abdullah's picture
Add files using upload-large-folder tool
b3368b0 verified
raw
history blame
42.5 kB
1
00:00:21,840 --> 00:00:28,120
ุงู„ู…ุญุงุถุฑุฉ ุงู„ู„ูŠ ูุงุชุช ุจุฏูŠู†ุง ููŠ ุนุฑุถ ุจุนุถ ุงู„
2
00:00:28,120 --> 00:00:32,760
applications of the supremum property ูˆุจุนุชู‚ุฏ ุฃู†
3
00:00:32,760 --> 00:00:37,680
ุงุญู†ุง ุฃุฎุฐู†ุง ุฃูˆู„ ู…ุซุงู„ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ุซุงู„ ู‡ุฐุง ู…ุธุจูˆุท
4
00:00:37,680 --> 00:00:40,980
ูู‚ูˆู„ู†ุง
5
00:00:40,980 --> 00:00:46,160
ุฅู† ุงู„ู…ุซุงู„ ู‡ุฐุง ู„ูˆ ุฃุฎุฏุช ุฃูŠ bounded set bounded
6
00:00:46,160 --> 00:00:56,150
above ูˆุนุฑูุช ุงู„ู…ุฌู…ูˆุนุฉ a ุฒุงุฆุฏ s ุจุงู„ุทุฑูŠู‚ุฉ ู‡ุฐู‡ ูุฃุซุจุชู†ุง
7
00:00:56,150 --> 00:01:00,770
ูˆู…ู…ูƒู† ุจุณู‡ูˆู„ุฉ ุฅุซุจุงุช ุฃู† ุงู„ supremum ู„ู„ู…ุฌู…ูˆุนุฉ ุงู„ุฌุฏูŠุฏุฉ
8
00:01:00,770 --> 00:01:09,870
A plus S ุจุชุณุงูˆูŠ A plus ุงู„ supremum ู„ู€ S ูˆุดูˆูู†ุง
9
00:01:09,870 --> 00:01:15,630
ุงู„ุจุฑู‡ุงู† ุจุงู„ุชูุตูŠู„ ุงู„ู…ุฑุฉ ุงู„ู„ูŠ ูุงุชุช ูˆูƒุงู† ู‡ู†ุง ุงู„ุจุฑู‡ุงู†
10
00:01:15,630 --> 00:01:18,390
ุจุนุชู…ุฏ ุนู„ู‰ ุฃู† ุงู„ู€ set ุงู„ู„ูŠ bounded above
11
00:01:32,250 --> 00:01:36,230
ุงู„ู€ set S ู‡ูŠ bounded above ู„ุฃู† ุงู„ supremum ุชุจุนู‡ุง
12
00:01:36,230 --> 00:01:42,940
exists by the supremum property ูˆุดูˆูู†ุง ุจุนุฏ ู‡ูŠูƒ ุฃู†ู‡
13
00:01:42,940 --> 00:01:49,660
ุงู„ู€ .. ุงู„ุนุฏุฏ a ุฒุงุฆุฏ u ุจูŠุทู„ุน upper bound ู„ู„ู€ set ู‡ุฐู‡ ูˆ
14
00:01:49,660 --> 00:01:53,500
ุจุนุฏูŠู† ุฃุซุจุชู†ุง ุฃู† ู‡ุฐุง ุงู„ุนุฏุฏ ู‡ูˆ ุฃุตุบุฑ upper bound ุฃูˆ
15
00:01:53,500 --> 00:01:59,320
supremum ู„ู„ู€ set ู‡ุฐู‡ ูˆุจุงู„ุชุงู„ูŠ ู‡ูŠูƒ ุจู†ูƒูˆู† ุฃุซุจุชู†ุง ุฃู†
16
00:01:59,320 --> 00:02:03,760
supremum ู„ู„ู€ set ู‡ุฐู‡ ู…ูˆุฌูˆุฏ ูˆ ุจูŠุณุงูˆูŠ ุงู„ุนุฏุฏ a ุฒุงุฆุฏ u
17
00:02:03,760 --> 00:02:09,420
ุงู„ู„ูŠ ู‡ูˆ a ุฒุงุฆุฏ supremum S ุงู„ู…ุซุงู„ ุงู„ุซุงู†ูŠ
18
00:02:16,520 --> 00:02:20,320
ู„ูˆ ุฃุฎุฏุช two functions ุงู„ู…ุฌุงู„ ุงู„ู€ domain ุชุจุนู‡ู…
19
00:02:20,320 --> 00:02:25,300
ู…ุฌู…ูˆุนุฉ D subset ู…ู† R ูˆูƒุชุจุช
20
00:02:25,300 --> 00:02:29,280
F of D ุนู„ู‰ ุฃู†ู‡ุง ู…ุฌู…ูˆุนุฉ ูƒู„ ุงู„ุนู†ุงุตุฑ F of X ุญูŠุซ ูˆ X
21
00:02:29,280 --> 00:02:34,400
ูŠู†ุชู…ูŠ ู„ู€ D ูุงู„ู€ set F of D ู‡ุฐู‡ ู‡ูŠ ุงู„ู€ range ุชุจุน ุงู„ู€
22
00:02:34,400 --> 00:02:39,120
function F ุตุญุŸ ู‡ูŠ ุงู„ู…ุฏู‰ ุชุจุน ุงู„ู€ function F ูˆ ูƒุฐู„ูƒ
23
00:02:39,120 --> 00:02:46,000
ุงู„ู€ set G of D ู‡ูŠ ุงู„ู€ range ุชุจุน ุงู„ู€ function G
24
00:02:48,510 --> 00:02:53,250
ูู„ูˆ ูุฑุถู†ุง ุฃู† ุงู„ู€ set f of d ูˆ ุงู„ู€ set g of d bounded
25
00:02:53,250 --> 00:03:01,530
set R ูุทุจุนุง ุญุณุจ ุงู„ supremum property ุงู„ู…ุฌู…ูˆุนุงุช ุฏูˆู„
26
00:03:01,530 --> 00:03:06,430
ูƒู„ ูˆุงุญุฏุฉ ู„ู‡ุง supremum ูƒุฐู„ูƒ ุญุณุจ ุงู„ infimum property
27
00:03:07,290 --> 00:03:11,050
ุงู„ู…ุฌู…ูˆุนุชูŠู† ู‡ุฐูˆู„ ูƒู„ ูˆุงุญุฏุฉ ููŠู‡ู… ุฅู„ู‡ุง infimumุŒ ุงู„ู€
28
00:03:11,050 --> 00:03:15,350
infimum ุชุจุนู‡ู… exists ุฅุฐุง ู†ูุฑุถ ุฅู† ุงู„ู…ุฌู…ุนุชูŠู† ู‡ุฐูˆู„
29
00:03:15,350 --> 00:03:18,570
bounded ุนุดุงู† ุฅูŠู‡ ู†ุถู…ู† ูˆุฌูˆุฏ ุงู„ supremum ูˆุงู„infimum
30
00:03:18,570 --> 00:03:26,450
ู„ูƒู„ ูˆุงุญุฏุฉ ู…ู†ู‡ู… ุงู„ุขู† ููŠ ุนู†ุฏูŠ ุจุฏูŠ ุฃุจุฑู‡ู† ุญุงุฌุฉ ุซุงู†ูŠุฉ ู„ูˆ
31
00:03:26,450 --> 00:03:31,930
ูƒุงู† ุงู„ูุฑุถ f of x ุฃุตุบุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ g of x ุจุชุญู‚ู‚ ู„ูƒู„
32
00:03:31,930 --> 00:03:38,040
x ูŠู†ุชู…ูŠ ู„ู€ D ุจูŠุทู„ุน ุงู„ supremum ู„ู„ู…ุฌู…ูˆุนุฉ F of D ุจูŠุทู„ุน ุฃุตุบุฑ ู…ู†
33
00:03:38,040 --> 00:03:44,660
ุฃูˆ ูŠุณุงูˆูŠ ุงู„ supremum ู„ู„ู…ุฌู…ูˆุนุฉ G of D ูˆุจุฑู‡ุงู† ู‡ุฐุง
34
00:03:44,660 --> 00:03:54,220
ุงู„ุจุฑู‡ุงู† ูŠุนู†ูŠ ุณู‡ู„ ุฃู†ุง ูƒุงุชุจ ุฅู†ู‡ easy exercise ู„ูƒู†
35
00:03:54,220 --> 00:04:02,780
ู…ู…ูƒู† ุชุจุฑู‡ู†ู‡ ู…ู…ูƒู† ุชุจุฑู‡ู†ู‡ ุจูƒู„ ุณู‡ูˆู„ุฉ ูู‡ูŠ ู†ูƒุชุจ ุงู„ู€ proof
36
00:04:06,320 --> 00:04:14,320
of part one ู„ู„ุฌุฒุก ุงู„ุฃูˆู„ ูุฎู„ู‘ูŠู†ุง
37
00:04:14,320 --> 00:04:19,400
ู†ุซุจุช fix x
38
00:04:19,400 --> 00:04:29,400
ูŠู†ุชู…ูŠ ุฅู„ู‰ d ู†ุงุฎุฏ ุนู†ุตุฑ x ูŠู†ุชู…ูŠ ุฅู„ู‰ d ุนุดูˆุงุฆูŠ by
39
00:04:29,400 --> 00:04:31,240
hypothesis ู…ู† ุงู„ูุฑุถ
40
00:04:33,710 --> 00:04:40,970
ู…ู† ุงู„ูุฑุถ ุฃู†ุง ุนู†ุฏูŠ f of x ุฃุตุบุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ g of x
41
00:04:40,970 --> 00:04:52,470
ู„ู„ู€ x ู‡ุฐู‡ ูˆ ู„ุฃูŠ x ุฏูŠ ุตุญ ู‡ุฐุง ู…ู† ุงู„ูุฑุถ ูˆ g of x g of
42
00:04:52,470 --> 00:05:00,550
x ุฃุตุบุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ ุงู„ supremum ู„ู„ู€ set g of d
43
00:05:04,610 --> 00:05:14,410
ุทุจุนุง ู‡ุฐุง ุฒูŠ ู…ุง ู‚ู„ู†ุง exists by supremum property
44
00:05:14,410 --> 00:05:20,970
ุจุงุณุชุฎุฏุงู… ุฎุงุตูŠุฉ ุงู„ู€
45
00:05:20,970 --> 00:05:26,910
supremum .. ู‡ุฐุง .. ู‡ุฐุง ุนู†ุตุฑ ููŠ ุงู„ู€ set ู‡ุฐุง g of x ุนู†ุตุฑ
46
00:05:26,910 --> 00:05:32,550
ููŠ ุงู„ู€ set g of d ุตุญุŸูˆู‡ุฐุง upper bound ุงู„ supremum ู„ู€ g of
47
00:05:32,550 --> 00:05:38,690
d ูˆ ู‡ุฐุง ุนู†ุตุฑ ููŠ ุงู„ู€ set g of d ูู‡ุฐุง ุฃูƒูŠุฏ ุฃูƒุจุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ
48
00:05:38,690 --> 00:05:43,610
ุงู„ upper bound ู„ู„ู€ set ุงู„ู„ูŠ ุจูŠู†ุชู…ูŠ ุฅู„ูŠู‡ุง ูู‡ุฐุง ุตุญูŠุญ
49
00:05:43,610 --> 00:05:56,610
ุงู„ุขู† ู‡ุฐุง ุตุญูŠุญ ู„ูƒู„ x since x belonged to D was
50
00:05:56,610 --> 00:05:57,610
arbitrarily
51
00:06:03,450 --> 00:06:10,110
arbitrary ุฅู† ุฅู† ุจูŠุทู„ุน ุนู†ุฏูŠ F of X ุฃุตุบุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ
52
00:06:10,110 --> 00:06:20,490
ุงู„ supremum ู„ู€ G of D ูˆู‡ุฐุง ุตุญูŠุญ ู„ูƒู„ X ููŠ D ู‡ุฐุง
53
00:06:20,490 --> 00:06:29,900
ู…ุนู†ุงู‡ ุฅู†ู‡ ุงู„ุนุฏุฏ ู‡ุฐุง ู‡ุฐุง ุงู„ุนุฏุฏ ุฃูƒุจุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ ูƒู„
