abdullah's picture
Add files using upload-large-folder tool
2e53325 verified
raw
history blame
56.3 kB
1
00:00:00,000 --> 00:00:02,680
ู…ูˆุณูŠู‚ู‰
2
00:00:10,340 --> 00:00:14,320
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู…ุŒ ู†ูˆุงุตู„ ู…ุง ุงุจุชุฏุฃู†ุง ุจู‡ ููŠ
3
00:00:14,320 --> 00:00:18,500
ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉุŒ ุขุฎุฑ ุญุงุฌุฉ ูƒู†ุง ุจู†ุชูƒู„ู… ููŠู‡ุง ุงู„ู…ุฑุฉ
4
00:00:18,500 --> 00:00:24,980
ุงู„ู…ุงุถูŠุฉ ู„ู„ู€ infinite seriesุŒ ุงู„ู…ุชุณู„ุณู„ุงุช ุงู„ู„ุงู†ู‡ุงุฆูŠุฉ
5
00:00:24,980 --> 00:00:30,580
ูˆูˆุตู„ู†ุง ุฅู„ู‰ ุงู„ู€ geometric seriesุŒ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู…ุชุณู„ุณู„ุฉ
6
00:00:30,580 --> 00:00:35,990
ุงู„ู‡ู†ุฏุณูŠุฉุŒ ูˆุฐูƒุฑู†ุง ููŠ ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ุฃู† ุงู„ู…ุชุณู„ุณู„ุฉ
7
00:00:35,990 --> 00:00:42,110
ุงู„ู‡ู†ุฏุณูŠุฉ ุนู„ู‰ ุดูƒู„ summation ู„ู€ A R ุฃุณ N minus one
8
00:00:42,110 --> 00:00:47,570
ุญูŠุซ A ุงู„ุญุฏ ุงู„ุฃูˆู„ุŒ ูˆุงู„ู€ R ู‡ูˆ ุงู„ุฃุณุงุณ ุชุจุน ุงู„ู…ุชุณู„ุณู„ุฉ
9
00:00:47,570 --> 00:00:53,650
ูˆุฃุฎุฐู†ุง ุนู„ู‰ ุฐู„ูƒ ุฃุฑุจุนุฉ ุฃู…ุซู„ุฉุŒ ุงู„ุขู† ุจู†ุฐู‡ุจ ุฅู„ู‰ ุงู„ู…ุซุงู„
10
00:00:53,650 --> 00:00:58,010
ุฑู‚ู… ุฎู…ุณุฉุŒ ุงู„ู„ูŠ ุนู… ู†ุณู…ูŠู‡ ุงุซู†ูŠู† ู„ุฃู† ุงู„ุฃุฑุจุนุฉ ูƒุงู†ูˆุง
11
00:00:58,010 --> 00:01:04,280
ู…ุฌู…ูˆุนุฉ ู…ุชุขู„ูุฉุŒ ู†ุฌูŠุจ ู†ู‚ุทุฉ ุซุงู†ูŠุฉ ู„ุฃูˆู„ ูˆุงุญุฏุฉ ูƒุฃู†ู‡ ูŠุธู‡ุฑ
12
00:01:04,280 --> 00:01:08,620
ุฃู†ู‡ ู…ุง ู„ูˆุด ุนู„ุงู‚ุฉ ุจุงู„ู…ุชุณู„ุณู„ุฉ ุงู„ู‡ู†ุฏุณูŠุฉุŒ ุจูŠู‚ูˆู„ ู„ูŠ
13
00:01:08,620 --> 00:01:13,820
ุฃุนุจุฑ ู„ูŠ ุนู† ุงู„ู€ numberุŒ ูˆุงุญุฏ ุตุญูŠุญ
14
00:01:13,820 --> 00:01:20,450
ูˆ ุซู…ุงู†ูŠุฉ ูˆุนุดุฑูŠู† ู…ู† ู…ูŠุฉุŒ ูˆุซู…ุงู†ูŠุฉ ูˆุนุดุฑูŠู† ููˆู‚ู‡ุง ุดุฑุทุฉ
15
00:01:20,450 --> 00:01:26,890
ู‡ุฐู‡ ู†ุณู…ูŠู‡ุง ุงู„ูƒุณูˆุฑ ุงู„ุนุดุฑูŠุฉ ุงู„ุฏุงุฆุฑูŠุฉุŒ ุฃูˆ ุงู„ูƒุณูˆุฑ ุงู„ุนุดุฑูŠุฉ
16
00:01:26,890 --> 00:01:31,630
ุงู„ุฏูˆุฑูŠุฉุŒ ููŠ ุงู„ู…ุฑุญู„ุฉ ุงู„ุซุงู†ูˆูŠุฉ ู‡ูŠ ู†ูุณ ุงู„ูƒุณูˆุฑ ุงู„ุนุดุฑูŠุฉ
17
00:01:31,630 --> 00:01:36,750
ุงู„ู„ูŠ ุจุชุฏุฑุณ ููŠ ุงู„ุซุงู†ูˆูŠุฉ ู‡ูŠ ู†ูุณ ู‡ุฐู‡ุŒ ุทูŠุจ ุงู„ุขู† ุจูŠู‚ูˆู„ ู„ูŠ ุนุจุฑ ู„ูŠ
18
00:01:36,750 --> 00:01:41,310
ุนู† ู‡ุฐุง ุงู„ูƒุณุฑ ุงู„ุนุดุฑูŠ ุงู„ุฏุงุฆุฑ as a ratio of two
19
00:01:41,310 --> 00:01:49,440
integersุŒ ูƒูƒุณุฑ ู‚ุณู…ุฉ ุฑู‚ู…ูŠู† ุนู„ู‰ ุจุนุถุŒ ุฃูˆ ุฑู‚ู…ูŠู† ุนู„ู‰
20
00:01:49,440 --> 00:01:53,540
ุจุนุถุŒ ุฃูˆ ุฑู‚ู…ูŠู† ุนู„ู‰ ุจุนุถุŒ ุฃูˆ ุฑู‚ู…ูŠู† ุนู„ู‰ ุจุนุถุŒ ุฃูˆ ุฑู‚ู…ูŠู†
21
00:01:53,540 --> 00:01:54,740
ุฑู‚ู…ูŠู† ุนู„ู‰ ุจุนุถุŒ ุฃูˆ ุฑู‚ู…ูŠู† ุนู„ู‰ ุจุนุถุŒ ุฃูˆ ุฑู‚ู…ูŠู† ุนู„ู‰ ุจุนุถ
22
00:01:54,740 --> 00:01:57,600
ุฃูˆ ุฑู‚ู…ูŠู† ุนู„ู‰ ุจุนุถุŒ ุฃูˆ ุฑู‚ู…ูŠู† ุนู„ู‰ ุจุนุถุŒ ุฃูˆ ุฑู‚ู…ูŠู† ุนู„ู‰
23
00:01:57,600 --> 00:02:01,000
ุจุนุถุŒ ุฃูˆ ุฑู‚ู…ูŠู† ุนู„ู‰ ุจุนุถุŒ ุฃูˆ ุฑู‚ู…ูŠู† ุนู„ู‰ ุจุนุถุŒ ุฃูˆ ุฑู‚ู…ูŠู†
24
00:02:01,000 --> 00:02:03,000
ุนู„ู‰ ุจุนุถุŒ ุฃูˆ ุฑู‚ู…ูŠู† ุนู„ู‰ ุจุนุถุŒ ุฃูˆ ุฑู‚ู…ูŠู† ุนู„ู‰ ุจุนุถุŒ ุฃูˆ
25
00:02:03,000 --> 00:02:06,200
ุฃูˆ ุฑู‚ู…ูŠู† ุนู„ู‰ ุจุนุถ
26
00:02:06,200 --> 00:02:10,780
ุฃูˆ ุฑู‚ู…ูŠู† ุนู„ู‰ ุจุนุถุŒ ุฃูˆ ุฑู‚ู…ูŠู† ุนู„ู‰ ุจุนุถุŒ ุฃูˆ ุฑู‚ู…ูŠู† ุนู„ู‰
27
00:02:10,780 --> 00:02:16,750
ุจุนุถุŒ ุทุจุนู‹ุงุŸ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุญุงุทูŠู†ู‡ ุนู„ู‰ ุงู„ุดูƒู„ ู„ุฃู†
28
00:02:16,750 --> 00:02:23,050
ู‡ุฐุงุŒ ุจุฏูŠ ุฃุญุงูˆู„ ุฃุญุทู‡ ุจุตูŠุบุฉ ุฃุฎุฑู‰ุŒ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู…
29
00:02:23,050 --> 00:02:27,450
ุจุฏูŠ ุฃุณุงูˆูŠู‡ุŒ ู‡ุฐู‡ ุงู„ูˆุงุญุฏ ุงู„ุตุญูŠุญ ุฒุงุฆุฏุŒ ุจุฏูŠ ุฃุฌูŠ
30
00:02:27,450 --> 00:02:31,370
ู„ู„ุชู…ุงู†ูŠุฉ ูˆุนุดุฑูŠู† ุงู„ุฃูˆู„ู‰ุŒ ู‡ุฐู‡ ุซู…ุงู†ูŠุฉ ูˆุนุดุฑูŠู† ู…ู† ู…ุฆุฉ
31
00:02:31,370 --> 00:02:37,310
ุŒูŠุนู†ูŠ ุซู…ุงู†ูŠุฉ ูˆุนุดุฑูŠู† ุนู„ู‰ ู…ุฆุฉุŒ ูŠุจู‚ู‰ ู‡ุฐู‡ ุซู…ุงู†ูŠุฉ ูˆุนุดุฑูŠู†
32
00:02:37,310 --> 00:02:46,880
ุนู„ู‰ ู…ุฆุฉุŒ ุจุงู„ุฏุงุฎู„ ุงู„ู€ 28 ุงู„ุซุงู†ูŠุฉุŒ 28 ู…ู† ุนุดุฑุฉ ุขู„ุงูุŒ ูŠุจู‚ู‰
33
00:02:46,880 --> 00:02:56,240
ู‡ูŠ 28 ุนู„ู‰ ุนุดุฑุฉ ุขู„ุงู ุฒุงุฆุฏุŒ ุจุงู„ุฏุงุฎู„ ุงู„ู€ 28 ุงู„ุซุงู„ุซุฉ
34
00:02:56,240 --> 00:03:05,960
ูŠุจู‚ู‰ ู‡ูŠ 28 ุนู„ู‰ ู…ู„ูŠูˆู† ุฒุงุฆุฏ ุฅู„ู‰ ุขุฎุฑู‡ุŒ ูŠุจู‚ู‰
35
00:03:05,960 --> 00:03:12,000
ุฑูˆุญุช ูƒุงุชุจ ุงู„ูƒุณุฑ ุงู„ุนุดุฑูŠ ุงู„ุฏุงุฆุฑ ุนู„ู‰ ุดูƒู„ ู…ุชุณู„ุณู„ุฉุŒ ู„ูƒู†
36
00:03:12,000 --> 00:03:17,300
ุงู„ู…ุชุณู„ุณู„ุฉ ุฏูŠ ู„ุณู‡ ู…ุง ุจุนุฑูุด ุฅูŠู‡ ุดูƒู„ู‡ุง ุงู„ุญู‚ูŠู‚ูŠุŒ ุนู„ู‰ ุดูƒู„
37
00:03:17,300 --> 00:03:22,040
ู…ุชุณู„ุณู„ุฉุŒ ู„ุฃุŒ form ู…ุนูŠู†ุฉ ู…ุง ู„ู‡ุงุดุŒ ูŠุฌุจ ุฃู† ู†ู‚ูˆู„ ุงู„ู„ู‡ ุฃุนู„ู…
38
00:03:22,700 --> 00:03:26,720
ุงู„ูˆุงุญุฏ ู‡ูˆ ุฏู‡ ู„ุญุงู„ู‡ ู…ุณุชู‚ู„ุŒ ู…ุง ู„ูˆุด ุฏุนูˆุฉ ููŠ ุจุงู‚ูŠ ุงู„ูƒุณูˆุฑ
39
00:03:26,720 --> 00:03:31,720
ูŠุจู‚ู‰ ู‡ุฐุง ุฑู‚ู… ุตุญูŠุญุŒ ูุจุงุฌูŠ ุจู‚ูˆู„ู‡ ูŠุง ูˆุงุญุฏ ุฎู„ูŠูƒ ุฒูŠ ู…ุง
40
00:03:31,720 --> 00:03:38,320
ุฃู†ุช ุฒุงุฆุฏุŒ ุงูŠุด ุจุชู„ุงุญุธู‡ ุนู„ู‰ ูƒู„ ุงู„ุญุฏูˆุฏ ุงู„ู„ูŠ ุจุนุฏ ุฐู„ูƒุŸ ููŠ
41
00:03:38,320 --> 00:03:42,460
ุนุงู…ู„ ู…ุดุชุฑูƒ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุซู…ุงู†ูŠุฉ ูˆุนุดุฑูŠู† ุนู„ู‰ ู…ุฆุฉุŒ ุจุฏูŠ ุฃุฎุฏู‡
42
00:03:42,460 --> 00:03:49,060
ุนุงู…ู„ ู…ุดุชุฑูƒ ู…ู† ุงู„ูƒู„ุŒ ูŠุจู‚ู‰ ู‡ุงูŠ 28 ุนู„ู‰ ู…ุฆุฉ ุนุงู…ู„ ู…ุดุชุฑูƒ
43
00:03:49,060 --> 00:03:56,300
ุจุธู„ ูˆุงุญุฏ ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰ ู…ุฆุฉ ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰ ุนุดุฑุฉ ุขู„ุงู
44
00:03:56,300 --> 00:04:02,800
ุฒุงุฆุฏ ุฒุงุฆุฏ ุฅู„ู‰ ุขุฎุฑู‡ุŒ ุงูŠุด ุฑุฃูŠูƒู… ููŠ ุงู„ู…ู‚ุฏุงุฑ ุจูŠู†
45
00:04:02,800 --> 00:04:08,760
ุงู„ู‚ูˆุณูŠู†ุŸ ู„ูˆ ุฌูŠุช ู‚ุณู…ุช ุงู„ุญุฏ ุงู„ุซุงู†ูŠ ุนู„ู‰ ุงู„ุญุฏ ุงู„ุฃูˆู„ ูƒุฏู‡
46
00:04:08,760 --> 00:04:14,440
ุงูŠุด ุจูŠุทู„ุนุŸ ุจุฏูŠ ุฃู‚ุณู… ุงู„ุญุฏ ุงู„ุซุงู†ูŠ ุนู„ู‰ ุงู„ุญุฏ ุงู„ู„ูŠ ู‡ูˆ ุนู„ู‰ ู…ุฆุฉ
47
00:04:14,440 --> 00:04:19,500
ุจูŠุทู„ุน ูˆุงุญุฏ ุนู„ู‰ ู…ุฆุฉุŒ ุจุฏูŠ ุฃู‚ุณู… ุงู„ุญุฏ ุงู„ุซุงู„ุซ ุนู„ู‰ ุงู„ุญุฏ
48
00:04:19,500 --> 00:04:24,240
ุงู„ุซุงู†ูŠุŒ ูˆุงุญุฏ ุนู„ู‰ ู…ุฆุฉุŒ ูˆุงุญุฏ ุนู„ู‰ ู…ุฆุฉุŒ ูŠุจู‚ู‰ ู‡ุฐู‡ ู†ุณุจุฉ
49
00:04:24,240 --> 00:04:30,400
ุซุงุจุชุฉุŒ ูŠุจู‚ู‰ ุงู„ู„ูŠ ุจูŠู† ู‚ูˆุณูŠู† ุนุจุงุฑุฉ ุนู† ู…ุชุณู„ุณู„ุฉ ู‡ู†ุฏุณูŠุฉ
50
00:04:30,400 --> 00:04:35,440
geometric seriesุŒ ุงู„ู€ ratio ุชุจุนุชู‡ุง ู‡ูŠ ูˆุงุญุฏ ุนู„ู‰ ู…ุฆุฉุŒ ูˆ
51
00:04:35,440 --> 00:04:41,660
ุงู„ู€ aุŒ ูˆุงู„ุญุฏ ุงู„ุฃูˆู„ ู‡ูˆ ูˆุงุญุฏ ุตุญูŠุญุŒ ุทูŠุจ ุงู„ู€ series
52
00:04:41,660 --> 00:04:45,880
ู‡ุชุณู…ู‰ ูŠุง ู†ุงูŠู…ุŒ ูŠุจู‚ู‰ ู‡ุงุฏ ุงู„ู€ series converge ูˆู„ุง
53
00:04:45,880 --> 00:04:46,820
divergeุŸ
54
00:04:49,370 --> 00:04:55,930
ConvergeุŒ ู„ูŠู‡ุŸ ู„ุฃู† R ุฃู‚ู„ ู…ู† ูˆุงุญุฏ ุตุญูŠุญุŒ ุงู„ู€ absolute
55
00:04:55,930 --> 00:05:02,650
valueุŒ ุชู…ุงู…ุŒ ูŠุชุฌู„ุจูŠู† ุฌุซูŠู† ู‡ุฐู‡ ูƒู„ู‡ุง Converge
56
00:05:02,650 --> 00:05:06,230
Geometric Series
57
00:05:08,490 --> 00:05:14,750
Convert geometric series because absolute value ู„ู€ R
58
00:05:14,750 --> 00:05:21,930
ูŠุณุงูˆูŠ ูˆุงุญุฏ ุนู„ู‰ ู…ุฆุฉุŒ ุฃู‚ู„ ู…ู† ุงู„ูˆุงุญุฏ ุงู„ุตุญูŠุญุŒ ุชู…ุงู…ุŒ ูŠุจู‚ู‰ ู‡ุฐู‡
59
00:05:21,930 --> 00:05:26,490
convergeุŒ ุจุงู„ุณุจุจ ุฃู† ุงู„ุฃุณุงุณ ุชุจุน ุงู„ู…ุชุณู„ุณู„ุฉ ุฃู‚ู„ ู…ู†
