system HF staff commited on
Commit
7a7c05b
1 Parent(s): e700b36

Update files from the datasets library (from 1.2.1)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.2.1

README.md CHANGED
@@ -10,27 +10,27 @@ licenses:
10
  multilinguality:
11
  - monolingual
12
  size_categories:
13
- Ade_corpos_v2_classificaion:
14
  - 10K<n<100K
15
- Ade_corpos_v2_drug_ade_relation:
16
  - 1K<n<10K
17
- Ade_corpos_v2_drug_dosage_relation:
18
  - n<1K
19
  source_datasets:
20
  - original
21
  task_categories:
22
- Ade_corpos_v2_classificaion:
23
  - text-classification
24
- Ade_corpos_v2_drug_ade_relation:
25
  - structure-prediction
26
- Ade_corpos_v2_drug_dosage_relation:
27
  - structure-prediction
28
  task_ids:
29
- Ade_corpos_v2_classificaion:
30
  - fact-checking
31
- Ade_corpos_v2_drug_ade_relation:
32
  - coreference-resolution
33
- Ade_corpos_v2_drug_dosage_relation:
34
  - coreference-resolution
35
  ---
36
 
@@ -93,7 +93,7 @@ English
93
 
94
  ### Data Instances
95
 
96
- #### Config - `Ade_corpos_v2_classificaion`
97
  ```
98
  {
99
  'label': 1,
@@ -102,7 +102,7 @@ English
102
 
103
  ```
104
 
105
- #### Config - `Ade_corpos_v2_drug_ade_relation`
106
 
107
  ```
108
  {
@@ -124,7 +124,7 @@ English
124
 
125
  ```
126
 
127
- #### Config - `Ade_corpos_v2_drug_dosage_relation`
128
 
129
  ```
130
  {
@@ -147,12 +147,12 @@ English
147
 
148
  ### Data Fields
149
 
150
- #### Config - `Ade_corpos_v2_drug_ade_relation`
151
 
152
  - `text` - Input text.
153
  - `label` - Whether the adverse drug effect(ADE) related (1) or not (0).
154
  -
155
- #### Config - `Ade_corpos_v2_drug_ade_relation`
156
 
157
  - `text` - Input text.
158
  - `drug` - Name of drug.
@@ -162,7 +162,7 @@ English
162
  - `indexes.effect.start_char` - Start index of `effect` string in text.
163
  - `indexes.effect.end_char` - End index of `effect` string in text.
164
 
165
- #### Config - `Ade_corpos_v2_drug_dosage_relation`
166
 
167
  - `text` - Input text.
168
  - `drug` - Name of drug.
 
10
  multilinguality:
11
  - monolingual
12
  size_categories:
13
+ Ade_corpus_v2_classification:
14
  - 10K<n<100K
15
+ Ade_corpus_v2_drug_ade_relation:
16
  - 1K<n<10K
17
+ Ade_corpus_v2_drug_dosage_relation:
18
  - n<1K
19
  source_datasets:
20
  - original
21
  task_categories:
22
+ Ade_corpus_v2_classification:
23
  - text-classification
24
+ Ade_corpus_v2_drug_ade_relation:
25
  - structure-prediction
26
+ Ade_corpus_v2_drug_dosage_relation:
27
  - structure-prediction
28
  task_ids:
29
+ Ade_corpus_v2_classification:
30
  - fact-checking
31
+ Ade_corpus_v2_drug_ade_relation:
32
  - coreference-resolution
33
+ Ade_corpus_v2_drug_dosage_relation:
34
  - coreference-resolution
35
  ---
36
 
 
93
 
94
  ### Data Instances
95
 
96
+ #### Config - `Ade_corpus_v2_classification`
97
  ```
98
  {
99
  'label': 1,
 
102
 
103
  ```
104
 
105
+ #### Config - `Ade_corpus_v2_drug_ade_relation`
106
 
107
  ```
108
  {
 
