FastRobustICP / ICP.h
adfa5456's picture
Add files using upload-large-folder tool
fe2b563 verified
///////////////////////////////////////////////////////////////////////////////
/// "Sparse Iterative Closest Point"
/// by Sofien Bouaziz, Andrea Tagliasacchi, Mark Pauly
/// Copyright (C) 2013 LGG, EPFL
///////////////////////////////////////////////////////////////////////////////
/// 1) This file contains different implementations of the ICP algorithm.
/// 2) This code requires EIGEN and NANOFLANN.
/// 3) If OPENMP is activated some part of the code will be parallelized.
/// 4) This code is for now designed for 3D registration
/// 5) Two main input types are Eigen::Matrix3Xd or Eigen::Map<Eigen::Matrix3Xd>
///////////////////////////////////////////////////////////////////////////////
/// namespace nanoflann: NANOFLANN KD-tree adaptor for EIGEN
/// namespace RigidMotionEstimator: functions to compute the rigid motion
/// namespace SICP: sparse ICP implementation
/// namespace ICP: reweighted ICP implementation
///////////////////////////////////////////////////////////////////////////////
#ifndef ICP_H
#define ICP_H
#include <nanoflann.hpp>
#include <AndersonAcceleration.h>
#include <time.h>
#include <fstream>
#include <algorithm>
#include <median.h>
#include <iostream>
#define TUPLE_SCALE 0.95
#define TUPLE_MAX_CNT 1000
///////////////////////////////////////////////////////////////////////////////
namespace nanoflann {
/// KD-tree adaptor for working with data directly stored in an Eigen Matrix, without duplicating the data storage.
/// This code is adapted from the KDTreeEigenMatrixAdaptor class of nanoflann.hpp
template <class MatrixType, int DIM = -1, class Distance = nanoflann::metric_L2, typename IndexType = int>
struct KDTreeAdaptor {
typedef KDTreeAdaptor<MatrixType, DIM, Distance> self_t;
typedef typename MatrixType::Scalar num_t;
typedef typename Distance::template traits<num_t, self_t>::distance_t metric_t;
typedef KDTreeSingleIndexAdaptor< metric_t, self_t, DIM, IndexType> index_t;
index_t* index;
KDTreeAdaptor(const MatrixType &mat, const int leaf_max_size = 10) : m_data_matrix(mat) {
const size_t dims = mat.rows();
index = new index_t(dims, *this, nanoflann::KDTreeSingleIndexAdaptorParams(leaf_max_size, dims));
index->buildIndex();
}
~KDTreeAdaptor() { delete index; }
const MatrixType &m_data_matrix;
/// Query for the num_closest closest points to a given point (entered as query_point[0:dim-1]).
inline void query(const num_t *query_point, const size_t num_closest, IndexType *out_indices, num_t *out_distances_sq) const {
nanoflann::KNNResultSet<typename MatrixType::Scalar, IndexType> resultSet(num_closest);
resultSet.init(out_indices, out_distances_sq);
index->findNeighbors(resultSet, query_point, nanoflann::SearchParams());
}
/// Query for the closest points to a given point (entered as query_point[0:dim-1]).
inline IndexType closest(const num_t *query_point) const {
IndexType out_indices;
num_t out_distances_sq;
query(query_point, 1, &out_indices, &out_distances_sq);
return out_indices;
}
const self_t & derived() const { return *this; }
self_t & derived() { return *this; }
inline size_t kdtree_get_point_count() const { return m_data_matrix.cols(); }
/// Returns the distance between the vector "p1[0:size-1]" and the data point with index "idx_p2" stored in the class:
inline num_t kdtree_distance(const num_t *p1, const size_t idx_p2, size_t size) const {
num_t s = 0;
for (size_t i = 0; i<size; i++) {
num_t d = p1[i] - m_data_matrix.coeff(i, idx_p2);
s += d*d;
}
return s;
}
/// Returns the dim'th component of the idx'th point in the class:
inline num_t kdtree_get_pt(const size_t idx, int dim) const {
return m_data_matrix.coeff(dim, idx);
}
/// Optional bounding-box computation: return false to default to a standard bbox computation loop.
