blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 7
139
| content_id
stringlengths 40
40
| detected_licenses
listlengths 0
16
| license_type
stringclasses 2
values | repo_name
stringlengths 7
55
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringclasses 6
values | visit_date
int64 1,471B
1,694B
| revision_date
int64 1,378B
1,694B
| committer_date
int64 1,378B
1,694B
| github_id
float64 1.33M
604M
⌀ | star_events_count
int64 0
43.5k
| fork_events_count
int64 0
1.5k
| gha_license_id
stringclasses 6
values | gha_event_created_at
int64 1,402B
1,695B
⌀ | gha_created_at
int64 1,359B
1,637B
⌀ | gha_language
stringclasses 19
values | src_encoding
stringclasses 2
values | language
stringclasses 1
value | is_vendor
bool 1
class | is_generated
bool 1
class | length_bytes
int64 3
6.4M
| extension
stringclasses 4
values | content
stringlengths 3
6.12M
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
817170359283aab170c7f4f8f89d8250acf6cd5d
|
80162757f50b09d3cad5564907e4c9b00742e045
|
/rb_mut.lean
|
c8fa1a0b6bebba19f5d3ec2049b1a2484d9f5704
|
[] |
no_license
|
EdAyers/edlib
|
cc30d0a54fed347a85b6df6045f68e6b48bc71a3
|
78b8c5d91f023f939c102837d748868e2f3ed27d
|
refs/heads/master
| 1,586,459,758,216
| 1,571,322,179,000
| 1,571,322,179,000
| 160,538,917
| 2
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 410
|
lean
|
/- Defining with mutual inductive datatypes is also a pain -/
universes u v
inductive bnode (K : Type u) (A : Type v) : ℕ → Type max u v
|Leaf {} : bnode 0
|Bk {n} (l : node n) (v : K×A) (r : node n): bnode (nat.succ n)
with node : ℕ → Type max u v
|Bk {n} : bnode n → node n
|Rd {n} : rnode n → node n
with rnode : ℕ → Type max u v
|Rd {n} (l : bnode n) (v : K×A) (r : bnode n) : rnode n
|
22930ad32e5b788a1a67f6018bf302896380a5ef
|
618003631150032a5676f229d13a079ac875ff77
|
/src/data/list/erase_dup.lean
|
ea49e8a5ec3e36e3bd96233d3a7eaf99b58d48fc
|
[
"Apache-2.0"
] |
permissive
|
awainverse/mathlib
|
939b68c8486df66cfda64d327ad3d9165248c777
|
ea76bd8f3ca0a8bf0a166a06a475b10663dec44a
|
refs/heads/master
| 1,659,592,962,036
| 1,590,987,592,000
| 1,590,987,592,000
| 268,436,019
| 1
| 0
|
Apache-2.0
| 1,590,990,500,000
| 1,590,990,500,000
| null |
UTF-8
|
Lean
| false
| false
| 2,287
|
lean
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import data.list.nodup
universes u
variables {α : Type u}
namespace list
/- erase duplicates function -/
variable [decidable_eq α]
@[simp] theorem erase_dup_nil : erase_dup [] = ([] : list α) := rfl
theorem erase_dup_cons_of_mem' {a : α} {l : list α} (h : a ∈ erase_dup l) :
erase_dup (a::l) = erase_dup l :=
pw_filter_cons_of_neg $ by simpa only [forall_mem_ne] using h
theorem erase_dup_cons_of_not_mem' {a : α} {l : list α} (h : a ∉ erase_dup l) :
erase_dup (a::l) = a :: erase_dup l :=
pw_filter_cons_of_pos $ by simpa only [forall_mem_ne] using h
@[simp] theorem mem_erase_dup {a : α} {l : list α} : a ∈ erase_dup l ↔ a ∈ l :=
by simpa only [erase_dup, forall_mem_ne, not_not] using not_congr (@forall_mem_pw_filter α (≠) _
(λ x y z xz, not_and_distrib.1 $ mt (and.rec eq.trans) xz) a l)
@[simp] theorem erase_dup_cons_of_mem {a : α} {l : list α} (h : a ∈ l) :
erase_dup (a::l) = erase_dup l :=
erase_dup_cons_of_mem' $ mem_erase_dup.2 h
@[simp] theorem erase_dup_cons_of_not_mem {a : α} {l : list α} (h : a ∉ l) :
erase_dup (a::l) = a :: erase_dup l :=
erase_dup_cons_of_not_mem' $ mt mem_erase_dup.1 h
theorem erase_dup_sublist : ∀ (l : list α), erase_dup l <+ l := pw_filter_sublist
theorem erase_dup_subset : ∀ (l : list α), erase_dup l ⊆ l := pw_filter_subset
theorem subset_erase_dup (l : list α) : l ⊆ erase_dup l :=
λ a, mem_erase_dup.2
theorem nodup_erase_dup : ∀ l : list α, nodup (erase_dup l) := pairwise_pw_filter
theorem erase_dup_eq_self {l : list α} : erase_dup l = l ↔ nodup l := pw_filter_eq_self
@[simp] theorem erase_dup_idempotent {l : list α} : erase_dup (erase_dup l) = erase_dup l :=
pw_filter_idempotent
theorem erase_dup_append (l₁ l₂ : list α) : erase_dup (l₁ ++ l₂) = l₁ ∪ erase_dup l₂ :=
begin
induction l₁ with a l₁ IH, {refl}, rw [cons_union, ← IH],
show erase_dup (a :: (l₁ ++ l₂)) = insert a (erase_dup (l₁ ++ l₂)),
by_cases a ∈ erase_dup (l₁ ++ l₂);
[ rw [erase_dup_cons_of_mem' h, insert_of_mem h],
rw [erase_dup_cons_of_not_mem' h, insert_of_not_mem h]]
end
end list
|
7f664b37f20528f6637f38d23aed4f50c4064cbb
|
f5f7e6fae601a5fe3cac7cc3ed353ed781d62419
|
/src/ring_theory/polynomial.lean
|
1cd9f9625a1616b2fb3ed468315e24d4334aab34
|
[
"Apache-2.0"
] |
permissive
|
EdAyers/mathlib
|
9ecfb2f14bd6caad748b64c9c131befbff0fb4e0
|
ca5d4c1f16f9c451cf7170b10105d0051db79e1b
|
refs/heads/master
| 1,626,189,395,845
| 1,555,284,396,000
| 1,555,284,396,000
| 144,004,030
| 0
| 0
|
Apache-2.0
| 1,533,727,664,000
| 1,533,727,663,000
| null |
UTF-8
|
Lean
| false
| false
| 14,081
|
lean
|
/-
Copyright (c) 2019 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
Ring-theoretic supplement of data.polynomial.
Main result: Hilbert basis theorem, that if a ring is noetherian then so is its polynomial ring.
-/
import data.polynomial data.mv_polynomial
import ring_theory.principal_ideal_domain
import ring_theory.subring
universes u v w
namespace polynomial
variables (R : Type u) [comm_ring R] [decidable_eq R]
/-- The `R`-submodule of `R[X]` consisting of polynomials of degree ≤ `n`. -/
def degree_le (n : with_bot ℕ) : submodule R (polynomial R) :=
⨅ k : ℕ, ⨅ h : ↑k > n, (lcoeff R k).ker
variable {R}
theorem mem_degree_le {n : with_bot ℕ} {f : polynomial R} :
f ∈ degree_le R n ↔ degree f ≤ n :=
by simp only [degree_le, submodule.mem_infi, degree_le_iff_coeff_zero, linear_map.mem_ker]; refl
theorem degree_le_mono {m n : with_bot ℕ} (H : m ≤ n):
degree_le R m ≤ degree_le R n :=
λ f hf, mem_degree_le.2 (le_trans (mem_degree_le.1 hf) H)
theorem degree_le_eq_span_X_pow {n : ℕ} :
degree_le R n = submodule.span R ↑((finset.range (n+1)).image (λ n, X^n) : finset (polynomial R)) :=
begin
apply le_antisymm,
{ intros p hp, replace hp := mem_degree_le.1 hp,
rw [← finsupp.sum_single p, finsupp.sum, submodule.mem_coe],
refine submodule.sum_mem _ (λ k hk, _),
have := with_bot.coe_le_coe.1 (finset.sup_le_iff.1 hp k hk),
rw [single_eq_C_mul_X, C_mul'],
refine submodule.smul_mem _ _ (submodule.subset_span $ finset.mem_coe.2 $
finset.mem_image.2 ⟨_, finset.mem_range.2 (nat.lt_succ_of_le this), rfl⟩) },
rw [submodule.span_le, finset.coe_image, set.image_subset_iff],
intros k hk, apply mem_degree_le.2,
apply le_trans (degree_X_pow_le _) (with_bot.coe_le_coe.2 $ nat.le_of_lt_succ $ finset.mem_range.1 hk)
end
/-- Given a polynomial, return the polynomial whose coefficients are in
the ring closure of the original coefficients. -/
def restriction (p : polynomial R) : polynomial (ring.closure (↑p.frange : set R)) :=
⟨p.support, λ i, ⟨p.to_fun i,
if H : p.to_fun i = 0 then H.symm ▸ is_add_submonoid.zero_mem _
else ring.subset_closure $ finsupp.mem_frange.2 ⟨H, i, rfl⟩⟩,
λ i, finsupp.mem_support_iff.trans (not_iff_not_of_iff ⟨λ H, subtype.eq H, subtype.mk.inj⟩)⟩
@[simp] theorem coeff_restriction {p : polynomial R} {n : ℕ} : ↑(coeff (restriction p) n) = coeff p n := rfl
@[simp] theorem coeff_restriction' {p : polynomial R} {n : ℕ} : (coeff (restriction p) n).1 = coeff p n := rfl
@[simp] theorem degree_restriction {p : polynomial R} : (restriction p).degree = p.degree := rfl
@[simp] theorem nat_degree_restriction {p : polynomial R} : (restriction p).nat_degree = p.nat_degree := rfl
@[simp] theorem monic_restriction {p : polynomial R} : monic (restriction p) ↔ monic p :=
⟨λ H, congr_arg subtype.val H, λ H, subtype.eq H⟩
@[simp] theorem restriction_zero : restriction (0 : polynomial R) = 0 := rfl
@[simp] theorem restriction_one : restriction (1 : polynomial R) = 1 :=
ext.2 $ λ i, subtype.eq $ by rw [coeff_restriction', coeff_one, coeff_one]; split_ifs; refl
variables {S : Type v} [comm_ring S] {f : R → S} {x : S}
theorem eval₂_restriction {p : polynomial R} :
eval₂ f x p = eval₂ (f ∘ subtype.val) x p.restriction :=
rfl
section to_subring
variables (p : polynomial R) (T : set R) [is_subring T]
/-- Given a polynomial `p` and a subring `T` that contains the coefficients of `p`,
return the corresponding polynomial whose coefficients are in `T. -/
def to_subring (hp : ↑p.frange ⊆ T) : polynomial T :=
⟨p.support, λ i, ⟨p.to_fun i,
if H : p.to_fun i = 0 then H.symm ▸ is_add_submonoid.zero_mem _
else hp $ finsupp.mem_frange.2 ⟨H, i, rfl⟩⟩,
λ i, finsupp.mem_support_iff.trans (not_iff_not_of_iff ⟨λ H, subtype.eq H, subtype.mk.inj⟩)⟩
variables (hp : ↑p.frange ⊆ T)
include hp
@[simp] theorem coeff_to_subring {n : ℕ} : ↑(coeff (to_subring p T hp) n) = coeff p n := rfl
@[simp] theorem coeff_to_subring' {n : ℕ} : (coeff (to_subring p T hp) n).1 = coeff p n := rfl
@[simp] theorem degree_to_subring : (to_subring p T hp).degree = p.degree := rfl
@[simp] theorem nat_degree_to_subring : (to_subring p T hp).nat_degree = p.nat_degree := rfl
@[simp] theorem monic_to_subring : monic (to_subring p T hp) ↔ monic p :=
⟨λ H, congr_arg subtype.val H, λ H, subtype.eq H⟩
omit hp
@[simp] theorem to_subring_zero : to_subring (0 : polynomial R) T (set.empty_subset _) = 0 := rfl
@[simp] theorem to_subring_one : to_subring (1 : polynomial R) T
(set.subset.trans (finset.coe_subset.2 finsupp.frange_single)
(set.singleton_subset_iff.2 (is_submonoid.one_mem _))) = 1 :=
ext.2 $ λ i, subtype.eq $ by rw [coeff_to_subring', coeff_one, coeff_one]; split_ifs; refl
end to_subring
variables (T : set R) [is_subring T]
/-- Given a polynomial whose coefficients are in some subring, return
the corresponding polynomial whose coefificents are in the ambient ring. -/
def of_subring (p : polynomial T) : polynomial R :=
⟨p.support, subtype.val ∘ p.to_fun,
λ n, finsupp.mem_support_iff.trans (not_iff_not_of_iff
⟨λ h, congr_arg subtype.val h, λ h, subtype.eq h⟩)⟩
@[simp] theorem frange_of_subring {p : polynomial T} :
↑(p.of_subring T).frange ⊆ T :=
λ y H, let ⟨hy, x, hx⟩ := finsupp.mem_frange.1 H in hx ▸ (p.to_fun x).2
end polynomial
variables {R : Type u} [comm_ring R] [decidable_eq R]
namespace ideal
open polynomial
/-- Transport an ideal of `R[X]` to an `R`-submodule of `R[X]`. -/
def of_polynomial (I : ideal (polynomial R)) : submodule R (polynomial R) :=
{ carrier := I.carrier,
zero := I.zero_mem,
add := λ _ _, I.add_mem,
smul := λ c x H, by rw [← C_mul']; exact submodule.smul_mem _ _ H }
variables {I : ideal (polynomial R)}
theorem mem_of_polynomial (x) : x ∈ I.of_polynomial ↔ x ∈ I := iff.rfl
variables (I)
/-- Given an ideal `I` of `R[X]`, make the `R`-submodule of `I`
consisting of polynomials of degree ≤ `n`. -/
def degree_le (n : with_bot ℕ) : submodule R (polynomial R) :=
degree_le R n ⊓ I.of_polynomial
/-- Given an ideal `I` of `R[X]`, make the ideal in `R` of
leading coefficients of polynomials in `I` with degree ≤ `n`. -/
def leading_coeff_nth (n : ℕ) : ideal R :=
(I.degree_le n).map $ lcoeff R n
theorem mem_leading_coeff_nth (n : ℕ) (x) :
x ∈ I.leading_coeff_nth n ↔ ∃ p ∈ I, degree p ≤ n ∧ leading_coeff p = x :=
begin
simp only [leading_coeff_nth, degree_le, submodule.mem_map, lcoeff_apply, submodule.mem_inf, mem_degree_le],
split,
{ rintro ⟨p, ⟨hpdeg, hpI⟩, rfl⟩,
cases lt_or_eq_of_le hpdeg with hpdeg hpdeg,
{ refine ⟨0, I.zero_mem, lattice.bot_le, _⟩,
rw [leading_coeff_zero, eq_comm],
exact coeff_eq_zero_of_degree_lt hpdeg },
{ refine ⟨p, hpI, le_of_eq hpdeg, _⟩,
rw [leading_coeff, nat_degree, hpdeg], refl } },
{ rintro ⟨p, hpI, hpdeg, rfl⟩,
have : nat_degree p + (n - nat_degree p) = n,
{ exact nat.add_sub_cancel' (nat_degree_le_of_degree_le hpdeg) },
refine ⟨p * X ^ (n - nat_degree p), ⟨_, I.mul_mem_right hpI⟩, _⟩,
{ apply le_trans (degree_mul_le _ _) _,
apply le_trans (add_le_add' (degree_le_nat_degree) (degree_X_pow_le _)) _,
rw [← with_bot.coe_add, this],
exact le_refl _ },
{ rw [leading_coeff, ← coeff_mul_X_pow p (n - nat_degree p), this] } }
end
theorem mem_leading_coeff_nth_zero (x) :
x ∈ I.leading_coeff_nth 0 ↔ C x ∈ I :=
(mem_leading_coeff_nth _ _ _).trans
⟨λ ⟨p, hpI, hpdeg, hpx⟩, by rwa [← hpx, leading_coeff,
nat.eq_zero_of_le_zero (nat_degree_le_of_degree_le hpdeg),
← eq_C_of_degree_le_zero hpdeg],
λ hx, ⟨C x, hx, degree_C_le, leading_coeff_C x⟩⟩
theorem leading_coeff_nth_mono {m n : ℕ} (H : m ≤ n) :
I.leading_coeff_nth m ≤ I.leading_coeff_nth n :=
begin
intros r hr,
simp only [submodule.mem_coe, mem_leading_coeff_nth] at hr ⊢,
rcases hr with ⟨p, hpI, hpdeg, rfl⟩,
refine ⟨p * X ^ (n - m), I.mul_mem_right hpI, _, leading_coeff_mul_X_pow⟩,
refine le_trans (degree_mul_le _ _) _,
refine le_trans (add_le_add' hpdeg (degree_X_pow_le _)) _,
rw [← with_bot.coe_add, nat.add_sub_cancel' H],
exact le_refl _
end
/-- Given an ideal `I` in `R[X]`, make the ideal in `R` of the
leading coefficients in `I`. -/
def leading_coeff : ideal R :=
⨆ n : ℕ, I.leading_coeff_nth n
theorem mem_leading_coeff (x) :
x ∈ I.leading_coeff ↔ ∃ p ∈ I, polynomial.leading_coeff p = x :=
begin
rw [leading_coeff, submodule.mem_supr_of_directed],
simp only [mem_leading_coeff_nth],
{ split, { rintro ⟨i, p, hpI, hpdeg, rfl⟩, exact ⟨p, hpI, rfl⟩ },
rintro ⟨p, hpI, rfl⟩, exact ⟨nat_degree p, p, hpI, degree_le_nat_degree, rfl⟩ },
{ exact ⟨0⟩ },
intros i j, exact ⟨i + j, I.leading_coeff_nth_mono (nat.le_add_right _ _),
I.leading_coeff_nth_mono (nat.le_add_left _ _)⟩
end
theorem is_fg_degree_le [is_noetherian_ring R] (n : ℕ) :
submodule.fg (I.degree_le n) :=
is_noetherian_submodule_left.1 (is_noetherian_of_fg_of_noetherian _
⟨_, degree_le_eq_span_X_pow.symm⟩) _
end ideal
/-- Hilbert basis theorem. -/
theorem is_noetherian_ring_polynomial [is_noetherian_ring R] : is_noetherian_ring (polynomial R) :=
⟨assume I : ideal (polynomial R),
let L := I.leading_coeff in
let M := well_founded.min (is_noetherian_iff_well_founded.1 (by apply_instance))
(set.range I.leading_coeff_nth) (set.ne_empty_of_mem ⟨0, rfl⟩) in
have hm : M ∈ set.range I.leading_coeff_nth := well_founded.min_mem _ _ _,
let ⟨N, HN⟩ := hm, ⟨s, hs⟩ := I.is_fg_degree_le N in
have hm2 : ∀ k, I.leading_coeff_nth k ≤ M := λ k, or.cases_on (le_or_lt k N)
(λ h, HN ▸ I.leading_coeff_nth_mono h)
(λ h x hx, classical.by_contradiction $ λ hxm,
have ¬M < I.leading_coeff_nth k, by refine well_founded.not_lt_min
well_founded_submodule_gt _ _ _; exact ⟨k, rfl⟩,
this ⟨HN ▸ I.leading_coeff_nth_mono (le_of_lt h), λ H, hxm (H hx)⟩),
have hs2 : ∀ {x}, x ∈ I.degree_le N → x ∈ ideal.span (↑s : set (polynomial R)),
from hs ▸ λ x hx, submodule.span_induction hx (λ _ hx, ideal.subset_span hx) (ideal.zero_mem _)
(λ _ _, ideal.add_mem _) (λ c f hf, f.C_mul' c ▸ ideal.mul_mem_left _ hf),
⟨s, le_antisymm (ideal.span_le.2 $ λ x hx, have x ∈ I.degree_le N, from hs ▸ submodule.subset_span hx, this.2) $ begin
change I ≤ ideal.span ↑s,
intros p hp, generalize hn : p.nat_degree = k,
induction k using nat.strong_induction_on with k ih generalizing p,
cases le_or_lt k N,
{ subst k, refine hs2 ⟨polynomial.mem_degree_le.2
(le_trans polynomial.degree_le_nat_degree $ with_bot.coe_le_coe.2 h), hp⟩ },
{ have hp0 : p ≠ 0,
{ rintro rfl, cases hn, exact nat.not_lt_zero _ h },
have : (0 : R) ≠ 1,
{ intro h, apply hp0, ext i, refine (mul_one _).symm.trans _,
rw [← h, mul_zero], refl },
letI : nonzero_comm_ring R := { zero_ne_one := this,
..(infer_instance : comm_ring R) },
have : p.leading_coeff ∈ I.leading_coeff_nth N,
{ rw HN, exact hm2 k ((I.mem_leading_coeff_nth _ _).2
⟨_, hp, hn ▸ polynomial.degree_le_nat_degree, rfl⟩) },
rw I.mem_leading_coeff_nth at this,
rcases this with ⟨q, hq, hdq, hlqp⟩,
have hq0 : q ≠ 0,
{ intro H, rw [← polynomial.leading_coeff_eq_zero] at H,
rw [hlqp, polynomial.leading_coeff_eq_zero] at H, exact hp0 H },
have h1 : p.degree = (q * polynomial.X ^ (k - q.nat_degree)).degree,
{ rw [polynomial.degree_mul_eq', polynomial.degree_X_pow],
rw [polynomial.degree_eq_nat_degree hp0, polynomial.degree_eq_nat_degree hq0],
rw [← with_bot.coe_add, nat.add_sub_cancel', hn],
{ refine le_trans (polynomial.nat_degree_le_of_degree_le hdq) (le_of_lt h) },
rw [polynomial.leading_coeff_X_pow, mul_one],
exact mt polynomial.leading_coeff_eq_zero.1 hq0 },
have h2 : p.leading_coeff = (q * polynomial.X ^ (k - q.nat_degree)).leading_coeff,
{ rw [← hlqp, polynomial.leading_coeff_mul_X_pow] },
have := polynomial.degree_sub_lt h1 hp0 h2,
rw [polynomial.degree_eq_nat_degree hp0] at this,
rw ← sub_add_cancel p (q * polynomial.X ^ (k - q.nat_degree)),
refine (ideal.span ↑s).add_mem _ ((ideal.span ↑s).mul_mem_right _),
{ by_cases hpq : p - q * polynomial.X ^ (k - q.nat_degree) = 0,
{ rw hpq, exact ideal.zero_mem _ },
refine ih _ _ (I.sub_mem hp (I.mul_mem_right hq)) rfl,
rwa [polynomial.degree_eq_nat_degree hpq, with_bot.coe_lt_coe, hn] at this },
exact hs2 ⟨polynomial.mem_degree_le.2 hdq, hq⟩ }
end⟩⟩
theorem is_noetherian_ring_mv_polynomial_fin {n : ℕ} [is_noetherian_ring R] :
is_noetherian_ring (mv_polynomial (fin n) R) :=
begin
induction n with n ih,
{ exact is_noetherian_ring_of_ring_equiv R
((mv_polynomial.pempty_ring_equiv R).symm.trans $ mv_polynomial.ring_equiv_of_equiv _
⟨pempty.elim, fin.elim0, λ x, pempty.elim x, λ x, fin.elim0 x⟩) },
exact @is_noetherian_ring_of_ring_equiv (polynomial (mv_polynomial (fin n) R)) _
(mv_polynomial (fin (n+1)) R) _
((mv_polynomial.option_equiv_left _ _).symm.trans (mv_polynomial.ring_equiv_of_equiv _
⟨λ x, option.rec_on x 0 fin.succ, λ x, fin.cases none some x,
by rintro ⟨none | x⟩; [refl, exact fin.cases_succ _],
λ x, fin.cases rfl (λ i, show (option.rec_on (fin.cases none some (fin.succ i) : option (fin n))
0 fin.succ : fin n.succ) = _, by rw fin.cases_succ) x⟩))
(@@is_noetherian_ring_polynomial _ _ ih)
end
theorem is_noetherian_ring_mv_polynomial_of_fintype {σ : Type v} [fintype σ] [decidable_eq σ]
[is_noetherian_ring R] : is_noetherian_ring (mv_polynomial σ R) :=
trunc.induction_on (fintype.equiv_fin σ) $ λ e,
@is_noetherian_ring_of_ring_equiv (mv_polynomial (fin (fintype.card σ)) R) _ _ _
(mv_polynomial.ring_equiv_of_equiv _ e.symm) is_noetherian_ring_mv_polynomial_fin
|
0396a656ec260093bbf5bf796460e13f304481f1
|
a959f48a0621edea632487cf2130bbf70d301e05
|
/src/calculus.lean
|
cbecbd042182897c9d6a7791e7f641c1b81fe459
|
[] |
no_license
|
cipher1024/lean-differential-topology
|
cf441b36af9fdb022f10afff6a2fdc5aa4afa379
|
1938b0a5d9e89faff89dac4bc51598698cae6dbb
|
refs/heads/master
| 1,619,477,568,536
| 1,527,790,354,000
| 1,527,790,354,000
| 124,159,851
| 0
| 0
| null | 1,520,385,485,000
| 1,520,385,485,000
| null |
UTF-8
|
Lean
| false
| false
| 6,068
|
lean
|
import analysis.real
import analysis.limits
import norms
import continuous_linear_maps
noncomputable theory
local attribute [instance] classical.prop_decidable
open filter is_bounded_linear_map
local notation f `→_{`:50 a `}`:0 b := filter.tendsto f (nhds a) (nhds b)
local notation `lim_{`:50 a`}`:0 f := lim (map f (nhds a))
local notation `∥` e `∥` := norm e
section differential
variables {E : Type*} {F : Type*} {G : Type*} [normed_space ℝ E] [normed_space ℝ F] [normed_space ℝ G]
def is_differential (f : E → F) (a : E) (L : E → F) : Prop :=
(is_bounded_linear_map L) ∧ (∃ ε : E → F, (∀ h, f (a + h) = f a + L h + ∥h∥ • ε h) ∧ (ε →_{0} 0))
lemma div_mul_le_div_mul_left {a b c d : ℝ} : 0 ≤ d → a ≤ b → c > 0 → a/c*d ≤ b/c*d :=
assume d0 ab c0, mul_le_mul_of_nonneg_right (div_le_div_of_le_of_pos ab c0) d0
@[simp]
lemma norm_norm { e : E } : ∥∥e∥∥ = ∥e∥ :=
abs_of_nonneg norm_nonneg
theorem chain_rule (f : E → F) (g : F → G) (a : E) (L : E → F) (P : F → G)
(D : is_differential f a L) (D' : is_differential g (f a) P) : is_differential (g ∘ f) a (P ∘ L) :=
begin
rcases D with ⟨cont_lin_L, ε, TEf, lim_ε⟩,
rcases D' with ⟨cont_lin_P, η, TEg, lim_η⟩,
unfold is_differential,
have cont_linPL := is_bounded_linear_map.comp cont_lin_L cont_lin_P,
split,
{ exact cont_linPL },
{ rcases cont_lin_P with ⟨lin_P , MP, MP_pos, ineq_P⟩,
rcases cont_lin_L with ⟨lin_L , ML, ML_pos, ineq_L⟩,
let δ := λ h, if (h = 0) then 0 else P (ε h) + (∥ L h + ∥h∥•ε h ∥/∥h∥)• η (L h + ∥h∥•ε h),
existsi δ,
split,
{ -- prove (g ∘ f) (a + h) = (g ∘ f) a + (P ∘ L) h + ∥h∥ • δ h
intro h,
by_cases H : h = 0,
{ -- h = 0 case
simp [H, cont_linPL.1.zero] },
{ -- h ≠ 0 case
have fact1 := calc
(g ∘ f) (a + h) = g (f (a + h)): by refl
... = g (f a + L h + ∥h∥ • ε h) : by rw TEf
... = g (f a + (L h + ∥h∥ • ε h)) : by {simp, }
... = g (f a) + P (L h + ∥h∥ • ε h) + ∥ L h + ∥h∥ • ε h∥ • η (L h + ∥h∥ • ε h) : by rw TEg
... = g (f a) + P (L h) + ∥h∥ • P (ε h) + ∥ L h + ∥h∥ • ε h∥ • η (L h + ∥h∥ • ε h) : by { simp[lin_P.add, lin_P.smul] },
simp[δ, H, fact1],
-- now we only need computing and h ≠ 0
clear fact1 lin_L ineq_L ML_pos ML lin_P ineq_P MP_pos MP cont_linPL δ TEf TEg f g lim_ε lim_η a,
rw[smul_add, smul_smul],
congr_n 1,
apply (congr_arg (λ x, x • η (L h + ∥h∥ • ε h))),
rw [←mul_div_assoc, mul_comm, mul_div_cancel],
exact mt norm_zero_iff_zero.1 H },
},
{ -- prove δ →_0 0
apply tendsto_iff_norm_tendsto_zero.2,
simp,
have bound_δ : ∀ h :E, ∥ δ h ∥ ≤ MP*∥ε h∥ + ( ML + ∥ε h ∥)*∥ η (L h + ∥h∥•ε h)∥,
{ intro h,
by_cases H : h = 0,
{ -- h = 0 case
simp [δ],
simp [H],
apply add_nonneg'; apply mul_nonneg,
exact le_of_lt MP_pos,
exact norm_nonneg,
exact add_nonneg' (le_of_lt ML_pos) norm_nonneg,
exact norm_nonneg },
{ -- h ≠ 0 case
simp [δ],
simp [H],
have norm_h_pos : ∥h∥ > 0 := norm_pos_iff.2 H,
have norm_h_non_zero : ∥h∥ ≠ 0 := ne_of_gt norm_h_pos,
have prelim1 : ∥∥L h + ∥h∥ • ε h∥ / ∥h∥∥ = ∥L h + ∥h∥ • ε h∥ / ∥h∥ :=
abs_of_nonneg (div_nonneg_of_nonneg_of_pos norm_nonneg norm_h_pos),
have prelim2 : ∥L h + ∥h∥ • ε h∥/∥h∥*∥η (L h + ∥h∥ • ε h)∥ ≤ (∥L h∥ + ∥∥h∥ • ε h∥)/∥h∥ * ∥η (L h + ∥h∥ • ε h)∥ :=
div_mul_le_div_mul_left norm_nonneg (norm_triangle _ _) norm_h_pos,
have prelim3 : (∥L h∥ + ∥h∥ * ∥ε h∥) / ∥h∥ * ∥η (L h + ∥h∥ • ε h)∥ ≤
(ML * ∥h∥ + ∥h∥ * ∥ε h∥) / ∥h∥ * ∥η (L h + ∥h∥ • ε h)∥ :=
div_mul_le_div_mul_left norm_nonneg (add_le_add_right (ineq_L h) _) norm_h_pos,
exact calc
∥P (ε h) + (∥L h + ∥h∥ • ε h∥ / ∥h∥) • η (L h + ∥h∥ • ε h)∥
≤ ∥P (ε h)∥ + ∥ (∥L h + ∥h∥ • ε h∥ / ∥h∥) • η (L h + ∥h∥ • ε h)∥ : by simp[norm_triangle]
... ≤ MP*∥ε h∥ + (∥L h + ∥h∥ • ε h∥ / ∥h∥) * ∥ η (L h + ∥h∥ • ε h)∥ : by simp[norm_triangle, ineq_P, norm_smul, prelim1]
... ≤ MP*∥ε h∥ + ((∥L h∥ + ∥ ∥h∥ • ε h∥) / ∥h∥) * ∥ η (L h + ∥h∥ • ε h)∥ : by simp[norm_triangle, prelim2]
... ≤ MP*∥ε h∥ + ((ML*∥h∥ + ∥h∥ *∥ε h∥) / ∥h∥) * ∥ η (L h + ∥h∥ • ε h)∥ : by simp[norm_smul, prelim3]
... = MP*∥ε h∥ + (ML + ∥ε h∥)*∥h∥ / ∥h∥ * ∥ η (L h + ∥h∥ • ε h)∥ : by simp[mul_comm, add_mul]
... = MP*∥ε h∥ + (ML + ∥ε h∥) * ∥ η (L h + ∥h∥ • ε h)∥ : by simp[mul_div_cancel _ norm_h_non_zero] },
}, -- end of bound_δ proof
apply squeeze_zero,
exact assume t, norm_nonneg,
exact bound_δ,
rw [show (0:ℝ) = 0 + 0, by simp],
apply tendsto_add _ _,
{ apply_instance },
{ have limMP : (λ (h : E), MP) →_{0} MP := tendsto_const_nhds,
simpa using tendsto_mul limMP (tendsto_iff_norm_tendsto_zero.1 lim_ε) },
{ rw [show (0:ℝ) = ML*0, by simp],
apply tendsto_mul _ _,
{ apply_instance },
{ have limML : (λ (h : E), ML) →_{0} ML := tendsto_const_nhds,
simpa using tendsto_add limML (tendsto_iff_norm_tendsto_zero.1 lim_ε) },
{ have lim1 := tendsto_add (lim_zero_bounded_linear_map ⟨lin_L , ML, ML_pos, ineq_L⟩) (tendsto_smul lim_norm_zero lim_ε),
simp at lim1,
have := tendsto.comp lim1 lim_η,
exact tendsto.comp this lim_norm_zero } },
} }
end
end differential
|
fd1943d7dd7804bc46d124f4214016ad51089293
|
5a8eb1c11f93715e070b588e85f2961065c3714d
|
/books/theorem-proving-in-lean/ch02-exercises.lean
|
25b7c60f365ac3dd695745b8d4ef95dfa4ad8062
|
[
"MIT"
] |
permissive
|
luksamuk/study
|
0e19bf99d33e0793127c3d3f8ad3936fbeb36505
|
6a9417e071a8624c4cd9db696c16a3abcc430219
|
refs/heads/master
| 1,677,960,533,266
| 1,676,234,529,000
| 1,676,234,529,000
| 151,009,060
| 4
| 1
|
MIT
| 1,676,234,531,000
| 1,538,343,224,000
|
C++
|
UTF-8
|
Lean
| false
| false
| 2,226
|
lean
|
-- 1. Define Do_Twice
def double (x : ℕ) : ℕ := x + x
def do_twice (f : ℕ → ℕ) (x : ℕ) : ℕ := f (f x)
def Do_Twice : ((ℕ → ℕ) → (ℕ → ℕ)) → (ℕ → ℕ) → (ℕ → ℕ)
:= λ f g x, (f g) x
#check Do_Twice do_twice double
#reduce Do_Twice do_twice double 2
-- 2. Define curry and uncurry
def curry {α β γ : Type} (f : α × β → γ)
: α → β → γ :=
λ x y, f (x, y)
def uncurry {α β γ : Type} (f : α → β → γ)
: α × β → γ :=
λ p, f p.fst p.snd
#check @curry
#check @uncurry
#check curry (λ (p : ℕ × ℕ), p.1 + p.2)
#reduce curry (λ (p : ℕ × ℕ), p.1 + p.2)
#check uncurry (λ (x : ℕ) (y : ℕ), x + y)
#reduce uncurry (λ (x : ℕ) (y : ℕ), x + y)
-- 3. vec_add and vec_reverse
namespace hidden
-- Shameless copypasta
universe u
constant vec : Type u → ℕ → Type u
namespace vec
constant empty : Π α : Type u, vec α 0
constant cons :
Π (α : Type u) (n : ℕ), α → vec α n → vec α (n + 1)
constant append :
Π (α : Type u) (n m : ℕ), vec α m → vec α n → vec α (n + m)
end vec
-- Actual answer
constant vec_add :
Π {α : Type u} {n : ℕ}, vec α n → vec α n → vec α n
constant vec_reverse :
Π {α : Type u} {n : ℕ}, vec α n → vec α n
#check @vec_add
constant α : Type u
constant n : ℕ
constants a_vec b_vec : vec α n
#check vec_add a_vec b_vec
#check vec_reverse a_vec
end hidden
-- 4. matrix
namespace hidden2
universe u
constant matrix : Π {α : Type u}, α → ℕ → ℕ → α
constant matrix_sum :
Π {α : Type u} {m n : ℕ},
matrix α m n → matrix α m n → matrix α m n
constant matrix_mul :
Π {α : Type u} {l c n : ℕ},
matrix α l n → matrix α n c → matrix α l c
-- Tests
constant α : Type u
constants m n : ℕ
constants mat_a mat_b : matrix ℕ m n
constant mat_c : matrix ℕ 2 3
constant mat_d : matrix ℕ 3 5
#check matrix m n
#check @matrix_sum
#check mat_a
#check mat_b
#check matrix_sum mat_a mat_b
#check @matrix_mul
#check mat_c
#check mat_d
#check matrix_mul mat_c mat_d
end hidden2
|
b3df55975534671af6f6bca0786f5500d7eff389
|
cf39355caa609c0f33405126beee2739aa3cb77e
|
/tests/lean/634c.lean
|
94ae3fb162fd3e0c93441396207d258dcc1753f1
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/lean
|
12b87f69d92e614daea8bcc9d4de9a9ace089d0e
|
cce7990ea86a78bdb383e38ed7f9b5ba93c60ce0
|
refs/heads/master
| 1,687,508,156,644
| 1,684,951,104,000
| 1,684,951,104,000
| 169,960,991
| 457
| 107
|
Apache-2.0
| 1,686,744,372,000
| 1,549,790,268,000
|
C++
|
UTF-8
|
Lean
| false
| false
| 959
|
lean
|
open nat
section
parameter (X : Type)
definition A {n : ℕ} : Type := X
definition B : Type := X
variable {n : ℕ}
#check @A n
#check _root_.A nat
#check _root_.A (X × B)
#check @_root_.A (X × B) 10
#check @_root_.A (_root_.B (@_root_.A X n)) n
#check @_root_.A (@_root_.B (@_root_.A nat n)) n
set_option pp.full_names true
#check A
#check _root_.A nat
#check @_root_.A (X × B) 10
#check @_root_.A (@_root_.B (@_root_.A X n)) n
#check @_root_.A (@_root_.B (@_root_.A nat n)) n
set_option pp.full_names false
set_option pp.implicit true
#check @A n
#check @_root_.A nat 10
#check @_root_.A X n
set_option pp.full_names true
#check @_root_.A X n
#check @_root_.A B n
set_option pp.full_names false
#check @_root_.A X n
#check @_root_.A B n
#check @_root_.A (@_root_.B (@A n)) n
#check @_root_.A (@_root_.B (@_root_.A X n)) n
#check @_root_.A (@_root_.B (@_root_.A nat n)) n
#check @A n
end
|
fcf73b17c2137beb7f5a5113e3c9ba1820f0d956
|
6432ea7a083ff6ba21ea17af9ee47b9c371760f7
|
/tests/lean/run/998Export.lean
|
dd02b624667674b125ccddf9ee0a7a6eff10ac8d
|
[
"Apache-2.0",
"LLVM-exception",
"NCSA",
"LGPL-3.0-only",
"LicenseRef-scancode-inner-net-2.0",
"BSD-3-Clause",
"LGPL-2.0-or-later",
"Spencer-94",
"LGPL-2.1-or-later",
"HPND",
"LicenseRef-scancode-pcre",
"ISC",
"LGPL-2.1-only",
"LicenseRef-scancode-other-permissive",
"SunPro",
"CMU-Mach"
] |
permissive
|
leanprover/lean4
|
4bdf9790294964627eb9be79f5e8f6157780b4cc
|
f1f9dc0f2f531af3312398999d8b8303fa5f096b
|
refs/heads/master
| 1,693,360,665,786
| 1,693,350,868,000
| 1,693,350,868,000
| 129,571,436
| 2,827
| 311
|
Apache-2.0
| 1,694,716,156,000
| 1,523,760,560,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 2,302
|
lean
|
import Lean
open Lean
inductive Entry
| name (n : Name)
| level (n : Level)
| expr (n : Expr)
| defn (n : Name)
deriving Inhabited
structure Alloc (α) [BEq α] [Hashable α] where
map : HashMap α Nat
next : Nat
deriving Inhabited
namespace Export
structure State where
names : Alloc Name := ⟨HashMap.empty.insert Name.anonymous 0, 1⟩
levels : Alloc Level := ⟨HashMap.empty.insert levelZero 0, 1⟩
exprs : Alloc Expr
defs : HashSet Name
stk : Array (Bool × Entry)
deriving Inhabited
class OfState (α : Type) [BEq α] [Hashable α] where
get : State → Alloc α
modify : (Alloc α → Alloc α) → State → State
instance : OfState Name where
get s := s.names
modify f s := { s with names := f s.names }
instance : OfState Level where
get s := s.levels
modify f s := { s with levels := f s.levels }
instance : OfState Expr where
get s := s.exprs
modify f s := { s with exprs := f s.exprs }
end Export
abbrev ExportM := StateT Export.State CoreM
namespace Export
def alloc {α} [BEq α] [Hashable α] [OfState α] (a : α) : ExportM Nat := do
let n := (OfState.get (α := α) (← get)).next
modify $ OfState.modify (α := α) fun s => {map := s.map.insert a n, next := n+1}
pure n
def exportName (n : Name) : ExportM Nat := do
match (← get).names.map.find? n with
| some i => pure i
| none => match n with
| .anonymous => pure 0
| .num p a => let i ← alloc n; IO.println s!"{i} #NI {← exportName p} {a}"; pure i
| .str p s => let i ← alloc n; IO.println s!"{i} #NS {← exportName p} {s}"; pure i
attribute [simp] exportName
def exportLevel (L : Level) : ExportM Nat := do
match (← get).levels.map.find? L with
| some i => pure i
| none => match L with
| Level.zero => pure 0
| Level.succ l =>
let i ← alloc L; IO.println s!"{i} #US {← exportLevel l}"; pure i
| Level.max l₁ l₂ =>
let i ← alloc L; IO.println s!"{i} #UM {← exportLevel l₁} {← exportLevel l₂}"; pure i
| Level.imax l₁ l₂ =>
let i ← alloc L; IO.println s!"{i} #UIM {← exportLevel l₁} {← exportLevel l₂}"; pure i
| Level.param n =>
let i ← alloc L; IO.println s!"{i} #UP {← exportName n}"; pure i
| Level.mvar n => unreachable!
attribute [simp] exportLevel
|
658a64720121989e22ff6377160955366a372fcf
|
b392eb79fb36952401156496daa60628ccb07438
|
/MathPort/ActionItem.lean
|
6e78844c36756c348b40b50cccb376d26a353206
|
[
"Apache-2.0"
] |
permissive
|
AurelienSaue/mathportsource
|
d9eabe74e3ab7774baa6a10a6dc8d4855ff92266
|
1a164e4fff7204c522c1f4ecc5024fd909be3b0b
|
refs/heads/master
| 1,685,214,377,305
| 1,623,621,223,000
| 1,623,621,223,000
| 364,191,042
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 2,936
|
lean
|
/-
Copyright (c) 2020 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Daniel Selsam
-/
import MathPort.Util
import MathPort.Path
import Lean
import Std.Data.HashSet
import Std.Data.HashMap
namespace MathPort
open Lean
inductive MixfixKind
| «prefix»
| «infixl»
| «infixr»
| «postfix»
| «singleton»
def MixfixKind.toAttr : MixfixKind → Name
| MixfixKind.prefix => `Lean.Parser.Command.prefix
| MixfixKind.postfix => `Lean.Parser.Command.postfix
| MixfixKind.infixl => `Lean.Parser.Command.infixl
| MixfixKind.infixr => `Lean.Parser.Command.infixr
| MixfixKind.singleton => `Lean.Parser.Command.notation
instance : ToString MixfixKind :=
⟨λ
| MixfixKind.prefix => "prefix"
| MixfixKind.postfix => "postfix"
| MixfixKind.infixl => "infixl"
| MixfixKind.infixr => "infixr"
| MixfixKind.singleton => "notation"⟩
instance : BEq ReducibilityStatus :=
⟨λ
| ReducibilityStatus.reducible, ReducibilityStatus.reducible => true
| ReducibilityStatus.semireducible, ReducibilityStatus.semireducible => true
| ReducibilityStatus.irreducible, ReducibilityStatus.irreducible => true
| _, _ => false⟩
structure ExportDecl : Type where
currNs : Name
ns : Name
nsAs : Name
hadExplicit : Bool
renames : Array (Name × Name)
exceptNames : Array Name
structure ProjectionInfo : Type where
-- pr_i A.. (mk A f_1 ... f_n) ==> f_i
projName : Name -- pr_i
ctorName : Name -- mk
nParams : Nat -- |A..|
index : Nat -- i
fromClass : Bool
deriving Repr
inductive ActionItem : Type
| decl : Declaration → ActionItem
| «class» : (c : Name) → ActionItem
| «instance» : (c i : Name) → (prio : Nat) → ActionItem
| simp : (name : Name) → (prio : Nat) → ActionItem
| «private» : (pretty real : Name) → ActionItem
| «protected» : (name : Name) → ActionItem
| «reducibility» : (name : Name) → ReducibilityStatus → ActionItem
| «mixfix» : MixfixKind → Name → Nat → String → ActionItem
| «export» : ExportDecl → ActionItem
| «projection» : ProjectionInfo → ActionItem
| «position» : (name : Name) → (line col : Nat) → ActionItem
def ActionItem.toDecl : ActionItem → Name
| ActionItem.decl d =>
match d.names with
| [] => `nodecl
| n::_ => n
| ActionItem.class c => c
| ActionItem.instance _ i _ => i
| ActionItem.simp n _ => n
| ActionItem.private _ real => real
| ActionItem.protected n => n
| ActionItem.reducibility n _ => n
| ActionItem.mixfix _ n _ _ => n
| ActionItem.export _ => `inExport
| ActionItem.projection p => p.projName
| ActionItem.position n _ _ => n
end MathPort
|
3c65349ffdbb7efa9fe158210912b7fcaa6ffcb0
|
82e44445c70db0f03e30d7be725775f122d72f3e
|
/src/category_theory/limits/shapes/zero.lean
|
408c3f7e5f76ecbc2fe6d9f4dc3b64577bbd9500
|
[
"Apache-2.0"
] |
permissive
|
stjordanis/mathlib
|
51e286d19140e3788ef2c470bc7b953e4991f0c9
|
2568d41bca08f5d6bf39d915434c8447e21f42ee
|
refs/heads/master
| 1,631,748,053,501
| 1,627,938,886,000
| 1,627,938,886,000
| 228,728,358
| 0
| 0
|
Apache-2.0
| 1,576,630,588,000
| 1,576,630,587,000
| null |
UTF-8
|
Lean
| false
| false
| 18,257
|
lean
|
/-
Copyright (c) 2019 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison
-/
import category_theory.limits.shapes.products
import category_theory.limits.shapes.images
import category_theory.isomorphism_classes
/-!
# Zero morphisms and zero objects
A category "has zero morphisms" if there is a designated "zero morphism" in each morphism space,
and compositions of zero morphisms with anything give the zero morphism. (Notice this is extra
structure, not merely a property.)
A category "has a zero object" if it has an object which is both initial and terminal. Having a
zero object provides zero morphisms, as the unique morphisms factoring through the zero object.
## References
* https://en.wikipedia.org/wiki/Zero_morphism
* [F. Borceux, *Handbook of Categorical Algebra 2*][borceux-vol2]
-/
noncomputable theory
universes v u
open category_theory
open category_theory.category
namespace category_theory.limits
variables (C : Type u) [category.{v} C]
/-- A category "has zero morphisms" if there is a designated "zero morphism" in each morphism space,
and compositions of zero morphisms with anything give the zero morphism. -/
class has_zero_morphisms :=
[has_zero : Π X Y : C, has_zero (X ⟶ Y)]
(comp_zero' : ∀ {X Y : C} (f : X ⟶ Y) (Z : C), f ≫ (0 : Y ⟶ Z) = (0 : X ⟶ Z) . obviously)
(zero_comp' : ∀ (X : C) {Y Z : C} (f : Y ⟶ Z), (0 : X ⟶ Y) ≫ f = (0 : X ⟶ Z) . obviously)
attribute [instance] has_zero_morphisms.has_zero
restate_axiom has_zero_morphisms.comp_zero'
restate_axiom has_zero_morphisms.zero_comp'
variables {C}
@[simp] lemma comp_zero [has_zero_morphisms C] {X Y : C} {f : X ⟶ Y} {Z : C} :
f ≫ (0 : Y ⟶ Z) = (0 : X ⟶ Z) := has_zero_morphisms.comp_zero f Z
@[simp] lemma zero_comp [has_zero_morphisms C] {X : C} {Y Z : C} {f : Y ⟶ Z} :
(0 : X ⟶ Y) ≫ f = (0 : X ⟶ Z) := has_zero_morphisms.zero_comp X f
instance has_zero_morphisms_pempty : has_zero_morphisms (discrete pempty) :=
{ has_zero := by tidy }
instance has_zero_morphisms_punit : has_zero_morphisms (discrete punit) :=
{ has_zero := by tidy }
namespace has_zero_morphisms
variables {C}
/-- This lemma will be immediately superseded by `ext`, below. -/
private lemma ext_aux (I J : has_zero_morphisms C)
(w : ∀ X Y : C, (@has_zero_morphisms.has_zero _ _ I X Y).zero =
(@has_zero_morphisms.has_zero _ _ J X Y).zero) : I = J :=
begin
casesI I, casesI J,
congr,
{ ext X Y,
exact w X Y },
{ apply proof_irrel_heq, },
{ apply proof_irrel_heq, }
end
/--
If you're tempted to use this lemma "in the wild", you should probably
carefully consider whether you've made a mistake in allowing two
instances of `has_zero_morphisms` to exist at all.
See, particularly, the note on `zero_morphisms_of_zero_object` below.
-/
lemma ext (I J : has_zero_morphisms C) : I = J :=
begin
apply ext_aux,
intros X Y,
rw ←@has_zero_morphisms.comp_zero _ _ I X X (@has_zero_morphisms.has_zero _ _ J X X).zero,
rw @has_zero_morphisms.zero_comp _ _ J,
end
instance : subsingleton (has_zero_morphisms C) :=
⟨ext⟩
end has_zero_morphisms
open opposite has_zero_morphisms
instance has_zero_morphisms_opposite [has_zero_morphisms C] :
has_zero_morphisms Cᵒᵖ :=
{ has_zero := λ X Y, ⟨(0 : unop Y ⟶ unop X).op⟩,
comp_zero' := λ X Y f Z, congr_arg quiver.hom.op (has_zero_morphisms.zero_comp (unop Z) f.unop),
zero_comp' := λ X Y Z f, congr_arg quiver.hom.op (has_zero_morphisms.comp_zero f.unop (unop X)), }
section
variables {C} [has_zero_morphisms C]
lemma zero_of_comp_mono {X Y Z : C} {f : X ⟶ Y} (g : Y ⟶ Z) [mono g] (h : f ≫ g = 0) : f = 0 :=
by { rw [←zero_comp, cancel_mono] at h, exact h }
lemma zero_of_epi_comp {X Y Z : C} (f : X ⟶ Y) {g : Y ⟶ Z} [epi f] (h : f ≫ g = 0) : g = 0 :=
by { rw [←comp_zero, cancel_epi] at h, exact h }
lemma eq_zero_of_image_eq_zero {X Y : C} {f : X ⟶ Y} [has_image f] (w : image.ι f = 0) : f = 0 :=
by rw [←image.fac f, w, has_zero_morphisms.comp_zero]
lemma nonzero_image_of_nonzero {X Y : C} {f : X ⟶ Y} [has_image f] (w : f ≠ 0) : image.ι f ≠ 0 :=
λ h, w (eq_zero_of_image_eq_zero h)
end
section
universes v' u'
variables (D : Type u') [category.{v'} D]
variables [has_zero_morphisms D]
instance : has_zero_morphisms (C ⥤ D) :=
{ has_zero := λ F G, ⟨{ app := λ X, 0, }⟩ }
@[simp] lemma zero_app (F G : C ⥤ D) (j : C) : (0 : F ⟶ G).app j = 0 := rfl
variables [has_zero_morphisms C]
lemma equivalence_preserves_zero_morphisms (F : C ≌ D) (X Y : C) :
F.functor.map (0 : X ⟶ Y) = (0 : F.functor.obj X ⟶ F.functor.obj Y) :=
begin
have t : F.functor.map (0 : X ⟶ Y) =
F.functor.map (0 : X ⟶ Y) ≫ (0 : F.functor.obj Y ⟶ F.functor.obj Y),
{ apply faithful.map_injective (F.inverse),
rw [functor.map_comp, equivalence.inv_fun_map],
dsimp,
rw [zero_comp, comp_zero, zero_comp], },
exact t.trans (by simp)
end
@[simp] lemma is_equivalence_preserves_zero_morphisms (F : C ⥤ D) [is_equivalence F] (X Y : C) :
F.map (0 : X ⟶ Y) = 0 :=
by rw [←functor.as_equivalence_functor F, equivalence_preserves_zero_morphisms]
end
variables (C)
/-- A category "has a zero object" if it has an object which is both initial and terminal. -/
class has_zero_object :=
(zero : C)
(unique_to : Π X : C, unique (zero ⟶ X))
(unique_from : Π X : C, unique (X ⟶ zero))
instance has_zero_object_punit : has_zero_object (discrete punit) :=
{ zero := punit.star,
unique_to := by tidy,
unique_from := by tidy, }
variables {C}
namespace has_zero_object
variables [has_zero_object C]
/--
Construct a `has_zero C` for a category with a zero object.
This can not be a global instance as it will trigger for every `has_zero C` typeclass search.
-/
protected def has_zero : has_zero C :=
{ zero := has_zero_object.zero }
localized "attribute [instance] category_theory.limits.has_zero_object.has_zero" in zero_object
localized "attribute [instance] category_theory.limits.has_zero_object.unique_to" in zero_object
localized "attribute [instance] category_theory.limits.has_zero_object.unique_from" in zero_object
@[ext]
lemma to_zero_ext {X : C} (f g : X ⟶ 0) : f = g :=
by rw [(has_zero_object.unique_from X).uniq f, (has_zero_object.unique_from X).uniq g]
@[ext]
lemma from_zero_ext {X : C} (f g : 0 ⟶ X) : f = g :=
by rw [(has_zero_object.unique_to X).uniq f, (has_zero_object.unique_to X).uniq g]
instance (X : C) : subsingleton (X ≅ 0) := by tidy
instance {X : C} (f : 0 ⟶ X) : mono f :=
{ right_cancellation := λ Z g h w, by ext, }
instance {X : C} (f : X ⟶ 0) : epi f :=
{ left_cancellation := λ Z g h w, by ext, }
/-- A category with a zero object has zero morphisms.
It is rarely a good idea to use this. Many categories that have a zero object have zero
morphisms for some other reason, for example from additivity. Library code that uses
`zero_morphisms_of_zero_object` will then be incompatible with these categories because
the `has_zero_morphisms` instances will not be definitionally equal. For this reason library
code should generally ask for an instance of `has_zero_morphisms` separately, even if it already
asks for an instance of `has_zero_objects`. -/
def zero_morphisms_of_zero_object : has_zero_morphisms C :=
{ has_zero := λ X Y,
{ zero := inhabited.default (X ⟶ 0) ≫ inhabited.default (0 ⟶ Y) },
zero_comp' := λ X Y Z f, by { dunfold has_zero.zero, rw category.assoc, congr, },
comp_zero' := λ X Y Z f, by { dunfold has_zero.zero, rw ←category.assoc, congr, }}
/-- A zero object is in particular initial. -/
def zero_is_initial : is_initial (0 : C) :=
is_initial.of_unique 0
/-- A zero object is in particular terminal. -/
def zero_is_terminal : is_terminal (0 : C) :=
is_terminal.of_unique 0
/-- A zero object is in particular initial. -/
@[priority 10]
instance has_initial : has_initial C :=
has_initial_of_unique 0
/-- A zero object is in particular terminal. -/
@[priority 10]
instance has_terminal : has_terminal C :=
has_terminal_of_unique 0
@[priority 100]
instance has_strict_initial : initial_mono_class C :=
initial_mono_class.of_is_initial zero_is_initial (λ X, category_theory.mono _)
open_locale zero_object
instance {B : Type*} [category B] [has_zero_morphisms C] : has_zero_object (B ⥤ C) :=
{ zero := { obj := λ X, 0, map := λ X Y f, 0, },
unique_to := λ F, ⟨⟨{ app := λ X, 0, }⟩, by tidy⟩,
unique_from := λ F, ⟨⟨{ app := λ X, 0, }⟩, by tidy⟩ }
@[simp] lemma functor.zero_obj {B : Type*} [category B] [has_zero_morphisms C] (X : B) :
(0 : B ⥤ C).obj X = 0 := rfl
@[simp] lemma functor.zero_map {B : Type*} [category B] [has_zero_morphisms C]
{X Y : B} (f : X ⟶ Y) : (0 : B ⥤ C).map f = 0 := rfl
end has_zero_object
section
variables [has_zero_object C] [has_zero_morphisms C]
open_locale zero_object
@[simp]
lemma id_zero : 𝟙 (0 : C) = (0 : 0 ⟶ 0) :=
by ext
/-- An arrow ending in the zero object is zero -/
-- This can't be a `simp` lemma because the left hand side would be a metavariable.
lemma zero_of_to_zero {X : C} (f : X ⟶ 0) : f = 0 :=
by ext
lemma zero_of_target_iso_zero {X Y : C} (f : X ⟶ Y) (i : Y ≅ 0) : f = 0 :=
begin
have h : f = f ≫ i.hom ≫ 𝟙 0 ≫ i.inv := by simp only [iso.hom_inv_id, id_comp, comp_id],
simpa using h,
end
/-- An arrow starting at the zero object is zero -/
lemma zero_of_from_zero {X : C} (f : 0 ⟶ X) : f = 0 :=
by ext
lemma zero_of_source_iso_zero {X Y : C} (f : X ⟶ Y) (i : X ≅ 0) : f = 0 :=
begin
have h : f = i.hom ≫ 𝟙 0 ≫ i.inv ≫ f := by simp only [iso.hom_inv_id_assoc, id_comp, comp_id],
simpa using h,
end
lemma zero_of_source_iso_zero' {X Y : C} (f : X ⟶ Y) (i : is_isomorphic X 0) : f = 0 :=
zero_of_source_iso_zero f (nonempty.some i)
lemma zero_of_target_iso_zero' {X Y : C} (f : X ⟶ Y) (i : is_isomorphic Y 0) : f = 0 :=
zero_of_target_iso_zero f (nonempty.some i)
lemma mono_of_source_iso_zero {X Y : C} (f : X ⟶ Y) (i : X ≅ 0) : mono f :=
⟨λ Z g h w, by rw [zero_of_target_iso_zero g i, zero_of_target_iso_zero h i]⟩
lemma epi_of_target_iso_zero {X Y : C} (f : X ⟶ Y) (i : Y ≅ 0) : epi f :=
⟨λ Z g h w, by rw [zero_of_source_iso_zero g i, zero_of_source_iso_zero h i]⟩
/--
An object `X` has `𝟙 X = 0` if and only if it is isomorphic to the zero object.
Because `X ≅ 0` contains data (even if a subsingleton), we express this `↔` as an `≃`.
-/
def id_zero_equiv_iso_zero (X : C) : (𝟙 X = 0) ≃ (X ≅ 0) :=
{ to_fun := λ h, { hom := 0, inv := 0, },
inv_fun := λ i, zero_of_target_iso_zero (𝟙 X) i,
left_inv := by tidy,
right_inv := by tidy, }
@[simp]
lemma id_zero_equiv_iso_zero_apply_hom (X : C) (h : 𝟙 X = 0) :
((id_zero_equiv_iso_zero X) h).hom = 0 := rfl
@[simp]
lemma id_zero_equiv_iso_zero_apply_inv (X : C) (h : 𝟙 X = 0) :
((id_zero_equiv_iso_zero X) h).inv = 0 := rfl
/-- If `0 : X ⟶ Y` is an monomorphism, then `X ≅ 0`. -/
@[simps]
def iso_zero_of_mono_zero {X Y : C} (h : mono (0 : X ⟶ Y)) : X ≅ 0 :=
{ hom := 0,
inv := 0,
hom_inv_id' := (cancel_mono (0 : X ⟶ Y)).mp (by simp) }
/-- If `0 : X ⟶ Y` is an epimorphism, then `Y ≅ 0`. -/
@[simps]
def iso_zero_of_epi_zero {X Y : C} (h : epi (0 : X ⟶ Y)) : Y ≅ 0 :=
{ hom := 0,
inv := 0,
hom_inv_id' := (cancel_epi (0 : X ⟶ Y)).mp (by simp) }
/-- If an object `X` is isomorphic to 0, there's no need to use choice to construct
an explicit isomorphism: the zero morphism suffices. -/
def iso_of_is_isomorphic_zero {X : C} (P : is_isomorphic X 0) : X ≅ 0 :=
{ hom := 0,
inv := 0,
hom_inv_id' :=
begin
casesI P,
rw ←P.hom_inv_id,
rw ←category.id_comp P.inv,
simp,
end,
inv_hom_id' := by simp, }
end
section is_iso
variables [has_zero_morphisms C]
/--
A zero morphism `0 : X ⟶ Y` is an isomorphism if and only if
the identities on both `X` and `Y` are zero.
-/
@[simps]
def is_iso_zero_equiv (X Y : C) : is_iso (0 : X ⟶ Y) ≃ (𝟙 X = 0 ∧ 𝟙 Y = 0) :=
{ to_fun := by { introsI i, rw ←is_iso.hom_inv_id (0 : X ⟶ Y),
rw ←is_iso.inv_hom_id (0 : X ⟶ Y), simp },
inv_fun := λ h, ⟨⟨(0 : Y ⟶ X), by tidy⟩⟩,
left_inv := by tidy,
right_inv := by tidy, }
/--
A zero morphism `0 : X ⟶ X` is an isomorphism if and only if
the identity on `X` is zero.
-/
def is_iso_zero_self_equiv (X : C) : is_iso (0 : X ⟶ X) ≃ (𝟙 X = 0) :=
by simpa using is_iso_zero_equiv X X
variables [has_zero_object C]
open_locale zero_object
/--
A zero morphism `0 : X ⟶ Y` is an isomorphism if and only if
`X` and `Y` are isomorphic to the zero object.
-/
def is_iso_zero_equiv_iso_zero (X Y : C) : is_iso (0 : X ⟶ Y) ≃ (X ≅ 0) × (Y ≅ 0) :=
begin
-- This is lame, because `prod` can't cope with `Prop`, so we can't use `equiv.prod_congr`.
refine (is_iso_zero_equiv X Y).trans _,
symmetry,
fsplit,
{ rintros ⟨eX, eY⟩, fsplit,
exact (id_zero_equiv_iso_zero X).symm eX,
exact (id_zero_equiv_iso_zero Y).symm eY, },
{ rintros ⟨hX, hY⟩, fsplit,
exact (id_zero_equiv_iso_zero X) hX,
exact (id_zero_equiv_iso_zero Y) hY, },
{ tidy, },
{ tidy, },
end
lemma is_iso_of_source_target_iso_zero {X Y : C} (f : X ⟶ Y) (i : X ≅ 0) (j : Y ≅ 0) : is_iso f :=
begin
rw zero_of_source_iso_zero f i,
exact (is_iso_zero_equiv_iso_zero _ _).inv_fun ⟨i, j⟩,
end
/--
A zero morphism `0 : X ⟶ X` is an isomorphism if and only if
`X` is isomorphic to the zero object.
-/
def is_iso_zero_self_equiv_iso_zero (X : C) : is_iso (0 : X ⟶ X) ≃ (X ≅ 0) :=
(is_iso_zero_equiv_iso_zero X X).trans subsingleton_prod_self_equiv
end is_iso
/-- If there are zero morphisms, any initial object is a zero object. -/
def has_zero_object_of_has_initial_object
[has_zero_morphisms C] [has_initial C] : has_zero_object C :=
{ zero := ⊥_ C,
unique_to := λ X, ⟨⟨0⟩, by tidy⟩,
unique_from := λ X, ⟨⟨0⟩, λ f,
calc
f = f ≫ 𝟙 _ : (category.comp_id _).symm
... = f ≫ 0 : by congr
... = 0 : has_zero_morphisms.comp_zero _ _
⟩ }
/-- If there are zero morphisms, any terminal object is a zero object. -/
def has_zero_object_of_has_terminal_object
[has_zero_morphisms C] [has_terminal C] : has_zero_object C :=
{ zero := ⊤_ C,
unique_from := λ X, ⟨⟨0⟩, by tidy⟩,
unique_to := λ X, ⟨⟨0⟩, λ f,
calc
f = 𝟙 _ ≫ f : (category.id_comp _).symm
... = 0 ≫ f : by congr
... = 0 : zero_comp
⟩ }
section image
variable [has_zero_morphisms C]
lemma image_ι_comp_eq_zero {X Y Z : C} {f : X ⟶ Y} {g : Y ⟶ Z} [has_image f]
[epi (factor_thru_image f)] (h : f ≫ g = 0) : image.ι f ≫ g = 0 :=
zero_of_epi_comp (factor_thru_image f) $ by simp [h]
lemma comp_factor_thru_image_eq_zero {X Y Z : C} {f : X ⟶ Y} {g : Y ⟶ Z} [has_image g]
(h : f ≫ g = 0) : f ≫ factor_thru_image g = 0 :=
zero_of_comp_mono (image.ι g) $ by simp [h]
variables [has_zero_object C]
open_locale zero_object
/--
The zero morphism has a `mono_factorisation` through the zero object.
-/
@[simps]
def mono_factorisation_zero (X Y : C) : mono_factorisation (0 : X ⟶ Y) :=
{ I := 0, m := 0, e := 0, }
/--
The factorisation through the zero object is an image factorisation.
-/
def image_factorisation_zero (X Y : C) : image_factorisation (0 : X ⟶ Y) :=
{ F := mono_factorisation_zero X Y,
is_image := { lift := λ F', 0 } }
instance has_image_zero {X Y : C} : has_image (0 : X ⟶ Y) :=
has_image.mk $ image_factorisation_zero _ _
/-- The image of a zero morphism is the zero object. -/
def image_zero {X Y : C} : image (0 : X ⟶ Y) ≅ 0 :=
is_image.iso_ext (image.is_image (0 : X ⟶ Y)) (image_factorisation_zero X Y).is_image
/-- The image of a morphism which is equal to zero is the zero object. -/
def image_zero' {X Y : C} {f : X ⟶ Y} (h : f = 0) [has_image f] : image f ≅ 0 :=
image.eq_to_iso h ≪≫ image_zero
@[simp]
lemma image.ι_zero {X Y : C} [has_image (0 : X ⟶ Y)] : image.ι (0 : X ⟶ Y) = 0 :=
begin
rw ←image.lift_fac (mono_factorisation_zero X Y),
simp,
end
/--
If we know `f = 0`,
it requires a little work to conclude `image.ι f = 0`,
because `f = g` only implies `image f ≅ image g`.
-/
@[simp]
lemma image.ι_zero' [has_equalizers C] {X Y : C} {f : X ⟶ Y} (h : f = 0) [has_image f] :
image.ι f = 0 :=
by { rw image.eq_fac h, simp }
end image
/-- In the presence of zero morphisms, coprojections into a coproduct are (split) monomorphisms. -/
instance split_mono_sigma_ι
{β : Type v} [decidable_eq β]
[has_zero_morphisms C]
(f : β → C) [has_colimit (discrete.functor f)] (b : β) : split_mono (sigma.ι f b) :=
{ retraction := sigma.desc (λ b', if h : b' = b then eq_to_hom (congr_arg f h) else 0), }
/-- In the presence of zero morphisms, projections into a product are (split) epimorphisms. -/
instance split_epi_pi_π
{β : Type v} [decidable_eq β]
[has_zero_morphisms C]
(f : β → C) [has_limit (discrete.functor f)] (b : β) : split_epi (pi.π f b) :=
{ section_ := pi.lift (λ b', if h : b = b' then eq_to_hom (congr_arg f h) else 0), }
/-- In the presence of zero morphisms, coprojections into a coproduct are (split) monomorphisms. -/
instance split_mono_coprod_inl
[has_zero_morphisms C] {X Y : C} [has_colimit (pair X Y)] :
split_mono (coprod.inl : X ⟶ X ⨿ Y) :=
{ retraction := coprod.desc (𝟙 X) 0, }
/-- In the presence of zero morphisms, coprojections into a coproduct are (split) monomorphisms. -/
instance split_mono_coprod_inr
[has_zero_morphisms C] {X Y : C} [has_colimit (pair X Y)] :
split_mono (coprod.inr : Y ⟶ X ⨿ Y) :=
{ retraction := coprod.desc 0 (𝟙 Y), }
/-- In the presence of zero morphisms, projections into a product are (split) epimorphisms. -/
instance split_epi_prod_fst
[has_zero_morphisms C] {X Y : C} [has_limit (pair X Y)] :
split_epi (prod.fst : X ⨯ Y ⟶ X) :=
{ section_ := prod.lift (𝟙 X) 0, }
/-- In the presence of zero morphisms, projections into a product are (split) epimorphisms. -/
instance split_epi_prod_snd
[has_zero_morphisms C] {X Y : C} [has_limit (pair X Y)] :
split_epi (prod.snd : X ⨯ Y ⟶ Y) :=
{ section_ := prod.lift 0 (𝟙 Y), }
end category_theory.limits
|
10db201429770931b608e0911bc53b35125c6bc8
|
4d2583807a5ac6caaffd3d7a5f646d61ca85d532
|
/src/measure_theory/category/Meas.lean
|
9833788b0317efe88643642a5c5dc3408348a32f
|
[
"Apache-2.0"
] |
permissive
|
AntoineChambert-Loir/mathlib
|
64aabb896129885f12296a799818061bc90da1ff
|
07be904260ab6e36a5769680b6012f03a4727134
|
refs/heads/master
| 1,693,187,631,771
| 1,636,719,886,000
| 1,636,719,886,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 4,363
|
lean
|
/-
Copyright (c) 2018 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl
-/
import topology.category.Top.basic
import measure_theory.measure.giry_monad
import category_theory.monad.algebra
/-!
# The category of measurable spaces
Measurable spaces and measurable functions form a (concrete) category `Meas`.
## Main definitions
* `Measure : Meas ⥤ Meas`: the functor which sends a measurable space `X`
to the space of measures on `X`; it is a monad (the "Giry monad").
* `Borel : Top ⥤ Meas`: sends a topological space `X` to `X` equipped with the
`σ`-algebra of Borel sets (the `σ`-algebra generated by the open subsets of `X`).
## Tags
measurable space, giry monad, borel
-/
noncomputable theory
open category_theory measure_theory
open_locale ennreal
universes u v
/-- The category of measurable spaces and measurable functions. -/
def Meas : Type (u+1) := bundled measurable_space
namespace Meas
instance : has_coe_to_sort Meas Type* := bundled.has_coe_to_sort
instance (X : Meas) : measurable_space X := X.str
/-- Construct a bundled `Meas` from the underlying type and the typeclass. -/
def of (α : Type u) [measurable_space α] : Meas := ⟨α⟩
@[simp] lemma coe_of (X : Type u) [measurable_space X] : (of X : Type u) = X := rfl
instance unbundled_hom : unbundled_hom @measurable := ⟨@measurable_id, @measurable.comp⟩
attribute [derive [large_category, concrete_category]] Meas
instance : inhabited Meas := ⟨Meas.of empty⟩
/-- `Measure X` is the measurable space of measures over the measurable space `X`. It is the
weakest measurable space, s.t. λμ, μ s is measurable for all measurable sets `s` in `X`. An
important purpose is to assign a monadic structure on it, the Giry monad. In the Giry monad,
the pure values are the Dirac measure, and the bind operation maps to the integral:
`(μ >>= ν) s = ∫ x. (ν x) s dμ`.
In probability theory, the `Meas`-morphisms `X → Prob X` are (sub-)Markov kernels (here `Prob` is
the restriction of `Measure` to (sub-)probability space.)
-/
def Measure : Meas ⥤ Meas :=
{ obj := λX, ⟨@measure_theory.measure X.1 X.2⟩,
map := λX Y f, ⟨measure.map (f : X → Y), measure.measurable_map f f.2⟩,
map_id' := assume ⟨α, I⟩, subtype.eq $ funext $ assume μ, @measure.map_id α I μ,
map_comp':=
assume X Y Z ⟨f, hf⟩ ⟨g, hg⟩, subtype.eq $ funext $ assume μ, (measure.map_map hg hf).symm }
/-- The Giry monad, i.e. the monadic structure associated with `Measure`. -/
def Giry : category_theory.monad Meas :=
{ to_functor := Measure,
η' :=
{ app := λX, ⟨@measure.dirac X.1 X.2, measure.measurable_dirac⟩,
naturality' :=
assume X Y ⟨f, hf⟩, subtype.eq $ funext $ assume a, (measure.map_dirac hf a).symm },
μ' :=
{ app := λX, ⟨@measure.join X.1 X.2, measure.measurable_join⟩,
naturality' :=
assume X Y ⟨f, hf⟩, subtype.eq $ funext $ assume μ, measure.join_map_map hf μ },
assoc' := assume α, subtype.eq $ funext $ assume μ, @measure.join_map_join _ _ _,
left_unit' := assume α, subtype.eq $ funext $ assume μ, @measure.join_dirac _ _ _,
right_unit' := assume α, subtype.eq $ funext $ assume μ, @measure.join_map_dirac _ _ _ }
/-- An example for an algebra on `Measure`: the nonnegative Lebesgue integral is a hom, behaving
nicely under the monad operations. -/
def Integral : Giry.algebra :=
{ A := Meas.of ℝ≥0∞ ,
a := ⟨λm:measure ℝ≥0∞, ∫⁻ x, x ∂m, measure.measurable_lintegral measurable_id ⟩,
unit' := subtype.eq $ funext $ assume r:ℝ≥0∞, lintegral_dirac' _ measurable_id,
assoc' := subtype.eq $ funext $ assume μ : measure (measure ℝ≥0∞),
show ∫⁻ x, x ∂ μ.join = ∫⁻ x, x ∂ (measure.map (λm:measure ℝ≥0∞, ∫⁻ x, x ∂m) μ),
by rw [measure.lintegral_join, lintegral_map];
apply_rules [measurable_id, measure.measurable_lintegral] }
end Meas
instance Top.has_forget_to_Meas : has_forget₂ Top.{u} Meas.{u} :=
bundled_hom.mk_has_forget₂
borel
(λ X Y f, ⟨f.1, f.2.borel_measurable⟩)
(by intros; refl)
/-- The Borel functor, the canonical embedding of topological spaces into measurable spaces. -/
@[reducible] def Borel : Top.{u} ⥤ Meas.{u} := forget₂ Top.{u} Meas.{u}
|
ec63bda90c0c319425e0b48df7ffac8751e8d96e
|
c777c32c8e484e195053731103c5e52af26a25d1
|
/src/data/polynomial/unit_trinomial.lean
|
08a659408f6c1ea0db7a5848ebfb6576f6b1ed50
|
[
"Apache-2.0"
] |
permissive
|
kbuzzard/mathlib
|
2ff9e85dfe2a46f4b291927f983afec17e946eb8
|
58537299e922f9c77df76cb613910914a479c1f7
|
refs/heads/master
| 1,685,313,702,744
| 1,683,974,212,000
| 1,683,974,212,000
| 128,185,277
| 1
| 0
| null | 1,522,920,600,000
| 1,522,920,600,000
| null |
UTF-8
|
Lean
| false
| false
| 16,191
|
lean
|
/-
Copyright (c) 2022 Thomas Browning. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Thomas Browning
-/
import analysis.complex.polynomial
import data.polynomial.mirror
/-!
# Unit Trinomials
This file defines irreducible trinomials and proves an irreducibility criterion.
## Main definitions
- `polynomial.is_unit_trinomial`
## Main results
- `polynomial.irreducible_of_coprime`: An irreducibility criterion for unit trinomials.
-/
namespace polynomial
open_locale polynomial
open finset
section semiring
variables {R : Type*} [semiring R] (k m n : ℕ) (u v w : R)
/-- Shorthand for a trinomial -/
noncomputable def trinomial := C u * X ^ k + C v * X ^ m + C w * X ^ n
lemma trinomial_def : trinomial k m n u v w = C u * X ^ k + C v * X ^ m + C w * X ^ n := rfl
variables {k m n u v w}
lemma trinomial_leading_coeff' (hkm : k < m) (hmn : m < n) :
(trinomial k m n u v w).coeff n = w :=
by rw [trinomial_def, coeff_add, coeff_add, coeff_C_mul_X_pow, coeff_C_mul_X_pow,
coeff_C_mul_X_pow, if_neg (hkm.trans hmn).ne', if_neg hmn.ne', if_pos rfl, zero_add, zero_add]
lemma trinomial_middle_coeff (hkm : k < m) (hmn : m < n) :
(trinomial k m n u v w).coeff m = v :=
by rw [trinomial_def, coeff_add, coeff_add, coeff_C_mul_X_pow, coeff_C_mul_X_pow,
coeff_C_mul_X_pow, if_neg hkm.ne', if_pos rfl, if_neg hmn.ne, zero_add, add_zero]
lemma trinomial_trailing_coeff' (hkm : k < m) (hmn : m < n) :
(trinomial k m n u v w).coeff k = u :=
by rw [trinomial_def, coeff_add, coeff_add, coeff_C_mul_X_pow, coeff_C_mul_X_pow,
coeff_C_mul_X_pow, if_pos rfl, if_neg hkm.ne, if_neg (hkm.trans hmn).ne, add_zero, add_zero]
lemma trinomial_nat_degree (hkm : k < m) (hmn : m < n) (hw : w ≠ 0) :
(trinomial k m n u v w).nat_degree = n :=
begin
refine nat_degree_eq_of_degree_eq_some ((finset.sup_le $ λ i h, _).antisymm $
le_degree_of_ne_zero $ by rwa trinomial_leading_coeff' hkm hmn),
replace h := support_trinomial' k m n u v w h,
rw [mem_insert, mem_insert, mem_singleton] at h,
rcases h with rfl | rfl | rfl,
{ exact with_bot.coe_le_coe.mpr (hkm.trans hmn).le },
{ exact with_bot.coe_le_coe.mpr hmn.le },
{ exact le_rfl },
end
lemma trinomial_nat_trailing_degree (hkm : k < m) (hmn : m < n) (hu : u ≠ 0) :
(trinomial k m n u v w).nat_trailing_degree = k :=
begin
refine nat_trailing_degree_eq_of_trailing_degree_eq_some ((finset.le_inf $ λ i h, _).antisymm $
le_trailing_degree_of_ne_zero $ by rwa trinomial_trailing_coeff' hkm hmn).symm,
replace h := support_trinomial' k m n u v w h,
rw [mem_insert, mem_insert, mem_singleton] at h,
rcases h with rfl | rfl | rfl,
{ exact le_rfl },
{ exact with_top.coe_le_coe.mpr hkm.le },
{ exact with_top.coe_le_coe.mpr (hkm.trans hmn).le },
end
lemma trinomial_leading_coeff (hkm : k < m) (hmn : m < n) (hw : w ≠ 0) :
(trinomial k m n u v w).leading_coeff = w :=
by rw [leading_coeff, trinomial_nat_degree hkm hmn hw, trinomial_leading_coeff' hkm hmn]
lemma trinomial_trailing_coeff (hkm : k < m) (hmn : m < n) (hu : u ≠ 0) :
(trinomial k m n u v w).trailing_coeff = u :=
by rw [trailing_coeff, trinomial_nat_trailing_degree hkm hmn hu, trinomial_trailing_coeff' hkm hmn]
lemma trinomial_monic (hkm : k < m) (hmn : m < n) : (trinomial k m n u v 1).monic :=
begin
casesI subsingleton_or_nontrivial R with h h,
{ apply subsingleton.elim },
{ exact trinomial_leading_coeff hkm hmn one_ne_zero },
end
lemma trinomial_mirror (hkm : k < m) (hmn : m < n) (hu : u ≠ 0) (hw : w ≠ 0) :
(trinomial k m n u v w).mirror = trinomial k (n - m + k) n w v u :=
by rw [mirror, trinomial_nat_trailing_degree hkm hmn hu, reverse, trinomial_nat_degree hkm hmn hw,
trinomial_def, reflect_add, reflect_add, reflect_C_mul_X_pow, reflect_C_mul_X_pow,
reflect_C_mul_X_pow, rev_at_le (hkm.trans hmn).le, rev_at_le hmn.le, rev_at_le le_rfl,
add_mul, add_mul, mul_assoc, mul_assoc, mul_assoc, ←pow_add, ←pow_add, ←pow_add,
nat.sub_add_cancel (hkm.trans hmn).le, nat.sub_self, zero_add, add_comm, add_comm (C u * X ^ n),
←add_assoc, ←trinomial_def]
lemma trinomial_support (hkm : k < m) (hmn : m < n) (hu : u ≠ 0) (hv : v ≠ 0) (hw : w ≠ 0) :
(trinomial k m n u v w).support = {k, m, n} :=
support_trinomial hkm hmn hu hv hw
end semiring
variables (p q : ℤ[X])
/-- A unit trinomial is a trinomial with unit coefficients. -/
def is_unit_trinomial := ∃ {k m n : ℕ} (hkm : k < m) (hmn : m < n) {u v w : units ℤ},
p = trinomial k m n u v w
variables {p q}
namespace is_unit_trinomial
lemma not_is_unit (hp : p.is_unit_trinomial) : ¬ is_unit p :=
begin
obtain ⟨k, m, n, hkm, hmn, u, v, w, rfl⟩ := hp,
exact λ h, ne_zero_of_lt hmn ((trinomial_nat_degree hkm hmn w.ne_zero).symm.trans
(nat_degree_eq_of_degree_eq_some (degree_eq_zero_of_is_unit h))),
end
lemma card_support_eq_three (hp : p.is_unit_trinomial) : p.support.card = 3 :=
begin
obtain ⟨k, m, n, hkm, hmn, u, v, w, rfl⟩ := hp,
exact card_support_trinomial hkm hmn u.ne_zero v.ne_zero w.ne_zero,
end
lemma ne_zero (hp : p.is_unit_trinomial) : p ≠ 0 :=
begin
rintro rfl,
exact nat.zero_ne_bit1 1 hp.card_support_eq_three,
end
lemma coeff_is_unit (hp : p.is_unit_trinomial) {k : ℕ} (hk : k ∈ p.support) :
is_unit (p.coeff k) :=
begin
obtain ⟨k, m, n, hkm, hmn, u, v, w, rfl⟩ := hp,
have := support_trinomial' k m n ↑u ↑v ↑w hk,
rw [mem_insert, mem_insert, mem_singleton] at this,
rcases this with rfl | rfl | rfl,
{ refine ⟨u, by rw trinomial_trailing_coeff' hkm hmn⟩ },
{ refine ⟨v, by rw trinomial_middle_coeff hkm hmn⟩ },
{ refine ⟨w, by rw trinomial_leading_coeff' hkm hmn⟩ },
end
lemma leading_coeff_is_unit (hp : p.is_unit_trinomial) : is_unit p.leading_coeff :=
hp.coeff_is_unit (nat_degree_mem_support_of_nonzero hp.ne_zero)
lemma trailing_coeff_is_unit (hp : p.is_unit_trinomial) : is_unit p.trailing_coeff :=
hp.coeff_is_unit (nat_trailing_degree_mem_support_of_nonzero hp.ne_zero)
end is_unit_trinomial
lemma is_unit_trinomial_iff :
p.is_unit_trinomial ↔ p.support.card = 3 ∧ ∀ k ∈ p.support, is_unit (p.coeff k) :=
begin
refine ⟨λ hp, ⟨hp.card_support_eq_three, λ k, hp.coeff_is_unit⟩, λ hp, _⟩,
obtain ⟨k, m, n, hkm, hmn, x, y, z, hx, hy, hz, rfl⟩ := card_support_eq_three.mp hp.1,
rw [support_trinomial hkm hmn hx hy hz] at hp,
replace hx := hp.2 k (mem_insert_self k {m, n}),
replace hy := hp.2 m (mem_insert_of_mem (mem_insert_self m {n})),
replace hz := hp.2 n (mem_insert_of_mem (mem_insert_of_mem (mem_singleton_self n))),
simp_rw [coeff_add, coeff_C_mul, coeff_X_pow_self, mul_one, coeff_X_pow] at hx hy hz,
rw [if_neg hkm.ne, if_neg (hkm.trans hmn).ne] at hx,
rw [if_neg hkm.ne', if_neg hmn.ne] at hy,
rw [if_neg (hkm.trans hmn).ne', if_neg hmn.ne'] at hz,
simp_rw [mul_zero, zero_add, add_zero] at hx hy hz,
exact ⟨k, m, n, hkm, hmn, hx.unit, hy.unit, hz.unit, rfl⟩,
end
lemma is_unit_trinomial_iff' : p.is_unit_trinomial ↔ (p * p.mirror).coeff
(((p * p.mirror).nat_degree + (p * p.mirror).nat_trailing_degree) / 2) = 3 :=
begin
rw [nat_degree_mul_mirror, nat_trailing_degree_mul_mirror, ←mul_add,
nat.mul_div_right _ zero_lt_two, coeff_mul_mirror],
refine ⟨_, λ hp, _⟩,
{ rintros ⟨k, m, n, hkm, hmn, u, v, w, rfl⟩,
rw [sum_def, trinomial_support hkm hmn u.ne_zero v.ne_zero w.ne_zero,
sum_insert (mt mem_insert.mp (not_or hkm.ne (mt mem_singleton.mp (hkm.trans hmn).ne))),
sum_insert (mt mem_singleton.mp hmn.ne), sum_singleton, trinomial_leading_coeff' hkm hmn,
trinomial_middle_coeff hkm hmn, trinomial_trailing_coeff' hkm hmn],
simp_rw [←units.coe_pow, int.units_sq, units.coe_one, ←add_assoc, bit1, bit0] },
{ have key : ∀ k ∈ p.support, (p.coeff k) ^ 2 = 1 :=
λ k hk, int.sq_eq_one_of_sq_le_three ((single_le_sum
(λ k hk, sq_nonneg (p.coeff k)) hk).trans hp.le) (mem_support_iff.mp hk),
refine is_unit_trinomial_iff.mpr ⟨_, λ k hk, is_unit_of_pow_eq_one (key k hk) two_ne_zero⟩,
rw [sum_def, sum_congr rfl key, sum_const, nat.smul_one_eq_coe] at hp,
exact nat.cast_injective hp },
end
lemma is_unit_trinomial_iff'' (h : p * p.mirror = q * q.mirror) :
p.is_unit_trinomial ↔ q.is_unit_trinomial :=
by rw [is_unit_trinomial_iff', is_unit_trinomial_iff', h]
namespace is_unit_trinomial
lemma irreducible_aux1 {k m n : ℕ} (hkm : k < m) (hmn : m < n) (u v w : units ℤ)
(hp : p = trinomial k m n u v w) :
C ↑v * (C ↑u * X ^ (m + n) + C ↑w * X ^ (n - m + k + n)) =
⟨finsupp.filter (set.Ioo (k + n) (n + n)) (p * p.mirror).to_finsupp⟩ :=
begin
have key : n - m + k < n := by rwa [←lt_tsub_iff_right, tsub_lt_tsub_iff_left_of_le hmn.le],
rw [hp, trinomial_mirror hkm hmn u.ne_zero w.ne_zero],
simp_rw [trinomial_def, C_mul_X_pow_eq_monomial, add_mul, mul_add, monomial_mul_monomial,
to_finsupp_add, to_finsupp_monomial, finsupp.filter_add],
rw [finsupp.filter_single_of_neg, finsupp.filter_single_of_neg, finsupp.filter_single_of_neg,
finsupp.filter_single_of_neg, finsupp.filter_single_of_neg, finsupp.filter_single_of_pos,
finsupp.filter_single_of_neg, finsupp.filter_single_of_pos, finsupp.filter_single_of_neg],
{ simp only [add_zero, zero_add, of_finsupp_add, of_finsupp_single],
rw [C_mul_monomial, C_mul_monomial, mul_comm ↑v ↑w, add_comm (n - m + k) n] },
{ exact λ h, h.2.ne rfl },
{ refine ⟨_, add_lt_add_left key n⟩,
rwa [add_comm, add_lt_add_iff_left, lt_add_iff_pos_left, tsub_pos_iff_lt] },
{ exact λ h, h.1.ne (add_comm k n) },
{ exact ⟨add_lt_add_right hkm n, add_lt_add_right hmn n⟩ },
{ rw [←add_assoc, add_tsub_cancel_of_le hmn.le, add_comm],
exact λ h, h.1.ne rfl },
{ intro h,
have := h.1,
rw [add_comm, add_lt_add_iff_right] at this,
exact asymm this hmn },
{ exact λ h, h.1.ne rfl },
{ exact λ h, asymm ((add_lt_add_iff_left k).mp h.1) key },
{ exact λ h, asymm ((add_lt_add_iff_left k).mp h.1) (hkm.trans hmn) },
end
lemma irreducible_aux2 {k m m' n : ℕ}
(hkm : k < m) (hmn : m < n) (hkm' : k < m') (hmn' : m' < n)
(u v w : units ℤ)
(hp : p = trinomial k m n u v w) (hq : q = trinomial k m' n u v w)
(h : p * p.mirror = q * q.mirror) :
q = p ∨ q = p.mirror :=
begin
let f : ℤ[X] → ℤ[X] :=
λ p, ⟨finsupp.filter (set.Ioo (k + n) (n + n)) p.to_finsupp⟩,
replace h := congr_arg f h,
replace h := (irreducible_aux1 hkm hmn u v w hp).trans h,
replace h := h.trans (irreducible_aux1 hkm' hmn' u v w hq).symm,
rw (is_unit_C.mpr v.is_unit).mul_right_inj at h,
rw binomial_eq_binomial u.ne_zero w.ne_zero at h,
simp only [add_left_inj, units.eq_iff] at h,
rcases h with ⟨rfl, -⟩ | ⟨rfl, rfl, h⟩ | ⟨-, hm, hm'⟩,
{ exact or.inl (hq.trans hp.symm) },
{ refine or.inr _,
rw [←trinomial_mirror hkm' hmn' u.ne_zero u.ne_zero, eq_comm, mirror_eq_iff] at hp,
exact hq.trans hp },
{ suffices : m = m',
{ rw this at hp,
exact or.inl (hq.trans hp.symm) },
rw [tsub_add_eq_add_tsub hmn.le, eq_tsub_iff_add_eq_of_le, ←two_mul] at hm,
rw [tsub_add_eq_add_tsub hmn'.le, eq_tsub_iff_add_eq_of_le, ←two_mul] at hm',
exact mul_left_cancel₀ two_ne_zero (hm.trans hm'.symm),
exact hmn'.le.trans (nat.le_add_right n k),
exact hmn.le.trans (nat.le_add_right n k) },
end
lemma irreducible_aux3 {k m m' n : ℕ}
(hkm : k < m) (hmn : m < n) (hkm' : k < m') (hmn' : m' < n) (u v w x z : units ℤ)
(hp : p = trinomial k m n u v w) (hq : q = trinomial k m' n x v z)
(h : p * p.mirror = q * q.mirror) :
q = p ∨ q = p.mirror :=
begin
have hmul := congr_arg leading_coeff h,
rw [leading_coeff_mul, leading_coeff_mul, mirror_leading_coeff, mirror_leading_coeff, hp, hq,
trinomial_leading_coeff hkm hmn w.ne_zero, trinomial_leading_coeff hkm' hmn' z.ne_zero,
trinomial_trailing_coeff hkm hmn u.ne_zero,
trinomial_trailing_coeff hkm' hmn' x.ne_zero] at hmul,
have hadd := congr_arg (eval 1) h,
rw [eval_mul, eval_mul, mirror_eval_one, mirror_eval_one, ←sq, ←sq, hp, hq] at hadd,
simp only [eval_add, eval_C_mul, eval_pow, eval_X, one_pow, mul_one, trinomial_def] at hadd,
rw [add_assoc, add_assoc, add_comm ↑u, add_comm ↑x, add_assoc, add_assoc] at hadd,
simp only [add_sq', add_assoc, add_right_inj, ←units.coe_pow, int.units_sq] at hadd,
rw [mul_assoc, hmul, ←mul_assoc, add_right_inj,
mul_right_inj' (show 2 * (v : ℤ) ≠ 0, from mul_ne_zero two_ne_zero v.ne_zero)] at hadd,
replace hadd := (int.is_unit_add_is_unit_eq_is_unit_add_is_unit w.is_unit u.is_unit
z.is_unit x.is_unit).mp hadd,
simp only [units.eq_iff] at hadd,
rcases hadd with ⟨rfl, rfl⟩ | ⟨rfl, rfl⟩,
{ exact irreducible_aux2 hkm hmn hkm' hmn' u v w hp hq h },
{ rw [←mirror_inj, trinomial_mirror hkm' hmn' w.ne_zero u.ne_zero] at hq,
rw [mul_comm q, ←q.mirror_mirror, q.mirror.mirror_mirror] at h,
rw [←mirror_inj, or_comm, ←mirror_eq_iff],
exact irreducible_aux2 hkm hmn (lt_add_of_pos_left k (tsub_pos_of_lt hmn'))
((lt_tsub_iff_right).mp ((tsub_lt_tsub_iff_left_of_le hmn'.le).mpr hkm')) u v w hp hq h },
end
lemma irreducible_of_coprime (hp : p.is_unit_trinomial)
(h : ∀ q : ℤ[X], q ∣ p → q ∣ p.mirror → is_unit q) :
irreducible p :=
begin
refine irreducible_of_mirror hp.not_is_unit (λ q hpq, _) h,
have hq : is_unit_trinomial q := (is_unit_trinomial_iff'' hpq).mp hp,
obtain ⟨k, m, n, hkm, hmn, u, v, w, hp⟩ := hp,
obtain ⟨k', m', n', hkm', hmn', x, y, z, hq⟩ := hq,
have hk : k = k',
{ rw [←mul_right_inj' (show 2 ≠ 0, from two_ne_zero),
←trinomial_nat_trailing_degree hkm hmn u.ne_zero, ←hp, ←nat_trailing_degree_mul_mirror, hpq,
nat_trailing_degree_mul_mirror, hq, trinomial_nat_trailing_degree hkm' hmn' x.ne_zero] },
have hn : n = n',
{ rw [←mul_right_inj' (show 2 ≠ 0, from two_ne_zero),
←trinomial_nat_degree hkm hmn w.ne_zero, ←hp, ←nat_degree_mul_mirror, hpq,
nat_degree_mul_mirror, hq, trinomial_nat_degree hkm' hmn' z.ne_zero] },
subst hk,
subst hn,
rcases eq_or_eq_neg_of_sq_eq_sq ↑y ↑v
((int.is_unit_sq y.is_unit).trans (int.is_unit_sq v.is_unit).symm) with h1 | h1,
{ rw h1 at *,
rcases irreducible_aux3 hkm hmn hkm' hmn' u v w x z hp hq hpq with h2 | h2,
{ exact or.inl h2 },
{ exact or.inr (or.inr (or.inl h2)) } },
{ rw h1 at *,
rw trinomial_def at hp,
rw [←neg_inj, neg_add, neg_add, ←neg_mul, ←neg_mul, ←neg_mul, ←C_neg, ←C_neg, ←C_neg] at hp,
rw [←neg_mul_neg, ←mirror_neg] at hpq,
rcases irreducible_aux3 hkm hmn hkm' hmn' (-u) (-v) (-w) x z hp hq hpq with rfl | rfl,
{ exact or.inr (or.inl rfl) },
{ exact or.inr (or.inr (or.inr p.mirror_neg)) } },
end
/-- A unit trinomial is irreducible if it is coprime with its mirror -/
lemma irreducible_of_is_coprime (hp : p.is_unit_trinomial) (h : is_coprime p p.mirror) :
irreducible p :=
irreducible_of_coprime hp (λ q, h.is_unit_of_dvd')
/-- A unit trinomial is irreducible if it has no complex roots in common with its mirror -/
lemma irreducible_of_coprime' (hp : is_unit_trinomial p)
(h : ∀ z : ℂ, ¬ (aeval z p = 0 ∧ aeval z (mirror p) = 0)) : irreducible p :=
begin
refine hp.irreducible_of_coprime (λ q hq hq', _),
suffices : ¬ (0 < q.nat_degree),
{ rcases hq with ⟨p, rfl⟩,
replace hp := hp.leading_coeff_is_unit,
rw leading_coeff_mul at hp,
replace hp := is_unit_of_mul_is_unit_left hp,
rw [not_lt, le_zero_iff] at this,
rwa [eq_C_of_nat_degree_eq_zero this, is_unit_C, ←this] },
intro hq'',
rw nat_degree_pos_iff_degree_pos at hq'',
rw ← degree_map_eq_of_injective (algebra_map ℤ ℂ).injective_int at hq'',
cases complex.exists_root hq'' with z hz,
rw [is_root, eval_map, ←aeval_def] at hz,
refine h z ⟨_, _⟩,
{ cases hq with g' hg',
rw [hg', aeval_mul, hz, zero_mul] },
{ cases hq' with g' hg',
rw [hg', aeval_mul, hz, zero_mul] },
end
-- TODO: Develop more theory (e.g., it suffices to check that `aeval z p ≠ 0` for `z = 0`
-- and `z` a root of unity)
end is_unit_trinomial
end polynomial
|
a875b7003a2887d12e31253bc527448a425c76e8
|
947fa6c38e48771ae886239b4edce6db6e18d0fb
|
/src/data/nat/basic.lean
|
bb19d1ada78afc98c536f9ef474cf5abe700e58c
|
[
"Apache-2.0"
] |
permissive
|
ramonfmir/mathlib
|
c5dc8b33155473fab97c38bd3aa6723dc289beaa
|
14c52e990c17f5a00c0cc9e09847af16fabbed25
|
refs/heads/master
| 1,661,979,343,526
| 1,660,830,384,000
| 1,660,830,384,000
| 182,072,989
| 0
| 0
| null | 1,555,585,876,000
| 1,555,585,876,000
| null |
UTF-8
|
Lean
| false
| false
| 67,371
|
lean
|
/-
Copyright (c) 2014 Floris van Doorn (c) 2016 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn, Leonardo de Moura, Jeremy Avigad, Mario Carneiro
-/
import algebra.order.ring
/-!
# Basic operations on the natural numbers
This file contains:
- instances on the natural numbers
- some basic lemmas about natural numbers
- extra recursors:
* `le_rec_on`, `le_induction`: recursion and induction principles starting at non-zero numbers
* `decreasing_induction`: recursion growing downwards
* `le_rec_on'`, `decreasing_induction'`: versions with slightly weaker assumptions
* `strong_rec'`: recursion based on strong inequalities
- decidability instances on predicates about the natural numbers
-/
universes u v
/-! ### instances -/
instance : nontrivial ℕ :=
⟨⟨0, 1, nat.zero_ne_one⟩⟩
instance : comm_semiring ℕ :=
{ add := nat.add,
add_assoc := nat.add_assoc,
zero := nat.zero,
zero_add := nat.zero_add,
add_zero := nat.add_zero,
add_comm := nat.add_comm,
mul := nat.mul,
mul_assoc := nat.mul_assoc,
one := nat.succ nat.zero,
one_mul := nat.one_mul,
mul_one := nat.mul_one,
left_distrib := nat.left_distrib,
right_distrib := nat.right_distrib,
zero_mul := nat.zero_mul,
mul_zero := nat.mul_zero,
mul_comm := nat.mul_comm,
nat_cast := λ n, n,
nat_cast_zero := rfl,
nat_cast_succ := λ n, rfl,
nsmul := λ m n, m * n,
nsmul_zero' := nat.zero_mul,
nsmul_succ' := λ n x,
by rw [nat.succ_eq_add_one, nat.add_comm, nat.right_distrib, nat.one_mul] }
instance : linear_ordered_semiring nat :=
{ add_left_cancel := @nat.add_left_cancel,
lt := nat.lt,
add_le_add_left := @nat.add_le_add_left,
le_of_add_le_add_left := @nat.le_of_add_le_add_left,
zero_le_one := nat.le_of_lt (nat.zero_lt_succ 0),
mul_lt_mul_of_pos_left := @nat.mul_lt_mul_of_pos_left,
mul_lt_mul_of_pos_right := @nat.mul_lt_mul_of_pos_right,
decidable_eq := nat.decidable_eq,
exists_pair_ne := ⟨0, 1, ne_of_lt nat.zero_lt_one⟩,
..nat.comm_semiring, ..nat.linear_order }
-- all the fields are already included in the linear_ordered_semiring instance
instance : linear_ordered_cancel_add_comm_monoid ℕ :=
{ add_left_cancel := @nat.add_left_cancel,
..nat.linear_ordered_semiring }
instance : linear_ordered_comm_monoid_with_zero ℕ :=
{ mul_le_mul_left := λ a b h c, nat.mul_le_mul_left c h,
..nat.linear_ordered_semiring,
..(infer_instance : comm_monoid_with_zero ℕ)}
instance : ordered_comm_semiring ℕ := { .. nat.comm_semiring, .. nat.linear_ordered_semiring }
/-! Extra instances to short-circuit type class resolution -/
instance : add_comm_monoid nat := by apply_instance
instance : add_monoid nat := by apply_instance
instance : monoid nat := by apply_instance
instance : comm_monoid nat := by apply_instance
instance : comm_semigroup nat := by apply_instance
instance : semigroup nat := by apply_instance
instance : add_comm_semigroup nat := by apply_instance
instance : add_semigroup nat := by apply_instance
instance : distrib nat := by apply_instance
instance : semiring nat := by apply_instance
instance : ordered_semiring nat := by apply_instance
instance nat.order_bot : order_bot ℕ :=
{ bot := 0, bot_le := nat.zero_le }
instance : canonically_ordered_comm_semiring ℕ :=
{ exists_add_of_le := λ a b h, (nat.le.dest h).imp $ λ _, eq.symm,
le_self_add := nat.le_add_right,
eq_zero_or_eq_zero_of_mul_eq_zero := λ a b, nat.eq_zero_of_mul_eq_zero,
.. nat.nontrivial,
.. nat.order_bot,
.. (infer_instance : ordered_add_comm_monoid ℕ),
.. (infer_instance : linear_ordered_semiring ℕ),
.. (infer_instance : comm_semiring ℕ) }
instance : canonically_linear_ordered_add_monoid ℕ :=
{ .. (infer_instance : canonically_ordered_add_monoid ℕ),
.. nat.linear_order }
instance nat.subtype.order_bot (s : set ℕ) [decidable_pred (∈ s)] [h : nonempty s] :
order_bot s :=
{ bot := ⟨nat.find (nonempty_subtype.1 h), nat.find_spec (nonempty_subtype.1 h)⟩,
bot_le := λ x, nat.find_min' _ x.2 }
instance nat.subtype.semilattice_sup (s : set ℕ) :
semilattice_sup s :=
{ ..subtype.linear_order s,
..linear_order.to_lattice }
lemma nat.subtype.coe_bot {s : set ℕ} [decidable_pred (∈ s)]
[h : nonempty s] : ((⊥ : s) : ℕ) = nat.find (nonempty_subtype.1 h) := rfl
protected lemma nat.nsmul_eq_mul (m n : ℕ) : m • n = m * n := rfl
theorem nat.eq_of_mul_eq_mul_right {n m k : ℕ} (Hm : 0 < m) (H : n * m = k * m) : n = k :=
by rw [mul_comm n m, mul_comm k m] at H; exact nat.eq_of_mul_eq_mul_left Hm H
instance nat.cancel_comm_monoid_with_zero : cancel_comm_monoid_with_zero ℕ :=
{ mul_left_cancel_of_ne_zero :=
λ _ _ _ h1 h2, nat.eq_of_mul_eq_mul_left (nat.pos_of_ne_zero h1) h2,
mul_right_cancel_of_ne_zero :=
λ _ _ _ h1 h2, nat.eq_of_mul_eq_mul_right (nat.pos_of_ne_zero h1) h2,
.. (infer_instance : comm_monoid_with_zero ℕ) }
attribute [simp] nat.not_lt_zero nat.succ_ne_zero nat.succ_ne_self
nat.zero_ne_one nat.one_ne_zero
nat.zero_ne_bit1 nat.bit1_ne_zero
nat.bit0_ne_one nat.one_ne_bit0
nat.bit0_ne_bit1 nat.bit1_ne_bit0
/-!
Inject some simple facts into the type class system.
This `fact` should not be confused with the factorial function `nat.fact`!
-/
section facts
instance succ_pos'' (n : ℕ) : fact (0 < n.succ) := ⟨n.succ_pos⟩
instance pos_of_one_lt (n : ℕ) [h : fact (1 < n)] : fact (0 < n) :=
⟨lt_trans zero_lt_one h.1⟩
end facts
variables {m n k : ℕ}
namespace nat
/-!
### Recursion and `set.range`
-/
section set
open set
theorem zero_union_range_succ : {0} ∪ range succ = univ :=
by { ext n, cases n; simp }
variables {α : Type*}
theorem range_of_succ (f : ℕ → α) : {f 0} ∪ range (f ∘ succ) = range f :=
by rw [← image_singleton, range_comp, ← image_union, zero_union_range_succ, image_univ]
theorem range_rec {α : Type*} (x : α) (f : ℕ → α → α) :
(set.range (λ n, nat.rec x f n) : set α) =
{x} ∪ set.range (λ n, nat.rec (f 0 x) (f ∘ succ) n) :=
begin
convert (range_of_succ _).symm,
ext n,
induction n with n ihn,
{ refl },
{ dsimp at ihn ⊢,
rw ihn }
end
theorem range_cases_on {α : Type*} (x : α) (f : ℕ → α) :
(set.range (λ n, nat.cases_on n x f) : set α) = {x} ∪ set.range f :=
(range_of_succ _).symm
end set
/-! ### The units of the natural numbers as a `monoid` and `add_monoid` -/
theorem units_eq_one (u : ℕˣ) : u = 1 :=
units.ext $ nat.eq_one_of_dvd_one ⟨u.inv, u.val_inv.symm⟩
theorem add_units_eq_zero (u : add_units ℕ) : u = 0 :=
add_units.ext $ (nat.eq_zero_of_add_eq_zero u.val_neg).1
@[simp] protected theorem is_unit_iff {n : ℕ} : is_unit n ↔ n = 1 :=
iff.intro
(λ ⟨u, hu⟩, match n, u, hu, nat.units_eq_one u with _, _, rfl, rfl := rfl end)
(λ h, h.symm ▸ ⟨1, rfl⟩)
instance unique_units : unique ℕˣ :=
{ default := 1, uniq := nat.units_eq_one }
instance unique_add_units : unique (add_units ℕ) :=
{ default := 0, uniq := nat.add_units_eq_zero }
/-! ### Equalities and inequalities involving zero and one -/
lemma one_le_iff_ne_zero {n : ℕ} : 1 ≤ n ↔ n ≠ 0 :=
(show 1 ≤ n ↔ 0 < n, from iff.rfl).trans pos_iff_ne_zero
lemma one_lt_iff_ne_zero_and_ne_one : ∀ {n : ℕ}, 1 < n ↔ n ≠ 0 ∧ n ≠ 1
| 0 := dec_trivial
| 1 := dec_trivial
| (n+2) := dec_trivial
protected theorem mul_ne_zero {n m : ℕ} (n0 : n ≠ 0) (m0 : m ≠ 0) : n * m ≠ 0
| nm := (eq_zero_of_mul_eq_zero nm).elim n0 m0
@[simp] protected theorem mul_eq_zero {a b : ℕ} : a * b = 0 ↔ a = 0 ∨ b = 0 :=
iff.intro eq_zero_of_mul_eq_zero (by simp [or_imp_distrib] {contextual := tt})
@[simp] protected theorem zero_eq_mul {a b : ℕ} : 0 = a * b ↔ a = 0 ∨ b = 0 :=
by rw [eq_comm, nat.mul_eq_zero]
lemma eq_zero_of_double_le {a : ℕ} (h : 2 * a ≤ a) : a = 0 :=
add_right_eq_self.mp $ le_antisymm ((two_mul a).symm.trans_le h) le_add_self
lemma eq_zero_of_mul_le {a b : ℕ} (hb : 2 ≤ b) (h : b * a ≤ a) : a = 0 :=
eq_zero_of_double_le $ le_trans (nat.mul_le_mul_right _ hb) h
theorem le_zero_iff {i : ℕ} : i ≤ 0 ↔ i = 0 :=
⟨nat.eq_zero_of_le_zero, λ h, h ▸ le_refl i⟩
lemma zero_max {m : ℕ} : max 0 m = m :=
max_eq_right (zero_le _)
@[simp] lemma min_eq_zero_iff {m n : ℕ} : min m n = 0 ↔ m = 0 ∨ n = 0 :=
begin
split,
{ intro h,
cases le_total n m with H H,
{ simpa [H] using or.inr h },
{ simpa [H] using or.inl h } },
{ rintro (rfl|rfl);
simp }
end
@[simp] lemma max_eq_zero_iff {m n : ℕ} : max m n = 0 ↔ m = 0 ∧ n = 0 :=
begin
split,
{ intro h,
cases le_total n m with H H,
{ simp only [H, max_eq_left] at h,
exact ⟨h, le_antisymm (H.trans h.le) (zero_le _)⟩ },
{ simp only [H, max_eq_right] at h,
exact ⟨le_antisymm (H.trans h.le) (zero_le _), h⟩ } },
{ rintro ⟨rfl, rfl⟩,
simp }
end
lemma add_eq_max_iff {n m : ℕ} :
n + m = max n m ↔ n = 0 ∨ m = 0 :=
begin
rw ←min_eq_zero_iff,
cases le_total n m with H H;
simp [H]
end
lemma add_eq_min_iff {n m : ℕ} :
n + m = min n m ↔ n = 0 ∧ m = 0 :=
begin
rw ←max_eq_zero_iff,
cases le_total n m with H H;
simp [H]
end
lemma one_le_of_lt {n m : ℕ} (h : n < m) : 1 ≤ m :=
lt_of_le_of_lt (nat.zero_le _) h
theorem eq_one_of_mul_eq_one_right {m n : ℕ} (H : m * n = 1) : m = 1 :=
eq_one_of_dvd_one ⟨n, H.symm⟩
theorem eq_one_of_mul_eq_one_left {m n : ℕ} (H : m * n = 1) : n = 1 :=
eq_one_of_mul_eq_one_right (by rwa mul_comm)
/-! ### `succ` -/
lemma _root_.has_lt.lt.nat_succ_le {n m : ℕ} (h : n < m) : succ n ≤ m := succ_le_of_lt h
lemma succ_eq_one_add (n : ℕ) : n.succ = 1 + n :=
by rw [nat.succ_eq_add_one, nat.add_comm]
theorem eq_of_lt_succ_of_not_lt {a b : ℕ} (h1 : a < b + 1) (h2 : ¬ a < b) : a = b :=
have h3 : a ≤ b, from le_of_lt_succ h1,
or.elim (eq_or_lt_of_not_lt h2) (λ h, h) (λ h, absurd h (not_lt_of_ge h3))
lemma eq_of_le_of_lt_succ {n m : ℕ} (h₁ : n ≤ m) (h₂ : m < n + 1) : m = n :=
nat.le_antisymm (le_of_succ_le_succ h₂) h₁
theorem one_add (n : ℕ) : 1 + n = succ n := by simp [add_comm]
@[simp] lemma succ_pos' {n : ℕ} : 0 < succ n := succ_pos n
theorem succ_inj' {n m : ℕ} : succ n = succ m ↔ n = m :=
⟨succ.inj, congr_arg _⟩
theorem succ_injective : function.injective nat.succ := λ x y, succ.inj
lemma succ_ne_succ {n m : ℕ} : succ n ≠ succ m ↔ n ≠ m :=
succ_injective.ne_iff
@[simp] lemma succ_succ_ne_one (n : ℕ) : n.succ.succ ≠ 1 :=
succ_ne_succ.mpr n.succ_ne_zero
@[simp] lemma one_lt_succ_succ (n : ℕ) : 1 < n.succ.succ :=
succ_lt_succ $ succ_pos n
lemma two_le_iff : ∀ n, 2 ≤ n ↔ n ≠ 0 ∧ n ≠ 1
| 0 := by simp
| 1 := by simp
| (n+2) := by simp
theorem succ_le_succ_iff {m n : ℕ} : succ m ≤ succ n ↔ m ≤ n :=
⟨le_of_succ_le_succ, succ_le_succ⟩
theorem max_succ_succ {m n : ℕ} :
max (succ m) (succ n) = succ (max m n) :=
begin
by_cases h1 : m ≤ n,
rw [max_eq_right h1, max_eq_right (succ_le_succ h1)],
{ rw not_le at h1, have h2 := le_of_lt h1,
rw [max_eq_left h2, max_eq_left (succ_le_succ h2)] }
end
lemma not_succ_lt_self {n : ℕ} : ¬succ n < n :=
not_lt_of_ge (nat.le_succ _)
theorem lt_succ_iff {m n : ℕ} : m < succ n ↔ m ≤ n :=
⟨le_of_lt_succ, lt_succ_of_le⟩
lemma succ_le_iff {m n : ℕ} : succ m ≤ n ↔ m < n :=
⟨lt_of_succ_le, succ_le_of_lt⟩
lemma lt_iff_add_one_le {m n : ℕ} : m < n ↔ m + 1 ≤ n :=
by rw succ_le_iff
-- Just a restatement of `nat.lt_succ_iff` using `+1`.
lemma lt_add_one_iff {a b : ℕ} : a < b + 1 ↔ a ≤ b :=
lt_succ_iff
-- A flipped version of `lt_add_one_iff`.
lemma lt_one_add_iff {a b : ℕ} : a < 1 + b ↔ a ≤ b :=
by simp only [add_comm, lt_succ_iff]
-- This is true reflexively, by the definition of `≤` on ℕ,
-- but it's still useful to have, to convince Lean to change the syntactic type.
lemma add_one_le_iff {a b : ℕ} : a + 1 ≤ b ↔ a < b :=
iff.refl _
lemma one_add_le_iff {a b : ℕ} : 1 + a ≤ b ↔ a < b :=
by simp only [add_comm, add_one_le_iff]
theorem of_le_succ {n m : ℕ} (H : n ≤ m.succ) : n ≤ m ∨ n = m.succ :=
H.lt_or_eq_dec.imp le_of_lt_succ id
lemma succ_lt_succ_iff {m n : ℕ} : succ m < succ n ↔ m < n :=
⟨lt_of_succ_lt_succ, succ_lt_succ⟩
@[simp] lemma lt_one_iff {n : ℕ} : n < 1 ↔ n = 0 :=
lt_succ_iff.trans le_zero_iff
lemma div_le_iff_le_mul_add_pred {m n k : ℕ} (n0 : 0 < n) : m / n ≤ k ↔ m ≤ n * k + (n - 1) :=
begin
rw [← lt_succ_iff, div_lt_iff_lt_mul n0, succ_mul, mul_comm],
cases n, {cases n0},
exact lt_succ_iff,
end
lemma two_lt_of_ne : ∀ {n}, n ≠ 0 → n ≠ 1 → n ≠ 2 → 2 < n
| 0 h _ _ := (h rfl).elim
| 1 _ h _ := (h rfl).elim
| 2 _ _ h := (h rfl).elim
| (n+3) _ _ _ := dec_trivial
theorem forall_lt_succ {P : ℕ → Prop} {n : ℕ} : (∀ m < n.succ, P m) ↔ (∀ m < n, P m) ∧ P n :=
⟨λ H, ⟨λ m hm, H m (lt_succ_iff.2 hm.le), H n (lt_succ_self n)⟩, begin
rintro ⟨H, hn⟩ m hm,
rcases eq_or_lt_of_le (lt_succ_iff.1 hm) with rfl | hmn,
{ exact hn },
{ exact H m hmn }
end⟩
theorem exists_lt_succ {P : ℕ → Prop} {n : ℕ} : (∃ m < n.succ, P m) ↔ (∃ m < n, P m) ∨ P n :=
by { rw ←not_iff_not, push_neg, exact forall_lt_succ }
/-! ### `add` -/
-- Sometimes a bare `nat.add` or similar appears as a consequence of unfolding
-- during pattern matching. These lemmas package them back up as typeclass
-- mediated operations.
@[simp] theorem add_def {a b : ℕ} : nat.add a b = a + b := rfl
@[simp] theorem mul_def {a b : ℕ} : nat.mul a b = a * b := rfl
lemma exists_eq_add_of_le : ∀ {m n : ℕ}, m ≤ n → ∃ k : ℕ, n = m + k
| 0 0 h := ⟨0, by simp⟩
| 0 (n+1) h := ⟨n+1, by simp⟩
| (m+1) (n+1) h :=
let ⟨k, hk⟩ := exists_eq_add_of_le (nat.le_of_succ_le_succ h) in
⟨k, by simp [hk, add_comm, add_left_comm]⟩
lemma exists_eq_add_of_lt : ∀ {m n : ℕ}, m < n → ∃ k : ℕ, n = m + k + 1
| 0 0 h := false.elim $ lt_irrefl _ h
| 0 (n+1) h := ⟨n, by simp⟩
| (m+1) (n+1) h := let ⟨k, hk⟩ := exists_eq_add_of_le (nat.le_of_succ_le_succ h) in
⟨k, by simp [hk]⟩
theorem add_pos_left {m : ℕ} (h : 0 < m) (n : ℕ) : 0 < m + n :=
calc
m + n > 0 + n : nat.add_lt_add_right h n
... = n : nat.zero_add n
... ≥ 0 : zero_le n
theorem add_pos_right (m : ℕ) {n : ℕ} (h : 0 < n) : 0 < m + n :=
begin rw add_comm, exact add_pos_left h m end
theorem add_pos_iff_pos_or_pos (m n : ℕ) : 0 < m + n ↔ 0 < m ∨ 0 < n :=
iff.intro
begin
intro h,
cases m with m,
{simp [zero_add] at h, exact or.inr h},
exact or.inl (succ_pos _)
end
begin
intro h, cases h with mpos npos,
{ apply add_pos_left mpos },
apply add_pos_right _ npos
end
lemma add_eq_one_iff : ∀ {a b : ℕ}, a + b = 1 ↔ (a = 0 ∧ b = 1) ∨ (a = 1 ∧ b = 0)
| 0 0 := dec_trivial
| 1 0 := dec_trivial
| (a+2) _ := by rw add_right_comm; exact dec_trivial
| _ (b+1) := by rw [← add_assoc]; simp only [nat.succ_inj', nat.succ_ne_zero]; simp
theorem le_add_one_iff {i j : ℕ} : i ≤ j + 1 ↔ (i ≤ j ∨ i = j + 1) :=
⟨λ h,
match nat.eq_or_lt_of_le h with
| or.inl h := or.inr h
| or.inr h := or.inl $ nat.le_of_succ_le_succ h
end,
or.rec (λ h, le_trans h $ nat.le_add_right _ _) le_of_eq⟩
lemma le_and_le_add_one_iff {x a : ℕ} :
a ≤ x ∧ x ≤ a + 1 ↔ x = a ∨ x = a + 1 :=
begin
rw [le_add_one_iff, and_or_distrib_left, ←le_antisymm_iff, eq_comm, and_iff_right_of_imp],
rintro rfl,
exact a.le_succ,
end
lemma add_succ_lt_add {a b c d : ℕ} (hab : a < b) (hcd : c < d) : a + c + 1 < b + d :=
begin
rw add_assoc,
exact add_lt_add_of_lt_of_le hab (nat.succ_le_iff.2 hcd)
end
/-! ### `pred` -/
@[simp]
lemma add_succ_sub_one (n m : ℕ) : (n + succ m) - 1 = n + m :=
by rw [add_succ, succ_sub_one]
@[simp]
lemma succ_add_sub_one (n m : ℕ) : (succ n + m) - 1 = n + m :=
by rw [succ_add, succ_sub_one]
lemma pred_eq_sub_one (n : ℕ) : pred n = n - 1 := rfl
theorem pred_eq_of_eq_succ {m n : ℕ} (H : m = n.succ) : m.pred = n := by simp [H]
@[simp] lemma pred_eq_succ_iff {n m : ℕ} : pred n = succ m ↔ n = m + 2 :=
by cases n; split; rintro ⟨⟩; refl
theorem pred_sub (n m : ℕ) : pred n - m = pred (n - m) :=
by rw [← nat.sub_one, nat.sub_sub, one_add, sub_succ]
lemma le_pred_of_lt {n m : ℕ} (h : m < n) : m ≤ n - 1 :=
nat.sub_le_sub_right h 1
lemma le_of_pred_lt {m n : ℕ} : pred m < n → m ≤ n :=
match m with
| 0 := le_of_lt
| m+1 := id
end
/-- This ensures that `simp` succeeds on `pred (n + 1) = n`. -/
@[simp] lemma pred_one_add (n : ℕ) : pred (1 + n) = n :=
by rw [add_comm, add_one, pred_succ]
lemma pred_le_iff {n m : ℕ} : pred n ≤ m ↔ n ≤ succ m :=
⟨le_succ_of_pred_le, by { cases n, { exact λ h, zero_le m }, exact le_of_succ_le_succ }⟩
/-! ### `sub`
Most lemmas come from the `has_ordered_sub` instance on `ℕ`. -/
instance : has_ordered_sub ℕ :=
begin
constructor,
intros m n k,
induction n with n ih generalizing k,
{ simp },
{ simp only [sub_succ, add_succ, succ_add, ih, pred_le_iff] }
end
lemma lt_pred_iff {n m : ℕ} : n < pred m ↔ succ n < m :=
show n < m - 1 ↔ n + 1 < m, from lt_tsub_iff_right
lemma lt_of_lt_pred {a b : ℕ} (h : a < b - 1) : a < b :=
lt_of_succ_lt (lt_pred_iff.1 h)
lemma le_or_le_of_add_eq_add_pred {a b c d : ℕ} (h : c + d = a + b - 1) : a ≤ c ∨ b ≤ d :=
begin
cases le_or_lt a c with h' h'; [left, right],
{ exact h', },
{ replace h' := add_lt_add_right h' d, rw h at h',
cases b.eq_zero_or_pos with hb hb, { rw hb, exact zero_le d, },
rw [a.add_sub_assoc hb, add_lt_add_iff_left] at h',
exact nat.le_of_pred_lt h', },
end
/-- A version of `nat.sub_succ` in the form `_ - 1` instead of `nat.pred _`. -/
lemma sub_succ' (a b : ℕ) : a - b.succ = a - b - 1 := rfl
/-! ### `mul` -/
lemma succ_mul_pos (m : ℕ) (hn : 0 < n) : 0 < (succ m) * n :=
mul_pos (succ_pos m) hn
theorem mul_self_le_mul_self {n m : ℕ} (h : n ≤ m) : n * n ≤ m * m :=
decidable.mul_le_mul h h (zero_le _) (zero_le _)
theorem mul_self_lt_mul_self : Π {n m : ℕ}, n < m → n * n < m * m
| 0 m h := mul_pos h h
| (succ n) m h := decidable.mul_lt_mul h (le_of_lt h) (succ_pos _) (zero_le _)
theorem mul_self_le_mul_self_iff {n m : ℕ} : n ≤ m ↔ n * n ≤ m * m :=
⟨mul_self_le_mul_self, le_imp_le_of_lt_imp_lt mul_self_lt_mul_self⟩
theorem mul_self_lt_mul_self_iff {n m : ℕ} : n < m ↔ n * n < m * m :=
le_iff_le_iff_lt_iff_lt.1 mul_self_le_mul_self_iff
theorem le_mul_self : Π (n : ℕ), n ≤ n * n
| 0 := le_rfl
| (n+1) := by simp
lemma le_mul_of_pos_left {m n : ℕ} (h : 0 < n) : m ≤ n * m :=
begin
conv {to_lhs, rw [← one_mul(m)]},
exact decidable.mul_le_mul_of_nonneg_right h.nat_succ_le dec_trivial,
end
lemma le_mul_of_pos_right {m n : ℕ} (h : 0 < n) : m ≤ m * n :=
begin
conv {to_lhs, rw [← mul_one(m)]},
exact decidable.mul_le_mul_of_nonneg_left h.nat_succ_le dec_trivial,
end
theorem two_mul_ne_two_mul_add_one {n m} : 2 * n ≠ 2 * m + 1 :=
mt (congr_arg (%2)) (by { rw [add_comm, add_mul_mod_self_left, mul_mod_right, mod_eq_of_lt]; simp })
lemma mul_eq_one_iff : ∀ {a b : ℕ}, a * b = 1 ↔ a = 1 ∧ b = 1
| 0 0 := dec_trivial
| 0 1 := dec_trivial
| 1 0 := dec_trivial
| (a+2) 0 := by simp
| 0 (b+2) := by simp
| (a+1) (b+1) := ⟨
λ h, by simp only [add_mul, mul_add, mul_add, one_mul, mul_one,
(add_assoc _ _ _).symm, nat.succ_inj', add_eq_zero_iff] at h; simp [h.1.2, h.2],
λ h, by simp only [h, mul_one]⟩
protected theorem mul_left_inj {a b c : ℕ} (ha : 0 < a) : b * a = c * a ↔ b = c :=
⟨nat.eq_of_mul_eq_mul_right ha, λ e, e ▸ rfl⟩
protected theorem mul_right_inj {a b c : ℕ} (ha : 0 < a) : a * b = a * c ↔ b = c :=
⟨nat.eq_of_mul_eq_mul_left ha, λ e, e ▸ rfl⟩
lemma mul_left_injective {a : ℕ} (ha : 0 < a) : function.injective (λ x, x * a) :=
λ _ _, eq_of_mul_eq_mul_right ha
lemma mul_right_injective {a : ℕ} (ha : 0 < a) : function.injective (λ x, a * x) :=
λ _ _, nat.eq_of_mul_eq_mul_left ha
lemma mul_ne_mul_left {a b c : ℕ} (ha : 0 < a) : b * a ≠ c * a ↔ b ≠ c :=
(mul_left_injective ha).ne_iff
lemma mul_ne_mul_right {a b c : ℕ} (ha : 0 < a) : a * b ≠ a * c ↔ b ≠ c :=
(mul_right_injective ha).ne_iff
lemma mul_right_eq_self_iff {a b : ℕ} (ha : 0 < a) : a * b = a ↔ b = 1 :=
suffices a * b = a * 1 ↔ b = 1, by rwa mul_one at this,
nat.mul_right_inj ha
lemma mul_left_eq_self_iff {a b : ℕ} (hb : 0 < b) : a * b = b ↔ a = 1 :=
by rw [mul_comm, nat.mul_right_eq_self_iff hb]
lemma lt_succ_iff_lt_or_eq {n i : ℕ} : n < i.succ ↔ (n < i ∨ n = i) :=
lt_succ_iff.trans decidable.le_iff_lt_or_eq
theorem mul_self_inj {n m : ℕ} : n * n = m * m ↔ n = m :=
le_antisymm_iff.trans (le_antisymm_iff.trans
(and_congr mul_self_le_mul_self_iff mul_self_le_mul_self_iff)).symm
lemma le_add_pred_of_pos (n : ℕ) {i : ℕ} (hi : i ≠ 0) : n ≤ i + (n - 1) :=
begin
refine le_trans _ (add_tsub_le_assoc),
simp [add_comm, nat.add_sub_assoc, one_le_iff_ne_zero.2 hi]
end
/-!
### Recursion and induction principles
This section is here due to dependencies -- the lemmas here require some of the lemmas
proved above, and some of the results in later sections depend on the definitions in this section.
-/
@[simp] lemma rec_zero {C : ℕ → Sort u} (h0 : C 0) (h : ∀ n, C n → C (n + 1)) :
(nat.rec h0 h : Π n, C n) 0 = h0 :=
rfl
@[simp] lemma rec_add_one {C : ℕ → Sort u} (h0 : C 0) (h : ∀ n, C n → C (n + 1)) (n : ℕ) :
(nat.rec h0 h : Π n, C n) (n + 1) = h n ((nat.rec h0 h : Π n, C n) n) :=
rfl
/-- Recursion starting at a non-zero number: given a map `C k → C (k+1)` for each `k`,
there is a map from `C n` to each `C m`, `n ≤ m`. For a version where the assumption is only made
when `k ≥ n`, see `le_rec_on'`. -/
@[elab_as_eliminator]
def le_rec_on {C : ℕ → Sort u} {n : ℕ} : Π {m : ℕ}, n ≤ m → (Π {k}, C k → C (k+1)) → C n → C m
| 0 H next x := eq.rec_on (nat.eq_zero_of_le_zero H) x
| (m+1) H next x := or.by_cases (of_le_succ H) (λ h : n ≤ m, next $ le_rec_on h @next x)
(λ h : n = m + 1, eq.rec_on h x)
theorem le_rec_on_self {C : ℕ → Sort u} {n} {h : n ≤ n} {next} (x : C n) :
(le_rec_on h next x : C n) = x :=
by cases n; unfold le_rec_on or.by_cases; rw [dif_neg n.not_succ_le_self, dif_pos rfl]
theorem le_rec_on_succ {C : ℕ → Sort u} {n m} (h1 : n ≤ m) {h2 : n ≤ m+1} {next} (x : C n) :
(le_rec_on h2 @next x : C (m+1)) = next (le_rec_on h1 @next x : C m) :=
by conv { to_lhs, rw [le_rec_on, or.by_cases, dif_pos h1] }
theorem le_rec_on_succ' {C : ℕ → Sort u} {n} {h : n ≤ n+1} {next} (x : C n) :
(le_rec_on h next x : C (n+1)) = next x :=
by rw [le_rec_on_succ (le_refl n), le_rec_on_self]
theorem le_rec_on_trans {C : ℕ → Sort u} {n m k} (hnm : n ≤ m) (hmk : m ≤ k) {next} (x : C n) :
(le_rec_on (le_trans hnm hmk) @next x : C k) = le_rec_on hmk @next (le_rec_on hnm @next x) :=
begin
induction hmk with k hmk ih, { rw le_rec_on_self },
rw [le_rec_on_succ (le_trans hnm hmk), ih, le_rec_on_succ]
end
theorem le_rec_on_succ_left {C : ℕ → Sort u} {n m} (h1 : n ≤ m) (h2 : n+1 ≤ m)
{next : Π{{k}}, C k → C (k+1)} (x : C n) :
(le_rec_on h2 next (next x) : C m) = (le_rec_on h1 next x : C m) :=
begin
rw [subsingleton.elim h1 (le_trans (le_succ n) h2),
le_rec_on_trans (le_succ n) h2, le_rec_on_succ']
end
theorem le_rec_on_injective {C : ℕ → Sort u} {n m} (hnm : n ≤ m)
(next : Π n, C n → C (n+1)) (Hnext : ∀ n, function.injective (next n)) :
function.injective (le_rec_on hnm next) :=
begin
induction hnm with m hnm ih, { intros x y H, rwa [le_rec_on_self, le_rec_on_self] at H },
intros x y H, rw [le_rec_on_succ hnm, le_rec_on_succ hnm] at H, exact ih (Hnext _ H)
end
theorem le_rec_on_surjective {C : ℕ → Sort u} {n m} (hnm : n ≤ m)
(next : Π n, C n → C (n+1)) (Hnext : ∀ n, function.surjective (next n)) :
function.surjective (le_rec_on hnm next) :=
begin
induction hnm with m hnm ih, { intros x, use x, rw le_rec_on_self },
intros x, rcases Hnext _ x with ⟨w, rfl⟩, rcases ih w with ⟨x, rfl⟩, use x, rw le_rec_on_succ
end
/-- Recursion principle based on `<`. -/
@[elab_as_eliminator]
protected def strong_rec' {p : ℕ → Sort u} (H : ∀ n, (∀ m, m < n → p m) → p n) : ∀ (n : ℕ), p n
| n := H n (λ m hm, strong_rec' m)
/-- Recursion principle based on `<` applied to some natural number. -/
@[elab_as_eliminator]
def strong_rec_on' {P : ℕ → Sort*} (n : ℕ) (h : ∀ n, (∀ m, m < n → P m) → P n) : P n :=
nat.strong_rec' h n
theorem strong_rec_on_beta' {P : ℕ → Sort*} {h} {n : ℕ} :
(strong_rec_on' n h : P n) = h n (λ m hmn, (strong_rec_on' m h : P m)) :=
by { simp only [strong_rec_on'], rw nat.strong_rec' }
/-- Induction principle starting at a non-zero number. For maps to a `Sort*` see `le_rec_on`. -/
@[elab_as_eliminator] lemma le_induction {P : nat → Prop} {m}
(h0 : P m) (h1 : ∀ n, m ≤ n → P n → P (n + 1)) :
∀ n, m ≤ n → P n :=
by apply nat.less_than_or_equal.rec h0; exact h1
/-- Decreasing induction: if `P (k+1)` implies `P k`, then `P n` implies `P m` for all `m ≤ n`.
Also works for functions to `Sort*`. For a version assuming only the assumption for `k < n`, see
`decreasing_induction'`. -/
@[elab_as_eliminator]
def decreasing_induction {P : ℕ → Sort*} (h : ∀n, P (n+1) → P n) {m n : ℕ} (mn : m ≤ n)
(hP : P n) : P m :=
le_rec_on mn (λ k ih hsk, ih $ h k hsk) (λ h, h) hP
@[simp] lemma decreasing_induction_self {P : ℕ → Sort*} (h : ∀n, P (n+1) → P n) {n : ℕ}
(nn : n ≤ n) (hP : P n) : (decreasing_induction h nn hP : P n) = hP :=
by { dunfold decreasing_induction, rw [le_rec_on_self] }
lemma decreasing_induction_succ {P : ℕ → Sort*} (h : ∀n, P (n+1) → P n) {m n : ℕ} (mn : m ≤ n)
(msn : m ≤ n + 1) (hP : P (n+1)) :
(decreasing_induction h msn hP : P m) = decreasing_induction h mn (h n hP) :=
by { dunfold decreasing_induction, rw [le_rec_on_succ] }
@[simp] lemma decreasing_induction_succ' {P : ℕ → Sort*} (h : ∀n, P (n+1) → P n) {m : ℕ}
(msm : m ≤ m + 1) (hP : P (m+1)) : (decreasing_induction h msm hP : P m) = h m hP :=
by { dunfold decreasing_induction, rw [le_rec_on_succ'] }
lemma decreasing_induction_trans {P : ℕ → Sort*} (h : ∀n, P (n+1) → P n) {m n k : ℕ}
(mn : m ≤ n) (nk : n ≤ k) (hP : P k) :
(decreasing_induction h (le_trans mn nk) hP : P m) =
decreasing_induction h mn (decreasing_induction h nk hP) :=
by { induction nk with k nk ih, rw [decreasing_induction_self],
rw [decreasing_induction_succ h (le_trans mn nk), ih, decreasing_induction_succ] }
lemma decreasing_induction_succ_left {P : ℕ → Sort*} (h : ∀n, P (n+1) → P n) {m n : ℕ}
(smn : m + 1 ≤ n) (mn : m ≤ n) (hP : P n) :
(decreasing_induction h mn hP : P m) = h m (decreasing_induction h smn hP) :=
by { rw [subsingleton.elim mn (le_trans (le_succ m) smn), decreasing_induction_trans,
decreasing_induction_succ'] }
/-- Recursion principle on even and odd numbers: if we have `P 0`, and for all `i : ℕ` we can
extend from `P i` to both `P (2 * i)` and `P (2 * i + 1)`, then we have `P n` for all `n : ℕ`.
This is nothing more than a wrapper around `nat.binary_rec`, to avoid having to switch to
dealing with `bit0` and `bit1`. -/
@[elab_as_eliminator]
def even_odd_rec (n : ℕ) (P : ℕ → Sort*) (h0 : P 0)
(h_even : ∀ i, P i → P (2 * i))
(h_odd : ∀ i, P i → P (2 * i + 1)) : P n :=
begin
refine @binary_rec P h0 (λ b i hi, _) n,
cases b,
{ simpa [bit, bit0_val i] using h_even i hi },
{ simpa [bit, bit1_val i] using h_odd i hi },
end
@[simp] lemma even_odd_rec_zero (P : ℕ → Sort*) (h0 : P 0)
(h_even : ∀ i, P i → P (2 * i)) (h_odd : ∀ i, P i → P (2 * i + 1)) :
@even_odd_rec 0 P h0 h_even h_odd = h0 := binary_rec_zero _ _
@[simp] lemma even_odd_rec_even (n : ℕ) (P : ℕ → Sort*) (h0 : P 0)
(h_even : ∀ i, P i → P (2 * i)) (h_odd : ∀ i, P i → P (2 * i + 1))
(H : h_even 0 h0 = h0) :
@even_odd_rec (2 * n) P h0 h_even h_odd = h_even n (even_odd_rec n P h0 h_even h_odd) :=
begin
convert binary_rec_eq _ ff n,
{ exact (bit0_eq_two_mul _).symm },
{ exact (bit0_eq_two_mul _).symm },
{ apply heq_of_cast_eq, refl },
{ exact H }
end
@[simp] lemma even_odd_rec_odd (n : ℕ) (P : ℕ → Sort*) (h0 : P 0)
(h_even : ∀ i, P i → P (2 * i)) (h_odd : ∀ i, P i → P (2 * i + 1))
(H : h_even 0 h0 = h0) :
@even_odd_rec (2 * n + 1) P h0 h_even h_odd = h_odd n (even_odd_rec n P h0 h_even h_odd) :=
begin
convert binary_rec_eq _ tt n,
{ exact (bit0_eq_two_mul _).symm },
{ exact (bit0_eq_two_mul _).symm },
{ apply heq_of_cast_eq, refl },
{ exact H }
end
/-- Given a predicate on two naturals `P : ℕ → ℕ → Prop`, `P a b` is true for all `a < b` if
`P (a + 1) (a + 1)` is true for all `a`, `P 0 (b + 1)` is true for all `b` and for all
`a < b`, `P (a + 1) b` is true and `P a (b + 1)` is true implies `P (a + 1) (b + 1)` is true. -/
@[elab_as_eliminator]
lemma diag_induction (P : ℕ → ℕ → Prop) (ha : ∀ a, P (a + 1) (a + 1)) (hb : ∀ b, P 0 (b + 1))
(hd : ∀ a b, a < b → P (a + 1) b → P a (b + 1) → P (a + 1) (b + 1)) :
∀ a b, a < b → P a b
| 0 (b + 1) h := hb _
| (a + 1) (b + 1) h :=
begin
apply hd _ _ ((add_lt_add_iff_right _).1 h),
{ have : a + 1 = b ∨ a + 1 < b,
{ rwa [← le_iff_eq_or_lt, ← nat.lt_succ_iff] },
rcases this with rfl | _,
{ exact ha _ },
apply diag_induction (a + 1) b this },
apply diag_induction a (b + 1),
apply lt_of_le_of_lt (nat.le_succ _) h,
end
using_well_founded { rel_tac := λ _ _, `[exact ⟨_, measure_wf (λ p, p.1 + p.2.1)⟩] }
/-- Given `P : ℕ → ℕ → Sort*`, if for all `a b : ℕ` we can extend `P` from the rectangle
strictly below `(a,b)` to `P a b`, then we have `P n m` for all `n m : ℕ`.
Note that for non-`Prop` output it is preferable to use the equation compiler directly if possible,
since this produces equation lemmas. -/
@[elab_as_eliminator]
def strong_sub_recursion {P : ℕ → ℕ → Sort*}
(H : ∀ a b, (∀ x y, x < a → y < b → P x y) → P a b) : Π (n m : ℕ), P n m
| n m := H n m (λ x y hx hy, strong_sub_recursion x y)
/-- Given `P : ℕ → ℕ → Sort*`, if we have `P i 0` and `P 0 i` for all `i : ℕ`,
and for any `x y : ℕ` we can extend `P` from `(x,y+1)` and `(x+1,y)` to `(x+1,y+1)`
then we have `P n m` for all `n m : ℕ`.
Note that for non-`Prop` output it is preferable to use the equation compiler directly if possible,
since this produces equation lemmas. -/
@[elab_as_eliminator]
def pincer_recursion {P : ℕ → ℕ → Sort*} (Ha0 : ∀ a : ℕ, P a 0) (H0b : ∀ b : ℕ, P 0 b)
(H : ∀ x y : ℕ, P x y.succ → P x.succ y → P x.succ y.succ) : ∀ (n m : ℕ), P n m
| a 0 := Ha0 a
| 0 b := H0b b
| (nat.succ a) (nat.succ b) := H _ _ (pincer_recursion _ _) (pincer_recursion _ _)
/-- Recursion starting at a non-zero number: given a map `C k → C (k+1)` for each `k ≥ n`,
there is a map from `C n` to each `C m`, `n ≤ m`. -/
@[elab_as_eliminator]
def le_rec_on' {C : ℕ → Sort*} {n : ℕ} :
Π {m : ℕ}, n ≤ m → (Π ⦃k⦄, n ≤ k → C k → C (k+1)) → C n → C m
| 0 H next x := eq.rec_on (nat.eq_zero_of_le_zero H) x
| (m+1) H next x := or.by_cases (of_le_succ H) (λ h : n ≤ m, next h $ le_rec_on' h next x)
(λ h : n = m + 1, eq.rec_on h x)
/-- Decreasing induction: if `P (k+1)` implies `P k` for all `m ≤ k < n`, then `P n` implies `P m`.