124
 
125
  ```
126
 
127
+ #### Config - `Ade_corpus_v2_drug_dosage_relation`
128
 
129
  ```
130
  {
 
147
 
148
  ### Data Fields
149
 
150
+ #### Config - `Ade_corpus_v2_classification`
151
 
152
  - `text` - Input text.
153
  - `label` - Whether the adverse drug effect(ADE) related (1) or not (0).
154
  -
155
+ #### Config - `Ade_corpus_v2_drug_ade_relation`
156
 
157
  - `text` - Input text.
158
  - `drug` - Name of drug.
 
162
  - `indexes.effect.start_char` - Start index of `effect` string in text.
163
  - `indexes.effect.end_char` - End index of `effect` string in text.
164
 
165
+ #### Config - `Ade_corpus_v2_drug_dosage_relation`
166
 
167
  - `text` - Input text.
168
  - `drug` - Name of drug.
ade_corpus_v2.py CHANGED
@@ -54,9 +54,9 @@ _DOWNLOAD_URL = "https://raw.githubusercontent.com/trunghlt/AdverseDrugReaction/
54
 
55
  # Different usage configs/
56
  configs = {
57
- "classification": "Ade_corpos_v2_classificaion",
58
- "RE_ade": "Ade_corpos_v2_drug_ade_relation",
59
- "RE_dosage": "Ade_corpos_v2_drug_dosage_relation",
60
  }
61
 
62
 
@@ -76,17 +76,17 @@ class ADECorpusV2(datasets.GeneratorBasedBuilder):
76
 
77
  BUILDER_CONFIGS = [
78
  ADE_Corpus_V2Config(
79
- name="Ade_corpos_v2_classificaion",
80
  version=datasets.Version("1.0.0"),
81
  description="ADE_Corpus_V2 Dataset for Classification if a sentence is ADE-related or not.",
82
  ),
83
  ADE_Corpus_V2Config(
84
- name="Ade_corpos_v2_drug_ade_relation",
85
  version=datasets.Version("1.0.0"),
86
  description="ADE_Corpus_V2 Dataset for Relation Extraction between Adverse Drug Event and Drug.",
87
  ),
88
  ADE_Corpus_V2Config(
89
- name="Ade_corpos_v2_drug_dosage_relation",
90
  version=datasets.Version("1.0.0"),
91
  description="ADE_Corpus_V2 Dataset for Relation Extraction between Drug dosage and Drug.",
92
  ),
 
54
 
55
  # Different usage configs/
56
  configs = {
57
+ "classification": "Ade_corpus_v2_classification",
58
+ "RE_ade": "Ade_corpus_v2_drug_ade_relation",
59
+ "RE_dosage": "Ade_corpus_v2_drug_dosage_relation",
60
  }
61
 