template <class BBOX> bool kdtree_get_bbox(BBOX&) const { return false; }
};
}
///////////////////////////////////////////////////////////////////////////////
/// Compute the rigid motion for point-to-point and point-to-plane distances
namespace RigidMotionEstimator {
/// @param Source (one 3D point per column)
/// @param Target (one 3D point per column)
/// @param Confidence weights
template <typename Derived1, typename Derived2, typename Derived3>
Eigen::Affine3d point_to_point(Eigen::MatrixBase<Derived1>& X,
Eigen::MatrixBase<Derived2>& Y,
const Eigen::MatrixBase<Derived3>& w) {
int dim = X.rows();
/// Normalize weight vector
Eigen::VectorXd w_normalized = w / w.sum();
/// De-mean
Eigen::VectorXd X_mean(dim), Y_mean(dim);
for (int i = 0; i<dim; ++i) {
X_mean(i) = (X.row(i).array()*w_normalized.transpose().array()).sum();
Y_mean(i) = (Y.row(i).array()*w_normalized.transpose().array()).sum();
}
X.colwise() -= X_mean;
Y.colwise() -= Y_mean;
/// Compute transformation
Eigen::Affine3d transformation;
MatrixXX sigma = X * w_normalized.asDiagonal() * Y.transpose();
Eigen::JacobiSVD<MatrixXX> svd(sigma, Eigen::ComputeFullU | Eigen::ComputeFullV);
if (svd.matrixU().determinant()*svd.matrixV().determinant() < 0.0) {
VectorX S = VectorX::Ones(dim); S(dim-1) = -1.0;
transformation.linear() = svd.matrixV()*S.asDiagonal()*svd.matrixU().transpose();
}
else {
transformation.linear() = svd.matrixV()*svd.matrixU().transpose();
}
transformation.translation() = Y_mean - transformation.linear()*X_mean;
/// Re-apply mean
X.colwise() += X_mean;
Y.colwise() += Y_mean;
/// Apply transformation
// X = transformation*X;
/// Return transformation
return transformation;
}
/// @param Source (one 3D point per column)
/// @param Target (one 3D point per column)
template <typename Derived1, typename Derived2>
inline Eigen::Affine3d point_to_point(Eigen::MatrixBase<Derived1>& X,
Eigen::MatrixBase<Derived2>& Y) {
return point_to_point(X, Y, Eigen::VectorXd::Ones(X.cols()));
}
/// @param Source (one 3D point per column)
/// @param Target (one 3D point per column)
/// @param Target normals (one 3D normal per column)
/// @param Confidence weights
/// @param Right hand side
template <typename Derived1, typename Derived2, typename Derived3, typename Derived4, typename Derived5>
Eigen::Affine3d point_to_plane(Eigen::MatrixBase<Derived1>& X,
Eigen::MatrixBase<Derived2>& Y,
Eigen::MatrixBase<Derived3>& N,
const Eigen::MatrixBase<Derived4>& w,
const Eigen::MatrixBase<Derived5>& u) {
typedef Eigen::Matrix<double, 6, 6> Matrix66;
typedef Eigen::Matrix<double, 6, 1> Vector6;
typedef Eigen::Block<Matrix66, 3, 3> Block33;
/// Normalize weight vector
Eigen::VectorXd w_normalized = w / w.sum();
/// De-mean
Eigen::Vector3d X_mean;
for (int i = 0; i<3; ++i)
X_mean(i) = (X.row(i).array()*w_normalized.transpose().array()).sum();
X.colwise() -= X_mean;
Y.colwise() -= X_mean;
/// Prepare LHS and RHS
Matrix66 LHS = Matrix66::Zero();
Vector6 RHS = Vector6::Zero();
Block33 TL = LHS.topLeftCorner<3, 3>();
Block33 TR = LHS.topRightCorner<3, 3>();
Block33 BR = LHS.bottomRightCorner<3, 3>();
Eigen::MatrixXd C = Eigen::MatrixXd::Zero(3, X.cols());
#pragma omp parallel
{
#pragma omp for
for (int i = 0; i<X.cols(); i++) {
C.col(i) = X.col(i).cross(N.col(i));
}
#pragma omp sections nowait
{
#pragma omp section
for (int i = 0; i<X.cols(); i++) TL.selfadjointView<Eigen::Upper>().rankUpdate(C.col(i), w(i));
#pragma omp section
for (int i = 0; i<X.cols(); i++) TR += (C.col(i)*N.col(i).transpose())*w(i);
#pragma omp section
for (int i = 0; i<X.cols(); i++) BR.selfadjointView<Eigen::Upper>().rankUpdate(N.col(i), w(i));
#pragma omp section
for (int i = 0; i<C.cols(); i++) {
double dist_to_plane = -((X.col(i) - Y.col(i)).dot(N.col(i)) - u(i))*w(i);
RHS.head<3>() += C.col(i)*dist_to_plane;
RHS.tail<3>() += N.col(i)*dist_to_plane;
}
}
}
LHS = LHS.selfadjointView<Eigen::Upper>();
/// Compute transformation
