|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
|
|
|
class TrajectoryTransformer(nn.Module): |
|
|
"""Transformer model to learn trajectory embeddings and a set of learnable prototypes.""" |
|
|
def __init__(self, input_dim, embed_dim, num_layers, num_heads, forward_dim, seq_len, n_cluster, dropout=0.1): |
|
|
"""Initializes the TrajectoryTransformer. |
|
|
|
|
|
Args: |
|
|
input_dim (int): Dimension of the input trajectory points (e.g., 3 for time, lat, lon). |
|
|
embed_dim (int): Dimension of the embeddings within the transformer. |
|
|
num_layers (int): Number of transformer encoder layers. |
|
|
num_heads (int): Number of attention heads in the transformer. |
|
|
forward_dim (int): Dimension of the feed-forward network in transformer layers. |
|
|
seq_len (int): Length of the input trajectory sequences. |
|
|
n_cluster (int): Number of prototypes to learn. |
|
|
dropout (float, optional): Dropout rate. Defaults to 0.1. |
|
|
""" |
|
|
super(TrajectoryTransformer, self).__init__() |
|
|
self.input_dim = input_dim |
|
|
self.embed_dim = embed_dim |
|
|
self.n_cluster = n_cluster |
|
|
|
|
|
self.linear_projection = nn.Linear(input_dim, embed_dim) |
|
|
|
|
|
|
|
|
self.pos_embedding = nn.Parameter(torch.randn(1, seq_len, embed_dim)) |
|
|
|
|
|
|
|
|
encoder_layer = nn.TransformerEncoderLayer(d_model=embed_dim, nhead=num_heads, dim_feedforward=forward_dim, dropout=dropout, batch_first=True) |
|
|
self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=num_layers) |
|
|
|
|
|
|
|
|
self.layer_norm1 = nn.LayerNorm(embed_dim) |
|
|
self.layer_norm2 = nn.LayerNorm(embed_dim) |
|
|
self.layer_norm_features = nn.LayerNorm(embed_dim) |
|
|
|
|
|
|
|
|
self.prototypes = nn.Parameter(torch.randn(n_cluster, embed_dim)) |
|
|
|
|
|
|
|
|
self._init_weights() |
|
|
|
|
|
def _init_weights(self): |
|
|
"""Initializes weights of the linear layers, transformer components, and prototypes.""" |
|
|
nn.init.xavier_uniform_(self.linear_projection.weight) |
|
|
if self.linear_projection.bias is not None: |
|
|
nn.init.zeros_(self.linear_projection.bias) |
|
|
|
|
|
|
|
|
for layer in self.transformer_encoder.layers: |
|
|
nn.init.xavier_uniform_(layer.linear1.weight) |
|
|
if layer.linear1.bias is not None: nn.init.zeros_(layer.linear1.bias) |
|
|
nn.init.xavier_uniform_(layer.linear2.weight) |
|
|
if layer.linear2.bias is not None: nn.init.zeros_(layer.linear2.bias) |
|
|
|
|
|
|
|
|
if hasattr(layer.self_attn, 'in_proj_weight') and layer.self_attn.in_proj_weight is not None: |
|
|
nn.init.xavier_uniform_(layer.self_attn.in_proj_weight) |
|
|
if hasattr(layer.self_attn, 'in_proj_bias') and layer.self_attn.in_proj_bias is not None: |
|
|
nn.init.zeros_(layer.self_attn.in_proj_bias) |
|
|
if hasattr(layer.self_attn.out_proj, 'weight') and layer.self_attn.out_proj.weight is not None: |
|
|
nn.init.xavier_uniform_(layer.self_attn.out_proj.weight) |
|
|
if hasattr(layer.self_attn.out_proj, 'bias') and layer.self_attn.out_proj.bias is not None: |
|
|
nn.init.zeros_(layer.self_attn.out_proj.bias) |
|
|
|
|
|
|
|
|
nn.init.xavier_uniform_(self.prototypes.data) |
|
|
|
|
|
def forward(self, x): |
|
|
"""Forward pass of the TrajectoryTransformer. |
|
|
|
|
|
Args: |
|
|
x (torch.Tensor): Input trajectory batch, shape (batch_size, seq_len, input_dim). |
|
|
|
|
|
Returns: |
|
|
Tuple[torch.Tensor, torch.Tensor]: |
|
|
- prototypes (torch.Tensor): Learned prototypes, shape (n_cluster, embed_dim). |
|
|
- features (torch.Tensor): Trajectory features, shape (batch_size, embed_dim). |
|
|
""" |
|
|
batch_size, seq_len, _ = x.size() |
|
|
|
|
|
x = self.linear_projection(x) |
|
|
x = self.layer_norm1(x) |
|
|
x = x + self.pos_embedding[:, :seq_len, :] |
|
|
|
|
|
x = self.transformer_encoder(x) |
|
|
|
|
|
x = self.layer_norm2(x) |
|
|
|
|
|
|
|
|
features = x.sum(dim=1) |
|
|
features = self.layer_norm_features(features) |
|
|
|
|
|
|
|
|
|
|
|
return self.prototypes, features |
|
|
|
|
|
|