>\n",
197
+ "[ 100.3282339 1.99509957 -330.99240063] [[ 7.49083698e-01 1.01699512e-02 -6.62397265e-01 1.12000000e+02]\n",
198
+ " [-6.58009350e-01 -1.04484066e-01 -7.45725691e-01 1.97000000e+02]\n",
199
+ " [-7.67939612e-02 9.94474590e-01 -7.15753883e-02 3.70000000e+01]\n",
200
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
201
+ "75_2\n",
202
+ "<class 'numpy.ndarray'>\n",
203
+ "[ 106.88182212 -59.08352114 -260.733522 ] [[ 9.99109209e-01 -2.09451225e-02 -3.66350412e-02 9.50000000e+00]\n",
204
+ " [-2.09310558e-02 -9.99780655e-01 7.67493795e-04 9.60000000e+01]\n",
205
+ " [-3.66430804e-02 0.00000000e+00 -9.99328434e-01 2.72000000e+02]\n",
206
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
207
+ "75_3\n",
208
+ "<class 'numpy.ndarray'>\n",
209
+ "[ 84.00080954 -58.70668798 -255.95883811] [[ 9.78134215e-01 -9.59114917e-03 2.07753405e-01 -1.80000000e+01]\n",
210
+ " [-5.12371631e-03 -9.99744177e-01 -2.20309906e-02 9.90000000e+01]\n",
211
+ " [ 2.07911551e-01 2.04847958e-02 -9.77933109e-01 2.45000000e+02]\n",
212
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
213
+ "75_1\n",
214
+ "<class 'numpy.ndarray'>\n",
215
+ "[ 107.05398145 -59.11664399 -260.7118368 ] [[ 9.97684240e-01 -1.58160640e-06 -6.80156276e-02 1.30000000e+01]\n",
216
+ " [-1.57784496e-06 -1.00000000e+00 1.09024256e-07 9.35000000e+01]\n",
217
+ " [-6.80156276e-02 -1.45367218e-09 -9.97684240e-01 2.75000000e+02]\n",
218
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
219
+ "75_21\n",
220
+ "75_15\n",
221
+ "<class 'numpy.ndarray'>\n",
222
+ "[ 123.01193826 9.01241278 -327.55938679] [[-6.68128192e-01 -7.56965019e-03 -7.44007647e-01 2.31019608e+02]\n",
223
+ " [-7.33459830e-01 -1.61378995e-01 6.60297990e-01 2.86654854e+01]\n",
224
+ " [-1.25065431e-01 9.86863494e-01 1.02269821e-01 9.51398277e+00]\n",
225
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
226
+ "75_20\n",
227
+ "<class 'numpy.ndarray'>\n",
228
+ "[ 106.16859885 -3.4345633 -332.2763217 ] [[ 6.03132010e-01 -4.09756824e-02 7.96588242e-01 -7.15000000e+01]\n",
229
+ " [ 7.86011279e-01 -1.39386699e-01 -6.02293611e-01 7.55000000e+01]\n",
230
+ " [ 1.35713190e-01 9.89389896e-01 -5.18612303e-02 2.35000000e+01]\n",
231
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
232
+ "75_10\n",
233
+ "<class 'numpy.ndarray'>\n",
234
+ "[ 84.40147158 -60.1314631 -298.96081679] [[ 4.11493093e-01 -3.72422487e-02 -9.10651684e-01 1.76000000e+02]\n",
235
+ " [ 4.30799974e-03 -9.99074161e-01 4.28050384e-02 8.90000000e+01]\n",
236
+ " [-9.11402702e-01 -2.15370655e-02 -4.10951674e-01 1.85500000e+02]\n",
237
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
238
+ "75_13\n",
239
+ "<class 'numpy.ndarray'>\n",
240
+ "[ 83.97847951 -65.22786958 -355.08547679] [[ 9.99780655e-01 -1.23108840e-02 -1.69443302e-02 1.05000000e+01]\n",
241
+ " [-2.09444072e-02 -5.87656319e-01 -8.08839560e-01 1.82000000e+02]\n",
242
+ " [ 8.74227766e-08 8.09017003e-01 -5.87785244e-01 1.80500000e+02]\n",
243
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
244
+ "75_5\n",
245
+ "<class 'numpy.ndarray'>\n",
246
+ "[ 121.65774538 -58.7456104 -293.77395804] [[ 1.56433567e-01 -2.29532384e-06 9.87688482e-01 -8.20000000e+01]\n",
247
+ " [-3.59290851e-07 -1.00000000e+00 -2.26702923e-06 9.35000000e+01]\n",
248
+ " [ 9.87688482e-01 -2.27930966e-10 -1.56433567e-01 1.50000000e+01]\n",
249
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
250
+ "75_19\n",
251
+ "<class 'numpy.ndarray'>\n",
252
+ "[ 84.57886723 -23.3033718 -343.00200068] [[ 8.85626972e-01 -6.66689649e-02 4.59586889e-01 -2.25000000e+01]\n",
253
+ " [ 4.51246351e-01 -1.10305823e-01 -8.85555983e-01 1.34000000e+02]\n",
254
+ " [ 1.09734207e-01 9.91659164e-01 -6.76056892e-02 4.90000000e+01]\n",
255
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
256
+ "75_18\n",
257
+ "<class 'numpy.ndarray'>\n",
258
+ "[ 102.59570405 -53.61587272 -328.15585112] [[ 9.87566173e-01 -9.22811101e-04 -1.57201275e-01 2.95000000e+01]\n",
259
+ " [-1.56417266e-01 -1.05685741e-01 -9.82020438e-01 1.96500000e+02]\n",
260
+ " [-1.57077126e-02 9.94399130e-01 -1.04516000e-01 9.20000000e+01]\n",
261
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
262
+ "\n",
263
+ "--- [์นดํ…Œ๊ณ ๋ฆฌ: 50\n",
264
+ "50_18\n",
265
+ "<class 'numpy.ndarray'>\n",
266
+ "[ 97.02771775 7.90541457 -313.3694054 ] [[-1.45360082e-01 -1.96876694e-02 -9.89182889e-01 2.28000000e+02]\n",
267
+ " [-9.84381080e-01 -9.74880531e-02 1.46594748e-01 1.03000000e+02]\n",
268
+ " [-9.93196219e-02 9.95041966e-01 -5.20929834e-03 2.25000000e+01]\n",
269
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
270
+ "50_8\n",
271
+ "<class 'numpy.ndarray'>\n",
272
+ "[ 123.47655071 -60.62404184 -352.99999071] [[-9.65923846e-01 -1.58150726e-06 -2.58826524e-01 1.76000000e+02]\n",
273
+ " [ 1.52761550e-06 -1.00000000e+00 4.09336053e-07 9.35000000e+01]\n",
274
+ " [-2.58826524e-01 0.00000000e+00 9.65923846e-01 2.65000000e+01]\n",
275
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
276
+ "50_13\n",
277
+ "<class 'numpy.ndarray'>\n",
278
+ "[ 87.76706939 -5.60973591 -404.27853164] [[ 8.05209517e-01 8.05786904e-03 5.92935622e-01 -4.65000000e+01]\n",
279
+ " [ 5.53403795e-01 -3.69425267e-01 -7.46504664e-01 1.19500000e+02]\n",
280
+ " [ 2.13030174e-01 9.29225504e-01 -3.01923990e-01 5.50000000e+01]\n",
281
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
282
+ "50_15\n",
283
+ "<class 'numpy.ndarray'>\n",
284
+ "[ 139.54934924 -46.88021771 -355.007513 ] [[-9.57505703e-01 5.13407821e-03 2.88368672e-01 1.42500000e+02]\n",
285
+ " [ 2.83626020e-01 -1.64673179e-01 9.44689929e-01 -8.25000000e+01]\n",
286
+ " [ 5.23367003e-02 9.86334801e-01 1.56219348e-01 4.85000000e+01]\n",
287
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
288
+ "50_7\n",
289
+ "<class 'numpy.ndarray'>\n",
290
+ "[ 94.82717336 -60.06908795 -373.08367637] [[-9.80218709e-01 1.04700476e-02 1.97640181e-01 1.19500000e+02]\n",
291
+ " [-1.02634998e-02 -9.99945164e-01 2.06941552e-03 9.25000000e+01]\n",
292
+ " [ 1.97651014e-01 -3.97597337e-11 9.80272472e-01 6.00000000e+00]\n",
293
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
294
+ "50_4\n",
295
+ "<class 'numpy.ndarray'>\n",
296
+ "[ 133.30369188 -60.16087193 -309.40942882] [[ 3.63204628e-01 2.05822811e-02 9.31482017e-01 -6.85000000e+01]\n",
297
+ " [ 5.70475589e-03 -9.99786377e-01 1.98671464e-02 8.95000000e+01]\n",
298
+ " [ 9.31691945e-01 -1.90196210e-03 -3.63244444e-01 3.45000000e+01]\n",
299
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
300
+ "50_5\n",
301
+ "<class 'numpy.ndarray'>\n",
302
+ "[ 104.32812486 -59.58836693 -330.54955718] [[-2.43282974e-01 5.23336045e-02 9.68542516e-01 1.15000000e+01]\n",
303
+ " [-1.27493460e-02 -9.98629630e-01 5.07568754e-02 8.95000000e+01]\n",
304
+ " [ 9.69871581e-01 0.00000000e+00 2.43616819e-01 -1.75000000e+01]\n",
305
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
306
+ "50_19\n",
307
+ "<class 'numpy.ndarray'>\n",
308
+ "[ 96.29982131 -58.37303979 -309.44228953] [[ 9.79412377e-01 1.91123132e-02 -2.00963020e-01 3.60000000e+01]\n",
309
+ " [-1.97478727e-01 -1.15796909e-01 -9.73443985e-01 2.02500000e+02]\n",
310
+ " [-4.18756641e-02 9.93089020e-01 -1.09638646e-01 1.00000000e+02]\n",
311
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
312
+ "50_16\n",
313
+ "<class 'numpy.ndarray'>\n",
314
+ "[ 149.88589896 -62.58094567 -338.11825748] [[-9.99986291e-01 5.20800240e-03 5.47378964e-04 1.89000000e+02]\n",
315
+ " [ 0.00000000e+00 -1.04527682e-01 9.94521976e-01 -7.05000000e+01]\n",
316
+ " [ 5.23668900e-03 9.94508326e-01 1.04526244e-01 7.30000000e+01]\n",
317
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
318
+ "50_20\n",
319
+ "<class 'numpy.ndarray'>\n",
320
+ "[ 93.57373451 2.93145736 -322.77012248] [[ 7.49273777e-01 6.80260768e-04 -6.62260056e-01 1.09500000e+02]\n",
321
+ " [-6.60582542e-01 -7.03702793e-02 -7.47448146e-01 1.95500000e+02]\n",
322
+ " [-4.71118838e-02 9.97520685e-01 -5.22772335e-02 3.00000000e+01]\n",
323
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
324
+ "50_14\n",
325
+ "<class 'numpy.ndarray'>\n",
326
+ "[ 88.28171183 3.8557878 -316.08167637] [[-7.27535933e-02 8.41864012e-03 9.97314394e-01 -9.00000000e+01]\n",
327
+ " [ 9.90704834e-01 -1.14629664e-01 7.32390508e-02 -2.55000000e+01]\n",
328
+ " [ 1.14938386e-01 9.93372619e-01 -6.67093786e-07 1.10000000e+01]\n",
329
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
330
+ "50_12\n",
331
+ "<class 'numpy.ndarray'>\n",
332
+ "[ 134.5258508 -64.54356876 -364.5357726 ] [[ 9.94030952e-01 -3.07329632e-02 -1.04680270e-01 2.30000000e+01]\n",
333
+ " [-1.04479052e-01 -5.44408977e-01 -8.32287788e-01 1.97000000e+02]\n",
334
+ " [-3.14102061e-02 8.38256717e-01 -5.44370353e-01 1.75500000e+02]\n",
335
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
336
+ "50_11\n",
337
+ "<class 'numpy.ndarray'>\n",
338
+ "[ 111.82756603 -60.11317851 -295.97915591] [[ 5.83470404e-01 -1.57093816e-02 -8.11982453e-01 1.40000000e+02]\n",
339
+ " [-9.16709006e-03 -9.99876618e-01 1.27573172e-02 9.30000000e+01]\n",
340
+ " [-8.12082708e-01 0.00000000e+00 -5.83542407e-01 2.20000000e+02]\n",
341
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
342
+ "50_9\n",
343
+ "<class 'numpy.ndarray'>\n",
344
+ "[ 120.33967845 -58.72811894 -301.49061707] [[-5.87581933e-01 -2.61756964e-02 -8.08741212e-01 2.26000000e+02]\n",
345
+ " [ 1.53856371e-02 -9.99657333e-01 2.11766195e-02 9.30000000e+01]\n",
346
+ " [-8.09018433e-01 0.00000000e+00 5.87783277e-01 7.65000000e+01]\n",
347
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
348
+ "50_6\n",
349
+ "<class 'numpy.ndarray'>\n",
350
