blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
7
139
content_id
stringlengths
40
40
detected_licenses
listlengths
0
16
license_type
stringclasses
2 values
repo_name
stringlengths
7
55
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
6 values
visit_date
int64
1,471B
1,694B
revision_date
int64
1,378B
1,694B
committer_date
int64
1,378B
1,694B
github_id
float64
1.33M
604M
star_events_count
int64
0
43.5k
fork_events_count
int64
0
1.5k
gha_license_id
stringclasses
6 values
gha_event_created_at
int64
1,402B
1,695B
gha_created_at
int64
1,359B
1,637B
gha_language
stringclasses
19 values
src_encoding
stringclasses
2 values
language
stringclasses
1 value
is_vendor
bool
1 class
is_generated
bool
1 class
length_bytes
int64
3
6.4M
extension
stringclasses
4 values
content
stringlengths
3
6.12M
890db783560a670afceac2e6c8c5cd30c13ee27b
60bf3fa4185ec5075eaea4384181bfbc7e1dc319
/src/game/sets/sets_level06.lean
750d01c421f0f9d9dcdd7925ae3f18c694637ef6
[ "Apache-2.0" ]
permissive
anrddh/real-number-game
660f1127d03a78fd35986c771d65c3132c5f4025
c708c4e02ec306c657e1ea67862177490db041b0
refs/heads/master
1,668,214,277,092
1,593,105,075,000
1,593,105,075,000
264,269,218
0
0
null
1,589,567,264,000
1,589,567,264,000
null
UTF-8
Lean
false
false
1,108
lean
import game.sets.sets_level05 -- hide import tactic -- hide namespace xena -- hide variable X : Type open_locale classical -- hide /- # Chapter 1 : Sets ## Level 6 : `sdiff` and `neg` -/ /- The set-theoretic difference `A \ B` satisfies the following property: ``` lemma mem_sdiff_iff : x ∈ A \ B ↔ x ∈ A ∧ x ∉ B ``` The complement `-A` of a set `A` (often denoted $A^c$ in textbooks) is all the elements of `X` which are not in `A`: ``` lemma mem_neg_iff : x ∈ -A ↔ x ∉ A ``` In this lemma, you might get a shock. The `rw` tactic is aggressive in the Real Number Game -- if after a rewrite the goal can be solved by `refl`, then Lean will close the goal automatically. -/ /- Axiom : mem_sdiff_iff : x ∈ A \ B ↔ x ∈ A ∧ x ∉ B -/ /- Axiom : mem_neg_iff : x ∈ -A ↔ x ∉ A -/ /- Lemma If $A$ and $B$ are sets with elements of type $X$, then $$(A \setminus B) = A \cap B^{c}.$$ -/ theorem setdiff_eq_intersect_comp (A B : set X) : A \ B = A ∩ -B := begin rw ext_iff, intro x, rw mem_sdiff_iff, rw mem_inter_iff, rw mem_neg_iff, end end xena -- hide
ce502e02e72f736350774fad71a2799afccba848
6de8ea38e7f58ace8fbf74ba3ad0bf3b3d1d7ab5
/solutions2/Problem1/solutions.lean
54971da0f396f67738d07a9a739b1aff3ed1e5a2
[]
no_license
KinanBab/CS591K1-Labs
72f4e2c7d230d4e4f548a343a47bf815272b1f58
d4569bf99d20c22cd56721024688cda247d1447f
refs/heads/master
1,587,016,758,873
1,558,148,366,000
1,558,148,366,000
165,329,114
5
2
null
1,550,689,848,000
1,547,252,664,000
TeX
UTF-8
Lean
false
false
2,862
lean
-- Problem 1: filtering elements of a list (30 points) -- Part A: Implement a filter (5 points) -- only keeps elements that satisfy the condition F @[simp] def filter{T} : (T -> bool) -> list T -> list T | F list.nil := list.nil | F (list.cons h l') := if F h then list.cons h (filter F l') else filter F l' -- Part B: filter and boolean and (5 points) theorem filter_and (T: Type) (F1 F2: T -> bool) (l: list T) : filter (λ x, F1 x ∧ F2 x) l = filter F1 (filter F2 l) := begin induction l, simp, simp, cases (F2 l_hd), simp, assumption, simp, cases (F1 l_hd), simp, assumption, simp, assumption, end -- Part C: filter produces an equal or smaller array (5 points) theorem filter_len (T: Type) (F1: T -> bool) (l: list T) : list.length (filter F1 l) ≤ list.length l := begin induction l, simp, simp, cases (F1 l_hd), simp, rewrite nat.add_comm, rewrite nat.add_one, apply nat.le_trans, assumption, apply nat.le_succ, simp, rewrite nat.add_comm, rewrite nat.add_one, rewrite nat.add_comm, rewrite nat.add_one, apply nat.succ_le_succ, assumption, end -- Part D: filter is safe (10 points) -- it does not add any elments that do not satisify the condition @[simp] def is_safe{T} : (T -> bool) -> list T -> bool | F list.nil := tt | F (list.cons h l') := (F h) && (is_safe F l') theorem filter_safe (T: Type) (F1: T -> bool) (l: list T) : is_safe F1 (filter F1 l) = tt := begin -- Proof goes here -- HINT: you will need to use cases (<expression>) -- instead of cases, so that the case is added as a hypothesis -- HINT: #check eq_ff_of_not_eq_tt at https://github.com/leanprover/lean/blob/master/library/init/data/bool/lemmas.lean induction l, simp, simp, cases H: (F1 l_hd), simp, assumption, simp, apply and.intro; assumption, end -- part E: correctness (5 points) -- are these properties enough to guarantee correctness? can you -- think of an example that satisfy these properties but is incorrect? -- You do not have to prove it or write it down, just give an informal arguments in comments -- ANSWER: No, it does not guarantee correctness: here is a simple counter example @[simp] def filter_incorrect{T} : (T → bool) → list T → list T | F l := list.nil theorem filter_and_incorrect (T: Type) (F1 F2: T → bool) (l: list T) : filter_incorrect (λ x, F1 x ∧ F2 x) l = filter_incorrect F1 (filter_incorrect F2 l) := begin simp, end theorem filter_len_incorrect (T: Type) (F1: T -> bool) (l: list T) : list.length (filter_incorrect F1 l) ≤ list.length l := begin simp, apply nat.zero_le, end theorem filter_safe_incorrect (T: Type) (F1: T -> bool) (l: list T) : is_safe F1 (filter_incorrect F1 l) = tt := begin simp, end
81e15807e8ae95c8de64ebbf8eb063be0e5c24cf
41ebf3cb010344adfa84907b3304db00e02db0a6
/uexp/src/uexp/rules/commonexp.lean
051c1fc49f641d2675b12c56f85f387d06ea6ce3
[ "BSD-2-Clause" ]
permissive
ReinierKoops/Cosette
e061b2ba58b26f4eddf4cd052dcf7abd16dfe8fb
eb8dadd06ee05fe7b6b99de431dd7c4faef5cb29
refs/heads/master
1,686,483,953,198
1,624,293,498,000
1,624,293,498,000
378,997,885
0
0
BSD-2-Clause
1,624,293,485,000
1,624,293,484,000
null
UTF-8
Lean
false
false
1,181
lean
import ..sql import ..tactics import ..u_semiring import ..extra_constants import ..meta.ucongr import ..meta.TDP import ..meta.cosette_tactics -- NOTE: this one cannot solved by ucongr, need to be revisited open Expr open Proj open Pred open SQL open binary_operators theorem rule : forall (Γ s1 : Schema) (a : relation s1) (x : Column datatypes.int s1) (y : Column datatypes.int s1), denoteSQL (SELECT1 (e2p (binaryExpr add_ (uvariable (right⋅x)) (uvariable (right⋅x)))) FROM1 (table a WHERE (equal (uvariable (right⋅x)) (uvariable (right⋅y)))) : SQL Γ _) = denoteSQL (SELECT1 (e2p (binaryExpr add_ (uvariable (right⋅x)) (uvariable (right⋅y)))) FROM1 (table a WHERE (equal (uvariable (right⋅x)) (uvariable (right⋅y)))) : SQL Γ _) := begin intros, funext, unfold_all_denotations, simp, congr, funext, apply congr_arg _, have eq_subst_l' : ∀ {s: Schema} (t₁ t₂: Tuple s) (R: Tuple s → Tuple s) (e : Tuple s), (t₁ ≃ t₂) * (e ≃ R t₁) = (t₁ ≃ t₂) * (e ≃ R t₂), { intros, rw eq_subst_l }, rewrite eq_subst_l', end
8556ed62d5a193dbd3dcbf5fd690bc742203ecff
a0a027e4a00cdb315527e8922122f2a4411fd01c
/6.8-automatically-generated-constructions.lean
806920c8945c95a24ef5b782b469f43b2e25b5d7
[]
no_license
spl/lean-tutorial
96a1ef321d06b9b28d044eeb6bf1ff9a86761a6e
35c0250004d75d8ae58f6192b649744545116022
refs/heads/master
1,610,250,012,890
1,454,259,122,000
1,454,259,122,000
49,971,362
1
0
null
null
null
null
UTF-8
Lean
false
false
593
lean
inductive tree (A : Type) : Type := | leaf : A → tree A | node : tree A → tree A → tree A open tree variable {A : Type} theorem leaf_ne_node {a : A} {l r : tree A} (h : leaf a = node l r) : false := tree.no_confusion h theorem leaf_inj {a b : A} (h : leaf a = leaf b) : a = b := tree.no_confusion h id theorem node_inj_left {l1 r1 l2 r2 : tree A} (h : node l1 r1 = node l2 r2) : l1 = l2 := tree.no_confusion h (λ e₁ e₂, e₁) theorem node_inj_right {l1 r1 l2 r2 : tree A} (h : node l1 r1 = node l2 r2) : r1 = r2 := tree.no_confusion h (λ e₁ e₂, e₂)
8ba84ddeab33d164b0fbbf62b0cd3f1effabdc23
618003631150032a5676f229d13a079ac875ff77
/src/topology/homeomorph.lean
aab3893b1e538b55c128e9662e194c0654e381fb
[ "Apache-2.0" ]
permissive
awainverse/mathlib
939b68c8486df66cfda64d327ad3d9165248c777
ea76bd8f3ca0a8bf0a166a06a475b10663dec44a
refs/heads/master
1,659,592,962,036
1,590,987,592,000
1,590,987,592,000
268,436,019
1
0
Apache-2.0
1,590,990,500,000
1,590,990,500,000
null
UTF-8
Lean
false
false
8,643
lean
/- Copyright (c) 2019 Reid Barton. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Patrick Massot, Sébastien Gouëzel, Zhouhang Zhou, Reid Barton -/ import topology.dense_embedding open set variables {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} /-- α and β are homeomorph, also called topological isomoph -/ structure homeomorph (α : Type*) (β : Type*) [topological_space α] [topological_space β] extends α ≃ β := (continuous_to_fun : continuous to_fun) (continuous_inv_fun : continuous inv_fun) infix ` ≃ₜ `:25 := homeomorph namespace homeomorph variables [topological_space α] [topological_space β] [topological_space γ] [topological_space δ] instance : has_coe_to_fun (α ≃ₜ β) := ⟨λ_, α → β, λe, e.to_equiv⟩ lemma coe_eq_to_equiv (h : α ≃ₜ β) (a : α) : h a = h.to_equiv a := rfl /-- Identity map is a homeomorphism. -/ protected def refl (α : Type*) [topological_space α] : α ≃ₜ α := { continuous_to_fun := continuous_id, continuous_inv_fun := continuous_id, .. equiv.refl α } /-- Composition of two homeomorphisms. -/ protected def trans (h₁ : α ≃ₜ β) (h₂ : β ≃ₜ γ) : α ≃ₜ γ := { continuous_to_fun := h₂.continuous_to_fun.comp h₁.continuous_to_fun, continuous_inv_fun := h₁.continuous_inv_fun.comp h₂.continuous_inv_fun, .. equiv.trans h₁.to_equiv h₂.to_equiv } /-- Inverse of a homeomorphism. -/ protected def symm (h : α ≃ₜ β) : β ≃ₜ α := { continuous_to_fun := h.continuous_inv_fun, continuous_inv_fun := h.continuous_to_fun, .. h.to_equiv.symm } protected lemma continuous (h : α ≃ₜ β) : continuous h := h.continuous_to_fun lemma symm_comp_self (h : α ≃ₜ β) : ⇑h.symm ∘ ⇑h = id := funext $ assume a, h.to_equiv.left_inv a lemma self_comp_symm (h : α ≃ₜ β) : ⇑h ∘ ⇑h.symm = id := funext $ assume a, h.to_equiv.right_inv a lemma range_coe (h : α ≃ₜ β) : range h = univ := eq_univ_of_forall $ assume b, ⟨h.symm b, congr_fun h.self_comp_symm b⟩ lemma image_symm (h : α ≃ₜ β) : image h.symm = preimage h := funext h.symm.to_equiv.image_eq_preimage lemma preimage_symm (h : α ≃ₜ β) : preimage h.symm = image h := (funext h.to_equiv.image_eq_preimage).symm lemma induced_eq {α : Type*} {β : Type*} [tα : topological_space α] [tβ : topological_space β] (h : α ≃ₜ β) : tβ.induced h = tα := le_antisymm (calc topological_space.induced ⇑h tβ ≤ _ : induced_mono (coinduced_le_iff_le_induced.1 h.symm.continuous) ... ≤ tα : by rw [induced_compose, symm_comp_self, induced_id] ; exact le_refl _) (coinduced_le_iff_le_induced.1 h.continuous) lemma coinduced_eq {α : Type*} {β : Type*} [tα : topological_space α] [tβ : topological_space β] (h : α ≃ₜ β) : tα.coinduced h = tβ := le_antisymm h.continuous begin have : (tβ.coinduced h.symm).coinduced h ≤ tα.coinduced h := coinduced_mono h.symm.continuous, rwa [coinduced_compose, self_comp_symm, coinduced_id] at this, end protected lemma embedding (h : α ≃ₜ β) : embedding h := ⟨⟨h.induced_eq.symm⟩, h.to_equiv.injective⟩ lemma compact_image {s : set α} (h : α ≃ₜ β) : compact (h '' s) ↔ compact s := h.embedding.compact_iff_compact_image.symm lemma compact_preimage {s : set β} (h : α ≃ₜ β) : compact (h ⁻¹' s) ↔ compact s := by rw ← image_symm; exact h.symm.compact_image protected lemma dense_embedding (h : α ≃ₜ β) : dense_embedding h := { dense := assume a, by rw [h.range_coe, closure_univ]; trivial, inj := h.to_equiv.injective, induced := (induced_iff_nhds_eq _).2 (assume a, by rw [← nhds_induced, h.induced_eq]) } protected lemma is_open_map (h : α ≃ₜ β) : is_open_map h := begin assume s, rw ← h.preimage_symm, exact h.symm.continuous s end protected lemma is_closed_map (h : α ≃ₜ β) : is_closed_map h := begin assume s, rw ← h.preimage_symm, exact continuous_iff_is_closed.1 (h.symm.continuous) _ end /-- If an bijective map `e : α ≃ β` is continuous and open, then it is a homeomorphism. -/ def homeomorph_of_continuous_open (e : α ≃ β) (h₁ : continuous e) (h₂ : is_open_map e) : α ≃ₜ β := { continuous_to_fun := h₁, continuous_inv_fun := begin intros s hs, convert ← h₂ s hs using 1, apply e.image_eq_preimage end, .. e } lemma comp_continuous_on_iff (h : α ≃ₜ β) (f : γ → α) (s : set γ) : continuous_on (h ∘ f) s ↔ continuous_on f s := begin split, { assume H, have : continuous_on (h.symm ∘ (h ∘ f)) s := h.symm.continuous.comp_continuous_on H, rwa [← function.comp.assoc h.symm h f, symm_comp_self h] at this }, { exact λ H, h.continuous.comp_continuous_on H } end lemma comp_continuous_iff (h : α ≃ₜ β) (f : γ → α) : continuous (h ∘ f) ↔ continuous f := by simp [continuous_iff_continuous_on_univ, comp_continuous_on_iff] protected lemma quotient_map (h : α ≃ₜ β) : quotient_map h := ⟨h.to_equiv.surjective, h.coinduced_eq.symm⟩ /-- If two sets are equal, then they are homeomorphic. -/ def set_congr {s t : set α} (h : s = t) : s ≃ₜ t := { continuous_to_fun := continuous_subtype_mk _ continuous_subtype_val, continuous_inv_fun := continuous_subtype_mk _ continuous_subtype_val, .. equiv.set_congr h } /-- Sum of two homeomorphisms. -/ def sum_congr (h₁ : α ≃ₜ β) (h₂ : γ ≃ₜ δ) : α ⊕ γ ≃ₜ β ⊕ δ := { continuous_to_fun := continuous_sum_rec (continuous_inl.comp h₁.continuous) (continuous_inr.comp h₂.continuous), continuous_inv_fun := continuous_sum_rec (continuous_inl.comp h₁.symm.continuous) (continuous_inr.comp h₂.symm.continuous), .. h₁.to_equiv.sum_congr h₂.to_equiv } /-- Product of two homeomorphisms. -/ def prod_congr (h₁ : α ≃ₜ β) (h₂ : γ ≃ₜ δ) : α × γ ≃ₜ β × δ := { continuous_to_fun := continuous.prod_mk (h₁.continuous.comp continuous_fst) (h₂.continuous.comp continuous_snd), continuous_inv_fun := continuous.prod_mk (h₁.symm.continuous.comp continuous_fst) (h₂.symm.continuous.comp continuous_snd), .. h₁.to_equiv.prod_congr h₂.to_equiv } section variables (α β γ) /-- `α × β` is homeomorphic to `β × α`. -/ def prod_comm : α × β ≃ₜ β × α := { continuous_to_fun := continuous.prod_mk continuous_snd continuous_fst, continuous_inv_fun := continuous.prod_mk continuous_snd continuous_fst, .. equiv.prod_comm α β } /-- `(α × β) × γ` is homeomorphic to `α × (β × γ)`. -/ def prod_assoc : (α × β) × γ ≃ₜ α × (β × γ) := { continuous_to_fun := continuous.prod_mk (continuous_fst.comp continuous_fst) (continuous.prod_mk (continuous_snd.comp continuous_fst) continuous_snd), continuous_inv_fun := continuous.prod_mk (continuous.prod_mk continuous_fst (continuous_fst.comp continuous_snd)) (continuous_snd.comp continuous_snd), .. equiv.prod_assoc α β γ } end /-- `ulift α` is homeomorphic to `α`. -/ def {u v} ulift {α : Type u} [topological_space α] : ulift.{v u} α ≃ₜ α := { continuous_to_fun := continuous_ulift_down, continuous_inv_fun := continuous_ulift_up, .. equiv.ulift } section distrib /-- `(α ⊕ β) × γ` is homeomorphic to `α × γ ⊕ β × γ`. -/ def sum_prod_distrib : (α ⊕ β) × γ ≃ₜ α × γ ⊕ β × γ := homeomorph.symm $ homeomorph.homeomorph_of_continuous_open (equiv.sum_prod_distrib α β γ).symm (continuous_sum_rec ((continuous_inl.comp continuous_fst).prod_mk continuous_snd) ((continuous_inr.comp continuous_fst).prod_mk continuous_snd)) (is_open_map_sum (open_embedding_inl.prod open_embedding_id).is_open_map (open_embedding_inr.prod open_embedding_id).is_open_map) /-- `α × (β ⊕ γ)` is homeomorphic to `α × β ⊕ α × γ`. -/ def prod_sum_distrib : α × (β ⊕ γ) ≃ₜ α × β ⊕ α × γ := (prod_comm _ _).trans $ sum_prod_distrib.trans $ sum_congr (prod_comm _ _) (prod_comm _ _) variables {ι : Type*} {σ : ι → Type*} [Π i, topological_space (σ i)] /-- `(Σ i, σ i) × β` is homeomorphic to `Σ i, (σ i × β)`. -/ def sigma_prod_distrib : ((Σ i, σ i) × β) ≃ₜ (Σ i, (σ i × β)) := homeomorph.symm $ homeomorph_of_continuous_open (equiv.sigma_prod_distrib σ β).symm (continuous_sigma $ λ i, continuous.prod_mk (continuous_sigma_mk.comp continuous_fst) continuous_snd) (is_open_map_sigma $ λ i, (open_embedding.prod open_embedding_sigma_mk open_embedding_id).is_open_map) end distrib end homeomorph
035e6236084f8b6a6587b4ba1958dd05967163c6
4e3bf8e2b29061457a887ac8889e88fa5aa0e34c
/lean/love04_functional_programming_exercise_sheet.lean
81381a57f7024ce4e6c214ef3e92088dc92fc9e1
[]
no_license
mukeshtiwari/logical_verification_2019
9f964c067a71f65eb8884743273fbeef99e6503d
16f62717f55ed5b7b87e03ae0134791a9bef9b9a
refs/heads/master
1,619,158,844,208
1,585,139,500,000
1,585,139,500,000
249,906,380
0
0
null
1,585,118,728,000
1,585,118,727,000
null
UTF-8
Lean
false
false
5,907
lean
/- LoVe Exercise 4: Functional Programming -/ import .love04_functional_programming_demo namespace LoVe /- Question 1: Reverse of a List -/ /- We define a new accumulator-based version of `reverse`. The first argument serves as the accumulator. This definition is _tail-recursive_, meaning that compilers and interpreters can easily optimize the recursion away, resulting in more efficient code. -/ def areverse {α : Type} : list α → list α → list α | ys [] := ys | ys (x :: xs) := areverse (x :: ys) xs /- 1.1. Our intention is that `areverse [] xs` should be equal to `reverse xs`. But if we start an induction, we quickly see that the induction hypothesis is not strong enough. Start by proving the following generalization (using pattern matching or the `induction` tactic): -/ lemma areverse_eq_reverse_append {α : Type} : ∀ys xs : list α, areverse ys xs = reverse xs ++ ys := sorry /- 1.2. Derive the desired equation. -/ lemma areverse_eq_reverse {α : Type} (xs : list α) : areverse [] xs = reverse xs := sorry /- 1.3. Prove the following property. Hint: A one-line inductionless proof is possible. -/ lemma areverse_areverse {α : Type} (xs : list α) : areverse [] (areverse [] xs) = xs := sorry /- Question 2: Drop and Take -/ /- The `drop` function removes the first `n` elements from the front of a list. -/ def drop {α : Type} : ℕ → list α → list α | 0 xs := xs | (_ + 1) [] := [] | (m + 1) (x :: xs) := drop m xs /- Its relative `take` returns a list consisting of the the first `n` elements at the front of a list. -/ /- 2.1. Define `take`. -/ /- To avoid unpleasant surprises in the proofs, we recommend that you follow the same recursion pattern as for `drop` above. -/ def take {α : Type} : ℕ → list α → list α := sorry #reduce take 0 [3, 7, 11] -- expected: [] #reduce take 1 [3, 7, 11] -- expected: [3] #reduce take 2 [3, 7, 11] -- expected: [3, 7] #reduce take 3 [3, 7, 11] -- expected: [3, 7, 11] #reduce take 4 [3, 7, 11] -- expected: [3, 7, 11] -- when `#reduce` fails for some obscure reason, try `#eval`: #eval take 2 ["a", "b", "c"] -- expected: ["a", "b"] /- 2.2. Prove the following lemmas. Notice that they are registered as simplification rules thanks to the `@[simp]` attribute. -/ @[simp] lemma drop_nil {α : Type} : ∀n : ℕ, drop n ([] : list α) = [] := sorry @[simp] lemma take_nil {α : Type} : ∀n : ℕ, take n ([] : list α) = [] := sorry /- 2.3. Follow the recursion pattern of `drop` and `take` to prove the following lemmas. In other words, for each lemma, there should be three cases, and the third case will need to invoke the induction hypothesis. The first case is shown for `drop_drop`. Beware of the fact that there are three variables in the `drop_drop` lemma (but only two arguments to `drop`). Hint: The `refl` tactic might be useful in the third case of `drop_drop`. -/ lemma drop_drop {α : Type} : ∀(m n : ℕ) (xs : list α), drop n (drop m xs) = drop (n + m) xs | 0 n xs := by refl -- supply the two missing cases here lemma take_take {α : Type} : ∀(m : ℕ) (xs : list α), take m (take m xs) = take m xs := sorry lemma take_drop {α : Type} : ∀(n : ℕ) (xs : list α), take n xs ++ drop n xs = xs := sorry /- Question 3: λ-Terms -/ /- 3.1. Define an inductive type corresponding to the untyled λ-terms, as given by the following context-free grammar: <lam> ::= 'var' <string> | 'abs' <string> <lam> | 'app' <lam> <lam> -/ -- enter your definition here /- 3.2. Register a textual representation of the type `lam`. Make sure to supply enough parentheses to guarantee that the output is unambiguous. -/ def lam.repr : lam → string -- enter your answer here instance : has_repr lam := ⟨lam.repr⟩ /- Question 4 (**optional**): Concatenation -/ /- Consider the following Lean definition of 2–3 trees as an inductive type: -/ inductive tttree (α : Type) : Type | empty {} : tttree | bin : α → tttree → tttree → tttree | ter : α → tttree → tttree → tttree → tttree export tttree (empty bin ter) /- 4.1 (**optional**). Complete the following Lean definition. The `map_tree` function should apply its argument `f` to all values of type α stored in the tree and otherwise preserve the tree's structure. -/ -- enter your definition here /- 4.2 (**optional**). Prove the following lemma about your definition of `map_tree`. -/ lemma map_tttree_id {α : Type} : ∀t : tttree α, map_tttree (λx : α, x) t = t := sorry /- 4.3 (**optional**). Complete the following Lean definition. The `set_tree` function should return the set of all values of type α stored in the tree. In your answer, you may use traditional set notations regardless of whether they are actually supported by Lean. -/ def set_tttree {α : Type} : tttree α → set α := sorry /- A _congruence rule_ is a lemma that can be used to lift an equivalence relation between terms to the same terms occurring under a common context. Congruence rules for equality are built into Lean's logic. In the following example, the equivalence relation is `=`, the terms are `f` and `g`, and the context is `map_tree … t`: -/ lemma map_tttree_congr_weak {α β : Type} (f g : α → β) (f = g) (t : tttree α) : map_tttree f t = map_tttree g t := by simp * /- 4.4 (**optional**). The above rule is not as flexible as it could be, because it requires `f = g`. As long as `f` and `g` are equal for all values `x : α` stored in `t`, we have `map_tree f t = map_tree g t`, even if `f` and `g` disagree on other `α` values. Inspired by this observation, prove the following stronger congruence rule. -/ lemma map_tttree_congr_strong {α β : Type} (f g : α → β) : ∀t : tttree α, (∀x, x ∈ set_tttree t → f x = g x) → map_tttree f t = map_tttree g t := sorry end LoVe
7ba9b611672d93df4c7a3680a10b720fa8303b80
a45212b1526d532e6e83c44ddca6a05795113ddc
/src/data/dlist/instances.lean
b1d2b8576ede9be71021126a49d1f98cf554eddc
[ "Apache-2.0" ]
permissive
fpvandoorn/mathlib
b21ab4068db079cbb8590b58fda9cc4bc1f35df4
b3433a51ea8bc07c4159c1073838fc0ee9b8f227
refs/heads/master
1,624,791,089,608
1,556,715,231,000
1,556,715,231,000
165,722,980
5
0
Apache-2.0
1,552,657,455,000
1,547,494,646,000
Lean
UTF-8
Lean
false
false
682
lean
/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon Traversable instance for dlists. -/ import data.dlist category.traversable.equiv category.traversable.instances namespace dlist variables (α : Type*) open function equiv def list_equiv_dlist : list α ≃ dlist α := by refine { to_fun := dlist.of_list, inv_fun := dlist.to_list, .. }; simp [function.right_inverse,left_inverse,to_list_of_list,of_list_to_list] instance : traversable dlist := equiv.traversable list_equiv_dlist instance : is_lawful_traversable dlist := equiv.is_lawful_traversable list_equiv_dlist end dlist
db13c23572020ca1634a63bc1489d3ee7d6bbd2f
ae1e94c332e17c7dc7051ce976d5a9eebe7ab8a5
/stage0/src/Init/Coe.lean
a551c061bcc7a68da94f4381cc1db3989c7e47fa
[ "Apache-2.0" ]
permissive
dupuisf/lean4
d082d13b01243e1de29ae680eefb476961221eef
6a39c65bd28eb0e28c3870188f348c8914502718
refs/heads/master
1,676,948,755,391
1,610,665,114,000
1,610,665,114,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
6,076
lean
/- Copyright (c) 2020 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura -/ prelude import Init.Core universes u v w w' class Coe (α : Sort u) (β : Sort v) where coe : α → β /-- Auxiliary class that contains the transitive closure of `Coe`. -/ class CoeTC (α : Sort u) (β : Sort v) where coe : α → β /- Expensive coercion that can only appear at the beggining of a sequence of coercions. -/ class CoeHead (α : Sort u) (β : Sort v) where coe : α → β /- Expensive coercion that can only appear at the end of a sequence of coercions. -/ class CoeTail (α : Sort u) (β : Sort v) where coe : α → β class CoeDep (α : Sort u) (a : α) (β : Sort v) where coe : β /- Combines CoeHead, CoeTC, CoeTail, CoeDep -/ class CoeT (α : Sort u) (a : α) (β : Sort v) where coe : β class CoeFun (α : Sort u) (γ : outParam (α → outParam (Sort v))) where coe : (a : α) → γ a class CoeSort (α : Sort u) (β : outParam (Sort v)) where coe : α → β abbrev coeB {α : Sort u} {β : Sort v} [Coe α β] (a : α) : β := Coe.coe a abbrev coeHead {α : Sort u} {β : Sort v} [CoeHead α β] (a : α) : β := CoeHead.coe a abbrev coeTail {α : Sort u} {β : Sort v} [CoeTail α β] (a : α) : β := CoeTail.coe a abbrev coeD {α : Sort u} {β : Sort v} (a : α) [CoeDep α a β] : β := CoeDep.coe a abbrev coeTC {α : Sort u} {β : Sort v} [CoeTC α β] (a : α) : β := CoeTC.coe a /-- Apply coercion manually. -/ abbrev coe {α : Sort u} {β : Sort v} (a : α) [CoeT α a β] : β := CoeT.coe a prefix:max "↑" => coe abbrev coeFun {α : Sort u} {γ : α → Sort v} (a : α) [CoeFun α γ] : γ a := CoeFun.coe a abbrev coeSort {α : Sort u} {β : Sort v} (a : α) [CoeSort α β] : β := CoeSort.coe a instance coeTrans {α : Sort u} {β : Sort v} {δ : Sort w} [Coe β δ] [CoeTC α β] : CoeTC α δ where coe a := coeB (coeTC a : β) instance coeBase {α : Sort u} {β : Sort v} [Coe α β] : CoeTC α β where coe a := coeB a instance coeOfHeafOfTCOfTail {α : Sort u} {β : Sort v} {δ : Sort w} {γ : Sort w'} (a : α) [CoeHead α β] [CoeTail δ γ] [CoeTC β δ] : CoeT α a γ where coe := coeTail (coeTC (coeHead a : β) : δ) instance coeOfHeadOfTC {α : Sort u} {β : Sort v} {δ : Sort w} (a : α) [CoeHead α β] [CoeTC β δ] : CoeT α a δ where coe := coeTC (coeHead a : β) instance coeOfTCOfTail {α : Sort u} {β : Sort v} {δ : Sort w} (a : α) [CoeTail β δ] [CoeTC α β] : CoeT α a δ where coe := coeTail (coeTC a : β) instance coeOfHead {α : Sort u} {β : Sort v} (a : α) [CoeHead α β] : CoeT α a β where coe := coeHead a instance coeOfTail {α : Sort u} {β : Sort v} (a : α) [CoeTail α β] : CoeT α a β where coe := coeTail a instance coeOfTC {α : Sort u} {β : Sort v} (a : α) [CoeTC α β] : CoeT α a β where coe := coeTC a instance coeOfDep {α : Sort u} {β : Sort v} (a : α) [CoeDep α a β] : CoeT α a β where coe := coeD a instance coeId {α : Sort u} (a : α) : CoeT α a α where coe := a /- Basic instances -/ @[inline] instance boolToProp : Coe Bool Prop where coe b := b = true @[inline] instance coeDecidableEq (x : Bool) : Decidable (coe x) := inferInstanceAs (Decidable (x = true)) instance decPropToBool (p : Prop) [Decidable p] : CoeDep Prop p Bool where coe := decide p instance optionCoe {α : Type u} : CoeTail α (Option α) where coe := some instance subtypeCoe {α : Sort u} {p : α → Prop} : CoeHead { x // p x } α where coe v := v.val /- Coe & OfNat bridge -/ /- Remark: one may question why we use `OfNat α` instead of `Coe Nat α`. Reason: `OfNat` is for implementing polymorphic numeric literals, and we may want to have numberic literals for a type α and **no** coercion from `Nat` to `α`. -/ instance hasOfNatOfCoe [Coe α β] [OfNat α n] : OfNat β n where ofNat := coe (OfNat.ofNat n : α) @[inline] def liftCoeM {m : Type u → Type v} {n : Type u → Type w} {α β : Type u} [MonadLiftT m n] [∀ a, CoeT α a β] [Monad n] (x : m α) : n β := do let a ← liftM x pure (coe a) @[inline] def coeM {m : Type u → Type v} {α β : Type u} [∀ a, CoeT α a β] [Monad m] (x : m α) : m β := do let a ← x pure <| coe a instance [CoeFun α β] (a : α) : CoeDep α a (β a) where coe := coeFun a instance [CoeFun α (fun _ => β)] : CoeTail α β where coe a := coeFun a instance [CoeSort α β] : CoeTail α β where coe a := coeSort a /- Coe and heterogeneous operators, we use `CoeTC` instead of `CoeT` to avoid expensive coercions such as `CoeDep` -/ instance [CoeTC α β] [Add β] : HAdd α β β where hAdd a b := Add.add a b instance [CoeTC α β] [Add β] : HAdd β α β where hAdd a b := Add.add a b instance [CoeTC α β] [Sub β] : HSub α β β where hSub a b := Sub.sub a b instance [CoeTC α β] [Sub β] : HSub β α β where hSub a b := Sub.sub a b instance [CoeTC α β] [Mul β] : HMul α β β where hMul a b := Mul.mul a b instance [CoeTC α β] [Mul β] : HMul β α β where hMul a b := Mul.mul a b instance [CoeTC α β] [Div β] : HDiv α β β where hDiv a b := Div.div a b instance [CoeTC α β] [Div β] : HDiv β α β where hDiv a b := Div.div a b instance [CoeTC α β] [Mod β] : HMod α β β where hMod a b := Mod.mod a b instance [CoeTC α β] [Mod β] : HMod β α β where hMod a b := Mod.mod a b instance [CoeTC α β] [Append β] : HAppend α β β where hAppend a b := Append.append a b instance [CoeTC α β] [Append β] : HAppend β α β where hAppend a b := Append.append a b instance [CoeTC α β] [OrElse β] : HOrElse α β β where hOrElse a b := OrElse.orElse a b instance [CoeTC α β] [OrElse β] : HOrElse β α β where hOrElse a b := OrElse.orElse a b instance [CoeTC α β] [AndThen β] : HAndThen α β β where hAndThen a b := AndThen.andThen a b instance [CoeTC α β] [AndThen β] : HAndThen β α β where hAndThen a b := AndThen.andThen a b
8e4ee915cb342077ff2061863f3dc84e58ac9f53
8e2026ac8a0660b5a490dfb895599fb445bb77a0
/library/init/data/char/basic.lean
2cbf476499991f3e9ea43574ff2c11f38f050322
[ "Apache-2.0" ]
permissive
pcmoritz/lean
6a8575115a724af933678d829b4f791a0cb55beb
35eba0107e4cc8a52778259bb5392300267bfc29
refs/heads/master
1,607,896,326,092
1,490,752,175,000
1,490,752,175,000
86,612,290
0
0
null
1,490,809,641,000
1,490,809,641,000
null
UTF-8
Lean
false
false
729
lean
/- Copyright (c) 2016 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura -/ prelude import init.data.fin.basic open nat def char_sz : nat := succ 255 def char := fin char_sz namespace char /- We cannot use tactic dec_trivial here because the tactic framework has not been defined yet. -/ lemma zero_lt_char_sz : 0 < char_sz := zero_lt_succ _ @[pattern] def of_nat (n : nat) : char := if h : n < char_sz then fin.mk n h else fin.mk 0 zero_lt_char_sz def to_nat (c : char) : nat := fin.val c end char instance : decidable_eq char := have decidable_eq (fin char_sz), from fin.decidable_eq _, this instance : inhabited char := ⟨#"A"⟩
a395fc64694b121209a538d4342cc6ba9f13205f
8e6cad62ec62c6c348e5faaa3c3f2079012bdd69
/src/data/mv_polynomial/rename.lean
2a0b539c5274c4ab716e11d7df602c917826be4b
[ "Apache-2.0" ]
permissive
benjamindavidson/mathlib
8cc81c865aa8e7cf4462245f58d35ae9a56b150d
fad44b9f670670d87c8e25ff9cdf63af87ad731e
refs/heads/master
1,679,545,578,362
1,615,343,014,000
1,615,343,014,000
312,926,983
0
0
Apache-2.0
1,615,360,301,000
1,605,399,418,000
Lean
UTF-8
Lean
false
false
9,104
lean
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Johan Commelin, Mario Carneiro -/ import data.mv_polynomial.basic /-! # Renaming variables of polynomials This file establishes the `rename` operation on multivariate polynomials, which modifies the set of variables. ## Main declarations * `mv_polynomial.rename` * `mv_polynomial.rename_equiv` ## Notation As in other polynomial files, we typically use the notation: + `σ τ α : Type*` (indexing the variables) + `R S : Type*` `[comm_semiring R]` `[comm_semiring S]` (the coefficients) + `s : σ →₀ ℕ`, a function from `σ` to `ℕ` which is zero away from a finite set. This will give rise to a monomial in `mv_polynomial σ R` which mathematicians might call `X^s` + `r : R` elements of the coefficient ring + `i : σ`, with corresponding monomial `X i`, often denoted `X_i` by mathematicians + `p : mv_polynomial σ α` -/ noncomputable theory open_locale classical big_operators open set function finsupp add_monoid_algebra open_locale big_operators variables {σ τ α R S : Type*} [comm_semiring R] [comm_semiring S] namespace mv_polynomial section rename /-- Rename all the variables in a multivariable polynomial. -/ def rename (f : σ → τ) : mv_polynomial σ R →ₐ[R] mv_polynomial τ R := aeval (X ∘ f) @[simp] lemma rename_C (f : σ → τ) (r : R) : rename f (C r) = C r := eval₂_C _ _ _ @[simp] lemma rename_X (f : σ → τ) (i : σ) : rename f (X i : mv_polynomial σ R) = X (f i) := eval₂_X _ _ _ lemma map_rename (f : R →+* S) (g : σ → τ) (p : mv_polynomial σ R) : map f (rename g p) = rename g (map f p) := mv_polynomial.induction_on p (λ a, by simp only [map_C, rename_C]) (λ p q hp hq, by simp only [hp, hq, alg_hom.map_add, ring_hom.map_add]) (λ p n hp, by simp only [hp, rename_X, map_X, ring_hom.map_mul, alg_hom.map_mul]) @[simp] lemma rename_rename (f : σ → τ) (g : τ → α) (p : mv_polynomial σ R) : rename g (rename f p) = rename (g ∘ f) p := show rename g (eval₂ C (X ∘ f) p) = _, begin simp only [rename, aeval_eq_eval₂_hom], simp [eval₂_comp_left _ C (X ∘ f) p, (∘), eval₂_C, eval_X], apply eval₂_hom_congr _ rfl rfl, ext1, simp only [comp_app, ring_hom.coe_comp, eval₂_hom_C], end @[simp] lemma rename_id (p : mv_polynomial σ R) : rename id p = p := eval₂_eta p lemma rename_monomial (f : σ → τ) (d : σ →₀ ℕ) (r : R) : rename f (monomial d r) = monomial (d.map_domain f) r := begin rw [rename, aeval_monomial, monomial_eq, finsupp.prod_map_domain_index], { refl }, { exact assume n, pow_zero _ }, { exact assume n i₁ i₂, pow_add _ _ _ } end lemma rename_eq (f : σ → τ) (p : mv_polynomial σ R) : rename f p = finsupp.map_domain (finsupp.map_domain f) p := begin simp only [rename, aeval_def, eval₂, finsupp.map_domain, ring_hom.coe_of], congr' with s a : 2, rw [← monomial, monomial_eq, finsupp.prod_sum_index], congr' with n i : 2, rw [finsupp.prod_single_index], exact pow_zero _, exact assume a, pow_zero _, exact assume a b c, pow_add _ _ _ end lemma rename_injective (f : σ → τ) (hf : function.injective f) : function.injective (rename f : mv_polynomial σ R → mv_polynomial τ R) := have (rename f : mv_polynomial σ R → mv_polynomial τ R) = finsupp.map_domain (finsupp.map_domain f) := funext (rename_eq f), begin rw this, exact finsupp.map_domain_injective (finsupp.map_domain_injective hf) end section variables (R) /-- `mv_polynomial.rename e` is an equivalence when `e` is. -/ @[simps apply] def rename_equiv (f : σ ≃ τ) : mv_polynomial σ R ≃ₐ[R] mv_polynomial τ R := { to_fun := rename f, inv_fun := rename f.symm, left_inv := λ p, by rw [rename_rename, f.symm_comp_self, rename_id], right_inv := λ p, by rw [rename_rename, f.self_comp_symm, rename_id], ..rename f} @[simp] lemma rename_equiv_refl : rename_equiv R (equiv.refl σ) = alg_equiv.refl := alg_equiv.ext rename_id @[simp] lemma rename_equiv_symm (f : σ ≃ τ) : (rename_equiv R f).symm = rename_equiv R f.symm := rfl @[simp] lemma rename_equiv_trans (e : σ ≃ τ) (f : τ ≃ α): (rename_equiv R e).trans (rename_equiv R f) = rename_equiv R (e.trans f) := alg_equiv.ext (rename_rename e f) end section variables (f : R →+* S) (k : σ → τ) (g : τ → S) (p : mv_polynomial σ R) lemma eval₂_rename : (rename k p).eval₂ f g = p.eval₂ f (g ∘ k) := by apply mv_polynomial.induction_on p; { intros, simp [*] } lemma eval₂_hom_rename : eval₂_hom f g (rename k p) = eval₂_hom f (g ∘ k) p := eval₂_rename _ _ _ _ lemma aeval_rename [algebra R S] : aeval g (rename k p) = aeval (g ∘ k) p := eval₂_hom_rename _ _ _ _ lemma rename_eval₂ (g : τ → mv_polynomial σ R) : rename k (p.eval₂ C (g ∘ k)) = (rename k p).eval₂ C (rename k ∘ g) := by apply mv_polynomial.induction_on p; { intros, simp [*] } lemma rename_prodmk_eval₂ (j : τ) (g : σ → mv_polynomial σ R) : rename (prod.mk j) (p.eval₂ C g) = p.eval₂ C (λ x, rename (prod.mk j) (g x)) := by apply mv_polynomial.induction_on p; { intros, simp [*] } lemma eval₂_rename_prodmk (g : σ × τ → S) (i : σ) (p : mv_polynomial τ R) : (rename (prod.mk i) p).eval₂ f g = eval₂ f (λ j, g (i, j)) p := by apply mv_polynomial.induction_on p; { intros, simp [*] } lemma eval_rename_prodmk (g : σ × τ → R) (i : σ) (p : mv_polynomial τ R) : eval g (rename (prod.mk i) p) = eval (λ j, g (i, j)) p := eval₂_rename_prodmk (ring_hom.id _) _ _ _ end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_finset_rename (p : mv_polynomial σ R) : ∃ (s : finset σ) (q : mv_polynomial {x // x ∈ s} R), p = rename coe q := begin apply induction_on p, { intro r, exact ⟨∅, C r, by rw rename_C⟩ }, { rintro p q ⟨s, p, rfl⟩ ⟨t, q, rfl⟩, refine ⟨s ∪ t, ⟨_, _⟩⟩, { refine rename (subtype.map id _) p + rename (subtype.map id _) q; simp only [id.def, true_or, or_true, finset.mem_union, forall_true_iff] {contextual := tt}, }, { simp only [rename_rename, alg_hom.map_add], refl, }, }, { rintro p n ⟨s, p, rfl⟩, refine ⟨insert n s, ⟨_, _⟩⟩, { refine rename (subtype.map id _) p * X ⟨n, s.mem_insert_self n⟩, simp only [id.def, or_true, finset.mem_insert, forall_true_iff] {contextual := tt}, }, { simp only [rename_rename, rename_X, subtype.coe_mk, alg_hom.map_mul], refl, }, }, end /-- Every polynomial is a polynomial in finitely many variables. -/ theorem exists_fin_rename (p : mv_polynomial σ R) : ∃ (n : ℕ) (f : fin n → σ) (hf : injective f) (q : mv_polynomial (fin n) R), p = rename f q := begin obtain ⟨s, q, rfl⟩ := exists_finset_rename p, obtain ⟨n, ⟨e⟩⟩ := fintype.exists_equiv_fin {x // x ∈ s}, refine ⟨n, coe ∘ e.symm, subtype.val_injective.comp e.symm.injective, rename e q, _⟩, rw [← rename_rename, rename_rename e], simp only [function.comp, equiv.symm_apply_apply, rename_rename] end end rename lemma eval₂_cast_comp (f : σ → τ) (c : ℤ →+* R) (g : τ → R) (p : mv_polynomial σ ℤ) : eval₂ c (g ∘ f) p = eval₂ c g (rename f p) := mv_polynomial.induction_on p (λ n, by simp only [eval₂_C, rename_C]) (λ p q hp hq, by simp only [hp, hq, rename, eval₂_add, alg_hom.map_add]) (λ p n hp, by simp only [hp, rename, aeval_def, eval₂_X, eval₂_mul]) section coeff @[simp] lemma coeff_rename_map_domain (f : σ → τ) (hf : injective f) (φ : mv_polynomial σ R) (d : σ →₀ ℕ) : (rename f φ).coeff (d.map_domain f) = φ.coeff d := begin apply induction_on' φ, { intros u r, rw [rename_monomial, coeff_monomial, coeff_monomial], simp only [(finsupp.map_domain_injective hf).eq_iff], split_ifs; refl, }, { intros, simp only [*, alg_hom.map_add, coeff_add], } end lemma coeff_rename_eq_zero (f : σ → τ) (φ : mv_polynomial σ R) (d : τ →₀ ℕ) (h : ∀ u : σ →₀ ℕ, u.map_domain f = d → φ.coeff u = 0) : (rename f φ).coeff d = 0 := begin rw [rename_eq, coeff, ← not_mem_support_iff], intro H, replace H := map_domain_support H, rw [finset.mem_image] at H, obtain ⟨u, hu, rfl⟩ := H, specialize h u rfl, simp [mem_support_iff, coeff] at h hu, contradiction end lemma coeff_rename_ne_zero (f : σ → τ) (φ : mv_polynomial σ R) (d : τ →₀ ℕ) (h : (rename f φ).coeff d ≠ 0) : ∃ u : σ →₀ ℕ, u.map_domain f = d ∧ φ.coeff u ≠ 0 := by { contrapose! h, apply coeff_rename_eq_zero _ _ _ h } @[simp] lemma constant_coeff_rename {τ : Type*} (f : σ → τ) (φ : mv_polynomial σ R) : constant_coeff (rename f φ) = constant_coeff φ := begin apply φ.induction_on, { intro a, simp only [constant_coeff_C, rename_C]}, { intros p q hp hq, simp only [hp, hq, ring_hom.map_add, alg_hom.map_add] }, { intros p n hp, simp only [hp, rename_X, constant_coeff_X, ring_hom.map_mul, alg_hom.map_mul] } end end coeff end mv_polynomial
9e6930cad34e417a64ffce534bab088f46c02af2
b7f22e51856f4989b970961f794f1c435f9b8f78
/tests/lean/run/apply_failure.lean
245bcbeb6806b6b0316ed2ab1e8aa75edd87db17
[ "Apache-2.0" ]
permissive
soonhokong/lean
cb8aa01055ffe2af0fb99a16b4cda8463b882cd1
38607e3eb57f57f77c0ac114ad169e9e4262e24f
refs/heads/master
1,611,187,284,081
1,450,766,737,000
1,476,122,547,000
11,513,992
2
0
null
1,401,763,102,000
1,374,182,235,000
C++
UTF-8
Lean
false
false
146
lean
example (a b c : Prop) : a ∧ b → b ∧ a := begin intro H, repeat (apply or.elim H | apply and.elim H | intro H | split | assumption) end
9c0f3f61e6f4d186e82ffd374d14cf3b8c9424f1
dfbb669f3f58ceb57cb207dcfab5726a07425b03
/vscode-lean4/test/test-fixtures/simple/Test/Version.lean
dd3a5bb806002e5ef06f6243ae6b569973fb4b7c
[ "Apache-2.0" ]
permissive
leanprover/vscode-lean4
8bcf7f06867b3c1d42007fe6da863a7a17444dbb
6ef0bfa668bdeaad0979e6df10551d42fcc01094
refs/heads/master
1,692,247,771,767
1,691,608,804,000
1,691,608,804,000
325,845,305
64
24
Apache-2.0
1,694,176,429,000
1,609,435,614,000
TypeScript
UTF-8
Lean
false
false
146
lean
import Lake def getLeanVersion := Lean.versionString #eval s!"Lean Version: {getLeanVersion}" #eval s!"Lake Version: {Lake.versionString}"
431118ae33e6e2bfdf8874f69b2ec1de5dc16d85
4efff1f47634ff19e2f786deadd394270a59ecd2
/src/algebra/group/defs.lean
33ea9b47fb1dee49d679925c328d02db1ae32004
[ "Apache-2.0" ]
permissive
agjftucker/mathlib
d634cd0d5256b6325e3c55bb7fb2403548371707
87fe50de17b00af533f72a102d0adefe4a2285e8
refs/heads/master
1,625,378,131,941
1,599,166,526,000
1,599,166,526,000
160,748,509
0
0
Apache-2.0
1,544,141,789,000
1,544,141,789,000
null
UTF-8
Lean
false
false
14,416
lean
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Simon Hudon, Mario Carneiro -/ import algebra.group.to_additive import tactic.basic /-! # Typeclasses for (semi)groups and monoid In this file we define typeclasses for algebraic structures with one binary operation. The classes are named `(add_)?(comm_)?(semigroup|monoid|group)`, where `add_` means that the class uses additive notation and `comm_` means that the class assumes that the binary operation is commutative. The file does not contain any lemmas except for * axioms of typeclasses restated in the root namespace; * lemmas required for instances. For basic lemmas about these classes see `algebra.group.basic`. -/ set_option default_priority 100 set_option old_structure_cmd true universe u /- Additive "sister" structures. Example, add_semigroup mirrors semigroup. These structures exist just to help automation. In an alternative design, we could have the binary operation as an extra argument for semigroup, monoid, group, etc. However, the lemmas would be hard to index since they would not contain any constant. For example, mul_assoc would be lemma mul_assoc {α : Type u} {op : α → α → α} [semigroup α op] : ∀ a b c : α, op (op a b) c = op a (op b c) := semigroup.mul_assoc The simplifier cannot effectively use this lemma since the pattern for the left-hand-side would be ?op (?op ?a ?b) ?c Remark: we use a tactic for transporting theorems from the multiplicative fragment to the additive one. -/ section has_mul variables {G : Type u} [has_mul G] /-- `left_mul g` denotes left multiplication by `g` -/ @[to_additive "`left_add g` denotes left addition by `g`"] def left_mul : G → G → G := λ g : G, λ x : G, g * x /-- `right_mul g` denotes right multiplication by `g` -/ @[to_additive "`right_add g` denotes right addition by `g`"] def right_mul : G → G → G := λ g : G, λ x : G, x * g end has_mul /-- A semigroup is a type with an associative `(*)`. -/ @[protect_proj, ancestor has_mul] class semigroup (G : Type u) extends has_mul G := (mul_assoc : ∀ a b c : G, a * b * c = a * (b * c)) /-- An additive semigroup is a type with an associative `(+)`. -/ @[protect_proj, ancestor has_add] class add_semigroup (G : Type u) extends has_add G := (add_assoc : ∀ a b c : G, a + b + c = a + (b + c)) attribute [to_additive] semigroup section semigroup variables {G : Type u} [semigroup G] @[no_rsimp, to_additive] lemma mul_assoc : ∀ a b c : G, a * b * c = a * (b * c) := semigroup.mul_assoc attribute [no_rsimp] add_assoc -- TODO(Mario): find out why this isn't copying @[to_additive] instance semigroup.to_is_associative : is_associative G (*) := ⟨mul_assoc⟩ end semigroup /-- A commutative semigroup is a type with an associative commutative `(*)`. -/ @[protect_proj, ancestor semigroup] class comm_semigroup (G : Type u) extends semigroup G := (mul_comm : ∀ a b : G, a * b = b * a) /-- A commutative additive semigroup is a type with an associative commutative `(+)`. -/ @[protect_proj, ancestor add_semigroup] class add_comm_semigroup (G : Type u) extends add_semigroup G := (add_comm : ∀ a b : G, a + b = b + a) attribute [to_additive] comm_semigroup section comm_semigroup variables {G : Type u} [comm_semigroup G] @[no_rsimp, to_additive] lemma mul_comm : ∀ a b : G, a * b = b * a := comm_semigroup.mul_comm attribute [no_rsimp] add_comm @[to_additive] instance comm_semigroup.to_is_commutative : is_commutative G (*) := ⟨mul_comm⟩ end comm_semigroup /-- A `left_cancel_semigroup` is a semigroup such that `a * b = a * c` implies `b = c`. -/ @[protect_proj, ancestor semigroup] class left_cancel_semigroup (G : Type u) extends semigroup G := (mul_left_cancel : ∀ a b c : G, a * b = a * c → b = c) /-- An `add_left_cancel_semigroup` is an additive semigroup such that `a + b = a + c` implies `b = c`. -/ @[protect_proj, ancestor add_semigroup] class add_left_cancel_semigroup (G : Type u) extends add_semigroup G := (add_left_cancel : ∀ a b c : G, a + b = a + c → b = c) attribute [to_additive add_left_cancel_semigroup] left_cancel_semigroup section left_cancel_semigroup variables {G : Type u} [left_cancel_semigroup G] {a b c : G} @[to_additive] lemma mul_left_cancel : a * b = a * c → b = c := left_cancel_semigroup.mul_left_cancel a b c @[to_additive] lemma mul_left_cancel_iff : a * b = a * c ↔ b = c := ⟨mul_left_cancel, congr_arg _⟩ @[to_additive] theorem mul_right_injective (a : G) : function.injective ((*) a) := λ b c, mul_left_cancel @[simp, to_additive] theorem mul_right_inj (a : G) {b c : G} : a * b = a * c ↔ b = c := ⟨mul_left_cancel, congr_arg _⟩ end left_cancel_semigroup /-- A `right_cancel_semigroup` is a semigroup such that `a * b = c * b` implies `a = c`. -/ @[protect_proj, ancestor semigroup] class right_cancel_semigroup (G : Type u) extends semigroup G := (mul_right_cancel : ∀ a b c : G, a * b = c * b → a = c) /-- An `add_right_cancel_semigroup` is an additive semigroup such that `a + b = c + b` implies `a = c`. -/ @[protect_proj, ancestor add_semigroup] class add_right_cancel_semigroup (G : Type u) extends add_semigroup G := (add_right_cancel : ∀ a b c : G, a + b = c + b → a = c) attribute [to_additive add_right_cancel_semigroup] right_cancel_semigroup section right_cancel_semigroup variables {G : Type u} [right_cancel_semigroup G] {a b c : G} @[to_additive] lemma mul_right_cancel : a * b = c * b → a = c := right_cancel_semigroup.mul_right_cancel a b c @[to_additive] lemma mul_right_cancel_iff : b * a = c * a ↔ b = c := ⟨mul_right_cancel, congr_arg _⟩ @[to_additive] theorem mul_left_injective (a : G) : function.injective (λ x, x * a) := λ b c, mul_right_cancel @[simp, to_additive] theorem mul_left_inj (a : G) {b c : G} : b * a = c * a ↔ b = c := ⟨mul_right_cancel, congr_arg _⟩ end right_cancel_semigroup /-- A `monoid` is a `semigroup` with an element `1` such that `1 * a = a * 1 = a`. -/ @[ancestor semigroup has_one] class monoid (M : Type u) extends semigroup M, has_one M := (one_mul : ∀ a : M, 1 * a = a) (mul_one : ∀ a : M, a * 1 = a) /-- An `add_monoid` is an `add_semigroup` with an element `0` such that `0 + a = a + 0 = a`. -/ @[ancestor add_semigroup has_zero] class add_monoid (M : Type u) extends add_semigroup M, has_zero M := (zero_add : ∀ a : M, 0 + a = a) (add_zero : ∀ a : M, a + 0 = a) attribute [to_additive] monoid section monoid variables {M : Type u} [monoid M] @[ematch, simp, to_additive] lemma one_mul : ∀ a : M, 1 * a = a := monoid.one_mul @[ematch, simp, to_additive] lemma mul_one : ∀ a : M, a * 1 = a := monoid.mul_one attribute [ematch] add_zero zero_add -- TODO(Mario): Make to_additive transfer this @[to_additive] instance monoid_to_is_left_id : is_left_id M (*) 1 := ⟨ monoid.one_mul ⟩ @[to_additive] instance monoid_to_is_right_id : is_right_id M (*) 1 := ⟨ monoid.mul_one ⟩ @[to_additive] lemma left_inv_eq_right_inv {a b c : M} (hba : b * a = 1) (hac : a * c = 1) : b = c := by rw [←one_mul c, ←hba, mul_assoc, hac, mul_one b] end monoid /-- A commutative monoid is a monoid with commutative `(*)`. -/ @[protect_proj, ancestor monoid comm_semigroup] class comm_monoid (M : Type u) extends monoid M, comm_semigroup M /-- An additive commutative monoid is an additive monoid with commutative `(+)`. -/ @[protect_proj, ancestor add_monoid add_comm_semigroup] class add_comm_monoid (M : Type u) extends add_monoid M, add_comm_semigroup M attribute [to_additive] comm_monoid section left_cancel_monoid /-- An additive monoid in which addition is left-cancellative. Main examples are `ℕ` and groups. This is the right typeclass for many sum lemmas, as having a zero is useful to define the sum over the empty set, so `add_left_cancel_semigroup` is not enough. -/ @[protect_proj, ancestor add_left_cancel_semigroup add_monoid] class add_left_cancel_monoid (M : Type u) extends add_left_cancel_semigroup M, add_monoid M -- TODO: I found 1 (one) lemma assuming `[add_left_cancel_monoid]`. -- Should we port more lemmas to this typeclass? /-- A monoid in which multiplication is left-cancellative. -/ @[protect_proj, ancestor left_cancel_semigroup monoid, to_additive add_left_cancel_monoid] class left_cancel_monoid (M : Type u) extends left_cancel_semigroup M, monoid M /-- Commutative version of add_left_cancel_monoid. -/ @[protect_proj, ancestor add_left_cancel_monoid add_comm_monoid] class add_left_cancel_comm_monoid (M : Type u) extends add_left_cancel_monoid M, add_comm_monoid M /-- Commutative version of left_cancel_monoid. -/ @[protect_proj, ancestor left_cancel_monoid comm_monoid, to_additive add_left_cancel_comm_monoid] class left_cancel_comm_monoid (M : Type u) extends left_cancel_monoid M, comm_monoid M end left_cancel_monoid section right_cancel_monoid /-- An additive monoid in which addition is right-cancellative. Main examples are `ℕ` and groups. This is the right typeclass for many sum lemmas, as having a zero is useful to define the sum over the empty set, so `add_right_cancel_semigroup` is not enough. -/ @[protect_proj, ancestor add_right_cancel_semigroup add_monoid] class add_right_cancel_monoid (M : Type u) extends add_right_cancel_semigroup M, add_monoid M /-- A monoid in which multiplication is right-cancellative. -/ @[protect_proj, ancestor right_cancel_semigroup monoid, to_additive add_right_cancel_monoid] class right_cancel_monoid (M : Type u) extends right_cancel_semigroup M, monoid M /-- Commutative version of add_right_cancel_monoid. -/ @[protect_proj, ancestor add_right_cancel_monoid add_comm_monoid] class add_right_cancel_comm_monoid (M : Type u) extends add_right_cancel_monoid M, add_comm_monoid M /-- Commutative version of right_cancel_monoid. -/ @[protect_proj, ancestor right_cancel_monoid comm_monoid, to_additive add_right_cancel_comm_monoid] class right_cancel_comm_monoid (M : Type u) extends right_cancel_monoid M, comm_monoid M end right_cancel_monoid section cancel_monoid /-- An additive monoid in which addition is cancellative on both sides. Main examples are `ℕ` and groups. This is the right typeclass for many sum lemmas, as having a zero is useful to define the sum over the empty set, so `add_right_cancel_semigroup` is not enough. -/ @[protect_proj, ancestor add_left_cancel_monoid add_right_cancel_monoid] class add_cancel_monoid (M : Type u) extends add_left_cancel_monoid M, add_right_cancel_monoid M /-- A monoid in which multiplication is cancellative. -/ @[protect_proj, ancestor left_cancel_monoid right_cancel_monoid, to_additive add_cancel_monoid] class cancel_monoid (M : Type u) extends left_cancel_monoid M, right_cancel_monoid M /-- Commutative version of add_cancel_monoid. -/ @[protect_proj, ancestor add_left_cancel_comm_monoid add_right_cancel_comm_monoid] class add_cancel_comm_monoid (M : Type u) extends add_left_cancel_comm_monoid M, add_right_cancel_comm_monoid M /-- Commutative version of cancel_monoid. -/ @[protect_proj, ancestor right_cancel_comm_monoid left_cancel_comm_monoid, to_additive add_cancel_comm_monoid] class cancel_comm_monoid (M : Type u) extends left_cancel_comm_monoid M, right_cancel_comm_monoid M end cancel_monoid /-- A `group` is a `monoid` with an operation `⁻¹` satisfying `a⁻¹ * a = 1`. -/ @[protect_proj, ancestor monoid has_inv] class group (α : Type u) extends monoid α, has_inv α := (mul_left_inv : ∀ a : α, a⁻¹ * a = 1) /-- An `add_group` is an `add_monoid` with a unary `-` satisfying `-a + a = 0`. -/ @[protect_proj, ancestor add_monoid has_neg] class add_group (α : Type u) extends add_monoid α, has_neg α := (add_left_neg : ∀ a : α, -a + a = 0) attribute [to_additive] group section group variables {G : Type u} [group G] {a b c : G} @[simp, to_additive] lemma mul_left_inv : ∀ a : G, a⁻¹ * a = 1 := group.mul_left_inv @[to_additive] lemma inv_mul_self (a : G) : a⁻¹ * a = 1 := mul_left_inv a @[simp, to_additive] lemma inv_mul_cancel_left (a b : G) : a⁻¹ * (a * b) = b := by rw [← mul_assoc, mul_left_inv, one_mul] @[simp, to_additive] lemma inv_eq_of_mul_eq_one (h : a * b = 1) : a⁻¹ = b := left_inv_eq_right_inv (inv_mul_self a) h @[simp, to_additive] lemma inv_inv (a : G) : (a⁻¹)⁻¹ = a := inv_eq_of_mul_eq_one (mul_left_inv a) @[simp, to_additive] lemma mul_right_inv (a : G) : a * a⁻¹ = 1 := have a⁻¹⁻¹ * a⁻¹ = 1 := mul_left_inv a⁻¹, by rwa [inv_inv] at this @[to_additive] lemma mul_inv_self (a : G) : a * a⁻¹ = 1 := mul_right_inv a @[simp, to_additive] lemma mul_inv_cancel_right (a b : G) : a * b * b⁻¹ = a := by rw [mul_assoc, mul_right_inv, mul_one] @[to_additive] instance group.to_left_cancel_semigroup : left_cancel_semigroup G := { mul_left_cancel := λ a b c h, by rw [← inv_mul_cancel_left a b, h, inv_mul_cancel_left], ..‹group G› } @[to_additive] instance group.to_right_cancel_semigroup : right_cancel_semigroup G := { mul_right_cancel := λ a b c h, by rw [← mul_inv_cancel_right a b, h, mul_inv_cancel_right], ..‹group G› } @[to_additive] instance group.to_cancel_monoid : cancel_monoid G := { ..‹group G›, .. group.to_left_cancel_semigroup, ..group.to_right_cancel_semigroup } end group section add_group variables {G : Type u} [add_group G] /-- The subtraction operation on an `add_group` -/ @[reducible] protected def algebra.sub (a b : G) : G := a + -b instance add_group_has_sub : has_sub G := ⟨algebra.sub⟩ lemma sub_eq_add_neg (a b : G) : a - b = a + -b := rfl end add_group /-- A commutative group is a group with commutative `(*)`. -/ @[protect_proj, ancestor group comm_monoid] class comm_group (G : Type u) extends group G, comm_monoid G /-- An additive commutative group is an additive group with commutative `(+)`. -/ @[protect_proj, ancestor add_group add_comm_monoid] class add_comm_group (G : Type u) extends add_group G, add_comm_monoid G attribute [to_additive] comm_group attribute [instance, priority 300] add_comm_group.to_add_comm_monoid section comm_group variables {G : Type u} [comm_group G] @[to_additive] instance comm_group.to_cancel_comm_monoid : cancel_comm_monoid G := { ..‹comm_group G›, ..group.to_left_cancel_semigroup, ..group.to_right_cancel_semigroup } end comm_group
c48de712b0aa9f4bfa74ecd9ebf1311a21f725f0
cf39355caa609c0f33405126beee2739aa3cb77e
/tests/lean/run/class6.lean
4b1bde26727cf8f754845cbfc75fdaaa2077a34f
[ "Apache-2.0" ]
permissive
leanprover-community/lean
12b87f69d92e614daea8bcc9d4de9a9ace089d0e
cce7990ea86a78bdb383e38ed7f9b5ba93c60ce0
refs/heads/master
1,687,508,156,644
1,684,951,104,000
1,684,951,104,000
169,960,991
457
107
Apache-2.0
1,686,744,372,000
1,549,790,268,000
C++
UTF-8
Lean
false
false
308
lean
open tactic inductive t1 : Type | mk1 : t1 inductive t2 : Type | mk2 : t2 def inhabited_t1 : inhabited t1 := inhabited.mk t1.mk1 def inhabited_t2 : inhabited t2 := inhabited.mk t2.mk2 attribute [instance] inhabited_t1 attribute [instance] inhabited_t2 def T : inhabited (t1 × t2) := by apply_instance
c3106c106bf66d00a277499eb1f5c27272a15cec
d1a52c3f208fa42c41df8278c3d280f075eb020c
/src/Lean/Widget/InteractiveCode.lean
972fa3541f9ba9a095f521dfa7baf8c9ea205418
[ "Apache-2.0", "LLVM-exception", "NCSA", "LGPL-3.0-only", "LicenseRef-scancode-inner-net-2.0", "BSD-3-Clause", "LGPL-2.0-or-later", "Spencer-94", "LGPL-2.1-or-later", "HPND", "LicenseRef-scancode-pcre", "ISC", "LGPL-2.1-only", "LicenseRef-scancode-other-permissive", "SunPro", "CMU-Mach" ]
permissive
cipher1024/lean4
6e1f98bb58e7a92b28f5364eb38a14c8d0aae393
69114d3b50806264ef35b57394391c3e738a9822
refs/heads/master
1,642,227,983,603
1,642,011,696,000
1,642,011,696,000
228,607,691
0
0
Apache-2.0
1,576,584,269,000
1,576,584,268,000
null
UTF-8
Lean
false
false
5,009
lean
/- Copyright (c) 2021 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Wojciech Nawrocki -/ import Lean.PrettyPrinter.Delaborator.Basic import Lean.Server.Rpc.Basic import Lean.Widget.TaggedText /-! RPC infrastructure for storing and formatting code fragments, in particular `Expr`s, with environment and subexpression information. -/ namespace Lean.Widget open Server -- TODO: Some of the `WithBlah` types exist mostly because we cannot derive multi-argument RPC wrappers. -- They will be gone eventually. structure InfoWithCtx where ctx : Elab.ContextInfo info : Elab.Info deriving Inhabited, RpcEncoding with { withRef := true } structure CodeToken where info : WithRpcRef InfoWithCtx -- TODO(WN): add fields for semantic highlighting -- kind : Lsp.SymbolKind deriving Inhabited, RpcEncoding /-- Pretty-printed syntax (usually but not necessarily an `Expr`) with embedded `Info`s. -/ abbrev CodeWithInfos := TaggedText CodeToken def CodeWithInfos.pretty (tt : CodeWithInfos) := tt.stripTags open Expr in /-- Find a subexpression of `e` using the pretty-printer address scheme. -/ -- NOTE(WN): not currently in use partial def traverse (e : Expr) (addr : Nat) : MetaM (LocalContext × Expr):= do let e ← Meta.instantiateMVars e go (tritsLE [] addr |>.drop 1) (← getLCtx) e where tritsLE (acc : List Nat) (n : Nat) : List Nat := if n == 0 then acc else tritsLE (n % 3 :: acc) (n / 3) go (addr : List Nat) (lctx : LocalContext) (e : Expr) : MetaM (LocalContext × Expr) := do match addr with | [] => (lctx, e) | a::as => do let go' (e' : Expr) := do go as (← getLCtx) e' let eExpr ← match a, e with | 0, app e₁ e₂ _ => go' e₁ | 1, app e₁ e₂ _ => go' e₂ | 0, lam _ e₁ e₂ _ => go' e₁ | 1, lam n e₁ e₂ data => Meta.withLocalDecl n data.binderInfo e₁ fun fvar => go' (e₂.instantiate1 fvar) | 0, forallE _ e₁ e₂ _ => go' e₁ | 1, forallE n e₁ e₂ data => Meta.withLocalDecl n data.binderInfo e₁ fun fvar => go' (e₂.instantiate1 fvar) | 0, letE _ e₁ e₂ e₃ _ => go' e₁ | 1, letE _ e₁ e₂ e₃ _ => go' e₂ | 2, letE n e₁ e₂ e₃ _ => Meta.withLetDecl n e₁ e₂ fun fvar => do go' (e₃.instantiate1 fvar) | 0, mdata _ e₁ _ => go' e₁ | 0, proj _ _ e₁ _ => go' e₁ | _, _ => (lctx, e) -- panic! s!"cannot descend {a} into {e.expr}" -- TODO(WN): should the two fns below go in `Lean.PrettyPrinter` ? open PrettyPrinter in private def formatWithOpts (e : Expr) (optsPerPos : Delaborator.OptionsPerPos) : MetaM (Format × Std.RBMap Nat Elab.Info compare) := do let currNamespace ← getCurrNamespace let openDecls ← getOpenDecls let opts ← getOptions let e ← Meta.instantiateMVars e let (stx, infos) ← PrettyPrinter.delabCore currNamespace openDecls e optsPerPos let stx := sanitizeSyntax stx |>.run' { options := opts } let stx ← PrettyPrinter.parenthesizeTerm stx let fmt ← PrettyPrinter.formatTerm stx return (fmt, infos) /-- Pretty-print the expression and its subexpression information. -/ def formatInfos (e : Expr) : MetaM (Format × Std.RBMap Nat Elab.Info compare) := formatWithOpts e {} /-- Like `formatInfos` but with `pp.all` set at the top-level expression. -/ def formatExplicitInfos (e : Expr) : MetaM (Format × Std.RBMap Nat Elab.Info compare) := let optsPerPos := Std.RBMap.ofList [(1, KVMap.empty.setBool `pp.all true)] formatWithOpts e optsPerPos /-- Tags a pretty-printed `Expr` with infos from the delaborator. -/ partial def tagExprInfos (ctx : Elab.ContextInfo) (infos : Std.RBMap Nat Elab.Info compare) (tt : TaggedText (Nat × Nat)) : CodeWithInfos := go tt where go (tt : TaggedText (Nat × Nat)) := tt.rewrite fun (n, _) subTt => match infos.find? n with | none => go subTt | some i => TaggedText.tag ⟨WithRpcRef.mk { ctx, info := i }⟩ (go subTt) def exprToInteractive (e : Expr) : MetaM CodeWithInfos := do let (fmt, infos) ← formatInfos e let tt := TaggedText.prettyTagged fmt let ctx := { env := ← getEnv mctx := ← getMCtx options := ← getOptions currNamespace := ← getCurrNamespace openDecls := ← getOpenDecls fileMap := arbitrary } tagExprInfos ctx infos tt def exprToInteractiveExplicit (e : Expr) : MetaM CodeWithInfos := do let (fmt, infos) ← formatExplicitInfos e let tt := TaggedText.prettyTagged fmt let ctx := { env := ← getEnv mctx := ← getMCtx options := ← getOptions currNamespace := ← getCurrNamespace openDecls := ← getOpenDecls fileMap := arbitrary } let infos := infos.erase 1 -- remove highlight for entire expression in popups tagExprInfos ctx infos tt end Lean.Widget
79eed9a5454f026c2304a94f5dc2fa8cbbdd4317
618003631150032a5676f229d13a079ac875ff77
/src/category_theory/monoidal/types.lean
82f2ded8dc834dbdb435b7cd3fa0ed30f3aacd28
[ "Apache-2.0" ]
permissive
awainverse/mathlib
939b68c8486df66cfda64d327ad3d9165248c777
ea76bd8f3ca0a8bf0a166a06a475b10663dec44a
refs/heads/master
1,659,592,962,036
1,590,987,592,000
1,590,987,592,000
268,436,019
1
0
Apache-2.0
1,590,990,500,000
1,590,990,500,000
null
UTF-8
Lean
false
false
557
lean
/- Copyright (c) 2018 Michael Jendrusch. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Michael Jendrusch, Scott Morrison -/ import category_theory.monoidal.of_has_finite_products open category_theory open tactic universes u v namespace category_theory.monoidal local attribute [instance] monoidal_of_has_finite_products instance types : monoidal_category.{u} (Type u) := by apply_instance -- TODO Once we add braided/symmetric categories, include the braiding/symmetry. end category_theory.monoidal
cceeb1c139a227d4762928b3fd23b46e8aabadbe
6432ea7a083ff6ba21ea17af9ee47b9c371760f7
/src/Lean/Compiler/IR/CtorLayout.lean
94c9d2ed6eedc38e0a47a23c0b5edebd502607a3
[ "Apache-2.0", "LLVM-exception", "NCSA", "LGPL-3.0-only", "LicenseRef-scancode-inner-net-2.0", "BSD-3-Clause", "LGPL-2.0-or-later", "Spencer-94", "LGPL-2.1-or-later", "HPND", "LicenseRef-scancode-pcre", "ISC", "LGPL-2.1-only", "LicenseRef-scancode-other-permissive", "SunPro", "CMU-Mach" ]
permissive
leanprover/lean4
4bdf9790294964627eb9be79f5e8f6157780b4cc
f1f9dc0f2f531af3312398999d8b8303fa5f096b
refs/heads/master
1,693,360,665,786
1,693,350,868,000
1,693,350,868,000
129,571,436
2,827
311
Apache-2.0
1,694,716,156,000
1,523,760,560,000
Lean
UTF-8
Lean
false
false
954
lean
/- Copyright (c) 2019 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura -/ import Lean.Environment import Lean.Compiler.IR.Format namespace Lean namespace IR inductive CtorFieldInfo where | irrelevant | object (i : Nat) | usize (i : Nat) | scalar (sz : Nat) (offset : Nat) (type : IRType) namespace CtorFieldInfo def format : CtorFieldInfo → Format | irrelevant => "◾" | object i => f!"obj@{i}" | usize i => f!"usize@{i}" | scalar sz offset type => f!"scalar#{sz}@{offset}:{type}" instance : ToFormat CtorFieldInfo := ⟨format⟩ end CtorFieldInfo structure CtorLayout where cidx : Nat fieldInfo : List CtorFieldInfo numObjs : Nat numUSize : Nat scalarSize : Nat @[extern "lean_ir_get_ctor_layout"] opaque getCtorLayout (env : @& Environment) (ctorName : @& Name) : Except String CtorLayout end IR end Lean
c454997f88844175dd38d910694a774677013576
3446e92e64a5de7ed1f2109cfb024f83cd904c34
/src/game/world4/level6.lean
cd79d2914d679feb1993065f2f218031175a61d3
[]
no_license
kckennylau/natural_number_game
019f4a5f419c9681e65234ecd124c564f9a0a246
ad8c0adaa725975be8a9f978c8494a39311029be
refs/heads/master
1,598,784,137,722
1,571,905,156,000
1,571,905,156,000
218,354,686
0
0
null
1,572,373,319,000
1,572,373,318,000
null
UTF-8
Lean
false
false
673
lean
import game.world4.level5 -- hide namespace mynat -- hide /- # World 4 : Power World ## Level 6 of 7: `mul_pow` You might find `mul_right_comm` useful in this one. Remember `rw mul_right_comm (m ^ t)` will rewrite the first occurrence of `(m ^ t) * x * y = (m ^ t) * y * x`. -/ /- Lemma For all naturals $m$, $n$, $a$, we have $(m * n) ^ a = m ^ a * n ^ a$. -/ lemma mul_pow (m n a : mynat) : (m * n) ^ a = m ^ a * n ^ a := begin [less_leaky] induction a with t Ht, rw [pow_zero, pow_zero, pow_zero, mul_one], refl, rw [pow_succ, pow_succ, pow_succ, Ht], rw ←mul_assoc, rw mul_right_comm (m ^ t), rw ←mul_assoc, refl, end end mynat -- hide
b11701f18a5de07ad436b8b4ee8aa47fcfacc940
1717bcbca047a0d25d687e7e9cd482fba00d058f
/src/topology/instances/ennreal.lean
67ff29a58fbbbb11cfd03e78eee88a984e8858cf
[ "Apache-2.0" ]
permissive
swapnilkapoor22/mathlib
51ad5804e6a0635ed5c7611cee73e089ab271060
3e7efd4ecd5d379932a89212eebd362beb01309e
refs/heads/master
1,676,467,741,465
1,610,301,556,000
1,610,301,556,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
43,947
lean
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Johannes Hölzl -/ import topology.instances.nnreal /-! # Extended non-negative reals -/ noncomputable theory open classical set filter metric open_locale classical topological_space ennreal nnreal big_operators filter variables {α : Type*} {β : Type*} {γ : Type*} namespace ennreal variables {a b c d : ennreal} {r p q : ℝ≥0} variables {x y z : ennreal} {ε ε₁ ε₂ : ennreal} {s : set ennreal} section topological_space open topological_space /-- Topology on `ennreal`. Note: this is different from the `emetric_space` topology. The `emetric_space` topology has `is_open {⊤}`, while this topology doesn't have singleton elements. -/ instance : topological_space ennreal := preorder.topology ennreal instance : order_topology ennreal := ⟨rfl⟩ instance : t2_space ennreal := by apply_instance -- short-circuit type class inference instance : second_countable_topology ennreal := ⟨⟨⋃q ≥ (0:ℚ), {{a : ennreal | a < nnreal.of_real q}, {a : ennreal | ↑(nnreal.of_real q) < a}}, (countable_encodable _).bUnion $ assume a ha, (countable_singleton _).insert _, le_antisymm (le_generate_from $ by simp [or_imp_distrib, is_open_lt', is_open_gt'] {contextual := tt}) (le_generate_from $ λ s h, begin rcases h with ⟨a, hs | hs⟩; [ rw show s = ⋃q∈{q:ℚ | 0 ≤ q ∧ a < nnreal.of_real q}, {b | ↑(nnreal.of_real q) < b}, from set.ext (assume b, by simp [hs, @ennreal.lt_iff_exists_rat_btwn a b, and_assoc]), rw show s = ⋃q∈{q:ℚ | 0 ≤ q ∧ ↑(nnreal.of_real q) < a}, {b | b < ↑(nnreal.of_real q)}, from set.ext (assume b, by simp [hs, @ennreal.lt_iff_exists_rat_btwn b a, and_comm, and_assoc])]; { apply is_open_Union, intro q, apply is_open_Union, intro hq, exact generate_open.basic _ (mem_bUnion hq.1 $ by simp) } end)⟩⟩ lemma embedding_coe : embedding (coe : ℝ≥0 → ennreal) := ⟨⟨begin refine le_antisymm _ _, { rw [@order_topology.topology_eq_generate_intervals ennreal _, ← coinduced_le_iff_le_induced], refine le_generate_from (assume s ha, _), rcases ha with ⟨a, rfl | rfl⟩, show is_open {b : ℝ≥0 | a < ↑b}, { cases a; simp [none_eq_top, some_eq_coe, is_open_lt'] }, show is_open {b : ℝ≥0 | ↑b < a}, { cases a; simp [none_eq_top, some_eq_coe, is_open_gt', is_open_const] } }, { rw [@order_topology.topology_eq_generate_intervals ℝ≥0 _], refine le_generate_from (assume s ha, _), rcases ha with ⟨a, rfl | rfl⟩, exact ⟨Ioi a, is_open_Ioi, by simp [Ioi]⟩, exact ⟨Iio a, is_open_Iio, by simp [Iio]⟩ } end⟩, assume a b, coe_eq_coe.1⟩ lemma is_open_ne_top : is_open {a : ennreal | a ≠ ⊤} := is_open_ne lemma is_open_Ico_zero : is_open (Ico 0 b) := by { rw ennreal.Ico_eq_Iio, exact is_open_Iio} lemma coe_range_mem_nhds : range (coe : ℝ≥0 → ennreal) ∈ 𝓝 (r : ennreal) := have {a : ennreal | a ≠ ⊤} = range (coe : ℝ≥0 → ennreal), from set.ext $ assume a, by cases a; simp [none_eq_top, some_eq_coe], this ▸ mem_nhds_sets is_open_ne_top coe_ne_top @[norm_cast] lemma tendsto_coe {f : filter α} {m : α → ℝ≥0} {a : ℝ≥0} : tendsto (λa, (m a : ennreal)) f (𝓝 ↑a) ↔ tendsto m f (𝓝 a) := embedding_coe.tendsto_nhds_iff.symm lemma continuous_coe : continuous (coe : ℝ≥0 → ennreal) := embedding_coe.continuous lemma continuous_coe_iff {α} [topological_space α] {f : α → ℝ≥0} : continuous (λa, (f a : ennreal)) ↔ continuous f := embedding_coe.continuous_iff.symm lemma nhds_coe {r : ℝ≥0} : 𝓝 (r : ennreal) = (𝓝 r).map coe := by rw [embedding_coe.induced, map_nhds_induced_eq coe_range_mem_nhds] lemma nhds_coe_coe {r p : ℝ≥0} : 𝓝 ((r : ennreal), (p : ennreal)) = (𝓝 (r, p)).map (λp:ℝ≥0×ℝ≥0, (p.1, p.2)) := begin rw [(embedding_coe.prod_mk embedding_coe).map_nhds_eq], rw [← prod_range_range_eq], exact prod_mem_nhds_sets coe_range_mem_nhds coe_range_mem_nhds end lemma continuous_of_real : continuous ennreal.of_real := (continuous_coe_iff.2 continuous_id).comp nnreal.continuous_of_real lemma tendsto_of_real {f : filter α} {m : α → ℝ} {a : ℝ} (h : tendsto m f (𝓝 a)) : tendsto (λa, ennreal.of_real (m a)) f (𝓝 (ennreal.of_real a)) := tendsto.comp (continuous.tendsto continuous_of_real _) h lemma tendsto_to_nnreal {a : ennreal} : a ≠ ⊤ → tendsto (ennreal.to_nnreal) (𝓝 a) (𝓝 a.to_nnreal) := begin cases a; simp [some_eq_coe, none_eq_top, nhds_coe, tendsto_map'_iff, (∘)], exact tendsto_id end lemma continuous_on_to_nnreal : continuous_on ennreal.to_nnreal {a | a ≠ ∞} := continuous_on_iff_continuous_restrict.2 $ continuous_iff_continuous_at.2 $ λ x, (tendsto_to_nnreal x.2).comp continuous_at_subtype_coe lemma tendsto_to_real {a : ennreal} : a ≠ ⊤ → tendsto (ennreal.to_real) (𝓝 a) (𝓝 a.to_real) := λ ha, tendsto.comp ((@nnreal.tendsto_coe _ (𝓝 a.to_nnreal) id (a.to_nnreal)).2 tendsto_id) (tendsto_to_nnreal ha) /-- The set of finite `ennreal` numbers is homeomorphic to `ℝ≥0`. -/ def ne_top_homeomorph_nnreal : {a | a ≠ ∞} ≃ₜ ℝ≥0 := { continuous_to_fun := continuous_on_iff_continuous_restrict.1 continuous_on_to_nnreal, continuous_inv_fun := continuous_subtype_mk _ continuous_coe, .. ne_top_equiv_nnreal } /-- The set of finite `ennreal` numbers is homeomorphic to `ℝ≥0`. -/ def lt_top_homeomorph_nnreal : {a | a < ∞} ≃ₜ ℝ≥0 := by refine (homeomorph.set_congr $ set.ext $ λ x, _).trans ne_top_homeomorph_nnreal; simp only [mem_set_of_eq, lt_top_iff_ne_top] lemma nhds_top : 𝓝 ∞ = ⨅ a ≠ ∞, 𝓟 (Ioi a) := nhds_top_order.trans $ by simp [lt_top_iff_ne_top, Ioi] lemma nhds_top' : 𝓝 ∞ = ⨅ r : ℝ≥0, 𝓟 (Ioi r) := nhds_top.trans $ infi_ne_top _ lemma tendsto_nhds_top_iff_nnreal {m : α → ennreal} {f : filter α} : tendsto m f (𝓝 ⊤) ↔ ∀ x : ℝ≥0, ∀ᶠ a in f, ↑x < m a := by simp only [nhds_top', tendsto_infi, tendsto_principal, mem_Ioi] lemma tendsto_nhds_top_iff_nat {m : α → ennreal} {f : filter α} : tendsto m f (𝓝 ⊤) ↔ ∀ n : ℕ, ∀ᶠ a in f, ↑n < m a := tendsto_nhds_top_iff_nnreal.trans ⟨λ h n, by simpa only [ennreal.coe_nat] using h n, λ h x, let ⟨n, hn⟩ := exists_nat_gt x in (h n).mono (λ y, lt_trans $ by rwa [← ennreal.coe_nat, coe_lt_coe])⟩ lemma tendsto_nhds_top {m : α → ennreal} {f : filter α} (h : ∀ n : ℕ, ∀ᶠ a in f, ↑n < m a) : tendsto m f (𝓝 ⊤) := tendsto_nhds_top_iff_nat.2 h lemma tendsto_nat_nhds_top : tendsto (λ n : ℕ, ↑n) at_top (𝓝 ∞) := tendsto_nhds_top $ λ n, mem_at_top_sets.2 ⟨n+1, λ m hm, ennreal.coe_nat_lt_coe_nat.2 $ nat.lt_of_succ_le hm⟩ @[simp, norm_cast] lemma tendsto_coe_nhds_top {f : α → ℝ≥0} {l : filter α} : tendsto (λ x, (f x : ennreal)) l (𝓝 ∞) ↔ tendsto f l at_top := by rw [tendsto_nhds_top_iff_nnreal, at_top_basis_Ioi.tendsto_right_iff]; [simp, apply_instance, apply_instance] lemma nhds_zero : 𝓝 (0 : ennreal) = ⨅a ≠ 0, 𝓟 (Iio a) := nhds_bot_order.trans $ by simp [bot_lt_iff_ne_bot, Iio] -- using Icc because -- • don't have 'Ioo (x - ε) (x + ε) ∈ 𝓝 x' unless x > 0 -- • (x - y ≤ ε ↔ x ≤ ε + y) is true, while (x - y < ε ↔ x < ε + y) is not lemma Icc_mem_nhds : x ≠ ⊤ → 0 < ε → Icc (x - ε) (x + ε) ∈ 𝓝 x := begin assume xt ε0, rw mem_nhds_sets_iff, by_cases x0 : x = 0, { use Iio (x + ε), have : Iio (x + ε) ⊆ Icc (x - ε) (x + ε), assume a, rw x0, simpa using le_of_lt, use this, exact ⟨is_open_Iio, mem_Iio_self_add xt ε0⟩ }, { use Ioo (x - ε) (x + ε), use Ioo_subset_Icc_self, exact ⟨is_open_Ioo, mem_Ioo_self_sub_add xt x0 ε0 ε0 ⟩ } end lemma nhds_of_ne_top : x ≠ ⊤ → 𝓝 x = ⨅ε > 0, 𝓟 (Icc (x - ε) (x + ε)) := begin assume xt, refine le_antisymm _ _, -- first direction simp only [le_infi_iff, le_principal_iff], assume ε ε0, exact Icc_mem_nhds xt ε0, -- second direction rw nhds_generate_from, refine le_infi (assume s, le_infi $ assume hs, _), simp only [mem_set_of_eq] at hs, rcases hs with ⟨xs, ⟨a, ha⟩⟩, cases ha, { rw ha at *, rcases exists_between xs with ⟨b, ⟨ab, bx⟩⟩, have xb_pos : x - b > 0 := zero_lt_sub_iff_lt.2 bx, have xxb : x - (x - b) = b := sub_sub_cancel (by rwa lt_top_iff_ne_top) (le_of_lt bx), refine infi_le_of_le (x - b) (infi_le_of_le xb_pos _), simp only [mem_principal_sets, le_principal_iff], assume y, rintros ⟨h₁, h₂⟩, rw xxb at h₁, calc a < b : ab ... ≤ y : h₁ }, { rw ha at *, rcases exists_between xs with ⟨b, ⟨xb, ba⟩⟩, have bx_pos : b - x > 0 := zero_lt_sub_iff_lt.2 xb, have xbx : x + (b - x) = b := add_sub_cancel_of_le (le_of_lt xb), refine infi_le_of_le (b - x) (infi_le_of_le bx_pos _), simp only [mem_principal_sets, le_principal_iff], assume y, rintros ⟨h₁, h₂⟩, rw xbx at h₂, calc y ≤ b : h₂ ... < a : ba }, end /-- Characterization of neighborhoods for `ennreal` numbers. See also `tendsto_order` for a version with strict inequalities. -/ protected theorem tendsto_nhds {f : filter α} {u : α → ennreal} {a : ennreal} (ha : a ≠ ⊤) : tendsto u f (𝓝 a) ↔ ∀ ε > 0, ∀ᶠ x in f, (u x) ∈ Icc (a - ε) (a + ε) := by simp only [nhds_of_ne_top ha, tendsto_infi, tendsto_principal, mem_Icc] protected lemma tendsto_at_top [nonempty β] [semilattice_sup β] {f : β → ennreal} {a : ennreal} (ha : a ≠ ⊤) : tendsto f at_top (𝓝 a) ↔ ∀ε>0, ∃N, ∀n≥N, (f n) ∈ Icc (a - ε) (a + ε) := by simp only [ennreal.tendsto_nhds ha, mem_at_top_sets, mem_set_of_eq, filter.eventually] instance : has_continuous_add ennreal := begin refine ⟨continuous_iff_continuous_at.2 _⟩, rintro ⟨(_|a), b⟩, { exact tendsto_nhds_top_mono' continuous_at_fst (λ p, le_add_right le_rfl) }, rcases b with (_|b), { exact tendsto_nhds_top_mono' continuous_at_snd (λ p, le_add_left le_rfl) }, simp only [continuous_at, some_eq_coe, nhds_coe_coe, ← coe_add, tendsto_map'_iff, (∘), tendsto_coe, tendsto_add] end protected lemma tendsto_mul (ha : a ≠ 0 ∨ b ≠ ⊤) (hb : b ≠ 0 ∨ a ≠ ⊤) : tendsto (λp:ennreal×ennreal, p.1 * p.2) (𝓝 (a, b)) (𝓝 (a * b)) := have ht : ∀b:ennreal, b ≠ 0 → tendsto (λp:ennreal×ennreal, p.1 * p.2) (𝓝 ((⊤:ennreal), b)) (𝓝 ⊤), begin refine assume b hb, tendsto_nhds_top_iff_nnreal.2 $ assume n, _, rcases lt_iff_exists_nnreal_btwn.1 (pos_iff_ne_zero.2 hb) with ⟨ε, hε, hεb⟩, replace hε : 0 < ε, from coe_pos.1 hε, filter_upwards [prod_mem_nhds_sets (lt_mem_nhds $ @coe_lt_top (n / ε)) (lt_mem_nhds hεb)], rintros ⟨a₁, a₂⟩ ⟨h₁, h₂⟩, dsimp at h₁ h₂ ⊢, rw [← div_mul_cancel n hε.ne', coe_mul], exact mul_lt_mul h₁ h₂ end, begin cases a, {simp [none_eq_top] at hb, simp [none_eq_top, ht b hb, top_mul, hb] }, cases b, { simp [none_eq_top] at ha, simp [*, nhds_swap (a : ennreal) ⊤, none_eq_top, some_eq_coe, top_mul, tendsto_map'_iff, (∘), mul_comm] }, simp [some_eq_coe, nhds_coe_coe, tendsto_map'_iff, (∘)], simp only [coe_mul.symm, tendsto_coe, tendsto_mul] end protected lemma tendsto.mul {f : filter α} {ma : α → ennreal} {mb : α → ennreal} {a b : ennreal} (hma : tendsto ma f (𝓝 a)) (ha : a ≠ 0 ∨ b ≠ ⊤) (hmb : tendsto mb f (𝓝 b)) (hb : b ≠ 0 ∨ a ≠ ⊤) : tendsto (λa, ma a * mb a) f (𝓝 (a * b)) := show tendsto ((λp:ennreal×ennreal, p.1 * p.2) ∘ (λa, (ma a, mb a))) f (𝓝 (a * b)), from tendsto.comp (ennreal.tendsto_mul ha hb) (hma.prod_mk_nhds hmb) protected lemma tendsto.const_mul {f : filter α} {m : α → ennreal} {a b : ennreal} (hm : tendsto m f (𝓝 b)) (hb : b ≠ 0 ∨ a ≠ ⊤) : tendsto (λb, a * m b) f (𝓝 (a * b)) := by_cases (assume : a = 0, by simp [this, tendsto_const_nhds]) (assume ha : a ≠ 0, ennreal.tendsto.mul tendsto_const_nhds (or.inl ha) hm hb) protected lemma tendsto.mul_const {f : filter α} {m : α → ennreal} {a b : ennreal} (hm : tendsto m f (𝓝 a)) (ha : a ≠ 0 ∨ b ≠ ⊤) : tendsto (λx, m x * b) f (𝓝 (a * b)) := by simpa only [mul_comm] using ennreal.tendsto.const_mul hm ha protected lemma continuous_at_const_mul {a b : ennreal} (h : a ≠ ⊤ ∨ b ≠ 0) : continuous_at ((*) a) b := tendsto.const_mul tendsto_id h.symm protected lemma continuous_at_mul_const {a b : ennreal} (h : a ≠ ⊤ ∨ b ≠ 0) : continuous_at (λ x, x * a) b := tendsto.mul_const tendsto_id h.symm protected lemma continuous_const_mul {a : ennreal} (ha : a ≠ ⊤) : continuous ((*) a) := continuous_iff_continuous_at.2 $ λ x, ennreal.continuous_at_const_mul (or.inl ha) protected lemma continuous_mul_const {a : ennreal} (ha : a ≠ ⊤) : continuous (λ x, x * a) := continuous_iff_continuous_at.2 $ λ x, ennreal.continuous_at_mul_const (or.inl ha) lemma le_of_forall_lt_one_mul_le {x y : ennreal} (h : ∀ a < 1, a * x ≤ y) : x ≤ y := begin have : tendsto (* x) (𝓝[Iio 1] 1) (𝓝 (1 * x)) := (ennreal.continuous_at_mul_const (or.inr one_ne_zero)).mono_left inf_le_left, rw one_mul at this, haveI : (𝓝[Iio 1] (1 : ennreal)).ne_bot := nhds_within_Iio_self_ne_bot' ennreal.zero_lt_one, exact le_of_tendsto this (eventually_nhds_within_iff.2 $ eventually_of_forall h) end lemma infi_mul_left {ι} [nonempty ι] {f : ι → ennreal} {a : ennreal} (h : a = ⊤ → (⨅ i, f i) = 0 → ∃ i, f i = 0) : (⨅ i, a * f i) = a * ⨅ i, f i := begin by_cases H : a = ⊤ ∧ (⨅ i, f i) = 0, { rcases h H.1 H.2 with ⟨i, hi⟩, rw [H.2, mul_zero, ← bot_eq_zero, infi_eq_bot], exact λ b hb, ⟨i, by rwa [hi, mul_zero, ← bot_eq_zero]⟩ }, { rw not_and_distrib at H, exact (map_infi_of_continuous_at_of_monotone' (ennreal.continuous_at_const_mul H) ennreal.mul_left_mono).symm } end lemma infi_mul_right {ι} [nonempty ι] {f : ι → ennreal} {a : ennreal} (h : a = ⊤ → (⨅ i, f i) = 0 → ∃ i, f i = 0) : (⨅ i, f i * a) = (⨅ i, f i) * a := by simpa only [mul_comm a] using infi_mul_left h protected lemma continuous_inv : continuous (has_inv.inv : ennreal → ennreal) := continuous_iff_continuous_at.2 $ λ a, tendsto_order.2 ⟨begin assume b hb, simp only [@ennreal.lt_inv_iff_lt_inv b], exact gt_mem_nhds (ennreal.lt_inv_iff_lt_inv.1 hb), end, begin assume b hb, simp only [gt_iff_lt, @ennreal.inv_lt_iff_inv_lt _ b], exact lt_mem_nhds (ennreal.inv_lt_iff_inv_lt.1 hb) end⟩ @[simp] protected lemma tendsto_inv_iff {f : filter α} {m : α → ennreal} {a : ennreal} : tendsto (λ x, (m x)⁻¹) f (𝓝 a⁻¹) ↔ tendsto m f (𝓝 a) := ⟨λ h, by simpa only [function.comp, ennreal.inv_inv] using (ennreal.continuous_inv.tendsto a⁻¹).comp h, (ennreal.continuous_inv.tendsto a).comp⟩ protected lemma tendsto.div {f : filter α} {ma : α → ennreal} {mb : α → ennreal} {a b : ennreal} (hma : tendsto ma f (𝓝 a)) (ha : a ≠ 0 ∨ b ≠ 0) (hmb : tendsto mb f (𝓝 b)) (hb : b ≠ ⊤ ∨ a ≠ ⊤) : tendsto (λa, ma a / mb a) f (𝓝 (a / b)) := by { apply tendsto.mul hma _ (ennreal.tendsto_inv_iff.2 hmb) _; simp [ha, hb] } protected lemma tendsto.const_div {f : filter α} {m : α → ennreal} {a b : ennreal} (hm : tendsto m f (𝓝 b)) (hb : b ≠ ⊤ ∨ a ≠ ⊤) : tendsto (λb, a / m b) f (𝓝 (a / b)) := by { apply tendsto.const_mul (ennreal.tendsto_inv_iff.2 hm), simp [hb] } protected lemma tendsto.div_const {f : filter α} {m : α → ennreal} {a b : ennreal} (hm : tendsto m f (𝓝 a)) (ha : a ≠ 0 ∨ b ≠ 0) : tendsto (λx, m x / b) f (𝓝 (a / b)) := by { apply tendsto.mul_const hm, simp [ha] } protected lemma tendsto_inv_nat_nhds_zero : tendsto (λ n : ℕ, (n : ennreal)⁻¹) at_top (𝓝 0) := ennreal.inv_top ▸ ennreal.tendsto_inv_iff.2 tendsto_nat_nhds_top lemma Sup_add {s : set ennreal} (hs : s.nonempty) : Sup s + a = ⨆b∈s, b + a := have Sup ((λb, b + a) '' s) = Sup s + a, from is_lub.Sup_eq (is_lub_of_is_lub_of_tendsto (assume x _ y _ h, add_le_add h (le_refl _)) (is_lub_Sup s) hs (tendsto.add (tendsto_id' inf_le_left) tendsto_const_nhds)), by simp [Sup_image, -add_comm] at this; exact this.symm lemma supr_add {ι : Sort*} {s : ι → ennreal} [h : nonempty ι] : supr s + a = ⨆b, s b + a := let ⟨x⟩ := h in calc supr s + a = Sup (range s) + a : by simp [Sup_range] ... = (⨆b∈range s, b + a) : Sup_add ⟨s x, x, rfl⟩ ... = _ : supr_range lemma add_supr {ι : Sort*} {s : ι → ennreal} [h : nonempty ι] : a + supr s = ⨆b, a + s b := by rw [add_comm, supr_add]; simp [add_comm] lemma supr_add_supr {ι : Sort*} {f g : ι → ennreal} (h : ∀i j, ∃k, f i + g j ≤ f k + g k) : supr f + supr g = (⨆ a, f a + g a) := begin by_cases hι : nonempty ι, { letI := hι, refine le_antisymm _ (supr_le $ λ a, add_le_add (le_supr _ _) (le_supr _ _)), simpa [add_supr, supr_add] using λ i j:ι, show f i + g j ≤ ⨆ a, f a + g a, from let ⟨k, hk⟩ := h i j in le_supr_of_le k hk }, { have : ∀f:ι → ennreal, (⨆i, f i) = 0 := λ f, bot_unique (supr_le $ assume i, (hι ⟨i⟩).elim), rw [this, this, this, zero_add] } end lemma supr_add_supr_of_monotone {ι : Sort*} [semilattice_sup ι] {f g : ι → ennreal} (hf : monotone f) (hg : monotone g) : supr f + supr g = (⨆ a, f a + g a) := supr_add_supr $ assume i j, ⟨i ⊔ j, add_le_add (hf $ le_sup_left) (hg $ le_sup_right)⟩ lemma finset_sum_supr_nat {α} {ι} [semilattice_sup ι] {s : finset α} {f : α → ι → ennreal} (hf : ∀a, monotone (f a)) : ∑ a in s, supr (f a) = (⨆ n, ∑ a in s, f a n) := begin refine finset.induction_on s _ _, { simp, exact (bot_unique $ supr_le $ assume i, le_refl ⊥).symm }, { assume a s has ih, simp only [finset.sum_insert has], rw [ih, supr_add_supr_of_monotone (hf a)], assume i j h, exact (finset.sum_le_sum $ assume a ha, hf a h) } end section priority -- for some reason the next proof fails without changing the priority of this instance local attribute [instance, priority 1000] classical.prop_decidable lemma mul_Sup {s : set ennreal} {a : ennreal} : a * Sup s = ⨆i∈s, a * i := begin by_cases hs : ∀x∈s, x = (0:ennreal), { have h₁ : Sup s = 0 := (bot_unique $ Sup_le $ assume a ha, (hs a ha).symm ▸ le_refl 0), have h₂ : (⨆i ∈ s, a * i) = 0 := (bot_unique $ supr_le $ assume a, supr_le $ assume ha, by simp [hs a ha]), rw [h₁, h₂, mul_zero] }, { simp only [not_forall] at hs, rcases hs with ⟨x, hx, hx0⟩, have s₁ : Sup s ≠ 0 := pos_iff_ne_zero.1 (lt_of_lt_of_le (pos_iff_ne_zero.2 hx0) (le_Sup hx)), have : Sup ((λb, a * b) '' s) = a * Sup s := is_lub.Sup_eq (is_lub_of_is_lub_of_tendsto (assume x _ y _ h, canonically_ordered_semiring.mul_le_mul (le_refl _) h) (is_lub_Sup _) ⟨x, hx⟩ (ennreal.tendsto.const_mul (tendsto_id' inf_le_left) (or.inl s₁))), rw [this.symm, Sup_image] } end end priority lemma mul_supr {ι : Sort*} {f : ι → ennreal} {a : ennreal} : a * supr f = ⨆i, a * f i := by rw [← Sup_range, mul_Sup, supr_range] lemma supr_mul {ι : Sort*} {f : ι → ennreal} {a : ennreal} : supr f * a = ⨆i, f i * a := by rw [mul_comm, mul_supr]; congr; funext; rw [mul_comm] protected lemma tendsto_coe_sub : ∀{b:ennreal}, tendsto (λb:ennreal, ↑r - b) (𝓝 b) (𝓝 (↑r - b)) := begin refine (forall_ennreal.2 $ and.intro (assume a, _) _), { simp [@nhds_coe a, tendsto_map'_iff, (∘), tendsto_coe, coe_sub.symm], exact tendsto_const_nhds.sub tendsto_id }, simp, exact (tendsto.congr' (mem_sets_of_superset (lt_mem_nhds $ @coe_lt_top r) $ by simp [le_of_lt] {contextual := tt})) tendsto_const_nhds end lemma sub_supr {ι : Sort*} [hι : nonempty ι] {b : ι → ennreal} (hr : a < ⊤) : a - (⨆i, b i) = (⨅i, a - b i) := let ⟨i⟩ := hι in let ⟨r, eq, _⟩ := lt_iff_exists_coe.mp hr in have Inf ((λb, ↑r - b) '' range b) = ↑r - (⨆i, b i), from is_glb.Inf_eq $ is_glb_of_is_lub_of_tendsto (assume x _ y _, sub_le_sub (le_refl _)) is_lub_supr ⟨_, i, rfl⟩ (tendsto.comp ennreal.tendsto_coe_sub (tendsto_id' inf_le_left)), by rw [eq, ←this]; simp [Inf_image, infi_range, -mem_range]; exact le_refl _ end topological_space section tsum variables {f g : α → ennreal} @[norm_cast] protected lemma has_sum_coe {f : α → ℝ≥0} {r : ℝ≥0} : has_sum (λa, (f a : ennreal)) ↑r ↔ has_sum f r := have (λs:finset α, ∑ a in s, ↑(f a)) = (coe : ℝ≥0 → ennreal) ∘ (λs:finset α, ∑ a in s, f a), from funext $ assume s, ennreal.coe_finset_sum.symm, by unfold has_sum; rw [this, tendsto_coe] protected lemma tsum_coe_eq {f : α → ℝ≥0} (h : has_sum f r) : (∑'a, (f a : ennreal)) = r := (ennreal.has_sum_coe.2 h).tsum_eq protected lemma coe_tsum {f : α → ℝ≥0} : summable f → ↑(tsum f) = (∑'a, (f a : ennreal)) | ⟨r, hr⟩ := by rw [hr.tsum_eq, ennreal.tsum_coe_eq hr] protected lemma has_sum : has_sum f (⨆s:finset α, ∑ a in s, f a) := tendsto_order.2 ⟨assume a' ha', let ⟨s, hs⟩ := lt_supr_iff.mp ha' in mem_at_top_sets.mpr ⟨s, assume t ht, lt_of_lt_of_le hs $ finset.sum_le_sum_of_subset ht⟩, assume a' ha', univ_mem_sets' $ assume s, have ∑ a in s, f a ≤ ⨆(s : finset α), ∑ a in s, f a, from le_supr (λ(s : finset α), ∑ a in s, f a) s, lt_of_le_of_lt this ha'⟩ @[simp] protected lemma summable : summable f := ⟨_, ennreal.has_sum⟩ lemma tsum_coe_ne_top_iff_summable {f : β → ℝ≥0} : (∑' b, (f b:ennreal)) ≠ ∞ ↔ summable f := begin refine ⟨λ h, _, λ h, ennreal.coe_tsum h ▸ ennreal.coe_ne_top⟩, lift (∑' b, (f b:ennreal)) to ℝ≥0 using h with a ha, refine ⟨a, ennreal.has_sum_coe.1 _⟩, rw ha, exact ennreal.summable.has_sum end protected lemma tsum_eq_supr_sum : (∑'a, f a) = (⨆s:finset α, ∑ a in s, f a) := ennreal.has_sum.tsum_eq protected lemma tsum_eq_supr_sum' {ι : Type*} (s : ι → finset α) (hs : ∀ t, ∃ i, t ⊆ s i) : (∑' a, f a) = ⨆ i, ∑ a in s i, f a := begin rw [ennreal.tsum_eq_supr_sum], symmetry, change (⨆i:ι, (λ t : finset α, ∑ a in t, f a) (s i)) = ⨆s:finset α, ∑ a in s, f a, exact (finset.sum_mono_set f).supr_comp_eq hs end protected lemma tsum_sigma {β : α → Type*} (f : Πa, β a → ennreal) : (∑'p:Σa, β a, f p.1 p.2) = (∑'a b, f a b) := tsum_sigma' (assume b, ennreal.summable) ennreal.summable protected lemma tsum_sigma' {β : α → Type*} (f : (Σ a, β a) → ennreal) : (∑'p:(Σa, β a), f p) = (∑'a b, f ⟨a, b⟩) := tsum_sigma' (assume b, ennreal.summable) ennreal.summable protected lemma tsum_prod {f : α → β → ennreal} : (∑'p:α×β, f p.1 p.2) = (∑'a, ∑'b, f a b) := tsum_prod' ennreal.summable $ λ _, ennreal.summable protected lemma tsum_comm {f : α → β → ennreal} : (∑'a, ∑'b, f a b) = (∑'b, ∑'a, f a b) := tsum_comm' ennreal.summable (λ _, ennreal.summable) (λ _, ennreal.summable) protected lemma tsum_add : (∑'a, f a + g a) = (∑'a, f a) + (∑'a, g a) := tsum_add ennreal.summable ennreal.summable protected lemma tsum_le_tsum (h : ∀a, f a ≤ g a) : (∑'a, f a) ≤ (∑'a, g a) := tsum_le_tsum h ennreal.summable ennreal.summable protected lemma sum_le_tsum {f : α → ennreal} (s : finset α) : ∑ x in s, f x ≤ ∑' x, f x := sum_le_tsum s (λ x hx, zero_le _) ennreal.summable protected lemma tsum_eq_supr_nat' {f : ℕ → ennreal} {N : ℕ → ℕ} (hN : tendsto N at_top at_top) : (∑'i:ℕ, f i) = (⨆i:ℕ, ∑ a in finset.range (N i), f a) := ennreal.tsum_eq_supr_sum' _ $ λ t, let ⟨n, hn⟩ := t.exists_nat_subset_range, ⟨k, _, hk⟩ := exists_le_of_tendsto_at_top hN 0 n in ⟨k, finset.subset.trans hn (finset.range_mono hk)⟩ protected lemma tsum_eq_supr_nat {f : ℕ → ennreal} : (∑'i:ℕ, f i) = (⨆i:ℕ, ∑ a in finset.range i, f a) := ennreal.tsum_eq_supr_sum' _ finset.exists_nat_subset_range protected lemma le_tsum (a : α) : f a ≤ (∑'a, f a) := le_tsum' ennreal.summable a protected lemma tsum_eq_top_of_eq_top : (∃ a, f a = ∞) → (∑' a, f a) = ∞ | ⟨a, ha⟩ := top_unique $ ha ▸ ennreal.le_tsum a protected lemma ne_top_of_tsum_ne_top (h : (∑' a, f a) ≠ ∞) (a : α) : f a ≠ ∞ := λ ha, h $ ennreal.tsum_eq_top_of_eq_top ⟨a, ha⟩ protected lemma tsum_mul_left : (∑'i, a * f i) = a * (∑'i, f i) := if h : ∀i, f i = 0 then by simp [h] else let ⟨i, (hi : f i ≠ 0)⟩ := not_forall.mp h in have sum_ne_0 : (∑'i, f i) ≠ 0, from ne_of_gt $ calc 0 < f i : lt_of_le_of_ne (zero_le _) hi.symm ... ≤ (∑'i, f i) : ennreal.le_tsum _, have tendsto (λs:finset α, ∑ j in s, a * f j) at_top (𝓝 (a * (∑'i, f i))), by rw [← show (*) a ∘ (λs:finset α, ∑ j in s, f j) = λs, ∑ j in s, a * f j, from funext $ λ s, finset.mul_sum]; exact ennreal.tendsto.const_mul ennreal.summable.has_sum (or.inl sum_ne_0), has_sum.tsum_eq this protected lemma tsum_mul_right : (∑'i, f i * a) = (∑'i, f i) * a := by simp [mul_comm, ennreal.tsum_mul_left] @[simp] lemma tsum_supr_eq {α : Type*} (a : α) {f : α → ennreal} : (∑'b:α, ⨆ (h : a = b), f b) = f a := le_antisymm (by rw [ennreal.tsum_eq_supr_sum]; exact supr_le (assume s, calc (∑ b in s, ⨆ (h : a = b), f b) ≤ ∑ b in {a}, ⨆ (h : a = b), f b : finset.sum_le_sum_of_ne_zero $ assume b _ hb, suffices a = b, by simpa using this.symm, classical.by_contradiction $ assume h, by simpa [h] using hb ... = f a : by simp)) (calc f a ≤ (⨆ (h : a = a), f a) : le_supr (λh:a=a, f a) rfl ... ≤ (∑'b:α, ⨆ (h : a = b), f b) : ennreal.le_tsum _) lemma has_sum_iff_tendsto_nat {f : ℕ → ennreal} (r : ennreal) : has_sum f r ↔ tendsto (λn:ℕ, ∑ i in finset.range n, f i) at_top (𝓝 r) := begin refine ⟨has_sum.tendsto_sum_nat, assume h, _⟩, rw [← supr_eq_of_tendsto _ h, ← ennreal.tsum_eq_supr_nat], { exact ennreal.summable.has_sum }, { exact assume s t hst, finset.sum_le_sum_of_subset (finset.range_subset.2 hst) } end lemma to_nnreal_apply_of_tsum_ne_top {α : Type*} {f : α → ennreal} (hf : (∑' i, f i) ≠ ∞) (x : α) : (((ennreal.to_nnreal ∘ f) x : ℝ≥0) : ennreal) = f x := coe_to_nnreal $ ennreal.ne_top_of_tsum_ne_top hf _ lemma summable_to_nnreal_of_tsum_ne_top {α : Type*} {f : α → ennreal} (hf : (∑' i, f i) ≠ ∞) : summable (ennreal.to_nnreal ∘ f) := by simpa only [←tsum_coe_ne_top_iff_summable, to_nnreal_apply_of_tsum_ne_top hf] using hf protected lemma tsum_apply {ι α : Type*} {f : ι → α → ennreal} {x : α} : (∑' i, f i) x = ∑' i, f i x := tsum_apply $ pi.summable.mpr $ λ _, ennreal.summable lemma tsum_sub {f : ℕ → ennreal} {g : ℕ → ennreal} (h₁ : (∑' i, g i) < ∞) (h₂ : g ≤ f) : (∑' i, (f i - g i)) = (∑' i, f i) - (∑' i, g i) := begin have h₃:(∑' i, (f i - g i)) = (∑' i, (f i - g i) + (g i))-(∑' i, g i), { rw [ennreal.tsum_add, add_sub_self h₁]}, have h₄:(λ i, (f i - g i) + (g i)) = f, { ext n, rw ennreal.sub_add_cancel_of_le (h₂ n)}, rw h₄ at h₃, apply h₃, end end tsum end ennreal namespace nnreal open_locale nnreal /-- Comparison test of convergence of `ℝ≥0`-valued series. -/ lemma exists_le_has_sum_of_le {f g : β → ℝ≥0} {r : ℝ≥0} (hgf : ∀b, g b ≤ f b) (hfr : has_sum f r) : ∃p≤r, has_sum g p := have (∑'b, (g b : ennreal)) ≤ r, begin refine has_sum_le (assume b, _) ennreal.summable.has_sum (ennreal.has_sum_coe.2 hfr), exact ennreal.coe_le_coe.2 (hgf _) end, let ⟨p, eq, hpr⟩ := ennreal.le_coe_iff.1 this in ⟨p, hpr, ennreal.has_sum_coe.1 $ eq ▸ ennreal.summable.has_sum⟩ /-- Comparison test of convergence of `ℝ≥0`-valued series. -/ lemma summable_of_le {f g : β → ℝ≥0} (hgf : ∀b, g b ≤ f b) : summable f → summable g | ⟨r, hfr⟩ := let ⟨p, _, hp⟩ := exists_le_has_sum_of_le hgf hfr in hp.summable /-- A series of non-negative real numbers converges to `r` in the sense of `has_sum` if and only if the sequence of partial sum converges to `r`. -/ lemma has_sum_iff_tendsto_nat {f : ℕ → ℝ≥0} {r : ℝ≥0} : has_sum f r ↔ tendsto (λn:ℕ, ∑ i in finset.range n, f i) at_top (𝓝 r) := begin rw [← ennreal.has_sum_coe, ennreal.has_sum_iff_tendsto_nat], simp only [ennreal.coe_finset_sum.symm], exact ennreal.tendsto_coe end lemma not_summable_iff_tendsto_nat_at_top {f : ℕ → ℝ≥0} : ¬ summable f ↔ tendsto (λ n : ℕ, ∑ i in finset.range n, f i) at_top at_top := begin split, { intros h, refine ((tendsto_of_monotone _).resolve_right h).comp _, exacts [finset.sum_mono_set _, tendsto_finset_range] }, { rintros hnat ⟨r, hr⟩, exact not_tendsto_nhds_of_tendsto_at_top hnat _ (has_sum_iff_tendsto_nat.1 hr) } end lemma summable_iff_not_tendsto_nat_at_top {f : ℕ → ℝ≥0} : summable f ↔ ¬ tendsto (λ n : ℕ, ∑ i in finset.range n, f i) at_top at_top := by rw [← not_iff_not, not_not, not_summable_iff_tendsto_nat_at_top] lemma summable_of_sum_range_le {f : ℕ → ℝ≥0} {c : ℝ≥0} (h : ∀ n, ∑ i in finset.range n, f i ≤ c) : summable f := begin apply summable_iff_not_tendsto_nat_at_top.2 (λ H, _), rcases exists_lt_of_tendsto_at_top H 0 c with ⟨n, -, hn⟩, exact lt_irrefl _ (hn.trans_le (h n)), end lemma tsum_le_of_sum_range_le {f : ℕ → ℝ≥0} {c : ℝ≥0} (h : ∀ n, ∑ i in finset.range n, f i ≤ c) : (∑' n, f n) ≤ c := le_of_tendsto' (has_sum_iff_tendsto_nat.1 (summable_of_sum_range_le h).has_sum) h lemma tsum_comp_le_tsum_of_inj {β : Type*} {f : α → ℝ≥0} (hf : summable f) {i : β → α} (hi : function.injective i) : (∑' x, f (i x)) ≤ ∑' x, f x := tsum_le_tsum_of_inj i hi (λ c hc, zero_le _) (λ b, le_refl _) (summable_comp_injective hf hi) hf lemma summable_sigma {β : Π x : α, Type*} {f : (Σ x, β x) → ℝ≥0} : summable f ↔ (∀ x, summable (λ y, f ⟨x, y⟩)) ∧ summable (λ x, ∑' y, f ⟨x, y⟩) := begin split, { simp only [← nnreal.summable_coe, nnreal.coe_tsum], exact λ h, ⟨h.sigma_factor, h.sigma⟩ }, { rintro ⟨h₁, h₂⟩, simpa only [← ennreal.tsum_coe_ne_top_iff_summable, ennreal.tsum_sigma', ennreal.coe_tsum, h₁] using h₂ } end open finset /-- For `f : ℕ → ℝ≥0`, then `∑' k, f (k + i)` tends to zero. This does not require a summability assumption on `f`, as otherwise all sums are zero. -/ lemma tendsto_sum_nat_add (f : ℕ → ℝ≥0) : tendsto (λ i, ∑' k, f (k + i)) at_top (𝓝 0) := begin rw ← tendsto_coe, convert tendsto_sum_nat_add (λ i, (f i : ℝ)), norm_cast, end end nnreal namespace ennreal lemma tendsto_sum_nat_add (f : ℕ → ennreal) (hf : (∑' i, f i) ≠ ∞) : tendsto (λ i, ∑' k, f (k + i)) at_top (𝓝 0) := begin have : ∀ i, (∑' k, (((ennreal.to_nnreal ∘ f) (k + i) : ℝ≥0) : ennreal)) = (∑' k, (ennreal.to_nnreal ∘ f) (k + i) : ℝ≥0) := λ i, (ennreal.coe_tsum (nnreal.summable_nat_add _ (summable_to_nnreal_of_tsum_ne_top hf) _)).symm, simp only [λ x, (to_nnreal_apply_of_tsum_ne_top hf x).symm, ←ennreal.coe_zero, this, ennreal.tendsto_coe] { single_pass := tt }, exact nnreal.tendsto_sum_nat_add _ end end ennreal lemma tsum_comp_le_tsum_of_inj {β : Type*} {f : α → ℝ} (hf : summable f) (hn : ∀ a, 0 ≤ f a) {i : β → α} (hi : function.injective i) : tsum (f ∘ i) ≤ tsum f := begin let g : α → ℝ≥0 := λ a, ⟨f a, hn a⟩, have hg : summable g, by rwa ← nnreal.summable_coe, convert nnreal.coe_le_coe.2 (nnreal.tsum_comp_le_tsum_of_inj hg hi); { rw nnreal.coe_tsum, congr } end /-- Comparison test of convergence of series of non-negative real numbers. -/ lemma summable_of_nonneg_of_le {f g : β → ℝ} (hg : ∀b, 0 ≤ g b) (hgf : ∀b, g b ≤ f b) (hf : summable f) : summable g := let f' (b : β) : ℝ≥0 := ⟨f b, le_trans (hg b) (hgf b)⟩ in let g' (b : β) : ℝ≥0 := ⟨g b, hg b⟩ in have summable f', from nnreal.summable_coe.1 hf, have summable g', from nnreal.summable_of_le (assume b, (@nnreal.coe_le_coe (g' b) (f' b)).2 $ hgf b) this, show summable (λb, g' b : β → ℝ), from nnreal.summable_coe.2 this /-- A series of non-negative real numbers converges to `r` in the sense of `has_sum` if and only if the sequence of partial sum converges to `r`. -/ lemma has_sum_iff_tendsto_nat_of_nonneg {f : ℕ → ℝ} (hf : ∀i, 0 ≤ f i) (r : ℝ) : has_sum f r ↔ tendsto (λ n : ℕ, ∑ i in finset.range n, f i) at_top (𝓝 r) := begin lift f to ℕ → ℝ≥0 using hf, simp only [has_sum, ← nnreal.coe_sum, nnreal.tendsto_coe'], exact exists_congr (λ hr, nnreal.has_sum_iff_tendsto_nat) end lemma not_summable_iff_tendsto_nat_at_top_of_nonneg {f : ℕ → ℝ} (hf : ∀ n, 0 ≤ f n) : ¬ summable f ↔ tendsto (λ n : ℕ, ∑ i in finset.range n, f i) at_top at_top := begin lift f to ℕ → ℝ≥0 using hf, exact_mod_cast nnreal.not_summable_iff_tendsto_nat_at_top end lemma summable_iff_not_tendsto_nat_at_top_of_nonneg {f : ℕ → ℝ} (hf : ∀ n, 0 ≤ f n) : summable f ↔ ¬ tendsto (λ n : ℕ, ∑ i in finset.range n, f i) at_top at_top := by rw [← not_iff_not, not_not, not_summable_iff_tendsto_nat_at_top_of_nonneg hf] lemma summable_sigma_of_nonneg {β : Π x : α, Type*} {f : (Σ x, β x) → ℝ} (hf : ∀ x, 0 ≤ f x) : summable f ↔ (∀ x, summable (λ y, f ⟨x, y⟩)) ∧ summable (λ x, ∑' y, f ⟨x, y⟩) := by { lift f to (Σ x, β x) → ℝ≥0 using hf, exact_mod_cast nnreal.summable_sigma } lemma summable_of_sum_range_le {f : ℕ → ℝ} {c : ℝ} (hf : ∀ n, 0 ≤ f n) (h : ∀ n, ∑ i in finset.range n, f i ≤ c) : summable f := begin apply (summable_iff_not_tendsto_nat_at_top_of_nonneg hf).2 (λ H, _), rcases exists_lt_of_tendsto_at_top H 0 c with ⟨n, -, hn⟩, exact lt_irrefl _ (hn.trans_le (h n)), end lemma tsum_le_of_sum_range_le {f : ℕ → ℝ} {c : ℝ} (hf : ∀ n, 0 ≤ f n) (h : ∀ n, ∑ i in finset.range n, f i ≤ c) : (∑' n, f n) ≤ c := le_of_tendsto' ((has_sum_iff_tendsto_nat_of_nonneg hf _).1 (summable_of_sum_range_le hf h).has_sum) h section variables [emetric_space β] open ennreal filter emetric /-- In an emetric ball, the distance between points is everywhere finite -/ lemma edist_ne_top_of_mem_ball {a : β} {r : ennreal} (x y : ball a r) : edist x.1 y.1 ≠ ⊤ := lt_top_iff_ne_top.1 $ calc edist x y ≤ edist a x + edist a y : edist_triangle_left x.1 y.1 a ... < r + r : by rw [edist_comm a x, edist_comm a y]; exact add_lt_add x.2 y.2 ... ≤ ⊤ : le_top /-- Each ball in an extended metric space gives us a metric space, as the edist is everywhere finite. -/ def metric_space_emetric_ball (a : β) (r : ennreal) : metric_space (ball a r) := emetric_space.to_metric_space edist_ne_top_of_mem_ball local attribute [instance] metric_space_emetric_ball lemma nhds_eq_nhds_emetric_ball (a x : β) (r : ennreal) (h : x ∈ ball a r) : 𝓝 x = map (coe : ball a r → β) (𝓝 ⟨x, h⟩) := (map_nhds_subtype_coe_eq _ $ mem_nhds_sets emetric.is_open_ball h).symm end section variable [emetric_space α] open emetric lemma tendsto_iff_edist_tendsto_0 {l : filter β} {f : β → α} {y : α} : tendsto f l (𝓝 y) ↔ tendsto (λ x, edist (f x) y) l (𝓝 0) := by simp only [emetric.nhds_basis_eball.tendsto_right_iff, emetric.mem_ball, @tendsto_order ennreal β _ _, forall_prop_of_false ennreal.not_lt_zero, forall_const, true_and] /-- Yet another metric characterization of Cauchy sequences on integers. This one is often the most efficient. -/ lemma emetric.cauchy_seq_iff_le_tendsto_0 [nonempty β] [semilattice_sup β] {s : β → α} : cauchy_seq s ↔ (∃ (b: β → ennreal), (∀ n m N : β, N ≤ n → N ≤ m → edist (s n) (s m) ≤ b N) ∧ (tendsto b at_top (𝓝 0))) := ⟨begin assume hs, rw emetric.cauchy_seq_iff at hs, /- `s` is Cauchy sequence. The sequence `b` will be constructed by taking the supremum of the distances between `s n` and `s m` for `n m ≥ N`-/ let b := λN, Sup ((λ(p : β × β), edist (s p.1) (s p.2))''{p | p.1 ≥ N ∧ p.2 ≥ N}), --Prove that it bounds the distances of points in the Cauchy sequence have C : ∀ n m N, N ≤ n → N ≤ m → edist (s n) (s m) ≤ b N, { refine λm n N hm hn, le_Sup _, use (prod.mk m n), simp only [and_true, eq_self_iff_true, set.mem_set_of_eq], exact ⟨hm, hn⟩ }, --Prove that it tends to `0`, by using the Cauchy property of `s` have D : tendsto b at_top (𝓝 0), { refine tendsto_order.2 ⟨λa ha, absurd ha (ennreal.not_lt_zero), λε εpos, _⟩, rcases exists_between εpos with ⟨δ, δpos, δlt⟩, rcases hs δ δpos with ⟨N, hN⟩, refine filter.mem_at_top_sets.2 ⟨N, λn hn, _⟩, have : b n ≤ δ := Sup_le begin simp only [and_imp, set.mem_image, set.mem_set_of_eq, exists_imp_distrib, prod.exists], intros d p q hp hq hd, rw ← hd, exact le_of_lt (hN p q (le_trans hn hp) (le_trans hn hq)) end, simpa using lt_of_le_of_lt this δlt }, -- Conclude exact ⟨b, ⟨C, D⟩⟩ end, begin rintros ⟨b, ⟨b_bound, b_lim⟩⟩, /-b : ℕ → ℝ, b_bound : ∀ (n m N : ℕ), N ≤ n → N ≤ m → edist (s n) (s m) ≤ b N, b_lim : tendsto b at_top (𝓝 0)-/ refine emetric.cauchy_seq_iff.2 (λε εpos, _), have : ∀ᶠ n in at_top, b n < ε := (tendsto_order.1 b_lim ).2 _ εpos, rcases filter.mem_at_top_sets.1 this with ⟨N, hN⟩, exact ⟨N, λm n hm hn, calc edist (s m) (s n) ≤ b N : b_bound m n N hm hn ... < ε : (hN _ (le_refl N)) ⟩ end⟩ lemma continuous_of_le_add_edist {f : α → ennreal} (C : ennreal) (hC : C ≠ ⊤) (h : ∀x y, f x ≤ f y + C * edist x y) : continuous f := begin refine continuous_iff_continuous_at.2 (λx, tendsto_order.2 ⟨_, _⟩), show ∀e, e < f x → ∀ᶠ y in 𝓝 x, e < f y, { assume e he, let ε := min (f x - e) 1, have : ε < ⊤ := lt_of_le_of_lt (min_le_right _ _) (by simp [lt_top_iff_ne_top]), have : 0 < ε := by simp [ε, hC, he, ennreal.zero_lt_one], have : 0 < C⁻¹ * (ε/2) := bot_lt_iff_ne_bot.2 (by simp [hC, (ne_of_lt this).symm, mul_eq_zero]), have I : C * (C⁻¹ * (ε/2)) < ε, { by_cases C_zero : C = 0, { simp [C_zero, ‹0 < ε›] }, { calc C * (C⁻¹ * (ε/2)) = (C * C⁻¹) * (ε/2) : by simp [mul_assoc] ... = ε/2 : by simp [ennreal.mul_inv_cancel C_zero hC] ... < ε : ennreal.half_lt_self (‹0 < ε›.ne') (‹ε < ⊤›.ne) }}, have : ball x (C⁻¹ * (ε/2)) ⊆ {y : α | e < f y}, { rintros y hy, by_cases htop : f y = ⊤, { simp [htop, lt_top_iff_ne_top, ne_top_of_lt he] }, { simp at hy, have : e + ε < f y + ε := calc e + ε ≤ e + (f x - e) : add_le_add_left (min_le_left _ _) _ ... = f x : by simp [le_of_lt he] ... ≤ f y + C * edist x y : h x y ... = f y + C * edist y x : by simp [edist_comm] ... ≤ f y + C * (C⁻¹ * (ε/2)) : add_le_add_left (canonically_ordered_semiring.mul_le_mul (le_refl _) (le_of_lt hy)) _ ... < f y + ε : (ennreal.add_lt_add_iff_left (lt_top_iff_ne_top.2 htop)).2 I, show e < f y, from (ennreal.add_lt_add_iff_right ‹ε < ⊤›).1 this }}, apply filter.mem_sets_of_superset (ball_mem_nhds _ (‹0 < C⁻¹ * (ε/2)›)) this }, show ∀e, f x < e → ∀ᶠ y in 𝓝 x, f y < e, { assume e he, let ε := min (e - f x) 1, have : ε < ⊤ := lt_of_le_of_lt (min_le_right _ _) (by simp [lt_top_iff_ne_top]), have : 0 < ε := by simp [ε, he, ennreal.zero_lt_one], have : 0 < C⁻¹ * (ε/2) := bot_lt_iff_ne_bot.2 (by simp [hC, (ne_of_lt this).symm, mul_eq_zero]), have I : C * (C⁻¹ * (ε/2)) < ε, { by_cases C_zero : C = 0, simp [C_zero, ‹0 < ε›], calc C * (C⁻¹ * (ε/2)) = (C * C⁻¹) * (ε/2) : by simp [mul_assoc] ... = ε/2 : by simp [ennreal.mul_inv_cancel C_zero hC] ... < ε : ennreal.half_lt_self (‹0 < ε›.ne') (‹ε < ⊤›.ne) }, have : ball x (C⁻¹ * (ε/2)) ⊆ {y : α | f y < e}, { rintros y hy, have htop : f x ≠ ⊤ := ne_top_of_lt he, show f y < e, from calc f y ≤ f x + C * edist y x : h y x ... ≤ f x + C * (C⁻¹ * (ε/2)) : add_le_add_left (canonically_ordered_semiring.mul_le_mul (le_refl _) (le_of_lt hy)) _ ... < f x + ε : (ennreal.add_lt_add_iff_left (lt_top_iff_ne_top.2 htop)).2 I ... ≤ f x + (e - f x) : add_le_add_left (min_le_left _ _) _ ... = e : by simp [le_of_lt he] }, apply filter.mem_sets_of_superset (ball_mem_nhds _ (‹0 < C⁻¹ * (ε/2)›)) this }, end theorem continuous_edist : continuous (λp:α×α, edist p.1 p.2) := begin apply continuous_of_le_add_edist 2 (by norm_num), rintros ⟨x, y⟩ ⟨x', y'⟩, calc edist x y ≤ edist x x' + edist x' y' + edist y' y : edist_triangle4 _ _ _ _ ... = edist x' y' + (edist x x' + edist y y') : by simp [edist_comm]; cc ... ≤ edist x' y' + (edist (x, y) (x', y') + edist (x, y) (x', y')) : add_le_add_left (add_le_add (le_max_left _ _) (le_max_right _ _)) _ ... = edist x' y' + 2 * edist (x, y) (x', y') : by rw [← mul_two, mul_comm] end theorem continuous.edist [topological_space β] {f g : β → α} (hf : continuous f) (hg : continuous g) : continuous (λb, edist (f b) (g b)) := continuous_edist.comp (hf.prod_mk hg : _) theorem filter.tendsto.edist {f g : β → α} {x : filter β} {a b : α} (hf : tendsto f x (𝓝 a)) (hg : tendsto g x (𝓝 b)) : tendsto (λx, edist (f x) (g x)) x (𝓝 (edist a b)) := (continuous_edist.tendsto (a, b)).comp (hf.prod_mk_nhds hg) lemma cauchy_seq_of_edist_le_of_tsum_ne_top {f : ℕ → α} (d : ℕ → ennreal) (hf : ∀ n, edist (f n) (f n.succ) ≤ d n) (hd : tsum d ≠ ∞) : cauchy_seq f := begin lift d to (ℕ → nnreal) using (λ i, ennreal.ne_top_of_tsum_ne_top hd i), rw ennreal.tsum_coe_ne_top_iff_summable at hd, exact cauchy_seq_of_edist_le_of_summable d hf hd end lemma emetric.is_closed_ball {a : α} {r : ennreal} : is_closed (closed_ball a r) := is_closed_le (continuous_id.edist continuous_const) continuous_const /-- If `edist (f n) (f (n+1))` is bounded above by a function `d : ℕ → ennreal`, then the distance from `f n` to the limit is bounded by `∑'_{k=n}^∞ d k`. -/ lemma edist_le_tsum_of_edist_le_of_tendsto {f : ℕ → α} (d : ℕ → ennreal) (hf : ∀ n, edist (f n) (f n.succ) ≤ d n) {a : α} (ha : tendsto f at_top (𝓝 a)) (n : ℕ) : edist (f n) a ≤ ∑' m, d (n + m) := begin refine le_of_tendsto (tendsto_const_nhds.edist ha) (mem_at_top_sets.2 ⟨n, λ m hnm, _⟩), refine le_trans (edist_le_Ico_sum_of_edist_le hnm (λ k _ _, hf k)) _, rw [finset.sum_Ico_eq_sum_range], exact sum_le_tsum _ (λ _ _, zero_le _) ennreal.summable end /-- If `edist (f n) (f (n+1))` is bounded above by a function `d : ℕ → ennreal`, then the distance from `f 0` to the limit is bounded by `∑'_{k=0}^∞ d k`. -/ lemma edist_le_tsum_of_edist_le_of_tendsto₀ {f : ℕ → α} (d : ℕ → ennreal) (hf : ∀ n, edist (f n) (f n.succ) ≤ d n) {a : α} (ha : tendsto f at_top (𝓝 a)) : edist (f 0) a ≤ ∑' m, d m := by simpa using edist_le_tsum_of_edist_le_of_tendsto d hf ha 0 end --section
19af6bd7a38afdbd14faac83cc1f970ceb4186c6
fa02ed5a3c9c0adee3c26887a16855e7841c668b
/src/linear_algebra/vandermonde.lean
5e64aa124f3fe50755a21a3b135e06500716b264
[ "Apache-2.0" ]
permissive
jjgarzella/mathlib
96a345378c4e0bf26cf604aed84f90329e4896a2
395d8716c3ad03747059d482090e2bb97db612c8
refs/heads/master
1,686,480,124,379
1,625,163,323,000
1,625,163,323,000
281,190,421
2
0
Apache-2.0
1,595,268,170,000
1,595,268,169,000
null
UTF-8
Lean
false
false
4,281
lean
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen -/ import algebra.big_operators.fin import algebra.geom_sum import group_theory.perm.fin import linear_algebra.matrix.determinant import tactic.ring_exp /-! # Vandermonde matrix This file defines the `vandermonde` matrix and gives its determinant. ## Main definitions - `vandermonde v`: a square matrix with the `i, j`th entry equal to `v i ^ j`. ## Main results - `det_vandermonde`: `det (vandermonde v)` is the product of `v i - v j`, where `(i, j)` ranges over the unordered pairs. -/ variables {R : Type*} [comm_ring R] open_locale big_operators open_locale matrix open equiv namespace matrix /-- `vandermonde v` is the square matrix with `i`th row equal to `1, v i, v i ^ 2, v i ^ 3, ...`. -/ def vandermonde {n : ℕ} (v : fin n → R) : matrix (fin n) (fin n) R := λ i j, v i ^ (j : ℕ) @[simp] lemma vandermonde_apply {n : ℕ} (v : fin n → R) (i j) : vandermonde v i j = v i ^ (j : ℕ) := rfl @[simp] lemma vandermonde_cons {n : ℕ} (v0 : R) (v : fin n → R) : vandermonde (fin.cons v0 v : fin n.succ → R) = fin.cons (λ j, v0 ^ (j : ℕ)) (λ i, fin.cons 1 (λ j, v i * vandermonde v i j)) := begin ext i j, refine fin.cases (by simp) (λ i, _) i, refine fin.cases (by simp) (λ j, _) j, simp [pow_succ] end lemma vandermonde_succ {n : ℕ} (v : fin n.succ → R) : vandermonde v = fin.cons (λ j, v 0 ^ (j : ℕ)) (λ i, fin.cons 1 (λ j, v i.succ * vandermonde (fin.tail v) i j)) := begin conv_lhs { rw [← fin.cons_self_tail v, vandermonde_cons] }, simp only [fin.tail] end lemma det_vandermonde {n : ℕ} (v : fin n → R) : det (vandermonde v) = ∏ i : fin n, ∏ j in finset.univ.filter (λ j, i < j), (v j - v i) := begin unfold vandermonde, induction n with n ih, { exact det_eq_one_of_card_eq_zero (fintype.card_fin 0) }, calc det (λ (i j : fin n.succ), v i ^ (j : ℕ)) = det (λ (i j : fin n.succ), @fin.cons _ (λ _, R) (v 0 ^ (j : ℕ)) (λ i, v (fin.succ i) ^ (j : ℕ) - v 0 ^ (j : ℕ)) i) : det_eq_of_forall_row_eq_smul_add_const (fin.cons 0 1) 0 (fin.cons_zero _ _) _ ... = det (λ (i j : fin n), @fin.cons _ (λ _, R) (v 0 ^ (j.succ : ℕ)) (λ (i : fin n), v (fin.succ i) ^ (j.succ : ℕ) - v 0 ^ (j.succ : ℕ)) (fin.succ_above 0 i)) : by simp_rw [det_succ_column_zero, fin.sum_univ_succ, fin.cons_zero, minor, fin.cons_succ, fin.coe_zero, pow_zero, one_mul, sub_self, mul_zero, zero_mul, finset.sum_const_zero, add_zero] ... = det (λ (i j : fin n), (v (fin.succ i) - v 0) * (∑ k in finset.range (j + 1 : ℕ), v i.succ ^ k * v 0 ^ (j - k : ℕ))) : by { congr, ext i j, rw [fin.succ_above_zero, fin.cons_succ, fin.coe_succ, mul_comm], exact (geom_sum₂_mul (v i.succ) (v 0) (j + 1 : ℕ)).symm } ... = (∏ (i : fin n), (v (fin.succ i) - v 0)) * det (λ (i j : fin n), (∑ k in finset.range (j + 1 : ℕ), v i.succ ^ k * v 0 ^ (j - k : ℕ))) : det_mul_column (λ i, v (fin.succ i) - v 0) _ ... = (∏ (i : fin n), (v (fin.succ i) - v 0)) * det (λ (i j : fin n), v (fin.succ i) ^ (j : ℕ)) : congr_arg ((*) _) _ ... = ∏ i : fin n.succ, ∏ j in finset.univ.filter (λ j, i < j), (v j - v i) : by { simp_rw [ih (v ∘ fin.succ), fin.prod_univ_succ, fin.prod_filter_zero_lt, fin.prod_filter_succ_lt] }, { intros i j, rw fin.cons_zero, refine fin.cases _ (λ i, _) i, { simp }, rw [fin.cons_succ, fin.cons_succ, pi.one_apply], ring }, { cases n, { simp only [det_eq_one_of_card_eq_zero (fintype.card_fin 0)] }, apply det_eq_of_forall_col_eq_smul_add_pred (λ i, v 0), { intro j, simp }, { intros i j, simp only [smul_eq_mul, pi.add_apply, fin.coe_succ, fin.coe_cast_succ, pi.smul_apply], rw [finset.sum_range_succ, add_comm, nat.sub_self, pow_zero, mul_one, finset.mul_sum], congr' 1, refine finset.sum_congr rfl (λ i' hi', _), rw [mul_left_comm (v 0), nat.succ_sub, pow_succ], exact nat.lt_succ_iff.mp (finset.mem_range.mp hi') } } end end matrix
d51b90e3a0eaf25315fae67920c467ce26279dff
d796eac6dc113f68ec6fc0579c13e8eae2bdef6c
/Resources/Code/Category+Theory-Github-Topic/monoidal-categories-reboot/src/monoidal_categories_reboot/monoidal_functor.lean
29d69726e2788763b33d5ae2a01296e1923122fb
[ "Apache-2.0" ]
permissive
paddlelaw/functional-discipline-content-cats
5a7e13e8adedd96b94f66b0b3cbf1847bc86d7f6
d93b7aa849b343c384cec40c73ee84a9300004e8
refs/heads/master
1,675,541,859,508
1,607,251,766,000
1,607,251,766,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
5,883
lean
-- Copyright (c) 2018 Michael Jendrusch. All rights reserved. import category_theory.category import category_theory.functor import category_theory.products import category_theory.natural_isomorphism import .tensor_product import .monoidal_category import tactic.rewrite_search import tactic.interactive open category_theory open tactic universe u universes v₁ v₂ v₃ u₁ u₂ u₃ open category_theory.category open category_theory.functor open category_theory.prod open category_theory.functor.category.nat_trans open category_theory.nat_iso namespace category_theory.monoidal section open monoidal_category structure monoidal_functor (C : Sort u₁) [𝒞 : monoidal_category.{v₁} C] (D : Sort u₂) [𝒟 : monoidal_category.{v₂} D] extends category_theory.functor C D := -- unit morphism (ε : tensor_unit D ≅ obj (tensor_unit C)) -- natural transformation (μ : Π X Y : C, (obj X) ⊗ (obj Y) ≅ obj (X ⊗ Y)) (μ_natural' : ∀ (X Y X' Y' : C) (f : X ⟶ Y) (g : X' ⟶ Y'), (μ X X').hom ≫ map (f ⊗ g) = ((map f) ⊗ (map g)) ≫ (μ Y Y').hom . obviously) -- associativity (associativity' : ∀ (X Y Z : C), ((μ X Y).hom ⊗ 𝟙 (obj Z)) ≫ (μ (X ⊗ Y) Z).hom ≫ map (associator X Y Z).hom = (associator (obj X) (obj Y) (obj Z)).hom ≫ (𝟙 (obj X) ⊗ (μ Y Z).hom) ≫ (μ X (Y ⊗ Z)).hom . obviously) -- unitality (left_unitality' : ∀ X : C, (left_unitor (obj X)).hom = (ε.hom ⊗ 𝟙 (obj X)) ≫ (μ (tensor_unit C) X).hom ≫ map (left_unitor X).hom . obviously) (right_unitality' : ∀ X : C, (right_unitor (obj X)).hom = (𝟙 (obj X) ⊗ ε.hom) ≫ (μ X (tensor_unit C)).hom ≫ map (right_unitor X).hom . obviously) restate_axiom monoidal_functor.μ_natural' attribute [simp,search] monoidal_functor.μ_natural restate_axiom monoidal_functor.left_unitality' attribute [simp,search] monoidal_functor.left_unitality restate_axiom monoidal_functor.right_unitality' attribute [simp,search] monoidal_functor.right_unitality restate_axiom monoidal_functor.associativity' attribute [simp,search] monoidal_functor.associativity end namespace monoidal_functor variables {C : Sort u₁} [𝒞 : monoidal_category.{v₁} C] variables {D : Sort u₂} [𝒟 : monoidal_category.{v₂} D] include 𝒞 𝒟 -- This is unfortunate; we need all sorts of struts to give -- monoidal functors the features of functors... @[reducible] def on_iso (F : monoidal_functor C D) {X Y : C} (f : X ≅ Y) : F.obj X ≅ F.obj Y := F.to_functor.map_iso f @[search] lemma map_id (F : monoidal_functor C D) (X : C) : F.map (𝟙 X) = 𝟙 (F.obj X) := F.map_id' X @[search] lemma map_comp (F : monoidal_functor C D) {X Y Z : C} (f : X ⟶ Y) (g : Y ⟶ Z) : F.map (f ≫ g) = F.map f ≫ F.map g := F.map_comp' f g end monoidal_functor section variables (C : Sort u₁) [𝒞 : monoidal_category.{v₁} C] variables (D : Sort u₂) [𝒟 : monoidal_category.{v₂} D] variables (E : Sort u₃) [ℰ : monoidal_category.{v₃} E] include 𝒞 𝒟 ℰ open tactic.rewrite_search.tracer -- set_option profiler true def monoidal_functor.comp (F : monoidal_functor C D) (G : monoidal_functor D E) : monoidal_functor C E := { ε := G.ε ≪≫ (G.on_iso F.ε), μ := λ X Y, G.μ (F.obj X) (F.obj Y) ≪≫ G.on_iso (F.μ X Y), μ_natural' := begin tidy, /- `rewrite_search` says -/ -- FIXME actually, its output is broken conv_lhs { congr, skip, erw [←map_comp] }, conv_lhs { erw [monoidal_functor.μ_natural] }, conv_lhs { congr, skip, erw [map_comp] }, conv_lhs { erw [←category.assoc] }, conv_lhs { congr, erw [monoidal_functor.μ_natural] }, conv_rhs { erw [←category.assoc] }, end, associativity' := λ X Y Z, begin -- obviously fails here, but it seems like it should be doable! dsimp, conv { to_rhs, rw ←interchange_right_identity, slice 3 4, rw ← G.map_id, rw ← G.μ_natural, }, -- rewrite_search { view := visualiser, trace_summary := tt, explain := tt, max_iterations := 50 }, -- fails conv { to_rhs, slice 1 3, rw ←G.associativity, }, -- rewrite_search (saw/visited/used) 137/23/16 expressions during proof of category_theory.monoidal.monoidal_functor.comp conv { to_lhs, rw ←interchange_left_identity, slice 2 3, rw ← G.map_id, rw ← G.μ_natural, }, repeat { rw category.assoc }, repeat { rw ←G.map_comp }, rw F.associativity, end, left_unitality' := λ X, begin -- Don't attempt to read this; it is a Frankenstein effort of Scott + rewrite_search dsimp, rw G.left_unitality, rw ←interchange_left_identity, repeat {rw category.assoc}, apply congr_arg, /- `rewrite_search` says -/ -- FIXME actually, its output is broken rw F.left_unitality, conv_lhs { congr, skip, erw [map_comp] }, conv_lhs { erw [←category.id_app] }, conv_lhs { erw [←category.assoc] }, conv_lhs { congr, erw [monoidal_functor.μ_natural] }, conv_lhs { congr, congr, congr, skip, erw [map_id] }, conv_rhs { erw [←category.assoc] }, erw map_comp, end, right_unitality' := λ X, begin dsimp, rw G.right_unitality, rw ←interchange_right_identity, repeat {rw category.assoc}, apply congr_arg, /- `rewrite_search` says -/ -- FIXME actually, its output is broken rw F.right_unitality, conv_lhs { congr, skip, erw [map_comp] }, conv_lhs { erw [←category.id_app] }, conv_lhs { erw [←category.assoc] }, conv_lhs { congr, erw [monoidal_functor.μ_natural] }, conv_lhs { congr, congr, congr, erw [map_id] }, conv_rhs { erw [←category.assoc] }, erw map_comp, end, .. (F.to_functor) ⋙ (G.to_functor) } end end category_theory.monoidal
8e0d84ea8c354a91dc93e6e60886159006d54bc7
8b9f17008684d796c8022dab552e42f0cb6fb347
/library/init/reserved_notation.lean
8867ef0ac167d1186c593d13f5a1f5832b0f4fea
[ "Apache-2.0" ]
permissive
chubbymaggie/lean
0d06ae25f9dd396306fb02190e89422ea94afd7b
d2c7b5c31928c98f545b16420d37842c43b4ae9a
refs/heads/master
1,611,313,622,901
1,430,266,839,000
1,430,267,083,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
2,409
lean
/- Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: init.reserved_notation Authors: Leonardo de Moura, Jeremy Avigad -/ prelude import init.datatypes notation `assume` binders `,` r:(scoped f, f) := r notation `take` binders `,` r:(scoped f, f) := r /- Global declarations of right binding strength If a module reassigns these, it will be incompatible with other modules that adhere to these conventions. When hovering over a symbol, use "C-c C-k" to see how to input it. -/ definition std.prec.max : num := 1024 -- the strength of application, identifiers, (, [, etc. definition std.prec.arrow : num := 25 /- The next definition is "max + 10". It can be used e.g. for postfix operations that should be stronger than application. -/ definition std.prec.max_plus := num.succ (num.succ (num.succ (num.succ (num.succ (num.succ (num.succ (num.succ (num.succ (num.succ std.prec.max))))))))) /- Logical operations and relations -/ reserve prefix `¬`:40 reserve prefix `~`:40 reserve infixr `∧`:35 reserve infixr `/\`:35 reserve infixr `\/`:30 reserve infixr `∨`:30 reserve infix `<->`:20 reserve infix `↔`:20 reserve infix `=`:50 reserve infix `≠`:50 reserve infix `≈`:50 reserve infix `∼`:50 reserve infix `≡`:50 reserve infixr `∘`:60 -- input with \comp reserve postfix `⁻¹`:std.prec.max_plus -- input with \sy or \-1 or \inv reserve infixl `⬝`:75 reserve infixr `▸`:75 /- types and type constructors -/ reserve infixl `⊎`:25 reserve infixl `×`:30 /- arithmetic operations -/ reserve infixl `+`:65 reserve infixl `-`:65 reserve infixl `*`:70 reserve infixl `div`:70 reserve infixl `mod`:70 reserve infixl `/`:70 reserve prefix `-`:100 reserve infix `<=`:50 reserve infix `≤`:50 reserve infix `<`:50 reserve infix `>=`:50 reserve infix `≥`:50 reserve infix `>`:50 /- boolean operations -/ reserve infixl `&&`:70 reserve infixl `||`:65 /- set operations -/ reserve infix `∈`:50 reserve infix `∉`:50 reserve infixl `∩`:70 reserve infixl `∪`:65 /- other symbols -/ reserve infix `∣`:50 reserve infixl `++`:65 reserve infixr `::`:65 -- Yet another trick to anotate an expression with a type abbreviation is_typeof (A : Type) (a : A) : A := a notation `typeof` t `:` T := is_typeof T t notation `(` t `:` T `)` := is_typeof T t
9f01f132bf0746bac6a0b2a6524c401e708c23ad
7a76361040c55ae1eba5856c1a637593117a6556
/src/lectures/love01_definitions_and_statements_demo.lean
090ab700506340277480c37ce77b98a4f2720c52
[]
no_license
rgreenblatt/fpv2021
c2cbe7b664b648cef7d240a654d6bdf97a559272
c65d72e48c8fa827d2040ed6ea86c2be62db36fa
refs/heads/main
1,692,245,693,819
1,633,364,621,000
1,633,364,621,000
407,231,487
0
0
null
1,631,808,608,000
1,631,808,608,000
null
UTF-8
Lean
false
false
7,553
lean
import ..lovelib /-! # LoVe Demo 1: Definitions and Statements We introduce the basics of Lean and proof assistants, without trying to carry out actual proofs yet. We focus on specifying objects and statements of their intended properties. -/ set_option pp.beta true set_option pp.generalized_field_notation false namespace LoVe /-! ## A View of Lean In a first approximation: Lean = functional programming + logic In today's lecture, we cover inductive types, recursive functions, and lemma statements. If you are not familiar with typed functional programming (e.g., Haskell, ML, OCaml, Scala), we recommend that you study a tutorial, such as the first chapters of the online tutorial __Learn You a Haskell for Great Good!__: http://learnyouahaskell.com/chapters Make sure to at least reach the section titled "Lambdas". ## Types and Terms Similar to simply typed λ-calculus or typed functional programming languages (ML, OCaml, Haskell). Types `σ`, `τ`, `υ`: * type variables `α`; * basic types `T`; * complex types `T σ1 … σN`. Some type constructors `T` are written infix, e.g., `→` (function type). The function arrow is right-associative: `σ₁ → σ₂ → σ₃ → τ` = `σ₁ → (σ₂ → (σ₃ → τ))`. Polymorphic types are also possible. In Lean, the type variables must be bound using `∀`, e.g., `∀α, α → α`. Terms `t`, `u`: * constants `c`; * variables `x`; * applications `t u`; * λ-expressions `λx, t`. __Currying__: functions can be * fully applied (e.g., `f x y z` if `f` is ternary); * partially applied (e.g., `f x y`, `f x`); * left unapplied (e.g., `f`). Application is left-associative: `f x y z` = `((f x) y) z`. -/ #check ℕ #check ℤ #check empty #check unit #check bool #check ℕ → ℤ #check ℤ → ℕ #check bool → ℕ → ℤ #check (bool → ℕ) → ℤ #check ℕ → (bool → ℕ) → ℤ #check prod ℕ bool #check prod #check λx : ℕ, x #check λf : ℕ → ℕ, λg : ℕ → ℕ, λh : ℕ → ℕ, λx : ℕ, h (g (f x)) #check λ(f g h : ℕ → ℕ) (x : ℕ), h (g (f x)) constants a b : ℤ constant f : ℤ → ℤ constant g : ℤ → ℤ → ℤ #check λx : ℤ, g (f (g a x)) (g x b) #check λx, g (f (g a x)) (g x b) #check λx, x constant trool : Type constants trool.true trool.false trool.maybe : trool /-! ### Type Checking and Type Inference Type checking and type inference are decidable problems, but this property is quickly lost if features such as overloading or subtyping are added. Type judgment: `C ⊢ t : σ`, meaning `t` has type `σ` in local context `C`. Typing rules: —————————— Cst if c is declared with type σ C ⊢ c : σ —————————— Var if x : σ occurs in C C ⊢ x : σ C ⊢ t : σ → τ C ⊢ u : σ ——————————————————————————— App C ⊢ t u : τ C, x : σ ⊢ t : τ ———————————————————————— Lam C ⊢ (λx : σ, t) : σ → τ ### Type Inhabitation Given a type `σ`, the __type inhabitation__ problem consists of finding a term of that type. Recursive procedure: 1. If `σ` is of the form `τ → υ`, a candidate inhabitant is an anonymous function of the form `λx, _`. 2. Alternatively, you can use any constant or variable `x : τ₁ → ⋯ → τN → σ` to build the term `x _ … _`. -/ constants α β γ : Type def some_fun_of_type : (α → β → γ) → ((β → α) → β) → α → γ := λf g a, f a (g (λb, a)) /-! ## Type Definitions An __inductive type__ (also called __inductive datatype__, __algebraic datatype__, or just __datatype__) is a type that consists of all the values that can be built using a finite number of applications of its __constructors__, and only those. ### Natural Numbers -/ namespace my_nat /-! Definition of type `nat` (= `ℕ`) of natural numbers, using Peano-style unary notation: -/ inductive nat : Type | zero : nat | succ : nat → nat #check nat #check nat.zero #check nat.succ end my_nat #print nat #print ℕ /-! ### Arithmetic Expressions -/ inductive aexp : Type | num : ℤ → aexp | var : string → aexp | add : aexp → aexp → aexp | sub : aexp → aexp → aexp | mul : aexp → aexp → aexp | div : aexp → aexp → aexp /-! ### Lists -/ namespace my_list inductive list (α : Type) : Type | nil : list | cons : α → list → list #check list.nil #check list.cons end my_list #print list /-! ## Function Definitions The syntax for defining a function operating on an inductive type is very compact: We define a single function and use __pattern matching__ to extract the arguments to the constructors. -/ def add : ℕ → ℕ → ℕ | m nat.zero := m | m (nat.succ n) := nat.succ (add m n) #eval add 2 7 #reduce add 2 7 def mul : ℕ → ℕ → ℕ | _ nat.zero := nat.zero | m (nat.succ n) := add m (mul m n) #eval mul 2 7 #print mul #print mul._main def power : ℕ → ℕ → ℕ | _ nat.zero := 1 | m (nat.succ n) := m * power m n #eval power 2 5 def power₂ (m : ℕ) : ℕ → ℕ | nat.zero := 1 | (nat.succ n) := m * power₂ n #eval power₂ 2 5 def iter (α : Type) (z : α) (f : α → α) : ℕ → α | nat.zero := z | (nat.succ n) := f (iter n) #check iter def power₃ (m n : ℕ) : ℕ := iter ℕ 1 (λl, m * l) n #eval power₃ 2 5 def append (α : Type) : list α → list α → list α | list.nil ys := ys | (list.cons x xs) ys := list.cons x (append xs ys) #check append #eval append _ [3, 1] [4, 1, 5] /-! Aliases: `[]` := `nil` `x :: xs` := `cons x xs` `[x₁, …, xN]` := `x₁ :: … :: xN :: []` -/ def append₂ {α : Type} : list α → list α → list α | list.nil ys := ys | (list.cons x xs) ys := list.cons x (append₂ xs ys) #check append₂ #eval append₂ [3, 1] [4, 1, 5] #check @append₂ #eval @append₂ _ [3, 1] [4, 1, 5] def append₃ {α : Type} : list α → list α → list α | [] ys := ys | (x :: xs) ys := x :: append₃ xs ys def reverse {α : Type} : list α → list α | [] := [] | (x :: xs) := reverse xs ++ [x] def eval (env : string → ℤ) : aexp → ℤ | (aexp.num i) := i | (aexp.var x) := env x | (aexp.add e₁ e₂) := eval e₁ + eval e₂ | (aexp.sub e₁ e₂) := eval e₁ - eval e₂ | (aexp.mul e₁ e₂) := eval e₁ * eval e₂ | (aexp.div e₁ e₂) := eval e₁ / eval e₂ #eval eval (λs, 7) (aexp.div (aexp.var "x") (aexp.num 0)) /-! Lean only accepts the function definitions for which it can prove termination. In particular, it accepts __structurally recursive__ functions, which peel off exactly one constructor at a time. ## Lemma Statements Notice the similarity with `def` commands. -/ namespace sorry_lemmas lemma add_comm (m n : ℕ) : add m n = add n m := sorry lemma add_assoc (l m n : ℕ) : add (add l m) n = add l (add m n) := sorry lemma mul_comm (m n : ℕ) : mul m n = mul n m := sorry lemma mul_assoc (l m n : ℕ) : mul (mul l m) n = mul l (mul m n) := sorry lemma mul_add (l m n : ℕ) : mul l (add m n) = add (mul l m) (mul l n) := sorry lemma reverse_reverse {α : Type} (xs : list α) : reverse (reverse xs) = xs := sorry /-! Axioms are like lemmas but without proofs (`:= …`). Constant declarations are like definitions but without bodies (`:= …`). -/ constants a b : ℤ axiom a_less_b : a < b end sorry_lemmas end LoVe
28231f7ecb1e534611862b89b118d33924a14dd4
737dc4b96c97368cb66b925eeea3ab633ec3d702
/src/Lean/Meta/Basic.lean
59b42c5d2812179e230f64e7832696c39ea5a4a5
[ "Apache-2.0" ]
permissive
Bioye97/lean4
1ace34638efd9913dc5991443777b01a08983289
bc3900cbb9adda83eed7e6affeaade7cfd07716d
refs/heads/master
1,690,589,820,211
1,631,051,000,000
1,631,067,598,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
49,189
lean
