Ziyuan111 commited on
Commit
4563bbf
·
verified ·
1 Parent(s): db18056

Upload durhamtrees.py

Browse files
Files changed (1) hide show
  1. durhamtrees.py +165 -0
durhamtrees.py ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """DurhamTrees
3
+
4
+ Automatically generated by Colaboratory.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1Hvt3Y131OjTl7oGQGS55S_v7-aYu1Yj8
8
+ """
9
+
10
+ from datasets import DatasetBuilder, DownloadManager, DatasetInfo, SplitGenerator, Split
11
+ from datasets.features import Features, Value, ClassLabel
12
+ import pandas as pd
13
+ import geopandas as gpd
14
+ import matplotlib.pyplot as plt
15
+ import csv
16
+ import json
17
+ import os
18
+ from typing import List
19
+ import datasets
20
+
21
+
22
+ class DurhamTrees(DatasetBuilder):
23
+ _URLS = {
24
+ "csv": "https://drive.google.com/uc?export=download&id=18HmgMbtbntWsvAySoZr4nV1KNu-i7GCy",
25
+ "geojson": "https://drive.google.com/uc?export=download&id=1jpFVanNGy7L5tVO-Z_nltbBXKvrcAoDo"
26
+ }
27
+
28
+ VERSION = datasets.Version("1.0.0")
29
+ def _info(self):
30
+ # Specifies the dataset's features
31
+ return DatasetInfo(
32
+ description="This dataset contains information about tree planting sites from CSV and GeoJSON files.",
33
+ features=Features({
34
+ "geometry": Value("string"), # Geometry feature, usually spatial data (GeoJSON format)
35
+ "OBJECTID": Value("int64"), # Unique identifier for each record
36
+ "streetaddress": Value("string"), # Street address of the tree planting site
37
+ "city": Value("string"), # City where the tree planting site is located
38
+ "zipcode": Value("int64"), # Zip code of the tree planting site
39
+ "facilityid": Value("int64"), # Identifier for the facility
40
+ "present": Value("string"), # Presence status, assumed to be string
41
+ "genus": Value("string"), # Genus of the tree
42
+ "species": Value("string"), # Species of the tree
43
+ "commonname": Value("string"), # Common name of the tree
44
+ "diameterin": Value("float64"), # Diameter in inches
45
+ "heightft": Value("float64"), # Height in feet (changed to "float64")
46
+ "condition": Value("string"), # Condition of the tree
47
+ "contractwork": Value("string"), # Contract work information
48
+ "neighborhood": Value("string"), # Neighborhood where the tree is located
49
+ "program": Value("string"), # Program under which the tree was planted
50
+ "plantingw": Value("string"), # Width available for planting
51
+ "plantingcond": Value("string"), # Planting condition
52
+ "underpwerlins": Value("string"), # Whether the tree is under power lines
53
+ "GlobalID": Value("string"), # Global identifier
54
+ "created_user": Value("string"), # User who created the record
55
+ "last_edited_user": Value("string"), # User who last edited the record
56
+ "isoprene": Value("float64"), # Isoprene emission rate
57
+ "monoterpene": Value("float64"),
58
+ "coremoved_ozperyr": Value("float64"), # Carbon monoxide removed, in ounces per year
59
+ "coremoved_dolperyr": Value("float64"), # Monetary value of carbon monoxide removal per year
60
+ "o3removed_ozperyr": Value("float64"), # Ozone removed, in ounces per year
61
+ "o3removed_dolperyr": Value("float64"), # Monetary value of ozone removal per year
62
+ "no2removed_ozperyr": Value("float64"), # Nitrogen dioxide removed, in ounces per year
63
+ "no2removed_dolperyr": Value("float64"), # Monetary value of nitrogen dioxide removal per year
64
+ "so2removed_ozperyr": Value("float64"), # Sulfur dioxide removed, in ounces per year
65
+ "so2removed_dolperyr": Value("float64"), # Monetary value of sulfur dioxide removal per year
66
+ "pm10removed_ozperyr": Value("float64"), # Particulate matter (10 micrometers or less) removed, in ounces per year
67
+ "pm10removed_dolperyr": Value("float64"), # Monetary value of particulate matter removal per year
68
+ "pm25removed_ozperyr": Value("float64"), # Particulate matter (2.5 micrometers or less) removed, in ounces per year
69
+ "o2production_lbperyr": Value("float64"), # Oxygen production, in pounds per year
70
+ "replacevalue_dol": Value("float64"), # Replacement value in dollars
71
+ "carbonstorage_lb": Value("float64"), # Carbon storage, in pounds
72
+ "carbonstorage_dol": Value("float64"), # Monetary value of carbon storage
73
+ "grosscarseq_lbperyr": Value("float64"), # Gross carbon sequestration, in pounds per year
74