54
00:06:29,900 --> 00:06:36,960
ุนู†ุงุตุฑ ุงู„ู€ set F of D ุตุญุŸ ู‡ูŠ ู‡ุฐุง ู…ุนู†ุงู‡ ุฃู† ุงู„ู€
55
00:06:36,960 --> 00:06:47,600
supremum ู„ู€ set G of D is an upper bound an upper
56
00:06:47,600 --> 00:06:50,860
bound
57
00:06:50,860 --> 00:06:53,780
ู„ู…ูŠู†ุŸ
58
00:06:54,920 --> 00:07:01,100
of set f of d ุจุตุญุŸ
59
00:07:01,100 --> 00:07:07,040
ู„ุฃู† ู‡ูŠูƒ ูƒู„ ุนู†ุตุฑ f of x ููŠ f of d ุฃุตุบุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ
60
00:07:07,040 --> 00:07:18,980
ุงู„ุนุฏุฏ ู‡ุฐุงุŒ ุตุญุŸ ุทูŠุจ since ุงู„ supremum ู„ู€ set f of d
61
00:07:18,980 --> 00:07:25,890
exists in R ุทุจุนุง ุจุฑุถู‡ by supremum property ู„ุฃู† ุงุญู†ุง
62
00:07:25,890 --> 00:07:31,890
ูุฑุถูŠู† ุฃู† ุงู„ู€ set ู‡ุฐู‡ bounded ุตุญ ูุงู„ supremum ุชุจุนู‡ุง
63
00:07:31,890 --> 00:07:37,110
ู…ูˆุฌูˆุฏ ุงู„ุขู† ุงู„ู€ set ู‡ุฐู‡ ุงู„ supremum ุชุจุนู‡ุง ู…ูˆุฌูˆุฏ
64
00:07:37,110 --> 00:07:42,750
ูˆุงู„ุนุฏุฏ ู‡ุฐุง ู‡ุฐุง ุงู„ุนุฏุฏ ุนุจุงุฑุฉ ุนู† upper bound ู„ู€ set
65
00:07:42,750 --> 00:07:46,850
ุฅุฐุง ู…ุง ุงู„ุนู„ุงู‚ุฉ ุจูŠู† ุงู„ upper bound ู‡ุฐุง ู„ู„ู€ set ูˆุงู„
66
00:07:46,850 --> 00:07:53,650
supremum ู„ู„ู€ setุŸ ููŠ ูˆุงุญุฏ ุฃูƒุจุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ ุงู„ุซุงู†ูŠ ู„ุฃู†
67
00:07:53,650 --> 00:07:59,770
ุจู…ุง ุฃู† ู‡ุฐุง ุงู„ูƒู„ุงู… ุตุญูŠุญ ู†ุญู† ู†ุญู† ู†ุญู† ู†ุญู† ู†ุญู† ู†ุญู† ู†ุญู†
68
00:07:59,770 --> 00:08:01,050
ู†ุญู† ู†ุญู† ู†ุญู† ู†ุญู† ู†ุญู† ู†ุญู† ู†ุญู† ู†ุญู† ู†ุญู† ู†ุญู† ู†ุญู†
69
00:08:01,050 --> 00:08:01,350
ู†ุญู† ู†ุญู† ู†ุญู† ู†ุญู† ู†ุญู† ู†ุญู† ู†ุญู† ู†ุญู† ู†ุญู† ู†ุญู† ู†ุญู†
70
00:08:01,350 --> 00:08:04,050
ู†ุญู† ู†ุญู† ู†ุญู† ู†ุญู† ู†ุญู† ู†ุญู† ู†ุญู† ู†ุญู† ู†ุญู† ู†ุญู† ู†ุญู†
71
00:08:04,050 --> 00:08:05,880
ู†ุญู† ู†ุญู† ู†ุญู† ู†ุญู† ู†ุญู† ู†ุญู† ู†ุญู† ู†ุญู† ู†ุญู† ู†ุญู† ู‡ุฐุง
72
00:08:05,880 --> 00:08:10,820
ุฃุตุบุฑ upper bound ู„ู„ู€ set f of d ูˆู‡ุฐุง upper bound ู„ู„ู€ set
73
00:08:10,820 --> 00:08:15,440
f of d ุฅุฐุง ุงู„ supremum ุจูŠุทู„ุน ุฃุตุบุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ ุงู„
74
00:08:15,440 --> 00:08:22,480
upper bound ุงู„ู„ูŠ ู‡ูˆ supremum g of d ูˆู‡ูˆ ุงู„ู…ุทู„ูˆุจ
75
00:08:22,480 --> 00:08:29,800
ูˆู‡ุฐุง ุจูŠุซุจุช ุงู„ุฌุฒุก ุงู„ุฃูˆู„ okay ุชู…ุงู… ุฅุฐุง ุงู„ุฌุฒุก ุงู„ุฃูˆู„ ู…ุด
76
00:08:29,800 --> 00:08:33,680
ุตุนุจ ูˆู‡ู†ุง ุฃุซุจุชู†ุง ูˆุงุถุญ
77
00:08:37,050 --> 00:08:42,310
ุจุฑู‡ุงู† ุงู„ุฌุฒุก ุงู„ุซุงู†ูŠ ุจุฑุถู‡ ุดุจูŠู‡ ููŠู‡ ุงู„ุฌุฒุก ุงู„ุซุงู†ูŠุŒ ุฅูŠุด
78
00:08:42,310 --> 00:08:47,510
ุจูŠู‚ูˆู„ ู„ูŠู‡ุŸ ุงู„ูุฑุถุŒ ู„ุงุญุธูˆุง ุงู„ูุฑู‚ ุจูŠู† ุงู„ูุฑุถ ุชุจุน ุงู„ุฌุฒุก
79
00:08:47,510 --> 00:08:54,910
ุงู„ุซุงู†ูŠ ูˆุงู„ุฌุฒุก ุงู„ุฃูˆู„ ุงู„ูุฑุถ
80
00:08:54,910 --> 00:09:00,210
ู‡ู†ุง ุฅู† f of x ุฃุตุบุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ g of y ู„ูƒู„ x ูˆ y ููŠ
81
00:09:00,210 --> 00:09:00,450
D
82
00:09:04,010 --> 00:09:09,170
ู‡ุฐุง ุฃุดู…ูŽู„ ูˆู‡ุฐุง ุฃุนู…ู„ ู…ู† ู‡ุฐุง ูˆู‡ุฐุง ุฃู‚ูˆู‰ ู…ู† ู‡ุฐุง ู„ุงุญุธูˆุง
83
00:09:09,170 --> 00:09:14,690
ุฅู†ู‡ ู„ูˆ ู‡ุฐุง ุตุญ ูู‡ุฐุง ุจูŠุทู„ุน ุตุญ ุงู„ู„ูŠ ููˆู‚ ู„ูƒู† ุงู„ู€ x ู…ุด
84
00:09:14,690 --> 00:09:18,430
ุตุญูŠุญ ุทูŠุจ
85
00:09:18,430 --> 00:09:22,130
ุฅุฐุง .. ุฅุฐุง ู‡ุฐุง ุงู„ูƒู„ุงู… ุตุญูŠุญ ูู‡ุฐุง ุจูŠู‚ุฏูŠ ุฅู† ุงู„ู€
86
00:09:22,130 --> 00:09:26,410
supremum ู„ู€ F of D ุจูŠุทู„ุน ุฃุตุบุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ ุงู„ infimum
87
00:09:26,410 --> 00:09:31,110
ู„ู€ set G of D ู†ุดูˆู
88
00:09:31,110 --> 00:09:32,710
ุงู„ู€ .. ู†ุจุฑู‡ู† ุงู„ูƒู„ุงู… ู‡ุฐุง
89
00:09:50,270 --> 00:10:02,090
ุงู„ุจุฑู‡ุงู† ุงู„ุฌุฒุก ุงู„ุซุงู†ูŠ ุงู„ุจุฑู‡ุงู†
90
00:10:02,090 --> 00:10:05,030
ุงู„ุฌุฒุก ุงู„ุซุงู†ูŠ ู‡ุฐุง conditional statement ู‡ูŠ ุงู„ูุฑุถ
91
00:10:05,030 --> 00:10:11,370
ูˆู‡ูŠ ุงู„ู†ุชูŠุฌุฉ ุงู„ู€ conclusion ูุจู†ูุฑุถ ุฃู† ุงู„ูุฑุถ ู‡ุฐุง ุตุญูŠุญ
92
00:10:11,370 --> 00:10:23,770
ูˆ ุจู†ุซุจุช ูŠุซุจุช ูŠุซุจุช ุนู†ุตุฑ Y ููŠ D ู…ู† ุงู„ูุฑุถ ุจูŠุทู„ุน ุนู†ุฏูŠ f
93
00:10:23,770 --> 00:10:29,530
of x ุฃุตุบุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ g of y ูˆู‡ุฐุง ุตุญูŠุญ ู„ูƒู„ x ููŠ ุฏูŠ
94
00:10:29,530 --> 00:10:38,280
ูˆ ุงู„ู€ y ุซุงุจุช ูŠุนู†ูŠ ู‡ุฐุง ู…ู† ุงู„ูุฑุถ ุตุญูŠุญ ู„ูƒู„ x ููŠ ุฏูŠ ุทูŠุจุŒ
95
00:10:38,280 --> 00:10:45,040
ุงู„ุขู† ู‡ุฐุง ู…ุนู†ุงู‡ ุฃู† ุงู„ุนุฏุฏ ู‡ุฐุง g of y ู‡ูŠ ููŠ y ุฃู†ุตู‡
96
00:10:45,040 --> 00:10:49,600
ุซุงุจุช ู‡ูŠ ุฃูƒุจุฑ .. ู‡ุฐุง ุงู„ุนุฏุฏ ุฃูƒุจุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ ูƒู„ ุงู„ู€ F
97
00:10:49,600 --> 00:10:54,100
of X ู„ูƒู„ X ุฏูŠ ู…ุนู†ุงู‡ ู‡ุฐุง upper bound ู„ู„ู€ set F of D
98
00:10:54,100 --> 00:10:59,020
ุงู„ุขู† g of y ุนุจุงุฑุฉ ุนู† upper bound ู„ู„ู€ set F of D ู…ู†
99
00:10:59,020 --> 00:11:01,860
ู‡ู†ุงุŒ ู…ุธุจูˆุทุŸ ุชู…ุงู…ุŸ
100
00:11:04,040 --> 00:11:07,840
ูˆุจุงู„ุชุงู„ูŠ ุงู„ู€ least upper bound ู„ู€ F of D ุจูŠุทู„ุน ุฃุตุบุฑ
101
00:11:07,840 --> 00:11:12,080
ู…ู† ุฃูˆ ูŠุณุงูˆูŠ ุงู„ู€ upper bound ู„ู€ F of D ุงู„ู„ูŠ ู‡ูˆ G of Y ู„ุฃู†
102
00:11:12,080 --> 00:11:13,620
ู‡ุฐู‡ ุงู„ู…ุชุจุงูŠู†ุฉ ุตุญูŠุญุฉ
103
00:11:18,050 --> 00:11:22,770
ุงุฎุชุฑู†ุงู‡ุง was arbitrary fixed ุงุญู†ุง ุงุฎุชุฑู†ุงู‡ุง ุนุดูˆุงุฆูŠ
104
00:11:22,770 --> 00:11:27,470
arbitrary ูˆุซุจุชู†ุงู‡ุง ุฃู† ุงู„ูƒู„ุงู… ุงู„ู…ุชุจุงูŠู†ุฉ ู‡ุฐู‡ ุงู„ุขู† ุตุญูŠุญ
105
00:11:27,470 --> 00:11:33,110
ู„ูƒู„ y ุฃู† ุงู„ู…ุชุจุงูŠู†ุฉ ู‡ุฐู‡ ุตุญูŠุญุฉ true for every y ููŠ D
106
00:11:33,110 --> 00:11:39,510
ู‡ุฐุง ู…ุนู†ุงู‡ ู…ู† ุงู„ู…ุชุจุงูŠู†ุฉ ู‡ุฐู‡ percentage ุฅู†ู‡ ุงู„ุนุฏุฏ
107
00:11:39,510 --> 00:11:45,350
ุงู„ supremum ู„ู€ F of D ู‡ุฐุง ุนุจุงุฑุฉ ุนู† lower bound
