Upload 4 files
Browse files- conditioning_images.zip +3 -0
- depth_overlap_simple_shape.py +101 -0
- figure_generate.py +160 -0
- images.zip +2 -2
conditioning_images.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0771a9ef980ac5e1ab05a635cdcb601194031d10ac74dec815df9667668c544b
|
3 |
+
size 8441614671
|
depth_overlap_simple_shape.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
from huggingface_hub import hf_hub_url
|
3 |
+
import datasets
|
4 |
+
import os
|
5 |
+
|
6 |
+
_VERSION = datasets.Version("0.0.1")
|
7 |
+
|
8 |
+
_DESCRIPTION = "TODO"
|
9 |
+
_HOMEPAGE = "TODO"
|
10 |
+
_LICENSE = "TODO"
|
11 |
+
_CITATION = "TODO"
|
12 |
+
|
13 |
+
_FEATURES = datasets.Features(
|
14 |
+
{
|
15 |
+
"image": datasets.Image(),
|
16 |
+
"conditioning_image": datasets.Image(),
|
17 |
+
"text": datasets.Value("string"),
|
18 |
+
},
|
19 |
+
)
|
20 |
+
|
21 |
+
METADATA_URL = hf_hub_url(
|
22 |
+
"Yossh/depth_overlap_simple_shape",
|
23 |
+
filename="train.jsonl",
|
24 |
+
repo_type="dataset",
|
25 |
+
)
|
26 |
+
|
27 |
+
IMAGES_URL = hf_hub_url(
|
28 |
+
"Yossh/depth_overlap_simple_shape",
|
29 |
+
filename="images.zip",
|
30 |
+
repo_type="dataset",
|
31 |
+
)
|
32 |
+
|
33 |
+
CONDITIONING_IMAGES_URL = hf_hub_url(
|
34 |
+
"Yossh/depth_overlap_simple_shape",
|
35 |
+
filename="conditioning_images.zip",
|
36 |
+
repo_type="dataset",
|
37 |
+
)
|
38 |
+
|
39 |
+
_DEFAULT_CONFIG = datasets.BuilderConfig(name="default", version=_VERSION)
|
40 |
+
|
41 |
+
|
42 |
+
class Fill50k(datasets.GeneratorBasedBuilder):
|
43 |
+
BUILDER_CONFIGS = [_DEFAULT_CONFIG]
|
44 |
+
DEFAULT_CONFIG_NAME = "default"
|
45 |
+
|
46 |
+
def _info(self):
|
47 |
+
return datasets.DatasetInfo(
|
48 |
+
description=_DESCRIPTION,
|
49 |
+
features=_FEATURES,
|
50 |
+
supervised_keys=None,
|
51 |
+
homepage=_HOMEPAGE,
|
52 |
+
license=_LICENSE,
|
53 |
+
citation=_CITATION,
|
54 |
+
)
|
55 |
+
|
56 |
+
def _split_generators(self, dl_manager):
|
57 |
+
metadata_path = dl_manager.download(METADATA_URL)
|
58 |
+
images_dir = dl_manager.download_and_extract(IMAGES_URL)
|
59 |
+
conditioning_images_dir = dl_manager.download_and_extract(
|
60 |
+
CONDITIONING_IMAGES_URL
|
61 |
+
)
|
62 |
+
|
63 |
+
return [
|
64 |
+
datasets.SplitGenerator(
|
65 |
+
name=datasets.Split.TRAIN,
|
66 |
+
# These kwargs will be passed to _generate_examples
|
67 |
+
gen_kwargs={
|
68 |
+
"metadata_path": metadata_path,
|
69 |
+
"images_dir": images_dir,
|
70 |
+
"conditioning_images_dir": conditioning_images_dir,
|
71 |
+
},
|
72 |
+
),
|
73 |
+
]
|
74 |
+
|
75 |
+
def _generate_examples(self, metadata_path, images_dir, conditioning_images_dir):
|
76 |
+
metadata = pd.read_json(metadata_path, lines=True)
|
77 |
+
|
78 |
+
for _, row in metadata.iterrows():
|
79 |
+
text = row["text"]
|
80 |
+
|
81 |
+
image_path = row["image"]
|
82 |
+
image_path = os.path.join(images_dir, image_path)
|
83 |
+
image = open(image_path, "rb").read()
|
84 |
+
|
85 |
+
conditioning_image_path = row["conditioning_image"]
|
86 |
+
conditioning_image_path = os.path.join(
|
87 |
+
conditioning_images_dir, row["conditioning_image"]
|
88 |
+
)
|
89 |
+
conditioning_image = open(conditioning_image_path, "rb").read()
|
90 |
+
|
91 |
+
yield row["image"], {
|
92 |
+
"text": text,
|
93 |
+
"image": {
|
94 |
+
"path": image_path,
|
95 |
+
"bytes": image,
|
96 |
+
},
|
97 |
+
"conditioning_image": {
|
98 |
+
"path": conditioning_image_path,
|
99 |
+
"bytes": conditioning_image,
|
100 |
+
},
|