+ "X": Value("float64"), # X coordinate (longitude if geographic)
75
+ "Y": Value("float64"), # Y coordinate (latitude if geographic)
76
+ }),
77
+ supervised_keys=None,
78
+ homepage="https://github.com/AuraMa111?tab=repositories",
79
+ citation="Citation for the dataset",
80
+ )
81
+
82
+ def _split_generators(self, dl_manager: DownloadManager):
83
+
84
+ urls_to_download = self._URLS # This should now work as _URLS is defined
85
+
86
+ downloaded_files = dl_manager.download_and_extract(urls_to_download)
87
+
88
+ return [
89
+ SplitGenerator(name=Split.TRAIN, gen_kwargs={
90
+ "csv_path": downloaded_files["csv"],
91
+ "geojson_path": downloaded_files["geojson"]
92
+ }),
93
+ # If you have additional splits, define them here
94
+ ]
95
+
96
+ def _generate_examples(self, csv_path, geojson_path):
97
+ # Log the information about the CSV file being processed
98
+
99
+ # Load the CSV data into a pandas DataFrame
100
+ csv_data = pd.read_csv(csv_path)
101
+
102
+ # Load the GeoJSON data into a GeoDataFrame
103
+ geojson_data = gpd.read_file(geojson_path)
104
+
105
+ # Merge the CSV data with the GeoJSON data on the 'OBJECTID' column
106
+ merged_data = geojson_data.merge(csv_data, on='OBJECTID')
107
+
108
+ # Drop columns with suffix '_y' that might have been created during the merge
109
+ merged_data.drop(columns=[col for col in merged_data if col.endswith('_y')], inplace=True)
110
+
111
+ # Rename columns to remove suffix '_x'
112
+ merged_data.rename(columns=lambda x: x.rstrip('_x'), inplace=True)
113
+
114
+ # Select the desired columns
115
+ columns_to_extract = [ "geometry", # Geometry feature, usually spatial data (GeoJSON format)
116
+ "OBJECTID", # Unique identifier for each record
117
+ "streetaddress", # Street address of the tree planting site
118
+ "city", # City where the tree planting site is located
119
+ "zipcode", # Zip code of the tree planting site (changed to string)
120
+ "facilityid", # Identifier for the facility
121
+ "present", # Presence status, assumed to be string
122
+ "genus", # Genus of the tree
123
+ "species", # Species of the tree
124
+ "commonname", # Common name of the tree
125
+ "diameterin", # Diameter in inches
126
+ "heightft", # Height in feet (changed to "float64")
127
+ "condition", # Condition of the tree
128
+ "contractwork", # Contract work information
129
+ "neighborhood", # Neighborhood where the tree is located
130
+ "program", # Program under which the tree was planted
131
+ "plantingw", # Width available for planting
132
+ "plantingcond", # Planting condition
133
+ "underpwerlins", # Whether the tree is under power lines
134
+ "GlobalID", # Global identifier
135
+ "created_user", # User who created the record
136
+ "last_edited_user", # User who last edited the record
137
+ "isoprene", # Isoprene emission rate
138
+ "monoterpene",
139
+ "coremoved_ozperyr", # Carbon monoxide removed, in ounces per year
140
+ "coremoved_dolperyr", # Monetary value of carbon monoxide removal per year
141
+ "o3removed_ozperyr", # Ozone removed, in ounces per year
142
+ "o3removed_dolperyr", # Monetary value of ozone removal per year
143
+ "no2removed_ozperyr", # Nitrogen dioxide removed, in ounces per year
144
+ "no2removed_dolperyr", # Monetary value of nitrogen dioxide removal per year
145
+ "so2removed_ozperyr", # Sulfur dioxide removed, in ounces per year
146
+ "so2removed_dolperyr", # Monetary value of sulfur dioxide removal per year
147
+ "pm10removed_ozperyr", # Particulate matter (10 micrometers or less) removed, in ounces per year
148
+ "pm10removed_dolperyr", # Monetary value of particulate matter removal per year
149
+ "pm25removed_ozperyr", # Particulate matter (2.5 micrometers or less) removed, in ounces per year
150
+ "o2production_lbperyr", # Oxygen production, in pounds per year
151
+ "replacevalue_dol", # Replacement value in dollars
152
+ "carbonstorage_lb", # Carbon storage, in pounds
153
+ "carbonstorage_dol", # Monetary value of carbon storage
154
+ "grosscarseq_lbperyr", # Gross carbon sequestration, in pounds per year
155
+ "X", # X coordinate (longitude if geographic)
156
+ "Y"]
157
+
158
+ # Create the final DataFrame with the selected columns
159
+ df = merged_data[columns_to_extract]
160
+
161
+ # Iterate over each row in the DataFrame and yield it
162
+ for index, row in df.iterrows():
163
+ # Convert the row to a dictionary, it's more convenient for yielding
164
+ yield index, row.to_dict()
165
+