aaparajit02 commited on
Commit
f54201f
·
1 Parent(s): 9495ffd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +26 -2
README.md CHANGED
@@ -13,7 +13,31 @@ dataset_info:
13
  num_examples: 39238
14
  download_size: 10866820110
15
  dataset_size: 10917088956.322
 
 
 
 
 
 
 
 
 
 
 
 
16
  ---
17
- # Dataset Card for "punjabi-asr"
18
 
19
- [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  num_examples: 39238
14
  download_size: 10866820110
15
  dataset_size: 10917088956.322
16
+ task_categories:
17
+ - automatic-speech-recognition
18
+ language:
19
+ - pa
20
+ tags:
21
+ - punjabi
22
+ - asr
23
+ - transcription
24
+ - translation
25
+ pretty_name: Punjabi ASR
26
+ size_categories:
27
+ - 10K<n<100K
28
  ---
 
29
 
30
+ # Dataset for Punjabi ASR
31
+ Shrutilipi is a labelled ASR corpus obtained by mining parallel audio and text pairs at the document scale from All India Radio news bulletins for 12 Indian languages: Bengali, Gujarati, Hindi, Kannada, Malayalam, Marathi, Odia, Punjabi, Sanskrit, Tamil, Telugu, Urdu. The corpus has over 6400 hours of data across all languages.
32
+
33
+ ```
34
+ @misc{https://doi.org/10.48550/arxiv.2208.12666,
35
+ doi = {10.48550/ARXIV.2208.12666},
36
+ url = {https://arxiv.org/abs/2208.12666},
37
+ author = {Bhogale, Kaushal Santosh and Raman, Abhigyan and Javed, Tahir and Doddapaneni, Sumanth and Kunchukuttan, Anoop and Kumar, Pratyush and Khapra, Mitesh M.},
38
+ title = {Effectiveness of Mining Audio and Text Pairs from Public Data for Improving ASR Systems for Low-Resource Languages},
39
+ publisher = {arXiv},
40
+ year = {2022},
41
+ copyright = {arXiv.org perpetual, non-exclusive license}
42
+ }
43
+ ```