Also works for functions to `Sort*`. Weakens the assumptions of `decreasing_induction`. -/
@[elab_as_eliminator]
def decreasing_induction' {P : ℕ → Sort*} {m n : ℕ} (h : ∀ k < n, m ≤ k → P (k+1) → P k)
(mn : m ≤ n) (hP : P n) : P m :=
begin
-- induction mn using nat.le_rec_on' generalizing h hP -- this doesn't work unfortunately
refine le_rec_on' mn _ _ h hP; clear h hP mn n,
{ intros n mn ih h hP,
apply ih,
{ exact λ k hk, h k hk.step },
{ exact h n (lt_succ_self n) mn hP } },
{ intros h hP, exact hP }
end
/-- A subset of `ℕ` containing `b : ℕ` and closed under `nat.succ` contains every `n ≥ b`. -/
lemma set_induction_bounded {b : ℕ} {S : set ℕ} (hb : b ∈ S) (h_ind: ∀ k : ℕ, k ∈ S → k + 1 ∈ S)
{n : ℕ} (hbn : b ≤ n) : n ∈ S :=
@le_rec_on (λ n, n ∈ S) b n hbn h_ind hb
/-- A subset of `ℕ` containing zero and closed under `nat.succ` contains all of `ℕ`. -/
lemma set_induction {S : set ℕ} (hb : 0 ∈ S) (h_ind: ∀ k : ℕ, k ∈ S → k + 1 ∈ S) (n : ℕ) : n ∈ S :=
set_induction_bounded hb h_ind (zero_le n)
lemma set_eq_univ {S : set ℕ} : S = set.univ ↔ 0 ∈ S ∧ ∀ k : ℕ, k ∈ S → k + 1 ∈ S :=
⟨by rintro rfl; simp, λ ⟨h0, hs⟩, set.eq_univ_of_forall (set_induction h0 hs)⟩
/-! ### `div` -/
attribute [simp] nat.div_self
protected lemma div_le_of_le_mul' {m n : ℕ} {k} (h : m ≤ k * n) : m / k ≤ n :=
(nat.eq_zero_or_pos k).elim
(λ k0, by rw [k0, nat.div_zero]; apply zero_le)
(λ k0, (_root_.mul_le_mul_left k0).1 $
calc k * (m / k)
≤ m % k + k * (m / k) : nat.le_add_left _ _
... = m : mod_add_div _ _
... ≤ k * n : h)
protected lemma div_le_self' (m n : ℕ) : m / n ≤ m :=
(nat.eq_zero_or_pos n).elim
(λ n0, by rw [n0, nat.div_zero]; apply zero_le)
(λ n0, nat.div_le_of_le_mul' $ calc
m = 1 * m : (one_mul _).symm
... ≤ n * m : nat.mul_le_mul_right _ n0)
/-- A version of `nat.div_lt_self` using successors, rather than additional hypotheses. -/
lemma div_lt_self' (n b : ℕ) : (n+1)/(b+2) < n+1 :=
nat.div_lt_self (nat.succ_pos n) (nat.succ_lt_succ (nat.succ_pos _))
theorem le_div_iff_mul_le' {x y : ℕ} {k : ℕ} (k0 : 0 < k) : x ≤ y / k ↔ x * k ≤ y :=
le_div_iff_mul_le k0
theorem div_lt_iff_lt_mul' {x y : ℕ} {k : ℕ} (k0 : 0 < k) : x / k < y ↔ x < y * k :=
lt_iff_lt_of_le_iff_le $ le_div_iff_mul_le' k0
lemma one_le_div_iff {a b : ℕ} (hb : 0 < b) : 1 ≤ a / b ↔ b ≤ a :=
by rw [le_div_iff_mul_le hb, one_mul]
lemma div_lt_one_iff {a b : ℕ} (hb : 0 < b) : a / b < 1 ↔ a < b :=
lt_iff_lt_of_le_iff_le $ one_le_div_iff hb
protected theorem div_le_div_right {n m : ℕ} (h : n ≤ m) {k : ℕ} : n / k ≤ m / k :=
(nat.eq_zero_or_pos k).elim (λ k0, by simp [k0]) $ λ hk,
(le_div_iff_mul_le' hk).2 $ le_trans (nat.div_mul_le_self _ _) h
lemma lt_of_div_lt_div {m n k : ℕ} : m / k < n / k → m < n :=
lt_imp_lt_of_le_imp_le $ λ h, nat.div_le_div_right h
protected lemma div_pos {a b : ℕ} (hba : b ≤ a) (hb : 0 < b) : 0 < a / b :=
nat.pos_of_ne_zero (λ h, lt_irrefl a
(calc a = a % b : by simpa [h] using (mod_add_div a b).symm
... < b : nat.mod_lt a hb
... ≤ a : hba))
protected lemma div_lt_of_lt_mul {m n k : ℕ} (h : m < n * k) : m / n < k :=
lt_of_mul_lt_mul_left
(calc n * (m / n) ≤ m % n + n * (m / n) : nat.le_add_left _ _
... = m : mod_add_div _ _
... < n * k : h)
(nat.zero_le n)
lemma lt_mul_of_div_lt {a b c : ℕ} (h : a / c < b) (w : 0 < c) : a < b * c :=
lt_of_not_ge $ not_le_of_gt h ∘ (nat.le_div_iff_mul_le w).2
protected lemma div_eq_zero_iff {a b : ℕ} (hb : 0 < b) : a / b = 0 ↔ a < b :=
⟨λ h, by rw [← mod_add_div a b, h, mul_zero, add_zero]; exact mod_lt _ hb,
λ h, by rw [← nat.mul_right_inj hb, ← @add_left_cancel_iff _ _ (a % b), mod_add_div,
mod_eq_of_lt h, mul_zero, add_zero]⟩
protected lemma div_eq_zero {a b : ℕ} (hb : a < b) : a / b = 0 :=
(nat.div_eq_zero_iff $ (zero_le a).trans_lt hb).mpr hb
lemma eq_zero_of_le_div {a b : ℕ} (hb : 2 ≤ b) (h : a ≤ a / b) : a = 0 :=
eq_zero_of_mul_le hb $
by rw mul_comm; exact (nat.le_div_iff_mul_le' (lt_of_lt_of_le dec_trivial hb)).1 h
lemma mul_div_le_mul_div_assoc (a b c : ℕ) : a * (b / c) ≤ (a * b) / c :=
if hc0 : c = 0 then by simp [hc0]
else (nat.le_div_iff_mul_le (nat.pos_of_ne_zero hc0)).2
(by rw [mul_assoc]; exact nat.mul_le_mul_left _ (nat.div_mul_le_self _ _))
lemma div_mul_div_le_div (a b c : ℕ) : ((a / c) * b) / a ≤ b / c :=
if ha0 : a = 0 then by simp [ha0]
else calc a / c * b / a ≤ b * a / c / a :
nat.div_le_div_right (by rw [mul_comm];
exact mul_div_le_mul_div_assoc _ _ _)
... = b / c : by rw [nat.div_div_eq_div_mul, mul_comm b, mul_comm c,
nat.mul_div_mul _ _ (nat.pos_of_ne_zero ha0)]
lemma eq_zero_of_le_half {a : ℕ} (h : a ≤ a / 2) : a = 0 :=
eq_zero_of_le_div le_rfl h
protected theorem eq_mul_of_div_eq_right {a b c : ℕ} (H1 : b ∣ a) (H2 : a / b = c) :
a = b * c :=
by rw [← H2, nat.mul_div_cancel' H1]
protected theorem div_eq_iff_eq_mul_right {a b c : ℕ} (H : 0 < b) (H' : b ∣ a) :
a / b = c ↔ a = b * c :=
⟨nat.eq_mul_of_div_eq_right H', nat.div_eq_of_eq_mul_right H⟩
protected theorem div_eq_iff_eq_mul_left {a b c : ℕ} (H : 0 < b) (H' : b ∣ a) :
a / b = c ↔ a = c * b :=
by rw mul_comm; exact nat.div_eq_iff_eq_mul_right H H'
protected theorem eq_mul_of_div_eq_left {a b c : ℕ} (H1 : b ∣ a) (H2 : a / b = c) :
a = c * b :=
by rw [mul_comm, nat.eq_mul_of_div_eq_right H1 H2]
protected lemma lt_div_iff_mul_lt {n d : ℕ} (hnd : d ∣ n) (a : ℕ) : a < n / d ↔ d * a < n :=
begin
rcases d.eq_zero_or_pos with rfl | hd0, { simp [zero_dvd_iff.mp hnd] },
rw [←mul_lt_mul_left hd0, ←nat.eq_mul_of_div_eq_right hnd rfl],
end
protected theorem mul_div_cancel_left' {a b : ℕ} (Hd : a ∣ b) : a * (b / a) = b :=
by rw [mul_comm,nat.div_mul_cancel Hd]
/-- Alias of `nat.mul_div_mul` -/ --TODO: Update `nat.mul_div_mul` in the core?
protected lemma mul_div_mul_left (a b : ℕ) {c : ℕ} (hc : 0 < c) : c * a / (c * b) = a / b :=
nat.mul_div_mul a b hc
protected lemma mul_div_mul_right (a b : ℕ) {c : ℕ} (hc : 0 < c) : a * c / (b * c) = a / b :=
by rw [mul_comm, mul_comm b, a.mul_div_mul_left b hc]
lemma lt_div_mul_add {a b : ℕ} (hb : 0 < b) : a < a/b*b + b :=
begin
rw [←nat.succ_mul, ←nat.div_lt_iff_lt_mul hb],
exact nat.lt_succ_self _,
end
lemma div_eq_iff_eq_of_dvd_dvd {n x y : ℕ} (hn : n ≠ 0) (hx : x ∣ n) (hy : y ∣ n) :
n / x = n / y ↔ x = y :=
begin
split,
{ intros h,
rw ←mul_right_inj' hn,
apply nat.eq_mul_of_div_eq_left (dvd_mul_of_dvd_left hy x),
rw [eq_comm, mul_comm, nat.mul_div_assoc _ hy],
exact nat.eq_mul_of_div_eq_right hx h },
{ intros h, rw h },
end
lemma mul_div_mul_comm_of_dvd_dvd {a b c d : ℕ} (hac : c ∣ a) (hbd : d ∣ b) :
a * b / (c * d) = a / c * (b / d) :=
begin
rcases c.eq_zero_or_pos with rfl | hc0, { simp },
rcases d.eq_zero_or_pos with rfl | hd0, { simp },
obtain ⟨k1, rfl⟩ := hac,
obtain ⟨k2, rfl⟩ := hbd,
rw [mul_mul_mul_comm, nat.mul_div_cancel_left _ hc0, nat.mul_div_cancel_left _ hd0,
nat.mul_div_cancel_left _ (mul_pos hc0 hd0)],
end
@[simp]
protected lemma div_left_inj {a b d : ℕ} (hda : d ∣ a) (hdb : d ∣ b) : a / d = b / d ↔ a = b :=
begin
refine ⟨λ h, _, congr_arg _⟩,
rw [←nat.mul_div_cancel' hda, ←nat.mul_div_cancel' hdb, h],
end
/-! ### `mod`, `dvd` -/
lemma mod_eq_iff_lt {a b : ℕ} (h : b ≠ 0) : a % b = a ↔ a < b :=
begin
cases b, contradiction,
exact ⟨λ h, h.ge.trans_lt (mod_lt _ (succ_pos _)), mod_eq_of_lt⟩,
end
@[simp] lemma mod_succ_eq_iff_lt {a b : ℕ} : a % b.succ = a ↔ a < b.succ :=
mod_eq_iff_lt (succ_ne_zero _)
lemma div_add_mod (m k : ℕ) : k * (m / k) + m % k = m :=
(nat.add_comm _ _).trans (mod_add_div _ _)
lemma mod_add_div' (m k : ℕ) : m % k + (m / k) * k = m :=
by { rw mul_comm, exact mod_add_div _ _ }
lemma div_add_mod' (m k : ℕ) : (m / k) * k + m % k = m :=
by { rw mul_comm, exact div_add_mod _ _ }
protected theorem div_mod_unique {n k m d : ℕ} (h : 0 < k) :
n / k = d ∧ n % k = m ↔ m + k * d = n ∧ m < k :=
⟨λ ⟨e₁, e₂⟩, e₁ ▸ e₂ ▸ ⟨mod_add_div _ _, mod_lt _ h⟩,
λ ⟨h₁, h₂⟩, h₁ ▸ by rw [add_mul_div_left _ _ h, add_mul_mod_self_left];
simp [div_eq_of_lt, mod_eq_of_lt, h₂]⟩
lemma two_mul_odd_div_two {n : ℕ} (hn : n % 2 = 1) : 2 * (n / 2) = n - 1 :=
by conv {to_rhs, rw [← nat.mod_add_div n 2, hn, add_tsub_cancel_left]}
lemma div_dvd_of_dvd {a b : ℕ} (h : b ∣ a) : (a / b) ∣ a :=
⟨b, (nat.div_mul_cancel h).symm⟩
protected lemma div_div_self : ∀ {a b : ℕ}, b ∣ a → 0 < a → a / (a / b) = b
| a 0 h₁ h₂ := by rw [eq_zero_of_zero_dvd h₁, nat.div_zero, nat.div_zero]
| 0 b h₁ h₂ := absurd h₂ dec_trivial
| (a+1) (b+1) h₁ h₂ :=
(nat.mul_left_inj (nat.div_pos (le_of_dvd (succ_pos a) h₁) (succ_pos b))).1 $
by rw [nat.div_mul_cancel (div_dvd_of_dvd h₁), nat.mul_div_cancel' h₁]
lemma mod_mul_right_div_self (a b c : ℕ) : a % (b * c) / b = (a / b) % c :=
begin
rcases nat.eq_zero_or_pos b with rfl|hb, { simp },
rcases nat.eq_zero_or_pos c with rfl|hc, { simp },
conv_rhs { rw ← mod_add_div a (b * c) },
rw [mul_assoc, nat.add_mul_div_left _ _ hb, add_mul_mod_self_left,
mod_eq_of_lt (nat.div_lt_of_lt_mul (mod_lt _ (mul_pos hb hc)))]
end
lemma mod_mul_left_div_self (a b c : ℕ) : a % (c * b) / b = (a / b) % c :=
by rw [mul_comm c, mod_mul_right_div_self]
@[simp] protected theorem dvd_one {n : ℕ} : n ∣ 1 ↔ n = 1 :=
⟨eq_one_of_dvd_one, λ e, e.symm ▸ dvd_rfl⟩
protected theorem dvd_add_left {k m n : ℕ} (h : k ∣ n) : k ∣ m + n ↔ k ∣ m :=
(nat.dvd_add_iff_left h).symm
protected theorem dvd_add_right {k m n : ℕ} (h : k ∣ m) : k ∣ m + n ↔ k ∣ n :=
(nat.dvd_add_iff_right h).symm
@[simp] protected theorem not_two_dvd_bit1 (n : ℕ) : ¬ 2 ∣ bit1 n :=
by { rw [bit1, nat.dvd_add_right two_dvd_bit0, nat.dvd_one], cc }
/-- A natural number `m` divides the sum `m + n` if and only if `m` divides `n`.-/
@[simp] protected lemma dvd_add_self_left {m n : ℕ} :
m ∣ m + n ↔ m ∣ n :=
nat.dvd_add_right (dvd_refl m)
/-- A natural number `m` divides the sum `n + m` if and only if `m` divides `n`.-/
@[simp] protected lemma dvd_add_self_right {m n : ℕ} :
m ∣ n + m ↔ m ∣ n :=
nat.dvd_add_left (dvd_refl m)
-- TODO: update `nat.dvd_sub` in core
lemma dvd_sub' {k m n : ℕ} (h₁ : k ∣ m) (h₂ : k ∣ n) : k ∣ m - n :=
begin
cases le_total n m with H H,
{ exact dvd_sub H h₁ h₂ },
{ rw tsub_eq_zero_iff_le.mpr H,
exact dvd_zero k },
end
lemma not_dvd_of_pos_of_lt {a b : ℕ} (h1 : 0 < b) (h2 : b < a) : ¬ a ∣ b :=
begin
rintros ⟨c, rfl⟩,
rcases nat.eq_zero_or_pos c with (rfl | hc),
{ exact lt_irrefl 0 h1 },
{ exact not_lt.2 (le_mul_of_pos_right hc) h2 },
end
protected theorem mul_dvd_mul_iff_left {a b c : ℕ} (ha : 0 < a) : a * b ∣ a * c ↔ b ∣ c :=
exists_congr $ λ d, by rw [mul_assoc, nat.mul_right_inj ha]
protected theorem mul_dvd_mul_iff_right {a b c : ℕ} (hc : 0 < c) : a * c ∣ b * c ↔ a ∣ b :=
exists_congr $ λ d, by rw [mul_right_comm, nat.mul_left_inj hc]
lemma succ_div : ∀ (a b : ℕ), (a + 1) / b =
a / b + if b ∣ a + 1 then 1 else 0
| a 0 := by simp
| 0 1 := by simp
| 0 (b+2) := have hb2 : b + 2 > 1, from dec_trivial,
by simp [ne_of_gt hb2, div_eq_of_lt hb2]
| (a+1) (b+1) := begin
rw [nat.div_def], conv_rhs { rw nat.div_def },
by_cases hb_eq_a : b = a + 1,
{ simp [hb_eq_a, le_refl] },
by_cases hb_le_a1 : b ≤ a + 1,
{ have hb_le_a : b ≤ a, from le_of_lt_succ (lt_of_le_of_ne hb_le_a1 hb_eq_a),
have h₁ : (0 < b + 1 ∧ b + 1 ≤ a + 1 + 1),
from ⟨succ_pos _, (add_le_add_iff_right _).2 hb_le_a1⟩,
have h₂ : (0 < b + 1 ∧ b + 1 ≤ a + 1),
from ⟨succ_pos _, (add_le_add_iff_right _).2 hb_le_a⟩,
have dvd_iff : b + 1 ∣ a - b + 1 ↔ b + 1 ∣ a + 1 + 1,
{ rw [nat.dvd_add_iff_left (dvd_refl (b + 1)),
← add_tsub_add_eq_tsub_right a 1 b, add_comm (_ - _), add_assoc,
tsub_add_cancel_of_le (succ_le_succ hb_le_a), add_comm 1] },
have wf : a - b < a + 1, from lt_succ_of_le tsub_le_self,
rw [if_pos h₁, if_pos h₂, add_tsub_add_eq_tsub_right, ← tsub_add_eq_add_tsub hb_le_a,
by exact have _ := wf, succ_div (a - b),
add_tsub_add_eq_tsub_right],
simp [dvd_iff, succ_eq_add_one, add_comm 1, add_assoc] },
{ have hba : ¬ b ≤ a,
from not_le_of_gt (lt_trans (lt_succ_self a) (lt_of_not_ge hb_le_a1)),
have hb_dvd_a : ¬ b + 1 ∣ a + 2,
from λ h, hb_le_a1 (le_of_succ_le_succ (le_of_dvd (succ_pos _) h)),
simp [hba, hb_le_a1, hb_dvd_a], }
end
lemma succ_div_of_dvd {a b : ℕ} (hba : b ∣ a + 1) :
(a + 1) / b = a / b + 1 :=
by rw [succ_div, if_pos hba]
lemma succ_div_of_not_dvd {a b : ℕ} (hba : ¬ b ∣ a + 1) :
(a + 1) / b = a / b :=
by rw [succ_div, if_neg hba, add_zero]
lemma dvd_iff_div_mul_eq (n d : ℕ) : d ∣ n ↔ n / d * d = n :=
⟨λ h, nat.div_mul_cancel h, λ h, dvd.intro_left (n / d) h⟩
lemma dvd_iff_le_div_mul (n d : ℕ) : d ∣ n ↔ n ≤ n / d * d :=
((dvd_iff_div_mul_eq _ _).trans le_antisymm_iff).trans (and_iff_right (div_mul_le_self n d))
lemma dvd_iff_dvd_dvd (n d : ℕ) : d ∣ n ↔ ∀ k : ℕ, k ∣ d → k ∣ n :=
⟨λ h k hkd, dvd_trans hkd h, λ h, h _ dvd_rfl⟩
@[simp] theorem mod_mod_of_dvd (n : nat) {m k : nat} (h : m ∣ k) : n % k % m = n % m :=
begin
conv { to_rhs, rw ←mod_add_div n k },
rcases h with ⟨t, rfl⟩, rw [mul_assoc, add_mul_mod_self_left]
end
@[simp] theorem mod_mod (a n : ℕ) : (a % n) % n = a % n :=
(nat.eq_zero_or_pos n).elim
(λ n0, by simp [n0])
(λ npos, mod_eq_of_lt (mod_lt _ npos))
/-- If `a` and `b` are equal mod `c`, `a - b` is zero mod `c`. -/
lemma sub_mod_eq_zero_of_mod_eq {a b c : ℕ} (h : a % c = b % c) : (a - b) % c = 0 :=
by rw [←nat.mod_add_div a c, ←nat.mod_add_div b c, ←h, tsub_add_eq_tsub_tsub, add_tsub_cancel_left,
←mul_tsub, nat.mul_mod_right]
@[simp] lemma one_mod (n : ℕ) : 1 % (n + 2) = 1 := nat.mod_eq_of_lt (add_lt_add_right n.succ_pos 1)
lemma dvd_sub_mod (k : ℕ) : n ∣ (k - (k % n)) :=
⟨k / n, tsub_eq_of_eq_add_rev (nat.mod_add_div k n).symm⟩
@[simp] theorem mod_add_mod (m n k : ℕ) : (m % n + k) % n = (m + k) % n :=
by have := (add_mul_mod_self_left (m % n + k) n (m / n)).symm;
rwa [add_right_comm, mod_add_div] at this
@[simp] theorem add_mod_mod (m n k : ℕ) : (m + n % k) % k = (m + n) % k :=
by rw [add_comm, mod_add_mod, add_comm]
lemma add_mod (a b n : ℕ) : (a + b) % n = ((a % n) + (b % n)) % n :=
by rw [add_mod_mod, mod_add_mod]
theorem add_mod_eq_add_mod_right {m n k : ℕ} (i : ℕ) (H : m % n = k % n) :
(m + i) % n = (k + i) % n :=
by rw [← mod_add_mod, ← mod_add_mod k, H]
theorem add_mod_eq_add_mod_left {m n k : ℕ} (i : ℕ) (H : m % n = k % n) :
(i + m) % n = (i + k) % n :=
by rw [add_comm, add_mod_eq_add_mod_right _ H, add_comm]
lemma add_mod_eq_ite {a b n : ℕ} :
(a + b) % n = if n ≤ a % n + b % n then a % n + b % n - n else a % n + b % n :=
begin
cases n, { simp },
rw nat.add_mod,
split_ifs with h,
{ rw [nat.mod_eq_sub_mod h, nat.mod_eq_of_lt],
exact (tsub_lt_iff_right h).mpr
(nat.add_lt_add (a.mod_lt n.zero_lt_succ) (b.mod_lt n.zero_lt_succ)) },
{ exact nat.mod_eq_of_lt (lt_of_not_ge h) }
end
lemma mul_mod (a b n : ℕ) : (a * b) % n = ((a % n) * (b % n)) % n :=
begin
conv_lhs
{ rw [←mod_add_div a n, ←mod_add_div' b n, right_distrib, left_distrib, left_distrib,
mul_assoc, mul_assoc, ←left_distrib n _ _, add_mul_mod_self_left, ← mul_assoc,
add_mul_mod_self_right] }
end
lemma dvd_div_of_mul_dvd {a b c : ℕ} (h : a * b ∣ c) : b ∣ c / a :=
if ha : a = 0 then
by simp [ha]
else
have ha : 0 < a, from nat.pos_of_ne_zero ha,
have h1 : ∃ d, c = a * b * d, from h,
let ⟨d, hd⟩ := h1 in
have h2 : c / a = b * d, from nat.div_eq_of_eq_mul_right ha (by simpa [mul_assoc] using hd),
show ∃ d, c / a = b * d, from ⟨d, h2⟩
lemma mul_dvd_of_dvd_div {a b c : ℕ} (hab : c ∣ b) (h : a ∣ b / c) : c * a ∣ b :=
have h1 : ∃ d, b / c = a * d, from h,
have h2 : ∃ e, b = c * e, from hab,
let ⟨d, hd⟩ := h1, ⟨e, he⟩ := h2 in
have h3 : b = a * d * c, from
nat.eq_mul_of_div_eq_left hab hd,
show ∃ d, b = c * a * d, from ⟨d, by cc⟩
@[simp] lemma dvd_div_iff {a b c : ℕ} (hbc : c ∣ b) : a ∣ b / c ↔ c * a ∣ b :=
⟨λ h, mul_dvd_of_dvd_div hbc h, λ h, dvd_div_of_mul_dvd h⟩
lemma div_mul_div_comm {a b c d : ℕ} (hab : b ∣ a) (hcd : d ∣ c) :
(a / b) * (c / d) = (a * c) / (b * d) :=
have exi1 : ∃ x, a = b * x, from hab,
have exi2 : ∃ y, c = d * y, from hcd,
if hb : b = 0 then by simp [hb]
else have 0 < b, from nat.pos_of_ne_zero hb,
if hd : d = 0 then by simp [hd]
else have 0 < d, from nat.pos_of_ne_zero hd,
begin
cases exi1 with x hx, cases exi2 with y hy,
rw [hx, hy, nat.mul_div_cancel_left, nat.mul_div_cancel_left],
symmetry,
apply nat.div_eq_of_eq_mul_left,
apply mul_pos,
repeat {assumption},
cc
end
@[simp]
lemma div_div_div_eq_div : ∀ {a b c : ℕ} (dvd : b ∣ a) (dvd2 : a ∣ c), (c / (a / b)) / b = c / a
| 0 _ := by simp
| (a + 1) 0 := λ _ dvd _, by simpa using dvd
| (a + 1) (c + 1) :=
have a_split : a + 1 ≠ 0 := succ_ne_zero a,
have c_split : c + 1 ≠ 0 := succ_ne_zero c,
λ b dvd dvd2,
begin
rcases dvd2 with ⟨k, rfl⟩,
rcases dvd with ⟨k2, pr⟩,
have k2_nonzero : k2 ≠ 0 := λ k2_zero, by simpa [k2_zero] using pr,
rw [nat.mul_div_cancel_left k (nat.pos_of_ne_zero a_split), pr,
nat.mul_div_cancel_left k2 (nat.pos_of_ne_zero c_split), nat.mul_comm ((c + 1) * k2) k,
←nat.mul_assoc k (c + 1) k2, nat.mul_div_cancel _ (nat.pos_of_ne_zero k2_nonzero),
nat.mul_div_cancel _ (nat.pos_of_ne_zero c_split)],
end
lemma eq_of_dvd_of_div_eq_one {a b : ℕ} (w : a ∣ b) (h : b / a = 1) : a = b :=
by rw [←nat.div_mul_cancel w, h, one_mul]
lemma eq_zero_of_dvd_of_div_eq_zero {a b : ℕ} (w : a ∣ b) (h : b / a = 0) : b = 0 :=
by rw [←nat.div_mul_cancel w, h, zero_mul]
/-- If a small natural number is divisible by a larger natural number,
the small number is zero. -/
lemma eq_zero_of_dvd_of_lt {a b : ℕ} (w : a ∣ b) (h : b < a) : b = 0 :=
nat.eq_zero_of_dvd_of_div_eq_zero w
((nat.div_eq_zero_iff (lt_of_le_of_lt (zero_le b) h)).elim_right h)
lemma div_le_div_left {a b c : ℕ} (h₁ : c ≤ b) (h₂ : 0 < c) : a / b ≤ a / c :=
(nat.le_div_iff_mul_le h₂).2 $
le_trans (nat.mul_le_mul_left _ h₁) (div_mul_le_self _ _)
lemma div_eq_self {a b : ℕ} : a / b = a ↔ a = 0 ∨ b = 1 :=
begin
split,
{ intro,
cases b,
{ simp * at * },
{ cases b,
{ right, refl },
{ left,
have : a / (b + 2) ≤ a / 2 := div_le_div_left (by simp) dec_trivial,
refine eq_zero_of_le_half _,
simp * at * } } },
{ rintros (rfl|rfl); simp }
end
lemma lt_iff_le_pred : ∀ {m n : ℕ}, 0 < n → (m < n ↔ m ≤ n - 1)
| m (n+1) _ := lt_succ_iff
lemma div_eq_sub_mod_div {m n : ℕ} : m / n = (m - m % n) / n :=
begin
by_cases n0 : n = 0,
{ rw [n0, nat.div_zero, nat.div_zero] },
{ rw [← mod_add_div m n] { occs := occurrences.pos [2] },
rw [add_tsub_cancel_left, mul_div_right _ (nat.pos_of_ne_zero n0)] }
end
lemma mul_div_le (m n : ℕ) : n * (m / n) ≤ m :=
begin
cases nat.eq_zero_or_pos n with n0 h,
{ rw [n0, zero_mul], exact m.zero_le },
{ rw [mul_comm, ← nat.le_div_iff_mul_le' h] },
end
lemma lt_mul_div_succ (m : ℕ) {n : ℕ} (n0 : 0 < n) : m < n * ((m / n) + 1) :=
begin
rw [mul_comm, ← nat.div_lt_iff_lt_mul' n0],
exact lt_succ_self _
end
@[simp] lemma mod_div_self (m n : ℕ) : m % n / n = 0 :=
begin
cases n,
{ exact (m % 0).div_zero },
{ exact nat.div_eq_zero (m.mod_lt n.succ_pos) }
end
/-- `n` is not divisible by `a` if it is between `a * k` and `a * (k + 1)` for some `k`. -/
lemma not_dvd_of_between_consec_multiples {n a k : ℕ} (h1 : a * k < n) (h2 : n < a * (k + 1)) :
¬ a ∣ n :=
begin
rintro ⟨d, rfl⟩,
exact monotone.ne_of_lt_of_lt_nat (covariant.monotone_of_const a) k h1 h2 d rfl,
end
/-- `n` is not divisible by `a` iff it is between `a * k` and `a * (k + 1)` for some `k`. -/
lemma not_dvd_iff_between_consec_multiples (n : ℕ) {a : ℕ} (ha : 0 < a) :
(∃ k : ℕ, a * k < n ∧ n < a * (k + 1)) ↔ ¬ a ∣ n :=
begin
refine ⟨λ ⟨k, hk1, hk2⟩, not_dvd_of_between_consec_multiples hk1 hk2,
λ han, ⟨n/a, ⟨lt_of_le_of_ne (mul_div_le n a) _, lt_mul_div_succ _ ha⟩⟩⟩,
exact mt (dvd.intro (n/a)) han,
end
/-- Two natural numbers are equal if and only if they have the same multiples. -/
lemma dvd_right_iff_eq {m n : ℕ} : (∀ a : ℕ, m ∣ a ↔ n ∣ a) ↔ m = n :=
⟨λ h, dvd_antisymm ((h _).mpr dvd_rfl) ((h _).mp dvd_rfl), λ h n, by rw h⟩
/-- Two natural numbers are equal if and only if they have the same divisors. -/
lemma dvd_left_iff_eq {m n : ℕ} : (∀ a : ℕ, a ∣ m ↔ a ∣ n) ↔ m = n :=
⟨λ h, dvd_antisymm ((h _).mp dvd_rfl) ((h _).mpr dvd_rfl), λ h n, by rw h⟩
/-- `dvd` is injective in the left argument -/
lemma dvd_left_injective : function.injective ((∣) : ℕ → ℕ → Prop) :=
λ m n h, dvd_right_iff_eq.mp $ λ a, iff_of_eq (congr_fun h a)
lemma div_lt_div_of_lt_of_dvd {a b d : ℕ} (hdb : d ∣ b) (h : a < b) : a / d < b / d :=
by { rw nat.lt_div_iff_mul_lt hdb, exact lt_of_le_of_lt (mul_div_le a d) h }
lemma mul_add_mod (a b c : ℕ) : (a * b + c) % b = c % b :=
by simp [nat.add_mod]
lemma mul_add_mod_of_lt {a b c : ℕ} (h : c < b) : (a * b + c) % b = c :=
by rw [nat.mul_add_mod, nat.mod_eq_of_lt h]
lemma pred_eq_self_iff {n : ℕ} : n.pred = n ↔ n = 0 :=
by { cases n; simp [(nat.succ_ne_self _).symm] }
/-! ### `find` -/
section find
variables {p q : ℕ → Prop} [decidable_pred p] [decidable_pred q]
lemma find_eq_iff (h : ∃ n : ℕ, p n) : nat.find h = m ↔ p m ∧ ∀ n < m, ¬ p n :=
begin
split,
{ rintro rfl, exact ⟨nat.find_spec h, λ _, nat.find_min h⟩ },
{ rintro ⟨hm, hlt⟩,
exact le_antisymm (nat.find_min' h hm) (not_lt.1 $ imp_not_comm.1 (hlt _) $ nat.find_spec h) }
end
@[simp] lemma find_lt_iff (h : ∃ n : ℕ, p n) (n : ℕ) : nat.find h < n ↔ ∃ m < n, p m :=
⟨λ h2, ⟨nat.find h, h2, nat.find_spec h⟩, λ ⟨m, hmn, hm⟩, (nat.find_min' h hm).trans_lt hmn⟩
@[simp] lemma find_le_iff (h : ∃ n : ℕ, p n) (n : ℕ) : nat.find h ≤ n ↔ ∃ m ≤ n, p m :=
by simp only [exists_prop, ← lt_succ_iff, find_lt_iff]
@[simp] lemma le_find_iff (h : ∃ (n : ℕ), p n) (n : ℕ) : n ≤ nat.find h ↔ ∀ m < n, ¬ p m :=
by simp_rw [← not_lt, find_lt_iff, not_exists]
@[simp] lemma lt_find_iff (h : ∃ n : ℕ, p n) (n : ℕ) : n < nat.find h ↔ ∀ m ≤ n, ¬ p m :=
by simp only [← succ_le_iff, le_find_iff, succ_le_succ_iff]
@[simp] lemma find_eq_zero (h : ∃ n : ℕ, p n) : nat.find h = 0 ↔ p 0 :=
by simp [find_eq_iff]
@[simp] lemma find_pos (h : ∃ n : ℕ, p n) : 0 < nat.find h ↔ ¬ p 0 :=
by rw [pos_iff_ne_zero, ne, nat.find_eq_zero]
theorem find_mono (h : ∀ n, q n → p n) {hp : ∃ n, p n} {hq : ∃ n, q n} :
nat.find hp ≤ nat.find hq :=
nat.find_min' _ (h _ (nat.find_spec hq))
lemma find_le {h : ∃ n, p n} (hn : p n) : nat.find h ≤ n :=
(nat.find_le_iff _ _).2 ⟨n, le_rfl, hn⟩
lemma find_add {hₘ : ∃ m, p (m + n)} {hₙ : ∃ n, p n} (hn : n ≤ nat.find hₙ) :
nat.find hₘ + n = nat.find hₙ :=
begin
refine ((le_find_iff _ _).2 (λ m hm hpm, hm.not_le _)).antisymm _,
{ have hnm : n ≤ m := hn.trans (find_le hpm),
refine add_le_of_le_tsub_right_of_le hnm (find_le _),
rwa tsub_add_cancel_of_le hnm },
{ rw ←tsub_le_iff_right,
refine (le_find_iff _ _).2 (λ m hm hpm, hm.not_le _),
rw tsub_le_iff_right,
exact find_le hpm }
end
lemma find_comp_succ (h₁ : ∃ n, p n) (h₂ : ∃ n, p (n + 1)) (h0 : ¬ p 0) :
nat.find h₁ = nat.find h₂ + 1 :=
begin
refine (find_eq_iff _).2 ⟨nat.find_spec h₂, λ n hn, _⟩,
cases n with n,
exacts [h0, @nat.find_min (λ n, p (n + 1)) _ h₂ _ (succ_lt_succ_iff.1 hn)]
end
end find
/-! ### `find_greatest` -/
section find_greatest
/-- `find_greatest P b` is the largest `i ≤ bound` such that `P i` holds, or `0` if no such `i`
exists -/
protected def find_greatest (P : ℕ → Prop) [decidable_pred P] : ℕ → ℕ
| 0 := 0
| (n + 1) := if P (n + 1) then n + 1 else find_greatest n
variables {P Q : ℕ → Prop} [decidable_pred P] {b : ℕ}
@[simp] lemma find_greatest_zero : nat.find_greatest P 0 = 0 := rfl
lemma find_greatest_succ (n : ℕ) :
nat.find_greatest P (n + 1) = if P (n + 1) then n + 1 else nat.find_greatest P n := rfl
@[simp] lemma find_greatest_eq : ∀ {b}, P b → nat.find_greatest P b = b
| 0 h := rfl
| (n + 1) h := by simp [nat.find_greatest, h]
@[simp] lemma find_greatest_of_not (h : ¬ P (b + 1)) :
nat.find_greatest P (b + 1) = nat.find_greatest P b :=
by simp [nat.find_greatest, h]
lemma find_greatest_eq_iff :
nat.find_greatest P b = m ↔ m ≤ b ∧ (m ≠ 0 → P m) ∧ (∀ ⦃n⦄, m < n → n ≤ b → ¬P n) :=
begin
induction b with b ihb generalizing m,
{ rw [eq_comm, iff.comm],
simp only [nonpos_iff_eq_zero, ne.def, and_iff_left_iff_imp, find_greatest_zero],
rintro rfl,
exact ⟨λ h, (h rfl).elim, λ n hlt heq, (hlt.ne heq.symm).elim⟩ },
{ by_cases hb : P (b + 1),
{ rw [find_greatest_eq hb], split,
{ rintro rfl,
exact ⟨le_rfl, λ _, hb, λ n hlt hle, (hlt.not_le hle).elim⟩ },
{ rintros ⟨hle, h0, hm⟩,
rcases decidable.eq_or_lt_of_le hle with rfl|hlt,
exacts [rfl, (hm hlt le_rfl hb).elim] } },
{ rw [find_greatest_of_not hb, ihb],
split,
{ rintros ⟨hle, hP, hm⟩,
refine ⟨hle.trans b.le_succ, hP, λ n hlt hle, _⟩,
rcases decidable.eq_or_lt_of_le hle with rfl|hlt',
exacts [hb, hm hlt $ lt_succ_iff.1 hlt'] },
{ rintros ⟨hle, hP, hm⟩,
refine ⟨lt_succ_iff.1 (hle.lt_of_ne _), hP, λ n hlt hle, hm hlt (hle.trans b.le_succ)⟩,
rintro rfl,
exact hb (hP b.succ_ne_zero) } } }
end
lemma find_greatest_eq_zero_iff : nat.find_greatest P b = 0 ↔ ∀ ⦃n⦄, 0 < n → n ≤ b → ¬P n :=
by simp [find_greatest_eq_iff]
lemma find_greatest_spec (hmb : m ≤ b) (hm : P m) : P (nat.find_greatest P b) :=
begin
by_cases h : nat.find_greatest P b = 0,
{ cases m, { rwa h },
exact ((find_greatest_eq_zero_iff.1 h) m.zero_lt_succ hmb hm).elim },
{ exact (find_greatest_eq_iff.1 rfl).2.1 h }
end
lemma find_greatest_le (n : ℕ) : nat.find_greatest P n ≤ n := (find_greatest_eq_iff.1 rfl).1
lemma le_find_greatest (hmb : m ≤ b) (hm : P m) : m ≤ nat.find_greatest P b :=
le_of_not_lt $ λ hlt, (find_greatest_eq_iff.1 rfl).2.2 hlt hmb hm
lemma find_greatest_mono_right (P : ℕ → Prop) [decidable_pred P] : monotone (nat.find_greatest P) :=
begin
refine monotone_nat_of_le_succ (λ n, _),
rw [find_greatest_succ],
split_ifs,
{ exact (find_greatest_le n).trans (le_succ _) },
{ refl }
end
lemma find_greatest_mono_left [decidable_pred Q] (hPQ : P ≤ Q) :
nat.find_greatest P ≤ nat.find_greatest Q :=
begin
intro n,
induction n with n hn,
{ refl },
by_cases P (n + 1),
{ rw [find_greatest_eq h, find_greatest_eq (hPQ _ h)] },
{ rw find_greatest_of_not h,
exact hn.trans (nat.find_greatest_mono_right _ $ le_succ _) }
end
lemma find_greatest_mono {a b : ℕ} [decidable_pred Q] (hPQ : P ≤ Q) (hab : a ≤ b) :
nat.find_greatest P a ≤ nat.find_greatest Q b :=
(nat.find_greatest_mono_right _ hab).trans $ find_greatest_mono_left hPQ _
lemma find_greatest_is_greatest (hk : nat.find_greatest P b < k) (hkb : k ≤ b) : ¬ P k :=
(find_greatest_eq_iff.1 rfl).2.2 hk hkb
lemma find_greatest_of_ne_zero (h : nat.find_greatest P b = m) (h0 : m ≠ 0) : P m :=
(find_greatest_eq_iff.1 h).2.1 h0
end find_greatest
/-! ### `bodd_div2` and `bodd` -/
@[simp] theorem bodd_div2_eq (n : ℕ) : bodd_div2 n = (bodd n, div2 n) :=
by unfold bodd div2; cases bodd_div2 n; refl
@[simp] lemma bodd_bit0 (n) : bodd (bit0 n) = ff := bodd_bit ff n
@[simp] lemma bodd_bit1 (n) : bodd (bit1 n) = tt := bodd_bit tt n
@[simp] lemma div2_bit0 (n) : div2 (bit0 n) = n := div2_bit ff n
@[simp] lemma div2_bit1 (n) : div2 (bit1 n) = n := div2_bit tt n
/-! ### `bit0` and `bit1` -/
-- There is no need to prove `bit0_eq_zero : bit0 n = 0 ↔ n = 0`
-- as this is true for any `[semiring R] [no_zero_divisors R] [char_zero R]`
-- However the lemmas `bit0_eq_bit0`, `bit1_eq_bit1`, `bit1_eq_one`, `one_eq_bit1`
-- need `[ring R] [no_zero_divisors R] [char_zero R]` in general,
-- so we prove `ℕ` specialized versions here.
@[simp] lemma bit0_eq_bit0 {m n : ℕ} : bit0 m = bit0 n ↔ m = n :=
⟨nat.bit0_inj, λ h, by subst h⟩
@[simp] lemma bit1_eq_bit1 {m n : ℕ} : bit1 m = bit1 n ↔ m = n :=
⟨nat.bit1_inj, λ h, by subst h⟩
@[simp] lemma bit1_eq_one {n : ℕ} : bit1 n = 1 ↔ n = 0 :=
⟨@nat.bit1_inj n 0, λ h, by subst h⟩
@[simp] lemma one_eq_bit1 {n : ℕ} : 1 = bit1 n ↔ n = 0 :=
⟨λ h, (@nat.bit1_inj 0 n h).symm, λ h, by subst h⟩
theorem bit_add : ∀ (b : bool) (n m : ℕ), bit b (n + m) = bit ff n + bit b m
| tt := bit1_add
| ff := bit0_add
theorem bit_add' : ∀ (b : bool) (n m : ℕ), bit b (n + m) = bit b n + bit ff m
| tt := bit1_add'
| ff := bit0_add
protected theorem bit0_le {n m : ℕ} (h : n ≤ m) : bit0 n ≤ bit0 m :=
add_le_add h h
protected theorem bit1_le {n m : ℕ} (h : n ≤ m) : bit1 n ≤ bit1 m :=
succ_le_succ (add_le_add h h)
theorem bit_le : ∀ (b : bool) {n m : ℕ}, n ≤ m → bit b n ≤ bit b m
| tt n m h := nat.bit1_le h
| ff n m h := nat.bit0_le h
theorem bit_ne_zero (b) {n} (h : n ≠ 0) : bit b n ≠ 0 :=
by cases b; [exact nat.bit0_ne_zero h, exact nat.bit1_ne_zero _]
theorem bit0_le_bit : ∀ (b) {m n : ℕ}, m ≤ n → bit0 m ≤ bit b n
| tt m n h := le_of_lt $ nat.bit0_lt_bit1 h
| ff m n h := nat.bit0_le h
theorem bit_le_bit1 : ∀ (b) {m n : ℕ}, m ≤ n → bit b m ≤ bit1 n
| ff m n h := le_of_lt $ nat.bit0_lt_bit1 h
| tt m n h := nat.bit1_le h
theorem bit_lt_bit0 : ∀ (b) {n m : ℕ}, n < m → bit b n < bit0 m
| tt n m h := nat.bit1_lt_bit0 h
| ff n m h := nat.bit0_lt h
theorem bit_lt_bit (a b) {n m : ℕ} (h : n < m) : bit a n < bit b m :=
lt_of_lt_of_le (bit_lt_bit0 _ h) (bit0_le_bit _ le_rfl)
@[simp] lemma bit0_le_bit1_iff : bit0 k ≤ bit1 n ↔ k ≤ n :=
⟨λ h, by rwa [← nat.lt_succ_iff, n.bit1_eq_succ_bit0, ← n.bit0_succ_eq,
bit0_lt_bit0, nat.lt_succ_iff] at h, λ h, le_of_lt (nat.bit0_lt_bit1 h)⟩
@[simp] lemma bit0_lt_bit1_iff : bit0 k < bit1 n ↔ k ≤ n :=
⟨λ h, bit0_le_bit1_iff.1 (le_of_lt h), nat.bit0_lt_bit1⟩
@[simp] lemma bit1_le_bit0_iff : bit1 k ≤ bit0 n ↔ k < n :=
⟨λ h, by rwa [k.bit1_eq_succ_bit0, succ_le_iff, bit0_lt_bit0] at h,
λ h, le_of_lt (nat.bit1_lt_bit0 h)⟩
@[simp] lemma bit1_lt_bit0_iff : bit1 k < bit0 n ↔ k < n :=
⟨λ h, bit1_le_bit0_iff.1 (le_of_lt h), nat.bit1_lt_bit0⟩
@[simp] lemma one_le_bit0_iff : 1 ≤ bit0 n ↔ 0 < n :=
by { convert bit1_le_bit0_iff, refl, }
@[simp] lemma one_lt_bit0_iff : 1 < bit0 n ↔ 1 ≤ n :=
by { convert bit1_lt_bit0_iff, refl, }
@[simp] lemma bit_le_bit_iff : ∀ {b : bool}, bit b k ≤ bit b n ↔ k ≤ n
| ff := bit0_le_bit0
| tt := bit1_le_bit1
@[simp] lemma bit_lt_bit_iff : ∀ {b : bool}, bit b k < bit b n ↔ k < n
| ff := bit0_lt_bit0
| tt := bit1_lt_bit1
@[simp] lemma bit_le_bit1_iff : ∀ {b : bool}, bit b k ≤ bit1 n ↔ k ≤ n
| ff := bit0_le_bit1_iff
| tt := bit1_le_bit1
@[simp] lemma bit0_mod_two : bit0 n % 2 = 0 := by { rw nat.mod_two_of_bodd, simp }
@[simp] lemma bit1_mod_two : bit1 n % 2 = 1 := by { rw nat.mod_two_of_bodd, simp }
lemma pos_of_bit0_pos {n : ℕ} (h : 0 < bit0 n) : 0 < n :=
by { cases n, cases h, apply succ_pos, }
@[simp] lemma bit_cases_on_bit {C : ℕ → Sort u} (H : Π b n, C (bit b n)) (b : bool) (n : ℕ) :
bit_cases_on (bit b n) H = H b n :=
eq_of_heq $ (eq_rec_heq _ _).trans $ by rw [bodd_bit, div2_bit]
@[simp] lemma bit_cases_on_bit0 {C : ℕ → Sort u} (H : Π b n, C (bit b n)) (n : ℕ) :
bit_cases_on (bit0 n) H = H ff n :=
bit_cases_on_bit H ff n
@[simp] lemma bit_cases_on_bit1 {C : ℕ → Sort u} (H : Π b n, C (bit b n)) (n : ℕ) :
bit_cases_on (bit1 n) H = H tt n :=
bit_cases_on_bit H tt n
lemma bit_cases_on_injective {C : ℕ → Sort u} :
function.injective (λ H : Π b n, C (bit b n), λ n, bit_cases_on n H) :=
begin
intros H₁ H₂ h,
ext b n,
simpa only [bit_cases_on_bit] using congr_fun h (bit b n)
end
@[simp] lemma bit_cases_on_inj {C : ℕ → Sort u} (H₁ H₂ : Π b n, C (bit b n)) :
(λ n, bit_cases_on n H₁) = (λ n, bit_cases_on n H₂) ↔ H₁ = H₂ :=
bit_cases_on_injective.eq_iff
/-! ### decidability of predicates -/
instance decidable_ball_lt (n : nat) (P : Π k < n, Prop) :
∀ [H : ∀ n h, decidable (P n h)], decidable (∀ n h, P n h) :=
begin
induction n with n IH; intro; resetI,
{ exact is_true (λ n, dec_trivial) },
cases IH (λ k h, P k (lt_succ_of_lt h)) with h,
{ refine is_false (mt _ h), intros hn k h, apply hn },
by_cases p : P n (lt_succ_self n),
{ exact is_true (λ k h',
(le_of_lt_succ h').lt_or_eq_dec.elim (h _)
(λ e, match k, e, h' with _, rfl, h := p end)) },
{ exact is_false (mt (λ hn, hn _ _) p) }
end
instance decidable_forall_fin {n : ℕ} (P : fin n → Prop)
[H : decidable_pred P] : decidable (∀ i, P i) :=
decidable_of_iff (∀ k h, P ⟨k, h⟩) ⟨λ a ⟨k, h⟩, a k h, λ a k h, a ⟨k, h⟩⟩
instance decidable_ball_le (n : ℕ) (P : Π k ≤ n, Prop)
[H : ∀ n h, decidable (P n h)] : decidable (∀ n h, P n h) :=
decidable_of_iff (∀ k (h : k < succ n), P k (le_of_lt_succ h))
⟨λ a k h, a k (lt_succ_of_le h), λ a k h, a k _⟩
instance decidable_lo_hi (lo hi : ℕ) (P : ℕ → Prop) [H : decidable_pred P] :
decidable (∀x, lo ≤ x → x < hi → P x) :=
decidable_of_iff (∀ x < hi - lo, P (lo + x))
⟨λal x hl hh, by { have := al (x - lo) ((tsub_lt_tsub_iff_right hl).mpr hh),
rwa [add_tsub_cancel_of_le hl] at this, },
λal x h, al _ (nat.le_add_right _ _) (lt_tsub_iff_left.mp h)⟩
instance decidable_lo_hi_le (lo hi : ℕ) (P : ℕ → Prop) [H : decidable_pred P] :
decidable (∀x, lo ≤ x → x ≤ hi → P x) :=
decidable_of_iff (∀x, lo ≤ x → x < hi + 1 → P x) $
ball_congr $ λ x hl, imp_congr lt_succ_iff iff.rfl
instance decidable_exists_lt {P : ℕ → Prop} [h : decidable_pred P] :
decidable_pred (λ n, ∃ (m : ℕ), m < n ∧ P m)
| 0 := is_false (by simp)
| (n + 1) := decidable_of_decidable_of_iff (@or.decidable _ _ (decidable_exists_lt n) (h n))
(by simp only [lt_succ_iff_lt_or_eq, or_and_distrib_right, exists_or_distrib, exists_eq_left])
instance decidable_exists_le {P : ℕ → Prop} [h : decidable_pred P] :
decidable_pred (λ n, ∃ (m : ℕ), m ≤ n ∧ P m) :=
λ n, decidable_of_iff (∃ m, m < n + 1 ∧ P m) (exists_congr (λ x, and_congr_left' lt_succ_iff))
end nat
|
45a8ccb75346773922e5674644a885c839bb27d1
|
a9d0fb7b0e4f802bd3857b803e6c5c23d87fef91
|
/hott/types/nat/hott.hlean
|
9b4cbddb6ca6e81a645d7d0f5d6be4a52c6ed031
|
[
"Apache-2.0"
] |
permissive
|
soonhokong/lean-osx
|
4a954262c780e404c1369d6c06516161d07fcb40
|
3670278342d2f4faa49d95b46d86642d7875b47c
|
refs/heads/master
| 1,611,410,334,552
| 1,474,425,686,000
| 1,474,425,686,000
| 12,043,103
| 5
| 1
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 4,750
|
hlean
|
/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Floris van Doorn
Theorems about the natural numbers specific to HoTT
-/
import .order types.pointed
open is_trunc unit empty eq equiv algebra pointed
namespace nat
definition is_prop_le [instance] (n m : ℕ) : is_prop (n ≤ m) :=
begin
have lem : Π{n m : ℕ} (p : n ≤ m) (q : n = m), p = q ▸ le.refl n,
begin
intros, cases p,
{ have H' : q = idp, by apply is_set.elim,
cases H', reflexivity},
{ cases q, exfalso, apply not_succ_le_self a}
end,
apply is_prop.mk, intro H1 H2, induction H2,
{ apply lem},
{ cases H1,
{ exfalso, apply not_succ_le_self a},
{ exact ap le.step !v_0}},
end
definition is_prop_lt [instance] (n m : ℕ) : is_prop (n < m) := !is_prop_le
definition le_equiv_succ_le_succ (n m : ℕ) : (n ≤ m) ≃ (succ n ≤ succ m) :=
equiv_of_is_prop succ_le_succ le_of_succ_le_succ
definition le_succ_equiv_pred_le (n m : ℕ) : (n ≤ succ m) ≃ (pred n ≤ m) :=
equiv_of_is_prop pred_le_pred le_succ_of_pred_le
theorem lt_by_cases_lt {a b : ℕ} {P : Type} (H1 : a < b → P) (H2 : a = b → P)
(H3 : a > b → P) (H : a < b) : lt.by_cases H1 H2 H3 = H1 H :=
begin
unfold lt.by_cases, induction (lt.trichotomy a b) with H' H',
{ esimp, exact ap H1 !is_prop.elim},
{ exfalso, cases H' with H' H', apply lt.irrefl, exact H' ▸ H, exact lt.asymm H H'}
end
theorem lt_by_cases_eq {a b : ℕ} {P : Type} (H1 : a < b → P) (H2 : a = b → P)
(H3 : a > b → P) (H : a = b) : lt.by_cases H1 H2 H3 = H2 H :=
begin
unfold lt.by_cases, induction (lt.trichotomy a b) with H' H',
{ exfalso, apply lt.irrefl, exact H ▸ H'},
{ cases H' with H' H', esimp, exact ap H2 !is_prop.elim, exfalso, apply lt.irrefl, exact H ▸ H'}
end
theorem lt_by_cases_ge {a b : ℕ} {P : Type} (H1 : a < b → P) (H2 : a = b → P)
(H3 : a > b → P) (H : a > b) : lt.by_cases H1 H2 H3 = H3 H :=
begin
unfold lt.by_cases, induction (lt.trichotomy a b) with H' H',
{ exfalso, exact lt.asymm H H'},
{ cases H' with H' H', exfalso, apply lt.irrefl, exact H' ▸ H, esimp, exact ap H3 !is_prop.elim}
end
theorem lt_ge_by_cases_lt {n m : ℕ} {P : Type} (H1 : n < m → P) (H2 : n ≥ m → P)
(H : n < m) : lt_ge_by_cases H1 H2 = H1 H :=
by apply lt_by_cases_lt
theorem lt_ge_by_cases_ge {n m : ℕ} {P : Type} (H1 : n < m → P) (H2 : n ≥ m → P)
(H : n ≥ m) : lt_ge_by_cases H1 H2 = H2 H :=
begin
unfold [lt_ge_by_cases,lt.by_cases], induction (lt.trichotomy n m) with H' H',
{ exfalso, apply lt.irrefl, exact lt_of_le_of_lt H H'},
{ cases H' with H' H'; all_goals (esimp; apply ap H2 !is_prop.elim)}
end
theorem lt_ge_by_cases_le {n m : ℕ} {P : Type} {H1 : n ≤ m → P} {H2 : n ≥ m → P}
(H : n ≤ m) (Heq : Π(p : n = m), H1 (le_of_eq p) = H2 (le_of_eq p⁻¹))
: lt_ge_by_cases (λH', H1 (le_of_lt H')) H2 = H1 H :=
begin
unfold [lt_ge_by_cases,lt.by_cases], induction (lt.trichotomy n m) with H' H',
{ esimp, apply ap H1 !is_prop.elim},
{ cases H' with H' H',
{ esimp, induction H', esimp, symmetry,
exact ap H1 !is_prop.elim ⬝ Heq idp ⬝ ap H2 !is_prop.elim},
{ exfalso, apply lt.irrefl, apply lt_of_le_of_lt H H'}}
end
protected definition code [reducible] [unfold 1 2] : ℕ → ℕ → Type₀
| code 0 0 := unit
| code 0 (succ m) := empty
| code (succ n) 0 := empty
| code (succ n) (succ m) := code n m
protected definition refl : Πn, nat.code n n
| refl 0 := star
| refl (succ n) := refl n
protected definition encode [unfold 3] {n m : ℕ} (p : n = m) : nat.code n m :=
p ▸ nat.refl n
protected definition decode : Π(n m : ℕ), nat.code n m → n = m
| decode 0 0 := λc, idp
| decode 0 (succ l) := λc, empty.elim c _
| decode (succ k) 0 := λc, empty.elim c _
| decode (succ k) (succ l) := λc, ap succ (decode k l c)
definition nat_eq_equiv (n m : ℕ) : (n = m) ≃ nat.code n m :=
equiv.MK nat.encode
!nat.decode
begin
revert m, induction n, all_goals (intro m;induction m;all_goals intro c),
all_goals try contradiction,
induction c, reflexivity,
xrewrite [↑nat.decode,-tr_compose,v_0],
end
begin
intro p, induction p, esimp, induction n,
reflexivity,
rewrite [↑nat.decode,↑nat.refl,v_0]
end
definition pointed_nat [instance] [constructor] : pointed ℕ :=
pointed.mk 0
end nat
|
a586985b172056591eb19461aa02a572e1fd3874
|
bbecf0f1968d1fba4124103e4f6b55251d08e9c4
|
/src/algebra/group_power/order.lean
|
1f29a35d2683f6b14898c3e91a7705af5f84a507
|
[
"Apache-2.0"
] |
permissive
|
waynemunro/mathlib
|
e3fd4ff49f4cb43d4a8ded59d17be407bc5ee552
|
065a70810b5480d584033f7bbf8e0409480c2118
|
refs/heads/master
| 1,693,417,182,397
| 1,634,644,781,000
| 1,634,644,781,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 12,612
|
lean
|
/-
Copyright (c) 2015 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Robert Y. Lewis
-/
import algebra.order.ring
import algebra.group_power.basic
/-!
# Lemmas about the interaction of power operations with order
Note that some lemmas are in `algebra/group_power/lemmas.lean` as they import files which
depend on this file.
-/
variables {A G M R : Type*}
section preorder
variables [monoid M] [preorder M] [covariant_class M M (*) (≤)]
@[to_additive nsmul_le_nsmul_of_le_right, mono]
lemma pow_le_pow_of_le_left' [covariant_class M M (function.swap (*)) (≤)]
{a b : M} (hab : a ≤ b) : ∀ i : ℕ, a ^ i ≤ b ^ i
| 0 := by simp
| (k+1) := by { rw [pow_succ, pow_succ],
exact mul_le_mul' hab (pow_le_pow_of_le_left' k) }
attribute [mono] nsmul_le_nsmul_of_le_right
@[to_additive nsmul_nonneg]
theorem one_le_pow_of_one_le' {a : M} (H : 1 ≤ a) : ∀ n : ℕ, 1 ≤ a ^ n
| 0 := by simp
| (k + 1) := by { rw pow_succ, exact one_le_mul H (one_le_pow_of_one_le' k) }
@[to_additive nsmul_nonpos]
theorem pow_le_one' {a : M} (H : a ≤ 1) (n : ℕ) : a ^ n ≤ 1 :=
@one_le_pow_of_one_le' (order_dual M) _ _ _ _ H n
@[to_additive nsmul_le_nsmul]
theorem pow_le_pow' {a : M} {n m : ℕ} (ha : 1 ≤ a) (h : n ≤ m) : a ^ n ≤ a ^ m :=
let ⟨k, hk⟩ := nat.le.dest h in
calc a ^ n ≤ a ^ n * a ^ k : le_mul_of_one_le_right' (one_le_pow_of_one_le' ha _)
... = a ^ m : by rw [← hk, pow_add]
@[to_additive nsmul_le_nsmul_of_nonpos]
theorem pow_le_pow_of_le_one' {a : M} {n m : ℕ} (ha : a ≤ 1) (h : n ≤ m) : a ^ m ≤ a ^ n :=
@pow_le_pow' (order_dual M) _ _ _ _ _ _ ha h
@[to_additive nsmul_pos]
theorem one_lt_pow' {a : M} (ha : 1 < a) {k : ℕ} (hk : k ≠ 0) : 1 < a ^ k :=
begin
rcases nat.exists_eq_succ_of_ne_zero hk with ⟨l, rfl⟩,
clear hk,
induction l with l IH,
{ simpa using ha },
{ rw pow_succ,
exact one_lt_mul' ha IH }
end
@[to_additive nsmul_neg]
theorem pow_lt_one' {a : M} (ha : a < 1) {k : ℕ} (hk : k ≠ 0) : a ^ k < 1 :=
@one_lt_pow' (order_dual M) _ _ _ _ ha k hk
@[to_additive nsmul_lt_nsmul]
theorem pow_lt_pow'' [covariant_class M M (*) (<)] {a : M} {n m : ℕ} (ha : 1 < a) (h : n < m) :
a ^ n < a ^ m :=
begin
rcases nat.le.dest h with ⟨k, rfl⟩, clear h,
rw [pow_add, pow_succ', mul_assoc, ← pow_succ],
exact lt_mul_of_one_lt_right' _ (one_lt_pow' ha k.succ_ne_zero)
end
end preorder
section linear_order
variables [monoid M] [linear_order M] [covariant_class M M (*) (≤)]
@[to_additive nsmul_nonneg_iff]
lemma one_le_pow_iff {x : M} {n : ℕ} (hn : n ≠ 0) : 1 ≤ x ^ n ↔ 1 ≤ x :=
⟨le_imp_le_of_lt_imp_lt $ λ h, pow_lt_one' h hn, λ h, one_le_pow_of_one_le' h n⟩
@[to_additive nsmul_nonpos_iff]
lemma pow_le_one_iff {x : M} {n : ℕ} (hn : n ≠ 0) : x ^ n ≤ 1 ↔ x ≤ 1 :=
@one_le_pow_iff (order_dual M) _ _ _ _ _ hn
@[to_additive nsmul_pos_iff]
lemma one_lt_pow_iff {x : M} {n : ℕ} (hn : n ≠ 0) : 1 < x ^ n ↔ 1 < x :=
lt_iff_lt_of_le_iff_le (pow_le_one_iff hn)
@[to_additive nsmul_neg_iff]
lemma pow_lt_one_iff {x : M} {n : ℕ} (hn : n ≠ 0) : x ^ n < 1 ↔ x < 1 :=
lt_iff_lt_of_le_iff_le (one_le_pow_iff hn)
@[to_additive nsmul_eq_zero_iff]
lemma pow_eq_one_iff {x : M} {n : ℕ} (hn : n ≠ 0) : x ^ n = 1 ↔ x = 1 :=
by simp only [le_antisymm_iff, pow_le_one_iff hn, one_le_pow_iff hn]
end linear_order
section group
variables [group G] [preorder G] [covariant_class G G (*) (≤)]
@[to_additive gsmul_nonneg]
theorem one_le_gpow {x : G} (H : 1 ≤ x) {n : ℤ} (hn : 0 ≤ n) :
1 ≤ x ^ n :=
begin
lift n to ℕ using hn,
rw gpow_coe_nat,
apply one_le_pow_of_one_le' H,
end
end group
namespace canonically_ordered_comm_semiring
variables [canonically_ordered_comm_semiring R]
theorem pow_pos {a : R} (H : 0 < a) (n : ℕ) : 0 < a ^ n :=
pos_iff_ne_zero.2 $ pow_ne_zero _ H.ne'
end canonically_ordered_comm_semiring
section ordered_semiring
variable [ordered_semiring R]
@[simp] theorem pow_pos {a : R} (H : 0 < a) : ∀ (n : ℕ), 0 < a ^ n
| 0 := by { nontriviality, rw pow_zero, exact zero_lt_one }
| (n+1) := by { rw pow_succ, exact mul_pos H (pow_pos _) }
@[simp] theorem pow_nonneg {a : R} (H : 0 ≤ a) : ∀ (n : ℕ), 0 ≤ a ^ n
| 0 := by { rw pow_zero, exact zero_le_one}
| (n+1) := by { rw pow_succ, exact mul_nonneg H (pow_nonneg _) }
theorem pow_add_pow_le {x y : R} {n : ℕ} (hx : 0 ≤ x) (hy : 0 ≤ y) (hn : n ≠ 0) :
x ^ n + y ^ n ≤ (x + y) ^ n :=
begin
rcases nat.exists_eq_succ_of_ne_zero hn with ⟨k, rfl⟩,
induction k with k ih, { simp only [pow_one] },
let n := k.succ,
have h1 := add_nonneg (mul_nonneg hx (pow_nonneg hy n)) (mul_nonneg hy (pow_nonneg hx n)),
have h2 := add_nonneg hx hy,
calc x^n.succ + y^n.succ
≤ x*x^n + y*y^n + (x*y^n + y*x^n) :
by { rw [pow_succ _ n, pow_succ _ n], exact le_add_of_nonneg_right h1 }
... = (x+y) * (x^n + y^n) :
by rw [add_mul, mul_add, mul_add, add_comm (y*x^n), ← add_assoc,
← add_assoc, add_assoc (x*x^n) (x*y^n), add_comm (x*y^n) (y*y^n), ← add_assoc]
... ≤ (x+y)^n.succ :
by { rw [pow_succ _ n], exact mul_le_mul_of_nonneg_left (ih (nat.succ_ne_zero k)) h2 }
end
theorem pow_lt_pow_of_lt_left {x y : R} {n : ℕ} (Hxy : x < y) (Hxpos : 0 ≤ x) (Hnpos : 0 < n) :
x ^ n < y ^ n :=
begin
cases lt_or_eq_of_le Hxpos,
{ rw ←nat.sub_add_cancel Hnpos,
induction (n - 1), { simpa only [pow_one] },
rw [pow_add, pow_add, nat.succ_eq_add_one, pow_one, pow_one],
apply mul_lt_mul ih (le_of_lt Hxy) h (le_of_lt (pow_pos (lt_trans h Hxy) _)) },
{ rw [←h, zero_pow Hnpos], apply pow_pos (by rwa ←h at Hxy : 0 < y),}
end
lemma pow_lt_one {a : R} (h₀ : 0 ≤ a) (h₁ : a < 1) {n : ℕ} (hn : n ≠ 0) : a ^ n < 1 :=
(one_pow n).subst (pow_lt_pow_of_lt_left h₁ h₀ (nat.pos_of_ne_zero hn))
theorem strict_mono_on_pow {n : ℕ} (hn : 0 < n) :
strict_mono_on (λ x : R, x ^ n) (set.Ici 0) :=
λ x hx y hy h, pow_lt_pow_of_lt_left h hx hn
theorem one_le_pow_of_one_le {a : R} (H : 1 ≤ a) : ∀ (n : ℕ), 1 ≤ a ^ n
| 0 := by rw [pow_zero]
| (n+1) := by { rw pow_succ, simpa only [mul_one] using mul_le_mul H (one_le_pow_of_one_le n)
zero_le_one (le_trans zero_le_one H) }
lemma pow_mono {a : R} (h : 1 ≤ a) : monotone (λ n : ℕ, a ^ n) :=
monotone_nat_of_le_succ $ λ n,
by { rw pow_succ, exact le_mul_of_one_le_left (pow_nonneg (zero_le_one.trans h) _) h }
theorem pow_le_pow {a : R} {n m : ℕ} (ha : 1 ≤ a) (h : n ≤ m) : a ^ n ≤ a ^ m :=
pow_mono ha h
lemma strict_mono_pow {a : R} (h : 1 < a) : strict_mono (λ n : ℕ, a ^ n) :=
have 0 < a := zero_le_one.trans_lt h,
strict_mono_nat_of_lt_succ $ λ n, by simpa only [one_mul, pow_succ]
using mul_lt_mul h (le_refl (a ^ n)) (pow_pos this _) this.le
lemma pow_lt_pow {a : R} {n m : ℕ} (h : 1 < a) (h2 : n < m) : a ^ n < a ^ m :=
strict_mono_pow h h2
lemma pow_lt_pow_iff {a : R} {n m : ℕ} (h : 1 < a) : a ^ n < a ^ m ↔ n < m :=
(strict_mono_pow h).lt_iff_lt
@[mono] lemma pow_le_pow_of_le_left {a b : R} (ha : 0 ≤ a) (hab : a ≤ b) : ∀ i : ℕ, a^i ≤ b^i
| 0 := by simp
| (k+1) := by { rw [pow_succ, pow_succ],
exact mul_le_mul hab (pow_le_pow_of_le_left _) (pow_nonneg ha _) (le_trans ha hab) }
lemma one_lt_pow {a : R} (ha : 1 < a) : ∀ {n : ℕ}, n ≠ 0 → 1 < a ^ n
| 0 h := (h rfl).elim
| 1 h := (pow_one a).symm.subst ha
| (n + 2) h :=
begin
nontriviality R,
rw [←one_mul (1 : R), pow_succ],
exact mul_lt_mul ha (one_lt_pow (nat.succ_ne_zero _)).le zero_lt_one (zero_lt_one.trans ha).le,
end
lemma pow_le_one {a : R} : ∀ (n : ℕ) (h₀ : 0 ≤ a) (h₁ : a ≤ 1), a ^ n ≤ 1
| 0 h₀ h₁ := (pow_zero a).le
| (n + 1) h₀ h₁ := (pow_succ' a n).le.trans (mul_le_one (pow_le_one n h₀ h₁) h₀ h₁)
end ordered_semiring
section linear_ordered_semiring
variable [linear_ordered_semiring R]
lemma pow_le_one_iff_of_nonneg {a : R} (ha : 0 ≤ a) {n : ℕ} (hn : n ≠ 0) : a ^ n ≤ 1 ↔ a ≤ 1 :=
begin
refine ⟨_, pow_le_one n ha⟩,
rw [←not_lt, ←not_lt],
exact mt (λ h, one_lt_pow h hn),
end
lemma one_le_pow_iff_of_nonneg {a : R} (ha : 0 ≤ a) {n : ℕ} (hn : n ≠ 0) : 1 ≤ a ^ n ↔ 1 ≤ a :=
begin
refine ⟨_, λ h, one_le_pow_of_one_le h n⟩,
rw [←not_lt, ←not_lt],
exact mt (λ h, pow_lt_one ha h hn),
end
lemma one_lt_pow_iff_of_nonneg {a : R} (ha : 0 ≤ a) {n : ℕ} (hn : n ≠ 0) : 1 < a ^ n ↔ 1 < a :=
lt_iff_lt_of_le_iff_le (pow_le_one_iff_of_nonneg ha hn)
lemma pow_lt_one_iff_of_nonneg {a : R} (ha : 0 ≤ a) {n : ℕ} (hn : n ≠ 0) : a ^ n < 1 ↔ a < 1 :=
lt_iff_lt_of_le_iff_le (one_le_pow_iff_of_nonneg ha hn)
lemma sq_le_one_iff {a : R} (ha : 0 ≤ a) : a^2 ≤ 1 ↔ a ≤ 1 :=
pow_le_one_iff_of_nonneg ha (nat.succ_ne_zero _)
lemma sq_lt_one_iff {a : R} (ha : 0 ≤ a) : a^2 < 1 ↔ a < 1 :=
pow_lt_one_iff_of_nonneg ha (nat.succ_ne_zero _)
lemma one_le_sq_iff {a : R} (ha : 0 ≤ a) : 1 ≤ a^2 ↔ 1 ≤ a :=
one_le_pow_iff_of_nonneg ha (nat.succ_ne_zero _)
lemma one_lt_sq_iff {a : R} (ha : 0 ≤ a) : 1 < a^2 ↔ 1 < a :=
one_lt_pow_iff_of_nonneg ha (nat.succ_ne_zero _)
@[simp] theorem pow_left_inj {x y : R} {n : ℕ} (Hxpos : 0 ≤ x) (Hypos : 0 ≤ y) (Hnpos : 0 < n) :
x ^ n = y ^ n ↔ x = y :=
(@strict_mono_on_pow R _ _ Hnpos).inj_on.eq_iff Hxpos Hypos
lemma lt_of_pow_lt_pow {a b : R} (n : ℕ) (hb : 0 ≤ b) (h : a ^ n < b ^ n) : a < b :=
lt_of_not_ge $ λ hn, not_lt_of_ge (pow_le_pow_of_le_left hb hn _) h
lemma le_of_pow_le_pow {a b : R} (n : ℕ) (hb : 0 ≤ b) (hn : 0 < n) (h : a ^ n ≤ b ^ n) : a ≤ b :=
le_of_not_lt $ λ h1, not_le_of_lt (pow_lt_pow_of_lt_left h1 hb hn) h
@[simp] lemma sq_eq_sq {a b : R} (ha : 0 ≤ a) (hb : 0 ≤ b) : a ^ 2 = b ^ 2 ↔ a = b :=
pow_left_inj ha hb dec_trivial
end linear_ordered_semiring
section linear_ordered_ring
variable [linear_ordered_ring R]
lemma pow_abs (a : R) (n : ℕ) : |a| ^ n = |a ^ n| :=
((abs_hom.to_monoid_hom : R →* R).map_pow a n).symm
lemma abs_neg_one_pow (n : ℕ) : |(-1 : R) ^ n| = 1 :=
by rw [←pow_abs, abs_neg, abs_one, one_pow]
theorem pow_bit0_nonneg (a : R) (n : ℕ) : 0 ≤ a ^ bit0 n :=
by { rw pow_bit0, exact mul_self_nonneg _ }
theorem sq_nonneg (a : R) : 0 ≤ a ^ 2 :=
pow_bit0_nonneg a 1
alias sq_nonneg ← pow_two_nonneg
theorem pow_bit0_pos {a : R} (h : a ≠ 0) (n : ℕ) : 0 < a ^ bit0 n :=
(pow_bit0_nonneg a n).lt_of_ne (pow_ne_zero _ h).symm
theorem sq_pos_of_ne_zero (a : R) (h : a ≠ 0) : 0 < a ^ 2 :=
pow_bit0_pos h 1
alias sq_pos_of_ne_zero ← pow_two_pos_of_ne_zero
variables {x y : R}
theorem sq_abs (x : R) : |x| ^ 2 = x ^ 2 :=
by simpa only [sq] using abs_mul_abs_self x
theorem abs_sq (x : R) : |x ^ 2| = x ^ 2 :=
by simpa only [sq] using abs_mul_self x
theorem sq_lt_sq (h : |x| < y) : x ^ 2 < y ^ 2 :=
by simpa only [sq_abs] using pow_lt_pow_of_lt_left h (abs_nonneg x) (1:ℕ).succ_pos
theorem sq_lt_sq' (h1 : -y < x) (h2 : x < y) : x ^ 2 < y ^ 2 :=
sq_lt_sq (abs_lt.mpr ⟨h1, h2⟩)
theorem sq_le_sq (h : |x| ≤ |y|) : x ^ 2 ≤ y ^ 2 :=
by simpa only [sq_abs] using pow_le_pow_of_le_left (abs_nonneg x) h 2
theorem sq_le_sq' (h1 : -y ≤ x) (h2 : x ≤ y) : x ^ 2 ≤ y ^ 2 :=
sq_le_sq (le_trans (abs_le.mpr ⟨h1, h2⟩) (le_abs_self _))
theorem abs_lt_abs_of_sq_lt_sq (h : x^2 < y^2) : |x| < |y| :=
lt_of_pow_lt_pow 2 (abs_nonneg y) $ by rwa [← sq_abs x, ← sq_abs y] at h
theorem abs_lt_of_sq_lt_sq (h : x^2 < y^2) (hy : 0 ≤ y) : |x| < y :=
begin
rw [← abs_of_nonneg hy],
exact abs_lt_abs_of_sq_lt_sq h,
end
theorem abs_lt_of_sq_lt_sq' (h : x^2 < y^2) (hy : 0 ≤ y) : -y < x ∧ x < y :=
abs_lt.mp $ abs_lt_of_sq_lt_sq h hy
theorem abs_le_abs_of_sq_le_sq (h : x^2 ≤ y^2) : |x| ≤ |y| :=
le_of_pow_le_pow 2 (abs_nonneg y) (1:ℕ).succ_pos $ by rwa [← sq_abs x, ← sq_abs y] at h
theorem abs_le_of_sq_le_sq (h : x^2 ≤ y^2) (hy : 0 ≤ y) : |x| ≤ y :=
begin
rw [← abs_of_nonneg hy],
exact abs_le_abs_of_sq_le_sq h,
end
theorem abs_le_of_sq_le_sq' (h : x^2 ≤ y^2) (hy : 0 ≤ y) : -y ≤ x ∧ x ≤ y :=
abs_le.mp $ abs_le_of_sq_le_sq h hy
end linear_ordered_ring
section linear_ordered_comm_ring
variables [linear_ordered_comm_ring R]
/-- Arithmetic mean-geometric mean (AM-GM) inequality for linearly ordered commutative rings. -/
lemma two_mul_le_add_sq (a b : R) : 2 * a * b ≤ a ^ 2 + b ^ 2 :=
sub_nonneg.mp ((sub_add_eq_add_sub _ _ _).subst ((sub_sq a b).subst (sq_nonneg _)))
alias two_mul_le_add_sq ← two_mul_le_add_pow_two
end linear_ordered_comm_ring
|
a9cb14ba7d3886c5f2769687221053f3477e25cc
|
bbecf0f1968d1fba4124103e4f6b55251d08e9c4
|
/src/ring_theory/adjoin_root.lean
|
7b7093055331774d4e2feeba6d9c616dcc3b9906
|
[
"Apache-2.0"
] |
permissive
|
waynemunro/mathlib
|
e3fd4ff49f4cb43d4a8ded59d17be407bc5ee552
|
065a70810b5480d584033f7bbf8e0409480c2118
|
refs/heads/master
| 1,693,417,182,397
| 1,634,644,781,000
| 1,634,644,781,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 12,120
|
lean
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Chris Hughes
-/
import data.polynomial.field_division
import linear_algebra.finite_dimensional
import ring_theory.adjoin.basic
import ring_theory.power_basis
import ring_theory.principal_ideal_domain
/-!
# Adjoining roots of polynomials
This file defines the commutative ring `adjoin_root f`, the ring R[X]/(f) obtained from a
commutative ring `R` and a polynomial `f : R[X]`. If furthermore `R` is a field and `f` is
irreducible, the field structure on `adjoin_root f` is constructed.
## Main definitions and results
The main definitions are in the `adjoin_root` namespace.
* `mk f : polynomial R →+* adjoin_root f`, the natural ring homomorphism.
* `of f : R →+* adjoin_root f`, the natural ring homomorphism.
* `root f : adjoin_root f`, the image of X in R[X]/(f).
* `lift (i : R →+* S) (x : S) (h : f.eval₂ i x = 0) : (adjoin_root f) →+* S`, the ring
homomorphism from R[X]/(f) to S extending `i : R →+* S` and sending `X` to `x`.
* `lift_hom (x : S) (hfx : aeval x f = 0) : adjoin_root f →ₐ[R] S`, the algebra
homomorphism from R[X]/(f) to S extending `algebra_map R S` and sending `X` to `x`
* `equiv : (adjoin_root f →ₐ[F] E) ≃ {x // x ∈ (f.map (algebra_map F E)).roots}` a
bijection between algebra homomorphisms from `adjoin_root` and roots of `f` in `S`
-/
noncomputable theory
open_locale classical
open_locale big_operators
universes u v w
variables {R : Type u} {S : Type v} {K : Type w}
open polynomial ideal
/-- Adjoin a root of a polynomial `f` to a commutative ring `R`. We define the new ring
as the quotient of `polynomial R` by the principal ideal generated by `f`. -/
def adjoin_root [comm_ring R] (f : polynomial R) : Type u :=
ideal.quotient (span {f} : ideal (polynomial R))
namespace adjoin_root
section comm_ring
variables [comm_ring R] (f : polynomial R)
instance : comm_ring (adjoin_root f) := ideal.quotient.comm_ring _
instance : inhabited (adjoin_root f) := ⟨0⟩
instance : decidable_eq (adjoin_root f) := classical.dec_eq _
/-- Ring homomorphism from `R[x]` to `adjoin_root f` sending `X` to the `root`. -/
def mk : polynomial R →+* adjoin_root f := ideal.quotient.mk _
@[elab_as_eliminator]
theorem induction_on {C : adjoin_root f → Prop} (x : adjoin_root f)
(ih : ∀ p : polynomial R, C (mk f p)) : C x :=
quotient.induction_on' x ih
/-- Embedding of the original ring `R` into `adjoin_root f`. -/
def of : R →+* adjoin_root f := (mk f).comp C
instance : algebra R (adjoin_root f) := (of f).to_algebra
@[simp] lemma algebra_map_eq : algebra_map R (adjoin_root f) = of f := rfl
/-- The adjoined root. -/
def root : adjoin_root f := mk f X
variables {f}
instance adjoin_root.has_coe_t : has_coe_t R (adjoin_root f) := ⟨of f⟩
@[simp] lemma mk_self : mk f f = 0 :=
quotient.sound' (mem_span_singleton.2 $ by simp)
@[simp] lemma mk_C (x : R) : mk f (C x) = x := rfl
@[simp] lemma mk_X : mk f X = root f := rfl
@[simp] lemma aeval_eq (p : polynomial R) : aeval (root f) p = mk f p :=
polynomial.induction_on p (λ x, by { rw aeval_C, refl })
(λ p q ihp ihq, by rw [alg_hom.map_add, ring_hom.map_add, ihp, ihq])
(λ n x ih, by { rw [alg_hom.map_mul, aeval_C, alg_hom.map_pow, aeval_X,
ring_hom.map_mul, mk_C, ring_hom.map_pow, mk_X], refl })
theorem adjoin_root_eq_top : algebra.adjoin R ({root f} : set (adjoin_root f)) = ⊤ :=
algebra.eq_top_iff.2 $ λ x, induction_on f x $ λ p,
(algebra.adjoin_singleton_eq_range_aeval R (root f)).symm ▸ ⟨p, aeval_eq p⟩
@[simp] lemma eval₂_root (f : polynomial R) : f.eval₂ (of f) (root f) = 0 :=
by rw [← algebra_map_eq, ← aeval_def, aeval_eq, mk_self]
lemma is_root_root (f : polynomial R) : is_root (f.map (of f)) (root f) :=
by rw [is_root, eval_map, eval₂_root]
lemma is_algebraic_root (hf : f ≠ 0) : is_algebraic R (root f) :=
⟨f, hf, eval₂_root f⟩
variables [comm_ring S]
/-- Lift a ring homomorphism `i : R →+* S` to `adjoin_root f →+* S`. -/
def lift (i : R →+* S) (x : S) (h : f.eval₂ i x = 0) : (adjoin_root f) →+* S :=
begin
apply ideal.quotient.lift _ (eval₂_ring_hom i x),
intros g H,
rcases mem_span_singleton.1 H with ⟨y, hy⟩,
rw [hy, ring_hom.map_mul, coe_eval₂_ring_hom, h, zero_mul]
end
variables {i : R →+* S} {a : S} (h : f.eval₂ i a = 0)
@[simp] lemma lift_mk (g : polynomial R) : lift i a h (mk f g) = g.eval₂ i a :=
ideal.quotient.lift_mk _ _ _
@[simp] lemma lift_root : lift i a h (root f) = a := by rw [root, lift_mk, eval₂_X]
@[simp] lemma lift_of {x : R} : lift i a h x = i x :=
by rw [← mk_C x, lift_mk, eval₂_C]
@[simp] lemma lift_comp_of : (lift i a h).comp (of f) = i :=
ring_hom.ext $ λ _, @lift_of _ _ _ _ _ _ _ h _
variables (f) [algebra R S]
/-- Produce an algebra homomorphism `adjoin_root f →ₐ[R] S` sending `root f` to
a root of `f` in `S`. -/
def lift_hom (x : S) (hfx : aeval x f = 0) : adjoin_root f →ₐ[R] S :=
{ commutes' := λ r, show lift _ _ hfx r = _, from lift_of hfx,
.. lift (algebra_map R S) x hfx }
@[simp] lemma coe_lift_hom (x : S) (hfx : aeval x f = 0) :
(lift_hom f x hfx : adjoin_root f →+* S) = lift (algebra_map R S) x hfx := rfl
@[simp] lemma aeval_alg_hom_eq_zero (ϕ : adjoin_root f →ₐ[R] S) : aeval (ϕ (root f)) f = 0 :=
begin
have h : ϕ.to_ring_hom.comp (of f) = algebra_map R S := ring_hom.ext_iff.mpr (ϕ.commutes),
rw [aeval_def, ←h, ←ring_hom.map_zero ϕ.to_ring_hom, ←eval₂_root f, hom_eval₂],
refl,
end
@[simp] lemma lift_hom_eq_alg_hom (f : polynomial R) (ϕ : adjoin_root f →ₐ[R] S) :
lift_hom f (ϕ (root f)) (aeval_alg_hom_eq_zero f ϕ) = ϕ :=
begin
suffices : ϕ.equalizer (lift_hom f (ϕ (root f)) (aeval_alg_hom_eq_zero f ϕ)) = ⊤,
{ exact (alg_hom.ext (λ x, (set_like.ext_iff.mp (this) x).mpr algebra.mem_top)).symm },
rw [eq_top_iff, ←adjoin_root_eq_top, algebra.adjoin_le_iff, set.singleton_subset_iff],
exact (@lift_root _ _ _ _ _ _ _ (aeval_alg_hom_eq_zero f ϕ)).symm,
end
variables (hfx : aeval a f = 0)
@[simp] lemma lift_hom_mk {g : polynomial R} : lift_hom f a hfx (mk f g) = aeval a g :=
lift_mk hfx g
@[simp] lemma lift_hom_root : lift_hom f a hfx (root f) = a :=
lift_root hfx
@[simp] lemma lift_hom_of {x : R} : lift_hom f a hfx (of f x) = algebra_map _ _ x :=
lift_of hfx
end comm_ring
section irreducible
variables [field K] {f : polynomial K} [irreducible f]
instance is_maximal_span : is_maximal (span {f} : ideal (polynomial K)) :=
principal_ideal_ring.is_maximal_of_irreducible ‹irreducible f›
noncomputable instance field : field (adjoin_root f) :=
{ ..adjoin_root.comm_ring f,
..ideal.quotient.field (span {f} : ideal (polynomial K)) }
lemma coe_injective : function.injective (coe : K → adjoin_root f) :=
(of f).injective
variable (f)
lemma mul_div_root_cancel :
((X - C (root f)) * (f.map (of f) / (X - C (root f))) : polynomial (adjoin_root f)) =
f.map (of f) :=
mul_div_eq_iff_is_root.2 $ is_root_root _
end irreducible
section power_basis
variables [field K] {f : polynomial K}
lemma is_integral_root (hf : f ≠ 0) : is_integral K (root f) :=
(is_algebraic_iff_is_integral _).mp (is_algebraic_root hf)
lemma minpoly_root (hf : f ≠ 0) : minpoly K (root f) = f * C (f.leading_coeff⁻¹) :=
begin
have f'_monic : monic _ := monic_mul_leading_coeff_inv hf,
refine (minpoly.unique K _ f'_monic _ _).symm,
{ rw [alg_hom.map_mul, aeval_eq, mk_self, zero_mul] },
intros q q_monic q_aeval,
have commutes : (lift (algebra_map K (adjoin_root f)) (root f) q_aeval).comp (mk q) = mk f,
{ ext,
{ simp only [ring_hom.comp_apply, mk_C, lift_of], refl },
{ simp only [ring_hom.comp_apply, mk_X, lift_root] } },
rw [degree_eq_nat_degree f'_monic.ne_zero, degree_eq_nat_degree q_monic.ne_zero,
with_bot.coe_le_coe, nat_degree_mul hf, nat_degree_C, add_zero],
apply nat_degree_le_of_dvd,
{ have : mk f q = 0, by rw [←commutes, ring_hom.comp_apply, mk_self, ring_hom.map_zero],
rwa [←ideal.mem_span_singleton, ←ideal.quotient.eq_zero_iff_mem] },
{ exact q_monic.ne_zero },
{ rwa [ne.def, C_eq_zero, inv_eq_zero, leading_coeff_eq_zero] },
end
/-- The elements `1, root f, ..., root f ^ (d - 1)` form a basis for `adjoin_root f`,
where `f` is an irreducible polynomial over a field of degree `d`. -/
def power_basis_aux (hf : f ≠ 0) : basis (fin f.nat_degree) K (adjoin_root f) :=
begin
set f' := f * C (f.leading_coeff⁻¹) with f'_def,
have deg_f' : f'.nat_degree = f.nat_degree,
{ rw [nat_degree_mul hf, nat_degree_C, add_zero],
{ rwa [ne.def, C_eq_zero, inv_eq_zero, leading_coeff_eq_zero] } },
have minpoly_eq : minpoly K (root f) = f' := minpoly_root hf,
apply @basis.mk _ _ _ (λ (i : fin f.nat_degree), (root f ^ i.val)),
{ rw [← deg_f', ← minpoly_eq],
exact (is_integral_root hf).linear_independent_pow },
{ rw _root_.eq_top_iff,
rintros y -,
rw [← deg_f', ← minpoly_eq],
apply (is_integral_root hf).mem_span_pow,
obtain ⟨g⟩ := y,
use g,
rw aeval_eq,
refl }
end
/-- The power basis `1, root f, ..., root f ^ (d - 1)` for `adjoin_root f`,
where `f` is an irreducible polynomial over a field of degree `d`. -/
@[simps] def power_basis (hf : f ≠ 0) :
power_basis K (adjoin_root f) :=
{ gen := root f,
dim := f.nat_degree,
basis := power_basis_aux hf,
basis_eq_pow := basis.mk_apply _ _ }
lemma minpoly_power_basis_gen (hf : f ≠ 0) :
minpoly K (power_basis hf).gen = f * C (f.leading_coeff⁻¹) :=
by rw [power_basis_gen, minpoly_root hf]
lemma minpoly_power_basis_gen_of_monic (hf : f.monic) (hf' : f ≠ 0 := hf.ne_zero) :
minpoly K (power_basis hf').gen = f :=
by rw [minpoly_power_basis_gen hf', hf.leading_coeff, inv_one, C.map_one, mul_one]
end power_basis
section equiv
section integral_domain
variables [comm_ring R] [integral_domain R] [comm_ring S] [integral_domain S] [algebra R S]
variables (g : polynomial R) (pb : _root_.power_basis R S)
/-- If `S` is an extension of `R` with power basis `pb` and `g` is a monic polynomial over `R`
such that `pb.gen` has a minimal polynomial `g`, then `S` is isomorphic to `adjoin_root g`.
Compare `power_basis.equiv_of_root`, which would require
`h₂ : aeval pb.gen (minpoly R (root g)) = 0`; that minimal polynomial is not
guaranteed to be identical to `g`. -/
@[simps {fully_applied := ff}]
def equiv' (h₁ : aeval (root g) (minpoly R pb.gen) = 0) (h₂ : aeval pb.gen g = 0) :
adjoin_root g ≃ₐ[R] S :=
{ to_fun := adjoin_root.lift_hom g pb.gen h₂,
inv_fun := pb.lift (root g) h₁,
left_inv := λ x, induction_on g x $ λ f, by rw [lift_hom_mk, pb.lift_aeval, aeval_eq],
right_inv := λ x, begin
obtain ⟨f, hf, rfl⟩ := pb.exists_eq_aeval x,
rw [pb.lift_aeval, aeval_eq, lift_hom_mk]
end,
.. adjoin_root.lift_hom g pb.gen h₂ }
@[simp] lemma equiv'_to_alg_hom
(h₁ : aeval (root g) (minpoly R pb.gen) = 0) (h₂ : aeval pb.gen g = 0) :
(equiv' g pb h₁ h₂).to_alg_hom = adjoin_root.lift_hom g pb.gen h₂ :=
rfl
@[simp] lemma equiv'_symm_to_alg_hom
(h₁ : aeval (root g) (minpoly R pb.gen) = 0) (h₂ : aeval pb.gen g = 0) :
(equiv' g pb h₁ h₂).symm.to_alg_hom = pb.lift (root g) h₁ :=
rfl
end integral_domain
section field
variables (K) (L F : Type*) [field F] [field K] [field L] [algebra F K] [algebra F L]
variables (pb : _root_.power_basis F K)
/-- If `L` is a field extension of `F` and `f` is a polynomial over `F` then the set
of maps from `F[x]/(f)` into `L` is in bijection with the set of roots of `f` in `L`. -/
def equiv (f : polynomial F) (hf : f ≠ 0) :
(adjoin_root f →ₐ[F] L) ≃ {x // x ∈ (f.map (algebra_map F L)).roots} :=
(power_basis hf).lift_equiv'.trans ((equiv.refl _).subtype_equiv (λ x,
begin
rw [power_basis_gen, minpoly_root hf, polynomial.map_mul, roots_mul,
polynomial.map_C, roots_C, add_zero, equiv.refl_apply],
{ rw ← polynomial.map_mul, exact map_monic_ne_zero (monic_mul_leading_coeff_inv hf) }
end))
end field
end equiv
end adjoin_root
|
d7063dcbf947a754c851519fda27b09a902687ae
|
80cc5bf14c8ea85ff340d1d747a127dcadeb966f
|
/src/data/nat/basic.lean
|
fc1b65a7e7a96c56cef9bb036ce2ad4eaf0058a3
|
[
"Apache-2.0"
] |
permissive
|
lacker/mathlib
|
f2439c743c4f8eb413ec589430c82d0f73b2d539
|
ddf7563ac69d42cfa4a1bfe41db1fed521bd795f
|
refs/heads/master
| 1,671,948,326,773
| 1,601,479,268,000
| 1,601,479,268,000
| 298,686,743
| 0
| 0
|
Apache-2.0
| 1,601,070,794,000
| 1,601,070,794,000
| null |
UTF-8
|
Lean
| false
| false
| 60,325
|
lean
|
/-
Copyright (c) 2014 Floris van Doorn (c) 2016 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn, Leonardo de Moura, Jeremy Avigad, Mario Carneiro
-/
import algebra.group_power.basic
import algebra.order_functions
/-!
# Basic operations on the natural numbers
This file contains:
- instances on the natural numbers
- some basic lemmas about natural numbers
- extra recursors:
* `le_rec_on`, `le_induction`: recursion and induction principles starting at non-zero numbers
* `decreasing_induction`: recursion growing downwards
* `strong_rec'`: recursion based on strong inequalities
- decidability instances on predicates about the natural numbers
-/
universes u v
/-! ### instances -/
instance : nontrivial ℕ :=
⟨⟨0, 1, nat.zero_ne_one⟩⟩
instance : comm_semiring nat :=
{ add := nat.add,
add_assoc := nat.add_assoc,
zero := nat.zero,
zero_add := nat.zero_add,
add_zero := nat.add_zero,
add_comm := nat.add_comm,
mul := nat.mul,
mul_assoc := nat.mul_assoc,
one := nat.succ nat.zero,
one_mul := nat.one_mul,
mul_one := nat.mul_one,
left_distrib := nat.left_distrib,
right_distrib := nat.right_distrib,
zero_mul := nat.zero_mul,
mul_zero := nat.mul_zero,
mul_comm := nat.mul_comm }
instance : decidable_linear_ordered_semiring nat :=
{ add_left_cancel := @nat.add_left_cancel,
add_right_cancel := @nat.add_right_cancel,
lt := nat.lt,
add_le_add_left := @nat.add_le_add_left,
le_of_add_le_add_left := @nat.le_of_add_le_add_left,
zero_lt_one := nat.zero_lt_succ 0,
mul_lt_mul_of_pos_left := @nat.mul_lt_mul_of_pos_left,
mul_lt_mul_of_pos_right := @nat.mul_lt_mul_of_pos_right,
decidable_eq := nat.decidable_eq,
..nat.comm_semiring, ..nat.decidable_linear_order }
-- all the fields are already included in the decidable_linear_ordered_semiring instance
instance : decidable_linear_ordered_cancel_add_comm_monoid ℕ :=
{ add_left_cancel := @nat.add_left_cancel,
..nat.decidable_linear_ordered_semiring }
/-! Extra instances to short-circuit type class resolution -/
instance : add_comm_monoid nat := by apply_instance
instance : add_monoid nat := by apply_instance
instance : monoid nat := by apply_instance
instance : comm_monoid nat := by apply_instance
instance : comm_semigroup nat := by apply_instance
instance : semigroup nat := by apply_instance
instance : add_comm_semigroup nat := by apply_instance
instance : add_semigroup nat := by apply_instance
instance : distrib nat := by apply_instance
instance : semiring nat := by apply_instance
instance : ordered_semiring nat := by apply_instance
instance : canonically_ordered_comm_semiring ℕ :=
{ le_iff_exists_add := assume a b,
⟨assume h, let ⟨c, hc⟩ := nat.le.dest h in ⟨c, hc.symm⟩,
assume ⟨c, hc⟩, hc.symm ▸ nat.le_add_right _ _⟩,
eq_zero_or_eq_zero_of_mul_eq_zero := assume a b, nat.eq_zero_of_mul_eq_zero,
bot := 0,
bot_le := nat.zero_le,
.. nat.nontrivial,
.. (infer_instance : ordered_add_comm_monoid ℕ),
.. (infer_instance : linear_ordered_semiring ℕ),
.. (infer_instance : comm_semiring ℕ) }
instance nat.subtype.semilattice_sup_bot (s : set ℕ) [decidable_pred s] [h : nonempty s] :
semilattice_sup_bot s :=
{ bot := ⟨nat.find (nonempty_subtype.1 h), nat.find_spec (nonempty_subtype.1 h)⟩,
bot_le := λ x, nat.find_min' _ x.2,
..subtype.linear_order s,
..lattice_of_decidable_linear_order }
theorem nat.eq_of_mul_eq_mul_right {n m k : ℕ} (Hm : 0 < m) (H : n * m = k * m) : n = k :=
by rw [mul_comm n m, mul_comm k m] at H; exact nat.eq_of_mul_eq_mul_left Hm H
instance nat.comm_cancel_monoid_with_zero : comm_cancel_monoid_with_zero ℕ :=
{ mul_left_cancel_of_ne_zero := λ _ _ _ h1 h2, nat.eq_of_mul_eq_mul_left (nat.pos_of_ne_zero h1) h2,
mul_right_cancel_of_ne_zero := λ _ _ _ h1 h2, nat.eq_of_mul_eq_mul_right (nat.pos_of_ne_zero h1) h2,
.. (infer_instance : comm_monoid_with_zero ℕ) }
/-!
Inject some simple facts into the type class system.
This `fact` should not be confused with the factorial function `nat.fact`!
-/
section facts
instance succ_pos'' (n : ℕ) : fact (0 < n.succ) := n.succ_pos
instance pos_of_one_lt (n : ℕ) [h : fact (1 < n)] : fact (0 < n) :=
lt_trans zero_lt_one h
end facts
namespace nat
variables {m n k : ℕ}
/-!
### Recursion and `set.range`
-/
section set
open set
theorem zero_union_range_succ : {0} ∪ range succ = univ :=
by { ext n, cases n; simp }
variables {α : Type*}
theorem range_of_succ (f : ℕ → α) : {f 0} ∪ range (f ∘ succ) = range f :=
by rw [← image_singleton, range_comp, ← image_union, zero_union_range_succ, image_univ]
theorem range_rec {α : Type*} (x : α) (f : ℕ → α → α) :
(set.range (λ n, nat.rec x f n) : set α) =
{x} ∪ set.range (λ n, nat.rec (f 0 x) (f ∘ succ) n) :=
begin
convert (range_of_succ _).symm,
ext n,
induction n with n ihn,
{ refl },
{ dsimp at ihn ⊢,
rw ihn }
end
theorem range_cases_on {α : Type*} (x : α) (f : ℕ → α) :
(set.range (λ n, nat.cases_on n x f) : set α) = {x} ∪ set.range f :=
(range_of_succ _).symm
end set
/-! ### The units of the natural numbers as a `monoid` and `add_monoid` -/
theorem units_eq_one (u : units ℕ) : u = 1 :=
units.ext $ nat.eq_one_of_dvd_one ⟨u.inv, u.val_inv.symm⟩
theorem add_units_eq_zero (u : add_units ℕ) : u = 0 :=
add_units.ext $ (nat.eq_zero_of_add_eq_zero u.val_neg).1
@[simp] protected theorem is_unit_iff {n : ℕ} : is_unit n ↔ n = 1 :=
iff.intro
(assume ⟨u, hu⟩, match n, u, hu, nat.units_eq_one u with _, _, rfl, rfl := rfl end)
(assume h, h.symm ▸ ⟨1, rfl⟩)
/-! ### Equalities and inequalities involving zero and one -/
theorem pos_iff_ne_zero : 0 < n ↔ n ≠ 0 :=
⟨ne_of_gt, nat.pos_of_ne_zero⟩
lemma one_lt_iff_ne_zero_and_ne_one : ∀ {n : ℕ}, 1 < n ↔ n ≠ 0 ∧ n ≠ 1
| 0 := dec_trivial
| 1 := dec_trivial
| (n+2) := dec_trivial
protected theorem mul_ne_zero {n m : ℕ} (n0 : n ≠ 0) (m0 : m ≠ 0) : n * m ≠ 0
| nm := (eq_zero_of_mul_eq_zero nm).elim n0 m0
@[simp] protected theorem mul_eq_zero {a b : ℕ} : a * b = 0 ↔ a = 0 ∨ b = 0 :=
iff.intro eq_zero_of_mul_eq_zero (by simp [or_imp_distrib] {contextual := tt})
@[simp] protected theorem zero_eq_mul {a b : ℕ} : 0 = a * b ↔ a = 0 ∨ b = 0 :=
by rw [eq_comm, nat.mul_eq_zero]
lemma eq_zero_of_double_le {a : ℕ} (h : 2 * a ≤ a) : a = 0 :=
nat.eq_zero_of_le_zero $
by rwa [two_mul, nat.add_le_to_le_sub, nat.sub_self] at h; refl
lemma eq_zero_of_mul_le {a b : ℕ} (hb : 2 ≤ b) (h : b * a ≤ a) : a = 0 :=
eq_zero_of_double_le $ le_trans (nat.mul_le_mul_right _ hb) h
theorem le_zero_iff {i : ℕ} : i ≤ 0 ↔ i = 0 :=
⟨nat.eq_zero_of_le_zero, assume h, h ▸ le_refl i⟩
lemma zero_max {m : nat} : max 0 m = m :=
max_eq_right (zero_le _)
lemma one_le_of_lt {n m : ℕ} (h : n < m) : 1 ≤ m :=
lt_of_le_of_lt (nat.zero_le _) h
/-! ### `succ` -/
theorem eq_of_lt_succ_of_not_lt {a b : ℕ} (h1 : a < b + 1) (h2 : ¬ a < b) : a = b :=
have h3 : a ≤ b, from le_of_lt_succ h1,
or.elim (eq_or_lt_of_not_lt h2) (λ h, h) (λ h, absurd h (not_lt_of_ge h3))
theorem one_add (n : ℕ) : 1 + n = succ n := by simp [add_comm]
@[simp] lemma succ_pos' {n : ℕ} : 0 < succ n := succ_pos n
theorem succ_inj' {n m : ℕ} : succ n = succ m ↔ n = m :=
⟨succ.inj, congr_arg _⟩
theorem succ_injective : function.injective nat.succ := λ x y, succ.inj
theorem succ_le_succ_iff {m n : ℕ} : succ m ≤ succ n ↔ m ≤ n :=
⟨le_of_succ_le_succ, succ_le_succ⟩
theorem max_succ_succ {m n : ℕ} :
max (succ m) (succ n) = succ (max m n) :=
begin
by_cases h1 : m ≤ n,
rw [max_eq_right h1, max_eq_right (succ_le_succ h1)],
{ rw not_le at h1, have h2 := le_of_lt h1,
rw [max_eq_left h2, max_eq_left (succ_le_succ h2)] }
end
lemma not_succ_lt_self {n : ℕ} : ¬succ n < n :=
not_lt_of_ge (nat.le_succ _)
theorem lt_succ_iff {m n : ℕ} : m < succ n ↔ m ≤ n :=
succ_le_succ_iff
lemma succ_le_iff {m n : ℕ} : succ m ≤ n ↔ m < n :=
⟨lt_of_succ_le, succ_le_of_lt⟩
lemma lt_iff_add_one_le {m n : ℕ} : m < n ↔ m + 1 ≤ n :=
by rw succ_le_iff
-- Just a restatement of `nat.lt_succ_iff` using `+1`.
lemma lt_add_one_iff {a b : ℕ} : a < b + 1 ↔ a ≤ b :=
lt_succ_iff
-- A flipped version of `lt_add_one_iff`.
lemma lt_one_add_iff {a b : ℕ} : a < 1 + b ↔ a ≤ b :=
by simp only [add_comm, lt_succ_iff]
-- This is true reflexively, by the definition of `≤` on ℕ,
-- but it's still useful to have, to convince Lean to change the syntactic type.
lemma add_one_le_iff {a b : ℕ} : a + 1 ≤ b ↔ a < b :=
iff.refl _
lemma one_add_le_iff {a b : ℕ} : 1 + a ≤ b ↔ a < b :=
by simp only [add_comm, add_one_le_iff]
theorem of_le_succ {n m : ℕ} (H : n ≤ m.succ) : n ≤ m ∨ n = m.succ :=
(lt_or_eq_of_le H).imp le_of_lt_succ id
/-! ### `add` -/
-- Sometimes a bare `nat.add` or similar appears as a consequence of unfolding
-- during pattern matching. These lemmas package them back up as typeclass
-- mediated operations.
@[simp] theorem add_def {a b : ℕ} : nat.add a b = a + b := rfl
@[simp] theorem mul_def {a b : ℕ} : nat.mul a b = a * b := rfl
attribute [simp] nat.add_sub_cancel nat.add_sub_cancel_left
attribute [simp] nat.sub_self
lemma exists_eq_add_of_le : ∀ {m n : ℕ}, m ≤ n → ∃ k : ℕ, n = m + k
| 0 0 h := ⟨0, by simp⟩
| 0 (n+1) h := ⟨n+1, by simp⟩
| (m+1) (n+1) h :=
let ⟨k, hk⟩ := exists_eq_add_of_le (nat.le_of_succ_le_succ h) in
⟨k, by simp [hk, add_comm, add_left_comm]⟩
lemma exists_eq_add_of_lt : ∀ {m n : ℕ}, m < n → ∃ k : ℕ, n = m + k + 1
| 0 0 h := false.elim $ lt_irrefl _ h
| 0 (n+1) h := ⟨n, by simp⟩
| (m+1) (n+1) h := let ⟨k, hk⟩ := exists_eq_add_of_le (nat.le_of_succ_le_succ h) in
⟨k, by simp [hk]⟩
theorem add_pos_left {m : ℕ} (h : 0 < m) (n : ℕ) : 0 < m + n :=
calc
m + n > 0 + n : nat.add_lt_add_right h n
... = n : nat.zero_add n
... ≥ 0 : zero_le n
theorem add_pos_right (m : ℕ) {n : ℕ} (h : 0 < n) : 0 < m + n :=
begin rw add_comm, exact add_pos_left h m end
theorem add_pos_iff_pos_or_pos (m n : ℕ) : 0 < m + n ↔ 0 < m ∨ 0 < n :=
iff.intro
begin
intro h,
cases m with m,
{simp [zero_add] at h, exact or.inr h},
exact or.inl (succ_pos _)
end
begin
intro h, cases h with mpos npos,
{ apply add_pos_left mpos },
apply add_pos_right _ npos
end
lemma add_eq_one_iff : ∀ {a b : ℕ}, a + b = 1 ↔ (a = 0 ∧ b = 1) ∨ (a = 1 ∧ b = 0)
| 0 0 := dec_trivial
| 0 1 := dec_trivial
| 1 0 := dec_trivial
| 1 1 := dec_trivial
| (a+2) _ := by rw add_right_comm; exact dec_trivial
| _ (b+2) := by rw [← add_assoc]; simp only [nat.succ_inj', nat.succ_ne_zero]; simp
theorem le_add_one_iff {i j : ℕ} : i ≤ j + 1 ↔ (i ≤ j ∨ i = j + 1) :=
⟨assume h,
match nat.eq_or_lt_of_le h with
| or.inl h := or.inr h
| or.inr h := or.inl $ nat.le_of_succ_le_succ h
end,
or.rec (assume h, le_trans h $ nat.le_add_right _ _) le_of_eq⟩
/-! ### `pred` -/
@[simp]
lemma add_succ_sub_one (n m : ℕ) : (n + succ m) - 1 = n + m :=
by rw [add_succ, succ_sub_one]
@[simp]
lemma succ_add_sub_one (n m : ℕ) : (succ n + m) - 1 = n + m :=
by rw [succ_add, succ_sub_one]
lemma pred_eq_sub_one (n : ℕ) : pred n = n - 1 := rfl
theorem pred_eq_of_eq_succ {m n : ℕ} (H : m = n.succ) : m.pred = n := by simp [H]
@[simp] lemma pred_eq_succ_iff {n m : ℕ} : pred n = succ m ↔ n = m + 2 :=
by cases n; split; rintro ⟨⟩; refl
theorem pred_sub (n m : ℕ) : pred n - m = pred (n - m) :=
by rw [← sub_one, nat.sub_sub, one_add]; refl
lemma le_pred_of_lt {n m : ℕ} (h : m < n) : m ≤ n - 1 :=
nat.sub_le_sub_right h 1
lemma le_of_pred_lt {m n : ℕ} : pred m < n → m ≤ n :=
match m with
| 0 := le_of_lt
| m+1 := id
end
/-- This ensures that `simp` succeeds on `pred (n + 1) = n`. -/
@[simp] lemma pred_one_add (n : ℕ) : pred (1 + n) = n :=
by rw [add_comm, add_one, pred_succ]
/-! ### `sub` -/
protected theorem le_sub_add (n m : ℕ) : n ≤ n - m + m :=
or.elim (le_total n m)
(assume : n ≤ m, begin rw [sub_eq_zero_of_le this, zero_add], exact this end)
(assume : m ≤ n, begin rw (nat.sub_add_cancel this) end)
theorem sub_add_eq_max (n m : ℕ) : n - m + m = max n m :=
eq_max (nat.le_sub_add _ _) (le_add_left _ _) $ λ k h₁ h₂,
by rw ← nat.sub_add_cancel h₂; exact
add_le_add_right (nat.sub_le_sub_right h₁ _) _
theorem add_sub_eq_max (n m : ℕ) : n + (m - n) = max n m :=
by rw [add_comm, max_comm, sub_add_eq_max]
theorem sub_add_min (n m : ℕ) : n - m + min n m = n :=
(le_total n m).elim
(λ h, by rw [min_eq_left h, sub_eq_zero_of_le h, zero_add])
(λ h, by rw [min_eq_right h, nat.sub_add_cancel h])
protected theorem add_sub_cancel' {n m : ℕ} (h : m ≤ n) : m + (n - m) = n :=
by rw [add_comm, nat.sub_add_cancel h]
protected theorem sub_eq_of_eq_add (h : k = m + n) : k - m = n :=
begin rw [h, nat.add_sub_cancel_left] end
theorem sub_cancel {a b c : ℕ} (h₁ : a ≤ b) (h₂ : a ≤ c) (w : b - a = c - a) : b = c :=
by rw [←nat.sub_add_cancel h₁, ←nat.sub_add_cancel h₂, w]
lemma sub_sub_sub_cancel_right {a b c : ℕ} (h₂ : c ≤ b) : (a - c) - (b - c) = a - b :=
by rw [nat.sub_sub, ←nat.add_sub_assoc h₂, nat.add_sub_cancel_left]
lemma add_sub_cancel_right (n m k : ℕ) : n + (m + k) - k = n + m :=
by { rw [nat.add_sub_assoc, nat.add_sub_cancel], apply k.le_add_left }
protected lemma sub_add_eq_add_sub {a b c : ℕ} (h : b ≤ a) : (a - b) + c = (a + c) - b :=
by rw [add_comm a, nat.add_sub_assoc h, add_comm]
theorem sub_min (n m : ℕ) : n - min n m = n - m :=
nat.sub_eq_of_eq_add $ by rw [add_comm, sub_add_min]
theorem sub_sub_assoc {a b c : ℕ} (h₁ : b ≤ a) (h₂ : c ≤ b) : a - (b - c) = a - b + c :=
(nat.sub_eq_iff_eq_add (le_trans (nat.sub_le _ _) h₁)).2 $
by rw [add_right_comm, add_assoc, nat.sub_add_cancel h₂, nat.sub_add_cancel h₁]
protected theorem lt_of_sub_pos (h : 0 < n - m) : m < n :=
lt_of_not_ge
(assume : n ≤ m,
have n - m = 0, from sub_eq_zero_of_le this,
begin rw this at h, exact lt_irrefl _ h end)
protected theorem lt_of_sub_lt_sub_right : m - k < n - k → m < n :=
lt_imp_lt_of_le_imp_le (λ h, nat.sub_le_sub_right h _)
protected theorem lt_of_sub_lt_sub_left : m - n < m - k → k < n :=
lt_imp_lt_of_le_imp_le (nat.sub_le_sub_left _)
protected theorem sub_lt_self (h₁ : 0 < m) (h₂ : 0 < n) : m - n < m :=
calc
m - n = succ (pred m) - succ (pred n) : by rw [succ_pred_eq_of_pos h₁, succ_pred_eq_of_pos h₂]
... = pred m - pred n : by rw succ_sub_succ
... ≤ pred m : sub_le _ _
... < succ (pred m) : lt_succ_self _
... = m : succ_pred_eq_of_pos h₁
protected theorem le_sub_right_of_add_le (h : m + k ≤ n) : m ≤ n - k :=
by rw ← nat.add_sub_cancel m k; exact nat.sub_le_sub_right h k
protected theorem le_sub_left_of_add_le (h : k + m ≤ n) : m ≤ n - k :=
nat.le_sub_right_of_add_le (by rwa add_comm at h)
protected theorem lt_sub_right_of_add_lt (h : m + k < n) : m < n - k :=
lt_of_succ_le $ nat.le_sub_right_of_add_le $
by rw succ_add; exact succ_le_of_lt h
protected theorem lt_sub_left_of_add_lt (h : k + m < n) : m < n - k :=
nat.lt_sub_right_of_add_lt (by rwa add_comm at h)
protected theorem add_lt_of_lt_sub_right (h : m < n - k) : m + k < n :=
@nat.lt_of_sub_lt_sub_right _ _ k (by rwa nat.add_sub_cancel)
protected theorem add_lt_of_lt_sub_left (h : m < n - k) : k + m < n :=
by rw add_comm; exact nat.add_lt_of_lt_sub_right h
protected theorem le_add_of_sub_le_right : n - k ≤ m → n ≤ m + k :=
le_imp_le_of_lt_imp_lt nat.lt_sub_right_of_add_lt
protected theorem le_add_of_sub_le_left : n - k ≤ m → n ≤ k + m :=
le_imp_le_of_lt_imp_lt nat.lt_sub_left_of_add_lt
protected theorem lt_add_of_sub_lt_right : n - k < m → n < m + k :=
lt_imp_lt_of_le_imp_le nat.le_sub_right_of_add_le
protected theorem lt_add_of_sub_lt_left : n - k < m → n < k + m :=
lt_imp_lt_of_le_imp_le nat.le_sub_left_of_add_le
protected theorem sub_le_left_of_le_add : n ≤ k + m → n - k ≤ m :=
le_imp_le_of_lt_imp_lt nat.add_lt_of_lt_sub_left
protected theorem sub_le_right_of_le_add : n ≤ m + k → n - k ≤ m :=
le_imp_le_of_lt_imp_lt nat.add_lt_of_lt_sub_right
protected theorem sub_lt_left_iff_lt_add (H : n ≤ k) : k - n < m ↔ k < n + m :=
⟨nat.lt_add_of_sub_lt_left,
λ h₁,
have succ k ≤ n + m, from succ_le_of_lt h₁,
have succ (k - n) ≤ m, from
calc succ (k - n) = succ k - n : by rw (succ_sub H)
... ≤ n + m - n : nat.sub_le_sub_right this n
... = m : by rw nat.add_sub_cancel_left,
lt_of_succ_le this⟩
protected theorem le_sub_left_iff_add_le (H : m ≤ k) : n ≤ k - m ↔ m + n ≤ k :=
le_iff_le_iff_lt_iff_lt.2 (nat.sub_lt_left_iff_lt_add H)
protected theorem le_sub_right_iff_add_le (H : n ≤ k) : m ≤ k - n ↔ m + n ≤ k :=
by rw [nat.le_sub_left_iff_add_le H, add_comm]
protected theorem lt_sub_left_iff_add_lt : n < k - m ↔ m + n < k :=
⟨nat.add_lt_of_lt_sub_left, nat.lt_sub_left_of_add_lt⟩
protected theorem lt_sub_right_iff_add_lt : m < k - n ↔ m + n < k :=
by rw [nat.lt_sub_left_iff_add_lt, add_comm]
theorem sub_le_left_iff_le_add : m - n ≤ k ↔ m ≤ n + k :=
le_iff_le_iff_lt_iff_lt.2 nat.lt_sub_left_iff_add_lt
theorem sub_le_right_iff_le_add : m - k ≤ n ↔ m ≤ n + k :=
by rw [nat.sub_le_left_iff_le_add, add_comm]
protected theorem sub_lt_right_iff_lt_add (H : k ≤ m) : m - k < n ↔ m < n + k :=
by rw [nat.sub_lt_left_iff_lt_add H, add_comm]
protected theorem sub_le_sub_left_iff (H : k ≤ m) : m - n ≤ m - k ↔ k ≤ n :=
⟨λ h,
have k + (m - k) - n ≤ m - k, by rwa nat.add_sub_cancel' H,
nat.le_of_add_le_add_right (nat.le_add_of_sub_le_left this),
nat.sub_le_sub_left _⟩
protected theorem sub_lt_sub_right_iff (H : k ≤ m) : m - k < n - k ↔ m < n :=
lt_iff_lt_of_le_iff_le (nat.sub_le_sub_right_iff _ _ _ H)
protected theorem sub_lt_sub_left_iff (H : n ≤ m) : m - n < m - k ↔ k < n :=
lt_iff_lt_of_le_iff_le (nat.sub_le_sub_left_iff H)
protected theorem sub_le_iff : m - n ≤ k ↔ m - k ≤ n :=
nat.sub_le_left_iff_le_add.trans nat.sub_le_right_iff_le_add.symm
protected lemma sub_le_self (n m : ℕ) : n - m ≤ n :=
nat.sub_le_left_of_le_add (nat.le_add_left _ _)
protected theorem sub_lt_iff (h₁ : n ≤ m) (h₂ : k ≤ m) : m - n < k ↔ m - k < n :=
(nat.sub_lt_left_iff_lt_add h₁).trans (nat.sub_lt_right_iff_lt_add h₂).symm
lemma pred_le_iff {n m : ℕ} : pred n ≤ m ↔ n ≤ succ m :=
@nat.sub_le_right_iff_le_add n m 1
lemma lt_pred_iff {n m : ℕ} : n < pred m ↔ succ n < m :=
@nat.lt_sub_right_iff_add_lt n 1 m
lemma lt_of_lt_pred {a b : ℕ} (h : a < b - 1) : a < b :=
lt_of_succ_lt (lt_pred_iff.1 h)
/-! ### `mul` -/
theorem mul_self_le_mul_self {n m : ℕ} (h : n ≤ m) : n * n ≤ m * m :=
mul_le_mul h h (zero_le _) (zero_le _)
theorem mul_self_lt_mul_self : Π {n m : ℕ}, n < m → n * n < m * m
| 0 m h := mul_pos h h
| (succ n) m h := mul_lt_mul h (le_of_lt h) (succ_pos _) (zero_le _)
theorem mul_self_le_mul_self_iff {n m : ℕ} : n ≤ m ↔ n * n ≤ m * m :=
⟨mul_self_le_mul_self, λh, decidable.by_contradiction $
λhn, not_lt_of_ge h $ mul_self_lt_mul_self $ lt_of_not_ge hn⟩
theorem mul_self_lt_mul_self_iff {n m : ℕ} : n < m ↔ n * n < m * m :=
iff.trans (lt_iff_not_ge _ _) $ iff.trans (not_iff_not_of_iff mul_self_le_mul_self_iff) $
iff.symm (lt_iff_not_ge _ _)
theorem le_mul_self : Π (n : ℕ), n ≤ n * n
| 0 := le_refl _
| (n+1) := let t := mul_le_mul_left (n+1) (succ_pos n) in by simp at t; exact t
lemma le_mul_of_pos_left {m n : ℕ} (h : 0 < n) : m ≤ n * m :=
begin
conv {to_lhs, rw [← one_mul(m)]},
exact mul_le_mul_of_nonneg_right (nat.succ_le_of_lt h) dec_trivial,
end
lemma le_mul_of_pos_right {m n : ℕ} (h : 0 < n) : m ≤ m * n :=
begin
conv {to_lhs, rw [← mul_one(m)]},
exact mul_le_mul_of_nonneg_left (nat.succ_le_of_lt h) dec_trivial,
end
theorem two_mul_ne_two_mul_add_one {n m} : 2 * n ≠ 2 * m + 1 :=
mt (congr_arg (%2)) (by rw [add_comm, add_mul_mod_self_left, mul_mod_right]; exact dec_trivial)
lemma mul_eq_one_iff : ∀ {a b : ℕ}, a * b = 1 ↔ a = 1 ∧ b = 1
| 0 0 := dec_trivial
| 0 1 := dec_trivial
| 1 0 := dec_trivial
| (a+2) 0 := by simp
| 0 (b+2) := by simp
| (a+1) (b+1) := ⟨λ h, by simp only [add_mul, mul_add, mul_add, one_mul, mul_one,
(add_assoc _ _ _).symm, nat.succ_inj', add_eq_zero_iff] at h; simp [h.1.2, h.2],
by clear_aux_decl; finish⟩
protected theorem mul_left_inj {a b c : ℕ} (ha : 0 < a) : b * a = c * a ↔ b = c :=
⟨nat.eq_of_mul_eq_mul_right ha, λ e, e ▸ rfl⟩
protected theorem mul_right_inj {a b c : ℕ} (ha : 0 < a) : a * b = a * c ↔ b = c :=
⟨nat.eq_of_mul_eq_mul_left ha, λ e, e ▸ rfl⟩
lemma mul_right_eq_self_iff {a b : ℕ} (ha : 0 < a) : a * b = a ↔ b = 1 :=
suffices a * b = a * 1 ↔ b = 1, by rwa mul_one at this,
nat.mul_right_inj ha
lemma mul_left_eq_self_iff {a b : ℕ} (hb : 0 < b) : a * b = b ↔ a = 1 :=
by rw [mul_comm, nat.mul_right_eq_self_iff hb]
lemma lt_succ_iff_lt_or_eq {n i : ℕ} : n < i.succ ↔ (n < i ∨ n = i) :=
lt_succ_iff.trans le_iff_lt_or_eq
theorem mul_self_inj {n m : ℕ} : n * n = m * m ↔ n = m :=
le_antisymm_iff.trans (le_antisymm_iff.trans
(and_congr mul_self_le_mul_self_iff mul_self_le_mul_self_iff)).symm
/-!
### Recursion and induction principles
This section is here due to dependencies -- the lemmas here require some of the lemmas
proved above, and some of the results in later sections depend on the definitions in this section.
-/
/-- Recursion starting at a non-zero number: given a map `C k → C (k+1)` for each `k`,
there is a map from `C n` to each `C m`, `n ≤ m`. -/
@[elab_as_eliminator]
def le_rec_on {C : ℕ → Sort u} {n : ℕ} : Π {m : ℕ}, n ≤ m → (Π {k}, C k → C (k+1)) → C n → C m
| 0 H next x := eq.rec_on (eq_zero_of_le_zero H) x
| (m+1) H next x := or.by_cases (of_le_succ H) (λ h : n ≤ m, next $ le_rec_on h @next x)
(λ h : n = m + 1, eq.rec_on h x)
theorem le_rec_on_self {C : ℕ → Sort u} {n} {h : n ≤ n} {next} (x : C n) :
(le_rec_on h next x : C n) = x :=
by cases n; unfold le_rec_on or.by_cases; rw [dif_neg n.not_succ_le_self, dif_pos rfl]
theorem le_rec_on_succ {C : ℕ → Sort u} {n m} (h1 : n ≤ m) {h2 : n ≤ m+1} {next} (x : C n) :
(le_rec_on h2 @next x : C (m+1)) = next (le_rec_on h1 @next x : C m) :=
by conv { to_lhs, rw [le_rec_on, or.by_cases, dif_pos h1] }
theorem le_rec_on_succ' {C : ℕ → Sort u} {n} {h : n ≤ n+1} {next} (x : C n) :
(le_rec_on h next x : C (n+1)) = next x :=
by rw [le_rec_on_succ (le_refl n), le_rec_on_self]
theorem le_rec_on_trans {C : ℕ → Sort u} {n m k} (hnm : n ≤ m) (hmk : m ≤ k) {next} (x : C n) :
(le_rec_on (le_trans hnm hmk) @next x : C k) = le_rec_on hmk @next (le_rec_on hnm @next x) :=
begin
induction hmk with k hmk ih, { rw le_rec_on_self },
rw [le_rec_on_succ (le_trans hnm hmk), ih, le_rec_on_succ]
end
theorem le_rec_on_succ_left {C : ℕ → Sort u} {n m} (h1 : n ≤ m) (h2 : n+1 ≤ m)
{next : Π{{k}}, C k → C (k+1)} (x : C n) :
(le_rec_on h2 next (next x) : C m) = (le_rec_on h1 next x : C m) :=
begin
rw [subsingleton.elim h1 (le_trans (le_succ n) h2),
le_rec_on_trans (le_succ n) h2, le_rec_on_succ']
end
theorem le_rec_on_injective {C : ℕ → Sort u} {n m} (hnm : n ≤ m)
(next : Π n, C n → C (n+1)) (Hnext : ∀ n, function.injective (next n)) :
function.injective (le_rec_on hnm next) :=
begin
induction hnm with m hnm ih, { intros x y H, rwa [le_rec_on_self, le_rec_on_self] at H },
intros x y H, rw [le_rec_on_succ hnm, le_rec_on_succ hnm] at H, exact ih (Hnext _ H)
end
theorem le_rec_on_surjective {C : ℕ → Sort u} {n m} (hnm : n ≤ m)
(next : Π n, C n → C (n+1)) (Hnext : ∀ n, function.surjective (next n)) :
function.surjective (le_rec_on hnm next) :=
begin
induction hnm with m hnm ih, { intros x, use x, rw le_rec_on_self },
intros x, rcases Hnext _ x with ⟨w, rfl⟩, rcases ih w with ⟨x, rfl⟩, use x, rw le_rec_on_succ
end
/-- Recursion principle based on `<`. -/
@[elab_as_eliminator]
protected def strong_rec' {p : ℕ → Sort u} (H : ∀ n, (∀ m, m < n → p m) → p n) : ∀ (n : ℕ), p n
| n := H n (λ m hm, strong_rec' m)
/-- Recursion principle based on `<` applied to some natural number. -/
@[elab_as_eliminator]
def strong_rec_on' {P : ℕ → Sort*} (n : ℕ) (h : ∀ n, (∀ m, m < n → P m) → P n) : P n :=
nat.strong_rec' h n
theorem strong_rec_on_beta' {P : ℕ → Sort*} {h} {n : ℕ} :
(strong_rec_on' n h : P n) = h n (λ m hmn, (strong_rec_on' m h : P m)) :=
by { simp only [strong_rec_on'], rw nat.strong_rec' }
/-- Induction principle starting at a non-zero number. For maps to a `Sort*` see `le_rec_on`. -/
@[elab_as_eliminator] lemma le_induction {P : nat → Prop} {m}
(h0 : P m) (h1 : ∀ n, m ≤ n → P n → P (n + 1)) :
∀ n, m ≤ n → P n :=
by apply nat.less_than_or_equal.rec h0; exact h1
/-- Decreasing induction: if `P (k+1)` implies `P k`, then `P n` implies `P m` for all `m ≤ n`.
Also works for functions to `Sort*`. -/
@[elab_as_eliminator]
def decreasing_induction {P : ℕ → Sort*} (h : ∀n, P (n+1) → P n) {m n : ℕ} (mn : m ≤ n)
(hP : P n) : P m :=
le_rec_on mn (λ k ih hsk, ih $ h k hsk) (λ h, h) hP
@[simp] lemma decreasing_induction_self {P : ℕ → Sort*} (h : ∀n, P (n+1) → P n) {n : ℕ}
(nn : n ≤ n) (hP : P n) : (decreasing_induction h nn hP : P n) = hP :=
by { dunfold decreasing_induction, rw [le_rec_on_self] }
lemma decreasing_induction_succ {P : ℕ → Sort*} (h : ∀n, P (n+1) → P n) {m n : ℕ} (mn : m ≤ n)
(msn : m ≤ n + 1) (hP : P (n+1)) :
(decreasing_induction h msn hP : P m) = decreasing_induction h mn (h n hP) :=
by { dunfold decreasing_induction, rw [le_rec_on_succ] }
@[simp] lemma decreasing_induction_succ' {P : ℕ → Sort*} (h : ∀n, P (n+1) → P n) {m : ℕ}
(msm : m ≤ m + 1) (hP : P (m+1)) : (decreasing_induction h msm hP : P m) = h m hP :=
by { dunfold decreasing_induction, rw [le_rec_on_succ'] }
lemma decreasing_induction_trans {P : ℕ → Sort*} (h : ∀n, P (n+1) → P n) {m n k : ℕ}
(mn : m ≤ n) (nk : n ≤ k) (hP : P k) :
(decreasing_induction h (le_trans mn nk) hP : P m) =
decreasing_induction h mn (decreasing_induction h nk hP) :=
by { induction nk with k nk ih, rw [decreasing_induction_self],
rw [decreasing_induction_succ h (le_trans mn nk), ih, decreasing_induction_succ] }
lemma decreasing_induction_succ_left {P : ℕ → Sort*} (h : ∀n, P (n+1) → P n) {m n : ℕ}
(smn : m + 1 ≤ n) (mn : m ≤ n) (hP : P n) :
(decreasing_induction h mn hP : P m) = h m (decreasing_induction h smn hP) :=
by { rw [subsingleton.elim mn (le_trans (le_succ m) smn), decreasing_induction_trans,
decreasing_induction_succ'] }
/-! ### `div` -/
attribute [simp] nat.div_self
protected lemma div_le_of_le_mul' {m n : ℕ} {k} (h : m ≤ k * n) : m / k ≤ n :=
(eq_zero_or_pos k).elim
(λ k0, by rw [k0, nat.div_zero]; apply zero_le)
(λ k0, (decidable.mul_le_mul_left k0).1 $
calc k * (m / k)
≤ m % k + k * (m / k) : le_add_left _ _
... = m : mod_add_div _ _
... ≤ k * n : h)
protected lemma div_le_self' (m n : ℕ) : m / n ≤ m :=
(eq_zero_or_pos n).elim
(λ n0, by rw [n0, nat.div_zero]; apply zero_le)
(λ n0, nat.div_le_of_le_mul' $ calc
m = 1 * m : (one_mul _).symm
... ≤ n * m : mul_le_mul_right _ n0)
/-- A version of `nat.div_lt_self` using successors, rather than additional hypotheses. -/
lemma div_lt_self' (n b : ℕ) : (n+1)/(b+2) < n+1 :=
nat.div_lt_self (nat.succ_pos n) (nat.succ_lt_succ (nat.succ_pos _))
theorem le_div_iff_mul_le' {x y : ℕ} {k : ℕ} (k0 : 0 < k) : x ≤ y / k ↔ x * k ≤ y :=
begin
revert x, refine nat.strong_rec' _ y,
clear y, intros y IH x,
cases decidable.lt_or_le y k with h h,
{ rw [div_eq_of_lt h],
cases x with x,
{ simp [zero_mul, zero_le] },
{ rw succ_mul,
exact iff_of_false (not_succ_le_zero _)
(not_le_of_lt $ lt_of_lt_of_le h (le_add_left _ _)) } },
{ rw [div_eq_sub_div k0 h],
cases x with x,
{ simp [zero_mul, zero_le] },
{ rw [← add_one, nat.add_le_add_iff_le_right, succ_mul,
IH _ (sub_lt_of_pos_le _ _ k0 h), add_le_to_le_sub _ h] } }
end
theorem div_mul_le_self' (m n : ℕ) : m / n * n ≤ m :=
(nat.eq_zero_or_pos n).elim (λ n0, by simp [n0, zero_le]) $ λ n0,
(le_div_iff_mul_le' n0).1 (le_refl _)
theorem div_lt_iff_lt_mul' {x y : ℕ} {k : ℕ} (k0 : 0 < k) : x / k < y ↔ x < y * k :=
lt_iff_lt_of_le_iff_le $ le_div_iff_mul_le' k0
protected theorem div_le_div_right {n m : ℕ} (h : n ≤ m) {k : ℕ} : n / k ≤ m / k :=
(nat.eq_zero_or_pos k).elim (λ k0, by simp [k0]) $ λ hk,
(le_div_iff_mul_le' hk).2 $ le_trans (nat.div_mul_le_self' _ _) h
lemma lt_of_div_lt_div {m n k : ℕ} (h : m / k < n / k) : m < n :=
by_contradiction $ λ h₁, absurd h (not_lt_of_ge (nat.div_le_div_right (not_lt.1 h₁)))
protected lemma div_pos {a b : ℕ} (hba : b ≤ a) (hb : 0 < b) : 0 < a / b :=
nat.pos_of_ne_zero (λ h, lt_irrefl a
(calc a = a % b : by simpa [h] using (mod_add_div a b).symm
... < b : nat.mod_lt a hb
... ≤ a : hba))
protected lemma div_lt_of_lt_mul {m n k : ℕ} (h : m < n * k) : m / n < k :=
lt_of_mul_lt_mul_left
(calc n * (m / n) ≤ m % n + n * (m / n) : nat.le_add_left _ _
... = m : mod_add_div _ _
... < n * k : h)
(nat.zero_le n)
lemma lt_mul_of_div_lt {a b c : ℕ} (h : a / c < b) (w : 0 < c) : a < b * c :=
lt_of_not_ge $ not_le_of_gt h ∘ (nat.le_div_iff_mul_le _ _ w).2
protected lemma div_eq_zero_iff {a b : ℕ} (hb : 0 < b) : a / b = 0 ↔ a < b :=
⟨λ h, by rw [← mod_add_div a b, h, mul_zero, add_zero]; exact mod_lt _ hb,
λ h, by rw [← nat.mul_right_inj hb, ← @add_left_cancel_iff _ _ (a % b), mod_add_div,
mod_eq_of_lt h, mul_zero, add_zero]⟩
lemma eq_zero_of_le_div {a b : ℕ} (hb : 2 ≤ b) (h : a ≤ a / b) : a = 0 :=
eq_zero_of_mul_le hb $
by rw mul_comm; exact (nat.le_div_iff_mul_le' (lt_of_lt_of_le dec_trivial hb)).1 h
lemma mul_div_le_mul_div_assoc (a b c : ℕ) : a * (b / c) ≤ (a * b) / c :=
if hc0 : c = 0 then by simp [hc0]
else (nat.le_div_iff_mul_le _ _ (nat.pos_of_ne_zero hc0)).2
(by rw [mul_assoc]; exact mul_le_mul_left _ (nat.div_mul_le_self _ _))
lemma div_mul_div_le_div (a b c : ℕ) : ((a / c) * b) / a ≤ b / c :=
if ha0 : a = 0 then by simp [ha0]
else calc a / c * b / a ≤ b * a / c / a :
nat.div_le_div_right (by rw [mul_comm];
exact mul_div_le_mul_div_assoc _ _ _)
... = b / c : by rw [nat.div_div_eq_div_mul, mul_comm b, mul_comm c,
nat.mul_div_mul _ _ (nat.pos_of_ne_zero ha0)]
lemma eq_zero_of_le_half {a : ℕ} (h : a ≤ a / 2) : a = 0 :=
eq_zero_of_le_div (le_refl _) h
protected theorem eq_mul_of_div_eq_right {a b c : ℕ} (H1 : b ∣ a) (H2 : a / b = c) :
a = b * c :=
by rw [← H2, nat.mul_div_cancel' H1]
protected theorem div_eq_iff_eq_mul_right {a b c : ℕ} (H : 0 < b) (H' : b ∣ a) :
a / b = c ↔ a = b * c :=
⟨nat.eq_mul_of_div_eq_right H', nat.div_eq_of_eq_mul_right H⟩
protected theorem div_eq_iff_eq_mul_left {a b c : ℕ} (H : 0 < b) (H' : b ∣ a) :
a / b = c ↔ a = c * b :=
by rw mul_comm; exact nat.div_eq_iff_eq_mul_right H H'
protected theorem eq_mul_of_div_eq_left {a b c : ℕ} (H1 : b ∣ a) (H2 : a / b = c) :
a = c * b :=
by rw [mul_comm, nat.eq_mul_of_div_eq_right H1 H2]
protected theorem mul_div_cancel_left' {a b : ℕ} (Hd : a ∣ b) : a * (b / a) = b :=
by rw [mul_comm,nat.div_mul_cancel Hd]
/-! ### `mod`, `dvd` -/
protected theorem div_mod_unique {n k m d : ℕ} (h : 0 < k) :
n / k = d ∧ n % k = m ↔ m + k * d = n ∧ m < k :=
⟨λ ⟨e₁, e₂⟩, e₁ ▸ e₂ ▸ ⟨mod_add_div _ _, mod_lt _ h⟩,
λ ⟨h₁, h₂⟩, h₁ ▸ by rw [add_mul_div_left _ _ h, add_mul_mod_self_left];
simp [div_eq_of_lt, mod_eq_of_lt, h₂]⟩
lemma two_mul_odd_div_two {n : ℕ} (hn : n % 2 = 1) : 2 * (n / 2) = n - 1 :=
by conv {to_rhs, rw [← nat.mod_add_div n 2, hn, nat.add_sub_cancel_left]}
lemma div_dvd_of_dvd {a b : ℕ} (h : b ∣ a) : (a / b) ∣ a :=
⟨b, (nat.div_mul_cancel h).symm⟩
protected lemma div_div_self : ∀ {a b : ℕ}, b ∣ a → 0 < a → a / (a / b) = b
| a 0 h₁ h₂ := by rw eq_zero_of_zero_dvd h₁; refl
| 0 b h₁ h₂ := absurd h₂ dec_trivial
| (a+1) (b+1) h₁ h₂ :=
(nat.mul_left_inj (nat.div_pos (le_of_dvd (succ_pos a) h₁) (succ_pos b))).1 $
by rw [nat.div_mul_cancel (div_dvd_of_dvd h₁), nat.mul_div_cancel' h₁]
lemma mod_mul_right_div_self (a b c : ℕ) : a % (b * c) / b = (a / b) % c :=
if hb : b = 0 then by simp [hb] else if hc : c = 0 then by simp [hc]
else by conv {to_rhs, rw ← mod_add_div a (b * c)};
rw [mul_assoc, nat.add_mul_div_left _ _ (nat.pos_of_ne_zero hb), add_mul_mod_self_left,
mod_eq_of_lt (nat.div_lt_of_lt_mul (mod_lt _ (mul_pos (nat.pos_of_ne_zero hb) (nat.pos_of_ne_zero hc))))]
lemma mod_mul_left_div_self (a b c : ℕ) : a % (c * b) / b = (a / b) % c :=
by rw [mul_comm c, mod_mul_right_div_self]
@[simp] protected theorem dvd_one {n : ℕ} : n ∣ 1 ↔ n = 1 :=
⟨eq_one_of_dvd_one, λ e, e.symm ▸ dvd_refl _⟩
protected theorem dvd_add_left {k m n : ℕ} (h : k ∣ n) : k ∣ m + n ↔ k ∣ m :=
(nat.dvd_add_iff_left h).symm
protected theorem dvd_add_right {k m n : ℕ} (h : k ∣ m) : k ∣ m + n ↔ k ∣ n :=
(nat.dvd_add_iff_right h).symm
@[simp] protected theorem not_two_dvd_bit1 (n : ℕ) : ¬ 2 ∣ bit1 n :=
mt (nat.dvd_add_right two_dvd_bit0).1 dec_trivial
/-- A natural number m divides the sum m + n if and only if m divides b.-/
@[simp] protected lemma dvd_add_self_left {m n : ℕ} :
m ∣ m + n ↔ m ∣ n :=
nat.dvd_add_right (dvd_refl m)
/-- A natural number m divides the sum n + m if and only if m divides b.-/
@[simp] protected lemma dvd_add_self_right {m n : ℕ} :
m ∣ n + m ↔ m ∣ n :=
nat.dvd_add_left (dvd_refl m)
protected theorem mul_dvd_mul_iff_left {a b c : ℕ} (ha : 0 < a) : a * b ∣ a * c ↔ b ∣ c :=
exists_congr $ λ d, by rw [mul_assoc, nat.mul_right_inj ha]
protected theorem mul_dvd_mul_iff_right {a b c : ℕ} (hc : 0 < c) : a * c ∣ b * c ↔ a ∣ b :=
exists_congr $ λ d, by rw [mul_right_comm, nat.mul_left_inj hc]
lemma succ_div : ∀ (a b : ℕ), (a + 1) / b =
a / b + if b ∣ a + 1 then 1 else 0
| a 0 := by simp
| 0 1 := rfl
| 0 (b+2) := have hb2 : b + 2 > 1, from dec_trivial,
by simp [ne_of_gt hb2, div_eq_of_lt hb2]
| (a+1) (b+1) := begin
rw [nat.div_def], conv_rhs { rw nat.div_def },
by_cases hb_eq_a : b = a + 1,
{ simp [hb_eq_a, le_refl] },
by_cases hb_le_a1 : b ≤ a + 1,
{ have hb_le_a : b ≤ a, from le_of_lt_succ (lt_of_le_of_ne hb_le_a1 hb_eq_a),
have h₁ : (0 < b + 1 ∧ b + 1 ≤ a + 1 + 1),
from ⟨succ_pos _, (add_le_add_iff_right _).2 hb_le_a1⟩,
have h₂ : (0 < b + 1 ∧ b + 1 ≤ a + 1),
from ⟨succ_pos _, (add_le_add_iff_right _).2 hb_le_a⟩,
have dvd_iff : b + 1 ∣ a - b + 1 ↔ b + 1 ∣ a + 1 + 1,
{ rw [nat.dvd_add_iff_left (dvd_refl (b + 1)),
← nat.add_sub_add_right a 1 b, add_comm (_ - _), add_assoc,
nat.sub_add_cancel (succ_le_succ hb_le_a), add_comm 1] },
have wf : a - b < a + 1, from lt_succ_of_le (nat.sub_le_self _ _),
rw [if_pos h₁, if_pos h₂, nat.add_sub_add_right, nat.sub_add_comm hb_le_a,
by exact have _ := wf, succ_div (a - b),
nat.add_sub_add_right],
simp [dvd_iff, succ_eq_add_one, add_comm 1, add_assoc] },
{ have hba : ¬ b ≤ a,
from not_le_of_gt (lt_trans (lt_succ_self a) (lt_of_not_ge hb_le_a1)),
have hb_dvd_a : ¬ b + 1 ∣ a + 2,
from λ h, hb_le_a1 (le_of_succ_le_succ (le_of_dvd (succ_pos _) h)),
simp [hba, hb_le_a1, hb_dvd_a], }
end
lemma succ_div_of_dvd {a b : ℕ} (hba : b ∣ a + 1) :
(a + 1) / b = a / b + 1 :=
by rw [succ_div, if_pos hba]
lemma succ_div_of_not_dvd {a b : ℕ} (hba : ¬ b ∣ a + 1) :
(a + 1) / b = a / b :=
by rw [succ_div, if_neg hba, add_zero]
@[simp] theorem mod_mod_of_dvd (n : nat) {m k : nat} (h : m ∣ k) : n % k % m = n % m :=
begin
conv { to_rhs, rw ←mod_add_div n k },
rcases h with ⟨t, rfl⟩, rw [mul_assoc, add_mul_mod_self_left]
end
@[simp] theorem mod_mod (a n : ℕ) : (a % n) % n = a % n :=
(eq_zero_or_pos n).elim
(λ n0, by simp [n0])
(λ npos, mod_eq_of_lt (mod_lt _ npos))
/-- If `a` and `b` are equal mod `c`, `a - b` is zero mod `c`. -/
lemma sub_mod_eq_zero_of_mod_eq {a b c : ℕ} (h : a % c = b % c) : (a - b) % c = 0 :=
by rw [←nat.mod_add_div a c, ←nat.mod_add_div b c, ←h, ←nat.sub_sub, nat.add_sub_cancel_left,
←nat.mul_sub_left_distrib, nat.mul_mod_right]
@[simp] lemma one_mod (n : ℕ) : 1 % (n + 2) = 1 := nat.mod_eq_of_lt (add_lt_add_right n.succ_pos 1)
lemma dvd_sub_mod (k : ℕ) : n ∣ (k - (k % n)) :=
⟨k / n, nat.sub_eq_of_eq_add (nat.mod_add_div k n).symm⟩
@[simp] theorem mod_add_mod (m n k : ℕ) : (m % n + k) % n = (m + k) % n :=
by have := (add_mul_mod_self_left (m % n + k) n (m / n)).symm;
rwa [add_right_comm, mod_add_div] at this
@[simp] theorem add_mod_mod (m n k : ℕ) : (m + n % k) % k = (m + n) % k :=
by rw [add_comm, mod_add_mod, add_comm]
lemma add_mod (a b n : ℕ) : (a + b) % n = ((a % n) + (b % n)) % n :=
by rw [add_mod_mod, mod_add_mod]
theorem add_mod_eq_add_mod_right {m n k : ℕ} (i : ℕ) (H : m % n = k % n) :
(m + i) % n = (k + i) % n :=
by rw [← mod_add_mod, ← mod_add_mod k, H]
theorem add_mod_eq_add_mod_left {m n k : ℕ} (i : ℕ) (H : m % n = k % n) :
(i + m) % n = (i + k) % n :=
by rw [add_comm, add_mod_eq_add_mod_right _ H, add_comm]
lemma mul_mod (a b n : ℕ) : (a * b) % n = ((a % n) * (b % n)) % n :=
begin
conv_lhs {
rw [←mod_add_div a n, ←mod_add_div b n, right_distrib, left_distrib, left_distrib,
mul_assoc, mul_assoc, ←left_distrib n _ _, add_mul_mod_self_left,
mul_comm _ (n * (b / n)), mul_assoc, add_mul_mod_self_left] }
end
lemma dvd_div_of_mul_dvd {a b c : ℕ} (h : a * b ∣ c) : b ∣ c / a :=
if ha : a = 0 then
by simp [ha]
else
have ha : 0 < a, from nat.pos_of_ne_zero ha,
have h1 : ∃ d, c = a * b * d, from h,
let ⟨d, hd⟩ := h1 in
have hac : a ∣ c, from dvd_of_mul_right_dvd h,
have h2 : c / a = b * d, from nat.div_eq_of_eq_mul_right ha (by simpa [mul_assoc] using hd),
show ∃ d, c / a = b * d, from ⟨d, h2⟩
lemma mul_dvd_of_dvd_div {a b c : ℕ} (hab : c ∣ b) (h : a ∣ b / c) : c * a ∣ b :=
have h1 : ∃ d, b / c = a * d, from h,
have h2 : ∃ e, b = c * e, from hab,
let ⟨d, hd⟩ := h1, ⟨e, he⟩ := h2 in
have h3 : b = a * d * c, from
nat.eq_mul_of_div_eq_left hab hd,
show ∃ d, b = c * a * d, from ⟨d, by cc⟩
lemma div_mul_div {a b c d : ℕ} (hab : b ∣ a) (hcd : d ∣ c) :
(a / b) * (c / d) = (a * c) / (b * d) :=
have exi1 : ∃ x, a = b * x, from hab,
have exi2 : ∃ y, c = d * y, from hcd,
if hb : b = 0 then by simp [hb]
else have 0 < b, from nat.pos_of_ne_zero hb,
if hd : d = 0 then by simp [hd]
else have 0 < d, from nat.pos_of_ne_zero hd,
begin
cases exi1 with x hx, cases exi2 with y hy,
rw [hx, hy, nat.mul_div_cancel_left, nat.mul_div_cancel_left],
symmetry,
apply nat.div_eq_of_eq_mul_left,
apply mul_pos,
repeat {assumption},
cc
end
@[simp]
lemma div_div_div_eq_div : ∀ {a b c : ℕ} (dvd : b ∣ a) (dvd2 : a ∣ c), (c / (a / b)) / b = c / a
| 0 _ := by simp
| (a + 1) 0 := λ _ dvd _, by simpa using dvd
| (a + 1) (c + 1) :=
have a_split : a + 1 ≠ 0 := succ_ne_zero a,
have c_split : c + 1 ≠ 0 := succ_ne_zero c,
λ b dvd dvd2,
begin
rcases dvd2 with ⟨k, rfl⟩,
rcases dvd with ⟨k2, pr⟩,
have k2_nonzero : k2 ≠ 0 := λ k2_zero, by simpa [k2_zero] using pr,
rw [nat.mul_div_cancel_left k (nat.pos_of_ne_zero a_split), pr,
nat.mul_div_cancel_left k2 (nat.pos_of_ne_zero c_split), nat.mul_comm ((c + 1) * k2) k,
←nat.mul_assoc k (c + 1) k2, nat.mul_div_cancel _ (nat.pos_of_ne_zero k2_nonzero),
nat.mul_div_cancel _ (nat.pos_of_ne_zero c_split)],
end
lemma eq_of_dvd_of_div_eq_one {a b : ℕ} (w : a ∣ b) (h : b / a = 1) : a = b :=
by rw [←nat.div_mul_cancel w, h, one_mul]
lemma eq_zero_of_dvd_of_div_eq_zero {a b : ℕ} (w : a ∣ b) (h : b / a = 0) : b = 0 :=
by rw [←nat.div_mul_cancel w, h, zero_mul]
/-- If a small natural number is divisible by a larger natural number,
the small number is zero. -/
lemma eq_zero_of_dvd_of_lt {a b : ℕ} (w : a ∣ b) (h : b < a) : b = 0 :=
nat.eq_zero_of_dvd_of_div_eq_zero w
((nat.div_eq_zero_iff (lt_of_le_of_lt (zero_le b) h)).elim_right h)
lemma div_le_div_left {a b c : ℕ} (h₁ : c ≤ b) (h₂ : 0 < c) : a / b ≤ a / c :=
(nat.le_div_iff_mul_le _ _ h₂).2 $
le_trans (mul_le_mul_left _ h₁) (div_mul_le_self _ _)
lemma div_eq_self {a b : ℕ} : a / b = a ↔ a = 0 ∨ b = 1 :=
begin
split,
{ intro,
cases b,
{ simp * at * },
{ cases b,
{ right, refl },
{ left,
have : a / (b + 2) ≤ a / 2 := div_le_div_left (by simp) dec_trivial,
refine eq_zero_of_le_half _,
simp * at * } } },
{ rintros (rfl|rfl); simp }
end
/-! ### `pow` -/
-- This is redundant with `canonically_ordered_semiring.pow_le_pow_of_le_left`,
-- but `canonically_ordered_semiring` is not such an obvious abstraction, and also quite long.
-- So, we leave a version in the `nat` namespace as well.
-- (The global `pow_le_pow_of_le_left` needs an extra hypothesis `0 ≤ x`.)
protected theorem pow_le_pow_of_le_left {x y : ℕ} (H : x ≤ y) : ∀ i : ℕ, x^i ≤ y^i :=
canonically_ordered_semiring.pow_le_pow_of_le_left H
theorem pow_le_pow_of_le_right {x : ℕ} (H : x > 0) {i : ℕ} : ∀ {j}, i ≤ j → x^i ≤ x^j
| 0 h := by rw eq_zero_of_le_zero h; apply le_refl
| (succ j) h := (lt_or_eq_of_le h).elim
(λhl, by rw [pow_succ', ← nat.mul_one (x^i)]; exact
nat.mul_le_mul (pow_le_pow_of_le_right $ le_of_lt_succ hl) H)
(λe, by rw e; refl)
theorem pow_lt_pow_of_lt_left {x y : ℕ} (H : x < y) {i} (h : 0 < i) : x^i < y^i :=
begin
cases i with i, { exact absurd h (not_lt_zero _) },
rw [pow_succ', pow_succ'],
exact nat.mul_lt_mul' (nat.pow_le_pow_of_le_left (le_of_lt H) _) H
(pow_pos (lt_of_le_of_lt (zero_le _) H) _)
end
theorem pow_lt_pow_of_lt_right {x : ℕ} (H : x > 1) {i j : ℕ} (h : i < j) : x^i < x^j :=
begin
have xpos := lt_of_succ_lt H,
refine lt_of_lt_of_le _ (pow_le_pow_of_le_right xpos h),
rw [← nat.mul_one (x^i), pow_succ'],
exact nat.mul_lt_mul_of_pos_left H (pow_pos xpos _)
end
-- TODO: Generalize?
lemma pow_lt_pow_succ {p : ℕ} (h : 1 < p) (n : ℕ) : p^n < p^(n+1) :=
suffices 1*p^n < p*p^n, by simpa,
nat.mul_lt_mul_of_pos_right h (pow_pos (lt_of_succ_lt h) n)
lemma lt_pow_self {p : ℕ} (h : 1 < p) : ∀ n : ℕ, n < p ^ n
| 0 := by simp [zero_lt_one]
| (n+1) := calc
n + 1 < p^n + 1 : nat.add_lt_add_right (lt_pow_self _) _
... ≤ p ^ (n+1) : pow_lt_pow_succ h _
lemma lt_two_pow (n : ℕ) : n < 2^n :=
lt_pow_self dec_trivial n
lemma one_le_pow (n m : ℕ) (h : 0 < m) : 1 ≤ m^n :=
by { rw ←one_pow n, exact nat.pow_le_pow_of_le_left h n }
lemma one_le_pow' (n m : ℕ) : 1 ≤ (m+1)^n := one_le_pow n (m+1) (succ_pos m)
lemma one_le_two_pow (n : ℕ) : 1 ≤ 2^n := one_le_pow n 2 dec_trivial
lemma one_lt_pow (n m : ℕ) (h₀ : 0 < n) (h₁ : 1 < m) : 1 < m^n :=
by { rw ←one_pow n, exact pow_lt_pow_of_lt_left h₁ h₀ }
lemma one_lt_pow' (n m : ℕ) : 1 < (m+2)^(n+1) :=
one_lt_pow (n+1) (m+2) (succ_pos n) (nat.lt_of_sub_eq_succ rfl)
lemma one_lt_two_pow (n : ℕ) (h₀ : 0 < n) : 1 < 2^n := one_lt_pow n 2 h₀ dec_trivial
lemma one_lt_two_pow' (n : ℕ) : 1 < 2^(n+1) := one_lt_pow (n+1) 2 (succ_pos n) dec_trivial
lemma pow_right_strict_mono {x : ℕ} (k : 2 ≤ x) : strict_mono (λ (n : ℕ), x^n) :=
λ _ _, pow_lt_pow_of_lt_right k
lemma pow_le_iff_le_right {x m n : ℕ} (k : 2 ≤ x) : x^m ≤ x^n ↔ m ≤ n :=
strict_mono.le_iff_le (pow_right_strict_mono k)
lemma pow_lt_iff_lt_right {x m n : ℕ} (k : 2 ≤ x) : x^m < x^n ↔ m < n :=
strict_mono.lt_iff_lt (pow_right_strict_mono k)
lemma pow_right_injective {x : ℕ} (k : 2 ≤ x) : function.injective (λ (n : ℕ), x^n) :=
strict_mono.injective (pow_right_strict_mono k)
lemma pow_left_strict_mono {m : ℕ} (k : 1 ≤ m) : strict_mono (λ (x : ℕ), x^m) :=
λ _ _ h, pow_lt_pow_of_lt_left h k
lemma pow_le_iff_le_left {m x y : ℕ} (k : 1 ≤ m) : x^m ≤ y^m ↔ x ≤ y :=
strict_mono.le_iff_le (pow_left_strict_mono k)
lemma pow_lt_iff_lt_left {m x y : ℕ} (k : 1 ≤ m) : x^m < y^m ↔ x < y :=
strict_mono.lt_iff_lt (pow_left_strict_mono k)
lemma pow_left_injective {m : ℕ} (k : 1 ≤ m) : function.injective (λ (x : ℕ), x^m) :=
strict_mono.injective (pow_left_strict_mono k)
/-! ### `pow` and `mod` / `dvd` -/
theorem mod_pow_succ {b : ℕ} (b_pos : 0 < b) (w m : ℕ)
: m % (b^succ w) = b * (m/b % b^w) + m % b :=
begin
apply nat.strong_induction_on m,
clear m,
intros p IH,
cases lt_or_ge p (b^succ w) with h₁ h₁,
-- base case: p < b^succ w
{ have h₂ : p / b < b^w,
{ rw [div_lt_iff_lt_mul p _ b_pos],
simpa [pow_succ'] using h₁ },
rw [mod_eq_of_lt h₁, mod_eq_of_lt h₂],
simp [mod_add_div, nat.add_comm] },
-- step: p ≥ b^succ w
{ -- Generate condition for induction hypothesis
have h₂ : p - b^succ w < p,
{ apply sub_lt_of_pos_le _ _ (pow_pos b_pos _) h₁ },
-- Apply induction
rw [mod_eq_sub_mod h₁, IH _ h₂],
-- Normalize goal and h1
simp only [pow_succ],
simp only [ge, pow_succ] at h₁,
-- Pull subtraction outside mod and div
rw [sub_mul_mod _ _ _ h₁, sub_mul_div _ _ _ h₁],
-- Cancel subtraction inside mod b^w
have p_b_ge : b^w ≤ p / b,
{ rw [le_div_iff_mul_le _ _ b_pos, mul_comm],
exact h₁ },
rw [eq.symm (mod_eq_sub_mod p_b_ge)] }
end
lemma pow_dvd_pow_iff_pow_le_pow {k l : ℕ} : Π {x : ℕ} (w : 0 < x), x^k ∣ x^l ↔ x^k ≤ x^l
| (x+1) w :=
begin
split,
{ intro a, exact le_of_dvd (pow_pos (succ_pos x) l) a, },
{ intro a, cases x with x,
{ simp only [one_pow], },
{ have le := (pow_le_iff_le_right (le_add_left _ _)).mp a,
use (x+2)^(l-k),
rw [←pow_add, add_comm k, nat.sub_add_cancel le], } }
end
/-- If `1 < x`, then `x^k` divides `x^l` if and only if `k` is at most `l`. -/
lemma pow_dvd_pow_iff_le_right {x k l : ℕ} (w : 1 < x) : x^k ∣ x^l ↔ k ≤ l :=
by rw [pow_dvd_pow_iff_pow_le_pow (lt_of_succ_lt w), pow_le_iff_le_right w]
lemma pow_dvd_pow_iff_le_right' {b k l : ℕ} : (b+2)^k ∣ (b+2)^l ↔ k ≤ l :=
pow_dvd_pow_iff_le_right (nat.lt_of_sub_eq_succ rfl)
lemma not_pos_pow_dvd : ∀ {p k : ℕ} (hp : 1 < p) (hk : 1 < k), ¬ p^k ∣ p
| (succ p) (succ k) hp hk h :=
have succ p * (succ p)^k ∣ succ p * 1, by simpa,
have (succ p) ^ k ∣ 1, from dvd_of_mul_dvd_mul_left (succ_pos _) this,
have he : (succ p) ^ k = 1, from eq_one_of_dvd_one this,
have k < (succ p) ^ k, from lt_pow_self hp k,
have k < 1, by rwa [he] at this,
have k = 0, from eq_zero_of_le_zero $ le_of_lt_succ this,
have 1 < 1, by rwa [this] at hk,
absurd this dec_trivial
lemma pow_dvd_of_le_of_pow_dvd {p m n k : ℕ} (hmn : m ≤ n) (hdiv : p ^ n ∣ k) : p ^ m ∣ k :=
have p ^ m ∣ p ^ n, from pow_dvd_pow _ hmn,
dvd_trans this hdiv
lemma dvd_of_pow_dvd {p k m : ℕ} (hk : 1 ≤ k) (hpk : p^k ∣ m) : p ∣ m :=
by rw ←pow_one p; exact pow_dvd_of_le_of_pow_dvd hk hpk
/-! ### `find` -/
section find
@[simp] lemma find_eq_zero {p : ℕ → Prop} [decidable_pred p] (h : ∃ (n : ℕ), p n) :
nat.find h = 0 ↔ p 0 :=
begin
split,
{ intro h0, rw [← h0], apply nat.find_spec },
{ intro hp, apply nat.eq_zero_of_le_zero, exact nat.find_min' _ hp }
end
@[simp] lemma find_pos {p : ℕ → Prop} [decidable_pred p] (h : ∃ (n : ℕ), p n) :
0 < nat.find h ↔ ¬ p 0 :=
by rw [nat.pos_iff_ne_zero, not_iff_not, nat.find_eq_zero]
end find
/-! ### `find_greatest` -/
section find_greatest
/-- `find_greatest P b` is the largest `i ≤ bound` such that `P i` holds, or `0` if no such `i`
exists -/
protected def find_greatest (P : ℕ → Prop) [decidable_pred P] : ℕ → ℕ
| 0 := 0
| (n + 1) := if P (n + 1) then n + 1 else find_greatest n
variables {P : ℕ → Prop} [decidable_pred P]
@[simp] lemma find_greatest_zero : nat.find_greatest P 0 = 0 := rfl
@[simp] lemma find_greatest_eq : ∀{b}, P b → nat.find_greatest P b = b
| 0 h := rfl
| (n + 1) h := by simp [nat.find_greatest, h]
@[simp] lemma find_greatest_of_not {b} (h : ¬ P (b + 1)) :
nat.find_greatest P (b + 1) = nat.find_greatest P b :=
by simp [nat.find_greatest, h]
lemma find_greatest_spec_and_le :
∀{b m}, m ≤ b → P m → P (nat.find_greatest P b) ∧ m ≤ nat.find_greatest P b
| 0 m hm hP :=
have m = 0, from le_antisymm hm (nat.zero_le _),
show P 0 ∧ m ≤ 0, from this ▸ ⟨hP, le_refl _⟩
| (b + 1) m hm hP :=
begin
by_cases h : P (b + 1),
{ simp [h, hm] },
{ have : m ≠ b + 1 := assume this, h $ this ▸ hP,
have : m ≤ b := (le_of_not_gt $ assume h : b + 1 ≤ m, this $ le_antisymm hm h),
have : P (nat.find_greatest P b) ∧ m ≤ nat.find_greatest P b :=
find_greatest_spec_and_le this hP,
simp [h, this] }
end
lemma find_greatest_spec {b} : (∃m, m ≤ b ∧ P m) → P (nat.find_greatest P b)
| ⟨m, hmb, hm⟩ := (find_greatest_spec_and_le hmb hm).1
lemma find_greatest_le : ∀ {b}, nat.find_greatest P b ≤ b
| 0 := le_refl _
| (b + 1) :=
have nat.find_greatest P b ≤ b + 1, from le_trans find_greatest_le (nat.le_succ b),
by by_cases P (b + 1); simp [h, this]
lemma le_find_greatest {b m} (hmb : m ≤ b) (hm : P m) : m ≤ nat.find_greatest P b :=
(find_greatest_spec_and_le hmb hm).2
lemma find_greatest_is_greatest {P : ℕ → Prop} [decidable_pred P] {b} :
(∃ m, m ≤ b ∧ P m) → ∀ k, nat.find_greatest P b < k ∧ k ≤ b → ¬ P k
| ⟨m, hmb, hP⟩ k ⟨hk, hkb⟩ hPk := lt_irrefl k $ lt_of_le_of_lt (le_find_greatest hkb hPk) hk
lemma find_greatest_eq_zero {P : ℕ → Prop} [decidable_pred P] :
∀ {b}, (∀ n ≤ b, ¬ P n) → nat.find_greatest P b = 0
| 0 h := find_greatest_zero
| (n + 1) h :=
begin
have := nat.find_greatest_of_not (h (n + 1) (le_refl _)),
rw this, exact find_greatest_eq_zero (assume k hk, h k (le_trans hk $ nat.le_succ _))
end
lemma find_greatest_of_ne_zero {P : ℕ → Prop} [decidable_pred P] :
∀ {b m}, nat.find_greatest P b = m → m ≠ 0 → P m
| 0 m rfl h := by { have := @find_greatest_zero P _, contradiction }
| (b + 1) m rfl h :=
decidable.by_cases
(assume hb : P (b + 1), by { have := find_greatest_eq hb, rw this, exact hb })
(assume hb : ¬ P (b + 1), find_greatest_of_ne_zero (find_greatest_of_not hb).symm h)
end find_greatest
/-! ### `bodd_div2` and `bodd` -/
@[simp] theorem bodd_div2_eq (n : ℕ) : bodd_div2 n = (bodd n, div2 n) :=
by unfold bodd div2; cases bodd_div2 n; refl
@[simp] lemma bodd_bit0 (n) : bodd (bit0 n) = ff := bodd_bit ff n
@[simp] lemma bodd_bit1 (n) : bodd (bit1 n) = tt := bodd_bit tt n
@[simp] lemma div2_bit0 (n) : div2 (bit0 n) = n := div2_bit ff n
@[simp] lemma div2_bit1 (n) : div2 (bit1 n) = n := div2_bit tt n
/-! ### `bit0` and `bit1` -/
protected theorem bit0_le {n m : ℕ} (h : n ≤ m) : bit0 n ≤ bit0 m :=
add_le_add h h
protected theorem bit1_le {n m : ℕ} (h : n ≤ m) : bit1 n ≤ bit1 m :=
succ_le_succ (add_le_add h h)
theorem bit_le : ∀ (b : bool) {n m : ℕ}, n ≤ m → bit b n ≤ bit b m
| tt n m h := nat.bit1_le h
| ff n m h := nat.bit0_le h
theorem bit_ne_zero (b) {n} (h : n ≠ 0) : bit b n ≠ 0 :=
by cases b; [exact nat.bit0_ne_zero h, exact nat.bit1_ne_zero _]
theorem bit0_le_bit : ∀ (b) {m n : ℕ}, m ≤ n → bit0 m ≤ bit b n
| tt m n h := le_of_lt $ nat.bit0_lt_bit1 h
| ff m n h := nat.bit0_le h
theorem bit_le_bit1 : ∀ (b) {m n : ℕ}, m ≤ n → bit b m ≤ bit1 n
| ff m n h := le_of_lt $ nat.bit0_lt_bit1 h
| tt m n h := nat.bit1_le h
theorem bit_lt_bit0 : ∀ (b) {n m : ℕ}, n < m → bit b n < bit0 m
| tt n m h := nat.bit1_lt_bit0 h
| ff n m h := nat.bit0_lt h
theorem bit_lt_bit (a b) {n m : ℕ} (h : n < m) : bit a n < bit b m :=
lt_of_lt_of_le (bit_lt_bit0 _ h) (bit0_le_bit _ (le_refl _))
@[simp] lemma bit0_le_bit1_iff : bit0 k ≤ bit1 n ↔ k ≤ n :=
⟨λ h, by rwa [← nat.lt_succ_iff, n.bit1_eq_succ_bit0, ← n.bit0_succ_eq,
bit0_lt_bit0, nat.lt_succ_iff] at h, λ h, le_of_lt (nat.bit0_lt_bit1 h)⟩
@[simp] lemma bit0_lt_bit1_iff : bit0 k < bit1 n ↔ k ≤ n :=
⟨λ h, bit0_le_bit1_iff.1 (le_of_lt h), nat.bit0_lt_bit1⟩
@[simp] lemma bit1_le_bit0_iff : bit1 k ≤ bit0 n ↔ k < n :=
⟨λ h, by rwa [k.bit1_eq_succ_bit0, succ_le_iff, bit0_lt_bit0] at h,
λ h, le_of_lt (nat.bit1_lt_bit0 h)⟩
@[simp] lemma bit1_lt_bit0_iff : bit1 k < bit0 n ↔ k < n :=
⟨λ h, bit1_le_bit0_iff.1 (le_of_lt h), nat.bit1_lt_bit0⟩
@[simp] lemma one_le_bit0_iff : 1 ≤ bit0 n ↔ 0 < n :=
by { convert bit1_le_bit0_iff, refl, }
@[simp] lemma one_lt_bit0_iff : 1 < bit0 n ↔ 1 ≤ n :=
by { convert bit1_lt_bit0_iff, refl, }
@[simp] lemma bit_le_bit_iff : ∀ {b : bool}, bit b k ≤ bit b n ↔ k ≤ n
| ff := bit0_le_bit0
| tt := bit1_le_bit1
@[simp] lemma bit_lt_bit_iff : ∀ {b : bool}, bit b k < bit b n ↔ k < n
| ff := bit0_lt_bit0
| tt := bit1_lt_bit1
@[simp] lemma bit_le_bit1_iff : ∀ {b : bool}, bit b k ≤ bit1 n ↔ k ≤ n
| ff := bit0_le_bit1_iff
| tt := bit1_le_bit1
lemma pos_of_bit0_pos {n : ℕ} (h : 0 < bit0 n) : 0 < n :=
by { cases n, cases h, apply succ_pos, }
/-- Define a function on `ℕ` depending on parity of the argument. -/
@[elab_as_eliminator]
def bit_cases {C : ℕ → Sort u} (H : Π b n, C (bit b n)) (n : ℕ) : C n :=
eq.rec_on n.bit_decomp (H (bodd n) (div2 n))
/-! ### `shiftl` and `shiftr` -/
lemma shiftl_eq_mul_pow (m) : ∀ n, shiftl m n = m * 2 ^ n
| 0 := (nat.mul_one _).symm
| (k+1) := show bit0 (shiftl m k) = m * (2 * 2 ^ k),
by rw [bit0_val, shiftl_eq_mul_pow, mul_left_comm]
lemma shiftl'_tt_eq_mul_pow (m) : ∀ n, shiftl' tt m n + 1 = (m + 1) * 2 ^ n
| 0 := by simp [shiftl, shiftl', pow_zero, nat.one_mul]
| (k+1) :=
begin
change bit1 (shiftl' tt m k) + 1 = (m + 1) * (2 * 2 ^ k),
rw bit1_val,
change 2 * (shiftl' tt m k + 1) = _,
rw [shiftl'_tt_eq_mul_pow, mul_left_comm]
end
lemma one_shiftl (n) : shiftl 1 n = 2 ^ n :=
(shiftl_eq_mul_pow _ _).trans (nat.one_mul _)
@[simp] lemma zero_shiftl (n) : shiftl 0 n = 0 :=
(shiftl_eq_mul_pow _ _).trans (nat.zero_mul _)
lemma shiftr_eq_div_pow (m) : ∀ n, shiftr m n = m / 2 ^ n
| 0 := (nat.div_one _).symm
| (k+1) := (congr_arg div2 (shiftr_eq_div_pow k)).trans $
by rw [div2_val, nat.div_div_eq_div_mul, mul_comm]; refl
@[simp] lemma zero_shiftr (n) : shiftr 0 n = 0 :=
(shiftr_eq_div_pow _ _).trans (nat.zero_div _)
theorem shiftl'_ne_zero_left (b) {m} (h : m ≠ 0) (n) : shiftl' b m n ≠ 0 :=
by induction n; simp [shiftl', bit_ne_zero, *]
theorem shiftl'_tt_ne_zero (m) : ∀ {n} (h : n ≠ 0), shiftl' tt m n ≠ 0
| 0 h := absurd rfl h
| (succ n) _ := nat.bit1_ne_zero _
/-! ### `size` -/
@[simp] theorem size_zero : size 0 = 0 := rfl
@[simp] theorem size_bit {b n} (h : bit b n ≠ 0) : size (bit b n) = succ (size n) :=
begin
rw size,
conv { to_lhs, rw [binary_rec], simp [h] },
rw div2_bit,
end
@[simp] theorem size_bit0 {n} (h : n ≠ 0) : size (bit0 n) = succ (size n) :=
@size_bit ff n (nat.bit0_ne_zero h)
@[simp] theorem size_bit1 (n) : size (bit1 n) = succ (size n) :=
@size_bit tt n (nat.bit1_ne_zero n)
@[simp] theorem size_one : size 1 = 1 := by apply size_bit1 0
@[simp] theorem size_shiftl' {b m n} (h : shiftl' b m n ≠ 0) :
size (shiftl' b m n) = size m + n :=
begin
induction n with n IH; simp [shiftl'] at h ⊢,
rw [size_bit h, nat.add_succ],
by_cases s0 : shiftl' b m n = 0; [skip, rw [IH s0]],
rw s0 at h ⊢,
cases b, {exact absurd rfl h},
have : shiftl' tt m n + 1 = 1 := congr_arg (+1) s0,
rw [shiftl'_tt_eq_mul_pow] at this,
have m0 := succ.inj (eq_one_of_dvd_one ⟨_, this.symm⟩),
subst m0,
simp at this,
have : n = 0 := eq_zero_of_le_zero (le_of_not_gt $ λ hn,
ne_of_gt (pow_lt_pow_of_lt_right dec_trivial hn) this),
subst n, refl
end
@[simp] theorem size_shiftl {m} (h : m ≠ 0) (n) :
size (shiftl m n) = size m + n :=
size_shiftl' (shiftl'_ne_zero_left _ h _)
theorem lt_size_self (n : ℕ) : n < 2^size n :=
begin
rw [← one_shiftl],
have : ∀ {n}, n = 0 → n < shiftl 1 (size n) :=
λ n e, by subst e; exact dec_trivial,
apply binary_rec _ _ n, {apply this rfl},
intros b n IH,
by_cases bit b n = 0, {apply this h},
rw [size_bit h, shiftl_succ],
exact bit_lt_bit0 _ IH
end
theorem size_le {m n : ℕ} : size m ≤ n ↔ m < 2^n :=
⟨λ h, lt_of_lt_of_le (lt_size_self _) (pow_le_pow_of_le_right dec_trivial h),
begin
rw [← one_shiftl], revert n,
apply binary_rec _ _ m,
{ intros n h, apply zero_le },
{ intros b m IH n h,
by_cases e : bit b m = 0, { rw e, apply zero_le },
rw [size_bit e],
cases n with n,
{ exact e.elim (eq_zero_of_le_zero (le_of_lt_succ h)) },
{ apply succ_le_succ (IH _),
apply lt_imp_lt_of_le_imp_le (λ h', bit0_le_bit _ h') h } }
end⟩
theorem lt_size {m n : ℕ} : m < size n ↔ 2^m ≤ n :=
by rw [← not_lt, iff_not_comm, not_lt, size_le]
theorem size_pos {n : ℕ} : 0 < size n ↔ 0 < n :=
by rw lt_size; refl
theorem size_eq_zero {n : ℕ} : size n = 0 ↔ n = 0 :=
by have := @size_pos n; simp [pos_iff_ne_zero] at this;
exact not_iff_not.1 this
theorem size_pow {n : ℕ} : size (2^n) = n+1 :=
le_antisymm
(size_le.2 $ pow_lt_pow_of_lt_right dec_trivial (lt_succ_self _))
(lt_size.2 $ le_refl _)
theorem size_le_size {m n : ℕ} (h : m ≤ n) : size m ≤ size n :=
size_le.2 $ lt_of_le_of_lt h (lt_size_self _)
/-! ### decidability of predicates -/
instance decidable_ball_lt (n : nat) (P : Π k < n, Prop) :
∀ [H : ∀ n h, decidable (P n h)], decidable (∀ n h, P n h) :=
begin
induction n with n IH; intro; resetI,
{ exact is_true (λ n, dec_trivial) },
cases IH (λ k h, P k (lt_succ_of_lt h)) with h,
{ refine is_false (mt _ h), intros hn k h, apply hn },
by_cases p : P n (lt_succ_self n),
{ exact is_true (λ k h',
(lt_or_eq_of_le $ le_of_lt_succ h').elim (h _)
(λ e, match k, e, h' with _, rfl, h := p end)) },
{ exact is_false (mt (λ hn, hn _ _) p) }
end
instance decidable_forall_fin {n : ℕ} (P : fin n → Prop)
[H : decidable_pred P] : decidable (∀ i, P i) :=
decidable_of_iff (∀ k h, P ⟨k, h⟩) ⟨λ a ⟨k, h⟩, a k h, λ a k h, a ⟨k, h⟩⟩
instance decidable_ball_le (n : ℕ) (P : Π k ≤ n, Prop)
[H : ∀ n h, decidable (P n h)] : decidable (∀ n h, P n h) :=
decidable_of_iff (∀ k (h : k < succ n), P k (le_of_lt_succ h))
⟨λ a k h, a k (lt_succ_of_le h), λ a k h, a k _⟩
instance decidable_lo_hi (lo hi : ℕ) (P : ℕ → Prop) [H : decidable_pred P] :
decidable (∀x, lo ≤ x → x < hi → P x) :=
decidable_of_iff (∀ x < hi - lo, P (lo + x))
⟨λal x hl hh, by have := al (x - lo) (lt_of_not_ge $
(not_congr (nat.sub_le_sub_right_iff _ _ _ hl)).2 $ not_le_of_gt hh);
rwa [nat.add_sub_of_le hl] at this,
λal x h, al _ (nat.le_add_right _ _) (nat.add_lt_of_lt_sub_left h)⟩
instance decidable_lo_hi_le (lo hi : ℕ) (P : ℕ → Prop) [H : decidable_pred P] :
decidable (∀x, lo ≤ x → x ≤ hi → P x) :=
decidable_of_iff (∀x, lo ≤ x → x < hi + 1 → P x) $
ball_congr $ λ x hl, imp_congr lt_succ_iff iff.rfl
end nat
|
3864ca8b2730a4fb6163cba951db751bc37c9e23
|
432d948a4d3d242fdfb44b81c9e1b1baacd58617
|
/src/category_theory/path_category.lean
|
63cb129b81c3a5cfe3dbf5869c8ceb5d108d29fb
|
[
"Apache-2.0"
] |
permissive
|
JLimperg/aesop3
|
306cc6570c556568897ed2e508c8869667252e8a
|
a4a116f650cc7403428e72bd2e2c4cda300fe03f
|
refs/heads/master
| 1,682,884,916,368
| 1,620,320,033,000
| 1,620,320,033,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 1,793
|
lean
|
/-
Copyright (c) 2021 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison
-/
import category_theory.category
/-!
# The category paths on a quiver.
-/
universes v₁ v₂ u₁ u₂
namespace category_theory
section
/--
A type synonym for the category of paths in a quiver.
-/
def paths (V : Type u₁) : Type u₁ := V
instance (V : Type u₁) [inhabited V] : inhabited (paths V) := ⟨(default V : V)⟩
variables (V : Type u₁) [quiver.{v₁+1} V]
namespace paths
instance category_paths : category.{max u₁ v₁} (paths V) :=
{ hom := λ (X Y : V), quiver.path X Y,
id := λ X, quiver.path.nil,
comp := λ X Y Z f g, quiver.path.comp f g, }
variables {V}
/--
The inclusion of a quiver `V` into its path category, as a prefunctor.
-/
@[simps]
def of : prefunctor V (paths V) :=
{ obj := λ X, X,
map := λ X Y f, f.to_path, }
end paths
variables (W : Type u₂) [quiver.{v₂+1} W]
-- A restatement of `prefunctor.map_path_comp` using `f ≫ g` instead of `f.comp g`.
@[simp] lemma prefunctor.map_path_comp' (F : prefunctor V W)
{X Y Z : paths V} (f : X ⟶ Y) (g : Y ⟶ Z) :
F.map_path (f ≫ g) = (F.map_path f).comp (F.map_path g) :=
prefunctor.map_path_comp _ _ _
end
section
variables {C : Type u₁} [category.{v₁} C]
open quiver
/-- A path in a category can be composed to a single morphism. -/
@[simp]
def compose_path {X : C} : Π {Y : C} (p : path X Y), X ⟶ Y
| _ path.nil := 𝟙 X
| _ (path.cons p e) := compose_path p ≫ e
@[simp]
lemma compose_path_comp {X Y Z : C} (f : path X Y) (g : path Y Z) :
compose_path (f.comp g) = compose_path f ≫ compose_path g :=
begin
induction g with Y' Z' g e ih,
{ simp, },
{ simp [ih], },
end
end
end category_theory
|
666f80d1e74438f6bc4ad93a975ed2c9fb330d8c
|
cf39355caa609c0f33405126beee2739aa3cb77e
|
/tests/lean/run/lift2.lean
|
3b89e45984df133fde12f6442b262c29997f635f
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/lean
|
12b87f69d92e614daea8bcc9d4de9a9ace089d0e
|
cce7990ea86a78bdb383e38ed7f9b5ba93c60ce0
|
refs/heads/master
| 1,687,508,156,644
| 1,684,951,104,000
| 1,684,951,104,000
| 169,960,991
| 457
| 107
|
Apache-2.0
| 1,686,744,372,000
| 1,549,790,268,000
|
C++
|
UTF-8
|
Lean
| false
| false
| 290
|
lean
|
namespace test
inductive {u₁ u₂} lift (A : Type u₁) : Type (max 1 u₁ u₂)
| inj : A → lift
set_option pp.universes true
variables (A : Type 3) (B : Type 1)
#check A = lift.{1 3} B
universe variables u
variables (C : Type (u+2)) (D : Type u)
#check C = lift.{u u+2} D
end test
|
c2bb762c73151f53a235968e50aee172a88b132b
|
ad0c7d243dc1bd563419e2767ed42fb323d7beea
|
/order/zorn.lean
|
3c0911854099fc817828935f0752417426b8f64c
|
[
"Apache-2.0"
] |
permissive
|
sebzim4500/mathlib
|
e0b5a63b1655f910dee30badf09bd7e191d3cf30
|
6997cafbd3a7325af5cb318561768c316ceb7757
|
refs/heads/master
| 1,585,549,958,618
| 1,538,221,723,000
| 1,538,221,723,000
| 150,869,076
| 0
| 0
|
Apache-2.0
| 1,538,229,323,000
| 1,538,229,323,000
| null |
UTF-8
|
Lean
| false
| false
| 10,106
|
lean
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl
Zorn's lemmas.