Eigen::Affine3d transformation;
Eigen::LDLT<Matrix66> ldlt(LHS);
RHS = ldlt.solve(RHS);
transformation = Eigen::AngleAxisd(RHS(0), Eigen::Vector3d::UnitX()) *
Eigen::AngleAxisd(RHS(1), Eigen::Vector3d::UnitY()) *
Eigen::AngleAxisd(RHS(2), Eigen::Vector3d::UnitZ());
transformation.translation() = RHS.tail<3>();
/// Apply transformation
X = transformation*X;
/// Re-apply mean
X.colwise() += X_mean;
Y.colwise() += X_mean;
transformation.translation() += -transformation.linear() * X_mean + X_mean;
/// Return transformation
return transformation;
}
/// @param Source (one 3D point per column)
/// @param Target (one 3D point per column)
/// @param Target normals (one 3D normal per column)
/// @param Confidence weights
template <typename Derived1, typename Derived2, typename Derived3, typename Derived4>
inline Eigen::Affine3d point_to_plane(Eigen::MatrixBase<Derived1>& X,
Eigen::MatrixBase<Derived2>& Yp,
Eigen::MatrixBase<Derived3>& Yn,
const Eigen::MatrixBase<Derived4>& w) {
return point_to_plane(X, Yp, Yn, w, Eigen::VectorXd::Zero(X.cols()));
}
}
///////////////////////////////////////////////////////////////////////////////
/// ICP implementation using ADMM/ALM/Penalty method
namespace SICP {
struct Parameters {
bool use_penalty = false; /// if use_penalty then penalty method else ADMM or ALM (see max_inner)
double p = 1.0; /// p norm
double mu = 10.0; /// penalty weight
double alpha = 1.2; /// penalty increase factor
double max_mu = 1e5; /// max penalty
int max_icp = 100; /// max ICP iteration
int max_outer = 100; /// max outer iteration
int max_inner = 1; /// max inner iteration. If max_inner=1 then ADMM else ALM
double stop = 1e-5; /// stopping criteria
bool print_icpn = false; /// (debug) print ICP iteration
Eigen::Matrix4d init_trans = Eigen::Matrix4d::Identity();
Eigen::Matrix4d gt_trans = Eigen::Matrix4d::Identity();
bool has_groundtruth = false;
int convergence_iter = 0;
double convergence_mse = 0.0;
double convergence_gt_mse = 0.0;
Eigen::Matrix4d res_trans = Eigen::Matrix4d::Identity();
std::string file_err = "";
std::string out_path = "";
int total_iters = 0;
};
/// Shrinkage operator (Automatic loop unrolling using template)
template<unsigned int I>
inline double shrinkage(double mu, double n, double p, double s) {
return shrinkage<I - 1>(mu, n, p, 1.0 - (p / mu)*std::pow(n, p - 2.0)*std::pow(s, p - 1.0));
}
template<>
inline double shrinkage<0>(double, double, double, double s) { return s; }
/// 3D Shrinkage for point-to-point
template<unsigned int I>
inline void shrink(Eigen::Matrix3Xd& Q, double mu, double p) {
double Ba = std::pow((2.0 / mu)*(1.0 - p), 1.0 / (2.0 - p));
double ha = Ba + (p / mu)*std::pow(Ba, p - 1.0);
#pragma omp parallel for
for (int i = 0; i<Q.cols(); ++i) {
double n = Q.col(i).norm();
double w = 0.0;
if (n > ha) w = shrinkage<I>(mu, n, p, (Ba / n + 1.0) / 2.0);
Q.col(i) *= w;
}
}
/// 1D Shrinkage for point-to-plane
template<unsigned int I>
inline void shrink(Eigen::VectorXd& y, double mu, double p) {
double Ba = std::pow((2.0 / mu)*(1.0 - p), 1.0 / (2.0 - p));
double ha = Ba + (p / mu)*std::pow(Ba, p - 1.0);
#pragma omp parallel for
for (int i = 0; i<y.rows(); ++i) {
double n = std::abs(y(i));
double s = 0.0;
if (n > ha) s = shrinkage<I>(mu, n, p, (Ba / n + 1.0) / 2.0);
y(i) *= s;
}
}
/// Sparse ICP with point to point
/// @param Source (one 3D point per column)
/// @param Target (one 3D point per column)
/// @param Parameters
template <typename Derived1, typename Derived2>
void point_to_point(Eigen::MatrixBase<Derived1>& X,
Eigen::MatrixBase<Derived2>& Y, Eigen::Vector3d& source_mean, Eigen::Vector3d& target_mean,
Parameters& par) {
/// Build kd-tree
nanoflann::KDTreeAdaptor<Eigen::MatrixBase<Derived2>, 3, nanoflann::metric_L2_Simple> kdtree(Y);
/// Buffers
Eigen::Matrix3Xd Q = Eigen::Matrix3Xd::Zero(3, X.cols());
Eigen::Matrix3Xd Z = Eigen::Matrix3Xd::Zero(3, X.cols());