62
 
 
76
 
77
  BUILDER_CONFIGS = [
78
  ADE_Corpus_V2Config(
79
+ name="Ade_corpus_v2_classification",
80
  version=datasets.Version("1.0.0"),
81
  description="ADE_Corpus_V2 Dataset for Classification if a sentence is ADE-related or not.",
82
  ),
83
  ADE_Corpus_V2Config(
84
+ name="Ade_corpus_v2_drug_ade_relation",
85
  version=datasets.Version("1.0.0"),
86
  description="ADE_Corpus_V2 Dataset for Relation Extraction between Adverse Drug Event and Drug.",
87
  ),
88
  ADE_Corpus_V2Config(
89
+ name="Ade_corpus_v2_drug_dosage_relation",
90
  version=datasets.Version("1.0.0"),
91
  description="ADE_Corpus_V2 Dataset for Relation Extraction between Drug dosage and Drug.",
92
  ),
dataset_infos.json CHANGED
@@ -1 +1 @@
1
- {"Ade_corpos_v2_classificaion": {"description": " ADE-Corpus-V2 Dataset: Adverse Drug Reaction Data.\n This is a dataset for Classification if a sentence is ADE-related (True) or not (False) and Relation Extraction between Adverse Drug Event and Drug.\n DRUG-AE.rel provides relations between drugs and adverse effects.\n DRUG-DOSE.rel provides relations between drugs and dosages.\n ADE-NEG.txt provides all sentences in the ADE corpus that DO NOT contain any drug-related adverse effects.\n", "citation": "@article{GURULINGAPPA2012885,\ntitle = \"Development of a benchmark corpus to support the automatic extraction of drug-related adverse effects from medical case reports\",\njournal = \"Journal of Biomedical Informatics\",\nvolume = \"45\",\nnumber = \"5\",\npages = \"885 - 892\",\nyear = \"2012\",\nnote = \"Text Mining and Natural Language Processing in Pharmacogenomics\",\nissn = \"1532-0464\",\ndoi = \"https://doi.org/10.1016/j.jbi.2012.04.008\",\nurl = \"http://www.sciencedirect.com/science/article/pii/S1532046412000615\",\nauthor = \"Harsha Gurulingappa and Abdul Mateen Rajput and Angus Roberts and Juliane Fluck and Martin Hofmann-Apitius and Luca Toldo\",\nkeywords = \"Adverse drug effect, Benchmark corpus, Annotation, Harmonization, Sentence classification\",\nabstract = \"A significant amount of information about drug-related safety issues such as adverse effects are published in medical case reports that can only be explored by human readers due to their unstructured nature. The work presented here aims at generating a systematically annotated corpus that can support the development and validation of methods for the automatic extraction of drug-related adverse effects from medical case reports. The documents are systematically double annotated in various rounds to ensure consistent annotations. The annotated documents are finally harmonized to generate representative consensus annotations. In order to demonstrate an example use case scenario, the corpus was employed to train and validate models for the classification of informative against the non-informative sentences. A Maximum Entropy classifier trained with simple features and evaluated by 10-fold cross-validation resulted in the F1 score of 0.70 indicating a potential useful application of the corpus.\"\n}\n", "homepage": "https://www.sciencedirect.com/science/article/pii/S1532046412000615", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["Not-Related", "Related"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "ade_corpus_v2", "config_name": "Ade_corpos_v2_classificaion", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 3403711, "num_examples": 23516, "dataset_name": "ade_corpus_v2"}}, "download_checksums": {"https://raw.githubusercontent.com/trunghlt/AdverseDrugReaction/master/ADE-Corpus-V2/DRUG-AE.rel": {"num_bytes": 1423024, "checksum": "542cdc483ccc94927762eaf2c9a8ecac49a6c10037dda2895be6a6e20160f75a"}, "https://raw.githubusercontent.com/trunghlt/AdverseDrugReaction/master/ADE-Corpus-V2/DRUG-DOSE.rel": {"num_bytes": 59669, "checksum": "78b46dfcdc1325d7f81e5e01f5a424e380e4b38fafca02f6e8f67064ca73f2db"}, "https://raw.githubusercontent.com/trunghlt/AdverseDrugReaction/master/ADE-Corpus-V2/ADE-NEG.txt": {"num_bytes": 2308469, "checksum": "8f506c159042ce354fbf26981dc39971dde8f09b1158d94106eab1e516e53fcf"}}, "download_size": 3791162, "post_processing_size": null, "dataset_size": 3403711, "size_in_bytes": 7194873}, "Ade_corpos_v2_drug_ade_relation": {"description": " ADE-Corpus-V2 Dataset: Adverse Drug Reaction Data.