+ "[ 76.86469562 -58.39298473 -322.38737147] [[-7.06140757e-01 2.64230575e-02 7.07578301e-01 4.10000000e+01]\n",
351
+ " [-3.70055996e-02 -9.99314964e-01 3.86947155e-04 9.95000000e+01]\n",
352
+ " [ 7.07103848e-01 -2.59111207e-02 7.06634820e-01 -3.80000000e+01]\n",
353
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
354
+ "50_17\n",
355
+ "<class 'numpy.ndarray'>\n",
356
+ "[ 106.66903344 8.51464058 -325.99066538] [[-8.22996676e-01 1.63101032e-02 -5.67811966e-01 2.05000000e+02]\n",
357
+ " [-5.65630078e-01 -1.15624942e-01 8.16513002e-01 -5.00000000e+00]\n",
358
+ " [-5.23358099e-02 9.93159056e-01 1.04384430e-01 6.00000000e+00]\n",
359
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
360
+ "50_1\n",
361
+ "<class 'numpy.ndarray'>\n",
362
+ "[ 131.06557723 -59.04872746 -246.8889367 ] [[ 9.96027470e-01 -6.16875989e-03 8.88328403e-02 -8.00000000e+00]\n",
363
+ " [-5.21744601e-03 -9.99926567e-01 -1.09372567e-02 9.50000000e+01]\n",
364
+ " [ 8.88937861e-02 1.04303276e-02 -9.95986521e-01 2.61000000e+02]\n",
365
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
366
+ "50_10\n",
367
+ "<class 'numpy.ndarray'>\n",
368
+ "[ 88.67637631 -59.51173395 -276.81028318] [[-8.88927057e-02 2.29531179e-06 -9.96041179e-01 2.26500000e+02]\n",
369
+ " [-2.04165474e-07 -1.00000000e+00 -2.28621366e-06 9.45000000e+01]\n",
370
+ " [-9.96041179e-01 1.29520797e-10 8.88927057e-02 1.18000000e+02]\n",
371
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
372
+ "50_3\n",
373
+ "<class 'numpy.ndarray'>\n",
374
+ "[ 80.04639924 -58.97716693 -277.66383223] [[ 8.73723686e-01 1.49904843e-02 4.86191481e-01 -2.55000000e+01]\n",
375
+ " [-9.15306993e-03 -9.98841345e-01 4.72455211e-02 8.90000000e+01]\n",
376
+ " [ 4.86336410e-01 -4.57296781e-02 -8.72574210e-01 2.03500000e+02]\n",
377
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
378
+ "50_2\n",
379
+ "<class 'numpy.ndarray'>\n",
380
+ "[ 131.09489789 -59.10852482 -246.68631843] [[ 9.97465611e-01 -2.34160740e-02 6.71865344e-02 -3.00000000e+00]\n",
381
+ " [-2.08898988e-02 -9.99057114e-01 -3.80588211e-02 9.90000000e+01]\n",
382
+ " [ 6.80143759e-02 3.65588441e-02 -9.97014284e-01 2.61500000e+02]\n",
383
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
384
+ "\n",
385
+ "--- [์นดํ…Œ๊ณ ๋ฆฌ: 25\n",
386
+ "25_6\n",
387
+ "<class 'numpy.ndarray'>\n",
388
+ "[ 80.44698406 -58.86941603 -307.62318872] [[-4.20945942e-01 2.09405292e-02 9.06843960e-01 -1.20000000e+01]\n",
389
+ " [-8.81676469e-03 -9.99780715e-01 1.89939588e-02 9.25000000e+01]\n",
390
+ " [ 9.07042861e-01 0.00000000e+00 4.21038270e-01 -3.25000000e+01]\n",
391
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
392
+ "25_19\n",
393
+ "<class 'numpy.ndarray'>\n",
394
+ "[ 80.65639095 17.39362121 -287.09742084] [[ 3.47024798e-01 -6.53519258e-02 -9.35576260e-01 1.94000000e+02]\n",
395
+ " [-9.33123171e-01 -1.24151573e-01 -3.37442666e-01 1.64000000e+02]\n",
396
+ " [-9.41007286e-02 9.90108848e-01 -1.04065068e-01 2.70000000e+01]\n",
397
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
398
+ "25_17\n",
399
+ "<class 'numpy.ndarray'>\n",
400
+ "[ 99.71884906 6.74202689 -305.66555647] [[-9.32300985e-01 7.80264940e-03 -3.61599207e-01 1.89500000e+02]\n",
401
+ " [-3.57876837e-01 -1.64567947e-01 9.19152617e-01 -2.55000000e+01]\n",
402
+ " [-5.23358099e-02 9.86334860e-01 1.56219244e-01 1.50000000e+00]\n",
403
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
404
+ "25_9\n",
405
+ "<class 'numpy.ndarray'>\n",
406
+ "[ 104.80421096 -58.69354154 -296.89232101] [[-6.29284024e-01 -1.04732122e-02 -7.77104855e-01 2.27000000e+02]\n",
407
+ " [ 6.59098569e-03 -9.99945164e-01 8.13923124e-03 9.45000000e+01]\n",
408
+ " [-7.77147472e-01 9.16946241e-10 6.29318535e-01 5.60000000e+01]\n",
409
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
410
+ "25_11\n",
411
+ "<class 'numpy.ndarray'>\n",
412
+ "[ 91.27540426 -60.33721246 -302.61452953] [[ 4.99315888e-01 -5.23343198e-02 -8.64838004e-01 1.59500000e+02]\n",
413
+ " [-2.61672158e-02 -9.98629630e-01 4.53228168e-02 9.05000000e+01]\n",
414
+ " [-8.66024792e-01 0.00000000e+00 -5.00001073e-01 1.90000000e+02]\n",
415
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
416
+ "25_20\n",
417
+ "<class 'numpy.ndarray'>\n",
418
+ "[ 114.82699231 -25.31891421 -300.70985536] [[ 9.33597624e-01 2.52183285e-02 -3.57434571e-01 3.55000000e+01]\n",
419
+ " [-3.52777362e-01 -1.10131755e-01 -9.29203510e-01 2.04000000e+02]\n",
420
+ " [-6.27978593e-02 9.93597031e-01 -9.39222947e-02 6.50000000e+01]\n",
421
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
422
+ "25_14\n",
423
+ "<class 'numpy.ndarray'>\n",
424
+ "[ 148.56061006 -1.40141385 -312.41566071] [[ 3.90189588e-01 7.18589965e-03 9.20706511e-01 -8.85000000e+01]\n",
425
+ " [ 9.14781868e-01 -1.16549321e-01 -3.86769146e-01 3.55000000e+01]\n",
426
+ " [ 1.04528435e-01 9.93158937e-01 -5.20498641e-02 2.25000000e+01]\n",
427
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
428
+ "25_4\n",
429
+ "<class 'numpy.ndarray'>\n",
430
+ "[ 120.44283288 -58.59740419 -317.57804464] [[ 4.53990668e-01 -2.29676311e-06 8.91006470e-01 -8.50000000e+01]\n",
431
+ " [-1.04270896e-06 -1.00000000e+00 -2.04643061e-06 9.50000000e+01]\n",
432
+ " [ 8.91006470e-01 0.00000000e+00 -4.53990668e-01 6.70000000e+01]\n",
433
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
434
+ "25_16\n",
435
+ "<class 'numpy.ndarray'>\n",
436
+ "[ 159.49744903 -57.19121116 -330.51883012] [[-9.93359208e-01 -1.71818491e-02 1.13764346e-01 1.64500000e+02]\n",
437
+ " [ 1.14935547e-01 -1.03237145e-01 9.87993896e-01 -7.05000000e+01]\n",
438
+ " [-5.23085613e-03 9.94508386e-01 1.04526371e-01 7.00000000e+01]\n",
439
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
440
+ "25_5\n",
441
+ "<class 'numpy.ndarray'>\n",
442
+ "[ 115.56783081 -59.11134083 -292.91888734] [[ 5.23346961e-02 -2.29821808e-06 9.98629630e-01 -7.25000000e+01]\n",
443
+ " [-1.20200397e-07 -1.00000000e+00 -2.29507259e-06 9.55000000e+01]\n",
444
+ " [ 9.98629630e-01 7.62540794e-11 -5.23346961e-02 5.00000000e-01]\n",
445
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
446
+ "25_2\n",
447
+ "<class 'numpy.ndarray'>\n",
448
+ "[ 65.19512695 -58.32690877 -267.20007307] [[ 9.73424971e-01 -2.20275789e-01 6.26292452e-02 5.60000000e+01]\n",
449
+ " [-2.22945705e-01 -9.74036455e-01 3.93469594e-02 1.05000000e+02]\n",
450
+ " [ 5.23359850e-02 -5.22642322e-02 -9.97260928e-01 2.38500000e+02]\n",
451
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
452
+ "25_10\n",
453
+ "<class 'numpy.ndarray'>\n",
454
+ "[ 86.87625692 -59.3844832 -283.22515827] [[-1.04383260e-01 -5.23381904e-02 -9.93158996e-01 2.39500000e+02]\n",
455
+ " [ 5.47072943e-03 -9.98629391e-01 5.20514883e-02 8.75000000e+01]\n",
456
+ " [-9.94522095e-01 0.00000000e+00 1.04526527e-01 1.18500000e+02]\n",
457
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
458
+ "25_3\n",
459
+ "<class 'numpy.ndarray'>\n",
460
+ "[ 77.45646053 -58.64582287 -296.38477592] [[ 7.99148023e-01 -5.19353012e-03 6.01111889e-01 -4.30000000e+01]\n",
461
+ " [-2.93054041e-02 -9.99110281e-01 3.03278770e-02 9.40000000e+01]\n",
462
+ " [ 6.00419581e-01 -4.18522879e-02 -7.98589230e-01 1.75000000e+02]\n",
463
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
464
+ "25_8\n",
465
+ "<class 'numpy.ndarray'>\n",
466
+ "[ 101.9149352 -60.84140124 -342.26717733] [[-9.54185784e-01 8.90346896e-03 -2.99082369e-01 1.89000000e+02]\n",
467
+ " [-9.99023579e-03 -9.99947906e-01 2.10488937e-03 9.45000000e+01]\n",
468
+ " [-2.99048066e-01 4.99635888e-03 9.54224944e-01 1.00000000e+01]\n",
469
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
470
+ "25_13\n",
471
+ "<class 'numpy.ndarray'>\n",
472
+ "[ 131.00695707 -58.44608371 -374.02159395] [[ 9.96972859e-01 2.28012120e-03 7.77167380e-02 -4.00000000e+00]\n",
473
+ " [ 7.32111558e-02 -3.64062160e-01 -9.28492785e-01 1.86500000e+02]\n",
474
+ " [ 2.61766482e-02 9.31371868e-01 -3.63127053e-01 1.37000000e+02]\n",
475
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
476
+ "25_7\n",
477
+ "<class 'numpy.ndarray'>\n",
478
+ "[ 59.77029242 -59.54275923 -340.63904432] [[-8.54943454e-01 3.14080007e-02 5.17769456e-01 6.95000000e+01]\n",
479
+ " [-2.68653184e-02 -9.99506652e-01 1.62701309e-02 9.35000000e+01]\n",
480
+ " [ 5.18025041e-01 1.24630717e-09 8.55365455e-01 -2.80000000e+01]\n",
481
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
482
+ "25_12\n",
483
+ "<class 'numpy.ndarray'>\n",
484
+ "[ 144.97275845 -64.34651138 -362.24389231] [[ 1.00000000e+00 -1.22409199e-06 -1.94534368e-06 -2.00000000e+00]\n",
485
+ " [-2.29676311e-06 -5.00000060e-01 -8.66025388e-01 1.85000000e+02]\n",
486
+ " [ 8.74227766e-08 8.66025388e-01 -5.00000060e-01 1.65000000e+02]\n",
487
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
488
+ "25_1\n",
489
+ "<class 'numpy.ndarray'>\n",
490
+ "[ 65.0172194 -58.27853298 -266.42403184] [[ 9.76925731e-01 -4.49775578e-03 2.13532060e-01 2.65000000e+01]\n",
491
+ " [-1.53073696e-02 -9.98681664e-01 4.89965640e-02 8.75000000e+01]\n",
492
+ " [ 2.13030174e-01 -5.11346199e-02 -9.75706637e-01 2.25500000e+02]\n",
493
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
494
+ "25_15\n",
495
+ "<class 'numpy.ndarray'>\n",
496
+ "[ 138.90248059 7.98469512 -315.09307969] [[-4.51511025e-01 7.55800982e-04 8.92265201e-01 -1.20000000e+01]\n",
497
+ " [ 8.86122406e-01 -1.16762400e-01 4.48501498e-01 -6.80000000e+01]\n",
498
+ " [ 1.04522012e-01 9.93159592e-01 5.20497821e-02 5.00000000e-01]\n",
499
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
500
+ "25_18\n",
501
+ "<class 'numpy.ndarray'>\n",
502