/- Copyright (c) 2019 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura -/ import Lean.Data.LOption import Lean.Environment import Lean.Class import Lean.ReducibilityAttrs import Lean.Util.Trace import Lean.Util.RecDepth import Lean.Util.PPExt import Lean.Util.OccursCheck import Lean.Util.MonadBacktrack import Lean.Compiler.InlineAttrs import Lean.Meta.TransparencyMode import Lean.Meta.DiscrTreeTypes import Lean.Eval import Lean.CoreM /- This module provides four (mutually dependent) goodies that are needed for building the elaborator and tactic frameworks. 1- Weak head normal form computation with support for metavariables and transparency modes. 2- Definitionally equality checking with support for metavariables (aka unification modulo definitional equality). 3- Type inference. 4- Type class resolution. They are packed into the MetaM monad. -/ namespace Lean.Meta builtin_initialize isDefEqStuckExceptionId : InternalExceptionId ← registerInternalExceptionId `isDefEqStuck structure Config where foApprox : Bool := false ctxApprox : Bool := false quasiPatternApprox : Bool := false /- When `constApprox` is set to true, we solve `?m t =?= c` using `?m := fun _ => c` when `?m t` is not a higher-order pattern and `c` is not an application as -/ constApprox : Bool := false /- When the following flag is set, `isDefEq` throws the exeption `Exeption.isDefEqStuck` whenever it encounters a constraint `?m ... =?= t` where `?m` is read only. This feature is useful for type class resolution where we may want to notify the caller that the TC problem may be solveable later after it assigns `?m`. -/ isDefEqStuckEx : Bool := false transparency : TransparencyMode := TransparencyMode.default /- If zetaNonDep == false, then non dependent let-decls are not zeta expanded. -/ zetaNonDep : Bool := true /- When `trackZeta == true`, we store zetaFVarIds all free variables that have been zeta-expanded. -/ trackZeta : Bool := false unificationHints : Bool := true /- Enables proof irrelevance at `isDefEq` -/ proofIrrelevance : Bool := true /- By default synthetic opaque metavariables are not assigned by `isDefEq`. Motivation: we want to make sure typing constraints resolved during elaboration should not "fill" holes that are supposed to be filled using tactics. However, this restriction is too restrictive for tactics such as `exact t`. When elaborating `t`, we dot not fill named holes when solving typing constraints or TC resolution. But, we ignore the restriction when we try to unify the type of `t` with the goal target type. We claim this is not a hack and is defensible behavior because this last unification step is not really part of the term elaboration. -/ assignSyntheticOpaque : Bool := false /- When `ignoreLevelDepth` is `false`, only universe level metavariables with depth == metavariable context depth can be assigned. We used to have `ignoreLevelDepth == false` always, but this setting produced counterintuitive behavior in a few cases. Recall that universe levels are often ignored by users, they may not even be aware they exist. We still use this restriction for regular metavariables. See discussion at the beginning of `MetavarContext.lean`. We claim it is reasonable to ignore this restriction for universe metavariables because their values are often contrained by the terms is instances and simp theorems. TODO: we should delete this configuration option and the method `isReadOnlyLevelMVar` after we have more tests. -/ ignoreLevelMVarDepth : Bool := true structure ParamInfo where binderInfo : BinderInfo := BinderInfo.default hasFwdDeps : Bool := false backDeps : Array Nat := #[] deriving Inhabited def ParamInfo.isImplicit (p : ParamInfo) : Bool := p.binderInfo == BinderInfo.implicit def ParamInfo.isInstImplicit (p : ParamInfo) : Bool := p.binderInfo == BinderInfo.instImplicit def ParamInfo.isStrictImplicit (p : ParamInfo) : Bool := p.binderInfo == BinderInfo.strictImplicit def ParamInfo.isExplicit (p : ParamInfo) : Bool := p.binderInfo == BinderInfo.default || p.binderInfo == BinderInfo.auxDecl structure FunInfo where paramInfo : Array ParamInfo := #[] resultDeps : Array Nat := #[] structure InfoCacheKey where transparency : TransparencyMode expr : Expr nargs? : Option Nat deriving Inhabited, BEq namespace InfoCacheKey instance : Hashable InfoCacheKey := ⟨fun ⟨transparency, expr, nargs⟩ => mixHash (hash transparency) <| mixHash (hash expr) (hash nargs)⟩ end InfoCacheKey open Std (PersistentArray PersistentHashMap) abbrev SynthInstanceCache := PersistentHashMap Expr (Option Expr) abbrev InferTypeCache := PersistentExprStructMap Expr abbrev FunInfoCache := PersistentHashMap InfoCacheKey FunInfo abbrev WhnfCache := PersistentExprStructMap Expr /- A set of pairs. TODO: consider more efficient representations (e.g., a proper set) and caching policies (e.g., imperfect cache). We should also investigate the impact on memory consumption. -/ abbrev DefEqCache := PersistentHashMap (Expr × Expr) Unit structure Cache where inferType : InferTypeCache := {} funInfo : FunInfoCache := {} synthInstance : SynthInstanceCache := {} whnfDefault : WhnfCache := {} -- cache for closed terms and `TransparencyMode.default` whnfAll : WhnfCache := {} -- cache for closed terms and `TransparencyMode.all` defEqDefault : DefEqCache := {} defEqAll : DefEqCache := {} deriving Inhabited /-- "Context" for a postponed universe constraint. `lhs` and `rhs` are the surrounding `isDefEq` call when the postponed constraint was created. -/ structure DefEqContext where lhs : Expr rhs : Expr lctx : LocalContext localInstances : LocalInstances /-- Auxiliary structure for representing postponed universe constraints. Remark: the fields `ref` and `rootDefEq?` are used for error message generation only. Remark: we may consider improving the error message generation in the future. -/ structure PostponedEntry where ref : Syntax -- We save the `ref` at entry creation time lhs : Level rhs : Level ctx? : Option DefEqContext -- Context for the surrounding `isDefEq` call when entry was created deriving Inhabited structure State where mctx : MetavarContext := {} cache : Cache := {} /- When `trackZeta == true`, then any let-decl free variable that is zeta expansion performed by `MetaM` is stored in `zetaFVarIds`. -/ zetaFVarIds : FVarIdSet := {} postponed : PersistentArray PostponedEntry := {} deriving Inhabited structure SavedState where core : Core.State meta : State deriving Inhabited structure Context where config : Config := {} lctx : LocalContext := {} localInstances : LocalInstances := #[] /-- Not `none` when inside of an `isDefEq` test. See `PostponedEntry`. -/ defEqCtx? : Option DefEqContext := none /-- Track the number of nested `synthPending` invocations. Nested invocations can happen when the type class resolution invokes `synthPending`. Remark: in the current implementation, `synthPending` fails if `synthPendingDepth > 0`. We will add a configuration option if necessary. -/ synthPendingDepth : Nat := 0 abbrev MetaM := ReaderT Context $ StateRefT State CoreM -- Make the compiler generate specialized `pure`/`bind` so we do not have to optimize through the -- whole monad stack at every use site. May eventually be covered by `deriving`. instance : Monad MetaM := let i := inferInstanceAs (Monad MetaM); { pure := i.pure, bind := i.bind } instance : Inhabited (MetaM α) where default := fun _ _ => arbitrary instance : MonadLCtx MetaM where getLCtx := return (← read).lctx instance : MonadMCtx MetaM where getMCtx := return (← get).mctx modifyMCtx f := modify fun s => { s with mctx := f s.mctx } instance : AddMessageContext MetaM where addMessageContext := addMessageContextFull protected def saveState : MetaM SavedState := return { core := (← getThe Core.State), meta := (← get) } /-- Restore backtrackable parts of the state. -/ def SavedState.restore (b : SavedState) : MetaM Unit := do Core.restore b.core modify fun s => { s with mctx := b.meta.mctx, zetaFVarIds := b.meta.zetaFVarIds, postponed := b.meta.postponed } instance : MonadBacktrack SavedState MetaM where saveState := Meta.saveState restoreState s := s.restore @[inline] def MetaM.run (x : MetaM α) (ctx : Context := {}) (s : State := {}) : CoreM (α × State) := x ctx |>.run s @[inline] def MetaM.run' (x : MetaM α) (ctx : Context := {}) (s : State := {}) : CoreM α := Prod.fst <$> x.run ctx s @[inline] def MetaM.toIO (x : MetaM α) (ctxCore : Core.Context) (sCore : Core.State) (ctx : Context := {}) (s : State := {}) : IO (α × Core.State × State) := do let ((a, s), sCore) ← (x.run ctx s).toIO ctxCore sCore pure (a, sCore, s) instance [MetaEval α] : MetaEval (MetaM α) := ⟨fun env opts x _ => MetaEval.eval env opts x.run' true⟩ protected def throwIsDefEqStuck : MetaM α := throw <| Exception.internal isDefEqStuckExceptionId builtin_initialize registerTraceClass `Meta registerTraceClass `Meta.debug @[inline] def liftMetaM [MonadLiftT MetaM m] (x : MetaM α) : m α := liftM x @[inline] def mapMetaM [MonadControlT MetaM m] [Monad m] (f : forall {α}, MetaM α → MetaM α) {α} (x : m α) : m α := controlAt MetaM fun runInBase => f <| runInBase x @[inline] def map1MetaM [MonadControlT MetaM m] [Monad m] (f : forall {α}, (β → MetaM α) → MetaM α) {α} (k : β → m α) : m α := controlAt MetaM fun runInBase => f fun b => runInBase <| k b @[inline] def map2MetaM [MonadControlT MetaM m] [Monad m] (f : forall {α}, (β → γ → MetaM α) → MetaM α) {α} (k : β → γ → m α) : m α := controlAt MetaM fun runInBase => f fun b c => runInBase <| k b c section Methods variable [MonadControlT MetaM n] [Monad n] @[inline] def modifyCache (f : Cache → Cache) : MetaM Unit := modify fun ⟨mctx, cache, zetaFVarIds, postponed⟩ => ⟨mctx, f cache, zetaFVarIds, postponed⟩ @[inline] def modifyInferTypeCache (f : InferTypeCache → InferTypeCache) : MetaM Unit := modifyCache fun ⟨ic, c1, c2, c3, c4, c5, c6⟩ => ⟨f ic, c1, c2, c3, c4, c5, c6⟩ def getLocalInstances : MetaM LocalInstances := return (← read).localInstances def getConfig : MetaM Config := return (← read).config def setMCtx (mctx : MetavarContext) : MetaM Unit := modify fun s => { s with mctx := mctx } def resetZetaFVarIds : MetaM Unit := modify fun s => { s with zetaFVarIds := {} } def getZetaFVarIds : MetaM FVarIdSet := return (← get).zetaFVarIds def getPostponed : MetaM (PersistentArray PostponedEntry) := return (← get).postponed def setPostponed (postponed : PersistentArray PostponedEntry) : MetaM Unit := modify fun s => { s with postponed := postponed } @[inline] def modifyPostponed (f : PersistentArray PostponedEntry → PersistentArray PostponedEntry) : MetaM Unit := modify fun s => { s with postponed := f s.postponed } /- WARNING: The following 4 constants are a hack for simulating forward declarations. They are defined later using the `export` attribute. This is hackish because we have to hard-code the true arity of these definitions here, and make sure the C names match. We have used another hack based on `IO.Ref`s in the past, it was safer but less efficient. -/ @[extern 6 "lean_whnf"] constant whnf : Expr → MetaM Expr @[extern 6 "lean_infer_type"] constant inferType : Expr → MetaM Expr @[extern 7 "lean_is_expr_def_eq"] constant isExprDefEqAux : Expr → Expr → MetaM Bool @[extern 6 "lean_synth_pending"] protected constant synthPending : MVarId → MetaM Bool def whnfForall (e : Expr) : MetaM Expr := do let e' ← whnf e if e'.isForall then pure e' else pure e -- withIncRecDepth for a monad `n` such that `[MonadControlT MetaM n]` protected def withIncRecDepth (x : n α) : n α := mapMetaM (withIncRecDepth (m := MetaM)) x private def mkFreshExprMVarAtCore (mvarId : MVarId) (lctx : LocalContext) (localInsts : LocalInstances) (type : Expr) (kind : MetavarKind) (userName : Name) (numScopeArgs : Nat) : MetaM Expr := do modifyMCtx fun mctx => mctx.addExprMVarDecl mvarId userName lctx localInsts type kind numScopeArgs; return mkMVar mvarId def mkFreshExprMVarAt (lctx : LocalContext) (localInsts : LocalInstances) (type : Expr) (kind : MetavarKind := MetavarKind.natural) (userName : Name := Name.anonymous) (numScopeArgs : Nat := 0) : MetaM Expr := do mkFreshExprMVarAtCore (← mkFreshMVarId) lctx localInsts type kind userName numScopeArgs def mkFreshLevelMVar : MetaM Level := do let mvarId ← mkFreshMVarId modifyMCtx fun mctx => mctx.addLevelMVarDecl mvarId; return mkLevelMVar mvarId private def mkFreshExprMVarCore (type : Expr) (kind : MetavarKind) (userName : Name) : MetaM Expr := do mkFreshExprMVarAt (← getLCtx) (← getLocalInstances) type kind userName private def mkFreshExprMVarImpl (type? : Option Expr) (kind : MetavarKind) (userName : Name) : MetaM Expr := match type? with | some type => mkFreshExprMVarCore type kind userName | none => do let u ← mkFreshLevelMVar let type ← mkFreshExprMVarCore (mkSort u) MetavarKind.natural Name.anonymous mkFreshExprMVarCore type kind userName def mkFreshExprMVar (type? : Option Expr) (kind := MetavarKind.natural) (userName := Name.anonymous) : MetaM Expr := mkFreshExprMVarImpl type? kind userName def mkFreshTypeMVar (kind := MetavarKind.natural) (userName := Name.anonymous) : MetaM Expr := do let u ← mkFreshLevelMVar mkFreshExprMVar (mkSort u) kind userName /- Low-level version of `MkFreshExprMVar` which allows users to create/reserve a `mvarId` using `mkFreshId`, and then later create the metavar using this method. -/ private def mkFreshExprMVarWithIdCore (mvarId : MVarId) (type : Expr) (kind : MetavarKind := MetavarKind.natural) (userName : Name := Name.anonymous) (numScopeArgs : Nat := 0) : MetaM Expr := do mkFreshExprMVarAtCore mvarId (← getLCtx) (← getLocalInstances) type kind userName numScopeArgs def mkFreshExprMVarWithId (mvarId : MVarId) (type? : Option Expr := none) (kind : MetavarKind := MetavarKind.natural) (userName := Name.anonymous) : MetaM Expr := match type? with | some type => mkFreshExprMVarWithIdCore mvarId type kind userName | none => do let u ← mkFreshLevelMVar let type ← mkFreshExprMVar (mkSort u) mkFreshExprMVarWithIdCore mvarId type kind userName def mkFreshLevelMVars (num : Nat) : MetaM (List Level) := num.foldM (init := []) fun _ us => return (← mkFreshLevelMVar)::us def mkFreshLevelMVarsFor (info : ConstantInfo) : MetaM (List Level) := mkFreshLevelMVars info.numLevelParams def mkConstWithFreshMVarLevels (declName : Name) : MetaM Expr := do let info ← getConstInfo declName return mkConst declName (← mkFreshLevelMVarsFor info) def getTransparency : MetaM TransparencyMode := return (← getConfig).transparency def shouldReduceAll : MetaM Bool := return (← getTransparency) == TransparencyMode.all def shouldReduceReducibleOnly : MetaM Bool := return (← getTransparency) == TransparencyMode.reducible def getMVarDecl (mvarId : MVarId) : MetaM MetavarDecl := do match (← getMCtx).findDecl? mvarId with | some d => pure d | none => throwError "unknown metavariable '?{mvarId.name}'" def setMVarKind (mvarId : MVarId) (kind : MetavarKind) : MetaM Unit := modifyMCtx fun mctx => mctx.setMVarKind mvarId kind /- Update the type of the given metavariable. This function assumes the new type is definitionally equal to the current one -/ def setMVarType (mvarId : MVarId) (type : Expr) : MetaM Unit := do modifyMCtx fun mctx => mctx.setMVarType mvarId type def isReadOnlyExprMVar (mvarId : MVarId) : MetaM Bool := do return (← getMVarDecl mvarId).depth != (← getMCtx).depth def isReadOnlyOrSyntheticOpaqueExprMVar (mvarId : MVarId) : MetaM Bool := do let mvarDecl ← getMVarDecl mvarId match mvarDecl.kind with | MetavarKind.syntheticOpaque => return !(← getConfig).assignSyntheticOpaque | _ => return mvarDecl.depth != (← getMCtx).depth def getLevelMVarDepth (mvarId : MVarId) : MetaM Nat := do match (← getMCtx).findLevelDepth? mvarId with | some depth => return depth | _ => throwError "unknown universe metavariable '?{mvarId.name}'" def isReadOnlyLevelMVar (mvarId : MVarId) : MetaM Bool := do if (← getConfig).ignoreLevelMVarDepth then return false else return (← getLevelMVarDepth mvarId) != (← getMCtx).depth def renameMVar (mvarId : MVarId) (newUserName : Name) : MetaM Unit := modifyMCtx fun mctx => mctx.renameMVar mvarId newUserName def isExprMVarAssigned (mvarId : MVarId) : MetaM Bool := return (← getMCtx).isExprAssigned mvarId def getExprMVarAssignment? (mvarId : MVarId) : MetaM (Option Expr) := return (← getMCtx).getExprAssignment? mvarId /-- Return true if `e` contains `mvarId` directly or indirectly -/ def occursCheck (mvarId : MVarId) (e : Expr) : MetaM Bool := return (← getMCtx).occursCheck mvarId e def assignExprMVar (mvarId : MVarId) (val : Expr) : MetaM Unit := modifyMCtx fun mctx => mctx.assignExpr mvarId val def isDelayedAssigned (mvarId : MVarId) : MetaM Bool := return (← getMCtx).isDelayedAssigned mvarId def getDelayedAssignment? (mvarId : MVarId) : MetaM (Option DelayedMetavarAssignment) := return (← getMCtx).getDelayedAssignment? mvarId def hasAssignableMVar (e : Expr) : MetaM Bool := return (← getMCtx).hasAssignableMVar e def throwUnknownFVar (fvarId : FVarId) : MetaM α := throwError "unknown free variable '{mkFVar fvarId}'" def findLocalDecl? (fvarId : FVarId) : MetaM (Option LocalDecl) := return (← getLCtx).find? fvarId def getLocalDecl (fvarId : FVarId) : MetaM LocalDecl := do match (← getLCtx).find? fvarId with | some d => pure d | none => throwUnknownFVar fvarId def getFVarLocalDecl (fvar : Expr) : MetaM LocalDecl := getLocalDecl fvar.fvarId! def getLocalDeclFromUserName (userName : Name) : MetaM LocalDecl := do match (← getLCtx).findFromUserName? userName with | some d => pure d | none => throwError "unknown local declaration '{userName}'" def instantiateLevelMVars (u : Level) : MetaM Level := MetavarContext.instantiateLevelMVars u def instantiateMVars (e : Expr) : MetaM Expr := (MetavarContext.instantiateExprMVars e).run def instantiateLocalDeclMVars (localDecl : LocalDecl) : MetaM LocalDecl := match localDecl with | LocalDecl.cdecl idx id n type bi => return LocalDecl.cdecl idx id n (← instantiateMVars type) bi | LocalDecl.ldecl idx id n type val nonDep => return LocalDecl.ldecl idx id n (← instantiateMVars type) (← instantiateMVars val) nonDep @[inline] def liftMkBindingM (x : MetavarContext.MkBindingM α) : MetaM α := do match x (← getLCtx) { mctx := (← getMCtx), ngen := (← getNGen) } with | EStateM.Result.ok e newS => do setNGen newS.ngen; setMCtx newS.mctx; pure e | EStateM.Result.error (MetavarContext.MkBinding.Exception.revertFailure mctx lctx toRevert decl) newS => do setMCtx newS.mctx; setNGen newS.ngen; throwError "failed to create binder due to failure when reverting variable dependencies" def abstractRange (e : Expr) (n : Nat) (xs : Array Expr) : MetaM Expr := liftMkBindingM <| MetavarContext.abstractRange e n xs def abstract (e : Expr) (xs : Array Expr) : MetaM Expr := abstractRange e xs.size xs def mkForallFVars (xs : Array Expr) (e : Expr) (usedOnly : Bool := false) (usedLetOnly : Bool := true) : MetaM Expr := if xs.isEmpty then pure e else liftMkBindingM <| MetavarContext.mkForall xs e usedOnly usedLetOnly def mkLambdaFVars (xs : Array Expr) (e : Expr) (usedOnly : Bool := false) (usedLetOnly : Bool := true) : MetaM Expr := if xs.isEmpty then pure e else liftMkBindingM <| MetavarContext.mkLambda xs e usedOnly usedLetOnly def mkLetFVars (xs : Array Expr) (e : Expr) (usedLetOnly := true) : MetaM Expr := mkLambdaFVars xs e (usedLetOnly := usedLetOnly) def mkArrow (d b : Expr) : MetaM Expr := return Lean.mkForall (← mkFreshUserName `x) BinderInfo.default d b /-- `fun _ : Unit => a` -/ def mkFunUnit (a : Expr) : MetaM Expr := return Lean.mkLambda (← mkFreshUserName `x) BinderInfo.default (mkConst ``Unit) a def elimMVarDeps (xs : Array Expr) (e : Expr) (preserveOrder : Bool := false) : MetaM Expr := if xs.isEmpty then pure e else liftMkBindingM <| MetavarContext.elimMVarDeps xs e preserveOrder @[inline] def withConfig (f : Config → Config) : n α → n α := mapMetaM <| withReader (fun ctx => { ctx with config := f ctx.config }) @[inline] def withTrackingZeta (x : n α) : n α := withConfig (fun cfg => { cfg with trackZeta := true }) x @[inline] def withoutProofIrrelevance (x : n α) : n α := withConfig (fun cfg => { cfg with proofIrrelevance := false }) x @[inline] def withTransparency (mode : TransparencyMode) : n α → n α := mapMetaM <| withConfig (fun config => { config with transparency := mode }) @[inline] def withDefault (x : n α) : n α := withTransparency TransparencyMode.default x @[inline] def withReducible (x : n α) : n α := withTransparency TransparencyMode.reducible x @[inline] def withReducibleAndInstances (x : n α) : n α := withTransparency TransparencyMode.instances x @[inline] def withAtLeastTransparency (mode : TransparencyMode) (x : n α) : n α := withConfig (fun config => let oldMode := config.transparency let mode := if oldMode.lt mode then mode else oldMode { config with transparency := mode }) x /-- Execute `x` allowing `isDefEq` to assign synthetic opaque metavariables. -/ @[inline] def withAssignableSyntheticOpaque (x : n α) : n α := withConfig (fun config => { config with assignSyntheticOpaque := true }) x /-- Save cache, execute `x`, restore cache -/ @[inline] private def savingCacheImpl (x : MetaM α) : MetaM α := do let savedCache := (← get).cache try x finally modify fun s => { s with cache := savedCache } @[inline] def savingCache : n α → n α := mapMetaM savingCacheImpl def getTheoremInfo (info : ConstantInfo) : MetaM (Option ConstantInfo) := do if (← shouldReduceAll) then return some info else return none private def getDefInfoTemp (info : ConstantInfo) : MetaM (Option ConstantInfo) := do match (← getTransparency) with | TransparencyMode.all => return some info | TransparencyMode.default => return some info | _ => if (← isReducible info.name) then return some info else return none /- Remark: we later define `getConst?` at `GetConst.lean` after we define `Instances.lean`. This method is only used to implement `isClassQuickConst?`. It is very similar to `getConst?`, but it returns none when `TransparencyMode.instances` and `constName` is an instance. This difference should be irrelevant for `isClassQuickConst?`. -/ private def getConstTemp? (constName : Name) : MetaM (Option ConstantInfo) := do match (← getEnv).find? constName with | some (info@(ConstantInfo.thmInfo _)) => getTheoremInfo info | some (info@(ConstantInfo.defnInfo _)) => getDefInfoTemp info | some info => pure (some info) | none => throwUnknownConstant constName private def isClassQuickConst? (constName : Name) : MetaM (LOption Name) := do if isClass (← getEnv) constName then pure (LOption.some constName) else match (← getConstTemp? constName) with | some _ => pure LOption.undef | none => pure LOption.none private partial def isClassQuick? : Expr → MetaM (LOption Name) | Expr.bvar .. => pure LOption.none | Expr.lit .. => pure LOption.none | Expr.fvar .. => pure LOption.none | Expr.sort .. => pure LOption.none | Expr.lam .. => pure LOption.none | Expr.letE .. => pure LOption.undef | Expr.proj .. => pure LOption.undef | Expr.forallE _ _ b _ => isClassQuick? b | Expr.mdata _ e _ => isClassQuick? e | Expr.const n _ _ => isClassQuickConst? n | Expr.mvar mvarId _ => do match (← getExprMVarAssignment? mvarId) with | some val => isClassQuick? val | none => pure LOption.none | Expr.app f _ _ => match f.getAppFn with | Expr.const n .. => isClassQuickConst? n | Expr.lam .. => pure LOption.undef | _ => pure LOption.none def saveAndResetSynthInstanceCache : MetaM SynthInstanceCache := do let savedSythInstance := (← get).cache.synthInstance modifyCache fun c => { c with synthInstance := {} } pure savedSythInstance def restoreSynthInstanceCache (cache : SynthInstanceCache) : MetaM Unit := modifyCache fun c => { c with synthInstance := cache } @[inline] private def resettingSynthInstanceCacheImpl (x : MetaM α) : MetaM α := do let savedSythInstance ← saveAndResetSynthInstanceCache try x finally restoreSynthInstanceCache savedSythInstance /-- Reset `synthInstance` cache, execute `x`, and restore cache -/ @[inline] def resettingSynthInstanceCache : n α → n α := mapMetaM resettingSynthInstanceCacheImpl @[inline] def resettingSynthInstanceCacheWhen (b : Bool) (x : n α) : n α := if b then resettingSynthInstanceCache x else x private def withNewLocalInstanceImp (className : Name) (fvar : Expr) (k : MetaM α) : MetaM α := do let localDecl ← getFVarLocalDecl fvar /- Recall that we use `auxDecl` binderInfo when compiling recursive declarations. -/ match localDecl.binderInfo with | BinderInfo.auxDecl => k | _ => resettingSynthInstanceCache <| withReader (fun ctx => { ctx with localInstances := ctx.localInstances.push { className := className, fvar := fvar } }) k /-- Add entry `{ className := className, fvar := fvar }` to localInstances, and then execute continuation `k`. It resets the type class cache using `resettingSynthInstanceCache`. -/ def withNewLocalInstance (className : Name) (fvar : Expr) : n α → n α := mapMetaM <| withNewLocalInstanceImp className fvar private def fvarsSizeLtMaxFVars (fvars : Array Expr) (maxFVars? : Option Nat) : Bool := match maxFVars? with | some maxFVars => fvars.size < maxFVars | none => true mutual /-- `withNewLocalInstances isClassExpensive fvars j k` updates the vector or local instances using free variables `fvars[j] ... fvars.back`, and execute `k`. - `isClassExpensive` is defined later. - The type class chache is reset whenever a new local instance is found. - `isClassExpensive` uses `whnf` which depends (indirectly) on the set of local instances. Thus, each new local instance requires a new `resettingSynthInstanceCache`. -/ private partial def withNewLocalInstancesImp (fvars : Array Expr) (i : Nat) (k : MetaM α) : MetaM α := do if h : i < fvars.size then let fvar := fvars.get ⟨i, h⟩ let decl ← getFVarLocalDecl fvar match (← isClassQuick? decl.type) with | LOption.none => withNewLocalInstancesImp fvars (i+1) k | LOption.undef => match (← isClassExpensive? decl.type) with | none => withNewLocalInstancesImp fvars (i+1) k | some c => withNewLocalInstance c fvar <| withNewLocalInstancesImp fvars (i+1) k | LOption.some c => withNewLocalInstance c fvar <| withNewLocalInstancesImp fvars (i+1) k else k /-- `forallTelescopeAuxAux lctx fvars j type` Remarks: - `lctx` is the `MetaM` local context extended with declarations for `fvars`. - `type` is the type we are computing the telescope for. It contains only dangling bound variables in the range `[j, fvars.size)` - if `reducing? == true` and `type` is not `forallE`, we use `whnf`. - when `type` is not a `forallE` nor it can't be reduced to one, we excute the continuation `k`. Here is an example that demonstrates the `reducing?`. Suppose we have ``` abbrev StateM s a := s -> Prod a s ``` Now, assume we are trying to build the telescope for ``` forall (x : Nat), StateM Int Bool ``` if `reducing == true`, the function executes `k #[(x : Nat) (s : Int)] Bool`. if `reducing == false`, the function executes `k #[(x : Nat)] (StateM Int Bool)` if `maxFVars?` is `some max`, then we interrupt the telescope construction when `fvars.size == max` -/ private partial def forallTelescopeReducingAuxAux (reducing : Bool) (maxFVars? : Option Nat) (type : Expr) (k : Array Expr → Expr → MetaM α) : MetaM α := do let rec process (lctx : LocalContext) (fvars : Array Expr) (j : Nat) (type : Expr) : MetaM α := do match type with | Expr.forallE n d b c => if fvarsSizeLtMaxFVars fvars maxFVars? then let d := d.instantiateRevRange j fvars.size fvars let fvarId ← mkFreshFVarId let lctx := lctx.mkLocalDecl fvarId n d c.binderInfo let fvar := mkFVar fvarId let fvars := fvars.push fvar process lctx fvars j b else let type := type.instantiateRevRange j fvars.size fvars; withReader (fun ctx => { ctx with lctx := lctx }) do withNewLocalInstancesImp fvars j do k fvars type | _ => let type := type.instantiateRevRange j fvars.size fvars; withReader (fun ctx => { ctx with lctx := lctx }) do withNewLocalInstancesImp fvars j do if reducing && fvarsSizeLtMaxFVars fvars maxFVars? then let newType ← whnf type if newType.isForall then process lctx fvars fvars.size newType else k fvars type else k fvars type process (← getLCtx) #[] 0 type private partial def forallTelescopeReducingAux (type : Expr) (maxFVars? : Option Nat) (k : Array Expr → Expr → MetaM α) : MetaM α := do match maxFVars? with | some 0 => k #[] type | _ => do let newType ← whnf type if newType.isForall then forallTelescopeReducingAuxAux true maxFVars? newType k else k #[] type private partial def isClassExpensive? : Expr → MetaM (Option Name) | type => withReducible <| -- when testing whether a type is a type class, we only unfold reducible constants. forallTelescopeReducingAux type none fun xs type => do let env ← getEnv match type.getAppFn with | Expr.const c _ _ => do if isClass env c then return some c else -- make sure abbreviations are unfolded match (← whnf type).getAppFn with | Expr.const c _ _ => return if isClass env c then some c else none | _ => return none | _ => return none private partial def isClassImp? (type : Expr) : MetaM (Option Name) := do match (← isClassQuick? type) with | LOption.none => pure none | LOption.some c => pure (some c) | LOption.undef => isClassExpensive? type end def isClass? (type : Expr) : MetaM (Option Name) := try isClassImp? type catch _ => pure none private def withNewLocalInstancesImpAux (fvars : Array Expr) (j : Nat) : n α → n α := mapMetaM <| withNewLocalInstancesImp fvars j partial def withNewLocalInstances (fvars : Array Expr) (j : Nat) : n α → n α := mapMetaM <| withNewLocalInstancesImpAux fvars j @[inline] private def forallTelescopeImp (type : Expr) (k : Array Expr → Expr → MetaM α) : MetaM α := do forallTelescopeReducingAuxAux (reducing := false) (maxFVars? := none) type k /-- Given `type` of the form `forall xs, A`, execute `k xs A`. This combinator will declare local declarations, create free variables for them, execute `k` with updated local context, and make sure the cache is restored after executing `k`. -/ def forallTelescope (type : Expr) (k : Array Expr → Expr → n α) : n α := map2MetaM (fun k => forallTelescopeImp type k) k private def forallTelescopeReducingImp (type : Expr) (k : Array Expr → Expr → MetaM α) : MetaM α := forallTelescopeReducingAux type (maxFVars? := none) k /-- Similar to `forallTelescope`, but given `type` of the form `forall xs, A`, it reduces `A` and continues bulding the telescope if it is a `forall`. -/ def forallTelescopeReducing (type : Expr) (k : Array Expr → Expr → n α) : n α := map2MetaM (fun k => forallTelescopeReducingImp type k) k private def forallBoundedTelescopeImp (type : Expr) (maxFVars? : Option Nat) (k : Array Expr → Expr → MetaM α) : MetaM α := forallTelescopeReducingAux type maxFVars? k /-- Similar to `forallTelescopeReducing`, stops constructing the telescope when it reaches size `maxFVars`. -/ def forallBoundedTelescope (type : Expr) (maxFVars? : Option Nat) (k : Array Expr → Expr → n α) : n α := map2MetaM (fun k => forallBoundedTelescopeImp type maxFVars? k) k private partial def lambdaTelescopeImp (e : Expr) (consumeLet : Bool) (k : Array Expr → Expr → MetaM α) : MetaM α := do process consumeLet (← getLCtx) #[] 0 e where process (consumeLet : Bool) (lctx : LocalContext) (fvars : Array Expr) (j : Nat) (e : Expr) : MetaM α := do match consumeLet, e with | _, Expr.lam n d b c => let d := d.instantiateRevRange j fvars.size fvars let fvarId ← mkFreshFVarId let lctx := lctx.mkLocalDecl fvarId n d c.binderInfo let fvar := mkFVar fvarId process consumeLet lctx (fvars.push fvar) j b | true, Expr.letE n t v b _ => do let t := t.instantiateRevRange j fvars.size fvars let v := v.instantiateRevRange j fvars.size fvars let fvarId ← mkFreshFVarId let lctx := lctx.mkLetDecl fvarId n t v let fvar := mkFVar fvarId process true lctx (fvars.push fvar) j b | _, e => let e := e.instantiateRevRange j fvars.size fvars withReader (fun ctx => { ctx with lctx := lctx }) do withNewLocalInstancesImp fvars j do k fvars e /-- Similar to `forallTelescope` but for lambda and let expressions. -/ def lambdaLetTelescope (type : Expr) (k : Array Expr → Expr → n α) : n α := map2MetaM (fun k => lambdaTelescopeImp type true k) k /-- Similar to `forallTelescope` but for lambda expressions. -/ def lambdaTelescope (type : Expr) (k : Array Expr → Expr → n α) : n α := map2MetaM (fun k => lambdaTelescopeImp type false k) k /-- Return the parameter names for the givel global declaration. -/ def getParamNames (declName : Name) : MetaM (Array Name) := do forallTelescopeReducing (← getConstInfo declName).type fun xs _ => do xs.mapM fun x => do let localDecl ← getLocalDecl x.fvarId! pure localDecl.userName -- `kind` specifies the metavariable kind for metavariables not corresponding to instance implicit `[ ... ]` arguments. private partial def forallMetaTelescopeReducingAux (e : Expr) (reducing : Bool) (maxMVars? : Option Nat) (kind : MetavarKind) : MetaM (Array Expr × Array BinderInfo × Expr) := process #[] #[] 0 e where process (mvars : Array Expr) (bis : Array BinderInfo) (j : Nat) (type : Expr) : MetaM (Array Expr × Array BinderInfo × Expr) := do if maxMVars?.isEqSome mvars.size then let type := type.instantiateRevRange j mvars.size mvars; return (mvars, bis, type) else match type with | Expr.forallE n d b c => let d := d.instantiateRevRange j mvars.size mvars let k := if c.binderInfo.isInstImplicit then MetavarKind.synthetic else kind let mvar ← mkFreshExprMVar d k n let mvars := mvars.push mvar let bis := bis.push c.binderInfo process mvars bis j b | _ => let type := type.instantiateRevRange j mvars.size mvars; if reducing then do let newType ← whnf type; if newType.isForall then process mvars bis mvars.size newType else return (mvars, bis, type) else return (mvars, bis, type) /-- Similar to `forallTelescope`, but creates metavariables instead of free variables. -/ def forallMetaTelescope (e : Expr) (kind := MetavarKind.natural) : MetaM (Array Expr × Array BinderInfo × Expr) := forallMetaTelescopeReducingAux e (reducing := false) (maxMVars? := none) kind /-- Similar to `forallTelescopeReducing`, but creates metavariables instead of free variables. -/ def forallMetaTelescopeReducing (e : Expr) (maxMVars? : Option Nat := none) (kind := MetavarKind.natural) : MetaM (Array Expr × Array BinderInfo × Expr) := forallMetaTelescopeReducingAux e (reducing := true) maxMVars? kind /-- Similar to `forallMetaTelescopeReducing`, stops constructing the telescope when it reaches size `maxMVars`. -/ def forallMetaBoundedTelescope (e : Expr) (maxMVars : Nat) (kind : MetavarKind := MetavarKind.natural) : MetaM (Array Expr × Array BinderInfo × Expr) := forallMetaTelescopeReducingAux e (reducing := true) (maxMVars? := some maxMVars) (kind := kind) /-- Similar to `forallMetaTelescopeReducingAux` but for lambda expressions. -/ partial def lambdaMetaTelescope (e : Expr) (maxMVars? : Option Nat := none) : MetaM (Array Expr × Array BinderInfo × Expr) := process #[] #[] 0 e where process (mvars : Array Expr) (bis : Array BinderInfo) (j : Nat) (type : Expr) : MetaM (Array Expr × Array BinderInfo × Expr) := do let finalize : Unit → MetaM (Array Expr × Array BinderInfo × Expr) := fun _ => do let type := type.instantiateRevRange j mvars.size mvars pure (mvars, bis, type) if maxMVars?.isEqSome mvars.size then finalize () else match type with | Expr.lam n d b c => let d := d.instantiateRevRange j mvars.size mvars let mvar ← mkFreshExprMVar d let mvars := mvars.push mvar let bis := bis.push c.binderInfo process mvars bis j b | _ => finalize () private def withNewFVar (fvar fvarType : Expr) (k : Expr → MetaM α) : MetaM α := do match (← isClass? fvarType) with | none => k fvar | some c => withNewLocalInstance c fvar <| k fvar private def withLocalDeclImp (n : Name) (bi : BinderInfo) (type : Expr) (k : Expr → MetaM α) : MetaM α := do let fvarId ← mkFreshFVarId let ctx ← read let lctx := ctx.lctx.mkLocalDecl fvarId n type bi let fvar := mkFVar fvarId withReader (fun ctx => { ctx with lctx := lctx }) do withNewFVar fvar type k def withLocalDecl (name : Name) (bi : BinderInfo) (type : Expr) (k : Expr → n α) : n α := map1MetaM (fun k => withLocalDeclImp name bi type k) k def withLocalDeclD (name : Name) (type : Expr) (k : Expr → n α) : n α := withLocalDecl name BinderInfo.default type k partial def withLocalDecls [Inhabited α] (declInfos : Array (Name × BinderInfo × (Array Expr → n Expr))) (k : (xs : Array Expr) → n α) : n α := loop #[] where loop [Inhabited α] (acc : Array Expr) : n α := do if acc.size < declInfos.size then let (name, bi, typeCtor) := declInfos[acc.size] withLocalDecl name bi (←typeCtor acc) fun x => loop (acc.push x) else k acc def withLocalDeclsD [Inhabited α] (declInfos : Array (Name × (Array Expr → n Expr))) (k : (xs : Array Expr) → n α) : n α := withLocalDecls (declInfos.map (fun (name, typeCtor) => (name, BinderInfo.default, typeCtor))) k private def withNewBinderInfosImp (bs : Array (FVarId × BinderInfo)) (k : MetaM α) : MetaM α := do let lctx := bs.foldl (init := (← getLCtx)) fun lctx (fvarId, bi) => lctx.setBinderInfo fvarId bi withReader (fun ctx => { ctx with lctx := lctx }) k def withNewBinderInfos (bs : Array (FVarId × BinderInfo)) (k : n α) : n α := mapMetaM (fun k => withNewBinderInfosImp bs k) k private def withLetDeclImp (n : Name) (type : Expr) (val : Expr) (k : Expr → MetaM α) : MetaM α := do let fvarId ← mkFreshFVarId let ctx ← read let lctx := ctx.lctx.mkLetDecl fvarId n type val let fvar := mkFVar fvarId withReader (fun ctx => { ctx with lctx := lctx }) do withNewFVar fvar type k def withLetDecl (name : Name) (type : Expr) (val : Expr) (k : Expr → n α) : n α := map1MetaM (fun k => withLetDeclImp name type val k) k private def withExistingLocalDeclsImp (decls : List LocalDecl) (k : MetaM α) : MetaM α := do let ctx ← read let numLocalInstances := ctx.localInstances.size let lctx := decls.foldl (fun (lctx : LocalContext) decl => lctx.addDecl decl) ctx.lctx withReader (fun ctx => { ctx with lctx := lctx }) do let newLocalInsts ← decls.foldlM (fun (newlocalInsts : Array LocalInstance) (decl : LocalDecl) => (do { match (← isClass? decl.type) with | none => pure newlocalInsts | some c => pure <| newlocalInsts.push { className := c, fvar := decl.toExpr } } : MetaM _)) ctx.localInstances; if newLocalInsts.size == numLocalInstances then k else resettingSynthInstanceCache <| withReader (fun ctx => { ctx with localInstances := newLocalInsts }) k def withExistingLocalDecls (decls : List LocalDecl) : n α → n α := mapMetaM <| withExistingLocalDeclsImp decls private def withNewMCtxDepthImp (x : MetaM α) : MetaM α := do let saved ← get modify fun s => { s with mctx := s.mctx.incDepth, postponed := {} } try x finally modify fun s => { s with mctx := saved.mctx, postponed := saved.postponed } /-- Save cache and `MetavarContext`, bump the `MetavarContext` depth, execute `x`, and restore saved data. -/ def withNewMCtxDepth : n α → n α := mapMetaM withNewMCtxDepthImp private def withLocalContextImp (lctx : LocalContext) (localInsts : LocalInstances) (x : MetaM α) : MetaM α := do let localInstsCurr ← getLocalInstances withReader (fun ctx => { ctx with lctx := lctx, localInstances := localInsts }) do if localInsts == localInstsCurr then x else resettingSynthInstanceCache x def withLCtx (lctx : LocalContext) (localInsts : LocalInstances) : n α → n α := mapMetaM <| withLocalContextImp lctx localInsts private def withMVarContextImp (mvarId : MVarId) (x : MetaM α) : MetaM α := do let mvarDecl ← getMVarDecl mvarId withLocalContextImp mvarDecl.lctx mvarDecl.localInstances x /-- Execute `x` using the given metavariable `LocalContext` and `LocalInstances`. The type class resolution cache is flushed when executing `x` if its `LocalInstances` are different from the current ones. -/ def withMVarContext (mvarId : MVarId) : n α → n α := mapMetaM <| withMVarContextImp mvarId private def withMCtxImp (mctx : MetavarContext) (x : MetaM α) : MetaM α := do let mctx' ← getMCtx setMCtx mctx try x finally setMCtx mctx' def withMCtx (mctx : MetavarContext) : n α → n α := mapMetaM <| withMCtxImp mctx @[inline] private def approxDefEqImp (x : MetaM α) : MetaM α := withConfig (fun config => { config with foApprox := true, ctxApprox := true, quasiPatternApprox := true}) x /-- Execute `x` using approximate unification: `foApprox`, `ctxApprox` and `quasiPatternApprox`. -/ @[inline] def approxDefEq : n α → n α := mapMetaM approxDefEqImp @[inline] private def fullApproxDefEqImp (x : MetaM α) : MetaM α := withConfig (fun config => { config with foApprox := true, ctxApprox := true, quasiPatternApprox := true, constApprox := true }) x /-- Similar to `approxDefEq`, but uses all available approximations. We don't use `constApprox` by default at `approxDefEq` because it often produces undesirable solution for monadic code. For example, suppose we have `pure (x > 0)` which has type `?m Prop`. We also have the goal `[Pure ?m]`. Now, assume the expected type is `IO Bool`. Then, the unification constraint `?m Prop =?= IO Bool` could be solved as `?m := fun _ => IO Bool` using `constApprox`, but this spurious solution would generate a failure when we try to solve `[Pure (fun _ => IO Bool)]` -/ @[inline] def fullApproxDefEq : n α → n α := mapMetaM fullApproxDefEqImp def normalizeLevel (u : Level) : MetaM Level := do let u ← instantiateLevelMVars u pure u.normalize def assignLevelMVar (mvarId : MVarId) (u : Level) : MetaM Unit := do modifyMCtx fun mctx => mctx.assignLevel mvarId u def whnfR (e : Expr) : MetaM Expr := withTransparency TransparencyMode.reducible <| whnf e def whnfD (e : Expr) : MetaM Expr := withTransparency TransparencyMode.default <| whnf e def whnfI (e : Expr) : MetaM Expr := withTransparency TransparencyMode.instances <| whnf e def setInlineAttribute (declName : Name) (kind := Compiler.InlineAttributeKind.inline): MetaM Unit := do let env ← getEnv match Compiler.setInlineAttribute env declName kind with | Except.ok env => setEnv env | Except.error msg => throwError msg private partial def instantiateForallAux (ps : Array Expr) (i : Nat) (e : Expr) : MetaM Expr := do if h : i < ps.size then let p := ps.get ⟨i, h⟩ match (← whnf e) with | Expr.forallE _ _ b _ => instantiateForallAux ps (i+1) (b.instantiate1 p) | _ => throwError "invalid instantiateForall, too many parameters" else pure e /- Given `e` of the form `forall (a_1 : A_1) ... (a_n : A_n), B[a_1, ..., a_n]` and `p_1 : A_1, ... p_n : A_n`, return `B[p_1, ..., p_n]`. -/ def instantiateForall (e : Expr) (ps : Array Expr) : MetaM Expr := instantiateForallAux ps 0 e private partial def instantiateLambdaAux (ps : Array Expr) (i : Nat) (e : Expr) : MetaM Expr := do if h : i < ps.size then let p := ps.get ⟨i, h⟩ match (← whnf e) with | Expr.lam _ _ b _ => instantiateLambdaAux ps (i+1) (b.instantiate1 p) | _ => throwError "invalid instantiateLambda, too many parameters" else pure e /- Given `e` of the form `fun (a_1 : A_1) ... (a_n : A_n) => t[a_1, ..., a_n]` and `p_1 : A_1, ... p_n : A_n`, return `t[p_1, ..., p_n]`. It uses `whnf` to reduce `e` if it is not a lambda -/ def instantiateLambda (e : Expr) (ps : Array Expr) : MetaM Expr := instantiateLambdaAux ps 0 e /-- Return true iff `e` depends on the free variable `fvarId` -/ def dependsOn (e : Expr) (fvarId : FVarId) : MetaM Bool := return (← getMCtx).exprDependsOn e fvarId def ppExpr (e : Expr) : MetaM Format := do let ctxCore ← readThe Core.Context Lean.ppExpr { env := (← getEnv), mctx := (← getMCtx), lctx := (← getLCtx), opts := (← getOptions), currNamespace := ctxCore.currNamespace, openDecls := ctxCore.openDecls } e @[inline] protected def orElse (x : MetaM α) (y : Unit → MetaM α) : MetaM α := do let s ← saveState try x catch _ => s.restore; y () instance : OrElse (MetaM α) := ⟨Meta.orElse⟩ instance : Alternative MetaM where failure := fun {α} => throwError "failed" orElse := Meta.orElse @[inline] private def orelseMergeErrorsImp (x y : MetaM α) (mergeRef : Syntax → Syntax → Syntax := fun r₁ r₂ => r₁) (mergeMsg : MessageData → MessageData → MessageData := fun m₁ m₂ => m₁ ++ Format.line ++ m₂) : MetaM α := do let env ← getEnv let mctx ← getMCtx try x catch ex => setEnv env setMCtx mctx match ex with | Exception.error ref₁ m₁ => try y catch | Exception.error ref₂ m₂ => throw <| Exception.error (mergeRef ref₁ ref₂) (mergeMsg m₁ m₂) | ex => throw ex | ex => throw ex /-- Similar to `orelse`, but merge errors. Note that internal errors are not caught. The default `mergeRef` uses the `ref` (position information) for the first message. The default `mergeMsg` combines error messages using `Format.line ++ Format.line` as a separator. -/ @[inline] def orelseMergeErrors [MonadControlT MetaM m] [Monad m] (x y : m α) (mergeRef : Syntax → Syntax → Syntax := fun r₁ r₂ => r₁) (mergeMsg : MessageData → MessageData → MessageData := fun m₁ m₂ => m₁ ++ Format.line ++ Format.line ++ m₂) : m α := do controlAt MetaM fun runInBase => orelseMergeErrorsImp (runInBase x) (runInBase y) mergeRef mergeMsg /-- Execute `x`, and apply `f` to the produced error message -/ def mapErrorImp (x : MetaM α) (f : MessageData → MessageData) : MetaM α := do try x catch | Exception.error ref msg => throw <| Exception.error ref <| f msg | ex => throw ex @[inline] def mapError [MonadControlT MetaM m] [Monad m] (x : m α) (f : MessageData → MessageData) : m α := controlAt MetaM fun runInBase => mapErrorImp (runInBase x) f end Methods end Meta export Meta (MetaM) end Lean
f80e103f2a2bd0f2f0201f3846024c749c20cbe3
8cae430f0a71442d02dbb1cbb14073b31048e4b0
/src/measure_theory/integral/mean_inequalities.lean
970d8d1085a2324fd0ddd0c17bdd872601e8773d
[ "Apache-2.0" ]
permissive
leanprover-community/mathlib
56a2cadd17ac88caf4ece0a775932fa26327ba0e
442a83d738cb208d3600056c489be16900ba701d
refs/heads/master
1,693,584,102,358
1,693,471,902,000
1,693,471,902,000
97,922,418
1,595
352
Apache-2.0
1,694,693,445,000
1,500,624,130,000
Lean
UTF-8
Lean
false
false
20,814
lean
/- Copyright (c) 2020 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import measure_theory.integral.lebesgue import analysis.mean_inequalities import analysis.mean_inequalities_pow import measure_theory.function.special_functions.basic /-! # Mean value inequalities for integrals > THIS FILE IS SYNCHRONIZED WITH MATHLIB4. > Any changes to this file require a corresponding PR to mathlib4. In this file we prove several inequalities on integrals, notably the Hölder inequality and the Minkowski inequality. The versions for finite sums are in `analysis.mean_inequalities`. ## Main results Hölder's inequality for the Lebesgue integral of `ℝ≥0∞` and `ℝ≥0` functions: we prove `∫ (f * g) ∂μ ≤ (∫ f^p ∂μ) ^ (1/p) * (∫ g^q ∂μ) ^ (1/q)` for `p`, `q` conjugate real exponents and `α→(e)nnreal` functions in two cases, * `ennreal.lintegral_mul_le_Lp_mul_Lq` : ℝ≥0∞ functions, * `nnreal.lintegral_mul_le_Lp_mul_Lq` : ℝ≥0 functions. Minkowski's inequality for the Lebesgue integral of measurable functions with `ℝ≥0∞` values: we prove `(∫ (f + g)^p ∂μ) ^ (1/p) ≤ (∫ f^p ∂μ) ^ (1/p) + (∫ g^p ∂μ) ^ (1/p)` for `1 ≤ p`. -/ section lintegral /-! ### Hölder's inequality for the Lebesgue integral of ℝ≥0∞ and nnreal functions We prove `∫ (f * g) ∂μ ≤ (∫ f^p ∂μ) ^ (1/p) * (∫ g^q ∂μ) ^ (1/q)` for `p`, `q` conjugate real exponents and `α→(e)nnreal` functions in several cases, the first two being useful only to prove the more general results: * `ennreal.lintegral_mul_le_one_of_lintegral_rpow_eq_one` : ℝ≥0∞ functions for which the integrals on the right are equal to 1, * `ennreal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top` : ℝ≥0∞ functions for which the integrals on the right are neither ⊤ nor 0, * `ennreal.lintegral_mul_le_Lp_mul_Lq` : ℝ≥0∞ functions, * `nnreal.lintegral_mul_le_Lp_mul_Lq` : nnreal functions. -/ noncomputable theory open_locale classical big_operators nnreal ennreal open measure_theory variables {α : Type*} [measurable_space α] {μ : measure α} namespace ennreal lemma lintegral_mul_le_one_of_lintegral_rpow_eq_one {p q : ℝ} (hpq : p.is_conjugate_exponent q) {f g : α → ℝ≥0∞} (hf : ae_measurable f μ) (hf_norm : ∫⁻ a, (f a)^p ∂μ = 1) (hg_norm : ∫⁻ a, (g a)^q ∂μ = 1) : ∫⁻ a, (f * g) a ∂μ ≤ 1 := begin calc ∫⁻ (a : α), ((f * g) a) ∂μ ≤ ∫⁻ (a : α), ((f a)^p / ennreal.of_real p + (g a)^q / ennreal.of_real q) ∂μ : lintegral_mono (λ a, young_inequality (f a) (g a) hpq) ... = 1 : begin simp only [div_eq_mul_inv], rw lintegral_add_left', { rw [lintegral_mul_const'' _ (hf.pow_const p), lintegral_mul_const', hf_norm, hg_norm, ← div_eq_mul_inv, ← div_eq_mul_inv, hpq.inv_add_inv_conj_ennreal], simp [hpq.symm.pos], }, { exact (hf.pow_const _).mul_const _, }, end end /-- Function multiplied by the inverse of its p-seminorm `(∫⁻ f^p ∂μ) ^ 1/p`-/ def fun_mul_inv_snorm (f : α → ℝ≥0∞) (p : ℝ) (μ : measure α) : α → ℝ≥0∞ := λ a, (f a) * ((∫⁻ c, (f c) ^ p ∂μ) ^ (1 / p))⁻¹ lemma fun_eq_fun_mul_inv_snorm_mul_snorm {p : ℝ} (f : α → ℝ≥0∞) (hf_nonzero : ∫⁻ a, (f a) ^ p ∂μ ≠ 0) (hf_top : ∫⁻ a, (f a) ^ p ∂μ ≠ ⊤) {a : α} : f a = (fun_mul_inv_snorm f p μ a) * (∫⁻ c, (f c)^p ∂μ)^(1/p) := by simp [fun_mul_inv_snorm, mul_assoc, ennreal.inv_mul_cancel, hf_nonzero, hf_top] lemma fun_mul_inv_snorm_rpow {p : ℝ} (hp0 : 0 < p) {f : α → ℝ≥0∞} {a : α} : (fun_mul_inv_snorm f p μ a) ^ p = (f a)^p * (∫⁻ c, (f c) ^ p ∂μ)⁻¹ := begin rw [fun_mul_inv_snorm, mul_rpow_of_nonneg _ _ (le_of_lt hp0)], suffices h_inv_rpow : ((∫⁻ (c : α), f c ^ p ∂μ) ^ (1 / p))⁻¹ ^ p = (∫⁻ (c : α), f c ^ p ∂μ)⁻¹, by rw h_inv_rpow, rw [inv_rpow, ← rpow_mul, one_div_mul_cancel hp0.ne', rpow_one] end lemma lintegral_rpow_fun_mul_inv_snorm_eq_one {p : ℝ} (hp0_lt : 0 < p) {f : α → ℝ≥0∞} (hf_nonzero : ∫⁻ a, (f a)^p ∂μ ≠ 0) (hf_top : ∫⁻ a, (f a)^p ∂μ ≠ ⊤) : ∫⁻ c, (fun_mul_inv_snorm f p μ c)^p ∂μ = 1 := begin simp_rw fun_mul_inv_snorm_rpow hp0_lt, rw [lintegral_mul_const', ennreal.mul_inv_cancel hf_nonzero hf_top], rwa inv_ne_top end /-- Hölder's inequality in case of finite non-zero integrals -/ lemma lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top {p q : ℝ} (hpq : p.is_conjugate_exponent q) {f g : α → ℝ≥0∞} (hf : ae_measurable f μ) (hf_nontop : ∫⁻ a, (f a)^p ∂μ ≠ ⊤) (hg_nontop : ∫⁻ a, (g a)^q ∂μ ≠ ⊤) (hf_nonzero : ∫⁻ a, (f a)^p ∂μ ≠ 0) (hg_nonzero : ∫⁻ a, (g a)^q ∂μ ≠ 0) : ∫⁻ a, (f * g) a ∂μ ≤ (∫⁻ a, (f a)^p ∂μ)^(1/p) * (∫⁻ a, (g a)^q ∂μ)^(1/q) := begin let npf := (∫⁻ (c : α), (f c) ^ p ∂μ) ^ (1/p), let nqg := (∫⁻ (c : α), (g c) ^ q ∂μ) ^ (1/q), calc ∫⁻ (a : α), (f * g) a ∂μ = ∫⁻ (a : α), ((fun_mul_inv_snorm f p μ * fun_mul_inv_snorm g q μ) a) * (npf * nqg) ∂μ : begin refine lintegral_congr (λ a, _), rw [pi.mul_apply, fun_eq_fun_mul_inv_snorm_mul_snorm f hf_nonzero hf_nontop, fun_eq_fun_mul_inv_snorm_mul_snorm g hg_nonzero hg_nontop, pi.mul_apply], ring, end ... ≤ npf * nqg : begin rw lintegral_mul_const' (npf * nqg) _ (by simp [hf_nontop, hg_nontop, hf_nonzero, hg_nonzero, ennreal.mul_eq_top]), refine mul_le_of_le_one_left' _, have hf1 := lintegral_rpow_fun_mul_inv_snorm_eq_one hpq.pos hf_nonzero hf_nontop, have hg1 := lintegral_rpow_fun_mul_inv_snorm_eq_one hpq.symm.pos hg_nonzero hg_nontop, exact lintegral_mul_le_one_of_lintegral_rpow_eq_one hpq (hf.mul_const _) hf1 hg1, end end lemma ae_eq_zero_of_lintegral_rpow_eq_zero {p : ℝ} (hp0 : 0 ≤ p) {f : α → ℝ≥0∞} (hf : ae_measurable f μ) (hf_zero : ∫⁻ a, (f a)^p ∂μ = 0) : f =ᵐ[μ] 0 := begin rw lintegral_eq_zero_iff' (hf.pow_const p) at hf_zero, refine filter.eventually.mp hf_zero (filter.eventually_of_forall (λ x, _)), dsimp only, rw [pi.zero_apply, ← not_imp_not], exact λ hx, (rpow_pos_of_nonneg (pos_iff_ne_zero.2 hx) hp0).ne' end lemma lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero {p : ℝ} (hp0 : 0 ≤ p) {f g : α → ℝ≥0∞} (hf : ae_measurable f μ) (hf_zero : ∫⁻ a, (f a)^p ∂μ = 0) : ∫⁻ a, (f * g) a ∂μ = 0 := begin rw ←@lintegral_zero_fun α _ μ, refine lintegral_congr_ae _, suffices h_mul_zero : f * g =ᵐ[μ] 0 * g , by rwa zero_mul at h_mul_zero, have hf_eq_zero : f =ᵐ[μ] 0, from ae_eq_zero_of_lintegral_rpow_eq_zero hp0 hf hf_zero, exact hf_eq_zero.mul (ae_eq_refl g), end lemma lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_eq_top {p q : ℝ} (hp0_lt : 0 < p) (hq0 : 0 ≤ q) {f g : α → ℝ≥0∞} (hf_top : ∫⁻ a, (f a)^p ∂μ = ⊤) (hg_nonzero : ∫⁻ a, (g a)^q ∂μ ≠ 0) : ∫⁻ a, (f * g) a ∂μ ≤ (∫⁻ a, (f a)^p ∂μ) ^ (1/p) * (∫⁻ a, (g a)^q ∂μ) ^ (1/q) := begin refine le_trans le_top (le_of_eq _), have hp0_inv_lt : 0 < 1/p, by simp [hp0_lt], rw [hf_top, ennreal.top_rpow_of_pos hp0_inv_lt], simp [hq0, hg_nonzero], end /-- Hölder's inequality for functions `α → ℝ≥0∞`. The integral of the product of two functions is bounded by the product of their `ℒp` and `ℒq` seminorms when `p` and `q` are conjugate exponents. -/ theorem lintegral_mul_le_Lp_mul_Lq (μ : measure α) {p q : ℝ} (hpq : p.is_conjugate_exponent q) {f g : α → ℝ≥0∞} (hf : ae_measurable f μ) (hg : ae_measurable g μ) : ∫⁻ a, (f * g) a ∂μ ≤ (∫⁻ a, (f a)^p ∂μ) ^ (1/p) * (∫⁻ a, (g a)^q ∂μ) ^ (1/q) := begin by_cases hf_zero : ∫⁻ a, (f a) ^ p ∂μ = 0, { refine eq.trans_le _ (zero_le _), exact lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero hpq.nonneg hf hf_zero, }, by_cases hg_zero : ∫⁻ a, (g a) ^ q ∂μ = 0, { refine eq.trans_le _ (zero_le _), rw mul_comm, exact lintegral_mul_eq_zero_of_lintegral_rpow_eq_zero hpq.symm.nonneg hg hg_zero, }, by_cases hf_top : ∫⁻ a, (f a) ^ p ∂μ = ⊤, { exact lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_eq_top hpq.pos hpq.symm.nonneg hf_top hg_zero, }, by_cases hg_top : ∫⁻ a, (g a) ^ q ∂μ = ⊤, { rw [mul_comm, mul_comm ((∫⁻ (a : α), (f a) ^ p ∂μ) ^ (1 / p))], exact lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_eq_top hpq.symm.pos hpq.nonneg hg_top hf_zero, }, -- non-⊤ non-zero case exact ennreal.lintegral_mul_le_Lp_mul_Lq_of_ne_zero_of_ne_top hpq hf hf_top hg_top hf_zero hg_zero end lemma lintegral_rpow_add_lt_top_of_lintegral_rpow_lt_top {p : ℝ} {f g : α → ℝ≥0∞} (hf : ae_measurable f μ) (hf_top : ∫⁻ a, (f a) ^ p ∂μ < ⊤) (hg_top : ∫⁻ a, (g a) ^ p ∂μ < ⊤) (hp1 : 1 ≤ p) : ∫⁻ a, ((f + g) a) ^ p ∂μ < ⊤ := begin have hp0_lt : 0 < p, from lt_of_lt_of_le zero_lt_one hp1, have hp0 : 0 ≤ p, from le_of_lt hp0_lt, calc ∫⁻ (a : α), (f a + g a) ^ p ∂μ ≤ ∫⁻ a, ((2:ℝ≥0∞)^(p-1) * (f a) ^ p + (2:ℝ≥0∞)^(p-1) * (g a) ^ p) ∂ μ : begin refine lintegral_mono (λ a, _), dsimp only, have h_zero_lt_half_rpow : (0 : ℝ≥0∞) < (1 / 2) ^ p, { rw [←ennreal.zero_rpow_of_pos hp0_lt], exact ennreal.rpow_lt_rpow (by simp [zero_lt_one]) hp0_lt, }, have h_rw : (1 / 2) ^ p * (2:ℝ≥0∞) ^ (p - 1) = 1 / 2, { rw [sub_eq_add_neg, ennreal.rpow_add _ _ two_ne_zero ennreal.coe_ne_top, ←mul_assoc, ←ennreal.mul_rpow_of_nonneg _ _ hp0, one_div, ennreal.inv_mul_cancel two_ne_zero ennreal.coe_ne_top, ennreal.one_rpow, one_mul, ennreal.rpow_neg_one], }, rw ←ennreal.mul_le_mul_left (ne_of_lt h_zero_lt_half_rpow).symm _, { rw [mul_add, ← mul_assoc, ← mul_assoc, h_rw, ←ennreal.mul_rpow_of_nonneg _ _ hp0, mul_add], refine ennreal.rpow_arith_mean_le_arith_mean2_rpow (1/2 : ℝ≥0∞) (1/2 : ℝ≥0∞) (f a) (g a) _ hp1, rw [ennreal.div_add_div_same, one_add_one_eq_two, ennreal.div_self two_ne_zero ennreal.coe_ne_top], }, { rw ← lt_top_iff_ne_top, refine ennreal.rpow_lt_top_of_nonneg hp0 _, rw [one_div, ennreal.inv_ne_top], exact two_ne_zero, }, end ... < ⊤ : begin have h_two : (2 : ℝ≥0∞) ^ (p - 1) ≠ ⊤, from ennreal.rpow_ne_top_of_nonneg (by simp [hp1]) ennreal.coe_ne_top, rw [lintegral_add_left', lintegral_const_mul'' _ (hf.pow_const p), lintegral_const_mul' _ _ h_two, ennreal.add_lt_top], { exact ⟨ennreal.mul_lt_top h_two hf_top.ne, ennreal.mul_lt_top h_two hg_top.ne⟩ }, { exact (hf.pow_const p).const_mul _ } end end lemma lintegral_Lp_mul_le_Lq_mul_Lr {α} [measurable_space α] {p q r : ℝ} (hp0_lt : 0 < p) (hpq : p < q) (hpqr : 1/p = 1/q + 1/r) (μ : measure α) {f g : α → ℝ≥0∞} (hf : ae_measurable f μ) (hg : ae_measurable g μ) : (∫⁻ a, ((f * g) a)^p ∂μ) ^ (1/p) ≤ (∫⁻ a, (f a)^q ∂μ) ^ (1/q) * (∫⁻ a, (g a)^r ∂μ) ^ (1/r) := begin have hp0_ne : p ≠ 0, from (ne_of_lt hp0_lt).symm, have hp0 : 0 ≤ p, from le_of_lt hp0_lt, have hq0_lt : 0 < q, from lt_of_le_of_lt hp0 hpq, have hq0_ne : q ≠ 0, from (ne_of_lt hq0_lt).symm, have h_one_div_r : 1/r = 1/p - 1/q, by simp [hpqr], have hr0_ne : r ≠ 0, { have hr_inv_pos : 0 < 1/r, by rwa [h_one_div_r, sub_pos, one_div_lt_one_div hq0_lt hp0_lt], rw [one_div, _root_.inv_pos] at hr_inv_pos, exact (ne_of_lt hr_inv_pos).symm, }, let p2 := q/p, let q2 := p2.conjugate_exponent, have hp2q2 : p2.is_conjugate_exponent q2, from real.is_conjugate_exponent_conjugate_exponent (by simp [lt_div_iff, hpq, hp0_lt]), calc (∫⁻ (a : α), ((f * g) a) ^ p ∂μ) ^ (1 / p) = (∫⁻ (a : α), (f a)^p * (g a)^p ∂μ) ^ (1 / p) : by simp_rw [pi.mul_apply, ennreal.mul_rpow_of_nonneg _ _ hp0] ... ≤ ((∫⁻ a, (f a)^(p * p2) ∂ μ)^(1/p2) * (∫⁻ a, (g a)^(p * q2) ∂ μ)^(1/q2)) ^ (1/p) : begin refine ennreal.rpow_le_rpow _ (by simp [hp0]), simp_rw ennreal.rpow_mul, exact ennreal.lintegral_mul_le_Lp_mul_Lq μ hp2q2 (hf.pow_const _) (hg.pow_const _) end ... = (∫⁻ (a : α), (f a) ^ q ∂μ) ^ (1 / q) * (∫⁻ (a : α), (g a) ^ r ∂μ) ^ (1 / r) : begin rw [@ennreal.mul_rpow_of_nonneg _ _ (1/p) (by simp [hp0]), ←ennreal.rpow_mul, ←ennreal.rpow_mul], have hpp2 : p * p2 = q, { symmetry, rw [mul_comm, ←div_eq_iff hp0_ne], }, have hpq2 : p * q2 = r, { rw [← inv_inv r, ← one_div, ← one_div, h_one_div_r], field_simp [q2, real.conjugate_exponent, p2, hp0_ne, hq0_ne] }, simp_rw [div_mul_div_comm, mul_one, mul_comm p2, mul_comm q2, hpp2, hpq2], end end lemma lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow {p q : ℝ} (hpq : p.is_conjugate_exponent q) {f g : α → ℝ≥0∞} (hf : ae_measurable f μ) (hg : ae_measurable g μ) (hf_top : ∫⁻ a, (f a) ^ p ∂μ ≠ ⊤) : ∫⁻ a, (f a) * (g a) ^ (p - 1) ∂μ ≤ (∫⁻ a, (f a)^p ∂μ) ^ (1/p) * (∫⁻ a, (g a)^p ∂μ) ^ (1/q) := begin refine le_trans (ennreal.lintegral_mul_le_Lp_mul_Lq μ hpq hf (hg.pow_const _)) _, by_cases hf_zero_rpow : (∫⁻ (a : α), (f a) ^ p ∂μ) ^ (1 / p) = 0, { rw [hf_zero_rpow, zero_mul], exact zero_le _, }, have hf_top_rpow : (∫⁻ (a : α), (f a) ^ p ∂μ) ^ (1 / p) ≠ ⊤, { by_contra h, refine hf_top _, have hp_not_neg : ¬ p < 0, by simp [hpq.nonneg], simpa [hpq.pos, hp_not_neg] using h, }, refine (ennreal.mul_le_mul_left hf_zero_rpow hf_top_rpow).mpr (le_of_eq _), congr, ext1 a, rw [←ennreal.rpow_mul, hpq.sub_one_mul_conj], end lemma lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add {p q : ℝ} (hpq : p.is_conjugate_exponent q) {f g : α → ℝ≥0∞} (hf : ae_measurable f μ) (hf_top : ∫⁻ a, (f a) ^ p ∂μ ≠ ⊤) (hg : ae_measurable g μ) (hg_top : ∫⁻ a, (g a) ^ p ∂μ ≠ ⊤) : ∫⁻ a, ((f + g) a)^p ∂ μ ≤ ((∫⁻ a, (f a)^p ∂μ) ^ (1/p) + (∫⁻ a, (g a)^p ∂μ) ^ (1/p)) * (∫⁻ a, (f a + g a)^p ∂μ) ^ (1/q) := begin calc ∫⁻ a, ((f+g) a) ^ p ∂μ ≤ ∫⁻ a, ((f + g) a) * ((f + g) a) ^ (p - 1) ∂μ : begin refine lintegral_mono (λ a, _), dsimp only, by_cases h_zero : (f + g) a = 0, { rw [h_zero, ennreal.zero_rpow_of_pos hpq.pos], exact zero_le _, }, by_cases h_top : (f + g) a = ⊤, { rw [h_top, ennreal.top_rpow_of_pos hpq.sub_one_pos, ennreal.top_mul_top], exact le_top, }, refine le_of_eq _, nth_rewrite 1 ←ennreal.rpow_one ((f + g) a), rw [←ennreal.rpow_add _ _ h_zero h_top, add_sub_cancel'_right], end ... = ∫⁻ (a : α), f a * (f + g) a ^ (p - 1) ∂μ + ∫⁻ (a : α), g a * (f + g) a ^ (p - 1) ∂μ : begin have h_add_m : ae_measurable (λ (a : α), ((f + g) a) ^ (p-1)) μ, from (hf.add hg).pow_const _, have h_add_apply : ∫⁻ (a : α), (f + g) a * (f + g) a ^ (p - 1) ∂μ = ∫⁻ (a : α), (f a + g a) * (f + g) a ^ (p - 1) ∂μ, from rfl, simp_rw [h_add_apply, add_mul], rw lintegral_add_left' (hf.mul h_add_m), end ... ≤ ((∫⁻ a, (f a)^p ∂μ) ^ (1/p) + (∫⁻ a, (g a)^p ∂μ) ^ (1/p)) * (∫⁻ a, (f a + g a)^p ∂μ) ^ (1/q) : begin rw add_mul, exact add_le_add (lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow hpq hf (hf.add hg) hf_top) (lintegral_mul_rpow_le_lintegral_rpow_mul_lintegral_rpow hpq hg (hf.add hg) hg_top), end end private lemma lintegral_Lp_add_le_aux {p q : ℝ} (hpq : p.is_conjugate_exponent q) {f g : α → ℝ≥0∞} (hf : ae_measurable f μ) (hf_top : ∫⁻ a, (f a) ^ p ∂μ ≠ ⊤) (hg : ae_measurable g μ) (hg_top : ∫⁻ a, (g a) ^ p ∂μ ≠ ⊤) (h_add_zero : ∫⁻ a, ((f+g) a) ^ p ∂ μ ≠ 0) (h_add_top : ∫⁻ a, ((f+g) a) ^ p ∂ μ ≠ ⊤) : (∫⁻ a, ((f + g) a)^p ∂ μ) ^ (1/p) ≤ (∫⁻ a, (f a)^p ∂μ) ^ (1/p) + (∫⁻ a, (g a)^p ∂μ) ^ (1/p) := begin have hp_not_nonpos : ¬ p ≤ 0, by simp [hpq.pos], have htop_rpow : (∫⁻ a, ((f+g) a) ^ p ∂μ)^(1/p) ≠ ⊤, { by_contra h, exact h_add_top (@ennreal.rpow_eq_top_of_nonneg _ (1/p) (by simp [hpq.nonneg]) h), }, have h0_rpow : (∫⁻ a, ((f+g) a) ^ p ∂ μ) ^ (1/p) ≠ 0, by simp [h_add_zero, h_add_top, hpq.nonneg, hp_not_nonpos, -pi.add_apply], suffices h : 1 ≤ (∫⁻ (a : α), ((f+g) a)^p ∂μ) ^ -(1/p) * ((∫⁻ (a : α), (f a)^p ∂μ) ^ (1/p) + (∫⁻ (a : α), (g a)^p ∂μ) ^ (1/p)), by rwa [←mul_le_mul_left h0_rpow htop_rpow, ←mul_assoc, ←rpow_add _ _ h_add_zero h_add_top, ←sub_eq_add_neg, _root_.sub_self, rpow_zero, one_mul, mul_one] at h, have h : ∫⁻ (a : α), ((f+g) a)^p ∂μ ≤ ((∫⁻ (a : α), (f a)^p ∂μ) ^ (1/p) + (∫⁻ (a : α), (g a)^p ∂μ) ^ (1/p)) * (∫⁻ (a : α), ((f+g) a)^p ∂μ) ^ (1/q), from lintegral_rpow_add_le_add_snorm_mul_lintegral_rpow_add hpq hf hf_top hg hg_top, have h_one_div_q : 1/q = 1 - 1/p, by { nth_rewrite 1 ←hpq.inv_add_inv_conj, ring, }, simp_rw [h_one_div_q, sub_eq_add_neg 1 (1/p), ennreal.rpow_add _ _ h_add_zero h_add_top, rpow_one] at h, nth_rewrite 1 mul_comm at h, nth_rewrite 0 ←one_mul (∫⁻ (a : α), ((f+g) a) ^ p ∂μ) at h, rwa [←mul_assoc, ennreal.mul_le_mul_right h_add_zero h_add_top, mul_comm] at h, end /-- Minkowski's inequality for functions `α → ℝ≥0∞`: the `ℒp` seminorm of the sum of two functions is bounded by the sum of their `ℒp` seminorms. -/ theorem lintegral_Lp_add_le {p : ℝ} {f g : α → ℝ≥0∞} (hf : ae_measurable f μ) (hg : ae_measurable g μ) (hp1 : 1 ≤ p) : (∫⁻ a, ((f + g) a)^p ∂ μ) ^ (1/p) ≤ (∫⁻ a, (f a)^p ∂μ) ^ (1/p) + (∫⁻ a, (g a)^p ∂μ) ^ (1/p) := begin have hp_pos : 0 < p, from lt_of_lt_of_le zero_lt_one hp1, by_cases hf_top : ∫⁻ a, (f a) ^ p ∂μ = ⊤, { simp [hf_top, hp_pos], }, by_cases hg_top : ∫⁻ a, (g a) ^ p ∂μ = ⊤, { simp [hg_top, hp_pos], }, by_cases h1 : p = 1, { refine le_of_eq _, simp_rw [h1, one_div_one, ennreal.rpow_one], exact lintegral_add_left' hf _, }, have hp1_lt : 1 < p, by { refine lt_of_le_of_ne hp1 _, symmetry, exact h1, }, have hpq := real.is_conjugate_exponent_conjugate_exponent hp1_lt, by_cases h0 : ∫⁻ a, ((f+g) a) ^ p ∂ μ = 0, { rw [h0, @ennreal.zero_rpow_of_pos (1/p) (by simp [lt_of_lt_of_le zero_lt_one hp1])], exact zero_le _, }, have htop : ∫⁻ a, ((f+g) a) ^ p ∂ μ ≠ ⊤, { rw ← ne.def at hf_top hg_top, rw ← lt_top_iff_ne_top at hf_top hg_top ⊢, exact lintegral_rpow_add_lt_top_of_lintegral_rpow_lt_top hf hf_top hg_top hp1, }, exact lintegral_Lp_add_le_aux hpq hf hf_top hg hg_top h0 htop, end /-- Variant of Minkowski's inequality for functions `α → ℝ≥0∞` in `ℒp` with `p ≤ 1`: the `ℒp` seminorm of the sum of two functions is bounded by a constant multiple of the sum of their `ℒp` seminorms. -/ theorem lintegral_Lp_add_le_of_le_one {p : ℝ} {f g : α → ℝ≥0∞} (hf : ae_measurable f μ) (hp0 : 0 ≤ p) (hp1 : p ≤ 1) : (∫⁻ a, ((f + g) a)^p ∂ μ) ^ (1/p) ≤ 2^(1/p-1) * ((∫⁻ a, (f a)^p ∂μ) ^ (1/p) + (∫⁻ a, (g a)^p ∂μ) ^ (1/p)) := begin rcases eq_or_lt_of_le hp0 with rfl|hp, { simp only [pi.add_apply, rpow_zero, lintegral_one, _root_.div_zero, zero_sub], norm_num, rw [rpow_neg, rpow_one, ennreal.inv_mul_cancel two_ne_zero two_ne_top], exact le_rfl }, calc (∫⁻ a, (f + g) a ^ p ∂μ) ^ (1 / p) ≤ (∫⁻ a, (f a)^p ∂ μ + ∫⁻ a, (g a)^p ∂ μ) ^ (1/p) : begin apply rpow_le_rpow _ (div_nonneg zero_le_one hp0), rw ← lintegral_add_left' (hf.pow_const p), exact lintegral_mono (λ a, rpow_add_le_add_rpow _ _ hp0 hp1) end ... ≤ 2 ^ (1/p-1) * ((∫⁻ a, f a ^ p ∂μ) ^ (1/p) + (∫⁻ a, g a ^ p ∂μ) ^ (1/p)) : rpow_add_le_mul_rpow_add_rpow _ _ ((one_le_div hp).2 hp1) end end ennreal /-- Hölder's inequality for functions `α → ℝ≥0`. The integral of the product of two functions is bounded by the product of their `ℒp` and `ℒq` seminorms when `p` and `q` are conjugate exponents. -/ theorem nnreal.lintegral_mul_le_Lp_mul_Lq {p q : ℝ} (hpq : p.is_conjugate_exponent q) {f g : α → ℝ≥0} (hf : ae_measurable f μ) (hg : ae_measurable g μ) : ∫⁻ a, (f * g) a ∂μ ≤ (∫⁻ a, (f a)^p ∂μ)^(1/p) * (∫⁻ a, (g a)^q ∂μ)^(1/q) := begin simp_rw [pi.mul_apply, ennreal.coe_mul], exact ennreal.lintegral_mul_le_Lp_mul_Lq μ hpq hf.coe_nnreal_ennreal hg.coe_nnreal_ennreal, end end lintegral
884a5f0c10a95fdb0a16ceaf822a3684376065ae
b9a81ebb9de684db509231c4469a7d2c88915808
/test/super_tests.lean
ac7c3793d14a7b22b781875a5e50549acf3730eb
[]
no_license
leanprover/super
3dd81ce8d9ac3cba20bce55e84833fadb2f5716e
47b107b4cec8f3b41d72daba9cbda2f9d54025de
refs/heads/master
1,678,482,996,979
1,676,526,367,000
1,676,526,367,000
92,215,900
12
6
null
1,513,327,539,000
1,495,570,640,000
Lean
UTF-8
Lean
false
false
2,992
lean
import super section open super tactic example (i : Type) (a b : i) (p : i → Prop) (H : a = b) (Hpa : p a) : true := by do H ← get_local `H >>= clause.of_classical_proof, Hpa ← get_local `Hpa >>= clause.of_classical_proof, a ← get_local `a, try_sup (λx y, ff) H Hpa 0 0 [0] tt ff ``super.sup_ltr >>= clause.validate, to_expr ``(trivial) >>= apply example (i : Type) (a b : i) (p : i → Prop) (H : a = b) (Hpa : p a → false) (Hpb : p b → false) : true := by do H ← get_local `H >>= clause.of_classical_proof, Hpa ← get_local `Hpa >>= clause.of_classical_proof, Hpb ← get_local `Hpb >>= clause.of_classical_proof, try_sup (λx y, ff) H Hpa 0 0 [0] tt ff ``super.sup_ltr >>= clause.validate, try_sup (λx y, ff) H Hpb 0 0 [0] ff ff ``super.sup_rtl >>= clause.validate, to_expr ``(trivial) >>= apply example (i : Type) (p q : i → Prop) (H : ∀x y, p x → q y → false) : true := by do h ← get_local `H >>= clause.of_classical_proof, (op, lcs) ← h^.open_constn h^.num_binders, guard $ (get_components lcs)^.length = 2, triv example (i : Type) (p : i → i → Prop) (H : ∀x y z, p x y → p y z → false) : true := by do h ← get_local `H >>= clause.of_classical_proof, (op, lcs) ← h^.open_constn h^.num_binders, guard $ (get_components lcs)^.length = 1, triv example (i : Type) (p : i → i → Type) (c : i) (h : ∀ (x : i), p x c → p x c) : true := by do h ← get_local `h, hcls ← clause.of_classical_proof h, taut ← is_taut hcls, when (¬taut) failed, to_expr ``(trivial) >>= apply open tactic example (m n : ℕ) : true := by do e₁ ← to_expr ```((0 + (m : ℕ)) + 0), e₂ ← to_expr ```(0 + (0 + (m : ℕ))), e₃ ← to_expr ```(0 + (m : ℕ)), prec ← return (contained_funsyms e₁)^.keys, prec_gt ← return $ prec_gt_of_name_list prec, guard $ lpo prec_gt e₁ e₃, guard $ lpo prec_gt e₂ e₃, to_expr ``(trivial) >>= apply /- open tactic example (i : Type) (f : i → i) (c d x : i) : true := by do ef ← get_local `f, ec ← get_local `c, ed ← get_local `d, syms ← return [ef,ec,ed], prec_gt ← return $ prec_gt_of_name_list (list.map local_uniq_name [ef, ec, ed]), sequence' (do s1 ← syms, s2 ← syms, return (do s1_fmt ← pp s1, s2_fmt ← pp s2, trace (s1_fmt ++ to_fmt " > " ++ s2_fmt ++ to_fmt ": " ++ to_fmt (prec_gt s1 s2)) )), exprs ← @mapM tactic _ _ _ to_expr [`(f c), `(f (f c)), `(f d), `(f x), `(f (f x))], sequence' (do e1 ← exprs, e2 ← exprs, return (do e1_fmt ← pp e1, e2_fmt ← pp e2, trace (e1_fmt ++ to_fmt" > " ++ e2_fmt ++ to_fmt": " ++ to_fmt (lpo prec_gt e1 e2)) )), mk_const ``true.intro >>= apply -/ open monad example (x y : ℕ) (h : nat.zero = nat.succ nat.zero) (h2 : nat.succ x = nat.succ y) : true := by do h ← get_local `h >>= clause.of_classical_proof, h2 ← get_local `h2 >>= clause.of_classical_proof, cs ← try_no_confusion_eq_r h 0, cs.mmap' clause.validate, cs ← try_no_confusion_eq_r h2 0, cs.mmap' clause.validate, to_expr ``(trivial) >>= exact end
57870857fadba4cc469369868a4643938616e279
efce24474b28579aba3272fdb77177dc2b11d7aa
/src/homotopy_theory/formal/i_category/cofibration_category.lean
061f7e533e4bc6da67a6e04a92d043cdcbb322ad
[ "Apache-2.0" ]
permissive
rwbarton/lean-homotopy-theory
cff499f24268d60e1c546e7c86c33f58c62888ed
39e1b4ea1ed1b0eca2f68bc64162dde6a6396dee
refs/heads/lean-3.4.2
1,622,711,883,224
1,598,550,958,000
1,598,550,958,000
136,023,667
12
6
Apache-2.0
1,573,187,573,000
1,528,116,262,000
Lean
UTF-8
Lean
false
false
7,600
lean
import tactic.slice import category_theory.colimit_lemmas import category_theory.pushout_fold import homotopy_theory.formal.cofibrations.cofibration_category import homotopy_theory.formal.cofibrations.cylinder import homotopy_theory.formal.cofibrations.factorization_from_cylinder import homotopy_theory.formal.cofibrations.homotopy import homotopy_theory.formal.cofibrations.left_proper import .cylinder_object import .dold universes v u open category_theory open category_theory.category local notation f ` ∘ `:80 g:80 := g ≫ f namespace homotopy_theory.cofibrations open homotopy_theory.cylinder (renaming homotopic_rel → homotopic_rel_cylinder) open homotopy_theory.weak_equivalences open precofibration_category -- An I-category gives rise to a cofibration category with the same -- cofibrations in which the weak equivalences are the homotopy -- equivalences. variables {C : Type u} [category.{v} C] [has_initial_object.{v} C] [has_coproducts.{v} C] [I_category.{v} C] -- Every object is fibrant. lemma all_objects_fibrant (x : C) : fibrant x := assume y j ⟨jc, jw⟩, let ⟨⟨r, h, H⟩⟩ := (heq_iff_sdr_inclusion jc).mp jw in ⟨r, h⟩ instance I_category.cofibration_category : cofibration_category.{v} C := cofibration_category.mk_from_cylinder (assume a b a' b' f g f' g' po ⟨fc, fw⟩, ⟨precofibration_category.pushout_is_cof po fc, pushout_is_acof po fc fw⟩) (assume a, ⟨I.obj a, ii @> a, p @> a, cof_ii a, heq_p, pii⟩) (assume x, ⟨x, 𝟙 x, ⟨cof_id x, weq_id x⟩, all_objects_fibrant x⟩) -- The functor I produces cylinder objects in the general sense of -- cofibration categories. def canonical_cylinder (b : C) : relative_cylinder (all_objects_cofibrant.cofibrant.{v} b) := ⟨I.obj b, (pushout_by_cof (!b) (!b) _).is_pushout.induced (i 0 @> b) (i 1 @> b) (category_theory.initial.uniqueness _ _), p @> b, -- We proved ii : b ⊔ b → Ib is a cofibration; need to massage this -- into a map from the pushout over the initial object. let po := pushout_by_cof (!b) (!b) (all_objects_cofibrant.cofibrant.{v} b), -- The map we need to show is a cofibration ii' := po.is_pushout.induced (i 0 @> b) (i 1 @> b) (category_theory.initial.uniqueness _ _), c : Is_coproduct po.map₀ po.map₁ := Is_coproduct_of_Is_pushout_of_Is_initial po.is_pushout has_initial_object.initial_object.is_initial_object, j : iso (b ⊔ b) po.ob := isomorphic_coprod_of_Is_coproduct c in have ii' ∘ j.hom = ii @> b, begin dsimp [j, isomorphic_coprod_of_Is_coproduct]; apply coprod.uniqueness; rw ←assoc; simp [ii] end, have ii' = ii @> b ∘ j.inv, by rw ←this; simp, show is_cof ii', by rw this; exact cof_comp (cof_iso j.symm) (cof_ii b), heq_p, begin apply (pushout_by_cof (!b) (!b) _).is_pushout.uniqueness; { rw ←assoc, simp } end⟩ /- I a → a ↓ po ↓ b ⊔ b → I b → c → b a -/ def canonical_relative_cylinder {a b : C} {j : a ⟶ b} (hj : is_cof j) : relative_cylinder hj := let po := pushout_by_cof (I.map j) (p.app a) (I_preserves_cofibrations hj) in ⟨po.ob, (pushout_by_cof j j _).is_pushout.induced ((i 0).app b ≫ po.map₀) ((i 1).app b ≫ po.map₀) begin erw [←assoc, ←assoc, (i 0).naturality, (i 1).naturality], rw [assoc, assoc, po.is_pushout.commutes, ←assoc, ←assoc], simp end, po.is_pushout.induced (p.app b) j (p.naturality j), /- a ⊔ a → I a → a ↓ po₁ ↓ po₂ ↓ b ⊔ b → ⬝ → b ⊔ b a ↓ po₃ ↓ I b → c → b -/ begin let po₀ := pushout_by_cof j j hj, let abb : a ⟶ po₀.ob := po₀.map₀ ∘ j, let po₁ := pushout_by_cof _ (ii.app a) (cof_coprod hj hj), let l := po₁.is_pushout.induced (coprod.induced po₀.map₀ po₀.map₁) (abb ∘ p.app a) begin apply coprod.uniqueness, { rw [←assoc, coprod_of_maps_commutes₀, assoc, coprod.induced_commutes₀], rw [iii₀_assoc, ←assoc, pi_components, id_comp] }, { rw [←assoc, coprod_of_maps_commutes₁, assoc, coprod.induced_commutes₁], rw [iii₁_assoc, ←assoc, pi_components, id_comp, ←po₀.is_pushout.commutes] } end, have po₁₂ : Is_pushout (coprod_of_maps j j) (coprod.fold a) _ _ := Is_pushout_fold po₀.is_pushout, have po₂ : Is_pushout po₁.map₁ (p.app a) l abb, { refine Is_pushout_of_Is_pushout_of_Is_pushout' po₁.is_pushout _ _, { convert po₁₂, { apply pii }, { simp } }, { simp } }, have po₂₃ : Is_pushout (I.map j) (p.app a) _ _ := po.is_pushout, let m := _, -- naming part of the type of a hypothesis have : is_cof m := I_category.relative_cylinder j hj, let n := _, -- naming part of the type of the goal change is_cof n, have po₃ : Is_pushout m l po.map₀ n, { refine Is_pushout_of_Is_pushout_of_Is_pushout_vert' po₂ _ _, convert po₂₃, { simp, refl }, { have : po.map₀ ∘ (i 0).app b ∘ j = po.map₁, { rw ←assoc, erw (i 0).naturality, rw [assoc, po.is_pushout.commutes, ←assoc, pi_components, id_comp] }, simpa using this }, { apply po₁.is_pushout.uniqueness; rw [←assoc, ←assoc], { simp only [Is_pushout.induced_commutes₀, Is_pushout.induced_commutes₁], apply coprod.uniqueness; rw [←assoc, ←assoc]; simp }, { simp only [assoc, Is_pushout.induced_commutes₀, Is_pushout.induced_commutes₁], slice_rhs 2 3 { change (i 0).app b ∘ ((functor.id _).map j), rw (i 0).naturality }, simp only [assoc], erw [po.is_pushout.commutes], slice_rhs 2 3 { rw pi_components }, dsimp, simp } } }, exact pushout_is_cof po₃ this end, begin have : is_weq po.map₀ := left_proper.pushout_weq_by_cof po.is_pushout (I_preserves_cofibrations hj) heq_p, refine category_with_weak_equivalences.weq_of_comp_weq_left this _, simpa using heq_p, end, begin symmetry, apply pushout_induced_eq_iff; rw ←assoc; simp end⟩ section homotopy variables {a b x : C} {j : a ⟶ b} (hj : is_cof j) (f₀ f₁ : b ⟶ x) lemma homotopic_rel_iff_cylinder : homotopic_rel hj f₀ f₁ ↔ homotopic_rel_cylinder j f₀ f₁ := let po := pushout_by_cof (I.map j) (p.app a) (I_preserves_cofibrations hj) in begin split; intro H, { rcases homotopic_rel' (canonical_relative_cylinder hj) (all_objects_fibrant x) f₀ f₁ H with ⟨H, Hi₀, Hi₁⟩, dsimp [canonical_relative_cylinder, relative_cylinder.i₀, relative_cylinder.i₁] at Hi₀ Hi₁, simp at Hi₀ Hi₁, refine ⟨⟨po.map₀ ≫ H, _, _⟩, _⟩, { rw [←Hi₀, ←assoc, ←assoc], refl }, { rw [←Hi₁, ←assoc, ←assoc], refl }, { dsimp [homotopy.is_rel], rw [←Hi₀], slice_rhs 2 3 { change (functor.id _).map j ≫ (i 0).app b, rw (i 0).naturality }, slice_lhs 1 2 { rw po.is_pushout.commutes }, slice_rhs 3 4 { change I.map j ≫ po.map₀, rw po.is_pushout.commutes }, slice_rhs 2 3 { rw pi_components }, simp } }, { rcases H with ⟨⟨H, Hi₀, Hi₁⟩, r⟩, refine ⟨canonical_relative_cylinder hj, ⟨⟨_, _, _⟩⟩⟩, refine po.is_pushout.induced H (j ≫ f₀) r, { convert Hi₀ using 1, dsimp [relative_cylinder.i₀, canonical_relative_cylinder], simp }, { convert Hi₁ using 1, dsimp [relative_cylinder.i₁, canonical_relative_cylinder], simp } } end end homotopy end homotopy_theory.cofibrations
e69166716ea4b448806915cecf50f1f5292de2f5
8e6cad62ec62c6c348e5faaa3c3f2079012bdd69
/src/data/complex/basic.lean
2cbb0bddfd9086037fc107917c7bc80d540884de
[ "Apache-2.0" ]
permissive
benjamindavidson/mathlib
8cc81c865aa8e7cf4462245f58d35ae9a56b150d
fad44b9f670670d87c8e25ff9cdf63af87ad731e
refs/heads/master
1,679,545,578,362
1,615,343,014,000
1,615,343,014,000
312,926,983
0
0
Apache-2.0
1,615,360,301,000
1,605,399,418,000
Lean
UTF-8
Lean
false
false
26,676
lean
/- Copyright (c) 2017 Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kevin Buzzard, Mario Carneiro -/ import data.real.sqrt /-! # The complex numbers The complex numbers are modelled as ℝ^2 in the obvious way and it is shown that they form a field of characteristic zero. The result that the complex numbers are algebraically closed, see `field_theory.algebraic_closure`. -/ open_locale big_operators /-! ### Definition and basic arithmmetic -/ /-- Complex numbers consist of two `real`s: a real part `re` and an imaginary part `im`. -/ structure complex : Type := (re : ℝ) (im : ℝ) notation `ℂ` := complex namespace complex noncomputable instance : decidable_eq ℂ := classical.dec_eq _ /-- The equivalence between the complex numbers and `ℝ × ℝ`. -/ def equiv_real_prod : ℂ ≃ (ℝ × ℝ) := { to_fun := λ z, ⟨z.re, z.im⟩, inv_fun := λ p, ⟨p.1, p.2⟩, left_inv := λ ⟨x, y⟩, rfl, right_inv := λ ⟨x, y⟩, rfl } @[simp] theorem equiv_real_prod_apply (z : ℂ) : equiv_real_prod z = (z.re, z.im) := rfl theorem equiv_real_prod_symm_re (x y : ℝ) : (equiv_real_prod.symm (x, y)).re = x := rfl theorem equiv_real_prod_symm_im (x y : ℝ) : (equiv_real_prod.symm (x, y)).im = y := rfl @[simp] theorem eta : ∀ z : ℂ, complex.mk z.re z.im = z | ⟨a, b⟩ := rfl @[ext] theorem ext : ∀ {z w : ℂ}, z.re = w.re → z.im = w.im → z = w | ⟨zr, zi⟩ ⟨_, _⟩ rfl rfl := rfl theorem ext_iff {z w : ℂ} : z = w ↔ z.re = w.re ∧ z.im = w.im := ⟨λ H, by simp [H], and.rec ext⟩ instance : has_coe ℝ ℂ := ⟨λ r, ⟨r, 0⟩⟩ @[simp, norm_cast] lemma of_real_re (r : ℝ) : (r : ℂ).re = r := rfl @[simp, norm_cast] lemma of_real_im (r : ℝ) : (r : ℂ).im = 0 := rfl lemma of_real_def (r : ℝ) : (r : ℂ) = ⟨r, 0⟩ := rfl @[simp, norm_cast] theorem of_real_inj {z w : ℝ} : (z : ℂ) = w ↔ z = w := ⟨congr_arg re, congr_arg _⟩ instance : has_zero ℂ := ⟨(0 : ℝ)⟩ instance : inhabited ℂ := ⟨0⟩ @[simp] lemma zero_re : (0 : ℂ).re = 0 := rfl @[simp] lemma zero_im : (0 : ℂ).im = 0 := rfl @[simp, norm_cast] lemma of_real_zero : ((0 : ℝ) : ℂ) = 0 := rfl @[simp] theorem of_real_eq_zero {z : ℝ} : (z : ℂ) = 0 ↔ z = 0 := of_real_inj theorem of_real_ne_zero {z : ℝ} : (z : ℂ) ≠ 0 ↔ z ≠ 0 := not_congr of_real_eq_zero instance : has_one ℂ := ⟨(1 : ℝ)⟩ @[simp] lemma one_re : (1 : ℂ).re = 1 := rfl @[simp] lemma one_im : (1 : ℂ).im = 0 := rfl @[simp, norm_cast] lemma of_real_one : ((1 : ℝ) : ℂ) = 1 := rfl instance : has_add ℂ := ⟨λ z w, ⟨z.re + w.re, z.im + w.im⟩⟩ @[simp] lemma add_re (z w : ℂ) : (z + w).re = z.re + w.re := rfl @[simp] lemma add_im (z w : ℂ) : (z + w).im = z.im + w.im := rfl @[simp] lemma bit0_re (z : ℂ) : (bit0 z).re = bit0 z.re := rfl @[simp] lemma bit1_re (z : ℂ) : (bit1 z).re = bit1 z.re := rfl @[simp] lemma bit0_im (z : ℂ) : (bit0 z).im = bit0 z.im := eq.refl _ @[simp] lemma bit1_im (z : ℂ) : (bit1 z).im = bit0 z.im := add_zero _ @[simp, norm_cast] lemma of_real_add (r s : ℝ) : ((r + s : ℝ) : ℂ) = r + s := ext_iff.2 $ by simp @[simp, norm_cast] lemma of_real_bit0 (r : ℝ) : ((bit0 r : ℝ) : ℂ) = bit0 r := ext_iff.2 $ by simp [bit0] @[simp, norm_cast] lemma of_real_bit1 (r : ℝ) : ((bit1 r : ℝ) : ℂ) = bit1 r := ext_iff.2 $ by simp [bit1] instance : has_neg ℂ := ⟨λ z, ⟨-z.re, -z.im⟩⟩ @[simp] lemma neg_re (z : ℂ) : (-z).re = -z.re := rfl @[simp] lemma neg_im (z : ℂ) : (-z).im = -z.im := rfl @[simp, norm_cast] lemma of_real_neg (r : ℝ) : ((-r : ℝ) : ℂ) = -r := ext_iff.2 $ by simp instance : has_sub ℂ := ⟨λ z w, ⟨z.re - w.re, z.im - w.im⟩⟩ instance : has_mul ℂ := ⟨λ z w, ⟨z.re * w.re - z.im * w.im, z.re * w.im + z.im * w.re⟩⟩ @[simp] lemma mul_re (z w : ℂ) : (z * w).re = z.re * w.re - z.im * w.im := rfl @[simp] lemma mul_im (z w : ℂ) : (z * w).im = z.re * w.im + z.im * w.re := rfl @[simp, norm_cast] lemma of_real_mul (r s : ℝ) : ((r * s : ℝ) : ℂ) = r * s := ext_iff.2 $ by simp lemma smul_re (r : ℝ) (z : ℂ) : (↑r * z).re = r * z.re := by simp lemma smul_im (r : ℝ) (z : ℂ) : (↑r * z).im = r * z.im := by simp lemma of_real_smul (r : ℝ) (z : ℂ) : (↑r * z) = ⟨r * z.re, r * z.im⟩ := ext (smul_re _ _) (smul_im _ _) /-! ### The imaginary unit, `I` -/ /-- The imaginary unit. -/ def I : ℂ := ⟨0, 1⟩ @[simp] lemma I_re : I.re = 0 := rfl @[simp] lemma I_im : I.im = 1 := rfl @[simp] lemma I_mul_I : I * I = -1 := ext_iff.2 $ by simp lemma I_mul (z : ℂ) : I * z = ⟨-z.im, z.re⟩ := ext_iff.2 $ by simp lemma I_ne_zero : (I : ℂ) ≠ 0 := mt (congr_arg im) zero_ne_one.symm lemma mk_eq_add_mul_I (a b : ℝ) : complex.mk a b = a + b * I := ext_iff.2 $ by simp @[simp] lemma re_add_im (z : ℂ) : (z.re : ℂ) + z.im * I = z := ext_iff.2 $ by simp /-! ### Commutative ring instance and lemmas -/ instance : comm_ring ℂ := by refine { zero := 0, add := (+), neg := has_neg.neg, sub := has_sub.sub, one := 1, mul := (*), sub_eq_add_neg := _, ..}; { intros, apply ext_iff.2; split; simp; ring } instance re.is_add_group_hom : is_add_group_hom complex.re := { map_add := complex.add_re } instance im.is_add_group_hom : is_add_group_hom complex.im := { map_add := complex.add_im } @[simp] lemma I_pow_bit0 (n : ℕ) : I ^ (bit0 n) = (-1) ^ n := by rw [pow_bit0', I_mul_I] @[simp] lemma I_pow_bit1 (n : ℕ) : I ^ (bit1 n) = (-1) ^ n * I := by rw [pow_bit1', I_mul_I] /-! ### Complex conjugation -/ /-- The complex conjugate. -/ def conj : ℂ →+* ℂ := begin refine_struct { to_fun := λ z : ℂ, (⟨z.re, -z.im⟩ : ℂ), .. }; { intros, ext; simp [add_comm], }, end @[simp] lemma conj_re (z : ℂ) : (conj z).re = z.re := rfl @[simp] lemma conj_im (z : ℂ) : (conj z).im = -z.im := rfl @[simp] lemma conj_of_real (r : ℝ) : conj r = r := ext_iff.2 $ by simp [conj] @[simp] lemma conj_I : conj I = -I := ext_iff.2 $ by simp @[simp] lemma conj_bit0 (z : ℂ) : conj (bit0 z) = bit0 (conj z) := ext_iff.2 $ by simp [bit0] @[simp] lemma conj_bit1 (z : ℂ) : conj (bit1 z) = bit1 (conj z) := ext_iff.2 $ by simp [bit0] @[simp] lemma conj_neg_I : conj (-I) = I := ext_iff.2 $ by simp @[simp] lemma conj_conj (z : ℂ) : conj (conj z) = z := ext_iff.2 $ by simp lemma conj_involutive : function.involutive conj := conj_conj lemma conj_bijective : function.bijective conj := conj_involutive.bijective lemma conj_inj {z w : ℂ} : conj z = conj w ↔ z = w := conj_bijective.1.eq_iff @[simp] lemma conj_eq_zero {z : ℂ} : conj z = 0 ↔ z = 0 := by simpa using @conj_inj z 0 lemma eq_conj_iff_real {z : ℂ} : conj z = z ↔ ∃ r : ℝ, z = r := ⟨λ h, ⟨z.re, ext rfl $ eq_zero_of_neg_eq (congr_arg im h)⟩, λ ⟨h, e⟩, by rw [e, conj_of_real]⟩ lemma eq_conj_iff_re {z : ℂ} : conj z = z ↔ (z.re : ℂ) = z := eq_conj_iff_real.trans ⟨by rintro ⟨r, rfl⟩; simp, λ h, ⟨_, h.symm⟩⟩ instance : star_ring ℂ := { star := λ z, conj z, star_involutive := λ z, by simp, star_mul := λ r s, by { ext; simp [mul_comm], }, star_add := by simp, } /-! ### Norm squared -/ /-- The norm squared function. -/ @[pp_nodot] def norm_sq : monoid_with_zero_hom ℂ ℝ := { to_fun := λ z, z.re * z.re + z.im * z.im, map_zero' := by simp, map_one' := by simp, map_mul' := λ z w, by { dsimp, ring } } lemma norm_sq_apply (z : ℂ) : norm_sq z = z.re * z.re + z.im * z.im := rfl @[simp] lemma norm_sq_of_real (r : ℝ) : norm_sq r = r * r := by simp [norm_sq] lemma norm_sq_eq_conj_mul_self {z : ℂ} : (norm_sq z : ℂ) = conj z * z := by { ext; simp [norm_sq, mul_comm], } @[simp] lemma norm_sq_zero : norm_sq 0 = 0 := norm_sq.map_zero @[simp] lemma norm_sq_one : norm_sq 1 = 1 := norm_sq.map_one @[simp] lemma norm_sq_I : norm_sq I = 1 := by simp [norm_sq] lemma norm_sq_nonneg (z : ℂ) : 0 ≤ norm_sq z := add_nonneg (mul_self_nonneg _) (mul_self_nonneg _) lemma norm_sq_eq_zero {z : ℂ} : norm_sq z = 0 ↔ z = 0 := ⟨λ h, ext (eq_zero_of_mul_self_add_mul_self_eq_zero h) (eq_zero_of_mul_self_add_mul_self_eq_zero $ (add_comm _ _).trans h), λ h, h.symm ▸ norm_sq_zero⟩ @[simp] lemma norm_sq_pos {z : ℂ} : 0 < norm_sq z ↔ z ≠ 0 := (norm_sq_nonneg z).lt_iff_ne.trans $ not_congr (eq_comm.trans norm_sq_eq_zero) @[simp] lemma norm_sq_neg (z : ℂ) : norm_sq (-z) = norm_sq z := by simp [norm_sq] @[simp] lemma norm_sq_conj (z : ℂ) : norm_sq (conj z) = norm_sq z := by simp [norm_sq] lemma norm_sq_mul (z w : ℂ) : norm_sq (z * w) = norm_sq z * norm_sq w := norm_sq.map_mul z w lemma norm_sq_add (z w : ℂ) : norm_sq (z + w) = norm_sq z + norm_sq w + 2 * (z * conj w).re := by dsimp [norm_sq]; ring lemma re_sq_le_norm_sq (z : ℂ) : z.re * z.re ≤ norm_sq z := le_add_of_nonneg_right (mul_self_nonneg _) lemma im_sq_le_norm_sq (z : ℂ) : z.im * z.im ≤ norm_sq z := le_add_of_nonneg_left (mul_self_nonneg _) theorem mul_conj (z : ℂ) : z * conj z = norm_sq z := ext_iff.2 $ by simp [norm_sq, mul_comm, sub_eq_neg_add, add_comm] theorem add_conj (z : ℂ) : z + conj z = (2 * z.re : ℝ) := ext_iff.2 $ by simp [two_mul] /-- The coercion `ℝ → ℂ` as a `ring_hom`. -/ def of_real : ℝ →+* ℂ := ⟨coe, of_real_one, of_real_mul, of_real_zero, of_real_add⟩ @[simp] lemma of_real_eq_coe (r : ℝ) : of_real r = r := rfl @[simp] lemma I_sq : I ^ 2 = -1 := by rw [pow_two, I_mul_I] @[simp] lemma sub_re (z w : ℂ) : (z - w).re = z.re - w.re := rfl @[simp] lemma sub_im (z w : ℂ) : (z - w).im = z.im - w.im := rfl @[simp, norm_cast] lemma of_real_sub (r s : ℝ) : ((r - s : ℝ) : ℂ) = r - s := ext_iff.2 $ by simp @[simp, norm_cast] lemma of_real_pow (r : ℝ) (n : ℕ) : ((r ^ n : ℝ) : ℂ) = r ^ n := by induction n; simp [*, of_real_mul, pow_succ] theorem sub_conj (z : ℂ) : z - conj z = (2 * z.im : ℝ) * I := ext_iff.2 $ by simp [two_mul, sub_eq_add_neg] lemma norm_sq_sub (z w : ℂ) : norm_sq (z - w) = norm_sq z + norm_sq w - 2 * (z * conj w).re := by rw [sub_eq_add_neg, norm_sq_add]; simp [-mul_re, add_comm, add_left_comm, sub_eq_add_neg] /-! ### Inversion -/ noncomputable instance : has_inv ℂ := ⟨λ z, conj z * ((norm_sq z)⁻¹:ℝ)⟩ theorem inv_def (z : ℂ) : z⁻¹ = conj z * ((norm_sq z)⁻¹:ℝ) := rfl @[simp] lemma inv_re (z : ℂ) : (z⁻¹).re = z.re / norm_sq z := by simp [inv_def, division_def] @[simp] lemma inv_im (z : ℂ) : (z⁻¹).im = -z.im / norm_sq z := by simp [inv_def, division_def] @[simp, norm_cast] lemma of_real_inv (r : ℝ) : ((r⁻¹ : ℝ) : ℂ) = r⁻¹ := ext_iff.2 $ by simp protected lemma inv_zero : (0⁻¹ : ℂ) = 0 := by rw [← of_real_zero, ← of_real_inv, inv_zero] protected theorem mul_inv_cancel {z : ℂ} (h : z ≠ 0) : z * z⁻¹ = 1 := by rw [inv_def, ← mul_assoc, mul_conj, ← of_real_mul, mul_inv_cancel (mt norm_sq_eq_zero.1 h), of_real_one] /-! ### Field instance and lemmas -/ noncomputable instance : field ℂ := { inv := has_inv.inv, exists_pair_ne := ⟨0, 1, mt (congr_arg re) zero_ne_one⟩, mul_inv_cancel := @complex.mul_inv_cancel, inv_zero := complex.inv_zero, ..complex.comm_ring } @[simp] lemma I_fpow_bit0 (n : ℤ) : I ^ (bit0 n) = (-1) ^ n := by rw [fpow_bit0', I_mul_I] @[simp] lemma I_fpow_bit1 (n : ℤ) : I ^ (bit1 n) = (-1) ^ n * I := by rw [fpow_bit1', I_mul_I] lemma div_re (z w : ℂ) : (z / w).re = z.re * w.re / norm_sq w + z.im * w.im / norm_sq w := by simp [div_eq_mul_inv, mul_assoc, sub_eq_add_neg] lemma div_im (z w : ℂ) : (z / w).im = z.im * w.re / norm_sq w - z.re * w.im / norm_sq w := by simp [div_eq_mul_inv, mul_assoc, sub_eq_add_neg, add_comm] @[simp, norm_cast] lemma of_real_div (r s : ℝ) : ((r / s : ℝ) : ℂ) = r / s := of_real.map_div r s @[simp, norm_cast] lemma of_real_fpow (r : ℝ) (n : ℤ) : ((r ^ n : ℝ) : ℂ) = (r : ℂ) ^ n := of_real.map_fpow r n @[simp] lemma div_I (z : ℂ) : z / I = -(z * I) := (div_eq_iff_mul_eq I_ne_zero).2 $ by simp [mul_assoc] @[simp] lemma inv_I : I⁻¹ = -I := by simp [inv_eq_one_div] @[simp] lemma norm_sq_inv (z : ℂ) : norm_sq z⁻¹ = (norm_sq z)⁻¹ := norm_sq.map_inv' z @[simp] lemma norm_sq_div (z w : ℂ) : norm_sq (z / w) = norm_sq z / norm_sq w := norm_sq.map_div z w /-! ### Cast lemmas -/ @[simp, norm_cast] theorem of_real_nat_cast (n : ℕ) : ((n : ℝ) : ℂ) = n := of_real.map_nat_cast n @[simp, norm_cast] lemma nat_cast_re (n : ℕ) : (n : ℂ).re = n := by rw [← of_real_nat_cast, of_real_re] @[simp, norm_cast] lemma nat_cast_im (n : ℕ) : (n : ℂ).im = 0 := by rw [← of_real_nat_cast, of_real_im] @[simp, norm_cast] theorem of_real_int_cast (n : ℤ) : ((n : ℝ) : ℂ) = n := of_real.map_int_cast n @[simp, norm_cast] lemma int_cast_re (n : ℤ) : (n : ℂ).re = n := by rw [← of_real_int_cast, of_real_re] @[simp, norm_cast] lemma int_cast_im (n : ℤ) : (n : ℂ).im = 0 := by rw [← of_real_int_cast, of_real_im] @[simp, norm_cast] theorem of_real_rat_cast (n : ℚ) : ((n : ℝ) : ℂ) = n := of_real.map_rat_cast n @[simp, norm_cast] lemma rat_cast_re (q : ℚ) : (q : ℂ).re = q := by rw [← of_real_rat_cast, of_real_re] @[simp, norm_cast] lemma rat_cast_im (q : ℚ) : (q : ℂ).im = 0 := by rw [← of_real_rat_cast, of_real_im] /-! ### Characteristic zero -/ instance char_zero_complex : char_zero ℂ := char_zero_of_inj_zero $ λ n h, by rwa [← of_real_nat_cast, of_real_eq_zero, nat.cast_eq_zero] at h /-- A complex number `z` plus its conjugate `conj z` is `2` times its real part. -/ theorem re_eq_add_conj (z : ℂ) : (z.re : ℂ) = (z + conj z) / 2 := by simp only [add_conj, of_real_mul, of_real_one, of_real_bit0, mul_div_cancel_left (z.re:ℂ) two_ne_zero'] /-- A complex number `z` minus its conjugate `conj z` is `2i` times its imaginary part. -/ theorem im_eq_sub_conj (z : ℂ) : (z.im : ℂ) = (z - conj(z))/(2 * I) := by simp only [sub_conj, of_real_mul, of_real_one, of_real_bit0, mul_right_comm, mul_div_cancel_left _ (mul_ne_zero two_ne_zero' I_ne_zero : 2 * I ≠ 0)] /-! ### Absolute value -/ /-- The complex absolute value function, defined as the square root of the norm squared. -/ @[pp_nodot] noncomputable def abs (z : ℂ) : ℝ := (norm_sq z).sqrt local notation `abs'` := _root_.abs @[simp, norm_cast] lemma abs_of_real (r : ℝ) : abs r = abs' r := by simp [abs, norm_sq_of_real, real.sqrt_mul_self_eq_abs] lemma abs_of_nonneg {r : ℝ} (h : 0 ≤ r) : abs r = r := (abs_of_real _).trans (abs_of_nonneg h) lemma abs_of_nat (n : ℕ) : complex.abs n = n := calc complex.abs n = complex.abs (n:ℝ) : by rw [of_real_nat_cast] ... = _ : abs_of_nonneg (nat.cast_nonneg n) lemma mul_self_abs (z : ℂ) : abs z * abs z = norm_sq z := real.mul_self_sqrt (norm_sq_nonneg _) @[simp] lemma abs_zero : abs 0 = 0 := by simp [abs] @[simp] lemma abs_one : abs 1 = 1 := by simp [abs] @[simp] lemma abs_I : abs I = 1 := by simp [abs] @[simp] lemma abs_two : abs 2 = 2 := calc abs 2 = abs (2 : ℝ) : by rw [of_real_bit0, of_real_one] ... = (2 : ℝ) : abs_of_nonneg (by norm_num) lemma abs_nonneg (z : ℂ) : 0 ≤ abs z := real.sqrt_nonneg _ @[simp] lemma abs_eq_zero {z : ℂ} : abs z = 0 ↔ z = 0 := (real.sqrt_eq_zero $ norm_sq_nonneg _).trans norm_sq_eq_zero lemma abs_ne_zero {z : ℂ} : abs z ≠ 0 ↔ z ≠ 0 := not_congr abs_eq_zero @[simp] lemma abs_conj (z : ℂ) : abs (conj z) = abs z := by simp [abs] @[simp] lemma abs_mul (z w : ℂ) : abs (z * w) = abs z * abs w := by rw [abs, norm_sq_mul, real.sqrt_mul (norm_sq_nonneg _)]; refl lemma abs_re_le_abs (z : ℂ) : abs' z.re ≤ abs z := by rw [mul_self_le_mul_self_iff (_root_.abs_nonneg z.re) (abs_nonneg _), abs_mul_abs_self, mul_self_abs]; apply re_sq_le_norm_sq lemma abs_im_le_abs (z : ℂ) : abs' z.im ≤ abs z := by rw [mul_self_le_mul_self_iff (_root_.abs_nonneg z.im) (abs_nonneg _), abs_mul_abs_self, mul_self_abs]; apply im_sq_le_norm_sq lemma re_le_abs (z : ℂ) : z.re ≤ abs z := (abs_le.1 (abs_re_le_abs _)).2 lemma im_le_abs (z : ℂ) : z.im ≤ abs z := (abs_le.1 (abs_im_le_abs _)).2 lemma abs_add (z w : ℂ) : abs (z + w) ≤ abs z + abs w := (mul_self_le_mul_self_iff (abs_nonneg _) (add_nonneg (abs_nonneg _) (abs_nonneg _))).2 $ begin rw [mul_self_abs, add_mul_self_eq, mul_self_abs, mul_self_abs, add_right_comm, norm_sq_add, add_le_add_iff_left, mul_assoc, mul_le_mul_left (@zero_lt_two ℝ _ _)], simpa [-mul_re] using re_le_abs (z * conj w) end instance : is_absolute_value abs := { abv_nonneg := abs_nonneg, abv_eq_zero := λ _, abs_eq_zero, abv_add := abs_add, abv_mul := abs_mul } open is_absolute_value @[simp] lemma abs_abs (z : ℂ) : abs' (abs z) = abs z := _root_.abs_of_nonneg (abs_nonneg _) @[simp] lemma abs_pos {z : ℂ} : 0 < abs z ↔ z ≠ 0 := abv_pos abs @[simp] lemma abs_neg : ∀ z, abs (-z) = abs z := abv_neg abs lemma abs_sub : ∀ z w, abs (z - w) = abs (w - z) := abv_sub abs lemma abs_sub_le : ∀ a b c, abs (a - c) ≤ abs (a - b) + abs (b - c) := abv_sub_le abs @[simp] theorem abs_inv : ∀ z, abs z⁻¹ = (abs z)⁻¹ := abv_inv abs @[simp] theorem abs_div : ∀ z w, abs (z / w) = abs z / abs w := abv_div abs lemma abs_abs_sub_le_abs_sub : ∀ z w, abs' (abs z - abs w) ≤ abs (z - w) := abs_abv_sub_le_abv_sub abs lemma abs_le_abs_re_add_abs_im (z : ℂ) : abs z ≤ abs' z.re + abs' z.im := by simpa [re_add_im] using abs_add z.re (z.im * I) lemma abs_re_div_abs_le_one (z : ℂ) : abs' (z.re / z.abs) ≤ 1 := if hz : z = 0 then by simp [hz, zero_le_one] else by { simp_rw [_root_.abs_div, abs_abs, div_le_iff (abs_pos.2 hz), one_mul, abs_re_le_abs] } lemma abs_im_div_abs_le_one (z : ℂ) : abs' (z.im / z.abs) ≤ 1 := if hz : z = 0 then by simp [hz, zero_le_one] else by { simp_rw [_root_.abs_div, abs_abs, div_le_iff (abs_pos.2 hz), one_mul, abs_im_le_abs] } @[simp, norm_cast] lemma abs_cast_nat (n : ℕ) : abs (n : ℂ) = n := by rw [← of_real_nat_cast, abs_of_nonneg (nat.cast_nonneg n)] @[simp, norm_cast] lemma int_cast_abs (n : ℤ) : ↑(abs' n) = abs n := by rw [← of_real_int_cast, abs_of_real, int.cast_abs] lemma norm_sq_eq_abs (x : ℂ) : norm_sq x = abs x ^ 2 := by rw [abs, pow_two, real.mul_self_sqrt (norm_sq_nonneg _)] /-- We put a partial order on ℂ so that `z ≤ w` exactly if `w - z` is real and nonnegative. Complex numbers with different imaginary parts are incomparable. -/ def complex_order : partial_order ℂ := { le := λ z w, ∃ x : ℝ, 0 ≤ x ∧ w = z + x, le_refl := λ x, ⟨0, by simp⟩, le_trans := λ x y z h₁ h₂, begin obtain ⟨w₁, l₁, rfl⟩ := h₁, obtain ⟨w₂, l₂, rfl⟩ := h₂, refine ⟨w₁ + w₂, _, _⟩, { linarith, }, { simp [add_assoc], }, end, le_antisymm := λ z w h₁ h₂, begin obtain ⟨w₁, l₁, rfl⟩ := h₁, obtain ⟨w₂, l₂, e⟩ := h₂, have h₃ : w₁ + w₂ = 0, { symmetry, rw add_assoc at e, apply of_real_inj.mp, apply add_left_cancel, convert e; simp, }, have h₄ : w₁ = 0, linarith, simp [h₄], end, } localized "attribute [instance] complex_order" in complex_order section complex_order open_locale complex_order lemma le_def {z w : ℂ} : z ≤ w ↔ ∃ x : ℝ, 0 ≤ x ∧ w = z + x := iff.refl _ lemma lt_def {z w : ℂ} : z < w ↔ ∃ x : ℝ, 0 < x ∧ w = z + x := begin rw [lt_iff_le_not_le], fsplit, { rintro ⟨⟨x, l, rfl⟩, h⟩, by_cases hx : x = 0, { simp [hx] at h, exfalso, exact h (le_refl _), }, { replace l : 0 < x := l.lt_of_ne (ne.symm hx), exact ⟨x, l, rfl⟩, } }, { rintro ⟨x, l, rfl⟩, fsplit, { exact ⟨x, l.le, rfl⟩, }, { rintro ⟨x', l', e⟩, rw [add_assoc] at e, replace e := add_left_cancel (by { convert e, simp }), norm_cast at e, linarith, } } end @[simp, norm_cast] lemma real_le_real {x y : ℝ} : (x : ℂ) ≤ (y : ℂ) ↔ x ≤ y := begin rw [le_def], fsplit, { rintro ⟨r, l, e⟩, norm_cast at e, subst e, exact le_add_of_nonneg_right l, }, { intro h, exact ⟨y - x, sub_nonneg.mpr h, (by simp)⟩, }, end @[simp, norm_cast] lemma real_lt_real {x y : ℝ} : (x : ℂ) < (y : ℂ) ↔ x < y := begin rw [lt_def], fsplit, { rintro ⟨r, l, e⟩, norm_cast at e, subst e, exact lt_add_of_pos_right x l, }, { intro h, exact ⟨y - x, sub_pos.mpr h, (by simp)⟩, }, end @[simp, norm_cast] lemma zero_le_real {x : ℝ} : (0 : ℂ) ≤ (x : ℂ) ↔ 0 ≤ x := real_le_real @[simp, norm_cast] lemma zero_lt_real {x : ℝ} : (0 : ℂ) < (x : ℂ) ↔ 0 < x := real_lt_real /-- With `z ≤ w` iff `w - z` is real and nonnegative, `ℂ` is an ordered ring. -/ def complex_ordered_comm_ring : ordered_comm_ring ℂ := { zero_le_one := ⟨1, zero_le_one, by simp⟩, add_le_add_left := λ w z h y, begin obtain ⟨x, l, rfl⟩ := h, exact ⟨x, l, by simp [add_assoc]⟩, end, mul_pos := λ z w hz hw, begin obtain ⟨zx, lz, rfl⟩ := lt_def.mp hz, obtain ⟨wx, lw, rfl⟩ := lt_def.mp hw, norm_cast, simp only [mul_pos, lz, lw, zero_add], end, le_of_add_le_add_left := λ u v z h, begin obtain ⟨x, l, e⟩ := h, rw add_assoc at e, exact ⟨x, l, add_left_cancel e⟩, end, mul_lt_mul_of_pos_left := λ u v z h₁ h₂, begin obtain ⟨x₁, l₁, rfl⟩ := lt_def.mp h₁, obtain ⟨x₂, l₂, rfl⟩ := lt_def.mp h₂, simp only [mul_add, zero_add], exact lt_def.mpr ⟨x₂ * x₁, mul_pos l₂ l₁, (by norm_cast)⟩, end, mul_lt_mul_of_pos_right := λ u v z h₁ h₂, begin obtain ⟨x₁, l₁, rfl⟩ := lt_def.mp h₁, obtain ⟨x₂, l₂, rfl⟩ := lt_def.mp h₂, simp only [add_mul, zero_add], exact lt_def.mpr ⟨x₁ * x₂, mul_pos l₁ l₂, (by norm_cast)⟩, end, -- we need more instances here because comm_ring doesn't have zero_add et al as fields, -- they are derived as lemmas ..(by apply_instance : partial_order ℂ), ..(by apply_instance : comm_ring ℂ), ..(by apply_instance : comm_semiring ℂ), ..(by apply_instance : add_cancel_monoid ℂ) } localized "attribute [instance] complex_ordered_comm_ring" in complex_order /-- With `z ≤ w` iff `w - z` is real and nonnegative, `ℂ` is a star ordered ring. (That is, an ordered ring in which every element of the form `star z * z` is nonnegative.) In fact, the nonnegative elements are precisely those of this form. This hold in any `C^*`-algebra, e.g. `ℂ`, but we don't yet have `C^*`-algebras in mathlib. -/ def complex_star_ordered_ring : star_ordered_ring ℂ := { star_mul_self_nonneg := λ z, begin refine ⟨z.abs^2, pow_nonneg (abs_nonneg z) 2, _⟩, simp only [has_star.star, of_real_pow, zero_add], norm_cast, rw [←norm_sq_eq_abs, norm_sq_eq_conj_mul_self], end, } localized "attribute [instance] complex_star_ordered_ring" in complex_order end complex_order /-! ### Cauchy sequences -/ theorem is_cau_seq_re (f : cau_seq ℂ abs) : is_cau_seq abs' (λ n, (f n).re) := λ ε ε0, (f.cauchy ε0).imp $ λ i H j ij, lt_of_le_of_lt (by simpa using abs_re_le_abs (f j - f i)) (H _ ij) theorem is_cau_seq_im (f : cau_seq ℂ abs) : is_cau_seq abs' (λ n, (f n).im) := λ ε ε0, (f.cauchy ε0).imp $ λ i H j ij, lt_of_le_of_lt (by simpa using abs_im_le_abs (f j - f i)) (H _ ij) /-- The real part of a complex Cauchy sequence, as a real Cauchy sequence. -/ noncomputable def cau_seq_re (f : cau_seq ℂ abs) : cau_seq ℝ abs' := ⟨_, is_cau_seq_re f⟩ /-- The imaginary part of a complex Cauchy sequence, as a real Cauchy sequence. -/ noncomputable def cau_seq_im (f : cau_seq ℂ abs) : cau_seq ℝ abs' := ⟨_, is_cau_seq_im f⟩ lemma is_cau_seq_abs {f : ℕ → ℂ} (hf : is_cau_seq abs f) : is_cau_seq abs' (abs ∘ f) := λ ε ε0, let ⟨i, hi⟩ := hf ε ε0 in ⟨i, λ j hj, lt_of_le_of_lt (abs_abs_sub_le_abs_sub _ _) (hi j hj)⟩ /-- The limit of a Cauchy sequence of complex numbers. -/ noncomputable def lim_aux (f : cau_seq ℂ abs) : ℂ := ⟨cau_seq.lim (cau_seq_re f), cau_seq.lim (cau_seq_im f)⟩ theorem equiv_lim_aux (f : cau_seq ℂ abs) : f ≈ cau_seq.const abs (lim_aux f) := λ ε ε0, (exists_forall_ge_and (cau_seq.equiv_lim ⟨_, is_cau_seq_re f⟩ _ (half_pos ε0)) (cau_seq.equiv_lim ⟨_, is_cau_seq_im f⟩ _ (half_pos ε0))).imp $ λ i H j ij, begin cases H _ ij with H₁ H₂, apply lt_of_le_of_lt (abs_le_abs_re_add_abs_im _), dsimp [lim_aux] at *, have := add_lt_add H₁ H₂, rwa add_halves at this, end noncomputable instance : cau_seq.is_complete ℂ abs := ⟨λ f, ⟨lim_aux f, equiv_lim_aux f⟩⟩ open cau_seq lemma lim_eq_lim_im_add_lim_re (f : cau_seq ℂ abs) : lim f = ↑(lim (cau_seq_re f)) + ↑(lim (cau_seq_im f)) * I := lim_eq_of_equiv_const $ calc f ≈ _ : equiv_lim_aux f ... = cau_seq.const abs (↑(lim (cau_seq_re f)) + ↑(lim (cau_seq_im f)) * I) : cau_seq.ext (λ _, complex.ext (by simp [lim_aux, cau_seq_re]) (by simp [lim_aux, cau_seq_im])) lemma lim_re (f : cau_seq ℂ abs) : lim (cau_seq_re f) = (lim f).re := by rw [lim_eq_lim_im_add_lim_re]; simp lemma lim_im (f : cau_seq ℂ abs) : lim (cau_seq_im f) = (lim f).im := by rw [lim_eq_lim_im_add_lim_re]; simp lemma is_cau_seq_conj (f : cau_seq ℂ abs) : is_cau_seq abs (λ n, conj (f n)) := λ ε ε0, let ⟨i, hi⟩ := f.2 ε ε0 in ⟨i, λ j hj, by rw [← conj.map_sub, abs_conj]; exact hi j hj⟩ /-- The complex conjugate of a complex Cauchy sequence, as a complex Cauchy sequence. -/ noncomputable def cau_seq_conj (f : cau_seq ℂ abs) : cau_seq ℂ abs := ⟨_, is_cau_seq_conj f⟩ lemma lim_conj (f : cau_seq ℂ abs) : lim (cau_seq_conj f) = conj (lim f) := complex.ext (by simp [cau_seq_conj, (lim_re _).symm, cau_seq_re]) (by simp [cau_seq_conj, (lim_im _).symm, cau_seq_im, (lim_neg _).symm]; refl) /-- The absolute value of a complex Cauchy sequence, as a real Cauchy sequence. -/ noncomputable def cau_seq_abs (f : cau_seq ℂ abs) : cau_seq ℝ abs' := ⟨_, is_cau_seq_abs f.2⟩ lemma lim_abs (f : cau_seq ℂ abs) : lim (cau_seq_abs f) = abs (lim f) := lim_eq_of_equiv_const (λ ε ε0, let ⟨i, hi⟩ := equiv_lim f ε ε0 in ⟨i, λ j hj, lt_of_le_of_lt (abs_abs_sub_le_abs_sub _ _) (hi j hj)⟩) @[simp, norm_cast] lemma of_real_prod {α : Type*} (s : finset α) (f : α → ℝ) : ((∏ i in s, f i : ℝ) : ℂ) = ∏ i in s, (f i : ℂ) := ring_hom.map_prod of_real _ _ @[simp, norm_cast] lemma of_real_sum {α : Type*} (s : finset α) (f : α → ℝ) : ((∑ i in s, f i : ℝ) : ℂ) = ∑ i in s, (f i : ℂ) := ring_hom.map_sum of_real _ _ end complex
dbc4b2bf3afdc47909531dee72041a7cd253885a
f57749ca63d6416f807b770f67559503fdb21001
/library/data/set/basic.lean
ab7d1701354df5c203047df1ad9af8f2cf8013e0
[ "Apache-2.0" ]
permissive
aliassaf/lean
bd54e85bed07b1ff6f01396551867b2677cbc6ac
f9b069b6a50756588b309b3d716c447004203152
refs/heads/master
1,610,982,152,948
1,438,916,029,000
1,438,916,029,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
7,287
lean
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Jeremy Avigad, Leonardo de Moura -/ import logic algebra.binary open eq.ops binary definition set [reducible] (X : Type) := X → Prop namespace set variable {X : Type} /- membership and subset -/ definition mem [reducible] (x : X) (a : set X) := a x infix `∈` := mem notation a ∉ b := ¬ mem a b theorem setext {a b : set X} (H : ∀x, x ∈ a ↔ x ∈ b) : a = b := funext (take x, propext (H x)) definition subset (a b : set X) := ∀⦃x⦄, x ∈ a → x ∈ b infix `⊆` := subset theorem subset.refl (a : set X) : a ⊆ a := take x, assume H, H theorem subset.trans (a b c : set X) (subab : a ⊆ b) (subbc : b ⊆ c) : a ⊆ c := take x, assume ax, subbc (subab ax) theorem subset.antisymm {a b : set X} (h₁ : a ⊆ b) (h₂ : b ⊆ a) : a = b := setext (λ x, iff.intro (λ ina, h₁ ina) (λ inb, h₂ inb)) -- an alterantive name theorem eq_of_subset_of_subset {a b : set X} (h₁ : a ⊆ b) (h₂ : b ⊆ a) : a = b := subset.antisymm h₁ h₂ definition strict_subset (a b : set X) := a ⊆ b ∧ a ≠ b infix `⊂`:50 := strict_subset theorem strict_subset.irrefl (a : set X) : ¬ a ⊂ a := assume h, absurd rfl (and.elim_right h) /- bounded quantification -/ abbreviation bounded_forall (a : set X) (P : X → Prop) := ∀⦃x⦄, x ∈ a → P x notation `forallb` binders `∈` a `,` r:(scoped:1 P, P) := bounded_forall a r notation `∀₀` binders `∈` a `,` r:(scoped:1 P, P) := bounded_forall a r abbreviation bounded_exists (a : set X) (P : X → Prop) := ∃⦃x⦄, x ∈ a ∧ P x notation `existsb` binders `∈` a `,` r:(scoped:1 P, P) := bounded_exists a r notation `∃₀` binders `∈` a `,` r:(scoped:1 P, P) := bounded_exists a r /- empty set -/ definition empty [reducible] : set X := λx, false notation `∅` := empty theorem not_mem_empty (x : X) : ¬ (x ∈ ∅) := assume H : x ∈ ∅, H theorem mem_empty_eq (x : X) : x ∈ ∅ = false := rfl theorem eq_empty_of_forall_not_mem {s : set X} (H : ∀ x, x ∉ s) : s = ∅ := setext (take x, iff.intro (assume xs, absurd xs (H x)) (assume xe, absurd xe !not_mem_empty)) theorem empty_subset (s : set X) : ∅ ⊆ s := take x, assume H, false.elim H theorem eq_empty_of_subset_empty {s : set X} (H : s ⊆ ∅) : s = ∅ := subset.antisymm H (empty_subset s) theorem subset_empty_iff (s : set X) : s ⊆ ∅ ↔ s = ∅ := iff.intro eq_empty_of_subset_empty (take xeq, by rewrite xeq; apply subset.refl ∅) /- universal set -/ definition univ : set X := λx, true theorem mem_univ (x : X) : x ∈ univ := trivial theorem mem_univ_eq (x : X) : x ∈ univ = true := rfl theorem empty_ne_univ [h : inhabited X] : (empty : set X) ≠ univ := assume H : empty = univ, absurd (mem_univ (inhabited.value h)) (eq.rec_on H (not_mem_empty _)) /- union -/ definition union [reducible] (a b : set X) : set X := λx, x ∈ a ∨ x ∈ b notation a ∪ b := union a b theorem mem_union (x : X) (a b : set X) : x ∈ a ∪ b ↔ x ∈ a ∨ x ∈ b := !iff.refl theorem mem_union_eq (x : X) (a b : set X) : x ∈ a ∪ b = (x ∈ a ∨ x ∈ b) := rfl theorem union_self (a : set X) : a ∪ a = a := setext (take x, !or_self) theorem union_empty (a : set X) : a ∪ ∅ = a := setext (take x, !or_false) theorem empty_union (a : set X) : ∅ ∪ a = a := setext (take x, !false_or) theorem union.comm (a b : set X) : a ∪ b = b ∪ a := setext (take x, or.comm) theorem union.assoc (a b c : set X) : (a ∪ b) ∪ c = a ∪ (b ∪ c) := setext (take x, or.assoc) theorem union.left_comm (s₁ s₂ s₃ : set X) : s₁ ∪ (s₂ ∪ s₃) = s₂ ∪ (s₁ ∪ s₃) := !left_comm union.comm union.assoc s₁ s₂ s₃ theorem union.right_comm (s₁ s₂ s₃ : set X) : (s₁ ∪ s₂) ∪ s₃ = (s₁ ∪ s₃) ∪ s₂ := !right_comm union.comm union.assoc s₁ s₂ s₃ /- intersection -/ definition inter [reducible] (a b : set X) : set X := λx, x ∈ a ∧ x ∈ b notation a ∩ b := inter a b theorem mem_inter (x : X) (a b : set X) : x ∈ a ∩ b ↔ x ∈ a ∧ x ∈ b := !iff.refl theorem mem_inter_eq (x : X) (a b : set X) : x ∈ a ∩ b = (x ∈ a ∧ x ∈ b) := rfl theorem inter_self (a : set X) : a ∩ a = a := setext (take x, !and_self) theorem inter_empty (a : set X) : a ∩ ∅ = ∅ := setext (take x, !and_false) theorem empty_inter (a : set X) : ∅ ∩ a = ∅ := setext (take x, !false_and) theorem inter.comm (a b : set X) : a ∩ b = b ∩ a := setext (take x, !and.comm) theorem inter.assoc (a b c : set X) : (a ∩ b) ∩ c = a ∩ (b ∩ c) := setext (take x, !and.assoc) theorem inter.left_comm (s₁ s₂ s₃ : set X) : s₁ ∩ (s₂ ∩ s₃) = s₂ ∩ (s₁ ∩ s₃) := !left_comm inter.comm inter.assoc s₁ s₂ s₃ theorem inter.right_comm (s₁ s₂ s₃ : set X) : (s₁ ∩ s₂) ∩ s₃ = (s₁ ∩ s₃) ∩ s₂ := !right_comm inter.comm inter.assoc s₁ s₂ s₃ theorem inter_univ (a : set X) : a ∩ univ = a := setext (take x, !and_true) theorem univ_inter (a : set X) : univ ∩ a = a := setext (take x, !true_and) /- distributivity laws -/ theorem inter.distrib_left (s t u : set X) : s ∩ (t ∪ u) = (s ∩ t) ∪ (s ∩ u) := setext (take x, !and.left_distrib) theorem inter.distrib_right (s t u : set X) : (s ∪ t) ∩ u = (s ∩ u) ∪ (t ∩ u) := setext (take x, !and.right_distrib) theorem union.distrib_left (s t u : set X) : s ∪ (t ∩ u) = (s ∪ t) ∩ (s ∪ u) := setext (take x, !or.left_distrib) theorem union.distrib_right (s t u : set X) : (s ∩ t) ∪ u = (s ∪ u) ∩ (t ∪ u) := setext (take x, !or.right_distrib) /- set-builder notation -/ -- {x : X | P} definition set_of (P : X → Prop) : set X := P notation `{` binder `|` r:(scoped:1 P, set_of P) `}` := r -- {x ∈ s | P} definition filter (P : X → Prop) (s : set X) : set X := λx, x ∈ s ∧ P x notation `{` binder ∈ s `|` r:(scoped:1 p, filter p s) `}` := r -- '{x, y, z} definition insert (x : X) (a : set X) : set X := {y : X | y = x ∨ y ∈ a} notation `'{`:max a:(foldr `,` (x b, insert x b) ∅) `}`:0 := a /- set difference -/ definition diff (s t : set X) : set X := {x ∈ s | x ∉ t} infix `\`:70 := diff theorem mem_of_mem_diff {s t : set X} {x : X} (H : x ∈ s \ t) : x ∈ s := and.left H theorem not_mem_of_mem_diff {s t : set X} {x : X} (H : x ∈ s \ t) : x ∉ t := and.right H theorem mem_diff {s t : set X} {x : X} (H1 : x ∈ s) (H2 : x ∉ t) : x ∈ s \ t := and.intro H1 H2 theorem mem_diff_iff (s t : set X) (x : X) : x ∈ s \ t ↔ x ∈ s ∧ x ∉ t := !iff.refl theorem mem_diff_eq (s t : set X) (x : X) : x ∈ s \ t = (x ∈ s ∧ x ∉ t) := rfl /- large unions -/ section variables {I : Type} variable a : set I variable b : I → set X variable C : set (set X) definition Inter : set X := {x : X | ∀i, x ∈ b i} definition bInter : set X := {x : X | ∀₀ i ∈ a, x ∈ b i} definition sInter : set X := {x : X | ∀₀ c ∈ C, x ∈ c} definition Union : set X := {x : X | ∃i, x ∈ b i} definition bUnion : set X := {x : X | ∃₀ i ∈ a, x ∈ b i} definition sUnion : set X := {x : X | ∃₀ c ∈ C, x ∈ c} -- TODO: need notation for these end end set
36163b7aaa00e20910b301bec856e904603ef7db
c5b07d17b3c9fb19e4b302465d237fd1d988c14f
/src/tmp/zipper.lean
44ed22ce6cdc5c1d0f11158e0fe2c62b86638d88
[ "MIT" ]
permissive
skaslev/papers
acaec61602b28c33d6115e53913b2002136aa29b
f15b379f3c43bbd0a37ac7bb75f4278f7e901389
refs/heads/master
1,665,505,770,318
1,660,378,602,000
1,660,378,602,000
14,101,547
0
1
MIT
1,595,414,522,000
1,383,542,702,000
Lean
UTF-8
Lean
false
false
1,026
lean
import data.iso import category.comonad def U := Type def UU := Type → Type axiom deriv : UU → UU -- The generating function of `zipper f` is T(x) = x f'(x) def zipper (f : UU) (A) := A × deriv f A -- The logarithmic derivative of f(x) is g(x) such that f'(x) = f(x) g(x) -- that is g(x) = (ln f(x))' = f'(x)/f(x) def logderiv (f : UU) := Σ g : UU, Π A, iso (deriv f A) (f A × g A) -- Given f(x) and it's logarithmic derivative g(x) we can construct alternative zipper def logderiv_zipper (f : UU) (g : logderiv f) (A) := A × f A × g.1 A -- .. that is isomorphic to the usual one def logderiv_zipper_iso (f : UU) (g : logderiv f) (A) : iso (zipper f A) (logderiv_zipper f g A) := iso.id_iso.mul (g.2 A) namespace zipper variables {f : UU} [functor (deriv f)] def map {A B} (g : A → B) (x : zipper f A) : zipper f B := (g x.1, g <$> x.2) instance : functor (zipper f) := { map := @map _ _ } def extract {A} (z : zipper f A) : A := z.1 -- def dup {A} (z : zipper f A) : zipper f (zipper f A) := end zipper
55195b6348ed860599925222e4ccf59d5bd10b5c
c31182a012eec69da0a1f6c05f42b0f0717d212d
/src/system_of_complexes/truncate.lean
dcbac5e4f0007b5f34567f10d582ded8296ee8fb
[]
no_license
Ja1941/lean-liquid
fbec3ffc7fc67df1b5ca95b7ee225685ab9ffbdc
8e80ed0cbdf5145d6814e833a674eaf05a1495c1
refs/heads/master
1,689,437,983,362
1,628,362,719,000
1,628,362,719,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
7,114
lean
import category_theory.preadditive.additive_functor import system_of_complexes.basic /-! # Truncation In this file we define a truncation functors for (systems of) complexes of seminormed groups. This operation takes a complex `C` indexed by `ℕ`, and creates a new complex whose objects are * in degree `0`: the cokernel of `d : C 0 ⟶ C 1` * in degree `n+1`: the object `C (n+2)` Various lemmas are proved about how this construction preserves or reflects various notions of bounded exactness. -/ universes u noncomputable theory open_locale nnreal open category_theory category_theory.limits namespace SemiNormedGroup open quotient_add_group namespace truncate variables (C : cochain_complex SemiNormedGroup.{u} ℕ) open category_theory.preadditive def X : ℕ → SemiNormedGroup.{u} | 0 := coker (C.d 0 1) | (n+1) := C.X (n+2) def d : Π i j, X C i ⟶ X C j | 0 1 := coker.lift (C.d_comp_d 0 1 2) | (i+1) (j+1) := C.d (i+2) (j+2) | _ _ := 0 lemma d_eq_zero : ∀ ⦃i j : ℕ⦄, ¬(complex_shape.up ℕ).rel i j → d C i j = 0 | 0 0 h := rfl | 0 (j+2) h := rfl | (i+1) 0 h := rfl | 0 1 h := (h rfl).elim | (i+1) (j+1) h := C.shape _ _ $ λ H, h $ nat.succ_injective $ H lemma d_comp_d : Π i j k, i + 1 = j → j + 1 = k → d C i j ≫ d C j k = 0 | 0 1 2 rfl rfl := coker.lift_comp_eq_zero _ (C.d_comp_d _ _ _) | (i+1) (j+1) (k+1) rfl rfl := C.d_comp_d _ _ _ @[simps] def obj : cochain_complex SemiNormedGroup ℕ := { X := X C, d := d C, shape' := d_eq_zero C, d_comp_d' := d_comp_d C } lemma obj_d_add_one (C : cochain_complex SemiNormedGroup ℕ) (i j : ℕ) : (obj C).d (i+1) (j+1) = d C (i+1) (j+1) := rfl def map_f {C₁ C₂ : cochain_complex SemiNormedGroup ℕ} (f : C₁ ⟶ C₂) : Π i:ℕ, X C₁ i ⟶ X C₂ i | 0 := coker.map (f.comm 0 1).symm | (i+1) := f.f (i+2) lemma map_comm {C₁ C₂ : cochain_complex SemiNormedGroup.{u} ℕ} (f : C₁ ⟶ C₂) : Π i j, i + 1 = j → map_f f i ≫ d C₂ i j = d C₁ i j ≫ map_f f j | 0 1 rfl := (coker.map_lift_comm (f.comm 1 2).symm).symm | (i+1) (j+1) rfl := f.comm (i+2) (j+2) @[simps] def map {C₁ C₂ : cochain_complex SemiNormedGroup.{u} ℕ} (f : C₁ ⟶ C₂) : obj C₁ ⟶ obj C₂ := { f := map_f f, comm' := map_comm f } end truncate @[simps] def truncate : cochain_complex SemiNormedGroup.{u} ℕ ⥤ cochain_complex SemiNormedGroup.{u} ℕ := { obj := λ C, truncate.obj C, map := λ C₁ C₂ f, truncate.map f, map_id' := λ C, by ext (n|n) ⟨x⟩; refl, map_comp' := λ C₁ C₂ C₃ f g, by ext (n|n) ⟨x⟩; refl } instance truncate.additive : truncate.additive := { map_zero' := by { intros, ext (n|n) ⟨⟩; refl }, map_add' := by { intros, ext (n|n) ⟨⟩; refl } } end SemiNormedGroup namespace system_of_complexes open category_theory variables (C : system_of_complexes.{u}) @[simps] def truncate : system_of_complexes ⥤ system_of_complexes := (whiskering_right _ _ _).obj $ SemiNormedGroup.truncate @[simp] lemma truncate_obj_d_zero_one (c : ℝ≥0) (y : C c 1) : (truncate.obj C).d 0 1 (SemiNormedGroup.coker.π y) = C.d 1 2 y := rfl @[simp] lemma truncate_obj_d_succ_succ (c : ℝ≥0) (i j : ℕ) (x: truncate.obj C c (i+1)) : (truncate.obj C).d (i+1) (j+1) x = C.d (i+2) (j+2) x := rfl lemma truncate_admissible (hC : C.admissible) : (truncate.obj C).admissible := { d_norm_noninc' := begin rintro c (i|i) j rfl, { apply SemiNormedGroup.coker.lift_norm_noninc, exact hC.d_norm_noninc _ _ 1 2 }, { exact hC.d_norm_noninc _ _ (i+2) (i+3) } end, res_norm_noninc := begin rintro c₁ c₂ (i|i) h x, { apply SemiNormedGroup.coker.lift_norm_noninc, exact SemiNormedGroup.coker.π_norm_noninc.comp (hC.res_norm_noninc _ _ _ _) }, { exact hC.res_norm_noninc _ _ _ _ x } end } variables {k K : ℝ≥0} (m' m : ℕ) [hk : fact (1 ≤ k)] (c₀ : ℝ≥0) include hk lemma truncate_is_weak_bounded_exact (hC : C.is_weak_bounded_exact k K (m+1) c₀) : (truncate.obj C).is_weak_bounded_exact k K m c₀ | c hc 0 hi x ε hε := begin let π := λ c, @SemiNormedGroup.coker.π _ _ (@d C c 0 1), obtain ⟨x, rfl⟩ : ∃ x', π _ x' = x := SemiNormedGroup.coker.π_surjective x, obtain ⟨i₀, -, hi₀, rfl, y, hy⟩ := hC c hc _ (nat.succ_le_succ hi) x ε hε, obtain rfl : i₀ = 0, { rwa nat.sub_self at hi₀ }, clear hi, refine ⟨0, _, rfl, rfl, 0, _⟩, simp only [normed_group_hom.map_zero, sub_zero, normed_group_hom.map_neg, truncate_obj_d_zero_one, norm_neg], calc _ = ∥π c (res x - C.d 0 1 y)∥ : _ ... ≤ ∥res x - C.d 0 1 y∥ : SemiNormedGroup.coker.π_norm_noninc _ ... ≤ _ : hy, have hπy : π c (C.d 0 1 y) = 0, { show (C.d 0 1 ≫ π c) y = 0, rw [SemiNormedGroup.coker.comp_pi_eq_zero], refl }, simp only [normed_group_hom.map_sub, hπy, sub_zero], refl end | c hc (i+1) hi x ε hε := begin obtain ⟨_, _, rfl, rfl, y, hy⟩ := hC c hc _ (nat.succ_le_succ hi) x ε hε, refine ⟨i, _, rfl, rfl, _⟩, cases i; [exact ⟨SemiNormedGroup.coker.π y, hy⟩, exact ⟨y, hy⟩], end lemma is_weak_bounded_exact_of_truncate (IH : C.is_weak_bounded_exact k K m c₀) (hC : (truncate.obj C).is_weak_bounded_exact k K m c₀) : C.is_weak_bounded_exact k K (m+1) c₀ | c hc 0 hi x ε hε := IH c hc 0 (nat.zero_le _) x ε hε | c hc 1 hi x ε hε := begin let π := λ c, @SemiNormedGroup.coker.π _ _ (@d C c 0 1), let δ := ε / 2, have hδε : δ + δ = ε, { dsimp [δ], rw [← add_div, half_add_self] }, have hδ : 0 < δ := div_pos hε zero_lt_two, obtain ⟨x', Hxx', Hx'⟩ : ∃ x', π c x' = π c (res x) ∧ ∥x'∥ < ∥π c (res x)∥ + δ := SemiNormedGroup.coker.π_is_quotient.norm_lift hδ _, obtain ⟨y, hy⟩ : ∃ y : C c 0, C.d 0 1 y = res x - x', { erw [quotient_add_group.eq, add_comm, ← sub_eq_add_neg, set.mem_range] at Hxx', exact Hxx' }, obtain ⟨_, _, rfl, rfl, y', H⟩ := hC c hc _ (nat.zero_le m) (π _ x) δ hδ, refine ⟨0, 2, rfl, rfl, y, _⟩, simp only [d_self_apply, normed_group_hom.map_zero, sub_zero, truncate_obj_d_zero_one, norm_neg] at H ⊢, calc ∥res x - (C.d 0 1) y∥ ≤ ∥x'∥ : by rw [hy, sub_sub_cancel] ... ≤ ∥π c (res x)∥ + δ : Hx'.le ... ≤ ↑K * ∥C.d 1 2 x∥ + δ + δ : add_le_add_right H _ ... ≤ ↑K * ∥C.d 1 2 x∥ + ε : by rw [add_assoc, hδε] end | c hc (i+2) hi x ε hε := begin obtain ⟨_, _, rfl, rfl, y, hy⟩ := hC c hc (i+1) (nat.pred_le_pred hi) x ε hε, refine ⟨i+1, _, rfl, rfl, _⟩, cases i, { let π := λ c, @SemiNormedGroup.coker.π _ _ (@d C c 0 1), obtain ⟨y, rfl⟩ : ∃ y', π _ y' = y := SemiNormedGroup.coker.π_surjective y, exact ⟨y, hy⟩ }, { exact ⟨y, hy⟩ }, end lemma truncate_is_weak_bounded_exact_iff (hC : C.is_weak_bounded_exact k K m c₀) : (truncate.obj C).is_weak_bounded_exact k K m c₀ ↔ C.is_weak_bounded_exact k K (m+1) c₀ := ⟨is_weak_bounded_exact_of_truncate C m c₀ hC, truncate_is_weak_bounded_exact C m c₀⟩ omit hk end system_of_complexes
57518249c804cff5798c369151c28552fbf84a0d
fa02ed5a3c9c0adee3c26887a16855e7841c668b
/src/analysis/normed_space/normed_group_hom.lean
344d230bae0d6cd4ff4262406922645212c1cbb6
[ "Apache-2.0" ]
permissive
jjgarzella/mathlib
96a345378c4e0bf26cf604aed84f90329e4896a2
395d8716c3ad03747059d482090e2bb97db612c8
refs/heads/master
1,686,480,124,379
1,625,163,323,000
1,625,163,323,000
281,190,421
2
0
Apache-2.0
1,595,268,170,000
1,595,268,169,000
null
UTF-8
Lean
false
false
22,368
lean
/- Copyright (c) 2021 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin -/ import analysis.normed_space.basic import topology.sequences /-! # Normed groups homomorphisms This file gathers definitions and elementary constructions about bounded group homomorphisms between normed (abelian) groups (abbreviated to "normed group homs"). The main lemmas relate the boundedness condition to continuity and Lipschitzness. The main construction is to endow the type of normed group homs between two given normed groups with a group structure and a norm, giving rise to a normed group structure. Some easy other constructions are related to subgroups of normed groups. Since a lot of elementary properties don't require `∥x∥ = 0 → x = 0` we start setting up the theory of `semi_normed_group_hom` and we specialize to `normed_group_hom` when needed. -/ noncomputable theory open_locale nnreal big_operators /-- A morphism of seminormed abelian groups is a bounded group homomorphism. -/ structure normed_group_hom (V W : Type*) [semi_normed_group V] [semi_normed_group W] := (to_fun : V → W) (map_add' : ∀ v₁ v₂, to_fun (v₁ + v₂) = to_fun v₁ + to_fun v₂) (bound' : ∃ C, ∀ v, ∥to_fun v∥ ≤ C * ∥v∥) namespace add_monoid_hom variables {V W : Type*} [semi_normed_group V] [semi_normed_group W] {f g : normed_group_hom V W} /-- Associate to a group homomorphism a bounded group homomorphism under a norm control condition. See `add_monoid_hom.mk_normed_group_hom'` for a version that uses `ℝ≥0` for the bound. -/ def mk_normed_group_hom (f : V →+ W) (C : ℝ) (h : ∀ v, ∥f v∥ ≤ C * ∥v∥) : normed_group_hom V W := { bound' := ⟨C, h⟩, ..f } /-- Associate to a group homomorphism a bounded group homomorphism under a norm control condition. See `add_monoid_hom.mk_normed_group_hom` for a version that uses `ℝ` for the bound. -/ def mk_normed_group_hom' (f : V →+ W) (C : ℝ≥0) (hC : ∀ x, nnnorm (f x) ≤ C * nnnorm x) : normed_group_hom V W := { bound' := ⟨C, hC⟩ .. f} end add_monoid_hom lemma exists_pos_bound_of_bound {V W : Type*} [semi_normed_group V] [semi_normed_group W] {f : V → W} (M : ℝ) (h : ∀x, ∥f x∥ ≤ M * ∥x∥) : ∃ N, 0 < N ∧ ∀x, ∥f x∥ ≤ N * ∥x∥ := ⟨max M 1, lt_of_lt_of_le zero_lt_one (le_max_right _ _), λx, calc ∥f x∥ ≤ M * ∥x∥ : h x ... ≤ max M 1 * ∥x∥ : mul_le_mul_of_nonneg_right (le_max_left _ _) (norm_nonneg _) ⟩ namespace normed_group_hom variables {V V₁ V₂ V₃ : Type*} variables [semi_normed_group V] [semi_normed_group V₁] [semi_normed_group V₂] [semi_normed_group V₃] variables {f g : normed_group_hom V₁ V₂} instance : has_coe_to_fun (normed_group_hom V₁ V₂) := ⟨_, normed_group_hom.to_fun⟩ initialize_simps_projections normed_group_hom (to_fun → apply) lemma coe_inj (H : ⇑f = g) : f = g := by cases f; cases g; congr'; exact funext H lemma coe_injective : @function.injective (normed_group_hom V₁ V₂) (V₁ → V₂) coe_fn := by apply coe_inj lemma coe_inj_iff : f = g ↔ ⇑f = g := ⟨congr_arg _, coe_inj⟩ @[ext] lemma ext (H : ∀ x, f x = g x) : f = g := coe_inj $ funext H lemma ext_iff : f = g ↔ ∀ x, f x = g x := ⟨by rintro rfl x; refl, ext⟩ variables (f g) @[simp] lemma to_fun_eq_coe : f.to_fun = f := rfl @[simp] lemma coe_mk (f) (h₁) (h₂) (h₃) : ⇑(⟨f, h₁, h₂, h₃⟩ : normed_group_hom V₁ V₂) = f := rfl @[simp] lemma coe_mk_normed_group_hom (f : V₁ →+ V₂) (C) (hC) : ⇑(f.mk_normed_group_hom C hC) = f := rfl @[simp] lemma coe_mk_normed_group_hom' (f : V₁ →+ V₂) (C) (hC) : ⇑(f.mk_normed_group_hom' C hC) = f := rfl /-- The group homomorphism underlying a bounded group homomorphism. -/ def to_add_monoid_hom (f : normed_group_hom V₁ V₂) : V₁ →+ V₂ := add_monoid_hom.mk' f f.map_add' @[simp] lemma coe_to_add_monoid_hom : ⇑f.to_add_monoid_hom = f := rfl lemma to_add_monoid_hom_injective : function.injective (@normed_group_hom.to_add_monoid_hom V₁ V₂ _ _) := λ f g h, coe_inj $ show ⇑f.to_add_monoid_hom = g, by { rw h, refl } @[simp] lemma mk_to_add_monoid_hom (f) (h₁) (h₂) : (⟨f, h₁, h₂⟩ : normed_group_hom V₁ V₂).to_add_monoid_hom = add_monoid_hom.mk' f h₁ := rfl @[simp] lemma map_zero : f 0 = 0 := f.to_add_monoid_hom.map_zero @[simp] lemma map_add (x y) : f (x + y) = f x + f y := f.to_add_monoid_hom.map_add _ _ @[simp] lemma map_sum {ι : Type*} (v : ι → V₁) (s : finset ι) : f (∑ i in s, v i) = ∑ i in s, f (v i) := f.to_add_monoid_hom.map_sum _ _ @[simp] lemma map_sub (x y) : f (x - y) = f x - f y := f.to_add_monoid_hom.map_sub _ _ @[simp] lemma map_neg (x) : f (-x) = -(f x) := f.to_add_monoid_hom.map_neg _ lemma bound : ∃ C, 0 < C ∧ ∀ x, ∥f x∥ ≤ C * ∥x∥ := let ⟨C, hC⟩ := f.bound' in exists_pos_bound_of_bound _ hC theorem antilipschitz_of_norm_ge {K : ℝ≥0} (h : ∀ x, ∥x∥ ≤ K * ∥f x∥) : antilipschitz_with K f := antilipschitz_with.of_le_mul_dist $ λ x y, by simpa only [dist_eq_norm, f.map_sub] using h (x - y) /-! ### The operator norm -/ /-- The operator norm of a seminormed group homomorphism is the inf of all its bounds. -/ def op_norm (f : normed_group_hom V₁ V₂) := Inf {c | 0 ≤ c ∧ ∀ x, ∥f x∥ ≤ c * ∥x∥} instance has_op_norm : has_norm (normed_group_hom V₁ V₂) := ⟨op_norm⟩ lemma norm_def : ∥f∥ = Inf {c | 0 ≤ c ∧ ∀ x, ∥f x∥ ≤ c * ∥x∥} := rfl -- So that invocations of `real.Inf_le` make sense: we show that the set of -- bounds is nonempty and bounded below. lemma bounds_nonempty {f : normed_group_hom V₁ V₂} : ∃ c, c ∈ { c | 0 ≤ c ∧ ∀ x, ∥f x∥ ≤ c * ∥x∥ } := let ⟨M, hMp, hMb⟩ := f.bound in ⟨M, le_of_lt hMp, hMb⟩ lemma bounds_bdd_below {f : normed_group_hom V₁ V₂} : bdd_below {c | 0 ≤ c ∧ ∀ x, ∥f x∥ ≤ c * ∥x∥} := ⟨0, λ _ ⟨hn, _⟩, hn⟩ lemma op_norm_nonneg : 0 ≤ ∥f∥ := real.lb_le_Inf _ bounds_nonempty (λ _ ⟨hx, _⟩, hx) /-- The fundamental property of the operator norm: `∥f x∥ ≤ ∥f∥ * ∥x∥`. -/ theorem le_op_norm (x : V₁) : ∥f x∥ ≤ ∥f∥ * ∥x∥ := begin obtain ⟨C, Cpos, hC⟩ := f.bound, replace hC := hC x, by_cases h : ∥x∥ = 0, { rwa [h, mul_zero] at ⊢ hC }, have hlt : 0 < ∥x∥ := lt_of_le_of_ne (norm_nonneg x) (ne.symm h), exact (div_le_iff hlt).mp ((real.le_Inf _ bounds_nonempty bounds_bdd_below).2 (λ c ⟨_, hc⟩, (div_le_iff hlt).mpr $ by { apply hc })), end theorem le_op_norm_of_le {c : ℝ} {x} (h : ∥x∥ ≤ c) : ∥f x∥ ≤ ∥f∥ * c := le_trans (f.le_op_norm x) (mul_le_mul_of_nonneg_left h f.op_norm_nonneg) theorem le_of_op_norm_le {c : ℝ} (h : ∥f∥ ≤ c) (x : V₁) : ∥f x∥ ≤ c * ∥x∥ := (f.le_op_norm x).trans (mul_le_mul_of_nonneg_right h (norm_nonneg x)) /-- continuous linear maps are Lipschitz continuous. -/ theorem lipschitz : lipschitz_with ⟨∥f∥, op_norm_nonneg f⟩ f := lipschitz_with.of_dist_le_mul $ λ x y, by { rw [dist_eq_norm, dist_eq_norm, ←map_sub], apply le_op_norm } protected lemma uniform_continuous (f : normed_group_hom V₁ V₂) : uniform_continuous f := f.lipschitz.uniform_continuous @[continuity] protected lemma continuous (f : normed_group_hom V₁ V₂) : continuous f := f.uniform_continuous.continuous lemma ratio_le_op_norm (x : V₁) : ∥f x∥ / ∥x∥ ≤ ∥f∥ := div_le_of_nonneg_of_le_mul (norm_nonneg _) f.op_norm_nonneg (le_op_norm _ _) /-- If one controls the norm of every `f x`, then one controls the norm of `f`. -/ lemma op_norm_le_bound {M : ℝ} (hMp: 0 ≤ M) (hM : ∀ x, ∥f x∥ ≤ M * ∥x∥) : ∥f∥ ≤ M := real.Inf_le _ bounds_bdd_below ⟨hMp, hM⟩ theorem op_norm_le_of_lipschitz {f : normed_group_hom V₁ V₂} {K : ℝ≥0} (hf : lipschitz_with K f) : ∥f∥ ≤ K := f.op_norm_le_bound K.2 $ λ x, by simpa only [dist_zero_right, f.map_zero] using hf.dist_le_mul x 0 /-- If a bounded group homomorphism map is constructed from a group homomorphism via the constructor `mk_normed_group_hom`, then its norm is bounded by the bound given to the constructor if it is nonnegative. -/ lemma mk_normed_group_hom_norm_le (f : V₁ →+ V₂) {C : ℝ} (hC : 0 ≤ C) (h : ∀x, ∥f x∥ ≤ C * ∥x∥) : ∥f.mk_normed_group_hom C h∥ ≤ C := op_norm_le_bound _ hC h /-- If a bounded group homomorphism map is constructed from a group homomorphism via the constructor `mk_normed_group_hom`, then its norm is bounded by the bound given to the constructor or zero if this bound is negative. -/ lemma mk_normed_group_hom_norm_le' (f : V₁ →+ V₂) {C : ℝ} (h : ∀x, ∥f x∥ ≤ C * ∥x∥) : ∥f.mk_normed_group_hom C h∥ ≤ max C 0 := op_norm_le_bound _ (le_max_right _ _) $ λ x, (h x).trans $ mul_le_mul_of_nonneg_right (le_max_left _ _) (norm_nonneg x) alias mk_normed_group_hom_norm_le ← add_monoid_hom.mk_normed_group_hom_norm_le alias mk_normed_group_hom_norm_le' ← add_monoid_hom.mk_normed_group_hom_norm_le' /-! ### Addition of normed group homs -/ /-- Addition of normed group homs. -/ instance : has_add (normed_group_hom V₁ V₂) := ⟨λ f g, (f.to_add_monoid_hom + g.to_add_monoid_hom).mk_normed_group_hom (∥f∥ + ∥g∥) $ λ v, calc ∥f v + g v∥ ≤ ∥f v∥ + ∥g v∥ : norm_add_le _ _ ... ≤ ∥f∥ * ∥v∥ + ∥g∥ * ∥v∥ : add_le_add (le_op_norm f v) (le_op_norm g v) ... = (∥f∥ + ∥g∥) * ∥v∥ : by rw add_mul⟩ /-- The operator norm satisfies the triangle inequality. -/ theorem op_norm_add_le : ∥f + g∥ ≤ ∥f∥ + ∥g∥ := mk_normed_group_hom_norm_le _ (add_nonneg (op_norm_nonneg _) (op_norm_nonneg _)) _ /-- Terms containing `@has_add.add (has_coe_to_fun.F ...) pi.has_add` seem to cause leanchecker to [crash due to an out-of-memory condition](https://github.com/leanprover-community/lean/issues/543). As a workaround, we add a type annotation: `(f + g : V₁ → V₂)` -/ library_note "addition on function coercions" -- see Note [addition on function coercions] @[simp] lemma coe_add (f g : normed_group_hom V₁ V₂) : ⇑(f + g) = (f + g : V₁ → V₂) := rfl @[simp] lemma add_apply (f g : normed_group_hom V₁ V₂) (v : V₁) : (f + g : normed_group_hom V₁ V₂) v = f v + g v := rfl /-! ### The zero normed group hom -/ instance : has_zero (normed_group_hom V₁ V₂) := ⟨(0 : V₁ →+ V₂).mk_normed_group_hom 0 (by simp)⟩ instance : inhabited (normed_group_hom V₁ V₂) := ⟨0⟩ /-- The norm of the `0` operator is `0`. -/ theorem op_norm_zero : ∥(0 : normed_group_hom V₁ V₂)∥ = 0 := le_antisymm (real.Inf_le _ bounds_bdd_below ⟨ge_of_eq rfl, λ _, le_of_eq (by { rw [zero_mul], exact norm_zero })⟩) (op_norm_nonneg _) /-- For normed groups, an operator is zero iff its norm vanishes. -/ theorem op_norm_zero_iff {V₁ V₂ : Type*} [normed_group V₁] [normed_group V₂] {f : normed_group_hom V₁ V₂} : ∥f∥ = 0 ↔ f = 0 := iff.intro (λ hn, ext (λ x, norm_le_zero_iff.1 (calc _ ≤ ∥f∥ * ∥x∥ : le_op_norm _ _ ... = _ : by rw [hn, zero_mul]))) (λ hf, by rw [hf, op_norm_zero] ) -- see Note [addition on function coercions] @[simp] lemma coe_zero : ⇑(0 : normed_group_hom V₁ V₂) = (0 : V₁ → V₂) := rfl @[simp] lemma zero_apply (v : V₁) : (0 : normed_group_hom V₁ V₂) v = 0 := rfl variables {f g} /-! ### The identity normed group hom -/ variable (V) /-- The identity as a continuous normed group hom. -/ @[simps] def id : normed_group_hom V V := (add_monoid_hom.id V).mk_normed_group_hom 1 (by simp [le_refl]) /-- The norm of the identity is at most `1`. It is in fact `1`, except when the norm of every element vanishes, where it is `0`. (Since we are working with seminorms this can happen even if the space is non-trivial.) It means that one can not do better than an inequality in general. -/ lemma norm_id_le : ∥(id V : normed_group_hom V V)∥ ≤ 1 := op_norm_le_bound _ zero_le_one (λx, by simp) /-- If there is an element with norm different from `0`, then the norm of the identity equals `1`. (Since we are working with seminorms supposing that the space is non-trivial is not enough.) -/ lemma norm_id_of_nontrivial_seminorm (h : ∃ (x : V), ∥x∥ ≠ 0 ) : ∥(id V)∥ = 1 := le_antisymm (norm_id_le V) $ let ⟨x, hx⟩ := h in have _ := (id V).ratio_le_op_norm x, by rwa [id_apply, div_self hx] at this /-- If a normed space is non-trivial, then the norm of the identity equals `1`. -/ lemma norm_id {V : Type*} [normed_group V] [nontrivial V] : ∥(id V)∥ = 1 := begin refine norm_id_of_nontrivial_seminorm V _, obtain ⟨x, hx⟩ := exists_ne (0 : V), exact ⟨x, ne_of_gt (norm_pos_iff.2 hx)⟩, end lemma coe_id : ((normed_group_hom.id V) : V → V) = (_root_.id : V → V) := rfl /-! ### The negation of a normed group hom -/ /-- Opposite of a normed group hom. -/ instance : has_neg (normed_group_hom V₁ V₂) := ⟨λ f, (-f.to_add_monoid_hom).mk_normed_group_hom (∥f∥) (λ v, by simp [le_op_norm f v])⟩ -- see Note [addition on function coercions] @[simp] lemma coe_neg (f : normed_group_hom V₁ V₂) : ⇑(-f) = (-f : V₁ → V₂) := rfl @[simp] lemma neg_apply (f : normed_group_hom V₁ V₂) (v : V₁) : (-f : normed_group_hom V₁ V₂) v = - (f v) := rfl lemma op_norm_neg (f : normed_group_hom V₁ V₂) : ∥-f∥ = ∥f∥ := by simp only [norm_def, coe_neg, norm_neg, pi.neg_apply] /-! ### Subtraction of normed group homs -/ /-- Subtraction of normed group homs. -/ instance : has_sub (normed_group_hom V₁ V₂) := ⟨λ f g, { bound' := begin simp only [add_monoid_hom.sub_apply, add_monoid_hom.to_fun_eq_coe, sub_eq_add_neg], exact (f + -g).bound' end, .. (f.to_add_monoid_hom - g.to_add_monoid_hom) }⟩ -- see Note [addition on function coercions] @[simp] lemma coe_sub (f g : normed_group_hom V₁ V₂) : ⇑(f - g) = (f - g : V₁ → V₂) := rfl @[simp] lemma sub_apply (f g : normed_group_hom V₁ V₂) (v : V₁) : (f - g : normed_group_hom V₁ V₂) v = f v - g v := rfl /-! ### Normed group structure on normed group homs -/ /-- Homs between two given normed groups form a commutative additive group. -/ instance : add_comm_group (normed_group_hom V₁ V₂) := coe_injective.add_comm_group _ rfl (λ _ _, rfl) (λ _, rfl) (λ _ _, rfl) /-- Normed group homomorphisms themselves form a seminormed group with respect to the operator norm. -/ instance to_semi_normed_group : semi_normed_group (normed_group_hom V₁ V₂) := semi_normed_group.of_core _ ⟨op_norm_zero, op_norm_add_le, op_norm_neg⟩ /-- Normed group homomorphisms themselves form a normed group with respect to the operator norm. -/ instance to_normed_group {V₁ V₂ : Type*} [normed_group V₁] [normed_group V₂] : normed_group (normed_group_hom V₁ V₂) := normed_group.of_core _ ⟨λ f, op_norm_zero_iff, op_norm_add_le, op_norm_neg⟩ /-- Coercion of a `normed_group_hom` is an `add_monoid_hom`. Similar to `add_monoid_hom.coe_fn` -/ @[simps] def coe_fn_add_hom : normed_group_hom V₁ V₂ →+ (V₁ → V₂) := { to_fun := coe_fn, map_zero' := coe_zero, map_add' := coe_add} @[simp] lemma coe_sum {ι : Type*} (s : finset ι) (f : ι → normed_group_hom V₁ V₂) : ⇑(∑ i in s, f i) = ∑ i in s, (f i) := (coe_fn_add_hom : _ →+ (V₁ → V₂)).map_sum f s lemma sum_apply {ι : Type*} (s : finset ι) (f : ι → normed_group_hom V₁ V₂) (v : V₁) : (∑ i in s, f i) v = ∑ i in s, (f i v) := by simp only [coe_sum, finset.sum_apply] /-! ### Composition of normed group homs -/ /-- The composition of continuous normed group homs. -/ @[simps] protected def comp (g : normed_group_hom V₂ V₃) (f : normed_group_hom V₁ V₂) : normed_group_hom V₁ V₃ := (g.to_add_monoid_hom.comp f.to_add_monoid_hom).mk_normed_group_hom (∥g∥ * ∥f∥) $ λ v, calc ∥g (f v)∥ ≤ ∥g∥ * ∥f v∥ : le_op_norm _ _ ... ≤ ∥g∥ * (∥f∥ * ∥v∥) : mul_le_mul_of_nonneg_left (le_op_norm _ _) (op_norm_nonneg _) ... = ∥g∥ * ∥f∥ * ∥v∥ : by rw mul_assoc lemma norm_comp_le (g : normed_group_hom V₂ V₃) (f : normed_group_hom V₁ V₂) : ∥g.comp f∥ ≤ ∥g∥ * ∥f∥ := mk_normed_group_hom_norm_le _ (mul_nonneg (op_norm_nonneg _) (op_norm_nonneg _)) _ lemma norm_comp_le_of_le {g : normed_group_hom V₂ V₃} {C₁ C₂ : ℝ} (hg : ∥g∥ ≤ C₂) (hf : ∥f∥ ≤ C₁) : ∥g.comp f∥ ≤ C₂ * C₁ := le_trans (norm_comp_le g f) $ mul_le_mul hg hf (norm_nonneg _) (le_trans (norm_nonneg _) hg) lemma norm_comp_le_of_le' {g : normed_group_hom V₂ V₃} (C₁ C₂ C₃ : ℝ) (h : C₃ = C₂ * C₁) (hg : ∥g∥ ≤ C₂) (hf : ∥f∥ ≤ C₁) : ∥g.comp f∥ ≤ C₃ := by { rw h, exact norm_comp_le_of_le hg hf } /-- Composition of normed groups hom as an additive group morphism. -/ def comp_hom : (normed_group_hom V₂ V₃) →+ (normed_group_hom V₁ V₂) →+ (normed_group_hom V₁ V₃) := add_monoid_hom.mk' (λ g, add_monoid_hom.mk' (λ f, g.comp f) (by { intros, ext, exact g.map_add _ _ })) (by { intros, ext, simp only [comp_apply, pi.add_apply, function.comp_app, add_monoid_hom.add_apply, add_monoid_hom.mk'_apply, coe_add] }) @[simp] lemma comp_zero (f : normed_group_hom V₂ V₃) : f.comp (0 : normed_group_hom V₁ V₂) = 0 := by { ext, exact f.map_zero } @[simp] lemma zero_comp (f : normed_group_hom V₁ V₂) : (0 : normed_group_hom V₂ V₃).comp f = 0 := by { ext, refl } lemma comp_assoc {V₄: Type* } [semi_normed_group V₄] (h : normed_group_hom V₃ V₄) (g : normed_group_hom V₂ V₃) (f : normed_group_hom V₁ V₂) : (h.comp g).comp f = h.comp (g.comp f) := by { ext, refl } lemma coe_comp (f : normed_group_hom V₁ V₂) (g : normed_group_hom V₂ V₃) : (g.comp f : V₁ → V₃) = (g : V₂ → V₃) ∘ (f : V₁ → V₂) := rfl end normed_group_hom namespace normed_group_hom variables {V W V₁ V₂ V₃ : Type*} variables [semi_normed_group V] [semi_normed_group W] [semi_normed_group V₁] [semi_normed_group V₂] [semi_normed_group V₃] /-- The inclusion of an `add_subgroup`, as bounded group homomorphism. -/ @[simps] def incl (s : add_subgroup V) : normed_group_hom s V := { to_fun := (coe : s → V), map_add' := λ v w, add_subgroup.coe_add _ _ _, bound' := ⟨1, λ v, by { rw [one_mul], refl }⟩ } lemma norm_incl {V' : add_subgroup V} (x : V') : ∥incl _ x∥ = ∥x∥ := rfl /-!### Kernel -/ section kernels variables (f : normed_group_hom V₁ V₂) (g : normed_group_hom V₂ V₃) /-- The kernel of a bounded group homomorphism. Naturally endowed with a `semi_normed_group` instance. -/ def ker : add_subgroup V₁ := f.to_add_monoid_hom.ker lemma mem_ker (v : V₁) : v ∈ f.ker ↔ f v = 0 := by { erw f.to_add_monoid_hom.mem_ker, refl } /-- Given a normed group hom `f : V₁ → V₂` satisfying `g.comp f = 0` for some `g : V₂ → V₃`, the corestriction of `f` to the kernel of `g`. -/ @[simps] def ker.lift (h : g.comp f = 0) : normed_group_hom V₁ g.ker := { to_fun := λ v, ⟨f v, by { erw g.mem_ker, show (g.comp f) v = 0, rw h, refl }⟩, map_add' := λ v w, by { simp only [map_add], refl }, bound' := f.bound' } @[simp] lemma ker.incl_comp_lift (h : g.comp f = 0) : (incl g.ker).comp (ker.lift f g h) = f := by { ext, refl } @[simp] lemma ker_zero : (0 : normed_group_hom V₁ V₂).ker = ⊤ := by { ext, simp [mem_ker] } lemma coe_ker : (f.ker : set V₁) = (f : V₁ → V₂) ⁻¹' {0} := rfl lemma is_closed_ker {V₂ : Type*} [normed_group V₂] (f : normed_group_hom V₁ V₂) : is_closed (f.ker : set V₁) := f.coe_ker ▸ is_closed.preimage f.continuous (t1_space.t1 0) end kernels /-! ### Range -/ section range variables (f : normed_group_hom V₁ V₂) (g : normed_group_hom V₂ V₃) /-- The image of a bounded group homomorphism. Naturally endowed with a `semi_normed_group` instance. -/ def range : add_subgroup V₂ := f.to_add_monoid_hom.range lemma mem_range (v : V₂) : v ∈ f.range ↔ ∃ w, f w = v := by { rw [range, add_monoid_hom.mem_range], refl } lemma comp_range : (g.comp f).range = add_subgroup.map g.to_add_monoid_hom f.range := by { erw add_monoid_hom.map_range, refl } lemma incl_range (s : add_subgroup V₁) : (incl s).range = s := by { ext x, exact ⟨λ ⟨y, hy⟩, by { rw ← hy; simp }, λ hx, ⟨⟨x, hx⟩, by simp⟩⟩ } @[simp] lemma range_comp_incl_top : (f.comp (incl (⊤ : add_subgroup V₁))).range = f.range := by simpa [comp_range, incl_range, ← add_monoid_hom.range_eq_map] end range variables {f : normed_group_hom V W} /-- A `normed_group_hom` is *norm-nonincreasing* if `∥f v∥ ≤ ∥v∥` for all `v`. -/ def norm_noninc (f : normed_group_hom V W) : Prop := ∀ v, ∥f v∥ ≤ ∥v∥ namespace norm_noninc lemma norm_noninc_iff_norm_le_one : f.norm_noninc ↔ ∥f∥ ≤ 1 := begin refine ⟨λ h, _, λ h, λ v, _⟩, { refine op_norm_le_bound _ (zero_le_one) (λ v, _), simpa [one_mul] using h v }, { simpa using le_of_op_norm_le f h v } end lemma zero : (0 : normed_group_hom V₁ V₂).norm_noninc := λ v, by simp lemma id : (id V).norm_noninc := λ v, le_rfl lemma comp {g : normed_group_hom V₂ V₃} {f : normed_group_hom V₁ V₂} (hg : g.norm_noninc) (hf : f.norm_noninc) : (g.comp f).norm_noninc := λ v, (hg (f v)).trans (hf v) end norm_noninc section isometry lemma isometry_iff_norm (f : normed_group_hom V W) : isometry f ↔ ∀ v, ∥f v∥ = ∥v∥ := add_monoid_hom.isometry_iff_norm f.to_add_monoid_hom lemma isometry_of_norm (f : normed_group_hom V W) (hf : ∀ v, ∥f v∥ = ∥v∥) : isometry f := f.isometry_iff_norm.mpr hf lemma norm_eq_of_isometry {f : normed_group_hom V W} (hf : isometry f) (v : V) : ∥f v∥ = ∥v∥ := f.isometry_iff_norm.mp hf v lemma isometry_id : @isometry V V _ _ (id V) := isometry_id lemma isometry_comp {g : normed_group_hom V₂ V₃} {f : normed_group_hom V₁ V₂} (hg : isometry g) (hf : isometry f) : isometry (g.comp f) := hg.comp hf lemma norm_noninc_of_isometry (hf : isometry f) : f.norm_noninc := λ v, le_of_eq $ norm_eq_of_isometry hf v end isometry end normed_group_hom