101 |
+
}
|
figure_generate.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image, ImageDraw, ImageFilter
|
2 |
+
import numpy as np
|
3 |
+
import random
|
4 |
+
import math
|
5 |
+
|
6 |
+
class SimplePolygon:
|
7 |
+
pow2 = None
|
8 |
+
|
9 |
+
def __init__(self, file_name, depth_name, tags_name,resolution=(512, 512), init_color=(255, 255, 255)):
|
10 |
+
self.file_name = file_name
|
11 |
+
self.depth_name = depth_name
|
12 |
+
self.tags_name = tags_name
|
13 |
+
self.width = resolution[0]
|
14 |
+
self.height = resolution[1]
|
15 |
+
self.components= [set([(wi, hi) for wi in range(512) for hi in range(512)])]
|
16 |
+
self.img1 = np.full((self.width, self.height, 3), np.random.randint(0, 256, size=(3,), dtype=np.uint8), dtype=np.uint8)
|
17 |
+
self.img2 = np.zeros([self.width, self.height, 3], dtype=np.uint8)
|
18 |
+
self.count = 0
|
19 |
+
if self.pow2 is None:
|
20 |
+
self.pow2 = [x**2 for x in range(max(resolution[0],resolution[1])+1)]
|
21 |
+
def component_check(self, comp):
|
22 |
+
retv = set()
|
23 |
+
for wi, hi in comp:
|
24 |
+
if 0<=wi<self.width and 0<=hi<self.height:
|
25 |
+
retv.add((wi, hi))
|
26 |
+
return retv
|
27 |
+
def components_check(self, components):
|
28 |
+
retv = []
|
29 |
+
for i in range(len(components)):
|
30 |
+
is_contain = False
|
31 |
+
for j in range(i+1, len(components)):
|
32 |
+
if components[i] <= components[j]:
|
33 |
+
is_contain = True
|
34 |
+
break
|
35 |
+
if not is_contain:
|
36 |
+
retv.append(self.components[i])
|
37 |
+
return retv
|
38 |
+
def generate(self):
|
39 |
+
# 別の図形に含まれている図形は削除
|
40 |
+
self.components = self.components_check(self.components)
|
41 |
+
# 画像外の座標は除去
|
42 |
+
for i in range(len(self.components)):
|
43 |
+
self.components[i]=self.component_check(self.components[i])
|
44 |
+
|
45 |
+
layer = np.zeros_like(self.components, dtype=np.uint16)
|
46 |
+
noise = np.zeros(3, dtype=np.int16)
|
47 |
+
if random.randint(1, 5)==1:
|
48 |
+
noise = np.random.randint(-10, 10, size=(3,), dtype=np.int16)
|
49 |
+
for i in range(len(self.components)):
|
50 |
+
# ↓に重なってる図形の層+1 のmax
|
51 |
+
for j in range(i-1, -1, -1):
|
52 |
+
if not self.components[i].isdisjoint(self.components[j]):
|
53 |
+
layer[i]=max(layer[i], layer[j]+1)
|
54 |
+
# 色付ける
|
55 |
+
color = np.random.randint(0, 255, size=(3,), dtype=np.int16)
|
56 |
+
vec = np.random.randint(0, 255, size=(3,), dtype=np.int16)
|
57 |
+
ep = np.random.normal(0, 2, size=(2,))
|
58 |
+
for wi, hi in self.components[i]:
|
59 |
+
self.img1[wi][hi] = np.abs((color + vec * (ep[0] * wi / self.width + ep[1] * hi / self.height)+noise) % 512 - 256).astype(np.uint8)
|
60 |
+
# depth画像生成
|
61 |
+
self.layer_max = np.max(layer)
|
62 |
+
normalized_layer = ( (255 * layer) // self.layer_max).astype(np.uint8)
|
63 |
+
for wi in range(self.width):
|
64 |
+
for hi in range(self.height):
|
65 |
+
for i in range(len(self.components)-1, -1, -1):
|
66 |
+
if (wi,hi) in self.components[i]:
|
67 |
+
self.img2[wi][hi][0] = normalized_layer[i]
|
68 |
+
self.img2[wi][hi][1] = normalized_layer[i]
|
69 |
+
self.img2[wi][hi][2] = normalized_layer[i]
|
70 |
+
break
|
71 |
+
|
72 |
+
def add_rect(self):
|
73 |
+
left_top = [random.randint(0, self.width//10*9), random.randint(0, self.height//10*9)]
|
74 |
+
poly_width = random.randint(60, self.width//2)
|
75 |
+
poly_height = random.randint(60, self.height//2)
|
76 |
+
poly = set()
|
77 |
+
for wi in range(left_top[0], min(left_top[0]+poly_width, self.width)):
|
78 |
+