+ "[ 100.5978645 11.61267872 -289.4689573 ] [[-2.57401466e-01 -4.22233492e-02 -9.65381622e-01 2.33000000e+02]\n",
503
+ " [-9.60634351e-01 -9.68885496e-02 2.60373354e-01 8.75000000e+01]\n",
504
+ " [-1.04528263e-01 9.94399190e-01 -1.56219453e-02 1.95000000e+01]\n",
505
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
506
+ "\n",
507
+ "--- [์นดํ…Œ๊ณ ๋ฆฌ: 0\n",
508
+ "0_12\n",
509
+ "<class 'numpy.ndarray'>\n",
510
+ "[ 103.98670458 10.31890896 -425.69700743] [[-9.99122858e-01 2.09379010e-02 3.62653285e-02 1.28500000e+02]\n",
511
+ " [ 4.18756455e-02 4.99561489e-01 8.65265727e-01 -9.40000000e+01]\n",
512
+ " [ 8.74227766e-08 8.66025388e-01 -5.00000060e-01 8.10000000e+01]\n",
513
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
514
+ "0_17\n",
515
+ "<class 'numpy.ndarray'>\n",
516
+ "[ 186.05504476 4.50040927 -361.21430778] [[-9.33529258e-01 -4.64050137e-02 3.55485231e-01 1.37000000e+02]\n",
517
+ " [ 3.58348310e-01 -1.49750009e-01 9.21499550e-01 -8.80000000e+01]\n",
518
+ " [ 1.04717165e-02 9.87634301e-01 1.56425163e-01 -2.00000000e+00]\n",
519
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
520
+ "0_16\n",
521
+ "<class 'numpy.ndarray'>\n",
522
+ "[ 158.99122356 8.0566992 -340.93300553] [[-4.88214135e-01 5.64623578e-03 8.72705638e-01 -1.95000000e+01]\n",
523
+ " [ 8.66441429e-01 -1.16634279e-01 4.85464394e-01 -7.30000000e+01]\n",
524
+ " [ 1.04528435e-01 9.93158877e-01 5.20503707e-02 -1.50000000e+00]\n",
525
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
526
+ "0_15\n",
527
+ "<class 'numpy.ndarray'>\n",
528
+ "[ 151.76130894 6.88293335 -339.65456933] [[ 5.68182707e-01 -1.06598921e-02 8.22833419e-01 -7.10000000e+01]\n",
529
+ " [ 8.17503452e-01 -1.07040912e-01 -5.65889001e-01 6.60000000e+01]\n",
530
+ " [ 9.41091478e-02 9.94197488e-01 -5.21042943e-02 1.60000000e+01]\n",
531
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
532
+ "0_2\n",
533
+ "<class 'numpy.ndarray'>\n",
534
+ "[ 119.27855029 -60.61229654 -325.9406945 ] [[ 9.55740631e-01 1.04759438e-02 -2.94023991e-01 2.70000000e+01]\n",
535
+ " [ 1.00128353e-02 -9.99945104e-01 -3.08034662e-03 9.50000000e+01]\n",
536
+ " [-2.94040143e-01 -1.39263479e-09 -9.55793083e-01 2.49500000e+02]\n",
537
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
538
+ "0_5\n",
539
+ "<class 'numpy.ndarray'>\n",
540
+ "[ 136.77738072 -60.90191438 -315.37774331] [[-3.97150248e-01 -2.29542570e-06 9.17753637e-01 -2.45000000e+01]\n",
541
+ " [ 9.12159976e-07 -1.00000000e+00 -2.10640542e-06 9.50000000e+01]\n",
542
+ " [ 9.17753637e-01 5.78666337e-10 3.97150248e-01 -4.45000000e+01]\n",
543
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
544
+ "0_14\n",
545
+ "<class 'numpy.ndarray'>\n",
546
+ "[ 130.19622093 -66.73083028 -374.77296817] [[-1.00000000e+00 -1.51899189e-06 -4.20105425e-06 1.45500000e+02]\n",
547
+ " [-4.46637978e-06 3.58368099e-01 9.33580399e-01 -7.90000000e+01]\n",
548
+ " [ 8.74227766e-08 9.33580399e-01 -3.58368099e-01 1.39500000e+02]\n",
549
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
550
+ "0_9\n",
551
+ "<class 'numpy.ndarray'>\n",
552
+ "[ 100.51432843 -60.43930286 -326.22722644] [[-2.98776299e-01 -1.19095705e-02 -9.54248846e-01 2.26000000e+02]\n",
553
+ " [ 1.25229396e-02 -9.99884963e-01 8.55818950e-03 9.20000000e+01]\n",
554
+ " [-9.54240978e-01 -9.39301681e-03 2.98891068e-01 1.00000000e+02]\n",
555
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
556
+ "0_22\n",
557
+ "<class 'numpy.ndarray'>\n",
558
+ "[ 90.11145968 -59.88932663 -330.74943687] [[ 1.58813998e-01 3.70090269e-02 -9.86614645e-01 2.09500000e+02]\n",
559
+ " [-5.41530224e-03 -9.99249518e-01 -3.83546688e-02 9.90000000e+01]\n",
560
+ " [-9.87293661e-01 1.14340745e-02 -1.58494398e-01 1.49000000e+02]\n",
561
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
562
+ "0_4\n",
563
+ "<class 'numpy.ndarray'>\n",
564
+ "[ 129.59008078 -59.41288647 -321.76365361] [[ 1.87378153e-01 -2.29676311e-06 9.82287824e-01 -8.05000000e+01]\n",
565
+ " [-4.30363201e-07 -1.00000000e+00 -2.25608233e-06 9.50000000e+01]\n",
566
+ " [ 9.82287824e-01 0.00000000e+00 -1.87378153e-01 1.70000000e+01]\n",
567
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
568
+ "0_18\n",
569
+ "<class 'numpy.ndarray'>\n",
570
+ "[ 117.75412539 8.82554891 -361.16436266] [[-6.63363695e-01 -6.60083592e-02 -7.45380104e-01 2.24500000e+02]\n",
571
+ " [-7.41532445e-01 -7.56485090e-02 6.66638553e-01 2.05000000e+01]\n",
572
+ " [-1.00390613e-01 9.94947314e-01 1.23513013e-03 2.40000000e+01]\n",
573
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
574
+ "0_8\n",
575
+ "<class 'numpy.ndarray'>\n",
576
+ "[ 110.02384139 -61.09827171 -328.36819013] [[-7.89987803e-01 1.13137672e-02 -6.13018155e-01 2.12500000e+02]\n",
577
+ " [-1.65469553e-02 -9.99858975e-01 2.87058577e-03 9.55000000e+01]\n",
578
+ " [-6.12899244e-01 1.24113122e-02 7.90063560e-01 1.40000000e+01]\n",
579
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
580
+ "0_7\n",
581
+ "<class 'numpy.ndarray'>\n",
582
+ "[ 92.96316227 -63.94471886 -386.71919589] [[ 9.98287320e-01 5.84970973e-02 7.16124545e-04 -1.85000000e+01]\n",
583
+ " [-5.75553216e-02 9.84260798e-01 -1.67086974e-01 2.80000000e+01]\n",
584
+ " [-1.04789566e-02 1.66759595e-01 9.85941887e-01 7.50000000e+00]\n",
585
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
586
+ "0_11\n",
587
+ "<class 'numpy.ndarray'>\n",
588
+ "[ 134.82824558 -57.71182197 -351.24485975] [[ 7.60406315e-01 -2.29581678e-06 -6.49447680e-01 9.10000000e+01]\n",
589
+ " [-1.74647312e-06 -1.00000000e+00 1.49017035e-06 9.60000000e+01]\n",
590
+ " [-6.49447680e-01 1.10794729e-09 -7.60406315e-01 2.20500000e+02]\n",
591
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
592
+ "0_24\n",
593
+ "<class 'numpy.ndarray'>\n",
594
+ "[ 92.14853232 -59.684016 -407.77398695] [[ 8.29673052e-01 1.59621481e-02 5.58021367e-01 -8.50000000e+00]\n",
595
+ " [ 3.19075515e-03 -9.99710381e-01 2.38525681e-02 9.05000000e+01]\n",
596
+ " [ 5.58240473e-01 -1.80093236e-02 -8.29483747e-01 1.22000000e+02]\n",
597
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
598
+ "0_13\n",
599
+ "<class 'numpy.ndarray'>\n",
600
+ "[ 83.5096802 12.12103845 -395.35193727] [[ 9.45313692e-01 -7.14921653e-02 3.18230808e-01 1.00000000e+01]\n",
601
+ " [ 3.07148278e-01 -1.33137226e-01 -9.42302704e-01 1.58500000e+02]\n",
602
+ " [ 1.09735630e-01 9.88515735e-01 -1.03897743e-01 2.30000000e+01]\n",
603
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
604
+ "0_23\n",
605
+ "<class 'numpy.ndarray'>\n",
606
+ "[ 136.76550203 27.0555942 -430.0643254 ] [[-9.98189986e-01 -2.57201474e-02 -5.43616228e-02 1.48000000e+02]\n",
607
+ " [ 5.96299879e-02 -5.40660322e-01 -8.39124918e-01 1.72500000e+02]\n",
608
+ " [-7.80875701e-03 -8.40847731e-01 5.41215420e-01 8.05000000e+01]\n",
609
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
610
+ "0_10\n",
611
+ "<class 'numpy.ndarray'>\n",
612
+ "[ 102.17519885 -59.22792918 -337.21559805] [[ 2.27911219e-01 1.18501671e-02 -9.73609805e-01 1.94500000e+02]\n",
613
+ " [ 1.43385483e-02 -9.99858379e-01 -8.81315395e-03 9.60000000e+01]\n",
614
+ " [-9.73576307e-01 -1.19515341e-02 -2.28048846e-01 1.67500000e+02]\n",
615
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
616
+ "0_19\n",
617
+ "<class 'numpy.ndarray'>\n",
618
+ "[ 107.91231556 6.92816017 -312.97961018] [[-2.22880378e-01 -1.14671409e-01 -9.68077898e-01 2.77000000e+02]\n",
619
+ " [-9.73144829e-01 -3.24667208e-02 2.27892697e-01 8.95000000e+01]\n",
620
+ " [-5.75630888e-02 9.92872775e-01 -1.04355693e-01 3.25000000e+01]\n",
621
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
622
+ "0_1\n",
623
+ "<class 'numpy.ndarray'>\n",
624
+ "[ 152.59134089 -58.9903571 -331.92222143] [[ 8.99942935e-01 1.59255236e-01 -4.05882418e-01 -4.00000000e+00]\n",
625
+ " [ 1.57062009e-01 -9.86820340e-01 -3.89508605e-02 8.90000000e+01]\n",
626
+ " [-4.06736135e-01 -2.86951587e-02 -9.13094878e-01 2.21500000e+02]\n",
627
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
628
+ "0_6\n",
629
+ "<class 'numpy.ndarray'>\n",
630
+ "[ 139.06240714 -60.5229287 -314.24943205] [[-7.76765287e-01 -1.16402414e-02 6.29682660e-01 3.90000000e+01]\n",
631
+ " [ 2.44128127e-02 -9.99634266e-01 1.16360858e-02 9.00000000e+01]\n",
632
+ " [ 6.29316866e-01 2.44108327e-02 7.76765347e-01 -8.25000000e+01]\n",
633
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
634
+ "0_21\n",
635
+ "<class 'numpy.ndarray'>\n",
636
+ "[ 90.29181622 -60.02695941 -330.61546664] [[ 1.56436101e-01 -2.29820216e-06 -9.87688065e-01 2.13500000e+02]\n",
637
+ " [-3.59296649e-07 -1.00000000e+00 2.26994257e-06 9.45000000e+01]\n",
638
+ " [-9.87688065e-01 -2.27934657e-10 -1.56436101e-01 1.54000000e+02]\n",
639
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
640
+ "0_20\n",
641
+ "<class 'numpy.ndarray'>\n",
642
+ "[ 92.08817382 13.77533275 -374.63659039] [[-8.94484162e-01 -1.44307400e-04 -4.47099596e-01 1.73500000e+02]\n",
643
+ " [-4.44025934e-01 -1.16769537e-01 8.88372600e-01 -3.10000000e+01]\n",
644
+ " [-5.23358099e-02 9.93159056e-01 1.04384430e-01 -7.50000000e+00]\n",
645
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n",
646
+ "0_3\n",
647
+ "<class 'numpy.ndarray'>\n",
648
+ "[ 118.33043626 -57.39900045 -344.31088082] [[ 7.53564060e-01 -2.29676311e-06 6.57374501e-01 -6.30000000e+01]\n",
649
+ " [-1.73075796e-06 -1.00000000e+00 -1.50983351e-06 9.75000000e+01]\n",
650
+ " [ 6.57374501e-01 0.00000000e+00 -7.53564060e-01 1.31500000e+02]\n",
651
+ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 1.00000000e+00]]\n"
652
+ ]
653
+ }
654
+ ],
655
+ "source": [
656
+ "import json\n",
657
+ "import numpy as np\n",
658