\n This is a dataset for Classification if a sentence is ADE-related (True) or not (False) and Relation Extraction between Adverse Drug Event and Drug.\n DRUG-AE.rel provides relations between drugs and adverse effects.\n DRUG-DOSE.rel provides relations between drugs and dosages.\n ADE-NEG.txt provides all sentences in the ADE corpus that DO NOT contain any drug-related adverse effects.\n", "citation": "@article{GURULINGAPPA2012885,\ntitle = \"Development of a benchmark corpus to support the automatic extraction of drug-related adverse effects from medical case reports\",\njournal = \"Journal of Biomedical Informatics\",\nvolume = \"45\",\nnumber = \"5\",\npages = \"885 - 892\",\nyear = \"2012\",\nnote = \"Text Mining and Natural Language Processing in Pharmacogenomics\",\nissn = \"1532-0464\",\ndoi = \"https://doi.org/10.1016/j.jbi.2012.04.008\",\nurl = \"http://www.sciencedirect.com/science/article/pii/S1532046412000615\",\nauthor = \"Harsha Gurulingappa and Abdul Mateen Rajput and Angus Roberts and Juliane Fluck and Martin Hofmann-Apitius and Luca Toldo\",\nkeywords = \"Adverse drug effect, Benchmark corpus, Annotation, Harmonization, Sentence classification\",\nabstract = \"A significant amount of information about drug-related safety issues such as adverse effects are published in medical case reports that can only be explored by human readers due to their unstructured nature. The work presented here aims at generating a systematically annotated corpus that can support the development and validation of methods for the automatic extraction of drug-related adverse effects from medical case reports. The documents are systematically double annotated in various rounds to ensure consistent annotations. The annotated documents are finally harmonized to generate representative consensus annotations. In order to demonstrate an example use case scenario, the corpus was employed to train and validate models for the classification of informative against the non-informative sentences. A Maximum Entropy classifier trained with simple features and evaluated by 10-fold cross-validation resulted in the F1 score of 0.70 indicating a potential useful application of the corpus.\"\n}\n", "homepage": "https://www.sciencedirect.com/science/article/pii/S1532046412000615", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "drug": {"dtype": "string", "id": null, "_type": "Value"}, "effect": {"dtype": "string", "id": null, "_type": "Value"}, "indexes": {"drug": {"feature": {"start_char": {"dtype": "int32", "id": null, "_type": "Value"}, "end_char": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "effect": {"feature": {"start_char": {"dtype": "int32", "id": null, "_type": "Value"}, "end_char": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}}, "post_processed": null, "supervised_keys": null, "builder_name": "ade_corpus_v2", "config_name": "Ade_corpos_v2_drug_ade_relation", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1546021, "num_examples": 6821, "dataset_name": "ade_corpus_v2"}}, "download_checksums": {"https://raw.githubusercontent.com/trunghlt/AdverseDrugReaction/master/ADE-Corpus-V2/DRUG-AE.rel": {"num_bytes": 1423024, "checksum": "542cdc483ccc94927762eaf2c9a8ecac49a6c10037dda2895be6a6e20160f75a"}, "https://raw.githubusercontent.com/trunghlt/AdverseDrugReaction/master/ADE-Corpus-V2/DRUG-DOSE.rel": {"num_bytes": 59669, "checksum": "78b46dfcdc1325d7f81e5e01f5a424e380e4b38fafca02f6e8f67064ca73f2db"}, "https://raw.githubusercontent.com/trunghlt/AdverseDrugReaction/master/ADE-Corpus-V2/ADE-NEG.txt": {"num_bytes": 2308469, "checksum": "8f506c159042ce354fbf26981dc39971dde8f09b1158d94106eab1e516e53fcf"}}, "download_size": 3791162, "post_processing_size": null, "dataset_size": 1546021, "size_in_bytes": 5337183}, "Ade_corpos_v2_drug_dosage_relation": {"description": " ADE-Corpus-V2 Dataset: Adverse Drug Reaction Data.