60
00:05:26,490 --> 00:05:32,410
ูˆุงุญุฏ ุตุญูŠุญุŒ ุจู†ุงุก ุนู„ูŠู‡ ุจู†ู‚ุฏุฑ ู†ุฌู…ุน ู‡ุฐู‡ ุงู„ู…ุชุณู„ุณู„ุฉุŒ ุฅุฐุง
61
00:05:32,410 --> 00:05:36,530
ู„ูˆ ุฌู…ุนู†ุงู‡ุงุŒ ุจู†ุฌู…ุนู‡ุง ู†ู‚ูˆู„ ุงู„ูˆุงุญุฏ ุงู„ู„ูŠ ุจุฑุฉ ู…ุง ู„ูˆุด ุฏุนูˆุฉ
62
00:05:36,530 --> 00:05:41,530
ูˆุซู…ุงู†ูŠุฉ ูˆุนุดุฑูŠู† ุนู„ู‰ ู…ุฆุฉ ูƒู…ุงู† ุฎู„ูŠูƒ ุจุฑุฉุŒ ุงุญู†ุง ุจุฏู†ุง
63
00:05:41,530 --> 00:05:47,450
ู…ุฌู…ูˆุน ุงู„ู…ุชุณู„ุณู„ุฉ ุงู„ู„ูŠ ุฌูˆุงุŒ ุงู„ุญุฏ ุงู„ุฃูˆู„ ูˆุงุญุฏ
ุนู„ู‰ ูˆุงุญุฏ
64
00:05:47,450 --> 00:05:54,110
ู†ุงู‚ุต ุงู„ุฃุณุงุณุŒ ูˆุงุญุฏ ุนู„ู‰ ู…ุฆุฉุŒ ูŠุจู‚ู‰ ุงู„ู†ุชูŠุฌุฉ ุชุณุงูˆูŠ ูˆุงุญุฏ
65
00:05:54,110 --> 00:06:00,720
ุฒุงุฆุฏ ุซู…ุงู†ูŠุฉ ูˆุนุดุฑูŠู† ุนู„ู‰ ู…ุฆุฉ ููŠุŒ ูู„ู‘ุน ู„ูŠ ูˆุงุญุฏ ู†ุงู‚ุต
66
00:06:00,720 --> 00:06:05,000
ูˆุงุญุฏ ุนู„ู‰ ู…ุฆุฉุŒ ุจูŠู‚ูˆู„ ู‚ุฏ ุฅูŠุดุŸ ุชุณุนุฉ ูˆุชุณุนูŠู† ุนู„ู‰ ู…ุฆุฉุŒ ูŠุนู†ูŠ
67
00:06:05,000 --> 00:06:10,620
ู…ุฆุฉ ุนู„ู‰ ุชุณุนุฉ ูˆุชุณุนูŠู†ุŒ ูŠุจู‚ู‰ ุงู„ู„ูŠ ุฌูˆุง ุจูŠู† ู‚ูˆุณูŠู† ู‡ูŠ ู…ุฆุฉ
68
00:06:10,620 --> 00:06:16,780
ุนู„ู‰ ุชุณุนุฉ ูˆุชุณุนูŠู†ุŒ ุชุนุงู„ู‰ ู†ุดูˆูุŒ ููŠ ุงุฎุชุตุงุฑุงุชุŸ ู†ุนู…ุŒ ููŠ
69
00:06:16,780 --> 00:06:21,570
ุงุฎุชุตุงุฑุงุชุŒ ูŠุจู‚ู‰ ุงู„ู…ุฆุฉ ู‡ุฐู‡ ุจุชุฑูˆุญ ู…ุน ุงู„ู…ุฆุฉ ู‡ุฐู‡ุŒ ุจุธู„
70
00:06:21,570 --> 00:06:28,830
ุนู†ุฏู†ุง ูˆุงุญุฏ ุฒุงุฆุฏ ุซู…ุงู†ูŠุฉ ูˆุนุดุฑูŠู† ุนู„ู‰ ุชุณุนุฉ ูˆุชุณุนูŠู†ุŒ ููŠ
71
00:06:28,830 --> 00:06:34,810
ุงุฎุชุตุงุฑุงุช ุจูŠู† ุงู„ุจุณุท ูˆุงู„ู…ู‚ุงู…ุŸ ู„ุงุŒ ู…ุง ููŠุดุŒ ู…ุง ููŠุดุŒ ุจู„ุงุดุŒ
72
00:06:34,810 --> 00:06:39,070
ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠุŒ ุงู„ู…ุถุงุนู ุงู„ู…ุดุชุฑูƒ ู„ู„ุงุชู†ูŠู†
73
00:06:39,070 --> 00:06:44,680
ุชุณุนุฉ ูˆุชุณุนูŠู†ุŒ ุจุตูŠุฑ ุชุณุนุฉ ูˆุชุณุนูŠู† ุฒุงุฆุฏ ุซู…ุงู†ูŠุฉ ูˆุนุดุฑูŠู†
74
00:06:44,680 --> 00:06:51,320
ูŠุจู‚ู‰ ู…ุฆุฉ ูˆุณุจุนุฉ ูˆุนุดุฑูŠู† ุนู„ู‰ ุชุณุนุฉ ูˆุชุณุนูŠู†ุŒ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ
75
00:06:51,320 --> 00:06:56,900
ุฃู†ุง ุฃู†ุงุŒ ุฅุฐุง ุงู„ูƒุณุฑ ุงู„ุนุดุฑูŠ ุงู„ุฏุงุฆุฑ ูˆุงุญุฏ ูˆุซู…ุงู†ูŠุฉ ูˆุนุดุฑูŠู†
76
00:06:56,900 --> 00:07:03,060
ู…ู† ู…ุฆุฉุŒ ุงู„ุญู‚ูŠู‚ุฉ ุงู„ู‚ูŠู…ุฉ ุงู„ุนุฏุฏูŠุฉ as a ratio ู‡ูŠ ู…ุฆุฉ
77
00:07:03,060 --> 00:07:09,320
ูˆุณุจุนุฉ ูˆุนุดุฑูŠู† ุนู„ู‰ ุชุณุนุฉ ูˆุชุณุนูŠู†ุŒ ูŠุจู‚ู‰ ุงู„ูƒุณูˆุฑ ุงู„ุนุดุฑูŠุฉ
78
00:07:09,320 --> 00:07:15,860
ุงู„ุฏุงุฆุฑูŠุฉ ู…ุนู†ุงุชู‡ ู…ู…ูƒู† ุฃุฎู„ู‚ ู…ู†ู‡ุง ู…ุชุณู„ุณู„ุฉ ู‡ู†ุฏุณูŠุฉุŒ ูˆุฃุฑูˆุญ
79
00:07:15,860 --> 00:07:20,900
ุฃุดูˆู ุงู„ู…ุชุณู„ุณู„ุฉ ุงู„ู‡ู†ุฏุณูŠุฉ ู‡ุฐู‡ ุดูˆ ุดูƒู„ู‡ุงุŒ ูˆุฃุณุชุฎุฏู…ู‡ุง ููŠ
80
00:07:20,900 --> 00:07:27,540
ุชุญูˆูŠู„ ุงู„ูƒุณุฑ ุงู„ุนุดุฑูŠ ุงู„ุฏุงุฆุฑ ุฅู„ู‰ ูƒุณุฑ ุงุนุชูŠุงุฏูŠุŒ ุทูŠุจุŒ ุจุฏุฃ
81
00:07:27,540 --> 00:07:32,480
ุฃุณุฃู„ูƒู… ุจุนุถ ุงู„ุฃุณุฆู„ุฉ ุงู„ู‡ุงู…ุดูŠุฉ ุจุณ ู„ู…ุฌุฑุฏ ุงู„ุชุฐูƒูŠุฑุŒ ุงุญู†ุง
82
00:07:32,480 --> 00:07:37,680
ู‡ูŠูƒ ุณุคุงู„ู†ุง ุงู†ุชู‡ู‰ุŒ ู„ูˆ ุฌูŠุช ู‚ู„ุช ู„ูƒ ููŠ ุนู†ุฏูŠ ูƒุณุฑ ุนุดุฑูŠ
83
00:07:37,680 --> 00:07:43,200
ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏูƒุŒ ุงูŠู‡ ู‡ุฐุงุŸ ู‡ุงูŠ ุงุซู†ูŠู†ุŒ ุซู„ุงุซุฉุŒ ุฃุฑุจุนุฉ
84
00:07:43,200 --> 00:07:48,680
ูˆุญุทูŠุช ู„ูƒ ุดุฑุทุฉ ุนู„ู‰ ุงุซู†ูŠู†ุŒ ูˆุญุทูŠุช ู„ูƒ ุดุฑุทุฉ ุนู„ู‰ ุงู„ุฃุฑุจุนุฉ
85
00:07:48,680 --> 00:07:54,960
ุจุงู„ุดูƒู„ ู‡ุฐุงุŒ ูˆู‚ู„ุช ู„ูƒ ุงูƒุชุจ ู„ูŠ ู‡ุฐุง ุดูˆ ุจุฏู‡ ูŠุณุงูˆูŠุŒ ุงูŠุด
86
00:07:54,960 --> 00:08:01,560
ู…ุนู†ู‰ ู‡ุฐุงุŸ ุญุฏ ุจูŠู‚ุฏุฑ ูŠู‚ูˆู„ ู„ูŠุŸ ูƒุฏุณ ุงู„ุฃุฑุจุนุฉุŒ ูƒุฏุณ ุงู„ุฃุฑุจุนุฉุŒ
87
00:08:01,560 --> 00:08:02,200
ู…ุด ุณุงู…ุน
88
00:08:14,130 --> 00:08:17,950
ุงู„ู„ูŠ ุจูŠุนุฑู ูŠุฑูุน ูŠุฏู‡ุŒ ุจุฏู†ุง ู†ูู‡ู… ุจุณ ุนู„ู‰ ุดูƒู„ู‡ุงุŒ ู…ุด
89
00:08:17,950 --> 00:08:19,690
ู‡ุงุฏ ูƒู„ู‡ ูŠุณุชููŠุฏุŒ ุงุญูƒูŠ
90
00:08:22,430 --> 00:08:27,290
ูŠุนู†ูŠ ุงู„ุซู„ุงุซุฉ ุจุชุทูŠุฑุŸ ูƒู…ู‡ุง ู…ุง ู„ุงู‚ุงุด ูˆุฌูˆุฏุŸ ูŠุนู†ูŠ ุจูŠุธู„ ุจุณ
91
00:08:27,290 --> 00:08:30,230
ุงุซู†ูŠู† ูˆุฃุฑุจุนุฉ... ูŠุนู†ูŠ ุฃุฑุจุนุฉ ูˆุนุดุฑูŠู†ุŸ ุงุซู†ูŠู† ุตูุฑ ุงุซู†ูŠู†
92
00:08:30,230 --> 00:08:34,430
ุตูุฑ ุงุซู†ูŠู† ุตูุฑ ุงุซู†ูŠู† ุตูุฑ ุงุซู†ูŠู† ุตูุฑ ุงุซู†ูŠู† ุตูุฑ ุงุซู†ูŠู†
93
00:08:34,430 --> 00:08:38,190
ุตูุฑ ุงุซู†ูŠู† ุตูุฑ ุงุซู†ูŠู† ุตูุฑ ุงุซู†ูŠู† ุตูุฑ ุงุซู†ูŠู† ุตูุฑ ุงุซู†ูŠู†
94
00:08:38,190 --> 00:08:45,010
ุตูุฑ ุงุซู†ูŠู† ุตูุฑ ุงุซู†ูŠู† ุตูุฑ
95
00:08:53,560 --> 00:09:00,120
ูŠุนู†ูŠ ุงู„ุตูˆุฑุฉ ู‡ูŠ ุฎุทุฃุŒ ูˆุฌู‡ุฉ ู†ุธุฑุŒ ูˆู‚ุฏ ุชูƒูˆู† ูˆุฌู‡ุฉ ู†ุธุฑ ุตุญูŠุญุฉ
96
00:09:00,120 --> 00:09:07,540
ูˆู‚ุฏ ุชูƒูˆู† ู„ูŠุณุช ูˆุฌู‡ุฉ ู†ุธุฑ ุตุญูŠุญุฉุŒ ู…ู†
97
00:09:07,540 --> 00:09:13,970
ุฃูŠู† ู„ูƒ ุงู„ุตูุฑ ู‡ุฐุงุŸ ู…ู† ุฃูŠู† ุฌุจุชู‡ุŸ ู…ุด ุฏูˆุฑูŠ ูŠุนู†ูŠุŸ ุทูŠุจุŒ
98
00:09:13,970 --> 00:09:19,410
ุฅู† ุดูˆูุช ุฑู‚ู… ุจู‡ุฐุง... ุจู‡ุฐุง ุงู„ุดูƒู„ุŒ ุชู…ุงู…ู‹ุง ู…ุง ุฏุงู… ููŠู‡
99
00:09:19,410 --> 00:09:23,790
ุฅุดุงุฑุฉ ุนู„ู‰ ุงู„ุญุฏ ุงู„ุฃูˆู„ ูˆุงู„ุฃุฎูŠุฑุŒ ุงู„ู„ูŠ ููŠ ุงู„ู†ุต ู‚ุฏ ู…ุง
100
00:09:23,790 --> 00:09:27,630
ูŠูƒูˆู† ุฅู† ุดุงุก ุงู„ู„ู‡ ู…ุฆุฉ ุญุฏุŒ ุจูŠูƒูˆู†ูˆุง ุจุงู„ุดูƒู„ ูƒู„ู‡ู… ูƒูƒุชู„ุฉ
101
00:09:27,630 --> 00:09:34,210
ูˆุงุญุฏุฉุŒ ูŠุนู†ูŠ ู‡ุฐุง ู…ุนู†ุงู‡ ุงูŠู‡ุŸ ู…ุนู†ุงุชู‡ ุตูุฑ ุงุซู†ูŠู† ุซู„ุงุซุฉ
102
00:09:34,210 --> 00:09:42,180
ุฃุฑุจุนุฉ ุดุฑุทุฉ ุนู„ู‰ ุงู„ูƒู„ุŒ ุฏุฑ ุจุงู„ูƒุŒ ู‡ุงูŠ ู…ุนู†ุงู‡ุŸ ุฎูˆูŠูุŒ ุทูŠุจ
103
00:09:42,180 --> 00:09:47,200
ุฎุฏ ุดุบู„ุฉ ุซุงู†ูŠุฉุŒ ุงู„ู„ูŠ ู‡ูŠุฌูŠู‡ุง ุชู‚ูˆู„ ู„ู‡ุง ุนู„ู‰ ุณุจูŠู„ ุงู„ู…ุซุงู„
104
00:09:47,200 --> 00:09:53,820
ู‡ุงูŠ ุตูุฑ ูˆู‡ุฐุง ุงุซู†ูŠู† ุซู„ุงุซุฉ ูˆู‡ูŠ ุฃุฑุจุนุฉุŒ ุงู„ุดุฑุทุฉ ุนู„ู‰
105
00:09:53,820 --> 00:10:01,060
ุงู„ุฃุฑุจุนุฉุŒ ุฃุฑุจุนุฉ ุฃุฑุจุนุฉุŒ ูƒูˆูŠุณุŸ ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ุดุฑุทุฉ ูู‚ุท ุนู„ู‰
106
00:10:01,060 --> 00:10:06,100
ุงู„ุฃุฑุจุนุฉุŒ ูŠุนู†ูŠ ู„ูˆ ุจุฏูŠ ุฃูƒุชุจู‡ ุจุฏูŠ ุฃูƒุชุจ ุงู„ุดูƒู„ ู‡ุฐุงุŒ ู‡ุงูŠ
107
00:10:06,100 --> 00:10:06,920
ู‡ุงูŠ ุตูุฑ
108
00:10:19,990 --> 00:10:25,230
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
109
00:10:31,370 --> 00:10:35,890
ุทุจุนู‹ุง ุนู†ุฏูƒ ููŠ ุงู„ุชู…ุฑูŠู† ููŠ ุงู„ูƒุชุงุจ ู…ุฌู…ูˆุนุฉ ุฃู…ุซู„ุฉ ุจุชูŠุฌูŠ
110
00:10:35,890 --> 00:10:43,390
ุฎู…ุณุฉุŒ ุณุชุฉ ุฃู…ุซู„ุฉ ุจุดูƒู„ ู‡ุฐุงุŒ ุทุจุนู‹ุง ู…ู…ูƒู† ุชุฌุฏู‡ ูƒุณุฑ ุนุดุฑูŠ ูู‚ุทุŒ
111
00:10:43,390 --> 00:10:50,280
ู…ู…ูƒู† ุชุฌุฏ ุนุฏุฏ ุตุญูŠุญ ู…ุน ูƒุณุฑ ุนุดุฑูŠุŒ ูˆู‡ูƒุฐุงุŒ ูŠุจู‚ู‰ ุงู„ูƒุณูˆุฑ
112
00:10:50,280 --> 00:10:55,460
ุงู„ู„ูŠ ู„ู„ุนุดุฑูŠุฉ ุงู„ุฏุงุฆุฑูŠุฉ ุฏูŠ ุจุฏูƒ ุชุนู…ู„ู‡ุง ุจู†ูุณ ุงู„ุชูƒูŠูŠูุŒ ุฃูˆ
113
00:10:55,460 --> 00:11:00,040
ู†ูุณ ุงู„ู…ูู‡ูˆู… ุงู„ู„ูŠ ุนู…ู„ุชู‡ ู„ูƒ ู‡ู†ุงุŒ ูˆูƒู„ ูˆุงุญุฏ ุจุฏูƒ ุชุฎู„ู‚
114
00:11:00,040 --> 00:11:05,780
ููŠู‡ ู…ุชุณู„ุณู„ุฉ ู‡ู†ุฏุณูŠุฉ ุฒูŠ ู…ุง ุฎู„ู‚ู†ุง ู‡ู†ุงุŒ ูˆู†ุฌู…ุนู‡ุงุŒ ูˆุจุงู„ุชุงู„ูŠ
115
00:11:05,780 --> 00:11:12,260
ุจู†ุญูˆู„ ุงู„ูƒุณุฑ ุงู„ุนุดุฑูŠ ุงู„ุฏุงุฆุฑ ุฅู„ู‰ ูƒุณุฑ ุงุนุชูŠุงุฏูŠุŒ ูˆุฌู‡ุฉ ู‡ุฐู‡
116
00:11:12,260 --> 00:11:18,020
ุงู„ุตูˆุฑุฉ ุฃุฎุฑู‰ ู„ุงุณุชุฎุฏุงู… ุงู„ู…ุชุณู„ุณู„ุฉ ุงู„ู‡ู†ุฏุณูŠุฉ ุบูŠุฑ
117
00:11:18,020 --> 00:11:21,280
ุงู„ุฃุฑุจุนุฉ ุฃู…ุซู„ุฉ ุงู„ู…ุฑุฉ ุงู„ู„ูŠ ูุงุชุชุŒ ู‡ุฐุง ุจูŠุฎุชู„ู ูƒู„ูŠู‹ุง ุนู†ู‡
118
00:11:21,280 --> 00:11:26,060