+ "\n",
659
+ "name = \"bottle2\"\n",
660
+ "folder = \"./dataset\"\n",
661
+ "json_path = \"ply_files.json\"\n",
662
+ "\n",
663
+ "try:\n",
664
+ " with open(json_path, \"r\", encoding=\"utf-8\") as f:\n",
665
+ " categorized_files = json.load(f)\n",
666
+ "except FileNotFoundError:\n",
667
+ " print(f\"์˜ค๋ฅ˜: '{json_path}' ํŒŒ์ผ์„ ์ฐพ์„ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค. ๋จผ์ € ํŒŒ์ผ ๋ถ„๋ฅ˜ ์ฝ”๋“œ๋ฅผ ์‹คํ–‰ํ•ด ์ฃผ์„ธ์š”.\")\n",
668
+ " exit() # ํŒŒ์ผ์ด ์—†์œผ๋ฉด ํ”„๋กœ๊ทธ๋žจ ์ข…๋ฃŒ\n",
669
+ "\n",
670
+ "# 3. ๋ชจ๋“  ์นดํ…Œ๊ณ ๋ฆฌ์™€ ํŒŒ์ผ์„ ์ˆœํšŒํ•˜๋Š” ๋ฐ˜๋ณต๋ฌธ\n",
671
+ "print(\"=== ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ ์‹œ์ž‘ ===\")\n",
672
+ "categories = [\"100\", \"75\", \"50\", \"25\", \"0\"]\n",
673
+ "\n",
674
+ "# resolutions ๋”•์…”๋„ˆ๋ฆฌ๋ฅผ ๊ธฐ์ค€์œผ๋กœ ์™ธ๋ถ€ ๋ฃจํ”„๋ฅผ ์‹คํ–‰ํ•ฉ๋‹ˆ๋‹ค.\n",
675
+ "for category in categories:\n",
676
+ " \n",
677
+ " print(f\"\\n--- [์นดํ…Œ๊ณ ๋ฆฌ: {category}\")\n",
678
+ " \n",
679
+ " # JSON์—์„œ ํ˜„์žฌ ์นดํ…Œ๊ณ ๋ฆฌ์— ํ•ด๋‹นํ•˜๋Š” ํŒŒ์ผ ๋ฆฌ์ŠคํŠธ๋ฅผ ๊ฐ€์ ธ์˜ต๋‹ˆ๋‹ค.\n",
680
+ " # .get(category, [])๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด JSON์— ํ•ด๋‹น ์นดํ…Œ๊ณ ๋ฆฌ๊ฐ€ ์—†์–ด๋„ ์˜ค๋ฅ˜ ์—†์ด ๋นˆ ๋ฆฌ์ŠคํŠธ๋ฅผ ๋ฐ˜ํ™˜ํ•ฉ๋‹ˆ๋‹ค.\n",
681
+ " filenames_in_category = categorized_files.get(category, [])\n",
682
+ " \n",
683
+ " if not filenames_in_category:\n",
684
+ " print(\"์ฒ˜๋ฆฌํ•  ํŒŒ์ผ์ด ์—†์Šต๋‹ˆ๋‹ค.\")\n",
685
+ " continue # ํŒŒ์ผ์ด ์—†์œผ๋ฉด ๋‹ค์Œ ์นดํ…Œ๊ณ ๋ฆฌ๋กœ ๋„˜์–ด๊ฐ\n",
686
+ "\n",
687
+ " # ๋‚ด๋ถ€ ๋ฃจํ”„์—์„œ ํ•ด๋‹น ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๋ชจ๋“  ํŒŒ์ผ์„ ํ•˜๋‚˜์”ฉ ์ฒ˜๋ฆฌํ•ฉ๋‹ˆ๋‹ค.\n",
688
+ " for filename in filenames_in_category:\n",
689
+ " gt_path =f\"./gt/noisy_filtered_{filename}.json\"\n",
690
+ " print(filename)\n",
691
+ " try:\n",
692
+ " with open(gt_path, \"r\", encoding='utf-8') as f:\n",
693
+ " gt_processed = json.load(f)\n",
694
+ " gt = np.array(gt_processed[f\"noisy_filtered_{filename}\"][\"matrix_world\"])\n",
695
+ "\n",
696
+ " print(type(gt))\n",
697
+ " ## get translted \n",
698
+ " center_path = f\"./centroid/{filename}.txt\"\n",
699
+ " translated = np.loadtxt(center_path) \n",
700
+ " print(translated, gt)\n",
701
+ " ## generate translate T\n",
702
+ " tran_T = np.eye(4)\n",
703
+ " tran_T[0:3,3] = translated\n",
704
+ " \n",
705
+ "\n",
706
+ " final_T = gt @ tran_T\n",
707
+ " real_final_T = np.linalg.inv(final_T)\n",
708
+ "\n",
709
+ " gt_list = real_final_T.tolist()\n",
710
+ " gt_processed[f\"noisy_filtered_{filename}\"][\"matrix_world\"] = gt_list\n",
711
+ "\n",
712
+ " with open(f'./gt_raw/noisy_filtered_{filename}.json', 'w', encoding='utf-8') as f:\n",
713
+ " json.dump(gt_processed, f, ensure_ascii=False, indent=4)\n",
714
+ "\n",
715
+ "\n",
716
+ " except FileNotFoundError:\n",
717
+ " continue"
718
+ ]
719
+ },
720
+ {
721
+ "cell_type": "markdown",
722
+ "id": "a0277328",
723
+ "metadata": {},
724
+ "source": [
725
+ "## verify"
726
+ ]
727
+ },
728
+ {
729
+ "cell_type": "code",
730
+ "execution_count": 1,
731
+ "id": "463b3159",
732
+ "metadata": {},
733
+ "outputs": [
734
+ {
735
+ "name": "stdout",
736
+ "output_type": "stream",
737
+ "text": [
738
+ "Jupyter environment detected. Enabling Open3D WebVisualizer.\n",
739
+ "[Open3D INFO] WebRTC GUI backend enabled.\n",
740
+ "[Open3D INFO] WebRTCWindowSystem: HTTP handshake server disabled.\n",
741
+ "100_7\n",
742
+ "\u001b[1;33m[Open3D WARNING] Read PLY failed: unable to read file: ./gt_filtered.ply\u001b[0;m\n"
743
+ ]
744
+ },
745
+ {
746
+ "name": "stderr",
747
+ "output_type": "stream",
748
+ "text": [
749
+ "RPly: Unexpected end of file\n",
750
+ "RPly: Error reading 'view_px' of 'camera' number 0\n"
751
+ ]
752
+ }
753
+ ],
754
+ "source": [
755
+ "import json\n",
756
+ "import numpy as np\n",
757
+ "import open3d as o3d\n",
758
+ "\n",
759
+ "\n",
760
+ "def get_T(file_path):\n",
761
+ " with open(file_path, 'r') as f:\n",
762
+ " T_matrix = np.loadtxt(file_path)\n",
763
+ " print(T_matrix)\n",
764
+ " return T_matrix\n",
765
+ " \n",
766
+ "filenames = []\n",
767
+ "with open(\"filename.txt\", \"r\") as f:\n",
768
+ " for line in f:\n",
769
+ " filenames.append(line.strip())\n",
770
+ "\n",
771
+ "\n",
772
+ "filename = filenames[0]\n",
773
+ "print(filename)\n",
774
+ "\n",
775
+ "with open(f\"./gt_raw/noisy_filtered_{filename}.json\", 'r') as f:\n",
776
+ " loaded_data = json.load(f)\n",
777
+ "\n",
778
+ "\n",
779
+ "\n",
780
+ "noisy_data = loaded_data[f'noisy_filtered_{filename}']\n",
781
+ "T_matrix = noisy_data['matrix_world']\n",
782
+ "\n",
783
+ "\n",
784
+ "##Translated\n",
785
+ "\n",
786
+ "gt_path = \"./gt_filtered.ply\"\n",
787
+ "noisy_path = f\"./dataset/{filename}.ply\"\n",
788
+ "translated_path = f\"./result3/result_{filename}.ply\"\n",
789
+ "\n",
790
+ "\n",
791
+ "\n",
792
+ "gt_pcd = o3d.io.read_point_cloud(gt_path)\n",
793
+ "gt_pcd.paint_uniform_color([0,0,1])\n",
794
+ "noisy_pcd = o3d.io.read_point_cloud(noisy_path)\n",
795
+ "noisy_pcd.paint_uniform_color([1,0,0])\n",
796
+ "\n",
797
+ "translated_noisy_pcd = o3d.io.read_point_cloud(translated_path)\n",
798
+ "translated_noisy_pcd.paint_uniform_color([0,1,0])\n",
799
+ "\n",
800
+ "\n",
801
+ "gt = np.array(T_matrix)\n",
802
+ "\n",
803
+ "## move and check gt and noisy\n",
804
+ "\n",
805
+ "o3d.visualization.draw_geometries([gt_pcd, noisy_pcd, translated_noisy_pcd])\n",
806
+ "# noisy_pcd.transform(tran_T)\n",
807
+ "gt_pcd.transform(gt)\n",
808
+ "\n",
809
+ "o3d.visualization.draw_geometries([noisy_pcd, translated_noisy_pcd])\n"
810
+ ]
811
+ }
812
+ ],
813
+ "metadata": {
814
+ "kernelspec": {
815
+ "display_name": "Python 3",
816
+ "language": "python",
817
+ "name": "python3"
818
+ },
819
+ "language_info": {
820
+ "codemirror_mode": {
821
+ "name": "ipython",
822
+ "version": 3
823
+ },
824
+ "file_extension": ".py",
825
+ "mimetype": "text/x-python",
826
+ "name": "python",
827
+ "nbconvert_exporter": "python",
828
+ "pygments_lexer": "ipython3",
829
+ "version": "3.10.12"
830
+ }
831
+ },
832
+ "nbformat": 4,
833
+ "nbformat_minor": 5
834
+ }
data/glasses/gt_filtered.ply ADDED
The diff for this file is too large to render. See raw diff
 
data/glasses/inference_ICP.ipynb ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 1271,
6
+ "metadata": {},
7
+ "outputs": [],
8
+ "source": [
9
+ "# conda activate vision\n",
10
+ "# cd build\n",
11
+ "# cmake -DCMAKE_BUILD_TYPE=Release ..\n",
12
+ "# make\n",
13
+ "# ./FRICP ./data/bottle/tea_gt_filtered.ply ./data/bottle/tea_noisy_filtered.ply ./data/bottle/res/ 3\n",
14
+ "\n",
15
+ "\n",
16
+ "# 100_16 is the best thing. "
17
+ ]
18
+ },
19
+ {
20
+ "cell_type": "code",
21
+ "execution_count": 1272,
22
+ "metadata": {},
23
+ "outputs": [
24
+ {
25
+ "name": "stdout",
26
+ "output_type": "stream",
27
+ "text": [
28
+ "75_11\n"
29
+ ]
30
+ }
31
+ ],
32
+ "source": [
33
+ "import open3d as o3d\n",
34
+ "import numpy as np\n",
35
+ "\n",
36
+ "file_names = []\n",
37
+ "with open('filename.txt', 'r') as f:\n",
38
+ " for line in f:\n",
39
+ " file_names.append(line.strip())\n",
40
+ "filename = file_names[0]\n",
41
+ "print(filename)\n",
42
+ "\n"
43
+ ]
44
+ },
45
+ {
46
+ "cell_type": "markdown",
47
+ "metadata": {},
48
+ "source": [
49
+ "# Modify initial file"
50
+ ]
51
+ },
52
+ {
53
+ "cell_type": "code",
54
+ "execution_count": 1273,
55
+ "metadata": {},
56
+ "outputs": [
57
+ {
58
+ "name": "stdout",
59
+ "output_type": "stream",
60
+ "text": [
61
+ "\n",
62
+ "์ž‘์—… ์™„๋ฃŒ!\n",
63
+ "'./initialized_result/initial_75_11.ply' ํŒŒ์ผ์ด ์„ฑ๊ณต์ ์œผ๋กœ ์ƒ์„ฑ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.\n"
64
+ ]
65
+ }
66
+ ],
67
+ "source": [
68
+ "\n",
69
+ "output_filename = f'./initialized_result/initial_{filename}.ply'\n",
70
+ "\n",
71
+ "# 1. read file\n",
72
+ "\n",
73
+ "with open(f'./initialized_result/initial_{filename}.ply', 'r') as f:\n",
74
+ " lines = f.readlines()\n",
75
+ "\n",
76
+ "# 2. seperate data and header \n",
77
+ "header_lines = []\n",
78
+ "data_lines = []\n",
79
+ "is_header = True\n",
80
+ "\n",
81
+ "for line in lines:\n",
82
+ " if \"end_header\" in line:\n",
83
+ " is_header = False\n",
84
+ " continue\n",
85
+ " \n",
86
+ " if is_header:\n",
87
+ " header_lines.append(line)\n",
88
+ " \n",
89
+ " else: \n",
90
+ " parts = line.strip().split()\n",
91
+ " if len(parts) >= 3:\n",
92
+ " data_lines.append(f\"{parts[0]} {parts[1]} {parts[2]}\\n\")\n",
93
+ "\n",
94
+ "\n",
95
+ "# 3. modify header\n",
96
+ "# vertex\n",
97
+ "num_points = len(data_lines)\n",
98
+ "\n",
99
+ "# generate new header\n",
100
+ "\n",
101
+ "new_header = f\"\"\"ply\n",
102
+ "format ascii 1.0\n",
103
+ "element vertex {num_points}\n",
104
+ "property float x\n",
105
+ "property float y\n",
106
+ "property float z\n",
107
+ "element camera 1\n",
108
+ "property float view_px\n",
109
+ "property float view_py\n",
110
+ "property float view_pz\n",
111
+ "property float x_axisx\n",
112
+ "property float x_axisy\n",
113
+ "property float x_axisz\n",
114
+ "property float y_axisx\n",
115
+ "property float y_axisy\n",
116
+ "property float y_axisz\n",
117
+ "property float z_axisx\n",
118
+ "property float z_axisy\n",
119
+ "property float z_axisz\n",
120
+ "element phoxi_frame_params 1\n",
121
+ "property uint32 frame_width\n",
122
+ "property uint32 frame_height\n",
123
+ "property uint32 frame_index\n",
124
+ "property float frame_start_time\n",
125
+ "property float frame_duration\n",
126
+ "property float frame_computation_duration\n",
127
+ "property float frame_transfer_duration\n",
128
+ "property int32 total_scan_count\n",
