Ziyuan111 commited on
Commit
b6c1cca
1 Parent(s): efdd91c

Upload durhamtrees.py

Browse files
Files changed (1) hide show
  1. durhamtrees.py +229 -0
durhamtrees.py ADDED
@@ -0,0 +1,229 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """DurhamTrees
3
+
4
+ Automatically generated by Colaboratory.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1czig7JIbqTKp9wNUIRcdMEDF3pFgtxKv
8
+ """
9
+
10
+ import pandas as pd
11
+ import geopandas as gpd
12
+ from datasets import (
13
+ GeneratorBasedBuilder, Version, DownloadManager, SplitGenerator, Split,
14
+ Features, Value, BuilderConfig, DatasetInfo
15
+ )
16
+ import matplotlib.pyplot as plt
17
+ import seaborn as sns
18
+ import csv
19
+ import json
20
+ from shapely.geometry import Point
21
+ # URL definitions
22
+ _URLS = {
23
+ "first_domain1": {
24
+ "csv_file": "https://drive.google.com/uc?export=download&id=18HmgMbtbntWsvAySoZr4nV1KNu-i7GCy",
25
+ "geojson_file": "https://drive.google.com/uc?export=download&id=1cbn7EY7RofXN7c6Ph0eIGFIZowPZ5lKE",
26
+ },
27
+ "first_domain2": {
28
+ "csv_file2": "https://drive.google.com/uc?export=download&id=1RVdaI5dSTPStjhOHO40ypDv2cAQZpi_Y",
29
+ },
30
+ }
31
+
32
+ # Combined Dataset Class
33
+ class DurhamTrees(GeneratorBasedBuilder):
34
+ VERSION = Version("1.0.0")
35
+
36
+ class MyConfig(BuilderConfig):
37
+ def __init__(self, **kwargs):
38
+ super().__init__(**kwargs)
39
+
40
+ BUILDER_CONFIGS = [
41
+ MyConfig(name="class1_domain1", description="this is combined of csv and geojson"),
42
+ MyConfig(name="class2_domain1", description="this is csv file"),
43
+ ]
44
+
45
+ def _info(self):
46
+ return DatasetInfo(
47
+ description="This dataset combines information from both classes, with additional processing for csv_file2.",
48
+ features=Features({
49
+ "feature1_from_class1": Value("string"),
50
+ "geometry":Value("string"),
51
+ "OBJECTID": Value("int64"),
52
+ "X": Value("float64"),
53
+ "Y": Value("float64"),
54
+ "feature1_from_class2": Value("string"),
55
+ "streetaddress": Value("string"),
56
+ "city": Value("string"),
57
+ "facilityid": Value("int64"),
58
+ "present": Value("string"),
59
+ "genus": Value("string"),
60
+ "species": Value("string"),
61
+ "commonname": Value("string"),
62
+ "diameterin": Value("float64"),
63
+ "condition": Value("string"),
64
+ "neighborhood": Value("string"),
65
+ "program": Value("string"),
66
+ "plantingw": Value("string"),
67
+ "plantingcond": Value("string"),
68
+ "underpwerlins": Value("string"),
69
+ "GlobalID": Value("string"),
70
+ "created_user": Value("string"),
71
+ "last_edited_user": Value("string"),
72
+ "isoprene": Value("float64"),
73
+ "monoterpene": Value("float64"),
74
+ "monoterpene_class2": Value("float64"),
75
+ "vocs": Value("float64"),
76
+ "coremoved_ozperyr": Value("float64"),
77
+ "coremoved_dolperyr": Value("float64"),
78
+ "o3removed_ozperyr": Value("float64"),
79
+ "o3removed_dolperyr": Value("float64"),
80
+ "no2removed_ozperyr": Value("float64"),
81
+ "no2removed_dolperyr": Value("float64"),
82
+ "so2removed_ozperyr": Value("float64"),
83
+ "so2removed_dolperyr": Value("float64"),
84
+ "pm10removed_ozperyr": Value("float64"),
85
+ "pm10removed_dolperyr": Value("float64"),
86
+ "pm25removed_ozperyr": Value("float64"),
87
+ "o2production_lbperyr": Value("float64"),
88
+ "replacevalue_dol": Value("float64"),
89
+ "carbonstorage_lb": Value("float64"),
90
+ "carbonstorage_dol": Value("float64"),
91
+ "grosscarseq_lbperyr": Value("float64"),
92
+ "grosscarseq_dolperyr": Value("float64"),
93
+ "avoidrunoff_ft2peryr": Value("float64"),
94
+ "avoidrunoff_dol2peryr": Value("float64"),
95
+ "polremoved_ozperyr": Value("float64"),
96
+ "polremoved_dolperyr": Value("float64"),
97
+ "totannbenefits_dolperyr": Value("float64"),
98
+ "leafarea_sqft": Value("float64"),
99
+ "potevapotran_cuftperyr": Value("float64"),
100
+ "evaporation_cuftperyr": Value("float64"),
101
+ "transpiration_cuftperyr": Value("float64"),
102
+ "h2ointercept_cuftperyr": Value("float64"),
103
+ "carbonavoid_lbperyr": Value("float64"),
104
+ "carbonavoid_dolperyr": Value("float64"),
105
+ "heating_mbtuperyr": Value("float64"),
106
+ "heating_dolperyrmbtu": Value("float64"),
107
+ "heating_kwhperyr": Value("float64"),
108
+ "heating_dolperyrmwh": Value("float64"),
109
+ "cooling_kwhperyr": Value("float64"),
110
+ "cooling_dolperyr": Value("float64"),
111
+ "totalenerg_dolperyr": Value("float64"),
112
+ }),
113
+ supervised_keys=None,
114
+ homepage="https://github.com/AuraMa111?tab=repositories",
115
+ citation="Citation for the combined dataset",
116
+ )
117
+
118
+ def _split_generators(self, dl_manager):
119