ุทูŠุจ ุฒูŠ ู…ุง ูˆุงุญุฏ ููŠู‡ู… ุงู„ู…ุฑุฉ ุงู„ู„ูŠ ูุงุชุช ูƒุงู† cosine m
119
00:11:26,060 --> 00:11:31,630
pi ุนู„ู‰ ุฎู…ุณุฉุŒ ุฏุชุงุฑ mุŒ ุดูƒู„ู‡ ุจูŠู‚ูˆู„ุด ู…ุชุณู„ุณู„ุฉ ู‡ู†ุฏุณูŠุฉุŒ ู„ูƒู†
120
00:11:31,630 --> 00:11:36,970
ู„ู…ุง ุงู†ูุฑุทุช ูˆุงุชุนุฑูุช ุนู„ู‰ ุงู„ุญุฏูˆุฏุŒ ู„ุฌูŠุชู‡ุง ู…ุชุณู„ุณู„ุฉ ู‡ู†ุฏุณูŠุฉ
121
00:11:36,970 --> 00:11:42,730
ุตุงุฑุช ุณุงู„ุจ ูˆุงุญุฏ ุฃุณ N ุนู„ู‰ ุฎู…ุณุฉ ุฃุณ NุŒ ูˆุฑูˆุญู†ุง ุฌู…ุนู†ุงู‡ุง ุงู„ู…ุฑุฉ
122
00:11:42,730 --> 00:11:48,070
ุงู„ู…ุงุถูŠุฉุŒ ุทูŠุจ ู†ุนุทูŠูƒ ูƒู…ุงู† ู†ูˆุน ุขุฎุฑ ู…ู† ุฃู†ูˆุงุน ุงู„ุฃุณุฆู„ุฉ
123
00:11:48,070 --> 00:11:52,530
ุนู„ู‰ ุงู„ู€ Geometric SeriesุŒ ูŠุจู‚ู‰ example ุซู„ุงุซุฉ
124
00:11:52,530 --> 00:11:55,490
ุจูŠู‚ูˆู„ ู„ูŠ ุงู„ูุงุนู„
125
00:11:58,950 --> 00:12:09,050
Find the values of x for which the series
126
00:12:09,050 --> 00:12:17,370
summation
127
00:12:18,480 --> 00:12:23,420
ู† ู†ุงู‚ุต
128
00:12:23,420 --> 00:12:31,980
ู†ุตู ุฃุณ N ร— ู†ุงู‚ุต ุซู„ุงุซุฉ ูƒู„ู‡ to the power N convert
129
00:12:31,980 --> 00:12:35,760
and
130
00:12:35,760 --> 00:12:45,040
find the sum of the series
131
00:12:58,240 --> 00:13:04,960
ุทูŠุจ ู†ุฏู‰ ุงู„ู…ุซุงู„ ู…ุฑุฉ ุซุงู†ูŠุฉ ุชู‚ูˆู„ู‰ ู‡ุงุชู„ู‰ ู‚ูŠู… x ุจุญูŠุซ ุฃู†
132
00:13:04,960 --> 00:13:10,300
ุงู„ู…ุชุณู„ุณู„ ุงู„ู„ู‰ ู‚ุฏุงู…ู†ุง ู‡ุงุฏูŠ convert ูŠุนู†ู‰ ู…ุงู‡ู‰ ุงู„ู‚ูŠู…
133
00:13:10,300 --> 00:13:16,230
ุงู„ุชูŠ ุชุงุฎุฏู‡ุง x ุญุชู‰ ุชูƒูˆู† ุงู„ู…ุชุณู„ุณู„ ู‡ุงุฏูŠ convert ูˆ
134
00:13:16,230 --> 00:13:19,890
ุจุนุฏู‡ุง ุฃูƒุชุฑ ุงู„ู…ุฌู…ูˆุนุฉ ุชุจุน ู‡ุฐู‡ ุงู„ series ุจุนุฏ ู…ุง ุชุซุจุช
135
00:13:19,890 --> 00:13:24,570
ุฃู†ู‡ุง converted ุจู‚ูˆู„ู‡ ุจุณูŠุทุฉ ุจุทู„ุน ููŠ ุงู„ series ู‡ุฐู‡
136
00:13:24,570 --> 00:13:29,850
ุจู‚ูˆู„ู‡ ุงู„ series ู‡ุฐู‡ ุจุฏูŠ ุงุญุงูˆู„ ุงูƒุชุจู‡ุง ุจุดูƒู„ ุขุฎุฑ ุจุดูƒู„
137
00:13:29,850 --> 00:13:35,750
ุขุฎุฑ ูƒูŠูุŸ ู‡ุฐุง ุงู„ุณุคุงู„ ูˆ ู‡ุฐุง ุงู„ุณุคุงู„ ูŠุจู‚ู‰ ู‡ุฐุง ุนุจุงุฑุฉ ุนู†
138
00:13:35,750 --> 00:13:41,340
ูƒู…ูŠุชูŠู† ู…ุถุฑูˆุจุชูŠู† ููŠ ุจุนุถ ูƒู„ู‡ to the power n ูŠุจู‚ู‰ ุจู‚ุฏุฑ
139
00:13:41,340 --> 00:13:45,700
ุฃู‚ูˆู„ ุงู„ู…ุซุงู„ ู‡ุฐู‡ ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ summation ู…ู† N
140
00:13:45,700 --> 00:13:52,140
equal zero to infinity ู„ู†ุงู‚ุต ู†ุตู ููŠ X ู†ุงู‚ุต ุซู„ุงุซุฉ ูƒู„
141
00:13:52,140 --> 00:13:58,000
ู‡ุฐุง to the power N ุฃูˆ ุฅู† ุดุฆุชู… ูู‚ูˆู„ูˆุง summation ู…ู†
142
00:13:58,000 --> 00:14:04,180
N equal zero to infinity ู„ู…ูŠู†ุŸ ู„ุซู„ุงุซุฉ ุนู„ู‰ ุงุซู†ูŠู†
143
00:14:04,180 --> 00:14:09,940
ุจุงู„ู…ูˆุฌุจ ู†ุงู‚ุต X ุนู„ู‰ ุงุซู†ูŠู† ูƒู„ู‡ to the power N
144
00:14:15,630 --> 00:14:25,250
ู‡ู„ ู‡ุฐู‡ ุฌูŠูˆู…ุชุฑูŠูƒ ุณูŠุฑูŠุฒุŸ ูƒู…ูŠุฉ ุจูŠู† ู‚ูˆุณูŠู† ู…ุฑููˆุนุฉ ู„ู„ู‚ูˆุฉ N
145
00:14:25,250 --> 00:14:30,930
ู‡ูˆ ุฌูŠูˆู…ุชุฑูŠูƒ
146
00:14:30,930 --> 00:14:31,510
ุณูŠุฑูŠุฒ
147
00:14:34,120 --> 00:14:39,240
ูˆุงุถุญุฉ ูˆุถูˆุญ ุงู„ุดู…ุณ ููŠ ุฑุงุจุนุฉ ุฃู†ู‡ุง Geosys ุฅู† ูŠุจู‚ู‰
148
00:14:39,240 --> 00:14:43,800
Geometric ุนู‚ูˆุจุฉ ุงู„ุฎุท ุชู…ุงู…ุŸ ุญุท ุฅู† ุจุฒูŠุฑูˆ ุจุตูŠุฑ ุงู„ุญุฏ
149
00:14:43,800 --> 00:14:49,890
ุงู„ุฃูˆู„ ุจูˆุงุญุฏ ุญุท ุฅู† ุจูˆุงุญุฏ ุจุตูŠุฑ ุงู„ู‚ูˆุณ ู†ูุณู‡ ุญุท ุฅู† ุจุงุซู†ูŠู†
150
00:14:49,890 --> 00:14:54,390
ุจุตูŠุฑ ุงู„ู‚ูˆุณ ุชุฑุจูŠุน ุญุท ุฅู† ุจุชู„ุงุชุฉ ุงู„ู‚ูˆุณ ุชูƒุนูŠุจ ูˆู‡ูƒุฐุง ุฃุฌุณู…
151
00:14:54,390 --> 00:14:58,050
ุฃูŠ ุญุฏ ุนู„ู‰ ุงู„ุณุงุจู‚ ู„ู‡ ุจุทู„ุน ู†ูุณ ุงู„ู†ุณุจุฉ ุงู„ู„ูŠ ู‡ูŠ ู…ูŠู†ุŸ
152
00:14:58,050 --> 00:15:04,450
ุซู„ุงุซุฉ ุนู„ู‰ ุงุซู†ูŠู† ู†ุงู‚ุต x ุนู„ู‰ ุงุซู†ูŠู† ูŠุจู‚ู‰ ู‡ุฐู‡ convert
153
00:15:04,450 --> 00:15:10,230
ุฅู„ู‰ ุงู„ุฃุณุงุณ ุชุจุนู‡ุง ู‡ุฐุง ูƒุงู† ู…ุญุตูˆุฑ ุจูŠู† ูˆุงุญุฏ ูˆุณุงู„ุจ ูˆุงุญุฏ
154
00:15:10,230 --> 00:15:21,690
ูŠุจู‚ู‰ this is a geometric series ุชู…ุงู…ุŸ ูŠุจู‚ู‰ ุจู‚ู‰ ุฏูŠ
155
00:15:21,690 --> 00:15:28,190
ุจู‚ูˆู„ู‡ the series ุงู„ู„ูŠ ู‡ูŠ summation ู…ู† n equal zero
156
00:15:28,190 --> 00:15:34,490
to infinity ู„ุซู„ุงุซุฉ ุนู„ู‰ ุงุซู†ูŠู† ู†ุงู‚ุต x ุนู„ู‰ ุงุซู†ูŠู† to
157
00:15:34,490 --> 00:15:41,870
the power n converge if ุฅุฐุง ูƒุงู†ุช ุงู„ุซู„ุงุซุฉ ุฅุฐุง ูƒุงู†
158
00:15:41,870 --> 00:15:47,770
absolute value ู„ู€ R ุงู„ู„ูŠ ู‡ูˆ absolute value ู„ุซู„ุงุซุฉ
159
00:15:47,770 --> 00:15:56,250
ุนู„ู‰ ุงุซู†ูŠู† ู†ุงู‚ุต x ุนู„ู‰ 2 ุฃู‚ู„ ู…ู† 1 ู…ุนู†ุงู‡
160
00:15:56,250 --> 00:16:02,290
ุฃู†ู†ุง ู†ุฑูˆุญ ู†ุญู„ ุงู„ู€ inequality ู‡ุฐู‡ ูˆู†ุทู„ุน ู‚ูŠู… x ุงู„ู„ูŠ
161
00:16:02,290 --> 00:16:06,330
ู‡ูˆ ุทู„ุจู‡ุง ู„ุฃู†ู‡ุง ุฌุงู„ูŠ ู‡ุงุชู„ูŠ ู‚ูŠู… x ุงู„ู„ูŠ ุจุชุฎู„ูŠ ุงู„ู€
162
00:16:06,330 --> 00:16:11,470
series ู‡ุฐูŠ convert ุจู‚ูˆู„ ู„ู‡ ุงู„ุขู† ูŠุจู‚ู‰ ุซู„ุงุซุฉ ุนู„ู‰
163
00:16:11,470 --> 00:16:18,130
ุงุซู†ูŠู† ู†ุงู‚ุต x ุนู„ู‰ ุงุซู†ูŠู† ุฃู‚ู„ ู…ู† ูˆุงุญุฏ ูˆุฃูƒุจุฑ ู…ู† ู…ูŠู†ุŸ
164
00:16:18,130 --> 00:16:23,750
ู…ู† ุณุงู„ุจ ูˆุงุญุฏ ูŠุจู‚ู‰ ููƒุฑุฉ ุงู„ู€ absolute value ุทูŠุจ ุจุฏุฃ
165
00:16:23,750 --> 00:16:27,530
ุฃุชุฎู„ุต ู…ู† ุงู„ูƒุณูˆุฑ ูˆุฃุฑูˆุญ ุจุฃุถุฑุจ ุงู„ุทุฑููŠู† ููŠ ู…ูŠู†ุŸ ููŠ
166
00:16:27,530 --> 00:16:33,030
ุงุซู†ูŠู† ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุทูŠู†ุง ู…ูŠู†ุŸ ุจุฏู‡ ูŠุทูŠู†ุง ุณุงู„ุจ
167
00:16:33,030 --> 00:16:42,020
ุงุซู†ูŠู† ุฃู‚ู„ ู…ู† ุซู„ุงุซุฉ ู†ุงู‚ุต X ุฃู‚ู„ ู…ู† ู…ูŠู†ุŸ ู…ู† ุงุซู†ูŠู† ุทุจุนุง
168
00:16:42,020 --> 00:16:46,920
ุงู„ุซู„ุงุซุฉ ู‡ุฐู‡ ู„ูŠุณุช ู„ุงุฒู…ุงู„ุฉ ุฃู†ุง ุจุฏูŠ x ุจุณูŠุทุฉ ุจู‚ูˆู„
169
00:16:46,920 --> 00:16:53,360
ุฃุถูŠู ุณุงู„ุจ ุซู„ุงุซุฉ ู„ุซู„ุงุซุฉ ุฃุทุฑุงู ูŠุจู‚ู‰ ู‡ุฏู ูŠุนุทูŠูƒ ู…ุง ูŠุฃุชูŠ
170
00:16:53,360 --> 00:16:59,560
ุณุงู„ุจ ุซู„ุงุซุฉ ูˆุณุงู„ุจ ุงุซู†ูŠู† ุจุตูŠุฑ ุฌุฏุงุดุŸ ุณุงู„ุจ ุฎู…ุณุฉ ุฃู‚ู„ ู…ู†
171
00:16:59,560 --> 00:17:05,530
ุณุงู„ุจ x ุฃู‚ู„ ู…ู† ุณุงู„ุจ ูˆุงุญุฏ ู„ู…ุง ุฃุถูŠู ุณุงู„ุจ ุซู„ุงุซุฉ ุฒุงุฆุฏ
172
00:17:05,530 --> 00:17:10,650
ุงุซู†ูŠู† ุจูŠุธู‡ุฑ ู„ู†ุง ู…ู† ุณุงู„ุจ ูˆุงุญุฏ ุทุจ ุฃู†ุง ู…ุง ุจุฏูŠุด ุณุงู„ุจ x
173
00:17:10,650 --> 00:17:16,910
ุจุฏูŠ x ูุฌุฃุฉ ุจุฑูˆุญ ุจุฃุถุฑุจ ุซู„ุงุซุฉ ุฃุทุฑุงู ุซู…ูŠู†ุŸ ููŠ ุณุงู„ุจ
174
00:17:16,910 --> 00:17:22,430
ูˆุงุญุฏ ูุฌุฃุฉ ู„ูˆ ุถุฑุจุช ููŠ ุณุงู„ุจ ูˆุงุญุฏ ุจุตูŠุฑ ู‡ู†ุง ุฎู…ุณุฉ ูˆู‡ู†ุง
175
00:17:22,430 --> 00:17:30,450
x ูˆู‡ู†ุง ูˆุงุญุฏ ู…ุถุจูˆุท ู…ุฏุงู… ุถุฑุจุช ููŠ ูƒู…ูŠุฉ ุณุงู„ูุฉ ุฅุฐุง ุชุฌู„ุจ
176
00:17:30,450 --> 00:17:38,430
180 ุฏุฑุฌุฉ ู„ุงู†ูƒูˆู„ุงุช ุจุฏู„ ู…ุง ูƒุงู†ุช ุฃู‚ู„ ู…ู† ุจูŠุตูŠุฑ ุฃูƒุจุฑ ู…ู† ูŠุจู‚ู‰
177
00:17:38,430 --> 00:17:45,470
x ุฃูƒุจุฑ ู…ู† ูˆุงุญุฏ ูˆุฃู‚ู„ ู…ู† ุฎู…ุณุฉ ู‡ุฐุง ู…ุนู†ุงู‡ ุฃู†
178
00:17:45,470 --> 00:17:52,080
ุงู„ู€ x ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ interval ูˆุงุญุฏ ูˆุฎู…ุณุฉ ุฃูƒุจุฑ ู…ู†
179
00:17:52,080 --> 00:17:55,800
ุงู„ูˆุงุญุฏ ูˆุฃู‚ู„ ู…ู† ู…ูŠู†ุŸ ู…ู† ุงู„ุฎู…ุณุฉ ูŠุจู‚ู‰ ุงุฌุงุจุชู‡ ุนู„ู‰
180
00:17:55,800 --> 00:18:02,600
ู…ูŠู†ุŸ ุนู„ู‰ ุงู„ุณุคุงู„ ุงู„ุฃูˆู„ ูŠุจู‚ู‰ ูƒู„ ุงู„ู‚ูŠู… ุงู„ู„ูŠ ุจุชุงุฎุฏู‡ุง x
181
00:18:02,600 --> 00:18:07,460
ููŠ ุงู„ูุชุฑุฉ ู…ู† ูˆุงุญุฏ ุฅู„ู‰ ุฎู…ุณุฉ ุจุญูŠุซ ู„ุง ุจุชุณุงูˆูŠ ูˆุงุญุฏ ูˆู„ุง
182
00:18:07,460 --> 00:18:11,340
ุจุชุณุงูˆูŠ ุฎู…ุณุฉ ูƒู„ ุงู„ู‚ูŠู… ุงู„ู„ูŠ ุจุชุงุฎุฏู‡ุง ุจุชุฎู„ูŠ ุงู„ู€ series
183