129
+ "element camera_matrix 1\n",
130
+ "property float cm0\n",
131
+ "property float cm1\n",
132
+ "property float cm2\n",
133
+ "property float cm3\n",
134
+ "property float cm4\n",
135
+ "property float cm5\n",
136
+ "property float cm6\n",
137
+ "property float cm7\n",
138
+ "property float cm8\n",
139
+ "element distortion_matrix 1\n",
140
+ "property float dm0\n",
141
+ "property float dm1\n",
142
+ "property float dm2\n",
143
+ "property float dm3\n",
144
+ "property float dm4\n",
145
+ "property float dm5\n",
146
+ "property float dm6\n",
147
+ "property float dm7\n",
148
+ "property float dm8\n",
149
+ "property float dm9\n",
150
+ "property float dm10\n",
151
+ "property float dm11\n",
152
+ "property float dm12\n",
153
+ "property float dm13\n",
154
+ "element camera_resolution 1\n",
155
+ "property float width\n",
156
+ "property float height\n",
157
+ "element frame_binning 1\n",
158
+ "property float horizontal\n",
159
+ "property float vertical\n",
160
+ "end_header\n",
161
+ "\"\"\"\n",
162
+ "\n",
163
+ "#4. write 4file \n",
164
+ "\n",
165
+ "with open(output_filename,'w') as f:\n",
166
+ " f.write(new_header)\n",
167
+ "\n",
168
+ " for line in data_lines:\n",
169
+ " f.write(line)\n",
170
+ "\n",
171
+ "\n",
172
+ "print(\"\\n์ž‘์—… ์™„๋ฃŒ!\")\n",
173
+ "print(f\"'{output_filename}' ํŒŒ์ผ์ด ์„ฑ๊ณต์ ์œผ๋กœ ์ƒ์„ฑ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.\")\n"
174
+ ]
175
+ },
176
+ {
177
+ "cell_type": "markdown",
178
+ "metadata": {},
179
+ "source": [
180
+ "### Source PCD"
181
+ ]
182
+ },
183
+ {
184
+ "cell_type": "code",
185
+ "execution_count": null,
186
+ "metadata": {},
187
+ "outputs": [],
188
+ "source": []
189
+ },
190
+ {
191
+ "cell_type": "code",
192
+ "execution_count": 1274,
193
+ "metadata": {},
194
+ "outputs": [
195
+ {
196
+ "name": "stdout",
197
+ "output_type": "stream",
198
+ "text": [
199
+ "\u001b[1;33m[Open3D WARNING] Read PLY failed: unable to read file: ./initialized_result/initial_75_11.ply\u001b[0;m\n",
200
+ "Source shape: (6651, 3)\n"
201
+ ]
202
+ },
203
+ {
204
+ "name": "stderr",
205
+ "output_type": "stream",
206
+ "text": [
207
+ "RPly: Unexpected end of file\n",
208
+ "RPly: Error reading 'view_px' of 'camera' number 0\n"
209
+ ]
210
+ }
211
+ ],
212
+ "source": [
213
+ "\n",
214
+ "\n",
215
+ "\n",
216
+ "source_path = f\"./initialized_result/initial_{filename}.ply\"\n",
217
+ "\n",
218
+ "source_pcd = o3d.io.read_point_cloud(source_path)\n",
219
+ "\n",
220
+ "\n",
221
+ "\n",
222
+ "source_pcd_array = np.asarray(source_pcd.points)\n",
223
+ "print(\"Source shape:\", source_pcd_array.shape)\n",
224
+ "\n",
225
+ "coord_frame = o3d.geometry.TriangleMesh.create_coordinate_frame(size=50.0, origin=[0, 0, 0])\n",
226
+ "o3d.visualization.draw_geometries([source_pcd,coord_frame])"
227
+ ]
228
+ },
229
+ {
230
+ "cell_type": "code",
231
+ "execution_count": null,
232
+ "metadata": {},
233
+ "outputs": [],
234
+ "source": []
235
+ },
236
+ {
237
+ "cell_type": "markdown",
238
+ "metadata": {},
239
+ "source": [
240
+ "### Target PCD"
241
+ ]
242
+ },
243
+ {
244
+ "cell_type": "code",
245
+ "execution_count": 1275,
246
+ "metadata": {},
247
+ "outputs": [
248
+ {
249
+ "name": "stderr",
250
+ "output_type": "stream",
251
+ "text": [
252
+ "RPly: Unexpected end of file\n",
253
+ "RPly: Error reading 'view_px' of 'camera' number 0\n"
254
+ ]
255
+ },
256
+ {
257
+ "name": "stdout",
258
+ "output_type": "stream",
259
+ "text": [
260
+ "\u001b[1;33m[Open3D WARNING] Read PLY failed: unable to read file: gt_filtered.ply\u001b[0;m\n",
261
+ "Target shape: (50000, 3)\n"
262
+ ]
263
+ }
264
+ ],
265
+ "source": [
266
+ "target_path = f\"gt_filtered.ply\"\n",
267
+ "target_pcd = o3d.io.read_point_cloud(target_path)\n",
268
+ "\n",
269
+ "target_pcd_array = np.asarray(target_pcd.points)\n",
270
+ "print(\"Target shape:\", target_pcd_array.shape)\n",
271
+ "\n",
272
+ "o3d.visualization.draw_geometries([target_pcd, coord_frame])"
273
+ ]
274
+ },
275
+ {
276
+ "cell_type": "markdown",
277
+ "metadata": {},
278
+ "source": [
279
+ "## Execute termianl"
280
+ ]
281
+ },
282
+ {
283
+ "cell_type": "code",
284
+ "execution_count": 1276,
285
+ "metadata": {},
286
+ "outputs": [
287
+ {
288
+ "name": "stdout",
289
+ "output_type": "stream",
290
+ "text": [
291
+ "/home/cam/Fast-Robust-ICP/data/glasses\n",
292
+ "--- STDOUT (ํ‘œ์ค€ ์ถœ๋ ฅ) ---\n",
293
+ "๋ช…๋ น์–ด๊ฐ€ ์„ฑ๊ณต์ ์œผ๋กœ ์‹คํ–‰๋˜์—ˆ์Šต๋‹ˆ๋‹ค.\n",
294
+ "source: 3x6651\n",
295
+ "target: 3x50000\n",
296
+ "scale = 607.904\n",
297
+ "begin registration...\n",
298
+ "Registration done!\n",
299
+ "\n"
300
+ ]
301
+ }
302
+ ],
303
+ "source": [
304
+ "# ./FRICP ./data/bottle_2/gt_filtered.ply ./data/bottle_2/result/noisy_filtered_100_1.ply ./data/bottle_2/res 3 execute\n",
305
+ "import os\n",
306
+ "print(os.getcwd())\n",
307
+ "\n",
308
+ "import subprocess\n",
309
+ "\n",
310
+ "cmd = [\n",
311
+ " '../../FRICP',\n",
312
+ " './gt_filtered.ply',\n",
313
+ " f'./initialized_result/initial_{filename}.ply',\n",
314
+ " './res',\n",
315
+ " '3'\n",
316
+ "]\n",
317
+ "\n",
318
+ "try:\n",
319
+ " result = subprocess.run(cmd, capture_output=True, text=True, check=True)\n",
320
+ "\n",
321
+ " print(\"--- STDOUT (ํ‘œ์ค€ ์ถœ๋ ฅ) ---\")\n",
322
+ " print(\"๋ช…๋ น์–ด๊ฐ€ ์„ฑ๊ณต์ ์œผ๋กœ ์‹คํ–‰๋˜์—ˆ์Šต๋‹ˆ๋‹ค.\")\n",
323
+ " print(result.stdout)\n",
324
+ "\n",
325
+ "except FileNotFoundError:\n",
326
+ " print(\"--- ์—๋Ÿฌ ๋ฐœ์ƒ! ---\")\n",
327
+ " print(f\"'{cmd[0]}' ํŒŒ์ผ์„ ์ฐพ์„ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.\")\n",
328
+ " print(\"๊ฒฝ๋กœ๊ฐ€ ์˜ฌ๋ฐ”๋ฅธ์ง€, ํŒŒ์ผ์ด ๊ทธ ์œ„์น˜์— ์กด์žฌํ•˜๋Š”์ง€ ํ™•์ธํ•ด ์ฃผ์„ธ์š”.\")\n",
329
+ "\n",
330
+ "except subprocess.CalledProcessError as e:\n",
331
+ " print(\"--- ์—๋Ÿฌ ๋ฐœ์ƒ! ---\")\n",
332
+ " print(f\"๋ช…๋ น์–ด ์‹คํ–‰ ์ค‘ ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค. (์ข…๋ฃŒ ์ฝ”๋“œ: {e.returncode})\")\n",
333
+ " print(\"\\n--- STDERR (์—๋Ÿฌ ์›์ธ) ---\")\n",
334
+ " print(e.stderr)\n"
335
+ ]
336
+ },
337
+ {
338
+ "cell_type": "markdown",
339
+ "metadata": {},
340
+ "source": [
341
+ "### Change the path for result\n"
342
+ ]
343
+ },
344
+ {
345
+ "cell_type": "code",
346
+ "execution_count": 1277,
347
+ "metadata": {},
348
+ "outputs": [
349
+ {
350
+ "name": "stdout",
351
+ "output_type": "stream",
352
+ "text": [
353
+ "Successfully moved and renamed 'resm3reg_pc.ply' to './result/final_result_75_11.ply'\n",
354
+ "Successfully moved and renamed 'resm3trans.txt' to './result/final_result_75_11.txt'\n"
355
+ ]
356
+ }
357
+ ],
358
+ "source": [
359
+ "import shutil\n",
360
+ "import os\n",
361
+ "\n",
362
+ "transformed_path = \"resm3reg_pc.ply\"\n",
363
+ "destination_path = f\"./result/final_result_{filename}.ply\"\n",
364
+ "transformed_path2 = \"resm3trans.txt\"\n",
365
+ "destination_path2 = f\"./result/final_result_{filename}.txt\"\n",
366
+ "\n",
367
+ "shutil.move(transformed_path, destination_path)\n",
368
+ "print(f\"Successfully moved and renamed '{transformed_path}' to '{destination_path}'\")\n",
369
+ "\n",
370
+ "\n",
371
+ "\n",
372
+ "shutil.move(transformed_path2, destination_path2)\n",
373
+ "print(f\"Successfully moved and renamed '{transformed_path2}' to '{destination_path2}'\")\n",
374
+ "\n",
375
+ "\n"
376
+ ]
377
+ },
378
+ {
379
+ "cell_type": "markdown",
380
+ "metadata": {},
381
+ "source": [
382
+ "### Transformed Source PCD"
383
+ ]
384
+ },
385
+ {
386
+ "cell_type": "code",
387
+ "execution_count": 1278,
388
+ "metadata": {},
389
+ "outputs": [
390
+ {
391
+ "name": "stdout",
392
+ "output_type": "stream",
393
+ "text": [
394
+ "Transformed shape: (6651, 3)\n"
395
+ ]
396
+ }
397
+ ],
398
+ "source": [
399
+ "\n",
400
+ "transformed_pcd = o3d.io.read_point_cloud(destination_path)\n",
401
+ "\n",
402
+ "transformed_pcd_array = np.asarray(transformed_pcd.points)\n",
403
+ "print(\"Transformed shape:\", transformed_pcd_array.shape)\n",
404
+ "\n",
405
+ "o3d.visualization.draw_geometries([transformed_pcd, coord_frame])"
406
+ ]
407
+ },
408
+ {
409
+ "cell_type": "markdown",
410
+ "metadata": {},
411
+ "source": [
412
+ "### Source (Original) + Target"
413
+ ]
414
+ },
415
+ {
416
+ "cell_type": "code",
417
+ "execution_count": 1279,
418
+ "metadata": {},
419
+ "outputs": [],
420
+ "source": [
421
+ "source_pcd.paint_uniform_color([1, 0, 0])\n",
422
+ "target_pcd.paint_uniform_color([0, 1, 0])\n",
423
+ "\n",
424
+ "vis = o3d.visualization.Visualizer()\n",
425
+ "vis.create_window(window_name=\"Point Cloud Viewer\", width=1200, height=800, visible=True)\n",
426
+ "vis.add_geometry(source_pcd)\n",
427
+ "vis.add_geometry(target_pcd)\n",
428
+ "vis.add_geometry(coord_frame)\n",
429
+ "vis.run()\n",
430
+ "\n",
431
+ "\n",
432
+ "vis.destroy_window()"
433
+ ]
434
+ },
435
+ {
436
+ "cell_type": "markdown",
437
+ "metadata": {},
438
+ "source": [
439
+ "### Transformed + Target"
440
+ ]
441
+ },
442
+ {
443
+ "cell_type": "code",
444
+ "execution_count": 1280,
445
+ "metadata": {},
446
+ "outputs": [],
447
+ "source": [
448
+ "transformed_pcd.paint_uniform_color([1, 0, 0])\n",
449
+ "target_pcd.paint_uniform_color([0, 1, 0])\n",
450
+ "\n",
451
+ "vis = o3d.visualization.Visualizer()\n",
452
+ "vis.create_window(window_name=\"Point Cloud Viewer\", width=1200, height=800, visible=True)\n",
453
+ "vis.add_geometry(transformed_pcd)\n",
454
+ "vis.add_geometry(target_pcd)\n",
455
+ "vis.add_geometry(coord_frame)\n",
456
+ "vis.run()\n",
457
+ "vis.destroy_window()"
458
+ ]
459
+ }
460
+ ],
461
+ "metadata": {
462
+ "kernelspec": {
463
+ "display_name": "Python 3",
464
+ "language": "python",