Eigen::Matrix3Xd C = Eigen::Matrix3Xd::Zero(3, X.cols());
Eigen::Matrix3Xd ori_X = X;
Eigen::Affine3d T(par.init_trans);
Eigen::Matrix3Xd X_gt;
int nPoints = X.cols();
X = T * X;
Eigen::Matrix3Xd Xo1 = X;
Eigen::Matrix3Xd Xo2 = X;
double gt_mse = 0.0, run_time;
double begin_time, end_time;
std::vector<double> gt_mses, times;
if(par.has_groundtruth)
{
Eigen::Vector3d temp_trans = par.gt_trans.block(0, 3, 3, 1);
X_gt = ori_X;
X_gt.colwise() += source_mean;
X_gt = par.gt_trans.block(0, 0, 3, 3) * X_gt;
X_gt.colwise() += temp_trans - target_mean;
}
begin_time = omp_get_wtime();
/// ICP
int icp;
for (icp = 0; icp<par.max_icp; ++icp) {
/// Find closest point
#pragma omp parallel for
for (int i = 0; i<X.cols(); ++i) {
Q.col(i) = Y.col(kdtree.closest(X.col(i).data()));
}
end_time = omp_get_wtime();
run_time = end_time - begin_time;
///calc mse and gt_mse
if(par.has_groundtruth)
{
gt_mse = (X - X_gt).squaredNorm() / nPoints;
}
times.push_back(run_time);
gt_mses.push_back(gt_mse);
// if(par.print_icpn)
// std::cout << "iter = " << icp << ", time = " << run_time << ", mse = " << mse << ", gt_mse = " << gt_mse << std::endl;
/// Computer rotation and translation
double mu = par.mu;
for (int outer = 0; outer<par.max_outer; ++outer) {
double dual = 0.0;
for (int inner = 0; inner<par.max_inner; ++inner) {
/// Z update (shrinkage)
Z = X - Q + C / mu;
shrink<3>(Z, mu, par.p);
/// Rotation and translation update
Eigen::Matrix3Xd U = Q + Z - C / mu;
Eigen::Affine3d cur_T = RigidMotionEstimator::point_to_point(X, U);
X = cur_T * X;
T = cur_T * T;
/// Stopping criteria
dual = pow((X - Xo1).norm(),2) / nPoints;
Xo1 = X;
if (dual < par.stop) break;
}
/// C update (lagrange multipliers)
Eigen::Matrix3Xd P = X - Q - Z;
if (!par.use_penalty) C.noalias() += mu*P;
/// mu update (penalty)
if (mu < par.max_mu) mu *= par.alpha;
/// Stopping criteria
double primal = P.colwise().norm().maxCoeff();
if (primal < par.stop && dual < par.stop) break;
}
/// Stopping criteria
double stop = (X-Xo2).colwise().norm().maxCoeff();
Xo2 = X;
if (stop < par.stop) break;
}
if(par.has_groundtruth)
gt_mse = (X-X_gt).squaredNorm()/nPoints;
if(par.print_icpn)
{
std::ofstream out_res(par.out_path);
for(int i = 0; i<times.size(); i++)
{
out_res << times[i] << " " << gt_mses[i] << std::endl;
}
out_res.close();
}
T.translation().noalias() += -T.rotation()*source_mean + target_mean;
X.colwise() += target_mean;
///save convergence result
par.convergence_gt_mse = gt_mse;
par.convergence_iter = icp;
par.res_trans = T.matrix();
}
/// Sparse ICP with point to plane
/// @param Source (one 3D point per column)
/// @param Target (one 3D point per column)
/// @param Target normals (one 3D normal per column)
/// @param Parameters
template <typename Derived1, typename Derived2, typename Derived3>
void point_to_plane(Eigen::MatrixBase<Derived1>& X,
Eigen::MatrixBase<Derived2>& Y,
Eigen::MatrixBase<Derived3>& N, Eigen::Vector3d source_mean, Eigen::Vector3d target_mean,
Parameters &par) {
/// Build kd-tree
nanoflann::KDTreeAdaptor<Eigen::MatrixBase<Derived2>, 3, nanoflann::metric_L2_Simple> kdtree(Y);
/// Buffers
Eigen::Matrix3Xd Qp = Eigen::Matrix3Xd::Zero(3, X.cols());
Eigen::Matrix3Xd Qn = Eigen::Matrix3Xd::Zero(3, X.cols());
Eigen::VectorXd Z = Eigen::VectorXd::Zero(X.cols());
Eigen::VectorXd C = Eigen::VectorXd::Zero(X.cols());
Eigen::Matrix3Xd ori_X = X;
Eigen::Affine3d T(par.init_trans);
Eigen::Matrix3Xd X_gt;
int nPoints = X.cols();
X = T*X;
Eigen::Matrix3Xd Xo1 = X;
Eigen::Matrix3Xd Xo2 = X;
double gt_mse = 0.0, run_time;
double begin_time, end_time;
std::vector<double> gt_mses, times;
if(par.has_groundtruth)
{
Eigen::Vector3d temp_trans = par.gt_trans.block(0, 3, 3, 1);
X_gt = ori_X;
X_gt.colwise() += source_mean;
X_gt = par.gt_trans.block(0, 0, 3, 3) * X_gt;
X_gt.colwise() += temp_trans - target_mean;
}
begin_time = omp_get_wtime();
/// ICP
int icp;
int total_iters = 0;
for (icp = 0; icp<par.max_icp; ++icp) {