\n This is a dataset for Classification if a sentence is ADE-related (True) or not (False) and Relation Extraction between Adverse Drug Event and Drug.\n DRUG-AE.rel provides relations between drugs and adverse effects.\n DRUG-DOSE.rel provides relations between drugs and dosages.\n ADE-NEG.txt provides all sentences in the ADE corpus that DO NOT contain any drug-related adverse effects.\n", "citation": "@article{GURULINGAPPA2012885,\ntitle = \"Development of a benchmark corpus to support the automatic extraction of drug-related adverse effects from medical case reports\",\njournal = \"Journal of Biomedical Informatics\",\nvolume = \"45\",\nnumber = \"5\",\npages = \"885 - 892\",\nyear = \"2012\",\nnote = \"Text Mining and Natural Language Processing in Pharmacogenomics\",\nissn = \"1532-0464\",\ndoi = \"https://doi.org/10.1016/j.jbi.2012.04.008\",\nurl = \"http://www.sciencedirect.com/science/article/pii/S1532046412000615\",\nauthor = \"Harsha Gurulingappa and Abdul Mateen Rajput and Angus Roberts and Juliane Fluck and Martin Hofmann-Apitius and Luca Toldo\",\nkeywords = \"Adverse drug effect, Benchmark corpus, Annotation, Harmonization, Sentence classification\",\nabstract = \"A significant amount of information about drug-related safety issues such as adverse effects are published in medical case reports that can only be explored by human readers due to their unstructured nature. The work presented here aims at generating a systematically annotated corpus that can support the development and validation of methods for the automatic extraction of drug-related adverse effects from medical case reports. The documents are systematically double annotated in various rounds to ensure consistent annotations. The annotated documents are finally harmonized to generate representative consensus annotations. In order to demonstrate an example use case scenario, the corpus was employed to train and validate models for the classification of informative against the non-informative sentences. A Maximum Entropy classifier trained with simple features and evaluated by 10-fold cross-validation resulted in the F1 score of 0.70 indicating a potential useful application of the corpus.\"\n}\n", "homepage": "https://www.sciencedirect.com/science/article/pii/S1532046412000615", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "drug": {"dtype": "string", "id": null, "_type": "Value"}, "dosage": {"dtype": "string", "id": null, "_type": "Value"}, "indexes": {"drug": {"feature": {"start_char": {"dtype": "int32", "id": null, "_type": "Value"}, "end_char": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "dosage": {"feature": {"start_char": {"dtype": "int32", "id": null, "_type": "Value"}, "end_char": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}}, "post_processed": null, "supervised_keys": null, "builder_name": "ade_corpus_v2", "config_name": "Ade_corpos_v2_drug_dosage_relation", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 64725, "num_examples": 279, "dataset_name": "ade_corpus_v2"}}, "download_checksums": {"https://raw.githubusercontent.com/trunghlt/AdverseDrugReaction/master/ADE-Corpus-V2/DRUG-AE.rel": {"num_bytes": 1423024, "checksum": "542cdc483ccc94927762eaf2c9a8ecac49a6c10037dda2895be6a6e20160f75a"}, "https://raw.githubusercontent.com/trunghlt/AdverseDrugReaction/master/ADE-Corpus-V2/DRUG-DOSE.rel": {"num_bytes": 59669, "checksum": "78b46dfcdc1325d7f81e5e01f5a424e380e4b38fafca02f6e8f67064ca73f2db"}, "https://raw.githubusercontent.com/trunghlt/AdverseDrugReaction/master/ADE-Corpus-V2/ADE-NEG.txt": {"num_bytes": 2308469, "checksum": "8f506c159042ce354fbf26981dc39971dde8f09b1158d94106eab1e516e53fcf"}}, "download_size": 3791162, "post_processing_size": null, "dataset_size": 64725, "size_in_bytes": 3855887}}
 
