|
1 |
|
00:00:21,840 --> 00:00:28,120 |
|
ุงูู
ุญุงุถุฑุฉ ุงููู ูุงุชุช ุจุฏููุง ูู ุนุฑุถ ุจุนุถ ุงู |
|
|
|
2 |
|
00:00:28,120 --> 00:00:32,760 |
|
applications of the supremum property ูุจุนุชูุฏ ุฃู |
|
|
|
3 |
|
00:00:32,760 --> 00:00:37,680 |
|
ุงุญูุง ุฃุฎุฐูุง ุฃูู ู
ุซุงู ุงููู ูู ุงูู
ุซุงู ูุฐุง ู
ุธุจูุท |
|
|
|
4 |
|
00:00:37,680 --> 00:00:40,980 |
|
ูููููุง |
|
|
|
5 |
|
00:00:40,980 --> 00:00:46,160 |
|
ุฅู ุงูู
ุซุงู ูุฐุง ูู ุฃุฎุฏุช ุฃู bounded set bounded |
|
|
|
6 |
|
00:00:46,160 --> 00:00:56,150 |
|
above ูุนุฑูุช ุงูู
ุฌู
ูุนุฉ a ุฒุงุฆุฏ s ุจุงูุทุฑููุฉ ูุฐู ูุฃุซุจุชูุง |
|
|
|
7 |
|
00:00:56,150 --> 00:01:00,770 |
|
ูู
ู
ูู ุจุณูููุฉ ุฅุซุจุงุช ุฃู ุงู supremum ููู
ุฌู
ูุนุฉ ุงูุฌุฏูุฏุฉ |
|
|
|
8 |
|
00:01:00,770 --> 00:01:09,870 |
|
A plus S ุจุชุณุงูู A plus ุงู supremum ูู S ูุดูููุง |
|
|
|
9 |
|
00:01:09,870 --> 00:01:15,630 |
|
ุงูุจุฑูุงู ุจุงูุชูุตูู ุงูู
ุฑุฉ ุงููู ูุงุชุช ููุงู ููุง ุงูุจุฑูุงู |
|
|
|
10 |
|
00:01:15,630 --> 00:01:18,390 |
|
ุจุนุชู
ุฏ ุนูู ุฃู ุงูู set ุงููู bounded above |
|
|
|
11 |
|
00:01:32,250 --> 00:01:36,230 |
|
ุงูู set S ูู bounded above ูุฃู ุงู supremum ุชุจุนูุง |
|
|
|
12 |
|
00:01:36,230 --> 00:01:42,940 |
|
exists by the supremum property ูุดูููุง ุจุนุฏ ููู ุฃูู |
|
|
|
13 |
|
00:01:42,940 --> 00:01:49,660 |
|
ุงูู .. ุงูุนุฏุฏ a ุฒุงุฆุฏ u ุจูุทูุน upper bound ููู set ูุฐู ู |
|
|
|
14 |
|
00:01:49,660 --> 00:01:53,500 |
|
ุจุนุฏูู ุฃุซุจุชูุง ุฃู ูุฐุง ุงูุนุฏุฏ ูู ุฃุตุบุฑ upper bound ุฃู |
|
|
|
15 |
|
00:01:53,500 --> 00:01:59,320 |
|
supremum ููู set ูุฐู ูุจุงูุชุงูู ููู ุจูููู ุฃุซุจุชูุง ุฃู |
|
|
|
16 |
|
00:01:59,320 --> 00:02:03,760 |
|
supremum ููู set ูุฐู ู
ูุฌูุฏ ู ุจูุณุงูู ุงูุนุฏุฏ a ุฒุงุฆุฏ u |
|
|
|
17 |
|
00:02:03,760 --> 00:02:09,420 |
|
ุงููู ูู a ุฒุงุฆุฏ supremum S ุงูู
ุซุงู ุงูุซุงูู |
|
|
|
18 |
|
00:02:16,520 --> 00:02:20,320 |
|
ูู ุฃุฎุฏุช two functions ุงูู
ุฌุงู ุงูู domain ุชุจุนูู
|
|
|
|
19 |
|
00:02:20,320 --> 00:02:25,300 |
|
ู
ุฌู
ูุนุฉ D subset ู
ู R ููุชุจุช |
|
|
|
20 |
|
00:02:25,300 --> 00:02:29,280 |
|
F of D ุนูู ุฃููุง ู
ุฌู
ูุนุฉ ูู ุงูุนูุงุตุฑ F of X ุญูุซ ู X |
|
|
|
21 |
|
00:02:29,280 --> 00:02:34,400 |
|
ููุชู
ู ูู D ูุงูู set F of D ูุฐู ูู ุงูู range ุชุจุน ุงูู |
|
|
|
22 |
|
00:02:34,400 --> 00:02:39,120 |
|
function F ุตุญุ ูู ุงูู
ุฏู ุชุจุน ุงูู function F ู ูุฐูู |
|
|
|
23 |
|
00:02:39,120 --> 00:02:46,000 |
|
ุงูู set G of D ูู ุงูู range ุชุจุน ุงูู function G |
|
|
|
24 |
|
00:02:48,510 --> 00:02:53,250 |
|
ููู ูุฑุถูุง ุฃู ุงูู set f of d ู ุงูู set g of d bounded |
|
|
|
25 |
|
00:02:53,250 --> 00:03:01,530 |
|
set R ูุทุจุนุง ุญุณุจ ุงู supremum property ุงูู
ุฌู
ูุนุงุช ุฏูู |
|
|
|
26 |
|
00:03:01,530 --> 00:03:06,430 |
|
ูู ูุงุญุฏุฉ ููุง supremum ูุฐูู ุญุณุจ ุงู infimum property |
|
|
|
27 |
|
00:03:07,290 --> 00:03:11,050 |
|
ุงูู
ุฌู
ูุนุชูู ูุฐูู ูู ูุงุญุฏุฉ ูููู
ุฅููุง infimumุ ุงูู |
|
|
|
28 |
|
00:03:11,050 --> 00:03:15,350 |
|
infimum ุชุจุนูู
exists ุฅุฐุง ููุฑุถ ุฅู ุงูู
ุฌู
ุนุชูู ูุฐูู |
|
|
|
29 |
|
00:03:15,350 --> 00:03:18,570 |
|
bounded ุนุดุงู ุฅูู ูุถู
ู ูุฌูุฏ ุงู supremum ูุงูinfimum |
|
|
|
30 |
|
00:03:18,570 --> 00:03:26,450 |
|
ููู ูุงุญุฏุฉ ู
ููู
ุงูุขู ูู ุนูุฏู ุจุฏู ุฃุจุฑูู ุญุงุฌุฉ ุซุงููุฉ ูู |
|
|
|
31 |
|
00:03:26,450 --> 00:03:31,930 |
|
ูุงู ุงููุฑุถ f of x ุฃุตุบุฑ ู
ู ุฃู ูุณุงูู g of x ุจุชุญูู ููู |
|
|
|
32 |
|
00:03:31,930 --> 00:03:38,040 |
|
x ููุชู
ู ูู D ุจูุทูุน ุงู supremum ููู
ุฌู
ูุนุฉ F of D ุจูุทูุน ุฃุตุบุฑ ู
ู |
|
|
|
33 |
|
00:03:38,040 --> 00:03:44,660 |
|
ุฃู ูุณุงูู ุงู supremum ููู
ุฌู
ูุนุฉ G of D ูุจุฑูุงู ูุฐุง |
|
|
|
34 |
|
00:03:44,660 --> 00:03:54,220 |
|
ุงูุจุฑูุงู ูุนูู ุณูู ุฃูุง ูุงุชุจ ุฅูู easy exercise ููู |
|
|
|
35 |
|
00:03:54,220 --> 00:04:02,780 |
|
ู
ู
ูู ุชุจุฑููู ู
ู
ูู ุชุจุฑููู ุจูู ุณูููุฉ ููู ููุชุจ ุงูู proof |
|
|
|
36 |
|
00:04:06,320 --> 00:04:14,320 |
|
of part one ููุฌุฒุก ุงูุฃูู ูุฎููููุง |
|
|
|
37 |
|
00:04:14,320 --> 00:04:19,400 |
|
ูุซุจุช fix x |
|
|
|
38 |
|
00:04:19,400 --> 00:04:29,400 |
|
ููุชู
ู ุฅูู d ูุงุฎุฏ ุนูุตุฑ x ููุชู
ู ุฅูู d ุนุดูุงุฆู by |
|
|
|
39 |
|
00:04:29,400 --> 00:04:31,240 |
|
hypothesis ู
ู ุงููุฑุถ |
|
|
|
40 |
|
00:04:33,710 --> 00:04:40,970 |
|
ู
ู ุงููุฑุถ ุฃูุง ุนูุฏู f of x ุฃุตุบุฑ ู
ู ุฃู ูุณุงูู g of x |
|
|
|
41 |
|
00:04:40,970 --> 00:04:52,470 |
|
ููู x ูุฐู ู ูุฃู x ุฏู ุตุญ ูุฐุง ู
ู ุงููุฑุถ ู g of x g of |
|
|
|
42 |
|
00:04:52,470 --> 00:05:00,550 |
|
x ุฃุตุบุฑ ู
ู ุฃู ูุณุงูู ุงู supremum ููู set g of d |
|
|
|
43 |
|
00:05:04,610 --> 00:05:14,410 |
|
ุทุจุนุง ูุฐุง ุฒู ู
ุง ูููุง exists by supremum property |
|
|
|
44 |
|
00:05:14,410 --> 00:05:20,970 |
|
ุจุงุณุชุฎุฏุงู
ุฎุงุตูุฉ ุงูู |
|
|
|
45 |
|
00:05:20,970 --> 00:05:26,910 |
|
supremum .. ูุฐุง .. ูุฐุง ุนูุตุฑ ูู ุงูู set ูุฐุง g of x ุนูุตุฑ |
|
|
|
46 |
|
00:05:26,910 --> 00:05:32,550 |
|
ูู ุงูู set g of d ุตุญุููุฐุง upper bound ุงู supremum ูู g of |
|
|
|
47 |
|
00:05:32,550 --> 00:05:38,690 |
|
d ู ูุฐุง ุนูุตุฑ ูู ุงูู set g of d ููุฐุง ุฃููุฏ ุฃูุจุฑ ู
ู ุฃู ูุณุงูู |
|
|
|
48 |
|
00:05:38,690 --> 00:05:43,610 |
|
ุงู upper bound ููู set ุงููู ุจููุชู
ู ุฅูููุง ููุฐุง ุตุญูุญ |
|
|
|
49 |
|
00:05:43,610 --> 00:05:56,610 |
|
ุงูุขู ูุฐุง ุตุญูุญ ููู x since x belonged to D was |
|
|
|
50 |
|
00:05:56,610 --> 00:05:57,610 |
|
arbitrarily |
|
|
|
51 |
|
00:06:03,450 --> 00:06:10,110 |
|
arbitrary ุฅู ุฅู ุจูุทูุน ุนูุฏู F of X ุฃุตุบุฑ ู
ู ุฃู ูุณุงูู |
|
|
|
52 |
|
00:06:10,110 --> 00:06:20,490 |