4dca7da2a15339c7e66cfbcbc23fab9e5d178535
649957717d58c43b5d8d200da34bf374293fe739
/src/category_theory/discrete_category.lean
0635033c17caaec5bc7d1f42dc540c4a873e0b7e
[ "Apache-2.0" ]
permissive
Vtec234/mathlib
b50c7b21edea438df7497e5ed6a45f61527f0370
fb1848bbbfce46152f58e219dc0712f3289d2b20
refs/heads/master
1,592,463,095,113
1,562,737,749,000
1,562,737,749,000
196,202,858
0
0
Apache-2.0
1,562,762,338,000
1,562,762,337,000
null
UTF-8
Lean
false
false
2,423
lean
-- Copyright (c) 2017 Scott Morrison. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Authors: Stephen Morgan, Scott Morrison, Floris van Doorn import data.ulift import category_theory.opposites category_theory.equivalence namespace category_theory universes v₁ v₂ u₁ u₂ -- declare the `v`'s first; see `category_theory.category` for an explanation -- We only work in `Type`, rather than `Sort`, as we need to use `ulift`. def discrete (α : Type u₁) := α instance discrete_category (α : Type u₁) : small_category (discrete α) := { hom := λ X Y, ulift (plift (X = Y)), id := λ X, ulift.up (plift.up rfl), comp := λ X Y Z g f, by { rcases f with ⟨⟨rfl⟩⟩, exact g } } namespace discrete variables {α : Type u₁} @[simp] lemma id_def (X : discrete α) : ulift.up (plift.up (eq.refl X)) = 𝟙 X := rfl end discrete variables {C : Type u₂} [𝒞 : category.{v₂} C] include 𝒞 namespace functor @[simp] def of_function {I : Type u₁} (F : I → C) : (discrete I) ⥤ C := { obj := F, map := λ X Y f, begin cases f, cases f, cases f, exact 𝟙 (F X) end } end functor namespace nat_trans @[simp] def of_homs {I : Type u₁} {F G : discrete I ⥤ C} (f : Π i : discrete I, F.obj i ⟶ G.obj i) : F ⟶ G := { app := f } @[simp] def of_function {I : Type u₁} {F G : I → C} (f : Π i : I, F i ⟶ G i) : (functor.of_function F) ⟶ (functor.of_function G) := of_homs f end nat_trans namespace nat_iso @[simp] def of_isos {I : Type u₁} {F G : discrete I ⥤ C} (f : Π i : discrete I, F.obj i ≅ G.obj i) : F ≅ G := of_components f (by tidy) end nat_iso namespace discrete variables {J : Type v₁} omit 𝒞 def lift {α : Type u₁} {β : Type u₂} (f : α → β) : (discrete α) ⥤ (discrete β) := functor.of_function f open opposite protected def opposite (α : Type u₁) : (discrete α)ᵒᵖ ≌ discrete α := let F : discrete α ⥤ (discrete α)ᵒᵖ := functor.of_function (λ x, op x) in begin refine equivalence.mk (functor.left_op F) F _ (nat_iso.of_isos $ λ X, by simp [F]), refine nat_iso.of_components (λ X, by simp [F]) _, tidy end include 𝒞 @[simp] lemma functor_map_id (F : discrete J ⥤ C) {j : discrete J} (f : j ⟶ j) : F.map f = 𝟙 (F.obj j) := begin have h : f = 𝟙 j, cases f, cases f, ext, rw h, simp, end end discrete end category_theory
f7b8e41ae022858522ce244422f9febb2cdea272
43390109ab88557e6090f3245c47479c123ee500
/src/M1F/problem_bank/0504/Q0504.lean
9a4c410d4e8b6ea57bb7aae58cf412128c9a03a0
[ "Apache-2.0" ]
permissive
Ja1941/xena-UROP-2018
41f0956519f94d56b8bf6834a8d39473f4923200
b111fb87f343cf79eca3b886f99ee15c1dd9884b
refs/heads/master
1,662,355,955,139
1,590,577,325,000
1,590,577,325,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
211
lean
import algebra.group_power tactic.norm_num algebra.big_operators def factorial : ℕ → ℕ | 0 := 1 | (n+1) := (factorial n) * (n+1) theorem Q4 (n : ℕ) (H : n > 0) : factorial n < 3^n ↔ n ≤ 6 := sorry
07d77268afb9809c9268126d9ad996404e93064a
8cae430f0a71442d02dbb1cbb14073b31048e4b0
/src/geometry/manifold/vector_bundle/fiberwise_linear.lean
d2253f00b568dd2cace2d8d5b88c3ea3f2ffbcf2
[ "Apache-2.0" ]
permissive
leanprover-community/mathlib
56a2cadd17ac88caf4ece0a775932fa26327ba0e
442a83d738cb208d3600056c489be16900ba701d
refs/heads/master
1,693,584,102,358
1,693,471,902,000
1,693,471,902,000
97,922,418
1,595
352
Apache-2.0
1,694,693,445,000
1,500,624,130,000
Lean
UTF-8
Lean
false
false
15,128
lean
/- Copyright (c) 2022 Floris van Doorn, Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn, Heather Macbeth -/ import geometry.manifold.cont_mdiff /-! # The groupoid of smooth, fiberwise-linear maps > THIS FILE IS SYNCHRONIZED WITH MATHLIB4. > Any changes to this file require a corresponding PR to mathlib4. This file contains preliminaries for the definition of a smooth vector bundle: an associated `structure_groupoid`, the groupoid of `smooth_fiberwise_linear` functions. -/ noncomputable theory open set topological_space open_locale manifold topology /-! ### The groupoid of smooth, fiberwise-linear maps -/ variables {𝕜 B F : Type*} [topological_space B] variables [nontrivially_normed_field 𝕜] [normed_add_comm_group F] [normed_space 𝕜 F] namespace fiberwise_linear variables {φ φ' : B → F ≃L[𝕜] F} {U U' : set B} /-- For `B` a topological space and `F` a `𝕜`-normed space, a map from `U : set B` to `F ≃L[𝕜] F` determines a local homeomorphism from `B × F` to itself by its action fiberwise. -/ def local_homeomorph (φ : B → F ≃L[𝕜] F) (hU : is_open U) (hφ : continuous_on (λ x, φ x : B → F →L[𝕜] F) U) (h2φ : continuous_on (λ x, (φ x).symm : B → F →L[𝕜] F) U) : local_homeomorph (B × F) (B × F) := { to_fun := λ x, (x.1, φ x.1 x.2), inv_fun := λ x, (x.1, (φ x.1).symm x.2), source := U ×ˢ univ, target := U ×ˢ univ, map_source' := λ x hx, mk_mem_prod hx.1 (mem_univ _), map_target' := λ x hx, mk_mem_prod hx.1 (mem_univ _), left_inv' := λ x _, prod.ext rfl (continuous_linear_equiv.symm_apply_apply _ _), right_inv' := λ x _, prod.ext rfl (continuous_linear_equiv.apply_symm_apply _ _), open_source := hU.prod is_open_univ, open_target := hU.prod is_open_univ, continuous_to_fun := begin have : continuous_on (λ p : B × F, ((φ p.1 : F →L[𝕜] F), p.2)) (U ×ˢ univ), { exact hφ.prod_map continuous_on_id }, exact continuous_on_fst.prod (is_bounded_bilinear_map_apply.continuous.comp_continuous_on this), end, continuous_inv_fun := begin have : continuous_on (λ p : B × F, (((φ p.1).symm : F →L[𝕜] F), p.2)) (U ×ˢ univ), { exact h2φ.prod_map continuous_on_id }, exact continuous_on_fst.prod (is_bounded_bilinear_map_apply.continuous.comp_continuous_on this), end, } /-- Compute the composition of two local homeomorphisms induced by fiberwise linear equivalences. -/ lemma trans_local_homeomorph_apply (hU : is_open U) (hφ : continuous_on (λ x, φ x : B → F →L[𝕜] F) U) (h2φ : continuous_on (λ x, (φ x).symm : B → F →L[𝕜] F) U) (hU' : is_open U') (hφ' : continuous_on (λ x, φ' x : B → F →L[𝕜] F) U') (h2φ' : continuous_on (λ x, (φ' x).symm : B → F →L[𝕜] F) U') (b : B) (v : F) : (fiberwise_linear.local_homeomorph φ hU hφ h2φ ≫ₕ fiberwise_linear.local_homeomorph φ' hU' hφ' h2φ') ⟨b, v⟩ = ⟨b, φ' b (φ b v)⟩ := rfl /-- Compute the source of the composition of two local homeomorphisms induced by fiberwise linear equivalences. -/ lemma source_trans_local_homeomorph (hU : is_open U) (hφ : continuous_on (λ x, φ x : B → F →L[𝕜] F) U) (h2φ : continuous_on (λ x, (φ x).symm : B → F →L[𝕜] F) U) (hU' : is_open U') (hφ' : continuous_on (λ x, φ' x : B → F →L[𝕜] F) U') (h2φ' : continuous_on (λ x, (φ' x).symm : B → F →L[𝕜] F) U') : (fiberwise_linear.local_homeomorph φ hU hφ h2φ ≫ₕ fiberwise_linear.local_homeomorph φ' hU' hφ' h2φ').source = (U ∩ U') ×ˢ univ := by { dsimp only [fiberwise_linear.local_homeomorph], mfld_set_tac } /-- Compute the target of the composition of two local homeomorphisms induced by fiberwise linear equivalences. -/ lemma target_trans_local_homeomorph (hU : is_open U) (hφ : continuous_on (λ x, φ x : B → F →L[𝕜] F) U) (h2φ : continuous_on (λ x, (φ x).symm : B → F →L[𝕜] F) U) (hU' : is_open U') (hφ' : continuous_on (λ x, φ' x : B → F →L[𝕜] F) U') (h2φ' : continuous_on (λ x, (φ' x).symm : B → F →L[𝕜] F) U') : (fiberwise_linear.local_homeomorph φ hU hφ h2φ ≫ₕ fiberwise_linear.local_homeomorph φ' hU' hφ' h2φ').target = (U ∩ U') ×ˢ univ := by { dsimp only [fiberwise_linear.local_homeomorph], mfld_set_tac } end fiberwise_linear variables {EB : Type*} [normed_add_comm_group EB] [normed_space 𝕜 EB] {HB : Type*} [topological_space HB] [charted_space HB B] {IB : model_with_corners 𝕜 EB HB} /-- Let `e` be a local homeomorphism of `B × F`. Suppose that at every point `p` in the source of `e`, there is some neighbourhood `s` of `p` on which `e` is equal to a bi-smooth fiberwise linear local homeomorphism. Then the source of `e` is of the form `U ×ˢ univ`, for some set `U` in `B`, and, at any point `x` in `U`, admits a neighbourhood `u` of `x` such that `e` is equal on `u ×ˢ univ` to some bi-smooth fiberwise linear local homeomorphism. -/ lemma smooth_fiberwise_linear.locality_aux₁ (e : local_homeomorph (B × F) (B × F)) (h : ∀ p ∈ e.source, ∃ s : set (B × F), is_open s ∧ p ∈ s ∧ ∃ (φ : B → (F ≃L[𝕜] F)) (u : set B) (hu : is_open u) (hφ : smooth_on IB 𝓘(𝕜, F →L[𝕜] F) (λ x, (φ x : F →L[𝕜] F)) u) (h2φ : smooth_on IB 𝓘(𝕜, F →L[𝕜] F) (λ x, ((φ x).symm : F →L[𝕜] F)) u), (e.restr s).eq_on_source (fiberwise_linear.local_homeomorph φ hu hφ.continuous_on h2φ.continuous_on)) : ∃ (U : set B) (hU : e.source = U ×ˢ univ), ∀ x ∈ U, ∃ (φ : B → (F ≃L[𝕜] F)) (u : set B) (hu : is_open u) (huU : u ⊆ U) (hux : x ∈ u) (hφ : smooth_on IB 𝓘(𝕜, F →L[𝕜] F) (λ x, (φ x : F →L[𝕜] F)) u) (h2φ : smooth_on IB 𝓘(𝕜, F →L[𝕜] F) (λ x, ((φ x).symm : F →L[𝕜] F)) u), (e.restr (u ×ˢ univ)).eq_on_source (fiberwise_linear.local_homeomorph φ hu hφ.continuous_on h2φ.continuous_on) := begin rw [set_coe.forall'] at h, -- choose s hs hsp φ u hu hφ h2φ heφ using h, -- the following 2 lines should be `choose s hs hsp φ u hu hφ h2φ heφ using h,` -- `choose` produces a proof term that takes a long time to type-check by the kernel (it seems) -- porting note: todo: try using `choose` again in Lean 4 simp only [classical.skolem, ← exists_prop] at h, rcases h with ⟨s, hs, hsp, φ, u, hu, hφ, h2φ, heφ⟩, have hesu : ∀ p : e.source, e.source ∩ s p = u p ×ˢ univ, { intros p, rw ← e.restr_source' (s _) (hs _), exact (heφ p).1 }, have hu' : ∀ p : e.source, (p : B × F).fst ∈ u p, { intros p, have : (p : B × F) ∈ e.source ∩ s p := ⟨p.prop, hsp p⟩, simpa only [hesu, mem_prod, mem_univ, and_true] using this }, have heu : ∀ p : e.source, ∀ q : B × F, q.fst ∈ u p → q ∈ e.source, { intros p q hq, have : q ∈ u p ×ˢ (univ : set F) := ⟨hq, trivial⟩, rw ← hesu p at this, exact this.1 }, have he : e.source = (prod.fst '' e.source) ×ˢ (univ : set F), { apply has_subset.subset.antisymm, { intros p hp, exact ⟨⟨p, hp, rfl⟩, trivial⟩ }, { rintros ⟨x, v⟩ ⟨⟨p, hp, rfl : p.fst = x⟩, -⟩, exact heu ⟨p, hp⟩ (p.fst, v) (hu' ⟨p, hp⟩) } }, refine ⟨prod.fst '' e.source, he, _⟩, rintros x ⟨p, hp, rfl⟩, refine ⟨φ ⟨p, hp⟩, u ⟨p, hp⟩, hu ⟨p, hp⟩, _, hu' _, hφ ⟨p, hp⟩, h2φ ⟨p, hp⟩, _⟩, { intros y hy, refine ⟨(y, 0), heu ⟨p, hp⟩ ⟨_, _⟩ hy, rfl⟩ }, { rw [← hesu, e.restr_source_inter], exact heφ ⟨p, hp⟩ }, end /-- Let `e` be a local homeomorphism of `B × F` whose source is `U ×ˢ univ`, for some set `U` in `B`, and which, at any point `x` in `U`, admits a neighbourhood `u` of `x` such that `e` is equal on `u ×ˢ univ` to some bi-smooth fiberwise linear local homeomorphism. Then `e` itself is equal to some bi-smooth fiberwise linear local homeomorphism. This is the key mathematical point of the `locality` condition in the construction of the `structure_groupoid` of bi-smooth fiberwise linear local homeomorphisms. The proof is by gluing together the various bi-smooth fiberwise linear local homeomorphism which exist locally. The `U` in the conclusion is the same `U` as in the hypothesis. We state it like this, because this is exactly what we need for `smooth_fiberwise_linear`. -/ lemma smooth_fiberwise_linear.locality_aux₂ (e : local_homeomorph (B × F) (B × F)) (U : set B) (hU : e.source = U ×ˢ univ) (h : ∀ x ∈ U, ∃ (φ : B → (F ≃L[𝕜] F)) (u : set B) (hu : is_open u) (hUu : u ⊆ U) (hux : x ∈ u) (hφ : smooth_on IB 𝓘(𝕜, F →L[𝕜] F) (λ x, (φ x : F →L[𝕜] F)) u) (h2φ : smooth_on IB 𝓘(𝕜, F →L[𝕜] F) (λ x, ((φ x).symm : F →L[𝕜] F)) u), (e.restr (u ×ˢ univ)).eq_on_source (fiberwise_linear.local_homeomorph φ hu hφ.continuous_on h2φ.continuous_on)) : ∃ (Φ : B → (F ≃L[𝕜] F)) (U : set B) (hU₀ : is_open U) (hΦ : smooth_on IB 𝓘(𝕜, F →L[𝕜] F) (λ x, (Φ x : F →L[𝕜] F)) U) (h2Φ : smooth_on IB 𝓘(𝕜, F →L[𝕜] F) (λ x, ((Φ x).symm : F →L[𝕜] F)) U), e.eq_on_source (fiberwise_linear.local_homeomorph Φ hU₀ hΦ.continuous_on h2Φ.continuous_on) := begin classical, rw set_coe.forall' at h, choose! φ u hu hUu hux hφ h2φ heφ using h, have heuφ : ∀ x : U, eq_on e (λ q, (q.1, φ x q.1 q.2)) (u x ×ˢ univ), { intros x p hp, refine (heφ x).2 _, rw (heφ x).1, exact hp }, have huφ : ∀ (x x' : U) (y : B) (hyx : y ∈ u x) (hyx' : y ∈ u x'), φ x y = φ x' y, { intros p p' y hyp hyp', ext v, have h1 : e (y, v) = (y, φ p y v) := heuφ _ ⟨(id hyp : (y, v).fst ∈ u p), trivial⟩, have h2 : e (y, v) = (y, φ p' y v) := heuφ _ ⟨(id hyp' : (y, v).fst ∈ u p'), trivial⟩, exact congr_arg prod.snd (h1.symm.trans h2) }, have hUu' : U = ⋃ i, u i, { ext x, rw mem_Union, refine ⟨λ h, ⟨⟨x, h⟩, hux _⟩, _⟩, rintros ⟨x, hx⟩, exact hUu x hx }, have hU' : is_open U, { rw hUu', apply is_open_Union hu }, let Φ₀ : U → F ≃L[𝕜] F := Union_lift u (λ x, (φ x) ∘ coe) huφ U hUu'.le, let Φ : B → F ≃L[𝕜] F := λ y, if hy : y ∈ U then Φ₀ ⟨y, hy⟩ else continuous_linear_equiv.refl 𝕜 F, have hΦ : ∀ (y) (hy : y ∈ U), Φ y = Φ₀ ⟨y, hy⟩ := λ y hy, dif_pos hy, have hΦφ : ∀ x : U, ∀ y ∈ u x, Φ y = φ x y, { intros x y hyu, refine (hΦ y (hUu x hyu)).trans _, exact Union_lift_mk ⟨y, hyu⟩ _ }, have hΦ : smooth_on IB 𝓘(𝕜, F →L[𝕜] F) (λ y, (Φ y : F →L[𝕜] F)) U, { apply cont_mdiff_on_of_locally_cont_mdiff_on, intros x hx, refine ⟨u ⟨x, hx⟩, hu ⟨x, hx⟩, hux _, _⟩, refine (cont_mdiff_on.congr (hφ ⟨x, hx⟩) _).mono (inter_subset_right _ _), intros y hy, rw hΦφ ⟨x, hx⟩ y hy }, have h2Φ : smooth_on IB 𝓘(𝕜, F →L[𝕜] F) (λ y, ((Φ y).symm : F →L[𝕜] F)) U, { apply cont_mdiff_on_of_locally_cont_mdiff_on, intros x hx, refine ⟨u ⟨x, hx⟩, hu ⟨x, hx⟩, hux _, _⟩, refine (cont_mdiff_on.congr (h2φ ⟨x, hx⟩) _).mono (inter_subset_right _ _), intros y hy, rw hΦφ ⟨x, hx⟩ y hy }, refine ⟨Φ, U, hU', hΦ, h2Φ, hU, λ p hp, _⟩, rw [hU] at hp, -- using rw on the next line seems to cause a timeout in kernel type-checking refine (heuφ ⟨p.fst, hp.1⟩ ⟨hux _, hp.2⟩).trans _, congrm (_, _), rw hΦφ, apply hux end variables (F B IB) /-- For `B` a manifold and `F` a normed space, the groupoid on `B × F` consisting of local homeomorphisms which are bi-smooth and fiberwise linear, and induce the identity on `B`. When a (topological) vector bundle is smooth, then the composition of charts associated to the vector bundle belong to this groupoid. -/ def smooth_fiberwise_linear : structure_groupoid (B × F) := { members := ⋃ (φ : B → F ≃L[𝕜] F) (U : set B) (hU : is_open U) (hφ : smooth_on IB 𝓘(𝕜, F →L[𝕜] F) (λ x, φ x : B → F →L[𝕜] F) U) (h2φ : smooth_on IB 𝓘(𝕜, F →L[𝕜] F) (λ x, (φ x).symm : B → F →L[𝕜] F) U), {e | e.eq_on_source (fiberwise_linear.local_homeomorph φ hU hφ.continuous_on h2φ.continuous_on)}, trans' := begin simp_rw [mem_Union], rintros e e' ⟨φ, U, hU, hφ, h2φ, heφ⟩ ⟨φ', U', hU', hφ', h2φ', heφ'⟩, refine ⟨λ b, (φ b).trans (φ' b), _, hU.inter hU', _, _, setoid.trans (heφ.trans' heφ') ⟨_, _⟩⟩, { show smooth_on IB 𝓘(𝕜, F →L[𝕜] F) (λ (x : B), (φ' x).to_continuous_linear_map ∘L (φ x).to_continuous_linear_map) (U ∩ U'), exact (hφ'.mono $ inter_subset_right _ _).clm_comp (hφ.mono $ inter_subset_left _ _) }, { show smooth_on IB 𝓘(𝕜, F →L[𝕜] F) (λ (x : B), (φ x).symm.to_continuous_linear_map ∘L (φ' x).symm.to_continuous_linear_map) (U ∩ U'), exact (h2φ.mono $ inter_subset_left _ _).clm_comp (h2φ'.mono $ inter_subset_right _ _) }, { apply fiberwise_linear.source_trans_local_homeomorph }, { rintros ⟨b, v⟩ hb, apply fiberwise_linear.trans_local_homeomorph_apply } end, symm' := begin simp_rw [mem_Union], rintros e ⟨φ, U, hU, hφ, h2φ, heφ⟩, refine ⟨λ b, (φ b).symm, U, hU, h2φ, _, heφ.symm'⟩, simp_rw continuous_linear_equiv.symm_symm, exact hφ end, id_mem' := begin simp_rw [mem_Union], refine ⟨λ b, continuous_linear_equiv.refl 𝕜 F, univ, is_open_univ, _, _, ⟨_, λ b hb, _⟩⟩, { apply cont_mdiff_on_const }, { apply cont_mdiff_on_const }, { simp only [fiberwise_linear.local_homeomorph, local_homeomorph.refl_local_equiv, local_equiv.refl_source, univ_prod_univ] }, { simp only [fiberwise_linear.local_homeomorph, local_homeomorph.refl_apply, prod.mk.eta, id.def, continuous_linear_equiv.coe_refl', local_homeomorph.mk_coe, local_equiv.coe_mk] }, end, locality' := begin -- the hard work has been extracted to `locality_aux₁` and `locality_aux₂` simp_rw [mem_Union], intros e he, obtain ⟨U, hU, h⟩ := smooth_fiberwise_linear.locality_aux₁ e he, exact smooth_fiberwise_linear.locality_aux₂ e U hU h, end, eq_on_source' := begin simp_rw [mem_Union], rintros e e' ⟨φ, U, hU, hφ, h2φ, heφ⟩ hee', exact ⟨φ, U, hU, hφ, h2φ, setoid.trans hee' heφ⟩, end } @[simp] lemma mem_smooth_fiberwise_linear_iff (e : local_homeomorph (B × F) (B × F)) : e ∈ smooth_fiberwise_linear B F IB ↔ ∃ (φ : B → F ≃L[𝕜] F) (U : set B) (hU : is_open U) (hφ : smooth_on IB 𝓘(𝕜, F →L[𝕜] F) (λ x, φ x : B → F →L[𝕜] F) U) (h2φ : smooth_on IB 𝓘(𝕜, F →L[𝕜] F) (λ x, (φ x).symm : B → F →L[𝕜] F) U), e.eq_on_source (fiberwise_linear.local_homeomorph φ hU hφ.continuous_on h2φ.continuous_on) := show e ∈ set.Union _ ↔ _, by { simp only [mem_Union], refl }
1c9db72effbe9a3e9254d81d26fb55b1b0acb62d
7cef822f3b952965621309e88eadf618da0c8ae9
/src/topology/topological_fiber_bundle.lean
9997aceba5bcc23662f9c5c4b22d782e7fd1edd4
[ "Apache-2.0" ]
permissive
rmitta/mathlib
8d90aee30b4db2b013e01f62c33f297d7e64a43d
883d974b608845bad30ae19e27e33c285200bf84
refs/heads/master
1,585,776,832,544
1,576,874,096,000
1,576,874,096,000
153,663,165
0
2
Apache-2.0
1,544,806,490,000
1,539,884,365,000
Lean
UTF-8
Lean
false
false
23,772
lean
/- Copyright (c) 2019 Sébastien Gouëzel. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Sébastien Gouëzel -/ import topology.local_homeomorph /-! # Fiber bundles A topological fiber bundle with fiber F over a base B is a space projecting on B for which the fibers are all homeomorphic to F, such that the local situation around each point is a direct product. We define a predicate `is_topological_fiber_bundle F p` saying that `p : Z → B` is a topological fiber bundle with fiber `F`. It is in general nontrivial to construct a fiber bundle. A way is to start from the knowledge of how changes of local trivializations act on the fiber. From this, one can construct the total space of the bundle and its topology by a suitable gluing construction. The main content of this file is an implementation of this construction: starting from an object of type `topological_fiber_bundle_core` registering the trivialization changes, one gets the corresponding fiber bundle and projection. ## Main definitions `bundle_trivialization F p` : structure extending local homeomorphisms, defining a local trivialization of a topological space `Z` with projection `p` and fiber `F`. `is_topological_fiber_bundle F p` : Prop saying that the map `p` between topological spaces is a fiber bundle with fiber `F`. `topological_fiber_bundle_core ι B F` : structure registering how changes of coordinates act on the fiber `F` above open subsets of `B`, where local trivializations are indexed by ι. Let `Z : topological_fiber_bundle_core ι B F`. Then we define `Z.total_space` : the total space of `Z`, defined as a Type as `B × F`, but with a twisted topology coming from the fiber bundle structure `Z.proj` : projection from `Z.total_space` to `B`. It is continuous. `Z.fiber x` : the fiber above `x`, homeomorphic to `F` (and defeq to `F` as a type). `Z.local_triv i`: for `i : ι`, a local homeomorphism from `Z.total_space` to `B × F`, that realizes a trivialization above the set `Z.base_set i`, which is an open set in `B`. ## Implementation notes A topological fiber bundle with fiber F over a base B is a family of spaces isomorphic to F, indexed by B, which is locally trivial in the following sense: there is a covering of B by open sets such that, on each such open set `s`, the bundle is isomorphic to `s × F`. To construct a fiber bundle formally, the main data is what happens when one changes trivializations from `s × F` to `s' × F` on `s ∩ s'`: one should get a family of homeomorphisms of `F`, depending continuously on the base point, satisfying basic compatibility conditions (cocycle property). Useful classes of bundles can then be specified by requiring that these homeomorphisms of `F` belong to some subgroup, preserving some structure (the "structure group of the bundle"): then these structures are inherited by the fibers of the bundle. Given such trivialization change data (encoded below in a structure called `topological_fiber_bundle_core`), one can construct the fiber bundle. The intrinsic canonical mathematical construction is the following. The fiber above x is the disjoint union of F over all trivializations, modulo the gluing identifications: one gets a fiber which is isomorphic to F, but non-canonically (each choice of one of the trivializations around x gives such an isomorphism). Given a trivialization over a set `s`, one gets an isomorphism between `s × F` and `proj^{-1} s`, by using the identification corresponding to this trivialization. One chooses the topology on the bundle that makes all of these into homeomorphisms. For the practical implementation, it turns out to be more convenient to avoid completely the gluing and quotienting construction above, and to declare above each `x` that the fiber is `F`, but thinking that it corresponds to the `F` coming from the choice of one trivialization around `x`. This has several practical advantages: * without any work, one gets a topological space structure on the fiber. And if `F` has more structure it is inherited for free by the fiber. * In the trivial situation of the trivial bundle where there is only one chart and one trivialization, this construction gives the product space B × F with the product topology. In the case of the tangent bundle of manifolds, this also implies that on vector spaces the derivative and the manifold derivative are equal. A drawback is that some silly constructions will typecheck: in the case of the tangent bundle, one can add two vectors in different tangent spaces (as they both are elements of F from the point of view of Lean). To solve this, one could mark the tangent space as irreducible, but then one would lose the identification of the tangent space to F with F. There is however a big advantage of this situation: even if Lean can not check that two basepoints are defeq, it will accept the fact that the tangent spaces are the same. For instance, if two maps f and g are locally inverse to each other, one can express that the composition of their derivatives is the identity of `tangent_space I x`. One could fear issues as this composition goes from `tangent_space I x` to `tangent_space I (g (f x))` (which should be the same, but should not be obvious to Lean as it does not know that `g (f x) = x`). As these types are the same to Lean (equal to `F`), there are in fact no dependent type difficulties here! For this construction of a fiber bundle from a `topological_fiber_bundle_core`, we should thus choose for each `x` one specific trivialization around it. We include this choice in the definition of the `topological_fiber_bundle_core`, as it makes some constructions more functorial and it is a nice way to say that the trivializations cover the whole space B. With this definition, the type of the fiber bundle space constructed from the core data is just `B × F`, but the topology is not the product one. We also take the indexing type (indexing all the trivializations) as a parameter to the fiber bundle core: it could always be taken as a subtype of all the maps from open subsets of B to continuous maps of F, but in practice it will sometimes be something else. For instance, on a manifold, one will use the set of charts as a good parameterization for the trivializations of the tangent bundle. Or for the pullback of a `topological_fiber_bundle_core`, the indexing type will be the same as for the initial bundle. ## Tags Fiber bundle, topological bundle, vector bundle, local trivialization, structure group -/ variables {ι : Type*} {B : Type*} {F : Type*} open topological_space set open_locale topological_space section topological_fiber_bundle variables {Z : Type*} [topological_space B] [topological_space Z] [topological_space F] (proj : Z → B) variable (F) /-- A structure extending local homeomorphisms, defining a local trivialization of a projection `proj : Z → B` with fiber `F`, as a local homeomorphism between `Z` and `B × F` defined between two sets of the form `proj ⁻¹' base_set` and `base_set × F`, acting trivially on the first coordinate. -/ structure bundle_trivialization extends local_homeomorph Z (B × F) := (base_set : set B) (open_base_set : is_open base_set) (source_eq : source = proj ⁻¹' base_set) (target_eq : target = set.prod base_set univ) (proj_to_fun : ∀ p ∈ source, (to_fun p).1 = proj p) /-- A topological fiber bundle with fiber F over a base B is a space projecting on B for which the fibers are all homeomorphic to F, such that the local situation around each point is a direct product. -/ def is_topological_fiber_bundle : Prop := ∀ x : Z, ∃e : bundle_trivialization F proj, x ∈ e.source variables {F} {proj} /-- In the domain of a bundle trivialization, the projection is continuous-/ lemma bundle_trivialization.continuous_at_proj (e : bundle_trivialization F proj) {x : Z} (ex : x ∈ e.source) : continuous_at proj x := begin assume s hs, obtain ⟨t, st, t_open, xt⟩ : ∃ t ⊆ s, is_open t ∧ proj x ∈ t, from mem_nhds_sets_iff.1 hs, rw e.source_eq at ex, let u := e.base_set ∩ t, have u_open : is_open u := is_open_inter e.open_base_set t_open, have xu : proj x ∈ u := ⟨ex, xt⟩, /- Take a small enough open neighborhood u of `proj x`, contained in a trivialization domain o. One should show that its preimage is open. -/ suffices : is_open (proj ⁻¹' u), { have : proj ⁻¹' u ∈ 𝓝 x := mem_nhds_sets this xu, apply filter.mem_sets_of_superset this, exact preimage_mono (subset.trans (inter_subset_right _ _) st) }, -- to do this, rewrite `proj ⁻¹' u` in terms of the trivialization, and use its continuity. have : proj ⁻¹' u = e.to_fun ⁻¹' (set.prod u univ) ∩ e.source, { ext p, split, { assume h, have : p ∈ e.source, { rw e.source_eq, have : u ⊆ e.base_set := inter_subset_left _ _, exact preimage_mono this h }, simp [this, e.proj_to_fun, h.1, h.2] }, { rintros ⟨h, h_source⟩, simpa [e.proj_to_fun, h_source] using h } }, rw [this, inter_comm], exact continuous_on.preimage_open_of_open e.continuous_to_fun e.open_source (is_open_prod u_open is_open_univ) end /-- The projection from a topological fiber bundle to its base is continuous. -/ lemma is_topological_fiber_bundle.continuous_proj (h : is_topological_fiber_bundle F proj) : continuous proj := begin rw continuous_iff_continuous_at, assume x, rcases h x with ⟨e, ex⟩, exact e.continuous_at_proj ex end /-- The projection from a topological fiber bundle to its base is an open map. -/ lemma is_topological_fiber_bundle.is_open_map_proj (h : is_topological_fiber_bundle F proj) : is_open_map proj := begin assume s hs, rw is_open_iff_forall_mem_open, assume x xs, obtain ⟨y, ys, yx⟩ : ∃ y, y ∈ s ∧ proj y = x, from (mem_image _ _ _).1 xs, obtain ⟨e, he⟩ : ∃ (e : bundle_trivialization F proj), y ∈ e.source, from h y, refine ⟨proj '' (s ∩ e.source), image_subset _ (inter_subset_left _ _), _, ⟨y, ⟨ys, he⟩, yx⟩⟩, have : ∀z ∈ s ∩ e.source, prod.fst (e.to_fun z) = proj z := λz hz, e.proj_to_fun z hz.2, rw [← image_congr this, image_comp], have : is_open (e.to_fun '' (s ∩ e.source)) := e.to_local_homeomorph.image_open_of_open (is_open_inter hs e.to_local_homeomorph.open_source) (inter_subset_right _ _), exact is_open_map_fst _ this end /-- The first projection in a product is a topological fiber bundle. -/ lemma is_topological_fiber_bundle_fst : is_topological_fiber_bundle F (prod.fst : B × F → B) := begin let F : bundle_trivialization F (prod.fst : B × F → B) := { base_set := univ, open_base_set := is_open_univ, source_eq := rfl, target_eq := by simp, proj_to_fun := by simp, ..local_homeomorph.refl _ }, exact λx, ⟨F, by simp⟩ end /-- The second projection in a product is a topological fiber bundle. -/ lemma is_topological_fiber_bundle_snd : is_topological_fiber_bundle F (prod.snd : F × B → B) := begin let F : bundle_trivialization F (prod.snd : F × B → B) := { base_set := univ, open_base_set := is_open_univ, source_eq := rfl, target_eq := by simp, proj_to_fun := λp, by { simp, refl }, ..(homeomorph.prod_comm F B).to_local_homeomorph }, exact λx, ⟨F, by simp⟩ end end topological_fiber_bundle /-- Core data defining a locally trivial topological bundle with fiber `F` over a topological space `B`. Note that "bundle" is used in its mathematical sense. This is the (computer science) bundled version, i.e., all the relevant data is contained in the following structure. A family of local trivializations is indexed by a type ι, on open subsets `base_set i` for each `i : ι`. Trivialization changes from `i` to `j` are given by continuous maps `coord_change i j` from `base_set i ∩ base_set j` to the set of homeomorphisms of `F`, but we express them as maps `B → F → F` and require continuity on `(base_set i ∩ base_set j) × F` to avoid the topology on the space of continuous maps on `F`. -/ structure topological_fiber_bundle_core (ι : Type*) (B : Type*) [topological_space B] (F : Type*) [topological_space F] := (base_set : ι → set B) (is_open_base_set : ∀i, is_open (base_set i)) (index_at : B → ι) (mem_base_set_at : ∀x, x ∈ base_set (index_at x)) (coord_change : ι → ι → B → F → F) (coord_change_self : ∀i, ∀ x ∈ base_set i, ∀v, coord_change i i x v = v) (coord_change_continuous : ∀i j, continuous_on (λp : B × F, coord_change i j p.1 p.2) (set.prod ((base_set i) ∩ (base_set j)) univ)) (coord_change_comp : ∀i j k, ∀x ∈ (base_set i) ∩ (base_set j) ∩ (base_set k), ∀v, (coord_change j k x) (coord_change i j x v) = coord_change i k x v) attribute [simp] topological_fiber_bundle_core.mem_base_set_at namespace topological_fiber_bundle_core variables [topological_space B] [topological_space F] (Z : topological_fiber_bundle_core ι B F) include Z /-- The index set of a topological fiber bundle core, as a convenience function for dot notation -/ @[nolint] def index := ι /-- The base space of a topological fiber bundle core, as a convenience function for dot notation -/ @[nolint] def base := B /-- The fiber of a topological fiber bundle core, as a convenience function for dot notation and typeclass inference -/ @[nolint] def fiber (x : B) := F instance topological_space_fiber (x : B) : topological_space (Z.fiber x) := by { dsimp [fiber], apply_instance } /-- Total space of a topological bundle created from core. It is equal to `B × F`, but as it is not marked as reducible, typeclass inference will not infer the wrong topology, and will use the instance `topological_fiber_bundle_core.to_topological_space` with the right topology. -/ @[nolint] def total_space := B × F /-- The projection from the total space of a topological fiber bundle core, on its base. -/ @[simp] def proj : Z.total_space → B := λp, p.1 /-- Local homeomorphism version of the trivialization change. -/ def triv_change (i j : ι) : local_homeomorph (B × F) (B × F) := { source := set.prod (Z.base_set i ∩ Z.base_set j) univ, target := set.prod (Z.base_set i ∩ Z.base_set j) univ, to_fun := λp, ⟨p.1, Z.coord_change i j p.1 p.2⟩, inv_fun := λp, ⟨p.1, Z.coord_change j i p.1 p.2⟩, map_source := λp hp, by simpa using hp, map_target := λp hp, by simpa using hp, left_inv := begin rintros ⟨x, v⟩ hx, simp only [prod_mk_mem_set_prod_eq, mem_inter_eq, and_true, mem_univ] at hx, rw [Z.coord_change_comp, Z.coord_change_self], { exact hx.1 }, { simp [hx] } end, right_inv := begin rintros ⟨x, v⟩ hx, simp only [prod_mk_mem_set_prod_eq, mem_inter_eq, and_true, mem_univ] at hx, rw [Z.coord_change_comp, Z.coord_change_self], { exact hx.2 }, { simp [hx] }, end, open_source := is_open_prod (is_open_inter (Z.is_open_base_set i) (Z.is_open_base_set j)) is_open_univ, open_target := is_open_prod (is_open_inter (Z.is_open_base_set i) (Z.is_open_base_set j)) is_open_univ, continuous_to_fun := continuous_on.prod continuous_fst.continuous_on (Z.coord_change_continuous i j), continuous_inv_fun := by simpa [inter_comm] using continuous_on.prod continuous_fst.continuous_on (Z.coord_change_continuous j i) } @[simp] lemma mem_triv_change_source (i j : ι) (p : B × F) : p ∈ (Z.triv_change i j).source ↔ p.1 ∈ Z.base_set i ∩ Z.base_set j := by { erw [mem_prod], simp } /-- Associate to a trivialization index `i : ι` the corresponding trivialization, i.e., a bijection between `proj ⁻¹ (base_set i)` and `base_set i × F`. As the fiber above `x` is `F` but read in the chart with index `index_at x`, the trivialization in the fiber above x is by definition the coordinate change from i to `index_at x`, so it depends on `x`. The local trivialization will ultimately be a local homeomorphism. For now, we only introduce the local equiv version, denoted with a prime. In further developments, avoid this auxiliary version, and use Z.local_triv instead. -/ def local_triv' (i : ι) : local_equiv Z.total_space (B × F) := { source := Z.proj ⁻¹' (Z.base_set i), target := set.prod (Z.base_set i) univ, inv_fun := λp, ⟨p.1, Z.coord_change i (Z.index_at p.1) p.1 p.2⟩, to_fun := λp, ⟨p.1, Z.coord_change (Z.index_at p.1) i p.1 p.2⟩, map_source := λp hp, by simpa only [set.mem_preimage, and_true, set.mem_univ, set.prod_mk_mem_set_prod_eq] using hp, map_target := λp hp, by simpa only [set.mem_preimage, and_true, set.mem_univ, set.mem_prod] using hp, left_inv := begin rintros ⟨x, v⟩ hx, change x ∈ Z.base_set i at hx, dsimp, rw [Z.coord_change_comp, Z.coord_change_self], { exact Z.mem_base_set_at _ }, { simp [hx] } end, right_inv := begin rintros ⟨x, v⟩ hx, simp only [prod_mk_mem_set_prod_eq, and_true, mem_univ] at hx, rw [Z.coord_change_comp, Z.coord_change_self], { exact hx }, { simp [hx] } end } @[simp] lemma mem_local_triv'_source (i : ι) (p : Z.total_space) : p ∈ (Z.local_triv' i).source ↔ p.1 ∈ Z.base_set i := by refl @[simp] lemma mem_local_triv'_target (i : ι) (p : B × F) : p ∈ (Z.local_triv' i).target ↔ p.1 ∈ Z.base_set i := by { erw [mem_prod], simp } @[simp] lemma local_triv'_fst (i : ι) (p : Z.total_space) : ((Z.local_triv' i).to_fun p).1 = p.1 := rfl @[simp] lemma local_triv'_inv_fst (i : ι) (p : B × F) : ((Z.local_triv' i).inv_fun p).1 = p.1 := rfl /-- The composition of two local trivializations is the trivialization change Z.triv_change i j. -/ lemma local_triv'_trans (i j : ι) : (Z.local_triv' i).symm.trans (Z.local_triv' j) ≈ (Z.triv_change i j).to_local_equiv := begin split, { ext x, erw [mem_prod], simp [local_equiv.trans_source] }, { rintros ⟨x, v⟩ hx, simp only [triv_change, local_triv', local_equiv.symm, true_and, local_equiv.right_inv, prod_mk_mem_set_prod_eq, local_equiv.trans_source, mem_inter_eq, and_true, mem_univ, prod.mk.inj_iff, local_equiv.trans_apply, mem_preimage, proj, local_equiv.left_inv] at hx ⊢, simp [Z.coord_change_comp, hx] } end /-- Topological structure on the total space of a topological bundle created from core, designed so that all the local trivialization are continuous. -/ instance to_topological_space : topological_space Z.total_space := topological_space.generate_from $ ⋃ (i : ι) (s : set (B × F)) (s_open : is_open s), {(Z.local_triv' i).source ∩ (Z.local_triv' i).to_fun ⁻¹' s } lemma open_source' (i : ι) : is_open (Z.local_triv' i).source := begin apply topological_space.generate_open.basic, simp only [exists_prop, mem_Union, mem_singleton_iff], refine ⟨i, set.prod (Z.base_set i) univ, is_open_prod (Z.is_open_base_set i) (is_open_univ), _⟩, ext p, simp [topological_fiber_bundle_core.local_triv'_fst, topological_fiber_bundle_core.mem_local_triv'_source] end lemma open_target' (i : ι) : is_open (Z.local_triv' i).target := is_open_prod (Z.is_open_base_set i) (is_open_univ) /-- Local trivialization of a topological bundle created from core, as a local homeomorphism. -/ def local_triv (i : ι) : local_homeomorph Z.total_space (B × F) := { open_source := Z.open_source' i, open_target := Z.open_target' i, continuous_to_fun := begin rw continuous_on_open_iff (Z.open_source' i), assume s s_open, apply topological_space.generate_open.basic, simp only [exists_prop, mem_Union, mem_singleton_iff], exact ⟨i, s, s_open, rfl⟩ end, continuous_inv_fun := begin apply continuous_on_open_of_generate_from (Z.open_target' i), assume t ht, simp only [exists_prop, mem_Union, mem_singleton_iff] at ht, obtain ⟨j, s, s_open, ts⟩ : ∃ j s, is_open s ∧ t = (local_triv' Z j).source ∩ (local_triv' Z j).to_fun ⁻¹' s := ht, rw ts, simp only [local_equiv.right_inv, preimage_inter, local_equiv.left_inv], let e := Z.local_triv' i, let e' := Z.local_triv' j, let f := e.symm.trans e', have : is_open (f.source ∩ f.to_fun ⁻¹' s), { rw [local_equiv.eq_on_source_preimage (Z.local_triv'_trans i j)], exact (continuous_on_open_iff (Z.triv_change i j).open_source).1 ((Z.triv_change i j).continuous_to_fun) _ s_open }, convert this using 1, dsimp [local_equiv.trans_source], rw [← preimage_comp, inter_assoc] end, ..Z.local_triv' i } /- We will now state again the basic properties of the local trivializations, but without primes, i.e., for the local homeomorphism instead of the local equiv. -/ @[simp] lemma mem_local_triv_source (i : ι) (p : Z.total_space) : p ∈ (Z.local_triv i).source ↔ p.1 ∈ Z.base_set i := by refl @[simp] lemma mem_local_triv_target (i : ι) (p : B × F) : p ∈ (Z.local_triv i).target ↔ p.1 ∈ Z.base_set i := by { erw [mem_prod], simp } @[simp] lemma local_triv_fst (i : ι) (p : Z.total_space) : ((Z.local_triv i).to_fun p).1 = p.1 := rfl @[simp] lemma local_triv_symm_fst (i : ι) (p : B × F) : ((Z.local_triv i).inv_fun p).1 = p.1 := rfl /-- The composition of two local trivializations is the trivialization change Z.triv_change i j. -/ lemma local_triv_trans (i j : ι) : (Z.local_triv i).symm.trans (Z.local_triv j) ≈ Z.triv_change i j := Z.local_triv'_trans i j /-- Extended version of the local trivialization of a fiber bundle constructed from core, registering additionally in its type that it is a local bundle trivialization. -/ def local_triv_ext (i : ι) : bundle_trivialization F Z.proj := { base_set := Z.base_set i, open_base_set := Z.is_open_base_set i, source_eq := rfl, target_eq := rfl, proj_to_fun := λp hp, by simp, ..Z.local_triv i } /-- A topological fiber bundle constructed from core is indeed a topological fiber bundle. -/ theorem is_topological_fiber_bundle : is_topological_fiber_bundle F Z.proj := λx, ⟨Z.local_triv_ext (Z.index_at (Z.proj x)), by simp [local_triv_ext]⟩ /-- The projection on the base of a topological bundle created from core is continuous -/ lemma continuous_proj : continuous Z.proj := Z.is_topological_fiber_bundle.continuous_proj /-- The projection on the base of a topological bundle created from core is an open map -/ lemma is_open_map_proj : is_open_map Z.proj := Z.is_topological_fiber_bundle.is_open_map_proj /-- Preferred local trivialization of a fiber bundle constructed from core, at a given point, as a local homeomorphism -/ def local_triv_at (p : Z.total_space) : local_homeomorph Z.total_space (B × F) := Z.local_triv (Z.index_at (Z.proj p)) @[simp] lemma mem_local_triv_at_source (p : Z.total_space) : p ∈ (Z.local_triv_at p).source := by simp [local_triv_at] @[simp] lemma local_triv_at_fst (p q : Z.total_space) : ((Z.local_triv_at p).to_fun q).1 = q.1 := rfl @[simp] lemma local_triv_at_symm_fst (p : Z.total_space) (q : B × F) : ((Z.local_triv_at p).inv_fun q).1 = q.1 := rfl /-- Preferred local trivialization of a fiber bundle constructed from core, at a given point, as a bundle trivialization -/ def local_triv_at_ext (p : Z.total_space) : bundle_trivialization F Z.proj := Z.local_triv_ext (Z.index_at (Z.proj p)) @[simp] lemma local_triv_at_ext_to_local_homeomorph (p : Z.total_space) : (Z.local_triv_at_ext p).to_local_homeomorph = Z.local_triv_at p := rfl end topological_fiber_bundle_core
e8f5a8f851772f45f83ece23d3a4d9d676c29aec
8b9f17008684d796c8022dab552e42f0cb6fb347
/library/algebra/ordered_group.lean
d64ababbfa39f126447bb1bccea8471285325b0b
[ "Apache-2.0" ]
permissive
chubbymaggie/lean
0d06ae25f9dd396306fb02190e89422ea94afd7b
d2c7b5c31928c98f545b16420d37842c43b4ae9a
refs/heads/master
1,611,313,622,901
1,430,266,839,000
1,430,267,083,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
21,329
lean
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: algebra.ordered_group Authors: Jeremy Avigad Partially ordered additive groups, modeled on Isabelle's library. We could refine the structures, but we would have to declare more inheritance paths. -/ import logic.eq data.unit data.sigma data.prod import algebra.function algebra.binary import algebra.group algebra.order open eq eq.ops -- note: ⁻¹ will be overloaded namespace algebra variable {A : Type} /- partially ordered monoids, such as the natural numbers -/ structure ordered_cancel_comm_monoid [class] (A : Type) extends add_comm_monoid A, add_left_cancel_semigroup A, add_right_cancel_semigroup A, order_pair A := (add_le_add_left : ∀a b, le a b → ∀c, le (add c a) (add c b)) (le_of_add_le_add_left : ∀a b c, le (add a b) (add a c) → le b c) section variables [s : ordered_cancel_comm_monoid A] variables {a b c d e : A} include s theorem add_le_add_left (H : a ≤ b) (c : A) : c + a ≤ c + b := !ordered_cancel_comm_monoid.add_le_add_left H c theorem add_le_add_right (H : a ≤ b) (c : A) : a + c ≤ b + c := (add.comm c a) ▸ (add.comm c b) ▸ (add_le_add_left H c) theorem add_le_add (Hab : a ≤ b) (Hcd : c ≤ d) : a + c ≤ b + d := le.trans (add_le_add_right Hab c) (add_le_add_left Hcd b) theorem add_lt_add_left (H : a < b) (c : A) : c + a < c + b := have H1 : c + a ≤ c + b, from add_le_add_left (le_of_lt H) c, have H2 : c + a ≠ c + b, from take H3 : c + a = c + b, have H4 : a = b, from add.left_cancel H3, ne_of_lt H H4, lt_of_le_of_ne H1 H2 theorem add_lt_add_right (H : a < b) (c : A) : a + c < b + c := begin rewrite [add.comm, {b + _}add.comm], exact (add_lt_add_left H c) end theorem le_add_of_nonneg_right (H : b ≥ 0) : a ≤ a + b := begin have H1 : a + b ≥ a + 0, from add_le_add_left H a, rewrite add_zero at H1, exact H1 end theorem le_add_of_nonneg_left (H : b ≥ 0) : a ≤ b + a := begin have H1 : 0 + a ≤ b + a, from add_le_add_right H a, rewrite zero_add at H1, exact H1 end theorem add_lt_add (Hab : a < b) (Hcd : c < d) : a + c < b + d := lt.trans (add_lt_add_right Hab c) (add_lt_add_left Hcd b) theorem add_lt_add_of_le_of_lt (Hab : a ≤ b) (Hcd : c < d) : a + c < b + d := lt_of_le_of_lt (add_le_add_right Hab c) (add_lt_add_left Hcd b) theorem add_lt_add_of_lt_of_le (Hab : a < b) (Hcd : c ≤ d) : a + c < b + d := lt_of_lt_of_le (add_lt_add_right Hab c) (add_le_add_left Hcd b) theorem lt_add_of_pos_right (H : b > 0) : a < a + b := !add_zero ▸ add_lt_add_left H a theorem lt_add_of_pos_left (H : b > 0) : a < b + a := !zero_add ▸ add_lt_add_right H a -- here we start using le_of_add_le_add_left. theorem le_of_add_le_add_left (H : a + b ≤ a + c) : b ≤ c := !ordered_cancel_comm_monoid.le_of_add_le_add_left H theorem le_of_add_le_add_right (H : a + b ≤ c + b) : a ≤ c := le_of_add_le_add_left (show b + a ≤ b + c, begin rewrite [add.comm, {b + _}add.comm], exact H end) theorem lt_of_add_lt_add_left (H : a + b < a + c) : b < c := have H1 : b ≤ c, from le_of_add_le_add_left (le_of_lt H), have H2 : b ≠ c, from assume H3 : b = c, lt.irrefl _ (H3 ▸ H), lt_of_le_of_ne H1 H2 theorem lt_of_add_lt_add_right (H : a + b < c + b) : a < c := lt_of_add_lt_add_left ((add.comm a b) ▸ (add.comm c b) ▸ H) theorem add_le_add_left_iff (a b c : A) : a + b ≤ a + c ↔ b ≤ c := iff.intro le_of_add_le_add_left (assume H, add_le_add_left H _) theorem add_le_add_right_iff (a b c : A) : a + b ≤ c + b ↔ a ≤ c := iff.intro le_of_add_le_add_right (assume H, add_le_add_right H _) theorem add_lt_add_left_iff (a b c : A) : a + b < a + c ↔ b < c := iff.intro lt_of_add_lt_add_left (assume H, add_lt_add_left H _) theorem add_lt_add_right_iff (a b c : A) : a + b < c + b ↔ a < c := iff.intro lt_of_add_lt_add_right (assume H, add_lt_add_right H _) -- here we start using properties of zero. theorem add_nonneg (Ha : 0 ≤ a) (Hb : 0 ≤ b) : 0 ≤ a + b := !zero_add ▸ (add_le_add Ha Hb) theorem add_pos (Ha : 0 < a) (Hb : 0 < b) : 0 < a + b := !zero_add ▸ (add_lt_add Ha Hb) theorem add_pos_of_pos_of_nonneg (Ha : 0 < a) (Hb : 0 ≤ b) : 0 < a + b := !zero_add ▸ (add_lt_add_of_lt_of_le Ha Hb) theorem add_pos_of_nonneg_of_pos (Ha : 0 ≤ a) (Hb : 0 < b) : 0 < a + b := !zero_add ▸ (add_lt_add_of_le_of_lt Ha Hb) theorem add_nonpos (Ha : a ≤ 0) (Hb : b ≤ 0) : a + b ≤ 0 := !zero_add ▸ (add_le_add Ha Hb) theorem add_neg (Ha : a < 0) (Hb : b < 0) : a + b < 0 := !zero_add ▸ (add_lt_add Ha Hb) theorem add_neg_of_neg_of_nonpos (Ha : a < 0) (Hb : b ≤ 0) : a + b < 0 := !zero_add ▸ (add_lt_add_of_lt_of_le Ha Hb) theorem add_neg_of_nonpos_of_neg (Ha : a ≤ 0) (Hb : b < 0) : a + b < 0 := !zero_add ▸ (add_lt_add_of_le_of_lt Ha Hb) -- TODO: add nonpos version (will be easier with simplifier) theorem add_eq_zero_iff_eq_zero_and_eq_zero_of_nonneg_of_nonneg (Ha : 0 ≤ a) (Hb : 0 ≤ b) : a + b = 0 ↔ a = 0 ∧ b = 0 := iff.intro (assume Hab : a + b = 0, have Ha' : a ≤ 0, from calc a = a + 0 : by rewrite add_zero ... ≤ a + b : add_le_add_left Hb ... = 0 : Hab, have Haz : a = 0, from le.antisymm Ha' Ha, have Hb' : b ≤ 0, from calc b = 0 + b : by rewrite zero_add ... ≤ a + b : add_le_add_right Ha ... = 0 : Hab, have Hbz : b = 0, from le.antisymm Hb' Hb, and.intro Haz Hbz) (assume Hab : a = 0 ∧ b = 0, match Hab with | and.intro Ha' Hb' := by rewrite [Ha', Hb', add_zero] end) theorem le_add_of_nonneg_of_le (Ha : 0 ≤ a) (Hbc : b ≤ c) : b ≤ a + c := !zero_add ▸ add_le_add Ha Hbc theorem le_add_of_le_of_nonneg (Hbc : b ≤ c) (Ha : 0 ≤ a) : b ≤ c + a := !add_zero ▸ add_le_add Hbc Ha theorem lt_add_of_pos_of_le (Ha : 0 < a) (Hbc : b ≤ c) : b < a + c := !zero_add ▸ add_lt_add_of_lt_of_le Ha Hbc theorem lt_add_of_le_of_pos (Hbc : b ≤ c) (Ha : 0 < a) : b < c + a := !add_zero ▸ add_lt_add_of_le_of_lt Hbc Ha theorem add_le_of_nonpos_of_le (Ha : a ≤ 0) (Hbc : b ≤ c) : a + b ≤ c := !zero_add ▸ add_le_add Ha Hbc theorem add_le_of_le_of_nonpos (Hbc : b ≤ c) (Ha : a ≤ 0) : b + a ≤ c := !add_zero ▸ add_le_add Hbc Ha theorem add_lt_of_neg_of_le (Ha : a < 0) (Hbc : b ≤ c) : a + b < c := !zero_add ▸ add_lt_add_of_lt_of_le Ha Hbc theorem add_lt_of_le_of_neg (Hbc : b ≤ c) (Ha : a < 0) : b + a < c := !add_zero ▸ add_lt_add_of_le_of_lt Hbc Ha theorem lt_add_of_nonneg_of_lt (Ha : 0 ≤ a) (Hbc : b < c) : b < a + c := !zero_add ▸ add_lt_add_of_le_of_lt Ha Hbc theorem lt_add_of_lt_of_nonneg (Hbc : b < c) (Ha : 0 ≤ a) : b < c + a := !add_zero ▸ add_lt_add_of_lt_of_le Hbc Ha theorem lt_add_of_pos_of_lt (Ha : 0 < a) (Hbc : b < c) : b < a + c := !zero_add ▸ add_lt_add Ha Hbc theorem lt_add_of_lt_of_pos (Hbc : b < c) (Ha : 0 < a) : b < c + a := !add_zero ▸ add_lt_add Hbc Ha theorem add_lt_of_nonpos_of_lt (Ha : a ≤ 0) (Hbc : b < c) : a + b < c := !zero_add ▸ add_lt_add_of_le_of_lt Ha Hbc theorem add_lt_of_lt_of_nonpos (Hbc : b < c) (Ha : a ≤ 0) : b + a < c := !add_zero ▸ add_lt_add_of_lt_of_le Hbc Ha theorem add_lt_of_neg_of_lt (Ha : a < 0) (Hbc : b < c) : a + b < c := !zero_add ▸ add_lt_add Ha Hbc theorem add_lt_of_lt_of_neg (Hbc : b < c) (Ha : a < 0) : b + a < c := !add_zero ▸ add_lt_add Hbc Ha end -- TODO: add properties of max and min /- partially ordered groups -/ structure ordered_comm_group [class] (A : Type) extends add_comm_group A, order_pair A := (add_le_add_left : ∀a b, le a b → ∀c, le (add c a) (add c b)) theorem ordered_comm_group.le_of_add_le_add_left [s : ordered_comm_group A] {a b c : A} (H : a + b ≤ a + c) : b ≤ c := assert H' : -a + (a + b) ≤ -a + (a + c), from ordered_comm_group.add_le_add_left _ _ H _, by rewrite *neg_add_cancel_left at H'; exact H' definition ordered_comm_group.to_ordered_cancel_comm_monoid [instance] [coercion] [reducible] [s : ordered_comm_group A] : ordered_cancel_comm_monoid A := ⦃ ordered_cancel_comm_monoid, s, add_left_cancel := @add.left_cancel A s, add_right_cancel := @add.right_cancel A s, le_of_add_le_add_left := @ordered_comm_group.le_of_add_le_add_left A s ⦄ section variables [s : ordered_comm_group A] (a b c d e : A) include s theorem neg_le_neg {a b : A} (H : a ≤ b) : -b ≤ -a := have H1 : 0 ≤ -a + b, from !add.left_inv ▸ !(add_le_add_left H), !add_neg_cancel_right ▸ !zero_add ▸ add_le_add_right H1 (-b) theorem le_of_neg_le_neg {a b : A} (H : -b ≤ -a) : a ≤ b := neg_neg a ▸ neg_neg b ▸ neg_le_neg H theorem neg_le_neg_iff_le : -a ≤ -b ↔ b ≤ a := iff.intro le_of_neg_le_neg neg_le_neg theorem nonneg_of_neg_nonpos {a : A} (H : -a ≤ 0) : 0 ≤ a := le_of_neg_le_neg (neg_zero⁻¹ ▸ H) theorem neg_nonpos_of_nonneg {a : A} (H : 0 ≤ a) : -a ≤ 0 := neg_zero ▸ neg_le_neg H theorem neg_nonpos_iff_nonneg : -a ≤ 0 ↔ 0 ≤ a := iff.intro nonneg_of_neg_nonpos neg_nonpos_of_nonneg theorem nonpos_of_neg_nonneg {a : A} (H : 0 ≤ -a) : a ≤ 0 := le_of_neg_le_neg (neg_zero⁻¹ ▸ H) theorem neg_nonneg_of_nonpos {a : A} (H : a ≤ 0) : 0 ≤ -a := neg_zero ▸ neg_le_neg H theorem neg_nonneg_iff_nonpos : 0 ≤ -a ↔ a ≤ 0 := iff.intro nonpos_of_neg_nonneg neg_nonneg_of_nonpos theorem neg_lt_neg {a b : A} (H : a < b) : -b < -a := have H1 : 0 < -a + b, from !add.left_inv ▸ !(add_lt_add_left H), !add_neg_cancel_right ▸ !zero_add ▸ add_lt_add_right H1 (-b) theorem lt_of_neg_lt_neg {a b : A} (H : -b < -a) : a < b := neg_neg a ▸ neg_neg b ▸ neg_lt_neg H theorem neg_lt_neg_iff_lt : -a < -b ↔ b < a := iff.intro lt_of_neg_lt_neg neg_lt_neg theorem pos_of_neg_neg {a : A} (H : -a < 0) : 0 < a := lt_of_neg_lt_neg (neg_zero⁻¹ ▸ H) theorem neg_neg_of_pos {a : A} (H : 0 < a) : -a < 0 := neg_zero ▸ neg_lt_neg H theorem neg_neg_iff_pos : -a < 0 ↔ 0 < a := iff.intro pos_of_neg_neg neg_neg_of_pos theorem neg_of_neg_pos {a : A} (H : 0 < -a) : a < 0 := lt_of_neg_lt_neg (neg_zero⁻¹ ▸ H) theorem neg_pos_of_neg {a : A} (H : a < 0) : 0 < -a := neg_zero ▸ neg_lt_neg H theorem neg_pos_iff_neg : 0 < -a ↔ a < 0 := iff.intro neg_of_neg_pos neg_pos_of_neg theorem le_neg_iff_le_neg : a ≤ -b ↔ b ≤ -a := !neg_neg ▸ !neg_le_neg_iff_le theorem neg_le_iff_neg_le : -a ≤ b ↔ -b ≤ a := !neg_neg ▸ !neg_le_neg_iff_le theorem lt_neg_iff_lt_neg : a < -b ↔ b < -a := !neg_neg ▸ !neg_lt_neg_iff_lt theorem neg_lt_iff_neg_lt : -a < b ↔ -b < a := !neg_neg ▸ !neg_lt_neg_iff_lt theorem sub_nonneg_iff_le : 0 ≤ a - b ↔ b ≤ a := !sub_self ▸ !add_le_add_right_iff theorem sub_nonpos_iff_le : a - b ≤ 0 ↔ a ≤ b := !sub_self ▸ !add_le_add_right_iff theorem sub_pos_iff_lt : 0 < a - b ↔ b < a := !sub_self ▸ !add_lt_add_right_iff theorem sub_neg_iff_lt : a - b < 0 ↔ a < b := !sub_self ▸ !add_lt_add_right_iff theorem add_le_iff_le_neg_add : a + b ≤ c ↔ b ≤ -a + c := have H: a + b ≤ c ↔ -a + (a + b) ≤ -a + c, from iff.symm (!add_le_add_left_iff), !neg_add_cancel_left ▸ H theorem add_le_iff_le_sub_left : a + b ≤ c ↔ b ≤ c - a := by rewrite [sub_eq_add_neg, {c+_}add.comm]; apply add_le_iff_le_neg_add theorem add_le_iff_le_sub_right : a + b ≤ c ↔ a ≤ c - b := have H: a + b ≤ c ↔ a + b - b ≤ c - b, from iff.symm (!add_le_add_right_iff), !add_neg_cancel_right ▸ H theorem le_add_iff_neg_add_le : a ≤ b + c ↔ -b + a ≤ c := assert H: a ≤ b + c ↔ -b + a ≤ -b + (b + c), from iff.symm (!add_le_add_left_iff), by rewrite neg_add_cancel_left at H; exact H theorem le_add_iff_sub_left_le : a ≤ b + c ↔ a - b ≤ c := by rewrite [sub_eq_add_neg, {a+_}add.comm]; apply le_add_iff_neg_add_le theorem le_add_iff_sub_right_le : a ≤ b + c ↔ a - c ≤ b := assert H: a ≤ b + c ↔ a - c ≤ b + c - c, from iff.symm (!add_le_add_right_iff), by rewrite add_neg_cancel_right at H; exact H theorem add_lt_iff_lt_neg_add_left : a + b < c ↔ b < -a + c := assert H: a + b < c ↔ -a + (a + b) < -a + c, from iff.symm (!add_lt_add_left_iff), begin rewrite neg_add_cancel_left at H, exact H end theorem add_lt_iff_lt_neg_add_right : a + b < c ↔ a < -b + c := by rewrite add.comm; apply add_lt_iff_lt_neg_add_left theorem add_lt_iff_lt_sub_left : a + b < c ↔ b < c - a := begin rewrite [sub_eq_add_neg, {c+_}add.comm], apply add_lt_iff_lt_neg_add_left end theorem add_lt_add_iff_lt_sub_right : a + b < c ↔ a < c - b := assert H: a + b < c ↔ a + b - b < c - b, from iff.symm (!add_lt_add_right_iff), by rewrite add_neg_cancel_right at H; exact H theorem lt_add_iff_neg_add_lt_left : a < b + c ↔ -b + a < c := assert H: a < b + c ↔ -b + a < -b + (b + c), from iff.symm (!add_lt_add_left_iff), by rewrite neg_add_cancel_left at H; exact H theorem lt_add_iff_neg_add_lt_right : a < b + c ↔ -c + a < b := by rewrite add.comm; apply lt_add_iff_neg_add_lt_left theorem lt_add_iff_sub_lt_left : a < b + c ↔ a - b < c := by rewrite [sub_eq_add_neg, {a + _}add.comm]; apply lt_add_iff_neg_add_lt_left theorem lt_add_iff_sub_lt_right : a < b + c ↔ a - c < b := by rewrite add.comm; apply lt_add_iff_sub_lt_left -- TODO: the Isabelle library has varations on a + b ≤ b ↔ a ≤ 0 theorem le_iff_le_of_sub_eq_sub {a b c d : A} (H : a - b = c - d) : a ≤ b ↔ c ≤ d := calc a ≤ b ↔ a - b ≤ 0 : iff.symm (sub_nonpos_iff_le a b) ... = (c - d ≤ 0) : by rewrite H ... ↔ c ≤ d : sub_nonpos_iff_le c d theorem lt_iff_lt_of_sub_eq_sub {a b c d : A} (H : a - b = c - d) : a < b ↔ c < d := calc a < b ↔ a - b < 0 : iff.symm (sub_neg_iff_lt a b) ... = (c - d < 0) : by rewrite H ... ↔ c < d : sub_neg_iff_lt c d theorem sub_le_sub_left {a b : A} (H : a ≤ b) (c : A) : c - b ≤ c - a := add_le_add_left (neg_le_neg H) c theorem sub_le_sub_right {a b : A} (H : a ≤ b) (c : A) : a - c ≤ b - c := add_le_add_right H (-c) theorem sub_le_sub {a b c d : A} (Hab : a ≤ b) (Hcd : c ≤ d) : a - d ≤ b - c := add_le_add Hab (neg_le_neg Hcd) theorem sub_lt_sub_left {a b : A} (H : a < b) (c : A) : c - b < c - a := add_lt_add_left (neg_lt_neg H) c theorem sub_lt_sub_right {a b : A} (H : a < b) (c : A) : a - c < b - c := add_lt_add_right H (-c) theorem sub_lt_sub {a b c d : A} (Hab : a < b) (Hcd : c < d) : a - d < b - c := add_lt_add Hab (neg_lt_neg Hcd) theorem sub_lt_sub_of_le_of_lt {a b c d : A} (Hab : a ≤ b) (Hcd : c < d) : a - d < b - c := add_lt_add_of_le_of_lt Hab (neg_lt_neg Hcd) theorem sub_lt_sub_of_lt_of_le {a b c d : A} (Hab : a < b) (Hcd : c ≤ d) : a - d < b - c := add_lt_add_of_lt_of_le Hab (neg_le_neg Hcd) theorem sub_le_self (a : A) {b : A} (H : b ≥ 0) : a - b ≤ a := calc a - b = a + -b : rfl ... ≤ a + 0 : add_le_add_left (neg_nonpos_of_nonneg H) ... = a : by rewrite add_zero theorem sub_lt_self (a : A) {b : A} (H : b > 0) : a - b < a := calc a - b = a + -b : rfl ... < a + 0 : add_lt_add_left (neg_neg_of_pos H) ... = a : by rewrite add_zero end structure decidable_linear_ordered_comm_group [class] (A : Type) extends ordered_comm_group A, decidable_linear_order A section variables [s : decidable_linear_ordered_comm_group A] variables {a b c d e : A} include s theorem eq_zero_of_neg_eq (H : -a = a) : a = 0 := lt.by_cases (assume H1 : a < 0, have H2: a > 0, from H ▸ neg_pos_of_neg H1, absurd H1 (lt.asymm H2)) (assume H1 : a = 0, H1) (assume H1 : a > 0, have H2: a < 0, from H ▸ neg_neg_of_pos H1, absurd H1 (lt.asymm H2)) definition abs (a : A) : A := if 0 ≤ a then a else -a theorem abs_of_nonneg (H : a ≥ 0) : abs a = a := if_pos H theorem abs_of_pos (H : a > 0) : abs a = a := if_pos (le_of_lt H) theorem abs_of_neg (H : a < 0) : abs a = -a := if_neg (not_le_of_lt H) theorem abs_zero : abs 0 = 0 := abs_of_nonneg (le.refl _) theorem abs_of_nonpos (H : a ≤ 0) : abs a = -a := decidable.by_cases (assume H1 : a = 0, by rewrite [H1, abs_zero, neg_zero]) (assume H1 : a ≠ 0, have H2 : a < 0, from lt_of_le_of_ne H H1, abs_of_neg H2) theorem abs_neg (a : A) : abs (-a) = abs a := or.elim (le.total 0 a) (assume H1 : 0 ≤ a, by rewrite [abs_of_nonpos (neg_nonpos_of_nonneg H1), neg_neg, abs_of_nonneg H1]) (assume H1 : a ≤ 0, by rewrite [abs_of_nonneg (neg_nonneg_of_nonpos H1), abs_of_nonpos H1]) theorem abs_nonneg (a : A) : abs a ≥ 0 := or.elim (le.total 0 a) (assume H : 0 ≤ a, by rewrite (abs_of_nonneg H); exact H) (assume H : a ≤ 0, calc 0 ≤ -a : neg_nonneg_of_nonpos H ... = abs a : abs_of_nonpos H) theorem abs_abs (a : A) : abs (abs a) = abs a := abs_of_nonneg !abs_nonneg theorem le_abs_self (a : A) : a ≤ abs a := or.elim (le.total 0 a) (assume H : 0 ≤ a, abs_of_nonneg H ▸ !le.refl) (assume H : a ≤ 0, le.trans H !abs_nonneg) theorem neg_le_abs_self (a : A) : -a ≤ abs a := !abs_neg ▸ !le_abs_self theorem eq_zero_of_abs_eq_zero (H : abs a = 0) : a = 0 := have H1 : a ≤ 0, from H ▸ le_abs_self a, have H2 : -a ≤ 0, from H ▸ abs_neg a ▸ le_abs_self (-a), le.antisymm H1 (nonneg_of_neg_nonpos H2) theorem abs_eq_zero_iff_eq_zero (a : A) : abs a = 0 ↔ a = 0 := iff.intro eq_zero_of_abs_eq_zero (assume H, congr_arg abs H ⬝ !abs_zero) theorem abs_pos_of_pos (H : a > 0) : abs a > 0 := by rewrite (abs_of_pos H); exact H theorem abs_pos_of_neg (H : a < 0) : abs a > 0 := !abs_neg ▸ abs_pos_of_pos (neg_pos_of_neg H) theorem abs_pos_of_ne_zero (H : a ≠ 0) : abs a > 0 := or.elim (lt_or_gt_of_ne H) abs_pos_of_neg abs_pos_of_pos theorem abs_sub (a b : A) : abs (a - b) = abs (b - a) := by rewrite [-neg_sub, abs_neg] theorem abs.by_cases {P : A → Prop} {a : A} (H1 : P a) (H2 : P (-a)) : P (abs a) := or.elim (le.total 0 a) (assume H : 0 ≤ a, (abs_of_nonneg H)⁻¹ ▸ H1) (assume H : a ≤ 0, (abs_of_nonpos H)⁻¹ ▸ H2) theorem abs_le_of_le_of_neg_le (H1 : a ≤ b) (H2 : -a ≤ b) : abs a ≤ b := abs.by_cases H1 H2 theorem abs_lt_of_lt_of_neg_lt (H1 : a < b) (H2 : -a < b) : abs a < b := abs.by_cases H1 H2 -- the triangle inequality section private lemma aux1 {a b : A} (H1 : a + b ≥ 0) (H2 : a ≥ 0) : abs (a + b) ≤ abs a + abs b := decidable.by_cases (assume H3 : b ≥ 0, calc abs (a + b) ≤ abs (a + b) : le.refl ... = a + b : by rewrite (abs_of_nonneg H1) ... = abs a + b : by rewrite (abs_of_nonneg H2) ... = abs a + abs b : by rewrite (abs_of_nonneg H3)) (assume H3 : ¬ b ≥ 0, assert H4 : b ≤ 0, from le_of_lt (lt_of_not_le H3), calc abs (a + b) = a + b : by rewrite (abs_of_nonneg H1) ... = abs a + b : by rewrite (abs_of_nonneg H2) ... ≤ abs a + 0 : add_le_add_left H4 ... ≤ abs a + -b : add_le_add_left (neg_nonneg_of_nonpos H4) ... = abs a + abs b : by rewrite (abs_of_nonpos H4)) private lemma aux2 {a b : A} (H1 : a + b ≥ 0) : abs (a + b) ≤ abs a + abs b := or.elim (le.total b 0) (assume H2 : b ≤ 0, have H3 : ¬ a < 0, from assume H4 : a < 0, have H5 : a + b < 0, from !add_zero ▸ add_lt_add_of_lt_of_le H4 H2, not_lt_of_le H1 H5, aux1 H1 (le_of_not_lt H3)) (assume H2 : 0 ≤ b, begin have H3 : abs (b + a) ≤ abs b + abs a, begin rewrite add.comm at H1, exact (aux1 H1 H2) end, rewrite [add.comm, {abs a + _}add.comm], exact H3 end) theorem abs_add_le_abs_add_abs (a b : A) : abs (a + b) ≤ abs a + abs b := or.elim (le.total 0 (a + b)) (assume H2 : 0 ≤ a + b, aux2 H2) (assume H2 : a + b ≤ 0, assert H3 : -a + -b = -(a + b), by rewrite neg_add, assert H4 : -(a + b) ≥ 0, from iff.mp' (neg_nonneg_iff_nonpos (a+b)) H2, have H5 : -a + -b ≥ 0, begin rewrite -H3 at H4, exact H4 end, calc abs (a + b) = abs (-a + -b) : by rewrite [-abs_neg, neg_add] ... ≤ abs (-a) + abs (-b) : aux2 H5 ... = abs a + abs b : by rewrite *abs_neg) end theorem abs_sub_abs_le_abs_sub (a b : A) : abs a - abs b ≤ abs (a - b) := have H1 : abs a - abs b + abs b ≤ abs (a - b) + abs b, from calc abs a - abs b + abs b = abs a : by rewrite sub_add_cancel ... = abs (a - b + b) : by rewrite sub_add_cancel ... ≤ abs (a - b) + abs b : abs_add_le_abs_add_abs, algebra.le_of_add_le_add_right H1 end end algebra
a408f45d8c15e19118950f397fcfe07cee8d5c90
87d5955e1100ba73f6b56149b659e85116fa215b
/group_theory/action.lean
bafeb082cd91d633c1bc57d39f435376036875d9
[ "Apache-2.0" ]
permissive
avigad/leanproved
4d15a05f8544a67b9f589c5e656358e1485aef3c
3cf0f5dda3ace82f6b7cdc159528ce3ebaef159f
refs/heads/master
1,611,368,103,158
1,433,589,072,000
1,433,589,072,000
36,843,899
0
0
null
1,433,385,918,000
1,433,385,918,000
null
UTF-8
Lean
false
false
8,188
lean
/- Copyright (c) 2015 Haitao Zhang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author : Haitao Zhang -/ import algebra.group data .extra .hom .perm .finsubg namespace group open finset algebra function local attribute perm.f [coercion] section def variables {G S : Type} variable [ambientG : group G] include ambientG variable [finS : fintype S] include finS variable [deceqS : decidable_eq S] include deceqS definition orbit (hom : G → perm S) (H : finset G) (a : S) : finset S := image (move_by a) (image hom H) variable [deceqG : decidable_eq G] include deceqG -- required by {x ∈ H |p x} filtering definition moverset (hom : G → perm S) (H : finset G) (a b : S) : finset G := {f ∈ H | hom f a = b} definition stab (hom : G → perm S) (H : finset G) (a : S) : finset G := {f ∈ H | hom f a = a} end def section orbit_stabilizer variables {G S : Type} variable [ambientG : group G] include ambientG variable [finS : fintype S] include finS variable [deceqS : decidable_eq S] include deceqS variable [deceqG : decidable_eq G] include deceqG -- these are already specified by stab hom H a variables {hom : G → perm S} {H : finset G} {a : S} variable [Hom : is_hom_class hom] include Hom lemma exists_of_orbit {b : S} : b ∈ orbit hom H a → ∃ h, h ∈ H ∧ hom h a = b := assume Pb, obtain p (Pp₁ : p ∈ image hom H) (Pp₂ : move_by a p = b), from exists_of_mem_image Pb, obtain h (Ph₁ : h ∈ H) (Ph₂ : hom h = p), from exists_of_mem_image Pp₁, assert Phab : hom h a = b, from calc hom h a = p a : Ph₂ ... = b : Pp₂, exists.intro h (and.intro Ph₁ Phab) lemma stab_lmul {f g : G} : g ∈ stab hom H a → hom (f*g) a = hom f a := assume Pgstab, assert Pg : hom g a = a, from of_mem_filter Pgstab, calc hom (f*g) a = perm.f ((hom f) * (hom g)) a : is_hom hom ... = ((hom f) ∘ (hom g)) a : rfl ... = (hom f) a : Pg lemma stab_subset : stab hom H a ⊆ H := begin apply subset_of_forall, intro f Pfstab, apply mem_of_mem_filter Pfstab end lemma reverse_move {h g : G} : g ∈ moverset hom H a (hom h a) → hom (h⁻¹*g) a = a := assume Pg, assert Pga : hom g a = hom h a, from of_mem_filter Pg, calc hom (h⁻¹*g) a = perm.f ((hom h⁻¹) * (hom g)) a : is_hom hom ... = ((hom h⁻¹) ∘ hom g) a : rfl ... = ((hom h⁻¹) ∘ hom h) a : {Pga} ... = perm.f ((hom h⁻¹) * hom h) a : rfl ... = perm.f ((hom h)⁻¹ * hom h) a : hom_map_inv hom h ... = (1 : perm S) a : mul.left_inv (hom h) ... = a : rfl lemma moverset_inj_on_orbit : set.inj_on (moverset hom H a) (ts (orbit hom H a)) := take b1 b2, assume Pb1, obtain h1 Ph1₁ Ph1₂, from exists_of_orbit Pb1, assert Ph1b1 : h1 ∈ moverset hom H a b1, from mem_filter_of_mem Ph1₁ Ph1₂, assume Psetb2 Pmeq, begin subst b1, rewrite Pmeq at Ph1b1, apply of_mem_filter Ph1b1 end variable [subgH : is_finsubg H] include subgH lemma subg_stab_of_move {h g : G} : h ∈ H → g ∈ moverset hom H a (hom h a) → h⁻¹*g ∈ stab hom H a := assume Ph Pg, assert Phinvg : h⁻¹*g ∈ H, from begin apply finsubg_mul_closed H, apply finsubg_has_inv H, assumption, apply mem_of_mem_filter Pg end, mem_filter_of_mem Phinvg (reverse_move Pg) lemma subg_stab_closed : finset_mul_closed_on (stab hom H a) := take f g, assume Pfstab, assert Pf : hom f a = a, from of_mem_filter Pfstab, assume Pgstab, assert Pfg : hom (f*g) a = a, from calc hom (f*g) a = (hom f) a : stab_lmul Pgstab ... = a : Pf, assert PfginH : (f*g) ∈ H, from finsubg_mul_closed H f g (mem_of_mem_filter Pfstab) (mem_of_mem_filter Pgstab), mem_filter_of_mem PfginH Pfg lemma subg_stab_has_one : 1 ∈ stab hom H a := assert P : hom 1 a = a, from calc hom 1 a = (1 : perm S) a : {hom_map_one hom} ... = a : rfl, assert PoneinH : 1 ∈ H, from finsubg_has_one H, mem_filter_of_mem PoneinH P lemma subg_stab_has_inv : finset_has_inv (stab hom H a) := take f, assume Pfstab, assert Pf : hom f a = a, from of_mem_filter Pfstab, assert Pfinv : hom f⁻¹ a = a, from calc hom f⁻¹ a = hom f⁻¹ ((hom f) a) : Pf ... = perm.f ((hom f⁻¹) * (hom f)) a : rfl ... = hom (f⁻¹ * f) a : is_hom hom ... = hom 1 a : mul.left_inv ... = (1 : perm S) a : hom_map_one hom, assert PfinvinH : f⁻¹ ∈ H, from finsubg_has_inv H f (mem_of_mem_filter Pfstab), mem_filter_of_mem PfinvinH Pfinv definition subg_stab_is_finsubg [instance] : is_finsubg (stab hom H a) := is_finsubg.mk subg_stab_has_one subg_stab_closed subg_stab_has_inv lemma subg_lcoset_eq_moverset {h : G} : h ∈ H → fin_lcoset (stab hom H a) h = moverset hom H a (hom h a) := assume Ph, ext (take g, iff.intro (assume Pl, obtain f (Pf₁ : f ∈ stab hom H a) (Pf₂ : h*f = g), from exists_of_mem_image Pl, assert Pfstab : hom f a = a, from of_mem_filter Pf₁, assert PginH : g ∈ H, begin subst Pf₂, apply finsubg_mul_closed H, assumption, apply mem_of_mem_filter Pf₁ end, assert Pga : hom g a = hom h a, from calc hom g a = hom (h*f) a : by subst g ... = hom h a : stab_lmul Pf₁, mem_filter_of_mem PginH Pga) (assume Pr, begin rewrite [↑fin_lcoset, mem_image_iff], existsi h⁻¹*g, split, exact subg_stab_of_move Ph Pr, apply mul_inv_cancel_left end)) lemma subg_moverset_of_orbit_is_lcoset_of_stab (b : S) : b ∈ orbit hom H a → ∃ h, h ∈ H ∧ fin_lcoset (stab hom H a) h = moverset hom H a b := assume Porb, obtain p (Pp₁ : p ∈ image hom H) (Pp₂ : move_by a p = b), from exists_of_mem_image Porb, obtain h (Ph₁ : h ∈ H) (Ph₂ : hom h = p), from exists_of_mem_image Pp₁, assert Phab : hom h a = b, from by subst p; assumption, exists.intro h (and.intro Ph₁ (Phab ▸ subg_lcoset_eq_moverset Ph₁)) lemma subg_lcoset_of_stab_is_moverset_of_orbit (h : G) : h ∈ H → ∃ b, b ∈ orbit hom H a ∧ moverset hom H a b = fin_lcoset (stab hom H a) h := assume Ph, have Pha : (hom h a) ∈ orbit hom H a, by apply mem_image_of_mem; apply mem_image_of_mem; exact Ph, exists.intro (hom h a) (and.intro Pha (eq.symm (subg_lcoset_eq_moverset Ph))) lemma subg_moversets_of_orbit_eq_stab_lcosets : image (moverset hom H a) (orbit hom H a) = fin_lcosets (stab hom H a) H := ext (take s, iff.intro (assume Pl, obtain b Pb₁ Pb₂, from exists_of_mem_image Pl, obtain h Ph, from subg_moverset_of_orbit_is_lcoset_of_stab b Pb₁, begin rewrite [↑fin_lcosets, mem_image_eq], existsi h, subst Pb₂, assumption end) (assume Pr, obtain h Ph₁ Ph₂, from exists_of_mem_image Pr, obtain b Pb, from @subg_lcoset_of_stab_is_moverset_of_orbit G S ambientG finS deceqS deceqG hom H a Hom subgH h Ph₁, begin rewrite [mem_image_eq], existsi b, subst Ph₂, assumption end)) open nat theorem orbit_stabilizer_theorem : card H = card (orbit hom H a) * card (stab hom H a) := calc card H = card (fin_lcosets (stab hom H a) H) * card (stab hom H a) : lagrange_theorem stab_subset ... = card (image (moverset hom H a) (orbit hom H a)) * card (stab hom H a) : subg_moversets_of_orbit_eq_stab_lcosets ... = card (orbit hom H a) * card (stab hom H a) : card_image_eq_of_inj_on moverset_inj_on_orbit end orbit_stabilizer end group
33bd6ec98c260af97bd8e67e7f62fd2189d95e75
1dd482be3f611941db7801003235dc84147ec60a
/src/data/equiv/algebra.lean
1d1475318407e31df148d81376ac761a99685be8
[ "Apache-2.0" ]
permissive
sanderdahmen/mathlib
479039302bd66434bb5672c2a4cecf8d69981458
8f0eae75cd2d8b7a083cf935666fcce4565df076
refs/heads/master
1,587,491,322,775
1,549,672,060,000
1,549,672,060,000
169,748,224
0
0
Apache-2.0
1,549,636,694,000
1,549,636,694,000
null
UTF-8
Lean
false
false
14,441
lean
/- Copyright (c) 2018 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl -/ import data.equiv.basic data.polynomial linear_algebra.multivariate_polynomial universes u v w x variables {α : Type u} {β : Type v} {γ : Type w} {δ : Type x} namespace equiv section group variables [group α] protected def mul_left (a : α) : α ≃ α := { to_fun := λx, a * x, inv_fun := λx, a⁻¹ * x, left_inv := assume x, show a⁻¹ * (a * x) = x, from inv_mul_cancel_left a x, right_inv := assume x, show a * (a⁻¹ * x) = x, from mul_inv_cancel_left a x } attribute [to_additive equiv.add_left._proof_1] equiv.mul_left._proof_1 attribute [to_additive equiv.add_left._proof_2] equiv.mul_left._proof_2 attribute [to_additive equiv.add_left] equiv.mul_left protected def mul_right (a : α) : α ≃ α := { to_fun := λx, x * a, inv_fun := λx, x * a⁻¹, left_inv := assume x, show (x * a) * a⁻¹ = x, from mul_inv_cancel_right x a, right_inv := assume x, show (x * a⁻¹) * a = x, from inv_mul_cancel_right x a } attribute [to_additive equiv.add_right._proof_1] equiv.mul_right._proof_1 attribute [to_additive equiv.add_right._proof_2] equiv.mul_right._proof_2 attribute [to_additive equiv.add_right] equiv.mul_right protected def inv (α) [group α] : α ≃ α := { to_fun := λa, a⁻¹, inv_fun := λa, a⁻¹, left_inv := assume a, inv_inv a, right_inv := assume a, inv_inv a } attribute [to_additive equiv.neg._proof_1] equiv.inv._proof_1 attribute [to_additive equiv.neg._proof_2] equiv.inv._proof_2 attribute [to_additive equiv.neg] equiv.inv def units_equiv_ne_zero (α : Type*) [field α] : units α ≃ {a : α | a ≠ 0} := ⟨λ a, ⟨a.1, units.ne_zero _⟩, λ a, units.mk0 _ a.2, λ ⟨_, _, _, _⟩, units.ext rfl, λ ⟨_, _⟩, rfl⟩ @[simp] lemma coe_units_equiv_ne_zero [field α] (a : units α) : ((units_equiv_ne_zero α a) : α) = a := rfl end group section instances variables (e : α ≃ β) protected def has_zero [has_zero β] : has_zero α := ⟨e.symm 0⟩ lemma zero_def [has_zero β] : @has_zero.zero _ (equiv.has_zero e) = e.symm 0 := rfl protected def has_one [has_one β] : has_one α := ⟨e.symm 1⟩ lemma one_def [has_one β] : @has_one.one _ (equiv.has_one e) = e.symm 1 := rfl protected def has_mul [has_mul β] : has_mul α := ⟨λ x y, e.symm (e x * e y)⟩ lemma mul_def [has_mul β] (x y : α) : @has_mul.mul _ (equiv.has_mul e) x y = e.symm (e x * e y) := rfl protected def has_add [has_add β] : has_add α := ⟨λ x y, e.symm (e x + e y)⟩ lemma add_def [has_add β] (x y : α) : @has_add.add _ (equiv.has_add e) x y = e.symm (e x + e y) := rfl protected def has_inv [has_inv β] : has_inv α := ⟨λ x, e.symm (e x)⁻¹⟩ lemma inv_def [has_inv β] (x : α) : @has_inv.inv _ (equiv.has_inv e) x = e.symm (e x)⁻¹ := rfl protected def has_neg [has_neg β] : has_neg α := ⟨λ x, e.symm (-e x)⟩ lemma neg_def [has_neg β] (x : α) : @has_neg.neg _ (equiv.has_neg e) x = e.symm (-e x) := rfl protected def semigroup [semigroup β] : semigroup α := { mul_assoc := by simp [mul_def, mul_assoc], ..equiv.has_mul e } protected def comm_semigroup [comm_semigroup β] : comm_semigroup α := { mul_comm := by simp [mul_def, mul_comm], ..equiv.semigroup e } protected def monoid [monoid β] : monoid α := { one_mul := by simp [mul_def, one_def], mul_one := by simp [mul_def, one_def], ..equiv.semigroup e, ..equiv.has_one e } protected def comm_monoid [comm_monoid β] : comm_monoid α := { ..equiv.comm_semigroup e, ..equiv.monoid e } protected def group [group β] : group α := { mul_left_inv := by simp [mul_def, inv_def, one_def], ..equiv.monoid e, ..equiv.has_inv e } protected def comm_group [comm_group β] : comm_group α := { ..equiv.group e, ..equiv.comm_semigroup e } protected def add_semigroup [add_semigroup β] : add_semigroup α := @additive.add_semigroup _ (@equiv.semigroup _ _ e multiplicative.semigroup) protected def add_comm_semigroup [add_comm_semigroup β] : add_comm_semigroup α := @additive.add_comm_semigroup _ (@equiv.comm_semigroup _ _ e multiplicative.comm_semigroup) protected def add_monoid [add_monoid β] : add_monoid α := @additive.add_monoid _ (@equiv.monoid _ _ e multiplicative.monoid) protected def add_comm_monoid [add_comm_monoid β] : add_comm_monoid α := @additive.add_comm_monoid _ (@equiv.comm_monoid _ _ e multiplicative.comm_monoid) protected def add_group [add_group β] : add_group α := @additive.add_group _ (@equiv.group _ _ e multiplicative.group) protected def add_comm_group [add_comm_group β] : add_comm_group α := @additive.add_comm_group _ (@equiv.comm_group _ _ e multiplicative.comm_group) protected def semiring [semiring β] : semiring α := { right_distrib := by simp [mul_def, add_def, add_mul], left_distrib := by simp [mul_def, add_def, mul_add], zero_mul := by simp [mul_def, zero_def], mul_zero := by simp [mul_def, zero_def], ..equiv.has_zero e, ..equiv.has_mul e, ..equiv.has_add e, ..equiv.monoid e, ..equiv.add_comm_monoid e } protected def comm_semiring [comm_semiring β] : comm_semiring α := { ..equiv.semiring e, ..equiv.comm_monoid e } protected def ring [ring β] : ring α := { ..equiv.semiring e, ..equiv.add_comm_group e } protected def comm_ring [comm_ring β] : comm_ring α := { ..equiv.comm_monoid e, ..equiv.ring e } protected def zero_ne_one_class [zero_ne_one_class β] : zero_ne_one_class α := { zero_ne_one := by simp [zero_def, one_def], ..equiv.has_zero e, ..equiv.has_one e } protected def nonzero_comm_ring [nonzero_comm_ring β] : nonzero_comm_ring α := { ..equiv.zero_ne_one_class e, ..equiv.comm_ring e } protected def domain [domain β] : domain α := { eq_zero_or_eq_zero_of_mul_eq_zero := by simp [mul_def, zero_def, equiv.eq_symm_apply], ..equiv.has_zero e, ..equiv.zero_ne_one_class e, ..equiv.has_mul e, ..equiv.ring e } protected def integral_domain [integral_domain β] : integral_domain α := { ..equiv.domain e, ..equiv.nonzero_comm_ring e } protected def division_ring [division_ring β] : division_ring α := { inv_mul_cancel := λ _, by simp [mul_def, inv_def, zero_def, one_def, (equiv.symm_apply_eq _).symm]; exact inv_mul_cancel, mul_inv_cancel := λ _, by simp [mul_def, inv_def, zero_def, one_def, (equiv.symm_apply_eq _).symm]; exact mul_inv_cancel, ..equiv.has_zero e, ..equiv.has_one e, ..equiv.domain e, ..equiv.has_inv e } protected def field [field β] : field α := { ..equiv.integral_domain e, ..equiv.division_ring e } protected def discrete_field [discrete_field β] : discrete_field α := { has_decidable_eq := equiv.decidable_eq e, inv_zero := by simp [mul_def, inv_def, zero_def], ..equiv.has_mul e, ..equiv.has_inv e, ..equiv.has_zero e, ..equiv.field e } end instances end equiv structure ring_equiv (α β : Type*) [ring α] [ring β] extends α ≃ β := (hom : is_ring_hom to_fun) infix ` ≃r `:50 := ring_equiv namespace ring_equiv variables [ring α] [ring β] [ring γ] instance {e : α ≃r β} : is_ring_hom e.to_equiv := hom _ protected def refl (α : Type*) [ring α] : α ≃r α := { hom := is_ring_hom.id, .. equiv.refl α } protected def symm {α β : Type*} [ring α] [ring β] (e : α ≃r β) : β ≃r α := { hom := ⟨(equiv.symm_apply_eq _).2 e.hom.1.symm, λ x y, (equiv.symm_apply_eq _).2 $ show _ = e.to_equiv.to_fun _, by rw [e.2.2, e.1.4, e.1.4], λ x y, (equiv.symm_apply_eq _).2 $ show _ = e.to_equiv.to_fun _, by rw [e.2.3, e.1.4, e.1.4]⟩, .. e.to_equiv.symm } protected def trans {α β γ : Type*} [ring α] [ring β] [ring γ] (e₁ : α ≃r β) (e₂ : β ≃r γ) : α ≃r γ := { hom := is_ring_hom.comp _ _, .. e₁.1.trans e₂.1 } end ring_equiv namespace mv_polynomial variables (α) [comm_ring α] variables [decidable_eq α] [decidable_eq β] [decidable_eq γ] [decidable_eq δ] def pempty_ring_equiv : mv_polynomial pempty α ≃r α := { to_fun := mv_polynomial.eval₂ id $ pempty.elim, inv_fun := C, left_inv := is_id _ (by apply_instance) (assume a, by rw [eval₂_C]; refl) (assume a, a.elim), right_inv := λ r, eval₂_C _ _ _, hom := eval₂.is_ring_hom _ _ } def punit_ring_equiv : mv_polynomial punit α ≃r polynomial α := { to_fun := eval₂ polynomial.C (λu:punit, polynomial.X), inv_fun := polynomial.eval₂ mv_polynomial.C (X punit.star), left_inv := begin refine is_id _ _ _ _, apply is_semiring_hom.comp (eval₂ polynomial.C (λu:punit, polynomial.X)) _; apply_instance, { assume a, rw [eval₂_C, polynomial.eval₂_C] }, { rintros ⟨⟩, rw [eval₂_X, polynomial.eval₂_X] } end, right_inv := assume p, polynomial.induction_on p (assume a, by rw [polynomial.eval₂_C, mv_polynomial.eval₂_C]) (assume p q hp hq, by rw [polynomial.eval₂_add, mv_polynomial.eval₂_add, hp, hq]) (assume p n hp, by rw [polynomial.eval₂_mul, polynomial.eval₂_pow, polynomial.eval₂_X, polynomial.eval₂_C, eval₂_mul, eval₂_C, eval₂_pow, eval₂_X]), hom := eval₂.is_ring_hom _ _ } def ring_equiv_of_equiv (e : β ≃ γ) : mv_polynomial β α ≃r mv_polynomial γ α := { to_fun := rename e, inv_fun := rename e.symm, left_inv := λ p, by simp only [rename_rename, (∘), e.inverse_apply_apply]; exact rename_id p, right_inv := λ p, by simp only [rename_rename, (∘), e.apply_inverse_apply]; exact rename_id p, hom := rename.is_ring_hom e } def ring_equiv_congr [comm_ring γ] (e : α ≃r γ) : mv_polynomial β α ≃r mv_polynomial β γ := { to_fun := map e.to_fun, inv_fun := map e.symm.to_fun, left_inv := assume p, have (e.symm.to_equiv.to_fun ∘ e.to_equiv.to_fun) = id, { ext a, exact e.to_equiv.inverse_apply_apply a }, by simp only [map_map, this, map_id], right_inv := assume p, have (e.to_equiv.to_fun ∘ e.symm.to_equiv.to_fun) = id, { ext a, exact e.to_equiv.apply_inverse_apply a }, by simp only [map_map, this, map_id], hom := map.is_ring_hom e.to_fun } section variables (β γ δ) instance ring_on_sum : ring (mv_polynomial (β ⊕ γ) α) := by apply_instance instance ring_on_iter : ring (mv_polynomial β (mv_polynomial γ α)) := by apply_instance def sum_to_iter : mv_polynomial (β ⊕ γ) α → mv_polynomial β (mv_polynomial γ α) := eval₂ (C ∘ C) (λbc, sum.rec_on bc X (C ∘ X)) instance is_semiring_hom_C_C : is_semiring_hom (C ∘ C : α → mv_polynomial β (mv_polynomial γ α)) := @is_semiring_hom.comp _ _ _ _ C mv_polynomial.is_semiring_hom _ _ C mv_polynomial.is_semiring_hom instance is_semiring_hom_sum_to_iter : is_semiring_hom (sum_to_iter α β γ) := eval₂.is_semiring_hom _ _ lemma sum_to_iter_C (a : α) : sum_to_iter α β γ (C a) = C (C a) := eval₂_C _ _ a lemma sum_to_iter_Xl (b : β) : sum_to_iter α β γ (X (sum.inl b)) = X b := eval₂_X _ _ (sum.inl b) lemma sum_to_iter_Xr (c : γ) : sum_to_iter α β γ (X (sum.inr c)) = C (X c) := eval₂_X _ _ (sum.inr c) def iter_to_sum : mv_polynomial β (mv_polynomial γ α) → mv_polynomial (β ⊕ γ) α := eval₂ (eval₂ C (X ∘ sum.inr)) (X ∘ sum.inl) section instance is_semiring_hom_iter_to_sum : is_semiring_hom (iter_to_sum α β γ) := eval₂.is_semiring_hom _ _ end lemma iter_to_sum_C_C (a : α) : iter_to_sum α β γ (C (C a)) = C a := eq.trans (eval₂_C _ _ (C a)) (eval₂_C _ _ _) lemma iter_to_sum_X (b : β) : iter_to_sum α β γ (X b) = X (sum.inl b) := eval₂_X _ _ _ lemma iter_to_sum_C_X (c : γ) : iter_to_sum α β γ (C (X c)) = X (sum.inr c) := eq.trans (eval₂_C _ _ (X c)) (eval₂_X _ _ _) def mv_polynomial_equiv_mv_polynomial [comm_ring δ] (f : mv_polynomial β α → mv_polynomial γ δ) (hf : is_semiring_hom f) (g : mv_polynomial γ δ → mv_polynomial β α) (hg : is_semiring_hom g) (hfgC : ∀a, f (g (C a)) = C a) (hfgX : ∀n, f (g (X n)) = X n) (hgfC : ∀a, g (f (C a)) = C a) (hgfX : ∀n, g (f (X n)) = X n) : mv_polynomial β α ≃r mv_polynomial γ δ := { to_fun := f, inv_fun := g, left_inv := is_id _ (is_semiring_hom.comp _ _) hgfC hgfX, right_inv := is_id _ (is_semiring_hom.comp _ _) hfgC hfgX, hom := is_ring_hom.of_semiring f } def sum_ring_equiv : mv_polynomial (β ⊕ γ) α ≃r mv_polynomial β (mv_polynomial γ α) := begin apply @mv_polynomial_equiv_mv_polynomial α (β ⊕ γ) _ _ _ _ _ _ _ _ (sum_to_iter α β γ) _ (iter_to_sum α β γ) _, { assume p, apply @hom_eq_hom _ _ _ _ _ _ _ _ _ _ _ _ _ p, apply_instance, { apply @is_semiring_hom.comp _ _ _ _ _ _ _ _ _ _, apply_instance, apply @is_semiring_hom.comp _ _ _ _ _ _ _ _ _ _, apply_instance, { apply @mv_polynomial.is_semiring_hom }, { apply mv_polynomial.is_semiring_hom_iter_to_sum α β γ }, { apply mv_polynomial.is_semiring_hom_sum_to_iter α β γ } }, { apply mv_polynomial.is_semiring_hom }, { assume a, rw [iter_to_sum_C_C α β γ, sum_to_iter_C α β γ] }, { assume c, rw [iter_to_sum_C_X α β γ, sum_to_iter_Xr α β γ] } }, { assume b, rw [iter_to_sum_X α β γ, sum_to_iter_Xl α β γ] }, { assume a, rw [sum_to_iter_C α β γ, iter_to_sum_C_C α β γ] }, { assume n, cases n with b c, { rw [sum_to_iter_Xl, iter_to_sum_X] }, { rw [sum_to_iter_Xr, iter_to_sum_C_X] } }, { apply mv_polynomial.is_semiring_hom_sum_to_iter α β γ }, { apply mv_polynomial.is_semiring_hom_iter_to_sum α β γ } end instance option_ring : ring (mv_polynomial (option β) α) := mv_polynomial.ring instance polynomial_ring : ring (polynomial (mv_polynomial β α)) := @comm_ring.to_ring _ polynomial.comm_ring instance polynomial_ring2 : ring (mv_polynomial β (polynomial α)) := by apply_instance def option_equiv_left : mv_polynomial (option β) α ≃r polynomial (mv_polynomial β α) := (ring_equiv_of_equiv α $ (equiv.option_equiv_sum_punit β).trans (equiv.sum_comm _ _)).trans $ (sum_ring_equiv α _ _).trans $ punit_ring_equiv _ def option_equiv_right : mv_polynomial (option β) α ≃r mv_polynomial β (polynomial α) := (ring_equiv_of_equiv α $ equiv.option_equiv_sum_punit.{0} β).trans $ (sum_ring_equiv α β unit).trans $ ring_equiv_congr (mv_polynomial unit α) (punit_ring_equiv α) end end mv_polynomial
92dfe4c46a0874b35e594c92a9999faca840f4d2
9b9a16fa2cb737daee6b2785474678b6fa91d6d4
/src/category_theory/limits/cones.lean
0e6d9972821198e64f791857c3f5ca260f47becb
[ "Apache-2.0" ]
permissive
johoelzl/mathlib
253f46daa30b644d011e8e119025b01ad69735c4
592e3c7a2dfbd5826919b4605559d35d4d75938f
refs/heads/master
1,625,657,216,488
1,551,374,946,000
1,551,374,946,000
98,915,829
0
0
Apache-2.0
1,522,917,267,000
1,501,524,499,000
Lean
UTF-8
Lean
false
false
10,550
lean
-- Copyright (c) 2017 Scott Morrison. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Authors: Stephen Morgan, Scott Morrison import category_theory.natural_isomorphism import category_theory.whiskering import category_theory.const import category_theory.opposites import category_theory.yoneda universes v u u' -- declare the `v`'s first; see `category_theory.category` for an explanation open category_theory variables {J : Type v} [small_category J] variables {C : Type u} [𝒞 : category.{v} C] include 𝒞 open category_theory open category_theory.category open category_theory.functor namespace category_theory namespace functor variables {J C} (F : J ⥤ C) /-- `F.cones` is the functor assigning to an object `X` the type of natural transformations from the constant functor with value `X` to `F`. An object representing this functor is a limit of `F`. -/ def cones : Cᵒᵖ ⥤ Type v := (const J).op ⋙ (yoneda.obj F) lemma cones_obj (X : Cᵒᵖ) : F.cones.obj X = ((const J).obj (unop X) ⟶ F) := rfl @[simp] lemma cones_map_app {X₁ X₂ : Cᵒᵖ} (f : X₁ ⟶ X₂) (t : F.cones.obj X₁) (j : J) : (F.cones.map f t).app j = f.unop ≫ t.app j := rfl /-- `F.cocones` is the functor assigning to an object `X` the type of natural transformations from `F` to the constant functor with value `X`. An object corepresenting this functor is a colimit of `F`. -/ def cocones : C ⥤ Type v := const J ⋙ coyoneda.obj (op F) lemma cocones_obj (X : C) : F.cocones.obj X = (F ⟹ (const J).obj X) := rfl @[simp] lemma cocones_map_app {X₁ X₂ : C} (f : X₁ ⟶ X₂) (t : F.cocones.obj X₁) (j : J) : (F.cocones.map f t).app j = t.app j ≫ f := rfl end functor section variables (J C) def cones : (J ⥤ C) ⥤ (Cᵒᵖ ⥤ Type v) := { obj := functor.cones, map := λ F G f, whisker_left (const J).op (yoneda.map f) } def cocones : (J ⥤ C)ᵒᵖ ⥤ (C ⥤ Type v) := { obj := λ F, functor.cocones (unop F), map := λ F G f, whisker_left (const J) (coyoneda.map f) } variables {J C} @[simp] lemma cones_obj (F : J ⥤ C) : (cones J C).obj F = F.cones := rfl @[simp] lemma cones_map {F G : J ⥤ C} {f : F ⟶ G} : (cones J C).map f = (whisker_left (const J).op (yoneda.map f)) := rfl @[simp] lemma cocones_obj (F : (J ⥤ C)ᵒᵖ) : (cocones J C).obj F = (unop F).cocones := rfl @[simp] lemma cocones_map {F G : (J ⥤ C)ᵒᵖ} {f : F ⟶ G} : (cocones J C).map f = (whisker_left (const J) (coyoneda.map f)) := rfl end namespace limits /-- A `c : cone F` is: * an object `c.X` and * a natural transformation `c.π : c.X ⟹ F` from the constant `c.X` functor to `F`. `cone F` is equivalent, in the obvious way, to `Σ X, F.cones.obj X`. -/ structure cone (F : J ⥤ C) := (X : C) (π : (const J).obj X ⟹ F) @[simp] lemma cone.w {F : J ⥤ C} (c : cone F) {j j' : J} (f : j ⟶ j') : c.π.app j ≫ F.map f = c.π.app j' := by convert ←(c.π.naturality f).symm; apply id_comp /-- A `c : cocone F` is * an object `c.X` and * a natural transformation `c.ι : F ⟹ c.X` from `F` to the constant `c.X` functor. `cocone F` is equivalent, in the obvious way, to `Σ X, F.cocones.obj X`. -/ structure cocone (F : J ⥤ C) := (X : C) (ι : F ⟹ (const J).obj X) @[simp] lemma cocone.w {F : J ⥤ C} (c : cocone F) {j j' : J} (f : j ⟶ j') : F.map f ≫ c.ι.app j' = c.ι.app j := by convert ←(c.ι.naturality f); apply comp_id variables {F : J ⥤ C} namespace cone @[simp] def extensions (c : cone F) : yoneda.obj c.X ⟶ F.cones := { app := λ X f, ((const J).map f) ≫ c.π } /-- A map to the vertex of a cone induces a cone by composition. -/ @[simp] def extend (c : cone F) {X : C} (f : X ⟶ c.X) : cone F := { X := X, π := c.extensions.app (op X) f } def whisker {K : Type v} [small_category K] (E : K ⥤ J) (c : cone F) : cone (E ⋙ F) := { X := c.X, π := whisker_left E c.π } @[simp] lemma whisker_π_app (c : cone F) {K : Type v} [small_category K] (E : K ⥤ J) (k : K) : (c.whisker E).π.app k = (c.π).app (E.obj k) := rfl end cone namespace cocone @[simp] def extensions (c : cocone F) : coyoneda.obj (op c.X) ⟶ F.cocones := { app := λ X f, c.ι ≫ ((const J).map f) } /-- A map from the vertex of a cocone induces a cocone by composition. -/ @[simp] def extend (c : cocone F) {X : C} (f : c.X ⟶ X) : cocone F := { X := X, ι := c.extensions.app X f } def whisker {K : Type v} [small_category K] (E : K ⥤ J) (c : cocone F) : cocone (E ⋙ F) := { X := c.X, ι := whisker_left E c.ι } @[simp] lemma whisker_ι_app (c : cocone F) {K : Type v} [small_category K] (E : K ⥤ J) (k : K) : (c.whisker E).ι.app k = (c.ι).app (E.obj k) := rfl end cocone structure cone_morphism (A B : cone F) := (hom : A.X ⟶ B.X) (w' : ∀ j : J, hom ≫ B.π.app j = A.π.app j . obviously) restate_axiom cone_morphism.w' attribute [simp] cone_morphism.w @[extensionality] lemma cone_morphism.ext {A B : cone F} {f g : cone_morphism A B} (w : f.hom = g.hom) : f = g := by cases f; cases g; simpa using w instance cone.category : category.{v} (cone F) := { hom := λ A B, cone_morphism A B, comp := λ X Y Z f g, { hom := f.hom ≫ g.hom, w' := by intro j; rw [assoc, g.w, f.w] }, id := λ B, { hom := 𝟙 B.X } } namespace cones @[simp] lemma id.hom (c : cone F) : (𝟙 c : cone_morphism c c).hom = 𝟙 (c.X) := rfl @[simp] lemma comp.hom {c d e : cone F} (f : c ⟶ d) (g : d ⟶ e) : (f ≫ g).hom = f.hom ≫ g.hom := rfl /-- To give an isomorphism between cones, it suffices to give an isomorphism between their vertices which commutes with the cone maps. -/ @[extensionality] def ext {c c' : cone F} (φ : c.X ≅ c'.X) (w : ∀ j, c.π.app j = φ.hom ≫ c'.π.app j) : c ≅ c' := { hom := { hom := φ.hom }, inv := { hom := φ.inv, w' := λ j, φ.inv_comp_eq.mpr (w j) } } def postcompose {G : J ⥤ C} (α : F ⟶ G) : cone F ⥤ cone G := { obj := λ c, { X := c.X, π := c.π ⊟ α }, map := λ c₁ c₂ f, { hom := f.hom, w' := by intro; erw ← category.assoc; simp [-category.assoc] } } @[simp] lemma postcompose_obj_X {G : J ⥤ C} (α : F ⟶ G) (c : cone F) : ((postcompose α).obj c).X = c.X := rfl @[simp] lemma postcompose_obj_π {G : J ⥤ C} (α : F ⟶ G) (c : cone F) : ((postcompose α).obj c).π = c.π ⊟ α := rfl @[simp] lemma postcompose_map_hom {G : J ⥤ C} (α : F ⟶ G) {c₁ c₂ : cone F} (f : c₁ ⟶ c₂): ((postcompose α).map f).hom = f.hom := rfl def forget : cone F ⥤ C := { obj := λ t, t.X, map := λ s t f, f.hom } @[simp] lemma forget_obj {t : cone F} : forget.obj t = t.X := rfl @[simp] lemma forget_map {s t : cone F} {f : s ⟶ t} : forget.map f = f.hom := rfl section variables {D : Type u'} [𝒟 : category.{v} D] include 𝒟 @[simp] def functoriality (G : C ⥤ D) : cone F ⥤ cone (F ⋙ G) := { obj := λ A, { X := G.obj A.X, π := { app := λ j, G.map (A.π.app j), naturality' := by intros; erw ←G.map_comp; tidy } }, map := λ X Y f, { hom := G.map f.hom, w' := by intros; rw [←functor.map_comp, f.w] } } end end cones structure cocone_morphism (A B : cocone F) := (hom : A.X ⟶ B.X) (w' : ∀ j : J, A.ι.app j ≫ hom = B.ι.app j . obviously) restate_axiom cocone_morphism.w' attribute [simp] cocone_morphism.w @[extensionality] lemma cocone_morphism.ext {A B : cocone F} {f g : cocone_morphism A B} (w : f.hom = g.hom) : f = g := by cases f; cases g; simpa using w instance cocone.category : category.{v} (cocone F) := { hom := λ A B, cocone_morphism A B, comp := λ _ _ _ f g, { hom := f.hom ≫ g.hom, w' := by intro j; rw [←assoc, f.w, g.w] }, id := λ B, { hom := 𝟙 B.X } } namespace cocones @[simp] lemma id.hom (c : cocone F) : (𝟙 c : cocone_morphism c c).hom = 𝟙 (c.X) := rfl @[simp] lemma comp.hom {c d e : cocone F} (f : c ⟶ d) (g : d ⟶ e) : (f ≫ g).hom = f.hom ≫ g.hom := rfl /-- To give an isomorphism between cocones, it suffices to give an isomorphism between their vertices which commutes with the cocone maps. -/ @[extensionality] def ext {c c' : cocone F} (φ : c.X ≅ c'.X) (w : ∀ j, c.ι.app j ≫ φ.hom = c'.ι.app j) : c ≅ c' := { hom := { hom := φ.hom }, inv := { hom := φ.inv, w' := λ j, φ.comp_inv_eq.mpr (w j).symm } } def precompose {G : J ⥤ C} (α : G ⟶ F) : cocone F ⥤ cocone G := { obj := λ c, { X := c.X, ι := α ⊟ c.ι }, map := λ c₁ c₂ f, { hom := f.hom } } @[simp] lemma precompose_obj_X {G : J ⥤ C} (α : G ⟶ F) (c : cocone F) : ((precompose α).obj c).X = c.X := rfl @[simp] lemma precompose_obj_ι {G : J ⥤ C} (α : G ⟶ F) (c : cocone F) : ((precompose α).obj c).ι = α ⊟ c.ι := rfl @[simp] lemma precompose_map_hom {G : J ⥤ C} (α : G ⟶ F) {c₁ c₂ : cocone F} (f : c₁ ⟶ c₂) : ((precompose α).map f).hom = f.hom := rfl def forget : cocone F ⥤ C := { obj := λ t, t.X, map := λ s t f, f.hom } @[simp] lemma forget_obj {t : cocone F} : forget.obj t = t.X := rfl @[simp] lemma forget_map {s t : cocone F} {f : s ⟶ t} : forget.map f = f.hom := rfl section variables {D : Type u'} [𝒟 : category.{v} D] include 𝒟 @[simp] def functoriality (G : C ⥤ D) : cocone F ⥤ cocone (F ⋙ G) := { obj := λ A, { X := G.obj A.X, ι := { app := λ j, G.map (A.ι.app j), naturality' := by intros; erw ←G.map_comp; tidy } }, map := λ _ _ f, { hom := G.map f.hom, w' := by intros; rw [←functor.map_comp, cocone_morphism.w] } } end end cocones end limits namespace functor variables {D : Type u'} [category.{v} D] variables {F : J ⥤ C} {G : J ⥤ C} (H : C ⥤ D) open category_theory.limits /-- The image of a cone in C under a functor G : C ⥤ D is a cone in D. -/ def map_cone (c : cone F) : cone (F ⋙ H) := (cones.functoriality H).obj c /-- The image of a cocone in C under a functor G : C ⥤ D is a cocone in D. -/ def map_cocone (c : cocone F) : cocone (F ⋙ H) := (cocones.functoriality H).obj c def map_cone_morphism {c c' : cone F} (f : cone_morphism c c') : cone_morphism (H.map_cone c) (H.map_cone c') := (cones.functoriality H).map f def map_cocone_morphism {c c' : cocone F} (f : cocone_morphism c c') : cocone_morphism (H.map_cocone c) (H.map_cocone c') := (cocones.functoriality H).map f @[simp] lemma map_cone_π (c : cone F) (j : J) : (map_cone H c).π.app j = H.map (c.π.app j) := rfl @[simp] lemma map_cocone_ι (c : cocone F) (j : J) : (map_cocone H c).ι.app j = H.map (c.ι.app j) := rfl end functor end category_theory
e675b6828c537b89f08962a78d1d30fff1beedce
9be442d9ec2fcf442516ed6e9e1660aa9071b7bd
/stage0/src/Lean/Meta/IndPredBelow.lean
f88ce50193c0bd8624f817f328ee7b868923a819
[ "Apache-2.0", "LLVM-exception", "NCSA", "LGPL-3.0-only", "LicenseRef-scancode-inner-net-2.0", "BSD-3-Clause", "LGPL-2.0-or-later", "Spencer-94", "LGPL-2.1-or-later", "HPND", "LicenseRef-scancode-pcre", "ISC", "LGPL-2.1-only", "LicenseRef-scancode-other-permissive", "SunPro", "CMU-Mach" ]
permissive
EdAyers/lean4
57ac632d6b0789cb91fab2170e8c9e40441221bd
37ba0df5841bde51dbc2329da81ac23d4f6a4de4
refs/heads/master
1,676,463,245,298
1,660,619,433,000
1,660,619,433,000
183,433,437
1
0
Apache-2.0
1,657,612,672,000
1,556,196,574,000
Lean
UTF-8
Lean
false
false
25,714
lean
/- Copyright (c) 2021 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Dany Fabian -/ import Lean.Meta.Constructions import Lean.Meta.Transform import Lean.Meta.Tactic import Lean.Meta.Match.Match import Lean.Meta.Reduce namespace Lean.Meta.IndPredBelow open Match register_builtin_option maxBackwardChainingDepth : Nat := { defValue := 10 descr := "The maximum search depth used in the backwards chaining part of the proof of `brecOn` for inductive predicates." } /-- The context used in the creation of the `below` scheme for inductive predicates. -/ structure Context where motives : Array (Name × Expr) typeInfos : Array InductiveVal belowNames : Array Name headers : Array Expr numParams : Nat /-- Collection of variables used to keep track of the positions of binders in the construction of `below` motives and constructors. -/ structure Variables where target : Array Expr indVal : Array Expr params : Array Expr args : Array Expr motives : Array Expr innerType : Expr deriving Inhabited /-- Collection of variables used to keep track of the local context used in the `brecOn` proof. -/ structure BrecOnVariables where params : Array FVarId motives : Array FVarId indices : Array FVarId witness : FVarId indHyps : Array FVarId def mkContext (declName : Name) : MetaM Context := do let indVal ← getConstInfoInduct declName let typeInfos ← indVal.all.toArray.mapM getConstInfoInduct let motiveTypes ← typeInfos.mapM motiveType let motives ← motiveTypes.mapIdxM fun j motive => return (← motiveName motiveTypes j.val, motive) let headers ← typeInfos.mapM $ mkHeader motives indVal.numParams return { motives := motives typeInfos := typeInfos numParams := indVal.numParams headers := headers belowNames := indVal.all.toArray.map (· ++ `below) } where motiveName (motiveTypes : Array Expr) (i : Nat) : MetaM Name := if motiveTypes.size > 1 then mkFreshUserName s!"motive_{i.succ}" else mkFreshUserName "motive" mkHeader (motives : Array (Name × Expr)) (numParams : Nat) (indVal : InductiveVal) : MetaM Expr := do let header ← forallTelescopeReducing indVal.type fun xs t => do withNewBinderInfos (xs.map fun x => (x.fvarId!, BinderInfo.implicit)) $ mkForallFVars xs (← mkArrow (mkAppN (mkIndValConst indVal) xs) t) addMotives motives numParams header addMotives (motives : Array (Name × Expr)) (numParams : Nat) : Expr → MetaM Expr := motives.foldrM (fun (motiveName, motive) t => forallTelescopeReducing t fun xs s => do let motiveType ← instantiateForall motive xs[:numParams] withLocalDecl motiveName BinderInfo.implicit motiveType fun motive => do mkForallFVars (xs.insertAt numParams motive) s) motiveType (indVal : InductiveVal) : MetaM Expr := forallTelescopeReducing indVal.type fun xs _ => do mkForallFVars xs (← mkArrow (mkAppN (mkIndValConst indVal) xs) (mkSort levelZero)) mkIndValConst (indVal : InductiveVal) : Expr := mkConst indVal.name $ indVal.levelParams.map mkLevelParam partial def mkCtorType (ctx : Context) (belowIdx : Nat) (originalCtor : ConstructorVal) : MetaM Expr := forallTelescopeReducing originalCtor.type fun xs t => addHeaderVars { innerType := t indVal := #[] motives := #[] params := xs[:ctx.numParams] args := xs[ctx.numParams:] target := xs[:ctx.numParams] } where addHeaderVars (vars : Variables) := do let headersWithNames ← ctx.headers.mapIdxM fun idx header => return (ctx.belowNames[idx]!, fun _ : Array Expr => pure header) withLocalDeclsD headersWithNames fun xs => addMotives { vars with indVal := xs } addMotives (vars : Variables) := do let motiveBuilders ← ctx.motives.mapM fun (motiveName, motiveType) => return (motiveName, BinderInfo.implicit, fun _ : Array Expr => instantiateForall motiveType vars.params) withLocalDecls motiveBuilders fun xs => modifyBinders { vars with target := vars.target ++ xs, motives := xs } 0 modifyBinders (vars : Variables) (i : Nat) := do if i < vars.args.size then let binder := vars.args[i]! let binderType ← inferType binder if (← checkCount binderType) then mkBelowBinder vars binder binderType fun indValIdx x => mkMotiveBinder vars indValIdx binder binderType fun y => withNewBinderInfos #[(binder.fvarId!, BinderInfo.implicit)] do modifyBinders { vars with target := vars.target ++ #[binder, x, y]} i.succ else modifyBinders { vars with target := vars.target.push binder } i.succ else rebuild vars rebuild (vars : Variables) := vars.innerType.withApp fun _ args => do let hApp := mkAppN (mkConst originalCtor.name $ ctx.typeInfos[0]!.levelParams.map mkLevelParam) (vars.params ++ vars.args) let innerType := mkAppN vars.indVal[belowIdx]! $ vars.params ++ vars.motives ++ args[ctx.numParams:] ++ #[hApp] let x ← mkForallFVars vars.target innerType return replaceTempVars vars x replaceTempVars (vars : Variables) (ctor : Expr) := let levelParams := ctx.typeInfos[0]!.levelParams.map mkLevelParam ctor.replaceFVars vars.indVal $ ctx.belowNames.map fun indVal => mkConst indVal levelParams checkCount (domain : Expr) : MetaM Bool := do let run (x : StateRefT Nat MetaM Expr) : MetaM (Expr × Nat) := StateRefT'.run x 0 let (_, cnt) ← run <| transform domain fun e => do if let some name := e.constName? then if let some _ := ctx.typeInfos.findIdx? fun indVal => indVal.name == name then modify (· + 1) return TransformStep.visit e if cnt > 1 then throwError "only arrows are allowed as premises. Multiple recursive occurrences detected:{indentExpr domain}" return cnt == 1 mkBelowBinder (vars : Variables) (binder : Expr) (domain : Expr) {α : Type} (k : Nat → Expr → MetaM α) : MetaM α := do forallTelescopeReducing domain fun xs t => do let fail _ := do throwError "only trivial inductive applications supported in premises:{indentExpr t}" t.withApp fun f args => do if let some name := f.constName? then if let some idx := ctx.typeInfos.findIdx? fun indVal => indVal.name == name then let hApp := mkAppN binder xs let t := mkAppN vars.indVal[idx]! $ vars.params ++ vars.motives ++ args[ctx.numParams:] ++ #[hApp] let newDomain ← mkForallFVars xs t withLocalDecl (←copyVarName binder.fvarId!) binder.binderInfo newDomain (k idx) else fail () else fail () mkMotiveBinder (vars : Variables) (indValIdx : Nat) (binder : Expr) (domain : Expr) {α : Type} (k : Expr → MetaM α) : MetaM α := do forallTelescopeReducing domain fun xs t => do t.withApp fun _ args => do let hApp := mkAppN binder xs let t := mkAppN vars.motives[indValIdx]! $ args[ctx.numParams:] ++ #[hApp] let newDomain ← mkForallFVars xs t withLocalDecl (←copyVarName binder.fvarId!) binder.binderInfo newDomain k copyVarName (oldName : FVarId) : MetaM Name := do let binderDecl ← oldName.getDecl mkFreshUserName binderDecl.userName def mkConstructor (ctx : Context) (i : Nat) (ctor : Name) : MetaM Constructor := do let ctorInfo ← getConstInfoCtor ctor let name := ctor.updatePrefix ctx.belowNames[i]! let type ← mkCtorType ctx i ctorInfo return { name := name type := type } def mkInductiveType (ctx : Context) (i : Fin ctx.typeInfos.size) (indVal : InductiveVal) : MetaM InductiveType := do return { name := ctx.belowNames[i]! type := ctx.headers[i]! ctors := (← indVal.ctors.mapM (mkConstructor ctx i)) } def mkBelowDecl (ctx : Context) : MetaM Declaration := do let lparams := ctx.typeInfos[0]!.levelParams return Declaration.inductDecl lparams (ctx.numParams + ctx.motives.size) (←ctx.typeInfos.mapIdxM $ mkInductiveType ctx).toList ctx.typeInfos[0]!.isUnsafe partial def backwardsChaining (m : MVarId) (depth : Nat) : MetaM Bool := do if depth = 0 then return false else m.withContext do let lctx ← getLCtx let mTy ← m.getType lctx.anyM fun localDecl => if localDecl.isAuxDecl then return false else commitWhen do let (mvars, _, t) ← forallMetaTelescope localDecl.type if ←isDefEq mTy t then m.assign (mkAppN localDecl.toExpr mvars) mvars.allM fun v => v.mvarId!.isAssigned <||> backwardsChaining v.mvarId! (depth - 1) else return false partial def proveBrecOn (ctx : Context) (indVal : InductiveVal) (type : Expr) : MetaM Expr := do let main ← mkFreshExprSyntheticOpaqueMVar type let (m, vars) ← intros main.mvarId! let [m] ← applyIH m vars | throwError "applying the induction hypothesis should only return one goal" let ms ← induction m vars let ms ← applyCtors ms let maxDepth := maxBackwardChainingDepth.get $ ←getOptions ms.forM (closeGoal maxDepth) instantiateMVars main where intros (m : MVarId) : MetaM (MVarId × BrecOnVariables) := do let (params, m) ← m.introNP indVal.numParams let (motives, m) ← m.introNP ctx.motives.size let (indices, m) ← m.introNP indVal.numIndices let (witness, m) ← m.intro1P let (indHyps, m) ← m.introNP ctx.motives.size return (m, ⟨params, motives, indices, witness, indHyps⟩) applyIH (m : MVarId) (vars : BrecOnVariables) : MetaM (List MVarId) := do match (← vars.indHyps.findSomeM? fun ih => do try pure <| some <| (← m.apply <| mkFVar ih) catch _ => pure none) with | some goals => pure goals | none => throwError "cannot apply induction hypothesis: {MessageData.ofGoal m}" induction (m : MVarId) (vars : BrecOnVariables) : MetaM (List MVarId) := do let params := vars.params.map mkFVar let motives := vars.motives.map mkFVar let levelParams := indVal.levelParams.map mkLevelParam let motives ← ctx.motives.mapIdxM fun idx (_, motive) => do let motive ← instantiateForall motive params forallTelescopeReducing motive fun xs _ => do mkLambdaFVars xs <| mkAppN (mkConst ctx.belowNames[idx]! levelParams) $ (params ++ motives ++ xs) let recursorInfo ← getConstInfo $ mkRecName indVal.name let recLevels := if recursorInfo.numLevelParams > levelParams.length then levelZero::levelParams else levelParams let recursor := mkAppN (mkConst recursorInfo.name $ recLevels) $ params ++ motives m.apply recursor applyCtors (ms : List MVarId) : MetaM $ List MVarId := do let mss ← ms.toArray.mapIdxM fun _ m => do let m ← introNPRec m (← m.getType).withApp fun below args => m.withContext do args.back.withApp fun ctor _ => do let ctorName := ctor.constName!.updatePrefix below.constName! let ctor := mkConst ctorName below.constLevels! let ctorInfo ← getConstInfoCtor ctorName let (mvars, _, _) ← forallMetaTelescope ctorInfo.type let ctor := mkAppN ctor mvars m.apply ctor return mss.foldr List.append [] introNPRec (m : MVarId) : MetaM MVarId := do if (← m.getType).isForall then introNPRec (← m.intro1P).2 else return m closeGoal (maxDepth : Nat) (m : MVarId) : MetaM Unit := do unless (← m.isAssigned) do let m ← introNPRec m unless (← backwardsChaining m maxDepth) do m.withContext do throwError "couldn't solve by backwards chaining ({``maxBackwardChainingDepth} = {maxDepth}): {MessageData.ofGoal m}" def mkBrecOnDecl (ctx : Context) (idx : Nat) : MetaM Declaration := do let type ← mkType let indVal := ctx.typeInfos[idx]! let name := indVal.name ++ brecOnSuffix return Declaration.thmDecl { name := name levelParams := indVal.levelParams type := type value := ←proveBrecOn ctx indVal type } where mkType : MetaM Expr := forallTelescopeReducing ctx.headers[idx]! fun xs _ => do let params := xs[:ctx.numParams] let motives := xs[ctx.numParams:ctx.numParams + ctx.motives.size].toArray let indices := xs[ctx.numParams + ctx.motives.size:] let motiveBinders ← ctx.motives.mapIdxM $ mkIH params motives withLocalDeclsD motiveBinders fun ys => do mkForallFVars (xs ++ ys) (mkAppN motives[idx]! indices) mkIH (params : Array Expr) (motives : Array Expr) (idx : Fin ctx.motives.size) (motive : Name × Expr) : MetaM $ Name × (Array Expr → MetaM Expr) := do let name := if ctx.motives.size > 1 then mkFreshUserName s!"ih_{idx.val.succ}" else mkFreshUserName "ih" let ih ← instantiateForall motive.2 params let mkDomain (_ : Array Expr) : MetaM Expr := forallTelescopeReducing ih fun ys _ => do let levels := ctx.typeInfos[idx]!.levelParams.map mkLevelParam let args := params ++ motives ++ ys let premise := mkAppN (mkConst ctx.belowNames[idx.val]! levels) args let conclusion := mkAppN motives[idx]! ys mkForallFVars ys (←mkArrow premise conclusion) return (←name, mkDomain) /-- Given a constructor name, find the indices of the corresponding `below` version thereof. -/ partial def getBelowIndices (ctorName : Name) : MetaM $ Array Nat := do let ctorInfo ← getConstInfoCtor ctorName let belowCtorInfo ← getConstInfoCtor (ctorName.updatePrefix $ ctorInfo.induct ++ `below) forallTelescopeReducing ctorInfo.type fun xs _ => do loop xs belowCtorInfo.type #[] 0 0 where loop (xs : Array Expr) (rest : Expr) (belowIndices : Array Nat) (xIdx yIdx : Nat) : MetaM $ Array Nat := do if xIdx ≥ xs.size then return belowIndices else let x := xs[xIdx]! let xTy ← inferType x let yTy := rest.bindingDomain! if (← isDefEq xTy yTy) then let rest ← instantiateForall rest #[x] loop xs rest (belowIndices.push yIdx) (xIdx + 1) (yIdx + 1) else forallBoundedTelescope rest (some 1) fun _ rest => loop xs rest belowIndices xIdx (yIdx + 1) private def belowType (motive : Expr) (xs : Array Expr) (idx : Nat) : MetaM $ Name × Expr := do (← inferType xs[idx]!).withApp fun type args => do let indName := type.constName! let indInfo ← getConstInfoInduct indName let belowArgs := args[:indInfo.numParams] ++ #[motive] ++ args[indInfo.numParams:] ++ #[xs[idx]!] let belowType := mkAppN (mkConst (indName ++ `below) type.constLevels!) belowArgs return (indName, belowType) /-- This function adds an additional `below` discriminant to a matcher application. It is used for modifying the patterns, such that the structural recursion can use the new `below` predicate instead of the original one and thus be used prove structural recursion. It takes as parameters: - matcherApp: a matcher application - belowMotive: the motive, that the `below` type should carry - below: an expression from the local context that is the `below` version of a predicate and can be used for structural recursion - idx: the index of the original predicate discriminant. It returns: - A matcher application as an expression - A side-effect for adding the matcher to the environment -/ partial def mkBelowMatcher (matcherApp : MatcherApp) (belowMotive : Expr) (below : Expr) (idx : Nat) : MetaM $ Expr × MetaM Unit := do let mkMatcherInput ← getMkMatcherInputInContext matcherApp let (indName, _, motive, matchType) ← forallBoundedTelescope mkMatcherInput.matchType mkMatcherInput.numDiscrs fun xs t => do let (indName, belowType) ← belowType belowMotive xs idx let matchType ← withLocalDeclD (←mkFreshUserName `h_below) belowType fun h_below => do mkForallFVars (xs.push h_below) t let motive ← newMotive belowType xs pure (indName, belowType.replaceFVars xs matcherApp.discrs, motive, matchType) let lhss ← mkMatcherInput.lhss.mapM <| addBelowPattern indName let alts ← mkMatcherInput.lhss.zip lhss |>.toArray.zip matcherApp.alts |>.mapIdxM fun idx ((oldLhs, lhs), alt) => do withExistingLocalDecls (oldLhs.fvarDecls ++ lhs.fvarDecls) do lambdaTelescope alt fun xs t => do let oldFVars := oldLhs.fvarDecls.toArray let fvars := lhs.fvarDecls.toArray.map (·.toExpr) let xs := -- special case: if we had no free vars, i.e. there was a unit added and no we do have free vars, we get rid of the unit. match oldFVars.size, fvars.size with | 0, _+1 => xs[1:] | _, _ => xs let t := t.replaceFVars xs[:oldFVars.size] fvars[:oldFVars.size] trace[Meta.IndPredBelow.match] "xs = {xs}; oldFVars = {oldFVars.map (·.toExpr)}; fvars = {fvars}; new = {fvars[:oldFVars.size] ++ xs[oldFVars.size:] ++ fvars[oldFVars.size:]}" let newAlt ← mkLambdaFVars (fvars[:oldFVars.size] ++ xs[oldFVars.size:] ++ fvars[oldFVars.size:]) t trace[Meta.IndPredBelow.match] "alt {idx}:\n{alt} ↦ {newAlt}" pure newAlt let matcherName ← mkFreshUserName mkMatcherInput.matcherName withExistingLocalDecls (lhss.foldl (init := []) fun s v => s ++ v.fvarDecls) do for lhs in lhss do trace[Meta.IndPredBelow.match] "{lhs.patterns.map (·.toMessageData)}" let res ← Match.mkMatcher { matcherName, matchType, discrInfos := mkArray (mkMatcherInput.numDiscrs + 1) {}, lhss } res.addMatcher -- if a wrong index is picked, the resulting matcher can be type-incorrect. -- we check here, so that errors can propagate higher up the call stack. check res.matcher let newApp := mkApp res.matcher motive let newApp := mkAppN newApp <| matcherApp.discrs.push below let newApp := mkAppN newApp alts return (newApp, res.addMatcher) where addBelowPattern (indName : Name) (lhs : AltLHS) : MetaM AltLHS := do withExistingLocalDecls lhs.fvarDecls do let patterns := lhs.patterns.toArray let originalPattern := patterns[idx]! let (fVars, belowPattern) ← convertToBelow indName patterns[idx]! withExistingLocalDecls fVars.toList do let patterns := patterns.push belowPattern let patterns := patterns.set! idx (←toInaccessible originalPattern) return { lhs with patterns := patterns.toList, fvarDecls := lhs.fvarDecls ++ fVars.toList } /-- this function changes the type of the pattern from the original type to the `below` version thereof. Most of the cases don't apply. In order to change the type and the pattern to be type correct, we don't simply recursively change all occurrences, but rather, we recursively change occurences of the constructor. As such there are only a few cases: - the pattern is a constructor from the original type. Here we need to: - replace the constructor - copy original recursive patterns and convert them to below and reintroduce them in the correct position - turn original recursive patterns inaccessible - introduce free variables as needed. - it is an `as` pattern. Here the contstructor could be hidden inside of it. - it is a variable. Here you we need to introduce a fresh variable of a different type. -/ convertToBelow (indName : Name) (originalPattern : Pattern) : MetaM $ Array LocalDecl × Pattern := do match originalPattern with | Pattern.ctor ctorName us params fields => let ctorInfo ← getConstInfoCtor ctorName let belowCtor ← getConstInfoCtor $ ctorName.updatePrefix $ ctorInfo.induct ++ `below let belowIndices ← IndPredBelow.getBelowIndices ctorName let belowIndices := belowIndices[ctorInfo.numParams:].toArray.map (· - belowCtor.numParams) -- belowFieldOpts starts off with an array of empty fields. -- We then go over pattern's fields and set the appropriate fields to values. -- In general, there are fewer `fields` than `belowFieldOpts`, because the -- `belowCtor` carries a `below`, a non-`below` and a `motive` version of each -- field that occurs in a recursive application of the inductive predicate. -- `belowIndices` is a mapping from non-`below` to the `below` version of each field. let mut belowFieldOpts := mkArray belowCtor.numFields none let fields := fields.toArray for fieldIdx in [:fields.size] do belowFieldOpts := belowFieldOpts.set! belowIndices[fieldIdx]! (some fields[fieldIdx]!) let belowParams := params.toArray.push belowMotive let belowCtorExpr := mkAppN (mkConst belowCtor.name us) belowParams let (additionalFVars, belowFields) ← transformFields belowCtorExpr indName belowFieldOpts withExistingLocalDecls additionalFVars.toList do let ctor := Pattern.ctor belowCtor.name us belowParams.toList belowFields.toList trace[Meta.IndPredBelow.match] "{originalPattern.toMessageData} ↦ {ctor.toMessageData}" return (additionalFVars, ctor) | Pattern.as varId p hId => let (additionalFVars, p) ← convertToBelow indName p return (additionalFVars, Pattern.as varId p hId) | Pattern.var varId => let var := mkFVar varId let (_, tgtType) ← belowType belowMotive #[var] 0 withLocalDeclD (←mkFreshUserName `h) tgtType fun h => do let localDecl ← getFVarLocalDecl h return (#[localDecl], Pattern.var h.fvarId!) | p => return (#[], p) transformFields belowCtor indName belowFieldOpts := let rec loop (belowCtor : Expr) (belowFieldOpts : Array $ Option Pattern) (belowFields : Array Pattern) (additionalFVars : Array LocalDecl) : MetaM (Array LocalDecl × Array Pattern) := do if belowFields.size ≥ belowFieldOpts.size then pure (additionalFVars, belowFields) else if let some belowField := belowFieldOpts[belowFields.size]! then let belowFieldExpr ← belowField.toExpr let belowCtor := mkApp belowCtor belowFieldExpr let patTy ← inferType belowFieldExpr patTy.withApp fun f _ => do let constName := f.constName? if constName == indName then let (fvars, transformedField) ← convertToBelow indName belowField withExistingLocalDecls fvars.toList do let belowFieldOpts := belowFieldOpts.set! (belowFields.size + 1) transformedField let belowField := match belowField with | Pattern.ctor .. => Pattern.inaccessible belowFieldExpr | _ => belowField loop belowCtor belowFieldOpts (belowFields.push belowField) (additionalFVars ++ fvars) else loop belowCtor belowFieldOpts (belowFields.push belowField) additionalFVars else let ctorType ← inferType belowCtor withLocalDeclD (←mkFreshUserName `a) ctorType.bindingDomain! fun a => do let localDecl ← getFVarLocalDecl a loop (mkApp belowCtor a) belowFieldOpts (belowFields.push $ Pattern.var a.fvarId!) (additionalFVars.push localDecl) loop belowCtor belowFieldOpts #[] #[] toInaccessible : Pattern → MetaM Pattern | Pattern.inaccessible p => return Pattern.inaccessible p | Pattern.var v => return Pattern.var v | p => return Pattern.inaccessible $ ←p.toExpr newMotive (belowType : Expr) (ys : Array Expr) : MetaM Expr := lambdaTelescope matcherApp.motive fun xs t => do let numDiscrs := matcherApp.discrs.size withLocalDeclD (←mkFreshUserName `h_below) (belowType.replaceFVars ys xs) fun h_below => do let motive ← mkLambdaFVars (xs[:numDiscrs] ++ #[h_below] ++ xs[numDiscrs:]) t trace[Meta.IndPredBelow.match] "motive := {motive}" return motive def findBelowIdx (xs : Array Expr) (motive : Expr) : MetaM $ Option (Expr × Nat) := do xs.findSomeM? fun x => do let xTy ← inferType x xTy.withApp fun f _ => match f.constName?, xs.indexOf? x with | some name, some idx => do if (← isInductivePredicate name) then let (_, belowTy) ← belowType motive xs idx let below ← mkFreshExprSyntheticOpaqueMVar belowTy try trace[Meta.IndPredBelow.match] "{←Meta.ppGoal below.mvarId!}" if (← backwardsChaining below.mvarId! 10) then trace[Meta.IndPredBelow.match] "Found below term in the local context: {below}" if (← xs.anyM (isDefEq below)) then pure none else pure (below, idx.val) else trace[Meta.IndPredBelow.match] "could not find below term in the local context" pure none catch _ => pure none else pure none | _, _ => pure none def mkBelow (declName : Name) : MetaM Unit := do if (← isInductivePredicate declName) then let x ← getConstInfoInduct declName if x.isRec then let ctx ← IndPredBelow.mkContext declName let decl ← IndPredBelow.mkBelowDecl ctx addDecl decl trace[Meta.IndPredBelow] "added {ctx.belowNames}" ctx.belowNames.forM Lean.mkCasesOn for i in [:ctx.typeInfos.size] do try let decl ← IndPredBelow.mkBrecOnDecl ctx i addDecl decl catch e => trace[Meta.IndPredBelow] "failed to prove brecOn for {ctx.belowNames[i]!}\n{e.toMessageData}" else trace[Meta.IndPredBelow] "Not recursive" else trace[Meta.IndPredBelow] "Not inductive predicate" builtin_initialize registerTraceClass `Meta.IndPredBelow registerTraceClass `Meta.IndPredBelow.match end Lean.Meta.IndPredBelow
7a3cbbd2fa3fe57657acad15f90dbc932265a7cb
c777c32c8e484e195053731103c5e52af26a25d1
/src/geometry/manifold/local_invariant_properties.lean
8e07981ff9550fbfc32236b04a1911169311c246
[ "Apache-2.0" ]
permissive
kbuzzard/mathlib
2ff9e85dfe2a46f4b291927f983afec17e946eb8
58537299e922f9c77df76cb613910914a479c1f7
refs/heads/master
1,685,313,702,744
1,683,974,212,000
1,683,974,212,000
128,185,277
1
0
null
1,522,920,600,000
1,522,920,600,000
null
UTF-8
Lean
false
false
33,826
lean