00:18:11,340 --> 00:18:16,680
ุงู„ุฃุตู„ูŠุฉ ู‡ุฐู‡ ู…ุนุงู‡ุง converge ุทูŠุจ ุฎู„ุงู„ ุงู„ูุชุฑุฉ ู‡ุฐู‡
184
00:18:16,680 --> 00:18:20,830
ุงู„ู„ูŠ ุงู„ูุชุฑุฉ ุนู„ูŠู‡ุง converge ุฌุงู„ูŠ ู‡ุงุชู„ูŠ ู…ุฌู…ูˆุน ุงู„ู€
185
00:18:20,830 --> 00:18:25,590
series ุจุฏูŠ ุฃุนุฑู ู…ุง ู‡ูˆ ุดูƒู„ ุงู„ู…ุฌู…ูˆุน ุจู‚ูˆู„ู‡ ุจุณูŠุทุฉ it's
186
00:18:25,590 --> 00:18:33,210
sum ุงู„ู…ุฌู…ูˆุน ุชุจุนู‡ุง ุจุฏูŠ ุฃุฏูŠู„ู‡ ุฑู…ุฒ S ูŠุณุงูˆูŠ ุงู„ุญุฏ ุงู„ุฃูˆู„
187
00:18:33,210 --> 00:18:38,870
ุงู„ุญุฏ ุงู„ุฃูˆู„ ู„ู…ุง ุญุทูŠุช n ูŠุณุงูˆูŠ Zero ุจู‚ุฏุงุดุŸ ุจูˆุงุญุฏ ุนู„ู‰
188
00:18:38,870 --> 00:18:44,630
ูˆุงุญุฏ ู†ุงู‚ุต ุงู„ุฃุณุงุณูŠ ุงู„ุฃุณุงุณูŠ ุงู„ู„ูŠ ู‡ูˆ ุซู„ุงุซุฉ ุนู„ู‰ ุงุซู†ูŠู†
189
00:18:44,630 --> 00:18:53,220
ู†ุงู‚ุต x ุนู„ู‰ ุงุซู†ูŠู† ูŠุจู‚ู‰ ู‡ุฐุง ุจุฏู‡ ูŠุณุงูˆูŠ ูˆุงุญุฏ ุนู„ู‰ ูˆุงุญุฏ
190
00:18:53,220 --> 00:19:00,300
ู†ุงู‚ุต ุซู„ุงุซุฉ ุนู„ู‰ ุงุซู†ูŠู† ุฒุงุฆุฏ x ุนู„ู‰ ุงุซู†ูŠู† ุฃูˆ ุฅู† ุดุฆุชู…
191
00:19:00,300 --> 00:19:08,290
ูู‚ูˆู„ูˆุง ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ 1-3 ุนู„ู‰ 2 ุจุถู„ ุฌุฏุงุดุŸ ู†ุงู‚ุต
192
00:19:08,290 --> 00:19:17,250
ู†ุตู ูŠุจู‚ู‰ 1 ุนู„ู‰ ู†ุงู‚ุต ู†ุตู ุฒุงุฆุฏ x ุนู„ู‰ 2 ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ู‰
193
00:19:17,250 --> 00:19:23,410
ุงู„ู…ุฌู…ูˆุนุฉ S ููŠ ุงู„ุฏุฑุณ ู„ูˆ ุญุฏุฏุช ุงู„ุจู‚ุงู…ุงุช ูƒู„ู‡ ุนู„ู‰ ุงู„ุซุงู†ูŠ
194
00:19:23,410 --> 00:19:30,190
ุจุชู†ู‚ู„ุจ ู„ุงุซู†ูŠู† ุจูŠุตูŠุฑ ููˆุถู‰ ุนู„ู‰ ู…ูŠู†ุŸ ุนู„ู‰ x ู†ุงู‚ุต ูˆุงุญุฏ
195
00:19:30,190 --> 00:19:35,150
ูŠุจู‚ู‰ ู‡ุฐุง ู…ุฌู…ูˆุน ุงู„ู€ series ููŠ ุงู„ุญุงู„ุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง
196
00:19:35,150 --> 00:19:40,890
ูŠุจู‚ู‰ ู‡ุฐุง ู†ูˆุน ุซุงู†ูŠ ู…ู† ุฃู†ูˆุงุน ุงู„ุฃุณุฆู„ุฉ ุนู„ู‰ ู…ูŠู†ุŸ ุนู„ู‰ ุงู„ู€
197
00:19:40,890 --> 00:19:42,950
geometric series
198
00:19:56,360 --> 00:20:01,780
ุจู†ุชู†ู‚ู„ ุฅู„ู‰ ุณูŠุฑูŠุฒ ุซุงู†ูŠ ุงุณู…ู‡ telescoping series
199
00:20:01,780 --> 00:20:13,300
discuss
200
00:20:13,300 --> 00:20:18,360
the convergence or example
201
00:20:24,840 --> 00:20:35,780
discuss the convergence of
202
00:20:35,780 --> 00:20:43,180
the following series
203
00:20:43,180 --> 00:20:46,540
if
204
00:20:46,540 --> 00:20:53,940
the series converge find
205
00:21:00,100 --> 00:21:05,580
ุงู„ุตู… ุงู„ุชู„ูŠุณูƒูˆุจูŠ ุดูุชู‡ ููŠ ุงู„ููŠุฒูŠุงุก ู‡ุฐุง ุจูŠุฌุฑุจ ุงู„ู„ูŠ
206
00:21:05,580 --> 00:21:10,650
ุจุนูŠุฏ ู…ุธุจูˆุทุŸ ูˆุงู„ุดุบู„ ุงู„ู„ูŠ ู„ุง ู†ุณุชุทูŠุน ุฑุคูŠุชู‡ุง ุจุงู„ุนูŠู†
207
00:21:10,650 --> 00:21:16,770
ุงู„ู…ุฌุฑุฏุฉ ุจู†ุดูˆูู‡ุง ู…ู† ุฎู„ุงู„ ุงู„ุชู„ูŠุณูƒูˆุจ ุชู…ุงู…ุŸ ูˆุงุญู†ุง ู‡ู†ุง
208
00:21:16,770 --> 00:21:20,650
ุจู†ู‚ูˆู„ telescoping series ูŠุนู†ูŠ ูƒุฃู† ุงู„ุดุบู„ ุฅู„ู‡ุง ุนู„ุงู‚ุฉ
209
00:21:20,650 --> 00:21:25,430
ููŠ ุงู„ู…ูˆุถูˆุน ููŠ ุญูƒุงูŠุฉ ุงู„ุชู„ูŠุณูƒูˆุจ ุจู†ู‚ูˆู„ ุขู‡ ุฅู„ู‡ุง ุนู„ุงู‚ุฉ
210
00:21:25,430 --> 00:21:31,970
ููŠู‡ ุชุนุงู„ู‰ ู†ุนุทูŠูƒ ุจุนุถ ุงู„ุฃู…ุซู„ุฉ ุนู„ู‰ ุฐู„ูƒ ุฃูˆู„ ู…ุซุงู„ ุจูŠู‚ูˆู„
211
00:21:31,970 --> 00:21:41,480
ู„ูŠุŸ ู†ู…ุฑุฃ ุฅูŠู‡ุŸ Summation ู…ู† N equal one to infinity
212
00:21:41,480 --> 00:21:49,500
ู„ุฃุฑุจุนุฉ ุนู„ู‰ ุฃุฑุจุนุฉ N ู†ุงู‚ุต ุซู„ุงุซุฉ ููŠ ุฃุฑุจุนุฉ N
213
00:21:49,500 --> 00:22:02,660
ุฒุงุฆุฏ ูˆุงุญุฏ ุจุงู„ุนุฑุจูŠ
214
00:22:02,660 --> 00:22:07,130
ููŠ ุงู„ู€ series ู‡ุฐู‡ ู‡ู„ ู‡ูŠ geometric seriesุŸ ู„ุฃ ูŠุนู†ูŠ
215
00:22:07,130 --> 00:22:12,150
ู…ุงู„ู‡ุงุด ุดูƒู„ ุงู„ู€ geometric ุจุชุงุชุง ูˆู„ุง ุญุชู‰ ุจุชู‚ุชุฑุจ ู…ู†ู‡ุง
216
00:22:12,150 --> 00:22:18,410
ุชู…ุงู…ุŸ ุฅุฐุง ู‡ุฐู‡ series ู…ู†ูุตู„ุฉ ุชู…ุงู…ุง ุนู† ุงู„ู€ geometric
217
00:22:18,410 --> 00:22:23,050
series ุจุฏู†ุง ู†ุดูˆู ู†ุดูˆูู‡ุง ู‡ู„ ู‡ูŠ converge ูˆุงู„ู„ู‡
218
00:22:23,050 --> 00:22:26,910
diverge ูˆุฅุฐุง ูƒุงู†ุช converge ุจุฏู†ุง ุงู„ู…ุฌู…ูˆุน ุชุจุนู‡ุง
219
00:22:26,910 --> 00:22:32,060
ุจู‚ูˆู„ู‡ ูƒูˆูŠุณ ุทุจ ุฎู„ูŠู†ูŠ ุฃุชุนุฑู ุนู„ู‰ ุดูƒู„ ุงู„ุญุฏูˆุฏ ุชุจุนู‡ุง
220
00:22:32,060 --> 00:22:39,060
ูุจุฃุฌูŠ ุจู‚ูˆู„ู‡ ู‡ุฐูŠ ุนุจุงุฑุฉ ุนู† ุฃุฑุจุนุฉ ุนู„ู‰ ุฎู…ุณุฉ ุญุท n ุจูˆุงุญุฏ ุจุตูŠุฑ
221
00:22:39,060 --> 00:22:45,900
ู‡ู†ุง ูƒุฏู‡ุŸ ูˆุงุญุฏ ู‡ู†ุง ุจุตูŠุฑ ูƒุฏู‡ุŸ ุฎู…ุณุฉ ูŠุจู‚ู‰ ู‡ุฐุง ูˆุงุญุฏ ููŠ
222
00:22:45,900 --> 00:22:53,380
ุฎู…ุณุฉ ุฒูŠ ุฃุฑุจุนุฉ ุจุฏูŠ ุงุญุท n ุจุงุซู†ูŠู† ุซู…ุงู†ูŠุฉ ู†ุงู‚ุต ุซู„ุงุซุฉ
223
00:22:53,380 --> 00:23:03,910
ุงู„ุฎู…ุณุฉ ููŠ ุซู…ุงู†ูŠุฉ ูˆุงุญุฏ ุชุณุนุฉ ุฒุงุฏ ุฃุฑุจุนุฉ ุนู„ู‰ ุญุท n ุจุชู„ุงุชุฉ ููŠ ุฃุฑุจุนุฉ ุจุงุทู…ุงุด ุงุทู…ุงุด ู†ุงู‚ุต ุซู„ุงุซุฉ ุจุชุณุนุฉ ููŠ
224
00:23:03,910 --> 00:23:09,490
ุญุท ุชู„ุงุชุฉ ููŠ ุฃุฑุจุนุฉ ุจุงุทู…ุงุด ูˆุงุญุฏ ุชู„ุงุชุงุด ูˆู‡ูƒุฐุง ูŠุนู†ูŠ
225
00:23:09,490 --> 00:23:15,910
ุฃุฑุจุนุฉ ุฃุฎู…ุงุณ ุฃุฑุจุนุฉ ุนู„ู‰ ุฎู…ุณุฉ ูˆุฃุฑุจุนุฉ ุนู„ู‰ ุชุณุนุฉ
226
00:23:15,910 --> 00:23:22,310
ููŠ ุนุดุฑุฉ ุจุชุณุนูŠู† ูˆู…ูŠุฉ ูˆุณุจุนุชุงุด ู…ุง ููŠุด ุนู„ุงู‚ุฉ ุจุชุฑุจุท ุจูŠู†
227
00:23:22,310 --> 00:23:28,350
ุฃูŠ ุญุฏ ูˆุงู„ู„ูŠ ุจุนุฏู‡ ุจู‡ุฐุง ุงู„ุดูƒู„ ุงู„ู„ูŠ ุงุญู†ุง ูƒุงุชุจูŠู†ู‡
228
00:23:28,350 --> 00:23:32,450
ูŠุจู‚ู‰ ู‡ุฐู‡ ู„ุง ู‡ู†ุฏุณูŠุฉ ูˆู„ุง ุชุฌุฑุจุฉ ู„ู‡ุง ูˆู„ูˆ ุทุฑุญู†ุง ุงุซู†ูŠู†
229
00:23:32,450 --> 00:23:36,950
ู…ู† ุจุนุถ ุจูŠุนุทูŠู†ุง ู†ุชูŠุฌุฉ ูˆู„ูˆ ุฌู…ุนู†ุง ุงุซู†ูŠู† ู…ู† ุจุนุถ
230
00:23:36,950 --> 00:23:39,890
ุจูŠุนุทูŠู†ุง ู†ูุณ ุงู„ู†ุชูŠุฌุฉ ุฅุฐุง ู‡ุฐู‡ ุงู„ูƒู„ุงู… ู…ุด ู‚ุงุฏุฑูŠู† ู†ุชู„ุญ
231
00:23:39,890 --> 00:23:45,370
ู„ุญ ููŠู‡ุง ุทูŠุจ ู†ุญุทู‡ุง ุชุญุช ุงู„ุชู„ูŠุณูƒูˆุจ ูƒูŠู ุชุญุทู‡ุง ุชุญุช
232
00:23:45,370 --> 00:23:49,830
ุงู„ุชู„ูŠุณูƒูˆุจุŸ ุงู„ุชู„ูŠุณูƒูˆุจ ุจุฏู‡ ูŠุฑูˆุญ ุงูƒุชุจ ู‡ุฐูŠ ุจุดูƒู„ ุฌุฏูŠุฏ
233
00:23:49,830 --> 00:23:55,290
ุทุจุนุง ุงุญู†ุง ููŠ ุงู„ู€ chapter 8 ุฃุฎุฐู†ุง ุงู„ู€ partial
234
00:23:55,290 --> 00:23:58,810
fractions ุงู„ูƒุณูˆุฑ ูˆุงู„ุฌุฒูŠูŠู† ุจุฏู‡ ูŠุนู…ู„ ู‡ุฐูŠ ุนุตุฑ ุถุฑุฌ
235
00:23:58,810 --> 00:24:03,950
ูƒุซูŠุฑูŠู† ูˆู„ุง ู‚ุณุท ููŠู‡ู… ุฒูŠ ุงู„ุซุงู†ูŠ ู‚ุณุทูŠู† ู…ุฎุชู„ููŠู† ุฅุฐุง ุจู‚ุฏุฑ
236
00:24:03,950 --> 00:24:09,450
ุฃุนู…ู„ู‡ partial fraction ุจุณู‡ูˆู„ุฉ ูุจุฃุฌูŠ ุจู‚ูˆู„ู‡ ู‡ุงูŠ
237
00:24:09,450 --> 00:24:14,030
ุงู„ุฃุฑุจุนุฉ ุนู„ู‰ ุฃุฑุจุนุฉ n ู†ุงู‚ุต ุซู„ุงุซุฉ ุฃุฑุจุนุฉ n ุฒุงุฆุฏ ูˆุงุญุฏ
238
00:24:14,030 --> 00:24:22,130
ู‡ุงูŠ ุงู„ูƒุณุฑ ุงู„ุฃูˆู„ ุฃุฑุจุนุฉ n ู†ุงู‚ุต ุซู„ุงุซุฉ ุฒุงุฆุฏ ุฃุฑุจุนุฉ n
239
00:24:22,130 --> 00:24:29,830
ุฒุงุฆุฏ ูˆุงุญุฏ ูŠุจู‚ู‰ ู‡ุฐุง ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุฃูˆู„ู‰ ูˆุงู„ุฏุฑุฌุฉ
240
00:24:29,830 --> 00:24:34,450
ุงู„ุฃูˆู„ู‰ ูŠุจู‚ู‰ ุจู‚ูˆู„ู‡ a ูˆ b ุจู†ุฌูŠุจ ุงู„ุซุงุจุช a ูˆ b ุจุฑูˆุญ ุฃุถุฑุจ
241
00:24:34,450 --> 00:24:41,170
ุงู„ุทุฑููŠู† ููŠ ุงู„ู…ู‚ุงู… ุชุจู‚ู‰ ุงู„ู€ term ุงู„ู„ูŠ ุนู„ู‰ ุงู„ุดู…ุงู„
242
00:24:41,170 --> 00:24:45,670
ูŠุจู‚ู‰ ู„ูˆ ุถุฑุจุช ููŠู‡ ุจุตูŠุฑ ุฃุฑุจุนุฉ ุชุณุงูˆูŠ a ููŠ ุฃุฑุจุนุฉ n
243
00:24:45,670 --> 00:24:51,310
ุฒุงุฆุฏ ูˆุงุญุฏ ุฒุงุฆุฏ b ููŠ ุฃุฑุจุนุฉ n ู†ุงู‚ุต ุซู„ุงุซุฉ ู‡ุฐุง ู„ูˆ ุฌูŠุช
244
00:24:51,310 --> 00:24:59,170
ููƒูŠุชู‡ ุจุฏู‡ ูŠุนุทูŠู†ุง ุฃุฑุจุนุฉ a N ุฒุงุฆุฏ ุงู„ู€ a ุฒุงุฆุฏ ุฃุฑุจุนุฉ b N
245
00:24:59,170 --> 00:25:08,740
ู†ุงู‚ุต ุซู„ุงุซุฉ b ูƒู„ู‡ ุจุฏู‡ ูŠุณุงูˆูŠ ุฃุฑุจุนุฉ ุจุฏูŠ ุฃุฌู…ุน ูŠุจู‚ู‰ ู‡ุฐุง
246