108
00:11:45,350 --> 00:11:51,030
ู„ู…ุฌู…ูˆุนุฉ ุงู„ุนู†ุงุตุฑ g of y ุญูŠุซ y ูŠู†ุชู…ูŠ ู„ู€ d ูŠุนู†ูŠ ุงู„ุนุฏุฏ
109
00:11:51,030 --> 00:11:58,210
ู‡ุฐุง ุนุจุงุฑุฉ ุนู† lower bound ู„ู„ู€ set g of d ุนุธูŠู… ุตุญุŸ ุทูŠุจ
110
00:11:58,210 --> 00:12:04,230
ุงู„ infimum ู„ู€ g of d exists ูˆู‡ุฐุง ุงู„ุนุฏุฏ lower bound
111
00:12:04,230 --> 00:12:08,950
ู„ู„ู€ set ู‡ุฐู‡ ูˆ ุงู„ infimum ู‡ุฐุง ุนุจุงุฑุฉ ุนู† ุงู„ู€ greatest
112
00:12:08,950 --> 00:12:12,970
lower bound ู„ู€ G ูˆ D ุฅุฐุง ุงู„ู€ greatest lower bound
113
00:12:12,970 --> 00:12:18,810
ุฏุงูŠู…ุง ุจูŠูƒูˆู† ุฃูƒุจุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ ุฃูŠ lower bound ุฅุฐุง ุงู„ู€
114
00:12:18,810 --> 00:12:23,090
lower bound ู‡ุฐุง ุฃุตุบุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ ุงู„ู€ greatest lower
115
00:12:23,090 --> 00:12:28,610
bound ู„ู€ G ูˆ D ูˆ ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ู‡ุฐุง ุงู„ู†ุชูŠุฌุฉ ุงู„ู„ูŠ ุงุญู†ุง
116
00:12:28,610 --> 00:12:34,800
ุนุงูŠุฒูŠู† ู†ุตู„ ู„ู‡ุง okay ุชู…ุงู… ูˆุงุถุญุŸ ุฅุฐู† ู‡ุฐุง ุจุฑู‡ุงู†ูŠ ุฌุฒุก
117
00:12:34,800 --> 00:12:48,220
ุงู„ุซุงู†ูŠ ุงู„ุขู† ููŠ ู…ู„ุงุญุธุฉ ุงู„ู…ู„ุงุญุธุฉ ู‡ุฐู‡ ุจุชู‚ูˆู„ ุฅู†ู‡ ูŠุนู†ูŠ
118
00:12:48,220 --> 00:12:56,120
ู…ู…ูƒู† ุทุงู„ุจุฉ ุทู„ุนุช ุชุณุฃู„ ุฃูˆ ุชุณุชูุณุฑ ุฃูˆ ุชุชุณุงุกู„ ุทุจ ู…ุง ู‡ุฐุง
119
00:12:56,120 --> 00:13:01,400
ุงู„ุดุฑุท ุชุจุนูŠู† ุฒูŠ ู‡ุฐุง ู…ุง ููŠุด ูุฑู‚ ุจูŠู†ู‡ู… ูุงุญู†ุง ุจู†ู‚ูˆู„ ู„ุฃ
120
00:13:01,400 --> 00:13:05,480
ู‡ุฐุง ุงู„ุดุฑุท ุงู„ุชุญุช ุฃู‚ูˆู‰ ู…ู† ุงู„ู„ูŠ ููˆู‚ ุงู„ู„ูŠ ุชุญุช ู„ูˆ ูƒุงู†
121
00:13:05,480 --> 00:13:09,160
ุงู„ุชุญุช ุตุญูŠุญ ุจูŠู‚ุฏูŠ ู„ู„ูŠ ููˆู‚ ู„ูƒู† ู„ูˆ ูƒุงู† ุงู„ู„ูŠ ููˆู‚ ุตุญูŠุญ
122
00:13:09,160 --> 00:13:14,300
ู‡ุฐุง ู…ุง ุจูŠู‚ุฏูŠ ู„ู„ูŠ ุชุญุช ู‡ุฐุง ุงู„ุดุฑุท ุฃู‚ูˆู‰ ู…ู† ุงู„ู„ูŠ ููˆู‚
123
00:13:14,300 --> 00:13:20,240
ูู…ู…ูƒู† ูˆุงุญุฏุฉ ููŠูƒู… ุชุณุฃู„ ุชู‚ูˆู„ ุทุจ ู„ูˆ ุงุญู†ุง ุฃุฎุฐู†ุง ุงู„ูุฑุถ
124
00:13:20,240 --> 00:13:24,840
ู‡ุฐุง ู„ูˆ ูุฑุถู†ุง ุฃู† ู‡ุฐุง ุงู„ูƒู„ุงู… ุตุญ ู‡ู„ ู…ู…ูƒู† ู†ุญุตู„ ุนู„ู‰
125
00:13:24,840 --> 00:13:30,580
ู†ุชูŠุฌุฉ ุงู„ู„ูŠ ุชุญุชู‡ุŸ ุงู„ุฅุฌุงุจุฉ ู„ุฃุŒ ุงู„ุฅุฌุงุจุฉ ู„ุฃุŒ ู‡ุฐุง ู…ุด
126
00:13:30,580 --> 00:13:36,900
ู…ู…ูƒู†ุŒ ุฅุฐุง ุงู„ู€ .. ู„ูˆ ุดูŠู„ู†ุง ุงู„ูุฑุถ ู‡ุฐุง ูˆ ุจุฏู„ู†ุงู‡ ุจุงู„ูุฑุถ
127
00:13:36,900 --> 00:13:41,820
ุงู„ู„ูŠ ููˆู‚ ูุงู„ู†ุชูŠุฌุฉ ู‡ุฐู‡ ู„ุง ูŠู…ูƒู† ู†ุญุตู„ ุนู„ูŠู‡ุงุŒ ู…ุด ุดุฑุท
128
00:13:41,820 --> 00:13:53,110
ุชูƒูˆู† ุตุญูŠุญุฉ ุฃูˆ ู…ุซุงู„ ูŠูˆุถุญ ุฅู†ู‡ ู„ุง ูŠู…ูƒู† ุงุณุชุจุฏุงู„ ุงู„ูุฑุถ
129
00:13:53,110 --> 00:13:58,610
ุชุจุน ุงู„ุฌุฒุก ุงู„ุซุงู†ูŠ ุจุงู„ูุฑุถ ุชุจุน ุงู„ุฌุฒุก ุงู„ุฃูˆู„ ูˆู†ุญุตู„ ู†ุญุตู„
130
00:13:58,610 --> 00:14:00,630
ุนู„ู‰ ู†ุชูŠุฌุฉ ุงู„ุฌุฒุก ุงู„ุซุงู†ูŠ
131
00:14:12,790 --> 00:14:16,530
ูู†ุงุฎุฏ ุนู„ู‰ ุณุจูŠู„ ุงู„ู…ุซุงู„ ุฃูˆ counterexample ุจูŠุณู…ูŠู‡ ููŠ
132
00:14:16,530 --> 00:14:22,910
ุฑูŠุงุถูŠุงุช ู„ูˆ ุฃุฎุฏุช f of x ุจูŠุณุงูˆูŠ x ุชุฑุจูŠุน ุฏุงู„ุฉ ุชุฑุจูŠุน
133
00:14:22,910 --> 00:14:26,830
ูˆ g of x ุงู„ู€ identity function ูˆ ุฃุฎุฏุช ุงู„ู€ domain
134
00:14:26,830 --> 00:14:30,950
ุงู„ู…ุดุชุฑูƒ ู„ู€ f ูˆ g ุงู„ู€ closed unit interval
135
00:14:34,300 --> 00:14:40,040
ูุทุจุนุง ุจู†ู„ุงุญุธ ุฃู† f of x ุงู„ู„ูŠ ู‡ูŠ x ุชุฑุจูŠุน ู„ูƒู„ x ููŠ ุงู„ู€
136
00:14:40,040 --> 00:14:45,220
closed unit interval x ุชุฑุจูŠุน ุฃุตุบุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ xุŒ
137
00:14:45,220 --> 00:14:51,180
ู…ุธุจูˆุทุŸ ูˆ X ุจูŠุณุงูˆูŠ G of X ูู‡ูŠ ููŠ ุนู†ุฏูŠ ุงู„ู€ two
138
00:14:51,180 --> 00:14:54,460
functions ู‡ุฏูˆู„ ุจุงู„ู…ู†ุงุณุจุฉ ุงู„ู€ two functions ู‡ุฏูˆู„
139
00:14:54,460 --> 00:14:59,220
ูƒู„ุงู‡ู… ูƒู„ุงู‡ู… bounded bounded below by zero bounded
140
00:14:59,220 --> 00:15:08,940
above by ุงู„ู€ range ุชุจุนู‡ู… ุงู„ู€ range ุชุจุนู‡ู… F of D ูˆ G of D
141
00:15:08,940 --> 00:15:14,900
of D ูƒ sets ูƒู…ุฌู…ูˆุนุงุช ุจุทู„ูˆุง subset ู…ู† ุงู„ู…ุฌู…ูˆุนุฉ ู…ู†
142
00:15:14,900 --> 00:15:20,520
ุงู„ุณูุฑ ู„ูˆุงุญุฏุŒ ูˆุจุงู„ุชุงู„ูŠ ูƒู„ุง ู‡ู…ุง bounded above by ูˆุงุญุฏ
143
00:15:20,520 --> 00:15:27,000
ูˆ bounded below by ุตูุฑุŒ ุฅุฐู†
144
00:15:27,000 --> 00:15:32,420
ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุงุช ู‡ูŠ bounded ูˆู‡ูŠ ุนู†ุฏ ุงู„ function f of
145
00:15:32,420 --> 00:15:36,860
x ุฃุตุบุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ g of x ู„ูƒู„ x ุฏูŠุŒ ู‡ุฐุง ุงู„ูุฑุถ ุชุจุน
146
00:15:36,860 --> 00:15:41,600
ุงู„ุฌุฒุก ูˆุงุญุฏ ุงู„ู„ูŠ ุดูˆูู†ุงู‡ ู‚ุจู„ ุดูˆูŠุฉุŒ ู„ูƒู† ุงู„ู†ุชูŠุฌุฉ ุชุจุน
147
00:15:41,600 --> 00:15:45,560
ุงู„ุฌุฒุก ุงู„ุชุงู„ูŠ ู„ุง ุชุชุญู‚ู‚ุŒ ุชุนุงู„ู‰ ู†ุดูˆู ู‡ูŠ ุงู„ supremum ู„
148
00:15:45,560 --> 00:15:52,190
f of d ู‡ูŠ ู…ุฌู…ูˆุนุฉ f of d ุงู„ูˆุงุญุฏ
149
00:15:52,190 --> 00:15:56,430
ุฃูƒุจุฑ
150
00:15:56,430 --> 00:16:00,090
ู…ู† ุงู„ุตูุฑ ุงู„ุตูุฑ
151
00:16:00,090 --> 00:16:05,650
ุจุฑุถู‡ ุนุจุงุฑุฉ ุนู† greatest lower bound ุฃูˆ ุงู„ุงู†ูู… ู…ู†
152
00:16:05,650 --> 00:16:09,950
ุงู„ู…ุฌู…ูˆุนุฉ ู‡ุฐู‡ุŒ ูˆุงุถุญ ุฃู† ุงู„ุตูุฑ lower bound ู„ู„ุณูุฑ ู‡ุฐู‡
153
00:16:09,950 --> 00:16:15,580
ูˆู‡ูˆ greatest lower boundุŒ ุฅุฐุงู‹ ู‡ูŠ ุนู†ุฏ ุงู„ู€ supremum
154
00:16:15,580 --> 00:16:20,220
ู„ู€ F of D ุฃูƒุจุฑ ู…ู† ุงู„ู€ infimum ู„ู€ G of DุŒ ูˆู‡ุฐุง ู†ููŠ
155
00:16:20,220 --> 00:16:23,700
ู†ุชูŠุฌุฉ ู†ุชูŠุฌุฉ ู†ุชูŠุฌุฉ ู†ุชูŠุฌุฉ ู†ุชูŠุฌุฉ ู†ุชูŠุฌุฉ ู†ุชูŠุฌุฉ ู†ุชูŠุฌุฉ
156
00:16:23,700 --> 00:16:24,240
ู†ุชูŠุฌุฉ ู†ุชูŠุฌุฉ ู†ุชูŠุฌุฉ ู†ุชูŠุฌุฉ ู†ุชูŠุฌุฉ ู†ุชูŠุฌุฉ ู†ุชูŠุฌุฉ ู†ุชูŠุฌุฉ
157
00:16:24,240 --> 00:16:26,120
ู†ุชูŠุฌุฉ ู†ุชูŠุฌุฉ ู†ุชูŠุฌุฉ ู†ุชูŠุฌุฉ ู†ุชูŠุฌุฉ ู†ุชูŠุฌุฉ ู†ุชูŠุฌุฉ ู†ุชูŠุฌุฉ
158
00:16:26,120 --> 00:16:26,240