/- Copyright (c) 2020 Sébastien Gouëzel. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Sébastien Gouëzel, Floris van Doorn -/ import geometry.manifold.charted_space /-! # Local properties invariant under a groupoid > THIS FILE IS SYNCHRONIZED WITH MATHLIB4. > Any changes to this file require a corresponding PR to mathlib4. We study properties of a triple `(g, s, x)` where `g` is a function between two spaces `H` and `H'`, `s` is a subset of `H` and `x` is a point of `H`. Our goal is to register how such a property should behave to make sense in charted spaces modelled on `H` and `H'`. The main examples we have in mind are the properties "`g` is differentiable at `x` within `s`", or "`g` is smooth at `x` within `s`". We want to develop general results that, when applied in these specific situations, say that the notion of smooth function in a manifold behaves well under restriction, intersection, is local, and so on. ## Main definitions * `local_invariant_prop G G' P` says that a property `P` of a triple `(g, s, x)` is local, and invariant under composition by elements of the groupoids `G` and `G'` of `H` and `H'` respectively. * `charted_space.lift_prop_within_at` (resp. `lift_prop_at`, `lift_prop_on` and `lift_prop`): given a property `P` of `(g, s, x)` where `g : H → H'`, define the corresponding property for functions `M → M'` where `M` and `M'` are charted spaces modelled respectively on `H` and `H'`. We define these properties within a set at a point, or at a point, or on a set, or in the whole space. This lifting process (obtained by restricting to suitable chart domains) can always be done, but it only behaves well under locality and invariance assumptions. Given `hG : local_invariant_prop G G' P`, we deduce many properties of the lifted property on the charted spaces. For instance, `hG.lift_prop_within_at_inter` says that `P g s x` is equivalent to `P g (s ∩ t) x` whenever `t` is a neighborhood of `x`. ## Implementation notes We do not use dot notation for properties of the lifted property. For instance, we have `hG.lift_prop_within_at_congr` saying that if `lift_prop_within_at P g s x` holds, and `g` and `g'` coincide on `s`, then `lift_prop_within_at P g' s x` holds. We can't call it `lift_prop_within_at.congr` as it is in the namespace associated to `local_invariant_prop`, not in the one for `lift_prop_within_at`. -/ noncomputable theory open_locale classical manifold topology open set filter variables {H M H' M' X : Type*} variables [topological_space H] [topological_space M] [charted_space H M] variables [topological_space H'] [topological_space M'] [charted_space H' M'] variables [topological_space X] namespace structure_groupoid variables (G : structure_groupoid H) (G' : structure_groupoid H') /-- Structure recording good behavior of a property of a triple `(f, s, x)` where `f` is a function, `s` a set and `x` a point. Good behavior here means locality and invariance under given groupoids (both in the source and in the target). Given such a good behavior, the lift of this property to charted spaces admitting these groupoids will inherit the good behavior. -/ structure local_invariant_prop (P : (H → H') → (set H) → H → Prop) : Prop := (is_local : ∀ {s x u} {f : H → H'}, is_open u → x ∈ u → (P f s x ↔ P f (s ∩ u) x)) (right_invariance' : ∀ {s x f} {e : local_homeomorph H H}, e ∈ G → x ∈ e.source → P f s x → P (f ∘ e.symm) (e.symm ⁻¹' s) (e x)) (congr_of_forall : ∀ {s x} {f g : H → H'}, (∀ y ∈ s, f y = g y) → f x = g x → P f s x → P g s x) (left_invariance' : ∀ {s x f} {e' : local_homeomorph H' H'}, e' ∈ G' → s ⊆ f ⁻¹' e'.source → f x ∈ e'.source → P f s x → P (e' ∘ f) s x) variables {G G'} {P : (H → H') → (set H) → H → Prop} {s t u : set H} {x : H} variable (hG : G.local_invariant_prop G' P) include hG namespace local_invariant_prop lemma congr_set {s t : set H} {x : H} {f : H → H'} (hu : s =ᶠ[𝓝 x] t) : P f s x ↔ P f t x := begin obtain ⟨o, host, ho, hxo⟩ := mem_nhds_iff.mp hu.mem_iff, simp_rw [subset_def, mem_set_of, ← and.congr_left_iff, ← mem_inter_iff, ← set.ext_iff] at host, rw [hG.is_local ho hxo, host, ← hG.is_local ho hxo] end lemma is_local_nhds {s u : set H} {x : H} {f : H → H'} (hu : u ∈ 𝓝[s] x) : P f s x ↔ P f (s ∩ u) x := hG.congr_set $ mem_nhds_within_iff_eventually_eq.mp hu lemma congr_iff_nhds_within {s : set H} {x : H} {f g : H → H'} (h1 : f =ᶠ[𝓝[s] x] g) (h2 : f x = g x) : P f s x ↔ P g s x := by { simp_rw [hG.is_local_nhds h1], exact ⟨hG.congr_of_forall (λ y hy, hy.2) h2, hG.congr_of_forall (λ y hy, hy.2.symm) h2.symm⟩ } lemma congr_nhds_within {s : set H} {x : H} {f g : H → H'} (h1 : f =ᶠ[𝓝[s] x] g) (h2 : f x = g x) (hP : P f s x) : P g s x := (hG.congr_iff_nhds_within h1 h2).mp hP lemma congr_nhds_within' {s : set H} {x : H} {f g : H → H'} (h1 : f =ᶠ[𝓝[s] x] g) (h2 : f x = g x) (hP : P g s x) : P f s x := (hG.congr_iff_nhds_within h1 h2).mpr hP lemma congr_iff {s : set H} {x : H} {f g : H → H'} (h : f =ᶠ[𝓝 x] g) : P f s x ↔ P g s x := hG.congr_iff_nhds_within (mem_nhds_within_of_mem_nhds h) (mem_of_mem_nhds h : _) lemma congr {s : set H} {x : H} {f g : H → H'} (h : f =ᶠ[𝓝 x] g) (hP : P f s x) : P g s x := (hG.congr_iff h).mp hP lemma congr' {s : set H} {x : H} {f g : H → H'} (h : f =ᶠ[𝓝 x] g) (hP : P g s x) : P f s x := hG.congr h.symm hP lemma left_invariance {s : set H} {x : H} {f : H → H'} {e' : local_homeomorph H' H'} (he' : e' ∈ G') (hfs : continuous_within_at f s x) (hxe' : f x ∈ e'.source) : P (e' ∘ f) s x ↔ P f s x := begin have h2f := hfs.preimage_mem_nhds_within (e'.open_source.mem_nhds hxe'), have h3f := (((e'.continuous_at hxe').comp_continuous_within_at hfs).preimage_mem_nhds_within $ e'.symm.open_source.mem_nhds $ e'.maps_to hxe'), split, { intro h, rw [hG.is_local_nhds h3f] at h, have h2 := hG.left_invariance' (G'.symm he') (inter_subset_right _ _) (by exact e'.maps_to hxe') h, rw [← hG.is_local_nhds h3f] at h2, refine hG.congr_nhds_within _ (e'.left_inv hxe') h2, exact eventually_of_mem h2f (λ x', e'.left_inv) }, { simp_rw [hG.is_local_nhds h2f], exact hG.left_invariance' he' (inter_subset_right _ _) hxe' } end lemma right_invariance {s : set H} {x : H} {f : H → H'} {e : local_homeomorph H H} (he : e ∈ G) (hxe : x ∈ e.source) : P (f ∘ e.symm) (e.symm ⁻¹' s) (e x) ↔ P f s x := begin refine ⟨λ h, _, hG.right_invariance' he hxe⟩, have := hG.right_invariance' (G.symm he) (e.maps_to hxe) h, rw [e.symm_symm, e.left_inv hxe] at this, refine hG.congr _ ((hG.congr_set _).mp this), { refine eventually_of_mem (e.open_source.mem_nhds hxe) (λ x' hx', _), simp_rw [function.comp_apply, e.left_inv hx'] }, { rw [eventually_eq_set], refine eventually_of_mem (e.open_source.mem_nhds hxe) (λ x' hx', _), simp_rw [mem_preimage, e.left_inv hx'] }, end end local_invariant_prop end structure_groupoid namespace charted_space /-- Given a property of germs of functions and sets in the model space, then one defines a corresponding property in a charted space, by requiring that it holds at the preferred chart at this point. (When the property is local and invariant, it will in fact hold using any chart, see `lift_prop_within_at_indep_chart`). We require continuity in the lifted property, as otherwise one single chart might fail to capture the behavior of the function. -/ def lift_prop_within_at (P : (H → H') → set H → H → Prop) (f : M → M') (s : set M) (x : M) : Prop := continuous_within_at f s x ∧ P (chart_at H' (f x) ∘ f ∘ (chart_at H x).symm) ((chart_at H x).symm ⁻¹' s) (chart_at H x x) /-- Given a property of germs of functions and sets in the model space, then one defines a corresponding property of functions on sets in a charted space, by requiring that it holds around each point of the set, in the preferred charts. -/ def lift_prop_on (P : (H → H') → set H → H → Prop) (f : M → M') (s : set M) := ∀ x ∈ s, lift_prop_within_at P f s x /-- Given a property of germs of functions and sets in the model space, then one defines a corresponding property of a function at a point in a charted space, by requiring that it holds in the preferred chart. -/ def lift_prop_at (P : (H → H') → set H → H → Prop) (f : M → M') (x : M) := lift_prop_within_at P f univ x lemma lift_prop_at_iff {P : (H → H') → set H → H → Prop} {f : M → M'} {x : M} : lift_prop_at P f x ↔ continuous_at f x ∧ P (chart_at H' (f x) ∘ f ∘ (chart_at H x).symm) univ (chart_at H x x) := by rw [lift_prop_at, lift_prop_within_at, continuous_within_at_univ, preimage_univ] /-- Given a property of germs of functions and sets in the model space, then one defines a corresponding property of a function in a charted space, by requiring that it holds in the preferred chart around every point. -/ def lift_prop (P : (H → H') → set H → H → Prop) (f : M → M') := ∀ x, lift_prop_at P f x lemma lift_prop_iff {P : (H → H') → set H → H → Prop} {f : M → M'} : lift_prop P f ↔ continuous f ∧ ∀ x, P (chart_at H' (f x) ∘ f ∘ (chart_at H x).symm) univ (chart_at H x x) := by simp_rw [lift_prop, lift_prop_at_iff, forall_and_distrib, continuous_iff_continuous_at] end charted_space open charted_space namespace structure_groupoid variables {G : structure_groupoid H} {G' : structure_groupoid H'} {e e' : local_homeomorph M H} {f f' : local_homeomorph M' H'} {P : (H → H') → set H → H → Prop} {g g' : M → M'} {s t : set M} {x : M} {Q : (H → H) → set H → H → Prop} lemma lift_prop_within_at_univ : lift_prop_within_at P g univ x ↔ lift_prop_at P g x := iff.rfl lemma lift_prop_on_univ : lift_prop_on P g univ ↔ lift_prop P g := by simp [lift_prop_on, lift_prop, lift_prop_at] lemma lift_prop_within_at_self {f : H → H'} {s : set H} {x : H} : lift_prop_within_at P f s x ↔ continuous_within_at f s x ∧ P f s x := iff.rfl lemma lift_prop_within_at_self_source {f : H → M'} {s : set H} {x : H} : lift_prop_within_at P f s x ↔ continuous_within_at f s x ∧ P (chart_at H' (f x) ∘ f) s x := iff.rfl lemma lift_prop_within_at_self_target {f : M → H'} : lift_prop_within_at P f s x ↔ continuous_within_at f s x ∧ P (f ∘ (chart_at H x).symm) ((chart_at H x).symm ⁻¹' s) (chart_at H x x) := iff.rfl namespace local_invariant_prop variable (hG : G.local_invariant_prop G' P) include hG /-- `lift_prop_within_at P f s x` is equivalent to a definition where we restrict the set we are considering to the domain of the charts at `x` and `f x`. -/ lemma lift_prop_within_at_iff {f : M → M'} : lift_prop_within_at P f s x ↔ continuous_within_at f s x ∧ P ((chart_at H' (f x)) ∘ f ∘ (chart_at H x).symm) ((chart_at H x).target ∩ (chart_at H x).symm ⁻¹' (s ∩ f ⁻¹' (chart_at H' (f x)).source)) (chart_at H x x) := begin refine and_congr_right (λ hf, hG.congr_set _), exact local_homeomorph.preimage_eventually_eq_target_inter_preimage_inter hf (mem_chart_source H x) (chart_source_mem_nhds H' (f x)) end lemma lift_prop_within_at_indep_chart_source_aux (g : M → H') (he : e ∈ G.maximal_atlas M) (xe : x ∈ e.source) (he' : e' ∈ G.maximal_atlas M) (xe' : x ∈ e'.source) : P (g ∘ e.symm) (e.symm ⁻¹' s) (e x) ↔ P (g ∘ e'.symm) (e'.symm ⁻¹' s) (e' x) := begin rw [← hG.right_invariance (compatible_of_mem_maximal_atlas he he')], swap, { simp only [xe, xe'] with mfld_simps }, simp_rw [local_homeomorph.trans_apply, e.left_inv xe], rw [hG.congr_iff], { refine hG.congr_set _, refine (eventually_of_mem _ $ λ y (hy : y ∈ e'.symm ⁻¹' e.source), _).set_eq, { refine (e'.symm.continuous_at $ e'.maps_to xe').preimage_mem_nhds (e.open_source.mem_nhds _), simp_rw [e'.left_inv xe', xe] }, simp_rw [mem_preimage, local_homeomorph.coe_trans_symm, local_homeomorph.symm_symm, function.comp_apply, e.left_inv hy] }, { refine ((e'.eventually_nhds' _ xe').mpr $ e.eventually_left_inverse xe).mono (λ y hy, _), simp only with mfld_simps, rw [hy] }, end lemma lift_prop_within_at_indep_chart_target_aux2 (g : H → M') {x : H} {s : set H} (hf : f ∈ G'.maximal_atlas M') (xf : g x ∈ f.source) (hf' : f' ∈ G'.maximal_atlas M') (xf' : g x ∈ f'.source) (hgs : continuous_within_at g s x) : P (f ∘ g) s x ↔ P (f' ∘ g) s x := begin have hcont : continuous_within_at (f ∘ g) s x := (f.continuous_at xf).comp_continuous_within_at hgs, rw [← hG.left_invariance (compatible_of_mem_maximal_atlas hf hf') hcont (by simp only [xf, xf'] with mfld_simps)], refine hG.congr_iff_nhds_within _ (by simp only [xf] with mfld_simps), exact (hgs.eventually $ f.eventually_left_inverse xf).mono (λ y, congr_arg f') end lemma lift_prop_within_at_indep_chart_target_aux {g : X → M'} {e : local_homeomorph X H} {x : X} {s : set X} (xe : x ∈ e.source) (hf : f ∈ G'.maximal_atlas M') (xf : g x ∈ f.source) (hf' : f' ∈ G'.maximal_atlas M') (xf' : g x ∈ f'.source) (hgs : continuous_within_at g s x) : P (f ∘ g ∘ e.symm) (e.symm ⁻¹' s) (e x) ↔ P (f' ∘ g ∘ e.symm) (e.symm ⁻¹' s) (e x) := begin rw [← e.left_inv xe] at xf xf' hgs, refine hG.lift_prop_within_at_indep_chart_target_aux2 (g ∘ e.symm) hf xf hf' xf' _, exact hgs.comp (e.symm.continuous_at $ e.maps_to xe).continuous_within_at subset.rfl end /-- If a property of a germ of function `g` on a pointed set `(s, x)` is invariant under the structure groupoid (by composition in the source space and in the target space), then expressing it in charted spaces does not depend on the element of the maximal atlas one uses both in the source and in the target manifolds, provided they are defined around `x` and `g x` respectively, and provided `g` is continuous within `s` at `x` (otherwise, the local behavior of `g` at `x` can not be captured with a chart in the target). -/ lemma lift_prop_within_at_indep_chart_aux (he : e ∈ G.maximal_atlas M) (xe : x ∈ e.source) (he' : e' ∈ G.maximal_atlas M) (xe' : x ∈ e'.source) (hf : f ∈ G'.maximal_atlas M') (xf : g x ∈ f.source) (hf' : f' ∈ G'.maximal_atlas M') (xf' : g x ∈ f'.source) (hgs : continuous_within_at g s x) : P (f ∘ g ∘ e.symm) (e.symm ⁻¹' s) (e x) ↔ P (f' ∘ g ∘ e'.symm) (e'.symm ⁻¹' s) (e' x) := by rw [hG.lift_prop_within_at_indep_chart_source_aux (f ∘ g) he xe he' xe', hG.lift_prop_within_at_indep_chart_target_aux xe' hf xf hf' xf' hgs] lemma lift_prop_within_at_indep_chart [has_groupoid M G] [has_groupoid M' G'] (he : e ∈ G.maximal_atlas M) (xe : x ∈ e.source) (hf : f ∈ G'.maximal_atlas M') (xf : g x ∈ f.source) : lift_prop_within_at P g s x ↔ continuous_within_at g s x ∧ P (f ∘ g ∘ e.symm) (e.symm ⁻¹' s) (e x) := and_congr_right $ hG.lift_prop_within_at_indep_chart_aux (chart_mem_maximal_atlas _ _) (mem_chart_source _ _) he xe (chart_mem_maximal_atlas _ _) (mem_chart_source _ _) hf xf /-- A version of `lift_prop_within_at_indep_chart`, only for the source. -/ lemma lift_prop_within_at_indep_chart_source [has_groupoid M G] (he : e ∈ G.maximal_atlas M) (xe : x ∈ e.source) : lift_prop_within_at P g s x ↔ lift_prop_within_at P (g ∘ e.symm) (e.symm ⁻¹' s) (e x) := begin have := e.symm.continuous_within_at_iff_continuous_within_at_comp_right xe, rw [e.symm_symm] at this, rw [lift_prop_within_at_self_source, lift_prop_within_at, ← this], simp_rw [function.comp_app, e.left_inv xe], refine and_congr iff.rfl _, rw hG.lift_prop_within_at_indep_chart_source_aux (chart_at H' (g x) ∘ g) (chart_mem_maximal_atlas G x) (mem_chart_source H x) he xe, end /-- A version of `lift_prop_within_at_indep_chart`, only for the target. -/ lemma lift_prop_within_at_indep_chart_target [has_groupoid M' G'] (hf : f ∈ G'.maximal_atlas M') (xf : g x ∈ f.source) : lift_prop_within_at P g s x ↔ continuous_within_at g s x ∧ lift_prop_within_at P (f ∘ g) s x := begin rw [lift_prop_within_at_self_target, lift_prop_within_at, and.congr_right_iff], intro hg, simp_rw [(f.continuous_at xf).comp_continuous_within_at hg, true_and], exact hG.lift_prop_within_at_indep_chart_target_aux (mem_chart_source _ _) (chart_mem_maximal_atlas _ _) (mem_chart_source _ _) hf xf hg end /-- A version of `lift_prop_within_at_indep_chart`, that uses `lift_prop_within_at` on both sides. -/ lemma lift_prop_within_at_indep_chart' [has_groupoid M G] [has_groupoid M' G'] (he : e ∈ G.maximal_atlas M) (xe : x ∈ e.source) (hf : f ∈ G'.maximal_atlas M') (xf : g x ∈ f.source) : lift_prop_within_at P g s x ↔ continuous_within_at g s x ∧ lift_prop_within_at P (f ∘ g ∘ e.symm) (e.symm ⁻¹' s) (e x) := begin rw [hG.lift_prop_within_at_indep_chart he xe hf xf, lift_prop_within_at_self, and.left_comm, iff.comm, and_iff_right_iff_imp], intro h, have h1 := (e.symm.continuous_within_at_iff_continuous_within_at_comp_right xe).mp h.1, have : continuous_at f ((g ∘ e.symm) (e x)), { simp_rw [function.comp, e.left_inv xe, f.continuous_at xf] }, exact this.comp_continuous_within_at h1, end lemma lift_prop_on_indep_chart [has_groupoid M G] [has_groupoid M' G'] (he : e ∈ G.maximal_atlas M) (hf : f ∈ G'.maximal_atlas M') (h : lift_prop_on P g s) {y : H} (hy : y ∈ e.target ∩ e.symm ⁻¹' (s ∩ g ⁻¹' f.source)) : P (f ∘ g ∘ e.symm) (e.symm ⁻¹' s) y := begin convert ((hG.lift_prop_within_at_indep_chart he (e.symm_maps_to hy.1) hf hy.2.2).1 (h _ hy.2.1)).2, rw [e.right_inv hy.1], end lemma lift_prop_within_at_inter' (ht : t ∈ 𝓝[s] x) : lift_prop_within_at P g (s ∩ t) x ↔ lift_prop_within_at P g s x := begin rw [lift_prop_within_at, lift_prop_within_at, continuous_within_at_inter' ht, hG.congr_set], simp_rw [eventually_eq_set, mem_preimage, (chart_at H x).eventually_nhds' (λ x, x ∈ s ∩ t ↔ x ∈ s) (mem_chart_source H x)], exact (mem_nhds_within_iff_eventually_eq.mp ht).symm.mem_iff end lemma lift_prop_within_at_inter (ht : t ∈ 𝓝 x) : lift_prop_within_at P g (s ∩ t) x ↔ lift_prop_within_at P g s x := hG.lift_prop_within_at_inter' (mem_nhds_within_of_mem_nhds ht) lemma lift_prop_at_of_lift_prop_within_at (h : lift_prop_within_at P g s x) (hs : s ∈ 𝓝 x) : lift_prop_at P g x := by rwa [← univ_inter s, hG.lift_prop_within_at_inter hs] at h lemma lift_prop_within_at_of_lift_prop_at_of_mem_nhds (h : lift_prop_at P g x) (hs : s ∈ 𝓝 x) : lift_prop_within_at P g s x := by rwa [← univ_inter s, hG.lift_prop_within_at_inter hs] lemma lift_prop_on_of_locally_lift_prop_on (h : ∀ x ∈ s, ∃ u, is_open u ∧ x ∈ u ∧ lift_prop_on P g (s ∩ u)) : lift_prop_on P g s := begin assume x hx, rcases h x hx with ⟨u, u_open, xu, hu⟩, have := hu x ⟨hx, xu⟩, rwa hG.lift_prop_within_at_inter at this, exact is_open.mem_nhds u_open xu, end lemma lift_prop_of_locally_lift_prop_on (h : ∀ x, ∃ u, is_open u ∧ x ∈ u ∧ lift_prop_on P g u) : lift_prop P g := begin rw ← lift_prop_on_univ, apply hG.lift_prop_on_of_locally_lift_prop_on (λ x hx, _), simp [h x], end lemma lift_prop_within_at_congr_of_eventually_eq (h : lift_prop_within_at P g s x) (h₁ : g' =ᶠ[𝓝[s] x] g) (hx : g' x = g x) : lift_prop_within_at P g' s x := begin refine ⟨h.1.congr_of_eventually_eq h₁ hx, _⟩, refine hG.congr_nhds_within' _ (by simp_rw [function.comp_apply, (chart_at H x).left_inv (mem_chart_source H x), hx]) h.2, simp_rw [eventually_eq, function.comp_app, (chart_at H x).eventually_nhds_within' (λ y, chart_at H' (g' x) (g' y) = chart_at H' (g x) (g y)) (mem_chart_source H x)], exact h₁.mono (λ y hy, by rw [hx, hy]) end lemma lift_prop_within_at_congr_iff_of_eventually_eq (h₁ : g' =ᶠ[𝓝[s] x] g) (hx : g' x = g x) : lift_prop_within_at P g' s x ↔ lift_prop_within_at P g s x := ⟨λ h, hG.lift_prop_within_at_congr_of_eventually_eq h h₁.symm hx.symm, λ h, hG.lift_prop_within_at_congr_of_eventually_eq h h₁ hx⟩ lemma lift_prop_within_at_congr_iff (h₁ : ∀ y ∈ s, g' y = g y) (hx : g' x = g x) : lift_prop_within_at P g' s x ↔ lift_prop_within_at P g s x := hG.lift_prop_within_at_congr_iff_of_eventually_eq (eventually_nhds_within_of_forall h₁) hx lemma lift_prop_within_at_congr (h : lift_prop_within_at P g s x) (h₁ : ∀ y ∈ s, g' y = g y) (hx : g' x = g x) : lift_prop_within_at P g' s x := (hG.lift_prop_within_at_congr_iff h₁ hx).mpr h lemma lift_prop_at_congr_iff_of_eventually_eq (h₁ : g' =ᶠ[𝓝 x] g) : lift_prop_at P g' x ↔ lift_prop_at P g x := hG.lift_prop_within_at_congr_iff_of_eventually_eq (by simp_rw [nhds_within_univ, h₁]) h₁.eq_of_nhds lemma lift_prop_at_congr_of_eventually_eq (h : lift_prop_at P g x) (h₁ : g' =ᶠ[𝓝 x] g) : lift_prop_at P g' x := (hG.lift_prop_at_congr_iff_of_eventually_eq h₁).mpr h lemma lift_prop_on_congr (h : lift_prop_on P g s) (h₁ : ∀ y ∈ s, g' y = g y) : lift_prop_on P g' s := λ x hx, hG.lift_prop_within_at_congr (h x hx) h₁ (h₁ x hx) lemma lift_prop_on_congr_iff (h₁ : ∀ y ∈ s, g' y = g y) : lift_prop_on P g' s ↔ lift_prop_on P g s := ⟨λ h, hG.lift_prop_on_congr h (λ y hy, (h₁ y hy).symm), λ h, hG.lift_prop_on_congr h h₁⟩ omit hG lemma lift_prop_within_at_mono_of_mem (mono_of_mem : ∀ ⦃s x t⦄ ⦃f : H → H'⦄, s ∈ 𝓝[t] x → P f s x → P f t x) (h : lift_prop_within_at P g s x) (hst : s ∈ 𝓝[t] x) : lift_prop_within_at P g t x := begin refine ⟨h.1.mono_of_mem hst, mono_of_mem _ h.2⟩, simp_rw [← mem_map, (chart_at H x).symm.map_nhds_within_preimage_eq (mem_chart_target H x), (chart_at H x).left_inv (mem_chart_source H x), hst] end lemma lift_prop_within_at_mono (mono : ∀ ⦃s x t⦄ ⦃f : H → H'⦄, t ⊆ s → P f s x → P f t x) (h : lift_prop_within_at P g s x) (hts : t ⊆ s) : lift_prop_within_at P g t x := begin refine ⟨h.1.mono hts, _⟩, apply mono (λ y hy, _) h.2, simp only with mfld_simps at hy, simp only [hy, hts _] with mfld_simps, end lemma lift_prop_within_at_of_lift_prop_at (mono : ∀ ⦃s x t⦄ ⦃f : H → H'⦄, t ⊆ s → P f s x → P f t x) (h : lift_prop_at P g x) : lift_prop_within_at P g s x := begin rw ← lift_prop_within_at_univ at h, exact lift_prop_within_at_mono mono h (subset_univ _), end lemma lift_prop_on_mono (mono : ∀ ⦃s x t⦄ ⦃f : H → H'⦄, t ⊆ s → P f s x → P f t x) (h : lift_prop_on P g t) (hst : s ⊆ t) : lift_prop_on P g s := λ x hx, lift_prop_within_at_mono mono (h x (hst hx)) hst lemma lift_prop_on_of_lift_prop (mono : ∀ ⦃s x t⦄ ⦃f : H → H'⦄, t ⊆ s → P f s x → P f t x) (h : lift_prop P g) : lift_prop_on P g s := begin rw ← lift_prop_on_univ at h, exact lift_prop_on_mono mono h (subset_univ _) end lemma lift_prop_at_of_mem_maximal_atlas [has_groupoid M G] (hG : G.local_invariant_prop G Q) (hQ : ∀ y, Q id univ y) (he : e ∈ maximal_atlas M G) (hx : x ∈ e.source) : lift_prop_at Q e x := begin simp_rw [lift_prop_at, hG.lift_prop_within_at_indep_chart he hx G.id_mem_maximal_atlas (mem_univ _), (e.continuous_at hx).continuous_within_at, true_and], exact hG.congr' (e.eventually_right_inverse' hx) (hQ _) end lemma lift_prop_on_of_mem_maximal_atlas [has_groupoid M G] (hG : G.local_invariant_prop G Q) (hQ : ∀ y, Q id univ y) (he : e ∈ maximal_atlas M G) : lift_prop_on Q e e.source := begin assume x hx, apply hG.lift_prop_within_at_of_lift_prop_at_of_mem_nhds (hG.lift_prop_at_of_mem_maximal_atlas hQ he hx), exact is_open.mem_nhds e.open_source hx, end lemma lift_prop_at_symm_of_mem_maximal_atlas [has_groupoid M G] {x : H} (hG : G.local_invariant_prop G Q) (hQ : ∀ y, Q id univ y) (he : e ∈ maximal_atlas M G) (hx : x ∈ e.target) : lift_prop_at Q e.symm x := begin suffices h : Q (e ∘ e.symm) univ x, { have A : e.symm ⁻¹' e.source ∩ e.target = e.target, by mfld_set_tac, have : e.symm x ∈ e.source, by simp only [hx] with mfld_simps, rw [lift_prop_at, hG.lift_prop_within_at_indep_chart G.id_mem_maximal_atlas (mem_univ _) he this], refine ⟨(e.symm.continuous_at hx).continuous_within_at, _⟩, simp only [h] with mfld_simps }, exact hG.congr' (e.eventually_right_inverse hx) (hQ x) end lemma lift_prop_on_symm_of_mem_maximal_atlas [has_groupoid M G] (hG : G.local_invariant_prop G Q) (hQ : ∀ y, Q id univ y) (he : e ∈ maximal_atlas M G) : lift_prop_on Q e.symm e.target := begin assume x hx, apply hG.lift_prop_within_at_of_lift_prop_at_of_mem_nhds (hG.lift_prop_at_symm_of_mem_maximal_atlas hQ he hx), exact is_open.mem_nhds e.open_target hx, end lemma lift_prop_at_chart [has_groupoid M G] (hG : G.local_invariant_prop G Q) (hQ : ∀ y, Q id univ y) : lift_prop_at Q (chart_at H x) x := hG.lift_prop_at_of_mem_maximal_atlas hQ (chart_mem_maximal_atlas G x) (mem_chart_source H x) lemma lift_prop_on_chart [has_groupoid M G] (hG : G.local_invariant_prop G Q) (hQ : ∀ y, Q id univ y) : lift_prop_on Q (chart_at H x) (chart_at H x).source := hG.lift_prop_on_of_mem_maximal_atlas hQ (chart_mem_maximal_atlas G x) lemma lift_prop_at_chart_symm [has_groupoid M G] (hG : G.local_invariant_prop G Q) (hQ : ∀ y, Q id univ y) : lift_prop_at Q (chart_at H x).symm ((chart_at H x) x) := hG.lift_prop_at_symm_of_mem_maximal_atlas hQ (chart_mem_maximal_atlas G x) (by simp) lemma lift_prop_on_chart_symm [has_groupoid M G] (hG : G.local_invariant_prop G Q) (hQ : ∀ y, Q id univ y) : lift_prop_on Q (chart_at H x).symm (chart_at H x).target := hG.lift_prop_on_symm_of_mem_maximal_atlas hQ (chart_mem_maximal_atlas G x) lemma lift_prop_at_of_mem_groupoid (hG : G.local_invariant_prop G Q) (hQ : ∀ y, Q id univ y) {f : local_homeomorph H H} (hf : f ∈ G) {x : H} (hx : x ∈ f.source) : lift_prop_at Q f x := lift_prop_at_of_mem_maximal_atlas hG hQ (G.mem_maximal_atlas_of_mem_groupoid hf) hx lemma lift_prop_on_of_mem_groupoid (hG : G.local_invariant_prop G Q) (hQ : ∀ y, Q id univ y) {f : local_homeomorph H H} (hf : f ∈ G) : lift_prop_on Q f f.source := lift_prop_on_of_mem_maximal_atlas hG hQ (G.mem_maximal_atlas_of_mem_groupoid hf) lemma lift_prop_id (hG : G.local_invariant_prop G Q) (hQ : ∀ y, Q id univ y) : lift_prop Q (id : M → M) := begin simp_rw [lift_prop_iff, continuous_id, true_and], exact λ x, hG.congr' ((chart_at H x).eventually_right_inverse $ mem_chart_target H x) (hQ _) end end local_invariant_prop section local_structomorph variables (G) open local_homeomorph /-- A function from a model space `H` to itself is a local structomorphism, with respect to a structure groupoid `G` for `H`, relative to a set `s` in `H`, if for all points `x` in the set, the function agrees with a `G`-structomorphism on `s` in a neighbourhood of `x`. -/ def is_local_structomorph_within_at (f : H → H) (s : set H) (x : H) : Prop := x ∈ s → ∃ (e : local_homeomorph H H), e ∈ G ∧ eq_on f e.to_fun (s ∩ e.source) ∧ x ∈ e.source /-- For a groupoid `G` which is `closed_under_restriction`, being a local structomorphism is a local invariant property. -/ lemma is_local_structomorph_within_at_local_invariant_prop [closed_under_restriction G] : local_invariant_prop G G (is_local_structomorph_within_at G) := { is_local := begin intros s x u f hu hux, split, { rintros h hx, rcases h hx.1 with ⟨e, heG, hef, hex⟩, have : s ∩ u ∩ e.source ⊆ s ∩ e.source := by mfld_set_tac, exact ⟨e, heG, hef.mono this, hex⟩ }, { rintros h hx, rcases h ⟨hx, hux⟩ with ⟨e, heG, hef, hex⟩, refine ⟨e.restr (interior u), _, _, _⟩, { exact closed_under_restriction' heG (is_open_interior) }, { have : s ∩ u ∩ e.source = s ∩ (e.source ∩ u) := by mfld_set_tac, simpa only [this, interior_interior, hu.interior_eq] with mfld_simps using hef }, { simp only [*, interior_interior, hu.interior_eq] with mfld_simps } } end, right_invariance' := begin intros s x f e' he'G he'x h hx, have hxs : x ∈ s := by simpa only [e'.left_inv he'x] with mfld_simps using hx, rcases h hxs with ⟨e, heG, hef, hex⟩, refine ⟨e'.symm.trans e, G.trans (G.symm he'G) heG, _, _⟩, { intros y hy, simp only with mfld_simps at hy, simp only [hef ⟨hy.1, hy.2.2⟩] with mfld_simps }, { simp only [hex, he'x] with mfld_simps } end, congr_of_forall := begin intros s x f g hfgs hfg' h hx, rcases h hx with ⟨e, heG, hef, hex⟩, refine ⟨e, heG, _, hex⟩, intros y hy, rw [← hef hy, hfgs y hy.1] end, left_invariance' := begin intros s x f e' he'G he' hfx h hx, rcases h hx with ⟨e, heG, hef, hex⟩, refine ⟨e.trans e', G.trans heG he'G, _, _⟩, { intros y hy, simp only with mfld_simps at hy, simp only [hef ⟨hy.1, hy.2.1⟩] with mfld_simps }, { simpa only [hex, hef ⟨hx, hex⟩] with mfld_simps using hfx } end } /-- A slight reformulation of `is_local_structomorph_within_at` when `f` is a local homeomorph. This gives us an `e` that is defined on a subset of `f.source`. -/ lemma _root_.local_homeomorph.is_local_structomorph_within_at_iff {G : structure_groupoid H} [closed_under_restriction G] (f : local_homeomorph H H) {s : set H} {x : H} (hx : x ∈ f.source ∪ sᶜ) : G.is_local_structomorph_within_at ⇑f s x ↔ x ∈ s → ∃ (e : local_homeomorph H H), e ∈ G ∧ e.source ⊆ f.source ∧ eq_on f ⇑e (s ∩ e.source) ∧ x ∈ e.source := begin split, { intros hf h2x, obtain ⟨e, he, hfe, hxe⟩ := hf h2x, refine ⟨e.restr f.source, closed_under_restriction' he f.open_source, _, _, hxe, _⟩, { simp_rw [local_homeomorph.restr_source], refine (inter_subset_right _ _).trans interior_subset }, { intros x' hx', exact hfe ⟨hx'.1, hx'.2.1⟩ }, { rw [f.open_source.interior_eq], exact or.resolve_right hx (not_not.mpr h2x) } }, { intros hf hx, obtain ⟨e, he, h2e, hfe, hxe⟩ := hf hx, exact ⟨e, he, hfe, hxe⟩ } end /-- A slight reformulation of `is_local_structomorph_within_at` when `f` is a local homeomorph and the set we're considering is a superset of `f.source`. -/ lemma _root_.local_homeomorph.is_local_structomorph_within_at_iff' {G : structure_groupoid H} [closed_under_restriction G] (f : local_homeomorph H H) {s : set H} {x : H} (hs : f.source ⊆ s) (hx : x ∈ f.source ∪ sᶜ) : G.is_local_structomorph_within_at ⇑f s x ↔ x ∈ s → ∃ (e : local_homeomorph H H), e ∈ G ∧ e.source ⊆ f.source ∧ eq_on f ⇑e e.source ∧ x ∈ e.source := begin simp_rw [f.is_local_structomorph_within_at_iff hx], refine imp_congr_right (λ hx, exists_congr $ λ e, and_congr_right $ λ he, _), refine and_congr_right (λ h2e, _), rw [inter_eq_right_iff_subset.mpr (h2e.trans hs)], end /-- A slight reformulation of `is_local_structomorph_within_at` when `f` is a local homeomorph and the set we're considering is `f.source`. -/ lemma _root_.local_homeomorph.is_local_structomorph_within_at_source_iff {G : structure_groupoid H} [closed_under_restriction G] (f : local_homeomorph H H) {x : H} : G.is_local_structomorph_within_at ⇑f f.source x ↔ x ∈ f.source → ∃ (e : local_homeomorph H H), e ∈ G ∧ e.source ⊆ f.source ∧ eq_on f ⇑e e.source ∧ x ∈ e.source := begin have : x ∈ f.source ∪ f.sourceᶜ, { simp_rw [union_compl_self] }, exact f.is_local_structomorph_within_at_iff' subset.rfl this, end variables {H₁ : Type*} [topological_space H₁] {H₂ : Type*} [topological_space H₂] {H₃ : Type*} [topological_space H₃] [charted_space H₁ H₂] [charted_space H₂ H₃] {G₁ : structure_groupoid H₁} [has_groupoid H₂ G₁] [closed_under_restriction G₁] (G₂ : structure_groupoid H₂) [has_groupoid H₃ G₂] variables (G₂) lemma has_groupoid.comp (H : ∀ e ∈ G₂, lift_prop_on (is_local_structomorph_within_at G₁) (e : H₂ → H₂) e.source) : @has_groupoid H₁ _ H₃ _ (charted_space.comp H₁ H₂ H₃) G₁ := { compatible := begin rintros _ _ ⟨e, f, he, hf, rfl⟩ ⟨e', f', he', hf', rfl⟩, apply G₁.locality, intros x hx, simp only with mfld_simps at hx, have hxs : x ∈ f.symm ⁻¹' (e.symm ≫ₕ e').source, { simp only [hx] with mfld_simps }, have hxs' : x ∈ f.target ∩ (f.symm) ⁻¹' ((e.symm ≫ₕ e').source ∩ (e.symm ≫ₕ e') ⁻¹' f'.source), { simp only [hx] with mfld_simps }, obtain ⟨φ, hφG₁, hφ, hφ_dom⟩ := local_invariant_prop.lift_prop_on_indep_chart (is_local_structomorph_within_at_local_invariant_prop G₁) (G₁.subset_maximal_atlas hf) (G₁.subset_maximal_atlas hf') (H _ (G₂.compatible he he')) hxs' hxs, simp_rw [← local_homeomorph.coe_trans, local_homeomorph.trans_assoc] at hφ, simp_rw [local_homeomorph.trans_symm_eq_symm_trans_symm, local_homeomorph.trans_assoc], have hs : is_open (f.symm ≫ₕ e.symm ≫ₕ e' ≫ₕ f').source := (f.symm ≫ₕ e.symm ≫ₕ e' ≫ₕ f').open_source, refine ⟨_, hs.inter φ.open_source, _, _⟩, { simp only [hx, hφ_dom] with mfld_simps, }, { refine G₁.eq_on_source (closed_under_restriction' hφG₁ hs) _, rw local_homeomorph.restr_source_inter, refine (hφ.mono _).restr_eq_on_source, mfld_set_tac }, end } end local_structomorph end structure_groupoid
3c6458db33088f76f64015e62955ecc1252df9d1
9be442d9ec2fcf442516ed6e9e1660aa9071b7bd
/tests/lean/diamond5.lean
c08e3189880428b8b082ce61e50765e8e5efdc0c
[ "Apache-2.0", "LLVM-exception", "NCSA", "LGPL-3.0-only", "LicenseRef-scancode-inner-net-2.0", "BSD-3-Clause", "LGPL-2.0-or-later", "Spencer-94", "LGPL-2.1-or-later", "HPND", "LicenseRef-scancode-pcre", "ISC", "LGPL-2.1-only", "LicenseRef-scancode-other-permissive", "SunPro", "CMU-Mach" ]
permissive
EdAyers/lean4
57ac632d6b0789cb91fab2170e8c9e40441221bd
37ba0df5841bde51dbc2329da81ac23d4f6a4de4
refs/heads/master
1,676,463,245,298
1,660,619,433,000
1,660,619,433,000
183,433,437
1
0
Apache-2.0
1,657,612,672,000
1,556,196,574,000
Lean
UTF-8
Lean
false
false
305
lean
class A (α : Type) where one : α zero : α class B (α : Type) extends A α where add : α → α → α class C (α : Type) extends A α where mul : α → α → α set_option structureDiamondWarning false def D.toC (x : Nat) := x class D (α : Type) extends B α, C α #check @D.toC_1
f58c673c50d7ed01610334b37096de1ef92a4422
05f637fa14ac28031cb1ea92086a0f4eb23ff2b1
/tests/lean/explicit2.lean
35b10020d2ffa792899b160d1bcc966b9ab8ee1f
[ "Apache-2.0" ]
permissive
codyroux/lean0.1
1ce92751d664aacff0529e139083304a7bbc8a71
0dc6fb974aa85ed6f305a2f4b10a53a44ee5f0ef
refs/heads/master
1,610,830,535,062
1,402,150,480,000
1,402,150,480,000
19,588,851
2
0
null
null
null
null
UTF-8
Lean
false
false
54
lean
variable f {A : Type} : A → A eval (@f Bool) eval @f
2b8a553480d81a64860a9ac1ba516b63f45418d8
07f5f86b00fed90a419ccda4298d8b795a68f657
/library/init/meta/name.lean
e86e57ffe361157db527074c3c5289aa54cdb91f
[ "Apache-2.0" ]
permissive
VBaratham/lean
8ec5c3167b4835cfbcd7f25e2173d61ad9416b3a
450ca5834c1c35318e4b47d553bb9820c1b3eee7
refs/heads/master
1,629,649,471,814
1,512,060,373,000
1,512,060,469,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
3,731
lean
/- Copyright (c) 2016 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura -/ prelude import init.data.ordering.basic init.coe init.data.to_string /-- Reflect a C++ name object. The VM replaces it with the C++ implementation. -/ inductive name | anonymous : name | mk_string : string → name → name | mk_numeral : unsigned → name → name /-- Gadget for automatic parameter support. This is similar to the opt_param gadget, but it uses the tactic declaration names tac_name to synthesize the argument. Like opt_param, this gadget only affects elaboration. For example, the tactic will *not* be invoked during type class resolution. -/ @[reducible] def {u} auto_param (α : Sort u) (tac_name : name) : Sort u := α instance : inhabited name := ⟨name.anonymous⟩ def mk_str_name (n : name) (s : string) : name := name.mk_string s n def mk_num_name (n : name) (v : nat) : name := name.mk_numeral (unsigned.of_nat' v) n def mk_simple_name (s : string) : name := mk_str_name name.anonymous s instance string_to_name : has_coe string name := ⟨mk_simple_name⟩ infix ` <.> `:65 := mk_str_name open name def name.get_prefix : name → name | anonymous := anonymous | (mk_string s p) := p | (mk_numeral s p) := p def name.update_prefix : name → name → name | anonymous new_p := anonymous | (mk_string s p) new_p := mk_string s new_p | (mk_numeral s p) new_p := mk_numeral s new_p /- The (decidable_eq string) has not been defined yet. So, we disable the use of if-then-else when compiling the following definitions. -/ set_option eqn_compiler.ite false def name.to_string_with_sep (sep : string) : name → string | anonymous := "[anonymous]" | (mk_string s anonymous) := s | (mk_numeral v anonymous) := repr v | (mk_string s n) := name.to_string_with_sep n ++ sep ++ s | (mk_numeral v n) := name.to_string_with_sep n ++ sep ++ repr v private def name.components' : name -> list name | anonymous := [] | (mk_string s n) := mk_string s anonymous :: name.components' n | (mk_numeral v n) := mk_numeral v anonymous :: name.components' n def name.components (n : name) : list name := (name.components' n).reverse protected def name.to_string : name → string := name.to_string_with_sep "." instance : has_to_string name := ⟨name.to_string⟩ /- TODO(Leo): provide a definition in Lean. -/ meta constant name.has_decidable_eq : decidable_eq name /- Both cmp and lex_cmp are total orders, but lex_cmp implements a lexicographical order. -/ meta constant name.cmp : name → name → ordering meta constant name.lex_cmp : name → name → ordering meta constant name.append : name → name → name meta constant name.is_internal : name → bool protected meta def name.lt (a b : name) : Prop := name.cmp a b = ordering.lt meta instance : decidable_rel name.lt := λ a b, ordering.decidable_eq _ _ meta instance : has_lt name := ⟨name.lt⟩ attribute [instance] name.has_decidable_eq meta instance : has_append name := ⟨name.append⟩ /-- `name.append_after n i` return a name of the form n_i -/ meta constant name.append_after : name → nat → name meta def name.is_prefix_of : name → name → bool | p name.anonymous := ff | p n := if p = n then tt else name.is_prefix_of p n.get_prefix meta def name.replace_prefix : name → name → name → name | anonymous p p' := anonymous | (mk_string s c) p p' := if c = p then mk_string s p' else mk_string s (name.replace_prefix c p p') | (mk_numeral v c) p p' := if c = p then mk_numeral v p' else mk_numeral v (name.replace_prefix c p p')
91de9e8220457fce35fda5c898e292fbf12f5e89
02fbe05a45fda5abde7583464416db4366eedfbf
/library/init/data/nat/basic.lean
1dd96225de7224dd4dd391c7c95f5ebeca08b7a8
[ "Apache-2.0" ]
permissive
jasonrute/lean
cc12807e11f9ac6b01b8951a8bfb9c2eb35a0154
4be962c167ca442a0ec5e84472d7ff9f5302788f
refs/heads/master
1,672,036,664,637
1,601,642,826,000
1,601,642,826,000
260,777,966
0
0
Apache-2.0
1,588,454,819,000
1,588,454,818,000
null
UTF-8
Lean
false
false
5,920
lean
/- Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn, Leonardo de Moura -/ prelude import init.logic notation `ℕ` := nat namespace nat inductive less_than_or_equal (a : ℕ) : ℕ → Prop | refl : less_than_or_equal a | step : Π {b}, less_than_or_equal b → less_than_or_equal (succ b) instance : has_le ℕ := ⟨nat.less_than_or_equal⟩ @[reducible] protected def le (n m : ℕ) := nat.less_than_or_equal n m @[reducible] protected def lt (n m : ℕ) := nat.less_than_or_equal (succ n) m instance : has_lt ℕ := ⟨nat.lt⟩ def pred : ℕ → ℕ | 0 := 0 | (a+1) := a protected def sub : ℕ → ℕ → ℕ | a 0 := a | a (b+1) := pred (sub a b) protected def mul : nat → nat → nat | a 0 := 0 | a (b+1) := (mul a b) + a instance : has_sub ℕ := ⟨nat.sub⟩ instance : has_mul ℕ := ⟨nat.mul⟩ -- defeq to the instance provided by comm_semiring instance : has_dvd ℕ := has_dvd.mk (λ a b, ∃ c, b = a * c) instance : decidable_eq ℕ | zero zero := is_true rfl | (succ x) zero := is_false (λ h, nat.no_confusion h) | zero (succ y) := is_false (λ h, nat.no_confusion h) | (succ x) (succ y) := match decidable_eq x y with | is_true xeqy := is_true (xeqy ▸ eq.refl (succ x)) | is_false xney := is_false (λ h, nat.no_confusion h (λ xeqy, absurd xeqy xney)) end def {u} repeat {α : Type u} (f : ℕ → α → α) : ℕ → α → α | 0 a := a | (succ n) a := f n (repeat n a) instance : inhabited ℕ := ⟨nat.zero⟩ @[simp] lemma nat_zero_eq_zero : nat.zero = 0 := rfl /- properties of inequality -/ @[refl] protected def le_refl (a : ℕ) : a ≤ a := less_than_or_equal.refl lemma le_succ (n : ℕ) : n ≤ succ n := less_than_or_equal.step (nat.le_refl n) lemma succ_le_succ {n m : ℕ} : n ≤ m → succ n ≤ succ m := λ h, less_than_or_equal.rec (nat.le_refl (succ n)) (λ a b, less_than_or_equal.step) h lemma zero_le : ∀ (n : ℕ), 0 ≤ n | 0 := nat.le_refl 0 | (n+1) := less_than_or_equal.step (zero_le n) lemma zero_lt_succ (n : ℕ) : 0 < succ n := succ_le_succ (zero_le n) def succ_pos := zero_lt_succ lemma not_succ_le_zero : ∀ (n : ℕ), succ n ≤ 0 → false . lemma not_lt_zero (a : ℕ) : ¬ a < 0 := not_succ_le_zero a lemma pred_le_pred {n m : ℕ} : n ≤ m → pred n ≤ pred m := λ h, less_than_or_equal.rec_on h (nat.le_refl (pred n)) (λ n, nat.rec (λ a b, b) (λ a b c, less_than_or_equal.step) n) lemma le_of_succ_le_succ {n m : ℕ} : succ n ≤ succ m → n ≤ m := pred_le_pred instance decidable_le : ∀ a b : ℕ, decidable (a ≤ b) | 0 b := is_true (zero_le b) | (a+1) 0 := is_false (not_succ_le_zero a) | (a+1) (b+1) := match decidable_le a b with | is_true h := is_true (succ_le_succ h) | is_false h := is_false (λ a, h (le_of_succ_le_succ a)) end instance decidable_lt : ∀ a b : ℕ, decidable (a < b) := λ a b, nat.decidable_le (succ a) b protected lemma eq_or_lt_of_le {a b : ℕ} (h : a ≤ b) : a = b ∨ a < b := less_than_or_equal.cases_on h (or.inl rfl) (λ n h, or.inr (succ_le_succ h)) lemma lt_succ_of_le {a b : ℕ} : a ≤ b → a < succ b := succ_le_succ @[simp] lemma succ_sub_succ_eq_sub (a b : ℕ) : succ a - succ b = a - b := nat.rec_on b (show succ a - succ zero = a - zero, from (eq.refl (succ a - succ zero))) (λ b, congr_arg pred) lemma not_succ_le_self : ∀ n : ℕ, ¬succ n ≤ n := λ n, nat.rec (not_succ_le_zero 0) (λ a b c, b (le_of_succ_le_succ c)) n protected lemma lt_irrefl (n : ℕ) : ¬n < n := not_succ_le_self n protected lemma le_trans {n m k : ℕ} (h1 : n ≤ m) : m ≤ k → n ≤ k := less_than_or_equal.rec h1 (λ p h2, less_than_or_equal.step) lemma pred_le : ∀ (n : ℕ), pred n ≤ n | 0 := less_than_or_equal.refl | (succ a) := less_than_or_equal.step less_than_or_equal.refl lemma pred_lt : ∀ {n : ℕ}, n ≠ 0 → pred n < n | 0 h := absurd rfl h | (succ a) h := lt_succ_of_le less_than_or_equal.refl lemma sub_le (a b : ℕ) : a - b ≤ a := nat.rec_on b (nat.le_refl (a - 0)) (λ b₁, nat.le_trans (pred_le (a - b₁))) lemma sub_lt : ∀ {a b : ℕ}, 0 < a → 0 < b → a - b < a | 0 b h1 h2 := absurd h1 (nat.lt_irrefl 0) | (a+1) 0 h1 h2 := absurd h2 (nat.lt_irrefl 0) | (a+1) (b+1) h1 h2 := eq.symm (succ_sub_succ_eq_sub a b) ▸ show a - b < succ a, from lt_succ_of_le (sub_le a b) protected lemma lt_of_lt_of_le {n m k : ℕ} : n < m → m ≤ k → n < k := nat.le_trans /- Basic nat.add lemmas -/ protected lemma zero_add : ∀ n : ℕ, 0 + n = n | 0 := rfl | (n+1) := congr_arg succ (zero_add n) lemma succ_add : ∀ n m : ℕ, (succ n) + m = succ (n + m) | n 0 := rfl | n (m+1) := congr_arg succ (succ_add n m) lemma add_succ (n m : ℕ) : n + succ m = succ (n + m) := rfl protected lemma add_zero (n : ℕ) : n + 0 = n := rfl lemma add_one (n : ℕ) : n + 1 = succ n := rfl lemma succ_eq_add_one (n : ℕ) : succ n = n + 1 := rfl /- Basic lemmas for comparing numerals -/ protected lemma bit0_succ_eq (n : ℕ) : bit0 (succ n) = succ (succ (bit0 n)) := show succ (succ n + n) = succ (succ (n + n)), from congr_arg succ (succ_add n n) protected lemma zero_lt_bit0 : ∀ {n : nat}, n ≠ 0 → 0 < bit0 n | 0 h := absurd rfl h | (succ n) h := calc 0 < succ (succ (bit0 n)) : zero_lt_succ _ ... = bit0 (succ n) : (nat.bit0_succ_eq n).symm protected lemma zero_lt_bit1 (n : nat) : 0 < bit1 n := zero_lt_succ _ protected lemma bit0_ne_zero : ∀ {n : ℕ}, n ≠ 0 → bit0 n ≠ 0 | 0 h := absurd rfl h | (n+1) h := suffices (n+1) + (n+1) ≠ 0, from this, suffices succ ((n+1) + n) ≠ 0, from this, λ h, nat.no_confusion h protected lemma bit1_ne_zero (n : ℕ) : bit1 n ≠ 0 := show succ (n + n) ≠ 0, from λ h, nat.no_confusion h end nat
c53bb823d74c2e2a250cd88a2041b37f48db8a82
4727251e0cd73359b15b664c3170e5d754078599
/src/topology/uniform_space/separation.lean
3f217a1320fd86283c000db98cb0237fad257d4c
[ "Apache-2.0" ]
permissive
Vierkantor/mathlib
0ea59ac32a3a43c93c44d70f441c4ee810ccceca
83bc3b9ce9b13910b57bda6b56222495ebd31c2f
refs/heads/master
1,658,323,012,449
1,652,256,003,000
1,652,256,003,000
209,296,341
0
1
Apache-2.0
1,568,807,655,000
1,568,807,655,000
null
UTF-8
Lean
false
false
23,260
lean
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Patrick Massot -/ import tactic.apply_fun import data.set.pairwise import topology.uniform_space.basic import topology.separation /-! # Hausdorff properties of uniform spaces. Separation quotient. This file studies uniform spaces whose underlying topological spaces are separated (also known as Hausdorff or T₂). This turns out to be equivalent to asking that the intersection of all entourages is the diagonal only. This condition actually implies the stronger separation property that the space is regular (T₃), hence those conditions are equivalent for topologies coming from a uniform structure. More generally, the intersection `𝓢 X` of all entourages of `X`, which has type `set (X × X)` is an equivalence relation on `X`. Points which are equivalent under the relation are basically undistinguishable from the point of view of the uniform structure. For instance any uniformly continuous function will send equivalent points to the same value. The quotient `separation_quotient X` of `X` by `𝓢 X` has a natural uniform structure which is separated, and satisfies a universal property: every uniformly continuous function from `X` to a separated uniform space uniquely factors through `separation_quotient X`. As usual, this allows to turn `separation_quotient` into a functor (but we don't use the category theory library in this file). These notions admit relative versions, one can ask that `s : set X` is separated, this is equivalent to asking that the uniform structure induced on `s` is separated. ## Main definitions * `separation_relation X : set (X × X)`: the separation relation * `separated_space X`: a predicate class asserting that `X` is separated * `is_separated s`: a predicate asserting that `s : set X` is separated * `separation_quotient X`: the maximal separated quotient of `X`. * `separation_quotient.lift f`: factors a map `f : X → Y` through the separation quotient of `X`. * `separation_quotient.map f`: turns a map `f : X → Y` into a map between the separation quotients of `X` and `Y`. ## Main results * `separated_iff_t2`: the equivalence between being separated and being Hausdorff for uniform spaces. * `separation_quotient.uniform_continuous_lift`: factoring a uniformly continuous map through the separation quotient gives a uniformly continuous map. * `separation_quotient.uniform_continuous_map`: maps induced between separation quotients are uniformly continuous. ## Notations Localized in `uniformity`, we have the notation `𝓢 X` for the separation relation on a uniform space `X`, ## Implementation notes The separation setoid `separation_setoid` is not declared as a global instance. It is made a local instance while building the theory of `separation_quotient`. The factored map `separation_quotient.lift f` is defined without imposing any condition on `f`, but returns junk if `f` is not uniformly continuous (constant junk hence it is always uniformly continuous). -/ open filter topological_space set classical function uniform_space open_locale classical topological_space uniformity filter noncomputable theory set_option eqn_compiler.zeta true universes u v w variables {α : Type u} {β : Type v} {γ : Type w} variables [uniform_space α] [uniform_space β] [uniform_space γ] /-! ### Separated uniform spaces -/ /-- The separation relation is the intersection of all entourages. Two points which are related by the separation relation are "indistinguishable" according to the uniform structure. -/ protected def separation_rel (α : Type u) [u : uniform_space α] := ⋂₀ (𝓤 α).sets localized "notation `𝓢` := separation_rel" in uniformity lemma separated_equiv : equivalence (λx y, (x, y) ∈ 𝓢 α) := ⟨assume x, assume s, refl_mem_uniformity, assume x y, assume h (s : set (α×α)) hs, have preimage prod.swap s ∈ 𝓤 α, from symm_le_uniformity hs, h _ this, assume x y z (hxy : (x, y) ∈ 𝓢 α) (hyz : (y, z) ∈ 𝓢 α) s (hs : s ∈ 𝓤 α), let ⟨t, ht, (h_ts : comp_rel t t ⊆ s)⟩ := comp_mem_uniformity_sets hs in h_ts $ show (x, z) ∈ comp_rel t t, from ⟨y, hxy t ht, hyz t ht⟩⟩ /-- A uniform space is separated if its separation relation is trivial (each point is related only to itself). -/ class separated_space (α : Type u) [uniform_space α] : Prop := (out : 𝓢 α = id_rel) theorem separated_space_iff {α : Type u} [uniform_space α] : separated_space α ↔ 𝓢 α = id_rel := ⟨λ h, h.1, λ h, ⟨h⟩⟩ theorem separated_def {α : Type u} [uniform_space α] : separated_space α ↔ ∀ x y, (∀ r ∈ 𝓤 α, (x, y) ∈ r) → x = y := by simp [separated_space_iff, id_rel_subset.2 separated_equiv.1, subset.antisymm_iff]; simp [subset_def, separation_rel] theorem separated_def' {α : Type u} [uniform_space α] : separated_space α ↔ ∀ x y, x ≠ y → ∃ r ∈ 𝓤 α, (x, y) ∉ r := separated_def.trans $ forall₂_congr $ λ x y, by rw ← not_imp_not; simp [not_forall] lemma eq_of_uniformity {α : Type*} [uniform_space α] [separated_space α] {x y : α} (h : ∀ {V}, V ∈ 𝓤 α → (x, y) ∈ V) : x = y := separated_def.mp ‹separated_space α› x y (λ _, h) lemma eq_of_uniformity_basis {α : Type*} [uniform_space α] [separated_space α] {ι : Type*} {p : ι → Prop} {s : ι → set (α × α)} (hs : (𝓤 α).has_basis p s) {x y : α} (h : ∀ {i}, p i → (x, y) ∈ s i) : x = y := eq_of_uniformity (λ V V_in, let ⟨i, hi, H⟩ := hs.mem_iff.mp V_in in H (h hi)) lemma eq_of_forall_symmetric {α : Type*} [uniform_space α] [separated_space α] {x y : α} (h : ∀ {V}, V ∈ 𝓤 α → symmetric_rel V → (x, y) ∈ V) : x = y := eq_of_uniformity_basis has_basis_symmetric (by simpa [and_imp] using λ _, h) lemma id_rel_sub_separation_relation (α : Type*) [uniform_space α] : id_rel ⊆ 𝓢 α := begin unfold separation_rel, rw id_rel_subset, intros x, suffices : ∀ t ∈ 𝓤 α, (x, x) ∈ t, by simpa only [refl_mem_uniformity], exact λ t, refl_mem_uniformity, end lemma separation_rel_comap {f : α → β} (h : ‹uniform_space α› = uniform_space.comap f ‹uniform_space β›) : 𝓢 α = (prod.map f f) ⁻¹' 𝓢 β := begin dsimp [separation_rel], simp_rw [uniformity_comap h, (filter.comap_has_basis (prod.map f f) (𝓤 β)).sInter_sets, ← preimage_Inter, sInter_eq_bInter], refl, end protected lemma filter.has_basis.separation_rel {ι : Sort*} {p : ι → Prop} {s : ι → set (α × α)} (h : has_basis (𝓤 α) p s) : 𝓢 α = ⋂ i (hi : p i), s i := by { unfold separation_rel, rw h.sInter_sets } lemma separation_rel_eq_inter_closure : 𝓢 α = ⋂₀ (closure '' (𝓤 α).sets) := by simp [uniformity_has_basis_closure.separation_rel] lemma is_closed_separation_rel : is_closed (𝓢 α) := begin rw separation_rel_eq_inter_closure, apply is_closed_sInter, rintros _ ⟨t, t_in, rfl⟩, exact is_closed_closure, end lemma separated_iff_t2 : separated_space α ↔ t2_space α := begin classical, split ; introI h, { rw [t2_iff_is_closed_diagonal, ← show 𝓢 α = diagonal α, from h.1], exact is_closed_separation_rel }, { rw separated_def', intros x y hxy, rcases t2_separation hxy with ⟨u, v, uo, vo, hx, hy, h⟩, rcases is_open_iff_ball_subset.1 uo x hx with ⟨r, hrU, hr⟩, exact ⟨r, hrU, λ H, disjoint_iff.2 h ⟨hr H, hy⟩⟩ } end @[priority 100] -- see Note [lower instance priority] instance separated_regular [separated_space α] : regular_space α := { t0 := by { haveI := separated_iff_t2.mp ‹_›, exact t1_space.t0_space.t0 }, regular := λs a hs ha, have sᶜ ∈ 𝓝 a, from is_open.mem_nhds hs.is_open_compl ha, have {p : α × α | p.1 = a → p.2 ∈ sᶜ} ∈ 𝓤 α, from mem_nhds_uniformity_iff_right.mp this, let ⟨d, hd, h⟩ := comp_mem_uniformity_sets this in let e := {y:α| (a, y) ∈ d} in have hae : a ∈ closure e, from subset_closure $ refl_mem_uniformity hd, have closure e ×ˢ closure e ⊆ comp_rel d (comp_rel (e ×ˢ e) d), begin rw [←closure_prod_eq, closure_eq_inter_uniformity], change (⨅d' ∈ 𝓤 α, _) ≤ comp_rel d (comp_rel _ d), exact (infi_le_of_le d $ infi_le_of_le hd $ le_rfl) end, have e_subset : closure e ⊆ sᶜ, from assume a' ha', let ⟨x, (hx : (a, x) ∈ d), y, ⟨hx₁, hx₂⟩, (hy : (y, _) ∈ d)⟩ := @this ⟨a, a'⟩ ⟨hae, ha'⟩ in have (a, a') ∈ comp_rel d d, from ⟨y, hx₂, hy⟩, h this rfl, have closure e ∈ 𝓝 a, from (𝓝 a).sets_of_superset (mem_nhds_left a hd) subset_closure, have 𝓝 a ⊓ 𝓟 (closure e)ᶜ = ⊥, from (is_compl_principal (closure e)).inf_right_eq_bot_iff.2 (le_principal_iff.2 this), ⟨(closure e)ᶜ, is_closed_closure.is_open_compl, assume x h₁ h₂, @e_subset x h₂ h₁, this⟩, ..@t2_space.t1_space _ _ (separated_iff_t2.mp ‹_›) } lemma is_closed_of_spaced_out [separated_space α] {V₀ : set (α × α)} (V₀_in : V₀ ∈ 𝓤 α) {s : set α} (hs : s.pairwise (λ x y, (x, y) ∉ V₀)) : is_closed s := begin rcases comp_symm_mem_uniformity_sets V₀_in with ⟨V₁, V₁_in, V₁_symm, h_comp⟩, apply is_closed_of_closure_subset, intros x hx, rw mem_closure_iff_ball at hx, rcases hx V₁_in with ⟨y, hy, hy'⟩, suffices : x = y, by rwa this, apply eq_of_forall_symmetric, intros V V_in V_symm, rcases hx (inter_mem V₁_in V_in) with ⟨z, hz, hz'⟩, obtain rfl : z = y, { by_contra hzy, exact hs hz' hy' hzy (h_comp $ mem_comp_of_mem_ball V₁_symm (ball_inter_left x _ _ hz) hy) }, exact ball_inter_right x _ _ hz end lemma is_closed_range_of_spaced_out {ι} [separated_space α] {V₀ : set (α × α)} (V₀_in : V₀ ∈ 𝓤 α) {f : ι → α} (hf : pairwise (λ x y, (f x, f y) ∉ V₀)) : is_closed (range f) := is_closed_of_spaced_out V₀_in $ by { rintro _ ⟨x, rfl⟩ _ ⟨y, rfl⟩ h, exact hf x y (ne_of_apply_ne f h) } /-! ### Separated sets -/ /-- A set `s` in a uniform space `α` is separated if the separation relation `𝓢 α` induces the trivial relation on `s`. -/ def is_separated (s : set α) : Prop := ∀ x y ∈ s, (x, y) ∈ 𝓢 α → x = y lemma is_separated_def (s : set α) : is_separated s ↔ ∀ x y ∈ s, (x, y) ∈ 𝓢 α → x = y := iff.rfl lemma is_separated_def' (s : set α) : is_separated s ↔ (s ×ˢ s) ∩ 𝓢 α ⊆ id_rel := begin rw is_separated_def, split, { rintros h ⟨x, y⟩ ⟨⟨x_in, y_in⟩, H⟩, simp [h x x_in y y_in H] }, { intros h x x_in y y_in xy_in, rw ← mem_id_rel, exact h ⟨mk_mem_prod x_in y_in, xy_in⟩ } end lemma is_separated.mono {s t : set α} (hs : is_separated s) (hts : t ⊆ s) : is_separated t := λ x hx y hy, hs x (hts hx) y (hts hy) lemma univ_separated_iff : is_separated (univ : set α) ↔ separated_space α := begin simp only [is_separated, mem_univ, true_implies_iff, separated_space_iff], split, { intro h, exact subset.antisymm (λ ⟨x, y⟩ xy_in, h x y xy_in) (id_rel_sub_separation_relation α), }, { intros h x y xy_in, rwa h at xy_in }, end lemma is_separated_of_separated_space [separated_space α] (s : set α) : is_separated s := begin rw [is_separated, separated_space.out], tauto, end lemma is_separated_iff_induced {s : set α} : is_separated s ↔ separated_space s := begin rw separated_space_iff, change _ ↔ 𝓢 {x // x ∈ s} = _, rw [separation_rel_comap rfl, is_separated_def'], split; intro h, { ext ⟨⟨x, x_in⟩, ⟨y, y_in⟩⟩, suffices : (x, y) ∈ 𝓢 α ↔ x = y, by simpa only [mem_id_rel], refine ⟨λ H, h ⟨mk_mem_prod x_in y_in, H⟩, _⟩, rintro rfl, exact id_rel_sub_separation_relation α rfl }, { rintros ⟨x, y⟩ ⟨⟨x_in, y_in⟩, hS⟩, have A : (⟨⟨x, x_in⟩, ⟨y, y_in⟩⟩ : ↥s × ↥s) ∈ prod.map (coe : s → α) (coe : s → α) ⁻¹' 𝓢 α, from hS, simpa using h.subset A } end lemma eq_of_uniformity_inf_nhds_of_is_separated {s : set α} (hs : is_separated s) : ∀ {x y : α}, x ∈ s → y ∈ s → cluster_pt (x, y) (𝓤 α) → x = y := begin intros x y x_in y_in H, have : ∀ V ∈ 𝓤 α, (x, y) ∈ closure V, { intros V V_in, rw mem_closure_iff_cluster_pt, have : 𝓤 α ≤ 𝓟 V, by rwa le_principal_iff, exact H.mono this }, apply hs x x_in y y_in, simpa [separation_rel_eq_inter_closure], end lemma eq_of_uniformity_inf_nhds [separated_space α] : ∀ {x y : α}, cluster_pt (x, y) (𝓤 α) → x = y := begin have : is_separated (univ : set α), { rw univ_separated_iff, assumption }, introv, simpa using eq_of_uniformity_inf_nhds_of_is_separated this, end /-! ### Separation quotient -/ namespace uniform_space /-- The separation relation of a uniform space seen as a setoid. -/ def separation_setoid (α : Type u) [uniform_space α] : setoid α := ⟨λx y, (x, y) ∈ 𝓢 α, separated_equiv⟩ local attribute [instance] separation_setoid instance separation_setoid.uniform_space {α : Type u} [u : uniform_space α] : uniform_space (quotient (separation_setoid α)) := { to_topological_space := u.to_topological_space.coinduced (λx, ⟦x⟧), uniformity := map (λp:(α×α), (⟦p.1⟧, ⟦p.2⟧)) u.uniformity, refl := le_trans (by simp [quotient.exists_rep]) (filter.map_mono refl_le_uniformity), symm := tendsto_map' $ by simp [prod.swap, (∘)]; exact tendsto_map.comp tendsto_swap_uniformity, comp := calc (map (λ (p : α × α), (⟦p.fst⟧, ⟦p.snd⟧)) u.uniformity).lift' (λs, comp_rel s s) = u.uniformity.lift' ((λs, comp_rel s s) ∘ image (λ (p : α × α), (⟦p.fst⟧, ⟦p.snd⟧))) : map_lift'_eq2 $ monotone_comp_rel monotone_id monotone_id ... ≤ u.uniformity.lift' (image (λ (p : α × α), (⟦p.fst⟧, ⟦p.snd⟧)) ∘ (λs:set (α×α), comp_rel s (comp_rel s s))) : lift'_mono' $ assume s hs ⟨a, b⟩ ⟨c, ⟨⟨a₁, a₂⟩, ha, a_eq⟩, ⟨⟨b₁, b₂⟩, hb, b_eq⟩⟩, begin simp at a_eq, simp at b_eq, have h : ⟦a₂⟧ = ⟦b₁⟧, { rw [a_eq.right, b_eq.left] }, have h : (a₂, b₁) ∈ 𝓢 α := quotient.exact h, simp [function.comp, set.image, comp_rel, and.comm, and.left_comm, and.assoc], exact ⟨a₁, a_eq.left, b₂, b_eq.right, a₂, ha, b₁, h s hs, hb⟩ end ... = map (λp:(α×α), (⟦p.1⟧, ⟦p.2⟧)) (u.uniformity.lift' (λs:set (α×α), comp_rel s (comp_rel s s))) : by rw [map_lift'_eq]; exact monotone_comp_rel monotone_id (monotone_comp_rel monotone_id monotone_id) ... ≤ map (λp:(α×α), (⟦p.1⟧, ⟦p.2⟧)) u.uniformity : map_mono comp_le_uniformity3, is_open_uniformity := assume s, have ∀a, ⟦a⟧ ∈ s → ({p:α×α | p.1 = a → ⟦p.2⟧ ∈ s} ∈ 𝓤 α ↔ {p:α×α | p.1 ≈ a → ⟦p.2⟧ ∈ s} ∈ 𝓤 α), from assume a ha, ⟨assume h, let ⟨t, ht, hts⟩ := comp_mem_uniformity_sets h in have hts : ∀{a₁ a₂}, (a, a₁) ∈ t → (a₁, a₂) ∈ t → ⟦a₂⟧ ∈ s, from assume a₁ a₂ ha₁ ha₂, @hts (a, a₂) ⟨a₁, ha₁, ha₂⟩ rfl, have ht' : ∀{a₁ a₂}, a₁ ≈ a₂ → (a₁, a₂) ∈ t, from assume a₁ a₂ h, sInter_subset_of_mem ht h, u.uniformity.sets_of_superset ht $ assume ⟨a₁, a₂⟩ h₁ h₂, hts (ht' $ setoid.symm h₂) h₁, assume h, u.uniformity.sets_of_superset h $ by simp {contextual := tt}⟩, begin simp [topological_space.coinduced, u.is_open_uniformity, uniformity, forall_quotient_iff], exact ⟨λh a ha, (this a ha).mp $ h a ha, λh a ha, (this a ha).mpr $ h a ha⟩ end } lemma uniformity_quotient : 𝓤 (quotient (separation_setoid α)) = (𝓤 α).map (λp:(α×α), (⟦p.1⟧, ⟦p.2⟧)) := rfl lemma uniform_continuous_quotient_mk : uniform_continuous (quotient.mk : α → quotient (separation_setoid α)) := le_rfl lemma uniform_continuous_quotient {f : quotient (separation_setoid α) → β} (hf : uniform_continuous (λx, f ⟦x⟧)) : uniform_continuous f := hf lemma uniform_continuous_quotient_lift {f : α → β} {h : ∀a b, (a, b) ∈ 𝓢 α → f a = f b} (hf : uniform_continuous f) : uniform_continuous (λa, quotient.lift f h a) := uniform_continuous_quotient hf lemma uniform_continuous_quotient_lift₂ {f : α → β → γ} {h : ∀a c b d, (a, b) ∈ 𝓢 α → (c, d) ∈ 𝓢 β → f a c = f b d} (hf : uniform_continuous (λp:α×β, f p.1 p.2)) : uniform_continuous (λp:_×_, quotient.lift₂ f h p.1 p.2) := begin rw [uniform_continuous, uniformity_prod_eq_prod, uniformity_quotient, uniformity_quotient, filter.prod_map_map_eq, filter.tendsto_map'_iff, filter.tendsto_map'_iff], rwa [uniform_continuous, uniformity_prod_eq_prod, filter.tendsto_map'_iff] at hf end lemma comap_quotient_le_uniformity : (𝓤 $ quotient $ separation_setoid α).comap (λ (p : α × α), (⟦p.fst⟧, ⟦p.snd⟧)) ≤ (𝓤 α) := assume t' ht', let ⟨t, ht, tt_t'⟩ := comp_mem_uniformity_sets ht' in let ⟨s, hs, ss_t⟩ := comp_mem_uniformity_sets ht in ⟨(λp:α×α, (⟦p.1⟧, ⟦p.2⟧)) '' s, (𝓤 α).sets_of_superset hs $ assume x hx, ⟨x, hx, rfl⟩, assume ⟨a₁, a₂⟩ ⟨⟨b₁, b₂⟩, hb, ab_eq⟩, have ⟦b₁⟧ = ⟦a₁⟧ ∧ ⟦b₂⟧ = ⟦a₂⟧, from prod.mk.inj ab_eq, have b₁ ≈ a₁ ∧ b₂ ≈ a₂, from and.imp quotient.exact quotient.exact this, have ab₁ : (a₁, b₁) ∈ t, from (setoid.symm this.left) t ht, have ba₂ : (b₂, a₂) ∈ s, from this.right s hs, tt_t' ⟨b₁, show ((a₁, a₂).1, b₁) ∈ t, from ab₁, ss_t ⟨b₂, show ((b₁, a₂).1, b₂) ∈ s, from hb, ba₂⟩⟩⟩ lemma comap_quotient_eq_uniformity : (𝓤 $ quotient $ separation_setoid α).comap (λ (p : α × α), (⟦p.fst⟧, ⟦p.snd⟧)) = 𝓤 α := le_antisymm comap_quotient_le_uniformity le_comap_map instance separated_separation : separated_space (quotient (separation_setoid α)) := ⟨set.ext $ assume ⟨a, b⟩, quotient.induction_on₂ a b $ assume a b, ⟨assume h, have a ≈ b, from assume s hs, have s ∈ (𝓤 $ quotient $ separation_setoid α).comap (λp:(α×α), (⟦p.1⟧, ⟦p.2⟧)), from comap_quotient_le_uniformity hs, let ⟨t, ht, hts⟩ := this in hts begin dsimp [preimage], exact h t ht end, show ⟦a⟧ = ⟦b⟧, from quotient.sound this, assume heq : ⟦a⟧ = ⟦b⟧, assume h hs, heq ▸ refl_mem_uniformity hs⟩⟩ lemma separated_of_uniform_continuous {f : α → β} {x y : α} (H : uniform_continuous f) (h : x ≈ y) : f x ≈ f y := assume _ h', h _ (H h') lemma eq_of_separated_of_uniform_continuous [separated_space β] {f : α → β} {x y : α} (H : uniform_continuous f) (h : x ≈ y) : f x = f y := separated_def.1 (by apply_instance) _ _ $ separated_of_uniform_continuous H h lemma _root_.is_separated.eq_of_uniform_continuous {f : α → β} {x y : α} {s : set β} (hs : is_separated s) (hxs : f x ∈ s) (hys : f y ∈ s) (H : uniform_continuous f) (h : x ≈ y) : f x = f y := (is_separated_def _).mp hs _ hxs _ hys $ λ _ h', h _ (H h') /-- The maximal separated quotient of a uniform space `α`. -/ def separation_quotient (α : Type*) [uniform_space α] := quotient (separation_setoid α) namespace separation_quotient instance : uniform_space (separation_quotient α) := separation_setoid.uniform_space instance : separated_space (separation_quotient α) := uniform_space.separated_separation instance [inhabited α] : inhabited (separation_quotient α) := quotient.inhabited (separation_setoid α) /-- Factoring functions to a separated space through the separation quotient. -/ def lift [separated_space β] (f : α → β) : (separation_quotient α → β) := if h : uniform_continuous f then quotient.lift f (λ x y, eq_of_separated_of_uniform_continuous h) else λ x, f (nonempty.some ⟨x.out⟩) lemma lift_mk [separated_space β] {f : α → β} (h : uniform_continuous f) (a : α) : lift f ⟦a⟧ = f a := by rw [lift, dif_pos h]; refl lemma uniform_continuous_lift [separated_space β] (f : α → β) : uniform_continuous (lift f) := begin by_cases hf : uniform_continuous f, { rw [lift, dif_pos hf], exact uniform_continuous_quotient_lift hf }, { rw [lift, dif_neg hf], exact uniform_continuous_of_const (assume a b, rfl) } end /-- The separation quotient functor acting on functions. -/ def map (f : α → β) : separation_quotient α → separation_quotient β := lift (quotient.mk ∘ f) lemma map_mk {f : α → β} (h : uniform_continuous f) (a : α) : map f ⟦a⟧ = ⟦f a⟧ := by rw [map, lift_mk (uniform_continuous_quotient_mk.comp h)] lemma uniform_continuous_map (f : α → β) : uniform_continuous (map f) := uniform_continuous_lift (quotient.mk ∘ f) lemma map_unique {f : α → β} (hf : uniform_continuous f) {g : separation_quotient α → separation_quotient β} (comm : quotient.mk ∘ f = g ∘ quotient.mk) : map f = g := by ext ⟨a⟩; calc map f ⟦a⟧ = ⟦f a⟧ : map_mk hf a ... = g ⟦a⟧ : congr_fun comm a lemma map_id : map (@id α) = id := map_unique uniform_continuous_id rfl lemma map_comp {f : α → β} {g : β → γ} (hf : uniform_continuous f) (hg : uniform_continuous g) : map g ∘ map f = map (g ∘ f) := (map_unique (hg.comp hf) $ by simp only [(∘), map_mk, hf, hg]).symm end separation_quotient lemma separation_prod {a₁ a₂ : α} {b₁ b₂ : β} : (a₁, b₁) ≈ (a₂, b₂) ↔ a₁ ≈ a₂ ∧ b₁ ≈ b₂ := begin split, { assume h, exact ⟨separated_of_uniform_continuous uniform_continuous_fst h, separated_of_uniform_continuous uniform_continuous_snd h⟩ }, { rintros ⟨eqv_α, eqv_β⟩ r r_in, rw uniformity_prod at r_in, rcases r_in with ⟨t_α, ⟨r_α, r_α_in, h_α⟩, t_β, ⟨r_β, r_β_in, h_β⟩, rfl⟩, let p_α := λ(p : (α × β) × (α × β)), (p.1.1, p.2.1), let p_β := λ(p : (α × β) × (α × β)), (p.1.2, p.2.2), have key_α : p_α ((a₁, b₁), (a₂, b₂)) ∈ r_α, { simp [p_α, eqv_α r_α r_α_in] }, have key_β : p_β ((a₁, b₁), (a₂, b₂)) ∈ r_β, { simp [p_β, eqv_β r_β r_β_in] }, exact ⟨h_α key_α, h_β key_β⟩ }, end instance separated.prod [separated_space α] [separated_space β] : separated_space (α × β) := separated_def.2 $ assume x y H, prod.ext (eq_of_separated_of_uniform_continuous uniform_continuous_fst H) (eq_of_separated_of_uniform_continuous uniform_continuous_snd H) lemma _root_.is_separated.prod {s : set α} {t : set β} (hs : is_separated s) (ht : is_separated t) : is_separated (s ×ˢ t) := (is_separated_def _).mpr $ λ x hx y hy H, prod.ext (hs.eq_of_uniform_continuous hx.1 hy.1 uniform_continuous_fst H) (ht.eq_of_uniform_continuous hx.2 hy.2 uniform_continuous_snd H) end uniform_space
8f45ef3201d4363fd67e56d670b99fd223a777c2
77c5b91fae1b966ddd1db969ba37b6f0e4901e88
/src/data/fin/interval.lean
95d8fb0c2b96a010c6e49d6e6621ded1eaea94ae
[ "Apache-2.0" ]
permissive
dexmagic/mathlib
ff48eefc56e2412429b31d4fddd41a976eb287ce
7a5d15a955a92a90e1d398b2281916b9c41270b2
refs/heads/master
1,693,481,322,046
1,633,360,193,000
1,633,360,193,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
2,062
lean
/- Copyright (c) 2021 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import data.nat.interval /-! # Finite intervals in `fin n` This file proves that `fin n` is a `locally_finite_order` and calculates the cardinality of its intervals as finsets and fintypes. ## TODO @Yaël: Add `finset.Ico`. Coming very soon. -/ open finset fin variables (n : ℕ) instance : locally_finite_order (fin n) := subtype.locally_finite_order _ namespace fin variables {n} (a b : fin n) lemma Icc_eq_finset_subtype : Icc a b = (Icc (a : ℕ) b).subtype (λ x, x < n) := rfl lemma Ioc_eq_finset_subtype : Ioc a b = (Ioc (a : ℕ) b).subtype (λ x, x < n) := rfl lemma Ioo_eq_finset_subtype : Ioo a b = (Ioo (a : ℕ) b).subtype (λ x, x < n) := rfl @[simp] lemma map_subtype_embedding_Icc : (Icc a b).map (function.embedding.subtype _) = Icc (a : ℕ) b := map_subtype_embedding_Icc _ _ _ (λ _ c x _ hx _, hx.trans_lt) @[simp] lemma map_subtype_embedding_Ioc : (Ioc a b).map (function.embedding.subtype _) = Ioc (a : ℕ) b := map_subtype_embedding_Ioc _ _ _ (λ _ c x _ hx _, hx.trans_lt) @[simp] lemma map_subtype_embedding_Ioo : (Ioo a b).map (function.embedding.subtype _) = Ioo (a : ℕ) b := map_subtype_embedding_Ioo _ _ _ (λ _ c x _ hx _, hx.trans_lt) @[simp] lemma card_Icc : (Icc a b).card = b + 1 - a := by rw [←nat.card_Icc, ←map_subtype_embedding_Icc, card_map] @[simp] lemma card_Ioc : (Ioc a b).card = b - a := by rw [←nat.card_Ioc, ←map_subtype_embedding_Ioc, card_map] @[simp] lemma card_Ioo : (Ioo a b).card = b - a - 1 := by rw [←nat.card_Ioo, ←map_subtype_embedding_Ioo, card_map] @[simp] lemma card_fintype_Icc : fintype.card (set.Icc a b) = b + 1 - a := by rw [←card_Icc, fintype.card_of_finset] @[simp] lemma card_fintype_Ioc : fintype.card (set.Ioc a b) = b - a := by rw [←card_Ioc, fintype.card_of_finset] @[simp] lemma card_fintype_Ioo : fintype.card (set.Ioo a b) = b - a - 1 := by rw [←card_Ioo, fintype.card_of_finset] end fin
b6a36b7c30f4f0b4d83446d821e404c2580434e9
aa3f8992ef7806974bc1ffd468baa0c79f4d6643
/tests/lean/run/e2.lean
0d0f059fc519dd0cf5c4f3031efde57e213774dc
[ "Apache-2.0" ]
permissive
codyroux/lean
7f8dff750722c5382bdd0a9a9275dc4bb2c58dd3
0cca265db19f7296531e339192e9b9bae4a31f8b
refs/heads/master
1,610,909,964,159
1,407,084,399,000
1,416,857,075,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
39
lean
definition Prop := Type.{0} check Prop
0981be48510bf414f1cfaca4c501154563b76250
3f7026ea8bef0825ca0339a275c03b911baef64d
/src/order/filter/basic.lean
2d0d5237591116fe03d1a2f32e33a3c55911a0e6
[ "Apache-2.0" ]
permissive
rspencer01/mathlib
b1e3afa5c121362ef0881012cc116513ab09f18c
c7d36292c6b9234dc40143c16288932ae38fdc12
refs/heads/master
1,595,010,346,708
1,567,511,503,000
1,567,511,503,000
206,071,681
0
0
Apache-2.0
1,567,513,643,000
1,567,513,643,000
null
UTF-8
Lean
false
false
82,021
lean
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Jeremy Avigad Theory of filters on sets. -/ import order.galois_connection order.zorn import data.set.finite open lattice set universes u v w x y local attribute [instance] classical.prop_decidable namespace lattice variables {α : Type u} {ι : Sort v} def complete_lattice.copy (c : complete_lattice α) (le : α → α → Prop) (eq_le : le = @complete_lattice.le α c) (top : α) (eq_top : top = @complete_lattice.top α c) (bot : α) (eq_bot : bot = @complete_lattice.bot α c) (sup : α → α → α) (eq_sup : sup = @complete_lattice.sup α c) (inf : α → α → α) (eq_inf : inf = @complete_lattice.inf α c) (Sup : set α → α) (eq_Sup : Sup = @complete_lattice.Sup α c) (Inf : set α → α) (eq_Inf : Inf = @complete_lattice.Inf α c) : complete_lattice α := begin refine { le := le, top := top, bot := bot, sup := sup, inf := inf, Sup := Sup, Inf := Inf, ..}; subst_vars, exact @complete_lattice.le_refl α c, exact @complete_lattice.le_trans α c, exact @complete_lattice.le_antisymm α c, exact @complete_lattice.le_sup_left α c, exact @complete_lattice.le_sup_right α c, exact @complete_lattice.sup_le α c, exact @complete_lattice.inf_le_left α c, exact @complete_lattice.inf_le_right α c, exact @complete_lattice.le_inf α c, exact @complete_lattice.le_top α c, exact @complete_lattice.bot_le α c, exact @complete_lattice.le_Sup α c, exact @complete_lattice.Sup_le α c, exact @complete_lattice.Inf_le α c, exact @complete_lattice.le_Inf α c end end lattice open set lattice section order variables {α : Type u} (r : α → α → Prop) local infix ` ≼ ` : 50 := r lemma directed_on_Union {r} {ι : Sort v} {f : ι → set α} (hd : directed (⊆) f) (h : ∀x, directed_on r (f x)) : directed_on r (⋃x, f x) := by simp only [directed_on, exists_prop, mem_Union, exists_imp_distrib]; exact assume a₁ b₁ fb₁ a₂ b₂ fb₂, let ⟨z, zb₁, zb₂⟩ := hd b₁ b₂, ⟨x, xf, xa₁, xa₂⟩ := h z a₁ (zb₁ fb₁) a₂ (zb₂ fb₂) in ⟨x, ⟨z, xf⟩, xa₁, xa₂⟩ end order theorem directed_of_chain {α β r} [is_refl β r] {f : α → β} {c : set α} (h : zorn.chain (f ⁻¹'o r) c) : directed r (λx:{a:α // a ∈ c}, f (x.val)) := assume ⟨a, ha⟩ ⟨b, hb⟩, classical.by_cases (assume : a = b, by simp only [this, exists_prop, and_self, subtype.exists]; exact ⟨b, hb, refl _⟩) (assume : a ≠ b, (h a ha b hb this).elim (λ h : r (f a) (f b), ⟨⟨b, hb⟩, h, refl _⟩) (λ h : r (f b) (f a), ⟨⟨a, ha⟩, refl _, h⟩)) structure filter (α : Type*) := (sets : set (set α)) (univ_sets : set.univ ∈ sets) (sets_of_superset {x y} : x ∈ sets → x ⊆ y → y ∈ sets) (inter_sets {x y} : x ∈ sets → y ∈ sets → x ∩ y ∈ sets) /-- If `F` is a filter on `α`, and `U` a subset of `α` then we can write `U ∈ F` as on paper. -/ @[reducible] instance {α : Type*}: has_mem (set α) (filter α) := ⟨λ U F, U ∈ F.sets⟩ namespace filter variables {α : Type u} {f g : filter α} {s t : set α} lemma filter_eq : ∀{f g : filter α}, f.sets = g.sets → f = g | ⟨a, _, _, _⟩ ⟨._, _, _, _⟩ rfl := rfl lemma filter_eq_iff : f = g ↔ f.sets = g.sets := ⟨congr_arg _, filter_eq⟩ protected lemma ext_iff : f = g ↔ ∀ s, s ∈ f ↔ s ∈ g := by rw [filter_eq_iff, ext_iff] @[extensionality] protected lemma ext : (∀ s, s ∈ f ↔ s ∈ g) → f = g := filter.ext_iff.2 lemma univ_mem_sets : univ ∈ f := f.univ_sets lemma mem_sets_of_superset : ∀{x y : set α}, x ∈ f → x ⊆ y → y ∈ f := f.sets_of_superset lemma inter_mem_sets : ∀{s t}, s ∈ f → t ∈ f → s ∩ t ∈ f := f.inter_sets lemma univ_mem_sets' (h : ∀ a, a ∈ s) : s ∈ f := mem_sets_of_superset univ_mem_sets (assume x _, h x) lemma mp_sets (hs : s ∈ f) (h : {x | x ∈ s → x ∈ t} ∈ f) : t ∈ f := mem_sets_of_superset (inter_mem_sets hs h) $ assume x ⟨h₁, h₂⟩, h₂ h₁ lemma congr_sets (h : {x | x ∈ s ↔ x ∈ t} ∈ f) : s ∈ f ↔ t ∈ f := ⟨λ hs, mp_sets hs (mem_sets_of_superset h (λ x, iff.mp)), λ hs, mp_sets hs (mem_sets_of_superset h (λ x, iff.mpr))⟩ lemma Inter_mem_sets {β : Type v} {s : β → set α} {is : set β} (hf : finite is) : (∀i∈is, s i ∈ f) → (⋂i∈is, s i) ∈ f := finite.induction_on hf (assume hs, by simp only [univ_mem_sets, mem_empty_eq, Inter_neg, Inter_univ, not_false_iff]) (assume i is _ hf hi hs, have h₁ : s i ∈ f, from hs i (by simp), have h₂ : (⋂x∈is, s x) ∈ f, from hi $ assume a ha, hs _ $ by simp only [ha, mem_insert_iff, or_true], by simp [inter_mem_sets h₁ h₂]) lemma exists_sets_subset_iff : (∃t ∈ f, t ⊆ s) ↔ s ∈ f := ⟨assume ⟨t, ht, ts⟩, mem_sets_of_superset ht ts, assume hs, ⟨s, hs, subset.refl _⟩⟩ lemma monotone_mem_sets {f : filter α} : monotone (λs, s ∈ f) := assume s t hst h, mem_sets_of_superset h hst end filter namespace tactic.interactive open tactic interactive /-- `filter_upwards [h1, ⋯, hn]` replaces a goal of the form `s ∈ f` and terms `h1 : t1 ∈ f, ⋯, hn : tn ∈ f` with `∀x, x ∈ t1 → ⋯ → x ∈ tn → x ∈ s`. `filter_upwards [h1, ⋯, hn] e` is a short form for `{ filter_upwards [h1, ⋯, hn], exact e }`. -/ meta def filter_upwards (s : parse types.pexpr_list) (e' : parse $ optional types.texpr) : tactic unit := do s.reverse.mmap (λ e, eapplyc `filter.mp_sets >> eapply e), eapplyc `filter.univ_mem_sets', match e' with | some e := interactive.exact e | none := skip end end tactic.interactive namespace filter variables {α : Type u} {β : Type v} {γ : Type w} {ι : Sort x} section principal /-- The principal filter of `s` is the collection of all supersets of `s`. -/ def principal (s : set α) : filter α := { sets := {t | s ⊆ t}, univ_sets := subset_univ s, sets_of_superset := assume x y hx hy, subset.trans hx hy, inter_sets := assume x y, subset_inter } instance : inhabited (filter α) := ⟨principal ∅⟩ @[simp] lemma mem_principal_sets {s t : set α} : s ∈ principal t ↔ t ⊆ s := iff.rfl lemma mem_principal_self (s : set α) : s ∈ principal s := subset.refl _ end principal section join /-- The join of a filter of filters is defined by the relation `s ∈ join f ↔ {t | s ∈ t} ∈ f`. -/ def join (f : filter (filter α)) : filter α := { sets := {s | {t : filter α | s ∈ t} ∈ f}, univ_sets := by simp only [univ_mem_sets, mem_set_of_eq]; exact univ_mem_sets, sets_of_superset := assume x y hx xy, mem_sets_of_superset hx $ assume f h, mem_sets_of_superset h xy, inter_sets := assume x y hx hy, mem_sets_of_superset (inter_mem_sets hx hy) $ assume f ⟨h₁, h₂⟩, inter_mem_sets h₁ h₂ } @[simp] lemma mem_join_sets {s : set α} {f : filter (filter α)} : s ∈ join f ↔ {t | s ∈ filter.sets t} ∈ f := iff.rfl end join section lattice instance : partial_order (filter α) := { le := λf g, g.sets ⊆ f.sets, le_antisymm := assume a b h₁ h₂, filter_eq $ subset.antisymm h₂ h₁, le_refl := assume a, subset.refl _, le_trans := assume a b c h₁ h₂, subset.trans h₂ h₁ } theorem le_def {f g : filter α} : f ≤ g ↔ ∀ x ∈ g, x ∈ f := iff.rfl /-- `generate_sets g s`: `s` is in the filter closure of `g`. -/ inductive generate_sets (g : set (set α)) : set α → Prop | basic {s : set α} : s ∈ g → generate_sets s | univ {} : generate_sets univ | superset {s t : set α} : generate_sets s → s ⊆ t → generate_sets t | inter {s t : set α} : generate_sets s → generate_sets t → generate_sets (s ∩ t) /-- `generate g` is the smallest filter containing the sets `g`. -/ def generate (g : set (set α)) : filter α := { sets := {s | generate_sets g s}, univ_sets := generate_sets.univ, sets_of_superset := assume x y, generate_sets.superset, inter_sets := assume s t, generate_sets.inter } lemma sets_iff_generate {s : set (set α)} {f : filter α} : f ≤ filter.generate s ↔ s ⊆ f.sets := iff.intro (assume h u hu, h $ generate_sets.basic $ hu) (assume h u hu, hu.rec_on h univ_mem_sets (assume x y _ hxy hx, mem_sets_of_superset hx hxy) (assume x y _ _ hx hy, inter_mem_sets hx hy)) protected def mk_of_closure (s : set (set α)) (hs : (generate s).sets = s) : filter α := { sets := s, univ_sets := hs ▸ (univ_mem_sets : univ ∈ generate s), sets_of_superset := assume x y, hs ▸ (mem_sets_of_superset : x ∈ generate s → x ⊆ y → y ∈ generate s), inter_sets := assume x y, hs ▸ (inter_mem_sets : x ∈ generate s → y ∈ generate s → x ∩ y ∈ generate s) } lemma mk_of_closure_sets {s : set (set α)} {hs : (generate s).sets = s} : filter.mk_of_closure s hs = generate s := filter.ext $ assume u, show u ∈ (filter.mk_of_closure s hs).sets ↔ u ∈ (generate s).sets, from hs.symm ▸ iff.refl _ /- Galois insertion from sets of sets into a filters. -/ def gi_generate (α : Type*) : @galois_insertion (set (set α)) (order_dual (filter α)) _ _ filter.generate filter.sets := { gc := assume s f, sets_iff_generate, le_l_u := assume f u, generate_sets.basic, choice := λs hs, filter.mk_of_closure s (le_antisymm hs $ sets_iff_generate.1 $ le_refl _), choice_eq := assume s hs, mk_of_closure_sets } /-- The infimum of filters is the filter generated by intersections of elements of the two filters. -/ instance : has_inf (filter α) := ⟨λf g : filter α, { sets := {s | ∃ (a ∈ f) (b ∈ g), a ∩ b ⊆ s }, univ_sets := ⟨_, univ_mem_sets, _, univ_mem_sets, inter_subset_left _ _⟩, sets_of_superset := assume x y ⟨a, ha, b, hb, h⟩ xy, ⟨a, ha, b, hb, subset.trans h xy⟩, inter_sets := assume x y ⟨a, ha, b, hb, hx⟩ ⟨c, hc, d, hd, hy⟩, ⟨_, inter_mem_sets ha hc, _, inter_mem_sets hb hd, calc a ∩ c ∩ (b ∩ d) = (a ∩ b) ∩ (c ∩ d) : by ac_refl ... ⊆ x ∩ y : inter_subset_inter hx hy⟩ }⟩ @[simp] lemma mem_inf_sets {f g : filter α} {s : set α} : s ∈ f ⊓ g ↔ ∃t₁∈f.sets, ∃t₂∈g.sets, t₁ ∩ t₂ ⊆ s := iff.rfl lemma mem_inf_sets_of_left {f g : filter α} {s : set α} (h : s ∈ f) : s ∈ f ⊓ g := ⟨s, h, univ, univ_mem_sets, inter_subset_left _ _⟩ lemma mem_inf_sets_of_right {f g : filter α} {s : set α} (h : s ∈ g) : s ∈ f ⊓ g := ⟨univ, univ_mem_sets, s, h, inter_subset_right _ _⟩ lemma inter_mem_inf_sets {α : Type u} {f g : filter α} {s t : set α} (hs : s ∈ f) (ht : t ∈ g) : s ∩ t ∈ f ⊓ g := inter_mem_sets (mem_inf_sets_of_left hs) (mem_inf_sets_of_right ht) instance : has_top (filter α) := ⟨{ sets := {s | ∀x, x ∈ s}, univ_sets := assume x, mem_univ x, sets_of_superset := assume x y hx hxy a, hxy (hx a), inter_sets := assume x y hx hy a, mem_inter (hx _) (hy _) }⟩ lemma mem_top_sets_iff_forall {s : set α} : s ∈ (⊤ : filter α) ↔ (∀x, x ∈ s) := iff.refl _ @[simp] lemma mem_top_sets {s : set α} : s ∈ (⊤ : filter α) ↔ s = univ := by rw [mem_top_sets_iff_forall, eq_univ_iff_forall] section complete_lattice /- We lift the complete lattice along the Galois connection `generate` / `sets`. Unfortunately, we want to have different definitional equalities for the lattice operations. So we define them upfront and change the lattice operations for the complete lattice instance. -/ private def original_complete_lattice : complete_lattice (filter α) := @order_dual.lattice.complete_lattice _ (gi_generate α).lift_complete_lattice local attribute [instance] original_complete_lattice instance : complete_lattice (filter α) := original_complete_lattice.copy /- le -/ filter.partial_order.le rfl /- top -/ (filter.lattice.has_top).1 (top_unique $ assume s hs, by have := univ_mem_sets ; finish) /- bot -/ _ rfl /- sup -/ _ rfl /- inf -/ (filter.lattice.has_inf).1 begin ext f g : 2, exact le_antisymm (le_inf (assume s, mem_inf_sets_of_left) (assume s, mem_inf_sets_of_right)) (assume s ⟨a, ha, b, hb, hs⟩, show s ∈ complete_lattice.inf f g, from mem_sets_of_superset (inter_mem_sets (@inf_le_left (filter α) _ _ _ _ ha) (@inf_le_right (filter α) _ _ _ _ hb)) hs) end /- Sup -/ (join ∘ principal) (by ext s x; exact (@mem_bInter_iff _ _ s filter.sets x).symm) /- Inf -/ _ rfl end complete_lattice lemma bot_sets_eq : (⊥ : filter α).sets = univ := rfl lemma sup_sets_eq {f g : filter α} : (f ⊔ g).sets = f.sets ∩ g.sets := (gi_generate α).gc.u_inf lemma Sup_sets_eq {s : set (filter α)} : (Sup s).sets = (⋂f∈s, (f:filter α).sets) := (gi_generate α).gc.u_Inf lemma supr_sets_eq {f : ι → filter α} : (supr f).sets = (⋂i, (f i).sets) := (gi_generate α).gc.u_infi lemma generate_empty : filter.generate ∅ = (⊤ : filter α) := (gi_generate α).gc.l_bot lemma generate_univ : filter.generate univ = (⊥ : filter α) := mk_of_closure_sets.symm lemma generate_union {s t : set (set α)} : filter.generate (s ∪ t) = filter.generate s ⊓ filter.generate t := (gi_generate α).gc.l_sup lemma generate_Union {s : ι → set (set α)} : filter.generate (⋃ i, s i) = (⨅ i, filter.generate (s i)) := (gi_generate α).gc.l_supr @[simp] lemma mem_bot_sets {s : set α} : s ∈ (⊥ : filter α) := trivial @[simp] lemma mem_sup_sets {f g : filter α} {s : set α} : s ∈ f ⊔ g ↔ s ∈ f ∧ s ∈ g := iff.rfl @[simp] lemma mem_Sup_sets {x : set α} {s : set (filter α)} : x ∈ Sup s ↔ (∀f∈s, x ∈ (f:filter α)) := iff.rfl @[simp] lemma mem_supr_sets {x : set α} {f : ι → filter α} : x ∈ supr f ↔ (∀i, x ∈ f i) := by simp only [supr_sets_eq, iff_self, mem_Inter] @[simp] lemma le_principal_iff {s : set α} {f : filter α} : f ≤ principal s ↔ s ∈ f := show (∀{t}, s ⊆ t → t ∈ f) ↔ s ∈ f, from ⟨assume h, h (subset.refl s), assume hs t ht, mem_sets_of_superset hs ht⟩ lemma principal_mono {s t : set α} : principal s ≤ principal t ↔ s ⊆ t := by simp only [le_principal_iff, iff_self, mem_principal_sets] lemma monotone_principal : monotone (principal : set α → filter α) := by simp only [monotone, principal_mono]; exact assume a b h, h @[simp] lemma principal_eq_iff_eq {s t : set α} : principal s = principal t ↔ s = t := by simp only [le_antisymm_iff, le_principal_iff, mem_principal_sets]; refl @[simp] lemma join_principal_eq_Sup {s : set (filter α)} : join (principal s) = Sup s := rfl /- lattice equations -/ lemma empty_in_sets_eq_bot {f : filter α} : ∅ ∈ f ↔ f = ⊥ := ⟨assume h, bot_unique $ assume s _, mem_sets_of_superset h (empty_subset s), assume : f = ⊥, this.symm ▸ mem_bot_sets⟩ lemma inhabited_of_mem_sets {f : filter α} {s : set α} (hf : f ≠ ⊥) (hs : s ∈ f) : ∃x, x ∈ s := have ∅ ∉ f.sets, from assume h, hf $ empty_in_sets_eq_bot.mp h, have s ≠ ∅, from assume h, this (h ▸ hs), exists_mem_of_ne_empty this lemma filter_eq_bot_of_not_nonempty {f : filter α} (ne : ¬ nonempty α) : f = ⊥ := empty_in_sets_eq_bot.mp $ univ_mem_sets' $ assume x, false.elim (ne ⟨x⟩) lemma forall_sets_neq_empty_iff_neq_bot {f : filter α} : (∀ (s : set α), s ∈ f → s ≠ ∅) ↔ f ≠ ⊥ := by simp only [(@empty_in_sets_eq_bot α f).symm, ne.def]; exact ⟨assume h hs, h _ hs rfl, assume h s hs eq, h $ eq ▸ hs⟩ lemma mem_sets_of_neq_bot {f : filter α} {s : set α} (h : f ⊓ principal (-s) = ⊥) : s ∈ f := have ∅ ∈ f ⊓ principal (- s), from h.symm ▸ mem_bot_sets, let ⟨s₁, hs₁, s₂, (hs₂ : -s ⊆ s₂), (hs : s₁ ∩ s₂ ⊆ ∅)⟩ := this in by filter_upwards [hs₁] assume a ha, classical.by_contradiction $ assume ha', hs ⟨ha, hs₂ ha'⟩ lemma infi_sets_eq {f : ι → filter α} (h : directed (≥) f) (ne : nonempty ι) : (infi f).sets = (⋃ i, (f i).sets) := let ⟨i⟩ := ne, u := { filter . sets := (⋃ i, (f i).sets), univ_sets := by simp only [mem_Union]; exact ⟨i, univ_mem_sets⟩, sets_of_superset := by simp only [mem_Union, exists_imp_distrib]; intros x y i hx hxy; exact ⟨i, mem_sets_of_superset hx hxy⟩, inter_sets := begin simp only [mem_Union, exists_imp_distrib], assume x y a hx b hy, rcases h a b with ⟨c, ha, hb⟩, exact ⟨c, inter_mem_sets (ha hx) (hb hy)⟩ end } in subset.antisymm (show u ≤ infi f, from le_infi $ assume i, le_supr (λi, (f i).sets) i) (Union_subset $ assume i, infi_le f i) lemma mem_infi {f : ι → filter α} (h : directed (≥) f) (ne : nonempty ι) (s) : s ∈ infi f ↔ s ∈ ⋃ i, (f i).sets := show s ∈ (infi f).sets ↔ s ∈ ⋃ i, (f i).sets, by rw infi_sets_eq h ne lemma infi_sets_eq' {f : β → filter α} {s : set β} (h : directed_on (f ⁻¹'o (≥)) s) (ne : ∃i, i ∈ s) : (⨅ i∈s, f i).sets = (⋃ i ∈ s, (f i).sets) := let ⟨i, hi⟩ := ne in calc (⨅ i ∈ s, f i).sets = (⨅ t : {t // t ∈ s}, (f t.val)).sets : by rw [infi_subtype]; refl ... = (⨆ t : {t // t ∈ s}, (f t.val).sets) : infi_sets_eq (assume ⟨x, hx⟩ ⟨y, hy⟩, match h x hx y hy with ⟨z, h₁, h₂, h₃⟩ := ⟨⟨z, h₁⟩, h₂, h₃⟩ end) ⟨⟨i, hi⟩⟩ ... = (⨆ t ∈ {t | t ∈ s}, (f t).sets) : by rw [supr_subtype]; refl lemma infi_sets_eq_finite (f : ι → filter α) : (⨅i, f i).sets = (⋃t:finset (plift ι), (⨅i∈t, f (plift.down i)).sets) := begin rw [infi_eq_infi_finset, infi_sets_eq], exact (directed_of_sup $ λs₁ s₂ hs, infi_le_infi $ λi, infi_le_infi_const $ λh, hs h), apply_instance end lemma mem_infi_finite {f : ι → filter α} (s) : s ∈ infi f ↔ s ∈ ⋃t:finset (plift ι), (⨅i∈t, f (plift.down i)).sets := show s ∈ (infi f).sets ↔ s ∈ ⋃t:finset (plift ι), (⨅i∈t, f (plift.down i)).sets, by rw infi_sets_eq_finite @[simp] lemma sup_join {f₁ f₂ : filter (filter α)} : (join f₁ ⊔ join f₂) = join (f₁ ⊔ f₂) := filter_eq $ set.ext $ assume x, by simp only [supr_sets_eq, join, mem_sup_sets, iff_self, mem_set_of_eq] @[simp] lemma supr_join {ι : Sort w} {f : ι → filter (filter α)} : (⨆x, join (f x)) = join (⨆x, f x) := filter_eq $ set.ext $ assume x, by simp only [supr_sets_eq, join, iff_self, mem_Inter, mem_set_of_eq] instance : bounded_distrib_lattice (filter α) := { le_sup_inf := begin assume x y z s, simp only [and_assoc, mem_inf_sets, mem_sup_sets, exists_prop, exists_imp_distrib, and_imp], intros hs t₁ ht₁ t₂ ht₂ hts, exact ⟨s ∪ t₁, x.sets_of_superset hs $ subset_union_left _ _, y.sets_of_superset ht₁ $ subset_union_right _ _, s ∪ t₂, x.sets_of_superset hs $ subset_union_left _ _, z.sets_of_superset ht₂ $ subset_union_right _ _, subset.trans (@le_sup_inf (set α) _ _ _ _) (union_subset (subset.refl _) hts)⟩ end, ..filter.lattice.complete_lattice } /- the complementary version with ⨆i, f ⊓ g i does not hold! -/ lemma infi_sup_eq {f : filter α} {g : ι → filter α} : (⨅ x, f ⊔ g x) = f ⊔ infi g := begin refine le_antisymm _ (le_infi $ assume i, sup_le_sup (le_refl f) $ infi_le _ _), rintros t ⟨h₁, h₂⟩, rw [infi_sets_eq_finite] at h₂, simp only [mem_Union, (finset.inf_eq_infi _ _).symm] at h₂, rcases h₂ with ⟨s, hs⟩, suffices : (⨅i, f ⊔ g i) ≤ f ⊔ s.inf (λi, g i.down), { exact this ⟨h₁, hs⟩ }, refine finset.induction_on s _ _, { exact le_sup_right_of_le le_top }, { rintros ⟨i⟩ s his ih, rw [finset.inf_insert, sup_inf_left], exact le_inf (infi_le _ _) ih } end lemma mem_infi_sets_finset {s : finset α} {f : α → filter β} : ∀t, t ∈ (⨅a∈s, f a) ↔ (∃p:α → set β, (∀a∈s, p a ∈ f a) ∧ (⋂a∈s, p a) ⊆ t) := show ∀t, t ∈ (⨅a∈s, f a) ↔ (∃p:α → set β, (∀a∈s, p a ∈ f a) ∧ (⨅a∈s, p a) ≤ t), begin simp only [(finset.inf_eq_infi _ _).symm], refine finset.induction_on s _ _, { simp only [finset.not_mem_empty, false_implies_iff, finset.inf_empty, top_le_iff, imp_true_iff, mem_top_sets, true_and, exists_const], intros; refl }, { intros a s has ih t, simp only [ih, finset.forall_mem_insert, finset.inf_insert, mem_inf_sets, exists_prop, iff_iff_implies_and_implies, exists_imp_distrib, and_imp, and_assoc] {contextual := tt}, split, { intros t₁ ht₁ t₂ p hp ht₂ ht, existsi function.update p a t₁, have : ∀a'∈s, function.update p a t₁ a' = p a', from assume a' ha', have a' ≠ a, from assume h, has $ h ▸ ha', function.update_noteq this, have eq : s.inf (λj, function.update p a t₁ j) = s.inf (λj, p j) := finset.inf_congr rfl this, simp only [this, ht₁, hp, function.update_same, true_and, imp_true_iff, eq] {contextual := tt}, exact subset.trans (inter_subset_inter (subset.refl _) ht₂) ht }, assume p hpa hp ht, exact ⟨p a, hpa, (s.inf p), ⟨⟨p, hp, le_refl _⟩, ht⟩⟩ } end /- principal equations -/ @[simp] lemma inf_principal {s t : set α} : principal s ⊓ principal t = principal (s ∩ t) := le_antisymm (by simp; exact ⟨s, subset.refl s, t, subset.refl t, by simp⟩) (by simp [le_inf_iff, inter_subset_left, inter_subset_right]) @[simp] lemma sup_principal {s t : set α} : principal s ⊔ principal t = principal (s ∪ t) := filter_eq $ set.ext $ by simp only [union_subset_iff, union_subset_iff, mem_sup_sets, forall_const, iff_self, mem_principal_sets] @[simp] lemma supr_principal {ι : Sort w} {s : ι → set α} : (⨆x, principal (s x)) = principal (⋃i, s i) := filter_eq $ set.ext $ assume x, by simp only [supr_sets_eq, mem_principal_sets, mem_Inter]; exact (@supr_le_iff (set α) _ _ _ _).symm lemma principal_univ : principal (univ : set α) = ⊤ := top_unique $ by simp only [le_principal_iff, mem_top_sets, eq_self_iff_true] lemma principal_empty : principal (∅ : set α) = ⊥ := bot_unique $ assume s _, empty_subset _ @[simp] lemma principal_eq_bot_iff {s : set α} : principal s = ⊥ ↔ s = ∅ := ⟨assume h, principal_eq_iff_eq.mp $ by simp only [principal_empty, h, eq_self_iff_true], assume h, by simp only [h, principal_empty, eq_self_iff_true]⟩ lemma inf_principal_eq_bot {f : filter α} {s : set α} (hs : -s ∈ f) : f ⊓ principal s = ⊥ := empty_in_sets_eq_bot.mp ⟨_, hs, s, mem_principal_self s, assume x ⟨h₁, h₂⟩, h₁ h₂⟩ theorem mem_inf_principal (f : filter α) (s t : set α) : s ∈ f ⊓ principal t ↔ { x | x ∈ t → x ∈ s } ∈ f := begin simp only [mem_inf_sets, mem_principal_sets, exists_prop], split, { rintros ⟨u, ul, v, tsubv, uvinter⟩, apply filter.mem_sets_of_superset ul, intros x xu xt, exact uvinter ⟨xu, tsubv xt⟩ }, intro h, refine ⟨_, h, t, set.subset.refl t, _⟩, rintros x ⟨hx, xt⟩, exact hx xt end end lattice section map /-- The forward map of a filter -/ def map (m : α → β) (f : filter α) : filter β := { sets := preimage m ⁻¹' f.sets, univ_sets := univ_mem_sets, sets_of_superset := assume s t hs st, mem_sets_of_superset hs $ preimage_mono st, inter_sets := assume s t hs ht, inter_mem_sets hs ht } @[simp] lemma map_principal {s : set α} {f : α → β} : map f (principal s) = principal (set.image f s) := filter_eq $ set.ext $ assume a, image_subset_iff.symm variables {f : filter α} {m : α → β} {m' : β → γ} {s : set α} {t : set β} @[simp] lemma mem_map : t ∈ map m f ↔ {x | m x ∈ t} ∈ f := iff.rfl lemma image_mem_map (hs : s ∈ f) : m '' s ∈ map m f := f.sets_of_superset hs $ subset_preimage_image m s lemma range_mem_map : range m ∈ map m f := by rw ←image_univ; exact image_mem_map univ_mem_sets lemma mem_map_sets_iff : t ∈ map m f ↔ (∃s∈f, m '' s ⊆ t) := iff.intro (assume ht, ⟨set.preimage m t, ht, image_preimage_subset _ _⟩) (assume ⟨s, hs, ht⟩, mem_sets_of_superset (image_mem_map hs) ht) @[simp] lemma map_id : filter.map id f = f := filter_eq $ rfl @[simp] lemma map_compose : filter.map m' ∘ filter.map m = filter.map (m' ∘ m) := funext $ assume _, filter_eq $ rfl @[simp] lemma map_map : filter.map m' (filter.map m f) = filter.map (m' ∘ m) f := congr_fun (@@filter.map_compose m m') f end map section comap /-- The inverse map of a filter -/ def comap (m : α → β) (f : filter β) : filter α := { sets := { s | ∃t∈ f, m ⁻¹' t ⊆ s }, univ_sets := ⟨univ, univ_mem_sets, by simp only [subset_univ, preimage_univ]⟩, sets_of_superset := assume a b ⟨a', ha', ma'a⟩ ab, ⟨a', ha', subset.trans ma'a ab⟩, inter_sets := assume a b ⟨a', ha₁, ha₂⟩ ⟨b', hb₁, hb₂⟩, ⟨a' ∩ b', inter_mem_sets ha₁ hb₁, inter_subset_inter ha₂ hb₂⟩ } end comap /-- The cofinite filter is the filter of subsets whose complements are finite. -/ def cofinite : filter α := { sets := {s | finite (- s)}, univ_sets := by simp only [compl_univ, finite_empty, mem_set_of_eq], sets_of_superset := assume s t (hs : finite (-s)) (st: s ⊆ t), finite_subset hs $ @lattice.neg_le_neg (set α) _ _ _ st, inter_sets := assume s t (hs : finite (-s)) (ht : finite (-t)), by simp only [compl_inter, finite_union, ht, hs, mem_set_of_eq] } lemma cofinite_ne_bot (hi : set.infinite (@set.univ α)) : @cofinite α ≠ ⊥ := forall_sets_neq_empty_iff_neq_bot.mp $ λ s hs hn, by change set.finite _ at hs; rw [hn, set.compl_empty] at hs; exact hi hs /-- The monadic bind operation on filter is defined the usual way in terms of `map` and `join`. Unfortunately, this `bind` does not result in the expected applicative. See `filter.seq` for the applicative instance. -/ def bind (f : filter α) (m : α → filter β) : filter β := join (map m f) /-- The applicative sequentiation operation. This is not induced by the bind operation. -/ def seq (f : filter (α → β)) (g : filter α) : filter β := ⟨{ s | ∃u∈ f, ∃t∈ g, (∀m∈u, ∀x∈t, (m : α → β) x ∈ s) }, ⟨univ, univ_mem_sets, univ, univ_mem_sets, by simp only [forall_prop_of_true, mem_univ, forall_true_iff]⟩, assume s₀ s₁ ⟨t₀, t₁, h₀, h₁, h⟩ hst, ⟨t₀, t₁, h₀, h₁, assume x hx y hy, hst $ h _ hx _ hy⟩, assume s₀ s₁ ⟨t₀, ht₀, t₁, ht₁, ht⟩ ⟨u₀, hu₀, u₁, hu₁, hu⟩, ⟨t₀ ∩ u₀, inter_mem_sets ht₀ hu₀, t₁ ∩ u₁, inter_mem_sets ht₁ hu₁, assume x ⟨hx₀, hx₁⟩ x ⟨hy₀, hy₁⟩, ⟨ht _ hx₀ _ hy₀, hu _ hx₁ _ hy₁⟩⟩⟩ instance : has_pure filter := ⟨λ(α : Type u) x, principal {x}⟩ instance : has_bind filter := ⟨@filter.bind⟩ instance : has_seq filter := ⟨@filter.seq⟩ instance : functor filter := { map := @filter.map } section -- this section needs to be before applicative, otherwise the wrong instance will be chosen protected def monad : monad filter := { map := @filter.map } local attribute [instance] filter.monad protected def is_lawful_monad : is_lawful_monad filter := { id_map := assume α f, filter_eq rfl, pure_bind := assume α β a f, by simp only [bind, Sup_image, image_singleton, join_principal_eq_Sup, lattice.Sup_singleton, map_principal, eq_self_iff_true], bind_assoc := assume α β γ f m₁ m₂, filter_eq rfl, bind_pure_comp_eq_map := assume α β f x, filter_eq $ by simp only [bind, join, map, preimage, principal, set.subset_univ, eq_self_iff_true, function.comp_app, mem_set_of_eq, singleton_subset_iff] } end instance : applicative filter := { map := @filter.map, seq := @filter.seq } instance : alternative filter := { failure := λα, ⊥, orelse := λα x y, x ⊔ y } @[simp] lemma pure_def (x : α) : pure x = principal {x} := rfl @[simp] lemma mem_pure {a : α} {s : set α} : a ∈ s → s ∈ (pure a : filter α) := by simp only [imp_self, pure_def, mem_principal_sets, singleton_subset_iff]; exact id @[simp] lemma mem_pure_iff {a : α} {s : set α} : s ∈ (pure a : filter α) ↔ a ∈ s := by rw [pure_def, mem_principal_sets, set.singleton_subset_iff] @[simp] lemma map_def {α β} (m : α → β) (f : filter α) : m <$> f = map m f := rfl @[simp] lemma bind_def {α β} (f : filter α) (m : α → filter β) : f >>= m = bind f m := rfl /- map and comap equations -/ section map variables {f f₁ f₂ : filter α} {g g₁ g₂ : filter β} {m : α → β} {m' : β → γ} {s : set α} {t : set β} @[simp] theorem mem_comap_sets : s ∈ comap m g ↔ ∃t∈ g, m ⁻¹' t ⊆ s := iff.rfl theorem preimage_mem_comap (ht : t ∈ g) : m ⁻¹' t ∈ comap m g := ⟨t, ht, subset.refl _⟩ lemma comap_id : comap id f = f := le_antisymm (assume s, preimage_mem_comap) (assume s ⟨t, ht, hst⟩, mem_sets_of_superset ht hst) lemma comap_comap_comp {m : γ → β} {n : β → α} : comap m (comap n f) = comap (n ∘ m) f := le_antisymm (assume c ⟨b, hb, (h : preimage (n ∘ m) b ⊆ c)⟩, ⟨preimage n b, preimage_mem_comap hb, h⟩) (assume c ⟨b, ⟨a, ha, (h₁ : preimage n a ⊆ b)⟩, (h₂ : preimage m b ⊆ c)⟩, ⟨a, ha, show preimage m (preimage n a) ⊆ c, from subset.trans (preimage_mono h₁) h₂⟩) @[simp] theorem comap_principal {t : set β} : comap m (principal t) = principal (m ⁻¹' t) := filter_eq $ set.ext $ assume s, ⟨assume ⟨u, (hu : t ⊆ u), (b : preimage m u ⊆ s)⟩, subset.trans (preimage_mono hu) b, assume : preimage m t ⊆ s, ⟨t, subset.refl t, this⟩⟩ lemma map_le_iff_le_comap : map m f ≤ g ↔ f ≤ comap m g := ⟨assume h s ⟨t, ht, hts⟩, mem_sets_of_superset (h ht) hts, assume h s ht, h ⟨_, ht, subset.refl _⟩⟩ lemma gc_map_comap (m : α → β) : galois_connection (map m) (comap m) := assume f g, map_le_iff_le_comap lemma map_mono (h : f₁ ≤ f₂) : map m f₁ ≤ map m f₂ := (gc_map_comap m).monotone_l h lemma monotone_map : monotone (map m) | a b := map_mono lemma comap_mono (h : g₁ ≤ g₂) : comap m g₁ ≤ comap m g₂ := (gc_map_comap m).monotone_u h lemma monotone_comap : monotone (comap m) | a b := comap_mono @[simp] lemma map_bot : map m ⊥ = ⊥ := (gc_map_comap m).l_bot @[simp] lemma map_sup : map m (f₁ ⊔ f₂) = map m f₁ ⊔ map m f₂ := (gc_map_comap m).l_sup @[simp] lemma map_supr {f : ι → filter α} : map m (⨆i, f i) = (⨆i, map m (f i)) := (gc_map_comap m).l_supr @[simp] lemma comap_top : comap m ⊤ = ⊤ := (gc_map_comap m).u_top @[simp] lemma comap_inf : comap m (g₁ ⊓ g₂) = comap m g₁ ⊓ comap m g₂ := (gc_map_comap m).u_inf @[simp] lemma comap_infi {f : ι → filter β} : comap m (⨅i, f i) = (⨅i, comap m (f i)) := (gc_map_comap m).u_infi lemma le_comap_top (f : α → β) (l : filter α) : l ≤ comap f ⊤ := by rw [comap_top]; exact le_top lemma map_comap_le : map m (comap m g) ≤ g := (gc_map_comap m).l_u_le _ lemma le_comap_map : f ≤ comap m (map m f) := (gc_map_comap m).le_u_l _ @[simp] lemma comap_bot : comap m ⊥ = ⊥ := bot_unique $ assume s _, ⟨∅, by simp only [mem_bot_sets], by simp only [empty_subset, preimage_empty]⟩ lemma comap_supr {ι} {f : ι → filter β} {m : α → β} : comap m (supr f) = (⨆i, comap m (f i)) := le_antisymm (assume s hs, have ∀i, ∃t, t ∈ f i ∧ m ⁻¹' t ⊆ s, by simpa only [mem_comap_sets, exists_prop, mem_supr_sets] using mem_supr_sets.1 hs, let ⟨t, ht⟩ := classical.axiom_of_choice this in ⟨⋃i, t i, mem_supr_sets.2 $ assume i, (f i).sets_of_superset (ht i).1 (subset_Union _ _), begin rw [preimage_Union, Union_subset_iff], assume i, exact (ht i).2 end⟩) (supr_le $ assume i, monotone_comap $ le_supr _ _) lemma comap_Sup {s : set (filter β)} {m : α → β} : comap m (Sup s) = (⨆f∈s, comap m f) := by simp only [Sup_eq_supr, comap_supr, eq_self_iff_true] lemma comap_sup : comap m (g₁ ⊔ g₂) = comap m g₁ ⊔ comap m g₂ := le_antisymm (assume s ⟨⟨t₁, ht₁, hs₁⟩, ⟨t₂, ht₂, hs₂⟩⟩, ⟨t₁ ∪ t₂, ⟨g₁.sets_of_superset ht₁ (subset_union_left _ _), g₂.sets_of_superset ht₂ (subset_union_right _ _)⟩, union_subset hs₁ hs₂⟩) (sup_le (comap_mono le_sup_left) (comap_mono le_sup_right)) lemma map_comap {f : filter β} {m : α → β} (hf : range m ∈ f) : (f.comap m).map m = f := le_antisymm map_comap_le (assume t' ⟨t, ht, sub⟩, by filter_upwards [ht, hf]; rintros x hxt ⟨y, rfl⟩; exact sub hxt) lemma comap_map {f : filter α} {m : α → β} (h : ∀ x y, m x = m y → x = y) : comap m (map m f) = f := have ∀s, preimage m (image m s) = s, from assume s, preimage_image_eq s h, le_antisymm (assume s hs, ⟨ image m s, f.sets_of_superset hs $ by simp only [this, subset.refl], by simp only [this, subset.refl]⟩) le_comap_map lemma le_of_map_le_map_inj' {f g : filter α} {m : α → β} {s : set α} (hsf : s ∈ f) (hsg : s ∈ g) (hm : ∀x∈s, ∀y∈s, m x = m y → x = y) (h : map m f ≤ map m g) : f ≤ g := assume t ht, by filter_upwards [hsf, h $ image_mem_map (inter_mem_sets hsg ht)] assume a has ⟨b, ⟨hbs, hb⟩, h⟩, have b = a, from hm _ hbs _ has h, this ▸ hb lemma le_of_map_le_map_inj_iff {f g : filter α} {m : α → β} {s : set α} (hsf : s ∈ f) (hsg : s ∈ g) (hm : ∀x∈s, ∀y∈s, m x = m y → x = y) : map m f ≤ map m g ↔ f ≤ g := iff.intro (le_of_map_le_map_inj' hsf hsg hm) map_mono lemma eq_of_map_eq_map_inj' {f g : filter α} {m : α → β} {s : set α} (hsf : s ∈ f) (hsg : s ∈ g) (hm : ∀x∈s, ∀y∈s, m x = m y → x = y) (h : map m f = map m g) : f = g := le_antisymm (le_of_map_le_map_inj' hsf hsg hm $ le_of_eq h) (le_of_map_le_map_inj' hsg hsf hm $ le_of_eq h.symm) lemma map_inj {f g : filter α} {m : α → β} (hm : ∀ x y, m x = m y → x = y) (h : map m f = map m g) : f = g := have comap m (map m f) = comap m (map m g), by rw h, by rwa [comap_map hm, comap_map hm] at this theorem le_map_comap_of_surjective' {f : α → β} {l : filter β} {u : set β} (ul : u ∈ l) (hf : ∀ y ∈ u, ∃ x, f x = y) : l ≤ map f (comap f l) := assume s ⟨t, tl, ht⟩, have t ∩ u ⊆ s, from assume x ⟨xt, xu⟩, exists.elim (hf x xu) $ λ a faeq, by { rw ←faeq, apply ht, change f a ∈ t, rw faeq, exact xt }, mem_sets_of_superset (inter_mem_sets tl ul) this theorem map_comap_of_surjective' {f : α → β} {l : filter β} {u : set β} (ul : u ∈ l) (hf : ∀ y ∈ u, ∃ x, f x = y) : map f (comap f l) = l := le_antisymm map_comap_le (le_map_comap_of_surjective' ul hf) theorem le_map_comap_of_surjective {f : α → β} (hf : function.surjective f) (l : filter β) : l ≤ map f (comap f l) := le_map_comap_of_surjective' univ_mem_sets (λ y _, hf y) theorem map_comap_of_surjective {f : α → β} (hf : function.surjective f) (l : filter β) : map f (comap f l) = l := le_antisymm map_comap_le (le_map_comap_of_surjective hf l) lemma comap_neq_bot {f : filter β} {m : α → β} (hm : ∀t∈ f, ∃a, m a ∈ t) : comap m f ≠ ⊥ := forall_sets_neq_empty_iff_neq_bot.mp $ assume s ⟨t, ht, t_s⟩, let ⟨a, (ha : a ∈ preimage m t)⟩ := hm t ht in neq_bot_of_le_neq_bot (ne_empty_of_mem ha) t_s lemma comap_neq_bot_of_surj {f : filter β} {m : α → β} (hf : f ≠ ⊥) (hm : ∀b, ∃a, m a = b) : comap m f ≠ ⊥ := comap_neq_bot $ assume t ht, let ⟨b, (hx : b ∈ t)⟩ := inhabited_of_mem_sets hf ht, ⟨a, (ha : m a = b)⟩ := hm b in ⟨a, ha.symm ▸ hx⟩ @[simp] lemma map_eq_bot_iff : map m f = ⊥ ↔ f = ⊥ := ⟨by rw [←empty_in_sets_eq_bot, ←empty_in_sets_eq_bot]; exact id, assume h, by simp only [h, eq_self_iff_true, map_bot]⟩ lemma map_ne_bot (hf : f ≠ ⊥) : map m f ≠ ⊥ := assume h, hf $ by rwa [map_eq_bot_iff] at h lemma sInter_comap_sets (f : α → β) (F : filter β) : ⋂₀(comap f F).sets = ⋂ U ∈ F, f ⁻¹' U := begin ext x, suffices : (∀ (A : set α) (B : set β), B ∈ F → f ⁻¹' B ⊆ A → x ∈ A) ↔ ∀ (B : set β), B ∈ F → f x ∈ B, by simp only [mem_sInter, mem_Inter, mem_comap_sets, this, and_imp, mem_comap_sets, exists_prop, mem_sInter, iff_self, mem_Inter, mem_preimage, exists_imp_distrib], split, { intros h U U_in, simpa only [set.subset.refl, forall_prop_of_true, mem_preimage] using h (f ⁻¹' U) U U_in }, { intros h V U U_in f_U_V, exact f_U_V (h U U_in) }, end end map lemma map_cong {m₁ m₂ : α → β} {f : filter α} (h : {x | m₁ x = m₂ x} ∈ f) : map m₁ f = map m₂ f := have ∀(m₁ m₂ : α → β) (h : {x | m₁ x = m₂ x} ∈ f), map m₁ f ≤ map m₂ f, begin intros m₁ m₂ h s hs, show {x | m₁ x ∈ s} ∈ f, filter_upwards [h, hs], simp only [subset_def, mem_preimage, mem_set_of_eq, forall_true_iff] {contextual := tt} end, le_antisymm (this m₁ m₂ h) (this m₂ m₁ $ mem_sets_of_superset h $ assume x, eq.symm) -- this is a generic rule for monotone functions: lemma map_infi_le {f : ι → filter α} {m : α → β} : map m (infi f) ≤ (⨅ i, map m (f i)) := le_infi $ assume i, map_mono $ infi_le _ _ lemma map_infi_eq {f : ι → filter α} {m : α → β} (hf : directed (≥) f) (hι : nonempty ι) : map m (infi f) = (⨅ i, map m (f i)) := le_antisymm map_infi_le (assume s (hs : preimage m s ∈ infi f), have ∃i, preimage m s ∈ f i, by simp only [infi_sets_eq hf hι, mem_Union] at hs; assumption, let ⟨i, hi⟩ := this in have (⨅ i, map m (f i)) ≤ principal s, from infi_le_of_le i $ by simp only [le_principal_iff, mem_map]; assumption, by simp only [filter.le_principal_iff] at this; assumption) lemma map_binfi_eq {ι : Type w} {f : ι → filter α} {m : α → β} {p : ι → Prop} (h : directed_on (f ⁻¹'o (≥)) {x | p x}) (ne : ∃i, p i) : map m (⨅i (h : p i), f i) = (⨅i (h: p i), map m (f i)) := let ⟨i, hi⟩ := ne in calc map m (⨅i (h : p i), f i) = map m (⨅i:subtype p, f i.val) : by simp only [infi_subtype, eq_self_iff_true] ... = (⨅i:subtype p, map m (f i.val)) : map_infi_eq (assume ⟨x, hx⟩ ⟨y, hy⟩, match h x hx y hy with ⟨z, h₁, h₂, h₃⟩ := ⟨⟨z, h₁⟩, h₂, h₃⟩ end) ⟨⟨i, hi⟩⟩ ... = (⨅i (h : p i), map m (f i)) : by simp only [infi_subtype, eq_self_iff_true] lemma map_inf' {f g : filter α} {m : α → β} {t : set α} (htf : t ∈ f) (htg : t ∈ g) (h : ∀x∈t, ∀y∈t, m x = m y → x = y) : map m (f ⊓ g) = map m f ⊓ map m g := begin refine le_antisymm (le_inf (map_mono inf_le_left) (map_mono inf_le_right)) (assume s hs, _), simp only [map, mem_inf_sets, exists_prop, mem_map, mem_preimage, mem_inf_sets] at hs ⊢, rcases hs with ⟨t₁, h₁, t₂, h₂, hs⟩, refine ⟨m '' (t₁ ∩ t), _, m '' (t₂ ∩ t), _, _⟩, { filter_upwards [h₁, htf] assume a h₁ h₂, mem_image_of_mem _ ⟨h₁, h₂⟩ }, { filter_upwards [h₂, htg] assume a h₁ h₂, mem_image_of_mem _ ⟨h₁, h₂⟩ }, { rw [image_inter_on], { refine image_subset_iff.2 _, exact λ x ⟨⟨h₁, _⟩, h₂, _⟩, hs ⟨h₁, h₂⟩ }, { exact λ x ⟨_, hx⟩ y ⟨_, hy⟩, h x hx y hy } } end lemma map_inf {f g : filter α} {m : α → β} (h : ∀ x y, m x = m y → x = y) : map m (f ⊓ g) = map m f ⊓ map m g := map_inf' univ_mem_sets univ_mem_sets (assume x _ y _, h x y) lemma map_eq_comap_of_inverse {f : filter α} {m : α → β} {n : β → α} (h₁ : m ∘ n = id) (h₂ : n ∘ m = id) : map m f = comap n f := le_antisymm (assume b ⟨a, ha, (h : preimage n a ⊆ b)⟩, f.sets_of_superset ha $ calc a = preimage (n ∘ m) a : by simp only [h₂, preimage_id, eq_self_iff_true] ... ⊆ preimage m b : preimage_mono h) (assume b (hb : preimage m b ∈ f), ⟨preimage m b, hb, show preimage (m ∘ n) b ⊆ b, by simp only [h₁]; apply subset.refl⟩) lemma map_swap_eq_comap_swap {f : filter (α × β)} : prod.swap <$> f = comap prod.swap f := map_eq_comap_of_inverse prod.swap_swap_eq prod.swap_swap_eq lemma le_map {f : filter α} {m : α → β} {g : filter β} (h : ∀s∈ f, m '' s ∈ g) : g ≤ f.map m := assume s hs, mem_sets_of_superset (h _ hs) $ image_preimage_subset _ _ section applicative @[simp] lemma mem_pure_sets {a : α} {s : set α} : s ∈ (pure a : filter α) ↔ a ∈ s := by simp only [iff_self, pure_def, mem_principal_sets, singleton_subset_iff] lemma singleton_mem_pure_sets {a : α} : {a} ∈ (pure a : filter α) := by simp only [mem_singleton, pure_def, mem_principal_sets, singleton_subset_iff] @[simp] lemma pure_neq_bot {α : Type u} {a : α} : pure a ≠ (⊥ : filter α) := by simp only [pure, has_pure.pure, ne.def, not_false_iff, singleton_ne_empty, principal_eq_bot_iff] lemma mem_seq_sets_def {f : filter (α → β)} {g : filter α} {s : set β} : s ∈ f.seq g ↔ (∃u ∈ f, ∃t ∈ g, ∀x∈u, ∀y∈t, (x : α → β) y ∈ s) := iff.refl _ lemma mem_seq_sets_iff {f : filter (α → β)} {g : filter α} {s : set β} : s ∈ f.seq g ↔ (∃u ∈ f, ∃t ∈ g, set.seq u t ⊆ s) := by simp only [mem_seq_sets_def, seq_subset, exists_prop, iff_self] lemma mem_map_seq_iff {f : filter α} {g : filter β} {m : α → β → γ} {s : set γ} : s ∈ (f.map m).seq g ↔ (∃t u, t ∈ g ∧ u ∈ f ∧ ∀x∈u, ∀y∈t, m x y ∈ s) := iff.intro (assume ⟨t, ht, s, hs, hts⟩, ⟨s, m ⁻¹' t, hs, ht, assume a, hts _⟩) (assume ⟨t, s, ht, hs, hts⟩, ⟨m '' s, image_mem_map hs, t, ht, assume f ⟨a, has, eq⟩, eq ▸ hts _ has⟩) lemma seq_mem_seq_sets {f : filter (α → β)} {g : filter α} {s : set (α → β)} {t : set α} (hs : s ∈ f) (ht : t ∈ g) : s.seq t ∈ f.seq g := ⟨s, hs, t, ht, assume f hf a ha, ⟨f, hf, a, ha, rfl⟩⟩ lemma le_seq {f : filter (α → β)} {g : filter α} {h : filter β} (hh : ∀t ∈ f, ∀u ∈ g, set.seq t u ∈ h) : h ≤ seq f g := assume s ⟨t, ht, u, hu, hs⟩, mem_sets_of_superset (hh _ ht _ hu) $ assume b ⟨m, hm, a, ha, eq⟩, eq ▸ hs _ hm _ ha lemma seq_mono {f₁ f₂ : filter (α → β)} {g₁ g₂ : filter α} (hf : f₁ ≤ f₂) (hg : g₁ ≤ g₂) : f₁.seq g₁ ≤ f₂.seq g₂ := le_seq $ assume s hs t ht, seq_mem_seq_sets (hf hs) (hg ht) @[simp] lemma pure_seq_eq_map (g : α → β) (f : filter α) : seq (pure g) f = f.map g := begin refine le_antisymm (le_map $ assume s hs, _) (le_seq $ assume s hs t ht, _), { rw ← singleton_seq, apply seq_mem_seq_sets _ hs, simp only [mem_singleton, pure_def, mem_principal_sets, singleton_subset_iff] }, { rw mem_pure_sets at hs, refine sets_of_superset (map g f) (image_mem_map ht) _, rintros b ⟨a, ha, rfl⟩, exact ⟨g, hs, a, ha, rfl⟩ } end @[simp] lemma map_pure (f : α → β) (a : α) : map f (pure a) = pure (f a) := le_antisymm (le_principal_iff.2 $ sets_of_superset (map f (pure a)) (image_mem_map singleton_mem_pure_sets) $ by simp only [image_singleton, mem_singleton, singleton_subset_iff]) (le_map $ assume s, begin simp only [mem_image, pure_def, mem_principal_sets, singleton_subset_iff], exact assume has, ⟨a, has, rfl⟩ end) @[simp] lemma seq_pure (f : filter (α → β)) (a : α) : seq f (pure a) = map (λg:α → β, g a) f := begin refine le_antisymm (le_map $ assume s hs, _) (le_seq $ assume s hs t ht, _), { rw ← seq_singleton, exact seq_mem_seq_sets hs (by simp only [mem_singleton, pure_def, mem_principal_sets, singleton_subset_iff]) }, { rw mem_pure_sets at ht, refine sets_of_superset (map (λg:α→β, g a) f) (image_mem_map hs) _, rintros b ⟨g, hg, rfl⟩, exact ⟨g, hg, a, ht, rfl⟩ } end @[simp] lemma seq_assoc (x : filter α) (g : filter (α → β)) (h : filter (β → γ)) : seq h (seq g x) = seq (seq (map (∘) h) g) x := begin refine le_antisymm (le_seq $ assume s hs t ht, _) (le_seq $ assume s hs t ht, _), { rcases mem_seq_sets_iff.1 hs with ⟨u, hu, v, hv, hs⟩, rcases mem_map_sets_iff.1 hu with ⟨w, hw, hu⟩, refine mem_sets_of_superset _ (set.seq_mono (subset.trans (set.seq_mono hu (subset.refl _)) hs) (subset.refl _)), rw ← set.seq_seq, exact seq_mem_seq_sets hw (seq_mem_seq_sets hv ht) }, { rcases mem_seq_sets_iff.1 ht with ⟨u, hu, v, hv, ht⟩, refine mem_sets_of_superset _ (set.seq_mono (subset.refl _) ht), rw set.seq_seq, exact seq_mem_seq_sets (seq_mem_seq_sets (image_mem_map hs) hu) hv } end lemma prod_map_seq_comm (f : filter α) (g : filter β) : (map prod.mk f).seq g = seq (map (λb a, (a, b)) g) f := begin refine le_antisymm (le_seq $ assume s hs t ht, _) (le_seq $ assume s hs t ht, _), { rcases mem_map_sets_iff.1 hs with ⟨u, hu, hs⟩, refine mem_sets_of_superset _ (set.seq_mono hs (subset.refl _)), rw ← set.prod_image_seq_comm, exact seq_mem_seq_sets (image_mem_map ht) hu }, { rcases mem_map_sets_iff.1 hs with ⟨u, hu, hs⟩, refine mem_sets_of_superset _ (set.seq_mono hs (subset.refl _)), rw set.prod_image_seq_comm, exact seq_mem_seq_sets (image_mem_map ht) hu } end instance : is_lawful_functor (filter : Type u → Type u) := { id_map := assume α f, map_id, comp_map := assume α β γ f g a, map_map.symm } instance : is_lawful_applicative (filter : Type u → Type u) := { pure_seq_eq_map := assume α β, pure_seq_eq_map, map_pure := assume α β, map_pure, seq_pure := assume α β, seq_pure, seq_assoc := assume α β γ, seq_assoc } instance : is_comm_applicative (filter : Type u → Type u) := ⟨assume α β f g, prod_map_seq_comm f g⟩ lemma {l} seq_eq_filter_seq {α β : Type l} (f : filter (α → β)) (g : filter α) : f <*> g = seq f g := rfl end applicative /- bind equations -/ section bind @[simp] lemma mem_bind_sets {s : set β} {f : filter α} {m : α → filter β} : s ∈ bind f m ↔ ∃t ∈ f, ∀x ∈ t, s ∈ m x := calc s ∈ bind f m ↔ {a | s ∈ m a} ∈ f : by simp only [bind, mem_map, iff_self, mem_join_sets, mem_set_of_eq] ... ↔ (∃t ∈ f, t ⊆ {a | s ∈ m a}) : exists_sets_subset_iff.symm ... ↔ (∃t ∈ f, ∀x ∈ t, s ∈ m x) : iff.refl _ lemma bind_mono {f : filter α} {g h : α → filter β} (h₁ : {a | g a ≤ h a} ∈ f) : bind f g ≤ bind f h := assume x h₂, show (_ ∈ f), by filter_upwards [h₁, h₂] assume s gh' h', gh' h' lemma bind_sup {f g : filter α} {h : α → filter β} : bind (f ⊔ g) h = bind f h ⊔ bind g h := by simp only [bind, sup_join, map_sup, eq_self_iff_true] lemma bind_mono2 {f g : filter α} {h : α → filter β} (h₁ : f ≤ g) : bind f h ≤ bind g h := assume s h', h₁ h' lemma principal_bind {s : set α} {f : α → filter β} : (bind (principal s) f) = (⨆x ∈ s, f x) := show join (map f (principal s)) = (⨆x ∈ s, f x), by simp only [Sup_image, join_principal_eq_Sup, map_principal, eq_self_iff_true] end bind lemma infi_neq_bot_of_directed {f : ι → filter α} (hn : nonempty α) (hd : directed (≥) f) (hb : ∀i, f i ≠ ⊥) : (infi f) ≠ ⊥ := let ⟨x⟩ := hn in assume h, have he: ∅ ∈ (infi f), from h.symm ▸ (mem_bot_sets : ∅ ∈ (⊥ : filter α)), classical.by_cases (assume : nonempty ι, have ∃i, ∅ ∈ f i, by rw [mem_infi hd this] at he; simp only [mem_Union] at he; assumption, let ⟨i, hi⟩ := this in hb i $ bot_unique $ assume s _, (f i).sets_of_superset hi $ empty_subset _) (assume : ¬ nonempty ι, have univ ⊆ (∅ : set α), begin rw [←principal_mono, principal_univ, principal_empty, ←h], exact (le_infi $ assume i, false.elim $ this ⟨i⟩) end, this $ mem_univ x) lemma infi_neq_bot_iff_of_directed {f : ι → filter α} (hn : nonempty α) (hd : directed (≥) f) : (infi f) ≠ ⊥ ↔ (∀i, f i ≠ ⊥) := ⟨assume neq_bot i eq_bot, neq_bot $ bot_unique $ infi_le_of_le i $ eq_bot ▸ le_refl _, infi_neq_bot_of_directed hn hd⟩ lemma mem_infi_sets {f : ι → filter α} (i : ι) : ∀{s}, s ∈ f i → s ∈ ⨅i, f i := show (⨅i, f i) ≤ f i, from infi_le _ _ @[elab_as_eliminator] lemma infi_sets_induct {f : ι → filter α} {s : set α} (hs : s ∈ infi f) {p : set α → Prop} (uni : p univ) (ins : ∀{i s₁ s₂}, s₁ ∈ f i → p s₂ → p (s₁ ∩ s₂)) (upw : ∀{s₁ s₂}, s₁ ⊆ s₂ → p s₁ → p s₂) : p s := begin rw [mem_infi_finite] at hs, simp only [mem_Union, (finset.inf_eq_infi _ _).symm] at hs, rcases hs with ⟨is, his⟩, revert s, refine finset.induction_on is _ _, { assume s hs, rwa [mem_top_sets.1 hs] }, { rintros ⟨i⟩ js his ih s hs, rw [finset.inf_insert, mem_inf_sets] at hs, rcases hs with ⟨s₁, hs₁, s₂, hs₂, hs⟩, exact upw hs (ins hs₁ (ih hs₂)) } end /- tendsto -/ /-- `tendsto` is the generic "limit of a function" predicate. `tendsto f l₁ l₂` asserts that for every `l₂` neighborhood `a`, the `f`-preimage of `a` is an `l₁` neighborhood. -/ def tendsto (f : α → β) (l₁ : filter α) (l₂ : filter β) := l₁.map f ≤ l₂ lemma tendsto_def {f : α → β} {l₁ : filter α} {l₂ : filter β} : tendsto f l₁ l₂ ↔ ∀ s ∈ l₂, f ⁻¹' s ∈ l₁ := iff.rfl lemma tendsto_iff_comap {f : α → β} {l₁ : filter α} {l₂ : filter β} : tendsto f l₁ l₂ ↔ l₁ ≤ l₂.comap f := map_le_iff_le_comap lemma tendsto.congr' {f₁ f₂ : α → β} {l₁ : filter α} {l₂ : filter β} (hl : {x | f₁ x = f₂ x} ∈ l₁) (h : tendsto f₁ l₁ l₂) : tendsto f₂ l₁ l₂ := by rwa [tendsto, ←map_cong hl] theorem tendsto.congr'r {f₁ f₂ : α → β} {l₁ : filter α} {l₂ : filter β} (h : ∀ x, f₁ x = f₂ x) : tendsto f₁ l₁ l₂ ↔ tendsto f₂ l₁ l₂ := iff_of_eq (by congr'; exact funext h) theorem tendsto.congr {f₁ f₂ : α → β} {l₁ : filter α} {l₂ : filter β} (h : ∀ x, f₁ x = f₂ x) : tendsto f₁ l₁ l₂ → tendsto f₂ l₁ l₂ := (tendsto.congr'r h).1 lemma tendsto_id' {x y : filter α} : x ≤ y → tendsto id x y := by simp only [tendsto, map_id, forall_true_iff] {contextual := tt} lemma tendsto_id {x : filter α} : tendsto id x x := tendsto_id' $ le_refl x lemma tendsto.comp {f : α → β} {g : β → γ} {x : filter α} {y : filter β} {z : filter γ} (hg : tendsto g y z) (hf : tendsto f x y) : tendsto (g ∘ f) x z := calc map (g ∘ f) x = map g (map f x) : by rw [map_map] ... ≤ map g y : map_mono hf ... ≤ z : hg lemma tendsto_le_left {f : α → β} {x y : filter α} {z : filter β} (h : y ≤ x) : tendsto f x z → tendsto f y z := le_trans (map_mono h) lemma tendsto_le_right {f : α → β} {x : filter α} {y z : filter β} (h₁ : y ≤ z) (h₂ : tendsto f x y) : tendsto f x z := le_trans h₂ h₁ lemma tendsto_map {f : α → β} {x : filter α} : tendsto f x (map f x) := le_refl (map f x) lemma tendsto_map' {f : β → γ} {g : α → β} {x : filter α} {y : filter γ} (h : tendsto (f ∘ g) x y) : tendsto f (map g x) y := by rwa [tendsto, map_map] lemma tendsto_map'_iff {f : β → γ} {g : α → β} {x : filter α} {y : filter γ} : tendsto f (map g x) y ↔ tendsto (f ∘ g) x y := by rw [tendsto, map_map]; refl lemma tendsto_comap {f : α → β} {x : filter β} : tendsto f (comap f x) x := map_comap_le lemma tendsto_comap_iff {f : α → β} {g : β → γ} {a : filter α} {c : filter γ} : tendsto f a (c.comap g) ↔ tendsto (g ∘ f) a c := ⟨assume h, tendsto_comap.comp h, assume h, map_le_iff_le_comap.mp $ by rwa [map_map]⟩ lemma tendsto_comap'_iff {m : α → β} {f : filter α} {g : filter β} {i : γ → α} (h : range i ∈ f) : tendsto (m ∘ i) (comap i f) g ↔ tendsto m f g := by rw [tendsto, ← map_compose]; simp only [(∘), map_comap h, tendsto] lemma comap_eq_of_inverse {f : filter α} {g : filter β} {φ : α → β} (ψ : β → α) (eq : ψ ∘ φ = id) (hφ : tendsto φ f g) (hψ : tendsto ψ g f) : comap φ g = f := begin refine le_antisymm (le_trans (comap_mono $ map_le_iff_le_comap.1 hψ) _) (map_le_iff_le_comap.1 hφ), rw [comap_comap_comp, eq, comap_id], exact le_refl _ end lemma map_eq_of_inverse {f : filter α} {g : filter β} {φ : α → β} (ψ : β → α) (eq : φ ∘ ψ = id) (hφ : tendsto φ f g) (hψ : tendsto ψ g f) : map φ f = g := begin refine le_antisymm hφ (le_trans _ (map_mono hψ)), rw [map_map, eq, map_id], exact le_refl _ end lemma tendsto_inf {f : α → β} {x : filter α} {y₁ y₂ : filter β} : tendsto f x (y₁ ⊓ y₂) ↔ tendsto f x y₁ ∧ tendsto f x y₂ := by simp only [tendsto, lattice.le_inf_iff, iff_self] lemma tendsto_inf_left {f : α → β} {x₁ x₂ : filter α} {y : filter β} (h : tendsto f x₁ y) : tendsto f (x₁ ⊓ x₂) y := le_trans (map_mono inf_le_left) h lemma tendsto_inf_right {f : α → β} {x₁ x₂ : filter α} {y : filter β} (h : tendsto f x₂ y) : tendsto f (x₁ ⊓ x₂) y := le_trans (map_mono inf_le_right) h lemma tendsto_infi {f : α → β} {x : filter α} {y : ι → filter β} : tendsto f x (⨅i, y i) ↔ ∀i, tendsto f x (y i) := by simp only [tendsto, iff_self, lattice.le_infi_iff] lemma tendsto_infi' {f : α → β} {x : ι → filter α} {y : filter β} (i : ι) : tendsto f (x i) y → tendsto f (⨅i, x i) y := tendsto_le_left (infi_le _ _) lemma tendsto_principal {f : α → β} {a : filter α} {s : set β} : tendsto f a (principal s) ↔ {a | f a ∈ s} ∈ a := by simp only [tendsto, le_principal_iff, mem_map, iff_self] lemma tendsto_principal_principal {f : α → β} {s : set α} {t : set β} : tendsto f (principal s) (principal t) ↔ ∀a∈s, f a ∈ t := by simp only [tendsto, image_subset_iff, le_principal_iff, map_principal, mem_principal_sets]; refl lemma tendsto_pure_pure (f : α → β) (a : α) : tendsto f (pure a) (pure (f a)) := show filter.map f (pure a) ≤ pure (f a), by rw [filter.map_pure]; exact le_refl _ lemma tendsto_const_pure {a : filter α} {b : β} : tendsto (λa, b) a (pure b) := by simp [tendsto]; exact univ_mem_sets lemma tendsto_if {l₁ : filter α} {l₂ : filter β} {f g : α → β} {p : α → Prop} [decidable_pred p] (h₀ : tendsto f (l₁ ⊓ principal p) l₂) (h₁ : tendsto g (l₁ ⊓ principal { x | ¬ p x }) l₂) : tendsto (λ x, if p x then f x else g x) l₁ l₂ := begin revert h₀ h₁, simp only [tendsto_def, mem_inf_principal], intros h₀ h₁ s hs, apply mem_sets_of_superset (inter_mem_sets (h₀ s hs) (h₁ s hs)), rintros x ⟨hp₀, hp₁⟩, simp only [mem_preimage], by_cases h : p x, { rw if_pos h, exact hp₀ h }, rw if_neg h, exact hp₁ h end section prod variables {s : set α} {t : set β} {f : filter α} {g : filter β} /- The product filter cannot be defined using the monad structure on filters. For example: F := do {x ← seq, y ← top, return (x, y)} hence: s ∈ F ↔ ∃n, [n..∞] × univ ⊆ s G := do {y ← top, x ← seq, return (x, y)} hence: s ∈ G ↔ ∀i:ℕ, ∃n, [n..∞] × {i} ⊆ s Now ⋃i, [i..∞] × {i} is in G but not in F. As product filter we want to have F as result. -/ /-- Product of filters. This is the filter generated by cartesian products of elements of the component filters. -/ protected def prod (f : filter α) (g : filter β) : filter (α × β) := f.comap prod.fst ⊓ g.comap prod.snd lemma prod_mem_prod {s : set α} {t : set β} {f : filter α} {g : filter β} (hs : s ∈ f) (ht : t ∈ g) : set.prod s t ∈ filter.prod f g := inter_mem_inf_sets (preimage_mem_comap hs) (preimage_mem_comap ht) lemma mem_prod_iff {s : set (α×β)} {f : filter α} {g : filter β} : s ∈ filter.prod f g ↔ (∃ t₁ ∈ f, ∃ t₂ ∈ g, set.prod t₁ t₂ ⊆ s) := begin simp only [filter.prod], split, exact assume ⟨t₁, ⟨s₁, hs₁, hts₁⟩, t₂, ⟨s₂, hs₂, hts₂⟩, h⟩, ⟨s₁, hs₁, s₂, hs₂, subset.trans (inter_subset_inter hts₁ hts₂) h⟩, exact assume ⟨t₁, ht₁, t₂, ht₂, h⟩, ⟨prod.fst ⁻¹' t₁, ⟨t₁, ht₁, subset.refl _⟩, prod.snd ⁻¹' t₂, ⟨t₂, ht₂, subset.refl _⟩, h⟩ end lemma tendsto_fst {f : filter α} {g : filter β} : tendsto prod.fst (filter.prod f g) f := tendsto_inf_left tendsto_comap lemma tendsto_snd {f : filter α} {g : filter β} : tendsto prod.snd (filter.prod f g) g := tendsto_inf_right tendsto_comap lemma tendsto.prod_mk {f : filter α} {g : filter β} {h : filter γ} {m₁ : α → β} {m₂ : α → γ} (h₁ : tendsto m₁ f g) (h₂ : tendsto m₂ f h) : tendsto (λx, (m₁ x, m₂ x)) f (filter.prod g h) := tendsto_inf.2 ⟨tendsto_comap_iff.2 h₁, tendsto_comap_iff.2 h₂⟩ lemma prod_infi_left {f : ι → filter α} {g : filter β} (i : ι) : filter.prod (⨅i, f i) g = (⨅i, filter.prod (f i) g) := by rw [filter.prod, comap_infi, infi_inf i]; simp only [filter.prod, eq_self_iff_true] lemma prod_infi_right {f : filter α} {g : ι → filter β} (i : ι) : filter.prod f (⨅i, g i) = (⨅i, filter.prod f (g i)) := by rw [filter.prod, comap_infi, inf_infi i]; simp only [filter.prod, eq_self_iff_true] lemma prod_mono {f₁ f₂ : filter α} {g₁ g₂ : filter β} (hf : f₁ ≤ f₂) (hg : g₁ ≤ g₂) : filter.prod f₁ g₁ ≤ filter.prod f₂ g₂ := inf_le_inf (comap_mono hf) (comap_mono hg) lemma prod_comap_comap_eq {α₁ : Type u} {α₂ : Type v} {β₁ : Type w} {β₂ : Type x} {f₁ : filter α₁} {f₂ : filter α₂} {m₁ : β₁ → α₁} {m₂ : β₂ → α₂} : filter.prod (comap m₁ f₁) (comap m₂ f₂) = comap (λp:β₁×β₂, (m₁ p.1, m₂ p.2)) (filter.prod f₁ f₂) := by simp only [filter.prod, comap_comap_comp, eq_self_iff_true, comap_inf] lemma prod_comm' : filter.prod f g = comap (prod.swap) (filter.prod g f) := by simp only [filter.prod, comap_comap_comp, (∘), inf_comm, prod.fst_swap, eq_self_iff_true, prod.snd_swap, comap_inf] lemma prod_comm : filter.prod f g = map (λp:β×α, (p.2, p.1)) (filter.prod g f) := by rw [prod_comm', ← map_swap_eq_comap_swap]; refl lemma prod_map_map_eq {α₁ : Type u} {α₂ : Type v} {β₁ : Type w} {β₂ : Type x} {f₁ : filter α₁} {f₂ : filter α₂} {m₁ : α₁ → β₁} {m₂ : α₂ → β₂} : filter.prod (map m₁ f₁) (map m₂ f₂) = map (λp:α₁×α₂, (m₁ p.1, m₂ p.2)) (filter.prod f₁ f₂) := le_antisymm (assume s hs, let ⟨s₁, hs₁, s₂, hs₂, h⟩ := mem_prod_iff.mp hs in filter.sets_of_superset _ (prod_mem_prod (image_mem_map hs₁) (image_mem_map hs₂)) $ calc set.prod (m₁ '' s₁) (m₂ '' s₂) = (λp:α₁×α₂, (m₁ p.1, m₂ p.2)) '' set.prod s₁ s₂ : set.prod_image_image_eq ... ⊆ _ : by rwa [image_subset_iff]) ((tendsto.comp (le_refl _) tendsto_fst).prod_mk (tendsto.comp (le_refl _) tendsto_snd)) lemma map_prod (m : α × β → γ) (f : filter α) (g : filter β) : map m (f.prod g) = (f.map (λa b, m (a, b))).seq g := begin simp [filter.ext_iff, mem_prod_iff, mem_map_seq_iff], assume s, split, exact assume ⟨t, ht, s, hs, h⟩, ⟨s, hs, t, ht, assume x hx y hy, @h ⟨x, y⟩ ⟨hx, hy⟩⟩, exact assume ⟨s, hs, t, ht, h⟩, ⟨t, ht, s, hs, assume ⟨x, y⟩ ⟨hx, hy⟩, h x hx y hy⟩ end lemma prod_eq {f : filter α} {g : filter β} : f.prod g = (f.map prod.mk).seq g := have h : _ := map_prod id f g, by rwa [map_id] at h lemma prod_inf_prod {f₁ f₂ : filter α} {g₁ g₂ : filter β} : filter.prod f₁ g₁ ⊓ filter.prod f₂ g₂ = filter.prod (f₁ ⊓ f₂) (g₁ ⊓ g₂) := by simp only [filter.prod, comap_inf, inf_comm, inf_assoc, lattice.inf_left_comm] @[simp] lemma prod_bot {f : filter α} : filter.prod f (⊥ : filter β) = ⊥ := by simp [filter.prod] @[simp] lemma bot_prod {g : filter β} : filter.prod (⊥ : filter α) g = ⊥ := by simp [filter.prod] @[simp] lemma prod_principal_principal {s : set α} {t : set β} : filter.prod (principal s) (principal t) = principal (set.prod s t) := by simp only [filter.prod, comap_principal, principal_eq_iff_eq, comap_principal, inf_principal]; refl @[simp] lemma prod_pure_pure {a : α} {b : β} : filter.prod (pure a) (pure b) = pure (a, b) := by simp lemma prod_eq_bot {f : filter α} {g : filter β} : filter.prod f g = ⊥ ↔ (f = ⊥ ∨ g = ⊥) := begin split, { assume h, rcases mem_prod_iff.1 (empty_in_sets_eq_bot.2 h) with ⟨s, hs, t, ht, hst⟩, rw [subset_empty_iff, set.prod_eq_empty_iff] at hst, cases hst with s_eq t_eq, { left, exact empty_in_sets_eq_bot.1 (s_eq ▸ hs) }, { right, exact empty_in_sets_eq_bot.1 (t_eq ▸ ht) } }, { rintros (rfl | rfl), exact bot_prod, exact prod_bot } end lemma prod_neq_bot {f : filter α} {g : filter β} : filter.prod f g ≠ ⊥ ↔ (f ≠ ⊥ ∧ g ≠ ⊥) := by rw [(≠), prod_eq_bot, not_or_distrib] lemma tendsto_prod_iff {f : α × β → γ} {x : filter α} {y : filter β} {z : filter γ} : filter.tendsto f (filter.prod x y) z ↔ ∀ W ∈ z, ∃ U ∈ x, ∃ V ∈ y, ∀ x y, x ∈ U → y ∈ V → f (x, y) ∈ W := by simp only [tendsto_def, mem_prod_iff, prod_sub_preimage_iff, exists_prop, iff_self] end prod /- at_top and at_bot -/ /-- `at_top` is the filter representing the limit `→ ∞` on an ordered set. It is generated by the collection of up-sets `{b | a ≤ b}`. (The preorder need not have a top element for this to be well defined, and indeed is trivial when a top element exists.) -/ def at_top [preorder α] : filter α := ⨅ a, principal {b | a ≤ b} /-- `at_bot` is the filter representing the limit `→ -∞` on an ordered set. It is generated by the collection of down-sets `{b | b ≤ a}`. (The preorder need not have a bottom element for this to be well defined, and indeed is trivial when a bottom element exists.) -/ def at_bot [preorder α] : filter α := ⨅ a, principal {b | b ≤ a} lemma mem_at_top [preorder α] (a : α) : {b : α | a ≤ b} ∈ @at_top α _ := mem_infi_sets a $ subset.refl _ @[simp] lemma at_top_ne_bot [nonempty α] [semilattice_sup α] : (at_top : filter α) ≠ ⊥ := infi_neq_bot_of_directed (by apply_instance) (assume a b, ⟨a ⊔ b, by simp only [ge, le_principal_iff, forall_const, set_of_subset_set_of, mem_principal_sets, and_self, sup_le_iff, forall_true_iff] {contextual := tt}⟩) (assume a, by simp only [principal_eq_bot_iff, ne.def, principal_eq_bot_iff]; exact ne_empty_of_mem (le_refl a)) @[simp] lemma mem_at_top_sets [nonempty α] [semilattice_sup α] {s : set α} : s ∈ (at_top : filter α) ↔ ∃a:α, ∀b≥a, b ∈ s := let ⟨a⟩ := ‹nonempty α› in iff.intro (assume h, infi_sets_induct h ⟨a, by simp only [forall_const, mem_univ, forall_true_iff]⟩ (assume a s₁ s₂ ha ⟨b, hb⟩, ⟨a ⊔ b, assume c hc, ⟨ha $ le_trans le_sup_left hc, hb _ $ le_trans le_sup_right hc⟩⟩) (assume s₁ s₂ h ⟨a, ha⟩, ⟨a, assume b hb, h $ ha _ hb⟩)) (assume ⟨a, h⟩, mem_infi_sets a $ assume x, h x) lemma map_at_top_eq [nonempty α] [semilattice_sup α] {f : α → β} : at_top.map f = (⨅a, principal $ f '' {a' | a ≤ a'}) := calc map f (⨅a, principal {a' | a ≤ a'}) = (⨅a, map f $ principal {a' | a ≤ a'}) : map_infi_eq (assume a b, ⟨a ⊔ b, by simp only [ge, le_principal_iff, forall_const, set_of_subset_set_of, mem_principal_sets, and_self, sup_le_iff, forall_true_iff] {contextual := tt}⟩) (by apply_instance) ... = (⨅a, principal $ f '' {a' | a ≤ a'}) : by simp only [map_principal, eq_self_iff_true] lemma tendsto_at_top [preorder β] (m : α → β) (f : filter α) : tendsto m f at_top ↔ (∀b, {a | b ≤ m a} ∈ f) := by simp only [at_top, tendsto_infi, tendsto_principal]; refl lemma tendsto_at_top' [nonempty α] [semilattice_sup α] (f : α → β) (l : filter β) : tendsto f at_top l ↔ (∀s ∈ l, ∃a, ∀b≥a, f b ∈ s) := by simp only [tendsto_def, mem_at_top_sets]; refl theorem tendsto_at_top_principal [nonempty β] [semilattice_sup β] {f : β → α} {s : set α} : tendsto f at_top (principal s) ↔ ∃N, ∀n≥N, f n ∈ s := by rw [tendsto_iff_comap, comap_principal, le_principal_iff, mem_at_top_sets]; refl /-- A function `f` grows to infinity independent of an order-preserving embedding `e`. -/ lemma tendsto_at_top_embedding {α β γ : Type*} [preorder β] [preorder γ] {f : α → β} {e : β → γ} {l : filter α} (hm : ∀b₁ b₂, e b₁ ≤ e b₂ ↔ b₁ ≤ b₂) (hu : ∀c, ∃b, c ≤ e b) : tendsto (e ∘ f) l at_top ↔ tendsto f l at_top := begin rw [tendsto_at_top, tendsto_at_top], split, { assume hc b, filter_upwards [hc (e b)] assume a, (hm b (f a)).1 }, { assume hb c, rcases hu c with ⟨b, hc⟩, filter_upwards [hb b] assume a ha, le_trans hc ((hm b (f a)).2 ha) } end lemma tendsto_at_top_at_top [nonempty α] [semilattice_sup α] [preorder β] (f : α → β) : tendsto f at_top at_top ↔ ∀ b : β, ∃ i : α, ∀ a : α, i ≤ a → b ≤ f a := iff.trans tendsto_infi $ forall_congr $ assume b, tendsto_at_top_principal lemma tendsto_at_top_at_bot [nonempty α] [decidable_linear_order α] [preorder β] (f : α → β) : tendsto f at_top at_bot ↔ ∀ (b : β), ∃ (i : α), ∀ (a : α), i ≤ a → b ≥ f a := @tendsto_at_top_at_top α (order_dual β) _ _ _ f lemma tendsto_finset_image_at_top_at_top {i : β → γ} {j : γ → β} (h : ∀x, j (i x) = x) : tendsto (λs:finset γ, s.image j) at_top at_top := tendsto_infi.2 $ assume s, tendsto_infi' (s.image i) $ tendsto_principal_principal.2 $ assume t (ht : s.image i ⊆ t), calc s = (s.image i).image j : by simp only [finset.image_image, (∘), h]; exact finset.image_id.symm ... ⊆ t.image j : finset.image_subset_image ht lemma prod_at_top_at_top_eq {β₁ β₂ : Type*} [inhabited β₁] [inhabited β₂] [semilattice_sup β₁] [semilattice_sup β₂] : filter.prod (@at_top β₁ _) (@at_top β₂ _) = @at_top (β₁ × β₂) _ := by simp [at_top, prod_infi_left (default β₁), prod_infi_right (default β₂), infi_prod]; exact infi_comm lemma prod_map_at_top_eq {α₁ α₂ β₁ β₂ : Type*} [inhabited β₁] [inhabited β₂] [semilattice_sup β₁] [semilattice_sup β₂] (u₁ : β₁ → α₁) (u₂ : β₂ → α₂) : filter.prod (map u₁ at_top) (map u₂ at_top) = map (prod.map u₁ u₂) at_top := by rw [prod_map_map_eq, prod_at_top_at_top_eq, prod.map_def] /-- A function `f` maps upwards closed sets (at_top sets) to upwards closed sets when it is a Galois insertion. The Galois "insertion" and "connection" is weakened to only require it to be an insertion and a connetion above `b'`. -/ lemma map_at_top_eq_of_gc [semilattice_sup α] [semilattice_sup β] {f : α → β} (g : β → α) (b' : β)(hf : monotone f) (gc : ∀a, ∀b≥b', f a ≤ b ↔ a ≤ g b) (hgi : ∀b≥b', b ≤ f (g b)) : map f at_top = at_top := begin rw [@map_at_top_eq α _ ⟨g b'⟩], refine le_antisymm (le_infi $ assume b, infi_le_of_le (g (b ⊔ b')) $ principal_mono.2 $ image_subset_iff.2 _) (le_infi $ assume a, infi_le_of_le (f a ⊔ b') $ principal_mono.2 _), { assume a ha, exact (le_trans le_sup_left $ le_trans (hgi _ le_sup_right) $ hf ha) }, { assume b hb, have hb' : b' ≤ b := le_trans le_sup_right hb, exact ⟨g b, (gc _ _ hb').1 (le_trans le_sup_left hb), le_antisymm ((gc _ _ hb').2 (le_refl _)) (hgi _ hb')⟩ } end lemma map_add_at_top_eq_nat (k : ℕ) : map (λa, a + k) at_top = at_top := map_at_top_eq_of_gc (λa, a - k) k (assume a b h, add_le_add_right h k) (assume a b h, (nat.le_sub_right_iff_add_le h).symm) (assume a h, by rw [nat.sub_add_cancel h]) lemma map_sub_at_top_eq_nat (k : ℕ) : map (λa, a - k) at_top = at_top := map_at_top_eq_of_gc (λa, a + k) 0 (assume a b h, nat.sub_le_sub_right h _) (assume a b _, nat.sub_le_right_iff_le_add) (assume b _, by rw [nat.add_sub_cancel]) lemma tendso_add_at_top_nat (k : ℕ) : tendsto (λa, a + k) at_top at_top := le_of_eq (map_add_at_top_eq_nat k) lemma tendso_sub_at_top_nat (k : ℕ) : tendsto (λa, a - k) at_top at_top := le_of_eq (map_sub_at_top_eq_nat k) lemma tendsto_add_at_top_iff_nat {f : ℕ → α} {l : filter α} (k : ℕ) : tendsto (λn, f (n + k)) at_top l ↔ tendsto f at_top l := show tendsto (f ∘ (λn, n + k)) at_top l ↔ tendsto f at_top l, by rw [← tendsto_map'_iff, map_add_at_top_eq_nat] lemma map_div_at_top_eq_nat (k : ℕ) (hk : k > 0) : map (λa, a / k) at_top = at_top := map_at_top_eq_of_gc (λb, b * k + (k - 1)) 1 (assume a b h, nat.div_le_div_right h) (assume a b _, calc a / k ≤ b ↔ a / k < b + 1 : by rw [← nat.succ_eq_add_one, nat.lt_succ_iff] ... ↔ a < (b + 1) * k : nat.div_lt_iff_lt_mul _ _ hk ... ↔ _ : begin cases k, exact (lt_irrefl _ hk).elim, simp [mul_add, add_mul, nat.succ_add, nat.lt_succ_iff] end) (assume b _, calc b = (b * k) / k : by rw [nat.mul_div_cancel b hk] ... ≤ (b * k + (k - 1)) / k : nat.div_le_div_right $ nat.le_add_right _ _) /- ultrafilter -/ section ultrafilter open zorn variables {f g : filter α} /-- An ultrafilter is a minimal (maximal in the set order) proper filter. -/ def is_ultrafilter (f : filter α) := f ≠ ⊥ ∧ ∀g, g ≠ ⊥ → g ≤ f → f ≤ g lemma ultrafilter_unique (hg : is_ultrafilter g) (hf : f ≠ ⊥) (h : f ≤ g) : f = g := le_antisymm h (hg.right _ hf h) lemma le_of_ultrafilter {g : filter α} (hf : is_ultrafilter f) (h : f ⊓ g ≠ ⊥) : f ≤ g := le_of_inf_eq $ ultrafilter_unique hf h inf_le_left /-- Equivalent characterization of ultrafilters: A filter f is an ultrafilter if and only if for each set s, -s belongs to f if and only if s does not belong to f. -/ lemma ultrafilter_iff_compl_mem_iff_not_mem : is_ultrafilter f ↔ (∀ s, -s ∈ f ↔ s ∉ f) := ⟨assume hf s, ⟨assume hns hs, hf.1 $ empty_in_sets_eq_bot.mp $ by convert f.inter_sets hs hns; rw [inter_compl_self], assume hs, have f ≤ principal (-s), from le_of_ultrafilter hf $ assume h, hs $ mem_sets_of_neq_bot $ by simp only [h, eq_self_iff_true, lattice.neg_neg], by simp only [le_principal_iff] at this; assumption⟩, assume hf, ⟨mt empty_in_sets_eq_bot.mpr ((hf ∅).mp (by convert f.univ_sets; rw [compl_empty])), assume g hg g_le s hs, classical.by_contradiction $ mt (hf s).mpr $ assume : - s ∈ f, have s ∩ -s ∈ g, from inter_mem_sets hs (g_le this), by simp only [empty_in_sets_eq_bot, hg, inter_compl_self] at this; contradiction⟩⟩ lemma mem_or_compl_mem_of_ultrafilter (hf : is_ultrafilter f) (s : set α) : s ∈ f ∨ - s ∈ f := classical.or_iff_not_imp_left.2 (ultrafilter_iff_compl_mem_iff_not_mem.mp hf s).mpr lemma mem_or_mem_of_ultrafilter {s t : set α} (hf : is_ultrafilter f) (h : s ∪ t ∈ f) : s ∈ f ∨ t ∈ f := (mem_or_compl_mem_of_ultrafilter hf s).imp_right (assume : -s ∈ f, by filter_upwards [this, h] assume x hnx hx, hx.resolve_left hnx) lemma mem_of_finite_sUnion_ultrafilter {s : set (set α)} (hf : is_ultrafilter f) (hs : finite s) : ⋃₀ s ∈ f → ∃t∈s, t ∈ f := finite.induction_on hs (by simp only [empty_in_sets_eq_bot, hf.left, mem_empty_eq, sUnion_empty, forall_prop_of_false, exists_false, not_false_iff, exists_prop_of_false]) $ λ t s' ht' hs' ih, by simp only [exists_prop, mem_insert_iff, set.sUnion_insert]; exact assume h, (mem_or_mem_of_ultrafilter hf h).elim (assume : t ∈ f, ⟨t, or.inl rfl, this⟩) (assume h, let ⟨t, hts', ht⟩ := ih h in ⟨t, or.inr hts', ht⟩) lemma mem_of_finite_Union_ultrafilter {is : set β} {s : β → set α} (hf : is_ultrafilter f) (his : finite is) (h : (⋃i∈is, s i) ∈ f) : ∃i∈is, s i ∈ f := have his : finite (image s is), from finite_image s his, have h : (⋃₀ image s is) ∈ f, from by simp only [sUnion_image, set.sUnion_image]; assumption, let ⟨t, ⟨i, hi, h_eq⟩, (ht : t ∈ f)⟩ := mem_of_finite_sUnion_ultrafilter hf his h in ⟨i, hi, h_eq.symm ▸ ht⟩ lemma ultrafilter_map {f : filter α} {m : α → β} (h : is_ultrafilter f) : is_ultrafilter (map m f) := by rw ultrafilter_iff_compl_mem_iff_not_mem at ⊢ h; exact assume s, h (m ⁻¹' s) lemma ultrafilter_pure {a : α} : is_ultrafilter (pure a) := begin rw ultrafilter_iff_compl_mem_iff_not_mem, intro s, rw [mem_pure_sets, mem_pure_sets], exact iff.rfl end lemma ultrafilter_bind {f : filter α} (hf : is_ultrafilter f) {m : α → filter β} (hm : ∀ a, is_ultrafilter (m a)) : is_ultrafilter (f.bind m) := begin simp only [ultrafilter_iff_compl_mem_iff_not_mem] at ⊢ hf hm, intro s, dsimp [bind, join, map, preimage], simp only [hm], apply hf end /-- The ultrafilter lemma: Any proper filter is contained in an ultrafilter. -/ lemma exists_ultrafilter (h : f ≠ ⊥) : ∃u, u ≤ f ∧ is_ultrafilter u := let τ := {f' // f' ≠ ⊥ ∧ f' ≤ f}, r : τ → τ → Prop := λt₁ t₂, t₂.val ≤ t₁.val, ⟨a, ha⟩ := inhabited_of_mem_sets h univ_mem_sets, top : τ := ⟨f, h, le_refl f⟩, sup : Π(c:set τ), chain r c → τ := λc hc, ⟨⨅a:{a:τ // a ∈ insert top c}, a.val.val, infi_neq_bot_of_directed ⟨a⟩ (directed_of_chain $ chain_insert hc $ assume ⟨b, _, hb⟩ _ _, or.inl hb) (assume ⟨⟨a, ha, _⟩, _⟩, ha), infi_le_of_le ⟨top, mem_insert _ _⟩ (le_refl _)⟩ in have ∀c (hc: chain r c) a (ha : a ∈ c), r a (sup c hc), from assume c hc a ha, infi_le_of_le ⟨a, mem_insert_of_mem _ ha⟩ (le_refl _), have (∃ (u : τ), ∀ (a : τ), r u a → r a u), from zorn (assume c hc, ⟨sup c hc, this c hc⟩) (assume f₁ f₂ f₃ h₁ h₂, le_trans h₂ h₁), let ⟨uτ, hmin⟩ := this in ⟨uτ.val, uτ.property.right, uτ.property.left, assume g hg₁ hg₂, hmin ⟨g, hg₁, le_trans hg₂ uτ.property.right⟩ hg₂⟩ /-- Construct an ultrafilter extending a given filter. The ultrafilter lemma is the assertion that such a filter exists; we use the axiom of choice to pick one. -/ noncomputable def ultrafilter_of (f : filter α) : filter α := if h : f = ⊥ then ⊥ else classical.epsilon (λu, u ≤ f ∧ is_ultrafilter u) lemma ultrafilter_of_spec (h : f ≠ ⊥) : ultrafilter_of f ≤ f ∧ is_ultrafilter (ultrafilter_of f) := begin have h' := classical.epsilon_spec (exists_ultrafilter h), simp only [ultrafilter_of, dif_neg, h, dif_neg, not_false_iff], simp only at h', assumption end lemma ultrafilter_of_le : ultrafilter_of f ≤ f := if h : f = ⊥ then by simp only [ultrafilter_of, dif_pos, h, dif_pos, eq_self_iff_true, le_bot_iff]; exact le_refl _ else (ultrafilter_of_spec h).left lemma ultrafilter_ultrafilter_of (h : f ≠ ⊥) : is_ultrafilter (ultrafilter_of f) := (ultrafilter_of_spec h).right lemma ultrafilter_of_ultrafilter (h : is_ultrafilter f) : ultrafilter_of f = f := ultrafilter_unique h (ultrafilter_ultrafilter_of h.left).left ultrafilter_of_le /-- A filter equals the intersection of all the ultrafilters which contain it. -/ lemma sup_of_ultrafilters (f : filter α) : f = ⨆ (g) (u : is_ultrafilter g) (H : g ≤ f), g := begin refine le_antisymm _ (supr_le $ λ g, supr_le $ λ u, supr_le $ λ H, H), intros s hs, -- If s ∉ f.sets, we'll apply the ultrafilter lemma to the restriction of f to -s. by_contradiction hs', let j : (-s) → α := subtype.val, have j_inv_s : j ⁻¹' s = ∅, by erw [←preimage_inter_range, subtype.val_range, inter_compl_self, preimage_empty], let f' := comap j f, have : f' ≠ ⊥, { apply mt empty_in_sets_eq_bot.mpr, rintro ⟨t, htf, ht⟩, suffices : t ⊆ s, from absurd (f.sets_of_superset htf this) hs', rw [subset_empty_iff] at ht, have : j '' (j ⁻¹' t) = ∅, by rw [ht, image_empty], erw [image_preimage_eq_inter_range, subtype.val_range, ←subset_compl_iff_disjoint, set.compl_compl] at this, exact this }, rcases exists_ultrafilter this with ⟨g', g'f', u'⟩, simp only [supr_sets_eq, mem_Inter] at hs, have := hs (g'.map subtype.val) (ultrafilter_map u') (map_le_iff_le_comap.mpr g'f'), rw [←le_principal_iff, map_le_iff_le_comap, comap_principal, j_inv_s, principal_empty, le_bot_iff] at this, exact absurd this u'.1 end /-- The `tendsto` relation can be checked on ultrafilters. -/ lemma tendsto_iff_ultrafilter (f : α → β) (l₁ : filter α) (l₂ : filter β) : tendsto f l₁ l₂ ↔ ∀ g, is_ultrafilter g → g ≤ l₁ → g.map f ≤ l₂ := ⟨assume h g u gx, le_trans (map_mono gx) h, assume h, by rw [sup_of_ultrafilters l₁]; simpa only [tendsto, map_supr, supr_le_iff]⟩ /- The ultrafilter monad. The monad structure on ultrafilters is the restriction of the one on filters. -/ def ultrafilter (α : Type u) : Type u := {f : filter α // is_ultrafilter f} def ultrafilter.map (m : α → β) (u : ultrafilter α) : ultrafilter β := ⟨u.val.map m, ultrafilter_map u.property⟩ def ultrafilter.pure (x : α) : ultrafilter α := ⟨pure x, ultrafilter_pure⟩ def ultrafilter.bind (u : ultrafilter α) (m : α → ultrafilter β) : ultrafilter β := ⟨u.val.bind (λ a, (m a).val), ultrafilter_bind u.property (λ a, (m a).property)⟩ instance ultrafilter.has_pure : has_pure ultrafilter := ⟨@ultrafilter.pure⟩ instance ultrafilter.has_bind : has_bind ultrafilter := ⟨@ultrafilter.bind⟩ instance ultrafilter.functor : functor ultrafilter := { map := @ultrafilter.map } instance ultrafilter.monad : monad ultrafilter := { map := @ultrafilter.map } noncomputable def hyperfilter : filter α := ultrafilter_of cofinite lemma hyperfilter_le_cofinite (hi : set.infinite (@set.univ α)) : @hyperfilter α ≤ cofinite := (ultrafilter_of_spec (cofinite_ne_bot hi)).1 lemma is_ultrafilter_hyperfilter (hi : set.infinite (@set.univ α)) : is_ultrafilter (@hyperfilter α) := (ultrafilter_of_spec (cofinite_ne_bot hi)).2 theorem nmem_hyperfilter_of_finite (hi : set.infinite (@set.univ α)) {s : set α} (hf : set.finite s) : s ∉ @hyperfilter α := λ hy, have hx : -s ∉ hyperfilter := λ hs, (ultrafilter_iff_compl_mem_iff_not_mem.mp (is_ultrafilter_hyperfilter hi) s).mp hs hy, have ht : -s ∈ cofinite.sets := by show -s ∈ {s | _}; rwa [set.mem_set_of_eq, lattice.neg_neg], hx $ hyperfilter_le_cofinite hi ht theorem compl_mem_hyperfilter_of_finite (hi : set.infinite (@set.univ α)) {s : set α} (hf : set.finite s) : -s ∈ @hyperfilter α := (ultrafilter_iff_compl_mem_iff_not_mem.mp (is_ultrafilter_hyperfilter hi) s).mpr $ nmem_hyperfilter_of_finite hi hf theorem mem_hyperfilter_of_finite_compl (hi : set.infinite (@set.univ α)) {s : set α} (hf : set.finite (-s)) : s ∈ @hyperfilter α := have h : _ := compl_mem_hyperfilter_of_finite hi hf, by rwa [lattice.neg_neg] at h section local attribute [instance] filter.monad filter.is_lawful_monad instance ultrafilter.is_lawful_monad : is_lawful_monad ultrafilter := { id_map := assume α f, subtype.eq (id_map f.val), pure_bind := assume α β a f, subtype.eq (pure_bind a (subtype.val ∘ f)), bind_assoc := assume α β γ f m₁ m₂, subtype.eq (filter_eq rfl), bind_pure_comp_eq_map := assume α β f x, subtype.eq (bind_pure_comp_eq_map _ f x.val) } end lemma ultrafilter.eq_iff_val_le_val {u v : ultrafilter α} : u = v ↔ u.val ≤ v.val := ⟨assume h, by rw h; exact le_refl _, assume h, by rw subtype.ext; apply ultrafilter_unique v.property u.property.1 h⟩ lemma exists_ultrafilter_iff (f : filter α) : (∃ (u : ultrafilter α), u.val ≤ f) ↔ f ≠ ⊥ := ⟨assume ⟨u, uf⟩, lattice.neq_bot_of_le_neq_bot u.property.1 uf, assume h, let ⟨u, uf, hu⟩ := exists_ultrafilter h in ⟨⟨u, hu⟩, uf⟩⟩ end ultrafilter end filter namespace filter variables {α β γ : Type u} {f : β → filter α} {s : γ → set α} open list lemma mem_traverse_sets : ∀(fs : list β) (us : list γ), forall₂ (λb c, s c ∈ f b) fs us → traverse s us ∈ traverse f fs | [] [] forall₂.nil := mem_pure_sets.2 $ mem_singleton _ | (f::fs) (u::us) (forall₂.cons h hs) := seq_mem_seq_sets (image_mem_map h) (mem_traverse_sets fs us hs) lemma mem_traverse_sets_iff (fs : list β) (t : set (list α)) : t ∈ traverse f fs ↔ (∃us:list (set α), forall₂ (λb (s : set α), s ∈ f b) fs us ∧ sequence us ⊆ t) := begin split, { induction fs generalizing t, case nil { simp only [sequence, pure_def, imp_self, forall₂_nil_left_iff, pure_def, exists_eq_left, mem_principal_sets, set.pure_def, singleton_subset_iff, traverse_nil] }, case cons : b fs ih t { assume ht, rcases mem_seq_sets_iff.1 ht with ⟨u, hu, v, hv, ht⟩, rcases mem_map_sets_iff.1 hu with ⟨w, hw, hwu⟩, rcases ih v hv with ⟨us, hus, hu⟩, exact ⟨w :: us, forall₂.cons hw hus, subset.trans (set.seq_mono hwu hu) ht⟩ } }, { rintros ⟨us, hus, hs⟩, exact mem_sets_of_superset (mem_traverse_sets _ _ hus) hs } end lemma sequence_mono : ∀(as bs : list (filter α)), forall₂ (≤) as bs → sequence as ≤ sequence bs | [] [] forall₂.nil := le_refl _ | (a::as) (b::bs) (forall₂.cons h hs) := seq_mono (map_mono h) (sequence_mono as bs hs) end filter