/// Find closest point
#pragma omp parallel for
for (int i = 0; i<X.cols(); ++i) {
int id = kdtree.closest(X.col(i).data());
Qp.col(i) = Y.col(id);
Qn.col(i) = N.col(id);
}
end_time = omp_get_wtime();
run_time = end_time - begin_time;
///calc mse and gt_mse
if(par.has_groundtruth)
{
gt_mse = (X - X_gt).squaredNorm() / nPoints;
}
times.push_back(run_time);
gt_mses.push_back(gt_mse);
if(par.print_icpn)
std::cout << "iter = " << icp << ", time = " << run_time << ", gt_mse = " << gt_mse << std::endl;
/// Computer rotation and translation
double mu = par.mu;
for (int outer = 0; outer<par.max_outer; ++outer) {
double dual = 0.0;
for (int inner = 0; inner<par.max_inner; ++inner) {
total_iters++;
/// Z update (shrinkage)
Z = (Qn.array()*(X - Qp).array()).colwise().sum().transpose() + C.array() / mu;
shrink<3>(Z, mu, par.p);
/// Rotation and translation update
Eigen::VectorXd U = Z - C / mu;
T = RigidMotionEstimator::point_to_plane(X, Qp, Qn, Eigen::VectorXd::Ones(X.cols()), U)*T;
/// Stopping criteria
dual = (X - Xo1).colwise().norm().maxCoeff();
Xo1 = X;
if (dual < par.stop) break;
}
/// C update (lagrange multipliers)
Eigen::VectorXd P = (Qn.array()*(X - Qp).array()).colwise().sum().transpose() - Z.array();
if (!par.use_penalty) C.noalias() += mu*P;
/// mu update (penalty)
if (mu < par.max_mu) mu *= par.alpha;
/// Stopping criteria
double primal = P.array().abs().maxCoeff();
if (primal < par.stop && dual < par.stop) break;
}
/// Stopping criteria
double stop = (X - Xo2).colwise().norm().maxCoeff();
Xo2 = X;
if (stop < par.stop) break;
}
if(par.has_groundtruth)
{
gt_mse = (X-X_gt).squaredNorm()/nPoints;
}
if(par.print_icpn)
{
std::ofstream out_res(par.out_path);
for(int i = 0; i<times.size(); i++)
{
out_res << times[i] << " " <<gt_mses[i] << std::endl;
}
out_res.close();
}
T.translation() += - T.rotation() * source_mean + target_mean;
X.colwise() += target_mean;
///save convergence result
par.convergence_gt_mse = gt_mse;
par.convergence_iter = icp;
par.res_trans = T.matrix();
par.total_iters = total_iters;
}
}
///////////////////////////////////////////////////////////////////////////////
/// ICP implementation using iterative reweighting
namespace ICP {
enum Function {
PNORM,
TUKEY,
FAIR,
LOGISTIC,
TRIMMED,
WELSCH,
AUTOWELSCH,
NONE
};
enum AAElementType {
EULERANGLE,
QUATERNION,
LOG_TRANS,
ROTATION,
FPFH,
DUAL_QUATERNION
};
class Parameters {
public:
Parameters() : f(NONE),
p(0.1),
max_icp(100),
max_outer(1),
stop(1e-5),
use_AA(false),
print_energy(false),
print_output(false),
anderson_m(5),
beta_(1.0),
error_overflow_threshold_(0.05),
has_groundtruth(false),
gt_trans(Eigen::Matrix4d::Identity()),
convergence_energy(0.0),
convergence_iter(0),
convergence_gt_mse(0.0),
nu_begin_k(3),
nu_end_k(1.0/(3.0*sqrt(3.0))),
use_init(false),
nu_alpha(1.0/2) {}
/// Parameters
Function f; /// robust function type
double p; /// paramter of the robust function/// para k
int max_icp; /// max ICP iteration
int max_outer; /// max outer iteration
double stop; /// stopping criteria
bool use_AA; /// whether using anderson acceleration
std::string out_path;
bool print_energy;///whether print energy
bool print_output; ///whether write result to txt
int anderson_m;
double beta_;
double error_overflow_threshold_;
MatrixXX init_trans;
MatrixXX gt_trans;
bool has_groundtruth;
double convergence_energy;
int convergence_iter;
double convergence_gt_mse;
MatrixXX res_trans;
double nu_begin_k;
double nu_end_k;
bool use_init;
double nu_alpha;
};
/// Weight functions
/// @param Residuals
/// @param Parameter
void uniform_weight(Eigen::VectorXd& r) {
r = Eigen::VectorXd::Ones(r.rows());
}
/// @param Residuals
/// @param Parameter
void pnorm_weight(Eigen::VectorXd& r, double p, double reg = 1e-8) {
for (int i = 0; i<r.rows(); ++i) {
r(i) = p / (std::pow(r(i), 2 - p) + reg);
}
}
/// @param Residuals
/// @param Parameter
void tukey_weight(Eigen::VectorXd& r, double p) {