465
+ "name": "python3"
466
+ },
467
+ "language_info": {
468
+ "codemirror_mode": {
469
+ "name": "ipython",
470
+ "version": 3
471
+ },
472
+ "file_extension": ".py",
473
+ "mimetype": "text/x-python",
474
+ "name": "python",
475
+ "nbconvert_exporter": "python",
476
+ "pygments_lexer": "ipython3",
477
+ "version": "3.10.12"
478
+ }
479
+ },
480
+ "nbformat": 4,
481
+ "nbformat_minor": 2
482
+ }
data/glasses/initial_guess(kiss_match).ipynb ADDED
@@ -0,0 +1,238 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "id": "c97d9003",
6
+ "metadata": {},
7
+ "source": [
8
+ "## PCD file transformation"
9
+ ]
10
+ },
11
+ {
12
+ "cell_type": "code",
13
+ "execution_count": 29,
14
+ "id": "57266b06",
15
+ "metadata": {},
16
+ "outputs": [
17
+ {
18
+ "name": "stdout",
19
+ "output_type": "stream",
20
+ "text": [
21
+ "0_24\n",
22
+ "\u001b[1;33m[Open3D WARNING] Read PLY failed: unable to read file: ./gt_filtered.ply\u001b[0;m\n",
23
+ "PLY ํŒŒ์ผ์ด PCD ํŒŒ์ผ๋กœ ์„ฑ๊ณต์ ์œผ๋กœ ๋ณ€ํ™˜๋˜์—ˆ์Šต๋‹ˆ๋‹ค.\n"
24
+ ]
25
+ },
26
+ {
27
+ "name": "stderr",
28
+ "output_type": "stream",
29
+ "text": [
30
+ "RPly: Unexpected end of file\n",
31
+ "RPly: Error reading 'view_px' of 'camera' number 0\n"
32
+ ]
33
+ }
34
+ ],
35
+ "source": [
36
+ "import open3d as o3d\n",
37
+ "import numpy as np\n",
38
+ "\n",
39
+ "file_names = []\n",
40
+ "with open('filename.txt', 'r') as f:\n",
41
+ " for line in f:\n",
42
+ " file_names.append(line.strip())\n",
43
+ "filename = file_names[0]\n",
44
+ "print(filename)\n",
45
+ "\n",
46
+ "\n",
47
+ "# PLY ํŒŒ์ผ ์ฝ๊ธฐ\n",
48
+ "pcd = o3d.io.read_point_cloud(\"./gt_filtered.ply\")\n",
49
+ "\n",
50
+ "# PCD ํŒŒ์ผ๋กœ ์ €์žฅ (๋ฐ”์ด๋„ˆ๋ฆฌ ํ˜•์‹)\n",
51
+ "o3d.io.write_point_cloud(\"./initialize_pcdfile/gt_filtered.pcd\", pcd)\n",
52
+ "\n",
53
+ "# ๋งŒ์•ฝ ASCII ํ˜•์‹์œผ๋กœ ์ €์žฅํ•˜๊ณ  ์‹ถ๋‹ค๋ฉด:\n",
54
+ "# o3d.io.write_point_cloud(\"output_ascii.pcd\", pcd, write_ascii=True)\n",
55
+ "\n",
56
+ "print(\"PLY ํŒŒ์ผ์ด PCD ํŒŒ์ผ๋กœ ์„ฑ๊ณต์ ์œผ๋กœ ๋ณ€ํ™˜๋˜์—ˆ์Šต๋‹ˆ๋‹ค.\")"
57
+ ]
58
+ },
59
+ {
60
+ "cell_type": "code",
61
+ "execution_count": 30,
62
+ "id": "8b0bc642",
63
+ "metadata": {},
64
+ "outputs": [
65
+ {
66
+ "name": "stdout",
67
+ "output_type": "stream",
68
+ "text": [
69
+ "\u001b[1;33m[Open3D WARNING] Read PLY failed: unable to read file: ./noisy_result/noisy_filtered_0_24.ply\u001b[0;m\n",
70
+ "PLY ํŒŒ์ผ์ด PCD ํŒŒ์ผ๋กœ ์„ฑ๊ณต์ ์œผ๋กœ ๋ณ€ํ™˜๋˜์—ˆ์Šต๋‹ˆ๋‹ค.\n"
71
+ ]
72
+ },
73
+ {
74
+ "name": "stderr",
75
+ "output_type": "stream",
76
+ "text": [
77
+ "RPly: Unexpected end of file\n",
78
+ "RPly: Error reading 'view_px' of 'camera' number 0\n"
79
+ ]
80
+ }
81
+ ],
82
+ "source": [
83
+ "# PLY ํŒŒ์ผ ์ฝ๊ธฐ\n",
84
+ "pcd = o3d.io.read_point_cloud(f\"./noisy_result/noisy_filtered_{filename}.ply\")\n",
85
+ "\n",
86
+ "# PCD ํŒŒ์ผ๋กœ ์ €์žฅ (๋ฐ”์ด๋„ˆ๋ฆฌ ํ˜•์‹)\n",
87
+ "o3d.io.write_point_cloud(f\"./initialize_pcdfile/first_{filename}.pcd\", pcd)\n",
88
+ "\n",
89
+ "# ๋งŒ์•ฝ ASCII ํ˜•์‹์œผ๋กœ ์ €์žฅํ•˜๊ณ  ์‹ถ๋‹ค๋ฉด:\n",
90
+ "# o3d.io.write_point_cloud(\"output_ascii.pcd\", pcd, write_ascii=True)\n",
91
+ "\n",
92
+ "print(\"PLY ํŒŒ์ผ์ด PCD ํŒŒ์ผ๋กœ ์„ฑ๊ณต์ ์œผ๋กœ ๋ณ€ํ™˜๋˜์—ˆ์Šต๋‹ˆ๋‹ค.\")"
93
+ ]
94
+ },
95
+ {
96
+ "cell_type": "markdown",
97
+ "id": "fcdc0f5e",
98
+ "metadata": {},
99
+ "source": [
100
+ "## Execute initial Guess"
101
+ ]
102
+ },
103
+ {
104
+ "cell_type": "code",
105
+ "execution_count": 31,
106
+ "id": "5d191e44",
107
+ "metadata": {},
108
+ "outputs": [
109
+ {
110
+ "name": "stdout",
111
+ "output_type": "stream",
112
+ "text": [
113
+ "/home/cam/Fast-Robust-ICP/data/glasses\n",
114
+ "--- STDOUT (ํ‘œ์ค€ ์ถœ๋ ฅ) ---\n",
115
+ "๋ช…๋ น์–ด๊ฐ€ ์„ฑ๊ณต์ ์œผ๋กœ ์‹คํ–‰๋˜์—ˆ์Šต๋‹ˆ๋‹ค.\n",
116
+ "Loaded source point cloud: (2537, 3)\n",
117
+ "Loaded target point cloud: (50000, 3)\n",
118
+ "Resolution: 0.5\n",
119
+ "Yaw Augmentation Angle: None\n",
120
+ "============== Time ==============\n",
121
+ "Voxelization: 0.00200241 sec\n",
122
+ "Extraction : 0.0745216 sec\n",
123
+ "Pruning : 0.011958 sec\n",
124
+ "Matching : 0.0433352 sec\n",
125
+ "Solving : 2.9214e-05 sec\n",
126
+ "----------------------------------\n",
127
+ "\u001b[1;32mTotal : 0.131847 sec\u001b[0m\n",
128
+ "====== # of correspondences ======\n",
129
+ "# initial pairs : 46\n",
130
+ "# pruned pairs : 13\n",
131
+ "----------------------------------\n",
132
+ "\u001b[1;36m# rot inliers : 4\n",
133
+ "# trans inliers : 4\u001b[0m\n",
134
+ "==================================\n",
135
+ "\u001b[1;33m=> Registration might have failed :(\u001b[0m\n",
136
+ "\n",
137
+ "<_kiss_matcher.RegistrationSolution object at 0x71aad89217b0>\n",
138
+ "ply complete.\n",
139
+ "1.0์ดˆ ๋™์•ˆ ์‹œ๊ฐํ™” ์ฐฝ์„ ํ‘œ์‹œํ•ฉ๋‹ˆ๋‹ค...\n",
140
+ "Visualization complete.\n",
141
+ "\n"
142
+ ]
143
+ }
144
+ ],
145
+ "source": [
146
+ "import os\n",
147
+ "print(os.getcwd())\n",
148
+ "\n",
149
+ "import subprocess\n",
150
+ "\n",
151
+ "cmd = [\n",
152
+ " 'python3',\n",
153
+ " '../../../KISS-Matcher/python/examples/run_kiss_matcher.py',\n",
154
+ " '--src_path',\n",
155
+ " f'./initialize_pcdfile/first_{filename}.pcd',\n",
156
+ " '--tgt_path',\n",
157
+ " './initialize_pcdfile/gt_filtered.pcd',\n",
158
+ " '--resolution',\n",
159
+ " '0.5'\n",
160
+ "\n",
161
+ "]\n",
162
+ "try:\n",
163
+ " result = subprocess.run(cmd, capture_output=True, text=True, check=True)\n",
164
+ "\n",
165
+ " print(\"--- STDOUT (ํ‘œ์ค€ ์ถœ๋ ฅ) ---\")\n",
166
+ " print(\"๋ช…๋ น์–ด๊ฐ€ ์„ฑ๊ณต์ ์œผ๋กœ ์‹คํ–‰๋˜์—ˆ์Šต๋‹ˆ๋‹ค.\")\n",
167
+ " print(result.stdout)\n",
168
+ "\n",
169
+ "except FileNotFoundError:\n",
170
+ " print(\"--- ์—๋Ÿฌ ๋ฐœ์ƒ! ---\")\n",
171
+ " print(f\"'{cmd[0]}' ํŒŒ์ผ์„ ์ฐพ์„ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.\")\n",
172
+ " print(\"๊ฒฝ๋กœ๊ฐ€ ์˜ฌ๋ฐ”๋ฅธ์ง€, ํŒŒ์ผ์ด ๊ทธ ์œ„์น˜์— ์กด์žฌํ•˜๋Š”์ง€ ํ™•์ธํ•ด ์ฃผ์„ธ์š”.\")\n",
173
+ "\n",
174
+ "except subprocess.CalledProcessError as e:\n",
175
+ " print(\"--- ์—๋Ÿฌ ๋ฐœ์ƒ! ---\")\n",
176
+ " print(f\"๋ช…๋ น์–ด ์‹คํ–‰ ์ค‘ ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค. (์ข…๋ฃŒ ์ฝ”๋“œ: {e.returncode})\")\n",
177
+ " print(\"\\n--- STDERR (์—๋Ÿฌ ์›์ธ) ---\")\n",
178
+ " print(e.stderr)\n"
179
+ ]
180
+ },
181
+ {
182
+ "cell_type": "markdown",
183
+ "id": "0128f9e3",
184
+ "metadata": {},
185
+ "source": [
186
+ "## Saving initialized data\n"
187
+ ]
188
+ },
189
+ {
190
+ "cell_type": "code",
191
+ "execution_count": 32,
192
+ "id": "63441612",
193
+ "metadata": {},
194
+ "outputs": [
195
+ {
196
+ "name": "stdout",
197
+ "output_type": "stream",
198
+ "text": [
199
+ "Successfully moved and renamed 'output.ply' to './initialized_result/initial_0_24.ply'\n"
200
+ ]
201
+ }
202
+ ],
203
+ "source": [
204
+ "import shutil\n",
205
+ "import os\n",
206
+ "\n",
207
+ "transformed_path = \"output.ply\"\n",
208
+ "destination_path = f\"./initialized_result/initial_{filename}.ply\"\n",
209
+ "\n",
210
+ "\n",
211
+ "shutil.move(transformed_path, destination_path)\n",
212
+ "print(f\"Successfully moved and renamed '{transformed_path}' to '{destination_path}'\")\n",
213
+ "\n"
214
+ ]
215
+ }
216
+ ],
217
+ "metadata": {
218
+ "kernelspec": {
219
+ "display_name": "Python 3",
220
+ "language": "python",
221
+ "name": "python3"
222
+ },
223
+ "language_info": {
224
+ "codemirror_mode": {
225
+ "name": "ipython",
226
+ "version": 3
227
+ },
228
+ "file_extension": ".py",
229
+ "mimetype": "text/x-python",
230
+ "name": "python",
231
+ "nbconvert_exporter": "python",
232
+ "pygments_lexer": "ipython3",
233
+ "version": "3.10.12"
234
+ }
235
+ },
236
+ "nbformat": 4,
237
+ "nbformat_minor": 5
238
+ }
data/glasses/merged.py ADDED
@@ -0,0 +1,494 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding: utf-8
3
+
4
+ # In[ ]:
5
+
6
+ import json
7
+ import os
8
+ import open3d as o3d
9
+ import numpy as np
10
+
11
+
12
+ mesh = o3d.io.read_triangle_mesh("./source.stl")
13
+ pointcloud = mesh.sample_points_poisson_disk(50000)
14
+ coord_frame = o3d.geometry.TriangleMesh.create_coordinate_frame(size=50.0, origin=[0, 0, 0])
15
+ mesh.compute_vertex_normals()
16
+ mesh_triangles = np.asarray(mesh.triangles)
17
+ vertex_positions = np.asarray(mesh.vertices)
18
+ triangle_normals = np.asarray(mesh.triangle_normals)
19
+ # ๊ฐ์ฒด์˜ ์ค‘์‹ฌ์  ๊ณ„์‚ฐ
20
+ centroid = mesh.get_center()
21
+
22
+
23
+ # ๋ฐ์ดํ„ฐ์…‹ ํด๋”์™€ JSON ํŒŒ์ผ ๊ฒฝ๋กœ
24
+ folder = "./dataset"
25
+ json_path = "ply_files.json"
26
+
27
+ # 1. ๊ฐ ์นดํ…Œ๊ณ ๋ฆฌ์— ํ•ด๋‹นํ•˜๋Š” resolution ๊ฐ’์„ ๋”•์…”๋„ˆ๋ฆฌ๋กœ ์ •์˜ํ•ฉ๋‹ˆ๋‹ค.
28
+ # ์ด ๊ฐ’์„ ์กฐ์ ˆํ•˜์—ฌ ์นดํ…Œ๊ณ ๋ฆฌ๋ณ„ ์„ค์ •์„ ๋ณ€๊ฒฝํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
29
+ resolutions = {
30
+ "100": 1.0,
31
+ "75": 0.8,
32
+ "50": 0.8,
33
+ "25": 0.8,
34
+ "0": 0.8
35
+ }
36
+
37
+ # 2. ๋ถ„๋ฅ˜๋œ ํŒŒ์ผ ๋ชฉ๋ก์ด ๋‹ด๊ธด JSON ํŒŒ์ผ์„ ์ฝ์–ด์˜ต๋‹ˆ๋‹ค.
38
+ try:
39
+ with open(json_path, "r", encoding="utf-8") as f:
40
+ categorized_files = json.load(f)
41
+ except FileNotFoundError:
42
+ print(f"์˜ค๋ฅ˜: '{json_path}' ํŒŒ์ผ์„ ์ฐพ์„ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค. ๋จผ์ € ํŒŒ์ผ ๋ถ„๋ฅ˜ ์ฝ”๋“œ๋ฅผ ์‹คํ–‰ํ•ด ์ฃผ์„ธ์š”.")
43
+ exit() # ํŒŒ์ผ์ด ์—†์œผ๋ฉด ํ”„๋กœ๊ทธ๋žจ ์ข…๋ฃŒ
44
+
45
+ # 3. ๋ชจ๋“  ์นดํ…Œ๊ณ ๋ฆฌ์™€ ํŒŒ์ผ์„ ์ˆœํšŒํ•˜๋Š” ๋ฐ˜๋ณต๋ฌธ
46
+ print("=== ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ ์‹œ์ž‘ ===")
47
+
48
+ # resolutions ๋”•์…”๋„ˆ๋ฆฌ๋ฅผ ๊ธฐ์ค€์œผ๋กœ ์™ธ๋ถ€ ๋ฃจํ”„๋ฅผ ์‹คํ–‰ํ•ฉ๋‹ˆ๋‹ค.
49
+ for category, resolution in resolutions.items():
50
+
51
+ print(f"\n--- [์นดํ…Œ๊ณ ๋ฆฌ: {category}, ํ•ด์ƒ๋„: {resolution}] ์ฒ˜๋ฆฌ ์‹œ์ž‘ ---")
52
+
53
+ # JSON์—์„œ ํ˜„์žฌ ์นดํ…Œ๊ณ ๋ฆฌ์— ํ•ด๋‹นํ•˜๋Š” ํŒŒ์ผ ๋ฆฌ์ŠคํŠธ๋ฅผ ๊ฐ€์ ธ์˜ต๋‹ˆ๋‹ค.