5bb44aac7a696771d465cd5cb8aef91064e6b885
fa02ed5a3c9c0adee3c26887a16855e7841c668b
/src/algebra/category/Module/adjunctions.lean
2392e6e9b8352e11f224e43148ffd89a45893799
[ "Apache-2.0" ]
permissive
jjgarzella/mathlib
96a345378c4e0bf26cf604aed84f90329e4896a2
395d8716c3ad03747059d482090e2bb97db612c8
refs/heads/master
1,686,480,124,379
1,625,163,323,000
1,625,163,323,000
281,190,421
2
0
Apache-2.0
1,595,268,170,000
1,595,268,169,000
null
UTF-8
Lean
false
false
10,122
lean
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison, Johan Commelin -/ import algebra.category.Module.monoidal import category_theory.monoidal.functorial import category_theory.monoidal.types import linear_algebra.direct_sum.finsupp import category_theory.linear.linear_functor /-! The functor of forming finitely supported functions on a type with values in a `[ring R]` is the left adjoint of the forgetful functor from `R`-modules to types. -/ noncomputable theory open category_theory namespace Module universe u open_locale classical variables (R : Type u) section variables [ring R] /-- The free functor `Type u ⥤ Module R` sending a type `X` to the free `R`-module with generators `x : X`, implemented as the type `X →₀ R`. -/ @[simps] def free : Type u ⥤ Module R := { obj := λ X, Module.of R (X →₀ R), map := λ X Y f, finsupp.lmap_domain _ _ f, map_id' := by { intros, exact finsupp.lmap_domain_id _ _ }, map_comp' := by { intros, exact finsupp.lmap_domain_comp _ _ _ _, } } /-- The free-forgetful adjunction for R-modules. -/ def adj : free R ⊣ forget (Module.{u} R) := adjunction.mk_of_hom_equiv { hom_equiv := λ X M, (finsupp.lift M R X).to_equiv.symm, hom_equiv_naturality_left_symm' := λ _ _ M f g, finsupp.lhom_ext' (λ x, linear_map.ext_ring (finsupp.sum_map_domain_index_add_monoid_hom (λ y, ((smul_add_hom R ↥M).flip) (g y))).symm) } end namespace free variables [comm_ring R] /-- The free R-module functor is lax monoidal. -/ -- In fact, it's strong monoidal, but we don't yet have a typeclass for that. instance : lax_monoidal.{u} (free R).obj := { -- Send `R` to `punit →₀ R` ε := finsupp.lsingle punit.star, -- Send `(α →₀ R) ⊗ (β →₀ R)` to `α × β →₀ R` μ := λ α β, (finsupp_tensor_finsupp' R α β).to_linear_map, μ_natural' := begin intros, ext x x' ⟨y, y'⟩, -- This is rather tedious: it's a terminal simp, with no arguments, -- but between the four of them it is too slow. simp only [tensor_product.mk_apply, mul_one, tensor_apply, monoidal_category.hom_apply, Module.free_map, Module.coe_comp, map_functorial_obj, linear_map.compr₂_apply, linear_equiv.coe_to_linear_map, linear_map.comp_apply, function.comp_app, finsupp.lmap_domain_apply, finsupp.map_domain_single, finsupp_tensor_finsupp'_single_tmul_single, finsupp.lsingle_apply], end, left_unitality' := begin intros, ext, simp only [tensor_product.mk_apply, mul_one, Module.id_apply, Module.free_map, Module.coe_comp, map_functorial_obj, Module.monoidal_category.hom_apply, left_unitor_hom_apply, Module.monoidal_category.left_unitor_hom_apply, linear_map.compr₂_apply, linear_equiv.coe_to_linear_map, linear_map.comp_apply, function.comp_app, finsupp.lmap_domain_apply, finsupp.smul_single', finsupp.map_domain_single, finsupp_tensor_finsupp'_single_tmul_single, finsupp.lsingle_apply], end, right_unitality' := begin intros, ext, simp only [tensor_product.mk_apply, mul_one, Module.id_apply, Module.free_map, Module.coe_comp, map_functorial_obj, Module.monoidal_category.hom_apply, right_unitor_hom_apply, Module.monoidal_category.right_unitor_hom_apply, linear_map.compr₂_apply, linear_equiv.coe_to_linear_map, linear_map.comp_apply, function.comp_app, finsupp.lmap_domain_apply, finsupp.smul_single', finsupp.map_domain_single, finsupp_tensor_finsupp'_single_tmul_single, finsupp.lsingle_apply], end, associativity' := begin intros, ext, simp only [tensor_product.mk_apply, mul_one, Module.id_apply, Module.free_map, Module.coe_comp, map_functorial_obj, Module.monoidal_category.hom_apply, associator_hom_apply, Module.monoidal_category.associator_hom_apply, linear_map.compr₂_apply, linear_equiv.coe_to_linear_map, linear_map.comp_apply, function.comp_app, finsupp.lmap_domain_apply, finsupp.smul_single', finsupp.map_domain_single, finsupp_tensor_finsupp'_single_tmul_single, finsupp.lsingle_apply], end, } end free end Module namespace category_theory universes v u /-- `Free R C` is a type synonym for `C`, which, given `[comm_ring R]` and `[category C]`, we will equip with a category structure where the morphisms are formal `R`-linear combinations of the morphisms in `C`. -/ @[nolint unused_arguments has_inhabited_instance] def Free (R : Type*) (C : Type u) := C /-- Consider an object of `C` as an object of the `R`-linear completion. -/ def Free.of (R : Type*) {C : Type u} (X : C) : Free R C := X variables (R : Type*) [comm_ring R] (C : Type u) [category.{v} C] open finsupp -- Conceptually, it would be nice to construct this via "transport of enrichment", -- using the fact that `Module.free R : Type ⥤ Module R` and `Module.forget` are both lax monoidal. -- This still seems difficult, so we just do it by hand. instance category_Free : category (Free R C) := { hom := λ (X Y : C), (X ⟶ Y) →₀ R, id := λ (X : C), finsupp.single (𝟙 X) 1, comp := λ (X Y Z : C) f g, f.sum (λ f' s, g.sum (λ g' t, finsupp.single (f' ≫ g') (s * t))), assoc' := λ W X Y Z f g h, begin dsimp, -- This imitates the proof of associativity for `monoid_algebra`. simp only [sum_sum_index, sum_single_index, single_zero, single_add, eq_self_iff_true, forall_true_iff, forall_3_true_iff, add_mul, mul_add, category.assoc, mul_assoc, zero_mul, mul_zero, sum_zero, sum_add], end }. namespace Free section local attribute [simp] category_theory.category_Free @[simp] lemma single_comp_single {X Y Z : C} (f : X ⟶ Y) (g : Y ⟶ Z) (r s : R) : (single f r ≫ single g s : (Free.of R X) ⟶ (Free.of R Z)) = single (f ≫ g) (r * s) := by { dsimp, simp, } instance : preadditive (Free R C) := { hom_group := λ X Y, finsupp.add_comm_group, add_comp' := λ X Y Z f f' g, begin dsimp, rw [finsupp.sum_add_index]; { simp [add_mul], } end, comp_add' := λ X Y Z f g g', begin dsimp, rw ← finsupp.sum_add, congr, ext r h, rw [finsupp.sum_add_index]; { simp [mul_add], }, end, } instance : linear R (Free R C) := { hom_module := λ X Y, finsupp.module (X ⟶ Y) R, smul_comp' := λ X Y Z r f g, begin dsimp, rw [finsupp.sum_smul_index]; simp [finsupp.smul_sum, mul_assoc], end, comp_smul' := λ X Y Z f r g, begin dsimp, simp_rw [finsupp.smul_sum], congr, ext h s, rw [finsupp.sum_smul_index]; simp [finsupp.smul_sum, mul_left_comm], end, } end /-- A category embeds into its `R`-linear completion. -/ @[simps] def embedding : C ⥤ Free R C := { obj := λ X, X, map := λ X Y f, finsupp.single f 1, map_id' := λ X, rfl, map_comp' := λ X Y Z f g, by simp, } variables (R) {C} {D : Type u} [category.{v} D] [preadditive D] [linear R D] open preadditive linear /-- A functor to a preadditive category lifts to a functor from its `R`-linear completion. -/ @[simps] def lift (F : C ⥤ D) : Free R C ⥤ D := { obj := λ X, F.obj X, map := λ X Y f, f.sum (λ f' r, r • (F.map f')), map_id' := by { dsimp [category_theory.category_Free], simp }, map_comp' := λ X Y Z f g, begin apply finsupp.induction_linear f, { simp, }, { intros f₁ f₂ w₁ w₂, rw add_comp, rw [finsupp.sum_add_index, finsupp.sum_add_index], { simp [w₁, w₂, add_comp], }, { simp, }, { intros, simp only [add_smul], }, { simp, }, { intros, simp only [add_smul], }, }, { intros f' r, apply finsupp.induction_linear g, { simp, }, { intros f₁ f₂ w₁ w₂, rw comp_add, rw [finsupp.sum_add_index, finsupp.sum_add_index], { simp [w₁, w₂, add_comp], }, { simp, }, { intros, simp only [add_smul], }, { simp, }, { intros, simp only [add_smul], }, }, { intros g' s, erw single_comp_single, simp [mul_comm r s, mul_smul], } } end, } @[simp] lemma lift_map_single (F : C ⥤ D) {X Y : C} (f : X ⟶ Y) (r : R) : (lift R F).map (single f r) = r • F.map f := by simp instance lift_additive (F : C ⥤ D) : (lift R F).additive := { map_zero' := by simp, map_add' := λ X Y f g, begin dsimp, rw finsupp.sum_add_index; simp [add_smul] end, } instance lift_linear (F : C ⥤ D) : (lift R F).linear R := { map_smul' := λ X Y f r, begin dsimp, rw finsupp.sum_smul_index; simp [finsupp.smul_sum, mul_smul], end, } /-- The embedding into the `R`-linear completion, followed by the lift, is isomorphic to the original functor. -/ def embedding_lift_iso (F : C ⥤ D) : embedding R C ⋙ lift R F ≅ F := nat_iso.of_components (λ X, iso.refl _) (by tidy) /-- Two `R`-linear functors out of the `R`-linear completion are isomorphic iff their compositions with the embedding functor are isomorphic. -/ @[ext] def ext {F G : Free R C ⥤ D} [F.additive] [F.linear R] [G.additive] [G.linear R] (α : embedding R C ⋙ F ≅ embedding R C ⋙ G) : F ≅ G := nat_iso.of_components (λ X, α.app X) begin intros X Y f, apply finsupp.induction_linear f, { simp, }, { intros f₁ f₂ w₁ w₂, simp only [F.map_add, G.map_add, add_comp, comp_add, w₁, w₂], }, { intros f' r, rw [iso.app_hom, iso.app_hom, ←smul_single_one, F.map_smul, G.map_smul, smul_comp, comp_smul], change r • (embedding R C ⋙ F).map f' ≫ _ = r • _ ≫ (embedding R C ⋙ G).map f', rw α.hom.naturality f', apply_instance, -- Why are these not picked up automatically when we rewrite? apply_instance, } end /-- `Free.lift` is unique amongst `R`-linear functors `Free R C ⥤ D` which compose with `embedding ℤ C` to give the original functor. -/ def lift_unique (F : C ⥤ D) (L : Free R C ⥤ D) [L.additive] [L.linear R] (α : embedding R C ⋙ L ≅ F) : L ≅ lift R F := ext R (α.trans (embedding_lift_iso R F).symm) end Free end category_theory
ebec6e462b0b7be2542241a741707f24b0d9aed1
367134ba5a65885e863bdc4507601606690974c1
/src/category_theory/limits/preserves/shapes/binary_products.lean
ff3f562bf77266c52a0e8a69a25aeac167a4e07b
[ "Apache-2.0" ]
permissive
kodyvajjha/mathlib
9bead00e90f68269a313f45f5561766cfd8d5cad
b98af5dd79e13a38d84438b850a2e8858ec21284
refs/heads/master
1,624,350,366,310
1,615,563,062,000
1,615,563,062,000
162,666,963
0
0
Apache-2.0
1,545,367,651,000
1,545,367,651,000
null
UTF-8
Lean
false
false
3,462
lean
/- Copyright (c) 2020 Bhavik Mehta. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bhavik Mehta -/ import category_theory.limits.shapes.binary_products import category_theory.limits.preserves.basic /-! # Preserving binary products Constructions to relate the notions of preserving binary products and reflecting binary products to concrete binary fans. In particular, we show that `prod_comparison G X Y` is an isomorphism iff `G` preserves the product of `X` and `Y`. -/ noncomputable theory universes v u₁ u₂ open category_theory category_theory.category category_theory.limits variables {C : Type u₁} [category.{v} C] variables {D : Type u₂} [category.{v} D] variables (G : C ⥤ D) namespace category_theory.limits variables {P X Y Z : C} (f : P ⟶ X) (g : P ⟶ Y) /-- The map of a binary fan is a limit iff the fork consisting of the mapped morphisms is a limit. This essentially lets us commute `binary_fan.mk` with `functor.map_cone`. -/ def is_limit_map_cone_binary_fan_equiv : is_limit (G.map_cone (binary_fan.mk f g)) ≃ is_limit (binary_fan.mk (G.map f) (G.map g)) := (is_limit.postcompose_hom_equiv (diagram_iso_pair _) _).symm.trans (is_limit.equiv_iso_limit (cones.ext (iso.refl _) (by { rintro (_ | _), tidy }))) /-- The property of preserving products expressed in terms of binary fans. -/ def map_is_limit_of_preserves_of_is_limit [preserves_limit (pair X Y) G] (l : is_limit (binary_fan.mk f g)) : is_limit (binary_fan.mk (G.map f) (G.map g)) := is_limit_map_cone_binary_fan_equiv G f g (preserves_limit.preserves l) /-- The property of reflecting products expressed in terms of binary fans. -/ def is_limit_of_reflects_of_map_is_limit [reflects_limit (pair X Y) G] (l : is_limit (binary_fan.mk (G.map f) (G.map g))) : is_limit (binary_fan.mk f g) := reflects_limit.reflects ((is_limit_map_cone_binary_fan_equiv G f g).symm l) variables (X Y) [has_binary_product X Y] /-- If `G` preserves binary products and `C` has them, then the binary fan constructed of the mapped morphisms of the binary product cone is a limit. -/ def is_limit_of_has_binary_product_of_preserves_limit [preserves_limit (pair X Y) G] : is_limit (binary_fan.mk (G.map (limits.prod.fst : X ⨯ Y ⟶ X)) (G.map (limits.prod.snd))) := map_is_limit_of_preserves_of_is_limit G _ _ (prod_is_prod X Y) variables [has_binary_product (G.obj X) (G.obj Y)] /-- If the product comparison map for `G` at `(X,Y)` is an isomorphism, then `G` preserves the pair of `(X,Y)`. -/ def preserves_pair.of_iso_comparison [i : is_iso (prod_comparison G X Y)] : preserves_limit (pair X Y) G := begin apply preserves_limit_of_preserves_limit_cone (prod_is_prod X Y), apply (is_limit_map_cone_binary_fan_equiv _ _ _).symm _, apply is_limit.of_point_iso (limit.is_limit (pair (G.obj X) (G.obj Y))), apply i, end variables [preserves_limit (pair X Y) G] /-- If `G` preserves the product of `(X,Y)`, then the product comparison map for `G` at `(X,Y)` is an isomorphism. -/ def preserves_pair.iso : G.obj (X ⨯ Y) ≅ G.obj X ⨯ G.obj Y := is_limit.cone_point_unique_up_to_iso (is_limit_of_has_binary_product_of_preserves_limit G X Y) (limit.is_limit _) @[simp] lemma preserves_pair.iso_hom : (preserves_pair.iso G X Y).hom = prod_comparison G X Y := rfl instance : is_iso (prod_comparison G X Y) := begin rw ← preserves_pair.iso_hom, apply_instance end end category_theory.limits
e9746df5e9a77b51246cfc7e3f974f57c55a3eab
4e3bf8e2b29061457a887ac8889e88fa5aa0e34c
/lean/love09_hoare_logic_homework_sheet.lean
6a82c2640e066820f476109e5e180f9eabd2076f
[]
no_license
mukeshtiwari/logical_verification_2019
9f964c067a71f65eb8884743273fbeef99e6503d
16f62717f55ed5b7b87e03ae0134791a9bef9b9a
refs/heads/master
1,619,158,844,208
1,585,139,500,000
1,585,139,500,000
249,906,380
0
0
null
1,585,118,728,000
1,585,118,727,000
null
UTF-8
Lean
false
false
2,539
lean
/- LoVe Homework 9: Hoare Logic -/ import .love08_operational_semantics_exercise_sheet import .love09_hoare_logic_demo namespace LoVe /- Question 1: Hoare Logic for Dijkstra's Guarded Command Language -/ /- Recall the definition of GCL from exercise 8: -/ #check gcl namespace gcl #check big_step /- The definition of Hoare triples for partial correctness is unsurprising: -/ def partial_hoare (P : state → Prop) (S : gcl state) (Q : state → Prop) : Prop := ∀s t, P s → (S, s) ~~> t → Q t local notation `{* ` P : 1 ` *} ` S : 1 ` {* ` Q : 1 ` *}` := partial_hoare P S Q namespace partial_hoare variables {P P' P₁ P₂ P₃ Q Q' : state → Prop} {x : string} {a : state → ℕ} variables {S S₀ S₁ S₂ : gcl state} {Ss : list (gcl state)} /- 1.1. Prove the consequence rule. -/ lemma consequence (h : {* P *} S {* Q *}) (hp : ∀s, P' s → P s) (hq : ∀s, Q s → Q' s) : {* P' *} S {* Q' *} := sorry /- 1.2. Prove the rule for `assign`. -/ lemma assign_intro (P : state → Prop) : {* λs : state, P (s{x ↦ a s}) *} assign x a {* P *} := sorry /- 1.3. Prove the rule for `assert`. -/ lemma assert_intro : {* λs, Q s → P s *} assert Q {* P *} := sorry /- 1.4. Prove the rule for `seq`. -/ lemma seq_intro (h₁ : {* P₁ *} S₁ {* P₂ *}) (h₂ : {* P₂ *} S₂ {* P₃ *}) : {* P₁ *} seq S₁ S₂ {* P₃ *} := sorry /- 1.5. Prove the rule for `choice`. -/ lemma choice_intro (h : ∀i (hi : i < list.length Ss), {* λs, P s *} list.nth_le Ss i hi {* Q *}) : {* P *} choice Ss {* Q *} := sorry /- 1.6. State the rule for `loop`. lemma loop_intro … : {* … *} loop p {* … *} := … -/ /- 1.7 **optional**. Prove the rule you stated for `loop`. Hint: This one is difficult and requires some generalization, as explained in Section 5.8 ("Induction Pitfalls") of the lecture notes. -/ -- enter your answer to question 1.6 here -- enter your answer to question 1.7 here end partial_hoare end gcl /- Question 2: Factorial -/ section FACT /- The following WHILE program is intended to compute the factorial of `n`, leaving the result in `r`. -/ def FACT : program := assign "r" (λs, 1) ;; while (λs, s "n" ≠ 0) (assign "r" (λs, s "r" * s "n") ;; assign "n" (λs, s "n" - 1)) /- 2.1. Define the factorial function. -/ def fact : ℕ → ℕ := sorry /- 2.2. Prove the correctness of `FACT` using `vcg`. -/ lemma FACT_correct (n : ℕ) : {* λs, s "n" = n *} FACT {* λs, s "r" = fact n *} := sorry end FACT end LoVe
f2c8b331e4cd43699dd3e9f861e0f5875f0aba9f
57c233acf9386e610d99ed20ef139c5f97504ba3
/src/algebra/big_operators/finprod.lean
6ab0a5ecbcbf0d6c68d5266834a9c285856b2c4b
[ "Apache-2.0" ]
permissive
robertylewis/mathlib
3d16e3e6daf5ddde182473e03a1b601d2810952c
1d13f5b932f5e40a8308e3840f96fc882fae01f0
refs/heads/master
1,651,379,945,369
1,644,276,960,000
1,644,276,960,000
98,875,504
0
0
Apache-2.0
1,644,253,514,000
1,501,495,700,000
Lean
UTF-8
Lean
false
false
43,629
lean
/- Copyright (c) 2020 Kexing Ying and Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying, Kevin Buzzard, Yury Kudryashov -/ import algebra.big_operators.order import algebra.indicator_function /-! # Finite products and sums over types and sets We define products and sums over types and subsets of types, with no finiteness hypotheses. All infinite products and sums are defined to be junk values (i.e. one or zero). This approach is sometimes easier to use than `finset.sum`, when issues arise with `finset` and `fintype` being data. ## Main definitions We use the following variables: * `α`, `β` - types with no structure; * `s`, `t` - sets * `M`, `N` - additive or multiplicative commutative monoids * `f`, `g` - functions Definitions in this file: * `finsum f : M` : the sum of `f x` as `x` ranges over the support of `f`, if it's finite. Zero otherwise. * `finprod f : M` : the product of `f x` as `x` ranges over the multiplicative support of `f`, if it's finite. One otherwise. ## Notation * `∑ᶠ i, f i` and `∑ᶠ i : α, f i` for `finsum f` * `∏ᶠ i, f i` and `∏ᶠ i : α, f i` for `finprod f` This notation works for functions `f : p → M`, where `p : Prop`, so the following works: * `∑ᶠ i ∈ s, f i`, where `f : α → M`, `s : set α` : sum over the set `s`; * `∑ᶠ n < 5, f n`, where `f : ℕ → M` : same as `f 0 + f 1 + f 2 + f 3 + f 4`; * `∏ᶠ (n >= -2) (hn : n < 3), f n`, where `f : ℤ → M` : same as `f (-2) * f (-1) * f 0 * f 1 * f 2`. ## Implementation notes `finsum` and `finprod` is "yet another way of doing finite sums and products in Lean". However experiments in the wild (e.g. with matroids) indicate that it is a helpful approach in settings where the user is not interested in computability and wants to do reasoning without running into typeclass diamonds caused by the constructive finiteness used in definitions such as `finset` and `fintype`. By sticking solely to `set.finite` we avoid these problems. We are aware that there are other solutions but for beginner mathematicians this approach is easier in practice. Another application is the construction of a partition of unity from a collection of “bump” function. In this case the finite set depends on the point and it's convenient to have a definition that does not mention the set explicitly. The first arguments in all definitions and lemmas is the codomain of the function of the big operator. This is necessary for the heuristic in `@[to_additive]`. See the documentation of `to_additive.attr` for more information. We did not add `is_finite (X : Type) : Prop`, because it is simply `nonempty (fintype X)`. ## Tags finsum, finprod, finite sum, finite product -/ open function set /-! ### Definition and relation to `finset.sum` and `finset.prod` -/ section sort variables {M N : Type*} {α β ι : Sort*} [comm_monoid M] [comm_monoid N] open_locale big_operators section /- Note: we use classical logic only for these definitions, to ensure that we do not write lemmas with `classical.dec` in their statement. -/ open_locale classical /-- Sum of `f x` as `x` ranges over the elements of the support of `f`, if it's finite. Zero otherwise. -/ @[irreducible] noncomputable def finsum {M α} [add_comm_monoid M] (f : α → M) : M := if h : finite (support (f ∘ plift.down)) then ∑ i in h.to_finset, f i.down else 0 /-- Product of `f x` as `x` ranges over the elements of the multiplicative support of `f`, if it's finite. One otherwise. -/ @[irreducible, to_additive] noncomputable def finprod (f : α → M) : M := if h : finite (mul_support (f ∘ plift.down)) then ∏ i in h.to_finset, f i.down else 1 end localized "notation `∑ᶠ` binders `, ` r:(scoped:67 f, finsum f) := r" in big_operators localized "notation `∏ᶠ` binders `, ` r:(scoped:67 f, finprod f) := r" in big_operators @[to_additive] lemma finprod_eq_prod_plift_of_mul_support_to_finset_subset {f : α → M} (hf : finite (mul_support (f ∘ plift.down))) {s : finset (plift α)} (hs : hf.to_finset ⊆ s) : ∏ᶠ i, f i = ∏ i in s, f i.down := begin rw [finprod, dif_pos], refine finset.prod_subset hs (λ x hx hxf, _), rwa [hf.mem_to_finset, nmem_mul_support] at hxf end @[to_additive] lemma finprod_eq_prod_plift_of_mul_support_subset {f : α → M} {s : finset (plift α)} (hs : mul_support (f ∘ plift.down) ⊆ s) : ∏ᶠ i, f i = ∏ i in s, f i.down := finprod_eq_prod_plift_of_mul_support_to_finset_subset (s.finite_to_set.subset hs) $ λ x hx, by { rw finite.mem_to_finset at hx, exact hs hx } @[simp, to_additive] lemma finprod_one : ∏ᶠ i : α, (1 : M) = 1 := begin have : mul_support (λ x : plift α, (λ _, 1 : α → M) x.down) ⊆ (∅ : finset (plift α)), from λ x h, h rfl, rw [finprod_eq_prod_plift_of_mul_support_subset this, finset.prod_empty] end @[to_additive] lemma finprod_of_is_empty [is_empty α] (f : α → M) : ∏ᶠ i, f i = 1 := by { rw ← finprod_one, congr } @[simp, to_additive] lemma finprod_false (f : false → M) : ∏ᶠ i, f i = 1 := finprod_of_is_empty _ @[to_additive] lemma finprod_eq_single (f : α → M) (a : α) (ha : ∀ x ≠ a, f x = 1) : ∏ᶠ x, f x = f a := begin have : mul_support (f ∘ plift.down) ⊆ ({plift.up a} : finset (plift α)), { intro x, contrapose, simpa [plift.eq_up_iff_down_eq] using ha x.down }, rw [finprod_eq_prod_plift_of_mul_support_subset this, finset.prod_singleton], end @[to_additive] lemma finprod_unique [unique α] (f : α → M) : ∏ᶠ i, f i = f default := finprod_eq_single f default $ λ x hx, (hx $ unique.eq_default _).elim @[simp, to_additive] lemma finprod_true (f : true → M) : ∏ᶠ i, f i = f trivial := @finprod_unique M true _ ⟨⟨trivial⟩, λ _, rfl⟩ f @[to_additive] lemma finprod_eq_dif {p : Prop} [decidable p] (f : p → M) : ∏ᶠ i, f i = if h : p then f h else 1 := begin split_ifs, { haveI : unique p := ⟨⟨h⟩, λ _, rfl⟩, exact finprod_unique f }, { haveI : is_empty p := ⟨h⟩, exact finprod_of_is_empty f } end @[to_additive] lemma finprod_eq_if {p : Prop} [decidable p] {x : M} : ∏ᶠ i : p, x = if p then x else 1 := finprod_eq_dif (λ _, x) @[to_additive] lemma finprod_congr {f g : α → M} (h : ∀ x, f x = g x) : finprod f = finprod g := congr_arg _ $ funext h @[congr, to_additive] lemma finprod_congr_Prop {p q : Prop} {f : p → M} {g : q → M} (hpq : p = q) (hfg : ∀ h : q, f (hpq.mpr h) = g h) : finprod f = finprod g := by { subst q, exact finprod_congr hfg } attribute [congr] finsum_congr_Prop /-- To prove a property of a finite product, it suffices to prove that the property is multiplicative and holds on multipliers. -/ @[to_additive] lemma finprod_induction {f : α → M} (p : M → Prop) (hp₀ : p 1) (hp₁ : ∀ x y, p x → p y → p (x * y)) (hp₂ : ∀ i, p (f i)) : p (∏ᶠ i, f i) := begin rw finprod, split_ifs, exacts [finset.prod_induction _ _ hp₁ hp₀ (λ i hi, hp₂ _), hp₀] end /-- To prove a property of a finite sum, it suffices to prove that the property is additive and holds on summands. -/ add_decl_doc finsum_induction lemma finprod_nonneg {R : Type*} [ordered_comm_semiring R] {f : α → R} (hf : ∀ x, 0 ≤ f x) : 0 ≤ ∏ᶠ x, f x := finprod_induction (λ x, 0 ≤ x) zero_le_one (λ x y, mul_nonneg) hf @[to_additive finsum_nonneg] lemma one_le_finprod' {M : Type*} [ordered_comm_monoid M] {f : α → M} (hf : ∀ i, 1 ≤ f i) : 1 ≤ ∏ᶠ i, f i := finprod_induction _ le_rfl (λ _ _, one_le_mul) hf @[to_additive] lemma monoid_hom.map_finprod_plift (f : M →* N) (g : α → M) (h : finite (mul_support $ g ∘ plift.down)) : f (∏ᶠ x, g x) = ∏ᶠ x, f (g x) := begin rw [finprod_eq_prod_plift_of_mul_support_subset h.coe_to_finset.ge, finprod_eq_prod_plift_of_mul_support_subset, f.map_prod], rw [h.coe_to_finset], exact mul_support_comp_subset f.map_one (g ∘ plift.down) end @[to_additive] lemma monoid_hom.map_finprod_Prop {p : Prop} (f : M →* N) (g : p → M) : f (∏ᶠ x, g x) = ∏ᶠ x, f (g x) := f.map_finprod_plift g (finite.of_fintype _) @[to_additive] lemma monoid_hom.map_finprod_of_preimage_one (f : M →* N) (hf : ∀ x, f x = 1 → x = 1) (g : α → M) : f (∏ᶠ i, g i) = ∏ᶠ i, f (g i) := begin by_cases hg : (mul_support $ g ∘ plift.down).finite, { exact f.map_finprod_plift g hg }, rw [finprod, dif_neg, f.map_one, finprod, dif_neg], exacts [infinite.mono (λ x hx, mt (hf (g x.down)) hx) hg, hg] end @[to_additive] lemma monoid_hom.map_finprod_of_injective (g : M →* N) (hg : injective g) (f : α → M) : g (∏ᶠ i, f i) = ∏ᶠ i, g (f i) := g.map_finprod_of_preimage_one (λ x, (hg.eq_iff' g.map_one).mp) f @[to_additive] lemma mul_equiv.map_finprod (g : M ≃* N) (f : α → M) : g (∏ᶠ i, f i) = ∏ᶠ i, g (f i) := g.to_monoid_hom.map_finprod_of_injective g.injective f lemma finsum_smul {R M : Type*} [ring R] [add_comm_group M] [module R M] [no_zero_smul_divisors R M] (f : ι → R) (x : M) : (∑ᶠ i, f i) • x = (∑ᶠ i, (f i) • x) := begin rcases eq_or_ne x 0 with rfl|hx, { simp }, exact ((smul_add_hom R M).flip x).map_finsum_of_injective (smul_left_injective R hx) _ end lemma smul_finsum {R M : Type*} [ring R] [add_comm_group M] [module R M] [no_zero_smul_divisors R M] (c : R) (f : ι → M) : c • (∑ᶠ i, f i) = (∑ᶠ i, c • f i) := begin rcases eq_or_ne c 0 with rfl|hc, { simp }, exact (smul_add_hom R M c).map_finsum_of_injective (smul_right_injective M hc) _ end @[to_additive] lemma finprod_inv_distrib {G : Type*} [comm_group G] (f : α → G) : ∏ᶠ x, (f x)⁻¹ = (∏ᶠ x, f x)⁻¹ := ((mul_equiv.inv G).map_finprod f).symm lemma finprod_inv_distrib₀ {G : Type*} [comm_group_with_zero G] (f : α → G) : ∏ᶠ x, (f x)⁻¹ = (∏ᶠ x, f x)⁻¹ := ((mul_equiv.inv₀ G).map_finprod f).symm end sort section type variables {α β ι M N : Type*} [comm_monoid M] [comm_monoid N] open_locale big_operators @[to_additive] lemma finprod_eq_mul_indicator_apply (s : set α) (f : α → M) (a : α) : ∏ᶠ (h : a ∈ s), f a = mul_indicator s f a := by convert finprod_eq_if @[simp, to_additive] lemma finprod_mem_mul_support (f : α → M) (a : α) : ∏ᶠ (h : f a ≠ 1), f a = f a := by rw [← mem_mul_support, finprod_eq_mul_indicator_apply, mul_indicator_mul_support] @[to_additive] lemma finprod_mem_def (s : set α) (f : α → M) : ∏ᶠ a ∈ s, f a = ∏ᶠ a, mul_indicator s f a := finprod_congr $ finprod_eq_mul_indicator_apply s f @[to_additive] lemma finprod_eq_prod_of_mul_support_subset (f : α → M) {s : finset α} (h : mul_support f ⊆ s) : ∏ᶠ i, f i = ∏ i in s, f i := begin have A : mul_support (f ∘ plift.down) = equiv.plift.symm '' mul_support f, { rw mul_support_comp_eq_preimage, exact (equiv.plift.symm.image_eq_preimage _).symm }, have : mul_support (f ∘ plift.down) ⊆ s.map equiv.plift.symm.to_embedding, { rw [A, finset.coe_map], exact image_subset _ h }, rw [finprod_eq_prod_plift_of_mul_support_subset this], simp end @[to_additive] lemma finprod_eq_prod_of_mul_support_to_finset_subset (f : α → M) (hf : finite (mul_support f)) {s : finset α} (h : hf.to_finset ⊆ s) : ∏ᶠ i, f i = ∏ i in s, f i := finprod_eq_prod_of_mul_support_subset _ $ λ x hx, h $ hf.mem_to_finset.2 hx @[to_additive] lemma finprod_def (f : α → M) [decidable (mul_support f).finite] : ∏ᶠ i : α, f i = if h : (mul_support f).finite then ∏ i in h.to_finset, f i else 1 := begin split_ifs, { exact finprod_eq_prod_of_mul_support_to_finset_subset _ h (finset.subset.refl _) }, { rw [finprod, dif_neg], rw [mul_support_comp_eq_preimage], exact mt (λ hf, hf.of_preimage equiv.plift.surjective) h} end @[to_additive] lemma finprod_of_infinite_mul_support {f : α → M} (hf : (mul_support f).infinite) : ∏ᶠ i, f i = 1 := by { classical, rw [finprod_def, dif_neg hf] } @[to_additive] lemma finprod_eq_prod (f : α → M) (hf : (mul_support f).finite) : ∏ᶠ i : α, f i = ∏ i in hf.to_finset, f i := by { classical, rw [finprod_def, dif_pos hf] } @[to_additive] lemma finprod_eq_prod_of_fintype [fintype α] (f : α → M) : ∏ᶠ i : α, f i = ∏ i, f i := finprod_eq_prod_of_mul_support_to_finset_subset _ (finite.of_fintype _) $ finset.subset_univ _ @[to_additive] lemma finprod_cond_eq_prod_of_cond_iff (f : α → M) {p : α → Prop} {t : finset α} (h : ∀ {x}, f x ≠ 1 → (p x ↔ x ∈ t)) : ∏ᶠ i (hi : p i), f i = ∏ i in t, f i := begin set s := {x | p x}, have : mul_support (s.mul_indicator f) ⊆ t, { rw [set.mul_support_mul_indicator], intros x hx, exact (h hx.2).1 hx.1 }, erw [finprod_mem_def, finprod_eq_prod_of_mul_support_subset _ this], refine finset.prod_congr rfl (λ x hx, mul_indicator_apply_eq_self.2 $ λ hxs, _), contrapose! hxs, exact (h hxs).2 hx end @[to_additive] lemma finprod_cond_ne (f : α → M) (a : α) [decidable_eq α] (hf : finite (mul_support f)) : (∏ᶠ i ≠ a, f i) = ∏ i in hf.to_finset.erase a, f i := begin apply finprod_cond_eq_prod_of_cond_iff, intros x hx, rw [finset.mem_erase, finite.mem_to_finset, mem_mul_support], exact ⟨λ h, and.intro h hx, λ h, h.1⟩ end @[to_additive] lemma finprod_mem_eq_prod_of_inter_mul_support_eq (f : α → M) {s : set α} {t : finset α} (h : s ∩ mul_support f = t ∩ mul_support f) : ∏ᶠ i ∈ s, f i = ∏ i in t, f i := finprod_cond_eq_prod_of_cond_iff _ $ by simpa [set.ext_iff] using h @[to_additive] lemma finprod_mem_eq_prod_of_subset (f : α → M) {s : set α} {t : finset α} (h₁ : s ∩ mul_support f ⊆ t) (h₂ : ↑t ⊆ s) : ∏ᶠ i ∈ s, f i = ∏ i in t, f i := finprod_cond_eq_prod_of_cond_iff _ $ λ x hx, ⟨λ h, h₁ ⟨h, hx⟩, λ h, h₂ h⟩ @[to_additive] lemma finprod_mem_eq_prod (f : α → M) {s : set α} (hf : (s ∩ mul_support f).finite) : ∏ᶠ i ∈ s, f i = ∏ i in hf.to_finset, f i := finprod_mem_eq_prod_of_inter_mul_support_eq _ $ by simp [inter_assoc] @[to_additive] lemma finprod_mem_eq_prod_filter (f : α → M) (s : set α) [decidable_pred (∈ s)] (hf : (mul_support f).finite) : ∏ᶠ i ∈ s, f i = ∏ i in finset.filter (∈ s) hf.to_finset, f i := finprod_mem_eq_prod_of_inter_mul_support_eq _ $ by simp [inter_comm, inter_left_comm] @[to_additive] lemma finprod_mem_eq_to_finset_prod (f : α → M) (s : set α) [fintype s] : ∏ᶠ i ∈ s, f i = ∏ i in s.to_finset, f i := finprod_mem_eq_prod_of_inter_mul_support_eq _ $ by rw [coe_to_finset] @[to_additive] lemma finprod_mem_eq_finite_to_finset_prod (f : α → M) {s : set α} (hs : s.finite) : ∏ᶠ i ∈ s, f i = ∏ i in hs.to_finset, f i := finprod_mem_eq_prod_of_inter_mul_support_eq _ $ by rw [hs.coe_to_finset] @[to_additive] lemma finprod_mem_finset_eq_prod (f : α → M) (s : finset α) : ∏ᶠ i ∈ s, f i = ∏ i in s, f i := finprod_mem_eq_prod_of_inter_mul_support_eq _ rfl @[to_additive] lemma finprod_mem_coe_finset (f : α → M) (s : finset α) : ∏ᶠ i ∈ (s : set α), f i = ∏ i in s, f i := finprod_mem_eq_prod_of_inter_mul_support_eq _ rfl @[to_additive] lemma finprod_mem_eq_one_of_infinite {f : α → M} {s : set α} (hs : (s ∩ mul_support f).infinite) : ∏ᶠ i ∈ s, f i = 1 := begin rw finprod_mem_def, apply finprod_of_infinite_mul_support, rwa [← mul_support_mul_indicator] at hs end @[to_additive] lemma finprod_mem_eq_one_of_forall_eq_one {f : α → M} {s : set α} (h : ∀ x ∈ s, f x = 1) : ∏ᶠ i ∈ s, f i = 1 := by simp [h] {contextual := tt} @[to_additive] lemma finprod_mem_inter_mul_support (f : α → M) (s : set α) : ∏ᶠ i ∈ (s ∩ mul_support f), f i = ∏ᶠ i ∈ s, f i := by rw [finprod_mem_def, finprod_mem_def, mul_indicator_inter_mul_support] @[to_additive] lemma finprod_mem_inter_mul_support_eq (f : α → M) (s t : set α) (h : s ∩ mul_support f = t ∩ mul_support f) : ∏ᶠ i ∈ s, f i = ∏ᶠ i ∈ t, f i := by rw [← finprod_mem_inter_mul_support, h, finprod_mem_inter_mul_support] @[to_additive] lemma finprod_mem_inter_mul_support_eq' (f : α → M) (s t : set α) (h : ∀ x ∈ mul_support f, x ∈ s ↔ x ∈ t) : ∏ᶠ i ∈ s, f i = ∏ᶠ i ∈ t, f i := begin apply finprod_mem_inter_mul_support_eq, ext x, exact and_congr_left (h x) end @[to_additive] lemma finprod_mem_univ (f : α → M) : ∏ᶠ i ∈ @set.univ α, f i = ∏ᶠ i : α, f i := finprod_congr $ λ i, finprod_true _ variables {f g : α → M} {a b : α} {s t : set α} @[to_additive] lemma finprod_mem_congr (h₀ : s = t) (h₁ : ∀ x ∈ t, f x = g x) : ∏ᶠ i ∈ s, f i = ∏ᶠ i ∈ t, g i := h₀.symm ▸ (finprod_congr $ λ i, finprod_congr_Prop rfl (h₁ i)) @[to_additive] lemma finprod_eq_one_of_forall_eq_one {f : α → M} (h : ∀ x, f x = 1) : ∏ᶠ i, f i = 1 := by simp [h] {contextual := tt} /-! ### Distributivity w.r.t. addition, subtraction, and (scalar) multiplication -/ /-- If the multiplicative supports of `f` and `g` are finite, then the product of `f i * g i` equals the product of `f i` multiplied by the product over `g i`. -/ @[to_additive] lemma finprod_mul_distrib (hf : (mul_support f).finite) (hg : (mul_support g).finite) : ∏ᶠ i, (f i * g i) = (∏ᶠ i, f i) * ∏ᶠ i, g i := begin classical, rw [finprod_eq_prod_of_mul_support_to_finset_subset _ hf (finset.subset_union_left _ _), finprod_eq_prod_of_mul_support_to_finset_subset _ hg (finset.subset_union_right _ _), ← finset.prod_mul_distrib], refine finprod_eq_prod_of_mul_support_subset _ _, simp [mul_support_mul] end /-- If the multiplicative supports of `f` and `g` are finite, then the product of `f i / g i` equals the product of `f i` divided by the product over `g i`. -/ @[to_additive] lemma finprod_div_distrib {G : Type*} [comm_group G] {f g : α → G} (hf : (mul_support f).finite) (hg : (mul_support g).finite) : ∏ᶠ i, f i / g i = (∏ᶠ i, f i) / ∏ᶠ i, g i := by simp only [div_eq_mul_inv, finprod_mul_distrib hf ((mul_support_inv g).symm.rec hg), finprod_inv_distrib] lemma finprod_div_distrib₀ {G : Type*} [comm_group_with_zero G] {f g : α → G} (hf : (mul_support f).finite) (hg : (mul_support g).finite) : ∏ᶠ i, f i / g i = (∏ᶠ i, f i) / ∏ᶠ i, g i := by simp only [div_eq_mul_inv, finprod_mul_distrib hf ((mul_support_inv₀ g).symm.rec hg), finprod_inv_distrib₀] /-- A more general version of `finprod_mem_mul_distrib` that requires `s ∩ mul_support f` and `s ∩ mul_support g` instead of `s` to be finite. -/ @[to_additive] lemma finprod_mem_mul_distrib' (hf : (s ∩ mul_support f).finite) (hg : (s ∩ mul_support g).finite) : ∏ᶠ i ∈ s, (f i * g i) = (∏ᶠ i ∈ s, f i) * ∏ᶠ i ∈ s, g i := begin rw [← mul_support_mul_indicator] at hf hg, simp only [finprod_mem_def, mul_indicator_mul, finprod_mul_distrib hf hg] end /-- The product of constant one over any set equals one. -/ @[to_additive] lemma finprod_mem_one (s : set α) : ∏ᶠ i ∈ s, (1 : M) = 1 := by simp /-- If a function `f` equals one on a set `s`, then the product of `f i` over `i ∈ s` equals one. -/ @[to_additive] lemma finprod_mem_of_eq_on_one (hf : eq_on f 1 s) : ∏ᶠ i ∈ s, f i = 1 := by { rw ← finprod_mem_one s, exact finprod_mem_congr rfl hf } /-- If the product of `f i` over `i ∈ s` is not equal to one, then there is some `x ∈ s` such that `f x ≠ 1`. -/ @[to_additive] lemma exists_ne_one_of_finprod_mem_ne_one (h : ∏ᶠ i ∈ s, f i ≠ 1) : ∃ x ∈ s, f x ≠ 1 := begin by_contra' h', exact h (finprod_mem_of_eq_on_one h') end /-- Given a finite set `s`, the product of `f i * g i` over `i ∈ s` equals the product of `f i` over `i ∈ s` times the product of `g i` over `i ∈ s`. -/ @[to_additive] lemma finprod_mem_mul_distrib (hs : s.finite) : ∏ᶠ i ∈ s, (f i * g i) = (∏ᶠ i ∈ s, f i) * ∏ᶠ i ∈ s, g i := finprod_mem_mul_distrib' (hs.inter_of_left _) (hs.inter_of_left _) @[to_additive] lemma monoid_hom.map_finprod {f : α → M} (g : M →* N) (hf : (mul_support f).finite) : g (∏ᶠ i, f i) = ∏ᶠ i, g (f i) := g.map_finprod_plift f $ hf.preimage $ equiv.plift.injective.inj_on _ /-- A more general version of `monoid_hom.map_finprod_mem` that requires `s ∩ mul_support f` and instead of `s` to be finite. -/ @[to_additive] lemma monoid_hom.map_finprod_mem' {f : α → M} (g : M →* N) (h₀ : (s ∩ mul_support f).finite) : g (∏ᶠ j ∈ s, f j) = ∏ᶠ i ∈ s, (g (f i)) := begin rw [g.map_finprod], { simp only [g.map_finprod_Prop] }, { simpa only [finprod_eq_mul_indicator_apply, mul_support_mul_indicator] } end /-- Given a monoid homomorphism `g : M →* N`, and a function `f : α → M`, the value of `g` at the product of `f i` over `i ∈ s` equals the product of `(g ∘ f) i` over `s`. -/ @[to_additive] lemma monoid_hom.map_finprod_mem (f : α → M) (g : M →* N) (hs : s.finite) : g (∏ᶠ j ∈ s, f j) = ∏ᶠ i ∈ s, g (f i) := g.map_finprod_mem' (hs.inter_of_left _) @[to_additive] lemma mul_equiv.map_finprod_mem (g : M ≃* N) (f : α → M) {s : set α} (hs : s.finite) : g (∏ᶠ i ∈ s, f i) = ∏ᶠ i ∈ s, g (f i) := g.to_monoid_hom.map_finprod_mem f hs @[to_additive] lemma finprod_mem_inv_distrib {G : Type*} [comm_group G] (f : α → G) (hs : s.finite) : ∏ᶠ x ∈ s, (f x)⁻¹ = (∏ᶠ x ∈ s, f x)⁻¹ := ((mul_equiv.inv G).map_finprod_mem f hs).symm lemma finprod_mem_inv_distrib₀ {G : Type*} [comm_group_with_zero G] (f : α → G) (hs : s.finite) : ∏ᶠ x ∈ s, (f x)⁻¹ = (∏ᶠ x ∈ s, f x)⁻¹ := ((mul_equiv.inv₀ G).map_finprod_mem f hs).symm /-- Given a finite set `s`, the product of `f i / g i` over `i ∈ s` equals the product of `f i` over `i ∈ s` divided by the product of `g i` over `i ∈ s`. -/ @[to_additive] lemma finprod_mem_div_distrib {G : Type*} [comm_group G] (f g : α → G) (hs : s.finite) : ∏ᶠ i ∈ s, f i / g i = (∏ᶠ i ∈ s, f i) / ∏ᶠ i ∈ s, g i := by simp only [div_eq_mul_inv, finprod_mem_mul_distrib hs, finprod_mem_inv_distrib g hs] lemma finprod_mem_div_distrib₀ {G : Type*} [comm_group_with_zero G] (f g : α → G) (hs : s.finite) : ∏ᶠ i ∈ s, f i / g i = (∏ᶠ i ∈ s, f i) / ∏ᶠ i ∈ s, g i := by simp only [div_eq_mul_inv, finprod_mem_mul_distrib hs, finprod_mem_inv_distrib₀ g hs] /-! ### `∏ᶠ x ∈ s, f x` and set operations -/ /-- The product of any function over an empty set is one. -/ @[to_additive] lemma finprod_mem_empty : ∏ᶠ i ∈ (∅ : set α), f i = 1 := by simp /-- A set `s` is not empty if the product of some function over `s` is not equal to one. -/ @[to_additive] lemma nonempty_of_finprod_mem_ne_one (h : ∏ᶠ i ∈ s, f i ≠ 1) : s.nonempty := ne_empty_iff_nonempty.1 $ λ h', h $ h'.symm ▸ finprod_mem_empty /-- Given finite sets `s` and `t`, the product of `f i` over `i ∈ s ∪ t` times the product of `f i` over `i ∈ s ∩ t` equals the product of `f i` over `i ∈ s` times the product of `f i` over `i ∈ t`. -/ @[to_additive] lemma finprod_mem_union_inter (hs : s.finite) (ht : t.finite) : (∏ᶠ i ∈ s ∪ t, f i) * ∏ᶠ i ∈ s ∩ t, f i = (∏ᶠ i ∈ s, f i) * ∏ᶠ i ∈ t, f i := begin lift s to finset α using hs, lift t to finset α using ht, classical, rw [← finset.coe_union, ← finset.coe_inter], simp only [finprod_mem_coe_finset, finset.prod_union_inter] end /-- A more general version of `finprod_mem_union_inter` that requires `s ∩ mul_support f` and `t ∩ mul_support f` instead of `s` and `t` to be finite. -/ @[to_additive] lemma finprod_mem_union_inter' (hs : (s ∩ mul_support f).finite) (ht : (t ∩ mul_support f).finite) : (∏ᶠ i ∈ s ∪ t, f i) * ∏ᶠ i ∈ s ∩ t, f i = (∏ᶠ i ∈ s, f i) * ∏ᶠ i ∈ t, f i := begin rw [← finprod_mem_inter_mul_support f s, ← finprod_mem_inter_mul_support f t, ← finprod_mem_union_inter hs ht, ← union_inter_distrib_right, finprod_mem_inter_mul_support, ← finprod_mem_inter_mul_support f (s ∩ t)], congr' 2, rw [inter_left_comm, inter_assoc, inter_assoc, inter_self, inter_left_comm] end /-- A more general version of `finprod_mem_union` that requires `s ∩ mul_support f` and `t ∩ mul_support f` instead of `s` and `t` to be finite. -/ @[to_additive] lemma finprod_mem_union' (hst : disjoint s t) (hs : (s ∩ mul_support f).finite) (ht : (t ∩ mul_support f).finite) : ∏ᶠ i ∈ s ∪ t, f i = (∏ᶠ i ∈ s, f i) * ∏ᶠ i ∈ t, f i := by rw [← finprod_mem_union_inter' hs ht, disjoint_iff_inter_eq_empty.1 hst, finprod_mem_empty, mul_one] /-- Given two finite disjoint sets `s` and `t`, the product of `f i` over `i ∈ s ∪ t` equals the product of `f i` over `i ∈ s` times the product of `f i` over `i ∈ t`. -/ @[to_additive] lemma finprod_mem_union (hst : disjoint s t) (hs : s.finite) (ht : t.finite) : ∏ᶠ i ∈ s ∪ t, f i = (∏ᶠ i ∈ s, f i) * ∏ᶠ i ∈ t, f i := finprod_mem_union' hst (hs.inter_of_left _) (ht.inter_of_left _) /-- A more general version of `finprod_mem_union'` that requires `s ∩ mul_support f` and `t ∩ mul_support f` instead of `s` and `t` to be disjoint -/ @[to_additive] lemma finprod_mem_union'' (hst : disjoint (s ∩ mul_support f) (t ∩ mul_support f)) (hs : (s ∩ mul_support f).finite) (ht : (t ∩ mul_support f).finite) : ∏ᶠ i ∈ s ∪ t, f i = (∏ᶠ i ∈ s, f i) * ∏ᶠ i ∈ t, f i := by rw [← finprod_mem_inter_mul_support f s, ← finprod_mem_inter_mul_support f t, ← finprod_mem_union hst hs ht, ← union_inter_distrib_right, finprod_mem_inter_mul_support] /-- The product of `f i` over `i ∈ {a}` equals `f a`. -/ @[to_additive] lemma finprod_mem_singleton : ∏ᶠ i ∈ ({a} : set α), f i = f a := by rw [← finset.coe_singleton, finprod_mem_coe_finset, finset.prod_singleton] @[simp, to_additive] lemma finprod_cond_eq_left : ∏ᶠ i = a, f i = f a := finprod_mem_singleton @[simp, to_additive] lemma finprod_cond_eq_right : ∏ᶠ i (hi : a = i), f i = f a := by simp [@eq_comm _ a] /-- A more general version of `finprod_mem_insert` that requires `s ∩ mul_support f` instead of `s` to be finite. -/ @[to_additive] lemma finprod_mem_insert' (f : α → M) (h : a ∉ s) (hs : (s ∩ mul_support f).finite) : ∏ᶠ i ∈ insert a s, f i = f a * ∏ᶠ i ∈ s, f i := begin rw [insert_eq, finprod_mem_union' _ _ hs, finprod_mem_singleton], { rwa disjoint_singleton_left }, { exact (finite_singleton a).inter_of_left _ } end /-- Given a finite set `s` and an element `a ∉ s`, the product of `f i` over `i ∈ insert a s` equals `f a` times the product of `f i` over `i ∈ s`. -/ @[to_additive] lemma finprod_mem_insert (f : α → M) (h : a ∉ s) (hs : s.finite) : ∏ᶠ i ∈ insert a s, f i = f a * ∏ᶠ i ∈ s, f i := finprod_mem_insert' f h $ hs.inter_of_left _ /-- If `f a = 1` for all `a ∉ s`, then the product of `f i` over `i ∈ insert a s` equals the product of `f i` over `i ∈ s`. -/ @[to_additive] lemma finprod_mem_insert_of_eq_one_if_not_mem (h : a ∉ s → f a = 1) : ∏ᶠ i ∈ (insert a s), f i = ∏ᶠ i ∈ s, f i := begin refine finprod_mem_inter_mul_support_eq' _ _ _ (λ x hx, ⟨_, or.inr⟩), rintro (rfl|hxs), exacts [not_imp_comm.1 h hx, hxs] end /-- If `f a = 1`, then the product of `f i` over `i ∈ insert a s` equals the product of `f i` over `i ∈ s`. -/ @[to_additive] lemma finprod_mem_insert_one (h : f a = 1) : ∏ᶠ i ∈ (insert a s), f i = ∏ᶠ i ∈ s, f i := finprod_mem_insert_of_eq_one_if_not_mem (λ _, h) /-- If the multiplicative support of `f` is finite, then for every `x` in the domain of `f`, `f x` divides `finprod f`. -/ lemma finprod_mem_dvd {f : α → N} (a : α) (hf : finite (mul_support f)) : f a ∣ finprod f := begin by_cases ha : a ∈ mul_support f, { rw finprod_eq_prod_of_mul_support_to_finset_subset f hf (set.subset.refl _), exact finset.dvd_prod_of_mem f ((finite.mem_to_finset hf).mpr ha) }, { rw nmem_mul_support.mp ha, exact one_dvd (finprod f) } end /-- The product of `f i` over `i ∈ {a, b}`, `a ≠ b`, is equal to `f a * f b`. -/ @[to_additive] lemma finprod_mem_pair (h : a ≠ b) : ∏ᶠ i ∈ ({a, b} : set α), f i = f a * f b := by { rw [finprod_mem_insert, finprod_mem_singleton], exacts [h, finite_singleton b] } /-- The product of `f y` over `y ∈ g '' s` equals the product of `f (g i)` over `s` provided that `g` is injective on `s ∩ mul_support (f ∘ g)`. -/ @[to_additive] lemma finprod_mem_image' {s : set β} {g : β → α} (hg : set.inj_on g (s ∩ mul_support (f ∘ g))) : ∏ᶠ i ∈ (g '' s), f i = ∏ᶠ j ∈ s, f (g j) := begin classical, by_cases hs : finite (s ∩ mul_support (f ∘ g)), { have hg : ∀ (x ∈ hs.to_finset) (y ∈ hs.to_finset), g x = g y → x = y, by simpa only [hs.mem_to_finset], rw [finprod_mem_eq_prod _ hs, ← finset.prod_image hg], refine finprod_mem_eq_prod_of_inter_mul_support_eq f _, rw [finset.coe_image, hs.coe_to_finset, ← image_inter_mul_support_eq, inter_assoc, inter_self] }, { rw [finprod_mem_eq_one_of_infinite hs, finprod_mem_eq_one_of_infinite], rwa [image_inter_mul_support_eq, infinite_image_iff hg] } end /-- The product of `f y` over `y ∈ g '' s` equals the product of `f (g i)` over `s` provided that `g` is injective on `s`. -/ @[to_additive] lemma finprod_mem_image {β} {s : set β} {g : β → α} (hg : set.inj_on g s) : ∏ᶠ i ∈ (g '' s), f i = ∏ᶠ j ∈ s, f (g j) := finprod_mem_image' $ hg.mono $ inter_subset_left _ _ /-- The product of `f y` over `y ∈ set.range g` equals the product of `f (g i)` over all `i` provided that `g` is injective on `mul_support (f ∘ g)`. -/ @[to_additive] lemma finprod_mem_range' {g : β → α} (hg : set.inj_on g (mul_support (f ∘ g))) : ∏ᶠ i ∈ range g, f i = ∏ᶠ j, f (g j) := begin rw [← image_univ, finprod_mem_image', finprod_mem_univ], rwa univ_inter end /-- The product of `f y` over `y ∈ set.range g` equals the product of `f (g i)` over all `i` provided that `g` is injective. -/ @[to_additive] lemma finprod_mem_range {g : β → α} (hg : injective g) : ∏ᶠ i ∈ range g, f i = ∏ᶠ j, f (g j) := finprod_mem_range' (hg.inj_on _) /-- The product of `f i` over `s : set α` is equal to the product of `g j` over `t : set β` if there exists a function `e : α → β` such that `e` is bijective from `s` to `t` and for all `x` in `s` we have `f x = g (e x)`. See also `finset.prod_bij`. -/ @[to_additive] lemma finprod_mem_eq_of_bij_on {s : set α} {t : set β} {f : α → M} {g : β → M} (e : α → β) (he₀ : set.bij_on e s t) (he₁ : ∀ x ∈ s, f x = g (e x)) : ∏ᶠ i ∈ s, f i = ∏ᶠ j ∈ t, g j := begin rw [← set.bij_on.image_eq he₀, finprod_mem_image he₀.2.1], exact finprod_mem_congr rfl he₁ end /-- The product of `f i` is equal to the product of `g j` if there exists a bijective function `e : α → β` such that for all `x` we have `f x = g (e x)`. See `finprod_comp`, `fintype.prod_bijective` and `finset.prod_bij` -/ @[to_additive] lemma finprod_eq_of_bijective {f : α → M} {g : β → M} (e : α → β) (he₀ : function.bijective e) (he₁ : ∀ x, f x = g (e x)) : ∏ᶠ i, f i = ∏ᶠ j, g j := begin rw [← finprod_mem_univ f, ← finprod_mem_univ g], exact finprod_mem_eq_of_bij_on _ (bijective_iff_bij_on_univ.mp he₀) (λ x _, he₁ x), end /-- Given a bijective function `e` the product of `g i` is equal to the product of `g (e i)`. See also `finprod_eq_of_bijective`, `fintype.prod_bijective` and `finset.prod_bij` -/ @[to_additive] lemma finprod_comp {g : β → M} (e : α → β) (he₀ : function.bijective e) : ∏ᶠ i, g (e i) = ∏ᶠ j, g j := finprod_eq_of_bijective e he₀ (λ x, rfl) @[to_additive] lemma finprod_set_coe_eq_finprod_mem (s : set α) : ∏ᶠ j : s, f j = ∏ᶠ i ∈ s, f i := begin rw [← finprod_mem_range, subtype.range_coe], exact subtype.coe_injective end @[to_additive] lemma finprod_subtype_eq_finprod_cond (p : α → Prop) : ∏ᶠ j : subtype p, f j = ∏ᶠ i (hi : p i), f i := finprod_set_coe_eq_finprod_mem {i | p i} @[to_additive] lemma finprod_mem_inter_mul_diff' (t : set α) (h : (s ∩ mul_support f).finite) : (∏ᶠ i ∈ s ∩ t, f i) * ∏ᶠ i ∈ s \ t, f i = ∏ᶠ i ∈ s, f i := begin rw [← finprod_mem_union', inter_union_diff], exacts [λ x hx, hx.2.2 hx.1.2, h.subset (λ x hx, ⟨hx.1.1, hx.2⟩), h.subset (λ x hx, ⟨hx.1.1, hx.2⟩)], end @[to_additive] lemma finprod_mem_inter_mul_diff (t : set α) (h : s.finite) : (∏ᶠ i ∈ s ∩ t, f i) * ∏ᶠ i ∈ s \ t, f i = ∏ᶠ i ∈ s, f i := finprod_mem_inter_mul_diff' _ $ h.inter_of_left _ /-- A more general version of `finprod_mem_mul_diff` that requires `t ∩ mul_support f` instead of `t` to be finite. -/ @[to_additive] lemma finprod_mem_mul_diff' (hst : s ⊆ t) (ht : (t ∩ mul_support f).finite) : (∏ᶠ i ∈ s, f i) * ∏ᶠ i ∈ t \ s, f i = ∏ᶠ i ∈ t, f i := by rw [← finprod_mem_inter_mul_diff' _ ht, inter_eq_self_of_subset_right hst] /-- Given a finite set `t` and a subset `s` of `t`, the product of `f i` over `i ∈ s` times the product of `f i` over `t \ s` equals the product of `f i` over `i ∈ t`. -/ @[to_additive] lemma finprod_mem_mul_diff (hst : s ⊆ t) (ht : t.finite) : (∏ᶠ i ∈ s, f i) * ∏ᶠ i ∈ t \ s, f i = ∏ᶠ i ∈ t, f i := finprod_mem_mul_diff' hst (ht.inter_of_left _) /-- Given a family of pairwise disjoint finite sets `t i` indexed by a finite type, the product of `f a` over the union `⋃ i, t i` is equal to the product over all indexes `i` of the products of `f a` over `a ∈ t i`. -/ @[to_additive] lemma finprod_mem_Union [fintype ι] {t : ι → set α} (h : pairwise (disjoint on t)) (ht : ∀ i, (t i).finite) : ∏ᶠ a ∈ (⋃ i : ι, t i), f a = ∏ᶠ i, (∏ᶠ a ∈ t i, f a) := begin lift t to ι → finset α using ht, classical, rw [← bUnion_univ, ← finset.coe_univ, ← finset.coe_bUnion, finprod_mem_coe_finset, finset.prod_bUnion], { simp only [finprod_mem_coe_finset, finprod_eq_prod_of_fintype] }, { exact λ x _ y _ hxy, finset.disjoint_iff_disjoint_coe.2 (h x y hxy) } end /-- Given a family of sets `t : ι → set α`, a finite set `I` in the index type such that all sets `t i`, `i ∈ I`, are finite, if all `t i`, `i ∈ I`, are pairwise disjoint, then the product of `f a` over `a ∈ ⋃ i ∈ I, t i` is equal to the product over `i ∈ I` of the products of `f a` over `a ∈ t i`. -/ @[to_additive] lemma finprod_mem_bUnion {I : set ι} {t : ι → set α} (h : I.pairwise_disjoint t) (hI : I.finite) (ht : ∀ i ∈ I, (t i).finite) : ∏ᶠ a ∈ ⋃ x ∈ I, t x, f a = ∏ᶠ i ∈ I, ∏ᶠ j ∈ t i, f j := begin haveI := hI.fintype, rw [bUnion_eq_Union, finprod_mem_Union, ← finprod_set_coe_eq_finprod_mem], exacts [λ x y hxy, h x.2 y.2 (subtype.coe_injective.ne hxy), λ b, ht b b.2] end /-- If `t` is a finite set of pairwise disjoint finite sets, then the product of `f a` over `a ∈ ⋃₀ t` is the product over `s ∈ t` of the products of `f a` over `a ∈ s`. -/ @[to_additive] lemma finprod_mem_sUnion {t : set (set α)} (h : t.pairwise_disjoint id) (ht₀ : t.finite) (ht₁ : ∀ x ∈ t, set.finite x) : ∏ᶠ a ∈ ⋃₀ t, f a = ∏ᶠ s ∈ t, ∏ᶠ a ∈ s, f a := by { rw set.sUnion_eq_bUnion, exact finprod_mem_bUnion h ht₀ ht₁ } @[to_additive] lemma mul_finprod_cond_ne (a : α) (hf : finite (mul_support f)) : f a * (∏ᶠ i ≠ a, f i) = ∏ᶠ i, f i := begin classical, rw [finprod_eq_prod _ hf], have h : ∀ x : α, f x ≠ 1 → (x ≠ a ↔ x ∈ hf.to_finset \ {a}), { intros x hx, rw [finset.mem_sdiff, finset.mem_singleton, finite.mem_to_finset, mem_mul_support], exact ⟨λ h, and.intro hx h, λ h, h.2⟩,}, rw [finprod_cond_eq_prod_of_cond_iff f h, finset.sdiff_singleton_eq_erase], by_cases ha : a ∈ mul_support f, { apply finset.mul_prod_erase _ _ ((finite.mem_to_finset _ ).mpr ha), }, { rw [mem_mul_support, not_not] at ha, rw [ha, one_mul], apply finset.prod_erase _ ha, } end /-- If `s : set α` and `t : set β` are finite sets, then the product over `s` commutes with the product over `t`. -/ @[to_additive] lemma finprod_mem_comm {s : set α} {t : set β} (f : α → β → M) (hs : s.finite) (ht : t.finite) : ∏ᶠ i ∈ s, ∏ᶠ j ∈ t, f i j = ∏ᶠ j ∈ t, ∏ᶠ i ∈ s, f i j := begin lift s to finset α using hs, lift t to finset β using ht, simp only [finprod_mem_coe_finset], exact finset.prod_comm end /-- To prove a property of a finite product, it suffices to prove that the property is multiplicative and holds on multipliers. -/ @[to_additive] lemma finprod_mem_induction (p : M → Prop) (hp₀ : p 1) (hp₁ : ∀ x y, p x → p y → p (x * y)) (hp₂ : ∀ x ∈ s, p $ f x) : p (∏ᶠ i ∈ s, f i) := finprod_induction _ hp₀ hp₁ $ λ x, finprod_induction _ hp₀ hp₁ $ hp₂ x lemma finprod_cond_nonneg {R : Type*} [ordered_comm_semiring R] {p : α → Prop} {f : α → R} (hf : ∀ x, p x → 0 ≤ f x) : 0 ≤ ∏ᶠ x (h : p x), f x := finprod_nonneg $ λ x, finprod_nonneg $ hf x @[to_additive] lemma single_le_finprod {M : Type*} [ordered_comm_monoid M] (i : α) {f : α → M} (hf : finite (mul_support f)) (h : ∀ j, 1 ≤ f j) : f i ≤ ∏ᶠ j, f j := by classical; calc f i ≤ ∏ j in insert i hf.to_finset, f j : finset.single_le_prod' (λ j hj, h j) (finset.mem_insert_self _ _) ... = ∏ᶠ j, f j : (finprod_eq_prod_of_mul_support_to_finset_subset _ hf (finset.subset_insert _ _)).symm lemma finprod_eq_zero {M₀ : Type*} [comm_monoid_with_zero M₀] (f : α → M₀) (x : α) (hx : f x = 0) (hf : finite (mul_support f)) : ∏ᶠ x, f x = 0 := begin nontriviality, rw [finprod_eq_prod f hf], refine finset.prod_eq_zero (hf.mem_to_finset.2 _) hx, simp [hx] end @[to_additive] lemma finprod_prod_comm (s : finset β) (f : α → β → M) (h : ∀ b ∈ s, (mul_support (λ a, f a b)).finite) : ∏ᶠ a : α, ∏ b in s, f a b = ∏ b in s, ∏ᶠ a : α, f a b := begin have hU : mul_support (λ a, ∏ b in s, f a b) ⊆ (s.finite_to_set.bUnion (λ b hb, h b (finset.mem_coe.1 hb))).to_finset, { rw finite.coe_to_finset, intros x hx, simp only [exists_prop, mem_Union, ne.def, mem_mul_support, finset.mem_coe], contrapose! hx, rw [mem_mul_support, not_not, finset.prod_congr rfl hx, finset.prod_const_one] }, rw [finprod_eq_prod_of_mul_support_subset _ hU, finset.prod_comm], refine finset.prod_congr rfl (λ b hb, (finprod_eq_prod_of_mul_support_subset _ _).symm), intros a ha, simp only [finite.coe_to_finset, mem_Union], exact ⟨b, hb, ha⟩ end @[to_additive] lemma prod_finprod_comm (s : finset α) (f : α → β → M) (h : ∀ a ∈ s, (mul_support (f a)).finite) : ∏ a in s, ∏ᶠ b : β, f a b = ∏ᶠ b : β, ∏ a in s, f a b := (finprod_prod_comm s (λ b a, f a b) h).symm lemma mul_finsum {R : Type*} [semiring R] (f : α → R) (r : R) (h : (function.support f).finite) : r * ∑ᶠ a : α, f a = ∑ᶠ a : α, r * f a := (add_monoid_hom.mul_left r).map_finsum h lemma finsum_mul {R : Type*} [semiring R] (f : α → R) (r : R) (h : (function.support f).finite) : (∑ᶠ a : α, f a) * r = ∑ᶠ a : α, f a * r := (add_monoid_hom.mul_right r).map_finsum h @[to_additive] lemma finset.mul_support_of_fiberwise_prod_subset_image [decidable_eq β] (s : finset α) (f : α → M) (g : α → β) : mul_support (λ b, (s.filter (λ a, g a = b)).prod f) ⊆ s.image g := begin simp only [finset.coe_image, set.mem_image, finset.mem_coe, function.support_subset_iff], intros b h, suffices : (s.filter (λ (a : α), g a = b)).nonempty, { simpa only [s.fiber_nonempty_iff_mem_image g b, finset.mem_image, exists_prop], }, exact finset.nonempty_of_prod_ne_one h, end /-- Note that `b ∈ (s.filter (λ ab, prod.fst ab = a)).image prod.snd` iff `(a, b) ∈ s` so we can simplify the right hand side of this lemma. However the form stated here is more useful for iterating this lemma, e.g., if we have `f : α × β × γ → M`. -/ @[to_additive] lemma finprod_mem_finset_product' [decidable_eq α] [decidable_eq β] (s : finset (α × β)) (f : α × β → M) : ∏ᶠ ab (h : ab ∈ s), f ab = ∏ᶠ a b (h : b ∈ (s.filter (λ ab, prod.fst ab = a)).image prod.snd), f (a, b) := begin have : ∀ a, ∏ (i : β) in (s.filter (λ ab, prod.fst ab = a)).image prod.snd, f (a, i) = (finset.filter (λ ab, prod.fst ab = a) s).prod f, { refine (λ a, finset.prod_bij (λ b _, (a, b)) _ _ _ _); -- `finish` closes these goals try { simp, done }, suffices : ∀ a' b, (a', b) ∈ s → a' = a → (a, b) ∈ s ∧ a' = a, by simpa, rintros a' b hp rfl, exact ⟨hp, rfl⟩ }, rw finprod_mem_finset_eq_prod, simp_rw [finprod_mem_finset_eq_prod, this], rw [finprod_eq_prod_of_mul_support_subset _ (s.mul_support_of_fiberwise_prod_subset_image f prod.fst), ← finset.prod_fiberwise_of_maps_to _ f], -- `finish` could close the goal here simp only [finset.mem_image, prod.mk.eta], exact λ x hx, ⟨x, hx, rfl⟩, end /-- See also `finprod_mem_finset_product'`. -/ @[to_additive] lemma finprod_mem_finset_product (s : finset (α × β)) (f : α × β → M) : ∏ᶠ ab (h : ab ∈ s), f ab = ∏ᶠ a b (h : (a, b) ∈ s), f (a, b) := by { classical, rw finprod_mem_finset_product', simp, } @[to_additive] lemma finprod_mem_finset_product₃ {γ : Type*} (s : finset (α × β × γ)) (f : α × β × γ → M) : ∏ᶠ abc (h : abc ∈ s), f abc = ∏ᶠ a b c (h : (a, b, c) ∈ s), f (a, b, c) := by { classical, rw finprod_mem_finset_product', simp_rw finprod_mem_finset_product', simp, } @[to_additive] lemma finprod_curry (f : α × β → M) (hf : (mul_support f).finite) : ∏ᶠ ab, f ab = ∏ᶠ a b, f (a, b) := begin have h₁ : ∀ a, ∏ᶠ (h : a ∈ hf.to_finset), f a = f a, { simp, }, have h₂ : ∏ᶠ a, f a = ∏ᶠ a (h : a ∈ hf.to_finset), f a, { simp, }, simp_rw [h₂, finprod_mem_finset_product, h₁], end @[to_additive] lemma finprod_curry₃ {γ : Type*} (f : α × β × γ → M) (h : (mul_support f).finite) : ∏ᶠ abc, f abc = ∏ᶠ a b c, f (a, b, c) := by { rw finprod_curry f h, congr, ext a, rw finprod_curry, simp [h], } @[to_additive] lemma finprod_dmem {s : set α} [decidable_pred (∈ s)] (f : (Π (a : α), a ∈ s → M)) : ∏ᶠ (a : α) (h : a ∈ s), f a h = ∏ᶠ (a : α) (h : a ∈ s), if h' : a ∈ s then f a h' else 1 := finprod_congr (λ a, finprod_congr (λ ha, (dif_pos ha).symm)) @[to_additive] lemma finprod_emb_domain' {f : α → β} (hf : function.injective f) [decidable_pred (∈ set.range f)] (g : α → M) : ∏ᶠ (b : β), (if h : b ∈ set.range f then g (classical.some h) else 1) = ∏ᶠ (a : α), g a := begin simp_rw [← finprod_eq_dif], rw [finprod_dmem, finprod_mem_range hf, finprod_congr (λ a, _)], rw [dif_pos (set.mem_range_self a), hf (classical.some_spec (set.mem_range_self a))] end @[to_additive] lemma finprod_emb_domain (f : α ↪ β) [decidable_pred (∈ set.range f)] (g : α → M) : ∏ᶠ (b : β), (if h : b ∈ set.range f then g (classical.some h) else 1) = ∏ᶠ (a : α), g a := finprod_emb_domain' f.injective g end type
7fbf931f1884424abe8a4be37b3ae58b5b4a8bd1
69d4931b605e11ca61881fc4f66db50a0a875e39
/src/topology/category/Top/basic.lean
61377c5d6be8f237587d04fd103f189587732e14
[ "Apache-2.0" ]
permissive
abentkamp/mathlib
d9a75d291ec09f4637b0f30cc3880ffb07549ee5
5360e476391508e092b5a1e5210bd0ed22dc0755
refs/heads/master
1,682,382,954,948
1,622,106,077,000
1,622,106,077,000
149,285,665
0
0
null
null
null
null
UTF-8
Lean
false
false
2,102
lean
/- Copyright (c) 2017 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Patrick Massot, Scott Morrison, Mario Carneiro -/ import category_theory.concrete_category.unbundled_hom import topology.continuous_function.basic import topology.opens /-! # Category instance for topological spaces We introduce the bundled category `Top` of topological spaces together with the functors `discrete` and `trivial` from the category of types to `Top` which equip a type with the corresponding discrete, resp. trivial, topology. For a proof that these functors are left, resp. right adjoint to the forgetful functor, see `topology.category.Top.adjunctions`. -/ open category_theory open topological_space universe u /-- The category of topological spaces and continuous maps. -/ def Top : Type (u+1) := bundled topological_space namespace Top instance bundled_hom : bundled_hom @continuous_map := ⟨@continuous_map.to_fun, @continuous_map.id, @continuous_map.comp, @continuous_map.coe_inj⟩ attribute [derive [has_coe_to_sort, large_category, concrete_category]] Top instance topological_space_unbundled (x : Top) : topological_space x := x.str @[simp] lemma id_app (X : Top.{u}) (x : X) : (𝟙 X : X → X) x = x := rfl @[simp] lemma comp_app {X Y Z : Top.{u}} (f : X ⟶ Y) (g : Y ⟶ Z) (x : X) : (f ≫ g : X → Z) x = g (f x) := rfl /-- Construct a bundled `Top` from the underlying type and the typeclass. -/ def of (X : Type u) [topological_space X] : Top := ⟨X⟩ instance (X : Top) : topological_space X := X.str @[simp] lemma coe_of (X : Type u) [topological_space X] : (of X : Type u) = X := rfl instance : inhabited Top := ⟨Top.of empty⟩ /-- The discrete topology on any type. -/ def discrete : Type u ⥤ Top.{u} := { obj := λ X, ⟨X, ⊥⟩, map := λ X Y f, { to_fun := f, continuous_to_fun := continuous_bot } } /-- The trivial topology on any type. -/ def trivial : Type u ⥤ Top.{u} := { obj := λ X, ⟨X, ⊤⟩, map := λ X Y f, { to_fun := f, continuous_to_fun := continuous_top } } end Top
027547b5a94b648d1e3cc27790f2b843af9fde21
75bd9c50a345718d735a7533c007cf45f9da9a83
/src/measure_theory/l1_space.lean
42294ebe32b9a5e5112b13273b660a6ca13aaa6b
[ "Apache-2.0" ]
permissive
jtbarker/mathlib
a1a3b1ddc16179826260578410746756ef18032c
392d3e376b44265ef2dedbd92231d3177acc1fd0
refs/heads/master
1,671,246,411,096
1,600,801,712,000
1,600,801,712,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
36,794
lean
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou -/ import measure_theory.ae_eq_fun /-! # Integrable functions and `L¹` space In the first part of this file, the predicate `integrable` is defined and basic properties of integrable functions are proved. In the second part, the space `L¹` of equivalence classes of integrable functions under the relation of being almost everywhere equal is defined as a subspace of the space `L⁰`. See the file `src/measure_theory/ae_eq_fun.lean` for information on `L⁰` space. ## Notation * `α →₁ β` is the type of `L¹` space, where `α` is a `measure_space` and `β` is a `normed_group` with a `second_countable_topology`. `f : α →ₘ β` is a "function" in `L¹`. In comments, `[f]` is also used to denote an `L¹` function. `₁` can be typed as `\1`. ## Main definitions * Let `f : α → β` be a function, where `α` is a `measure_space` and `β` a `normed_group`. Then `has_finite_integral f` means `(∫⁻ a, nnnorm (f a)) < ⊤`. * If `β` is moreover a `measurable_space` then `f` is called `integrable` if `f` is `measurable` and `has_finite_integral f` holds. * The space `L¹` is defined as a subspace of `L⁰` : An `ae_eq_fun` `[f] : α →ₘ β` is in the space `L¹` if `edist [f] 0 < ⊤`, which means `(∫⁻ a, edist (f a) 0) < ⊤` if we expand the definition of `edist` in `L⁰`. ## Main statements `L¹`, as a subspace, inherits most of the structures of `L⁰`. ## Implementation notes Maybe `integrable f` should be mean `(∫⁻ a, edist (f a) 0) < ⊤`, so that `integrable` and `ae_eq_fun.integrable` are more aligned. But in the end one can use the lemma `lintegral_nnnorm_eq_lintegral_edist : (∫⁻ a, nnnorm (f a)) = (∫⁻ a, edist (f a) 0)` to switch the two forms. To prove something for an arbitrary integrable + measurable function, a useful theorem is `integrable.induction` in the file `set_integral`. ## Tags integrable, function space, l1 -/ noncomputable theory open_locale classical topological_space big_operators open set filter topological_space ennreal emetric measure_theory variables {α β γ δ : Type*} [measurable_space α] {μ ν : measure α} variables [normed_group β] variables [normed_group γ] namespace measure_theory /-! ### Some results about the Lebesgue integral involving a normed group -/ lemma lintegral_nnnorm_eq_lintegral_edist (f : α → β) : ∫⁻ a, nnnorm (f a) ∂μ = ∫⁻ a, edist (f a) 0 ∂μ := by simp only [edist_eq_coe_nnnorm] lemma lintegral_norm_eq_lintegral_edist (f : α → β) : ∫⁻ a, (ennreal.of_real ∥f a∥) ∂μ = ∫⁻ a, edist (f a) 0 ∂μ := by simp only [of_real_norm_eq_coe_nnnorm, edist_eq_coe_nnnorm] lemma lintegral_edist_triangle [second_countable_topology β] [measurable_space β] [opens_measurable_space β] {f g h : α → β} (hf : measurable f) (hg : measurable g) (hh : measurable h) : ∫⁻ a, edist (f a) (g a) ∂μ ≤ ∫⁻ a, edist (f a) (h a) ∂μ + ∫⁻ a, edist (g a) (h a) ∂μ := begin rw ← lintegral_add (hf.edist hh) (hg.edist hh), refine lintegral_mono (λ a, _), apply edist_triangle_right end lemma lintegral_nnnorm_zero : ∫⁻ a : α, nnnorm (0 : β) ∂μ = 0 := by simp lemma lintegral_nnnorm_add [measurable_space β] [opens_measurable_space β] [measurable_space γ] [opens_measurable_space γ] {f : α → β} {g : α → γ} (hf : measurable f) (hg : measurable g) : ∫⁻ a, nnnorm (f a) + nnnorm (g a) ∂μ = ∫⁻ a, nnnorm (f a) ∂μ + ∫⁻ a, nnnorm (g a) ∂μ := lintegral_add hf.ennnorm hg.ennnorm lemma lintegral_nnnorm_neg {f : α → β} : ∫⁻ a, nnnorm ((-f) a) ∂μ = ∫⁻ a, nnnorm (f a) ∂μ := by simp only [pi.neg_apply, nnnorm_neg] /-! ### The predicate `has_finite_integral` -/ /-- `has_finite_integral f μ` means that the integral `∫⁻ a, ∥f a∥ ∂μ` is finite. `has_finite_integral f` means `has_finite_integral f volume`. -/ def has_finite_integral (f : α → β) (μ : measure α . volume_tac) : Prop := ∫⁻ a, nnnorm (f a) ∂μ < ⊤ lemma has_finite_integral_iff_norm (f : α → β) : has_finite_integral f μ ↔ ∫⁻ a, (ennreal.of_real ∥f a∥) ∂μ < ⊤ := by simp only [has_finite_integral, of_real_norm_eq_coe_nnnorm] lemma has_finite_integral_iff_edist (f : α → β) : has_finite_integral f μ ↔ ∫⁻ a, edist (f a) 0 ∂μ < ⊤ := by simp only [has_finite_integral_iff_norm, edist_dist, dist_zero_right] lemma has_finite_integral_iff_of_real {f : α → ℝ} (h : 0 ≤ᵐ[μ] f) : has_finite_integral f μ ↔ ∫⁻ a, ennreal.of_real (f a) ∂μ < ⊤ := have lintegral_eq : ∫⁻ a, (ennreal.of_real ∥f a∥) ∂μ = ∫⁻ a, ennreal.of_real (f a) ∂μ := begin refine lintegral_congr_ae (h.mono $ λ a h, _), rwa [real.norm_eq_abs, abs_of_nonneg] end, by rw [has_finite_integral_iff_norm, lintegral_eq] lemma has_finite_integral.mono {f : α → β} {g : α → γ} (hg : has_finite_integral g μ) (h : ∀ᵐ a ∂μ, ∥f a∥ ≤ ∥g a∥) : has_finite_integral f μ := begin simp only [has_finite_integral_iff_norm] at *, calc ∫⁻ a, (ennreal.of_real ∥f a∥) ∂μ ≤ ∫⁻ (a : α), (ennreal.of_real ∥g a∥) ∂μ : lintegral_mono_ae (h.mono $ assume a h, of_real_le_of_real h) ... < ⊤ : hg end lemma has_finite_integral.mono' {f : α → β} {g : α → ℝ} (hg : has_finite_integral g μ) (h : ∀ᵐ a ∂μ, ∥f a∥ ≤ g a) : has_finite_integral f μ := hg.mono $ h.mono $ λ x hx, le_trans hx (le_abs_self _) lemma has_finite_integral.congr' {f : α → β} {g : α → γ} (hf : has_finite_integral f μ) (h : ∀ᵐ a ∂μ, ∥f a∥ = ∥g a∥) : has_finite_integral g μ := hf.mono $ eventually_eq.le $ eventually_eq.symm h lemma has_finite_integral_congr' {f : α → β} {g : α → γ} (h : ∀ᵐ a ∂μ, ∥f a∥ = ∥g a∥) : has_finite_integral f μ ↔ has_finite_integral g μ := ⟨λ hf, hf.congr' h, λ hg, hg.congr' $ eventually_eq.symm h⟩ lemma has_finite_integral.congr {f g : α → β} (hf : has_finite_integral f μ) (h : f =ᵐ[μ] g) : has_finite_integral g μ := hf.congr' $ h.fun_comp norm lemma has_finite_integral_congr {f g : α → β} (h : f =ᵐ[μ] g) : has_finite_integral f μ ↔ has_finite_integral g μ := has_finite_integral_congr' $ h.fun_comp norm lemma has_finite_integral_const_iff {c : β} : has_finite_integral (λ x : α, c) μ ↔ c = 0 ∨ μ univ < ⊤ := begin simp only [has_finite_integral, lintegral_const], by_cases hc : c = 0, { simp [hc] }, { simp only [hc, false_or], refine ⟨λ h, _, λ h, mul_lt_top coe_lt_top h⟩, replace h := mul_lt_top (@coe_lt_top $ (nnnorm c)⁻¹) h, rwa [← mul_assoc, ← coe_mul, _root_.inv_mul_cancel, coe_one, one_mul] at h, rwa [ne.def, nnnorm_eq_zero] } end lemma has_finite_integral_const [finite_measure μ] (c : β) : has_finite_integral (λ x : α, c) μ := has_finite_integral_const_iff.2 (or.inr $ measure_lt_top _ _) lemma has_finite_integral_of_bounded [finite_measure μ] {f : α → β} {C : ℝ} (hC : ∀ᵐ a ∂μ, ∥f a∥ ≤ C) : has_finite_integral f μ := (has_finite_integral_const C).mono' hC lemma has_finite_integral.mono_measure {f : α → β} (h : has_finite_integral f ν) (hμ : μ ≤ ν) : has_finite_integral f μ := lt_of_le_of_lt (lintegral_mono' hμ (le_refl _)) h lemma has_finite_integral.add_measure {f : α → β} (hμ : has_finite_integral f μ) (hν : has_finite_integral f ν) : has_finite_integral f (μ + ν) := begin simp only [has_finite_integral, lintegral_add_measure] at *, exact add_lt_top.2 ⟨hμ, hν⟩ end lemma has_finite_integral.left_of_add_measure {f : α → β} (h : has_finite_integral f (μ + ν)) : has_finite_integral f μ := h.mono_measure $ measure.le_add_right $ le_refl _ lemma has_finite_integral.right_of_add_measure {f : α → β} (h : has_finite_integral f (μ + ν)) : has_finite_integral f ν := h.mono_measure $ measure.le_add_left $ le_refl _ @[simp] lemma has_finite_integral_add_measure {f : α → β} : has_finite_integral f (μ + ν) ↔ has_finite_integral f μ ∧ has_finite_integral f ν := ⟨λ h, ⟨h.left_of_add_measure, h.right_of_add_measure⟩, λ h, h.1.add_measure h.2⟩ lemma has_finite_integral.smul_measure {f : α → β} (h : has_finite_integral f μ) {c : ennreal} (hc : c < ⊤) : has_finite_integral f (c • μ) := begin simp only [has_finite_integral, lintegral_smul_measure] at *, exact mul_lt_top hc h end @[simp] lemma has_finite_integral_zero_measure (f : α → β) : has_finite_integral f 0 := by simp only [has_finite_integral, lintegral_zero_measure, with_top.zero_lt_top] variables (α β μ) @[simp] lemma has_finite_integral_zero : has_finite_integral (λa:α, (0:β)) μ := by simp [has_finite_integral] variables {α β μ} lemma has_finite_integral.neg {f : α → β} (hfi : has_finite_integral f μ) : has_finite_integral (-f) μ := by simpa [has_finite_integral] using hfi @[simp] lemma has_finite_integral_neg_iff {f : α → β} : has_finite_integral (-f) μ ↔ has_finite_integral f μ := ⟨λ h, neg_neg f ▸ h.neg, has_finite_integral.neg⟩ lemma has_finite_integral.norm {f : α → β} (hfi : has_finite_integral f μ) : has_finite_integral (λa, ∥f a∥) μ := have eq : (λa, (nnnorm ∥f a∥ : ennreal)) = λa, (nnnorm (f a) : ennreal), by { funext, rw nnnorm_norm }, by { rwa [has_finite_integral, eq] } lemma has_finite_integral_norm_iff (f : α → β) : has_finite_integral (λa, ∥f a∥) μ ↔ has_finite_integral f μ := has_finite_integral_congr' $ eventually_of_forall $ λ x, norm_norm (f x) section dominated_convergence variables {F : ℕ → α → β} {f : α → β} {bound : α → ℝ} lemma all_ae_of_real_F_le_bound (h : ∀ n, ∀ᵐ a ∂μ, ∥F n a∥ ≤ bound a) : ∀ n, ∀ᵐ a ∂μ, ennreal.of_real ∥F n a∥ ≤ ennreal.of_real (bound a) := λn, (h n).mono $ λ a h, ennreal.of_real_le_of_real h lemma all_ae_tendsto_of_real_norm (h : ∀ᵐ a ∂μ, tendsto (λ n, F n a) at_top $ 𝓝 $ f a) : ∀ᵐ a ∂μ, tendsto (λn, ennreal.of_real ∥F n a∥) at_top $ 𝓝 $ ennreal.of_real ∥f a∥ := h.mono $ λ a h, tendsto_of_real $ tendsto.comp (continuous.tendsto continuous_norm _) h lemma all_ae_of_real_f_le_bound (h_bound : ∀ n, ∀ᵐ a ∂μ, ∥F n a∥ ≤ bound a) (h_lim : ∀ᵐ a ∂μ, tendsto (λ n, F n a) at_top (𝓝 (f a))) : ∀ᵐ a ∂μ, ennreal.of_real ∥f a∥ ≤ ennreal.of_real (bound a) := begin have F_le_bound := all_ae_of_real_F_le_bound h_bound, rw ← ae_all_iff at F_le_bound, apply F_le_bound.mp ((all_ae_tendsto_of_real_norm h_lim).mono _), assume a tendsto_norm F_le_bound, exact le_of_tendsto' tendsto_norm (F_le_bound) end lemma has_finite_integral_of_dominated_convergence {F : ℕ → α → β} {f : α → β} {bound : α → ℝ} (bound_has_finite_integral : has_finite_integral bound μ) (h_bound : ∀ n, ∀ᵐ a ∂μ, ∥F n a∥ ≤ bound a) (h_lim : ∀ᵐ a ∂μ, tendsto (λ n, F n a) at_top (𝓝 (f a))) : has_finite_integral f μ := /- `∥F n a∥ ≤ bound a` and `∥F n a∥ --> ∥f a∥` implies `∥f a∥ ≤ bound a`, and so `∫ ∥f∥ ≤ ∫ bound < ⊤` since `bound` is has_finite_integral -/ begin rw has_finite_integral_iff_norm, calc ∫⁻ a, (ennreal.of_real ∥f a∥) ∂μ ≤ ∫⁻ a, ennreal.of_real (bound a) ∂μ : lintegral_mono_ae $ all_ae_of_real_f_le_bound h_bound h_lim ... < ⊤ : begin rw ← has_finite_integral_iff_of_real, { exact bound_has_finite_integral }, exact (h_bound 0).mono (λ a h, le_trans (norm_nonneg _) h) end end lemma tendsto_lintegral_norm_of_dominated_convergence [measurable_space β] [borel_space β] [second_countable_topology β] {F : ℕ → α → β} {f : α → β} {bound : α → ℝ} (F_measurable : ∀ n, measurable (F n)) (f_measurable : measurable f) (bound_has_finite_integral : has_finite_integral bound μ) (h_bound : ∀ n, ∀ᵐ a ∂μ, ∥F n a∥ ≤ bound a) (h_lim : ∀ᵐ a ∂μ, tendsto (λ n, F n a) at_top (𝓝 (f a))) : tendsto (λn, ∫⁻ a, (ennreal.of_real ∥F n a - f a∥) ∂μ) at_top (𝓝 0) := let b := λa, 2 * ennreal.of_real (bound a) in /- `∥F n a∥ ≤ bound a` and `F n a --> f a` implies `∥f a∥ ≤ bound a`, and thus by the triangle inequality, have `∥F n a - f a∥ ≤ 2 * (bound a). -/ have hb : ∀ n, ∀ᵐ a ∂μ, ennreal.of_real ∥F n a - f a∥ ≤ b a, begin assume n, filter_upwards [all_ae_of_real_F_le_bound h_bound n, all_ae_of_real_f_le_bound h_bound h_lim], assume a h₁ h₂, calc ennreal.of_real ∥F n a - f a∥ ≤ (ennreal.of_real ∥F n a∥) + (ennreal.of_real ∥f a∥) : begin rw [← ennreal.of_real_add], apply of_real_le_of_real, { apply norm_sub_le }, { exact norm_nonneg _ }, { exact norm_nonneg _ } end ... ≤ (ennreal.of_real (bound a)) + (ennreal.of_real (bound a)) : add_le_add h₁ h₂ ... = b a : by rw ← two_mul end, /- On the other hand, `F n a --> f a` implies that `∥F n a - f a∥ --> 0` -/ have h : ∀ᵐ a ∂μ, tendsto (λ n, ennreal.of_real ∥F n a - f a∥) at_top (𝓝 0), begin rw ← ennreal.of_real_zero, refine h_lim.mono (λ a h, (continuous_of_real.tendsto _).comp _), rwa ← tendsto_iff_norm_tendsto_zero end, /- Therefore, by the dominated convergence theorem for nonnegative integration, have ` ∫ ∥f a - F n a∥ --> 0 ` -/ begin suffices h : tendsto (λn, ∫⁻ a, (ennreal.of_real ∥F n a - f a∥) ∂μ) at_top (𝓝 (∫⁻ (a:α), 0 ∂μ)), { rwa lintegral_zero at h }, -- Using the dominated convergence theorem. refine tendsto_lintegral_of_dominated_convergence _ _ hb _ _, -- Show `λa, ∥f a - F n a∥` is measurable for all `n` { exact λn, measurable_of_real.comp ((F_measurable n).sub f_measurable).norm }, -- Show `2 * bound` is has_finite_integral { rw has_finite_integral_iff_of_real at bound_has_finite_integral, { calc ∫⁻ a, b a ∂μ = 2 * ∫⁻ a, ennreal.of_real (bound a) ∂μ : by { rw lintegral_const_mul', exact coe_ne_top } ... < ⊤ : mul_lt_top (coe_lt_top) bound_has_finite_integral }, filter_upwards [h_bound 0] λ a h, le_trans (norm_nonneg _) h }, -- Show `∥f a - F n a∥ --> 0` { exact h } end end dominated_convergence section pos_part /-! Lemmas used for defining the positive part of a `L¹` function -/ lemma has_finite_integral.max_zero {f : α → ℝ} (hf : has_finite_integral f μ) : has_finite_integral (λa, max (f a) 0) μ := hf.mono $ eventually_of_forall $ λ x, by simp [real.norm_eq_abs, abs_le, abs_nonneg, le_abs_self] lemma has_finite_integral.min_zero {f : α → ℝ} (hf : has_finite_integral f μ) : has_finite_integral (λa, min (f a) 0) μ := hf.mono $ eventually_of_forall $ λ x, by simp [real.norm_eq_abs, abs_le, abs_nonneg, neg_le, neg_le_abs_self] end pos_part section normed_space variables {𝕜 : Type*} [normed_field 𝕜] [normed_space 𝕜 β] lemma has_finite_integral.smul (c : 𝕜) {f : α → β} : has_finite_integral f μ → has_finite_integral (c • f) μ := begin simp only [has_finite_integral], assume hfi, calc ∫⁻ (a : α), nnnorm (c • f a) ∂μ = ∫⁻ (a : α), (nnnorm c) * nnnorm (f a) ∂μ : by simp only [nnnorm_smul, ennreal.coe_mul] ... < ⊤ : begin rw lintegral_const_mul', exacts [mul_lt_top coe_lt_top hfi, coe_ne_top] end end lemma has_finite_integral_smul_iff {c : 𝕜} (hc : c ≠ 0) (f : α → β) : has_finite_integral (c • f) μ ↔ has_finite_integral f μ := begin split, { assume h, simpa only [smul_smul, inv_mul_cancel hc, one_smul] using h.smul c⁻¹ }, exact has_finite_integral.smul _ end lemma has_finite_integral.const_mul {f : α → ℝ} (h : has_finite_integral f μ) (c : ℝ) : has_finite_integral (λ x, c * f x) μ := (has_finite_integral.smul c h : _) lemma has_finite_integral.mul_const {f : α → ℝ} (h : has_finite_integral f μ) (c : ℝ) : has_finite_integral (λ x, f x * c) μ := by simp_rw [mul_comm, h.const_mul _] end normed_space /-! ### The predicate `integrable` -/ variables [measurable_space β] [measurable_space γ] [measurable_space δ] /-- `integrable f μ` means that `f` is measurable and that the integral `∫⁻ a, ∥f a∥ ∂μ` is finite. `integrable f` means `integrable f volume`. -/ def integrable (f : α → β) (μ : measure α . volume_tac) : Prop := measurable f ∧ has_finite_integral f μ lemma integrable.measurable {f : α → β} (hf : integrable f μ) : measurable f := hf.1 lemma integrable.has_finite_integral {f : α → β} (hf : integrable f μ) : has_finite_integral f μ := hf.2 lemma integrable.mono {f : α → β} {g : α → γ} (hg : integrable g μ) (hf : measurable f) (h : ∀ᵐ a ∂μ, ∥f a∥ ≤ ∥g a∥) : integrable f μ := ⟨hf, hg.has_finite_integral.mono h⟩ lemma integrable.mono' {f : α → β} {g : α → ℝ} (hg : integrable g μ) (hf : measurable f) (h : ∀ᵐ a ∂μ, ∥f a∥ ≤ g a) : integrable f μ := ⟨hf, hg.has_finite_integral.mono' h⟩ lemma integrable.congr' {f : α → β} {g : α → γ} (hf : integrable f μ) (hg : measurable g) (h : ∀ᵐ a ∂μ, ∥f a∥ = ∥g a∥) : integrable g μ := ⟨hg, hf.has_finite_integral.congr' h⟩ lemma integrable_congr' {f : α → β} {g : α → γ} (hf : measurable f) (hg : measurable g) (h : ∀ᵐ a ∂μ, ∥f a∥ = ∥g a∥) : integrable f μ ↔ integrable g μ := ⟨λ h2f, h2f.congr' hg h, λ h2g, h2g.congr' hf $ eventually_eq.symm h⟩ lemma integrable.congr {f g : α → β} (hf : integrable f μ) (hg : measurable g) (h : f =ᵐ[μ] g) : integrable g μ := hf.congr' hg $ h.fun_comp norm lemma integrable_congr {f g : α → β} (hf : measurable f) (hg : measurable g) (h : f =ᵐ[μ] g) : integrable f μ ↔ integrable g μ := integrable_congr' hf hg $ h.fun_comp norm lemma integrable_const_iff {c : β} : integrable (λ x : α, c) μ ↔ c = 0 ∨ μ univ < ⊤ := by rw [integrable, and_iff_right measurable_const, has_finite_integral_const_iff] lemma integrable_const [finite_measure μ] (c : β) : integrable (λ x : α, c) μ := integrable_const_iff.2 $ or.inr $ measure_lt_top _ _ lemma integrable.mono_measure {f : α → β} (h : integrable f ν) (hμ : μ ≤ ν) : integrable f μ := ⟨h.measurable, h.has_finite_integral.mono_measure hμ⟩ lemma integrable.add_measure {f : α → β} (hμ : integrable f μ) (hν : integrable f ν) : integrable f (μ + ν) := ⟨hμ.measurable, hμ.has_finite_integral.add_measure hν.has_finite_integral⟩ lemma integrable.left_of_add_measure {f : α → β} (h : integrable f (μ + ν)) : integrable f μ := h.mono_measure $ measure.le_add_right $ le_refl _ lemma integrable.right_of_add_measure {f : α → β} (h : integrable f (μ + ν)) : integrable f ν := h.mono_measure $ measure.le_add_left $ le_refl _ @[simp] lemma integrable_add_measure {f : α → β} : integrable f (μ + ν) ↔ integrable f μ ∧ integrable f ν := ⟨λ h, ⟨h.left_of_add_measure, h.right_of_add_measure⟩, λ h, h.1.add_measure h.2⟩ lemma integrable.smul_measure {f : α → β} (h : integrable f μ) {c : ennreal} (hc : c < ⊤) : integrable f (c • μ) := ⟨h.measurable, h.has_finite_integral.smul_measure hc⟩ lemma integrable_map_measure [opens_measurable_space β] {f : α → δ} {g : δ → β} (hf : measurable f) (hg : measurable g) : integrable g (measure.map f μ) ↔ integrable (g ∘ f) μ := by { simp only [integrable, has_finite_integral, lintegral_map hg.ennnorm hf, hf, hg, hg.comp hf] } lemma lintegral_edist_lt_top [second_countable_topology β] [opens_measurable_space β] {f g : α → β} (hf : integrable f μ) (hg : integrable g μ) : ∫⁻ a, edist (f a) (g a) ∂μ < ⊤ := lt_of_le_of_lt (lintegral_edist_triangle hf.measurable hg.measurable (measurable_const : measurable (λa, (0 : β)))) (ennreal.add_lt_top.2 $ by { simp_rw ← has_finite_integral_iff_edist, exact ⟨hf.has_finite_integral, hg.has_finite_integral⟩ }) variables (α β μ) @[simp] lemma integrable_zero : integrable (λ _, (0 : β)) μ := by simp [integrable, measurable_const] variables {α β μ} lemma integrable.add [borel_space β] [second_countable_topology β] {f g : α → β} (hf : integrable f μ) (hg : integrable g μ) : integrable (f + g) μ := ⟨hf.measurable.add hg.measurable, calc ∫⁻ a, nnnorm (f a + g a) ∂μ ≤ ∫⁻ a, nnnorm (f a) + nnnorm (g a) ∂μ : lintegral_mono (assume a, by { simp only [← coe_add, coe_le_coe], exact nnnorm_add_le _ _ }) ... = _ : lintegral_nnnorm_add hf.measurable hg.measurable ... < ⊤ : add_lt_top.2 ⟨hf.has_finite_integral, hg.has_finite_integral⟩⟩ lemma integrable_finset_sum {ι} [borel_space β] [second_countable_topology β] (s : finset ι) {f : ι → α → β} (hf : ∀ i, integrable (f i) μ) : integrable (λ a, ∑ i in s, f i a) μ := begin refine finset.induction_on s _ _, { simp only [finset.sum_empty, integrable_zero] }, { assume i s his ih, simp only [his, finset.sum_insert, not_false_iff], exact (hf _).add ih } end lemma integrable.neg [borel_space β] {f : α → β} (hf : integrable f μ) : integrable (-f) μ := ⟨hf.measurable.neg, hf.has_finite_integral.neg⟩ @[simp] lemma integrable_neg_iff [borel_space β] {f : α → β} : integrable (-f) μ ↔ integrable f μ := ⟨λ h, neg_neg f ▸ h.neg, integrable.neg⟩ lemma integrable.sub [borel_space β] [second_countable_topology β] {f g : α → β} (hf : integrable f μ) (hg : integrable g μ) : integrable (f - g) μ := ⟨hf.measurable.sub hg.measurable, calc ∫⁻ a, nnnorm (f a - g a) ∂μ ≤ ∫⁻ a, nnnorm (f a) + nnnorm (-g a) ∂μ : lintegral_mono (assume a, by exact_mod_cast nnnorm_add_le _ _ ) ... = _ : by { simp only [nnnorm_neg], exact lintegral_nnnorm_add hf.measurable hg.measurable } ... < ⊤ : add_lt_top.2 ⟨hf.has_finite_integral, hg.has_finite_integral⟩⟩ lemma integrable.norm [opens_measurable_space β] {f : α → β} (hf : integrable f μ) : integrable (λa, ∥f a∥) μ := ⟨hf.measurable.norm, hf.has_finite_integral.norm⟩ lemma integrable_norm_iff [opens_measurable_space β] {f : α → β} (hf : measurable f) : integrable (λa, ∥f a∥) μ ↔ integrable f μ := by simp_rw [integrable, and_iff_right hf, and_iff_right hf.norm, has_finite_integral_norm_iff] section pos_part /-! Lemmas used for defining the positive part of a `L¹` function -/ lemma integrable.max_zero {f : α → ℝ} (hf : integrable f μ) : integrable (λa, max (f a) 0) μ := ⟨hf.measurable.max measurable_const, hf.has_finite_integral.max_zero⟩ lemma integrable.min_zero {f : α → ℝ} (hf : integrable f μ) : integrable (λa, min (f a) 0) μ := ⟨hf.measurable.min measurable_const, hf.has_finite_integral.min_zero⟩ end pos_part section normed_space variables {𝕜 : Type*} [normed_field 𝕜] [normed_space 𝕜 β] lemma integrable.smul [borel_space β] (c : 𝕜) {f : α → β} (hf : integrable f μ) : integrable (c • f) μ := ⟨hf.measurable.const_smul c, hf.has_finite_integral.smul c⟩ lemma integrable_smul_iff [borel_space β] {c : 𝕜} (hc : c ≠ 0) (f : α → β) : integrable (c • f) μ ↔ integrable f μ := and_congr (measurable_const_smul_iff hc) (has_finite_integral_smul_iff hc f) lemma integrable.const_mul {f : α → ℝ} (h : integrable f μ) (c : ℝ) : integrable (λ x, c * f x) μ := integrable.smul c h lemma integrable.mul_const {f : α → ℝ} (h : integrable f μ) (c : ℝ) : integrable (λ x, f x * c) μ := by simp_rw [mul_comm, h.const_mul _] end normed_space variables [second_countable_topology β] /-! ### The predicate `integrable` on measurable functions modulo a.e.-equality -/ namespace ae_eq_fun section variable [opens_measurable_space β] /-- A class of almost everywhere equal functions is `integrable` if it has a finite distance to the origin. It means the same thing as the predicate `integrable` over functions. -/ def integrable (f : α →ₘ[μ] β) : Prop := f ∈ ball (0 : α →ₘ[μ] β) ⊤ lemma integrable_mk {f : α → β} (hf : measurable f) : (integrable (mk f hf : α →ₘ[μ] β)) ↔ measure_theory.integrable f μ := by simp [integrable, zero_def, edist_mk_mk', measure_theory.integrable, nndist_eq_nnnorm, has_finite_integral, hf] lemma integrable_coe_fn {f : α →ₘ[μ] β} : (measure_theory.integrable f μ) ↔ integrable f := by rw [← integrable_mk, mk_coe_fn] lemma integrable_zero : integrable (0 : α →ₘ[μ] β) := mem_ball_self coe_lt_top end section variable [borel_space β] lemma integrable.add {f g : α →ₘ[μ] β} : integrable f → integrable g → integrable (f + g) := begin refine induction_on₂ f g (λ f hf g hg hfi hgi, _), simp only [integrable_mk, mk_add_mk] at hfi hgi ⊢, exact hfi.add hgi end lemma integrable.neg {f : α →ₘ[μ] β} : integrable f → integrable (-f) := induction_on f $ λ f hfm hfi, (integrable_mk _).2 ((integrable_mk hfm).1 hfi).neg lemma integrable.sub {f g : α →ₘ[μ] β} (hf : integrable f) (hg : integrable g) : integrable (f - g) := hf.add hg.neg protected lemma is_add_subgroup : is_add_subgroup (ball (0 : α →ₘ[μ] β) ⊤) := { zero_mem := integrable_zero, add_mem := λ _ _, integrable.add, neg_mem := λ _, integrable.neg } section normed_space variables {𝕜 : Type*} [normed_field 𝕜] [normed_space 𝕜 β] lemma integrable.smul {c : 𝕜} {f : α →ₘ[μ] β} : integrable f → integrable (c • f) := induction_on f $ λ f hfm hfi, (integrable_mk _).2 $ ((integrable_mk hfm).1 hfi).smul _ end normed_space end end ae_eq_fun /-! ### The `L¹` space of functions -/ variables (α β) /-- The space of equivalence classes of integrable (and measurable) functions, where two integrable functions are equivalent if they agree almost everywhere, i.e., they differ on a set of measure `0`. -/ def l1 [opens_measurable_space β] (μ : measure α) : Type* := {f : α →ₘ[μ] β // f.integrable} notation α ` →₁[`:25 μ `] ` β := l1 α β μ variables {α β} namespace l1 open ae_eq_fun local attribute [instance] ae_eq_fun.is_add_subgroup section variable [opens_measurable_space β] instance : has_coe (α →₁[μ] β) (α →ₘ[μ] β) := coe_subtype instance : has_coe_to_fun (α →₁[μ] β) := ⟨λ f, α → β, λ f, ⇑(f : α →ₘ[μ] β)⟩ @[simp, norm_cast] lemma coe_coe (f : α →₁[μ] β) : ⇑(f : α →ₘ[μ] β) = f := rfl protected lemma eq {f g : α →₁[μ] β} : (f : α →ₘ[μ] β) = (g : α →ₘ[μ] β) → f = g := subtype.eq @[norm_cast] protected lemma eq_iff {f g : α →₁[μ] β} : (f : α →ₘ[μ] β) = (g : α →ₘ[μ] β) ↔ f = g := iff.intro (l1.eq) (congr_arg coe) /- TODO : order structure of l1-/ /-- `L¹` space forms a `emetric_space`, with the emetric being inherited from almost everywhere functions, i.e., `edist f g = ∫⁻ a, edist (f a) (g a)`. -/ instance : emetric_space (α →₁[μ] β) := subtype.emetric_space /-- `L¹` space forms a `metric_space`, with the metric being inherited from almost everywhere functions, i.e., `edist f g = ennreal.to_real (∫⁻ a, edist (f a) (g a))`. -/ instance : metric_space (α →₁[μ] β) := metric_space_emetric_ball 0 ⊤ end variable [borel_space β] instance : add_comm_group (α →₁[μ] β) := subtype.add_comm_group instance : inhabited (α →₁[μ] β) := ⟨0⟩ @[simp, norm_cast] lemma coe_zero : ((0 : α →₁[μ] β) : α →ₘ[μ] β) = 0 := rfl @[simp, norm_cast] lemma coe_add (f g : α →₁[μ] β) : ((f + g : α →₁[μ] β) : α →ₘ[μ] β) = f + g := rfl @[simp, norm_cast] lemma coe_neg (f : α →₁[μ] β) : ((-f : α →₁[μ] β) : α →ₘ[μ] β) = -f := rfl @[simp, norm_cast] lemma coe_sub (f g : α →₁[μ] β) : ((f - g : α →₁[μ] β) : α →ₘ[μ] β) = f - g := rfl @[simp] lemma edist_eq (f g : α →₁[μ] β) : edist f g = edist (f : α →ₘ[μ] β) (g : α →ₘ[μ] β) := rfl lemma dist_eq (f g : α →₁[μ] β) : dist f g = ennreal.to_real (edist (f : α →ₘ[μ] β) (g : α →ₘ[μ] β)) := rfl /-- The norm on `L¹` space is defined to be `∥f∥ = ∫⁻ a, edist (f a) 0`. -/ instance : has_norm (α →₁[μ] β) := ⟨λ f, dist f 0⟩ lemma norm_eq (f : α →₁[μ] β) : ∥f∥ = ennreal.to_real (edist (f : α →ₘ[μ] β) 0) := rfl instance : normed_group (α →₁[μ] β) := normed_group.of_add_dist (λ x, rfl) $ by { intros, simp only [dist_eq, coe_add], rw edist_add_right } section normed_space variables {𝕜 : Type*} [normed_field 𝕜] [normed_space 𝕜 β] instance : has_scalar 𝕜 (α →₁[μ] β) := ⟨λ x f, ⟨x • (f : α →ₘ[μ] β), ae_eq_fun.integrable.smul f.2⟩⟩ @[simp, norm_cast] lemma coe_smul (c : 𝕜) (f : α →₁[μ] β) : ((c • f : α →₁[μ] β) : α →ₘ[μ] β) = c • (f : α →ₘ[μ] β) := rfl instance : semimodule 𝕜 (α →₁[μ] β) := { one_smul := λf, l1.eq (by { simp only [coe_smul], exact one_smul _ _ }), mul_smul := λx y f, l1.eq (by { simp only [coe_smul], exact mul_smul _ _ _ }), smul_add := λx f g, l1.eq (by { simp only [coe_smul, coe_add], exact smul_add _ _ _ }), smul_zero := λx, l1.eq (by { simp only [coe_zero, coe_smul], exact smul_zero _ }), add_smul := λx y f, l1.eq (by { simp only [coe_smul], exact add_smul _ _ _ }), zero_smul := λf, l1.eq (by { simp only [coe_smul], exact zero_smul _ _ }) } instance : normed_space 𝕜 (α →₁[μ] β) := ⟨ begin rintros x ⟨f, hf⟩, show ennreal.to_real (edist (x • f) 0) ≤ ∥x∥ * ennreal.to_real (edist f 0), rw [edist_smul, to_real_of_real_mul], exact norm_nonneg _ end ⟩ end normed_space section of_fun /-- Construct the equivalence class `[f]` of a measurable and integrable function `f`. -/ def of_fun (f : α → β) (hf : integrable f μ) : (α →₁[μ] β) := ⟨mk f hf.measurable, by { rw integrable_mk, exact hf }⟩ @[simp] lemma of_fun_eq_mk (f : α → β) (hf : integrable f μ) : (of_fun f hf : α →ₘ[μ] β) = mk f hf.measurable := rfl lemma of_fun_eq_of_fun (f g : α → β) (hf : integrable f μ) (hg : integrable g μ) : of_fun f hf = of_fun g hg ↔ f =ᵐ[μ] g := by { rw ← l1.eq_iff, simp only [of_fun_eq_mk, mk_eq_mk] } lemma of_fun_zero : of_fun (λ _, (0 : β)) (integrable_zero α β μ) = 0 := rfl lemma of_fun_add (f g : α → β) (hf : integrable f μ) (hg : integrable g μ) : of_fun (f + g) (hf.add hg) = of_fun f hf + of_fun g hg := rfl lemma of_fun_neg (f : α → β) (hf : integrable f μ) : of_fun (- f) (integrable.neg hf) = - of_fun f hf := rfl lemma of_fun_sub (f g : α → β) (hf : integrable f μ) (hg : integrable g μ) : of_fun (f - g) (hf.sub hg) = of_fun f hf - of_fun g hg := rfl lemma norm_of_fun (f : α → β) (hf : integrable f μ) : ∥ of_fun f hf ∥ = ennreal.to_real (∫⁻ a, edist (f a) 0 ∂μ) := rfl lemma norm_of_fun_eq_lintegral_norm (f : α → β) (hf : integrable f μ) : ∥ of_fun f hf ∥ = ennreal.to_real (∫⁻ a, (ennreal.of_real ∥f a∥) ∂μ) := by { rw [norm_of_fun, lintegral_norm_eq_lintegral_edist] } variables {𝕜 : Type*} [normed_field 𝕜] [normed_space 𝕜 β] lemma of_fun_smul (f : α → β) (hf : integrable f μ) (k : 𝕜) : of_fun (λa, k • f a) (hf.smul k) = k • of_fun f hf := rfl end of_fun section to_fun protected lemma measurable (f : α →₁[μ] β) : measurable f := f.1.measurable lemma measurable_norm (f : α →₁[μ] β) : measurable (λ a, ∥f a∥) := f.measurable.norm protected lemma integrable (f : α →₁[μ] β) : integrable ⇑f μ := integrable_coe_fn.2 f.2 protected lemma has_finite_integral (f : α →₁[μ] β) : has_finite_integral ⇑f μ := f.integrable.has_finite_integral lemma integrable_norm (f : α →₁[μ] β) : integrable (λ a, ∥f a∥) μ := (integrable_norm_iff f.measurable).mpr f.integrable lemma of_fun_to_fun (f : α →₁[μ] β) : of_fun f f.integrable = f := subtype.ext (f : α →ₘ[μ] β).mk_coe_fn lemma mk_to_fun (f : α →₁[μ] β) : (mk f f.measurable : α →ₘ[μ] β) = f := by { rw ← of_fun_eq_mk, rw l1.eq_iff, exact of_fun_to_fun f } lemma to_fun_of_fun (f : α → β) (hf : integrable f μ) : ⇑(of_fun f hf : α →₁[μ] β) =ᵐ[μ] f := coe_fn_mk f hf.measurable variables (α β) lemma zero_to_fun : ⇑(0 : α →₁[μ] β) =ᵐ[μ] 0 := ae_eq_fun.coe_fn_zero variables {α β} lemma add_to_fun (f g : α →₁[μ] β) : ⇑(f + g) =ᵐ[μ] f + g := ae_eq_fun.coe_fn_add _ _ lemma neg_to_fun (f : α →₁[μ] β) : ⇑(-f) =ᵐ[μ] -⇑f := ae_eq_fun.coe_fn_neg _ lemma sub_to_fun (f g : α →₁[μ] β) : ⇑(f - g) =ᵐ[μ] ⇑f - ⇑g := ae_eq_fun.coe_fn_sub _ _ lemma dist_to_fun (f g : α →₁[μ] β) : dist f g = ennreal.to_real (∫⁻ x, edist (f x) (g x) ∂μ) := by { simp only [← coe_coe, dist_eq, edist_eq_coe] } lemma norm_eq_nnnorm_to_fun (f : α →₁[μ] β) : ∥f∥ = ennreal.to_real (∫⁻ a, nnnorm (f a) ∂μ) := by { rw [← coe_coe, lintegral_nnnorm_eq_lintegral_edist, ← edist_zero_eq_coe], refl } lemma norm_eq_norm_to_fun (f : α →₁[μ] β) : ∥f∥ = ennreal.to_real (∫⁻ a, (ennreal.of_real ∥f a∥) ∂μ) := by { rw norm_eq_nnnorm_to_fun, congr, funext, rw of_real_norm_eq_coe_nnnorm } lemma lintegral_edist_to_fun_lt_top (f g : α →₁[μ] β) : (∫⁻ a, edist (f a) (g a) ∂μ) < ⊤ := lintegral_edist_lt_top f.integrable g.integrable variables {𝕜 : Type*} [normed_field 𝕜] [normed_space 𝕜 β] lemma smul_to_fun (c : 𝕜) (f : α →₁[μ] β) : ⇑(c • f) =ᵐ[μ] c • f := ae_eq_fun.coe_fn_smul _ _ end to_fun section pos_part /-- Positive part of a function in `L¹` space. -/ def pos_part (f : α →₁[μ] ℝ) : α →₁[μ] ℝ := ⟨ae_eq_fun.pos_part f, begin rw [← ae_eq_fun.integrable_coe_fn, integrable_congr (ae_eq_fun.measurable _) (f.measurable.max measurable_const) (coe_fn_pos_part _)], exact f.integrable.max_zero end ⟩ /-- Negative part of a function in `L¹` space. -/ def neg_part (f : α →₁[μ] ℝ) : α →₁[μ] ℝ := pos_part (-f) @[norm_cast] lemma coe_pos_part (f : α →₁[μ] ℝ) : (f.pos_part : α →ₘ[μ] ℝ) = (f : α →ₘ[μ] ℝ).pos_part := rfl lemma pos_part_to_fun (f : α →₁[μ] ℝ) : ⇑(pos_part f) =ᵐ[μ] λ a, max (f a) 0 := ae_eq_fun.coe_fn_pos_part _ lemma neg_part_to_fun_eq_max (f : α →₁[μ] ℝ) : ∀ᵐ a ∂μ, neg_part f a = max (- f a) 0 := begin rw neg_part, filter_upwards [pos_part_to_fun (-f), neg_to_fun f], simp only [mem_set_of_eq], assume a h₁ h₂, rw [h₁, h₂, pi.neg_apply] end lemma neg_part_to_fun_eq_min (f : α →₁[μ] ℝ) : ∀ᵐ a ∂μ, neg_part f a = - min (f a) 0 := (neg_part_to_fun_eq_max f).mono $ assume a h, by rw [h, min_eq_neg_max_neg_neg, _root_.neg_neg, neg_zero] lemma norm_le_norm_of_ae_le {f g : α →₁[μ] β} (h : ∀ᵐ a ∂μ, ∥f a∥ ≤ ∥g a∥) : ∥f∥ ≤ ∥g∥ := begin simp only [l1.norm_eq_norm_to_fun], rw to_real_le_to_real, { apply lintegral_mono_ae, exact h.mono (λ a h, of_real_le_of_real h) }, { rw [← lt_top_iff_ne_top, ← has_finite_integral_iff_norm], exact f.has_finite_integral }, { rw [← lt_top_iff_ne_top, ← has_finite_integral_iff_norm], exact g.has_finite_integral } end lemma continuous_pos_part : continuous $ λf : α →₁[μ] ℝ, pos_part f := begin simp only [metric.continuous_iff], assume g ε hε, use ε, use hε, simp only [dist_eq_norm], assume f hfg, refine lt_of_le_of_lt (norm_le_norm_of_ae_le _) hfg, filter_upwards [l1.sub_to_fun f g, l1.sub_to_fun (pos_part f) (pos_part g), pos_part_to_fun f, pos_part_to_fun g], simp only [mem_set_of_eq], assume a h₁ h₂ h₃ h₄, simp only [real.norm_eq_abs, h₁, h₂, h₃, h₄, pi.sub_apply], exact abs_max_sub_max_le_abs _ _ _ end lemma continuous_neg_part : continuous $ λf : α →₁[μ] ℝ, neg_part f := have eq : (λf : α →₁[μ] ℝ, neg_part f) = (λf : α →₁[μ] ℝ, pos_part (-f)) := rfl, by { rw eq, exact continuous_pos_part.comp continuous_neg } end pos_part /- TODO: l1 is a complete space -/ end l1 end measure_theory open measure_theory lemma measurable.integrable_zero [measurable_space β] {f : α → β} (hf : measurable f) : integrable f 0 := ⟨hf, has_finite_integral_zero_measure f⟩
7c37bbf67976e876834418857b14330ebb35f511
5d166a16ae129621cb54ca9dde86c275d7d2b483
/tests/lean/run/aexp.lean
b4dfa099a1d66d6887a164bcee34af32458af879
[ "Apache-2.0" ]
permissive
jcarlson23/lean
b00098763291397e0ac76b37a2dd96bc013bd247
8de88701247f54d325edd46c0eed57aeacb64baf
refs/heads/master
1,611,571,813,719
1,497,020,963,000
1,497,021,515,000
93,882,536
1
0
null
1,497,029,896,000
1,497,029,896,000
null
UTF-8
Lean
false
false
1,712
lean
namespace imp open tactic @[reducible] def uname := string inductive aexp | val : nat → aexp | var : uname → aexp | plus : aexp → aexp → aexp | times : aexp → aexp → aexp instance : decidable_eq aexp := by mk_dec_eq_instance @[reducible] def value := nat def state := uname → value open aexp def aval : aexp → state → value | (val n) s := n | (var x) s := s x | (plus a₁ a₂) s := aval a₁ s + aval a₂ s | (times a₁ a₂) s := aval a₁ s * aval a₂ s example : aval (plus (val 3) (var "x")) (λ x, 0) = 3 := rfl def updt (s : state) (x : uname) (v : value) : state := λ y, if x = y then v else s y def asimp_const : aexp → aexp | (val n) := val n | (var x) := var x | (plus a₁ a₂) := match asimp_const a₁, asimp_const a₂ with | val n₁, val n₂ := val (n₁ + n₂) | b₁, b₂ := plus b₁ b₂ end | (times a₁ a₂) := match asimp_const a₁, asimp_const a₂ with | val n₁, val n₂ := val (n₁ * n₂) | b₁, b₂ := times b₁ b₂ end example : asimp_const (plus (plus (val 2) (val 3)) (var "x")) = plus (val 5) (var "x") := rfl attribute [ematch] asimp_const aval -- set_option trace.smt.ematch true meta def not_done : tactic unit := fail_if_success done lemma aval_asimp_const (a : aexp) (s : state) : aval (asimp_const a) s = aval a s := begin [smt] induction a, all_goals {destruct (asimp_const a_1), all_goals {destruct (asimp_const a_2), eblast}} end lemma ex2 (a : aexp) (s : state) : aval (asimp_const a) s = aval a s := begin [smt] induction a, all_goals {destruct (asimp_const a_1), all_goals {destruct (asimp_const a_2), eblast_using [asimp_const, aval]}} end end imp
99064523c91b0a9f82fb82eb029ab4b05aed983d
8cae430f0a71442d02dbb1cbb14073b31048e4b0
/src/data/stream/init.lean
30c26cbdcd95bbbab4b6acc4f55e88de6fa5f51f
[ "Apache-2.0" ]
permissive
leanprover-community/mathlib
56a2cadd17ac88caf4ece0a775932fa26327ba0e
442a83d738cb208d3600056c489be16900ba701d
refs/heads/master
1,693,584,102,358
1,693,471,902,000
1,693,471,902,000
97,922,418
1,595
352
Apache-2.0
1,694,693,445,000
1,500,624,130,000
Lean
UTF-8
Lean
false
false
20,306
lean
/- Copyright (c) 2015 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura -/ import data.stream.defs import tactic.ext import logic.function.basic /-! # Streams a.k.a. infinite lists a.k.a. infinite sequences > THIS FILE IS SYNCHRONIZED WITH MATHLIB4. > Any changes to this file require a corresponding PR to mathlib4. This file used to be in the core library. It was moved to `mathlib` and renamed to `init` to avoid name clashes. -/ open nat function option universes u v w namespace stream variables {α : Type u} {β : Type v} {δ : Type w} instance {α} [inhabited α] : inhabited (stream α) := ⟨stream.const default⟩ protected theorem eta (s : stream α) : head s :: tail s = s := funext (λ i, begin cases i; refl end) @[simp] theorem nth_zero_cons (a : α) (s : stream α) : nth (a :: s) 0 = a := rfl theorem head_cons (a : α) (s : stream α) : head (a :: s) = a := rfl theorem tail_cons (a : α) (s : stream α) : tail (a :: s) = s := rfl theorem tail_drop (n : nat) (s : stream α) : tail (drop n s) = drop n (tail s) := funext (λ i, begin unfold tail drop, simp [nth, nat.add_comm, nat.add_left_comm] end) theorem nth_drop (n m : nat) (s : stream α) : nth (drop m s) n = nth s (n + m) := rfl theorem tail_eq_drop (s : stream α) : tail s = drop 1 s := rfl theorem drop_drop (n m : nat) (s : stream α) : drop n (drop m s) = drop (n+m) s := funext (λ i, begin unfold drop, rw nat.add_assoc end) theorem nth_succ (n : nat) (s : stream α) : nth s (succ n) = nth (tail s) n := rfl @[simp] lemma nth_succ_cons (n : nat) (s : stream α) (x : α) : nth (x :: s) n.succ = nth s n := rfl theorem drop_succ (n : nat) (s : stream α) : drop (succ n) s = drop n (tail s) := rfl @[simp] lemma head_drop {α} (a : stream α) (n : ℕ) : (a.drop n).head = a.nth n := by simp only [drop, head, nat.zero_add, stream.nth] @[ext] protected theorem ext {s₁ s₂ : stream α} : (∀ n, nth s₁ n = nth s₂ n) → s₁ = s₂ := assume h, funext h lemma cons_injective2 : function.injective2 (cons : α → stream α → stream α) := λ x y s t h, ⟨by rw [←nth_zero_cons x s, h, nth_zero_cons], stream.ext (λ n, by rw [←nth_succ_cons n _ x, h, nth_succ_cons])⟩ lemma cons_injective_left (s : stream α) : function.injective (λ x, cons x s) := cons_injective2.left _ lemma cons_injective_right (x : α) : function.injective (cons x) := cons_injective2.right _ theorem all_def (p : α → Prop) (s : stream α) : all p s = ∀ n, p (nth s n) := rfl theorem any_def (p : α → Prop) (s : stream α) : any p s = ∃ n, p (nth s n) := rfl theorem mem_cons (a : α) (s : stream α) : a ∈ (a::s) := exists.intro 0 rfl theorem mem_cons_of_mem {a : α} {s : stream α} (b : α) : a ∈ s → a ∈ b :: s := assume ⟨n, h⟩, exists.intro (succ n) (by rw [nth_succ, tail_cons, h]) theorem eq_or_mem_of_mem_cons {a b : α} {s : stream α} : a ∈ b::s → a = b ∨ a ∈ s := assume ⟨n, h⟩, begin cases n with n', { left, exact h }, { right, rw [nth_succ, tail_cons] at h, exact ⟨n', h⟩ } end theorem mem_of_nth_eq {n : nat} {s : stream α} {a : α} : a = nth s n → a ∈ s := assume h, exists.intro n h section map variable (f : α → β) theorem drop_map (n : nat) (s : stream α) : drop n (map f s) = map f (drop n s) := stream.ext (λ i, rfl) theorem nth_map (n : nat) (s : stream α) : nth (map f s) n = f (nth s n) := rfl theorem tail_map (s : stream α) : tail (map f s) = map f (tail s) := begin rw tail_eq_drop, refl end theorem head_map (s : stream α) : head (map f s) = f (head s) := rfl theorem map_eq (s : stream α) : map f s = f (head s) :: map f (tail s) := by rw [← stream.eta (map f s), tail_map, head_map] theorem map_cons (a : α) (s : stream α) : map f (a :: s) = f a :: map f s := begin rw [← stream.eta (map f (a :: s)), map_eq], refl end theorem map_id (s : stream α) : map id s = s := rfl theorem map_map (g : β → δ) (f : α → β) (s : stream α) : map g (map f s) = map (g ∘ f) s := rfl theorem map_tail (s : stream α) : map f (tail s) = tail (map f s) := rfl theorem mem_map {a : α} {s : stream α} : a ∈ s → f a ∈ map f s := assume ⟨n, h⟩, exists.intro n (by rw [nth_map, h]) theorem exists_of_mem_map {f} {b : β} {s : stream α} : b ∈ map f s → ∃ a, a ∈ s ∧ f a = b := assume ⟨n, h⟩, ⟨nth s n, ⟨n, rfl⟩, h.symm⟩ end map section zip variable (f : α → β → δ) theorem drop_zip (n : nat) (s₁ : stream α) (s₂ : stream β) : drop n (zip f s₁ s₂) = zip f (drop n s₁) (drop n s₂) := stream.ext (λ i, rfl) theorem nth_zip (n : nat) (s₁ : stream α) (s₂ : stream β) : nth (zip f s₁ s₂) n = f (nth s₁ n) (nth s₂ n) := rfl theorem head_zip (s₁ : stream α) (s₂ : stream β) : head (zip f s₁ s₂) = f (head s₁) (head s₂) := rfl theorem tail_zip (s₁ : stream α) (s₂ : stream β) : tail (zip f s₁ s₂) = zip f (tail s₁) (tail s₂) := rfl theorem zip_eq (s₁ : stream α) (s₂ : stream β) : zip f s₁ s₂ = f (head s₁) (head s₂) :: zip f (tail s₁) (tail s₂) := begin rw [← stream.eta (zip f s₁ s₂)], refl end @[simp] lemma nth_enum (s : stream α) (n : ℕ) : nth (enum s) n = (n, s.nth n) := rfl lemma enum_eq_zip (s : stream α) : enum s = zip prod.mk nats s := rfl end zip theorem mem_const (a : α) : a ∈ const a := exists.intro 0 rfl theorem const_eq (a : α) : const a = a :: const a := begin apply stream.ext, intro n, cases n; refl end theorem tail_const (a : α) : tail (const a) = const a := suffices tail (a :: const a) = const a, by rwa [← const_eq] at this, rfl theorem map_const (f : α → β) (a : α) : map f (const a) = const (f a) := rfl theorem nth_const (n : nat) (a : α) : nth (const a) n = a := rfl theorem drop_const (n : nat) (a : α) : drop n (const a) = const a := stream.ext (λ i, rfl) theorem head_iterate (f : α → α) (a : α) : head (iterate f a) = a := rfl theorem tail_iterate (f : α → α) (a : α) : tail (iterate f a) = iterate f (f a) := begin funext n, induction n with n' ih, { refl }, { unfold tail iterate, unfold tail iterate at ih, rw add_one at ih, dsimp at ih, rw add_one, dsimp, rw ih } end theorem iterate_eq (f : α → α) (a : α) : iterate f a = a :: iterate f (f a) := begin rw [← stream.eta (iterate f a)], rw tail_iterate, refl end theorem nth_zero_iterate (f : α → α) (a : α) : nth (iterate f a) 0 = a := rfl theorem nth_succ_iterate (n : nat) (f : α → α) (a : α) : nth (iterate f a) (succ n) = nth (iterate f (f a)) n := by rw [nth_succ, tail_iterate] section bisim variable (R : stream α → stream α → Prop) local infix ` ~ `:50 := R def is_bisimulation := ∀ ⦃s₁ s₂⦄, s₁ ~ s₂ → head s₁ = head s₂ ∧ tail s₁ ~ tail s₂ theorem nth_of_bisim (bisim : is_bisimulation R) : ∀ {s₁ s₂} n, s₁ ~ s₂ → nth s₁ n = nth s₂ n ∧ drop (n+1) s₁ ~ drop (n+1) s₂ | s₁ s₂ 0 h := bisim h | s₁ s₂ (n+1) h := match bisim h with | ⟨h₁, trel⟩ := nth_of_bisim n trel end -- If two streams are bisimilar, then they are equal theorem eq_of_bisim (bisim : is_bisimulation R) : ∀ {s₁ s₂}, s₁ ~ s₂ → s₁ = s₂ := λ s₁ s₂ r, stream.ext (λ n, and.elim_left (nth_of_bisim R bisim n r)) end bisim theorem bisim_simple (s₁ s₂ : stream α) : head s₁ = head s₂ → s₁ = tail s₁ → s₂ = tail s₂ → s₁ = s₂ := assume hh ht₁ ht₂, eq_of_bisim (λ s₁ s₂, head s₁ = head s₂ ∧ s₁ = tail s₁ ∧ s₂ = tail s₂) (λ s₁ s₂ ⟨h₁, h₂, h₃⟩, begin constructor, exact h₁, rw [← h₂, ← h₃], repeat { constructor }; assumption end) (and.intro hh (and.intro ht₁ ht₂)) theorem coinduction {s₁ s₂ : stream α} : head s₁ = head s₂ → (∀ (β : Type u) (fr : stream α → β), fr s₁ = fr s₂ → fr (tail s₁) = fr (tail s₂)) → s₁ = s₂ := assume hh ht, eq_of_bisim (λ s₁ s₂, head s₁ = head s₂ ∧ ∀ (β : Type u) (fr : stream α → β), fr s₁ = fr s₂ → fr (tail s₁) = fr (tail s₂)) (λ s₁ s₂ h, have h₁ : head s₁ = head s₂, from and.elim_left h, have h₂ : head (tail s₁) = head (tail s₂), from and.elim_right h α (@head α) h₁, have h₃ : ∀ (β : Type u) (fr : stream α → β), fr (tail s₁) = fr (tail s₂) → fr (tail (tail s₁)) = fr (tail (tail s₂)), from λ β fr, and.elim_right h β (λ s, fr (tail s)), and.intro h₁ (and.intro h₂ h₃)) (and.intro hh ht) theorem iterate_id (a : α) : iterate id a = const a := coinduction rfl (λ β fr ch, begin rw [tail_iterate, tail_const], exact ch end) local attribute [reducible] stream theorem map_iterate (f : α → α) (a : α) : iterate f (f a) = map f (iterate f a) := begin funext n, induction n with n' ih, { refl }, { unfold map iterate nth, dsimp, unfold map iterate nth at ih, dsimp at ih, rw ih } end section corec theorem corec_def (f : α → β) (g : α → α) (a : α) : corec f g a = map f (iterate g a) := rfl theorem corec_eq (f : α → β) (g : α → α) (a : α) : corec f g a = f a :: corec f g (g a) := begin rw [corec_def, map_eq, head_iterate, tail_iterate], refl end theorem corec_id_id_eq_const (a : α) : corec id id a = const a := by rw [corec_def, map_id, iterate_id] theorem corec_id_f_eq_iterate (f : α → α) (a : α) : corec id f a = iterate f a := rfl end corec section corec' theorem corec'_eq (f : α → β × α) (a : α) : corec' f a = (f a).1 :: corec' f (f a).2 := corec_eq _ _ _ end corec' theorem unfolds_eq (g : α → β) (f : α → α) (a : α) : unfolds g f a = g a :: unfolds g f (f a) := begin unfold unfolds, rw [corec_eq] end theorem nth_unfolds_head_tail : ∀ (n : nat) (s : stream α), nth (unfolds head tail s) n = nth s n := begin intro n, induction n with n' ih, { intro s, refl }, { intro s, rw [nth_succ, nth_succ, unfolds_eq, tail_cons, ih] } end theorem unfolds_head_eq : ∀ (s : stream α), unfolds head tail s = s := λ s, stream.ext (λ n, nth_unfolds_head_tail n s) theorem interleave_eq (s₁ s₂ : stream α) : s₁ ⋈ s₂ = head s₁ :: head s₂ :: (tail s₁ ⋈ tail s₂) := begin unfold interleave corec_on, rw corec_eq, dsimp, rw corec_eq, refl end theorem tail_interleave (s₁ s₂ : stream α) : tail (s₁ ⋈ s₂) = s₂ ⋈ (tail s₁) := begin unfold interleave corec_on, rw corec_eq, refl end theorem interleave_tail_tail (s₁ s₂ : stream α) : tail s₁ ⋈ tail s₂ = tail (tail (s₁ ⋈ s₂)) := begin rw [interleave_eq s₁ s₂], refl end theorem nth_interleave_left : ∀ (n : nat) (s₁ s₂ : stream α), nth (s₁ ⋈ s₂) (2 * n) = nth s₁ n | 0 s₁ s₂ := rfl | (succ n) s₁ s₂ := begin change nth (s₁ ⋈ s₂) (succ (succ (2*n))) = nth s₁ (succ n), rw [nth_succ, nth_succ, interleave_eq, tail_cons, tail_cons, nth_interleave_left], refl end theorem nth_interleave_right : ∀ (n : nat) (s₁ s₂ : stream α), nth (s₁ ⋈ s₂) (2*n+1) = nth s₂ n | 0 s₁ s₂ := rfl | (succ n) s₁ s₂ := begin change nth (s₁ ⋈ s₂) (succ (succ (2*n+1))) = nth s₂ (succ n), rw [nth_succ, nth_succ, interleave_eq, tail_cons, tail_cons, nth_interleave_right], refl end theorem mem_interleave_left {a : α} {s₁ : stream α} (s₂ : stream α) : a ∈ s₁ → a ∈ s₁ ⋈ s₂ := assume ⟨n, h⟩, exists.intro (2*n) (by rw [h, nth_interleave_left]) theorem mem_interleave_right {a : α} {s₁ : stream α} (s₂ : stream α) : a ∈ s₂ → a ∈ s₁ ⋈ s₂ := assume ⟨n, h⟩, exists.intro (2*n+1) (by rw [h, nth_interleave_right]) theorem odd_eq (s : stream α) : odd s = even (tail s) := rfl theorem head_even (s : stream α) : head (even s) = head s := rfl theorem tail_even (s : stream α) : tail (even s) = even (tail (tail s)) := begin unfold even, rw corec_eq, refl end theorem even_cons_cons (a₁ a₂ : α) (s : stream α) : even (a₁ :: a₂ :: s) = a₁ :: even s := begin unfold even, rw corec_eq, refl end theorem even_tail (s : stream α) : even (tail s) = odd s := rfl theorem even_interleave (s₁ s₂ : stream α) : even (s₁ ⋈ s₂) = s₁ := eq_of_bisim (λ s₁' s₁, ∃ s₂, s₁' = even (s₁ ⋈ s₂)) (λ s₁' s₁ ⟨s₂, h₁⟩, begin rw h₁, constructor, {refl}, {exact ⟨tail s₂, by rw [interleave_eq, even_cons_cons, tail_cons]⟩} end) (exists.intro s₂ rfl) theorem interleave_even_odd (s₁ : stream α) : even s₁ ⋈ odd s₁ = s₁ := eq_of_bisim (λ s' s, s' = even s ⋈ odd s) (λ s' s (h : s' = even s ⋈ odd s), begin rw h, constructor, {refl}, {simp [odd_eq, odd_eq, tail_interleave, tail_even]} end) rfl theorem nth_even : ∀ (n : nat) (s : stream α), nth (even s) n = nth s (2*n) | 0 s := rfl | (succ n) s := begin change nth (even s) (succ n) = nth s (succ (succ (2 * n))), rw [nth_succ, nth_succ, tail_even, nth_even], refl end theorem nth_odd : ∀ (n : nat) (s : stream α), nth (odd s) n = nth s (2 * n + 1) := λ n s, begin rw [odd_eq, nth_even], refl end theorem mem_of_mem_even (a : α) (s : stream α) : a ∈ even s → a ∈ s := assume ⟨n, h⟩, exists.intro (2*n) (by rw [h, nth_even]) theorem mem_of_mem_odd (a : α) (s : stream α) : a ∈ odd s → a ∈ s := assume ⟨n, h⟩, exists.intro (2*n+1) (by rw [h, nth_odd]) theorem nil_append_stream (s : stream α) : append_stream [] s = s := rfl theorem cons_append_stream (a : α) (l : list α) (s : stream α) : append_stream (a::l) s = a :: append_stream l s := rfl theorem append_append_stream : ∀ (l₁ l₂ : list α) (s : stream α), (l₁ ++ l₂) ++ₛ s = l₁ ++ₛ (l₂ ++ₛ s) | [] l₂ s := rfl | (list.cons a l₁) l₂ s := by rw [list.cons_append, cons_append_stream, cons_append_stream, append_append_stream] theorem map_append_stream (f : α → β) : ∀ (l : list α) (s : stream α), map f (l ++ₛ s) = list.map f l ++ₛ map f s | [] s := rfl | (list.cons a l) s := by rw [cons_append_stream, list.map_cons, map_cons, cons_append_stream, map_append_stream] theorem drop_append_stream : ∀ (l : list α) (s : stream α), drop l.length (l ++ₛ s) = s | [] s := by refl | (list.cons a l) s := by rw [list.length_cons, add_one, drop_succ, cons_append_stream, tail_cons, drop_append_stream] theorem append_stream_head_tail (s : stream α) : [head s] ++ₛ tail s = s := by rw [cons_append_stream, nil_append_stream, stream.eta] theorem mem_append_stream_right : ∀ {a : α} (l : list α) {s : stream α}, a ∈ s → a ∈ l ++ₛ s | a [] s h := h | a (list.cons b l) s h := have ih : a ∈ l ++ₛ s, from mem_append_stream_right l h, mem_cons_of_mem _ ih theorem mem_append_stream_left : ∀ {a : α} {l : list α} (s : stream α), a ∈ l → a ∈ l ++ₛ s | a [] s h := absurd h (list.not_mem_nil _) | a (list.cons b l) s h := or.elim (list.eq_or_mem_of_mem_cons h) (λ (aeqb : a = b), exists.intro 0 aeqb) (λ (ainl : a ∈ l), mem_cons_of_mem b (mem_append_stream_left s ainl)) @[simp] theorem take_zero (s : stream α) : take 0 s = [] := rfl @[simp] theorem take_succ (n : nat) (s : stream α) : take (succ n) s = head s :: take n (tail s) := rfl @[simp] theorem length_take (n : ℕ) (s : stream α) : (take n s).length = n := by induction n generalizing s; simp * theorem nth_take_succ : ∀ (n : nat) (s : stream α), list.nth (take (succ n) s) n = some (nth s n) | 0 s := rfl | (n+1) s := begin rw [take_succ, add_one, list.nth, nth_take_succ], refl end theorem append_take_drop : ∀ (n : nat) (s : stream α), append_stream (take n s) (drop n s) = s := begin intro n, induction n with n' ih, { intro s, refl }, { intro s, rw [take_succ, drop_succ, cons_append_stream, ih (tail s), stream.eta] } end -- Take theorem reduces a proof of equality of infinite streams to an -- induction over all their finite approximations. theorem take_theorem (s₁ s₂ : stream α) : (∀ (n : nat), take n s₁ = take n s₂) → s₁ = s₂ := begin intro h, apply stream.ext, intro n, induction n with n ih, { have aux := h 1, simp [take] at aux, exact aux }, { have h₁ : some (nth s₁ (succ n)) = some (nth s₂ (succ n)), { rw [← nth_take_succ, ← nth_take_succ, h (succ (succ n))] }, injection h₁ } end protected lemma cycle_g_cons (a : α) (a₁ : α) (l₁ : list α) (a₀ : α) (l₀ : list α) : stream.cycle_g (a, a₁::l₁, a₀, l₀) = (a₁, l₁, a₀, l₀) := rfl theorem cycle_eq : ∀ (l : list α) (h : l ≠ []), cycle l h = l ++ₛ cycle l h | [] h := absurd rfl h | (list.cons a l) h := have gen : ∀ l' a', corec stream.cycle_f stream.cycle_g (a', l', a, l) = (a' :: l') ++ₛ corec stream.cycle_f stream.cycle_g (a, l, a, l), begin intro l', induction l' with a₁ l₁ ih, {intros, rw [corec_eq], refl}, {intros, rw [corec_eq, stream.cycle_g_cons, ih a₁], refl} end, gen l a theorem mem_cycle {a : α} {l : list α} : ∀ (h : l ≠ []), a ∈ l → a ∈ cycle l h := assume h ainl, begin rw [cycle_eq], exact mem_append_stream_left _ ainl end theorem cycle_singleton (a : α) (h : [a] ≠ []) : cycle [a] h = const a := coinduction rfl (λ β fr ch, by rwa [cycle_eq, const_eq]) theorem tails_eq (s : stream α) : tails s = tail s :: tails (tail s) := by unfold tails; rw [corec_eq]; refl theorem nth_tails : ∀ (n : nat) (s : stream α), nth (tails s) n = drop n (tail s) := begin intro n, induction n with n' ih, { intros, refl }, { intro s, rw [nth_succ, drop_succ, tails_eq, tail_cons, ih] } end theorem tails_eq_iterate (s : stream α) : tails s = iterate tail (tail s) := rfl theorem inits_core_eq (l : list α) (s : stream α) : inits_core l s = l :: inits_core (l ++ [head s]) (tail s) := begin unfold inits_core corec_on, rw [corec_eq], refl end theorem tail_inits (s : stream α) : tail (inits s) = inits_core [head s, head (tail s)] (tail (tail s)) := begin unfold inits, rw inits_core_eq, refl end theorem inits_tail (s : stream α) : inits (tail s) = inits_core [head (tail s)] (tail (tail s)) := rfl theorem cons_nth_inits_core : ∀ (a : α) (n : nat) (l : list α) (s : stream α), a :: nth (inits_core l s) n = nth (inits_core (a::l) s) n := begin intros a n, induction n with n' ih, { intros, refl }, { intros l s, rw [nth_succ, inits_core_eq, tail_cons, ih, inits_core_eq (a::l) s], refl } end theorem nth_inits : ∀ (n : nat) (s : stream α), nth (inits s) n = take (succ n) s := begin intro n, induction n with n' ih, { intros, refl }, { intros, rw [nth_succ, take_succ, ← ih, tail_inits, inits_tail, cons_nth_inits_core] } end theorem inits_eq (s : stream α) : inits s = [head s] :: map (list.cons (head s)) (inits (tail s)) := begin apply stream.ext, intro n, cases n, { refl }, { rw [nth_inits, nth_succ, tail_cons, nth_map, nth_inits], refl } end theorem zip_inits_tails (s : stream α) : zip append_stream (inits s) (tails s) = const s := begin apply stream.ext, intro n, rw [nth_zip, nth_inits, nth_tails, nth_const, take_succ, cons_append_stream, append_take_drop, stream.eta] end theorem identity (s : stream α) : pure id ⊛ s = s := rfl theorem composition (g : stream (β → δ)) (f : stream (α → β)) (s : stream α) : pure comp ⊛ g ⊛ f ⊛ s = g ⊛ (f ⊛ s) := rfl theorem homomorphism (f : α → β) (a : α) : pure f ⊛ pure a = pure (f a) := rfl theorem interchange (fs : stream (α → β)) (a : α) : fs ⊛ pure a = pure (λ f : α → β, f a) ⊛ fs := rfl theorem map_eq_apply (f : α → β) (s : stream α) : map f s = pure f ⊛ s := rfl theorem nth_nats (n : nat) : nth nats n = n := rfl theorem nats_eq : nats = 0 :: map succ nats := begin apply stream.ext, intro n, cases n, refl, rw [nth_succ], refl end end stream
0887c042249cd063cc4818833f322e11f7a7b9f7
63abd62053d479eae5abf4951554e1064a4c45b4
/src/topology/algebra/polynomial.lean
aacfc3ea4b05f7441ab848398f18b8f305cefbc5
[ "Apache-2.0" ]
permissive
Lix0120/mathlib
0020745240315ed0e517cbf32e738d8f9811dd80
e14c37827456fc6707f31b4d1d16f1f3a3205e91
refs/heads/master
1,673,102,855,024
1,604,151,044,000
1,604,151,044,000
308,930,245
0
0
Apache-2.0
1,604,164,710,000
1,604,163,547,000
null
UTF-8
Lean
false
false
2,069
lean
/- Copyright (c) 2018 Robert Y. Lewis. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Robert Y. Lewis Analytic facts about polynomials. -/ import topology.algebra.ring import data.polynomial.div import data.real.cau_seq open polynomial is_absolute_value lemma polynomial.tendsto_infinity {α β : Type*} [comm_ring α] [linear_ordered_field β] (abv : α → β) [is_absolute_value abv] {p : polynomial α} (h : 0 < degree p) : ∀ x : β, ∃ r > 0, ∀ z : α, r < abv z → x < abv (p.eval z) := degree_pos_induction_on p h (λ a ha x, ⟨max (x / abv a) 1, (lt_max_iff.2 (or.inr zero_lt_one)), λ z hz, by simp [max_lt_iff, div_lt_iff' ((abv_pos abv).2 ha), abv_mul abv] at *; tauto⟩) (λ p hp ih x, let ⟨r, hr0, hr⟩ := ih x in ⟨max r 1, lt_max_iff.2 (or.inr zero_lt_one), λ z hz, by rw [eval_mul, eval_X, abv_mul abv]; calc x < abv (p.eval z) : hr _ (max_lt_iff.1 hz).1 ... ≤ abv (eval z p) * abv z : le_mul_of_one_le_right (abv_nonneg _ _) (max_le_iff.1 (le_of_lt hz)).2⟩) (λ p a hp ih x, let ⟨r, hr0, hr⟩ := ih (x + abv a) in ⟨r, hr0, λ z hz, by rw [eval_add, eval_C, ← sub_neg_eq_add]; exact lt_of_lt_of_le (lt_sub_iff_add_lt.2 (by rw abv_neg abv; exact (hr z hz))) (le_trans (le_abs_self _) (abs_abv_sub_le_abv_sub _ _ _))⟩) @[continuity] lemma polynomial.continuous_eval {α} [comm_semiring α] [topological_space α] [topological_semiring α] (p : polynomial α) : continuous (λ x, p.eval x) := begin apply p.induction, { convert continuous_const, ext, exact eval_zero, }, { intros a b f haf hb hcts, simp only [polynomial.eval_add], refine continuous.add _ hcts, have : ∀ x, finsupp.sum (finsupp.single a b) (λ (e : ℕ) (a : α), a * x ^ e) = b * x ^a, from λ x, finsupp.sum_single_index (by simp), convert continuous.mul _ _, { ext, dsimp only [eval_eq_sum], apply this }, { apply_instance }, { apply continuous_const }, { apply continuous_pow }} end
5e5cdd93657bf104d82c5a512b3b63871cb673b8
cf39355caa609c0f33405126beee2739aa3cb77e
/tests/lean/run/check_monad_mk.lean
e17c1aaaf87dbb1cd2850f07c30ece43a1aa207a
[ "Apache-2.0" ]
permissive
leanprover-community/lean
12b87f69d92e614daea8bcc9d4de9a9ace089d0e
cce7990ea86a78bdb383e38ed7f9b5ba93c60ce0
refs/heads/master
1,687,508,156,644
1,684,951,104,000
1,684,951,104,000
169,960,991
457
107
Apache-2.0
1,686,744,372,000
1,549,790,268,000
C++
UTF-8
Lean
false
false
59
lean
#check @monad.mk #check @functor.mk #check @applicative.mk
1a3d186e5bfae685c55df6e77bed12307a3baffa
80cc5bf14c8ea85ff340d1d747a127dcadeb966f
/src/topology/list.lean
dddaca3c1f0b574d0777a71eb822dc2cbb0339a1
[ "Apache-2.0" ]
permissive
lacker/mathlib
f2439c743c4f8eb413ec589430c82d0f73b2d539
ddf7563ac69d42cfa4a1bfe41db1fed521bd795f
refs/heads/master
1,671,948,326,773
1,601,479,268,000
1,601,479,268,000
298,686,743
0
0
Apache-2.0
1,601,070,794,000
1,601,070,794,000
null
UTF-8
Lean
false
false
8,387
lean
/- Copyright (c) 2019 Reid Barton. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl Topology on lists and vectors. -/ import topology.constructions open topological_space set filter open_locale topological_space filter variables {α : Type*} {β : Type*} instance [topological_space α] : topological_space (list α) := topological_space.mk_of_nhds (traverse nhds) lemma nhds_list [topological_space α] (as : list α) : 𝓝 as = traverse 𝓝 as := begin refine nhds_mk_of_nhds _ _ _ _, { assume l, induction l, case list.nil { exact le_refl _ }, case list.cons : a l ih { suffices : list.cons <$> pure a <*> pure l ≤ list.cons <$> 𝓝 a <*> traverse 𝓝 l, { simpa only [] with functor_norm using this }, exact filter.seq_mono (filter.map_mono $ pure_le_nhds a) ih } }, { assume l s hs, rcases (mem_traverse_sets_iff _ _).1 hs with ⟨u, hu, hus⟩, clear as hs, have : ∃v:list (set α), l.forall₂ (λa s, is_open s ∧ a ∈ s) v ∧ sequence v ⊆ s, { induction hu generalizing s, case list.forall₂.nil : hs this { existsi [], simpa only [list.forall₂_nil_left_iff, exists_eq_left] }, case list.forall₂.cons : a s as ss ht h ih t hts { rcases mem_nhds_sets_iff.1 ht with ⟨u, hut, hu⟩, rcases ih (subset.refl _) with ⟨v, hv, hvss⟩, exact ⟨u::v, list.forall₂.cons hu hv, subset.trans (set.seq_mono (set.image_subset _ hut) hvss) hts⟩ } }, rcases this with ⟨v, hv, hvs⟩, refine ⟨sequence v, mem_traverse_sets _ _ _, hvs, _⟩, { exact hv.imp (assume a s ⟨hs, ha⟩, mem_nhds_sets hs ha) }, { assume u hu, have hu := (list.mem_traverse _ _).1 hu, have : list.forall₂ (λa s, is_open s ∧ a ∈ s) u v, { refine list.forall₂.flip _, replace hv := hv.flip, simp only [list.forall₂_and_left, flip] at ⊢ hv, exact ⟨hv.1, hu.flip⟩ }, refine mem_sets_of_superset _ hvs, exact mem_traverse_sets _ _ (this.imp $ assume a s ⟨hs, ha⟩, mem_nhds_sets hs ha) } } end lemma nhds_nil [topological_space α] : 𝓝 ([] : list α) = pure [] := by rw [nhds_list, list.traverse_nil _]; apply_instance lemma nhds_cons [topological_space α] (a : α) (l : list α) : 𝓝 (a :: l) = list.cons <$> 𝓝 a <*> 𝓝 l := by rw [nhds_list, list.traverse_cons _, ← nhds_list]; apply_instance namespace list variables [topological_space α] [topological_space β] lemma tendsto_cons' {a : α} {l : list α} : tendsto (λp:α×list α, list.cons p.1 p.2) (𝓝 a ×ᶠ 𝓝 l) (𝓝 (a :: l)) := by rw [nhds_cons, tendsto, map_prod]; exact le_refl _ lemma tendsto_cons {α : Type*} {f : α → β} {g : α → list β} {a : _root_.filter α} {b : β} {l : list β} (hf : tendsto f a (𝓝 b)) (hg : tendsto g a (𝓝 l)) : tendsto (λa, list.cons (f a) (g a)) a (𝓝 (b :: l)) := tendsto_cons'.comp (tendsto.prod_mk hf hg) lemma tendsto_cons_iff {β : Type*} {f : list α → β} {b : _root_.filter β} {a : α} {l : list α} : tendsto f (𝓝 (a :: l)) b ↔ tendsto (λp:α×list α, f (p.1 :: p.2)) (𝓝 a ×ᶠ 𝓝 l) b := have 𝓝 (a :: l) = (𝓝 a ×ᶠ 𝓝 l).map (λp:α×list α, (p.1 :: p.2)), begin simp only [nhds_cons, filter.prod_eq, (filter.map_def _ _).symm, (filter.seq_eq_filter_seq _ _).symm], simp [-filter.seq_eq_filter_seq, -filter.map_def, (∘)] with functor_norm, end, by rw [this, filter.tendsto_map'_iff] lemma tendsto_nhds {β : Type*} {f : list α → β} {r : list α → _root_.filter β} (h_nil : tendsto f (pure []) (r [])) (h_cons : ∀l a, tendsto f (𝓝 l) (r l) → tendsto (λp:α×list α, f (p.1 :: p.2)) (𝓝 a ×ᶠ 𝓝 l) (r (a::l))) : ∀l, tendsto f (𝓝 l) (r l) | [] := by rwa [nhds_nil] | (a::l) := by rw [tendsto_cons_iff]; exact h_cons l a (tendsto_nhds l) lemma continuous_at_length : ∀(l : list α), continuous_at list.length l := begin simp only [continuous_at, nhds_discrete], refine tendsto_nhds _ _, { exact tendsto_pure_pure _ _ }, { assume l a ih, dsimp only [list.length], refine tendsto.comp (tendsto_pure_pure (λx, x + 1) _) _, refine tendsto.comp ih tendsto_snd } end lemma tendsto_insert_nth' {a : α} : ∀{n : ℕ} {l : list α}, tendsto (λp:α×list α, insert_nth n p.1 p.2) (𝓝 a ×ᶠ 𝓝 l) (𝓝 (insert_nth n a l)) | 0 l := tendsto_cons' | (n+1) [] := suffices tendsto (λa, []) (𝓝 a) (𝓝 ([] : list α)), by simpa [nhds_nil, tendsto, map_prod, (∘), insert_nth], tendsto_const_nhds | (n+1) (a'::l) := have 𝓝 a ×ᶠ 𝓝 (a' :: l) = (𝓝 a ×ᶠ (𝓝 a' ×ᶠ 𝓝 l)).map (λp:α×α×list α, (p.1, p.2.1 :: p.2.2)), begin simp only [nhds_cons, filter.prod_eq, (filter.map_def _ _).symm, (filter.seq_eq_filter_seq _ _).symm], simp [-filter.seq_eq_filter_seq, -filter.map_def, (∘)] with functor_norm end, begin rw [this, tendsto_map'_iff], exact tendsto_cons (tendsto_fst.comp tendsto_snd) ((@tendsto_insert_nth' n l).comp (tendsto.prod_mk tendsto_fst (tendsto_snd.comp tendsto_snd))) end lemma tendsto_insert_nth {β : Type*} {n : ℕ} {a : α} {l : list α} {f : β → α} {g : β → list α} {b : _root_.filter β} (hf : tendsto f b (𝓝 a)) (hg : tendsto g b (𝓝 l)) : tendsto (λb:β, insert_nth n (f b) (g b)) b (𝓝 (insert_nth n a l)) := tendsto_insert_nth'.comp (tendsto.prod_mk hf hg) lemma continuous_insert_nth {n : ℕ} : continuous (λp:α×list α, insert_nth n p.1 p.2) := continuous_iff_continuous_at.mpr $ assume ⟨a, l⟩, by rw [continuous_at, nhds_prod_eq]; exact tendsto_insert_nth' lemma tendsto_remove_nth : ∀{n : ℕ} {l : list α}, tendsto (λl, remove_nth l n) (𝓝 l) (𝓝 (remove_nth l n)) | _ [] := by rw [nhds_nil]; exact tendsto_pure_nhds _ _ | 0 (a::l) := by rw [tendsto_cons_iff]; exact tendsto_snd | (n+1) (a::l) := begin rw [tendsto_cons_iff], dsimp [remove_nth], exact tendsto_cons tendsto_fst ((@tendsto_remove_nth n l).comp tendsto_snd) end lemma continuous_remove_nth {n : ℕ} : continuous (λl : list α, remove_nth l n) := continuous_iff_continuous_at.mpr $ assume a, tendsto_remove_nth end list namespace vector open list instance (n : ℕ) [topological_space α] : topological_space (vector α n) := by unfold vector; apply_instance lemma tendsto_cons [topological_space α] {n : ℕ} {a : α} {l : vector α n}: tendsto (λp:α×vector α n, vector.cons p.1 p.2) (𝓝 a ×ᶠ 𝓝 l) (𝓝 (a :: l)) := by { simp [tendsto_subtype_rng, ←subtype.val_eq_coe, cons_val], exact tendsto_cons tendsto_fst (tendsto.comp continuous_at_subtype_coe tendsto_snd) } lemma tendsto_insert_nth [topological_space α] {n : ℕ} {i : fin (n+1)} {a:α} : ∀{l:vector α n}, tendsto (λp:α×vector α n, insert_nth p.1 i p.2) (𝓝 a ×ᶠ 𝓝 l) (𝓝 (insert_nth a i l)) | ⟨l, hl⟩ := begin rw [insert_nth, tendsto_subtype_rng], simp [insert_nth_val], exact list.tendsto_insert_nth tendsto_fst (tendsto.comp continuous_at_subtype_coe tendsto_snd : _) end lemma continuous_insert_nth' [topological_space α] {n : ℕ} {i : fin (n+1)} : continuous (λp:α×vector α n, insert_nth p.1 i p.2) := continuous_iff_continuous_at.mpr $ assume ⟨a, l⟩, by rw [continuous_at, nhds_prod_eq]; exact tendsto_insert_nth lemma continuous_insert_nth [topological_space α] [topological_space β] {n : ℕ} {i : fin (n+1)} {f : β → α} {g : β → vector α n} (hf : continuous f) (hg : continuous g) : continuous (λb, insert_nth (f b) i (g b)) := continuous_insert_nth'.comp (continuous.prod_mk hf hg) lemma continuous_at_remove_nth [topological_space α] {n : ℕ} {i : fin (n+1)} : ∀{l:vector α (n+1)}, continuous_at (remove_nth i) l | ⟨l, hl⟩ := -- ∀{l:vector α (n+1)}, tendsto (remove_nth i) (𝓝 l) (𝓝 (remove_nth i l)) --| ⟨l, hl⟩ := begin rw [continuous_at, remove_nth, tendsto_subtype_rng], simp only [← subtype.val_eq_coe, vector.remove_nth_val], exact tendsto.comp list.tendsto_remove_nth continuous_at_subtype_coe, end lemma continuous_remove_nth [topological_space α] {n : ℕ} {i : fin (n+1)} : continuous (remove_nth i : vector α (n+1) → vector α n) := continuous_iff_continuous_at.mpr $ assume ⟨a, l⟩, continuous_at_remove_nth end vector
f008237c78e4caf3aafaa644638c998da7e2f7fd
d642a6b1261b2cbe691e53561ac777b924751b63
/src/topology/metric_space/cau_seq_filter.lean
b8236f2351412734b97984c4bf97c0298ee5dbfa
[ "Apache-2.0" ]
permissive
cipher1024/mathlib
fee56b9954e969721715e45fea8bcb95f9dc03fe
d077887141000fefa5a264e30fa57520e9f03522
refs/heads/master
1,651,806,490,504
1,573,508,694,000
1,573,508,694,000
107,216,176
0
0
Apache-2.0
1,647,363,136,000
1,508,213,014,000
Lean
UTF-8
Lean
false
false
19,628
lean