|
ุงู supremum ูู G of D ููุฐุง ุตุญูุญ ููู X ูู D ูุฐุง |
|
|
|
53 |
|
00:06:20,490 --> 00:06:29,900 |
|
ู
ุนูุงู ุฅูู ุงูุนุฏุฏ ูุฐุง ูุฐุง ุงูุนุฏุฏ ุฃูุจุฑ ู
ู ุฃู ูุณุงูู ูู |
|
|
|
54 |
|
00:06:29,900 --> 00:06:36,960 |
|
ุนูุงุตุฑ ุงูู set F of D ุตุญุ ูู ูุฐุง ู
ุนูุงู ุฃู ุงูู |
|
|
|
55 |
|
00:06:36,960 --> 00:06:47,600 |
|
supremum ูู set G of D is an upper bound an upper |
|
|
|
56 |
|
00:06:47,600 --> 00:06:50,860 |
|
bound |
|
|
|
57 |
|
00:06:50,860 --> 00:06:53,780 |
|
ูู
ููุ |
|
|
|
58 |
|
00:06:54,920 --> 00:07:01,100 |
|
of set f of d ุจุตุญุ |
|
|
|
59 |
|
00:07:01,100 --> 00:07:07,040 |
|
ูุฃู ููู ูู ุนูุตุฑ f of x ูู f of d ุฃุตุบุฑ ู
ู ุฃู ูุณุงูู |
|
|
|
60 |
|
00:07:07,040 --> 00:07:18,980 |
|
ุงูุนุฏุฏ ูุฐุงุ ุตุญุ ุทูุจ since ุงู supremum ูู set f of d |
|
|
|
61 |
|
00:07:18,980 --> 00:07:25,890 |
|
exists in R ุทุจุนุง ุจุฑุถู by supremum property ูุฃู ุงุญูุง |
|
|
|
62 |
|
00:07:25,890 --> 00:07:31,890 |
|
ูุฑุถูู ุฃู ุงูู set ูุฐู bounded ุตุญ ูุงู supremum ุชุจุนูุง |
|
|
|
63 |
|
00:07:31,890 --> 00:07:37,110 |
|
ู
ูุฌูุฏ ุงูุขู ุงูู set ูุฐู ุงู supremum ุชุจุนูุง ู
ูุฌูุฏ |
|
|
|
64 |
|
00:07:37,110 --> 00:07:42,750 |
|
ูุงูุนุฏุฏ ูุฐุง ูุฐุง ุงูุนุฏุฏ ุนุจุงุฑุฉ ุนู upper bound ูู set |
|
|
|
65 |
|
00:07:42,750 --> 00:07:46,850 |
|
ุฅุฐุง ู
ุง ุงูุนูุงูุฉ ุจูู ุงู upper bound ูุฐุง ููู set ูุงู |
|
|
|
66 |
|
00:07:46,850 --> 00:07:53,650 |
|
supremum ููู setุ ูู ูุงุญุฏ ุฃูุจุฑ ู
ู ุฃู ูุณุงูู ุงูุซุงูู ูุฃู |
|
|
|
67 |
|
00:07:53,650 --> 00:07:59,770 |
|
ุจู
ุง ุฃู ูุฐุง ุงูููุงู
ุตุญูุญ ูุญู ูุญู ูุญู ูุญู ูุญู ูุญู ูุญู |
|
|
|
68 |
|
00:07:59,770 --> 00:08:01,050 |
|
ูุญู ูุญู ูุญู ูุญู ูุญู ูุญู ูุญู ูุญู ูุญู ูุญู ูุญู |
|
|
|
69 |
|
00:08:01,050 --> 00:08:01,350 |
|
ูุญู ูุญู ูุญู ูุญู ูุญู ูุญู ูุญู ูุญู ูุญู ูุญู ูุญู |
|
|
|
70 |
|
00:08:01,350 --> 00:08:04,050 |
|
ูุญู ูุญู ูุญู ูุญู ูุญู ูุญู ูุญู ูุญู ูุญู ูุญู ูุญู |
|
|
|
71 |
|
00:08:04,050 --> 00:08:05,880 |
|
ูุญู ูุญู ูุญู ูุญู ูุญู ูุญู ูุญู ูุญู ูุญู ูุญู ูุฐุง |
|
|
|
72 |
|
00:08:05,880 --> 00:08:10,820 |
|
ุฃุตุบุฑ upper bound ููู set f of d ููุฐุง upper bound ููู set |
|
|
|
73 |
|
00:08:10,820 --> 00:08:15,440 |
|
f of d ุฅุฐุง ุงู supremum ุจูุทูุน ุฃุตุบุฑ ู
ู ุฃู ูุณุงูู ุงู |
|
|
|
74 |
|
00:08:15,440 --> 00:08:22,480 |
|
upper bound ุงููู ูู supremum g of d ููู ุงูู
ุทููุจ |
|
|
|
75 |
|
00:08:22,480 --> 00:08:29,800 |
|
ููุฐุง ุจูุซุจุช ุงูุฌุฒุก ุงูุฃูู okay ุชู
ุงู
ุฅุฐุง ุงูุฌุฒุก ุงูุฃูู ู
ุด |
|
|
|
76 |
|
00:08:29,800 --> 00:08:33,680 |
|
ุตุนุจ ูููุง ุฃุซุจุชูุง ูุงุถุญ |
|
|
|
77 |
|
00:08:37,050 --> 00:08:42,310 |
|
ุจุฑูุงู ุงูุฌุฒุก ุงูุซุงูู ุจุฑุถู ุดุจูู ููู ุงูุฌุฒุก ุงูุซุงููุ ุฅูุด |
|
|
|
78 |
|
00:08:42,310 --> 00:08:47,510 |
|
ุจูููู ูููุ ุงููุฑุถุ ูุงุญุธูุง ุงููุฑู ุจูู ุงููุฑุถ ุชุจุน ุงูุฌุฒุก |
|
|
|
79 |
|
00:08:47,510 --> 00:08:54,910 |
|
ุงูุซุงูู ูุงูุฌุฒุก ุงูุฃูู ุงููุฑุถ |
|
|
|
80 |
|
00:08:54,910 --> 00:09:00,210 |
|
ููุง ุฅู f of x ุฃุตุบุฑ ู
ู ุฃู ูุณุงูู g of y ููู x ู y ูู |
|
|
|
81 |
|
00:09:00,210 --> 00:09:00,450 |
|
D |
|
|
|
82 |
|
00:09:04,010 --> 00:09:09,170 |
|
ูุฐุง ุฃุดู
ูู ููุฐุง ุฃุนู
ู ู
ู ูุฐุง ููุฐุง ุฃููู ู
ู ูุฐุง ูุงุญุธูุง |
|
|
|
83 |
|
00:09:09,170 --> 00:09:14,690 |
|
ุฅูู ูู ูุฐุง ุตุญ ููุฐุง ุจูุทูุน ุตุญ ุงููู ููู ููู ุงูู x ู
ุด |
|
|
|
84 |
|
00:09:14,690 --> 00:09:18,430 |
|
ุตุญูุญ ุทูุจ |
|
|
|
85 |
|
00:09:18,430 --> 00:09:22,130 |
|
ุฅุฐุง .. ุฅุฐุง ูุฐุง ุงูููุงู
ุตุญูุญ ููุฐุง ุจููุฏู ุฅู ุงูู |
|
|
|
86 |
|
00:09:22,130 --> 00:09:26,410 |
|
supremum ูู F of D ุจูุทูุน ุฃุตุบุฑ ู
ู ุฃู ูุณุงูู ุงู infimum |
|
|
|
87 |
|
00:09:26,410 --> 00:09:31,110 |
|
ูู set G of D ูุดูู |
|
|
|
88 |
|
00:09:31,110 --> 00:09:32,710 |
|
ุงูู .. ูุจุฑูู ุงูููุงู
ูุฐุง |
|
|
|
89 |
|
00:09:50,270 --> 00:10:02,090 |
|
ุงูุจุฑูุงู ุงูุฌุฒุก ุงูุซุงูู ุงูุจุฑูุงู |
|
|
|
90 |
|
00:10:02,090 --> 00:10:05,030 |
|
ุงูุฌุฒุก ุงูุซุงูู ูุฐุง conditional statement ูู ุงููุฑุถ |
|
|
|
91 |
|
00:10:05,030 --> 00:10:11,370 |
|
ููู ุงููุชูุฌุฉ ุงูู conclusion ูุจููุฑุถ ุฃู ุงููุฑุถ ูุฐุง ุตุญูุญ |
|
|
|
92 |
|
00:10:11,370 --> 00:10:23,770 |
|
ู ุจูุซุจุช ูุซุจุช ูุซุจุช ุนูุตุฑ Y ูู D ู
ู ุงููุฑุถ ุจูุทูุน ุนูุฏู f |
|
|
|
93 |
|
00:10:23,770 --> 00:10:29,530 |
|
of x ุฃุตุบุฑ ู
ู ุฃู ูุณุงูู g of y ููุฐุง ุตุญูุญ ููู x ูู ุฏู |
|
|
|
94 |
|
00:10:29,530 --> 00:10:38,280 |
|
ู ุงูู y ุซุงุจุช ูุนูู ูุฐุง ู
ู ุงููุฑุถ ุตุญูุญ ููู x ูู ุฏู ุทูุจุ |
|
|
|
95 |
|
00:10:38,280 --> 00:10:45,040 |
|
ุงูุขู ูุฐุง ู
ุนูุงู ุฃู ุงูุนุฏุฏ ูุฐุง g of y ูู ูู y ุฃูุตู |
|
|
|
96 |
|
00:10:45,040 --> 00:10:49,600 |
|
ุซุงุจุช ูู ุฃูุจุฑ .. ูุฐุง ุงูุนุฏุฏ ุฃูุจุฑ ู
ู ุฃู ูุณุงูู ูู ุงูู F |
|
|
|
97 |
|
00:10:49,600 --> 00:10:54,100 |
|
of X ููู X ุฏู ู
ุนูุงู ูุฐุง upper bound ููู set F of D |
|
|
|
98 |
|
00:10:54,100 --> 00:10:59,020 |
|
ุงูุขู g of y ุนุจุงุฑุฉ ุนู upper bound ููู set F of D ู
ู |
|
|
|
99 |
|
00:10:59,020 --> 00:11:01,860 |
|
ููุงุ ู
ุธุจูุทุ ุชู
ุงู
ุ |
|
|
|
100 |
|
00:11:04,040 --> 00:11:07,840 |
|
ูุจุงูุชุงูู ุงูู least upper bound ูู F of D ุจูุทูุน ุฃุตุบุฑ |
|
|
|
101 |
|
00:11:07,840 --> 00:11:12,080 |
|
ู
ู ุฃู ูุณุงูู ุงูู upper bound ูู F of D ุงููู ูู G of Y ูุฃู |
|
|
|
102 |
|
00:11:12,080 --> 00:11:13,620 |
|
ูุฐู ุงูู
ุชุจุงููุฉ ุตุญูุญุฉ |
|
|
|
103 |
|
00:11:18,050 --> 00:11:22,770 |
|
ุงุฎุชุฑูุงูุง was arbitrary fixed ุงุญูุง ุงุฎุชุฑูุงูุง ุนุดูุงุฆู |
|
|
|
104 |
|
00:11:22,770 --> 00:11:27,470 |
|
arbitrary ูุซุจุชูุงูุง ุฃู ุงูููุงู
ุงูู