Ported from Isabelle/HOL (written by Jacques D. Fleuriot, Tobias Nipkow, and Christian Sternagel).
-/
import data.set.lattice
noncomputable theory
universes u
open set classical
local attribute [instance] prop_decidable
namespace zorn
section chain
parameters {α : Type u} (r : α → α → Prop)
local infix ` ≺ `:50 := r
/-- A chain is a subset `c` satisfying
`x ≺ y ∨ x = y ∨ y ≺ x` for all `x y ∈ c`. -/
def chain (c : set α) := pairwise_on c (λx y, x ≺ y ∨ y ≺ x)
parameters {r}
theorem chain.total_of_refl [is_refl α r]
{c} (H : chain c) {x y} (hx : x ∈ c) (hy : y ∈ c) :
x ≺ y ∨ y ≺ x :=
if e : x = y then or.inl (e ▸ refl _) else H _ hx _ hy e
theorem chain.directed [is_refl α r]
{c} (H : chain c) {x y} (hx : x ∈ c) (hy : y ∈ c) :
∃ z, z ∈ c ∧ x ≺ z ∧ y ≺ z :=
match H.total_of_refl hx hy with
| or.inl h := ⟨y, hy, h, refl _⟩
| or.inr h := ⟨x, hx, refl _, h⟩
end
theorem chain.directed_on [is_refl α r] {c} (H : chain c) : directed_on (≺) c :=
λ x xc y yc, let ⟨z, hz, h⟩ := H.directed xc yc in ⟨z, hz, h⟩
theorem chain_insert {c : set α} {a : α} (hc : chain c) (ha : ∀b∈c, b ≠ a → a ≺ b ∨ b ≺ a) :
chain (insert a c) :=
forall_insert_of_forall
(assume x hx, forall_insert_of_forall (hc x hx) (assume hneq, (ha x hx hneq).symm))
(forall_insert_of_forall (assume x hx hneq, ha x hx $ assume h', hneq h'.symm) (assume h, (h rfl).rec _))
def super_chain (c₁ c₂ : set α) := chain c₂ ∧ c₁ ⊂ c₂
def is_max_chain (c : set α) := chain c ∧ ¬ (∃c', super_chain c c')
def succ_chain (c : set α) :=
if h : ∃c', chain c ∧ super_chain c c' then some h else c
theorem succ_spec {c : set α} (h : ∃c', chain c ∧ super_chain c c') :
super_chain c (succ_chain c) :=
let ⟨c', hc'⟩ := h in
have chain c ∧ super_chain c (some h),
from @some_spec _ (λc', chain c ∧ super_chain c c') _,
by simp [succ_chain, dif_pos, h, this.right]
theorem chain_succ {c : set α} (hc : chain c) : chain (succ_chain c) :=
if h : ∃c', chain c ∧ super_chain c c' then
(succ_spec h).left
else
by simp [succ_chain, dif_neg, h]; exact hc
theorem super_of_not_max {c : set α} (hc₁ : chain c) (hc₂ : ¬ is_max_chain c) :
super_chain c (succ_chain c) :=
begin
simp [is_max_chain, not_and_distrib, not_forall_not] at hc₂,
cases hc₂.neg_resolve_left hc₁ with c' hc',
exact succ_spec ⟨c', hc₁, hc'⟩
end
theorem succ_increasing {c : set α} : c ⊆ succ_chain c :=
if h : ∃c', chain c ∧ super_chain c c' then
have super_chain c (succ_chain c), from succ_spec h,
this.right.left
else by simp [succ_chain, dif_neg, h, subset.refl]
inductive chain_closure : set α → Prop
| succ : ∀{s}, chain_closure s → chain_closure (succ_chain s)
| union : ∀{s}, (∀a∈s, chain_closure a) → chain_closure (⋃₀ s)
theorem chain_closure_empty : chain_closure ∅ :=
have chain_closure (⋃₀ ∅),
from chain_closure.union $ assume a h, h.rec _,
by simp at this; assumption
theorem chain_closure_closure : chain_closure (⋃₀ chain_closure) :=
chain_closure.union $ assume s hs, hs
variables {c c₁ c₂ c₃ : set α}
private lemma chain_closure_succ_total_aux (hc₁ : chain_closure c₁) (hc₂ : chain_closure c₂)
(h : ∀{c₃}, chain_closure c₃ → c₃ ⊆ c₂ → c₂ = c₃ ∨ succ_chain c₃ ⊆ c₂) :
c₁ ⊆ c₂ ∨ succ_chain c₂ ⊆ c₁ :=
begin
induction hc₁,
case _root_.zorn.chain_closure.succ : c₃ hc₃ ih {
cases ih with ih ih,
{ have h := h hc₃ ih,
cases h with h h,
{ exact or.inr (h ▸ subset.refl _) },
{ exact or.inl h } },
{ exact or.inr (subset.trans ih succ_increasing) } },
case _root_.zorn.chain_closure.union : s hs ih {
refine (classical.or_iff_not_imp_right.2 $ λ hn, sUnion_subset $ λ a ha, _),
apply (ih a ha).resolve_right,
apply mt (λ h, _) hn,
exact subset.trans h (subset_sUnion_of_mem ha) }
end
private lemma chain_closure_succ_total (hc₁ : chain_closure c₁) (hc₂ : chain_closure c₂) (h : c₁ ⊆ c₂) :
c₂ = c₁ ∨ succ_chain c₁ ⊆ c₂ :=
begin
induction hc₂ generalizing c₁ hc₁ h,
case _root_.zorn.chain_closure.succ : c₂ hc₂ ih {
have h₁ : c₁ ⊆ c₂ ∨ @succ_chain α r c₂ ⊆ c₁ :=
(chain_closure_succ_total_aux hc₁ hc₂ $ assume c₁, ih),
cases h₁ with h₁ h₁,
{ have h₂ := ih hc₁ h₁,
cases h₂ with h₂ h₂,
{ exact (or.inr $ h₂ ▸ subset.refl _) },
{ exact (or.inr $ subset.trans h₂ succ_increasing) } },
{ exact (or.inl $ subset.antisymm h₁ h) } },
case _root_.zorn.chain_closure.union : s hs ih {
apply or.imp_left (assume h', subset.antisymm h' h),
apply classical.by_contradiction,
simp [not_or_distrib, sUnion_subset_iff, classical.not_forall],
intros c₃ hc₃ h₁ h₂,
have h := chain_closure_succ_total_aux hc₁ (hs c₃ hc₃) (assume c₄, ih _ hc₃),
cases h with h h,
{ have h' := ih c₃ hc₃ hc₁ h,
cases h' with h' h',
{ exact (h₁ $ h' ▸ subset.refl _) },
{ exact (h₂ $ subset.trans h' $ subset_sUnion_of_mem hc₃) } },
{ exact (h₁ $ subset.trans succ_increasing h) } }
end
theorem chain_closure_total (hc₁ : chain_closure c₁) (hc₂ : chain_closure c₂) : c₁ ⊆ c₂ ∨ c₂ ⊆ c₁ :=
have c₁ ⊆ c₂ ∨ succ_chain c₂ ⊆ c₁,
from chain_closure_succ_total_aux hc₁ hc₂ $ assume c₃ hc₃, chain_closure_succ_total hc₃ hc₂,
or.imp_right (assume : succ_chain c₂ ⊆ c₁, subset.trans succ_increasing this) this
theorem chain_closure_succ_fixpoint (hc₁ : chain_closure c₁) (hc₂ : chain_closure c₂)
(h_eq : succ_chain c₂ = c₂) : c₁ ⊆ c₂ :=
begin
induction hc₁,
case _root_.zorn.chain_closure.succ : c₁ hc₁ h {
exact or.elim (chain_closure_succ_total hc₁ hc₂ h)
(assume h, h ▸ h_eq.symm ▸ subset.refl c₂) id },
case _root_.zorn.chain_closure.union : s hs ih {
exact (sUnion_subset $ assume c₁ hc₁, ih c₁ hc₁) }
end
theorem chain_closure_succ_fixpoint_iff (hc : chain_closure c) :
succ_chain c = c ↔ c = ⋃₀ chain_closure :=
⟨assume h, subset.antisymm
(subset_sUnion_of_mem hc)
(chain_closure_succ_fixpoint chain_closure_closure hc h),
assume : c = ⋃₀{c : set α | chain_closure c},
subset.antisymm
(calc succ_chain c ⊆ ⋃₀{c : set α | chain_closure c} :
subset_sUnion_of_mem $ chain_closure.succ hc
... = c : this.symm)
succ_increasing⟩
theorem chain_chain_closure (hc : chain_closure c) : chain c :=
begin
induction hc,
case _root_.zorn.chain_closure.succ : c hc h {
exact chain_succ h },
case _root_.zorn.chain_closure.union : s hs h {
have h : ∀c∈s, zorn.chain c := h,
exact assume c₁ ⟨t₁, ht₁, (hc₁ : c₁ ∈ t₁)⟩ c₂ ⟨t₂, ht₂, (hc₂ : c₂ ∈ t₂)⟩ hneq,
have t₁ ⊆ t₂ ∨ t₂ ⊆ t₁, from chain_closure_total (hs _ ht₁) (hs _ ht₂),
or.elim this
(assume : t₁ ⊆ t₂, h t₂ ht₂ c₁ (this hc₁) c₂ hc₂ hneq)
(assume : t₂ ⊆ t₁, h t₁ ht₁ c₁ hc₁ c₂ (this hc₂) hneq) }
end
def max_chain := ⋃₀ chain_closure
/-- Hausdorff's maximality principle
There exists a maximal totally ordered subset of `α`.
Note that we do not require `α` to be partially ordered by `r`. -/
theorem max_chain_spec : is_max_chain max_chain :=
classical.by_contradiction $
assume : ¬ is_max_chain (⋃₀ chain_closure),
have super_chain (⋃₀ chain_closure) (succ_chain (⋃₀ chain_closure)),
from super_of_not_max (chain_chain_closure chain_closure_closure) this,
let ⟨h₁, h₂, (h₃ : (⋃₀ chain_closure) ≠ succ_chain (⋃₀ chain_closure))⟩ := this in
have succ_chain (⋃₀ chain_closure) = (⋃₀ chain_closure),
from (chain_closure_succ_fixpoint_iff chain_closure_closure).mpr rfl,
h₃ this.symm
/-- Zorn's lemma
If every chain has an upper bound, then there is a maximal element -/
theorem zorn (h : ∀c, chain c → ∃ub, ∀a∈c, a ≺ ub) (trans : ∀{a b c}, a ≺ b → b ≺ c → a ≺ c) :
∃m, ∀a, m ≺ a → a ≺ m :=
have ∃ub, ∀a∈max_chain, a ≺ ub,
from h _ $ max_chain_spec.left,
let ⟨ub, (hub : ∀a∈max_chain, a ≺ ub)⟩ := this in
⟨ub, assume a ha,
have chain (insert a max_chain),
from chain_insert max_chain_spec.left $ assume b hb _, or.inr $ trans (hub b hb) ha,
have a ∈ max_chain, from
classical.by_contradiction $ assume h : a ∉ max_chain,
max_chain_spec.right $ ⟨insert a max_chain, this, ssubset_insert h⟩,
hub a this⟩
end chain
theorem zorn_partial_order {α : Type u} [partial_order α]
(h : ∀c:set α, @chain α (≤) c → ∃ub, ∀a∈c, a ≤ ub) : ∃m:α, ∀a, m ≤ a → a = m :=
let ⟨m, hm⟩ := @zorn α (≤) h (assume a b c, le_trans) in
⟨m, assume a ha, le_antisymm (hm a ha) ha⟩
theorem zorn_subset {α : Type u} (S : set (set α))
(h : ∀c ⊆ S, chain (⊆) c → (⋃₀ c) ∈ S) :
∃ m ∈ S, ∀a ∈ S, m ⊆ a → a = m :=
begin
letI : partial_order S := partial_order.lift subtype.val (λ _ _, subtype.eq'),
have : ∀c:set S, @chain S (≤) c → ∃ub, ∀a∈c, a ≤ ub,
{ refine λ c hc, ⟨⟨_, h (subtype.val '' c) (image_subset_iff.2 _) _⟩, _⟩,
{ rintro ⟨x, hx⟩ _, exact hx },
{ rintro _ ⟨x, cx, rfl⟩ _ ⟨y, cy, rfl⟩ xy,
exact hc x cx y cy (mt (congr_arg _) xy) },
{ rintro ⟨x, hx⟩ xc, exact subset_sUnion_of_mem (mem_image_of_mem _ xc) } },
rcases zorn_partial_order this with ⟨⟨m, mS⟩, hm⟩,
exact ⟨m, mS, λ a aS ha, congr_arg subtype.val (hm ⟨a, aS⟩ ha)⟩
end
theorem chain.total {α : Type u} [preorder α]
{c} (H : @chain α (≤) c) :
∀ {x y}, x ∈ c → y ∈ c → x ≤ y ∨ y ≤ x :=
@chain.total_of_refl _ (≤) ⟨le_refl⟩ _ H
end zorn
|
bd192f16a190e593d4f4ec4f11f26dd602734507
|
9028d228ac200bbefe3a711342514dd4e4458bff
|
/src/data/polynomial/erase_lead.lean
|
791e299f97e8860b68b73b8d5236798e3fa9d6c9
|
[
"Apache-2.0"
] |
permissive
|
mcncm/mathlib
|
8d25099344d9d2bee62822cb9ed43aa3e09fa05e
|
fde3d78cadeec5ef827b16ae55664ef115e66f57
|
refs/heads/master
| 1,672,743,316,277
| 1,602,618,514,000
| 1,602,618,514,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 4,824
|
lean
|
/-
Copyright (c) 2020 Damiano Testa. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Damiano Testa
-/
import data.polynomial.degree.basic
import data.polynomial.degree.trailing_degree
/-!
# Erase the leading term of a univariate polynomial
## Definition
* `erase_lead f`: the polynomial `f - leading term of f`
`erase_lead` serves as reduction step in an induction, shaving off one monomial from a polynomial.
The definition is set up so that it does not mention subtraction in the definition,
and thus works for polynomials over semirings as well as rings.
-/
noncomputable theory
open_locale classical
open polynomial finsupp finset
namespace polynomial
variables {R : Type*} [semiring R] {f : polynomial R}
/-- `erase_lead f` for a polynomial `f` is the polynomial obtained by
subtracting from `f` the leading term of `f`. -/
def erase_lead (f : polynomial R) : polynomial R :=
finsupp.erase f.nat_degree f
section erase_lead
lemma erase_lead_support (f : polynomial R) :
f.erase_lead.support = f.support.erase f.nat_degree :=
-- `rfl` fails because LHS uses `nat.decidable_eq` but RHS is classical.
by convert rfl
lemma erase_lead_coeff (i : ℕ) :
f.erase_lead.coeff i = if i = f.nat_degree then 0 else f.coeff i :=
-- `rfl` fails because LHS uses `nat.decidable_eq` but RHS is classical.
by convert rfl
@[simp] lemma erase_lead_coeff_nat_degree : f.erase_lead.coeff f.nat_degree = 0 :=
finsupp.erase_same
lemma erase_lead_coeff_of_ne (i : ℕ) (hi : i ≠ f.nat_degree) :
f.erase_lead.coeff i = f.coeff i :=
finsupp.erase_ne hi
@[simp] lemma erase_lead_zero : erase_lead (0 : polynomial R) = 0 :=
finsupp.erase_zero _
@[simp] lemma erase_lead_add_monomial_nat_degree_leading_coeff (f : polynomial R) :
f.erase_lead + monomial f.nat_degree f.leading_coeff = f :=
begin
ext i,
simp only [erase_lead_coeff, coeff_monomial, coeff_add, @eq_comm _ _ i],
split_ifs with h,
{ subst i, simp only [leading_coeff, zero_add] },
{ exact add_zero _ }
end
@[simp] lemma erase_lead_add_C_mul_X_pow (f : polynomial R) :
f.erase_lead + (C f.leading_coeff) * X ^ f.nat_degree = f :=
by rw [C_mul_X_pow_eq_monomial, erase_lead_add_monomial_nat_degree_leading_coeff]
@[simp] lemma self_sub_monomial_nat_degree_leading_coeff {R : Type*} [ring R] (f : polynomial R) :
f - monomial f.nat_degree f.leading_coeff = f.erase_lead :=
(eq_sub_iff_add_eq.mpr (erase_lead_add_monomial_nat_degree_leading_coeff f)).symm
@[simp] lemma self_sub_C_mul_X_pow {R : Type*} [ring R] (f : polynomial R) :
f - (C f.leading_coeff) * X ^ f.nat_degree = f.erase_lead :=
by rw [C_mul_X_pow_eq_monomial, self_sub_monomial_nat_degree_leading_coeff]
lemma erase_lead_ne_zero (f0 : 2 ≤ f.support.card) : erase_lead f ≠ 0 :=
begin
rw [ne.def, ← finsupp.card_support_eq_zero, erase_lead_support],
exact (zero_lt_one.trans_le $ (nat.sub_le_sub_right f0 1).trans
finset.pred_card_le_card_erase).ne.symm
end
@[simp] lemma nat_degree_not_mem_erase_lead_support : f.nat_degree ∉ (erase_lead f).support :=
by convert not_mem_erase _ _
lemma ne_nat_degree_of_mem_erase_lead_support {a : ℕ} (h : a ∈ (erase_lead f).support) :
a ≠ f.nat_degree :=
by { rintro rfl, exact nat_degree_not_mem_erase_lead_support h }
lemma erase_lead_support_card_lt (h : f ≠ 0) : (erase_lead f).support.card < f.support.card :=
begin
rw erase_lead_support,
exact card_lt_card (erase_ssubset $ nat_degree_mem_support_of_nonzero h)
end
@[simp] lemma erase_lead_monomial (i : ℕ) (r : R) :
erase_lead (monomial i r) = 0 :=
begin
by_cases hr : r = 0,
{ subst r, simp only [monomial_zero_right, erase_lead_zero] },
{ rw [erase_lead, nat_degree_monomial _ _ hr, monomial, erase_single] }
end
@[simp] lemma erase_lead_C (r : R) : erase_lead (C r) = 0 :=
erase_lead_monomial _ _
@[simp] lemma erase_lead_X : erase_lead (X : polynomial R) = 0 :=
erase_lead_monomial _ _
@[simp] lemma erase_lead_X_pow (n : ℕ) : erase_lead (X ^ n : polynomial R) = 0 :=
by rw [X_pow_eq_monomial, erase_lead_monomial]
@[simp] lemma erase_lead_C_mul_X_pow (r : R) (n : ℕ) : erase_lead (C r * X ^ n) = 0 :=
by rw [C_mul_X_pow_eq_monomial, erase_lead_monomial]
lemma erase_lead_degree_le : (erase_lead f).degree ≤ f.degree :=
begin
rw degree_le_iff_coeff_zero,
intros i hi,
rw erase_lead_coeff,
split_ifs with h, { refl },
apply coeff_eq_zero_of_degree_lt hi
end
lemma erase_lead_nat_degree_le : (erase_lead f).nat_degree ≤ f.nat_degree :=
nat_degree_le_nat_degree erase_lead_degree_le
lemma erase_lead_nat_degree_lt (f0 : 2 ≤ f.support.card) :
(erase_lead f).nat_degree < f.nat_degree :=
lt_of_le_of_ne erase_lead_nat_degree_le $ ne_nat_degree_of_mem_erase_lead_support $
nat_degree_mem_support_of_nonzero $ erase_lead_ne_zero f0
end erase_lead
end polynomial
|
e2512eda7a029f1b7596997240ecc6de38aa41a1
|
2385ce0e3b60d8dbea33dd439902a2070cca7a24
|
/tests/lean/unification_hints2.lean
|
a9c8687d6407ced9efac77ee5d8f584874a07676
|
[
"Apache-2.0"
] |
permissive
|
TehMillhouse/lean
|
68d6fdd2fb11a6c65bc28dec308d70f04dad38b4
|
6bbf2fbd8912617e5a973575bab8c383c9c268a1
|
refs/heads/master
| 1,620,830,893,339
| 1,515,592,479,000
| 1,515,592,997,000
| 116,964,828
| 0
| 0
| null | 1,515,592,734,000
| 1,515,592,734,000
| null |
UTF-8
|
Lean
| false
| false
| 1,110
|
lean
|
open nat
constant F : nat → Type
constant F.suc (n : nat) (f : F n) : F (succ n)
constant F.raise (n m : nat) (f : F m) : F (m + n)
example (m n : nat) (i : F m) : F.raise (succ n) m i = F.suc _ (F.raise n _ i) :=
begin
trace_state, -- the result should not contain recursor applications because the stdlib contains the unification hint add_succ_defeq_succ_add_hint
sorry
end
@[unify] def {u} cons_append_hint (α : Type u) (a b : α) (l₁ l₂ l₃: list α) : unification_hint :=
{ pattern := (a :: l₁) ++ l₂ =?= b :: l₃,
constraints := [l₃ =?= l₁ ++ l₂, a =?= b] }
constant {u} G (α : Type u) : list α → Type
constant {u} G.cons (α : Type u) (a : α) (l : list α) (g : G α l) : G α (a :: l)
constant {u} G.raise (α : Type u) (l₁ l₂ : list α) (g : G α l₂) : G α (l₁ ++ l₂)
universe u
example (α : Type u) (a b : α) (l₁ l₂ : list α) (i : G α l₂) : G.raise α (a::l₁) l₂ i = G.cons α a _ (G.raise α _ _ i) :=
begin
trace_state, -- the result should not contain recursor applications because we declared cons_append_hint above
sorry
end
|
9baee9b8b916fb3b60c4f955fba7860fc7cc6b2b
|
0c1546a496eccfb56620165cad015f88d56190c5
|
/library/init/native/util.lean
|
3a539cbba60a1c4a3ef5c539557c5dd815b55673
|
[
"Apache-2.0"
] |
permissive
|
Solertis/lean
|
491e0939957486f664498fbfb02546e042699958
|
84188c5aa1673fdf37a082b2de8562dddf53df3f
|
refs/heads/master
| 1,610,174,257,606
| 1,486,263,620,000
| 1,486,263,620,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 1,962
|
lean
|
/-
Copyright (c) 2016 Jared Roesch. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jared Roesch
-/
prelude
import init.meta.format
import init.meta.expr
import init.data.string
import init.category.state
import init.native.result
import init.native.internal
import init.native.builtin
meta def is_nat_cases_on (n : name) : bool :=
decidable.to_bool $ `nat.cases_on = n
meta def is_cases_on (head : expr) : bool :=
if is_nat_cases_on (expr.const_name head)
then bool.tt
else
match native.is_internal_cases head with
| option.some _ := bool.tt
| option.none :=
match native.get_builtin (expr.const_name head) with
| option.some b :=
match b with
| builtin.cases _ _ := bool.tt
| _ := bool.ff
end
| option.none := bool.ff
end
end
meta definition mk_local (n : name) : expr :=
expr.local_const n n binder_info.default (expr.const n [])
meta def mk_neutral_expr : expr :=
expr.const `_neutral_ []
meta def mk_call : expr → list expr → expr
| head [] := head
| head (e :: es) := mk_call (expr.app head e) es
-- really need to get out of the meta language so I can prove things, I should just have a unit test lemma
meta def under_lambda {M} [monad M] (fresh_name : M name) (action : expr -> M expr) : expr → M expr
| (expr.lam n bi ty body) := do
fresh ← fresh_name,
body' ← under_lambda $ expr.instantiate_var body (mk_local fresh),
return $ expr.lam n bi ty (expr.abstract body' (mk_local fresh))
| e := action e
inductive application_kind
| cases
| constructor
| other
-- I like this pattern of hiding the annoying C++ interfaces
-- behind more typical FP constructs so we can do case analysis instead.
meta def app_kind (head : expr) : application_kind :=
if is_cases_on head
then application_kind.cases
else match native.is_internal_cnstr head with
| some _ := application_kind.constructor
| none := application_kind.other
end
|
e08a812cc751cb2f6ae87016f6f4af35ca3d8f18
|
9a0b1b3a653ea926b03d1495fef64da1d14b3174
|
/tidy/rewrite_search/discovery/collector/everything.lean
|
51c5f735e4308c23282a124e6e8785bf73c8c638
|
[
"Apache-2.0"
] |
permissive
|
khoek/mathlib-tidy
|
8623b27b4e04e7d598164e7eaf248610d58f768b
|
866afa6ab597c47f1b72e8fe2b82b97fff5b980f
|
refs/heads/master
| 1,585,598,975,772
| 1,538,659,544,000
| 1,538,659,544,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 1,653
|
lean
|
import tidy.rewrite_search.core.shared
import ..types
import .common
open tactic
open tidy.rewrite_search
namespace tidy.rewrite_search.discovery
-- TODO print the lemmas which were being added
-- TODO use the metric to score the rewrites and pick the top few which are high-scoring
-- TODO only try some of of the "found rewrites" at a time and store the ones we've done in the progress
meta def try_everything (conf : config) (p : progress) (sample : list expr) : tactic (progress × list (expr × bool)) := do
if p.persistence < persistence.try_everything then
return (p, [])
else do
my_prefix ← name.get_prefix <$> decl_name,
-- TODO this is a compromise with the time it takes to process
-- TODO implement banned namespaces (when this is removed) (maybe only go `n` heirachy levels up?)
lems ← (list.filter_map $ λ rw : name × expr,
if rw.1.get_prefix = my_prefix then
some rw.1
else
none) <$> find_all_rewrites,
lems ← load_names lems,
let rws := (rewrite_list_from_lemmas lems).filter $ λ rw, ¬conf.rs.contains rw,
rws ← rws.mfilter $ λ rw, is_promising_rewrite rw sample,
if conf.trace_discovery then do
let n := rws.length,
if n = 0 then
discovery_trace "The entire current environment was searched, and no interesting rewrites could be found!"
else do
discovery_trace format!"The entire current environment was searched, and we have added {n} new rewrites(s) for consideration." ff,
discovery_trace format!"Lemmas: {(rws.map prod.fst).erase_duplicates}"
else skip,
return (p, rws)
end tidy.rewrite_search.discovery
|
20be05c0df62b5e49ee20db01dbea43e912f0f10
|
cc62cd292c1acc80a10b1c645915b70d2cdee661
|
/src/category_theory/path_category.lean
|
caa023dc0e104b899f1b7bb0888ad986e39297b5
|
[] |
no_license
|
RitaAhmadi/lean-category-theory
|
4afb881c4b387ee2c8ce706c454fbf9db8897a29
|
a27b4ae5eac978e9188d2e867c3d11d9a5b87a9e
|
refs/heads/master
| 1,651,786,183,402
| 1,565,604,314,000
| 1,565,604,314,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 2,183
|
lean
|
-- Copyright (c) 2017 Scott Morrison. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Authors: Stephen Morgan and Scott Morrison
import category_theory.graphs.category
-- FIXME why do we need this here?
@[obviously] meta def obviously_4 := tactic.tidy { tactics := extended_tidy_tactics }
open category_theory
open category_theory.graphs
universes v₁ v₂ u₁ u₂
namespace category_theory.graphs
def paths (C : Type u₂) := C
instance paths_category (C : Type u₁) [graph.{v₁} C] : category.{(max u₁ v₁)+1} (paths C) :=
{ hom := λ x y : C, path x y,
id := λ x, path.nil x,
comp := λ _ _ _ f g, concatenate_paths f g,
comp_id' := begin
tidy,
induction f, -- PROJECT think about how to automate an inductive step. When can you be sure it's a good idea?
obviously,
end,
assoc' := begin
tidy,
induction f,
obviously,
end }.
instance paths_small_category (C : Type u₁) [graph.{u₁ u₁} C] : small_category (paths C) := graphs.paths_category C
variables {C : Type u₂} [𝒞 : category.{v₂} C] {G : Type u₁} [𝒢 : graph.{v₁} G]
include 𝒢 𝒞
@[simp] def path_to_morphism
(H : graph_hom G C)
: Π {X Y : G}, path X Y → ((H.onVertices X) ⟶ (H.onVertices Y))
| ._ ._ (path.nil Z) := 𝟙 (H.onVertices Z)
| ._ ._ (@path.cons ._ _ _ _ _ e p) := (H.onEdges e) ≫ (path_to_morphism p)
@[simp] lemma path_to_morphism.comp (H : graph_hom G C) {X Y Z : paths G} (f : X ⟶ Y) (g : Y ⟶ Z) : path_to_morphism H (f ≫ g) = path_to_morphism H f ≫ path_to_morphism H g :=
begin
induction f,
obviously,
end
end category_theory.graphs
namespace category_theory.functor
open category_theory.graphs
variables {C : Type u₂} [𝒞 : category.{v₂} C] {G : Type u₁} [𝒢 : graph.{v₁} G]
include 𝒢 𝒞
-- PROJECT obtain this as the left adjoint to the forgetful functor.
@[simp] def of_graph_hom (H : graph_hom G C) : (paths G) ⥤ C :=
{ obj := λ X, (H.onVertices X),
map := λ _ _ f, (path_to_morphism H f) }
end category_theory.functor
|
542cabf1bac11bc8e719c8942ac4530774bbcc7c
|
b2e508d02500f1512e1618150413e6be69d9db10
|
/src/linear_algebra/basic.lean
|
5c98cae2fb0526f1af3a2a75f75368549638d233
|
[
"Apache-2.0"
] |
permissive
|
callum-sutton/mathlib
|
c3788f90216e9cd43eeffcb9f8c9f959b3b01771
|
afd623825a3ac6bfbcc675a9b023edad3f069e89
|
refs/heads/master
| 1,591,371,888,053
| 1,560,990,690,000
| 1,560,990,690,000
| 192,476,045
| 0
| 0
|
Apache-2.0
| 1,568,941,843,000
| 1,560,837,965,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 61,602
|
lean
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro, Kevin Buzzard
Basics of linear algebra. This sets up the "categorical/lattice structure" of
modules, submodules, and linear maps.
-/
import algebra.pi_instances data.finsupp data.equiv.algebra order.order_iso
open function lattice
reserve infix `≃ₗ` : 50
universes u v w x y z
variables {α : Type u} {β : Type v} {γ : Type w} {δ : Type y} {ε : Type z} {ι : Type x}
namespace finset
lemma smul_sum [ring γ] [add_comm_group β] [module γ β]
{s : finset α} {a : γ} {f : α → β} :
a • (s.sum f) = s.sum (λc, a • f c) :=
(finset.sum_hom ((•) a)).symm
end finset
namespace finsupp
lemma smul_sum [has_zero β] [ring γ] [add_comm_group δ] [module γ δ]
{v : α →₀ β} {c : γ} {h : α → β → δ} :
c • (v.sum h) = v.sum (λa b, c • h a b) :=
finset.smul_sum
end finsupp
namespace linear_map
section
variables [ring α] [add_comm_group β] [add_comm_group γ] [add_comm_group δ] [add_comm_group ε]
variables [module α β] [module α γ] [module α δ] [module α ε]
variables (f g : β →ₗ[α] γ)
include α
@[simp] theorem comp_id : f.comp id = f :=
linear_map.ext $ λ x, rfl
@[simp] theorem id_comp : id.comp f = f :=
linear_map.ext $ λ x, rfl
theorem comp_assoc (g : γ →ₗ[α] δ) (h : δ →ₗ[α] ε) : (h.comp g).comp f = h.comp (g.comp f) :=
rfl
def cod_restrict (p : submodule α β) (f : γ →ₗ[α] β) (h : ∀c, f c ∈ p) : γ →ₗ[α] p :=
by refine {to_fun := λc, ⟨f c, h c⟩, ..}; intros; apply set_coe.ext; simp
@[simp] theorem cod_restrict_apply (p : submodule α β) (f : γ →ₗ[α] β) {h} (x : γ) :
(cod_restrict p f h x : β) = f x := rfl
@[simp] lemma comp_cod_restrict (p : submodule α γ) (h : ∀b, f b ∈ p) (g : δ →ₗ[α] β) :
(cod_restrict p f h).comp g = cod_restrict p (f.comp g) (assume b, h _) :=
ext $ assume b, rfl
@[simp] lemma subtype_comp_cod_restrict (p : submodule α γ) (h : ∀b, f b ∈ p) :
p.subtype.comp (cod_restrict p f h) = f :=
ext $ assume b, rfl
def inverse (g : γ → β) (h₁ : left_inverse g f) (h₂ : right_inverse g f) : γ →ₗ[α] β :=
by dsimp [left_inverse, function.right_inverse] at h₁ h₂; exact
⟨g, λ x y, by rw [← h₁ (g (x + y)), ← h₁ (g x + g y)]; simp [h₂],
λ a b, by rw [← h₁ (g (a • b)), ← h₁ (a • g b)]; simp [h₂]⟩
instance : has_zero (β →ₗ[α] γ) := ⟨⟨λ _, 0, by simp, by simp⟩⟩
@[simp] lemma zero_apply (x : β) : (0 : β →ₗ[α] γ) x = 0 := rfl
instance : has_neg (β →ₗ[α] γ) := ⟨λ f, ⟨λ b, - f b, by simp, by simp⟩⟩
@[simp] lemma neg_apply (x : β) : (- f) x = - f x := rfl
instance : has_add (β →ₗ[α] γ) := ⟨λ f g, ⟨λ b, f b + g b, by simp, by simp [smul_add]⟩⟩
@[simp] lemma add_apply (x : β) : (f + g) x = f x + g x := rfl
instance : add_comm_group (β →ₗ[α] γ) :=
by refine {zero := 0, add := (+), neg := has_neg.neg, ..};
intros; ext; simp
instance linear_map.is_add_group_hom : is_add_group_hom f :=
{ map_add := f.add }
instance linear_map_apply_is_add_group_hom (a : β) :
is_add_group_hom (λ f : β →ₗ[α] γ, f a) :=
{ map_add := λ f g, linear_map.add_apply f g a }
lemma sum_apply [decidable_eq δ] (t : finset δ) (f : δ → β →ₗ[α] γ) (b : β) :
t.sum f b = t.sum (λd, f d b) :=
(@finset.sum_hom _ _ _ t f _ _ (λ g : β →ₗ[α] γ, g b) _).symm
@[simp] lemma sub_apply (x : β) : (f - g) x = f x - g x := rfl
def smul_right (f : γ →ₗ[α] α) (x : β) : γ →ₗ[α] β :=
⟨λb, f b • x, by simp [add_smul], by simp [smul_smul]⟩.
@[simp] theorem smul_right_apply (f : γ →ₗ[α] α) (x : β) (c : γ) :
(smul_right f x : γ → β) c = f c • x := rfl
instance : has_one (β →ₗ[α] β) := ⟨linear_map.id⟩
instance : has_mul (β →ₗ[α] β) := ⟨linear_map.comp⟩
@[simp] lemma one_app (x : β) : (1 : β →ₗ[α] β) x = x := rfl
@[simp] lemma mul_app (A B : β →ₗ[α] β) (x : β) : (A * B) x = A (B x) := rfl
@[simp] theorem comp_zero : f.comp (0 : δ →ₗ[α] β) = 0 :=
ext $ assume c, by rw [comp_apply, zero_apply, zero_apply, f.map_zero]
@[simp] theorem zero_comp : (0 : γ →ₗ[α] δ).comp f = 0 :=
rfl
section
variables (α β)
include β
instance endomorphism_ring : ring (β →ₗ[α] β) :=
by refine {mul := (*), one := 1, ..linear_map.add_comm_group, ..};
{ intros, apply linear_map.ext, simp }
end
section
variables (α β γ)
def fst : β × γ →ₗ[α] β := ⟨prod.fst, λ x y, rfl, λ x y, rfl⟩
def snd : β × γ →ₗ[α] γ := ⟨prod.snd, λ x y, rfl, λ x y, rfl⟩
end
@[simp] theorem fst_apply (x : β × γ) : fst α β γ x = x.1 := rfl
@[simp] theorem snd_apply (x : β × γ) : snd α β γ x = x.2 := rfl
def pair (f : β →ₗ[α] γ) (g : β →ₗ[α] δ) : β →ₗ[α] γ × δ :=
⟨λ x, (f x, g x), λ x y, by simp, λ x y, by simp⟩
@[simp] theorem pair_apply (f : β →ₗ[α] γ) (g : β →ₗ[α] δ) (x : β) :
pair f g x = (f x, g x) := rfl
@[simp] theorem fst_pair (f : β →ₗ[α] γ) (g : β →ₗ[α] δ) :
(fst α γ δ).comp (pair f g) = f := by ext; refl
@[simp] theorem snd_pair (f : β →ₗ[α] γ) (g : β →ₗ[α] δ) :
(snd α γ δ).comp (pair f g) = g := by ext; refl
@[simp] theorem pair_fst_snd : pair (fst α β γ) (snd α β γ) = linear_map.id :=
by ext; refl
section
variables (α β γ)
def inl : β →ₗ[α] β × γ := by refine ⟨prod.inl, _, _⟩; intros; simp [prod.inl]
def inr : γ →ₗ[α] β × γ := by refine ⟨prod.inr, _, _⟩; intros; simp [prod.inr]
end
@[simp] theorem inl_apply (x : β) : inl α β γ x = (x, 0) := rfl
@[simp] theorem inr_apply (x : γ) : inr α β γ x = (0, x) := rfl
def copair (f : β →ₗ[α] δ) (g : γ →ₗ[α] δ) : β × γ →ₗ[α] δ :=
⟨λ x, f x.1 + g x.2, λ x y, by simp, λ x y, by simp [smul_add]⟩
@[simp] theorem copair_apply (f : β →ₗ[α] δ) (g : γ →ₗ[α] δ) (x : β) (y : γ) :
copair f g (x, y) = f x + g y := rfl
@[simp] theorem copair_inl (f : β →ₗ[α] δ) (g : γ →ₗ[α] δ) :
(copair f g).comp (inl α β γ) = f := by ext; simp
@[simp] theorem copair_inr (f : β →ₗ[α] δ) (g : γ →ₗ[α] δ) :
(copair f g).comp (inr α β γ) = g := by ext; simp
@[simp] theorem copair_inl_inr : copair (inl α β γ) (inr α β γ) = linear_map.id :=
by ext ⟨x, y⟩; simp
theorem fst_eq_copair : fst α β γ = copair linear_map.id 0 := by ext ⟨x, y⟩; simp
theorem snd_eq_copair : snd α β γ = copair 0 linear_map.id := by ext ⟨x, y⟩; simp
theorem inl_eq_pair : inl α β γ = pair linear_map.id 0 := rfl
theorem inr_eq_pair : inr α β γ = pair 0 linear_map.id := rfl
end
section comm_ring
variables [comm_ring α] [add_comm_group β] [add_comm_group γ] [add_comm_group δ]
variables [module α β] [module α γ] [module α δ]
variables (f g : β →ₗ[α] γ)
include α
instance : has_scalar α (β →ₗ[α] γ) := ⟨λ a f,
⟨λ b, a • f b, by simp [smul_add], by simp [smul_smul, mul_comm]⟩⟩
@[simp] lemma smul_apply (a : α) (x : β) : (a • f) x = a • f x := rfl
instance : module α (β →ₗ[α] γ) :=
module.of_core $ by refine { smul := (•), ..};
intros; ext; simp [smul_add, add_smul, smul_smul]
def congr_right (f : γ →ₗ[α] δ) : (β →ₗ[α] γ) →ₗ[α] (β →ₗ[α] δ) :=
⟨linear_map.comp f,
λ _ _, linear_map.ext $ λ _, f.2 _ _,
λ _ _, linear_map.ext $ λ _, f.3 _ _⟩
theorem smul_comp (g : γ →ₗ[α] δ) (a : α) : (a • g).comp f = a • (g.comp f) :=
rfl
theorem comp_smul (g : γ →ₗ[α] δ) (a : α) : g.comp (a • f) = a • (g.comp f) :=
ext $ assume b, by rw [comp_apply, smul_apply, g.map_smul]; refl
end comm_ring
end linear_map
namespace submodule
variables [ring α] [add_comm_group β] [add_comm_group γ] [add_comm_group δ]
variables [module α β] [module α γ] [module α δ]
variables (p p' : submodule α β) (q q' : submodule α γ)
variables {r : α} {x y : β}
open set lattice
instance : partial_order (submodule α β) :=
partial_order.lift (coe : submodule α β → set β) (λ a b, ext') (by apply_instance)
lemma le_def {p p' : submodule α β} : p ≤ p' ↔ (p : set β) ⊆ p' := iff.rfl
lemma le_def' {p p' : submodule α β} : p ≤ p' ↔ ∀ x ∈ p, x ∈ p' := iff.rfl
def of_le {p p' : submodule α β} (h : p ≤ p') : p →ₗ[α] p' :=
linear_map.cod_restrict _ p.subtype $ λ ⟨x, hx⟩, h hx
@[simp] theorem of_le_apply {p p' : submodule α β} (h : p ≤ p')
(x : p) : (of_le h x : β) = x := rfl
lemma subtype_comp_of_le (p q : submodule α β) (h : p ≤ q) :
(submodule.subtype q).comp (of_le h) = submodule.subtype p :=
by ext ⟨b, hb⟩; simp
instance : has_bot (submodule α β) :=
⟨by split; try {exact {0}}; simp {contextual := tt}⟩
@[simp] lemma bot_coe : ((⊥ : submodule α β) : set β) = {0} := rfl
section
variables (α)
@[simp] lemma mem_bot : x ∈ (⊥ : submodule α β) ↔ x = 0 := mem_singleton_iff
end
instance : order_bot (submodule α β) :=
{ bot := ⊥,
bot_le := λ p x, by simp {contextual := tt},
..submodule.partial_order }
instance : has_top (submodule α β) :=
⟨by split; try {exact set.univ}; simp⟩
@[simp] lemma top_coe : ((⊤ : submodule α β) : set β) = univ := rfl
@[simp] lemma mem_top : x ∈ (⊤ : submodule α β) := trivial
instance : order_top (submodule α β) :=
{ top := ⊤,
le_top := λ p x _, trivial,
..submodule.partial_order }
instance : has_Inf (submodule α β) :=
⟨λ S, {
carrier := ⋂ s ∈ S, ↑s,
zero := by simp,
add := by simp [add_mem] {contextual := tt},
smul := by simp [smul_mem] {contextual := tt} }⟩
private lemma Inf_le' {S : set (submodule α β)} {p} : p ∈ S → Inf S ≤ p :=
bInter_subset_of_mem
private lemma le_Inf' {S : set (submodule α β)} {p} : (∀p' ∈ S, p ≤ p') → p ≤ Inf S :=
subset_bInter
instance : has_inf (submodule α β) :=
⟨λ p p', {
carrier := p ∩ p',
zero := by simp,
add := by simp [add_mem] {contextual := tt},
smul := by simp [smul_mem] {contextual := tt} }⟩
instance : complete_lattice (submodule α β) :=
{ sup := λ a b, Inf {x | a ≤ x ∧ b ≤ x},
le_sup_left := λ a b, le_Inf' $ λ x ⟨ha, hb⟩, ha,
le_sup_right := λ a b, le_Inf' $ λ x ⟨ha, hb⟩, hb,
sup_le := λ a b c h₁ h₂, Inf_le' ⟨h₁, h₂⟩,
inf := (⊓),
le_inf := λ a b c, subset_inter,
inf_le_left := λ a b, inter_subset_left _ _,
inf_le_right := λ a b, inter_subset_right _ _,
Sup := λtt, Inf {t | ∀t'∈tt, t' ≤ t},
le_Sup := λ s p hs, le_Inf' $ λ p' hp', hp' _ hs,
Sup_le := λ s p hs, Inf_le' hs,
Inf := Inf,
le_Inf := λ s a, le_Inf',
Inf_le := λ s a, Inf_le',
..submodule.lattice.order_top,
..submodule.lattice.order_bot }
instance : add_comm_monoid (submodule α β) :=
{ add := (⊔),
add_assoc := λ _ _ _, sup_assoc,
zero := ⊥,
zero_add := λ _, bot_sup_eq,
add_zero := λ _, sup_bot_eq,
add_comm := λ _ _, sup_comm }
@[simp] lemma add_eq_sup (M N : submodule α β) : M + N = M ⊔ N := rfl
@[simp] lemma zero_eq_bot : (0 : submodule α β) = ⊥ := rfl
lemma eq_top_iff' {p : submodule α β} : p = ⊤ ↔ ∀ x, x ∈ p :=
eq_top_iff.trans ⟨λ h x, @h x trivial, λ h x _, h x⟩
@[simp] theorem inf_coe : (p ⊓ p' : set β) = p ∩ p' := rfl
@[simp] theorem mem_inf {p p' : submodule α β} :
x ∈ p ⊓ p' ↔ x ∈ p ∧ x ∈ p' := iff.rfl
@[simp] theorem Inf_coe (P : set (submodule α β)) : (↑(Inf P) : set β) = ⋂ p ∈ P, ↑p := rfl
@[simp] theorem infi_coe {ι} (p : ι → submodule α β) :
(↑⨅ i, p i : set β) = ⋂ i, ↑(p i) :=
by rw [infi, Inf_coe]; ext a; simp; exact
⟨λ h i, h _ i rfl, λ h i x e, e ▸ h _⟩
@[simp] theorem mem_infi {ι} (p : ι → submodule α β) :
x ∈ (⨅ i, p i) ↔ ∀ i, x ∈ p i :=
by rw [← mem_coe, infi_coe, mem_Inter]; refl
theorem disjoint_def {p p' : submodule α β} :
disjoint p p' ↔ ∀ x ∈ p, x ∈ p' → x = (0:β) :=
show (∀ x, x ∈ p ∧ x ∈ p' → x ∈ ({0} : set β)) ↔ _, by simp
/-- The pushforward -/
def map (f : β →ₗ[α] γ) (p : submodule α β) : submodule α γ :=
{ carrier := f '' p,
zero := ⟨0, p.zero_mem, f.map_zero⟩,
add := by rintro _ _ ⟨b₁, hb₁, rfl⟩ ⟨b₂, hb₂, rfl⟩;
exact ⟨_, p.add_mem hb₁ hb₂, f.map_add _ _⟩,
smul := by rintro a _ ⟨b, hb, rfl⟩;
exact ⟨_, p.smul_mem _ hb, f.map_smul _ _⟩ }
lemma map_coe (f : β →ₗ[α] γ) (p : submodule α β) :
(map f p : set γ) = f '' p := rfl
@[simp] lemma mem_map {f : β →ₗ[α] γ} {p : submodule α β} {x : γ} :
x ∈ map f p ↔ ∃ y, y ∈ p ∧ f y = x := iff.rfl
theorem mem_map_of_mem {f : β →ₗ[α] γ} {p : submodule α β} {r} (h : r ∈ p) : f r ∈ map f p :=
set.mem_image_of_mem _ h
lemma map_id : map linear_map.id p = p :=
submodule.ext $ λ a, by simp
lemma map_comp (f : β →ₗ[α] γ) (g : γ →ₗ[α] δ) (p : submodule α β) :
map (g.comp f) p = map g (map f p) :=
submodule.ext' $ by simp [map_coe]; rw ← image_comp
lemma map_mono {f : β →ₗ[α] γ} {p p' : submodule α β} : p ≤ p' → map f p ≤ map f p' :=
image_subset _
@[simp] lemma map_zero : map (0 : β →ₗ[α] γ) p = ⊥ :=
have ∃ (x : β), x ∈ p := ⟨0, p.zero_mem⟩,
ext $ by simp [this, eq_comm]
/-- The pullback -/
def comap (f : β →ₗ[α] γ) (p : submodule α γ) : submodule α β :=
{ carrier := f ⁻¹' p,
zero := by simp,
add := λ x y h₁ h₂, by simp [p.add_mem h₁ h₂],
smul := λ a x h, by simp [p.smul_mem _ h] }
@[simp] lemma comap_coe (f : β →ₗ[α] γ) (p : submodule α γ) :
(comap f p : set β) = f ⁻¹' p := rfl
@[simp] lemma mem_comap {f : β →ₗ[α] γ} {p : submodule α γ} :
x ∈ comap f p ↔ f x ∈ p := iff.rfl
lemma comap_id : comap linear_map.id p = p :=
submodule.ext' rfl
lemma comap_comp (f : β →ₗ[α] γ) (g : γ →ₗ[α] δ) (p : submodule α δ) :
comap (g.comp f) p = comap f (comap g p) := rfl
lemma comap_mono {f : β →ₗ[α] γ} {q q' : submodule α γ} : q ≤ q' → comap f q ≤ comap f q' :=
preimage_mono
lemma map_le_iff_le_comap {f : β →ₗ[α] γ} {p : submodule α β} {q : submodule α γ} :
map f p ≤ q ↔ p ≤ comap f q := image_subset_iff
lemma gc_map_comap (f : β →ₗ[α] γ) : galois_connection (map f) (comap f)
| p q := map_le_iff_le_comap
@[simp] lemma map_bot (f : β →ₗ[α] γ) : map f ⊥ = ⊥ :=
(gc_map_comap f).l_bot
@[simp] lemma map_sup (f : β →ₗ[α] γ) : map f (p ⊔ p') = map f p ⊔ map f p' :=
(gc_map_comap f).l_sup
@[simp] lemma map_supr {ι : Sort*} (f : β →ₗ[α] γ) (p : ι → submodule α β) :
map f (⨆i, p i) = (⨆i, map f (p i)) :=
(gc_map_comap f).l_supr
@[simp] lemma comap_top (f : β →ₗ[α] γ) : comap f ⊤ = ⊤ := rfl
@[simp] lemma comap_inf (f : β →ₗ[α] γ) : comap f (q ⊓ q') = comap f q ⊓ comap f q' := rfl
@[simp] lemma comap_infi {ι : Sort*} (f : β →ₗ[α] γ) (p : ι → submodule α γ) :
comap f (⨅i, p i) = (⨅i, comap f (p i)) :=
(gc_map_comap f).u_infi
@[simp] lemma comap_zero : comap (0 : β →ₗ[α] γ) q = ⊤ :=
ext $ by simp
lemma map_comap_le (f : β →ₗ[α] γ) (q : submodule α γ) : map f (comap f q) ≤ q :=
(gc_map_comap f).l_u_le _
lemma le_comap_map (f : β →ₗ[α] γ) (p : submodule α β) : p ≤ comap f (map f p) :=
(gc_map_comap f).le_u_l _
--TODO(Mario): is there a way to prove this from order properties?
lemma map_inf_eq_map_inf_comap {f : β →ₗ[α] γ}
{p : submodule α β} {p' : submodule α γ} :
map f p ⊓ p' = map f (p ⊓ comap f p') :=
le_antisymm
(by rintro _ ⟨⟨x, h₁, rfl⟩, h₂⟩; exact ⟨_, ⟨h₁, h₂⟩, rfl⟩)
(le_inf (map_mono inf_le_left) (map_le_iff_le_comap.2 inf_le_right))
lemma map_comap_subtype : map p.subtype (comap p.subtype p') = p ⊓ p' :=
ext $ λ x, ⟨by rintro ⟨⟨_, h₁⟩, h₂, rfl⟩; exact ⟨h₁, h₂⟩, λ ⟨h₁, h₂⟩, ⟨⟨_, h₁⟩, h₂, rfl⟩⟩
lemma eq_zero_of_bot_submodule : ∀(b : (⊥ : submodule α β)), b = 0
| ⟨b', hb⟩ := subtype.eq $ show b' = 0, from (mem_bot α).1 hb
section
variables (α)
def span (s : set β) : submodule α β := Inf {p | s ⊆ p}
end
variables {s t : set β}
lemma mem_span : x ∈ span α s ↔ ∀ p : submodule α β, s ⊆ p → x ∈ p :=
mem_bInter_iff
lemma subset_span : s ⊆ span α s :=
λ x h, mem_span.2 $ λ p hp, hp h
lemma span_le {p} : span α s ≤ p ↔ s ⊆ p :=
⟨subset.trans subset_span, λ ss x h, mem_span.1 h _ ss⟩
lemma span_mono (h : s ⊆ t) : span α s ≤ span α t :=
span_le.2 $ subset.trans h subset_span
lemma span_eq_of_le (h₁ : s ⊆ p) (h₂ : p ≤ span α s) : span α s = p :=
le_antisymm (span_le.2 h₁) h₂
@[simp] lemma span_eq : span α (p : set β) = p :=
span_eq_of_le _ (subset.refl _) subset_span
@[elab_as_eliminator] lemma span_induction {p : β → Prop} (h : x ∈ span α s)
(Hs : ∀ x ∈ s, p x) (H0 : p 0)
(H1 : ∀ x y, p x → p y → p (x + y))
(H2 : ∀ (a:α) x, p x → p (a • x)) : p x :=
(@span_le _ _ _ _ _ _ ⟨p, H0, H1, H2⟩).2 Hs h
section
variables (α β)
protected def gi : galois_insertion (@span α β _ _ _) coe :=
{ choice := λ s _, span α s,
gc := λ s t, span_le,
le_l_u := λ s, subset_span,
choice_eq := λ s h, rfl }
end
@[simp] lemma span_empty : span α (∅ : set β) = ⊥ :=
(submodule.gi α β).gc.l_bot
@[simp] lemma span_univ : span α (univ : set β) = ⊤ :=
eq_top_iff.2 $ le_def.2 $ subset_span
lemma span_union (s t : set β) : span α (s ∪ t) = span α s ⊔ span α t :=
(submodule.gi α β).gc.l_sup
lemma span_Union {ι} (s : ι → set β) : span α (⋃ i, s i) = ⨆ i, span α (s i) :=
(submodule.gi α β).gc.l_supr
@[simp] theorem Union_coe_of_directed {ι} (hι : nonempty ι)
(S : ι → submodule α β)
(H : ∀ i j, ∃ k, S i ≤ S k ∧ S j ≤ S k) :
((supr S : submodule α β) : set β) = ⋃ i, S i :=
begin
refine subset.antisymm _ (Union_subset $ le_supr S),
rw [show supr S = ⨆ i, span α (S i), by simp, ← span_Union],
unfreezeI,
refine λ x hx, span_induction hx (λ _, id) _ _ _,
{ cases hι with i, exact mem_Union.2 ⟨i, by simp⟩ },
{ simp, intros x y i hi j hj,
rcases H i j with ⟨k, ik, jk⟩,
exact ⟨k, add_mem _ (ik hi) (jk hj)⟩ },
{ simp [-mem_coe]; exact λ a x i hi, ⟨i, smul_mem _ a hi⟩ },
end
lemma mem_supr_of_mem {ι : Sort*} {b : β} (p : ι → submodule α β) (i : ι) (h : b ∈ p i) :
b ∈ (⨆i, p i) :=
have p i ≤ (⨆i, p i) := le_supr p i,
@this b h
@[simp] theorem mem_supr_of_directed {ι} (hι : nonempty ι)
(S : ι → submodule α β)
(H : ∀ i j, ∃ k, S i ≤ S k ∧ S j ≤ S k) {x} :
x ∈ supr S ↔ ∃ i, x ∈ S i :=
by rw [← mem_coe, Union_coe_of_directed hι S H, mem_Union]; refl
theorem mem_Sup_of_directed {s : set (submodule α β)}
{z} (hzs : z ∈ Sup s) (x ∈ s)
(hdir : ∀ i ∈ s, ∀ j ∈ s, ∃ k ∈ s, i ≤ k ∧ j ≤ k) :
∃ y ∈ s, z ∈ y :=
begin
haveI := classical.dec, rw Sup_eq_supr at hzs,
have : ∃ (i : submodule α β), z ∈ ⨆ (H : i ∈ s), i,
{ refine (mem_supr_of_directed ⟨⊥⟩ _ (λ i j, _)).1 hzs,
by_cases his : i ∈ s; by_cases hjs : j ∈ s,
{ rcases hdir i his j hjs with ⟨k, hks, hik, hjk⟩,
exact ⟨k, le_supr_of_le hks (supr_le $ λ _, hik),
le_supr_of_le hks (supr_le $ λ _, hjk)⟩ },
{ exact ⟨i, le_refl _, supr_le $ hjs.elim⟩ },
{ exact ⟨j, supr_le $ his.elim, le_refl _⟩ },
{ exact ⟨⊥, supr_le $ his.elim, supr_le $ hjs.elim⟩ } },
cases this with N hzn, by_cases hns : N ∈ s,
{ have : (⨆ (H : N ∈ s), N) ≤ N := supr_le (λ _, le_refl _),
exact ⟨N, hns, this hzn⟩ },
{ have : (⨆ (H : N ∈ s), N) ≤ ⊥ := supr_le hns.elim,
cases (mem_bot α).1 (this hzn), exact ⟨x, H, x.zero_mem⟩ }
end
section
variables {p p'}
lemma mem_sup : x ∈ p ⊔ p' ↔ ∃ (y ∈ p) (z ∈ p'), y + z = x :=
⟨λ h, begin
rw [← span_eq p, ← span_eq p', ← span_union] at h,
apply span_induction h,
{ rintro y (h | h),
{ exact ⟨y, h, 0, by simp, by simp⟩ },
{ exact ⟨0, by simp, y, h, by simp⟩ } },
{ exact ⟨0, by simp, 0, by simp⟩ },
{ rintro _ _ ⟨y₁, hy₁, z₁, hz₁, rfl⟩ ⟨y₂, hy₂, z₂, hz₂, rfl⟩,
exact ⟨_, add_mem _ hy₁ hy₂, _, add_mem _ hz₁ hz₂, by simp⟩ },
{ rintro a _ ⟨y, hy, z, hz, rfl⟩,
exact ⟨_, smul_mem _ a hy, _, smul_mem _ a hz, by simp [smul_add]⟩ }
end,
by rintro ⟨y, hy, z, hz, rfl⟩; exact add_mem _
((le_sup_left : p ≤ p ⊔ p') hy)
((le_sup_right : p' ≤ p ⊔ p') hz)⟩
end
lemma mem_span_singleton {y : β} : x ∈ span α ({y} : set β) ↔ ∃ a:α, a • y = x :=
⟨λ h, begin
apply span_induction h,
{ rintro y (rfl|⟨⟨⟩⟩), exact ⟨1, by simp⟩ },
{ exact ⟨0, by simp⟩ },
{ rintro _ _ ⟨a, rfl⟩ ⟨b, rfl⟩,
exact ⟨a + b, by simp [add_smul]⟩ },
{ rintro a _ ⟨b, rfl⟩,
exact ⟨a * b, by simp [smul_smul]⟩ }
end,
by rintro ⟨a, y, rfl⟩; exact
smul_mem _ _ (subset_span $ by simp)⟩
lemma span_singleton_eq_range (y : β) : (span α ({y} : set β) : set β) = range ((• y) : α → β) :=
set.ext $ λ x, mem_span_singleton
lemma mem_span_insert {y} : x ∈ span α (insert y s) ↔ ∃ (a:α) (z ∈ span α s), x = a • y + z :=
begin
rw [← union_singleton, span_union, mem_sup],
simp [mem_span_singleton], split,
{ rintro ⟨z, hz, _, ⟨a, rfl⟩, rfl⟩, exact ⟨a, z, hz, rfl⟩ },
{ rintro ⟨a, z, hz, rfl⟩, exact ⟨z, hz, _, ⟨a, rfl⟩, rfl⟩ }
end
lemma mem_span_insert' {y} : x ∈ span α (insert y s) ↔ ∃(a:α), x + a • y ∈ span α s :=
begin
rw mem_span_insert, split,
{ rintro ⟨a, z, hz, rfl⟩, exact ⟨-a, by simp [hz]⟩ },
{ rintro ⟨a, h⟩, exact ⟨-a, _, h, by simp⟩ }
end
lemma span_insert_eq_span (h : x ∈ span α s) : span α (insert x s) = span α s :=
span_eq_of_le _ (set.insert_subset.mpr ⟨h, subset_span⟩) (span_mono $ subset_insert _ _)
lemma span_span : span α (span α s : set β) = span α s := span_eq _
lemma span_eq_bot : span α (s : set β) = ⊥ ↔ ∀ x ∈ s, (x:β) = 0 :=
eq_bot_iff.trans ⟨
λ H x h, (mem_bot α).1 $ H $ subset_span h,
λ H, span_le.2 (λ x h, (mem_bot α).2 $ H x h)⟩
lemma span_singleton_eq_bot : span α ({x} : set β) = ⊥ ↔ x = 0 :=
span_eq_bot.trans $ by simp
@[simp] lemma span_image (f : β →ₗ[α] γ) : span α (f '' s) = map f (span α s) :=
span_eq_of_le _ (image_subset _ subset_span) $ map_le_iff_le_comap.2 $
span_le.2 $ image_subset_iff.1 subset_span
def prod : submodule α (β × γ) :=
{ carrier := set.prod p q,
zero := ⟨zero_mem _, zero_mem _⟩,
add := by rintro ⟨x₁, y₁⟩ ⟨x₂, y₂⟩ ⟨hx₁, hy₁⟩ ⟨hx₂, hy₂⟩;
exact ⟨add_mem _ hx₁ hx₂, add_mem _ hy₁ hy₂⟩,
smul := by rintro a ⟨x, y⟩ ⟨hx, hy⟩;
exact ⟨smul_mem _ a hx, smul_mem _ a hy⟩ }
@[simp] lemma prod_coe :
(prod p q : set (β × γ)) = set.prod p q := rfl
@[simp] lemma mem_prod {p : submodule α β} {q : submodule α γ} {x : β × γ} :
x ∈ prod p q ↔ x.1 ∈ p ∧ x.2 ∈ q := set.mem_prod
lemma span_prod_le (s : set β) (t : set γ) :
span α (set.prod s t) ≤ prod (span α s) (span α t) :=
span_le.2 $ set.prod_mono subset_span subset_span
@[simp] lemma prod_top : (prod ⊤ ⊤ : submodule α (β × γ)) = ⊤ :=
by ext; simp
@[simp] lemma prod_bot : (prod ⊥ ⊥ : submodule α (β × γ)) = ⊥ :=
by ext ⟨x, y⟩; simp [prod.zero_eq_mk]
lemma prod_mono {p p' : submodule α β} {q q' : submodule α γ} :
p ≤ p' → q ≤ q' → prod p q ≤ prod p' q' := prod_mono
@[simp] lemma prod_inf_prod : prod p q ⊓ prod p' q' = prod (p ⊓ p') (q ⊓ q') :=
ext' set.prod_inter_prod
@[simp] lemma prod_sup_prod : prod p q ⊔ prod p' q' = prod (p ⊔ p') (q ⊔ q') :=
begin
refine le_antisymm (sup_le
(prod_mono le_sup_left le_sup_left)
(prod_mono le_sup_right le_sup_right)) _,
simp [le_def'], intros xx yy hxx hyy,
rcases mem_sup.1 hxx with ⟨x, hx, x', hx', rfl⟩,
rcases mem_sup.1 hyy with ⟨y, hy, y', hy', rfl⟩,
refine mem_sup.2 ⟨(x, y), ⟨hx, hy⟩, (x', y'), ⟨hx', hy'⟩, rfl⟩
end
-- TODO(Mario): Factor through add_subgroup
def quotient_rel : setoid β :=
⟨λ x y, x - y ∈ p, λ x, by simp,
λ x y h, by simpa using neg_mem _ h,
λ x y z h₁ h₂, by simpa using add_mem _ h₁ h₂⟩
def quotient : Type* := quotient (quotient_rel p)
namespace quotient
def mk {p : submodule α β} : β → quotient p := quotient.mk'
@[simp] theorem mk_eq_mk {p : submodule α β} (x : β) : (quotient.mk x : quotient p) = mk x := rfl
@[simp] theorem mk'_eq_mk {p : submodule α β} (x : β) : (quotient.mk' x : quotient p) = mk x := rfl
@[simp] theorem quot_mk_eq_mk {p : submodule α β} (x : β) : (quot.mk _ x : quotient p) = mk x := rfl
protected theorem eq {x y : β} : (mk x : quotient p) = mk y ↔ x - y ∈ p := quotient.eq'
instance : has_zero (quotient p) := ⟨mk 0⟩
@[simp] theorem mk_zero : mk 0 = (0 : quotient p) := rfl
@[simp] theorem mk_eq_zero : (mk x : quotient p) = 0 ↔ x ∈ p :=
by simpa using (quotient.eq p : mk x = 0 ↔ _)
instance : has_add (quotient p) :=
⟨λ a b, quotient.lift_on₂' a b (λ a b, mk (a + b)) $
λ a₁ a₂ b₁ b₂ h₁ h₂, (quotient.eq p).2 $ by simpa using add_mem p h₁ h₂⟩
@[simp] theorem mk_add : (mk (x + y) : quotient p) = mk x + mk y := rfl
instance : has_neg (quotient p) :=
⟨λ a, quotient.lift_on' a (λ a, mk (-a)) $
λ a b h, (quotient.eq p).2 $ by simpa using neg_mem p h⟩
@[simp] theorem mk_neg : (mk (-x) : quotient p) = -mk x := rfl
instance : add_comm_group (quotient p) :=
by refine {zero := 0, add := (+), neg := has_neg.neg, ..};
repeat {rintro ⟨⟩};
simp [-mk_zero, (mk_zero p).symm, -mk_add, (mk_add p).symm, -mk_neg, (mk_neg p).symm]
instance : has_scalar α (quotient p) :=
⟨λ a x, quotient.lift_on' x (λ x, mk (a • x)) $
λ x y h, (quotient.eq p).2 $ by simpa [smul_add] using smul_mem p a h⟩
@[simp] theorem mk_smul : (mk (r • x) : quotient p) = r • mk x := rfl
instance : module α (quotient p) :=
module.of_core $ by refine {smul := (•), ..};
repeat {rintro ⟨⟩ <|> intro}; simp [smul_add, add_smul, smul_smul,
-mk_add, (mk_add p).symm, -mk_smul, (mk_smul p).symm]
instance {α β} {R:discrete_field α} [add_comm_group β] [vector_space α β]
(p : submodule α β) : vector_space α (quotient p) := {}
end quotient
end submodule
namespace submodule
variables [discrete_field α]
variables [add_comm_group β] [vector_space α β]
variables [add_comm_group γ] [vector_space α γ]
lemma comap_smul (f : β →ₗ[α] γ) (p : submodule α γ) (a : α) (h : a ≠ 0) :
p.comap (a • f) = p.comap f :=
by ext b; simp only [submodule.mem_comap, p.smul_mem_iff h, linear_map.smul_apply]
lemma map_smul (f : β →ₗ[α] γ) (p : submodule α β) (a : α) (h : a ≠ 0) :
p.map (a • f) = p.map f :=
le_antisymm
begin rw [map_le_iff_le_comap, comap_smul f _ a h, ← map_le_iff_le_comap], exact le_refl _ end
begin rw [map_le_iff_le_comap, ← comap_smul f _ a h, ← map_le_iff_le_comap], exact le_refl _ end
set_option class.instance_max_depth 40
lemma comap_smul' (f : β →ₗ[α] γ) (p : submodule α γ) (a : α) :
p.comap (a • f) = (⨅ h : a ≠ 0, p.comap f) :=
by by_cases a = 0; simp [h, comap_smul]
lemma map_smul' (f : β →ₗ[α] γ) (p : submodule α β) (a : α) :
p.map (a • f) = (⨆ h : a ≠ 0, p.map f) :=
by by_cases a = 0; simp [h, map_smul]
end submodule
namespace linear_map
variables [ring α] [add_comm_group β] [add_comm_group γ] [add_comm_group δ]
variables [module α β] [module α γ] [module α δ]
include α
open submodule
@[simp] lemma finsupp_sum {α β γ δ} [ring α] [add_comm_group β] [module α β]
[add_comm_group γ] [module α γ] [has_zero δ]
(f : β →ₗ[α] γ) {t : ι →₀ δ} {g : ι → δ → β} :
f (t.sum g) = t.sum (λi d, f (g i d)) := f.map_sum
theorem map_cod_restrict (p : submodule α β) (f : γ →ₗ[α] β) (h p') :
submodule.map (cod_restrict p f h) p' = comap p.subtype (p'.map f) :=
submodule.ext $ λ ⟨x, hx⟩, by simp [subtype.coe_ext]
theorem comap_cod_restrict (p : submodule α β) (f : γ →ₗ[α] β) (hf p') :
submodule.comap (cod_restrict p f hf) p' = submodule.comap f (map p.subtype p') :=
submodule.ext $ λ x, ⟨λ h, ⟨⟨_, hf x⟩, h, rfl⟩, by rintro ⟨⟨_, _⟩, h, ⟨⟩⟩; exact h⟩
def range (f : β →ₗ[α] γ) : submodule α γ := map f ⊤
theorem range_coe (f : β →ₗ[α] γ) : (range f : set γ) = set.range f := set.image_univ
@[simp] theorem mem_range {f : β →ₗ[α] γ} : ∀ {x}, x ∈ range f ↔ ∃ y, f y = x :=
(set.ext_iff _ _).1 (range_coe f).
@[simp] theorem range_id : range (linear_map.id : β →ₗ[α] β) = ⊤ := map_id _
theorem range_comp (f : β →ₗ[α] γ) (g : γ →ₗ[α] δ) : range (g.comp f) = map g (range f) :=
map_comp _ _ _
theorem range_comp_le_range (f : β →ₗ[α] γ) (g : γ →ₗ[α] δ) : range (g.comp f) ≤ range g :=
by rw range_comp; exact map_mono le_top
theorem range_eq_top {f : β →ₗ[α] γ} : range f = ⊤ ↔ surjective f :=
by rw [← submodule.ext'_iff, range_coe, top_coe, set.range_iff_surjective]
lemma range_le_iff_comap {f : β →ₗ[α] γ} {p : submodule α γ} : range f ≤ p ↔ comap f p = ⊤ :=
by rw [range, map_le_iff_le_comap, eq_top_iff]
def ker (f : β →ₗ[α] γ) : submodule α β := comap f ⊥
@[simp] theorem mem_ker {f : β →ₗ[α] γ} {y} : y ∈ ker f ↔ f y = 0 := mem_bot α
@[simp] theorem ker_id : ker (linear_map.id : β →ₗ[α] β) = ⊥ := rfl
theorem ker_comp (f : β →ₗ[α] γ) (g : γ →ₗ[α] δ) : ker (g.comp f) = comap f (ker g) := rfl
theorem ker_le_ker_comp (f : β →ₗ[α] γ) (g : γ →ₗ[α] δ) : ker f ≤ ker (g.comp f) :=
by rw ker_comp; exact comap_mono bot_le
theorem sub_mem_ker_iff {f : β →ₗ[α] γ} {x y} : x - y ∈ f.ker ↔ f x = f y :=
by rw [mem_ker, map_sub, sub_eq_zero]
theorem disjoint_ker {f : β →ₗ[α] γ} {p : submodule α β} :
disjoint p (ker f) ↔ ∀ x ∈ p, f x = 0 → x = 0 :=
by simp [disjoint_def]
theorem disjoint_ker' {f : β →ₗ[α] γ} {p : submodule α β} :
disjoint p (ker f) ↔ ∀ x y ∈ p, f x = f y → x = y :=
disjoint_ker.trans
⟨λ H x y hx hy h, eq_of_sub_eq_zero $ H _ (sub_mem _ hx hy) (by simp [h]),
λ H x h₁ h₂, H x 0 h₁ (zero_mem _) (by simpa using h₂)⟩
theorem inj_of_disjoint_ker {f : β →ₗ[α] γ} {p : submodule α β}
{s : set β} (h : s ⊆ p) (hd : disjoint p (ker f)) :
∀ x y ∈ s, f x = f y → x = y :=
λ x y hx hy, disjoint_ker'.1 hd _ _ (h hx) (h hy)
theorem ker_eq_bot {f : β →ₗ[α] γ} : ker f = ⊥ ↔ injective f :=
by simpa [disjoint] using @disjoint_ker' _ _ _ _ _ _ _ _ f ⊤
theorem ker_eq_bot' {f : β →ₗ[α] γ} :
ker f = ⊥ ↔ (∀ m, f m = 0 → m = 0) :=
have h : (∀ m ∈ (⊤ : submodule α β), f m = 0 → m = 0) ↔ (∀ m, f m = 0 → m = 0),
from ⟨λ h m, h m mem_top, λ h m _, h m⟩,
by simpa [h, disjoint] using @disjoint_ker _ _ _ _ _ _ _ _ f ⊤
lemma le_ker_iff_map {f : β →ₗ[α] γ} {p : submodule α β} : p ≤ ker f ↔ map f p = ⊥ :=
by rw [ker, eq_bot_iff, map_le_iff_le_comap]
lemma ker_cod_restrict (p : submodule α β) (f : γ →ₗ[α] β) (hf) :
ker (cod_restrict p f hf) = ker f :=
by rw [ker, comap_cod_restrict, map_bot]; refl
lemma range_cod_restrict (p : submodule α β) (f : γ →ₗ[α] β) (hf) :
range (cod_restrict p f hf) = comap p.subtype f.range :=
map_cod_restrict _ _ _ _
lemma map_comap_eq (f : β →ₗ[α] γ) (q : submodule α γ) :
map f (comap f q) = range f ⊓ q :=
le_antisymm (le_inf (map_mono le_top) (map_comap_le _ _)) $
by rintro _ ⟨⟨x, _, rfl⟩, hx⟩; exact ⟨x, hx, rfl⟩
lemma map_comap_eq_self {f : β →ₗ[α] γ} {q : submodule α γ} (h : q ≤ range f) :
map f (comap f q) = q :=
by rw [map_comap_eq, inf_of_le_right h]
lemma comap_map_eq (f : β →ₗ[α] γ) (p : submodule α β) :
comap f (map f p) = p ⊔ ker f :=
begin
refine le_antisymm _ (sup_le (le_comap_map _ _) (comap_mono bot_le)),
rintro x ⟨y, hy, e⟩,
exact mem_sup.2 ⟨y, hy, x - y, by simpa using sub_eq_zero.2 e.symm, by simp⟩
end
lemma comap_map_eq_self {f : β →ₗ[α] γ} {p : submodule α β} (h : ker f ≤ p) :
comap f (map f p) = p :=
by rw [comap_map_eq, sup_of_le_left h]
@[simp] theorem ker_zero : ker (0 : β →ₗ[α] γ) = ⊤ :=
eq_top_iff'.2 $ λ x, by simp
@[simp] theorem range_zero : range (0 : β →ₗ[α] γ) = ⊥ :=
submodule.map_zero _
theorem ker_eq_top {f : β →ₗ[α] γ} : ker f = ⊤ ↔ f = 0 :=
⟨λ h, ext $ λ x, mem_ker.1 $ h.symm ▸ trivial, λ h, h.symm ▸ ker_zero⟩
lemma range_le_bot_iff (f : β →ₗ[α] γ) : range f ≤ ⊥ ↔ f = 0 :=
by rw [range_le_iff_comap]; exact ker_eq_top
theorem map_le_map_iff {f : β →ₗ[α] γ} (hf : ker f = ⊥) {p p'} : map f p ≤ map f p' ↔ p ≤ p' :=
⟨λ H x hx, let ⟨y, hy, e⟩ := H ⟨x, hx, rfl⟩ in ker_eq_bot.1 hf e ▸ hy, map_mono⟩
theorem map_injective {f : β →ₗ[α] γ} (hf : ker f = ⊥) : injective (map f) :=
λ p p' h, le_antisymm ((map_le_map_iff hf).1 (le_of_eq h)) ((map_le_map_iff hf).1 (ge_of_eq h))
theorem comap_le_comap_iff {f : β →ₗ[α] γ} (hf : range f = ⊤) {p p'} : comap f p ≤ comap f p' ↔ p ≤ p' :=
⟨λ H x hx, by rcases range_eq_top.1 hf x with ⟨y, hy, rfl⟩; exact H hx, comap_mono⟩
theorem comap_injective {f : β →ₗ[α] γ} (hf : range f = ⊤) : injective (comap f) :=
λ p p' h, le_antisymm ((comap_le_comap_iff hf).1 (le_of_eq h)) ((comap_le_comap_iff hf).1 (ge_of_eq h))
theorem map_copair_prod (f : β →ₗ[α] δ) (g : γ →ₗ[α] δ) (p : submodule α β) (q : submodule α γ) :
map (copair f g) (p.prod q) = map f p ⊔ map g q :=
begin
refine le_antisymm _ (sup_le (map_le_iff_le_comap.2 _) (map_le_iff_le_comap.2 _)),
{ rw le_def', rintro _ ⟨x, ⟨h₁, h₂⟩, rfl⟩,
exact mem_sup.2 ⟨_, ⟨_, h₁, rfl⟩, _, ⟨_, h₂, rfl⟩, rfl⟩ },
{ exact λ x hx, ⟨(x, 0), by simp [hx]⟩ },
{ exact λ x hx, ⟨(0, x), by simp [hx]⟩ }
end
theorem comap_pair_prod (f : β →ₗ[α] γ) (g : β →ₗ[α] δ) (p : submodule α γ) (q : submodule α δ) :
comap (pair f g) (p.prod q) = comap f p ⊓ comap g q :=
submodule.ext $ λ x, iff.rfl
theorem prod_eq_inf_comap (p : submodule α β) (q : submodule α γ) :
p.prod q = p.comap (linear_map.fst α β γ) ⊓ q.comap (linear_map.snd α β γ) :=
submodule.ext $ λ x, iff.rfl
theorem prod_eq_sup_map (p : submodule α β) (q : submodule α γ) :
p.prod q = p.map (linear_map.inl α β γ) ⊔ q.map (linear_map.inr α β γ) :=
by rw [← map_copair_prod, copair_inl_inr, map_id]
lemma span_inl_union_inr {s : set β} {t : set γ} :
span α (prod.inl '' s ∪ prod.inr '' t) = (span α s).prod (span α t) :=
by rw [span_union, prod_eq_sup_map, ← span_image, ← span_image]; refl
lemma ker_pair (f : β →ₗ[α] γ) (g : β →ₗ[α] δ) :
ker (pair f g) = ker f ⊓ ker g :=
by rw [ker, ← prod_bot, comap_pair_prod]; refl
end linear_map
namespace linear_map
variables [discrete_field α]
variables [add_comm_group β] [vector_space α β]
variables [add_comm_group γ] [vector_space α γ]
lemma ker_smul (f : β →ₗ[α] γ) (a : α) (h : a ≠ 0) : ker (a • f) = ker f :=
submodule.comap_smul f _ a h
lemma ker_smul' (f : β →ₗ[α] γ) (a : α) : ker (a • f) = ⨅(h : a ≠ 0), ker f :=
submodule.comap_smul' f _ a
lemma range_smul (f : β →ₗ[α] γ) (a : α) (h : a ≠ 0) : range (a • f) = range f :=
submodule.map_smul f _ a h
lemma range_smul' (f : β →ₗ[α] γ) (a : α) : range (a • f) = ⨆(h : a ≠ 0), range f :=
submodule.map_smul' f _ a
end linear_map
namespace is_linear_map
lemma is_linear_map_add {α β : Type*} [ring α] [add_comm_group β] [module α β]:
is_linear_map α (λ (x : β × β), x.1 + x.2) :=
begin
apply is_linear_map.mk,
{ intros x y,
simp },
{ intros x y,
simp [smul_add] }
end
lemma is_linear_map_sub {α β : Type*} [ring α] [add_comm_group β] [module α β]:
is_linear_map α (λ (x : β × β), x.1 - x.2) :=
begin
apply is_linear_map.mk,
{ intros x y,
simp },
{ intros x y,
simp [smul_add] }
end
end is_linear_map
namespace submodule
variables {R:ring α} [add_comm_group β] [add_comm_group γ] [module α β] [module α γ]
variables (p p' : submodule α β) (q : submodule α γ)
include R
open linear_map
@[simp] theorem map_top (f : β →ₗ[α] γ) : map f ⊤ = range f := rfl
@[simp] theorem comap_bot (f : β →ₗ[α] γ) : comap f ⊥ = ker f := rfl
@[simp] theorem ker_subtype : p.subtype.ker = ⊥ :=
ker_eq_bot.2 $ λ x y, subtype.eq'
@[simp] theorem range_subtype : p.subtype.range = p :=
by simpa using map_comap_subtype p ⊤
lemma map_subtype_le (p' : submodule α p) : map p.subtype p' ≤ p :=
by simpa using (map_mono le_top : map p.subtype p' ≤ p.subtype.range)
@[simp] theorem ker_of_le (p p' : submodule α β) (h : p ≤ p') : (of_le h).ker = ⊥ :=
by rw [of_le, ker_cod_restrict, ker_subtype]
lemma range_of_le (p q : submodule α β) (h : p ≤ q) : (of_le h).range = comap q.subtype p :=
by rw [← map_top, of_le, linear_map.map_cod_restrict, map_top, range_subtype]
lemma disjoint_iff_comap_eq_bot (p q : submodule α β) :
disjoint p q ↔ comap p.subtype q = ⊥ :=
by rw [eq_bot_iff, ← map_le_map_iff p.ker_subtype, map_bot, map_comap_subtype]; refl
/-- If N ⊆ M then submodules of N are the same as submodules of M contained in N -/
def map_subtype.order_iso :
((≤) : submodule α p → submodule α p → Prop) ≃o
((≤) : {p' : submodule α β // p' ≤ p} → {p' : submodule α β // p' ≤ p} → Prop) :=
{ to_fun := λ p', ⟨map p.subtype p', map_subtype_le p _⟩,
inv_fun := λ q, comap p.subtype q,
left_inv := λ p', comap_map_eq_self $ by simp,
right_inv := λ ⟨q, hq⟩, subtype.eq' $ by simp [map_comap_subtype p, inf_of_le_right hq],
ord := λ p₁ p₂, (map_le_map_iff $ ker_subtype _).symm }
def map_subtype.le_order_embedding :
((≤) : submodule α p → submodule α p → Prop) ≼o ((≤) : submodule α β → submodule α β → Prop) :=
(order_iso.to_order_embedding $ map_subtype.order_iso p).trans (subtype.order_embedding _ _)
@[simp] lemma map_subtype_embedding_eq (p' : submodule α p) :
map_subtype.le_order_embedding p p' = map p.subtype p' := rfl
def map_subtype.lt_order_embedding :
((<) : submodule α p → submodule α p → Prop) ≼o ((<) : submodule α β → submodule α β → Prop) :=
(map_subtype.le_order_embedding p).lt_embedding_of_le_embedding
@[simp] theorem map_inl : p.map (inl α β γ) = prod p ⊥ :=
by ext ⟨x, y⟩; simp [and.left_comm, eq_comm]
@[simp] theorem map_inr : q.map (inr α β γ) = prod ⊥ q :=
by ext ⟨x, y⟩; simp [and.left_comm, eq_comm]
@[simp] theorem comap_fst : p.comap (fst α β γ) = prod p ⊤ :=
by ext ⟨x, y⟩; simp
@[simp] theorem comap_snd : q.comap (snd α β γ) = prod ⊤ q :=
by ext ⟨x, y⟩; simp
@[simp] theorem prod_comap_inl : (prod p q).comap (inl α β γ) = p := by ext; simp
@[simp] theorem prod_comap_inr : (prod p q).comap (inr α β γ) = q := by ext; simp
@[simp] theorem prod_map_fst : (prod p q).map (fst α β γ) = p :=
by ext x; simp [(⟨0, zero_mem _⟩ : ∃ x, x ∈ q)]
@[simp] theorem prod_map_snd : (prod p q).map (snd α β γ) = q :=
by ext x; simp [(⟨0, zero_mem _⟩ : ∃ x, x ∈ p)]
@[simp] theorem ker_inl : (inl α β γ).ker = ⊥ :=
by rw [ker, ← prod_bot, prod_comap_inl]
@[simp] theorem ker_inr : (inr α β γ).ker = ⊥ :=
by rw [ker, ← prod_bot, prod_comap_inr]
@[simp] theorem range_fst : (fst α β γ).range = ⊤ :=
by rw [range, ← prod_top, prod_map_fst]
@[simp] theorem range_snd : (snd α β γ).range = ⊤ :=
by rw [range, ← prod_top, prod_map_snd]
def mkq : β →ₗ[α] p.quotient := ⟨quotient.mk, by simp, by simp⟩
@[simp] theorem mkq_apply (x : β) : p.mkq x = quotient.mk x := rfl
def liftq (f : β →ₗ[α] γ) (h : p ≤ f.ker) : p.quotient →ₗ[α] γ :=
⟨λ x, _root_.quotient.lift_on' x f $
λ a b (ab : a - b ∈ p), eq_of_sub_eq_zero $ by simpa using h ab,
by rintro ⟨x⟩ ⟨y⟩; exact f.map_add x y,
by rintro a ⟨x⟩; exact f.map_smul a x⟩
@[simp] theorem liftq_apply (f : β →ₗ[α] γ) {h} (x : β) :
p.liftq f h (quotient.mk x) = f x := rfl
@[simp] theorem liftq_mkq (f : β →ₗ[α] γ) (h) : (p.liftq f h).comp p.mkq = f :=
by ext; refl
@[simp] theorem range_mkq : p.mkq.range = ⊤ :=
eq_top_iff'.2 $ by rintro ⟨x⟩; exact ⟨x, trivial, rfl⟩
@[simp] theorem ker_mkq : p.mkq.ker = p :=
by ext; simp
lemma le_comap_mkq (p' : submodule α p.quotient) : p ≤ comap p.mkq p' :=
by simpa using (comap_mono bot_le : p.mkq.ker ≤ comap p.mkq p')
@[simp] theorem mkq_map_self : map p.mkq p = ⊥ :=
by rw [eq_bot_iff, map_le_iff_le_comap, comap_bot, ker_mkq]; exact le_refl _
@[simp] theorem comap_map_mkq : comap p.mkq (map p.mkq p') = p ⊔ p' :=
by simp [comap_map_eq, sup_comm]
def mapq (f : β →ₗ[α] γ) (h : p ≤ comap f q) : p.quotient →ₗ[α] q.quotient :=
p.liftq (q.mkq.comp f) $ by simpa [ker_comp] using h
@[simp] theorem mapq_apply (f : β →ₗ[α] γ) {h} (x : β) :
mapq p q f h (quotient.mk x) = quotient.mk (f x) := rfl
theorem mapq_mkq (f : β →ₗ[α] γ) {h} : (mapq p q f h).comp p.mkq = q.mkq.comp f :=
by ext x; refl
theorem comap_liftq (f : β →ₗ[α] γ) (h) :
q.comap (p.liftq f h) = (q.comap f).map (mkq p) :=
le_antisymm
(by rintro ⟨x⟩ hx; exact ⟨_, hx, rfl⟩)
(by rw [map_le_iff_le_comap, ← comap_comp, liftq_mkq]; exact le_refl _)
theorem map_liftq (f : β →ₗ[α] γ) (h) (q : submodule α (quotient p)) :
q.map (p.liftq f h) = (q.comap p.mkq).map f :=
le_antisymm
(by rintro _ ⟨⟨x⟩, hxq, rfl⟩; exact ⟨x, hxq, rfl⟩)
(by rintro _ ⟨x, hxq, rfl⟩; exact ⟨quotient.mk x, hxq, rfl⟩)
theorem ker_liftq (f : β →ₗ[α] γ) (h) :
ker (p.liftq f h) = (ker f).map (mkq p) := comap_liftq _ _ _ _
theorem range_liftq (f : β →ₗ[α] γ) (h) :
range (p.liftq f h) = range f := map_liftq _ _ _ _
theorem ker_liftq_eq_bot (f : β →ₗ[α] γ) (h) (h' : ker f ≤ p) : ker (p.liftq f h) = ⊥ :=
by rw [ker_liftq, le_antisymm h h', mkq_map_self]
/-- Correspondence Theorem -/
def comap_mkq.order_iso :
((≤) : submodule α p.quotient → submodule α p.quotient → Prop) ≃o
((≤) : {p' : submodule α β // p ≤ p'} → {p' : submodule α β // p ≤ p'} → Prop) :=
{ to_fun := λ p', ⟨comap p.mkq p', le_comap_mkq p _⟩,
inv_fun := λ q, map p.mkq q,
left_inv := λ p', map_comap_eq_self $ by simp,
right_inv := λ ⟨q, hq⟩, subtype.eq' $ by simp [comap_map_mkq p, sup_of_le_right hq],
ord := λ p₁ p₂, (comap_le_comap_iff $ range_mkq _).symm }
def comap_mkq.le_order_embedding :
((≤) : submodule α p.quotient → submodule α p.quotient → Prop) ≼o ((≤) : submodule α β → submodule α β → Prop) :=
(order_iso.to_order_embedding $ comap_mkq.order_iso p).trans (subtype.order_embedding _ _)
@[simp] lemma comap_mkq_embedding_eq (p' : submodule α p.quotient) :
comap_mkq.le_order_embedding p p' = comap p.mkq p' := rfl
def comap_mkq.lt_order_embedding :
((<) : submodule α p.quotient → submodule α p.quotient → Prop) ≼o ((<) : submodule α β → submodule α β → Prop) :=
(comap_mkq.le_order_embedding p).lt_embedding_of_le_embedding
end submodule
section
set_option old_structure_cmd true
structure linear_equiv (α : Type u) (β : Type v) (γ : Type w)
[ring α] [add_comm_group β] [add_comm_group γ] [module α β] [module α γ]
extends β →ₗ[α] γ, β ≃ γ
end
infix ` ≃ₗ ` := linear_equiv _
notation β ` ≃ₗ[`:50 α `] ` γ := linear_equiv α β γ
namespace linear_equiv
section ring
variables [ring α] [add_comm_group β] [add_comm_group γ] [add_comm_group δ]
variables [module α β] [module α γ] [module α δ]
include α
instance : has_coe (β ≃ₗ[α] γ) (β →ₗ[α] γ) := ⟨to_linear_map⟩
@[simp] theorem coe_apply (e : β ≃ₗ[α] γ) (b : β) : (e : β →ₗ[α] γ) b = e b := rfl
lemma to_equiv_injective : function.injective (to_equiv : (β ≃ₗ[α] γ) → β ≃ γ) :=
λ ⟨_, _, _, _, _, _⟩ ⟨_, _, _, _, _, _⟩ h, linear_equiv.mk.inj_eq.mpr (equiv.mk.inj h)
@[extensionality] lemma ext {f g : β ≃ₗ[α] γ} (h : (f : β → γ) = g) : f = g :=
to_equiv_injective (equiv.eq_of_to_fun_eq h)
section
variable (β)
def refl : β ≃ₗ[α] β := { .. linear_map.id, .. equiv.refl β }
end
def symm (e : β ≃ₗ[α] γ) : γ ≃ₗ[α] β :=
{ .. e.to_linear_map.inverse e.inv_fun e.left_inv e.right_inv,
.. e.to_equiv.symm }
def trans (e₁ : β ≃ₗ[α] γ) (e₂ : γ ≃ₗ[α] δ) : β ≃ₗ[α] δ :=
{ .. e₂.to_linear_map.comp e₁.to_linear_map,
.. e₁.to_equiv.trans e₂.to_equiv }
@[simp] theorem apply_symm_apply (e : β ≃ₗ[α] γ) (c : γ) : e (e.symm c) = c := e.6 c
@[simp] theorem symm_apply_apply (e : β ≃ₗ[α] γ) (b : β) : e.symm (e b) = b := e.5 b
noncomputable def of_bijective
(f : β →ₗ[α] γ) (hf₁ : f.ker = ⊥) (hf₂ : f.range = ⊤) : β ≃ₗ[α] γ :=
{ ..f, ..@equiv.of_bijective _ _ f
⟨linear_map.ker_eq_bot.1 hf₁, linear_map.range_eq_top.1 hf₂⟩ }
@[simp] theorem of_bijective_apply (f : β →ₗ[α] γ) {hf₁ hf₂} (x : β) :
of_bijective f hf₁ hf₂ x = f x := rfl
def of_linear (f : β →ₗ[α] γ) (g : γ →ₗ[α] β)
(h₁ : f.comp g = linear_map.id) (h₂ : g.comp f = linear_map.id) : β ≃ₗ[α] γ :=
{ inv_fun := g,
left_inv := linear_map.ext_iff.1 h₂,
right_inv := linear_map.ext_iff.1 h₁,
..f }
@[simp] theorem of_linear_apply (f : β →ₗ[α] γ) (g : γ →ₗ[α] β) {h₁ h₂}
(x : β) : of_linear f g h₁ h₂ x = f x := rfl
@[simp] theorem of_linear_symm_apply (f : β →ₗ[α] γ) (g : γ →ₗ[α] β) {h₁ h₂}
(x : γ) : (of_linear f g h₁ h₂).symm x = g x := rfl
@[simp] protected theorem ker (f : β ≃ₗ[α] γ) : (f : β →ₗ[α] γ).ker = ⊥ :=
linear_map.ker_eq_bot.2 f.to_equiv.injective
@[simp] protected theorem range (f : β ≃ₗ[α] γ) : (f : β →ₗ[α] γ).range = ⊤ :=
linear_map.range_eq_top.2 f.to_equiv.surjective
def of_top (p : submodule α β) (h : p = ⊤) : p ≃ₗ[α] β :=
{ inv_fun := λ x, ⟨x, h.symm ▸ trivial⟩,
left_inv := λ ⟨x, h⟩, rfl,
right_inv := λ x, rfl,
.. p.subtype }
@[simp] theorem of_top_apply (p : submodule α β) {h} (x : p) :
of_top p h x = x := rfl
@[simp] theorem of_top_symm_apply (p : submodule α β) {h} (x : β) :
↑((of_top p h).symm x) = x := rfl
lemma eq_bot_of_equiv (p : submodule α β) (e : p ≃ₗ[α] (⊥ : submodule α γ)) :
p = ⊥ :=
begin
refine bot_unique (submodule.le_def'.2 $ assume b hb, (submodule.mem_bot α).2 _),
have := e.symm_apply_apply ⟨b, hb⟩,
rw [← e.coe_apply, submodule.eq_zero_of_bot_submodule ((e : p →ₗ[α] (⊥ : submodule α γ)) ⟨b, hb⟩),
← e.symm.coe_apply, linear_map.map_zero] at this,
exact congr_arg (coe : p → β) this.symm
end
end ring
section comm_ring
variables [comm_ring α] [add_comm_group β] [add_comm_group γ] [add_comm_group δ]
variables [module α β] [module α γ] [module α δ]
include α
open linear_map
set_option class.instance_max_depth 39
def smul_of_unit (a : units α) : β ≃ₗ[α] β :=
of_linear ((a:α) • 1 : β →ₗ β) (((a⁻¹ : units α) : α) • 1 : β →ₗ β)
(by rw [smul_comp, comp_smul, smul_smul, units.mul_inv, one_smul]; refl)
(by rw [smul_comp, comp_smul, smul_smul, units.inv_mul, one_smul]; refl)
def congr_right (f : γ ≃ₗ[α] δ) : (β →ₗ[α] γ) ≃ₗ (β →ₗ δ) :=
of_linear
f.to_linear_map.congr_right
f.symm.to_linear_map.congr_right
(linear_map.ext $ λ _, linear_map.ext $ λ _, f.6 _)
(linear_map.ext $ λ _, linear_map.ext $ λ _, f.5 _)
end comm_ring
section field
variables [field α] [add_comm_group β] [add_comm_group γ] [add_comm_group δ]
variables [module α β] [module α γ] [module α δ]
variable (β)
open linear_map
def smul_of_ne_zero (a : α) (ha : a ≠ 0) : β ≃ₗ[α] β :=
smul_of_unit $ units.mk0 a ha
end field
end linear_equiv
namespace equiv
variables [ring α] [add_comm_group β] [module α β] [add_comm_group γ] [module α γ]
def to_linear_equiv (e : β ≃ γ) (h : is_linear_map α (e : β → γ)) : β ≃ₗ[α] γ :=
{ add := h.add, smul := h.smul, .. e}
end equiv
namespace linear_map
variables [ring α] [add_comm_group β] [add_comm_group γ] [add_comm_group δ]
variables [module α β] [module α γ] [module α δ]
variables (f : β →ₗ[α] γ)
/-- First Isomorphism Law -/
noncomputable def quot_ker_equiv_range : f.ker.quotient ≃ₗ[α] f.range :=
have hr : ∀ x : f.range, ∃ y, f y = ↑x := λ x, x.2.imp $ λ _, and.right,
let F : f.ker.quotient →ₗ[α] f.range :=
f.ker.liftq (cod_restrict f.range f $ λ x, ⟨x, trivial, rfl⟩)
(λ x hx, by simp; apply subtype.coe_ext.2; simpa using hx) in
{ inv_fun := λx, submodule.quotient.mk (classical.some (hr x)),
left_inv := by rintro ⟨x⟩; exact
(submodule.quotient.eq _).2 (sub_mem_ker_iff.2 $
classical.some_spec $ hr $ F $ submodule.quotient.mk x),
right_inv := λ x : range f, subtype.eq $ classical.some_spec (hr x),
.. F }
open submodule
def sup_quotient_to_quotient_inf (p p' : submodule α β) :
(comap p.subtype (p ⊓ p')).quotient →ₗ[α] (comap (p ⊔ p').subtype p').quotient :=
(comap p.subtype (p ⊓ p')).liftq
((comap (p ⊔ p').subtype p').mkq.comp (of_le le_sup_left)) begin
rw [ker_comp, of_le, comap_cod_restrict, ker_mkq, map_comap_subtype],
exact comap_mono (inf_le_inf le_sup_left (le_refl _)) end
set_option class.instance_max_depth 41
/-- Second Isomorphism Law -/
noncomputable def sup_quotient_equiv_quotient_inf (p p' : submodule α β) :
(comap p.subtype (p ⊓ p')).quotient ≃ₗ[α] (comap (p ⊔ p').subtype p').quotient :=
{ .. sup_quotient_to_quotient_inf p p',
.. show (comap p.subtype (p ⊓ p')).quotient ≃ (comap (p ⊔ p').subtype p').quotient, from
@equiv.of_bijective _ _ (sup_quotient_to_quotient_inf p p') begin
constructor,
{ rw [← ker_eq_bot, sup_quotient_to_quotient_inf, ker_liftq_eq_bot],
rw [ker_comp, ker_mkq],
rintros ⟨x, hx1⟩ hx2, exact ⟨hx1, hx2⟩ },
rw [← range_eq_top, sup_quotient_to_quotient_inf, range_liftq, eq_top_iff'],
rintros ⟨x, hx⟩, rcases mem_sup.1 hx with ⟨y, hy, z, hz, rfl⟩,
use [⟨y, hy⟩, trivial], apply (submodule.quotient.eq _).2,
change y - (y + z) ∈ p', rwa [sub_add_eq_sub_sub, sub_self, zero_sub, neg_mem_iff]
end }
section prod
def prod {α β γ δ : Type*} [ring α] [add_comm_group β] [add_comm_group γ] [add_comm_group δ]
[module α β] [module α γ] [module α δ]
(f₁ : β →ₗ[α] γ) (f₂ : β →ₗ[α] δ) : β →ₗ[α] (γ × δ) :=
{ to_fun := λx, (f₁ x, f₂ x),
add := λx y, begin
change (f₁ (x + y), f₂ (x+y)) = (f₁ x, f₂ x) + (f₁ y, f₂ y),
simp only [linear_map.map_add],
refl
end,
smul := λc x, by simp only [linear_map.map_smul] }
lemma is_linear_map_prod_iso {α β γ δ : Type*} [comm_ring α] [add_comm_group β] [add_comm_group γ]
[add_comm_group δ] [module α β] [module α γ] [module α δ] :
is_linear_map α (λ(p : (β →ₗ[α] γ) × (β →ₗ[α] δ)), (linear_map.prod p.1 p.2 : (β →ₗ[α] (γ × δ)))) :=
⟨λu v, rfl, λc u, rfl⟩
def scalar_prod_space_iso {α β γ : Type*} [comm_ring α] [add_comm_group β] [add_comm_group γ]
[module α β] [module α γ] (c : β →ₗ[α] α) (f : γ) : β →ₗ[α] γ :=
{ to_fun := λx, (c x) • f,
add := λx y, begin
change c (x + y) • f = (c x) • f + (c y) • f,
simp [add_smul],
end,
smul := λa x, by simp [smul_smul] }
end prod
section pi
universe i
variables {φ : ι → Type i}
variables [∀i, add_comm_group (φ i)] [∀i, module α (φ i)]
/-- `pi` construction for linear functions. From a family of linear functions it produces a linear
function into a family of modules. -/
def pi (f : Πi, γ →ₗ[α] φ i) : γ →ₗ[α] (Πi, φ i) :=
⟨λc i, f i c,
assume c d, funext $ assume i, (f i).add _ _, assume c d, funext $ assume i, (f i).smul _ _⟩
@[simp] lemma pi_apply (f : Πi, γ →ₗ[α] φ i) (c : γ) (i : ι) :
pi f c i = f i c := rfl
lemma ker_pi (f : Πi, γ →ₗ[α] φ i) : ker (pi f) = (⨅i:ι, ker (f i)) :=
by ext c; simp [funext_iff]; refl
lemma pi_eq_zero (f : Πi, γ →ₗ[α] φ i) : pi f = 0 ↔ (∀i, f i = 0) :=
by simp only [linear_map.ext_iff, pi_apply, funext_iff]; exact ⟨λh a b, h b a, λh a b, h b a⟩
lemma pi_zero : pi (λi, 0 : Πi, γ →ₗ[α] φ i) = 0 :=
by ext; refl
lemma pi_comp (f : Πi, γ →ₗ[α] φ i) (g : δ →ₗ[α] γ) : (pi f).comp g = pi (λi, (f i).comp g) :=
rfl
/-- Linear projection -/
def proj (i : ι) : (Πi, φ i) →ₗ[α] φ i :=
⟨ λa, a i, assume f g, rfl, assume c f, rfl ⟩
@[simp] lemma proj_apply (i : ι) (b : Πi, φ i) : (proj i : (Πi, φ i) →ₗ[α] φ i) b = b i := rfl
lemma proj_pi (f : Πi, γ →ₗ[α] φ i) (i : ι) : (proj i).comp (pi f) = f i :=
ext $ assume c, rfl
lemma infi_ker_proj : (⨅i, ker (proj i) : submodule α (Πi, φ i)) = ⊥ :=
bot_unique $ submodule.le_def'.2 $ assume a h,
begin
simp only [mem_infi, mem_ker, proj_apply] at h,
exact (mem_bot _).2 (funext $ assume i, h i)
end
section
variables (α φ)
def infi_ker_proj_equiv {I J : set ι} [decidable_pred (λi, i ∈ I)]
(hd : disjoint I J) (hu : set.univ ⊆ I ∪ J) :
(⨅i ∈ J, ker (proj i) : submodule α (Πi, φ i)) ≃ₗ[α] (Πi:I, φ i) :=
begin
refine linear_equiv.of_linear
(pi $ λi, (proj (i:ι)).comp (submodule.subtype _))
(cod_restrict _ (pi $ λi, if h : i ∈ I then proj (⟨i, h⟩ : I) else 0) _) _ _,
{ assume b,
simp only [mem_infi, mem_ker, funext_iff, proj_apply, pi_apply],
assume j hjJ,
have : j ∉ I := assume hjI, hd ⟨hjI, hjJ⟩,
rw [dif_neg this, zero_apply] },
{ simp only [pi_comp, comp_assoc, subtype_comp_cod_restrict, proj_pi, dif_pos, subtype.val_prop'],
ext b ⟨j, hj⟩, refl },
{ ext ⟨b, hb⟩,
apply subtype.coe_ext.2,
ext j,
have hb : ∀i ∈ J, b i = 0,
{ simpa only [mem_infi, mem_ker, proj_apply] using (mem_infi _).1 hb },
simp only [comp_apply, pi_apply, id_apply, proj_apply, subtype_apply, cod_restrict_apply],
split_ifs,
{ rw [dif_pos h], refl },
{ rw [dif_neg h],
exact (hb _ $ (hu trivial).resolve_left h).symm } }
end
end
section
variable [decidable_eq ι]
/-- `diag i j` is the identity map if `i = j` otherwise it is the constant 0 map. -/
def diag (i j : ι) : φ i →ₗ[α] φ j :=
@function.update ι (λj, φ i →ₗ[α] φ j) _ 0 i id j
lemma update_apply (f : Πi, γ →ₗ[α] φ i) (c : γ) (i j : ι) (b : γ →ₗ[α] φ i) :
(update f i b j) c = update (λi, f i c) i (b c) j :=
begin
by_cases j = i,
{ rw [h, update_same, update_same] },
{ rw [update_noteq h, update_noteq h] }
end
end
section
variable [decidable_eq ι]
variables (α φ)
/-- Standard basis -/
def std_basis (i : ι) : φ i →ₗ[α] (Πi, φ i) := pi (diag i)
lemma std_basis_apply (i : ι) (b : φ i) : std_basis α φ i b = update 0 i b :=
by ext j; rw [std_basis, pi_apply, diag, update_apply]; refl
@[simp] lemma std_basis_same (i : ι) (b : φ i) : std_basis α φ i b i = b :=
by rw [std_basis_apply, update_same]
lemma std_basis_ne (i j : ι) (h : j ≠ i) (b : φ i) : std_basis α φ i b j = 0 :=
by rw [std_basis_apply, update_noteq h]; refl
lemma ker_std_basis (i : ι) : ker (std_basis α φ i) = ⊥ :=
ker_eq_bot.2 $ assume f g hfg,
have std_basis α φ i f i = std_basis α φ i g i := hfg ▸ rfl,
by simpa only [std_basis_same]
lemma proj_comp_std_basis (i j : ι) : (proj i).comp (std_basis α φ j) = diag j i :=
by rw [std_basis, proj_pi]
lemma proj_std_basis_same (i : ι) : (proj i).comp (std_basis α φ i) = id :=
by ext b; simp
lemma proj_std_basis_ne (i j : ι) (h : i ≠ j) : (proj i).comp (std_basis α φ j) = 0 :=
by ext b; simp [std_basis_ne α φ _ _ h]
lemma supr_range_std_basis_le_infi_ker_proj (I J : set ι) (h : disjoint I J) :
(⨆i∈I, range (std_basis α φ i)) ≤ (⨅i∈J, ker (proj i)) :=
begin
refine (supr_le $ assume i, supr_le $ assume hi, range_le_iff_comap.2 _),
simp only [(ker_comp _ _).symm, eq_top_iff, le_def', mem_ker, comap_infi, mem_infi],
assume b hb j hj,
have : i ≠ j := assume eq, h ⟨hi, eq.symm ▸ hj⟩,
rw [proj_std_basis_ne α φ j i this.symm, zero_apply]
end
lemma infi_ker_proj_le_supr_range_std_basis {I : finset ι} {J : set ι} (hu : set.univ ⊆ ↑I ∪ J) :
(⨅ i∈J, ker (proj i)) ≤ (⨆i∈I, range (std_basis α φ i)) :=
submodule.le_def'.2
begin
assume b hb,
simp only [mem_infi, mem_ker, proj_apply] at hb,
rw ← show I.sum (λi, std_basis α φ i (b i)) = b,
{ ext i,
rw [pi.finset_sum_apply, ← std_basis_same α φ i (b i)],
refine finset.sum_eq_single i (assume j hjI ne, std_basis_ne _ _ _ _ ne.symm _) _,
assume hiI,
rw [std_basis_same],
exact hb _ ((hu trivial).resolve_left hiI) },
exact sum_mem _ (assume i hiI, mem_supr_of_mem _ i $ mem_supr_of_mem _ hiI $
linear_map.mem_range.2 ⟨_, rfl⟩)
end
lemma supr_range_std_basis_eq_infi_ker_proj {I J : set ι}
(hd : disjoint I J) (hu : set.univ ⊆ I ∪ J) (hI : set.finite I) :
(⨆i∈I, range (std_basis α φ i)) = (⨅i∈J, ker (proj i)) :=
begin
refine le_antisymm (supr_range_std_basis_le_infi_ker_proj _ _ _ _ hd) _,
have : set.univ ⊆ ↑hI.to_finset ∪ J, { rwa [finset.coe_to_finset] },
refine le_trans (infi_ker_proj_le_supr_range_std_basis α φ this) (supr_le_supr $ assume i, _),
rw [← finset.mem_coe, finset.coe_to_finset],
exact le_refl _
end
lemma supr_range_std_basis [fintype ι] : (⨆i:ι, range (std_basis α φ i)) = ⊤ :=
have (set.univ : set ι) ⊆ ↑(finset.univ : finset ι) ∪ ∅ := by rw [finset.coe_univ, set.union_empty],
begin
apply top_unique,
convert (infi_ker_proj_le_supr_range_std_basis α φ this),
exact infi_emptyset.symm,
exact (funext $ λi, (@supr_pos _ _ _ (λh, range (std_basis α φ i)) $ finset.mem_univ i).symm)
end
lemma disjoint_std_basis_std_basis (I J : set ι) (h : disjoint I J) :
disjoint (⨆i∈I, range (std_basis α φ i)) (⨆i∈J, range (std_basis α φ i)) :=
begin
refine disjoint_mono
(supr_range_std_basis_le_infi_ker_proj _ _ _ _ $ set.disjoint_compl I)
(supr_range_std_basis_le_infi_ker_proj _ _ _ _ $ set.disjoint_compl J) _,
simp only [disjoint, submodule.le_def', mem_infi, mem_inf, mem_ker, mem_bot, proj_apply,
funext_iff],
rintros b ⟨hI, hJ⟩ i,
classical,
by_cases hiI : i ∈ I,
{ by_cases hiJ : i ∈ J,
{ exact (h ⟨hiI, hiJ⟩).elim },
{ exact hJ i hiJ } },
{ exact hI i hiI }
end
end
end pi
variables (α β)
instance automorphism_group : group (β ≃ₗ[α] β) :=
{ mul := λ f g, g.trans f,
one := linear_equiv.refl β,
inv := λ f, f.symm,
mul_assoc := λ f g h, by {ext, refl},
mul_one := λ f, by {ext, refl},
one_mul := λ f, by {ext, refl},
mul_left_inv := λ f, by {ext, exact f.left_inv x} }
instance automorphism_group.to_linear_map_is_monoid_hom :
is_monoid_hom (linear_equiv.to_linear_map : (β ≃ₗ[α] β) → (β →ₗ[α] β)) :=
{ map_one := rfl,
map_mul := λ f g, rfl }
/-- The group of invertible linear maps from `β` to itself -/
def general_linear_group := units (β →ₗ[α] β)
namespace general_linear_group
variables {α β}
instance : group (general_linear_group α β) := by delta general_linear_group; apply_instance
def to_linear_equiv (f : general_linear_group α β) : (β ≃ₗ[α] β) :=
{ inv_fun := f.inv.to_fun,
left_inv := λ m, show (f.inv * f.val) m = m,
by erw f.inv_val; simp,
right_inv := λ m, show (f.val * f.inv) m = m,
by erw f.val_inv; simp,
..f.val }
def of_linear_equiv (f : (β ≃ₗ[α] β)) : general_linear_group α β :=
{ val := f,
inv := f.symm,
val_inv := linear_map.ext $ λ _, f.apply_symm_apply _,
inv_val := linear_map.ext $ λ _, f.symm_apply_apply _ }
variables (α β)
def general_linear_equiv : general_linear_group α β ≃* (β ≃ₗ[α] β) :=
{ to_fun := to_linear_equiv,
inv_fun := of_linear_equiv,
left_inv := λ f,
begin
delta to_linear_equiv of_linear_equiv,
cases f with f f_inv, cases f, cases f_inv,
congr
end,
right_inv := λ f,
begin
delta to_linear_equiv of_linear_equiv,
cases f,
congr
end,
hom := ⟨λ x y, by {ext, refl}⟩ }
@[simp] lemma general_linear_equiv_to_linear_map (f : general_linear_group α β) :
((general_linear_equiv α β).to_equiv f).to_linear_map = f.val :=
by {ext, refl}
end general_linear_group
end linear_map
|
30ba8009848ffd4b1d7e1c08349930107db8eaa9
|
c777c32c8e484e195053731103c5e52af26a25d1
|
/counterexamples/quadratic_form.lean
|
20af196c19f5276bc536e2c1c39e212ca3fa197c
|
[
"Apache-2.0"
] |
permissive
|
kbuzzard/mathlib
|
2ff9e85dfe2a46f4b291927f983afec17e946eb8
|
58537299e922f9c77df76cb613910914a479c1f7
|
refs/heads/master
| 1,685,313,702,744
| 1,683,974,212,000
| 1,683,974,212,000
| 128,185,277
| 1
| 0
| null | 1,522,920,600,000
| 1,522,920,600,000
| null |
UTF-8
|
Lean
| false
| false
| 1,861
|
lean
|
/-
Copyright (c) 2023 Eric Wieser. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Eric Wieser
-/
import linear_algebra.quadratic_form.basic
import algebra.char_p.two
import data.zmod.basic
/-!
# `quadratic_form R M` and `subtype bilin_form.is_symm` are distinct notions in characteristic 2
The main result of this file is `bilin_form.not_inj_on_to_quadratic_form_is_symm`.
The counterexample we use is $B (x, y) (x', y') ↦ xy' + x'y$ where `x y x' y' : zmod 2`.
-/
variables (F : Type*) [nontrivial F] [comm_ring F] [char_p F 2]
open bilin_form
/-- The bilinear form we will use as a counterexample, over some field `F` of characteristic two. -/
def B : bilin_form F (F × F) :=
bilin_form.lin_mul_lin (linear_map.fst _ _ _) (linear_map.snd _ _ _)
+ bilin_form.lin_mul_lin (linear_map.snd _ _ _) (linear_map.fst _ _ _)
@[simp]
lemma B_apply (x y : F × F) : B F x y = x.1 * y.2 + x.2 * y.1 := rfl
lemma is_symm_B : (B F).is_symm := λ x y, by simp [mul_comm, add_comm]
lemma is_alt_B : (B F).is_alt := λ x, by simp [mul_comm, char_two.add_self_eq_zero (x.1 * x.2)]
lemma B_ne_zero : B F ≠ 0 := λ h, by simpa using bilin_form.congr_fun h (1, 0) (1, 1)
/-- `bilin_form.to_quadratic_form` is not injective on symmetric bilinear forms.
This disproves a weaker version of `quadratic_form.associated_left_inverse`.
-/
lemma {u} bilin_form.not_inj_on_to_quadratic_form_is_symm :
¬∀ {R M : Type u} [semiring R] [add_comm_monoid M],
by exactI ∀ [module R M],
by exactI set.inj_on
(to_quadratic_form : bilin_form R M → quadratic_form R M)
{ B | B.is_symm }:=
begin
intro h,
let F := ulift.{u} (zmod 2),
apply B_ne_zero F,
apply h (is_symm_B F) (is_symm_zero),
rw [bilin_form.to_quadratic_form_zero, bilin_form.to_quadratic_form_eq_zero],
exact is_alt_B F,
end
|
ecba4f8b3958d0b8a062c220a8998ee4c8525ed4
|
fa02ed5a3c9c0adee3c26887a16855e7841c668b
|
/src/data/finset/default.lean
|
eb67d9d13773ae09ba3a26e510f29055edb78c92
|
[
"Apache-2.0"
] |
permissive
|
jjgarzella/mathlib
|
96a345378c4e0bf26cf604aed84f90329e4896a2
|
395d8716c3ad03747059d482090e2bb97db612c8
|
refs/heads/master
| 1,686,480,124,379
| 1,625,163,323,000
| 1,625,163,323,000
| 281,190,421
| 2
| 0
|
Apache-2.0
| 1,595,268,170,000
| 1,595,268,169,000
| null |
UTF-8
|
Lean
| false
| false
| 243
|
lean
|
import data.finset.basic
import data.finset.fold
import data.finset.intervals
import data.finset.lattice
import data.finset.nat_antidiagonal
import data.finset.pi
import data.finset.powerset
import data.finset.sort
import data.finset.preimage
|
c8e42ab565f1666492e431c57216e9cdadb84577
|
9dc8cecdf3c4634764a18254e94d43da07142918
|
/src/ring_theory/ideal/local_ring.lean
|
c1dccf7c0f3c7a8e81459596f5c32995a50c52ea
|
[
"Apache-2.0"
] |
permissive
|
jcommelin/mathlib
|
d8456447c36c176e14d96d9e76f39841f69d2d9b
|
ee8279351a2e434c2852345c51b728d22af5a156
|
refs/heads/master
| 1,664,782,136,488
| 1,663,638,983,000
| 1,663,638,983,000
| 132,563,656
| 0
| 0
|
Apache-2.0
| 1,663,599,929,000
| 1,525,760,539,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 13,325
|
lean
|
/-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Chris Hughes, Mario Carneiro
-/
import algebra.algebra.basic
import algebra.category.Ring.basic
import ring_theory.ideal.operations
/-!
# Local rings
Define local rings as commutative rings having a unique maximal ideal.
## Main definitions
* `local_ring`: A predicate on commutative semirings, stating that for any pair of elements that
adds up to `1`, one of them is a unit. This is shown to be equivalent to the condition that there
exists a unique maximal ideal.
* `local_ring.maximal_ideal`: The unique maximal ideal for a local rings. Its carrier set is the
set of non units.
* `is_local_ring_hom`: A predicate on semiring homomorphisms, requiring that it maps nonunits
to nonunits. For local rings, this means that the image of the unique maximal ideal is again
contained in the unique maximal ideal.
* `local_ring.residue_field`: The quotient of a local ring by its maximal ideal.
-/
universes u v w u'
variables {R : Type u} {S : Type v} {T : Type w} {K : Type u'}
/-- A semiring is local if it is nontrivial and `a` or `b` is a unit whenever `a + b = 1`.
Note that `local_ring` is a predicate. -/
class local_ring (R : Type u) [semiring R] extends nontrivial R : Prop :=
of_is_unit_or_is_unit_of_add_one ::
(is_unit_or_is_unit_of_add_one {a b : R} (h : a + b = 1) : is_unit a ∨ is_unit b)
section comm_semiring
variables [comm_semiring R]
namespace local_ring
lemma of_is_unit_or_is_unit_of_is_unit_add [nontrivial R]
(h : ∀ a b : R, is_unit (a + b) → is_unit a ∨ is_unit b) :
local_ring R :=
⟨λ a b hab, h a b $ hab.symm ▸ is_unit_one⟩
/-- A semiring is local if it is nontrivial and the set of nonunits is closed under the addition. -/
lemma of_nonunits_add [nontrivial R]
(h : ∀ a b : R, a ∈ nonunits R → b ∈ nonunits R → a + b ∈ nonunits R) :
local_ring R :=
⟨λ a b hab, or_iff_not_and_not.2 $ λ H, h a b H.1 H.2 $ hab.symm ▸ is_unit_one⟩
/-- A semiring is local if it has a unique maximal ideal. -/
lemma of_unique_max_ideal (h : ∃! I : ideal R, I.is_maximal) :
local_ring R :=
@of_nonunits_add _ _ (nontrivial_of_ne (0 : R) 1 $
let ⟨I, Imax, _⟩ := h in (λ (H : 0 = 1), Imax.1.1 $ I.eq_top_iff_one.2 $ H ▸ I.zero_mem)) $
λ x y hx hy H,
let ⟨I, Imax, Iuniq⟩ := h in
let ⟨Ix, Ixmax, Hx⟩ := exists_max_ideal_of_mem_nonunits hx in
let ⟨Iy, Iymax, Hy⟩ := exists_max_ideal_of_mem_nonunits hy in
have xmemI : x ∈ I, from Iuniq Ix Ixmax ▸ Hx,
have ymemI : y ∈ I, from Iuniq Iy Iymax ▸ Hy,
Imax.1.1 $ I.eq_top_of_is_unit_mem (I.add_mem xmemI ymemI) H
lemma of_unique_nonzero_prime (h : ∃! P : ideal R, P ≠ ⊥ ∧ ideal.is_prime P) :
local_ring R :=
of_unique_max_ideal begin
rcases h with ⟨P, ⟨hPnonzero, hPnot_top, _⟩, hPunique⟩,
refine ⟨P, ⟨⟨hPnot_top, _⟩⟩, λ M hM, hPunique _ ⟨_, ideal.is_maximal.is_prime hM⟩⟩,
{ refine ideal.maximal_of_no_maximal (λ M hPM hM, ne_of_lt hPM _),
exact (hPunique _ ⟨ne_bot_of_gt hPM, ideal.is_maximal.is_prime hM⟩).symm },
{ rintro rfl,
exact hPnot_top (hM.1.2 P (bot_lt_iff_ne_bot.2 hPnonzero)) },
end
variables [local_ring R]
lemma is_unit_or_is_unit_of_is_unit_add {a b : R} (h : is_unit (a + b)) :
is_unit a ∨ is_unit b :=
begin
rcases h with ⟨u, hu⟩,
rw [←units.inv_mul_eq_one, mul_add] at hu,
apply or.imp _ _ (is_unit_or_is_unit_of_add_one hu);
exact is_unit_of_mul_is_unit_right,
end
lemma nonunits_add {a b : R} (ha : a ∈ nonunits R) (hb : b ∈ nonunits R) : a + b ∈ nonunits R:=
λ H, not_or ha hb (is_unit_or_is_unit_of_is_unit_add H)
variables (R)
/-- The ideal of elements that are not units. -/
def maximal_ideal : ideal R :=
{ carrier := nonunits R,
zero_mem' := zero_mem_nonunits.2 $ zero_ne_one,
add_mem' := λ x y hx hy, nonunits_add hx hy,
smul_mem' := λ a x, mul_mem_nonunits_right }
instance maximal_ideal.is_maximal : (maximal_ideal R).is_maximal :=
begin
rw ideal.is_maximal_iff,
split,
{ intro h, apply h, exact is_unit_one },
{ intros I x hI hx H,
erw not_not at hx,
rcases hx with ⟨u,rfl⟩,
simpa using I.mul_mem_left ↑u⁻¹ H }
end
lemma maximal_ideal_unique : ∃! I : ideal R, I.is_maximal :=
⟨maximal_ideal R, maximal_ideal.is_maximal R,
λ I hI, hI.eq_of_le (maximal_ideal.is_maximal R).1.1 $
λ x hx, hI.1.1 ∘ I.eq_top_of_is_unit_mem hx⟩
variable {R}
lemma eq_maximal_ideal {I : ideal R} (hI : I.is_maximal) : I = maximal_ideal R :=
unique_of_exists_unique (maximal_ideal_unique R) hI $ maximal_ideal.is_maximal R
lemma le_maximal_ideal {J : ideal R} (hJ : J ≠ ⊤) : J ≤ maximal_ideal R :=
begin
rcases ideal.exists_le_maximal J hJ with ⟨M, hM1, hM2⟩,
rwa ←eq_maximal_ideal hM1
end
@[simp] lemma mem_maximal_ideal (x) : x ∈ maximal_ideal R ↔ x ∈ nonunits R := iff.rfl
end local_ring
end comm_semiring
section comm_ring
variables [comm_ring R]
namespace local_ring
lemma of_is_unit_or_is_unit_one_sub_self [nontrivial R]
(h : ∀ a : R, is_unit a ∨ is_unit (1 - a)) : local_ring R :=
⟨λ a b hab, add_sub_cancel' a b ▸ hab.symm ▸ h a⟩
variables [local_ring R]
lemma is_unit_or_is_unit_one_sub_self (a : R) : is_unit a ∨ is_unit (1 - a) :=
is_unit_or_is_unit_of_is_unit_add $ (add_sub_cancel'_right a 1).symm ▸ is_unit_one
lemma is_unit_of_mem_nonunits_one_sub_self (a : R) (h : 1 - a ∈ nonunits R) :
is_unit a :=
or_iff_not_imp_right.1 (is_unit_or_is_unit_one_sub_self a) h
lemma is_unit_one_sub_self_of_mem_nonunits (a : R) (h : a ∈ nonunits R) :
is_unit (1 - a) :=
or_iff_not_imp_left.1 (is_unit_or_is_unit_one_sub_self a) h
lemma of_surjective' [comm_ring S] [nontrivial S] (f : R →+* S) (hf : function.surjective f) :
local_ring S :=
of_is_unit_or_is_unit_one_sub_self
begin
intros b,
obtain ⟨a, rfl⟩ := hf b,
apply (is_unit_or_is_unit_one_sub_self a).imp f.is_unit_map _,
rw [← f.map_one, ← f.map_sub],
apply f.is_unit_map,
end
end local_ring
end comm_ring
/-- A local ring homomorphism is a homomorphism `f` between local rings such that `a` in the domain
is a unit if `f a` is a unit for any `a`. See `local_ring.local_hom_tfae` for other equivalent
definitions. -/
class is_local_ring_hom [semiring R] [semiring S] (f : R →+* S) : Prop :=
(map_nonunit : ∀ a, is_unit (f a) → is_unit a)
section
variables [semiring R] [semiring S] [semiring T]
instance is_local_ring_hom_id (R : Type*) [semiring R] : is_local_ring_hom (ring_hom.id R) :=
{ map_nonunit := λ a, id }
@[simp] lemma is_unit_map_iff (f : R →+* S) [is_local_ring_hom f] (a) :
is_unit (f a) ↔ is_unit a :=
⟨is_local_ring_hom.map_nonunit a, f.is_unit_map⟩
@[simp] lemma map_mem_nonunits_iff (f : R →+* S) [is_local_ring_hom f] (a) :
f a ∈ nonunits S ↔ a ∈ nonunits R :=
⟨λ h ha, h $ (is_unit_map_iff f a).mpr ha, λ h ha, h $ (is_unit_map_iff f a).mp ha⟩
instance is_local_ring_hom_comp
(g : S →+* T) (f : R →+* S) [is_local_ring_hom g] [is_local_ring_hom f] :
is_local_ring_hom (g.comp f) :=
{ map_nonunit := λ a, is_local_ring_hom.map_nonunit a ∘ is_local_ring_hom.map_nonunit (f a) }
instance is_local_ring_hom_equiv (f : R ≃+* S) :
is_local_ring_hom (f : R →+* S) :=
{ map_nonunit := λ a ha,
begin
convert (f.symm : S →+* R).is_unit_map ha,
exact (ring_equiv.symm_apply_apply f a).symm,
end }
@[simp] lemma is_unit_of_map_unit (f : R →+* S) [is_local_ring_hom f]
(a) (h : is_unit (f a)) : is_unit a :=
is_local_ring_hom.map_nonunit a h
theorem of_irreducible_map (f : R →+* S) [h : is_local_ring_hom f] {x}
(hfx : irreducible (f x)) : irreducible x :=
⟨λ h, hfx.not_unit $ is_unit.map f h, λ p q hx, let ⟨H⟩ := h in
or.imp (H p) (H q) $ hfx.is_unit_or_is_unit $ f.map_mul p q ▸ congr_arg f hx⟩
lemma is_local_ring_hom_of_comp (f : R →+* S) (g : S →+* T) [is_local_ring_hom (g.comp f)] :
is_local_ring_hom f :=
⟨λ a ha, (is_unit_map_iff (g.comp f) _).mp (g.is_unit_map ha)⟩
instance _root_.CommRing.is_local_ring_hom_comp {R S T : CommRing} (f : R ⟶ S) (g : S ⟶ T)
[is_local_ring_hom g] [is_local_ring_hom f] :
is_local_ring_hom (f ≫ g) := is_local_ring_hom_comp _ _
/-- If `f : R →+* S` is a local ring hom, then `R` is a local ring if `S` is. -/
lemma _root_.ring_hom.domain_local_ring {R S : Type*} [comm_semiring R] [comm_semiring S]
[H : _root_.local_ring S] (f : R →+* S)
[is_local_ring_hom f] : _root_.local_ring R :=
begin
haveI : nontrivial R := pullback_nonzero f f.map_zero f.map_one,
apply local_ring.of_nonunits_add,
intros a b,
simp_rw [←map_mem_nonunits_iff f, f.map_add],
exact local_ring.nonunits_add
end
section
open category_theory
lemma is_local_ring_hom_of_iso {R S : CommRing} (f : R ≅ S) : is_local_ring_hom f.hom :=
{ map_nonunit := λ a ha,
begin
convert f.inv.is_unit_map ha,
rw category_theory.iso.hom_inv_id_apply,
end }
@[priority 100] -- see Note [lower instance priority]
instance is_local_ring_hom_of_is_iso {R S : CommRing} (f : R ⟶ S) [is_iso f] :
is_local_ring_hom f :=
is_local_ring_hom_of_iso (as_iso f)
end
end
section
open local_ring
variables [comm_semiring R] [local_ring R] [comm_semiring S] [local_ring S]
/--
The image of the maximal ideal of the source is contained within the maximal ideal of the target.
-/
lemma map_nonunit (f : R →+* S) [is_local_ring_hom f] (a : R) (h : a ∈ maximal_ideal R) :
f a ∈ maximal_ideal S :=
λ H, h $ is_unit_of_map_unit f a H
end
namespace local_ring
section
variables [comm_semiring R] [local_ring R] [comm_semiring S] [local_ring S]
/--
A ring homomorphism between local rings is a local ring hom iff it reflects units,
i.e. any preimage of a unit is still a unit. https://stacks.math.columbia.edu/tag/07BJ
-/
theorem local_hom_tfae (f : R →+* S) :
tfae [is_local_ring_hom f,
f '' (maximal_ideal R).1 ⊆ maximal_ideal S,
(maximal_ideal R).map f ≤ maximal_ideal S,
maximal_ideal R ≤ (maximal_ideal S).comap f,
(maximal_ideal S).comap f = maximal_ideal R] :=
begin
tfae_have : 1 → 2, rintros _ _ ⟨a,ha,rfl⟩,
resetI, exact map_nonunit f a ha,
tfae_have : 2 → 4, exact set.image_subset_iff.1,
tfae_have : 3 ↔ 4, exact ideal.map_le_iff_le_comap,
tfae_have : 4 → 1, intro h, fsplit, exact λ x, not_imp_not.1 (@h x),
tfae_have : 1 → 5, intro, resetI, ext,
exact not_iff_not.2 (is_unit_map_iff f x),
tfae_have : 5 → 4, exact λ h, le_of_eq h.symm,
tfae_finish,
end
end
lemma of_surjective [comm_semiring R] [local_ring R] [comm_semiring S] [nontrivial S]
(f : R →+* S) [is_local_ring_hom f] (hf : function.surjective f) :
local_ring S :=
of_is_unit_or_is_unit_of_is_unit_add
begin
intros a b hab,
obtain ⟨a, rfl⟩ := hf a,
obtain ⟨b, rfl⟩ := hf b,
rw ←map_add at hab,
exact (is_unit_or_is_unit_of_is_unit_add $ is_local_ring_hom.map_nonunit _ hab).imp
f.is_unit_map f.is_unit_map
end
/-- If `f : R →+* S` is a surjective local ring hom, then the induced units map is surjective. -/
lemma surjective_units_map_of_local_ring_hom [comm_ring R] [comm_ring S]
(f : R →+* S) (hf : function.surjective f) (h : is_local_ring_hom f) :
function.surjective (units.map $ f.to_monoid_hom) :=
begin
intro a,
obtain ⟨b,hb⟩ := hf (a : S),
use (is_unit_of_map_unit f _ (by { rw hb, exact units.is_unit _})).unit, ext, exact hb,
end
section
variables (R) [comm_ring R] [local_ring R] [comm_ring S] [local_ring S]
/-- The residue field of a local ring is the quotient of the ring by its maximal ideal. -/
def residue_field := R ⧸ maximal_ideal R
noncomputable instance residue_field.field : field (residue_field R) :=
ideal.quotient.field (maximal_ideal R)
noncomputable instance : inhabited (residue_field R) := ⟨37⟩
/-- The quotient map from a local ring to its residue field. -/
def residue : R →+* (residue_field R) :=
ideal.quotient.mk _
noncomputable
instance residue_field.algebra : algebra R (residue_field R) := (residue R).to_algebra
variables {R}
namespace residue_field
/-- The map on residue fields induced by a local homomorphism between local rings -/
noncomputable def map (f : R →+* S) [is_local_ring_hom f] :
residue_field R →+* residue_field S :=
ideal.quotient.lift (maximal_ideal R) ((ideal.quotient.mk _).comp f) $
λ a ha,
begin
erw ideal.quotient.eq_zero_iff_mem,
exact map_nonunit f a ha
end
end residue_field
lemma ker_eq_maximal_ideal [field K] (φ : R →+* K) (hφ : function.surjective φ) :
φ.ker = maximal_ideal R :=
local_ring.eq_maximal_ideal $ (ring_hom.ker_is_maximal_of_surjective φ) hφ
lemma is_local_ring_hom_residue :
is_local_ring_hom (local_ring.residue R) :=
begin
constructor,
intros a ha,
by_contra,
erw ideal.quotient.eq_zero_iff_mem.mpr ((local_ring.mem_maximal_ideal _).mpr h) at ha,
exact ha.ne_zero rfl,
end
end
end local_ring
namespace field
variables (K) [field K]
open_locale classical
@[priority 100] -- see Note [lower instance priority]
instance : local_ring K :=
local_ring.of_is_unit_or_is_unit_one_sub_self $ λ a,
if h : a = 0
then or.inr (by rw [h, sub_zero]; exact is_unit_one)
else or.inl $ is_unit.mk0 a h
end field
|
0e116e7d052b2f38aed64dbb9cfc85edfdb20dae
|
9dc8cecdf3c4634764a18254e94d43da07142918
|
/src/representation_theory/character.lean
|
cee94f807d193f9376b5e70d5e2d59b42c02aeb2
|
[
"Apache-2.0"
] |
permissive
|
jcommelin/mathlib
|
d8456447c36c176e14d96d9e76f39841f69d2d9b
|
ee8279351a2e434c2852345c51b728d22af5a156
|
refs/heads/master
| 1,664,782,136,488
| 1,663,638,983,000
| 1,663,638,983,000
| 132,563,656
| 0
| 0
|
Apache-2.0
| 1,663,599,929,000
| 1,525,760,539,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 2,859
|
lean
|
/-
Copyright (c) 2022 Antoine Labelle. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Antoine Labelle
-/
import representation_theory.fdRep
import linear_algebra.trace
import representation_theory.basic
import representation_theory.invariants
/-!
# Characters of representations
This file introduces characters of representation and proves basic lemmas about how characters
behave under various operations on representations.
# TODO
* Once we have the monoidal closed structure on `fdRep k G` and a better API for the rigid
structure, `char_dual` and `char_lin_hom` should probably be stated in terms of `Vᘁ` and `ihom V W`.
-/
noncomputable theory
universes u
open linear_map category_theory.monoidal_category representation finite_dimensional
open_locale big_operators
variables {k G : Type u} [field k]
namespace fdRep
section monoid
variables [monoid G]
/-- The character of a representation `V : fdRep k G` is the function associating to `g : G` the
trace of the linear map `V.ρ g`.-/
def character (V : fdRep k G) (g : G) := linear_map.trace k V (V.ρ g)
lemma char_mul_comm (V : fdRep k G) (g : G) (h : G) : V.character (h * g) = V.character (g * h) :=
by simp only [trace_mul_comm, character, map_mul]
@[simp] lemma char_one (V : fdRep k G) : V.character 1 = finite_dimensional.finrank k V :=
by simp only [character, map_one, trace_one]
/-- The character is multiplicative under the tensor product. -/
@[simp] lemma char_tensor (V W : fdRep k G) : (V ⊗ W).character = V.character * W.character :=
by { ext g, convert trace_tensor_product' (V.ρ g) (W.ρ g) }
/-- The character of isomorphic representations is the same. -/
lemma char_iso {V W : fdRep k G} (i : V ≅ W) : V.character = W.character :=
by { ext g, simp only [character, fdRep.iso.conj_ρ i], exact (trace_conj' (V.ρ g) _).symm }
end monoid
section group
variables [group G]
/-- The character of a representation is constant on conjugacy classes. -/
@[simp] lemma char_conj (V : fdRep k G) (g : G) (h : G) :
V.character (h * g * h⁻¹) = V.character g :=
by rw [char_mul_comm, inv_mul_cancel_left]
@[simp] lemma char_dual (V : fdRep k G) (g : G) : (of (dual V.ρ)).character g = V.character g⁻¹ :=
trace_transpose' (V.ρ g⁻¹)
@[simp] lemma char_lin_hom (V W : fdRep k G) (g : G) :
(of (lin_hom V.ρ W.ρ)).character g = (V.character g⁻¹) * (W.character g) :=
by { rw [←char_iso (dual_tensor_iso_lin_hom _ _), char_tensor, pi.mul_apply, char_dual], refl }
variables [fintype G] [invertible (fintype.card G : k)]
theorem average_char_eq_finrank_invariants (V : fdRep k G) :
⅟(fintype.card G : k) • ∑ g : G, V.character g = finrank k (invariants V.ρ) :=
by { rw ←(is_proj_average_map V.ρ).trace, simp [character, group_algebra.average, _root_.map_sum], }
end group
end fdRep
|
fba2129fdbfae2286c868e9d0d551a47c28b880d
|
5ae26df177f810c5006841e9c73dc56e01b978d7
|
/src/data/list/perm.lean
|
2145735c14b963b950ed1a117cb1923898d0f3cc
|
[
"Apache-2.0"
] |
permissive
|
ChrisHughes24/mathlib
|
98322577c460bc6b1fe5c21f42ce33ad1c3e5558
|
a2a867e827c2a6702beb9efc2b9282bd801d5f9a
|
refs/heads/master
| 1,583,848,251,477
| 1,565,164,247,000
| 1,565,164,247,000
| 129,409,993
| 0
| 1
|
Apache-2.0
| 1,565,164,817,000
| 1,523,628,059,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 41,050
|
lean
|
/-
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura, Jeremy Avigad, Mario Carneiro
List permutations.