1
+ {"Ade_corpus_v2_classification": {"description": " ADE-Corpus-V2 Dataset: Adverse Drug Reaction Data.\n This is a dataset for Classification if a sentence is ADE-related (True) or not (False) and Relation Extraction between Adverse Drug Event and Drug.\n DRUG-AE.rel provides relations between drugs and adverse effects.\n DRUG-DOSE.rel provides relations between drugs and dosages.\n ADE-NEG.txt provides all sentences in the ADE corpus that DO NOT contain any drug-related adverse effects.\n", "citation": "@article{GURULINGAPPA2012885,\ntitle = \"Development of a benchmark corpus to support the automatic extraction of drug-related adverse effects from medical case reports\",\njournal = \"Journal of Biomedical Informatics\",\nvolume = \"45\",\nnumber = \"5\",\npages = \"885 - 892\",\nyear = \"2012\",\nnote = \"Text Mining and Natural Language Processing in Pharmacogenomics\",\nissn = \"1532-0464\",\ndoi = \"https://doi.org/10.1016/j.jbi.2012.04.008\",\nurl = \"http://www.sciencedirect.com/science/article/pii/S1532046412000615\",\nauthor = \"Harsha Gurulingappa and Abdul Mateen Rajput and Angus Roberts and Juliane Fluck and Martin Hofmann-Apitius and Luca Toldo\",\nkeywords = \"Adverse drug effect, Benchmark corpus, Annotation, Harmonization, Sentence classification\",\nabstract = \"A significant amount of information about drug-related safety issues such as adverse effects are published in medical case reports that can only be explored by human readers due to their unstructured nature. The work presented here aims at generating a systematically annotated corpus that can support the development and validation of methods for the automatic extraction of drug-related adverse effects from medical case reports. The documents are systematically double annotated in various rounds to ensure consistent annotations. The annotated documents are finally harmonized to generate representative consensus annotations. In order to demonstrate an example use case scenario, the corpus was employed to train and validate models for the classification of informative against the non-informative sentences. A Maximum Entropy classifier trained with simple features and evaluated by 10-fold cross-validation resulted in the F1 score of 0.70 indicating a potential useful application of the corpus.\"\n}\n", "homepage": "https://www.sciencedirect.com/science/article/pii/S1532046412000615", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["Not-Related", "Related"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "ade_corpus_v2", "config_name": "Ade_corpus_v2_classification", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 3403711, "num_examples": 23516, "dataset_name": "ade_corpus_v2"}}, "download_checksums": {"https://raw.githubusercontent.com/trunghlt/AdverseDrugReaction/master/ADE-Corpus-V2/DRUG-AE.rel": {"num_bytes": 1423024, "checksum": "542cdc483ccc94927762eaf2c9a8ecac49a6c10037dda2895be6a6e20160f75a"}, "https://raw.githubusercontent.com/trunghlt/AdverseDrugReaction/master/ADE-Corpus-V2/DRUG-DOSE.rel": {"num_bytes": 59669, "checksum": "78b46dfcdc1325d7f81e5e01f5a424e380e4b38fafca02f6e8f67064ca73f2db"}, "https://raw.githubusercontent.com/trunghlt/AdverseDrugReaction/master/ADE-Corpus-V2/ADE-NEG.txt": {"num_bytes": 2308469, "checksum": "8f506c159042ce354fbf26981dc39971dde8f09b1158d94106eab1e516e53fcf"}}, "download_size": 3791162, "post_processing_size": null, "dataset_size": 3403711, "size_in_bytes": 7194873}, "Ade_corpus_v2_drug_ade_relation": {"description": " ADE-Corpus-V2 Dataset: Adverse Drug Reaction Data.\n This is a dataset for Classification if a sentence is ADE-related (True) or not (False) and Relation Extraction between Adverse Drug Event and Drug.\n DRUG-AE.rel provides relations between drugs and adverse effects.\n DRUG-DOSE.rel provides relations between drugs and dosages.