ู†ุชูŠุฌุฉ ู†ุชูŠุฌุฉ ู†ุชูŠุฌุฉ ู†ุชูŠุฌุฉ ู†ุชูŠุฌุฉ ู†ุชูŠุฌุฉ ู†ุชูŠุฌุฉ ู†ุชูŠุฌุฉ
159
00:16:26,240 --> 00:16:26,440
ู†ุชูŠุฌุฉ ู†ุชูŠุฌุฉ ู†ุชูŠุฌุฉ ู†ุชูŠุฌุฉ ู†ุชูŠุฌุฉ ู†ุชูŠุฌุฉ ู†ุชูŠุฌุฉ ู†ุชูŠุฌุฉ
160
00:16:26,440 --> 00:16:32,560
ู†ุชูŠุฌุฉ ู†ุชูŠุฌุฉ ู†ุชูŠุฌุฉ ู†ุชูŠุฌุฉ ู†ุชูŠุฌุฉ ู†ุชูŠุฌุฉ ู†ุชูŠุฌุฉ ู†ุชูŠุฌุฉ
161
00:16:49,380 --> 00:16:56,900
ูƒู†ุชูŠุฌุฉ ุนู„ู‰ ุงู„ู€ completeness property ููŠ ุนู†ุฏูŠ ู†ุชูŠุฌุฉ
162
00:16:56,900 --> 00:17:05,420
ูƒุชูŠุฑ ู…ู‡ู…ุฉุŒ ูˆู‡ู†ุณุชุฎุฏู…ู‡ุง ูƒุชูŠุฑุŒ ู…ุนู†ุงู‡ุง ุงู„ู„ูŠ ู‡ูˆ ุงู„
163
00:17:05,420 --> 00:17:10,120
material ุงู„ู„ูŠ ู‡ู†ุงุฎุฏู‡ุง ู„ุงุญู‚ุงุŒ ุงู„ู„ูŠ ู‡ูˆ ุงู„ Archimedean
164
00:17:10,120 --> 00:17:16,220
property ุฃูˆ ุฎุงุตูŠุฉ ArchimedesุŒ ุฅูŠู‡ ุงู„ุฎุงุตูŠุฉ ู‡ุฐู‡ ุจุชู‚ูˆู„
165
00:17:17,950 --> 00:17:23,890
ู„ุฃูŠ ุนุฏุฏ ุญู‚ูŠู‚ูŠ x ููŠ ุนุฏุฏ ุทุจูŠุนูŠ ุฃูƒุจุฑ ู…ู†ู‡ุŒ ุฃุนุทูŠู†ูŠ ุฃูŠ
166
00:17:23,890 --> 00:17:29,650
ุนุฏุฏ ุญู‚ูŠู‚ูŠ x ุณูˆุงุก ูƒุงู† ุตูุฑ ุฃูˆ ู…ูˆุฌุจ ุฃูˆ ุณุงู„ุจุŒ ุจู‚ุฏุฑ
167
00:17:29,650 --> 00:17:36,970
ุฃุนุทูŠูƒูŠ ุนุฏุฏ ุทุจูŠุนูŠ ุฃูƒุจุฑ ู…ู†ู‡ ุฃูˆ ุจู‚ุฏุฑ ุฃูˆุฌุฏู„ูƒ ุนุฏุฏ ุทุจูŠุนูŠ
168
00:17:36,970 --> 00:17:42,760
ูŠูƒูˆู† ุฃูƒุจุฑ ู…ู†ู‡ุŒ ุงู„ุจุฑู‡ุงู† ุชุจุน ุงู„ู†ุธุฑูŠุฉ ู‡ุฐู‡ ุจูŠุนุชู…ุฏ ุนู„ู‰
169
00:17:42,760 --> 00:17:47,040
ุงู„ู€ completeness propertyุŒ ูู„ุจุฑู‡ุงู† ุฐู„ูƒ ู†ุจุฏุฃ ุจุงู„ู€
170
00:17:47,040 --> 00:17:54,320
Fix X ููŠ R ูˆู†ุซุจุชู‡ุง ูˆู†ุนู…ู„ ุจุฑู‡ุงู† ุจุงู„ุชู†ุงู‚ุถุŒ ู†ุญู† ุนุงูŠุฒูŠู†
171
00:17:54,320 --> 00:17:58,840
ู†ุซุจุช ุฃู†ู‡ ู„ู„ู€ Fix X ุงู„ู„ูŠ ุงุญู†ุง ุซุจุชู†ุงู‡ุง ูŠูˆุฌุฏ
172
00:18:01,850 --> 00:18:07,810
ุนุงูŠุฒูŠู† ู†ุซุจุช ุงู„ุนุจุงุฑุฉุŒ ุฃู† ุงู„ุนุจุงุฑุฉ ู‡ุฐู‡ ุชูƒูˆู† ุตุญูŠุญุฉุŒ ูŠูˆุฌุฏ
173
00:18:07,810 --> 00:18:12,430
ุนุฏุฏ ุทุจูŠุนูŠ ุฃูƒุจุฑ ู…ู† XุŒ ูุจุฏุง ุฃุนู…ู„ ุจุฑู‡ุงู† ุจุงู„ุชู†ุงู‚ุถุŒ ุจุฏุง
174
00:18:12,430 --> 00:18:17,610
ุฃูุฑุถ ุฃู† ู†ููŠ ุงู„ุนุจุงุฑุฉ ู‡ุฐู‡ ู‡ูˆ ุงู„ุตุญุŒ ุฅุฐุง ู† assume ุงู„
175
00:18:17,610 --> 00:18:21,030
contrary ุฃู† ู†ููŠ ุงู„ุนุจุงุฑุฉ ู‡ุฐู‡ ุงู„ุตุญุŒ ุทุจ ู†ููŠ ุงู„ุนุจุงุฑุฉ
176
00:18:21,030 --> 00:18:27,750
ู‡ุฐู‡ ุงู„ุตุญุŒ there exist ู…ุง ุจุตูŠุฑ ู„ูƒู„ N ููŠ N ุนูƒุณ
177
00:18:27,750 --> 00:18:32,730
ุงู„ู…ุชุจุงูŠู†ุฉ ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูˆ n ุฃุตุบุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ xุŒ ุฅุฐู† ู‡ู†ุง
178
00:18:32,730 --> 00:18:37,550
ุงู„ contrary ุฃูˆ ุงู„ู†ููŠุŒ ู†ููŠ ุงู„ู†ุชูŠุฌุฉ ู‡ุฐู‡ุŒ ู…ุนู†ุงู‡ุง ุฃู† ูƒู„
179
00:18:37,550 --> 00:18:44,610
ุงู„ุฃุนุฏุงุฏ ุงู„ุทุจูŠุนูŠุฉ ุฃุตุบุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ xุŒ ู‡ุฐุง ู…ุนู†ุงู‡ ุฃู† ุงู„
180
00:18:44,610 --> 00:18:51,230
x ู‡ุฐุง upper bound ู„ู€ set N ูˆุจุงู„ุชุงู„ูŠ ุงู„ู€ set N ุฅู„ู‡ุง
181
00:18:51,230 --> 00:18:54,850
upper bound ุฃูˆ bounded aboveุŒ ุฅุฐุง by the supremum
182
00:18:54,850 --> 00:19:00,590
ุฃูˆ completeness of propertyุŒ ุงู„ู€ set N ุจุทู„ุน ูŠูˆุฌุฏ
183
00:19:00,590 --> 00:19:04,970
ุฅู„ู‡ุง supremumุŒ ุงู„ู€ supremum ุชุจุนู‡ุง exist and areุŒ
184
00:19:04,970 --> 00:19:12,410
ุณู…ูŠู‡ุŒ ูู„ู†ุณู…ูŠู‡ uุŒ ูู„ู†ุณู…ูŠู‡ uุŒ ุชู…ุงู…ุŸ ููŠ
185
00:19:12,410 --> 00:19:19,340
ู„ู…ุฉ ูˆุงุญุฏ ุงุซู†ูŠู† ุนุดุฑุŒ ู„ู…ุฉ ูˆุงุญุฏุฉ ุงุซู†ุงุก ุนุดุฑ ูƒุฏู‡ ุจุชู‚ูˆู„ ู„ูˆ ูƒุงู†
186
00:19:19,340 --> 00:19:28,300
U ุฃูˆ u ุจุณุงูˆูŠ ุงู„ supremum ู„ุณุช S if and only if ู„ูƒู„
187
00:19:28,300 --> 00:19:35,920
epsilon ุฃูƒุจุฑ ู…ู† ุงู„ุตูุฑ ู†ู‚ุฏุฑ ู†ู„ุงู‚ูŠ S epsilon ููŠ ุงู„ุณุช
188
00:19:35,920 --> 00:19:42,460
S ุจุญูŠุซ ุงู†ู‡ U ุณุงู„ุจ epsilon ุฃุตุบุฑ ู…ู† S epsilon
189
00:19:45,010 --> 00:19:50,110
ุทุจ ุฃู‚ู„ุŒ ุฃู†ุง ุนู†ุฏูŠ ููŠู‡ U ุจุณุงูˆูŠ Supremum ู„ NุŒ S ุจุณุงูˆูŠ
190
00:19:50,110 --> 00:19:55,450
6 N ูƒู„ ุงู„ุฃุนุฏุงุฏ ุงู„ุทุจูŠุนูŠุฉุŒ ู‡ูŠ ุนู†ุฏูŠ Supremum ู„ N ุงู„ู„ูŠ
191
00:19:55,450 --> 00:20:01,890
ู‡ูˆ U existุŒ ุฅุฐุง ุญุณุจ ู„ู…ุฉ ูˆุงุญุฏ ุงุซู†ูŠู† ุนุดุฑ ู„ูˆ ุฃุฎุฏุช epsilon
192
00:20:01,890 --> 00:20:06,670
ู„ูˆ ุฃุฎุฏุช epsilon ุจุงู„ุณุงูˆูŠุฉ ูˆุงุญุฏุŒ ู‡ุฐุง ุนุฏุฏ ู…ูˆุฌุจุŒ ุฅุฐุง ู„ู‡ุฐุง
193
00:20:06,670 --> 00:20:11,690
ุงู„ epsilon ุจู‚ุฏุฑ ุฃู„ุงู‚ูŠ ุนุฏุฏ S epsilon ู‡ุณู…ูŠ M ู‡ู†ุง ุจุฏู„ S
194
00:20:11,690 --> 00:20:16,930
epsilon ููŠ ุงู„ู„ู…ุฉุŒ ุนุฏุฏ ุทุจูŠุนูŠ ุจุญูŠุซ ุฃู†ู‡ ู„ู…ุง ุฃุฎุฏ U minus
195
00:20:16,930 --> 00:20:20,670
epsilon ุงู„ู„ูŠ ู‡ูˆ ุงู„ูˆุงุญุฏุŒ ู‡ุฐุง ุจูŠุทู„ุน ุฃุตุบุฑ ู…ู† S epsilon
196
00:20:20,670 --> 00:20:25,050
ุงู„ู„ูŠ ู‡ูˆ MุŒ ุฅุฐุงู‹ ู‡ุฐุง ู†ุญุตู„ ุนู„ูŠู‡ ู…ู† ู„ู…ุฉ ูˆุงุญุฏุฉ ูˆุงุซู†ูŠู†
197
00:20:25,050 --> 00:20:30,870
ุนุดุฑุŒ ุทูŠุจ ุงู„ู…ุชุจุงูŠู† ู‡ุฐู‡ุŒ ูˆุฏูŠ ูˆุงุญุฏุŒ ู†ุฌุฑูŠ ูˆุงุญุฏ ุนู„ู‰ ู…ูŠู†
198
00:20:30,870 --> 00:20:35,010
ูุจูŠุทู„ุน U ุฃุตุบุฑ ู…ู† M ุฒุงุฆุฏ ูˆุงุญุฏุŒ ุทูŠุจ ุงู„ M ุนุฏุฏ ุทุจูŠุนูŠ
199
00:20:35,010 --> 00:20:40,130
ุฅุฐุงู‹ M ุฒุงุฆุฏ ูˆุงุญุฏ ุนุฏุฏ ุทุจูŠุนูŠ ุตุญุŸ ุฅุฐุงู‹ ู‡ุฐุง M ุฒุงุฆุฏ
200
00:20:40,130 --> 00:20:47,360
ูˆุงุญุฏ ุนุฏุฏ ุทุจูŠุนูŠ ูˆุฃูƒุจุฑ ู…ู† UุŒ ูˆ U ู‚ู„ู†ุง ุงู„ U ู‡ูˆ ุงู„
201
00:20:47,360 --> 00:20:50,520
supremum ู„ N ูŠุนู†ูŠ upper bound ุจูŠุทู„ุน upper bound ู„
202
00:20:50,520 --> 00:20:55,860
NุŒ ููƒูŠู U upper bound ู„ set N ู„ู„ุนุฏุงุฏ ุงู„ุทุจูŠุนูŠุฉุŒ ูˆููŠ
203
00:20:55,860 --> 00:20:59,620
ุนู†ุตุฑ ููŠ ุงู„ุนุฏุงุฏ ุงู„ุทุจูŠุนูŠุฉ ุฃูƒุจุฑ ู…ู†ู‡ุŒ ู„ุฃู† ู‡ุฐุง ุจูŠุฏูŠู†ูŠ
204
00:20:59,620 --> 00:21:06,380
ุชู†ุงู‚ุถ ู„ูƒูˆู† U ู‡ูˆ upper bound ู„ set ู„ู„ุนุฏุงุฏ ุงู„ุทุจูŠุนูŠุฉ
205
00:21:06,380 --> 00:21:13,060
ุฅุฐุง ูˆุตู„ู†ุง ุฅู„ู‰ ุชู†ุงู‚ุถุŒ ูˆุจุงู„ุชุงู„ูŠ ู‡ุฐุง ุจูƒู…ู„ ุงู„ุจุฑู‡ุงู†ุฉุŒ ุฅุฐุง
206
00:21:13,060 --> 00:21:16,980