ุชุจุงููุฉ ูุฐู ุงูุขู ุตุญูุญ |
|
|
|
105 |
|
00:11:27,470 --> 00:11:33,110 |
|
ููู y ุฃู ุงูู
ุชุจุงููุฉ ูุฐู ุตุญูุญุฉ true for every y ูู D |
|
|
|
106 |
|
00:11:33,110 --> 00:11:39,510 |
|
ูุฐุง ู
ุนูุงู ู
ู ุงูู
ุชุจุงููุฉ ูุฐู percentage ุฅูู ุงูุนุฏุฏ |
|
|
|
107 |
|
00:11:39,510 --> 00:11:45,350 |
|
ุงู supremum ูู F of D ูุฐุง ุนุจุงุฑุฉ ุนู lower bound |
|
|
|
108 |
|
00:11:45,350 --> 00:11:51,030 |
|
ูู
ุฌู
ูุนุฉ ุงูุนูุงุตุฑ g of y ุญูุซ y ููุชู
ู ูู d ูุนูู ุงูุนุฏุฏ |
|
|
|
109 |
|
00:11:51,030 --> 00:11:58,210 |
|
ูุฐุง ุนุจุงุฑุฉ ุนู lower bound ููู set g of d ุนุธูู
ุตุญุ ุทูุจ |
|
|
|
110 |
|
00:11:58,210 --> 00:12:04,230 |
|
ุงู infimum ูู g of d exists ููุฐุง ุงูุนุฏุฏ lower bound |
|
|
|
111 |
|
00:12:04,230 --> 00:12:08,950 |
|
ููู set ูุฐู ู ุงู infimum ูุฐุง ุนุจุงุฑุฉ ุนู ุงูู greatest |
|
|
|
112 |
|
00:12:08,950 --> 00:12:12,970 |
|
lower bound ูู G ู D ุฅุฐุง ุงูู greatest lower bound |
|
|
|
113 |
|
00:12:12,970 --> 00:12:18,810 |
|
ุฏุงูู
ุง ุจูููู ุฃูุจุฑ ู
ู ุฃู ูุณุงูู ุฃู lower bound ุฅุฐุง ุงูู |
|
|
|
114 |
|
00:12:18,810 --> 00:12:23,090 |
|
lower bound ูุฐุง ุฃุตุบุฑ ู
ู ุฃู ูุณุงูู ุงูู greatest lower |
|
|
|
115 |
|
00:12:23,090 --> 00:12:28,610 |
|
bound ูู G ู D ู ูุฐุง ุงููู ูู ูุฐุง ุงููุชูุฌุฉ ุงููู ุงุญูุง |
|
|
|
116 |
|
00:12:28,610 --> 00:12:34,800 |
|
ุนุงูุฒูู ูุตู ููุง okay ุชู
ุงู
ูุงุถุญุ ุฅุฐู ูุฐุง ุจุฑูุงูู ุฌุฒุก |
|
|
|
117 |
|
00:12:34,800 --> 00:12:48,220 |
|
ุงูุซุงูู ุงูุขู ูู ู
ูุงุญุธุฉ ุงูู
ูุงุญุธุฉ ูุฐู ุจุชููู ุฅูู ูุนูู |
|
|
|
118 |
|
00:12:48,220 --> 00:12:56,120 |
|
ู
ู
ูู ุทุงูุจุฉ ุทูุนุช ุชุณุฃู ุฃู ุชุณุชูุณุฑ ุฃู ุชุชุณุงุกู ุทุจ ู
ุง ูุฐุง |
|
|
|
119 |
|
00:12:56,120 --> 00:13:01,400 |
|
ุงูุดุฑุท ุชุจุนูู ุฒู ูุฐุง ู
ุง ููุด ูุฑู ุจูููู
ูุงุญูุง ุจูููู ูุฃ |
|
|
|
120 |
|
00:13:01,400 --> 00:13:05,480 |
|
ูุฐุง ุงูุดุฑุท ุงูุชุญุช ุฃููู ู
ู ุงููู ููู ุงููู ุชุญุช ูู ูุงู |
|
|
|
121 |
|
00:13:05,480 --> 00:13:09,160 |
|
ุงูุชุญุช ุตุญูุญ ุจููุฏู ููู ููู ููู ูู ูุงู ุงููู ููู ุตุญูุญ |
|
|
|
122 |
|
00:13:09,160 --> 00:13:14,300 |
|
ูุฐุง ู
ุง ุจููุฏู ููู ุชุญุช ูุฐุง ุงูุดุฑุท ุฃููู ู
ู ุงููู ููู |
|
|
|
123 |
|
00:13:14,300 --> 00:13:20,240 |
|
ูู
ู
ูู ูุงุญุฏุฉ ูููู
ุชุณุฃู ุชููู ุทุจ ูู ุงุญูุง ุฃุฎุฐูุง ุงููุฑุถ |
|
|
|
124 |
|
00:13:20,240 --> 00:13:24,840 |
|
ูุฐุง ูู ูุฑุถูุง ุฃู ูุฐุง ุงูููุงู
ุตุญ ูู ู
ู
ูู ูุญุตู ุนูู |
|
|
|
125 |
|
00:13:24,840 --> 00:13:30,580 |
|
ูุชูุฌุฉ ุงููู ุชุญุชูุ ุงูุฅุฌุงุจุฉ ูุฃุ ุงูุฅุฌุงุจุฉ ูุฃุ ูุฐุง ู
ุด |
|
|
|
126 |
|
00:13:30,580 --> 00:13:36,900 |
|
ู
ู
ููุ ุฅุฐุง ุงูู .. ูู ุดูููุง ุงููุฑุถ ูุฐุง ู ุจุฏููุงู ุจุงููุฑุถ |
|
|
|
127 |
|
00:13:36,900 --> 00:13:41,820 |
|
ุงููู ููู ูุงููุชูุฌุฉ ูุฐู ูุง ูู
ูู ูุญุตู ุนูููุงุ ู
ุด ุดุฑุท |
|
|
|
128 |
|
00:13:41,820 --> 00:13:53,110 |
|
ุชููู ุตุญูุญุฉ ุฃู ู
ุซุงู ููุถุญ ุฅูู ูุง ูู
ูู ุงุณุชุจุฏุงู ุงููุฑุถ |
|
|
|
129 |
|
00:13:53,110 --> 00:13:58,610 |
|
ุชุจุน ุงูุฌุฒุก ุงูุซุงูู ุจุงููุฑุถ ุชุจุน ุงูุฌุฒุก ุงูุฃูู ููุญุตู ูุญุตู |
|
|
|
130 |
|
00:13:58,610 --> 00:14:00,630 |
|
ุนูู ูุชูุฌุฉ ุงูุฌุฒุก ุงูุซุงูู |
|
|
|
131 |
|
00:14:12,790 --> 00:14:16,530 |
|
ููุงุฎุฏ ุนูู ุณุจูู ุงูู
ุซุงู ุฃู counterexample ุจูุณู
ูู ูู |
|
|
|
132 |
|
00:14:16,530 --> 00:14:22,910 |
|
ุฑูุงุถูุงุช ูู ุฃุฎุฏุช f of x ุจูุณุงูู x ุชุฑุจูุน ุฏุงูุฉ ุชุฑุจูุน |
|
|
|
133 |
|
00:14:22,910 --> 00:14:26,830 |
|
ู g of x ุงูู identity function ู ุฃุฎุฏุช ุงูู domain |
|
|
|
134 |
|
00:14:26,830 --> 00:14:30,950 |
|
ุงูู
ุดุชุฑู ูู f ู g ุงูู closed unit interval |
|
|
|
135 |
|
00:14:34,300 --> 00:14:40,040 |
|
ูุทุจุนุง ุจููุงุญุธ ุฃู f of x ุงููู ูู x ุชุฑุจูุน ููู x ูู ุงูู |
|
|
|
136 |
|
00:14:40,040 --> 00:14:45,220 |
|
closed unit interval x ุชุฑุจูุน ุฃุตุบุฑ ู
ู ุฃู ูุณุงูู xุ |
|
|
|
137 |
|
00:14:45,220 --> 00:14:51,180 |
|
ู
ุธุจูุทุ ู X ุจูุณุงูู G of X ููู ูู ุนูุฏู ุงูู two |
|
|
|
138 |
|
00:14:51,180 --> 00:14:54,460 |
|
functions ูุฏูู ุจุงูู
ูุงุณุจุฉ ุงูู two functions ูุฏูู |
|
|
|
139 |
|
00:14:54,460 --> 00:14:59,220 |
|
ููุงูู
ููุงูู
bounded bounded below by zero bounded |
|
|
|
140 |
|
00:14:59,220 --> 00:15:08,940 |
|
above by ุงูู range ุชุจุนูู
ุงูู range ุชุจุนูู
F of D ู G of D |
|
|
|
141 |
|
00:15:08,940 --> 00:15:14,900 |
|
of D ู sets ูู
ุฌู
ูุนุงุช ุจุทููุง subset ู
ู ุงูู
ุฌู
ูุนุฉ ู
ู |
|
|
|
142 |
|
00:15:14,900 --> 00:15:20,520 |
|
ุงูุณูุฑ ููุงุญุฏุ ูุจุงูุชุงูู ููุง ูู
ุง bounded above by ูุงุญุฏ |
|
|
|
143 |
|
00:15:20,520 --> 00:15:27,000 |
|
ู bounded below by ุตูุฑุ ุฅุฐู |
|
|
|
144 |
|
00:15:27,000 --> 00:15:32,420 |
|
ูุฐู ุงูู
ุฌู
ูุนุงุช ูู bounded ููู ุนูุฏ ุงู function f of |
|
|
|
145 |
|
00:15:32,420 --> 00:15:36,860 |
|
x ุฃุตุบุฑ ู
ู ุฃู ูุณุงูู g of x ููู x ุฏูุ ูุฐุง ุงููุฑุถ ุชุจุน |
|
|
|
146 |
|
00:15:36,860 --> 00:15:41,600 |
|
ุงูุฌุฒุก ูุงุญุฏ ุงููู ุดูููุงู ูุจู ุดููุฉุ ููู ุงููุชูุฌุฉ ุชุจุน |
|
|
|
147 |
|
00:15:41,600 --> 00:15:45,560 |
|
ุงูุฌุฒุก ุงูุชุงูู ูุง ุชุชุญููุ ุชุนุงูู ูุดูู ูู ุงู supremum ู |
|
|
|
148 |
|
00:15:45,560 --> 00:15:52,190 |
|
f of d ูู ู
ุฌู
ูุนุฉ f of d ุงููุงุญุฏ |
|
|
|
149 |
|
00:15:52,190 --> 00:15:56,430 |
|
ุฃูุจุฑ |
|
|
|
150 |
|
00:15:56,430 --> 00:16:00,090 |
|
ู
ู ุงูุตูุฑ ุงูุตูุฑ |
|
|
|
151 |
|
00:16:00,090 --> 00:16:05,650 |
|
ุจุฑุถู ุนุจุงุฑุฉ ุนู greatest lower bound ุฃู ุงูุงููู
ู
ู |
|
|
|
152 |
|
00:16:05,650 --> 00:16:09,950 |
|
ุงูู
ุฌู
ูุนุฉ ูุฐูุ ูุงุถุญ ุฃู ุงูุตูุฑ lower bound ููุณูุฑ ูุฐู |
|
|
|
153 |
|
00:16:09,950 --> 00:16:15,580 |
|
ููู greatest lower boundุ ุฅุฐุงู ูู ุนูุฏ ุงูู supremum |