+ downloaded_files = dl_manager.download_and_extract(_URLS)
120
+
121
+ return [
122
+ SplitGenerator(
123
+ name=Split.TRAIN,
124
+ gen_kwargs={
125
+ "class1_data_file": downloaded_files["first_domain1"]["csv_file"],
126
+ "class1_geojson_file": downloaded_files["first_domain1"]["geojson_file"],
127
+ "class2_data_file": downloaded_files["first_domain2"]["csv_file2"],
128
+ "split": Split.TRAIN,
129
+ },
130
+ ),
131
+ ]
132
+ def _generate_examples(self, class1_data_file, class1_geojson_file, class2_data_file, split):
133
+ class1_examples = list(self._generate_examples_from_class1(class1_data_file, class1_geojson_file))
134
+ class2_examples = list(self._generate_examples_from_class2(class2_data_file))
135
+ examples = class1_examples + class2_examples
136
+ df = pd.DataFrame(examples)
137
+
138
+
139
+
140
+ for id_, example in enumerate(examples):
141
+ yield id_, example
142
+
143
+
144
+
145
+
146
+
147
+ def _generate_examples(self, class1_data_file, class1_geojson_file, class2_data_file, split):
148
+ class1_examples = list(self._generate_examples_from_class1(class1_data_file, class1_geojson_file))
149
+ class2_examples = list(self._generate_examples_from_class2(class2_data_file))
150
+ examples = class1_examples + class2_examples
151
+ df = pd.DataFrame(examples)
152
+
153
+ for id_, example in enumerate(examples):
154
+ if not isinstance(example, dict):
155
+ # Convert the example to a dictionary if it's not
156
+ example = {"example": example}
157
+ yield id_, example
158
+
159
+ def _generate_examples_from_class1(self, csv_filepath, geojson_filepath):
160
+ columns_to_extract = ["OBJECTID", "X", "Y"] # Remove "geometry" from columns_to_extract
161
+ csv_data = pd.read_csv(csv_filepath)
162
+
163
+ with open(geojson_filepath, 'r') as file:
164
+ geojson_dict = json.load(file)
165
+ gdf = gpd.GeoDataFrame.from_features(geojson_dict['features'], crs="EPSG:4326") # Specify the CRS if known
166
+ merged_data = gdf.merge(csv_data, on='OBJECTID')
167
+ final_data = merged_data[columns_to_extract + ['geometry']] # Include 'geometry' in the final_data
168
+ for id_, row in final_data.iterrows():
169
+ example = row.to_dict()
170
+ yield id_, example
171
+
172
+
173
+
174
+
175
+
176
+ def _generate_examples_from_class2(self, csv_filepath2):
177
+ csv_data2 = pd.read_csv(csv_filepath2)
178
+
179
+
180
+ columns_to_extract = [
181
+ "streetaddress", "city", "facilityid", "present", "genus", "species",
182
+ "commonname", "diameterin", "condition", "neighborhood", "program", "plantingw",
183
+ "plantingcond", "underpwerlins", "GlobalID", "created_user", "last_edited_user", "isoprene", "monoterpene",
184
+ "monoterpene", "vocs", "coremoved_ozperyr", "coremoved_dolperyr",
185
+ "o3removed_ozperyr", "o3removed_dolperyr", "no2removed_ozperyr", "no2removed_dolperyr",
186
+ "so2removed_ozperyr", "so2removed_dolperyr", "pm10removed_ozperyr", "pm10removed_dolperyr",
187
+ "pm25removed_ozperyr", "o2production_lbperyr", "replacevalue_dol", "carbonstorage_lb",
188
+ "carbonstorage_dol", "grosscarseq_lbperyr", "grosscarseq_dolperyr", "polremoved_ozperyr", "polremoved_dolperyr",
189
+ "totannbenefits_dolperyr", "leafarea_sqft", "potevapotran_cuftperyr", "evaporation_cuftperyr",
190
+ "transpiration_cuftperyr", "h2ointercept_cuftperyr",
191
+ "carbonavoid_lbperyr", "carbonavoid_dolperyr", "heating_mbtuperyr",
192
+ "heating_dolperyrmbtu", "heating_kwhperyr", "heating_dolperyrmwh", "cooling_kwhperyr",
193
+ "cooling_dolperyr", "totalenerg_dolperyr",
194
+ ]
195
+
196
+ final_data = csv_data2[columns_to_extract]
197
+ for id_, row in final_data.iterrows():
198
+ example = row.to_dict()
199
+ non_empty_example = {key: value for key, value in example.items() if pd.notna(value)}
200
+ yield id_, example
201
+
202
+
203
+
204
+ def _correlation_analysis(self, df):
205
+ correlation_matrix = df.corr()
206
+ sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', linewidths=.5)
207
+ plt.title("Correlation Analysis")
208
+ plt.show()
209
+
210
+
211
+
212
+
213
+ # Create an instance of the DurhamTrees class
214
+ durham_trees_dataset = DurhamTrees(name='class1_domain1')
215
+
216
+ # Build the dataset
217
+ durham_trees_dataset.download_and_prepare()
218
+
219
+ # Access the dataset
220
+ dataset = durham_trees_dataset.as_dataset()
221
+
222
+ # Create an instance of the DurhamTrees class for another configuration
223
+ durham_trees_dataset_another = DurhamTrees(name='class2_domain1')
224
+
225
+ # Build the dataset for the new instance
226
+ durham_trees_dataset_another.download_and_prepare()
227
+
228
+ # Access the dataset for the new instance
229
+ dataset_another = durham_trees_dataset_another.as_dataset()