ุงู„ูุฑุถ ุชุจุนู†ุง ุงู„ุชู†ุงู‚ุถ ู‡ุฐุงุŒ ุชู‚ูˆู„ ุฅู† ุงู„ assumption
207
00:21:16,980 --> 00:21:24,720
ุชุจุนู†ุง ู‡ุฐุงุŒ ุฅู† ุงู„ูƒู„ุงู… ู‡ุฐุง ุตุญ ูƒุงู† ุฎุทุฑุŒ ุฅุฐุง ุงู„ุตุญ ู†ููŠู‡
208
00:21:24,720 --> 00:21:29,480
ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ุทู„ูˆุจุŒ okayุŒ ุชู…ุงู…ุŒ ุฅุฐุง ู‡ุฐู‡ ุงู„ Archimedean
209
00:21:29,480 --> 00:21:35,460
property ู‡ุฐู‡ุŒ ุงู„ Archimedean propertyุŒ ุงู„ุขู† ุงู„
210
00:21:35,460 --> 00:21:39,580
Archimedean property ู‡ุฐู‡ ุฃูˆ ุฎุงุตูŠุฉ Archimedes ุฅู„ู‡ุง
211
00:21:39,580 --> 00:21:45,520
ุตูˆุฑ ุฃุฎุฑู‰ ู…ุชุนุฏุฏุฉุŒ ูˆู‡ุฐู‡ ุงู„ุตูˆุฑ ู‡ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ูƒูˆุฑูŠู„ุฑูŠ
212
00:21:45,520 --> 00:21:50,700
ูˆุงุญุฏ ุณุชุฉ ุนุดุฑุŒ ุฅุฐุง
213
00:21:50,700 --> 00:21:58,060
ุงู„ู†ุชูŠุฌุฉ ู‡ุฐู‡ ููŠ ุฃู† ุตูˆุฑ ุฃุฎุฑู‰ ู„ู€ ุงู„ Archimedean
214
00:21:58,060 --> 00:22:06,500
property ู
215
00:22:07,840 --> 00:22:11,520
Alternative forms ูŠุนู†ูŠ ุตูˆุฑ ุฃุฎุฑู‰ ู„ู€ Archimedean
216
00:22:11,520 --> 00:22:16,520
propertyุŒ let YUZ be positive real numbersุŒ ุฅุฐู†
217
00:22:16,520 --> 00:22:19,760
YUZ ุชู†ุชู…ูŠ ู„ู…ุฌู…ูˆุนุฉ ุงู„ุฃุนุฏุงุฏ ุงู„ุญู‚ูŠู‚ูŠุฉ ุงู„ู…ูˆุฌุจุฉ
218
00:22:22,550 --> 00:22:28,990
ุฃูˆู„ ู†ุชูŠุฌุฉุŒ ูŠูˆุฌุฏ n ุนุฏุฏ ุทุจูŠุนูŠ ุจุญูŠุซ ุฃู† ุงู„ู€ z ุฃุตุบุฑ ู…ู† n
219
00:22:28,990 --> 00:22:35,410
ู…ุถุฑูˆุจ ููŠ yุŒ ุฅุฐุง ู„ูˆ ุนู†ุฏูŠ ุนุฏุฏูŠู† ุญู‚ูŠู‚ูŠู† ู…ูˆุฌุจูŠู† z ูˆy
220
00:22:35,410 --> 00:22:39,790
ุจู‚ุฏุฑ ุฃู„ุงู‚ูŠ ุนุฏุฏ ุทุจูŠุนูŠ ุจุญูŠุซ ุฃู† ุงู„ z ุฃุตุบุฑ ู…ู† n ู…ุถุฑูˆุจ
221
00:22:39,790 --> 00:22:49,740
ููŠ yุŒ ูƒุฐู„ูƒ ู„ุฃูŠ ุนุฏุฏ ุญู‚ูŠู‚ูŠ ู…ูˆุฌุจ y ุจู‚ุฏุฑ ุฃู„ุงู‚ูŠ ุนุฏุฏ ุทุจูŠุนูŠ
222
00:22:49,740 --> 00:22:54,740
ู…ู‚ู„ูˆุจู‡ ุฃุตุบุฑ ู…ู† ุงู„ุนุฏุฏ ุงู„ู…ูˆุฌุจ YุŒ ุทุจุนุง ู…ู‚ู„ูˆุจ ุงู„ุนุฏุฏ
223
00:22:54,740 --> 00:22:59,220
ุงู„ุทุจูŠุนูŠ ุฏุงุฆู…ุง ู…ูˆุฌุจุŒ ูƒุฐู„ูƒ
224
00:22:59,220 --> 00:23:04,820
ู„ุฃูŠ ุนุฏุฏ ุญู‚ูŠู‚ูŠ ู…ูˆุฌุจ Z ุจู‚ุฏุฑ ุฃู„ุงู‚ูŠ ุนุฏุฏ ุทุจูŠุนูŠ ุจุญูŠุซ ุฃู†
225
00:23:04,820 --> 00:23:09,920
ุงู„ุนุฏุฏ ุงู„ู…ูˆุฌุจ Z ุฃูƒุจุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ N ุณุงู„ุจ ูˆุงุญุฏ ูˆุฃุตุบุฑ
226
00:23:09,920 --> 00:23:16,770
ู…ู† NุŒ ุฅุฐู† ุงู„ุชู„ุงุช ุฎูˆุงุต ู‡ุฏูˆู„ุฉ ูƒู„ ูˆุงุญุฏุฉ ู…ู†ู‡ู… ุจู†ุณู…ูŠู‡ุง
227
00:23:16,770 --> 00:23:20,730
Archimedean property ุฃูˆ ุตูˆุฑุฉ ุฃุฎุฑู‰ ู…ู† ุงู„
228
00:23:20,730 --> 00:23:25,590
Archimedean propertyุŒ ุงู„ุฌุฒุก
229
00:23:25,590 --> 00:23:30,250
ุงู„ุฃุฎูŠุฑ ู‡ุฐุง ู‡ูˆ ุนุจุงุฑุฉ ุนู† ู…ุซุงู„ ูˆู„ูŠุณ ุงู„ Archimedean
230
00:23:30,250 --> 00:23:37,810
ูŠุนู†ูŠ ู‡ุฐุง ุงุณุชุซู†ุงุกุŒ ูŠุนู†ูŠ ู…ุฌุฑุฏ set ุจุงู„ุณุงูˆูŠ ุงู„ sequence
231
00:23:37,810 --> 00:23:44,140
ูˆุงุญุฏ ุนู„ู‰ nุŒ ู…ุชุชุงู„ูŠุฉ ุงู„ุนุฏุงุฏ ุงู„ุญู‚ูŠู‚ูŠุฉ 1 ุนู„ู‰ N ุญูŠุซ N
232
00:23:44,140 --> 00:23:49,540
ุนุฏุฏ ุทุจูŠุนูŠุŒ ูุงู„ set ู‡ุฐู‡ ู‡ู†ุซุจุช ุฃู† ุงู„ infimum ุฅู„ู‡ุง ู‡ูˆ
233
00:23:49,540 --> 00:23:59,860
ุงู„ุตูุฑุŒ ุทูŠุจ ุฅุฐุง ู†ุดูˆู ูˆู†ุซุจุช ุงู„ุนุฒุงุก ุงู„ุฃูˆู„ู‰ุŒ ุงู„ุฌุฒุก
234
00:23:59,860 --> 00:24:00,780
ุงู„ุฃูˆู„
235
00:24:06,710 --> 00:24:15,270
ุงู„ุฌุฒุก A ู„ุฅุซุจุงุช ุงู„ุฌุฒุก A ุฎู„ู‘ูŠู†ุง ู†ุนุฑู X ุจุณุงูˆูŠ Z ุนู„ู‰ Y
236
00:24:15,270 --> 00:24:19,930
ุทุจุนุง Z ูˆY ุฃุนุฏุงุฏ ุญู‚ูŠู‚ูŠุฉ ู…ูˆุฌุจุฉุŒ ุฅุฐู† ุฎุงุฑุฌ ู‚ุณู…ุชู‡ู… ุฃุนุฏุงุฏ
237
00:24:19,930 --> 00:24:26,090
ู…ูˆุฌุจุŒ ุฅุฐู† ู‡ุฐุง ุนุจุงุฑุฉ ุนู† ุนุฏุฏ ุญู‚ูŠู‚ูŠ ู…ูˆุฌุจุŒ ูŠุนู†ูŠ ุงู„ X ู‡ุฐุง
238
00:24:26,090 --> 00:24:33,170
ุนุจุงุฑุฉ ุนู† real number ูˆู…ูˆุฌุจุŒ ูุญุณุจ ุงู„ Archimedean
239
00:24:33,170 --> 00:24:42,860
propertyุŒ ู„ุฃูŠ x ุนุฏุฏ ุญู‚ูŠู‚ูŠ ูŠูˆุฌุฏ ุนุฏุฏ ุทุจูŠุนูŠ ุฃูƒุจุฑ ู…ู† ุงู„ู€
240
00:24:42,860 --> 00:24:48,000
xุŒ ุฅุฐุง ุงู„ู€ x ุงู„ู„ูŠ ุฃู†ุง ุฃุฎุฏู‡ Z ุนู„ู‰ y ุจู‚ุฏุฑ ุฃู„ุงู‚ูŠ ุนุฏุฏ
241
00:24:48,000 --> 00:24:53,440
ุทุจูŠุนูŠ n ุฃูƒุจุฑ ู…ู†ู‡ุŒ ูŠุนู†ูŠ Z ุนู„ู‰ y ุฃุตุบุฑ ู…ู† nุŒ ู„ูˆ ุถุฑุจุช
242
00:24:53,440 --> 00:25:01,550
ุงู„ู…ุชุจุงูŠู†ุฉ ู‡ุฐู‡ ููŠ yุŒ y ุนุฏุฏ ู…ูˆุฌุจุŒ ูู‡ูŠุตูŠุฑ ุนู†ุฏูŠ Z ุฃุตุบุฑ ู…ู†
243
00:25:01,550 --> 00:25:08,110
n ููŠ yุŒ ูˆู‡ุฐู‡ ู‡ูŠ ุงู„ู†ุชูŠุฌุฉ ุชุจุน ุงู„ุฌุฒุก ุงู„ุฃูˆู„ุŒ okayุŒ ุฅุฐุง
244
00:25:08,110 --> 00:25:13,270
ู‡ูŠูƒ ูŠูƒูˆู† ุฃุซุจุชู†ุง ุงู„ุฌุฒุก ุงู„ุฃูˆู„ุŒ ูˆุงุถุญุŸ ู„ุฅุซุจุงุช ุงู„ุฌุฒุก
245
00:25:13,270 --> 00:25:19,410
ุงู„ุซุงู†ูŠุŒ ู„ูˆ ุฃุฎุฏู†ุง ููŠ ุงู„ุฌุฒุก ุงู„ุฃูˆู„ ู„ูˆ ุฃุฎุฏุช Z ุจุณุงูˆูŠ
246
00:25:19,410 --> 00:25:30,500
ูˆุงุญุฏุŒ ูู‡ูŠุตูŠุฑ ุนู†ุฏูŠ 1 ุฃุตุบุฑ ู…ู† n ููŠ yุŒ ุงู„ Z ู‡ุฐุง ุนุฏุฏ
247
00:25:30,500 --> 00:25:35,780
ู…ูˆุฌุจุŒ ูู„ูˆ ุฃุฎุฏ ุงู„ Z ุจุงู„ุณุงูˆูŠุฉ ูˆุงุญุฏุŒ ู‡ุฐุง ุนุฏุฏ ู…ูˆุฌุจุŒ ูุญุณุจ
248
00:25:35,780 --> 00:25:41,420
ุงู„ู†ุชูŠุฌุฉ a ุจูŠุทู„ุน ุนู†ุฏูŠ Z ุฃุตุบุฑ ู…ู† nุŒ ูŠูˆุฌุฏ ุนุฏุฏ ุทุจูŠุนูŠ n
249
00:25:41,420 --> 00:25:48,080
ุจุญูŠุซ ุฃู† Z ุฃุตุบุฑ ู…ู† nyุŒ ูŠุนู†ูŠ 1 ุฃุตุบุฑ ู…ู† nyุŒ ุงู„ุขู† ู†ุถุฑุจ
250
00:25:48,080 --> 00:25:53,910
ููŠ 1 ุนู„ู‰ nุŒ 1 ุนู„ู‰ n ุนุฏุฏ ู…ูˆุฌุจุŒ ู„ูˆ ุถุฑุจู†ุง ุงู„ุทุฑููŠู† ุจุงู„ุนุฏุฏ
251
00:25:53,910 --> 00:25:57,850
ุงู„ู…ูˆุฌุจ ุจูˆุงุญุฏ ุนู„ูŠู†ุง ุจูŠุทู„ุน 1 ุนู„ูŠู†ุง ุฃุตุบุฑ ู…ู† YุŒ ูˆู‡ุฐุง
252
00:25:57,850 --> 00:26:01,330
ุงู„ู„ูŠ ุงุญู†ุง ุนุงูŠุฒูŠู†ู‡ุŒ ุชู…ุงู…ุŒ ุฅู† ู‡ุฐุง ุจุฑู‡ุงู† ุงู„ุฌุฒุก ุงู„ุซุงู†ูŠ
253
00:26:01,330 --> 00:26:14,310
ู„ุจุฑู‡ุงู† ุงู„ุฌุฒุก ุงู„ุซุงู„ุซุŒ ุงู„ุฌุฒุก
254
00:26:14,310 --> 00:26:14,730
C
255
00:26:18,400 --> 00:26:23,700
ุจู†ุซุจุช ุฃู†ู‡ ู„ุฃูŠ ุนุฏุฏ ุญู‚ูŠู‚ูŠ ู…ูˆุฌุจ Z ููŠู‡ ุนุฏุฏ ุทุจูŠุนูŠ ุจุญูŠุซ
256
00:26:23,700 --> 00:26:30,940
ุฃู† Z ู…ุญุตูˆุฑุฉ ุจูŠู† N ุณุงู„ุจ ูˆุงุญุฏ ูˆ M ุชู…ุงู…ุŒ ู†ุนุฑู ุงู„ุณุช EZ
257
00:26:30,940 --> 00:26:36,380