54
+ # .get(category, [])๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด JSON์— ํ•ด๋‹น ์นดํ…Œ๊ณ ๋ฆฌ๊ฐ€ ์—†์–ด๋„ ์˜ค๋ฅ˜ ์—†์ด ๋นˆ ๋ฆฌ์ŠคํŠธ๋ฅผ ๋ฐ˜ํ™˜ํ•ฉ๋‹ˆ๋‹ค.
55
+ filenames_in_category = categorized_files.get(category, [])
56
+
57
+ if not filenames_in_category:
58
+ print("์ฒ˜๋ฆฌํ•  ํŒŒ์ผ์ด ์—†์Šต๋‹ˆ๋‹ค.")
59
+ continue # ํŒŒ์ผ์ด ์—†์œผ๋ฉด ๋‹ค์Œ ์นดํ…Œ๊ณ ๋ฆฌ๋กœ ๋„˜์–ด๊ฐ
60
+
61
+ # ๋‚ด๋ถ€ ๋ฃจํ”„์—์„œ ํ•ด๋‹น ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๋ชจ๋“  ํŒŒ์ผ์„ ํ•˜๋‚˜์”ฉ ์ฒ˜๋ฆฌํ•ฉ๋‹ˆ๋‹ค.
62
+ for filename in filenames_in_category:
63
+
64
+ # ์‹ค์ œ ํŒŒ์ผ ๊ฒฝ๋กœ๋ฅผ ๋งŒ๋“ญ๋‹ˆ๋‹ค. (JSON์—๋Š” ํ™•์žฅ์ž๊ฐ€ ์—†์œผ๋ฏ€๋กœ .ply๋ฅผ ๋ถ™์—ฌ์ค๋‹ˆ๋‹ค)
65
+ file_path = os.path.join(folder, f"{filename}.ply")
66
+
67
+ print(f" - ํŒŒ์ผ ์ฒ˜๋ฆฌ ์ค‘: {file_path} (ํ•ด์ƒ๋„: {resolution})")
68
+
69
+
70
+ filename = filename
71
+ # PLY ํŒŒ์ผ ๋กœ๋“œ
72
+ pcd = o3d.io.read_point_cloud(f"./dataset/{filename}.ply")
73
+
74
+ GT = False
75
+ if GT==True:
76
+ mesh = o3d.io.read_triangle_mesh("./bottle2.stl")
77
+ pointcloud = mesh.sample_points_poisson_disk(50000)
78
+ coord_frame = o3d.geometry.TriangleMesh.create_coordinate_frame(size=50.0, origin=[0, 0, 0])
79
+
80
+ mesh.compute_vertex_normals()
81
+ mesh_triangles = np.asarray(mesh.triangles)
82
+ vertex_positions = np.asarray(mesh.vertices)
83
+ triangle_normals = np.asarray(mesh.triangle_normals)
84
+
85
+ # ๊ฐ์ฒด์˜ ์ค‘์‹ฌ์  ๊ณ„์‚ฐ
86
+ centroid = mesh.get_center()
87
+ filtered_triangles = []
88
+ for i, triangle in enumerate(mesh_triangles):
89
+ # ์‚ผ๊ฐํ˜•์˜ ์ค‘์‹ฌ์  ๊ณ„์‚ฐ
90
+ tri_center = vertex_positions[triangle].mean(axis=0)
91
+ # ๊ฐ์ฒด ์ค‘์‹ฌ์—์„œ ์‚ผ๊ฐํ˜• ์ค‘์‹ฌ์œผ๋กœ ํ–ฅํ•˜๋Š” ๋ฒกํ„ฐ
92
+ vec_to_center = tri_center - centroid
93
+ # ๋ฒ•์„  ๋ฒกํ„ฐ์™€ ๋ฐฉํ–ฅ ๋ฒกํ„ฐ๋ฅผ ๋‚ด์ 
94
+ dot_product = np.dot(triangle_normals[i], vec_to_center)
95
+ # ๋‚ด์  ๊ฐ’์ด ์–‘์ˆ˜์ด๋ฉด ๋ฐ”๊นฅ์ชฝ ๋ฉด์œผ๋กœ ํŒ๋‹จ
96
+ if dot_product > 0:
97
+ filtered_triangles.append(triangle)
98
+ # 3. ํ•„ํ„ฐ๋ง๋œ ๋ฉด์œผ๋กœ ์ƒˆ๋กœ์šด ๋ฉ”์‰ฌ ์ƒ์„ฑ
99
+ outer_mesh = o3d.geometry.TriangleMesh()
100
+ outer_mesh.vertices = mesh.vertices
101
+ outer_mesh.triangles = o3d.utility.Vector3iVector(np.array(filtered_triangles))
102
+ # 4. ์ƒˆ๋กœ์šด ๋ฉ”์‰ฌ์—์„œ ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ ์ƒ˜ํ”Œ๋ง
103
+ # n_points๋Š” ์ƒ˜ํ”Œ๋งํ•  ํฌ์ธํŠธ ๊ฐœ์ˆ˜
104
+ pcd = outer_mesh.sample_points_uniformly(number_of_points=50000)
105
+ # ๊ฒฐ๊ณผ ์‹œ๊ฐํ™”
106
+ # o3d.visualization.draw_geometries([pcd,coord_frame ])
107
+
108
+
109
+
110
+
111
+ pcd_array = np.asarray(pcd.points)
112
+
113
+
114
+ # In[160]:
115
+
116
+
117
+ import open3d as o3d
118
+ import numpy as np
119
+
120
+
121
+ if not GT:
122
+ ply_path = f"./dataset/{filename}.ply"
123
+
124
+ pcd = o3d.io.read_point_cloud(ply_path)
125
+ print(ply_path)
126
+
127
+
128
+ pcd_array = np.asarray(pcd.points)
129
+ print(pcd_array.shape)
130
+
131
+ coord_frame = o3d.geometry.TriangleMesh.create_coordinate_frame(size=50.0, origin=[0, 0, 0])
132
+ # o3d.visualization.draw_geometries([pcd, coord_frame])
133
+
134
+
135
+ # In[161]:
136
+
137
+
138
+ if GT==False:
139
+
140
+ new_pcd_array = np.unique(pcd_array, axis=0)
141
+
142
+ # new_pcd_array = new_pcd_array[new_pcd_array[:, 2] < 580]
143
+ new_pcd_array = new_pcd_array[new_pcd_array[:, 2] < 1000]
144
+
145
+ # new_pcd_array = new_pcd_array[new_pcd_array[:, 1] > -100]
146
+ new_pcd_array = new_pcd_array[new_pcd_array[:, 1] > -1000] #diagonal
147
+ new_pcd_array = new_pcd_array[new_pcd_array[:, 1] < 120]
148
+ new_pcd_array = new_pcd_array[new_pcd_array[:, 0] > -1000]
149
+ new_pcd_array = new_pcd_array[new_pcd_array[:, 0] < 1000] #diagonal
150
+ # new_pcd_array = new_pcd_array[new_pcd_array[:, 0] < 100]
151
+ # new_pcd_array -= np.mean(new_pcd_array, axis=0)
152
+ print(np.mean(new_pcd_array, axis=0))
153
+
154
+ new_pcd = o3d.geometry.PointCloud()
155
+ new_pcd.points = o3d.utility.Vector3dVector(new_pcd_array)
156
+
157
+ theta = np.radians(90)
158
+ # theta = np.radians(-90)
159
+
160
+
161
+ new_pcd_array = np.asarray(new_pcd.points)
162
+
163
+ coord_frame = o3d.geometry.TriangleMesh.create_coordinate_frame(size=50.0, origin=[0, 0, 0])
164
+ # o3d.visualization.draw_geometries([new_pcd, coord_frame])
165
+
166
+
167
+ # ## Delete ground plane
168
+
169
+ # In[162]:
170
+
171
+
172
+ if GT==False:
173
+
174
+ plane_model, inliers = new_pcd.segment_plane(distance_threshold=1,
175
+ ransac_n=10,
176
+ num_iterations=1000)
177
+ [a, b, c, d] = plane_model
178
+ print(f"Plane equation: {a:.2f}x + {b:.2f}y + {c:.2f}z + {d:.2f} = 0")
179
+
180
+
181
+
182
+ inlier_cloud = new_pcd.select_by_index(inliers)
183
+ inlier_cloud.paint_uniform_color([1.0, 0, 1.0])
184
+ outlier_cloud = new_pcd.select_by_index(inliers, invert=True)
185
+ # o3d.visualization.draw_geometries([inlier_cloud, outlier_cloud],
186
+ # zoom=0.8,
187
+ # front=[-0.4999, -0.1659, -0.8499],
188
+ # lookat=[2.1813, 2.0619, 2.0999],
189
+ # up=[0.1204, -0.9852, 0.1215])
190
+
191
+ new_pcd = outlier_cloud
192
+
193
+ new_pcd_array = np.asarray(new_pcd.points)
194
+
195
+
196
+
197
+
198
+ # ### Changing the source position "gt_filtered"
199
+ #
200
+
201
+ # In[163]:
202
+
203
+
204
+ CHECK_PERTURB = GT
205
+
206
+ def random_rotation_matrix():
207
+ """
208
+ Generate a random 3x3 rotation matrix (SO(3) matrix).
209
+
210
+ Uses the method described by James Arvo in "Fast Random Rotation Matrices" (1992):
211
+ 1. Generate a random unit vector for rotation axis
212
+ 2. Generate a random angle
213
+ 3. Create rotation matrix using Rodriguez rotation formula
214
+
215
+ Returns:
216
+ numpy.ndarray: A 3x3 random rotation matrix
217
+ """
218
+ ## for ground target
219
+ # Generate random angle ฯ€/2
220
+ theta = 0
221
+
222
+
223
+ # axis is -y
224
+ axis = np.array([
225
+ 1,
226
+ 0,
227
+ 0,
228
+ ])
229
+
230
+ # for lying target
231
+ # theta will be pi/2
232
+ # theta = np.pi/2
233
+ # axis = np.array([
234
+ # 0,
235
+ # 1,
236
+ # 0,
237
+ # ])
238
+
239
+
240
+
241
+
242
+ # Normalize to ensure it's a unit vector
243
+ axis = axis / np.linalg.norm(axis)
244
+
245
+
246
+
247
+ # Create the cross-product matrix K skew-symmetric
248
+ K = np.array([
249
+ [0, -axis[2], axis[1]],
250
+ [axis[2], 0, -axis[0]],
251
+ [-axis[1], axis[0], 0]
252
+ ])
253
+
254
+ # Rodriguez rotation formula: R = I + sin(ฮธ)K + (1-cos(ฮธ))Kยฒ
255
+ R = (np.eye(3) +
256
+ np.sin(theta) * K +
257
+ (1 - np.cos(theta)) * np.dot(K, K))
258
+
259
+ return R
260
+
261
+ if CHECK_PERTURB:
262
+ R_pert = random_rotation_matrix()
263
+ print(R_pert)
264
+ t_pert = np.array([
265
+ 0,
266
+ 0,
267
+ 0
268
+ ])
269
+
270
+
271
+ perturbed_pcd_array = np.dot(R_pert, pcd_array.T).T + t_pert.T
272
+
273
+
274
+ perturbed_pcd = o3d.geometry.PointCloud()
275
+ perturbed_pcd.points = o3d.utility.Vector3dVector(perturbed_pcd_array)
276
+ coord_frame = o3d.geometry.TriangleMesh.create_coordinate_frame(size=50.0, origin=[0, 0, 0])
277
+ # o3d.visualization.draw_geometries([perturbed_pcd, coord_frame])
278
+
279
+
280
+ # ### Rotate randomly in Target "noisy filtered"
281
+
282
+ # In[164]:
283
+
284
+
285
+ CHECK_PERTURB = not GT
286
+
287
+
288
+ if CHECK_PERTURB:
289
+ # R_pert = random_rotation_matrix()
290
+ # print(R_pert)
291
+ # t_pert = np.random.rand(3, 1)*3 #* 10
292
+
293
+
294
+ # perturbed_pcd_array = np.dot(R_pert, new_pcd_array.T).T + t_pert.T
295
+ perturbed_pcd_array = new_pcd_array
296
+ perturbed_pcd = o3d.geometry.PointCloud()
297
+ perturbed_pcd.points = o3d.utility.Vector3dVector(perturbed_pcd_array)
298
+
299
+ now_centeroid = perturbed_pcd.get_center()
300
+ perturbed_pcd.translate(centroid, relative=False)
301
+
302
+ ## get centeroid vector
303
+
304
+ translation_vector = centroid - now_centeroid
305
+
306
+ np.savetxt(f"./centroid/{filename}.txt",translation_vector)
307
+
308
+ ##### changed
309
+ perturbed_pcd_array = np.asarray(perturbed_pcd.points)
310
+ coord_frame = o3d.geometry.TriangleMesh.create_coordinate_frame(size=50.0, origin=[0, 0, 0])
311
+
312
+
313
+
314
+
315
+
316
+ # o3d.visualization.draw_geometries([perturbed_pcd, coord_frame])
317
+
318
+
319
+ # In[165]:
320
+
321
+
322
+ def write_ply(points, output_path):
323
+ """
324
+ Write points and parameters to a PLY file
325
+
326
+ Parameters:
327
+ points: numpy array of shape (N, 3) containing point coordinates
328
+ output_path: path to save the PLY file
329
+ """
330
+ with open(output_path, 'w') as f:
331
+ # Write header
332
+ f.write("ply\n")
333
+ f.write("format ascii 1.0\n")
334
+
335
+ # Write vertex element
336
+ f.write(f"element vertex {len(points)}\n")
337
+ f.write("property float x\n")
338
+ f.write("property float y\n")
339
+ f.write("property float z\n")
340
+
341
+ # Write camera element
342
+ f.write("element camera 1\n")
343
+ f.write("property float view_px\n")
344
+ f.write("property float view_py\n")
345
+ f.write("property float view_pz\n")
346
+ f.write("property float x_axisx\n")
347
+ f.write("property float x_axisy\n")
348
+ f.write("property float x_axisz\n")
349
+ f.write("property float y_axisx\n")
350
+ f.write("property float y_axisy\n")
351
+ f.write("property float y_axisz\n")
352
+ f.write("property float z_axisx\n")
353
+ f.write("property float z_axisy\n")
354
+ f.write("property float z_axisz\n")
355
+
356
+ # Write phoxi frame parameters
357
+ f.write("element phoxi_frame_params 1\n")
358
+ f.write("property uint32 frame_width\n")
359
+ f.write("property uint32 frame_height\n")
360
+ f.write("property uint32 frame_index\n")
361
+ f.write("property float frame_start_time\n")
362
+ f.write("property float frame_duration\n")
363
+ f.write("property float frame_computation_duration\n")
364
+ f.write("property float frame_transfer_duration\n")
365
+ f.write("property int32 total_scan_count\n")
366
+
367
+ # Write camera matrix
368
+ f.write("element camera_matrix 1\n")
369
+ for i in range(9):
370
+ f.write(f"property float cm{i}\n")
371
+
372
+ # Write distortion matrix
373
+ f.write("element distortion_matrix 1\n")
374
+ for i in range(14):
375
+ f.write(f"property float dm{i}\n")
376
+
377
+ # Write camera resolution
378
+ f.write("element camera_resolution 1\n")
379
+ f.write("property float width\n")
380
+ f.write("property float height\n")
381
+
382
+ # Write frame binning
383
+ f.write("element frame_binning 1\n")
384
+ f.write("property float horizontal\n")
385
+ f.write("property float vertical\n")
386
+
387
+ # End header
388
+ f.write("end_header\n")
389
+
390
+ # Write vertex data
391
+ for point in points:
392
+ f.write(f"{point[0]} {point[1]} {point[2]}\n")
393
+
394
+ print(True)
395
+
396
+ if GT: write_ply(perturbed_pcd_array, f"gt_filtered.ply")
397
+ else:
398
+ write_ply(perturbed_pcd_array, f"./noisy_result/noisy_filtered_{filename}.ply")
399
+ write_ply(new_pcd_array,f"./noisy_raw/noisy_filtered_{filename}.ply")
400
+ # write_ply(new_pcd_array, "gt_filtered.ply")
401
+
402
+ #!/usr/bin/env python
403
+ # coding: utf-8
404
+
405
+ # ## PCD file transformation
406
+
407
+ # In[18]:
408
+
409
+
410
+ # PLY ํŒŒ์ผ ์ฝ๊ธฐ
411
+ pcd = o3d.io.read_point_cloud("./gt_filtered.ply")
412
+
413
+ # PCD ํŒŒ์ผ๋กœ ์ €์žฅ (๋ฐ”์ด๋„ˆ๋ฆฌ ํ˜•์‹)
414
+ o3d.io.write_point_cloud("./initialize_pcdfile/gt_filtered.pcd", pcd)
415
+
416
+ # ๋งŒ์•ฝ ASCII ํ˜•์‹์œผ๋กœ ์ €์žฅํ•˜๊ณ  ์‹ถ๋‹ค๋ฉด:
417
+ # o3d.io.write_point_cloud("output_ascii.pcd", pcd, write_ascii=True)
418
+
419
+ print("PLY ํŒŒ์ผ์ด PCD ํŒŒ์ผ๋กœ ์„ฑ๊ณต์ ์œผ๋กœ ๋ณ€ํ™˜๋˜์—ˆ์Šต๋‹ˆ๋‹ค.")