for (int i = 0; i<r.rows(); ++i) {
if (r(i) > p) r(i) = 0.0;
else r(i) = std::pow((1.0 - std::pow(r(i) / p, 2.0)), 2.0);
}
}
/// @param Residuals
/// @param Parameter
void fair_weight(Eigen::VectorXd& r, double p) {
for (int i = 0; i<r.rows(); ++i) {
r(i) = 1.0 / (1.0 + r(i) / p);
}
}
/// @param Residuals
/// @param Parameter
void logistic_weight(Eigen::VectorXd& r, double p) {
for (int i = 0; i<r.rows(); ++i) {
r(i) = (p / r(i))*std::tanh(r(i) / p);
}
}
struct sort_pred {
bool operator()(const std::pair<int, double> &left,
const std::pair<int, double> &right) {
return left.second < right.second;
}
};
/// @param Residuals
/// @param Parameter
void trimmed_weight(Eigen::VectorXd& r, double p) {
std::vector<std::pair<int, double> > sortedDist(r.rows());
for (int i = 0; i<r.rows(); ++i) {
sortedDist[i] = std::pair<int, double>(i, r(i));
}
std::sort(sortedDist.begin(), sortedDist.end(), sort_pred());
r.setZero();
int nbV = r.rows()*p;
for (int i = 0; i<nbV; ++i) {
r(sortedDist[i].first) = 1.0;
}
}
/// @param Residuals
/// @param Parameter
void welsch_weight(Eigen::VectorXd& r, double p) {
for (int i = 0; i<r.rows(); ++i) {
r(i) = std::exp(-r(i)*r(i)/(2*p*p));
}
}
/// @param Residuals
/// @param Parameter
void autowelsch_weight(Eigen::VectorXd& r, double p) {
double median;
igl::median(r, median);
welsch_weight(r, p*median/(std::sqrt(2)*2.3));
//welsch_weight(r,p);
}
/// Energy functions
/// @param Residuals
/// @param Parameter
double uniform_energy(Eigen::VectorXd& r) {
double energy = 0;
for (int i = 0; i<r.rows(); ++i) {
energy += r(i)*r(i);
}
return energy;
}
/// @param Residuals
/// @param Parameter
double pnorm_energy(Eigen::VectorXd& r, double p, double reg = 1e-8) {
double energy = 0;
for (int i = 0; i<r.rows(); ++i) {
energy += (r(i)*r(i))*p / (std::pow(r(i), 2 - p) + reg);
}
return energy;
}
/// @param Residuals
/// @param Parameter
double tukey_energy(Eigen::VectorXd& r, double p) {
double energy = 0;
double w;
for (int i = 0; i<r.rows(); ++i) {
if (r(i) > p) w = 0.0;
else w = std::pow((1.0 - std::pow(r(i) / p, 2.0)), 2.0);
energy += (r(i)*r(i))*w;
}
return energy;
}
/// @param Residuals
/// @param Parameter
double fair_energy(Eigen::VectorXd& r, double p) {
double energy = 0;
for (int i = 0; i<r.rows(); ++i) {
energy += (r(i)*r(i))*1.0 / (1.0 + r(i) / p);
}
return energy;
}
/// @param Residuals
/// @param Parameter
double logistic_energy(Eigen::VectorXd& r, double p) {
double energy = 0;
for (int i = 0; i<r.rows(); ++i) {
energy += (r(i)*r(i))*(p / r(i))*std::tanh(r(i) / p);
}
return energy;
}
/// @param Residuals
/// @param Parameter
double trimmed_energy(Eigen::VectorXd& r, double p) {
std::vector<std::pair<int, double> > sortedDist(r.rows());
for (int i = 0; i<r.rows(); ++i) {
sortedDist[i] = std::pair<int, double>(i, r(i));
}
std::sort(sortedDist.begin(), sortedDist.end(), sort_pred());
Eigen::VectorXd t = r;
t.setZero();
double energy = 0;
int nbV = r.rows()*p;
for (int i = 0; i<nbV; ++i) {
energy += r(i)*r(i);
}
return energy;
}
/// @param Residuals
/// @param Parameter
double welsch_energy(Eigen::VectorXd& r, double p) {
double energy = 0;
for (int i = 0; i<r.rows(); ++i) {
energy += 1.0 - std::exp(-r(i)*r(i)/(2*p*p));
}
return energy;
}
/// @param Residuals
/// @param Parameter
double autowelsch_energy(Eigen::VectorXd& r, double p) {
double energy = 0;
energy = welsch_energy(r, 0.5);
return energy;
}
/// @param Function type
/// @param Residuals
/// @param Parameter
void robust_weight(Function f, Eigen::VectorXd& r, double p) {
switch (f) {
case PNORM: pnorm_weight(r, p); break;
case TUKEY: tukey_weight(r, p); break;
case FAIR: fair_weight(r, p); break;
case LOGISTIC: logistic_weight(r, p); break;
case TRIMMED: trimmed_weight(r, p); break;
case WELSCH: welsch_weight(r, p); break;
case AUTOWELSCH: autowelsch_weight(r,p); break;
case NONE: uniform_weight(r); break;
default: uniform_weight(r); break;
}
}
//Cacl energy