/- Copyright (c) 2018 Robert Y. Lewis. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Robert Y. Lewis, Sébastien Gouëzel Characterize completeness of metric spaces in terms of Cauchy sequences. In particular, reconcile the filter notion of Cauchy-ness with the cau_seq notion on normed spaces. -/ import topology.uniform_space.basic analysis.normed_space.basic data.real.cau_seq analysis.specific_limits import tactic.linarith universes u v open set filter classical emetric variable {β : Type v} /- We show that a metric space in which all Cauchy sequences converge is complete, i.e., all Cauchy filters converge. For this, we approximate any Cauchy filter by a Cauchy sequence, taking advantage of the fact that there is a sequence tending to `0` in ℝ. The proof also gives a more precise result, that to get completeness it is enough to have the convergence of all sequence that are Cauchy in a fixed quantitative sense, for instance satisfying `dist (u n) (u m) < 2^{- min m n}`. The classical argument to obtain this criterion is to start from a Cauchy sequence, extract a subsequence that satisfies this property, deduce the convergence of the subsequence, and then the convergence of the original sequence. All this argument is completely bypassed by the following proof, which avoids any use of subsequences and is written partly in terms of filters. -/ namespace ennreal /-In this paragraph, we prove useful properties of the sequence `half_pow n := 2^{-n}` in ennreal. Some of them are instrumental in this file to get Cauchy sequences, but others are proved here only for use in further applications of the completeness criterion `emetric.complete_of_convergent_controlled_sequences` below. -/ /-- An auxiliary positive sequence that tends to `0` in `ennreal`, with good behavior. -/ noncomputable def half_pow (n : ℕ) : ennreal := ennreal.of_real ((1 / 2) ^ n) lemma half_pow_pos (n : ℕ) : 0 < half_pow n := begin have : (0 : real) < (1/2)^n := pow_pos (by norm_num) _, simpa [half_pow] using this end lemma half_pow_tendsto_zero : tendsto (λn, half_pow n) at_top (nhds 0) := begin unfold half_pow, rw ← ennreal.of_real_zero, apply ennreal.tendsto_of_real, exact tendsto_pow_at_top_nhds_0_of_lt_1 (by norm_num) (by norm_num) end lemma half_pow_add_succ (n : ℕ) : half_pow (n+1) + half_pow (n+1) = half_pow n := begin have : (0 : real) ≤ (1/2)^(n+1) := (le_of_lt (pow_pos (by norm_num) _)), simp only [half_pow, eq.symm (ennreal.of_real_add this this)], apply congr_arg, simp only [pow_add, one_div_eq_inv, pow_one], ring, end lemma half_pow_mono (m k : ℕ) (h : m ≤ k) : half_pow k ≤ half_pow m := ennreal.of_real_le_of_real (pow_le_pow_of_le_one (by norm_num) (by norm_num) h) lemma edist_le_two_mul_half_pow [emetric_space β] {k l N : ℕ} (hk : N ≤ k) (hl : N ≤ l) {u : ℕ → β} (h : ∀n, edist (u n) (u (n+1)) ≤ half_pow n) : edist (u k) (u l) ≤ 2 * half_pow N := begin have ineq_rec : ∀m, ∀k≥m, half_pow k + edist (u m) (u (k+1)) ≤ 2 * half_pow m, { assume m, refine nat.le_induction _ (λk km hk, _), { calc half_pow m + edist (u m) (u (m+1)) ≤ half_pow m + half_pow m : add_le_add_left' (h m) ... = 2 * half_pow m : by simp [(mul_two _).symm, mul_comm] }, { calc half_pow (k + 1) + edist (u m) (u (k + 1 + 1)) ≤ half_pow (k+1) + (edist (u m) (u (k+1)) + edist (u (k+1)) (u (k+2))) : add_le_add_left' (edist_triangle _ _ _) ... ≤ half_pow (k+1) + (edist (u m) (u (k+1)) + half_pow (k+1)) : add_le_add_left' (add_le_add_left' (h (k+1))) ... = (half_pow(k+1) + half_pow(k+1)) + edist (u m) (u (k+1)) : by simp [add_comm] ... = half_pow k + edist (u m) (u (k+1)) : by rw half_pow_add_succ ... ≤ 2 * half_pow m : hk }}, have Imk : ∀m, ∀k≥m, edist (u m) (u k) ≤ 2 * half_pow m, { assume m k hk, by_cases h : m = k, { simp [h, le_of_lt (half_pow_pos k)] }, { have I : m < k := lt_of_le_of_ne hk h, have : 0 < k := lt_of_le_of_lt (nat.zero_le _) ‹m < k›, let l := nat.pred k, have : k = l+1 := (nat.succ_pred_eq_of_pos ‹0 < k›).symm, rw this, have : m ≤ l := begin rw this at I, apply nat.le_of_lt_succ I end, calc edist (u m) (u (l+1)) ≤ half_pow l + edist (u m) (u (l+1)) : le_add_left (le_refl _) ... ≤ 2 * half_pow m : ineq_rec m l ‹m ≤ l› }}, by_cases h : k ≤ l, { calc edist (u k) (u l) ≤ 2 * half_pow k : Imk k l h ... ≤ 2 * half_pow N : canonically_ordered_semiring.mul_le_mul (le_refl _) (half_pow_mono N k hk) }, { simp at h, calc edist (u k) (u l) = edist (u l) (u k) : edist_comm _ _ ... ≤ 2 * half_pow l : Imk l k (le_of_lt h) ... ≤ 2 * half_pow N : canonically_ordered_semiring.mul_le_mul (le_refl _) (half_pow_mono N l hl) } end lemma cauchy_seq_of_edist_le_half_pow [emetric_space β] {u : ℕ → β} (h : ∀n, edist (u n) (u (n+1)) ≤ half_pow n) : cauchy_seq u := begin refine emetric.cauchy_seq_iff_le_tendsto_0.2 ⟨λn:ℕ, 2 * half_pow n, ⟨_, _⟩⟩, { exact λk l N hk hl, edist_le_two_mul_half_pow hk hl h }, { have : tendsto (λn, 2 * half_pow n) at_top (nhds (2 * 0)) := ennreal.tendsto_mul_right half_pow_tendsto_zero (by simp), simpa using this } end end ennreal namespace sequentially_complete section /- We fix a cauchy filter `f`, and a bounding sequence `B` made of positive numbers. We will prove that, if all sequences satisfying `dist (u n) (u m) < B (min n m)` converge, then the cauchy filter `f` is converging. The idea is to construct from `f` a Cauchy sequence that satisfies this property, therefore converges, and then to deduce the convergence of `f` from this. We give the argument in the more general setting of emetric spaces, and specialize it to metric spaces at the end. -/ variables [emetric_space β] {f : filter β} (hf : cauchy f) (B : ℕ → ennreal) (hB : ∀n, 0 < B n) open ennreal /--Auxiliary sequence, which is bounded by `B`, positive, and tends to `0`.-/ noncomputable def B2 (B : ℕ → ennreal) (n : ℕ) := (half_pow n) ⊓ (B n) lemma B2_pos (hB : ∀n, 0 < B n) (n : ℕ) : 0 < B2 B n := by unfold B2; simp [half_pow_pos n, hB n] lemma B2_lim : tendsto (λn, B2 B n) at_top (nhds 0) := begin have : ∀n, B2 B n ≤ half_pow n := λn, lattice.inf_le_left, exact tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds half_pow_tendsto_zero (by simp) (by simp [this]) end /-- Define a decreasing sequence of sets in the filter `f`, of diameter bounded by `B2 n`. -/ def set_seq_of_cau_filter : ℕ → set β | 0 := some ((emetric.cauchy_iff.1 hf).2 _ (B2_pos B hB 0)) | (n+1) := (set_seq_of_cau_filter n) ∩ some ((emetric.cauchy_iff.1 hf).2 _ (B2_pos B hB (n + 1))) /-- These sets are in the filter. -/ lemma set_seq_of_cau_filter_mem_sets : ∀ n, set_seq_of_cau_filter hf B hB n ∈ f | 0 := some (some_spec ((emetric.cauchy_iff.1 hf).2 _ (B2_pos B hB 0))) | (n+1) := inter_mem_sets (set_seq_of_cau_filter_mem_sets n) (some (some_spec ((emetric.cauchy_iff.1 hf).2 _ (B2_pos B hB (n + 1))))) /-- These sets are nonempty. -/ lemma set_seq_of_cau_filter_inhabited (n : ℕ) : ∃ x, x ∈ set_seq_of_cau_filter hf B hB n := inhabited_of_mem_sets (emetric.cauchy_iff.1 hf).1 (set_seq_of_cau_filter_mem_sets hf B hB n) /-- By construction, their diameter is controlled by `B2 n`. -/ lemma set_seq_of_cau_filter_spec : ∀ n, ∀ {x y}, x ∈ set_seq_of_cau_filter hf B hB n → y ∈ set_seq_of_cau_filter hf B hB n → edist x y < B2 B n | 0 := some_spec (some_spec ((emetric.cauchy_iff.1 hf).2 _ (B2_pos B hB 0))) | (n+1) := λ x y hx hy, some_spec (some_spec ((emetric.cauchy_iff.1 hf).2 _ (B2_pos B hB (n+1)))) x y (mem_of_mem_inter_right hx) (mem_of_mem_inter_right hy) -- this must exist somewhere, no? private lemma mono_of_mono_succ_aux {α} [partial_order α] (f : ℕ → α) (h : ∀ n, f (n+1) ≤ f n) (m : ℕ) : ∀ n, f (m + n) ≤ f m | 0 := le_refl _ | (k+1) := le_trans (h _) (mono_of_mono_succ_aux _) lemma mono_of_mono_succ {α} [partial_order α] (f : ℕ → α) (h : ∀ n, f (n+1) ≤ f n) {m n : ℕ} (hmn : m ≤ n) : f n ≤ f m := let ⟨k, hk⟩ := nat.exists_eq_add_of_le hmn in by simpa [hk] using mono_of_mono_succ_aux f h m k lemma set_seq_of_cau_filter_monotone' (n : ℕ) : set_seq_of_cau_filter hf B hB (n+1) ⊆ set_seq_of_cau_filter hf B hB n := inter_subset_left _ _ /-- These sets are nested. -/ lemma set_seq_of_cau_filter_monotone {n k : ℕ} (hle : n ≤ k) : set_seq_of_cau_filter hf B hB k ⊆ set_seq_of_cau_filter hf B hB n := mono_of_mono_succ (set_seq_of_cau_filter hf B hB) (set_seq_of_cau_filter_monotone' hf B hB) hle /-- Define the approximating Cauchy sequence for the Cauchy filter `f`, obtained by taking a point in each set. -/ noncomputable def seq_of_cau_filter (n : ℕ) : β := some (set_seq_of_cau_filter_inhabited hf B hB n) /-- The approximating sequence indeed belong to our good sets. -/ lemma seq_of_cau_filter_mem_set_seq (n : ℕ) : seq_of_cau_filter hf B hB n ∈ set_seq_of_cau_filter hf B hB n := some_spec (set_seq_of_cau_filter_inhabited hf B hB n) /-- The distance between points in the sequence is bounded by `B2 N`. -/ lemma seq_of_cau_filter_bound {N n k : ℕ} (hn : N ≤ n) (hk : N ≤ k) : edist (seq_of_cau_filter hf B hB n) (seq_of_cau_filter hf B hB k) < B2 B N := set_seq_of_cau_filter_spec hf B hB N (set_seq_of_cau_filter_monotone hf B hB hn (seq_of_cau_filter_mem_set_seq hf B hB n)) (set_seq_of_cau_filter_monotone hf B hB hk (seq_of_cau_filter_mem_set_seq hf B hB k)) /-- The approximating sequence is indeed Cauchy as `B2 n` tends to `0` with `n`. -/ lemma seq_of_cau_filter_is_cauchy : cauchy_seq (seq_of_cau_filter hf B hB) := emetric.cauchy_seq_iff_le_tendsto_0.2 ⟨B2 B, λ n m N hn hm, le_of_lt (seq_of_cau_filter_bound hf B hB hn hm), B2_lim B⟩ /-- If the approximating Cauchy sequence is converging, to a limit `y`, then the original Cauchy filter `f` is also converging, to the same limit. Given `t1` in the filter `f` and `t2` a neighborhood of `y`, it suffices to show that `t1 ∩ t2` is nonempty. Pick `ε` so that the ε-eball around `y` is contained in `t2`. Pick `n` with `B2 n < ε/2`, and `n2` such that `dist(seq n2, y) < ε/2`. Let `N = max(n, n2)`. We defined `seq` by looking at a decreasing sequence of sets of `f` with shrinking radius. The Nth one has radius `< B2 N < ε/2`. This set is in `f`, so we can find an element `x` that's also in `t1`. `dist(x, seq N) < ε/2` since `seq N` is in this set, and `dist (seq N, y) < ε/2`, so `x` is in the ε-ball around `y`, and thus in `t2`. -/ lemma le_nhds_cau_filter_lim {y : β} (H : tendsto (seq_of_cau_filter hf B hB) at_top (nhds y)) : f ≤ nhds y := begin refine (le_nhds_iff_adhp_of_cauchy hf).2 _, refine forall_sets_neq_empty_iff_neq_bot.1 (λs hs, _), rcases filter.mem_inf_sets.2 hs with ⟨t1, ht1, t2, ht2, ht1t2⟩, rcases emetric.mem_nhds_iff.1 ht2 with ⟨ε, hε, ht2'⟩, cases emetric.cauchy_iff.1 hf with hfb _, have : ε / 2 > 0 := ennreal.half_pos hε, rcases inhabited_of_mem_sets (by simp) ((tendsto_orderable.1 (B2_lim B)).2 _ this) with ⟨n, hnε⟩, simp only [set.mem_set_of_eq] at hnε, -- hnε : ε / 2 > B2 B hB n cases (emetric.tendsto_at_top _).1 H _ this with n2 hn2, let N := max n n2, have ht1sn : t1 ∩ set_seq_of_cau_filter hf B hB N ∈ f, from inter_mem_sets ht1 (set_seq_of_cau_filter_mem_sets hf B hB _), have hts1n_ne : t1 ∩ set_seq_of_cau_filter hf B hB N ≠ ∅, from forall_sets_neq_empty_iff_neq_bot.2 hfb _ ht1sn, cases exists_mem_of_ne_empty hts1n_ne with x hx, -- x : β, hx : x ∈ t1 ∩ set_seq_of_cau_filter hf B hB N -- we still have to show that x ∈ t2, i.e., edist x y < ε have I1 : seq_of_cau_filter hf B hB N ∈ set_seq_of_cau_filter hf B hB n := (set_seq_of_cau_filter_monotone hf B hB (le_max_left n n2)) (seq_of_cau_filter_mem_set_seq hf B hB N), have I2 : x ∈ set_seq_of_cau_filter hf B hB n := (set_seq_of_cau_filter_monotone hf B hB (le_max_left n n2)) hx.2, have hdist1 : edist x (seq_of_cau_filter hf B hB N) < B2 B n := set_seq_of_cau_filter_spec hf B hB _ I2 I1, have hdist2 : edist (seq_of_cau_filter hf B hB N) y < ε / 2 := hn2 N (le_max_right _ _), have hdist : edist x y < ε := calc edist x y ≤ edist x (seq_of_cau_filter hf B hB N) + edist (seq_of_cau_filter hf B hB N) y : edist_triangle _ _ _ ... < B2 B n + ε/2 : ennreal.add_lt_add hdist1 hdist2 ... ≤ ε/2 + ε/2 : add_le_add_right' (le_of_lt hnε) ... = ε : ennreal.add_halves _, have hxt2 : x ∈ t2, from ht2' hdist, exact ne_empty_iff_exists_mem.2 ⟨x, ht1t2 (mem_inter hx.left hxt2)⟩ end end end sequentially_complete /-- An emetric space in which every Cauchy sequence converges is complete. -/ theorem complete_of_cauchy_seq_tendsto {α : Type u} [emetric_space α] (H : ∀u : ℕ → α, cauchy_seq u → ∃x, tendsto u at_top (nhds x)) : complete_space α := ⟨begin -- Consider a Cauchy filter `f` intros f hf, -- Introduce a sequence `u` approximating the filter `f`. We don't need the bound `B`, -- so take for instance `B n = 1` for all `n`. let u := sequentially_complete.seq_of_cau_filter hf (λn, 1) (λn, ennreal.zero_lt_one), -- It is Cauchy. have : cauchy_seq u := sequentially_complete.seq_of_cau_filter_is_cauchy hf (λn, 1) (λn, ennreal.zero_lt_one), -- Therefore, it converges by assumption. Let `x` be its limit. rcases H u this with ⟨x, hx⟩, -- The original filter also converges to `x`. exact ⟨x, sequentially_complete.le_nhds_cau_filter_lim hf (λn, 1) (λn, ennreal.zero_lt_one) hx⟩ end⟩ /-- A very useful criterion to show that a space is complete is to show that all sequences which satisfy a bound of the form `edist (u n) (u m) < B N` for all `n m ≥ N` are converging. This is often applied for `B N = 2^{-N}`, i.e., with a very fast convergence to `0`, which makes it possible to use arguments of converging series, while this is impossible to do in general for arbitrary Cauchy sequences. -/ theorem emetric.complete_of_convergent_controlled_sequences {α : Type u} [emetric_space α] (B : ℕ → ennreal) (hB : ∀n, 0 < B n) (H : ∀u : ℕ → α, (∀N n m : ℕ, N ≤ n → N ≤ m → edist (u n) (u m) < B N) → ∃x, tendsto u at_top (nhds x)) : complete_space α := ⟨begin -- Consider a Cauchy filter `f`. intros f hf, -- Introduce a sequence `u` approximating the filter `f`. let u := sequentially_complete.seq_of_cau_filter hf B hB, -- It satisfies the required bound. have : ∀N n m : ℕ, N ≤ n → N ≤ m → edist (u n) (u m) < B N := λN n m hn hm, calc edist (u n) (u m) < sequentially_complete.B2 B N : sequentially_complete.seq_of_cau_filter_bound hf B hB hn hm ... ≤ B N : lattice.inf_le_right, -- Therefore, it converges by assumption. Let `x` be its limit. rcases H u this with ⟨x, hx⟩, -- The original filter also converges to `x`. exact ⟨x, sequentially_complete.le_nhds_cau_filter_lim hf B hB hx⟩ end⟩ /-- A very useful criterion to show that a space is complete is to show that all sequences which satisfy a bound of the form `dist (u n) (u m) < B N` for all `n m ≥ N` are converging. This is often applied for `B N = 2^{-N}`, i.e., with a very fast convergence to `0`, which makes it possible to use arguments of converging series, while this is impossible to do in general for arbitrary Cauchy sequences. -/ theorem metric.complete_of_convergent_controlled_sequences {α : Type u} [metric_space α] (B : ℕ → real) (hB : ∀n, 0 < B n) (H : ∀u : ℕ → α, (∀N n m : ℕ, N ≤ n → N ≤ m → dist (u n) (u m) < B N) → ∃x, tendsto u at_top (nhds x)) : complete_space α := begin -- this follows from the same criterion in emetric spaces. We just need to translate -- the convergence assumption from `dist` to `edist` apply emetric.complete_of_convergent_controlled_sequences (λn, ennreal.of_real (B n)), { simp [hB] }, { assume u Hu, apply H, assume N n m hn hm, have Z := Hu N n m hn hm, rw [edist_dist, ennreal.of_real_lt_of_real_iff] at Z, exact Z, exact hB N } end section /- Now, we will apply these results to `cau_seq`, i.e., "Cauchy sequences" defined by a multiplicative absolute value on normed fields. -/ lemma tendsto_limit [normed_ring β] [hn : is_absolute_value (norm : β → ℝ)] (f : cau_seq β norm) [cau_seq.is_complete β norm] : tendsto f at_top (nhds f.lim) := _root_.tendsto_nhds.mpr begin intros s os lfs, suffices : ∃ (a : ℕ), ∀ (b : ℕ), b ≥ a → f b ∈ s, by simpa using this, rcases metric.is_open_iff.1 os _ lfs with ⟨ε, ⟨hε, hεs⟩⟩, cases setoid.symm (cau_seq.equiv_lim f) _ hε with N hN, existsi N, intros b hb, apply hεs, dsimp [metric.ball], rw [dist_comm, dist_eq_norm], solve_by_elim end variables [normed_field β] /- This section shows that if we have a uniform space generated by an absolute value, topological completeness and Cauchy sequence completeness coincide. The problem is that there isn't a good notion of "uniform space generated by an absolute value", so right now this is specific to norm. Furthermore, norm only instantiates is_absolute_value on normed_field. This needs to be fixed, since it prevents showing that ℤ_[hp] is complete -/ instance normed_field.is_absolute_value : is_absolute_value (norm : β → ℝ) := { abv_nonneg := norm_nonneg, abv_eq_zero := norm_eq_zero, abv_add := norm_triangle, abv_mul := normed_field.norm_mul } open metric lemma cauchy_of_filter_cauchy (f : ℕ → β) (hf : cauchy_seq f) : is_cau_seq norm f := begin cases cauchy_iff.1 hf with hf1 hf2, intros ε hε, rcases hf2 {x | dist x.1 x.2 < ε} (dist_mem_uniformity hε) with ⟨t, ⟨ht, htsub⟩⟩, simp at ht, cases ht with N hN, existsi N, intros j hj, rw ←dist_eq_norm, apply @htsub (f j, f N), apply set.mk_mem_prod; solve_by_elim [le_refl] end lemma filter_cauchy_of_cauchy (f : cau_seq β norm) : cauchy_seq f := begin apply cauchy_iff.2, split, { exact map_ne_bot at_top_ne_bot }, { intros s hs, rcases mem_uniformity_dist.1 hs with ⟨ε, ⟨hε, hεs⟩⟩, cases cau_seq.cauchy₂ f hε with N hN, existsi {n | n ≥ N}.image f, simp, split, { existsi N, intros b hb, existsi b, simp [hb] }, { rintros ⟨a, b⟩ ⟨⟨a', ⟨ha'1, ha'2⟩⟩, ⟨b', ⟨hb'1, hb'2⟩⟩⟩, dsimp at ha'1 ha'2 hb'1 hb'2, rw [←ha'2, ←hb'2], apply hεs, rw dist_eq_norm, apply hN; assumption }}, end /-- In a normed field, `cau_seq` coincides with the usual notion of Cauchy sequences. -/ lemma cau_seq_iff_cauchy_seq {α : Type u} [normed_field α] {u : ℕ → α} : is_cau_seq norm u ↔ cauchy_seq u := ⟨λh, filter_cauchy_of_cauchy ⟨u, h⟩, λh, cauchy_of_filter_cauchy u h⟩ /-- A complete normed field is complete as a metric space, as Cauchy sequences converge by assumption and this suffices to characterize completeness. -/ instance complete_space_of_cau_seq_complete [cau_seq.is_complete β norm] : complete_space β := begin apply complete_of_cauchy_seq_tendsto, assume u hu, have C : is_cau_seq norm u := cau_seq_iff_cauchy_seq.2 hu, existsi cau_seq.lim ⟨u, C⟩, rw metric.tendsto_at_top, assume ε εpos, cases (cau_seq.equiv_lim ⟨u, C⟩) _ εpos with N hN, existsi N, simpa [dist_eq_norm] using hN end end
01c341b6389c6dc0711083b119eaf37aebdfa064
ec5a7ae10c533e1b1f4b0bc7713e91ecf829a3eb
/ijcar16/examples/cc3.lean
5e2ab496a47481dabd9cfbf8774a66a53fb5bb31
[ "MIT" ]
permissive
leanprover/leanprover.github.io
cf248934af7c7e9aeff17cf8df3c12c5e7e73f1a
071a20d2e059a2c3733e004c681d3949cac3c07a
refs/heads/master
1,692,621,047,417
1,691,396,994,000
1,691,396,994,000
19,366,263
18
27
MIT
1,693,989,071,000
1,399,006,345,000
Lean
UTF-8
Lean
false
false
684
lean
/- Example/test file for the congruence closure procedure described in the paper: "Congruence Closure for Intensional Type Theory" Daniel Selsam and Leonardo de Moura The tactic `by blast` has been configured in this file to use just the congruence closure procedure using the command set_option blast.strategy "cc" -/ open nat set_option blast.strategy "cc" constant f (a b : nat) : a > b → nat constant g : nat → nat example (a₁ a₂ b₁ b₂ c d : nat) (H₁ : a₁ > b₁) (H₂ : a₂ > b₂) : a₁ = c → a₂ = c → b₁ = d → d = b₂ → g (g (f a₁ b₁ H₁)) = g (g (f a₂ b₂ H₂)) := by blast
a042f868c06d67e6c9bc4d147ebfb24543cc98e2
05f637fa14ac28031cb1ea92086a0f4eb23ff2b1
/tests/lean/implicit3.lean
6270f578bbf4cf981c598b561e9e467a1db90b30
[ "Apache-2.0" ]
permissive
codyroux/lean0.1
1ce92751d664aacff0529e139083304a7bbc8a71
0dc6fb974aa85ed6f305a2f4b10a53a44ee5f0ef
refs/heads/master
1,610,830,535,062
1,402,150,480,000
1,402,150,480,000
19,588,851
2
0
null
null
null
null
UTF-8
Lean
false
false
238
lean
import Int. print 10 = 20 variable f : Int -> Int -> Int variable g : Int -> Int -> Int -> Int notation 10 _ ++ _ : f notation 10 _ ++ _ : g set_option pp::implicit true set_option pp::notation false print (10 ++ 20) print (10 ++ 20) 10
f9a076258249cdfd3d2119c92604fe3091fd8641
f618aea02cb4104ad34ecf3b9713065cc0d06103
/src/field_theory/mv_polynomial.lean
1107fe1f94df75925c3b0f12f2b417e20a8b8a3d
[ "Apache-2.0" ]
permissive
joehendrix/mathlib
84b6603f6be88a7e4d62f5b1b0cbb523bb82b9a5
c15eab34ad754f9ecd738525cb8b5a870e834ddc
refs/heads/master
1,589,606,591,630
1,555,946,393,000
1,555,946,393,000
182,813,854
0
0
null
1,555,946,309,000
1,555,946,308,000
null
UTF-8
Lean
false
false
6,816
lean
/- Copyright (c) 2019 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Johannes Hölzl Multivariate functions of the form `α^n → α` are isomorphic to multivariate polynomials in `n` variables. -/ import linear_algebra.finsupp field_theory.finite noncomputable theory local attribute [instance, priority 0] classical.prop_decidable local attribute [instance, priority 0] nat.cast_coe open lattice set linear_map submodule namespace mv_polynomial variables {α : Type*} {σ : Type*} variables [discrete_field α] [fintype α] [fintype σ] [decidable_eq σ] def indicator (a : σ → α) : mv_polynomial σ α := finset.univ.prod (λn, 1 - (X n - C (a n))^(fintype.card α - 1)) lemma eval_indicator_apply_eq_one (a : σ → α) : eval a (indicator a) = 1 := have 0 < fintype.card α - 1, begin rw [← finite_field.card_units, fintype.card_pos_iff], exact ⟨1⟩ end, by simp only [indicator, (finset.prod_hom (eval a)).symm, eval_sub, is_ring_hom.map_one (eval a), is_semiring_hom.map_pow (eval a), eval_X, eval_C, sub_self, zero_pow this, sub_zero, finset.prod_const_one] lemma eval_indicator_apply_eq_zero (a b : σ → α) (h : a ≠ b) : eval a (indicator b) = 0 := have ∃i, a i ≠ b i, by rwa [(≠), function.funext_iff, not_forall] at h, begin rcases this with ⟨i, hi⟩, simp only [indicator, (finset.prod_hom (eval a)).symm, eval_sub, is_ring_hom.map_one (eval a), is_semiring_hom.map_pow (eval a), eval_X, eval_C, sub_self, finset.prod_eq_zero_iff], refine ⟨i, finset.mem_univ _, _⟩, rw [finite_field.pow_card_sub_one_eq_one, sub_self], rwa [(≠), sub_eq_zero], end lemma degrees_indicator (c : σ → α) : degrees (indicator c) ≤ finset.univ.sum (λs:σ, add_monoid.smul (fintype.card α - 1) {s}) := begin rw [indicator], refine le_trans (degrees_prod _ _) (finset.sum_le_sum $ assume s hs, _), refine le_trans (degrees_sub _ _) _, rw [degrees_one, ← bot_eq_zero, bot_sup_eq], refine le_trans (degrees_pow _ _) (add_monoid.smul_le_smul_of_le_right _ _), refine le_trans (degrees_sub _ _) _, rw [degrees_C, ← bot_eq_zero, sup_bot_eq], exact degrees_X _ end set_option class.instance_max_depth 50 lemma indicator_mem_restrict_degree (c : σ → α) : indicator c ∈ restrict_degree σ α (fintype.card α - 1) := begin rw [mem_restrict_degree_iff_sup, indicator], assume n, refine le_trans (multiset.count_le_of_le _ $ degrees_indicator _) (le_of_eq _), rw [← finset.sum_hom (multiset.count n)], simp only [is_add_monoid_hom.map_smul (multiset.count n), multiset.singleton_eq_singleton, add_monoid.smul_eq_mul, nat.cast_id], transitivity, refine finset.sum_eq_single n _ _, { assume b hb ne, rw [multiset.count_cons_of_ne ne.symm, multiset.count_zero, mul_zero] }, { assume h, exact (h $ finset.mem_univ _).elim }, { rw [multiset.count_cons_self, multiset.count_zero, mul_one] } end section variables (α σ) def evalₗ : mv_polynomial σ α →ₗ[α] (σ → α) → α := ⟨ λp e, p.eval e, assume p q, funext $ assume e, eval_add, assume a p, funext $ assume e, by rw [smul_eq_C_mul, eval_mul, eval_C]; refl ⟩ end section set_option class.instance_max_depth 50 lemma evalₗ_apply (p : mv_polynomial σ α) (e : σ → α) : evalₗ α σ p e = p.eval e := rfl end lemma map_restrict_dom_evalₗ : (restrict_degree σ α (fintype.card α - 1)).map (evalₗ α σ) = ⊤ := begin refine top_unique (submodule.le_def'.2 $ assume e _, mem_map.2 _), refine ⟨finset.univ.sum (λn:σ → α, e n • indicator n), _, _⟩, { exact sum_mem _ (assume c _, smul_mem _ _ (indicator_mem_restrict_degree _)) }, { ext n, simp only [linear_map.map_sum, @pi.finset_sum_apply (σ → α) (λ_, α) _ _ _ _ _, pi.smul_apply, linear_map.map_smul], simp only [evalₗ_apply], transitivity, refine finset.sum_eq_single n _ _, { assume b _ h, rw [eval_indicator_apply_eq_zero _ _ h.symm, smul_zero] }, { assume h, exact (h $ finset.mem_univ n).elim }, { rw [eval_indicator_apply_eq_one, smul_eq_mul, mul_one] } } end end mv_polynomial namespace mv_polynomial universe u variables (σ : Type u) (α : Type u) [decidable_eq σ] [fintype σ] [discrete_field α] [fintype α] def R : Type u := restrict_degree σ α (fintype.card α - 1) instance R.add_comm_group : add_comm_group (R σ α) := by dunfold R; apply_instance instance R.vector_space : vector_space α (R σ α) := by dunfold R; apply_instance set_option class.instance_max_depth 50 lemma dim_R : vector_space.dim α (R σ α) = fintype.card (σ → α) := calc vector_space.dim α (R σ α) = vector_space.dim α (↥{s : σ →₀ ℕ | ∀ (n : σ), s n ≤ fintype.card α - 1} →₀ α) : linear_equiv.dim_eq (finsupp.restrict_dom_equiv_finsupp α α {s : σ →₀ ℕ | ∀n:σ, s n ≤ fintype.card α - 1 }) ... = cardinal.mk {s : σ →₀ ℕ | ∀ (n : σ), s n ≤ fintype.card α - 1} : by rw [finsupp.dim_eq, dim_of_field, mul_one] ... = cardinal.mk {s : σ → ℕ | ∀ (n : σ), s n < fintype.card α } : begin refine quotient.sound ⟨equiv.subtype_congr finsupp.equiv_fun_on_fintype $ assume f, _⟩, refine forall_congr (assume n, nat.le_sub_right_iff_add_le _), exact fintype.card_pos_iff.2 ⟨0⟩ end ... = cardinal.mk (σ → {n // n < fintype.card α}) : quotient.sound ⟨@equiv.subtype_pi_equiv_pi σ (λ_, ℕ) (λs n, n < fintype.card α)⟩ ... = cardinal.mk (σ → fin (fintype.card α)) : quotient.sound ⟨equiv.arrow_congr (equiv.refl σ) (equiv.fin_equiv_subtype _).symm⟩ ... = cardinal.mk (σ → α) : begin refine (trunc.induction_on (fintype.equiv_fin α) $ assume (e : α ≃ fin (fintype.card α)), _), refine quotient.sound ⟨equiv.arrow_congr (equiv.refl σ) e.symm⟩ end ... = fintype.card (σ → α) : cardinal.fintype_card _ def evalᵢ : R σ α →ₗ[α] (σ → α) → α := ((evalₗ α σ).comp (restrict_degree σ α (fintype.card α - 1)).subtype) lemma range_evalᵢ : (evalᵢ σ α).range = ⊤ := begin rw [evalᵢ, linear_map.range_comp, range_subtype], exact map_restrict_dom_evalₗ end lemma ker_evalₗ : (evalᵢ σ α).ker = ⊥ := begin refine injective_of_surjective _ _ _ (range_evalᵢ _ _), { rw [dim_R], exact cardinal.nat_lt_omega _ }, { rw [dim_R, dim_fun, dim_of_field, mul_one] } end lemma eq_zero_of_eval_eq_zero (p : mv_polynomial σ α) (h : ∀v:σ → α, p.eval v = 0) (hp : p ∈ restrict_degree σ α (fintype.card α - 1)) : p = 0 := let p' : R σ α := ⟨p, hp⟩ in have p' ∈ (evalᵢ σ α).ker := by rw [mem_ker]; ext v; exact h v, show p'.1 = (0 : R σ α).1, begin rw [ker_evalₗ, mem_bot] at this, rw [this] end end mv_polynomial
7bd49f88521df9b3873ef6e5e1e61586068881f2
947fa6c38e48771ae886239b4edce6db6e18d0fb
/src/analysis/convex/basic.lean
afa93ca3e9711a03c00db8ad95b07332e1f6a9a1
[ "Apache-2.0" ]
permissive
ramonfmir/mathlib
c5dc8b33155473fab97c38bd3aa6723dc289beaa
14c52e990c17f5a00c0cc9e09847af16fabbed25
refs/heads/master
1,661,979,343,526
1,660,830,384,000
1,660,830,384,000
182,072,989
0
0
null
1,555,585,876,000
1,555,585,876,000
null
UTF-8
Lean
false
false
42,036
lean
/- Copyright (c) 2019 Alexander Bentkamp. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Alexander Bentkamp, Yury Kudriashov, Yaël Dillies -/ import algebra.order.invertible import algebra.order.module import linear_algebra.affine_space.midpoint import linear_algebra.affine_space.affine_subspace import linear_algebra.ray import tactic.positivity /-! # Convex sets and functions in vector spaces In a 𝕜-vector space, we define the following objects and properties. * `segment 𝕜 x y`: Closed segment joining `x` and `y`. * `open_segment 𝕜 x y`: Open segment joining `x` and `y`. * `convex 𝕜 s`: A set `s` is convex if for any two points `x y ∈ s` it includes `segment 𝕜 x y`. * `std_simplex 𝕜 ι`: The standard simplex in `ι → 𝕜` (currently requires `fintype ι`). It is the intersection of the positive quadrant with the hyperplane `s.sum = 1`. We also provide various equivalent versions of the definitions above, prove that some specific sets are convex. ## Notations We provide the following notation: * `[x -[𝕜] y] = segment 𝕜 x y` in locale `convex` ## TODO Generalize all this file to affine spaces. Should we rename `segment` and `open_segment` to `convex.Icc` and `convex.Ioo`? Should we also define `clopen_segment`/`convex.Ico`/`convex.Ioc`? -/ variables {𝕜 E F β : Type*} open linear_map set open_locale big_operators classical pointwise /-! ### Segment -/ section ordered_semiring variables [ordered_semiring 𝕜] [add_comm_monoid E] section has_smul variables (𝕜) [has_smul 𝕜 E] /-- Segments in a vector space. -/ def segment (x y : E) : set E := {z : E | ∃ (a b : 𝕜) (ha : 0 ≤ a) (hb : 0 ≤ b) (hab : a + b = 1), a • x + b • y = z} /-- Open segment in a vector space. Note that `open_segment 𝕜 x x = {x}` instead of being `∅` when the base semiring has some element between `0` and `1`. -/ def open_segment (x y : E) : set E := {z : E | ∃ (a b : 𝕜) (ha : 0 < a) (hb : 0 < b) (hab : a + b = 1), a • x + b • y = z} localized "notation `[` x ` -[` 𝕜 `] ` y `]` := segment 𝕜 x y" in convex lemma segment_eq_image₂ (x y : E) : [x -[𝕜] y] = (λ p : 𝕜 × 𝕜, p.1 • x + p.2 • y) '' {p | 0 ≤ p.1 ∧ 0 ≤ p.2 ∧ p.1 + p.2 = 1} := by simp only [segment, image, prod.exists, mem_set_of_eq, exists_prop, and_assoc] lemma open_segment_eq_image₂ (x y : E) : open_segment 𝕜 x y = (λ p : 𝕜 × 𝕜, p.1 • x + p.2 • y) '' {p | 0 < p.1 ∧ 0 < p.2 ∧ p.1 + p.2 = 1} := by simp only [open_segment, image, prod.exists, mem_set_of_eq, exists_prop, and_assoc] lemma segment_symm (x y : E) : [x -[𝕜] y] = [y -[𝕜] x] := set.ext $ λ z, ⟨λ ⟨a, b, ha, hb, hab, H⟩, ⟨b, a, hb, ha, (add_comm _ _).trans hab, (add_comm _ _).trans H⟩, λ ⟨a, b, ha, hb, hab, H⟩, ⟨b, a, hb, ha, (add_comm _ _).trans hab, (add_comm _ _).trans H⟩⟩ lemma open_segment_symm (x y : E) : open_segment 𝕜 x y = open_segment 𝕜 y x := set.ext $ λ z, ⟨λ ⟨a, b, ha, hb, hab, H⟩, ⟨b, a, hb, ha, (add_comm _ _).trans hab, (add_comm _ _).trans H⟩, λ ⟨a, b, ha, hb, hab, H⟩, ⟨b, a, hb, ha, (add_comm _ _).trans hab, (add_comm _ _).trans H⟩⟩ lemma open_segment_subset_segment (x y : E) : open_segment 𝕜 x y ⊆ [x -[𝕜] y] := λ z ⟨a, b, ha, hb, hab, hz⟩, ⟨a, b, ha.le, hb.le, hab, hz⟩ lemma segment_subset_iff {x y : E} {s : set E} : [x -[𝕜] y] ⊆ s ↔ ∀ a b : 𝕜, 0 ≤ a → 0 ≤ b → a + b = 1 → a • x + b • y ∈ s := ⟨λ H a b ha hb hab, H ⟨a, b, ha, hb, hab, rfl⟩, λ H z ⟨a, b, ha, hb, hab, hz⟩, hz ▸ H a b ha hb hab⟩ lemma open_segment_subset_iff {x y : E} {s : set E} : open_segment 𝕜 x y ⊆ s ↔ ∀ a b : 𝕜, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s := ⟨λ H a b ha hb hab, H ⟨a, b, ha, hb, hab, rfl⟩, λ H z ⟨a, b, ha, hb, hab, hz⟩, hz ▸ H a b ha hb hab⟩ end has_smul open_locale convex section mul_action_with_zero variables (𝕜) [mul_action_with_zero 𝕜 E] lemma left_mem_segment (x y : E) : x ∈ [x -[𝕜] y] := ⟨1, 0, zero_le_one, le_refl 0, add_zero 1, by rw [zero_smul, one_smul, add_zero]⟩ lemma right_mem_segment (x y : E) : y ∈ [x -[𝕜] y] := segment_symm 𝕜 y x ▸ left_mem_segment 𝕜 y x end mul_action_with_zero section module variables (𝕜) [module 𝕜 E] {x y z : E} {s : set E} @[simp] lemma segment_same (x : E) : [x -[𝕜] x] = {x} := set.ext $ λ z, ⟨λ ⟨a, b, ha, hb, hab, hz⟩, by simpa only [(add_smul _ _ _).symm, mem_singleton_iff, hab, one_smul, eq_comm] using hz, λ h, mem_singleton_iff.1 h ▸ left_mem_segment 𝕜 z z⟩ lemma insert_endpoints_open_segment (x y : E) : insert x (insert y (open_segment 𝕜 x y)) = [x -[𝕜] y] := begin simp only [subset_antisymm_iff, insert_subset, left_mem_segment, right_mem_segment, open_segment_subset_segment, true_and], rintro z ⟨a, b, ha, hb, hab, rfl⟩, refine hb.eq_or_gt.imp _ (λ hb', ha.eq_or_gt.imp _ _), { rintro rfl, rw add_zero at hab, rw [hab, one_smul, zero_smul, add_zero] }, { rintro rfl, rw zero_add at hab, rw [hab, one_smul, zero_smul, zero_add] }, { exact λ ha', ⟨a, b, ha', hb', hab, rfl⟩ } end variables {𝕜} lemma mem_open_segment_of_ne_left_right (hx : x ≠ z) (hy : y ≠ z) (hz : z ∈ [x -[𝕜] y]) : z ∈ open_segment 𝕜 x y := begin rw [← insert_endpoints_open_segment] at hz, exact ((hz.resolve_left hx.symm).resolve_left hy.symm) end lemma open_segment_subset_iff_segment_subset (hx : x ∈ s) (hy : y ∈ s) : open_segment 𝕜 x y ⊆ s ↔ [x -[𝕜] y] ⊆ s := by simp only [← insert_endpoints_open_segment, insert_subset, *, true_and] end module end ordered_semiring open_locale convex section ordered_ring variables [ordered_ring 𝕜] section add_comm_group variables (𝕜) [add_comm_group E] [add_comm_group F] [module 𝕜 E] [module 𝕜 F] section densely_ordered variables [nontrivial 𝕜] [densely_ordered 𝕜] @[simp] lemma open_segment_same (x : E) : open_segment 𝕜 x x = {x} := set.ext $ λ z, ⟨λ ⟨a, b, ha, hb, hab, hz⟩, by simpa only [← add_smul, mem_singleton_iff, hab, one_smul, eq_comm] using hz, λ (h : z = x), begin obtain ⟨a, ha₀, ha₁⟩ := densely_ordered.dense (0 : 𝕜) 1 zero_lt_one, refine ⟨a, 1 - a, ha₀, sub_pos_of_lt ha₁, add_sub_cancel'_right _ _, _⟩, rw [←add_smul, add_sub_cancel'_right, one_smul, h], end⟩ end densely_ordered lemma segment_eq_image (x y : E) : [x -[𝕜] y] = (λ θ : 𝕜, (1 - θ) • x + θ • y) '' Icc (0 : 𝕜) 1 := set.ext $ λ z, ⟨λ ⟨a, b, ha, hb, hab, hz⟩, ⟨b, ⟨hb, hab ▸ le_add_of_nonneg_left ha⟩, hab ▸ hz ▸ by simp only [add_sub_cancel]⟩, λ ⟨θ, ⟨hθ₀, hθ₁⟩, hz⟩, ⟨1-θ, θ, sub_nonneg.2 hθ₁, hθ₀, sub_add_cancel _ _, hz⟩⟩ lemma open_segment_eq_image (x y : E) : open_segment 𝕜 x y = (λ (θ : 𝕜), (1 - θ) • x + θ • y) '' Ioo (0 : 𝕜) 1 := set.ext $ λ z, ⟨λ ⟨a, b, ha, hb, hab, hz⟩, ⟨b, ⟨hb, hab ▸ lt_add_of_pos_left _ ha⟩, hab ▸ hz ▸ by simp only [add_sub_cancel]⟩, λ ⟨θ, ⟨hθ₀, hθ₁⟩, hz⟩, ⟨1 - θ, θ, sub_pos.2 hθ₁, hθ₀, sub_add_cancel _ _, hz⟩⟩ lemma segment_eq_image' (x y : E) : [x -[𝕜] y] = (λ (θ : 𝕜), x + θ • (y - x)) '' Icc (0 : 𝕜) 1 := by { convert segment_eq_image 𝕜 x y, ext θ, simp only [smul_sub, sub_smul, one_smul], abel } lemma open_segment_eq_image' (x y : E) : open_segment 𝕜 x y = (λ (θ : 𝕜), x + θ • (y - x)) '' Ioo (0 : 𝕜) 1 := by { convert open_segment_eq_image 𝕜 x y, ext θ, simp only [smul_sub, sub_smul, one_smul], abel } lemma segment_eq_image_line_map (x y : E) : [x -[𝕜] y] = affine_map.line_map x y '' Icc (0 : 𝕜) 1 := by { convert segment_eq_image 𝕜 x y, ext, exact affine_map.line_map_apply_module _ _ _ } lemma open_segment_eq_image_line_map (x y : E) : open_segment 𝕜 x y = affine_map.line_map x y '' Ioo (0 : 𝕜) 1 := by { convert open_segment_eq_image 𝕜 x y, ext, exact affine_map.line_map_apply_module _ _ _ } lemma segment_image (f : E →ₗ[𝕜] F) (a b : E) : f '' [a -[𝕜] b] = [f a -[𝕜] f b] := set.ext (λ x, by simp_rw [segment_eq_image, mem_image, exists_exists_and_eq_and, map_add, map_smul]) @[simp] lemma open_segment_image (f : E →ₗ[𝕜] F) (a b : E) : f '' open_segment 𝕜 a b = open_segment 𝕜 (f a) (f b) := set.ext (λ x, by simp_rw [open_segment_eq_image, mem_image, exists_exists_and_eq_and, map_add, map_smul]) lemma mem_segment_translate (a : E) {x b c} : a + x ∈ [a + b -[𝕜] a + c] ↔ x ∈ [b -[𝕜] c] := begin rw [segment_eq_image', segment_eq_image'], refine exists_congr (λ θ, and_congr iff.rfl _), simp only [add_sub_add_left_eq_sub, add_assoc, add_right_inj], end @[simp] lemma mem_open_segment_translate (a : E) {x b c : E} : a + x ∈ open_segment 𝕜 (a + b) (a + c) ↔ x ∈ open_segment 𝕜 b c := begin rw [open_segment_eq_image', open_segment_eq_image'], refine exists_congr (λ θ, and_congr iff.rfl _), simp only [add_sub_add_left_eq_sub, add_assoc, add_right_inj], end lemma segment_translate_preimage (a b c : E) : (λ x, a + x) ⁻¹' [a + b -[𝕜] a + c] = [b -[𝕜] c] := set.ext $ λ x, mem_segment_translate 𝕜 a lemma open_segment_translate_preimage (a b c : E) : (λ x, a + x) ⁻¹' open_segment 𝕜 (a + b) (a + c) = open_segment 𝕜 b c := set.ext $ λ x, mem_open_segment_translate 𝕜 a lemma segment_translate_image (a b c : E) : (λ x, a + x) '' [b -[𝕜] c] = [a + b -[𝕜] a + c] := segment_translate_preimage 𝕜 a b c ▸ image_preimage_eq _ $ add_left_surjective a lemma open_segment_translate_image (a b c : E) : (λ x, a + x) '' open_segment 𝕜 b c = open_segment 𝕜 (a + b) (a + c) := open_segment_translate_preimage 𝕜 a b c ▸ image_preimage_eq _ $ add_left_surjective a end add_comm_group end ordered_ring lemma same_ray_of_mem_segment [ordered_comm_ring 𝕜] [add_comm_group E] [module 𝕜 E] {x y z : E} (h : x ∈ [y -[𝕜] z]) : same_ray 𝕜 (x - y) (z - x) := begin rw segment_eq_image' at h, rcases h with ⟨θ, ⟨hθ₀, hθ₁⟩, rfl⟩, simpa only [add_sub_cancel', ← sub_sub, sub_smul, one_smul] using (same_ray_nonneg_smul_left (z - y) hθ₀).nonneg_smul_right (sub_nonneg.2 hθ₁) end section linear_ordered_ring variables [linear_ordered_ring 𝕜] section add_comm_group variables [add_comm_group E] [add_comm_group F] [module 𝕜 E] [module 𝕜 F] lemma midpoint_mem_segment [invertible (2 : 𝕜)] (x y : E) : midpoint 𝕜 x y ∈ [x -[𝕜] y] := begin rw segment_eq_image_line_map, exact ⟨⅟2, ⟨inv_of_nonneg.mpr zero_le_two, inv_of_le_one one_le_two⟩, rfl⟩, end lemma mem_segment_sub_add [invertible (2 : 𝕜)] (x y : E) : x ∈ [x-y -[𝕜] x+y] := begin convert @midpoint_mem_segment 𝕜 _ _ _ _ _ _ _, rw midpoint_sub_add end lemma mem_segment_add_sub [invertible (2 : 𝕜)] (x y : E) : x ∈ [x+y -[𝕜] x-y] := begin convert @midpoint_mem_segment 𝕜 _ _ _ _ _ _ _, rw midpoint_add_sub end @[simp] lemma left_mem_open_segment_iff [densely_ordered 𝕜] [no_zero_smul_divisors 𝕜 E] {x y : E} : x ∈ open_segment 𝕜 x y ↔ x = y := begin split, { rintro ⟨a, b, ha, hb, hab, hx⟩, refine smul_right_injective _ hb.ne' ((add_right_inj (a • x)).1 _), rw [hx, ←add_smul, hab, one_smul] }, { rintro rfl, rw open_segment_same, exact mem_singleton _ } end @[simp] lemma right_mem_open_segment_iff [densely_ordered 𝕜] [no_zero_smul_divisors 𝕜 E] {x y : E} : y ∈ open_segment 𝕜 x y ↔ x = y := by rw [open_segment_symm, left_mem_open_segment_iff, eq_comm] end add_comm_group end linear_ordered_ring section linear_ordered_field variables [linear_ordered_field 𝕜] section add_comm_group variables [add_comm_group E] [add_comm_group F] [module 𝕜 E] [module 𝕜 F] {x y z : E} lemma mem_segment_iff_same_ray : x ∈ [y -[𝕜] z] ↔ same_ray 𝕜 (x - y) (z - x) := begin refine ⟨same_ray_of_mem_segment, λ h, _⟩, rcases h.exists_eq_smul_add with ⟨a, b, ha, hb, hab, hxy, hzx⟩, rw [add_comm, sub_add_sub_cancel] at hxy hzx, rw [← mem_segment_translate _ (-x), neg_add_self], refine ⟨b, a, hb, ha, add_comm a b ▸ hab, _⟩, rw [← sub_eq_neg_add, ← neg_sub, hxy, ← sub_eq_neg_add, hzx, smul_neg, smul_comm, neg_add_self] end lemma mem_segment_iff_div : x ∈ [y -[𝕜] z] ↔ ∃ a b : 𝕜, 0 ≤ a ∧ 0 ≤ b ∧ 0 < a + b ∧ (a / (a + b)) • y + (b / (a + b)) • z = x := begin split, { rintro ⟨a, b, ha, hb, hab, rfl⟩, use [a, b, ha, hb], simp * }, { rintro ⟨a, b, ha, hb, hab, rfl⟩, refine ⟨a / (a + b), b / (a + b), div_nonneg ha hab.le, div_nonneg hb hab.le, _, rfl⟩, rw [← add_div, div_self hab.ne'] } end lemma mem_open_segment_iff_div : x ∈ open_segment 𝕜 y z ↔ ∃ a b : 𝕜, 0 < a ∧ 0 < b ∧ (a / (a + b)) • y + (b / (a + b)) • z = x := begin split, { rintro ⟨a, b, ha, hb, hab, rfl⟩, use [a, b, ha, hb], rw [hab, div_one, div_one] }, { rintro ⟨a, b, ha, hb, rfl⟩, have hab : 0 < a + b := by positivity, refine ⟨a / (a + b), b / (a + b), by positivity, by positivity, _, rfl⟩, rw [← add_div, div_self hab.ne'] } end end add_comm_group end linear_ordered_field /-! #### Segments in an ordered space Relates `segment`, `open_segment` and `set.Icc`, `set.Ico`, `set.Ioc`, `set.Ioo` -/ section ordered_semiring variables [ordered_semiring 𝕜] section ordered_add_comm_monoid variables [ordered_add_comm_monoid E] [module 𝕜 E] [ordered_smul 𝕜 E] lemma segment_subset_Icc {x y : E} (h : x ≤ y) : [x -[𝕜] y] ⊆ Icc x y := begin rintro z ⟨a, b, ha, hb, hab, rfl⟩, split, calc x = a • x + b • x :(convex.combo_self hab _).symm ... ≤ a • x + b • y : add_le_add_left (smul_le_smul_of_nonneg h hb) _, calc a • x + b • y ≤ a • y + b • y : add_le_add_right (smul_le_smul_of_nonneg h ha) _ ... = y : convex.combo_self hab _, end end ordered_add_comm_monoid section ordered_cancel_add_comm_monoid variables [ordered_cancel_add_comm_monoid E] [module 𝕜 E] [ordered_smul 𝕜 E] lemma open_segment_subset_Ioo {x y : E} (h : x < y) : open_segment 𝕜 x y ⊆ Ioo x y := begin rintro z ⟨a, b, ha, hb, hab, rfl⟩, split, calc x = a • x + b • x : (convex.combo_self hab _).symm ... < a • x + b • y : add_lt_add_left (smul_lt_smul_of_pos h hb) _, calc a • x + b • y < a • y + b • y : add_lt_add_right (smul_lt_smul_of_pos h ha) _ ... = y : convex.combo_self hab _, end end ordered_cancel_add_comm_monoid section linear_ordered_add_comm_monoid variables [linear_ordered_add_comm_monoid E] [module 𝕜 E] [ordered_smul 𝕜 E] {𝕜} lemma segment_subset_interval (x y : E) : [x -[𝕜] y] ⊆ interval x y := begin cases le_total x y, { rw interval_of_le h, exact segment_subset_Icc h }, { rw [interval_of_ge h, segment_symm], exact segment_subset_Icc h } end lemma convex.min_le_combo (x y : E) {a b : 𝕜} (ha : 0 ≤ a) (hb : 0 ≤ b) (hab : a + b = 1) : min x y ≤ a • x + b • y := (segment_subset_interval x y ⟨_, _, ha, hb, hab, rfl⟩).1 lemma convex.combo_le_max (x y : E) {a b : 𝕜} (ha : 0 ≤ a) (hb : 0 ≤ b) (hab : a + b = 1) : a • x + b • y ≤ max x y := (segment_subset_interval x y ⟨_, _, ha, hb, hab, rfl⟩).2 end linear_ordered_add_comm_monoid end ordered_semiring section linear_ordered_field variables [linear_ordered_field 𝕜] lemma Icc_subset_segment {x y : 𝕜} : Icc x y ⊆ [x -[𝕜] y] := begin rintro z ⟨hxz, hyz⟩, obtain rfl | h := (hxz.trans hyz).eq_or_lt, { rw segment_same, exact hyz.antisymm hxz }, rw ←sub_nonneg at hxz hyz, rw ←sub_pos at h, refine ⟨(y - z) / (y - x), (z - x) / (y - x), div_nonneg hyz h.le, div_nonneg hxz h.le, _, _⟩, { rw [←add_div, sub_add_sub_cancel, div_self h.ne'] }, { rw [smul_eq_mul, smul_eq_mul, ←mul_div_right_comm, ←mul_div_right_comm, ←add_div, div_eq_iff h.ne', add_comm, sub_mul, sub_mul, mul_comm x, sub_add_sub_cancel, mul_sub] } end @[simp] lemma segment_eq_Icc {x y : 𝕜} (h : x ≤ y) : [x -[𝕜] y] = Icc x y := (segment_subset_Icc h).antisymm Icc_subset_segment lemma Ioo_subset_open_segment {x y : 𝕜} : Ioo x y ⊆ open_segment 𝕜 x y := λ z hz, mem_open_segment_of_ne_left_right hz.1.ne hz.2.ne' (Icc_subset_segment $ Ioo_subset_Icc_self hz) @[simp] lemma open_segment_eq_Ioo {x y : 𝕜} (h : x < y) : open_segment 𝕜 x y = Ioo x y := (open_segment_subset_Ioo h).antisymm Ioo_subset_open_segment lemma segment_eq_Icc' (x y : 𝕜) : [x -[𝕜] y] = Icc (min x y) (max x y) := begin cases le_total x y, { rw [segment_eq_Icc h, max_eq_right h, min_eq_left h] }, { rw [segment_symm, segment_eq_Icc h, max_eq_left h, min_eq_right h] } end lemma open_segment_eq_Ioo' {x y : 𝕜} (hxy : x ≠ y) : open_segment 𝕜 x y = Ioo (min x y) (max x y) := begin cases hxy.lt_or_lt, { rw [open_segment_eq_Ioo h, max_eq_right h.le, min_eq_left h.le] }, { rw [open_segment_symm, open_segment_eq_Ioo h, max_eq_left h.le, min_eq_right h.le] } end lemma segment_eq_interval (x y : 𝕜) : [x -[𝕜] y] = interval x y := segment_eq_Icc' _ _ /-- A point is in an `Icc` iff it can be expressed as a convex combination of the endpoints. -/ lemma convex.mem_Icc {x y : 𝕜} (h : x ≤ y) {z : 𝕜} : z ∈ Icc x y ↔ ∃ (a b : 𝕜), 0 ≤ a ∧ 0 ≤ b ∧ a + b = 1 ∧ a * x + b * y = z := begin rw ←segment_eq_Icc h, simp_rw [←exists_prop], refl, end /-- A point is in an `Ioo` iff it can be expressed as a strict convex combination of the endpoints. -/ lemma convex.mem_Ioo {x y : 𝕜} (h : x < y) {z : 𝕜} : z ∈ Ioo x y ↔ ∃ (a b : 𝕜), 0 < a ∧ 0 < b ∧ a + b = 1 ∧ a * x + b * y = z := begin rw ←open_segment_eq_Ioo h, simp_rw [←exists_prop], refl, end /-- A point is in an `Ioc` iff it can be expressed as a semistrict convex combination of the endpoints. -/ lemma convex.mem_Ioc {x y : 𝕜} (h : x < y) {z : 𝕜} : z ∈ Ioc x y ↔ ∃ (a b : 𝕜), 0 ≤ a ∧ 0 < b ∧ a + b = 1 ∧ a * x + b * y = z := begin split, { rintro hz, obtain ⟨a, b, ha, hb, hab, rfl⟩ := (convex.mem_Icc h.le).1 (Ioc_subset_Icc_self hz), obtain rfl | hb' := hb.eq_or_lt, { rw add_zero at hab, rw [hab, one_mul, zero_mul, add_zero] at hz, exact (hz.1.ne rfl).elim }, { exact ⟨a, b, ha, hb', hab, rfl⟩ } }, { rintro ⟨a, b, ha, hb, hab, rfl⟩, obtain rfl | ha' := ha.eq_or_lt, { rw zero_add at hab, rwa [hab, one_mul, zero_mul, zero_add, right_mem_Ioc] }, { exact Ioo_subset_Ioc_self ((convex.mem_Ioo h).2 ⟨a, b, ha', hb, hab, rfl⟩) } } end /-- A point is in an `Ico` iff it can be expressed as a semistrict convex combination of the endpoints. -/ lemma convex.mem_Ico {x y : 𝕜} (h : x < y) {z : 𝕜} : z ∈ Ico x y ↔ ∃ (a b : 𝕜), 0 < a ∧ 0 ≤ b ∧ a + b = 1 ∧ a * x + b * y = z := begin split, { rintro hz, obtain ⟨a, b, ha, hb, hab, rfl⟩ := (convex.mem_Icc h.le).1 (Ico_subset_Icc_self hz), obtain rfl | ha' := ha.eq_or_lt, { rw zero_add at hab, rw [hab, one_mul, zero_mul, zero_add] at hz, exact (hz.2.ne rfl).elim }, { exact ⟨a, b, ha', hb, hab, rfl⟩ } }, { rintro ⟨a, b, ha, hb, hab, rfl⟩, obtain rfl | hb' := hb.eq_or_lt, { rw add_zero at hab, rwa [hab, one_mul, zero_mul, add_zero, left_mem_Ico] }, { exact Ioo_subset_Ico_self ((convex.mem_Ioo h).2 ⟨a, b, ha, hb', hab, rfl⟩) } } end end linear_ordered_field /-! ### Convexity of sets -/ section ordered_semiring variables [ordered_semiring 𝕜] section add_comm_monoid variables [add_comm_monoid E] [add_comm_monoid F] section has_smul variables (𝕜) [has_smul 𝕜 E] [has_smul 𝕜 F] (s : set E) /-- Convexity of sets. -/ def convex : Prop := ∀ ⦃x y : E⦄, x ∈ s → y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 ≤ a → 0 ≤ b → a + b = 1 → a • x + b • y ∈ s variables {𝕜 s} lemma convex_iff_segment_subset : convex 𝕜 s ↔ ∀ ⦃x y⦄, x ∈ s → y ∈ s → [x -[𝕜] y] ⊆ s := forall₄_congr $ λ x y hx hy, (segment_subset_iff _).symm lemma convex.segment_subset (h : convex 𝕜 s) {x y : E} (hx : x ∈ s) (hy : y ∈ s) : [x -[𝕜] y] ⊆ s := convex_iff_segment_subset.1 h hx hy lemma convex.open_segment_subset (h : convex 𝕜 s) {x y : E} (hx : x ∈ s) (hy : y ∈ s) : open_segment 𝕜 x y ⊆ s := (open_segment_subset_segment 𝕜 x y).trans (h.segment_subset hx hy) /-- Alternative definition of set convexity, in terms of pointwise set operations. -/ lemma convex_iff_pointwise_add_subset : convex 𝕜 s ↔ ∀ ⦃a b : 𝕜⦄, 0 ≤ a → 0 ≤ b → a + b = 1 → a • s + b • s ⊆ s := iff.intro begin rintro hA a b ha hb hab w ⟨au, bv, ⟨u, hu, rfl⟩, ⟨v, hv, rfl⟩, rfl⟩, exact hA hu hv ha hb hab end (λ h x y hx hy a b ha hb hab, (h ha hb hab) (set.add_mem_add ⟨_, hx, rfl⟩ ⟨_, hy, rfl⟩)) alias convex_iff_pointwise_add_subset ↔ convex.set_combo_subset _ lemma convex_empty : convex 𝕜 (∅ : set E) := λ x y, false.elim lemma convex_univ : convex 𝕜 (set.univ : set E) := λ _ _ _ _ _ _ _ _ _, trivial lemma convex.inter {t : set E} (hs : convex 𝕜 s) (ht : convex 𝕜 t) : convex 𝕜 (s ∩ t) := λ x y (hx : x ∈ s ∩ t) (hy : y ∈ s ∩ t) a b (ha : 0 ≤ a) (hb : 0 ≤ b) (hab : a + b = 1), ⟨hs hx.left hy.left ha hb hab, ht hx.right hy.right ha hb hab⟩ lemma convex_sInter {S : set (set E)} (h : ∀ s ∈ S, convex 𝕜 s) : convex 𝕜 (⋂₀ S) := assume x y hx hy a b ha hb hab s hs, h s hs (hx s hs) (hy s hs) ha hb hab lemma convex_Inter {ι : Sort*} {s : ι → set E} (h : ∀ i, convex 𝕜 (s i)) : convex 𝕜 (⋂ i, s i) := (sInter_range s) ▸ convex_sInter $ forall_range_iff.2 h lemma convex_Inter₂ {ι : Sort*} {κ : ι → Sort*} {s : Π i, κ i → set E} (h : ∀ i j, convex 𝕜 (s i j)) : convex 𝕜 (⋂ i j, s i j) := convex_Inter $ λ i, convex_Inter $ h i lemma convex.prod {s : set E} {t : set F} (hs : convex 𝕜 s) (ht : convex 𝕜 t) : convex 𝕜 (s ×ˢ t) := begin intros x y hx hy a b ha hb hab, apply mem_prod.2, exact ⟨hs (mem_prod.1 hx).1 (mem_prod.1 hy).1 ha hb hab, ht (mem_prod.1 hx).2 (mem_prod.1 hy).2 ha hb hab⟩ end lemma convex_pi {ι : Type*} {E : ι → Type*} [Π i, add_comm_monoid (E i)] [Π i, has_smul 𝕜 (E i)] {s : set ι} {t : Π i, set (E i)} (ht : ∀ i, convex 𝕜 (t i)) : convex 𝕜 (s.pi t) := λ x y hx hy a b ha hb hab i hi, ht i (hx i hi) (hy i hi) ha hb hab lemma directed.convex_Union {ι : Sort*} {s : ι → set E} (hdir : directed (⊆) s) (hc : ∀ ⦃i : ι⦄, convex 𝕜 (s i)) : convex 𝕜 (⋃ i, s i) := begin rintro x y hx hy a b ha hb hab, rw mem_Union at ⊢ hx hy, obtain ⟨i, hx⟩ := hx, obtain ⟨j, hy⟩ := hy, obtain ⟨k, hik, hjk⟩ := hdir i j, exact ⟨k, hc (hik hx) (hjk hy) ha hb hab⟩, end lemma directed_on.convex_sUnion {c : set (set E)} (hdir : directed_on (⊆) c) (hc : ∀ ⦃A : set E⦄, A ∈ c → convex 𝕜 A) : convex 𝕜 (⋃₀c) := begin rw sUnion_eq_Union, exact (directed_on_iff_directed.1 hdir).convex_Union (λ A, hc A.2), end end has_smul section module variables [module 𝕜 E] [module 𝕜 F] {s : set E} lemma convex_iff_open_segment_subset : convex 𝕜 s ↔ ∀ ⦃x y⦄, x ∈ s → y ∈ s → open_segment 𝕜 x y ⊆ s := convex_iff_segment_subset.trans $ forall₄_congr $ λ x y hx hy, (open_segment_subset_iff_segment_subset hx hy).symm lemma convex_iff_forall_pos : convex 𝕜 s ↔ ∀ ⦃x y⦄, x ∈ s → y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s := convex_iff_open_segment_subset.trans $ forall₄_congr $ λ x y hx hy, open_segment_subset_iff 𝕜 lemma convex_iff_pairwise_pos : convex 𝕜 s ↔ s.pairwise (λ x y, ∀ ⦃a b : 𝕜⦄, 0 < a → 0 < b → a + b = 1 → a • x + b • y ∈ s) := begin refine convex_iff_forall_pos.trans ⟨λ h x hx y hy _, h hx hy, _⟩, intros h x y hx hy a b ha hb hab, obtain rfl | hxy := eq_or_ne x y, { rwa convex.combo_self hab }, { exact h hx hy hxy ha hb hab }, end protected lemma set.subsingleton.convex {s : set E} (h : s.subsingleton) : convex 𝕜 s := convex_iff_pairwise_pos.mpr (h.pairwise _) lemma convex_singleton (c : E) : convex 𝕜 ({c} : set E) := subsingleton_singleton.convex lemma convex_segment (x y : E) : convex 𝕜 [x -[𝕜] y] := begin rintro p q ⟨ap, bp, hap, hbp, habp, rfl⟩ ⟨aq, bq, haq, hbq, habq, rfl⟩ a b ha hb hab, refine ⟨a * ap + b * aq, a * bp + b * bq, add_nonneg (mul_nonneg ha hap) (mul_nonneg hb haq), add_nonneg (mul_nonneg ha hbp) (mul_nonneg hb hbq), _, _⟩, { rw [add_add_add_comm, ←mul_add, ←mul_add, habp, habq, mul_one, mul_one, hab] }, { simp_rw [add_smul, mul_smul, smul_add], exact add_add_add_comm _ _ _ _ } end lemma convex_open_segment (a b : E) : convex 𝕜 (open_segment 𝕜 a b) := begin rw convex_iff_open_segment_subset, rintro p q ⟨ap, bp, hap, hbp, habp, rfl⟩ ⟨aq, bq, haq, hbq, habq, rfl⟩ z ⟨a, b, ha, hb, hab, rfl⟩, refine ⟨a * ap + b * aq, a * bp + b * bq, add_pos (mul_pos ha hap) (mul_pos hb haq), add_pos (mul_pos ha hbp) (mul_pos hb hbq), _, _⟩, { rw [add_add_add_comm, ←mul_add, ←mul_add, habp, habq, mul_one, mul_one, hab] }, { simp_rw [add_smul, mul_smul, smul_add], exact add_add_add_comm _ _ _ _ } end lemma convex.linear_image (hs : convex 𝕜 s) (f : E →ₗ[𝕜] F) : convex 𝕜 (f '' s) := begin intros x y hx hy a b ha hb hab, obtain ⟨x', hx', rfl⟩ := mem_image_iff_bex.1 hx, obtain ⟨y', hy', rfl⟩ := mem_image_iff_bex.1 hy, exact ⟨a • x' + b • y', hs hx' hy' ha hb hab, by rw [f.map_add, f.map_smul, f.map_smul]⟩, end lemma convex.is_linear_image (hs : convex 𝕜 s) {f : E → F} (hf : is_linear_map 𝕜 f) : convex 𝕜 (f '' s) := hs.linear_image $ hf.mk' f lemma convex.linear_preimage {s : set F} (hs : convex 𝕜 s) (f : E →ₗ[𝕜] F) : convex 𝕜 (f ⁻¹' s) := begin intros x y hx hy a b ha hb hab, rw [mem_preimage, f.map_add, f.map_smul, f.map_smul], exact hs hx hy ha hb hab, end lemma convex.is_linear_preimage {s : set F} (hs : convex 𝕜 s) {f : E → F} (hf : is_linear_map 𝕜 f) : convex 𝕜 (f ⁻¹' s) := hs.linear_preimage $ hf.mk' f lemma convex.add {t : set E} (hs : convex 𝕜 s) (ht : convex 𝕜 t) : convex 𝕜 (s + t) := by { rw ← add_image_prod, exact (hs.prod ht).is_linear_image is_linear_map.is_linear_map_add } lemma convex.vadd (hs : convex 𝕜 s) (z : E) : convex 𝕜 (z +ᵥ s) := by { simp_rw [←image_vadd, vadd_eq_add, ←singleton_add], exact (convex_singleton _).add hs } lemma convex.translate (hs : convex 𝕜 s) (z : E) : convex 𝕜 ((λ x, z + x) '' s) := hs.vadd _ /-- The translation of a convex set is also convex. -/ lemma convex.translate_preimage_right (hs : convex 𝕜 s) (z : E) : convex 𝕜 ((λ x, z + x) ⁻¹' s) := begin intros x y hx hy a b ha hb hab, have h := hs hx hy ha hb hab, rwa [smul_add, smul_add, add_add_add_comm, ←add_smul, hab, one_smul] at h, end /-- The translation of a convex set is also convex. -/ lemma convex.translate_preimage_left (hs : convex 𝕜 s) (z : E) : convex 𝕜 ((λ x, x + z) ⁻¹' s) := by simpa only [add_comm] using hs.translate_preimage_right z section ordered_add_comm_monoid variables [ordered_add_comm_monoid β] [module 𝕜 β] [ordered_smul 𝕜 β] lemma convex_Iic (r : β) : convex 𝕜 (Iic r) := λ x y hx hy a b ha hb hab, calc a • x + b • y ≤ a • r + b • r : add_le_add (smul_le_smul_of_nonneg hx ha) (smul_le_smul_of_nonneg hy hb) ... = r : convex.combo_self hab _ lemma convex_Ici (r : β) : convex 𝕜 (Ici r) := @convex_Iic 𝕜 βᵒᵈ _ _ _ _ r lemma convex_Icc (r s : β) : convex 𝕜 (Icc r s) := Ici_inter_Iic.subst ((convex_Ici r).inter $ convex_Iic s) lemma convex_halfspace_le {f : E → β} (h : is_linear_map 𝕜 f) (r : β) : convex 𝕜 {w | f w ≤ r} := (convex_Iic r).is_linear_preimage h lemma convex_halfspace_ge {f : E → β} (h : is_linear_map 𝕜 f) (r : β) : convex 𝕜 {w | r ≤ f w} := (convex_Ici r).is_linear_preimage h lemma convex_hyperplane {f : E → β} (h : is_linear_map 𝕜 f) (r : β) : convex 𝕜 {w | f w = r} := begin simp_rw le_antisymm_iff, exact (convex_halfspace_le h r).inter (convex_halfspace_ge h r), end end ordered_add_comm_monoid section ordered_cancel_add_comm_monoid variables [ordered_cancel_add_comm_monoid β] [module 𝕜 β] [ordered_smul 𝕜 β] lemma convex_Iio (r : β) : convex 𝕜 (Iio r) := begin intros x y hx hy a b ha hb hab, obtain rfl | ha' := ha.eq_or_lt, { rw zero_add at hab, rwa [zero_smul, zero_add, hab, one_smul] }, rw mem_Iio at hx hy, calc a • x + b • y < a • r + b • r : add_lt_add_of_lt_of_le (smul_lt_smul_of_pos hx ha') (smul_le_smul_of_nonneg hy.le hb) ... = r : convex.combo_self hab _ end lemma convex_Ioi (r : β) : convex 𝕜 (Ioi r) := @convex_Iio 𝕜 βᵒᵈ _ _ _ _ r lemma convex_Ioo (r s : β) : convex 𝕜 (Ioo r s) := Ioi_inter_Iio.subst ((convex_Ioi r).inter $ convex_Iio s) lemma convex_Ico (r s : β) : convex 𝕜 (Ico r s) := Ici_inter_Iio.subst ((convex_Ici r).inter $ convex_Iio s) lemma convex_Ioc (r s : β) : convex 𝕜 (Ioc r s) := Ioi_inter_Iic.subst ((convex_Ioi r).inter $ convex_Iic s) lemma convex_halfspace_lt {f : E → β} (h : is_linear_map 𝕜 f) (r : β) : convex 𝕜 {w | f w < r} := (convex_Iio r).is_linear_preimage h lemma convex_halfspace_gt {f : E → β} (h : is_linear_map 𝕜 f) (r : β) : convex 𝕜 {w | r < f w} := (convex_Ioi r).is_linear_preimage h end ordered_cancel_add_comm_monoid section linear_ordered_add_comm_monoid variables [linear_ordered_add_comm_monoid β] [module 𝕜 β] [ordered_smul 𝕜 β] lemma convex_interval (r s : β) : convex 𝕜 (interval r s) := convex_Icc _ _ end linear_ordered_add_comm_monoid end module end add_comm_monoid section linear_ordered_add_comm_monoid variables [linear_ordered_add_comm_monoid E] [ordered_add_comm_monoid β] [module 𝕜 E] [ordered_smul 𝕜 E] {s : set E} {f : E → β} lemma monotone_on.convex_le (hf : monotone_on f s) (hs : convex 𝕜 s) (r : β) : convex 𝕜 {x ∈ s | f x ≤ r} := λ x y hx hy a b ha hb hab, ⟨hs hx.1 hy.1 ha hb hab, (hf (hs hx.1 hy.1 ha hb hab) (max_rec' s hx.1 hy.1) (convex.combo_le_max x y ha hb hab)).trans (max_rec' _ hx.2 hy.2)⟩ lemma monotone_on.convex_lt (hf : monotone_on f s) (hs : convex 𝕜 s) (r : β) : convex 𝕜 {x ∈ s | f x < r} := λ x y hx hy a b ha hb hab, ⟨hs hx.1 hy.1 ha hb hab, (hf (hs hx.1 hy.1 ha hb hab) (max_rec' s hx.1 hy.1) (convex.combo_le_max x y ha hb hab)).trans_lt (max_rec' _ hx.2 hy.2)⟩ lemma monotone_on.convex_ge (hf : monotone_on f s) (hs : convex 𝕜 s) (r : β) : convex 𝕜 {x ∈ s | r ≤ f x} := @monotone_on.convex_le 𝕜 Eᵒᵈ βᵒᵈ _ _ _ _ _ _ _ hf.dual hs r lemma monotone_on.convex_gt (hf : monotone_on f s) (hs : convex 𝕜 s) (r : β) : convex 𝕜 {x ∈ s | r < f x} := @monotone_on.convex_lt 𝕜 Eᵒᵈ βᵒᵈ _ _ _ _ _ _ _ hf.dual hs r lemma antitone_on.convex_le (hf : antitone_on f s) (hs : convex 𝕜 s) (r : β) : convex 𝕜 {x ∈ s | f x ≤ r} := @monotone_on.convex_ge 𝕜 E βᵒᵈ _ _ _ _ _ _ _ hf hs r lemma antitone_on.convex_lt (hf : antitone_on f s) (hs : convex 𝕜 s) (r : β) : convex 𝕜 {x ∈ s | f x < r} := @monotone_on.convex_gt 𝕜 E βᵒᵈ _ _ _ _ _ _ _ hf hs r lemma antitone_on.convex_ge (hf : antitone_on f s) (hs : convex 𝕜 s) (r : β) : convex 𝕜 {x ∈ s | r ≤ f x} := @monotone_on.convex_le 𝕜 E βᵒᵈ _ _ _ _ _ _ _ hf hs r lemma antitone_on.convex_gt (hf : antitone_on f s) (hs : convex 𝕜 s) (r : β) : convex 𝕜 {x ∈ s | r < f x} := @monotone_on.convex_lt 𝕜 E βᵒᵈ _ _ _ _ _ _ _ hf hs r lemma monotone.convex_le (hf : monotone f) (r : β) : convex 𝕜 {x | f x ≤ r} := set.sep_univ.subst ((hf.monotone_on univ).convex_le convex_univ r) lemma monotone.convex_lt (hf : monotone f) (r : β) : convex 𝕜 {x | f x ≤ r} := set.sep_univ.subst ((hf.monotone_on univ).convex_le convex_univ r) lemma monotone.convex_ge (hf : monotone f ) (r : β) : convex 𝕜 {x | r ≤ f x} := set.sep_univ.subst ((hf.monotone_on univ).convex_ge convex_univ r) lemma monotone.convex_gt (hf : monotone f) (r : β) : convex 𝕜 {x | f x ≤ r} := set.sep_univ.subst ((hf.monotone_on univ).convex_le convex_univ r) lemma antitone.convex_le (hf : antitone f) (r : β) : convex 𝕜 {x | f x ≤ r} := set.sep_univ.subst ((hf.antitone_on univ).convex_le convex_univ r) lemma antitone.convex_lt (hf : antitone f) (r : β) : convex 𝕜 {x | f x < r} := set.sep_univ.subst ((hf.antitone_on univ).convex_lt convex_univ r) lemma antitone.convex_ge (hf : antitone f) (r : β) : convex 𝕜 {x | r ≤ f x} := set.sep_univ.subst ((hf.antitone_on univ).convex_ge convex_univ r) lemma antitone.convex_gt (hf : antitone f) (r : β) : convex 𝕜 {x | r < f x} := set.sep_univ.subst ((hf.antitone_on univ).convex_gt convex_univ r) end linear_ordered_add_comm_monoid section add_comm_group variables [add_comm_group E] [module 𝕜 E] {s t : set E} lemma convex.combo_eq_vadd {a b : 𝕜} {x y : E} (h : a + b = 1) : a • x + b • y = b • (y - x) + x := calc a • x + b • y = (b • y - b • x) + (a • x + b • x) : by abel ... = b • (y - x) + x : by rw [smul_sub, convex.combo_self h] end add_comm_group end ordered_semiring section ordered_comm_semiring variables [ordered_comm_semiring 𝕜] section add_comm_monoid variables [add_comm_monoid E] [add_comm_monoid F] [module 𝕜 E] [module 𝕜 F] {s : set E} lemma convex.smul (hs : convex 𝕜 s) (c : 𝕜) : convex 𝕜 (c • s) := hs.linear_image (linear_map.lsmul _ _ c) lemma convex.smul_preimage (hs : convex 𝕜 s) (c : 𝕜) : convex 𝕜 ((λ z, c • z) ⁻¹' s) := hs.linear_preimage (linear_map.lsmul _ _ c) lemma convex.affinity (hs : convex 𝕜 s) (z : E) (c : 𝕜) : convex 𝕜 ((λ x, z + c • x) '' s) := by simpa only [←image_smul, ←image_vadd, image_image] using (hs.smul c).vadd z end add_comm_monoid end ordered_comm_semiring section ordered_ring variables [ordered_ring 𝕜] section add_comm_group variables [add_comm_group E] [add_comm_group F] [module 𝕜 E] [module 𝕜 F] {s t : set E} lemma convex.add_smul_mem (hs : convex 𝕜 s) {x y : E} (hx : x ∈ s) (hy : x + y ∈ s) {t : 𝕜} (ht : t ∈ Icc (0 : 𝕜) 1) : x + t • y ∈ s := begin have h : x + t • y = (1 - t) • x + t • (x + y), { rw [smul_add, ←add_assoc, ←add_smul, sub_add_cancel, one_smul] }, rw h, exact hs hx hy (sub_nonneg_of_le ht.2) ht.1 (sub_add_cancel _ _), end lemma convex.smul_mem_of_zero_mem (hs : convex 𝕜 s) {x : E} (zero_mem : (0 : E) ∈ s) (hx : x ∈ s) {t : 𝕜} (ht : t ∈ Icc (0 : 𝕜) 1) : t • x ∈ s := by simpa using hs.add_smul_mem zero_mem (by simpa using hx) ht lemma convex.add_smul_sub_mem (h : convex 𝕜 s) {x y : E} (hx : x ∈ s) (hy : y ∈ s) {t : 𝕜} (ht : t ∈ Icc (0 : 𝕜) 1) : x + t • (y - x) ∈ s := begin apply h.segment_subset hx hy, rw segment_eq_image', exact mem_image_of_mem _ ht, end /-- Affine subspaces are convex. -/ lemma affine_subspace.convex (Q : affine_subspace 𝕜 E) : convex 𝕜 (Q : set E) := begin intros x y hx hy a b ha hb hab, rw [eq_sub_of_add_eq hab, ← affine_map.line_map_apply_module], exact affine_map.line_map_mem b hx hy, end /-- Applying an affine map to an affine combination of two points yields an affine combination of the images. -/ lemma convex.combo_affine_apply {a b : 𝕜} {x y : E} {f : E →ᵃ[𝕜] F} (h : a + b = 1) : f (a • x + b • y) = a • f x + b • f y := begin simp only [convex.combo_eq_vadd h, ← vsub_eq_sub], exact f.apply_line_map _ _ _, end /-- The preimage of a convex set under an affine map is convex. -/ lemma convex.affine_preimage (f : E →ᵃ[𝕜] F) {s : set F} (hs : convex 𝕜 s) : convex 𝕜 (f ⁻¹' s) := begin intros x y xs ys a b ha hb hab, rw [mem_preimage, convex.combo_affine_apply hab], exact hs xs ys ha hb hab, end /-- The image of a convex set under an affine map is convex. -/ lemma convex.affine_image (f : E →ᵃ[𝕜] F) (hs : convex 𝕜 s) : convex 𝕜 (f '' s) := begin rintro x y ⟨x', ⟨hx', hx'f⟩⟩ ⟨y', ⟨hy', hy'f⟩⟩ a b ha hb hab, refine ⟨a • x' + b • y', ⟨hs hx' hy' ha hb hab, _⟩⟩, rw [convex.combo_affine_apply hab, hx'f, hy'f] end lemma convex.neg (hs : convex 𝕜 s) : convex 𝕜 (-s) := hs.is_linear_preimage is_linear_map.is_linear_map_neg lemma convex.sub (hs : convex 𝕜 s) (ht : convex 𝕜 t) : convex 𝕜 (s - t) := by { rw sub_eq_add_neg, exact hs.add ht.neg } end add_comm_group end ordered_ring section linear_ordered_field variables [linear_ordered_field 𝕜] section add_comm_group variables [add_comm_group E] [add_comm_group F] [module 𝕜 E] [module 𝕜 F] {s : set E} /-- Alternative definition of set convexity, using division. -/ lemma convex_iff_div : convex 𝕜 s ↔ ∀ ⦃x y : E⦄, x ∈ s → y ∈ s → ∀ ⦃a b : 𝕜⦄, 0 ≤ a → 0 ≤ b → 0 < a + b → (a / (a + b)) • x + (b / (a + b)) • y ∈ s := begin simp only [convex_iff_segment_subset, subset_def, mem_segment_iff_div], refine forall₄_congr (λ x y hx hy, ⟨λ H a b ha hb hab, H _ ⟨a, b, ha, hb, hab, rfl⟩, _⟩), rintro H _ ⟨a, b, ha, hb, hab, rfl⟩, exact H ha hb hab end lemma convex.mem_smul_of_zero_mem (h : convex 𝕜 s) {x : E} (zero_mem : (0 : E) ∈ s) (hx : x ∈ s) {t : 𝕜} (ht : 1 ≤ t) : x ∈ t • s := begin rw mem_smul_set_iff_inv_smul_mem₀ (zero_lt_one.trans_le ht).ne', exact h.smul_mem_of_zero_mem zero_mem hx ⟨inv_nonneg.2 (zero_le_one.trans ht), inv_le_one ht⟩, end lemma convex.add_smul (h_conv : convex 𝕜 s) {p q : 𝕜} (hp : 0 ≤ p) (hq : 0 ≤ q) : (p + q) • s = p • s + q • s := begin obtain rfl | hs := s.eq_empty_or_nonempty, { simp_rw [smul_set_empty, add_empty] }, obtain rfl | hp' := hp.eq_or_lt, { rw [zero_add, zero_smul_set hs, zero_add] }, obtain rfl | hq' := hq.eq_or_lt, { rw [add_zero, zero_smul_set hs, add_zero] }, ext, split, { rintro ⟨v, hv, rfl⟩, exact ⟨p • v, q • v, smul_mem_smul_set hv, smul_mem_smul_set hv, (add_smul _ _ _).symm⟩ }, { rintro ⟨v₁, v₂, ⟨v₁₁, h₁₂, rfl⟩, ⟨v₂₁, h₂₂, rfl⟩, rfl⟩, have hpq := add_pos hp' hq', refine mem_smul_set.2 ⟨_, h_conv h₁₂ h₂₂ _ _ (by rw [←div_self hpq.ne', add_div] : p / (p + q) + q / (p + q) = 1), by simp only [← mul_smul, smul_add, mul_div_cancel' _ hpq.ne']⟩; positivity } end end add_comm_group end linear_ordered_field /-! #### Convex sets in an ordered space Relates `convex` and `ord_connected`. -/ section lemma set.ord_connected.convex_of_chain [ordered_semiring 𝕜] [ordered_add_comm_monoid E] [module 𝕜 E] [ordered_smul 𝕜 E] {s : set E} (hs : s.ord_connected) (h : is_chain (≤) s) : convex 𝕜 s := begin refine convex_iff_segment_subset.mpr (λ x y hx hy, _), obtain hxy | hyx := h.total hx hy, { exact (segment_subset_Icc hxy).trans (hs.out hx hy) }, { rw segment_symm, exact (segment_subset_Icc hyx).trans (hs.out hy hx) } end lemma set.ord_connected.convex [ordered_semiring 𝕜] [linear_ordered_add_comm_monoid E] [module 𝕜 E] [ordered_smul 𝕜 E] {s : set E} (hs : s.ord_connected) : convex 𝕜 s := hs.convex_of_chain $ is_chain_of_trichotomous s lemma convex_iff_ord_connected [linear_ordered_field 𝕜] {s : set 𝕜} : convex 𝕜 s ↔ s.ord_connected := begin simp_rw [convex_iff_segment_subset, segment_eq_interval, ord_connected_iff_interval_subset], exact forall_congr (λ x, forall_swap) end alias convex_iff_ord_connected ↔ convex.ord_connected _ end /-! #### Convexity of submodules/subspaces -/ section submodule open submodule lemma submodule.convex [ordered_semiring 𝕜] [add_comm_monoid E] [module 𝕜 E] (K : submodule 𝕜 E) : convex 𝕜 (↑K : set E) := by { repeat {intro}, refine add_mem (smul_mem _ _ _) (smul_mem _ _ _); assumption } lemma subspace.convex [linear_ordered_field 𝕜] [add_comm_group E] [module 𝕜 E] (K : subspace 𝕜 E) : convex 𝕜 (↑K : set E) := K.convex end submodule /-! ### Simplex -/ section simplex variables (𝕜) (ι : Type*) [ordered_semiring 𝕜] [fintype ι] /-- The standard simplex in the space of functions `ι → 𝕜` is the set of vectors with non-negative coordinates with total sum `1`. This is the free object in the category of convex spaces. -/ def std_simplex : set (ι → 𝕜) := {f | (∀ x, 0 ≤ f x) ∧ ∑ x, f x = 1} lemma std_simplex_eq_inter : std_simplex 𝕜 ι = (⋂ x, {f | 0 ≤ f x}) ∩ {f | ∑ x, f x = 1} := by { ext f, simp only [std_simplex, set.mem_inter_eq, set.mem_Inter, set.mem_set_of_eq] } lemma convex_std_simplex : convex 𝕜 (std_simplex 𝕜 ι) := begin refine λ f g hf hg a b ha hb hab, ⟨λ x, _, _⟩, { apply_rules [add_nonneg, mul_nonneg, hf.1, hg.1] }, { erw [finset.sum_add_distrib, ← finset.smul_sum, ← finset.smul_sum, hf.2, hg.2, smul_eq_mul, smul_eq_mul, mul_one, mul_one], exact hab } end variable {ι} lemma ite_eq_mem_std_simplex (i : ι) : (λ j, ite (i = j) (1:𝕜) 0) ∈ std_simplex 𝕜 ι := ⟨λ j, by simp only; split_ifs; norm_num, by rw [finset.sum_ite_eq, if_pos (finset.mem_univ _)]⟩ end simplex
2987cc1b98133176f81ee7695b294e68e7bda386
6432ea7a083ff6ba21ea17af9ee47b9c371760f7
/tests/lean/1018unknowMVarIssue.lean
3b36c85e1ac253e73a55b7de5050c8bd6fce8304
[ "Apache-2.0", "LLVM-exception", "NCSA", "LGPL-3.0-only", "LicenseRef-scancode-inner-net-2.0", "BSD-3-Clause", "LGPL-2.0-or-later", "Spencer-94", "LGPL-2.1-or-later", "HPND", "LicenseRef-scancode-pcre", "ISC", "LGPL-2.1-only", "LicenseRef-scancode-other-permissive", "SunPro", "CMU-Mach" ]
permissive
leanprover/lean4
4bdf9790294964627eb9be79f5e8f6157780b4cc
f1f9dc0f2f531af3312398999d8b8303fa5f096b
refs/heads/master
1,693,360,665,786
1,693,350,868,000
1,693,350,868,000
129,571,436
2,827
311
Apache-2.0
1,694,716,156,000
1,523,760,560,000
Lean
UTF-8
Lean
false
false
260
lean
inductive Fam2 : Type → Type → Type 1 where | any : Fam2 α α | nat : Nat → Fam2 Nat Nat set_option pp.rawOnError true set_option trace.Elab.info true example (a : α) (x : Fam2 α β) : β := match x with | Fam2.any => _ | Fam2.nat n => n
c42194bd2a9bd7f3784be4c590e0731f4e2d3d70
74addaa0e41490cbaf2abd313a764c96df57b05d
/Mathlib/tactic/omega/int/form_auto.lean
2b66c40a87780ecfc1e82ef7028afe03b28bae7d
[]
no_license
AurelienSaue/Mathlib4_auto
f538cfd0980f65a6361eadea39e6fc639e9dae14
590df64109b08190abe22358fabc3eae000943f2
refs/heads/master
1,683,906,849,776
1,622,564,669,000
1,622,564,669,000
371,723,747
0
0
null
null
null
null
UTF-8
Lean
false
false
2,450
lean
/- Copyright (c) 2019 Seul Baek. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Seul Baek -/ import Mathlib.PrePort import Mathlib.Lean3Lib.init.default import Mathlib.tactic.omega.int.preterm import Mathlib.PostPort universes l namespace Mathlib /- Linear integer arithmetic formulas in pre-normalized form. -/ namespace omega namespace int /-- Intermediate shadow syntax for LNA formulas that includes unreified exprs -/ /-- Intermediate shadow syntax for LIA formulas that includes non-canonical terms -/ inductive preform where | eq : preterm → preterm → preform | le : preterm → preterm → preform | not : preform → preform | or : preform → preform → preform | and : preform → preform → preform namespace preform /-- Evaluate a preform into prop using the valuation v. -/ @[simp] def holds (v : ℕ → ℤ) : preform → Prop := sorry end preform /-- univ_close p n := p closed by prepending n universal quantifiers -/ @[simp] def univ_close (p : preform) : (ℕ → ℤ) → ℕ → Prop := sorry namespace preform /-- Fresh de Brujin index not used by any variable in argument -/ def fresh_index : preform → ℕ := sorry /-- All valuations satisfy argument -/ def valid (p : preform) := ∀ (v : ℕ → ℤ), holds v p /-- There exists some valuation that satisfies argument -/ def sat (p : preform) := ∃ (v : ℕ → ℤ), holds v p /-- implies p q := under any valuation, q holds if p holds -/ def implies (p : preform) (q : preform) := ∀ (v : ℕ → ℤ), holds v p → holds v q /-- equiv p q := under any valuation, p holds iff q holds -/ def equiv (p : preform) (q : preform) := ∀ (v : ℕ → ℤ), holds v p ↔ holds v q theorem sat_of_implies_of_sat {p : preform} {q : preform} : implies p q → sat p → sat q := fun (h1 : implies p q) (h2 : sat p) => exists_imp_exists h1 h2 theorem sat_or {p : preform} {q : preform} : sat (or p q) ↔ sat p ∨ sat q := sorry /-- There does not exist any valuation that satisfies argument -/ def unsat (p : preform) := ¬sat p def repr : preform → string := sorry protected instance has_repr : has_repr preform := has_repr.mk repr end preform theorem univ_close_of_valid {p : preform} {m : ℕ} {v : ℕ → ℤ} : preform.valid p → univ_close p v m := sorry theorem valid_of_unsat_not {p : preform} : preform.unsat (preform.not p) → preform.valid p := sorry end Mathlib
a07bee8094dd412969fc8ad1901047945a710209
8cb37a089cdb4af3af9d8bf1002b417e407a8e9e
/library/init/algebra/order.lean
201f6574479278a48a0d4cd24105b90f35a7f188
[ "Apache-2.0" ]
permissive
kbuzzard/lean
ae3c3db4bb462d750dbf7419b28bafb3ec983ef7
ed1788fd674bb8991acffc8fca585ec746711928
refs/heads/master
1,620,983,366,617
1,618,937,600,000
1,618,937,600,000
359,886,396
1
0
Apache-2.0
1,618,936,987,000
1,618,936,987,000
null
UTF-8
Lean
false
false
9,920
lean
/- Copyright (c) 2016 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura -/ prelude import init.logic init.classical init.meta.name init.algebra.classes /- Make sure instances defined in this file have lower priority than the ones defined for concrete structures -/ set_option default_priority 100 set_option old_structure_cmd true universe u variables {α : Type u} set_option auto_param.check_exists false section preorder /-! ### Definition of `preorder` and lemmas about types with a `preorder` -/ /-- A preorder is a reflexive, transitive relation `≤` with `a < b` defined in the obvious way. -/ class preorder (α : Type u) extends has_le α, has_lt α := (le_refl : ∀ a : α, a ≤ a) (le_trans : ∀ a b c : α, a ≤ b → b ≤ c → a ≤ c) (lt := λ a b, a ≤ b ∧ ¬ b ≤ a) (lt_iff_le_not_le : ∀ a b : α, a < b ↔ (a ≤ b ∧ ¬ b ≤ a) . order_laws_tac) variables [preorder α] /-- The relation `≤` on a preorder is reflexive. -/ @[refl] lemma le_refl : ∀ a : α, a ≤ a := preorder.le_refl /-- The relation `≤` on a preorder is transitive. -/ @[trans] lemma le_trans : ∀ {a b c : α}, a ≤ b → b ≤ c → a ≤ c := preorder.le_trans lemma lt_iff_le_not_le : ∀ {a b : α}, a < b ↔ (a ≤ b ∧ ¬ b ≤ a) := preorder.lt_iff_le_not_le lemma lt_of_le_not_le : ∀ {a b : α}, a ≤ b → ¬ b ≤ a → a < b | a b hab hba := lt_iff_le_not_le.mpr ⟨hab, hba⟩ lemma le_not_le_of_lt : ∀ {a b : α}, a < b → a ≤ b ∧ ¬ b ≤ a | a b hab := lt_iff_le_not_le.mp hab lemma le_of_eq {a b : α} : a = b → a ≤ b := λ h, h ▸ le_refl a @[trans] lemma ge_trans : ∀ {a b c : α}, a ≥ b → b ≥ c → a ≥ c := λ a b c h₁ h₂, le_trans h₂ h₁ lemma lt_irrefl : ∀ a : α, ¬ a < a | a haa := match le_not_le_of_lt haa with | ⟨h1, h2⟩ := false.rec _ (h2 h1) end lemma gt_irrefl : ∀ a : α, ¬ a > a := lt_irrefl @[trans] lemma lt_trans : ∀ {a b c : α}, a < b → b < c → a < c | a b c hab hbc := match le_not_le_of_lt hab, le_not_le_of_lt hbc with | ⟨hab, hba⟩, ⟨hbc, hcb⟩ := lt_of_le_not_le (le_trans hab hbc) (λ hca, hcb (le_trans hca hab)) end @[trans] lemma gt_trans : ∀ {a b c : α}, a > b → b > c → a > c := λ a b c h₁ h₂, lt_trans h₂ h₁ lemma ne_of_lt {a b : α} (h : a < b) : a ≠ b := λ he, absurd h (he ▸ lt_irrefl a) lemma ne_of_gt {a b : α} (h : b < a) : a ≠ b := λ he, absurd h (he ▸ lt_irrefl a) lemma lt_asymm {a b : α} (h : a < b) : ¬ b < a := λ h1 : b < a, lt_irrefl a (lt_trans h h1) lemma le_of_lt : ∀ {a b : α}, a < b → a ≤ b | a b hab := (le_not_le_of_lt hab).left @[trans] lemma lt_of_lt_of_le : ∀ {a b c : α}, a < b → b ≤ c → a < c | a b c hab hbc := let ⟨hab, hba⟩ := le_not_le_of_lt hab in lt_of_le_not_le (le_trans hab hbc) $ λ hca, hba (le_trans hbc hca) @[trans] lemma lt_of_le_of_lt : ∀ {a b c : α}, a ≤ b → b < c → a < c | a b c hab hbc := let ⟨hbc, hcb⟩ := le_not_le_of_lt hbc in lt_of_le_not_le (le_trans hab hbc) $ λ hca, hcb (le_trans hca hab) @[trans] lemma gt_of_gt_of_ge {a b c : α} (h₁ : a > b) (h₂ : b ≥ c) : a > c := lt_of_le_of_lt h₂ h₁ @[trans] lemma gt_of_ge_of_gt {a b c : α} (h₁ : a ≥ b) (h₂ : b > c) : a > c := lt_of_lt_of_le h₂ h₁ lemma not_le_of_gt {a b : α} (h : a > b) : ¬ a ≤ b := (le_not_le_of_lt h).right lemma not_lt_of_ge {a b : α} (h : a ≥ b) : ¬ a < b := λ hab, not_le_of_gt hab h lemma le_of_lt_or_eq : ∀ {a b : α}, (a < b ∨ a = b) → a ≤ b | a b (or.inl hab) := le_of_lt hab | a b (or.inr hab) := hab ▸ le_refl _ lemma le_of_eq_or_lt {a b : α} (h : a = b ∨ a < b) : a ≤ b := or.elim h le_of_eq le_of_lt instance decidable_lt_of_decidable_le [decidable_rel ((≤) : α → α → Prop)] : decidable_rel ((<) : α → α → Prop) | a b := if hab : a ≤ b then if hba : b ≤ a then is_false $ λ hab', not_le_of_gt hab' hba else is_true $ lt_of_le_not_le hab hba else is_false $ λ hab', hab (le_of_lt hab') end preorder section partial_order /-! ### Definition of `partial_order` and lemmas about types with a partial order -/ /-- A partial order is a reflexive, transitive, antisymmetric relation `≤`. -/ class partial_order (α : Type u) extends preorder α := (le_antisymm : ∀ a b : α, a ≤ b → b ≤ a → a = b) variables [partial_order α] lemma le_antisymm : ∀ {a b : α}, a ≤ b → b ≤ a → a = b := partial_order.le_antisymm lemma le_antisymm_iff {a b : α} : a = b ↔ a ≤ b ∧ b ≤ a := ⟨λe, ⟨le_of_eq e, le_of_eq e.symm⟩, λ⟨h1, h2⟩, le_antisymm h1 h2⟩ lemma lt_of_le_of_ne {a b : α} : a ≤ b → a ≠ b → a < b := λ h₁ h₂, lt_of_le_not_le h₁ $ mt (le_antisymm h₁) h₂ instance decidable_eq_of_decidable_le [decidable_rel ((≤) : α → α → Prop)] : decidable_eq α | a b := if hab : a ≤ b then if hba : b ≤ a then is_true (le_antisymm hab hba) else is_false (λ heq, hba (heq ▸ le_refl _)) else is_false (λ heq, hab (heq ▸ le_refl _)) namespace decidable variables [@decidable_rel α (≤)] lemma lt_or_eq_of_le {a b : α} (hab : a ≤ b) : a < b ∨ a = b := if hba : b ≤ a then or.inr (le_antisymm hab hba) else or.inl (lt_of_le_not_le hab hba) lemma eq_or_lt_of_le {a b : α} (hab : a ≤ b) : a = b ∨ a < b := (lt_or_eq_of_le hab).swap lemma le_iff_lt_or_eq {a b : α} : a ≤ b ↔ a < b ∨ a = b := ⟨lt_or_eq_of_le, le_of_lt_or_eq⟩ end decidable local attribute [instance] classical.prop_decidable lemma lt_or_eq_of_le {a b : α} : a ≤ b → a < b ∨ a = b := decidable.lt_or_eq_of_le lemma le_iff_lt_or_eq {a b : α} : a ≤ b ↔ a < b ∨ a = b := decidable.le_iff_lt_or_eq end partial_order section linear_order /-! ### Definition of `linear_order` and lemmas about types with a linear order -/ /-- A linear order is reflexive, transitive, antisymmetric and total relation `≤`. We assume that every linear ordered type has decidable `(≤)`, `(<)`, and `(=)`. -/ class linear_order (α : Type u) extends partial_order α := (le_total : ∀ a b : α, a ≤ b ∨ b ≤ a) (decidable_le : decidable_rel (≤)) (decidable_eq : decidable_eq α := @decidable_eq_of_decidable_le _ _ decidable_le) (decidable_lt : decidable_rel ((<) : α → α → Prop) := @decidable_lt_of_decidable_le _ _ decidable_le) variables [linear_order α] local attribute [instance] linear_order.decidable_le lemma le_total : ∀ a b : α, a ≤ b ∨ b ≤ a := linear_order.le_total lemma le_of_not_ge {a b : α} : ¬ a ≥ b → a ≤ b := or.resolve_left (le_total b a) lemma le_of_not_le {a b : α} : ¬ a ≤ b → b ≤ a := or.resolve_left (le_total a b) lemma not_lt_of_gt {a b : α} (h : a > b) : ¬ a < b := lt_asymm h lemma lt_trichotomy (a b : α) : a < b ∨ a = b ∨ b < a := or.elim (le_total a b) (λ h : a ≤ b, or.elim (decidable.lt_or_eq_of_le h) (λ h : a < b, or.inl h) (λ h : a = b, or.inr (or.inl h))) (λ h : b ≤ a, or.elim (decidable.lt_or_eq_of_le h) (λ h : b < a, or.inr (or.inr h)) (λ h : b = a, or.inr (or.inl h.symm))) lemma le_of_not_lt {a b : α} (h : ¬ b < a) : a ≤ b := match lt_trichotomy a b with | or.inl hlt := le_of_lt hlt | or.inr (or.inl heq) := heq ▸ le_refl a | or.inr (or.inr hgt) := absurd hgt h end lemma le_of_not_gt {a b : α} : ¬ a > b → a ≤ b := le_of_not_lt lemma lt_of_not_ge {a b : α} (h : ¬ a ≥ b) : a < b := lt_of_le_not_le ((le_total _ _).resolve_right h) h lemma lt_or_le (a b : α) : a < b ∨ b ≤ a := if hba : b ≤ a then or.inr hba else or.inl $ lt_of_not_ge hba lemma le_or_lt (a b : α) : a ≤ b ∨ b < a := (lt_or_le b a).swap lemma lt_or_ge : ∀ (a b : α), a < b ∨ a ≥ b := lt_or_le lemma le_or_gt : ∀ (a b : α), a ≤ b ∨ a > b := le_or_lt lemma lt_or_gt_of_ne {a b : α} (h : a ≠ b) : a < b ∨ a > b := match lt_trichotomy a b with | or.inl hlt := or.inl hlt | or.inr (or.inl heq) := absurd heq h | or.inr (or.inr hgt) := or.inr hgt end lemma ne_iff_lt_or_gt {a b : α} : a ≠ b ↔ a < b ∨ a > b := ⟨lt_or_gt_of_ne, λo, or.elim o ne_of_lt ne_of_gt⟩ lemma lt_iff_not_ge (x y : α) : x < y ↔ ¬ x ≥ y := ⟨not_le_of_gt, lt_of_not_ge⟩ @[simp] lemma not_lt {a b : α} : ¬ a < b ↔ b ≤ a := ⟨le_of_not_gt, not_lt_of_ge⟩ @[simp] lemma not_le {a b : α} : ¬ a ≤ b ↔ b < a := (lt_iff_not_ge _ _).symm instance (a b : α) : decidable (a < b) := linear_order.decidable_lt a b instance (a b : α) : decidable (a ≤ b) := linear_order.decidable_le a b instance (a b : α) : decidable (a = b) := linear_order.decidable_eq a b lemma eq_or_lt_of_not_lt {a b : α} (h : ¬ a < b) : a = b ∨ b < a := if h₁ : a = b then or.inl h₁ else or.inr (lt_of_not_ge (λ hge, h (lt_of_le_of_ne hge h₁))) instance : is_total_preorder α (≤) := {trans := @le_trans _ _, total := le_total} /- TODO(Leo): decide whether we should keep this instance or not -/ instance is_strict_weak_order_of_linear_order : is_strict_weak_order α (<) := is_strict_weak_order_of_is_total_preorder lt_iff_not_ge /- TODO(Leo): decide whether we should keep this instance or not -/ instance is_strict_total_order_of_linear_order : is_strict_total_order α (<) := { trichotomous := lt_trichotomy } /-- Perform a case-split on the ordering of `x` and `y` in a decidable linear order. -/ def lt_by_cases (x y : α) {P : Sort*} (h₁ : x < y → P) (h₂ : x = y → P) (h₃ : y < x → P) : P := if h : x < y then h₁ h else if h' : y < x then h₃ h' else h₂ (le_antisymm (le_of_not_gt h') (le_of_not_gt h)) lemma le_imp_le_of_lt_imp_lt {β} [preorder α] [linear_order β] {a b : α} {c d : β} (H : d < c → b < a) (h : a ≤ b) : c ≤ d := le_of_not_lt $ λ h', not_le_of_gt (H h') h end linear_order
0441dee1c20707e0c652e51db81cd054be4b8d69
4d2583807a5ac6caaffd3d7a5f646d61ca85d532
/src/topology/algebra/ordered/monotone_convergence.lean
7a9beeb36bb25df0fc3923572a04a00433fc0201
[ "Apache-2.0" ]
permissive
AntoineChambert-Loir/mathlib
64aabb896129885f12296a799818061bc90da1ff
07be904260ab6e36a5769680b6012f03a4727134
refs/heads/master
1,693,187,631,771
1,636,719,886,000
1,636,719,886,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
12,916
lean
/- Copyright (c) 2021 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth, Yury Kudryashov -/ import topology.algebra.ordered.basic /-! # Bounded monotone sequences converge In this file we prove a few theorems of the form “if the range of a monotone function `f : ι → α` admits a least upper bound `a`, then `f x` tends to `a` as `x → ∞`”, as well as version of this statement for (conditionally) complete lattices that use `⨆ x, f x` instead of `is_lub`. These theorems work for linear orders with order topologies as well as their products (both in terms of `prod` and in terms of function types). In order to reduce code duplication, we introduce two typeclasses (one for the property formulated above and one for the dual property), prove theorems assuming one of these typeclasses, and provide instances for linear orders and their products. We also prove some "inverse" results: if `f n` is a monotone sequence and `a` is its limit, then `f n ≤ a` for all `n`. ## Tags monotone convergence -/ open filter set function open_locale filter topological_space classical variables {α β : Type*} /-- We say that `α` is a `Sup_convergence_class` if the following holds. Let `f : ι → α` be a monotone function, let `a : α` be a least upper bound of `set.range f`. Then `f x` tends to `𝓝 a` as `x → ∞` (formally, at the filter `filter.at_top`). We require this for `ι = (s : set α)`, `f = coe` in the definition, then prove it for any `f` in `tendsto_at_top_is_lub`. This property holds for linear orders with order topology as well as their products. -/ class Sup_convergence_class (α : Type*) [preorder α] [topological_space α] : Prop := (tendsto_coe_at_top_is_lub : ∀ (a : α) (s : set α), is_lub s a → tendsto (coe : s → α) at_top (𝓝 a)) /-- We say that `α` is an `Inf_convergence_class` if the following holds. Let `f : ι → α` be a monotone function, let `a : α` be a greatest lower bound of `set.range f`. Then `f x` tends to `𝓝 a` as `x → -∞` (formally, at the filter `filter.at_bot`). We require this for `ι = (s : set α)`, `f = coe` in the definition, then prove it for any `f` in `tendsto_at_bot_is_glb`. This property holds for linear orders with order topology as well as their products. -/ class Inf_convergence_class (α : Type*) [preorder α] [topological_space α] : Prop := (tendsto_coe_at_bot_is_glb : ∀ (a : α) (s : set α), is_glb s a → tendsto (coe : s → α) at_bot (𝓝 a)) instance order_dual.Sup_convergence_class [preorder α] [topological_space α] [Inf_convergence_class α] : Sup_convergence_class (order_dual α) := ⟨‹Inf_convergence_class α›.1⟩ instance order_dual.Inf_convergence_class [preorder α] [topological_space α] [Sup_convergence_class α] : Inf_convergence_class (order_dual α) := ⟨‹Sup_convergence_class α›.1⟩ @[priority 100] -- see Note [lower instance priority] instance linear_order.Sup_convergence_class [topological_space α] [linear_order α] [order_topology α] : Sup_convergence_class α := begin refine ⟨λ a s ha, tendsto_order.2 ⟨λ b hb, _, λ b hb, _⟩⟩, { rcases ha.exists_between hb with ⟨c, hcs, bc, bca⟩, lift c to s using hcs, refine (eventually_ge_at_top c).mono (λ x hx, bc.trans_le hx) }, { exact eventually_of_forall (λ x, (ha.1 x.2).trans_lt hb) } end @[priority 100] -- see Note [lower instance priority] instance linear_order.Inf_convergence_class [topological_space α] [linear_order α] [order_topology α] : Inf_convergence_class α := show Inf_convergence_class (order_dual $ order_dual α), from order_dual.Inf_convergence_class section variables {ι : Type*} [preorder ι] [topological_space α] section is_lub variables [preorder α] [Sup_convergence_class α] {f : ι → α} {a : α} lemma tendsto_at_top_is_lub (h_mono : monotone f) (ha : is_lub (set.range f) a) : tendsto f at_top (𝓝 a) := begin suffices : tendsto (range_factorization f) at_top at_top, from (Sup_convergence_class.tendsto_coe_at_top_is_lub _ _ ha).comp this, exact h_mono.range_factorization.tendsto_at_top_at_top (λ b, b.2.imp $ λ a ha, ha.ge) end lemma tendsto_at_bot_is_lub (h_anti : antitone f) (ha : is_lub (set.range f) a) : tendsto f at_bot (𝓝 a) := @tendsto_at_top_is_lub α (order_dual ι) _ _ _ _ f a h_anti.dual ha end is_lub section is_glb variables [preorder α] [Inf_convergence_class α] {f : ι → α} {a : α} lemma tendsto_at_bot_is_glb (h_mono : monotone f) (ha : is_glb (set.range f) a) : tendsto f at_bot (𝓝 a) := @tendsto_at_top_is_lub (order_dual α) (order_dual ι) _ _ _ _ f a h_mono.dual ha lemma tendsto_at_top_is_glb (h_anti : antitone f) (ha : is_glb (set.range f) a) : tendsto f at_top (𝓝 a) := @tendsto_at_top_is_lub (order_dual α) ι _ _ _ _ f a h_anti ha end is_glb section csupr variables [conditionally_complete_lattice α] [Sup_convergence_class α] {f : ι → α} {a : α} lemma tendsto_at_top_csupr (h_mono : monotone f) (hbdd : bdd_above $ range f) : tendsto f at_top (𝓝 (⨆i, f i)) := begin casesI is_empty_or_nonempty ι, exacts [tendsto_of_is_empty, tendsto_at_top_is_lub h_mono (is_lub_csupr hbdd)] end lemma tendsto_at_bot_csupr (h_anti : antitone f) (hbdd : bdd_above $ range f) : tendsto f at_bot (𝓝 (⨆i, f i)) := @tendsto_at_top_csupr α (order_dual ι) _ _ _ _ _ h_anti.dual hbdd end csupr section cinfi variables [conditionally_complete_lattice α] [Inf_convergence_class α] {f : ι → α} {a : α} lemma tendsto_at_bot_cinfi (h_mono : monotone f) (hbdd : bdd_below $ range f) : tendsto f at_bot (𝓝 (⨅i, f i)) := @tendsto_at_top_csupr (order_dual α) (order_dual ι) _ _ _ _ _ h_mono.dual hbdd lemma tendsto_at_top_cinfi (h_anti : antitone f) (hbdd : bdd_below $ range f) : tendsto f at_top (𝓝 (⨅i, f i)) := @tendsto_at_top_csupr (order_dual α) ι _ _ _ _ _ h_anti hbdd end cinfi section supr variables [complete_lattice α] [Sup_convergence_class α] {f : ι → α} {a : α} lemma tendsto_at_top_supr (h_mono : monotone f) : tendsto f at_top (𝓝 (⨆i, f i)) := tendsto_at_top_csupr h_mono (order_top.bdd_above _) lemma tendsto_at_bot_supr (h_anti : antitone f) : tendsto f at_bot (𝓝 (⨆i, f i)) := tendsto_at_bot_csupr h_anti (order_top.bdd_above _) end supr section infi variables [complete_lattice α] [Inf_convergence_class α] {f : ι → α} {a : α} lemma tendsto_at_bot_infi (h_mono : monotone f) : tendsto f at_bot (𝓝 (⨅i, f i)) := tendsto_at_bot_cinfi h_mono (order_bot.bdd_below _) lemma tendsto_at_top_infi (h_anti : antitone f) : tendsto f at_top (𝓝 (⨅i, f i)) := tendsto_at_top_cinfi h_anti (order_bot.bdd_below _) end infi end instance [preorder α] [preorder β] [topological_space α] [topological_space β] [Sup_convergence_class α] [Sup_convergence_class β] : Sup_convergence_class (α × β) := begin constructor, rintro ⟨a, b⟩ s h, rw [is_lub_prod, ← range_restrict, ← range_restrict] at h, have A : tendsto (λ x : s, (x : α × β).1) at_top (𝓝 a), from tendsto_at_top_is_lub (monotone_fst.restrict s) h.1, have B : tendsto (λ x : s, (x : α × β).2) at_top (𝓝 b), from tendsto_at_top_is_lub (monotone_snd.restrict s) h.2, convert A.prod_mk_nhds B, ext1 ⟨⟨x, y⟩, h⟩, refl end instance [preorder α] [preorder β] [topological_space α] [topological_space β] [Inf_convergence_class α] [Inf_convergence_class β] : Inf_convergence_class (α × β) := show Inf_convergence_class (order_dual $ (order_dual α × order_dual β)), from order_dual.Inf_convergence_class instance {ι : Type*} {α : ι → Type*} [Π i, preorder (α i)] [Π i, topological_space (α i)] [Π i, Sup_convergence_class (α i)] : Sup_convergence_class (Π i, α i) := begin refine ⟨λ f s h, _⟩, simp only [is_lub_pi, ← range_restrict] at h, exact tendsto_pi.2 (λ i, tendsto_at_top_is_lub ((monotone_eval _).restrict _) (h i)) end instance {ι : Type*} {α : ι → Type*} [Π i, preorder (α i)] [Π i, topological_space (α i)] [Π i, Inf_convergence_class (α i)] : Inf_convergence_class (Π i, α i) := show Inf_convergence_class (order_dual $ Π i, order_dual (α i)), from order_dual.Inf_convergence_class instance pi.Sup_convergence_class' {ι : Type*} [preorder α] [topological_space α] [Sup_convergence_class α] : Sup_convergence_class (ι → α) := pi.Sup_convergence_class instance pi.Inf_convergence_class' {ι : Type*} [preorder α] [topological_space α] [Inf_convergence_class α] : Inf_convergence_class (ι → α) := pi.Inf_convergence_class lemma tendsto_of_monotone {ι α : Type*} [preorder ι] [topological_space α] [conditionally_complete_linear_order α] [order_topology α] {f : ι → α} (h_mono : monotone f) : tendsto f at_top at_top ∨ (∃ l, tendsto f at_top (𝓝 l)) := if H : bdd_above (range f) then or.inr ⟨_, tendsto_at_top_csupr h_mono H⟩ else or.inl $ tendsto_at_top_at_top_of_monotone' h_mono H lemma tendsto_iff_tendsto_subseq_of_monotone {ι₁ ι₂ α : Type*} [semilattice_sup ι₁] [preorder ι₂] [nonempty ι₁] [topological_space α] [conditionally_complete_linear_order α] [order_topology α] [no_top_order α] {f : ι₂ → α} {φ : ι₁ → ι₂} {l : α} (hf : monotone f) (hg : tendsto φ at_top at_top) : tendsto f at_top (𝓝 l) ↔ tendsto (f ∘ φ) at_top (𝓝 l) := begin split; intro h, { exact h.comp hg }, { rcases tendsto_of_monotone hf with h' | ⟨l', hl'⟩, { exact (not_tendsto_at_top_of_tendsto_nhds h (h'.comp hg)).elim }, { rwa tendsto_nhds_unique h (hl'.comp hg) } } end /-! The next family of results, such as `is_lub_of_tendsto` and `supr_eq_of_tendsto`, are converses to the standard fact that bounded monotone functions converge. They state, that if a monotone function `f` tends to `a` along `at_top`, then that value `a` is a least upper bound for the range of `f`. Related theorems above (`is_lub.is_lub_of_tendsto`, `is_glb.is_glb_of_tendsto` etc) cover the case when `f x` tends to `a` as `x` tends to some point `b` in the domain. -/ lemma monotone.ge_of_tendsto {α β : Type*} [topological_space α] [preorder α] [order_closed_topology α] [semilattice_sup β] {f : β → α} {a : α} (hf : monotone f) (ha : tendsto f at_top (𝓝 a)) (b : β) : f b ≤ a := begin haveI : nonempty β := nonempty.intro b, exact ge_of_tendsto ha ((eventually_ge_at_top b).mono (λ _ hxy, hf hxy)) end lemma monotone.le_of_tendsto {α β : Type*} [topological_space α] [preorder α] [order_closed_topology α] [semilattice_inf β] {f : β → α} {a : α} (hf : monotone f) (ha : tendsto f at_bot (𝓝 a)) (b : β) : a ≤ f b := @monotone.ge_of_tendsto (order_dual α) (order_dual β) _ _ _ _ f _ hf.dual ha b lemma is_lub_of_tendsto {α β : Type*} [topological_space α] [preorder α] [order_closed_topology α] [nonempty β] [semilattice_sup β] {f : β → α} {a : α} (hf : monotone f) (ha : tendsto f at_top (𝓝 a)) : is_lub (set.range f) a := begin split, { rintros _ ⟨b, rfl⟩, exact hf.ge_of_tendsto ha b }, { exact λ _ hb, le_of_tendsto' ha (λ x, hb (set.mem_range_self x)) } end lemma is_glb_of_tendsto {α β : Type*} [topological_space α] [preorder α] [order_closed_topology α] [nonempty β] [semilattice_inf β] {f : β → α} {a : α} (hf : monotone f) (ha : tendsto f at_bot (𝓝 a)) : is_glb (set.range f) a := @is_lub_of_tendsto (order_dual α) (order_dual β) _ _ _ _ _ _ _ hf.dual ha lemma supr_eq_of_tendsto {α β} [topological_space α] [complete_linear_order α] [order_topology α] [nonempty β] [semilattice_sup β] {f : β → α} {a : α} (hf : monotone f) : tendsto f at_top (𝓝 a) → supr f = a := tendsto_nhds_unique (tendsto_at_top_supr hf) lemma infi_eq_of_tendsto {α} [topological_space α] [complete_linear_order α] [order_topology α] [nonempty β] [semilattice_sup β] {f : β → α} {a : α} (hf : antitone f) : tendsto f at_top (𝓝 a) → infi f = a := tendsto_nhds_unique (tendsto_at_top_infi hf) lemma supr_eq_supr_subseq_of_monotone {ι₁ ι₂ α : Type*} [preorder ι₂] [complete_lattice α] {l : filter ι₁} [l.ne_bot] {f : ι₂ → α} {φ : ι₁ → ι₂} (hf : monotone f) (hφ : tendsto φ l at_top) : (⨆ i, f i) = (⨆ i, f (φ i)) := le_antisymm (supr_le_supr2 $ λ i, exists_imp_exists (λ j (hj : i ≤ φ j), hf hj) (hφ.eventually $ eventually_ge_at_top i).exists) (supr_le_supr2 $ λ i, ⟨φ i, le_refl _⟩) lemma infi_eq_infi_subseq_of_monotone {ι₁ ι₂ α : Type*} [preorder ι₂] [complete_lattice α] {l : filter ι₁} [l.ne_bot] {f : ι₂ → α} {φ : ι₁ → ι₂} (hf : monotone f) (hφ : tendsto φ l at_bot) : (⨅ i, f i) = (⨅ i, f (φ i)) := supr_eq_supr_subseq_of_monotone hf.dual hφ
f36c4aa4e33797c682350fccd9253309c0f2c105
969dbdfed67fda40a6f5a2b4f8c4a3c7dc01e0fb
/src/data/polynomial/coeff.lean
019a9be24390c5a48efad632ed3a70d13936419f
[ "Apache-2.0" ]
permissive
SAAluthwela/mathlib
62044349d72dd63983a8500214736aa7779634d3
83a4b8b990907291421de54a78988c024dc8a552
refs/heads/master
1,679,433,873,417
1,615,998,031,000
1,615,998,031,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
7,550
lean
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Johannes Hölzl, Scott Morrison, Jens Wagemaker -/ import data.polynomial.monomial import data.finset.nat_antidiagonal /-! # Theory of univariate polynomials The theorems include formulas for computing coefficients, such as `coeff_add`, `coeff_sum`, `coeff_mul` -/ noncomputable theory open finsupp finset add_monoid_algebra open_locale big_operators namespace polynomial universes u v variables {R : Type u} {S : Type v} {a b : R} {n m : ℕ} variables [semiring R] {p q r : polynomial R} section coeff lemma coeff_one (n : ℕ) : coeff (1 : polynomial R) n = if 0 = n then 1 else 0 := coeff_monomial @[simp] lemma coeff_add (p q : polynomial R) (n : ℕ) : coeff (p + q) n = coeff p n + coeff q n := rfl lemma coeff_sum [semiring S] (n : ℕ) (f : ℕ → R → polynomial S) : coeff (p.sum f) n = p.sum (λ a b, coeff (f a b) n) := finsupp.sum_apply lemma sum_def [add_comm_monoid S] (f : ℕ → R → S) : p.sum f = ∑ n in p.support, f n (p.coeff n) := rfl @[simp] lemma coeff_smul (p : polynomial R) (r : R) (n : ℕ) : coeff (r • p) n = r * coeff p n := finsupp.smul_apply _ _ _ @[simp] lemma mem_support_iff : n ∈ p.support ↔ p.coeff n ≠ 0 := by simp [support, coeff] lemma not_mem_support_iff : n ∉ p.support ↔ p.coeff n = 0 := by simp variable (R) /-- The nth coefficient, as a linear map. -/ def lcoeff (n : ℕ) : polynomial R →ₗ[R] R := finsupp.lapply n variable {R} @[simp] lemma lcoeff_apply (n : ℕ) (f : polynomial R) : lcoeff R n f = coeff f n := rfl @[simp] lemma finset_sum_coeff {ι : Type*} (s : finset ι) (f : ι → polynomial R) (n : ℕ) : coeff (∑ b in s, f b) n = ∑ b in s, coeff (f b) n := (s.sum_hom (λ q : polynomial R, lcoeff R n q)).symm /-- Decomposes the coefficient of the product `p * q` as a sum over `nat.antidiagonal`. A version which sums over `range (n + 1)` can be obtained by using `finset.nat.sum_antidiagonal_eq_sum_range_succ`. -/ lemma coeff_mul (p q : polynomial R) (n : ℕ) : coeff (p * q) n = ∑ x in nat.antidiagonal n, coeff p x.1 * coeff q x.2 := add_monoid_algebra.mul_apply_antidiagonal p q n _ (λ x, nat.mem_antidiagonal) @[simp] lemma mul_coeff_zero (p q : polynomial R) : coeff (p * q) 0 = coeff p 0 * coeff q 0 := by simp [coeff_mul] lemma coeff_mul_X_zero (p : polynomial R) : coeff (p * X) 0 = 0 := by simp lemma coeff_X_mul_zero (p : polynomial R) : coeff (X * p) 0 = 0 := by simp lemma coeff_C_mul_X (x : R) (k n : ℕ) : coeff (C x * X^k : polynomial R) n = if n = k then x else 0 := by rw [← single_eq_C_mul_X]; simp [monomial, single, eq_comm, coeff]; congr @[simp] lemma coeff_C_mul (p : polynomial R) : coeff (C a * p) n = a * coeff p n := add_monoid_algebra.single_zero_mul_apply p a n lemma C_mul' (a : R) (f : polynomial R) : C a * f = a • f := ext $ λ n, coeff_C_mul f @[simp] lemma coeff_mul_C (p : polynomial R) (n : ℕ) (a : R) : coeff (p * C a) n = coeff p n * a := add_monoid_algebra.mul_single_zero_apply p a n lemma coeff_X_pow (k n : ℕ) : coeff (X^k : polynomial R) n = if n = k then 1 else 0 := by { simp only [X_pow_eq_monomial, monomial, single, eq_comm], congr } @[simp] lemma coeff_X_pow_self (n : ℕ) : coeff (X^n : polynomial R) n = 1 := by simp [coeff_X_pow] theorem coeff_mul_X_pow (p : polynomial R) (n d : ℕ) : coeff (p * polynomial.X ^ n) (d + n) = coeff p d := begin rw [coeff_mul, sum_eq_single (d,n), coeff_X_pow, if_pos rfl, mul_one], { rintros ⟨i,j⟩ h1 h2, rw [coeff_X_pow, if_neg, mul_zero], rintro rfl, apply h2, rw [nat.mem_antidiagonal, add_right_cancel_iff] at h1, subst h1 }, { exact λ h1, (h1 (nat.mem_antidiagonal.2 rfl)).elim } end lemma coeff_mul_X_pow' (p : polynomial R) (n d : ℕ) : (p * X ^ n).coeff d = ite (n ≤ d) (p.coeff (d - n)) 0 := begin split_ifs, { rw [←@nat.sub_add_cancel d n h, coeff_mul_X_pow, nat.add_sub_cancel] }, { refine (coeff_mul _ _ _).trans (finset.sum_eq_zero (λ x hx, _)), rw [coeff_X_pow, if_neg, mul_zero], exact ne_of_lt (lt_of_le_of_lt (nat.le_of_add_le_right (le_of_eq (finset.nat.mem_antidiagonal.mp hx))) (not_le.mp h)) }, end @[simp] theorem coeff_mul_X (p : polynomial R) (n : ℕ) : coeff (p * X) (n + 1) = coeff p n := by simpa only [pow_one] using coeff_mul_X_pow p 1 n theorem mul_X_pow_eq_zero {p : polynomial R} {n : ℕ} (H : p * X ^ n = 0) : p = 0 := ext $ λ k, (coeff_mul_X_pow p n k).symm.trans $ ext_iff.1 H (k+n) lemma C_mul_X_pow_eq_monomial (c : R) (n : ℕ) : C c * X^n = monomial n c := by { ext1, rw [monomial_eq_smul_X, coeff_smul, coeff_C_mul] } lemma support_mul_X_pow (c : R) (n : ℕ) (H : c ≠ 0) : (C c * X^n).support = singleton n := by rw [C_mul_X_pow_eq_monomial, support_monomial n c H] lemma support_C_mul_X_pow' {c : R} {n : ℕ} : (C c * X^n).support ⊆ singleton n := by { rw [C_mul_X_pow_eq_monomial], exact support_monomial' n c } lemma C_dvd_iff_dvd_coeff (r : R) (φ : polynomial R) : C r ∣ φ ↔ ∀ i, r ∣ φ.coeff i := begin split, { rintros ⟨φ, rfl⟩ c, rw coeff_C_mul, apply dvd_mul_right }, { intro h, choose c hc using h, classical, let c' : ℕ → R := λ i, if i ∈ φ.support then c i else 0, let ψ : polynomial R := ∑ i in φ.support, monomial i (c' i), use ψ, ext i, simp only [ψ, c', coeff_C_mul, mem_support_iff, coeff_monomial, finset_sum_coeff, finset.sum_ite_eq'], split_ifs with hi hi, { rw hc }, { rw [not_not] at hi, rwa mul_zero } }, end end coeff open submodule polynomial set variables {f : polynomial R} {I : submodule (polynomial R) (polynomial R)} /-- If the coefficients of a polynomial belong to n ideal contains the submodule span of the coefficients of a polynomial. -/ lemma span_le_of_coeff_mem_C_inverse (cf : ∀ (i : ℕ), f.coeff i ∈ (C ⁻¹' I.carrier)) : (span (polynomial R) {g | ∃ i, g = C (f.coeff i)}) ≤ I := begin refine bInter_subset_of_mem _, rintros _ ⟨i, rfl⟩, exact (mem_coe _).mpr (cf i), end lemma mem_span_C_coeff : f ∈ span (polynomial R) {g : polynomial R | ∃ i : ℕ, g = (C (coeff f i))} := begin rw [← f.sum_single] {occs := occurrences.pos [1]}, refine sum_mem _ (λ i hi, _), change monomial i _ ∈ span _ _, rw [← C_mul_X_pow_eq_monomial, ← X_pow_mul, ← smul_eq_mul], exact smul_mem _ _ (subset_span ⟨i, rfl⟩), end lemma exists_coeff_not_mem_C_inverse : f ∉ I → ∃ i : ℕ , coeff f i ∉ (C ⁻¹' I.carrier) := imp_of_not_imp_not _ _ (λ cf, not_not.mpr ((span_le_of_coeff_mem_C_inverse (not_exists_not.mp cf)) mem_span_C_coeff)) section cast @[simp] lemma nat_cast_coeff_zero {n : ℕ} {R : Type*} [semiring R] : (n : polynomial R).coeff 0 = n := begin induction n with n ih, { simp, }, { simp [ih], }, end @[simp, norm_cast] theorem nat_cast_inj {m n : ℕ} {R : Type*} [semiring R] [char_zero R] : (↑m : polynomial R) = ↑n ↔ m = n := begin fsplit, { intro h, apply_fun (λ p, p.coeff 0) at h, simpa using h, }, { rintro rfl, refl, }, end @[simp] lemma int_cast_coeff_zero {i : ℤ} {R : Type*} [ring R] : (i : polynomial R).coeff 0 = i := by cases i; simp @[simp, norm_cast] theorem int_cast_inj {m n : ℤ} {R : Type*} [ring R] [char_zero R] : (↑m : polynomial R) = ↑n ↔ m = n := begin fsplit, { intro h, apply_fun (λ p, p.coeff 0) at h, simpa using h, }, { rintro rfl, refl, }, end end cast end polynomial
85551a416fddfb4fe90ad249c0901b7a272254d6
05f637fa14ac28031cb1ea92086a0f4eb23ff2b1
/tests/lean/univ2.lean
710088e283c255c2d19ed556ee08cb3dad92e7bc
[ "Apache-2.0" ]
permissive
codyroux/lean0.1
1ce92751d664aacff0529e139083304a7bbc8a71
0dc6fb974aa85ed6f305a2f4b10a53a44ee5f0ef
refs/heads/master
1,610,830,535,062
1,402,150,480,000
1,402,150,480,000
19,588,851
2
0
null
null
null
null
UTF-8
Lean
false
false
216
lean
universe M1 >= 1 universe M2 >= 1 universe Z >= max M1+1 M2+1 print environment (* local env = get_environment() assert(env:get_universe_distance("Z", "M1") == 1) assert(env:get_universe_distance("Z", "M2") == 1) *)
7f47fdac78001bfc671d4f6a32a531335a67e9d4
94e33a31faa76775069b071adea97e86e218a8ee
/src/topology/sheaves/forget.lean
60e8e07ec58f390ec68f39d69c0cc709ea840d1d
[ "Apache-2.0" ]
permissive
urkud/mathlib
eab80095e1b9f1513bfb7f25b4fa82fa4fd02989
6379d39e6b5b279df9715f8011369a301b634e41
refs/heads/master
1,658,425,342,662
1,658,078,703,000
1,658,078,703,000
186,910,338
0
0
Apache-2.0
1,568,512,083,000
1,557,958,709,000
Lean
UTF-8
Lean
false
false
8,144
lean
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import category_theory.limits.preserves.shapes.products import topology.sheaves.sheaf /-! # Checking the sheaf condition on the underlying presheaf of types. If `G : C ⥤ D` is a functor which reflects isomorphisms and preserves limits (we assume all limits exist in both `C` and `D`), then checking the sheaf condition for a presheaf `F : presheaf C X` is equivalent to checking the sheaf condition for `F ⋙ G`. The important special case is when `C` is a concrete category with a forgetful functor that preserves limits and reflects isomorphisms. Then to check the sheaf condition it suffices to check it on the underlying sheaf of types. ## References * https://stacks.math.columbia.edu/tag/0073 -/ noncomputable theory open category_theory open category_theory.limits open topological_space open opposite namespace Top namespace presheaf namespace sheaf_condition open sheaf_condition_equalizer_products universes v u₁ u₂ variables {C : Type u₁} [category.{v} C] [has_limits C] variables {D : Type u₂} [category.{v} D] [has_limits D] variables (G : C ⥤ D) [preserves_limits G] variables {X : Top.{v}} (F : presheaf C X) variables {ι : Type v} (U : ι → opens X) local attribute [reducible] diagram left_res right_res /-- When `G` preserves limits, the sheaf condition diagram for `F` composed with `G` is naturally isomorphic to the sheaf condition diagram for `F ⋙ G`. -/ def diagram_comp_preserves_limits : diagram F U ⋙ G ≅ diagram (F ⋙ G) U := begin fapply nat_iso.of_components, rintro ⟨j⟩, exact (preserves_product.iso _ _), exact (preserves_product.iso _ _), rintros ⟨⟩ ⟨⟩ ⟨⟩, { ext, simp, dsimp, simp, }, -- non-terminal `simp`, but `squeeze_simp` fails { ext, simp only [limit.lift_π, functor.comp_map, map_lift_pi_comparison, fan.mk_π_app, preserves_product.iso_hom, parallel_pair_map_left, functor.map_comp, category.assoc], dsimp, simp, }, { ext, simp only [limit.lift_π, functor.comp_map, parallel_pair_map_right, fan.mk_π_app, preserves_product.iso_hom, map_lift_pi_comparison, functor.map_comp, category.assoc], dsimp, simp, }, { ext, simp, dsimp, simp, }, end local attribute [reducible] res /-- When `G` preserves limits, the image under `G` of the sheaf condition fork for `F` is the sheaf condition fork for `F ⋙ G`, postcomposed with the inverse of the natural isomorphism `diagram_comp_preserves_limits`. -/ def map_cone_fork : G.map_cone (fork F U) ≅ (cones.postcompose (diagram_comp_preserves_limits G F U).inv).obj (fork (F ⋙ G) U) := cones.ext (iso.refl _) (λ j, begin dsimp, simp [diagram_comp_preserves_limits], cases j; dsimp, { rw iso.eq_comp_inv, ext, simp, dsimp, simp, }, { rw iso.eq_comp_inv, ext, simp, -- non-terminal `simp`, but `squeeze_simp` fails dsimp, simp only [limit.lift_π, fan.mk_π_app, ←G.map_comp, limit.lift_π_assoc, fan.mk_π_app] } end) end sheaf_condition universes v u₁ u₂ open sheaf_condition sheaf_condition_equalizer_products variables {C : Type u₁} [category.{v} C] {D : Type u₂} [category.{v} D] variables (G : C ⥤ D) variables [reflects_isomorphisms G] variables [has_limits C] [has_limits D] [preserves_limits G] variables {X : Top.{v}} (F : presheaf C X) /-- If `G : C ⥤ D` is a functor which reflects isomorphisms and preserves limits (we assume all limits exist in both `C` and `D`), then checking the sheaf condition for a presheaf `F : presheaf C X` is equivalent to checking the sheaf condition for `F ⋙ G`. The important special case is when `C` is a concrete category with a forgetful functor that preserves limits and reflects isomorphisms. Then to check the sheaf condition it suffices to check it on the underlying sheaf of types. Another useful example is the forgetful functor `TopCommRing ⥤ Top`. See <https://stacks.math.columbia.edu/tag/0073>. In fact we prove a stronger version with arbitrary complete target category. -/ lemma is_sheaf_iff_is_sheaf_comp : presheaf.is_sheaf F ↔ presheaf.is_sheaf (F ⋙ G) := begin split, { intros S ι U, -- We have that the sheaf condition fork for `F` is a limit fork, obtain ⟨t₁⟩ := S U, -- and since `G` preserves limits, the image under `G` of this fork is a limit fork too. letI := preserves_smallest_limits_of_preserves_limits G, have t₂ := @preserves_limit.preserves _ _ _ _ _ _ _ G _ _ t₁, -- As we established above, that image is just the sheaf condition fork -- for `F ⋙ G` postcomposed with some natural isomorphism, have t₃ := is_limit.of_iso_limit t₂ (map_cone_fork G F U), -- and as postcomposing by a natural isomorphism preserves limit cones, have t₄ := is_limit.postcompose_inv_equiv _ _ t₃, -- we have our desired conclusion. exact ⟨t₄⟩, }, { intros S ι U, refine ⟨_⟩, -- Let `f` be the universal morphism from `F.obj U` to the equalizer -- of the sheaf condition fork, whatever it is. -- Our goal is to show that this is an isomorphism. let f := equalizer.lift _ (w F U), -- If we can do that, suffices : is_iso (G.map f), { resetI, -- we have that `f` itself is an isomorphism, since `G` reflects isomorphisms haveI : is_iso f := is_iso_of_reflects_iso f G, -- TODO package this up as a result elsewhere: apply is_limit.of_iso_limit (limit.is_limit _), apply iso.symm, fapply cones.ext, exact (as_iso f), rintro ⟨_|_⟩; { dsimp [f], simp, }, }, { -- Returning to the task of shwoing that `G.map f` is an isomorphism, -- we note that `G.map f` is almost but not quite (see below) a morphism -- from the sheaf condition cone for `F ⋙ G` to the -- image under `G` of the equalizer cone for the sheaf condition diagram. let c := fork (F ⋙ G) U, obtain ⟨hc⟩ := S U, let d := G.map_cone (equalizer.fork (left_res F U) (right_res F U)), letI := preserves_smallest_limits_of_preserves_limits G, have hd : is_limit d := preserves_limit.preserves (limit.is_limit _), -- Since both of these are limit cones -- (`c` by our hypothesis `S`, and `d` because `G` preserves limits), -- we hope to be able to conclude that `f` is an isomorphism. -- We say "not quite" above because `c` and `d` don't quite have the same shape: -- we need to postcompose by the natural isomorphism `diagram_comp_preserves_limits` -- introduced above. let d' := (cones.postcompose (diagram_comp_preserves_limits G F U).hom).obj d, have hd' : is_limit d' := (is_limit.postcompose_hom_equiv (diagram_comp_preserves_limits G F U : _) d).symm hd, -- Now everything works: we verify that `f` really is a morphism between these cones: let f' : c ⟶ d' := fork.mk_hom (G.map f) begin dsimp only [c, d, d', f, diagram_comp_preserves_limits, res], dunfold fork.ι, ext1 j, dsimp, simp only [category.assoc, ←functor.map_comp_assoc, equalizer.lift_ι, map_lift_pi_comparison_assoc], dsimp [res], simp, end, -- conclude that it is an isomorphism, -- just because it's a morphism between two limit cones. haveI : is_iso f' := is_limit.hom_is_iso hc hd' f', -- A cone morphism is an isomorphism exactly if the morphism between the cone points is, -- so we're done! exact is_iso.of_iso ((cones.forget _).map_iso (as_iso f')) }, }, end /-! As an example, we now have everything we need to check the sheaf condition for a presheaf of commutative rings, merely by checking the sheaf condition for the underlying sheaf of types. ``` import algebra.category.Ring.limits example (X : Top) (F : presheaf CommRing X) (h : presheaf.is_sheaf (F ⋙ (forget CommRing))) : F.is_sheaf := (is_sheaf_iff_is_sheaf_comp (forget CommRing) F).mpr h ``` -/ end presheaf end Top
6e08df23617f9b9b3b1ece9188d213be715a4da2
437dc96105f48409c3981d46fb48e57c9ac3a3e4
/src/algebra/big_operators.lean
7e9483523ae4e46f61c7249a080a78f4ae73357e
[ "Apache-2.0" ]
permissive
dan-c-k/mathlib
08efec79bd7481ee6da9cc44c24a653bff4fbe0d
96efc220f6225bc7a5ed8349900391a33a38cc56
refs/heads/master
1,658,082,847,093
1,589,013,201,000
1,589,013,201,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
52,133
lean
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl -/ import data.finset import data.nat.enat import tactic.omega /-! # Big operators In this file we define products and sums indexed by finite sets (specifically, `finset`). ## Notation We introduce the following notation, localized in `big_operators`. To enable the notation, use `open_locale big_operators`. Let `s` be a `finset α`, and `f : α → β` a function. * `∏ x in s, f x` is notation for `finset.prod s f` (assuming `β` is a `comm_monoid`) * `∑ x in s, f x` is notation for `finset.sum s f` (assuming `β` is an `add_comm_monoid`) * `∏ x, f x` is notation for `finset.prod finset.univ f` (assuming `α` is a `fintype` and `β` is a `comm_monoid`) * `∑ x in s, f x` is notation for `finset.prod finset.univ f` (assuming `α` is a `fintype` and `β` is an `add_comm_monoid`) -/ universes u v w variables {α : Type u} {β : Type v} {γ : Type w} theorem directed.finset_le {r : α → α → Prop} [is_trans α r] {ι} (hι : nonempty ι) {f : ι → α} (D : directed r f) (s : finset ι) : ∃ z, ∀ i ∈ s, r (f i) (f z) := show ∃ z, ∀ i ∈ s.1, r (f i) (f z), from multiset.induction_on s.1 (let ⟨z⟩ := hι in ⟨z, λ _, false.elim⟩) $ λ i s ⟨j, H⟩, let ⟨k, h₁, h₂⟩ := D i j in ⟨k, λ a h, or.cases_on (multiset.mem_cons.1 h) (λ h, h.symm ▸ h₁) (λ h, trans (H _ h) h₂)⟩ theorem finset.exists_le {α : Type u} [nonempty α] [directed_order α] (s : finset α) : ∃ M, ∀ i ∈ s, i ≤ M := directed.finset_le (by apply_instance) directed_order.directed s namespace finset /-- `∏ x in s, f x` is the product of `f x` as `x` ranges over the elements of the finite set `s`. -/ @[to_additive "`∑ x in s, f` is the sum of `f x` as `x` ranges over the elements of the finite set `s`."] protected def prod [comm_monoid β] (s : finset α) (f : α → β) : β := (s.1.map f).prod end finset /- ## Operator precedence of `∏` and `∑` There is no established mathematical convention for the operator precedence of big operators like `∏` and `∑`. We will have to make a choice. Online discussions, such as https://math.stackexchange.com/q/185538/30839 seem to suggest that `∏` and `∑` should have the same precedence, and that this should be somewhere between `*` and `+`. The latter have precedence levels `70` and `65` respectively, and we therefore choose the level `67`. In practice, this means that parentheses should be placed as follows: ```lean ∑ k in K, (a k + b k) = ∑ k in K, a k + ∑ k in K, b k → ∏ k in K, a k * b k = (∏ k in K, a k) * (∏ k in K, b k) ``` (Example taken from page 490 of Knuth's *Concrete Mathematics*.) -/ localized "notation `∑` binders `, ` r:(scoped:67 f, finset.sum finset.univ f) := r" in big_operators localized "notation `∏` binders `, ` r:(scoped:67 f, finset.prod finset.univ f) := r" in big_operators localized "notation `∑` binders ` in ` s `, ` r:(scoped:67 f, finset.sum s f) := r" in big_operators localized "notation `∏` binders ` in ` s `, ` r:(scoped:67 f, finset.prod s f) := r" in big_operators open_locale big_operators namespace finset variables {s s₁ s₂ : finset α} {a : α} {f g : α → β} @[to_additive] lemma prod_eq_multiset_prod [comm_monoid β] (s : finset α) (f : α → β) : ∏ x in s, f x = (s.1.map f).prod := rfl @[to_additive] theorem prod_eq_fold [comm_monoid β] (s : finset α) (f : α → β) : (∏ x in s, f x) = s.fold (*) 1 f := rfl end finset @[to_additive] lemma monoid_hom.map_prod [comm_monoid β] [comm_monoid γ] (g : β →* γ) (f : α → β) (s : finset α) : g (∏ x in s, f x) = ∏ x in s, g (f x) := by simp only [finset.prod_eq_multiset_prod, g.map_multiset_prod, multiset.map_map] lemma ring_hom.map_list_prod [semiring β] [semiring γ] (f : β →+* γ) (l : list β) : f l.prod = (l.map f).prod := f.to_monoid_hom.map_list_prod l lemma ring_hom.map_list_sum [semiring β] [semiring γ] (f : β →+* γ) (l : list β) : f l.sum = (l.map f).sum := f.to_add_monoid_hom.map_list_sum l lemma ring_hom.map_multiset_prod [comm_semiring β] [comm_semiring γ] (f : β →+* γ) (s : multiset β) : f s.prod = (s.map f).prod := f.to_monoid_hom.map_multiset_prod s lemma ring_hom.map_multiset_sum [semiring β] [semiring γ] (f : β →+* γ) (s : multiset β) : f s.sum = (s.map f).sum := f.to_add_monoid_hom.map_multiset_sum s lemma ring_hom.map_prod [comm_semiring β] [comm_semiring γ] (g : β →+* γ) (f : α → β) (s : finset α) : g (∏ x in s, f x) = ∏ x in s, g (f x) := g.to_monoid_hom.map_prod f s lemma ring_hom.map_sum [semiring β] [semiring γ] (g : β →+* γ) (f : α → β) (s : finset α) : g (∑ x in s, f x) = ∑ x in s, g (f x) := g.to_add_monoid_hom.map_sum f s namespace finset variables {s s₁ s₂ : finset α} {a : α} {f g : α → β} section comm_monoid variables [comm_monoid β] @[simp, to_additive] lemma prod_empty {α : Type u} {f : α → β} : (∏ x in (∅:finset α), f x) = 1 := rfl @[simp, to_additive] lemma prod_insert [decidable_eq α] : a ∉ s → (∏ x in (insert a s), f x) = f a * ∏ x in s, f x := fold_insert @[simp, to_additive] lemma prod_singleton : (∏ x in (singleton a), f x) = f a := eq.trans fold_singleton $ mul_one _ @[to_additive] lemma prod_pair [decidable_eq α] {a b : α} (h : a ≠ b) : (∏ x in ({a, b} : finset α), f x) = f a * f b := by simp [prod_insert (not_mem_singleton.2 h.symm), mul_comm] @[simp, priority 1100] lemma prod_const_one : (∏ x in s, (1 : β)) = 1 := by simp only [finset.prod, multiset.map_const, multiset.prod_repeat, one_pow] @[simp, priority 1100] lemma sum_const_zero {β} {s : finset α} [add_comm_monoid β] : (∑ x in s, (0 : β)) = 0 := @prod_const_one _ (multiplicative β) _ _ attribute [to_additive] prod_const_one @[simp, to_additive] lemma prod_image [decidable_eq α] {s : finset γ} {g : γ → α} : (∀x∈s, ∀y∈s, g x = g y → x = y) → (∏ x in (s.image g), f x) = ∏ x in s, f (g x) := fold_image @[simp, to_additive] lemma prod_map (s : finset α) (e : α ↪ γ) (f : γ → β) : (∏ x in (s.map e), f x) = ∏ x in s, f (e x) := by rw [finset.prod, finset.map_val, multiset.map_map]; refl @[congr, to_additive] lemma prod_congr (h : s₁ = s₂) : (∀x∈s₂, f x = g x) → s₁.prod f = s₂.prod g := by rw [h]; exact fold_congr attribute [congr] finset.sum_congr @[to_additive] lemma prod_union_inter [decidable_eq α] : (∏ x in (s₁ ∪ s₂), f x) * (∏ x in (s₁ ∩ s₂), f x) = (∏ x in s₁, f x) * (∏ x in s₂, f x) := fold_union_inter @[to_additive] lemma prod_union [decidable_eq α] (h : disjoint s₁ s₂) : (∏ x in (s₁ ∪ s₂), f x) = (∏ x in s₁, f x) * (∏ x in s₂, f x) := by rw [←prod_union_inter, (disjoint_iff_inter_eq_empty.mp h)]; exact (mul_one _).symm @[to_additive] lemma prod_sdiff [decidable_eq α] (h : s₁ ⊆ s₂) : (∏ x in (s₂ \ s₁), f x) * (∏ x in s₁, f x) = (∏ x in s₂, f x) := by rw [←prod_union sdiff_disjoint, sdiff_union_of_subset h] @[simp, to_additive] lemma prod_sum_elim [decidable_eq (α ⊕ γ)] (s : finset α) (t : finset γ) (f : α → β) (g : γ → β) : (s.image sum.inl ∪ t.image sum.inr).prod (sum.elim f g) = (∏ x in s, f x) * (∏ x in t, g x) := begin rw [prod_union, prod_image, prod_image], { simp only [sum.elim_inl, sum.elim_inr] }, { exact λ _ _ _ _, sum.inr.inj }, { exact λ _ _ _ _, sum.inl.inj }, { rintros i hi, erw [finset.mem_inter, finset.mem_image, finset.mem_image] at hi, rcases hi with ⟨⟨i, hi, rfl⟩, ⟨j, hj, H⟩⟩, cases H } end @[to_additive] lemma prod_bind [decidable_eq α] {s : finset γ} {t : γ → finset α} : (∀x∈s, ∀y∈s, x ≠ y → disjoint (t x) (t y)) → (∏ x in (s.bind t), f x) = ∏ x in s, (t x).prod f := by haveI := classical.dec_eq γ; exact finset.induction_on s (λ _, by simp only [bind_empty, prod_empty]) (assume x s hxs ih hd, have hd' : ∀x∈s, ∀y∈s, x ≠ y → disjoint (t x) (t y), from assume _ hx _ hy, hd _ (mem_insert_of_mem hx) _ (mem_insert_of_mem hy), have ∀y∈s, x ≠ y, from assume _ hy h, by rw [←h] at hy; contradiction, have ∀y∈s, disjoint (t x) (t y), from assume _ hy, hd _ (mem_insert_self _ _) _ (mem_insert_of_mem hy) (this _ hy), have disjoint (t x) (finset.bind s t), from (disjoint_bind_right _ _ _).mpr this, by simp only [bind_insert, prod_insert hxs, prod_union this, ih hd']) @[to_additive] lemma prod_product {s : finset γ} {t : finset α} {f : γ×α → β} : (∏ x in s.product t, f x) = ∏ x in s, ∏ y in t, f (x, y) := begin haveI := classical.dec_eq α, haveI := classical.dec_eq γ, rw [product_eq_bind, prod_bind], { congr, funext, exact prod_image (λ _ _ _ _ H, (prod.mk.inj H).2) }, simp only [disjoint_iff_ne, mem_image], rintros _ _ _ _ h ⟨_, _⟩ ⟨_, _, ⟨_, _⟩⟩ ⟨_, _⟩ ⟨_, _, ⟨_, _⟩⟩ _, apply h, cc end @[to_additive] lemma prod_sigma {σ : α → Type*} {s : finset α} {t : Πa, finset (σ a)} {f : sigma σ → β} : (∏ x in s.sigma t, f x) = ∏ a in s, ∏ s in (t a), f ⟨a, s⟩ := by haveI := classical.dec_eq α; haveI := (λ a, classical.dec_eq (σ a)); exact calc (s.sigma t).prod f = (s.bind (λa, (t a).image (λs, sigma.mk a s))).prod f : by rw sigma_eq_bind ... = s.prod (λa, ((t a).image (λs, sigma.mk a s)).prod f) : prod_bind $ assume a₁ ha a₂ ha₂ h, by simp only [disjoint_iff_ne, mem_image]; rintro ⟨_, _⟩ ⟨_, _, _⟩ ⟨_, _⟩ ⟨_, _, _⟩ ⟨_, _⟩; apply h; cc ... = (s.prod $ λa, (t a).prod $ λs, f ⟨a, s⟩) : prod_congr rfl $ λ _ _, prod_image $ λ _ _ _ _ _, by cc @[to_additive] lemma prod_image' [decidable_eq α] {s : finset γ} {g : γ → α} (h : γ → β) (eq : ∀c∈s, f (g c) = (s.filter (λc', g c' = g c)).prod h) : (∏ x in s.image g, f x) = ∏ x in s, h x := begin letI := classical.dec_eq γ, rw [← image_bind_filter_eq s g] {occs := occurrences.pos [2]}, rw [finset.prod_bind], { refine finset.prod_congr rfl (assume a ha, _), rcases finset.mem_image.1 ha with ⟨b, hb, rfl⟩, exact eq b hb }, assume a₀ _ a₁ _ ne, refine (disjoint_iff_ne.2 _), assume c₀ h₀ c₁ h₁, rcases mem_filter.1 h₀ with ⟨h₀, rfl⟩, rcases mem_filter.1 h₁ with ⟨h₁, rfl⟩, exact mt (congr_arg g) ne end @[to_additive] lemma prod_mul_distrib : s.prod (λx, f x * g x) = (∏ x in s, f x) * (∏ x in s, g x) := eq.trans (by rw one_mul; refl) fold_op_distrib @[to_additive] lemma prod_comm {s : finset γ} {t : finset α} {f : γ → α → β} : (∏ x in s, ∏ y in t, f x y) = (∏ y in t, ∏ x in s, f x y) := begin classical, apply finset.induction_on s, { simp only [prod_empty, prod_const_one] }, { intros _ _ H ih, simp only [prod_insert H, prod_mul_distrib, ih] } end @[to_additive] lemma prod_hom [comm_monoid γ] (s : finset α) {f : α → β} (g : β → γ) [is_monoid_hom g] : (∏ x in s, g (f x)) = g (∏ x in s, f x) := ((monoid_hom.of g).map_prod f s).symm @[to_additive] lemma prod_hom_rel [comm_monoid γ] {r : β → γ → Prop} {f : α → β} {g : α → γ} {s : finset α} (h₁ : r 1 1) (h₂ : ∀a b c, r b c → r (f a * b) (g a * c)) : r (∏ x in s, f x) (∏ x in s, g x) := by { delta finset.prod, apply multiset.prod_hom_rel; assumption } @[to_additive] lemma prod_subset (h : s₁ ⊆ s₂) (hf : ∀x∈s₂, x ∉ s₁ → f x = 1) : (∏ x in s₁, f x) = ∏ x in s₂, f x := by haveI := classical.dec_eq α; exact have (s₂ \ s₁).prod f = (s₂ \ s₁).prod (λx, 1), from prod_congr rfl $ by simpa only [mem_sdiff, and_imp], by rw [←prod_sdiff h]; simp only [this, prod_const_one, one_mul] -- If we use `[decidable_eq β]` here, some rewrites fail because they find a wrong `decidable` -- instance first; `{∀x, decidable (f x ≠ 1)}` doesn't work with `rw ← prod_filter_ne_one` @[to_additive] lemma prod_filter_ne_one [∀ x, decidable (f x ≠ 1)] : (∏ x in (s.filter $ λx, f x ≠ 1), f x) = (∏ x in s, f x) := prod_subset (filter_subset _) $ λ x, by { classical, rw [not_imp_comm, mem_filter], exact and.intro } @[to_additive] lemma prod_filter (p : α → Prop) [decidable_pred p] (f : α → β) : (∏ a in s.filter p, f a) = (∏ a in s, if p a then f a else 1) := calc (s.filter p).prod f = (s.filter p).prod (λa, if p a then f a else 1) : prod_congr rfl (assume a h, by rw [if_pos (mem_filter.1 h).2]) ... = s.prod (λa, if p a then f a else 1) : begin refine prod_subset (filter_subset s) (assume x hs h, _), rw [mem_filter, not_and] at h, exact if_neg (h hs) end @[to_additive] lemma prod_eq_single {s : finset α} {f : α → β} (a : α) (h₀ : ∀b∈s, b ≠ a → f b = 1) (h₁ : a ∉ s → f a = 1) : (∏ x in s, f x) = f a := by haveI := classical.dec_eq α; from classical.by_cases (assume : a ∈ s, calc (∏ x in s, f x) = ({a} : finset α).prod f : begin refine (prod_subset _ _).symm, { intros _ H, rwa mem_singleton.1 H }, { simpa only [mem_singleton] } end ... = f a : prod_singleton) (assume : a ∉ s, (prod_congr rfl $ λ b hb, h₀ b hb $ by rintro rfl; cc).trans $ prod_const_one.trans (h₁ this).symm) @[to_additive] lemma prod_apply_ite {s : finset α} {p : α → Prop} {hp : decidable_pred p} (f g : α → γ) (h : γ → β) : (∏ x in s, h (if p x then f x else g x)) = (∏ x in s.filter p, h (f x)) * (∏ x in s.filter (λ x, ¬ p x), h (g x)) := by letI := classical.dec_eq α; exact calc s.prod (λ x, h (if p x then f x else g x)) = (s.filter p ∪ s.filter (λ x, ¬ p x)).prod (λ x, h (if p x then f x else g x)) : by rw [filter_union_filter_neg_eq] ... = (s.filter p).prod (λ x, h (if p x then f x else g x)) * (s.filter (λ x, ¬ p x)).prod (λ x, h (if p x then f x else g x)) : prod_union (by simp [disjoint_right] {contextual := tt}) ... = (s.filter p).prod (λ x, h (f x)) * (s.filter (λ x, ¬ p x)).prod (λ x, h (g x)) : congr_arg2 _ (prod_congr rfl (by simp {contextual := tt})) (prod_congr rfl (by simp {contextual := tt})) @[to_additive] lemma prod_ite {s : finset α} {p : α → Prop} {hp : decidable_pred p} (f g : α → β) : (∏ x in s, if p x then f x else g x) = (s.filter p).prod (λ x, f x) * (s.filter (λ x, ¬ p x)).prod (λ x, g x) := by simp [prod_apply_ite _ _ (λ x, x)] @[simp, to_additive] lemma prod_ite_eq [decidable_eq α] (s : finset α) (a : α) (b : α → β) : (∏ x in s, (ite (a = x) (b x) 1)) = ite (a ∈ s) (b a) 1 := begin rw ←finset.prod_filter, split_ifs; simp only [filter_eq, if_true, if_false, h, prod_empty, prod_singleton, insert_empty_eq_singleton], end /-- When a product is taken over a conditional whose condition is an equality test on the index and whose alternative is 1, then the product's value is either the term at that index or `1`. The difference with `prod_ite_eq` is that the arguments to `eq` are swapped. -/ @[simp, to_additive] lemma prod_ite_eq' [decidable_eq α] (s : finset α) (a : α) (b : α → β) : (∏ x in s, (ite (x = a) (b x) 1)) = ite (a ∈ s) (b a) 1 := begin rw ←prod_ite_eq, congr, ext x, by_cases x = a; finish end @[to_additive] lemma prod_attach {f : α → β} : (∏ x in s.attach, f x.val) = (∏ x in s, f x) := by haveI := classical.dec_eq α; exact calc s.attach.prod (λx, f x.val) = ((s.attach).image subtype.val).prod f : by rw [prod_image]; exact assume x _ y _, subtype.eq ... = _ : by rw [attach_image_val] @[to_additive] lemma prod_bij {s : finset α} {t : finset γ} {f : α → β} {g : γ → β} (i : Πa∈s, γ) (hi : ∀a ha, i a ha ∈ t) (h : ∀a ha, f a = g (i a ha)) (i_inj : ∀a₁ a₂ ha₁ ha₂, i a₁ ha₁ = i a₂ ha₂ → a₁ = a₂) (i_surj : ∀b∈t, ∃a ha, b = i a ha) : (∏ x in s, f x) = (∏ x in t, g x) := congr_arg multiset.prod (multiset.map_eq_map_of_bij_of_nodup f g s.2 t.2 i hi h i_inj i_surj) @[to_additive] lemma prod_bij_ne_one {s : finset α} {t : finset γ} {f : α → β} {g : γ → β} (i : Πa∈s, f a ≠ 1 → γ) (hi₁ : ∀a h₁ h₂, i a h₁ h₂ ∈ t) (hi₂ : ∀a₁ a₂ h₁₁ h₁₂ h₂₁ h₂₂, i a₁ h₁₁ h₁₂ = i a₂ h₂₁ h₂₂ → a₁ = a₂) (hi₃ : ∀b∈t, g b ≠ 1 → ∃a h₁ h₂, b = i a h₁ h₂) (h : ∀a h₁ h₂, f a = g (i a h₁ h₂)) : (∏ x in s, f x) = (∏ x in t, g x) := by classical; exact calc (∏ x in s, f x) = (s.filter $ λx, f x ≠ 1).prod f : prod_filter_ne_one.symm ... = (t.filter $ λx, g x ≠ 1).prod g : prod_bij (assume a ha, i a (mem_filter.mp ha).1 (mem_filter.mp ha).2) (assume a ha, (mem_filter.mp ha).elim $ λh₁ h₂, mem_filter.mpr ⟨hi₁ a h₁ h₂, λ hg, h₂ (hg ▸ h a h₁ h₂)⟩) (assume a ha, (mem_filter.mp ha).elim $ h a) (assume a₁ a₂ ha₁ ha₂, (mem_filter.mp ha₁).elim $ λha₁₁ ha₁₂, (mem_filter.mp ha₂).elim $ λha₂₁ ha₂₂, hi₂ a₁ a₂ _ _ _ _) (assume b hb, (mem_filter.mp hb).elim $ λh₁ h₂, let ⟨a, ha₁, ha₂, eq⟩ := hi₃ b h₁ h₂ in ⟨a, mem_filter.mpr ⟨ha₁, ha₂⟩, eq⟩) ... = (∏ x in t, g x) : prod_filter_ne_one @[to_additive] lemma nonempty_of_prod_ne_one (h : (∏ x in s, f x) ≠ 1) : s.nonempty := s.eq_empty_or_nonempty.elim (λ H, false.elim $ h $ H.symm ▸ prod_empty) id @[to_additive] lemma exists_ne_one_of_prod_ne_one (h : (∏ x in s, f x) ≠ 1) : ∃a∈s, f a ≠ 1 := begin classical, rw ← prod_filter_ne_one at h, rcases nonempty_of_prod_ne_one h with ⟨x, hx⟩, exact ⟨x, (mem_filter.1 hx).1, (mem_filter.1 hx).2⟩ end lemma sum_range_succ {β} [add_comm_monoid β] (f : ℕ → β) (n : ℕ) : (∑ x in range (n + 1), f x) = f n + (∑ x in range n, f x) := by rw [range_succ, sum_insert not_mem_range_self] @[to_additive] lemma prod_range_succ (f : ℕ → β) (n : ℕ) : (∏ x in range (n + 1), f x) = f n * (∏ x in range n, f x) := by rw [range_succ, prod_insert not_mem_range_self] lemma prod_range_succ' (f : ℕ → β) : ∀ n : ℕ, (∏ k in range (n + 1), f k) = (∏ k in range n, f (k+1)) * f 0 | 0 := (prod_range_succ _ _).trans $ mul_comm _ _ | (n + 1) := by rw [prod_range_succ (λ m, f (nat.succ m)), mul_assoc, ← prod_range_succ']; exact prod_range_succ _ _ /-- A telescoping sum along `{0, ..., n-1}` of an `ℕ`-valued function reduces to the difference of the last and first terms when the function we are summing is monotone. -/ lemma sum_range_sub_of_monotone {f : ℕ → ℕ} (h : monotone f) (n : ℕ) : ∑ i in range n, (f (i+1) - f i) = f n - f 0 := begin induction n with n IH, { simp }, rw [finset.sum_range_succ, IH, nat.succ_eq_add_one], have : f n ≤ f (n+1) := h (nat.le_succ _), have : f 0 ≤ f n := h (nat.zero_le _), omega end lemma sum_Ico_add {δ : Type*} [add_comm_monoid δ] (f : ℕ → δ) (m n k : ℕ) : (∑ l in Ico m n, f (k + l)) = (∑ l in Ico (m + k) (n + k), f l) := Ico.image_add m n k ▸ eq.symm $ sum_image $ λ x hx y hy h, nat.add_left_cancel h @[to_additive] lemma prod_Ico_add (f : ℕ → β) (m n k : ℕ) : (∏ l in Ico m n, f (k + l)) = (∏ l in Ico (m + k) (n + k), f l) := Ico.image_add m n k ▸ eq.symm $ prod_image $ λ x hx y hy h, nat.add_left_cancel h lemma sum_Ico_succ_top {δ : Type*} [add_comm_monoid δ] {a b : ℕ} (hab : a ≤ b) (f : ℕ → δ) : (∑ k in Ico a (b + 1), f k) = (∑ k in Ico a b, f k) + f b := by rw [Ico.succ_top hab, sum_insert Ico.not_mem_top, add_comm] @[to_additive] lemma prod_Ico_succ_top {a b : ℕ} (hab : a ≤ b) (f : ℕ → β) : (∏ k in Ico a (b + 1), f k) = (∏ k in Ico a b, f k) * f b := @sum_Ico_succ_top (additive β) _ _ _ hab _ lemma sum_eq_sum_Ico_succ_bot {δ : Type*} [add_comm_monoid δ] {a b : ℕ} (hab : a < b) (f : ℕ → δ) : (∑ k in Ico a b, f k) = f a + (∑ k in Ico (a + 1) b, f k) := have ha : a ∉ Ico (a + 1) b, by simp, by rw [← sum_insert ha, Ico.insert_succ_bot hab] @[to_additive] lemma prod_eq_prod_Ico_succ_bot {a b : ℕ} (hab : a < b) (f : ℕ → β) : (∏ k in Ico a b, f k) = f a * (∏ k in Ico (a + 1) b, f k) := @sum_eq_sum_Ico_succ_bot (additive β) _ _ _ hab _ @[to_additive] lemma prod_Ico_consecutive (f : ℕ → β) {m n k : ℕ} (hmn : m ≤ n) (hnk : n ≤ k) : (∏ i in Ico m n, f i) * (∏ i in Ico n k, f i) = (∏ i in Ico m k, f i) := Ico.union_consecutive hmn hnk ▸ eq.symm $ prod_union $ Ico.disjoint_consecutive m n k @[to_additive] lemma prod_range_mul_prod_Ico (f : ℕ → β) {m n : ℕ} (h : m ≤ n) : (∏ k in range m, f k) * (∏ k in Ico m n, f k) = (∏ k in range n, f k) := Ico.zero_bot m ▸ Ico.zero_bot n ▸ prod_Ico_consecutive f (nat.zero_le m) h @[to_additive] lemma prod_Ico_eq_mul_inv {δ : Type*} [comm_group δ] (f : ℕ → δ) {m n : ℕ} (h : m ≤ n) : (∏ k in Ico m n, f k) = (∏ k in range n, f k) * (∏ k in range m, f k)⁻¹ := eq_mul_inv_iff_mul_eq.2 $ by rw [mul_comm]; exact prod_range_mul_prod_Ico f h lemma sum_Ico_eq_sub {δ : Type*} [add_comm_group δ] (f : ℕ → δ) {m n : ℕ} (h : m ≤ n) : (∑ k in Ico m n, f k) = (∑ k in range n, f k) - (∑ k in range m, f k) := sum_Ico_eq_add_neg f h @[to_additive] lemma prod_Ico_eq_prod_range (f : ℕ → β) (m n : ℕ) : (∏ k in Ico m n, f k) = (∏ k in range (n - m), f (m + k)) := begin by_cases h : m ≤ n, { rw [← Ico.zero_bot, prod_Ico_add, zero_add, nat.sub_add_cancel h] }, { replace h : n ≤ m := le_of_not_ge h, rw [Ico.eq_empty_of_le h, nat.sub_eq_zero_of_le h, range_zero, prod_empty, prod_empty] } end @[to_additive] lemma prod_range_zero (f : ℕ → β) : (∏ k in range 0, f k) = 1 := by rw [range_zero, prod_empty] lemma prod_range_one (f : ℕ → β) : (∏ k in range 1, f k) = f 0 := by { rw [range_one], apply @prod_singleton ℕ β 0 f } lemma sum_range_one {δ : Type*} [add_comm_monoid δ] (f : ℕ → δ) : (∑ k in range 1, f k) = f 0 := by { rw [range_one], apply @sum_singleton ℕ δ 0 f } attribute [to_additive finset.sum_range_one] prod_range_one @[simp] lemma prod_const (b : β) : (∏ x in s, b) = b ^ s.card := by haveI := classical.dec_eq α; exact finset.induction_on s rfl (λ a s has ih, by rw [prod_insert has, card_insert_of_not_mem has, pow_succ, ih]) lemma prod_pow (s : finset α) (n : ℕ) (f : α → β) : (∏ x in s, f x ^ n) = (∏ x in s, f x) ^ n := by haveI := classical.dec_eq α; exact finset.induction_on s (by simp) (by simp [_root_.mul_pow] {contextual := tt}) lemma prod_nat_pow (s : finset α) (n : ℕ) (f : α → ℕ) : (∏ x in s, f x ^ n) = (∏ x in s, f x) ^ n := by haveI := classical.dec_eq α; exact finset.induction_on s (by simp) (by simp [nat.mul_pow] {contextual := tt}) -- `to_additive` fails on this lemma, so we prove it manually below lemma prod_flip {n : ℕ} (f : ℕ → β) : (∏ r in range (n + 1), f (n - r)) = (∏ k in range (n + 1), f k) := begin induction n with n ih, { rw [prod_range_one, prod_range_one] }, { rw [prod_range_succ', prod_range_succ _ (nat.succ n), mul_comm], simp [← ih] } end @[to_additive] lemma prod_involution {s : finset α} {f : α → β} : ∀ (g : Π a ∈ s, α) (h₁ : ∀ a ha, f a * f (g a ha) = 1) (h₂ : ∀ a ha, f a ≠ 1 → g a ha ≠ a) (h₃ : ∀ a ha, g a ha ∈ s) (h₄ : ∀ a ha, g (g a ha) (h₃ a ha) = a), (∏ x in s, f x) = 1 := by haveI := classical.dec_eq α; haveI := classical.dec_eq β; exact finset.strong_induction_on s (λ s ih g h₁ h₂ h₃ h₄, s.eq_empty_or_nonempty.elim (λ hs, hs.symm ▸ rfl) (λ ⟨x, hx⟩, have hmem : ∀ y ∈ (s.erase x).erase (g x hx), y ∈ s, from λ y hy, (mem_of_mem_erase (mem_of_mem_erase hy)), have g_inj : ∀ {x hx y hy}, g x hx = g y hy → x = y, from λ x hx y hy h, by rw [← h₄ x hx, ← h₄ y hy]; simp [h], have ih': (erase (erase s x) (g x hx)).prod f = (1 : β) := ih ((s.erase x).erase (g x hx)) ⟨subset.trans (erase_subset _ _) (erase_subset _ _), λ h, not_mem_erase (g x hx) (s.erase x) (h (h₃ x hx))⟩ (λ y hy, g y (hmem y hy)) (λ y hy, h₁ y (hmem y hy)) (λ y hy, h₂ y (hmem y hy)) (λ y hy, mem_erase.2 ⟨λ (h : g y _ = g x hx), by simpa [g_inj h] using hy, mem_erase.2 ⟨λ (h : g y _ = x), have y = g x hx, from h₄ y (hmem y hy) ▸ by simp [h], by simpa [this] using hy, h₃ y (hmem y hy)⟩⟩) (λ y hy, h₄ y (hmem y hy)), if hx1 : f x = 1 then ih' ▸ eq.symm (prod_subset hmem (λ y hy hy₁, have y = x ∨ y = g x hx, by simp [hy] at hy₁; tauto, this.elim (λ h, h.symm ▸ hx1) (λ h, h₁ x hx ▸ h ▸ hx1.symm ▸ (one_mul _).symm))) else by rw [← insert_erase hx, prod_insert (not_mem_erase _ _), ← insert_erase (mem_erase.2 ⟨h₂ x hx hx1, h₃ x hx⟩), prod_insert (not_mem_erase _ _), ih', mul_one, h₁ x hx])) /-- The product of the composition of functions `f` and `g`, is the product over `b ∈ s.image g` of `f b` to the power of the cardinality of the fibre of `b` -/ lemma prod_comp [decidable_eq γ] {s : finset α} (f : γ → β) (g : α → γ) : ∏ a in s, f (g a) = ∏ b in s.image g, f b ^ (s.filter (λ a, g a = b)).card := calc ∏ a in s, f (g a) = ∏ x in (s.image g).sigma (λ b : γ, s.filter (λ a, g a = b)), f (g x.2) : prod_bij (λ a ha, ⟨g a, a⟩) (by simp; tauto) (λ _ _, rfl) (by simp) (by finish) ... = ∏ b in s.image g, ∏ a in s.filter (λ a, g a = b), f (g a) : prod_sigma ... = ∏ b in s.image g, ∏ a in s.filter (λ a, g a = b), f b : prod_congr rfl (λ b hb, prod_congr rfl (by simp {contextual := tt})) ... = ∏ b in s.image g, f b ^ (s.filter (λ a, g a = b)).card : prod_congr rfl (λ _ _, prod_const _) @[to_additive] lemma prod_eq_one {f : α → β} {s : finset α} (h : ∀x∈s, f x = 1) : (∏ x in s, f x) = 1 := calc (∏ x in s, f x) = s.prod (λx, 1) : finset.prod_congr rfl h ... = 1 : finset.prod_const_one /-- A product over all subsets of `s ∪ {x}` is obtained by multiplying the product over all subsets of `s`, and over all subsets of `s` to which one adds `x`. -/ @[to_additive] lemma prod_powerset_insert [decidable_eq α] {s : finset α} {x : α} (h : x ∉ s) (f : finset α → β) : (∏ a in (insert x s).powerset, f a) = (∏ a in s.powerset, f a) * (∏ t in s.powerset, f (insert x t)) := begin rw [powerset_insert, finset.prod_union, finset.prod_image], { assume t₁ h₁ t₂ h₂ heq, rw [← finset.erase_insert (not_mem_of_mem_powerset_of_not_mem h₁ h), ← finset.erase_insert (not_mem_of_mem_powerset_of_not_mem h₂ h), heq] }, { rw finset.disjoint_iff_ne, assume t₁ h₁ t₂ h₂, rcases finset.mem_image.1 h₂ with ⟨t₃, h₃, H₃₂⟩, rw ← H₃₂, exact ne_insert_of_not_mem _ _ (not_mem_of_mem_powerset_of_not_mem h₁ h) } end @[to_additive] lemma prod_piecewise [decidable_eq α] (s t : finset α) (f g : α → β) : (∏ x in s, (t.piecewise f g) x) = (∏ x in s ∩ t, f x) * (∏ x in s \ t, g x) := by { rw [piecewise, prod_ite, filter_mem_eq_inter, ← sdiff_eq_filter], } /-- If we can partition a product into subsets that cancel out, then the whole product cancels. -/ @[to_additive] lemma prod_cancels_of_partition_cancels (R : setoid α) [decidable_rel R.r] (h : ∀ x ∈ s, (∏ a in s.filter (λy, y ≈ x), f a) = 1) : (∏ x in s, f x) = 1 := begin suffices : (s.image quotient.mk).prod (λ xbar, (s.filter (λ y, ⟦y⟧ = xbar)).prod f) = (∏ x in s, f x), { rw [←this, ←finset.prod_eq_one], intros xbar xbar_in_s, rcases (mem_image).mp xbar_in_s with ⟨x, x_in_s, xbar_eq_x⟩, rw [←xbar_eq_x, filter_congr (λ y _, @quotient.eq _ R y x)], apply h x x_in_s }, apply finset.prod_image' f, intros, refl end @[to_additive] lemma prod_update_of_not_mem [decidable_eq α] {s : finset α} {i : α} (h : i ∉ s) (f : α → β) (b : β) : (∏ x in s, function.update f i b x) = (∏ x in s, f x) := begin apply prod_congr rfl (λj hj, _), have : j ≠ i, by { assume eq, rw eq at hj, exact h hj }, simp [this] end lemma prod_update_of_mem [decidable_eq α] {s : finset α} {i : α} (h : i ∈ s) (f : α → β) (b : β) : (∏ x in s, function.update f i b x) = b * (∏ x in s \ (singleton i), f x) := by { rw [update_eq_piecewise, prod_piecewise], simp [h] } end comm_monoid lemma sum_update_of_mem [add_comm_monoid β] [decidable_eq α] {s : finset α} {i : α} (h : i ∈ s) (f : α → β) (b : β) : (∑ x in s, function.update f i b x) = b + (∑ x in s \ (singleton i), f x) := by { rw [update_eq_piecewise, sum_piecewise], simp [h] } attribute [to_additive] prod_update_of_mem lemma sum_smul' [add_comm_monoid β] (s : finset α) (n : ℕ) (f : α → β) : (∑ x in s, add_monoid.smul n (f x)) = add_monoid.smul n ((∑ x in s, f x)) := @prod_pow _ (multiplicative β) _ _ _ _ attribute [to_additive sum_smul'] prod_pow @[simp] lemma sum_const [add_comm_monoid β] (b : β) : (∑ x in s, b) = add_monoid.smul s.card b := @prod_const _ (multiplicative β) _ _ _ attribute [to_additive] prod_const lemma sum_comp [add_comm_monoid β] [decidable_eq γ] {s : finset α} (f : γ → β) (g : α → γ) : ∑ a in s, f (g a) = ∑ b in s.image g, add_monoid.smul (s.filter (λ a, g a = b)).card (f b) := @prod_comp _ (multiplicative β) _ _ _ _ _ _ attribute [to_additive "The sum of the composition of functions `f` and `g`, is the sum over `b ∈ s.image g` of `f b` times of the cardinality of the fibre of `b`"] prod_comp lemma sum_const_nat {m : ℕ} {f : α → ℕ} (h₁ : ∀x ∈ s, f x = m) : (∑ x in s, f x) = card s * m := begin rw [← nat.smul_eq_mul, ← sum_const], apply sum_congr rfl h₁ end @[simp] lemma sum_boole {s : finset α} {p : α → Prop} [semiring β] {hp : decidable_pred p} : (∑ x in s, if p x then (1 : β) else (0 : β)) = (s.filter p).card := by simp [sum_ite] lemma sum_range_succ' [add_comm_monoid β] (f : ℕ → β) : ∀ n : ℕ, (∑ i in range (n + 1), f i) = (∑ i in range n, f (i + 1)) + f 0 := @prod_range_succ' (multiplicative β) _ _ attribute [to_additive] prod_range_succ' lemma sum_flip [add_comm_monoid β] {n : ℕ} (f : ℕ → β) : (∑ i in range (n + 1), f (n - i)) = (∑ i in range (n + 1), f i) := @prod_flip (multiplicative β) _ _ _ attribute [to_additive] prod_flip @[norm_cast] lemma sum_nat_cast [add_comm_monoid β] [has_one β] (s : finset α) (f : α → ℕ) : ↑(∑ x in s, f x : ℕ) = (∑ x in s, (f x : β)) := (nat.cast_add_monoid_hom β).map_sum f s @[norm_cast] lemma prod_nat_cast [comm_semiring β] (s : finset α) (f : α → ℕ) : ↑(∏ x in s, f x : ℕ) = (∏ x in s, (f x : β)) := (nat.cast_ring_hom β).map_prod f s protected lemma sum_nat_coe_enat (s : finset α) (f : α → ℕ) : (∑ x in s, (f x : enat)) = (∑ x in s, f x : ℕ) := begin classical, induction s using finset.induction with a s has ih h, { simp }, { simp [has, ih] } end theorem dvd_sum [comm_semiring α] {a : α} {s : finset β} {f : β → α} (h : ∀ x ∈ s, a ∣ f x) : a ∣ ∑ x in s, f x := multiset.dvd_sum (λ y hy, by rcases multiset.mem_map.1 hy with ⟨x, hx, rfl⟩; exact h x hx) lemma le_sum_of_subadditive [add_comm_monoid α] [ordered_add_comm_monoid β] (f : α → β) (h_zero : f 0 = 0) (h_add : ∀x y, f (x + y) ≤ f x + f y) (s : finset γ) (g : γ → α) : f (∑ x in s, g x) ≤ ∑ x in s, f (g x) := begin refine le_trans (multiset.le_sum_of_subadditive f h_zero h_add _) _, rw [multiset.map_map], refl end lemma abs_sum_le_sum_abs [discrete_linear_ordered_field α] {f : β → α} {s : finset β} : abs (∑ x in s, f x) ≤ ∑ x in s, abs (f x) := le_sum_of_subadditive _ abs_zero abs_add s f section comm_group variables [comm_group β] @[simp, to_additive] lemma prod_inv_distrib : (∏ x in s, (f x)⁻¹) = (∏ x in s, f x)⁻¹ := s.prod_hom has_inv.inv end comm_group @[simp] theorem card_sigma {σ : α → Type*} (s : finset α) (t : Π a, finset (σ a)) : card (s.sigma t) = ∑ a in s, card (t a) := multiset.card_sigma _ _ lemma card_bind [decidable_eq β] {s : finset α} {t : α → finset β} (h : ∀ x ∈ s, ∀ y ∈ s, x ≠ y → disjoint (t x) (t y)) : (s.bind t).card = ∑ u in s, card (t u) := calc (s.bind t).card = (s.bind t).sum (λ _, 1) : by simp ... = s.sum (λ a, (t a).sum (λ _, 1)) : finset.sum_bind h ... = s.sum (λ u, card (t u)) : by simp lemma card_bind_le [decidable_eq β] {s : finset α} {t : α → finset β} : (s.bind t).card ≤ ∑ a in s, (t a).card := by haveI := classical.dec_eq α; exact finset.induction_on s (by simp) (λ a s has ih, calc ((insert a s).bind t).card ≤ (t a).card + (s.bind t).card : by rw bind_insert; exact finset.card_union_le _ _ ... ≤ (insert a s).sum (λ a, card (t a)) : by rw sum_insert has; exact add_le_add_left ih _) theorem card_eq_sum_card_image [decidable_eq β] (f : α → β) (s : finset α) : s.card = ∑ a in s.image f, (s.filter (λ x, f x = a)).card := by letI := classical.dec_eq α; exact calc s.card = ((s.image f).bind (λ a, s.filter (λ x, f x = a))).card : congr_arg _ (finset.ext.2 $ λ x, ⟨λ hs, mem_bind.2 ⟨f x, mem_image_of_mem _ hs, mem_filter.2 ⟨hs, rfl⟩⟩, λ h, let ⟨a, ha₁, ha₂⟩ := mem_bind.1 h in by convert filter_subset s ha₂⟩) ... = (s.image f).sum (λ a, (s.filter (λ x, f x = a)).card) : card_bind (by simp [disjoint_left, finset.ext] {contextual := tt}) lemma gsmul_sum [add_comm_group β] {f : α → β} {s : finset α} (z : ℤ) : gsmul z (∑ a in s, f a) = ∑ a in s, gsmul z (f a) := (s.sum_hom (gsmul z)).symm end finset namespace finset variables {s s₁ s₂ : finset α} {f g : α → β} {b : β} {a : α} @[simp] lemma sum_sub_distrib [add_comm_group β] : ∑ x in s, (f x - g x) = (∑ x in s, f x) - (∑ x in s, g x) := sum_add_distrib.trans $ congr_arg _ sum_neg_distrib section comm_monoid variables [comm_monoid β] lemma prod_pow_boole [decidable_eq α] (s : finset α) (f : α → β) (a : α) : (∏ x in s, (f x)^(ite (a = x) 1 0)) = ite (a ∈ s) (f a) 1 := by simp end comm_monoid section semiring variables [semiring β] lemma sum_mul : (∑ x in s, f x) * b = ∑ x in s, f x * b := (s.sum_hom (λ x, x * b)).symm lemma mul_sum : b * (∑ x in s, f x) = ∑ x in s, b * f x := (s.sum_hom _).symm lemma sum_mul_boole [decidable_eq α] (s : finset α) (f : α → β) (a : α) : (∑ x in s, (f x * ite (a = x) 1 0)) = ite (a ∈ s) (f a) 0 := by simp lemma sum_boole_mul [decidable_eq α] (s : finset α) (f : α → β) (a : α) : (∑ x in s, (ite (a = x) 1 0) * f x) = ite (a ∈ s) (f a) 0 := by simp end semiring lemma sum_div [division_ring β] {s : finset α} {f : α → β} {b : β} : (∑ x in s, f x) / b = ∑ x in s, f x / b := calc (∑ x in s, f x) / b = ∑ x in s, f x * (1 / b) : by rw [div_eq_mul_one_div, sum_mul] ... = ∑ x in s, f x / b : by { congr, ext, rw ← div_eq_mul_one_div (f x) b } section comm_semiring variables [comm_semiring β] lemma prod_eq_zero (ha : a ∈ s) (h : f a = 0) : (∏ x in s, f x) = 0 := by haveI := classical.dec_eq α; calc (∏ x in s, f x) = ∏ x in insert a (erase s a), f x : by rw insert_erase ha ... = 0 : by rw [prod_insert (not_mem_erase _ _), h, zero_mul] /-- The product over a sum can be written as a sum over the product of sets, `finset.pi`. `finset.prod_univ_sum` is an alternative statement when the product is over `univ`. -/ lemma prod_sum {δ : α → Type*} [decidable_eq α] [∀a, decidable_eq (δ a)] {s : finset α} {t : Πa, finset (δ a)} {f : Πa, δ a → β} : (∏ a in s, ∑ b in (t a), f a b) = ∑ p in (s.pi t), ∏ x in s.attach, f x.1 (p x.1 x.2) := begin induction s using finset.induction with a s ha ih, { rw [pi_empty, sum_singleton], refl }, { have h₁ : ∀x ∈ t a, ∀y ∈ t a, ∀h : x ≠ y, disjoint (image (pi.cons s a x) (pi s t)) (image (pi.cons s a y) (pi s t)), { assume x hx y hy h, simp only [disjoint_iff_ne, mem_image], rintros _ ⟨p₂, hp, eq₂⟩ _ ⟨p₃, hp₃, eq₃⟩ eq, have : pi.cons s a x p₂ a (mem_insert_self _ _) = pi.cons s a y p₃ a (mem_insert_self _ _), { rw [eq₂, eq₃, eq] }, rw [pi.cons_same, pi.cons_same] at this, exact h this }, rw [prod_insert ha, pi_insert ha, ih, sum_mul, sum_bind h₁], refine sum_congr rfl (λ b _, _), have h₂ : ∀p₁∈pi s t, ∀p₂∈pi s t, pi.cons s a b p₁ = pi.cons s a b p₂ → p₁ = p₂, from assume p₁ h₁ p₂ h₂ eq, injective_pi_cons ha eq, rw [sum_image h₂, mul_sum], refine sum_congr rfl (λ g _, _), rw [attach_insert, prod_insert, prod_image], { simp only [pi.cons_same], congr', ext ⟨v, hv⟩, congr', exact (pi.cons_ne (by rintro rfl; exact ha hv)).symm }, { exact λ _ _ _ _, subtype.eq ∘ subtype.mk.inj }, { simp only [mem_image], rintro ⟨⟨_, hm⟩, _, rfl⟩, exact ha hm } } end lemma sum_mul_sum {ι₁ : Type*} {ι₂ : Type*} (s₁ : finset ι₁) (s₂ : finset ι₂) (f₁ : ι₁ → β) (f₂ : ι₂ → β) : (∑ x₁ in s₁, f₁ x₁) * (∑ x₂ in s₂, f₂ x₂) = ∑ p in s₁.product s₂, f₁ p.1 * f₂ p.2 := by { rw [sum_product, sum_mul, sum_congr rfl], intros, rw mul_sum } open_locale classical /-- The product of `f a + g a` over all of `s` is the sum over the powerset of `s` of the product of `f` over a subset `t` times the product of `g` over the complement of `t` -/ lemma prod_add (f g : α → β) (s : finset α) : ∏ a in s, (f a + g a) = ∑ t in s.powerset, ((∏ a in t, f a) * (∏ a in (s \ t), g a)) := calc ∏ a in s, (f a + g a) = ∏ a in s, ∑ p in ({false, true} : finset Prop), if p then f a else g a : by simp ... = ∑ p in (s.pi (λ _, {false, true}) : finset (Π a ∈ s, Prop)), ∏ a in s.attach, if p a.1 a.2 then f a.1 else g a.1 : prod_sum ... = ∑ t in s.powerset, (∏ a in t, f a) * (∏ a in (s \ t), g a) : begin refine eq.symm (sum_bij (λ t _ a _, a ∈ t) _ _ _ _), { simp [subset_iff]; tauto }, { intros t ht, erw [prod_ite (λ a : {a // a ∈ s}, f a.1) (λ a : {a // a ∈ s}, g a.1)], refine congr_arg2 _ (prod_bij (λ (a : α) (ha : a ∈ t), ⟨a, mem_powerset.1 ht ha⟩) _ _ _ (λ b hb, ⟨b, by cases b; finish⟩)) (prod_bij (λ (a : α) (ha : a ∈ s \ t), ⟨a, by simp * at *⟩) _ _ _ (λ b hb, ⟨b, by cases b; finish⟩)); intros; simp * at *; simp * at * }, { finish [function.funext_iff, finset.ext, subset_iff] }, { assume f hf, exact ⟨s.filter (λ a : α, ∃ h : a ∈ s, f a h), by simp, by funext; intros; simp *⟩ } end /-- Summing `a^s.card * b^(n-s.card)` over all finite subsets `s` of a `finset` gives `(a + b)^s.card`.