|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#ifndef EIGEN_AUTODIFF_JACOBIAN_H |
|
|
#define EIGEN_AUTODIFF_JACOBIAN_H |
|
|
|
|
|
namespace Eigen |
|
|
{ |
|
|
|
|
|
template<typename Functor> class AutoDiffJacobian : public Functor |
|
|
{ |
|
|
public: |
|
|
AutoDiffJacobian() : Functor() {} |
|
|
AutoDiffJacobian(const Functor& f) : Functor(f) {} |
|
|
|
|
|
|
|
|
#if EIGEN_HAS_VARIADIC_TEMPLATES |
|
|
template<typename... T> |
|
|
AutoDiffJacobian(const T& ...Values) : Functor(Values...) {} |
|
|
#else |
|
|
template<typename T0> |
|
|
AutoDiffJacobian(const T0& a0) : Functor(a0) {} |
|
|
template<typename T0, typename T1> |
|
|
AutoDiffJacobian(const T0& a0, const T1& a1) : Functor(a0, a1) {} |
|
|
template<typename T0, typename T1, typename T2> |
|
|
AutoDiffJacobian(const T0& a0, const T1& a1, const T2& a2) : Functor(a0, a1, a2) {} |
|
|
#endif |
|
|
|
|
|
typedef typename Functor::InputType InputType; |
|
|
typedef typename Functor::ValueType ValueType; |
|
|
typedef typename ValueType::Scalar Scalar; |
|
|
|
|
|
enum { |
|
|
InputsAtCompileTime = InputType::RowsAtCompileTime, |
|
|
ValuesAtCompileTime = ValueType::RowsAtCompileTime |
|
|
}; |
|
|
|
|
|
typedef Matrix<Scalar, ValuesAtCompileTime, InputsAtCompileTime> JacobianType; |
|
|
typedef typename JacobianType::Index Index; |
|
|
|
|
|
typedef Matrix<Scalar, InputsAtCompileTime, 1> DerivativeType; |
|
|
typedef AutoDiffScalar<DerivativeType> ActiveScalar; |
|
|
|
|
|
typedef Matrix<ActiveScalar, InputsAtCompileTime, 1> ActiveInput; |
|
|
typedef Matrix<ActiveScalar, ValuesAtCompileTime, 1> ActiveValue; |
|
|
|
|
|
#if EIGEN_HAS_VARIADIC_TEMPLATES |
|
|
|
|
|
|
|
|
EIGEN_STRONG_INLINE |
|
|
void operator() (const InputType& x, ValueType* v) const |
|
|
{ |
|
|
this->operator()(x, v, 0); |
|
|
} |
|
|
template<typename... ParamsType> |
|
|
void operator() (const InputType& x, ValueType* v, JacobianType* _jac, |
|
|
const ParamsType&... Params) const |
|
|
#else |
|
|
void operator() (const InputType& x, ValueType* v, JacobianType* _jac=0) const |
|
|
#endif |
|
|
{ |
|
|
eigen_assert(v!=0); |
|
|
|
|
|
if (!_jac) |
|
|
{ |
|
|
#if EIGEN_HAS_VARIADIC_TEMPLATES |
|
|
Functor::operator()(x, v, Params...); |
|
|
#else |
|
|
Functor::operator()(x, v); |
|
|
#endif |
|
|
return; |
|
|
} |
|
|
|
|
|
JacobianType& jac = *_jac; |
|
|
|
|
|
ActiveInput ax = x.template cast<ActiveScalar>(); |
|
|
ActiveValue av(jac.rows()); |
|
|
|
|
|
if(InputsAtCompileTime==Dynamic) |
|
|
for (Index j=0; j<jac.rows(); j++) |
|
|
av[j].derivatives().resize(x.rows()); |
|
|
|
|
|
for (Index i=0; i<jac.cols(); i++) |
|
|
ax[i].derivatives() = DerivativeType::Unit(x.rows(),i); |
|
|
|
|
|
#if EIGEN_HAS_VARIADIC_TEMPLATES |
|
|
Functor::operator()(ax, &av, Params...); |
|
|
#else |
|
|
Functor::operator()(ax, &av); |
|
|
#endif |
|
|
|
|
|
for (Index i=0; i<jac.rows(); i++) |
|
|
{ |
|
|
(*v)[i] = av[i].value(); |
|
|
jac.row(i) = av[i].derivatives(); |
|
|
} |
|
|
} |
|
|
}; |
|
|
|
|
|
} |
|
|
|
|
|
#endif |
|
|
|