-/
import data.list.basic logic.relation
namespace list
universe variables uu vv
variables {α : Type uu} {β : Type vv}
/-- `perm l₁ l₂` or `l₁ ~ l₂` asserts that `l₁` and `l₂` are permutations
of each other. This is defined by induction using pairwise swaps. -/
inductive perm : list α → list α → Prop
| nil : perm [] []
| skip : Π (x : α) {l₁ l₂ : list α}, perm l₁ l₂ → perm (x::l₁) (x::l₂)
| swap : Π (x y : α) (l : list α), perm (y::x::l) (x::y::l)
| trans : Π {l₁ l₂ l₃ : list α}, perm l₁ l₂ → perm l₂ l₃ → perm l₁ l₃
open perm
infix ~ := perm
@[refl] protected theorem perm.refl : ∀ (l : list α), l ~ l
| [] := perm.nil
| (x::xs) := skip x (perm.refl xs)
@[symm] protected theorem perm.symm {l₁ l₂ : list α} (p : l₁ ~ l₂) : l₂ ~ l₁ :=
perm.rec_on p
perm.nil
(λ x l₁ l₂ p₁ r₁, skip x r₁)
(λ x y l, swap y x l)
(λ l₁ l₂ l₃ p₁ p₂ r₁ r₂, trans r₂ r₁)
theorem perm.swap'
(x y : α) {l₁ l₂ : list α} (p : l₁ ~ l₂) : y::x::l₁ ~ x::y::l₂ :=
trans (swap _ _ _) (skip _ $ skip _ p)
attribute [trans] perm.trans
theorem perm.eqv (α) : equivalence (@perm α) :=
mk_equivalence (@perm α) (@perm.refl α) (@perm.symm α) (@perm.trans α)
instance is_setoid (α) : setoid (list α) :=
setoid.mk (@perm α) (perm.eqv α)
theorem perm_subset {l₁ l₂ : list α} (p : l₁ ~ l₂) : l₁ ⊆ l₂ :=
λ a, perm.rec_on p
(λ h, h)
(λ x l₁ l₂ p₁ r₁ i, or.elim i
(λ ax, by simp [ax])
(λ al₁, or.inr (r₁ al₁)))
(λ x y l ayxl, or.elim ayxl
(λ ay, by simp [ay])
(λ axl, or.elim axl
(λ ax, by simp [ax])
(λ al, or.inr (or.inr al))))
(λ l₁ l₂ l₃ p₁ p₂ r₁ r₂ ainl₁, r₂ (r₁ ainl₁))
theorem mem_of_perm {a : α} {l₁ l₂ : list α} (h : l₁ ~ l₂) : a ∈ l₁ ↔ a ∈ l₂ :=
iff.intro (λ m, perm_subset h m) (λ m, perm_subset h.symm m)
theorem perm_app_left {l₁ l₂ : list α} (t₁ : list α) (p : l₁ ~ l₂) : l₁++t₁ ~ l₂++t₁ :=
perm.rec_on p
(perm.refl ([] ++ t₁))
(λ x l₁ l₂ p₁ r₁, skip x r₁)
(λ x y l, swap x y _)
(λ l₁ l₂ l₃ p₁ p₂ r₁ r₂, trans r₁ r₂)
theorem perm_app_right {t₁ t₂ : list α} : ∀ (l : list α), t₁ ~ t₂ → l++t₁ ~ l++t₂
| [] p := p
| (x::xs) p := skip x (perm_app_right xs p)
theorem perm_app {l₁ l₂ t₁ t₂ : list α} (p₁ : l₁ ~ l₂) (p₂ : t₁ ~ t₂) : l₁++t₁ ~ l₂++t₂ :=
trans (perm_app_left t₁ p₁) (perm_app_right l₂ p₂)
theorem perm_app_cons (a : α) {h₁ h₂ t₁ t₂ : list α}
(p₁ : h₁ ~ h₂) (p₂ : t₁ ~ t₂) : h₁ ++ a::t₁ ~ h₂ ++ a::t₂ :=
perm_app p₁ (skip a p₂)
@[simp] theorem perm_middle {a : α} : ∀ {l₁ l₂ : list α}, l₁++a::l₂ ~ a::(l₁++l₂)
| [] l₂ := perm.refl _
| (b::l₁) l₂ := (skip b (@perm_middle l₁ l₂)).trans (swap a b _)
@[simp] theorem perm_cons_app (a : α) (l : list α) : l ++ [a] ~ a::l :=
by simpa using @perm_middle _ a l []
@[simp] theorem perm_app_comm : ∀ {l₁ l₂ : list α}, (l₁++l₂) ~ (l₂++l₁)
| [] l₂ := by simp
| (a::t) l₂ := (skip a perm_app_comm).trans perm_middle.symm
theorem concat_perm (l : list α) (a : α) : concat l a ~ a :: l :=
by simp
theorem perm_length {l₁ l₂ : list α} (p : l₁ ~ l₂) : length l₁ = length l₂ :=
perm.rec_on p
rfl
(λ x l₁ l₂ p r, by simp[r])
(λ x y l, by simp)
(λ l₁ l₂ l₃ p₁ p₂ r₁ r₂, eq.trans r₁ r₂)
theorem eq_nil_of_perm_nil {l₁ : list α} (p : [] ~ l₁) : l₁ = [] :=
eq_nil_of_length_eq_zero (perm_length p).symm
theorem perm_nil {l₁ : list α} : l₁ ~ [] ↔ l₁ = [] :=
⟨λ p, eq_nil_of_perm_nil p.symm, λ e, e ▸ perm.refl _⟩
theorem not_perm_nil_cons (x : α) (l : list α) : ¬ [] ~ x::l
| p := by injection eq_nil_of_perm_nil p
theorem eq_singleton_of_perm {a b : α} (p : [a] ~ [b]) : a = b :=
by simpa using perm_subset p (by simp)
theorem eq_singleton_of_perm_inv {a : α} {l : list α} (p : [a] ~ l) : l = [a] :=
match l, show 1 = _, from perm_length p, p with
| [a'], rfl, p := by rw [eq_singleton_of_perm p]
end
@[simp] theorem reverse_perm : ∀ (l : list α), reverse l ~ l
| [] := perm.nil
| (a::l) := by rw reverse_cons; exact
(perm_cons_app _ _).trans (skip a $ reverse_perm l)
theorem perm_cons_app_cons {l l₁ l₂ : list α} (a : α) (p : l ~ l₁++l₂) : a::l ~ l₁++(a::l₂) :=
trans (skip a p) perm_middle.symm
@[simp] theorem perm_repeat {a : α} {n : ℕ} {l : list α} : repeat a n ~ l ↔ repeat a n = l :=
⟨λ p, (eq_repeat.2 $ by exact
⟨by simpa using (perm_length p).symm,
λ b m, eq_of_mem_repeat $ perm_subset p.symm m⟩).symm,
λ h, h ▸ perm.refl _⟩
theorem perm_erase [decidable_eq α] {a : α} {l : list α} (h : a ∈ l) : l ~ a :: l.erase a :=
let ⟨l₁, l₂, _, e₁, e₂⟩ := exists_erase_eq h in
e₂.symm ▸ e₁.symm ▸ perm_middle
@[elab_as_eliminator] theorem perm_induction_on
{P : list α → list α → Prop} {l₁ l₂ : list α} (p : l₁ ~ l₂)
(h₁ : P [] [])
(h₂ : ∀ x l₁ l₂, l₁ ~ l₂ → P l₁ l₂ → P (x::l₁) (x::l₂))
(h₃ : ∀ x y l₁ l₂, l₁ ~ l₂ → P l₁ l₂ → P (y::x::l₁) (x::y::l₂))
(h₄ : ∀ l₁ l₂ l₃, l₁ ~ l₂ → l₂ ~ l₃ → P l₁ l₂ → P l₂ l₃ → P l₁ l₃) :
P l₁ l₂ :=
have P_refl : ∀ l, P l l, from
assume l,
list.rec_on l h₁ (λ x xs ih, h₂ x xs xs (perm.refl xs) ih),
perm.rec_on p h₁ h₂ (λ x y l, h₃ x y l l (perm.refl l) (P_refl l)) h₄
@[congr] theorem perm_filter_map (f : α → option β) {l₁ l₂ : list α} (p : l₁ ~ l₂) :
filter_map f l₁ ~ filter_map f l₂ :=
begin
induction p with x l₂ l₂' p IH x y l₂ l₂ m₂ r₂ p₁ p₂ IH₁ IH₂,
{ simp },
{ simp [filter_map], cases f x with a; simp [filter_map, IH, skip] },
{ simp [filter_map], cases f x with a; cases f y with b; simp [filter_map, swap] },
{ exact IH₁.trans IH₂ }
end
@[congr] theorem perm_map (f : α → β) {l₁ l₂ : list α} (p : l₁ ~ l₂) :
map f l₁ ~ map f l₂ :=
by rw ← filter_map_eq_map; apply perm_filter_map _ p
theorem perm_pmap {p : α → Prop} (f : Π a, p a → β)
{l₁ l₂ : list α} (p : l₁ ~ l₂) {H₁ H₂} : pmap f l₁ H₁ ~ pmap f l₂ H₂ :=
begin
induction p with x l₂ l₂' p IH x y l₂ l₂ m₂ r₂ p₁ p₂ IH₁ IH₂,
{ simp },
{ simp [IH, skip] },
{ simp [swap] },
{ refine IH₁.trans IH₂,
exact λ a m, H₂ a (perm_subset p₂ m) }
end
theorem perm_filter (p : α → Prop) [decidable_pred p]
{l₁ l₂ : list α} (s : l₁ ~ l₂) : filter p l₁ ~ filter p l₂ :=
by rw ← filter_map_eq_filter; apply perm_filter_map _ s
theorem exists_perm_sublist {l₁ l₂ l₂' : list α}
(s : l₁ <+ l₂) (p : l₂ ~ l₂') : ∃ l₁' ~ l₁, l₁' <+ l₂' :=
begin
induction p with x l₂ l₂' p IH x y l₂ l₂ m₂ r₂ p₁ p₂ IH₁ IH₂ generalizing l₁ s,
{ exact ⟨[], eq_nil_of_sublist_nil s ▸ perm.refl _, nil_sublist _⟩ },
{ cases s with _ _ _ s l₁ _ _ s,
{ exact let ⟨l₁', p', s'⟩ := IH s in ⟨l₁', p', s'.cons _ _ _⟩ },
{ exact let ⟨l₁', p', s'⟩ := IH s in ⟨x::l₁', skip x p', s'.cons2 _ _ _⟩ } },
{ cases s with _ _ _ s l₁ _ _ s; cases s with _ _ _ s l₁ _ _ s,
{ exact ⟨l₁, perm.refl _, (s.cons _ _ _).cons _ _ _⟩ },
{ exact ⟨x::l₁, perm.refl _, (s.cons _ _ _).cons2 _ _ _⟩ },
{ exact ⟨y::l₁, perm.refl _, (s.cons2 _ _ _).cons _ _ _⟩ },
{ exact ⟨x::y::l₁, perm.swap _ _ _, (s.cons2 _ _ _).cons2 _ _ _⟩ } },
{ exact let ⟨m₁, pm, sm⟩ := IH₁ s, ⟨r₁, pr, sr⟩ := IH₂ sm in
⟨r₁, pr.trans pm, sr⟩ }
end
section rel
open relator
variables {γ : Type*} {δ : Type*} {r : α → β → Prop} {p : γ → δ → Prop}
local infixr ` ∘r ` : 80 := relation.comp
lemma perm_comp_perm : (perm ∘r perm : list α → list α → Prop) = perm :=
begin
funext a c, apply propext,
split,
{ exact assume ⟨b, hab, hba⟩, perm.trans hab hba },
{ exact assume h, ⟨a, perm.refl a, h⟩ }
end
lemma perm_comp_forall₂ {l u v} (hlu : perm l u) (huv : forall₂ r u v) : (forall₂ r ∘r perm) l v :=
begin
induction hlu generalizing v,
case perm.nil { cases huv, exact ⟨[], forall₂.nil, perm.nil⟩ },
case perm.skip : a l u hlu ih {
cases huv with _ b _ v hab huv',
rcases ih huv' with ⟨l₂, h₁₂, h₂₃⟩,
exact ⟨b::l₂, forall₂.cons hab h₁₂, perm.skip _ h₂₃⟩
},
case perm.swap : a₁ a₂ l₁ l₂ h₂₃ {
cases h₂₃ with _ b₁ _ l₂ h₁ hr_₂₃,
cases hr_₂₃ with _ b₂ _ l₂ h₂ h₁₂,
exact ⟨b₂::b₁::l₂, forall₂.cons h₂ (forall₂.cons h₁ h₁₂), perm.swap _ _ _⟩
},
case perm.trans : la₁ la₂ la₃ _ _ ih₁ ih₂ {
rcases ih₂ huv with ⟨lb₂, hab₂, h₂₃⟩,
rcases ih₁ hab₂ with ⟨lb₁, hab₁, h₁₂⟩,
exact ⟨lb₁, hab₁, perm.trans h₁₂ h₂₃⟩
}
end
lemma forall₂_comp_perm_eq_perm_comp_forall₂ : forall₂ r ∘r perm = perm ∘r forall₂ r :=
begin
funext l₁ l₃, apply propext,
split,
{ assume h, rcases h with ⟨l₂, h₁₂, h₂₃⟩,
have : forall₂ (flip r) l₂ l₁, from h₁₂.flip ,
rcases perm_comp_forall₂ h₂₃.symm this with ⟨l', h₁, h₂⟩,
exact ⟨l', h₂.symm, h₁.flip⟩ },
{ exact assume ⟨l₂, h₁₂, h₂₃⟩, perm_comp_forall₂ h₁₂ h₂₃ }
end
lemma rel_perm_imp (hr : right_unique r) : (forall₂ r ⇒ forall₂ r ⇒ implies) perm perm :=
assume a b h₁ c d h₂ h,
have (flip (forall₂ r) ∘r (perm ∘r forall₂ r)) b d, from ⟨a, h₁, c, h, h₂⟩,
have ((flip (forall₂ r) ∘r forall₂ r) ∘r perm) b d,
by rwa [← forall₂_comp_perm_eq_perm_comp_forall₂, ← relation.comp_assoc] at this,
let ⟨b', ⟨c', hbc, hcb⟩, hbd⟩ := this in
have b' = b, from right_unique_forall₂ @hr hcb hbc,
this ▸ hbd
lemma rel_perm (hr : bi_unique r) : (forall₂ r ⇒ forall₂ r ⇒ (↔)) perm perm :=
assume a b hab c d hcd, iff.intro
(rel_perm_imp hr.2 hab hcd)
(rel_perm_imp (assume a b c, left_unique_flip hr.1) hab.flip hcd.flip)
end rel
section subperm
/-- `subperm l₁ l₂`, denoted `l₁ <+~ l₂`, means that `l₁` is a sublist of
a permutation of `l₂`. This is an analogue of `l₁ ⊆ l₂` which respects
multiplicities of elements, and is used for the `≤` relation on multisets. -/
def subperm (l₁ l₂ : list α) : Prop := ∃ l ~ l₁, l <+ l₂
infix ` <+~ `:50 := subperm
theorem nil_subperm {l : list α} : [] <+~ l :=
⟨[], perm.nil, by simp⟩
theorem perm.subperm_left {l l₁ l₂ : list α} (p : l₁ ~ l₂) : l <+~ l₁ ↔ l <+~ l₂ :=
suffices ∀ {l₁ l₂ : list α}, l₁ ~ l₂ → l <+~ l₁ → l <+~ l₂,
from ⟨this p, this p.symm⟩,
λ l₁ l₂ p ⟨u, pu, su⟩,
let ⟨v, pv, sv⟩ := exists_perm_sublist su p in
⟨v, pv.trans pu, sv⟩
theorem perm.subperm_right {l₁ l₂ l : list α} (p : l₁ ~ l₂) : l₁ <+~ l ↔ l₂ <+~ l :=
⟨λ ⟨u, pu, su⟩, ⟨u, pu.trans p, su⟩,
λ ⟨u, pu, su⟩, ⟨u, pu.trans p.symm, su⟩⟩
theorem subperm_of_sublist {l₁ l₂ : list α} (s : l₁ <+ l₂) : l₁ <+~ l₂ :=
⟨l₁, perm.refl _, s⟩
theorem subperm_of_perm {l₁ l₂ : list α} (p : l₁ ~ l₂) : l₁ <+~ l₂ :=
⟨l₂, p.symm, sublist.refl _⟩
theorem subperm.refl (l : list α) : l <+~ l := subperm_of_perm (perm.refl _)
theorem subperm.trans {l₁ l₂ l₃ : list α} : l₁ <+~ l₂ → l₂ <+~ l₃ → l₁ <+~ l₃
| s ⟨l₂', p₂, s₂⟩ :=
let ⟨l₁', p₁, s₁⟩ := p₂.subperm_left.2 s in ⟨l₁', p₁, s₁.trans s₂⟩
theorem length_le_of_subperm {l₁ l₂ : list α} : l₁ <+~ l₂ → length l₁ ≤ length l₂
| ⟨l, p, s⟩ := perm_length p ▸ length_le_of_sublist s
theorem subperm.perm_of_length_le {l₁ l₂ : list α} : l₁ <+~ l₂ → length l₂ ≤ length l₁ → l₁ ~ l₂
| ⟨l, p, s⟩ h :=
suffices l = l₂, from this ▸ p.symm,
eq_of_sublist_of_length_le s $ perm_length p.symm ▸ h
theorem subperm.antisymm {l₁ l₂ : list α} (h₁ : l₁ <+~ l₂) (h₂ : l₂ <+~ l₁) : l₁ ~ l₂ :=
h₁.perm_of_length_le (length_le_of_subperm h₂)
theorem subset_of_subperm {l₁ l₂ : list α} : l₁ <+~ l₂ → l₁ ⊆ l₂
| ⟨l, p, s⟩ := subset.trans (perm_subset p.symm) (subset_of_sublist s)
end subperm
theorem exists_perm_append_of_sublist : ∀ {l₁ l₂ : list α}, l₁ <+ l₂ → ∃ l, l₂ ~ l₁ ++ l
| ._ ._ sublist.slnil := ⟨nil, perm.refl _⟩
| ._ ._ (sublist.cons l₁ l₂ a s) :=
let ⟨l, p⟩ := exists_perm_append_of_sublist s in
⟨a::l, (skip a p).trans perm_middle.symm⟩
| ._ ._ (sublist.cons2 l₁ l₂ a s) :=
let ⟨l, p⟩ := exists_perm_append_of_sublist s in
⟨l, skip a p⟩
theorem perm_countp (p : α → Prop) [decidable_pred p]
{l₁ l₂ : list α} (s : l₁ ~ l₂) : countp p l₁ = countp p l₂ :=
by rw [countp_eq_length_filter, countp_eq_length_filter];
exact perm_length (perm_filter _ s)
theorem countp_le_of_subperm (p : α → Prop) [decidable_pred p]
{l₁ l₂ : list α} : l₁ <+~ l₂ → countp p l₁ ≤ countp p l₂
| ⟨l, p', s⟩ := perm_countp p p' ▸ countp_le_of_sublist s
theorem perm_count [decidable_eq α] {l₁ l₂ : list α}
(p : l₁ ~ l₂) (a) : count a l₁ = count a l₂ :=
perm_countp _ p
theorem count_le_of_subperm [decidable_eq α] {l₁ l₂ : list α}
(s : l₁ <+~ l₂) (a) : count a l₁ ≤ count a l₂ :=
countp_le_of_subperm _ s
theorem foldl_eq_of_perm {f : β → α → β} {l₁ l₂ : list α} (rcomm : right_commutative f) (p : l₁ ~ l₂) :
∀ b, foldl f b l₁ = foldl f b l₂ :=
perm_induction_on p
(λ b, rfl)
(λ x t₁ t₂ p r b, r (f b x))
(λ x y t₁ t₂ p r b, by simp; rw rcomm; exact r (f (f b x) y))
(λ t₁ t₂ t₃ p₁ p₂ r₁ r₂ b, eq.trans (r₁ b) (r₂ b))
theorem foldr_eq_of_perm {f : α → β → β} {l₁ l₂ : list α} (lcomm : left_commutative f) (p : l₁ ~ l₂) :
∀ b, foldr f b l₁ = foldr f b l₂ :=
perm_induction_on p
(λ b, rfl)
(λ x t₁ t₂ p r b, by simp; rw [r b])
(λ x y t₁ t₂ p r b, by simp; rw [lcomm, r b])
(λ t₁ t₂ t₃ p₁ p₂ r₁ r₂ a, eq.trans (r₁ a) (r₂ a))
lemma rec_heq_of_perm {β : list α → Sort*} {f : Πa l, β l → β (a::l)} {b : β []} {l l' : list α}
(hl : perm l l')
(f_congr : ∀{a l l' b b'}, perm l l' → b == b' → f a l b == f a l' b')
(f_swap : ∀{a a' l b}, f a (a'::l) (f a' l b) == f a' (a::l) (f a l b)) :
@list.rec α β b f l == @list.rec α β b f l' :=
begin
induction hl,
case list.perm.nil { refl },
case list.perm.skip : a l l' h ih { exact f_congr h ih },
case list.perm.swap : a a' l { exact f_swap },
case list.perm.trans : l₁ l₂ l₃ h₁ h₂ ih₁ ih₂ { exact heq.trans ih₁ ih₂ }
end
section
variables {op : α → α → α} [is_associative α op] [is_commutative α op]
local notation a * b := op a b
local notation l <*> a := foldl op a l
lemma fold_op_eq_of_perm {l₁ l₂ : list α} {a : α} (h : l₁ ~ l₂) : l₁ <*> a = l₂ <*> a :=
foldl_eq_of_perm (right_comm _ (is_commutative.comm _) (is_associative.assoc _)) h _
end
section comm_monoid
open list
variable [comm_monoid α]
@[to_additive list.sum_eq_of_perm]
lemma prod_eq_of_perm {l₁ l₂ : list α} (h : perm l₁ l₂) : prod l₁ = prod l₂ :=
by induction h; simp [*, mul_left_comm]
@[to_additive list.sum_reverse]
lemma prod_reverse (l : list α) : prod l.reverse = prod l :=
prod_eq_of_perm $ reverse_perm l
end comm_monoid
theorem perm_inv_core {a : α} {l₁ l₂ r₁ r₂ : list α} : l₁++a::r₁ ~ l₂++a::r₂ → l₁++r₁ ~ l₂++r₂ :=
begin
generalize e₁ : l₁++a::r₁ = s₁, generalize e₂ : l₂++a::r₂ = s₂,
intro p, revert l₁ l₂ r₁ r₂ e₁ e₂,
refine perm_induction_on p _ (λ x t₁ t₂ p IH, _) (λ x y t₁ t₂ p IH, _) (λ t₁ t₂ t₃ p₁ p₂ IH₁ IH₂, _);
intros l₁ l₂ r₁ r₂ e₁ e₂,
{ apply (not_mem_nil a).elim, rw ← e₁, simp },
{ cases l₁ with y l₁; cases l₂ with z l₂;
dsimp at e₁ e₂; injections; subst x,
{ substs t₁ t₂, exact p },
{ substs z t₁ t₂, exact p.trans perm_middle },
{ substs y t₁ t₂, exact perm_middle.symm.trans p },
{ substs z t₁ t₂, exact skip y (IH rfl rfl) } },
{ rcases l₁ with _|⟨y, _|⟨z, l₁⟩⟩; rcases l₂ with _|⟨u, _|⟨v, l₂⟩⟩;
dsimp at e₁ e₂; injections; substs x y,
{ substs r₁ r₂, exact skip a p },
{ substs r₁ r₂, exact skip u p },
{ substs r₁ v t₂, exact skip u (p.trans perm_middle) },
{ substs r₁ r₂, exact skip y p },
{ substs r₁ r₂ y u, exact skip a p },
{ substs r₁ u v t₂, exact (skip y $ p.trans perm_middle).trans (swap _ _ _) },
{ substs r₂ z t₁, exact skip y (perm_middle.symm.trans p) },
{ substs r₂ y z t₁, exact (swap _ _ _).trans (skip u $ perm_middle.symm.trans p) },
{ substs u v t₁ t₂, exact (IH rfl rfl).swap' _ _ } },
{ substs t₁ t₃,
have : a ∈ t₂ := perm_subset p₁ (by simp),
rcases mem_split this with ⟨l₂, r₂, e₂⟩,
subst t₂, exact (IH₁ rfl rfl).trans (IH₂ rfl rfl) }
end
theorem perm_cons_inv {a : α} {l₁ l₂ : list α} : a::l₁ ~ a::l₂ → l₁ ~ l₂ :=
@perm_inv_core _ _ [] [] _ _
theorem perm_cons (a : α) {l₁ l₂ : list α} : a::l₁ ~ a::l₂ ↔ l₁ ~ l₂ :=
⟨perm_cons_inv, skip a⟩
theorem perm_app_left_iff {l₁ l₂ : list α} : ∀ l, l++l₁ ~ l++l₂ ↔ l₁ ~ l₂
| [] := iff.rfl
| (a::l) := (perm_cons a).trans (perm_app_left_iff l)
theorem perm_app_right_iff {l₁ l₂ : list α} (l) : l₁++l ~ l₂++l ↔ l₁ ~ l₂ :=
⟨λ p, (perm_app_left_iff _).1 $ trans perm_app_comm $ trans p perm_app_comm,
perm_app_left _⟩
theorem perm_option_to_list {o₁ o₂ : option α} : o₁.to_list ~ o₂.to_list ↔ o₁ = o₂ :=
begin
refine ⟨λ p, _, λ e, e ▸ perm.refl _⟩,
cases o₁ with a; cases o₂ with b, {refl},
{ cases (perm_length p) },
{ cases (perm_length p) },
{ exact option.mem_to_list.1 ((mem_of_perm p).2 $ by simp) }
end
theorem subperm_cons (a : α) {l₁ l₂ : list α} : a::l₁ <+~ a::l₂ ↔ l₁ <+~ l₂ :=
⟨λ ⟨l, p, s⟩, begin
cases s with _ _ _ s' u _ _ s',
{ exact (p.subperm_left.2 $ subperm_of_sublist $ sublist_cons _ _).trans
(subperm_of_sublist s') },
{ exact ⟨u, perm_cons_inv p, s'⟩ }
end, λ ⟨l, p, s⟩, ⟨a::l, skip a p, s.cons2 _ _ _⟩⟩
theorem cons_subperm_of_mem {a : α} {l₁ l₂ : list α} (d₁ : nodup l₁) (h₁ : a ∉ l₁) (h₂ : a ∈ l₂)
(s : l₁ <+~ l₂) : a :: l₁ <+~ l₂ :=
begin
rcases s with ⟨l, p, s⟩,
induction s generalizing l₁,
case list.sublist.slnil { cases h₂ },
case list.sublist.cons : r₁ r₂ b s' ih {
simp at h₂,
cases h₂ with e m,
{ subst b, exact ⟨a::r₁, skip a p, s'.cons2 _ _ _⟩ },
{ rcases ih m d₁ h₁ p with ⟨t, p', s'⟩, exact ⟨t, p', s'.cons _ _ _⟩ } },
case list.sublist.cons2 : r₁ r₂ b s' ih {
have bm : b ∈ l₁ := (perm_subset p $ mem_cons_self _ _),
have am : a ∈ r₂ := h₂.resolve_left (λ e, h₁ $ e.symm ▸ bm),
rcases mem_split bm with ⟨t₁, t₂, rfl⟩,
have st : t₁ ++ t₂ <+ t₁ ++ b :: t₂ := by simp,
rcases ih am (nodup_of_sublist st d₁)
(mt (λ x, subset_of_sublist st x) h₁)
(perm_cons_inv $ p.trans perm_middle) with ⟨t, p', s'⟩,
exact ⟨b::t, (skip b p').trans $ (swap _ _ _).trans (skip a perm_middle.symm), s'.cons2 _ _ _⟩ }
end
theorem subperm_app_left {l₁ l₂ : list α} : ∀ l, l++l₁ <+~ l++l₂ ↔ l₁ <+~ l₂
| [] := iff.rfl
| (a::l) := (subperm_cons a).trans (subperm_app_left l)
theorem subperm_app_right {l₁ l₂ : list α} (l) : l₁++l <+~ l₂++l ↔ l₁ <+~ l₂ :=
(perm_app_comm.subperm_left.trans perm_app_comm.subperm_right).trans (subperm_app_left l)
theorem subperm.exists_of_length_lt {l₁ l₂ : list α} :
l₁ <+~ l₂ → length l₁ < length l₂ → ∃ a, a :: l₁ <+~ l₂
| ⟨l, p, s⟩ h :=
suffices length l < length l₂ → ∃ (a : α), a :: l <+~ l₂, from
(this $ perm_length p.symm ▸ h).imp (λ a, (skip a p).subperm_right.1),
begin
clear subperm.exists_of_length_lt p h l₁, rename l₂ u,
induction s with l₁ l₂ a s IH _ _ b s IH; intro h,
{ cases h },
{ cases lt_or_eq_of_le (nat.le_of_lt_succ h : length l₁ ≤ length l₂) with h h,
{ exact (IH h).imp (λ a s, s.trans (subperm_of_sublist $ sublist_cons _ _)) },
{ exact ⟨a, eq_of_sublist_of_length_eq s h ▸ subperm.refl _⟩ } },
{ exact (IH $ nat.lt_of_succ_lt_succ h).imp
(λ a s, (swap _ _ _).subperm_right.1 $ (subperm_cons _).2 s) }
end
theorem subperm_of_subset_nodup
{l₁ l₂ : list α} (d : nodup l₁) (H : l₁ ⊆ l₂) : l₁ <+~ l₂ :=
begin
induction d with a l₁' h d IH,
{ exact ⟨nil, perm.nil, nil_sublist _⟩ },
{ cases forall_mem_cons.1 H with H₁ H₂,
simp at h,
exact cons_subperm_of_mem d h H₁ (IH H₂) }
end
theorem perm_ext {l₁ l₂ : list α} (d₁ : nodup l₁) (d₂ : nodup l₂) : l₁ ~ l₂ ↔ ∀a, a ∈ l₁ ↔ a ∈ l₂ :=
⟨λ p a, mem_of_perm p, λ H, subperm.antisymm
(subperm_of_subset_nodup d₁ (λ a, (H a).1))
(subperm_of_subset_nodup d₂ (λ a, (H a).2))⟩
theorem perm_ext_sublist_nodup {l₁ l₂ l : list α} (d : nodup l)
(s₁ : l₁ <+ l) (s₂ : l₂ <+ l) : l₁ ~ l₂ ↔ l₁ = l₂ :=
⟨λ h, begin
induction s₂ with l₂ l a s₂ IH l₂ l a s₂ IH generalizing l₁,
{ exact eq_nil_of_perm_nil h.symm },
{ simp at d,
cases s₁ with _ _ _ s₁ l₁ _ _ s₁,
{ exact IH d.2 s₁ h },
{ apply d.1.elim,
exact subset_of_subperm ⟨_, h.symm, s₂⟩ (mem_cons_self _ _) } },
{ simp at d,
cases s₁ with _ _ _ s₁ l₁ _ _ s₁,
{ apply d.1.elim,
exact subset_of_subperm ⟨_, h, s₁⟩ (mem_cons_self _ _) },
{ rw IH d.2 s₁ (perm_cons_inv h) } }
end, λ h, by rw h⟩
section
variable [decidable_eq α]
-- attribute [congr]
theorem erase_perm_erase (a : α) {l₁ l₂ : list α} (p : l₁ ~ l₂) :
l₁.erase a ~ l₂.erase a :=
if h₁ : a ∈ l₁ then
have h₂ : a ∈ l₂, from perm_subset p h₁,
perm_cons_inv $ trans (perm_erase h₁).symm $ trans p (perm_erase h₂)
else
have h₂ : a ∉ l₂, from mt (mem_of_perm p).2 h₁,
by rw [erase_of_not_mem h₁, erase_of_not_mem h₂]; exact p
theorem erase_subperm (a : α) (l : list α) : l.erase a <+~ l :=
⟨l.erase a, perm.refl _, erase_sublist _ _⟩
theorem erase_subperm_erase {l₁ l₂ : list α} (a : α) (h : l₁ <+~ l₂) : l₁.erase a <+~ l₂.erase a :=
let ⟨l, hp, hs⟩ := h in ⟨l.erase a, erase_perm_erase _ hp, erase_sublist_erase _ hs⟩
theorem perm_diff_left {l₁ l₂ : list α} (t : list α) (h : l₁ ~ l₂) : l₁.diff t ~ l₂.diff t :=
by induction t generalizing l₁ l₂ h; simp [*, erase_perm_erase]
theorem perm_diff_right (l : list α) {t₁ t₂ : list α} (h : t₁ ~ t₂) : l.diff t₁ = l.diff t₂ :=
by induction h generalizing l; simp [*, erase_perm_erase, erase_comm]
<|> exact (ih_1 _).trans (ih_2 _)
theorem subperm_cons_diff {a : α} : ∀ {l₁ l₂ : list α}, (a :: l₁).diff l₂ <+~ a :: l₁.diff l₂
| l₁ [] := ⟨a::l₁, by simp⟩
| l₁ (b::l₂) :=
begin
repeat {rw diff_cons},
by_cases heq : a = b,
{ by_cases b ∈ l₁,
{ rw perm.subperm_right, apply subperm_cons_diff,
simp [perm_diff_left, heq, perm_erase h] },
{ simp [subperm_of_sublist, sublist.cons, h, heq] } },
{ simp [heq, subperm_cons_diff] }
end
theorem subset_cons_diff {a : α} {l₁ l₂ : list α} : (a :: l₁).diff l₂ ⊆ a :: l₁.diff l₂ :=
subset_of_subperm subperm_cons_diff
theorem perm_bag_inter_left {l₁ l₂ : list α} (t : list α) (h : l₁ ~ l₂) : l₁.bag_inter t ~ l₂.bag_inter t :=
begin
induction h with x _ _ _ _ x y _ _ _ _ _ _ ih_1 ih_2 generalizing t, {simp},
{ by_cases x ∈ t; simp [*, skip] },
{ by_cases x = y, {simp [h]},
by_cases xt : x ∈ t; by_cases yt : y ∈ t,
{ simp [xt, yt, mem_erase_of_ne h, mem_erase_of_ne (ne.symm h), erase_comm, swap] },
{ simp [xt, yt, mt mem_of_mem_erase, skip] },
{ simp [xt, yt, mt mem_of_mem_erase, skip] },
{ simp [xt, yt] } },
{ exact (ih_1 _).trans (ih_2 _) }
end
theorem perm_bag_inter_right (l : list α) {t₁ t₂ : list α} (p : t₁ ~ t₂) : l.bag_inter t₁ = l.bag_inter t₂ :=
begin
induction l with a l IH generalizing t₁ t₂ p, {simp},
by_cases a ∈ t₁,
{ simp [h, (mem_of_perm p).1 h, IH (erase_perm_erase _ p)] },
{ simp [h, mt (mem_of_perm p).2 h, IH p] }
end
theorem cons_perm_iff_perm_erase {a : α} {l₁ l₂ : list α} : a::l₁ ~ l₂ ↔ a ∈ l₂ ∧ l₁ ~ l₂.erase a :=
⟨λ h, have a ∈ l₂, from perm_subset h (mem_cons_self a l₁),
⟨this, perm_cons_inv $ h.trans $ perm_erase this⟩,
λ ⟨m, h⟩, trans (skip a h) (perm_erase m).symm⟩
theorem perm_iff_count {l₁ l₂ : list α} : l₁ ~ l₂ ↔ ∀ a, count a l₁ = count a l₂ :=
⟨perm_count, λ H, begin
induction l₁ with a l₁ IH generalizing l₂,
{ cases l₂ with b l₂, {refl},
specialize H b, simp at H, contradiction },
{ have : a ∈ l₂ := count_pos.1 (by rw ← H; simp; apply nat.succ_pos),
refine trans (skip a $ IH $ λ b, _) (perm_erase this).symm,
specialize H b,
rw perm_count (perm_erase this) at H,
by_cases b = a; simp [h] at H ⊢; assumption }
end⟩
instance decidable_perm : ∀ (l₁ l₂ : list α), decidable (l₁ ~ l₂)
| [] [] := is_true $ perm.refl _
| [] (b::l₂) := is_false $ λ h, by have := eq_nil_of_perm_nil h; contradiction
| (a::l₁) l₂ := by haveI := decidable_perm l₁ (l₂.erase a);
exact decidable_of_iff' _ cons_perm_iff_perm_erase
-- @[congr]
theorem perm_erase_dup_of_perm {l₁ l₂ : list α} (p : l₁ ~ l₂) :
erase_dup l₁ ~ erase_dup l₂ :=
perm_iff_count.2 $ λ a,
if h : a ∈ l₁
then by simp [nodup_erase_dup, h, perm_subset p h]
else by simp [h, mt (mem_of_perm p).2 h]
-- attribute [congr]
theorem perm_insert (a : α)
{l₁ l₂ : list α} (p : l₁ ~ l₂) : insert a l₁ ~ insert a l₂ :=
if h : a ∈ l₁
then by simpa [h, perm_subset p h] using p
else by simpa [h, mt (mem_of_perm p).2 h] using skip a p
theorem perm_insert_swap (x y : α) (l : list α) :
insert x (insert y l) ~ insert y (insert x l) :=
begin
by_cases xl : x ∈ l; by_cases yl : y ∈ l; simp [xl, yl],
by_cases xy : x = y, { simp [xy] },
simp [not_mem_cons_of_ne_of_not_mem xy xl,
not_mem_cons_of_ne_of_not_mem (ne.symm xy) yl],
constructor
end
theorem perm_union_left {l₁ l₂ : list α} (t₁ : list α) (h : l₁ ~ l₂) : l₁ ∪ t₁ ~ l₂ ∪ t₁ :=
begin
induction h with a _ _ _ ih _ _ _ _ _ _ _ _ ih_1 ih_2; try {simp},
{ exact perm_insert a ih },
{ apply perm_insert_swap },
{ exact ih_1.trans ih_2 }
end
theorem perm_union_right (l : list α) {t₁ t₂ : list α} (h : t₁ ~ t₂) : l ∪ t₁ ~ l ∪ t₂ :=
by induction l; simp [*, perm_insert]
-- @[congr]
theorem perm_union {l₁ l₂ t₁ t₂ : list α} (p₁ : l₁ ~ l₂) (p₂ : t₁ ~ t₂) : l₁ ∪ t₁ ~ l₂ ∪ t₂ :=
trans (perm_union_left t₁ p₁) (perm_union_right l₂ p₂)
theorem perm_inter_left {l₁ l₂ : list α} (t₁ : list α) : l₁ ~ l₂ → l₁ ∩ t₁ ~ l₂ ∩ t₁ :=
perm_filter _
theorem perm_inter_right (l : list α) {t₁ t₂ : list α} (p : t₁ ~ t₂) : l ∩ t₁ = l ∩ t₂ :=
by dsimp [(∩), list.inter]; congr; funext a; rw [mem_of_perm p]
-- @[congr]
theorem perm_inter {l₁ l₂ t₁ t₂ : list α} (p₁ : l₁ ~ l₂) (p₂ : t₁ ~ t₂) : l₁ ∩ t₁ ~ l₂ ∩ t₂ :=
perm_inter_right l₂ p₂ ▸ perm_inter_left t₁ p₁
end
theorem perm_pairwise {R : α → α → Prop} (S : symmetric R) :
∀ {l₁ l₂ : list α} (p : l₁ ~ l₂), pairwise R l₁ ↔ pairwise R l₂ :=
suffices ∀ {l₁ l₂}, l₁ ~ l₂ → pairwise R l₁ → pairwise R l₂, from λ l₁ l₂ p, ⟨this p, this p.symm⟩,
λ l₁ l₂ p d, begin
induction d with a l₁ h d IH generalizing l₂,
{ rw eq_nil_of_perm_nil p, constructor },
{ have : a ∈ l₂ := perm_subset p (mem_cons_self _ _),
rcases mem_split this with ⟨s₂, t₂, rfl⟩,
have p' := perm_cons_inv (p.trans perm_middle),
refine (pairwise_middle S).2 (pairwise_cons.2 ⟨λ b m, _, IH _ p'⟩),
exact h _ (perm_subset p'.symm m) }
end
theorem perm_nodup {l₁ l₂ : list α} : l₁ ~ l₂ → (nodup l₁ ↔ nodup l₂) :=
perm_pairwise $ @ne.symm α
theorem perm_bind_left {l₁ l₂ : list α} (f : α → list β) (p : l₁ ~ l₂) :
l₁.bind f ~ l₂.bind f :=
begin
induction p with a l₁ l₂ p IH a b l l₁ l₂ l₃ p₁ p₂ IH₁ IH₂, {simp},
{ simp, exact perm_app_right _ IH },
{ simp, rw [← append_assoc, ← append_assoc], exact perm_app_left _ perm_app_comm },
{ exact trans IH₁ IH₂ }
end
theorem perm_bind_right (l : list α) {f g : α → list β} (h : ∀ a, f a ~ g a) :
l.bind f ~ l.bind g :=
by induction l with a l IH; simp; exact perm_app (h a) IH
theorem perm_product_left {l₁ l₂ : list α} (t₁ : list β) (p : l₁ ~ l₂) : product l₁ t₁ ~ product l₂ t₁ :=
perm_bind_left _ p
theorem perm_product_right (l : list α) {t₁ t₂ : list β} (p : t₁ ~ t₂) : product l t₁ ~ product l t₂ :=
perm_bind_right _ $ λ a, perm_map _ p
@[congr] theorem perm_product {l₁ l₂ : list α} {t₁ t₂ : list β}
(p₁ : l₁ ~ l₂) (p₂ : t₁ ~ t₂) : product l₁ t₁ ~ product l₂ t₂ :=
trans (perm_product_left t₁ p₁) (perm_product_right l₂ p₂)
theorem sublists_cons_perm_append (a : α) (l : list α) :
sublists (a :: l) ~ sublists l ++ map (cons a) (sublists l) :=
begin
simp [sublists, sublists_aux_cons_cons],
refine skip _ ((skip _ _).trans perm_middle.symm),
induction sublists_aux l cons with b l IH; simp,
exact skip b ((skip _ IH).trans perm_middle.symm)
end
theorem sublists_perm_sublists' : ∀ l : list α, sublists l ~ sublists' l
| [] := perm.refl _
| (a::l) := let IH := sublists_perm_sublists' l in
by rw sublists'_cons; exact
(sublists_cons_perm_append _ _).trans (perm_app IH (perm_map _ IH))
theorem revzip_sublists (l : list α) :
∀ l₁ l₂, (l₁, l₂) ∈ revzip l.sublists → l₁ ++ l₂ ~ l :=
begin
rw revzip,
apply list.reverse_rec_on l,
{ intros l₁ l₂ h, simp at h, simp [h] },
{ intros l a IH l₁ l₂ h,
rw [sublists_concat, reverse_append, zip_append, ← map_reverse,
zip_map_right, zip_map_left] at h; [simp at h, simp],
rcases h with ⟨l₁, l₂', h, rfl, rfl⟩ | ⟨l₁', l₂, h, rfl, rfl⟩,
{ rw ← append_assoc,
exact perm_app_left _ (IH _ _ h) },
{ rw append_assoc,
apply (perm_app_right _ perm_app_comm).trans,
rw ← append_assoc,
exact perm_app_left _ (IH _ _ h) } }
end
theorem revzip_sublists' (l : list α) :
∀ l₁ l₂, (l₁, l₂) ∈ revzip l.sublists' → l₁ ++ l₂ ~ l :=
begin
rw revzip,
induction l with a l IH; intros l₁ l₂ h,
{ simp at h, simp [h] },
{ rw [sublists'_cons, reverse_append, zip_append, ← map_reverse,
zip_map_right, zip_map_left] at h; [simp at h, simp],
rcases h with ⟨l₁, l₂', h, rfl, rfl⟩ | ⟨l₁', l₂, h, rfl, rfl⟩,
{ exact perm_middle.trans (skip _ (IH _ _ h)) },
{ exact skip _ (IH _ _ h) } }
end
theorem perm_lookmap (f : α → option α) {l₁ l₂ : list α}
(H : pairwise (λ a b, ∀ (c ∈ f a) (d ∈ f b), a = b ∧ c = d) l₁)
(p : l₁ ~ l₂) : lookmap f l₁ ~ lookmap f l₂ :=
begin
let F := λ a b, ∀ (c ∈ f a) (d ∈ f b), a = b ∧ c = d,
change pairwise F l₁ at H,
induction p with a l₁ l₂ p IH a b l l₁ l₂ l₃ p₁ p₂ IH₁ IH₂, {simp},
{ cases h : f a,
{ simp [h], exact (IH (pairwise_cons.1 H).2).skip _ },
{ simp [lookmap_cons_some _ _ h], exact p.skip _ } },
{ cases h₁ : f a with c; cases h₂ : f b with d,
{ simp [h₁, h₂], apply swap },
{ simp [h₁, lookmap_cons_some _ _ h₂], apply swap },
{ simp [lookmap_cons_some _ _ h₁, h₂], apply swap },
{ simp [lookmap_cons_some _ _ h₁, lookmap_cons_some _ _ h₂],
rcases (pairwise_cons.1 H).1 _ (or.inl rfl) _ h₂ _ h₁ with ⟨rfl, rfl⟩,
refl } },
{ refine (IH₁ H).trans (IH₂ ((perm_pairwise _ p₁).1 H)),
exact λ a b h c h₁ d h₂, (h d h₂ c h₁).imp eq.symm eq.symm }
end
theorem perm_erasep (f : α → Prop) [decidable_pred f] {l₁ l₂ : list α}
(H : pairwise (λ a b, f a → f b → false) l₁)
(p : l₁ ~ l₂) : erasep f l₁ ~ erasep f l₂ :=
begin
let F := λ a b, f a → f b → false,
change pairwise F l₁ at H,
induction p with a l₁ l₂ p IH a b l l₁ l₂ l₃ p₁ p₂ IH₁ IH₂, {simp},
{ by_cases h : f a,
{ simp [h, p] },
{ simp [h], exact (IH (pairwise_cons.1 H).2).skip _ } },
{ by_cases h₁ : f a; by_cases h₂ : f b; simp [h₁, h₂],
{ cases (pairwise_cons.1 H).1 _ (or.inl rfl) h₂ h₁ },
{ apply swap } },
{ refine (IH₁ H).trans (IH₂ ((perm_pairwise _ p₁).1 H)),
exact λ a b h h₁ h₂, h h₂ h₁ }
end
/- enumerating permutations -/
section permutations
theorem permutations_aux2_fst (t : α) (ts : list α) (r : list β) : ∀ (ys : list α) (f : list α → β),
(permutations_aux2 t ts r ys f).1 = ys ++ ts
| [] f := rfl
| (y::ys) f := match _, permutations_aux2_fst ys _ : ∀ o : list α × list β, o.1 = ys ++ ts →
(permutations_aux2._match_1 t y f o).1 = y :: ys ++ ts with
| ⟨_, zs⟩, rfl := rfl
end
@[simp] theorem permutations_aux2_snd_nil (t : α) (ts : list α) (r : list β) (f : list α → β) :
(permutations_aux2 t ts r [] f).2 = r := rfl
@[simp] theorem permutations_aux2_snd_cons (t : α) (ts : list α) (r : list β) (y : α) (ys : list α) (f : list α → β) :
(permutations_aux2 t ts r (y::ys) f).2 = f (t :: y :: ys ++ ts) ::
(permutations_aux2 t ts r ys (λx : list α, f (y::x))).2 :=
match _, permutations_aux2_fst t ts r _ _ : ∀ o : list α × list β, o.1 = ys ++ ts →
(permutations_aux2._match_1 t y f o).2 = f (t :: y :: ys ++ ts) :: o.2 with
| ⟨_, zs⟩, rfl := rfl
end
theorem permutations_aux2_append (t : α) (ts : list α) (r : list β) (ys : list α) (f : list α → β) :
(permutations_aux2 t ts nil ys f).2 ++ r = (permutations_aux2 t ts r ys f).2 :=
by induction ys generalizing f; simp *
theorem mem_permutations_aux2 {t : α} {ts : list α} {ys : list α} {l l' : list α} :
l' ∈ (permutations_aux2 t ts [] ys (append l)).2 ↔
∃ l₁ l₂, l₂ ≠ [] ∧ ys = l₁ ++ l₂ ∧ l' = l ++ l₁ ++ t :: l₂ ++ ts :=
begin
induction ys with y ys ih generalizing l,
{ simp {contextual := tt} },
{ rw [permutations_aux2_snd_cons, show (λ (x : list α), l ++ y :: x) = append (l ++ [y]),
by funext; simp, mem_cons_iff, ih], split; intro h,
{ rcases h with e | ⟨l₁, l₂, l0, ye, _⟩,
{ subst l', exact ⟨[], y::ys, by simp⟩ },
{ substs l' ys, exact ⟨y::l₁, l₂, l0, by simp⟩ } },
{ rcases h with ⟨_ | ⟨y', l₁⟩, l₂, l0, ye, rfl⟩,
{ simp [ye] },
{ simp at ye, rcases ye with ⟨rfl, rfl⟩,
exact or.inr ⟨l₁, l₂, l0, by simp⟩ } } }
end
theorem mem_permutations_aux2' {t : α} {ts : list α} {ys : list α} {l : list α} :
l ∈ (permutations_aux2 t ts [] ys id).2 ↔
∃ l₁ l₂, l₂ ≠ [] ∧ ys = l₁ ++ l₂ ∧ l = l₁ ++ t :: l₂ ++ ts :=
by rw [show @id (list α) = append nil, by funext; refl]; apply mem_permutations_aux2
theorem length_permutations_aux2 (t : α) (ts : list α) (ys : list α) (f : list α → β) :
length (permutations_aux2 t ts [] ys f).2 = length ys :=
by induction ys generalizing f; simp *
theorem foldr_permutations_aux2 (t : α) (ts : list α) (r L : list (list α)) :
foldr (λy r, (permutations_aux2 t ts r y id).2) r L = L.bind (λ y, (permutations_aux2 t ts [] y id).2) ++ r :=
by induction L with l L ih; [refl, {simp [ih], rw ← permutations_aux2_append}]
theorem mem_foldr_permutations_aux2 {t : α} {ts : list α} {r L : list (list α)} {l' : list α} :
l' ∈ foldr (λy r, (permutations_aux2 t ts r y id).2) r L ↔ l' ∈ r ∨
∃ l₁ l₂, l₁ ++ l₂ ∈ L ∧ l₂ ≠ [] ∧ l' = l₁ ++ t :: l₂ ++ ts :=
have (∃ (a : list α), a ∈ L ∧
∃ (l₁ l₂ : list α), ¬l₂ = nil ∧ a = l₁ ++ l₂ ∧ l' = l₁ ++ t :: (l₂ ++ ts)) ↔
∃ (l₁ l₂ : list α), ¬l₂ = nil ∧ l₁ ++ l₂ ∈ L ∧ l' = l₁ ++ t :: (l₂ ++ ts),
from ⟨λ ⟨a, aL, l₁, l₂, l0, e, h⟩, ⟨l₁, l₂, l0, e ▸ aL, h⟩,
λ ⟨l₁, l₂, l0, aL, h⟩, ⟨_, aL, l₁, l₂, l0, rfl, h⟩⟩,
by rw foldr_permutations_aux2; simp [mem_permutations_aux2', this,
or.comm, or.left_comm, or.assoc, and.comm, and.left_comm, and.assoc]
theorem length_foldr_permutations_aux2 (t : α) (ts : list α) (r L : list (list α)) :
length (foldr (λy r, (permutations_aux2 t ts r y id).2) r L) = sum (map length L) + length r :=
by simp [foldr_permutations_aux2, (∘), length_permutations_aux2]
theorem length_foldr_permutations_aux2' (t : α) (ts : list α) (r L : list (list α))
(n) (H : ∀ l ∈ L, length l = n) :
length (foldr (λy r, (permutations_aux2 t ts r y id).2) r L) = n * length L + length r :=
begin
rw [length_foldr_permutations_aux2, (_ : sum (map length L) = n * length L)],
induction L with l L ih, {simp},
simp [ih (λ l m, H l (mem_cons_of_mem _ m)), H l (mem_cons_self _ _), mul_add]
end
theorem perm_of_mem_permutations_aux :
∀ {ts is l : list α}, l ∈ permutations_aux ts is → l ~ ts ++ is :=
begin
refine permutations_aux.rec (by simp) _,
introv IH1 IH2 m,
rw [permutations_aux_cons, permutations, mem_foldr_permutations_aux2] at m,
rcases m with m | ⟨l₁, l₂, m, _, e⟩,
{ exact (IH1 m).trans perm_middle },
{ subst e,
have p : l₁ ++ l₂ ~ is,
{ simp [permutations] at m,
cases m with e m, {simp [e]},
exact is.append_nil ▸ IH2 m },
exact (perm_app_left _ (perm_middle.trans (skip _ p))).trans (skip _ perm_app_comm) }
end
theorem perm_of_mem_permutations {l₁ l₂ : list α}
(h : l₁ ∈ permutations l₂) : l₁ ~ l₂ :=
(eq_or_mem_of_mem_cons h).elim (λ e, e ▸ perm.refl _)
(λ m, append_nil l₂ ▸ perm_of_mem_permutations_aux m)
theorem length_permutations_aux :
∀ ts is : list α, length (permutations_aux ts is) + is.length.fact = (length ts + length is).fact :=
begin
refine permutations_aux.rec (by simp) _,
intros t ts is IH1 IH2,
have IH2 : length (permutations_aux is nil) + 1 = is.length.fact,
{ simpa using IH2 },
simp [-add_comm, nat.fact, nat.add_succ, mul_comm] at IH1,
rw [permutations_aux_cons,
length_foldr_permutations_aux2' _ _ _ _ _
(λ l m, perm_length (perm_of_mem_permutations m)),
permutations, length, length, IH2,
nat.succ_add, nat.fact_succ, mul_comm (nat.succ _), ← IH1,
add_comm (_*_), add_assoc, nat.mul_succ, mul_comm]
end
theorem length_permutations (l : list α) : length (permutations l) = (length l).fact :=
length_permutations_aux l []
theorem mem_permutations_of_perm_lemma {is l : list α}
(H : l ~ [] ++ is → (∃ ts' ~ [], l = ts' ++ is) ∨ l ∈ permutations_aux is [])
: l ~ is → l ∈ permutations is :=
by simpa [permutations, perm_nil] using H
theorem mem_permutations_aux_of_perm :
∀ {ts is l : list α}, l ~ is ++ ts → (∃ is' ~ is, l = is' ++ ts) ∨ l ∈ permutations_aux ts is :=
begin
refine permutations_aux.rec (by simp) _,
intros t ts is IH1 IH2 l p,
rw [permutations_aux_cons, mem_foldr_permutations_aux2],
rcases IH1 (p.trans perm_middle) with ⟨is', p', e⟩ | m,
{ clear p, subst e,
rcases mem_split (perm_subset p'.symm (mem_cons_self _ _)) with ⟨l₁, l₂, e⟩,
subst is',
have p := perm_cons_inv (perm_middle.symm.trans p'),
cases l₂ with a l₂',
{ exact or.inl ⟨l₁, by simpa using p⟩ },
{ exact or.inr (or.inr ⟨l₁, a::l₂',
mem_permutations_of_perm_lemma IH2 p, by simp⟩) } },
{ exact or.inr (or.inl m) }
end
@[simp] theorem mem_permutations (s t : list α) : s ∈ permutations t ↔ s ~ t :=
⟨perm_of_mem_permutations, mem_permutations_of_perm_lemma mem_permutations_aux_of_perm⟩
end permutations
end list
|
9449f491c1f06ac318a283fc144806580b152349
|
57c233acf9386e610d99ed20ef139c5f97504ba3
|
/src/ring_theory/jacobson.lean
|
7e6c9a934bce213f12b12f72af46b93fe2eadbc0
|
[
"Apache-2.0"
] |
permissive
|
robertylewis/mathlib
|
3d16e3e6daf5ddde182473e03a1b601d2810952c
|
1d13f5b932f5e40a8308e3840f96fc882fae01f0
|
refs/heads/master
| 1,651,379,945,369
| 1,644,276,960,000
| 1,644,276,960,000
| 98,875,504
| 0
| 0
|
Apache-2.0
| 1,644,253,514,000
| 1,501,495,700,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 34,432
|
lean
|
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Devon Tuma
-/
import ring_theory.localization
import ring_theory.ideal.over
import ring_theory.jacobson_ideal
/-!
# Jacobson Rings
The following conditions are equivalent for a ring `R`:
1. Every radical ideal `I` is equal to its Jacobson radical
2. Every radical ideal `I` can be written as an intersection of maximal ideals
3. Every prime ideal `I` is equal to its Jacobson radical
Any ring satisfying any of these equivalent conditions is said to be Jacobson.
Some particular examples of Jacobson rings are also proven.
`is_jacobson_quotient` says that the quotient of a Jacobson ring is Jacobson.
`is_jacobson_localization` says the localization of a Jacobson ring to a single element is Jacobson.
`is_jacobson_polynomial_iff_is_jacobson` says polynomials over a Jacobson ring form a Jacobson ring.
## Main definitions
Let `R` be a commutative ring. Jacobson Rings are defined using the first of the above conditions
* `is_jacobson R` is the proposition that `R` is a Jacobson ring. It is a class,
implemented as the predicate that for any ideal, `I.radical = I` implies `I.jacobson = I`.
## Main statements
* `is_jacobson_iff_prime_eq` is the equivalence between conditions 1 and 3 above.
* `is_jacobson_iff_Inf_maximal` is the equivalence between conditions 1 and 2 above.
* `is_jacobson_of_surjective` says that if `R` is a Jacobson ring and `f : R →+* S` is surjective,
then `S` is also a Jacobson ring
* `is_jacobson_mv_polynomial` says that multi-variate polynomials over a Jacobson ring are Jacobson.
## Tags
Jacobson, Jacobson Ring
-/
namespace ideal
open polynomial
section is_jacobson
variables {R S : Type*} [comm_ring R] [comm_ring S] {I : ideal R}
/-- A ring is a Jacobson ring if for every radical ideal `I`,
the Jacobson radical of `I` is equal to `I`.
See `is_jacobson_iff_prime_eq` and `is_jacobson_iff_Inf_maximal` for equivalent definitions. -/
class is_jacobson (R : Type*) [comm_ring R] : Prop :=
(out' : ∀ (I : ideal R), I.radical = I → I.jacobson = I)
theorem is_jacobson_iff {R} [comm_ring R] :
is_jacobson R ↔ ∀ (I : ideal R), I.radical = I → I.jacobson = I :=
⟨λ h, h.1, λ h, ⟨h⟩⟩
theorem is_jacobson.out {R} [comm_ring R] :
is_jacobson R → ∀ {I : ideal R}, I.radical = I → I.jacobson = I := is_jacobson_iff.1
/-- A ring is a Jacobson ring if and only if for all prime ideals `P`,
the Jacobson radical of `P` is equal to `P`. -/
lemma is_jacobson_iff_prime_eq : is_jacobson R ↔ ∀ P : ideal R, is_prime P → P.jacobson = P :=
begin
refine is_jacobson_iff.trans ⟨λ h I hI, h I (is_prime.radical hI), _⟩,
refine λ h I hI, le_antisymm (λ x hx, _) (λ x hx, mem_Inf.mpr (λ _ hJ, hJ.left hx)),
rw [← hI, radical_eq_Inf I, mem_Inf],
intros P hP,
rw set.mem_set_of_eq at hP,
erw mem_Inf at hx,
erw [← h P hP.right, mem_Inf],
exact λ J hJ, hx ⟨le_trans hP.left hJ.left, hJ.right⟩
end
/-- A ring `R` is Jacobson if and only if for every prime ideal `I`,
`I` can be written as the infimum of some collection of maximal ideals.
Allowing ⊤ in the set `M` of maximal ideals is equivalent, but makes some proofs cleaner. -/
lemma is_jacobson_iff_Inf_maximal : is_jacobson R ↔
∀ {I : ideal R}, I.is_prime → ∃ M : set (ideal R), (∀ J ∈ M, is_maximal J ∨ J = ⊤) ∧ I = Inf M :=
⟨λ H I h, eq_jacobson_iff_Inf_maximal.1 (H.out (is_prime.radical h)),
λ H, is_jacobson_iff_prime_eq.2 (λ P hP, eq_jacobson_iff_Inf_maximal.2 (H hP))⟩
lemma is_jacobson_iff_Inf_maximal' : is_jacobson R ↔
∀ {I : ideal R}, I.is_prime → ∃ M : set (ideal R),
(∀ (J ∈ M) (K : ideal R), J < K → K = ⊤) ∧ I = Inf M :=
⟨λ H I h, eq_jacobson_iff_Inf_maximal'.1 (H.out (is_prime.radical h)),
λ H, is_jacobson_iff_prime_eq.2 (λ P hP, eq_jacobson_iff_Inf_maximal'.2 (H hP))⟩
lemma radical_eq_jacobson [H : is_jacobson R] (I : ideal R) : I.radical = I.jacobson :=
le_antisymm (le_Inf (λ J ⟨hJ, hJ_max⟩, (is_prime.radical_le_iff hJ_max.is_prime).mpr hJ))
((H.out (radical_idem I)) ▸ (jacobson_mono le_radical))
/-- Fields have only two ideals, and the condition holds for both of them. -/
@[priority 100]
instance is_jacobson_field {K : Type*} [field K] : is_jacobson K :=
⟨λ I hI, or.rec_on (eq_bot_or_top I)
(λ h, le_antisymm
(Inf_le ⟨le_of_eq rfl, (eq.symm h) ▸ bot_is_maximal⟩)
((eq.symm h) ▸ bot_le))
(λ h, by rw [h, jacobson_eq_top_iff])⟩
theorem is_jacobson_of_surjective [H : is_jacobson R] :
(∃ (f : R →+* S), function.surjective f) → is_jacobson S :=
begin
rintros ⟨f, hf⟩,
rw is_jacobson_iff_Inf_maximal,
intros p hp,
use map f '' {J : ideal R | comap f p ≤ J ∧ J.is_maximal },
use λ j ⟨J, hJ, hmap⟩, hmap ▸ or.symm (map_eq_top_or_is_maximal_of_surjective f hf hJ.right),
have : p = map f ((comap f p).jacobson),
from (is_jacobson.out' (comap f p) (by rw [← comap_radical, is_prime.radical hp])).symm
▸ (map_comap_of_surjective f hf p).symm,
exact eq.trans this (map_Inf hf (λ J ⟨hJ, _⟩, le_trans (ideal.ker_le_comap f) hJ)),
end
@[priority 100]
instance is_jacobson_quotient [is_jacobson R] : is_jacobson (R ⧸ I) :=
is_jacobson_of_surjective ⟨quotient.mk I, (by rintro ⟨x⟩; use x; refl)⟩
lemma is_jacobson_iso (e : R ≃+* S) : is_jacobson R ↔ is_jacobson S :=
⟨λ h, @is_jacobson_of_surjective _ _ _ _ h ⟨(e : R →+* S), e.surjective⟩,
λ h, @is_jacobson_of_surjective _ _ _ _ h ⟨(e.symm : S →+* R), e.symm.surjective⟩⟩
lemma is_jacobson_of_is_integral [algebra R S] (hRS : algebra.is_integral R S)
(hR : is_jacobson R) : is_jacobson S :=
begin
rw is_jacobson_iff_prime_eq,
introsI P hP,
by_cases hP_top : comap (algebra_map R S) P = ⊤,
{ simp [comap_eq_top_iff.1 hP_top] },
{ haveI : nontrivial (R ⧸ comap (algebra_map R S) P) := quotient.nontrivial hP_top,
rw jacobson_eq_iff_jacobson_quotient_eq_bot,
refine eq_bot_of_comap_eq_bot (is_integral_quotient_of_is_integral hRS) _,
rw [eq_bot_iff, ← jacobson_eq_iff_jacobson_quotient_eq_bot.1 ((is_jacobson_iff_prime_eq.1 hR)
(comap (algebra_map R S) P) (comap_is_prime _ _)), comap_jacobson],
refine Inf_le_Inf (λ J hJ, _),
simp only [true_and, set.mem_image, bot_le, set.mem_set_of_eq],
haveI : J.is_maximal, { simpa using hJ },
exact exists_ideal_over_maximal_of_is_integral (is_integral_quotient_of_is_integral hRS) J
(comap_bot_le_of_injective _ algebra_map_quotient_injective) }
end
lemma is_jacobson_of_is_integral' (f : R →+* S) (hf : f.is_integral)
(hR : is_jacobson R) : is_jacobson S :=
@is_jacobson_of_is_integral _ _ _ _ f.to_algebra hf hR
end is_jacobson
section localization
open is_localization submonoid
variables {R S : Type*} [comm_ring R] [comm_ring S] {I : ideal R}
variables (y : R) [algebra R S] [is_localization.away y S]
lemma disjoint_powers_iff_not_mem (hI : I.radical = I) :
disjoint ((submonoid.powers y) : set R) ↑I ↔ y ∉ I.1 :=
begin
refine ⟨λ h, set.disjoint_left.1 h (mem_powers _), λ h, (disjoint_iff).mpr (eq_bot_iff.mpr _)⟩,
rintros x ⟨⟨n, rfl⟩, hx'⟩,
rw [← hI] at hx',
exact absurd (hI ▸ mem_radical_of_pow_mem hx' : y ∈ I.carrier) h
end
variables (S)
/-- If `R` is a Jacobson ring, then maximal ideals in the localization at `y`
correspond to maximal ideals in the original ring `R` that don't contain `y`.
This lemma gives the correspondence in the particular case of an ideal and its comap.
See `le_rel_iso_of_maximal` for the more general relation isomorphism -/
lemma is_maximal_iff_is_maximal_disjoint [H : is_jacobson R] (J : ideal S) :
J.is_maximal ↔ (comap (algebra_map R S) J).is_maximal ∧ y ∉ ideal.comap (algebra_map R S) J :=
begin
split,
{ refine λ h, ⟨_, λ hy, h.ne_top (ideal.eq_top_of_is_unit_mem _ hy
(map_units _ ⟨y, submonoid.mem_powers _⟩))⟩,
have hJ : J.is_prime := is_maximal.is_prime h,
rw is_prime_iff_is_prime_disjoint (submonoid.powers y) at hJ,
have : y ∉ (comap (algebra_map R S) J).1 :=
set.disjoint_left.1 hJ.right (submonoid.mem_powers _),
erw [← H.out (is_prime.radical hJ.left), mem_Inf] at this,
push_neg at this,
rcases this with ⟨I, hI, hI'⟩,
convert hI.right,
by_cases hJ : J = map (algebra_map R S) I,
{ rw [hJ, comap_map_of_is_prime_disjoint (powers y) S I (is_maximal.is_prime hI.right)],
rwa disjoint_powers_iff_not_mem y (is_maximal.is_prime hI.right).radical },
{ have hI_p : (map (algebra_map R S) I).is_prime,
{ refine is_prime_of_is_prime_disjoint (powers y) _ I hI.right.is_prime _,
rwa disjoint_powers_iff_not_mem y (is_maximal.is_prime hI.right).radical },
have : J ≤ map (algebra_map R S) I :=
(map_comap (submonoid.powers y) S J) ▸ (map_mono hI.left),
exact absurd (h.1.2 _ (lt_of_le_of_ne this hJ)) hI_p.1 } },
{ refine λ h, ⟨⟨λ hJ, h.1.ne_top (eq_top_iff.2 _), λ I hI, _⟩⟩,
{ rwa [eq_top_iff, ← (is_localization.order_embedding (powers y) S).le_iff_le] at hJ },
{ have := congr_arg (map (algebra_map R S)) (h.1.1.2 _ ⟨comap_mono (le_of_lt hI), _⟩),
rwa [map_comap (powers y) S I, map_top] at this,
refine λ hI', hI.right _,
rw [← map_comap (powers y) S I, ← map_comap (powers y) S J],
exact map_mono hI' } }
end
variables {S}
/-- If `R` is a Jacobson ring, then maximal ideals in the localization at `y`
correspond to maximal ideals in the original ring `R` that don't contain `y`.
This lemma gives the correspondence in the particular case of an ideal and its map.
See `le_rel_iso_of_maximal` for the more general statement, and the reverse of this implication -/
lemma is_maximal_of_is_maximal_disjoint [is_jacobson R] (I : ideal R) (hI : I.is_maximal)
(hy : y ∉ I) : (map (algebra_map R S) I).is_maximal :=
begin
rw [is_maximal_iff_is_maximal_disjoint S y,
comap_map_of_is_prime_disjoint (powers y) S I (is_maximal.is_prime hI)
((disjoint_powers_iff_not_mem y (is_maximal.is_prime hI).radical).2 hy)],
exact ⟨hI, hy⟩
end
/-- If `R` is a Jacobson ring, then maximal ideals in the localization at `y`
correspond to maximal ideals in the original ring `R` that don't contain `y` -/
def order_iso_of_maximal [is_jacobson R] :
{p : ideal S // p.is_maximal} ≃o {p : ideal R // p.is_maximal ∧ y ∉ p} :=
{ to_fun := λ p,
⟨ideal.comap (algebra_map R S) p.1, (is_maximal_iff_is_maximal_disjoint S y p.1).1 p.2⟩,
inv_fun := λ p,
⟨ideal.map (algebra_map R S) p.1, is_maximal_of_is_maximal_disjoint y p.1 p.2.1 p.2.2⟩,
left_inv := λ J, subtype.eq (map_comap (powers y) S J),
right_inv := λ I, subtype.eq (comap_map_of_is_prime_disjoint _ _ I.1 (is_maximal.is_prime I.2.1)
((disjoint_powers_iff_not_mem y I.2.1.is_prime.radical).2 I.2.2)),
map_rel_iff' := λ I I', ⟨λ h, (show I.val ≤ I'.val,
from (map_comap (powers y) S I.val) ▸ (map_comap (powers y) S I'.val) ▸ (ideal.map_mono h)),
λ h x hx, h hx⟩ }
include y
/-- If `S` is the localization of the Jacobson ring `R` at the submonoid generated by `y : R`, then
`S` is Jacobson. -/
lemma is_jacobson_localization [H : is_jacobson R] : is_jacobson S :=
begin
rw is_jacobson_iff_prime_eq,
refine λ P' hP', le_antisymm _ le_jacobson,
obtain ⟨hP', hPM⟩ := (is_localization.is_prime_iff_is_prime_disjoint (powers y) S P').mp hP',
have hP := H.out (is_prime.radical hP'),
refine (le_of_eq (is_localization.map_comap (powers y) S P'.jacobson).symm).trans
((map_mono _).trans (le_of_eq (is_localization.map_comap (powers y) S P'))),
have : Inf { I : ideal R | comap (algebra_map R S) P' ≤ I ∧ I.is_maximal ∧ y ∉ I } ≤
comap (algebra_map R S) P',
{ intros x hx,
have hxy : x * y ∈ (comap (algebra_map R S) P').jacobson,
{ rw [ideal.jacobson, mem_Inf],
intros J hJ,
by_cases y ∈ J,
{ exact J.smul_mem x h },
{ exact (mul_comm y x) ▸ J.smul_mem y ((mem_Inf.1 hx) ⟨hJ.left, ⟨hJ.right, h⟩⟩) } },
rw hP at hxy,
cases hP'.mem_or_mem hxy with hxy hxy,
{ exact hxy },
{ exact (hPM ⟨submonoid.mem_powers _, hxy⟩).elim } },
refine le_trans _ this,
rw [ideal.jacobson, comap_Inf', Inf_eq_infi],
refine infi_le_infi_of_subset (λ I hI, ⟨map (algebra_map R S) I, ⟨_, _⟩⟩),
{ exact ⟨le_trans (le_of_eq ((is_localization.map_comap (powers y) S P').symm)) (map_mono hI.1),
is_maximal_of_is_maximal_disjoint y _ hI.2.1 hI.2.2⟩ },
{ exact is_localization.comap_map_of_is_prime_disjoint _ S I (is_maximal.is_prime hI.2.1)
((disjoint_powers_iff_not_mem y hI.2.1.is_prime.radical).2 hI.2.2) }
end
end localization
namespace polynomial
open polynomial
section comm_ring
variables {R S : Type*} [comm_ring R] [comm_ring S] [is_domain S]
variables {Rₘ Sₘ : Type*} [comm_ring Rₘ] [comm_ring Sₘ]
/-- If `I` is a prime ideal of `polynomial R` and `pX ∈ I` is a non-constant polynomial,
then the map `R →+* R[x]/I` descends to an integral map when localizing at `pX.leading_coeff`.
In particular `X` is integral because it satisfies `pX`, and constants are trivially integral,
so integrality of the entire extension follows by closure under addition and multiplication. -/
lemma is_integral_is_localization_polynomial_quotient
(P : ideal (polynomial R)) (pX : polynomial R) (hpX : pX ∈ P)
[algebra (R ⧸ P.comap (C : R →+* _)) Rₘ]
[is_localization.away (pX.map (quotient.mk (P.comap C))).leading_coeff Rₘ]
[algebra (polynomial R ⧸ P) Sₘ]
[is_localization ((submonoid.powers (pX.map (quotient.mk (P.comap C))).leading_coeff).map
(quotient_map P C le_rfl) : submonoid (polynomial R ⧸ P)) Sₘ] :
(is_localization.map Sₘ (quotient_map P C le_rfl)
((submonoid.powers (pX.map (quotient.mk (P.comap C))).leading_coeff).le_comap_map) : Rₘ →+* _)
.is_integral :=
begin
let P' : ideal R := P.comap C,
let M : submonoid (R ⧸ P') :=
submonoid.powers (pX.map (quotient.mk (P.comap C))).leading_coeff,
let M' : submonoid (polynomial R ⧸ P) :=
(submonoid.powers (pX.map (quotient.mk (P.comap C))).leading_coeff).map (quotient_map P C le_rfl),
let φ : R ⧸ P' →+* polynomial R ⧸ P := quotient_map P C le_rfl,
let φ' := is_localization.map Sₘ φ M.le_comap_map,
have hφ' : φ.comp (quotient.mk P') = (quotient.mk P).comp C := rfl,
intro p,
obtain ⟨⟨p', ⟨q, hq⟩⟩, hp⟩ := is_localization.surj M' p,
suffices : φ'.is_integral_elem (algebra_map _ _ p'),
{ obtain ⟨q', hq', rfl⟩ := hq,
obtain ⟨q'', hq''⟩ := is_unit_iff_exists_inv'.1 (is_localization.map_units Rₘ (⟨q', hq'⟩ : M)),
refine φ'.is_integral_of_is_integral_mul_unit p (algebra_map _ _ (φ q')) q'' _ (hp.symm ▸ this),
convert trans (trans (φ'.map_mul _ _).symm (congr_arg φ' hq'')) φ'.map_one using 2,
rw [← φ'.comp_apply, is_localization.map_comp, ring_hom.comp_apply, subtype.coe_mk] },
refine is_integral_of_mem_closure''
(((algebra_map _ Sₘ).comp (quotient.mk P)) '' (insert X {p | p.degree ≤ 0})) _ _ _,
{ rintros x ⟨p, hp, rfl⟩,
refine hp.rec_on (λ hy, _) (λ hy, _),
{ refine hy.symm ▸ (φ.is_integral_elem_localization_at_leading_coeff ((quotient.mk P) X)
(pX.map (quotient.mk P')) _ M ⟨1, pow_one _⟩),
rwa [eval₂_map, hφ', ← hom_eval₂, quotient.eq_zero_iff_mem, eval₂_C_X] },
{ rw [set.mem_set_of_eq, degree_le_zero_iff] at hy,
refine hy.symm ▸ ⟨X - C (algebra_map _ _ ((quotient.mk P') (p.coeff 0))), monic_X_sub_C _, _⟩,
simp only [eval₂_sub, eval₂_C, eval₂_X],
rw [sub_eq_zero, ← φ'.comp_apply, is_localization.map_comp],
refl } },
{ obtain ⟨p, rfl⟩ := quotient.mk_surjective p',
refine polynomial.induction_on p
(λ r, subring.subset_closure $ set.mem_image_of_mem _ (or.inr degree_C_le))
(λ _ _ h1 h2, _) (λ n _ hr, _),
{ convert subring.add_mem _ h1 h2,
rw [ring_hom.map_add, ring_hom.map_add] },
{ rw [pow_succ X n, mul_comm X, ← mul_assoc, ring_hom.map_mul, ring_hom.map_mul],
exact subring.mul_mem _ hr (subring.subset_closure (set.mem_image_of_mem _ (or.inl rfl))) } },
end
/-- If `f : R → S` descends to an integral map in the localization at `x`,
and `R` is a Jacobson ring, then the intersection of all maximal ideals in `S` is trivial -/
lemma jacobson_bot_of_integral_localization
{R : Type*} [comm_ring R] [is_domain R] [is_jacobson R]
(Rₘ Sₘ : Type*) [comm_ring Rₘ] [comm_ring Sₘ]
(φ : R →+* S) (hφ : function.injective φ) (x : R) (hx : x ≠ 0)
[algebra R Rₘ] [is_localization.away x Rₘ]
[algebra S Sₘ] [is_localization ((submonoid.powers x).map φ : submonoid S) Sₘ]
(hφ' : ring_hom.is_integral
(is_localization.map Sₘ φ (submonoid.powers x).le_comap_map : Rₘ →+* Sₘ)) :
(⊥ : ideal S).jacobson = (⊥ : ideal S) :=
begin
have hM : ((submonoid.powers x).map φ : submonoid S) ≤ non_zero_divisors S :=
map_le_non_zero_divisors_of_injective φ hφ (powers_le_non_zero_divisors_of_no_zero_divisors hx),
letI : is_domain Sₘ := is_localization.is_domain_of_le_non_zero_divisors _ hM,
let φ' : Rₘ →+* Sₘ := is_localization.map _ φ (submonoid.powers x).le_comap_map,
suffices : ∀ I : ideal Sₘ, I.is_maximal → (I.comap (algebra_map S Sₘ)).is_maximal,
{ have hϕ' : comap (algebra_map S Sₘ) (⊥ : ideal Sₘ) = (⊥ : ideal S),
{ rw [← ring_hom.ker_eq_comap_bot, ← ring_hom.injective_iff_ker_eq_bot],
exact is_localization.injective Sₘ hM },
have hSₘ : is_jacobson Sₘ := is_jacobson_of_is_integral' φ' hφ' (is_jacobson_localization x),
refine eq_bot_iff.mpr (le_trans _ (le_of_eq hϕ')),
rw [← hSₘ.out radical_bot_of_is_domain, comap_jacobson],
exact Inf_le_Inf (λ j hj, ⟨bot_le, let ⟨J, hJ⟩ := hj in hJ.2 ▸ this J hJ.1.2⟩) },
introsI I hI,
-- Remainder of the proof is pulling and pushing ideals around the square and the quotient square
haveI : (I.comap (algebra_map S Sₘ)).is_prime := comap_is_prime _ I,
haveI : (I.comap φ').is_prime := comap_is_prime φ' I,
haveI : (⊥ : ideal (S ⧸ I.comap (algebra_map S Sₘ))).is_prime := bot_prime,
have hcomm: φ'.comp (algebra_map R Rₘ) = (algebra_map S Sₘ).comp φ := is_localization.map_comp _,
let f := quotient_map (I.comap (algebra_map S Sₘ)) φ le_rfl,
let g := quotient_map I (algebra_map S Sₘ) le_rfl,
have := is_maximal_comap_of_is_integral_of_is_maximal' φ' hφ' I
(by convert hI; casesI _inst_4; refl),
have := ((is_maximal_iff_is_maximal_disjoint Rₘ x _).1 this).left,
have : ((I.comap (algebra_map S Sₘ)).comap φ).is_maximal,
{ rwa [comap_comap, hcomm, ← comap_comap] at this },
rw ← bot_quotient_is_maximal_iff at this ⊢,
refine is_maximal_of_is_integral_of_is_maximal_comap' f _ ⊥
((eq_bot_iff.2 (comap_bot_le_of_injective f quotient_map_injective)).symm ▸ this),
exact f.is_integral_tower_bot_of_is_integral g quotient_map_injective
((comp_quotient_map_eq_of_comp_eq hcomm I).symm ▸
(ring_hom.is_integral_trans _ _ (ring_hom.is_integral_of_surjective _
(is_localization.surjective_quotient_map_of_maximal_of_localization (submonoid.powers x) Rₘ
(by rwa [comap_comap, hcomm, ← bot_quotient_is_maximal_iff])))
(ring_hom.is_integral_quotient_of_is_integral _ hφ'))),
end
/-- Used to bootstrap the proof of `is_jacobson_polynomial_iff_is_jacobson`.
That theorem is more general and should be used instead of this one. -/
private lemma is_jacobson_polynomial_of_domain
(R : Type*) [comm_ring R] [is_domain R] [hR : is_jacobson R]
(P : ideal (polynomial R)) [is_prime P] (hP : ∀ (x : R), C x ∈ P → x = 0) :
P.jacobson = P :=
begin
by_cases Pb : P = ⊥,
{ exact Pb.symm ▸ jacobson_bot_polynomial_of_jacobson_bot
(hR.out radical_bot_of_is_domain) },
{ rw jacobson_eq_iff_jacobson_quotient_eq_bot,
haveI : (P.comap (C : R →+* polynomial R)).is_prime := comap_is_prime C P,
obtain ⟨p, pP, p0⟩ := exists_nonzero_mem_of_ne_bot Pb hP,
let x := (polynomial.map (quotient.mk (comap (C : R →+* _) P)) p).leading_coeff,
have hx : x ≠ 0 := by rwa [ne.def, leading_coeff_eq_zero],
refine jacobson_bot_of_integral_localization
(localization.away x)
(localization ((submonoid.powers x).map (P.quotient_map C le_rfl) :
submonoid (polynomial R ⧸ P)))
(quotient_map P C le_rfl) quotient_map_injective
x hx
_,
-- `convert` is noticeably faster than `exact` here:
convert is_integral_is_localization_polynomial_quotient P p pP }
end
lemma is_jacobson_polynomial_of_is_jacobson (hR : is_jacobson R) :
is_jacobson (polynomial R) :=
begin
refine is_jacobson_iff_prime_eq.mpr (λ I, _),
introI hI,
let R' : subring (polynomial R ⧸ I) := ((quotient.mk I).comp C).range,
let i : R →+* R' := ((quotient.mk I).comp C).range_restrict,
have hi : function.surjective (i : R → R') := ((quotient.mk I).comp C).range_restrict_surjective,
have hi' : (polynomial.map_ring_hom i : polynomial R →+* polynomial R').ker ≤ I,
{ refine λ f hf, polynomial_mem_ideal_of_coeff_mem_ideal I f (λ n, _),
replace hf := congr_arg (λ (g : polynomial (((quotient.mk I).comp C).range)), g.coeff n) hf,
change (polynomial.map ((quotient.mk I).comp C).range_restrict f).coeff n = 0 at hf,
rw [coeff_map, subtype.ext_iff] at hf,
rwa [mem_comap, ← quotient.eq_zero_iff_mem, ← ring_hom.comp_apply], },
haveI : (ideal.map (map_ring_hom i) I).is_prime :=
map_is_prime_of_surjective (map_surjective i hi) hi',
suffices : (I.map (polynomial.map_ring_hom i)).jacobson = (I.map (polynomial.map_ring_hom i)),
{ replace this := congr_arg (comap (polynomial.map_ring_hom i)) this,
rw [← map_jacobson_of_surjective _ hi',
comap_map_of_surjective _ _, comap_map_of_surjective _ _] at this,
refine le_antisymm (le_trans (le_sup_of_le_left le_rfl)
(le_trans (le_of_eq this) (sup_le le_rfl hi'))) le_jacobson,
all_goals {exact polynomial.map_surjective i hi} },
exact @is_jacobson_polynomial_of_domain R' _ _ (is_jacobson_of_surjective ⟨i, hi⟩)
(map (map_ring_hom i) I) _ (eq_zero_of_polynomial_mem_map_range I),
end
theorem is_jacobson_polynomial_iff_is_jacobson :
is_jacobson (polynomial R) ↔ is_jacobson R :=
begin
refine ⟨_, is_jacobson_polynomial_of_is_jacobson⟩,
introI H,
exact is_jacobson_of_surjective ⟨eval₂_ring_hom (ring_hom.id _) 1, λ x,
⟨C x, by simp only [coe_eval₂_ring_hom, ring_hom.id_apply, eval₂_C]⟩⟩,
end
instance [is_jacobson R] : is_jacobson (polynomial R) :=
is_jacobson_polynomial_iff_is_jacobson.mpr ‹is_jacobson R›
end comm_ring
section
variables {R : Type*} [comm_ring R] [is_jacobson R]
variables (P : ideal (polynomial R)) [hP : P.is_maximal]
include P hP
lemma is_maximal_comap_C_of_is_maximal [nontrivial R] (hP' : ∀ (x : R), C x ∈ P → x = 0) :
is_maximal (comap C P : ideal R) :=
begin
haveI hp'_prime : (P.comap C : ideal R).is_prime := comap_is_prime C P,
obtain ⟨m, hm⟩ := submodule.nonzero_mem_of_bot_lt (bot_lt_of_maximal P polynomial_not_is_field),
have : (m : polynomial R) ≠ 0, rwa [ne.def, submodule.coe_eq_zero],
let φ : R ⧸ P.comap C →+* polynomial R ⧸ P := quotient_map P C le_rfl,
let M : submonoid (R ⧸ P.comap C) :=
submonoid.powers ((m : polynomial R).map (quotient.mk (P.comap C : ideal R))).leading_coeff,
rw ← bot_quotient_is_maximal_iff,
have hp0 : ((m : polynomial R).map (quotient.mk (P.comap C : ideal R))).leading_coeff ≠ 0 :=
λ hp0', this $ map_injective (quotient.mk (P.comap C : ideal R))
((quotient.mk (P.comap C : ideal R)).injective_iff.2 (λ x hx,
by rwa [quotient.eq_zero_iff_mem, (by rwa eq_bot_iff : (P.comap C : ideal R) = ⊥)] at hx))
(by simpa only [leading_coeff_eq_zero, polynomial.map_zero] using hp0'),
have hM : (0 : R ⧸ P.comap C) ∉ M := λ ⟨n, hn⟩, hp0 (pow_eq_zero hn),
suffices : (⊥ : ideal (localization M)).is_maximal,
{ rw ← is_localization.comap_map_of_is_prime_disjoint M (localization M) ⊥ bot_prime
(λ x hx, hM (hx.2 ▸ hx.1)),
refine ((is_maximal_iff_is_maximal_disjoint (localization M) _ _).mp (by rwa map_bot)).1,
swap, exact localization.is_localization },
let M' : submonoid (polynomial R ⧸ P) := M.map φ,
have hM' : (0 : polynomial R ⧸ P) ∉ M' :=
λ ⟨z, hz⟩, hM (quotient_map_injective (trans hz.2 φ.map_zero.symm) ▸ hz.1),
haveI : is_domain (localization M') :=
is_localization.is_domain_localization (le_non_zero_divisors_of_no_zero_divisors hM'),
suffices : (⊥ : ideal (localization M')).is_maximal,
{ rw le_antisymm bot_le (comap_bot_le_of_injective _ (is_localization.map_injective_of_injective
M (localization M) (localization M')
quotient_map_injective (le_non_zero_divisors_of_no_zero_divisors hM'))),
refine is_maximal_comap_of_is_integral_of_is_maximal' _ _ ⊥ this,
apply is_integral_is_localization_polynomial_quotient P _ (submodule.coe_mem m) },
rw (map_bot.symm : (⊥ : ideal (localization M')) =
map (algebra_map (polynomial R ⧸ P) (localization M')) ⊥),
let bot_maximal := ((bot_quotient_is_maximal_iff _).mpr hP),
refine map.is_maximal (algebra_map _ _) (localization_map_bijective_of_field hM' _) bot_maximal,
rwa [← quotient.maximal_ideal_iff_is_field_quotient, ← bot_quotient_is_maximal_iff],
end
/-- Used to bootstrap the more general `quotient_mk_comp_C_is_integral_of_jacobson` -/
private lemma quotient_mk_comp_C_is_integral_of_jacobson' [nontrivial R] (hR : is_jacobson R)
(hP' : ∀ (x : R), C x ∈ P → x = 0) :
((quotient.mk P).comp C : R →+* polynomial R ⧸ P).is_integral :=
begin
refine (is_integral_quotient_map_iff _).mp _,
let P' : ideal R := P.comap C,
obtain ⟨pX, hpX, hp0⟩ :=
exists_nonzero_mem_of_ne_bot (ne_of_lt (bot_lt_of_maximal P polynomial_not_is_field)).symm hP',
let M : submonoid (R ⧸ P') := submonoid.powers (pX.map (quotient.mk P')).leading_coeff,
let φ : R ⧸ P' →+* polynomial R ⧸ P := quotient_map P C le_rfl,
haveI hp'_prime : P'.is_prime := comap_is_prime C P,
have hM : (0 : R ⧸ P') ∉ M := λ ⟨n, hn⟩, hp0 $ leading_coeff_eq_zero.mp (pow_eq_zero hn),
let M' : submonoid (polynomial R ⧸ P) := M.map (quotient_map P C le_rfl),
refine ((quotient_map P C le_rfl).is_integral_tower_bot_of_is_integral
(algebra_map _ (localization M')) _ _),
{ refine is_localization.injective (localization M')
(show M' ≤ _, from le_non_zero_divisors_of_no_zero_divisors (λ hM', hM _)),
exact (let ⟨z, zM, z0⟩ := hM' in (quotient_map_injective (trans z0 φ.map_zero.symm)) ▸ zM) },
{ rw ← is_localization.map_comp M.le_comap_map,
refine ring_hom.is_integral_trans (algebra_map (R ⧸ P') (localization M))
(is_localization.map _ _ M.le_comap_map) _ _,
{ exact (algebra_map (R ⧸ P') (localization M)).is_integral_of_surjective
(localization_map_bijective_of_field hM
((quotient.maximal_ideal_iff_is_field_quotient _).mp
(is_maximal_comap_C_of_is_maximal P hP'))).2 },
{ -- `convert` here is faster than `exact`, and this proof is near the time limit.
convert is_integral_is_localization_polynomial_quotient P pX hpX } }
end
/-- If `R` is a Jacobson ring, and `P` is a maximal ideal of `polynomial R`,
then `R → (polynomial R)/P` is an integral map. -/
lemma quotient_mk_comp_C_is_integral_of_jacobson :
((quotient.mk P).comp C : R →+* polynomial R ⧸ P).is_integral :=
begin
let P' : ideal R := P.comap C,
haveI : P'.is_prime := comap_is_prime C P,
let f : polynomial R →+* polynomial (R ⧸ P') := polynomial.map_ring_hom (quotient.mk P'),
have hf : function.surjective f := map_surjective (quotient.mk P') quotient.mk_surjective,
have hPJ : P = (P.map f).comap f,
{ rw comap_map_of_surjective _ hf,
refine le_antisymm (le_sup_of_le_left le_rfl) (sup_le le_rfl _),
refine λ p hp, polynomial_mem_ideal_of_coeff_mem_ideal P p (λ n, quotient.eq_zero_iff_mem.mp _),
simpa only [coeff_map, coe_map_ring_hom] using (polynomial.ext_iff.mp hp) n },
refine ring_hom.is_integral_tower_bot_of_is_integral _ _ (injective_quotient_le_comap_map P) _,
rw ← quotient_mk_maps_eq,
refine ring_hom.is_integral_trans _ _
((quotient.mk P').is_integral_of_surjective quotient.mk_surjective) _,
apply quotient_mk_comp_C_is_integral_of_jacobson' _ _ (λ x hx, _),
any_goals { exact ideal.is_jacobson_quotient },
{ exact or.rec_on (map_eq_top_or_is_maximal_of_surjective f hf hP)
(λ h, absurd (trans (h ▸ hPJ : P = comap f ⊤) comap_top : P = ⊤) hP.ne_top) id },
{ apply_instance, },
{ obtain ⟨z, rfl⟩ := quotient.mk_surjective x,
rwa [quotient.eq_zero_iff_mem, mem_comap, hPJ, mem_comap, coe_map_ring_hom, map_C] }
end
lemma is_maximal_comap_C_of_is_jacobson :
(P.comap (C : R →+* polynomial R)).is_maximal :=
begin
rw [← @mk_ker _ _ P, ring_hom.ker_eq_comap_bot, comap_comap],
exact is_maximal_comap_of_is_integral_of_is_maximal' _
(quotient_mk_comp_C_is_integral_of_jacobson P) ⊥ ((bot_quotient_is_maximal_iff _).mpr hP),
end
omit P hP
lemma comp_C_integral_of_surjective_of_jacobson
{S : Type*} [field S] (f : (polynomial R) →+* S) (hf : function.surjective f) :
(f.comp C).is_integral :=
begin
haveI : (f.ker).is_maximal := f.ker_is_maximal_of_surjective hf,
let g : polynomial R ⧸ f.ker →+* S := ideal.quotient.lift f.ker f (λ _ h, h),
have hfg : (g.comp (quotient.mk f.ker)) = f := ring_hom_ext' rfl rfl,
rw [← hfg, ring_hom.comp_assoc],
refine ring_hom.is_integral_trans _ g (quotient_mk_comp_C_is_integral_of_jacobson f.ker)
(g.is_integral_of_surjective _), --(quotient.lift_surjective f.ker f _ hf)),
rw [← hfg] at hf,
exact function.surjective.of_comp hf,
end
end
end polynomial
open mv_polynomial ring_hom
namespace mv_polynomial
lemma is_jacobson_mv_polynomial_fin {R : Type*} [comm_ring R] [H : is_jacobson R] :
∀ (n : ℕ), is_jacobson (mv_polynomial (fin n) R)
| 0 := ((is_jacobson_iso ((rename_equiv R
(equiv.equiv_pempty (fin 0))).to_ring_equiv.trans (is_empty_ring_equiv R pempty))).mpr H)
| (n+1) := (is_jacobson_iso (fin_succ_equiv R n).to_ring_equiv).2
(polynomial.is_jacobson_polynomial_iff_is_jacobson.2 (is_jacobson_mv_polynomial_fin n))
/-- General form of the nullstellensatz for Jacobson rings, since in a Jacobson ring we have
`Inf {P maximal | P ≥ I} = Inf {P prime | P ≥ I} = I.radical`. Fields are always Jacobson,
and in that special case this is (most of) the classical Nullstellensatz,
since `I(V(I))` is the intersection of maximal ideals containing `I`, which is then `I.radical` -/
instance {R : Type*} [comm_ring R] {ι : Type*} [fintype ι] [is_jacobson R] :
is_jacobson (mv_polynomial ι R) :=
begin
haveI := classical.dec_eq ι,
let e := fintype.equiv_fin ι,
rw is_jacobson_iso (rename_equiv R e).to_ring_equiv,
exact is_jacobson_mv_polynomial_fin _
end
variables {n : ℕ}
lemma quotient_mk_comp_C_is_integral_of_jacobson
{R : Type*} [comm_ring R] [is_jacobson R]
(P : ideal (mv_polynomial (fin n) R)) [P.is_maximal] :
((quotient.mk P).comp mv_polynomial.C : R →+* mv_polynomial _ R ⧸ P).is_integral :=
begin
unfreezingI {induction n with n IH},
{ refine ring_hom.is_integral_of_surjective _ (function.surjective.comp quotient.mk_surjective _),
exact C_surjective (fin 0) },
{ rw [← fin_succ_equiv_comp_C_eq_C, ← ring_hom.comp_assoc, ← ring_hom.comp_assoc,
← quotient_map_comp_mk le_rfl, ring_hom.comp_assoc (polynomial.C),
← quotient_map_comp_mk le_rfl, ring_hom.comp_assoc, ring_hom.comp_assoc,
← quotient_map_comp_mk le_rfl, ← ring_hom.comp_assoc (quotient.mk _)],
refine ring_hom.is_integral_trans _ _ _ _,
{ refine ring_hom.is_integral_trans _ _ (is_integral_of_surjective _ quotient.mk_surjective) _,
refine ring_hom.is_integral_trans _ _ _ _,
{ apply (is_integral_quotient_map_iff _).mpr (IH _),
apply polynomial.is_maximal_comap_C_of_is_jacobson _,
{ exact mv_polynomial.is_jacobson_mv_polynomial_fin n },
{ apply comap_is_maximal_of_surjective,
exact (fin_succ_equiv R n).symm.surjective } },
{ refine (is_integral_quotient_map_iff _).mpr _,
rw ← quotient_map_comp_mk le_rfl,
refine ring_hom.is_integral_trans _ _ _ ((is_integral_quotient_map_iff _).mpr _),
{ exact ring_hom.is_integral_of_surjective _ quotient.mk_surjective },
{ apply polynomial.quotient_mk_comp_C_is_integral_of_jacobson _,
{ exact mv_polynomial.is_jacobson_mv_polynomial_fin n },
{ exact comap_is_maximal_of_surjective _ (fin_succ_equiv R n).symm.surjective } } } },
{ refine (is_integral_quotient_map_iff _).mpr _,
refine ring_hom.is_integral_trans _ _ _ (is_integral_of_surjective _ quotient.mk_surjective),
exact ring_hom.is_integral_of_surjective _ (fin_succ_equiv R n).symm.surjective } }
end
lemma comp_C_integral_of_surjective_of_jacobson
{R : Type*} [comm_ring R] [is_jacobson R]
{σ : Type*} [fintype σ] {S : Type*} [field S] (f : mv_polynomial σ R →+* S)
(hf : function.surjective f) : (f.comp C).is_integral :=
begin
haveI := classical.dec_eq σ,
obtain ⟨e⟩ := fintype.trunc_equiv_fin σ,
let f' : mv_polynomial (fin _) R →+* S :=
f.comp (rename_equiv R e.symm).to_ring_equiv.to_ring_hom,
have hf' : function.surjective f' :=
((function.surjective.comp hf (rename_equiv R e.symm).surjective)),
have : (f'.comp C).is_integral,
{ haveI : (f'.ker).is_maximal := f'.ker_is_maximal_of_surjective hf',
let g : mv_polynomial _ R ⧸ f'.ker →+* S := ideal.quotient.lift f'.ker f' (λ _ h, h),
have hfg : (g.comp (quotient.mk f'.ker)) = f' := ring_hom_ext (λ r, rfl) (λ i, rfl),
rw [← hfg, ring_hom.comp_assoc],
refine ring_hom.is_integral_trans _ g (quotient_mk_comp_C_is_integral_of_jacobson f'.ker)
(g.is_integral_of_surjective _),
rw ← hfg at hf',
exact function.surjective.of_comp hf' },
rw ring_hom.comp_assoc at this,
convert this,
refine ring_hom.ext (λ x, _),
exact ((rename_equiv R e.symm).commutes' x).symm,
end
end mv_polynomial
end ideal
|
2328599cffe276f2ce8cc107dec1348d89a62399
|
649957717d58c43b5d8d200da34bf374293fe739
|
/src/category_theory/yoneda.lean
|
460e403bd8b3598360c954618d26a07c39b29d44
|
[
"Apache-2.0"
] |
permissive
|
Vtec234/mathlib
|
b50c7b21edea438df7497e5ed6a45f61527f0370
|
fb1848bbbfce46152f58e219dc0712f3289d2b20
|
refs/heads/master
| 1,592,463,095,113
| 1,562,737,749,000
| 1,562,737,749,000
| 196,202,858
| 0
| 0
|
Apache-2.0
| 1,562,762,338,000
| 1,562,762,337,000
| null |
UTF-8
|
Lean
| false
| false
| 7,473
|
lean
|
-- Copyright (c) 2017 Scott Morrison. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Authors: Scott Morrison
/- The Yoneda embedding, as a functor `yoneda : C ⥤ (Cᵒᵖ ⥤ Type v₁)`,
along with an instance that it is `fully_faithful`.
Also the Yoneda lemma, `yoneda_lemma : (yoneda_pairing C) ≅ (yoneda_evaluation C)`. -/
import category_theory.opposites
namespace category_theory
open opposite
universes v₁ u₁ u₂ -- declare the `v`'s first; see `category_theory.category` for an explanation
variables {C : Type u₁} [𝒞 : category.{v₁} C]
include 𝒞
def yoneda : C ⥤ (Cᵒᵖ ⥤ Sort v₁) :=
{ obj := λ X,
{ obj := λ Y, unop Y ⟶ X,
map := λ Y Y' f g, f.unop ≫ g,
map_comp' := λ _ _ _ f g, begin ext1, dsimp, erw [category.assoc] end,
map_id' := λ Y, begin ext1, dsimp, erw [category.id_comp] end },
map := λ X X' f, { app := λ Y g, g ≫ f } }
def coyoneda : Cᵒᵖ ⥤ (C ⥤ Sort v₁) :=
{ obj := λ X,
{ obj := λ Y, unop X ⟶ Y,
map := λ Y Y' f g, g ≫ f,
map_comp' := λ _ _ _ f g, begin ext1, dsimp, erw [category.assoc] end,
map_id' := λ Y, begin ext1, dsimp, erw [category.comp_id] end },
map := λ X X' f, { app := λ Y g, f.unop ≫ g },
map_comp' := λ _ _ _ f g, begin ext1, ext1, dsimp, erw [category.assoc] end,
map_id' := λ X, begin ext1, ext1, dsimp, erw [category.id_comp] end }
namespace yoneda
@[simp] lemma obj_obj (X : C) (Y : Cᵒᵖ) : (yoneda.obj X).obj Y = (unop Y ⟶ X) := rfl
@[simp] lemma obj_map (X : C) {Y Y' : Cᵒᵖ} (f : Y ⟶ Y') :
(yoneda.obj X).map f = λ g, f.unop ≫ g := rfl
@[simp] lemma map_app {X X' : C} (f : X ⟶ X') (Y : Cᵒᵖ) :
(yoneda.map f).app Y = λ g, g ≫ f := rfl
lemma obj_map_id {X Y : C} (f : op X ⟶ op Y) :
((@yoneda C _).obj X).map f (𝟙 X) = ((@yoneda C _).map f.unop).app (op Y) (𝟙 Y) :=
by obviously
@[simp] lemma naturality {X Y : C} (α : yoneda.obj X ⟶ yoneda.obj Y)
{Z Z' : C} (f : Z ⟶ Z') (h : Z' ⟶ X) : f ≫ α.app (op Z') h = α.app (op Z) (f ≫ h) :=
begin erw [functor_to_types.naturality], refl end
instance yoneda_full : full (@yoneda C _) :=
{ preimage := λ X Y f, (f.app (op X)) (𝟙 X) }
instance yoneda_faithful : faithful (@yoneda C _) :=
{ injectivity' := λ X Y f g p,
begin
injection p with h,
convert (congr_fun (congr_fun h (op X)) (𝟙 X)); dsimp; simp,
end }
/-- Extensionality via Yoneda. The typical usage would be
```
-- Goal is `X ≅ Y`
apply yoneda.ext,
-- Goals are now functions `(Z ⟶ X) → (Z ⟶ Y)`, `(Z ⟶ Y) → (Z ⟶ X)`, and the fact that these
functions are inverses and natural in `Z`.
```
-/
def ext (X Y : C)
(p : Π {Z : C}, (Z ⟶ X) → (Z ⟶ Y)) (q : Π {Z : C}, (Z ⟶ Y) → (Z ⟶ X))
(h₁ : Π {Z : C} (f : Z ⟶ X), q (p f) = f) (h₂ : Π {Z : C} (f : Z ⟶ Y), p (q f) = f)
(n : Π {Z Z' : C} (f : Z' ⟶ Z) (g : Z ⟶ X), p (f ≫ g) = f ≫ p g) : X ≅ Y :=
@preimage_iso _ _ _ _ yoneda _ _ _ _
(nat_iso.of_components (λ Z, { hom := p, inv := q, }) (by tidy))
def is_iso {X Y : C} (f : X ⟶ Y) [is_iso (yoneda.map f)] : is_iso f :=
is_iso_of_fully_faithful yoneda f
end yoneda
namespace coyoneda
@[simp] lemma obj_obj (X : Cᵒᵖ) (Y : C) : (coyoneda.obj X).obj Y = (unop X ⟶ Y) := rfl
@[simp] lemma obj_map {X' X : C} (f : X' ⟶ X) (Y : Cᵒᵖ) :
(coyoneda.obj Y).map f = λ g, g ≫ f := rfl
@[simp] lemma map_app (X : C) {Y Y' : Cᵒᵖ} (f : Y ⟶ Y') :
(coyoneda.map f).app X = λ g, f.unop ≫ g := rfl
@[simp] lemma naturality {X Y : Cᵒᵖ} (α : coyoneda.obj X ⟶ coyoneda.obj Y)
{Z Z' : C} (f : Z' ⟶ Z) (h : unop X ⟶ Z') : (α.app Z' h) ≫ f = α.app Z (h ≫ f) :=
begin erw [functor_to_types.naturality], refl end
instance coyoneda_full : full (@coyoneda C _) :=
{ preimage := λ X Y f, ((f.app (unop X)) (𝟙 _)).op }
instance coyoneda_faithful : faithful (@coyoneda C _) :=
{ injectivity' := λ X Y f g p,
begin
injection p with h,
have t := (congr_fun (congr_fun h (unop X)) (𝟙 _)),
simpa using congr_arg has_hom.hom.op t,
end }
def is_iso {X Y : Cᵒᵖ} (f : X ⟶ Y) [is_iso (coyoneda.map f)] : is_iso f :=
is_iso_of_fully_faithful coyoneda f
end coyoneda
class representable (F : Cᵒᵖ ⥤ Sort v₁) :=
(X : C)
(w : yoneda.obj X ≅ F)
end category_theory
namespace category_theory
-- For the rest of the file, we are using product categories,
-- so need to restrict to the case morphisms are in 'Type', not 'Sort'.
universes v₁ u₁ u₂ -- declare the `v`'s first; see `category_theory.category` for an explanation
open opposite
variables (C : Type u₁) [𝒞 : category.{v₁+1} C]
include 𝒞
-- We need to help typeclass inference with some awkward universe levels here.
instance prod_category_instance_1 : category ((Cᵒᵖ ⥤ Type v₁) × Cᵒᵖ) :=
category_theory.prod.{(max u₁ v₁) v₁} (Cᵒᵖ ⥤ Type v₁) Cᵒᵖ
instance prod_category_instance_2 : category (Cᵒᵖ × (Cᵒᵖ ⥤ Type v₁)) :=
category_theory.prod.{v₁ (max u₁ v₁)} Cᵒᵖ (Cᵒᵖ ⥤ Type v₁)
open yoneda
def yoneda_evaluation : Cᵒᵖ × (Cᵒᵖ ⥤ Type v₁) ⥤ Type (max u₁ v₁) :=
evaluation_uncurried Cᵒᵖ (Type v₁) ⋙ ulift_functor.{u₁}
@[simp] lemma yoneda_evaluation_map_down
(P Q : Cᵒᵖ × (Cᵒᵖ ⥤ Type v₁)) (α : P ⟶ Q) (x : (yoneda_evaluation C).obj P) :
((yoneda_evaluation C).map α x).down = α.2.app Q.1 (P.2.map α.1 x.down) := rfl
def yoneda_pairing : Cᵒᵖ × (Cᵒᵖ ⥤ Type v₁) ⥤ Type (max u₁ v₁) :=
functor.prod yoneda.op (functor.id (Cᵒᵖ ⥤ Type v₁)) ⋙ functor.hom (Cᵒᵖ ⥤ Type v₁)
@[simp] lemma yoneda_pairing_map
(P Q : Cᵒᵖ × (Cᵒᵖ ⥤ Type v₁)) (α : P ⟶ Q) (β : (yoneda_pairing C).obj P) :
(yoneda_pairing C).map α β = yoneda.map α.1.unop ≫ β ≫ α.2 := rfl
def yoneda_lemma : yoneda_pairing C ≅ yoneda_evaluation C :=
{ hom :=
{ app := λ F x, ulift.up ((x.app F.1) (𝟙 (unop F.1))),
naturality' :=
begin
intros X Y f, ext1, ext1,
cases f, cases Y, cases X,
dsimp,
erw [category.id_comp,
←functor_to_types.naturality,
obj_map_id,
functor_to_types.naturality,
functor_to_types.map_id]
end },
inv :=
{ app := λ F x,
{ app := λ X a, (F.2.map a.op) x.down,
naturality' :=
begin
intros X Y f, ext1,
cases x, cases F,
dsimp,
erw [functor_to_types.map_comp]
end },
naturality' :=
begin
intros X Y f, ext1, ext1, ext1,
cases x, cases f, cases Y, cases X,
dsimp,
erw [←functor_to_types.naturality, functor_to_types.map_comp]
end },
hom_inv_id' :=
begin
ext1, ext1, ext1, ext1, cases X, dsimp,
erw [←functor_to_types.naturality,
obj_map_id,
functor_to_types.naturality,
functor_to_types.map_id],
refl,
end,
inv_hom_id' :=
begin
ext1, ext1, ext1,
cases x, cases X,
dsimp,
erw [functor_to_types.map_id]
end }.
variables {C}
@[simp] def yoneda_sections (X : C) (F : Cᵒᵖ ⥤ Type v₁) : (yoneda.obj X ⟶ F) ≅ ulift.{u₁} (F.obj (op X)) :=
(yoneda_lemma C).app (op X, F)
omit 𝒞
@[simp] def yoneda_sections_small {C : Type u₁} [small_category C] (X : C) (F : Cᵒᵖ ⥤ Type u₁) : (yoneda.obj X ⟶ F) ≅ F.obj (op X) :=
yoneda_sections X F ≪≫ ulift_trivial _
end category_theory
|
1459ac9f30db6ed50845da2d5c0b651f64ce5431
|
33340b3a23ca62ef3c8a7f6a2d4e14c07c6d3354
|
/lia/normalize.lean
|
45f166b086427d9a37940e39bc1b6b44dcc899cf
|
[] |
no_license
|
lclem/cooper
|
79554e72ced343c64fed24b2d892d24bf9447dfe
|
812afc6b158821f2e7dac9c91d3b6123c7a19faf
|
refs/heads/master
| 1,607,554,257,488
| 1,578,694,133,000
| 1,578,694,133,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 6,585
|
lean
|
import ..logic ..list .preformula .formula -- .has_ptm .has_atom
open list
def preterm_lia.const : preterm_lia → int
| (preterm_lia.var k) := 0
| (preterm_lia.cst c) := c
| (preterm_lia.lmul c k) := 0
| (preterm_lia.rmul k c) := 0
| (preterm_lia.neg t) := -t.const
| (preterm_lia.add t1 t2) := t1.const + t2.const
| (preterm_lia.sub t1 t2) := t1.const - t2.const
def preterm_lia.coeffs : preterm_lia → list int
| (preterm_lia.var k) := update_nth_force [] k 1 0
| (preterm_lia.cst c) := []
| (preterm_lia.lmul c k) := update_nth_force [] k c 0
| (preterm_lia.rmul k c) := update_nth_force [] k c 0
| (preterm_lia.neg t) := map_neg t.coeffs
| (preterm_lia.add t1 t2) := comp_add t1.coeffs t2.coeffs
| (preterm_lia.sub t1 t2) := comp_sub t1.coeffs t2.coeffs.
def preatom_lia.normalize : preatom_lia → atom
| (preatom_lia.le t1 t2) :=
atom.le (t1.const - t2.const).to_znum
(map int.to_znum (comp_sub t2.coeffs t1.coeffs))
| (preatom_lia.dvd d t) :=
atom.dvd d.to_znum t.const.to_znum (map int.to_znum t.coeffs)
| (preatom_lia.ndvd d t) :=
atom.ndvd d.to_znum t.const.to_znum (map int.to_znum t.coeffs)
def preformula_lia.normalize : preformula_lia → formula
| preformula_lia.true := formula.true
| preformula_lia.false := formula.false
| (preformula_lia.atom a) := formula.atom a.normalize
| (preformula_lia.not p) := p.normalize.not
| (preformula_lia.or p q) := formula.or p.normalize q.normalize
| (preformula_lia.and p q) := formula.and p.normalize q.normalize
| (preformula_lia.imp p q) := formula.or p.normalize.not q.normalize
| (preformula_lia.iff p q) :=
formula.or (formula.and p.normalize q.normalize)
(formula.and p.normalize.not q.normalize.not)
| (preformula_lia.fa p) := p.normalize.not.ex.not
| (preformula_lia.ex p) := p.normalize.ex
lemma preterm_lia.eval_eq_aux {z} : ∀ {k zs},
z * option.iget (nth zs k) = int.dot_prod (update_nth_force nil k z 0) zs
| 0 [] :=
by simp [int.dot_prod, update_nth_force]
| 0 (z::zs) :=
begin
simp [nth, update_nth_force,
int.dot_prod, int.nil_dot_prod]
end
| (k+1) [] :=
by simp [int.dot_prod, update_nth_force]
| (k+1) (z::zs) :=
begin simp [nth, update_nth_force, int.dot_prod], apply preterm_lia.eval_eq_aux end
lemma preterm_lia.eval_eq {zs} :
∀ (t), preterm_lia.eval zs t = t.const + (int.dot_prod t.coeffs zs)
| (preterm_lia.var k) :=
begin
simp [preterm_lia.const, preterm_lia.coeffs, preterm_lia.eval],
rw preterm_lia.eval_eq_aux.symm, simp [one_mul]
end
| (preterm_lia.cst c) :=
begin
simp [preterm_lia.const, preterm_lia.coeffs,
preterm_lia.eval, int.nil_dot_prod]
end
| (preterm_lia.lmul k z) :=
begin
simp [preterm_lia.const, preterm_lia.coeffs, preterm_lia.eval],
apply preterm_lia.eval_eq_aux
end
| (preterm_lia.rmul z k) :=
begin
simp [preterm_lia.const, preterm_lia.coeffs, preterm_lia.eval, mul_comm _ k],
apply preterm_lia.eval_eq_aux
end
| (preterm_lia.neg t) :=
begin
simp [preterm_lia.eval, preterm_lia.const, preterm_lia.coeffs,
preterm_lia.eval_eq t, neg_add, int.map_neg_dot_prod.symm]
end
| (preterm_lia.add t1 t2) :=
begin
simp [preterm_lia.eval, preterm_lia.const, preterm_lia.coeffs,
preterm_lia.eval_eq t1, preterm_lia.eval_eq t2, int.comp_add_dot_prod]
end
| (preterm_lia.sub t1 t2) :=
begin
simp [preterm_lia.eval, preterm_lia.const, preterm_lia.coeffs,
preterm_lia.eval_eq t1, preterm_lia.eval_eq t2, int.comp_sub_dot_prod]
end
lemma preatom_lia.eval_normalize (zs : list int) :
∀ (p : preatom_lia), p.normalize.eval (map int.to_znum zs) ↔ p.eval zs
| (t1 ≤* t2):=
begin
simp [preatom_lia.normalize, formula.eval, atom.eval,
preterm_lia.const, preterm_lia.coeffs, preatom_lia.eval],
rw [preterm_lia.eval_eq, preterm_lia.eval_eq, ← znum.le_to_int',
int.to_znum_to_int, znum.dot_prod_to_int'], simp [map],
have hf : (znum.to_int ∘ int.to_znum) = id,
{ rw function.funext_iff, intro x, simp [znum.to_int, int.to_znum] },
rw [hf, map_id, map_id, int.comp_sub_dot_prod,
← add_sub_assoc, ← int.add_le_iff_le_sub],
end
| (d ∣* t):=
begin
simp [preatom_lia.normalize, formula.eval, atom.eval,
preterm_lia.const, preterm_lia.coeffs, preatom_lia.eval],
rw [preterm_lia.eval_eq, ← znum.dvd_to_int',
int.to_znum_to_int, znum.add_to_int,
int.to_znum_to_int, znum.dot_prod_to_int',
int.map_to_znum_to_int, int.map_to_znum_to_int]
end
| (d ∤* t):=
begin
simp [preatom_lia.normalize, formula.eval, atom.eval,
preterm_lia.const, preterm_lia.coeffs, preatom_lia.eval],
rw [preterm_lia.eval_eq, ← znum.dvd_to_int',
int.to_znum_to_int, znum.add_to_int,
int.to_znum_to_int, znum.dot_prod_to_int',
int.map_to_znum_to_int, int.map_to_znum_to_int]
end
meta def preformula_lia.eval_normalize_simp :=
`[simp [formula.eval, preformula_lia.eval,
preformula_lia.normalize, preformula_lia.eval_normalize]] --, preatom_lia.eval_normalize_iff]]
lemma preformula_lia.eval_normalize :
forall {p : preformula_lia} {zs : list int},
p.normalize.eval (map int.to_znum zs) ↔ p.eval zs
| ⊤* ds := by preformula_lia.eval_normalize_simp
| ⊥* ds := by preformula_lia.eval_normalize_simp
| (A* a) ds :=
begin
preformula_lia.eval_normalize_simp,
apply preatom_lia.eval_normalize
end
| (¬* φ) ds := begin preformula_lia.eval_normalize_simp end
| (φ ∨* ψ) ds :=
begin preformula_lia.eval_normalize_simp end
| (φ ∧* ψ) ds :=
begin preformula_lia.eval_normalize_simp end
| (φ →* ψ) ds :=
begin
preformula_lia.eval_normalize_simp,
simp [@imp_iff_not_or _ _ (classical.dec _)]
end
| (φ ↔* ψ) ds :=
begin
preformula_lia.eval_normalize_simp,
apply iff_iff_and_or_not_and_not.symm,
apply classical.dec
end
| (∀* φ) ds :=
begin
preformula_lia.eval_normalize_simp, simp [not_not_iff],
constructor; intros h x,
{ apply preformula_lia.eval_normalize.elim_left, apply h },
{ cases ((int.bijective_to_znum).right x) with a ha,
subst ha, have h := preformula_lia.eval_normalize.elim_right (h a), apply h }
end
| (∃* φ) ds :=
begin
preformula_lia.eval_normalize_simp,
constructor; intro h; cases h with x hx,
{ cases ((int.bijective_to_znum).right x) with a ha,
subst ha, existsi a, apply preformula_lia.eval_normalize.elim_left, apply hx },
{ existsi (x.to_znum),
have h := preformula_lia.eval_normalize.elim_right hx, apply h }
end
meta def normalize : tactic unit :=
pexact ``(preformula_lia.eval_normalize.elim_left _)
|
8a3fecce89a1acd007c2c354d69802014d0f1e69
|
e39f04f6ff425fe3b3f5e26a8998b817d1dba80f
|
/category_theory/functor.lean
|
4b32fbca3dc3b360f62956dce79a334c238b0b65
|
[
"Apache-2.0"
] |
permissive
|
kristychoi/mathlib
|
c504b5e8f84e272ea1d8966693c42de7523bf0ec
|
257fd84fe98927ff4a5ffe044f68c4e9d235cc75
|
refs/heads/master
| 1,586,520,722,896
| 1,544,030,145,000
| 1,544,031,933,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 3,498
|
lean
|
/-
Copyright (c) 2017 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Tim Baumann, Stephen Morgan, Scott Morrison
Defines a functor between categories.
(As it is a 'bundled' object rather than the `is_functorial` typeclass parametrised
by the underlying function on objects, the name is capitalised.)
Introduces notations
`C ⥤ D` for the type of all functors from `C` to `D`.
(I would like a better arrow here, unfortunately ⇒ (`\functor`) is taken by core.)
-/
import category_theory.category
import tactic.tidy
namespace category_theory
universes u v u₁ v₁ u₂ v₂ u₃ v₃
/--
`functor C D` represents a functor between categories `C` and `D`.
To apply a functor `F` to an object use `F.obj X`, and to a morphism use `F.map f`.
The axiom `map_id_lemma` expresses preservation of identities, and
`map_comp_lemma` expresses functoriality.
-/
structure functor (C : Type u₁) [category.{u₁ v₁} C] (D : Type u₂) [category.{u₂ v₂} D] :
Type (max u₁ v₁ u₂ v₂) :=
(obj : C → D)
(map : Π {X Y : C}, (X ⟶ Y) → ((obj X) ⟶ (obj Y)))
(map_id' : ∀ (X : C), map (𝟙 X) = 𝟙 (obj X) . obviously)
(map_comp' : ∀ {X Y Z : C} (f : X ⟶ Y) (g : Y ⟶ Z), map (f ≫ g) = (map f) ≫ (map g) . obviously)
infixr ` ⥤ `:70 := functor -- type as \func --
restate_axiom functor.map_id'
attribute [simp] functor.map_id
restate_axiom functor.map_comp'
attribute [simp] functor.map_comp
namespace functor
section
variables (C : Type u₁) [𝒞 : category.{u₁ v₁} C]
include 𝒞
/-- `functor.id C` is the identity functor on a category `C`. -/
protected def id : C ⥤ C :=
{ obj := λ X, X,
map := λ _ _ f, f }
variable {C}
@[simp] lemma id_obj (X : C) : (functor.id C).obj X = X := rfl
@[simp] lemma id_map {X Y : C} (f : X ⟶ Y) : (functor.id C).map f = f := rfl
end
section
variables {C : Type u₁} [𝒞 : category.{u₁ v₁} C]
{D : Type u₂} [𝒟 : category.{u₂ v₂} D]
{E : Type u₃} [ℰ : category.{u₃ v₃} E]
include 𝒞 𝒟 ℰ
/--
`F ⋙ G` is the composition of a functor `F` and a functor `G` (`F` first, then `G`).
-/
def comp (F : C ⥤ D) (G : D ⥤ E) : C ⥤ E :=
{ obj := λ X, G.obj (F.obj X),
map := λ _ _ f, G.map (F.map f) }
infixr ` ⋙ `:80 := comp
@[simp] lemma comp_obj (F : C ⥤ D) (G : D ⥤ E) (X : C) : (F ⋙ G).obj X = G.obj (F.obj X) := rfl
@[simp] lemma comp_map (F : C ⥤ D) (G : D ⥤ E) (X Y : C) (f : X ⟶ Y) :
(F ⋙ G).map f = G.map (F.map f) := rfl
end
section
variables (C : Type u₁) [𝒞 : category.{u₁ v₁} C]
include 𝒞
@[simp] def ulift_down : (ulift.{u₂} C) ⥤ C :=
{ obj := λ X, X.down,
map := λ X Y f, f }
@[simp] def ulift_up : C ⥤ (ulift.{u₂} C) :=
{ obj := λ X, ⟨ X ⟩,
map := λ X Y f, f }
end
end functor
def bundled.map {c : Type u → Type v} {d : Type u → Type v} (f : Π{a}, c a → d a) (s : bundled c) :
bundled d :=
{ α := s.α, str := f s.str }
def concrete_functor
{C : Type u → Type v} {hC : ∀{α β}, C α → C β → (α → β) → Prop} [concrete_category @hC]
{D : Type u → Type v} {hD : ∀{α β}, D α → D β → (α → β) → Prop} [concrete_category @hD]
(m : ∀{α}, C α → D α) (h : ∀{α β} {ia : C α} {ib : C β} {f}, hC ia ib f → hD (m ia) (m ib) f) :
bundled C ⥤ bundled D :=
{ obj := bundled.map @m,
map := λ X Y f, ⟨ f, h f.2 ⟩}
end category_theory
|
bb7234de47bd5e92ba6bae7894ce14fda48baff6
|
206422fb9edabf63def0ed2aa3f489150fb09ccb
|
/src/computability/tm_computable.lean
|
a499db7266238b11cdca284ccc78f97ce089fe75
|
[
"Apache-2.0"
] |
permissive
|
hamdysalah1/mathlib
|
b915f86b2503feeae268de369f1b16932321f097
|
95454452f6b3569bf967d35aab8d852b1ddf8017
|
refs/heads/master
| 1,677,154,116,545
| 1,611,797,994,000
| 1,611,797,994,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 11,344
|
lean
|
/-
Copyright (c) 2020 Pim Spelier, Daan van Gent. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Pim Spelier, Daan van Gent.
-/
import computability.encoding
import computability.turing_machine
import data.polynomial.basic
import data.polynomial.eval
/-!
# Computable functions
This file contains the definition of a Turing machine with some finiteness conditions
(bundling the definition of TM2 in turing_machine.lean), a definition of when a TM gives a certain
output (in a certain time), and the definition of computability (in polytime or any time function)
of a function between two types that have an encoding (as in encoding.lean).
## Main theorems
- `id_computable_in_poly_time` : a TM + a proof it computes the identity on a type in polytime.
- `id_computable` : a TM + a proof it computes the identity on a type.
## Implementation notes
To count the execution time of a Turing machine, we have decided to count the number of times the
`step` function is used. Each step executes a statement (of type stmt); this is a function, and
generally contains multiple "fundamental" steps (pushing, popping, so on). However, as functions
only contain a finite number of executions and each one is executed at most once, this execution
time is up to multiplication by a constant the amount of fundamental steps.
-/
open computability
namespace turing
/-- A bundled TM2 (an equivalent of the classical Turing machine, defined starting from
the namespace `turing.TM2` in `turing_machine.lean`), with an input and output stack,
a main function, an initial state and some finiteness guarantees. -/
structure fin_tm2 :=
{K : Type} [K_decidable_eq : decidable_eq K] [K_fin : fintype K] -- index type of stacks
(k₀ k₁ : K) -- input and output stack
(Γ : K → Type) -- type of stack elements
(Λ : Type) (main : Λ) [Λ_fin : fintype Λ] -- type of function labels
(σ : Type) (initial_state : σ) -- type of states of the machine
[σ_fin : fintype σ]
[Γk₀_fin : fintype (Γ k₀)]
(M : Λ → turing.TM2.stmt Γ Λ σ) -- the program itself, i.e. one function for every function label
namespace fin_tm2
section
variable (tm : fin_tm2)
instance : decidable_eq tm.K := tm.K_decidable_eq
instance : inhabited tm.σ := ⟨tm.initial_state⟩
/-- The type of statements (functions) corresponding to this TM. -/
@[derive inhabited]
def stmt : Type := turing.TM2.stmt tm.Γ tm.Λ tm.σ
/-- The type of configurations (functions) corresponding to this TM. -/
def cfg : Type := turing.TM2.cfg tm.Γ tm.Λ tm.σ
instance inhabited_cfg : inhabited (cfg tm) :=
turing.TM2.cfg.inhabited _ _ _
/-- The step function corresponding to this TM. -/
@[simp] def step : tm.cfg → option tm.cfg :=
turing.TM2.step tm.M
end
end fin_tm2
/-- The initial configuration corresponding to a list in the input alphabet. -/
def init_list (tm : fin_tm2) (s : list (tm.Γ tm.k₀)) : tm.cfg :=
{ l := option.some tm.main,
var := tm.initial_state,
stk := λ k, @dite (k = tm.k₀) (tm.K_decidable_eq k tm.k₀) (list (tm.Γ k))
(λ h, begin rw h, exact s, end)
(λ _,[]) }
/-- The final configuration corresponding to a list in the output alphabet. -/
def halt_list (tm : fin_tm2) (s : list (tm.Γ tm.k₁)) : tm.cfg :=
{ l := option.none,
var := tm.initial_state,
stk := λ k, @dite (k = tm.k₁) (tm.K_decidable_eq k tm.k₁) (list (tm.Γ k))
(λ h, begin rw h, exact s, end)
(λ _,[]) }
/-- A "proof" of the fact that f eventually reaches b when repeatedly evaluated on a,
remembering the number of steps it takes. -/
structure evals_to {σ : Type*} (f : σ → option σ) (a : σ) (b : option σ) :=
(steps : ℕ)
(evals_in_steps : ((flip bind f)^[steps] a) = b)
/-- A "proof" of the fact that `f` eventually reaches `b` in at most `m` steps when repeatedly
evaluated on `a`, remembering the number of steps it takes. -/
structure evals_to_in_time {σ : Type*} (f : σ → option σ) (a : σ) (b : option σ) (m : ℕ)
extends evals_to f a b :=
(steps_le_m : steps ≤ m)
/-- Reflexivity of `evals_to` in 0 steps. -/
@[refl] def evals_to.refl {σ : Type*} (f : σ → option σ) (a : σ) : evals_to f a a := ⟨0,rfl⟩
/-- Transitivity of `evals_to` in the sum of the numbers of steps. -/
@[trans] def evals_to.trans {σ : Type*} (f : σ → option σ) (a : σ) (b : σ) (c : option σ)
(h₁ : evals_to f a b) (h₂ : evals_to f b c) : evals_to f a c :=
⟨h₂.steps + h₁.steps,
by rw [function.iterate_add_apply,h₁.evals_in_steps,h₂.evals_in_steps]⟩
/-- Reflexivity of `evals_to_in_time` in 0 steps. -/
@[refl] def evals_to_in_time.refl {σ : Type*} (f : σ → option σ) (a : σ) :
evals_to_in_time f a a 0 :=
⟨evals_to.refl f a, le_refl 0⟩
/-- Transitivity of `evals_to_in_time` in the sum of the numbers of steps. -/
@[trans] def evals_to_in_time.trans {σ : Type*} (f : σ → option σ) (a : σ) (b : σ) (c : option σ)
(m₁ : ℕ) (m₂ : ℕ) (h₁ : evals_to_in_time f a b m₁) (h₂ : evals_to_in_time f b c m₂) :
evals_to_in_time f a c (m₂ + m₁) :=
⟨evals_to.trans f a b c h₁.to_evals_to h₂.to_evals_to, add_le_add h₂.steps_le_m h₁.steps_le_m⟩
/-- A proof of tm outputting l' when given l. -/
def tm2_outputs (tm : fin_tm2) (l : list (tm.Γ tm.k₀)) (l' : option (list (tm.Γ tm.k₁))) :=
evals_to tm.step (init_list tm l) ((option.map (halt_list tm)) l')
/-- A proof of tm outputting l' when given l in at most m steps. -/
def tm2_outputs_in_time (tm : fin_tm2) (l : list (tm.Γ tm.k₀))
(l' : option (list (tm.Γ tm.k₁))) (m : ℕ) :=
evals_to_in_time tm.step (init_list tm l) ((option.map (halt_list tm)) l') m
/-- The forgetful map, forgetting the upper bound on the number of steps. -/
def tm2_outputs_in_time.to_tm2_outputs {tm : fin_tm2} {l : list (tm.Γ tm.k₀)}
{l' : option (list (tm.Γ tm.k₁))} {m : ℕ} (h : tm2_outputs_in_time tm l l' m) :
tm2_outputs tm l l' :=
h.to_evals_to
/-- A Turing machine with input alphabet equivalent to Γ₀ and output alphabet equivalent to Γ₁. -/
structure tm2_computable_aux (Γ₀ Γ₁ : Type) :=
( tm : fin_tm2 )
( input_alphabet : tm.Γ tm.k₀ ≃ Γ₀ )
( output_alphabet : tm.Γ tm.k₁ ≃ Γ₁ )
/-- A Turing machine + a proof it outputs f. -/
structure tm2_computable {α β : Type} (ea : fin_encoding α) (eb : fin_encoding β) (f : α → β)
extends tm2_computable_aux ea.Γ eb.Γ :=
(outputs_fun : ∀ a, tm2_outputs tm (list.map input_alphabet.inv_fun (ea.encode a))
(option.some ((list.map output_alphabet.inv_fun) (eb.encode (f a)))) )
/-- A Turing machine + a time function + a proof it outputs f in at most time(len(input)) steps. -/
structure tm2_computable_in_time {α β : Type} (ea : fin_encoding α) (eb : fin_encoding β)
(f : α → β)
extends tm2_computable_aux ea.Γ eb.Γ :=
( time: ℕ → ℕ )
( outputs_fun : ∀ a, tm2_outputs_in_time tm (list.map input_alphabet.inv_fun (ea.encode a))
(option.some ((list.map output_alphabet.inv_fun) (eb.encode (f a))))
(time (ea.encode a).length) )
/-- A Turing machine + a polynomial time function + a proof it outputs f in at most time(len(input))
steps. -/
structure tm2_computable_in_poly_time {α β : Type} (ea : fin_encoding α) (eb : fin_encoding β)
(f : α → β)
extends tm2_computable_aux ea.Γ eb.Γ :=
( time: polynomial ℕ )
( outputs_fun : ∀ a, tm2_outputs_in_time tm (list.map input_alphabet.inv_fun (ea.encode a))
(option.some ((list.map output_alphabet.inv_fun) (eb.encode (f a))))
(time.eval (ea.encode a).length) )
/-- A forgetful map, forgetting the time bound on the number of steps. -/
def tm2_computable_in_time.to_tm2_computable {α β : Type} {ea : fin_encoding α}
{eb : fin_encoding β} {f : α → β} (h : tm2_computable_in_time ea eb f) :
tm2_computable ea eb f :=
⟨h.to_tm2_computable_aux, λ a, tm2_outputs_in_time.to_tm2_outputs (h.outputs_fun a)⟩
/-- A forgetful map, forgetting that the time function is polynomial. -/
def tm2_computable_in_poly_time.to_tm2_computable_in_time {α β : Type} {ea : fin_encoding α}
{eb : fin_encoding β} {f : α → β} (h : tm2_computable_in_poly_time ea eb f) :
tm2_computable_in_time ea eb f :=
⟨h.to_tm2_computable_aux, λ n, h.time.eval n, h.outputs_fun⟩
open turing.TM2.stmt
/-- A Turing machine computing the identity on α. -/
def id_computer {α : Type} (ea : fin_encoding α) : fin_tm2 :=
{ K := unit,
k₀ := ⟨⟩,
k₁ := ⟨⟩,
Γ := λ _, ea.Γ,
Λ := unit,
main := ⟨⟩,
σ := unit,
initial_state := ⟨⟩,
Γk₀_fin := ea.Γ_fin,
M := λ _, halt }
instance inhabited_fin_tm2 : inhabited fin_tm2 :=
⟨id_computer computability.inhabited_fin_encoding.default⟩
noncomputable theory
/-- A proof that the identity map on α is computable in polytime. -/
def id_computable_in_poly_time {α : Type} (ea : fin_encoding α) :
@tm2_computable_in_poly_time α α ea ea id :=
{ tm := id_computer ea,
input_alphabet := equiv.cast rfl,
output_alphabet := equiv.cast rfl,
time := 1,
outputs_fun := λ _, { steps := 1,
evals_in_steps := rfl,
steps_le_m := by simp only [polynomial.eval_one] } }
instance inhabited_tm2_computable_in_poly_time : inhabited (tm2_computable_in_poly_time
(default (fin_encoding bool)) (default (fin_encoding bool)) id) :=
⟨id_computable_in_poly_time computability.inhabited_fin_encoding.default⟩
instance inhabited_tm2_outputs_in_time :
inhabited (tm2_outputs_in_time (id_computer fin_encoding_bool_bool)
(list.map (equiv.cast rfl).inv_fun [ff]) (some (list.map (equiv.cast rfl).inv_fun [ff])) _) :=
⟨(id_computable_in_poly_time fin_encoding_bool_bool).outputs_fun ff⟩
instance inhabited_tm2_outputs : inhabited (tm2_outputs (id_computer fin_encoding_bool_bool)
(list.map (equiv.cast rfl).inv_fun [ff]) (some (list.map (equiv.cast rfl).inv_fun [ff]))) :=
⟨tm2_outputs_in_time.to_tm2_outputs turing.inhabited_tm2_outputs_in_time.default⟩
instance inhabited_evals_to_in_time :
inhabited (evals_to_in_time (λ _ : unit, some ⟨⟩) ⟨⟩ (some ⟨⟩) 0) :=
⟨evals_to_in_time.refl _ _⟩
instance inhabited_tm2_evals_to : inhabited (evals_to (λ _ : unit, some ⟨⟩) ⟨⟩ (some ⟨⟩)) :=
⟨evals_to.refl _ _⟩
/-- A proof that the identity map on α is computable in time. -/
def id_computable_in_time {α : Type} (ea : fin_encoding α) : @tm2_computable_in_time α α ea ea id :=
tm2_computable_in_poly_time.to_tm2_computable_in_time $ id_computable_in_poly_time ea
instance inhabited_tm2_computable_in_time :
inhabited (tm2_computable_in_time fin_encoding_bool_bool fin_encoding_bool_bool id) :=
⟨id_computable_in_time computability.inhabited_fin_encoding.default⟩
/-- A proof that the identity map on α is computable. -/
def id_computable {α : Type} (ea : fin_encoding α) : @tm2_computable α α ea ea id :=
tm2_computable_in_time.to_tm2_computable $ id_computable_in_time ea
instance inhabited_tm2_computable :
inhabited (tm2_computable fin_encoding_bool_bool fin_encoding_bool_bool id) :=
⟨id_computable computability.inhabited_fin_encoding.default⟩
instance inhabited_tm2_computable_aux : inhabited (tm2_computable_aux bool bool) :=
⟨(default (tm2_computable fin_encoding_bool_bool fin_encoding_bool_bool id)).to_tm2_computable_aux⟩
end turing
|
a379db67af6cac2efa280c5d1fa66ce429509d81
|
d406927ab5617694ec9ea7001f101b7c9e3d9702
|
/src/linear_algebra/basic.lean
|
b69d6ba461d4e1783c3f1e727c1ddfb5261e1b5d
|
[
"Apache-2.0"
] |
permissive
|
alreadydone/mathlib
|
dc0be621c6c8208c581f5170a8216c5ba6721927
|
c982179ec21091d3e102d8a5d9f5fe06c8fafb73
|
refs/heads/master
| 1,685,523,275,196
| 1,670,184,141,000
| 1,670,184,141,000
| 287,574,545
| 0
| 0
|
Apache-2.0
| 1,670,290,714,000
| 1,597,421,623,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 86,486
|
lean
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro, Kevin Buzzard, Yury Kudryashov, Frédéric Dupuis,
Heather Macbeth
-/
import algebra.big_operators.pi
import algebra.module.hom
import algebra.module.prod
import algebra.module.submodule.lattice
import data.dfinsupp.basic
import data.finsupp.basic
/-!
# Linear algebra
This file defines the basics of linear algebra. It sets up the "categorical/lattice structure" of
modules over a ring, submodules, and linear maps.
Many of the relevant definitions, including `module`, `submodule`, and `linear_map`, are found in
`src/algebra/module`.
## Main definitions
* Many constructors for (semi)linear maps
* The kernel `ker` and range `range` of a linear map are submodules of the domain and codomain
respectively.
* The general linear group is defined to be the group of invertible linear maps from `M` to itself.
See `linear_algebra.span` for the span of a set (as a submodule),
and `linear_algebra.quotient` for quotients by submodules.
## Main theorems
See `linear_algebra.isomorphisms` for Noether's three isomorphism theorems for modules.
## Notations
* We continue to use the notations `M →ₛₗ[σ] M₂` and `M →ₗ[R] M₂` for the type of semilinear
(resp. linear) maps from `M` to `M₂` over the ring homomorphism `σ` (resp. over the ring `R`).
## Implementation notes
We note that, when constructing linear maps, it is convenient to use operations defined on bundled
maps (`linear_map.prod`, `linear_map.coprod`, arithmetic operations like `+`) instead of defining a
function and proving it is linear.
## TODO
* Parts of this file have not yet been generalized to semilinear maps
## Tags
linear algebra, vector space, module
-/
open function
open_locale big_operators pointwise
variables {R : Type*} {R₁ : Type*} {R₂ : Type*} {R₃ : Type*} {R₄ : Type*}
variables {S : Type*}
variables {K : Type*} {K₂ : Type*}
variables {M : Type*} {M' : Type*} {M₁ : Type*} {M₂ : Type*} {M₃ : Type*} {M₄ : Type*}
variables {N : Type*} {N₂ : Type*}
variables {ι : Type*}
variables {V : Type*} {V₂ : Type*}
namespace finsupp
lemma smul_sum {α : Type*} {β : Type*} {R : Type*} {M : Type*}
[has_zero β] [add_comm_monoid M] [distrib_smul R M]
{v : α →₀ β} {c : R} {h : α → β → M} :
c • (v.sum h) = v.sum (λa b, c • h a b) :=
finset.smul_sum
@[simp]
lemma sum_smul_index_linear_map' {α : Type*} {R : Type*} {M : Type*} {M₂ : Type*}
[semiring R] [add_comm_monoid M] [module R M] [add_comm_monoid M₂] [module R M₂]
{v : α →₀ M} {c : R} {h : α → M →ₗ[R] M₂} :
(c • v).sum (λ a, h a) = c • (v.sum (λ a, h a)) :=
begin
rw [finsupp.sum_smul_index', finsupp.smul_sum],
{ simp only [map_smul], },
{ intro i, exact (h i).map_zero },
end
variables (α : Type*) [finite α]
variables (R M) [add_comm_monoid M] [semiring R] [module R M]
/-- Given `finite α`, `linear_equiv_fun_on_finite R` is the natural `R`-linear equivalence between
`α →₀ β` and `α → β`. -/
@[simps apply] noncomputable def linear_equiv_fun_on_finite :
(α →₀ M) ≃ₗ[R] (α → M) :=
{ to_fun := coe_fn,
map_add' := λ f g, rfl,
map_smul' := λ c f, rfl,
.. equiv_fun_on_finite }
@[simp] lemma linear_equiv_fun_on_finite_single [decidable_eq α] (x : α) (m : M) :
(linear_equiv_fun_on_finite R M α) (single x m) = pi.single x m :=
equiv_fun_on_finite_single x m
@[simp] lemma linear_equiv_fun_on_finite_symm_single [decidable_eq α]
(x : α) (m : M) : (linear_equiv_fun_on_finite R M α).symm (pi.single x m) = single x m :=
equiv_fun_on_finite_symm_single x m
@[simp] lemma linear_equiv_fun_on_finite_symm_coe (f : α →₀ M) :
(linear_equiv_fun_on_finite R M α).symm f = f :=
(linear_equiv_fun_on_finite R M α).symm_apply_apply f
/-- If `α` has a unique term, then the type of finitely supported functions `α →₀ M` is
`R`-linearly equivalent to `M`. -/
noncomputable def linear_equiv.finsupp_unique (α : Type*) [unique α] : (α →₀ M) ≃ₗ[R] M :=
{ map_add' := λ x y, rfl,
map_smul' := λ r x, rfl,
..finsupp.equiv_fun_on_finite.trans (equiv.fun_unique α M) }
variables {R M α}
@[simp] lemma linear_equiv.finsupp_unique_apply (α : Type*) [unique α] (f : α →₀ M) :
linear_equiv.finsupp_unique R M α f = f default := rfl
@[simp] lemma linear_equiv.finsupp_unique_symm_apply {α : Type*} [unique α] (m : M) :
(linear_equiv.finsupp_unique R M α).symm m = finsupp.single default m :=
by ext; simp [linear_equiv.finsupp_unique]
end finsupp
/-- decomposing `x : ι → R` as a sum along the canonical basis -/
lemma pi_eq_sum_univ {ι : Type*} [fintype ι] [decidable_eq ι] {R : Type*} [semiring R] (x : ι → R) :
x = ∑ i, x i • (λj, if i = j then 1 else 0) :=
by { ext, simp }
/-! ### Properties of linear maps -/
namespace linear_map
section add_comm_monoid
variables [semiring R] [semiring R₂] [semiring R₃] [semiring R₄]
variables [add_comm_monoid M] [add_comm_monoid M₁] [add_comm_monoid M₂]
variables [add_comm_monoid M₃] [add_comm_monoid M₄]
variables [module R M] [module R M₁] [module R₂ M₂] [module R₃ M₃] [module R₄ M₄]
variables {σ₁₂ : R →+* R₂} {σ₂₃ : R₂ →+* R₃} {σ₃₄ : R₃ →+* R₄}
variables {σ₁₃ : R →+* R₃} {σ₂₄ : R₂ →+* R₄} {σ₁₄ : R →+* R₄}
variables [ring_hom_comp_triple σ₁₂ σ₂₃ σ₁₃] [ring_hom_comp_triple σ₂₃ σ₃₄ σ₂₄]
variables [ring_hom_comp_triple σ₁₃ σ₃₄ σ₁₄] [ring_hom_comp_triple σ₁₂ σ₂₄ σ₁₄]
variables (f : M →ₛₗ[σ₁₂] M₂) (g : M₂ →ₛₗ[σ₂₃] M₃)
include R R₂
theorem comp_assoc (h : M₃ →ₛₗ[σ₃₄] M₄) :
((h.comp g : M₂ →ₛₗ[σ₂₄] M₄).comp f : M →ₛₗ[σ₁₄] M₄)
= h.comp (g.comp f : M →ₛₗ[σ₁₃] M₃) := rfl
omit R R₂
/-- The restriction of a linear map `f : M → M₂` to a submodule `p ⊆ M` gives a linear map
`p → M₂`. -/
def dom_restrict (f : M →ₛₗ[σ₁₂] M₂) (p : submodule R M) : p →ₛₗ[σ₁₂] M₂ := f.comp p.subtype
@[simp] lemma dom_restrict_apply (f : M →ₛₗ[σ₁₂] M₂) (p : submodule R M) (x : p) :
f.dom_restrict p x = f x := rfl
/-- A linear map `f : M₂ → M` whose values lie in a submodule `p ⊆ M` can be restricted to a
linear map M₂ → p. -/
def cod_restrict (p : submodule R₂ M₂) (f : M →ₛₗ[σ₁₂] M₂) (h : ∀c, f c ∈ p) : M →ₛₗ[σ₁₂] p :=
by refine {to_fun := λc, ⟨f c, h c⟩, ..}; intros; apply set_coe.ext; simp
@[simp] theorem cod_restrict_apply (p : submodule R₂ M₂) (f : M →ₛₗ[σ₁₂] M₂) {h} (x : M) :
(cod_restrict p f h x : M₂) = f x := rfl
@[simp] lemma comp_cod_restrict (p : submodule R₃ M₃) (h : ∀b, g b ∈ p) :
((cod_restrict p g h).comp f : M →ₛₗ[σ₁₃] p) = cod_restrict p (g.comp f) (assume b, h _) :=
ext $ assume b, rfl
@[simp] lemma subtype_comp_cod_restrict (p : submodule R₂ M₂) (h : ∀b, f b ∈ p) :
p.subtype.comp (cod_restrict p f h) = f :=
ext $ assume b, rfl
/-- Restrict domain and codomain of a linear map. -/
def restrict (f : M →ₗ[R] M₁) {p : submodule R M} {q : submodule R M₁} (hf : ∀ x ∈ p, f x ∈ q) :
p →ₗ[R] q :=
(f.dom_restrict p).cod_restrict q $ set_like.forall.2 hf
@[simp] lemma restrict_coe_apply (f : M →ₗ[R] M₁) {p : submodule R M} {q : submodule R M₁}
(hf : ∀ x ∈ p, f x ∈ q) (x : p) : ↑(f.restrict hf x) = f x := rfl
lemma restrict_apply
{f : M →ₗ[R] M₁} {p : submodule R M} {q : submodule R M₁} (hf : ∀ x ∈ p, f x ∈ q) (x : p) :
f.restrict hf x = ⟨f x, hf x.1 x.2⟩ := rfl
lemma subtype_comp_restrict {f : M →ₗ[R] M₁} {p : submodule R M} {q : submodule R M₁}
(hf : ∀ x ∈ p, f x ∈ q) :
q.subtype.comp (f.restrict hf) = f.dom_restrict p := rfl
lemma restrict_eq_cod_restrict_dom_restrict
{f : M →ₗ[R] M₁} {p : submodule R M} {q : submodule R M₁} (hf : ∀ x ∈ p, f x ∈ q) :
f.restrict hf = (f.dom_restrict p).cod_restrict q (λ x, hf x.1 x.2) := rfl
lemma restrict_eq_dom_restrict_cod_restrict
{f : M →ₗ[R] M₁} {p : submodule R M} {q : submodule R M₁} (hf : ∀ x, f x ∈ q) :
f.restrict (λ x _, hf x) = (f.cod_restrict q hf).dom_restrict p := rfl
instance unique_of_left [subsingleton M] : unique (M →ₛₗ[σ₁₂] M₂) :=
{ uniq := λ f, ext $ λ x, by rw [subsingleton.elim x 0, map_zero, map_zero],
.. linear_map.inhabited }
instance unique_of_right [subsingleton M₂] : unique (M →ₛₗ[σ₁₂] M₂) :=
coe_injective.unique
/-- Evaluation of a `σ₁₂`-linear map at a fixed `a`, as an `add_monoid_hom`. -/
def eval_add_monoid_hom (a : M) : (M →ₛₗ[σ₁₂] M₂) →+ M₂ :=
{ to_fun := λ f, f a,
map_add' := λ f g, linear_map.add_apply f g a,
map_zero' := rfl }
/-- `linear_map.to_add_monoid_hom` promoted to an `add_monoid_hom` -/
def to_add_monoid_hom' : (M →ₛₗ[σ₁₂] M₂) →+ (M →+ M₂) :=
{ to_fun := to_add_monoid_hom,
map_zero' := by ext; refl,
map_add' := by intros; ext; refl }
lemma sum_apply (t : finset ι) (f : ι → M →ₛₗ[σ₁₂] M₂) (b : M) :
(∑ d in t, f d) b = ∑ d in t, f d b :=
add_monoid_hom.map_sum ((add_monoid_hom.eval b).comp to_add_monoid_hom') f _
section smul_right
variables [semiring S] [module R S] [module S M] [is_scalar_tower R S M]
/-- When `f` is an `R`-linear map taking values in `S`, then `λb, f b • x` is an `R`-linear map. -/
def smul_right (f : M₁ →ₗ[R] S) (x : M) : M₁ →ₗ[R] M :=
{ to_fun := λb, f b • x,
map_add' := λ x y, by rw [f.map_add, add_smul],
map_smul' := λ b y, by dsimp; rw [map_smul, smul_assoc] }
@[simp] theorem coe_smul_right (f : M₁ →ₗ[R] S) (x : M) :
(smul_right f x : M₁ → M) = λ c, f c • x := rfl
theorem smul_right_apply (f : M₁ →ₗ[R] S) (x : M) (c : M₁) :
smul_right f x c = f c • x := rfl
end smul_right
instance [nontrivial M] : nontrivial (module.End R M) :=
begin
obtain ⟨m, ne⟩ := (nontrivial_iff_exists_ne (0 : M)).mp infer_instance,
exact nontrivial_of_ne 1 0 (λ p, ne (linear_map.congr_fun p m)),
end
@[simp, norm_cast] lemma coe_fn_sum {ι : Type*} (t : finset ι) (f : ι → M →ₛₗ[σ₁₂] M₂) :
⇑(∑ i in t, f i) = ∑ i in t, (f i : M → M₂) :=
add_monoid_hom.map_sum ⟨@to_fun R R₂ _ _ σ₁₂ M M₂ _ _ _ _, rfl, λ x y, rfl⟩ _ _
@[simp] lemma pow_apply (f : M →ₗ[R] M) (n : ℕ) (m : M) :
(f^n) m = (f^[n] m) :=
begin
induction n with n ih,
{ refl, },
{ simp only [function.comp_app, function.iterate_succ, linear_map.mul_apply, pow_succ, ih],
exact (function.commute.iterate_self _ _ m).symm, },
end
lemma pow_map_zero_of_le
{f : module.End R M} {m : M} {k l : ℕ} (hk : k ≤ l) (hm : (f^k) m = 0) : (f^l) m = 0 :=
by rw [← tsub_add_cancel_of_le hk, pow_add, mul_apply, hm, map_zero]
lemma commute_pow_left_of_commute
{f : M →ₛₗ[σ₁₂] M₂} {g : module.End R M} {g₂ : module.End R₂ M₂}
(h : g₂.comp f = f.comp g) (k : ℕ) : (g₂^k).comp f = f.comp (g^k) :=
begin
induction k with k ih,
{ simpa only [pow_zero], },
{ rw [pow_succ, pow_succ, linear_map.mul_eq_comp, linear_map.comp_assoc, ih,
← linear_map.comp_assoc, h, linear_map.comp_assoc, linear_map.mul_eq_comp], },
end
lemma submodule_pow_eq_zero_of_pow_eq_zero {N : submodule R M}
{g : module.End R N} {G : module.End R M} (h : G.comp N.subtype = N.subtype.comp g)
{k : ℕ} (hG : G^k = 0) : g^k = 0 :=
begin
ext m,
have hg : N.subtype.comp (g^k) m = 0,
{ rw [← commute_pow_left_of_commute h, hG, zero_comp, zero_apply], },
simp only [submodule.subtype_apply, comp_app, submodule.coe_eq_zero, coe_comp] at hg,
rw [hg, linear_map.zero_apply],
end
lemma coe_pow (f : M →ₗ[R] M) (n : ℕ) : ⇑(f^n) = (f^[n]) :=
by { ext m, apply pow_apply, }
@[simp] lemma id_pow (n : ℕ) : (id : M →ₗ[R] M)^n = id := one_pow n
section
variables {f' : M →ₗ[R] M}
lemma iterate_succ (n : ℕ) : (f' ^ (n + 1)) = comp (f' ^ n) f' :=
by rw [pow_succ', mul_eq_comp]
lemma iterate_surjective (h : surjective f') : ∀ n : ℕ, surjective ⇑(f' ^ n)
| 0 := surjective_id
| (n + 1) := by { rw [iterate_succ], exact surjective.comp (iterate_surjective n) h, }
lemma iterate_injective (h : injective f') : ∀ n : ℕ, injective ⇑(f' ^ n)
| 0 := injective_id
| (n + 1) := by { rw [iterate_succ], exact injective.comp (iterate_injective n) h, }
lemma iterate_bijective (h : bijective f') : ∀ n : ℕ, bijective ⇑(f' ^ n)
| 0 := bijective_id
| (n + 1) := by { rw [iterate_succ], exact bijective.comp (iterate_bijective n) h, }
lemma injective_of_iterate_injective {n : ℕ} (hn : n ≠ 0) (h : injective ⇑(f' ^ n)) :
injective f' :=
begin
rw [← nat.succ_pred_eq_of_pos (pos_iff_ne_zero.mpr hn), iterate_succ, coe_comp] at h,
exact injective.of_comp h,
end
lemma surjective_of_iterate_surjective {n : ℕ} (hn : n ≠ 0) (h : surjective ⇑(f' ^ n)) :
surjective f' :=
begin
rw [← nat.succ_pred_eq_of_pos (pos_iff_ne_zero.mpr hn),
nat.succ_eq_add_one, add_comm, pow_add] at h,
exact surjective.of_comp h,
end
lemma pow_apply_mem_of_forall_mem {p : submodule R M}
(n : ℕ) (h : ∀ x ∈ p, f' x ∈ p) (x : M) (hx : x ∈ p) :
(f'^n) x ∈ p :=
begin
induction n with n ih generalizing x, { simpa, },
simpa only [iterate_succ, coe_comp, function.comp_app, restrict_apply] using ih _ (h _ hx),
end
lemma pow_restrict {p : submodule R M} (n : ℕ)
(h : ∀ x ∈ p, f' x ∈ p) (h' := pow_apply_mem_of_forall_mem n h) :
(f'.restrict h)^n = (f'^n).restrict h' :=
begin
induction n with n ih;
ext,
{ simp [restrict_apply], },
{ simp [restrict_apply, linear_map.iterate_succ, -linear_map.pow_apply, ih], },
end
end
/-- A linear map `f` applied to `x : ι → R` can be computed using the image under `f` of elements
of the canonical basis. -/
lemma pi_apply_eq_sum_univ [fintype ι] [decidable_eq ι] (f : (ι → R) →ₗ[R] M) (x : ι → R) :
f x = ∑ i, x i • (f (λj, if i = j then 1 else 0)) :=
begin
conv_lhs { rw [pi_eq_sum_univ x, f.map_sum] },
apply finset.sum_congr rfl (λl hl, _),
rw map_smul
end
end add_comm_monoid
section module
variables [semiring R] [semiring S]
[add_comm_monoid M] [add_comm_monoid M₂] [add_comm_monoid M₃]
[module R M] [module R M₂] [module R M₃]
[module S M₂] [module S M₃] [smul_comm_class R S M₂] [smul_comm_class R S M₃]
(f : M →ₗ[R] M₂)
variable (S)
/-- Applying a linear map at `v : M`, seen as `S`-linear map from `M →ₗ[R] M₂` to `M₂`.
See `linear_map.applyₗ` for a version where `S = R`. -/
@[simps]
def applyₗ' : M →+ (M →ₗ[R] M₂) →ₗ[S] M₂ :=
{ to_fun := λ v,
{ to_fun := λ f, f v,
map_add' := λ f g, f.add_apply g v,
map_smul' := λ x f, f.smul_apply x v },
map_zero' := linear_map.ext $ λ f, f.map_zero,
map_add' := λ x y, linear_map.ext $ λ f, f.map_add _ _ }
section
variables (R M)
/--
The equivalence between R-linear maps from `R` to `M`, and points of `M` itself.
This says that the forgetful functor from `R`-modules to types is representable, by `R`.
This as an `S`-linear equivalence, under the assumption that `S` acts on `M` commuting with `R`.
When `R` is commutative, we can take this to be the usual action with `S = R`.
Otherwise, `S = ℕ` shows that the equivalence is additive.
See note [bundled maps over different rings].
-/
@[simps]
def ring_lmap_equiv_self [module S M] [smul_comm_class R S M] : (R →ₗ[R] M) ≃ₗ[S] M :=
{ to_fun := λ f, f 1,
inv_fun := smul_right (1 : R →ₗ[R] R),
left_inv := λ f, by { ext, simp },
right_inv := λ x, by simp,
.. applyₗ' S (1 : R) }
end
end module
section comm_semiring
variables [comm_semiring R] [add_comm_monoid M] [add_comm_monoid M₂] [add_comm_monoid M₃]
variables [module R M] [module R M₂] [module R M₃]
variables (f g : M →ₗ[R] M₂)
include R
/-- Composition by `f : M₂ → M₃` is a linear map from the space of linear maps `M → M₂`
to the space of linear maps `M₂ → M₃`. -/
def comp_right (f : M₂ →ₗ[R] M₃) : (M →ₗ[R] M₂) →ₗ[R] (M →ₗ[R] M₃) :=
{ to_fun := f.comp,
map_add' := λ _ _, linear_map.ext $ λ _, map_add f _ _,
map_smul' := λ _ _, linear_map.ext $ λ _, map_smul f _ _ }
@[simp]
lemma comp_right_apply (f : M₂ →ₗ[R] M₃) (g : M →ₗ[R] M₂) :
comp_right f g = f.comp g := rfl
/-- Applying a linear map at `v : M`, seen as a linear map from `M →ₗ[R] M₂` to `M₂`.
See also `linear_map.applyₗ'` for a version that works with two different semirings.
This is the `linear_map` version of `add_monoid_hom.eval`. -/
@[simps]
def applyₗ : M →ₗ[R] (M →ₗ[R] M₂) →ₗ[R] M₂ :=
{ to_fun := λ v, { to_fun := λ f, f v, ..applyₗ' R v },
map_smul' := λ x y, linear_map.ext $ λ f, map_smul f _ _,
..applyₗ' R }
/-- Alternative version of `dom_restrict` as a linear map. -/
def dom_restrict'
(p : submodule R M) : (M →ₗ[R] M₂) →ₗ[R] (p →ₗ[R] M₂) :=
{ to_fun := λ φ, φ.dom_restrict p,
map_add' := by simp [linear_map.ext_iff],
map_smul' := by simp [linear_map.ext_iff] }
@[simp] lemma dom_restrict'_apply (f : M →ₗ[R] M₂) (p : submodule R M) (x : p) :
dom_restrict' p f x = f x := rfl
/--
The family of linear maps `M₂ → M` parameterised by `f ∈ M₂ → R`, `x ∈ M`, is linear in `f`, `x`.
-/
def smul_rightₗ : (M₂ →ₗ[R] R) →ₗ[R] M →ₗ[R] M₂ →ₗ[R] M :=
{ to_fun := λ f,
{ to_fun := linear_map.smul_right f,
map_add' := λ m m', by { ext, apply smul_add, },
map_smul' := λ c m, by { ext, apply smul_comm, } },
map_add' := λ f f', by { ext, apply add_smul, },
map_smul' := λ c f, by { ext, apply mul_smul, } }
@[simp] lemma smul_rightₗ_apply (f : M₂ →ₗ[R] R) (x : M) (c : M₂) :
(smul_rightₗ : (M₂ →ₗ[R] R) →ₗ[R] M →ₗ[R] M₂ →ₗ[R] M) f x c = (f c) • x := rfl
end comm_semiring
end linear_map
/--
The `R`-linear equivalence between additive morphisms `A →+ B` and `ℕ`-linear morphisms `A →ₗ[ℕ] B`.
-/
@[simps]
def add_monoid_hom_lequiv_nat {A B : Type*} (R : Type*)
[semiring R] [add_comm_monoid A] [add_comm_monoid B] [module R B] :
(A →+ B) ≃ₗ[R] (A →ₗ[ℕ] B) :=
{ to_fun := add_monoid_hom.to_nat_linear_map,
inv_fun := linear_map.to_add_monoid_hom,
map_add' := by { intros, ext, refl },
map_smul' := by { intros, ext, refl },
left_inv := by { intros f, ext, refl },
right_inv := by { intros f, ext, refl } }
/--
The `R`-linear equivalence between additive morphisms `A →+ B` and `ℤ`-linear morphisms `A →ₗ[ℤ] B`.
-/
@[simps]
def add_monoid_hom_lequiv_int {A B : Type*} (R : Type*)
[semiring R] [add_comm_group A] [add_comm_group B] [module R B] :
(A →+ B) ≃ₗ[R] (A →ₗ[ℤ] B) :=
{ to_fun := add_monoid_hom.to_int_linear_map,
inv_fun := linear_map.to_add_monoid_hom,
map_add' := by { intros, ext, refl },
map_smul' := by { intros, ext, refl },
left_inv := by { intros f, ext, refl },
right_inv := by { intros f, ext, refl } }
/-! ### Properties of submodules -/
namespace submodule
section add_comm_monoid
variables [semiring R] [semiring R₂] [semiring R₃]
variables [add_comm_monoid M] [add_comm_monoid M₂] [add_comm_monoid M₃] [add_comm_monoid M']
variables [module R M] [module R M'] [module R₂ M₂] [module R₃ M₃]
variables {σ₁₂ : R →+* R₂} {σ₂₃ : R₂ →+* R₃} {σ₁₃ : R →+* R₃}
variables {σ₂₁ : R₂ →+* R}
variables [ring_hom_inv_pair σ₁₂ σ₂₁] [ring_hom_inv_pair σ₂₁ σ₁₂]
variables [ring_hom_comp_triple σ₁₂ σ₂₃ σ₁₃]
variables (p p' : submodule R M) (q q' : submodule R₂ M₂)
variables (q₁ q₁' : submodule R M')
variables {r : R} {x y : M}
open set
variables {p p'}
/-- If two submodules `p` and `p'` satisfy `p ⊆ p'`, then `of_le p p'` is the linear map version of
this inclusion. -/
def of_le (h : p ≤ p') : p →ₗ[R] p' :=
p.subtype.cod_restrict p' $ λ ⟨x, hx⟩, h hx
@[simp] theorem coe_of_le (h : p ≤ p') (x : p) :
(of_le h x : M) = x := rfl
theorem of_le_apply (h : p ≤ p') (x : p) : of_le h x = ⟨x, h x.2⟩ := rfl
theorem of_le_injective (h : p ≤ p') : function.injective (of_le h) :=
λ x y h, subtype.val_injective (subtype.mk.inj h)
variables (p p')
lemma subtype_comp_of_le (p q : submodule R M) (h : p ≤ q) :
q.subtype.comp (of_le h) = p.subtype :=
by { ext ⟨b, hb⟩, refl }
variables (R)
@[simp] lemma subsingleton_iff : subsingleton (submodule R M) ↔ subsingleton M :=
have h : subsingleton (submodule R M) ↔ subsingleton (add_submonoid M),
{ rw [←subsingleton_iff_bot_eq_top, ←subsingleton_iff_bot_eq_top],
convert to_add_submonoid_eq.symm; refl, },
h.trans add_submonoid.subsingleton_iff
@[simp] lemma nontrivial_iff : nontrivial (submodule R M) ↔ nontrivial M :=
not_iff_not.mp (
(not_nontrivial_iff_subsingleton.trans $ subsingleton_iff R).trans
not_nontrivial_iff_subsingleton.symm)
variables {R}
instance [subsingleton M] : unique (submodule R M) :=
⟨⟨⊥⟩, λ a, @subsingleton.elim _ ((subsingleton_iff R).mpr ‹_›) a _⟩
instance unique' [subsingleton R] : unique (submodule R M) :=
by haveI := module.subsingleton R M; apply_instance
instance [nontrivial M] : nontrivial (submodule R M) := (nontrivial_iff R).mpr ‹_›
theorem mem_right_iff_eq_zero_of_disjoint {p p' : submodule R M} (h : disjoint p p') {x : p} :
(x:M) ∈ p' ↔ x = 0 :=
⟨λ hx, coe_eq_zero.1 $ disjoint_def.1 h x x.2 hx, λ h, h.symm ▸ p'.zero_mem⟩
theorem mem_left_iff_eq_zero_of_disjoint {p p' : submodule R M} (h : disjoint p p') {x : p'} :
(x:M) ∈ p ↔ x = 0 :=
⟨λ hx, coe_eq_zero.1 $ disjoint_def.1 h x hx x.2, λ h, h.symm ▸ p.zero_mem⟩
section
variables [ring_hom_surjective σ₁₂] {F : Type*} [sc : semilinear_map_class F σ₁₂ M M₂]
include sc
/-- The pushforward of a submodule `p ⊆ M` by `f : M → M₂` -/
def map (f : F) (p : submodule R M) : submodule R₂ M₂ :=
{ carrier := f '' p,
smul_mem' :=
begin
rintro c x ⟨y, hy, rfl⟩,
obtain ⟨a, rfl⟩ := σ₁₂.is_surjective c,
exact ⟨_, p.smul_mem a hy, map_smulₛₗ f _ _⟩,
end,
.. p.to_add_submonoid.map f }
@[simp] lemma map_coe (f : F) (p : submodule R M) :
(map f p : set M₂) = f '' p := rfl
omit sc
lemma map_to_add_submonoid (f : M →ₛₗ[σ₁₂] M₂) (p : submodule R M) :
(p.map f).to_add_submonoid = p.to_add_submonoid.map (f : M →+ M₂) :=
set_like.coe_injective rfl
lemma map_to_add_submonoid' (f : M →ₛₗ[σ₁₂] M₂) (p : submodule R M) :
(p.map f).to_add_submonoid = p.to_add_submonoid.map f :=
set_like.coe_injective rfl
include sc
@[simp] lemma mem_map {f : F} {p : submodule R M} {x : M₂} :
x ∈ map f p ↔ ∃ y, y ∈ p ∧ f y = x := iff.rfl
theorem mem_map_of_mem {f : F} {p : submodule R M} {r} (h : r ∈ p) :
f r ∈ map f p := set.mem_image_of_mem _ h
lemma apply_coe_mem_map (f : F) {p : submodule R M} (r : p) :
f r ∈ map f p := mem_map_of_mem r.prop
omit sc
@[simp] lemma map_id : map (linear_map.id : M →ₗ[R] M) p = p :=
submodule.ext $ λ a, by simp
lemma map_comp [ring_hom_surjective σ₂₃] [ring_hom_surjective σ₁₃]
(f : M →ₛₗ[σ₁₂] M₂) (g : M₂ →ₛₗ[σ₂₃] M₃)
(p : submodule R M) : map (g.comp f : M →ₛₗ[σ₁₃] M₃) p = map g (map f p) :=
set_like.coe_injective $ by simp only [← image_comp, map_coe, linear_map.coe_comp, comp_app]
include sc
lemma map_mono {f : F} {p p' : submodule R M} :
p ≤ p' → map f p ≤ map f p' := image_subset _
omit sc
@[simp] lemma map_zero : map (0 : M →ₛₗ[σ₁₂] M₂) p = ⊥ :=
have ∃ (x : M), x ∈ p := ⟨0, p.zero_mem⟩,
ext $ by simp [this, eq_comm]
lemma map_add_le (f g : M →ₛₗ[σ₁₂] M₂) : map (f + g) p ≤ map f p ⊔ map g p :=
begin
rintros x ⟨m, hm, rfl⟩,
exact add_mem_sup (mem_map_of_mem hm) (mem_map_of_mem hm),
end
lemma range_map_nonempty (N : submodule R M) :
(set.range (λ ϕ, submodule.map ϕ N : (M →ₛₗ[σ₁₂] M₂) → submodule R₂ M₂)).nonempty :=
⟨_, set.mem_range.mpr ⟨0, rfl⟩⟩
end
variables {F : Type*} [sc : semilinear_map_class F σ₁₂ M M₂]
include σ₂₁ sc
/-- The pushforward of a submodule by an injective linear map is
linearly equivalent to the original submodule. See also `linear_equiv.submodule_map` for a
computable version when `f` has an explicit inverse. -/
noncomputable def equiv_map_of_injective (f : F) (i : injective f)
(p : submodule R M) : p ≃ₛₗ[σ₁₂] p.map f :=
{ map_add' := by { intros, simp only [coe_add, map_add, equiv.to_fun_as_coe, equiv.set.image_apply],
refl },
map_smul' := by { intros, simp only [coe_smul_of_tower, map_smulₛₗ, equiv.to_fun_as_coe,
equiv.set.image_apply], refl },
..(equiv.set.image f p i) }
@[simp] lemma coe_equiv_map_of_injective_apply (f : F) (i : injective f)
(p : submodule R M) (x : p) :
(equiv_map_of_injective f i p x : M₂) = f x := rfl
omit σ₂₁
/-- The pullback of a submodule `p ⊆ M₂` along `f : M → M₂` -/
def comap (f : F) (p : submodule R₂ M₂) : submodule R M :=
{ carrier := f ⁻¹' p,
smul_mem' := λ a x h, by simp [p.smul_mem _ h],
.. p.to_add_submonoid.comap f }
@[simp] lemma comap_coe (f : F) (p : submodule R₂ M₂) :
(comap f p : set M) = f ⁻¹' p := rfl
@[simp] lemma mem_comap {f : F} {p : submodule R₂ M₂} :
x ∈ comap f p ↔ f x ∈ p := iff.rfl
omit sc
@[simp] lemma comap_id : comap (linear_map.id : M →ₗ[R] M) p = p :=
set_like.coe_injective rfl
lemma comap_comp (f : M →ₛₗ[σ₁₂] M₂) (g : M₂ →ₛₗ[σ₂₃] M₃)
(p : submodule R₃ M₃) : comap (g.comp f : M →ₛₗ[σ₁₃] M₃) p = comap f (comap g p) :=
rfl
include sc
lemma comap_mono {f : F} {q q' : submodule R₂ M₂} :
q ≤ q' → comap f q ≤ comap f q' := preimage_mono
omit sc
lemma le_comap_pow_of_le_comap (p : submodule R M) {f : M →ₗ[R] M} (h : p ≤ p.comap f) (k : ℕ) :
p ≤ p.comap (f^k) :=
begin
induction k with k ih,
{ simp [linear_map.one_eq_id], },
{ simp [linear_map.iterate_succ, comap_comp, h.trans (comap_mono ih)], },
end
section
variables [ring_hom_surjective σ₁₂]
include sc
lemma map_le_iff_le_comap {f : F} {p : submodule R M} {q : submodule R₂ M₂} :
map f p ≤ q ↔ p ≤ comap f q := image_subset_iff
lemma gc_map_comap (f : F) : galois_connection (map f) (comap f)
| p q := map_le_iff_le_comap
@[simp] lemma map_bot (f : F) : map f ⊥ = ⊥ :=
(gc_map_comap f).l_bot
@[simp] lemma map_sup (f : F) : map f (p ⊔ p') = map f p ⊔ map f p' :=
(gc_map_comap f : galois_connection (map f) (comap f)).l_sup
@[simp] lemma map_supr {ι : Sort*} (f : F) (p : ι → submodule R M) :
map f (⨆i, p i) = (⨆i, map f (p i)) :=
(gc_map_comap f : galois_connection (map f) (comap f)).l_supr
end
include sc
@[simp] lemma comap_top (f : F) : comap f ⊤ = ⊤ := rfl
@[simp] lemma comap_inf (f : F) : comap f (q ⊓ q') = comap f q ⊓ comap f q' := rfl
@[simp] lemma comap_infi [ring_hom_surjective σ₁₂] {ι : Sort*} (f : F)
(p : ι → submodule R₂ M₂) :
comap f (⨅i, p i) = (⨅i, comap f (p i)) :=
(gc_map_comap f : galois_connection (map f) (comap f)).u_infi
omit sc
@[simp] lemma comap_zero : comap (0 : M →ₛₗ[σ₁₂] M₂) q = ⊤ :=
ext $ by simp
include sc
lemma map_comap_le [ring_hom_surjective σ₁₂] (f : F) (q : submodule R₂ M₂) :
map f (comap f q) ≤ q :=
(gc_map_comap f).l_u_le _
lemma le_comap_map [ring_hom_surjective σ₁₂] (f : F) (p : submodule R M) :
p ≤ comap f (map f p) :=
(gc_map_comap f).le_u_l _
section galois_insertion
variables {f : F} (hf : surjective f)
variables [ring_hom_surjective σ₁₂]
include hf
/-- `map f` and `comap f` form a `galois_insertion` when `f` is surjective. -/
def gi_map_comap : galois_insertion (map f) (comap f) :=
(gc_map_comap f).to_galois_insertion
(λ S x hx, begin
rcases hf x with ⟨y, rfl⟩,
simp only [mem_map, mem_comap],
exact ⟨y, hx, rfl⟩
end)
lemma map_comap_eq_of_surjective (p : submodule R₂ M₂) : (p.comap f).map f = p :=
(gi_map_comap hf).l_u_eq _
lemma map_surjective_of_surjective : function.surjective (map f) :=
(gi_map_comap hf).l_surjective
lemma comap_injective_of_surjective : function.injective (comap f) :=
(gi_map_comap hf).u_injective
lemma map_sup_comap_of_surjective (p q : submodule R₂ M₂) :
(p.comap f ⊔ q.comap f).map f = p ⊔ q :=
(gi_map_comap hf).l_sup_u _ _
lemma map_supr_comap_of_sujective {ι : Sort*} (S : ι → submodule R₂ M₂) :
(⨆ i, (S i).comap f).map f = supr S :=
(gi_map_comap hf).l_supr_u _
lemma map_inf_comap_of_surjective (p q : submodule R₂ M₂) :
(p.comap f ⊓ q.comap f).map f = p ⊓ q :=
(gi_map_comap hf).l_inf_u _ _
lemma map_infi_comap_of_surjective {ι : Sort*} (S : ι → submodule R₂ M₂) :
(⨅ i, (S i).comap f).map f = infi S :=
(gi_map_comap hf).l_infi_u _
lemma comap_le_comap_iff_of_surjective (p q : submodule R₂ M₂) :
p.comap f ≤ q.comap f ↔ p ≤ q :=
(gi_map_comap hf).u_le_u_iff
lemma comap_strict_mono_of_surjective : strict_mono (comap f) :=
(gi_map_comap hf).strict_mono_u
end galois_insertion
section galois_coinsertion
variables [ring_hom_surjective σ₁₂] {f : F} (hf : injective f)
include hf
/-- `map f` and `comap f` form a `galois_coinsertion` when `f` is injective. -/
def gci_map_comap : galois_coinsertion (map f) (comap f) :=
(gc_map_comap f).to_galois_coinsertion
(λ S x, by simp [mem_comap, mem_map, hf.eq_iff])
lemma comap_map_eq_of_injective (p : submodule R M) : (p.map f).comap f = p :=
(gci_map_comap hf).u_l_eq _
lemma comap_surjective_of_injective : function.surjective (comap f) :=
(gci_map_comap hf).u_surjective
lemma map_injective_of_injective : function.injective (map f) :=
(gci_map_comap hf).l_injective
lemma comap_inf_map_of_injective (p q : submodule R M) : (p.map f ⊓ q.map f).comap f = p ⊓ q :=
(gci_map_comap hf).u_inf_l _ _
lemma comap_infi_map_of_injective {ι : Sort*} (S : ι → submodule R M) :
(⨅ i, (S i).map f).comap f = infi S :=
(gci_map_comap hf).u_infi_l _
lemma comap_sup_map_of_injective (p q : submodule R M) : (p.map f ⊔ q.map f).comap f = p ⊔ q :=
(gci_map_comap hf).u_sup_l _ _
lemma comap_supr_map_of_injective {ι : Sort*} (S : ι → submodule R M) :
(⨆ i, (S i).map f).comap f = supr S :=
(gci_map_comap hf).u_supr_l _
lemma map_le_map_iff_of_injective (p q : submodule R M) : p.map f ≤ q.map f ↔ p ≤ q :=
(gci_map_comap hf).l_le_l_iff
lemma map_strict_mono_of_injective : strict_mono (map f) :=
(gci_map_comap hf).strict_mono_l
end galois_coinsertion
section order_iso
omit sc
include σ₁₂ σ₂₁
variables [semilinear_equiv_class F σ₁₂ M M₂]
/-- A linear isomorphism induces an order isomorphism of submodules. -/
@[simps symm_apply apply] def order_iso_map_comap (f : F) : submodule R M ≃o submodule R₂ M₂ :=
{ to_fun := map f,
inv_fun := comap f,
left_inv := comap_map_eq_of_injective $ equiv_like.injective f,
right_inv := map_comap_eq_of_surjective $ equiv_like.surjective f,
map_rel_iff' := map_le_map_iff_of_injective $ equiv_like.injective f }
end order_iso
--TODO(Mario): is there a way to prove this from order properties?
lemma map_inf_eq_map_inf_comap [ring_hom_surjective σ₁₂] {f : F}
{p : submodule R M} {p' : submodule R₂ M₂} :
map f p ⊓ p' = map f (p ⊓ comap f p') :=
le_antisymm
(by rintro _ ⟨⟨x, h₁, rfl⟩, h₂⟩; exact ⟨_, ⟨h₁, h₂⟩, rfl⟩)
(le_inf (map_mono inf_le_left) (map_le_iff_le_comap.2 inf_le_right))
omit sc
lemma map_comap_subtype : map p.subtype (comap p.subtype p') = p ⊓ p' :=
ext $ λ x, ⟨by rintro ⟨⟨_, h₁⟩, h₂, rfl⟩; exact ⟨h₁, h₂⟩, λ ⟨h₁, h₂⟩, ⟨⟨_, h₁⟩, h₂, rfl⟩⟩
lemma eq_zero_of_bot_submodule : ∀(b : (⊥ : submodule R M)), b = 0
| ⟨b', hb⟩ := subtype.eq $ show b' = 0, from (mem_bot R).1 hb
/-- The infimum of a family of invariant submodule of an endomorphism is also an invariant
submodule. -/
lemma _root_.linear_map.infi_invariant {σ : R →+* R} [ring_hom_surjective σ] {ι : Sort*}
(f : M →ₛₗ[σ] M) {p : ι → submodule R M} (hf : ∀ i, ∀ v ∈ (p i), f v ∈ p i) :
∀ v ∈ infi p, f v ∈ infi p :=
begin
have : ∀ i, (p i).map f ≤ p i,
{ rintros i - ⟨v, hv, rfl⟩,
exact hf i v hv },
suffices : (infi p).map f ≤ infi p,
{ exact λ v hv, this ⟨v, hv, rfl⟩, },
exact le_infi (λ i, (submodule.map_mono (infi_le p i)).trans (this i)),
end
end add_comm_monoid
section add_comm_group
variables [ring R] [add_comm_group M] [module R M] (p : submodule R M)
variables [add_comm_group M₂] [module R M₂]
-- See `neg_coe_set`
lemma neg_coe : -(p : set M) = p := set.ext $ λ x, p.neg_mem_iff
@[simp] protected lemma map_neg (f : M →ₗ[R] M₂) : map (-f) p = map f p :=
ext $ λ y, ⟨λ ⟨x, hx, hy⟩, hy ▸ ⟨-x, show -x ∈ p, from neg_mem hx, map_neg f x⟩,
λ ⟨x, hx, hy⟩, hy ▸ ⟨-x, show -x ∈ p, from neg_mem hx, (map_neg (-f) _).trans (neg_neg (f x))⟩⟩
end add_comm_group
end submodule
namespace submodule
variables [field K]
variables [add_comm_group V] [module K V]
variables [add_comm_group V₂] [module K V₂]
lemma comap_smul (f : V →ₗ[K] V₂) (p : submodule K V₂) (a : K) (h : a ≠ 0) :
p.comap (a • f) = p.comap f :=
by ext b; simp only [submodule.mem_comap, p.smul_mem_iff h, linear_map.smul_apply]
lemma map_smul (f : V →ₗ[K] V₂) (p : submodule K V) (a : K) (h : a ≠ 0) :
p.map (a • f) = p.map f :=
le_antisymm
begin rw [map_le_iff_le_comap, comap_smul f _ a h, ← map_le_iff_le_comap], exact le_rfl end
begin rw [map_le_iff_le_comap, ← comap_smul f _ a h, ← map_le_iff_le_comap], exact le_rfl end
lemma comap_smul' (f : V →ₗ[K] V₂) (p : submodule K V₂) (a : K) :
p.comap (a • f) = (⨅ h : a ≠ 0, p.comap f) :=
by classical; by_cases a = 0; simp [h, comap_smul]
lemma map_smul' (f : V →ₗ[K] V₂) (p : submodule K V) (a : K) :
p.map (a • f) = (⨆ h : a ≠ 0, p.map f) :=
by classical; by_cases a = 0; simp [h, map_smul]
end submodule
/-! ### Properties of linear maps -/
namespace linear_map
section add_comm_monoid
variables [semiring R] [semiring R₂] [semiring R₃]
variables [add_comm_monoid M] [add_comm_monoid M₂] [add_comm_monoid M₃]
variables {σ₁₂ : R →+* R₂} {σ₂₃ : R₂ →+* R₃} {σ₁₃ : R →+* R₃}
variables [ring_hom_comp_triple σ₁₂ σ₂₃ σ₁₃]
variables [module R M] [module R₂ M₂] [module R₃ M₃]
include R
open submodule
section finsupp
variables {γ : Type*} [has_zero γ]
@[simp] lemma map_finsupp_sum (f : M →ₛₗ[σ₁₂] M₂) {t : ι →₀ γ} {g : ι → γ → M} :
f (t.sum g) = t.sum (λ i d, f (g i d)) := f.map_sum
lemma coe_finsupp_sum (t : ι →₀ γ) (g : ι → γ → M →ₛₗ[σ₁₂] M₂) :
⇑(t.sum g) = t.sum (λ i d, g i d) := coe_fn_sum _ _
@[simp] lemma finsupp_sum_apply (t : ι →₀ γ) (g : ι → γ → M →ₛₗ[σ₁₂] M₂) (b : M) :
(t.sum g) b = t.sum (λ i d, g i d b) := sum_apply _ _ _
end finsupp
section dfinsupp
open dfinsupp
variables {γ : ι → Type*} [decidable_eq ι]
section sum
variables [Π i, has_zero (γ i)] [Π i (x : γ i), decidable (x ≠ 0)]
@[simp] lemma map_dfinsupp_sum (f : M →ₛₗ[σ₁₂] M₂) {t : Π₀ i, γ i} {g : Π i, γ i → M} :
f (t.sum g) = t.sum (λ i d, f (g i d)) := f.map_sum
lemma coe_dfinsupp_sum (t : Π₀ i, γ i) (g : Π i, γ i → M →ₛₗ[σ₁₂] M₂) :
⇑(t.sum g) = t.sum (λ i d, g i d) := coe_fn_sum _ _
@[simp] lemma dfinsupp_sum_apply (t : Π₀ i, γ i) (g : Π i, γ i → M →ₛₗ[σ₁₂] M₂) (b : M) :
(t.sum g) b = t.sum (λ i d, g i d b) := sum_apply _ _ _
end sum
section sum_add_hom
variables [Π i, add_zero_class (γ i)]
@[simp] lemma map_dfinsupp_sum_add_hom (f : M →ₛₗ[σ₁₂] M₂) {t : Π₀ i, γ i} {g : Π i, γ i →+ M} :
f (sum_add_hom g t) = sum_add_hom (λ i, f.to_add_monoid_hom.comp (g i)) t :=
f.to_add_monoid_hom.map_dfinsupp_sum_add_hom _ _
end sum_add_hom
end dfinsupp
variables {σ₂₁ : R₂ →+* R} {τ₁₂ : R →+* R₂} {τ₂₃ : R₂ →+* R₃} {τ₁₃ : R →+* R₃}
variables [ring_hom_comp_triple τ₁₂ τ₂₃ τ₁₃]
theorem map_cod_restrict [ring_hom_surjective σ₂₁] (p : submodule R M) (f : M₂ →ₛₗ[σ₂₁] M) (h p') :
submodule.map (cod_restrict p f h) p' = comap p.subtype (p'.map f) :=
submodule.ext $ λ ⟨x, hx⟩, by simp [subtype.ext_iff_val]
theorem comap_cod_restrict (p : submodule R M) (f : M₂ →ₛₗ[σ₂₁] M) (hf p') :
submodule.comap (cod_restrict p f hf) p' = submodule.comap f (map p.subtype p') :=
submodule.ext $ λ x, ⟨λ h, ⟨⟨_, hf x⟩, h, rfl⟩, by rintro ⟨⟨_, _⟩, h, ⟨⟩⟩; exact h⟩
section
variables {F : Type*} [sc : semilinear_map_class F τ₁₂ M M₂]
include sc
/-- The range of a linear map `f : M → M₂` is a submodule of `M₂`.