double get_energy(Function f, Eigen::VectorXd& r, double p) {
double energy = 0;
switch (f) {
//case PNORM: pnorm_weight(r,p); break;
case TUKEY: energy = tukey_energy(r, p); break;
case FAIR: energy = fair_energy(r, p); break;
case LOGISTIC: energy = logistic_energy(r, p); break;
case TRIMMED: energy = trimmed_energy(r, p); break;
case WELSCH: energy = welsch_energy(r, p); break;
case AUTOWELSCH: energy = autowelsch_energy(r, p); break;
case NONE: energy = uniform_energy(r); break;
default: energy = uniform_energy(r); break;
}
return energy;
}
}
namespace AAICP{
typedef Eigen::Matrix<Scalar, 3, 1> Vector3;
typedef Eigen::Matrix<Scalar, 6, 1> Vector6;
typedef Eigen::Matrix<Scalar, 3, 3> Matrix3;
typedef Eigen::Matrix<Scalar, 4, 4> Matrix4;
typedef Eigen::Matrix<Scalar, Eigen::Dynamic, 1> VectorX;
typedef Eigen::Matrix<Scalar, 6, Eigen::Dynamic> Matrix6X;
///aaicp
///////////////////////////////////////////////////////////////////////////////////////////
Vector6 Matrix42Vector6 (const Matrix4 m)
{
Vector6 v;
Matrix3 s = m.block(0,0,3,3);
v.head(3) = s.eulerAngles(0, 1, 2);
v.tail(3) = m.col(3).head(3);
return v;
}
///////////////////////////////////////////////////////////////////////////////////////////
Matrix4 Vector62Matrix4 (const Vector6 v)
{
Matrix3 s (Eigen::AngleAxis<Scalar>(v(0), Vector3::UnitX())
* Eigen::AngleAxis<Scalar>(v(1), Vector3::UnitY())
* Eigen::AngleAxis<Scalar>(v(2), Vector3::UnitZ()));
Matrix4 m = Matrix4::Zero();
m.block(0,0,3,3) = s;
m(3,3) = 1;
m.col(3).head(3) = v.tail(3);
return m;
}
///////////////////////////////////////////////////////////////////////////////////////////
int alphas_cond (VectorX alphas)
{
double alpha_limit_min_ = -10;
double alpha_limit_max_ = 10;
return alpha_limit_min_ < alphas.minCoeff() && alphas.maxCoeff() < alpha_limit_max_ && alphas(alphas.size()-1) > 0;
}
///////////////////////////////////////////////////////////////////////////////////////////
VectorX get_alphas_lstsq (const Matrix6X f)
{
Matrix6X A = f.leftCols(f.cols()-1);
A *= -1;
A += f.rightCols(1) * VectorX::Constant(f.cols()-1, 1).transpose();
VectorX sol = A.colPivHouseholderQr().solve(f.rightCols(1));
sol.conservativeResize(sol.size()+1);
sol[sol.size()-1] = 0;
sol[sol.size()-1] = 1-sol.sum();
return sol;
}
///////////////////////////////////////////////////////////////////////////////////////////
VectorX get_next_u (const Matrix6X u, const Matrix6X g, const Matrix6X f, std::vector<double> & save_alphas)
{
int i = 1;
double beta_ = 1.0;
save_alphas.clear();
Vector6 sol = ((1-beta_)*u.col(u.cols()-1) + beta_*g.col(g.cols()-1));
VectorX sol_alphas(1);
sol_alphas << 1;
i = 2;
for (; i <= f.cols(); i++)
{
VectorX alphas = get_alphas_lstsq(f.rightCols(i));
if (!alphas_cond(alphas))
{
break;
}
sol = (1-beta_)*u.rightCols(i)*alphas + beta_*g.rightCols(i)*alphas;
sol_alphas = alphas;
}
for(int i= 0; i<sol_alphas.rows(); i++)
{
save_alphas.push_back(sol_alphas[i]);
}
return sol;
}
template <typename Derived1, typename Derived2, typename Derived3>
void point_to_point_aaicp(Eigen::MatrixBase<Derived1>& X,Eigen::MatrixBase<Derived2>& Y, Eigen::MatrixBase<Derived3>& source_mean,
Eigen::MatrixBase<Derived3>& target_mean,
ICP::Parameters& par) {
/// Build kd-tree
nanoflann::KDTreeAdaptor<Eigen::MatrixBase<Derived2>, 3, nanoflann::metric_L2_Simple> kdtree(Y);
/// Buffers
Eigen::Matrix3Xd Q = Eigen::Matrix3Xd::Zero(3, X.cols());
Eigen::VectorXd W = Eigen::VectorXd::Zero(X.cols());
Eigen::Matrix3Xd ori_X = X;
double prev_energy = std::numeric_limits<double>::max(), energy = std::numeric_limits<double>::max();
Eigen::Affine3d T;
if(par.use_init)
{
T.linear() = par.init_trans.block(0,0,3,3);
T.translation() = par.init_trans.block(0,3,3,1);
}
else
T = Eigen::Affine3d::Identity();
Eigen::Matrix3Xd X_gt = X;
///stop criterion paras
MatrixXX To1 =T.matrix();
MatrixXX To2 = T.matrix();
///AA paras
Matrix6X u(6,0), g(6,0), f(6,0);