for hi in range(left_top[1], min(left_top[1]+poly_height, self.height)):
|
79 |
+
poly.add((wi, hi))
|
80 |
+
self.components.append(self.rotate_component(poly, random.uniform(-math.pi, math.pi)))
|
81 |
+
return poly
|
82 |
+
|
83 |
+
def add_ellipse(self):
|
84 |
+
center = [random.randint(self.width//10, self.width//10*9), random.randint(self.height//10, self.height//10*9)]
|
85 |
+
radius_width = random.randint(60, self.width//4)
|
86 |
+
radius_height = random.randint(60, self.height//4)
|
87 |
+
poly = set()
|
88 |
+
r = radius_width**2 * radius_height**2
|
89 |
+
h2 = radius_height**2
|
90 |
+
w2 = radius_width**2
|
91 |
+
for wi in range(self.width):
|
92 |
+
xx = h2 * self.pow2[abs(wi-center[0])]
|
93 |
+
if xx > r:
|
94 |
+
continue
|
95 |
+
for hi in range(self.height):
|
96 |
+
if xx + w2 * self.pow2[abs(hi-center[1])] <= r:
|
97 |
+
poly.add((wi, hi))
|
98 |
+
self.components.append(self.rotate_component(poly, random.uniform(-math.pi, math.pi)))
|
99 |
+
return poly
|
100 |
+
def rotate_component(self, comp, rad):
|
101 |
+
retv = set()
|
102 |
+
for wi, hi in comp:
|
103 |
+
new_wi = math.cos(rad)*(wi-self.width/2)-math.sin(rad)*(hi-self.height/2)+self.width/2
|
104 |
+
new_hi = math.sin(rad)*(wi-self.width/2)+math.cos(rad)*(hi-self.height/2)+self.height/2
|
105 |
+
new_wi = round(new_wi)
|
106 |
+
new_hi = round(new_hi)
|
107 |
+
for i in range(-1, 2): # -1,0,1
|
108 |
+
for j in range(-1, 2):
|
109 |
+
retv.add((new_wi+i, new_hi+j))
|
110 |
+
return retv
|
111 |
+
def save(self):
|
112 |
+
Image.fromarray(self.img1).filter(filter=ImageFilter.GaussianBlur(random.randint(0, 1))).save(self.file_name)
|
113 |
+
Image.fromarray(self.img2).save(self.depth_name)
|
114 |
+
with open(self.tags_name, "w") as file:
|
115 |
+
if self.layer_max is None:
|
116 |
+
file.write("")
|
117 |
+
else:
|
118 |
+
file.write(f"{self.layer_max+1}depth")
|
119 |
+
|
120 |
+
|
121 |
+
import uuid
|
122 |
+
import concurrent.futures
|
123 |
+
from tqdm import tqdm
|
124 |
+
import os
|
125 |
+
import threading
|
126 |
+
|
127 |
+
|
128 |
+
|
129 |
+
def process_polygon():
|
130 |
+
random_uuid = str(uuid.uuid4())
|
131 |
+
polygon = SimplePolygon(f"conditioning_images/{random_uuid}.png", f"images/{random_uuid}.png", f"conditioning_images/{random_uuid}.txt")
|
132 |
+
for _ in range(random.randint(4, 20)):
|
133 |
+
if random.randint(0,1)==0:
|
134 |
+
polygon.add_ellipse()
|
135 |
+
else:
|
136 |
+
polygon.add_rect()
|
137 |
+
polygon.generate()
|
138 |
+
polygon.save()
|
139 |
+
|
140 |
+
def main():
|
141 |
+
if not os.path.exists("conditioning_images"):
|
142 |
+
os.makedirs("conditioning_images")
|
143 |
+
if not os.path.exists("images"):
|
144 |
+
os.makedirs("images")
|
145 |
+
num_processes = 24
|
146 |
+
total_runs = 21037
|
147 |
+
|
148 |
+
with tqdm(total=total_runs, ncols=80) as pbar:
|
149 |
+
with concurrent.futures.ProcessPoolExecutor(max_workers=num_processes) as executor:
|
150 |
+
futures = [executor.submit(process_polygon) for _ in range(total_runs)]
|
151 |
+
for future in concurrent.futures.as_completed(futures):
|
152 |
+
try:
|
153 |
+
result = future.result()
|
154 |
+
pbar.update(1)
|
155 |
+
except Exception as e:
|
156 |
+
print(f"Error occurred: {e}")
|
157 |
+
pbar.update(1)
|
158 |
+
|
159 |
+
if __name__ == "__main__":
|
160 |
+
main()
|
images.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0777317872179bca4f9ed73aa4d034fe01ee111943a7c44cfd934102985a911a
|
3 |
+
size 613377917
|