See Note [range copy pattern]. -/
def range [ring_hom_surjective τ₁₂] (f : F) : submodule R₂ M₂ :=
(map f ⊤).copy (set.range f) set.image_univ.symm
theorem range_coe [ring_hom_surjective τ₁₂] (f : F) :
(range f : set M₂) = set.range f := rfl
omit sc
lemma range_to_add_submonoid [ring_hom_surjective τ₁₂] (f : M →ₛₗ[τ₁₂] M₂) :
f.range.to_add_submonoid = f.to_add_monoid_hom.mrange := rfl
include sc
@[simp] theorem mem_range [ring_hom_surjective τ₁₂]
{f : F} {x} : x ∈ range f ↔ ∃ y, f y = x :=
iff.rfl
lemma range_eq_map [ring_hom_surjective τ₁₂]
(f : F) : range f = map f ⊤ :=
by { ext, simp }
theorem mem_range_self [ring_hom_surjective τ₁₂]
(f : F) (x : M) : f x ∈ range f := ⟨x, rfl⟩
omit sc
@[simp] theorem range_id : range (linear_map.id : M →ₗ[R] M) = ⊤ :=
set_like.coe_injective set.range_id
theorem range_comp [ring_hom_surjective τ₁₂] [ring_hom_surjective τ₂₃] [ring_hom_surjective τ₁₃]
(f : M →ₛₗ[τ₁₂] M₂) (g : M₂ →ₛₗ[τ₂₃] M₃) :
range (g.comp f : M →ₛₗ[τ₁₃] M₃) = map g (range f) :=
set_like.coe_injective (set.range_comp g f)
theorem range_comp_le_range [ring_hom_surjective τ₂₃] [ring_hom_surjective τ₁₃]
(f : M →ₛₗ[τ₁₂] M₂) (g : M₂ →ₛₗ[τ₂₃] M₃) :
range (g.comp f : M →ₛₗ[τ₁₃] M₃) ≤ range g :=
set_like.coe_mono (set.range_comp_subset_range f g)
include sc
theorem range_eq_top [ring_hom_surjective τ₁₂] {f : F} :
range f = ⊤ ↔ surjective f :=
by rw [set_like.ext'_iff, range_coe, top_coe, set.range_iff_surjective]
lemma range_le_iff_comap [ring_hom_surjective τ₁₂] {f : F} {p : submodule R₂ M₂} :
range f ≤ p ↔ comap f p = ⊤ :=
by rw [range_eq_map, map_le_iff_le_comap, eq_top_iff]
lemma map_le_range [ring_hom_surjective τ₁₂] {f : F} {p : submodule R M} :
map f p ≤ range f :=
set_like.coe_mono (set.image_subset_range f p)
omit sc
@[simp] lemma range_neg {R : Type*} {R₂ : Type*} {M : Type*} {M₂ : Type*}
[semiring R] [ring R₂] [add_comm_monoid M] [add_comm_group M₂] [module R M] [module R₂ M₂]
{τ₁₂ : R →+* R₂} [ring_hom_surjective τ₁₂] (f : M →ₛₗ[τ₁₂] M₂) :
(-f).range = f.range :=
begin
change ((-linear_map.id : M₂ →ₗ[R₂] M₂).comp f).range = _,
rw [range_comp, submodule.map_neg, submodule.map_id],
end
end
/--
The decreasing sequence of submodules consisting of the ranges of the iterates of a linear map.
-/
@[simps]
def iterate_range (f : M →ₗ[R] M) : ℕ →o (submodule R M)ᵒᵈ :=
⟨λ n, (f ^ n).range, λ n m w x h, begin
obtain ⟨c, rfl⟩ := le_iff_exists_add.mp w,
rw linear_map.mem_range at h,
obtain ⟨m, rfl⟩ := h,
rw linear_map.mem_range,
use (f ^ c) m,
rw [pow_add, linear_map.mul_apply],
end⟩
/-- Restrict the codomain of a linear map `f` to `f.range`.
This is the bundled version of `set.range_factorization`. -/
@[reducible] def range_restrict [ring_hom_surjective τ₁₂] (f : M →ₛₗ[τ₁₂] M₂) :
M →ₛₗ[τ₁₂] f.range := f.cod_restrict f.range f.mem_range_self
/-- The range of a linear map is finite if the domain is finite.
Note: this instance can form a diamond with `subtype.fintype` in the
presence of `fintype M₂`. -/
instance fintype_range [fintype M] [decidable_eq M₂] [ring_hom_surjective τ₁₂]
(f : M →ₛₗ[τ₁₂] M₂) : fintype (range f) :=
set.fintype_range f
variables {F : Type*} [sc : semilinear_map_class F τ₁₂ M M₂]
include sc
/-- The kernel of a linear map `f : M → M₂` is defined to be `comap f ⊥`. This is equivalent to the
set of `x : M` such that `f x = 0`. The kernel is a submodule of `M`. -/
def ker (f : F) : submodule R M := comap f ⊥
@[simp] theorem mem_ker {f : F} {y} : y ∈ ker f ↔ f y = 0 := mem_bot R₂
omit sc
@[simp] theorem ker_id : ker (linear_map.id : M →ₗ[R] M) = ⊥ := rfl
include sc
@[simp] theorem map_coe_ker (f : F) (x : ker f) : f x = 0 := mem_ker.1 x.2
omit sc
lemma ker_to_add_submonoid (f : M →ₛₗ[τ₁₂] M₂) :
f.ker.to_add_submonoid = f.to_add_monoid_hom.mker := rfl
lemma comp_ker_subtype (f : M →ₛₗ[τ₁₂] M₂) : f.comp f.ker.subtype = 0 :=
linear_map.ext $ λ x, suffices f x = 0, by simp [this], mem_ker.1 x.2
theorem ker_comp (f : M →ₛₗ[τ₁₂] M₂) (g : M₂ →ₛₗ[τ₂₃] M₃) :
ker (g.comp f : M →ₛₗ[τ₁₃] M₃) = comap f (ker g) := rfl
theorem ker_le_ker_comp (f : M →ₛₗ[τ₁₂] M₂) (g : M₂ →ₛₗ[τ₂₃] M₃) :
ker f ≤ ker (g.comp f : M →ₛₗ[τ₁₃] M₃) :=
by rw ker_comp; exact comap_mono bot_le
include sc
theorem disjoint_ker {f : F} {p : submodule R M} :
disjoint p (ker f) ↔ ∀ x ∈ p, f x = 0 → x = 0 :=
by simp [disjoint_def]
theorem ker_eq_bot' {f : F} :
ker f = ⊥ ↔ (∀ m, f m = 0 → m = 0) :=
by simpa [disjoint_iff_inf_le] using @disjoint_ker _ _ _ _ _ _ _ _ _ _ _ _ _ f ⊤
omit sc
theorem ker_eq_bot_of_inverse {τ₂₁ : R₂ →+* R} [ring_hom_inv_pair τ₁₂ τ₂₁]
{f : M →ₛₗ[τ₁₂] M₂} {g : M₂ →ₛₗ[τ₂₁] M} (h : (g.comp f : M →ₗ[R] M) = id) :
ker f = ⊥ :=
ker_eq_bot'.2 $ λ m hm, by rw [← id_apply m, ← h, comp_apply, hm, g.map_zero]
include sc
lemma le_ker_iff_map [ring_hom_surjective τ₁₂] {f : F} {p : submodule R M} :
p ≤ ker f ↔ map f p = ⊥ :=
by rw [ker, eq_bot_iff, map_le_iff_le_comap]
omit sc
lemma ker_cod_restrict {τ₂₁ : R₂ →+* R} (p : submodule R M) (f : M₂ →ₛₗ[τ₂₁] M) (hf) :
ker (cod_restrict p f hf) = ker f :=
by rw [ker, comap_cod_restrict, map_bot]; refl
lemma range_cod_restrict {τ₂₁ : R₂ →+* R} [ring_hom_surjective τ₂₁] (p : submodule R M)
(f : M₂ →ₛₗ[τ₂₁] M) (hf) :
range (cod_restrict p f hf) = comap p.subtype f.range :=
by simpa only [range_eq_map] using map_cod_restrict _ _ _ _
lemma ker_restrict [add_comm_monoid M₁] [module R M₁]
{p : submodule R M} {q : submodule R M₁} {f : M →ₗ[R] M₁}
(hf : ∀ x : M, x ∈ p → f x ∈ q) :
ker (f.restrict hf) = (f.dom_restrict p).ker :=
by rw [restrict_eq_cod_restrict_dom_restrict, ker_cod_restrict]
include sc
lemma _root_.submodule.map_comap_eq [ring_hom_surjective τ₁₂]
(f : F) (q : submodule R₂ M₂) : map f (comap f q) = range f ⊓ q :=
le_antisymm (le_inf map_le_range (map_comap_le _ _)) $
by rintro _ ⟨⟨x, _, rfl⟩, hx⟩; exact ⟨x, hx, rfl⟩
lemma _root_.submodule.map_comap_eq_self [ring_hom_surjective τ₁₂]
{f : F} {q : submodule R₂ M₂} (h : q ≤ range f) : map f (comap f q) = q :=
by rwa [submodule.map_comap_eq, inf_eq_right]
omit sc
@[simp] theorem ker_zero : ker (0 : M →ₛₗ[τ₁₂] M₂) = ⊤ :=
eq_top_iff'.2 $ λ x, by simp
@[simp] theorem range_zero [ring_hom_surjective τ₁₂] : range (0 : M →ₛₗ[τ₁₂] M₂) = ⊥ :=
by simpa only [range_eq_map] using submodule.map_zero _
theorem ker_eq_top {f : M →ₛₗ[τ₁₂] M₂} : ker f = ⊤ ↔ f = 0 :=
⟨λ h, ext $ λ x, mem_ker.1 $ h.symm ▸ trivial, λ h, h.symm ▸ ker_zero⟩
section
variables [ring_hom_surjective τ₁₂]
lemma range_le_bot_iff (f : M →ₛₗ[τ₁₂] M₂) : range f ≤ ⊥ ↔ f = 0 :=
by rw [range_le_iff_comap]; exact ker_eq_top
theorem range_eq_bot {f : M →ₛₗ[τ₁₂] M₂} : range f = ⊥ ↔ f = 0 :=
by rw [← range_le_bot_iff, le_bot_iff]
lemma range_le_ker_iff {f : M →ₛₗ[τ₁₂] M₂} {g : M₂ →ₛₗ[τ₂₃] M₃} :
range f ≤ ker g ↔ (g.comp f : M →ₛₗ[τ₁₃] M₃) = 0 :=
⟨λ h, ker_eq_top.1 $ eq_top_iff'.2 $ λ x, h $ ⟨_, rfl⟩,
λ h x hx, mem_ker.2 $ exists.elim hx $ λ y hy, by rw [←hy, ←comp_apply, h, zero_apply]⟩
include sc
theorem comap_le_comap_iff {f : F} (hf : range f = ⊤) {p p'} :
comap f p ≤ comap f p' ↔ p ≤ p' :=
⟨λ H x hx, by rcases range_eq_top.1 hf x with ⟨y, hy, rfl⟩; exact H hx, comap_mono⟩
theorem comap_injective {f : F} (hf : range f = ⊤) : injective (comap f) :=
λ p p' h, le_antisymm ((comap_le_comap_iff hf).1 (le_of_eq h))
((comap_le_comap_iff hf).1 (ge_of_eq h))
end
include sc
theorem ker_eq_bot_of_injective {f : F} (hf : injective f) : ker f = ⊥ :=
begin
have : disjoint ⊤ (ker f), by { rw [disjoint_ker, ← map_zero f], exact λ x hx H, hf H },
simpa [disjoint_iff_inf_le]
end
omit sc
/--
The increasing sequence of submodules consisting of the kernels of the iterates of a linear map.
-/
@[simps]
def iterate_ker (f : M →ₗ[R] M) : ℕ →o submodule R M :=
⟨λ n, (f ^ n).ker, λ n m w x h, begin
obtain ⟨c, rfl⟩ := le_iff_exists_add.mp w,
rw linear_map.mem_ker at h,
rw [linear_map.mem_ker, add_comm, pow_add, linear_map.mul_apply, h, linear_map.map_zero],
end⟩
end add_comm_monoid
section ring
variables [ring R] [ring R₂] [ring R₃]
variables [add_comm_group M] [add_comm_group M₂] [add_comm_group M₃]
variables [module R M] [module R₂ M₂] [module R₃ M₃]
variables {τ₁₂ : R →+* R₂} {τ₂₃ : R₂ →+* R₃} {τ₁₃ : R →+* R₃}
variables [ring_hom_comp_triple τ₁₂ τ₂₃ τ₁₃]
variables {F : Type*} [sc : semilinear_map_class F τ₁₂ M M₂]
variables {f : F}
include R
open submodule
lemma range_to_add_subgroup [ring_hom_surjective τ₁₂] (f : M →ₛₗ[τ₁₂] M₂) :
f.range.to_add_subgroup = f.to_add_monoid_hom.range := rfl
lemma ker_to_add_subgroup (f : M →ₛₗ[τ₁₂] M₂) :
f.ker.to_add_subgroup = f.to_add_monoid_hom.ker := rfl
include sc
theorem sub_mem_ker_iff {x y} : x - y ∈ ker f ↔ f x = f y :=
by rw [mem_ker, map_sub, sub_eq_zero]
theorem disjoint_ker' {p : submodule R M} :
disjoint p (ker f) ↔ ∀ x y ∈ p, f x = f y → x = y :=
disjoint_ker.trans
⟨λ H x hx y hy h, eq_of_sub_eq_zero $ H _ (sub_mem hx hy) (by simp [h]),
λ H x h₁ h₂, H x h₁ 0 (zero_mem _) (by simpa using h₂)⟩
theorem inj_on_of_disjoint_ker {p : submodule R M}
{s : set M} (h : s ⊆ p) (hd : disjoint p (ker f)) :
set.inj_on f s :=
λ x hx y hy, disjoint_ker'.1 hd _ (h hx) _ (h hy)
variables (F)
theorem _root_.linear_map_class.ker_eq_bot : ker f = ⊥ ↔ injective f :=
by simpa [disjoint_iff_inf_le] using @disjoint_ker' _ _ _ _ _ _ _ _ _ _ _ _ _ f ⊤
variables {F}
omit sc
theorem ker_eq_bot {f : M →ₛₗ[τ₁₂] M₂} : ker f = ⊥ ↔ injective f :=
linear_map_class.ker_eq_bot _
include sc
lemma ker_le_iff [ring_hom_surjective τ₁₂] {p : submodule R M} :
ker f ≤ p ↔ ∃ (y ∈ range f), f ⁻¹' {y} ⊆ p :=
begin
split,
{ intros h, use 0, rw [← set_like.mem_coe, range_coe], exact ⟨⟨0, map_zero f⟩, h⟩, },
{ rintros ⟨y, h₁, h₂⟩,
rw set_like.le_def, intros z hz, simp only [mem_ker, set_like.mem_coe] at hz,
rw [← set_like.mem_coe, range_coe, set.mem_range] at h₁, obtain ⟨x, hx⟩ := h₁,
have hx' : x ∈ p, { exact h₂ hx, },
have hxz : z + x ∈ p, { apply h₂, simp [hx, hz], },
suffices : z + x - x ∈ p, { simpa only [this, add_sub_cancel], },
exact p.sub_mem hxz hx', },
end
omit sc
end ring
section field
variables [field K] [field K₂]
variables [add_comm_group V] [module K V]
variables [add_comm_group V₂] [module K V₂]
lemma ker_smul (f : V →ₗ[K] V₂) (a : K) (h : a ≠ 0) : ker (a • f) = ker f :=
submodule.comap_smul f _ a h
lemma ker_smul' (f : V →ₗ[K] V₂) (a : K) : ker (a • f) = ⨅(h : a ≠ 0), ker f :=
submodule.comap_smul' f _ a
lemma range_smul (f : V →ₗ[K] V₂) (a : K) (h : a ≠ 0) : range (a • f) = range f :=
by simpa only [range_eq_map] using submodule.map_smul f _ a h
lemma range_smul' (f : V →ₗ[K] V₂) (a : K) : range (a • f) = ⨆(h : a ≠ 0), range f :=
by simpa only [range_eq_map] using submodule.map_smul' f _ a
end field
end linear_map
namespace is_linear_map
lemma is_linear_map_add [semiring R] [add_comm_monoid M] [module R M] :
is_linear_map R (λ (x : M × M), x.1 + x.2) :=
begin
apply is_linear_map.mk,
{ intros x y,
simp only [prod.fst_add, prod.snd_add], cc },
{ intros x y,
simp [smul_add] }
end
lemma is_linear_map_sub {R M : Type*} [semiring R] [add_comm_group M] [module R M]:
is_linear_map R (λ (x : M × M), x.1 - x.2) :=
begin
apply is_linear_map.mk,
{ intros x y,
simp [add_comm, add_left_comm, sub_eq_add_neg] },
{ intros x y,
simp [smul_sub] }
end
end is_linear_map
namespace submodule
section add_comm_monoid
variables [semiring R] [semiring R₂] [add_comm_monoid M] [add_comm_monoid M₂]
variables [module R M] [module R₂ M₂]
variables (p p' : submodule R M) (q : submodule R₂ M₂)
variables {τ₁₂ : R →+* R₂}
variables {F : Type*} [sc : semilinear_map_class F τ₁₂ M M₂]
open linear_map
include sc
@[simp] theorem map_top [ring_hom_surjective τ₁₂] (f : F) : map f ⊤ = range f :=
(range_eq_map f).symm
@[simp] theorem comap_bot (f : F) : comap f ⊥ = ker f := rfl
omit sc
@[simp] theorem ker_subtype : p.subtype.ker = ⊥ :=
ker_eq_bot_of_injective $ λ x y, subtype.ext_val
@[simp] theorem range_subtype : p.subtype.range = p :=
by simpa using map_comap_subtype p ⊤
lemma map_subtype_le (p' : submodule R p) : map p.subtype p' ≤ p :=
by simpa using (map_le_range : map p.subtype p' ≤ p.subtype.range)
/-- Under the canonical linear map from a submodule `p` to the ambient space `M`, the image of the
maximal submodule of `p` is just `p `. -/
@[simp] lemma map_subtype_top : map p.subtype (⊤ : submodule R p) = p :=
by simp
@[simp] lemma comap_subtype_eq_top {p p' : submodule R M} :
comap p.subtype p' = ⊤ ↔ p ≤ p' :=
eq_top_iff.trans $ map_le_iff_le_comap.symm.trans $ by rw [map_subtype_top]
@[simp] lemma comap_subtype_self : comap p.subtype p = ⊤ :=
comap_subtype_eq_top.2 le_rfl
@[simp] theorem ker_of_le (p p' : submodule R M) (h : p ≤ p') : (of_le h).ker = ⊥ :=
by rw [of_le, ker_cod_restrict, ker_subtype]
lemma range_of_le (p q : submodule R M) (h : p ≤ q) : (of_le h).range = comap q.subtype p :=
by rw [← map_top, of_le, linear_map.map_cod_restrict, map_top, range_subtype]
@[simp] lemma map_subtype_range_of_le {p p' : submodule R M} (h : p ≤ p') :
map p'.subtype (of_le h).range = p :=
by simp [range_of_le, map_comap_eq, h]
lemma disjoint_iff_comap_eq_bot {p q : submodule R M} :
disjoint p q ↔ comap p.subtype q = ⊥ :=
by rw [←(map_injective_of_injective (show injective p.subtype, from subtype.coe_injective)).eq_iff,
map_comap_subtype, map_bot, disjoint_iff]
/-- If `N ⊆ M` then submodules of `N` are the same as submodules of `M` contained in `N` -/
def map_subtype.rel_iso : submodule R p ≃o {p' : submodule R M // p' ≤ p} :=
{ to_fun := λ p', ⟨map p.subtype p', map_subtype_le p _⟩,
inv_fun := λ q, comap p.subtype q,
left_inv := λ p', comap_map_eq_of_injective subtype.coe_injective p',
right_inv := λ ⟨q, hq⟩, subtype.ext_val $ by simp [map_comap_subtype p, inf_of_le_right hq],
map_rel_iff' := λ p₁ p₂, subtype.coe_le_coe.symm.trans begin
dsimp,
rw [map_le_iff_le_comap,
comap_map_eq_of_injective (show injective p.subtype, from subtype.coe_injective) p₂],
end }
/-- If `p ⊆ M` is a submodule, the ordering of submodules of `p` is embedded in the ordering of
submodules of `M`. -/
def map_subtype.order_embedding : submodule R p ↪o submodule R M :=
(rel_iso.to_rel_embedding $ map_subtype.rel_iso p).trans (subtype.rel_embedding _ _)
@[simp] lemma map_subtype_embedding_eq (p' : submodule R p) :
map_subtype.order_embedding p p' = map p.subtype p' := rfl
end add_comm_monoid
end submodule
namespace linear_map
section semiring
variables [semiring R] [semiring R₂] [semiring R₃]
variables [add_comm_monoid M] [add_comm_monoid M₂] [add_comm_monoid M₃]
variables [module R M] [module R₂ M₂] [module R₃ M₃]
variables {τ₁₂ : R →+* R₂} {τ₂₃ : R₂ →+* R₃} {τ₁₃ : R →+* R₃}
variables [ring_hom_comp_triple τ₁₂ τ₂₃ τ₁₃]
/-- A monomorphism is injective. -/
lemma ker_eq_bot_of_cancel {f : M →ₛₗ[τ₁₂] M₂}
(h : ∀ (u v : f.ker →ₗ[R] M), f.comp u = f.comp v → u = v) : f.ker = ⊥ :=
begin
have h₁ : f.comp (0 : f.ker →ₗ[R] M) = 0 := comp_zero _,
rw [←submodule.range_subtype f.ker, ←h 0 f.ker.subtype (eq.trans h₁ (comp_ker_subtype f).symm)],
exact range_zero
end
lemma range_comp_of_range_eq_top [ring_hom_surjective τ₁₂] [ring_hom_surjective τ₂₃]
[ring_hom_surjective τ₁₃]
{f : M →ₛₗ[τ₁₂] M₂} (g : M₂ →ₛₗ[τ₂₃] M₃) (hf : range f = ⊤) :
range (g.comp f : M →ₛₗ[τ₁₃] M₃) = range g :=
by rw [range_comp, hf, submodule.map_top]
lemma ker_comp_of_ker_eq_bot (f : M →ₛₗ[τ₁₂] M₂) {g : M₂ →ₛₗ[τ₂₃] M₃}
(hg : ker g = ⊥) : ker (g.comp f : M →ₛₗ[τ₁₃] M₃) = ker f :=
by rw [ker_comp, hg, submodule.comap_bot]
section image
/-- If `O` is a submodule of `M`, and `Φ : O →ₗ M'` is a linear map,
then `(ϕ : O →ₗ M').submodule_image N` is `ϕ(N)` as a submodule of `M'` -/
def submodule_image {M' : Type*} [add_comm_monoid M'] [module R M']
{O : submodule R M} (ϕ : O →ₗ[R] M') (N : submodule R M) : submodule R M' :=
(N.comap O.subtype).map ϕ
@[simp] lemma mem_submodule_image {M' : Type*} [add_comm_monoid M'] [module R M']
{O : submodule R M} {ϕ : O →ₗ[R] M'} {N : submodule R M} {x : M'} :
x ∈ ϕ.submodule_image N ↔ ∃ y (yO : y ∈ O) (yN : y ∈ N), ϕ ⟨y, yO⟩ = x :=
begin
refine submodule.mem_map.trans ⟨_, _⟩; simp_rw submodule.mem_comap,
{ rintro ⟨⟨y, yO⟩, (yN : y ∈ N), h⟩,
exact ⟨y, yO, yN, h⟩ },
{ rintro ⟨y, yO, yN, h⟩,
exact ⟨⟨y, yO⟩, yN, h⟩ }
end
lemma mem_submodule_image_of_le {M' : Type*} [add_comm_monoid M'] [module R M']
{O : submodule R M} {ϕ : O →ₗ[R] M'} {N : submodule R M} (hNO : N ≤ O) {x : M'} :
x ∈ ϕ.submodule_image N ↔ ∃ y (yN : y ∈ N), ϕ ⟨y, hNO yN⟩ = x :=
begin
refine mem_submodule_image.trans ⟨_, _⟩,
{ rintro ⟨y, yO, yN, h⟩,
exact ⟨y, yN, h⟩ },
{ rintro ⟨y, yN, h⟩,
exact ⟨y, hNO yN, yN, h⟩ }
end
lemma submodule_image_apply_of_le {M' : Type*} [add_comm_group M'] [module R M']
{O : submodule R M} (ϕ : O →ₗ[R] M') (N : submodule R M) (hNO : N ≤ O) :
ϕ.submodule_image N = (ϕ.comp (submodule.of_le hNO)).range :=
by rw [submodule_image, range_comp, submodule.range_of_le]
end image
end semiring
end linear_map
@[simp] lemma linear_map.range_range_restrict [semiring R] [add_comm_monoid M] [add_comm_monoid M₂]
[module R M] [module R M₂] (f : M →ₗ[R] M₂) :
f.range_restrict.range = ⊤ :=
by simp [f.range_cod_restrict _]
/-! ### Linear equivalences -/
namespace linear_equiv
section add_comm_monoid
section subsingleton
variables [semiring R] [semiring R₂] [semiring R₃] [semiring R₄]
variables [add_comm_monoid M] [add_comm_monoid M₂] [add_comm_monoid M₃] [add_comm_monoid M₄]
variables [module R M] [module R₂ M₂]
variables [subsingleton M] [subsingleton M₂]
variables {σ₁₂ : R →+* R₂} {σ₂₁ : R₂ →+* R}
variables [ring_hom_inv_pair σ₁₂ σ₂₁] [ring_hom_inv_pair σ₂₁ σ₁₂]
include σ₂₁
/-- Between two zero modules, the zero map is an equivalence. -/
instance : has_zero (M ≃ₛₗ[σ₁₂] M₂) :=
⟨{ to_fun := 0,
inv_fun := 0,
right_inv := λ x, subsingleton.elim _ _,
left_inv := λ x, subsingleton.elim _ _,
..(0 : M →ₛₗ[σ₁₂] M₂)}⟩
omit σ₂₁
-- Even though these are implied by `subsingleton.elim` via the `unique` instance below, they're
-- nice to have as `rfl`-lemmas for `dsimp`.
include σ₂₁
@[simp] lemma zero_symm : (0 : M ≃ₛₗ[σ₁₂] M₂).symm = 0 := rfl
@[simp] lemma coe_zero : ⇑(0 : M ≃ₛₗ[σ₁₂] M₂) = 0 := rfl
lemma zero_apply (x : M) : (0 : M ≃ₛₗ[σ₁₂] M₂) x = 0 := rfl
/-- Between two zero modules, the zero map is the only equivalence. -/
instance : unique (M ≃ₛₗ[σ₁₂] M₂) :=
{ uniq := λ f, to_linear_map_injective (subsingleton.elim _ _),
default := 0 }
omit σ₂₁
end subsingleton
section
variables [semiring R] [semiring R₂] [semiring R₃] [semiring R₄]
variables [add_comm_monoid M] [add_comm_monoid M₂] [add_comm_monoid M₃] [add_comm_monoid M₄]
variables {module_M : module R M} {module_M₂ : module R₂ M₂}
variables {σ₁₂ : R →+* R₂} {σ₂₁ : R₂ →+* R}
variables {re₁₂ : ring_hom_inv_pair σ₁₂ σ₂₁} {re₂₁ : ring_hom_inv_pair σ₂₁ σ₁₂}
variables (e e' : M ≃ₛₗ[σ₁₂] M₂)
lemma map_eq_comap {p : submodule R M} :
(p.map (e : M →ₛₗ[σ₁₂] M₂) : submodule R₂ M₂) = p.comap (e.symm : M₂ →ₛₗ[σ₂₁] M) :=
set_like.coe_injective $ by simp [e.image_eq_preimage]
/-- A linear equivalence of two modules restricts to a linear equivalence from any submodule
`p` of the domain onto the image of that submodule.
This is the linear version of `add_equiv.submonoid_map` and `add_equiv.subgroup_map`.
This is `linear_equiv.of_submodule'` but with `map` on the right instead of `comap` on the left. -/
def submodule_map (p : submodule R M) :
p ≃ₛₗ[σ₁₂] ↥(p.map (e : M →ₛₗ[σ₁₂] M₂) : submodule R₂ M₂) :=
{ inv_fun := λ y, ⟨(e.symm : M₂ →ₛₗ[σ₂₁] M) y, by
{ rcases y with ⟨y', hy⟩, rw submodule.mem_map at hy, rcases hy with ⟨x, hx, hxy⟩, subst hxy,
simp only [symm_apply_apply, submodule.coe_mk, coe_coe, hx], }⟩,
left_inv := λ x, by simp only [linear_map.dom_restrict_apply, linear_map.cod_restrict_apply,
linear_map.to_fun_eq_coe, linear_equiv.coe_coe, linear_equiv.symm_apply_apply, set_like.eta],
right_inv := λ y, by { apply set_coe.ext, simp only [linear_map.dom_restrict_apply,
linear_map.cod_restrict_apply, linear_map.to_fun_eq_coe, linear_equiv.coe_coe, set_like.coe_mk,
linear_equiv.apply_symm_apply] },
..((e : M →ₛₗ[σ₁₂] M₂).dom_restrict p).cod_restrict (p.map (e : M →ₛₗ[σ₁₂] M₂))
(λ x, ⟨x, by simp only [linear_map.dom_restrict_apply, eq_self_iff_true, and_true,
set_like.coe_mem, set_like.mem_coe]⟩) }
include σ₂₁
@[simp] lemma submodule_map_apply (p : submodule R M) (x : p) :
↑(e.submodule_map p x) = e x := rfl
@[simp] lemma submodule_map_symm_apply (p : submodule R M)
(x : (p.map (e : M →ₛₗ[σ₁₂] M₂) : submodule R₂ M₂)) :
↑((e.submodule_map p).symm x) = e.symm x :=
rfl
omit σ₂₁
end
section finsupp
variables {γ : Type*}
variables [semiring R] [semiring R₂]
variables [add_comm_monoid M] [add_comm_monoid M₂]
variables [module R M] [module R₂ M₂] [has_zero γ]
variables {τ₁₂ : R →+* R₂} {τ₂₁ : R₂ →+* R}
variables [ring_hom_inv_pair τ₁₂ τ₂₁] [ring_hom_inv_pair τ₂₁ τ₁₂]
include τ₂₁
@[simp] lemma map_finsupp_sum (f : M ≃ₛₗ[τ₁₂] M₂) {t : ι →₀ γ} {g : ι → γ → M} :
f (t.sum g) = t.sum (λ i d, f (g i d)) := f.map_sum _
omit τ₂₁
end finsupp
section dfinsupp
open dfinsupp
variables [semiring R] [semiring R₂]
variables [add_comm_monoid M] [add_comm_monoid M₂]
variables [module R M] [module R₂ M₂]
variables {τ₁₂ : R →+* R₂} {τ₂₁ : R₂ →+* R}
variables [ring_hom_inv_pair τ₁₂ τ₂₁] [ring_hom_inv_pair τ₂₁ τ₁₂]
variables {γ : ι → Type*} [decidable_eq ι]
include τ₂₁
@[simp] lemma map_dfinsupp_sum [Π i, has_zero (γ i)] [Π i (x : γ i), decidable (x ≠ 0)]
(f : M ≃ₛₗ[τ₁₂] M₂) (t : Π₀ i, γ i) (g : Π i, γ i → M) :
f (t.sum g) = t.sum (λ i d, f (g i d)) := f.map_sum _
@[simp] lemma map_dfinsupp_sum_add_hom [Π i, add_zero_class (γ i)] (f : M ≃ₛₗ[τ₁₂] M₂)
(t : Π₀ i, γ i) (g : Π i, γ i →+ M) :
f (sum_add_hom g t) = sum_add_hom (λ i, f.to_add_equiv.to_add_monoid_hom.comp (g i)) t :=
f.to_add_equiv.map_dfinsupp_sum_add_hom _ _
end dfinsupp
section uncurry
variables [semiring R] [semiring R₂] [semiring R₃] [semiring R₄]
variables [add_comm_monoid M] [add_comm_monoid M₂] [add_comm_monoid M₃] [add_comm_monoid M₄]
variables (V V₂ R)
/-- Linear equivalence between a curried and uncurried function.
Differs from `tensor_product.curry`. -/
protected def curry :
(V × V₂ → R) ≃ₗ[R] (V → V₂ → R) :=
{ map_add' := λ _ _, by { ext, refl },
map_smul' := λ _ _, by { ext, refl },
.. equiv.curry _ _ _ }
@[simp] lemma coe_curry : ⇑(linear_equiv.curry R V V₂) = curry := rfl
@[simp] lemma coe_curry_symm : ⇑(linear_equiv.curry R V V₂).symm = uncurry := rfl
end uncurry
section
variables [semiring R] [semiring R₂] [semiring R₃] [semiring R₄]
variables [add_comm_monoid M] [add_comm_monoid M₂] [add_comm_monoid M₃] [add_comm_monoid M₄]
variables {module_M : module R M} {module_M₂ : module R₂ M₂} {module_M₃ : module R₃ M₃}
variables {σ₁₂ : R →+* R₂} {σ₂₁ : R₂ →+* R}
variables {σ₂₃ : R₂ →+* R₃} {σ₁₃ : R →+* R₃} [ring_hom_comp_triple σ₁₂ σ₂₃ σ₁₃]
variables {σ₃₂ : R₃ →+* R₂}
variables {re₁₂ : ring_hom_inv_pair σ₁₂ σ₂₁} {re₂₁ : ring_hom_inv_pair σ₂₁ σ₁₂}
variables {re₂₃ : ring_hom_inv_pair σ₂₃ σ₃₂} {re₃₂ : ring_hom_inv_pair σ₃₂ σ₂₃}
variables (f : M →ₛₗ[σ₁₂] M₂) (g : M₂ →ₛₗ[σ₂₁] M) (e : M ≃ₛₗ[σ₁₂] M₂) (h : M₂ →ₛₗ[σ₂₃] M₃)
variables (e'' : M₂ ≃ₛₗ[σ₂₃] M₃)
variables (p q : submodule R M)
/-- Linear equivalence between two equal submodules. -/
def of_eq (h : p = q) : p ≃ₗ[R] q :=
{ map_smul' := λ _ _, rfl, map_add' := λ _ _, rfl, .. equiv.set.of_eq (congr_arg _ h) }
variables {p q}
@[simp] lemma coe_of_eq_apply (h : p = q) (x : p) : (of_eq p q h x : M) = x := rfl
@[simp] lemma of_eq_symm (h : p = q) : (of_eq p q h).symm = of_eq q p h.symm := rfl
@[simp] lemma of_eq_rfl : of_eq p p rfl = linear_equiv.refl R p := by ext; refl
include σ₂₁
/-- A linear equivalence which maps a submodule of one module onto another, restricts to a linear
equivalence of the two submodules. -/
def of_submodules (p : submodule R M) (q : submodule R₂ M₂) (h : p.map (e : M →ₛₗ[σ₁₂] M₂) = q) :
p ≃ₛₗ[σ₁₂] q := (e.submodule_map p).trans (linear_equiv.of_eq _ _ h)
@[simp] lemma of_submodules_apply {p : submodule R M} {q : submodule R₂ M₂}
(h : p.map ↑e = q) (x : p) : ↑(e.of_submodules p q h x) = e x := rfl
@[simp] lemma of_submodules_symm_apply {p : submodule R M} {q : submodule R₂ M₂}
(h : p.map ↑e = q) (x : q) : ↑((e.of_submodules p q h).symm x) = e.symm x := rfl
include re₁₂ re₂₁
/-- A linear equivalence of two modules restricts to a linear equivalence from the preimage of any
submodule to that submodule.
This is `linear_equiv.of_submodule` but with `comap` on the left instead of `map` on the right. -/
def of_submodule' [module R M] [module R₂ M₂] (f : M ≃ₛₗ[σ₁₂] M₂) (U : submodule R₂ M₂) :
U.comap (f : M →ₛₗ[σ₁₂] M₂) ≃ₛₗ[σ₁₂] U :=
(f.symm.of_submodules _ _ f.symm.map_eq_comap).symm
lemma of_submodule'_to_linear_map [module R M] [module R₂ M₂]
(f : M ≃ₛₗ[σ₁₂] M₂) (U : submodule R₂ M₂) :
(f.of_submodule' U).to_linear_map =
(f.to_linear_map.dom_restrict _).cod_restrict _ subtype.prop :=
by { ext, refl }
@[simp]
lemma of_submodule'_apply [module R M] [module R₂ M₂]
(f : M ≃ₛₗ[σ₁₂] M₂) (U : submodule R₂ M₂) (x : U.comap (f : M →ₛₗ[σ₁₂] M₂)) :
(f.of_submodule' U x : M₂) = f (x : M) := rfl
@[simp]
lemma of_submodule'_symm_apply [module R M] [module R₂ M₂]
(f : M ≃ₛₗ[σ₁₂] M₂) (U : submodule R₂ M₂) (x : U) :
((f.of_submodule' U).symm x : M) = f.symm (x : M₂) := rfl
variable (p)
omit σ₂₁ re₁₂ re₂₁
/-- The top submodule of `M` is linearly equivalent to `M`. -/
def of_top (h : p = ⊤) : p ≃ₗ[R] M :=
{ inv_fun := λ x, ⟨x, h.symm ▸ trivial⟩,
left_inv := λ ⟨x, h⟩, rfl,
right_inv := λ x, rfl,
.. p.subtype }
@[simp] theorem of_top_apply {h} (x : p) : of_top p h x = x := rfl
@[simp] theorem coe_of_top_symm_apply {h} (x : M) : ((of_top p h).symm x : M) = x := rfl
theorem of_top_symm_apply {h} (x : M) : (of_top p h).symm x = ⟨x, h.symm ▸ trivial⟩ := rfl
include σ₂₁ re₁₂ re₂₁
/-- If a linear map has an inverse, it is a linear equivalence. -/
def of_linear (h₁ : f.comp g = linear_map.id) (h₂ : g.comp f = linear_map.id) :
M ≃ₛₗ[σ₁₂] M₂ :=
{ inv_fun := g,
left_inv := linear_map.ext_iff.1 h₂,
right_inv := linear_map.ext_iff.1 h₁,
..f }
omit σ₂₁ re₁₂ re₂₁
include σ₂₁ re₁₂ re₂₁
@[simp] theorem of_linear_apply {h₁ h₂} (x : M) : of_linear f g h₁ h₂ x = f x := rfl
omit σ₂₁ re₁₂ re₂₁
include σ₂₁ re₁₂ re₂₁
@[simp] theorem of_linear_symm_apply {h₁ h₂} (x : M₂) : (of_linear f g h₁ h₂).symm x = g x :=
rfl
omit σ₂₁ re₁₂ re₂₁
@[simp] protected theorem range : (e : M →ₛₗ[σ₁₂] M₂).range = ⊤ :=
linear_map.range_eq_top.2 e.to_equiv.surjective
include σ₂₁ re₁₂ re₂₁
@[simp] protected theorem _root_.linear_equiv_class.range [module R M] [module R₂ M₂] {F : Type*}
[semilinear_equiv_class F σ₁₂ M M₂] (e : F) : linear_map.range e = ⊤ :=
linear_map.range_eq_top.2 (equiv_like.surjective e)
lemma eq_bot_of_equiv [module R₂ M₂] (e : p ≃ₛₗ[σ₁₂] (⊥ : submodule R₂ M₂)) : p = ⊥ :=
begin
refine bot_unique (set_like.le_def.2 $ assume b hb, (submodule.mem_bot R).2 _),
rw [← p.mk_eq_zero hb, ← e.map_eq_zero_iff],
apply submodule.eq_zero_of_bot_submodule
end
omit σ₂₁ re₁₂ re₂₁
@[simp] protected theorem ker : (e : M →ₛₗ[σ₁₂] M₂).ker = ⊥ :=
linear_map.ker_eq_bot_of_injective e.to_equiv.injective
@[simp] theorem range_comp [ring_hom_surjective σ₁₂] [ring_hom_surjective σ₂₃]
[ring_hom_surjective σ₁₃] :
(h.comp (e : M →ₛₗ[σ₁₂] M₂) : M →ₛₗ[σ₁₃] M₃).range = h.range :=
linear_map.range_comp_of_range_eq_top _ e.range
include module_M
@[simp] theorem ker_comp (l : M →ₛₗ[σ₁₂] M₂) :
(((e'' : M₂ →ₛₗ[σ₂₃] M₃).comp l : M →ₛₗ[σ₁₃] M₃) : M →ₛₗ[σ₁₃] M₃).ker = l.ker :=
linear_map.ker_comp_of_ker_eq_bot _ e''.ker
omit module_M
variables {f g}
include σ₂₁
/-- An linear map `f : M →ₗ[R] M₂` with a left-inverse `g : M₂ →ₗ[R] M` defines a linear
equivalence between `M` and `f.range`.
This is a computable alternative to `linear_equiv.of_injective`, and a bidirectional version of
`linear_map.range_restrict`. -/
def of_left_inverse [ring_hom_inv_pair σ₁₂ σ₂₁] [ring_hom_inv_pair σ₂₁ σ₁₂]
{g : M₂ → M} (h : function.left_inverse g f) : M ≃ₛₗ[σ₁₂] f.range :=
{ to_fun := f.range_restrict,
inv_fun := g ∘ f.range.subtype,
left_inv := h,
right_inv := λ x, subtype.ext $
let ⟨x', hx'⟩ := linear_map.mem_range.mp x.prop in
show f (g x) = x, by rw [←hx', h x'],
.. f.range_restrict }
omit σ₂₁
@[simp] lemma of_left_inverse_apply [ring_hom_inv_pair σ₁₂ σ₂₁] [ring_hom_inv_pair σ₂₁ σ₁₂]
(h : function.left_inverse g f) (x : M) :
↑(of_left_inverse h x) = f x := rfl
include σ₂₁
@[simp] lemma of_left_inverse_symm_apply [ring_hom_inv_pair σ₁₂ σ₂₁]
[ring_hom_inv_pair σ₂₁ σ₁₂] (h : function.left_inverse g f) (x : f.range) :
(of_left_inverse h).symm x = g x := rfl
omit σ₂₁
variables (f)
/-- An `injective` linear map `f : M →ₗ[R] M₂` defines a linear equivalence
between `M` and `f.range`. See also `linear_map.of_left_inverse`. -/
noncomputable def of_injective [ring_hom_inv_pair σ₁₂ σ₂₁] [ring_hom_inv_pair σ₂₁ σ₁₂]
(h : injective f) : M ≃ₛₗ[σ₁₂] f.range :=
of_left_inverse $ classical.some_spec h.has_left_inverse
@[simp] theorem of_injective_apply [ring_hom_inv_pair σ₁₂ σ₂₁] [ring_hom_inv_pair σ₂₁ σ₁₂]
{h : injective f} (x : M) : ↑(of_injective f h x) = f x := rfl
/-- A bijective linear map is a linear equivalence. -/
noncomputable def of_bijective [ring_hom_inv_pair σ₁₂ σ₂₁] [ring_hom_inv_pair σ₂₁ σ₁₂]
(hf₁ : injective f) (hf₂ : surjective f) : M ≃ₛₗ[σ₁₂] M₂ :=
(of_injective f hf₁).trans (of_top _ $ linear_map.range_eq_top.2 hf₂)
@[simp] theorem of_bijective_apply [ring_hom_inv_pair σ₁₂ σ₂₁] [ring_hom_inv_pair σ₂₁ σ₁₂]
{hf₁ hf₂} (x : M) : of_bijective f hf₁ hf₂ x = f x := rfl
end
end add_comm_monoid
section add_comm_group
variables [semiring R] [semiring R₂] [semiring R₃] [semiring R₄]
variables [add_comm_group M] [add_comm_group M₂] [add_comm_group M₃] [add_comm_group M₄]
variables {module_M : module R M} {module_M₂ : module R₂ M₂}
variables {module_M₃ : module R₃ M₃} {module_M₄ : module R₄ M₄}
variables {σ₁₂ : R →+* R₂} {σ₃₄ : R₃ →+* R₄}
variables {σ₂₁ : R₂ →+* R} {σ₄₃ : R₄ →+* R₃}
variables {re₁₂ : ring_hom_inv_pair σ₁₂ σ₂₁} {re₂₁ : ring_hom_inv_pair σ₂₁ σ₁₂}
variables {re₃₄ : ring_hom_inv_pair σ₃₄ σ₄₃} {re₄₃ : ring_hom_inv_pair σ₄₃ σ₃₄}
variables (e e₁ : M ≃ₛₗ[σ₁₂] M₂) (e₂ : M₃ ≃ₛₗ[σ₃₄] M₄)
@[simp] theorem map_neg (a : M) : e (-a) = -e a := e.to_linear_map.map_neg a
@[simp] theorem map_sub (a b : M) : e (a - b) = e a - e b :=
e.to_linear_map.map_sub a b
end add_comm_group
section neg
variables (R) [semiring R] [add_comm_group M] [module R M]
/-- `x ↦ -x` as a `linear_equiv` -/
def neg : M ≃ₗ[R] M := { .. equiv.neg M, .. (-linear_map.id : M →ₗ[R] M) }
variable {R}
@[simp] lemma coe_neg : ⇑(neg R : M ≃ₗ[R] M) = -id := rfl
lemma neg_apply (x : M) : neg R x = -x := by simp
@[simp] lemma symm_neg : (neg R : M ≃ₗ[R] M).symm = neg R := rfl
end neg
section comm_semiring
variables [comm_semiring R] [add_comm_monoid M] [add_comm_monoid M₂] [add_comm_monoid M₃]
variables [module R M] [module R M₂] [module R M₃]
open _root_.linear_map
/-- Multiplying by a unit `a` of the ring `R` is a linear equivalence. -/
def smul_of_unit (a : Rˣ) : M ≃ₗ[R] M :=
distrib_mul_action.to_linear_equiv R M a
/-- A linear isomorphism between the domains and codomains of two spaces of linear maps gives a
linear isomorphism between the two function spaces. -/
def arrow_congr {R M₁ M₂ M₂₁ M₂₂ : Sort*} [comm_semiring R]
[add_comm_monoid M₁] [add_comm_monoid M₂] [add_comm_monoid M₂₁] [add_comm_monoid M₂₂]
[module R M₁] [module R M₂] [module R M₂₁] [module R M₂₂]
(e₁ : M₁ ≃ₗ[R] M₂) (e₂ : M₂₁ ≃ₗ[R] M₂₂) :
(M₁ →ₗ[R] M₂₁) ≃ₗ[R] (M₂ →ₗ[R] M₂₂) :=
{ to_fun := λ f : M₁ →ₗ[R] M₂₁, (e₂ : M₂₁ →ₗ[R] M₂₂).comp $ f.comp (e₁.symm : M₂ →ₗ[R] M₁),
inv_fun := λ f, (e₂.symm : M₂₂ →ₗ[R] M₂₁).comp $ f.comp (e₁ : M₁ →ₗ[R] M₂),
left_inv := λ f, by { ext x, simp only [symm_apply_apply, comp_app, coe_comp, coe_coe]},
right_inv := λ f, by { ext x, simp only [comp_app, apply_symm_apply, coe_comp, coe_coe]},
map_add' := λ f g, by { ext x, simp only [map_add, add_apply, comp_app, coe_comp, coe_coe]},
map_smul' := λ c f, by { ext x, simp only [smul_apply, comp_app, coe_comp, map_smulₛₗ e₂,
coe_coe]} }
@[simp] lemma arrow_congr_apply {R M₁ M₂ M₂₁ M₂₂ : Sort*} [comm_semiring R]
[add_comm_monoid M₁] [add_comm_monoid M₂] [add_comm_monoid M₂₁] [add_comm_monoid M₂₂]
[module R M₁] [module R M₂] [module R M₂₁] [module R M₂₂]
(e₁ : M₁ ≃ₗ[R] M₂) (e₂ : M₂₁ ≃ₗ[R] M₂₂) (f : M₁ →ₗ[R] M₂₁) (x : M₂) :
arrow_congr e₁ e₂ f x = e₂ (f (e₁.symm x)) :=
rfl
@[simp] lemma arrow_congr_symm_apply {R M₁ M₂ M₂₁ M₂₂ : Sort*} [comm_semiring R]
[add_comm_monoid M₁] [add_comm_monoid M₂] [add_comm_monoid M₂₁] [add_comm_monoid M₂₂]
[module R M₁] [module R M₂] [module R M₂₁] [module R M₂₂]
(e₁ : M₁ ≃ₗ[R] M₂) (e₂ : M₂₁ ≃ₗ[R] M₂₂) (f : M₂ →ₗ[R] M₂₂) (x : M₁) :
(arrow_congr e₁ e₂).symm f x = e₂.symm (f (e₁ x)) :=
rfl
lemma arrow_congr_comp {N N₂ N₃ : Sort*}
[add_comm_monoid N] [add_comm_monoid N₂] [add_comm_monoid N₃]
[module R N] [module R N₂] [module R N₃]
(e₁ : M ≃ₗ[R] N) (e₂ : M₂ ≃ₗ[R] N₂) (e₃ : M₃ ≃ₗ[R] N₃) (f : M →ₗ[R] M₂) (g : M₂ →ₗ[R] M₃) :
arrow_congr e₁ e₃ (g.comp f) = (arrow_congr e₂ e₃ g).comp (arrow_congr e₁ e₂ f) :=
by { ext, simp only [symm_apply_apply, arrow_congr_apply, linear_map.comp_apply], }
lemma arrow_congr_trans {M₁ M₂ M₃ N₁ N₂ N₃ : Sort*}
[add_comm_monoid M₁] [module R M₁] [add_comm_monoid M₂] [module R M₂]
[add_comm_monoid M₃] [module R M₃] [add_comm_monoid N₁] [module R N₁]
[add_comm_monoid N₂] [module R N₂] [add_comm_monoid N₃] [module R N₃]
(e₁ : M₁ ≃ₗ[R] M₂) (e₂ : N₁ ≃ₗ[R] N₂) (e₃ : M₂ ≃ₗ[R] M₃) (e₄ : N₂ ≃ₗ[R] N₃) :
(arrow_congr e₁ e₂).trans (arrow_congr e₃ e₄) = arrow_congr (e₁.trans e₃) (e₂.trans e₄) :=
rfl
/-- If `M₂` and `M₃` are linearly isomorphic then the two spaces of linear maps from `M` into `M₂`
and `M` into `M₃` are linearly isomorphic. -/
def congr_right (f : M₂ ≃ₗ[R] M₃) : (M →ₗ[R] M₂) ≃ₗ[R] (M →ₗ[R] M₃) :=
arrow_congr (linear_equiv.refl R M) f
/-- If `M` and `M₂` are linearly isomorphic then the two spaces of linear maps from `M` and `M₂` to
themselves are linearly isomorphic. -/
def conj (e : M ≃ₗ[R] M₂) : (module.End R M) ≃ₗ[R] (module.End R M₂) := arrow_congr e e
lemma conj_apply (e : M ≃ₗ[R] M₂) (f : module.End R M) :
e.conj f = ((↑e : M →ₗ[R] M₂).comp f).comp (e.symm : M₂ →ₗ[R] M) := rfl
lemma conj_apply_apply (e : M ≃ₗ[R] M₂) (f : module.End R M) (x : M₂) :
e.conj f x = e (f (e.symm x)) := rfl
lemma symm_conj_apply (e : M ≃ₗ[R] M₂) (f : module.End R M₂) :
e.symm.conj f = ((↑e.symm : M₂ →ₗ[R] M).comp f).comp (e : M →ₗ[R] M₂) := rfl
lemma conj_comp (e : M ≃ₗ[R] M₂) (f g : module.End R M) :
e.conj (g.comp f) = (e.conj g).comp (e.conj f) :=
arrow_congr_comp e e e f g
lemma conj_trans (e₁ : M ≃ₗ[R] M₂) (e₂ : M₂ ≃ₗ[R] M₃) :
e₁.conj.trans e₂.conj = (e₁.trans e₂).conj :=
by { ext f x, refl, }
@[simp] lemma conj_id (e : M ≃ₗ[R] M₂) : e.conj linear_map.id = linear_map.id :=
by { ext, simp [conj_apply], }
end comm_semiring
section field
variables [field K] [add_comm_group M] [add_comm_group M₂] [add_comm_group M₃]
variables [module K M] [module K M₂] [module K M₃]
variables (K) (M)
open _root_.linear_map
/-- Multiplying by a nonzero element `a` of the field `K` is a linear equivalence. -/
@[simps] def smul_of_ne_zero (a : K) (ha : a ≠ 0) : M ≃ₗ[K] M :=
smul_of_unit $ units.mk0 a ha
end field
end linear_equiv
namespace submodule
section module
variables [semiring R] [add_comm_monoid M] [module R M]
/-- Given `p` a submodule of the module `M` and `q` a submodule of `p`, `p.equiv_subtype_map q`
is the natural `linear_equiv` between `q` and `q.map p.subtype`. -/
def equiv_subtype_map (p : submodule R M) (q : submodule R p) :
q ≃ₗ[R] q.map p.subtype :=
{ inv_fun :=
begin
rintro ⟨x, hx⟩,
refine ⟨⟨x, _⟩, _⟩;
rcases hx with ⟨⟨_, h⟩, _, rfl⟩;
assumption
end,
left_inv := λ ⟨⟨_, _⟩, _⟩, rfl,
right_inv := λ ⟨x, ⟨_, h⟩, _, rfl⟩, rfl,
.. (p.subtype.dom_restrict q).cod_restrict _
begin
rintro ⟨x, hx⟩,
refine ⟨x, hx, rfl⟩,
end }
@[simp]
lemma equiv_subtype_map_apply {p : submodule R M} {q : submodule R p} (x : q) :
(p.equiv_subtype_map q x : M) = p.subtype.dom_restrict q x :=
rfl
@[simp]
lemma equiv_subtype_map_symm_apply {p : submodule R M} {q : submodule R p} (x : q.map p.subtype) :
((p.equiv_subtype_map q).symm x : M) = x :=
by { cases x, refl }
/-- If `s ≤ t`, then we can view `s` as a submodule of `t` by taking the comap
of `t.subtype`. -/
@[simps]
def comap_subtype_equiv_of_le {p q : submodule R M} (hpq : p ≤ q) :
comap q.subtype p ≃ₗ[R] p :=
{ to_fun := λ x, ⟨x, x.2⟩,
inv_fun := λ x, ⟨⟨x, hpq x.2⟩, x.2⟩,
left_inv := λ x, by simp only [coe_mk, set_like.eta, coe_coe],
right_inv := λ x, by simp only [subtype.coe_mk, set_like.eta, coe_coe],
map_add' := λ x y, rfl,
map_smul' := λ c x, rfl }
end module
end submodule
namespace submodule
variables [comm_semiring R] [comm_semiring R₂]
variables [add_comm_monoid M] [add_comm_monoid M₂] [module R M] [module R₂ M₂]
variables [add_comm_monoid N] [add_comm_monoid N₂] [module R N] [module R N₂]
variables {τ₁₂ : R →+* R₂} {τ₂₁ : R₂ →+* R}
variables [ring_hom_inv_pair τ₁₂ τ₂₁] [ring_hom_inv_pair τ₂₁ τ₁₂]
variables (p : submodule R M) (q : submodule R₂ M₂)
variables (pₗ : submodule R N) (qₗ : submodule R N₂)
include τ₂₁
@[simp] lemma mem_map_equiv {e : M ≃ₛₗ[τ₁₂] M₂} {x : M₂} : x ∈ p.map (e : M →ₛₗ[τ₁₂] M₂) ↔
e.symm x ∈ p :=
begin
rw submodule.mem_map, split,
{ rintros ⟨y, hy, hx⟩, simp [←hx, hy], },
{ intros hx, refine ⟨e.symm x, hx, by simp⟩, },
end
omit τ₂₁
lemma map_equiv_eq_comap_symm (e : M ≃ₛₗ[τ₁₂] M₂) (K : submodule R M) :
K.map (e : M →ₛₗ[τ₁₂] M₂) = K.comap (e.symm : M₂ →ₛₗ[τ₂₁] M) :=
submodule.ext (λ _, by rw [mem_map_equiv, mem_comap, linear_equiv.coe_coe])
lemma comap_equiv_eq_map_symm (e : M ≃ₛₗ[τ₁₂] M₂) (K : submodule R₂ M₂) :
K.comap (e : M →ₛₗ[τ₁₂] M₂) = K.map (e.symm : M₂ →ₛₗ[τ₂₁] M) :=
(map_equiv_eq_comap_symm e.symm K).symm
variables {p}
include τ₂₁
lemma map_symm_eq_iff (e : M ≃ₛₗ[τ₁₂] M₂) {K : submodule R₂ M₂} :
K.map e.symm = p ↔ p.map e = K :=
begin
split; rintro rfl,
{ calc map e (map e.symm K) = comap e.symm (map e.symm K) : map_equiv_eq_comap_symm _ _
... = K : comap_map_eq_of_injective e.symm.injective _ },
{ calc map e.symm (map e p) = comap e (map e p) : (comap_equiv_eq_map_symm _ _).symm
... = p : comap_map_eq_of_injective e.injective _ },
end
lemma order_iso_map_comap_apply' (e : M ≃ₛₗ[τ₁₂] M₂) (p : submodule R M) :
order_iso_map_comap e p = comap e.symm p :=
p.map_equiv_eq_comap_symm _
lemma order_iso_map_comap_symm_apply' (e : M ≃ₛₗ[τ₁₂] M₂) (p : submodule R₂ M₂) :
(order_iso_map_comap e).symm p = map e.symm p :=
p.comap_equiv_eq_map_symm _
omit τ₂₁
lemma comap_le_comap_smul (fₗ : N →ₗ[R] N₂) (c : R) :
comap fₗ qₗ ≤ comap (c • fₗ) qₗ :=
begin
rw set_like.le_def,
intros m h,
change c • (fₗ m) ∈ qₗ,
change fₗ m ∈ qₗ at h,
apply qₗ.smul_mem _ h,
end
lemma inf_comap_le_comap_add (f₁ f₂ : M →ₛₗ[τ₁₂] M₂) :
comap f₁ q ⊓ comap f₂ q ≤ comap (f₁ + f₂) q :=
begin
rw set_like.le_def,
intros m h,
change f₁ m + f₂ m ∈ q,
change f₁ m ∈ q ∧ f₂ m ∈ q at h,
apply q.add_mem h.1 h.2,
end
/-- Given modules `M`, `M₂` over a commutative ring, together with submodules `p ⊆ M`, `q ⊆ M₂`,
the set of maps $\{f ∈ Hom(M, M₂) | f(p) ⊆ q \}$ is a submodule of `Hom(M, M₂)`. -/
def compatible_maps : submodule R (N →ₗ[R] N₂) :=
{ carrier := {fₗ | pₗ ≤ comap fₗ qₗ},
zero_mem' := by { change pₗ ≤ comap (0 : N →ₗ[R] N₂) qₗ, rw comap_zero, refine le_top, },
add_mem' := λ f₁ f₂ h₁ h₂, by { apply le_trans _ (inf_comap_le_comap_add qₗ f₁ f₂),
rw le_inf_iff, exact ⟨h₁, h₂⟩, },
smul_mem' := λ c fₗ h, le_trans h (comap_le_comap_smul qₗ fₗ c), }
end submodule
namespace equiv
variables [semiring R] [add_comm_monoid M] [module R M] [add_comm_monoid M₂] [module R M₂]
/-- An equivalence whose underlying function is linear is a linear equivalence. -/
def to_linear_equiv (e : M ≃ M₂) (h : is_linear_map R (e : M → M₂)) : M ≃ₗ[R] M₂ :=
{ .. e, .. h.mk' e}
end equiv
section fun_left
variables (R M) [semiring R] [add_comm_monoid M] [module R M]
variables {m n p : Type*}
namespace linear_map
/-- Given an `R`-module `M` and a function `m → n` between arbitrary types,
construct a linear map `(n → M) →ₗ[R] (m → M)` -/
def fun_left (f : m → n) : (n → M) →ₗ[R] (m → M) :=
{ to_fun := (∘ f), map_add' := λ _ _, rfl, map_smul' := λ _ _, rfl }
@[simp] theorem fun_left_apply (f : m → n) (g : n → M) (i : m) : fun_left R M f g i = g (f i) :=
rfl
@[simp] theorem fun_left_id (g : n → M) : fun_left R M _root_.id g = g :=
rfl
theorem fun_left_comp (f₁ : n → p) (f₂ : m → n) :
fun_left R M (f₁ ∘ f₂) = (fun_left R M f₂).comp (fun_left R M f₁) :=
rfl
theorem fun_left_surjective_of_injective (f : m → n) (hf : injective f) :
surjective (fun_left R M f) :=
begin
classical,
intro g,
refine ⟨λ x, if h : ∃ y, f y = x then g h.some else 0, _⟩,
{ ext,
dsimp only [fun_left_apply],
split_ifs with w,
{ congr,
exact hf w.some_spec, },
{ simpa only [not_true, exists_apply_eq_apply] using w } },
end
theorem fun_left_injective_of_surjective (f : m → n) (hf : surjective f) :
injective (fun_left R M f) :=
begin
obtain ⟨g, hg⟩ := hf.has_right_inverse,
suffices : left_inverse (fun_left R M g) (fun_left R M f),
{ exact this.injective },
intro x,
rw [←linear_map.comp_apply, ← fun_left_comp, hg.id, fun_left_id],
end
end linear_map
namespace linear_equiv
open _root_.linear_map
/-- Given an `R`-module `M` and an equivalence `m ≃ n` between arbitrary types,
construct a linear equivalence `(n → M) ≃ₗ[R] (m → M)` -/
def fun_congr_left (e : m ≃ n) : (n → M) ≃ₗ[R] (m → M) :=
linear_equiv.of_linear (fun_left R M e) (fun_left R M e.symm)
(linear_map.ext $ λ x, funext $ λ i,
by rw [id_apply, ← fun_left_comp, equiv.symm_comp_self, fun_left_id])
(linear_map.ext $ λ x, funext $ λ i,
by rw [id_apply, ← fun_left_comp, equiv.self_comp_symm, fun_left_id])
@[simp] theorem fun_congr_left_apply (e : m ≃ n) (x : n → M) :
fun_congr_left R M e x = fun_left R M e x :=
rfl
@[simp] theorem fun_congr_left_id :
fun_congr_left R M (equiv.refl n) = linear_equiv.refl R (n → M) :=
rfl
@[simp] theorem fun_congr_left_comp (e₁ : m ≃ n) (e₂ : n ≃ p) :
fun_congr_left R M (equiv.trans e₁ e₂) =
linear_equiv.trans (fun_congr_left R M e₂) (fun_congr_left R M e₁) :=
rfl
@[simp] lemma fun_congr_left_symm (e : m ≃ n) :
(fun_congr_left R M e).symm = fun_congr_left R M e.symm :=
rfl
end linear_equiv
end fun_left
namespace linear_map
variables [semiring R] [add_comm_monoid M] [module R M]
variables (R M)
/-- The group of invertible linear maps from `M` to itself -/
@[reducible] def general_linear_group := (M →ₗ[R] M)ˣ
namespace general_linear_group
variables {R M}
instance : has_coe_to_fun (general_linear_group R M) (λ _, M → M) := by apply_instance
/-- An invertible linear map `f` determines an equivalence from `M` to itself. -/
def to_linear_equiv (f : general_linear_group R M) : (M ≃ₗ[R] M) :=
{ inv_fun := f.inv.to_fun,
left_inv := λ m, show (f.inv * f.val) m = m,
by erw f.inv_val; simp,
right_inv := λ m, show (f.val * f.inv) m = m,
by erw f.val_inv; simp,
..f.val }
/-- An equivalence from `M` to itself determines an invertible linear map. -/
def of_linear_equiv (f : (M ≃ₗ[R] M)) : general_linear_group R M :=
{ val := f,
inv := (f.symm : M →ₗ[R] M),
val_inv := linear_map.ext $ λ _, f.apply_symm_apply _,
inv_val := linear_map.ext $ λ _, f.symm_apply_apply _ }
variables (R M)
/-- The general linear group on `R` and `M` is multiplicatively equivalent to the type of linear
equivalences between `M` and itself. -/
def general_linear_equiv : general_linear_group R M ≃* (M ≃ₗ[R] M) :=
{ to_fun := to_linear_equiv,
inv_fun := of_linear_equiv,
left_inv := λ f, by { ext, refl },
right_inv := λ f, by { ext, refl },
map_mul' := λ x y, by {ext, refl} }
@[simp] lemma general_linear_equiv_to_linear_map (f : general_linear_group R M) :
(general_linear_equiv R M f : M →ₗ[R] M) = f :=
by {ext, refl}
@[simp] lemma coe_fn_general_linear_equiv (f : general_linear_group R M) :
⇑(general_linear_equiv R M f) = (f : M → M) :=
rfl
end general_linear_group
end linear_map
|
7dd6cf8582e94e3932a3ed3e5ed9b66c22f3d51f
|
958488bc7f3c2044206e0358e56d7690b6ae696c
|
/lean/funext.lean
|
3cf7cff8f5ddf16d9a569d54a84dce9003d61448
|
[] |
no_license
|
possientis/Prog
|
a08eec1c1b121c2fd6c70a8ae89e2fbef952adb4
|
d4b3debc37610a88e0dac3ac5914903604fd1d1f
|
refs/heads/master
| 1,692,263,717,723
| 1,691,757,179,000
| 1,691,757,179,000
| 40,361,602
| 3
| 0
| null | 1,679,896,438,000
| 1,438,953,859,000
|
Coq
|
UTF-8
|
Lean
| false
| false
| 778
|
lean
|
universes u v
axiom funext2 : ∀ {α : Sort u} {β : α → Sort v} {f g : ∀ (x:α), β x},
(∀ (x:α), f x = g x) → f = g
--#check @funext2
--#check @funext
lemma L1 : Prop = Sort 0 := rfl
lemma L2 : Type u = Sort (u + 1) := rfl
def f₁ (x : ℕ) := x
def f₂ (x : ℕ) := 0 + x
lemma feq : f₁ = f₂ :=
begin
apply funext, intros x, symmetry, apply zero_add
end
def val1 : ℕ := eq.rec_on feq (0 : ℕ)
-- #check @ eq.rec_on
-- complicated !
-- #reduce val1
-- evaluates to 0
-- #eval val1
lemma tteq : (true ∧ true) = true :=
begin
apply propext, split,
{intros H, cases H with H1 H2, assumption},
{intros H, split; assumption}
end
def val2 : ℕ := eq.rec_on tteq 0
-- complicated !
-- #reduce val2
-- evaluates to 0
-- #eval val2
|
94ad49b2abb2135c0735a6fb5a170563a4cdbd99
|
74addaa0e41490cbaf2abd313a764c96df57b05d
|
/Mathlib/data/polynomial/basic.lean
|
8b6a734cb0eb9822f15ef44ea0590e66664757bb
|
[] |
no_license
|
AurelienSaue/Mathlib4_auto
|
f538cfd0980f65a6361eadea39e6fc639e9dae14
|
590df64109b08190abe22358fabc3eae000943f2
|
refs/heads/master
| 1,683,906,849,776
| 1,622,564,669,000
| 1,622,564,669,000
| 371,723,747
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 7,835
|
lean
|
/-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Johannes Hölzl, Scott Morrison, Jens Wagemaker
-/
import Mathlib.PrePort
import Mathlib.Lean3Lib.init.default
import Mathlib.tactic.ring_exp
import Mathlib.tactic.chain
import Mathlib.algebra.monoid_algebra
import Mathlib.data.finset.sort
import Mathlib.PostPort
universes u_1 u
namespace Mathlib
/-!
# Theory of univariate polynomials
Polynomials are represented as `add_monoid_algebra R ℕ`, where `R` is a commutative semiring.
In this file, we define `polynomial`, provide basic instances, and prove an `ext` lemma.
-/
/-- `polynomial R` is the type of univariate polynomials over `R`.
Polynomials should be seen as (semi-)rings with the additional constructor `X`.
The embedding from `R` is called `C`. -/
def polynomial (R : Type u_1) [semiring R] :=
add_monoid_algebra R ℕ
namespace polynomial
protected instance inhabited {R : Type u} [semiring R] : Inhabited (polynomial R) :=
add_monoid_algebra.inhabited R ℕ
protected instance semiring {R : Type u} [semiring R] : semiring (polynomial R) :=
add_monoid_algebra.semiring
protected instance semimodule {R : Type u} [semiring R] {S : Type u_1} [semiring S] [semimodule S R] : semimodule S (polynomial R) :=
add_monoid_algebra.semimodule
protected instance unique {R : Type u} [semiring R] [subsingleton R] : unique (polynomial R) :=
add_monoid_algebra.unique
@[simp] theorem support_zero {R : Type u} [semiring R] : finsupp.support 0 = ∅ :=
rfl
/-- `monomial s a` is the monomial `a * X^s` -/
def monomial {R : Type u} [semiring R] (n : ℕ) : linear_map R R (polynomial R) :=
finsupp.lsingle n
theorem monomial_zero_right {R : Type u} [semiring R] (n : ℕ) : coe_fn (monomial n) 0 = 0 :=
finsupp.single_zero
theorem monomial_def {R : Type u} [semiring R] (n : ℕ) (a : R) : coe_fn (monomial n) a = finsupp.single n a :=
rfl
theorem monomial_add {R : Type u} [semiring R] (n : ℕ) (r : R) (s : R) : coe_fn (monomial n) (r + s) = coe_fn (monomial n) r + coe_fn (monomial n) s :=
finsupp.single_add
theorem monomial_mul_monomial {R : Type u} [semiring R] (n : ℕ) (m : ℕ) (r : R) (s : R) : coe_fn (monomial n) r * coe_fn (monomial m) s = coe_fn (monomial (n + m)) (r * s) :=
add_monoid_algebra.single_mul_single
theorem smul_monomial {R : Type u} [semiring R] {S : Type u_1} [semiring S] [semimodule S R] (a : S) (n : ℕ) (b : R) : a • coe_fn (monomial n) b = coe_fn (monomial n) (a • b) :=
finsupp.smul_single a n b
/-- `X` is the polynomial variable (aka indeterminant). -/
def X {R : Type u} [semiring R] : polynomial R :=
coe_fn (monomial 1) 1
/-- `X` commutes with everything, even when the coefficients are noncommutative. -/
theorem X_mul {R : Type u} [semiring R] {p : polynomial R} : X * p = p * X := sorry
theorem X_pow_mul {R : Type u} [semiring R] {p : polynomial R} {n : ℕ} : X ^ n * p = p * X ^ n := sorry
theorem X_pow_mul_assoc {R : Type u} [semiring R] {p : polynomial R} {q : polynomial R} {n : ℕ} : p * X ^ n * q = p * q * X ^ n := sorry
theorem commute_X {R : Type u} [semiring R] (p : polynomial R) : commute X p :=
X_mul
/-- coeff p n is the coefficient of X^n in p -/
def coeff {R : Type u} [semiring R] (p : polynomial R) : ℕ → R :=
⇑p
@[simp] theorem coeff_mk {R : Type u} [semiring R] (s : finset ℕ) (f : ℕ → R) (h : ∀ (a : ℕ), a ∈ s ↔ f a ≠ 0) : coeff (finsupp.mk s f h) = f :=
rfl
theorem coeff_monomial {R : Type u} {a : R} {m : ℕ} {n : ℕ} [semiring R] : coeff (coe_fn (monomial n) a) m = ite (n = m) a 0 := sorry
@[simp] theorem coeff_zero {R : Type u} [semiring R] (n : ℕ) : coeff 0 n = 0 :=
rfl
@[simp] theorem coeff_one_zero {R : Type u} [semiring R] : coeff 1 0 = 1 :=
coeff_monomial
@[simp] theorem coeff_X_one {R : Type u} [semiring R] : coeff X 1 = 1 :=
coeff_monomial
@[simp] theorem coeff_X_zero {R : Type u} [semiring R] : coeff X 0 = 0 :=
coeff_monomial
theorem coeff_X {R : Type u} {n : ℕ} [semiring R] : coeff X n = ite (1 = n) 1 0 :=
coeff_monomial
theorem coeff_X_of_ne_one {R : Type u} [semiring R] {n : ℕ} (hn : n ≠ 1) : coeff X n = 0 :=
eq.mpr (id (Eq._oldrec (Eq.refl (coeff X n = 0)) coeff_X))
(eq.mpr (id (Eq._oldrec (Eq.refl (ite (1 = n) 1 0 = 0)) (if_neg (ne.symm hn)))) (Eq.refl 0))
theorem ext_iff {R : Type u} [semiring R] {p : polynomial R} {q : polynomial R} : p = q ↔ ∀ (n : ℕ), coeff p n = coeff q n :=
finsupp.ext_iff
theorem ext {R : Type u} [semiring R] {p : polynomial R} {q : polynomial R} : (∀ (n : ℕ), coeff p n = coeff q n) → p = q :=
finsupp.ext
theorem add_hom_ext' {R : Type u} [semiring R] {M : Type u_1} [add_monoid M] {f : polynomial R →+ M} {g : polynomial R →+ M} (h : ∀ (n : ℕ),
add_monoid_hom.comp f (linear_map.to_add_monoid_hom (monomial n)) =
add_monoid_hom.comp g (linear_map.to_add_monoid_hom (monomial n))) : f = g :=
finsupp.add_hom_ext' h
theorem add_hom_ext {R : Type u} [semiring R] {M : Type u_1} [add_monoid M] {f : polynomial R →+ M} {g : polynomial R →+ M} (h : ∀ (n : ℕ) (a : R), coe_fn f (coe_fn (monomial n) a) = coe_fn g (coe_fn (monomial n) a)) : f = g :=
finsupp.add_hom_ext h
theorem lhom_ext' {R : Type u} [semiring R] {M : Type u_1} [add_comm_monoid M] [semimodule R M] {f : linear_map R (polynomial R) M} {g : linear_map R (polynomial R) M} (h : ∀ (n : ℕ), linear_map.comp f (monomial n) = linear_map.comp g (monomial n)) : f = g :=
finsupp.lhom_ext' h
-- this has the same content as the subsingleton
theorem eq_zero_of_eq_zero {R : Type u} [semiring R] (h : 0 = 1) (p : polynomial R) : p = 0 :=
eq.mpr (id (Eq._oldrec (Eq.refl (p = 0)) (Eq.symm (one_smul R p))))
(eq.mpr (id (Eq._oldrec (Eq.refl (1 • p = 0)) (Eq.symm h)))
(eq.mpr (id (Eq._oldrec (Eq.refl (0 • p = 0)) (zero_smul R p))) (Eq.refl 0)))
theorem support_monomial {R : Type u} [semiring R] (n : ℕ) (a : R) (H : a ≠ 0) : finsupp.support (coe_fn (monomial n) a) = singleton n :=
finsupp.support_single_ne_zero H
theorem support_monomial' {R : Type u} [semiring R] (n : ℕ) (a : R) : finsupp.support (coe_fn (monomial n) a) ⊆ singleton n :=
finsupp.support_single_subset
theorem X_pow_eq_monomial {R : Type u} [semiring R] (n : ℕ) : X ^ n = coe_fn (monomial n) 1 := sorry
theorem support_X_pow {R : Type u} [semiring R] (H : ¬1 = 0) (n : ℕ) : finsupp.support (X ^ n) = singleton n := sorry
theorem support_X_empty {R : Type u} [semiring R] (H : 1 = 0) : finsupp.support X = ∅ := sorry
theorem support_X {R : Type u} [semiring R] (H : ¬1 = 0) : finsupp.support X = singleton 1 :=
eq.mpr (id (Eq._oldrec (Eq.refl (finsupp.support X = singleton 1)) (Eq.symm (pow_one X))))
(eq.mpr (id (Eq._oldrec (Eq.refl (finsupp.support (X ^ 1) = singleton 1)) (support_X_pow H 1)))
(Eq.refl (singleton 1)))
protected instance comm_semiring {R : Type u} [comm_semiring R] : comm_semiring (polynomial R) :=
add_monoid_algebra.comm_semiring
protected instance ring {R : Type u} [ring R] : ring (polynomial R) :=
add_monoid_algebra.ring
@[simp] theorem coeff_neg {R : Type u} [ring R] (p : polynomial R) (n : ℕ) : coeff (-p) n = -coeff p n :=
rfl
@[simp] theorem coeff_sub {R : Type u} [ring R] (p : polynomial R) (q : polynomial R) (n : ℕ) : coeff (p - q) n = coeff p n - coeff q n :=
rfl
protected instance comm_ring {R : Type u} [comm_ring R] : comm_ring (polynomial R) :=
add_monoid_algebra.comm_ring
protected instance nontrivial {R : Type u} [semiring R] [nontrivial R] : nontrivial (polynomial R) :=
add_monoid_algebra.nontrivial
theorem X_ne_zero {R : Type u} [semiring R] [nontrivial R] : X ≠ 0 := sorry
protected instance has_repr {R : Type u} [semiring R] [has_repr R] : has_repr (polynomial R) := sorry
|
b1fbee1626ebb665e97ab7de40e96fe38337a568
|
8cae430f0a71442d02dbb1cbb14073b31048e4b0
|
/src/category_theory/adjunction/fully_faithful.lean
|
863d933a046eeee35a00d3aabe0a5fabfb49a917
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/mathlib
|
56a2cadd17ac88caf4ece0a775932fa26327ba0e
|
442a83d738cb208d3600056c489be16900ba701d
|
refs/heads/master
| 1,693,584,102,358
| 1,693,471,902,000
| 1,693,471,902,000
| 97,922,418
| 1,595
| 352
|
Apache-2.0
| 1,694,693,445,000
| 1,500,624,130,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 7,555
|
lean
|
/-
Copyright (c) 2019 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison
-/
import category_theory.adjunction.basic
import category_theory.conj
import category_theory.yoneda
/-!
# Adjoints of fully faithful functors
> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
> Any changes to this file require a corresponding PR to mathlib4.
A left adjoint is fully faithful, if and only if the unit is an isomorphism
(and similarly for right adjoints and the counit).
`adjunction.restrict_fully_faithful` shows that an adjunction can be restricted along fully faithful
inclusions.
## Future work
The statements from Riehl 4.5.13 for adjoints which are either full, or faithful.
-/
open category_theory
namespace category_theory
universes v₁ v₂ u₁ u₂
open category
open opposite
variables {C : Type u₁} [category.{v₁} C]
variables {D : Type u₂} [category.{v₂} D]
variables {L : C ⥤ D} {R : D ⥤ C} (h : L ⊣ R)
/--
If the left adjoint is fully faithful, then the unit is an isomorphism.
See
* Lemma 4.5.13 from [Riehl][riehl2017]
* https://math.stackexchange.com/a/2727177
* https://stacks.math.columbia.edu/tag/07RB (we only prove the forward direction!)
-/
instance unit_is_iso_of_L_fully_faithful [full L] [faithful L] : is_iso (adjunction.unit h) :=
@nat_iso.is_iso_of_is_iso_app _ _ _ _ _ _ (adjunction.unit h) $ λ X,
@yoneda.is_iso _ _ _ _ ((adjunction.unit h).app X)
⟨⟨{ app := λ Y f, L.preimage ((h.hom_equiv (unop Y) (L.obj X)).symm f) },
⟨begin
ext x f, dsimp,
apply L.map_injective,
simp,
end, begin
ext x f, dsimp,
simp only [adjunction.hom_equiv_counit, preimage_comp, preimage_map, category.assoc],
rw ←h.unit_naturality,
simp,
end⟩⟩⟩
/--
If the right adjoint is fully faithful, then the counit is an isomorphism.
See <https://stacks.math.columbia.edu/tag/07RB> (we only prove the forward direction!)
-/
instance counit_is_iso_of_R_fully_faithful [full R] [faithful R] : is_iso (adjunction.counit h) :=
@nat_iso.is_iso_of_is_iso_app _ _ _ _ _ _ (adjunction.counit h) $ λ X,
@is_iso_of_op _ _ _ _ _ $
@coyoneda.is_iso _ _ _ _ ((adjunction.counit h).app X).op
⟨⟨{ app := λ Y f, R.preimage ((h.hom_equiv (R.obj X) Y) f) },
⟨begin
ext x f, dsimp,
apply R.map_injective,
simp,
end, begin
ext x f, dsimp,
simp only [adjunction.hom_equiv_unit, preimage_comp, preimage_map],
rw ←h.counit_naturality,
simp,
end⟩⟩⟩
/-- If the unit of an adjunction is an isomorphism, then its inverse on the image of L is given
by L whiskered with the counit. -/
@[simp]
lemma inv_map_unit {X : C} [is_iso (h.unit.app X)] :
inv (L.map (h.unit.app X)) = h.counit.app (L.obj X) :=
is_iso.inv_eq_of_hom_inv_id h.left_triangle_components
/-- If the unit is an isomorphism, bundle one has an isomorphism `L ⋙ R ⋙ L ≅ L`. -/
@[simps]
noncomputable def whisker_left_L_counit_iso_of_is_iso_unit [is_iso h.unit] :
L ⋙ R ⋙ L ≅ L :=
(L.associator R L).symm ≪≫ iso_whisker_right (as_iso h.unit).symm L ≪≫ functor.left_unitor _
/-- If the counit of an adjunction is an isomorphism, then its inverse on the image of R is given
by R whiskered with the unit. -/
@[simp]
lemma inv_counit_map {X : D} [is_iso (h.counit.app X)] :
inv (R.map (h.counit.app X)) = h.unit.app (R.obj X) :=
is_iso.inv_eq_of_inv_hom_id h.right_triangle_components
/-- If the counit of an is an isomorphism, one has an isomorphism `(R ⋙ L ⋙ R) ≅ R`. -/
@[simps]
noncomputable def whisker_left_R_unit_iso_of_is_iso_counit [is_iso h.counit] :
(R ⋙ L ⋙ R) ≅ R :=
(R.associator L R).symm ≪≫ iso_whisker_right (as_iso h.counit) R ≪≫ functor.left_unitor _
/-- If the unit is an isomorphism, then the left adjoint is full-/
noncomputable
def L_full_of_unit_is_iso [is_iso h.unit] : full L :=
{ preimage := λ X Y f, (h.hom_equiv X (L.obj Y) f) ≫ inv (h.unit.app Y) }
/-- If the unit is an isomorphism, then the left adjoint is faithful-/
lemma L_faithful_of_unit_is_iso [is_iso h.unit] : faithful L :=
{ map_injective' := λ X Y f g H,
begin
rw ←(h.hom_equiv X (L.obj Y)).apply_eq_iff_eq at H,
simpa using H =≫ inv (h.unit.app Y),
end }
/-- If the counit is an isomorphism, then the right adjoint is full-/
noncomputable
def R_full_of_counit_is_iso [is_iso h.counit] : full R :=
{ preimage := λ X Y f, inv (h.counit.app X) ≫ (h.hom_equiv (R.obj X) Y).symm f }
/-- If the counit is an isomorphism, then the right adjoint is faithful-/
lemma R_faithful_of_counit_is_iso [is_iso h.counit] : faithful R :=
{ map_injective' := λ X Y f g H,
begin
rw ←(h.hom_equiv (R.obj X) Y).symm.apply_eq_iff_eq at H,
simpa using inv (h.counit.app X) ≫= H,
end }
instance whisker_left_counit_iso_of_L_fully_faithful
[full L] [faithful L] : is_iso (whisker_left L h.counit) :=
begin
have := h.left_triangle,
rw ←is_iso.eq_inv_comp at this,
rw this,
apply_instance
end
instance whisker_right_counit_iso_of_L_fully_faithful
[full L] [faithful L] : is_iso (whisker_right h.counit R) :=
begin
have := h.right_triangle,
rw ←is_iso.eq_inv_comp at this,
rw this,
apply_instance
end
instance whisker_left_unit_iso_of_R_fully_faithful
[full R] [faithful R] : is_iso (whisker_left R h.unit) :=
begin
have := h.right_triangle,
rw ←is_iso.eq_comp_inv at this,
rw this,
apply_instance
end
instance whisker_right_unit_iso_of_R_fully_faithful
[full R] [faithful R] : is_iso (whisker_right h.unit L) :=
begin
have := h.left_triangle,
rw ←is_iso.eq_comp_inv at this,
rw this,
apply_instance
end
-- TODO also do the statements from Riehl 4.5.13 for full and faithful separately?
universes v₃ v₄ u₃ u₄
variables {C' : Type u₃} [category.{v₃} C']
variables {D' : Type u₄} [category.{v₄} D']
-- TODO: This needs some lemmas describing the produced adjunction, probably in terms of `adj`,
-- `iC` and `iD`.
/--
If `C` is a full subcategory of `C'` and `D` is a full subcategory of `D'`, then we can restrict
an adjunction `L' ⊣ R'` where `L' : C' ⥤ D'` and `R' : D' ⥤ C'` to `C` and `D`.
The construction here is slightly more general, in that `C` is required only to have a full and
faithful "inclusion" functor `iC : C ⥤ C'` (and similarly `iD : D ⥤ D'`) which commute (up to
natural isomorphism) with the proposed restrictions.
-/
def adjunction.restrict_fully_faithful (iC : C ⥤ C') (iD : D ⥤ D') {L' : C' ⥤ D'} {R' : D' ⥤ C'}
(adj : L' ⊣ R') {L : C ⥤ D} {R : D ⥤ C} (comm1 : iC ⋙ L' ≅ L ⋙ iD) (comm2 : iD ⋙ R' ≅ R ⋙ iC)
[full iC] [faithful iC] [full iD] [faithful iD] :
L ⊣ R :=
adjunction.mk_of_hom_equiv
{ hom_equiv := λ X Y,
calc (L.obj X ⟶ Y) ≃ (iD.obj (L.obj X) ⟶ iD.obj Y) : equiv_of_fully_faithful iD
... ≃ (L'.obj (iC.obj X) ⟶ iD.obj Y) : iso.hom_congr (comm1.symm.app X) (iso.refl _)
... ≃ (iC.obj X ⟶ R'.obj (iD.obj Y)) : adj.hom_equiv _ _
... ≃ (iC.obj X ⟶ iC.obj (R.obj Y)) : iso.hom_congr (iso.refl _) (comm2.app Y)
... ≃ (X ⟶ R.obj Y) : (equiv_of_fully_faithful iC).symm,
hom_equiv_naturality_left_symm' := λ X' X Y f g,
begin
apply iD.map_injective,
simpa using (comm1.inv.naturality_assoc f _).symm,
end,
hom_equiv_naturality_right' := λ X Y' Y f g,
begin
apply iC.map_injective,
suffices : R'.map (iD.map g) ≫ comm2.hom.app Y = comm2.hom.app Y' ≫ iC.map (R.map g),
simp [this],
apply comm2.hom.naturality g,
end }
end category_theory
|
30a2c2cb6832e97e16e6572fffaac1a9a6b2a1eb
|
8b9f17008684d796c8022dab552e42f0cb6fb347
|
/library/data/vector.lean
|
2231063a806603fd1463f94d96c02c2895865973
|
[
"Apache-2.0"
] |
permissive
|
chubbymaggie/lean
|
0d06ae25f9dd396306fb02190e89422ea94afd7b
|
d2c7b5c31928c98f545b16420d37842c43b4ae9a
|
refs/heads/master
| 1,611,313,622,901
| 1,430,266,839,000
| 1,430,267,083,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 9,340
|
lean
|
/-
Copyright (c) 2014 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: data.vector
Author: Floris van Doorn, Leonardo de Moura
-/
import data.nat data.list data.fin
open nat prod fin
inductive vector (A : Type) : nat → Type :=
| nil {} : vector A zero
| cons : Π {n}, A → vector A n → vector A (succ n)
namespace vector
notation a :: b := cons a b
notation `[` l:(foldr `,` (h t, cons h t) nil `]`) := l
variables {A B C : Type}
protected definition is_inhabited [instance] [h : inhabited A] : ∀ (n : nat), inhabited (vector A n)
| 0 := inhabited.mk []
| (n+1) := inhabited.mk (inhabited.value h :: inhabited.value (is_inhabited n))
theorem vector0_eq_nil : ∀ (v : vector A 0), v = []
| [] := rfl
definition head : Π {n : nat}, vector A (succ n) → A
| n (a::v) := a
definition tail : Π {n : nat}, vector A (succ n) → vector A n
| n (a::v) := v
theorem head_cons {n : nat} (h : A) (t : vector A n) : head (h :: t) = h :=
rfl
theorem tail_cons {n : nat} (h : A) (t : vector A n) : tail (h :: t) = t :=
rfl
theorem eta : ∀ {n : nat} (v : vector A (succ n)), head v :: tail v = v
| n (a::v) := rfl
definition last : Π {n : nat}, vector A (succ n) → A
| last [a] := a
| last (a::v) := last v
theorem last_singleton (a : A) : last [a] = a :=
rfl
theorem last_cons {n : nat} (a : A) (v : vector A (succ n)) : last (a :: v) = last v :=
rfl
definition const : Π (n : nat), A → vector A n
| 0 a := []
| (succ n) a := a :: const n a
theorem head_const (n : nat) (a : A) : head (const (succ n) a) = a :=
rfl
theorem last_const : ∀ (n : nat) (a : A), last (const (succ n) a) = a
| 0 a := rfl
| (n+1) a := last_const n a
definition nth : Π {n : nat}, vector A n → fin n → A
| ⌞n+1⌟ (h :: t) (fz n) := h
| ⌞n+1⌟ (h :: t) (fs f) := nth t f
definition tabulate : Π {n : nat}, (fin n → A) → vector A n
| 0 f := []
| (n+1) f := f (fz n) :: tabulate (λ i : fin n, f (fs i))
theorem nth_tabulate : ∀ {n : nat} (f : fin n → A) (i : fin n), nth (tabulate f) i = f i
| (n+1) f (fz n) := rfl
| (n+1) f (fs i) :=
begin
change (nth (tabulate (λ i : fin n, f (fs i))) i = f (fs i)),
rewrite nth_tabulate
end
definition map (f : A → B) : Π {n : nat}, vector A n → vector B n
| map [] := []
| map (a::v) := f a :: map v
theorem map_nil (f : A → B) : map f [] = [] :=
rfl
theorem map_cons {n : nat} (f : A → B) (h : A) (t : vector A n) : map f (h :: t) = f h :: map f t :=
rfl
theorem nth_map (f : A → B) : ∀ {n : nat} (v : vector A n) (i : fin n), nth (map f v) i = f (nth v i)
| (succ n) (h :: t) (fz n) := rfl
| (succ n) (h :: t) (fs i) :=
begin
change (nth (map f t) i = f (nth t i)),
rewrite nth_map
end
definition map2 (f : A → B → C) : Π {n : nat}, vector A n → vector B n → vector C n
| map2 [] [] := []
| map2 (a::va) (b::vb) := f a b :: map2 va vb
theorem map2_nil (f : A → B → C) : map2 f [] [] = [] :=
rfl
theorem map2_cons {n : nat} (f : A → B → C) (h₁ : A) (h₂ : B) (t₁ : vector A n) (t₂ : vector B n) :
map2 f (h₁ :: t₁) (h₂ :: t₂) = f h₁ h₂ :: map2 f t₁ t₂ :=
rfl
definition append : Π {n m : nat}, vector A n → vector A m → vector A (n ⊕ m)
| 0 m [] w := w
| (succ n) m (a::v) w := a :: (append v w)
theorem nil_append {n : nat} (v : vector A n) : append [] v = v :=
rfl
theorem append_cons {n m : nat} (h : A) (t : vector A n) (v : vector A m) :
append (h::t) v = h :: (append t v) :=
rfl
theorem append_nil : Π {n : nat} (v : vector A n), append v [] == v
| 0 [] := !heq.refl
| (n+1) (h::t) :=
begin
change (h :: append t [] == h :: t),
have H₁ : append t [] == t, from append_nil t,
revert H₁, generalize (append t []),
rewrite [-add_eq_addl, add_zero],
intros [w, H₁],
rewrite [heq.to_eq H₁],
apply heq.refl
end
theorem map_append (f : A → B) : ∀ {n m : nat} (v : vector A n) (w : vector A m), map f (append v w) = append (map f v) (map f w)
| 0 m [] w := rfl
| (n+1) m (h :: t) w :=
begin
change (f h :: map f (append t w) = f h :: append (map f t) (map f w)),
rewrite map_append
end
definition unzip : Π {n : nat}, vector (A × B) n → vector A n × vector B n
| unzip [] := ([], [])
| unzip ((a, b) :: v) := (a :: pr₁ (unzip v), b :: pr₂ (unzip v))
theorem unzip_nil : unzip (@nil (A × B)) = ([], []) :=
rfl
theorem unzip_cons {n : nat} (a : A) (b : B) (v : vector (A × B) n) :
unzip ((a, b) :: v) = (a :: pr₁ (unzip v), b :: pr₂ (unzip v)) :=
rfl
definition zip : Π {n : nat}, vector A n → vector B n → vector (A × B) n
| zip [] [] := []
| zip (a::va) (b::vb) := ((a, b) :: zip va vb)
theorem zip_nil_nil : zip (@nil A) (@nil B) = nil :=
rfl
theorem zip_cons_cons {n : nat} (a : A) (b : B) (va : vector A n) (vb : vector B n) :
zip (a::va) (b::vb) = ((a, b) :: zip va vb) :=
rfl
theorem unzip_zip : ∀ {n : nat} (v₁ : vector A n) (v₂ : vector B n), unzip (zip v₁ v₂) = (v₁, v₂)
| 0 [] [] := rfl
| (n+1) (a::va) (b::vb) := calc
unzip (zip (a :: va) (b :: vb))
= (a :: pr₁ (unzip (zip va vb)), b :: pr₂ (unzip (zip va vb))) : rfl
... = (a :: pr₁ (va, vb), b :: pr₂ (va, vb)) : by rewrite unzip_zip
... = (a :: va, b :: vb) : rfl
theorem zip_unzip : ∀ {n : nat} (v : vector (A × B) n), zip (pr₁ (unzip v)) (pr₂ (unzip v)) = v
| 0 [] := rfl
| (n+1) ((a, b) :: v) := calc
zip (pr₁ (unzip ((a, b) :: v))) (pr₂ (unzip ((a, b) :: v)))
= (a, b) :: zip (pr₁ (unzip v)) (pr₂ (unzip v)) : rfl
... = (a, b) :: v : by rewrite zip_unzip
/- Concat -/
definition concat : Π {n : nat}, vector A n → A → vector A (succ n)
| concat [] a := [a]
| concat (b::v) a := b :: concat v a
theorem concat_nil (a : A) : concat [] a = [a] :=
rfl
theorem concat_cons {n : nat} (b : A) (v : vector A n) (a : A) : concat (b :: v) a = b :: concat v a :=
rfl
theorem last_concat : ∀ {n : nat} (v : vector A n) (a : A), last (concat v a) = a
| 0 [] a := rfl
| (n+1) (b::v) a := calc
last (concat (b::v) a) = last (concat v a) : rfl
... = a : last_concat v a
/- Reverse -/
definition reverse : Π {n : nat}, vector A n → vector A n
| 0 [] := []
| (n+1) (x :: xs) := concat (reverse xs) x
theorem reverse_concat : Π {n : nat} (xs : vector A n) (a : A), reverse (concat xs a) = a :: reverse xs
| 0 [] a := rfl
| (n+1) (x :: xs) a :=
begin
change (concat (reverse (concat xs a)) x = a :: reverse (x :: xs)),
rewrite reverse_concat
end
theorem reverse_reverse : Π {n : nat} (xs : vector A n), reverse (reverse xs) = xs
| 0 [] := rfl
| (n+1) (x :: xs) :=
begin
change (reverse (concat (reverse xs) x) = x :: xs),
rewrite [reverse_concat, reverse_reverse]
end
/- list <-> vector -/
definition of_list {A : Type} : Π (l : list A), vector A (list.length l)
| list.nil := []
| (list.cons a l) := a :: (of_list l)
definition to_list {A : Type} : Π {n : nat}, vector A n → list A
| 0 [] := list.nil
| (n+1) (a :: vs) := list.cons a (to_list vs)
theorem to_list_of_list {A : Type} : ∀ (l : list A), to_list (of_list l) = l
| list.nil := rfl
| (list.cons a l) :=
begin
change (list.cons a (to_list (of_list l)) = list.cons a l),
rewrite to_list_of_list
end
theorem length_to_list {A : Type} : ∀ {n : nat} (v : vector A n), list.length (to_list v) = n
| 0 [] := rfl
| (n+1) (a :: vs) :=
begin
change (succ (list.length (to_list vs)) = succ n),
rewrite length_to_list
end
theorem of_list_to_list {A : Type} : ∀ {n : nat} (v : vector A n), of_list (to_list v) == v
| 0 [] := !heq.refl
| (n+1) (a :: vs) :=
begin
change (a :: of_list (to_list vs) == a :: vs),
have H₁ : of_list (to_list vs) == vs, from of_list_to_list vs,
revert H₁,
generalize (of_list (to_list vs)),
rewrite length_to_list at *,
intro vs', intro H,
have H₂ : vs' = vs, from heq.to_eq H,
rewrite H₂,
apply heq.refl
end
/- decidable equality -/
open decidable
definition decidable_eq [H : decidable_eq A] : ∀ {n : nat} (v₁ v₂ : vector A n), decidable (v₁ = v₂)
| ⌞0⌟ [] [] := inl rfl
| ⌞n+1⌟ (a::v₁) (b::v₂) :=
match H a b with
| inl Hab :=
match decidable_eq v₁ v₂ with
| inl He := inl (eq.rec_on Hab (eq.rec_on He rfl))
| inr Hn := inr (λ H₁, vector.no_confusion H₁ (λ e₁ e₂ e₃, absurd (heq.to_eq e₃) Hn))
end
| inr Hnab := inr (λ H₁, vector.no_confusion H₁ (λ e₁ e₂ e₃, absurd e₂ Hnab))
end
end vector
|
d528de04957d8a8e4b425f2597678cee8a01dd45
|
55c7fc2bf55d496ace18cd6f3376e12bb14c8cc5
|
/src/category_theory/limits/limits.lean
|
7f4cad60009afceb2fbdf96923aa0067791e037e
|
[
"Apache-2.0"
] |
permissive
|
dupuisf/mathlib
|
62de4ec6544bf3b79086afd27b6529acfaf2c1bb
|
8582b06b0a5d06c33ee07d0bdf7c646cae22cf36
|
refs/heads/master
| 1,669,494,854,016
| 1,595,692,409,000
| 1,595,692,409,000
| 272,046,630
| 0
| 0
|
Apache-2.0
| 1,592,066,143,000
| 1,592,066,142,000
| null |
UTF-8
|
Lean
| false
| false
| 51,328
|
lean
|
/-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Reid Barton, Mario Carneiro, Scott Morrison, Floris van Doorn
-/
import category_theory.adjunction.basic
import category_theory.reflect_isomorphisms
open category_theory category_theory.category category_theory.functor opposite
namespace category_theory.limits
universes v u u' u'' w -- declare the `v`'s first; see `category_theory.category` for an explanation
-- See the notes at the top of cones.lean, explaining why we can't allow `J : Prop` here.
variables {J K : Type v} [small_category J] [small_category K]
variables {C : Type u} [category.{v} C]
variables {F : J ⥤ C}
/-- A cone `t` on `F` is a limit cone if each cone on `F` admits a unique
cone morphism to `t`. -/
@[nolint has_inhabited_instance]
structure is_limit (t : cone F) :=
(lift : Π (s : cone F), s.X ⟶ t.X)
(fac' : ∀ (s : cone F) (j : J), lift s ≫ t.π.app j = s.π.app j . obviously)
(uniq' : ∀ (s : cone F) (m : s.X ⟶ t.X) (w : ∀ j : J, m ≫ t.π.app j = s.π.app j),
m = lift s . obviously)
restate_axiom is_limit.fac'
attribute [simp, reassoc] is_limit.fac
restate_axiom is_limit.uniq'
namespace is_limit
instance subsingleton {t : cone F} : subsingleton (is_limit t) :=
⟨by intros P Q; cases P; cases Q; congr; ext; solve_by_elim⟩
/- Repackaging the definition in terms of cone morphisms. -/
/-- The universal morphism from any other cone to a limit cone. -/
def lift_cone_morphism {t : cone F} (h : is_limit t) (s : cone F) : s ⟶ t :=
{ hom := h.lift s }
lemma uniq_cone_morphism {s t : cone F} (h : is_limit t) {f f' : s ⟶ t} :
f = f' :=
have ∀ {g : s ⟶ t}, g = h.lift_cone_morphism s, by intro g; ext; exact h.uniq _ _ g.w,
this.trans this.symm
/--
Alternative constructor for `is_limit`,
providing a morphism of cones rather than a morphism between the cone points
and separately the factorisation condition.
-/
def mk_cone_morphism {t : cone F}
(lift : Π (s : cone F), s ⟶ t)
(uniq' : ∀ (s : cone F) (m : s ⟶ t), m = lift s) : is_limit t :=
{ lift := λ s, (lift s).hom,
uniq' := λ s m w,
have cone_morphism.mk m w = lift s, by apply uniq',
congr_arg cone_morphism.hom this }
/-- Limit cones on `F` are unique up to isomorphism. -/
def unique_up_to_iso {s t : cone F} (P : is_limit s) (Q : is_limit t) : s ≅ t :=
{ hom := Q.lift_cone_morphism s,
inv := P.lift_cone_morphism t,
hom_inv_id' := P.uniq_cone_morphism,
inv_hom_id' := Q.uniq_cone_morphism }
/-- Limits of `F` are unique up to isomorphism. -/
-- We may later want to prove the coherence of these isomorphisms.
def cone_point_unique_up_to_iso {s t : cone F} (P : is_limit s) (Q : is_limit t) : s.X ≅ t.X :=
(cones.forget F).map_iso (unique_up_to_iso P Q)
/-- Transport evidence that a cone is a limit cone across an isomorphism of cones. -/
def of_iso_limit {r t : cone F} (P : is_limit r) (i : r ≅ t) : is_limit t :=
is_limit.mk_cone_morphism
(λ s, P.lift_cone_morphism s ≫ i.hom)
(λ s m, by rw ←i.comp_inv_eq; apply P.uniq_cone_morphism)
/--
If the canonical morphism from a cone point to a limiting cone point is an iso, then the
first cone was limiting also.
-/
def of_point_iso {r t : cone F} (P : is_limit r) [i : is_iso (P.lift t)] : is_limit t :=
of_iso_limit P
begin
haveI : is_iso (P.lift_cone_morphism t).hom := i,
haveI : is_iso (P.lift_cone_morphism t) := cone_iso_of_hom_iso _,
symmetry,
apply as_iso (P.lift_cone_morphism t),
end
variables {t : cone F}
lemma hom_lift (h : is_limit t) {W : C} (m : W ⟶ t.X) :
m = h.lift { X := W, π := { app := λ b, m ≫ t.π.app b } } :=
h.uniq { X := W, π := { app := λ b, m ≫ t.π.app b } } m (λ b, rfl)
/-- Two morphisms into a limit are equal if their compositions with
each cone morphism are equal. -/
lemma hom_ext (h : is_limit t) {W : C} {f f' : W ⟶ t.X}
(w : ∀ j, f ≫ t.π.app j = f' ≫ t.π.app j) : f = f' :=
by rw [h.hom_lift f, h.hom_lift f']; congr; exact funext w
/--
Given two functors which have equivalent categories of cones, we can transport a limiting cone across
the equivalence.
-/
def of_cone_equiv {D : Type u'} [category.{v} D] {G : K ⥤ D}
(h : cone G ⥤ cone F) [is_right_adjoint h] {c : cone G} (t : is_limit c) :
is_limit (h.obj c) :=
mk_cone_morphism
(λ s, (adjunction.of_right_adjoint h).hom_equiv s c (t.lift_cone_morphism _))
(λ s m, (adjunction.eq_hom_equiv_apply _ _ _).2 t.uniq_cone_morphism )
/--
The cone points of two limit cones for naturally isomorphic functors
are themselves isomorphic.
-/
@[simps]
def cone_points_iso_of_nat_iso {F G : J ⥤ C} {s : cone F} {t : cone G}
(P : is_limit s) (Q : is_limit t) (w : F ≅ G) : s.X ≅ t.X :=
{ hom := Q.lift ((limits.cones.postcompose w.hom).obj s),
inv := P.lift ((limits.cones.postcompose w.inv).obj t),
hom_inv_id' := by { apply hom_ext P, tidy, },
inv_hom_id' := by { apply hom_ext Q, tidy, }, }
section equivalence
open category_theory.equivalence
/--
If `s : cone F` is a limit cone, so is `s` whiskered by an equivalence `e`.
-/
def whisker_equivalence {s : cone F} (P : is_limit s) (e : K ≌ J) :
is_limit (s.whisker e.functor) :=
of_cone_equiv (cones.whiskering_equivalence e).functor P
/--
We can prove two cone points `(s : cone F).X` and `(t.cone F).X` are isomorphic if
* both cones are limit cones
* their indexing categories are equivalent via some `e : J ≌ K`,
* the triangle of functors commutes up to a natural isomorphism: `e.functor ⋙ G ≅ F`.
This is the most general form of uniqueness of cone points,
allowing relabelling of both the indexing category (up to equivalence)
and the functor (up to natural isomorphism).
-/
@[simps]
def cone_points_iso_of_equivalence {F : J ⥤ C} {s : cone F} {G : K ⥤ C} {t : cone G}
(P : is_limit s) (Q : is_limit t) (e : J ≌ K) (w : e.functor ⋙ G ≅ F) : s.X ≅ t.X :=
let w' : e.inverse ⋙ F ≅ G := (iso_whisker_left e.inverse w).symm ≪≫ inv_fun_id_assoc e G in
{ hom := Q.lift ((cones.equivalence_of_reindexing e.symm w').functor.obj s),
inv := P.lift ((cones.equivalence_of_reindexing e w).functor.obj t),
hom_inv_id' :=
begin
apply hom_ext P, intros j,
dsimp,
simp only [limits.cone.whisker_π, limits.cones.postcompose_obj_π, fac, whisker_left_app,
assoc, id_comp, inv_fun_id_assoc_hom_app, fac_assoc, nat_trans.comp_app],
rw [counit_functor, ←functor.comp_map, w.hom.naturality],
simp,
end,
inv_hom_id' := by { apply hom_ext Q, tidy, }, }
end equivalence
/-- The universal property of a limit cone: a map `W ⟶ X` is the same as
a cone on `F` with vertex `W`. -/
def hom_iso (h : is_limit t) (W : C) : (W ⟶ t.X) ≅ ((const J).obj W ⟶ F) :=
{ hom := λ f, (t.extend f).π,
inv := λ π, h.lift { X := W, π := π },
hom_inv_id' := by ext f; apply h.hom_ext; intro j; simp; dsimp; refl }
@[simp] lemma hom_iso_hom (h : is_limit t) {W : C} (f : W ⟶ t.X) :
(is_limit.hom_iso h W).hom f = (t.extend f).π := rfl
/-- The limit of `F` represents the functor taking `W` to
the set of cones on `F` with vertex `W`. -/
def nat_iso (h : is_limit t) : yoneda.obj t.X ≅ F.cones :=
nat_iso.of_components (λ W, is_limit.hom_iso h (unop W)) (by tidy).
/--
Another, more explicit, formulation of the universal property of a limit cone.
See also `hom_iso`.
-/
def hom_iso' (h : is_limit t) (W : C) :
((W ⟶ t.X) : Type v) ≅ { p : Π j, W ⟶ F.obj j // ∀ {j j'} (f : j ⟶ j'), p j ≫ F.map f = p j' } :=
h.hom_iso W ≪≫
{ hom := λ π,
⟨λ j, π.app j, λ j j' f,
by convert ←(π.naturality f).symm; apply id_comp⟩,
inv := λ p,
{ app := λ j, p.1 j,
naturality' := λ j j' f, begin dsimp, rw [id_comp], exact (p.2 f).symm end } }
/-- If G : C → D is a faithful functor which sends t to a limit cone,
then it suffices to check that the induced maps for the image of t
can be lifted to maps of C. -/
def of_faithful {t : cone F} {D : Type u'} [category.{v} D] (G : C ⥤ D) [faithful G]
(ht : is_limit (G.map_cone t)) (lift : Π (s : cone F), s.X ⟶ t.X)
(h : ∀ s, G.map (lift s) = ht.lift (G.map_cone s)) : is_limit t :=
{ lift := lift,
fac' := λ s j, by apply G.map_injective; rw [G.map_comp, h]; apply ht.fac,
uniq' := λ s m w, begin
apply G.map_injective, rw h,
refine ht.uniq (G.map_cone s) _ (λ j, _),
convert ←congr_arg (λ f, G.map f) (w j),
apply G.map_comp
end }
/--
If `F` and `G` are naturally isomorphic, then `F.map_cone c` being a limit implies
`G.map_cone c` is also a limit.
-/
def map_cone_equiv {D : Type u'} [category.{v} D] {K : J ⥤ C} {F G : C ⥤ D} (h : F ≅ G) {c : cone K}
(t : is_limit (F.map_cone c)) : is_limit (G.map_cone c) :=
{ lift := λ s, t.lift ((cones.postcompose (iso_whisker_left K h).inv).obj s) ≫ h.hom.app c.X,
fac' := λ s j,
begin
slice_lhs 2 3 {erw ← h.hom.naturality (c.π.app j)},
slice_lhs 1 2 {erw t.fac ((cones.postcompose (iso_whisker_left K h).inv).obj s) j},
dsimp,
slice_lhs 2 3 {rw iso.inv_hom_id_app},
rw category.comp_id,
end,
uniq' := λ s m J,
begin
rw ← cancel_mono (h.inv.app c.X),
apply t.hom_ext,
intro j,
dsimp,
slice_lhs 2 3 {erw ← h.inv.naturality (c.π.app j)},
slice_lhs 1 2 {erw J j},
conv_rhs {congr, rw [category.assoc, iso.hom_inv_id_app, comp_id]},
apply (t.fac ((cones.postcompose (iso_whisker_left K h).inv).obj s) j).symm
end }
/--
A cone is a limit cone exactly if
there is a unique cone morphism from any other cone.
-/
def iso_unique_cone_morphism {t : cone F} :
is_limit t ≅ Π s, unique (s ⟶ t) :=
{ hom := λ h s,
{ default := h.lift_cone_morphism s,
uniq := λ _, h.uniq_cone_morphism },
inv := λ h,
{ lift := λ s, (h s).default.hom,
uniq' := λ s f w, congr_arg cone_morphism.hom ((h s).uniq ⟨f, w⟩) } }
namespace of_nat_iso
variables {X : C} (h : yoneda.obj X ≅ F.cones)
/-- If `F.cones` is represented by `X`, each morphism `f : Y ⟶ X` gives a cone with cone point `Y`. -/
def cone_of_hom {Y : C} (f : Y ⟶ X) : cone F :=
{ X := Y, π := h.hom.app (op Y) f }
/-- If `F.cones` is represented by `X`, each cone `s` gives a morphism `s.X ⟶ X`. -/
def hom_of_cone (s : cone F) : s.X ⟶ X := h.inv.app (op s.X) s.π
@[simp] lemma cone_of_hom_of_cone (s : cone F) : cone_of_hom h (hom_of_cone h s) = s :=
begin
dsimp [cone_of_hom, hom_of_cone], cases s, congr, dsimp,
exact congr_fun (congr_fun (congr_arg nat_trans.app h.inv_hom_id) (op s_X)) s_π,
end
@[simp] lemma hom_of_cone_of_hom {Y : C} (f : Y ⟶ X) : hom_of_cone h (cone_of_hom h f) = f :=
congr_fun (congr_fun (congr_arg nat_trans.app h.hom_inv_id) (op Y)) f
/-- If `F.cones` is represented by `X`, the cone corresponding to the identity morphism on `X`
will be a limit cone. -/
def limit_cone : cone F :=
cone_of_hom h (𝟙 X)
/-- If `F.cones` is represented by `X`, the cone corresponding to a morphism `f : Y ⟶ X` is
the limit cone extended by `f`. -/
lemma cone_of_hom_fac {Y : C} (f : Y ⟶ X) :
cone_of_hom h f = (limit_cone h).extend f :=
begin
dsimp [cone_of_hom, limit_cone, cone.extend],
congr,
ext j,
have t := congr_fun (h.hom.naturality f.op) (𝟙 X),
dsimp at t,
simp only [comp_id] at t,
rw congr_fun (congr_arg nat_trans.app t) j,
refl,
end
/-- If `F.cones` is represented by `X`, any cone is the extension of the limit cone by the
corresponding morphism. -/
lemma cone_fac (s : cone F) : (limit_cone h).extend (hom_of_cone h s) = s :=
begin
rw ←cone_of_hom_of_cone h s,
conv_lhs { simp only [hom_of_cone_of_hom] },
apply (cone_of_hom_fac _ _).symm,
end
end of_nat_iso
section
open of_nat_iso
/--
If `F.cones` is representable, then the cone corresponding to the identity morphism on
the representing object is a limit cone.
-/
def of_nat_iso {X : C} (h : yoneda.obj X ≅ F.cones) :
is_limit (limit_cone h) :=
{ lift := λ s, hom_of_cone h s,
fac' := λ s j,
begin
have h := cone_fac h s,
cases s,
injection h with h₁ h₂,
simp only [heq_iff_eq] at h₂,
conv_rhs { rw ← h₂ }, refl,
end,
uniq' := λ s m w,
begin
rw ←hom_of_cone_of_hom h m,
congr,
rw cone_of_hom_fac,
dsimp, cases s, congr,
ext j, exact w j,
end }
end
end is_limit
/-- A cocone `t` on `F` is a colimit cocone if each cocone on `F` admits a unique
cocone morphism from `t`. -/
@[nolint has_inhabited_instance]
structure is_colimit (t : cocone F) :=
(desc : Π (s : cocone F), t.X ⟶ s.X)
(fac' : ∀ (s : cocone F) (j : J), t.ι.app j ≫ desc s = s.ι.app j . obviously)
(uniq' : ∀ (s : cocone F) (m : t.X ⟶ s.X) (w : ∀ j : J, t.ι.app j ≫ m = s.ι.app j),
m = desc s . obviously)
restate_axiom is_colimit.fac'
attribute [simp,reassoc] is_colimit.fac
restate_axiom is_colimit.uniq'
namespace is_colimit
instance subsingleton {t : cocone F} : subsingleton (is_colimit t) :=
⟨by intros P Q; cases P; cases Q; congr; ext; solve_by_elim⟩
/- Repackaging the definition in terms of cone morphisms. -/
/-- The universal morphism from a colimit cocone to any other cone. -/
def desc_cocone_morphism {t : cocone F} (h : is_colimit t) (s : cocone F) : t ⟶ s :=
{ hom := h.desc s }
lemma uniq_cocone_morphism {s t : cocone F} (h : is_colimit t) {f f' : t ⟶ s} :
f = f' :=
have ∀ {g : t ⟶ s}, g = h.desc_cocone_morphism s, by intro g; ext; exact h.uniq _ _ g.w,
this.trans this.symm
/--
Alternative constructor for `is_colimit`,
providing a morphism of cocones rather than a morphism between the cocone points
and separately the factorisation condition.
-/
def mk_cocone_morphism {t : cocone F}
(desc : Π (s : cocone F), t ⟶ s)
(uniq' : ∀ (s : cocone F) (m : t ⟶ s), m = desc s) : is_colimit t :=
{ desc := λ s, (desc s).hom,
uniq' := λ s m w,
have cocone_morphism.mk m w = desc s, by apply uniq',
congr_arg cocone_morphism.hom this }
/-- Limit cones on `F` are unique up to isomorphism. -/
def unique_up_to_iso {s t : cocone F} (P : is_colimit s) (Q : is_colimit t) : s ≅ t :=
{ hom := P.desc_cocone_morphism t,
inv := Q.desc_cocone_morphism s,
hom_inv_id' := P.uniq_cocone_morphism,
inv_hom_id' := Q.uniq_cocone_morphism }
/-- Colimits of `F` are unique up to isomorphism. -/
-- We may later want to prove the coherence of these isomorphisms.
def cocone_point_unique_up_to_iso {s t : cocone F} (P : is_colimit s) (Q : is_colimit t) : s.X ≅ t.X :=
(cocones.forget F).map_iso (unique_up_to_iso P Q)
/-- Transport evidence that a cocone is a colimit cocone across an isomorphism of cocones. -/
def of_iso_colimit {r t : cocone F} (P : is_colimit r) (i : r ≅ t) : is_colimit t :=
is_colimit.mk_cocone_morphism
(λ s, i.inv ≫ P.desc_cocone_morphism s)
(λ s m, by rw i.eq_inv_comp; apply P.uniq_cocone_morphism)
/--
If the canonical morphism to a cocone point from a colimiting cocone point is an iso, then the
first cocone was colimiting also.
-/
def of_point_iso {r t : cocone F} (P : is_colimit r) [i : is_iso (P.desc t)] : is_colimit t :=
of_iso_colimit P
begin
haveI : is_iso (P.desc_cocone_morphism t).hom := i,
haveI : is_iso (P.desc_cocone_morphism t) := cocone_iso_of_hom_iso _,
apply as_iso (P.desc_cocone_morphism t),
end
variables {t : cocone F}
lemma hom_desc (h : is_colimit t) {W : C} (m : t.X ⟶ W) :
m = h.desc { X := W, ι := { app := λ b, t.ι.app b ≫ m,
naturality' := by intros; erw [←assoc, t.ι.naturality, comp_id, comp_id] } } :=
h.uniq { X := W, ι := { app := λ b, t.ι.app b ≫ m, naturality' := _ } } m (λ b, rfl)
/-- Two morphisms out of a colimit are equal if their compositions with
each cocone morphism are equal. -/
lemma hom_ext (h : is_colimit t) {W : C} {f f' : t.X ⟶ W}
(w : ∀ j, t.ι.app j ≫ f = t.ι.app j ≫ f') : f = f' :=
by rw [h.hom_desc f, h.hom_desc f']; congr; exact funext w
/--
Given two functors which have equivalent categories of cocones, we can transport a limiting cocone
across the equivalence.
-/
def of_cocone_equiv {D : Type u'} [category.{v} D] {G : K ⥤ D}
(h : cocone G ⥤ cocone F) [is_left_adjoint h] {c : cocone G} (t : is_colimit c) :
is_colimit (h.obj c) :=
mk_cocone_morphism
(λ s, ((adjunction.of_left_adjoint h).hom_equiv c s).symm (t.desc_cocone_morphism _))
(λ s m, (adjunction.hom_equiv_apply_eq _ _ _).1 t.uniq_cocone_morphism)
/--
The cocone points of two colimit cocones for naturally isomorphic functors
are themselves isomorphic.
-/
@[simps]
def cocone_points_iso_of_nat_iso {F G : J ⥤ C} {s : cocone F} {t : cocone G}
(P : is_colimit s) (Q : is_colimit t) (w : F ≅ G) : s.X ≅ t.X :=
{ hom := P.desc ((limits.cocones.precompose w.hom).obj t),
inv := Q.desc ((limits.cocones.precompose w.inv).obj s),
hom_inv_id' := by { apply hom_ext P, tidy, },
inv_hom_id' := by { apply hom_ext Q, tidy, }, }
section equivalence
open category_theory.equivalence
/--
If `s : cone F` is a limit cone, so is `s` whiskered by an equivalence `e`.
-/
def whisker_equivalence {s : cocone F} (P : is_colimit s) (e : K ≌ J) :
is_colimit (s.whisker e.functor) :=
of_cocone_equiv (cocones.whiskering_equivalence e).functor P
/--
We can prove two cocone points `(s : cocone F).X` and `(t.cocone F).X` are isomorphic if
* both cocones are colimit ccoones
* their indexing categories are equivalent via some `e : J ≌ K`,
* the triangle of functors commutes up to a natural isomorphism: `e.functor ⋙ G ≅ F`.
This is the most general form of uniqueness of cocone points,
allowing relabelling of both the indexing category (up to equivalence)
and the functor (up to natural isomorphism).
-/
@[simps]
def cocone_points_iso_of_equivalence {F : J ⥤ C} {s : cocone F} {G : K ⥤ C} {t : cocone G}
(P : is_colimit s) (Q : is_colimit t) (e : J ≌ K) (w : e.functor ⋙ G ≅ F) : s.X ≅ t.X :=
let w' : e.inverse ⋙ F ≅ G := (iso_whisker_left e.inverse w).symm ≪≫ inv_fun_id_assoc e G in
{ hom := P.desc ((cocones.equivalence_of_reindexing e w).functor.obj t),
inv := Q.desc ((cocones.equivalence_of_reindexing e.symm w').functor.obj s),
hom_inv_id' :=
begin
apply hom_ext P, intros j,
dsimp,
simp only [limits.cocone.whisker_ι, fac, inv_fun_id_assoc_inv_app, whisker_left_app, assoc,
comp_id, limits.cocones.precompose_obj_ι, fac_assoc, nat_trans.comp_app],
rw [←functor_unit, ←functor.comp_map, ←w.inv.naturality_assoc],
dsimp,
simp,
end,
inv_hom_id' := by { apply hom_ext Q, tidy, }, }
end equivalence
/-- The universal property of a colimit cocone: a map `X ⟶ W` is the same as
a cocone on `F` with vertex `W`. -/
def hom_iso (h : is_colimit t) (W : C) : (t.X ⟶ W) ≅ (F ⟶ (const J).obj W) :=
{ hom := λ f, (t.extend f).ι,
inv := λ ι, h.desc { X := W, ι := ι },
hom_inv_id' := by ext f; apply h.hom_ext; intro j; simp; dsimp; refl }
@[simp] lemma hom_iso_hom (h : is_colimit t) {W : C} (f : t.X ⟶ W) :
(is_colimit.hom_iso h W).hom f = (t.extend f).ι := rfl
/-- The colimit of `F` represents the functor taking `W` to
the set of cocones on `F` with vertex `W`. -/
def nat_iso (h : is_colimit t) : coyoneda.obj (op t.X) ≅ F.cocones :=
nat_iso.of_components (is_colimit.hom_iso h) (by intros; ext; dsimp; rw ←assoc; refl)
/--
Another, more explicit, formulation of the universal property of a colimit cocone.
See also `hom_iso`.
-/
def hom_iso' (h : is_colimit t) (W : C) :
((t.X ⟶ W) : Type v) ≅ { p : Π j, F.obj j ⟶ W // ∀ {j j' : J} (f : j ⟶ j'), F.map f ≫ p j' = p j } :=
h.hom_iso W ≪≫
{ hom := λ ι,
⟨λ j, ι.app j, λ j j' f,
by convert ←(ι.naturality f); apply comp_id⟩,
inv := λ p,
{ app := λ j, p.1 j,
naturality' := λ j j' f, begin dsimp, rw [comp_id], exact (p.2 f) end } }
/-- If G : C → D is a faithful functor which sends t to a colimit cocone,
then it suffices to check that the induced maps for the image of t
can be lifted to maps of C. -/
def of_faithful {t : cocone F} {D : Type u'} [category.{v} D] (G : C ⥤ D) [faithful G]
(ht : is_colimit (G.map_cocone t)) (desc : Π (s : cocone F), t.X ⟶ s.X)
(h : ∀ s, G.map (desc s) = ht.desc (G.map_cocone s)) : is_colimit t :=
{ desc := desc,
fac' := λ s j, by apply G.map_injective; rw [G.map_comp, h]; apply ht.fac,
uniq' := λ s m w, begin
apply G.map_injective, rw h,
refine ht.uniq (G.map_cocone s) _ (λ j, _),
convert ←congr_arg (λ f, G.map f) (w j),
apply G.map_comp
end }
/--
A cocone is a colimit cocone exactly if
there is a unique cocone morphism from any other cocone.
-/
def iso_unique_cocone_morphism {t : cocone F} :
is_colimit t ≅ Π s, unique (t ⟶ s) :=
{ hom := λ h s,
{ default := h.desc_cocone_morphism s,
uniq := λ _, h.uniq_cocone_morphism },
inv := λ h,
{ desc := λ s, (h s).default.hom,
uniq' := λ s f w, congr_arg cocone_morphism.hom ((h s).uniq ⟨f, w⟩) } }
namespace of_nat_iso
variables {X : C} (h : coyoneda.obj (op X) ≅ F.cocones)
/-- If `F.cocones` is corepresented by `X`, each morphism `f : X ⟶ Y` gives a cocone with cone point `Y`. -/
def cocone_of_hom {Y : C} (f : X ⟶ Y) : cocone F :=
{ X := Y, ι := h.hom.app Y f }
/-- If `F.cocones` is corepresented by `X`, each cocone `s` gives a morphism `X ⟶ s.X`. -/
def hom_of_cocone (s : cocone F) : X ⟶ s.X := h.inv.app s.X s.ι
@[simp] lemma cocone_of_hom_of_cocone (s : cocone F) : cocone_of_hom h (hom_of_cocone h s) = s :=
begin
dsimp [cocone_of_hom, hom_of_cocone], cases s, congr, dsimp,
exact congr_fun (congr_fun (congr_arg nat_trans.app h.inv_hom_id) s_X) s_ι,
end
@[simp] lemma hom_of_cocone_of_hom {Y : C} (f : X ⟶ Y) : hom_of_cocone h (cocone_of_hom h f) = f :=
congr_fun (congr_fun (congr_arg nat_trans.app h.hom_inv_id) Y) f
/-- If `F.cocones` is corepresented by `X`, the cocone corresponding to the identity morphism on `X`
will be a colimit cocone. -/
def colimit_cocone : cocone F :=
cocone_of_hom h (𝟙 X)
/-- If `F.cocones` is corepresented by `X`, the cocone corresponding to a morphism `f : Y ⟶ X` is
the colimit cocone extended by `f`. -/
lemma cocone_of_hom_fac {Y : C} (f : X ⟶ Y) :
cocone_of_hom h f = (colimit_cocone h).extend f :=
begin
dsimp [cocone_of_hom, colimit_cocone, cocone.extend],
congr,
ext j,
have t := congr_fun (h.hom.naturality f) (𝟙 X),
dsimp at t,
simp only [id_comp] at t,
rw congr_fun (congr_arg nat_trans.app t) j,
refl,
end
/-- If `F.cocones` is corepresented by `X`, any cocone is the extension of the colimit cocone by the
corresponding morphism. -/
lemma cocone_fac (s : cocone F) : (colimit_cocone h).extend (hom_of_cocone h s) = s :=
begin
rw ←cocone_of_hom_of_cocone h s,
conv_lhs { simp only [hom_of_cocone_of_hom] },
apply (cocone_of_hom_fac _ _).symm,
end
end of_nat_iso
section
open of_nat_iso
/--
If `F.cocones` is corepresentable, then the cocone corresponding to the identity morphism on
the representing object is a colimit cocone.
-/
def of_nat_iso {X : C} (h : coyoneda.obj (op X) ≅ F.cocones) :
is_colimit (colimit_cocone h) :=
{ desc := λ s, hom_of_cocone h s,
fac' := λ s j,
begin
have h := cocone_fac h s,
cases s,
injection h with h₁ h₂,
simp only [heq_iff_eq] at h₂,
conv_rhs { rw ← h₂ }, refl,
end,
uniq' := λ s m w,
begin
rw ←hom_of_cocone_of_hom h m,
congr,
rw cocone_of_hom_fac,
dsimp, cases s, congr,
ext j, exact w j,
end }
end
end is_colimit
section limit
/-- `has_limit F` represents a particular chosen limit of the diagram `F`. -/
class has_limit (F : J ⥤ C) :=
(cone : cone F)
(is_limit : is_limit cone)
variables (J C)
/-- `C` has limits of shape `J` if we have chosen a particular limit of
every functor `F : J ⥤ C`. -/
class has_limits_of_shape :=
(has_limit : Π F : J ⥤ C, has_limit F)
/-- `C` has all (small) limits if it has limits of every shape. -/
class has_limits :=
(has_limits_of_shape : Π (J : Type v) [𝒥 : small_category J], has_limits_of_shape J C)
variables {J C}
@[priority 100] -- see Note [lower instance priority]
instance has_limit_of_has_limits_of_shape
{J : Type v} [small_category J] [H : has_limits_of_shape J C] (F : J ⥤ C) : has_limit F :=
has_limits_of_shape.has_limit F
@[priority 100] -- see Note [lower instance priority]
instance has_limits_of_shape_of_has_limits
{J : Type v} [small_category J] [H : has_limits C] : has_limits_of_shape J C :=
has_limits.has_limits_of_shape J
/- Interface to the `has_limit` class. -/
/-- The chosen limit cone of a functor. -/
def limit.cone (F : J ⥤ C) [has_limit F] : cone F := has_limit.cone
/-- The chosen limit object of a functor. -/
def limit (F : J ⥤ C) [has_limit F] := (limit.cone F).X
/-- The projection from the chosen limit object to a value of the functor. -/
def limit.π (F : J ⥤ C) [has_limit F] (j : J) : limit F ⟶ F.obj j :=
(limit.cone F).π.app j
@[simp] lemma limit.cone_π {F : J ⥤ C} [has_limit F] (j : J) :
(limit.cone F).π.app j = limit.π _ j := rfl
@[simp] lemma limit.w (F : J ⥤ C) [has_limit F] {j j' : J} (f : j ⟶ j') :
limit.π F j ≫ F.map f = limit.π F j' := (limit.cone F).w f
/-- Evidence that the chosen cone is a limit cone. -/
def limit.is_limit (F : J ⥤ C) [has_limit F] : is_limit (limit.cone F) :=
has_limit.is_limit
/-- The morphism from the cone point of any other cone to the chosen limit object. -/
def limit.lift (F : J ⥤ C) [has_limit F] (c : cone F) : c.X ⟶ limit F :=
(limit.is_limit F).lift c
@[simp] lemma limit.is_limit_lift {F : J ⥤ C} [has_limit F] (c : cone F) :
(limit.is_limit F).lift c = limit.lift F c := rfl
@[simp, reassoc] lemma limit.lift_π {F : J ⥤ C} [has_limit F] (c : cone F) (j : J) :
limit.lift F c ≫ limit.π F j = c.π.app j :=
is_limit.fac _ c j
/-- The cone morphism from any cone to the chosen limit cone. -/
def limit.cone_morphism {F : J ⥤ C} [has_limit F] (c : cone F) :
c ⟶ (limit.cone F) :=
(limit.is_limit F).lift_cone_morphism c
@[simp] lemma limit.cone_morphism_hom {F : J ⥤ C} [has_limit F] (c : cone F) :
(limit.cone_morphism c).hom = limit.lift F c := rfl
lemma limit.cone_morphism_π {F : J ⥤ C} [has_limit F] (c : cone F) (j : J) :
(limit.cone_morphism c).hom ≫ limit.π F j = c.π.app j :=
by simp
@[ext] lemma limit.hom_ext {F : J ⥤ C} [has_limit F] {X : C} {f f' : X ⟶ limit F}
(w : ∀ j, f ≫ limit.π F j = f' ≫ limit.π F j) : f = f' :=
(limit.is_limit F).hom_ext w
/--
The isomorphism (in `Type`) between
morphisms from a specified object `W` to the limit object,
and cones with cone point `W`.
-/
def limit.hom_iso (F : J ⥤ C) [has_limit F] (W : C) : (W ⟶ limit F) ≅ (F.cones.obj (op W)) :=
(limit.is_limit F).hom_iso W
@[simp] lemma limit.hom_iso_hom (F : J ⥤ C) [has_limit F] {W : C} (f : W ⟶ limit F) :
(limit.hom_iso F W).hom f = (const J).map f ≫ (limit.cone F).π :=
(limit.is_limit F).hom_iso_hom f
/--
The isomorphism (in `Type`) between
morphisms from a specified object `W` to the limit object,
and an explicit componentwise description of cones with cone point `W`.
-/
def limit.hom_iso' (F : J ⥤ C) [has_limit F] (W : C) :
((W ⟶ limit F) : Type v) ≅ { p : Π j, W ⟶ F.obj j // ∀ {j j' : J} (f : j ⟶ j'), p j ≫ F.map f = p j' } :=
(limit.is_limit F).hom_iso' W
lemma limit.lift_extend {F : J ⥤ C} [has_limit F] (c : cone F) {X : C} (f : X ⟶ c.X) :
limit.lift F (c.extend f) = f ≫ limit.lift F c :=
by obviously
/--
If we've chosen a limit for a functor `F`,
we can transport that choice across a natural isomorphism.
-/
def has_limit_of_iso {F G : J ⥤ C} [has_limit F] (α : F ≅ G) : has_limit G :=
{ cone := (cones.postcompose α.hom).obj (limit.cone F),
is_limit :=
{ lift := λ s, limit.lift F ((cones.postcompose α.inv).obj s),
fac' := λ s j,
begin
rw [cones.postcompose_obj_π, nat_trans.comp_app, limit.cone_π, ←category.assoc, limit.lift_π],
simp
end,
uniq' := λ s m w,
begin
apply limit.hom_ext, intro j,
rw [limit.lift_π, cones.postcompose_obj_π, nat_trans.comp_app, ←nat_iso.app_inv, iso.eq_comp_inv],
simpa using w j
end } }
/-- If a functor `G` has the same collection of cones as a functor `F`
which has a limit, then `G` also has a limit. -/
-- See the construction of limits from products and equalizers
-- for an example usage.
def has_limit.of_cones_iso {J K : Type v} [small_category J] [small_category K] (F : J ⥤ C) (G : K ⥤ C)
(h : F.cones ≅ G.cones) [has_limit F] : has_limit G :=
⟨_, is_limit.of_nat_iso ((is_limit.nat_iso (limit.is_limit F)) ≪≫ h)⟩
/--
The chosen limits of `F : J ⥤ C` and `G : J ⥤ C` are isomorphic,
if the functors are naturally isomorphic.
-/
def has_limit.iso_of_nat_iso {F G : J ⥤ C} [has_limit F] [has_limit G] (w : F ≅ G) :
limit F ≅ limit G :=
is_limit.cone_points_iso_of_nat_iso (limit.is_limit F) (limit.is_limit G) w
@[simp, reassoc]
lemma has_limit.iso_of_nat_iso_hom_π {F G : J ⥤ C} [has_limit F] [has_limit G]
(w : F ≅ G) (j : J) :
(has_limit.iso_of_nat_iso w).hom ≫ limit.π G j = limit.π F j ≫ w.hom.app j :=
by simp [has_limit.iso_of_nat_iso, is_limit.cone_points_iso_of_nat_iso_hom]
/--
The chosen limits of `F : J ⥤ C` and `G : K ⥤ C` are isomorphic,
if there is an equivalence `e : J ≌ K` making the triangle commute up to natural isomorphism.
-/
def has_limit.iso_of_equivalence {F : J ⥤ C} [has_limit F] {G : K ⥤ C} [has_limit G]
(e : J ≌ K) (w : e.functor ⋙ G ≅ F) : limit F ≅ limit G :=
is_limit.cone_points_iso_of_equivalence (limit.is_limit F) (limit.is_limit G) e w
@[simp]
lemma has_limit.iso_of_equivalence_π {F : J ⥤ C} [has_limit F] {G : K ⥤ C} [has_limit G]
(e : J ≌ K) (w : e.functor ⋙ G ≅ F) (k : K) :
(has_limit.iso_of_equivalence e w).hom ≫ limit.π G k =
limit.π F (e.inverse.obj k) ≫ w.inv.app (e.inverse.obj k) ≫ G.map (e.counit.app k) :=
begin
simp [has_limit.iso_of_equivalence, is_limit.cone_points_iso_of_equivalence_hom],
dsimp,
simp,
end
section pre
variables (F) [has_limit F] (E : K ⥤ J) [has_limit (E ⋙ F)]
/--
The canonical morphism
from the chosen limit of `F`
to the chosen limit of `E ⋙ F`.
-/
def limit.pre : limit F ⟶ limit (E ⋙ F) :=
limit.lift (E ⋙ F)
{ X := limit F,
π := { app := λ k, limit.π F (E.obj k) } }
@[simp] lemma limit.pre_π (k : K) : limit.pre F E ≫ limit.π (E ⋙ F) k = limit.π F (E.obj k) :=
by erw is_limit.fac
@[simp] lemma limit.lift_pre (c : cone F) :
limit.lift F c ≫ limit.pre F E = limit.lift (E ⋙ F) (c.whisker E) :=
by ext; simp
variables {L : Type v} [small_category L]
variables (D : L ⥤ K) [has_limit (D ⋙ E ⋙ F)]
@[simp] lemma limit.pre_pre : limit.pre F E ≫ limit.pre (E ⋙ F) D = limit.pre F (D ⋙ E) :=
by ext j; erw [assoc, limit.pre_π, limit.pre_π, limit.pre_π]; refl
end pre
section post
variables {D : Type u'} [category.{v} D]
variables (F) [has_limit F] (G : C ⥤ D) [has_limit (F ⋙ G)]
/--
The canonical morphism
from `G` applied to the chosen limit of `F`
to the chosen limit of `F ⋙ G`.
-/
def limit.post : G.obj (limit F) ⟶ limit (F ⋙ G) :=
limit.lift (F ⋙ G)
{ X := G.obj (limit F),
π :=
{ app := λ j, G.map (limit.π F j),
naturality' :=
by intros j j' f; erw [←G.map_comp, limits.cone.w, id_comp]; refl } }
@[simp] lemma limit.post_π (j : J) : limit.post F G ≫ limit.π (F ⋙ G) j = G.map (limit.π F j) :=
by erw is_limit.fac
@[simp] lemma limit.lift_post (c : cone F) :
G.map (limit.lift F c) ≫ limit.post F G = limit.lift (F ⋙ G) (G.map_cone c) :=
by ext; rw [assoc, limit.post_π, ←G.map_comp, limit.lift_π, limit.lift_π]; refl
@[simp] lemma limit.post_post
{E : Type u''} [category.{v} E] (H : D ⥤ E) [has_limit ((F ⋙ G) ⋙ H)] :
/- H G (limit F) ⟶ H (limit (F ⋙ G)) ⟶ limit ((F ⋙ G) ⋙ H) equals -/
/- H G (limit F) ⟶ limit (F ⋙ (G ⋙ H)) -/
H.map (limit.post F G) ≫ limit.post (F ⋙ G) H = limit.post F (G ⋙ H) :=
by ext; erw [assoc, limit.post_π, ←H.map_comp, limit.post_π, limit.post_π]; refl
end post
lemma limit.pre_post {D : Type u'} [category.{v} D]
(E : K ⥤ J) (F : J ⥤ C) (G : C ⥤ D)
[has_limit F] [has_limit (E ⋙ F)] [has_limit (F ⋙ G)] [has_limit ((E ⋙ F) ⋙ G)] :
/- G (limit F) ⟶ G (limit (E ⋙ F)) ⟶ limit ((E ⋙ F) ⋙ G) vs -/
/- G (limit F) ⟶ limit F ⋙ G ⟶ limit (E ⋙ (F ⋙ G)) or -/
G.map (limit.pre F E) ≫ limit.post (E ⋙ F) G = limit.post F G ≫ limit.pre (F ⋙ G) E :=
by ext; erw [assoc, limit.post_π, ←G.map_comp, limit.pre_π, assoc, limit.pre_π, limit.post_π]; refl
open category_theory.equivalence
instance has_limit_equivalence_comp (e : K ≌ J) [has_limit F] : has_limit (e.functor ⋙ F) :=
{ cone := cone.whisker e.functor (limit.cone F),
is_limit := is_limit.whisker_equivalence (limit.is_limit F) e, }
local attribute [elab_simple] inv_fun_id_assoc -- not entirely sure why this is needed
/--
If a `E ⋙ F` has a chosen limit, and `E` is an equivalence, we can construct a chosen limit of `F`.
-/
def has_limit_of_equivalence_comp (e : K ≌ J) [has_limit (e.functor ⋙ F)] : has_limit F :=
begin
haveI : has_limit (e.inverse ⋙ e.functor ⋙ F) := limits.has_limit_equivalence_comp e.symm,
apply has_limit_of_iso (e.inv_fun_id_assoc F),
end
-- `has_limit_comp_equivalence` and `has_limit_of_comp_equivalence`
-- are proved in `category_theory/adjunction/limits.lean`.
section lim_functor
/--
Functoriality of limits.
Usually this morphism should be accessed through `lim.map`,
but may be needed separately when you have specified limits for the source and target functors,
but not necessarily for all functors of shape `J`.
-/
def lim_map {F G : J ⥤ C} [has_limit F] [has_limit G] (α : F ⟶ G) : limit F ⟶ limit G :=
limit.lift G
{ X := limit F,
π :=
{ app := λ j, limit.π F j ≫ α.app j,
naturality' := λ j j' f,
by erw [id_comp, assoc, ←α.naturality, ←assoc, limit.w] } }
@[simp, reassoc] lemma lim_map_π {F G : J ⥤ C} [has_limit F] [has_limit G] (α : F ⟶ G) (j : J) :
lim_map α ≫ limit.π G j = limit.π F j ≫ α.app j :=
by apply is_limit.fac
variables [has_limits_of_shape J C]
section
local attribute [simp] lim_map
/-- `limit F` is functorial in `F`, when `C` has all limits of shape `J`. -/
def lim : (J ⥤ C) ⥤ C :=
{ obj := λ F, limit F,
map := λ F G α, lim_map α,
map_comp' := λ F G H α β,
by ext; erw [assoc, is_limit.fac, is_limit.fac, ←assoc, is_limit.fac, assoc]; refl }
end
variables {F} {G : J ⥤ C} (α : F ⟶ G)
@[simp, reassoc] lemma limit.map_π (j : J) : lim.map α ≫ limit.π G j = limit.π F j ≫ α.app j :=
by apply is_limit.fac
@[simp] lemma limit.lift_map (c : cone F) :
limit.lift F c ≫ lim.map α = limit.lift G ((cones.postcompose α).obj c) :=
by ext; rw [assoc, limit.map_π, ←assoc, limit.lift_π, limit.lift_π]; refl
lemma limit.map_pre [has_limits_of_shape K C] (E : K ⥤ J) :
lim.map α ≫ limit.pre G E = limit.pre F E ≫ lim.map (whisker_left E α) :=
by ext; rw [assoc, limit.pre_π, limit.map_π, assoc, limit.map_π, ←assoc, limit.pre_π]; refl
lemma limit.map_pre' [has_limits_of_shape K C]
(F : J ⥤ C) {E₁ E₂ : K ⥤ J} (α : E₁ ⟶ E₂) :
limit.pre F E₂ = limit.pre F E₁ ≫ lim.map (whisker_right α F) :=
by ext1; simp [← category.assoc]
lemma limit.id_pre (F : J ⥤ C) :
limit.pre F (𝟭 _) = lim.map (functor.left_unitor F).inv := by tidy
lemma limit.map_post {D : Type u'} [category.{v} D] [has_limits_of_shape J D] (H : C ⥤ D) :
/- H (limit F) ⟶ H (limit G) ⟶ limit (G ⋙ H) vs
H (limit F) ⟶ limit (F ⋙ H) ⟶ limit (G ⋙ H) -/
H.map (lim.map α) ≫ limit.post G H = limit.post F H ≫ lim.map (whisker_right α H) :=
begin
ext,
rw [assoc, limit.post_π, ←H.map_comp, limit.map_π, H.map_comp],
rw [assoc, limit.map_π, ←assoc, limit.post_π],
refl
end
/--
The isomorphism between
morphisms from `W` to the cone point of the limit cone for `F`
and cones over `F` with cone point `W`
is natural in `F`.
-/
def lim_yoneda : lim ⋙ yoneda ≅ category_theory.cones J C :=
nat_iso.of_components (λ F, nat_iso.of_components (λ W, limit.hom_iso F (unop W)) (by tidy))
(by tidy)
end lim_functor
/--
We can transport chosen limits of shape `J` along an equivalence `J ≌ J'`.
-/
def has_limits_of_shape_of_equivalence {J' : Type v} [small_category J']
(e : J ≌ J') [has_limits_of_shape J C] : has_limits_of_shape J' C :=
by { constructor, intro F, apply has_limit_of_equivalence_comp e, apply_instance }
end limit
section colimit
/-- `has_colimit F` represents a particular chosen colimit of the diagram `F`. -/
class has_colimit (F : J ⥤ C) :=
(cocone : cocone F)
(is_colimit : is_colimit cocone)
variables (J C)
/-- `C` has colimits of shape `J` if we have chosen a particular colimit of
every functor `F : J ⥤ C`. -/
class has_colimits_of_shape :=
(has_colimit : Π F : J ⥤ C, has_colimit F)
/-- `C` has all (small) colimits if it has colimits of every shape. -/
class has_colimits :=
(has_colimits_of_shape : Π (J : Type v) [𝒥 : small_category J], has_colimits_of_shape J C)
variables {J C}
@[priority 100] -- see Note [lower instance priority]
instance has_colimit_of_has_colimits_of_shape
{J : Type v} [small_category J] [H : has_colimits_of_shape J C] (F : J ⥤ C) : has_colimit F :=
has_colimits_of_shape.has_colimit F
@[priority 100] -- see Note [lower instance priority]
instance has_colimits_of_shape_of_has_colimits
{J : Type v} [small_category J] [H : has_colimits C] : has_colimits_of_shape J C :=
has_colimits.has_colimits_of_shape J
/- Interface to the `has_colimit` class. -/
/-- The chosen colimit cocone of a functor. -/
def colimit.cocone (F : J ⥤ C) [has_colimit F] : cocone F := has_colimit.cocone
/-- The chosen colimit object of a functor. -/
def colimit (F : J ⥤ C) [has_colimit F] := (colimit.cocone F).X
/-- The coprojection from a value of the functor to the chosen colimit object. -/
def colimit.ι (F : J ⥤ C) [has_colimit F] (j : J) : F.obj j ⟶ colimit F :=
(colimit.cocone F).ι.app j
@[simp] lemma colimit.cocone_ι {F : J ⥤ C} [has_colimit F] (j : J) :
(colimit.cocone F).ι.app j = colimit.ι _ j := rfl
@[simp] lemma colimit.w (F : J ⥤ C) [has_colimit F] {j j' : J} (f : j ⟶ j') :
F.map f ≫ colimit.ι F j' = colimit.ι F j := (colimit.cocone F).w f
/-- Evidence that the chosen cocone is a colimit cocone. -/
def colimit.is_colimit (F : J ⥤ C) [has_colimit F] : is_colimit (colimit.cocone F) :=
has_colimit.is_colimit
/-- The morphism from the chosen colimit object to the cone point of any other cocone. -/
def colimit.desc (F : J ⥤ C) [has_colimit F] (c : cocone F) : colimit F ⟶ c.X :=
(colimit.is_colimit F).desc c
@[simp] lemma colimit.is_colimit_desc {F : J ⥤ C} [has_colimit F] (c : cocone F) :
(colimit.is_colimit F).desc c = colimit.desc F c := rfl
/--
We have lots of lemmas describing how to simplify `colimit.ι F j ≫ _`,
and combined with `colimit.ext` we rely on these lemmas for many calculations.
However, since `category.assoc` is a `@[simp]` lemma, often expressions are
right associated, and it's hard to apply these lemmas about `colimit.ι`.
We thus use `reassoc` to define additional `@[simp]` lemmas, with an arbitrary extra morphism.
(see `tactic/reassoc_axiom.lean`)
-/
@[simp, reassoc] lemma colimit.ι_desc {F : J ⥤ C} [has_colimit F] (c : cocone F) (j : J) :
colimit.ι F j ≫ colimit.desc F c = c.ι.app j :=
is_colimit.fac _ c j
/-- The cocone morphism from the chosen colimit cocone to any cocone. -/
def colimit.cocone_morphism {F : J ⥤ C} [has_colimit F] (c : cocone F) :
(colimit.cocone F) ⟶ c :=
(colimit.is_colimit F).desc_cocone_morphism c
@[simp] lemma colimit.cocone_morphism_hom {F : J ⥤ C} [has_colimit F] (c : cocone F) :
(colimit.cocone_morphism c).hom = colimit.desc F c := rfl
lemma colimit.ι_cocone_morphism {F : J ⥤ C} [has_colimit F] (c : cocone F) (j : J) :
colimit.ι F j ≫ (colimit.cocone_morphism c).hom = c.ι.app j :=
by simp
@[ext] lemma colimit.hom_ext {F : J ⥤ C} [has_colimit F] {X : C} {f f' : colimit F ⟶ X}
(w : ∀ j, colimit.ι F j ≫ f = colimit.ι F j ≫ f') : f = f' :=
(colimit.is_colimit F).hom_ext w
/--
The isomorphism (in `Type`) between
morphisms from the colimit object to a specified object `W`,
and cocones with cone point `W`.
-/
def colimit.hom_iso (F : J ⥤ C) [has_colimit F] (W : C) : (colimit F ⟶ W) ≅ (F.cocones.obj W) :=
(colimit.is_colimit F).hom_iso W
@[simp] lemma colimit.hom_iso_hom (F : J ⥤ C) [has_colimit F] {W : C} (f : colimit F ⟶ W) :
(colimit.hom_iso F W).hom f = (colimit.cocone F).ι ≫ (const J).map f :=
(colimit.is_colimit F).hom_iso_hom f
/--
The isomorphism (in `Type`) between
morphisms from the colimit object to a specified object `W`,
and an explicit componentwise description of cocones with cone point `W`.
-/
def colimit.hom_iso' (F : J ⥤ C) [has_colimit F] (W : C) :
((colimit F ⟶ W) : Type v) ≅ { p : Π j, F.obj j ⟶ W // ∀ {j j'} (f : j ⟶ j'), F.map f ≫ p j' = p j } :=
(colimit.is_colimit F).hom_iso' W
lemma colimit.desc_extend (F : J ⥤ C) [has_colimit F] (c : cocone F) {X : C} (f : c.X ⟶ X) :
colimit.desc F (c.extend f) = colimit.desc F c ≫ f :=
begin
ext1, rw [←category.assoc], simp
end
/--
If we've chosen a colimit for a functor `F`,
we can transport that choice across a natural isomorphism.
-/
-- This has the isomorphism pointing in the opposite direction than in `has_limit_of_iso`.
-- This is intentional; it seems to help with elaboration.
def has_colimit_of_iso {F G : J ⥤ C} [has_colimit F] (α : G ≅ F) : has_colimit G :=
{ cocone := (cocones.precompose α.hom).obj (colimit.cocone F),
is_colimit :=
{ desc := λ s, colimit.desc F ((cocones.precompose α.inv).obj s),
fac' := λ s j,
begin
rw [cocones.precompose_obj_ι, nat_trans.comp_app, colimit.cocone_ι],
rw [category.assoc, colimit.ι_desc, ←nat_iso.app_hom, ←iso.eq_inv_comp], refl
end,
uniq' := λ s m w,
begin
apply colimit.hom_ext, intro j,
rw [colimit.ι_desc, cocones.precompose_obj_ι, nat_trans.comp_app, ←nat_iso.app_inv,
iso.eq_inv_comp],
simpa using w j
end } }
/-- If a functor `G` has the same collection of cocones as a functor `F`
which has a colimit, then `G` also has a colimit. -/
def has_colimit.of_cocones_iso {J K : Type v} [small_category J] [small_category K] (F : J ⥤ C) (G : K ⥤ C)
(h : F.cocones ≅ G.cocones) [has_colimit F] : has_colimit G :=
⟨_, is_colimit.of_nat_iso ((is_colimit.nat_iso (colimit.is_colimit F)) ≪≫ h)⟩
/--
The chosen colimits of `F : J ⥤ C` and `G : J ⥤ C` are isomorphic,
if the functors are naturally isomorphic.
-/
def has_colimit.iso_of_nat_iso {F G : J ⥤ C} [has_colimit F] [has_colimit G] (w : F ≅ G) :
colimit F ≅ colimit G :=
is_colimit.cocone_points_iso_of_nat_iso (colimit.is_colimit F) (colimit.is_colimit G) w
@[simp, reassoc]
lemma has_colimit.iso_of_nat_iso_ι_hom {F G : J ⥤ C} [has_colimit F] [has_colimit G]
(w : F ≅ G) (j : J) :
colimit.ι F j ≫ (has_colimit.iso_of_nat_iso w).hom = w.hom.app j ≫ colimit.ι G j :=
by simp [has_colimit.iso_of_nat_iso, is_colimit.cocone_points_iso_of_nat_iso_inv]
/--
The chosen colimits of `F : J ⥤ C` and `G : K ⥤ C` are isomorphic,
if there is an equivalence `e : J ≌ K` making the triangle commute up to natural isomorphism.
-/
def has_colimit.iso_of_equivalence {F : J ⥤ C} [has_colimit F] {G : K ⥤ C} [has_colimit G]
(e : J ≌ K) (w : e.functor ⋙ G ≅ F) : colimit F ≅ colimit G :=
is_colimit.cocone_points_iso_of_equivalence (colimit.is_colimit F) (colimit.is_colimit G) e w
@[simp]
lemma has_colimit.iso_of_equivalence_π {F : J ⥤ C} [has_colimit F] {G : K ⥤ C} [has_colimit G]
(e : J ≌ K) (w : e.functor ⋙ G ≅ F) (j : J) :
colimit.ι F j ≫ (has_colimit.iso_of_equivalence e w).hom =
F.map (e.unit.app j) ≫ w.inv.app _ ≫ colimit.ι G _ :=
begin
simp [has_colimit.iso_of_equivalence, is_colimit.cocone_points_iso_of_equivalence_inv],
dsimp,
simp,
end
section pre
variables (F) [has_colimit F] (E : K ⥤ J) [has_colimit (E ⋙ F)]
/--
The canonical morphism
from the chosen colimit of `E ⋙ F`
to the chosen colimit of `F`.
-/
def colimit.pre : colimit (E ⋙ F) ⟶ colimit F :=
colimit.desc (E ⋙ F)
{ X := colimit F,
ι := { app := λ k, colimit.ι F (E.obj k) } }
@[simp, reassoc] lemma colimit.ι_pre (k : K) : colimit.ι (E ⋙ F) k ≫ colimit.pre F E = colimit.ι F (E.obj k) :=
by erw is_colimit.fac
@[simp] lemma colimit.pre_desc (c : cocone F) :
colimit.pre F E ≫ colimit.desc F c = colimit.desc (E ⋙ F) (c.whisker E) :=
by ext; rw [←assoc, colimit.ι_pre]; simp
variables {L : Type v} [small_category L]
variables (D : L ⥤ K) [has_colimit (D ⋙ E ⋙ F)]
@[simp] lemma colimit.pre_pre : colimit.pre (E ⋙ F) D ≫ colimit.pre F E = colimit.pre F (D ⋙ E) :=
begin
ext j,
rw [←assoc, colimit.ι_pre, colimit.ι_pre],
letI : has_colimit ((D ⋙ E) ⋙ F) := show has_colimit (D ⋙ E ⋙ F), by apply_instance,
exact (colimit.ι_pre F (D ⋙ E) j).symm
end
end pre
section post
variables {D : Type u'} [category.{v} D]
variables (F) [has_colimit F] (G : C ⥤ D) [has_colimit (F ⋙ G)]
/--
The canonical morphism
from `G` applied to the chosen colimit of `F ⋙ G`
to `G` applied to the chosen colimit of `F`.
-/
def colimit.post : colimit (F ⋙ G) ⟶ G.obj (colimit F) :=
colimit.desc (F ⋙ G)
{ X := G.obj (colimit F),
ι :=
{ app := λ j, G.map (colimit.ι F j),
naturality' :=
by intros j j' f; erw [←G.map_comp, limits.cocone.w, comp_id]; refl } }
@[simp, reassoc] lemma colimit.ι_post (j : J) : colimit.ι (F ⋙ G) j ≫ colimit.post F G = G.map (colimit.ι F j) :=
by erw is_colimit.fac
@[simp] lemma colimit.post_desc (c : cocone F) :
colimit.post F G ≫ G.map (colimit.desc F c) = colimit.desc (F ⋙ G) (G.map_cocone c) :=
by ext; rw [←assoc, colimit.ι_post, ←G.map_comp, colimit.ι_desc, colimit.ι_desc]; refl
@[simp] lemma colimit.post_post
{E : Type u''} [category.{v} E] (H : D ⥤ E) [has_colimit ((F ⋙ G) ⋙ H)] :
/- H G (colimit F) ⟶ H (colimit (F ⋙ G)) ⟶ colimit ((F ⋙ G) ⋙ H) equals -/
/- H G (colimit F) ⟶ colimit (F ⋙ (G ⋙ H)) -/
colimit.post (F ⋙ G) H ≫ H.map (colimit.post F G) = colimit.post F (G ⋙ H) :=
begin
ext,
rw [←assoc, colimit.ι_post, ←H.map_comp, colimit.ι_post],
exact (colimit.ι_post F (G ⋙ H) j).symm
end
end post
lemma colimit.pre_post {D : Type u'} [category.{v} D]
(E : K ⥤ J) (F : J ⥤ C) (G : C ⥤ D)
[has_colimit F] [has_colimit (E ⋙ F)] [has_colimit (F ⋙ G)] [has_colimit ((E ⋙ F) ⋙ G)] :
/- G (colimit F) ⟶ G (colimit (E ⋙ F)) ⟶ colimit ((E ⋙ F) ⋙ G) vs -/
/- G (colimit F) ⟶ colimit F ⋙ G ⟶ colimit (E ⋙ (F ⋙ G)) or -/
colimit.post (E ⋙ F) G ≫ G.map (colimit.pre F E) = colimit.pre (F ⋙ G) E ≫ colimit.post F G :=
begin
ext,
rw [←assoc, colimit.ι_post, ←G.map_comp, colimit.ι_pre, ←assoc],
letI : has_colimit (E ⋙ F ⋙ G) := show has_colimit ((E ⋙ F) ⋙ G), by apply_instance,
erw [colimit.ι_pre (F ⋙ G) E j, colimit.ι_post]
end
open category_theory.equivalence
instance has_colimit_equivalence_comp (e : K ≌ J) [has_colimit F] : has_colimit (e.functor ⋙ F) :=
{ cocone := cocone.whisker e.functor (colimit.cocone F),
is_colimit := is_colimit.whisker_equivalence (colimit.is_colimit F) e, }
/--
If a `E ⋙ F` has a chosen colimit, and `E` is an equivalence, we can construct a chosen colimit of `F`.
-/
def has_colimit_of_equivalence_comp (e : K ≌ J) [has_colimit (e.functor ⋙ F)] : has_colimit F :=
begin
haveI : has_colimit (e.inverse ⋙ e.functor ⋙ F) := limits.has_colimit_equivalence_comp e.symm,
apply has_colimit_of_iso (e.inv_fun_id_assoc F).symm,
end
section colim_functor
/--
Functoriality of colimits.
Usually this morphism should be accessed through `colim.map`,
but may be needed separately when you have specified colimits for the source and target functors,
but not necessarily for all functors of shape `J`.
-/
def colim_map {F G : J ⥤ C} [has_colimit F] [has_colimit G] (α : F ⟶ G) : colimit F ⟶ colimit G :=
colimit.desc F
{ X := colimit G,
ι :=
{ app := λ j, α.app j ≫ colimit.ι G j,
naturality' := λ j j' f,
by erw [comp_id, ←assoc, α.naturality, assoc, colimit.w] } }
@[simp, reassoc]
lemma ι_colim_map {F G : J ⥤ C} [has_colimit F] [has_colimit G] (α : F ⟶ G) (j : J) :
colimit.ι F j ≫ colim_map α = α.app j ≫ colimit.ι G j :=
by apply is_colimit.fac
variables [has_colimits_of_shape J C]
section
local attribute [simp] colim_map
/-- `colimit F` is functorial in `F`, when `C` has all colimits of shape `J`. -/
def colim : (J ⥤ C) ⥤ C :=
{ obj := λ F, colimit F,
map := λ F G α, colim_map α,
map_comp' := λ F G H α β,
by ext; erw [←assoc, is_colimit.fac, is_colimit.fac, assoc, is_colimit.fac, ←assoc]; refl }
end
variables {F} {G : J ⥤ C} (α : F ⟶ G)
@[simp, reassoc] lemma colimit.ι_map (j : J) : colimit.ι F j ≫ colim.map α = α.app j ≫ colimit.ι G j :=
by apply is_colimit.fac
@[simp] lemma colimit.map_desc (c : cocone G) :
colim.map α ≫ colimit.desc G c = colimit.desc F ((cocones.precompose α).obj c) :=
by ext; rw [←assoc, colimit.ι_map, assoc, colimit.ι_desc, colimit.ι_desc]; refl
lemma colimit.pre_map [has_colimits_of_shape K C] (E : K ⥤ J) :
colimit.pre F E ≫ colim.map α = colim.map (whisker_left E α) ≫ colimit.pre G E :=
by ext; rw [←assoc, colimit.ι_pre, colimit.ι_map, ←assoc, colimit.ι_map, assoc, colimit.ι_pre]; refl
lemma colimit.pre_map' [has_colimits_of_shape K C]
(F : J ⥤ C) {E₁ E₂ : K ⥤ J} (α : E₁ ⟶ E₂) :
colimit.pre F E₁ = colim.map (whisker_right α F) ≫ colimit.pre F E₂ :=
by ext1; simp [← category.assoc]
lemma colimit.pre_id (F : J ⥤ C) :
colimit.pre F (𝟭 _) = colim.map (functor.left_unitor F).hom := by tidy
lemma colimit.map_post {D : Type u'} [category.{v} D] [has_colimits_of_shape J D] (H : C ⥤ D) :
/- H (colimit F) ⟶ H (colimit G) ⟶ colimit (G ⋙ H) vs
H (colimit F) ⟶ colimit (F ⋙ H) ⟶ colimit (G ⋙ H) -/
colimit.post F H ≫ H.map (colim.map α) = colim.map (whisker_right α H) ≫ colimit.post G H:=
begin
ext,
rw [←assoc, colimit.ι_post, ←H.map_comp, colimit.ι_map, H.map_comp],
rw [←assoc, colimit.ι_map, assoc, colimit.ι_post],
refl
end
/--
The isomorphism between
morphisms from the cone point of the chosen colimit cocone for `F` to `W`
and cocones over `F` with cone point `W`
is natural in `F`.
