|
import os |
|
import datasets |
|
from PIL import ImageOps |
|
|
|
_CITATION = """\ |
|
@InProceedings{huggingface:dataset, |
|
title = {Processed KHATT paragrpah dataset}, |
|
author={Ahmed Alnaggar}, |
|
year={2024} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
A curated version of KHATT paragraph dataset containing 3996 images and their crossponding Arabic paragraphs |
|
""" |
|
_HOMEPAGE = "https://huggingface.co/datasets/a-alnaggar/khatt-paragraphs" |
|
|
|
_LICENSE = "" |
|
|
|
_REPO = "https://huggingface.co/datasets/a-alnaggar/khatt-paragraphs" |
|
|
|
class KhattPara(datasets.GeneratorBasedBuilder): |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
'text': datasets.Value("string"), |
|
'image': datasets.Image(), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
images_archive = dl_manager.download(f"{_REPO}/resolve/main/khatt-paragraphs-images.tar.gz") |
|
image_iters = dl_manager.iter_archive(images_archive) |
|
text_archive = dl_manager.download_and_extract(f"{_REPO}/resolve/main/khatt-paragraphs-text.tar.gz") |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"images": image_iters, |
|
"text_archive_path": text_archive |
|
} |
|
), |
|
] |
|
|
|
def _generate_examples(self, images, text_archive_path): |
|
"""Returns inverted image and Arabic text.""" |
|
for idx, (filepath, image) in enumerate(images): |
|
text_path = os.path.basname(filepath))[:-4] + ".txt" |
|
text = self.read_arabic_text_file(os.path.join(text_archive_path,text_path)) |
|
|
|
yield idx, { |
|
"image": {"path": filepath, "bytes": ImageOps.invert(image.read())}, |
|
"text": text, |
|
} |
|
|
|
@staticmethod |
|
def read_arabic_text_file(file_path): |
|
with open(file_path, 'r', encoding='iso-8859-1') as file: |
|
lines = file.readlines() |
|
return '\n'.join(lines) |
|
|