Vector6 u_next, u_k;
Matrix4 transformation = Matrix4::Identity();
Matrix4 final_transformation = Matrix4::Identity();
///output para
std::vector<double> times, energys, gt_mses;
double gt_mse;
double begin_time, end_time, run_time;
begin_time = omp_get_wtime();
///output coeffs
std::vector<std::vector<double>> coeffs;
coeffs.clear();
std::vector<double> alphas;
X = T * X;
///groud truth target point cloud
if(par.has_groundtruth)
{
Eigen::Vector3d temp_trans = par.gt_trans.block(0, 3, 3, 1);
X_gt = ori_X;
X_gt.colwise() += source_mean;
X_gt = par.gt_trans.block(0, 0, 3, 3) * X_gt;
X_gt.colwise() += temp_trans - target_mean;
}
///begin ICP
int icp = 0;
for (; icp<par.max_icp; ++icp)
{
bool accept_aa = false;
int nPoints = X.cols();
end_time = omp_get_wtime();
run_time = end_time - begin_time;
/// Find closest point
#pragma omp parallel for
for (int i = 0; i<nPoints; ++i) {
Q.col(i) = Y.col(kdtree.closest(X.col(i).data()));
}
///calc time
times.push_back(run_time);
if(par.has_groundtruth)
{
gt_mse = pow((X - X_gt).norm(),2) / nPoints;
}
gt_mses.push_back(gt_mse);
/// Computer rotation and translation
/// Compute weights
W = (X - Q).colwise().norm();
robust_weight(par.f, W, par.p);
/// Rotation and translation update
T = RigidMotionEstimator::point_to_point(X, Q, W) * T;
final_transformation = T.matrix();
///Anderson acceleration
if(icp)
{
Vector6 g_k = Matrix42Vector6(transformation * final_transformation);
// Calculate energy
W = (X - Q).colwise().norm();
energy = get_energy(par.f, W, par.p);
///The first heuristic
if ((energy - prev_energy)/prev_energy > par.error_overflow_threshold_) {
u_next = u_k = g.rightCols(1);
prev_energy = std::numeric_limits<double>::max();
u = u.rightCols(2);
g = g.rightCols(1);
f = f.rightCols(1);
}
else
{
prev_energy = energy;
g.conservativeResize(g.rows(),g.cols()+1);
g.col(g.cols()-1) = g_k;
Vector6 f_k = g_k - u_k;
f.conservativeResize(f.rows(),f.cols()+1);
f.col(f.cols()-1) = f_k;
u_next = get_next_u(u, g, f, alphas);
u.conservativeResize(u.rows(),u.cols()+1);
u.col(u.cols()-1) = u_next;
u_k = u_next;
accept_aa = true;
}
}
///init
else
{
// Calculate energy
W = (X - Q).colwise().norm();
prev_energy = get_energy(par.f, W, par.p);
Vector6 u0 = Matrix42Vector6(Matrix4::Identity());
u.conservativeResize(u.rows(),u.cols()+1);
u.col(0)=u0;
Vector6 u1 = Matrix42Vector6(transformation * final_transformation);
g.conservativeResize(g.rows(),g.cols()+1);
g.col(0)=u1;
u.conservativeResize(u.rows(),u.cols()+1);
u.col(1)=u1;
f.conservativeResize(f.rows(),f.cols()+1);
f.col(0)=u1 - u0;
u_next = u1;
u_k = u1;
energy = prev_energy;
}
transformation = Vector62Matrix4(u_next)*(final_transformation.inverse());
final_transformation = Vector62Matrix4(u_next);
X = final_transformation.block(0,0,3,3) * ori_X;
Vector3 trans = final_transformation.block(0,3,3,1);
X.colwise() += trans;
energys.push_back(energy);
if (par.print_energy)
std::cout << "icp iter = " << icp << ", Energy = " << energy << ", gt_mse = " << gt_mse<< std::endl;
/// Stopping criteria
double stop2 = (final_transformation - To2).norm();
To2 = final_transformation;
if (stop2 < par.stop && icp) break;
}
W = (X - Q).colwise().norm();
double last_energy = get_energy(par.f, W, par.p);
gt_mse = pow((X - X_gt).norm(),2) / X.cols();
final_transformation.block(0,3,3,1) += -final_transformation.block(0, 0, 3, 3)*source_mean + target_mean;
X.colwise() += target_mean;
///save convergence result
par.convergence_energy = last_energy;
par.convergence_gt_mse = gt_mse;
par.convergence_iter = icp;
par.res_trans = final_transformation;
///output
if (par.print_output)
{
std::ofstream out_res(par.out_path);
if (!out_res.is_open())
{
std::cout << "Can't open out file " << par.out_path << std::endl;
}
///output time and energy
out_res.precision(16);
for (int i = 0; i<icp; i++)
{
out_res << times[i] << " " << energys[i] <<" " << gt_mses[i] << std::endl;
}
out_res.close();
}
}
}
#endif