-/
def colim_coyoneda : colim.op ⋙ coyoneda ≅ category_theory.cocones J C :=
nat_iso.of_components (λ F, nat_iso.of_components (colimit.hom_iso (unop F)) (by tidy))
(by tidy)
end colim_functor
/--
We can transport chosen colimits of shape `J` along an equivalence `J ≌ J'`.
-/
def has_colimits_of_shape_of_equivalence {J' : Type v} [small_category J']
(e : J ≌ J') [has_colimits_of_shape J C] : has_colimits_of_shape J' C :=
by { constructor, intro F, apply has_colimit_of_equivalence_comp e, apply_instance }
end colimit
end category_theory.limits
|
7ea18a6aa36f3fb0f53689410984d50235a917cd
|
c777c32c8e484e195053731103c5e52af26a25d1
|
/src/topology/metric_space/partition_of_unity.lean
|
9b79f18b41305dd6e1e563d29f473b639e294718
|
[
"Apache-2.0"
] |
permissive
|
kbuzzard/mathlib
|
2ff9e85dfe2a46f4b291927f983afec17e946eb8
|
58537299e922f9c77df76cb613910914a479c1f7
|
refs/heads/master
| 1,685,313,702,744
| 1,683,974,212,000
| 1,683,974,212,000
| 128,185,277
| 1
| 0
| null | 1,522,920,600,000
| 1,522,920,600,000
| null |
UTF-8
|
Lean
| false
| false
| 8,191
|
lean
|
/-
Copyright (c) 2022 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov
-/
import topology.metric_space.emetric_paracompact
import analysis.convex.partition_of_unity
/-!
# Lemmas about (e)metric spaces that need partition of unity
The main lemma in this file (see `metric.exists_continuous_real_forall_closed_ball_subset`) says the
following. Let `X` be a metric space. Let `K : ι → set X` be a locally finite family of closed sets,
let `U : ι → set X` be a family of open sets such that `K i ⊆ U i` for all `i`. Then there exists a
positive continuous function `δ : C(X, → ℝ)` such that for any `i` and `x ∈ K i`, we have
`metric.closed_ball x (δ x) ⊆ U i`. We also formulate versions of this lemma for extended metric
spaces and for different codomains (`ℝ`, `ℝ≥0`, and `ℝ≥0∞`).
We also prove a few auxiliary lemmas to be used later in a proof of the smooth version of this
lemma.
## Tags
metric space, partition of unity, locally finite
-/
open_locale topology ennreal big_operators nnreal filter
open set function filter topological_space
variables {ι X : Type*}
namespace emetric
variables [emetric_space X] {K : ι → set X} {U : ι → set X}
/-- Let `K : ι → set X` be a locally finitie family of closed sets in an emetric space. Let
`U : ι → set X` be a family of open sets such that `K i ⊆ U i` for all `i`. Then for any point
`x : X`, for sufficiently small `r : ℝ≥0∞` and for `y` sufficiently close to `x`, for all `i`, if
`y ∈ K i`, then `emetric.closed_ball y r ⊆ U i`. -/
lemma eventually_nhds_zero_forall_closed_ball_subset (hK : ∀ i, is_closed (K i))
(hU : ∀ i, is_open (U i)) (hKU : ∀ i, K i ⊆ U i) (hfin : locally_finite K) (x : X) :
∀ᶠ p : ℝ≥0∞ × X in 𝓝 0 ×ᶠ 𝓝 x, ∀ i, p.2 ∈ K i → closed_ball p.2 p.1 ⊆ U i :=
begin
suffices : ∀ i, x ∈ K i → ∀ᶠ p : ℝ≥0∞ × X in 𝓝 0 ×ᶠ 𝓝 x, closed_ball p.2 p.1 ⊆ U i,
{ filter_upwards [tendsto_snd (hfin.Inter_compl_mem_nhds hK x),
(eventually_all_finite (hfin.point_finite x)).2 this],
rintro ⟨r, y⟩ hxy hyU i hi,
simp only [mem_Inter₂, mem_compl_iff, not_imp_not, mem_preimage] at hxy,
exact hyU _ (hxy _ hi) },
intros i hi,
rcases nhds_basis_closed_eball.mem_iff.1 ((hU i).mem_nhds $ hKU i hi) with ⟨R, hR₀, hR⟩,
rcases ennreal.lt_iff_exists_nnreal_btwn.mp hR₀ with ⟨r, hr₀, hrR⟩,
filter_upwards [prod_mem_prod (eventually_lt_nhds hr₀)
(closed_ball_mem_nhds x (tsub_pos_iff_lt.2 hrR))] with p hp z hz,
apply hR,
calc edist z x ≤ edist z p.2 + edist p.2 x : edist_triangle _ _ _
... ≤ p.1 + (R - p.1) : add_le_add hz $ le_trans hp.2 $ tsub_le_tsub_left hp.1.out.le _
... = R : add_tsub_cancel_of_le (lt_trans hp.1 hrR).le,
end
lemma exists_forall_closed_ball_subset_aux₁ (hK : ∀ i, is_closed (K i))
(hU : ∀ i, is_open (U i)) (hKU : ∀ i, K i ⊆ U i) (hfin : locally_finite K) (x : X) :
∃ r : ℝ, ∀ᶠ y in 𝓝 x, r ∈ Ioi (0 : ℝ) ∩
ennreal.of_real ⁻¹' ⋂ i (hi : y ∈ K i), {r | closed_ball y r ⊆ U i} :=
begin
have := (ennreal.continuous_of_real.tendsto' 0 0 ennreal.of_real_zero).eventually
(eventually_nhds_zero_forall_closed_ball_subset hK hU hKU hfin x).curry,
rcases this.exists_gt with ⟨r, hr0, hr⟩,
refine ⟨r, hr.mono (λ y hy, ⟨hr0, _⟩)⟩,
rwa [mem_preimage, mem_Inter₂]
end
lemma exists_forall_closed_ball_subset_aux₂ (y : X) :
convex ℝ (Ioi (0 : ℝ) ∩ ennreal.of_real ⁻¹' ⋂ i (hi : y ∈ K i), {r | closed_ball y r ⊆ U i}) :=
(convex_Ioi _).inter $ ord_connected.convex $ ord_connected.preimage_ennreal_of_real $
ord_connected_Inter $ λ i, ord_connected_Inter $
λ hi, ord_connected_set_of_closed_ball_subset y (U i)
/-- Let `X` be an extended metric space. Let `K : ι → set X` be a locally finite family of closed
sets, let `U : ι → set X` be a family of open sets such that `K i ⊆ U i` for all `i`. Then there
exists a positive continuous function `δ : C(X, ℝ)` such that for any `i` and `x ∈ K i`,
we have `emetric.closed_ball x (ennreal.of_real (δ x)) ⊆ U i`. -/
lemma exists_continuous_real_forall_closed_ball_subset (hK : ∀ i, is_closed (K i))
(hU : ∀ i, is_open (U i)) (hKU : ∀ i, K i ⊆ U i) (hfin : locally_finite K) :
∃ δ : C(X, ℝ), (∀ x, 0 < δ x) ∧ ∀ i (x ∈ K i), closed_ball x (ennreal.of_real $ δ x) ⊆ U i :=
by simpa only [mem_inter_iff, forall_and_distrib, mem_preimage, mem_Inter, @forall_swap ι X]
using exists_continuous_forall_mem_convex_of_local_const exists_forall_closed_ball_subset_aux₂
(exists_forall_closed_ball_subset_aux₁ hK hU hKU hfin)
/-- Let `X` be an extended metric space. Let `K : ι → set X` be a locally finite family of closed
sets, let `U : ι → set X` be a family of open sets such that `K i ⊆ U i` for all `i`. Then there
exists a positive continuous function `δ : C(X, ℝ≥0)` such that for any `i` and `x ∈ K i`,
we have `emetric.closed_ball x (δ x) ⊆ U i`. -/
lemma exists_continuous_nnreal_forall_closed_ball_subset (hK : ∀ i, is_closed (K i))
(hU : ∀ i, is_open (U i)) (hKU : ∀ i, K i ⊆ U i) (hfin : locally_finite K) :
∃ δ : C(X, ℝ≥0), (∀ x, 0 < δ x) ∧ ∀ i (x ∈ K i), closed_ball x (δ x) ⊆ U i :=
begin
rcases exists_continuous_real_forall_closed_ball_subset hK hU hKU hfin with ⟨δ, hδ₀, hδ⟩,
lift δ to C(X, ℝ≥0) using λ x, (hδ₀ x).le,
refine ⟨δ, hδ₀, λ i x hi, _⟩,
simpa only [← ennreal.of_real_coe_nnreal] using hδ i x hi
end
/-- Let `X` be an extended metric space. Let `K : ι → set X` be a locally finite family of closed
sets, let `U : ι → set X` be a family of open sets such that `K i ⊆ U i` for all `i`. Then there
exists a positive continuous function `δ : C(X, ℝ≥0∞)` such that for any `i` and `x ∈ K i`,
we have `emetric.closed_ball x (δ x) ⊆ U i`. -/
lemma exists_continuous_ennreal_forall_closed_ball_subset (hK : ∀ i, is_closed (K i))
(hU : ∀ i, is_open (U i)) (hKU : ∀ i, K i ⊆ U i) (hfin : locally_finite K) :
∃ δ : C(X, ℝ≥0∞), (∀ x, 0 < δ x) ∧ ∀ i (x ∈ K i), closed_ball x (δ x) ⊆ U i :=
let ⟨δ, hδ₀, hδ⟩ := exists_continuous_nnreal_forall_closed_ball_subset hK hU hKU hfin
in ⟨continuous_map.comp ⟨coe, ennreal.continuous_coe⟩ δ, λ x, ennreal.coe_pos.2 (hδ₀ x), hδ⟩
end emetric
namespace metric
variables [metric_space X] {K : ι → set X} {U : ι → set X}
/-- Let `X` be a metric space. Let `K : ι → set X` be a locally finite family of closed sets, let
`U : ι → set X` be a family of open sets such that `K i ⊆ U i` for all `i`. Then there exists a
positive continuous function `δ : C(X, ℝ≥0)` such that for any `i` and `x ∈ K i`, we have
`metric.closed_ball x (δ x) ⊆ U i`. -/
lemma exists_continuous_nnreal_forall_closed_ball_subset (hK : ∀ i, is_closed (K i))
(hU : ∀ i, is_open (U i)) (hKU : ∀ i, K i ⊆ U i) (hfin : locally_finite K) :
∃ δ : C(X, ℝ≥0), (∀ x, 0 < δ x) ∧ ∀ i (x ∈ K i), closed_ball x (δ x) ⊆ U i :=
begin
rcases emetric.exists_continuous_nnreal_forall_closed_ball_subset hK hU hKU hfin
with ⟨δ, hδ0, hδ⟩,
refine ⟨δ, hδ0, λ i x hx, _⟩,
rw [← emetric_closed_ball_nnreal],
exact hδ i x hx
end
/-- Let `X` be a metric space. Let `K : ι → set X` be a locally finite family of closed sets, let
`U : ι → set X` be a family of open sets such that `K i ⊆ U i` for all `i`. Then there exists a
positive continuous function `δ : C(X, ℝ)` such that for any `i` and `x ∈ K i`, we have
`metric.closed_ball x (δ x) ⊆ U i`. -/
lemma exists_continuous_real_forall_closed_ball_subset (hK : ∀ i, is_closed (K i))
(hU : ∀ i, is_open (U i)) (hKU : ∀ i, K i ⊆ U i) (hfin : locally_finite K) :
∃ δ : C(X, ℝ), (∀ x, 0 < δ x) ∧ ∀ i (x ∈ K i), closed_ball x (δ x) ⊆ U i :=
let ⟨δ, hδ₀, hδ⟩ := exists_continuous_nnreal_forall_closed_ball_subset hK hU hKU hfin
in ⟨continuous_map.comp ⟨coe, nnreal.continuous_coe⟩ δ, hδ₀, hδ⟩
end metric
|
fc884f827ff73d2da5f20f511ac856fe91ee88bd
|
59a4b050600ed7b3d5826a8478db0a9bdc190252
|
/src/category_theory/limits/terminal.lean
|
dca93dbf7bca2fd8afcda0f5fa4026c27b903bc9
|
[] |
no_license
|
rwbarton/lean-category-theory
|
f720268d800b62a25d69842ca7b5d27822f00652
|
00df814d463406b7a13a56f5dcda67758ba1b419
|
refs/heads/master
| 1,585,366,296,767
| 1,536,151,349,000
| 1,536,151,349,000
| 147,652,096
| 0
| 0
| null | 1,536,226,960,000
| 1,536,226,960,000
| null |
UTF-8
|
Lean
| false
| false
| 2,956
|
lean
|
-- Copyright (c) 2018 Scott Morrison. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Authors: Scott Morrison, Reid Barton, Mario Carneiro
import category_theory.limits.shape
import category_theory.filtered
open category_theory
namespace category_theory.limits
universes u v w
variables {C : Type u} [𝒞 : category.{u v} C]
include 𝒞
section terminal
class is_terminal (t : C) :=
(lift : ∀ (s : C), s ⟶ t)
(uniq' : ∀ (s : C) (m : s ⟶ t), m = lift s . obviously)
restate_axiom is_terminal.uniq'
attribute [search,back'] is_terminal.uniq
@[extensionality] lemma is_terminal.ext {X : C} (P Q : is_terminal.{u v} X) : P = Q :=
begin tactic.unfreeze_local_instances, cases P, cases Q, congr, obviously, end
instance hom_to_terminal_subsingleton (X' : C) (X : C) [is_terminal.{u v} X] : subsingleton (X' ⟶ X) :=
begin
fsplit, intros f g,
rw is_terminal.uniq X X' f,
rw is_terminal.uniq X X' g,
end
end terminal
section initial
class is_initial (t : C) :=
(desc : ∀ (s : C), t ⟶ s)
(uniq' : ∀ (s : C) (m : t ⟶ s), m = desc s . obviously)
restate_axiom is_initial.uniq'
attribute [search,back'] is_initial.uniq
@[extensionality] lemma is_initial.ext {X : C} (P Q : is_initial.{u v} X) : P = Q :=
begin tactic.unfreeze_local_instances, cases P, cases Q, congr, obviously, end
instance hom_from_initial_subsingleton (X' : C) (X : C) [is_initial.{u v} X'] : subsingleton (X' ⟶ X) :=
begin
fsplit, intros f g,
rw is_initial.uniq X' X f,
rw is_initial.uniq X' X g,
end
end initial
variable (C)
class has_terminal_object :=
(terminal : C)
(is_terminal : is_terminal.{u v} terminal . obviously)
class has_initial_object :=
(initial : C)
(is_initial : is_initial.{u v} initial . obviously)
def terminal_object [has_terminal_object.{u v} C] : C := has_terminal_object.terminal.{u v} C
def initial_object [has_initial_object.{u v} C] : C := has_initial_object.initial.{u v} C
variable {C}
section
variables [has_terminal_object.{u v} C]
instance terminal_object.universal_property : is_terminal.{u v} (terminal_object.{u v} C) :=
has_terminal_object.is_terminal.{u v} C
def terminal_object.hom (X : C) : (X ⟶ terminal_object.{u v} C) :=
is_terminal.lift.{u v} (terminal_object.{u v} C) X
@[extensionality] lemma terminal.hom_ext {X' : C} (f g : X' ⟶ terminal_object.{u v} C) : f = g :=
begin
rw is_terminal.uniq _ _ f,
rw is_terminal.uniq _ _ g,
end
end
section
variables [has_initial_object.{u v} C]
instance initial_object.universal_property : is_initial.{u v} (initial_object.{u v} C) :=
has_initial_object.is_initial.{u v} C
def initial_object.hom (X : C) : (initial_object.{u v} C ⟶ X) :=
is_initial.desc.{u v} (initial_object.{u v} C) X
@[extensionality] lemma initial.hom_ext {X' : C} (f g : initial_object.{u v} C ⟶ X') : f = g :=
begin
rw is_initial.uniq _ _ f,
rw is_initial.uniq _ _ g,
end
end
end category_theory.limits
|
0f42648125ab7e39c7a0a766dc94d0d77700bb1d
|
32025d5c2d6e33ad3b6dd8a3c91e1e838066a7f7
|
/tests/lean/run/new_frontend2.lean
|
b6ddbd1786e59d58026564f6a5ca70c989c90942
|
[
"Apache-2.0"
] |
permissive
|
walterhu1015/lean4
|
b2c71b688975177402758924eaa513475ed6ce72
|
2214d81e84646a905d0b20b032c89caf89c737ad
|
refs/heads/master
| 1,671,342,096,906
| 1,599,695,985,000
| 1,599,695,985,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 403
|
lean
|
new_frontend
declare_syntax_cat foo
variable {m : Type → Type}
variable [s : Functor m]
#check @Nat.rec
#check s.map
/-
The following doesn't work because
```
variable [r : Monad m]
#check r.map
```
because `Monad.to* methods have bad binder annotations
-/
theorem aux (a b c : Nat) (h₁ : a = b) (h₂ : c = b) : a = c :=
by {
let! aux := h₂.symm;
subst aux;
subst h₁;
exact rfl
}
|
94b3f8b55eec976f84d6cd2ff278c8290b95e8f9
|
a9d0fb7b0e4f802bd3857b803e6c5c23d87fef91
|
/tests/lean/elab12.lean
|
0028a87e0ab596a27d11ba6ad07ba061e7363ded
|
[
"Apache-2.0"
] |
permissive
|
soonhokong/lean-osx
|
4a954262c780e404c1369d6c06516161d07fcb40
|
3670278342d2f4faa49d95b46d86642d7875b47c
|
refs/heads/master
| 1,611,410,334,552
| 1,474,425,686,000
| 1,474,425,686,000
| 12,043,103
| 5
| 1
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 388
|
lean
|
check (take a : nat, have H : 0, from rfl a,
(H a a) : ∀ a : nat, a = a)
check (take a : nat, have H : a = a, from rfl a,
(H a a) : ∀ a : nat, a = a)
check (take a : nat, have H : a = a, from a + 0,
(H a a) : ∀ a : nat, a = a)
check (take a : nat, have H : a = a, from rfl,
(H a) : ∀ a : nat, a = a)
check (take a : nat, have H : a = a, from rfl,
H : ∀ a : nat, a = a)
|
681446f8c21ce62e80e02ca0110b3775e0a985be
|
a0e23cfdd129a671bf3154ee1a8a3a72bf4c7940
|
/stage0/src/Lean/Attributes.lean
|
26d36b60df591bc0d6c6a40c4b5b3fdccd8cd74d
|
[
"Apache-2.0"
] |
permissive
|
WojciechKarpiel/lean4
|
7f89706b8e3c1f942b83a2c91a3a00b05da0e65b
|
f6e1314fa08293dea66a329e05b6c196a0189163
|
refs/heads/master
| 1,686,633,402,214
| 1,625,821,189,000
| 1,625,821,258,000
| 384,640,886
| 0
| 0
|
Apache-2.0
| 1,625,903,617,000
| 1,625,903,026,000
| null |
UTF-8
|
Lean
| false
| false
| 18,836
|
lean
|
/-
Copyright (c) 2019 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
-/
import Lean.Syntax
import Lean.CoreM
import Lean.ResolveName
namespace Lean
inductive AttributeApplicationTime where
| afterTypeChecking | afterCompilation | beforeElaboration
deriving Inhabited, BEq
abbrev AttrM := CoreM
instance : MonadLift ImportM AttrM where
monadLift x := do liftM (m := IO) (x { env := (← getEnv), opts := (← getOptions) })
structure AttributeImplCore where
name : Name
descr : String
applicationTime := AttributeApplicationTime.afterTypeChecking
deriving Inhabited
inductive AttributeKind
| «global» | «local» | «scoped»
deriving BEq
instance : ToString AttributeKind where
toString
| AttributeKind.global => "global"
| AttributeKind.local => "local"
| AttributeKind.scoped => "scoped"
structure AttributeImpl extends AttributeImplCore where
add (decl : Name) (stx : Syntax) (kind : AttributeKind) : AttrM Unit
erase (decl : Name) : AttrM Unit := throwError "attribute cannot be erased"
deriving Inhabited
open Std (PersistentHashMap)
builtin_initialize attributeMapRef : IO.Ref (PersistentHashMap Name AttributeImpl) ← IO.mkRef {}
/- Low level attribute registration function. -/
def registerBuiltinAttribute (attr : AttributeImpl) : IO Unit := do
let m ← attributeMapRef.get
if m.contains attr.name then throw (IO.userError ("invalid builtin attribute declaration, '" ++ toString attr.name ++ "' has already been used"))
unless (← IO.initializing) do throw (IO.userError "failed to register attribute, attributes can only be registered during initialization")
attributeMapRef.modify fun m => m.insert attr.name attr
abbrev AttributeImplBuilder := List DataValue → Except String AttributeImpl
abbrev AttributeImplBuilderTable := Std.HashMap Name AttributeImplBuilder
builtin_initialize attributeImplBuilderTableRef : IO.Ref AttributeImplBuilderTable ← IO.mkRef {}
def registerAttributeImplBuilder (builderId : Name) (builder : AttributeImplBuilder) : IO Unit := do
let table ← attributeImplBuilderTableRef.get
if table.contains builderId then throw (IO.userError ("attribute implementation builder '" ++ toString builderId ++ "' has already been declared"))
attributeImplBuilderTableRef.modify fun table => table.insert builderId builder
def mkAttributeImplOfBuilder (builderId : Name) (args : List DataValue) : IO AttributeImpl := do
let table ← attributeImplBuilderTableRef.get
match table.find? builderId with
| none => throw (IO.userError ("unknown attribute implementation builder '" ++ toString builderId ++ "'"))
| some builder => IO.ofExcept $ builder args
inductive AttributeExtensionOLeanEntry where
| decl (declName : Name) -- `declName` has type `AttributeImpl`
| builder (builderId : Name) (args : List DataValue)
structure AttributeExtensionState where
newEntries : List AttributeExtensionOLeanEntry := []
map : PersistentHashMap Name AttributeImpl
deriving Inhabited
abbrev AttributeExtension := PersistentEnvExtension AttributeExtensionOLeanEntry (AttributeExtensionOLeanEntry × AttributeImpl) AttributeExtensionState
private def AttributeExtension.mkInitial : IO AttributeExtensionState := do
let map ← attributeMapRef.get
pure { map := map }
unsafe def mkAttributeImplOfConstantUnsafe (env : Environment) (opts : Options) (declName : Name) : Except String AttributeImpl :=
match env.find? declName with
| none => throw ("unknow constant '" ++ toString declName ++ "'")
| some info =>
match info.type with
| Expr.const `Lean.AttributeImpl _ _ => env.evalConst AttributeImpl opts declName
| _ => throw ("unexpected attribute implementation type at '" ++ toString declName ++ "' (`AttributeImpl` expected")
@[implementedBy mkAttributeImplOfConstantUnsafe]
constant mkAttributeImplOfConstant (env : Environment) (opts : Options) (declName : Name) : Except String AttributeImpl
def mkAttributeImplOfEntry (env : Environment) (opts : Options) (e : AttributeExtensionOLeanEntry) : IO AttributeImpl :=
match e with
| AttributeExtensionOLeanEntry.decl declName => IO.ofExcept $ mkAttributeImplOfConstant env opts declName
| AttributeExtensionOLeanEntry.builder builderId args => mkAttributeImplOfBuilder builderId args
private def AttributeExtension.addImported (es : Array (Array AttributeExtensionOLeanEntry)) : ImportM AttributeExtensionState := do
let ctx ← read
let map ← attributeMapRef.get
let map ← es.foldlM
(fun map entries =>
entries.foldlM
(fun (map : PersistentHashMap Name AttributeImpl) entry => do
let attrImpl ← liftM $ mkAttributeImplOfEntry ctx.env ctx.opts entry
pure $ map.insert attrImpl.name attrImpl)
map)
map
pure { map := map }
private def addAttrEntry (s : AttributeExtensionState) (e : AttributeExtensionOLeanEntry × AttributeImpl) : AttributeExtensionState :=
{ s with map := s.map.insert e.2.name e.2, newEntries := e.1 :: s.newEntries }
builtin_initialize attributeExtension : AttributeExtension ←
registerPersistentEnvExtension {
name := `attrExt,
mkInitial := AttributeExtension.mkInitial,
addImportedFn := AttributeExtension.addImported,
addEntryFn := addAttrEntry,
exportEntriesFn := fun s => s.newEntries.reverse.toArray,
statsFn := fun s => format "number of local entries: " ++ format s.newEntries.length
}
/- Return true iff `n` is the name of a registered attribute. -/
@[export lean_is_attribute]
def isBuiltinAttribute (n : Name) : IO Bool := do
let m ← attributeMapRef.get; pure (m.contains n)
/- Return the name of all registered attributes. -/
def getBuiltinAttributeNames : IO (List Name) := do
let m ← attributeMapRef.get; pure $ m.foldl (fun r n _ => n::r) []
def getBuiltinAttributeImpl (attrName : Name) : IO AttributeImpl := do
let m ← attributeMapRef.get
match m.find? attrName with
| some attr => pure attr
| none => throw (IO.userError ("unknown attribute '" ++ toString attrName ++ "'"))
@[export lean_attribute_application_time]
def getBuiltinAttributeApplicationTime (n : Name) : IO AttributeApplicationTime := do
let attr ← getBuiltinAttributeImpl n
pure attr.applicationTime
def isAttribute (env : Environment) (attrName : Name) : Bool :=
(attributeExtension.getState env).map.contains attrName
def getAttributeNames (env : Environment) : List Name :=
let m := (attributeExtension.getState env).map
m.foldl (fun r n _ => n::r) []
def getAttributeImpl (env : Environment) (attrName : Name) : Except String AttributeImpl :=
let m := (attributeExtension.getState env).map
match m.find? attrName with
| some attr => pure attr
| none => throw ("unknown attribute '" ++ toString attrName ++ "'")
def registerAttributeOfDecl (env : Environment) (opts : Options) (attrDeclName : Name) : Except String Environment := do
let attrImpl ← mkAttributeImplOfConstant env opts attrDeclName
if isAttribute env attrImpl.name then
throw ("invalid builtin attribute declaration, '" ++ toString attrImpl.name ++ "' has already been used")
else
pure $ attributeExtension.addEntry env (AttributeExtensionOLeanEntry.decl attrDeclName, attrImpl)
def registerAttributeOfBuilder (env : Environment) (builderId : Name) (args : List DataValue) : IO Environment := do
let attrImpl ← mkAttributeImplOfBuilder builderId args
if isAttribute env attrImpl.name then
throw (IO.userError ("invalid builtin attribute declaration, '" ++ toString attrImpl.name ++ "' has already been used"))
else
pure $ attributeExtension.addEntry env (AttributeExtensionOLeanEntry.builder builderId args, attrImpl)
def Attribute.add (declName : Name) (attrName : Name) (stx : Syntax) (kind := AttributeKind.global) : AttrM Unit := do
let attr ← ofExcept <| getAttributeImpl (← getEnv) attrName
attr.add declName stx kind
def Attribute.erase (declName : Name) (attrName : Name) : AttrM Unit := do
let attr ← ofExcept <| getAttributeImpl (← getEnv) attrName
attr.erase declName
/-
Helper methods for decoding the parameters of builtin attributes that are defined before `Lean.Parser`.
We have the following ones:
```
@[builtinAttrParser] def simple := leading_parser ident >> optional ident >> optional priorityParser
/- We can't use `simple` for `class`, `instance`, `export` and `macro` because they are keywords. -/
@[builtinAttrParser] def «class» := leading_parser "class"
@[builtinAttrParser] def «instance» := leading_parser "instance" >> optional priorityParser
@[builtinAttrParser] def «macro» := leading_parser "macro " >> ident
```
Note that we need the parsers for `class`, `instance`, and `macros` because they are keywords.
-/
def Attribute.Builtin.ensureNoArgs (stx : Syntax) : AttrM Unit := do
if stx.getKind == `Lean.Parser.Attr.simple && stx[1].isNone && stx[2].isNone then
return ()
else if stx.getKind == `Lean.Parser.Attr.«class» then
return ()
else match stx with
| Syntax.missing => return () -- In the elaborator, we use `Syntax.missing` when creating attribute views for simple attributes such as `class and `inline
| _ => throwErrorAt stx "unexpected attribute argument"
def Attribute.Builtin.getId (stx : Syntax) : AttrM Name := do
if stx.getKind == `Lean.Parser.Attr.simple && !stx[1].isNone then
if stx[1][0].isIdent then
return stx[1][0].getId
else
throwErrorAt stx "unexpected attribute argument, identifier expected"
/- We handle `macro` here because it is handled by the generic `KeyedDeclsAttribute -/
else if stx.getKind == `Lean.Parser.Attr.«macro» || stx.getKind == `Lean.Parser.Attr.«export» then
return stx[1].getId
else
throwErrorAt stx "unexpected attribute argument, identifier expected"
def Attribute.Builtin.getId? (stx : Syntax) : AttrM (Option Name) := do
if stx.getKind == `Lean.Parser.Attr.simple then
if stx[1].isNone then
return none
else
return stx[1][0].getId
else
throwErrorAt stx "unexpected attribute argument"
def getAttrParamOptPrio (optPrioStx : Syntax) : AttrM Nat :=
if optPrioStx.isNone then
return eval_prio default
else match optPrioStx[0].isNatLit? with
| some prio => return prio
| none => throwErrorAt optPrioStx "priority expected"
def Attribute.Builtin.getPrio (stx : Syntax) : AttrM Nat := do
if stx.getKind == `Lean.Parser.Attr.simple then
getAttrParamOptPrio stx[1]
else
throwErrorAt stx "unexpected attribute argument, optional priority expected"
/--
Tag attributes are simple and efficient. They are useful for marking declarations in the modules where
they were defined.
The startup cost for this kind of attribute is very small since `addImportedFn` is a constant function.
They provide the predicate `tagAttr.hasTag env decl` which returns true iff declaration `decl`
is tagged in the environment `env`. -/
structure TagAttribute where
attr : AttributeImpl
ext : PersistentEnvExtension Name Name NameSet
deriving Inhabited
def registerTagAttribute (name : Name) (descr : String) (validate : Name → AttrM Unit := fun _ => pure ()) : IO TagAttribute := do
let ext : PersistentEnvExtension Name Name NameSet ← registerPersistentEnvExtension {
name := name,
mkInitial := pure {},
addImportedFn := fun _ _ => pure {},
addEntryFn := fun (s : NameSet) n => s.insert n,
exportEntriesFn := fun es =>
let r : Array Name := es.fold (fun a e => a.push e) #[]
r.qsort Name.quickLt,
statsFn := fun s => "tag attribute" ++ Format.line ++ "number of local entries: " ++ format s.size
}
let attrImpl : AttributeImpl := {
name := name,
descr := descr,
add := fun decl stx kind => do
Attribute.Builtin.ensureNoArgs stx
unless kind == AttributeKind.global do throwError "invalid attribute '{name}', must be global"
let env ← getEnv
unless (env.getModuleIdxFor? decl).isNone do
throwError "invalid attribute '{name}', declaration is in an imported module"
validate decl
let env ← getEnv
setEnv $ ext.addEntry env decl
}
registerBuiltinAttribute attrImpl
pure { attr := attrImpl, ext := ext }
namespace TagAttribute
def hasTag (attr : TagAttribute) (env : Environment) (decl : Name) : Bool :=
match env.getModuleIdxFor? decl with
| some modIdx => (attr.ext.getModuleEntries env modIdx).binSearchContains decl Name.quickLt
| none => (attr.ext.getState env).contains decl
end TagAttribute
/--
A `TagAttribute` variant where we can attach parameters to attributes.
It is slightly more expensive and consumes a little bit more memory than `TagAttribute`.
They provide the function `pAttr.getParam env decl` which returns `some p` iff declaration `decl`
contains the attribute `pAttr` with parameter `p`. -/
structure ParametricAttribute (α : Type) where
attr : AttributeImpl
ext : PersistentEnvExtension (Name × α) (Name × α) (NameMap α)
deriving Inhabited
structure ParametricAttributeImpl (α : Type) extends AttributeImplCore where
getParam : Name → Syntax → AttrM α
afterSet : Name → α → AttrM Unit := fun env _ _ => pure ()
afterImport : Array (Array (Name × α)) → ImportM Unit := fun _ => pure ()
def registerParametricAttribute {α : Type} [Inhabited α] (impl : ParametricAttributeImpl α) : IO (ParametricAttribute α) := do
let ext : PersistentEnvExtension (Name × α) (Name × α) (NameMap α) ← registerPersistentEnvExtension {
name := impl.name,
mkInitial := pure {},
addImportedFn := fun s => impl.afterImport s *> pure {},
addEntryFn := fun (s : NameMap α) (p : Name × α) => s.insert p.1 p.2,
exportEntriesFn := fun m =>
let r : Array (Name × α) := m.fold (fun a n p => a.push (n, p)) #[]
r.qsort (fun a b => Name.quickLt a.1 b.1),
statsFn := fun s => "parametric attribute" ++ Format.line ++ "number of local entries: " ++ format s.size
}
let attrImpl : AttributeImpl := {
name := impl.name
descr := impl.descr
add := fun decl stx kind => do
unless kind == AttributeKind.global do throwError "invalid attribute '{impl.name}', must be global"
let env ← getEnv
unless (env.getModuleIdxFor? decl).isNone do
throwError "invalid attribute '{impl.name}', declaration is in an imported module"
let val ← impl.getParam decl stx
let env' := ext.addEntry env (decl, val)
setEnv env'
try impl.afterSet decl val catch _ => setEnv env
}
registerBuiltinAttribute attrImpl
pure { attr := attrImpl, ext := ext }
namespace ParametricAttribute
def getParam {α : Type} [Inhabited α] (attr : ParametricAttribute α) (env : Environment) (decl : Name) : Option α :=
match env.getModuleIdxFor? decl with
| some modIdx =>
match (attr.ext.getModuleEntries env modIdx).binSearch (decl, arbitrary) (fun a b => Name.quickLt a.1 b.1) with
| some (_, val) => some val
| none => none
| none => (attr.ext.getState env).find? decl
def setParam {α : Type} (attr : ParametricAttribute α) (env : Environment) (decl : Name) (param : α) : Except String Environment :=
if (env.getModuleIdxFor? decl).isSome then
Except.error ("invalid '" ++ toString attr.attr.name ++ "'.setParam, declaration is in an imported module")
else if ((attr.ext.getState env).find? decl).isSome then
Except.error ("invalid '" ++ toString attr.attr.name ++ "'.setParam, attribute has already been set")
else
Except.ok (attr.ext.addEntry env (decl, param))
end ParametricAttribute
/-
Given a list `[a₁, ..., a_n]` of elements of type `α`, `EnumAttributes` provides an attribute `Attr_i` for
associating a value `a_i` with an declaration. `α` is usually an enumeration type.
Note that whenever we register an `EnumAttributes`, we create `n` attributes, but only one environment extension. -/
structure EnumAttributes (α : Type) where
attrs : List AttributeImpl
ext : PersistentEnvExtension (Name × α) (Name × α) (NameMap α)
deriving Inhabited
def registerEnumAttributes {α : Type} [Inhabited α] (extName : Name) (attrDescrs : List (Name × String × α))
(validate : Name → α → AttrM Unit := fun _ _ => pure ())
(applicationTime := AttributeApplicationTime.afterTypeChecking) : IO (EnumAttributes α) := do
let ext : PersistentEnvExtension (Name × α) (Name × α) (NameMap α) ← registerPersistentEnvExtension {
name := extName,
mkInitial := pure {},
addImportedFn := fun _ _ => pure {},
addEntryFn := fun (s : NameMap α) (p : Name × α) => s.insert p.1 p.2,
exportEntriesFn := fun m =>
let r : Array (Name × α) := m.fold (fun a n p => a.push (n, p)) #[]
r.qsort (fun a b => Name.quickLt a.1 b.1),
statsFn := fun s => "enumeration attribute extension" ++ Format.line ++ "number of local entries: " ++ format s.size
}
let attrs := attrDescrs.map fun (name, descr, val) => {
name := name,
descr := descr,
add := fun decl stx kind => do
Attribute.Builtin.ensureNoArgs stx
unless kind == AttributeKind.global do throwError "invalid attribute '{name}', must be global"
let env ← getEnv
unless (env.getModuleIdxFor? decl).isNone do
throwError "invalid attribute '{name}', declaration is in an imported module"
validate decl val
setEnv $ ext.addEntry env (decl, val),
applicationTime := applicationTime
: AttributeImpl
}
attrs.forM registerBuiltinAttribute
pure { ext := ext, attrs := attrs }
namespace EnumAttributes
def getValue {α : Type} [Inhabited α] (attr : EnumAttributes α) (env : Environment) (decl : Name) : Option α :=
match env.getModuleIdxFor? decl with
| some modIdx =>
match (attr.ext.getModuleEntries env modIdx).binSearch (decl, arbitrary) (fun a b => Name.quickLt a.1 b.1) with
| some (_, val) => some val
| none => none
| none => (attr.ext.getState env).find? decl
def setValue {α : Type} (attrs : EnumAttributes α) (env : Environment) (decl : Name) (val : α) : Except String Environment :=
if (env.getModuleIdxFor? decl).isSome then
Except.error ("invalid '" ++ toString attrs.ext.name ++ "'.setValue, declaration is in an imported module")
else if ((attrs.ext.getState env).find? decl).isSome then
Except.error ("invalid '" ++ toString attrs.ext.name ++ "'.setValue, attribute has already been set")
else
Except.ok (attrs.ext.addEntry env (decl, val))
end EnumAttributes
end Lean
|
41acfd2bf6ababcc10256b6be3d2ec93dde0726c
|
94637389e03c919023691dcd05bd4411b1034aa5
|
/src/inClassNotes/higherOrderFunctions/compose.lean
|
f8c8cebdb0bdc350b35d5f57f2903fc8fd88a1e0
|
[] |
no_license
|
kevinsullivan/complogic-s21
|
7c4eef2105abad899e46502270d9829d913e8afc
|
99039501b770248c8ceb39890be5dfe129dc1082
|
refs/heads/master
| 1,682,985,669,944
| 1,621,126,241,000
| 1,621,126,241,000
| 335,706,272
| 0
| 38
| null | 1,618,325,669,000
| 1,612,374,118,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 504
|
lean
|
/-
Higher-order, universe-agnostic
function composition function. In
Lean this function is defined as
function.comp. It can be applied
using the infix notation, ∘, as
in the expression (g ∘ f), which
would be a function that first
applies f to its argument, then
applies g to the result, finally
returning that resulting value.
-/
universes u₁ u₂ u₃
def comp
{α : Type u₁}
{β : Type u₂}
{φ : Type u₃}
(g : β → φ)
(f: α → β) :
α → φ :=
fun a, g (f a)
|
fe9de99d108424716bd7dbafa6418194e9378de1
|
a721fe7446524f18ba361625fc01033d9c8b7a78
|
/src/principia/topology/quotients.lean
|
d5d144128d72363940986c43121f15a0a8cf84d5
|
[] |
no_license
|
Sterrs/leaning
|
8fd80d1f0a6117a220bb2e57ece639b9a63deadc
|
3901cc953694b33adda86cb88ca30ba99594db31
|
refs/heads/master
| 1,627,023,822,744
| 1,616,515,221,000
| 1,616,515,221,000
| 245,512,190
| 2
| 0
| null | 1,616,429,050,000
| 1,583,527,118,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 1,149
|
lean
|
import .topological_space
import .continuity
namespace hidden
namespace topological_space
variables {α β γ: Type}
open classical
local attribute [instance] classical.prop_decidable
def quotient_topology
(X: topological_space α) (R: setoid α):
topological_space (quotient R) := {
is_open := {V | X.is_open (myset.inverse_image quotient.mk V)},
-- equivalently:
-- is_open := {V | X.is_open {x: α | ⟦x⟧ ∈ V}},
univ_open :=
begin
from X.univ_open,
end,
empty_open :=
begin
from X.empty_open,
end,
open_union_open :=
begin
intro S,
assume hSo,
change X.is_open (myset.inverse_image quotient.mk (⋃₀ S)),
rw myset.inverse_image_sUnion,
apply X.open_union_open,
intro U,
assume hU,
cases hU with V hV,
rw ←hV.right,
apply hSo,
from hV.left,
end,
open_intersection_open :=
begin
intros U V,
assume hUo hVo,
apply X.open_intersection_open; assumption,
end,
}
theorem quotient_map_continuous
(X: topological_space α) (R: setoid α):
is_continuous X (quotient_topology X R) quotient.mk :=
λ U, iff.rfl.mp
end topological_space
end hidden
|
e60d4f6142ea980d6e7c6e7d5a107a12fbda7399
|
a9d0fb7b0e4f802bd3857b803e6c5c23d87fef91
|
/library/init/alternative.lean
|
5624e61cb3e5b2b879cb5b8dc6711a657e49a28f
|
[
"Apache-2.0"
] |
permissive
|
soonhokong/lean-osx
|
4a954262c780e404c1369d6c06516161d07fcb40
|
3670278342d2f4faa49d95b46d86642d7875b47c
|
refs/heads/master
| 1,611,410,334,552
| 1,474,425,686,000
| 1,474,425,686,000
| 12,043,103
| 5
| 1
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 839
|
lean
|
/-
Copyright (c) 2016 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
-/
prelude
import init.logic init.applicative
universe variables u v
structure [class] alternative (F : Type u → Type v) extends applicative F : Type (max u+1 v) :=
(failure : Π {A : Type u}, F A)
(orelse : Π {A : Type u}, F A → F A → F A)
attribute [inline]
definition failure {F : Type u → Type v} [alternative F] {A : Type u} : F A :=
alternative.failure F
attribute [inline]
definition orelse {F : Type u → Type v} [alternative F] {A : Type u} : F A → F A → F A :=
alternative.orelse
infixr ` <|> `:2 := orelse
attribute [inline]
definition guard {F : Type → Type v} [alternative F] (P : Prop) [decidable P] : F unit :=
if P then pure () else failure
|
669c54bce5a5e4b3b2a054cae3957955a8b95681
|
dc253be9829b840f15d96d986e0c13520b085033
|
/univalent_subcategory.hlean
|
e3425ca0258f1bfb9b08bc87c0dd26226e12845b
|
[
"Apache-2.0"
] |
permissive
|
cmu-phil/Spectral
|
4ce68e5c1ef2a812ffda5260e9f09f41b85ae0ea
|
3b078f5f1de251637decf04bd3fc8aa01930a6b3
|
refs/heads/master
| 1,685,119,195,535
| 1,684,169,772,000
| 1,684,169,772,000
| 46,450,197
| 42
| 13
| null | 1,505,516,767,000
| 1,447,883,921,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 14,833
|
hlean
|
import homotopy.sphere2 algebra.category.functor.attributes
open eq pointed sigma is_equiv equiv fiber algebra group is_trunc function prod prod.ops iso functor
namespace category
section univ_subcat
parameters {C : Precategory} {D : Category} (F : functor C D) (p : is_embedding F) (q : fully_faithful F)
variables {a b : carrier C}
include p q
definition eq_equiv_iso_of_fully_faithful : a = b ≃ a ≅ b :=
equiv.mk !ap !p -- a = b ≃ F a = F b
⬝e equiv.mk iso_of_eq !iso_of_path_equiv -- F a = F b ≃ F a ≅ F b
⬝e equiv.symm !iso_equiv_F_iso_F -- F a ≅ F b ≃ a ≅ b
definition eq_equiv_iso_of_fully_faithful_homot : @eq_equiv_iso_of_fully_faithful a b ~ iso_of_eq :=
begin
intro r,
esimp [eq_equiv_iso_of_fully_faithful],
refine _ ⬝ left_inv (iso_equiv_F_iso_F F _ _) _,
apply ap (inv (to_fun !iso_equiv_F_iso_F)),
apply symm,
induction r,
apply respect_refl
end
definition is_univalent_domain_of_fully_faithful_embedding : is_univalent C :=
begin
intros,
exact homotopy_closed eq_equiv_iso_of_fully_faithful eq_equiv_iso_of_fully_faithful_homot _
end
end univ_subcat
definition precategory_Group.{u} [instance] [constructor] : precategory.{u+1 u} Group :=
begin
fapply precategory.mk,
{ exact λG H, G →g H },
{ exact _ },
{ exact λG H K ψ φ, ψ ∘g φ },
{ exact λG, gid G },
{ intros, apply homomorphism_eq, esimp },
{ intros, apply homomorphism_eq, esimp },
{ intros, apply homomorphism_eq, esimp }
end
definition precategory_AbGroup.{u} [instance] [constructor] : precategory.{u+1 u} AbGroup :=
begin
fapply precategory.mk,
{ exact λG H, G →g H },
{ exact _ },
{ exact λG H K ψ φ, ψ ∘g φ },
{ exact λG, gid G },
{ intros, apply homomorphism_eq, esimp },
{ intros, apply homomorphism_eq, esimp },
{ intros, apply homomorphism_eq, esimp }
end
definition Group_is_iso_of_is_equiv {G H : Group} (φ : G →g H) (H : is_equiv (group_fun φ)) :
is_iso φ :=
begin
fconstructor,
{ exact (isomorphism.mk φ H)⁻¹ᵍ },
{ apply homomorphism_eq, rexact left_inv φ },
{ apply homomorphism_eq, rexact right_inv φ }
end
definition Group_is_equiv_of_is_iso {G H : Group} (φ : G ⟶ H) (Hφ : is_iso φ) :
is_equiv (group_fun φ) :=
begin
fapply adjointify,
{ exact group_fun φ⁻¹ʰ },
{ note p := right_inverse φ, exact ap010 group_fun p },
{ note p := left_inverse φ, exact ap010 group_fun p }
end
definition Group_iso_equiv (G H : Group) : (G ≅ H) ≃ (G ≃g H) :=
begin
fapply equiv.MK,
{ intro φ, induction φ with φ φi, constructor, exact Group_is_equiv_of_is_iso φ _ },
{ intro v, induction v with φ φe, constructor, exact Group_is_iso_of_is_equiv φ _ },
{ intro v, induction v with φ φe, apply isomorphism_eq, reflexivity },
{ intro φ, induction φ with φ φi, apply iso_eq, reflexivity }
end
definition Group_props.{u} {A : Type.{u}} (v : (A → A → A) × (A → A) × A) : Prop.{u} :=
begin
induction v with m v, induction v with i o,
fapply trunctype.mk,
{ exact is_set A × (Πa, m a o = a) × (Πa, m o a = a) × (Πa b c, m (m a b) c = m a (m b c)) ×
(Πa, m (i a) a = o) },
{ apply is_trunc_of_imp_is_trunc, intro v, induction v with H v,
have is_prop (Πa, m a o = a), from _,
have is_prop (Πa, m o a = a), from _,
have is_prop (Πa b c, m (m a b) c = m a (m b c)), from _,
have is_prop (Πa, m (i a) a = o), from _,
apply is_trunc_prod }
end
definition AbGroup_props.{u} {A : Type.{u}} (v : (A → A → A) × (A → A) × A) : Prop.{u} :=
begin
induction v with m v, induction v with i o,
fapply trunctype.mk,
{ exact is_set A × (Πa, m a o = a) × (Πa, m o a = a) × (Πa b c, m (m a b) c = m a (m b c)) ×
(Πa, m (i a) a = o) × (Πa b, m a b = m b a)},
{ apply is_trunc_of_imp_is_trunc, intro v, induction v with H v,
have is_prop (Πa, m a o = a), from _,
have is_prop (Πa, m o a = a), from _,
have is_prop (Πa b c, m (m a b) c = m a (m b c)), from _,
have is_prop (Πa, m (i a) a = o), from _,
have is_prop (Πa b, m a b = m b a), from _,
apply is_trunc_prod }
end
definition AbGroup_sigma.{u} : AbGroup.{u} ≃ Σ A : Type.{u}, ab_group A :=
begin repeat (assumption | induction a with a b | intro a | fconstructor) end
definition Group_sigma.{u} : Group.{u} ≃ Σ A : Type.{u}, group A :=
begin
fconstructor, exact λ a, dpair (Group.carrier a) (Group.struct' a),
repeat (assumption | induction a with a b | intro a | fconstructor)
end
definition group.sigma_char.{u} (A : Type) :
group.{u} A ≃ Σ (v : (A → A → A) × (A → A) × A), Group_props v :=
begin
fapply equiv.MK,
{intro g, induction g with m s ma o om mo i mi,
repeat (fconstructor; do 2 try assumption), },
{intro v, induction v with x v, repeat induction x with y x,
repeat induction v with x v, constructor, repeat assumption },
{ intro, repeat induction b with b x, induction x,
repeat induction x_1 with v x_1, reflexivity },
{ intro v, repeat induction v with x v, reflexivity },
end
definition Group.sigma_char2.{u} :
Group.{u} ≃ Σ(A : Type.{u}) (v : (A → A → A) × (A → A) × A), Group_props v :=
Group_sigma ⬝e sigma_equiv_sigma_right group.sigma_char
definition ab_group.sigma_char.{u} (A : Type) :
ab_group.{u} A ≃ Σ (v : (A → A → A) × (A → A) × A), AbGroup_props v :=
begin
fapply equiv.MK,
{intro g, induction g with m s ma o om mo i mi,
repeat (fconstructor; do 2 try assumption), },
{intro v, induction v with x v, repeat induction x with y x,
repeat induction v with x v, constructor, repeat assumption },
{ intro, repeat induction b with b x, induction x,
repeat induction x_1 with v x_1, reflexivity },
{ intro v, repeat induction v with x v, reflexivity },
end
definition AbGroup_Group_props {A : Type} (v : (A → A → A) × (A → A) × A) :
AbGroup_props v ≃ Group_props v × ∀ a b, v.1 a b = v.1 b a :=
begin
fapply equiv.MK, induction v with m v, induction v with i e,
intro, fconstructor, repeat induction a with b a, repeat (fconstructor; assumption), assumption,
exact a.2.2.2.2.2, intro, induction a, repeat induction v with b v, repeat induction a with b a,
repeat (fconstructor; assumption), assumption, intro b,
assert H : is_prop (Group_props v × ∀ a b, v.1 a b = v.1 b a),
apply is_trunc_prod, assert K : is_set A, induction b, induction v, induction a_1, induction a_2_1, assumption,
exact _, apply is_prop.elim, intro, apply is_prop.elim,
end
open sigma.ops
definition sigma_prod_equiv_sigma_sigma {A} {B C : A→Type} : (Σa, B a × C a) ≃ Σ p : (Σa, B a), C p.1 :=
sigma_equiv_sigma_right (λa, !sigma.equiv_prod⁻¹ᵉ) ⬝e !sigma_assoc_equiv'
definition ab_group_equiv_group_comm (A : Type) : ab_group A ≃ Σ (g : group A), ∀ a b : A, a * b = b * a :=
begin
refine !ab_group.sigma_char ⬝e _,
refine sigma_equiv_sigma_right AbGroup_Group_props ⬝e _,
refine sigma_prod_equiv_sigma_sigma ⬝e _,
apply equiv.symm, apply sigma_equiv_sigma !group.sigma_char, intros,
induction a, reflexivity
end
section
local attribute group.to_has_mul group.to_has_inv [coercion]
theorem inv_eq_of_mul_eq {A : Type} (G H : group A) (p : @mul A G ~2 @mul A H) :
@inv A G ~ @inv A H :=
begin
have foo : Π(g : A), @inv A G g = (@inv A G g * g) * @inv A H g,
from λg, !mul_inv_cancel_right⁻¹,
cases G with Gs Gm Gh1 G1 Gh2 Gh3 Gi Gh4,
cases H with Hs Hm Hh1 H1 Hh2 Hh3 Hi Hh4,
change Gi ~ Hi, intro g, have p' : Gm ~2 Hm, from p,
calc
Gi g = Hm (Hm (Gi g) g) (Hi g) : foo
... = Hm (Gm (Gi g) g) (Hi g) : by rewrite p'
... = Hm G1 (Hi g) : by rewrite Gh4
... = Gm G1 (Hi g) : by rewrite p'
... = Hi g : Gh2
end
theorem one_eq_of_mul_eq {A : Type} (G H : group A)
(p : @mul A (group.to_has_mul G) ~2 @mul A (group.to_has_mul H)) :
@one A (group.to_has_one G) = @one A (group.to_has_one H) :=
begin
cases G with Gm Gs Gh1 G1 Gh2 Gh3 Gi Gh4,
cases H with Hm Hs Hh1 H1 Hh2 Hh3 Hi Hh4,
exact (Hh2 G1)⁻¹ ⬝ (p H1 G1)⁻¹ ⬝ Gh3 H1,
end
end
definition group_of_Group_props.{u} {A : Type.{u}} {m : A → A → A} {i : A → A} {o : A}
(H : Group_props (m, (i, o))) : group A :=
⦃group, mul := m, inv := i, one := o, is_set_carrier := H.1,
mul_one := H.2.1, one_mul := H.2.2.1, mul_assoc := H.2.2.2.1, mul_left_inv := H.2.2.2.2⦄
theorem Group_eq_equiv_lemma2 {A : Type} {m m' : A → A → A} {i i' : A → A} {o o' : A}
(H : Group_props (m, (i, o))) (H' : Group_props (m', (i', o'))) :
(m, (i, o)) = (m', (i', o')) ≃ (m ~2 m') :=
begin
have is_set A, from pr1 H,
refine equiv_of_is_prop _ _ _ _,
{ intro p, exact apd100 (eq_pr1 p)},
{ intro p, apply prod_eq (eq_of_homotopy2 p),
apply prod_eq: esimp [Group_props] at *; esimp,
{ apply eq_of_homotopy,
exact inv_eq_of_mul_eq (group_of_Group_props H) (group_of_Group_props H') p },
{ exact one_eq_of_mul_eq (group_of_Group_props H) (group_of_Group_props H') p }}
end
open Group
theorem Group_eq_equiv_lemma {G H : Group}
(p : (sigma_char2 G).1 = (sigma_char2 H).1) :
((sigma_char2 G).2 =[p] (sigma_char2 H).2) ≃
(is_mul_hom (equiv_of_eq (proof p qed : Group.carrier G = Group.carrier H))) :=
begin
refine sigma_pathover_equiv_of_is_prop _ _ _ _ _ ⬝e _,
induction G with G g, induction H with H h,
esimp [sigma_char2] at p,
esimp [sigma_functor] at p, esimp [Group_sigma] at *,
induction p,
refine !pathover_idp ⬝e _,
induction g with s m ma o om mo i mi, induction h with σ μ μa ε εμ με ι μι,
exact Group_eq_equiv_lemma2 (sigma_char2 (Group.mk G (group.mk s m ma o om mo i mi))).2.2
(sigma_char2 (Group.mk G (group.mk σ μ μa ε εμ με ι μι))).2.2
end
definition isomorphism.sigma_char (G H : Group) : (G ≃g H) ≃ Σ(e : G ≃ H), is_mul_hom e :=
begin
fapply equiv.MK,
{ intro φ, exact ⟨equiv_of_isomorphism φ, to_respect_mul φ⟩ },
{ intro v, induction v with e p, exact isomorphism_of_equiv e p },
{ intro v, induction v with e p, induction e, reflexivity },
{ intro φ, induction φ with φ H, induction φ, reflexivity },
end
definition Group_eq_equiv (G H : Group) : G = H ≃ (G ≃g H) :=
begin
refine (eq_equiv_fn_eq sigma_char2 G H) ⬝e _,
refine !sigma_eq_equiv ⬝e _,
refine sigma_equiv_sigma_right Group_eq_equiv_lemma ⬝e _,
transitivity (Σ(e : (sigma_char2 G).1 ≃ (sigma_char2 H).1),
@is_mul_hom _ _ _ _ (to_fun e)), apply sigma_ua,
exact !isomorphism.sigma_char⁻¹ᵉ
end
definition to_fun_Group_eq_equiv {G H : Group} (p : G = H)
: Group_eq_equiv G H p ~ isomorphism_of_eq p :=
begin induction p, reflexivity end
definition Group_eq2 {G H : Group} {p q : G = H}
(r : isomorphism_of_eq p ~ isomorphism_of_eq q) : p = q :=
begin
apply inj (Group_eq_equiv G H),
apply isomorphism_eq,
intro g, refine to_fun_Group_eq_equiv p g ⬝ r g ⬝ (to_fun_Group_eq_equiv q g)⁻¹,
end
definition Group_eq_equiv_Group_iso (G₁ G₂ : Group) : G₁ = G₂ ≃ G₁ ≅ G₂ :=
Group_eq_equiv G₁ G₂ ⬝e (Group_iso_equiv G₁ G₂)⁻¹ᵉ
definition category_Group.{u} : category Group.{u} :=
category.mk precategory_Group
begin
intro G H,
apply is_equiv_of_equiv_of_homotopy (Group_eq_equiv_Group_iso G H),
intro p, induction p, fapply iso_eq, apply homomorphism_eq, reflexivity
end
definition AbGroup_to_Group [constructor] : functor (Precategory.mk AbGroup _)
(Category.mk Group category_Group)
:= mk (λ x : AbGroup, (x : Group)) (λ a b x, x) (λ x, rfl) begin intros, reflexivity end
definition is_set_group (X : Type) : is_set (group X) :=
begin
apply is_trunc_of_imp_is_trunc, intros, assert H : is_set X, exact @group.is_set_carrier X a, clear a,
exact is_trunc_equiv_closed_rev _ !group.sigma_char _
end
definition ab_group_to_group (A : Type) (g : ab_group A) : group A := _
definition group_comm_to_group (A : Type) : (Σ g : group A, ∀ (a b : A), a*b = b*a) → group A := pr1
definition is_embedding_group_comm_to_group (A : Type) : is_embedding (group_comm_to_group A) :=
begin
unfold group_comm_to_group,
intros, induction a,
assert H : is_set A, induction a, assumption,
assert H :is_set (group A), apply is_set_group,
induction a', fconstructor, intros, apply sigma_eq,
apply is_prop.elimo, intro, esimp at *, assumption, intros,
apply is_prop.elim, intros, apply is_prop.elim, intros, apply is_prop.elim
end
definition ab_group_to_group_homot (A : Type) :
@ab_group_to_group A ~ group_comm_to_group A ∘ ab_group_equiv_group_comm A :=
begin intro, induction x, reflexivity end
definition is_embedding_ab_group_to_group (A : Type) : is_embedding (@ab_group_to_group A) :=
begin
apply is_embedding_homotopy_closed_rev (ab_group_to_group_homot A), apply is_embedding_compose,
exact is_embedding_group_comm_to_group A, apply is_embedding_of_is_equiv
end
definition is_embedding_total_of_is_embedding_fiber {A} {B C : A → Type} {f : Π a, B a → C a}
: (∀ a, is_embedding (f a)) → is_embedding (total f) :=
begin
intro e, fapply is_embedding_of_is_prop_fiber, intro p, induction p with a c,
assert H : (fiber (total f) ⟨a, c⟩)≃ fiber (f a) c,
apply fiber_total_equiv,
assert H2 : is_prop (fiber (f a) c),
apply is_prop_fiber_of_is_embedding,
exact is_trunc_equiv_closed -1 (H⁻¹ᵉ) _
end
definition AbGroup_to_Group_homot : AbGroup_to_Group ~ Group_sigma⁻¹ ∘ total ab_group_to_group ∘ AbGroup_sigma :=
begin intro g, induction g, reflexivity end
definition is_embedding_AbGroup_to_Group : is_embedding AbGroup_to_Group :=
begin
apply is_embedding_homotopy_closed_rev AbGroup_to_Group_homot,
apply is_embedding_compose,
apply is_embedding_of_is_equiv,
apply is_embedding_compose,
apply is_embedding_total_of_is_embedding_fiber is_embedding_ab_group_to_group,
apply is_embedding_of_is_equiv
end
definition is_univalent_AbGroup : is_univalent precategory_AbGroup :=
begin
apply is_univalent_domain_of_fully_faithful_embedding AbGroup_to_Group is_embedding_AbGroup_to_Group, intros, apply is_equiv_id
end
definition category_AbGroup : category AbGroup := category.mk precategory_AbGroup is_univalent_AbGroup
definition Grp.{u} [constructor] : Category := category.Mk Group.{u} category_Group
definition AbGrp [constructor] : Category := category.Mk AbGroup category_AbGroup
end category
|
1ccab1283420fb1ff3599dd93674d3a781bd6bcd
|
510e96af568b060ed5858226ad954c258549f143
|
/algebra/ring.lean
|
2f31dd5f07ee98c8fe6f9d16567f60c380e4baab
|
[] |
no_license
|
Shamrock-Frost/library_dev
|
cb6d1739237d81e17720118f72ba0a6db8a5906b
|
0245c71e4931d3aceeacf0aea776454f6ee03c9c
|
refs/heads/master
| 1,609,481,034,595
| 1,500,165,215,000
| 1,500,165,347,000
| 97,350,162
| 0
| 0
| null | 1,500,164,969,000
| 1,500,164,969,000
| null |
UTF-8
|
Lean
| false
| false
| 5,930
|
lean
|
/-
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Leonardo de Moura, Floris van Doorn
-/
open eq
universe variable uu
variable {A : Type uu}
/- ring -/
section
variables [ring A] (a b c d e : A)
theorem mul_add_eq_mul_add_iff_sub_mul_add_eq : a * e + c = b * e + d ↔ (a - b) * e + c = d :=
calc
a * e + c = b * e + d ↔ a * e + c = d + b * e : by simp
... ↔ a * e + c - b * e = d : iff.intro (λ h, begin simp [h] end) (λ h,
begin simp [h^.symm] end)
... ↔ (a - b) * e + c = d : begin simp [@sub_eq_add_neg A, @right_distrib A] end
theorem sub_mul_add_eq_of_mul_add_eq_mul_add : a * e + c = b * e + d → (a - b) * e + c = d :=
assume h,
calc
(a - b) * e + c = (a * e + c) - b * e : begin simp [@sub_eq_add_neg A, @right_distrib A] end
... = d : begin rewrite h, simp [@add_sub_cancel A] end
theorem mul_neg_one_eq_neg : a * (-1) = -a :=
have a + a * -1 = 0, from calc
a + a * -1 = a * 1 + a * -1 : by simp
... = a * (1 + -1) : eq.symm (left_distrib a 1 (-1))
... = 0 : by simp,
symm (neg_eq_of_add_eq_zero this)
theorem ne_zero_and_ne_zero_of_mul_ne_zero {a b : A} (h : a * b ≠ 0) : a ≠ 0 ∧ b ≠ 0 :=
begin
split,
intro ha, apply h, simp [ha],
intro hb, apply h, simp [hb]
end
end
/- integral domains -/
section
variables [s : integral_domain A] (a b c d e : A)
include s
theorem eq_of_mul_eq_mul_right_of_ne_zero {a b c : A} (ha : a ≠ 0) (h : b * a = c * a) : b = c :=
have b * a - c * a = 0, by simp [h],
have (b - c) * a = 0, by rewrite [mul_sub_right_distrib, this],
have b - c = 0, from (eq_zero_or_eq_zero_of_mul_eq_zero this)^.resolve_right ha,
eq_of_sub_eq_zero this
theorem eq_of_mul_eq_mul_left_of_ne_zero {a b c : A} (ha : a ≠ 0) (h : a * b = a * c) : b = c :=
have a * b - a * c = 0, by simp [h],
have a * (b - c) = 0, by rewrite [mul_sub_left_distrib, this],
have b - c = 0, from (eq_zero_or_eq_zero_of_mul_eq_zero this)^.resolve_left ha,
eq_of_sub_eq_zero this
-- TODO: do we want the iff versions?
-- theorem dvd_of_mul_dvd_mul_left {a b c : A} (Ha : a ≠ 0) (Hdvd : (a * b ∣ a * c)) : (b ∣ c) :=
-- sorry
/-
dvd.elim Hdvd
(assume d,
suppose a * c = a * b * d,
have b * d = c, from eq_of_mul_eq_mul_left Ha begin rewrite ←mul.assoc, symmetry, exact this end,
dvd.intro this)
-/
-- theorem dvd_of_mul_dvd_mul_right {a b c : A} (Ha : a ≠ 0) (Hdvd : (b * a ∣ c * a)) : (b ∣ c) :=
-- sorry
/-
dvd.elim Hdvd
(assume d,
suppose c * a = b * a * d,
have b * d * a = c * a, from by rewrite [mul.right_comm, ←this],
have b * d = c, from eq_of_mul_eq_mul_right Ha this,
dvd.intro this)
-/
end
/-
namespace norm_num
local attribute bit0 bit1 add1 [reducible]
local attribute right_distrib left_distrib [simp]
theorem mul_zero [mul_zero_class A] (a : A) : a * zero = zero :=
sorry -- by simp
theorem zero_mul [mul_zero_class A] (a : A) : zero * a = zero :=
sorry -- by simp
theorem mul_one [monoid A] (a : A) : a * one = a :=
sorry -- by simp
theorem mul_bit0 [distrib A] (a b : A) : a * (bit0 b) = bit0 (a * b) :=
sorry -- by simp
theorem mul_bit0_helper [distrib A] (a b t : A) (h : a * b = t) : a * (bit0 b) = bit0 t :=
sorry -- by rewrite -H; simp
theorem mul_bit1 [semiring A] (a b : A) : a * (bit1 b) = bit0 (a * b) + a :=
sorry -- by simp
theorem mul_bit1_helper [semiring A] (a b s t : A) (Hs : a * b = s) (Ht : bit0 s + a = t) :
a * (bit1 b) = t :=
sorry -- by simp
theorem subst_into_prod [has_mul A] (l r tl tr t : A) (prl : l = tl) (prr : r = tr)
(prt : tl * tr = t) :
l * r = t :=
sorry -- by simp
theorem mk_cong (op : A → A) (a b : A) (h : a = b) : op a = op b :=
sorry -- by simp
theorem neg_add_neg_eq_of_add_add_eq_zero [add_comm_group A] (a b c : A) (h : c + a + b = 0) :
-a + -b = c :=
sorry
/-
begin
apply add_neg_eq_of_eq_add,
apply neg_eq_of_add_eq_zero,
simp
end
-/
theorem neg_add_neg_helper [add_comm_group A] (a b c : A) (h : a + b = c) : -a + -b = -c :=
sorry -- begin apply iff.mp !neg_eq_neg_iff_eq, simp end
theorem neg_add_pos_eq_of_eq_add [add_comm_group A] (a b c : A) (h : b = c + a) : -a + b = c :=
sorry -- begin apply neg_add_eq_of_eq_add, simp end
theorem neg_add_pos_helper1 [add_comm_group A] (a b c : A) (h : b + c = a) : -a + b = -c :=
sorry -- begin apply neg_add_eq_of_eq_add, apply eq_add_neg_of_add_eq H end
theorem neg_add_pos_helper2 [add_comm_group A] (a b c : A) (h : a + c = b) : -a + b = c :=
sorry -- begin apply neg_add_eq_of_eq_add, rewrite H end
theorem pos_add_neg_helper [add_comm_group A] (a b c : A) (h : b + a = c) : a + b = c :=
sorry -- by simp
theorem sub_eq_add_neg_helper [add_comm_group A] (t₁ t₂ e w₁ w₂: A) (H₁ : t₁ = w₁)
(H₂ : t₂ = w₂) (h : w₁ + -w₂ = e) : t₁ - t₂ = e :=
sorry -- by simp
theorem pos_add_pos_helper [add_comm_group A] (a b c h₁ h₂ : A) (H₁ : a = h₁) (H₂ : b = h₂)
(h : h₁ + h₂ = c) : a + b = c :=
sorry -- by simp
theorem subst_into_subtr [add_group A] (l r t : A) (prt : l + -r = t) : l - r = t :=
sorry -- by simp
theorem neg_neg_helper [add_group A] (a b : A) (h : a = -b) : -a = b :=
sorry -- by simp
theorem neg_mul_neg_helper [ring A] (a b c : A) (h : a * b = c) : (-a) * (-b) = c :=
sorry -- by simp
theorem neg_mul_pos_helper [ring A] (a b c : A) (h : a * b = c) : (-a) * b = -c :=
sorry -- by simp
theorem pos_mul_neg_helper [ring A] (a b c : A) (h : a * b = c) : a * (-b) = -c :=
sorry -- by simp
end norm_num
attribute [simp]
zero_mul mul_zero
attribute [simp]
neg_mul_eq_neg_mul_symm mul_neg_eq_neg_mul_symm
attribute [simp]
left_distrib right_distrib
-/
|
95a4be3a310b26743d5b2f176b7fafc21b465690
|
f20db13587f4dd28a4b1fbd31953afd491691fa0
|
/tests/lean/run/my_tac_class.lean
|
c7990587abb20e1acf370cd16c15e81a91124cb7
|
[
"Apache-2.0"
] |
permissive
|
AHartNtkn/lean
|
9a971edfc6857c63edcbf96bea6841b9a84cf916
|
0d83a74b26541421fc1aa33044c35b03759710ed
|
refs/heads/master
| 1,620,592,591,236
| 1,516,749,881,000
| 1,516,749,881,000
| 118,697,288
| 1
| 0
| null | 1,516,759,470,000
| 1,516,759,470,000
| null |
UTF-8
|
Lean
| false
| false
| 1,774
|
lean
|
meta def mytac :=
state_t nat tactic
meta instance : monad mytac :=
state_t.monad _ _
meta instance : monad.has_monad_lift tactic mytac :=
monad.monad_transformer_lift (state_t nat) tactic
meta instance (α : Type) : has_coe (tactic α) (mytac α) :=
⟨monad.monad_lift⟩
namespace mytac
meta def step {α : Type} (t : mytac α) : mytac unit :=
t >> return ()
meta def istep {α : Type} (line0 col0 line col : nat) (t : mytac α) : mytac unit :=
λ v s, result.cases_on (@scope_trace _ line col (λ_, t v s))
(λ ⟨a, v⟩ new_s, result.success ((), v) new_s)
(λ opt_msg_thunk e new_s,
match opt_msg_thunk with
| some msg_thunk :=
let msg := λ _ : unit, msg_thunk () ++ format.line ++ to_fmt "value: " ++ to_fmt v ++ format.line ++ to_fmt "state:" ++ format.line ++ new_s^.to_format in
interaction_monad.result.exception (some msg) (some ⟨line, col⟩) new_s
| none := interaction_monad.silent_fail new_s
end)
meta def execute (tac : mytac unit) : tactic unit :=
tac 0 >> return ()
meta def save_info (p : pos) : mytac unit :=
do v ← state_t.read,
s ← tactic.read,
tactic.save_info_thunk p
(λ _, to_fmt "Custom state: " ++ to_fmt v ++ format.line ++
tactic_state.to_format s)
namespace interactive
meta def intros : mytac unit :=
tactic.intros >> return ()
meta def constructor : mytac unit :=
tactic.constructor >> return ()
meta def trace (s : string) : mytac unit :=
tactic.trace s
meta def assumption : mytac unit :=
tactic.assumption
meta def inc : mytac unit :=
do v ← state_t.read, state_t.write (v+1)
end interactive
end mytac
example (p q : Prop) : p → q → p ∧ q :=
begin [mytac]
intros,
inc,
trace "test",
constructor,
inc,
assumption,
assumption
end
|
6474a1f4c00d8c277aeca8881c9015538a1fdec2
|
8cae430f0a71442d02dbb1cbb14073b31048e4b0
|
/src/data/polynomial/field_division.lean
|
ea42eea04f17cb9b4d9185622cbb25bc66265e60
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/mathlib
|
56a2cadd17ac88caf4ece0a775932fa26327ba0e
|
442a83d738cb208d3600056c489be16900ba701d
|
refs/heads/master
| 1,693,584,102,358
| 1,693,471,902,000
| 1,693,471,902,000
| 97,922,418
| 1,595
| 352
|
Apache-2.0
| 1,694,693,445,000
| 1,500,624,130,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 19,512
|
lean
|
/-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Johannes Hölzl, Scott Morrison, Jens Wagemaker
-/
import data.polynomial.derivative
import data.polynomial.ring_division
import ring_theory.euclidean_domain
/-!
# Theory of univariate polynomials
> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
> Any changes to this file require a corresponding PR to mathlib4.
This file starts looking like the ring theory of $ R[X] $
-/
noncomputable theory
open_locale classical big_operators polynomial
namespace polynomial
universes u v w y z
variables {R : Type u} {S : Type v} {k : Type y} {A : Type z} {a b : R} {n : ℕ}
section is_domain
variables [comm_ring R] [is_domain R]
lemma derivative_root_multiplicity_of_root [char_zero R] {p : R[X]} {t : R} (hpt : p.is_root t) :
p.derivative.root_multiplicity t = p.root_multiplicity t - 1 :=
begin
rcases eq_or_ne p 0 with rfl | hp,
{ simp },
nth_rewrite 0 [←p.div_by_monic_mul_pow_root_multiplicity_eq t],
simp only [derivative_pow, derivative_mul, derivative_sub, derivative_X,
derivative_C, sub_zero, mul_one],
set n := p.root_multiplicity t - 1,
have hn : n + 1 = _ := tsub_add_cancel_of_le ((root_multiplicity_pos hp).mpr hpt),
rw ←hn,
set q := p /ₘ (X - C t) ^ (n + 1) with hq,
convert_to root_multiplicity t ((X - C t) ^ n * (derivative q * (X - C t) + q * C ↑(n + 1))) = n,
{ congr,
rw [mul_add, mul_left_comm $ (X - C t) ^ n, ←pow_succ'],
congr' 1,
rw [mul_left_comm $ (X - C t) ^ n, mul_comm $ (X - C t) ^ n] },
have h : (derivative q * (X - C t) + q * C ↑(n + 1)).eval t ≠ 0,
{ suffices : eval t q * ↑(n + 1) ≠ 0,
{ simpa },
refine mul_ne_zero _ (nat.cast_ne_zero.mpr n.succ_ne_zero),
convert eval_div_by_monic_pow_root_multiplicity_ne_zero t hp,
exact hn ▸ hq },
rw [root_multiplicity_mul, root_multiplicity_X_sub_C_pow, root_multiplicity_eq_zero h, add_zero],
refine mul_ne_zero (pow_ne_zero n $ X_sub_C_ne_zero t) _,
contrapose! h,
rw [h, eval_zero]
end
lemma root_multiplicity_sub_one_le_derivative_root_multiplicity [char_zero R] (p : R[X]) (t : R) :
p.root_multiplicity t - 1 ≤ p.derivative.root_multiplicity t :=
begin
by_cases p.is_root t,
{ exact (derivative_root_multiplicity_of_root h).symm.le },
{ rw [root_multiplicity_eq_zero h, zero_tsub],
exact zero_le _ }
end
section normalization_monoid
variables [normalization_monoid R]
instance : normalization_monoid R[X] :=
{ norm_unit := λ p, ⟨C ↑(norm_unit (p.leading_coeff)), C ↑(norm_unit (p.leading_coeff))⁻¹,
by rw [← ring_hom.map_mul, units.mul_inv, C_1], by rw [← ring_hom.map_mul, units.inv_mul, C_1]⟩,
norm_unit_zero := units.ext (by simp),
norm_unit_mul := λ p q hp0 hq0, units.ext (begin
dsimp,
rw [ne.def, ← leading_coeff_eq_zero] at *,
rw [leading_coeff_mul, norm_unit_mul hp0 hq0, units.coe_mul, C_mul],
end),
norm_unit_coe_units := λ u,
units.ext begin
rw [← mul_one u⁻¹, units.coe_mul, units.eq_inv_mul_iff_mul_eq],
dsimp,
rcases polynomial.is_unit_iff.1 ⟨u, rfl⟩ with ⟨_, ⟨w, rfl⟩, h2⟩,
rw [← h2, leading_coeff_C, norm_unit_coe_units, ← C_mul, units.mul_inv, C_1],
end }
@[simp]
lemma coe_norm_unit {p : R[X]} :
(norm_unit p : R[X]) = C ↑(norm_unit p.leading_coeff) :=
by simp [norm_unit]
lemma leading_coeff_normalize (p : R[X]) :
leading_coeff (normalize p) = normalize (leading_coeff p) := by simp
lemma monic.normalize_eq_self {p : R[X]} (hp : p.monic) :
normalize p = p :=
by simp only [polynomial.coe_norm_unit, normalize_apply, hp.leading_coeff, norm_unit_one,
units.coe_one, polynomial.C.map_one, mul_one]
lemma roots_normalize {p : R[X]} : (normalize p).roots = p.roots :=
by rw [normalize_apply, mul_comm, coe_norm_unit,
roots_C_mul _ (norm_unit (leading_coeff p)).ne_zero]
end normalization_monoid
end is_domain
section division_ring
variables [division_ring R] {p q : R[X]}
lemma degree_pos_of_ne_zero_of_nonunit (hp0 : p ≠ 0) (hp : ¬is_unit p) :
0 < degree p :=
lt_of_not_ge (λ h, begin
rw [eq_C_of_degree_le_zero h] at hp0 hp,
exact hp (is_unit.map C
(is_unit.mk0 (coeff p 0) (mt C_inj.2 (by simpa using hp0)))),
end)
lemma monic_mul_leading_coeff_inv (h : p ≠ 0) :
monic (p * C (leading_coeff p)⁻¹) :=
by rw [monic, leading_coeff_mul, leading_coeff_C,
mul_inv_cancel (show leading_coeff p ≠ 0, from mt leading_coeff_eq_zero.1 h)]
lemma degree_mul_leading_coeff_inv (p : R[X]) (h : q ≠ 0) :
degree (p * C (leading_coeff q)⁻¹) = degree p :=
have h₁ : (leading_coeff q)⁻¹ ≠ 0 :=
inv_ne_zero (mt leading_coeff_eq_zero.1 h),
by rw [degree_mul, degree_C h₁, add_zero]
@[simp] lemma map_eq_zero [semiring S] [nontrivial S] (f : R →+* S) : p.map f = 0 ↔ p = 0 :=
by simp only [polynomial.ext_iff, map_eq_zero, coeff_map, coeff_zero]
lemma map_ne_zero [semiring S] [nontrivial S] {f : R →+* S} (hp : p ≠ 0) : p.map f ≠ 0 :=
mt (map_eq_zero f).1 hp
end division_ring
section field
variables [field R] {p q : R[X]}
lemma is_unit_iff_degree_eq_zero : is_unit p ↔ degree p = 0 :=
⟨degree_eq_zero_of_is_unit,
λ h, have degree p ≤ 0, by simp [*, le_refl],
have hc : coeff p 0 ≠ 0, from λ hc,
by rw [eq_C_of_degree_le_zero this, hc] at h;
simpa using h,
is_unit_iff_dvd_one.2 ⟨C (coeff p 0)⁻¹, begin
conv in p { rw eq_C_of_degree_le_zero this },
rw [← C_mul, _root_.mul_inv_cancel hc, C_1]
end⟩⟩
/-- Division of polynomials. See `polynomial.div_by_monic` for more details.-/
def div (p q : R[X]) :=
C (leading_coeff q)⁻¹ * (p /ₘ (q * C (leading_coeff q)⁻¹))
/-- Remainder of polynomial division. See `polynomial.mod_by_monic` for more details. -/
def mod (p q : R[X]) :=
p %ₘ (q * C (leading_coeff q)⁻¹)
private lemma quotient_mul_add_remainder_eq_aux (p q : R[X]) :
q * div p q + mod p q = p :=
if h : q = 0 then by simp only [h, zero_mul, mod, mod_by_monic_zero, zero_add]
else begin
conv {to_rhs, rw ← mod_by_monic_add_div p (monic_mul_leading_coeff_inv h)},
rw [div, mod, add_comm, mul_assoc]
end
private lemma remainder_lt_aux (p : R[X]) (hq : q ≠ 0) :
degree (mod p q) < degree q :=
by rw ← degree_mul_leading_coeff_inv q hq; exact
degree_mod_by_monic_lt p (monic_mul_leading_coeff_inv hq)
instance : has_div R[X] := ⟨div⟩
instance : has_mod R[X] := ⟨mod⟩
lemma div_def : p / q = C (leading_coeff q)⁻¹ * (p /ₘ (q * C (leading_coeff q)⁻¹)) := rfl
lemma mod_def : p % q = p %ₘ (q * C (leading_coeff q)⁻¹) := rfl
lemma mod_by_monic_eq_mod (p : R[X]) (hq : monic q) : p %ₘ q = p % q :=
show p %ₘ q = p %ₘ (q * C (leading_coeff q)⁻¹), by simp only [monic.def.1 hq, inv_one, mul_one, C_1]
lemma div_by_monic_eq_div (p : R[X]) (hq : monic q) : p /ₘ q = p / q :=
show p /ₘ q = C (leading_coeff q)⁻¹ * (p /ₘ (q * C (leading_coeff q)⁻¹)),
by simp only [monic.def.1 hq, inv_one, C_1, one_mul, mul_one]
lemma mod_X_sub_C_eq_C_eval (p : R[X]) (a : R) : p % (X - C a) = C (p.eval a) :=
mod_by_monic_eq_mod p (monic_X_sub_C a) ▸ mod_by_monic_X_sub_C_eq_C_eval _ _
lemma mul_div_eq_iff_is_root : (X - C a) * (p / (X - C a)) = p ↔ is_root p a :=
div_by_monic_eq_div p (monic_X_sub_C a) ▸ mul_div_by_monic_eq_iff_is_root
instance : euclidean_domain R[X] :=
{ quotient := (/),
quotient_zero := by simp [div_def],
remainder := (%),
r := _,
r_well_founded := degree_lt_wf,
quotient_mul_add_remainder_eq := quotient_mul_add_remainder_eq_aux,
remainder_lt := λ p q hq, remainder_lt_aux _ hq,
mul_left_not_lt := λ p q hq, not_lt_of_ge (degree_le_mul_left _ hq),
.. polynomial.comm_ring,
.. polynomial.nontrivial }
lemma mod_eq_self_iff (hq0 : q ≠ 0) : p % q = p ↔ degree p < degree q :=
⟨λ h, h ▸ euclidean_domain.mod_lt _ hq0,
λ h, have ¬degree (q * C (leading_coeff q)⁻¹) ≤ degree p :=
not_le_of_gt $ by rwa degree_mul_leading_coeff_inv q hq0,
begin
rw [mod_def, mod_by_monic, dif_pos (monic_mul_leading_coeff_inv hq0)],
unfold div_mod_by_monic_aux,
simp only [this, false_and, if_false]
end⟩
lemma div_eq_zero_iff (hq0 : q ≠ 0) : p / q = 0 ↔ degree p < degree q :=
⟨λ h, by have := euclidean_domain.div_add_mod p q;
rwa [h, mul_zero, zero_add, mod_eq_self_iff hq0] at this,
λ h, have hlt : degree p < degree (q * C (leading_coeff q)⁻¹),
by rwa degree_mul_leading_coeff_inv q hq0,
have hm : monic (q * C (leading_coeff q)⁻¹) := monic_mul_leading_coeff_inv hq0,
by rw [div_def, (div_by_monic_eq_zero_iff hm).2 hlt, mul_zero]⟩
lemma degree_add_div (hq0 : q ≠ 0) (hpq : degree q ≤ degree p) :
degree q + degree (p / q) = degree p :=
have degree (p % q) < degree (q * (p / q)) :=
calc degree (p % q) < degree q : euclidean_domain.mod_lt _ hq0
... ≤ _ : degree_le_mul_left _ (mt (div_eq_zero_iff hq0).1 (not_lt_of_ge hpq)),
by conv_rhs { rw [← euclidean_domain.div_add_mod p q,
degree_add_eq_left_of_degree_lt this, degree_mul] }
lemma degree_div_le (p q : R[X]) : degree (p / q) ≤ degree p :=
if hq : q = 0 then by simp [hq]
else by rw [div_def, mul_comm, degree_mul_leading_coeff_inv _ hq];
exact degree_div_by_monic_le _ _
lemma degree_div_lt (hp : p ≠ 0) (hq : 0 < degree q) : degree (p / q) < degree p :=
have hq0 : q ≠ 0, from λ hq0, by simpa [hq0] using hq,
by rw [div_def, mul_comm, degree_mul_leading_coeff_inv _ hq0];
exact degree_div_by_monic_lt _ (monic_mul_leading_coeff_inv hq0) hp
(by rw degree_mul_leading_coeff_inv _ hq0; exact hq)
@[simp] lemma degree_map [division_ring k] (p : R[X]) (f : R →+* k) :
degree (p.map f) = degree p :=
p.degree_map_eq_of_injective f.injective
@[simp] lemma nat_degree_map [division_ring k] (f : R →+* k) :
nat_degree (p.map f) = nat_degree p :=
nat_degree_eq_of_degree_eq (degree_map _ f)
@[simp] lemma leading_coeff_map [division_ring k] (f : R →+* k) :
leading_coeff (p.map f) = f (leading_coeff p) :=
by simp only [← coeff_nat_degree, coeff_map f, nat_degree_map]
theorem monic_map_iff [division_ring k] {f : R →+* k} {p : R[X]} :
(p.map f).monic ↔ p.monic :=
by rw [monic, leading_coeff_map, ← f.map_one, function.injective.eq_iff f.injective, monic]
theorem is_unit_map [field k] (f : R →+* k) :
is_unit (p.map f) ↔ is_unit p :=
by simp_rw [is_unit_iff_degree_eq_zero, degree_map]
lemma map_div [field k] (f : R →+* k) :
(p / q).map f = p.map f / q.map f :=
if hq0 : q = 0 then by simp [hq0]
else
by rw [div_def, div_def, polynomial.map_mul, map_div_by_monic f (monic_mul_leading_coeff_inv hq0)];
simp [coeff_map f]
lemma map_mod [field k] (f : R →+* k) :
(p % q).map f = p.map f % q.map f :=
if hq0 : q = 0 then by simp [hq0]
else by rw [mod_def, mod_def, leading_coeff_map f, ← map_inv₀ f, ← map_C f,
← polynomial.map_mul f, map_mod_by_monic f (monic_mul_leading_coeff_inv hq0)]
section
open euclidean_domain
theorem gcd_map [field k] (f : R →+* k) :
gcd (p.map f) (q.map f) = (gcd p q).map f :=
gcd.induction p q (λ x, by simp_rw [polynomial.map_zero, euclidean_domain.gcd_zero_left]) $
λ x y hx ih,
by rw [gcd_val, ← map_mod, ih, ← gcd_val]
end
lemma eval₂_gcd_eq_zero [comm_semiring k] {ϕ : R →+* k} {f g : R[X]} {α : k}
(hf : f.eval₂ ϕ α = 0) (hg : g.eval₂ ϕ α = 0) : (euclidean_domain.gcd f g).eval₂ ϕ α = 0 :=
by rw [euclidean_domain.gcd_eq_gcd_ab f g, polynomial.eval₂_add, polynomial.eval₂_mul,
polynomial.eval₂_mul, hf, hg, zero_mul, zero_mul, zero_add]
lemma eval_gcd_eq_zero {f g : R[X]} {α : R} (hf : f.eval α = 0) (hg : g.eval α = 0) :
(euclidean_domain.gcd f g).eval α = 0 := eval₂_gcd_eq_zero hf hg
lemma root_left_of_root_gcd [comm_semiring k] {ϕ : R →+* k} {f g : R[X]} {α : k}
(hα : (euclidean_domain.gcd f g).eval₂ ϕ α = 0) : f.eval₂ ϕ α = 0 :=
by { cases euclidean_domain.gcd_dvd_left f g with p hp,
rw [hp, polynomial.eval₂_mul, hα, zero_mul] }
lemma root_right_of_root_gcd [comm_semiring k] {ϕ : R →+* k} {f g : R[X]} {α : k}
(hα : (euclidean_domain.gcd f g).eval₂ ϕ α = 0) : g.eval₂ ϕ α = 0 :=
by { cases euclidean_domain.gcd_dvd_right f g with p hp,
rw [hp, polynomial.eval₂_mul, hα, zero_mul] }
lemma root_gcd_iff_root_left_right [comm_semiring k] {ϕ : R →+* k} {f g : R[X]} {α : k} :
(euclidean_domain.gcd f g).eval₂ ϕ α = 0 ↔ (f.eval₂ ϕ α = 0) ∧ (g.eval₂ ϕ α = 0) :=
⟨λ h, ⟨root_left_of_root_gcd h, root_right_of_root_gcd h⟩, λ h, eval₂_gcd_eq_zero h.1 h.2⟩
lemma is_root_gcd_iff_is_root_left_right {f g : R[X]} {α : R} :
(euclidean_domain.gcd f g).is_root α ↔ f.is_root α ∧ g.is_root α :=
root_gcd_iff_root_left_right
theorem is_coprime_map [field k] (f : R →+* k) :
is_coprime (p.map f) (q.map f) ↔ is_coprime p q :=
by rw [← euclidean_domain.gcd_is_unit_iff, ← euclidean_domain.gcd_is_unit_iff, gcd_map, is_unit_map]
lemma mem_roots_map [comm_ring k] [is_domain k] {f : R →+* k} {x : k} (hp : p ≠ 0) :
x ∈ (p.map f).roots ↔ p.eval₂ f x = 0 :=
by rw [mem_roots (map_ne_zero hp), is_root, polynomial.eval_map]; apply_instance
lemma root_set_monomial [comm_ring S] [is_domain S] [algebra R S]
{n : ℕ} (hn : n ≠ 0) {a : R} (ha : a ≠ 0) : (monomial n a).root_set S = {0} :=
by rw [root_set, map_monomial, roots_monomial ((_root_.map_ne_zero (algebra_map R S)).2 ha),
multiset.to_finset_nsmul _ _ hn, multiset.to_finset_singleton, finset.coe_singleton]
lemma root_set_C_mul_X_pow [comm_ring S] [is_domain S] [algebra R S]
{n : ℕ} (hn : n ≠ 0) {a : R} (ha : a ≠ 0) : (C a * X ^ n).root_set S = {0} :=
by rw [C_mul_X_pow_eq_monomial, root_set_monomial hn ha]
lemma root_set_X_pow [comm_ring S] [is_domain S] [algebra R S]
{n : ℕ} (hn : n ≠ 0) : (X ^ n : R[X]).root_set S = {0} :=
by { rw [←one_mul (X ^ n : R[X]), ←C_1, root_set_C_mul_X_pow hn], exact one_ne_zero }
lemma root_set_prod [comm_ring S] [is_domain S] [algebra R S]
{ι : Type*} (f : ι → R[X]) (s : finset ι) (h : s.prod f ≠ 0) :
(s.prod f).root_set S = ⋃ (i ∈ s), (f i).root_set S :=
begin
simp only [root_set, ←finset.mem_coe],
rw [polynomial.map_prod, roots_prod, finset.bind_to_finset, s.val_to_finset, finset.coe_bUnion],
rwa [←polynomial.map_prod, ne, map_eq_zero],
end
lemma exists_root_of_degree_eq_one (h : degree p = 1) : ∃ x, is_root p x :=
⟨-(p.coeff 0 / p.coeff 1),
have p.coeff 1 ≠ 0,
by rw ← nat_degree_eq_of_degree_eq_some h;
exact mt leading_coeff_eq_zero.1 (λ h0, by simpa [h0] using h),
by conv in p { rw [eq_X_add_C_of_degree_le_one (show degree p ≤ 1, by rw h; exact le_rfl)] };
simp [is_root, mul_div_cancel' _ this]⟩
lemma coeff_inv_units (u : R[X]ˣ) (n : ℕ) :
((↑u : R[X]).coeff n)⁻¹ = ((↑u⁻¹ : R[X]).coeff n) :=
begin
rw [eq_C_of_degree_eq_zero (degree_coe_units u), eq_C_of_degree_eq_zero (degree_coe_units u⁻¹),
coeff_C, coeff_C, inv_eq_one_div],
split_ifs,
{ rw [div_eq_iff_mul_eq (coeff_coe_units_zero_ne_zero u), coeff_zero_eq_eval_zero,
coeff_zero_eq_eval_zero, ← eval_mul, ← units.coe_mul, inv_mul_self];
simp },
{ simp }
end
lemma monic_normalize (hp0 : p ≠ 0) : monic (normalize p) :=
begin
rw [ne.def, ← leading_coeff_eq_zero, ← ne.def, ← is_unit_iff_ne_zero] at hp0,
rw [monic, leading_coeff_normalize, normalize_eq_one],
apply hp0,
end
lemma leading_coeff_div (hpq : q.degree ≤ p.degree) :
(p / q).leading_coeff = p.leading_coeff / q.leading_coeff :=
begin
by_cases hq : q = 0, { simp [hq] },
rw [div_def, leading_coeff_mul, leading_coeff_C,
leading_coeff_div_by_monic_of_monic (monic_mul_leading_coeff_inv hq) _,
mul_comm, div_eq_mul_inv],
rwa [degree_mul_leading_coeff_inv q hq]
end
lemma div_C_mul : p / (C a * q) = C a⁻¹ * (p / q) :=
begin
by_cases ha : a = 0,
{ simp [ha] },
simp only [div_def, leading_coeff_mul, mul_inv,
leading_coeff_C, C.map_mul, mul_assoc],
congr' 3,
rw [mul_left_comm q, ← mul_assoc, ← C.map_mul, mul_inv_cancel ha,
C.map_one, one_mul]
end
lemma C_mul_dvd (ha : a ≠ 0) : C a * p ∣ q ↔ p ∣ q :=
⟨λ h, dvd_trans (dvd_mul_left _ _) h, λ ⟨r, hr⟩, ⟨C a⁻¹ * r,
by rw [mul_assoc, mul_left_comm p, ← mul_assoc, ← C.map_mul, _root_.mul_inv_cancel ha,
C.map_one, one_mul, hr]⟩⟩
lemma dvd_C_mul (ha : a ≠ 0) : p ∣ polynomial.C a * q ↔ p ∣ q :=
⟨λ ⟨r, hr⟩, ⟨C a⁻¹ * r,
by rw [mul_left_comm p, ← hr, ← mul_assoc, ← C.map_mul, _root_.inv_mul_cancel ha,
C.map_one, one_mul]⟩,
λ h, dvd_trans h (dvd_mul_left _ _)⟩
lemma coe_norm_unit_of_ne_zero (hp : p ≠ 0) : (norm_unit p : R[X]) = C p.leading_coeff⁻¹ :=
have p.leading_coeff ≠ 0 := mt leading_coeff_eq_zero.mp hp,
by simp [comm_group_with_zero.coe_norm_unit _ this]
lemma normalize_monic (h : monic p) : normalize p = p := by simp [h]
theorem map_dvd_map' [field k] (f : R →+* k) {x y : R[X]} : x.map f ∣ y.map f ↔ x ∣ y :=
if H : x = 0 then by rw [H, polynomial.map_zero, zero_dvd_iff, zero_dvd_iff, map_eq_zero]
else by rw [← normalize_dvd_iff, ← @normalize_dvd_iff R[X],
normalize_apply, normalize_apply,
coe_norm_unit_of_ne_zero H, coe_norm_unit_of_ne_zero (mt (map_eq_zero f).1 H),
leading_coeff_map, ← map_inv₀ f, ← map_C, ← polynomial.map_mul,
map_dvd_map _ f.injective (monic_mul_leading_coeff_inv H)]
lemma degree_normalize : degree (normalize p) = degree p := by simp
lemma prime_of_degree_eq_one (hp1 : degree p = 1) : prime p :=
have prime (normalize p),
from monic.prime_of_degree_eq_one (hp1 ▸ degree_normalize)
(monic_normalize (λ hp0, absurd hp1 (hp0.symm ▸ by simp; exact dec_trivial))),
(normalize_associated _).prime this
lemma irreducible_of_degree_eq_one (hp1 : degree p = 1) : irreducible p :=
(prime_of_degree_eq_one hp1).irreducible
theorem not_irreducible_C (x : R) : ¬irreducible (C x) :=
if H : x = 0 then by { rw [H, C_0], exact not_irreducible_zero }
else λ hx, irreducible.not_unit hx $ is_unit_C.2 $ is_unit_iff_ne_zero.2 H
theorem degree_pos_of_irreducible (hp : irreducible p) : 0 < p.degree :=
lt_of_not_ge $ λ hp0, have _ := eq_C_of_degree_le_zero hp0,
not_irreducible_C (p.coeff 0) $ this ▸ hp
/-- If `f` is a polynomial over a field, and `a : K` satisfies `f' a ≠ 0`,
then `f / (X - a)` is coprime with `X - a`.
Note that we do not assume `f a = 0`, because `f / (X - a) = (f - f a) / (X - a)`. -/
lemma is_coprime_of_is_root_of_eval_derivative_ne_zero {K : Type*} [field K]
(f : K[X]) (a : K) (hf' : f.derivative.eval a ≠ 0) :
is_coprime (X - C a : K[X]) (f /ₘ (X - C a)) :=
begin
refine or.resolve_left (euclidean_domain.dvd_or_coprime (X - C a) (f /ₘ (X - C a))
(irreducible_of_degree_eq_one (polynomial.degree_X_sub_C a))) _,
contrapose! hf' with h,
have key : (X - C a) * (f /ₘ (X - C a)) = f - (f %ₘ (X - C a)),
{ rw [eq_sub_iff_add_eq, ← eq_sub_iff_add_eq', mod_by_monic_eq_sub_mul_div],
exact monic_X_sub_C a },
replace key := congr_arg derivative key,
simp only [derivative_X, derivative_mul, one_mul, sub_zero, derivative_sub,
mod_by_monic_X_sub_C_eq_C_eval, derivative_C] at key,
have : (X - C a) ∣ derivative f := key ▸ (dvd_add h (dvd_mul_right _ _)),
rw [← dvd_iff_mod_by_monic_eq_zero (monic_X_sub_C _), mod_by_monic_X_sub_C_eq_C_eval] at this,
rw [← C_inj, this, C_0],
end
end field
end polynomial
|
c0350e4dbdc6887d8c3324cfd277ab00c6faf483
|
61c3861020ef87c6c325fc3c3dcbabf5d6b07985
|
/types/W.lean
|
602af52957fc2d41545502cb1bd1741dadb9e575
|
[
"Apache-2.0"
] |
permissive
|
jonas-frey/hott3
|
a623be2959e8a713c03fa1b0f34bf76a561dfa87
|
a944051b4eb5919bdc70978ee15fcbb48a824811
|
refs/heads/master
| 1,628,408,720,559
| 1,510,267,042,000
| 1,510,267,042,000
| 106,760,764
| 0
| 0
| null | 1,507,856,238,000
| 1,507,856,238,000
| null |
UTF-8
|
Lean
| false
| false
| 6,018
|
lean
|
/-
Copyright (c) 2014 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Floris van Doorn
Theorems about W-types (well-founded trees)
-/
import .sigma .pi
universes u v w
hott_theory
namespace hott
open decidable
open eq equiv is_equiv sigma
inductive Wtype {A : Type u} (B : A → Type v) : Type (max u v) |
sup : Π (a : A), (B a → Wtype) → Wtype
namespace Wtype
notation `W` binders `, ` r:(scoped B, Wtype B) := r
variables {A A' : Type u} {B B' : A → Type v} {C : Π(a : A), B a → Type _}
{a a' : A} {f : B a → W a, B a} {f' : B a' → W a, B a} {w w' : W(a : A), B a}
@[hott] protected def fst (w : W(a : A), B a) : A :=
by induction w with a f; exact a
@[hott] protected def snd (w : W(a : A), B a) : B w.fst → W(a : A), B a :=
by induction w with a f; exact f
@[hott] protected def eta (w : W a, B a) : sup w.fst w.snd = w :=
by induction w; exact idp
@[hott] def sup_eq_sup (p : a = a') (q : f =[p; λa, B a → W a, B a] f') : sup a f = sup a' f' :=
by induction q; exact idp
@[hott] def Wtype_eq (p : Wtype.fst w = Wtype.fst w') (q : Wtype.snd w =[p;λ a, B a → W(a : A), B a] Wtype.snd w') : w = w' :=
by induction w; induction w';exact (sup_eq_sup p q)
@[hott] def Wtype_eq_fst (p : w = w') : w.fst = w'.fst :=
by induction p;exact idp
@[hott] def Wtype_eq_snd (p : w = w') : w.snd =[Wtype_eq_fst p; λ a, B a → W(a : A), B a] w'.snd :=
by induction p;exact idpo
namespace ops
postfix `..fst`:(max+1) := Wtype_eq_fst
postfix `..snd`:(max+1) := Wtype_eq_snd
end ops open ops open sigma
@[hott] def sup_path_W (p : w.fst = w'.fst) (q : w.snd =[p; λ a, B a → W(a : A), B a] w'.snd)
: @dpair
(w.fst=w'.fst)
(λp, w.snd =[p; λ a, B a → W(a : A), B a] w'.snd)
(Wtype_eq p q)..fst
(Wtype_eq p q)..snd
= ⟨p, q⟩ :=
begin induction w with a f,
induction w' with a' f',
dsimp [Wtype.fst] at p,
dsimp [Wtype.snd] at q,
-- hinduction_only q using pathover.rec,
-- exact idp
exact sorry
end
@[hott] def fst_path_W (p : w.fst = w'.fst) (q : w.snd =[p; λ a, B a → W(a : A), B a] w'.snd) : (Wtype_eq p q)..fst = p :=
(sup_path_W _ _)..1
@[hott] def snd_path_W (p : w.fst = w'.fst) (q : w.snd =[p; λ a, B a → W(a : A), B a] w'.snd)
: (Wtype_eq p q)..snd =[fst_path_W p q; λp, w.snd =[p; λ a, B a → W(a : A), B a] w'.snd] q :=
(sup_path_W _ _)..2
@[hott] def eta_path_W (p : w = w') : Wtype_eq (p..fst) (p..snd) = p :=
by induction p; induction w; exact idp
@[hott] def transport_fst_path_W {B' : A → Type _} (p : w.fst = w'.fst) (q : w.snd =[p; λ a, B a → W(a : A), B a] w'.snd)
: transport (λ(x:W a, B a), B' x.fst) (Wtype_eq p q) = transport B' p :=
begin
induction w with a f,
induction w' with a f',
dsimp [Wtype.fst] at p,
dsimp [Wtype.snd] at q,
-- hinduction q,
-- exact idp
exact sorry
end
@[hott] def path_W_uncurried (pq : Σ(p : w.fst = w'.fst), w.snd =[p; λ a, B a → W(a : A), B a] w'.snd) : w = w' :=
by induction pq with p q; exact (Wtype_eq p q)
@[hott] def sup_path_W_uncurried (pq : Σ(p : w.fst = w'.fst), w.snd =[p; λ a, B a → W(a : A), B a] w'.snd)
: @dpair (w.fst = w'.fst) (λp, w.snd =[p; λ a, B a → W(a : A), B a] w'.snd) (path_W_uncurried pq)..fst (path_W_uncurried pq)..snd = pq :=
by induction pq with p q; exact (sup_path_W p q)
@[hott] def fst_path_W_uncurried (pq : Σ(p : w.fst = w'.fst), w.snd =[p; λ a, B a → W(a : A), B a] w'.snd)
: (path_W_uncurried pq)..fst = pq.fst :=
(sup_path_W_uncurried _)..1
@[hott] def snd_path_W_uncurried (pq : Σ(p : w.fst = w'.fst), w.snd =[p; λ a, B a → W(a : A), B a] w'.snd)
: (path_W_uncurried pq)..snd =[fst_path_W_uncurried pq; λ p, w.snd =[p; λ a, B a → W(a : A), B a] w'.snd] pq.snd :=
(sup_path_W_uncurried _)..2
@[hott] def eta_path_W_uncurried (p : w = w') : path_W_uncurried ⟨p..fst, p..snd⟩ = p :=
eta_path_W _
@[hott] def transport_fst_path_W_uncurried {B' : A → Type _} (pq : Σ(p : w.fst = w'.fst), w.snd =[p; λ a, B a → W(a : A), B a] w'.snd)
: transport (λ(x:W a, B a), B' x.fst) (@path_W_uncurried A B w w' pq) = transport B' pq.fst :=
by induction pq with p q; exact (transport_fst_path_W p q)
@[hott] def isequiv_path_W /-[instance]-/ (w w' : W a, B a)
: is_equiv (path_W_uncurried : (Σ(p : w.fst = w'.fst), w.snd =[p; λ a, B a → W(a : A), B a] w'.snd) → w = w') :=
adjointify path_W_uncurried
(λp, ⟨p..fst, p..snd⟩)
eta_path_W_uncurried
sup_path_W_uncurried
@[hott] def equiv_path_W (w w' : W a, B a) : (Σ(p : w.fst = w'.fst), w.snd =[p; λ a, B a → W(a : A), B a] w'.snd) ≃ (w = w') :=
equiv.mk path_W_uncurried (isequiv_path_W _ _)
@[hott] def double_induction_on {P : (W a, B a) → (W a, B a) → Type _} (w w' : W a, B a)
(H : ∀ (a a' : A) (f : B a → W a, B a) (f' : B a' → W a, B a),
(∀ (b : B a) (b' : B a'), P (f b) (f' b')) → P (sup a f) (sup a' f')) : P w w' :=
begin
revert w',
induction w with a f IH,
intro w',
induction w' with a' f',
apply H, intros b b',
apply IH
end
/- truncatedness -/
open is_trunc pi hott.sigma hott.pi
#check @sigma.is_trunc_sigma
local attribute [instance] is_trunc_pi_eq
@[hott, instance] def is_trunc_W (n : trunc_index)
[HA : is_trunc (n.+1) A] : is_trunc (n.+1) (W a, B a) :=
begin
fapply is_trunc_succ_intro, intros w w',
eapply (double_induction_on w w'), intros a a' f f' IH,
apply is_trunc_equiv_closed,
apply equiv_path_W,
dsimp [Wtype.fst,Wtype.snd],
let HD : Π (p : a = a'), is_trunc n (f =[p; λ (a : A), B a → Wtype B] f'),
intro p,
induction p, apply is_trunc_equiv_closed_rev,
apply pathover_idp, apply_instance,
apply is_trunc_sigma,
end
end Wtype
end hott
|
2089346d2e9372b568076971cc62d0f18856dee8
|
74addaa0e41490cbaf2abd313a764c96df57b05d
|
/Mathlib/ring_theory/coprime_auto.lean
|
876e43c8d5b76bba0fc1501fd5b1edced72e402d
|
[] |
no_license
|
AurelienSaue/Mathlib4_auto
|
f538cfd0980f65a6361eadea39e6fc639e9dae14
|
590df64109b08190abe22358fabc3eae000943f2
|
refs/heads/master
| 1,683,906,849,776
| 1,622,564,669,000
| 1,622,564,669,000
| 371,723,747
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 13,978
|
lean
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Ken Lee, Chris Hughes
-/
import Mathlib.PrePort
import Mathlib.Lean3Lib.init.default
import Mathlib.tactic.ring
import Mathlib.algebra.big_operators.basic
import Mathlib.data.fintype.basic
import Mathlib.data.int.gcd
import Mathlib.data.set.disjointed
import Mathlib.PostPort
universes u v
namespace Mathlib
/-!
# Coprime elements of a ring
## Main definitions
* `is_coprime x y`: that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime.
-/
/-- The proposition that `x` and `y` are coprime, defined to be the existence of `a` and `b` such
that `a * x + b * y = 1`. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials `x₁` and `x₂` are not coprime. -/
@[simp] def is_coprime {R : Type u} [comm_semiring R] (x : R) (y : R) :=
∃ (a : R), ∃ (b : R), a * x + b * y = 1
theorem nat.is_coprime_iff_coprime {m : ℕ} {n : ℕ} : is_coprime ↑m ↑n ↔ nat.coprime m n := sorry
theorem is_coprime.symm {R : Type u} [comm_semiring R] {x : R} {y : R} (H : is_coprime x y) :
is_coprime y x :=
sorry
theorem is_coprime_comm {R : Type u} [comm_semiring R] {x : R} {y : R} :
is_coprime x y ↔ is_coprime y x :=
{ mp := is_coprime.symm, mpr := is_coprime.symm }
theorem is_coprime_self {R : Type u} [comm_semiring R] {x : R} : is_coprime x x ↔ is_unit x := sorry
theorem is_coprime_zero_left {R : Type u} [comm_semiring R] {x : R} : is_coprime 0 x ↔ is_unit x :=
sorry
theorem is_coprime_zero_right {R : Type u} [comm_semiring R] {x : R} : is_coprime x 0 ↔ is_unit x :=
iff.trans is_coprime_comm is_coprime_zero_left
theorem is_coprime_one_left {R : Type u} [comm_semiring R] {x : R} : is_coprime 1 x := sorry
theorem is_coprime_one_right {R : Type u} [comm_semiring R] {x : R} : is_coprime x 1 := sorry
theorem is_coprime.dvd_of_dvd_mul_right {R : Type u} [comm_semiring R] {x : R} {y : R} {z : R}
(H1 : is_coprime x z) (H2 : x ∣ y * z) : x ∣ y :=
sorry
theorem is_coprime.dvd_of_dvd_mul_left {R : Type u} [comm_semiring R] {x : R} {y : R} {z : R}
(H1 : is_coprime x y) (H2 : x ∣ y * z) : x ∣ z :=
sorry
theorem is_coprime.mul_left {R : Type u} [comm_semiring R] {x : R} {y : R} {z : R}
(H1 : is_coprime x z) (H2 : is_coprime y z) : is_coprime (x * y) z :=
sorry
theorem is_coprime.mul_right {R : Type u} [comm_semiring R] {x : R} {y : R} {z : R}
(H1 : is_coprime x y) (H2 : is_coprime x z) : is_coprime x (y * z) :=
eq.mpr (id (Eq._oldrec (Eq.refl (is_coprime x (y * z))) (propext is_coprime_comm)))
(is_coprime.mul_left
(eq.mp (Eq._oldrec (Eq.refl (is_coprime x y)) (propext is_coprime_comm)) H1)
(eq.mp (Eq._oldrec (Eq.refl (is_coprime x z)) (propext is_coprime_comm)) H2))
theorem is_coprime.prod_left {R : Type u} [comm_semiring R] {x : R} {I : Type v} {s : I → R}
{t : finset I} :
(∀ (i : I), i ∈ t → is_coprime (s i) x) → is_coprime (finset.prod t fun (i : I) => s i) x :=
sorry
theorem is_coprime.prod_right {R : Type u} [comm_semiring R] {x : R} {I : Type v} {s : I → R}
{t : finset I} :
(∀ (i : I), i ∈ t → is_coprime x (s i)) → is_coprime x (finset.prod t fun (i : I) => s i) :=
sorry
theorem is_coprime.mul_dvd {R : Type u} [comm_semiring R] {x : R} {y : R} {z : R}
(H : is_coprime x y) (H1 : x ∣ z) (H2 : y ∣ z) : x * y ∣ z :=
sorry
theorem finset.prod_dvd_of_coprime {R : Type u} [comm_semiring R] {z : R} {I : Type v} {s : I → R}
{t : finset I} (Hs : set.pairwise_on (↑t) (is_coprime on s))
(Hs1 : ∀ (i : I), i ∈ t → s i ∣ z) : (finset.prod t fun (x : I) => s x) ∣ z :=
sorry
theorem fintype.prod_dvd_of_coprime {R : Type u} [comm_semiring R] {z : R} {I : Type v} {s : I → R}
[fintype I] (Hs : pairwise (is_coprime on s)) (Hs1 : ∀ (i : I), s i ∣ z) :
(finset.prod finset.univ fun (x : I) => s x) ∣ z :=
finset.prod_dvd_of_coprime (pairwise.pairwise_on Hs ↑finset.univ)
fun (i : I) (_x : i ∈ finset.univ) => Hs1 i
theorem is_coprime.of_mul_left_left {R : Type u} [comm_semiring R] {x : R} {y : R} {z : R}
(H : is_coprime (x * y) z) : is_coprime x z :=
sorry
theorem is_coprime.of_mul_left_right {R : Type u} [comm_semiring R] {x : R} {y : R} {z : R}
(H : is_coprime (x * y) z) : is_coprime y z :=
is_coprime.of_mul_left_left (eq.mp (Eq._oldrec (Eq.refl (is_coprime (x * y) z)) (mul_comm x y)) H)
theorem is_coprime.of_mul_right_left {R : Type u} [comm_semiring R] {x : R} {y : R} {z : R}
(H : is_coprime x (y * z)) : is_coprime x y :=
eq.mpr (id (Eq._oldrec (Eq.refl (is_coprime x y)) (propext is_coprime_comm)))
(is_coprime.of_mul_left_left
(eq.mp (Eq._oldrec (Eq.refl (is_coprime x (y * z))) (propext is_coprime_comm)) H))
theorem is_coprime.of_mul_right_right {R : Type u} [comm_semiring R] {x : R} {y : R} {z : R}
(H : is_coprime x (y * z)) : is_coprime x z :=
is_coprime.of_mul_right_left
(eq.mp (Eq._oldrec (Eq.refl (is_coprime x (y * z))) (mul_comm y z)) H)
theorem is_coprime.mul_left_iff {R : Type u} [comm_semiring R] {x : R} {y : R} {z : R} :
is_coprime (x * y) z ↔ is_coprime x z ∧ is_coprime y z :=
sorry
theorem is_coprime.mul_right_iff {R : Type u} [comm_semiring R] {x : R} {y : R} {z : R} :
is_coprime x (y * z) ↔ is_coprime x y ∧ is_coprime x z :=
sorry
theorem is_coprime.prod_left_iff {R : Type u} [comm_semiring R] {x : R} {I : Type v} {s : I → R}
{t : finset I} :
is_coprime (finset.prod t fun (i : I) => s i) x ↔ ∀ (i : I), i ∈ t → is_coprime (s i) x :=
sorry
theorem is_coprime.prod_right_iff {R : Type u} [comm_semiring R] {x : R} {I : Type v} {s : I → R}
{t : finset I} :
is_coprime x (finset.prod t fun (i : I) => s i) ↔ ∀ (i : I), i ∈ t → is_coprime x (s i) :=
sorry
theorem is_coprime.of_prod_left {R : Type u} [comm_semiring R] {x : R} {I : Type v} {s : I → R}
{t : finset I} (H1 : is_coprime (finset.prod t fun (i : I) => s i) x) (i : I) (hit : i ∈ t) :
is_coprime (s i) x :=
iff.mp is_coprime.prod_left_iff H1 i hit
theorem is_coprime.of_prod_right {R : Type u} [comm_semiring R] {x : R} {I : Type v} {s : I → R}
{t : finset I} (H1 : is_coprime x (finset.prod t fun (i : I) => s i)) (i : I) (hit : i ∈ t) :
is_coprime x (s i) :=
iff.mp is_coprime.prod_right_iff H1 i hit
theorem is_coprime.pow_left {R : Type u} [comm_semiring R] {x : R} {y : R} {m : ℕ}
(H : is_coprime x y) : is_coprime (x ^ m) y :=
eq.mpr (id (Eq._oldrec (Eq.refl (is_coprime (x ^ m) y)) (Eq.symm (finset.card_range m))))
(eq.mpr
(id
(Eq._oldrec (Eq.refl (is_coprime (x ^ finset.card (finset.range m)) y))
(Eq.symm (finset.prod_const x))))
(is_coprime.prod_left fun (_x : ℕ) (_x : _x ∈ finset.range m) => H))
theorem is_coprime.pow_right {R : Type u} [comm_semiring R] {x : R} {y : R} {n : ℕ}
(H : is_coprime x y) : is_coprime x (y ^ n) :=
eq.mpr (id (Eq._oldrec (Eq.refl (is_coprime x (y ^ n))) (Eq.symm (finset.card_range n))))
(eq.mpr
(id
(Eq._oldrec (Eq.refl (is_coprime x (y ^ finset.card (finset.range n))))
(Eq.symm (finset.prod_const y))))
(is_coprime.prod_right fun (_x : ℕ) (_x : _x ∈ finset.range n) => H))
theorem is_coprime.pow {R : Type u} [comm_semiring R] {x : R} {y : R} {m : ℕ} {n : ℕ}
(H : is_coprime x y) : is_coprime (x ^ m) (y ^ n) :=
is_coprime.pow_right (is_coprime.pow_left H)
theorem is_coprime.is_unit_of_dvd {R : Type u} [comm_semiring R] {x : R} {y : R}
(H : is_coprime x y) (d : x ∣ y) : is_unit x :=
sorry
theorem is_coprime.map {R : Type u} [comm_semiring R] {x : R} {y : R} (H : is_coprime x y)
{S : Type v} [comm_semiring S] (f : R →+* S) : is_coprime (coe_fn f x) (coe_fn f y) :=
sorry
theorem is_coprime.of_add_mul_left_left {R : Type u} [comm_semiring R] {x : R} {y : R} {z : R}
(h : is_coprime (x + y * z) y) : is_coprime x y :=
sorry
theorem is_coprime.of_add_mul_right_left {R : Type u} [comm_semiring R] {x : R} {y : R} {z : R}
(h : is_coprime (x + z * y) y) : is_coprime x y :=
is_coprime.of_add_mul_left_left
(eq.mp (Eq._oldrec (Eq.refl (is_coprime (x + z * y) y)) (mul_comm z y)) h)
theorem is_coprime.of_add_mul_left_right {R : Type u} [comm_semiring R] {x : R} {y : R} {z : R}
(h : is_coprime x (y + x * z)) : is_coprime x y :=
eq.mpr (id (Eq._oldrec (Eq.refl (is_coprime x y)) (propext is_coprime_comm)))
(is_coprime.of_add_mul_left_left
(eq.mp (Eq._oldrec (Eq.refl (is_coprime x (y + x * z))) (propext is_coprime_comm)) h))
theorem is_coprime.of_add_mul_right_right {R : Type u} [comm_semiring R] {x : R} {y : R} {z : R}
(h : is_coprime x (y + z * x)) : is_coprime x y :=
is_coprime.of_add_mul_left_right
(eq.mp (Eq._oldrec (Eq.refl (is_coprime x (y + z * x))) (mul_comm z x)) h)
theorem is_coprime.of_mul_add_left_left {R : Type u} [comm_semiring R] {x : R} {y : R} {z : R}
(h : is_coprime (y * z + x) y) : is_coprime x y :=
is_coprime.of_add_mul_left_left
(eq.mp (Eq._oldrec (Eq.refl (is_coprime (y * z + x) y)) (add_comm (y * z) x)) h)
theorem is_coprime.of_mul_add_right_left {R : Type u} [comm_semiring R] {x : R} {y : R} {z : R}
(h : is_coprime (z * y + x) y) : is_coprime x y :=
is_coprime.of_add_mul_right_left
(eq.mp (Eq._oldrec (Eq.refl (is_coprime (z * y + x) y)) (add_comm (z * y) x)) h)
theorem is_coprime.of_mul_add_left_right {R : Type u} [comm_semiring R] {x : R} {y : R} {z : R}
(h : is_coprime x (x * z + y)) : is_coprime x y :=
is_coprime.of_add_mul_left_right
(eq.mp (Eq._oldrec (Eq.refl (is_coprime x (x * z + y))) (add_comm (x * z) y)) h)
theorem is_coprime.of_mul_add_right_right {R : Type u} [comm_semiring R] {x : R} {y : R} {z : R}
(h : is_coprime x (z * x + y)) : is_coprime x y :=
is_coprime.of_add_mul_right_right
(eq.mp (Eq._oldrec (Eq.refl (is_coprime x (z * x + y))) (add_comm (z * x) y)) h)
namespace is_coprime
theorem add_mul_left_left {R : Type u} [comm_ring R] {x : R} {y : R} (h : is_coprime x y) (z : R) :
is_coprime (x + y * z) y :=
sorry
theorem add_mul_right_left {R : Type u} [comm_ring R] {x : R} {y : R} (h : is_coprime x y) (z : R) :
is_coprime (x + z * y) y :=
eq.mpr (id (Eq._oldrec (Eq.refl (is_coprime (x + z * y) y)) (mul_comm z y)))
(add_mul_left_left h z)
theorem add_mul_left_right {R : Type u} [comm_ring R] {x : R} {y : R} (h : is_coprime x y) (z : R) :
is_coprime x (y + x * z) :=
eq.mpr (id (Eq._oldrec (Eq.refl (is_coprime x (y + x * z))) (propext is_coprime_comm)))
(add_mul_left_left (symm h) z)
theorem add_mul_right_right {R : Type u} [comm_ring R] {x : R} {y : R} (h : is_coprime x y)
(z : R) : is_coprime x (y + z * x) :=
eq.mpr (id (Eq._oldrec (Eq.refl (is_coprime x (y + z * x))) (propext is_coprime_comm)))
(add_mul_right_left (symm h) z)
theorem mul_add_left_left {R : Type u} [comm_ring R] {x : R} {y : R} (h : is_coprime x y) (z : R) :
is_coprime (y * z + x) y :=
eq.mpr (id (Eq._oldrec (Eq.refl (is_coprime (y * z + x) y)) (add_comm (y * z) x)))
(add_mul_left_left h z)
theorem mul_add_right_left {R : Type u} [comm_ring R] {x : R} {y : R} (h : is_coprime x y) (z : R) :
is_coprime (z * y + x) y :=
eq.mpr (id (Eq._oldrec (Eq.refl (is_coprime (z * y + x) y)) (add_comm (z * y) x)))
(add_mul_right_left h z)
theorem mul_add_left_right {R : Type u} [comm_ring R] {x : R} {y : R} (h : is_coprime x y) (z : R) :
is_coprime x (x * z + y) :=
eq.mpr (id (Eq._oldrec (Eq.refl (is_coprime x (x * z + y))) (add_comm (x * z) y)))
(add_mul_left_right h z)
theorem mul_add_right_right {R : Type u} [comm_ring R] {x : R} {y : R} (h : is_coprime x y)
(z : R) : is_coprime x (z * x + y) :=
eq.mpr (id (Eq._oldrec (Eq.refl (is_coprime x (z * x + y))) (add_comm (z * x) y)))
(add_mul_right_right h z)
theorem add_mul_left_left_iff {R : Type u} [comm_ring R] {x : R} {y : R} {z : R} :
is_coprime (x + y * z) y ↔ is_coprime x y :=
{ mp := of_add_mul_left_left, mpr := fun (h : is_coprime x y) => add_mul_left_left h z }
theorem add_mul_right_left_iff {R : Type u} [comm_ring R] {x : R} {y : R} {z : R} :
is_coprime (x + z * y) y ↔ is_coprime x y :=
{ mp := of_add_mul_right_left, mpr := fun (h : is_coprime x y) => add_mul_right_left h z }
theorem add_mul_left_right_iff {R : Type u} [comm_ring R] {x : R} {y : R} {z : R} :
is_coprime x (y + x * z) ↔ is_coprime x y :=
{ mp := of_add_mul_left_right, mpr := fun (h : is_coprime x y) => add_mul_left_right h z }
theorem add_mul_right_right_iff {R : Type u} [comm_ring R] {x : R} {y : R} {z : R} :
is_coprime x (y + z * x) ↔ is_coprime x y :=
{ mp := of_add_mul_right_right, mpr := fun (h : is_coprime x y) => add_mul_right_right h z }
theorem mul_add_left_left_iff {R : Type u} [comm_ring R] {x : R} {y : R} {z : R} :
is_coprime (y * z + x) y ↔ is_coprime x y :=
{ mp := of_mul_add_left_left, mpr := fun (h : is_coprime x y) => mul_add_left_left h z }
theorem mul_add_right_left_iff {R : Type u} [comm_ring R] {x : R} {y : R} {z : R} :
is_coprime (z * y + x) y ↔ is_coprime x y :=
{ mp := of_mul_add_right_left, mpr := fun (h : is_coprime x y) => mul_add_right_left h z }
theorem mul_add_left_right_iff {R : Type u} [comm_ring R] {x : R} {y : R} {z : R} :
is_coprime x (x * z + y) ↔ is_coprime x y :=
{ mp := of_mul_add_left_right, mpr := fun (h : is_coprime x y) => mul_add_left_right h z }
theorem mul_add_right_right_iff {R : Type u} [comm_ring R] {x : R} {y : R} {z : R} :
is_coprime x (z * x + y) ↔ is_coprime x y :=
{ mp := of_mul_add_right_right, mpr := fun (h : is_coprime x y) => mul_add_right_right h z }
end Mathlib
|
0a38872209f048bc8f2cef6466f8cf497baaf961
|
ce6917c5bacabee346655160b74a307b4a5ab620
|
/src/ch2/ex0203.lean
|
2028511ac96c37b21b129529151eb68bc3ae501a
|
[] |
no_license
|
Ailrun/Theorem_Proving_in_Lean
|
ae6a23f3c54d62d401314d6a771e8ff8b4132db2
|
2eb1b5caf93c6a5a555c79e9097cf2ba5a66cf68
|
refs/heads/master
| 1,609,838,270,467
| 1,586,846,743,000
| 1,586,846,743,000
| 240,967,761
| 1
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 63
|
lean
|
constants α β : Type
#check prod α β
#check prod nat nat
|
271e5cd60ec2c7fe512f9f62aba32bd96920e785
|
07f5f86b00fed90a419ccda4298d8b795a68f657
|
/library/data/rbtree/basic.lean
|
ea851e953f6e6f2568d3906a30417eaa5e0bdea2
|
[
"Apache-2.0"
] |
permissive
|
VBaratham/lean
|
8ec5c3167b4835cfbcd7f25e2173d61ad9416b3a
|
450ca5834c1c35318e4b47d553bb9820c1b3eee7
|
refs/heads/master
| 1,629,649,471,814
| 1,512,060,373,000
| 1,512,060,469,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 9,500
|
lean
|
/-
Copyright (c) 2017 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
-/
universe u
/- TODO(Leo): remove after we cleanup stdlib simp lemmas -/
local attribute [-simp] or.comm or.left_comm or.assoc and.comm and.left_comm and.assoc
namespace tactic
/- TODO(Leo): move blast_disjs and twice to another file. -/
namespace interactive
meta def blast_disjs : tactic unit :=
focus1 $ repeat $ any_goals $ any_hyp $ λ h, do
t ← infer_type h,
guard (t.is_or ≠ none),
tactic.cases h [h.local_pp_name, h.local_pp_name]
meta def twice (t : itactic) : tactic unit :=
t >> t
end interactive
end tactic
namespace rbnode
variables {α : Type u}
open color nat
inductive is_node_of : rbnode α → rbnode α → α → rbnode α → Prop
| of_red (l v r) : is_node_of (red_node l v r) l v r
| of_black (l v r) : is_node_of (black_node l v r) l v r
def lift (lt : α → α → Prop) : option α → option α → Prop
| (some a) (some b) := lt a b
| _ _ := true
inductive is_searchable (lt : α → α → Prop) : rbnode α → option α → option α → Prop
| leaf_s {lo hi} : lift lt lo hi → is_searchable leaf lo hi
| red_s {l r v lo hi} (hs₁ : is_searchable l lo (some v)) (hs₂ : is_searchable r (some v) hi) : is_searchable (red_node l v r) lo hi
| black_s {l r v lo hi} (hs₁ : is_searchable l lo (some v)) (hs₂ : is_searchable r (some v) hi) : is_searchable (black_node l v r) lo hi
section helper_tactics
open tactic
meta def is_searchable_constructor_app : expr → bool
| `(is_searchable _ leaf _ _) := tt
| `(is_searchable _ (red_node _ _ _) _ _) := tt
| `(is_searchable _ (black_node _ _ _) _ _) := tt
| _ := ff
meta def apply_is_searchable_constructors : tactic unit :=
repeat $ any_goals $ do
t ← target,
guard $ is_searchable_constructor_app t,
constructor
meta def destruct_is_searchable_hyps : tactic unit :=
repeat $ any_goals $ any_hyp $ λ h, do
t ← infer_type h,
guard $ is_searchable_constructor_app t,
cases h,
clear h
meta def is_searchable_tactic : tactic unit :=
destruct_is_searchable_hyps; apply_is_searchable_constructors; try assumption
end helper_tactics
open rbnode (mem)
open is_searchable
section is_searchable_lemmas
variable {lt : α → α → Prop}
lemma lo_lt_hi {t : rbnode α} {lt} [is_trans α lt] : ∀ {lo hi}, is_searchable lt t lo hi → lift lt lo hi :=
begin
induction t; intros lo hi h,
case leaf { cases h, assumption },
all_goals {
cases h,
have h₁ := ih_1 hs₁,
have h₂ := ih_2 hs₂,
cases lo with lo; cases hi with hi; simp [lift] at *,
apply trans_of lt h₁ h₂,
}
end
variable [decidable_rel lt]
lemma is_searchable_of_is_searchable_of_incomp [is_strict_weak_order α lt] {t} : ∀ {lo hi hi'} (hc : ¬ lt hi' hi ∧ ¬ lt hi hi') (hs : is_searchable lt t lo (some hi)), is_searchable lt t lo (some hi') :=
begin
induction t; intros; is_searchable_tactic,
{ cases lo; simp [lift, *] at *, apply lt_of_lt_of_incomp, assumption, exact ⟨hc.2, hc.1⟩ },
all_goals { apply ih_2 hc hs₂ }
end
lemma is_searchable_of_incomp_of_is_searchable [is_strict_weak_order α lt] {t} : ∀ {lo lo' hi} (hc : ¬ lt lo' lo ∧ ¬ lt lo lo') (hs : is_searchable lt t (some lo) hi), is_searchable lt t (some lo') hi :=
begin
induction t; intros; is_searchable_tactic,
{ cases hi; simp [lift, *] at *, apply lt_of_incomp_of_lt, assumption, assumption },
all_goals { apply ih_1 hc hs₁ }
end
lemma is_searchable_some_low_of_is_searchable_of_lt {t} [is_trans α lt] : ∀ {lo hi lo'} (hlt : lt lo' lo) (hs : is_searchable lt t (some lo) hi), is_searchable lt t (some lo') hi :=
begin
induction t; intros; is_searchable_tactic,
{ cases hi; simp [lift, *] at *, apply trans_of lt hlt, assumption },
all_goals { apply ih_1 hlt hs₁ }
end
lemma is_searchable_none_low_of_is_searchable_some_low {t} : ∀ {y hi} (hlt : is_searchable lt t (some y) hi), is_searchable lt t none hi :=
begin
induction t; intros; is_searchable_tactic,
{ simp [lift] },
all_goals { apply ih_1 hs₁ }
end
lemma is_searchable_some_high_of_is_searchable_of_lt {t} [is_trans α lt] : ∀ {lo hi hi'} (hlt : lt hi hi') (hs : is_searchable lt t lo (some hi)), is_searchable lt t lo (some hi') :=
begin
induction t; intros; is_searchable_tactic,
{ cases lo; simp [lift, *] at *, apply trans_of lt, assumption, assumption},
all_goals { apply ih_2 hlt hs₂ }
end
lemma is_searchable_none_high_of_is_searchable_some_high {t} : ∀ {lo y} (hlt : is_searchable lt t lo (some y)), is_searchable lt t lo none :=
begin
induction t; intros; is_searchable_tactic,
{ cases lo; simp [lift] },
all_goals { apply ih_2 hs₂ }
end
lemma range [is_strict_weak_order α lt] {t : rbnode α} {x} : ∀ {lo hi}, is_searchable lt t lo hi → mem lt x t → lift lt lo (some x) ∧ lift lt (some x) hi :=
begin
induction t,
case leaf f{ simp [mem], intros, trivial },
all_goals { -- red_node and black_node are identical
intros lo hi h₁ h₂, cases h₁,
simp only [mem] at h₂,
have val_hi : lift lt (some val) hi, { apply lo_lt_hi, assumption },
have lo_val : lift lt lo (some val), { apply lo_lt_hi, assumption },
blast_disjs,
{
have h₃ : lift lt lo (some x) ∧ lift lt (some x) (some val), { apply ih_1, assumption, assumption },
cases h₃ with lo_x x_val,
split,
show lift lt lo (some x), { assumption },
show lift lt (some x ) hi, {
cases hi with hi; simp [lift] at *,
apply trans_of lt x_val val_hi
}
},
{
cases h₂,
cases lo with lo; cases hi with hi; simp [lift] at *,
{ apply lt_of_incomp_of_lt _ val_hi, simp [*] },
{ apply lt_of_lt_of_incomp lo_val, simp [*] },
split,
{ apply lt_of_lt_of_incomp lo_val, simp [*] },
{ apply lt_of_incomp_of_lt _ val_hi, simp [*] }
},
{
have h₃ : lift lt (some val) (some x) ∧ lift lt (some x) hi, { apply ih_2, assumption, assumption },
cases h₃ with val_x x_hi,
cases lo with lo; cases hi with hi; simp [lift] at *,
{ assumption },
{ apply trans_of lt lo_val val_x },
split,
{ apply trans_of lt lo_val val_x, },
{ assumption }
}
}
end
lemma lt_of_mem_left [is_strict_weak_order α lt] {y : α} {t l r : rbnode α} : ∀ {lo hi}, is_searchable lt t lo hi → is_node_of t l y r → ∀ {x}, mem lt x l → lt x y :=
begin
intros _ _ hs hn x hm, cases hn; cases hs,
all_goals { exact (range hs₁ hm).2 }
end
lemma lt_of_mem_right [is_strict_weak_order α lt] {y : α} {t l r : rbnode α} : ∀ {lo hi}, is_searchable lt t lo hi → is_node_of t l y r → ∀ {z}, mem lt z r → lt y z :=
begin
intros _ _ hs hn z hm, cases hn; cases hs,
all_goals { exact (range hs₂ hm).1 }
end
lemma lt_of_mem_left_right [is_strict_weak_order α lt] {y : α} {t l r : rbnode α} : ∀ {lo hi}, is_searchable lt t lo hi → is_node_of t l y r → ∀ {x z}, mem lt x l → mem lt z r → lt x z :=
begin
intros _ _ hs hn x z hm₁ hm₂, cases hn; cases hs,
all_goals {
have h₁ := range hs₁ hm₁,
have h₂ := range hs₂ hm₂,
exact trans_of lt h₁.2 h₂.1,
}
end
end is_searchable_lemmas
inductive is_red_black : rbnode α → color → nat → Prop
| leaf_rb : is_red_black leaf black 0
| red_rb {v l r n} (rb_l : is_red_black l black n) (rb_r : is_red_black r black n) : is_red_black (red_node l v r) red n
| black_rb {v l r n c₁ c₂} (rb_l : is_red_black l c₁ n) (rb_r : is_red_black r c₂ n) : is_red_black (black_node l v r) black (succ n)
open is_red_black
lemma depth_min : ∀ {c n} {t : rbnode α}, is_red_black t c n → depth min t ≥ n :=
begin
intros c n' t h,
induction h,
case leaf_rb {apply le_refl},
case red_rb { simp [depth],
have : min (depth min l) (depth min r) ≥ n,
{ apply le_min, repeat {assumption}},
apply le_succ_of_le, assumption },
case black_rb { simp [depth],
apply succ_le_succ,
apply le_min, repeat {assumption} }
end
private def upper : color → nat → nat
| red n := 2*n + 1
| black n := 2*n
private lemma upper_le : ∀ c n, upper c n ≤ 2 * n + 1
| red n := by apply le_refl
| black n := by apply le_succ
lemma depth_max' : ∀ {c n} {t : rbnode α}, is_red_black t c n → depth max t ≤ upper c n :=
begin
intros c n' t h,
induction h,
case leaf_rb { simp [max, depth, upper] },
case red_rb {
suffices : succ (max (depth max l) (depth max r)) ≤ 2 * n + 1,
{ simp [depth, upper, *] at * },
apply succ_le_succ,
apply max_le, repeat {assumption}},
case black_rb {
have : depth max l ≤ 2*n + 1, from le_trans ih_1 (upper_le _ _),
have : depth max r ≤ 2*n + 1, from le_trans ih_2 (upper_le _ _),
suffices new : max (depth max l) (depth max r) + 1 ≤ 2 * n + 2*1,
{ simp [depth, upper, succ_eq_add_one, left_distrib, *] at * },
apply succ_le_succ, apply max_le, repeat {assumption}
}
end
lemma depth_max {c n} {t : rbnode α} (h : is_red_black t c n) : depth max t ≤ 2 * n + 1:=
le_trans (depth_max' h) (upper_le _ _)
lemma balanced {c n} {t : rbnode α} (h : is_red_black t c n) : 2 * depth min t + 1 ≥ depth max t :=
begin
have : 2 * depth min t + 1 ≥ 2 * n + 1,
{ apply succ_le_succ, apply mul_le_mul_left, apply depth_min h},
apply le_trans, apply depth_max h, apply this
end
end rbnode
|
b91be4288800599731df7ed55b4f3726941b8648
|
8e381650eb2c1c5361be64ff97e47d956bf2ab9f
|
/src/to_mathlib/localization/localization_of.lean
|
30e88520236eb3cd4e1f570649f30b0cf42a365c
|
[] |
no_license
|
alreadydone/lean-scheme
|
04c51ab08eca7ccf6c21344d45d202780fa667af
|
52d7624f57415eea27ed4dfa916cd94189221a1c
|
refs/heads/master
| 1,599,418,221,423
| 1,562,248,559,000
| 1,562,248,559,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 968
|
lean
|
/-
is_localization from is_localization_data.
-/
import ring_theory.localization
import to_mathlib.localization.localization_alt
universe u
open localization_alt
variables {α : Type u} [comm_ring α]
variables (S : set α) [is_submonoid S]
noncomputable lemma localization.of.is_localization_data
: @is_localization_data α (localization α S) _ _ S _ (localization.of) _ :=
begin
refine ⟨_, _, _⟩,
{ intros s,
use [⟦⟨1, s⟩⟧],
apply quotient.sound,
use [1, is_submonoid.one_mem _],
simp, },
{ intros x,
have Hx := quotient.exists_rep x,
rcases (classical.indefinite_description _ Hx) with ⟨⟨p, q⟩, Hpq⟩,
use [⟨q, p⟩],
rw ←Hpq,
apply quotient.sound,
use [1, is_submonoid.one_mem _],
simp, },
{ intros x Hx,
change localization.of x = 0 at Hx,
erw quotient.eq at Hx,
rcases Hx with ⟨s, ⟨Hs, Hx⟩⟩,
simp at Hx,
use [⟨⟨x, ⟨s, Hs⟩⟩, Hx⟩], }
end
|
1c159a1596e467acae7f8211e59cfd94337e1190
|
572fb32b6f5b7c2bf26921ffa2abea054cce881a
|
/src/week_1/kb_solutions/Part_D_relations_solutions.lean
|
8583eb9f38b78a79458ccfda933333e52d43d9a8
|
[
"Apache-2.0"
] |
permissive
|
kgeorgiy/lean-formalising-mathematics
|
2deb30756d5a54bee1cfa64873e86f641c59c7dc
|
73429a8ded68f641c896b6ba9342450d4d3ae50f
|
refs/heads/master
| 1,683,029,640,682
| 1,621,403,041,000
| 1,621,403,041,000
| 367,790,347
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 10,382
|
lean
|
import tactic
/-!
# Equivalence relations are the same as partitions
In this file we prove that there's a bijection between
the equivalence relations on a type, and the partitions of a type.
Three sections:
1) partitions
2) equivalence classes
3) the proof
## Overview
Say `α` is a type, and `R : α → α → Prop` is a binary relation on `α`.
The following things are already in Lean:
`reflexive R := ∀ (x : α), R x x`
`symmetric R := ∀ ⦃x y : α⦄, R x y → R y x`
`transitive R := ∀ ⦃x y z : α⦄, R x y → R y z → R x z`
`equivalence R := reflexive R ∧ symmetric R ∧ transitive R`
In the file below, we will define partitions of `α` and "build some
interface" (i.e. prove some propositions). We will define
equivalence classes and do the same thing.
Finally, we will prove that there's a bijection between
equivalence relations on `α` and partitions of `α`.
-/
/-
# 1) Partitions
We define a partition, and prove some lemmas about partitions. Some
I prove myself (not always using tactics) and some I leave for you.
## Definition of a partition
Let `α` be a type. A *partition* on `α` is defined to be
the following data:
1) A set C of subsets of α, called "blocks".
2) A hypothesis (i.e. a proof!) that all the blocks are non-empty.
3) A hypothesis that every term of type α is in one of the blocks.
4) A hypothesis that two blocks with non-empty intersection are equal.
-/
/-- The structure of a partition on a Type α. -/
@[ext] structure partition (α : Type) :=
(C : set (set α))
(Hnonempty : ∀ X ∈ C, (X : set α).nonempty)
(Hcover : ∀ a, ∃ X ∈ C, a ∈ X)
(Hdisjoint : ∀ X Y ∈ C, (X ∩ Y : set α).nonempty → X = Y)
/-
## Basic interface for partitions
Here's the way notation works. If `α` is a type (i.e. a set)
then a term `P` of type `partition α` is a partition of `α`,
that is, a set of disjoint nonempty subsets of `α` whose union is `α`.
The collection of sets underlying `P` is `P.C`, the proof that
they're all nonempty is `P.Hnonempty` and so on.
-/
namespace partition
-- let α be a type, and fix a partition P on α. Let X and Y be subsets of α.
variables {α : Type} {P : partition α} {X Y : set α}
/-- If X and Y are blocks, and a is in X and Y, then X = Y. -/
theorem eq_of_mem (hX : X ∈ P.C) (hY : Y ∈ P.C) {a : α} (haX : a ∈ X)
(haY : a ∈ Y) : X = Y :=
-- Proof: follows immediately from the disjointness hypothesis.
P.Hdisjoint _ _ hX hY ⟨a, haX, haY⟩
/-- If a is in two blocks X and Y, and if b is in X,
then b is in Y (as X=Y) -/
theorem mem_of_mem (hX : X ∈ P.C) (hY : Y ∈ P.C) {a b : α}
(haX : a ∈ X) (haY : a ∈ Y) (hbX : b ∈ X) : b ∈ Y :=
begin
-- you might want to start with `have hXY : X = Y`
-- and prove it from the previous lemma
have hXY : X = Y,
{ exact eq_of_mem hX hY haX haY },
rw ← hXY,
assumption,
end
/-- Every term of type `α` is in one of the blocks for a partition `P`. -/
theorem mem_block (a : α) : ∃ X : set α, X ∈ P.C ∧ a ∈ X :=
begin
-- an interesting way to start is
-- `obtain ⟨X, hX, haX⟩ := P.Hcover a,`
obtain ⟨X, hX, haX⟩ := P.Hcover a,
use X,
exact ⟨hX, haX⟩,
end
end partition
/-
# 2) Equivalence classes.
We define equivalence classes and prove a few basic results about them.
-/
section equivalence_classes
/-!
## Definition of equivalence classes
-/
-- Notation and variables for the equivalence class section:
-- let α be a type, and let R be a binary relation on R.
variables {α : Type} (R : α → α → Prop)
/-- The equivalence class of `a` is the set of `b` related to `a`. -/
def cl (a : α) :=
{b : α | R b a}
/-!
## Basic lemmas about equivalence classes
-/
/-- Useful for rewriting -- `b` is in the equivalence class of `a` iff
`b` is related to `a`. True by definition. -/
theorem mem_cl_iff {a b : α} : b ∈ cl R a ↔ R b a :=
begin
-- true by definition
refl
end
-- Assume now that R is an equivalence relation.
variables {R} (hR : equivalence R)
include hR
/-- x is in cl(x) -/
lemma mem_cl_self (a : α) :
a ∈ cl R a :=
begin
-- Note that `hR : equivalence R` is a package of three things.
-- You can extract the things with
-- `rcases hR with ⟨hrefl, hsymm, htrans⟩,` or
-- `obtain ⟨hrefl, hsymm, htrans⟩ := hR,`
obtain ⟨hrefl, hsymm, htrans⟩ := hR,
rw mem_cl_iff, -- not necessary,
apply hrefl,
end
lemma cl_sub_cl_of_mem_cl {a b : α} :
a ∈ cl R b →
cl R a ⊆ cl R b :=
begin
-- remember `set.subset_def` says `X ⊆ Y ↔ ∀ a, a ∈ X → a ∈ Y
intro hab,
intros z hza,
rw mem_cl_iff at hab hza ⊢,
obtain ⟨hrefl, hsymm, htrans⟩ := hR,
exact htrans hza hab,
end
lemma cl_eq_cl_of_mem_cl {a b : α} :
a ∈ cl R b →
cl R a = cl R b :=
begin
intro hab,
-- remember `set.subset.antisymm` says `X ⊆ Y → Y ⊆ X → X = Y`
apply set.subset.antisymm,
{ exact cl_sub_cl_of_mem_cl hR hab},
{ apply cl_sub_cl_of_mem_cl hR,
obtain ⟨hrefl, hsymm, htrans⟩ := hR,
exact hsymm hab }
end
end equivalence_classes -- section
/-!
# 3) The theorem
Let `α` be a type (i.e. a collection of stucff).
There is a bijection between equivalence relations on `α` and
partitions of `α`.
We prove this by writing down constructions in each direction
and proving that the constructions are two-sided inverses of one another.
-/
open partition
example (α : Type) : {R : α → α → Prop // equivalence R} ≃ partition α :=
-- We define constructions (functions!) in both directions and prove that
-- one is a two-sided inverse of the other
{ -- Here is the first construction, from equivalence
-- relations to partitions.
-- Let R be an equivalence relation.
to_fun := λ R, {
-- Let C be the set of equivalence classes for R.
C := { B : set α | ∃ x : α, B = cl R.1 x},
-- I claim that C is a partition. We need to check the three
-- hypotheses for a partition (`Hnonempty`, `Hcover` and `Hdisjoint`),
-- so we need to supply three proofs.
Hnonempty := begin
cases R with R hR,
-- If X is an equivalence class then X is nonempty.
show ∀ (X : set α), (∃ (a : α), X = cl R a) → X.nonempty,
rintros _ ⟨a, rfl⟩,
use a,
rw mem_cl_iff,
obtain ⟨hrefl, hsymm, htrans⟩ := hR,
apply hrefl,
end,
Hcover := begin
cases R with R hR,
-- The equivalence classes cover α
show ∀ (a : α), ∃ (X : set α) (H : ∃ (b : α), X = cl R b), a ∈ X,
intro a,
use cl R a,
split,
{ use a },
{ apply hR.1 },
end,
Hdisjoint := begin
cases R with R hR,
-- If two equivalence classes overlap, they are equal.
show ∀ (X Y : set α), (∃ (a : α), X = cl R a) →
(∃ (b : α), Y = cl _ b) → (X ∩ Y).nonempty → X = Y,
rintros X Y ⟨a, rfl⟩ ⟨b, rfl⟩ ⟨c, hca, hcb⟩,
apply cl_eq_cl_of_mem_cl hR,
apply hR.2.2,
apply hR.2.1,
exact hca,
exact hcb,
end },
-- Conversely, say P is an partition.
inv_fun := λ P,
-- Let's define a binary relation `R` thus:
-- `R a b` iff *every* block containing `a` also contains `b`.
-- Because only one block contains a, this will work,
-- and it turns out to be a nice way of thinking about it.
⟨λ a b, ∀ X ∈ P.C, a ∈ X → b ∈ X, begin
-- I claim this is an equivalence relation.
split,
{ -- It's reflexive
show ∀ (a : α)
(X : set α), X ∈ P.C → a ∈ X → a ∈ X,
intros a X hXC haX,
assumption,
},
split,
{ -- it's symmetric
show ∀ (a b : α),
(∀ (X : set α), X ∈ P.C → a ∈ X → b ∈ X) →
∀ (X : set α), X ∈ P.C → b ∈ X → a ∈ X,
intros a b h X hX hbX,
obtain ⟨Y, hY, haY⟩ := P.Hcover a,
specialize h Y hY haY,
exact mem_of_mem hY hX h hbX haY,
},
{ -- it's transitive
unfold transitive,
show ∀ (a b c : α),
(∀ (X : set α), X ∈ P.C → a ∈ X → b ∈ X) →
(∀ (X : set α), X ∈ P.C → b ∈ X → c ∈ X) →
∀ (X : set α), X ∈ P.C → a ∈ X → c ∈ X,
intros a b c hbX hcX X hX haX,
apply hcX, assumption,
apply hbX, assumption,
assumption,
}
end⟩,
-- If you start with the equivalence relation, and then make the partition
-- and a new equivalence relation, you get back to where you started.
left_inv := begin
rintro ⟨R, hR⟩,
-- Tidying up the mess...
suffices : (λ (a b : α), ∀ (c : α), a ∈ cl R c → b ∈ cl R c) = R,
simpa,
-- ... you have to prove two binary relations are equal.
ext a b,
-- so you have to prove an if and only if.
show (∀ (c : α), a ∈ cl R c → b ∈ cl R c) ↔ R a b,
split,
{ intros hab,
apply hR.2.1,
apply hab,
apply hR.1,
},
{ intros hab c hac,
apply hR.2.2,
apply hR.2.1,
exact hab,
exact hac,
}
end,
-- Similarly, if you start with the partition, and then make the
-- equivalence relation, and then construct the corresponding partition
-- into equivalence classes, you have the same partition you started with.
right_inv := begin
-- Let P be a partition
intro P,
-- It suffices to prove that a subset X is in the original partition
-- if and only if it's in the one made from the equivalence relation.
ext X,
show (∃ (a : α), X = cl _ a) ↔ X ∈ P.C,
dsimp only,
split,
{ rintro ⟨a, rfl⟩,
obtain ⟨X, hX, haX⟩ := P.Hcover a,
convert hX,
ext b,
rw mem_cl_iff,
split,
{ intro haY,
obtain ⟨Y, hY, hbY⟩ := P.Hcover b,
specialize haY Y hY hbY,
convert hbY,
exact eq_of_mem hX hY haX haY,
},
{ intros hbX Y hY hbY,
apply mem_of_mem hX hY hbX hbY haX,
}
},
{ intro hX,
rcases P.Hnonempty X hX with ⟨a, ha⟩,
use a,
ext b,
split,
{ intro hbX,
rw mem_cl_iff,
intros Y hY hbY,
exact mem_of_mem hX hY hbX hbY ha,
},
{ rw mem_cl_iff,
intro haY,
obtain ⟨Y, hY, hbY⟩ := P.Hcover b,
specialize haY Y hY hbY,
exact mem_of_mem hY hX haY ha hbY,
}
}
end }
|
6b9552ecc1d4490279e2fbc167f3856cc7c601ce
|
1b8f093752ba748c5ca0083afef2959aaa7dace5
|
/src/category_theory/universal/kernels.lean
|
4de5b90ed32427b8912a9092484ea1ddca03b538
|
[] |
no_license
|
khoek/lean-category-theory
|
7ec4cda9cc64a5a4ffeb84712ac7d020dbbba386
|
63dcb598e9270a3e8b56d1769eb4f825a177cd95
|
refs/heads/master
| 1,585,251,725,759
| 1,539,344,445,000
| 1,539,344,445,000
| 145,281,070
| 0
| 0
| null | 1,534,662,376,000
| 1,534,662,376,000
| null |
UTF-8
|
Lean
| false
| false
| 2,388
|
lean
|
import category_theory.universal.zero
import category_theory.limits.equalizers
import category_theory.over
open category_theory
universes u v
namespace category_theory.limits
variables {C : Type u} [𝒞 : category.{u v} C] [has_zero_object.{u v} C]
include 𝒞
variables {X Y Z : C}
structure is_kernel (f : Y ⟶ Z) (ι : X ⟶ Y) :=
(w : ι ≫ f = zero_morphism _ _)
(lift : Π {X' : C} {ι' : X' ⟶ Y} (w : ι' ≫ f = zero_morphism X' Z), X' ⟶ X)
(fac : Π {X' : C} {ι' : X' ⟶ Y} (w : ι' ≫ f = zero_morphism X' Z), (lift w) ≫ ι = ι' . obviously)
(uniq : Π {X' : C} {ι' : X' ⟶ Y} (w : ι' ≫ f = zero_morphism X' Z) {m : X' ⟶ X} (h : m ≫ ι = ι'), m = lift w . obviously)
restate_axiom is_kernel.fac
attribute [simp,search] is_kernel.fac_lemma
restate_axiom is_kernel.uniq
attribute [search, back'] is_kernel.uniq_lemma
@[extensionality] lemma is_kernel.ext {f : Y ⟶ Z} {ι : X ⟶ Y} (P Q : is_kernel f ι) : P = Q :=
begin cases P, cases Q, obviously end
-- TODO should be marked [search]?
lemma kernel.w {f : Y ⟶ Z} {X : C} (ι : X ⟶ Y) (k : is_kernel f ι) : ι ≫ f = zero_morphism _ _ := by rw k.w
variable (C)
class has_kernels :=
(kernel : Π {Y Z : C} (f : Y ⟶ Z), C)
(ι : Π {Y Z : C} (f : Y ⟶ Z), kernel f ⟶ Y)
(is : Π {Y Z : C} (f : Y ⟶ Z), is_kernel f (ι f))
variable {C}
variable [has_kernels.{u v} C]
def kernel (f : Y ⟶ Z) : C := has_kernels.kernel.{u v} f
def kernel.ι (f : Y ⟶ Z) : kernel f ⟶ Y := has_kernels.ι.{u v} f
def kernel.subobject (f : Y ⟶ Z) : over Y := ⟨ kernel f, kernel.ι f ⟩
def kernel_of_equalizer {f : Y ⟶ Z} {t : fork f (zero_morphism _ _)} (e : is_equalizer t) : is_kernel f t.ι :=
{ w := begin have p := t.w_lemma, simp at p, exact p end,
lift := λ X' ι' w, e.lift { X := X', ι := ι' },
uniq := λ X' ι' w m h, begin tidy, apply e.uniq { X := X', ι := m ≫ t.ι }, tidy end }
def equalizer_of_kernel {f : Y ⟶ Z} {t : fork f (zero_morphism _ _)} (k : is_kernel f t.ι) : is_equalizer t :=
{ lift := λ s, begin have e := s.w_lemma, tidy, exact k.lift e, end,
uniq := sorry, }
def kernels_are_equalizers {f : Y ⟶ Z} (t : fork f (zero_morphism _ _)) : equiv (is_kernel f t.ι) (is_equalizer t) :=
{ to_fun := equalizer_of_kernel,
inv_fun := kernel_of_equalizer,
left_inv := sorry,
right_inv := sorry }
end category_theory.limits
|
6d15906045b5acf03bcf417ec63a15505a82d3cc
|
2a70b774d16dbdf5a533432ee0ebab6838df0948
|
/_target/deps/mathlib/src/measure_theory/borel_space.lean
|
2319a554e85ea17be8c2ef8b215d6673087df4f6
|
[
"Apache-2.0"
] |
permissive
|
hjvromen/lewis
|
40b035973df7c77ebf927afab7878c76d05ff758
|
105b675f73630f028ad5d890897a51b3c1146fb0
|
refs/heads/master
| 1,677,944,636,343
| 1,676,555,301,000
| 1,676,555,301,000
| 327,553,599
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 55,494
|
lean
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Yury Kudryashov
-/
import measure_theory.measure_space
import analysis.complex.basic
import analysis.normed_space.finite_dimension
import topology.G_delta
/-!
# Borel (measurable) space
## Main definitions
* `borel α` : the least `σ`-algebra that contains all open sets;
* `class borel_space` : a space with `topological_space` and `measurable_space` structures
such that `‹measurable_space α› = borel α`;
* `class opens_measurable_space` : a space with `topological_space` and `measurable_space`
structures such that all open sets are measurable; equivalently, `borel α ≤ ‹measurable_space α›`.
* `borel_space` instances on `empty`, `unit`, `bool`, `nat`, `int`, `rat`;
* `measurable` and `borel_space` instances on `ℝ`, `ℝ≥0`, `ennreal`.
* A measure is `regular` if it is finite on compact sets, inner regular and outer regular.
## Main statements
* `is_open.is_measurable`, `is_closed.is_measurable`: open and closed sets are measurable;
* `continuous.measurable` : a continuous function is measurable;
* `continuous.measurable2` : if `f : α → β` and `g : α → γ` are measurable and `op : β × γ → δ`
is continuous, then `λ x, op (f x, g y)` is measurable;
* `measurable.add` etc : dot notation for arithmetic operations on `measurable` predicates,
and similarly for `dist` and `edist`;
* `ae_measurable.add` : similar dot notation for almost everywhere measurable functions;
* `measurable.ennreal*` : special cases for arithmetic operations on `ennreal`s.