|
|
|
154 |
|
00:16:15,580 --> 00:16:20,220 |
|
ูู F of D ุฃูุจุฑ ู
ู ุงูู infimum ูู G of Dุ ููุฐุง ููู |
|
|
|
155 |
|
00:16:20,220 --> 00:16:23,700 |
|
ูุชูุฌุฉ ูุชูุฌุฉ ูุชูุฌุฉ ูุชูุฌุฉ ูุชูุฌุฉ ูุชูุฌุฉ ูุชูุฌุฉ ูุชูุฌุฉ |
|
|
|
156 |
|
00:16:23,700 --> 00:16:24,240 |
|
ูุชูุฌุฉ ูุชูุฌุฉ ูุชูุฌุฉ ูุชูุฌุฉ ูุชูุฌุฉ ูุชูุฌุฉ ูุชูุฌุฉ ูุชูุฌุฉ |
|
|
|
157 |
|
00:16:24,240 --> 00:16:26,120 |
|
ูุชูุฌุฉ ูุชูุฌุฉ ูุชูุฌุฉ ูุชูุฌุฉ ูุชูุฌุฉ ูุชูุฌุฉ ูุชูุฌุฉ ูุชูุฌุฉ |
|
|
|
158 |
|
00:16:26,120 --> 00:16:26,240 |
|
ูุชูุฌุฉ ูุชูุฌุฉ ูุชูุฌุฉ ูุชูุฌุฉ ูุชูุฌุฉ ูุชูุฌุฉ ูุชูุฌุฉ ูุชูุฌุฉ |
|
|
|
159 |
|
00:16:26,240 --> 00:16:26,440 |
|
ูุชูุฌุฉ ูุชูุฌุฉ ูุชูุฌุฉ ูุชูุฌุฉ ูุชูุฌุฉ ูุชูุฌุฉ ูุชูุฌุฉ ูุชูุฌุฉ |
|
|
|
160 |
|
00:16:26,440 --> 00:16:32,560 |
|
ูุชูุฌุฉ ูุชูุฌุฉ ูุชูุฌุฉ ูุชูุฌุฉ ูุชูุฌุฉ ูุชูุฌุฉ ูุชูุฌุฉ ูุชูุฌุฉ |
|
|
|
161 |
|
00:16:49,380 --> 00:16:56,900 |
|
ููุชูุฌุฉ ุนูู ุงูู completeness property ูู ุนูุฏู ูุชูุฌุฉ |
|
|
|
162 |
|
00:16:56,900 --> 00:17:05,420 |
|
ูุชูุฑ ู
ูู
ุฉุ ูููุณุชุฎุฏู
ูุง ูุชูุฑุ ู
ุนูุงูุง ุงููู ูู ุงู |
|
|
|
163 |
|
00:17:05,420 --> 00:17:10,120 |
|
material ุงููู ููุงุฎุฏูุง ูุงุญูุงุ ุงููู ูู ุงู Archimedean |
|
|
|
164 |
|
00:17:10,120 --> 00:17:16,220 |
|
property ุฃู ุฎุงุตูุฉ Archimedesุ ุฅูู ุงูุฎุงุตูุฉ ูุฐู ุจุชููู |
|
|
|
165 |
|
00:17:17,950 --> 00:17:23,890 |
|
ูุฃู ุนุฏุฏ ุญูููู x ูู ุนุฏุฏ ุทุจูุนู ุฃูุจุฑ ู
ููุ ุฃุนุทููู ุฃู |
|
|
|
166 |
|
00:17:23,890 --> 00:17:29,650 |
|
ุนุฏุฏ ุญูููู x ุณูุงุก ูุงู ุตูุฑ ุฃู ู
ูุฌุจ ุฃู ุณุงูุจุ ุจูุฏุฑ |
|
|
|
167 |
|
00:17:29,650 --> 00:17:36,970 |
|
ุฃุนุทููู ุนุฏุฏ ุทุจูุนู ุฃูุจุฑ ู
ูู ุฃู ุจูุฏุฑ ุฃูุฌุฏูู ุนุฏุฏ ุทุจูุนู |
|
|
|
168 |
|
00:17:36,970 --> 00:17:42,760 |
|
ูููู ุฃูุจุฑ ู
ููุ ุงูุจุฑูุงู ุชุจุน ุงููุธุฑูุฉ ูุฐู ุจูุนุชู
ุฏ ุนูู |
|
|
|
169 |
|
00:17:42,760 --> 00:17:47,040 |
|
ุงูู completeness propertyุ ููุจุฑูุงู ุฐูู ูุจุฏุฃ ุจุงูู |
|
|
|
170 |
|
00:17:47,040 --> 00:17:54,320 |
|
Fix X ูู R ููุซุจุชูุง ููุนู
ู ุจุฑูุงู ุจุงูุชูุงูุถุ ูุญู ุนุงูุฒูู |
|
|
|
171 |
|
00:17:54,320 --> 00:17:58,840 |
|
ูุซุจุช ุฃูู ููู Fix X ุงููู ุงุญูุง ุซุจุชูุงูุง ููุฌุฏ |
|
|
|
172 |
|
00:18:01,850 --> 00:18:07,810 |
|
ุนุงูุฒูู ูุซุจุช ุงูุนุจุงุฑุฉุ ุฃู ุงูุนุจุงุฑุฉ ูุฐู ุชููู ุตุญูุญุฉุ ููุฌุฏ |
|
|
|
173 |
|
00:18:07,810 --> 00:18:12,430 |
|
ุนุฏุฏ ุทุจูุนู ุฃูุจุฑ ู
ู Xุ ูุจุฏุง ุฃุนู
ู ุจุฑูุงู ุจุงูุชูุงูุถุ ุจุฏุง |
|
|
|
174 |
|
00:18:12,430 --> 00:18:17,610 |
|
ุฃูุฑุถ ุฃู ููู ุงูุนุจุงุฑุฉ ูุฐู ูู ุงูุตุญุ ุฅุฐุง ู assume ุงู |
|
|
|
175 |
|
00:18:17,610 --> 00:18:21,030 |
|
contrary ุฃู ููู ุงูุนุจุงุฑุฉ ูุฐู ุงูุตุญุ ุทุจ ููู ุงูุนุจุงุฑุฉ |
|
|
|
176 |
|
00:18:21,030 --> 00:18:27,750 |
|
ูุฐู ุงูุตุญุ there exist ู
ุง ุจุตูุฑ ููู N ูู N ุนูุณ |
|
|
|
177 |
|
00:18:27,750 --> 00:18:32,730 |
|
ุงูู
ุชุจุงููุฉ ูุฐู ุงููู ูู n ุฃุตุบุฑ ู
ู ุฃู ูุณุงูู xุ ุฅุฐู ููุง |
|
|
|
178 |
|
00:18:32,730 --> 00:18:37,550 |
|
ุงู contrary ุฃู ุงููููุ ููู ุงููุชูุฌุฉ ูุฐูุ ู
ุนูุงูุง ุฃู ูู |
|
|
|
179 |
|
00:18:37,550 --> 00:18:44,610 |
|
ุงูุฃุนุฏุงุฏ ุงูุทุจูุนูุฉ ุฃุตุบุฑ ู
ู ุฃู ูุณุงูู xุ ูุฐุง ู
ุนูุงู ุฃู ุงู |
|
|
|
180 |
|
00:18:44,610 --> 00:18:51,230 |
|
x ูุฐุง upper bound ูู set N ูุจุงูุชุงูู ุงูู set N ุฅููุง |
|
|
|
181 |
|
00:18:51,230 --> 00:18:54,850 |
|
upper bound ุฃู bounded aboveุ ุฅุฐุง by the supremum |
|
|
|
182 |
|
00:18:54,850 --> 00:19:00,590 |
|
ุฃู completeness of propertyุ ุงูู set N ุจุทูุน ููุฌุฏ |
|
|
|
183 |
|
00:19:00,590 --> 00:19:04,970 |
|
ุฅููุง supremumุ ุงูู supremum ุชุจุนูุง exist and areุ |
|
|
|
184 |
|
00:19:04,970 --> 00:19:12,410 |
|
ุณู
ููุ ูููุณู
ูู uุ ูููุณู
ูู uุ ุชู
ุงู
ุ ูู |
|
|
|
185 |
|
00:19:12,410 --> 00:19:19,340 |
|
ูู
ุฉ ูุงุญุฏ ุงุซููู ุนุดุฑุ ูู
ุฉ ูุงุญุฏุฉ ุงุซูุงุก ุนุดุฑ ูุฏู ุจุชููู ูู ูุงู |
|
|
|
186 |
|
00:19:19,340 --> 00:19:28,300 |
|
U ุฃู u ุจุณุงูู ุงู supremum ูุณุช S if and only if ููู |
|
|
|
187 |
|
00:19:28,300 --> 00:19:35,920 |
|
epsilon ุฃูุจุฑ ู
ู ุงูุตูุฑ ููุฏุฑ ููุงูู S epsilon ูู ุงูุณุช |
|
|
|
188 |
|
00:19:35,920 --> 00:19:42,460 |
|
S ุจุญูุซ ุงูู U ุณุงูุจ epsilon ุฃุตุบุฑ ู
ู S epsilon |
|
|
|
189 |
|
00:19:45,010 --> 00:19:50,110 |
|
ุทุจ ุฃููุ ุฃูุง ุนูุฏู ููู U ุจุณุงูู Supremum ู Nุ S ุจุณุงูู |
|
|
|
190 |
|
00:19:50,110 --> 00:19:55,450 |
|
6 N ูู ุงูุฃุนุฏุงุฏ ุงูุทุจูุนูุฉุ ูู ุนูุฏู Supremum ู N ุงููู |
|
|
|
191 |
|
00:19:55,450 --> 00:20:01,890 |
|
ูู U existุ ุฅุฐุง ุญุณุจ ูู
ุฉ ูุงุญุฏ ุงุซููู ุนุดุฑ ูู ุฃุฎุฏุช epsilon |
|
|
|
192 |
|
00:20:01,890 --> 00:20:06,670 |
|
ูู ุฃุฎุฏุช epsilon ุจุงูุณุงููุฉ ูุงุญุฏุ ูุฐุง ุนุฏุฏ ู
ูุฌุจุ ุฅุฐุง ููุฐุง |
|
|
|
193 |
|
00:20:06,670 --> 00:20:11,690 |
|
ุงู epsilon ุจูุฏุฑ ุฃูุงูู ุนุฏุฏ S epsilon ูุณู
ู M ููุง ุจุฏู S |
|
|
|
194 |
|
00:20:11,690 --> 00:20:16,930 |
|
epsilon ูู ุงููู
ุฉุ ุนุฏุฏ ุทุจูุนู ุจุญูุซ ุฃูู ูู
ุง ุฃุฎุฏ U minus |
|
|
|
195 |
|
00:20:16,930 --> 00:20:20,670 |
|
epsilon ุงููู ูู ุงููุงุญุฏุ ูุฐุง ุจูุทูุน ุฃุตุบุฑ ู
ู S epsilon |
|
|
|
196 |
|
00:20:20,670 --> 00:20:25,050 |
|
ุงููู ูู Mุ ุฅุฐุงู ูุฐุง ูุญุตู ุนููู ู
ู ูู
ุฉ ูุงุญุฏุฉ ูุงุซููู |
|
|
|
197 |
|
00:20:25,050 --> 00:20:30,870 |
|
ุนุดุฑุ ุทูุจ ุงูู
ุชุจุงูู ูุฐูุ ูุฏู ูุงุญุฏุ ูุฌุฑู ูุงุญุฏ ุนูู ู
ูู |
|
|
|
198 |
|
00:20:30,870 --> 00:20:35,010 |
|
ูุจูุทูุน U ุฃุตุบุฑ ู
ู M ุฒุงุฆุฏ ูุงุญุฏุ ุทูุจ ุงู M ุนุฏุฏ ุทุจูุนู |
|
|
|
199 |
|
00:20:35,010 --> 00:20:40,130 |
|
ุฅุฐุงู M ุฒุงุฆุฏ ูุงุญุฏ ุนุฏุฏ ุทุจูุนู ุตุญุ ุฅุฐุงู ูุฐุง M ุฒุงุฆุฏ |
|
|
|
200 |
|
00:20:40,130 --> 00:20:47,360 |
