tomatotest / tomatotest.py
XingjianL's picture
fix name
8244ccb
raw
history blame
2.21 kB
import io
from PIL import Image
from datasets import GeneratorBasedBuilder, DatasetInfo, Features, SplitGenerator, Value, Array2D, Split
import datasets
import OpenEXR
import Imath
import numpy as np
import h5py
class RGBSemanticDepthDataset(GeneratorBasedBuilder):
def _info(self):
return DatasetInfo(
features=Features({
"left_rgb": datasets.Image(),
"right_rgb": datasets.Image(),
"left_seg": datasets.Image(),
"left_depth": datasets.Image(),
"right_depth": datasets.Image(),
})
)
def _h5_loader(self, bytes_stream):
# Reference: https://github.com/dwofk/fast-depth/blob/master/dataloaders/dataloader.py#L8-L13
f = io.BytesIO(bytes_stream)
h5f = h5py.File(f, "r")
left_rgb = self._read_jpg(h5f['rgb_left'])
right_rgb = self._read_jpg(h5f['rgb_right'])
left_seg = h5f['seg_left']
left_depth = h5f['depth_left'].astype(np.float32)
right_depth = h5f['depth_right'].astype(np.float32)
print(left_rgb.shape, left_depth.shape, left_seg.shape)
return left_rgb, right_rgb, left_seg, left_depth, right_depth
def _read_jpg(self, bytes_stream):
return Image.open(io.BytesIO(bytes_stream))
def _split_generators(self, dl_manager):
archives = dl_manager.download({"train":["data/images_1730238419.175364.tar"]})
return [
SplitGenerator(
name=Split.TRAIN,
gen_kwargs={
"archives": [dl_manager.iter_archive(archive) for archive in archives["train"]],
},
),
]
def _generate_examples(self, archives):
for archive in archives:
for path, file in archive:
print(path)
left_rgb, right_rgb, left_seg, left_depth, right_depth = self._h5_loader(file.read())
yield path, {
"left_rgb": left_rgb,
"right_rgb": right_rgb,
"left_seg": left_seg,
"left_depth": left_depth,
"right_depth": right_depth,
}