-/
noncomputable theory
open classical set filter measure_theory
open_locale classical big_operators topological_space nnreal
universes u v w x y
variables {α β γ γ₂ δ : Type*} {ι : Sort y} {s t u : set α}
open measurable_space topological_space
/-- `measurable_space` structure generated by `topological_space`. -/
def borel (α : Type u) [topological_space α] : measurable_space α :=
generate_from {s : set α | is_open s}
lemma borel_eq_top_of_discrete [topological_space α] [discrete_topology α] :
borel α = ⊤ :=
top_le_iff.1 $ λ s hs, generate_measurable.basic s (is_open_discrete s)
lemma borel_eq_top_of_encodable [topological_space α] [t1_space α] [encodable α] :
borel α = ⊤ :=
begin
refine (top_le_iff.1 $ λ s hs, bUnion_of_singleton s ▸ _),
apply is_measurable.bUnion s.countable_encodable,
intros x hx,
apply is_measurable.of_compl,
apply generate_measurable.basic,
exact is_closed_singleton
end
lemma borel_eq_generate_from_of_subbasis {s : set (set α)}
[t : topological_space α] [second_countable_topology α] (hs : t = generate_from s) :
borel α = generate_from s :=
le_antisymm
(generate_from_le $ assume u (hu : t.is_open u),
begin
rw [hs] at hu,
induction hu,
case generate_open.basic : u hu
{ exact generate_measurable.basic u hu },
case generate_open.univ
{ exact @is_measurable.univ α (generate_from s) },
case generate_open.inter : s₁ s₂ _ _ hs₁ hs₂
{ exact @is_measurable.inter α (generate_from s) _ _ hs₁ hs₂ },
case generate_open.sUnion : f hf ih {
rcases is_open_sUnion_countable f (by rwa hs) with ⟨v, hv, vf, vu⟩,
rw ← vu,
exact @is_measurable.sUnion α (generate_from s) _ hv
(λ x xv, ih _ (vf xv)) }
end)
(generate_from_le $ assume u hu, generate_measurable.basic _ $
show t.is_open u, by rw [hs]; exact generate_open.basic _ hu)
lemma is_pi_system_is_open [topological_space α] : is_pi_system (is_open : set α → Prop) :=
λ s t hs ht hst, is_open_inter hs ht
section order_topology
variable (α)
variables [topological_space α] [second_countable_topology α] [linear_order α] [order_topology α]
lemma borel_eq_generate_Iio : borel α = generate_from (range Iio) :=
begin
refine le_antisymm _ (generate_from_le _),
{ rw borel_eq_generate_from_of_subbasis (@order_topology.topology_eq_generate_intervals α _ _ _),
letI : measurable_space α := measurable_space.generate_from (range Iio),
have H : ∀ a : α, is_measurable (Iio a) := λ a, generate_measurable.basic _ ⟨_, rfl⟩,
refine generate_from_le _, rintro _ ⟨a, rfl | rfl⟩; [skip, apply H],
by_cases h : ∃ a', ∀ b, a < b ↔ a' ≤ b,
{ rcases h with ⟨a', ha'⟩,
rw (_ : Ioi a = (Iio a')ᶜ), { exact (H _).compl },
simp [set.ext_iff, ha'] },
{ rcases is_open_Union_countable
(λ a' : {a' : α // a < a'}, {b | a'.1 < b})
(λ a', is_open_lt' _) with ⟨v, ⟨hv⟩, vu⟩,
simp [set.ext_iff] at vu,
have : Ioi a = ⋃ x : v, (Iio x.1.1)ᶜ,
{ simp [set.ext_iff],
refine λ x, ⟨λ ax, _, λ ⟨a', ⟨h, av⟩, ax⟩, lt_of_lt_of_le h ax⟩,
rcases (vu x).2 _ with ⟨a', h₁, h₂⟩,
{ exact ⟨a', h₁, le_of_lt h₂⟩ },
refine not_imp_comm.1 (λ h, _) h,
exact ⟨x, λ b, ⟨λ ab, le_of_not_lt (λ h', h ⟨b, ab, h'⟩),
lt_of_lt_of_le ax⟩⟩ },
rw this, resetI,
apply is_measurable.Union,
exact λ _, (H _).compl } },
{ rw forall_range_iff,
intro a,
exact generate_measurable.basic _ is_open_Iio }
end
lemma borel_eq_generate_Ioi : borel α = generate_from (range Ioi) :=
@borel_eq_generate_Iio (order_dual α) _ (by apply_instance : second_countable_topology α) _ _
end order_topology
lemma borel_comap {f : α → β} {t : topological_space β} :
@borel α (t.induced f) = (@borel β t).comap f :=
comap_generate_from.symm
lemma continuous.borel_measurable [topological_space α] [topological_space β]
{f : α → β} (hf : continuous f) :
@measurable α β (borel α) (borel β) f :=
measurable.of_le_map $ generate_from_le $
λ s hs, generate_measurable.basic (f ⁻¹' s) (hs.preimage hf)
/-- A space with `measurable_space` and `topological_space` structures such that
all open sets are measurable. -/
class opens_measurable_space (α : Type*) [topological_space α] [h : measurable_space α] : Prop :=
(borel_le : borel α ≤ h)
/-- A space with `measurable_space` and `topological_space` structures such that
the `σ`-algebra of measurable sets is exactly the `σ`-algebra generated by open sets. -/
class borel_space (α : Type*) [topological_space α] [measurable_space α] : Prop :=
(measurable_eq : ‹measurable_space α› = borel α)
/-- In a `borel_space` all open sets are measurable. -/
@[priority 100]
instance borel_space.opens_measurable {α : Type*} [topological_space α] [measurable_space α]
[borel_space α] : opens_measurable_space α :=
⟨ge_of_eq $ borel_space.measurable_eq⟩
instance subtype.borel_space {α : Type*} [topological_space α] [measurable_space α]
[hα : borel_space α] (s : set α) :
borel_space s :=
⟨by { rw [hα.1, subtype.measurable_space, ← borel_comap], refl }⟩
instance subtype.opens_measurable_space {α : Type*} [topological_space α] [measurable_space α]
[h : opens_measurable_space α] (s : set α) :
opens_measurable_space s :=
⟨by { rw [borel_comap], exact comap_mono h.1 }⟩
section
variables [topological_space α] [measurable_space α] [opens_measurable_space α]
[topological_space β] [measurable_space β] [opens_measurable_space β]
[topological_space γ] [measurable_space γ] [borel_space γ]
[topological_space γ₂] [measurable_space γ₂] [borel_space γ₂]
[measurable_space δ]
lemma is_open.is_measurable (h : is_open s) : is_measurable s :=
opens_measurable_space.borel_le _ $ generate_measurable.basic _ h
lemma is_measurable_interior : is_measurable (interior s) := is_open_interior.is_measurable
lemma is_Gδ.is_measurable (h : is_Gδ s) : is_measurable s :=
begin
rcases h with ⟨S, hSo, hSc, rfl⟩,
exact is_measurable.sInter hSc (λ t ht, (hSo t ht).is_measurable)
end
lemma is_measurable_set_of_continuous_at {β} [emetric_space β] (f : α → β) :
is_measurable {x | continuous_at f x} :=
(is_Gδ_set_of_continuous_at f).is_measurable
lemma is_closed.is_measurable (h : is_closed s) : is_measurable s :=
h.is_measurable.of_compl
lemma is_compact.is_measurable [t2_space α] (h : is_compact s) : is_measurable s :=
h.is_closed.is_measurable
lemma is_measurable_closure : is_measurable (closure s) :=
is_closed_closure.is_measurable
lemma measurable_of_is_open {f : δ → γ} (hf : ∀ s, is_open s → is_measurable (f ⁻¹' s)) :
measurable f :=
by { rw [‹borel_space γ›.measurable_eq], exact measurable_generate_from hf }
lemma measurable_of_is_closed {f : δ → γ} (hf : ∀ s, is_closed s → is_measurable (f ⁻¹' s)) :
measurable f :=
begin
apply measurable_of_is_open, intros s hs,
rw [← is_measurable.compl_iff, ← preimage_compl], apply hf, rw [is_closed_compl_iff], exact hs
end
lemma measurable_of_is_closed' {f : δ → γ}
(hf : ∀ s, is_closed s → s.nonempty → s ≠ univ → is_measurable (f ⁻¹' s)) : measurable f :=
begin
apply measurable_of_is_closed, intros s hs,
cases eq_empty_or_nonempty s with h1 h1, { simp [h1] },
by_cases h2 : s = univ, { simp [h2] },
exact hf s hs h1 h2
end
instance nhds_is_measurably_generated (a : α) : (𝓝 a).is_measurably_generated :=
begin
rw [nhds, infi_subtype'],
refine @filter.infi_is_measurably_generated _ _ _ _ (λ i, _),
exact i.2.2.is_measurable.principal_is_measurably_generated
end
/-- If `s` is a measurable set, then `𝓝[s] a` is a measurably generated filter for
each `a`. This cannot be an `instance` because it depends on a non-instance `hs : is_measurable s`.
-/
lemma is_measurable.nhds_within_is_measurably_generated {s : set α} (hs : is_measurable s) (a : α) :
(𝓝[s] a).is_measurably_generated :=
by haveI := hs.principal_is_measurably_generated; exact filter.inf_is_measurably_generated _ _
@[priority 100] -- see Note [lower instance priority]
instance opens_measurable_space.to_measurable_singleton_class [t1_space α] :
measurable_singleton_class α :=
⟨λ x, is_closed_singleton.is_measurable⟩
instance pi.opens_measurable_space {ι : Type*} {π : ι → Type*} [fintype ι]
[t' : Π i, topological_space (π i)]
[Π i, measurable_space (π i)] [∀ i, second_countable_topology (π i)]
[∀ i, opens_measurable_space (π i)] :
opens_measurable_space (Π i, π i) :=
begin
constructor,
choose g hc he ho hu hinst using λ i, is_open_generated_countable_inter (π i),
have : Pi.topological_space =
generate_from {t | ∃(s:Πa, set (π a)) (i : finset ι), (∀a∈i, s a ∈ g a) ∧ t = pi ↑i s},
{ rw [funext hinst, pi_generate_from_eq] },
rw [borel_eq_generate_from_of_subbasis this],
apply generate_from_le,
rintros _ ⟨s, i, hi, rfl⟩,
refine is_measurable.pi i.countable_to_set (λ a ha, is_open.is_measurable _),
rw [hinst],
exact generate_open.basic _ (hi a ha)
end
instance prod.opens_measurable_space [second_countable_topology α] [second_countable_topology β] :
opens_measurable_space (α × β) :=
begin
constructor,
rcases is_open_generated_countable_inter α with ⟨a, ha₁, ha₂, ha₃, ha₄, ha₅⟩,
rcases is_open_generated_countable_inter β with ⟨b, hb₁, hb₂, hb₃, hb₄, hb₅⟩,
have : prod.topological_space = generate_from {g | ∃u∈a, ∃v∈b, g = set.prod u v},
{ rw [ha₅, hb₅], exact prod_generate_from_generate_from_eq ha₄ hb₄ },
rw [borel_eq_generate_from_of_subbasis this],
apply generate_from_le,
rintros _ ⟨u, hu, v, hv, rfl⟩,
have hu : is_open u, by { rw [ha₅], exact generate_open.basic _ hu },
have hv : is_open v, by { rw [hb₅], exact generate_open.basic _ hv },
exact hu.is_measurable.prod hv.is_measurable
end
section
open measure_theory
@[priority 100] -- see Note [lower instance priority]
instance sigma_finite_of_locally_finite [second_countable_topology α]
{μ : measure α} [locally_finite_measure μ] :
sigma_finite μ :=
begin
set S : set (set α) := {s | is_open s ∧ μ s < ⊤},
rcases is_open_sUnion_countable S (λ s, and.left) with ⟨S', hc, hS, hU⟩,
refine measure.sigma_finite_of_countable hc (λ s hs, (hS hs).1.is_measurable)
(λ s hs, (hS hs).2) (hU.symm ▸ sUnion_eq_univ_iff.2 $ λ x, _),
rcases μ.exists_is_open_measure_lt_top x with ⟨s, hxs, ho, hμ⟩,
exact ⟨s, ⟨ho, hμ⟩, hxs⟩
end
end
section preorder
variables [preorder α] [order_closed_topology α] {a b : α}
@[simp] lemma is_measurable_Ici : is_measurable (Ici a) := is_closed_Ici.is_measurable
@[simp] lemma is_measurable_Iic : is_measurable (Iic a) := is_closed_Iic.is_measurable
@[simp] lemma is_measurable_Icc : is_measurable (Icc a b) := is_closed_Icc.is_measurable
instance nhds_within_Ici_is_measurably_generated :
(𝓝[Ici b] a).is_measurably_generated :=
is_measurable_Ici.nhds_within_is_measurably_generated _
instance nhds_within_Iic_is_measurably_generated :
(𝓝[Iic b] a).is_measurably_generated :=
is_measurable_Iic.nhds_within_is_measurably_generated _
instance at_top_is_measurably_generated : (filter.at_top : filter α).is_measurably_generated :=
@filter.infi_is_measurably_generated _ _ _ _ $
λ a, (is_measurable_Ici : is_measurable (Ici a)).principal_is_measurably_generated
instance at_bot_is_measurably_generated : (filter.at_bot : filter α).is_measurably_generated :=
@filter.infi_is_measurably_generated _ _ _ _ $
λ a, (is_measurable_Iic : is_measurable (Iic a)).principal_is_measurably_generated
end preorder
section partial_order
variables [partial_order α] [order_closed_topology α] [second_countable_topology α]
{a b : α}
lemma is_measurable_le' : is_measurable {p : α × α | p.1 ≤ p.2} :=
order_closed_topology.is_closed_le'.is_measurable
lemma is_measurable_le {f g : δ → α} (hf : measurable f) (hg : measurable g) :
is_measurable {a | f a ≤ g a} :=
hf.prod_mk hg is_measurable_le'
end partial_order
section linear_order
variables [linear_order α] [order_closed_topology α] {a b : α}
@[simp] lemma is_measurable_Iio : is_measurable (Iio a) := is_open_Iio.is_measurable
@[simp] lemma is_measurable_Ioi : is_measurable (Ioi a) := is_open_Ioi.is_measurable
@[simp] lemma is_measurable_Ioo : is_measurable (Ioo a b) := is_open_Ioo.is_measurable
@[simp] lemma is_measurable_Ioc : is_measurable (Ioc a b) :=
is_measurable_Ioi.inter is_measurable_Iic
@[simp] lemma is_measurable_Ico : is_measurable (Ico a b) :=
is_measurable_Ici.inter is_measurable_Iio
instance nhds_within_Ioi_is_measurably_generated :
(𝓝[Ioi b] a).is_measurably_generated :=
is_measurable_Ioi.nhds_within_is_measurably_generated _
instance nhds_within_Iio_is_measurably_generated :
(𝓝[Iio b] a).is_measurably_generated :=
is_measurable_Iio.nhds_within_is_measurably_generated _
variables [second_countable_topology α]
lemma is_measurable_lt' : is_measurable {p : α × α | p.1 < p.2} :=
(is_open_lt continuous_fst continuous_snd).is_measurable
lemma is_measurable_lt {f g : δ → α} (hf : measurable f) (hg : measurable g) :
is_measurable {a | f a < g a} :=
hf.prod_mk hg is_measurable_lt'
end linear_order
section linear_order
variables [linear_order α] [order_closed_topology α]
lemma is_measurable_interval {a b : α} : is_measurable (interval a b) :=
is_measurable_Icc
variables [second_countable_topology α]
lemma measurable.max {f g : δ → α} (hf : measurable f) (hg : measurable g) :
measurable (λ a, max (f a) (g a)) :=
hf.piecewise (is_measurable_le hg hf) hg
lemma ae_measurable.max {f g : δ → α} {μ : measure δ}
(hf : ae_measurable f μ) (hg : ae_measurable g μ) : ae_measurable (λ a, max (f a) (g a)) μ :=
⟨λ a, max (hf.mk f a) (hg.mk g a), hf.measurable_mk.max hg.measurable_mk,
eventually_eq.comp₂ hf.ae_eq_mk _ hg.ae_eq_mk⟩
lemma measurable.min {f g : δ → α} (hf : measurable f) (hg : measurable g) :
measurable (λ a, min (f a) (g a)) :=
hf.piecewise (is_measurable_le hf hg) hg
lemma ae_measurable.min {f g : δ → α} {μ : measure δ}
(hf : ae_measurable f μ) (hg : ae_measurable g μ) : ae_measurable (λ a, min (f a) (g a)) μ :=
⟨λ a, min (hf.mk f a) (hg.mk g a), hf.measurable_mk.min hg.measurable_mk,
eventually_eq.comp₂ hf.ae_eq_mk _ hg.ae_eq_mk⟩
end linear_order
/-- A continuous function from an `opens_measurable_space` to a `borel_space`
is measurable. -/
lemma continuous.measurable {f : α → γ} (hf : continuous f) :
measurable f :=
hf.borel_measurable.mono opens_measurable_space.borel_le
(le_of_eq $ borel_space.measurable_eq)
section homeomorph
/-- A homeomorphism between two Borel spaces is a measurable equivalence.-/
def homeomorph.to_measurable_equiv (h : γ ≃ₜ γ₂) : γ ≃ᵐ γ₂ :=
{ measurable_to_fun := h.continuous_to_fun.measurable,
measurable_inv_fun := h.continuous_inv_fun.measurable,
.. h }
@[simp]
lemma homeomorph.to_measurable_equiv_coe (h : γ ≃ₜ γ₂) : (h.to_measurable_equiv : γ → γ₂) = h :=
rfl
@[simp] lemma homeomorph.to_measurable_equiv_symm_coe (h : γ ≃ₜ γ₂) :
(h.to_measurable_equiv.symm : γ₂ → γ) = h.symm :=
rfl
end homeomorph
lemma measurable_of_continuous_on_compl_singleton [t1_space α] {f : α → γ} (a : α)
(hf : continuous_on f {x | x ≠ a}) :
measurable f :=
measurable_of_measurable_on_compl_singleton a
(continuous_on_iff_continuous_restrict.1 hf).measurable
lemma continuous.measurable2 [second_countable_topology α] [second_countable_topology β]
{f : δ → α} {g : δ → β} {c : α → β → γ}
(h : continuous (λ p : α × β, c p.1 p.2)) (hf : measurable f) (hg : measurable g) :
measurable (λ a, c (f a) (g a)) :=
h.measurable.comp (hf.prod_mk hg)
lemma continuous.ae_measurable2 [second_countable_topology α] [second_countable_topology β]
{f : δ → α} {g : δ → β} {c : α → β → γ} {μ : measure δ}
(h : continuous (λ p : α × β, c p.1 p.2)) (hf : ae_measurable f μ) (hg : ae_measurable g μ) :
ae_measurable (λ a, c (f a) (g a)) μ :=
h.measurable.comp_ae_measurable (hf.prod_mk hg)
lemma measurable.smul [semiring α] [second_countable_topology α]
[add_comm_monoid γ] [second_countable_topology γ]
[semimodule α γ] [topological_semimodule α γ]
{f : δ → α} {g : δ → γ} (hf : measurable f) (hg : measurable g) :
measurable (λ c, f c • g c) :=
continuous_smul.measurable2 hf hg
lemma ae_measurable.smul [semiring α] [second_countable_topology α]
[add_comm_monoid γ] [second_countable_topology γ]
[semimodule α γ] [topological_semimodule α γ]
{f : δ → α} {g : δ → γ} {μ : measure δ} (hf : ae_measurable f μ) (hg : ae_measurable g μ) :
ae_measurable (λ c, f c • g c) μ :=
continuous_smul.ae_measurable2 hf hg
lemma measurable.const_smul {R M : Type*} [topological_space R] [semiring R]
[add_comm_monoid M] [semimodule R M] [topological_space M] [topological_semimodule R M]
[measurable_space M] [borel_space M]
{f : δ → M} (hf : measurable f) (c : R) :
measurable (λ x, c • f x) :=
(continuous_const.smul continuous_id).measurable.comp hf
lemma ae_measurable.const_smul {R M : Type*} [topological_space R] [semiring R]
[add_comm_monoid M] [semimodule R M] [topological_space M] [topological_semimodule R M]
[measurable_space M] [borel_space M]
{f : δ → M} {μ : measure δ} (hf : ae_measurable f μ) (c : R) :
ae_measurable (λ x, c • f x) μ :=
(continuous_const.smul continuous_id).measurable.comp_ae_measurable hf
lemma measurable_const_smul_iff {α : Type*} [topological_space α]
[division_ring α] [add_comm_monoid γ]
[semimodule α γ] [topological_semimodule α γ]
{f : δ → γ} {c : α} (hc : c ≠ 0) :
measurable (λ x, c • f x) ↔ measurable f :=
⟨λ h, by simpa only [smul_smul, inv_mul_cancel hc, one_smul] using h.const_smul c⁻¹,
λ h, h.const_smul c⟩
lemma ae_measurable_const_smul_iff {α : Type*} [topological_space α]
[division_ring α] [add_comm_monoid γ]
[semimodule α γ] [topological_semimodule α γ]
{f : δ → γ} {μ : measure δ} {c : α} (hc : c ≠ 0) :
ae_measurable (λ x, c • f x) μ ↔ ae_measurable f μ :=
⟨λ h, by simpa only [smul_smul, inv_mul_cancel hc, one_smul] using h.const_smul c⁻¹,
λ h, h.const_smul c⟩
lemma measurable.const_mul {R : Type*} [topological_space R] [measurable_space R]
[borel_space R] [semiring R] [topological_semiring R]
{f : δ → R} (hf : measurable f) (c : R) :
measurable (λ x, c * f x) :=
hf.const_smul c
lemma measurable.mul_const {R : Type*} [topological_space R] [measurable_space R]
[borel_space R] [semiring R] [topological_semiring R]
{f : δ → R} (hf : measurable f) (c : R) :
measurable (λ x, f x * c) :=
(continuous_id.mul continuous_const).measurable.comp hf
end
section borel_space
variables [topological_space α] [measurable_space α] [borel_space α]
[topological_space β] [measurable_space β] [borel_space β]
[topological_space γ] [measurable_space γ] [borel_space γ]
[measurable_space δ]
lemma pi_le_borel_pi {ι : Type*} {π : ι → Type*} [Π i, topological_space (π i)]
[Π i, measurable_space (π i)] [∀ i, borel_space (π i)] :
measurable_space.pi ≤ borel (Π i, π i) :=
begin
have : ‹Π i, measurable_space (π i)› = λ i, borel (π i) :=
funext (λ i, borel_space.measurable_eq),
rw [this],
exact supr_le (λ i, comap_le_iff_le_map.2 $ (continuous_apply i).borel_measurable)
end
lemma prod_le_borel_prod : prod.measurable_space ≤ borel (α × β) :=
begin
rw [‹borel_space α›.measurable_eq, ‹borel_space β›.measurable_eq],
refine sup_le _ _,
{ exact comap_le_iff_le_map.mpr continuous_fst.borel_measurable },
{ exact comap_le_iff_le_map.mpr continuous_snd.borel_measurable }
end
instance pi.borel_space {ι : Type*} {π : ι → Type*} [fintype ι]
[t' : Π i, topological_space (π i)]
[Π i, measurable_space (π i)] [∀ i, second_countable_topology (π i)]
[∀ i, borel_space (π i)] :
borel_space (Π i, π i) :=
⟨le_antisymm pi_le_borel_pi opens_measurable_space.borel_le⟩
instance prod.borel_space [second_countable_topology α] [second_countable_topology β] :
borel_space (α × β) :=
⟨le_antisymm prod_le_borel_prod opens_measurable_space.borel_le⟩
@[to_additive]
lemma measurable_mul [has_mul α] [has_continuous_mul α] [second_countable_topology α] :
measurable (λ p : α × α, p.1 * p.2) :=
continuous_mul.measurable
@[to_additive]
lemma measurable.mul [has_mul α] [has_continuous_mul α] [second_countable_topology α]
{f : δ → α} {g : δ → α} : measurable f → measurable g → measurable (λ a, f a * g a) :=
(@continuous_mul α _ _ _).measurable2
@[to_additive]
lemma ae_measurable.mul [has_mul α] [has_continuous_mul α] [second_countable_topology α]
{f : δ → α} {g : δ → α} {μ : measure δ}
(hf : ae_measurable f μ) (hg : ae_measurable g μ) : ae_measurable (λ a, f a * g a) μ :=
(@continuous_mul α _ _ _).ae_measurable2 hf hg
/-- A variant of `measurable.mul` that uses `*` on functions -/
@[to_additive]
lemma measurable.mul' [has_mul α] [has_continuous_mul α] [second_countable_topology α]
{f : δ → α} {g : δ → α} : measurable f → measurable g → measurable (f * g) :=
measurable.mul
@[to_additive]
lemma measurable_mul_left [has_mul α] [has_continuous_mul α] (x : α) :
measurable (λ y : α, x * y) :=
continuous.measurable $ continuous_const.mul continuous_id
@[to_additive]
lemma measurable_mul_right [has_mul α] [has_continuous_mul α] (x : α) :
measurable (λ y : α, y * x) :=
continuous.measurable $ continuous_id.mul continuous_const
@[to_additive]
lemma finset.measurable_prod {ι : Type*} [comm_monoid α] [has_continuous_mul α]
[second_countable_topology α] {f : ι → δ → α} (s : finset ι) (hf : ∀i, measurable (f i)) :
measurable (λ a, ∏ i in s, f i a) :=
finset.induction_on s
(by simp only [finset.prod_empty, measurable_const])
(assume i s his ih, by simpa [his] using (hf i).mul ih)
@[to_additive]
lemma measurable_inv [group α] [topological_group α] : measurable (has_inv.inv : α → α) :=
continuous_inv.measurable
@[to_additive]
lemma measurable.inv [group α] [topological_group α] {f : δ → α} (hf : measurable f) :
measurable (λ a, (f a)⁻¹) :=
measurable_inv.comp hf
@[to_additive]
lemma ae_measurable.inv [group α] [topological_group α] {f : δ → α} {μ : measure δ}
(hf : ae_measurable f μ) : ae_measurable (λ a, (f a)⁻¹) μ :=
measurable_inv.comp_ae_measurable hf
lemma measurable_inv' {α : Type*} [normed_field α] [measurable_space α] [borel_space α] :
measurable (has_inv.inv : α → α) :=
measurable_of_continuous_on_compl_singleton 0 continuous_on_inv'
lemma measurable.inv' {α : Type*} [normed_field α] [measurable_space α] [borel_space α]
{f : δ → α} (hf : measurable f) :
measurable (λ a, (f a)⁻¹) :=
measurable_inv'.comp hf
@[to_additive]
lemma measurable.of_inv [group α] [topological_group α] {f : δ → α}
(hf : measurable (λ a, (f a)⁻¹)) : measurable f :=
by simpa only [inv_inv] using hf.inv
@[simp, to_additive]
lemma measurable_inv_iff [group α] [topological_group α] {f : δ → α} :
measurable (λ a, (f a)⁻¹) ↔ measurable f :=
⟨measurable.of_inv, measurable.inv⟩
lemma measurable.sub [add_group α] [topological_add_group α] [second_countable_topology α]
{f g : δ → α} (hf : measurable f) (hg : measurable g) :
measurable (λ x, f x - g x) :=
by simpa only [sub_eq_add_neg] using hf.add hg.neg
lemma ae_measurable.sub [add_group α] [topological_add_group α] [second_countable_topology α]
{f g : δ → α} {μ : measure δ}
(hf : ae_measurable f μ) (hg : ae_measurable g μ) : ae_measurable (λ x, f x - g x) μ :=
by simpa only [sub_eq_add_neg] using hf.add hg.neg
lemma closed_embedding.measurable_inv_fun [n : nonempty β] {g : β → γ} (hg : closed_embedding g) :
measurable (function.inv_fun g) :=
begin
refine measurable_of_is_closed (λ s hs, _),
by_cases h : classical.choice n ∈ s,
{ rw preimage_inv_fun_of_mem hg.to_embedding.inj h,
exact (hg.closed_iff_image_closed.mp hs).is_measurable.union
hg.closed_range.is_measurable.compl },
{ rw preimage_inv_fun_of_not_mem hg.to_embedding.inj h,
exact (hg.closed_iff_image_closed.mp hs).is_measurable }
end
lemma measurable_comp_iff_of_closed_embedding {f : δ → β} (g : β → γ) (hg : closed_embedding g) :
measurable (g ∘ f) ↔ measurable f :=
begin
refine ⟨λ hf, _, λ hf, hg.continuous.measurable.comp hf⟩,
apply measurable_of_is_closed, intros s hs,
convert hf (hg.is_closed_map s hs).is_measurable,
rw [@preimage_comp _ _ _ f g, preimage_image_eq _ hg.to_embedding.inj]
end
lemma ae_measurable_comp_iff_of_closed_embedding {f : δ → β} {μ : measure δ}
(g : β → γ) (hg : closed_embedding g) : ae_measurable (g ∘ f) μ ↔ ae_measurable f μ :=
begin
by_cases h : nonempty β,
{ resetI,
refine ⟨λ hf, _, λ hf, hg.continuous.measurable.comp_ae_measurable hf⟩,
convert hg.measurable_inv_fun.comp_ae_measurable hf,
ext x,
exact (function.left_inverse_inv_fun hg.to_embedding.inj (f x)).symm },
{ have H : ¬ nonempty δ, by { contrapose! h, exact nonempty.map f h },
simp [(measurable_of_not_nonempty H (g ∘ f)).ae_measurable,
(measurable_of_not_nonempty H f).ae_measurable] }
end
section linear_order
variables [linear_order α] [order_topology α] [second_countable_topology α]
lemma measurable_of_Iio {f : δ → α} (hf : ∀ x, is_measurable (f ⁻¹' Iio x)) : measurable f :=
begin
convert measurable_generate_from _,
exact borel_space.measurable_eq.trans (borel_eq_generate_Iio _),
rintro _ ⟨x, rfl⟩, exact hf x
end
lemma measurable_of_Ioi {f : δ → α} (hf : ∀ x, is_measurable (f ⁻¹' Ioi x)) : measurable f :=
begin
convert measurable_generate_from _,
exact borel_space.measurable_eq.trans (borel_eq_generate_Ioi _),
rintro _ ⟨x, rfl⟩, exact hf x
end
lemma measurable_of_Iic {f : δ → α} (hf : ∀ x, is_measurable (f ⁻¹' Iic x)) : measurable f :=
begin
apply measurable_of_Ioi,
simp_rw [← compl_Iic, preimage_compl, is_measurable.compl_iff],
assumption
end
lemma measurable_of_Ici {f : δ → α} (hf : ∀ x, is_measurable (f ⁻¹' Ici x)) : measurable f :=
begin
apply measurable_of_Iio,
simp_rw [← compl_Ici, preimage_compl, is_measurable.compl_iff],
assumption
end
lemma measurable.is_lub {ι} [encodable ι] {f : ι → δ → α} {g : δ → α} (hf : ∀ i, measurable (f i))
(hg : ∀ b, is_lub {a | ∃ i, f i b = a} (g b)) :
measurable g :=
begin
change ∀ b, is_lub (range $ λ i, f i b) (g b) at hg,
rw [‹borel_space α›.measurable_eq, borel_eq_generate_Ioi α],
apply measurable_generate_from,
rintro _ ⟨a, rfl⟩,
simp only [set.preimage, mem_Ioi, lt_is_lub_iff (hg _), exists_range_iff, set_of_exists],
exact is_measurable.Union (λ i, hf i (is_open_lt' _).is_measurable)
end
lemma measurable.is_glb {ι} [encodable ι] {f : ι → δ → α} {g : δ → α} (hf : ∀ i, measurable (f i))
(hg : ∀ b, is_glb {a | ∃ i, f i b = a} (g b)) :
measurable g :=
begin
change ∀ b, is_glb (range $ λ i, f i b) (g b) at hg,
rw [‹borel_space α›.measurable_eq, borel_eq_generate_Iio α],
apply measurable_generate_from,
rintro _ ⟨a, rfl⟩,
simp only [set.preimage, mem_Iio, is_glb_lt_iff (hg _), exists_range_iff, set_of_exists],
exact is_measurable.Union (λ i, hf i (is_open_gt' _).is_measurable)
end
end linear_order
lemma measurable.supr_Prop {α} [measurable_space α] [complete_lattice α]
(p : Prop) {f : δ → α} (hf : measurable f) :
measurable (λ b, ⨆ h : p, f b) :=
classical.by_cases
(assume h : p, begin convert hf, funext, exact supr_pos h end)
(assume h : ¬p, begin convert measurable_const, funext, exact supr_neg h end)
lemma measurable.infi_Prop {α} [measurable_space α] [complete_lattice α]
(p : Prop) {f : δ → α} (hf : measurable f) :
measurable (λ b, ⨅ h : p, f b) :=
classical.by_cases
(assume h : p, begin convert hf, funext, exact infi_pos h end )
(assume h : ¬p, begin convert measurable_const, funext, exact infi_neg h end)
section complete_linear_order
variables [complete_linear_order α] [order_topology α] [second_countable_topology α]
lemma measurable_supr {ι} [encodable ι] {f : ι → δ → α} (hf : ∀ i, measurable (f i)) :
measurable (λ b, ⨆ i, f i b) :=
measurable.is_lub hf $ λ b, is_lub_supr
lemma measurable_infi {ι} [encodable ι] {f : ι → δ → α} (hf : ∀ i, measurable (f i)) :
measurable (λ b, ⨅ i, f i b) :=
measurable.is_glb hf $ λ b, is_glb_infi
lemma measurable_bsupr {ι} (s : set ι) {f : ι → δ → α} (hs : countable s)
(hf : ∀ i, measurable (f i)) : measurable (λ b, ⨆ i ∈ s, f i b) :=
by { haveI : encodable s := hs.to_encodable, simp only [supr_subtype'],
exact measurable_supr (λ i, hf i) }
lemma measurable_binfi {ι} (s : set ι) {f : ι → δ → α} (hs : countable s)
(hf : ∀ i, measurable (f i)) : measurable (λ b, ⨅ i ∈ s, f i b) :=
by { haveI : encodable s := hs.to_encodable, simp only [infi_subtype'],
exact measurable_infi (λ i, hf i) }
/-- `liminf` over a general filter is measurable. See `measurable_liminf` for the version over `ℕ`.
-/
lemma measurable_liminf' {ι ι'} {f : ι → δ → α} {u : filter ι} (hf : ∀ i, measurable (f i))
{p : ι' → Prop} {s : ι' → set ι} (hu : u.has_countable_basis p s) (hs : ∀ i, (s i).countable) :
measurable (λ x, liminf u (λ i, f i x)) :=
begin
simp_rw [hu.to_has_basis.liminf_eq_supr_infi],
refine measurable_bsupr _ hu.countable _,
exact λ i, measurable_binfi _ (hs i) hf
end
/-- `limsup` over a general filter is measurable. See `measurable_limsup` for the version over `ℕ`.
-/
lemma measurable_limsup' {ι ι'} {f : ι → δ → α} {u : filter ι} (hf : ∀ i, measurable (f i))
{p : ι' → Prop} {s : ι' → set ι} (hu : u.has_countable_basis p s) (hs : ∀ i, (s i).countable) :
measurable (λ x, limsup u (λ i, f i x)) :=
begin
simp_rw [hu.to_has_basis.limsup_eq_infi_supr],
refine measurable_binfi _ hu.countable _,
exact λ i, measurable_bsupr _ (hs i) hf
end
/-- `liminf` over `ℕ` is measurable. See `measurable_liminf'` for a version with a general filter.
-/
lemma measurable_liminf {f : ℕ → δ → α} (hf : ∀ i, measurable (f i)) :
measurable (λ x, liminf at_top (λ i, f i x)) :=
measurable_liminf' hf at_top_countable_basis (λ i, countable_encodable _)
/-- `limsup` over `ℕ` is measurable. See `measurable_limsup'` for a version with a general filter.
-/
lemma measurable_limsup {f : ℕ → δ → α} (hf : ∀ i, measurable (f i)) :
measurable (λ x, limsup at_top (λ i, f i x)) :=
measurable_limsup' hf at_top_countable_basis (λ i, countable_encodable _)
end complete_linear_order
section conditionally_complete_linear_order
variables [conditionally_complete_linear_order α] [second_countable_topology α] [order_topology α]
lemma measurable_cSup {ι} {f : ι → δ → α} {s : set ι} (hs : s.countable)
(hf : ∀ i, measurable (f i)) (bdd : ∀ x, bdd_above ((λ i, f i x) '' s)) :
measurable (λ x, Sup ((λ i, f i x) '' s)) :=
begin
cases eq_empty_or_nonempty s with h2s h2s,
{ simp [h2s, measurable_const] },
{ apply measurable_of_Iic, intro y,
simp_rw [preimage, mem_Iic, cSup_le_iff (bdd _) (h2s.image _), ball_image_iff, set_of_forall],
exact is_measurable.bInter hs (λ i hi, is_measurable_le (hf i) measurable_const) }
end
end conditionally_complete_linear_order
/-- Convert a `homeomorph` to a `measurable_equiv`. -/
def homemorph.to_measurable_equiv (h : α ≃ₜ β) : α ≃ᵐ β :=
{ to_equiv := h.to_equiv,
measurable_to_fun := h.continuous_to_fun.measurable,
measurable_inv_fun := h.continuous_inv_fun.measurable }
end borel_space
instance empty.borel_space : borel_space empty := ⟨borel_eq_top_of_discrete.symm⟩
instance unit.borel_space : borel_space unit := ⟨borel_eq_top_of_discrete.symm⟩
instance bool.borel_space : borel_space bool := ⟨borel_eq_top_of_discrete.symm⟩
instance nat.borel_space : borel_space ℕ := ⟨borel_eq_top_of_discrete.symm⟩
instance int.borel_space : borel_space ℤ := ⟨borel_eq_top_of_discrete.symm⟩
instance rat.borel_space : borel_space ℚ := ⟨borel_eq_top_of_encodable.symm⟩
instance real.measurable_space : measurable_space ℝ := borel ℝ
instance real.borel_space : borel_space ℝ := ⟨rfl⟩
instance nnreal.measurable_space : measurable_space ℝ≥0 := borel ℝ≥0
instance nnreal.borel_space : borel_space ℝ≥0 := ⟨rfl⟩
instance ennreal.measurable_space : measurable_space ennreal := borel ennreal
instance ennreal.borel_space : borel_space ennreal := ⟨rfl⟩
instance complex.measurable_space : measurable_space ℂ := borel ℂ
instance complex.borel_space : borel_space ℂ := ⟨rfl⟩
section metric_space
variables [metric_space α] [measurable_space α] [opens_measurable_space α]
variables [measurable_space β] {x : α} {ε : ℝ}
open metric
lemma is_measurable_ball : is_measurable (metric.ball x ε) :=
metric.is_open_ball.is_measurable
lemma is_measurable_closed_ball : is_measurable (metric.closed_ball x ε) :=
metric.is_closed_ball.is_measurable
lemma measurable_inf_dist {s : set α} : measurable (λ x, inf_dist x s) :=
(continuous_inf_dist_pt s).measurable
lemma measurable.inf_dist {f : β → α} (hf : measurable f) {s : set α} :
measurable (λ x, inf_dist (f x) s) :=
measurable_inf_dist.comp hf
lemma measurable_inf_nndist {s : set α} : measurable (λ x, inf_nndist x s) :=
(continuous_inf_nndist_pt s).measurable
lemma measurable.inf_nndist {f : β → α} (hf : measurable f) {s : set α} :
measurable (λ x, inf_nndist (f x) s) :=
measurable_inf_nndist.comp hf
variables [second_countable_topology α]
lemma measurable_dist : measurable (λ p : α × α, dist p.1 p.2) :=
continuous_dist.measurable
lemma measurable.dist {f g : β → α} (hf : measurable f) (hg : measurable g) :
measurable (λ b, dist (f b) (g b)) :=
(@continuous_dist α _).measurable2 hf hg
lemma measurable_nndist : measurable (λ p : α × α, nndist p.1 p.2) :=
continuous_nndist.measurable
lemma measurable.nndist {f g : β → α} (hf : measurable f) (hg : measurable g) :
measurable (λ b, nndist (f b) (g b)) :=
(@continuous_nndist α _).measurable2 hf hg
end metric_space
section emetric_space
variables [emetric_space α] [measurable_space α] [opens_measurable_space α]
variables [measurable_space β] {x : α} {ε : ennreal}
open emetric
lemma is_measurable_eball : is_measurable (emetric.ball x ε) :=
emetric.is_open_ball.is_measurable
lemma measurable_edist_right : measurable (edist x) :=
(continuous_const.edist continuous_id).measurable
lemma measurable_edist_left : measurable (λ y, edist y x) :=
(continuous_id.edist continuous_const).measurable
lemma measurable_inf_edist {s : set α} : measurable (λ x, inf_edist x s) :=
continuous_inf_edist.measurable
lemma measurable.inf_edist {f : β → α} (hf : measurable f) {s : set α} :
measurable (λ x, inf_edist (f x) s) :=
measurable_inf_edist.comp hf
variables [second_countable_topology α]
lemma measurable_edist : measurable (λ p : α × α, edist p.1 p.2) :=
continuous_edist.measurable
lemma measurable.edist {f g : β → α} (hf : measurable f) (hg : measurable g) :
measurable (λ b, edist (f b) (g b)) :=
(@continuous_edist α _).measurable2 hf hg
lemma ae_measurable.edist {f g : β → α} {μ : measure β}
(hf : ae_measurable f μ) (hg : ae_measurable g μ) : ae_measurable (λ a, edist (f a) (g a)) μ :=
(@continuous_edist α _).ae_measurable2 hf hg
end emetric_space
namespace real
open measurable_space measure_theory
lemma borel_eq_generate_from_Ioo_rat :
borel ℝ = generate_from (⋃(a b : ℚ) (h : a < b), {Ioo a b}) :=
borel_eq_generate_from_of_subbasis is_topological_basis_Ioo_rat.2.2
lemma measure_ext_Ioo_rat {μ ν : measure ℝ} [locally_finite_measure μ]
(h : ∀ a b : ℚ, μ (Ioo a b) = ν (Ioo a b)) : μ = ν :=
begin
refine measure.ext_of_generate_from_of_cover_subset borel_eq_generate_from_Ioo_rat _
(subset.refl _) _ _ _ _,
{ simp only [is_pi_system, mem_Union, mem_singleton_iff],
rintros _ _ ⟨a₁, b₁, h₁, rfl⟩ ⟨a₂, b₂, h₂, rfl⟩ ne,
simp only [Ioo_inter_Ioo, sup_eq_max, inf_eq_min, ← rat.cast_max, ← rat.cast_min,
nonempty_Ioo] at ne ⊢,
refine ⟨_, _, _, rfl⟩,
assumption_mod_cast },
{ exact countable_Union (λ a, (countable_encodable _).bUnion $ λ _ _, countable_singleton _) },
{ exact is_topological_basis_Ioo_rat.2.1 },
{ simp only [mem_Union, mem_singleton_iff],
rintros _ ⟨a, b, h, rfl⟩,
refine (measure_mono subset_closure).trans_lt _,
rw [closure_Ioo],
exacts [compact_Icc.finite_measure, rat.cast_lt.2 h] },
{ simp only [mem_Union, mem_singleton_iff],
rintros _ ⟨a, b, hab, rfl⟩,
exact h a b }
end
lemma borel_eq_generate_from_Iio_rat :
borel ℝ = generate_from (⋃ a : ℚ, {Iio a}) :=
begin
let g, swap,
apply le_antisymm (_ : _ ≤ g) (measurable_space.generate_from_le (λ t, _)),
{ rw borel_eq_generate_from_Ioo_rat,
refine generate_from_le (λ t, _),
simp only [mem_Union], rintro ⟨a, b, h, H⟩,
rw [mem_singleton_iff.1 H],
rw (set.ext (λ x, _) : Ioo (a : ℝ) b = (⋃c>a, (Iio c)ᶜ) ∩ Iio b),
{ have hg : ∀ q : ℚ, g.is_measurable' (Iio q) :=
λ q, generate_measurable.basic (Iio q) (by { simp, exact ⟨_, rfl⟩ }),
refine @is_measurable.inter _ g _ _ _ (hg _),
refine @is_measurable.bUnion _ _ g _ _ (countable_encodable _) (λ c h, _),
exact @is_measurable.compl _ _ g (hg _) },
{ suffices : x < ↑b → (↑a < x ↔ ∃ (i : ℚ), a < i ∧ ↑i ≤ x), by simpa,
refine λ _, ⟨λ h, _, λ ⟨i, hai, hix⟩, (rat.cast_lt.2 hai).trans_le hix⟩,
rcases exists_rat_btwn h with ⟨c, ac, cx⟩,
exact ⟨c, rat.cast_lt.1 ac, cx.le⟩ } },
{ simp, rintro r rfl, exact is_open_Iio.is_measurable }
end
end real
variable [measurable_space α]
lemma measurable.sub_nnreal {f g : α → ℝ≥0} :
measurable f → measurable g → measurable (λ a, f a - g a) :=
(@continuous_sub ℝ≥0 _ _ _).measurable2
lemma measurable.nnreal_of_real {f : α → ℝ} (hf : measurable f) :
measurable (λ x, nnreal.of_real (f x)) :=
nnreal.continuous_of_real.measurable.comp hf
lemma nnreal.measurable_coe : measurable (coe : ℝ≥0 → ℝ) :=
nnreal.continuous_coe.measurable
lemma measurable.nnreal_coe {f : α → ℝ≥0} (hf : measurable f) :
measurable (λ x, (f x : ℝ)) :=
nnreal.measurable_coe.comp hf
lemma measurable.ennreal_coe {f : α → ℝ≥0} (hf : measurable f) :
measurable (λ x, (f x : ennreal)) :=
ennreal.continuous_coe.measurable.comp hf
lemma ae_measurable.ennreal_coe {f : α → ℝ≥0} {μ : measure α} (hf : ae_measurable f μ) :
ae_measurable (λ x, (f x : ennreal)) μ :=
ennreal.continuous_coe.measurable.comp_ae_measurable hf
lemma measurable.ennreal_of_real {f : α → ℝ} (hf : measurable f) :
measurable (λ x, ennreal.of_real (f x)) :=
ennreal.continuous_of_real.measurable.comp hf
/-- The set of finite `ennreal` numbers is `measurable_equiv` to `ℝ≥0`. -/
def measurable_equiv.ennreal_equiv_nnreal : {r : ennreal | r ≠ ⊤} ≃ᵐ ℝ≥0 :=
ennreal.ne_top_homeomorph_nnreal.to_measurable_equiv
namespace ennreal
lemma measurable_coe : measurable (coe : ℝ≥0 → ennreal) :=
measurable_id.ennreal_coe
lemma measurable_of_measurable_nnreal {f : ennreal → α}
(h : measurable (λ p : ℝ≥0, f p)) : measurable f :=
measurable_of_measurable_on_compl_singleton ⊤
(measurable_equiv.ennreal_equiv_nnreal.symm.measurable_coe_iff.1 h)
/-- `ennreal` is `measurable_equiv` to `ℝ≥0 ⊕ unit`. -/
def ennreal_equiv_sum : ennreal ≃ᵐ ℝ≥0 ⊕ unit :=
{ measurable_to_fun := measurable_of_measurable_nnreal measurable_inl,
measurable_inv_fun := measurable_sum measurable_coe (@measurable_const ennreal unit _ _ ⊤),
.. equiv.option_equiv_sum_punit ℝ≥0 }
open function (uncurry)
lemma measurable_of_measurable_nnreal_prod [measurable_space β] [measurable_space γ]
{f : ennreal × β → γ} (H₁ : measurable (λ p : ℝ≥0 × β, f (p.1, p.2)))
(H₂ : measurable (λ x, f (⊤, x))) :
measurable f :=
let e : ennreal × β ≃ᵐ ℝ≥0 × β ⊕ unit × β :=
(ennreal_equiv_sum.prod_congr (measurable_equiv.refl β)).trans
(measurable_equiv.sum_prod_distrib _ _ _) in
e.symm.measurable_coe_iff.1 $ measurable_sum H₁ (H₂.comp measurable_id.snd)
lemma measurable_of_measurable_nnreal_nnreal [measurable_space β]
{f : ennreal × ennreal → β} (h₁ : measurable (λ p : ℝ≥0 × ℝ≥0, f (p.1, p.2)))
(h₂ : measurable (λ r : ℝ≥0, f (⊤, r))) (h₃ : measurable (λ r : ℝ≥0, f (r, ⊤))) :
measurable f :=
measurable_of_measurable_nnreal_prod
(measurable_swap_iff.1 $ measurable_of_measurable_nnreal_prod (h₁.comp measurable_swap) h₃)
(measurable_of_measurable_nnreal h₂)
lemma measurable_of_real : measurable ennreal.of_real :=
ennreal.continuous_of_real.measurable
lemma measurable_to_real : measurable ennreal.to_real :=
ennreal.measurable_of_measurable_nnreal nnreal.measurable_coe
lemma measurable_to_nnreal : measurable ennreal.to_nnreal :=
ennreal.measurable_of_measurable_nnreal measurable_id
lemma measurable_mul : measurable (λ p : ennreal × ennreal, p.1 * p.2) :=
begin
apply measurable_of_measurable_nnreal_nnreal,
{ simp only [← ennreal.coe_mul, measurable_mul.ennreal_coe] },
{ simp only [ennreal.top_mul, ennreal.coe_eq_zero],
exact measurable_const.piecewise (is_measurable_singleton _) measurable_const },
{ simp only [ennreal.mul_top, ennreal.coe_eq_zero],
exact measurable_const.piecewise (is_measurable_singleton _) measurable_const }
end
lemma measurable_sub : measurable (λ p : ennreal × ennreal, p.1 - p.2) :=
by apply measurable_of_measurable_nnreal_nnreal;
simp [← ennreal.coe_sub, continuous_sub.measurable.ennreal_coe]
lemma measurable_inv : measurable (has_inv.inv : ennreal → ennreal) :=
ennreal.continuous_inv.measurable
lemma measurable_div : measurable (λ p : ennreal × ennreal, p.1 / p.2) :=
ennreal.measurable_mul.comp $ measurable_fst.prod_mk $ ennreal.measurable_inv.comp measurable_snd
end ennreal
lemma measurable.to_nnreal {f : α → ennreal} (hf : measurable f) :
measurable (λ x, (f x).to_nnreal) :=
ennreal.measurable_to_nnreal.comp hf
lemma measurable_ennreal_coe_iff {f : α → ℝ≥0} :
measurable (λ x, (f x : ennreal)) ↔ measurable f :=
⟨λ h, h.to_nnreal, λ h, h.ennreal_coe⟩
lemma measurable.to_real {f : α → ennreal} (hf : measurable f) :
measurable (λ x, ennreal.to_real (f x)) :=
ennreal.measurable_to_real.comp hf
lemma ae_measurable.to_real {f : α → ennreal} {μ : measure α} (hf : ae_measurable f μ) :
ae_measurable (λ x, ennreal.to_real (f x)) μ :=
ennreal.measurable_to_real.comp_ae_measurable hf
lemma measurable.ennreal_mul {f g : α → ennreal} (hf : measurable f) (hg : measurable g) :
measurable (λ a, f a * g a) :=
ennreal.measurable_mul.comp (hf.prod_mk hg)
lemma ae_measurable.ennreal_mul {f g : α → ennreal} {μ : measure α}
(hf : ae_measurable f μ) (hg : ae_measurable g μ) : ae_measurable (λ a, f a * g a) μ :=
ennreal.measurable_mul.comp_ae_measurable (hf.prod_mk hg)
lemma measurable.ennreal_sub {f g : α → ennreal} (hf : measurable f) (hg : measurable g) :
measurable (λ a, f a - g a) :=
ennreal.measurable_sub.comp (hf.prod_mk hg)
/-- note: `ennreal` can probably be generalized in a future version of this lemma. -/
lemma measurable.ennreal_tsum {ι} [encodable ι] {f : ι → α → ennreal} (h : ∀ i, measurable (f i)) :
measurable (λ x, ∑' i, f i x) :=
by { simp_rw [ennreal.tsum_eq_supr_sum], apply measurable_supr, exact λ s, s.measurable_sum h }
lemma measurable.ennreal_inv {f : α → ennreal} (hf : measurable f) : measurable (λ a, (f a)⁻¹) :=
ennreal.measurable_inv.comp hf
lemma measurable.ennreal_div {f g : α → ennreal} (hf : measurable f) (hg : measurable g) :
measurable (λ a, f a / g a) :=
ennreal.measurable_div.comp $ hf.prod_mk hg
section normed_group
variables [normed_group α] [opens_measurable_space α] [measurable_space β]
lemma measurable_norm : measurable (norm : α → ℝ) :=
continuous_norm.measurable
lemma measurable.norm {f : β → α} (hf : measurable f) : measurable (λ a, norm (f a)) :=
measurable_norm.comp hf
lemma ae_measurable.norm {f : β → α} {μ : measure β} (hf : ae_measurable f μ) :
ae_measurable (λ a, norm (f a)) μ :=
measurable_norm.comp_ae_measurable hf
lemma measurable_nnnorm : measurable (nnnorm : α → ℝ≥0) :=
continuous_nnnorm.measurable
lemma measurable.nnnorm {f : β → α} (hf : measurable f) : measurable (λ a, nnnorm (f a)) :=
measurable_nnnorm.comp hf
lemma ae_measurable.nnnorm {f : β → α} {μ : measure β} (hf : ae_measurable f μ) :
ae_measurable (λ a, nnnorm (f a)) μ :=
measurable_nnnorm.comp_ae_measurable hf
lemma measurable_ennnorm : measurable (λ x : α, (nnnorm x : ennreal)) :=
measurable_nnnorm.ennreal_coe
lemma measurable.ennnorm {f : β → α} (hf : measurable f) :
measurable (λ a, (nnnorm (f a) : ennreal)) :=
hf.nnnorm.ennreal_coe
lemma ae_measurable.ennnorm {f : β → α} {μ : measure β} (hf : ae_measurable f μ) :
ae_measurable (λ a, (nnnorm (f a) : ennreal)) μ :=
measurable_ennnorm.comp_ae_measurable hf
end normed_group
section limits
variables [measurable_space β] [metric_space β] [borel_space β]
open metric
/-- A limit (over a general filter) of measurable `ℝ≥0` valued functions is measurable.
The assumption `hs` can be dropped using `filter.is_countably_generated.has_antimono_basis`, but we
don't need that case yet. -/
lemma measurable_of_tendsto_nnreal' {ι ι'} {f : ι → α → ℝ≥0} {g : α → ℝ≥0} (u : filter ι)
[ne_bot u] (hf : ∀ i, measurable (f i)) (lim : tendsto f u (𝓝 g)) {p : ι' → Prop}
{s : ι' → set ι} (hu : u.has_countable_basis p s) (hs : ∀ i, (s i).countable) : measurable g :=
begin
rw [tendsto_pi] at lim, rw [← measurable_ennreal_coe_iff],
have : ∀ x, liminf u (λ n, (f n x : ennreal)) = (g x : ennreal) :=
λ x, ((ennreal.continuous_coe.tendsto (g x)).comp (lim x)).liminf_eq,
simp_rw [← this],
show measurable (λ x, liminf u (λ n, (f n x : ennreal))),
exact measurable_liminf' (λ i, (hf i).ennreal_coe) hu hs,
end
/-- A sequential limit of measurable `ℝ≥0` valued functions is measurable. -/
lemma measurable_of_tendsto_nnreal {f : ℕ → α → ℝ≥0} {g : α → ℝ≥0}
(hf : ∀ i, measurable (f i)) (lim : tendsto f at_top (𝓝 g)) : measurable g :=
measurable_of_tendsto_nnreal' at_top hf lim at_top_countable_basis (λ i, countable_encodable _)
/-- A limit (over a general filter) of measurable functions valued in a metric space is measurable.
The assumption `hs` can be dropped using `filter.is_countably_generated.has_antimono_basis`, but we
don't need that case yet. -/
lemma measurable_of_tendsto_metric' {ι ι'} {f : ι → α → β} {g : α → β}
(u : filter ι) [ne_bot u] (hf : ∀ i, measurable (f i)) (lim : tendsto f u (𝓝 g)) {p : ι' → Prop}
{s : ι' → set ι} (hu : u.has_countable_basis p s) (hs : ∀ i, (s i).countable) :
measurable g :=
begin
apply measurable_of_is_closed', intros s h1s h2s h3s,
have : measurable (λ x, inf_nndist (g x) s),
{ refine measurable_of_tendsto_nnreal' u (λ i, (hf i).inf_nndist) _ hu hs, swap,
rw [tendsto_pi], rw [tendsto_pi] at lim, intro x,
exact ((continuous_inf_nndist_pt s).tendsto (g x)).comp (lim x) },
have h4s : g ⁻¹' s = (λ x, inf_nndist (g x) s) ⁻¹' {0},
{ ext x, simp [h1s, ← mem_iff_inf_dist_zero_of_closed h1s h2s, ← nnreal.coe_eq_zero] },
rw [h4s], exact this (is_measurable_singleton 0),
end
/-- A sequential limit of measurable functions valued in a metric space is measurable. -/
lemma measurable_of_tendsto_metric {f : ℕ → α → β} {g : α → β}
(hf : ∀ i, measurable (f i)) (lim : tendsto f at_top (𝓝 g)) :
measurable g :=
measurable_of_tendsto_metric' at_top hf lim at_top_countable_basis (λ i, countable_encodable _)
end limits
namespace continuous_linear_map
variables {𝕜 : Type*} [normed_field 𝕜]
variables {E : Type*} [normed_group E] [normed_space 𝕜 E] [measurable_space E]
variables [opens_measurable_space E]
variables {F : Type*} [normed_group F] [normed_space 𝕜 F] [measurable_space F] [borel_space F]
protected lemma measurable (L : E →L[𝕜] F) : measurable L :=
L.continuous.measurable
lemma measurable_comp (L : E →L[𝕜] F) {φ : α → E} (φ_meas : measurable φ) :
measurable (λ (a : α), L (φ a)) :=
L.measurable.comp φ_meas
end continuous_linear_map
section normed_space
variables {𝕜 : Type*} [nondiscrete_normed_field 𝕜] [complete_space 𝕜] [measurable_space 𝕜]
variables [borel_space 𝕜]
variables {E : Type*} [normed_group E] [normed_space 𝕜 E] [measurable_space E] [borel_space E]
lemma measurable_smul_const {f : α → 𝕜} {c : E} (hc : c ≠ 0) :
measurable (λ x, f x • c) ↔ measurable f :=
measurable_comp_iff_of_closed_embedding (λ y : 𝕜, y • c) (closed_embedding_smul_left hc)
lemma ae_measurable_smul_const {f : α → 𝕜} {μ : measure α} {c : E} (hc : c ≠ 0) :
ae_measurable (λ x, f x • c) μ ↔ ae_measurable f μ :=
ae_measurable_comp_iff_of_closed_embedding (λ y : 𝕜, y • c) (closed_embedding_smul_left hc)
end normed_space
namespace measure_theory
namespace measure
variables [topological_space α]
/-- A measure `μ` is regular if
- it is finite on all compact sets;
- it is outer regular: `μ(A) = inf { μ(U) | A ⊆ U open }` for `A` measurable;
- it is inner regular: `μ(U) = sup { μ(K) | K ⊆ U compact }` for `U` open. -/
structure regular (μ : measure α) : Prop :=
(lt_top_of_is_compact : ∀ {{K : set α}}, is_compact K → μ K < ⊤)
(outer_regular : ∀ {{A : set α}}, is_measurable A →
(⨅ (U : set α) (h : is_open U) (h2 : A ⊆ U), μ U) ≤ μ A)
(inner_regular : ∀ {{U : set α}}, is_open U →
μ U ≤ ⨆ (K : set α) (h : is_compact K) (h2 : K ⊆ U), μ K)
namespace regular
lemma outer_regular_eq {μ : measure α} (hμ : μ.regular) {{A : set α}}
(hA : is_measurable A) : (⨅ (U : set α) (h : is_open U) (h2 : A ⊆ U), μ U) = μ A :=
le_antisymm (hμ.outer_regular hA) $ le_infi $ λ s, le_infi $ λ hs, le_infi $ λ h2s, μ.mono h2s
lemma inner_regular_eq {μ : measure α} (hμ : μ.regular) {{U : set α}}
(hU : is_open U) : (⨆ (K : set α) (h : is_compact K) (h2 : K ⊆ U), μ K) = μ U :=
le_antisymm (supr_le $ λ s, supr_le $ λ hs, supr_le $ λ h2s, μ.mono h2s) (hμ.inner_regular hU)
protected lemma map [opens_measurable_space α] [measurable_space β] [topological_space β]
[t2_space β] [borel_space β] {μ : measure α} (hμ : μ.regular) (f : α ≃ₜ β) :
(measure.map f μ).regular :=
begin
have hf := f.continuous.measurable,
have h2f := f.to_equiv.injective.preimage_surjective,
have h3f := f.to_equiv.surjective,
split,
{ intros K hK, rw [map_apply hf hK.is_measurable],
apply hμ.lt_top_of_is_compact, rwa f.compact_preimage },
{ intros A hA, rw [map_apply hf hA, ← hμ.outer_regular_eq (hf hA)],
refine le_of_eq _, apply infi_congr (preimage f) h2f,
intro U, apply infi_congr_Prop f.is_open_preimage, intro hU,
apply infi_congr_Prop h3f.preimage_subset_preimage_iff, intro h2U,
rw [map_apply hf hU.is_measurable], },
{ intros U hU,
rw [map_apply hf hU.is_measurable, ← hμ.inner_regular_eq (hU.preimage f.continuous)],
refine ge_of_eq _, apply supr_congr (preimage f) h2f,
intro K, apply supr_congr_Prop f.compact_preimage, intro hK,
apply supr_congr_Prop h3f.preimage_subset_preimage_iff, intro h2U,
rw [map_apply hf hK.is_measurable] }
end
protected lemma smul {μ : measure α} (hμ : μ.regular) {x : ennreal} (hx : x < ⊤) :
(x • μ).regular :=
begin
split,
{ intros K hK, exact ennreal.mul_lt_top hx (hμ.lt_top_of_is_compact hK) },
{ intros A hA, rw [coe_smul],
refine le_trans _ (ennreal.mul_left_mono $ hμ.outer_regular hA),
simp only [infi_and'], simp only [infi_subtype'],
haveI : nonempty {s : set α // is_open s ∧ A ⊆ s} := ⟨⟨set.univ, is_open_univ, subset_univ _⟩⟩,
rw [ennreal.mul_infi], refl', exact ne_of_lt hx },
{ intros U hU, rw [coe_smul], refine le_trans (ennreal.mul_left_mono $ hμ.inner_regular hU) _,
simp only [supr_and'], simp only [supr_subtype'],
rw [ennreal.mul_supr], refl' }
end
end regular
end measure
end measure_theory
lemma is_compact.measure_lt_top_of_nhds_within [topological_space α]
{s : set α} {μ : measure α} (h : is_compact s) (hμ : ∀ x ∈ s, μ.finite_at_filter (𝓝[s] x)) :
μ s < ⊤ :=
is_compact.induction_on h (by simp) (λ s t hst ht, (measure_mono hst).trans_lt ht)
(λ s t hs ht, (measure_union_le s t).trans_lt (ennreal.add_lt_top.2 ⟨hs, ht⟩)) hμ
lemma is_compact.measure_lt_top [topological_space α] {s : set α} {μ : measure α}
[locally_finite_measure μ] (h : is_compact s) :
μ s < ⊤ :=
h.measure_lt_top_of_nhds_within $ λ x hx, μ.finite_at_nhds_within _ _
|
688a6d0226b7d9d09adc95162397dbe786349061
|
4e0d7c3132ce31edc5829849735dd25db406b144
|
/lean/love04_functional_programming_exercise_sheet.lean
|
b8eaaa20368806237e934097eadd4b95f86942e7
|
[] |
no_license
|
gonzalgu/logical_verification_2020
|
a0013a6c22ea254e9f4d245f2948f0f4d44df4bb
|
724d0457dff2c3ff10f9ab2170388f4c5e958b75
|
refs/heads/master
| 1,660,886,374,533
| 1,589,859,641,000
| 1,589,859,641,000
| 256,069,971
| 0
| 0
| null | 1,586,997,430,000
| 1,586,997,429,000
| null |
UTF-8
|
Lean
| false
| false
| 8,357
|
lean
|
import .love03_forward_proofs_demo
/-! # LoVe Exercise 4: Functional Programming -/
set_option pp.beta true
namespace LoVe
/-! ## Question 1: Reverse of a List
We define a new accumulator-based version of `reverse`. The first argument,
`as`, serves as the accumulator. This definition is __tail-recursive__, meaning
that compilers and interpreters can easily optimize the recursion away,
resulting in more efficient code. -/
def accurev {α : Type} : list α → list α → list α
| as [] := as
| as (x :: xs) := accurev (x :: as) xs
/-! 1.1. Our intention is that `accurev [] xs` should be equal to `reverse xs`.
But if we start an induction, we quickly see that the induction hypothesis is
not strong enough. Start by proving the following generalization (using the
`induction` tactic or pattern matching): -/
lemma accurev_eq_reverse_append {α : Type} :
∀as xs : list α, accurev as xs = reverse xs ++ as
| [] [] := by refl
| _ [] := by refl
| [] (x::xs) :=
begin
simp [accurev, reverse],
apply accurev_eq_reverse_append,
end
| (a::as) (x::xs) :=
begin
simp [accurev, reverse],
apply accurev_eq_reverse_append,
end
/-! 1.2. Derive the desired equation. -/
lemma accurev_eq_reverse {α : Type} (xs : list α) :
accurev [] xs = reverse xs :=
begin
induction xs with x xs ih,
{ refl },
{
simp [accurev,reverse],
apply accurev_eq_reverse_append
},
end
/-! 1.3. Prove the following property.
Hint: A one-line inductionless proof is possible. -/
lemma accurev_accurev {α : Type} (xs : list α) :
accurev [] (accurev [] xs) = xs :=
begin
repeat {rw accurev_eq_reverse},
apply reverse_reverse,
end
/-! 1.4. Prove the following lemma by structural induction, as a "paper" proof.
This is a good exercise to develop a deeper understanding of how structural
induction works (and is good practice for the final exam).
lemma accurev_eq_reverse_append {α : Type} :
∀as xs : list α, accurev as xs = reverse xs ++ as
Guidelines for paper proofs:
We expect detailed, rigorous, mathematical proofs. You are welcome to use
standard mathematical notation or Lean structured commands (e.g., `assume`,
`have`, `show`, `calc`). You can also use tactical proofs (e.g., `intro`,
`apply`), but then please indicate some of the intermediate goals, so that we
can follow the chain of reasoning.
Major proof steps, including applications of induction and invocation of the
induction hypothesis, must be stated explicitly. For each case of a proof by
induction, you must list the inductive hypotheses assumed (if any) and the goal
to be proved. Minor proof steps corresponding to `refl`, `simp`, or `cc` need
not be justified if you think they are obvious (to humans), but you should say
which key lemmas they depend on. You should be explicit whenever you use a
function definition or an introduction rule for an inductive predicate. -/
-- enter your paper proof here
lemma accurev_eq_reverse_append₂ { α : Type } :
∀ as xs : list α, accurev as xs = reverse xs ++ as
-- the proof proceeds by induction on as and xs
| [] [] :=
-- when as = [] and xs = [], we have accurev [][] = reverse [] ++ []
-- which is reduced to [] = [] ++ []
-- which is trivial by computation.
begin
rw accurev,
rw reverse,
refl,
end
| [] (x::xs) :=
begin
-- when as = [] and ys = (x::xs)
-- we need to prove accurev [] (x::xs) = reverse (x::xs) ++ []
-- by computation we have
-- accurev [x] xs = reverse xs ++ [x]
-- to which we can apply the inductive hypothesis
--ih : ∀ xs, accurev [] xs = reverse xs ++ []
rw accurev,
rw reverse,
simp,
--apply inductive hypothesis
apply accurev_eq_reverse_append₂ [x] xs,
end
| (a::as) [] :=
begin
-- this case is trivial by computation.
--ih : ∀ as xs, accurev as xs = reverse xs ++ as
rw accurev,
rw reverse,
refl,
end
| (a::as) (x::xs) :=
begin
simp [accurev, reverse],
-- apply inductive hypothesis
apply accurev_eq_reverse_append₂,
end
/-! ## Question 2: Drop and Take
The `drop` function removes the first `n` elements from the front of a list. -/
def drop {α : Type} : ℕ → list α → list α
| 0 xs := xs
| (_ + 1) [] := []
| (m + 1) (x :: xs) := drop m xs
/-! Its relative `take` returns a list consisting of the the first `n` elements
at the front of a list.
2.1. Define `take`.
To avoid unpleasant surprises in the proofs, we recommend that you follow the
same recursion pattern as for `drop` above. -/
def take {α : Type} : ℕ → list α → list α
| 0 _ := []
| (_ + 1) [] := []
| (m + 1) (x :: xs) := x :: take m xs
#eval take 0 [3, 7, 11] -- expected: []
#eval take 1 [3, 7, 11] -- expected: [3]
#eval take 2 [3, 7, 11] -- expected: [3, 7]
#eval take 3 [3, 7, 11] -- expected: [3, 7, 11]
#eval take 4 [3, 7, 11] -- expected: [3, 7, 11]
#eval take 2 ["a", "b", "c"] -- expected: ["a", "b"]
/-! 2.2. Prove the following lemmas, using `induction` or pattern matching.
Notice that they are registered as simplification rules thanks to the `@[simp]`
attribute. -/
@[simp] lemma drop_nil {α : Type} :
∀n : ℕ, drop n ([] : list α) = [] :=
begin
intro n,
induction n with k ih,
{ refl },
refl,
--simp [drop, ih],
end
lemma drop_nil₂ {α : Type} :
∀ n : ℕ, drop n ([] : list α) = []
| 0 := by refl
| (k+1) := by refl
@[simp] lemma take_nil {α : Type} :
∀n : ℕ, take n ([] : list α) = [] :=
begin
intro n,
induction n with k ih,
{ refl },
refl,
end
lemma take_nil₂ {α : Type} :
∀ n : ℕ, take n ([] : list α) = []
| 0 := by refl
| (k+1) := by refl
/-! 2.3. Follow the recursion pattern of `drop` and `take` to prove the
following lemmas. In other words, for each lemma, there should be three cases,
and the third case will need to invoke the induction hypothesis.
The first case is shown for `drop_drop`. Beware of the fact that there are three
variables in the `drop_drop` lemma (but only two arguments to `drop`).
Hint: The `refl` tactic might be useful in the third case of `drop_drop`. -/
lemma drop_drop {α : Type} :
∀(m n : ℕ) (xs : list α), drop n (drop m xs) = drop (n + m) xs
| 0 n xs := by refl
| m 0 xs := by simp[drop]
| (m+1) (n+1) [] := by refl
| (m+1) (n+1) (x::xs) :=
begin
simp [drop, drop_drop],
refl,
end
-- supply the two missing cases here
lemma take_take {α : Type} :
∀(m : ℕ) (xs : list α), take m (take m xs) = take m xs
| 0 xs :=
begin
refl,
end
| (k+1) [] :=
begin
refl,
end
| (k+1) (x::xs) :=
begin
simp [take, take_take],
end
lemma take_drop {α : Type} :
∀(n : ℕ) (xs : list α), take n xs ++ drop n xs = xs
| 0 xs :=
begin
refl,
end
| (k+1) [] :=
begin
refl,
end
| (k+1) (x :: xs) :=
begin
simp [take,drop, take_drop],
/-
rw take,
rw drop,
simp,
apply take_drop, -/
end
/-! ## Question 3: A Type of λ-Terms
3.1. Define an inductive type corresponding to the untyped λ-terms, as given
by the following context-free grammar:
term ::= 'var' string -- variable (e.g., `x`)
| 'lam' string term -- λ-expression (e.g., `λx, t`)
| 'app' term term -- application (e.g., `t u`) -/
/-
inductive list (T : Type u)
| nil {} : list
| cons (hd : T) (tl : list) : list
-/
-- enter your definition here
inductive term
| var (name : string) : term
| lam (v : string) (body : term) : term
| app (e₁ : term) (e₂ : term) : term
/-! 3.2. Register a textual representation of the type `term` as an instance of
the `has_repr` type class. Make sure to supply enough parentheses to guarantee
that the output is unambiguous. -/
def term.repr : term → string
| (term.var n) := n
| (term.lam v b) := "(λ" ++ v ++ ", " ++ term.repr b ++ ")"
| (term.app e₁ e₂) := "(" ++ term.repr e₁ ++ " " ++ term.repr e₂ ++ ")"
-- enter your answer here
@[instance] def term.has_repr : has_repr term :=
{ repr := term.repr }
/-! 3.3. Test your textual representation: -/
#eval (term.lam "x" (term.app (term.app (term.var "y") (term.var "x"))
(term.var "x")))
-- should print something like `(λx, ((y x) x))`
end LoVe
|
29e345befd8ddf0b13731a0e9bbefb75fbb91bab
|
dd0f5513e11c52db157d2fcc8456d9401a6cd9da
|
/12_Axioms.org.18.lean
|
4059b5424dec37d7546d58457aa51625e05a609c
|
[] |
no_license
|
cjmazey/lean-tutorial
|
ba559a49f82aa6c5848b9bf17b7389bf7f4ba645
|
381f61c9fcac56d01d959ae0fa6e376f2c4e3b34
|
refs/heads/master
| 1,610,286,098,832
| 1,447,124,923,000
| 1,447,124,923,000
| 43,082,433
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 763
|
lean
|
import standard
import logic.quantifiers
open subtype nonempty
namespace hide
axiom strong_indefinite_description {A : Type} (P : A → Prop) (H : nonempty A) :
{ x | (∃ y : A, P y) → P x}
-- BEGIN
noncomputable definition epsilon {A : Type} [H : nonempty A] (P : A → Prop) : A :=
let u : {x | (∃ y, P y) → P x} :=
strong_indefinite_description P H in
elt_of u
theorem epsilon_spec_aux {A : Type} (H : nonempty A) (P : A → Prop) (Hex : ∃ y, P y) :
P (@epsilon A H P) :=
let u : {x | (∃ y, P y) → P x} :=
strong_indefinite_description P H in
has_property u Hex
theorem epsilon_spec {A : Type} {P : A → Prop} (Hex : ∃ y, P y) :
P (@epsilon A (nonempty_of_exists Hex) P) :=
epsilon_spec_aux (nonempty_of_exists Hex) P Hex
-- END
end hide
|
bd9b52d43f60357ef122bef05c56b28bc77225bd
|
618003631150032a5676f229d13a079ac875ff77
|
/src/control/traversable/basic.lean
|
451ed1926913fc95add55ae0084d75cd19392658
|
[
"Apache-2.0"
] |
permissive
|
awainverse/mathlib
|
939b68c8486df66cfda64d327ad3d9165248c777
|
ea76bd8f3ca0a8bf0a166a06a475b10663dec44a
|
refs/heads/master
| 1,659,592,962,036
| 1,590,987,592,000
| 1,590,987,592,000
| 268,436,019
| 1
| 0
|
Apache-2.0
| 1,590,990,500,000
| 1,590,990,500,000
| null |
UTF-8
|
Lean
| false
| false
| 5,768
|
lean
|
/-
Copyright (c) 2018 Simon Hudon. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Simon Hudon
-/
import control.functor
/-!
# Traversable type class
Type classes for traversing collections. The concepts and laws are taken from
<http://hackage.haskell.org/package/base-4.11.1.0/docs/Data-Traversable.html>
Traversable collections are a generalization of functors. Whereas
functors (such as `list`) allow us to apply a function to every
element, it does not allow functions which external effects encoded in
a monad. Consider for instance a functor `invite : email → io response`
that takes an email address, sends an email and waits for a
response. If we have a list `guests : list email`, using calling
`invite` using `map` gives us the following: `map invite guests : list
(io response)`. It is not what we need. We need something of type `io
(list response)`. Instead of using `map`, we can use `traverse` to
send all the invites: `traverse invite guests : io (list response)`.
`traverse` applies `invite` to every element of `guests` and combines
all the resulting effects. In the example, the effect is encoded in the
monad `io` but any applicative functor is accepted by `traverse`.
For more on how to use traversable, consider the Haskell tutorial:
<https://en.wikibooks.org/wiki/Haskell/Traversable>
## Main definitions
* `traversable` type class - exposes the `traverse` function
* `sequence` - based on `traverse`, turns a collection of effects into an effect returning a collection
* is_lawful_traversable - laws
## Tags
traversable iterator functor applicative
## References
* "Applicative Programming with Effects", by Conor McBride and Ross Paterson,
Journal of Functional Programming 18:1 (2008) 1-13, online at
<http://www.soi.city.ac.uk/~ross/papers/Applicative.html>
* "The Essence of the Iterator Pattern", by Jeremy Gibbons and Bruno Oliveira,
in Mathematically-Structured Functional Programming, 2006, online at
<http://web.comlab.ox.ac.uk/oucl/work/jeremy.gibbons/publications/#iterator>
* "An Investigation of the Laws of Traversals", by Mauro Jaskelioff and Ondrej Rypacek,
in Mathematically-Structured Functional Programming, 2012,
online at <http://arxiv.org/pdf/1202.2919>
-/
open function (hiding comp)
universes u v w
section applicative_transformation
variables (F : Type u → Type v) [applicative F] [is_lawful_applicative F]
variables (G : Type u → Type w) [applicative G] [is_lawful_applicative G]
structure applicative_transformation : Type (max (u+1) v w) :=
(app : ∀ α : Type u, F α → G α)
(preserves_pure' : ∀ {α : Type u} (x : α), app _ (pure x) = pure x)
(preserves_seq' : ∀ {α β : Type u} (x : F (α → β)) (y : F α), app _ (x <*> y) = app _ x <*> app _ y)
end applicative_transformation
namespace applicative_transformation
variables (F : Type u → Type v) [applicative F] [is_lawful_applicative F]
variables (G : Type u → Type w) [applicative G] [is_lawful_applicative G]
instance : has_coe_to_fun (applicative_transformation F G) :=
{ F := λ _, Π {α}, F α → G α,
coe := λ a, a.app }
variables {F G}
variables (η : applicative_transformation F G)
@[functor_norm]
lemma preserves_pure : ∀ {α} (x : α), η (pure x) = pure x := η.preserves_pure'
@[functor_norm]
lemma preserves_seq :
∀ {α β : Type u} (x : F (α → β)) (y : F α), η (x <*> y) = η x <*> η y :=
η.preserves_seq'
@[functor_norm]
lemma preserves_map {α β} (x : α → β) (y : F α) : η (x <$> y) = x <$> η y :=
by rw [← pure_seq_eq_map, η.preserves_seq]; simp with functor_norm
end applicative_transformation
open applicative_transformation
section prio
set_option default_priority 100 -- see Note [default priority]
class traversable (t : Type u → Type u) extends functor t :=
(traverse : Π {m : Type u → Type u} [applicative m] {α β},
(α → m β) → t α → m (t β))
end prio
open functor
export traversable (traverse)
section functions
variables {t : Type u → Type u}
variables {m : Type u → Type v} [applicative m]
variables {α β : Type u}
variables {f : Type u → Type u} [applicative f]
def sequence [traversable t] : t (f α) → f (t α) := traverse id
end functions
section prio
set_option default_priority 100 -- see Note [default priority]
class is_lawful_traversable (t : Type u → Type u) [traversable t]
extends is_lawful_functor t : Type (u+1) :=
(id_traverse : ∀ {α} (x : t α), traverse id.mk x = x )
(comp_traverse : ∀ {F G} [applicative F] [applicative G]
[is_lawful_applicative F] [is_lawful_applicative G]
{α β γ} (f : β → F γ) (g : α → G β) (x : t α),
traverse (comp.mk ∘ map f ∘ g) x =
comp.mk (map (traverse f) (traverse g x)))
(traverse_eq_map_id : ∀ {α β} (f : α → β) (x : t α),
traverse (id.mk ∘ f) x = id.mk (f <$> x))
(naturality : ∀ {F G} [applicative F] [applicative G]
[is_lawful_applicative F] [is_lawful_applicative G]
(η : applicative_transformation F G) {α β} (f : α → F β) (x : t α),
η (traverse f x) = traverse (@η _ ∘ f) x)
end prio
instance : traversable id := ⟨λ _ _ _ _, id⟩
instance : is_lawful_traversable id := by refine {..}; intros; refl
section
variables {F : Type u → Type v} [applicative F]
instance : traversable option := ⟨@option.traverse⟩
instance : traversable list := ⟨@list.traverse⟩
end
namespace sum
variables {σ : Type u}
variables {F : Type u → Type u}
variables [applicative F]
protected def traverse {α β} (f : α → F β) : σ ⊕ α → F (σ ⊕ β)
| (sum.inl x) := pure (sum.inl x)
| (sum.inr x) := sum.inr <$> f x
end sum
instance {σ : Type u} : traversable.{u} (sum σ) := ⟨@sum.traverse _⟩
|
070eebe181845b5d029d02b2fececc38350a7e4b
|
4727251e0cd73359b15b664c3170e5d754078599
|
/src/data/pequiv.lean
|
972107c78cf59efd4b3b12bc89d32c4f32d2fd11
|
[
"Apache-2.0"
] |
permissive
|
Vierkantor/mathlib
|
0ea59ac32a3a43c93c44d70f441c4ee810ccceca
|
83bc3b9ce9b13910b57bda6b56222495ebd31c2f
|
refs/heads/master
| 1,658,323,012,449
| 1,652,256,003,000
| 1,652,256,003,000
| 209,296,341
| 0
| 1
|
Apache-2.0
| 1,568,807,655,000
| 1,568,807,655,000
| null |
UTF-8
|
Lean
| false
| false
| 14,132
|
lean
|
/-
Copyright (c) 2019 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes
-/
import data.set.basic
/-!
# Partial Equivalences
In this file, we define partial equivalences `pequiv`, which are a bijection between a subset of `α`
and a subset of `β`. Notationally, a `pequiv` is denoted by "`≃.`" (note that the full stop is part
of the notation). The way we store these internally is with two functions `f : α → option β` and
the reverse function `g : β → option α`, with the condition that if `f a` is `option.some b`,
then `g b` is `option.some a`.
## Main results
- `pequiv.of_set`: creates a `pequiv` from a set `s`,
which sends an element to itself if it is in `s`.
- `pequiv.single`: given two elements `a : α` and `b : β`, create a `pequiv` that sends them to
each other, and ignores all other elements.
- `pequiv.injective_of_forall_ne_is_some`/`injective_of_forall_is_some`: If the domain of a `pequiv`
is all of `α` (except possibly one point), its `to_fun` is injective.
## Canonical order
`pequiv` is canonically ordered by inclusion; that is, if a function `f` defined on a subset `s`
is equal to `g` on that subset, but `g` is also defined on a larger set, then `f ≤ g`. We also have
a definition of `⊥`, which is the empty `pequiv` (sends all to `none`), which in the end gives us a
`semilattice_inf` with an `order_bot` instance.
## Tags
pequiv, partial equivalence
-/
universes u v w x
/-- A `pequiv` is a partial equivalence, a representation of a bijection between a subset
of `α` and a subset of `β`. See also `local_equiv` for a version that requires `to_fun` and
`inv_fun` to be globally defined functions and has `source` and `target` sets as extra fields. -/
structure pequiv (α : Type u) (β : Type v) :=
(to_fun : α → option β)
(inv_fun : β → option α)
(inv : ∀ (a : α) (b : β), a ∈ inv_fun b ↔ b ∈ to_fun a)
infixr ` ≃. `:25 := pequiv
namespace pequiv
variables {α : Type u} {β : Type v} {γ : Type w} {δ : Type x}
open function option
instance : has_coe_to_fun (α ≃. β) (λ _, α → option β) := ⟨to_fun⟩
@[simp] lemma coe_mk_apply (f₁ : α → option β) (f₂ : β → option α) (h) (x : α) :
(pequiv.mk f₁ f₂ h : α → option β) x = f₁ x := rfl
@[ext] lemma ext : ∀ {f g : α ≃. β} (h : ∀ x, f x = g x), f = g
| ⟨f₁, f₂, hf⟩ ⟨g₁, g₂, hg⟩ h :=
have h : f₁ = g₁, from funext h,
have ∀ b, f₂ b = g₂ b,
begin
subst h,
assume b,
have hf := λ a, hf a b,
have hg := λ a, hg a b,
cases h : g₂ b with a,
{ simp only [h, option.not_mem_none, false_iff] at hg,
simp only [hg, iff_false] at hf,
rwa [option.eq_none_iff_forall_not_mem] },
{ rw [← option.mem_def, hf, ← hg, h, option.mem_def] }
end,
by simp [*, funext_iff]
lemma ext_iff {f g : α ≃. β} : f = g ↔ ∀ x, f x = g x :=
⟨congr_fun ∘ congr_arg _, ext⟩
/-- The identity map as a partial equivalence. -/
@[refl] protected def refl (α : Type*) : α ≃. α :=
{ to_fun := some,
inv_fun := some,
inv := λ _ _, eq_comm }
/-- The inverse partial equivalence. -/
@[symm] protected def symm (f : α ≃. β) : β ≃. α :=
{ to_fun := f.2,
inv_fun := f.1,
inv := λ _ _, (f.inv _ _).symm }
lemma mem_iff_mem (f : α ≃. β) : ∀ {a : α} {b : β}, a ∈ f.symm b ↔ b ∈ f a := f.3
lemma eq_some_iff (f : α ≃. β) : ∀ {a : α} {b : β}, f.symm b = some a ↔ f a = some b := f.3
/-- Composition of partial equivalences `f : α ≃. β` and `g : β ≃. γ`. -/
@[trans] protected def trans (f : α ≃. β) (g : β ≃. γ) : α ≃. γ :=
{ to_fun := λ a, (f a).bind g,
inv_fun := λ a, (g.symm a).bind f.symm,
inv := λ a b, by simp [*, and.comm, eq_some_iff f, eq_some_iff g] at * }
@[simp] lemma refl_apply (a : α) : pequiv.refl α a = some a := rfl
@[simp] lemma symm_refl : (pequiv.refl α).symm = pequiv.refl α := rfl
@[simp] lemma symm_symm (f : α ≃. β) : f.symm.symm = f := by cases f; refl
lemma symm_injective : function.injective (@pequiv.symm α β) :=
left_inverse.injective symm_symm
lemma trans_assoc (f : α ≃. β) (g : β ≃. γ) (h : γ ≃. δ) :
(f.trans g).trans h = f.trans (g.trans h) :=
ext (λ _, option.bind_assoc _ _ _)
lemma mem_trans (f : α ≃. β) (g : β ≃. γ) (a : α) (c : γ) :
c ∈ f.trans g a ↔ ∃ b, b ∈ f a ∧ c ∈ g b := option.bind_eq_some'
lemma trans_eq_some (f : α ≃. β) (g : β ≃. γ) (a : α) (c : γ) :
f.trans g a = some c ↔ ∃ b, f a = some b ∧ g b = some c := option.bind_eq_some'
lemma trans_eq_none (f : α ≃. β) (g : β ≃. γ) (a : α) :
f.trans g a = none ↔ (∀ b c, b ∉ f a ∨ c ∉ g b) :=
begin
simp only [eq_none_iff_forall_not_mem, mem_trans, imp_iff_not_or.symm],
push_neg, tauto
end
@[simp] lemma refl_trans (f : α ≃. β) : (pequiv.refl α).trans f = f :=
by ext; dsimp [pequiv.trans]; refl
@[simp] lemma trans_refl (f : α ≃. β) : f.trans (pequiv.refl β) = f :=
by ext; dsimp [pequiv.trans]; simp
protected lemma inj (f : α ≃. β) {a₁ a₂ : α} {b : β} (h₁ : b ∈ f a₁) (h₂ : b ∈ f a₂) : a₁ = a₂ :=
by rw ← mem_iff_mem at *; cases h : f.symm b; simp * at *
/-- If the domain of a `pequiv` is `α` except a point, its forward direction is injective. -/
lemma injective_of_forall_ne_is_some (f : α ≃. β) (a₂ : α)
(h : ∀ (a₁ : α), a₁ ≠ a₂ → is_some (f a₁)) : injective f :=
has_left_inverse.injective
⟨λ b, option.rec_on b a₂ (λ b', option.rec_on (f.symm b') a₂ id),
λ x, begin
classical,
cases hfx : f x,
{ have : x = a₂, from not_imp_comm.1 (h x) (hfx.symm ▸ by simp), simp [this] },
{ simp only [hfx], rw [(eq_some_iff f).2 hfx], refl }
end⟩
/-- If the domain of a `pequiv` is all of `α`, its forward direction is injective. -/
lemma injective_of_forall_is_some {f : α ≃. β}
(h : ∀ (a : α), is_some (f a)) : injective f :=
(classical.em (nonempty α)).elim
(λ hn, injective_of_forall_ne_is_some f (classical.choice hn)
(λ a _, h a))
(λ hn x, (hn ⟨x⟩).elim)
section of_set
variables (s : set α) [decidable_pred (∈ s)]
/-- Creates a `pequiv` that is the identity on `s`, and `none` outside of it. -/
def of_set (s : set α) [decidable_pred (∈ s)] : α ≃. α :=
{ to_fun := λ a, if a ∈ s then some a else none,
inv_fun := λ a, if a ∈ s then some a else none,
inv := λ a b, by
{ split_ifs with hb ha ha,
{ simp [eq_comm] },
{ simp [ne_of_mem_of_not_mem hb ha] },
{ simp [ne_of_mem_of_not_mem ha hb] },
{ simp } } }
lemma mem_of_set_self_iff {s : set α} [decidable_pred (∈ s)] {a : α} : a ∈ of_set s a ↔ a ∈ s :=
by dsimp [of_set]; split_ifs; simp *
lemma mem_of_set_iff {s : set α} [decidable_pred (∈ s)] {a b : α} :
a ∈ of_set s b ↔ a = b ∧ a ∈ s :=
begin
dsimp [of_set],
split_ifs,
{ simp only [iff_self_and, option.mem_def, eq_comm],
rintro rfl,
exact h, },
{ simp only [false_iff, not_and, option.not_mem_none],
rintro rfl,
exact h, }
end
@[simp] lemma of_set_eq_some_iff {s : set α} {h : decidable_pred (∈ s)} {a b : α} :
of_set s b = some a ↔ a = b ∧ a ∈ s := mem_of_set_iff
@[simp] lemma of_set_eq_some_self_iff {s : set α} {h : decidable_pred (∈ s)} {a : α} :
of_set s a = some a ↔ a ∈ s := mem_of_set_self_iff
@[simp] lemma of_set_symm : (of_set s).symm = of_set s := rfl
@[simp] lemma of_set_univ : of_set set.univ = pequiv.refl α := rfl
@[simp] lemma of_set_eq_refl {s : set α} [decidable_pred (∈ s)] :
of_set s = pequiv.refl α ↔ s = set.univ :=
⟨λ h, begin
rw [set.eq_univ_iff_forall],
intro,
rw [← mem_of_set_self_iff, h],
exact rfl
end, λ h, by simp only [← of_set_univ, h]⟩
end of_set
lemma symm_trans_rev (f : α ≃. β) (g : β ≃. γ) : (f.trans g).symm = g.symm.trans f.symm := rfl
lemma self_trans_symm (f : α ≃. β) : f.trans f.symm = of_set {a | (f a).is_some} :=
begin
ext,
dsimp [pequiv.trans],
simp only [eq_some_iff f, option.is_some_iff_exists, option.mem_def, bind_eq_some',
of_set_eq_some_iff],
split,
{ rintros ⟨b, hb₁, hb₂⟩,
exact ⟨pequiv.inj _ hb₂ hb₁, b, hb₂⟩ },
{ simp {contextual := tt} }
end
lemma symm_trans_self (f : α ≃. β) : f.symm.trans f = of_set {b | (f.symm b).is_some} :=
symm_injective $ by simp [symm_trans_rev, self_trans_symm, -symm_symm]
lemma trans_symm_eq_iff_forall_is_some {f : α ≃. β} :
f.trans f.symm = pequiv.refl α ↔ ∀ a, is_some (f a) :=
by rw [self_trans_symm, of_set_eq_refl, set.eq_univ_iff_forall]; refl
instance : has_bot (α ≃. β) :=
⟨{ to_fun := λ _, none,
inv_fun := λ _, none,
inv := by simp }⟩
instance : inhabited (α ≃. β) := ⟨⊥⟩
@[simp] lemma bot_apply (a : α) : (⊥ : α ≃. β) a = none := rfl
@[simp] lemma symm_bot : (⊥ : α ≃. β).symm = ⊥ := rfl
@[simp] lemma trans_bot (f : α ≃. β) : f.trans (⊥ : β ≃. γ) = ⊥ :=
by ext; dsimp [pequiv.trans]; simp
@[simp] lemma bot_trans (f : β ≃. γ) : (⊥ : α ≃. β).trans f = ⊥ :=
by ext; dsimp [pequiv.trans]; simp
lemma is_some_symm_get (f : α ≃. β) {a : α} (h : is_some (f a)) :
is_some (f.symm (option.get h)) :=
is_some_iff_exists.2 ⟨a, by rw [f.eq_some_iff, some_get]⟩
section single
variables [decidable_eq α] [decidable_eq β] [decidable_eq γ]
/-- Create a `pequiv` which sends `a` to `b` and `b` to `a`, but is otherwise `none`. -/
def single (a : α) (b : β) : α ≃. β :=
{ to_fun := λ x, if x = a then some b else none,
inv_fun := λ x, if x = b then some a else none,
inv := λ _ _, by simp; split_ifs; cc }
lemma mem_single (a : α) (b : β) : b ∈ single a b a := if_pos rfl
lemma mem_single_iff (a₁ a₂ : α) (b₁ b₂ : β) : b₁ ∈ single a₂ b₂ a₁ ↔ a₁ = a₂ ∧ b₁ = b₂ :=
by dsimp [single]; split_ifs; simp [*, eq_comm]
@[simp] lemma symm_single (a : α) (b : β) : (single a b).symm = single b a := rfl
@[simp] lemma single_apply (a : α) (b : β) : single a b a = some b := if_pos rfl
lemma single_apply_of_ne {a₁ a₂ : α} (h : a₁ ≠ a₂) (b : β) : single a₁ b a₂ = none := if_neg h.symm
lemma single_trans_of_mem (a : α) {b : β} {c : γ} {f : β ≃. γ} (h : c ∈ f b) :
(single a b).trans f = single a c :=
begin
ext,
dsimp [single, pequiv.trans],
split_ifs; simp * at *
end
lemma trans_single_of_mem {a : α} {b : β} (c : γ) {f : α ≃. β} (h : b ∈ f a) :
f.trans (single b c) = single a c :=
symm_injective $ single_trans_of_mem _ ((mem_iff_mem f).2 h)
@[simp]
lemma single_trans_single (a : α) (b : β) (c : γ) : (single a b).trans (single b c) = single a c :=
single_trans_of_mem _ (mem_single _ _)
@[simp] lemma single_subsingleton_eq_refl [subsingleton α] (a b : α) : single a b = pequiv.refl α :=
begin
ext i j,
dsimp [single],
rw [if_pos (subsingleton.elim i a), subsingleton.elim i j, subsingleton.elim b j]
end
lemma trans_single_of_eq_none {b : β} (c : γ) {f : δ ≃. β} (h : f.symm b = none) :
f.trans (single b c) = ⊥ :=
begin
ext,
simp only [eq_none_iff_forall_not_mem, option.mem_def, f.eq_some_iff] at h,
dsimp [pequiv.trans, single],
simp,
intros,
split_ifs;
simp * at *
end
lemma single_trans_of_eq_none (a : α) {b : β} {f : β ≃. δ} (h : f b = none) :
(single a b).trans f = ⊥ :=
symm_injective $ trans_single_of_eq_none _ h
lemma single_trans_single_of_ne {b₁ b₂ : β} (h : b₁ ≠ b₂) (a : α) (c : γ) :
(single a b₁).trans (single b₂ c) = ⊥ :=
single_trans_of_eq_none _ (single_apply_of_ne h.symm _)
end single
section order
instance : partial_order (α ≃. β) :=
{ le := λ f g, ∀ (a : α) (b : β), b ∈ f a → b ∈ g a,
le_refl := λ _ _ _, id,
le_trans := λ f g h fg gh a b, (gh a b) ∘ (fg a b),
le_antisymm := λ f g fg gf, ext begin
assume a,
cases h : g a with b,
{ exact eq_none_iff_forall_not_mem.2
(λ b hb, option.not_mem_none b $ h ▸ fg a b hb) },
{ exact gf _ _ h }
end }
lemma le_def {f g : α ≃. β} : f ≤ g ↔ (∀ (a : α) (b : β), b ∈ f a → b ∈ g a) := iff.rfl
instance : order_bot (α ≃. β) :=
{ bot_le := λ _ _ _ h, (not_mem_none _ h).elim,
..pequiv.has_bot }
instance [decidable_eq α] [decidable_eq β] : semilattice_inf (α ≃. β) :=
{ inf := λ f g,
{ to_fun := λ a, if f a = g a then f a else none,
inv_fun := λ b, if f.symm b = g.symm b then f.symm b else none,
inv := λ a b, begin
have hf := @mem_iff_mem _ _ f a b,
have hg := @mem_iff_mem _ _ g a b, -- `split_ifs; finish` closes this goal from here
split_ifs with h1 h2 h2; try { simp [hf] },
{ contrapose! h2,
rw h2,
rw [←h1,hf,h2] at hg,
simp only [mem_def, true_iff, eq_self_iff_true] at hg,
rw [hg] },
{ contrapose! h1,
rw h1 at *,
rw ←h2 at hg,
simp only [mem_def, eq_self_iff_true, iff_true] at hf hg,
rw [hf,hg] },
end },
inf_le_left := λ _ _ _ _, by simp; split_ifs; cc,
inf_le_right := λ _ _ _ _, by simp; split_ifs; cc,
le_inf := λ f g h fg gh a b, begin
intro H,
have hf := fg a b H,
have hg := gh a b H,
simp only [option.mem_def, pequiv.coe_mk_apply],
split_ifs with h1, { exact hf }, { exact h1 (hf.trans hg.symm) },
end,
..pequiv.partial_order }
end order
end pequiv
namespace equiv
variables {α : Type*} {β : Type*} {γ : Type*}
/-- Turns an `equiv` into a `pequiv` of the whole type. -/
def to_pequiv (f : α ≃ β) : α ≃. β :=
{ to_fun := some ∘ f,
inv_fun := some ∘ f.symm,
inv := by simp [equiv.eq_symm_apply, eq_comm] }
@[simp] lemma to_pequiv_refl : (equiv.refl α).to_pequiv = pequiv.refl α := rfl
lemma to_pequiv_trans (f : α ≃ β) (g : β ≃ γ) : (f.trans g).to_pequiv =
f.to_pequiv.trans g.to_pequiv := rfl
lemma to_pequiv_symm (f : α ≃ β) : f.symm.to_pequiv = f.to_pequiv.symm := rfl
lemma to_pequiv_apply (f : α ≃ β) (x : α) : f.to_pequiv x = some (f x) := rfl
end equiv
|
626389bb8e803a429813a1ba6ab36759d80033ba
|
b7f22e51856f4989b970961f794f1c435f9b8f78
|
/tests/lean/run/eq2.lean
|
1034969524f80551163fb78752ed0be0e3f79026
|
[
"Apache-2.0"
] |
permissive
|
soonhokong/lean
|
cb8aa01055ffe2af0fb99a16b4cda8463b882cd1
|
38607e3eb57f57f77c0ac114ad169e9e4262e24f
|
refs/heads/master
| 1,611,187,284,081
| 1,450,766,737,000
| 1,476,122,547,000
| 11,513,992
| 2
| 0
| null | 1,401,763,102,000
| 1,374,182,235,000
|
C++
|
UTF-8
|
Lean
| false
| false
| 196
|
lean
|
definition symm {A : Type} : Π {a b : A}, a = b → b = a
| a a (eq.refl a) := rfl
definition trans {A : Type} : Π {a b c : A}, a = b → b = c → a = c
| a a a (eq.refl a) (eq.refl a) := rfl
|
7808702cfccb72b40c8f653b5687232798cab272
|
80cc5bf14c8ea85ff340d1d747a127dcadeb966f
|
/src/data/mv_polynomial/monad.lean
|
5226887ca6703f56a033e7548cdae5d0f5ff74f2
|
[
"Apache-2.0"
] |
permissive
|
lacker/mathlib
|
f2439c743c4f8eb413ec589430c82d0f73b2d539
|
ddf7563ac69d42cfa4a1bfe41db1fed521bd795f
|
refs/heads/master
| 1,671,948,326,773
| 1,601,479,268,000
| 1,601,479,268,000
| 298,686,743
| 0
| 0
|
Apache-2.0
| 1,601,070,794,000
| 1,601,070,794,000
| null |
UTF-8
|
Lean
| false
| false
| 13,947
|
lean
|
/-
Copyright (c) 2020 Johan Commelin and Robert Y. Lewis. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin and Robert Y. Lewis
-/
import data.mv_polynomial.rename
/-!
# Monad operations on `mv_polynomial`
This file defines two monadic operations on `mv_polynomial`. Given `p : mv_polynomial σ R`,
* `mv_polynomial.bind₁` and `mv_polynomial.join₁` operate on the variable type `σ`.
* `mv_polynomial.bind₂` and `mv_polynomial.join₂` operate on the coefficient type `R`.
- `mv_polynomial.bind₁ f φ` with `f : σ → mv_polynomial τ R` and `φ : mv_polynomial σ R`,
is the polynomial `φ(f 1, ..., f i, ...) : mv_polynomial τ R`.
- `mv_polynomial.join₁ φ` with `φ : mv_polynomial (mv_polynomial σ R) R` collapses `φ` to
a `mv_polynomial σ R`, by evaluating `φ` under the map `X f ↦ f` for `f : mv_polynomial σ R`.
In other words, if you have a polynomial `φ` in a set of variables indexed by a polynomial ring,
you evaluate the polynomial in these indexing polynomials.
- `mv_polynomial.bind₂ f φ` with `f : R →+* mv_polynomial σ S` and `φ : mv_polynomial σ R`
is the `mv_polynomial σ S` obtained from `φ` by mapping the coefficients of `φ` through `f`
and considering the resulting polynomial as polynomial expression in `mv_polynomial σ R`.
- `mv_polynomial.join₂ φ` with `φ : mv_polynomial σ (mv_polynomial σ R)` collapses `φ` to
a `mv_polynomial σ R`, by considering `φ` as polynomial expression in `mv_polynomial σ R`.
These operations themselves have algebraic structure: `mv_polynomial.bind₁`
and `mv_polynomial.join₁` are algebra homs and
`mv_polynomial.bind₂` and `mv_polynomial.join₂` are ring homs.
They interact in convenient ways with `mv_polynomial.rename`, `mv_polynomial.map`,
`mv_polynomial.vars`, and other polynomial operations.
Indeed, `mv_polynomial.rename` is the "map" operation for the (`bind₁`, `join₁`) pair,
whereas `mv_polynomial.map` is the "map" operation for the other pair.
## Implementation notes
We add an `is_lawful_monad` instance for the (`bind₁`, `join₁`) pair.
The second pair cannot be instantiated as a `monad`,
since it is not a monad in `Type` but in `CommRing` (or rather `CommSemiRing`).
-/
open_locale big_operators
noncomputable theory
namespace mv_polynomial
open finsupp
variables {σ : Type*} {τ : Type*}
variables {R S T : Type*} [comm_semiring R] [comm_semiring S] [comm_semiring T]
/--
`bind₁` is the "left hand side" bind operation on `mv_polynomial`, operating on the variable type.
Given a polynomial `p : mv_polynomial σ R` and a map `f : σ → mv_polynomial τ R` taking variables
in `p` to polynomials in the variable type `τ`, `bind₁ f p` replaces each variable in `p` with
its value under `f`, producing a new polynomial in `τ`. The coefficient type remains the same.
This operation is an algebra hom.
-/
def bind₁ (f : σ → mv_polynomial τ R) : mv_polynomial σ R →ₐ[R] mv_polynomial τ R :=
aeval f
/--
`bind₂` is the "right hand side" bind operation on `mv_polynomial`, operating on the coefficient type.
Given a polynomial `p : mv_polynomial σ R` and a map `f : R → mv_polynomial σ S` taking coefficients
in `p` to polynomials over a new ring `S`, `bind₂ f p` replaces each coefficient in `p` with its
value under `f`, producing a new polynomial over `S`. The variable type remains the same.
This operation is a ring hom.
-/
def bind₂ (f : R →+* mv_polynomial σ S) : mv_polynomial σ R →+* mv_polynomial σ S :=
eval₂_hom f X
/--
`join₁` is the monadic join operation corresponding to `mv_polynomial.bind₁`. Given a polynomial `p`
with coefficients in `R` whose variables are polynomials in `σ` with coefficients in `R`,
`join₁ p` collapses `p` to a polynomial with variables in `σ` and coefficients in `R`.
This operation is an algebra hom.
-/
def join₁ : mv_polynomial (mv_polynomial σ R) R →ₐ[R] mv_polynomial σ R :=
aeval id
/--
`join₂` is the monadic join operation corresponding to `mv_polynomial.bind₂`. Given a polynomial `p`
with variables in `σ` whose coefficients are polynomials in `σ` with coefficients in `R`,
`join₂ p` collapses `p` to a polynomial with variables in `σ` and coefficients in `R`.
This operation is a ring hom.
-/
def join₂ : mv_polynomial σ (mv_polynomial σ R) →+* mv_polynomial σ R :=
eval₂_hom (ring_hom.id _) X
@[simp] lemma aeval_eq_bind₁ (f : σ → mv_polynomial τ R) :
aeval f = bind₁ f := rfl
@[simp] lemma eval₂_hom_C_eq_bind₁ (f : σ → mv_polynomial τ R) :
eval₂_hom C f = bind₁ f := rfl
@[simp] lemma eval₂_hom_eq_bind₂ (f : R →+* mv_polynomial σ S) :
eval₂_hom f X = bind₂ f := rfl
section
variables (σ R)
@[simp] lemma aeval_id_eq_join₁ :
aeval id = @join₁ σ R _ := rfl
lemma eval₂_hom_C_id_eq_join₁ (φ : mv_polynomial (mv_polynomial σ R) R) :
eval₂_hom C id φ = join₁ φ := rfl
@[simp] lemma eval₂_hom_id_X_eq_join₂ :
eval₂_hom (ring_hom.id _) X = @join₂ σ R _ := rfl
end
-- In this file, we don't want to use these simp lemmas,
-- because we first need to show how these new definitions interact
-- and the proofs fall back on unfolding the definitions and call simp afterwards
local attribute [-simp] aeval_eq_bind₁ eval₂_hom_C_eq_bind₁ eval₂_hom_eq_bind₂
aeval_id_eq_join₁ eval₂_hom_id_X_eq_join₂
@[simp]
lemma bind₁_X_right (f : σ → mv_polynomial τ R) (i : σ) : bind₁ f (X i) = f i :=
aeval_X f i
@[simp]
lemma bind₂_X_right (f : R →+* mv_polynomial σ S) (i : σ) : bind₂ f (X i) = X i :=
eval₂_hom_X' f X i
@[simp]
lemma bind₁_X_left : bind₁ (X : σ → mv_polynomial σ R) = alg_hom.id R _ :=
begin
ext1 φ,
apply φ.induction_on,
{ intro, exact aeval_C _ _, },
{ intros p q hp hq, simp only [hp, hq, alg_hom.map_add] },
{ intros p n hp, simp only [hp, alg_hom.id_apply, bind₁_X_right, alg_hom.map_mul] }
end
lemma aeval_X_left : aeval (X : σ → mv_polynomial σ R) = alg_hom.id R _ :=
by rw [aeval_eq_bind₁, bind₁_X_left]
lemma aeval_X_left_apply (φ : mv_polynomial σ R) : aeval X φ = φ :=
by rw [aeval_eq_bind₁, bind₁_X_left, alg_hom.id_apply]
variable (f : σ → mv_polynomial τ R)
@[simp]
lemma bind₁_C_right (f : σ → mv_polynomial τ R) (x) : bind₁ f (C x) = C x :=
by simp [bind₁, C, aeval_monomial, finsupp.prod_zero_index]; refl
@[simp]
lemma bind₂_C_left : bind₂ (C : R →+* mv_polynomial σ R) = ring_hom.id _ :=
by { ext1, simp [bind₂] }
@[simp]
lemma bind₂_C_right (f : R →+* mv_polynomial σ S) (r : R) : bind₂ f (C r) = f r :=
eval₂_hom_C f X r
@[simp]
lemma bind₂_comp_C (f : R →+* mv_polynomial σ S) :
(bind₂ f).comp C = f :=
by { ext1, apply bind₂_C_right }
@[simp]
lemma join₂_map (f : R →+* mv_polynomial σ S) (φ : mv_polynomial σ R) :
join₂ (map f φ) = bind₂ f φ :=
by simp only [join₂, bind₂, eval₂_hom_map_hom, ring_hom.id_comp]
@[simp]
lemma join₂_comp_map (f : R →+* mv_polynomial σ S) :
join₂.comp (map f) = bind₂ f :=
by { ext1, simp [join₂, bind₂] }
lemma aeval_id_rename (f : σ → mv_polynomial τ R) (p : mv_polynomial σ R) :
aeval id (rename f p) = aeval f p :=
by rw [aeval_rename, function.comp.left_id]
@[simp]
lemma join₁_rename (f : σ → mv_polynomial τ R) (φ : mv_polynomial σ R) :
join₁ (rename f φ) = bind₁ f φ :=
aeval_id_rename _ _
@[simp]
lemma bind₁_id : bind₁ (@id (mv_polynomial σ R)) = join₁ := rfl
@[simp]
lemma bind₂_id : bind₂ (ring_hom.id (mv_polynomial σ R)) = join₂ := rfl
lemma bind₁_bind₁ {υ : Type*} (f : σ → mv_polynomial τ R) (g : τ → mv_polynomial υ R)
(φ : mv_polynomial σ R) :
(bind₁ g) (bind₁ f φ) = bind₁ (λ i, bind₁ g (f i)) φ :=
by simp [bind₁, ← comp_aeval]
lemma bind₁_comp_bind₁ {υ : Type*} (f : σ → mv_polynomial τ R) (g : τ → mv_polynomial υ R) :
(bind₁ g).comp (bind₁ f) = bind₁ (λ i, bind₁ g (f i)) :=
by { ext1, apply bind₁_bind₁ }
lemma bind₂_bind₂ (f : R →+* mv_polynomial σ S) (g : S →+* mv_polynomial σ T) (φ : mv_polynomial σ R) :
(bind₂ g) (bind₂ f φ) = bind₂ ((bind₂ g).comp f) φ :=
begin
dsimp [bind₂],
apply φ.induction_on,
{ simp },
{ intros p q hp hq, simp only [hp, hq, eval₂_add] },
{ intros p n hp, simp only [hp, eval₂_mul, eval₂_X] }
end
lemma bind₂_comp_bind₂ (f : R →+* mv_polynomial σ S) (g : S →+* mv_polynomial σ T) :
(bind₂ g).comp (bind₂ f) = bind₂ ((bind₂ g).comp f) :=
by { ext1, simp only [function.comp_app, ring_hom.coe_comp, bind₂_bind₂], }
lemma rename_bind₁ {υ : Type*} (f : σ → mv_polynomial τ R) (g : τ → υ) (φ : mv_polynomial σ R) :
rename g (bind₁ f φ) = bind₁ (λ i, rename g $ f i) φ :=
begin
apply φ.induction_on,
{ intro a, simp },
{ intros p q hp hq, simp [hp, hq] },
{ intros p n hp, simp [hp] }
end
lemma map_bind₂ (f : R →+* mv_polynomial σ S) (g : S →+* T) (φ : mv_polynomial σ R) :
map g (bind₂ f φ) = bind₂ ((map g).comp f) φ :=
begin
simp only [bind₂, eval₂_comp_right, coe_eval₂_hom, eval₂_map],
congr' 1 with : 1,
simp only [function.comp_app, map_X]
end
lemma bind₁_rename {υ : Type*} (f : τ → mv_polynomial υ R) (g : σ → τ) (φ : mv_polynomial σ R) :
bind₁ f (rename g φ) = bind₁ (f ∘ g) φ :=
begin
dsimp [bind₁],
apply φ.induction_on,
{ simp },
{ intros p q hp hq, simp only [hp, hq, alg_hom.map_add, ring_hom.map_add] },
{ intros p n hp, simp only [hp, rename_X, aeval_X, ring_hom.map_mul, alg_hom.map_mul] }
end
lemma bind₂_map (f : S →+* mv_polynomial σ T) (g : R →+* S) (φ : mv_polynomial σ R) :
bind₂ f (map g φ) = bind₂ (f.comp g) φ :=
by simp [bind₂]
@[simp]
lemma map_comp_C (f : R →+* S) : (map f).comp (C : R →+* mv_polynomial σ R) = C.comp f :=
by { ext1, apply map_C }
-- mixing the two monad structures
lemma hom_bind₁ (f : mv_polynomial τ R →+* S) (g : σ → mv_polynomial τ R) (φ : mv_polynomial σ R) :
f (bind₁ g φ) = eval₂_hom (f.comp C) (λ i, f (g i)) φ :=
by rw [bind₁, map_aeval, algebra_map_eq]
lemma map_bind₁ (f : R →+* S) (g : σ → mv_polynomial τ R) (φ : mv_polynomial σ R) :
map f (bind₁ g φ) = bind₁ (λ (i : σ), (map f) (g i)) (map f φ) :=
by { rw [hom_bind₁, map_comp_C, ← eval₂_hom_map_hom], refl }
@[simp]
lemma eval₂_hom_comp_C (f : R →+* S) (g : σ → S) :
(eval₂_hom f g).comp C = f :=
by { ext1 r, exact eval₂_C f g r }
lemma eval₂_hom_bind₁ (f : R →+* S) (g : τ → S) (h : σ → mv_polynomial τ R) (φ : mv_polynomial σ R) :
eval₂_hom f g (bind₁ h φ) = eval₂_hom f (λ i, eval₂_hom f g (h i)) φ :=
by rw [hom_bind₁, eval₂_hom_comp_C]
lemma aeval_bind₁ [algebra R S] (f : τ → S) (g : σ → mv_polynomial τ R) (φ : mv_polynomial σ R) :
aeval f (bind₁ g φ) = aeval (λ i, aeval f (g i)) φ :=
eval₂_hom_bind₁ _ _ _ _
lemma aeval_comp_bind₁ [algebra R S] (f : τ → S) (g : σ → mv_polynomial τ R) :
(aeval f).comp (bind₁ g) = aeval (λ i, aeval f (g i)) :=
by { ext1, apply aeval_bind₁ }
lemma eval₂_hom_bind₂ (f : S →+* T) (g : σ → T) (h : R →+* mv_polynomial σ S) (φ : mv_polynomial σ R) :
eval₂_hom f g (bind₂ h φ) = eval₂_hom ((eval₂_hom f g).comp h) g φ :=
begin
apply induction_on φ,
{ intro r, simp only [bind₂_C_right, ring_hom.coe_comp, eval₂_hom_C] },
{ intros, simp only [ring_hom.map_add, *] },
{ intros, simp only [*, bind₂_X_right, eval₂_hom_X', ring_hom.map_mul] }
end
lemma eval₂_hom_comp_bind₂ (f : S →+* T) (g : σ → T) (h : R →+* mv_polynomial σ S) :
(eval₂_hom f g).comp (bind₂ h) = eval₂_hom ((eval₂_hom f g).comp h) g :=
by { ext1, apply eval₂_hom_bind₂ }
lemma aeval_bind₂ [algebra S T] (f : σ → T) (g : R →+* mv_polynomial σ S) (φ : mv_polynomial σ R) :
aeval f (bind₂ g φ) = eval₂_hom ((@aeval S T σ _ f _ _ : mv_polynomial σ S →+* T).comp g) f φ :=
eval₂_hom_bind₂ _ _ _ _
lemma eval₂_hom_C_left (f : σ → mv_polynomial τ R) : eval₂_hom C f = bind₁ f := rfl
lemma bind₁_monomial (f : σ → mv_polynomial τ R) (d : σ →₀ ℕ) (r : R) :
bind₁ f (monomial d r) = C r * ∏ i in d.support, f i ^ d i :=
by simp only [monomial_eq, alg_hom.map_mul, bind₁_C_right, finsupp.prod,
alg_hom.map_prod, alg_hom.map_pow, bind₁_X_right]
lemma bind₂_monomial (f : R →+* mv_polynomial σ S) (d : σ →₀ ℕ) (r : R) :
bind₂ f (monomial d r) = f r * monomial d 1 :=
by simp only [monomial_eq, ring_hom.map_mul, bind₂_C_right, finsupp.prod,
ring_hom.map_prod, ring_hom.map_pow, bind₂_X_right, C_1, one_mul]
@[simp]
lemma bind₂_monomial_one (f : R →+* mv_polynomial σ S) (d : σ →₀ ℕ) :
bind₂ f (monomial d 1) = monomial d 1 :=
by rw [bind₂_monomial, f.map_one, one_mul]
instance : monad (λ σ, mv_polynomial σ R) :=
{ map := λ α β f p, rename f p,
pure := λ _, X,
bind := λ _ _ p f, bind₁ f p }
instance : is_lawful_functor (λ σ, mv_polynomial σ R) :=
{ id_map := by intros; simp [(<$>)],
comp_map := by intros; simp [(<$>)] }
instance : is_lawful_monad (λ σ, mv_polynomial σ R) :=
{ pure_bind := by intros; simp [pure, bind],
bind_assoc := by intros; simp [bind, ← bind₁_comp_bind₁] }
/-
Possible TODO for the future:
Enable the following definitions, and write a lot of supporting lemmas.
def bind (f : R →+* mv_polynomial τ S) (g : σ → mv_polynomial τ S) :
mv_polynomial σ R →+* mv_polynomial τ S :=
eval₂_hom f g
def join (f : R →+* S) : mv_polynomial (mv_polynomial σ R) S →ₐ[S] mv_polynomial σ S :=
aeval (map f)
def ajoin [algebra R S] : mv_polynomial (mv_polynomial σ R) S →ₐ[S] mv_polynomial σ S :=
join (algebra_map R S)
-/
end mv_polynomial
|
119d2c3d237cadb399bfd40f2c959fa012dd6075
|
54f4ad05b219d444b709f56c2f619dd87d14ec29
|
/my_project/src/love05_inductive_predicates_exercise_sheet.lean
|
8a18569df6cc9248415a046e329a680781486cfc
|
[] |
no_license
|
yizhou7/learning-lean
|
8efcf838c7276e235a81bd291f467fa43ce56e0a
|
91fb366c624df6e56e19555b2e482ce767cd8224
|
refs/heads/master
| 1,675,649,087,737
| 1,609,022,281,000
| 1,609,022,281,000
| 272,072,779
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 2,237
|
lean
|
import .love05_inductive_predicates_demo
/-! # LoVe Exercise 5: Inductive Predicates -/
set_option pp.beta true
namespace LoVe
/-! ## Question 1: Even and Odd
The `even` predicate is true for even numbers and false for odd numbers. -/
#check even
/-! We define `odd` as the negation of `even`: -/
def odd (n : ℕ) : Prop :=
¬ even n
/-! 1.1. Prove that 1 is odd and register this fact as a simp rule.
Hint: `cases` is useful to reason about hypotheses of the form `even …`. -/
@[simp] lemma odd_1 :
odd 1 :=
sorry
/-! 1.2. Prove that 3, 5, and 7 are odd. -/
-- enter your answer here
/-! 1.3. Complete the following proof by structural induction. -/
lemma even_two_times :
∀m : ℕ, even (2 * m)
| 0 := even.zero
| (m + 1) :=
sorry
/-! 1.4. Complete the following proof by rule induction.
Hint: You can use the `cases` tactic (or `match … with`) to destruct an
existential quantifier and extract the witness. -/
lemma even_imp_exists_two_times :
∀n : ℕ, even n → ∃m, n = 2 * m :=
begin
intros n hen,
induction hen,
case even.zero {
apply exists.intro 0,
refl },
case even.add_two : k hek ih {
sorry }
end
/-! 1.6. Using `even_two_times` and `even_imp_exists_two_times`, prove the
following equivalence. -/
lemma even_iff_exists_two_times (n : ℕ) :
even n ↔ ∃m, n = 2 * m :=
sorry
/-! ## Question 2: Binary Trees
2.1. Prove the converse of `is_full_mirror`. You may exploit already proved
lemmas (e.g., `is_full_mirror`, `mirror_mirror`). -/
#check is_full_mirror
#check mirror_mirror
lemma mirror_is_full {α : Type} :
∀t : btree α, is_full (mirror t) → is_full t :=
sorry
/-! 2.2. Define a `map` function on binary trees, similar to `list.map`. -/
def btree.map {α β : Type} (f : α → β) : btree α → btree β
-- enter the missing cases here
/-! 2.3. Prove the following lemma by case distinction. -/
lemma btree.map_eq_empty_iff {α β : Type} (f : α → β) :
∀t : btree α, btree.map f t = btree.empty ↔ t = btree.empty :=
sorry
/-! 2.4. Prove the following lemma by rule induction. -/
lemma btree.map_mirror {α β : Type} (f : α → β) :
∀t : btree α, is_full t → is_full (btree.map f t) :=
sorry
end LoVe
|
6fc9889759186718d9c360c6695d66a9783b3158
|
a4673261e60b025e2c8c825dfa4ab9108246c32e
|
/src/Lean/Data/Position.lean
|
0dd50d0419b5560371fc7646b40e18d9e5329e98
|
[
"Apache-2.0"
] |
permissive
|
jcommelin/lean4
|
c02dec0cc32c4bccab009285475f265f17d73228
|
2909313475588cc20ac0436e55548a4502050d0a
|
refs/heads/master
| 1,674,129,550,893
| 1,606,415,348,000
| 1,606,415,348,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 2,712
|
lean
|
/-
Copyright (c) 2018 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura, Sebastian Ullrich
-/
import Lean.Data.Format
namespace Lean
structure Position :=
(line : Nat)
(column : Nat)
namespace Position
instance : DecidableEq Position :=
fun ⟨l₁, c₁⟩ ⟨l₂, c₂⟩ =>
if h₁ : l₁ = l₂ then
if h₂ : c₁ = c₂ then
isTrue $ by subst h₁; subst h₂; rfl
else
isFalse fun contra => Position.noConfusion contra (fun e₁ e₂ => absurd e₂ h₂)
else
isFalse fun contra => Position.noConfusion contra (fun e₁ e₂ => absurd e₁ h₁)
protected def lt : Position → Position → Bool
| ⟨l₁, c₁⟩, ⟨l₂, c₂⟩ => (l₁, c₁) < (l₂, c₂)
instance : ToFormat Position :=
⟨fun ⟨l, c⟩ => "⟨" ++ fmt l ++ ", " ++ fmt c ++ "⟩"⟩
instance : ToString Position :=
⟨fun ⟨l, c⟩ => "⟨" ++ toString l ++ ", " ++ toString c ++ "⟩"⟩
instance : Inhabited Position := ⟨⟨1, 0⟩⟩
end Position
structure FileMap :=
(source : String)
(positions : Array String.Pos)
(lines : Array Nat)
namespace FileMap
instance : Inhabited FileMap :=
⟨{ source := "", positions := #[], lines := #[] }⟩
partial def ofString (s : String) : FileMap :=
let rec loop (i : String.Pos) (line : Nat) (ps : Array String.Pos) (lines : Array Nat) : FileMap :=
if s.atEnd i then { source := s, positions := ps.push i, lines := lines.push line }
else
let c := s.get i;
let i := s.next i;
if c == '\n' then loop i (line+1) (ps.push i) (lines.push (line+1))
else loop i line ps lines
loop 0 1 (#[0]) (#[1])
partial def toPosition (fmap : FileMap) (pos : String.Pos) : Position :=
match fmap with
| { source := str, positions := ps, lines := lines } =>
if ps.size >= 2 && pos <= ps.back then
let rec toColumn (i : String.Pos) (c : Nat) : Nat :=
if i == pos || str.atEnd i then c
else toColumn (str.next i) (c+1)
let rec loop (b e : Nat) :=
let posB := ps[b]
if e == b + 1 then { line := lines.get! b, column := toColumn posB 0 }
else
let m := (b + e) / 2;
let posM := ps.get! m;
if pos == posM then { line := lines.get! m, column := 0 }
else if pos > posM then loop m e
else loop b m
loop 0 (ps.size -1)
else
-- Some systems like the delaborator use synthetic positions without an input file,
-- which would violate `toPositionAux`'s invariant
⟨1, pos⟩
end FileMap
end Lean
def String.toFileMap (s : String) : Lean.FileMap :=
Lean.FileMap.ofString s
|
00174309ca482cc051366734bf6f2d766d03c059
|
4727251e0cd73359b15b664c3170e5d754078599
|
/src/order/compare.lean
|
0d2829426520d9c93a3424526a346a750b70016b
|
[
"Apache-2.0"
] |
permissive
|
Vierkantor/mathlib
|
0ea59ac32a3a43c93c44d70f441c4ee810ccceca
|
83bc3b9ce9b13910b57bda6b56222495ebd31c2f
|
refs/heads/master
| 1,658,323,012,449
| 1,652,256,003,000
| 1,652,256,003,000
| 209,296,341
| 0
| 1
|
Apache-2.0
| 1,568,807,655,000
| 1,568,807,655,000
| null |
UTF-8
|
Lean
| false
| false
| 7,526
|
lean
|
/-
Copyright (c) 2017 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import order.synonym
/-!
# Comparison
This file provides basic results about orderings and comparison in linear orders.
## Definitions
* `cmp_le`: An `ordering` from `≤`.
* `ordering.compares`: Turns an `ordering` into `<` and `=` propositions.
* `linear_order_of_compares`: Constructs a `linear_order` instance from the fact that any two
elements that are not one strictly less than the other either way are equal.
-/
variables {α : Type*}
/-- Like `cmp`, but uses a `≤` on the type instead of `<`. Given two elements `x` and `y`, returns a
three-way comparison result `ordering`. -/
def cmp_le {α} [has_le α] [@decidable_rel α (≤)] (x y : α) : ordering :=
if x ≤ y then
if y ≤ x then ordering.eq else ordering.lt
else ordering.gt
lemma cmp_le_swap {α} [has_le α] [is_total α (≤)] [@decidable_rel α (≤)] (x y : α) :
(cmp_le x y).swap = cmp_le y x :=
begin
by_cases xy : x ≤ y; by_cases yx : y ≤ x; simp [cmp_le, *, ordering.swap],
cases not_or xy yx (total_of _ _ _)
end
lemma cmp_le_eq_cmp {α} [preorder α] [is_total α (≤)]
[@decidable_rel α (≤)] [@decidable_rel α (<)] (x y : α) : cmp_le x y = cmp x y :=
begin
by_cases xy : x ≤ y; by_cases yx : y ≤ x;
simp [cmp_le, lt_iff_le_not_le, *, cmp, cmp_using],
cases not_or xy yx (total_of _ _ _)
end
namespace ordering
/-- `compares o a b` means that `a` and `b` have the ordering relation `o` between them, assuming
that the relation `a < b` is defined. -/
@[simp] def compares [has_lt α] : ordering → α → α → Prop
| lt a b := a < b
| eq a b := a = b
| gt a b := a > b
lemma compares_swap [has_lt α] {a b : α} {o : ordering} :
o.swap.compares a b ↔ o.compares b a :=
by { cases o, exacts [iff.rfl, eq_comm, iff.rfl] }
alias compares_swap ↔ ordering.compares.of_swap ordering.compares.swap
lemma swap_eq_iff_eq_swap {o o' : ordering} : o.swap = o' ↔ o = o'.swap :=
⟨λ h, by rw [← swap_swap o, h], λ h, by rw [← swap_swap o', h]⟩
lemma compares.eq_lt [preorder α] :
∀ {o} {a b : α}, compares o a b → (o = lt ↔ a < b)
| lt a b h := ⟨λ _, h, λ _, rfl⟩
| eq a b h := ⟨λ h, by injection h, λ h', (ne_of_lt h' h).elim⟩
| gt a b h := ⟨λ h, by injection h, λ h', (lt_asymm h h').elim⟩
lemma compares.ne_lt [preorder α] :
∀ {o} {a b : α}, compares o a b → (o ≠ lt ↔ b ≤ a)
| lt a b h := ⟨absurd rfl, λ h', (not_le_of_lt h h').elim⟩
| eq a b h := ⟨λ _, ge_of_eq h, λ _ h, by injection h⟩
| gt a b h := ⟨λ _, le_of_lt h, λ _ h, by injection h⟩
lemma compares.eq_eq [preorder α] :
∀ {o} {a b : α}, compares o a b → (o = eq ↔ a = b)
| lt a b h := ⟨λ h, by injection h, λ h', (ne_of_lt h h').elim⟩
| eq a b h := ⟨λ _, h, λ _, rfl⟩
| gt a b h := ⟨λ h, by injection h, λ h', (ne_of_gt h h').elim⟩
lemma compares.eq_gt [preorder α] {o} {a b : α} (h : compares o a b) : (o = gt ↔ b < a) :=
swap_eq_iff_eq_swap.symm.trans h.swap.eq_lt
lemma compares.ne_gt [preorder α] {o} {a b : α} (h : compares o a b) : (o ≠ gt ↔ a ≤ b) :=
(not_congr swap_eq_iff_eq_swap.symm).trans h.swap.ne_lt
lemma compares.le_total [preorder α] {a b : α} :
∀ {o}, compares o a b → a ≤ b ∨ b ≤ a
| lt h := or.inl (le_of_lt h)
| eq h := or.inl (le_of_eq h)
| gt h := or.inr (le_of_lt h)
lemma compares.le_antisymm [preorder α] {a b : α} :
∀ {o}, compares o a b → a ≤ b → b ≤ a → a = b
| lt h _ hba := (not_le_of_lt h hba).elim
| eq h _ _ := h
| gt h hab _ := (not_le_of_lt h hab).elim
lemma compares.inj [preorder α] {o₁} :
∀ {o₂} {a b : α}, compares o₁ a b → compares o₂ a b → o₁ = o₂
| lt a b h₁ h₂ := h₁.eq_lt.2 h₂
| eq a b h₁ h₂ := h₁.eq_eq.2 h₂
| gt a b h₁ h₂ := h₁.eq_gt.2 h₂
lemma compares_iff_of_compares_impl {β : Type*} [linear_order α] [preorder β] {a b : α}
{a' b' : β} (h : ∀ {o}, compares o a b → compares o a' b') (o) :
compares o a b ↔ compares o a' b' :=
begin
refine ⟨h, λ ho, _⟩,
cases lt_trichotomy a b with hab hab,
{ change compares ordering.lt a b at hab,
rwa [ho.inj (h hab)] },
{ cases hab with hab hab,
{ change compares ordering.eq a b at hab,
rwa [ho.inj (h hab)] },
{ change compares ordering.gt a b at hab,
rwa [ho.inj (h hab)] } }
end
lemma swap_or_else (o₁ o₂) : (or_else o₁ o₂).swap = or_else o₁.swap o₂.swap :=
by cases o₁; try {refl}; cases o₂; refl
lemma or_else_eq_lt (o₁ o₂) : or_else o₁ o₂ = lt ↔ o₁ = lt ∨ (o₁ = eq ∧ o₂ = lt) :=
by cases o₁; cases o₂; exact dec_trivial
end ordering
open ordering order_dual
@[simp] lemma to_dual_compares_to_dual [has_lt α] {a b : α} {o : ordering} :
compares o (to_dual a) (to_dual b) ↔ compares o b a :=
by { cases o, exacts [iff.rfl, eq_comm, iff.rfl] }
@[simp] lemma of_dual_compares_of_dual [has_lt α] {a b : αᵒᵈ} {o : ordering} :
compares o (of_dual a) (of_dual b) ↔ compares o b a :=
by { cases o, exacts [iff.rfl, eq_comm, iff.rfl] }
lemma cmp_compares [linear_order α] (a b : α) : (cmp a b).compares a b :=
by obtain h | h | h := lt_trichotomy a b; simp [cmp, cmp_using, h, h.not_lt]
lemma cmp_swap [preorder α] [@decidable_rel α (<)] (a b : α) : (cmp a b).swap = cmp b a :=
begin
unfold cmp cmp_using,
by_cases a < b; by_cases h₂ : b < a; simp [h, h₂, ordering.swap],
exact lt_asymm h h₂
end
lemma order_dual.cmp_le_flip {α} [has_le α] [@decidable_rel α (≤)] (x y : α) :
@cmp_le αᵒᵈ _ _ x y = cmp_le y x := rfl
/-- Generate a linear order structure from a preorder and `cmp` function. -/
def linear_order_of_compares [preorder α] (cmp : α → α → ordering)
(h : ∀ a b, (cmp a b).compares a b) :
linear_order α :=
{ le_antisymm := λ a b, (h a b).le_antisymm,
le_total := λ a b, (h a b).le_total,
decidable_le := λ a b, decidable_of_iff _ (h a b).ne_gt,
decidable_lt := λ a b, decidable_of_iff _ (h a b).eq_lt,
decidable_eq := λ a b, decidable_of_iff _ (h a b).eq_eq,
.. ‹preorder α› }
variables [linear_order α] (x y : α)
@[simp] lemma cmp_eq_lt_iff : cmp x y = ordering.lt ↔ x < y :=
ordering.compares.eq_lt (cmp_compares x y)
@[simp] lemma cmp_eq_eq_iff : cmp x y = ordering.eq ↔ x = y :=
ordering.compares.eq_eq (cmp_compares x y)
@[simp] lemma cmp_eq_gt_iff : cmp x y = ordering.gt ↔ y < x :=
ordering.compares.eq_gt (cmp_compares x y)
@[simp] lemma cmp_self_eq_eq : cmp x x = ordering.eq :=
by rw cmp_eq_eq_iff
variables {x y} {β : Type*} [linear_order β] {x' y' : β}
lemma cmp_eq_cmp_symm : cmp x y = cmp x' y' ↔ cmp y x = cmp y' x' :=
by { split, rw [←cmp_swap _ y, ←cmp_swap _ y'], cc,
rw [←cmp_swap _ x, ←cmp_swap _ x'], cc, }
lemma lt_iff_lt_of_cmp_eq_cmp (h : cmp x y = cmp x' y') : x < y ↔ x' < y' :=
by rw [←cmp_eq_lt_iff, ←cmp_eq_lt_iff, h]
lemma le_iff_le_of_cmp_eq_cmp (h : cmp x y = cmp x' y') : x ≤ y ↔ x' ≤ y' :=
by { rw [←not_lt, ←not_lt], apply not_congr,
apply lt_iff_lt_of_cmp_eq_cmp, rwa cmp_eq_cmp_symm }
lemma has_lt.lt.cmp_eq_lt (h : x < y) : cmp x y = ordering.lt := (cmp_eq_lt_iff _ _).2 h
lemma has_lt.lt.cmp_eq_gt (h : x < y) : cmp y x = ordering.gt := (cmp_eq_gt_iff _ _).2 h
lemma eq.cmp_eq_eq (h : x = y) : cmp x y = ordering.eq := (cmp_eq_eq_iff _ _).2 h
lemma eq.cmp_eq_eq' (h : x = y) : cmp y x = ordering.eq := h.symm.cmp_eq_eq
|
a9e07d3953ffd25bfbce77385f0ae96f6be1a71b
|
57c233acf9386e610d99ed20ef139c5f97504ba3
|
/src/data/W/basic.lean
|
eeb9ae19deaebdd5478fc2a6e1d2bd0cd322811b
|
[
"Apache-2.0"
] |
permissive
|
robertylewis/mathlib
|
3d16e3e6daf5ddde182473e03a1b601d2810952c
|
1d13f5b932f5e40a8308e3840f96fc882fae01f0
|
refs/heads/master
| 1,651,379,945,369
| 1,644,276,960,000
| 1,644,276,960,000
| 98,875,504
| 0
| 0
|
Apache-2.0
| 1,644,253,514,000
| 1,501,495,700,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 6,805
|
lean
|
/-
Copyright (c) 2019 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad
-/
import data.equiv.list
/-!
# W types
Given `α : Type` and `β : α → Type`, the W type determined by this data, `W_type β`, is the
inductively defined type of trees where the nodes are labeled by elements of `α` and the children of
a node labeled `a` are indexed by elements of `β a`.
This file is currently a stub, awaiting a full development of the theory. Currently, the main result
is that if `α` is an encodable fintype and `β a` is encodable for every `a : α`, then `W_type β` is
encodable. This can be used to show the encodability of other inductive types, such as those that
are commonly used to formalize syntax, e.g. terms and expressions in a given language. The strategy
is illustrated in the example found in the file `prop_encodable` in the `archive/examples` folder of
mathlib.
## Implementation details
While the name `W_type` is somewhat verbose, it is preferable to putting a single character
identifier `W` in the root namespace.
-/
/--
Given `β : α → Type*`, `W_type β` is the type of finitely branching trees where nodes are labeled by
elements of `α` and the children of a node labeled `a` are indexed by elements of `β a`.
-/
inductive W_type {α : Type*} (β : α → Type*)
| mk (a : α) (f : β a → W_type) : W_type
instance : inhabited (W_type (λ (_ : unit), empty)) :=
⟨W_type.mk unit.star empty.elim⟩
namespace W_type
variables {α : Type*} {β : α → Type*}
/-- The canonical map to the corresponding sigma type, returning the label of a node as an
element `a` of `α`, and the children of the node as a function `β a → W_type β`. -/
def to_sigma : W_type β → Σ a : α, β a → W_type β
| ⟨a, f⟩ := ⟨a, f⟩
/-- The canonical map from the sigma type into a `W_type`. Given a node `a : α`, and
its children as a function `β a → W_type β`, return the corresponding tree. -/
def of_sigma : (Σ a : α, β a → W_type β) → W_type β
| ⟨a, f⟩ := W_type.mk a f
@[simp] lemma of_sigma_to_sigma : Π (w : W_type β),
of_sigma (to_sigma w) = w
| ⟨a, f⟩ := rfl
@[simp] lemma to_sigma_of_sigma : Π (s : Σ a : α, β a → W_type β),
to_sigma (of_sigma s) = s
| ⟨a, f⟩ := rfl
variable (β)
/-- The canonical bijection with the sigma type, showing that `W_type` is a fixed point of
the polynomial `Σ a : α, β a → W_type β`. -/
@[simps] def equiv_sigma : W_type β ≃ Σ a : α, β a → W_type β :=
{ to_fun := to_sigma,
inv_fun := of_sigma,
left_inv := of_sigma_to_sigma,
right_inv := to_sigma_of_sigma }
variable {β}
/-- The canonical map from `W_type β` into any type `γ` given a map `(Σ a : α, β a → γ) → γ`. -/
def elim (γ : Type*) (fγ : (Σ a : α, β a → γ) → γ) : W_type β → γ
| ⟨a, f⟩ := fγ ⟨a, λ b, elim (f b)⟩
lemma elim_injective (γ : Type*) (fγ : (Σ a : α, β a → γ) → γ)
(fγ_injective : function.injective fγ) :
function.injective (elim γ fγ)
| ⟨a₁, f₁⟩ ⟨a₂, f₂⟩ h := begin
obtain ⟨rfl, h⟩ := sigma.mk.inj (fγ_injective h),
congr' with x,
exact elim_injective (congr_fun (eq_of_heq h) x : _),
end
instance [hα : is_empty α] : is_empty (W_type β) :=
⟨λ w, W_type.rec_on w (is_empty.elim hα)⟩
lemma infinite_of_nonempty_of_is_empty (a b : α) [ha : nonempty (β a)]
[he : is_empty (β b)] : infinite (W_type β) :=
⟨begin
introsI hf,
have hba : b ≠ a, from λ h, ha.elim (is_empty.elim' (show is_empty (β a), from h ▸ he)),
refine not_injective_infinite_fintype
(λ n : ℕ, show W_type β, from nat.rec_on n
⟨b, is_empty.elim' he⟩
(λ n ih, ⟨a, λ _, ih⟩)) _,
intros n m h,
induction n with n ih generalizing m h,
{ cases m with m; simp * at * },
{ cases m with m,
{ simp * at * },
{ refine congr_arg nat.succ (ih _),
simp [function.funext_iff, *] at * } }
end⟩
variables [Π a : α, fintype (β a)]
/-- The depth of a finitely branching tree. -/
def depth : W_type β → ℕ
| ⟨a, f⟩ := finset.sup finset.univ (λ n, depth (f n)) + 1
lemma depth_pos (t : W_type β) : 0 < t.depth :=
by { cases t, apply nat.succ_pos }
lemma depth_lt_depth_mk (a : α) (f : β a → W_type β) (i : β a) :
depth (f i) < depth ⟨a, f⟩ :=
nat.lt_succ_of_le (finset.le_sup (finset.mem_univ i))
end W_type
/-
Show that W types are encodable when `α` is an encodable fintype and for every `a : α`, `β a` is
encodable.
We define an auxiliary type `W_type' β n` of trees of depth at most `n`, and then we show by
induction on `n` that these are all encodable. These auxiliary constructions are not interesting in
and of themselves, so we mark them as `private`.
-/
namespace encodable
@[reducible] private def W_type' {α : Type*} (β : α → Type*)
[Π a : α, fintype (β a)] [Π a : α, encodable (β a)] (n : ℕ) :=
{ t : W_type β // t.depth ≤ n}
variables {α : Type*} {β : α → Type*} [Π a : α, fintype (β a)] [Π a : α, encodable (β a)]
private def encodable_zero : encodable (W_type' β 0) :=
let f : W_type' β 0 → empty := λ ⟨x, h⟩, false.elim $ not_lt_of_ge h (W_type.depth_pos _),
finv : empty → W_type' β 0 := by { intro x, cases x} in
have ∀ x, finv (f x) = x, from λ ⟨x, h⟩, false.elim $ not_lt_of_ge h (W_type.depth_pos _),
encodable.of_left_inverse f finv this
private def f (n : ℕ) : W_type' β (n + 1) → Σ a : α, β a → W_type' β n
| ⟨t, h⟩ :=
begin
cases t with a f,
have h₀ : ∀ i : β a, W_type.depth (f i) ≤ n,
from λ i, nat.le_of_lt_succ (lt_of_lt_of_le (W_type.depth_lt_depth_mk a f i) h),
exact ⟨a, λ i : β a, ⟨f i, h₀ i⟩⟩
end
private def finv (n : ℕ) :
(Σ a : α, β a → W_type' β n) → W_type' β (n + 1)
| ⟨a, f⟩ :=
let f' := λ i : β a, (f i).val in
have W_type.depth ⟨a, f'⟩ ≤ n + 1,
from add_le_add_right (finset.sup_le (λ b h, (f b).2)) 1,
⟨⟨a, f'⟩, this⟩
variables [encodable α]
private def encodable_succ (n : nat) (h : encodable (W_type' β n)) :
encodable (W_type' β (n + 1)) :=
encodable.of_left_inverse (f n) (finv n) (by { rintro ⟨⟨_, _⟩, _⟩, refl })
/-- `W_type` is encodable when `α` is an encodable fintype and for every `a : α`, `β a` is
encodable. -/
instance : encodable (W_type β) :=
begin
haveI h' : Π n, encodable (W_type' β n) :=
λ n, nat.rec_on n encodable_zero encodable_succ,
let f : W_type β → Σ n, W_type' β n := λ t, ⟨t.depth, ⟨t, le_rfl⟩⟩,
let finv : (Σ n, W_type' β n) → W_type β := λ p, p.2.1,
have : ∀ t, finv (f t) = t, from λ t, rfl,
exact encodable.of_left_inverse f finv this
end
end encodable
|
b85488280bb5e771057b0e3fd311b2b26d9b2499
|
26ac254ecb57ffcb886ff709cf018390161a9225
|
/src/data/monoid_algebra.lean
|
ca18a515e7795329aa168bbbb9f22ef3b5c7395e
|
[
"Apache-2.0"
] |
permissive
|
eric-wieser/mathlib
|
42842584f584359bbe1fc8b88b3ff937c8acd72d
|
d0df6b81cd0920ad569158c06a3fd5abb9e63301
|
refs/heads/master
| 1,669,546,404,255
| 1,595,254,668,000
| 1,595,254,668,000
| 281,173,504
| 0
| 0
|
Apache-2.0
| 1,595,263,582,000
| 1,595,263,581,000
| null |
UTF-8
|
Lean
| false
| false
| 27,172
|
lean
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Yury G. Kudryashov, Scott Morrison
-/
import data.finsupp
import ring_theory.algebra
/-!
# Monoid algebras
When the domain of a `finsupp` has a multiplicative or additive structure, we can define
a convolution product. To mathematicians this structure is known as the "monoid algebra",
i.e. the finite formal linear combinations over a given semiring of elements of the monoid.
The "group ring" ℤ[G] or the "group algebra" k[G] are typical uses.
In this file we define `monoid_algebra k G := G →₀ k`, and `add_monoid_algebra k G`
in the same way, and then define the convolution product on these.
When the domain is additive, this is used to define polynomials:
```
polynomial α := add_monoid_algebra ℕ α
mv_polynominal σ α := add_monoid_algebra (σ →₀ ℕ) α
```
When the domain is multiplicative, e.g. a group, this will be used to define the group ring.
## Implementation note
Unfortunately because additive and multiplicative structures both appear in both cases,
it doesn't appear to be possible to make much use of `to_additive`, and we just settle for
saying everything twice.
Similarly, I attempted to just define `add_monoid_algebra k G := monoid_algebra k (multiplicative G)`,
but the definitional equality `multiplicative G = G` leaks through everywhere, and
seems impossible to use.
-/
noncomputable theory
open_locale classical big_operators
open finset finsupp
universes u₁ u₂ u₃
variables (k : Type u₁) (G : Type u₂)
section
variables [semiring k]
/--
The monoid algebra over a semiring `k` generated by the monoid `G`.
It is the type of finite formal `k`-linear combinations of terms of `G`,
endowed with the convolution product.
-/
@[derive [inhabited, add_comm_monoid]]
def monoid_algebra : Type (max u₁ u₂) := G →₀ k
end
namespace monoid_algebra
variables {k G}
local attribute [reducible] monoid_algebra
section
variables [semiring k] [monoid G]
/-- The product of `f g : monoid_algebra k G` is the finitely supported function
whose value at `a` is the sum of `f x * g y` over all pairs `x, y`
such that `x * y = a`. (Think of the group ring of a group.) -/
instance : has_mul (monoid_algebra k G) :=
⟨λf g, f.sum $ λa₁ b₁, g.sum $ λa₂ b₂, single (a₁ * a₂) (b₁ * b₂)⟩
lemma mul_def {f g : monoid_algebra k G} :
f * g = (f.sum $ λa₁ b₁, g.sum $ λa₂ b₂, single (a₁ * a₂) (b₁ * b₂)) :=
rfl
lemma mul_apply (f g : monoid_algebra k G) (x : G) :
(f * g) x = (f.sum $ λa₁ b₁, g.sum $ λa₂ b₂, if a₁ * a₂ = x then b₁ * b₂ else 0) :=
begin
rw [mul_def],
simp only [finsupp.sum_apply, single_apply],
end
lemma mul_apply_antidiagonal (f g : monoid_algebra k G) (x : G) (s : finset (G × G))
(hs : ∀ {p : G × G}, p ∈ s ↔ p.1 * p.2 = x) :
(f * g) x = ∑ p in s, (f p.1 * g p.2) :=
let F : G × G → k := λ p, if p.1 * p.2 = x then f p.1 * g p.2 else 0 in
calc (f * g) x = (∑ a₁ in f.support, ∑ a₂ in g.support, F (a₁, a₂)) :
mul_apply f g x
... = ∑ p in f.support.product g.support, F p : finset.sum_product.symm
... = ∑ p in (f.support.product g.support).filter (λ p : G × G, p.1 * p.2 = x), f p.1 * g p.2 :
(finset.sum_filter _ _).symm
... = ∑ p in s.filter (λ p : G × G, p.1 ∈ f.support ∧ p.2 ∈ g.support), f p.1 * g p.2 :
sum_congr (by { ext, simp [hs, and_comm] }) (λ _ _, rfl)
... = ∑ p in s, f p.1 * g p.2 : sum_subset (filter_subset _) $ λ p hps hp,
begin
simp only [mem_filter, mem_support_iff, not_and, not_not] at hp ⊢,
by_cases h1 : f p.1 = 0,
{ rw [h1, zero_mul] },
{ rw [hp hps h1, mul_zero] }
end
end
section
variables [semiring k] [monoid G]
lemma support_mul (a b : monoid_algebra k G) :
(a * b).support ⊆ a.support.bind (λa₁, b.support.bind $ λa₂, {a₁ * a₂}) :=
subset.trans support_sum $ bind_mono $ assume a₁ _,
subset.trans support_sum $ bind_mono $ assume a₂ _, support_single_subset
/-- The unit of the multiplication is `single 1 1`, i.e. the function
that is `1` at `1` and zero elsewhere. -/
instance : has_one (monoid_algebra k G) :=
⟨single 1 1⟩
lemma one_def : (1 : monoid_algebra k G) = single 1 1 :=
rfl
-- TODO: the simplifier unfolds 0 in the instance proof!
protected lemma zero_mul (f : monoid_algebra k G) : 0 * f = 0 :=
by simp only [mul_def, sum_zero_index]
protected lemma mul_zero (f : monoid_algebra k G) : f * 0 = 0 :=
by simp only [mul_def, sum_zero_index, sum_zero]
private lemma left_distrib (a b c : monoid_algebra k G) : a * (b + c) = a * b + a * c :=
by simp only [mul_def, sum_add_index, mul_add, mul_zero, single_zero, single_add,
eq_self_iff_true, forall_true_iff, forall_3_true_iff, sum_add]
private lemma right_distrib (a b c : monoid_algebra k G) : (a + b) * c = a * c + b * c :=
by simp only [mul_def, sum_add_index, add_mul, mul_zero, zero_mul, single_zero,
single_add, eq_self_iff_true, forall_true_iff, forall_3_true_iff, sum_zero, sum_add]
instance : semiring (monoid_algebra k G) :=
{ one := 1,
mul := (*),
one_mul := assume f, by simp only [mul_def, one_def, sum_single_index, zero_mul,
single_zero, sum_zero, zero_add, one_mul, sum_single],
mul_one := assume f, by simp only [mul_def, one_def, sum_single_index, mul_zero,
single_zero, sum_zero, add_zero, mul_one, sum_single],
zero_mul := monoid_algebra.zero_mul,
mul_zero := monoid_algebra.mul_zero,
mul_assoc := assume f g h, by simp only [mul_def, sum_sum_index, sum_zero_index, sum_add_index,
sum_single_index, single_zero, single_add, eq_self_iff_true, forall_true_iff, forall_3_true_iff,
add_mul, mul_add, add_assoc, mul_assoc, zero_mul, mul_zero, sum_zero, sum_add],
left_distrib := left_distrib,
right_distrib := right_distrib,
.. finsupp.add_comm_monoid }
@[simp] lemma single_mul_single {a₁ a₂ : G} {b₁ b₂ : k} :
(single a₁ b₁ : monoid_algebra k G) * single a₂ b₂ = single (a₁ * a₂) (b₁ * b₂) :=
(sum_single_index (by simp only [zero_mul, single_zero, sum_zero])).trans
(sum_single_index (by rw [mul_zero, single_zero]))
@[simp] lemma single_pow {a : G} {b : k} :
∀ n : ℕ, (single a b : monoid_algebra k G)^n = single (a^n) (b ^ n)
| 0 := rfl
| (n+1) := by simp only [pow_succ, single_pow n, single_mul_single]
section
variables (k G)
/-- Embedding of a monoid into its monoid algebra. -/
def of : G →* monoid_algebra k G :=
{ to_fun := λ a, single a 1,
map_one' := rfl,
map_mul' := λ a b, by rw [single_mul_single, one_mul] }
end
@[simp] lemma of_apply (a : G) : of k G a = single a 1 := rfl
lemma mul_single_apply_aux (f : monoid_algebra k G) {r : k}
{x y z : G} (H : ∀ a, a * x = z ↔ a = y) :
(f * single x r) z = f y * r :=
have A : ∀ a₁ b₁, (single x r).sum (λ a₂ b₂, ite (a₁ * a₂ = z) (b₁ * b₂) 0) =
ite (a₁ * x = z) (b₁ * r) 0,
from λ a₁ b₁, sum_single_index $ by simp,
calc (f * single x r) z = sum f (λ a b, if (a = y) then (b * r) else 0) :
-- different `decidable` instances make it not trivial
by { simp only [mul_apply, A, H], congr, funext, split_ifs; refl }
... = if y ∈ f.support then f y * r else 0 : f.support.sum_ite_eq' _ _
... = f y * r : by split_ifs with h; simp at h; simp [h]
lemma mul_single_one_apply (f : monoid_algebra k G) (r : k) (x : G) :
(f * single 1 r) x = f x * r :=
f.mul_single_apply_aux $ λ a, by rw [mul_one]
lemma single_mul_apply_aux (f : monoid_algebra k G) {r : k} {x y z : G}
(H : ∀ a, x * a = y ↔ a = z) :
(single x r * f) y = r * f z :=
have f.sum (λ a b, ite (x * a = y) (0 * b) 0) = 0, by simp,
calc (single x r * f) y = sum f (λ a b, ite (x * a = y) (r * b) 0) :
(mul_apply _ _ _).trans $ sum_single_index this
... = f.sum (λ a b, ite (a = z) (r * b) 0) :
by { simp only [H], congr, ext; split_ifs; refl }
... = if z ∈ f.support then (r * f z) else 0 : f.support.sum_ite_eq' _ _
... = _ : by split_ifs with h; simp at h; simp [h]
lemma single_one_mul_apply (f : monoid_algebra k G) (r : k) (x : G) :
(single 1 r * f) x = r * f x :=
f.single_mul_apply_aux $ λ a, by rw [one_mul]
end
instance [comm_semiring k] [comm_monoid G] : comm_semiring (monoid_algebra k G) :=
{ mul_comm := assume f g,
begin
simp only [mul_def, finsupp.sum, mul_comm],
rw [finset.sum_comm],
simp only [mul_comm]
end,
.. monoid_algebra.semiring }
instance [ring k] : has_neg (monoid_algebra k G) :=
by apply_instance
instance [ring k] [monoid G] : ring (monoid_algebra k G) :=
{ neg := has_neg.neg,
add_left_neg := add_left_neg,
.. monoid_algebra.semiring }
instance [comm_ring k] [comm_monoid G] : comm_ring (monoid_algebra k G) :=
{ mul_comm := mul_comm, .. monoid_algebra.ring}
instance [semiring k] : has_scalar k (monoid_algebra k G) :=
finsupp.has_scalar
instance [semiring k] : semimodule k (monoid_algebra k G) :=
finsupp.semimodule G k
lemma single_one_comm [comm_semiring k] [monoid G] (r : k) (f : monoid_algebra k G) :
single 1 r * f = f * single 1 r :=
by { ext, rw [single_one_mul_apply, mul_single_one_apply, mul_comm] }
/--
As a preliminary to defining the `k`-algebra structure on `monoid_algebra k G`,
we define the underlying ring homomorphism.
In fact, we do this in more generality, providing the ring homomorphism
`k →+* monoid_algebra A G` given any ring homomorphism `k →+* A`.
-/
def algebra_map' {A : Type*} [semiring k] [semiring A] (f : k →+* A) [monoid G] :
k →+* monoid_algebra A G :=
{ to_fun := λ x, single 1 (f x),
map_one' := by { simp, refl },
map_mul' := λ x y, by rw [single_mul_single, one_mul, f.map_mul],
map_zero' := by rw [f.map_zero, single_zero],
map_add' := λ x y, by rw [f.map_add, single_add], }
/--
The instance `algebra k (monoid_algebra A G)` whenever we have `algebra k A`.
In particular this provides the instance `algebra k (monoid_algebra k G)`.
-/
instance {A : Type*} [comm_semiring k] [semiring A] [algebra k A] [monoid G] :
algebra k (monoid_algebra A G) :=
{ smul_def' := λ r a, by { ext x, dsimp [algebra_map'], rw single_one_mul_apply, rw algebra.smul_def'', },
commutes' := λ r f, show single 1 (algebra_map k A r) * f = f * single 1 (algebra_map k A r),
by { ext, rw [single_one_mul_apply, mul_single_one_apply, algebra.commutes], },
..algebra_map' (algebra_map k A) }
@[simp] lemma coe_algebra_map [comm_semiring k] [monoid G] :
(algebra_map k (monoid_algebra k G) : k → monoid_algebra k G) = single 1 :=
rfl
lemma single_eq_algebra_map_mul_of [comm_semiring k] [monoid G] (a : G) (b : k) :
single a b = (algebra_map k (monoid_algebra k G) : k → monoid_algebra k G) b * of k G a :=
by simp
instance [group G] [semiring k] :
distrib_mul_action G (monoid_algebra k G) :=
finsupp.comap_distrib_mul_action_self
section lift
variables (k G) [comm_semiring k] [monoid G] (R : Type u₃) [semiring R] [algebra k R]
/-- Any monoid homomorphism `G →* R` can be lifted to an algebra homomorphism
`monoid_algebra k G →ₐ[k] R`. -/
def lift : (G →* R) ≃ (monoid_algebra k G →ₐ[k] R) :=
{ inv_fun := λ f, (f : monoid_algebra k G →* R).comp (of k G),
to_fun := λ F, { to_fun := λ f, f.sum (λ a b, b • F a),
map_one' := by { rw [one_def, sum_single_index, one_smul, F.map_one], apply zero_smul },
map_mul' :=
begin
intros f g,
rw [mul_def, finsupp.sum_mul, finsupp.sum_sum_index];
try { intros, simp only [zero_smul, add_smul], done },
refine finset.sum_congr rfl (λ a ha, _), simp only,
rw [finsupp.mul_sum, finsupp.sum_sum_index];
try { intros, simp only [zero_smul, add_smul], done },
refine finset.sum_congr rfl (λ a' ha', _), simp only,
rw [sum_single_index, F.map_mul, algebra.mul_smul_comm, algebra.smul_mul_assoc,
smul_smul, mul_comm],
apply zero_smul
end,
map_zero' := sum_zero_index,
map_add' := λ f g, by rw [sum_add_index]; intros; simp only [zero_smul, add_smul],
commutes' := λ r, by rw [coe_algebra_map, sum_single_index, F.map_one, algebra.smul_def,
mul_one]; apply zero_smul },
left_inv := λ f, begin ext x, simp [sum_single_index] end,
right_inv := λ F,
begin
ext f,
conv_rhs { rw ← f.sum_single },
simp [← F.map_smul, finsupp.sum, ← F.map_sum]
end }
variables {k G R}
lemma lift_apply (F : G →* R) (f : monoid_algebra k G) :
lift k G R F f = f.sum (λ a b, b • F a) := rfl
@[simp] lemma lift_symm_apply (F : monoid_algebra k G →ₐ[k] R) (x : G) :
(lift k G R).symm F x = F (single x 1) := rfl
lemma lift_of (F : G →* R) (x) :
lift k G R F (of k G x) = F x :=
by rw [of_apply, ← lift_symm_apply, equiv.symm_apply_apply]
@[simp] lemma lift_single (F : G →* R) (a b) :
lift k G R F (single a b) = b • F a :=
by rw [single_eq_algebra_map_mul_of, ← algebra.smul_def, alg_hom.map_smul, lift_of]
lemma lift_unique' (F : monoid_algebra k G →ₐ[k] R) :
F = lift k G R ((F : monoid_algebra k G →* R).comp (of k G)) :=
((lift k G R).apply_symm_apply F).symm
/-- Decomposition of a `k`-algebra homomorphism from `monoid_algebra k G` by
its values on `F (single a 1)`. -/
lemma lift_unique (F : monoid_algebra k G →ₐ[k] R) (f : monoid_algebra k G) :
F f = f.sum (λ a b, b • F (single a 1)) :=
by conv_lhs { rw lift_unique' F, simp [lift_apply] }
/-- A `k`-algebra homomorphism from `monoid_algebra k G` is uniquely defined by its
values on the functions `single a 1`. -/
lemma alg_hom_ext ⦃φ₁ φ₂ : monoid_algebra k G →ₐ[k] R⦄
(h : ∀ x, φ₁ (single x 1) = φ₂ (single x 1)) : φ₁ = φ₂ :=
(lift k G R).symm.injective $ monoid_hom.ext h
end lift
section
variables (k)
/-- When `V` is a `k[G]`-module, multiplication by a group element `g` is a `k`-linear map. -/
def group_smul.linear_map [group G] [comm_ring k]
(V : Type u₃) [add_comm_group V] [module (monoid_algebra k G) V] (g : G) :
(module.restrict_scalars k (monoid_algebra k G) V) →ₗ[k]
(module.restrict_scalars k (monoid_algebra k G) V) :=
{ to_fun := λ v, (single g (1 : k) • v : V),
map_add' := λ x y, smul_add (single g (1 : k)) x y,
map_smul' := λ c x,
by simp only [module.restrict_scalars_smul_def, coe_algebra_map, ←mul_smul, single_one_comm], }.
@[simp]
lemma group_smul.linear_map_apply [group G] [comm_ring k]
(V : Type u₃) [add_comm_group V] [module (monoid_algebra k G) V] (g : G) (v : V) :
(group_smul.linear_map k V g) v = (single g (1 : k) • v : V) :=
rfl
section
variables {k}
variables [group G] [comm_ring k]
{V : Type u₃} {gV : add_comm_group V} {mV : module (monoid_algebra k G) V}
{W : Type u₃} {gW : add_comm_group W} {mW : module (monoid_algebra k G) W}
(f : (module.restrict_scalars k (monoid_algebra k G) V) →ₗ[k]
(module.restrict_scalars k (monoid_algebra k G) W))
(h : ∀ (g : G) (v : V), f (single g (1 : k) • v : V) = (single g (1 : k) • (f v) : W))
include h
/-- Build a `k[G]`-linear map from a `k`-linear map and evidence that it is `G`-equivariant. -/
def equivariant_of_linear_of_comm : V →ₗ[monoid_algebra k G] W :=
{ to_fun := f,
map_add' := λ v v', by simp,
map_smul' := λ c v,
begin
apply finsupp.induction c,
{ simp, },
{ intros g r c' nm nz w,
rw [add_smul, linear_map.map_add, w, add_smul, add_left_inj,
single_eq_algebra_map_mul_of, ←smul_smul, ←smul_smul],
erw [f.map_smul, h g v],
refl, }
end, }
@[simp]
lemma equivariant_of_linear_of_comm_apply (v : V) : (equivariant_of_linear_of_comm f h) v = f v :=
rfl
end
end
universe ui
variable {ι : Type ui}
lemma prod_single [comm_semiring k] [comm_monoid G]
{s : finset ι} {a : ι → G} {b : ι → k} :
(∏ i in s, single (a i) (b i)) = single (∏ i in s, a i) (∏ i in s, b i) :=
finset.induction_on s rfl $ λ a s has ih, by rw [prod_insert has, ih,
single_mul_single, prod_insert has, prod_insert has]
section -- We now prove some additional statements that hold for group algebras.
variables [semiring k] [group G]
@[simp]
lemma mul_single_apply (f : monoid_algebra k G) (r : k) (x y : G) :
(f * single x r) y = f (y * x⁻¹) * r :=
f.mul_single_apply_aux $ λ a, eq_mul_inv_iff_mul_eq.symm
@[simp]
lemma single_mul_apply (r : k) (x : G) (f : monoid_algebra k G) (y : G) :
(single x r * f) y = r * f (x⁻¹ * y) :=
f.single_mul_apply_aux $ λ z, eq_inv_mul_iff_mul_eq.symm
lemma mul_apply_left (f g : monoid_algebra k G) (x : G) :
(f * g) x = (f.sum $ λ a b, b * (g (a⁻¹ * x))) :=
calc (f * g) x = sum f (λ a b, (single a (f a) * g) x) :
by rw [← finsupp.sum_apply, ← finsupp.sum_mul, f.sum_single]
... = _ : by simp only [single_mul_apply, finsupp.sum]
-- If we'd assumed `comm_semiring`, we could deduce this from `mul_apply_left`.
lemma mul_apply_right (f g : monoid_algebra k G) (x : G) :
(f * g) x = (g.sum $ λa b, (f (x * a⁻¹)) * b) :=
calc (f * g) x = sum g (λ a b, (f * single a (g a)) x) :
by rw [← finsupp.sum_apply, ← finsupp.mul_sum, g.sum_single]
... = _ : by simp only [mul_single_apply, finsupp.sum]
end
end monoid_algebra
section
variables [semiring k]
/--
The monoid algebra over a semiring `k` generated by the additive monoid `G`.
It is the type of finite formal `k`-linear combinations of terms of `G`,
endowed with the convolution product.