|
ูุงุญุฏ ุนุฏุฏ ุทุจูุนู ูุฃูุจุฑ ู
ู Uุ ู U ูููุง ุงู U ูู ุงู |
|
|
|
201 |
|
00:20:47,360 --> 00:20:50,520 |
|
supremum ู N ูุนูู upper bound ุจูุทูุน upper bound ู |
|
|
|
202 |
|
00:20:50,520 --> 00:20:55,860 |
|
Nุ ูููู U upper bound ู set N ููุนุฏุงุฏ ุงูุทุจูุนูุฉุ ููู |
|
|
|
203 |
|
00:20:55,860 --> 00:20:59,620 |
|
ุนูุตุฑ ูู ุงูุนุฏุงุฏ ุงูุทุจูุนูุฉ ุฃูุจุฑ ู
ููุ ูุฃู ูุฐุง ุจูุฏููู |
|
|
|
204 |
|
00:20:59,620 --> 00:21:06,380 |
|
ุชูุงูุถ ูููู U ูู upper bound ู set ููุนุฏุงุฏ ุงูุทุจูุนูุฉ |
|
|
|
205 |
|
00:21:06,380 --> 00:21:13,060 |
|
ุฅุฐุง ูุตููุง ุฅูู ุชูุงูุถุ ูุจุงูุชุงูู ูุฐุง ุจูู
ู ุงูุจุฑูุงูุฉุ ุฅุฐุง |
|
|
|
206 |
|
00:21:13,060 --> 00:21:16,980 |
|
ุงููุฑุถ ุชุจุนูุง ุงูุชูุงูุถ ูุฐุงุ ุชููู ุฅู ุงู assumption |
|
|
|
207 |
|
00:21:16,980 --> 00:21:24,720 |
|
ุชุจุนูุง ูุฐุงุ ุฅู ุงูููุงู
ูุฐุง ุตุญ ูุงู ุฎุทุฑุ ุฅุฐุง ุงูุตุญ ูููู |
|
|
|
208 |
|
00:21:24,720 --> 00:21:29,480 |
|
ุงููู ูู ุงูู
ุทููุจุ okayุ ุชู
ุงู
ุ ุฅุฐุง ูุฐู ุงู Archimedean |
|
|
|
209 |
|
00:21:29,480 --> 00:21:35,460 |
|
property ูุฐูุ ุงู Archimedean propertyุ ุงูุขู ุงู |
|
|
|
210 |
|
00:21:35,460 --> 00:21:39,580 |
|
Archimedean property ูุฐู ุฃู ุฎุงุตูุฉ Archimedes ุฅููุง |
|
|
|
211 |
|
00:21:39,580 --> 00:21:45,520 |
|
ุตูุฑ ุฃุฎุฑู ู
ุชุนุฏุฏุฉุ ููุฐู ุงูุตูุฑ ูู ู
ูุฌูุฏุฉ ูู ููุฑููุฑู |
|
|
|
212 |
|
00:21:45,520 --> 00:21:50,700 |
|
ูุงุญุฏ ุณุชุฉ ุนุดุฑุ ุฅุฐุง |
|
|
|
213 |
|
00:21:50,700 --> 00:21:58,060 |
|
ุงููุชูุฌุฉ ูุฐู ูู ุฃู ุตูุฑ ุฃุฎุฑู ูู ุงู Archimedean |
|
|
|
214 |
|
00:21:58,060 --> 00:22:06,500 |
|
property ู |
|
|
|
215 |
|
00:22:07,840 --> 00:22:11,520 |
|
Alternative forms ูุนูู ุตูุฑ ุฃุฎุฑู ูู Archimedean |
|
|
|
216 |
|
00:22:11,520 --> 00:22:16,520 |
|
propertyุ let YUZ be positive real numbersุ ุฅุฐู |
|
|
|
217 |
|
00:22:16,520 --> 00:22:19,760 |
|
YUZ ุชูุชู
ู ูู
ุฌู
ูุนุฉ ุงูุฃุนุฏุงุฏ ุงูุญููููุฉ ุงูู
ูุฌุจุฉ |
|
|
|
218 |
|
00:22:22,550 --> 00:22:28,990 |
|
ุฃูู ูุชูุฌุฉุ ููุฌุฏ n ุนุฏุฏ ุทุจูุนู ุจุญูุซ ุฃู ุงูู z ุฃุตุบุฑ ู
ู n |
|
|
|
219 |
|
00:22:28,990 --> 00:22:35,410 |
|
ู
ุถุฑูุจ ูู yุ ุฅุฐุง ูู ุนูุฏู ุนุฏุฏูู ุญููููู ู
ูุฌุจูู z ูy |
|
|
|
220 |
|
00:22:35,410 --> 00:22:39,790 |
|
ุจูุฏุฑ ุฃูุงูู ุนุฏุฏ ุทุจูุนู ุจุญูุซ ุฃู ุงู z ุฃุตุบุฑ ู
ู n ู
ุถุฑูุจ |
|
|
|
221 |
|
00:22:39,790 --> 00:22:49,740 |
|
ูู yุ ูุฐูู ูุฃู ุนุฏุฏ ุญูููู ู
ูุฌุจ y ุจูุฏุฑ ุฃูุงูู ุนุฏุฏ ุทุจูุนู |
|
|
|
222 |
|
00:22:49,740 --> 00:22:54,740 |
|
ู
ูููุจู ุฃุตุบุฑ ู
ู ุงูุนุฏุฏ ุงูู
ูุฌุจ Yุ ุทุจุนุง ู
ูููุจ ุงูุนุฏุฏ |
|
|
|
223 |
|
00:22:54,740 --> 00:22:59,220 |
|
ุงูุทุจูุนู ุฏุงุฆู
ุง ู
ูุฌุจุ ูุฐูู |
|
|
|
224 |
|
00:22:59,220 --> 00:23:04,820 |
|
ูุฃู ุนุฏุฏ ุญูููู ู
ูุฌุจ Z ุจูุฏุฑ ุฃูุงูู ุนุฏุฏ ุทุจูุนู ุจุญูุซ ุฃู |
|
|
|
225 |
|
00:23:04,820 --> 00:23:09,920 |
|
ุงูุนุฏุฏ ุงูู
ูุฌุจ Z ุฃูุจุฑ ู
ู ุฃู ูุณุงูู N ุณุงูุจ ูุงุญุฏ ูุฃุตุบุฑ |
|
|
|
226 |
|
00:23:09,920 --> 00:23:16,770 |
|
ู
ู Nุ ุฅุฐู ุงูุชูุงุช ุฎูุงุต ูุฏููุฉ ูู ูุงุญุฏุฉ ู
ููู
ุจูุณู
ููุง |
|
|
|
227 |
|
00:23:16,770 --> 00:23:20,730 |
|
Archimedean property ุฃู ุตูุฑุฉ ุฃุฎุฑู ู
ู ุงู |
|
|
|
228 |
|
00:23:20,730 --> 00:23:25,590 |
|
Archimedean propertyุ ุงูุฌุฒุก |
|
|
|
229 |
|
00:23:25,590 --> 00:23:30,250 |
|
ุงูุฃุฎูุฑ ูุฐุง ูู ุนุจุงุฑุฉ ุนู ู
ุซุงู ูููุณ ุงู Archimedean |
|
|
|
230 |
|
00:23:30,250 --> 00:23:37,810 |
|
ูุนูู ูุฐุง ุงุณุชุซูุงุกุ ูุนูู ู
ุฌุฑุฏ set ุจุงูุณุงูู ุงู sequence |
|
|
|
231 |
|
00:23:37,810 --> 00:23:44,140 |
|
ูุงุญุฏ ุนูู nุ ู
ุชุชุงููุฉ ุงูุนุฏุงุฏ ุงูุญููููุฉ 1 ุนูู N ุญูุซ N |
|
|
|
232 |
|
00:23:44,140 --> 00:23:49,540 |
|
ุนุฏุฏ ุทุจูุนูุ ูุงู set ูุฐู ููุซุจุช ุฃู ุงู infimum ุฅููุง ูู |
|
|
|
233 |
|
00:23:49,540 --> 00:23:59,860 |
|
ุงูุตูุฑุ ุทูุจ ุฅุฐุง ูุดูู ููุซุจุช ุงูุนุฒุงุก ุงูุฃูููุ ุงูุฌุฒุก |
|
|
|
234 |
|
00:23:59,860 --> 00:24:00,780 |
|
ุงูุฃูู |
|
|
|
235 |
|
00:24:06,710 --> 00:24:15,270 |
|
ุงูุฌุฒุก A ูุฅุซุจุงุช ุงูุฌุฒุก A ุฎููููุง ูุนุฑู X ุจุณุงูู Z ุนูู Y |
|
|
|
236 |
|
00:24:15,270 --> 00:24:19,930 |
|
ุทุจุนุง Z ูY ุฃุนุฏุงุฏ ุญููููุฉ ู
ูุฌุจุฉุ ุฅุฐู ุฎุงุฑุฌ ูุณู
ุชูู
ุฃุนุฏุงุฏ |
|
|
|
237 |
|
00:24:19,930 --> 00:24:26,090 |
|
ู
ูุฌุจุ ุฅุฐู ูุฐุง ุนุจุงุฑุฉ ุนู ุนุฏุฏ ุญูููู ู
ูุฌุจุ ูุนูู ุงู X ูุฐุง |
|
|
|
238 |
|
00:24:26,090 --> 00:24:33,170 |
|
ุนุจุงุฑุฉ ุนู real number ูู
ูุฌุจุ ูุญุณุจ ุงู Archimedean |
|
|
|
239 |
|
00:24:33,170 --> 00:24:42,860 |
|
propertyุ ูุฃู x ุนุฏุฏ ุญูููู ููุฌุฏ ุนุฏุฏ ุทุจูุนู ุฃูุจุฑ ู
ู ุงูู |
|
|
|
240 |
|
00:24:42,860 --> 00:24:48,000 |
|
xุ ุฅุฐุง ุงูู x ุงููู ุฃูุง ุฃุฎุฏู Z ุนูู y ุจูุฏุฑ ุฃูุงูู ุนุฏุฏ |
|
|
|
241 |
|
00:24:48,000 --> 00:24:53,440 |
|
ุทุจูุนู n ุฃูุจุฑ ู
ููุ ูุนูู Z ุนูู y ุฃุตุบุฑ ู
ู nุ ูู ุถุฑุจุช |
|
|
|
242 |
|
00:24:53,440 --> 00:25:01,550 |
|
ุงูู
ุชุจุงููุฉ ูุฐู ูู yุ y ุนุฏุฏ ู
ูุฌุจุ ูููุตูุฑ ุนูุฏู Z ุฃุตุบุฑ ู
ู |
|
|
|
243 |
|
00:25:01,550 --> 00:25:08,110 |
|
n ูู yุ ููุฐู ูู ุงููุชูุฌุฉ ุชุจุน ุงูุฌุฒุก ุงูุฃููุ okayุ ุฅุฐุง |
|
|
|
244 |
|
00:25:08,110 --> 00:25:13,270 |
|
ููู ูููู ุฃุซุจุชูุง ุงูุฌุฒุก ุงูุฃููุ ูุงุถุญุ ูุฅุซุจุงุช ุงูุฌุฒุก |
|
|
|
245 |
|
00:25:13,270 --> 00:25:19,410 |
|
ุงูุซุงููุ ูู ุฃุฎุฏูุง ูู ุงูุฌุฒุก ุงูุฃูู ูู ุฃุฎุฏุช Z ุจุณุงูู |
|
|
|
246 |
|
00:25:19,410 --> 00:25:30,500 |
|
ูุงุญุฏุ ูููุตูุฑ ุนูุฏู 1 ุฃุตุบุฑ ู
ู n ูู yุ ุงู Z ูุฐุง ุนุฏุฏ |
|
|
|
247 |
|
00:25:30,500 --> 00:25:35,780 |
|
ู
ูุฌุจุ ููู ุฃุฎุฏ ุงู Z ุจุงูุณุงููุฉ ูุงุญุฏุ ูุฐุง ุนุฏุฏ ู
ูุฌุจุ ูุญุณุจ |
|
|
|
248 |
|
00:25:35,780 --> 00:25:41,420 |
|
ุงููุชูุฌุฉ a ุจูุทูุน ุนูุฏู Z ุฃุตุบุฑ ู