\n ADE-NEG.txt provides all sentences in the ADE corpus that DO NOT contain any drug-related adverse effects.\n", "citation": "@article{GURULINGAPPA2012885,\ntitle = \"Development of a benchmark corpus to support the automatic extraction of drug-related adverse effects from medical case reports\",\njournal = \"Journal of Biomedical Informatics\",\nvolume = \"45\",\nnumber = \"5\",\npages = \"885 - 892\",\nyear = \"2012\",\nnote = \"Text Mining and Natural Language Processing in Pharmacogenomics\",\nissn = \"1532-0464\",\ndoi = \"https://doi.org/10.1016/j.jbi.2012.04.008\",\nurl = \"http://www.sciencedirect.com/science/article/pii/S1532046412000615\",\nauthor = \"Harsha Gurulingappa and Abdul Mateen Rajput and Angus Roberts and Juliane Fluck and Martin Hofmann-Apitius and Luca Toldo\",\nkeywords = \"Adverse drug effect, Benchmark corpus, Annotation, Harmonization, Sentence classification\",\nabstract = \"A significant amount of information about drug-related safety issues such as adverse effects are published in medical case reports that can only be explored by human readers due to their unstructured nature. The work presented here aims at generating a systematically annotated corpus that can support the development and validation of methods for the automatic extraction of drug-related adverse effects from medical case reports. The documents are systematically double annotated in various rounds to ensure consistent annotations. The annotated documents are finally harmonized to generate representative consensus annotations. In order to demonstrate an example use case scenario, the corpus was employed to train and validate models for the classification of informative against the non-informative sentences. A Maximum Entropy classifier trained with simple features and evaluated by 10-fold cross-validation resulted in the F1 score of 0.70 indicating a potential useful application of the corpus.\"\n}\n", "homepage": "https://www.sciencedirect.com/science/article/pii/S1532046412000615", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "drug": {"dtype": "string", "id": null, "_type": "Value"}, "effect": {"dtype": "string", "id": null, "_type": "Value"}, "indexes": {"drug": {"feature": {"start_char": {"dtype": "int32", "id": null, "_type": "Value"}, "end_char": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "effect": {"feature": {"start_char": {"dtype": "int32", "id": null, "_type": "Value"}, "end_char": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}}, "post_processed": null, "supervised_keys": null, "builder_name": "ade_corpus_v2", "config_name": "Ade_corpus_v2_drug_ade_relation", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1546021, "num_examples": 6821, "dataset_name": "ade_corpus_v2"}}, "download_checksums": {"https://raw.githubusercontent.com/trunghlt/AdverseDrugReaction/master/ADE-Corpus-V2/DRUG-AE.rel": {"num_bytes": 1423024, "checksum": "542cdc483ccc94927762eaf2c9a8ecac49a6c10037dda2895be6a6e20160f75a"}, "https://raw.githubusercontent.com/trunghlt/AdverseDrugReaction/master/ADE-Corpus-V2/DRUG-DOSE.rel": {"num_bytes": 59669, "checksum": "78b46dfcdc1325d7f81e5e01f5a424e380e4b38fafca02f6e8f67064ca73f2db"}, "https://raw.githubusercontent.com/trunghlt/AdverseDrugReaction/master/ADE-Corpus-V2/ADE-NEG.txt": {"num_bytes": 2308469, "checksum": "8f506c159042ce354fbf26981dc39971dde8f09b1158d94106eab1e516e53fcf"}}, "download_size": 3791162, "post_processing_size": null, "dataset_size": 1546021, "size_in_bytes": 5337183}, "Ade_corpus_v2_drug_dosage_relation": {"description": " ADE-Corpus-V2 Dataset: Adverse Drug Reaction Data.\n This is a dataset for Classification if a sentence is ADE-related (True) or not (False) and Relation Extraction between Adverse Drug Event and Drug.\n DRUG-AE.rel provides relations between drugs and adverse effects.\n DRUG-DOSE.rel provides relations between drugs and dosages.