Upload ProDiff/diffProModel/protoTrans.py with huggingface_hub
Browse files
ProDiff/diffProModel/protoTrans.py
ADDED
|
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
|
| 5 |
+
class TrajectoryTransformer(nn.Module):
|
| 6 |
+
"""Transformer model to learn trajectory embeddings and a set of learnable prototypes."""
|
| 7 |
+
def __init__(self, input_dim, embed_dim, num_layers, num_heads, forward_dim, seq_len, n_cluster, dropout=0.1):
|
| 8 |
+
"""Initializes the TrajectoryTransformer.
|
| 9 |
+
|
| 10 |
+
Args:
|
| 11 |
+
input_dim (int): Dimension of the input trajectory points (e.g., 3 for time, lat, lon).
|
| 12 |
+
embed_dim (int): Dimension of the embeddings within the transformer.
|
| 13 |
+
num_layers (int): Number of transformer encoder layers.
|
| 14 |
+
num_heads (int): Number of attention heads in the transformer.
|
| 15 |
+
forward_dim (int): Dimension of the feed-forward network in transformer layers.
|
| 16 |
+
seq_len (int): Length of the input trajectory sequences.
|
| 17 |
+
n_cluster (int): Number of prototypes to learn.
|
| 18 |
+
dropout (float, optional): Dropout rate. Defaults to 0.1.
|
| 19 |
+
"""
|
| 20 |
+
super(TrajectoryTransformer, self).__init__()
|
| 21 |
+
self.input_dim = input_dim
|
| 22 |
+
self.embed_dim = embed_dim
|
| 23 |
+
self.n_cluster = n_cluster
|
| 24 |
+
|
| 25 |
+
self.linear_projection = nn.Linear(input_dim, embed_dim)
|
| 26 |
+
|
| 27 |
+
# Positional embedding for the sequence
|
| 28 |
+
self.pos_embedding = nn.Parameter(torch.randn(1, seq_len, embed_dim))
|
| 29 |
+
|
| 30 |
+
# Standard Transformer Encoder
|
| 31 |
+
encoder_layer = nn.TransformerEncoderLayer(d_model=embed_dim, nhead=num_heads, dim_feedforward=forward_dim, dropout=dropout, batch_first=True)
|
| 32 |
+
self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
|
| 33 |
+
|
| 34 |
+
# Layer Normalization layers
|
| 35 |
+
self.layer_norm1 = nn.LayerNorm(embed_dim)
|
| 36 |
+
self.layer_norm2 = nn.LayerNorm(embed_dim)
|
| 37 |
+
self.layer_norm_features = nn.LayerNorm(embed_dim)
|
| 38 |
+
|
| 39 |
+
# Learnable prototypes
|
| 40 |
+
self.prototypes = nn.Parameter(torch.randn(n_cluster, embed_dim))
|
| 41 |
+
|
| 42 |
+
# Initialize weights
|
| 43 |
+
self._init_weights()
|
| 44 |
+
|
| 45 |
+
def _init_weights(self):
|
| 46 |
+
"""Initializes weights of the linear layers, transformer components, and prototypes."""
|
| 47 |
+
nn.init.xavier_uniform_(self.linear_projection.weight)
|
| 48 |
+
if self.linear_projection.bias is not None:
|
| 49 |
+
nn.init.zeros_(self.linear_projection.bias)
|
| 50 |
+
|
| 51 |
+
# Initialize transformer layers (already done by PyTorch's default, but can be overridden)
|
| 52 |
+
for layer in self.transformer_encoder.layers:
|
| 53 |
+
nn.init.xavier_uniform_(layer.linear1.weight)
|
| 54 |
+
if layer.linear1.bias is not None: nn.init.zeros_(layer.linear1.bias)
|
| 55 |
+
nn.init.xavier_uniform_(layer.linear2.weight)
|
| 56 |
+
if layer.linear2.bias is not None: nn.init.zeros_(layer.linear2.bias)
|
| 57 |
+
# Self-attention weights are more complex (in_proj_weight, out_proj.weight)
|
| 58 |
+
# Default Pytorch init is usually fine for these.
|
| 59 |
+
if hasattr(layer.self_attn, 'in_proj_weight') and layer.self_attn.in_proj_weight is not None:
|
| 60 |
+
nn.init.xavier_uniform_(layer.self_attn.in_proj_weight)
|
| 61 |
+
if hasattr(layer.self_attn, 'in_proj_bias') and layer.self_attn.in_proj_bias is not None:
|
| 62 |
+
nn.init.zeros_(layer.self_attn.in_proj_bias)
|
| 63 |
+
if hasattr(layer.self_attn.out_proj, 'weight') and layer.self_attn.out_proj.weight is not None:
|
| 64 |
+
nn.init.xavier_uniform_(layer.self_attn.out_proj.weight)
|
| 65 |
+
if hasattr(layer.self_attn.out_proj, 'bias') and layer.self_attn.out_proj.bias is not None:
|
| 66 |
+
nn.init.zeros_(layer.self_attn.out_proj.bias)
|
| 67 |
+
|
| 68 |
+
# Initialize prototypes (e.g., Xavier uniform)
|
| 69 |
+
nn.init.xavier_uniform_(self.prototypes.data)
|
| 70 |
+
|
| 71 |
+
def forward(self, x):
|
| 72 |
+
"""Forward pass of the TrajectoryTransformer.
|
| 73 |
+
|
| 74 |
+
Args:
|
| 75 |
+
x (torch.Tensor): Input trajectory batch, shape (batch_size, seq_len, input_dim).
|
| 76 |
+
|
| 77 |
+
Returns:
|
| 78 |
+
Tuple[torch.Tensor, torch.Tensor]:
|
| 79 |
+
- prototypes (torch.Tensor): Learned prototypes, shape (n_cluster, embed_dim).
|
| 80 |
+
- features (torch.Tensor): Trajectory features, shape (batch_size, embed_dim).
|
| 81 |
+
"""
|
| 82 |
+
batch_size, seq_len, _ = x.size()
|
| 83 |
+
|
| 84 |
+
x = self.linear_projection(x) # Project to (batch_size, seq_len, embed_dim)
|
| 85 |
+
x = self.layer_norm1(x) # Apply layer normalization
|
| 86 |
+
x = x + self.pos_embedding[:, :seq_len, :] # Add positional embedding
|
| 87 |
+
|
| 88 |
+
x = self.transformer_encoder(x) # Input: (batch_size, seq_len, embed_dim)
|
| 89 |
+
|
| 90 |
+
x = self.layer_norm2(x) # Apply layer normalization after transformer
|
| 91 |
+
|
| 92 |
+
# Aggregate features from the sequence (e.g., by summing along sequence length)
|
| 93 |
+
features = x.sum(dim=1) # (batch_size, embed_dim)
|
| 94 |
+
features = self.layer_norm_features(features) # Normalize aggregated features
|
| 95 |
+
|
| 96 |
+
# The first returned value `prototypes_from_transformer` in train.py was from the old `output_layer`.
|
| 97 |
+
# Now we return the learnable self.prototypes.
|
| 98 |
+
return self.prototypes, features
|
| 99 |
+
|