ู nุ ููุฌุฏ ุนุฏุฏ ุทุจูุนู n |
|
|
|
249 |
|
00:25:41,420 --> 00:25:48,080 |
|
ุจุญูุซ ุฃู Z ุฃุตุบุฑ ู
ู nyุ ูุนูู 1 ุฃุตุบุฑ ู
ู nyุ ุงูุขู ูุถุฑุจ |
|
|
|
250 |
|
00:25:48,080 --> 00:25:53,910 |
|
ูู 1 ุนูู nุ 1 ุนูู n ุนุฏุฏ ู
ูุฌุจุ ูู ุถุฑุจูุง ุงูุทุฑููู ุจุงูุนุฏุฏ |
|
|
|
251 |
|
00:25:53,910 --> 00:25:57,850 |
|
ุงูู
ูุฌุจ ุจูุงุญุฏ ุนูููุง ุจูุทูุน 1 ุนูููุง ุฃุตุบุฑ ู
ู Yุ ููุฐุง |
|
|
|
252 |
|
00:25:57,850 --> 00:26:01,330 |
|
ุงููู ุงุญูุง ุนุงูุฒูููุ ุชู
ุงู
ุ ุฅู ูุฐุง ุจุฑูุงู ุงูุฌุฒุก ุงูุซุงูู |
|
|
|
253 |
|
00:26:01,330 --> 00:26:14,310 |
|
ูุจุฑูุงู ุงูุฌุฒุก ุงูุซุงูุซุ ุงูุฌุฒุก |
|
|
|
254 |
|
00:26:14,310 --> 00:26:14,730 |
|
C |
|
|
|
255 |
|
00:26:18,400 --> 00:26:23,700 |
|
ุจูุซุจุช ุฃูู ูุฃู ุนุฏุฏ ุญูููู ู
ูุฌุจ Z ููู ุนุฏุฏ ุทุจูุนู ุจุญูุซ |
|
|
|
256 |
|
00:26:23,700 --> 00:26:30,940 |
|
ุฃู Z ู
ุญุตูุฑุฉ ุจูู N ุณุงูุจ ูุงุญุฏ ู M ุชู
ุงู
ุ ูุนุฑู ุงูุณุช EZ |
|
|
|
257 |
|
00:26:30,940 --> 00:26:36,380 |
|
ุนูู ุฅููุง ูู ุงูุฃุนุฏุงุฏ ุงูุทุจูุนูุฉ M ุงููู ุจุชููู ุฃูุจุฑ ู
ู |
|
|
|
258 |
|
00:26:36,380 --> 00:26:46,880 |
|
Zุ ุงูุขู ูุฐู ุงูู
ุฌู
ูุนุฉ ุบูุฑ ุฎุงููุฉุ ูุฃูู |
|
|
|
259 |
|
00:26:51,070 --> 00:26:57,610 |
|
ูุฃู ุงูู Z ูุฐุง ุนุฏุฏ ู
ูุฌุจุ ูุจุงูุชุงูู ูู ุงูุขุฎุฑ ูู ุนุฏุฏ |
|
|
|
260 |
|
00:26:57,610 --> 00:27:01,950 |
|
ุญููููุ ู by Archimedean property |
|
|
|
261 |
|
00:27:10,880 --> 00:27:17,220 |
|
ุงููู ูู 115 ุฑูู
ูุงุ ูุธุฑูุฉ 115 ุจุชููู ุฃู ุนุฏุฏ ุญูููู z |
|
|
|
262 |
|
00:27:17,220 --> 00:27:26,880 |
|
ููุฌุฏ ุนุฏุฏ .. ููุฌุฏ ุนุฏุฏ ุทุจูุนูุ ููุฌุฏ m ูู n ุจุญูุซ ุฃู z |
|
|
|
263 |
|
00:27:26,880 --> 00:27:32,820 |
|
ุฃุตุบุฑ ู
ู nุ ุฅุฐุง |
|
|
|
264 |
|
00:27:32,820 --> 00:27:42,120 |
|
ุงูู
ุฌู
ูุนุฉ ูุฐู ุนูู ุงูุฃูู ูููุง ุนูุตุฑ ูุงุญุฏ ุงููู ูู ุงูู |
|
|
|
265 |
|
00:27:42,120 --> 00:27:49,100 |
|
M ูุฐุงุ ุฃู ุฎูููู ุงุณู
ูู MZ ุชู
ุงู
|
|
|
|
266 |
|
00:27:49,100 --> 00:27:58,000 |
|
ุงูู Archimedean property ุชุถู
ู ุฃูู ููุนุฏุฏ Z ูุฐุง ุงููู |
|
|
|
267 |
|
00:27:58,000 --> 00:28:05,100 |
|
ูู ูุนูู ุงุญูุง ูุฑุถูู ุฃู ุงูุนุฏุฏ ู
ูุฌุจุ ุงูู set ูุฐู ุจูุฏุฑ |
|
|
|
268 |
|
00:28:05,100 --> 00:28:10,460 |
|
ุฃูุงูู ุนุฏุฏ ุทุจูุนู MZ ุฃูุจุฑ ู
ู Zุ ูุจุงูุชุงูู ุงูู
ุฌู
ูุนุฉ ูุฐู |
|
|
|
269 |
|
00:28:10,460 --> 00:28:15,580 |
|
ุชุญุชูู ุชุญุชูู ุนูู ุงูุนูุตุฑ ูุฐุง ุนูู ุงูุฃููุ ูุฃู ูุฐู |
|
|
|
270 |
|
00:28:15,580 --> 00:28:22,720 |
|
ู
ุฌู
ูุนุฉ ุบูุฑ ุฎุงููุฉุ ูุงุถุญุฉ ุงูููุทุฉ ูุฐูุ ุงูุขู ูู ุฎุงุตูุฉ |
|
|
|
271 |
|
00:28:22,720 --> 00:28:29,920 |
|
ุงูุชุฑุชูุจ ุฃู ุจูุณู
ููุง ุงู well ordering propertyุ ููุฐู |
|
|
|
272 |
|
00:28:29,920 --> 00:28:34,400 |
|
ูู ุงูุญูููุฉ ุจุชุฏุฑุณูุง ูู ููุงูุฉ ูู ุขุฎุฑ chapter ูู |
|
|
|
273 |
|
00:28:34,400 --> 00:28:40,640 |
|
ู
ุจุงุฏุฆ ุฑูุงุถูุงุชุ ุงู well ordering property ุจุชููู ุฅู |
|
|
|
274 |
|
00:28:40,640 --> 00:28:46,240 |
|
every non-empty subset of N has a least element |
|
|
|
275 |
|
00:28:46,240 --> 00:28:51,020 |
|
ูุนูู ุฃู ู
ุฌู
ูุนุฉ ุบูุฑ ุฎุงููุฉ ู
ู ู
ุฌู
ูุนุฉ ุงูุฃุนุฏุงุฏ |
|
|
|
276 |
|
00:28:51,020 --> 00:28:55,880 |
|
ุงูุทุจูุนูุฉ ูุงุฒู
ุงููู ุฌู ููุง least elementุ ูุงุฒู
ูููู |
|
|
|
277 |
|
00:28:55,880 --> 00:29:00,520 |
|
ููุง ุฃุตุบุฑ ุนูุตุฑุ ูุนูู ุฎุฏู ุฃูุช ุนูู ุงูุฌุฑุจุฉ ุญุชู ุฎุฏู ุฃู |
|
|
|
278 |
|
00:29:00,520 --> 00:29:04,060 |
|
ู
ุฌู
ูุนุฉ ุฌุฒุฆูุฉ ู
ู ุงูุนุฏุงูุฉ ุงูุทุจูุนูุฉ ูุชุฌุฏ ุฃู ูููุง ุนูุตุฑ |
|
|
|
279 |
|
00:29:04,060 --> 00:29:08,620 |
|
ูููุง ูู ุฃุตุบุฑ ุนูุตุฑุ ููุฐุง ุทุจุนุง ุญุณุจ ุงู well ordering |
|
|
|
280 |
|
00:29:08,620 --> 00:29:12,880 |
|
propertyุ ูุนูู ุฏุฑุณ ุงูู
ุจุงุฏุฆุ ูุฃูุง ุดุฎุตูุง ูู
ุง ุจุฏุฑุณ |
|
|
|
281 |
|
00:29:12,880 --> 00:29:16,400 |
|
ู
ุจุงุฏุฆ ุจุญุงูู ูุนูู ุฃู
ุฑ ุนูููุง ุฃู ุฃุนุทููุง ุญุชู ูู ูุนูู |
|
|
|
282 |
|
00:29:16,400 --> 00:29:21,620 |
|
ุจุตูุฑุฉ ู
ุฎุชุตุฑุฉ ุจูุฑุงุจุด ุงููุงุณ ุงูุซุงููุฉ ูู
ุง ุจุฏุฑุณูุง |
|
|
|
283 |
|
00:29:21,620 --> 00:29:25,340 |
|
ุงูู
ุจุงุฏุฆ ุจุนุชูุฏ ู
ู
ูู ู
ุง ูุตููุด ุฅูููุง ููู ู
ุด ู
ุดููุฉ ูุงู |
|
|
|
284 |
|
00:29:25,340 --> 00:29:26,400 |
|
ูุญู ุจูุญููููู
ุนููุง |
|
|
|
285 |
|
00:29:29,700 --> 00:29:35,480 |
|
ุฅุฐุง ูู ุนูุฏู ูุฐู ุนุจุงุฑุฉ ุนู subset ู
ู ู
ุฌู
ูุนุฉ ุงูุฃุนุฏุงุฏ |
|
|
|
286 |
|
00:29:35,480 --> 00:29:40,060 |
|
ุงูุทุจูุนูุฉ ู non-empty ุฅุฐุง ูุงุฒู
ูููู ูููุง least |
|
|
|
287 |
|
00:29:40,060 --> 00:29:45,640 |
|
element ุฅุฐุง ุจูุฏุฑ ุฃูุงูู NZ ูู ู
ุฌู
ูุนุฉ ุงูุฃุนุฏุงุฏ |
|
|
|
288 |
|
00:29:45,640 --> 00:29:49,300 |
|
ุงูุทุจูุนูุฉ ู ูุฐุง ุงู NZ ูู least element ูู set ูุฐู |
|
|
|
289 |
|
00:29:49,300 --> 00:29:56,530 |
|
ุงูุบูุฑ ุฎุงููุฉ okay ุชู
ุงู
ุฅุฐุง ููุง ููุฌุฏ ุนูุตุฑ nz ุนุฏุฏ |
|
|
|
290 |
|
00:29:56,530 --> 00:30:02,390 |
|
ุทุจูุนู ููุฐุง ุงูุนุฏุฏ ุงูุทุจูุนู ูู ุงู least element ู |
|
|
|
291 |
|
00:30:02,390 --> 00:30:09,530 |
|
easy ุทูุจ |
|
|
|
292 |
|
00:30:09,530 --> 00:30:17,350 |
|
ุงูุขู ูุฐุง ุฃุตุบุฑ ุนูุตุฑ ูู ุงู set ูุฐู ูุนูู ู
ุนูุงู nz ูู |
|
|
|
293 |
|
00:30:17,350 --> 00:30:25,080 |
|
ุทุฑุญุช ู
ู nz ุทุฑุญุช ู
ููุง ูุงุญุฏ ูุทุจุนุง ูุฐุง ุฃุตุบุฑ ู
ู NZ ูุฐุง |
|
|
|
294 |
|
00:30:25,080 --> 00:30:34,920 |
|
ุฃุตุบุฑ ู
ู NZ ุตุญุ ู
ุธุจูุทุ ููุฐุง ุฃุตุบุฑ ุนูุตุฑ ูู set easy |
|
|
|
295 |
|
00:30:34,920 --> 00:30:41,700 |
|
ูุฐุง ุฃุตุบุฑ ุนูุตุฑ ููุฐุง ุฃุตุบุฑ ู
ูู ุฅุฐุง ูุฐุง ุงูุนูุตุฑ ู
ุด |
|
|
|
296 |
|
00:30:41,700 --> 00:30:49,690 |
|
ู
ู
ูู ูููู ู
ูุฌูุฏ ุจุงู set easy ุตุญุ ูุฃู ูุฐุง ุฃุตุบุฑ ู
ู |
|
|
|
297 |
|
00:30:49,690 --> 00:30:53,370 |