00:25:08,740 --> 00:25:16,780
ุฃุฑุจุนุฉ a ุฒุงุฆุฏ ุฃุฑุจุนุฉ b ูƒู„ู‡ ููŠ N ุฒุงุฆุฏ a ู†ุงู‚ุต ุซู„ุงุซุฉ b
247
00:25:16,780 --> 00:25:25,600
ู„ูŠู‡ ุซูˆุงุจุชุŸ ู†ู‚ุฑู† ุงู„ู…ุนุงู…ู„ุงุช ููŠ ุงู„ุทุฑููŠู† ู„ูˆ ุงุญู†ุง ู‚ุฑุฑู†ุง
248
00:25:25,600 --> 00:25:33,690
ุงู„ู…ุนุงู…ู„ุงุช ููŠ ุงู„ุทุฑููŠู† ุดูˆูุงุด ุงู„ู„ูŠ ุจุฏู‡ ูŠุญุตู„ ูŠุจู‚ู‰ ู„ู…ุง
249
00:25:33,690 --> 00:25:40,450
ู†ู‚ุฑู† ุงู„ู…ุนุงู…ู„ุงุช ููŠ ุงู„ุทุฑููŠู† ุจูŠุตูŠุฑ ุนู†ุฏูŠ ุฃุฑุจุนุฉ a ุฒุงุฆุฏ
4 a +
251
00:25:45,710 --> 00:25:53,940
ุฃุฑุจุนุฉ B ูŠุณุงูˆูŠ ูƒุฏู‡ุŸ Zero ู„ูˆ ุฌู…ุนุช ุนู„ู‰ ุฃุฑุจุนุฉ ูŠุจู‚ู‰ ุจูŠุตูŠุฑ
252
00:25:53,940 --> 00:26:00,840
ุฅูŠู‡ A ุฒุงุฆุฏ B ุจุฏู‡ ูŠุณุงูˆูŠ ู…ู† Zero ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุซุงู†ูŠุฉ
253
00:26:00,840 --> 00:26:08,600
ู‡ุฐู‡ ู„ูˆ ู‚ุงุฑู†ุชู‡ุง ุจูŠุตูŠุฑ A ู†ุงู‚ุต ุซู„ุงุซุฉ B ุจุฏู‡ ูŠุณุงูˆูŠ ูƒู…ุŸ
254
00:26:08,600 --> 00:26:13,380
ุจุฏู‡ ูŠุณุงูˆูŠ ุฃุฑุจุนุฉ ุงู„ุขู† ุฃู†ุง ุนู†ุฏูŠ ู…ุนุงุฏู„ุชูŠู† ุจูŠู‡ ู…ุฌู‡ูˆู„ูŠู†
255
00:26:13,380 --> 00:26:17,560
ุจุฏู‡ ุฃุญู„ ุงู„ู…ุนุงุฏู„ุชูŠู† ู…ุน ุจุนุถ ูˆุฃุทู„ุน ู‚ูŠู…ุฉ ุงู„ู…ุฌู‡ูˆู„ูŠู†
256
00:26:17,560 --> 00:26:23,710
ุงู„ุงุซู†ูŠู† ู‡ุฏูˆู„ ู‡ุฐู‡ ุซู„ุงุซุฉ B ูŠุจู‚ู‰ ู…ู† ุงู„ุงุซู†ูŠู† ู‡ุฐูˆู„ ุจู‚ุฏุฑ
257
00:26:23,710 --> 00:26:27,790
ุฃู‚ูˆู„ ู…ุง ูŠุฃุชูŠ ุจุฏู‡ ุฃุถุฑุจ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุฃูˆู„ู‰ ููŠ ุงู„ุณุงู„ุจ
258
00:26:27,790 --> 00:26:35,910
ุจูŠุตูŠุฑ ุณุงู„ุจ a ุณุงู„ุจ b ุจุฏู‡ ูŠุณุงูˆูŠ Zero ูˆุงู„ู€ a ู†ุงู‚ุต ุซู„ุงุซุฉ
259
00:26:35,910 --> 00:26:42,440
b ุจุฏู‡ ูŠุณุงูˆูŠ ู…ู† ุฃุฑุจุนุฉ ู„ูˆ ุฌู…ุนุช ุงู„ุงุซู†ูŠู† ู‡ุฏูˆู„ ู…ุน ุจุนุถ
260
00:26:42,440 --> 00:26:47,280
ุจูŠุฑูˆุญูˆุง ู…ุนุงู‡ ุงู„ุณู„ุงู…ุฉ ุจู‚ูˆู„ ุนู†ุฏูŠ ู‡ุฐุง ู‚ุฏุงุด ู‡ุฐุง ุจุฏูŠ
261
00:26:47,280 --> 00:26:53,700
ูŠุนุทูŠูƒ ุณุงู„ุจ ุฃุฑุจุนุฉ ุจูŠู‡ ุจุฏูŠ ุฃุณุงูˆูŠ ุฃุฑุจุนุฉ ูŠุจู‚ู‰ ุจูŠู‡ ุชุณุงูˆูŠ
262
00:26:53,700 --> 00:26:59,940
ู‚ุฏุงุด ุณุงู„ุจ ูˆุงุญุฏ ู„ู…ุง ุจูŠู‡ ุชุณุงูˆูŠ ุณุงู„ุจ ูˆุงุญุฏ ูŠุจู‚ู‰ ุฅูŠู‡
263
00:26:59,940 --> 00:27:06,960
ุจู‚ุฏุงุด ุฅูŠู‡ ุจูˆุงุญุฏ ูˆุงู„ู€ a ุชุณุงูˆูŠ ูˆุงุญุฏ ูŠุจู‚ู‰ ุฃุตุจุญุช
264
00:27:06,960 --> 00:27:12,680
ุงู„ู…ุณุฃู„ุฉ ุงู„ู„ูŠ ุนู†ุฏูŠ ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ summation ู…ู† N
265
00:27:12,680 --> 00:27:18,840
equal one to infinity ุงู„ู€ A ุนู†ุฏูŠ ุจูˆุงุญุฏ ูŠุจู‚ู‰ ูˆุงุญุฏ ุน
266
00:27:18,840 --> 00:27:28,620
ุชู„ู‚ู‰ ุนู„ู‰ ุฃุฑุจุนุฉ N ู†ุงู‚ุต ุซู„ุงุซุฉ N ู†ุงู‚ุต ู„ู†ุจูŠุจ ุณุงู„ู… ูˆุงุญุฏ
267
00:27:28,620 --> 00:27:33,280
ุนู„ู‰ ุฃุฑุจุนุฉ N ุฒุงุฆุฏ ูˆุงุญุฏ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง
268
00:27:45,130 --> 00:27:52,130
ุงู„ุดูƒู„ ุงู„ุฌุฏูŠุฏ ู‡ุฐุง ุณูŠุญู„ู„ ู„ู†ุง ู…ุดูƒู„ุฉ ุนูˆูŠุตุฉ ูƒู†ุง ู„ู… ู†ุนุฑูู‡ุง
269
00:27:52,130 --> 00:27:59,620
ู‚ุจู„ ู‚ู„ูŠู„ ู‡ู†ุง ู†ุดูˆู ูƒูŠู ุณูŠุญู„ู„ ุงู„ุฅุดูƒุงู„ูŠุฉ ู‡ุฐู‡ ู…ู† ู‡ุฐู‡ ุงู„ู€
270
00:27:59,620 --> 00:28:04,000
series ุฃู†ุง ุฃุฎุฐุช ุงู„ู…ุฑุฉ ุงู„ู„ูŠ ูุงุชุช ุฃู†ู‡ ุฅุฐุง ุงู„ู€ series
271
00:28:04,000 --> 00:28:09,680
ุตุนุจุฉ ุจู†ุฑูˆุญ ู†ุญูˆู„ู‡ุง ู„ู€ sequence ุฃูˆ ุจู†ูƒูˆู‘ู„ ุงู„ู€ sequence
272
00:28:09,680 --> 00:28:14,440
of partial sums ูˆู…ู† ุฎู„ุงู„ ุงู„ู€ sequence ุฅุฐุง ูƒุงู†ุช
273
00:28:14,440 --> 00:28:17,380
converge ูŠุจู‚ู‰ ุงู„ู€ series converge ูˆุฅุฐุง ุงู„ู€ sequence
274
00:28:17,380 --> 00:28:21,540
diverge ูŠุจู‚ู‰ ุงู„ู€ series diverge ุฅุฐุง ู…ุง ุจุฏูŠ ู…ุด ู‡ุฑูˆุญ
275
00:28:21,540 --> 00:28:25,260
ุฃูƒุชุจ ุญุฏูˆุฏ ุงู„ู€ sequence ูƒู„ู‡ุง ู„ุฃ ุจุฏูŠ ุฃูƒุชุจ ู„ุญุฏ ุฃู†ู‡
276
00:28:25,260 --> 00:28:31,180
need of ู„ุฃู† ู‡ูˆ ุงู„ู„ูŠ ุจูŠู‡ู…ู†ูŠ ุงู„ู€ S in ูŠุจู‚ู‰ ู„ูˆ ุฌูŠุช ู‚ู„ุช
277
00:28:31,180 --> 00:28:48,380
the interim of the sequence of partial sums S ู‚ุจู„
278
00:28:48,380 --> 00:28:52,040
ู…ุง ูƒุชุจูˆุง ุจุนุถ ุงู„ุดุจุงุจ ุจูŠุณุฃู„ูˆุง ุฎุทุฑ ุดูˆู ุฅูŠู‡ ุงู„ุดูƒู„
279
00:28:52,040 --> 00:28:56,080
ุงู„ู„ูŠ ุตุงุฑู…ุงุฏุงู… ุญุทู‡ุง ุชุญุช ุงู„ุชู„ูŠุณูƒูˆุจ ุฏู‡ ุดุจู‡ุด ุดูƒู„ู‡ุง
280
00:28:56,080 --> 00:29:01,300
ุจู‚ูˆู„ู‡ุง ุจุณูŠุทุฉ ู‡ุงูŠ ุดูƒู„ู‡ุง ุงู„ู‚ูˆุณ ุงู„ุฃูˆู„ ุจุฏูŠ ุฃุญุท ุฃู†ูŠ
281
00:29:01,300 --> 00:29:08,960
ุจูˆุงุญุฏ ูŠุจู‚ู‰ ู‚ุฏุงุด ุงู„ู€ term ุงู„ุฃูˆู„ ูˆุงุญุฏ ู†ุงู‚ุต ุฎู…ุณุฉ ุงู„ู€
282
00:29:08,960 --> 00:29:11,820
course ุงู„ุฃูˆู„ู‰ ุงู„ู„ูŠ ุญุตู„ุช ุนู„ูŠู‡ ุงู„ู„ูŠ ู…ุง ูƒุงู†ุช N ุจู‚ุฏุงุด
283
00:29:11,820 --> 00:29:18,680
ุจูˆุงุญุฏ ุญุท N ุจุงุชู†ูŠู† ุจูŠุตูŠุฑ ุซู…ุงู†ูŠุฉ ู†ุงู‚ุต ุซู„ุงุซุฉ ู‚ุฏุงุด
284
00:29:18,680 --> 00:29:24,760
ุฎู…ุณุฉ ูŠุจู‚ู‰ ุฎู…ุณุฉ ู†ุงู‚ุต ุงุซู†ูŠู† ุจุฃุฑุจุนุฉ ุจุชู…ุงู†ูŠุฉ ูˆุงุญุฏ ุชุณุนุฉ
285
00:29:24,760 --> 00:29:30,790
ูŠุจู‚ู‰ ู†ุงู‚ุต ุชุณุนุฉ ุงู„ู€ term ุงู„ู„ูŠ ุจุนุฏู‡ ุญุท N ุจุซู„ุงุซุฉ ููŠ
286
00:29:30,790 --> 00:29:37,130
ุฃุฑุจุนุฉ ุจุงุทู…ุนุงุด ู†ุงู‚ุต ุซู„ุงุซุฉ ุจุชุณุนุฉ ูŠุจู‚ู‰ ุชุณุนุฉ ู†ุงู‚ุต ุฃุฑุจุนุฉ
287
00:29:37,130 --> 00:29:44,130
ููŠ ุซู„ุงุซุฉ ุจุงุทู…ุนุงุด ูˆุงุญุฏ ุซู„ุงุซุฉ ุนุดุฑ ุฒุงุฏ ูˆุถู„ูƒ ู…ุงุดูŠ ู„ู…ุง ุชูˆุตู„
288
00:29:44,130 --> 00:29:49,070
ู„ู„ุญุฏ ุงู„ู†ูˆู† ุงู„ู„ูŠ ู‡ูˆ ูˆุงุญุฏ ุนู„ู‰ ุฃุฑุจุนุฉ N ู†ุงู‚ุต ุซู„ุงุซุฉ
289
00:29:49,070 --> 00:29:56,270
ู†ุงู‚ุต ูˆุงุญุฏ ุนู„ู‰ ุฃุฑุจุนุฉ N ุฒุงุฆุฏ ูˆุงุญุฏ ุฒุงุฆุฏ ุฅู„ู‰ ุขุฎุฑู‡ู… ูŠุจู‚ู‰
290
00:29:56,270 --> 00:30:00,590
ุงู„ุขู† ุฃู†ุง ุจุฏูŠ ุฃุนุฑู ุงู„ุดูƒู„ ุงู„ุญุฏ ุงู„ู†ูˆู†ูŠ ุงู„ู„ูŠ ูŠุฏูŠู„ู‡
291
00:30:00,590 --> 00:30:09,450
ุงู„ุฑู…ุฒ ู…ูŠู† S N ูŠุณุงูˆูŠ ูˆุงุญุฏ ู†ุงู‚ุต ุฎู…ุณุฉ ุฒุงุฆุฏ ุฎู…ุณุฉ ู†ุงู‚ุต
292
00:30:09,450 --> 00:30:18,600
ุชุณุนุฉ ุฒุงุฆุฏ ุชุณุนุฉ ู†ุงู‚ุต ูˆุงุญุฏ ุนู„ู‰ ุซู„ุงุซุฉ ุนุดุฑ ุฒุงุฆุฏ ุฒุงุฆุฏ ุฅู„ู‰ ู…ุง
293
00:30:18,600 --> 00:30:25,820
ุดุงุก ุงู„ู„ู‡ ู„ุบุงูŠุฉ ู…ุง ู†ูˆุตู„ ู„ู…ูŠู† ู„ูˆุงุญุฏ ุนู„ู‰ ุฃุฑุจุน ุงู† ู†ุงู‚ุต
294
00:30:25,820 --> 00:30:33,770
ุซู„ุงุซุฉ ู†ุงู‚ุต ูˆุงุญุฏ ุนู„ู‰ ุฃุฑุจุน ุงู† ุฒุงุฆุฏ ูˆุงุญุฏ ู‡ูŠุฑูˆุญ ุฌู…ุนุฉ N
295
00:30:33,770 --> 00:30:39,910
ู…ู† ุญุฏูˆุฏ ุงู„ู€ series ุฌู…ุน N ู…ู† ู‡ุฐุง ุงู„ุญุฏูˆุฏ ูŠู…ุซู„ ุงู„ุญุฏ
296
00:30:39,910 --> 00:30:44,770
ุงู„ู†ูˆู†ูŠ ููŠ ุงู„ู€ sequence of partial sums ูŠุนู†ูŠ ุฒูŠ ู…ุง
297
00:30:44,770 --> 00:30:47,750
ู‚ุฏุฑู†ุง ููŠ ุฃูˆู„ ุงู„ู€ section ุงู„ู„ูŠ ุจูŠู† ุฃุฏูŠู†ุง ุงู„ู„ูŠ
298
00:30:47,750 --> 00:30:52,290
ุนู…ู„ู†ุงู‡ุง ุงู„ู…ุฑุฉ ุงู„ู„ูŠ ูุงุชุช ุฌุจู†ุง S1 S2 S3 ู…ุฌู…ูˆุนุงุช
299
00:30:52,290 --> 00:30:56,190
ู…ุฌู…ูˆุนุงุช ุฏูŠู† ู…ุฌู…ูˆุนุฉ ุซู„ุงุซุฉ ุญุฏูˆุฏ ู„ุบุงูŠุฉ ู…ุง ูˆุตู„ู†ุง ู„ู„ู€ S N
300
00:30:56,190 --> 00:31:00,050
ุงู„ู„ูŠ ู‡ูˆ ู…ุฌู…ูˆุนุฉ N ู…ู† ุญุฏูˆุฏ ุงู„ู€ series ุทุจ ุชุนุงู„ ู†ุฌู…ุน
301
00:31:00,990 --> 00:31:06,190
ุณุงู„ุจ ุฎู…ุณุฉ ุฃู…ูˆุฌุฉ ุจุฎู…ุณุฉ ู…ุน ุงู„ุณู„ุงู…ุฉ ุณุงู„ุจ ุชุณุนุฉ ุฃู…ูˆุฌุฉ
302
00:31:06,190 --> 00:31:11,590
ุจุชุณุนุฉ ุงู„ุญุงุฌู‡ู… ุณุงู„ุจ ูˆุงุญุฏ ุน ุซู„ุงุซุฉ ุนุดุฑ ูˆูˆุงุญุฏ ุน ุซู„ุงุซุฉ ุนุดุฑ ู…ุน
303
00:31:11,590 --> 00:31:17,350
ุงู„ุณู„ุงู…ุฉ ู‡ุฐุง ู…ุน ุงู„ู„ูŠ ุฌุงุจู„ู‡ ุจู‚ู„ุด ุนู†ุฏูŠ ุงู„ุง term ุงู„ุฃูˆู„
304
00:31:17,350 --> 00:31:26,060
ูˆ term ุงู„ุฃุฎูŠุฑ ูŠุจู‚ู‰ ุฃุณุงุฑ ุดูƒู„ ุงู„ู€ SN ู‡ูˆ ูˆุงุญุฏ ู†ุงู‚ุต ูˆุงุญุฏ
305
00:31:26,060 --> 00:31:31,160
ุนู„ู‰ ุฃุฑุจุนุฉ N ุฒุงุฆุฏ ูˆุงุญุฏ ู‡ุฐุง ู…ุฌู…ูˆุนุฉ N ู…ู† ุญุฏูˆุฏ ุงู„ู€