420
+
421
+
422
+ # In[19]:
423
+
424
+
425
+ # PLY ํŒŒ์ผ ์ฝ๊ธฐ
426
+ pcd = o3d.io.read_point_cloud(f"./noisy_result/noisy_filtered_{filename}.ply")
427
+
428
+ # PCD ํŒŒ์ผ๋กœ ์ €์žฅ (๋ฐ”์ด๋„ˆ๋ฆฌ ํ˜•์‹)
429
+ o3d.io.write_point_cloud(f"./initialize_pcdfile/first_{filename}.pcd", pcd)
430
+
431
+ # ๋งŒ์•ฝ ASCII ํ˜•์‹์œผ๋กœ ์ €์žฅํ•˜๊ณ  ์‹ถ๋‹ค๋ฉด:
432
+ # o3d.io.write_point_cloud("output_ascii.pcd", pcd, write_ascii=True)
433
+
434
+ print("PLY ํŒŒ์ผ์ด PCD ํŒŒ์ผ๋กœ ์„ฑ๊ณต์ ์œผ๋กœ ๋ณ€ํ™˜๋˜์—ˆ์Šต๋‹ˆ๋‹ค.")
435
+
436
+
437
+ # ## Execute initial Guess
438
+
439
+ # In[20]:
440
+
441
+
442
+ # import os
443
+ # print(os.getcwd())
444
+
445
+ # import subprocess
446
+
447
+ # cmd = [
448
+ # 'python3',
449
+ # '../../../KISS-Matcher/python/examples/run_kiss_matcher.py',
450
+ # '--src_path',
451
+ # f'./initialize_pcdfile/first_{filename}.pcd',
452
+ # '--tgt_path',
453
+ # './initialize_pcdfile/gt_filtered.pcd',
454
+ # '--resolution',
455
+ # '1'
456
+
457
+ # ]
458
+ # try:
459
+ # result = subprocess.run(cmd, capture_output=True, text=True, check=True)
460
+
461
+ # print("--- STDOUT (ํ‘œ์ค€ ์ถœ๋ ฅ) ---")
462
+ # print("๋ช…๋ น์–ด๊ฐ€ ์„ฑ๊ณต์ ์œผ๋กœ ์‹คํ–‰๋˜์—ˆ์Šต๋‹ˆ๋‹ค.")
463
+ # print(result.stdout)
464
+
465
+ # except FileNotFoundError:
466
+ # print("--- ์—๋Ÿฌ ๋ฐœ์ƒ! ---")
467
+ # print(f"'{cmd[0]}' ํŒŒ์ผ์„ ์ฐพ์„ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.")
468
+ # print("๊ฒฝ๋กœ๊ฐ€ ์˜ฌ๋ฐ”๋ฅธ์ง€, ํŒŒ์ผ์ด ๊ทธ ์œ„์น˜์— ์กด์žฌํ•˜๋Š”์ง€ ํ™•์ธํ•ด ์ฃผ์„ธ์š”.")
469
+
470
+ # except subprocess.CalledProcessError as e:
471
+ # print("--- ์—๋Ÿฌ ๋ฐœ์ƒ! ---")
472
+ # print(f"๋ช…๋ น์–ด ์‹คํ–‰ ์ค‘ ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค. (์ข…๋ฃŒ ์ฝ”๋“œ: {e.returncode})")
473
+ # print("\n--- STDERR (์—๋Ÿฌ ์›์ธ) ---")
474
+ # print(e.stderr)
475
+
476
+
477
+ # # ## Saving initialized data
478
+ # #
479
+
480
+ # # In[21]:
481
+
482
+
483
+ # import shutil
484
+ # import os
485
+
486
+ # transformed_path = "output.ply"
487
+ # destination_path = f"./initialized_result/initial_{filename}.ply"
488
+
489
+
490
+ # shutil.move(transformed_path, destination_path)
491
+ # print(f"Successfully moved and renamed '{transformed_path}' to '{destination_path}'")
492
+
493
+
494
+
data/glasses/output_trans.txt ADDED
The diff for this file is too large to render. See raw diff
 
data/glasses/ply_files.json ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "100": [
3
+ "100_19",
4
+ "100_10",
5
+ "100_1",
6
+ "100_4",
7
+ "100_6",
8
+ "100_5",
9
+ "100_17",
10
+ "100_15",
11
+ "100_12",
12
+ "100_16",
13
+ "100_14",
14
+ "100_7",
15
+ "100_13",
16
+ "100_9",
17
+ "100_18",
18
+ "100_2",
19
+ "100_11",
20
+ "100_20",
21
+ "100_3",
22
+ "100_8"
23
+ ],
24
+ "75": [
25
+ "75_6",
26
+ "75_12",
27
+ "75_9",
28
+ "75_4",
29
+ "75_11",
30
+ "75_7",
31
+ "75_14",
32
+ "75_8",
33
+ "75_16",
34
+ "75_17",
35
+ "75_2",
36
+ "75_3",
37
+ "75_1",
38
+ "75_21",
39
+ "75_15",
40
+ "75_20",
41
+ "75_10",
42
+ "75_13",
43
+ "75_5",
44
+ "75_19",
45
+ "75_18"
46
+ ],
47
+ "50": [
48
+ "50_18",
49
+ "50_8",
50
+ "50_13",
51
+ "50_15",
52
+ "50_7",
53
+ "50_4",
54
+ "50_5",
55
+ "50_19",
56
+ "50_16",
57
+ "50_20",
58
+ "50_14",
59
+ "50_12",
60
+ "50_11",
61
+ "50_9",
62
+ "50_6",
63
+ "50_17",
64
+ "50_1",
65
+ "50_10",
66
+ "50_3",
67
+ "50_2"
68
+ ],
69
+ "25": [
70
+ "25_6",
71
+ "25_19",
72
+ "25_17",
73
+ "25_9",
74
+ "25_11",
75
+ "25_20",
76
+ "25_14",
77
+ "25_4",
78
+ "25_16",
79
+ "25_5",
80
+ "25_2",
81
+ "25_10",
82
+ "25_3",
83
+ "25_8",
84
+ "25_13",
85
+ "25_7",
86
+ "25_12",
87
+ "25_1",
88
+ "25_15",
89
+ "25_18"
90
+ ],
91
+ "0": [
92
+ "0_12",
93
+ "0_17",
94
+ "0_16",
95
+ "0_15",
96
+ "0_2",
97
+ "0_5",
98
+ "0_14",
99
+ "0_9",
100
+ "0_22",
101
+ "0_4",
102
+ "0_18",
103
+ "0_8",
104
+ "0_7",
105
+ "0_11",
106
+ "0_24",
107
+ "0_13",
108
+ "0_23",
109
+ "0_10",
110
+ "0_19",
111
+ "0_1",
112
+ "0_6",
113
+ "0_21",
114
+ "0_20",
115
+ "0_3"
116
+ ]
117
+ }
data/glasses/run_all.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ import subprocess
4
+
5
+ import os
6
+ import json
7
+
8
+ # PLY ํŒŒ์ผ๋“ค์ด ๋“ค์–ด ์žˆ๋Š” ํด๋” ๊ฒฝ๋กœ
9
+ folder = "./dataset"
10
+
11
+ # ๋ถ„๋ฅ˜ํ•  ์นดํ…Œ๊ณ ๋ฆฌ๋ฅผ ๋ฏธ๋ฆฌ ์ •์˜ํ•ฉ๋‹ˆ๋‹ค.
12
+ categories = ["100", "75", "50", "25", "0"]
13
+
14
+ # ๊ฒฐ๊ณผ๋ฅผ ์ €์žฅํ•  ๋”•์…”๋„ˆ๋ฆฌ๋ฅผ ์นดํ…Œ๊ณ ๋ฆฌ๋ณ„๋กœ ์ดˆ๊ธฐํ™”ํ•ฉ๋‹ˆ๋‹ค.
15
+ grouped_files = {cat: [] for cat in categories}
16
+
17
+ # ํ™•์žฅ์ž๊ฐ€ .ply ์ธ ํŒŒ์ผ ๋ชฉ๋ก์„ ๊ฐ€์ ธ์˜ต๋‹ˆ๋‹ค.
18
+ try:
19
+ all_files = os.listdir(folder)
20
+ except FileNotFoundError:
21
+ print(f"์˜ค๋ฅ˜: '{folder}' ํด๋”๋ฅผ ์ฐพ์„ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค.")
22
+ all_files = []
23
+
24
+ # ๊ฐ ํŒŒ์ผ์„ ์ˆœํšŒํ•˜๋ฉฐ ์ ์ ˆํ•œ ์นดํ…Œ๊ณ ๋ฆฌ์— ์ถ”๊ฐ€ํ•ฉ๋‹ˆ๋‹ค.
25
+ for filename_with_ext in all_files:
26
+ if filename_with_ext.endswith(".ply"):
27
+ # ํ™•์žฅ์ž(.ply)๋ฅผ ์ œ๊ฑฐํ•ฉ๋‹ˆ๋‹ค.
28
+ filename = filename_with_ext.removesuffix('.ply')
29
+
30
+ # ํŒŒ์ผ๋ช…์„ '_' ๊ธฐ์ค€์œผ๋กœ ๋ถ„๋ฆฌํ•˜์—ฌ ์ ‘๋‘์–ด(prefix)๋ฅผ ์–ป์Šต๋‹ˆ๋‹ค.
31
+ prefix = filename.split('_')[0]
32
+
33
+ # ์ ‘๋‘์–ด๊ฐ€ ์ •์˜๋œ ์นดํ…Œ๊ณ ๋ฆฌ ์ค‘ ํ•˜๋‚˜๋ผ๋ฉด, ํ•ด๋‹น ๋ฆฌ์ŠคํŠธ์— ํŒŒ์ผ๋ช…์„ ์ถ”๊ฐ€ํ•ฉ๋‹ˆ๋‹ค.
34
+ if prefix in grouped_files:
35
+ grouped_files[prefix].append(filename)
36
+
37
+ # ๋ถ„๋ฅ˜๋œ ๋”•์…”๋„ˆ๋ฆฌ๋ฅผ JSON ํŒŒ์ผ๋กœ ์ €์žฅํ•ฉ๋‹ˆ๋‹ค.
38
+ with open("ply_files.json", "w", encoding="utf-8") as f:
39
+ json.dump(grouped_files, f, ensure_ascii=False, indent=2)
40
+
41
+ print("JSON ์ €์žฅ ์™„๋ฃŒ! ์•„๋ž˜์™€ ๊ฐ™์ด ํŒŒ์ผ์ด ๋ถ„๋ฅ˜๋˜์—ˆ์Šต๋‹ˆ๋‹ค.")
42
+ print(json.dumps(grouped_files, indent=2))
43
+
44
+ # merged.py ์‹คํ–‰
45
+ subprocess.run(["python3", "merged.py"])