\n ADE-NEG.txt provides all sentences in the ADE corpus that DO NOT contain any drug-related adverse effects.\n", "citation": "@article{GURULINGAPPA2012885,\ntitle = \"Development of a benchmark corpus to support the automatic extraction of drug-related adverse effects from medical case reports\",\njournal = \"Journal of Biomedical Informatics\",\nvolume = \"45\",\nnumber = \"5\",\npages = \"885 - 892\",\nyear = \"2012\",\nnote = \"Text Mining and Natural Language Processing in Pharmacogenomics\",\nissn = \"1532-0464\",\ndoi = \"https://doi.org/10.1016/j.jbi.2012.04.008\",\nurl = \"http://www.sciencedirect.com/science/article/pii/S1532046412000615\",\nauthor = \"Harsha Gurulingappa and Abdul Mateen Rajput and Angus Roberts and Juliane Fluck and Martin Hofmann-Apitius and Luca Toldo\",\nkeywords = \"Adverse drug effect, Benchmark corpus, Annotation, Harmonization, Sentence classification\",\nabstract = \"A significant amount of information about drug-related safety issues such as adverse effects are published in medical case reports that can only be explored by human readers due to their unstructured nature. The work presented here aims at generating a systematically annotated corpus that can support the development and validation of methods for the automatic extraction of drug-related adverse effects from medical case reports. The documents are systematically double annotated in various rounds to ensure consistent annotations. The annotated documents are finally harmonized to generate representative consensus annotations. In order to demonstrate an example use case scenario, the corpus was employed to train and validate models for the classification of informative against the non-informative sentences. A Maximum Entropy classifier trained with simple features and evaluated by 10-fold cross-validation resulted in the F1 score of 0.70 indicating a potential useful application of the corpus.\"\n}\n", "homepage": "https://www.sciencedirect.com/science/article/pii/S1532046412000615", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "drug": {"dtype": "string", "id": null, "_type": "Value"}, "dosage": {"dtype": "string", "id": null, "_type": "Value"}, "indexes": {"drug": {"feature": {"start_char": {"dtype": "int32", "id": null, "_type": "Value"}, "end_char": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "dosage": {"feature": {"start_char": {"dtype": "int32", "id": null, "_type": "Value"}, "end_char": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}}, "post_processed": null, "supervised_keys": null, "builder_name": "ade_corpus_v2", "config_name": "Ade_corpus_v2_drug_dosage_relation", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 64725, "num_examples": 279, "dataset_name": "ade_corpus_v2"}}, "download_checksums": {"https://raw.githubusercontent.com/trunghlt/AdverseDrugReaction/master/ADE-Corpus-V2/DRUG-AE.rel": {"num_bytes": 1423024, "checksum": "542cdc483ccc94927762eaf2c9a8ecac49a6c10037dda2895be6a6e20160f75a"}, "https://raw.githubusercontent.com/trunghlt/AdverseDrugReaction/master/ADE-Corpus-V2/DRUG-DOSE.rel": {"num_bytes": 59669, "checksum": "78b46dfcdc1325d7f81e5e01f5a424e380e4b38fafca02f6e8f67064ca73f2db"}, "https://raw.githubusercontent.com/trunghlt/AdverseDrugReaction/master/ADE-Corpus-V2/ADE-NEG.txt": {"num_bytes": 2308469, "checksum": "8f506c159042ce354fbf26981dc39971dde8f09b1158d94106eab1e516e53fcf"}}, "download_size": 3791162, "post_processing_size": null, "dataset_size": 64725, "size_in_bytes": 3855887}}
dummy/{Ade_corpos_v2_classificaion → Ade_corpus_v2_classification}/1.0.0/dummy_data.zip RENAMED
File without changes
dummy/{Ade_corpos_v2_drug_ade_relation → Ade_corpus_v2_drug_ade_relation}/1.0.0/dummy_data.zip RENAMED
File without changes
dummy/{Ade_corpos_v2_drug_dosage_relation → Ade_corpus_v2_drug_dosage_relation}/1.0.0/dummy_data.zip RENAMED
File without changes