-/ lemma sum_pow_mul_eq_add_pow {α R : Type*} [comm_semiring R] (a b : R) (s : finset α) : (∑ t in s.powerset, a ^ t.card * b ^ (s.card - t.card)) = (a + b) ^ s.card := begin rw [← prod_const, prod_add], refine finset.sum_congr rfl (λ t ht, _), rw [prod_const, prod_const, ← card_sdiff (mem_powerset.1 ht)] end lemma prod_pow_eq_pow_sum {x : β} {f : α → ℕ} : ∀ {s : finset α}, (∏ i in s, x ^ (f i)) = x ^ (∑ x in s, f x) := begin apply finset.induction, { simp }, { assume a s has H, rw [finset.prod_insert has, finset.sum_insert has, pow_add, H] } end end comm_semiring section integral_domain /- add integral_semi_domain to support nat and ennreal -/ variables [integral_domain β] lemma prod_eq_zero_iff : (∏ x in s, f x) = 0 ↔ (∃a∈s, f a = 0) := begin classical, apply finset.induction_on s, exact ⟨not.elim one_ne_zero, λ ⟨_, H, _⟩, H.elim⟩, assume a s ha ih, rw [prod_insert ha, mul_eq_zero_iff_eq_zero_or_eq_zero, bex_def, exists_mem_insert, ih, ← bex_def] end end integral_domain section ordered_add_comm_monoid variables [ordered_add_comm_monoid β] lemma sum_le_sum : (∀x∈s, f x ≤ g x) → (∑ x in s, f x) ≤ (∑ x in s, g x) := begin classical, apply finset.induction_on s, exact (λ _, le_refl _), assume a s ha ih h, have : f a + (∑ x in s, f x) ≤ g a + (∑ x in s, g x), from add_le_add' (h _ (mem_insert_self _ _)) (ih $ assume x hx, h _ $ mem_insert_of_mem hx), by simpa only [sum_insert ha] end lemma sum_nonneg (h : ∀x∈s, 0 ≤ f x) : 0 ≤ (∑ x in s, f x) := le_trans (by rw [sum_const_zero]) (sum_le_sum h) lemma sum_nonpos (h : ∀x∈s, f x ≤ 0) : (∑ x in s, f x) ≤ 0 := le_trans (sum_le_sum h) (by rw [sum_const_zero]) lemma sum_le_sum_of_subset_of_nonneg (h : s₁ ⊆ s₂) (hf : ∀x∈s₂, x ∉ s₁ → 0 ≤ f x) : (∑ x in s₁, f x) ≤ (∑ x in s₂, f x) := by classical; calc (∑ x in s₁, f x) ≤ (∑ x in s₂ \ s₁, f x) + (∑ x in s₁, f x) : le_add_of_nonneg_left' $ sum_nonneg $ by simpa only [mem_sdiff, and_imp] ... = ∑ x in s₂ \ s₁ ∪ s₁, f x : (sum_union sdiff_disjoint).symm ... = (∑ x in s₂, f x) : by rw [sdiff_union_of_subset h] lemma sum_eq_zero_iff_of_nonneg : (∀x∈s, 0 ≤ f x) → ((∑ x in s, f x) = 0 ↔ ∀x∈s, f x = 0) := begin classical, apply finset.induction_on s, exact λ _, ⟨λ _ _, false.elim, λ _, rfl⟩, assume a s ha ih H, have : ∀ x ∈ s, 0 ≤ f x, from λ _, H _ ∘ mem_insert_of_mem, rw [sum_insert ha, add_eq_zero_iff' (H _ $ mem_insert_self _ _) (sum_nonneg this), forall_mem_insert, ih this] end lemma sum_eq_zero_iff_of_nonpos : (∀x∈s, f x ≤ 0) → ((∑ x in s, f x) = 0 ↔ ∀x∈s, f x = 0) := @sum_eq_zero_iff_of_nonneg _ (order_dual β) _ _ _ lemma single_le_sum (hf : ∀x∈s, 0 ≤ f x) {a} (h : a ∈ s) : f a ≤ (∑ x in s, f x) := have (singleton a).sum f ≤ (∑ x in s, f x), from sum_le_sum_of_subset_of_nonneg (λ x e, (mem_singleton.1 e).symm ▸ h) (λ x h _, hf x h), by rwa sum_singleton at this end ordered_add_comm_monoid section canonically_ordered_add_monoid variables [canonically_ordered_add_monoid β] lemma sum_le_sum_of_subset (h : s₁ ⊆ s₂) : (∑ x in s₁, f x) ≤ (∑ x in s₂, f x) := sum_le_sum_of_subset_of_nonneg h $ assume x h₁ h₂, zero_le _ lemma sum_le_sum_of_ne_zero (h : ∀x∈s₁, f x ≠ 0 → x ∈ s₂) : (∑ x in s₁, f x) ≤ (∑ x in s₂, f x) := by classical; calc (∑ x in s₁, f x) = (s₁.filter (λx, f x = 0)).sum f + (s₁.filter (λx, f x ≠ 0)).sum f : by rw [←sum_union, filter_union_filter_neg_eq]; exact disjoint_filter.2 (assume _ _ h n_h, n_h h) ... ≤ (∑ x in s₂, f x) : add_le_of_nonpos_of_le' (sum_nonpos $ by simp only [mem_filter, and_imp]; exact λ _ _, le_of_eq) (sum_le_sum_of_subset $ by simpa only [subset_iff, mem_filter, and_imp]) end canonically_ordered_add_monoid section ordered_cancel_comm_monoid variables [ordered_cancel_add_comm_monoid β] theorem sum_lt_sum (Hle : ∀ i ∈ s, f i ≤ g i) (Hlt : ∃ i ∈ s, f i < g i) : (∑ x in s, f x) < (∑ x in s, g x) := begin classical, rcases Hlt with ⟨i, hi, hlt⟩, rw [← insert_erase hi, sum_insert (not_mem_erase _ _), sum_insert (not_mem_erase _ _)], exact add_lt_add_of_lt_of_le hlt (sum_le_sum $ λ j hj, Hle j $ mem_of_mem_erase hj) end lemma sum_lt_sum_of_nonempty (hs : s.nonempty) (Hlt : ∀ x ∈ s, f x < g x) : (∑ x in s, f x) < (∑ x in s, g x) := begin apply sum_lt_sum, { intros i hi, apply le_of_lt (Hlt i hi) }, cases hs with i hi, exact ⟨i, hi, Hlt i hi⟩, end lemma sum_lt_sum_of_subset [decidable_eq α] (h : s₁ ⊆ s₂) {i : α} (hi : i ∈ s₂ \ s₁) (hpos : 0 < f i) (hnonneg : ∀ j ∈ s₂ \ s₁, 0 ≤ f j) : (∑ x in s₁, f x) < (∑ x in s₂, f x) := calc (∑ x in s₁, f x) < (∑ x in insert i s₁, f x) : begin simp only [mem_sdiff] at hi, rw sum_insert hi.2, exact lt_add_of_pos_left (finset.sum s₁ f) hpos, end ... ≤ (∑ x in s₂, f x) : begin simp only [mem_sdiff] at hi, apply sum_le_sum_of_subset_of_nonneg, { simp [finset.insert_subset, h, hi.1] }, { assume x hx h'x, apply hnonneg x, simp [mem_insert, not_or_distrib] at h'x, rw mem_sdiff, simp [hx, h'x] } end end ordered_cancel_comm_monoid section decidable_linear_ordered_cancel_comm_monoid variables [decidable_linear_ordered_cancel_add_comm_monoid β] theorem exists_le_of_sum_le (hs : s.nonempty) (Hle : (∑ x in s, f x) ≤ s.sum g) : ∃ i ∈ s, f i ≤ g i := begin classical, contrapose! Hle with Hlt, rcases hs with ⟨i, hi⟩, exact sum_lt_sum (λ i hi, le_of_lt (Hlt i hi)) ⟨i, hi, Hlt i hi⟩ end end decidable_linear_ordered_cancel_comm_monoid section linear_ordered_comm_ring variables [linear_ordered_comm_ring β] open_locale classical /- this is also true for a ordered commutative multiplicative monoid -/ lemma prod_nonneg {s : finset α} {f : α → β} (h0 : ∀(x ∈ s), 0 ≤ f x) : 0 ≤ (∏ x in s, f x) := begin induction s using finset.induction with a s has ih h, { simp [zero_le_one] }, { simp [has], apply mul_nonneg, apply h0 a (mem_insert_self a s), exact ih (λ x H, h0 x (mem_insert_of_mem H)) } end /- this is also true for a ordered commutative multiplicative monoid -/ lemma prod_pos {s : finset α} {f : α → β} (h0 : ∀(x ∈ s), 0 < f x) : 0 < (∏ x in s, f x) := begin induction s using finset.induction with a s has ih h, { simp [zero_lt_one] }, { simp [has], apply mul_pos, apply h0 a (mem_insert_self a s), exact ih (λ x H, h0 x (mem_insert_of_mem H)) } end /- this is also true for a ordered commutative multiplicative monoid -/ lemma prod_le_prod {s : finset α} {f g : α → β} (h0 : ∀(x ∈ s), 0 ≤ f x) (h1 : ∀(x ∈ s), f x ≤ g x) : (∏ x in s, f x) ≤ (∏ x in s, g x) := begin induction s using finset.induction with a s has ih h, { simp }, { simp [has], apply mul_le_mul, exact h1 a (mem_insert_self a s), apply ih (λ x H, h0 _ _) (λ x H, h1 _ _); exact (mem_insert_of_mem H), apply prod_nonneg (λ x H, h0 x (mem_insert_of_mem H)), apply le_trans (h0 a (mem_insert_self a s)) (h1 a (mem_insert_self a s)) } end end linear_ordered_comm_ring section canonically_ordered_comm_semiring variables [canonically_ordered_comm_semiring β] lemma prod_le_prod' {s : finset α} {f g : α → β} (h : ∀ i ∈ s, f i ≤ g i) : (∏ x in s, f x) ≤ (∏ x in s, g x) := begin classical, induction s using finset.induction with a s has ih h, { simp }, { rw [finset.prod_insert has, finset.prod_insert has], apply canonically_ordered_semiring.mul_le_mul, { exact h _ (finset.mem_insert_self a s) }, { exact ih (λ i hi, h _ (finset.mem_insert_of_mem hi)) } } end end canonically_ordered_comm_semiring @[simp] lemma card_pi [decidable_eq α] {δ : α → Type*} (s : finset α) (t : Π a, finset (δ a)) : (s.pi t).card = s.prod (λ a, card (t a)) := multiset.card_pi _ _ theorem card_le_mul_card_image [decidable_eq β] {f : α → β} (s : finset α) (n : ℕ) (hn : ∀ a ∈ s.image f, (s.filter (λ x, f x = a)).card ≤ n) : s.card ≤ n * (s.image f).card := calc s.card = (∑ a in s.image f, (s.filter (λ x, f x = a)).card) : card_eq_sum_card_image _ _ ... ≤ (∑ _ in s.image f, n) : sum_le_sum hn ... = _ : by simp [mul_comm] @[simp] lemma prod_Ico_id_eq_fact : ∀ n : ℕ, (Ico 1 (n + 1)).prod (λ x, x) = nat.fact n | 0 := rfl | (n+1) := by rw [prod_Ico_succ_top $ nat.succ_le_succ $ zero_le n, nat.fact_succ, prod_Ico_id_eq_fact n, nat.succ_eq_add_one, mul_comm] end finset namespace finset section gauss_sum /-- Gauss' summation formula -/ lemma sum_range_id_mul_two : ∀(n : ℕ), (∑ i in range n, i) * 2 = n * (n - 1) | 0 := rfl | 1 := rfl | ((n + 1) + 1) := begin rw [sum_range_succ, add_mul, sum_range_id_mul_two (n + 1), mul_comm, two_mul, nat.add_sub_cancel, nat.add_sub_cancel, mul_comm _ n], simp only [add_mul, one_mul, add_comm, add_assoc, add_left_comm] end /-- Gauss' summation formula -/ lemma sum_range_id (n : ℕ) : (∑ i in range n, i) = (n * (n - 1)) / 2 := by rw [← sum_range_id_mul_two n, nat.mul_div_cancel]; exact dec_trivial end gauss_sum lemma card_eq_sum_ones (s : finset α) : s.card = ∑ _ in s, 1 := by simp end finset section group open list variables [group α] [group β] theorem is_group_anti_hom.map_prod (f : α → β) [is_group_anti_hom f] (l : list α) : f (prod l) = prod (map f (reverse l)) := by induction l with hd tl ih; [exact is_group_anti_hom.map_one f, simp only [prod_cons, is_group_anti_hom.map_mul f, ih, reverse_cons, map_append, prod_append, map_singleton, prod_cons, prod_nil, mul_one]] theorem inv_prod : ∀ l : list α, (prod l)⁻¹ = prod (map (λ x, x⁻¹) (reverse l)) := λ l, @is_group_anti_hom.map_prod _ _ _ _ _ inv_is_group_anti_hom l -- TODO there is probably a cleaner proof of this end group @[to_additive is_add_group_hom_finset_sum] lemma is_group_hom_finset_prod {α β γ} [group α] [comm_group β] (s : finset γ) (f : γ → α → β) [∀c, is_group_hom (f c)] : is_group_hom (λa, ∏ c in s, f c a) := { map_mul := assume a b, by simp only [λc, is_mul_hom.map_mul (f c), finset.prod_mul_distrib] } attribute [instance] is_group_hom_finset_prod is_add_group_hom_finset_sum namespace multiset variables [decidable_eq α] @[simp] lemma to_finset_sum_count_eq (s : multiset α) : (∑ a in s.to_finset, s.count a) = s.card := multiset.induction_on s rfl (assume a s ih, calc (∑ x in to_finset (a :: s), count x (a :: s)) = (to_finset (a :: s)).sum (λx, (if x = a then 1 else 0) + count x s) : finset.sum_congr rfl $ λ _ _, by split_ifs; [simp only [h, count_cons_self, nat.one_add], simp only [count_cons_of_ne h, zero_add]] ... = card (a :: s) : begin by_cases a ∈ s.to_finset, { have : (to_finset s).sum (λx, ite (x = a) 1 0) = (finset.singleton a).sum (λx, ite (x = a) 1 0), { apply (finset.sum_subset _ _).symm, { intros _ H, rwa mem_singleton.1 H }, { exact λ _ _ H, if_neg (mt finset.mem_singleton.2 H) } }, rw [to_finset_cons, finset.insert_eq_of_mem h, finset.sum_add_distrib, ih, this, finset.sum_singleton, if_pos rfl, add_comm, card_cons] }, { have ha : a ∉ s, by rwa mem_to_finset at h, have : (to_finset s).sum (λx, ite (x = a) 1 0) = (to_finset s).sum (λx, 0), from finset.sum_congr rfl (λ x hx, if_neg $ by rintro rfl; cc), rw [to_finset_cons, finset.sum_insert h, if_pos rfl, finset.sum_add_distrib, this, finset.sum_const_zero, ih, count_eq_zero_of_not_mem ha, zero_add, add_comm, card_cons] } end) end multiset namespace with_top open finset open_locale classical /-- sum of finite numbers is still finite -/ lemma sum_lt_top [ordered_add_comm_monoid β] {s : finset α} {f : α → with_top β} : (∀a∈s, f a < ⊤) → (∑ x in s, f x) < ⊤ := finset.induction_on s (by { intro h, rw sum_empty, exact coe_lt_top _ }) (λa s ha ih h, begin rw [sum_insert ha, add_lt_top], split, { apply h, apply mem_insert_self }, { apply ih, intros a ha, apply h, apply mem_insert_of_mem ha } end) /-- sum of finite numbers is still finite -/ lemma sum_lt_top_iff [canonically_ordered_add_monoid β] {s : finset α} {f : α → with_top β} : (∑ x in s, f x) < ⊤ ↔ (∀a∈s, f a < ⊤) := iff.intro (λh a ha, lt_of_le_of_lt (single_le_sum (λa ha, zero_le _) ha) h) sum_lt_top end with_top
70f2b285836f29ddf8babd317dddeb7303c2da59
78630e908e9624a892e24ebdd21260720d29cf55
/src/logic_first_order/fol_03.lean
6a06b2837a6ae611caae744794faafe43aa397b4
[ "CC0-1.0" ]
permissive
tomasz-lisowski/lean-logic-examples
84e612466776be0a16c23a0439ff8ef6114ddbe1
2b2ccd467b49c3989bf6c92ec0358a8d6ee68c5d
refs/heads/master
1,683,334,199,431
1,621,938,305,000
1,621,938,305,000
365,041,573
1
0
null
null
null
null
UTF-8
Lean
false
false
355
lean
namespace fol_03 variable A : Type variables P Q : A → Prop theorem fol_03 : ((∃ x, P x) → (∀ x, Q x)) → ∀ y, P y → Q y := assume h1: (∃ x, P x) → (∀ x, Q x), assume y: A, show P y → Q y, from (assume h2: P y, have h3: ∃ x, P x, from exists.intro y h2, have h4: ∀ x, Q x, from h1 h3, show Q y, from h4 y) end fol_03
24336bb34261dbe43b3fda571acb0051ad60b86e
a9d0fb7b0e4f802bd3857b803e6c5c23d87fef91
/hott/init/path.hlean
8680026961a29effe938960e2fbff4a49b6ceead
[ "Apache-2.0" ]
permissive
soonhokong/lean-osx
4a954262c780e404c1369d6c06516161d07fcb40
3670278342d2f4faa49d95b46d86642d7875b47c
refs/heads/master
1,611,410,334,552
1,474,425,686,000
1,474,425,686,000
12,043,103
5
1
null
null
null
null
UTF-8
Lean
false
false
27,972
hlean
/- Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Jakob von Raumer, Floris van Doorn Ported from Coq HoTT -/ prelude import .function .tactic open function eq /- Path equality -/ namespace eq variables {A B C : Type} {P : A → Type} {a a' x y z t : A} {b b' : B} --notation a = b := eq a b notation x = y `:>`:50 A:49 := @eq A x y definition idp [reducible] [constructor] {a : A} := refl a definition idpath [reducible] [constructor] (a : A) := refl a -- unbased path induction definition rec' [reducible] [unfold 6] {P : Π (a b : A), (a = b) → Type} (H : Π (a : A), P a a idp) {a b : A} (p : a = b) : P a b p := eq.rec (H a) p definition rec_on' [reducible] [unfold 5] {P : Π (a b : A), (a = b) → Type} {a b : A} (p : a = b) (H : Π (a : A), P a a idp) : P a b p := eq.rec (H a) p /- Concatenation and inverse -/ definition concat [trans] [unfold 6] (p : x = y) (q : y = z) : x = z := by induction q; exact p definition inverse [symm] [unfold 4] (p : x = y) : y = x := by induction p; reflexivity infix ⬝ := concat postfix ⁻¹ := inverse --a second notation for the inverse, which is not overloaded postfix [parsing_only] `⁻¹ᵖ`:std.prec.max_plus := inverse /- The 1-dimensional groupoid structure -/ -- The identity path is a right unit. definition con_idp [unfold_full] (p : x = y) : p ⬝ idp = p := idp -- The identity path is a right unit. definition idp_con [unfold 4] (p : x = y) : idp ⬝ p = p := by induction p; reflexivity -- Concatenation is associative. definition con.assoc' (p : x = y) (q : y = z) (r : z = t) : p ⬝ (q ⬝ r) = (p ⬝ q) ⬝ r := by induction r; reflexivity definition con.assoc (p : x = y) (q : y = z) (r : z = t) : (p ⬝ q) ⬝ r = p ⬝ (q ⬝ r) := by induction r; reflexivity -- The left inverse law. definition con.right_inv [unfold 4] (p : x = y) : p ⬝ p⁻¹ = idp := by induction p; reflexivity -- The right inverse law. definition con.left_inv [unfold 4] (p : x = y) : p⁻¹ ⬝ p = idp := by induction p; reflexivity /- Several auxiliary theorems about canceling inverses across associativity. These are somewhat redundant, following from earlier theorems. -/ definition inv_con_cancel_left (p : x = y) (q : y = z) : p⁻¹ ⬝ (p ⬝ q) = q := by induction q; induction p; reflexivity definition con_inv_cancel_left (p : x = y) (q : x = z) : p ⬝ (p⁻¹ ⬝ q) = q := by induction q; induction p; reflexivity definition con_inv_cancel_right (p : x = y) (q : y = z) : (p ⬝ q) ⬝ q⁻¹ = p := by induction q; reflexivity definition inv_con_cancel_right (p : x = z) (q : y = z) : (p ⬝ q⁻¹) ⬝ q = p := by induction q; reflexivity -- Inverse distributes over concatenation definition con_inv (p : x = y) (q : y = z) : (p ⬝ q)⁻¹ = q⁻¹ ⬝ p⁻¹ := by induction q; induction p; reflexivity definition inv_con_inv_left (p : y = x) (q : y = z) : (p⁻¹ ⬝ q)⁻¹ = q⁻¹ ⬝ p := by induction q; induction p; reflexivity -- universe metavariables definition inv_con_inv_right (p : x = y) (q : z = y) : (p ⬝ q⁻¹)⁻¹ = q ⬝ p⁻¹ := by induction q; induction p; reflexivity definition inv_con_inv_inv (p : y = x) (q : z = y) : (p⁻¹ ⬝ q⁻¹)⁻¹ = q ⬝ p := by induction q; induction p; reflexivity -- Inverse is an involution. definition inv_inv (p : x = y) : p⁻¹⁻¹ = p := by induction p; reflexivity -- auxiliary definition used by 'cases' tactic definition elim_inv_inv {A : Type} {a b : A} {C : a = b → Type} (H₁ : a = b) (H₂ : C (H₁⁻¹⁻¹)) : C H₁ := eq.rec_on (inv_inv H₁) H₂ /- Theorems for moving things around in equations -/ definition con_eq_of_eq_inv_con {p : x = z} {q : y = z} {r : y = x} : p = r⁻¹ ⬝ q → r ⬝ p = q := begin induction r, intro h, exact !idp_con ⬝ h ⬝ !idp_con end definition con_eq_of_eq_con_inv [unfold 5] {p : x = z} {q : y = z} {r : y = x} : r = q ⬝ p⁻¹ → r ⬝ p = q := by induction p; exact id definition inv_con_eq_of_eq_con {p : x = z} {q : y = z} {r : x = y} : p = r ⬝ q → r⁻¹ ⬝ p = q := by induction r; intro h; exact !idp_con ⬝ h ⬝ !idp_con definition con_inv_eq_of_eq_con [unfold 5] {p : z = x} {q : y = z} {r : y = x} : r = q ⬝ p → r ⬝ p⁻¹ = q := by induction p; exact id definition eq_con_of_inv_con_eq {p : x = z} {q : y = z} {r : y = x} : r⁻¹ ⬝ q = p → q = r ⬝ p := by induction r; intro h; exact !idp_con⁻¹ ⬝ h ⬝ !idp_con⁻¹ definition eq_con_of_con_inv_eq [unfold 5] {p : x = z} {q : y = z} {r : y = x} : q ⬝ p⁻¹ = r → q = r ⬝ p := by induction p; exact id definition eq_inv_con_of_con_eq {p : x = z} {q : y = z} {r : x = y} : r ⬝ q = p → q = r⁻¹ ⬝ p := by induction r; intro h; exact !idp_con⁻¹ ⬝ h ⬝ !idp_con⁻¹ definition eq_con_inv_of_con_eq [unfold 5] {p : z = x} {q : y = z} {r : y = x} : q ⬝ p = r → q = r ⬝ p⁻¹ := by induction p; exact id definition eq_of_con_inv_eq_idp [unfold 5] {p q : x = y} : p ⬝ q⁻¹ = idp → p = q := by induction q; exact id definition eq_of_inv_con_eq_idp {p q : x = y} : q⁻¹ ⬝ p = idp → p = q := by induction q; intro h; exact !idp_con⁻¹ ⬝ h definition eq_inv_of_con_eq_idp' [unfold 5] {p : x = y} {q : y = x} : p ⬝ q = idp → p = q⁻¹ := by induction q; exact id definition eq_inv_of_con_eq_idp {p : x = y} {q : y = x} : q ⬝ p = idp → p = q⁻¹ := by induction q; intro h; exact !idp_con⁻¹ ⬝ h definition eq_of_idp_eq_inv_con {p q : x = y} : idp = p⁻¹ ⬝ q → p = q := by induction p; intro h; exact h ⬝ !idp_con definition eq_of_idp_eq_con_inv [unfold 4] {p q : x = y} : idp = q ⬝ p⁻¹ → p = q := by induction p; exact id definition inv_eq_of_idp_eq_con [unfold 4] {p : x = y} {q : y = x} : idp = q ⬝ p → p⁻¹ = q := by induction p; exact id definition inv_eq_of_idp_eq_con' {p : x = y} {q : y = x} : idp = p ⬝ q → p⁻¹ = q := by induction p; intro h; exact h ⬝ !idp_con definition con_inv_eq_idp [unfold 6] {p q : x = y} (r : p = q) : p ⬝ q⁻¹ = idp := by cases r; apply con.right_inv definition inv_con_eq_idp [unfold 6] {p q : x = y} (r : p = q) : q⁻¹ ⬝ p = idp := by cases r; apply con.left_inv definition con_eq_idp {p : x = y} {q : y = x} (r : p = q⁻¹) : p ⬝ q = idp := by cases q; exact r definition idp_eq_inv_con {p q : x = y} (r : p = q) : idp = p⁻¹ ⬝ q := by cases r; exact !con.left_inv⁻¹ definition idp_eq_con_inv {p q : x = y} (r : p = q) : idp = q ⬝ p⁻¹ := by cases r; exact !con.right_inv⁻¹ definition idp_eq_con {p : x = y} {q : y = x} (r : p⁻¹ = q) : idp = q ⬝ p := by cases p; exact r /- Transport -/ definition transport [subst] [reducible] [unfold 5] (P : A → Type) {x y : A} (p : x = y) (u : P x) : P y := by induction p; exact u -- This idiom makes the operation right associative. infixr ` ▸ ` := transport _ definition cast [reducible] [unfold 3] {A B : Type} (p : A = B) (a : A) : B := p ▸ a definition cast_def [reducible] [unfold_full] {A B : Type} (p : A = B) (a : A) : cast p a = p ▸ a := idp definition tr_rev [reducible] [unfold 6] (P : A → Type) {x y : A} (p : x = y) (u : P y) : P x := p⁻¹ ▸ u definition ap [unfold 6] ⦃A B : Type⦄ (f : A → B) {x y:A} (p : x = y) : f x = f y := by induction p; reflexivity abbreviation ap01 [parsing_only] := ap definition homotopy [reducible] (f g : Πx, P x) : Type := Πx : A, f x = g x infix ~ := homotopy protected definition homotopy.refl [refl] [reducible] [unfold_full] (f : Πx, P x) : f ~ f := λ x, idp protected definition homotopy.symm [symm] [reducible] [unfold_full] {f g : Πx, P x} (H : f ~ g) : g ~ f := λ x, (H x)⁻¹ protected definition homotopy.trans [trans] [reducible] [unfold_full] {f g h : Πx, P x} (H1 : f ~ g) (H2 : g ~ h) : f ~ h := λ x, H1 x ⬝ H2 x definition homotopy_of_eq {f g : Πx, P x} (H1 : f = g) : f ~ g := H1 ▸ homotopy.refl f definition apd10 [unfold 5] {f g : Πx, P x} (H : f = g) : f ~ g := λx, by induction H; reflexivity --the next theorem is useful if you want to write "apply (apd10' a)" definition apd10' [unfold 6] {f g : Πx, P x} (a : A) (H : f = g) : f a = g a := by induction H; reflexivity --apd10 is also ap evaluation definition apd10_eq_ap_eval {f g : Πx, P x} (H : f = g) (a : A) : apd10 H a = ap (λs : Πx, P x, s a) H := by induction H; reflexivity definition ap10 [reducible] [unfold 5] {f g : A → B} (H : f = g) : f ~ g := apd10 H definition ap11 {f g : A → B} (H : f = g) {x y : A} (p : x = y) : f x = g y := by induction H; exact ap f p definition apd [unfold 6] (f : Πa, P a) {x y : A} (p : x = y) : p ▸ f x = f y := by induction p; reflexivity definition ap011 [unfold 9] (f : A → B → C) (Ha : a = a') (Hb : b = b') : f a b = f a' b' := by cases Ha; exact ap (f a) Hb /- More theorems for moving things around in equations -/ definition tr_eq_of_eq_inv_tr {P : A → Type} {x y : A} {p : x = y} {u : P x} {v : P y} : u = p⁻¹ ▸ v → p ▸ u = v := by induction p; exact id definition inv_tr_eq_of_eq_tr {P : A → Type} {x y : A} {p : y = x} {u : P x} {v : P y} : u = p ▸ v → p⁻¹ ▸ u = v := by induction p; exact id definition eq_inv_tr_of_tr_eq {P : A → Type} {x y : A} {p : x = y} {u : P x} {v : P y} : p ▸ u = v → u = p⁻¹ ▸ v := by induction p; exact id definition eq_tr_of_inv_tr_eq {P : A → Type} {x y : A} {p : y = x} {u : P x} {v : P y} : p⁻¹ ▸ u = v → u = p ▸ v := by induction p; exact id /- Functoriality of functions -/ -- Here we prove that functions behave like functors between groupoids, and that [ap] itself is -- functorial. -- Functions take identity paths to identity paths definition ap_idp [unfold_full] (x : A) (f : A → B) : ap f idp = idp :> (f x = f x) := idp -- Functions commute with concatenation. definition ap_con [unfold 8] (f : A → B) {x y z : A} (p : x = y) (q : y = z) : ap f (p ⬝ q) = ap f p ⬝ ap f q := by induction q; reflexivity definition con_ap_con_eq_con_ap_con_ap (f : A → B) {w x y z : A} (r : f w = f x) (p : x = y) (q : y = z) : r ⬝ ap f (p ⬝ q) = (r ⬝ ap f p) ⬝ ap f q := by induction q; induction p; reflexivity definition ap_con_con_eq_ap_con_ap_con (f : A → B) {w x y z : A} (p : x = y) (q : y = z) (r : f z = f w) : ap f (p ⬝ q) ⬝ r = ap f p ⬝ (ap f q ⬝ r) := by induction q; induction p; apply con.assoc -- Functions commute with path inverses. definition ap_inv' [unfold 6] (f : A → B) {x y : A} (p : x = y) : (ap f p)⁻¹ = ap f p⁻¹ := by induction p; reflexivity definition ap_inv [unfold 6] (f : A → B) {x y : A} (p : x = y) : ap f p⁻¹ = (ap f p)⁻¹ := by induction p; reflexivity -- [ap] itself is functorial in the first argument. definition ap_id [unfold 4] (p : x = y) : ap id p = p := by induction p; reflexivity definition ap_compose [unfold 8] (g : B → C) (f : A → B) {x y : A} (p : x = y) : ap (g ∘ f) p = ap g (ap f p) := by induction p; reflexivity -- Sometimes we don't have the actual function [compose]. definition ap_compose' [unfold 8] (g : B → C) (f : A → B) {x y : A} (p : x = y) : ap (λa, g (f a)) p = ap g (ap f p) := by induction p; reflexivity -- The action of constant maps. definition ap_constant [unfold 5] (p : x = y) (z : B) : ap (λu, z) p = idp := by induction p; reflexivity -- Naturality of [ap]. -- see also natural_square in cubical.square definition ap_con_eq_con_ap {f g : A → B} (p : f ~ g) {x y : A} (q : x = y) : ap f q ⬝ p y = p x ⬝ ap g q := by induction q; apply idp_con -- Naturality of [ap] at identity. definition ap_con_eq_con {f : A → A} (p : Πx, f x = x) {x y : A} (q : x = y) : ap f q ⬝ p y = p x ⬝ q := by induction q; apply idp_con definition con_ap_eq_con {f : A → A} (p : Πx, x = f x) {x y : A} (q : x = y) : p x ⬝ ap f q = q ⬝ p y := by induction q; exact !idp_con⁻¹ -- Naturality of [ap] with constant function definition ap_con_eq {f : A → B} {b : B} (p : Πx, f x = b) {x y : A} (q : x = y) : ap f q ⬝ p y = p x := by induction q; apply idp_con -- Naturality with other paths hanging around. definition con_ap_con_con_eq_con_con_ap_con {f g : A → B} (p : f ~ g) {x y : A} (q : x = y) {w z : B} (r : w = f x) (s : g y = z) : (r ⬝ ap f q) ⬝ (p y ⬝ s) = (r ⬝ p x) ⬝ (ap g q ⬝ s) := by induction s; induction q; reflexivity definition con_ap_con_eq_con_con_ap {f g : A → B} (p : f ~ g) {x y : A} (q : x = y) {w : B} (r : w = f x) : (r ⬝ ap f q) ⬝ p y = (r ⬝ p x) ⬝ ap g q := by induction q; reflexivity -- TODO: try this using the simplifier, and compare proofs definition ap_con_con_eq_con_ap_con {f g : A → B} (p : f ~ g) {x y : A} (q : x = y) {z : B} (s : g y = z) : ap f q ⬝ (p y ⬝ s) = p x ⬝ (ap g q ⬝ s) := begin induction s, induction q, apply idp_con end definition con_ap_con_con_eq_con_con_con {f : A → A} (p : f ~ id) {x y : A} (q : x = y) {w z : A} (r : w = f x) (s : y = z) : (r ⬝ ap f q) ⬝ (p y ⬝ s) = (r ⬝ p x) ⬝ (q ⬝ s) := by induction s; induction q; reflexivity definition con_con_ap_con_eq_con_con_con {g : A → A} (p : id ~ g) {x y : A} (q : x = y) {w z : A} (r : w = x) (s : g y = z) : (r ⬝ p x) ⬝ (ap g q ⬝ s) = (r ⬝ q) ⬝ (p y ⬝ s) := by induction s; induction q; reflexivity definition con_ap_con_eq_con_con {f : A → A} (p : f ~ id) {x y : A} (q : x = y) {w : A} (r : w = f x) : (r ⬝ ap f q) ⬝ p y = (r ⬝ p x) ⬝ q := by induction q; reflexivity definition ap_con_con_eq_con_con {f : A → A} (p : f ~ id) {x y : A} (q : x = y) {z : A} (s : y = z) : ap f q ⬝ (p y ⬝ s) = p x ⬝ (q ⬝ s) := by induction s; induction q; apply idp_con definition con_con_ap_eq_con_con {g : A → A} (p : id ~ g) {x y : A} (q : x = y) {w : A} (r : w = x) : (r ⬝ p x) ⬝ ap g q = (r ⬝ q) ⬝ p y := begin cases q, exact idp end definition con_ap_con_eq_con_con' {g : A → A} (p : id ~ g) {x y : A} (q : x = y) {z : A} (s : g y = z) : p x ⬝ (ap g q ⬝ s) = q ⬝ (p y ⬝ s) := by induction s; induction q; exact !idp_con⁻¹ /- Action of [apd10] and [ap10] on paths -/ -- Application of paths between functions preserves the groupoid structure definition apd10_idp (f : Πx, P x) (x : A) : apd10 (refl f) x = idp := idp definition apd10_con {f f' f'' : Πx, P x} (h : f = f') (h' : f' = f'') (x : A) : apd10 (h ⬝ h') x = apd10 h x ⬝ apd10 h' x := by induction h; induction h'; reflexivity definition apd10_inv {f g : Πx : A, P x} (h : f = g) (x : A) : apd10 h⁻¹ x = (apd10 h x)⁻¹ := by induction h; reflexivity definition ap10_idp {f : A → B} (x : A) : ap10 (refl f) x = idp := idp definition ap10_con {f f' f'' : A → B} (h : f = f') (h' : f' = f'') (x : A) : ap10 (h ⬝ h') x = ap10 h x ⬝ ap10 h' x := apd10_con h h' x definition ap10_inv {f g : A → B} (h : f = g) (x : A) : ap10 h⁻¹ x = (ap10 h x)⁻¹ := apd10_inv h x -- [ap10] also behaves nicely on paths produced by [ap] definition ap_ap10 (f g : A → B) (h : B → C) (p : f = g) (a : A) : ap h (ap10 p a) = ap10 (ap (λ f', h ∘ f') p) a:= by induction p; reflexivity /- Transport and the groupoid structure of paths -/ definition idp_tr {P : A → Type} {x : A} (u : P x) : idp ▸ u = u := idp definition con_tr [unfold 7] {P : A → Type} {x y z : A} (p : x = y) (q : y = z) (u : P x) : p ⬝ q ▸ u = q ▸ p ▸ u := by induction q; reflexivity definition tr_inv_tr {P : A → Type} {x y : A} (p : x = y) (z : P y) : p ▸ p⁻¹ ▸ z = z := (con_tr p⁻¹ p z)⁻¹ ⬝ ap (λr, transport P r z) (con.left_inv p) definition inv_tr_tr {P : A → Type} {x y : A} (p : x = y) (z : P x) : p⁻¹ ▸ p ▸ z = z := (con_tr p p⁻¹ z)⁻¹ ⬝ ap (λr, transport P r z) (con.right_inv p) definition con_tr_lemma {P : A → Type} {x y z w : A} (p : x = y) (q : y = z) (r : z = w) (u : P x) : ap (λe, e ▸ u) (con.assoc' p q r) ⬝ (con_tr (p ⬝ q) r u) ⬝ ap (transport P r) (con_tr p q u) = (con_tr p (q ⬝ r) u) ⬝ (con_tr q r (p ▸ u)) :> ((p ⬝ (q ⬝ r)) ▸ u = r ▸ q ▸ p ▸ u) := by induction r; induction q; induction p; reflexivity -- Here is another coherence lemma for transport. definition tr_inv_tr_lemma {P : A → Type} {x y : A} (p : x = y) (z : P x) : tr_inv_tr p (transport P p z) = ap (transport P p) (inv_tr_tr p z) := by induction p; reflexivity /- some properties for apd -/ definition apd_idp (x : A) (f : Πx, P x) : apd f idp = idp :> (f x = f x) := idp definition apd_con (f : Πx, P x) {x y z : A} (p : x = y) (q : y = z) : apd f (p ⬝ q) = con_tr p q (f x) ⬝ ap (transport P q) (apd f p) ⬝ apd f q := by cases p; cases q; apply idp definition apd_inv (f : Πx, P x) {x y : A} (p : x = y) : apd f p⁻¹ = (eq_inv_tr_of_tr_eq (apd f p))⁻¹ := by cases p; apply idp -- Dependent transport in a doubly dependent type. definition transportD [unfold 6] {P : A → Type} (Q : Πa, P a → Type) {a a' : A} (p : a = a') (b : P a) (z : Q a b) : Q a' (p ▸ b) := by induction p; exact z -- In Coq the variables P, Q and b are explicit, but in Lean we can probably have them implicit -- using the following notation notation p ` ▸D `:65 x:64 := transportD _ p _ x -- Transporting along higher-dimensional paths definition transport2 [unfold 7] (P : A → Type) {x y : A} {p q : x = y} (r : p = q) (z : P x) : p ▸ z = q ▸ z := ap (λp', p' ▸ z) r notation p ` ▸2 `:65 x:64 := transport2 _ p _ x -- An alternative definition. definition tr2_eq_ap10 (Q : A → Type) {x y : A} {p q : x = y} (r : p = q) (z : Q x) : transport2 Q r z = ap10 (ap (transport Q) r) z := by induction r; reflexivity definition tr2_con {P : A → Type} {x y : A} {p1 p2 p3 : x = y} (r1 : p1 = p2) (r2 : p2 = p3) (z : P x) : transport2 P (r1 ⬝ r2) z = transport2 P r1 z ⬝ transport2 P r2 z := by induction r1; induction r2; reflexivity definition tr2_inv (Q : A → Type) {x y : A} {p q : x = y} (r : p = q) (z : Q x) : transport2 Q r⁻¹ z = (transport2 Q r z)⁻¹ := by induction r; reflexivity definition transportD2 [unfold 7] {B C : A → Type} (D : Π(a:A), B a → C a → Type) {x1 x2 : A} (p : x1 = x2) (y : B x1) (z : C x1) (w : D x1 y z) : D x2 (p ▸ y) (p ▸ z) := by induction p; exact w notation p ` ▸D2 `:65 x:64 := transportD2 _ p _ _ x definition ap_tr_con_tr2 (P : A → Type) {x y : A} {p q : x = y} {z w : P x} (r : p = q) (s : z = w) : ap (transport P p) s ⬝ transport2 P r w = transport2 P r z ⬝ ap (transport P q) s := by induction r; exact !idp_con⁻¹ definition fn_tr_eq_tr_fn {P Q : A → Type} {x y : A} (p : x = y) (f : Πx, P x → Q x) (z : P x) : f y (p ▸ z) = p ▸ f x z := by induction p; reflexivity /- Transporting in particular fibrations -/ /- From the Coq HoTT library: One frequently needs lemmas showing that transport in a certain dependent type is equal to some more explicitly defined operation, defined according to the structure of that dependent type. For most dependent types, we prove these lemmas in the appropriate file in the types/ subdirectory. Here we consider only the most basic cases. -/ -- Transporting in a constant fibration. definition tr_constant (p : x = y) (z : B) : transport (λx, B) p z = z := by induction p; reflexivity definition tr2_constant {p q : x = y} (r : p = q) (z : B) : tr_constant p z = transport2 (λu, B) r z ⬝ tr_constant q z := by induction r; exact !idp_con⁻¹ -- Transporting in a pulled back fibration. definition tr_compose (P : B → Type) (f : A → B) (p : x = y) (z : P (f x)) : transport (P ∘ f) p z = transport P (ap f p) z := by induction p; reflexivity definition ap_precompose (f : A → B) (g g' : B → C) (p : g = g') : ap (λh, h ∘ f) p = transport (λh : B → C, g ∘ f = h ∘ f) p idp := by induction p; reflexivity definition apd10_ap_precompose (f : A → B) (g g' : B → C) (p : g = g') : apd10 (ap (λh : B → C, h ∘ f) p) = λa, apd10 p (f a) := by induction p; reflexivity definition apd10_ap_precompose_dependent {C : B → Type} (f : A → B) {g g' : Πb : B, C b} (p : g = g') : apd10 (ap (λ(h : (Πb : B, C b))(a : A), h (f a)) p) = λa, apd10 p (f a) := by induction p; reflexivity definition apd10_ap_postcompose (f : B → C) (g g' : A → B) (p : g = g') : apd10 (ap (λh : A → B, f ∘ h) p) = λa, ap f (apd10 p a) := by induction p; reflexivity -- A special case of [tr_compose] which seems to come up a lot. definition tr_eq_cast_ap {P : A → Type} {x y} (p : x = y) (u : P x) : p ▸ u = cast (ap P p) u := by induction p; reflexivity definition tr_eq_cast_ap_fn {P : A → Type} {x y} (p : x = y) : transport P p = cast (ap P p) := by induction p; reflexivity /- The behavior of [ap] and [apd] -/ -- In a constant fibration, [apd] reduces to [ap], modulo [transport_const]. definition apd_eq_tr_constant_con_ap (f : A → B) (p : x = y) : apd f p = tr_constant p (f x) ⬝ ap f p := by induction p; reflexivity /- The 2-dimensional groupoid structure -/ -- Horizontal composition of 2-dimensional paths. definition concat2 [unfold 9 10] {p p' : x = y} {q q' : y = z} (h : p = p') (h' : q = q') : p ⬝ q = p' ⬝ q' := ap011 concat h h' -- 2-dimensional path inversion definition inverse2 [unfold 6] {p q : x = y} (h : p = q) : p⁻¹ = q⁻¹ := ap inverse h infixl ` ◾ `:75 := concat2 postfix [parsing_only] `⁻²`:(max+10) := inverse2 --this notation is abusive, should we use it? /- Whiskering -/ definition whisker_left [unfold 8] (p : x = y) {q r : y = z} (h : q = r) : p ⬝ q = p ⬝ r := idp ◾ h definition whisker_right [unfold 7] {p q : x = y} (h : p = q) (r : y = z) : p ⬝ r = q ⬝ r := h ◾ idp -- Unwhiskering, a.k.a. cancelling definition cancel_left {x y z : A} (p : x = y) {q r : y = z} : (p ⬝ q = p ⬝ r) → (q = r) := λs, !inv_con_cancel_left⁻¹ ⬝ whisker_left p⁻¹ s ⬝ !inv_con_cancel_left definition cancel_right {x y z : A} {p q : x = y} (r : y = z) : (p ⬝ r = q ⬝ r) → (p = q) := λs, !con_inv_cancel_right⁻¹ ⬝ whisker_right s r⁻¹ ⬝ !con_inv_cancel_right -- Whiskering and identity paths. definition whisker_right_idp {p q : x = y} (h : p = q) : whisker_right h idp = h := by induction h; induction p; reflexivity definition whisker_right_idp_left [unfold_full] (p : x = y) (q : y = z) : whisker_right idp q = idp :> (p ⬝ q = p ⬝ q) := idp definition whisker_left_idp_right [unfold_full] (p : x = y) (q : y = z) : whisker_left p idp = idp :> (p ⬝ q = p ⬝ q) := idp definition whisker_left_idp {p q : x = y} (h : p = q) : (idp_con p)⁻¹ ⬝ whisker_left idp h ⬝ idp_con q = h := by induction h; induction p; reflexivity definition whisker_left_idp2 {A : Type} {a : A} (p : idp = idp :> a = a) : whisker_left idp p = p := begin refine _ ⬝ whisker_left_idp p, exact !idp_con⁻¹ end definition con2_idp [unfold_full] {p q : x = y} (h : p = q) : h ◾ idp = whisker_right h idp :> (p ⬝ idp = q ⬝ idp) := idp definition idp_con2 [unfold_full] {p q : x = y} (h : p = q) : idp ◾ h = whisker_left idp h :> (idp ⬝ p = idp ⬝ q) := idp definition inverse2_concat2 {p p' : x = y} (h : p = p') : h⁻² ◾ h = con.left_inv p ⬝ (con.left_inv p')⁻¹ := by induction h; induction p; reflexivity -- The interchange law for concatenation. definition con2_con_con2 {p p' p'' : x = y} {q q' q'' : y = z} (a : p = p') (b : p' = p'') (c : q = q') (d : q' = q'') : (a ◾ c) ⬝ (b ◾ d) = (a ⬝ b) ◾ (c ⬝ d) := by induction d; induction c; induction b;induction a; reflexivity definition concat2_eq_rl {A : Type} {x y z : A} {p p' : x = y} {q q' : y = z} (a : p = p') (b : q = q') : a ◾ b = whisker_right a q ⬝ whisker_left p' b := by induction b; induction a; reflexivity definition concat2_eq_lf {A : Type} {x y z : A} {p p' : x = y} {q q' : y = z} (a : p = p') (b : q = q') : a ◾ b = whisker_left p b ⬝ whisker_right a q' := by induction b; induction a; reflexivity definition whisker_right_con_whisker_left {x y z : A} {p p' : x = y} {q q' : y = z} (a : p = p') (b : q = q') : (whisker_right a q) ⬝ (whisker_left p' b) = (whisker_left p b) ⬝ (whisker_right a q') := by induction b; induction a; reflexivity -- Structure corresponding to the coherence equations of a bicategory. -- The "pentagonator": the 3-cell witnessing the associativity pentagon. definition pentagon {v w x y z : A} (p : v = w) (q : w = x) (r : x = y) (s : y = z) : whisker_left p (con.assoc' q r s) ⬝ con.assoc' p (q ⬝ r) s ⬝ whisker_right (con.assoc' p q r) s = con.assoc' p q (r ⬝ s) ⬝ con.assoc' (p ⬝ q) r s := by induction s;induction r;induction q;induction p;reflexivity -- The 3-cell witnessing the left unit triangle. definition triangulator (p : x = y) (q : y = z) : con.assoc' p idp q ⬝ whisker_right (con_idp p) q = whisker_left p (idp_con q) := by induction q; induction p; reflexivity definition eckmann_hilton {x:A} (p q : idp = idp :> x = x) : p ⬝ q = q ⬝ p := begin refine (whisker_right_idp p ◾ whisker_left_idp2 q)⁻¹ ⬝ _, refine !whisker_right_con_whisker_left ⬝ _, refine !whisker_left_idp2 ◾ !whisker_right_idp end definition concat_eq_concat2 {A : Type} {a : A} (p q : idp = idp :> a = a) : p ⬝ q = p ◾ q := begin refine (whisker_right_idp p ◾ whisker_left_idp2 q)⁻¹ ⬝ _, exact !concat2_eq_rl⁻¹ end definition inverse_eq_inverse2 {A : Type} {a : A} (p : idp = idp :> a = a) : p⁻¹ = p⁻² := begin apply eq.cancel_right p, refine !con.left_inv ⬝ _, refine _ ⬝ !concat_eq_concat2⁻¹, exact !inverse2_concat2⁻¹, end -- The action of functions on 2-dimensional paths definition ap02 [unfold 8] [reducible] (f : A → B) {x y : A} {p q : x = y} (r : p = q) : ap f p = ap f q := ap (ap f) r definition ap02_con (f : A → B) {x y : A} {p p' p'' : x = y} (r : p = p') (r' : p' = p'') : ap02 f (r ⬝ r') = ap02 f r ⬝ ap02 f r' := by induction r; induction r'; reflexivity definition ap02_con2 (f : A → B) {x y z : A} {p p' : x = y} {q q' :y = z} (r : p = p') (s : q = q') : ap02 f (r ◾ s) = ap_con f p q ⬝ (ap02 f r ◾ ap02 f s) ⬝ (ap_con f p' q')⁻¹ := by induction r; induction s; induction q; induction p; reflexivity definition apd02 [unfold 8] {p q : x = y} (f : Π x, P x) (r : p = q) : apd f p = transport2 P r (f x) ⬝ apd f q := by induction r; exact !idp_con⁻¹ -- And now for a lemma whose statement is much longer than its proof. definition apd02_con {P : A → Type} (f : Π x:A, P x) {x y : A} {p1 p2 p3 : x = y} (r1 : p1 = p2) (r2 : p2 = p3) : apd02 f (r1 ⬝ r2) = apd02 f r1 ⬝ whisker_left (transport2 P r1 (f x)) (apd02 f r2) ⬝ con.assoc' _ _ _ ⬝ (whisker_right (tr2_con r1 r2 (f x))⁻¹ (apd f p3)) := by induction r2; induction r1; induction p1; reflexivity end eq
15c3a6697a4c975f75e6dcee0fb331151e3d97a2
92b50235facfbc08dfe7f334827d47281471333b
/library/data/real/default.lean
1940618c48462395f53e30524e6a6e56fcd8d447
[ "Apache-2.0" ]
permissive
htzh/lean
24f6ed7510ab637379ec31af406d12584d31792c
d70c79f4e30aafecdfc4a60b5d3512199200ab6e
refs/heads/master
1,607,677,731,270
1,437,089,952,000
1,437,089,952,000
37,078,816
0
0
null
1,433,780,956,000
1,433,780,955,000
null
UTF-8
Lean
false
false
182
lean
/- Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Robert Y. Lewis -/ import .basic .order
3c3519e2b60e13b0f755957efee596e3aba87a6c
b7f22e51856f4989b970961f794f1c435f9b8f78
/tests/lean/run/blast_simp_subsingleton2.lean
f8fd199462c800a7cd0c0a46f1bb875fb08c25ef
[ "Apache-2.0" ]
permissive
soonhokong/lean
cb8aa01055ffe2af0fb99a16b4cda8463b882cd1
38607e3eb57f57f77c0ac114ad169e9e4262e24f
refs/heads/master
1,611,187,284,081
1,450,766,737,000
1,476,122,547,000
11,513,992
2
0
null
1,401,763,102,000
1,374,182,235,000
C++
UTF-8
Lean
false
false
312
lean
import data.unit open nat unit constant r {A B : Type} : A → B → A example (a b c d : unit) : r a b = r c d := by simp example (a b : unit) : a = b := by simp example (a b : unit) : (λ x : nat, a) = (λ y : nat, b) := by simp example (a b : unit) : (λ x : nat, r a b) = (λ y : nat, r b b) := by simp
b3f35ac18e65734764e6b54e0d9b4650cfe1609f
206422fb9edabf63def0ed2aa3f489150fb09ccb
/src/category_theory/eq_to_hom.lean
cff79fe70c90b9de0dd7e818e39a9a98c9dae7b3
[ "Apache-2.0" ]
permissive
hamdysalah1/mathlib
b915f86b2503feeae268de369f1b16932321f097
95454452f6b3569bf967d35aab8d852b1ddf8017
refs/heads/master
1,677,154,116,545
1,611,797,994,000
1,611,797,994,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
3,971
lean
/- Copyright (c) 2018 Reid Barton. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Reid Barton, Scott Morrison -/ import category_theory.opposites universes v₁ v₂ u₁ u₂ -- declare the `v`'s first; see `category_theory.category` for an explanation namespace category_theory open opposite variables {C : Type u₁} [category.{v₁} C] /-- An equality `X = Y` gives us a morphism `X ⟶ Y`. It is typically better to use this, rather than rewriting by the equality then using `𝟙 _` which usually leads to dependent type theory hell. -/ def eq_to_hom {X Y : C} (p : X = Y) : X ⟶ Y := by rw p; exact 𝟙 _ @[simp] lemma eq_to_hom_refl (X : C) (p : X = X) : eq_to_hom p = 𝟙 X := rfl @[simp, reassoc] lemma eq_to_hom_trans {X Y Z : C} (p : X = Y) (q : Y = Z) : eq_to_hom p ≫ eq_to_hom q = eq_to_hom (p.trans q) := by cases p; cases q; simp /-- An equality `X = Y` gives us a morphism `X ⟶ Y`. It is typically better to use this, rather than rewriting by the equality then using `iso.refl _` which usually leads to dependent type theory hell. -/ def eq_to_iso {X Y : C} (p : X = Y) : X ≅ Y := ⟨eq_to_hom p, eq_to_hom p.symm, by simp, by simp⟩ @[simp] lemma eq_to_iso.hom {X Y : C} (p : X = Y) : (eq_to_iso p).hom = eq_to_hom p := rfl @[simp] lemma eq_to_iso.inv {X Y : C} (p : X = Y) : (eq_to_iso p).inv = eq_to_hom p.symm := rfl @[simp] lemma eq_to_iso_refl {X : C} (p : X = X) : eq_to_iso p = iso.refl X := rfl @[simp] lemma eq_to_iso_trans {X Y Z : C} (p : X = Y) (q : Y = Z) : eq_to_iso p ≪≫ eq_to_iso q = eq_to_iso (p.trans q) := by ext; simp @[simp] lemma eq_to_hom_op {X Y : C} (h : X = Y) : (eq_to_hom h).op = eq_to_hom (congr_arg op h.symm) := by { cases h, refl, } @[simp] lemma eq_to_hom_unop {X Y : Cᵒᵖ} (h : X = Y) : (eq_to_hom h).unop = eq_to_hom (congr_arg unop h.symm) := by { cases h, refl, } instance {X Y : C} (h : X = Y) : is_iso (eq_to_hom h) := { .. eq_to_iso h } @[simp] lemma inv_eq_to_hom {X Y : C} (h : X = Y) : inv (eq_to_hom h) = eq_to_hom h.symm := rfl variables {D : Type u₂} [category.{v₂} D] namespace functor /-- Proving equality between functors. This isn't an extensionality lemma, because usually you don't really want to do this. -/ lemma ext {F G : C ⥤ D} (h_obj : ∀ X, F.obj X = G.obj X) (h_map : ∀ X Y f, F.map f = eq_to_hom (h_obj X) ≫ G.map f ≫ eq_to_hom (h_obj Y).symm) : F = G := begin cases F with F_obj _ _ _, cases G with G_obj _ _ _, have : F_obj = G_obj, by ext X; apply h_obj, subst this, congr, funext X Y f, simpa using h_map X Y f end /-- Proving equality between functors using heterogeneous equality. -/ lemma hext {F G : C ⥤ D} (h_obj : ∀ X, F.obj X = G.obj X) (h_map : ∀ X Y (f : X ⟶ Y), F.map f == G.map f) : F = G := begin cases F with F_obj _ _ _, cases G with G_obj _ _ _, have : F_obj = G_obj, by ext X; apply h_obj, subst this, congr, funext X Y f, exact eq_of_heq (h_map X Y f) end -- Using equalities between functors. lemma congr_obj {F G : C ⥤ D} (h : F = G) (X) : F.obj X = G.obj X := by subst h lemma congr_hom {F G : C ⥤ D} (h : F = G) {X Y} (f : X ⟶ Y) : F.map f = eq_to_hom (congr_obj h X) ≫ G.map f ≫ eq_to_hom (congr_obj h Y).symm := by subst h; simp end functor @[simp] lemma eq_to_hom_map (F : C ⥤ D) {X Y : C} (p : X = Y) : F.map (eq_to_hom p) = eq_to_hom (congr_arg F.obj p) := by cases p; simp @[simp] lemma eq_to_iso_map (F : C ⥤ D) {X Y : C} (p : X = Y) : F.map_iso (eq_to_iso p) = eq_to_iso (congr_arg F.obj p) := by ext; cases p; simp @[simp] lemma eq_to_hom_app {F G : C ⥤ D} (h : F = G) (X : C) : (eq_to_hom h : F ⟶ G).app X = eq_to_hom (functor.congr_obj h X) := by subst h; refl lemma nat_trans.congr {F G : C ⥤ D} (α : F ⟶ G) {X Y : C} (h : X = Y) : α.app X = F.map (eq_to_hom h) ≫ α.app Y ≫ G.map (eq_to_hom h.symm) := by { rw [α.naturality_assoc], simp } end category_theory
acef14fefc70bc15313a40d3be3386758b1e8445
947fa6c38e48771ae886239b4edce6db6e18d0fb
/src/model_theory/fraisse.lean
4b8b79d05201fb9d215b7dffdb81c57a6f740b53
[ "Apache-2.0" ]
permissive
ramonfmir/mathlib
c5dc8b33155473fab97c38bd3aa6723dc289beaa
14c52e990c17f5a00c0cc9e09847af16fabbed25
refs/heads/master
1,661,979,343,526
1,660,830,384,000
1,660,830,384,000
182,072,989
0
0
null
1,555,585,876,000
1,555,585,876,000
null
UTF-8
Lean
false
false
13,586
lean
/- Copyright (c) 2022 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import model_theory.finitely_generated import model_theory.direct_limit import model_theory.bundled /-! # Fraïssé Classes and Fraïssé Limits This file pertains to the ages of countable first-order structures. The age of a structure is the class of all finitely-generated structures that embed into it. Of particular interest are Fraïssé classes, which are exactly the ages of countable ultrahomogeneous structures. To each is associated a unique (up to nonunique isomorphism) Fraïssé limit - the countable ultrahomogeneous structure with that age. ## Main Definitions * `first_order.language.age` is the class of finitely-generated structures that embed into a particular structure. * A class `K` has the `first_order.language.hereditary` when all finitely-generated structures that embed into structures in `K` are also in `K`. * A class `K` has the `first_order.language.joint_embedding` when for every `M`, `N` in `K`, there is another structure in `K` into which both `M` and `N` embed. * A class `K` has the `first_order.language.amalgamation` when for any pair of embeddings of a structure `M` in `K` into other structures in `K`, those two structures can be embedded into a fourth structure in `K` such that the resulting square of embeddings commutes. * `first_order.language.is_fraisse` indicates that a class is nonempty, isomorphism-invariant, essentially countable, and satisfies the hereditary, joint embedding, and amalgamation properties. * `first_order.language.is_fraisse_limit` indicates that a structure is a Fraïssé limit for a given class. ## Main Results * We show that the age of any structure is isomorphism-invariant and satisfies the hereditary and joint-embedding properties. * `first_order.language.age.countable_quotient` shows that the age of any countable structure is essentially countable. * `first_order.language.exists_countable_is_age_of_iff` gives necessary and sufficient conditions for a class to be the age of a countable structure in a language with countably many functions. ## Implementation Notes * Classes of structures are formalized with `set (bundled L.Structure)`. * Some results pertain to countable limit structures, others to countably-generated limit structures. In the case of a language with countably many function symbols, these are equivalent. ## References - [W. Hodges, *A Shorter Model Theory*][Hodges97] - [K. Tent, M. Ziegler, *A Course in Model Theory*][Tent_Ziegler] ## TODO * Show existence and uniqueness of Fraïssé limits -/ universes u v w w' open_locale first_order open set category_theory namespace first_order namespace language open Structure substructure variables (L : language.{u v}) /-! ### The Age of a Structure and Fraïssé Classes-/ /-- The age of a structure `M` is the class of finitely-generated structures that embed into it. -/ def age (M : Type w) [L.Structure M] : set (bundled.{w} L.Structure) := { N | Structure.fg L N ∧ nonempty (N ↪[L] M) } variables {L} (K : set (bundled.{w} L.Structure)) /-- A class `K` has the hereditary property when all finitely-generated structures that embed into structures in `K` are also in `K`. -/ def hereditary : Prop := ∀ (M : bundled.{w} L.Structure), M ∈ K → L.age M ⊆ K /-- A class `K` has the joint embedding property when for every `M`, `N` in `K`, there is another structure in `K` into which both `M` and `N` embed. -/ def joint_embedding : Prop := directed_on (λ M N : bundled.{w} L.Structure, nonempty (M ↪[L] N)) K /-- A class `K` has the amalgamation property when for any pair of embeddings of a structure `M` in `K` into other structures in `K`, those two structures can be embedded into a fourth structure in `K` such that the resulting square of embeddings commutes. -/ def amalgamation : Prop := ∀ (M N P : bundled.{w} L.Structure) (MN : M ↪[L] N) (MP : M ↪[L] P), M ∈ K → N ∈ K → P ∈ K → ∃ (Q : bundled.{w} L.Structure) (NQ : N ↪[L] Q) (PQ : P ↪[L] Q), Q ∈ K ∧ NQ.comp MN = PQ.comp MP /-- A Fraïssé class is a nonempty, isomorphism-invariant, essentially countable class of structures satisfying the hereditary, joint embedding, and amalgamation properties. -/ class is_fraisse : Prop := (is_nonempty : K.nonempty) (fg : ∀ M : bundled.{w} L.Structure, M ∈ K → Structure.fg L M) (is_equiv_invariant : ∀ (M N : bundled.{w} L.Structure), nonempty (M ≃[L] N) → (M ∈ K ↔ N ∈ K)) (is_essentially_countable : (quotient.mk '' K).countable) (hereditary : hereditary K) (joint_embedding : joint_embedding K) (amalgamation : amalgamation K) variables {K} (L) (M : Type w) [L.Structure M] lemma age.is_equiv_invariant (N P : bundled.{w} L.Structure) (h : nonempty (N ≃[L] P)) : N ∈ L.age M ↔ P ∈ L.age M := and_congr h.some.fg_iff ⟨nonempty.map (λ x, embedding.comp x h.some.symm.to_embedding), nonempty.map (λ x, embedding.comp x h.some.to_embedding)⟩ variables {L} {M} {N : Type w} [L.Structure N] lemma embedding.age_subset_age (MN : M ↪[L] N) : L.age M ⊆ L.age N := λ _, and.imp_right (nonempty.map MN.comp) lemma equiv.age_eq_age (MN : M ≃[L] N) : L.age M = L.age N := le_antisymm MN.to_embedding.age_subset_age MN.symm.to_embedding.age_subset_age lemma Structure.fg.mem_age_of_equiv {M N : bundled L.Structure} (h : Structure.fg L M) (MN : nonempty (M ≃[L] N)) : N ∈ L.age M := ⟨MN.some.fg_iff.1 h, ⟨MN.some.symm.to_embedding⟩⟩ lemma hereditary.is_equiv_invariant_of_fg (h : hereditary K) (fg : ∀ (M : bundled.{w} L.Structure), M ∈ K → Structure.fg L M) (M N : bundled.{w} L.Structure) (hn : nonempty (M ≃[L] N)) : M ∈ K ↔ N ∈ K := ⟨λ MK, h M MK ((fg M MK).mem_age_of_equiv hn), λ NK, h N NK ((fg N NK).mem_age_of_equiv ⟨hn.some.symm⟩)⟩ variable (M) lemma age.nonempty : (L.age M).nonempty := ⟨bundled.of (substructure.closure L (∅ : set M)), (fg_iff_Structure_fg _).1 (fg_closure set.finite_empty), ⟨substructure.subtype _⟩⟩ lemma age.hereditary : hereditary (L.age M) := λ N hN P hP, hN.2.some.age_subset_age hP lemma age.joint_embedding : joint_embedding (L.age M) := λ N hN P hP, ⟨bundled.of ↥(hN.2.some.to_hom.range ⊔ hP.2.some.to_hom.range), ⟨(fg_iff_Structure_fg _).1 ((hN.1.range hN.2.some.to_hom).sup (hP.1.range hP.2.some.to_hom)), ⟨subtype _⟩⟩, ⟨embedding.comp (inclusion le_sup_left) hN.2.some.equiv_range.to_embedding⟩, ⟨embedding.comp (inclusion le_sup_right) hP.2.some.equiv_range.to_embedding⟩⟩ /-- The age of a countable structure is essentially countable (has countably many isomorphism classes). -/ lemma age.countable_quotient (h : (univ : set M).countable) : (quotient.mk '' (L.age M)).countable := begin refine eq.mp (congr rfl (set.ext _)) ((countable_set_of_finite_subset h).image (λ s, ⟦⟨closure L s, infer_instance⟩⟧)), rw forall_quotient_iff, intro N, simp only [subset_univ, and_true, mem_image, mem_set_of_eq, quotient.eq], split, { rintro ⟨s, hs1, hs2⟩, use bundled.of ↥(closure L s), exact ⟨⟨(fg_iff_Structure_fg _).1 (fg_closure hs1), ⟨subtype _⟩⟩, hs2⟩ }, { rintro ⟨P, ⟨⟨s, hs⟩, ⟨PM⟩⟩, hP2⟩, refine ⟨PM '' s, set.finite.image PM s.finite_to_set, setoid.trans _ hP2⟩, rw [← embedding.coe_to_hom, closure_image PM.to_hom, hs, ← hom.range_eq_map], exact ⟨PM.equiv_range.symm⟩ } end /-- The age of a direct limit of structures is the union of the ages of the structures. -/ @[simp] theorem age_direct_limit {ι : Type w} [preorder ι] [is_directed ι (≤)] [nonempty ι] (G : ι → Type (max w w')) [Π i, L.Structure (G i)] (f : Π i j, i ≤ j → G i ↪[L] G j) [directed_system G (λ i j h, f i j h)] : L.age (direct_limit G f) = ⋃ (i : ι), L.age (G i) := begin classical, ext M, simp only [mem_Union], split, { rintro ⟨Mfg, ⟨e⟩⟩, obtain ⟨s, hs⟩ := Mfg.range e.to_hom, let out := @quotient.out _ (direct_limit.setoid G f), obtain ⟨i, hi⟩ := finset.exists_le (s.image (sigma.fst ∘ out)), have e' := ((direct_limit.of L ι G f i).equiv_range.symm.to_embedding), refine ⟨i, Mfg, ⟨e'.comp ((substructure.inclusion _).comp e.equiv_range.to_embedding)⟩⟩, rw [← hs, closure_le], intros x hx, refine ⟨f (out x).1 i (hi (out x).1 (finset.mem_image_of_mem _ hx)) (out x).2, _⟩, rw [embedding.coe_to_hom, direct_limit.of_apply, quotient.mk_eq_iff_out, direct_limit.equiv_iff G f _ (hi (out x).1 (finset.mem_image_of_mem _ hx)), directed_system.map_self], refl }, { rintro ⟨i, Mfg, ⟨e⟩⟩, exact ⟨Mfg, ⟨embedding.comp (direct_limit.of L ι G f i) e⟩⟩ } end /-- Sufficient conditions for a class to be the age of a countably-generated structure. -/ theorem exists_cg_is_age_of (hn : K.nonempty) (h : ∀ (M N : bundled.{w} L.Structure), nonempty (M ≃[L] N) → (M ∈ K ↔ N ∈ K)) (hc : (quotient.mk '' K).countable) (fg : ∀ (M : bundled.{w} L.Structure), M ∈ K → Structure.fg L M) (hp : hereditary K) (jep : joint_embedding K) : ∃ (M : bundled.{w} L.Structure), Structure.cg L M ∧ L.age M = K := begin obtain ⟨F, hF⟩ := hc.exists_eq_range (hn.image _), simp only [set.ext_iff, forall_quotient_iff, mem_image, mem_range, quotient.eq] at hF, simp_rw [quotient.eq_mk_iff_out] at hF, have hF' : ∀ n : ℕ, (F n).out ∈ K, { intro n, obtain ⟨P, hP1, hP2⟩ := (hF (F n).out).2 ⟨n, setoid.refl _⟩, exact (h _ _ hP2).1 hP1 }, choose P hPK hP hFP using (λ (N : K) (n : ℕ), jep N N.2 (F (n + 1)).out (hF' _)), let G : ℕ → K := @nat.rec (λ _, K) (⟨(F 0).out, hF' 0⟩) (λ n N, ⟨P N n, hPK N n⟩), let f : Π (i j), i ≤ j → G i ↪[L] G j := directed_system.nat_le_rec (λ n, (hP _ n).some), refine ⟨bundled.of (direct_limit (λ n, G n) f), direct_limit.cg _ (λ n, (fg _ (G n).2).cg), (age_direct_limit _ _).trans (subset_antisymm (Union_subset (λ n N hN, hp (G n) (G n).2 hN)) (λ N KN, _))⟩, obtain ⟨n, ⟨e⟩⟩ := (hF N).1 ⟨N, KN, setoid.refl _⟩, refine mem_Union_of_mem n ⟨fg _ KN, ⟨embedding.comp _ e.symm.to_embedding⟩⟩, cases n, { exact embedding.refl _ _ }, { exact (hFP _ n).some } end theorem exists_countable_is_age_of_iff [L.countable_functions] : (∃ (M : bundled.{w} L.Structure), (univ : set M).countable ∧ L.age M = K) ↔ K.nonempty ∧ (∀ (M N : bundled.{w} L.Structure), nonempty (M ≃[L] N) → (M ∈ K ↔ N ∈ K)) ∧ (quotient.mk '' K).countable ∧ (∀ (M : bundled.{w} L.Structure), M ∈ K → Structure.fg L M) ∧ hereditary K ∧ joint_embedding K := begin split, { rintros ⟨M, h1, h2, rfl⟩, resetI, refine ⟨age.nonempty M, age.is_equiv_invariant L M, age.countable_quotient M h1, λ N hN, hN.1, age.hereditary M, age.joint_embedding M⟩, }, { rintros ⟨Kn, eqinv, cq, hfg, hp, jep⟩, obtain ⟨M, hM, rfl⟩ := exists_cg_is_age_of Kn eqinv cq hfg hp jep, haveI := ((Structure.cg_iff_countable).1 hM).some, refine ⟨M, to_countable _, rfl⟩, } end variables {K} (L) (M) /-- A structure `M` is ultrahomogeneous if every embedding of a finitely generated substructure into `M` extends to an automorphism of `M`. -/ def is_ultrahomogeneous : Prop := ∀ (S : L.substructure M) (hs : S.fg) (f : S ↪[L] M), ∃ (g : M ≃[L] M), f = g.to_embedding.comp S.subtype variables {L} (K) /-- A structure `M` is a Fraïssé limit for a class `K` if it is countably generated, ultrahomogeneous, and has age `K`. -/ structure is_fraisse_limit [countable_functions L] : Prop := (ultrahomogeneous : is_ultrahomogeneous L M) (countable : (univ : set M).countable) (age : L.age M = K) variables {L} {M} lemma is_ultrahomogeneous.amalgamation_age (h : L.is_ultrahomogeneous M) : amalgamation (L.age M) := begin rintros N P Q NP NQ ⟨Nfg, ⟨NM⟩⟩ ⟨Pfg, ⟨PM⟩⟩ ⟨Qfg, ⟨QM⟩⟩, obtain ⟨g, hg⟩ := h ((PM.comp NP).to_hom.range) (Nfg.range _) ((QM.comp NQ).comp (PM.comp NP).equiv_range.symm.to_embedding), let s := (g.to_hom.comp PM.to_hom).range ⊔ QM.to_hom.range, refine ⟨bundled.of s, embedding.comp (substructure.inclusion le_sup_left) ((g.to_embedding.comp PM).equiv_range).to_embedding, embedding.comp (substructure.inclusion le_sup_right) QM.equiv_range.to_embedding, ⟨(fg_iff_Structure_fg _).1 (fg.sup (Pfg.range _) (Qfg.range _)), ⟨substructure.subtype _⟩⟩, _⟩, ext n, have hgn := (embedding.ext_iff.1 hg) ((PM.comp NP).equiv_range n), simp only [embedding.comp_apply, equiv.coe_to_embedding, equiv.symm_apply_apply, substructure.coe_subtype, embedding.equiv_range_apply] at hgn, simp only [embedding.comp_apply, equiv.coe_to_embedding, substructure.coe_inclusion, set.coe_inclusion, embedding.equiv_range_apply, hgn], end lemma is_ultrahomogeneous.age_is_fraisse (hc : (univ : set M).countable) (h : L.is_ultrahomogeneous M) : is_fraisse (L.age M) := ⟨age.nonempty M, λ _ hN, hN.1, age.is_equiv_invariant L M, age.countable_quotient M hc, age.hereditary M, age.joint_embedding M, h.amalgamation_age⟩ namespace is_fraisse_limit /-- If a class has a Fraïssé limit, it must be Fraïssé. -/ theorem is_fraisse [countable_functions L] (h : is_fraisse_limit K M) : is_fraisse K := (congr rfl h.age).mp (h.ultrahomogeneous.age_is_fraisse h.countable) end is_fraisse_limit end language end first_order
5f6a7413af017571ee6a4a435efad470f810f25d
b7f22e51856f4989b970961f794f1c435f9b8f78
/tests/lean/634b.lean
097699ca2832392b6b9112617c9e6e12bc3749ca
[ "Apache-2.0" ]
permissive
soonhokong/lean
cb8aa01055ffe2af0fb99a16b4cda8463b882cd1
38607e3eb57f57f77c0ac114ad169e9e4262e24f
refs/heads/master
1,611,187,284,081
1,450,766,737,000
1,476,122,547,000
11,513,992
2
0
null
1,401,763,102,000
1,374,182,235,000
C++
UTF-8
Lean
false
false
903
lean
open nat namespace foo section parameter (X : Type₁) definition A {n : ℕ} : Type₁ := X definition B : Type₁ := X variable {n : ℕ} check @A n check foo.A nat check foo.A (X × B) check @foo.A (X × B) 10 check @foo.A (@foo.B (@A n)) n check @foo.A (@foo.B (@foo.A X n)) n check @foo.A (@foo.B (@foo.A nat n)) n set_option pp.full_names true check A check foo.A nat check @foo.A (X × B) 10 check @foo.A (@foo.B (@foo.A X n)) n check @foo.A (@foo.B (@foo.A nat n)) n set_option pp.full_names false set_option pp.implicit true check @A n check @foo.A nat 10 check @foo.A X n set_option pp.full_names true check @foo.A X n check @A n set_option pp.full_names false check @foo.A X n check @foo.A B n check @foo.A (@foo.B (@A n)) n check @foo.A (@foo.B (@foo.A X n)) n check @foo.A (@foo.B (@foo.A nat n)) n check @A n end end foo
072329bdff89c9d60c0eaa1ead7532c9b9bdee22
367134ba5a65885e863bdc4507601606690974c1
/src/data/finset/gcd.lean
d8d0ddc7e39ed72a39cf0b5bad0791e659374ce2
[ "Apache-2.0" ]
permissive
kodyvajjha/mathlib
9bead00e90f68269a313f45f5561766cfd8d5cad
b98af5dd79e13a38d84438b850a2e8858ec21284
refs/heads/master
1,624,350,366,310
1,615,563,062,000
1,615,563,062,000
162,666,963
0
0
Apache-2.0
1,545,367,651,000
1,545,367,651,000
null
UTF-8
Lean
false
false
7,008
lean
/- Copyright (c) 2020 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Aaron Anderson -/ import data.finset.fold import data.multiset.gcd /-! # GCD and LCM operations on finsets ## Main definitions - `finset.gcd` - the greatest common denominator of a `finset` of elements of a `gcd_monoid` - `finset.lcm` - the least common multiple of a `finset` of elements of a `gcd_monoid` ## Implementation notes Many of the proofs use the lemmas `gcd.def` and `lcm.def`, which relate `finset.gcd` and `finset.lcm` to `multiset.gcd` and `multiset.lcm`. TODO: simplify with a tactic and `data.finset.lattice` ## Tags finset, gcd -/ variables {α β γ : Type*} namespace finset open multiset variables [comm_cancel_monoid_with_zero α] [nontrivial α] [gcd_monoid α] /-! ### lcm -/ section lcm /-- Least common multiple of a finite set -/ def lcm (s : finset β) (f : β → α) : α := s.fold gcd_monoid.lcm 1 f variables {s s₁ s₂ : finset β} {f : β → α} lemma lcm_def : s.lcm f = (s.1.map f).lcm := rfl @[simp] lemma lcm_empty : (∅ : finset β).lcm f = 1 := fold_empty @[simp] lemma lcm_dvd_iff {a : α} : s.lcm f ∣ a ↔ (∀b ∈ s, f b ∣ a) := begin apply iff.trans multiset.lcm_dvd, simp only [multiset.mem_map, and_imp, exists_imp_distrib], exact ⟨λ k b hb, k _ _ hb rfl, λ k a' b hb h, h ▸ k _ hb⟩, end lemma lcm_dvd {a : α} : (∀b ∈ s, f b ∣ a) → s.lcm f ∣ a := lcm_dvd_iff.2 lemma dvd_lcm {b : β} (hb : b ∈ s) : f b ∣ s.lcm f := lcm_dvd_iff.1 (dvd_refl _) _ hb @[simp] lemma lcm_insert [decidable_eq β] {b : β} : (insert b s : finset β).lcm f = gcd_monoid.lcm (f b) (s.lcm f) := begin by_cases h : b ∈ s, { rw [insert_eq_of_mem h, (lcm_eq_right_iff (f b) (s.lcm f) (multiset.normalize_lcm (s.1.map f))).2 (dvd_lcm h)] }, apply fold_insert h, end @[simp] lemma lcm_singleton {b : β} : ({b} : finset β).lcm f = normalize (f b) := multiset.lcm_singleton @[simp] lemma normalize_lcm : normalize (s.lcm f) = s.lcm f := by simp [lcm_def] lemma lcm_union [decidable_eq β] : (s₁ ∪ s₂).lcm f = gcd_monoid.lcm (s₁.lcm f) (s₂.lcm f) := finset.induction_on s₁ (by rw [empty_union, lcm_empty, lcm_one_left, normalize_lcm]) $ λ a s has ih, by rw [insert_union, lcm_insert, lcm_insert, ih, lcm_assoc] theorem lcm_congr {f g : β → α} (hs : s₁ = s₂) (hfg : ∀a ∈ s₂, f a = g a) : s₁.lcm f = s₂.lcm g := by { subst hs, exact finset.fold_congr hfg } lemma lcm_mono_fun {g : β → α} (h : ∀ b ∈ s, f b ∣ g b) : s.lcm f ∣ s.lcm g := lcm_dvd (λ b hb, dvd_trans (h b hb) (dvd_lcm hb)) lemma lcm_mono (h : s₁ ⊆ s₂) : s₁.lcm f ∣ s₂.lcm f := lcm_dvd $ assume b hb, dvd_lcm (h hb) end lcm /-! ### gcd -/ section gcd /-- Greatest common divisor of a finite set -/ def gcd (s : finset β) (f : β → α) : α := s.fold gcd_monoid.gcd 0 f variables {s s₁ s₂ : finset β} {f : β → α} lemma gcd_def : s.gcd f = (s.1.map f).gcd := rfl @[simp] lemma gcd_empty : (∅ : finset β).gcd f = 0 := fold_empty lemma dvd_gcd_iff {a : α} : a ∣ s.gcd f ↔ ∀b ∈ s, a ∣ f b := begin apply iff.trans multiset.dvd_gcd, simp only [multiset.mem_map, and_imp, exists_imp_distrib], exact ⟨λ k b hb, k _ _ hb rfl, λ k a' b hb h, h ▸ k _ hb⟩, end lemma gcd_dvd {b : β} (hb : b ∈ s) : s.gcd f ∣ f b := dvd_gcd_iff.1 (dvd_refl _) _ hb lemma dvd_gcd {a : α} : (∀b ∈ s, a ∣ f b) → a ∣ s.gcd f := dvd_gcd_iff.2 @[simp] lemma gcd_insert [decidable_eq β] {b : β} : (insert b s : finset β).gcd f = gcd_monoid.gcd (f b) (s.gcd f) := begin by_cases h : b ∈ s, { rw [insert_eq_of_mem h, (gcd_eq_right_iff (f b) (s.gcd f) (multiset.normalize_gcd (s.1.map f))).2 (gcd_dvd h)] ,}, apply fold_insert h, end @[simp] lemma gcd_singleton {b : β} : ({b} : finset β).gcd f = normalize (f b) := multiset.gcd_singleton @[simp] lemma normalize_gcd : normalize (s.gcd f) = s.gcd f := by simp [gcd_def] lemma gcd_union [decidable_eq β] : (s₁ ∪ s₂).gcd f = gcd_monoid.gcd (s₁.gcd f) (s₂.gcd f) := finset.induction_on s₁ (by rw [empty_union, gcd_empty, gcd_zero_left, normalize_gcd]) $ λ a s has ih, by rw [insert_union, gcd_insert, gcd_insert, ih, gcd_assoc] theorem gcd_congr {f g : β → α} (hs : s₁ = s₂) (hfg : ∀a ∈ s₂, f a = g a) : s₁.gcd f = s₂.gcd g := by { subst hs, exact finset.fold_congr hfg } lemma gcd_mono_fun {g : β → α} (h : ∀ b ∈ s, f b ∣ g b) : s.gcd f ∣ s.gcd g := dvd_gcd (λ b hb, dvd_trans (gcd_dvd hb) (h b hb)) lemma gcd_mono (h : s₁ ⊆ s₂) : s₂.gcd f ∣ s₁.gcd f := dvd_gcd $ assume b hb, gcd_dvd (h hb) theorem gcd_eq_zero_iff : s.gcd f = 0 ↔ ∀ (x : β), x ∈ s → f x = 0 := begin rw [gcd_def, multiset.gcd_eq_zero_iff], split; intro h, { intros b bs, apply h (f b), simp only [multiset.mem_map, mem_def.1 bs], use b, simp [mem_def.1 bs] }, { intros a as, rw multiset.mem_map at as, rcases as with ⟨b, ⟨bs, rfl⟩⟩, apply h b (mem_def.1 bs) } end lemma gcd_eq_gcd_filter_ne_zero [decidable_pred (λ (x : β), f x = 0)] : s.gcd f = (s.filter (λ x, f x ≠ 0)).gcd f := begin classical, transitivity ((s.filter (λ x, f x = 0)) ∪ (s.filter (λ x, f x ≠ 0))).gcd f, { rw filter_union_filter_neg_eq }, rw gcd_union, transitivity gcd_monoid.gcd (0 : α) _, { refine congr (congr rfl _) rfl, apply s.induction_on, { simp }, intros a s has h, rw filter_insert, split_ifs with h1; simp [h, h1], }, simp [gcd_zero_left, normalize_gcd], end lemma gcd_mul_left {a : α} : s.gcd (λ x, a * f x) = normalize a * s.gcd f := begin classical, apply s.induction_on, { simp }, intros b t hbt h, rw [gcd_insert, gcd_insert, h, ← gcd_mul_left], apply gcd_eq_of_associated_right, apply associated_mul_mul _ (associated.refl _), apply normalize_associated, end lemma gcd_mul_right {a : α} : s.gcd (λ x, f x * a) = s.gcd f * normalize a := begin classical, apply s.induction_on, { simp }, intros b t hbt h, rw [gcd_insert, gcd_insert, h, ← gcd_mul_right], apply gcd_eq_of_associated_right, apply associated_mul_mul (associated.refl _), apply normalize_associated, end end gcd end finset namespace finset section integral_domain variables [nontrivial β] [integral_domain α] [gcd_monoid α] lemma gcd_eq_of_dvd_sub {s : finset β} {f g : β → α} {a : α} (h : ∀ x : β, x ∈ s → a ∣ f x - g x) : gcd_monoid.gcd a (s.gcd f) = gcd_monoid.gcd a (s.gcd g) := begin classical, revert h, apply s.induction_on, { simp }, intros b s bs hi h, rw [gcd_insert, gcd_insert, gcd_comm (f b), ← gcd_assoc, hi (λ x hx, h _ (mem_insert_of_mem hx)), gcd_comm a, gcd_assoc, gcd_comm a (gcd_monoid.gcd _ _), gcd_comm (g b), gcd_assoc _ _ a, gcd_comm _ a], refine congr rfl _, apply gcd_eq_of_dvd_sub_right (h _ (mem_insert_self _ _)), end end integral_domain end finset
0c54829261a844f304e5f037252c71be6461bc83
9dc8cecdf3c4634764a18254e94d43da07142918
/src/number_theory/cyclotomic/primitive_roots.lean
d7d1218e4a224d0e233686ce388eea4dd3d68a25
[ "Apache-2.0" ]
permissive
jcommelin/mathlib
d8456447c36c176e14d96d9e76f39841f69d2d9b
ee8279351a2e434c2852345c51b728d22af5a156
refs/heads/master
1,664,782,136,488
1,663,638,983,000
1,663,638,983,000
132,563,656
0
0
Apache-2.0
1,663,599,929,000
1,525,760,539,000
Lean
UTF-8
Lean
false
false
25,520
lean
/- Copyright (c) 2022 Riccardo Brasca. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Alex Best, Riccardo Brasca, Eric Rodriguez -/ import data.pnat.prime import algebra.is_prime_pow import number_theory.cyclotomic.basic import ring_theory.adjoin.power_basis import ring_theory.polynomial.cyclotomic.eval import ring_theory.norm /-! # Primitive roots in cyclotomic fields If `is_cyclotomic_extension {n} A B`, we define an element `zeta n A B : B` that is (under certain assumptions) a primitive `n`-root of unity in `B` and we study its properties. We also prove related theorems under the more general assumption of just being a primitive root, for reasons described in the implementation details section. ## Main definitions * `is_cyclotomic_extension.zeta n A B`: if `is_cyclotomic_extension {n} A B`, than `zeta n A B` is an element of `B` that plays the role of a primitive `n`-th root of unity. * `is_primitive_root.power_basis`: if `K` and `L` are fields such that `is_cyclotomic_extension {n} K L`, then `is_primitive_root.power_basis` gives a K-power basis for L given a primitive root `ζ`. * `is_primitive_root.embeddings_equiv_primitive_roots`: the equivalence between `L →ₐ[K] A` and `primitive_roots n A` given by the choice of `ζ`. ## Main results * `is_cyclotomic_extension.zeta_primitive_root`: `zeta n A B` is a primitive `n`-th root of unity. * `is_cyclotomic_extension.finrank`: if `irreducible (cyclotomic n K)` (in particular for `K = ℚ`), then the `finrank` of a cyclotomic extension is `n.totient`. * `is_primitive_root.norm_eq_one`: if `irreducible (cyclotomic n K)` (in particular for `K = ℚ`), the norm of a primitive root is `1` if `n ≠ 2`. * `is_primitive_root.sub_one_norm_eq_eval_cyclotomic`: if `irreducible (cyclotomic n K)` (in particular for `K = ℚ`), then the norm of `ζ - 1` is `eval 1 (cyclotomic n ℤ)`, for a primitive root ζ. We also prove the analogous of this result for `zeta`. * `is_primitive_root.pow_sub_one_norm_prime_pow_ne_two` : if `irreducible (cyclotomic (p ^ (k + 1)) K)` (in particular for `K = ℚ`) and `p` is a prime, then the norm of `ζ ^ (p ^ s) - 1` is `p ^ (p ^ s)` `p ^ (k - s + 1) ≠ 2`. See the following lemmas for similar results. We also prove the analogous of this result for `zeta`. * `is_primitive_root.sub_one_norm_prime_ne_two` : if `irreducible (cyclotomic (p ^ (k + 1)) K)` (in particular for `K = ℚ`) and `p` is an odd prime, then the norm of `ζ - 1` is `p`. We also prove the analogous of this result for `zeta`. * `is_primitive_root.embeddings_equiv_primitive_roots`: the equivalence between `L →ₐ[K] A` and `primitive_roots n A` given by the choice of `ζ`. ## Implementation details `zeta n A B` is defined as any primitive root of unity in `B`, that exists by definition. It is not true in general that it is a root of `cyclotomic n B`, but this holds if `is_domain B` and `ne_zero (↑n : B)`. `zeta n A B` is defined using `exists.some`, which means we cannot control it. For example, in normal mathematics, we can demand that `(zeta p ℤ ℤ[ζₚ] : ℚ(ζₚ))` is equal to `zeta p ℚ ℚ(ζₚ)`, as we are just choosing "an arbitrary primitive root" and we can internally specify that our choices agree. This is not the case here, and it is indeed impossible to prove that these two are equal. Therefore, whenever possible, we prove our results for any primitive root, and only at the "final step", when we need to provide an "explicit" primitive root, we use `zeta`. -/ open polynomial algebra finset finite_dimensional is_cyclotomic_extension nat pnat set universes u v w z variables {p n : ℕ+} (A : Type w) (B : Type z) (K : Type u) {L : Type v} (C : Type w) variables [comm_ring A] [comm_ring B] [algebra A B] [is_cyclotomic_extension {n} A B] section zeta namespace is_cyclotomic_extension variables (n) /-- If `B` is a `n`-th cyclotomic extension of `A`, then `zeta n A B` is a primitive root of unity in `B`. -/ noncomputable def zeta : B := (exists_prim_root A $ set.mem_singleton n : ∃ r : B, is_primitive_root r n).some /-- `zeta n A B` is a primitive `n`-th root of unity. -/ @[simp] lemma zeta_spec : is_primitive_root (zeta n A B) n := classical.some_spec (exists_prim_root A (set.mem_singleton n) : ∃ r : B, is_primitive_root r n) lemma aeval_zeta [is_domain B] [ne_zero ((n : ℕ) : B)] : aeval (zeta n A B) (cyclotomic n A) = 0 := begin rw [aeval_def, ← eval_map, ← is_root.def, map_cyclotomic, is_root_cyclotomic_iff], exact zeta_spec n A B end lemma zeta_is_root [is_domain B] [ne_zero ((n : ℕ) : B)] : is_root (cyclotomic n B) (zeta n A B) := by { convert aeval_zeta n A B, rw [is_root.def, aeval_def, eval₂_eq_eval_map, map_cyclotomic] } lemma zeta_pow : (zeta n A B) ^ (n : ℕ) = 1 := (zeta_spec n A B).pow_eq_one end is_cyclotomic_extension end zeta section no_order variables [field K] [comm_ring L] [is_domain L] [algebra K L] [is_cyclotomic_extension {n} K L] {ζ : L} (hζ : is_primitive_root ζ n) namespace is_primitive_root variable {C} /-- The `power_basis` given by a primitive root `η`. -/ @[simps] protected noncomputable def power_basis : power_basis K L := power_basis.map (algebra.adjoin.power_basis $ integral {n} K L ζ) $ (subalgebra.equiv_of_eq _ _ (is_cyclotomic_extension.adjoin_primitive_root_eq_top hζ)).trans subalgebra.top_equiv lemma power_basis_gen_mem_adjoin_zeta_sub_one : (hζ.power_basis K).gen ∈ adjoin K ({ζ - 1} : set L) := begin rw [power_basis_gen, adjoin_singleton_eq_range_aeval, alg_hom.mem_range], exact ⟨X + 1, by simp⟩ end /-- The `power_basis` given by `η - 1`. -/ @[simps] noncomputable def sub_one_power_basis : power_basis K L := (hζ.power_basis K).of_gen_mem_adjoin (is_integral_sub (is_cyclotomic_extension.integral {n} K L ζ) is_integral_one) (hζ.power_basis_gen_mem_adjoin_zeta_sub_one _) variables {K} (C) -- We are not using @[simps] to avoid a timeout. /-- The equivalence between `L →ₐ[K] C` and `primitive_roots n C` given by a primitive root `ζ`. -/ noncomputable def embeddings_equiv_primitive_roots (C : Type*) [comm_ring C] [is_domain C] [algebra K C] (hirr : irreducible (cyclotomic n K)) : (L →ₐ[K] C) ≃ primitive_roots n C := ((hζ.power_basis K).lift_equiv).trans { to_fun := λ x, begin haveI := is_cyclotomic_extension.ne_zero' n K L, haveI hn := ne_zero.of_no_zero_smul_divisors K C n, refine ⟨x.1, _⟩, cases x, rwa [mem_primitive_roots n.pos, ←is_root_cyclotomic_iff, is_root.def, ←map_cyclotomic _ (algebra_map K C), hζ.minpoly_eq_cyclotomic_of_irreducible hirr, ←eval₂_eq_eval_map, ←aeval_def] end, inv_fun := λ x, begin haveI := is_cyclotomic_extension.ne_zero' n K L, haveI hn := ne_zero.of_no_zero_smul_divisors K C n, refine ⟨x.1, _⟩, cases x, rwa [aeval_def, eval₂_eq_eval_map, hζ.power_basis_gen K, ←hζ.minpoly_eq_cyclotomic_of_irreducible hirr, map_cyclotomic, ←is_root.def, is_root_cyclotomic_iff, ← mem_primitive_roots n.pos] end, left_inv := λ x, subtype.ext rfl, right_inv := λ x, subtype.ext rfl } @[simp] lemma embeddings_equiv_primitive_roots_apply_coe (C : Type*) [comm_ring C] [is_domain C] [algebra K C] (hirr : irreducible (cyclotomic n K)) (φ : L →ₐ[K] C) : (hζ.embeddings_equiv_primitive_roots C hirr φ : C) = φ ζ := rfl end is_primitive_root namespace is_cyclotomic_extension variables {K} (L) /-- If `irreducible (cyclotomic n K)` (in particular for `K = ℚ`), then the `finrank` of a cyclotomic extension is `n.totient`. -/ lemma finrank (hirr : irreducible (cyclotomic n K)) : finrank K L = (n : ℕ).totient := begin haveI := is_cyclotomic_extension.ne_zero' n K L, rw [((zeta_spec n K L).power_basis K).finrank, is_primitive_root.power_basis_dim, ←(zeta_spec n K L).minpoly_eq_cyclotomic_of_irreducible hirr, nat_degree_cyclotomic] end end is_cyclotomic_extension end no_order section norm namespace is_primitive_root section comm_ring variables [comm_ring L] {ζ : L} (hζ : is_primitive_root ζ n) variables {K} [field K] [algebra K L] /-- This mathematically trivial result is complementary to `norm_eq_one` below. -/ lemma norm_eq_neg_one_pow (hζ : is_primitive_root ζ 2) [is_domain L] : norm K ζ = (-1) ^ finrank K L := by rw [hζ.eq_neg_one_of_two_right, show -1 = algebra_map K L (-1), by simp, algebra.norm_algebra_map] include hζ /-- If `irreducible (cyclotomic n K)` (in particular for `K = ℚ`), the norm of a primitive root is `1` if `n ≠ 2`. -/ lemma norm_eq_one [is_domain L] [is_cyclotomic_extension {n} K L] (hn : n ≠ 2) (hirr : irreducible (cyclotomic n K)) : norm K ζ = 1 := begin haveI := is_cyclotomic_extension.ne_zero' n K L, by_cases h1 : n = 1, { rw [h1, one_coe, one_right_iff] at hζ, rw [hζ, show 1 = algebra_map K L 1, by simp, algebra.norm_algebra_map, one_pow] }, { replace h1 : 2 ≤ n, { by_contra' h, exact h1 (pnat.eq_one_of_lt_two h) }, rw [← hζ.power_basis_gen K, power_basis.norm_gen_eq_coeff_zero_minpoly, hζ.power_basis_gen K, ← hζ.minpoly_eq_cyclotomic_of_irreducible hirr, cyclotomic_coeff_zero _ h1, mul_one, hζ.power_basis_dim K, ← hζ.minpoly_eq_cyclotomic_of_irreducible hirr, nat_degree_cyclotomic], exact (totient_even $ h1.lt_of_ne hn.symm).neg_one_pow } end /-- If `K` is linearly ordered, the norm of a primitive root is `1` if `n` is odd. -/ lemma norm_eq_one_of_linearly_ordered {K : Type*} [linear_ordered_field K] [algebra K L] (hodd : odd (n : ℕ)) : norm K ζ = 1 := begin have hz := congr_arg (norm K) ((is_primitive_root.iff_def _ n).1 hζ).1, rw [←(algebra_map K L).map_one , algebra.norm_algebra_map, one_pow, map_pow, ←one_pow ↑n] at hz, exact strict_mono.injective hodd.strict_mono_pow hz end lemma norm_of_cyclotomic_irreducible [is_domain L] [is_cyclotomic_extension {n} K L] (hirr : irreducible (cyclotomic n K)) : norm K ζ = ite (n = 2) (-1) 1 := begin split_ifs with hn, { unfreezingI {subst hn}, convert norm_eq_neg_one_pow hζ, erw [is_cyclotomic_extension.finrank _ hirr, totient_two, pow_one], all_goals { apply_instance } }, { exact hζ.norm_eq_one hn hirr } end end comm_ring section field variables [field L] {ζ : L} (hζ : is_primitive_root ζ n) variables {K} [field K] [algebra K L] include hζ /-- If `irreducible (cyclotomic n K)` (in particular for `K = ℚ`), then the norm of `ζ - 1` is `eval 1 (cyclotomic n ℤ)`. -/ lemma sub_one_norm_eq_eval_cyclotomic [is_cyclotomic_extension {n} K L] (h : 2 < (n : ℕ)) (hirr : irreducible (cyclotomic n K)) : norm K (ζ - 1) = ↑(eval 1 (cyclotomic n ℤ)) := begin haveI := is_cyclotomic_extension.ne_zero' n K L, let E := algebraic_closure L, obtain ⟨z, hz⟩ := is_alg_closed.exists_root _ (degree_cyclotomic_pos n E n.pos).ne.symm, apply (algebra_map K E).injective, letI := finite_dimensional {n} K L, letI := is_galois n K L, rw [norm_eq_prod_embeddings], conv_lhs { congr, skip, funext, rw [← neg_sub, alg_hom.map_neg, alg_hom.map_sub, alg_hom.map_one, neg_eq_neg_one_mul] }, rw [prod_mul_distrib, prod_const, card_univ, alg_hom.card, is_cyclotomic_extension.finrank L hirr, (totient_even h).neg_one_pow, one_mul], have : finset.univ.prod (λ (σ : L →ₐ[K] E), 1 - σ ζ) = eval 1 (cyclotomic' n E), { rw [cyclotomic', eval_prod, ← @finset.prod_attach E E, ← univ_eq_attach], refine fintype.prod_equiv (hζ.embeddings_equiv_primitive_roots E hirr) _ _ (λ σ, _), simp }, haveI : ne_zero ((n : ℕ) : E) := (ne_zero.of_no_zero_smul_divisors K _ (n : ℕ)), rw [this, cyclotomic', ← cyclotomic_eq_prod_X_sub_primitive_roots (is_root_cyclotomic_iff.1 hz), ← map_cyclotomic_int, _root_.map_int_cast, ←int.cast_one, eval_int_cast_map, eq_int_cast, int.cast_id] end /-- If `is_prime_pow (n : ℕ)`, `n ≠ 2` and `irreducible (cyclotomic n K)` (in particular for `K = ℚ`), then the norm of `ζ - 1` is `(n : ℕ).min_fac`. -/ lemma sub_one_norm_is_prime_pow (hn : is_prime_pow (n : ℕ)) [is_cyclotomic_extension {n} K L] (hirr : irreducible (cyclotomic (n : ℕ) K)) (h : n ≠ 2) : norm K (ζ - 1) = (n : ℕ).min_fac := begin have := (coe_lt_coe 2 _).1 (lt_of_le_of_ne (succ_le_of_lt (is_prime_pow.one_lt hn)) (function.injective.ne pnat.coe_injective h).symm), letI hprime : fact ((n : ℕ).min_fac.prime) := ⟨min_fac_prime (is_prime_pow.ne_one hn)⟩, rw [sub_one_norm_eq_eval_cyclotomic hζ this hirr], nth_rewrite 0 [← is_prime_pow.min_fac_pow_factorization_eq hn], obtain ⟨k, hk⟩ : ∃ k, ((n : ℕ).factorization) (n : ℕ).min_fac = k + 1 := exists_eq_succ_of_ne_zero (((n : ℕ).factorization.mem_support_to_fun (n : ℕ).min_fac).1 $ factor_iff_mem_factorization.2 $ (mem_factors (is_prime_pow.ne_zero hn)).2 ⟨hprime.out, min_fac_dvd _⟩), simp [hk, sub_one_norm_eq_eval_cyclotomic hζ this hirr], end omit hζ variable {A} lemma minpoly_sub_one_eq_cyclotomic_comp [algebra K A] [is_domain A] {ζ : A} [is_cyclotomic_extension {n} K A] (hζ : is_primitive_root ζ n) (h : irreducible (polynomial.cyclotomic n K)) : minpoly K (ζ - 1) = (cyclotomic n K).comp (X + 1) := begin haveI := is_cyclotomic_extension.ne_zero' n K A, rw [show ζ - 1 = ζ + (algebra_map K A (-1)), by simp [sub_eq_add_neg], minpoly.add_algebra_map (is_cyclotomic_extension.integral {n} K A ζ), hζ.minpoly_eq_cyclotomic_of_irreducible h], simp end local attribute [instance] is_cyclotomic_extension.finite_dimensional local attribute [instance] is_cyclotomic_extension.is_galois /-- If `irreducible (cyclotomic (p ^ (k + 1)) K)` (in particular for `K = ℚ`) and `p` is a prime, then the norm of `ζ ^ (p ^ s) - 1` is `p ^ (p ^ s)` if `p ^ (k - s + 1) ≠ 2`. See the next lemmas for similar results. -/ lemma pow_sub_one_norm_prime_pow_ne_two {k s : ℕ} (hζ : is_primitive_root ζ ↑(p ^ (k + 1))) [hpri : fact (p : ℕ).prime] [is_cyclotomic_extension {p ^ (k + 1)} K L] (hirr : irreducible (cyclotomic (↑(p ^ (k + 1)) : ℕ) K)) (hs : s ≤ k) (htwo : p ^ (k - s + 1) ≠ 2) : norm K (ζ ^ ((p : ℕ) ^ s) - 1) = p ^ ((p : ℕ) ^ s) := begin have hirr₁ : irreducible (cyclotomic (p ^ (k - s + 1)) K) := cyclotomic_irreducible_pow_of_irreducible_pow hpri.1 (by linarith) hirr, rw ←pnat.pow_coe at hirr₁, let η := ζ ^ ((p : ℕ) ^ s) - 1, let η₁ : K⟮η⟯ := intermediate_field.adjoin_simple.gen K η, have hη : is_primitive_root (η + 1) (p ^ (k + 1 - s)), { rw [sub_add_cancel], refine is_primitive_root.pow (p ^ (k + 1)).pos hζ _, rw [pnat.pow_coe, ← pow_add, add_comm s, nat.sub_add_cancel (le_trans hs (nat.le_succ k))] }, haveI : is_cyclotomic_extension {p ^ (k - s + 1)} K K⟮η⟯, { suffices : is_cyclotomic_extension {p ^ (k - s + 1)} K K⟮η + 1⟯.to_subalgebra, { have H : K⟮η + 1⟯.to_subalgebra = K⟮η⟯.to_subalgebra, { simp only [intermediate_field.adjoin_simple_to_subalgebra_of_integral (is_cyclotomic_extension.integral {p ^ (k + 1)} K L _)], refine subalgebra.ext (λ x, ⟨λ hx, adjoin_le _ hx, λ hx, adjoin_le _ hx⟩), { simp only [set.singleton_subset_iff, set_like.mem_coe], exact subalgebra.add_mem _ (subset_adjoin (mem_singleton η)) (subalgebra.one_mem _) }, { simp only [set.singleton_subset_iff, set_like.mem_coe], nth_rewrite 0 [← add_sub_cancel η 1], refine subalgebra.sub_mem _ (subset_adjoin (mem_singleton _)) (subalgebra.one_mem _) } }, rw [H] at this, exact this }, rw [intermediate_field.adjoin_simple_to_subalgebra_of_integral (is_cyclotomic_extension.integral {p ^ (k + 1)} K L _)], have hη' : is_primitive_root (η + 1) ↑(p ^ (k + 1 - s)) := by simpa using hη, convert hη'.adjoin_is_cyclotomic_extension K, rw [nat.sub_add_comm hs] }, replace hη : is_primitive_root (η₁ + 1) ↑(p ^ (k - s + 1)), { apply coe_submonoid_class_iff.1, convert hη, rw [nat.sub_add_comm hs, pow_coe] }, rw [norm_eq_norm_adjoin K], { have H := hη.sub_one_norm_is_prime_pow _ hirr₁ htwo, swap, { rw [pnat.pow_coe], exact hpri.1.is_prime_pow.pow (nat.succ_ne_zero _) }, rw [add_sub_cancel] at H, rw [H, coe_coe], congr, { rw [pnat.pow_coe, nat.pow_min_fac, hpri.1.min_fac_eq], exact nat.succ_ne_zero _ }, have := finite_dimensional.finrank_mul_finrank K K⟮η⟯ L, rw [is_cyclotomic_extension.finrank L hirr, is_cyclotomic_extension.finrank K⟮η⟯ hirr₁, pnat.pow_coe, pnat.pow_coe, nat.totient_prime_pow hpri.out (k - s).succ_pos, nat.totient_prime_pow hpri.out k.succ_pos, mul_comm _ (↑p - 1), mul_assoc, mul_comm (↑p ^ (k.succ - 1))] at this, replace this := nat.eq_of_mul_eq_mul_left (tsub_pos_iff_lt.2 (nat.prime.one_lt hpri.out)) this, have Hex : k.succ - 1 = (k - s).succ - 1 + s, { simp only [nat.succ_sub_succ_eq_sub, tsub_zero], exact (nat.sub_add_cancel hs).symm }, rw [Hex, pow_add] at this, exact nat.eq_of_mul_eq_mul_left (pow_pos hpri.out.pos _) this }, all_goals { apply_instance } end /-- If `irreducible (cyclotomic (p ^ (k + 1)) K)` (in particular for `K = ℚ`) and `p` is a prime, then the norm of `ζ ^ (p ^ s) - 1` is `p ^ (p ^ s)` if `p ≠ 2`. -/ lemma pow_sub_one_norm_prime_ne_two {k : ℕ} (hζ : is_primitive_root ζ ↑(p ^ (k + 1))) [hpri : fact (p : ℕ).prime] [is_cyclotomic_extension {p ^ (k + 1)} K L] (hirr : irreducible (cyclotomic (↑(p ^ (k + 1)) : ℕ) K)) {s : ℕ} (hs : s ≤ k) (hodd : p ≠ 2) : norm K (ζ ^ ((p : ℕ) ^ s) - 1) = p ^ ((p : ℕ) ^ s) := begin refine hζ.pow_sub_one_norm_prime_pow_ne_two hirr hs (λ h, _), rw [← pnat.coe_inj, pnat.coe_bit0, pnat.one_coe, pnat.pow_coe, ← pow_one 2] at h, replace h := eq_of_prime_pow_eq (prime_iff.1 hpri.out) (prime_iff.1 nat.prime_two) ((k - s).succ_pos) h, rw [← pnat.one_coe, ← pnat.coe_bit0, pnat.coe_inj] at h, exact hodd h end /-- If `irreducible (cyclotomic (p ^ (k + 1)) K)` (in particular for `K = ℚ`) and `p` is an odd prime, then the norm of `ζ - 1` is `p`. -/ lemma sub_one_norm_prime_ne_two {k : ℕ} (hζ : is_primitive_root ζ ↑(p ^ (k + 1))) [hpri : fact (p : ℕ).prime] [is_cyclotomic_extension {p ^ (k + 1)} K L] (hirr : irreducible (cyclotomic (↑(p ^ (k + 1)) : ℕ) K)) (h : p ≠ 2) : norm K (ζ - 1) = p := by simpa using hζ.pow_sub_one_norm_prime_ne_two hirr k.zero_le h /-- If `irreducible (cyclotomic p K)` (in particular for `K = ℚ`) and `p` is an odd prime, then the norm of `ζ - 1` is `p`. -/ lemma sub_one_norm_prime [hpri : fact (p : ℕ).prime] [hcyc : is_cyclotomic_extension {p} K L] (hζ: is_primitive_root ζ p) (hirr : irreducible (cyclotomic p K)) (h : p ≠ 2) : norm K (ζ - 1) = p := begin replace hirr : irreducible (cyclotomic (↑(p ^ (0 + 1)) : ℕ) K) := by simp [hirr], replace hζ : is_primitive_root ζ (↑(p ^ (0 + 1)) : ℕ) := by simp [hζ], haveI : is_cyclotomic_extension {p ^ (0 + 1)} K L := by simp [hcyc], simpa using sub_one_norm_prime_ne_two hζ hirr h end /-- If `irreducible (cyclotomic (2 ^ (k + 1)) K)` (in particular for `K = ℚ`), then the norm of `ζ ^ (2 ^ k) - 1` is `(-2) ^ (2 ^ k)`. -/ lemma pow_sub_one_norm_two {k : ℕ} (hζ : is_primitive_root ζ (2 ^ (k + 1))) [is_cyclotomic_extension {2 ^ (k + 1)} K L] (hirr : irreducible (cyclotomic (2 ^ (k + 1)) K)) : norm K (ζ ^ (2 ^ k) - 1) = (-2) ^ (2 ^ k) := begin have := hζ.pow_of_dvd (λ h, two_ne_zero (pow_eq_zero h)) (pow_dvd_pow 2 (le_succ k)), rw [nat.pow_div (le_succ k) zero_lt_two, nat.succ_sub (le_refl k), nat.sub_self, pow_one] at this, have H : (-1 : L) - (1 : L) = algebra_map K L (-2), { simp only [_root_.map_neg, map_bit0, _root_.map_one], ring }, replace hirr : irreducible (cyclotomic (2 ^ (k + 1) : ℕ+) K) := by simp [hirr], rw [this.eq_neg_one_of_two_right, H, algebra.norm_algebra_map, is_cyclotomic_extension.finrank L hirr, pow_coe, pnat.coe_bit0, one_coe, totient_prime_pow nat.prime_two (zero_lt_succ k), succ_sub_succ_eq_sub, tsub_zero, mul_one] end /-- If `irreducible (cyclotomic (2 ^ k) K)` (in particular for `K = ℚ`) and `k` is at least `2`, then the norm of `ζ - 1` is `2`. -/ lemma sub_one_norm_two {k : ℕ} (hζ : is_primitive_root ζ (2 ^ k)) (hk : 2 ≤ k) [H : is_cyclotomic_extension {2 ^ k} K L] (hirr : irreducible (cyclotomic (2 ^ k) K)) : norm K (ζ - 1) = 2 := begin have : 2 < (2 ^ k : ℕ+), { simp only [← coe_lt_coe, pnat.coe_bit0, one_coe, pow_coe], nth_rewrite 0 [← pow_one 2], exact pow_lt_pow one_lt_two (lt_of_lt_of_le one_lt_two hk) }, replace hirr : irreducible (cyclotomic (2 ^ k : ℕ+) K) := by simp [hirr], replace hζ : is_primitive_root ζ (2 ^ k : ℕ+) := by simp [hζ], obtain ⟨k₁, hk₁⟩ := exists_eq_succ_of_ne_zero ((lt_of_lt_of_le zero_lt_two hk).ne.symm), simpa [hk₁] using sub_one_norm_eq_eval_cyclotomic hζ this hirr, end /-- If `irreducible (cyclotomic (p ^ (k + 1)) K)` (in particular for `K = ℚ`) and `p` is a prime, then the norm of `ζ ^ (p ^ s) - 1` is `p ^ (p ^ s)` if `1 ≤ k`. -/ lemma pow_sub_one_norm_prime_pow_of_one_le {k s : ℕ} (hζ : is_primitive_root ζ ↑(p ^ (k + 1))) [hpri : fact (p : ℕ).prime] [hcycl : is_cyclotomic_extension {p ^ (k + 1)} K L] (hirr : irreducible (cyclotomic (↑(p ^ (k + 1)) : ℕ) K)) (hs : s ≤ k) (hk : 1 ≤ k) : norm K (ζ ^ ((p : ℕ) ^ s) - 1) = p ^ ((p : ℕ) ^ s) := begin by_cases htwo : p ^ (k - s + 1) = 2, { have hp : p = 2, { rw [← pnat.coe_inj, pnat.coe_bit0, pnat.one_coe, pnat.pow_coe, ← pow_one 2] at htwo, replace htwo := eq_of_prime_pow_eq (prime_iff.1 hpri.out) (prime_iff.1 nat.prime_two) (succ_pos _) htwo, rwa [show 2 = ((2 : ℕ+) : ℕ), by simp, pnat.coe_inj] at htwo }, replace hs : s = k, { rw [hp, ← pnat.coe_inj, pnat.pow_coe, pnat.coe_bit0, pnat.one_coe] at htwo, nth_rewrite 1 [← pow_one 2] at htwo, replace htwo := nat.pow_right_injective rfl.le htwo, rw [add_left_eq_self, nat.sub_eq_zero_iff_le] at htwo, refine le_antisymm hs htwo }, simp only [hs, hp, pnat.coe_bit0, one_coe, coe_coe, cast_bit0, cast_one, pow_coe] at ⊢ hζ hirr hcycl, haveI := hcycl, obtain ⟨k₁, hk₁⟩ := nat.exists_eq_succ_of_ne_zero (one_le_iff_ne_zero.1 hk), rw [hζ.pow_sub_one_norm_two hirr], rw [hk₁, pow_succ, pow_mul, neg_eq_neg_one_mul, mul_pow, neg_one_sq, one_mul, ← pow_mul, ← pow_succ] }, { exact hζ.pow_sub_one_norm_prime_pow_ne_two hirr hs htwo } end end field end is_primitive_root namespace is_cyclotomic_extension open is_primitive_root variables {K} (L) [field K] [field L] [algebra K L] /-- If `irreducible (cyclotomic n K)` (in particular for `K = ℚ`), the norm of `zeta n K L` is `1` if `n` is odd. -/ lemma norm_zeta_eq_one [is_cyclotomic_extension {n} K L] (hn : n ≠ 2) (hirr : irreducible (cyclotomic n K)) : norm K (zeta n K L) = 1 := (zeta_spec n K L).norm_eq_one hn hirr /-- If `is_prime_pow (n : ℕ)`, `n ≠ 2` and `irreducible (cyclotomic n K)` (in particular for `K = ℚ`), then the norm of `zeta n K L - 1` is `(n : ℕ).min_fac`. -/ lemma is_prime_pow_norm_zeta_sub_one (hn : is_prime_pow (n : ℕ)) [is_cyclotomic_extension {n} K L] (hirr : irreducible (cyclotomic (n : ℕ) K)) (h : n ≠ 2) : norm K (zeta n K L - 1) = (n : ℕ).min_fac := (zeta_spec n K L).sub_one_norm_is_prime_pow hn hirr h /-- If `irreducible (cyclotomic (p ^ (k + 1)) K)` (in particular for `K = ℚ`) and `p` is a prime, then the norm of `(zeta (p ^ (k + 1)) K L) ^ (p ^ s) - 1` is `p ^ (p ^ s)` if `p ^ (k - s + 1) ≠ 2`. -/ lemma prime_ne_two_pow_norm_zeta_pow_sub_one {k : ℕ} [hpri : fact (p : ℕ).prime] [is_cyclotomic_extension {p ^ (k + 1)} K L] (hirr : irreducible (cyclotomic (↑(p ^ (k + 1)) : ℕ) K)) {s : ℕ} (hs : s ≤ k) (htwo : p ^ (k - s + 1) ≠ 2) : norm K ((zeta (p ^ (k + 1)) K L) ^ ((p : ℕ) ^ s) - 1) = p ^ ((p : ℕ) ^ s) := (zeta_spec _ K L).pow_sub_one_norm_prime_pow_ne_two hirr hs htwo /-- If `irreducible (cyclotomic (p ^ (k + 1)) K)` (in particular for `K = ℚ`) and `p` is an odd prime, then the norm of `zeta (p ^ (k + 1)) K L - 1` is `p`. -/ lemma prime_ne_two_pow_norm_zeta_sub_one {k : ℕ} [hpri : fact (p : ℕ).prime] [is_cyclotomic_extension {p ^ (k + 1)} K L] (hirr : irreducible (cyclotomic (↑(p ^ (k + 1)) : ℕ) K)) (h : p ≠ 2) : norm K (zeta (p ^ (k + 1)) K L - 1) = p := (zeta_spec _ K L).sub_one_norm_prime_ne_two hirr h /-- If `irreducible (cyclotomic p K)` (in particular for `K = ℚ`) and `p` is an odd prime, then the norm of `zeta p K L - 1` is `p`. -/ lemma prime_ne_two_norm_zeta_sub_one [hpri : fact (p : ℕ).prime] [hcyc : is_cyclotomic_extension {p} K L] (hirr : irreducible (cyclotomic p K)) (h : p ≠ 2) : norm K (zeta p K L - 1) = p := (zeta_spec _ K L).sub_one_norm_prime hirr h /-- If `irreducible (cyclotomic (2 ^ k) K)` (in particular for `K = ℚ`) and `k` is at least `2`, then the norm of `zeta (2 ^ k) K L - 1` is `2`. -/ lemma two_pow_norm_zeta_sub_one {k : ℕ} (hk : 2 ≤ k) [is_cyclotomic_extension {2 ^ k} K L] (hirr : irreducible (cyclotomic (2 ^ k) K)) : norm K (zeta (2 ^ k) K L - 1) = 2 := sub_one_norm_two (zeta_spec (2 ^ k) K L) hk hirr end is_cyclotomic_extension end norm
110851201d377e3f5ae908eeaef448bb91a88afb
853df553b1d6ca524e3f0a79aedd32dde5d27ec3
/src/order/zorn.lean
61c638281a3f0156e3824d41bcc4de21bd61079e
[ "Apache-2.0" ]
permissive
DanielFabian/mathlib
efc3a50b5dde303c59eeb6353ef4c35a345d7112
f520d07eba0c852e96fe26da71d85bf6d40fcc2a
refs/heads/master
1,668,739,922,971
1,595,201,756,000
1,595,201,756,000
279,469,476
0
0
null
1,594,696,604,000
1,594,696,604,000
null
UTF-8
Lean
false
false
12,899
lean
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl Zorn's lemmas. Ported from Isabelle/HOL (written by Jacques D. Fleuriot, Tobias Nipkow, and Christian Sternagel). -/ import data.set.lattice noncomputable theory universes u open set classical open_locale classical namespace zorn section chain parameters {α : Type u} (r : α → α → Prop) local infix ` ≺ `:50 := r /-- A chain is a subset `c` satisfying `x ≺ y ∨ x = y ∨ y ≺ x` for all `x y ∈ c`. -/ def chain (c : set α) := pairwise_on c (λx y, x ≺ y ∨ y ≺ x) parameters {r} theorem chain.total_of_refl [is_refl α r] {c} (H : chain c) {x y} (hx : x ∈ c) (hy : y ∈ c) : x ≺ y ∨ y ≺ x := if e : x = y then or.inl (e ▸ refl _) else H _ hx _ hy e theorem chain.mono {c c'} : c' ⊆ c → chain c → chain c' := pairwise_on.mono theorem chain.directed_on [is_refl α r] {c} (H : chain c) : directed_on (≺) c := assume x hx y hy, match H.total_of_refl hx hy with | or.inl h := ⟨y, hy, h, refl _⟩ | or.inr h := ⟨x, hx, refl _, h⟩ end theorem chain_insert {c : set α} {a : α} (hc : chain c) (ha : ∀b∈c, b ≠ a → a ≺ b ∨ b ≺ a) : chain (insert a c) := forall_insert_of_forall (assume x hx, forall_insert_of_forall (hc x hx) (assume hneq, (ha x hx hneq).symm)) (forall_insert_of_forall (assume x hx hneq, ha x hx $ assume h', hneq h'.symm) (assume h, (h rfl).rec _)) /-- `super_chain c₁ c₂` means that `c₂ is a chain that strictly includes `c₁`. -/ def super_chain (c₁ c₂ : set α) : Prop := chain c₂ ∧ c₁ ⊂ c₂ /-- A chain `c` is a maximal chain if there does not exists a chain strictly including `c`. -/ def is_max_chain (c : set α) := chain c ∧ ¬ (∃c', super_chain c c') /-- Given a set `c`, if there exists a chain `c'` strictly including `c`, then `succ_chain c` is one of these chains. Otherwise it is `c`. -/ def succ_chain (c : set α) : set α := if h : ∃c', chain c ∧ super_chain c c' then some h else c theorem succ_spec {c : set α} (h : ∃c', chain c ∧ super_chain c c') : super_chain c (succ_chain c) := let ⟨c', hc'⟩ := h in have chain c ∧ super_chain c (some h), from @some_spec _ (λc', chain c ∧ super_chain c c') _, by simp [succ_chain, dif_pos, h, this.right] theorem chain_succ {c : set α} (hc : chain c) : chain (succ_chain c) := if h : ∃c', chain c ∧ super_chain c c' then (succ_spec h).left else by simp [succ_chain, dif_neg, h]; exact hc theorem super_of_not_max {c : set α} (hc₁ : chain c) (hc₂ : ¬ is_max_chain c) : super_chain c (succ_chain c) := begin simp [is_max_chain, not_and_distrib, not_forall_not] at hc₂, cases hc₂.neg_resolve_left hc₁ with c' hc', exact succ_spec ⟨c', hc₁, hc'⟩ end theorem succ_increasing {c : set α} : c ⊆ succ_chain c := if h : ∃c', chain c ∧ super_chain c c' then have super_chain c (succ_chain c), from succ_spec h, this.right.left else by simp [succ_chain, dif_neg, h, subset.refl] /-- Set of sets reachable from `∅` using `succ_chain` and `⋃₀`. -/ inductive chain_closure : set α → Prop | succ : ∀{s}, chain_closure s → chain_closure (succ_chain s) | union : ∀{s}, (∀a∈s, chain_closure a) → chain_closure (⋃₀ s) theorem chain_closure_empty : chain_closure ∅ := have chain_closure (⋃₀ ∅), from chain_closure.union $ assume a h, h.rec _, by simp at this; assumption theorem chain_closure_closure : chain_closure (⋃₀ chain_closure) := chain_closure.union $ assume s hs, hs variables {c c₁ c₂ c₃ : set α} private lemma chain_closure_succ_total_aux (hc₁ : chain_closure c₁) (hc₂ : chain_closure c₂) (h : ∀{c₃}, chain_closure c₃ → c₃ ⊆ c₂ → c₂ = c₃ ∨ succ_chain c₃ ⊆ c₂) : c₁ ⊆ c₂ ∨ succ_chain c₂ ⊆ c₁ := begin induction hc₁, case succ : c₃ hc₃ ih { cases ih with ih ih, { have h := h hc₃ ih, cases h with h h, { exact or.inr (h ▸ subset.refl _) }, { exact or.inl h } }, { exact or.inr (subset.trans ih succ_increasing) } }, case union : s hs ih { refine (classical.or_iff_not_imp_right.2 $ λ hn, sUnion_subset $ λ a ha, _), apply (ih a ha).resolve_right, apply mt (λ h, _) hn, exact subset.trans h (subset_sUnion_of_mem ha) } end private lemma chain_closure_succ_total (hc₁ : chain_closure c₁) (hc₂ : chain_closure c₂) (h : c₁ ⊆ c₂) : c₂ = c₁ ∨ succ_chain c₁ ⊆ c₂ := begin induction hc₂ generalizing c₁ hc₁ h, case succ : c₂ hc₂ ih { have h₁ : c₁ ⊆ c₂ ∨ @succ_chain α r c₂ ⊆ c₁ := (chain_closure_succ_total_aux hc₁ hc₂ $ assume c₁, ih), cases h₁ with h₁ h₁, { have h₂ := ih hc₁ h₁, cases h₂ with h₂ h₂, { exact (or.inr $ h₂ ▸ subset.refl _) }, { exact (or.inr $ subset.trans h₂ succ_increasing) } }, { exact (or.inl $ subset.antisymm h₁ h) } }, case union : s hs ih { apply or.imp_left (assume h', subset.antisymm h' h), apply classical.by_contradiction, simp [not_or_distrib, sUnion_subset_iff, classical.not_forall], intros c₃ hc₃ h₁ h₂, have h := chain_closure_succ_total_aux hc₁ (hs c₃ hc₃) (assume c₄, ih _ hc₃), cases h with h h, { have h' := ih c₃ hc₃ hc₁ h, cases h' with h' h', { exact (h₁ $ h' ▸ subset.refl _) }, { exact (h₂ $ subset.trans h' $ subset_sUnion_of_mem hc₃) } }, { exact (h₁ $ subset.trans succ_increasing h) } } end theorem chain_closure_total (hc₁ : chain_closure c₁) (hc₂ : chain_closure c₂) : c₁ ⊆ c₂ ∨ c₂ ⊆ c₁ := have c₁ ⊆ c₂ ∨ succ_chain c₂ ⊆ c₁, from chain_closure_succ_total_aux hc₁ hc₂ $ assume c₃ hc₃, chain_closure_succ_total hc₃ hc₂, or.imp_right (assume : succ_chain c₂ ⊆ c₁, subset.trans succ_increasing this) this theorem chain_closure_succ_fixpoint (hc₁ : chain_closure c₁) (hc₂ : chain_closure c₂) (h_eq : succ_chain c₂ = c₂) : c₁ ⊆ c₂ := begin induction hc₁, case succ : c₁ hc₁ h { exact or.elim (chain_closure_succ_total hc₁ hc₂ h) (assume h, h ▸ h_eq.symm ▸ subset.refl c₂) id }, case union : s hs ih { exact (sUnion_subset $ assume c₁ hc₁, ih c₁ hc₁) } end theorem chain_closure_succ_fixpoint_iff (hc : chain_closure c) : succ_chain c = c ↔ c = ⋃₀ chain_closure := ⟨assume h, subset.antisymm (subset_sUnion_of_mem hc) (chain_closure_succ_fixpoint chain_closure_closure hc h), assume : c = ⋃₀{c : set α | chain_closure c}, subset.antisymm (calc succ_chain c ⊆ ⋃₀{c : set α | chain_closure c} : subset_sUnion_of_mem $ chain_closure.succ hc ... = c : this.symm) succ_increasing⟩ theorem chain_chain_closure (hc : chain_closure c) : chain c := begin induction hc, case succ : c hc h { exact chain_succ h }, case union : s hs h { have h : ∀c∈s, zorn.chain c := h, exact assume c₁ ⟨t₁, ht₁, (hc₁ : c₁ ∈ t₁)⟩ c₂ ⟨t₂, ht₂, (hc₂ : c₂ ∈ t₂)⟩ hneq, have t₁ ⊆ t₂ ∨ t₂ ⊆ t₁, from chain_closure_total (hs _ ht₁) (hs _ ht₂), or.elim this (assume : t₁ ⊆ t₂, h t₂ ht₂ c₁ (this hc₁) c₂ hc₂ hneq) (assume : t₂ ⊆ t₁, h t₁ ht₁ c₁ hc₁ c₂ (this hc₂) hneq) } end /-- `max_chain` is the union of all sets in the chain closure. -/ def max_chain := ⋃₀ chain_closure /-- Hausdorff's maximality principle There exists a maximal totally ordered subset of `α`. Note that we do not require `α` to be partially ordered by `r`. -/ theorem max_chain_spec : is_max_chain max_chain := classical.by_contradiction $ assume : ¬ is_max_chain (⋃₀ chain_closure), have super_chain (⋃₀ chain_closure) (succ_chain (⋃₀ chain_closure)), from super_of_not_max (chain_chain_closure chain_closure_closure) this, let ⟨h₁, H⟩ := this, ⟨h₂, (h₃ : (⋃₀ chain_closure) ≠ succ_chain (⋃₀ chain_closure))⟩ := ssubset_iff_subset_ne.1 H in have succ_chain (⋃₀ chain_closure) = (⋃₀ chain_closure), from (chain_closure_succ_fixpoint_iff chain_closure_closure).mpr rfl, h₃ this.symm /-- Zorn's lemma If every chain has an upper bound, then there is a maximal element -/ theorem exists_maximal_of_chains_bounded (h : ∀c, chain c → ∃ub, ∀a∈c, a ≺ ub) (trans : ∀{a b c}, a ≺ b → b ≺ c → a ≺ c) : ∃m, ∀a, m ≺ a → a ≺ m := have ∃ub, ∀a∈max_chain, a ≺ ub, from h _ $ max_chain_spec.left, let ⟨ub, (hub : ∀a∈max_chain, a ≺ ub)⟩ := this in ⟨ub, assume a ha, have chain (insert a max_chain), from chain_insert max_chain_spec.left $ assume b hb _, or.inr $ trans (hub b hb) ha, have a ∈ max_chain, from classical.by_contradiction $ assume h : a ∉ max_chain, max_chain_spec.right $ ⟨insert a max_chain, this, ssubset_insert h⟩, hub a this⟩ end chain theorem zorn_partial_order {α : Type u} [partial_order α] (h : ∀c:set α, chain (≤) c → ∃ub, ∀a∈c, a ≤ ub) : ∃m:α, ∀a, m ≤ a → a = m := let ⟨m, hm⟩ := @exists_maximal_of_chains_bounded α (≤) h (assume a b c, le_trans) in ⟨m, assume a ha, le_antisymm (hm a ha) ha⟩ theorem zorn_partial_order₀ {α : Type u} [partial_order α] (s : set α) (ih : ∀ c ⊆ s, chain (≤) c → ∀ y ∈ c, ∃ ub ∈ s, ∀ z ∈ c, z ≤ ub) (x : α) (hxs : x ∈ s) : ∃ m ∈ s, x ≤ m ∧ ∀ z ∈ s, m ≤ z → z = m := let ⟨⟨m, hms, hxm⟩, h⟩ := @zorn_partial_order {m // m ∈ s ∧ x ≤ m} _ (λ c hc, c.eq_empty_or_nonempty.elim (assume hce, hce.symm ▸ ⟨⟨x, hxs, le_refl _⟩, λ _, false.elim⟩) (assume ⟨m, hmc⟩, let ⟨ub, hubs, hub⟩ := ih (subtype.val '' c) (image_subset_iff.2 $ λ z hzc, z.2.1) (by rintro _ ⟨p, hpc, rfl⟩ _ ⟨q, hqc, rfl⟩ hpq; exact hc p hpc q hqc (mt (by rintro rfl; refl) hpq)) m.1 (mem_image_of_mem _ hmc) in ⟨⟨ub, hubs, le_trans m.2.2 $ hub m.1 $ mem_image_of_mem _ hmc⟩, λ a hac, hub a.1 ⟨a, hac, rfl⟩⟩)) in ⟨m, hms, hxm, λ z hzs hmz, congr_arg subtype.val $ h ⟨z, hzs, le_trans hxm hmz⟩ hmz⟩ theorem zorn_subset {α : Type u} (S : set (set α)) (h : ∀c ⊆ S, chain (⊆) c → ∃ub ∈ S, ∀ s ∈ c, s ⊆ ub) : ∃ m ∈ S, ∀a ∈ S, m ⊆ a → a = m := begin letI : partial_order S := partial_order.lift subtype.val (λ _ _, subtype.ext_val), have : ∀c:set S, @chain S (≤) c → ∃ub, ∀a∈c, a ≤ ub, { intros c hc, rcases h (subtype.val '' c) (image_subset_iff.2 _) _ with ⟨s, sS, hs⟩, { exact ⟨⟨s, sS⟩, λ ⟨x, hx⟩ H, hs _ (mem_image_of_mem _ H)⟩ }, { rintro ⟨x, hx⟩ _, exact hx }, { rintro _ ⟨x, cx, rfl⟩ _ ⟨y, cy, rfl⟩ xy, exact hc x cx y cy (mt (congr_arg _) xy) } }, rcases zorn_partial_order this with ⟨⟨m, mS⟩, hm⟩, exact ⟨m, mS, λ a aS ha, congr_arg subtype.val (hm ⟨a, aS⟩ ha)⟩ end theorem zorn_subset₀ {α : Type u} (S : set (set α)) (H : ∀c ⊆ S, chain (⊆) c → c.nonempty → ∃ub ∈ S, ∀ s ∈ c, s ⊆ ub) (x) (hx : x ∈ S) : ∃ m ∈ S, x ⊆ m ∧ ∀a ∈ S, m ⊆ a → a = m := begin let T := {s ∈ S | x ⊆ s}, rcases zorn_subset T _ with ⟨m, ⟨mS, mx⟩, hm⟩, { exact ⟨m, mS, mx, λ a ha ha', hm a ⟨ha, subset.trans mx ha'⟩ ha'⟩ }, { intros c cT hc, cases c.eq_empty_or_nonempty with c0 c0, { rw c0, exact ⟨x, ⟨hx, subset.refl _⟩, λ _, false.elim⟩ }, { rcases H _ (subset.trans cT (sep_subset _ _)) hc c0 with ⟨ub, us, h⟩, refine ⟨ub, ⟨us, _⟩, h⟩, rcases c0 with ⟨s, hs⟩, exact subset.trans (cT hs).2 (h _ hs) } } end theorem chain.total {α : Type u} [preorder α] {c : set α} (H : chain (≤) c) : ∀ {x y}, x ∈ c → y ∈ c → x ≤ y ∨ y ≤ x := λ x y, H.total_of_refl theorem chain.image {α β : Type*} (r : α → α → Prop) (s : β → β → Prop) (f : α → β) (h : ∀ x y, r x y → s (f x) (f y)) {c : set α} (hrc : chain r c) : chain s (f '' c) := λ x ⟨a, ha₁, ha₂⟩ y ⟨b, hb₁, hb₂⟩, ha₂ ▸ hb₂ ▸ λ hxy, (hrc a ha₁ b hb₁ (mt (congr_arg f) $ hxy)).elim (or.inl ∘ h _ _) (or.inr ∘ h _ _) end zorn theorem directed_of_chain {α β r} [is_refl β r] {f : α → β} {c : set α} (h : zorn.chain (f ⁻¹'o r) c) : directed r (λx:{a:α // a ∈ c}, f (x.val)) := assume ⟨a, ha⟩ ⟨b, hb⟩, classical.by_cases (assume : a = b, by simp only [this, exists_prop, and_self, subtype.exists]; exact ⟨b, hb, refl _⟩) (assume : a ≠ b, (h a ha b hb this).elim (λ h : r (f a) (f b), ⟨⟨b, hb⟩, h, refl _⟩) (λ h : r (f b) (f a), ⟨⟨a, ha⟩, refl _, h⟩))
27c9e6aca050f33964de5418d97c3ff729520ec8
a0e23cfdd129a671bf3154ee1a8a3a72bf4c7940
/stage0/src/Lean/Server/Snapshots.lean
208f650721020fd8c638f75219e436ba9ce8e532
[ "Apache-2.0" ]
permissive
WojciechKarpiel/lean4
7f89706b8e3c1f942b83a2c91a3a00b05da0e65b
f6e1314fa08293dea66a329e05b6c196a0189163
refs/heads/master
1,686,633,402,214
1,625,821,189,000
1,625,821,258,000
384,640,886
0
0
Apache-2.0
1,625,903,617,000
1,625,903,026,000
null
UTF-8
Lean
false
false
5,411
lean
/- Copyright (c) 2020 Wojciech Nawrocki. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Wojciech Nawrocki -/ import Init.System.IO import Lean.Elab.Import import Lean.Elab.Command /-! One can think of this module as being a partial reimplementation of Lean.Elab.Frontend which also stores a snapshot of the world after each command. Importantly, we allow (re)starting compilation from any snapshot/position in the file for interactive editing purposes. -/ namespace Lean.Server.Snapshots open Elab /-- What Lean knows about the world after the header and each command. -/ structure Snapshot where /- Where the command which produced this snapshot begins. Note that neighbouring snapshots are *not* necessarily attached beginning-to-end, since inputs outside the grammar advance the parser but do not produce snapshots. -/ beginPos : String.Pos stx : Syntax mpState : Parser.ModuleParserState cmdState : Command.State deriving Inhabited namespace Snapshot def endPos (s : Snapshot) : String.Pos := s.mpState.pos def env (s : Snapshot) : Environment := s.cmdState.env def msgLog (s : Snapshot) : MessageLog := s.cmdState.messages end Snapshot def reparseHeader (contents : String) (header : Snapshot) (opts : Options := {}) : IO Snapshot := do let inputCtx := Parser.mkInputContext contents "<input>" let (_, newHeaderParserState, _) ← Parser.parseHeader inputCtx pure { header with mpState := newHeaderParserState } private def ioErrorFromEmpty (ex : Empty) : IO.Error := nomatch ex /-- Parses the next command occurring after the given snapshot without elaborating it. -/ def parseNextCmd (contents : String) (snap : Snapshot) : IO Syntax := do let inputCtx := Parser.mkInputContext contents "<input>" let cmdState := snap.cmdState let scope := cmdState.scopes.head! let pmctx := { env := cmdState.env, options := scope.opts, currNamespace := scope.currNamespace, openDecls := scope.openDecls } let (cmdStx, _, _) := Parser.parseCommand inputCtx pmctx snap.mpState snap.msgLog cmdStx /-- Parse remaining file without elaboration. NOTE that doing so can lead to parse errors or even wrong syntax objects, so it should only be done for reporting preliminary results! -/ partial def parseAhead (contents : String) (snap : Snapshot) : IO (Array Syntax) := do let inputCtx := Parser.mkInputContext contents "<input>" let cmdState := snap.cmdState let scope := cmdState.scopes.head! let pmctx := { env := cmdState.env, options := scope.opts, currNamespace := scope.currNamespace, openDecls := scope.openDecls } go inputCtx pmctx snap.mpState #[] where go inputCtx pmctx cmdParserState stxs := do let (cmdStx, cmdParserState, _) := Parser.parseCommand inputCtx pmctx cmdParserState snap.msgLog if Parser.isEOI cmdStx || Parser.isExitCommand cmdStx then stxs.push cmdStx else go inputCtx pmctx cmdParserState (stxs.push cmdStx) /-- Compiles the next command occurring after the given snapshot. If there is no next command (file ended), returns messages produced through the file. -/ -- NOTE: This code is really very similar to Elab.Frontend. But generalizing it -- over "store snapshots"/"don't store snapshots" would likely result in confusing -- isServer? conditionals and not be worth it due to how short it is. def compileNextCmd (contents : String) (snap : Snapshot) : IO (Sum Snapshot MessageLog) := do let inputCtx := Parser.mkInputContext contents "<input>" let cmdState := snap.cmdState let scope := cmdState.scopes.head! let pmctx := { env := cmdState.env, options := scope.opts, currNamespace := scope.currNamespace, openDecls := scope.openDecls } let (cmdStx, cmdParserState, msgLog) := Parser.parseCommand inputCtx pmctx snap.mpState snap.msgLog let cmdPos := cmdStx.getPos?.get! if Parser.isEOI cmdStx || Parser.isExitCommand cmdStx then Sum.inr msgLog else let cmdStateRef ← IO.mkRef { snap.cmdState with messages := msgLog } let cmdCtx : Elab.Command.Context := { cmdPos := snap.endPos fileName := inputCtx.fileName fileMap := inputCtx.fileMap } let (output, _) ← IO.FS.withIsolatedStreams do EIO.toIO ioErrorFromEmpty do Elab.Command.catchExceptions (Elab.Command.elabCommandTopLevel cmdStx) cmdCtx cmdStateRef let mut postCmdState ← cmdStateRef.get if !output.isEmpty then postCmdState := { postCmdState with messages := postCmdState.messages.add { fileName := inputCtx.fileName severity := MessageSeverity.information pos := inputCtx.fileMap.toPosition snap.endPos data := output } } let postCmdSnap : Snapshot := { beginPos := cmdPos stx := cmdStx mpState := cmdParserState cmdState := postCmdState } Sum.inl postCmdSnap /-- Compiles all commands after the given snapshot. Returns them as a list, together with the final message log. -/ partial def compileCmdsAfter (contents : String) (snap : Snapshot) : IO (List Snapshot × MessageLog) := do let cmdOut ← compileNextCmd contents snap match cmdOut with | Sum.inl snap => let (snaps, msgLog) ← compileCmdsAfter contents snap (snap :: snaps, msgLog) | Sum.inr msgLog => ([], msgLog) end Lean.Server.Snapshots
cd5a85dee841f826e424fe590cde7bfe95fb2acb
d5ecf6c46a2f605470a4a7724909dc4b9e7350e0
/tests/norm_num.lean
24039a36afe75a118058570b354a111a5b29f9ea
[ "Apache-2.0" ]
permissive
MonoidMusician/mathlib
41f79df478987a636b735c338396813d2e8e44c4
72234ef1a050eea3a2197c23aeb345fc13c08ff3
refs/heads/master
1,583,672,205,771
1,522,892,143,000
1,522,892,143,000
128,144,032
0
0
Apache-2.0
1,522,892,144,000
1,522,890,892,000
Lean
UTF-8
Lean
false
false
1,598
lean
/- Copyright (c) 2017 Simon Hudon All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Mario Carneiro Tests for norm_num -/ import analysis.real tactic.norm_num example : 374 + (32 - (2 * 8123) : ℤ) - 61 * 50 = 86 + 32 * 32 - 4 * 5000 ∧ 43 ≤ 74 + (33 : ℤ) := by norm_num example : ¬ (7-2)/(2*3) ≥ (1:ℝ) + 2/(3^2) := by norm_num example : (6:real) + 9 = 15 := by norm_num example : (2:real)/4 + 4 = 3*3/2 := by norm_num example : (((3:real)/4)-12)<6 := by norm_num example : (5:real) ≠ 8 := by norm_num example : (10:real) > 7 := by norm_num example : (2:real) * 2 + 3 = 7 := by norm_num example : (6:real) < 10 := by norm_num example : (7:real)/2 > 3 := by norm_num example : (4:real)⁻¹ < 1 := by norm_num example : (5 / 2:ℕ) = 2 := by norm_num example : (5 / -2:ℤ) < -1 := by norm_num example : (0 + 1) / 2 < 0 + 1 := by norm_num example (x : ℤ) (h : 1000 + 2000 < x) : 100 * 30 < x := by norm_num at *; try_for 100 {exact h} example : (1103 : ℤ) ≤ (2102 : ℤ) := by norm_num example : (110474 : ℤ) ≤ (210485 : ℤ) := by norm_num example : (11047462383473829263 : ℤ) ≤ (21048574677772382462 : ℤ) := by norm_num example : (210485742382937847263 : ℤ) ≤ (1104857462382937847262 : ℤ) := by norm_num example : (210485987642382937847263 : ℕ) ≤ (11048512347462382937847262 : ℕ) := by norm_num example : (210485987642382937847263 : ℚ) ≤ (11048512347462382937847262 : ℚ) := by norm_num example (x : ℕ) : ℕ := begin let n : ℕ, {apply_normed (2^32 - 71)}, exact n end
32bfedeb3379fcd5c7378bc03c84a569165d1a75
4727251e0cd73359b15b664c3170e5d754078599
/src/category_theory/limits/bicones.lean
741c3576f30965c959e870e2e63726ddec9bb4a8
[ "Apache-2.0" ]
permissive
Vierkantor/mathlib
0ea59ac32a3a43c93c44d70f441c4ee810ccceca
83bc3b9ce9b13910b57bda6b56222495ebd31c2f
refs/heads/master
1,658,323,012,449
1,652,256,003,000
1,652,256,003,000
209,296,341
0
1
Apache-2.0
1,568,807,655,000
1,568,807,655,000
null
UTF-8
Lean
false
false
4,794
lean
/- Copyright (c) 2021 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import category_theory.limits.cones import category_theory.structured_arrow import category_theory.fin_category /-! # Bicones Given a category `J`, a walking `bicone J` is a category whose objects are the objects of `J` and two extra vertices `bicone.left` and `bicone.right`. The morphisms are the morphisms of `J` and `left ⟶ j`, `right ⟶ j` for each `j : J` such that `⬝ ⟶ j` and `⬝ ⟶ k` commutes with each `f : j ⟶ k`. Given a diagram `F : J ⥤ C` and two `cone F`s, we can join them into a diagram `bicone J ⥤ C` via `bicone_mk`. This is used in `category_theory.flat_functors.preserves_finite_limits_of_flat`. -/ universes v₁ u₁ open category_theory.limits namespace category_theory section bicone variables (J : Type u₁) /-- Given a category `J`, construct a walking `bicone J` by adjoining two elements. -/ @[derive decidable_eq] inductive bicone | left : bicone | right : bicone | diagram (val : J) : bicone instance : inhabited (bicone J) := ⟨bicone.left⟩ instance fin_bicone [fintype J] [decidable_eq J] : fintype (bicone J) := { elems := [bicone.left, bicone.right].to_finset ∪ finset.image bicone.diagram (fintype.elems J), complete := λ j, by { cases j; simp, exact fintype.complete j, }, } variables [category.{v₁} J] [∀ (j k : J), decidable_eq (j ⟶ k)] /-- The homs for a walking `bicone J`. -/ inductive bicone_hom : bicone J → bicone J → Type (max u₁ v₁) | left_id : bicone_hom bicone.left bicone.left | right_id : bicone_hom bicone.right bicone.right | left (j : J) : bicone_hom bicone.left (bicone.diagram j) | right (j : J) : bicone_hom bicone.right (bicone.diagram j) | diagram {j k : J} (f : j ⟶ k) : bicone_hom (bicone.diagram j) (bicone.diagram k) instance : inhabited (bicone_hom J bicone.left bicone.left) := ⟨bicone_hom.left_id⟩ instance bicone_hom.decidable_eq {j k : bicone J} : decidable_eq (bicone_hom J j k) := λ f g, by { cases f; cases g; simp; apply_instance } @[simps] instance bicone_category_struct : category_struct (bicone J) := { hom := bicone_hom J, id := λ j, bicone.cases_on j bicone_hom.left_id bicone_hom.right_id (λ k, bicone_hom.diagram (𝟙 k)), comp := λ X Y Z f g, by { cases f, exact g, exact g, cases g, exact bicone_hom.left g_k, cases g, exact bicone_hom.right g_k, cases g, exact bicone_hom.diagram (f_f ≫ g_f) } } instance bicone_category : category (bicone J) := { id_comp' := λ X Y f, by { cases f; simp }, comp_id' := λ X Y f, by { cases f; simp }, assoc' := λ W X Y Z f g h, by { cases f; cases g; cases h; simp } } end bicone section small_category variables (J : Type v₁) [small_category J] /-- Given a diagram `F : J ⥤ C` and two `cone F`s, we can join them into a diagram `bicone J ⥤ C`. -/ @[simps] def bicone_mk [∀ (j k : J), decidable_eq (j ⟶ k)] {C : Type u₁} [category.{v₁} C] {F : J ⥤ C} (c₁ c₂ : cone F) : bicone J ⥤ C := { obj := λ X, bicone.cases_on X c₁.X c₂.X (λ j, F.obj j), map := λ X Y f, by { cases f, exact (𝟙 _), exact (𝟙 _), exact c₁.π.app f_1, exact c₂.π.app f_1, exact F.map f_f, }, map_id' := λ X, by { cases X; simp }, map_comp' := λ X Y Z f g, by { cases f, exact (category.id_comp _).symm, exact (category.id_comp _).symm, cases g, exact (category.id_comp _).symm.trans (c₁.π.naturality g_f : _), cases g, exact (category.id_comp _).symm.trans (c₂.π.naturality g_f : _), cases g, exact F.map_comp _ _ } } instance fin_bicone_hom [fin_category J] (j k : bicone J) : fintype (j ⟶ k) := begin cases j; cases k, exact { elems := {bicone_hom.left_id}, complete := λ f, by { cases f, simp } }, exact { elems := ∅, complete := λ f, by { cases f } }, exact { elems := {bicone_hom.left k}, complete := λ f, by { cases f, simp } }, exact { elems := ∅, complete := λ f, by { cases f } }, exact { elems := {bicone_hom.right_id}, complete := λ f, by { cases f, simp } }, exact { elems := {bicone_hom.right k}, complete := λ f, by { cases f, simp } }, exact { elems := ∅, complete := λ f, by { cases f } }, exact { elems := ∅, complete := λ f, by { cases f } }, exact { elems := finset.image (bicone_hom.diagram) (fintype.elems (j ⟶ k)), complete := λ f, by { cases f, simp only [finset.mem_image], use f_f, simpa using fintype.complete _, } }, end instance bicone_small_category [∀ (j k : J), decidable_eq (j ⟶ k)] : small_category (bicone J) := category_theory.bicone_category J instance bicone_fin_category [fin_category J] : fin_category (bicone J) := {} end small_category end category_theory
e4b1204cc84e1a94a1fcbcce366ab3e3fbadeb9e
dd0f5513e11c52db157d2fcc8456d9401a6cd9da
/06_Inductive_Types.org.49.lean
f9a91dcc41349bf4cd3acdd8912816f7e260787a
[]
no_license
cjmazey/lean-tutorial
ba559a49f82aa6c5848b9bf17b7389bf7f4ba645
381f61c9fcac56d01d959ae0fa6e376f2c4e3b34
refs/heads/master
1,610,286,098,832
1,447,124,923,000
1,447,124,923,000
43,082,433
0
0
null
null
null
null
UTF-8
Lean
false
false
422
lean
/- page 94 -/ import standard open nat variable C : nat → Type variable fz : C zero variable fs : Π (n : nat), C n → C (succ n) eval nat.rec fz fs zero -- nat.rec_on is defined from nat.rec eval nat.rec_on zero fz fs example : nat.rec fz fs zero = fz := rfl variable a : nat eval nat.rec fz fs (succ a) eval nat.rec_on (succ a) fz fs example (a : nat) : nat.rec fz fs (succ a) = fs a (nat.rec fz fs a) := rfl
79d36099cdbb26cfac27317be2652879c33f1369
4bcaca5dc83d49803f72b7b5920b75b6e7d9de2d
/src/Lean/PrettyPrinter/Formatter.lean
e67cc5a877e17378161c9103aaf93d125d567215
[ "Apache-2.0" ]
permissive
subfish-zhou/leanprover-zh_CN.github.io
30b9fba9bd790720bd95764e61ae796697d2f603
8b2985d4a3d458ceda9361ac454c28168d920d3f
refs/heads/master
1,689,709,967,820
1,632,503,056,000
1,632,503,056,000
409,962,097
1
0
null
null
null
null
UTF-8
Lean
false
false
21,586
lean