306
00:31:31,160 --> 00:31:35,460
series ุงู„ู„ูŠ ู‡ูˆ ูŠู…ุซู„ ุงู„ุญุฏ ุงู„ู†ูˆู†ูŠ ููŠ ุงู„ู€ sequence of
307
00:31:35,460 --> 00:31:40,720
partial sum ุทุจ ูƒูˆูŠุณ ุจุฏู†ุง ู†ุฌูŠ ู†ุดูˆู ู‡ู„ ุงู„ู€ sequence
308
00:31:40,720 --> 00:31:42,140
ู‡ุฐู‡ convergent ุฃูˆ divergent
309
00:31:46,400 --> 00:31:52,540
1-1 ุนู„ู‰ 4n ุฒุงุฆุฏ 1 ุงู„ุจุงู‚ูŠุฉ ูƒู„ู‡ุง ููŠ ุงู„ู…ุตุฑุน ู„ุง ุชุจู‚ู‰
310
00:31:52,540 --> 00:31:57,380
ุฅู„ู‰ ุงู„ุญุฏ ุงู„ุฃูˆู„ ูˆุงู„ุญุฏ ุงู„ุฃุฎูŠุฑ ุชู…ุงู…ุŸ ูŠู…ูƒู†ู†ุง ุฃู† ู†ุฐู‡ุจ
311
00:31:57,380 --> 00:32:04,300
ูˆู†ุฃุฎุฐ limit ู„ู€ Sn ู„ู…ุง ุงู„ู€ N tends to infinity ูŠุจู‚ู‰
312
00:32:04,300 --> 00:32:11,980
limit ู„ู…ุง ุงู„ู€ N tends to infinity ู„ู€ 1-1 ุนู„ู‰ 4n ุฒุงุฆุฏ
313
00:32:11,980 --> 00:32:20,220
1 ุงู„ู€ term ู‡ุฐุง ูƒู„ู‡ ู…ู‚ุฏุด ูŠุจู‚ู‰ ุงู„ู†ุชูŠุฌุฉ ูƒู…ุŸ ูˆุงุญุฏ ูŠุจู‚ู‰
314
00:32:20,220 --> 00:32:24,980
ุจู†ุงุก ุนู„ูŠู‡ ุงู„ู€ sequence of partial sums convert ูŠุจู‚ู‰
315
00:32:24,980 --> 00:32:33,180
ุจุงู‚ูŠ ุจู‚ูˆู„ ู„ู‡ so the sequence of partial sums
316
00:32:36,030 --> 00:32:41,730
ุงู„ู„ูŠ ู‡ูŠ ูˆุงุญุฏ ู†ุงู‚ุต ูˆุงุญุฏ ุนู„ู‰ ุฃุฑุจุนุฉ n ุฒุงุฆุฏ ูˆุงุญุฏ
317
00:32:41,730 --> 00:32:48,870
convert ู‡ุฐุง ุจุฏู‡ ูŠุนุทูŠูƒ ุฃู†ู‡ the series ุงู„ู„ูŠ ุนู†ุฏ
318
00:32:48,870 --> 00:32:54,610
ู…ูŠู† ู‡ูŠ ุงู„ู„ูŠ ู‡ูŠ summation ู…ู† n equal one to infinity
319
00:32:54,610 --> 00:33:01,130
ู„ูˆุงุญุฏ ุนู„ู‰ ุฃุฑุจุนุฉ n ู†ุงู‚ุต ุซู„ุงุซุฉ ู†ุงู‚ุต ูˆุงุญุฏ ุนู„ู‰ ุฃุฑุจุนุฉ n
320
00:33:01,130 --> 00:33:15,910
ุฒุงุฆุฏ ูˆุงุญุฏ converge and its sum is ู…ู‚ุฏุงุฑ
321
00:33:15,910 --> 00:33:19,930
ุงู„ู€ limit ู„ู„ุญุฏ ุงู„ู†ูˆู†ูŠ ุฅู„ู‰ ุงู„ู€ sequence ู…ูƒุชูˆุจ ู…ุนุงูƒ ู‡ุฐุง
322
00:33:19,930 --> 00:33:25,850
ุงู„ู…ุฑุฉ ุงู„ู„ูŠ ูุงุชุช ูŠุจู‚ู‰ ุงู„ู†ุชูŠุฌุฉ ูŠุณุงูˆูŠ 1 ุตุญูŠุญ
323
00:33:30,500 --> 00:33:36,980
ุจู†ุงุฎุฏ ู…ุซุงู„ ุนู„ู‰ ุงู„ุชู„ูŠุณูƒูˆุจ ูŠุจู‚ู‰ ู‡ุฐุง ูƒุงู† ุงู„ู…ุซุงู„ ุฑู‚ู… A
324
00:33:36,980 --> 00:33:47,600
ู†ุฐู‡ุจ ู„ุฑู‚ู… B ูŠุจู‚ู‰
325
00:33:47,600 --> 00:33:55,480
ุจูŠุฌูŠ ู„ู€ B summation ู…ู† N equal one to infinity ุชุงู†
326
00:33:55,480 --> 00:34:05,740
ุงู†ูุฑุณ ุงู† ู…ุงู‚ุต ุชุงู† ุงู†ูุฑุณ ุงู† plus one ุฃุชุงู†ูŠ ุณุคุงู„
327
00:34:05,740 --> 00:34:10,580
ุจุงู„ุดูƒู„ ู‡ุฐุง ูˆู‚ุงู„ ู„ูŠ ุดูˆู ู„ู‡ุฐู‡ ุงู„ู€ series converge ูˆุงู„ู„ู‡
328
00:34:10,580 --> 00:34:14,880
diverge ูˆุฅุฐุง ูƒุงู†ุช converge ุจุฏู†ุง ู†ุนุฑู ู‚ุฏุงุด
329
00:34:14,880 --> 00:34:20,940
ุงู„ู…ุฌู…ูˆุนุฉ ุชุจู‚ู‰ ุทุจุนุง ุจู‚ูˆู„ู‡ ูƒูˆูŠุณ ูŠุฑูŠุฏ ู†ุชุนุฑู ุนู„ู‰ ุดูƒู„ู‡ุง
330
00:34:20,940 --> 00:34:25,150
ูŠุนู†ูŠ ู‡ุจู‚ู‰ ูˆูุตู„ุฉ ูˆุฎุงู„ุตุฉ ู…ุด ุฒูŠ ุงู„ุณุคุงู„ ุงู„ู„ูŠ ุฌุงุจู„ู‡
331
00:34:25,150 --> 00:34:29,170
ุจุฏูŠ ุฃุนู…ู„ู‡ partial fraction ูˆุจุนุฏูŠู† ู‡ุฐุง partial
332
00:34:29,170 --> 00:34:33,830
fraction ู†ุนู…ู„ู‡ ุฎุงู„ุต ุชู…ุงู…ุŸ ูŠุจู‚ู‰ ู‡ุฐู‡ ุชุนูˆูŠุถ ู…ุจุงุดุฑ ุนู„ู‰
333
00:34:33,830 --> 00:34:40,130
ุทูˆู„ ุงู„ุฎุท ู†ู‚ูˆู„ู‡ ุฃู‡ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ ู†ุนุฑู ุดูƒู„ู‡ุง
334
00:34:40,130 --> 00:34:48,470
ูŠุจู‚ู‰ tan inverse one ู†ุงู‚ุต tan inverse two ุญุทูŠู†ุง ุงู†
335
00:34:48,470 --> 00:34:57,290
ุจูˆุงุญุฏ ู‡ุฐุง ุงู„ู€ term ุงู„ุฃูˆู„ Term 10 ู†ุถุน N ุจู€ 2 ูŠุจู‚ู‰ 10
336
00:34:57,290 --> 00:35:06,770
inverse 2 ู…ู‚ุต 10 inverse 3 ุฒุงุฆุฏ ูˆู†ุจู‚ู‰ ุงู„ู…ุงุดูŠูŠู†
337
00:35:06,770 --> 00:35:16,730
ู„ุบุงูŠุฉ ู…ุง ู†ูˆุตู„ ู„ู€ 10 inverse N ู…ู‚ุต 10 inverse N plus
338
00:35:16,730 --> 00:35:24,480
1 ุฒุงุฆุฏ ุฅู„ู‰ ู…ุง ุดุงุก ุงู„ู„ู‡ ุจุงู„ู…ุซู„ ุจุฏูŠ ุฃุฑูˆุญ ุฃุฌูŠุจ ุงู„ุญุฏ
339
00:35:24,480 --> 00:35:29,560
ุงู„ู†ูˆู†ูŠ ููŠ ุงู„ู€ sequence of partial sums ูุจุฌูŠ ุจู‚ูˆู„ู‡
340
00:35:29,560 --> 00:35:44,000
the nth term of the sequence of partial sums ุงู„ู„ูŠ
341
00:35:44,000 --> 00:35:47,420
ุญุฏูŠู„ู‡ ุงู„ุฑู…ุฒ sn is
342
00:35:49,520 --> 00:35:57,120
ุจุชูƒุชุจ ููˆู‚ ู‡ู†ุง ู‡ูŠุณ ุงู† ุจุฏู‡ ูŠุณุงูˆูŠ tan inverse one
343
00:35:57,120 --> 00:36:05,380
ู†ุงู‚ุต tan inverse two ุฒุงุฆุฏ tan inverse two ู†ุงู‚ุต tan
344
00:36:05,380 --> 00:36:12,420
inverse three ุฒุงุฆุฏ tan inverse three ู†ุงู‚ุต tan
345
00:36:12,420 --> 00:36:16,540
inverse four
346
00:36:19,940 --> 00:36:30,970
ุฒุงุฆุฏ tan inverse n ู†ุงู‚ุต tan inverse n plus one ูŠุจู‚ู‰
347
00:36:30,970 --> 00:36:35,430
ู‡ุฐุง ู…ุฌู…ูˆุน N ู…ู† ุญุฏูˆุฏ ุงู„ู€ series ุงู„ู„ูŠ ู‡ูˆ ูŠู…ุซู„ ุงู„ุญุฏ
348
00:36:35,430 --> 00:36:40,150
ุงู„ู†ูˆู†ูŠ ููŠ ุงู„ู€ sequence of partial sums ู„ู…ุง ู†ุญุณุจู‡ู…
349
00:36:40,150 --> 00:36:44,610
ูŠุจู‚ู‰ ู‡ุฐุง ุณุงู„ุจ ูˆู‡ุฐุง ู…ูˆุฌุจ ู‡ุฐุง ุณุงู„ุจ ูˆู‡ุฐุง ู…ูˆุฌุจ ู‡ุฐุง
350
00:36:44,610 --> 00:36:49,970
ุณุงู„ุจ ูˆู‡ุฐุง ู…ูˆุฌุจ ู‡ุฐุง ู…ูˆุฌุจ ูˆุงู„ู„ูŠ ู‚ุจู„ู‡ ุณุงู„ุจ ูŠุจู‚ู‰
351
00:36:49,970 --> 00:36:56,550
ู…ุถุงู„ุด ุฅู„ุง ุงู„ุญุฏ ุงู„ุฃูˆู„ ุงู„ู„ูŠ ู‡ูˆ 10 inverse 1 ู†ุงู‚ุต tan
352
00:36:56,550 --> 00:37:03,910
inverse N plus one ูŠุณุงูˆูŠ ูƒู… ุชุงู† ุงู†ูุฑุณ ูˆุงู†ุŸ ู„ุง ูŠุง
353
00:37:03,910 --> 00:37:11,050
ุฑุงุฌู„ ุถู„ ุงู„ุฎู…ุณุฉ ูˆุฃุฑุจุนูŠู† ู‡ูˆ ูˆุงุญุฏ ูŠุจู‚ู‰ ู†ุงู‚ุต ุถู„
354
00:37:11,050 --> 00:37:15,350
ุงู„ูˆุงุญุฏ ู‡ูˆ ุงู„ุฎู…ุณุฉ ูˆุฃุฑุจุนูŠู† ูŠุจู‚ู‰ ุงู„ู„ูŠ ู‡ูŠ ู…ูŠู†ุŸ ุจุงูŠ
355
00:37:15,350 --> 00:37:22,980
ุนู„ู‰ ุฃุฑุจุนุฉ ู†ุงู‚ุต tan inverse N plus one ูŠุจู‚ู‰ ุจู†ุฑูˆุญ
356
00:37:22,980 --> 00:37:29,780
ู†ุงุฎุฏ limit ู„ู„ู€ S N ู„ู…ุง ุงู„ู€ N tends to infinity ูŠุจู‚ู‰
357
00:37:29,780 --> 00:37:34,500
limit ู„ู…ุง ุงู„ู€ N tends to infinity ู„ู„ู€ ฯ€ ุนู„ู‰ ุฃุฑุจุนุฉ
358
00:37:34,500 --> 00:37:40,820
ู†ุงู‚ุต ุชุงู† inverse N plus one ู†ู‡ุงูŠุฉ ุงู„ู…ู‚ุฏุงุฑ ุงู„ุซุงุจุช
359
00:37:40,820 --> 00:37:43,080
ุจุงู„ู…ู‚ุฏุงุฑ ุงู„ุซุงุจุช itself
360
00:37:50,600 --> 00:37:57,080
ูŠุจู‚ู‰ ู†ุงู‚ุต by ุนู„ู‰ ุฃุฑุจุนุฉ ู†ุชูŠุฌุฉ ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ุง
361
00:37:57,080 --> 00:38:03,800
sequence of partial sums converged ูŠุจู‚ู‰
362
00:38:03,800 --> 00:38:15,770
ุณุงุนุฉ ุงู„ู€ sequence of partial sums ู…ูŠู† ู‡ูŠ ฯ€ ุนู„ู‰
363
00:38:15,770 --> 00:38:24,230
ุฃุฑุจุนุฉ ู†ุงู‚ุต ten inverse n plus one converge ู‡ุฐุง ุจุฏู‡
364
00:38:24,230 --> 00:38:31,550
ูŠุนุทูŠูƒ the series ุงู„ู„ูŠ ู‡ูŠ summation ู…ู† n equal one
365
00:38:31,550 --> 00:38:39,520
to infinity ู„ู€ ten inverse ุงู„ู„ูŠ ู‡ูˆ n-10 inverse n
366
00:38:39,520 --> 00:38:50,760
plus one ูƒู„ ู‡ุฐุง convert and its sum ุงู„ู…ุฌู…ูˆุน ุชุจุนู‡ุง
367
00:38:50,760 --> 00:38:58,960
is ุงู„ู€ is ุจุฏู‡ ูŠุณุงูˆูŠ ุณุงู„ุจ ฯ€ ุนู„ู‰ ุฃุฑุจุนุฉ ุงู„ู…ุฌู…ูˆุน ุชุจุน
368
00:38:58,960 --> 00:39:07,240
ู‡ุฐู‡ ุงู„ู€ series ุทูŠุจ ุงุญู†ุง ู„ู…ุง ุจุฏุฃู†ุง ุงู„ู€ section ุฃูˆู„ ู…ุง
369
00:39:07,240 --> 00:39:11,000
ุจุฏุฃู†ุง ุงู„ู€ section ู‚ู„ู†ุง ููŠ ุงู„ู€ section ู‡ุฐุง ุจุฏู†ุง ู†ุงุฎุฏ
370
00:39:11,000 --> 00:39:16,280
series ู…ุดู‡ูˆุฑุฉ ูˆู‚ุฏ ุจุฑุซู†ุงู‡ุง ู„ูŠู‡ุง ุงู„ู€ geometric series
371
00:39:16,280 --> 00:39:21,200
ูˆู‚ู„ู†ุง ุจุฏู†ุง ู†ุงุฎุฏ ุฃูˆู„ ุงุฎุชุจุงุฑ ู…ู† ุงู„ุงุฎุชุจุงุฑุงุช ุงู„ุณุชุฉ
372
00:39:21,200 --> 00:39:26,640
ูˆุญุชู‰ ุงู„ุขู† ู„ู… ู†ุชูƒู„ู… ุนู† ู‡ุฐุง ุงู„ุงุฎุชุจุงุฑ ุงู„ุงุฎุชุจุงุฑ ุงุณู…ู‡
373
00:39:26,640 --> 00:39:34,670
