Wuhuwill's picture
Upload ProDiff/diffProModel/protoTrans.py with huggingface_hub
696bcce verified
import torch
import torch.nn as nn
import torch.nn.functional as F
class TrajectoryTransformer(nn.Module):
"""Transformer model to learn trajectory embeddings and a set of learnable prototypes."""
def __init__(self, input_dim, embed_dim, num_layers, num_heads, forward_dim, seq_len, n_cluster, dropout=0.1):
"""Initializes the TrajectoryTransformer.
Args:
input_dim (int): Dimension of the input trajectory points (e.g., 3 for time, lat, lon).
embed_dim (int): Dimension of the embeddings within the transformer.
num_layers (int): Number of transformer encoder layers.
num_heads (int): Number of attention heads in the transformer.
forward_dim (int): Dimension of the feed-forward network in transformer layers.
seq_len (int): Length of the input trajectory sequences.
n_cluster (int): Number of prototypes to learn.
dropout (float, optional): Dropout rate. Defaults to 0.1.
"""
super(TrajectoryTransformer, self).__init__()
self.input_dim = input_dim
self.embed_dim = embed_dim
self.n_cluster = n_cluster
self.linear_projection = nn.Linear(input_dim, embed_dim)
# Positional embedding for the sequence
self.pos_embedding = nn.Parameter(torch.randn(1, seq_len, embed_dim))
# Standard Transformer Encoder
encoder_layer = nn.TransformerEncoderLayer(d_model=embed_dim, nhead=num_heads, dim_feedforward=forward_dim, dropout=dropout, batch_first=True)
self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
# Layer Normalization layers
self.layer_norm1 = nn.LayerNorm(embed_dim)
self.layer_norm2 = nn.LayerNorm(embed_dim)
self.layer_norm_features = nn.LayerNorm(embed_dim)
# Learnable prototypes
self.prototypes = nn.Parameter(torch.randn(n_cluster, embed_dim))
# Initialize weights
self._init_weights()
def _init_weights(self):
"""Initializes weights of the linear layers, transformer components, and prototypes."""
nn.init.xavier_uniform_(self.linear_projection.weight)
if self.linear_projection.bias is not None:
nn.init.zeros_(self.linear_projection.bias)
# Initialize transformer layers (already done by PyTorch's default, but can be overridden)
for layer in self.transformer_encoder.layers:
nn.init.xavier_uniform_(layer.linear1.weight)
if layer.linear1.bias is not None: nn.init.zeros_(layer.linear1.bias)
nn.init.xavier_uniform_(layer.linear2.weight)
if layer.linear2.bias is not None: nn.init.zeros_(layer.linear2.bias)
# Self-attention weights are more complex (in_proj_weight, out_proj.weight)
# Default Pytorch init is usually fine for these.
if hasattr(layer.self_attn, 'in_proj_weight') and layer.self_attn.in_proj_weight is not None:
nn.init.xavier_uniform_(layer.self_attn.in_proj_weight)
if hasattr(layer.self_attn, 'in_proj_bias') and layer.self_attn.in_proj_bias is not None:
nn.init.zeros_(layer.self_attn.in_proj_bias)
if hasattr(layer.self_attn.out_proj, 'weight') and layer.self_attn.out_proj.weight is not None:
nn.init.xavier_uniform_(layer.self_attn.out_proj.weight)
if hasattr(layer.self_attn.out_proj, 'bias') and layer.self_attn.out_proj.bias is not None:
nn.init.zeros_(layer.self_attn.out_proj.bias)
# Initialize prototypes (e.g., Xavier uniform)
nn.init.xavier_uniform_(self.prototypes.data)
def forward(self, x):
"""Forward pass of the TrajectoryTransformer.
Args:
x (torch.Tensor): Input trajectory batch, shape (batch_size, seq_len, input_dim).
Returns:
Tuple[torch.Tensor, torch.Tensor]:
- prototypes (torch.Tensor): Learned prototypes, shape (n_cluster, embed_dim).
- features (torch.Tensor): Trajectory features, shape (batch_size, embed_dim).
"""
batch_size, seq_len, _ = x.size()
x = self.linear_projection(x) # Project to (batch_size, seq_len, embed_dim)
x = self.layer_norm1(x) # Apply layer normalization
x = x + self.pos_embedding[:, :seq_len, :] # Add positional embedding
x = self.transformer_encoder(x) # Input: (batch_size, seq_len, embed_dim)
x = self.layer_norm2(x) # Apply layer normalization after transformer
# Aggregate features from the sequence (e.g., by summing along sequence length)
features = x.sum(dim=1) # (batch_size, embed_dim)
features = self.layer_norm_features(features) # Normalize aggregated features
# The first returned value `prototypes_from_transformer` in train.py was from the old `output_layer`.
# Now we return the learnable self.prototypes.
return self.prototypes, features