ุนู„ู‰ ุฅู†ู‡ุง ูƒู„ ุงู„ุฃุนุฏุงุฏ ุงู„ุทุจูŠุนูŠุฉ M ุงู„ู„ูŠ ุจุชูƒูˆู† ุฃูƒุจุฑ ู…ู†
258
00:26:36,380 --> 00:26:46,880
ZุŒ ุงู„ุขู† ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ ุบูŠุฑ ุฎุงู„ูŠุฉุŒ ู„ุฃู†ู‡
259
00:26:51,070 --> 00:26:57,610
ู„ุฃู† ุงู„ู€ Z ู‡ุฐุง ุนุฏุฏ ู…ูˆุฌุจุŒ ูˆุจุงู„ุชุงู„ูŠ ููŠ ุงู„ุขุฎุฑ ู‡ูˆ ุนุฏุฏ
260
00:26:57,610 --> 00:27:01,950
ุญู‚ูŠู‚ูŠุŒ ู by Archimedean property
261
00:27:10,880 --> 00:27:17,220
ุงู„ู„ูŠ ู‡ูŠ 115 ุฑู‚ู…ู‡ุงุŒ ู†ุธุฑูŠุฉ 115 ุจุชู‚ูˆู„ ุฃูŠ ุนุฏุฏ ุญู‚ูŠู‚ูŠ z
262
00:27:17,220 --> 00:27:26,880
ูŠูˆุฌุฏ ุนุฏุฏ .. ูŠูˆุฌุฏ ุนุฏุฏ ุทุจูŠุนูŠุŒ ูŠูˆุฌุฏ m ููŠ n ุจุญูŠุซ ุฃู† z
263
00:27:26,880 --> 00:27:32,820
ุฃุตุบุฑ ู…ู† nุŒ ุฅุฐุง
264
00:27:32,820 --> 00:27:42,120
ุงู„ู…ุฌู…ูˆุนุฉ ู‡ุฐู‡ ุนู„ู‰ ุงู„ุฃู‚ู„ ููŠู‡ุง ุนู†ุตุฑ ูˆุงุญุฏ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€
265
00:27:42,120 --> 00:27:49,100
M ู‡ุฐุงุŒ ุฃูˆ ุฎู„ูŠู†ูŠ ุงุณู…ูŠู‡ MZ ุชู…ุงู…
266
00:27:49,100 --> 00:27:58,000
ุงู„ู€ Archimedean property ุชุถู…ู† ุฃู†ู‡ ู„ู„ุนุฏุฏ Z ู‡ุฐุง ุงู„ู„ูŠ
267
00:27:58,000 --> 00:28:05,100
ู‡ูˆ ูŠุนู†ูŠ ุงุญู†ุง ูุฑุถูŠู† ุฃู† ุงู„ุนุฏุฏ ู…ูˆุฌุจุŒ ุงู„ู€ set ู‡ุฐู‡ ุจู‚ุฏุฑ
268
00:28:05,100 --> 00:28:10,460
ุฃู„ุงู‚ูŠ ุนุฏุฏ ุทุจูŠุนูŠ MZ ุฃูƒุจุฑ ู…ู† ZุŒ ูˆุจุงู„ุชุงู„ูŠ ุงู„ู…ุฌู…ูˆุนุฉ ู‡ุฐู‡
269
00:28:10,460 --> 00:28:15,580
ุชุญุชูˆูŠ ุชุญุชูˆูŠ ุนู„ู‰ ุงู„ุนู†ุตุฑ ู‡ุฐุง ุนู„ู‰ ุงู„ุฃู‚ู„ุŒ ู„ุฃู† ู‡ุฐู‡
270
00:28:15,580 --> 00:28:22,720
ู…ุฌู…ูˆุนุฉ ุบูŠุฑ ุฎุงู„ูŠุฉุŒ ูˆุงุถุญุฉ ุงู„ู†ู‚ุทุฉ ู‡ุฐู‡ุŸ ุงู„ุขู† ููŠ ุฎุงุตูŠุฉ
271
00:28:22,720 --> 00:28:29,920
ุงู„ุชุฑุชูŠุจ ุฃูˆ ุจู†ุณู…ูŠู‡ุง ุงู„ well ordering propertyุŒ ูˆู‡ุฐู‡
272
00:28:29,920 --> 00:28:34,400
ููŠ ุงู„ุญู‚ูŠู‚ุฉ ุจุชุฏุฑุณู‡ุง ููŠ ู†ู‡ุงูŠุฉ ููŠ ุขุฎุฑ chapter ููŠ
273
00:28:34,400 --> 00:28:40,640
ู…ุจุงุฏุฆ ุฑูŠุงุถูŠุงุชุŒ ุงู„ well ordering property ุจุชู‚ูˆู„ ุฅู†
274
00:28:40,640 --> 00:28:46,240
every non-empty subset of N has a least element
275
00:28:46,240 --> 00:28:51,020
ูŠุนู†ูŠ ุฃูŠ ู…ุฌู…ูˆุนุฉ ุบูŠุฑ ุฎุงู„ูŠุฉ ู…ู† ู…ุฌู…ูˆุนุฉ ุงู„ุฃุนุฏุงุฏ
276
00:28:51,020 --> 00:28:55,880
ุงู„ุทุจูŠุนูŠุฉ ู„ุงุฒู… ุงู„ู„ูŠ ุฌูŠ ู„ู‡ุง least elementุŒ ู„ุงุฒู… ูŠูƒูˆู†
277
00:28:55,880 --> 00:29:00,520
ู„ู‡ุง ุฃุตุบุฑ ุนู†ุตุฑุŒ ูŠุนู†ูŠ ุฎุฏูŠ ุฃู†ุช ุนู„ู‰ ุงู„ุฌุฑุจุฉ ุญุชู‰ ุฎุฏูŠ ุฃูŠ
278
00:29:00,520 --> 00:29:04,060
ู…ุฌู…ูˆุนุฉ ุฌุฒุฆูŠุฉ ู…ู† ุงู„ุนุฏุงู„ุฉ ุงู„ุทุจูŠุนูŠุฉ ู‡ุชุฌุฏ ุฃู† ููŠู‡ุง ุนู†ุตุฑ
279
00:29:04,060 --> 00:29:08,620
ููŠู‡ุง ู‡ูˆ ุฃุตุบุฑ ุนู†ุตุฑุŒ ูู‡ุฐุง ุทุจุนุง ุญุณุจ ุงู„ well ordering
280
00:29:08,620 --> 00:29:12,880
propertyุŒ ูŠุนู†ูŠ ุฏุฑุณ ุงู„ู…ุจุงุฏุฆุŒ ูˆุฃู†ุง ุดุฎุตูŠุง ู„ู…ุง ุจุฏุฑุณ
281
00:29:12,880 --> 00:29:16,400
ู…ุจุงุฏุฆ ุจุญุงูˆู„ ูŠุนู†ูŠ ุฃู…ุฑ ุนู„ูŠู‡ุง ุฃูˆ ุฃุนุทูŠู‡ุง ุญุชู‰ ู„ูˆ ูŠุนู†ูŠ
282
00:29:16,400 --> 00:29:21,620
ุจุตูˆุฑุฉ ู…ุฎุชุตุฑุฉ ุจู‚ุฑุงุจุด ุงู„ู†ุงุณ ุงู„ุซุงู†ูŠุฉ ู„ู…ุง ุจุฏุฑุณูˆุง
283
00:29:21,620 --> 00:29:25,340
ุงู„ู…ุจุงุฏุฆ ุจุนุชู‚ุฏ ู…ู…ูƒู† ู…ุง ูˆุตู„ูˆุด ุฅู„ูŠู‡ุง ู„ูƒู† ู…ุด ู…ุดูƒู„ุฉ ู‡ุงูŠ
284
00:29:25,340 --> 00:29:26,400
ู†ุญู† ุจู†ุญูƒูŠู„ูƒู… ุนู†ู‡ุง
285
00:29:29,700 --> 00:29:35,480
ุฅุฐุง ู‡ูŠ ุนู†ุฏูŠ ู‡ุฐู‡ ุนุจุงุฑุฉ ุนู† subset ู…ู† ู…ุฌู…ูˆุนุฉ ุงู„ุฃุนุฏุงุฏ
286
00:29:35,480 --> 00:29:40,060
ุงู„ุทุจูŠุนูŠุฉ ูˆ non-empty ุฅุฐุง ู„ุงุฒู… ูŠูƒูˆู† ููŠู‡ุง least
287
00:29:40,060 --> 00:29:45,640
element ุฅุฐุง ุจู‚ุฏุฑ ุฃู„ุงู‚ูŠ NZ ููŠ ู…ุฌู…ูˆุนุฉ ุงู„ุฃุนุฏุงุฏ
288
00:29:45,640 --> 00:29:49,300
ุงู„ุทุจูŠุนูŠุฉ ูˆ ู‡ุฐุง ุงู„ NZ ู‡ูˆ least element ู„ู„ set ู‡ุฐู‡
289
00:29:49,300 --> 00:29:56,530
ุงู„ุบูŠุฑ ุฎุงู„ูŠุฉ okay ุชู…ุงู… ุฅุฐุง ู‡ู†ุง ูŠูˆุฌุฏ ุนู†ุตุฑ nz ุนุฏุฏ
290
00:29:56,530 --> 00:30:02,390
ุทุจูŠุนูŠ ูˆู‡ุฐุง ุงู„ุนุฏุฏ ุงู„ุทุจูŠุนูŠ ู‡ูˆ ุงู„ least element ู„
291
00:30:02,390 --> 00:30:09,530
easy ุทูŠุจ
292
00:30:09,530 --> 00:30:17,350
ุงู„ุขู† ู‡ุฐุง ุฃุตุบุฑ ุนู†ุตุฑ ููŠ ุงู„ set ู‡ุฐู‡ ูŠุนู†ูŠ ู…ุนู†ุงู‡ nz ู„ูˆ
293
00:30:17,350 --> 00:30:25,080
ุทุฑุญุช ู…ู† nz ุทุฑุญุช ู…ู†ู‡ุง ูˆุงุญุฏ ูุทุจุนุง ู‡ุฐุง ุฃุตุบุฑ ู…ู† NZ ู‡ุฐุง
294
00:30:25,080 --> 00:30:34,920
ุฃุตุบุฑ ู…ู† NZ ุตุญุŸ ู…ุธุจูˆุทุŸ ูˆู‡ุฐุง ุฃุตุบุฑ ุนู†ุตุฑ ู„ู„ set easy
295
00:30:34,920 --> 00:30:41,700
ู‡ุฐุง ุฃุตุบุฑ ุนู†ุตุฑ ูˆู‡ุฐุง ุฃุตุบุฑ ู…ู†ู‡ ุฅุฐุง ู‡ุฐุง ุงู„ุนู†ุตุฑ ู…ุด
296
00:30:41,700 --> 00:30:49,690
ู…ู…ูƒู† ูŠูƒูˆู† ู…ูˆุฌูˆุฏ ุจุงู„ set easy ุตุญุŸ ู„ุฃู† ู‡ุฐุง ุฃุตุบุฑ ู…ู†
297
00:30:49,690 --> 00:30:53,370
ุฃุตุบุฑ
298
00:30:53,370 --> 00:30:59,410
ุนู†ุตุฑ ููŠ ุงู„ set ุทูŠุจุŒ
299
00:30:59,410 --> 00:31:04,290
ู…ุนู†ุงู‡ ุฃู† ู‡ุฐุง nz ุณุงู„ุจ ูˆุงุญุฏ ู…ุง ู‡ูˆุด ููŠ ez
300
00:31:09,210 --> 00:31:13,650
ูŠุนู†ูŠ ู‡ุฐุง ุงู„ุนู†ุตุฑ ู…ุด ู…ูˆุฌูˆุฏ ููŠ set ez ู‡ุฐุง ู‡ูŠ
301
00:31:13,650 --> 00:31:21,730
ู…ุนู†ุงุชู‡ ุจูŠุญู‚ู‚ุด ุงู„ุตูุฉ ุงู„ู…ู…ูŠุฒุฉ ู„ู„ set ez ู…ุชู‰
302
00:31:21,730 --> 00:31:27,210
ุงู„ุนู†ุตุฑ ุจูŠูƒูˆู† ู…ูˆุฌูˆุฏ ู‡ู†ุง ุฅุฐุง ุจูŠุญู‚ู‚ ุงู„ุตูุฉ ู‡ุฐู‡ ุฃูˆ
303
00:31:27,210 --> 00:31:30,390
ุงู„ู…ุชุจุงูŠู†ุฉ ู‡ุฐู‡ ุทุจ ุฅุฐุง ูƒุงู† ุงู„ุนู†ุตุฑ ู„ุง ูŠู†ุชู…ูŠ ู„ู„ set
304
00:31:30,390 --> 00:31:36,240
ู…ุนู†ุงุชู‡ ุจูŠุญู‚ู‚ุด ุงู„ู…ุชุจุงูŠู†ุฉ ุฏูŠ ุจูŠุญู‚ู‚ ู…ุง ููŠู‡ุง ุฅุฐุง ู‡ูŠ ุจูŠุญู‚ู‚
305
00:31:36,240 --> 00:31:43,740
ู…ุง ููŠู‡ุง ู‡ุงูŠ nz-1 ุจุฏู„ ู…ุง ูŠูƒูˆู† ุฃูƒุจุฑ ุจูŠุตูŠุฑ ุฃุตุบุฑ ู…ู† ุฃูˆ
306
00:31:43,740 --> 00:31:47,900
ูŠุณุงูˆูŠ ุงู„ z ุฅุฐุง ูƒูˆู† ุงู„ุนู†ุตุฑ ู‡ุฐุง ู…ุด ู…ูˆุฌูˆุฏ ููŠ ez
307
00:31:47,900 --> 00:31:56,560
ู…ุนู†ุงุชู‡ ุจูŠุทู„ุน ุฃุตุบุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ ุงู„ z ูˆุงู„ z ู‡ูˆ ุฃุตุบุฑ
308
00:31:56,560 --> 00:31:59,440
ุนู†ุตุฑ ู„ู„ set ez
309
00:32:06,800 --> 00:32:16,820
ู ุงู„ z ุฃุตุบุฑ ู…ู† n ุงุญู†ุง ู‚ู„ู†ุง ุฃู†ู‡ ุงู„ ..