ุงุฎุชุจุงุฑ ุงู„ุญุฏ ุงู„ู†ูˆู†ูŠ ุจู†ุฑูˆุญ ู†ูƒุชุจ ุงู„ุงุฎุชุจุงุฑ ู‡ุฐุง ูˆู†ูˆู‚ู
374
00:39:34,670 --> 00:39:41,430
ู…ุนุงู‡ ู†ุทุฑุญ ู‚ุฏ ุงู„ุชุณุงุคู„ุงุช ูˆู†ุญุงูˆู„ ุงู„ุฅุฌุงุจุฉ ุนู„ูŠู‡ุง ูŠุจู‚ู‰
375
00:39:41,430 --> 00:39:47,830
ุจุงุฌูŠ ู„ู†ุธุฑูŠุฉ theorem if
376
00:39:47,830 --> 00:39:54,010
the series summation
377
00:39:54,010 --> 00:40:03,110
ู…ู† n equal one to infinity ู„ู„ a<sub>n</sub> converge then
378
00:40:03,110 --> 00:40:11,930
limit ู„ู„ a<sub>n</sub> ู„ู…ุง ุงู„ n tends to infinity ุจุฏู‡ ูŠุณุงูˆูŠ
379
00:40:11,930 --> 00:40:25,970
ุฒูŠุฑูˆ ู†ูŠุฌูŠ ุจุนุฏ ู‡ูŠูƒ the nth term test for divergence
380
00:40:29,410 --> 00:40:39,110
for divergence ุจู†ุต ุนู„ู‰ ู…ุง ูŠุฃุชูŠ the series the
381
00:40:39,110 --> 00:40:44,650
series ุงู„ู„ูŠ ู‡ูˆ ุงู„ summation ู…ู† n equal one to
382
00:40:44,650 --> 00:40:50,990
infinity ู„ู„ a<sub>n</sub> diverge
383
00:40:50,990 --> 00:41:01,090
diverge if limit ู„ู„ a<sub>n</sub> ู„ู…ุง ุงู„ n tends to infinity
384
00:41:01,090 --> 00:41:12,830
ู„ุง ูŠุณุงูˆูŠ zero or fails to
385
00:41:12,830 --> 00:41:13,530
exist
386
00:41:30,980 --> 00:41:37,200
ูƒู„ ูˆุงุญุฏ ูŠู‚ุฑุฃ ุงู„ูƒู„ุงู… ุงู„ู„ูŠ ูƒุชุจู†ุงู‡ ุนู„ู‰ ุงู„ู„ูˆุญ ูˆูŠุชู…ุนู†
387
00:41:37,200 --> 00:41:43,140
ููŠู‡ ูƒูˆูŠุณ ู„ุฅู†ู‡ ู‡ุชุทุฑุญ ุนุฏุฉ ุฃุณุฆู„ุฉ ู…ู† ุฎู„ุงู„ ุงู„ู†ุต ุงู„ู„ูŠ
388
00:41:43,140 --> 00:41:48,140
ู…ูˆุฌูˆุฏ ู‚ุฏุงู…ู†ุง ุนู„ู‰ ุงู„ู„ูˆุญ ูˆู†ุดูˆู ุฅูŠุด ู…ู…ูƒู† ุชุฌุงูˆุจู‡ ุนู„ู‰
389
00:41:48,140 --> 00:41:50,560
ู‡ุฐู‡ ุงู„ุฃุณุฆู„ุฉ
390
00:41:57,710 --> 00:42:01,690
ุทุจุนุง ุฅุฌุฑู‰ ู†ุธุฑูŠุฉ ูˆุฅุฌุฑู‰ ุงู„ test for divergence ุฅุฌุฑู‰
391
00:42:01,690 --> 00:42:07,550
ุงุชู†ูŠู†
392
00:42:07,550 --> 00:42:15,630
ุทู„ุน ู„ุฅู† ูƒุงุชุจ ุงู„ test for divergence ูŠุนู†ูŠ ู‡ุฐุง
393
00:42:15,630 --> 00:42:21,700
ุงู„ุงุฎุชุจุงุฑ ูŠู‚ูŠุณ ุงู„ุชุจุงุนุฏ ูˆู„ุง ูŠู‚ูŠุณ ุงู„ุชู‚ุงุฑุจ ู…ุง ู„ู‡ุด ุนู„ุงู‚ุฉ
394
00:42:21,700 --> 00:42:26,600
ุจุงู„ุชู‚ุงุฑุจ ูŠุจู‚ู‰ ุจูŠู‚ูŠุณ ุจุณ ุชุจุงุนุฏ ุงู„ู…ุชุณู„ุณู„ุฉ ูˆู„ุง ูŠู‚ูŠุณ
395
00:42:26,600 --> 00:42:32,100
ุชู‚ุงุฑุจู‡ุง ุชุนุงู„ ู†ู‚ุฑุฃ ู…ู† ุฃูˆู„ ูˆุฌุฏูŠุฏ ู†ู‚ุฑุฃ ู„ุฅุชู†ูŠู† ูˆู†
396
00:42:32,100 --> 00:42:37,080
ู†ุดูˆู ุฅูŠุด ู‚ุตุฏู‡ ูŠู‚ูˆู„ ุงู„ู†ุธุฑูŠุฉ ุงู„ุฃูˆู„ู‰ ุจุชู‚ูˆู„ the series
397
00:42:37,080 --> 00:42:44,220
summation ุนู„ู‰ a<sub>n</sub> converge ู„ูˆ ูƒุงู† ุฐู„ูƒ ุตุญูŠุญุง ูŠุจู‚ู‰
398
00:42:44,220 --> 00:42:48,620
then limit a<sub>n</sub> ู„ู…ุง ุงู„ n ุจุฏู‡ ุชุฑูˆุญ ู„ู„ู…ุนู†ู‰ ู†ู‡ุงูŠุฉ ุจุฏู‡
399
00:42:48,620 --> 00:42:54,060
ูŠุณุงูˆูŠ zero ูŠุนู†ูŠ ู„ูˆ ูƒุงู†ุช ุงู„ series converge ุฅุฐุง ุงู„
400
00:42:54,060 --> 00:42:58,120
limit ุงู„ู„ูŠ ู‡ูŠุจู‚ู‰ ูŠุณุงูˆูŠ zero ุงู„ instagram ู…ุด ุจูŠู‚ูˆู„
401
00:42:58,120 --> 00:43:03,320
ุงู„ series ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡ diverged ูˆุงุฌุชุงุด ู„ูˆ ุฑูˆุญุช
402
00:43:03,320 --> 00:43:09,020
ุฃุฎุฏุช limit ู„ู„ุญุฏ ุงู„ู†ูˆู†ูŠ ู„ู„ series ูˆู„ุง ุฌุงุชู‡ ู„ุง ูŠุณุงูˆูŠ
403
00:43:09,020 --> 00:43:14,350
zero ู„ุง ูŠุณุงูˆูŠ zero ูŠุนู†ูŠ ุฅู†ู‡ ุจุฏู‡ ูŠุณุงูˆูŠ ุฑู‚ู… ุบูŠุฑ ุงู„ุตูุฑ
404
00:43:14,350 --> 00:43:20,530
ุงุชู†ูŠู† ุชู„ุงุชุฉ ุฃุฑุจุนุฉ ู†ุต ุชู„ุงุช ุฃุฑุจุน ุชู…ุงู… or fails to
405
00:43:20,530 --> 00:43:24,670
exist ุฃูˆ ุงู„ู†ุชูŠุฌุฉ ุจุฏู‡ ุชุณุงูˆูŠ infinite ุฃูˆ ุณุงู„ุจ
406
00:43:24,670 --> 00:43:30,030
infinite ุชู…ุงู… ูŠุจู‚ู‰ ุฅุฐุง ุงู„ limit ู„ู„ a<sub>n</sub> ูƒุงู† ู„ุง
407
00:43:30,030 --> 00:43:34,930
ูŠุณุงูˆูŠ zero ุฃูˆ does not exist ุจู‚ูˆู„ ุงู„ sequence ุงู„
408
00:43:34,930 --> 00:43:39,520
series ู‡ุฐู‡ ู…ุนู†ุงู‡ุง by where ุฏูŠ ุจุงู„ูƒุฏู‚ู‚ ู…ุนุงูŠุง
409
00:43:39,520 --> 00:43:43,220
ูˆุงุชุฎู„ูŠุด ุงู„ุฎุทูˆุท ุฃูˆ ุงู„ุฃุณู„ุงูƒ ุชุฎุด ุนู„ู‰ ุจุนุถู‡ุง ุทุจุนุง
410
00:43:43,220 --> 00:43:47,660
ู…ุง ุชูุฑู‚ ุจูŠู† ุงู„ู…ุนู„ูˆู…ุงุช ุงู„ sequence ูˆู…ุนู„ูˆู…ุงุช ุงู„
411
00:43:47,660 --> 00:43:52,680
series ูƒู„ ูˆุงุญุฏุฉ ู‚ุงุฆู…ุฉ ุจุฐุงุชู‡ุง ุงู„ุณุคุงู„ ุงู„ู„ูŠ ุจุฏู‡ ุฃุทุฑุญู‡
412
00:43:52,680 --> 00:43:57,100
ุฎู„ูŠู‡ ุจุงู„ูƒู… ู…ุนุงูŠุง ูƒูˆูŠุณ ุฃู†ุง ุจุนุฏ ู…ุง ู‚ุฑุฃุช ุงู„ู†ุตูŠู† ุงู„ู„ูŠ
413
00:43:57,100 --> 00:44:01,200
ุงุชู†ูŠู† ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ูู‡ู…ุช ู…ุง ูŠุฃุชูŠ ูˆุดูˆููˆู„ูŠ ูุงู‡ู…ูŠ
414
00:44:01,200 --> 00:44:06,800
ู‡ุฐุง ุตุญ ูˆู„ุง ุฎุทุฃ ุฅุฐุง ูƒุงู† ุฎุทุฃ ุจุฏู†ุง ู†ุตุญู‡ ูˆุฅุฐุง ูƒุงู† ุตุญูŠุญ
415
00:44:06,800 --> 00:44:12,660
ู†ุนุชู…ุฏ ูˆู†ู…ุดูŠ ุฃุนุทุงู†ูŠ series summation ุนู„ู‰ n ูˆู‚ุงู„ ูŠุดูˆู
416
00:44:12,660 --> 00:44:16,320
ู„ู‡ุฐู‡ ุงู„ series ู‡ู„ ู‡ูŠ converge ูˆู„ุง diverge ุจูŠู‚ูˆู„
417
00:44:16,320 --> 00:44:20,660
ู„ุทูŠุจ ู…ุง ุจุฑูˆุญ ุจุงุฎุฏ ุงู„ limit ู„ู„ุญุฏ ุงู„ู†ูˆู†ูŠ ู„ู‡ุฐู‡ ุงู„
418
00:44:20,660 --> 00:44:27,210
series ุฅุฐุง ุงู„ limit ู„ู„ุญุฏ ุงู„ู†ูˆู†ูŠ ูŠุณุงูˆูŠ ุตูุฑ ุจู‚ูˆู„ู‡ ุฅุฐุง
419
00:44:27,210 --> 00:44:31,670
ุงู„ series converged ู…ุง ุณุงูˆู‰ ุตูุฑ ูŠุจู‚ู‰ ุงู„ series
420
00:44:31,670 --> 00:44:39,610
diverged ุนุดุงู† ู†ุชูุงู‡ู… ุจู‚ูˆู„ ูƒู…ุงู† ู…ุฑุฉ ุฃุนุทุงู†ูŠ series
421
00:44:39,610 --> 00:44:42,850
ูˆู‚ุงู„ ู„ูŠ ุดูˆู ู„ูŠู‡ุง converge ูˆู„ุง diverge ุจู‚ูˆู„ู‡ ู…ุง ููŠุด
422
00:44:42,850 --> 00:44:47,240
ู…ุดูƒู„ุฉ ู‡ุฐุง ุงู„ุญุฏ ุงู„ู†ูˆู†ูŠ ูˆุฎุฐุช ุงู„ limit ุฅุฐุง ูˆุงู„ู„ู‡ ุงู„
423
00:44:47,240 --> 00:44:50,600
limit ุณุงูˆู‰ zero ุจู‚ูˆู„ู‡ ุฅุฐุง ุงู„ series converge ุงู„
424
00:44:50,600 --> 00:44:54,740
limit ู„ุง ูŠุณุงูˆูŠ zero ุจู‚ูˆู„ู‡ ุงู„ series diverge ูˆู†ูƒูˆู†
425
00:44:54,740 --> 00:44:59,320
ุฎู„ุตู†ุง ู…ู† ู‡ุฐู‡ ุงู„ุดุบู„ุฉ ุชู…ุงู…ุŸ ุฅูŠุด ุฑุฃูŠูƒุŸ ุฅุฐุง ูƒุงู† ุงู„
426
00:44:59,320 --> 00:45:05,020
limit ุณุงูˆู‰ zero ุจูŠูƒูˆู† ุฏู‡ converge ุฅุฐุง ู…ุง ุณูˆุงุด zero
427
00:45:05,020 --> 00:45:11,160
ู…ู…ูƒู† ูŠูƒูˆู† diverge ุฃูˆ ุงู„ุงุฎุชุจุงุฑ ูุดู„ ู…ุด ุจุงู„ุถุฑูˆุฑุฉ ูŠูƒูˆู†
428
00:45:11,160 --> 00:45:16,800
ุฏู‡ ุฌุฏ ุนู„ู‰ ุฑุจู‘ูŠ ูƒู„ุงู…ูƒ ุงู„ู„ูŠ ุจุชู‚ูˆู„ู‡ ููŠู‡ ุบู„ุทุชูŠู† ู…ุด ูˆุงุญุฏุฉ
429
00:45:16,800 --> 00:45:21,040
ูƒู…ุงู† ุจูŠู‚ูˆู„ ุงุฒู…ูŠู„ ูƒูˆุงุด ุจูŠู‚ูˆู„ ุงุฒู…ูŠู„ ูƒูˆุงุด ุจุงุฎุฏ ุงู„ limit
430
00:45:21,040 --> 00:45:24,940
ู„ู„ุญุฏ ุงู„ู†ูˆู†ูŠ ุฅุฐุง limit ู„ู„ุญุฏ ุงู„ู†ูˆู†ูŠ ุณุงูˆู‰ ุงู„ zero ุฅุฐุง
431
00:45:24,940 --> 00:45:28,080
ุงู„ converge ู‡ุงูŠ ุงู„ู„ูŠ ู‚ุงู„ู‡ ุงู„ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰ ุงู„ู†ู‚ุทุฉ
432
00:45:28,080 --> 00:45:29,960
ุงู„ุชุงู†ูŠุฉ ุจู‚ูˆู„ ุฅุฐุง ุงู„ limit
433
00:45:33,680 --> 00:45:40,800
ู‡ุฐุง ู„ุง ุชุณุงูˆูŠ ุฒูŠุฑูˆ ูŠุจู‚ู‰ ุฅูŠู‡ ูŠุง ุฅู…ุง diverge ูŠุง ุฅู…ุง
434
00:45:40,800 --> 00:45:44,640
ุงุญู†ุง ู…ุด ุนุงู‚ุจูŠู†ู‡ ูŠุง ุฅู…ุง diverge ูŠุง ุฅู…ุง ุจูŠูุดู„
435
00:45:44,640 --> 00:45:50,660
ุงู„ุงุฎุชุจุงุฑ ุชุจุนู†ุง ุฃู†ุง ุจู‚ูˆู„ู‡ ุงู„ูƒู„ุงู… ููŠู‡ ุบู„ุทุชูŠู† ุญุฏ ุจูŠู‚ุฏุฑ
436
00:45:50,660 --> 00:45:57,060
ูŠูƒุชุดู ุงู„ุฎุทุฃ ุงู„ุฃูˆู„ ุฅู†ู‡ ู…ุด ุตูุฑ ู„ูƒู† ู„ูˆ ุงู„ series
437
00:45:57,060 --> 00:46:00,500
converge ู„ุงุฒู… ู†ุทู„ุน ู„ limit 0 ู„ูƒู† ู„ูˆ ุทู„ุนุช ู„ limit 0
438
00:46:00,500 --> 00:46:05,680
ู…ุด ุตูุฑ ุฃูŠูˆุฉ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ุชุตุญูŠุญ ุงู„ุฃูˆู„ ู„ูˆ ุฃุฎุฏุช ุงู„
439
00:46:05,680 --> 00:46:10,080