|
ุฃุตุบุฑ |
|
|
|
298 |
|
00:30:53,370 --> 00:30:59,410 |
|
ุนูุตุฑ ูู ุงู set ุทูุจุ |
|
|
|
299 |
|
00:30:59,410 --> 00:31:04,290 |
|
ู
ุนูุงู ุฃู ูุฐุง nz ุณุงูุจ ูุงุญุฏ ู
ุง ููุด ูู ez |
|
|
|
300 |
|
00:31:09,210 --> 00:31:13,650 |
|
ูุนูู ูุฐุง ุงูุนูุตุฑ ู
ุด ู
ูุฌูุฏ ูู set ez ูุฐุง ูู |
|
|
|
301 |
|
00:31:13,650 --> 00:31:21,730 |
|
ู
ุนูุงุชู ุจูุญููุด ุงูุตูุฉ ุงูู
ู
ูุฒุฉ ูู set ez ู
ุชู |
|
|
|
302 |
|
00:31:21,730 --> 00:31:27,210 |
|
ุงูุนูุตุฑ ุจูููู ู
ูุฌูุฏ ููุง ุฅุฐุง ุจูุญูู ุงูุตูุฉ ูุฐู ุฃู |
|
|
|
303 |
|
00:31:27,210 --> 00:31:30,390 |
|
ุงูู
ุชุจุงููุฉ ูุฐู ุทุจ ุฅุฐุง ูุงู ุงูุนูุตุฑ ูุง ููุชู
ู ูู set |
|
|
|
304 |
|
00:31:30,390 --> 00:31:36,240 |
|
ู
ุนูุงุชู ุจูุญููุด ุงูู
ุชุจุงููุฉ ุฏู ุจูุญูู ู
ุง ูููุง ุฅุฐุง ูู ุจูุญูู |
|
|
|
305 |
|
00:31:36,240 --> 00:31:43,740 |
|
ู
ุง ูููุง ูุงู nz-1 ุจุฏู ู
ุง ูููู ุฃูุจุฑ ุจูุตูุฑ ุฃุตุบุฑ ู
ู ุฃู |
|
|
|
306 |
|
00:31:43,740 --> 00:31:47,900 |
|
ูุณุงูู ุงู z ุฅุฐุง ููู ุงูุนูุตุฑ ูุฐุง ู
ุด ู
ูุฌูุฏ ูู ez |
|
|
|
307 |
|
00:31:47,900 --> 00:31:56,560 |
|
ู
ุนูุงุชู ุจูุทูุน ุฃุตุบุฑ ู
ู ุฃู ูุณุงูู ุงู z ูุงู z ูู ุฃุตุบุฑ |
|
|
|
308 |
|
00:31:56,560 --> 00:31:59,440 |
|
ุนูุตุฑ ูู set ez |
|
|
|
309 |
|
00:32:06,800 --> 00:32:16,820 |
|
ู ุงู z ุฃุตุบุฑ ู
ู n ุงุญูุง ูููุง ุฃูู ุงู .. |
|
|
|
310 |
|
00:32:16,820 --> 00:32:18,760 |
|
ุฃู ุฃุตุบุฑ ู
ู ุงู nz |
|
|
|
311 |
|
00:32:44,130 --> 00:32:50,890 |
|
ุงูุขู ุฒู ูุฐุง ุนูุตุฑ ูุนูู |
|
|
|
312 |
|
00:32:50,890 --> 00:32:57,270 |
|
ูุฐุง ุจููุชู
ู ุฅูู ุงู set ez ูุฃูู ุฃุตุบุฑ ุนูุตุฑ ูููุง |
|
|
|
313 |
|
00:32:57,270 --> 00:33:06,070 |
|
ูููุชู
ู ุฅูููุง ูุฅู ุฒู ููุชู
ู ู ez ู
ุนูุงุชู ุงูุนูุตุฑ ุฒู |
|
|
|
314 |
|
00:33:06,070 --> 00:33:11,050 |
|
ูุฐุง ุฃูุจุฑ ู
ู ุงู z ุงูุนูุตุฑ ุฒู ุฃูุจุฑ ู
ู ุงู z ูู
ู ููุง ุฃู |
|
|
|
315 |
|
00:33:11,050 --> 00:33:17,910 |
|
ุฒู ุณุงูุจ ูุงุญุฏ ู
ุด ู
ูุฌูุฏ ูู ez ููู ุฃุตุบุฑ ู
ู ุฃู ูุณุงูู |
|
|
|
316 |
|
00:33:17,910 --> 00:33:24,290 |
|
ุงู z ูุจุงูุชุงูู ููู ุจูููู ุฃุซุจุชูุง ุงูู
ุชุจุงููุฉ ูุฐู ุงููู |
|
|
|
317 |
|
00:33:24,290 --> 00:33:29,090 |
|
ูู ุงููู ุงุญูุง ุนุงูุฒููู ูู ุงูุฌุฒุก c ูุฃู ููู ุจูููู |
|
|
|
318 |
|
00:33:29,090 --> 00:33:34,420 |
|
ูู
ููุง ุจุฑูุงู ุงูุฌุฒุก c ุงูุฃูู ุจุงููุณุจุฉ ููุฌุฒุก ุงูุฃุฎูุฑ ูุฐุง |
|
|
|
319 |
|
00:33:34,420 --> 00:33:42,460 |
|
ูุนูู ุนุจุงุฑุฉ ุนู ููุณ ู
ุด alternative form ูู |
|
|
|
320 |
|
00:33:42,460 --> 00:33:46,180 |
|
Archimedean property ููุณ ุตูุฑุฉ ุฃุฎุฑู ูุฎุงุตูุฉ |
|
|
|
321 |
|
00:33:46,180 --> 00:33:51,500 |
|
Archimedean ุจุณ ู
ุฌุฑุฏ ู
ุซุงูุ ู
ุฌุฑุฏ ู
ุซุงู ุฃุนุทู ุณุช ูุงูุณุช |
|
|
|
322 |
|
00:33:51,500 --> 00:33:56,290 |
|
ูุฐู bounded bounded above by one bounded below by |
|
|
|
323 |
|
00:33:56,290 --> 00:34:02,570 |
|
zero ูุจุฑูุงู |
|
|
|
324 |
|
00:34:02,570 --> 00:34:12,350 |
|
ุฐูู ุงูุจุฑูุงู ุณูู ูุดูู |
|
|
|
325 |
|
00:34:12,350 --> 00:34:12,950 |
|
ุงูุจุฑูุงู |
|
|
|
326 |
|
00:34:29,410 --> 00:34:34,370 |
|
ูู
ุงู ู
ุฑุฉ ุงู set ูุฐู ูู ุนุจุงุฑุฉ ุนู .. ููุชุจูุง ุฅูุด ูู |
|
|
|
327 |
|
00:34:34,370 --> 00:34:37,710 |
|
ุงู |
|
|
|
328 |
|
00:34:37,710 --> 00:34:44,490 |
|
set is ุนุจุงุฑุฉ ุนู ุงู set of all ูุงุญุฏ ุนูู n ุญูุซ n is |
|
|
|
329 |
|
00:34:44,490 --> 00:34:45,650 |
|
natural number |
|
|
|
330 |
|
00:34:51,720 --> 00:34:59,580 |
|
ูุงุถุญ ุฃู ุงูุนูุตุฑ ุฃุตุบุฑ ู
ู ุฃู ูุณุงูู ูุงุญุฏ ุนูู n ููู n |
|
|
|
331 |
|
00:34:59,580 --> 00:35:11,180 |
|
ููุชู
ู ุฅูู n ุตุญุ ูุจุงูุชุงูู ุฅุฐุง zero is lower lower |
|
|
|
332 |
|
00:35:11,180 --> 00:35:22,090 |
|
bound ูู
ูู of set s ูุจุงูุชุงูู ุงู infimum ุฅุฐุง it has |
|
|
|
333 |
|
00:35:22,090 --> 00:35:25,890 |
|
an infimum by the infimum property ุงู infimum |
|
|
|
334 |
|
00:35:25,890 --> 00:35:30,630 |
|
property ุจุชููู ูู set bounded below ุจูููู ุงู ูู |
|
|
|
335 |
|
00:35:30,630 --> 00:35:37,070 |
|
ุฅููุง infimum say w ุจูุณุงูู infimum s ุฅุฐุง ููุง say |
|
|
|
336 |
|
00:35:37,070 --> 00:35:41,290 |
|
ุฏุนูุง ูุณู
ู ุงู infimum ูุฐุง ุงููู ุฅุญูุง ุถู
ููู ูุฌูุฏู |
|
|
|
337 |
|
00:35:41,290 --> 00:35:48,760 |
|
ุจุงุณุชุฎุฏุงู
ุงู infimum property ุฏุนูุง ูุณู
ูู w ุชู
ุงู
ุ ุฅุฐุง |
|
|
|
338 |
|
00:35:48,760 --> 00:35:55,540 |
|
ุงูู ุงู w ูุฐุง ูู ุฃูุจุฑ ูู ุฃูุจุฑ lower bound ูุณุช |
|
|
|
339 |
|
00:35:55,540 --> 00:36:02,640 |
|
s ูุงูุนูุตุฑ lower bound ุฅุฐุง ุฃููุฏ ุงู w ุฃูุจุฑ ู
ู ุฃู ูุณุงูู |
|
|
|
340 |
|
00:36:02,640 --> 00:36:09,100 |
|
ูุงูุนูุตุฑ ุตุญุ ุงูุนูุตุฑ ูููุง ูุฐู lower bound ูุณุช ู ุงู w |
|
|
|
341 |
|
00:36:09,100 --> 00:36:11,960 |
|
ูู ุงู infimum ุงููู ูู ุฃูุจุฑ lower bound ุฅุฐุง ุงู w |
|
|
|
342 |
|
00:36:11,960 --> 00:36:16,830 |
|
ุฃูุจุฑ ู
ู ุฃู ุฃูุจุฑ ู
ู ุฃู ูุณุงูู ุงูุนูุตุฑ ุทุจ ุงุญูุง ุนุงูุฒูู |
|
|
|
343 |
|
00:36:16,830 --> 00:36:22,630 |
|
ูุซุจุช ุงุญูุง ุนุงูุฒูู ูู ุงูููุงูุฉ ูุซุจุช ุฃู ุงู w ูุฐุง |
|
|
|
344 |
|
00:36:22,630 --> 00:36:27,490 |
|
ุงููู ูู ุงู infimum ุจูุณุงูู ุงูุนูุตุฑ ูุฐุง ุงููู ุนุงูุฒูู |
|
|
|
345 |
|
00:36:27,490 --> 00:36:33,570 |
|
ูุซุจุชู ุฃูุง ุนูุฏู w ุฃูุจุฑ ู
ู ุฃู ูุณุงูู ุงูุนูุตุฑ ููู ุฃูุง ุจุฏู |
|
|
|
346 |
|
00:36:33,570 --> 00:36:39,750 |
|
ุฃุซุจุช ุฃู ุงู w ุจูุณุงูู ุงูุนูุตุฑุ ุชู
ุงู
ุ |
|
|
|
347 |
|
00:36:39,750 --> 00:36:41,510 |
|
ููุฅุซุจุงุช ุฐูู |
|
|
|
348 |
|
00:36:47,400 --> 00:36:54,780 |
|
ุฎููููุง ูุงุฎุฏ ุฃู ุฅุจุณููู ุฃูุจุฑ ู
ู ุงูุนูุตุฑ ูุญุณุจ |
|
|
|
349 |
|
00:36:54,780 --> 00:36:59,600 |
|
ุงู Archimedean property ุงููู ูู ุงูุฌุฒุก ุจ ุงูู
ูุงูุฆ |
|
|