310
00:32:16,820 --> 00:32:18,760
ุฃูˆ ุฃุตุบุฑ ู…ู† ุงู„ nz
311
00:32:44,130 --> 00:32:50,890
ุงู„ุขู† ุฒูŠ ู‡ุฐุง ุนู†ุตุฑ ูŠุนู†ูŠ
312
00:32:50,890 --> 00:32:57,270
ู‡ุฐุง ุจูŠู†ุชู…ูŠ ุฅู„ู‰ ุงู„ set ez ู„ุฃู†ู‡ ุฃุตุบุฑ ุนู†ุตุฑ ููŠู‡ุง
313
00:32:57,270 --> 00:33:06,070
ููŠู†ุชู…ูŠ ุฅู„ูŠู‡ุง ูุฅู† ุฒูŠ ูŠู†ุชู…ูŠ ู„ ez ู…ุนู†ุงุชู‡ ุงู„ุนู†ุตุฑ ุฒูŠ
314
00:33:06,070 --> 00:33:11,050
ู‡ุฐุง ุฃูƒุจุฑ ู…ู† ุงู„ z ุงู„ุนู†ุตุฑ ุฒูŠ ุฃูƒุจุฑ ู…ู† ุงู„ z ูˆู…ู† ู‡ู†ุง ุฃู†
315
00:33:11,050 --> 00:33:17,910
ุฒูŠ ุณุงู„ุจ ูˆุงุญุฏ ู…ุด ู…ูˆุฌูˆุฏ ููŠ ez ูู‡ูˆ ุฃุตุบุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ
316
00:33:17,910 --> 00:33:24,290
ุงู„ z ูˆุจุงู„ุชุงู„ูŠ ู‡ูŠูƒ ุจู†ูƒูˆู† ุฃุซุจุชู†ุง ุงู„ู…ุชุจุงูŠู†ุฉ ู‡ุฐู‡ ุงู„ู„ูŠ
317
00:33:24,290 --> 00:33:29,090
ู‡ูˆ ุงู„ู„ูŠ ุงุญู†ุง ุนุงูŠุฒูŠู†ู‡ ููŠ ุงู„ุฌุฒุก c ู„ุฃู† ู‡ูŠูƒ ุจู†ูƒูˆู†
318
00:33:29,090 --> 00:33:34,420
ูƒู…ู„ู†ุง ุจุฑู‡ุงู† ุงู„ุฌุฒุก c ุงู„ุฃู‚ู„ ุจุงู„ู†ุณุจุฉ ู„ู„ุฌุฒุก ุงู„ุฃุฎูŠุฑ ู‡ุฐุง
319
00:33:34,420 --> 00:33:42,460
ูŠุนู†ูŠ ุนุจุงุฑุฉ ุนู† ู„ูŠุณ ู…ุด alternative form ู„ู„
320
00:33:42,460 --> 00:33:46,180
Archimedean property ู„ูŠุณ ุตูˆุฑุฉ ุฃุฎุฑู‰ ู„ุฎุงุตูŠุฉ
321
00:33:46,180 --> 00:33:51,500
Archimedean ุจุณ ู…ุฌุฑุฏ ู…ุซุงู„ุŒ ู…ุฌุฑุฏ ู…ุซุงู„ ุฃุนุทู‰ ุณุช ูˆุงู„ุณุช
322
00:33:51,500 --> 00:33:56,290
ู‡ุฐู‡ bounded bounded above by one bounded below by
323
00:33:56,290 --> 00:34:02,570
zero ู„ุจุฑู‡ุงู†
324
00:34:02,570 --> 00:34:12,350
ุฐู„ูƒ ุงู„ุจุฑู‡ุงู† ุณู‡ู„ ู†ุดูˆู
325
00:34:12,350 --> 00:34:12,950
ุงู„ุจุฑู‡ุงู†
326
00:34:29,410 --> 00:34:34,370
ูƒู…ุงู† ู…ุฑุฉ ุงู„ set ู‡ุฐู‡ ู‡ูŠ ุนุจุงุฑุฉ ุนู† .. ู†ูƒุชุจู‡ุง ุฅูŠุด ู‡ูŠ
327
00:34:34,370 --> 00:34:37,710
ุงู„
328
00:34:37,710 --> 00:34:44,490
set is ุนุจุงุฑุฉ ุนู† ุงู„ set of all ูˆุงุญุฏ ุนู„ู‰ n ุญูŠุซ n is
329
00:34:44,490 --> 00:34:45,650
natural number
330
00:34:51,720 --> 00:34:59,580
ูˆุงุถุญ ุฃู† ุงู„ุนู†ุตุฑ ุฃุตุบุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ ูˆุงุญุฏ ุนู„ู‰ n ู„ูƒู„ n
331
00:34:59,580 --> 00:35:11,180
ูŠู†ุชู…ูŠ ุฅู„ู‰ n ุตุญุŸ ูˆุจุงู„ุชุงู„ูŠ ุฅุฐุง zero is lower lower
332
00:35:11,180 --> 00:35:22,090
bound ู„ู…ูŠู† of set s ูˆุจุงู„ุชุงู„ูŠ ุงู„ infimum ุฅุฐุง it has
333
00:35:22,090 --> 00:35:25,890
an infimum by the infimum property ุงู„ infimum
334
00:35:25,890 --> 00:35:30,630
property ุจุชู‚ูˆู„ ูƒู„ set bounded below ุจูŠูƒูˆู† ุงู„ ููŠ
335
00:35:30,630 --> 00:35:37,070
ุฅู„ู‡ุง infimum say w ุจูŠุณุงูˆูŠ infimum s ุฅุฐุง ู‡ู†ุง say
336
00:35:37,070 --> 00:35:41,290
ุฏุนู†ุง ู†ุณู…ูŠ ุงู„ infimum ู‡ุฐุง ุงู„ู„ูŠ ุฅุญู†ุง ุถู…ู†ูŠู† ูˆุฌูˆุฏู‡
337
00:35:41,290 --> 00:35:48,760
ุจุงุณุชุฎุฏุงู… ุงู„ infimum property ุฏุนู†ุง ู†ุณู…ูŠู‡ w ุชู…ุงู…ุŸ ุฅุฐุง
338
00:35:48,760 --> 00:35:55,540
ุงู„ู€ ุงู„ w ู‡ุฐุง ู‡ูˆ ุฃูƒุจุฑ ู‡ูˆ ุฃูƒุจุฑ lower bound ู„ุณุช
339
00:35:55,540 --> 00:36:02,640
s ูˆุงู„ุนู†ุตุฑ lower bound ุฅุฐุง ุฃูƒูŠุฏ ุงู„ w ุฃูƒุจุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ
340
00:36:02,640 --> 00:36:09,100
ูˆุงู„ุนู†ุตุฑ ุตุญุŸ ุงู„ุนู†ุตุฑ ู‚ู„ู†ุง ู‡ุฐู‡ lower bound ู„ุณุช ูˆ ุงู„ w
341
00:36:09,100 --> 00:36:11,960
ู‡ูˆ ุงู„ infimum ุงู„ู„ูŠ ู‡ูˆ ุฃูƒุจุฑ lower bound ุฅุฐุง ุงู„ w
342
00:36:11,960 --> 00:36:16,830
ุฃูƒุจุฑ ู…ู† ุฃูˆ ุฃูƒุจุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ ุงู„ุนู†ุตุฑ ุทุจ ุงุญู†ุง ุนุงูŠุฒูŠู†
343
00:36:16,830 --> 00:36:22,630
ู†ุซุจุช ุงุญู†ุง ุนุงูŠุฒูŠู† ููŠ ุงู„ู†ู‡ุงูŠุฉ ู†ุซุจุช ุฃู† ุงู„ w ู‡ุฐุง
344
00:36:22,630 --> 00:36:27,490
ุงู„ู„ูŠ ู‡ูˆ ุงู„ infimum ุจูŠุณุงูˆูŠ ุงู„ุนู†ุตุฑ ู‡ุฐุง ุงู„ู„ูŠ ุนุงูŠุฒูŠู†
345
00:36:27,490 --> 00:36:33,570
ู†ุซุจุชู‡ ุฃู†ุง ุนู†ุฏูŠ w ุฃูƒุจุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ ุงู„ุนู†ุตุฑ ู„ูƒู† ุฃู†ุง ุจุฏูŠ
346
00:36:33,570 --> 00:36:39,750
ุฃุซุจุช ุฃู† ุงู„ w ุจูŠุณุงูˆูŠ ุงู„ุนู†ุตุฑุŒ ุชู…ุงู…ุŸ
347
00:36:39,750 --> 00:36:41,510
ูู„ุฅุซุจุงุช ุฐู„ูƒ
348
00:36:47,400 --> 00:36:54,780
ุฎู„ู‘ูŠู†ุง ู†ุงุฎุฏ ุฃูŠ ุฅุจุณู„ูˆู† ุฃูƒุจุฑ ู…ู† ุงู„ุนู†ุตุฑ ูุญุณุจ
349
00:36:54,780 --> 00:36:59,600
ุงู„ Archimedean property ุงู„ู„ูŠ ู‡ูˆ ุงู„ุฌุฒุก ุจ ุงู„ู…ูƒุงูุฆ
350
00:36:59,600 --> 00:37:04,640
Archimedean property ู„ุฃูŠ ุนุฏุฏ ู…ูˆุฌุจ ุฅุจุณู„ูˆู† ุจู‚ุฏุฑ
351
00:37:04,640 --> 00:37:08,880
ุฃู„ุงู‚ูŠ ุนุฏุฏ ุทุจูŠุนูŠ ู…ู‚ู„ูˆุจู‡ ูˆุฃุตุบุฑ ู…ู† ุฅุจุณู„ูˆู†ุŒ ุตุญุŸ ู‡ุฐุง
352
00:37:08,880 --> 00:37:12,000
ุงู„ุฌุฒุก ุจ ู…ู† ุงู„ู†ุชูŠุฌุฉ
353
00:37:14,540 --> 00:37:18,960
ุฅู† ุฃู†ุง ููŠ ุนู†ุฏูŠ ู‡ูŠ 1 ุนู„ู‰ n ุฃุตุบุฑ ู…ู† epsilon ูŠูˆุฌุฏ
354
00:37:18,960 --> 00:37:24,760
n ู‡ุฐุง ุงู„ุทุจูŠุนูŠ ุจุญูŠุซ 1 ุนู„ู‰ n ุฃุตุบุฑ ู…ู† epsilon ูˆ 1
355
00:37:24,760 --> 00:37:30,700
ุนู„ู‰ n ู‡ุฐู‡ ุนู†ุตุฑ ุงู„ 1 ุนู„ู‰ n ู‡ุฐู‡ ุนุจุงุฑุฉ ุนู† ุนู†ุตุฑ ููŠ ุงู„
356
00:37:30,700 --> 00:37:37,180