/- Copyright (c) 2020 Sebastian Ullrich. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Sebastian Ullrich -/ import Lean.CoreM import Lean.Parser.Extension import Lean.KeyedDeclsAttribute import Lean.ParserCompiler.Attribute import Lean.PrettyPrinter.Basic /-! The formatter turns a `Syntax` tree into a `Format` object, inserting both mandatory whitespace (to separate adjacent tokens) as well as "pretty" optional whitespace. The basic approach works much like the parenthesizer: A right-to-left traversal over the syntax tree, driven by parser-specific handlers registered via attributes. The traversal is right-to-left so that when emitting a token, we already know the text following it and can decide whether or not whitespace between the two is necessary. -/ namespace Lean namespace PrettyPrinter namespace Formatter structure Context where options : Options table : Parser.TokenTable structure State where stxTrav : Syntax.Traverser -- Textual content of `stack` up to the first whitespace (not enclosed in an escaped ident). We assume that the textual -- content of `stack` is modified only by `pushText` and `pushLine`, so `leadWord` is adjusted there accordingly. leadWord : String := "" -- Stack of generated Format objects, analogous to the Syntax stack in the parser. -- Note, however, that the stack is reversed because of the right-to-left traversal. stack : Array Format := #[] end Formatter abbrev FormatterM := ReaderT Formatter.Context $ StateRefT Formatter.State CoreM @[inline] def FormatterM.orElse {α} (p₁ : FormatterM α) (p₂ : Unit → FormatterM α) : FormatterM α := do let s ← get catchInternalId backtrackExceptionId p₁ (fun _ => do set s; p₂ ()) instance {α} : OrElse (FormatterM α) := ⟨FormatterM.orElse⟩ abbrev Formatter := FormatterM Unit unsafe def mkFormatterAttribute : IO (KeyedDeclsAttribute Formatter) := KeyedDeclsAttribute.init { builtinName := `builtinFormatter, name := `formatter, descr := "Register a formatter for a parser. [formatter k] registers a declaration of type `Lean.PrettyPrinter.Formatter` for the `SyntaxNodeKind` `k`.", valueTypeName := `Lean.PrettyPrinter.Formatter, evalKey := fun builtin stx => do let env ← getEnv let id ← Attribute.Builtin.getId stx -- `isValidSyntaxNodeKind` is updated only in the next stage for new `[builtin*Parser]`s, but we try to -- synthesize a formatter for it immediately, so we just check for a declaration in this case if (builtin && (env.find? id).isSome) || Parser.isValidSyntaxNodeKind env id then pure id else throwError "invalid [formatter] argument, unknown syntax kind '{id}'" } `Lean.PrettyPrinter.formatterAttribute @[builtinInit mkFormatterAttribute] constant formatterAttribute : KeyedDeclsAttribute Formatter unsafe def mkCombinatorFormatterAttribute : IO ParserCompiler.CombinatorAttribute := ParserCompiler.registerCombinatorAttribute `combinatorFormatter "Register a formatter for a parser combinator. [combinatorFormatter c] registers a declaration of type `Lean.PrettyPrinter.Formatter` for the `Parser` declaration `c`. Note that, unlike with [formatter], this is not a node kind since combinators usually do not introduce their own node kinds. The tagged declaration may optionally accept parameters corresponding to (a prefix of) those of `c`, where `Parser` is replaced with `Formatter` in the parameter types." @[builtinInit mkCombinatorFormatterAttribute] constant combinatorFormatterAttribute : ParserCompiler.CombinatorAttribute namespace Formatter open Lean.Core open Lean.Parser def throwBacktrack {α} : FormatterM α := throw $ Exception.internal backtrackExceptionId instance : Syntax.MonadTraverser FormatterM := ⟨{ get := State.stxTrav <$> get, set := fun t => modify (fun st => { st with stxTrav := t }), modifyGet := fun f => modifyGet (fun st => let (a, t) := f st.stxTrav; (a, { st with stxTrav := t })) }⟩ open Syntax.MonadTraverser def getStack : FormatterM (Array Format) := do let st ← get pure st.stack def getStackSize : FormatterM Nat := do let stack ← getStack; pure stack.size def setStack (stack : Array Format) : FormatterM Unit := modify fun st => { st with stack := stack } def push (f : Format) : FormatterM Unit := modify fun st => { st with stack := st.stack.push f } def pushLine : FormatterM Unit := do push Format.line; modify fun st => { st with leadWord := "" } /-- Execute `x` at the right-most child of the current node, if any, then advance to the left. -/ def visitArgs (x : FormatterM Unit) : FormatterM Unit := do let stx ← getCur if stx.getArgs.size > 0 then goDown (stx.getArgs.size - 1) *> x <* goUp goLeft /-- Execute `x`, pass array of generated Format objects to `fn`, and push result. -/ def fold (fn : Array Format → Format) (x : FormatterM Unit) : FormatterM Unit := do let sp ← getStackSize x let stack ← getStack let f := fn $ stack.extract sp stack.size setStack $ (stack.shrink sp).push f /-- Execute `x` and concatenate generated Format objects. -/ def concat (x : FormatterM Unit) : FormatterM Unit := do fold (Array.foldl (fun acc f => if acc.isNil then f else f ++ acc) Format.nil) x def indent (x : Formatter) (indent : Option Int := none) : Formatter := do concat x let ctx ← read let indent := indent.getD $ Std.Format.getIndent ctx.options modify fun st => { st with stack := st.stack.modify (st.stack.size - 1) (Format.nest indent) } def group (x : Formatter) : Formatter := do concat x modify fun st => { st with stack := st.stack.modify (st.stack.size - 1) Format.fill } /-- If `pos?` has a position, run `x` and tag its results with that position. Otherwise just run `x`. -/ def withMaybeTag (pos? : Option String.Pos) (x : FormatterM Unit) : Formatter := do if let some p := pos? then concat x modify fun st => { st with stack := st.stack.modify (st.stack.size - 1) (Format.tag p) } else x @[combinatorFormatter Lean.Parser.orelse] def orelse.formatter (p1 p2 : Formatter) : Formatter := -- HACK: We have no (immediate) information on which side of the orelse could have produced the current node, so try -- them in turn. Uses the syntax traverser non-linearly! p1 <|> p2 -- `mkAntiquot` is quite complex, so we'd rather have its formatter synthesized below the actual parser definition. -- Note that there is a mutual recursion -- `categoryParser -> mkAntiquot -> termParser -> categoryParser`, so we need to introduce an indirection somewhere -- anyway. @[extern "lean_mk_antiquot_formatter"] constant mkAntiquot.formatter' (name : String) (kind : Option SyntaxNodeKind) (anonymous := true) : Formatter -- break up big mutual recursion @[extern "lean_pretty_printer_formatter_interpret_parser_descr"] constant interpretParserDescr' : ParserDescr → CoreM Formatter unsafe def formatterForKindUnsafe (k : SyntaxNodeKind) : Formatter := do if k == `missing then push "<missing>" goLeft else let stx ← getCur let f ← runForNodeKind formatterAttribute k interpretParserDescr' withMaybeTag stx.getPos? f @[implementedBy formatterForKindUnsafe] constant formatterForKind (k : SyntaxNodeKind) : Formatter @[combinatorFormatter Lean.Parser.withAntiquot] def withAntiquot.formatter (antiP p : Formatter) : Formatter := -- TODO: could be optimized using `isAntiquot` (which would have to be moved), but I'd rather -- fix the backtracking hack outright. orelse.formatter antiP p @[combinatorFormatter Lean.Parser.withAntiquotSuffixSplice] def withAntiquotSuffixSplice.formatter (k : SyntaxNodeKind) (p suffix : Formatter) : Formatter := do if (← getCur).isAntiquotSuffixSplice then visitArgs <| suffix *> p else p @[combinatorFormatter Lean.Parser.tokenWithAntiquot] def tokenWithAntiquot.formatter (p : Formatter) : Formatter := do if (← getCur).isTokenAntiquot then visitArgs p else p @[combinatorFormatter Lean.Parser.categoryParser] def categoryParser.formatter (cat : Name) : Formatter := group $ indent do let stx ← getCur trace[PrettyPrinter.format] "formatting {indentD (format stx)}" if stx.getKind == `choice then visitArgs do -- format only last choice -- TODO: We could use elaborator data here to format the chosen child when available formatterForKind (← getCur).getKind else withAntiquot.formatter (mkAntiquot.formatter' cat.toString none) (formatterForKind stx.getKind) @[combinatorFormatter Lean.Parser.categoryParserOfStack] def categoryParserOfStack.formatter (offset : Nat) : Formatter := do let st ← get let stx := st.stxTrav.parents.back.getArg (st.stxTrav.idxs.back - offset) categoryParser.formatter stx.getId @[combinatorFormatter Lean.Parser.parserOfStack] def parserOfStack.formatter (offset : Nat) (prec : Nat := 0) : Formatter := do let st ← get let stx := st.stxTrav.parents.back.getArg (st.stxTrav.idxs.back - offset) formatterForKind stx.getKind @[combinatorFormatter Lean.Parser.error] def error.formatter (msg : String) : Formatter := pure () @[combinatorFormatter Lean.Parser.errorAtSavedPos] def errorAtSavedPos.formatter (msg : String) (delta : Bool) : Formatter := pure () @[combinatorFormatter Lean.Parser.atomic] def atomic.formatter (p : Formatter) : Formatter := p @[combinatorFormatter Lean.Parser.lookahead] def lookahead.formatter (p : Formatter) : Formatter := pure () @[combinatorFormatter Lean.Parser.notFollowedBy] def notFollowedBy.formatter (p : Formatter) : Formatter := pure () @[combinatorFormatter Lean.Parser.andthen] def andthen.formatter (p1 p2 : Formatter) : Formatter := p2 *> p1 def checkKind (k : SyntaxNodeKind) : FormatterM Unit := do let stx ← getCur if k != stx.getKind then trace[PrettyPrinter.format.backtrack] "unexpected node kind '{stx.getKind}', expected '{k}'" throwBacktrack @[combinatorFormatter Lean.Parser.node] def node.formatter (k : SyntaxNodeKind) (p : Formatter) : Formatter := do checkKind k; visitArgs p @[combinatorFormatter Lean.Parser.trailingNode] def trailingNode.formatter (k : SyntaxNodeKind) (_ _ : Nat) (p : Formatter) : Formatter := do checkKind k visitArgs do p; -- leading term, not actually produced by `p` categoryParser.formatter `foo def parseToken (s : String) : FormatterM ParserState := do -- include comment tokens, e.g. when formatting `- -0` (Parser.andthenFn Parser.whitespace (Parser.tokenFn [])) { input := s, fileName := "", fileMap := FileMap.ofString "", prec := 0, env := ← getEnv, options := ← getOptions, tokens := (← read).table } (Parser.mkParserState s) def pushTokenCore (tk : String) : FormatterM Unit := do if tk.toSubstring.dropRightWhile (fun s => s == ' ') == tk.toSubstring then push tk else pushLine push tk.trimRight def pushToken (info : SourceInfo) (tk : String) : FormatterM Unit := do match info with | SourceInfo.original _ _ ss _ => -- preserve non-whitespace content (i.e. comments) let ss' := ss.trim if !ss'.isEmpty then let ws := { ss with startPos := ss'.stopPos } if ws.contains '\n' then push s!"\n{ss'}" else push s!" {ss'}" modify fun st => { st with leadWord := "" } | _ => pure () let st ← get -- If there is no space between `tk` and the next word, see if we would parse more than `tk` as a single token if st.leadWord != "" && tk.trimRight == tk then let tk' := tk.trimLeft let t ← parseToken $ tk' ++ st.leadWord if t.pos <= tk'.bsize then -- stopped within `tk` => use it as is, extend `leadWord` if not prefixed by whitespace pushTokenCore tk modify fun st => { st with leadWord := if tk.trimLeft == tk then tk ++ st.leadWord else "" } else -- stopped after `tk` => add space pushTokenCore $ tk ++ " " modify fun st => { st with leadWord := if tk.trimLeft == tk then tk else "" } else -- already separated => use `tk` as is pushTokenCore tk modify fun st => { st with leadWord := if tk.trimLeft == tk then tk else "" } match info with | SourceInfo.original ss _ _ _ => -- preserve non-whitespace content (i.e. comments) let ss' := ss.trim if !ss'.isEmpty then let ws := { ss with startPos := ss'.stopPos } if ws.contains '\n' then do -- Indentation is automatically increased when entering a category, but comments should be aligned -- with the actual token, so dedent indent (push s!"{ss'}\n") (some ((0:Int) - Std.Format.getIndent (← getOptions))) else push s!"{ss'} " modify fun st => { st with leadWord := "" } | _ => pure () @[combinatorFormatter Lean.Parser.symbolNoAntiquot] def symbolNoAntiquot.formatter (sym : String) : Formatter := do let stx ← getCur if stx.isToken sym then do let (Syntax.atom info _) ← pure stx | unreachable! pushToken info sym goLeft else do trace[PrettyPrinter.format.backtrack] "unexpected syntax '{format stx}', expected symbol '{sym}'" throwBacktrack @[combinatorFormatter Lean.Parser.nonReservedSymbolNoAntiquot] def nonReservedSymbolNoAntiquot.formatter := symbolNoAntiquot.formatter @[combinatorFormatter Lean.Parser.rawCh] def rawCh.formatter (ch : Char) := symbolNoAntiquot.formatter ch.toString @[combinatorFormatter Lean.Parser.unicodeSymbolNoAntiquot] def unicodeSymbolNoAntiquot.formatter (sym asciiSym : String) : Formatter := do let Syntax.atom info val ← getCur | throwError m!"not an atom: {← getCur}" if val == sym.trim then pushToken info sym else pushToken info asciiSym; goLeft @[combinatorFormatter Lean.Parser.identNoAntiquot] def identNoAntiquot.formatter : Formatter := do checkKind identKind let Syntax.ident info _ id _ ← getCur | throwError m!"not an ident: {← getCur}" let id := id.simpMacroScopes pushToken info id.toString goLeft @[combinatorFormatter Lean.Parser.rawIdentNoAntiquot] def rawIdentNoAntiquot.formatter : Formatter := do checkKind identKind let Syntax.ident info _ id _ ← getCur | throwError m!"not an ident: {← getCur}" pushToken info id.toString goLeft @[combinatorFormatter Lean.Parser.identEq] def identEq.formatter (id : Name) := rawIdentNoAntiquot.formatter def visitAtom (k : SyntaxNodeKind) : Formatter := do let stx ← getCur if k != Name.anonymous then checkKind k let Syntax.atom info val ← pure $ stx.ifNode (fun n => n.getArg 0) (fun _ => stx) | throwError m!"not an atom: {stx}" pushToken info val goLeft @[combinatorFormatter Lean.Parser.charLitNoAntiquot] def charLitNoAntiquot.formatter := visitAtom charLitKind @[combinatorFormatter Lean.Parser.strLitNoAntiquot] def strLitNoAntiquot.formatter := visitAtom strLitKind @[combinatorFormatter Lean.Parser.nameLitNoAntiquot] def nameLitNoAntiquot.formatter := visitAtom nameLitKind @[combinatorFormatter Lean.Parser.numLitNoAntiquot] def numLitNoAntiquot.formatter := visitAtom numLitKind @[combinatorFormatter Lean.Parser.scientificLitNoAntiquot] def scientificLitNoAntiquot.formatter := visitAtom scientificLitKind @[combinatorFormatter Lean.Parser.fieldIdx] def fieldIdx.formatter := visitAtom fieldIdxKind @[combinatorFormatter Lean.Parser.manyNoAntiquot] def manyNoAntiquot.formatter (p : Formatter) : Formatter := do let stx ← getCur visitArgs $ stx.getArgs.size.forM fun _ => p @[combinatorFormatter Lean.Parser.many1NoAntiquot] def many1NoAntiquot.formatter (p : Formatter) : Formatter := manyNoAntiquot.formatter p @[combinatorFormatter Lean.Parser.optionalNoAntiquot] def optionalNoAntiquot.formatter (p : Formatter) : Formatter := visitArgs p @[combinatorFormatter Lean.Parser.many1Unbox] def many1Unbox.formatter (p : Formatter) : Formatter := do let stx ← getCur if stx.getKind == nullKind then do manyNoAntiquot.formatter p else p @[combinatorFormatter Lean.Parser.sepByNoAntiquot] def sepByNoAntiquot.formatter (p pSep : Formatter) : Formatter := do let stx ← getCur visitArgs $ (List.range stx.getArgs.size).reverse.forM $ fun i => if i % 2 == 0 then p else pSep @[combinatorFormatter Lean.Parser.sepBy1NoAntiquot] def sepBy1NoAntiquot.formatter := sepByNoAntiquot.formatter @[combinatorFormatter Lean.Parser.withPosition] def withPosition.formatter (p : Formatter) : Formatter := p @[combinatorFormatter Lean.Parser.withoutPosition] def withoutPosition.formatter (p : Formatter) : Formatter := p @[combinatorFormatter Lean.Parser.withForbidden] def withForbidden.formatter (tk : Token) (p : Formatter) : Formatter := p @[combinatorFormatter Lean.Parser.withoutForbidden] def withoutForbidden.formatter (p : Formatter) : Formatter := p @[combinatorFormatter Lean.Parser.withoutInfo] def withoutInfo.formatter (p : Formatter) : Formatter := p @[combinatorFormatter Lean.Parser.setExpected] def setExpected.formatter (expected : List String) (p : Formatter) : Formatter := p @[combinatorFormatter Lean.Parser.incQuotDepth] def incQuotDepth.formatter (p : Formatter) : Formatter := p @[combinatorFormatter Lean.Parser.decQuotDepth] def decQuotDepth.formatter (p : Formatter) : Formatter := p @[combinatorFormatter Lean.Parser.suppressInsideQuot] def suppressInsideQuot.formatter (p : Formatter) : Formatter := p @[combinatorFormatter Lean.Parser.evalInsideQuot] def evalInsideQuot.formatter (declName : Name) (p : Formatter) : Formatter := p @[combinatorFormatter Lean.Parser.checkWsBefore] def checkWsBefore.formatter : Formatter := do let st ← get if st.leadWord != "" then pushLine @[combinatorFormatter Lean.Parser.checkPrec] def checkPrec.formatter : Formatter := pure () @[combinatorFormatter Lean.Parser.checkLhsPrec] def checkLhsPrec.formatter : Formatter := pure () @[combinatorFormatter Lean.Parser.setLhsPrec] def setLhsPrec.formatter : Formatter := pure () @[combinatorFormatter Lean.Parser.checkStackTop] def checkStackTop.formatter : Formatter := pure () @[combinatorFormatter Lean.Parser.checkNoWsBefore] def checkNoWsBefore.formatter : Formatter := -- prevent automatic whitespace insertion modify fun st => { st with leadWord := "" } @[combinatorFormatter Lean.Parser.checkLinebreakBefore] def checkLinebreakBefore.formatter : Formatter := pure () @[combinatorFormatter Lean.Parser.checkTailWs] def checkTailWs.formatter : Formatter := pure () @[combinatorFormatter Lean.Parser.checkColGe] def checkColGe.formatter : Formatter := pure () @[combinatorFormatter Lean.Parser.checkColGt] def checkColGt.formatter : Formatter := pure () @[combinatorFormatter Lean.Parser.checkLineEq] def checkLineEq.formatter : Formatter := pure () @[combinatorFormatter Lean.Parser.eoi] def eoi.formatter : Formatter := pure () @[combinatorFormatter Lean.Parser.notFollowedByCategoryToken] def notFollowedByCategoryToken.formatter : Formatter := pure () @[combinatorFormatter Lean.Parser.checkNoImmediateColon] def checkNoImmediateColon.formatter : Formatter := pure () @[combinatorFormatter Lean.Parser.checkInsideQuot] def checkInsideQuot.formatter : Formatter := pure () @[combinatorFormatter Lean.Parser.checkOutsideQuot] def checkOutsideQuot.formatter : Formatter := pure () @[combinatorFormatter Lean.Parser.skip] def skip.formatter : Formatter := pure () @[combinatorFormatter Lean.Parser.pushNone] def pushNone.formatter : Formatter := goLeft @[combinatorFormatter Lean.Parser.withOpenDecl] def withOpenDecl.formatter (p : Formatter) : Formatter := p @[combinatorFormatter Lean.Parser.withOpen] def withOpen.formatter (p : Formatter) : Formatter := p @[combinatorFormatter Lean.Parser.interpolatedStr] def interpolatedStr.formatter (p : Formatter) : Formatter := do visitArgs $ (← getCur).getArgs.reverse.forM fun chunk => match chunk.isLit? interpolatedStrLitKind with | some str => push str *> goLeft | none => p @[combinatorFormatter Lean.Parser.dbgTraceState] def dbgTraceState.formatter (label : String) (p : Formatter) : Formatter := p @[combinatorFormatter ite, macroInline] def ite {α : Type} (c : Prop) [h : Decidable c] (t e : Formatter) : Formatter := if c then t else e abbrev FormatterAliasValue := AliasValue Formatter builtin_initialize formatterAliasesRef : IO.Ref (NameMap FormatterAliasValue) ← IO.mkRef {} def registerAlias (aliasName : Name) (v : FormatterAliasValue) : IO Unit := do Parser.registerAliasCore formatterAliasesRef aliasName v instance : Coe Formatter FormatterAliasValue := { coe := AliasValue.const } instance : Coe (Formatter → Formatter) FormatterAliasValue := { coe := AliasValue.unary } instance : Coe (Formatter → Formatter → Formatter) FormatterAliasValue := { coe := AliasValue.binary } end Formatter open Formatter def format (formatter : Formatter) (stx : Syntax) : CoreM Format := do trace[PrettyPrinter.format.input] "{Std.format stx}" let options ← getOptions let table ← Parser.builtinTokenTable.get catchInternalId backtrackExceptionId (do let (_, st) ← (concat formatter { table := table, options := options }).run { stxTrav := Syntax.Traverser.fromSyntax stx }; pure $ Format.fill $ st.stack.get! 0) (fun _ => throwError "format: uncaught backtrack exception") def formatTerm := format $ categoryParser.formatter `term def formatTactic := format $ categoryParser.formatter `tactic def formatCommand := format $ categoryParser.formatter `command builtin_initialize registerTraceClass `PrettyPrinter.format; end PrettyPrinter end Lean
0fd89cc9459ee16c702b5fcba02b06c631174d48
6432ea7a083ff6ba21ea17af9ee47b9c371760f7
/tests/lean/run/structInst3.lean
136a250408cf8ba69b606a8a1f5b37b72495b5b5
[ "Apache-2.0", "LLVM-exception", "NCSA", "LGPL-3.0-only", "LicenseRef-scancode-inner-net-2.0", "BSD-3-Clause", "LGPL-2.0-or-later", "Spencer-94", "LGPL-2.1-or-later", "HPND", "LicenseRef-scancode-pcre", "ISC", "LGPL-2.1-only", "LicenseRef-scancode-other-permissive", "SunPro", "CMU-Mach" ]
permissive
leanprover/lean4
4bdf9790294964627eb9be79f5e8f6157780b4cc
f1f9dc0f2f531af3312398999d8b8303fa5f096b
refs/heads/master
1,693,360,665,786
1,693,350,868,000
1,693,350,868,000
129,571,436
2,827
311
Apache-2.0
1,694,716,156,000
1,523,760,560,000
Lean
UTF-8
Lean
false
false
639
lean
universe u namespace Ex1 structure A (α : Type u) := (x : α) (f : α → α := λ x => x) structure B (α : Type u) extends A α := (y : α := f (f x)) (g : α → α → α := λ x y => f x) structure C (α : Type u) extends B α := (z : α := g x y) (x := f z) end Ex1 open Ex1 def c1 : C Nat := { x := 1 } #check { c1 with z := 2 } #check { c1 with z := 2 } theorem ex1 : { c1 with z := 2 }.z = 2 := rfl #check ex1 theorem ex2 : { c1 with z := 2 }.x = c1.x := rfl #check ex2 def c2 : C (Nat × Nat) := { z := (1, 1) } #check { c2 with x.fst := 2 } #check { c2 with x.1 := 3 } #check show C _ from { c2.toB with .. }
c7ed5d5a223e983318a03a1e028e16dc9fdc10a8
432d948a4d3d242fdfb44b81c9e1b1baacd58617
/src/algebra/module/linear_map.lean
572797f1c032f1338277979a0eea93a2c4f69031
[ "Apache-2.0" ]
permissive
JLimperg/aesop3
306cc6570c556568897ed2e508c8869667252e8a
a4a116f650cc7403428e72bd2e2c4cda300fe03f
refs/heads/master
1,682,884,916,368
1,620,320,033,000
1,620,320,033,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
18,637
lean
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nathaniel Thomas, Jeremy Avigad, Johannes Hölzl, Mario Carneiro, Anne Baanen -/ import algebra.group.hom import algebra.module.basic import algebra.group_action_hom /-! # Linear maps and linear equivalences In this file we define * `linear_map R M M₂`, `M →ₗ[R] M₂` : a linear map between two R-`module`s. * `is_linear_map R f` : predicate saying that `f : M → M₂` is a linear map. * `linear_equiv R M ₂`, `M ≃ₗ[R] M₂`: an invertible linear map ## Tags linear map, linear equiv, linear equivalences, linear isomorphism, linear isomorphic -/ open function open_locale big_operators universes u u' v w x y z variables {R : Type u} {k : Type u'} {S : Type v} {M : Type w} {M₂ : Type x} {M₃ : Type y} {ι : Type z} /-- A map `f` between modules over a semiring is linear if it satisfies the two properties `f (x + y) = f x + f y` and `f (c • x) = c • f x`. The predicate `is_linear_map R f` asserts this property. A bundled version is available with `linear_map`, and should be favored over `is_linear_map` most of the time. -/ structure is_linear_map (R : Type u) {M : Type v} {M₂ : Type w} [semiring R] [add_comm_monoid M] [add_comm_monoid M₂] [module R M] [module R M₂] (f : M → M₂) : Prop := (map_add : ∀ x y, f (x + y) = f x + f y) (map_smul : ∀ (c : R) x, f (c • x) = c • f x) section set_option old_structure_cmd true /-- A map `f` between modules over a semiring is linear if it satisfies the two properties `f (x + y) = f x + f y` and `f (c • x) = c • f x`. Elements of `linear_map R M M₂` (available under the notation `M →ₗ[R] M₂`) are bundled versions of such maps. An unbundled version is available with the predicate `is_linear_map`, but it should be avoided most of the time. -/ structure linear_map (R : Type u) (M : Type v) (M₂ : Type w) [semiring R] [add_comm_monoid M] [add_comm_monoid M₂] [module R M] [module R M₂] extends add_hom M M₂, M →[R] M₂ end /-- The `add_hom` underlying a `linear_map`. -/ add_decl_doc linear_map.to_add_hom /-- The `mul_action_hom` underlying a `linear_map`. -/ add_decl_doc linear_map.to_mul_action_hom infixr ` →ₗ `:25 := linear_map _ notation M ` →ₗ[`:25 R:25 `] `:0 M₂:0 := linear_map R M M₂ namespace linear_map section add_comm_monoid variables [semiring R] [add_comm_monoid M] [add_comm_monoid M₂] [add_comm_monoid M₃] section variables [module R M] [module R M₂] /-- The `distrib_mul_action_hom` underlying a `linear_map`. -/ def to_distrib_mul_action_hom (f : M →ₗ[R] M₂) : distrib_mul_action_hom R M M₂ := { map_zero' := zero_smul R (0 : M) ▸ zero_smul R (f.to_fun 0) ▸ f.map_smul' 0 0, ..f } instance : has_coe_to_fun (M →ₗ[R] M₂) := ⟨_, to_fun⟩ initialize_simps_projections linear_map (to_fun → apply) @[simp] lemma coe_mk (f : M → M₂) (h₁ h₂) : ((linear_map.mk f h₁ h₂ : M →ₗ[R] M₂) : M → M₂) = f := rfl /-- Identity map as a `linear_map` -/ def id : M →ₗ[R] M := ⟨id, λ _ _, rfl, λ _ _, rfl⟩ lemma id_apply (x : M) : @id R M _ _ _ x = x := rfl @[simp, norm_cast] lemma id_coe : ((linear_map.id : M →ₗ[R] M) : M → M) = _root_.id := by { ext x, refl } end section variables [module R M] [module R M₂] variables (f g : M →ₗ[R] M₂) @[simp] lemma to_fun_eq_coe : f.to_fun = ⇑f := rfl theorem is_linear : is_linear_map R f := ⟨f.2, f.3⟩ variables {f g} theorem coe_injective : injective (λ f : M →ₗ[R] M₂, show M → M₂, from f) := by rintro ⟨f, _⟩ ⟨g, _⟩ ⟨h⟩; congr @[ext] theorem ext (H : ∀ x, f x = g x) : f = g := coe_injective $ funext H protected lemma congr_arg : Π {x x' : M}, x = x' → f x = f x' | _ _ rfl := rfl /-- If two linear maps are equal, they are equal at each point. -/ protected lemma congr_fun (h : f = g) (x : M) : f x = g x := h ▸ rfl theorem ext_iff : f = g ↔ ∀ x, f x = g x := ⟨by { rintro rfl x, refl }, ext⟩ @[simp] lemma mk_coe (f : M →ₗ[R] M₂) (h₁ h₂) : (linear_map.mk f h₁ h₂ : M →ₗ[R] M₂) = f := ext $ λ _, rfl variables (f g) @[simp] lemma map_add (x y : M) : f (x + y) = f x + f y := f.map_add' x y @[simp] lemma map_smul (c : R) (x : M) : f (c • x) = c • f x := f.map_smul' c x @[simp] lemma map_zero : f 0 = 0 := f.to_distrib_mul_action_hom.map_zero variables (M M₂) /-- A typeclass for `has_scalar` structures which can be moved through a `linear_map`. This typeclass is generated automatically from a `is_scalar_tower` instance, but exists so that we can also add an instance for `add_comm_group.int_module`, allowing `z •` to be moved even if `R` does not support negation. -/ class compatible_smul (R S : Type*) [semiring S] [has_scalar R M] [module S M] [has_scalar R M₂] [module S M₂] := (map_smul : ∀ (f : M →ₗ[S] M₂) (c : R) (x : M), f (c • x) = c • f x) variables {M M₂} @[priority 100] instance is_scalar_tower.compatible_smul {R S : Type*} [semiring S] [has_scalar R S] [has_scalar R M] [module S M] [is_scalar_tower R S M] [has_scalar R M₂] [module S M₂] [is_scalar_tower R S M₂] : compatible_smul M M₂ R S := ⟨λ f c x, by rw [← smul_one_smul S c x, ← smul_one_smul S c (f x), map_smul]⟩ @[simp, priority 900] lemma map_smul_of_tower {R S : Type*} [semiring S] [has_scalar R M] [module S M] [has_scalar R M₂] [module S M₂] [compatible_smul M M₂ R S] (f : M →ₗ[S] M₂) (c : R) (x : M) : f (c • x) = c • f x := compatible_smul.map_smul f c x instance : is_add_monoid_hom f := { map_add := map_add f, map_zero := map_zero f } /-- convert a linear map to an additive map -/ def to_add_monoid_hom : M →+ M₂ := { to_fun := f, map_zero' := f.map_zero, map_add' := f.map_add } @[simp] lemma to_add_monoid_hom_coe : ⇑f.to_add_monoid_hom = f := rfl variable (R) /-- If `M` and `M₂` are both `R`-modules and `S`-modules and `R`-module structures are defined by an action of `R` on `S` (formally, we have two scalar towers), then any `S`-linear map from `M` to `M₂` is `R`-linear. See also `linear_map.map_smul_of_tower`. -/ def restrict_scalars {S : Type*} [semiring S] [module S M] [module S M₂] [compatible_smul M M₂ R S] (f : M →ₗ[S] M₂) : M →ₗ[R] M₂ := { to_fun := f, map_add' := f.map_add, map_smul' := f.map_smul_of_tower } variable {R} @[simp] lemma map_sum {ι} {t : finset ι} {g : ι → M} : f (∑ i in t, g i) = (∑ i in t, f (g i)) := f.to_add_monoid_hom.map_sum _ _ theorem to_add_monoid_hom_injective : function.injective (to_add_monoid_hom : (M →ₗ[R] M₂) → (M →+ M₂)) := λ f g h, ext $ add_monoid_hom.congr_fun h /-- If two `R`-linear maps from `R` are equal on `1`, then they are equal. -/ @[ext] theorem ext_ring {f g : R →ₗ[R] M} (h : f 1 = g 1) : f = g := ext $ λ x, by rw [← mul_one x, ← smul_eq_mul, f.map_smul, g.map_smul, h] theorem ext_ring_iff {f g : R →ₗ[R] M} : f = g ↔ f 1 = g 1 := ⟨λ h, h ▸ rfl, ext_ring⟩ end section variables {module_M : module R M} {module_M₂ : module R M₂} {module_M₃ : module R M₃} variables (f : M₂ →ₗ[R] M₃) (g : M →ₗ[R] M₂) /-- Composition of two linear maps is a linear map -/ def comp : M →ₗ[R] M₃ := ⟨f ∘ g, by simp, by simp⟩ lemma comp_apply (x : M) : f.comp g x = f (g x) := rfl @[simp, norm_cast] lemma coe_comp : (f.comp g : M → M₃) = f ∘ g := rfl @[simp] theorem comp_id : f.comp id = f := linear_map.ext $ λ x, rfl @[simp] theorem id_comp : id.comp f = f := linear_map.ext $ λ x, rfl end /-- If a function `g` is a left and right inverse of a linear map `f`, then `g` is linear itself. -/ def inverse [module R M] [module R M₂] (f : M →ₗ[R] M₂) (g : M₂ → M) (h₁ : left_inverse g f) (h₂ : right_inverse g f) : M₂ →ₗ[R] M := by dsimp [left_inverse, function.right_inverse] at h₁ h₂; exact ⟨g, λ x y, by { rw [← h₁ (g (x + y)), ← h₁ (g x + g y)]; simp [h₂] }, λ a b, by { rw [← h₁ (g (a • b)), ← h₁ (a • g b)]; simp [h₂] }⟩ end add_comm_monoid section add_comm_group variables [semiring R] [add_comm_group M] [add_comm_group M₂] variables {module_M : module R M} {module_M₂ : module R M₂} variables (f : M →ₗ[R] M₂) @[simp] lemma map_neg (x : M) : f (- x) = - f x := f.to_add_monoid_hom.map_neg x @[simp] lemma map_sub (x y : M) : f (x - y) = f x - f y := f.to_add_monoid_hom.map_sub x y instance : is_add_group_hom f := { map_add := map_add f } instance compatible_smul.int_module {S : Type*} [semiring S] [module S M] [module S M₂] : compatible_smul M M₂ ℤ S := ⟨λ f c x, begin induction c using int.induction_on, case hz : { simp }, case hp : n ih { simp [add_smul, ih] }, case hn : n ih { simp [sub_smul, ih] } end⟩ end add_comm_group end linear_map namespace is_linear_map section add_comm_monoid variables [semiring R] [add_comm_monoid M] [add_comm_monoid M₂] variables [module R M] [module R M₂] include R /-- Convert an `is_linear_map` predicate to a `linear_map` -/ def mk' (f : M → M₂) (H : is_linear_map R f) : M →ₗ M₂ := ⟨f, H.1, H.2⟩ @[simp] theorem mk'_apply {f : M → M₂} (H : is_linear_map R f) (x : M) : mk' f H x = f x := rfl lemma is_linear_map_smul {R M : Type*} [comm_semiring R] [add_comm_monoid M] [module R M] (c : R) : is_linear_map R (λ (z : M), c • z) := begin refine is_linear_map.mk (smul_add c) _, intros _ _, simp only [smul_smul, mul_comm] end lemma is_linear_map_smul' {R M : Type*} [semiring R] [add_comm_monoid M] [module R M] (a : M) : is_linear_map R (λ (c : R), c • a) := is_linear_map.mk (λ x y, add_smul x y a) (λ x y, mul_smul x y a) variables {f : M → M₂} (lin : is_linear_map R f) include M M₂ lin lemma map_zero : f (0 : M) = (0 : M₂) := (lin.mk' f).map_zero end add_comm_monoid section add_comm_group variables [semiring R] [add_comm_group M] [add_comm_group M₂] variables [module R M] [module R M₂] include R lemma is_linear_map_neg : is_linear_map R (λ (z : M), -z) := is_linear_map.mk neg_add (λ x y, (smul_neg x y).symm) variables {f : M → M₂} (lin : is_linear_map R f) include M M₂ lin lemma map_neg (x : M) : f (- x) = - f x := (lin.mk' f).map_neg x lemma map_sub (x y) : f (x - y) = f x - f y := (lin.mk' f).map_sub x y end add_comm_group end is_linear_map /-- Linear endomorphisms of a module, with associated ring structure `linear_map.endomorphism_semiring` and algebra structure `module.endomorphism_algebra`. -/ abbreviation module.End (R : Type u) (M : Type v) [semiring R] [add_comm_monoid M] [module R M] := M →ₗ[R] M /-- Reinterpret an additive homomorphism as a `ℤ`-linear map. -/ def add_monoid_hom.to_int_linear_map [add_comm_group M] [add_comm_group M₂] (f : M →+ M₂) : M →ₗ[ℤ] M₂ := ⟨f, f.map_add, f.map_int_module_smul⟩ /-- Reinterpret an additive homomorphism as a `ℚ`-linear map. -/ def add_monoid_hom.to_rat_linear_map [add_comm_group M] [module ℚ M] [add_comm_group M₂] [module ℚ M₂] (f : M →+ M₂) : M →ₗ[ℚ] M₂ := { map_smul' := f.map_rat_module_smul, ..f } /-! ### Linear equivalences -/ section set_option old_structure_cmd true /-- A linear equivalence is an invertible linear map. -/ @[nolint has_inhabited_instance] structure linear_equiv (R : Type u) (M : Type v) (M₂ : Type w) [semiring R] [add_comm_monoid M] [add_comm_monoid M₂] [module R M] [module R M₂] extends M →ₗ[R] M₂, M ≃+ M₂ end attribute [nolint doc_blame] linear_equiv.to_linear_map attribute [nolint doc_blame] linear_equiv.to_add_equiv infix ` ≃ₗ ` := linear_equiv _ notation M ` ≃ₗ[`:50 R `] ` M₂ := linear_equiv R M M₂ namespace linear_equiv section add_comm_monoid variables {M₄ : Type*} variables [semiring R] variables [add_comm_monoid M] [add_comm_monoid M₂] [add_comm_monoid M₃] [add_comm_monoid M₄] section variables [module R M] [module R M₂] [module R M₃] include R instance : has_coe (M ≃ₗ[R] M₂) (M →ₗ[R] M₂) := ⟨to_linear_map⟩ -- see Note [function coercion] instance : has_coe_to_fun (M ≃ₗ[R] M₂) := ⟨_, λ f, f.to_fun⟩ @[simp] lemma coe_mk {to_fun inv_fun map_add map_smul left_inv right_inv } : ⇑(⟨to_fun, map_add, map_smul, inv_fun, left_inv, right_inv⟩ : M ≃ₗ[R] M₂) = to_fun := rfl -- This exists for compatibility, previously `≃ₗ[R]` extended `≃` instead of `≃+`. @[nolint doc_blame] def to_equiv : (M ≃ₗ[R] M₂) → M ≃ M₂ := λ f, f.to_add_equiv.to_equiv lemma to_equiv_injective : function.injective (to_equiv : (M ≃ₗ[R] M₂) → M ≃ M₂) := λ ⟨_, _, _, _, _, _⟩ ⟨_, _, _, _, _, _⟩ h, linear_equiv.mk.inj_eq.mpr (equiv.mk.inj h) @[simp] lemma to_equiv_inj {e₁ e₂ : M ≃ₗ[R] M₂} : e₁.to_equiv = e₂.to_equiv ↔ e₁ = e₂ := to_equiv_injective.eq_iff lemma to_linear_map_injective : function.injective (coe : (M ≃ₗ[R] M₂) → (M →ₗ[R] M₂)) := λ e₁ e₂ H, to_equiv_injective $ equiv.ext $ linear_map.congr_fun H @[simp, norm_cast] lemma to_linear_map_inj {e₁ e₂ : M ≃ₗ[R] M₂} : (e₁ : M →ₗ[R] M₂) = e₂ ↔ e₁ = e₂ := to_linear_map_injective.eq_iff end section variables {module_M : module R M} {module_M₂ : module R M₂} variables (e e' : M ≃ₗ[R] M₂) lemma to_linear_map_eq_coe : e.to_linear_map = ↑e := rfl @[simp, norm_cast] theorem coe_coe : ⇑(e : M →ₗ[R] M₂) = e := rfl @[simp] lemma coe_to_equiv : ⇑e.to_equiv = e := rfl @[simp] lemma coe_to_linear_map : ⇑e.to_linear_map = e := rfl @[simp] lemma to_fun_eq_coe : e.to_fun = e := rfl section variables {e e'} @[ext] lemma ext (h : ∀ x, e x = e' x) : e = e' := to_equiv_injective (equiv.ext h) protected lemma congr_arg : Π {x x' : M}, x = x' → e x = e x' | _ _ rfl := rfl protected lemma congr_fun (h : e = e') (x : M) : e x = e' x := h ▸ rfl lemma ext_iff : e = e' ↔ ∀ x, e x = e' x := ⟨λ h x, h ▸ rfl, ext⟩ end section variables (M R) /-- The identity map is a linear equivalence. -/ @[refl] def refl [module R M] : M ≃ₗ[R] M := { .. linear_map.id, .. equiv.refl M } end @[simp] lemma refl_apply [module R M] (x : M) : refl R M x = x := rfl /-- Linear equivalences are symmetric. -/ @[symm] def symm : M₂ ≃ₗ[R] M := { .. e.to_linear_map.inverse e.inv_fun e.left_inv e.right_inv, .. e.to_equiv.symm } /-- See Note [custom simps projection] -/ def simps.symm_apply [module R M] [module R M₂] (e : M ≃ₗ[R] M₂) : M₂ → M := e.symm initialize_simps_projections linear_equiv (to_fun → apply, inv_fun → symm_apply) @[simp] lemma inv_fun_eq_symm : e.inv_fun = e.symm := rfl variables {module_M₃ : module R M₃} (e₁ : M ≃ₗ[R] M₂) (e₂ : M₂ ≃ₗ[R] M₃) /-- Linear equivalences are transitive. -/ @[trans] def trans : M ≃ₗ[R] M₃ := { .. e₂.to_linear_map.comp e₁.to_linear_map, .. e₁.to_equiv.trans e₂.to_equiv } @[simp] lemma coe_to_add_equiv : ⇑(e.to_add_equiv) = e := rfl /-- The two paths coercion can take to an `add_monoid_hom` are equivalent -/ lemma to_add_monoid_hom_commutes : e.to_linear_map.to_add_monoid_hom = e.to_add_equiv.to_add_monoid_hom := rfl @[simp] theorem trans_apply (c : M) : (e₁.trans e₂) c = e₂ (e₁ c) := rfl @[simp] theorem apply_symm_apply (c : M₂) : e (e.symm c) = c := e.6 c @[simp] theorem symm_apply_apply (b : M) : e.symm (e b) = b := e.5 b @[simp] lemma symm_trans_apply (c : M₃) : (e₁.trans e₂).symm c = e₁.symm (e₂.symm c) := rfl @[simp] lemma trans_refl : e.trans (refl R M₂) = e := to_equiv_injective e.to_equiv.trans_refl @[simp] lemma refl_trans : (refl R M).trans e = e := to_equiv_injective e.to_equiv.refl_trans lemma symm_apply_eq {x y} : e.symm x = y ↔ x = e y := e.to_equiv.symm_apply_eq lemma eq_symm_apply {x y} : y = e.symm x ↔ e y = x := e.to_equiv.eq_symm_apply @[simp] lemma trans_symm [module R M] [module R M₂] (f : M ≃ₗ[R] M₂) : f.trans f.symm = linear_equiv.refl R M := by { ext x, simp } @[simp] lemma symm_trans [module R M] [module R M₂] (f : M ≃ₗ[R] M₂) : f.symm.trans f = linear_equiv.refl R M₂ := by { ext x, simp } @[simp, norm_cast] lemma refl_to_linear_map [module R M] : (linear_equiv.refl R M : M →ₗ[R] M) = linear_map.id := rfl @[simp, norm_cast] lemma comp_coe [module R M] [module R M₂] [module R M₃] (f : M ≃ₗ[R] M₂) (f' : M₂ ≃ₗ[R] M₃) : (f' : M₂ →ₗ[R] M₃).comp (f : M →ₗ[R] M₂) = (f.trans f' : M →ₗ[R] M₃) := rfl @[simp] lemma mk_coe (h₁ h₂ f h₃ h₄) : (linear_equiv.mk e h₁ h₂ f h₃ h₄ : M ≃ₗ[R] M₂) = e := ext $ λ _, rfl @[simp] theorem map_add (a b : M) : e (a + b) = e a + e b := e.map_add' a b @[simp] theorem map_zero : e 0 = 0 := e.to_linear_map.map_zero @[simp] theorem map_smul (c : R) (x : M) : e (c • x) = c • e x := e.map_smul' c x @[simp] lemma map_sum {s : finset ι} (u : ι → M) : e (∑ i in s, u i) = ∑ i in s, e (u i) := e.to_linear_map.map_sum @[simp] theorem map_eq_zero_iff {x : M} : e x = 0 ↔ x = 0 := e.to_add_equiv.map_eq_zero_iff theorem map_ne_zero_iff {x : M} : e x ≠ 0 ↔ x ≠ 0 := e.to_add_equiv.map_ne_zero_iff @[simp] theorem symm_symm : e.symm.symm = e := by { cases e, refl } lemma symm_bijective [module R M] [module R M₂] : function.bijective (symm : (M ≃ₗ[R] M₂) → (M₂ ≃ₗ[R] M)) := equiv.bijective ⟨symm, symm, symm_symm, symm_symm⟩ @[simp] lemma mk_coe' (f h₁ h₂ h₃ h₄) : (linear_equiv.mk f h₁ h₂ ⇑e h₃ h₄ : M₂ ≃ₗ[R] M) = e.symm := symm_bijective.injective $ ext $ λ x, rfl @[simp] theorem symm_mk (f h₁ h₂ h₃ h₄) : (⟨e, h₁, h₂, f, h₃, h₄⟩ : M ≃ₗ[R] M₂).symm = { to_fun := f, inv_fun := e, ..(⟨e, h₁, h₂, f, h₃, h₄⟩ : M ≃ₗ[R] M₂).symm } := rfl protected lemma bijective : function.bijective e := e.to_equiv.bijective protected lemma injective : function.injective e := e.to_equiv.injective protected lemma surjective : function.surjective e := e.to_equiv.surjective protected lemma image_eq_preimage (s : set M) : e '' s = e.symm ⁻¹' s := e.to_equiv.image_eq_preimage s end /-- An involutive linear map is a linear equivalence. -/ def of_involutive [module R M] (f : M →ₗ[R] M) (hf : involutive f) : M ≃ₗ[R] M := { .. f, .. hf.to_equiv f } @[simp] lemma coe_of_involutive [module R M] (f : M →ₗ[R] M) (hf : involutive f) : ⇑(of_involutive f hf) = f := rfl end add_comm_monoid end linear_equiv
264fd74ae3fd626b1b52caf600d58d6077ee80de
b00eb947a9c4141624aa8919e94ce6dcd249ed70
/stage0/src/Init/Data/Int/Basic.lean
a40b134884b02bad8ad72221a86a998a0ce05891
[ "Apache-2.0" ]
permissive
gebner/lean4-old
a4129a041af2d4d12afb3a8d4deedabde727719b
ee51cdfaf63ee313c914d83264f91f414a0e3b6e
refs/heads/master
1,683,628,606,745
1,622,651,300,000
1,622,654,405,000
142,608,821
1
0
null
null
null
null
UTF-8
Lean
false
false
4,545
lean
/- Copyright (c) 2016 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura The integers, with addition, multiplication, and subtraction. -/ prelude import Init.Coe import Init.Data.Nat.Div import Init.Data.List.Basic open Nat /- the Type, coercions, and notation -/ inductive Int : Type where | ofNat : Nat → Int | negSucc : Nat → Int attribute [extern "lean_nat_to_int"] Int.ofNat attribute [extern "lean_int_neg_succ_of_nat"] Int.negSucc instance : Coe Nat Int := ⟨Int.ofNat⟩ namespace Int instance : Inhabited Int := ⟨ofNat 0⟩ def negOfNat : Nat → Int | 0 => 0 | succ m => negSucc m set_option bootstrap.genMatcherCode false in @[extern "lean_int_neg"] protected def neg (n : @& Int) : Int := match n with | ofNat n => negOfNat n | negSucc n => succ n def subNatNat (m n : Nat) : Int := match (n - m : Nat) with | 0 => ofNat (m - n) -- m ≥ n | (succ k) => negSucc k set_option bootstrap.genMatcherCode false in @[extern "lean_int_add"] protected def add (m n : @& Int) : Int := match m, n with | ofNat m, ofNat n => ofNat (m + n) | ofNat m, negSucc n => subNatNat m (succ n) | negSucc m, ofNat n => subNatNat n (succ m) | negSucc m, negSucc n => negSucc (succ (m + n)) set_option bootstrap.genMatcherCode false in @[extern "lean_int_mul"] protected def mul (m n : @& Int) : Int := match m, n with | ofNat m, ofNat n => ofNat (m * n) | ofNat m, negSucc n => negOfNat (m * succ n) | negSucc m, ofNat n => negOfNat (succ m * n) | negSucc m, negSucc n => ofNat (succ m * succ n) /- The `Neg Int` default instance must have priority higher than `low` since the default instance `OfNat Nat n` has `low` priority. ``` #check -42 ``` -/ @[defaultInstance mid] instance : Neg Int where neg := Int.neg instance : Add Int where add := Int.add instance : Mul Int where mul := Int.mul @[extern "lean_int_sub"] protected def sub (m n : @& Int) : Int := m + (- n) instance : Sub Int where sub := Int.sub inductive NonNeg : Int → Prop where | mk (n : Nat) : NonNeg (ofNat n) protected def le (a b : Int) : Prop := NonNeg (b - a) instance : LE Int where le := Int.le protected def lt (a b : Int) : Prop := (a + 1) ≤ b instance : LT Int where lt := Int.lt set_option bootstrap.genMatcherCode false in @[extern "lean_int_dec_eq"] protected def decEq (a b : @& Int) : Decidable (a = b) := match a, b with | ofNat a, ofNat b => match decEq a b with | isTrue h => isTrue <| h ▸ rfl | isFalse h => isFalse <| fun h' => Int.noConfusion h' (fun h' => absurd h' h) | negSucc a, negSucc b => match decEq a b with | isTrue h => isTrue <| h ▸ rfl | isFalse h => isFalse <| fun h' => Int.noConfusion h' (fun h' => absurd h' h) | ofNat a, negSucc b => isFalse <| fun h => Int.noConfusion h | negSucc a, ofNat b => isFalse <| fun h => Int.noConfusion h instance : DecidableEq Int := Int.decEq set_option bootstrap.genMatcherCode false in @[extern "lean_int_dec_nonneg"] private def decNonneg (m : @& Int) : Decidable (NonNeg m) := match m with | ofNat m => isTrue <| NonNeg.mk m | negSucc m => isFalse <| fun h => nomatch h @[extern "lean_int_dec_le"] instance decLe (a b : @& Int) : Decidable (a ≤ b) := decNonneg _ @[extern "lean_int_dec_lt"] instance decLt (a b : @& Int) : Decidable (a < b) := decNonneg _ set_option bootstrap.genMatcherCode false in @[extern "lean_nat_abs"] def natAbs (m : @& Int) : Nat := match m with | ofNat m => m | negSucc m => m.succ instance : OfNat Int n where ofNat := Int.ofNat n @[extern "lean_int_div"] def div : (@& Int) → (@& Int) → Int | ofNat m, ofNat n => ofNat (m / n) | ofNat m, negSucc n => -ofNat (m / succ n) | negSucc m, ofNat n => -ofNat (succ m / n) | negSucc m, negSucc n => ofNat (succ m / succ n) @[extern "lean_int_mod"] def mod : (@& Int) → (@& Int) → Int | ofNat m, ofNat n => ofNat (m % n) | ofNat m, negSucc n => ofNat (m % succ n) | negSucc m, ofNat n => -ofNat (succ m % n) | negSucc m, negSucc n => -ofNat (succ m % succ n) instance : Div Int where div := Int.div instance : Mod Int where mod := Int.mod def toNat : Int → Nat | ofNat n => n | negSucc n => 0 def natMod (m n : Int) : Nat := (m % n).toNat protected def Int.pow (m : Int) : Nat → Int | 0 => 1 | succ n => Int.pow m n * m instance : HPow Int Nat Int where hPow := Int.pow end Int
f1be3a800d25d171ff2cd2ab8435408049b6d4e3
d9d511f37a523cd7659d6f573f990e2a0af93c6f
/archive/imo/imo2006_q3.lean
b9b2f0f3062c9f993f65184dc9413e61ddd0c81b
[ "Apache-2.0" ]
permissive
hikari0108/mathlib
b7ea2b7350497ab1a0b87a09d093ecc025a50dfa
a9e7d333b0cfd45f13a20f7b96b7d52e19fa2901
refs/heads/master
1,690,483,608,260
1,631,541,580,000
1,631,541,580,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
5,418
lean
/- Copyright (c) 2021 Tian Chen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Tian Chen -/ import analysis.special_functions.sqrt /-! # IMO 2006 Q3 Determine the least real number $M$ such that $$ \left| ab(a^2 - b^2) + bc(b^2 - c^2) + ca(c^2 - a^2) \right| ≤ M (a^2 + b^2 + c^2)^2 $$ for all real numbers $a$, $b$, $c$. ## Solution The answer is $M = \frac{9 \sqrt 2}{32}$. This is essentially a translation of the solution in https://web.evanchen.cc/exams/IMO-2006-notes.pdf. It involves making the substitution `x = a - b`, `y = b - c`, `z = c - a`, `s = a + b + c`. -/ open real /-- Replacing `x` and `y` with their average increases the left side. -/ lemma lhs_ineq {x y : ℝ} (hxy : 0 ≤ x * y) : 16 * x ^ 2 * y ^ 2 * (x + y) ^ 2 ≤ ((x + y) ^ 2) ^ 3 := begin conv_rhs { rw pow_succ' }, refine mul_le_mul_of_nonneg_right _ (sq_nonneg _), apply le_of_sub_nonneg, calc ((x + y) ^ 2) ^ 2 - 16 * x ^ 2 * y ^ 2 = (x - y) ^ 2 * ((x + y) ^ 2 + 4 * (x * y)) : by ring ... ≥ 0 : mul_nonneg (sq_nonneg _) $ add_nonneg (sq_nonneg _) $ mul_nonneg zero_lt_four.le hxy end lemma four_pow_four_pos : (0 : ℝ) < 4 ^ 4 := pow_pos zero_lt_four _ lemma mid_ineq {s t : ℝ} : s * t ^ 3 ≤ (3 * t + s) ^ 4 / 4 ^ 4 := (le_div_iff four_pow_four_pos).mpr $ le_of_sub_nonneg $ calc (3 * t + s) ^ 4 - s * t ^ 3 * 4 ^ 4 = (s - t) ^ 2 * ((s + 7 * t) ^ 2 + 2 * (4 * t) ^ 2) : by ring ... ≥ 0 : mul_nonneg (sq_nonneg _) $ add_nonneg (sq_nonneg _) $ mul_nonneg zero_le_two (sq_nonneg _) /-- Replacing `x` and `y` with their average decreases the right side. -/ lemma rhs_ineq {x y : ℝ} : 3 * (x + y) ^ 2 ≤ 2 * (x ^ 2 + y ^ 2 + (x + y) ^ 2) := le_of_sub_nonneg $ calc _ = (x - y) ^ 2 : by ring ... ≥ 0 : sq_nonneg _ lemma zero_lt_32 : (0 : ℝ) < 32 := by norm_num theorem subst_wlog {x y z s : ℝ} (hxy : 0 ≤ x * y) (hxyz : x + y + z = 0) : 32 * abs (x * y * z * s) ≤ sqrt 2 * (x^2 + y^2 + z^2 + s^2)^2 := have hz : (x + y)^2 = z^2 := neg_eq_of_add_eq_zero hxyz ▸ (neg_sq _).symm, have hs : 0 ≤ 2 * s ^ 2 := mul_nonneg zero_le_two (sq_nonneg s), have this : _ := calc (2 * s^2) * (16 * x^2 * y^2 * (x + y)^2) ≤ (3 * (x + y)^2 + 2 * s^2)^4 / 4^4 : le_trans (mul_le_mul_of_nonneg_left (lhs_ineq hxy) hs) mid_ineq ... ≤ (2 * (x^2 + y^2 + (x + y)^2) + 2 * s^2)^4 / 4^4 : div_le_div_of_le four_pow_four_pos.le $ pow_le_pow_of_le_left (add_nonneg (mul_nonneg zero_lt_three.le (sq_nonneg _)) hs) (add_le_add_right rhs_ineq _) _, le_of_pow_le_pow _ (mul_nonneg (sqrt_nonneg _) (sq_nonneg _)) nat.succ_pos' $ calc (32 * abs (x * y * z * s)) ^ 2 = 32 * ((2 * s^2) * (16 * x^2 * y^2 * (x + y)^2)) : by rw [mul_pow, sq_abs, hz]; ring ... ≤ 32 * ((2 * (x^2 + y^2 + (x + y)^2) + 2 * s^2)^4 / 4^4) : mul_le_mul_of_nonneg_left this zero_lt_32.le ... = (sqrt 2 * (x^2 + y^2 + z^2 + s^2)^2)^2 : by rw [← div_mul_eq_mul_div_comm, mul_pow, sq_sqrt zero_le_two, hz, ← pow_mul, ← mul_add, mul_pow, ← mul_assoc]; exact congr (congr_arg _ $ by norm_num) rfl /-- Proof that `M = 9 * sqrt 2 / 32` works with the substitution. -/ theorem subst_proof₁ (x y z s : ℝ) (hxyz : x + y + z = 0) : abs (x * y * z * s) ≤ sqrt 2 / 32 * (x^2 + y^2 + z^2 + s^2)^2 := begin wlog h' := mul_nonneg_of_three x y z using [x y z, y z x, z x y] tactic.skip, { rw [div_mul_eq_mul_div, le_div_iff' zero_lt_32], exact subst_wlog h' hxyz }, { intro h, rw [add_assoc, add_comm] at h, rw [mul_assoc x, mul_comm x, add_assoc (x^2), add_comm (x^2)], exact this h }, { intro h, rw [add_comm, ← add_assoc] at h, rw [mul_comm _ z, ← mul_assoc, add_comm _ (z^2), ← add_assoc], exact this h } end lemma lhs_identity (a b c : ℝ) : a * b * (a^2 - b^2) + b * c * (b^2 - c^2) + c * a * (c^2 - a^2) = (a - b) * (b - c) * (c - a) * -(a + b + c) := by ring theorem proof₁ {a b c : ℝ} : abs (a * b * (a^2 - b^2) + b * c * (b^2 - c^2) + c * a * (c^2 - a^2)) ≤ 9 * sqrt 2 / 32 * (a^2 + b^2 + c^2)^2 := calc _ = _ : congr_arg _ $ lhs_identity a b c ... ≤ _ : subst_proof₁ (a - b) (b - c) (c - a) (-(a + b + c)) (by ring) ... = _ : by ring theorem proof₂ (M : ℝ) (h : ∀ a b c : ℝ, abs (a * b * (a^2 - b^2) + b * c * (b^2 - c^2) + c * a * (c^2 - a^2)) ≤ M * (a^2 + b^2 + c^2)^2) : 9 * sqrt 2 / 32 ≤ M := begin have h₁ : ∀ x : ℝ, (2 - 3 * x - 2) * (2 - (2 + 3 * x)) * (2 + 3 * x - (2 - 3 * x)) * -(2 - 3 * x + 2 + (2 + 3 * x)) = -(18 ^ 2 * x ^ 2 * x), { intro, ring }, have h₂ : ∀ x : ℝ, (2 - 3 * x) ^ 2 + 2 ^ 2 + (2 + 3 * x) ^ 2 = 18 * x ^ 2 + 12, { intro, ring }, have := h (2 - 3 * sqrt 2) 2 (2 + 3 * sqrt 2), rw [lhs_identity, h₁, h₂, sq_sqrt zero_le_two, abs_neg, abs_eq_self.mpr, ← div_le_iff] at this, { convert this using 1, ring }, { apply pow_pos, norm_num }, { exact mul_nonneg (mul_nonneg (sq_nonneg _) zero_le_two) (sqrt_nonneg _) } end theorem imo2006_q3 (M : ℝ) : (∀ a b c : ℝ, abs (a * b * (a^2 - b^2) + b * c * (b^2 - c^2) + c * a * (c^2 - a^2)) ≤ M * (a^2 + b^2 + c^2)^2) ↔ 9 * sqrt 2 / 32 ≤ M := ⟨proof₂ M, λ h _ _ _, le_trans proof₁ $ mul_le_mul_of_nonneg_right h $ sq_nonneg _⟩
66a0ee58a6e490a1f43e79b4cab0effe417ba705
07c6143268cfb72beccd1cc35735d424ebcb187b
/src/algebra/ring.lean
67b8f006bcf47327dcfcd677d361a6469d7d5110
[ "Apache-2.0" ]
permissive
khoek/mathlib
bc49a842910af13a3c372748310e86467d1dc766
aa55f8b50354b3e11ba64792dcb06cccb2d8ee28
refs/heads/master
1,588,232,063,837
1,587,304,803,000
1,587,304,803,000
176,688,517
0
0
Apache-2.0
1,553,070,585,000
1,553,070,585,000
null
UTF-8
Lean
false
false
29,195
lean
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Floris van Doorn, Amelia Livingston -/ import algebra.group.with_one import deprecated.group import tactic.norm_cast /-! # Properties and homomorphisms of semirings and rings This file proves simple properties of semirings, rings and domains and their unit groups. It also defines homomorphisms of semirings and rings, both unbundled (e.g. `is_semiring_hom f`) and bundled (e.g. `ring_hom a β`, a.k.a. `α →+* β`). The unbundled ones are deprecated and the plan is to slowly remove them from mathlib. ## Main definitions is_semiring_hom (deprecated), is_ring_hom (deprecated), ring_hom, nonzero_comm_semiring, nonzero_comm_ring, domain ## Notations →+* for bundled ring homs (also use for semiring homs) ## Implementation notes There's a coercion from bundled homs to fun, and the canonical notation is to use the bundled hom as a function via this coercion. There is no `semiring_hom` -- the idea is that `ring_hom` is used. The constructor for a `ring_hom` between semirings needs a proof of `map_zero`, `map_one` and `map_add` as well as `map_mul`; a separate constructor `ring_hom.mk'` will construct ring homs between rings from monoid homs given only a proof that addition is preserved. Throughout the section on `ring_hom` implicit `{}` brackets are often used instead of type class `[]` brackets. This is done when the instances can be inferred because they are implicit arguments to the type `ring_hom`. When they can be inferred from the type it is faster to use this method than to use type class inference. ## Tags is_ring_hom, is_semiring_hom, ring_hom, semiring_hom, semiring, comm_semiring, ring, comm_ring, domain, integral_domain, nonzero_comm_semiring, nonzero_comm_ring, units -/ universes u v w variable {α : Type u} section variable [semiring α] theorem mul_two (n : α) : n * 2 = n + n := (left_distrib n 1 1).trans (by simp) theorem bit0_eq_two_mul (n : α) : bit0 n = 2 * n := (two_mul _).symm @[to_additive] lemma mul_ite {α} [has_mul α] (P : Prop) [decidable P] (a b c : α) : a * (if P then b else c) = if P then a * b else a * c := by split_ifs; refl @[to_additive] lemma ite_mul {α} [has_mul α] (P : Prop) [decidable P] (a b c : α) : (if P then a else b) * c = if P then a * c else b * c := by split_ifs; refl -- We make `mul_ite` and `ite_mul` simp lemmas, -- but not `add_ite` or `ite_add`. -- The problem we're trying to avoid is dealing with -- summations of the form `s.sum (λ x, f x + ite P 1 0)`, -- in which `add_ite` followed by `sum_ite` would needlessly slice up -- the `f x` terms according to whether `P` holds at `x`. -- There doesn't appear to be a corresponding difficulty so far with -- `mul_ite` and `ite_mul`. attribute [simp] mul_ite ite_mul @[simp] lemma mul_boole {α} [semiring α] (P : Prop) [decidable P] (a : α) : a * (if P then 1 else 0) = if P then a else 0 := by simp @[simp] lemma boole_mul {α} [semiring α] (P : Prop) [decidable P] (a : α) : (if P then 1 else 0) * a = if P then a else 0 := by simp variable (α) /-- Either zero and one are nonequal in a semiring, or the semiring is the zero ring. -/ lemma zero_ne_one_or_forall_eq_0 : (0 : α) ≠ 1 ∨ (∀a:α, a = 0) := by haveI := classical.dec; refine not_or_of_imp (λ h a, _); simpa using congr_arg ((*) a) h.symm /-- If zero equals one in a semiring, the semiring is the zero ring. -/ lemma eq_zero_of_zero_eq_one (h : (0 : α) = 1) : (∀a:α, a = 0) := (zero_ne_one_or_forall_eq_0 α).neg_resolve_left h /-- If zero equals one in a semiring, all elements of that semiring are equal. -/ theorem subsingleton_of_zero_eq_one (h : (0 : α) = 1) : subsingleton α := ⟨λa b, by rw [eq_zero_of_zero_eq_one α h a, eq_zero_of_zero_eq_one α h b]⟩ end namespace units variables [ring α] {a b : α} /-- Each element of the group of units of a ring has an additive inverse. -/ instance : has_neg (units α) := ⟨λu, ⟨-↑u, -↑u⁻¹, by simp, by simp⟩ ⟩ /-- Representing an element of a ring's unit group as an element of the ring commutes with mapping this element to its additive inverse. -/ @[simp] protected theorem coe_neg (u : units α) : (↑-u : α) = -u := rfl /-- Mapping an element of a ring's unit group to its inverse commutes with mapping this element to its additive inverse. -/ @[simp] protected theorem neg_inv (u : units α) : (-u)⁻¹ = -u⁻¹ := rfl /-- An element of a ring's unit group equals the additive inverse of its additive inverse. -/ @[simp] protected theorem neg_neg (u : units α) : - -u = u := units.ext $ neg_neg _ /-- Multiplication of elements of a ring's unit group commutes with mapping the first argument to its additive inverse. -/ @[simp] protected theorem neg_mul (u₁ u₂ : units α) : -u₁ * u₂ = -(u₁ * u₂) := units.ext $ neg_mul_eq_neg_mul_symm _ _ /-- Multiplication of elements of a ring's unit group commutes with mapping the second argument to its additive inverse. -/ @[simp] protected theorem mul_neg (u₁ u₂ : units α) : u₁ * -u₂ = -(u₁ * u₂) := units.ext $ (neg_mul_eq_mul_neg _ _).symm /-- Multiplication of the additive inverses of two elements of a ring's unit group equals multiplication of the two original elements. -/ @[simp] protected theorem neg_mul_neg (u₁ u₂ : units α) : -u₁ * -u₂ = u₁ * u₂ := by simp /-- The additive inverse of an element of a ring's unit group equals the additive inverse of one times the original element. -/ protected theorem neg_eq_neg_one_mul (u : units α) : -u = -1 * u := by simp end units instance [semiring α] : semiring (with_zero α) := { left_distrib := λ a b c, begin cases a with a, {refl}, cases b with b; cases c with c; try {refl}, exact congr_arg some (left_distrib _ _ _) end, right_distrib := λ a b c, begin cases c with c, { change (a + b) * 0 = a * 0 + b * 0, simp }, cases a with a; cases b with b; try {refl}, exact congr_arg some (right_distrib _ _ _) end, ..with_zero.add_comm_monoid, ..with_zero.mul_zero_class, ..with_zero.monoid } attribute [refl] dvd_refl attribute [trans] dvd.trans /-- Predicate for semiring homomorphisms (deprecated -- use the bundled `ring_hom` version). -/ class is_semiring_hom {α : Type u} {β : Type v} [semiring α] [semiring β] (f : α → β) : Prop := (map_zero [] : f 0 = 0) (map_one [] : f 1 = 1) (map_add [] : ∀ {x y}, f (x + y) = f x + f y) (map_mul [] : ∀ {x y}, f (x * y) = f x * f y) namespace is_semiring_hom variables {β : Type v} [semiring α] [semiring β] variables (f : α → β) [is_semiring_hom f] {x y : α} /-- The identity map is a semiring homomorphism. -/ instance id : is_semiring_hom (@id α) := by refine {..}; intros; refl /-- The composition of two semiring homomorphisms is a semiring homomorphism. -/ -- see Note [no instance on morphisms] lemma comp {γ} [semiring γ] (g : β → γ) [is_semiring_hom g] : is_semiring_hom (g ∘ f) := { map_zero := by simp [map_zero f]; exact map_zero g, map_one := by simp [map_one f]; exact map_one g, map_add := λ x y, by simp [map_add f]; rw map_add g; refl, map_mul := λ x y, by simp [map_mul f]; rw map_mul g; refl } /-- A semiring homomorphism is an additive monoid homomorphism. -/ @[priority 100] -- see Note [lower instance priority] instance : is_add_monoid_hom f := { ..‹is_semiring_hom f› } /-- A semiring homomorphism is a monoid homomorphism. -/ @[priority 100] -- see Note [lower instance priority] instance : is_monoid_hom f := { ..‹is_semiring_hom f› } end is_semiring_hom section variables [ring α] (a b c d e : α) /-- An element of a ring multiplied by the additive inverse of one is the element's additive inverse. -/ lemma mul_neg_one (a : α) : a * -1 = -a := by simp /-- The additive inverse of one multiplied by an element of a ring is the element's additive inverse. -/ lemma neg_one_mul (a : α) : -1 * a = -a := by simp /-- An iff statement following from right distributivity in rings and the definition of subtraction. -/ theorem mul_add_eq_mul_add_iff_sub_mul_add_eq : a * e + c = b * e + d ↔ (a - b) * e + c = d := calc a * e + c = b * e + d ↔ a * e + c = d + b * e : by simp [add_comm] ... ↔ a * e + c - b * e = d : iff.intro (λ h, begin rw h, simp end) (λ h, begin rw ← h, simp end) ... ↔ (a - b) * e + c = d : begin simp [sub_mul, sub_add_eq_add_sub] end /-- A simplification of one side of an equation exploiting right distributivity in rings and the definition of subtraction. -/ theorem sub_mul_add_eq_of_mul_add_eq_mul_add : a * e + c = b * e + d → (a - b) * e + c = d := assume h, calc (a - b) * e + c = (a * e + c) - b * e : begin simp [sub_mul, sub_add_eq_add_sub] end ... = d : begin rw h, simp [@add_sub_cancel α] end /-- If the product of two elements of a ring is nonzero, both elements are nonzero. -/ theorem ne_zero_and_ne_zero_of_mul_ne_zero {a b : α} (h : a * b ≠ 0) : a ≠ 0 ∧ b ≠ 0 := begin split, { intro ha, apply h, simp [ha] }, { intro hb, apply h, simp [hb] } end end /-- Given an element a of a commutative semiring, there exists another element whose product with zero equals a iff a equals zero. -/ @[simp] lemma zero_dvd_iff [comm_semiring α] {a : α} : 0 ∣ a ↔ a = 0 := ⟨eq_zero_of_zero_dvd, λ h, by rw h⟩ section comm_ring variable [comm_ring α] /-- Representation of a difference of two squares in a commutative ring as a product. -/ theorem mul_self_sub_mul_self (a b : α) : a * a - b * b = (a + b) * (a - b) := by rw [add_mul, mul_sub, mul_sub, mul_comm a b, sub_add_sub_cancel] /-- An element a of a commutative ring divides the additive inverse of an element b iff a divides b. -/ @[simp] lemma dvd_neg (a b : α) : (a ∣ -b) ↔ (a ∣ b) := ⟨dvd_of_dvd_neg, dvd_neg_of_dvd⟩ /-- The additive inverse of an element a of a commutative ring divides another element b iff a divides b. -/ @[simp] lemma neg_dvd (a b : α) : (-a ∣ b) ↔ (a ∣ b) := ⟨dvd_of_neg_dvd, neg_dvd_of_dvd⟩ /-- If an element a divides another element c in a commutative ring, a divides the sum of another element b with c iff a divides b. -/ theorem dvd_add_left {a b c : α} (h : a ∣ c) : a ∣ b + c ↔ a ∣ b := (dvd_add_iff_left h).symm /-- If an element a divides another element b in a commutative ring, a divides the sum of b and another element c iff a divides c. -/ theorem dvd_add_right {a b c : α} (h : a ∣ b) : a ∣ b + c ↔ a ∣ c := (dvd_add_iff_right h).symm /-- An element a divides the sum a + b if and only if a divides b.-/ @[simp] lemma dvd_add_self_left {a b : α} : a ∣ a + b ↔ a ∣ b := dvd_add_right (dvd_refl a) /-- An element a divides the sum b + a if and only if a divides b.-/ @[simp] lemma dvd_add_self_right {a b : α} : a ∣ b + a ↔ a ∣ b := dvd_add_left (dvd_refl a) /-- Vieta's formula for a quadratic equation, relating the coefficients of the polynomial with its roots. This particular version states that if we have a root `x` of a monic quadratic polynomial, then there is another root `y` such that `x + y` is negative the `a_1` coefficient and `x * y` is the `a_0` coefficient. -/ lemma Vieta_formula_quadratic {b c x : α} (h : x * x - b * x + c = 0) : ∃ y : α, y * y - b * y + c = 0 ∧ x + y = b ∧ x * y = c := begin have : c = -(x * x - b * x) := (neg_eq_of_add_eq_zero h).symm, have : c = x * (b - x), by subst this; simp [mul_sub, mul_comm], refine ⟨b - x, _, by simp, by rw this⟩, rw [this, sub_add, ← sub_mul, sub_self] end end comm_ring /-- Predicate for ring homomorphisms (deprecated -- use the bundled `ring_hom` version). -/ class is_ring_hom {α : Type u} {β : Type v} [ring α] [ring β] (f : α → β) : Prop := (map_one [] : f 1 = 1) (map_mul [] : ∀ {x y}, f (x * y) = f x * f y) (map_add [] : ∀ {x y}, f (x + y) = f x + f y) namespace is_ring_hom variables {β : Type v} [ring α] [ring β] /-- A map of rings that is a semiring homomorphism is also a ring homomorphism. -/ lemma of_semiring (f : α → β) [H : is_semiring_hom f] : is_ring_hom f := {..H} variables (f : α → β) [is_ring_hom f] {x y : α} /-- Ring homomorphisms map zero to zero. -/ lemma map_zero : f 0 = 0 := calc f 0 = f (0 + 0) - f 0 : by rw [map_add f]; simp ... = 0 : by simp /-- Ring homomorphisms preserve additive inverses. -/ lemma map_neg : f (-x) = -f x := calc f (-x) = f (-x + x) - f x : by rw [map_add f]; simp ... = -f x : by simp [map_zero f] /-- Ring homomorphisms preserve subtraction. -/ lemma map_sub : f (x - y) = f x - f y := by simp [sub_eq_add_neg, map_add f, map_neg f] /-- The identity map is a ring homomorphism. -/ instance id : is_ring_hom (@id α) := by refine {..}; intros; refl /-- The composition of two ring homomorphisms is a ring homomorphism. -/ -- see Note [no instance on morphisms] lemma comp {γ} [ring γ] (g : β → γ) [is_ring_hom g] : is_ring_hom (g ∘ f) := { map_add := λ x y, by simp [map_add f]; rw map_add g; refl, map_mul := λ x y, by simp [map_mul f]; rw map_mul g; refl, map_one := by simp [map_one f]; exact map_one g } /-- A ring homomorphism is also a semiring homomorphism. -/ @[priority 100] -- see Note [lower instance priority] instance : is_semiring_hom f := { map_zero := map_zero f, ..‹is_ring_hom f› } @[priority 100] -- see Note [lower instance priority] instance : is_add_group_hom f := { } end is_ring_hom set_option old_structure_cmd true section prio set_option default_priority 100 -- see Note [default priority] /-- Bundled semiring homomorphisms; use this for bundled ring homomorphisms too. -/ structure ring_hom (α : Type*) (β : Type*) [semiring α] [semiring β] extends monoid_hom α β, add_monoid_hom α β end prio infixr ` →+* `:25 := ring_hom instance {α : Type*} {β : Type*} {rα : semiring α} {rβ : semiring β} : has_coe_to_fun (α →+* β) := ⟨_, ring_hom.to_fun⟩ instance {α : Type*} {β : Type*} {rα : semiring α} {rβ : semiring β} : has_coe (α →+* β) (α →* β) := ⟨ring_hom.to_monoid_hom⟩ instance {α : Type*} {β : Type*} {rα : semiring α} {rβ : semiring β} : has_coe (α →+* β) (α →+ β) := ⟨ring_hom.to_add_monoid_hom⟩ lemma coe_monoid_hom {α : Type*} {β : Type*} {rα : semiring α} {rβ : semiring β} (f : α →+* β) (a : α) : ((f : α →* β) : α → β) a = (f : α → β) a := rfl lemma coe_add_monoid_hom {α : Type*} {β : Type*} {rα : semiring α} {rβ : semiring β} (f : α →+* β) (a : α) : ((f : α →+ β) : α → β) a = (f : α → β) a := rfl @[norm_cast] lemma coe_monoid_hom' {α : Type*} {β : Type*} {rα : semiring α} {rβ : semiring β} (f : α →+* β) : ((f : α →* β) : α → β) = (f : α → β) := by { apply funext, intro, apply coe_monoid_hom } @[norm_cast] lemma coe_add_monoid_hom' {α : Type*} {β : Type*} {rα : semiring α} {rβ : semiring β} (f : α →+* β) : ((f : α →+ β) : α → β) = (f : α → β) := by { apply funext, intro, apply coe_add_monoid_hom } namespace ring_hom variables {β : Type v} {γ : Type w} [rα : semiring α] [rβ : semiring β] include rα rβ /-- Interpret `f : α → β` with `is_semiring_hom f` as a ring homomorphism. -/ def of (f : α → β) [is_semiring_hom f] : α →+* β := { to_fun := f, .. monoid_hom.of f, .. add_monoid_hom.of f } @[simp] lemma coe_of (f : α → β) [is_semiring_hom f] : ⇑(of f) = f := rfl @[simp] lemma coe_mk (f : α → β) (h₁ h₂ h₃ h₄) : ⇑(⟨f, h₁, h₂, h₃, h₄⟩ : α →+* β) = f := rfl variables (f : α →+* β) {x y : α} {rα rβ} theorem coe_inj ⦃f g : α →+* β⦄ (h : (f : α → β) = g) : f = g := by cases f; cases g; cases h; refl @[ext] theorem ext ⦃f g : α →+* β⦄ (h : ∀ x, f x = g x) : f = g := coe_inj (funext h) theorem ext_iff {f g : α →+* β} : f = g ↔ ∀ x, f x = g x := ⟨λ h x, h ▸ rfl, λ h, ext h⟩ /-- Ring homomorphisms map zero to zero. -/ @[simp] lemma map_zero (f : α →+* β) : f 0 = 0 := f.map_zero' /-- Ring homomorphisms map one to one. -/ @[simp] lemma map_one (f : α →+* β) : f 1 = 1 := f.map_one' /-- Ring homomorphisms preserve addition. -/ @[simp] lemma map_add (f : α →+* β) (a b : α) : f (a + b) = f a + f b := f.map_add' a b /-- Ring homomorphisms preserve multiplication. -/ @[simp] lemma map_mul (f : α →+* β) (a b : α) : f (a * b) = f a * f b := f.map_mul' a b instance (f : α →+* β) : is_semiring_hom f := { map_zero := f.map_zero, map_one := f.map_one, map_add := f.map_add, map_mul := f.map_mul } omit rα rβ instance {α γ} [ring α] [ring γ] (g : α →+* γ) : is_ring_hom g := is_ring_hom.of_semiring g /-- The identity ring homomorphism from a semiring to itself. -/ def id (α : Type*) [semiring α] : α →+* α := by refine {to_fun := id, ..}; intros; refl include rα @[simp] lemma id_apply : ring_hom.id α x = x := rfl variable {rγ : semiring γ} include rβ rγ /-- Composition of ring homomorphisms is a ring homomorphism. -/ def comp (hnp : β →+* γ) (hmn : α →+* β) : α →+* γ := { to_fun := hnp ∘ hmn, map_zero' := by simp, map_one' := by simp, map_add' := λ x y, by simp, map_mul' := λ x y, by simp} /-- Composition of semiring homomorphisms is associative. -/ lemma comp_assoc {δ} {rδ: semiring δ} (f : α →+* β) (g : β →+* γ) (h : γ →+* δ) : (h.comp g).comp f = h.comp (g.comp f) := rfl @[simp] lemma coe_comp (hnp : β →+* γ) (hmn : α →+* β) : (hnp.comp hmn : α → γ) = hnp ∘ hmn := rfl lemma comp_apply (hnp : β →+* γ) (hmn : α →+* β) (x : α) : (hnp.comp hmn : α → γ) x = (hnp (hmn x)) := rfl lemma cancel_right {g₁ g₂ : β →+* γ} {f : α →+* β} (hf : function.surjective f) : g₁.comp f = g₂.comp f ↔ g₁ = g₂ := ⟨λ h, ring_hom.ext $ (forall_iff_forall_surj hf).1 (ext_iff.1 h), λ h, h ▸ rfl⟩ lemma cancel_left {g : β →+* γ} {f₁ f₂ : α →+* β} (hg : function.injective g) : g.comp f₁ = g.comp f₂ ↔ f₁ = f₂ := ⟨λ h, ring_hom.ext $ λ x, hg $ by rw [← comp_apply, h, comp_apply], λ h, h ▸ rfl⟩ omit rα rβ rγ /-- Ring homomorphisms preserve additive inverse. -/ @[simp] theorem map_neg {α β} [ring α] [ring β] (f : α →+* β) (x : α) : f (-x) = -(f x) := eq_neg_of_add_eq_zero $ by rw [←f.map_add, neg_add_self, f.map_zero] /-- Ring homomorphisms preserve subtraction. -/ @[simp] theorem map_sub {α β} [ring α] [ring β] (f : α →+* β) (x y : α) : f (x - y) = (f x) - (f y) := by simp [sub_eq_add_neg] /-- A ring homomorphism is injective iff its kernel is trivial. -/ theorem injective_iff {α β} [ring α] [ring β] (f : α →+* β) : function.injective f ↔ (∀ a, f a = 0 → a = 0) := add_monoid_hom.injective_iff f.to_add_monoid_hom include rα /-- Makes a ring homomorphism from a monoid homomorphism of rings which preserves addition. -/ def mk' {γ} [ring γ] (f : α →* γ) (map_add : ∀ a b : α, f (a + b) = f a + f b) : α →+* γ := { to_fun := f, map_zero' := add_self_iff_eq_zero.1 $ by rw [←map_add, add_zero], map_one' := f.map_one, map_mul' := f.map_mul, map_add' := map_add } end ring_hom section prio set_option default_priority 100 -- see Note [default priority] /-- Predicate for commutative semirings in which zero does not equal one. -/ class nonzero_comm_semiring (α : Type*) extends comm_semiring α, zero_ne_one_class α /-- Predicate for commutative rings in which zero does not equal one. -/ class nonzero_comm_ring (α : Type*) extends comm_ring α, zero_ne_one_class α end prio -- This could be generalized, for example if we added `nonzero_ring` into the hierarchy, -- but it doesn't seem worth doing just for these lemmas. lemma succ_ne_self [nonzero_comm_ring α] (a : α) : a + 1 ≠ a := λ h, one_ne_zero ((add_left_inj a).mp (by simp [h])) -- As with succ_ne_self. lemma pred_ne_self [nonzero_comm_ring α] (a : α) : a - 1 ≠ a := λ h, one_ne_zero (neg_inj ((add_left_inj a).mp (by { convert h, simp }))) /-- A nonzero commutative ring is a nonzero commutative semiring. -/ @[priority 100] -- see Note [lower instance priority] instance nonzero_comm_ring.to_nonzero_comm_semiring {α : Type*} [I : nonzero_comm_ring α] : nonzero_comm_semiring α := { zero_ne_one := by convert zero_ne_one, ..show comm_semiring α, by apply_instance } /-- An integral domain is a nonzero commutative ring. -/ @[priority 100] -- see Note [lower instance priority] instance integral_domain.to_nonzero_comm_ring (α : Type*) [id : integral_domain α] : nonzero_comm_ring α := { ..id } /-- An element of the unit group of a nonzero commutative semiring represented as an element of the semiring is nonzero. -/ lemma units.coe_ne_zero [nonzero_comm_semiring α] (u : units α) : (u : α) ≠ 0 := λ h : u.1 = 0, by simpa [h, zero_ne_one] using u.3 /-- Makes a nonzero commutative ring from a commutative ring containing at least two distinct elements. -/ def nonzero_comm_ring.of_ne [comm_ring α] {x y : α} (h : x ≠ y) : nonzero_comm_ring α := { one := 1, zero := 0, zero_ne_one := λ h01, h $ by rw [← one_mul x, ← one_mul y, ← h01, zero_mul, zero_mul], ..show comm_ring α, by apply_instance } /-- Makes a nonzero commutative semiring from a commutative semiring containing at least two distinct elements. -/ def nonzero_comm_semiring.of_ne [comm_semiring α] {x y : α} (h : x ≠ y) : nonzero_comm_semiring α := { one := 1, zero := 0, zero_ne_one := λ h01, h $ by rw [← one_mul x, ← one_mul y, ← h01, zero_mul, zero_mul], ..show comm_semiring α, by apply_instance } /-- this is needed for compatibility between Lean 3.4.2 and Lean 3.5.1c -/ def has_div_of_division_ring [division_ring α] : has_div α := division_ring_has_div section prio set_option default_priority 100 -- see Note [default priority] /-- A domain is a ring with no zero divisors, i.e. satisfying the condition `a * b = 0 ↔ a = 0 ∨ b = 0`. Alternatively, a domain is an integral domain without assuming commutativity of multiplication. -/ class domain (α : Type u) extends ring α, no_zero_divisors α, zero_ne_one_class α end prio section domain variable [domain α] /-- Simplification theorems for the definition of a domain. -/ @[simp] theorem mul_eq_zero {a b : α} : a * b = 0 ↔ a = 0 ∨ b = 0 := ⟨eq_zero_or_eq_zero_of_mul_eq_zero, λo, or.elim o (λh, by rw h; apply zero_mul) (λh, by rw h; apply mul_zero)⟩ @[simp] theorem zero_eq_mul {a b : α} : 0 = a * b ↔ a = 0 ∨ b = 0 := by rw [eq_comm, mul_eq_zero] lemma mul_self_eq_zero {α} [domain α] {x : α} : x * x = 0 ↔ x = 0 := by simp lemma zero_eq_mul_self {α} [domain α] {x : α} : 0 = x * x ↔ x = 0 := by simp /-- The product of two nonzero elements of a domain is nonzero. -/ theorem mul_ne_zero' {a b : α} (h₁ : a ≠ 0) (h₂ : b ≠ 0) : a * b ≠ 0 := λ h, or.elim (eq_zero_or_eq_zero_of_mul_eq_zero h) h₁ h₂ /-- Right multiplication by a nonzero element in a domain is injective. -/ theorem domain.mul_right_inj {a b c : α} (ha : a ≠ 0) : b * a = c * a ↔ b = c := by rw [← sub_eq_zero, ← mul_sub_right_distrib, mul_eq_zero]; simp [ha]; exact sub_eq_zero /-- Left multiplication by a nonzero element in a domain is injective. -/ theorem domain.mul_left_inj {a b c : α} (ha : a ≠ 0) : a * b = a * c ↔ b = c := by rw [← sub_eq_zero, ← mul_sub_left_distrib, mul_eq_zero]; simp [ha]; exact sub_eq_zero /-- An element of a domain fixed by right multiplication by an element other than one must be zero. -/ theorem eq_zero_of_mul_eq_self_right' {a b : α} (h₁ : b ≠ 1) (h₂ : a * b = a) : a = 0 := by apply (mul_eq_zero.1 _).resolve_right (sub_ne_zero.2 h₁); rw [mul_sub_left_distrib, mul_one, sub_eq_zero, h₂] /-- An element of a domain fixed by left multiplication by an element other than one must be zero. -/ theorem eq_zero_of_mul_eq_self_left' {a b : α} (h₁ : b ≠ 1) (h₂ : b * a = a) : a = 0 := by apply (mul_eq_zero.1 _).resolve_left (sub_ne_zero.2 h₁); rw [mul_sub_right_distrib, one_mul, sub_eq_zero, h₂] /-- For elements a, b of a domain, if a*b is nonzero, so is b*a. -/ theorem mul_ne_zero_comm' {a b : α} (h : a * b ≠ 0) : b * a ≠ 0 := mul_ne_zero' (ne_zero_of_mul_ne_zero_left h) (ne_zero_of_mul_ne_zero_right h) end domain /- integral domains -/ section variables [s : integral_domain α] (a b c d e : α) include s /-- An integral domain is a domain. -/ @[priority 100] -- see Note [lower instance priority] instance integral_domain.to_domain : domain α := {..s, ..(by apply_instance : semiring α)} /-- Right multiplcation by a nonzero element of an integral domain is injective. -/ theorem eq_of_mul_eq_mul_right_of_ne_zero {a b c : α} (ha : a ≠ 0) (h : b * a = c * a) : b = c := have b * a - c * a = 0, by simp [h], have (b - c) * a = 0, by rw [mul_sub_right_distrib, this], have b - c = 0, from (eq_zero_or_eq_zero_of_mul_eq_zero this).resolve_right ha, eq_of_sub_eq_zero this /-- Left multiplication by a nonzero element of an integral domain is injective. -/ theorem eq_of_mul_eq_mul_left_of_ne_zero {a b c : α} (ha : a ≠ 0) (h : a * b = a * c) : b = c := have a * b - a * c = 0, by simp [h], have a * (b - c) = 0, by rw [mul_sub_left_distrib, this], have b - c = 0, from (eq_zero_or_eq_zero_of_mul_eq_zero this).resolve_left ha, eq_of_sub_eq_zero this /-- Given two elements b, c of an integral domain and a nonzero element a, a*b divides a*c iff b divides c. -/ theorem mul_dvd_mul_iff_left {a b c : α} (ha : a ≠ 0) : a * b ∣ a * c ↔ b ∣ c := exists_congr $ λ d, by rw [mul_assoc, domain.mul_left_inj ha] /-- Given two elements a, b of an integral domain and a nonzero element c, a*c divides b*c iff a divides b. -/ theorem mul_dvd_mul_iff_right {a b c : α} (hc : c ≠ 0) : a * c ∣ b * c ↔ a ∣ b := exists_congr $ λ d, by rw [mul_right_comm, domain.mul_right_inj hc] /-- In the unit group of an integral domain, a unit is its own inverse iff the unit is one or one's additive inverse. -/ lemma units.inv_eq_self_iff (u : units α) : u⁻¹ = u ↔ u = 1 ∨ u = -1 := by conv {to_lhs, rw [inv_eq_iff_mul_eq_one, ← mul_one (1 : units α), units.ext_iff, units.coe_mul, units.coe_mul, mul_self_eq_mul_self_iff, ← units.ext_iff, ← units.coe_neg, ← units.ext_iff] } end /- units in various rings -/ namespace units section comm_semiring variables [comm_semiring α] (a b : α) (u : units α) /-- Elements of the unit group of a commutative semiring represented as elements of the semiring divide any element of the semiring. -/ @[simp] lemma coe_dvd : ↑u ∣ a := ⟨↑u⁻¹ * a, by simp⟩ /-- In a commutative semiring, an element a divides an element b iff a divides all associates of b. -/ @[simp] lemma dvd_coe_mul : a ∣ b * u ↔ a ∣ b := iff.intro (assume ⟨c, eq⟩, ⟨c * ↑u⁻¹, by rw [← mul_assoc, ← eq, units.mul_inv_cancel_right]⟩) (assume ⟨c, eq⟩, eq.symm ▸ dvd_mul_of_dvd_left (dvd_mul_right _ _) _) /-- An element of a commutative semiring divides a unit iff the element divides one. -/ @[simp] lemma dvd_coe : a ∣ ↑u ↔ a ∣ 1 := suffices a ∣ 1 * ↑u ↔ a ∣ 1, by simpa, dvd_coe_mul _ _ _ /-- In a commutative semiring, an element a divides an element b iff all associates of a divide b.-/ @[simp] lemma coe_mul_dvd : a * u ∣ b ↔ a ∣ b := iff.intro (assume ⟨c, eq⟩, ⟨c * ↑u, eq.symm ▸ by ac_refl⟩) (assume h, suffices a * ↑u ∣ b * 1, by simpa, mul_dvd_mul h (coe_dvd _ _)) end comm_semiring section domain variables [domain α] /-- Every unit in a domain is nonzero. -/ @[simp] theorem ne_zero : ∀(u : units α), (↑u : α) ≠ 0 | ⟨u, v, (huv : 0 * v = 1), hvu⟩ rfl := by simpa using huv end domain end units /-- A predicate to express that a ring is an integral domain. This is mainly useful because such a predicate does not contain data, and can therefore be easily transported along ring isomorphisms. -/ structure is_integral_domain (R : Type u) [ring R] : Prop := (mul_comm : ∀ (x y : R), x * y = y * x) (eq_zero_or_eq_zero_of_mul_eq_zero : ∀ x y : R, x * y = 0 → x = 0 ∨ y = 0) (zero_ne_one : (0 : R) ≠ 1) /-- Every integral domain satisfies the predicate for integral domains. -/ lemma integral_domain.to_is_integral_domain (R : Type u) [integral_domain R] : is_integral_domain R := { .. (‹_› : integral_domain R) } /-- If a ring satisfies the predicate for integral domains, then it can be endowed with an `integral_domain` instance whose data is definitionally equal to the existing data. -/ def is_integral_domain.to_integral_domain (R : Type u) [ring R] (h : is_integral_domain R) : integral_domain R := { .. (‹_› : ring R), .. (‹_› : is_integral_domain R) }
9108d0052d0156978e5dfca46fabb12e9ab413ac
df7bb3acd9623e489e95e85d0bc55590ab0bc393
/lean/love02_backward_proofs_exercise_solution.lean
f5e1bb25bbdbcda680078a0a4afc59429fdf75eb
[]
no_license
MaschavanderMarel/logical_verification_2020
a41c210b9237c56cb35f6cd399e3ac2fe42e775d
7d562ef174cc6578ca6013f74db336480470b708
refs/heads/master
1,692,144,223,196
1,634,661,675,000
1,634,661,675,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
5,082
lean
import .love02_backward_proofs_demo /- # LoVe Exercise 2: Backward Proofs -/ set_option pp.beta true set_option pp.generalized_field_notation false namespace LoVe namespace backward_proofs /- ## Question 1: Connectives and Quantifiers 1.1. Carry out the following proofs using basic tactics. Hint: Some strategies for carrying out such proofs are described at the end of Section 2.3 in the Hitchhiker's Guide. -/ lemma I (a : Prop) : a → a := begin intro ha, exact ha end lemma K (a b : Prop) : a → b → b := begin intros ha hb, exact hb end lemma C (a b c : Prop) : (a → b → c) → b → a → c := begin intros hg hb ha, apply hg, exact ha, exact hb end lemma proj_1st (a : Prop) : a → a → a := begin intros ha ha', exact ha end /- Please give a different answer than for `proj_1st`: -/ lemma proj_2nd (a : Prop) : a → a → a := begin intros ha ha', exact ha' end lemma some_nonsense (a b c : Prop) : (a → b → c) → a → (a → c) → b → c := begin intros hg ha hf hb, apply hg, exact ha, exact hb end /- 1.2. Prove the contraposition rule using basic tactics. -/ lemma contrapositive (a b : Prop) : (a → b) → ¬ b → ¬ a := begin intros hab hnb ha, apply hnb, apply hab, apply ha end /- 1.3. Prove the distributivity of `∀` over `∧` using basic tactics. Hint: This exercise is tricky, especially the right-to-left direction. Some forward reasoning, like in the proof of `and_swap₂` in the lecture, might be necessary. -/ lemma forall_and {α : Type} (p q : α → Prop) : (∀x, p x ∧ q x) ↔ (∀x, p x) ∧ (∀x, q x) := begin apply iff.intro, { intro h, apply and.intro, { intro x, apply and.elim_left, apply h }, { intro x, apply and.elim_right, apply h } }, { intros h x, apply and.intro, { apply and.elim_left h }, { apply and.elim_right h } } end /- ## Question 2: Natural Numbers 2.1. Prove the following recursive equations on the first argument of the `mul` operator defined in lecture 1. -/ set_option trace.simplify.rewrite true #check mul lemma mul_zero (n : ℕ) : mul 0 n = 0 := begin induction' n, { refl }, { simp [add, mul, ih] } end lemma mul_zero' (n : ℕ) : mul 0 n = 0 := begin induction' n, { refl }, { rewrite mul, rewrite ih, rewrite add } end lemma mul_succ (m n : ℕ) : mul (nat.succ m) n = add (mul m n) n := begin induction' n, { refl }, { simp [add, add_succ, add_assoc, mul, ih] } end lemma mul_succ' (m n : ℕ) : mul (nat.succ m) n = add (mul m n) n := begin induction' n, { refl }, { rewrite mul, rewrite ih, rewrite add_succ, rewrite mul, rewrite add_assoc, rewrite add, rewrite add } end /- 2.2. Prove commutativity and associativity of multiplication using the `induction'` tactic. Choose the induction variable carefully. -/ lemma mul_comm (m n : ℕ) : mul m n = mul n m := begin induction' m, { simp [mul, mul_zero] }, { simp [mul, mul_succ, ih], cc } end lemma mul_assoc (l m n : ℕ) : mul (mul l m) n = mul l (mul m n) := begin induction' n, { refl }, { simp [mul, mul_add, ih] } end /- 2.3. Prove the symmetric variant of `mul_add` using `rw`. To apply commutativity at a specific position, instantiate the rule by passing some arguments (e.g., `mul_comm _ l`). -/ lemma add_mul (l m n : ℕ) : mul (add l m) n = add (mul n l) (mul n m) := begin rw mul_comm _ n, rw mul_add end /- ## Question 3 (**optional**): Intuitionistic Logic Intuitionistic logic is extended to classical logic by assuming a classical axiom. There are several possibilities for the choice of axiom. In this question, we are concerned with the logical equivalence of three different axioms: -/ def excluded_middle := ∀a : Prop, a ∨ ¬ a def peirce := ∀a b : Prop, ((a → b) → a) → a def double_negation := ∀a : Prop, (¬¬ a) → a /- For the proofs below, please avoid using lemmas from Lean's `classical` namespace, because this would defeat the purpose of the exercise. 3.1 (**optional**). Prove the following implication using tactics. Hint: You will need `or.elim` and `false.elim`. You can use `rw excluded_middle` to unfold the definition of `excluded_middle`, and similarly for `peirce`. -/ lemma peirce_of_em : excluded_middle → peirce := begin rw excluded_middle, rw peirce, intro hem, intros a b haba, apply or.elim (hem a), { intro, assumption }, { intro hna, apply haba, intro ha, apply false.elim, apply hna, assumption } end /- 3.2 (**optional**). Prove the following implication using tactics. -/ lemma dn_of_peirce : peirce → double_negation := begin rw peirce, rw double_negation, intros hpeirce a hnna, apply hpeirce a false, intro hna, apply false.elim, apply hnna, exact hna end /- We leave the missing implication for the homework: -/ namespace sorry_lemmas lemma em_of_dn : double_negation → excluded_middle := sorry end sorry_lemmas end backward_proofs end LoVe
b2b3e6e34a652a28c92f6d45beff5d25c6b54717
a0e23cfdd129a671bf3154ee1a8a3a72bf4c7940
/stage0/src/Lean/Data/Lsp/Basic.lean
c18758738561caf50933d1e55cfab98ed897ea4f
[ "Apache-2.0" ]
permissive
WojciechKarpiel/lean4
7f89706b8e3c1f942b83a2c91a3a00b05da0e65b
f6e1314fa08293dea66a329e05b6c196a0189163
refs/heads/master
1,686,633,402,214
1,625,821,189,000
1,625,821,258,000
384,640,886
0
0
Apache-2.0
1,625,903,617,000
1,625,903,026,000
null
UTF-8
Lean
false
false
4,642
lean
/- Copyright (c) 2020 Marc Huisinga. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Marc Huisinga, Wojciech Nawrocki -/ import Lean.Data.Json import Lean.Data.JsonRpc /-! Defines most of the 'Basic Structures' in the LSP specification (https://microsoft.github.io/language-server-protocol/specifications/specification-current/), as well as some utilities. Since LSP is Json-based, Ints/Nats are represented by Floats on the wire. -/ namespace Lean namespace Lsp open Json structure CancelParams where id : JsonRpc.RequestID deriving Inhabited, BEq, ToJson, FromJson abbrev DocumentUri := String /-- We adopt the convention that zero-based UTF-16 positions as sent by LSP clients are represented by `Lsp.Position` while internally we mostly use `String.Pos` UTF-8 offsets. For diagnostics, one-based `Lean.Position`s are used internally. `character` is accepted liberally: actual character := min(line length, character) -/ structure Position where line : Nat character : Nat deriving Inhabited, BEq, ToJson, FromJson instance : ToString Position := ⟨fun p => "(" ++ toString p.line ++ ", " ++ toString p.character ++ ")"⟩ structure Range where start : Position «end» : Position deriving Inhabited, BEq, ToJson, FromJson structure Location where uri : DocumentUri range : Range deriving Inhabited, BEq, ToJson, FromJson structure LocationLink where originSelectionRange? : Option Range targetUri : DocumentUri targetRange : Range targetSelectionRange : Range deriving ToJson, FromJson -- NOTE: Diagnostic defined in Diagnostics.lean /- NOTE: No specific commands are specified by LSP, hence possible commands need to be announced as capabilities. -/ structure Command where title : String command : String arguments? : Option (Array Json) := none deriving ToJson, FromJson structure TextEdit where range : Range newText : String deriving ToJson, FromJson def TextEditBatch := Array TextEdit instance : FromJson TextEditBatch := ⟨@fromJson? (Array TextEdit) _⟩ instance : ToJson TextEditBatch := ⟨@toJson (Array TextEdit) _⟩ structure TextDocumentIdentifier where uri : DocumentUri deriving ToJson, FromJson structure VersionedTextDocumentIdentifier where uri : DocumentUri version? : Option Nat := none deriving ToJson, FromJson structure TextDocumentEdit where textDocument : VersionedTextDocumentIdentifier edits : TextEditBatch deriving ToJson, FromJson -- TODO(Marc): missing: -- File Resource Changes, WorkspaceEdit -- both of these are pretty global, we can look at their -- uses when single file behaviour works. structure TextDocumentItem where uri : DocumentUri languageId : String version : Nat text : String deriving ToJson, FromJson structure TextDocumentPositionParams where textDocument : TextDocumentIdentifier position : Position deriving ToJson, FromJson structure DocumentFilter where language? : Option String := none scheme? : Option String := none pattern? : Option String := none deriving ToJson, FromJson def DocumentSelector := Array DocumentFilter instance : FromJson DocumentSelector := ⟨@fromJson? (Array DocumentFilter) _⟩ instance : ToJson DocumentSelector := ⟨@toJson (Array DocumentFilter) _⟩ structure StaticRegistrationOptions where id? : Option String := none deriving ToJson, FromJson structure TextDocumentRegistrationOptions where documentSelector? : Option DocumentSelector := none deriving ToJson, FromJson inductive MarkupKind where | plaintext | markdown instance : FromJson MarkupKind := ⟨fun | str "plaintext" => Except.ok MarkupKind.plaintext | str "markdown" => Except.ok MarkupKind.markdown | _ => throw "unknown MarkupKind"⟩ instance : ToJson MarkupKind := ⟨fun | MarkupKind.plaintext => str "plaintext" | MarkupKind.markdown => str "markdown"⟩ structure MarkupContent where kind : MarkupKind value : String deriving ToJson, FromJson structure ProgressParams (α : Type) where token : String -- do we need `integer`? value : α deriving ToJson structure WorkDoneProgressReport where kind := "report" message? : Option String := none cancellable := false percentage? : Option Nat := none deriving ToJson structure WorkDoneProgressBegin extends WorkDoneProgressReport where kind := "begin" title : String deriving ToJson structure WorkDoneProgressEnd where kind := "end" message? : Option String := none deriving ToJson -- TODO(Marc): missing: -- WorkDoneProgressOptions, PartialResultParams end Lsp end Lean
eae8ecdd6189ebb89fbfe8cb27d2f1a185e58653
cf39355caa609c0f33405126beee2739aa3cb77e
/tmp/debugger_example.lean
b18b57871f4a23360aa4649f9652281dd5fec1db
[ "Apache-2.0" ]
permissive
leanprover-community/lean
12b87f69d92e614daea8bcc9d4de9a9ace089d0e
cce7990ea86a78bdb383e38ed7f9b5ba93c60ce0
refs/heads/master
1,687,508,156,644
1,684,951,104,000
1,684,951,104,000
169,960,991
457
107
Apache-2.0
1,686,744,372,000
1,549,790,268,000
C++
UTF-8
Lean
false
false
235
lean
import tools.debugger set_option debugger true set_option debugger.autorun true open tactic local attribute [breakpoint] tactic.constructor example (p q : Prop) : p → q → p ∧ q := by do intros, constructor, repeat assumption
0336e79b3e26afa872db76c2c4d4d17dd97fed54
a45212b1526d532e6e83c44ddca6a05795113ddc
/test/omega.lean
18dc49c54f41b59d3645f401770f9a1b2a9555b7
[ "Apache-2.0" ]
permissive
fpvandoorn/mathlib
b21ab4068db079cbb8590b58fda9cc4bc1f35df4
b3433a51ea8bc07c4159c1073838fc0ee9b8f227
refs/heads/master
1,624,791,089,608
1,556,715,231,000
1,556,715,231,000
165,722,980
5
0
Apache-2.0
1,552,657,455,000
1,547,494,646,000
Lean
UTF-8
Lean
false
false
2,454
lean
/- Test cases for omega. Most of the examples are from John Harrison's Handbook of Practical Logic and Automated Reasoning. -/ import tactic.omega example (x : int) : (x = 5 ∨ x = 7) → 2 < x := by omega example (x : int) : x ≤ -x → x ≤ 0 := by omega example : ∀ x y : int, (x ≤ 5 ∧ y ≤ 3) → x + y ≤ 8 := by omega example : ∀ (x y z : int), x < y → y < z → x < z := by omega example (x y z : int) : x - y ≤ x - z → z ≤ y:= by omega example (x : int) (h1 : x = -5 ∨ x = 7) (h2 : x = 0) : false := by omega example : ∀ x : int, 31 * x > 0 → x > 0 := by omega example (x y : int) : (-x - y < x - y) → (x - y < x + y) → (x > 0 ∧ y > 0) := by omega example : ∀ (x : int), (x ≥ -1 ∧ x ≤ 1) → (x = -1 ∨ x = 0 ∨ x = 1):= by omega example : ∀ (x : int), 5 * x = 5 → x = 1 := by omega example (x y : int) : ∀ z w v : int, x = y → y = z → x = z := by omega example : ∀ x : int, x < 349 ∨ x > 123 := by omega example : ∀ x y : int, x ≤ 3 * y → 3 * x ≤ 9 * y := by omega example (x : int) (h1 : x < 43 ∧ x > 513) : false := by omega example (x y z w : int) : x ≤ y → y ≤ z → z ≤ w → x ≤ w:= by omega example (x y z : int) : ∀ w v : int, 100 = x → x = y → y = z → z = w → w = v → v = 100 := by omega example (x : nat) : 31 * x > 0 → x > 0 := by omega example (x y : nat) : (x ≤ 5 ∧ y ≤ 3) → x + y ≤ 8 := by omega example : ∀ (x y z y : nat), ¬(2 * x + 1 = 2 * y) := by omega example : ∀ (x y : nat), x > 0 → x + y > 0 := by omega example : ∀ (x : nat), x < 349 ∨ x > 123 := by omega example : ∀ (x y : nat), (x = 2 ∨ x = 10) → (x = 3 * y) → false := by omega example (x y : nat) : x ≤ 3 * y → 3 * x ≤ 9 * y := by omega example (x y z : nat) : (x ≤ y) → (z > y) → (x - z = 0) := by omega example (x y z : nat) : x - 5 > 122 → y ≤ 127 → y < x := by omega example : ∀ (x y : nat), x ≤ y ↔ x - y = 0 := by omega /- Use `omega manual` to disable automatic reverts, and `omega int` or `omega nat` to specify the domain. -/ example (i : int) (n : nat) (h1 : n = 0) (h2 : i < i) : false := by omega int example (i : int) (n : nat) (h1 : i = 0) (h2 : n < n) : false := by omega nat example (x y z w : int) (h1 : 3 * y ≥ x) (h2 : z > 19 * w) : 3 * x ≤ 9 * y := by {revert h1 x y, omega manual} example (n : nat) (h1 : n < 34) (i : int) (h2 : i * 9 = -72) : i = -8 := by {revert h2 i, omega manual int}
472e21d4ba8c05c164860cbdfb7b4305c62e3f93
74addaa0e41490cbaf2abd313a764c96df57b05d
/Mathlib/algebra/category/CommRing/basic_auto.lean
b2cc9e06e727c6f18b524b5b8203c7ee7b529449
[]
no_license
AurelienSaue/Mathlib4_auto
f538cfd0980f65a6361eadea39e6fc639e9dae14
590df64109b08190abe22358fabc3eae000943f2
refs/heads/master
1,683,906,849,776
1,622,564,669,000
1,622,564,669,000
371,723,747
0
0
null
null
null
null
UTF-8
Lean
false
false
10,944
lean
/- Copyright (c) 2018 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison, Johannes Hölzl, Yury Kudryashov -/ import Mathlib.PrePort import Mathlib.Lean3Lib.init.default import Mathlib.algebra.category.Group.basic import Mathlib.data.equiv.ring import Mathlib.PostPort universes u u_1 namespace Mathlib /-! # Category instances for semiring, ring, comm_semiring, and comm_ring. We introduce the bundled categories: * `SemiRing` * `Ring` * `CommSemiRing` * `CommRing` along with the relevant forgetful functors between them. -/ /-- The category of semirings. -/ def SemiRing := category_theory.bundled semiring namespace SemiRing protected instance bundled_hom : category_theory.bundled_hom ring_hom := category_theory.bundled_hom.mk ring_hom.to_fun ring_hom.id ring_hom.comp protected instance large_category : category_theory.large_category SemiRing := category_theory.bundled_hom.category ring_hom /-- Construct a bundled SemiRing from the underlying type and typeclass. -/ def of (R : Type u) [semiring R] : SemiRing := category_theory.bundled.of R protected instance inhabited : Inhabited SemiRing := { default := of PUnit } protected instance semiring (R : SemiRing) : semiring ↥R := category_theory.bundled.str R @[simp] theorem coe_of (R : Type u) [semiring R] : ↥(of R) = R := rfl protected instance has_forget_to_Mon : category_theory.has_forget₂ SemiRing Mon := category_theory.bundled_hom.mk_has_forget₂ (fun (R : Type u_1) (hR : semiring R) => monoid_with_zero.to_monoid R) (fun (R₁ R₂ : category_theory.bundled semiring) => ring_hom.to_monoid_hom) sorry -- can't use bundled_hom.mk_has_forget₂, since AddCommMon is an induced category protected instance has_forget_to_AddCommMon : category_theory.has_forget₂ SemiRing AddCommMon := category_theory.has_forget₂.mk (category_theory.functor.mk (fun (R : SemiRing) => AddCommMon.of ↥R) fun (R₁ R₂ : SemiRing) (f : R₁ ⟶ R₂) => ring_hom.to_add_monoid_hom f) end SemiRing /-- The category of rings. -/ def Ring := category_theory.bundled ring namespace Ring protected instance ring.to_semiring.category_theory.bundled_hom.parent_projection : category_theory.bundled_hom.parent_projection ring.to_semiring := category_theory.bundled_hom.parent_projection.mk protected instance concrete_category : category_theory.concrete_category Ring := category_theory.bundled_hom.category_theory.bundled.category_theory.concrete_category (category_theory.bundled_hom.map_hom ring_hom ring.to_semiring) /-- Construct a bundled Ring from the underlying type and typeclass. -/ def of (R : Type u) [ring R] : Ring := category_theory.bundled.of R protected instance inhabited : Inhabited Ring := { default := of PUnit } protected instance ring (R : Ring) : ring ↥R := category_theory.bundled.str R @[simp] theorem coe_of (R : Type u) [ring R] : ↥(of R) = R := rfl protected instance has_forget_to_SemiRing : category_theory.has_forget₂ Ring SemiRing := category_theory.bundled_hom.forget₂ ring_hom ring.to_semiring -- can't use bundled_hom.mk_has_forget₂, since AddCommGroup is an induced category protected instance has_forget_to_AddCommGroup : category_theory.has_forget₂ Ring AddCommGroup := category_theory.has_forget₂.mk (category_theory.functor.mk (fun (R : Ring) => AddCommGroup.of ↥R) fun (R₁ R₂ : Ring) (f : R₁ ⟶ R₂) => ring_hom.to_add_monoid_hom f) end Ring /-- The category of commutative semirings. -/ def CommSemiRing := category_theory.bundled comm_semiring namespace CommSemiRing protected instance comm_semiring.to_semiring.category_theory.bundled_hom.parent_projection : category_theory.bundled_hom.parent_projection comm_semiring.to_semiring := category_theory.bundled_hom.parent_projection.mk protected instance large_category : category_theory.large_category CommSemiRing := category_theory.bundled_hom.category (category_theory.bundled_hom.map_hom ring_hom comm_semiring.to_semiring) /-- Construct a bundled CommSemiRing from the underlying type and typeclass. -/ def of (R : Type u) [comm_semiring R] : CommSemiRing := category_theory.bundled.of R protected instance inhabited : Inhabited CommSemiRing := { default := of PUnit } protected instance comm_semiring (R : CommSemiRing) : comm_semiring ↥R := category_theory.bundled.str R @[simp] theorem coe_of (R : Type u) [comm_semiring R] : ↥(of R) = R := rfl protected instance has_forget_to_SemiRing : category_theory.has_forget₂ CommSemiRing SemiRing := category_theory.bundled_hom.forget₂ ring_hom comm_semiring.to_semiring /-- The forgetful functor from commutative rings to (multiplicative) commutative monoids. -/ protected instance has_forget_to_CommMon : category_theory.has_forget₂ CommSemiRing CommMon := category_theory.has_forget₂.mk' (fun (R : CommSemiRing) => CommMon.of ↥R) sorry (fun (R₁ R₂ : CommSemiRing) (f : R₁ ⟶ R₂) => ring_hom.to_monoid_hom f) sorry end CommSemiRing /-- The category of commutative rings. -/ def CommRing := category_theory.bundled comm_ring namespace CommRing protected instance comm_ring.to_ring.category_theory.bundled_hom.parent_projection : category_theory.bundled_hom.parent_projection comm_ring.to_ring := category_theory.bundled_hom.parent_projection.mk protected instance concrete_category : category_theory.concrete_category CommRing := category_theory.bundled_hom.category_theory.bundled.category_theory.concrete_category (category_theory.bundled_hom.map_hom (category_theory.bundled_hom.map_hom ring_hom ring.to_semiring) comm_ring.to_ring) /-- Construct a bundled CommRing from the underlying type and typeclass. -/ def of (R : Type u) [comm_ring R] : CommRing := category_theory.bundled.of R protected instance inhabited : Inhabited CommRing := { default := of PUnit } protected instance comm_ring (R : CommRing) : comm_ring ↥R := category_theory.bundled.str R @[simp] theorem coe_of (R : Type u) [comm_ring R] : ↥(of R) = R := rfl protected instance has_forget_to_Ring : category_theory.has_forget₂ CommRing Ring := category_theory.bundled_hom.forget₂ (category_theory.bundled_hom.map_hom ring_hom ring.to_semiring) comm_ring.to_ring /-- The forgetful functor from commutative rings to (multiplicative) commutative monoids. -/ protected instance has_forget_to_CommSemiRing : category_theory.has_forget₂ CommRing CommSemiRing := category_theory.has_forget₂.mk' (fun (R : CommRing) => CommSemiRing.of ↥R) sorry (fun (R₁ R₂ : CommRing) (f : R₁ ⟶ R₂) => f) sorry protected instance category_theory.forget₂.category_theory.full : category_theory.full (category_theory.forget₂ CommRing CommSemiRing) := category_theory.full.mk fun (X Y : CommRing) (f : category_theory.functor.obj (category_theory.forget₂ CommRing CommSemiRing) X ⟶ category_theory.functor.obj (category_theory.forget₂ CommRing CommSemiRing) Y) => f end CommRing -- This example verifies an improvement possible in Lean 3.8. -- Before that, to have `add_ring_hom.map_zero` usable by `simp` here, -- we had to mark all the concrete category `has_coe_to_sort` instances reducible. -- Now, it just works. namespace ring_equiv /-- Build an isomorphism in the category `Ring` from a `ring_equiv` between `ring`s. -/ @[simp] theorem to_Ring_iso_inv {X : Type u} {Y : Type u} [ring X] [ring Y] (e : X ≃+* Y) : category_theory.iso.inv (to_Ring_iso e) = to_ring_hom (ring_equiv.symm e) := Eq.refl (category_theory.iso.inv (to_Ring_iso e)) /-- Build an isomorphism in the category `CommRing` from a `ring_equiv` between `comm_ring`s. -/ def to_CommRing_iso {X : Type u} {Y : Type u} [comm_ring X] [comm_ring Y] (e : X ≃+* Y) : CommRing.of X ≅ CommRing.of Y := category_theory.iso.mk (to_ring_hom e) (to_ring_hom (ring_equiv.symm e)) end ring_equiv namespace category_theory.iso /-- Build a `ring_equiv` from an isomorphism in the category `Ring`. -/ def Ring_iso_to_ring_equiv {X : Ring} {Y : Ring} (i : X ≅ Y) : ↥X ≃+* ↥Y := ring_equiv.mk ⇑(hom i) ⇑(inv i) sorry sorry sorry sorry /-- Build a `ring_equiv` from an isomorphism in the category `CommRing`. -/ def CommRing_iso_to_ring_equiv {X : CommRing} {Y : CommRing} (i : X ≅ Y) : ↥X ≃+* ↥Y := ring_equiv.mk ⇑(hom i) ⇑(inv i) sorry sorry sorry sorry end category_theory.iso /-- Ring equivalences between `ring`s are the same as (isomorphic to) isomorphisms in `Ring`. -/ def ring_equiv_iso_Ring_iso {X : Type u} {Y : Type u} [ring X] [ring Y] : X ≃+* Y ≅ Ring.of X ≅ Ring.of Y := category_theory.iso.mk (fun (e : X ≃+* Y) => ring_equiv.to_Ring_iso e) fun (i : Ring.of X ≅ Ring.of Y) => category_theory.iso.Ring_iso_to_ring_equiv i /-- Ring equivalences between `comm_ring`s are the same as (isomorphic to) isomorphisms in `CommRing`. -/ def ring_equiv_iso_CommRing_iso {X : Type u} {Y : Type u} [comm_ring X] [comm_ring Y] : X ≃+* Y ≅ CommRing.of X ≅ CommRing.of Y := category_theory.iso.mk (fun (e : X ≃+* Y) => ring_equiv.to_CommRing_iso e) fun (i : CommRing.of X ≅ CommRing.of Y) => category_theory.iso.CommRing_iso_to_ring_equiv i protected instance Ring.forget_reflects_isos : category_theory.reflects_isomorphisms (category_theory.forget Ring) := category_theory.reflects_isomorphisms.mk fun (X Y : Ring) (f : X ⟶ Y) (_x : category_theory.is_iso (category_theory.functor.map (category_theory.forget Ring) f)) => let i : category_theory.functor.obj (category_theory.forget Ring) X ≅ category_theory.functor.obj (category_theory.forget Ring) Y := category_theory.as_iso (category_theory.functor.map (category_theory.forget Ring) f); let e : ↥X ≃+* ↥Y := ring_equiv.mk (ring_hom.to_fun f) (equiv.inv_fun (category_theory.iso.to_equiv i)) sorry sorry sorry sorry; category_theory.is_iso.mk (category_theory.iso.inv (ring_equiv.to_Ring_iso e)) protected instance CommRing.forget_reflects_isos : category_theory.reflects_isomorphisms (category_theory.forget CommRing) := category_theory.reflects_isomorphisms.mk fun (X Y : CommRing) (f : X ⟶ Y) (_x : category_theory.is_iso (category_theory.functor.map (category_theory.forget CommRing) f)) => let i : category_theory.functor.obj (category_theory.forget CommRing) X ≅ category_theory.functor.obj (category_theory.forget CommRing) Y := category_theory.as_iso (category_theory.functor.map (category_theory.forget CommRing) f); let e : ↥X ≃+* ↥Y := ring_equiv.mk (ring_hom.to_fun f) (equiv.inv_fun (category_theory.iso.to_equiv i)) sorry sorry sorry sorry; category_theory.is_iso.mk (category_theory.iso.inv (ring_equiv.to_CommRing_iso e)) end Mathlib
c3127b283807860069d3e6491d9592e6427a622a
57c233acf9386e610d99ed20ef139c5f97504ba3
/src/algebraic_geometry/prime_spectrum/basic.lean
543338325925b48320c8ea58a1f91252f7fc51b8
[ "Apache-2.0" ]
permissive
robertylewis/mathlib
3d16e3e6daf5ddde182473e03a1b601d2810952c
1d13f5b932f5e40a8308e3840f96fc882fae01f0
refs/heads/master
1,651,379,945,369
1,644,276,960,000
1,644,276,960,000
98,875,504
0
0
Apache-2.0
1,644,253,514,000
1,501,495,700,000
Lean
UTF-8
Lean
false
false
30,846
lean
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin -/ import topology.opens import ring_theory.ideal.prod import ring_theory.ideal.over import linear_algebra.finsupp import algebra.punit_instances import ring_theory.nilpotent import topology.sober /-! # Prime spectrum of a commutative ring The prime spectrum of a commutative ring is the type of all prime ideals. It is naturally endowed with a topology: the Zariski topology. (It is also naturally endowed with a sheaf of rings, which is constructed in `algebraic_geometry.structure_sheaf`.) ## Main definitions * `prime_spectrum R`: The prime spectrum of a commutative ring `R`, i.e., the set of all prime ideals of `R`. * `zero_locus s`: The zero locus of a subset `s` of `R` is the subset of `prime_spectrum R` consisting of all prime ideals that contain `s`. * `vanishing_ideal t`: The vanishing ideal of a subset `t` of `prime_spectrum R` is the intersection of points in `t` (viewed as prime ideals). ## Conventions We denote subsets of rings with `s`, `s'`, etc... whereas we denote subsets of prime spectra with `t`, `t'`, etc... ## Inspiration/contributors The contents of this file draw inspiration from <https://github.com/ramonfmir/lean-scheme> which has contributions from Ramon Fernandez Mir, Kevin Buzzard, Kenny Lau, and Chris Hughes (on an earlier repository). -/ noncomputable theory open_locale classical universes u v variables (R : Type u) [comm_ring R] /-- The prime spectrum of a commutative ring `R` is the type of all prime ideals of `R`. It is naturally endowed with a topology (the Zariski topology), and a sheaf of commutative rings (see `algebraic_geometry.structure_sheaf`). It is a fundamental building block in algebraic geometry. -/ @[nolint has_inhabited_instance] def prime_spectrum := {I : ideal R // I.is_prime} variable {R} namespace prime_spectrum /-- A method to view a point in the prime spectrum of a commutative ring as an ideal of that ring. -/ abbreviation as_ideal (x : prime_spectrum R) : ideal R := x.val instance is_prime (x : prime_spectrum R) : x.as_ideal.is_prime := x.2 /-- The prime spectrum of the zero ring is empty. -/ lemma punit (x : prime_spectrum punit) : false := x.1.ne_top_iff_one.1 x.2.1 $ subsingleton.elim (0 : punit) 1 ▸ x.1.zero_mem section variables (R) (S : Type v) [comm_ring S] /-- The prime spectrum of `R × S` is in bijection with the disjoint unions of the prime spectrum of `R` and the prime spectrum of `S`. -/ noncomputable def prime_spectrum_prod : prime_spectrum (R × S) ≃ prime_spectrum R ⊕ prime_spectrum S := ideal.prime_ideals_equiv R S variables {R S} @[simp] lemma prime_spectrum_prod_symm_inl_as_ideal (x : prime_spectrum R) : ((prime_spectrum_prod R S).symm (sum.inl x)).as_ideal = ideal.prod x.as_ideal ⊤ := by { cases x, refl } @[simp] lemma prime_spectrum_prod_symm_inr_as_ideal (x : prime_spectrum S) : ((prime_spectrum_prod R S).symm (sum.inr x)).as_ideal = ideal.prod ⊤ x.as_ideal := by { cases x, refl } end @[ext] lemma ext {x y : prime_spectrum R} : x = y ↔ x.as_ideal = y.as_ideal := subtype.ext_iff_val /-- The zero locus of a set `s` of elements of a commutative ring `R` is the set of all prime ideals of the ring that contain the set `s`. An element `f` of `R` can be thought of as a dependent function on the prime spectrum of `R`. At a point `x` (a prime ideal) the function (i.e., element) `f` takes values in the quotient ring `R` modulo the prime ideal `x`. In this manner, `zero_locus s` is exactly the subset of `prime_spectrum R` where all "functions" in `s` vanish simultaneously. -/ def zero_locus (s : set R) : set (prime_spectrum R) := {x | s ⊆ x.as_ideal} @[simp] lemma mem_zero_locus (x : prime_spectrum R) (s : set R) : x ∈ zero_locus s ↔ s ⊆ x.as_ideal := iff.rfl @[simp] lemma zero_locus_span (s : set R) : zero_locus (ideal.span s : set R) = zero_locus s := by { ext x, exact (submodule.gi R R).gc s x.as_ideal } /-- The vanishing ideal of a set `t` of points of the prime spectrum of a commutative ring `R` is the intersection of all the prime ideals in the set `t`. An element `f` of `R` can be thought of as a dependent function on the prime spectrum of `R`. At a point `x` (a prime ideal) the function (i.e., element) `f` takes values in the quotient ring `R` modulo the prime ideal `x`. In this manner, `vanishing_ideal t` is exactly the ideal of `R` consisting of all "functions" that vanish on all of `t`. -/ def vanishing_ideal (t : set (prime_spectrum R)) : ideal R := ⨅ (x : prime_spectrum R) (h : x ∈ t), x.as_ideal lemma coe_vanishing_ideal (t : set (prime_spectrum R)) : (vanishing_ideal t : set R) = {f : R | ∀ x : prime_spectrum R, x ∈ t → f ∈ x.as_ideal} := begin ext f, rw [vanishing_ideal, set_like.mem_coe, submodule.mem_infi], apply forall_congr, intro x, rw [submodule.mem_infi], end lemma mem_vanishing_ideal (t : set (prime_spectrum R)) (f : R) : f ∈ vanishing_ideal t ↔ ∀ x : prime_spectrum R, x ∈ t → f ∈ x.as_ideal := by rw [← set_like.mem_coe, coe_vanishing_ideal, set.mem_set_of_eq] @[simp] lemma vanishing_ideal_singleton (x : prime_spectrum R) : vanishing_ideal ({x} : set (prime_spectrum R)) = x.as_ideal := by simp [vanishing_ideal] lemma subset_zero_locus_iff_le_vanishing_ideal (t : set (prime_spectrum R)) (I : ideal R) : t ⊆ zero_locus I ↔ I ≤ vanishing_ideal t := ⟨λ h f k, (mem_vanishing_ideal _ _).mpr (λ x j, (mem_zero_locus _ _).mpr (h j) k), λ h, λ x j, (mem_zero_locus _ _).mpr (le_trans h (λ f h, ((mem_vanishing_ideal _ _).mp h) x j))⟩ section gc variable (R) /-- `zero_locus` and `vanishing_ideal` form a galois connection. -/ lemma gc : @galois_connection (ideal R) (order_dual (set (prime_spectrum R))) _ _ (λ I, zero_locus I) (λ t, vanishing_ideal t) := λ I t, subset_zero_locus_iff_le_vanishing_ideal t I /-- `zero_locus` and `vanishing_ideal` form a galois connection. -/ lemma gc_set : @galois_connection (set R) (order_dual (set (prime_spectrum R))) _ _ (λ s, zero_locus s) (λ t, vanishing_ideal t) := have ideal_gc : galois_connection (ideal.span) coe := (submodule.gi R R).gc, by simpa [zero_locus_span, function.comp] using ideal_gc.compose (gc R) lemma subset_zero_locus_iff_subset_vanishing_ideal (t : set (prime_spectrum R)) (s : set R) : t ⊆ zero_locus s ↔ s ⊆ vanishing_ideal t := (gc_set R) s t end gc lemma subset_vanishing_ideal_zero_locus (s : set R) : s ⊆ vanishing_ideal (zero_locus s) := (gc_set R).le_u_l s lemma le_vanishing_ideal_zero_locus (I : ideal R) : I ≤ vanishing_ideal (zero_locus I) := (gc R).le_u_l I @[simp] lemma vanishing_ideal_zero_locus_eq_radical (I : ideal R) : vanishing_ideal (zero_locus (I : set R)) = I.radical := ideal.ext $ λ f, begin rw [mem_vanishing_ideal, ideal.radical_eq_Inf, submodule.mem_Inf], exact ⟨(λ h x hx, h ⟨x, hx.2⟩ hx.1), (λ h x hx, h x.1 ⟨hx, x.2⟩)⟩ end @[simp] lemma zero_locus_radical (I : ideal R) : zero_locus (I.radical : set R) = zero_locus I := vanishing_ideal_zero_locus_eq_radical I ▸ (gc R).l_u_l_eq_l I lemma subset_zero_locus_vanishing_ideal (t : set (prime_spectrum R)) : t ⊆ zero_locus (vanishing_ideal t) := (gc R).l_u_le t lemma zero_locus_anti_mono {s t : set R} (h : s ⊆ t) : zero_locus t ⊆ zero_locus s := (gc_set R).monotone_l h lemma zero_locus_anti_mono_ideal {s t : ideal R} (h : s ≤ t) : zero_locus (t : set R) ⊆ zero_locus (s : set R) := (gc R).monotone_l h lemma vanishing_ideal_anti_mono {s t : set (prime_spectrum R)} (h : s ⊆ t) : vanishing_ideal t ≤ vanishing_ideal s := (gc R).monotone_u h lemma zero_locus_subset_zero_locus_iff (I J : ideal R) : zero_locus (I : set R) ⊆ zero_locus (J : set R) ↔ J ≤ I.radical := ⟨λ h, ideal.radical_le_radical_iff.mp (vanishing_ideal_zero_locus_eq_radical I ▸ vanishing_ideal_zero_locus_eq_radical J ▸ vanishing_ideal_anti_mono h), λ h, zero_locus_radical I ▸ zero_locus_anti_mono_ideal h⟩ lemma zero_locus_subset_zero_locus_singleton_iff (f g : R) : zero_locus ({f} : set R) ⊆ zero_locus {g} ↔ g ∈ (ideal.span ({f} : set R)).radical := by rw [← zero_locus_span {f}, ← zero_locus_span {g}, zero_locus_subset_zero_locus_iff, ideal.span_le, set.singleton_subset_iff, set_like.mem_coe] lemma zero_locus_bot : zero_locus ((⊥ : ideal R) : set R) = set.univ := (gc R).l_bot @[simp] lemma zero_locus_singleton_zero : zero_locus ({0} : set R) = set.univ := zero_locus_bot @[simp] lemma zero_locus_empty : zero_locus (∅ : set R) = set.univ := (gc_set R).l_bot @[simp] lemma vanishing_ideal_univ : vanishing_ideal (∅ : set (prime_spectrum R)) = ⊤ := by simpa using (gc R).u_top lemma zero_locus_empty_of_one_mem {s : set R} (h : (1:R) ∈ s) : zero_locus s = ∅ := begin rw set.eq_empty_iff_forall_not_mem, intros x hx, rw mem_zero_locus at hx, have x_prime : x.as_ideal.is_prime := by apply_instance, have eq_top : x.as_ideal = ⊤, { rw ideal.eq_top_iff_one, exact hx h }, apply x_prime.ne_top eq_top, end @[simp] lemma zero_locus_singleton_one : zero_locus ({1} : set R) = ∅ := zero_locus_empty_of_one_mem (set.mem_singleton (1 : R)) lemma zero_locus_empty_iff_eq_top {I : ideal R} : zero_locus (I : set R) = ∅ ↔ I = ⊤ := begin split, { contrapose!, intro h, apply set.ne_empty_iff_nonempty.mpr, rcases ideal.exists_le_maximal I h with ⟨M, hM, hIM⟩, exact ⟨⟨M, hM.is_prime⟩, hIM⟩ }, { rintro rfl, apply zero_locus_empty_of_one_mem, trivial } end @[simp] lemma zero_locus_univ : zero_locus (set.univ : set R) = ∅ := zero_locus_empty_of_one_mem (set.mem_univ 1) lemma zero_locus_sup (I J : ideal R) : zero_locus ((I ⊔ J : ideal R) : set R) = zero_locus I ∩ zero_locus J := (gc R).l_sup lemma zero_locus_union (s s' : set R) : zero_locus (s ∪ s') = zero_locus s ∩ zero_locus s' := (gc_set R).l_sup lemma vanishing_ideal_union (t t' : set (prime_spectrum R)) : vanishing_ideal (t ∪ t') = vanishing_ideal t ⊓ vanishing_ideal t' := (gc R).u_inf lemma zero_locus_supr {ι : Sort*} (I : ι → ideal R) : zero_locus ((⨆ i, I i : ideal R) : set R) = (⋂ i, zero_locus (I i)) := (gc R).l_supr lemma zero_locus_Union {ι : Sort*} (s : ι → set R) : zero_locus (⋃ i, s i) = (⋂ i, zero_locus (s i)) := (gc_set R).l_supr lemma zero_locus_bUnion (s : set (set R)) : zero_locus (⋃ s' ∈ s, s' : set R) = ⋂ s' ∈ s, zero_locus s' := by simp only [zero_locus_Union] lemma vanishing_ideal_Union {ι : Sort*} (t : ι → set (prime_spectrum R)) : vanishing_ideal (⋃ i, t i) = (⨅ i, vanishing_ideal (t i)) := (gc R).u_infi lemma zero_locus_inf (I J : ideal R) : zero_locus ((I ⊓ J : ideal R) : set R) = zero_locus I ∪ zero_locus J := set.ext $ λ x, by simpa using x.2.inf_le lemma union_zero_locus (s s' : set R) : zero_locus s ∪ zero_locus s' = zero_locus ((ideal.span s) ⊓ (ideal.span s') : ideal R) := by { rw zero_locus_inf, simp } lemma zero_locus_mul (I J : ideal R) : zero_locus ((I * J : ideal R) : set R) = zero_locus I ∪ zero_locus J := set.ext $ λ x, by simpa using x.2.mul_le lemma zero_locus_singleton_mul (f g : R) : zero_locus ({f * g} : set R) = zero_locus {f} ∪ zero_locus {g} := set.ext $ λ x, by simpa using x.2.mul_mem_iff_mem_or_mem @[simp] lemma zero_locus_pow (I : ideal R) {n : ℕ} (hn : 0 < n) : zero_locus ((I ^ n : ideal R) : set R) = zero_locus I := zero_locus_radical (I ^ n) ▸ (I.radical_pow n hn).symm ▸ zero_locus_radical I @[simp] lemma zero_locus_singleton_pow (f : R) (n : ℕ) (hn : 0 < n) : zero_locus ({f ^ n} : set R) = zero_locus {f} := set.ext $ λ x, by simpa using x.2.pow_mem_iff_mem n hn lemma sup_vanishing_ideal_le (t t' : set (prime_spectrum R)) : vanishing_ideal t ⊔ vanishing_ideal t' ≤ vanishing_ideal (t ∩ t') := begin intros r, rw [submodule.mem_sup, mem_vanishing_ideal], rintro ⟨f, hf, g, hg, rfl⟩ x ⟨hxt, hxt'⟩, rw mem_vanishing_ideal at hf hg, apply submodule.add_mem; solve_by_elim end lemma mem_compl_zero_locus_iff_not_mem {f : R} {I : prime_spectrum R} : I ∈ (zero_locus {f} : set (prime_spectrum R))ᶜ ↔ f ∉ I.as_ideal := by rw [set.mem_compl_eq, mem_zero_locus, set.singleton_subset_iff]; refl /-- The Zariski topology on the prime spectrum of a commutative ring is defined via the closed sets of the topology: they are exactly those sets that are the zero locus of a subset of the ring. -/ instance zariski_topology : topological_space (prime_spectrum R) := topological_space.of_closed (set.range prime_spectrum.zero_locus) (⟨set.univ, by simp⟩) begin intros Zs h, rw set.sInter_eq_Inter, let f : Zs → set R := λ i, classical.some (h i.2), have hf : ∀ i : Zs, ↑i = zero_locus (f i) := λ i, (classical.some_spec (h i.2)).symm, simp only [hf], exact ⟨_, zero_locus_Union _⟩ end (by { rintro _ ⟨s, rfl⟩ _ ⟨t, rfl⟩, exact ⟨_, (union_zero_locus s t).symm⟩ }) lemma is_open_iff (U : set (prime_spectrum R)) : is_open U ↔ ∃ s, Uᶜ = zero_locus s := by simp only [@eq_comm _ Uᶜ]; refl lemma is_closed_iff_zero_locus (Z : set (prime_spectrum R)) : is_closed Z ↔ ∃ s, Z = zero_locus s := by rw [← is_open_compl_iff, is_open_iff, compl_compl] lemma is_closed_iff_zero_locus_ideal (Z : set (prime_spectrum R)) : is_closed Z ↔ ∃ (s : ideal R), Z = zero_locus s := (is_closed_iff_zero_locus _).trans ⟨λ x, ⟨_, x.some_spec.trans (zero_locus_span _).symm⟩, λ x, ⟨_, x.some_spec⟩⟩ lemma is_closed_iff_zero_locus_radical_ideal (Z : set (prime_spectrum R)) : is_closed Z ↔ ∃ (s : ideal R), s.radical = s ∧ Z = zero_locus s := (is_closed_iff_zero_locus_ideal _).trans ⟨λ x, ⟨_, ideal.radical_idem _, x.some_spec.trans (zero_locus_radical _).symm⟩, λ x, ⟨_, x.some_spec.2⟩⟩ lemma is_closed_zero_locus (s : set R) : is_closed (zero_locus s) := by { rw [is_closed_iff_zero_locus], exact ⟨s, rfl⟩ } lemma is_closed_singleton_iff_is_maximal (x : prime_spectrum R) : is_closed ({x} : set (prime_spectrum R)) ↔ x.as_ideal.is_maximal := begin refine (is_closed_iff_zero_locus _).trans ⟨λ h, _, λ h, _⟩, { obtain ⟨s, hs⟩ := h, rw [eq_comm, set.eq_singleton_iff_unique_mem] at hs, refine ⟨⟨x.2.1, λ I hI, not_not.1 (mt (ideal.exists_le_maximal I) $ not_exists.2 (λ J, not_and.2 $ λ hJ hIJ,_))⟩⟩, exact ne_of_lt (lt_of_lt_of_le hI hIJ) (symm $ congr_arg prime_spectrum.as_ideal (hs.2 ⟨J, hJ.is_prime⟩ (λ r hr, hIJ (le_of_lt hI $ hs.1 hr)))) }, { refine ⟨x.as_ideal.1, _⟩, rw [eq_comm, set.eq_singleton_iff_unique_mem], refine ⟨λ _ h, h, λ y hy, prime_spectrum.ext.2 (h.eq_of_le y.2.ne_top hy).symm⟩ } end lemma zero_locus_vanishing_ideal_eq_closure (t : set (prime_spectrum R)) : zero_locus (vanishing_ideal t : set R) = closure t := begin apply set.subset.antisymm, { rintro x hx t' ⟨ht', ht⟩, obtain ⟨fs, rfl⟩ : ∃ s, t' = zero_locus s, by rwa [is_closed_iff_zero_locus] at ht', rw [subset_zero_locus_iff_subset_vanishing_ideal] at ht, exact set.subset.trans ht hx }, { rw (is_closed_zero_locus _).closure_subset_iff, exact subset_zero_locus_vanishing_ideal t } end lemma vanishing_ideal_closure (t : set (prime_spectrum R)) : vanishing_ideal (closure t) = vanishing_ideal t := zero_locus_vanishing_ideal_eq_closure t ▸ (gc R).u_l_u_eq_u t lemma t1_space_iff_is_field [is_domain R] : t1_space (prime_spectrum R) ↔ is_field R := begin refine ⟨_, λ h, _⟩, { introI h, have hbot : ideal.is_prime (⊥ : ideal R) := ideal.bot_prime, exact not_not.1 (mt (ring.ne_bot_of_is_maximal_of_not_is_field $ (is_closed_singleton_iff_is_maximal _).1 (t1_space.t1 ⟨⊥, hbot⟩)) (not_not.2 rfl)) }, { refine ⟨λ x, (is_closed_singleton_iff_is_maximal x).2 _⟩, by_cases hx : x.as_ideal = ⊥, { exact hx.symm ▸ @ideal.bot_is_maximal R (@field.to_division_ring _ $ is_field.to_field R h) }, { exact absurd h (ring.not_is_field_iff_exists_prime.2 ⟨x.as_ideal, ⟨hx, x.2⟩⟩) } } end local notation `Z(` a `)` := zero_locus (a : set R) lemma is_irreducible_zero_locus_iff_of_radical (I : ideal R) (hI : I.radical = I) : is_irreducible (zero_locus (I : set R)) ↔ I.is_prime := begin rw [ideal.is_prime_iff, is_irreducible], apply and_congr, { rw [← set.ne_empty_iff_nonempty, ne.def, zero_locus_empty_iff_eq_top] }, { transitivity ∀ (x y : ideal R), Z(I) ⊆ Z(x) ∪ Z(y) → Z(I) ⊆ Z(x) ∨ Z(I) ⊆ Z(y), { simp_rw [is_preirreducible_iff_closed_union_closed, is_closed_iff_zero_locus_ideal], split, { rintros h x y, exact h _ _ ⟨x, rfl⟩ ⟨y, rfl⟩ }, { rintros h _ _ ⟨x, rfl⟩ ⟨y, rfl⟩, exact h x y } }, { simp_rw [← zero_locus_inf, subset_zero_locus_iff_le_vanishing_ideal, vanishing_ideal_zero_locus_eq_radical, hI], split, { intros h x y h', simp_rw [← set_like.mem_coe, ← set.singleton_subset_iff, ← ideal.span_le], apply h, rw [← hI, ← ideal.radical_le_radical_iff, ideal.radical_inf, ← ideal.radical_mul, ideal.radical_le_radical_iff, hI, ideal.span_mul_span], simpa [ideal.span_le] using h' }, { simp_rw [or_iff_not_imp_left, set_like.not_le_iff_exists], rintros h s t h' ⟨x, hx, hx'⟩ y hy, exact h (h' ⟨ideal.mul_mem_right _ _ hx, ideal.mul_mem_left _ _ hy⟩) hx' } } } end lemma is_irreducible_zero_locus_iff (I : ideal R) : is_irreducible (zero_locus (I : set R)) ↔ I.radical.is_prime := (zero_locus_radical I) ▸ is_irreducible_zero_locus_iff_of_radical _ I.radical_idem instance [is_domain R] : irreducible_space (prime_spectrum R) := begin rw [irreducible_space_def, set.top_eq_univ, ← zero_locus_bot, is_irreducible_zero_locus_iff], simpa using ideal.bot_prime end instance : quasi_sober (prime_spectrum R) := begin constructor, intros S h₁ h₂, rw [← h₂.closure_eq, ← zero_locus_vanishing_ideal_eq_closure, is_irreducible_zero_locus_iff] at h₁, use ⟨_, h₁⟩, obtain ⟨s, hs, rfl⟩ := (is_closed_iff_zero_locus_radical_ideal _).mp h₂, rw is_generic_point_iff_forall_closed h₂, intros Z hZ hxZ, obtain ⟨t, rfl⟩ := (is_closed_iff_zero_locus_ideal _).mp hZ, exact zero_locus_anti_mono (by simpa [hs] using hxZ), simp [hs] end section comap variables {S : Type v} [comm_ring S] {S' : Type*} [comm_ring S'] lemma preimage_comap_zero_locus_aux (f : R →+* S) (s : set R) : (λ y, ⟨ideal.comap f y.as_ideal, infer_instance⟩ : prime_spectrum S → prime_spectrum R) ⁻¹' (zero_locus s) = zero_locus (f '' s) := begin ext x, simp only [mem_zero_locus, set.image_subset_iff], refl end /-- The function between prime spectra of commutative rings induced by a ring homomorphism. This function is continuous. -/ def comap (f : R →+* S) : C(prime_spectrum S, prime_spectrum R) := { to_fun := λ y, ⟨ideal.comap f y.as_ideal, infer_instance⟩, continuous_to_fun := begin simp only [continuous_iff_is_closed, is_closed_iff_zero_locus], rintro _ ⟨s, rfl⟩, exact ⟨_, preimage_comap_zero_locus_aux f s⟩ end } variables (f : R →+* S) @[simp] lemma comap_as_ideal (y : prime_spectrum S) : (comap f y).as_ideal = ideal.comap f y.as_ideal := rfl @[simp] lemma comap_id : comap (ring_hom.id R) = continuous_map.id := by { ext, refl } @[simp] lemma comap_comp (f : R →+* S) (g : S →+* S') : comap (g.comp f) = (comap f).comp (comap g) := rfl lemma comap_comp_apply (f : R →+* S) (g : S →+* S') (x : prime_spectrum S') : prime_spectrum.comap (g.comp f) x = (prime_spectrum.comap f) (prime_spectrum.comap g x) := rfl @[simp] lemma preimage_comap_zero_locus (s : set R) : (comap f) ⁻¹' (zero_locus s) = zero_locus (f '' s) := preimage_comap_zero_locus_aux f s lemma comap_injective_of_surjective (f : R →+* S) (hf : function.surjective f) : function.injective (comap f) := λ x y h, prime_spectrum.ext.2 (ideal.comap_injective_of_surjective f hf (congr_arg prime_spectrum.as_ideal h : (comap f x).as_ideal = (comap f y).as_ideal)) lemma comap_singleton_is_closed_of_surjective (f : R →+* S) (hf : function.surjective f) (x : prime_spectrum S) (hx : is_closed ({x} : set (prime_spectrum S))) : is_closed ({comap f x} : set (prime_spectrum R)) := begin haveI : x.as_ideal.is_maximal := (is_closed_singleton_iff_is_maximal x).1 hx, exact (is_closed_singleton_iff_is_maximal _).2 (ideal.comap_is_maximal_of_surjective f hf) end lemma comap_singleton_is_closed_of_is_integral (f : R →+* S) (hf : f.is_integral) (x : prime_spectrum S) (hx : is_closed ({x} : set (prime_spectrum S))) : is_closed ({comap f x} : set (prime_spectrum R)) := (is_closed_singleton_iff_is_maximal _).2 (ideal.is_maximal_comap_of_is_integral_of_is_maximal' f hf x.as_ideal $ (is_closed_singleton_iff_is_maximal x).1 hx) variable S lemma localization_comap_inducing [algebra R S] (M : submonoid R) [is_localization M S] : inducing (comap (algebra_map R S)) := begin constructor, rw topological_space_eq_iff, intro U, simp_rw ← is_closed_compl_iff, generalize : Uᶜ = Z, simp_rw [is_closed_induced_iff, is_closed_iff_zero_locus], split, { rintro ⟨s, rfl⟩, refine ⟨_,⟨(algebra_map R S) ⁻¹' (ideal.span s),rfl⟩,_⟩, rw [preimage_comap_zero_locus, ← zero_locus_span, ← zero_locus_span s], congr' 1, exact congr_arg submodule.carrier (is_localization.map_comap M S (ideal.span s)) }, { rintro ⟨_, ⟨t, rfl⟩, rfl⟩, simp } end lemma localization_comap_injective [algebra R S] (M : submonoid R) [is_localization M S] : function.injective (comap (algebra_map R S)) := begin intros p q h, replace h := congr_arg (λ (x : prime_spectrum R), ideal.map (algebra_map R S) x.as_ideal) h, dsimp only at h, erw [is_localization.map_comap M S, is_localization.map_comap M S] at h, ext1, exact h end lemma localization_comap_embedding [algebra R S] (M : submonoid R) [is_localization M S] : embedding (comap (algebra_map R S)) := ⟨localization_comap_inducing S M, localization_comap_injective S M⟩ lemma localization_comap_range [algebra R S] (M : submonoid R) [is_localization M S] : set.range (comap (algebra_map R S)) = { p | disjoint (M : set R) p.as_ideal } := begin ext x, split, { rintro ⟨p, rfl⟩ x ⟨hx₁, hx₂⟩, exact (p.2.1 : ¬ _) (p.as_ideal.eq_top_of_is_unit_mem hx₂ (is_localization.map_units S ⟨x, hx₁⟩)) }, { intro h, use ⟨x.as_ideal.map (algebra_map R S), is_localization.is_prime_of_is_prime_disjoint M S _ x.2 h⟩, ext1, exact is_localization.comap_map_of_is_prime_disjoint M S _ x.2 h } end end comap section basic_open /-- `basic_open r` is the open subset containing all prime ideals not containing `r`. -/ def basic_open (r : R) : topological_space.opens (prime_spectrum R) := { val := { x | r ∉ x.as_ideal }, property := ⟨{r}, set.ext $ λ x, set.singleton_subset_iff.trans $ not_not.symm⟩ } @[simp] lemma mem_basic_open (f : R) (x : prime_spectrum R) : x ∈ basic_open f ↔ f ∉ x.as_ideal := iff.rfl lemma is_open_basic_open {a : R} : is_open ((basic_open a) : set (prime_spectrum R)) := (basic_open a).property @[simp] lemma basic_open_eq_zero_locus_compl (r : R) : (basic_open r : set (prime_spectrum R)) = (zero_locus {r})ᶜ := set.ext $ λ x, by simpa only [set.mem_compl_eq, mem_zero_locus, set.singleton_subset_iff] @[simp] lemma basic_open_one : basic_open (1 : R) = ⊤ := topological_space.opens.ext $ by simp @[simp] lemma basic_open_zero : basic_open (0 : R) = ⊥ := topological_space.opens.ext $ by simp lemma basic_open_le_basic_open_iff (f g : R) : basic_open f ≤ basic_open g ↔ f ∈ (ideal.span ({g} : set R)).radical := by rw [topological_space.opens.le_def, basic_open_eq_zero_locus_compl, basic_open_eq_zero_locus_compl, set.le_eq_subset, set.compl_subset_compl, zero_locus_subset_zero_locus_singleton_iff] lemma basic_open_mul (f g : R) : basic_open (f * g) = basic_open f ⊓ basic_open g := topological_space.opens.ext $ by {simp [zero_locus_singleton_mul]} lemma basic_open_mul_le_left (f g : R) : basic_open (f * g) ≤ basic_open f := by { rw basic_open_mul f g, exact inf_le_left } lemma basic_open_mul_le_right (f g : R) : basic_open (f * g) ≤ basic_open g := by { rw basic_open_mul f g, exact inf_le_right } @[simp] lemma basic_open_pow (f : R) (n : ℕ) (hn : 0 < n) : basic_open (f ^ n) = basic_open f := topological_space.opens.ext $ by simpa using zero_locus_singleton_pow f n hn lemma is_topological_basis_basic_opens : topological_space.is_topological_basis (set.range (λ (r : R), (basic_open r : set (prime_spectrum R)))) := begin apply topological_space.is_topological_basis_of_open_of_nhds, { rintros _ ⟨r, rfl⟩, exact is_open_basic_open }, { rintros p U hp ⟨s, hs⟩, rw [← compl_compl U, set.mem_compl_eq, ← hs, mem_zero_locus, set.not_subset] at hp, obtain ⟨f, hfs, hfp⟩ := hp, refine ⟨basic_open f, ⟨f, rfl⟩, hfp, _⟩, rw [← set.compl_subset_compl, ← hs, basic_open_eq_zero_locus_compl, compl_compl], exact zero_locus_anti_mono (set.singleton_subset_iff.mpr hfs) } end lemma is_basis_basic_opens : topological_space.opens.is_basis (set.range (@basic_open R _)) := begin unfold topological_space.opens.is_basis, convert is_topological_basis_basic_opens, rw ← set.range_comp, end lemma is_compact_basic_open (f : R) : is_compact (basic_open f : set (prime_spectrum R)) := is_compact_of_finite_subfamily_closed $ λ ι Z hZc hZ, begin let I : ι → ideal R := λ i, vanishing_ideal (Z i), have hI : ∀ i, Z i = zero_locus (I i) := λ i, by simpa only [zero_locus_vanishing_ideal_eq_closure] using (hZc i).closure_eq.symm, rw [basic_open_eq_zero_locus_compl f, set.inter_comm, ← set.diff_eq, set.diff_eq_empty, funext hI, ← zero_locus_supr] at hZ, obtain ⟨n, hn⟩ : f ∈ (⨆ (i : ι), I i).radical, { rw ← vanishing_ideal_zero_locus_eq_radical, apply vanishing_ideal_anti_mono hZ, exact (subset_vanishing_ideal_zero_locus {f} (set.mem_singleton f)) }, rcases submodule.exists_finset_of_mem_supr I hn with ⟨s, hs⟩, use s, -- Using simp_rw here, because `hI` and `zero_locus_supr` need to be applied underneath binders simp_rw [basic_open_eq_zero_locus_compl f, set.inter_comm, ← set.diff_eq, set.diff_eq_empty, hI, ← zero_locus_supr], rw ← zero_locus_radical, -- this one can't be in `simp_rw` because it would loop apply zero_locus_anti_mono, rw set.singleton_subset_iff, exact ⟨n, hs⟩ end @[simp] lemma basic_open_eq_bot_iff (f : R) : basic_open f = ⊥ ↔ is_nilpotent f := begin rw [← subtype.coe_injective.eq_iff, basic_open_eq_zero_locus_compl], simp only [set.eq_univ_iff_forall, topological_space.opens.empty_eq, set.singleton_subset_iff, topological_space.opens.coe_bot, nilpotent_iff_mem_prime, set.compl_empty_iff, mem_zero_locus, set_like.mem_coe], exact subtype.forall, end lemma localization_away_comap_range (S : Type v) [comm_ring S] [algebra R S] (r : R) [is_localization.away r S] : set.range (comap (algebra_map R S)) = basic_open r := begin rw localization_comap_range S (submonoid.powers r), ext, simp only [mem_zero_locus, basic_open_eq_zero_locus_compl, set_like.mem_coe, set.mem_set_of_eq, set.singleton_subset_iff, set.mem_compl_eq], split, { intros h₁ h₂, exact h₁ ⟨submonoid.mem_powers r, h₂⟩ }, { rintros h₁ _ ⟨⟨n, rfl⟩, h₃⟩, exact h₁ (x.2.mem_of_pow_mem _ h₃) }, end lemma localization_away_open_embedding (S : Type v) [comm_ring S] [algebra R S] (r : R) [is_localization.away r S] : open_embedding (comap (algebra_map R S)) := { to_embedding := localization_comap_embedding S (submonoid.powers r), open_range := by { rw localization_away_comap_range S r, exact is_open_basic_open } } end basic_open /-- The prime spectrum of a commutative ring is a compact topological space. -/ instance : compact_space (prime_spectrum R) := { compact_univ := by { convert is_compact_basic_open (1 : R), rw basic_open_one, refl } } section order /-! ## The specialization order We endow `prime_spectrum R` with a partial order, where `x ≤ y` if and only if `y ∈ closure {x}`. TODO: maybe define sober topological spaces, and generalise this instance to those -/ instance : partial_order (prime_spectrum R) := subtype.partial_order _ @[simp] lemma as_ideal_le_as_ideal (x y : prime_spectrum R) : x.as_ideal ≤ y.as_ideal ↔ x ≤ y := subtype.coe_le_coe @[simp] lemma as_ideal_lt_as_ideal (x y : prime_spectrum R) : x.as_ideal < y.as_ideal ↔ x < y := subtype.coe_lt_coe lemma le_iff_mem_closure (x y : prime_spectrum R) : x ≤ y ↔ y ∈ closure ({x} : set (prime_spectrum R)) := by rw [← as_ideal_le_as_ideal, ← zero_locus_vanishing_ideal_eq_closure, mem_zero_locus, vanishing_ideal_singleton, set_like.coe_subset_coe] lemma le_iff_specializes (x y : prime_spectrum R) : x ≤ y ↔ x ⤳ y := le_iff_mem_closure x y instance : t0_space (prime_spectrum R) := by { simp [t0_space_iff_or_not_mem_closure, ← le_iff_mem_closure, ← not_and_distrib, ← le_antisymm_iff, eq_comm] } end order /-- If `x` specializes to `y`, then there is a natural map from the localization of `y` to the localization of `x`. -/ def localization_map_of_specializes {x y : prime_spectrum R} (h : x ⤳ y) : localization.at_prime y.as_ideal →+* localization.at_prime x.as_ideal := @is_localization.lift _ _ _ _ _ _ _ _ localization.is_localization (algebra_map R _) begin rintro ⟨a, ha⟩, rw [← prime_spectrum.le_iff_specializes, ← as_ideal_le_as_ideal, ← set_like.coe_subset_coe, ← set.compl_subset_compl] at h, exact (is_localization.map_units _ ⟨a, (show a ∈ x.as_ideal.prime_compl, from h ha)⟩ : _) end end prime_spectrum namespace local_ring variables (R) [local_ring R] /-- The closed point in the prime spectrum of a local ring. -/ def closed_point : prime_spectrum R := ⟨maximal_ideal R, (maximal_ideal.is_maximal R).is_prime⟩ variable {R} lemma is_local_ring_hom_iff_comap_closed_point {S : Type v} [comm_ring S] [local_ring S] (f : R →+* S) : is_local_ring_hom f ↔ prime_spectrum.comap f (closed_point S) = closed_point R := by { rw [(local_hom_tfae f).out 0 4, subtype.ext_iff], refl } @[simp] lemma comap_closed_point {S : Type v} [comm_ring S] [local_ring S] (f : R →+* S) [is_local_ring_hom f] : prime_spectrum.comap f (closed_point S) = closed_point R := (is_local_ring_hom_iff_comap_closed_point f).mp infer_instance end local_ring