|
350 |
|
00:36:59,600 --> 00:37:04,640 |
|
Archimedean property ูุฃู ุนุฏุฏ ู
ูุฌุจ ุฅุจุณููู ุจูุฏุฑ |
|
|
|
351 |
|
00:37:04,640 --> 00:37:08,880 |
|
ุฃูุงูู ุนุฏุฏ ุทุจูุนู ู
ูููุจู ูุฃุตุบุฑ ู
ู ุฅุจุณูููุ ุตุญุ ูุฐุง |
|
|
|
352 |
|
00:37:08,880 --> 00:37:12,000 |
|
ุงูุฌุฒุก ุจ ู
ู ุงููุชูุฌุฉ |
|
|
|
353 |
|
00:37:14,540 --> 00:37:18,960 |
|
ุฅู ุฃูุง ูู ุนูุฏู ูู 1 ุนูู n ุฃุตุบุฑ ู
ู epsilon ููุฌุฏ |
|
|
|
354 |
|
00:37:18,960 --> 00:37:24,760 |
|
n ูุฐุง ุงูุทุจูุนู ุจุญูุซ 1 ุนูู n ุฃุตุบุฑ ู
ู epsilon ู 1 |
|
|
|
355 |
|
00:37:24,760 --> 00:37:30,700 |
|
ุนูู n ูุฐู ุนูุตุฑ ุงู 1 ุนูู n ูุฐู ุนุจุงุฑุฉ ุนู ุนูุตุฑ ูู ุงู |
|
|
|
356 |
|
00:37:30,700 --> 00:37:37,180 |
|
set s ู ุงู w ูุฐู lower bound ุฅููุง ุงู w ูุฐู ูู ุงู |
|
|
|
357 |
|
00:37:37,180 --> 00:37:44,890 |
|
minimum ูู set s ู 1 ุนูู n ุนูุตุฑ ูู s ุฅุฐุง ุงู w ุจูุทูุน |
|
|
|
358 |
|
00:37:44,890 --> 00:37:48,490 |
|
ุฃุตุบุฑ ู
ู ุฃู ูุณุงูู ุฃู ุนูุตุฑ ูู ุงู set ูุฃูู lower bound |
|
|
|
359 |
|
00:37:48,490 --> 00:37:53,830 |
|
ุตุญุ ููุจู ุดููุฉ ูููุง ุฅู ุงู w ูู u ุจุณ ูุชุฌูุง ุฅู ุงู w |
|
|
|
360 |
|
00:37:53,830 --> 00:37:57,990 |
|
ุงููู ูู ุงู infimum ุฃูุจุฑ ู
ู ุฃู ูุณุงูู ุงูุนูุตุฑ ุงููู ูู |
|
|
|
361 |
|
00:37:57,990 --> 00:38:02,190 |
|
lower bound ููุฐุง ุฃูุจุฑ lower bound ุงูุขู ูุฐู ุงู |
|
|
|
362 |
|
00:38:02,190 --> 00:38:06,850 |
|
epsilon ุนุดูุงุฆูุฉ ุฅู ุงูููุงู
ูุฐุง ุตุญูุญ ููู epsilon |
|
|
|
363 |
|
00:38:06,850 --> 00:38:13,170 |
|
ุฃูุจุฑ ู
ู ุงูุนูุตุฑ ุฅุฐุง ูู ุนูุฏู ูุธุฑูุฉ ูุงุญุฏ ุซู
ุงููุฉ ุจุชููู |
|
|
|
364 |
|
00:38:13,170 --> 00:38:19,630 |
|
ูููุ ูุงูุช ุจุชููู ุฅู ูู ูุงู ุงู a ุนุฏุฏ ุบูุฑ ุณุงูุจ ู ุฃุตุบุฑ |
|
|
|
365 |
|
00:38:19,630 --> 00:38:24,810 |
|
ู
ู epsilon ููู epsilon ุฃูุจุฑ ู
ู ุงูุนูุตุฑ ููุฐุง ุจูููุฏ ุฅูู ุฃู |
|
|
|
366 |
|
00:38:24,810 --> 00:38:33,630 |
|
a ุจูุณุงูู ุงูุนูุตุฑุ ุตุญุ ูุฐู ูุธุฑูุฉ ูุงุญุฏ ุซู
ุงููุฉุ ุตุญุ ูู ุงู |
|
|
|
367 |
|
00:38:33,630 --> 00:38:39,230 |
|
w ุงูุชู ูู ุงู a ุฃูุจุฑ ู
ู ุฃู ูุณุงูู ุงูุนูุตุฑ ูุฃุตุบุฑ ู
ู |
|
|
|
368 |
|
00:38:39,230 --> 00:38:44,590 |
|
ุฅุจุณููู ููู ุฅุจุณููู ุนุฏุฏ ู
ูุฌุจ ูุญุณุจ ุงููุธุฑูุฉ ูุฐู ุจูุทูุน |
|
|
|
369 |
|
00:38:44,590 --> 00:38:50,590 |
|
w ุจูุณุงูู ุงูุนูุตุฑ ููุฐุง ุงููู ุงุญูุง ุนุงูุฒููู ูุซุจุชูุ ุชู
ุงู
ุ ุฅุฐู |
|
|
|
370 |
|
00:38:50,590 --> 00:38:56,050 |
|
ูุฐุง ุจูุซุจุช ุฃู ุงู infimum ููุณุช ุฏู ุฃู ูู sequence |
|
|
|
371 |
|
00:38:56,050 --> 00:39:03,650 |
|
ูุงุญุฏ ุนูู n ูู ุงูุนูุตุฑุ ุชู
ุงู
ุ ูููุง ุงุณุชุฎุฏู
ูุง ูู ุงูุจุฑูุงู |
|
|
|
372 |
|
00:39:03,650 --> 00:39:09,010 |
|
ุงู Archimedean property ุงูุตูุฑุฉ ุจูู ู
ู ุงู |
|
|
|
373 |
|
00:39:09,010 --> 00:39:24,610 |
|
Archimedean property ูู |
|
|
|
374 |
|
00:39:24,610 --> 00:39:27,390 |
|
ุงููุธุฑูุฉ ูุฐู ุงุญูุง ุฃุซุจุชูุง ูุจู ููู |
|
|
|
375 |
|
00:39:32,670 --> 00:39:41,530 |
|
ุงุญูุง ุฃุซุจุชูุง ุณุงุจูุง ูู |
|
|
|
376 |
|
00:39:41,530 --> 00:39:51,490 |
|
ุงูุณุงุจู ุฃุซุจุชูุง ุฃูู ูู ูุงู ูุธุฑูุฉ ุฃู ู
ุซุงู ุจุชููู ุฃู |
|
|
|
377 |
|
00:39:51,490 --> 00:39:55,550 |
|
ุฌุฐุฑ 2 is not a rational number |
|
|
|
378 |
|
00:39:58,290 --> 00:40:04,470 |
|
ุฃู ุงูุนุฏุฏ ุฌุฐุฑ ุงุซููู is irrational ูุนู
ู
ุธุจูุท ูุทุจุนุง |
|
|
|
379 |
|
00:40:04,470 --> 00:40:08,730 |
|
ูู ุงูุจุฑูุงู ูุฐุง ุงุนุชู
ุฏูุง ูู ุงูุจุฑูุงู ุนูู ุฃู ุฌุฐุฑ |
|
|
|
380 |
|
00:40:08,730 --> 00:40:12,850 |
|
ุงุซููู ูุฐุง ุนุฏุฏ ุญูููู ูุนูู exist ูู ุฃุญุฏ ุงูุนุฏุงุฏ |
|
|
|
381 |
|
00:40:12,850 --> 00:40:20,950 |
|
ุงูุญููููุฉ ููุฑุถูุง ุนู
ููุง ุจุฑูุงู ุบูุฑ ู
ุจุงุดุฑ ูุฑุถูุง ุฃูู |
|
|
|
382 |
|
00:40:20,950 --> 00:40:26,450 |
|
ุฌุฐุฑ ุงุซููู ููุชู
ู ู q ุฃู ุนุฏุฏ ูุณุจู ููุตููุง ุฅูู ุชูุงูุถ |
|
|
|
383 |
|
00:40:26,450 --> 00:40:32,380 |
|
ุชู
ุงู
ุงูููู
ุจูุฑุฌุน ูููุฑุงุก ุดููุฉ ูุจูููู ุงุญูุง ููุง ูู |
|
|
|
384 |
|
00:40:32,380 --> 00:40:36,220 |
|
ุงููุธุฑูุฉ ูุฐู ูู ุงูุจุฑูุงู ุฃู ูู ุงููุธุฑูุฉ ูุฐู ุงูุชุฑุถูุง |
|
|
|
385 |
|
00:40:36,220 --> 00:40:42,140 |
|
ุฌุฏูุง ุฃู ุงูุชุฑุถูุง ู
ุณุจูุง ุฃู ุฌุฐุฑ ุงุซููู ูุฐุง ุนุฏุฏ ุญูููู |
|
|
|
386 |
|
00:40:42,140 --> 00:40:47,600 |
|
ุงูููู
ููุฑุฌุน ููุซุจุช ุฃู existence of ุฌุฐุฑ ุงุซููู ูุนูู |
|
|
|
387 |
|
00:40:47,600 --> 00:40:51,720 |
|
ุฌุฐุฑ ุงุซููู ูุฐุง ุจูุซุจุช ุฃู ูู ูุนูุง ุนุฏุฏ ุญูููู ู
ุด ุนุฏุฏ |
|
|
|
388 |
|
00:40:51,720 --> 00:40:53,040 |
|
ุขุฎุฑ ู
ุด ุนุฏุฏ ุชุฎูููู |
|
|
|
389 |
|
00:40:55,660 --> 00:41:02,360 |
|
ููุฐุง ูุนูู ุงูุจุฑูุงู ุฃู |
|
|
|
390 |
|
00:41:02,360 --> 00:41:05,560 |
|
ูุธุฑููุง ุฏู ุจุงูุธุจุท ุจุชููู ุงูู ุฌุฐุฑ ุงุซููู ูุนุฏุฏ ุญูููู |
|
|
|
391 |
|
00:41:05,560 --> 00:41:14,760 |
|
ูุนูู ููุฌุฏ ุนุฏุฏ ุญูููู ู
ูุฌุจ x ูู
ุฑุจุนู ูู ุงุซููู okay |
|
|
|
392 |
|
00:41:16,030 --> 00:41:20,890 |
|
ูุจุฑูุงู ุงููุธุฑูุฉ ูุฐู ูุนูู ู
ู
ูู ุดููุฉ ุทููู ููู ู
ูุฌูุฏ |
|
|
|
393 |
|
00:41:20,890 --> 00:41:29,250 |
|
ุนูุฏูู
ุจุงูุชูุตูู ููุนูู ู
ูุฌูุฏ ุฅูู ุฃุนุฒุงุก ููุนูู ู
ุด ุตุนุจ |
|
|
|
394 |
|
00:41:29,250 --> 00:41:35,490 |
|
ุฃููู
ูุนูู ุชูุฑุคูุง ุจู
ุฌู
ูุนุชูู
ู ุชููู
ูู ูุฃุฑุฌู ุฃููู
|
|
|
|
395 |
|
00:41:35,490 --> 00:41:39,990 |
|
ุชูุฑุคูุง ุงูุจุฑูุงู ู ุชุญุงูููุง ุชููู
ูู ู ู
ู
ูู ูุนูู ุงูู
ุฑุฉ |
|
|
|
396 |
|
00:41:39,990 --> 00:41:45,510 |
|
ุงูุฌุงูุฉ ุฅู ุดุงุก ุงููู ูุณุฃู ูุญุงูู ูู
ุฑ ุนููู ุฃู ูุญุงูู |
|
|
|
397 |
|
00:41:45,510 --> 00:41:52,090 |
|
ูุจุฑูู ููุตุฑ ุนูููุ ุทุจุนุงุ ุฅุฐุง ููุชูู ุจูุฐุง ุงููุฏุฑ ูููู
ู |
|
|
|
398 |
|
00:41:52,090 --> 00:41:53,230 |
|
ุฅู ุดุงุก ุงููู ุงูู
ุฑุฉ ุงูุฌุงูุฉ |
|
|