set s ูˆ ุงู„ w ู‡ุฐู‡ lower bound ุฅู„ู‡ุง ุงู„ w ู‡ุฐู‡ ู‡ูˆ ุงู„
357
00:37:37,180 --> 00:37:44,890
minimum ู„ู„ set s ูˆ 1 ุนู„ู‰ n ุนู†ุตุฑ ููŠ s ุฅุฐุง ุงู„ w ุจูŠุทู„ุน
358
00:37:44,890 --> 00:37:48,490
ุฃุตุบุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ ุฃูŠ ุนู†ุตุฑ ููŠ ุงู„ set ู„ุฃู†ู‡ lower bound
359
00:37:48,490 --> 00:37:53,830
ุตุญุŸ ูˆู‚ุจู„ ุดูˆูŠุฉ ู‚ู„ู†ุง ุฅู† ุงู„ w ู‡ูŠ u ุจุณ ู†ุชุฌู†ุง ุฅู† ุงู„ w
360
00:37:53,830 --> 00:37:57,990
ุงู„ู„ูŠ ู‡ูˆ ุงู„ infimum ุฃูƒุจุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ ุงู„ุนู†ุตุฑ ุงู„ู„ูŠ ู‡ูˆ
361
00:37:57,990 --> 00:38:02,190
lower bound ูˆู‡ุฐุง ุฃูƒุจุฑ lower bound ุงู„ุขู† ู‡ุฐู‡ ุงู„
362
00:38:02,190 --> 00:38:06,850
epsilon ุนุดูˆุงุฆูŠุฉ ุฅู† ุงู„ูƒู„ุงู… ู‡ุฐุง ุตุญูŠุญ ู„ูƒู„ epsilon
363
00:38:06,850 --> 00:38:13,170
ุฃูƒุจุฑ ู…ู† ุงู„ุนู†ุตุฑ ุฅุฐุง ููŠ ุนู†ุฏูŠ ู†ุธุฑูŠุฉ ูˆุงุญุฏ ุซู…ุงู†ูŠุฉ ุจุชู‚ูˆู„
364
00:38:13,170 --> 00:38:19,630
ู„ูŠู‡ุŸ ูƒุงู†ุช ุจุชู‚ูˆู„ ุฅู† ู„ูˆ ูƒุงู† ุงู„ a ุนุฏุฏ ุบูŠุฑ ุณุงู„ุจ ูˆ ุฃุตุบุฑ
365
00:38:19,630 --> 00:38:24,810
ู…ู† epsilon ู„ูƒู„ epsilon ุฃูƒุจุฑ ู…ู† ุงู„ุนู†ุตุฑ ูู‡ุฐุง ุจูŠู‚ูˆุฏ ุฅู„ู‰ ุฃู†
366
00:38:24,810 --> 00:38:33,630
a ุจูŠุณุงูˆูŠ ุงู„ุนู†ุตุฑุŒ ุตุญุŸ ู‡ุฐู‡ ู†ุธุฑูŠุฉ ูˆุงุญุฏ ุซู…ุงู†ูŠุฉุŒ ุตุญุŸ ู‡ูŠ ุงู„
367
00:38:33,630 --> 00:38:39,230
w ุงู„ุชูŠ ู‡ูŠ ุงู„ a ุฃูƒุจุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ ุงู„ุนู†ุตุฑ ูˆุฃุตุบุฑ ู…ู†
368
00:38:39,230 --> 00:38:44,590
ุฅุจุณู„ูˆู† ู„ูƒู„ ุฅุจุณู„ูˆู† ุนุฏุฏ ู…ูˆุฌุจ ูุญุณุจ ุงู„ู†ุธุฑูŠุฉ ู‡ุฐู‡ ุจูŠุทู„ุน
369
00:38:44,590 --> 00:38:50,590
w ุจูŠุณุงูˆูŠ ุงู„ุนู†ุตุฑ ูˆู‡ุฐุง ุงู„ู„ูŠ ุงุญู†ุง ุนุงูŠุฒูŠู†ู‡ ู†ุซุจุชู‡ุŒ ุชู…ุงู…ุŸ ุฅุฐู†
370
00:38:50,590 --> 00:38:56,050
ู‡ุฐุง ุจูŠุซุจุช ุฃู† ุงู„ infimum ู„ู„ุณุช ุฏูŠ ุฃูˆ ู„ู„ sequence
371
00:38:56,050 --> 00:39:03,650
ูˆุงุญุฏ ุนู„ู‰ n ู‡ูˆ ุงู„ุนู†ุตุฑุŒ ุชู…ุงู…ุŸ ูˆู‡ู†ุง ุงุณุชุฎุฏู…ู†ุง ููŠ ุงู„ุจุฑู‡ุงู†
372
00:39:03,650 --> 00:39:09,010
ุงู„ Archimedean property ุงู„ุตูˆุฑุฉ ุจูŠู‡ ู…ู† ุงู„
373
00:39:09,010 --> 00:39:24,610
Archimedean property ููŠ
374
00:39:24,610 --> 00:39:27,390
ุงู„ู†ุธุฑูŠุฉ ู‡ุฐู‡ ุงุญู†ุง ุฃุซุจุชู†ุง ู‚ุจู„ ู‡ูŠูƒ
375
00:39:32,670 --> 00:39:41,530
ุงุญู†ุง ุฃุซุจุชู†ุง ุณุงุจู‚ุง ููŠ
376
00:39:41,530 --> 00:39:51,490
ุงู„ุณุงุจู‚ ุฃุซุจุชู†ุง ุฃู†ู‡ ููŠ ูƒุงู† ู†ุธุฑูŠุฉ ุฃูˆ ู…ุซุงู„ ุจุชู‚ูˆู„ ุฃู†
377
00:39:51,490 --> 00:39:55,550
ุฌุฐุฑ 2 is not a rational number
378
00:39:58,290 --> 00:40:04,470
ุฃูˆ ุงู„ุนุฏุฏ ุฌุฐุฑ ุงุซู†ูŠู† is irrational ู†ุนู… ู…ุธุจูˆุท ูุทุจุนุง
379
00:40:04,470 --> 00:40:08,730
ููŠ ุงู„ุจุฑู‡ุงู† ู‡ุฐุง ุงุนุชู…ุฏู†ุง ููŠ ุงู„ุจุฑู‡ุงู† ุนู„ู‰ ุฃู† ุฌุฐุฑ
380
00:40:08,730 --> 00:40:12,850
ุงุซู†ูŠู† ู‡ุฐุง ุนุฏุฏ ุญู‚ูŠู‚ูŠ ูŠุนู†ูŠ exist ู‡ูˆ ุฃุญุฏ ุงู„ุนุฏุงุฏ
381
00:40:12,850 --> 00:40:20,950
ุงู„ุญู‚ูŠู‚ูŠุฉ ูˆูุฑุถู†ุง ุนู…ู„ู†ุง ุจุฑู‡ุงู† ุบูŠุฑ ู…ุจุงุดุฑ ูุฑุถู†ุง ุฃู†ู‡
382
00:40:20,950 --> 00:40:26,450
ุฌุฐุฑ ุงุซู†ูŠู† ูŠู†ุชู…ูŠ ู„ q ุฃูˆ ุนุฏุฏ ู†ุณุจูŠ ูˆูˆุตู„ู†ุง ุฅู„ู‰ ุชู†ุงู‚ุถ
383
00:40:26,450 --> 00:40:32,380
ุชู…ุงู… ุงู„ูŠูˆู… ุจู†ุฑุฌุน ู„ู„ูˆุฑุงุก ุดูˆูŠุฉ ูˆุจู†ู‚ูˆู„ ุงุญู†ุง ู‡ู†ุง ููŠ
384
00:40:32,380 --> 00:40:36,220
ุงู„ู†ุธุฑูŠุฉ ู‡ุฐู‡ ููŠ ุงู„ุจุฑู‡ุงู† ุฃูˆ ููŠ ุงู„ู†ุธุฑูŠุฉ ู‡ุฐู‡ ุงูุชุฑุถู†ุง
385
00:40:36,220 --> 00:40:42,140
ุฌุฏู„ุง ุฃูˆ ุงูุชุฑุถู†ุง ู…ุณุจู‚ุง ุฃู† ุฌุฐุฑ ุงุซู†ูŠู† ู‡ุฐุง ุนุฏุฏ ุญู‚ูŠู‚ูŠ
386
00:40:42,140 --> 00:40:47,600
ุงู„ูŠูˆู… ู‡ู†ุฑุฌุน ูˆู†ุซุจุช ุฃู† existence of ุฌุฐุฑ ุงุซู†ูŠู† ูŠุนู†ูŠ
387
00:40:47,600 --> 00:40:51,720
ุฌุฐุฑ ุงุซู†ูŠู† ู‡ุฐุง ุจู†ุซุจุช ุฃู† ู‡ูˆ ูุนู„ุง ุนุฏุฏ ุญู‚ูŠู‚ูŠ ู…ุด ุนุฏุฏ
388
00:40:51,720 --> 00:40:53,040
ุขุฎุฑ ู…ุด ุนุฏุฏ ุชุฎูŠู‘ู„ูŠ
389
00:40:55,660 --> 00:41:02,360
ูู‡ุฐุง ูŠุนู†ูŠ ุงู„ุจุฑู‡ุงู† ุฃูˆ
390
00:41:02,360 --> 00:41:05,560
ู†ุธุฑูŠู‡ุง ุฏูŠ ุจุงู„ุธุจุท ุจุชู‚ูˆู„ ุงู†ู‡ ุฌุฐุฑ ุงุซู†ูŠู† ูˆุนุฏุฏ ุญู‚ูŠู‚ูŠ
391
00:41:05,560 --> 00:41:14,760
ูŠุนู†ูŠ ูŠูˆุฌุฏ ุนุฏุฏ ุญู‚ูŠู‚ูŠ ู…ูˆุฌุจ x ูˆู…ุฑุจุนู‡ ู‡ูˆ ุงุซู†ูŠู† okay
392
00:41:16,030 --> 00:41:20,890
ูุจุฑู‡ุงู† ุงู„ู†ุธุฑูŠุฉ ู‡ุฐู‡ ูŠุนู†ูŠ ู…ู…ูƒู† ุดูˆูŠุฉ ุทูˆูŠู„ ู„ูƒู† ู…ูˆุฌูˆุฏ
393
00:41:20,890 --> 00:41:29,250
ุนู†ุฏูƒู… ุจุงู„ุชูุตูŠู„ ูˆูŠุนู†ูŠ ู…ูˆุฌูˆุฏ ุฅู„ู‰ ุฃุนุฒุงุก ูˆูŠุนู†ูŠ ู…ุด ุตุนุจ
394
00:41:29,250 --> 00:41:35,490
ุฃู†ูƒู… ูŠุนู†ูŠ ุชู‚ุฑุคูˆุง ุจู…ุฌู…ูˆุนุชู‡ู… ูˆ ุชูู‡ู…ูˆู‡ ูุฃุฑุฌูˆ ุฃู†ูƒู…
395
00:41:35,490 --> 00:41:39,990
ุชู‚ุฑุคูˆุง ุงู„ุจุฑู‡ุงู† ูˆ ุชุญุงูˆู„ูˆุง ุชูู‡ู…ูˆู‡ ูˆ ู…ู…ูƒู† ูŠุนู†ูŠ ุงู„ู…ุฑุฉ
396
00:41:39,990 --> 00:41:45,510
ุงู„ุฌุงูŠุฉ ุฅู† ุดุงุก ุงู„ู„ู‡ ู†ุณุฃู„ ู†ุญุงูˆู„ ู†ู…ุฑ ุนู„ูŠู‡ ุฃูˆ ู†ุญุงูˆู„
397
00:41:45,510 --> 00:41:52,090
ู†ุจุฑู‡ู† ู†ู‚ุตุฑ ุนู„ูŠู‡ุŒ ุทุจุนุงุŸ ุฅุฐุง ู†ูƒุชููŠ ุจู‡ุฐุง ุงู„ู‚ุฏุฑ ูˆู†ูƒู…ู„
398
00:41:52,090 --> 00:41:53,230
ุฅู† ุดุงุก ุงู„ู„ู‡ ุงู„ู…ุฑุฉ ุงู„ุฌุงูŠุฉ