limit ู„ู„ุญุฏ ุงู„ู†ูˆู†ูŠ ู„ู„ sequence ูˆุทู„ุน ู„ุง ูŠุณุงูˆูŠ zero ู„ุง
440
00:46:10,080 --> 00:46:13,880
ุจู‚ุฏุฑ ุฃู‚ูˆู„ converge ูˆู„ุง ุจู‚ุฏุฑ ุฃู‚ูˆู„ diverge ูŠุจู‚ู‰ ู‡ุฐุง
441
00:46:13,880 --> 00:46:17,980
ุงู„ุฎุทุฃ ุงู„ุฃูˆู„ ููŠ ุงู„ูƒู„ุงู… ุงู„ู„ูŠ ุฌุงู„ู‡ ูŠุนู†ูŠ ู„ูˆ ุฑูˆุญุช ุฎุฏุช
442
00:46:17,980 --> 00:46:23,480
limit ู„ู„ุญุฏ ุงู„ู†ูˆู†ูŠ ูˆู„ู‚ูŠุช ุฅู† ุงู„ู†ุชูŠุฌุฉ ุชุณุงูˆูŠ ุงู„ุตูุฑ ุจูŠูุดู„
443
00:46:23,480 --> 00:46:27,700
ุงู„ุญุฏ ุงู„ู†ูˆู†ูŠ ููŠ ุงู„ุญูƒู… ุนู„ู‰ ุงู„ series ู‡ู„ ู‡ูŠ converge
444
00:46:27,700 --> 00:46:33,890
ุฃูˆ diverge ูู…ุง ุฃุณูˆูŠุŒ ุฑูˆุญ ุฏุจุฑ ุญุงู„ูƒ ุจุฃูŠ ุทุฑูŠู‚ุฉ ุฃุฎุฑู‰
445
00:46:33,890 --> 00:46:38,670
ูˆุณุฃุนุทูŠูƒ ุจุนุฏ ู‚ู„ูŠู„ ุฃู…ุซู„ุฉ ูˆุฃุฎู„ู‘ูŠ ุงู„ุงุฎุชุจุงุฑ ูŠูุดู„ ูˆู†ุดูˆู
446
00:46:38,670 --> 00:46:42,670
ูƒูŠู ู‡ู†ุญู„ ุงู„ุฅุดูƒุงู„ูŠุฉ ู‡ุฐู‡ุŒ ุชู…ุงู…ุŸ ูŠุจู‚ู‰ ุงู„ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰
447
00:46:42,670 --> 00:46:46,510
ู‡ูˆ ุงู„ุชุตุญูŠุญ ุงู„ุฃูˆู„ ูŠุนู†ูŠ ุงู„ูƒู„ุงู… ุงู„ู„ูŠ ุฃู†ุง ู‚ู„ุชู‡ ููŠ
448
00:46:46,510 --> 00:46:52,130
ุงู„ุฃูˆู„ ุบู„ุท ูˆุตุงุญุจ ู‡ุฐุง ุฃุซุฑ ุนู„ู‰ ุงู„ุฎุทุฃ ุชุจุนูŠ ูƒู…ุงู†ุŒ
449
00:46:52,130 --> 00:46:56,970
ูƒูˆูŠุณุŸ ูŠุจู‚ู‰ ุงู„ุตุญูŠุญ ุฃู†ู‡ ุฅุฐุง ุงู„ limit ูƒุงู†ุช ุชุณุงูˆูŠ zero
450
00:46:56,970 --> 00:47:01,270
ู„ู„ุญุฏ ุงู„ู†ูˆู†ูŠ ู„ุง ุจู‚ุฏุฑ ุฃู‚ูˆู„ converge ูˆู„ุง ุจู‚ุฏุฑ ุฃู‚ูˆู„
451
00:47:01,270 --> 00:47:06,170
diverge ู‚ุฏ ูŠูƒูˆู† converge ูˆู‚ุฏ ูŠูƒูˆู† diverge ุขู‡ ุฏู‡
452
00:47:06,170 --> 00:47:11,690
ู‚ุทุน ุงู„ุฃูˆู„ ุตู„ุญู†ุงู‡ ุงุชู†ุฌู„ ุงู„ุซุงู†ูŠ ู„ู…ุง ุชุฃุฎุฐ limit ู„ู„ุญุฏ
453
00:47:11,690 --> 00:47:17,190
ุฅู†ู‡ ู†ู‡ูˆ ุงู„ุทู„ุน ู„ุง ูŠุณุงูˆูŠ zero ุณูˆุงุก ูƒุงู† ุงู„ู†ุงุชุฌ ุฑู‚ู…
454
00:47:17,190 --> 00:47:22,490
ุฃูˆ ูƒุงู† ุงู„ู†ุงุชุฌ ุนู„ู‰ ูƒู„ ุงู„ุฃู…ุฑูŠู† ุงู„ series diverge
455
00:47:23,250 --> 00:47:27,710
ูˆู„ูŠุณ ุงู„ุงุฎุชุจุงุฑ ุจูŠูุดู„ ุจูŠูุดู„ ูู‚ุท ุฅุฐุง ูƒุงู† ุงู„ limit
456
00:47:27,710 --> 00:47:31,870
ู„ู„ุญุฏ ุงู„ู†ูˆู†ูŠ ูŠุณุงูˆูŠ zero ุชู…ุงู… ูŠุจู‚ู‰ ุฃุฑูˆุญ ูˆุฃุฎุฏ ุงู„
457
00:47:31,870 --> 00:47:38,070
limit ู„ู„ุญุฏ ุงู„ู†ูˆู†ูŠ ุณุงูˆู‰ ุฑู‚ู… ูŠุจู‚ู‰ ุถุงูŠู‚ ุถุงูŠู‚ ุขู‡ ุงุณุชู†ู‰
458
00:47:38,070 --> 00:47:41,590
ุดูˆูŠุฉ ุทุจ ุงุญู†ุง ููŠ ุงู„ sequence ู†ู‚ุงุจู„ู‡ ููŠ ู…ูƒุงู† ูŠู‚ูˆู„
459
00:47:41,590 --> 00:47:45,690
ู„ู…ุง ู†ุงุฎุฏ limit ู„ู„ุญุฏ ุงู„ู†ูˆู†ูŠ ูˆูŠุณุงูˆูŠ ุฑู‚ู… ุงู„ sequence
460
00:47:45,690 --> 00:47:49,690
converges ู…ุธุจูˆุท ู„ุฐุง ุฃู‚ูˆู„ ู„ูƒ ู‚ุจู„ ุฎู„ูŠู„ S ู‡ุชุฎู„ูŠ
461
00:47:49,690 --> 00:47:54,180
ุงู„ุฃุณู„ุงูƒ ุชุฎุด ุนู„ู‰ ุจุนุถ ุจูŠุตูŠุฑ short ููŠ ู…ุฎูƒ ุจุนุฏูŠู†ุŒ ูŠุจู‚ู‰
462
00:47:54,180 --> 00:47:59,280
ุงู„ series ูŠุง ุดุจุงุจ ู‡ูŠ ุฌุงู…ุน ุนู†ุงุตุฑ ุงู„ sequenceุŒ
463
00:47:59,280 --> 00:48:04,940
ุฌุงู…ุนุฉุŒ ุจุณ ุงู„ sequence ู„ุฃ ุจู†ุชู‚ู„ ู…ู† ุนู†ุตุฑ ุฅู„ู‰ ุซุงู†ูŠุŒ
464
00:48:04,940 --> 00:48:09,030
ู…ู† ุงู„ุซุงู†ูŠ ุฅู„ู‰ ุงู„ุซุงู„ุซ ูˆู‡ูƒุฐุง ุฏูˆู† ุฌุงู…ุนุฉ ูˆู…ู† ู‡ู†ุง ุตุงุฑ
465
00:48:09,030 --> 00:48:12,870
ููŠู‡ ูุฑู‚ ู…ุง ุจูŠู† ุงู„ุงุซู†ูŠู†ุŒ ู‡ูŠู‚ูˆู„ ูˆุงุญุฏ ุทุจ ู…ุง ุฃู†ุช ู„ู…ุง
466
00:48:12,870 --> 00:48:15,350
ูƒู†ุช ุงู„ series ุจุชุนุฑูู‡ุง ุฅูŠุด ูƒู†ุช ููŠู‡ุง ูˆุงุญุฏุŒ ุจุชุฌูŠุจู„ูŠ
467
00:48:15,350 --> 00:48:18,770
ุงู„ sequenceุŒ ุขู‡ ุฃู‚ูˆู„ูƒ ุตุญูŠุญ ุจู‚ูŠุช ุฃุฌูŠุจ ุงู„ sequence
468
00:48:18,770 --> 00:48:23,250
of partial solveุŒ ุจูˆู„ุฏู‡ุง ู…ู† ู…ูŠู†ุŸ ู…ู† ุงู„ series ุงู„ู„ูŠ
469
00:48:23,250 --> 00:48:29,460
ู…ูˆุฌูˆุฏุฉ ู…ุด ุจุณุชุฎุฏู… ุงู„ sequence ุงู„ุฃุตู„ูŠุฉ ููŠ ุงู„ุญูƒู… ุนู„ู‰
470
00:48:29,460 --> 00:48:33,180
ุงู„ sequence ู„ุฃ ุจุณุชุฎุฏู… ุงู„ sequence ุงู„ู„ูŠ ูˆู„ุฏู†ุงู‡ุง ู…ู†
471
00:48:33,180 --> 00:48:40,020
ุงู„ series ููŠ ุงู„ุญูƒู… ุนู„ู‰ ุงู„ series ูŠุจู‚ู‰ ู…ุง ูŠู†ุทุจู‚ ุนู„ู‰
472
00:48:40,020 --> 00:48:45,690
ุงู„ sequence ู„ุง ูŠู†ุทุจู‚ ุชู…ุงู…ุง ุนู„ู‰ ุงู„ series ู‡ุฐุง
473
00:48:45,690 --> 00:48:50,750
ุงู„ุงุฎุชุจุงุฑ ุงุณู…ู‡ ุงุฎุชุจุงุฑ ุงู„ุญุฏ ุงู„ู†ูˆู†ูŠ ูˆู‡ูˆ ุฃูˆู„ ุงุฎุชุจุงุฑ
474
00:48:50,750 --> 00:48:54,210
ู…ู† ุงู„ุงุฎุชุจุงุฑุงุช ุงู„ุณุช ุงู„ู„ูŠ ุจุฏู†ุง ู†ุณุชุฎุฏู…ู‡ุง ููŠ ุงู„ุญูƒู… ุนู„ู‰
475
00:48:54,210 --> 00:48:59,290
series ู‡ู„ ู‡ูŠ converge ุฃูˆ diverge ุญุฏ ุฅูŠู‡ ู„ู‡ ุชุณุงุคู„
476
00:48:59,290 --> 00:49:04,010
ู‚ุจู„ ู…ุง ู†ุงุฎุฏ ุฃู…ุซู„ุฉ ุนู„ู‰ ุงู„ูƒู„ุงู… ุงู„ู„ูŠ ู‚ุฏุงู…ู†ุง ุนู„ู‰ ุงู„ู„ูˆุญ
477
00:49:04,010 --> 00:49:09,070
ุทูŠุจ ุงุญู†ุง ุทุฑุญู†ุง ุฃุณุฆู„ุฉ ูƒุชูŠุฑุฉ ูŠุจู‚ู‰ ู†ุฌูŠ ู„ุฃู…ุซู„ุฉ
478
00:49:09,070 --> 00:49:09,690
examples
479
00:49:13,930 --> 00:49:21,330
ู…ุซุงู„ุงุช ู†ุงุฎุฏ ู…ุซุงู„ ูˆุงุญุฏ ุจูƒููŠ ู…ุง ู†ูƒุชุจ test the
480
00:49:21,330 --> 00:49:28,030
convergence of
481
00:49:28,030 --> 00:49:34,090
the following series
482
00:49:36,040 --> 00:49:40,580
ุงุฎุชุจุฑู„ูŠ ุงู„ convergence ุชุจุน ูƒู„ ู…ู† ุงู„ู…ุชุณู„ุณู„ุงุช
483
00:49:40,580 --> 00:49:46,920
ุงู„ุชุงู„ูŠุฉ ู†ู…ุฑ ูˆุงุญุฏ summation ู…ู† n equal zero to
484
00:49:46,920 --> 00:49:54,380
infinity ู„ู„ N factorial ุนู„ู‰ ุงู„ู to the
485
00:49:54,380 --> 00:49:55,820
power N
486
00:49:59,680 --> 00:50:02,780
ุฅุฐุง ุฃุนุทุงู†ูŠ series ุจุดูƒู„ ู‡ุฐุง ุจู‚ูˆู„ู‡ ูˆุงู„ู„ู‡ ู…ุง ุฃู†ุง ุนุงุฑู
487
00:50:02,780 --> 00:50:07,020
ุฎุฐ ุงู„ limit ูˆุงุชูˆูƒู„ ุนู„ู‰ ุงู„ู„ู‡ ู†ุดูˆู ูŠุจู‚ู‰ ุจุฌูŠ ุจู‚ูˆู„ู‡
488
00:50:07,020 --> 00:50:11,540
solution ุจุฏูŠ
489
00:50:11,540 --> 00:50:16,820
ุฃุฎุฏ limit ู„ู„ุญุฏ ุงู„ู†ูˆู†ูŠ ู„ู…ุง ุงู„ n ุจุฏู‡ุง ุชุฑูˆุญ ู„ู…ุง ู„ุง
490
00:50:16,820 --> 00:50:21,820
ู†ู‡ุงูŠุฉ ูŠุจู‚ู‰ ุงู„ limit ู„ู…ุง ุงู„ n ุจุฏู‡ุง ุชุฑูˆุญ ู„ู…ุง ู„ุง
491
00:50:21,820 --> 00:50:31,140
ู†ู‡ุงูŠุฉ ู„ู„ n factorial ุนู„ู‰ ุงู„ู to the power n ุฃุธู† ู‡ุฐู‡
492
00:50:31,140 --> 00:50:36,440
ุงู„ standard ู…ุนุฑูˆูุฉ ู…ู† ุงู„ section ุงู„ู„ูŠ ู‚ุจู„ู‡ 6 ุงู„
493
00:50:36,440 --> 00:50:44,040
limits ุงู„ู…ุดู‡ูˆุฑุฉ ู‡ุฐู‡ ุฑู‚ู… 6 ููŠู‡ู… ู‚ุฏุงุด ุงู„ู†ุงุชุฌ ู‡ู†ุง ุนู„ู‰
494
00:50:44,040 --> 00:50:47,580
ู†ู‡ุงูŠุฉ ู„ุฃู† ูƒุงู†ุช ู‡ู†ุง x to the power n ุนู„ู‰ n
495
00:50:47,580 --> 00:50:52,260
factorial ุจ zero ู‚ู„ู†ุง ู„ูƒ ู„ูˆ ุฌู„ุจู†ุงู‡ุง ุจูŠุตูŠุฑ infinity
496
00:50:53,070 --> 00:50:58,030
ูŠุจู‚ู‰ ุฏูŠ part 6 ู…ู† some basic limits ู…ู† ุงู„ู†ู‡ุงูŠุงุช
497
00:50:58,030 --> 00:51:02,670
ุงู„ู…ุดู‡ูˆุฑุฉุŒ ู‡ุฐุง ุฑู‚ู… 6 ููŠู‡ู… ู…ุงุฏุงู… ุณูˆุช infinity ูŠุนู†ูŠ
498
00:51:02,670 --> 00:51:08,450
fail to existุŒ ู…ุธุจูˆุทุŸ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู†ุต ู…ู† ุนู†ุฏู†ุง ู‡ุฐุงุŒ
499
00:51:08,450 --> 00:51:13,130
ูƒูˆูŠุณุŸ ูŠุจู‚ู‰ ุงู„ sequence divergesุŒ ุฃุฎ ุงู„ุนุฑุจ ูˆุงู„ูƒู„ุงู…
500
00:51:13,130 --> 00:51:21,830
ู„ุณู‡ ู…ูŠุฒุฉ ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ by the nth term test
501
00:51:25,840 --> 00:51:32,280
ุงู„ุณูŠุฑูŠุฒ ุงู„ู„ูŠ ู‡ูŠ ู…ูŠู†ุŸ summation ู…ู† N equal zero to
502
00:51:32,280 --> 00:51:38,640
infinity ู„ู„ู€ N factorial ุนู„ู‰ ุงู„ู€ a to the power N
503
00:51:38,640 --> 00:51:43,840
ู…ุซุงู„ ุขุฎุฑ ู„ู„ู€ divergence ู„ุง ูŠุฒุงู„ ู‡ู†ุงูƒ ุงู„ู…ุฒูŠุฏ ู…ู†
504
00:51:43,840 --> 00:51:47,660
ุงู„ุฃู…ุซู„ุฉ ู„ู„ู…ุฑุฉ ุงู„ู‚ุงุฏู…ุฉ ุฅู† ุดุงุก ุงู„ู„ู‡ ุชุนุงู„ู‰