-/
@[derive [inhabited, add_comm_monoid]]
def add_monoid_algebra := G →₀ k
end
namespace add_monoid_algebra
variables {k G}
local attribute [reducible] add_monoid_algebra
section
variables [semiring k] [add_monoid G]
/-- The product of `f g : add_monoid_algebra k G` is the finitely supported function
whose value at `a` is the sum of `f x * g y` over all pairs `x, y`
such that `x + y = a`. (Think of the product of multivariate
polynomials where `α` is the additive monoid of monomial exponents.) -/
instance : has_mul (add_monoid_algebra k G) :=
⟨λf g, f.sum $ λa₁ b₁, g.sum $ λa₂ b₂, single (a₁ + a₂) (b₁ * b₂)⟩
lemma mul_def {f g : add_monoid_algebra k G} :
f * g = (f.sum $ λa₁ b₁, g.sum $ λa₂ b₂, single (a₁ + a₂) (b₁ * b₂)) :=
rfl
lemma mul_apply (f g : add_monoid_algebra k G) (x : G) :
(f * g) x = (f.sum $ λa₁ b₁, g.sum $ λa₂ b₂, if a₁ + a₂ = x then b₁ * b₂ else 0) :=
begin
rw [mul_def],
simp only [finsupp.sum_apply, single_apply],
end
lemma support_mul (a b : add_monoid_algebra k G) :
(a * b).support ⊆ a.support.bind (λa₁, b.support.bind $ λa₂, {a₁ + a₂}) :=
subset.trans support_sum $ bind_mono $ assume a₁ _,
subset.trans support_sum $ bind_mono $ assume a₂ _, support_single_subset
/-- The unit of the multiplication is `single 1 1`, i.e. the function
that is `1` at `0` and zero elsewhere. -/
instance : has_one (add_monoid_algebra k G) :=
⟨single 0 1⟩
lemma one_def : (1 : add_monoid_algebra k G) = single 0 1 :=
rfl
-- TODO: the simplifier unfolds 0 in the instance proof!
protected lemma zero_mul (f : add_monoid_algebra k G) : 0 * f = 0 :=
by simp only [mul_def, sum_zero_index]
protected lemma mul_zero (f : add_monoid_algebra k G) : f * 0 = 0 :=
by simp only [mul_def, sum_zero_index, sum_zero]
private lemma left_distrib (a b c : add_monoid_algebra k G) : a * (b + c) = a * b + a * c :=
by simp only [mul_def, sum_add_index, mul_add, mul_zero, single_zero, single_add,
eq_self_iff_true, forall_true_iff, forall_3_true_iff, sum_add]
private lemma right_distrib (a b c : add_monoid_algebra k G) : (a + b) * c = a * c + b * c :=
by simp only [mul_def, sum_add_index, add_mul, mul_zero, zero_mul, single_zero,
single_add, eq_self_iff_true, forall_true_iff, forall_3_true_iff, sum_zero, sum_add]
instance : semiring (add_monoid_algebra k G) :=
{ one := 1,
mul := (*),
one_mul := assume f, by simp only [mul_def, one_def, sum_single_index, zero_mul,
single_zero, sum_zero, zero_add, one_mul, sum_single],
mul_one := assume f, by simp only [mul_def, one_def, sum_single_index, mul_zero,
single_zero, sum_zero, add_zero, mul_one, sum_single],
zero_mul := add_monoid_algebra.zero_mul,
mul_zero := add_monoid_algebra.mul_zero,
mul_assoc := assume f g h, by simp only [mul_def, sum_sum_index, sum_zero_index, sum_add_index,
sum_single_index, single_zero, single_add, eq_self_iff_true, forall_true_iff, forall_3_true_iff,
add_mul, mul_add, add_assoc, mul_assoc, zero_mul, mul_zero, sum_zero, sum_add],
left_distrib := left_distrib,
right_distrib := right_distrib,
.. finsupp.add_comm_monoid }
lemma single_mul_single {a₁ a₂ : G} {b₁ b₂ : k} :
(single a₁ b₁ : add_monoid_algebra k G) * single a₂ b₂ = single (a₁ + a₂) (b₁ * b₂) :=
(sum_single_index (by simp only [zero_mul, single_zero, sum_zero])).trans
(sum_single_index (by rw [mul_zero, single_zero]))
section
variables (k G)
/-- Embedding of a monoid into its monoid algebra. -/
def of : multiplicative G →* add_monoid_algebra k G :=
{ to_fun := λ a, single a 1,
map_one' := rfl,
map_mul' := λ a b, by { rw [single_mul_single, one_mul], refl } }
end
@[simp] lemma of_apply (a : G) : of k G a = single a 1 := rfl
lemma mul_single_apply_aux (f : add_monoid_algebra k G) (r : k)
(x y z : G) (H : ∀ a, a + x = z ↔ a = y) :
(f * single x r) z = f y * r :=
have A : ∀ a₁ b₁, (single x r).sum (λ a₂ b₂, ite (a₁ + a₂ = z) (b₁ * b₂) 0) =
ite (a₁ + x = z) (b₁ * r) 0,
from λ a₁ b₁, sum_single_index $ by simp,
calc (f * single x r) z = sum f (λ a b, if (a = y) then (b * r) else 0) :
-- different `decidable` instances make it not trivial
by { simp only [mul_apply, A, H], congr, funext, split_ifs; refl }
... = if y ∈ f.support then f y * r else 0 : f.support.sum_ite_eq' _ _
... = f y * r : by split_ifs with h; simp at h; simp [h]
lemma mul_single_zero_apply (f : add_monoid_algebra k G) (r : k) (x : G) :
(f * single 0 r) x = f x * r :=
f.mul_single_apply_aux r _ _ _ $ λ a, by rw [add_zero]
lemma single_mul_apply_aux (f : add_monoid_algebra k G) (r : k) (x y z : G)
(H : ∀ a, x + a = y ↔ a = z) :
(single x r * f) y = r * f z :=
have f.sum (λ a b, ite (x + a = y) (0 * b) 0) = 0, by simp,
calc (single x r * f) y = sum f (λ a b, ite (x + a = y) (r * b) 0) :
(mul_apply _ _ _).trans $ sum_single_index this
... = f.sum (λ a b, ite (a = z) (r * b) 0) :
by { simp only [H], congr, ext; split_ifs; refl }
... = if z ∈ f.support then (r * f z) else 0 : f.support.sum_ite_eq' _ _
... = _ : by split_ifs with h; simp at h; simp [h]
lemma single_zero_mul_apply (f : add_monoid_algebra k G) (r : k) (x : G) :
(single 0 r * f) x = r * f x :=
f.single_mul_apply_aux r _ _ _ $ λ a, by rw [zero_add]
end
instance [comm_semiring k] [add_comm_monoid G] : comm_semiring (add_monoid_algebra k G) :=
{ mul_comm := assume f g,
begin
simp only [mul_def, finsupp.sum, mul_comm],
rw [finset.sum_comm],
simp only [add_comm]
end,
.. add_monoid_algebra.semiring }
instance [ring k] : has_neg (add_monoid_algebra k G) :=
by apply_instance
instance [ring k] [add_monoid G] : ring (add_monoid_algebra k G) :=
{ neg := has_neg.neg,
add_left_neg := add_left_neg,
.. add_monoid_algebra.semiring }
instance [comm_ring k] [add_comm_monoid G] : comm_ring (add_monoid_algebra k G) :=
{ mul_comm := mul_comm, .. add_monoid_algebra.ring}
instance [semiring k] : has_scalar k (add_monoid_algebra k G) :=
finsupp.has_scalar
instance [semiring k] : semimodule k (add_monoid_algebra k G) :=
finsupp.semimodule G k
/--
As a preliminary to defining the `k`-algebra structure on `add_monoid_algebra k G`,
we define the underlying ring homomorphism.
In fact, we do this in more generality, providing the ring homomorphism
`k →+* add_monoid_algebra A G` given any ring homomorphism `k →+* A`.
-/
def algebra_map' {A : Type*} [semiring k] [semiring A] (f : k →+* A) [add_monoid G] :
k →+* add_monoid_algebra A G :=
{ to_fun := λ x, single 0 (f x),
map_one' := by { simp, refl },
map_mul' := λ x y, by rw [single_mul_single, zero_add, f.map_mul],
map_zero' := by rw [f.map_zero, single_zero],
map_add' := λ x y, by rw [f.map_add, single_add], }
/--
The instance `algebra k (add_monoid_algebra A G)` whenever we have `algebra k A`.
In particular this provides the instance `algebra k (add_monoid_algebra k G)`.
-/
instance {A : Type*} [comm_semiring k] [semiring A] [algebra k A] [add_monoid G] :
algebra k (add_monoid_algebra A G) :=
{ smul_def' := λ r a, by { ext x, dsimp [algebra_map'], rw single_zero_mul_apply, rw algebra.smul_def'', },
commutes' := λ r f, show single 0 (algebra_map k A r) * f = f * single 0 (algebra_map k A r),
by { ext, rw [single_zero_mul_apply, mul_single_zero_apply, algebra.commutes], },
..algebra_map' (algebra_map k A) }
@[simp] lemma coe_algebra_map [comm_semiring k] [add_monoid G] :
(algebra_map k (add_monoid_algebra k G) : k → add_monoid_algebra k G) = single 0 :=
rfl
/-- Any monoid homomorphism `multiplicative G →* R` can be lifted to an algebra homomorphism
`add_monoid_algebra k G →ₐ[k] R`. -/
def lift [comm_semiring k] [add_monoid G] {R : Type u₃} [semiring R] [algebra k R] :
(multiplicative G →* R) ≃ (add_monoid_algebra k G →ₐ[k] R) :=
{ inv_fun := λ f, ((f : add_monoid_algebra k G →+* R) : add_monoid_algebra k G →* R).comp (of k G),
to_fun := λ F, { to_fun := λ f, f.sum (λ a b, b • F a),
map_one' := by { rw [one_def, sum_single_index, one_smul], erw [F.map_one], apply zero_smul },
map_mul' :=
begin
intros f g,
rw [mul_def, finsupp.sum_mul, finsupp.sum_sum_index];
try { intros, simp only [zero_smul, add_smul], done },
refine finset.sum_congr rfl (λ a ha, _), simp only,
rw [finsupp.mul_sum, finsupp.sum_sum_index];
try { intros, simp only [zero_smul, add_smul], done },
refine finset.sum_congr rfl (λ a' ha', _), simp only,
rw [sum_single_index],
erw [F.map_mul],
rw [algebra.mul_smul_comm, algebra.smul_mul_assoc, smul_smul, mul_comm],
apply zero_smul
end,
map_zero' := sum_zero_index,
map_add' := λ f g, by rw [sum_add_index]; intros; simp only [zero_smul, add_smul],
commutes' := λ r,
begin
rw [coe_algebra_map, sum_single_index],
erw [F.map_one],
rw [algebra.smul_def, mul_one],
apply zero_smul
end, },
left_inv := λ f, begin ext x, simp [sum_single_index] end,
right_inv := λ F,
begin
ext f,
conv_rhs { rw ← f.sum_single },
simp [← F.map_smul, finsupp.sum, ← F.map_sum]
end }
-- It is hard to state the equivalent of `distrib_mul_action G (monoid_algebra k G)`
-- because we've never discussed actions of additive groups.
universe ui
variable {ι : Type ui}
lemma prod_single [comm_semiring k] [add_comm_monoid G]
{s : finset ι} {a : ι → G} {b : ι → k} :
(∏ i in s, single (a i) (b i)) = single (∑ i in s, a i) (∏ i in s, b i) :=
finset.induction_on s rfl $ λ a s has ih, by rw [prod_insert has, ih,
single_mul_single, sum_insert has, prod_insert has]
end add_monoid_algebra
|
0360a0112cc0ab3e154693898125175e664f665a
|
c777c32c8e484e195053731103c5e52af26a25d1
|
/src/geometry/manifold/complex.lean
|
5e3d546fa2a7142ef89cb01062099ece10653bb5
|
[
"Apache-2.0"
] |
permissive
|
kbuzzard/mathlib
|
2ff9e85dfe2a46f4b291927f983afec17e946eb8
|
58537299e922f9c77df76cb613910914a479c1f7
|
refs/heads/master
| 1,685,313,702,744
| 1,683,974,212,000
| 1,683,974,212,000
| 128,185,277
| 1
| 0
| null | 1,522,920,600,000
| 1,522,920,600,000
| null |
UTF-8
|
Lean
| false
| false
| 5,997
|
lean
|
/-
Copyright (c) 2022 Heather Macbeth. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Heather Macbeth
-/
import analysis.complex.abs_max
import analysis.locally_convex.with_seminorms
import geometry.manifold.mfderiv
import topology.locally_constant.basic
/-! # Holomorphic functions on complex manifolds
Thanks to the rigidity of complex-differentiability compared to real-differentiability, there are
many results about complex manifolds with no analogue for manifolds over a general normed field. For
now, this file contains just two (closely related) such results:
## Main results
* `mdifferentiable.is_locally_constant`: A complex-differentiable function on a compact complex
manifold is locally constant.
* `mdifferentiable.exists_eq_const_of_compact_space`: A complex-differentiable function on a compact
preconnected complex manifold is constant.
## TODO
There is a whole theory to develop here. Maybe a next step would be to develop a theory of
holomorphic vector/line bundles, including:
* the finite-dimensionality of the space of sections of a holomorphic vector bundle
* Siegel's theorem: for any `n + 1` formal ratios `g 0 / h 0`, `g 1 / h 1`, .... `g n / h n` of
sections of a fixed line bundle `L` over a complex `n`-manifold, there exists a polynomial
relationship `P (g 0 / h 0, g 1 / h 1, .... g n / h n) = 0`
Another direction would be to develop the relationship with sheaf theory, building the sheaves of
holomorphic and meromorphic functions on a complex manifold and proving algebraic results about the
stalks, such as the Weierstrass preparation theorem.
-/
open_locale manifold topology
open complex
namespace mdifferentiable
variables {E : Type*} [normed_add_comm_group E] [normed_space ℂ E]
variables {F : Type*} [normed_add_comm_group F] [normed_space ℂ F] [strict_convex_space ℝ F]
variables {M : Type*} [topological_space M] [compact_space M] [charted_space E M]
[smooth_manifold_with_corners 𝓘(ℂ, E) M]
/-- A holomorphic function on a compact complex manifold is locally constant. -/
protected lemma is_locally_constant {f : M → F} (hf : mdifferentiable 𝓘(ℂ, E) 𝓘(ℂ, F) f) :
is_locally_constant f :=
begin
haveI : locally_connected_space M := charted_space.locally_connected_space E M,
apply is_locally_constant.of_constant_on_preconnected_clopens,
intros s hs₂ hs₃ a ha b hb,
have hs₁ : is_compact s := hs₃.2.is_compact,
-- for an empty set this fact is trivial
rcases s.eq_empty_or_nonempty with rfl | hs',
{ exact false.rec _ ha },
-- otherwise, let `p₀` be a point where the value of `f` has maximal norm
obtain ⟨p₀, hp₀s, hp₀⟩ := hs₁.exists_forall_ge hs' hf.continuous.norm.continuous_on,
-- we will show `f` agrees everywhere with `f p₀`
suffices : s ⊆ {r : M | f r = f p₀} ∩ s,
{ exact (this hb).1.trans (this ha).1.symm }, clear ha hb a b,
refine hs₂.subset_clopen _ ⟨p₀, hp₀s, ⟨rfl, hp₀s⟩⟩,
-- closedness of the set of points sent to `f p₀`
refine ⟨_, (is_closed_singleton.preimage hf.continuous).inter hs₃.2⟩,
-- we will show this set is open by showing it is a neighbourhood of each of its members
rw is_open_iff_mem_nhds,
rintros p ⟨hp : f p = _, hps⟩, -- let `p` be in this set
have hps' : s ∈ 𝓝 p := hs₃.1.mem_nhds hps,
have key₁ : (chart_at E p).symm ⁻¹' s ∈ 𝓝 (chart_at E p p),
{ rw [← filter.mem_map, (chart_at E p).symm_map_nhds_eq (mem_chart_source E p)],
exact hps' },
have key₂ : (chart_at E p).target ∈ 𝓝 (chart_at E p p) :=
(local_homeomorph.open_target _).mem_nhds (mem_chart_target E p),
-- `f` pulled back by the chart at `p` is differentiable around `chart_at E p p`
have hf' : ∀ᶠ (z : E) in 𝓝 (chart_at E p p), differentiable_at ℂ (f ∘ (chart_at E p).symm) z,
{ refine filter.eventually_of_mem key₂ (λ z hz, _),
have H₁ : (chart_at E p).symm z ∈ (chart_at E p).source := (chart_at E p).map_target hz,
have H₂ : f ((chart_at E p).symm z) ∈ (chart_at F (0:F)).source := trivial,
have H := (mdifferentiable_at_iff_of_mem_source H₁ H₂).mp (hf ((chart_at E p).symm z)),
simp only [differentiable_within_at_univ] with mfld_simps at H,
simpa [local_homeomorph.right_inv _ hz] using H.2, },
-- `f` pulled back by the chart at `p` has a local max at `chart_at E p p`
have hf'' : is_local_max (norm ∘ f ∘ (chart_at E p).symm) (chart_at E p p),
{ refine filter.eventually_of_mem key₁ (λ z hz, _),
refine (hp₀ ((chart_at E p).symm z) hz).trans (_ : ‖f p₀‖ ≤ ‖f _‖),
rw [← hp, local_homeomorph.left_inv _ (mem_chart_source E p)] },
-- so by the maximum principle `f` is equal to `f p` near `p`
obtain ⟨U, hU, hUf⟩ := (complex.eventually_eq_of_is_local_max_norm hf' hf'').exists_mem,
have H₁ : (chart_at E p) ⁻¹' U ∈ 𝓝 p := (chart_at E p).continuous_at (mem_chart_source E p) hU,
have H₂ : (chart_at E p).source ∈ 𝓝 p :=
(local_homeomorph.open_source _).mem_nhds (mem_chart_source E p),
apply filter.mem_of_superset (filter.inter_mem hps' (filter.inter_mem H₁ H₂)),
rintros q ⟨hqs, hq : chart_at E p q ∈ _, hq'⟩,
refine ⟨_, hqs⟩,
simpa [local_homeomorph.left_inv _ hq', hp, -norm_eq_abs] using hUf (chart_at E p q) hq,
end
/-- A holomorphic function on a compact connected complex manifold is constant. -/
lemma apply_eq_of_compact_space [preconnected_space M]
{f : M → F} (hf : mdifferentiable 𝓘(ℂ, E) 𝓘(ℂ, F) f) (a b : M) :
f a = f b :=
hf.is_locally_constant.apply_eq_of_preconnected_space _ _
/-- A holomorphic function on a compact connected complex manifold is the constant function `f ≡ v`,
for some value `v`. -/
lemma exists_eq_const_of_compact_space [preconnected_space M]
{f : M → F} (hf : mdifferentiable 𝓘(ℂ, E) 𝓘(ℂ, F) f) :
∃ v : F, f = function.const M v :=
hf.is_locally_constant.exists_eq_const
end mdifferentiable
|
ddc3a961c44e42118e2b7e0733348a998ab317e0
|
fa02ed5a3c9c0adee3c26887a16855e7841c668b
|
/src/control/monad/cont.lean
|
d89c404c2ed9c9055327b43f8a400b7a617da43f
|
[
"Apache-2.0"
] |
permissive
|
jjgarzella/mathlib
|
96a345378c4e0bf26cf604aed84f90329e4896a2
|
395d8716c3ad03747059d482090e2bb97db612c8
|
refs/heads/master
| 1,686,480,124,379
| 1,625,163,323,000
| 1,625,163,323,000
| 281,190,421
| 2
| 0
|
Apache-2.0
| 1,595,268,170,000
| 1,595,268,169,000
| null |
UTF-8
|
Lean
| false
| false
| 9,372
|
lean
|
/-
Copyright (c) 2019 Simon Hudon. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon
Monad encapsulating continuation passing programming style, similar to
Haskell's `Cont`, `ContT` and `MonadCont`:
<http://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-Cont.html>
-/
import control.monad.writer
universes u v w u₀ u₁ v₀ v₁
structure monad_cont.label (α : Type w) (m : Type u → Type v) (β : Type u) :=
(apply : α → m β)
def monad_cont.goto {α β} {m : Type u → Type v} (f : monad_cont.label α m β) (x : α) := f.apply x
class monad_cont (m : Type u → Type v) :=
(call_cc : Π {α β}, ((monad_cont.label α m β) → m α) → m α)
open monad_cont
class is_lawful_monad_cont (m : Type u → Type v) [monad m] [monad_cont m]
extends is_lawful_monad m :=
(call_cc_bind_right {α ω γ} (cmd : m α) (next : (label ω m γ) → α → m ω) :
call_cc (λ f, cmd >>= next f) = cmd >>= λ x, call_cc (λ f, next f x))
(call_cc_bind_left {α} (β) (x : α) (dead : label α m β → β → m α) :
call_cc (λ f : label α m β, goto f x >>= dead f) = pure x)
(call_cc_dummy {α β} (dummy : m α) :
call_cc (λ f : label α m β, dummy) = dummy)
export is_lawful_monad_cont
def cont_t (r : Type u) (m : Type u → Type v) (α : Type w) := (α → m r) → m r
@[reducible] def cont (r : Type u) (α : Type w) := cont_t r id α
namespace cont_t
export monad_cont (label goto)
variables {r : Type u} {m : Type u → Type v} {α β γ ω : Type w}
def run : cont_t r m α → (α → m r) → m r := id
def map (f : m r → m r) (x : cont_t r m α) : cont_t r m α := f ∘ x
lemma run_cont_t_map_cont_t (f : m r → m r) (x : cont_t r m α) :
run (map f x) = f ∘ run x := rfl
def with_cont_t (f : (β → m r) → α → m r) (x : cont_t r m α) : cont_t r m β :=
λ g, x $ f g
lemma run_with_cont_t (f : (β → m r) → α → m r) (x : cont_t r m α) :
run (with_cont_t f x) = run x ∘ f := rfl
@[ext]
protected lemma ext {x y : cont_t r m α}
(h : ∀ f, x.run f = y.run f) :
x = y := by { ext; apply h }
instance : monad (cont_t r m) :=
{ pure := λ α x f, f x,
bind := λ α β x f g, x $ λ i, f i g }
instance : is_lawful_monad (cont_t r m) :=
{ id_map := by { intros, refl },
pure_bind := by { intros, ext, refl },
bind_assoc := by { intros, ext, refl } }
def monad_lift [monad m] {α} : m α → cont_t r m α :=
λ x f, x >>= f
instance [monad m] : has_monad_lift m (cont_t r m) :=
{ monad_lift := λ α, cont_t.monad_lift }
lemma monad_lift_bind [monad m] [is_lawful_monad m] {α β} (x : m α) (f : α → m β) :
(monad_lift (x >>= f) : cont_t r m β) = monad_lift x >>= monad_lift ∘ f :=
begin
ext,
simp only [monad_lift,has_monad_lift.monad_lift,(∘),(>>=),bind_assoc,id.def,run,cont_t.monad_lift]
end
instance : monad_cont (cont_t r m) :=
{ call_cc := λ α β f g, f ⟨λ x h, g x⟩ g }
instance : is_lawful_monad_cont (cont_t r m) :=
{ call_cc_bind_right := by intros; ext; refl,
call_cc_bind_left := by intros; ext; refl,
call_cc_dummy := by intros; ext; refl }
instance (ε) [monad_except ε m] : monad_except ε (cont_t r m) :=
{ throw := λ x e f, throw e,
catch := λ α act h f, catch (act f) (λ e, h e f) }
instance : monad_run (λ α, (α → m r) → ulift.{u v} (m r)) (cont_t.{u v u} r m) :=
{ run := λ α f x, ⟨ f x ⟩ }
end cont_t
variables {m : Type u → Type v} [monad m]
def except_t.mk_label {α β ε} : label (except.{u u} ε α) m β → label α (except_t ε m) β
| ⟨ f ⟩ := ⟨ λ a, monad_lift $ f (except.ok a) ⟩
lemma except_t.goto_mk_label {α β ε : Type*} (x : label (except.{u u} ε α) m β) (i : α) :
goto (except_t.mk_label x) i = ⟨ except.ok <$> goto x (except.ok i) ⟩ := by cases x; refl
def except_t.call_cc
{ε} [monad_cont m] {α β : Type*} (f : label α (except_t ε m) β → except_t ε m α) :
except_t ε m α :=
except_t.mk (call_cc $ λ x : label _ m β, except_t.run $ f (except_t.mk_label x) : m (except ε α))
instance {ε} [monad_cont m] : monad_cont (except_t ε m) :=
{ call_cc := λ α β, except_t.call_cc }
instance {ε} [monad_cont m] [is_lawful_monad_cont m] : is_lawful_monad_cont (except_t ε m) :=
{ call_cc_bind_right := by { intros, simp [call_cc,except_t.call_cc,call_cc_bind_right], ext, dsimp,
congr' with ⟨ ⟩; simp [except_t.bind_cont,@call_cc_dummy m _], },
call_cc_bind_left := by { intros,
simp [call_cc,except_t.call_cc,call_cc_bind_right,except_t.goto_mk_label,map_eq_bind_pure_comp,
bind_assoc,@call_cc_bind_left m _], ext, refl },
call_cc_dummy := by { intros, simp [call_cc,except_t.call_cc,@call_cc_dummy m _], ext, refl }, }
def option_t.mk_label {α β} : label (option.{u} α) m β → label α (option_t m) β
| ⟨ f ⟩ := ⟨ λ a, monad_lift $ f (some a) ⟩
lemma option_t.goto_mk_label {α β : Type*} (x : label (option.{u} α) m β) (i : α) :
goto (option_t.mk_label x) i = ⟨ some <$> goto x (some i) ⟩ := by cases x; refl
def option_t.call_cc [monad_cont m] {α β : Type*} (f : label α (option_t m) β → option_t m α) :
option_t m α :=
option_t.mk (call_cc $ λ x : label _ m β, option_t.run $ f (option_t.mk_label x) : m (option α))
instance [monad_cont m] : monad_cont (option_t m) :=
{ call_cc := λ α β, option_t.call_cc }
instance [monad_cont m] [is_lawful_monad_cont m] : is_lawful_monad_cont (option_t m) :=
{ call_cc_bind_right := by { intros, simp [call_cc,option_t.call_cc,call_cc_bind_right], ext, dsimp,
congr' with ⟨ ⟩; simp [option_t.bind_cont,@call_cc_dummy m _], },
call_cc_bind_left := by { intros, simp [call_cc,option_t.call_cc,call_cc_bind_right,
option_t.goto_mk_label,map_eq_bind_pure_comp,bind_assoc,@call_cc_bind_left m _], ext, refl },
call_cc_dummy := by { intros, simp [call_cc,option_t.call_cc,@call_cc_dummy m _], ext, refl }, }
def writer_t.mk_label {α β ω} [has_one ω] : label (α × ω) m β → label α (writer_t ω m) β
| ⟨ f ⟩ := ⟨ λ a, monad_lift $ f (a,1) ⟩
lemma writer_t.goto_mk_label {α β ω : Type*} [has_one ω] (x : label (α × ω) m β) (i : α) :
goto (writer_t.mk_label x) i = monad_lift (goto x (i,1)) := by cases x; refl
def writer_t.call_cc [monad_cont m] {α β ω : Type*} [has_one ω]
(f : label α (writer_t ω m) β → writer_t ω m α) : writer_t ω m α :=
⟨ call_cc (writer_t.run ∘ f ∘ writer_t.mk_label : label (α × ω) m β → m (α × ω)) ⟩
instance (ω) [monad m] [has_one ω] [monad_cont m] : monad_cont (writer_t ω m) :=
{ call_cc := λ α β, writer_t.call_cc }
def state_t.mk_label {α β σ : Type u} : label (α × σ) m (β × σ) → label α (state_t σ m) β
| ⟨ f ⟩ := ⟨ λ a, ⟨ λ s, f (a,s) ⟩ ⟩
lemma state_t.goto_mk_label {α β σ : Type u} (x : label (α × σ) m (β × σ)) (i : α) :
goto (state_t.mk_label x) i = ⟨ λ s, (goto x (i,s)) ⟩ := by cases x; refl
def state_t.call_cc {σ} [monad_cont m] {α β : Type*}
(f : label α (state_t σ m) β → state_t σ m α) : state_t σ m α :=
⟨ λ r, call_cc (λ f', (f $ state_t.mk_label f').run r) ⟩
instance {σ} [monad_cont m] : monad_cont (state_t σ m) :=
{ call_cc := λ α β, state_t.call_cc }
instance {σ} [monad_cont m] [is_lawful_monad_cont m] : is_lawful_monad_cont (state_t σ m) :=
{ call_cc_bind_right := by { intros,
simp [call_cc,state_t.call_cc,call_cc_bind_right,(>>=),state_t.bind], ext, dsimp,
congr' with ⟨x₀,x₁⟩, refl },
call_cc_bind_left := by { intros, simp [call_cc,state_t.call_cc,call_cc_bind_left,(>>=),
state_t.bind,state_t.goto_mk_label], ext, refl },
call_cc_dummy := by { intros, simp [call_cc,state_t.call_cc,call_cc_bind_right,(>>=),
state_t.bind,@call_cc_dummy m _], ext, refl }, }
def reader_t.mk_label {α β} (ρ) : label α m β → label α (reader_t ρ m) β
| ⟨ f ⟩ := ⟨ monad_lift ∘ f ⟩
lemma reader_t.goto_mk_label {α ρ β} (x : label α m β) (i : α) :
goto (reader_t.mk_label ρ x) i = monad_lift (goto x i) := by cases x; refl
def reader_t.call_cc {ε} [monad_cont m] {α β : Type*}
(f : label α (reader_t ε m) β → reader_t ε m α) : reader_t ε m α :=
⟨ λ r, call_cc (λ f', (f $ reader_t.mk_label _ f').run r) ⟩
instance {ρ} [monad_cont m] : monad_cont (reader_t ρ m) :=
{ call_cc := λ α β, reader_t.call_cc }
instance {ρ} [monad_cont m] [is_lawful_monad_cont m] : is_lawful_monad_cont (reader_t ρ m) :=
{ call_cc_bind_right :=
by { intros, simp [call_cc,reader_t.call_cc,call_cc_bind_right], ext, refl },
call_cc_bind_left := by { intros, simp [call_cc,reader_t.call_cc,call_cc_bind_left,
reader_t.goto_mk_label], ext, refl },
call_cc_dummy := by { intros, simp [call_cc,reader_t.call_cc,@call_cc_dummy m _], ext, refl } }
/-- reduce the equivalence between two continuation passing monads to the equivalence between
their underlying monad -/
def cont_t.equiv {m₁ : Type u₀ → Type v₀} {m₂ : Type u₁ → Type v₁}
{α₁ r₁ : Type u₀} {α₂ r₂ : Type u₁} (F : m₁ r₁ ≃ m₂ r₂) (G : α₁ ≃ α₂) :
cont_t r₁ m₁ α₁ ≃ cont_t r₂ m₂ α₂ :=
{ to_fun := λ f r, F $ f $ λ x, F.symm $ r $ G x,
inv_fun := λ f r, F.symm $ f $ λ x, F $ r $ G.symm x,
left_inv := λ f, by funext r; simp,
right_inv := λ f, by funext r; simp }
|
ccd976f42e5f544f262857b1c068c269a0c1c9b9
|
a45212b1526d532e6e83c44ddca6a05795113ddc
|
/src/data/set/finite.lean
|
ef1a5cb398730332422a64818cc8b5cf4cc979a6
|
[
"Apache-2.0"
] |
permissive
|
fpvandoorn/mathlib
|
b21ab4068db079cbb8590b58fda9cc4bc1f35df4
|
b3433a51ea8bc07c4159c1073838fc0ee9b8f227
|
refs/heads/master
| 1,624,791,089,608
| 1,556,715,231,000
| 1,556,715,231,000
| 165,722,980
| 5
| 0
|
Apache-2.0
| 1,552,657,455,000
| 1,547,494,646,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 18,559
|
lean
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
Finite sets.
-/
import logic.function
import data.nat.basic data.fintype data.set.lattice data.set.function
open set lattice function
universes u v w
variables {α : Type u} {β : Type v} {ι : Sort w}
namespace set
/-- A set is finite if the subtype is a fintype, i.e. there is a
list that enumerates its members. -/
def finite (s : set α) : Prop := nonempty (fintype s)
/-- A set is infinite if it is not finite. -/
def infinite (s : set α) : Prop := ¬ finite s
/-- Construct a fintype from a finset with the same elements. -/
def fintype_of_finset {p : set α} (s : finset α) (H : ∀ x, x ∈ s ↔ x ∈ p) : fintype p :=
fintype.subtype s H
@[simp] theorem card_fintype_of_finset {p : set α} (s : finset α) (H : ∀ x, x ∈ s ↔ x ∈ p) :
@fintype.card p (fintype_of_finset s H) = s.card :=
fintype.subtype_card s H
theorem card_fintype_of_finset' {p : set α} (s : finset α)
(H : ∀ x, x ∈ s ↔ x ∈ p) [fintype p] : fintype.card p = s.card :=
by rw ← card_fintype_of_finset s H; congr
/-- Construct a finset enumerating a set `s`, given a `fintype` instance. -/
def to_finset (s : set α) [fintype s] : finset α :=
⟨(@finset.univ s _).1.map subtype.val,
multiset.nodup_map (λ a b, subtype.eq) finset.univ.2⟩
@[simp] theorem mem_to_finset {s : set α} [fintype s] {a : α} : a ∈ s.to_finset ↔ a ∈ s :=
by simp [to_finset]
@[simp] theorem mem_to_finset_val {s : set α} [fintype s] {a : α} : a ∈ s.to_finset.1 ↔ a ∈ s :=
mem_to_finset
noncomputable instance finite.fintype {s : set α} (h : finite s) : fintype s :=
classical.choice h
/-- Get a finset from a finite set -/
noncomputable def finite.to_finset {s : set α} (h : finite s) : finset α :=
@set.to_finset _ _ (finite.fintype h)
@[simp] theorem finite.mem_to_finset {s : set α} {h : finite s} {a : α} : a ∈ h.to_finset ↔ a ∈ s :=
@mem_to_finset _ _ (finite.fintype h) _
lemma finite.coe_to_finset {α} {s : set α} (h : finite s) : ↑h.to_finset = s :=
by { ext, apply mem_to_finset }
lemma exists_finset_of_finite {s : set α} (h : finite s) : ∃(s' : finset α), ↑s' = s :=
⟨h.to_finset, h.coe_to_finset⟩
theorem finite.exists_finset {s : set α} : finite s →
∃ s' : finset α, ∀ a : α, a ∈ s' ↔ a ∈ s
| ⟨h⟩ := by exactI ⟨to_finset s, λ _, mem_to_finset⟩
theorem finite.exists_finset_coe {s : set α} (hs : finite s) :
∃ s' : finset α, ↑s' = s :=
let ⟨s', h⟩ := hs.exists_finset in ⟨s', set.ext h⟩
theorem finite_mem_finset (s : finset α) : finite {a | a ∈ s} :=
⟨fintype_of_finset s (λ _, iff.rfl)⟩
theorem finite.of_fintype [fintype α] (s : set α) : finite s :=
by classical; exact ⟨set_fintype s⟩
instance decidable_mem_of_fintype [decidable_eq α] (s : set α) [fintype s] (a) : decidable (a ∈ s) :=
decidable_of_iff _ mem_to_finset
instance fintype_empty : fintype (∅ : set α) :=
fintype_of_finset ∅ $ by simp
theorem empty_card : fintype.card (∅ : set α) = 0 := rfl
@[simp] theorem empty_card' {h : fintype.{u} (∅ : set α)} :
@fintype.card (∅ : set α) h = 0 :=
eq.trans (by congr) empty_card
@[simp] theorem finite_empty : @finite α ∅ := ⟨set.fintype_empty⟩
def fintype_insert' {a : α} (s : set α) [fintype s] (h : a ∉ s) : fintype (insert a s : set α) :=
fintype_of_finset ⟨a :: s.to_finset.1,
multiset.nodup_cons_of_nodup (by simp [h]) s.to_finset.2⟩ $ by simp
theorem card_fintype_insert' {a : α} (s : set α) [fintype s] (h : a ∉ s) :
@fintype.card _ (fintype_insert' s h) = fintype.card s + 1 :=
by rw [fintype_insert', card_fintype_of_finset];
simp [finset.card, to_finset]; refl
@[simp] theorem card_insert {a : α} (s : set α)
[fintype s] (h : a ∉ s) {d : fintype.{u} (insert a s : set α)} :
@fintype.card _ d = fintype.card s + 1 :=
by rw ← card_fintype_insert' s h; congr
lemma card_image_of_inj_on {s : set α} [fintype s]
{f : α → β} [fintype (f '' s)] (H : ∀x∈s, ∀y∈s, f x = f y → x = y) :
fintype.card (f '' s) = fintype.card s :=
by haveI := classical.prop_decidable; exact
calc fintype.card (f '' s) = (s.to_finset.image f).card : card_fintype_of_finset' _ (by simp)
... = s.to_finset.card : finset.card_image_of_inj_on
(λ x hx y hy hxy, H x (mem_to_finset.1 hx) y (mem_to_finset.1 hy) hxy)
... = fintype.card s : (card_fintype_of_finset' _ (λ a, mem_to_finset)).symm
lemma card_image_of_injective (s : set α) [fintype s]
{f : α → β} [fintype (f '' s)] (H : function.injective f) :
fintype.card (f '' s) = fintype.card s :=
card_image_of_inj_on $ λ _ _ _ _ h, H h
instance fintype_insert [decidable_eq α] (a : α) (s : set α) [fintype s] : fintype (insert a s : set α) :=
if h : a ∈ s then by rwa [insert_eq, union_eq_self_of_subset_left (singleton_subset_iff.2 h)]
else fintype_insert' _ h
@[simp] theorem finite_insert (a : α) {s : set α} : finite s → finite (insert a s)
| ⟨h⟩ := ⟨@set.fintype_insert _ (classical.dec_eq α) _ _ h⟩
lemma to_finset_insert [decidable_eq α] {a : α} {s : set α} (hs : finite s) :
(finite_insert a hs).to_finset = insert a hs.to_finset :=
finset.ext.mpr $ by simp
@[elab_as_eliminator]
theorem finite.induction_on {C : set α → Prop} {s : set α} (h : finite s)
(H0 : C ∅) (H1 : ∀ {a s}, a ∉ s → finite s → C s → C (insert a s)) : C s :=
let ⟨t⟩ := h in by exactI
match s.to_finset, @mem_to_finset _ s _ with
| ⟨l, nd⟩, al := begin
change ∀ a, a ∈ l ↔ a ∈ s at al,
clear _let_match _match t h, revert s nd al,
refine multiset.induction_on l _ (λ a l IH, _); intros s nd al,
{ rw show s = ∅, from eq_empty_iff_forall_not_mem.2 (by simpa using al),
exact H0 },
{ rw ← show insert a {x | x ∈ l} = s, from set.ext (by simpa using al),
cases multiset.nodup_cons.1 nd with m nd',
refine H1 _ ⟨finset.subtype.fintype ⟨l, nd'⟩⟩ (IH nd' (λ _, iff.rfl)),
exact m }
end
end
@[elab_as_eliminator]
theorem finite.dinduction_on {C : ∀s:set α, finite s → Prop} {s : set α} (h : finite s)
(H0 : C ∅ finite_empty)
(H1 : ∀ {a s}, a ∉ s → ∀h:finite s, C s h → C (insert a s) (finite_insert a h)) :
C s h :=
have ∀h:finite s, C s h,
from finite.induction_on h (assume h, H0) (assume a s has hs ih h, H1 has hs (ih _)),
this h
instance fintype_singleton (a : α) : fintype ({a} : set α) :=
fintype_insert' _ (not_mem_empty _)
@[simp] theorem card_singleton (a : α) :
fintype.card ({a} : set α) = 1 :=
by rw [show fintype.card ({a} : set α) = _, from
card_fintype_insert' ∅ (not_mem_empty a)]; refl
@[simp] theorem finite_singleton (a : α) : finite ({a} : set α) :=
⟨set.fintype_singleton _⟩
instance fintype_pure : ∀ a : α, fintype (pure a : set α) :=
set.fintype_singleton
theorem finite_pure (a : α) : finite (pure a : set α) :=
⟨set.fintype_pure a⟩
instance fintype_univ [fintype α] : fintype (@univ α) :=
fintype_of_finset finset.univ $ λ _, iff_true_intro (finset.mem_univ _)
theorem finite_univ [fintype α] : finite (@univ α) := ⟨set.fintype_univ⟩
instance fintype_union [decidable_eq α] (s t : set α) [fintype s] [fintype t] : fintype (s ∪ t : set α) :=
fintype_of_finset (s.to_finset ∪ t.to_finset) $ by simp
theorem finite_union {s t : set α} : finite s → finite t → finite (s ∪ t)
| ⟨hs⟩ ⟨ht⟩ := ⟨@set.fintype_union _ (classical.dec_eq α) _ _ hs ht⟩
instance fintype_sep (s : set α) (p : α → Prop) [fintype s] [decidable_pred p] : fintype ({a ∈ s | p a} : set α) :=
fintype_of_finset (s.to_finset.filter p) $ by simp
instance fintype_inter (s t : set α) [fintype s] [decidable_pred t] : fintype (s ∩ t : set α) :=
set.fintype_sep s t
def fintype_subset (s : set α) {t : set α} [fintype s] [decidable_pred t] (h : t ⊆ s) : fintype t :=
by rw ← inter_eq_self_of_subset_right h; apply_instance
theorem finite_subset {s : set α} : finite s → ∀ {t : set α}, t ⊆ s → finite t
| ⟨hs⟩ t h := ⟨@set.fintype_subset _ _ _ hs (classical.dec_pred t) h⟩
instance fintype_image [decidable_eq β] (s : set α) (f : α → β) [fintype s] : fintype (f '' s) :=
fintype_of_finset (s.to_finset.image f) $ by simp
instance fintype_range [decidable_eq β] (f : α → β) [fintype α] : fintype (range f) :=
fintype_of_finset (finset.univ.image f) $ by simp [range]
theorem finite_range (f : α → β) [fintype α] : finite (range f) :=
by haveI := classical.dec_eq β; exact ⟨by apply_instance⟩
theorem finite_image {s : set α} (f : α → β) : finite s → finite (f '' s)
| ⟨h⟩ := ⟨@set.fintype_image _ _ (classical.dec_eq β) _ _ h⟩
instance fintype_map {α β} [decidable_eq β] :
∀ (s : set α) (f : α → β) [fintype s], fintype (f <$> s) := set.fintype_image
theorem finite_map {α β} {s : set α} :
∀ (f : α → β), finite s → finite (f <$> s) := finite_image
def fintype_of_fintype_image [decidable_eq β] (s : set α)
{f : α → β} {g} (I : is_partial_inv f g) [fintype (f '' s)] : fintype s :=
fintype_of_finset ⟨_, @multiset.nodup_filter_map β α g _
(@injective_of_partial_inv_right _ _ f g I) (f '' s).to_finset.2⟩ $ λ a,
begin
suffices : (∃ b x, f x = b ∧ g b = some a ∧ x ∈ s) ↔ a ∈ s,
by simpa [exists_and_distrib_left.symm, and.comm, and.left_comm, and.assoc],
rw exists_swap,
suffices : (∃ x, x ∈ s ∧ g (f x) = some a) ↔ a ∈ s, {simpa [and.comm, and.left_comm, and.assoc]},
simp [I _, (injective_of_partial_inv I).eq_iff]
end
theorem finite_of_finite_image_on {s : set α} {f : α → β} (hi : set.inj_on f s) :
finite (f '' s) → finite s | ⟨h⟩ :=
⟨@fintype.of_injective _ _ h (λa:s, ⟨f a.1, mem_image_of_mem f a.2⟩) $
assume a b eq, subtype.eq $ hi a.2 b.2 $ subtype.ext.1 eq⟩
theorem finite_image_iff_on {s : set α} {f : α → β} (hi : inj_on f s) :
finite (f '' s) ↔ finite s :=
⟨finite_of_finite_image_on hi, finite_image _⟩
theorem finite_of_finite_image {s : set α} {f : α → β} (I : injective f) :
finite (f '' s) → finite s :=
finite_of_finite_image_on (assume _ _ _ _ eq, I eq)
theorem finite_preimage {s : set β} {f : α → β}
(I : injective f) (h : finite s) : finite (f ⁻¹' s) :=
finite_of_finite_image I (finite_subset h (image_preimage_subset f s))
instance fintype_Union [decidable_eq α] {ι : Type*} [fintype ι]
(f : ι → set α) [∀ i, fintype (f i)] : fintype (⋃ i, f i) :=
fintype_of_finset (finset.univ.bind (λ i, (f i).to_finset)) $ by simp
theorem finite_Union {ι : Type*} [fintype ι] {f : ι → set α} (H : ∀i, finite (f i)) : finite (⋃ i, f i) :=
⟨@set.fintype_Union _ (classical.dec_eq α) _ _ _ (λ i, finite.fintype (H i))⟩
def fintype_bUnion [decidable_eq α] {ι : Type*} {s : set ι} [fintype s]
(f : ι → set α) (H : ∀ i ∈ s, fintype (f i)) : fintype (⋃ i ∈ s, f i) :=
by rw bUnion_eq_Union; exact
@set.fintype_Union _ _ _ _ _ (by rintro ⟨i, hi⟩; exact H i hi)
instance fintype_bUnion' [decidable_eq α] {ι : Type*} {s : set ι} [fintype s]
(f : ι → set α) [H : ∀ i, fintype (f i)] : fintype (⋃ i ∈ s, f i) :=
fintype_bUnion _ (λ i _, H i)
theorem finite_sUnion {s : set (set α)} (h : finite s) (H : ∀t∈s, finite t) : finite (⋃₀ s) :=
by rw sUnion_eq_Union; haveI := finite.fintype h;
apply finite_Union; simpa using H
theorem finite_bUnion {α} {ι : Type*} {s : set ι} {f : ι → set α} :
finite s → (∀i, finite (f i)) → finite (⋃ i∈s, f i)
| ⟨hs⟩ h := by rw [bUnion_eq_Union]; exactI finite_Union (λ i, h _)
theorem finite_bUnion' {α} {ι : Type*} {s : set ι} (f : ι → set α) :
finite s → (∀i ∈ s, finite (f i)) → finite (⋃ i∈s, f i)
| ⟨hs⟩ h := by { rw [bUnion_eq_Union], exactI finite_Union (λ i, h i.1 i.2) }
instance fintype_lt_nat (n : ℕ) : fintype {i | i < n} :=
fintype_of_finset (finset.range n) $ by simp
instance fintype_le_nat (n : ℕ) : fintype {i | i ≤ n} :=
by simpa [nat.lt_succ_iff] using set.fintype_lt_nat (n+1)
lemma finite_le_nat (n : ℕ) : finite {i | i ≤ n} := ⟨set.fintype_le_nat _⟩
lemma finite_lt_nat (n : ℕ) : finite {i | i < n} := ⟨set.fintype_lt_nat _⟩
instance fintype_prod (s : set α) (t : set β) [fintype s] [fintype t] : fintype (set.prod s t) :=
fintype_of_finset (s.to_finset.product t.to_finset) $ by simp
lemma finite_prod {s : set α} {t : set β} : finite s → finite t → finite (set.prod s t)
| ⟨hs⟩ ⟨ht⟩ := by exactI ⟨set.fintype_prod s t⟩
def fintype_bind {α β} [decidable_eq β] (s : set α) [fintype s]
(f : α → set β) (H : ∀ a ∈ s, fintype (f a)) : fintype (s >>= f) :=
set.fintype_bUnion _ H
instance fintype_bind' {α β} [decidable_eq β] (s : set α) [fintype s]
(f : α → set β) [H : ∀ a, fintype (f a)] : fintype (s >>= f) :=
fintype_bind _ _ (λ i _, H i)
theorem finite_bind {α β} {s : set α} {f : α → set β} :
finite s → (∀ a ∈ s, finite (f a)) → finite (s >>= f)
| ⟨hs⟩ H := ⟨@fintype_bind _ _ (classical.dec_eq β) _ hs _ (λ a ha, (H a ha).fintype)⟩
def fintype_seq {α β : Type u} [decidable_eq β]
(f : set (α → β)) (s : set α) [fintype f] [fintype s] :
fintype (f <*> s) :=
by rw seq_eq_bind_map; apply set.fintype_bind'
theorem finite_seq {α β : Type u} {f : set (α → β)} {s : set α} :
finite f → finite s → finite (f <*> s)
| ⟨hf⟩ ⟨hs⟩ := by haveI := classical.dec_eq β; exactI ⟨fintype_seq _ _⟩
/-- There are finitely many subsets of a given finite set -/
lemma finite_subsets_of_finite {α : Type u} {a : set α} (h : finite a) : finite {b | b ⊆ a} :=
begin
-- we just need to translate the result, already known for finsets,
-- to the language of finite sets
let s := coe '' ((finset.powerset (finite.to_finset h)).to_set),
have : finite s := finite_image _ (finite_mem_finset _),
have : {b | b ⊆ a} ⊆ s :=
begin
assume b hb,
rw [set.mem_image],
rw [set.mem_set_of_eq] at hb,
let b' : finset α := finite.to_finset (finite_subset h hb),
have : b' ∈ (finset.powerset (finite.to_finset h)).to_set :=
show b' ∈ (finset.powerset (finite.to_finset h)),
by simp [b', finset.subset_iff]; exact hb,
have : coe b' = b := by ext; simp,
exact ⟨b', by assumption, by assumption⟩
end,
exact finite_subset ‹finite s› this
end
end set
namespace finset
variables [decidable_eq β]
variables {s t u : finset α} {f : α → β} {a : α}
lemma finite_to_set (s : finset α) : set.finite (↑s : set α) :=
set.finite_mem_finset s
@[simp] lemma coe_bind {f : α → finset β} : ↑(s.bind f) = (⋃x ∈ (↑s : set α), ↑(f x) : set β) :=
by simp [set.ext_iff]
@[simp] lemma coe_to_finset {s : set α} {hs : set.finite s} : ↑(hs.to_finset) = s :=
by simp [set.ext_iff]
@[simp] lemma coe_to_finset' [decidable_eq α] (s : set α) [fintype s] : (↑s.to_finset : set α) = s :=
by ext; simp
end finset
namespace set
lemma finite_subset_Union {s : set α} (hs : finite s)
{ι} {t : ι → set α} (h : s ⊆ ⋃ i, t i) : ∃ I : set ι, finite I ∧ s ⊆ ⋃ i ∈ I, t i :=
begin
unfreezeI, cases hs,
choose f hf using show ∀ x : s, ∃ i, x.1 ∈ t i, {simpa [subset_def] using h},
refine ⟨range f, finite_range f, _⟩,
rintro x hx,
simp,
exact ⟨_, ⟨_, hx, rfl⟩, hf ⟨x, hx⟩⟩
end
lemma infinite_univ_nat : infinite (univ : set ℕ) :=
assume (h : finite (univ : set ℕ)),
let ⟨n, hn⟩ := finset.exists_nat_subset_range h.to_finset in
have n ∈ finset.range n, from finset.subset_iff.mpr hn $ by simp,
by simp * at *
lemma not_injective_nat_fintype [fintype α] [decidable_eq α] {f : ℕ → α} : ¬ injective f :=
assume (h : injective f),
have finite (f '' univ),
from finite_subset (finset.finite_to_set $ fintype.elems α) (assume a h, fintype.complete a),
have finite (univ : set ℕ), from finite_of_finite_image h this,
infinite_univ_nat this
lemma not_injective_int_fintype [fintype α] [decidable_eq α] {f : ℤ → α} : ¬ injective f :=
assume hf,
have injective (f ∘ (coe : ℕ → ℤ)), from injective_comp hf $ assume i j, int.of_nat_inj,
not_injective_nat_fintype this
lemma card_lt_card {s t : set α} [fintype s] [fintype t] (h : s ⊂ t) :
fintype.card s < fintype.card t :=
begin
haveI := classical.prop_decidable,
rw [← finset.coe_to_finset' s, ← finset.coe_to_finset' t, finset.coe_ssubset] at h,
rw [card_fintype_of_finset' _ (λ x, mem_to_finset),
card_fintype_of_finset' _ (λ x, mem_to_finset)],
exact finset.card_lt_card h,
end
lemma card_le_of_subset {s t : set α} [fintype s] [fintype t] (hsub : s ⊆ t) :
fintype.card s ≤ fintype.card t :=
calc fintype.card s = s.to_finset.card : set.card_fintype_of_finset' _ (by simp)
... ≤ t.to_finset.card : finset.card_le_of_subset (λ x hx, by simp [set.subset_def, *] at *)
... = fintype.card t : eq.symm (set.card_fintype_of_finset' _ (by simp))
lemma eq_of_subset_of_card_le {s t : set α} [fintype s] [fintype t]
(hsub : s ⊆ t) (hcard : fintype.card t ≤ fintype.card s) : s = t :=
classical.by_contradiction (λ h, lt_irrefl (fintype.card t)
(have fintype.card s < fintype.card t := set.card_lt_card ⟨hsub, h⟩,
by rwa [le_antisymm (card_le_of_subset hsub) hcard] at this))
lemma card_range_of_injective [fintype α] {f : α → β} (hf : injective f)
[fintype (range f)] : fintype.card (range f) = fintype.card α :=
eq.symm $ fintype.card_congr (@equiv.of_bijective _ _ (λ a : α, show range f, from ⟨f a, a, rfl⟩)
⟨λ x y h, hf $ subtype.mk.inj h, λ b, let ⟨a, ha⟩ := b.2 in ⟨a, by simp *⟩⟩)
lemma finite.exists_maximal_wrt [partial_order β]
(f : α → β) (s : set α) (h : set.finite s) : s ≠ ∅ → ∃a∈s, ∀a'∈s, f a ≤ f a' → f a = f a' :=
begin
classical,
refine h.induction_on _ _,
{ assume h, contradiction },
assume a s his _ ih _,
by_cases s = ∅,
{ use a, simp [h] },
rcases ih h with ⟨b, hb, ih⟩,
by_cases f b ≤ f a,
{ refine ⟨a, set.mem_insert _ _, assume c hc hac, le_antisymm hac _⟩,
rcases set.mem_insert_iff.1 hc with rfl | hcs,
{ refl },
{ rwa [← ih c hcs (le_trans h hac)] } },
{ refine ⟨b, set.mem_insert_of_mem _ hb, assume c hc hbc, _⟩,
rcases set.mem_insert_iff.1 hc with rfl | hcs,
{ exact (h hbc).elim },
{ exact ih c hcs hbc } }
end
end set
|
1cd86ce438fe4ff71cfb774a0a222b24e08c4c43
|
6dc0c8ce7a76229dd81e73ed4474f15f88a9e294
|
/src/Lean/PrettyPrinter/Formatter.lean
|
31ae88dea06e53cb3133725751b7bf94288c8f04
|
[
"Apache-2.0"
] |
permissive
|
williamdemeo/lean4
|
72161c58fe65c3ad955d6a3050bb7d37c04c0d54
|
6d00fcf1d6d873e195f9220c668ef9c58e9c4a35
|
refs/heads/master
| 1,678,305,356,877
| 1,614,708,995,000
| 1,614,708,995,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 21,191
|
lean
|
/-
Copyright (c) 2020 Sebastian Ullrich. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sebastian Ullrich
-/
/-!
The formatter turns a `Syntax` tree into a `Format` object, inserting both mandatory whitespace (to separate adjacent
tokens) as well as "pretty" optional whitespace.
The basic approach works much like the parenthesizer: A right-to-left traversal over the syntax tree, driven by
parser-specific handlers registered via attributes. The traversal is right-to-left so that when emitting a token, we
already know the text following it and can decide whether or not whitespace between the two is necessary.
-/
import Lean.CoreM
import Lean.Parser.Extension
import Lean.KeyedDeclsAttribute
import Lean.ParserCompiler.Attribute
import Lean.PrettyPrinter.Basic
namespace Lean
namespace PrettyPrinter
namespace Formatter
structure Context where
options : Options
table : Parser.TokenTable
structure State where
stxTrav : Syntax.Traverser
-- Textual content of `stack` up to the first whitespace (not enclosed in an escaped ident). We assume that the textual
-- content of `stack` is modified only by `pushText` and `pushLine`, so `leadWord` is adjusted there accordingly.
leadWord : String := ""
-- Stack of generated Format objects, analogous to the Syntax stack in the parser.
-- Note, however, that the stack is reversed because of the right-to-left traversal.
stack : Array Format := #[]
end Formatter
abbrev FormatterM := ReaderT Formatter.Context $ StateRefT Formatter.State CoreM
@[inline] def FormatterM.orelse {α} (p₁ p₂ : FormatterM α) : FormatterM α := do
let s ← get
catchInternalId backtrackExceptionId
p₁
(fun _ => do set s; p₂)
instance {α} : OrElse (FormatterM α) := ⟨FormatterM.orelse⟩
abbrev Formatter := FormatterM Unit
unsafe def mkFormatterAttribute : IO (KeyedDeclsAttribute Formatter) :=
KeyedDeclsAttribute.init {
builtinName := `builtinFormatter,
name := `formatter,
descr := "Register a formatter for a parser.
[formatter k] registers a declaration of type `Lean.PrettyPrinter.Formatter` for the `SyntaxNodeKind` `k`.",
valueTypeName := `Lean.PrettyPrinter.Formatter,
evalKey := fun builtin stx => do
let env ← getEnv
let id ← Attribute.Builtin.getId stx
-- `isValidSyntaxNodeKind` is updated only in the next stage for new `[builtin*Parser]`s, but we try to
-- synthesize a formatter for it immediately, so we just check for a declaration in this case
if (builtin && (env.find? id).isSome) || Parser.isValidSyntaxNodeKind env id then pure id
else throwError! "invalid [formatter] argument, unknown syntax kind '{id}'"
} `Lean.PrettyPrinter.formatterAttribute
@[builtinInit mkFormatterAttribute] constant formatterAttribute : KeyedDeclsAttribute Formatter
unsafe def mkCombinatorFormatterAttribute : IO ParserCompiler.CombinatorAttribute :=
ParserCompiler.registerCombinatorAttribute
`combinatorFormatter
"Register a formatter for a parser combinator.
[combinatorFormatter c] registers a declaration of type `Lean.PrettyPrinter.Formatter` for the `Parser` declaration `c`.
Note that, unlike with [formatter], this is not a node kind since combinators usually do not introduce their own node kinds.
The tagged declaration may optionally accept parameters corresponding to (a prefix of) those of `c`, where `Parser` is replaced
with `Formatter` in the parameter types."
@[builtinInit mkCombinatorFormatterAttribute] constant combinatorFormatterAttribute : ParserCompiler.CombinatorAttribute
namespace Formatter
open Lean.Core
open Lean.Parser
def throwBacktrack {α} : FormatterM α :=
throw $ Exception.internal backtrackExceptionId
instance : Syntax.MonadTraverser FormatterM := ⟨{
get := State.stxTrav <$> get,
set := fun t => modify (fun st => { st with stxTrav := t }),
modifyGet := fun f => modifyGet (fun st => let (a, t) := f st.stxTrav; (a, { st with stxTrav := t }))
}⟩
open Syntax.MonadTraverser
def getStack : FormatterM (Array Format) := do
let st ← get
pure st.stack
def getStackSize : FormatterM Nat := do
let stack ← getStack;
pure stack.size
def setStack (stack : Array Format) : FormatterM Unit :=
modify fun st => { st with stack := stack }
def push (f : Format) : FormatterM Unit :=
modify fun st => { st with stack := st.stack.push f }
def pushLine : FormatterM Unit := do
push Format.line;
modify fun st => { st with leadWord := "" }
/-- Execute `x` at the right-most child of the current node, if any, then advance to the left. -/
def visitArgs (x : FormatterM Unit) : FormatterM Unit := do
let stx ← getCur
if stx.getArgs.size > 0 then
goDown (stx.getArgs.size - 1) *> x <* goUp
goLeft
/-- Execute `x`, pass array of generated Format objects to `fn`, and push result. -/
def fold (fn : Array Format → Format) (x : FormatterM Unit) : FormatterM Unit := do
let sp ← getStackSize
x
let stack ← getStack
let f := fn $ stack.extract sp stack.size
setStack $ (stack.shrink sp).push f
/-- Execute `x` and concatenate generated Format objects. -/
def concat (x : FormatterM Unit) : FormatterM Unit := do
fold (Array.foldl (fun acc f => if acc.isNil then f else f ++ acc) Format.nil) x
def indent (x : Formatter) (indent : Option Int := none) : Formatter := do
concat x
let ctx ← read
let indent := indent.getD $ Std.Format.getIndent ctx.options
modify fun st => { st with stack := st.stack.pop.push (Format.nest indent st.stack.back) }
def group (x : Formatter) : Formatter := do
concat x
modify fun st => { st with stack := st.stack.pop.push (Format.fill st.stack.back) }
@[combinatorFormatter Lean.Parser.orelse] def orelse.formatter (p1 p2 : Formatter) : Formatter :=
-- HACK: We have no (immediate) information on which side of the orelse could have produced the current node, so try
-- them in turn. Uses the syntax traverser non-linearly!
p1 <|> p2
-- `mkAntiquot` is quite complex, so we'd rather have its formatter synthesized below the actual parser definition.
-- Note that there is a mutual recursion
-- `categoryParser -> mkAntiquot -> termParser -> categoryParser`, so we need to introduce an indirection somewhere
-- anyway.
@[extern "lean_mk_antiquot_formatter"]
constant mkAntiquot.formatter' (name : String) (kind : Option SyntaxNodeKind) (anonymous := true) : Formatter
-- break up big mutual recursion
@[extern "lean_pretty_printer_formatter_interpret_parser_descr"]
constant interpretParserDescr' : ParserDescr → CoreM Formatter
unsafe def formatterForKindUnsafe (k : SyntaxNodeKind) : Formatter := do
(← liftM $ runForNodeKind formatterAttribute k interpretParserDescr')
@[implementedBy formatterForKindUnsafe]
constant formatterForKind (k : SyntaxNodeKind) : Formatter
@[combinatorFormatter Lean.Parser.withAntiquot]
def withAntiquot.formatter (antiP p : Formatter) : Formatter :=
-- TODO: could be optimized using `isAntiquot` (which would have to be moved), but I'd rather
-- fix the backtracking hack outright.
orelse.formatter antiP p
@[combinatorFormatter Lean.Parser.withAntiquotSuffixSplice]
def withAntiquotSuffixSplice.formatter (k : SyntaxNodeKind) (p suffix : Formatter) : Formatter := do
if (← getCur).isAntiquotSuffixSplice then
visitArgs <| suffix *> p
else
p
@[combinatorFormatter Lean.Parser.tokenWithAntiquot]
def tokenWithAntiquot.formatter (p : Formatter) : Formatter := do
if (← getCur).isTokenAntiquot then
visitArgs p
else
p
@[combinatorFormatter Lean.Parser.categoryParser]
def categoryParser.formatter (cat : Name) : Formatter := group $ indent do
let stx ← getCur
trace[PrettyPrinter.format]! "formatting {indentD (fmt stx)}"
if stx.getKind == `choice then
visitArgs do
-- format only last choice
-- TODO: We could use elaborator data here to format the chosen child when available
formatterForKind (← getCur).getKind
else
withAntiquot.formatter (mkAntiquot.formatter' cat.toString none) (formatterForKind stx.getKind)
@[combinatorFormatter Lean.Parser.categoryParserOfStack]
def categoryParserOfStack.formatter (offset : Nat) : Formatter := do
let st ← get
let stx := st.stxTrav.parents.back.getArg (st.stxTrav.idxs.back - offset)
categoryParser.formatter stx.getId
@[combinatorFormatter Lean.Parser.parserOfStack]
def parserOfStack.formatter (offset : Nat) (prec : Nat := 0) : Formatter := do
let st ← get
let stx := st.stxTrav.parents.back.getArg (st.stxTrav.idxs.back - offset)
formatterForKind stx.getKind
@[combinatorFormatter Lean.Parser.error]
def error.formatter (msg : String) : Formatter := pure ()
@[combinatorFormatter Lean.Parser.errorAtSavedPos]
def errorAtSavedPos.formatter (msg : String) (delta : Bool) : Formatter := pure ()
@[combinatorFormatter Lean.Parser.atomic]
def atomic.formatter (p : Formatter) : Formatter := p
@[combinatorFormatter Lean.Parser.lookahead]
def lookahead.formatter (p : Formatter) : Formatter := pure ()
@[combinatorFormatter Lean.Parser.notFollowedBy]
def notFollowedBy.formatter (p : Formatter) : Formatter := pure ()
@[combinatorFormatter Lean.Parser.andthen]
def andthen.formatter (p1 p2 : Formatter) : Formatter := p2 *> p1
def checkKind (k : SyntaxNodeKind) : FormatterM Unit := do
let stx ← getCur
if k != stx.getKind then
trace[PrettyPrinter.format.backtrack]! "unexpected node kind '{stx.getKind}', expected '{k}'"
throwBacktrack
@[combinatorFormatter Lean.Parser.node]
def node.formatter (k : SyntaxNodeKind) (p : Formatter) : Formatter := do
checkKind k;
visitArgs p
@[combinatorFormatter Lean.Parser.trailingNode]
def trailingNode.formatter (k : SyntaxNodeKind) (_ : Nat) (p : Formatter) : Formatter := do
checkKind k
visitArgs do
p;
-- leading term, not actually produced by `p`
categoryParser.formatter `foo
def parseToken (s : String) : FormatterM ParserState := do
Parser.tokenFn {
input := s,
fileName := "",
fileMap := FileMap.ofString "",
prec := 0,
env := ← getEnv,
options := ← getOptions,
tokens := (← read).table } (Parser.mkParserState s)
def pushTokenCore (tk : String) : FormatterM Unit := do
if tk.toSubstring.dropRightWhile (fun s => s == ' ') == tk.toSubstring then
push tk
else
pushLine
push tk.trimRight
def pushToken (info : SourceInfo) (tk : String) : FormatterM Unit := do
match info with
| SourceInfo.original _ _ ss =>
-- preserve non-whitespace content (i.e. comments)
let ss' := ss.trim
if !ss'.isEmpty then
let ws := { ss with startPos := ss'.stopPos }
if ws.contains '\n' then
push s!"\n{ss'}"
else
push s!" {ss'}"
modify fun st => { st with leadWord := "" }
| _ => pure ()
let st ← get
-- If there is no space between `tk` and the next word, see if we would parse more than `tk` as a single token
if st.leadWord != "" && tk.trimRight == tk then
let tk' := tk.trimLeft
let t ← parseToken $ tk' ++ st.leadWord
if t.pos <= tk'.bsize then
-- stopped within `tk` => use it as is, extend `leadWord` if not prefixed by whitespace
pushTokenCore tk
modify fun st => { st with leadWord := if tk.trimLeft == tk then tk ++ st.leadWord else "" }
else
-- stopped after `tk` => add space
pushTokenCore $ tk ++ " "
modify fun st => { st with leadWord := if tk.trimLeft == tk then tk else "" }
else
-- already separated => use `tk` as is
pushTokenCore tk
modify fun st => { st with leadWord := if tk.trimLeft == tk then tk else "" }
match info with
| SourceInfo.original ss _ _ =>
-- preserve non-whitespace content (i.e. comments)
let ss' := ss.trim
if !ss'.isEmpty then
let ws := { ss with startPos := ss'.stopPos }
if ws.contains '\n' then do
-- Indentation is automatically increased when entering a category, but comments should be aligned
-- with the actual token, so dedent
indent (push s!"{ss'}\n") (some ((0:Int) - Std.Format.getIndent (← getOptions)))
else
push s!"{ss'} "
modify fun st => { st with leadWord := "" }
| _ => pure ()
@[combinatorFormatter Lean.Parser.symbolNoAntiquot]
def symbolNoAntiquot.formatter (sym : String) : Formatter := do
let stx ← getCur
if stx.isToken sym then do
let (Syntax.atom info _) ← pure stx | unreachable!
pushToken info sym
goLeft
else do
trace[PrettyPrinter.format.backtrack]! "unexpected syntax '{fmt stx}', expected symbol '{sym}'"
throwBacktrack
@[combinatorFormatter Lean.Parser.nonReservedSymbolNoAntiquot] def nonReservedSymbolNoAntiquot.formatter := symbolNoAntiquot.formatter
@[combinatorFormatter Lean.Parser.unicodeSymbolNoAntiquot]
def unicodeSymbolNoAntiquot.formatter (sym asciiSym : String) : Formatter := do
let Syntax.atom info val ← getCur
| throwError m!"not an atom: {← getCur}"
if val == sym.trim then
pushToken info sym
else
pushToken info asciiSym;
goLeft
@[combinatorFormatter Lean.Parser.identNoAntiquot]
def identNoAntiquot.formatter : Formatter := do
checkKind identKind;
let Syntax.ident info _ id _ ← getCur
| throwError m!"not an ident: {← getCur}"
let id := id.simpMacroScopes
let s := id.toString;
if id.isAnonymous then
pushToken info "[anonymous]"
else if isInaccessibleUserName id || id.components.any Name.isNum ||
-- loose bvar
"#".isPrefixOf s then
-- not parsable anyway, output as-is
pushToken info s
else
-- try to parse `s` as-is; if it fails, escape
let pst ← parseToken s
if pst.pos == s.bsize then
pushToken info s
else
-- TODO: do something better than escaping all parts
let id := (id.components.map fun c => "«" ++ toString c ++ "»").foldl Name.mkStr Name.anonymous
pushToken info id.toString
goLeft
@[combinatorFormatter Lean.Parser.rawIdentNoAntiquot] def rawIdentNoAntiquot.formatter : Formatter := do
checkKind identKind
let Syntax.ident info _ id _ ← getCur
| throwError m!"not an ident: {← getCur}"
pushToken info id.toString
goLeft
@[combinatorFormatter Lean.Parser.identEq] def identEq.formatter (id : Name) := rawIdentNoAntiquot.formatter
def visitAtom (k : SyntaxNodeKind) : Formatter := do
let stx ← getCur
if k != Name.anonymous then
checkKind k
let Syntax.atom info val ← pure $ stx.ifNode (fun n => n.getArg 0) (fun _ => stx)
| throwError m!"not an atom: {stx}"
pushToken info val
goLeft
@[combinatorFormatter Lean.Parser.charLitNoAntiquot] def charLitNoAntiquot.formatter := visitAtom charLitKind
@[combinatorFormatter Lean.Parser.strLitNoAntiquot] def strLitNoAntiquot.formatter := visitAtom strLitKind
@[combinatorFormatter Lean.Parser.nameLitNoAntiquot] def nameLitNoAntiquot.formatter := visitAtom nameLitKind
@[combinatorFormatter Lean.Parser.numLitNoAntiquot] def numLitNoAntiquot.formatter := visitAtom numLitKind
@[combinatorFormatter Lean.Parser.scientificLitNoAntiquot] def scientificLitNoAntiquot.formatter := visitAtom scientificLitKind
@[combinatorFormatter Lean.Parser.fieldIdx] def fieldIdx.formatter := visitAtom fieldIdxKind
@[combinatorFormatter Lean.Parser.manyNoAntiquot]
def manyNoAntiquot.formatter (p : Formatter) : Formatter := do
let stx ← getCur
visitArgs $ stx.getArgs.size.forM fun _ => p
@[combinatorFormatter Lean.Parser.many1NoAntiquot] def many1NoAntiquot.formatter (p : Formatter) : Formatter := manyNoAntiquot.formatter p
@[combinatorFormatter Lean.Parser.optionalNoAntiquot]
def optionalNoAntiquot.formatter (p : Formatter) : Formatter := visitArgs p
@[combinatorFormatter Lean.Parser.many1Unbox]
def many1Unbox.formatter (p : Formatter) : Formatter := do
let stx ← getCur
if stx.getKind == nullKind then do
manyNoAntiquot.formatter p
else
p
@[combinatorFormatter Lean.Parser.sepByNoAntiquot]
def sepByNoAntiquot.formatter (p pSep : Formatter) : Formatter := do
let stx ← getCur
visitArgs $ (List.range stx.getArgs.size).reverse.forM $ fun i => if i % 2 == 0 then p else pSep
@[combinatorFormatter Lean.Parser.sepBy1NoAntiquot] def sepBy1NoAntiquot.formatter := sepByNoAntiquot.formatter
@[combinatorFormatter Lean.Parser.withPosition] def withPosition.formatter (p : Formatter) : Formatter := p
@[combinatorFormatter Lean.Parser.withoutPosition] def withoutPosition.formatter (p : Formatter) : Formatter := p
@[combinatorFormatter Lean.Parser.withForbidden] def withForbidden.formatter (tk : Token) (p : Formatter) : Formatter := p
@[combinatorFormatter Lean.Parser.withoutForbidden] def withoutForbidden.formatter (p : Formatter) : Formatter := p
@[combinatorFormatter Lean.Parser.withoutInfo] def withoutInfo.formatter (p : Formatter) : Formatter := p
@[combinatorFormatter Lean.Parser.setExpected]
def setExpected.formatter (expected : List String) (p : Formatter) : Formatter := p
@[combinatorFormatter Lean.Parser.toggleInsideQuot] def toggleInsideQuot.formatter (p : Formatter) : Formatter := p
@[combinatorFormatter Lean.Parser.suppressInsideQuot] def suppressInsideQuot.formatter (p : Formatter) : Formatter := p
@[combinatorFormatter Lean.Parser.evalInsideQuot] def evalInsideQuot.formatter (declName : Name) (p : Formatter) : Formatter := p
@[combinatorFormatter Lean.Parser.checkWsBefore] def checkWsBefore.formatter : Formatter := do
let st ← get
if st.leadWord != "" then
pushLine
@[combinatorFormatter Lean.Parser.checkPrec] def checkPrec.formatter : Formatter := pure ()
@[combinatorFormatter Lean.Parser.checkStackTop] def checkStackTop.formatter : Formatter := pure ()
@[combinatorFormatter Lean.Parser.checkNoWsBefore] def checkNoWsBefore.formatter : Formatter :=
-- prevent automatic whitespace insertion
modify fun st => { st with leadWord := "" }
@[combinatorFormatter Lean.Parser.checkTailWs] def checkTailWs.formatter : Formatter := pure ()
@[combinatorFormatter Lean.Parser.checkColGe] def checkColGe.formatter : Formatter := pure ()
@[combinatorFormatter Lean.Parser.checkColGt] def checkColGt.formatter : Formatter := pure ()
@[combinatorFormatter Lean.Parser.checkLineEq] def checkLineEq.formatter : Formatter := pure ()
@[combinatorFormatter Lean.Parser.eoi] def eoi.formatter : Formatter := pure ()
@[combinatorFormatter Lean.Parser.notFollowedByCategoryToken] def notFollowedByCategoryToken.formatter : Formatter := pure ()
@[combinatorFormatter Lean.Parser.checkNoImmediateColon] def checkNoImmediateColon.formatter : Formatter := pure ()
@[combinatorFormatter Lean.Parser.checkInsideQuot] def checkInsideQuot.formatter : Formatter := pure ()
@[combinatorFormatter Lean.Parser.checkOutsideQuot] def checkOutsideQuot.formatter : Formatter := pure ()
@[combinatorFormatter Lean.Parser.skip] def skip.formatter : Formatter := pure ()
@[combinatorFormatter Lean.Parser.pushNone] def pushNone.formatter : Formatter := goLeft
@[combinatorFormatter Lean.Parser.interpolatedStr]
def interpolatedStr.formatter (p : Formatter) : Formatter := do
visitArgs $ (← getCur).getArgs.reverse.forM fun chunk =>
match chunk.isLit? interpolatedStrLitKind with
| some str => push str *> goLeft
| none => p
@[combinatorFormatter ite, macroInline] def ite {α : Type} (c : Prop) [h : Decidable c] (t e : Formatter) : Formatter :=
if c then t else e
abbrev FormatterAliasValue := AliasValue Formatter
builtin_initialize formatterAliasesRef : IO.Ref (NameMap FormatterAliasValue) ← IO.mkRef {}
def registerAlias (aliasName : Name) (v : FormatterAliasValue) : IO Unit := do
Parser.registerAliasCore formatterAliasesRef aliasName v
instance : Coe Formatter FormatterAliasValue := { coe := AliasValue.const }
instance : Coe (Formatter → Formatter) FormatterAliasValue := { coe := AliasValue.unary }
instance : Coe (Formatter → Formatter → Formatter) FormatterAliasValue := { coe := AliasValue.binary }
builtin_initialize
registerAlias "ws" checkWsBefore.formatter
registerAlias "noWs" checkNoWsBefore.formatter
registerAlias "colGt" checkColGt.formatter
registerAlias "colGe" checkColGe.formatter
registerAlias "lookahead" lookahead.formatter
registerAlias "atomic" atomic.formatter
registerAlias "notFollowedBy" notFollowedBy.formatter
registerAlias "withPosition" withPosition.formatter
registerAlias "interpolatedStr" interpolatedStr.formatter
registerAlias "orelse" orelse.formatter
registerAlias "andthen" andthen.formatter
end Formatter
open Formatter
def format (formatter : Formatter) (stx : Syntax) : CoreM Format := do
trace[PrettyPrinter.format.input]! "{fmt stx}"
let options ← getOptions
let table ← Parser.builtinTokenTable.get
catchInternalId backtrackExceptionId
(do
let (_, st) ← (concat formatter { table := table, options := options }).run { stxTrav := Syntax.Traverser.fromSyntax stx };
pure $ Format.fill $ st.stack.get! 0)
(fun _ => throwError "format: uncaught backtrack exception")
def formatTerm := format $ categoryParser.formatter `term
def formatCommand := format $ categoryParser.formatter `command
builtin_initialize registerTraceClass `PrettyPrinter.format;
end PrettyPrinter
end Lean
|
366955d398a9d6de21cdda3f9eb991dad26818ea
|
c777c32c8e484e195053731103c5e52af26a25d1
|
/src/ring_theory/witt_vector/frobenius.lean
|
a5b97d84730a9a3d9dd0e153c0b7f79a9e206e18
|
[
"Apache-2.0"
] |
permissive
|
kbuzzard/mathlib
|
2ff9e85dfe2a46f4b291927f983afec17e946eb8
|
58537299e922f9c77df76cb613910914a479c1f7
|
refs/heads/master
| 1,685,313,702,744
| 1,683,974,212,000
| 1,683,974,212,000
| 128,185,277
| 1
| 0
| null | 1,522,920,600,000
| 1,522,920,600,000
| null |
UTF-8
|
Lean
| false
| false
| 13,411
|
lean
|
/-
Copyright (c) 2020 Johan Commelin. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin
-/
import data.nat.multiplicity
import data.zmod.algebra
import ring_theory.witt_vector.basic
import ring_theory.witt_vector.is_poly
import field_theory.perfect_closure
/-!
## The Frobenius operator
If `R` has characteristic `p`, then there is a ring endomorphism `frobenius R p`
that raises `r : R` to the power `p`.
By applying `witt_vector.map` to `frobenius R p`, we obtain a ring endomorphism `𝕎 R →+* 𝕎 R`.
It turns out that this endomorphism can be described by polynomials over `ℤ`
that do not depend on `R` or the fact that it has characteristic `p`.
In this way, we obtain a Frobenius endomorphism `witt_vector.frobenius_fun : 𝕎 R → 𝕎 R`
for every commutative ring `R`.
Unfortunately, the aforementioned polynomials can not be obtained using the machinery
of `witt_structure_int` that was developed in `structure_polynomial.lean`.
We therefore have to define the polynomials by hand, and check that they have the required property.
In case `R` has characteristic `p`, we show in `frobenius_fun_eq_map_frobenius`
that `witt_vector.frobenius_fun` is equal to `witt_vector.map (frobenius R p)`.
### Main definitions and results
* `frobenius_poly`: the polynomials that describe the coefficients of `frobenius_fun`;
* `frobenius_fun`: the Frobenius endomorphism on Witt vectors;
* `frobenius_fun_is_poly`: the tautological assertion that Frobenius is a polynomial function;
* `frobenius_fun_eq_map_frobenius`: the fact that in characteristic `p`, Frobenius is equal to
`witt_vector.map (frobenius R p)`.
TODO: Show that `witt_vector.frobenius_fun` is a ring homomorphism,
and bundle it into `witt_vector.frobenius`.
## References
* [Hazewinkel, *Witt Vectors*][Haze09]
* [Commelin and Lewis, *Formalizing the Ring of Witt Vectors*][CL21]
-/
namespace witt_vector
variables {p : ℕ} {R S : Type*} [hp : fact p.prime] [comm_ring R] [comm_ring S]
local notation `𝕎` := witt_vector p -- type as `\bbW`
noncomputable theory
open mv_polynomial finset
open_locale big_operators
variables (p)
include hp
/-- The rational polynomials that give the coefficients of `frobenius x`,
in terms of the coefficients of `x`.
These polynomials actually have integral coefficients,
see `frobenius_poly` and `map_frobenius_poly`. -/
def frobenius_poly_rat (n : ℕ) : mv_polynomial ℕ ℚ :=
bind₁ (witt_polynomial p ℚ ∘ λ n, n + 1) (X_in_terms_of_W p ℚ n)
lemma bind₁_frobenius_poly_rat_witt_polynomial (n : ℕ) :
bind₁ (frobenius_poly_rat p) (witt_polynomial p ℚ n) = (witt_polynomial p ℚ (n+1)) :=
begin
delta frobenius_poly_rat,
rw [← bind₁_bind₁, bind₁_X_in_terms_of_W_witt_polynomial, bind₁_X_right],
end
/-- An auxiliary definition, to avoid an excessive amount of finiteness proofs
for `multiplicity p n`. -/
private def pnat_multiplicity (n : ℕ+) : ℕ :=
(multiplicity p n).get $ multiplicity.finite_nat_iff.mpr $ ⟨ne_of_gt hp.1.one_lt, n.2⟩
local notation `v` := pnat_multiplicity
/-- An auxiliary polynomial over the integers, that satisfies
`p * (frobenius_poly_aux p n) + X n ^ p = frobenius_poly p n`.
This makes it easy to show that `frobenius_poly p n` is congruent to `X n ^ p`
modulo `p`. -/
noncomputable def frobenius_poly_aux : ℕ → mv_polynomial ℕ ℤ
| n := X (n + 1) - ∑ i : fin n, have _ := i.is_lt,
∑ j in range (p ^ (n - i)),
(X i ^ p) ^ (p ^ (n - i) - (j + 1)) *
(frobenius_poly_aux i) ^ (j + 1) *
C ↑((p ^ (n - i)).choose (j + 1) / (p ^ (n - i - v p ⟨j + 1, nat.succ_pos j⟩)) *
↑p ^ (j - v p ⟨j + 1, nat.succ_pos j⟩) : ℕ)
lemma frobenius_poly_aux_eq (n : ℕ) :
frobenius_poly_aux p n =
X (n + 1) - ∑ i in range n, ∑ j in range (p ^ (n - i)),
(X i ^ p) ^ (p ^ (n - i) - (j + 1)) *
(frobenius_poly_aux p i) ^ (j + 1) *
C ↑((p ^ (n - i)).choose (j + 1) / (p ^ (n - i - v p ⟨j + 1, nat.succ_pos j⟩)) *
↑p ^ (j - v p ⟨j + 1, nat.succ_pos j⟩) : ℕ) :=
by { rw [frobenius_poly_aux, ← fin.sum_univ_eq_sum_range] }
/-- The polynomials that give the coefficients of `frobenius x`,
in terms of the coefficients of `x`. -/
def frobenius_poly (n : ℕ) : mv_polynomial ℕ ℤ :=
X n ^ p + C ↑p * (frobenius_poly_aux p n)
/-
Our next goal is to prove
```
lemma map_frobenius_poly (n : ℕ) :
mv_polynomial.map (int.cast_ring_hom ℚ) (frobenius_poly p n) = frobenius_poly_rat p n
```
This lemma has a rather long proof, but it mostly boils down to applying induction,
and then using the following two key facts at the right point.
-/
/-- A key divisibility fact for the proof of `witt_vector.map_frobenius_poly`. -/
lemma map_frobenius_poly.key₁ (n j : ℕ) (hj : j < p ^ (n)) :
p ^ (n - v p ⟨j + 1, j.succ_pos⟩) ∣ (p ^ n).choose (j + 1) :=
begin
apply multiplicity.pow_dvd_of_le_multiplicity,
rw [hp.out.multiplicity_choose_prime_pow hj j.succ_ne_zero],
refl,
end
/-- A key numerical identity needed for the proof of `witt_vector.map_frobenius_poly`. -/
lemma map_frobenius_poly.key₂ {n i j : ℕ} (hi : i ≤ n) (hj : j < p ^ (n - i)) :
j - v p ⟨j + 1, j.succ_pos⟩ + n = i + j + (n - i - v p ⟨j + 1, j.succ_pos⟩) :=
begin
generalize h : (v p ⟨j + 1, j.succ_pos⟩) = m,
rsuffices ⟨h₁, h₂⟩ : m ≤ n - i ∧ m ≤ j,
{ rw [tsub_add_eq_add_tsub h₂, add_comm i j,
add_tsub_assoc_of_le (h₁.trans (nat.sub_le n i)), add_assoc, tsub_right_comm, add_comm i,
tsub_add_cancel_of_le (le_tsub_of_add_le_right ((le_tsub_iff_left hi).mp h₁))] },
have hle : p ^ m ≤ j + 1,
from h ▸ nat.le_of_dvd j.succ_pos (multiplicity.pow_multiplicity_dvd _),
exact ⟨(pow_le_pow_iff hp.1.one_lt).1 (hle.trans hj),
nat.le_of_lt_succ ((nat.lt_pow_self hp.1.one_lt m).trans_le hle)⟩
end
lemma map_frobenius_poly (n : ℕ) :
mv_polynomial.map (int.cast_ring_hom ℚ) (frobenius_poly p n) = frobenius_poly_rat p n :=
begin
rw [frobenius_poly, ring_hom.map_add, ring_hom.map_mul, ring_hom.map_pow, map_C, map_X,
eq_int_cast, int.cast_coe_nat, frobenius_poly_rat],
apply nat.strong_induction_on n, clear n,
intros n IH,
rw [X_in_terms_of_W_eq],
simp only [alg_hom.map_sum, alg_hom.map_sub, alg_hom.map_mul, alg_hom.map_pow, bind₁_C_right],
have h1 : (↑p ^ n) * (⅟ (↑p : ℚ) ^ n) = 1 := by rw [←mul_pow, mul_inv_of_self, one_pow],
rw [bind₁_X_right, function.comp_app, witt_polynomial_eq_sum_C_mul_X_pow, sum_range_succ,
sum_range_succ, tsub_self, add_tsub_cancel_left, pow_zero, pow_one, pow_one, sub_mul,
add_mul, add_mul, mul_right_comm, mul_right_comm (C (↑p ^ (n + 1))), ←C_mul, ←C_mul, pow_succ,
mul_assoc ↑p (↑p ^ n), h1, mul_one, C_1, one_mul, add_comm _ (X n ^ p), add_assoc, ←add_sub,
add_right_inj, frobenius_poly_aux_eq, ring_hom.map_sub, map_X, mul_sub, sub_eq_add_neg,
add_comm _ (C ↑p * X (n + 1)), ←add_sub, add_right_inj, neg_eq_iff_eq_neg, neg_sub, eq_comm],
simp only [ring_hom.map_sum, mul_sum, sum_mul, ←sum_sub_distrib],
apply sum_congr rfl,
intros i hi,
rw mem_range at hi,
rw [← IH i hi],
clear IH,
rw [add_comm (X i ^ p), add_pow, sum_range_succ', pow_zero, tsub_zero, nat.choose_zero_right,
one_mul, nat.cast_one, mul_one, mul_add, add_mul, nat.succ_sub (le_of_lt hi),
nat.succ_eq_add_one (n - i), pow_succ, pow_mul, add_sub_cancel, mul_sum, sum_mul],
apply sum_congr rfl,
intros j hj,
rw mem_range at hj,
rw [ring_hom.map_mul, ring_hom.map_mul, ring_hom.map_pow, ring_hom.map_pow, ring_hom.map_pow,
ring_hom.map_pow, ring_hom.map_pow, map_C, map_X, mul_pow],
rw [mul_comm (C ↑p ^ i), mul_comm _ ((X i ^ p) ^ _), mul_comm (C ↑p ^ (j + 1)), mul_comm (C ↑p)],
simp only [mul_assoc],
apply congr_arg,
apply congr_arg,
rw [←C_eq_coe_nat],
simp only [←ring_hom.map_pow, ←C_mul],
rw C_inj,
simp only [inv_of_eq_inv, eq_int_cast, inv_pow, int.cast_coe_nat, nat.cast_mul,
int.cast_mul],
rw [rat.coe_nat_div _ _ (map_frobenius_poly.key₁ p (n - i) j hj)],
simp only [nat.cast_pow, pow_add, pow_one],
suffices : ((p ^ (n - i)).choose (j + 1) * p ^ (j - v p ⟨j + 1, j.succ_pos⟩) * p * p ^ n : ℚ) =
p ^ j * p * ((p ^ (n - i)).choose (j + 1) * p ^ i) * p ^ (n - i - v p ⟨j + 1, j.succ_pos⟩),
{ have aux : ∀ k : ℕ, (p ^ k : ℚ) ≠ 0,
{ intro, apply pow_ne_zero, exact_mod_cast hp.1.ne_zero },
simpa [aux, -one_div] with field_simps using this.symm },
rw [mul_comm _ (p : ℚ), mul_assoc, mul_assoc, ← pow_add, map_frobenius_poly.key₂ p hi.le hj],
ring_exp
end
lemma frobenius_poly_zmod (n : ℕ) :
mv_polynomial.map (int.cast_ring_hom (zmod p)) (frobenius_poly p n) = X n ^ p :=
begin
rw [frobenius_poly, ring_hom.map_add, ring_hom.map_pow, ring_hom.map_mul, map_X, map_C],
simp only [int.cast_coe_nat, add_zero, eq_int_cast, zmod.nat_cast_self, zero_mul, C_0],
end
@[simp]
lemma bind₁_frobenius_poly_witt_polynomial (n : ℕ) :
bind₁ (frobenius_poly p) (witt_polynomial p ℤ n) = (witt_polynomial p ℤ (n+1)) :=
begin
apply mv_polynomial.map_injective (int.cast_ring_hom ℚ) int.cast_injective,
simp only [map_bind₁, map_frobenius_poly, bind₁_frobenius_poly_rat_witt_polynomial,
map_witt_polynomial],
end
variables {p}
/-- `frobenius_fun` is the function underlying the ring endomorphism
`frobenius : 𝕎 R →+* frobenius 𝕎 R`. -/
def frobenius_fun (x : 𝕎 R) : 𝕎 R :=
mk p $ λ n, mv_polynomial.aeval x.coeff (frobenius_poly p n)
lemma coeff_frobenius_fun (x : 𝕎 R) (n : ℕ) :
coeff (frobenius_fun x) n = mv_polynomial.aeval x.coeff (frobenius_poly p n) :=
by rw [frobenius_fun, coeff_mk]
variables (p)
/-- `frobenius_fun` is tautologically a polynomial function.
See also `frobenius_is_poly`. -/
@[is_poly] lemma frobenius_fun_is_poly : is_poly p (λ R _Rcr, @frobenius_fun p R _ _Rcr) :=
⟨⟨frobenius_poly p, by { introsI, funext n, apply coeff_frobenius_fun }⟩⟩
variable {p}
@[ghost_simps] lemma ghost_component_frobenius_fun (n : ℕ) (x : 𝕎 R) :
ghost_component n (frobenius_fun x) = ghost_component (n + 1) x :=
by simp only [ghost_component_apply, frobenius_fun, coeff_mk,
← bind₁_frobenius_poly_witt_polynomial, aeval_bind₁]
/--
If `R` has characteristic `p`, then there is a ring endomorphism
that raises `r : R` to the power `p`.
By applying `witt_vector.map` to this endomorphism,
we obtain a ring endomorphism `frobenius R p : 𝕎 R →+* 𝕎 R`.
The underlying function of this morphism is `witt_vector.frobenius_fun`.
-/
def frobenius : 𝕎 R →+* 𝕎 R :=
{ to_fun := frobenius_fun,
map_zero' :=
begin
refine is_poly.ext
((frobenius_fun_is_poly p).comp (witt_vector.zero_is_poly))
((witt_vector.zero_is_poly).comp (frobenius_fun_is_poly p)) _ _ 0,
ghost_simp
end,
map_one' :=
begin
refine is_poly.ext
((frobenius_fun_is_poly p).comp (witt_vector.one_is_poly))
((witt_vector.one_is_poly).comp (frobenius_fun_is_poly p)) _ _ 0,
ghost_simp
end,
map_add' := by ghost_calc _ _; ghost_simp,
map_mul' := by ghost_calc _ _; ghost_simp }
lemma coeff_frobenius (x : 𝕎 R) (n : ℕ) :
coeff (frobenius x) n = mv_polynomial.aeval x.coeff (frobenius_poly p n) :=
coeff_frobenius_fun _ _
@[ghost_simps] lemma ghost_component_frobenius (n : ℕ) (x : 𝕎 R) :
ghost_component n (frobenius x) = ghost_component (n + 1) x :=
ghost_component_frobenius_fun _ _
variables (p)
/-- `frobenius` is tautologically a polynomial function. -/
@[is_poly] lemma frobenius_is_poly : is_poly p (λ R _Rcr, @frobenius p R _ _Rcr) :=
frobenius_fun_is_poly _
section char_p
variables [char_p R p]
@[simp]
lemma coeff_frobenius_char_p (x : 𝕎 R) (n : ℕ) :
coeff (frobenius x) n = (x.coeff n) ^ p :=
begin
rw [coeff_frobenius],
-- outline of the calculation, proofs follow below
calc aeval (λ k, x.coeff k) (frobenius_poly p n)
= aeval (λ k, x.coeff k)
(mv_polynomial.map (int.cast_ring_hom (zmod p)) (frobenius_poly p n)) : _
... = aeval (λ k, x.coeff k) (X n ^ p : mv_polynomial ℕ (zmod p)) : _
... = (x.coeff n) ^ p : _,
{ conv_rhs { rw [aeval_eq_eval₂_hom, eval₂_hom_map_hom] },
apply eval₂_hom_congr (ring_hom.ext_int _ _) rfl rfl },
{ rw frobenius_poly_zmod },
{ rw [alg_hom.map_pow, aeval_X] }
end
lemma frobenius_eq_map_frobenius :
@frobenius p R _ _ = map (_root_.frobenius R p) :=
begin
ext x n,
simp only [coeff_frobenius_char_p, map_coeff, frobenius_def],
end
@[simp]
lemma frobenius_zmodp (x : 𝕎 (zmod p)) :
(frobenius x) = x :=
by simp only [ext_iff, coeff_frobenius_char_p, zmod.pow_card, eq_self_iff_true, forall_const]
variables (p R)
/-- `witt_vector.frobenius` as an equiv. -/
@[simps {fully_applied := ff}]
def frobenius_equiv [perfect_ring R p] : witt_vector p R ≃+* witt_vector p R :=
{ to_fun := witt_vector.frobenius,
inv_fun := map (pth_root R p),
left_inv := λ f, ext $ λ n, by { rw frobenius_eq_map_frobenius, exact pth_root_frobenius _ },
right_inv := λ f, ext $ λ n, by { rw frobenius_eq_map_frobenius, exact frobenius_pth_root _ },
..(witt_vector.frobenius : witt_vector p R →+* witt_vector p R) }
lemma frobenius_bijective [perfect_ring R p] :
function.bijective (@witt_vector.frobenius p R _ _) :=
(frobenius_equiv p R).bijective
end char_p
end witt_vector
|
5d17811cc49d8d163c849648d75a49e445cb3482
|
e00ea76a720126cf9f6d732ad6216b5b824d20a7
|
/src/data/matrix/basic.lean
|
2d02babddb2ca4a666774aedeed5c07bc13556ff
|
[
"Apache-2.0"
] |
permissive
|
vaibhavkarve/mathlib
|
a574aaf68c0a431a47fa82ce0637f0f769826bfe
|
17f8340912468f49bdc30acdb9a9fa02eeb0473a
|
refs/heads/master
| 1,621,263,802,637
| 1,585,399,588,000
| 1,585,399,588,000
| 250,833,447
| 0
| 0
|
Apache-2.0
| 1,585,410,341,000
| 1,585,410,341,000
| null |
UTF-8
|
Lean
| false
| false
| 13,173
|
lean
|
/-
Copyright (c) 2018 Ellen Arlt. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Ellen Arlt, Blair Shi, Sean Leather, Mario Carneiro, Johan Commelin
Matrices
-/
import algebra.module algebra.pi_instances
import data.fintype
universes u v w
def matrix (m n : Type u) [fintype m] [fintype n] (α : Type v) : Type (max u v) :=
m → n → α
namespace matrix
variables {l m n o : Type u} [fintype l] [fintype m] [fintype n] [fintype o]
variables {α : Type v}
section ext
variables {M N : matrix m n α}
theorem ext_iff : (∀ i j, M i j = N i j) ↔ M = N :=
⟨λ h, funext $ λ i, funext $ h i, λ h, by simp [h]⟩
@[ext] theorem ext : (∀ i j, M i j = N i j) → M = N :=
ext_iff.mp
end ext
def transpose (M : matrix m n α) : matrix n m α
| x y := M y x
localized "postfix `ᵀ`:1500 := matrix.transpose" in matrix
def col (w : m → α) : matrix m punit α
| x y := w x
def row (v : n → α) : matrix punit n α
| x y := v y
instance [inhabited α] : inhabited (matrix m n α) := pi.inhabited _
instance [has_add α] : has_add (matrix m n α) := pi.has_add
instance [add_semigroup α] : add_semigroup (matrix m n α) := pi.add_semigroup
instance [add_comm_semigroup α] : add_comm_semigroup (matrix m n α) := pi.add_comm_semigroup
instance [has_zero α] : has_zero (matrix m n α) := pi.has_zero
instance [add_monoid α] : add_monoid (matrix m n α) := pi.add_monoid
instance [add_comm_monoid α] : add_comm_monoid (matrix m n α) := pi.add_comm_monoid
instance [has_neg α] : has_neg (matrix m n α) := pi.has_neg
instance [add_group α] : add_group (matrix m n α) := pi.add_group
instance [add_comm_group α] : add_comm_group (matrix m n α) := pi.add_comm_group
@[simp] theorem zero_val [has_zero α] (i j) : (0 : matrix m n α) i j = 0 := rfl
@[simp] theorem neg_val [has_neg α] (M : matrix m n α) (i j) : (- M) i j = - M i j := rfl
@[simp] theorem add_val [has_add α] (M N : matrix m n α) (i j) : (M + N) i j = M i j + N i j := rfl
section diagonal
variables [decidable_eq n]
def diagonal [has_zero α] (d : n → α) : matrix n n α := λ i j, if i = j then d i else 0
@[simp] theorem diagonal_val_eq [has_zero α] {d : n → α} (i : n) : (diagonal d) i i = d i :=
by simp [diagonal]
@[simp] theorem diagonal_val_ne [has_zero α] {d : n → α} {i j : n} (h : i ≠ j) :
(diagonal d) i j = 0 := by simp [diagonal, h]
theorem diagonal_val_ne' [has_zero α] {d : n → α} {i j : n} (h : j ≠ i) :
(diagonal d) i j = 0 := diagonal_val_ne h.symm
@[simp] theorem diagonal_zero [has_zero α] : (diagonal (λ _, 0) : matrix n n α) = 0 :=
by simp [diagonal]; refl
section one
variables [has_zero α] [has_one α]
instance : has_one (matrix n n α) := ⟨diagonal (λ _, 1)⟩
@[simp] theorem diagonal_one : (diagonal (λ _, 1) : matrix n n α) = 1 := rfl
theorem one_val {i j} : (1 : matrix n n α) i j = if i = j then 1 else 0 := rfl
@[simp] theorem one_val_eq (i) : (1 : matrix n n α) i i = 1 := diagonal_val_eq i
@[simp] theorem one_val_ne {i j} : i ≠ j → (1 : matrix n n α) i j = 0 :=
diagonal_val_ne
theorem one_val_ne' {i j} : j ≠ i → (1 : matrix n n α) i j = 0 :=
diagonal_val_ne'
end one
end diagonal
@[simp] theorem diagonal_add [decidable_eq n] [add_monoid α] (d₁ d₂ : n → α) :
diagonal d₁ + diagonal d₂ = diagonal (λ i, d₁ i + d₂ i) :=
by ext i j; by_cases i = j; simp [h]
protected def mul [has_mul α] [add_comm_monoid α] (M : matrix l m α) (N : matrix m n α) :
matrix l n α :=
λ i k, finset.univ.sum (λ j, M i j * N j k)
localized "infixl ` ⬝ `:75 := matrix.mul" in matrix
theorem mul_val [has_mul α] [add_comm_monoid α] {M : matrix l m α} {N : matrix m n α} {i k} :
(M ⬝ N) i k = finset.univ.sum (λ j, M i j * N j k) := rfl
local attribute [simp] mul_val
instance [has_mul α] [add_comm_monoid α] : has_mul (matrix n n α) := ⟨matrix.mul⟩
@[simp] theorem mul_eq_mul [has_mul α] [add_comm_monoid α] (M N : matrix n n α) :
M * N = M ⬝ N := rfl
theorem mul_val' [has_mul α] [add_comm_monoid α] {M N : matrix n n α} {i k} :
(M * N) i k = finset.univ.sum (λ j, M i j * N j k) := rfl
section semigroup
variables [semiring α]
protected theorem mul_assoc (L : matrix l m α) (M : matrix m n α) (N : matrix n o α) :
(L ⬝ M) ⬝ N = L ⬝ (M ⬝ N) :=
by classical; funext i k;
simp [finset.mul_sum, finset.sum_mul, mul_assoc];
rw finset.sum_comm
instance : semigroup (matrix n n α) :=
{ mul_assoc := matrix.mul_assoc, ..matrix.has_mul }
end semigroup
@[simp] theorem diagonal_neg [decidable_eq n] [add_group α] (d : n → α) :
-diagonal d = diagonal (λ i, -d i) :=
by ext i j; by_cases i = j; simp [h]
section semiring
variables [semiring α]
@[simp] protected theorem mul_zero (M : matrix m n α) : M ⬝ (0 : matrix n o α) = 0 :=
by ext i j; simp
@[simp] protected theorem zero_mul (M : matrix m n α) : (0 : matrix l m α) ⬝ M = 0 :=
by ext i j; simp
protected theorem mul_add (L : matrix m n α) (M N : matrix n o α) : L ⬝ (M + N) = L ⬝ M + L ⬝ N :=
by ext i j; simp [finset.sum_add_distrib, mul_add]
protected theorem add_mul (L M : matrix l m α) (N : matrix m n α) : (L + M) ⬝ N = L ⬝ N + M ⬝ N :=
by ext i j; simp [finset.sum_add_distrib, add_mul]
@[simp] theorem diagonal_mul [decidable_eq m]
(d : m → α) (M : matrix m n α) (i j) : (diagonal d).mul M i j = d i * M i j :=
by simp; rw finset.sum_eq_single i; simp [diagonal_val_ne'] {contextual := tt}
@[simp] theorem mul_diagonal [decidable_eq n]
(d : n → α) (M : matrix m n α) (i j) : (M ⬝ diagonal d) i j = M i j * d j :=
by simp; rw finset.sum_eq_single j; simp {contextual := tt}
@[simp] protected theorem one_mul [decidable_eq m] (M : matrix m n α) : (1 : matrix m m α) ⬝ M = M :=
by ext i j; rw [← diagonal_one, diagonal_mul, one_mul]
@[simp] protected theorem mul_one [decidable_eq n] (M : matrix m n α) : M ⬝ (1 : matrix n n α) = M :=
by ext i j; rw [← diagonal_one, mul_diagonal, mul_one]
instance [decidable_eq n] : monoid (matrix n n α) :=
{ one_mul := matrix.one_mul,
mul_one := matrix.mul_one,
..matrix.has_one, ..matrix.semigroup }
instance [decidable_eq n] : semiring (matrix n n α) :=
{ mul_zero := matrix.mul_zero,
zero_mul := matrix.zero_mul,
left_distrib := matrix.mul_add,
right_distrib := matrix.add_mul,
..matrix.add_comm_monoid,
..matrix.monoid }
@[simp] theorem diagonal_mul_diagonal [decidable_eq n] (d₁ d₂ : n → α) :
(diagonal d₁) ⬝ (diagonal d₂) = diagonal (λ i, d₁ i * d₂ i) :=
by ext i j; by_cases i = j; simp [h]
theorem diagonal_mul_diagonal' [decidable_eq n] (d₁ d₂ : n → α) :
diagonal d₁ * diagonal d₂ = diagonal (λ i, d₁ i * d₂ i) :=
diagonal_mul_diagonal _ _
lemma is_add_monoid_hom_mul_left (M : matrix l m α) :
is_add_monoid_hom (λ x : matrix m n α, M ⬝ x) :=
{ to_is_add_hom := ⟨matrix.mul_add _⟩, map_zero := matrix.mul_zero _ }
lemma is_add_monoid_hom_mul_right (M : matrix m n α) :
is_add_monoid_hom (λ x : matrix l m α, x ⬝ M) :=
{ to_is_add_hom := ⟨λ _ _, matrix.add_mul _ _ _⟩, map_zero := matrix.zero_mul _ }
protected lemma sum_mul {β : Type*} (s : finset β) (f : β → matrix l m α)
(M : matrix m n α) : s.sum f ⬝ M = s.sum (λ a, f a ⬝ M) :=
(@finset.sum_hom _ _ _ _ _ s f (λ x, x ⬝ M)
/- This line does not type-check without `id` and `: _`. Lean did not recognize that two different
`add_monoid` instances were def-eq -/
(id (@is_add_monoid_hom_mul_right l _ _ _ _ _ _ _ M) : _)).symm
protected lemma mul_sum {β : Type*} (s : finset β) (f : β → matrix m n α)
(M : matrix l m α) : M ⬝ s.sum f = s.sum (λ a, M ⬝ f a) :=
(@finset.sum_hom _ _ _ _ _ s f (λ x, M ⬝ x)
/- This line does not type-check without `id` and `: _`. Lean did not recognize that two different
`add_monoid` instances were def-eq -/
(id (@is_add_monoid_hom_mul_left _ _ n _ _ _ _ _ M) : _)).symm
end semiring
section ring
variables [ring α]
@[simp] theorem neg_mul (M : matrix m n α) (N : matrix n o α) :
(-M) ⬝ N = -(M ⬝ N) := by ext; simp [matrix.mul]
@[simp] theorem mul_neg (M : matrix m n α) (N : matrix n o α) :
M ⬝ (-N) = -(M ⬝ N) := by ext; simp [matrix.mul]
end ring
instance [decidable_eq n] [ring α] : ring (matrix n n α) :=
{ ..matrix.add_comm_group, ..matrix.semiring }
instance [semiring α] : has_scalar α (matrix m n α) := pi.has_scalar
instance {β : Type w} [ring α] [add_comm_group β] [module α β] :
module α (matrix m n β) := pi.module _
@[simp] lemma smul_val [semiring α] (a : α) (A : matrix m n α) (i : m) (j : n) : (a • A) i j = a * A i j := rfl
section comm_ring
variables [comm_ring α]
lemma smul_eq_diagonal_mul [decidable_eq m] (M : matrix m n α) (a : α) :
a • M = diagonal (λ _, a) ⬝ M :=
by { ext, simp }
lemma smul_eq_mul_diagonal [decidable_eq n] (M : matrix m n α) (a : α) :
a • M = M ⬝ diagonal (λ _, a) :=
by { ext, simp [mul_comm] }
@[simp] lemma mul_smul (M : matrix m n α) (a : α) (N : matrix n l α) : M ⬝ (a • N) = a • M ⬝ N :=
begin
ext i j,
unfold matrix.mul has_scalar.smul,
rw finset.mul_sum,
congr,
ext,
ac_refl
end
@[simp] lemma smul_mul (M : matrix m n α) (a : α) (N : matrix n l α) : (a • M) ⬝ N = a • M ⬝ N :=
begin
ext i j,
unfold matrix.mul has_scalar.smul,
rw finset.mul_sum,
congr,
ext,
ac_refl
end
end comm_ring
section semiring
variables [semiring α]
def vec_mul_vec (w : m → α) (v : n → α) : matrix m n α
| x y := w x * v y
def mul_vec (M : matrix m n α) (v : n → α) : m → α
| x := finset.univ.sum (λy:n, M x y * v y)
def vec_mul (v : m → α) (M : matrix m n α) : n → α
| y := finset.univ.sum (λx:m, v x * M x y)
instance mul_vec.is_add_monoid_hom_left (v : n → α) :
is_add_monoid_hom (λM:matrix m n α, mul_vec M v) :=
{ map_zero := by ext; simp [mul_vec]; refl,
map_add :=
begin
intros x y,
ext m,
rw pi.add_apply (mul_vec x v) (mul_vec y v) m,
simp [mul_vec, finset.sum_add_distrib, right_distrib]
end }
lemma mul_vec_diagonal [decidable_eq m] (v w : m → α) (x : m) :
mul_vec (diagonal v) w x = v x * w x :=
begin
transitivity,
refine finset.sum_eq_single x _ _,
{ assume b _ ne, simp [diagonal, ne.symm] },
{ simp },
{ rw [diagonal_val_eq] }
end
@[simp] lemma mul_vec_one [decidable_eq m] (v : m → α) : mul_vec 1 v = v :=
by { ext, rw [←diagonal_one, mul_vec_diagonal, one_mul] }
lemma vec_mul_vec_eq (w : m → α) (v : n → α) :
vec_mul_vec w v = (col w) ⬝ (row v) :=
by simp [matrix.mul]; refl
end semiring
section transpose
open_locale matrix
/--
Tell `simp` what the entries are in a transposed matrix.
Compare with `mul_val`, `diagonal_val_eq`, etc.
-/
@[simp] lemma transpose_val (M : matrix m n α) (i j) : M.transpose j i = M i j := rfl
@[simp] lemma transpose_transpose (M : matrix m n α) :
Mᵀᵀ = M :=
by ext; refl
@[simp] lemma transpose_zero [has_zero α] : (0 : matrix m n α)ᵀ = 0 :=
by ext i j; refl
@[simp] lemma transpose_one [decidable_eq n] [has_zero α] [has_one α] : (1 : matrix n n α)ᵀ = 1 :=
begin
ext i j,
unfold has_one.one transpose,
by_cases i = j,
{ simp only [h, diagonal_val_eq] },
{ simp only [diagonal_val_ne h, diagonal_val_ne (λ p, h (symm p))] }
end
@[simp] lemma transpose_add [has_add α] (M : matrix m n α) (N : matrix m n α) :
(M + N)ᵀ = Mᵀ + Nᵀ :=
by { ext i j, simp }
@[simp] lemma transpose_mul [comm_ring α] (M : matrix m n α) (N : matrix n l α) :
(M ⬝ N)ᵀ = Nᵀ ⬝ Mᵀ :=
begin
ext i j,
unfold matrix.mul transpose,
congr,
ext,
ac_refl
end
@[simp] lemma transpose_smul [comm_ring α] (c : α)(M : matrix m n α) :
(c • M)ᵀ = c • Mᵀ :=
by { ext i j, refl }
@[simp] lemma transpose_neg [comm_ring α] (M : matrix m n α) :
(- M)ᵀ = - Mᵀ :=
by ext i j; refl
end transpose
def minor (A : matrix m n α) (row : l → m) (col : o → n) : matrix l o α :=
λ i j, A (row i) (col j)
@[reducible]
def sub_left {m l r : nat} (A : matrix (fin m) (fin (l + r)) α) : matrix (fin m) (fin l) α :=
minor A id (fin.cast_add r)
@[reducible]
def sub_right {m l r : nat} (A : matrix (fin m) (fin (l + r)) α) : matrix (fin m) (fin r) α :=
minor A id (fin.nat_add l)
@[reducible]
def sub_up {d u n : nat} (A : matrix (fin (u + d)) (fin n) α) : matrix (fin u) (fin n) α :=
minor A (fin.cast_add d) id
@[reducible]
def sub_down {d u n : nat} (A : matrix (fin (u + d)) (fin n) α) : matrix (fin d) (fin n) α :=
minor A (fin.nat_add u) id
@[reducible]
def sub_up_right {d u l r : nat} (A: matrix (fin (u + d)) (fin (l + r)) α) :
matrix (fin u) (fin r) α :=
sub_up (sub_right A)
@[reducible]
def sub_down_right {d u l r : nat} (A : matrix (fin (u + d)) (fin (l + r)) α) :
matrix (fin d) (fin r) α :=
sub_down (sub_right A)
@[reducible]
def sub_up_left {d u l r : nat} (A : matrix (fin (u + d)) (fin (l + r)) α) :
matrix (fin u) (fin (l)) α :=
sub_up (sub_left A)
@[reducible]
def sub_down_left {d u l r : nat} (A: matrix (fin (u + d)) (fin (l + r)) α) :
matrix (fin d) (fin (l)) α :=
sub_down (sub_left A)
end matrix
|
90fa9a0ac945cc416f241acca035e8685fdb154d
|
957a80ea22c5abb4f4670b250d55534d9db99108
|
/tests/lean/run/term_app2.lean
|
299c0230e2961858f8e5d1cd05c3468fab924571
|
[
"Apache-2.0"
] |
permissive
|
GaloisInc/lean
|
aa1e64d604051e602fcf4610061314b9a37ab8cd
|
f1ec117a24459b59c6ff9e56a1d09d9e9e60a6c0
|
refs/heads/master
| 1,592,202,909,807
| 1,504,624,387,000
| 1,504,624,387,000
| 75,319,626
| 2
| 1
|
Apache-2.0
| 1,539,290,164,000
| 1,480,616,104,000
|
C++
|
UTF-8
|
Lean
| false
| false
| 2,205
|
lean
|
lemma nat.lt_add_of_lt {a b c : nat} : a < b → a < c + b :=
begin
intro h,
have aux₁ := nat.le_add_right b c,
have aux₂ := lt_of_lt_of_le h aux₁,
rwa [add_comm] at aux₂
end
lemma nat.lt_one_add_of_lt {a b : nat} : a < b → a < 1 + b :=
begin
intro h,
have aux := lt.trans h (nat.lt_succ_self _),
rwa [<- nat.add_one, add_comm] at aux
end
namespace list
def attach_aux {α} (l : list α) : Π (c : list α), (∀ x : α, x ∈ c → x ∈ l) → list {a : α // a ∈ l}
| [] h := []
| (a::as) h :=
⟨a, h a (list.mem_cons_self _ _)⟩ :: attach_aux as (λ x hin, h x (list.mem_cons_of_mem _ hin))
def attach {α} (l : list α) : list {a : α // a ∈ l} :=
attach_aux l l (λ x h, h)
open well_founded_tactics
lemma sizeof_lt_sizeof_of_mem {α} [has_sizeof α] {a : α} : ∀ {l : list α}, a ∈ l → sizeof a < sizeof l
| [] h := absurd h (not_mem_nil _)
| (b::bs) h :=
begin
cases eq_or_mem_of_mem_cons h with h_1 h_2,
subst h_1,
{unfold_sizeof, cancel_nat_add_lt, trivial_nat_lt},
{have aux₁ := sizeof_lt_sizeof_of_mem h_2,
unfold_sizeof,
exact nat.lt_one_add_of_lt (nat.lt_add_of_lt aux₁)}
end
end list
inductive term
| const : string → term
| app : string → list term → term
def num_consts : term → nat
| (term.const n) := 1
| (term.app n ts) :=
ts.attach.foldl
(λ r p,
have sizeof p.1 < n.length + (1 + sizeof ts), from
calc sizeof p.1 < 1 + (n.length + sizeof ts) : nat.lt_one_add_of_lt (nat.lt_add_of_lt (list.sizeof_lt_sizeof_of_mem p.2))
... = n.length + (1 + sizeof ts) : by simp,
r + num_consts p.1)
0
#eval num_consts (term.app "f" [term.const "x", term.app "g" [term.const "x", term.const "y"]])
#check num_consts.equations._eqn_2
def num_consts' : term → nat
| (term.const n) := 1
| (term.app n ts) :=
ts.attach.foldl
(λ r ⟨t, h⟩,
have sizeof t < n.length + (1 + sizeof ts), from
calc sizeof t < 1 + (n.length + sizeof ts) : nat.lt_one_add_of_lt (nat.lt_add_of_lt (list.sizeof_lt_sizeof_of_mem h))
... = n.length + (1 + sizeof ts) : by simp,
r + num_consts' t)
0
#check num_consts'.equations._eqn_2
|
3acf921445af671f3696af75dfc952eb3497806a
|
6fca17f8d5025f89be1b2d9d15c9e0c4b4900cbf
|
/src/game/world3/level4.lean
|
c61bf8a248a3fc37c1fb1046c4608a802c3d425b
|
[
"Apache-2.0"
] |
permissive
|
arolihas/natural_number_game
|
4f0c93feefec93b8824b2b96adff8b702b8b43ce
|
8e4f7b4b42888a3b77429f90cce16292bd288138
|
refs/heads/master
| 1,621,872,426,808
| 1,586,270,467,000
| 1,586,270,467,000
| 253,648,466
| 0
| 0
| null | 1,586,219,694,000
| 1,586,219,694,000
| null |
UTF-8
|
Lean
| false
| false
| 1,211
|
lean
|
import game.world3.level3 -- hide
namespace mynat -- hide
/-
# Multiplication World
## Level 4: `mul_add`
Where are we going? Well we want to prove `mul_comm`
and `mul_assoc`, i.e. that `a * b = b * a` and
`(a * b) * c = a * (b * c)`. But we *also* want to
establish the way multiplication interacts with addition,
i.e. we want to prove that we can "expand out the brackets"
and show `a * (b + c) = (a * b) + (a * c)`.
The technical term for this is "left distributivity of
multiplication over addition" (there is also right distributivity,
which we'll get to later).
Note the name of this proof -- `mul_add`. And note the left
hand side -- `a * (b + c)`, a multiplication and then an addition.
I think `mul_add` is much easier to remember than "left_distrib",
an alternative name for the proof of this lemma.
-/
/- Lemma
Multiplication is distributive over addition.
In other words, for all natural numbers $a$, $b$ and $t$, we have
$$ t(a + b) = ta + tb. $$
-/
lemma mul_add (t a b : mynat) : t * (a + b) = t * a + t * b :=
begin [nat_num_game]
end
def left_distrib := mul_add -- the "proper" name for this lemma
-- I just don't instinctively know what left_distrib means -- hide
end mynat -- hide
|
706ffa68fddad03b7c3137b6d94db8d619bae5ce
|
98beff2e97d91a54bdcee52f922c4e1866a6c9b9
|
/src/category/binary_products.lean
|
f4bffd3725572c510c6779cd75f2fa48d855bdf2
|
[] |
no_license
|
b-mehta/topos
|
c3fc43fb04ba16bae1965ce5c26c6461172e5bc6
|
c9032b11789e36038bc841a1e2b486972421b983
|
refs/heads/master
| 1,629,609,492,867
| 1,609,907,263,000
| 1,609,907,263,000
| 240,943,034
| 43
| 3
| null | 1,598,210,062,000
| 1,581,877,668,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 11,856
|
lean
|
/-
Copyright (c) 2020 Bhavik Mehta. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Bhavik Mehta
-/
import category_theory.limits.shapes.binary_products
import category_theory.limits.preserves.shapes.binary_products
import category_theory.limits.shapes.pullbacks
import category_theory.comma
import category_theory.adjunction.limits
import category_theory.pempty
import category_theory.limits.preserves.basic
import category_theory.limits.preserves.shapes.products
import category.pullbacks
universes v u u' u₂
noncomputable theory
open category_theory category_theory.category category_theory.limits
namespace category_theory
section
variables {J K : Type v} [small_category J] [small_category K]
variables {C : Type u} [category.{v} C]
instance mono_prod_map {X Y Z W : C} (f : X ⟶ Y) (g : W ⟶ Z) [has_binary_products.{v} C] [mono f] [mono g] : mono (limits.prod.map f g) :=
⟨λ A h k l, begin
apply prod.hom_ext,
{ rw [← cancel_mono f, assoc, assoc, ← limits.prod.map_fst f g, reassoc_of l] },
{ rw [← cancel_mono g, assoc, assoc, ← limits.prod.map_snd f g, reassoc_of l] },
end⟩
variables {F : J ⥤ C}
open category_theory.equivalence
def cone_equivalence_comp (e : K ≌ J) (c : cone F) : cone (e.functor ⋙ F) := cone.whisker e.functor c
def is_limit_equivalence_comp (e : K ≌ J) {c : cone F} (t : is_limit c) : is_limit (cone.whisker e.functor c) :=
is_limit.whisker_equivalence t _
end
-- def discrete_equiv_of_iso {J : Type u} {K : Type u₂} (h : J ≃ K) : discrete J ≌ discrete K :=
-- { functor := discrete.functor h.to_fun,
-- inverse := functor.of_function h.inv_fun,
-- unit_iso := nat_iso.of_components (λ X, eq_to_iso (h.left_inv X).symm) (λ X Y f, dec_trivial),
-- counit_iso := nat_iso.of_components (λ X, eq_to_iso (h.right_inv X)) (λ X Y f, dec_trivial) }
-- def pempty_equiv_discrete0 : pempty ≌ discrete (ulift (fin 0)) :=
-- begin
-- apply (functor.empty (discrete pempty)).as_equivalence.trans (discrete.equivalence _),
-- refine ⟨λ x, x.elim, λ ⟨t⟩, t.elim0, λ t, t.elim, λ ⟨t⟩, t.elim0⟩,
-- end
variables {C : Type u} [category.{v} C]
section
variables {D : Type u₂} [category.{v} D]
section
variables [has_finite_products.{v} C] [has_finite_products.{v} D] (F : C ⥤ D)
@[reassoc]
lemma thingy (A B : C) [is_iso (prod_comparison F A B)] :
inv (prod_comparison F A B) ≫ F.map limits.prod.fst = limits.prod.fst :=
begin
erw (as_iso (prod_comparison F A B)).inv_comp_eq,
dsimp [as_iso_hom, prod_comparison],
rw prod.lift_fst,
end
@[reassoc]
lemma thingy2 (A B : C) [is_iso (prod_comparison F A B)] :
inv (prod_comparison F A B) ≫ F.map limits.prod.snd = limits.prod.snd :=
begin
erw (as_iso (prod_comparison F A B)).inv_comp_eq,
dsimp [as_iso_hom, prod_comparison],
rw prod.lift_snd,
end
@[reassoc] lemma prod_comparison_inv_natural {A A' B B' : C} (f : A ⟶ A') (g : B ⟶ B') [is_iso (prod_comparison F A B)] [is_iso (prod_comparison F A' B')] :
inv (prod_comparison F A B) ≫ F.map (limits.prod.map f g) = limits.prod.map (F.map f) (F.map g) ≫ inv (prod_comparison F A' B') :=
begin
erw [(as_iso (prod_comparison F A' B')).eq_comp_inv, assoc, (as_iso (prod_comparison F A B)).inv_comp_eq],
apply prod_comparison_natural,
end
variables [preserves_limits_of_shape (discrete walking_pair) F]
end
/-- Transfer preservation of limits along a equivalence in the shape. -/
def preserves_limit_of_equiv {J₁ J₂ : Type v} [small_category J₁] [small_category J₂] (e : J₁ ≌ J₂)
(F : C ⥤ D) [preserves_limits_of_shape J₁ F] :
preserves_limits_of_shape J₂ F :=
{ preserves_limit := λ K,
begin
refine ⟨λ c t, _⟩,
have : is_limit (F.map_cone (cone.whisker e.functor c)),
apply is_limit_of_preserves F (is_limit.whisker_equivalence t e),
have := is_limit.whisker_equivalence this e.symm,
let equ := e.inv_fun_id_assoc (K ⋙ F),
apply ((is_limit.postcompose_hom_equiv equ _).symm this).of_iso_limit,
apply cones.ext _ _,
{ apply iso.refl _ },
{ intro j,
dsimp,
simp [←functor.map_comp] },
end }
@[simps {rhs_md := semireducible}]
def build_prod {n : ℕ} {f : ulift (fin (n+1)) → C}
(c₁ : fan (λ (i : ulift (fin n)), f ⟨i.down.succ⟩))
(c₂ : binary_fan (f ⟨0⟩) c₁.X) :
fan f :=
fan.mk c₂.X
begin
rintro ⟨i⟩,
revert i,
refine fin.cases _ _,
{ apply c₂.fst },
{ intro i,
apply c₂.snd ≫ c₁.π.app (ulift.up i) },
end
def build_limit {n : ℕ} (f : ulift (fin (n+1)) → C)
{c₁ : fan (λ (i : ulift (fin n)), f ⟨i.down.succ⟩)} {c₂ : binary_fan (f ⟨0⟩) c₁.X}
(t₁ : is_limit c₁) (t₂ : is_limit c₂) :
is_limit (build_prod c₁ c₂) :=
{ lift := λ s,
begin
apply (binary_fan.is_limit.lift' t₂ _ _).1,
{ apply s.π.app ⟨0⟩ },
{ apply t₁.lift ⟨_, discrete.nat_trans (λ i, s.π.app ⟨i.down.succ⟩)⟩ }
end,
fac' := λ s,
begin
rintro ⟨j⟩,
revert j,
rw fin.forall_fin_succ,
split,
{ apply (binary_fan.is_limit.lift' t₂ _ _).2.1 },
{ intro i,
dsimp only [build_prod_π_app],
rw [fin.cases_succ, ← assoc, (binary_fan.is_limit.lift' t₂ _ _).2.2, t₁.fac],
refl }
end,
uniq' := λ s m w,
begin
apply binary_fan.is_limit.hom_ext t₂,
{ rw (binary_fan.is_limit.lift' t₂ _ _).2.1,
apply w ⟨0⟩ },
{ rw (binary_fan.is_limit.lift' t₂ _ _).2.2,
apply t₁.uniq ⟨_, _⟩,
rintro ⟨j⟩,
rw assoc,
dsimp only [discrete.nat_trans_app],
rw ← w ⟨j.succ⟩,
dsimp only [build_prod_π_app],
rw fin.cases_succ }
end }
variables (F : C ⥤ D) [preserves_limits_of_shape (discrete walking_pair) F] [preserves_limits_of_shape (discrete pempty) F]
variables [has_finite_products.{v} C] [has_finite_products.{v} D]
def fin0_equiv_pempty : fin 0 ≃ pempty :=
equiv.equiv_pempty (λ a, a.elim0)
lemma has_scalar.ext {R M : Type*} : ∀ (a b : has_scalar R M), a.smul = b.smul → a = b
| ⟨_⟩ ⟨_⟩ rfl := rfl
noncomputable def preserves_fin_of_preserves_binary_and_terminal :
Π (n : ℕ) (f : ulift (fin n) → C), preserves_limit (discrete.functor f) F
| 0 := λ f,
begin
letI : preserves_limits_of_shape (discrete (ulift (fin 0))) F :=
preserves_limit_of_equiv (discrete.equivalence (equiv.ulift.trans fin0_equiv_pempty).symm) _,
apply_instance,
end
| (n+1) :=
begin
haveI := preserves_fin_of_preserves_binary_and_terminal n,
intro f,
refine preserves_limit_of_preserves_limit_cone
(build_limit f (limit.is_limit _) (limit.is_limit _)) _,
apply (is_limit_map_cone_fan_mk_equiv _ _ _).symm _,
let := build_limit (λ i, F.obj (f i))
(is_limit_of_has_product_of_preserves_limit F _)
(is_limit_of_has_binary_product_of_preserves_limit F _ _),
refine is_limit.of_iso_limit this _,
apply cones.ext _ _,
apply iso.refl _,
rintro ⟨j⟩,
revert j,
refine fin.cases _ _,
{ symmetry,
apply category.id_comp _ },
{ intro i,
symmetry,
dsimp,
rw [fin.cases_succ, fin.cases_succ],
change 𝟙 _ ≫ F.map _ = F.map _ ≫ F.map _,
rw [id_comp, ← F.map_comp],
refl }
end
def preserves_ulift_fin_of_preserves_binary_and_terminal (n : ℕ) :
preserves_limits_of_shape (discrete (ulift (fin n))) F :=
{ preserves_limit := λ K,
begin
let : discrete.functor K.obj ≅ K := discrete.nat_iso (λ i, iso.refl _),
haveI := preserves_fin_of_preserves_binary_and_terminal F n K.obj,
apply preserves_limit_of_iso_diagram F this,
end }
def preserves_finite_products_of_preserves_binary_and_terminal (J : Type v) [fintype J] :
preserves_limits_of_shape.{v} (discrete J) F :=
begin
classical,
refine trunc.rec_on_subsingleton (fintype.equiv_fin J) _,
intro e,
haveI := preserves_ulift_fin_of_preserves_binary_and_terminal F (fintype.card J),
apply preserves_limit_of_equiv (discrete.equivalence (e.trans equiv.ulift.symm)).symm,
end
end
variables [has_binary_products.{v} C] {B : C} [has_binary_products.{v} (over B)]
variables (f g : over B)
@[reducible]
def magic_arrow (f g : over B) :
(g ⨯ f).left ⟶ g.left ⨯ f.left :=
prod.lift ((limits.prod.fst : g ⨯ f ⟶ g).left) ((limits.prod.snd : g ⨯ f ⟶ f).left)
-- This is an equalizer but we don't really need that
instance magic_mono : mono (magic_arrow f g) :=
begin
refine ⟨λ Z p q h, _⟩,
have h₁ := h =≫ limits.prod.fst,
rw [assoc, assoc, prod.lift_fst] at h₁,
have h₂ := h =≫ limits.prod.snd,
rw [assoc, assoc, prod.lift_snd] at h₂,
have: p ≫ (g ⨯ f).hom = q ≫ (g ⨯ f).hom,
have: (g ⨯ f).hom = (limits.prod.fst : g ⨯ f ⟶ g).left ≫ g.hom := (over.w (limits.prod.fst : g ⨯ f ⟶ g)).symm,
rw this,
apply reassoc_of h₁,
let Z' : over B := over.mk (q ≫ (g ⨯ f).hom),
let p' : Z' ⟶ g ⨯ f := over.hom_mk p,
let q' : Z' ⟶ g ⨯ f := over.hom_mk q,
suffices: p' = q',
show p'.left = q'.left,
rw this,
apply prod.hom_ext,
ext1,
exact h₁,
ext1,
exact h₂,
end
def magic_comm (f g h : over B) (k : f ⟶ g) :
(limits.prod.map k (𝟙 h)).left ≫ magic_arrow h g = magic_arrow h f ≫ limits.prod.map k.left (𝟙 h.left) :=
begin
apply prod.hom_ext,
{ rw [assoc, prod.lift_fst, ← over.comp_left, limits.prod.map_fst, assoc, limits.prod.map_fst, prod.lift_fst_assoc], refl },
{ rw [assoc, assoc, limits.prod.map_snd, comp_id, prod.lift_snd, ← over.comp_left, limits.prod.map_snd, comp_id, prod.lift_snd] }
end
def magic_pb (f g h : over B) (k : f ⟶ g) :
is_limit (pullback_cone.mk (limits.prod.map k (𝟙 h)).left (magic_arrow h f) (magic_comm f g h k)) :=
begin
refine is_limit.mk' _ _,
intro s,
have s₁ := pullback_cone.condition s =≫ limits.prod.fst,
rw [assoc, assoc, prod.lift_fst, limits.prod.map_fst] at s₁,
have s₂ := pullback_cone.condition s =≫ limits.prod.snd,
rw [assoc, assoc, prod.lift_snd, limits.prod.map_snd, comp_id] at s₂,
let sX' : over B := over.mk (pullback_cone.fst s ≫ (g ⨯ h).hom),
have z : (pullback_cone.snd s ≫ limits.prod.snd) ≫ h.hom = sX'.hom,
rw ← s₂,
change (pullback_cone.fst s ≫ _) ≫ h.hom = pullback_cone.fst s ≫ (g ⨯ h).hom,
rw ← over.w (limits.prod.snd : g ⨯ h ⟶ _),
rw assoc,
have z₂ : (pullback_cone.snd s ≫ limits.prod.fst) ≫ f.hom = pullback_cone.fst s ≫ (g ⨯ h).hom,
rw ← over.w k,
slice_lhs 1 3 {rw ← s₁},
rw assoc,
rw over.w (limits.prod.fst : g ⨯ h ⟶ _),
let l : sX' ⟶ f := over.hom_mk (pullback_cone.snd s ≫ limits.prod.fst) z₂,
let t : sX' ⟶ f ⨯ h := prod.lift l (over.hom_mk (pullback_cone.snd s ≫ limits.prod.snd) z),
have t₁: t.left ≫ (limits.prod.fst : f ⨯ h ⟶ f).left = l.left,
rw [← over.comp_left, prod.lift_fst],
have t₂: t.left ≫ (limits.prod.snd : f ⨯ h ⟶ h).left = pullback_cone.snd s ≫ limits.prod.snd,
rw [← over.comp_left, prod.lift_snd], refl,
have fac: t.left ≫ magic_arrow h f = pullback_cone.snd s,
apply prod.hom_ext,
rw [assoc],
change t.left ≫ magic_arrow h f ≫ limits.prod.fst = pullback_cone.snd s ≫ limits.prod.fst,
rw [prod.lift_fst], exact t₁,
rw ← t₂,
rw assoc,
change t.left ≫ magic_arrow h f ≫ limits.prod.snd = _,
rw prod.lift_snd,
refine ⟨t.left, _, fac, _⟩,
rw [← cancel_mono (magic_arrow h g), pullback_cone.condition s, assoc],
change t.left ≫ (limits.prod.map k (𝟙 h)).left ≫ magic_arrow h g =
pullback_cone.snd s ≫ limits.prod.map k.left (𝟙 h.left),
rw [magic_comm, ← fac, assoc],
intros m m₁ m₂,
rw ← cancel_mono (magic_arrow h f),
erw m₂,
exact fac.symm,
end
end category_theory
|
742290d4b0a6d55bacb9af1567fce1fed4813a49
|
592ee40978ac7604005a4e0d35bbc4b467389241
|
/Library/generated/mathscheme-lean/BinaryInverse.lean
|
3a7c1e5388bc842a66fa238d3517b97bfd082d47
|
[] |
no_license
|
ysharoda/Deriving-Definitions
|
3e149e6641fae440badd35ac110a0bd705a49ad2
|
dfecb27572022de3d4aa702cae8db19957523a59
|
refs/heads/master
| 1,679,127,857,700
| 1,615,939,007,000
| 1,615,939,007,000
| 229,785,731
| 4
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 8,906
|
lean
|
import init.data.nat.basic
import init.data.fin.basic
import data.vector
import .Prelude
open Staged
open nat
open fin
open vector
section BinaryInverse
structure BinaryInverse (A : Type) : Type :=
(linv : (A → (A → A)))
(rinv : (A → (A → A)))
(leftInverse : (∀ {x y : A} , (rinv (linv x y) x) = y))
(rightInverse : (∀ {x y : A} , (linv x (rinv y x)) = y))
open BinaryInverse
structure Sig (AS : Type) : Type :=
(linvS : (AS → (AS → AS)))
(rinvS : (AS → (AS → AS)))
structure Product (A : Type) : Type :=
(linvP : ((Prod A A) → ((Prod A A) → (Prod A A))))
(rinvP : ((Prod A A) → ((Prod A A) → (Prod A A))))
(leftInverseP : (∀ {xP yP : (Prod A A)} , (rinvP (linvP xP yP) xP) = yP))
(rightInverseP : (∀ {xP yP : (Prod A A)} , (linvP xP (rinvP yP xP)) = yP))
structure Hom {A1 : Type} {A2 : Type} (Bi1 : (BinaryInverse A1)) (Bi2 : (BinaryInverse A2)) : Type :=
(hom : (A1 → A2))
(pres_linv : (∀ {x1 x2 : A1} , (hom ((linv Bi1) x1 x2)) = ((linv Bi2) (hom x1) (hom x2))))
(pres_rinv : (∀ {x1 x2 : A1} , (hom ((rinv Bi1) x1 x2)) = ((rinv Bi2) (hom x1) (hom x2))))
structure RelInterp {A1 : Type} {A2 : Type} (Bi1 : (BinaryInverse A1)) (Bi2 : (BinaryInverse A2)) : Type 1 :=
(interp : (A1 → (A2 → Type)))
(interp_linv : (∀ {x1 x2 : A1} {y1 y2 : A2} , ((interp x1 y1) → ((interp x2 y2) → (interp ((linv Bi1) x1 x2) ((linv Bi2) y1 y2))))))
(interp_rinv : (∀ {x1 x2 : A1} {y1 y2 : A2} , ((interp x1 y1) → ((interp x2 y2) → (interp ((rinv Bi1) x1 x2) ((rinv Bi2) y1 y2))))))
inductive BinaryInverseTerm : Type
| linvL : (BinaryInverseTerm → (BinaryInverseTerm → BinaryInverseTerm))
| rinvL : (BinaryInverseTerm → (BinaryInverseTerm → BinaryInverseTerm))
open BinaryInverseTerm
inductive ClBinaryInverseTerm (A : Type) : Type
| sing : (A → ClBinaryInverseTerm)
| linvCl : (ClBinaryInverseTerm → (ClBinaryInverseTerm → ClBinaryInverseTerm))
| rinvCl : (ClBinaryInverseTerm → (ClBinaryInverseTerm → ClBinaryInverseTerm))
open ClBinaryInverseTerm
inductive OpBinaryInverseTerm (n : ℕ) : Type
| v : ((fin n) → OpBinaryInverseTerm)
| linvOL : (OpBinaryInverseTerm → (OpBinaryInverseTerm → OpBinaryInverseTerm))
| rinvOL : (OpBinaryInverseTerm → (OpBinaryInverseTerm → OpBinaryInverseTerm))
open OpBinaryInverseTerm
inductive OpBinaryInverseTerm2 (n : ℕ) (A : Type) : Type
| v2 : ((fin n) → OpBinaryInverseTerm2)
| sing2 : (A → OpBinaryInverseTerm2)
| linvOL2 : (OpBinaryInverseTerm2 → (OpBinaryInverseTerm2 → OpBinaryInverseTerm2))
| rinvOL2 : (OpBinaryInverseTerm2 → (OpBinaryInverseTerm2 → OpBinaryInverseTerm2))
open OpBinaryInverseTerm2
def simplifyCl {A : Type} : ((ClBinaryInverseTerm A) → (ClBinaryInverseTerm A))
| (linvCl x1 x2) := (linvCl (simplifyCl x1) (simplifyCl x2))
| (rinvCl x1 x2) := (rinvCl (simplifyCl x1) (simplifyCl x2))
| (sing x1) := (sing x1)
def simplifyOpB {n : ℕ} : ((OpBinaryInverseTerm n) → (OpBinaryInverseTerm n))
| (linvOL x1 x2) := (linvOL (simplifyOpB x1) (simplifyOpB x2))
| (rinvOL x1 x2) := (rinvOL (simplifyOpB x1) (simplifyOpB x2))
| (v x1) := (v x1)
def simplifyOp {n : ℕ} {A : Type} : ((OpBinaryInverseTerm2 n A) → (OpBinaryInverseTerm2 n A))
| (linvOL2 x1 x2) := (linvOL2 (simplifyOp x1) (simplifyOp x2))
| (rinvOL2 x1 x2) := (rinvOL2 (simplifyOp x1) (simplifyOp x2))
| (v2 x1) := (v2 x1)
| (sing2 x1) := (sing2 x1)
def evalB {A : Type} : ((BinaryInverse A) → (BinaryInverseTerm → A))
| Bi (linvL x1 x2) := ((linv Bi) (evalB Bi x1) (evalB Bi x2))
| Bi (rinvL x1 x2) := ((rinv Bi) (evalB Bi x1) (evalB Bi x2))
def evalCl {A : Type} : ((BinaryInverse A) → ((ClBinaryInverseTerm A) → A))
| Bi (sing x1) := x1
| Bi (linvCl x1 x2) := ((linv Bi) (evalCl Bi x1) (evalCl Bi x2))
| Bi (rinvCl x1 x2) := ((rinv Bi) (evalCl Bi x1) (evalCl Bi x2))
def evalOpB {A : Type} {n : ℕ} : ((BinaryInverse A) → ((vector A n) → ((OpBinaryInverseTerm n) → A)))
| Bi vars (v x1) := (nth vars x1)
| Bi vars (linvOL x1 x2) := ((linv Bi) (evalOpB Bi vars x1) (evalOpB Bi vars x2))
| Bi vars (rinvOL x1 x2) := ((rinv Bi) (evalOpB Bi vars x1) (evalOpB Bi vars x2))
def evalOp {A : Type} {n : ℕ} : ((BinaryInverse A) → ((vector A n) → ((OpBinaryInverseTerm2 n A) → A)))
| Bi vars (v2 x1) := (nth vars x1)
| Bi vars (sing2 x1) := x1
| Bi vars (linvOL2 x1 x2) := ((linv Bi) (evalOp Bi vars x1) (evalOp Bi vars x2))
| Bi vars (rinvOL2 x1 x2) := ((rinv Bi) (evalOp Bi vars x1) (evalOp Bi vars x2))
def inductionB {P : (BinaryInverseTerm → Type)} : ((∀ (x1 x2 : BinaryInverseTerm) , ((P x1) → ((P x2) → (P (linvL x1 x2))))) → ((∀ (x1 x2 : BinaryInverseTerm) , ((P x1) → ((P x2) → (P (rinvL x1 x2))))) → (∀ (x : BinaryInverseTerm) , (P x))))
| plinvl prinvl (linvL x1 x2) := (plinvl _ _ (inductionB plinvl prinvl x1) (inductionB plinvl prinvl x2))
| plinvl prinvl (rinvL x1 x2) := (prinvl _ _ (inductionB plinvl prinvl x1) (inductionB plinvl prinvl x2))
def inductionCl {A : Type} {P : ((ClBinaryInverseTerm A) → Type)} : ((∀ (x1 : A) , (P (sing x1))) → ((∀ (x1 x2 : (ClBinaryInverseTerm A)) , ((P x1) → ((P x2) → (P (linvCl x1 x2))))) → ((∀ (x1 x2 : (ClBinaryInverseTerm A)) , ((P x1) → ((P x2) → (P (rinvCl x1 x2))))) → (∀ (x : (ClBinaryInverseTerm A)) , (P x)))))
| psing plinvcl prinvcl (sing x1) := (psing x1)
| psing plinvcl prinvcl (linvCl x1 x2) := (plinvcl _ _ (inductionCl psing plinvcl prinvcl x1) (inductionCl psing plinvcl prinvcl x2))
| psing plinvcl prinvcl (rinvCl x1 x2) := (prinvcl _ _ (inductionCl psing plinvcl prinvcl x1) (inductionCl psing plinvcl prinvcl x2))
def inductionOpB {n : ℕ} {P : ((OpBinaryInverseTerm n) → Type)} : ((∀ (fin : (fin n)) , (P (v fin))) → ((∀ (x1 x2 : (OpBinaryInverseTerm n)) , ((P x1) → ((P x2) → (P (linvOL x1 x2))))) → ((∀ (x1 x2 : (OpBinaryInverseTerm n)) , ((P x1) → ((P x2) → (P (rinvOL x1 x2))))) → (∀ (x : (OpBinaryInverseTerm n)) , (P x)))))
| pv plinvol prinvol (v x1) := (pv x1)
| pv plinvol prinvol (linvOL x1 x2) := (plinvol _ _ (inductionOpB pv plinvol prinvol x1) (inductionOpB pv plinvol prinvol x2))
| pv plinvol prinvol (rinvOL x1 x2) := (prinvol _ _ (inductionOpB pv plinvol prinvol x1) (inductionOpB pv plinvol prinvol x2))
def inductionOp {n : ℕ} {A : Type} {P : ((OpBinaryInverseTerm2 n A) → Type)} : ((∀ (fin : (fin n)) , (P (v2 fin))) → ((∀ (x1 : A) , (P (sing2 x1))) → ((∀ (x1 x2 : (OpBinaryInverseTerm2 n A)) , ((P x1) → ((P x2) → (P (linvOL2 x1 x2))))) → ((∀ (x1 x2 : (OpBinaryInverseTerm2 n A)) , ((P x1) → ((P x2) → (P (rinvOL2 x1 x2))))) → (∀ (x : (OpBinaryInverseTerm2 n A)) , (P x))))))
| pv2 psing2 plinvol2 prinvol2 (v2 x1) := (pv2 x1)
| pv2 psing2 plinvol2 prinvol2 (sing2 x1) := (psing2 x1)
| pv2 psing2 plinvol2 prinvol2 (linvOL2 x1 x2) := (plinvol2 _ _ (inductionOp pv2 psing2 plinvol2 prinvol2 x1) (inductionOp pv2 psing2 plinvol2 prinvol2 x2))
| pv2 psing2 plinvol2 prinvol2 (rinvOL2 x1 x2) := (prinvol2 _ _ (inductionOp pv2 psing2 plinvol2 prinvol2 x1) (inductionOp pv2 psing2 plinvol2 prinvol2 x2))
def stageB : (BinaryInverseTerm → (Staged BinaryInverseTerm))
| (linvL x1 x2) := (stage2 linvL (codeLift2 linvL) (stageB x1) (stageB x2))
| (rinvL x1 x2) := (stage2 rinvL (codeLift2 rinvL) (stageB x1) (stageB x2))
def stageCl {A : Type} : ((ClBinaryInverseTerm A) → (Staged (ClBinaryInverseTerm A)))
| (sing x1) := (Now (sing x1))
| (linvCl x1 x2) := (stage2 linvCl (codeLift2 linvCl) (stageCl x1) (stageCl x2))
| (rinvCl x1 x2) := (stage2 rinvCl (codeLift2 rinvCl) (stageCl x1) (stageCl x2))
def stageOpB {n : ℕ} : ((OpBinaryInverseTerm n) → (Staged (OpBinaryInverseTerm n)))
| (v x1) := (const (code (v x1)))
| (linvOL x1 x2) := (stage2 linvOL (codeLift2 linvOL) (stageOpB x1) (stageOpB x2))
| (rinvOL x1 x2) := (stage2 rinvOL (codeLift2 rinvOL) (stageOpB x1) (stageOpB x2))
def stageOp {n : ℕ} {A : Type} : ((OpBinaryInverseTerm2 n A) → (Staged (OpBinaryInverseTerm2 n A)))
| (sing2 x1) := (Now (sing2 x1))
| (v2 x1) := (const (code (v2 x1)))
| (linvOL2 x1 x2) := (stage2 linvOL2 (codeLift2 linvOL2) (stageOp x1) (stageOp x2))
| (rinvOL2 x1 x2) := (stage2 rinvOL2 (codeLift2 rinvOL2) (stageOp x1) (stageOp x2))
structure StagedRepr (A : Type) (Repr : (Type → Type)) : Type :=
(linvT : ((Repr A) → ((Repr A) → (Repr A))))
(rinvT : ((Repr A) → ((Repr A) → (Repr A))))
end BinaryInverse
|
73bf8d7b62e385c03bb0ca8db773051014363e49
|
737dc4b96c97368cb66b925eeea3ab633ec3d702
|
/src/Lean/PrettyPrinter/Delaborator/Builtins.lean
|
e36cd2a4f8949318fbeacb07552cf1376597054d
|
[
"Apache-2.0"
] |
permissive
|
Bioye97/lean4
|
1ace34638efd9913dc5991443777b01a08983289
|
bc3900cbb9adda83eed7e6affeaade7cfd07716d
|
refs/heads/master
| 1,690,589,820,211
| 1,631,051,000,000
| 1,631,067,598,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 30,455
|
lean
|
/-
Copyright (c) 2020 Sebastian Ullrich. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sebastian Ullrich
-/
import Lean.PrettyPrinter.Delaborator.Basic
import Lean.PrettyPrinter.Delaborator.SubExpr
import Lean.PrettyPrinter.Delaborator.TopDownAnalyze
import Lean.Parser
namespace Lean.PrettyPrinter.Delaborator
open Lean.Meta
open Lean.Parser.Term
open SubExpr
def maybeAddBlockImplicit (ident : Syntax) : DelabM Syntax := do
if ← getPPOption getPPAnalysisBlockImplicit then `(@$ident:ident) else ident
def unfoldMDatas : Expr → Expr
| Expr.mdata _ e _ => unfoldMDatas e
| e => e
@[builtinDelab fvar]
def delabFVar : Delab := do
let Expr.fvar id _ ← getExpr | unreachable!
try
let l ← getLocalDecl id
maybeAddBlockImplicit (mkIdent l.userName)
catch _ =>
-- loose free variable, use internal name
maybeAddBlockImplicit $ mkIdent id.name
-- loose bound variable, use pseudo syntax
@[builtinDelab bvar]
def delabBVar : Delab := do
let Expr.bvar idx _ ← getExpr | unreachable!
pure $ mkIdent $ Name.mkSimple $ "#" ++ toString idx
@[builtinDelab mvar]
def delabMVar : Delab := do
let Expr.mvar n _ ← getExpr | unreachable!
let mvarDecl ← getMVarDecl n
let n :=
match mvarDecl.userName with
| Name.anonymous => n.name.replacePrefix `_uniq `m
| n => n
`(?$(mkIdent n))
@[builtinDelab sort]
def delabSort : Delab := do
let Expr.sort l _ ← getExpr | unreachable!
match l with
| Level.zero _ => `(Prop)
| Level.succ (Level.zero _) _ => `(Type)
| _ => match l.dec with
| some l' => `(Type $(Level.quote l' max_prec))
| none => `(Sort $(Level.quote l max_prec))
def unresolveNameGlobal (n₀ : Name) : DelabM Name := do
if n₀.hasMacroScopes then return n₀
let mut initialNames := #[]
if !(← getPPOption getPPFullNames) then initialNames := initialNames ++ getRevAliases (← getEnv) n₀
initialNames := initialNames.push (rootNamespace ++ n₀)
for initialName in initialNames do
match (← unresolveNameCore initialName) with
| none => continue
| some n => return n
return n₀ -- if can't resolve, return the original
where
unresolveNameCore (n : Name) : DelabM (Option Name) := do
let mut revComponents := n.components'
let mut candidate := Name.anonymous
for i in [:revComponents.length] do
match revComponents with
| [] => return none
| cmpt::rest => candidate := cmpt ++ candidate; revComponents := rest
match (← resolveGlobalName candidate) with
| [(potentialMatch, _)] => if potentialMatch == n₀ then return some candidate else continue
| _ => continue
return none
-- NOTE: not a registered delaborator, as `const` is never called (see [delab] description)
def delabConst : Delab := do
let Expr.const c₀ ls _ ← getExpr | unreachable!
let ctx ← read
let c₀ := if (← getPPOption getPPPrivateNames) then c₀ else (privateToUserName? c₀).getD c₀
let mut c ← unresolveNameGlobal c₀
let stx ←
if ls.isEmpty || !(← getPPOption getPPUniverses) then
if (← getLCtx).usesUserName c then
-- `c` is also a local declaration
if c == c₀ && !(← read).inPattern then
-- `c` is the fully qualified named. So, we append the `_root_` prefix
c := `_root_ ++ c
else
c := c₀
return mkIdent c
else
`($(mkIdent c).{$[$(ls.toArray.map quote)],*})
maybeAddBlockImplicit stx
structure ParamKind where
name : Name
bInfo : BinderInfo
defVal : Option Expr := none
isAutoParam : Bool := false
def ParamKind.isRegularExplicit (param : ParamKind) : Bool :=
param.bInfo.isExplicit && !param.isAutoParam && param.defVal.isNone
/-- Return array with n-th element set to kind of n-th parameter of `e`. -/
partial def getParamKinds : DelabM (Array ParamKind) := do
let e ← getExpr
try
withTransparency TransparencyMode.all do
forallTelescopeArgs e.getAppFn e.getAppArgs fun params _ => do
params.mapM fun param => do
let l ← getLocalDecl param.fvarId!
pure { name := l.userName, bInfo := l.binderInfo, defVal := l.type.getOptParamDefault?, isAutoParam := l.type.isAutoParam }
catch _ => pure #[] -- recall that expr may be nonsensical
where
forallTelescopeArgs f args k := do
forallBoundedTelescope (← inferType f) args.size fun xs b =>
if xs.isEmpty || xs.size == args.size then
-- we still want to consider optParams
forallTelescopeReducing b fun ys b => k (xs ++ ys) b
else
forallTelescopeArgs (mkAppN f $ args.shrink xs.size) (args.extract xs.size args.size) fun ys b =>
k (xs ++ ys) b
@[builtinDelab app]
def delabAppExplicit : Delab := whenPPOption getPPExplicit do
let paramKinds ← getParamKinds
let (fnStx, _, argStxs) ← withAppFnArgs
(do
let fn ← getExpr
let stx ← if fn.isConst then delabConst else delab
let needsExplicit := paramKinds.any (fun param => !param.isRegularExplicit) && stx.getKind != `Lean.Parser.Term.explicit
let stx ← if needsExplicit then `(@$stx) else pure stx
pure (stx, paramKinds.toList, #[]))
(fun ⟨fnStx, paramKinds, argStxs⟩ => do
let isInstImplicit := match paramKinds with
| [] => false
| param :: _ => param.bInfo == BinderInfo.instImplicit
let argStx ← if ← getPPOption getPPAnalysisHole then `(_)
else if isInstImplicit == true then
let stx ← if ← getPPOption getPPInstances then delab else `(_)
if ← getPPOption getPPInstanceTypes then
let typeStx ← withType delab
`(($stx : $typeStx))
else stx
else delab
pure (fnStx, paramKinds.tailD [], argStxs.push argStx))
Syntax.mkApp fnStx argStxs
def shouldShowMotive (motive : Expr) (opts : Options) : MetaM Bool := do
getPPMotivesAll opts
<||> (← getPPMotivesPi opts <&&> returnsPi motive)
<||> (← getPPMotivesNonConst opts <&&> isNonConstFun motive)
def withMDataOptions [Inhabited α] (x : DelabM α) : DelabM α := do
match ← getExpr with
| Expr.mdata m .. =>
let mut posOpts := (← read).optionsPerPos
let pos ← getPos
for (k, v) in m do
if (`pp).isPrefixOf k then
let opts := posOpts.find? pos |>.getD {}
posOpts := posOpts.insert pos (opts.insert k v)
withReader ({ · with optionsPerPos := posOpts }) $ withMDataExpr x
| _ => x
partial def withMDatasOptions [Inhabited α] (x : DelabM α) : DelabM α := do
if (← getExpr).isMData then withMDataOptions (withMDatasOptions x) else x
def isRegularApp : DelabM Bool := do
let e ← getExpr
if not (unfoldMDatas e.getAppFn).isConst then return false
if ← withNaryFn (withMDatasOptions (getPPOption getPPUniverses <||> getPPOption getPPAnalysisBlockImplicit)) then return false
for i in [:e.getAppNumArgs] do
if ← withNaryArg i (getPPOption getPPAnalysisNamedArg) then return false
return true
def unexpandRegularApp (stx : Syntax) : Delab := do
let Expr.const c .. ← pure (unfoldMDatas (← getExpr).getAppFn) | unreachable!
let fs ← appUnexpanderAttribute.getValues (← getEnv) c
fs.firstM fun f =>
match f stx |>.run () with
| EStateM.Result.ok stx _ => pure stx
| _ => failure
-- abbrev coe {α : Sort u} {β : Sort v} (a : α) [CoeT α a β] : β
-- abbrev coeFun {α : Sort u} {γ : α → Sort v} (a : α) [CoeFun α γ] : γ a
def unexpandCoe (stx : Syntax) : Delab := whenPPOption getPPCoercions do
if not (← isCoe (← getExpr)) then failure
let e ← getExpr
match stx with
| `($fn $arg) => arg
| `($fn $args*) => `($(args.get! 0) $(args.eraseIdx 0)*)
| _ => failure
def unexpandStructureInstance (stx : Syntax) : Delab := whenPPOption getPPStructureInstances do
let env ← getEnv
let e ← getExpr
let some s ← pure $ e.isConstructorApp? env | failure
guard $ isStructure env s.induct;
/- If implicit arguments should be shown, and the structure has parameters, we should not
pretty print using { ... }, because we will not be able to see the parameters. -/
let fieldNames := getStructureFields env s.induct
let mut fields := #[]
guard $ fieldNames.size == stx[1].getNumArgs
let args := e.getAppArgs
let fieldVals := args.extract s.numParams args.size
for idx in [:fieldNames.size] do
let fieldName := fieldNames[idx]
let fieldId := mkIdent fieldName
let fieldPos ← nextExtraPos
let fieldId := annotatePos fieldPos fieldId
addFieldInfo fieldPos (s.induct ++ fieldName) fieldName fieldId fieldVals[idx]
let field ← `(structInstField|$fieldId:ident := $(stx[1][idx]):term)
fields := fields.push field
let tyStx ← withType do
if (← getPPOption getPPStructureInstanceType) then delab >>= pure ∘ some else pure none
if fields.isEmpty then
`({ $[: $tyStx]? })
else
let lastField := fields.back
fields := fields.pop
`({ $[$fields, ]* $lastField $[: $tyStx]? })
@[builtinDelab app]
def delabAppImplicit : Delab := do
-- TODO: always call the unexpanders, make them guard on the right # args?
let paramKinds ← getParamKinds
if ← getPPOption getPPExplicit then
if paramKinds.any (fun param => !param.isRegularExplicit) then failure
let (fnStx, _, argStxs) ← withAppFnArgs
(do
let fn ← getExpr
let stx ← if fn.isConst then delabConst else delab
pure (stx, paramKinds.toList, #[]))
(fun (fnStx, paramKinds, argStxs) => do
let arg ← getExpr
let opts ← getOptions
let mkNamedArg (name : Name) (argStx : Syntax) : DelabM Syntax := do
`(Parser.Term.namedArgument| ($(← mkIdent name):ident := $argStx:term))
let argStx? : Option Syntax ←
if ← getPPOption getPPAnalysisSkip then pure none
else if ← getPPOption getPPAnalysisHole then `(_)
else
match paramKinds with
| [] => delab
| param :: rest =>
if param.defVal.isSome && rest.isEmpty then
let v := param.defVal.get!
if !v.hasLooseBVars && v == arg then none else delab
else if !param.isRegularExplicit && param.defVal.isNone then
if ← getPPOption getPPAnalysisNamedArg <||> (param.name == `motive <&&> shouldShowMotive arg opts) then mkNamedArg param.name (← delab) else none
else delab
let argStxs := match argStx? with
| none => argStxs
| some stx => argStxs.push stx
pure (fnStx, paramKinds.tailD [], argStxs))
let stx := Syntax.mkApp fnStx argStxs
if ← isRegularApp then
(guard (← getPPOption getPPNotation) *> unexpandRegularApp stx)
<|> (guard (← getPPOption getPPStructureInstances) *> unexpandStructureInstance stx)
<|> (guard (← getPPOption getPPNotation) *> unexpandCoe stx)
<|> pure stx
else pure stx
/-- State for `delabAppMatch` and helpers. -/
structure AppMatchState where
info : MatcherInfo
matcherTy : Expr
params : Array Expr := #[]
motive : Option (Syntax × Expr) := none
motiveNamed : Bool := false
discrs : Array Syntax := #[]
varNames : Array (Array Name) := #[]
rhss : Array Syntax := #[]
-- additional arguments applied to the result of the `match` expression
moreArgs : Array Syntax := #[]
/--
Extract arguments of motive applications from the matcher type.
For the example below: `#[#[`([])], #[`(a::as)]]` -/
private partial def delabPatterns (st : AppMatchState) : DelabM (Array (Array Syntax)) :=
withReader (fun ctx => { ctx with inPattern := true, optionsPerPos := {} }) do
let ty ← instantiateForall st.matcherTy st.params
forallTelescope ty fun params _ => do
-- skip motive and discriminators
let alts := Array.ofSubarray params[1 + st.discrs.size:]
alts.mapIdxM fun idx alt => do
let ty ← inferType alt
-- TODO: this is a hack; we are accessing the expression out-of-sync with the position
-- Currently, we reset `optionsPerPos` at the beginning of `delabPatterns` to avoid
-- incorrectly considering annotations.
withTheReader SubExpr ({ · with expr := ty }) $
usingNames st.varNames[idx] do
withAppFnArgs (pure #[]) (fun pats => do pure $ pats.push (← delab))
where
usingNames {α} (varNames : Array Name) (x : DelabM α) : DelabM α :=
usingNamesAux 0 varNames x
usingNamesAux {α} (i : Nat) (varNames : Array Name) (x : DelabM α) : DelabM α :=
if i < varNames.size then
withBindingBody varNames[i] <| usingNamesAux (i+1) varNames x
else
x
/-- Skip `numParams` binders, and execute `x varNames` where `varNames` contains the new binder names. -/
private partial def skippingBinders {α} (numParams : Nat) (x : Array Name → DelabM α) : DelabM α :=
loop numParams #[]
where
loop : Nat → Array Name → DelabM α
| 0, varNames => x varNames
| n+1, varNames => do
let rec visitLambda : DelabM α := do
let varName ← (← getExpr).bindingName!.eraseMacroScopes
-- Pattern variables cannot shadow each other
if varNames.contains varName then
let varName := (← getLCtx).getUnusedName varName
withBindingBody varName do
loop n (varNames.push varName)
else
withBindingBodyUnusedName fun id => do
loop n (varNames.push id.getId)
let e ← getExpr
if e.isLambda then
visitLambda
else
-- eta expand `e`
let e ← forallTelescopeReducing (← inferType e) fun xs _ => do
if xs.size == 1 && (← inferType xs[0]).isConstOf ``Unit then
-- `e` might be a thunk create by the dependent pattern matching compiler, and `xs[0]` may not even be a pattern variable.
-- If it is a pattern variable, it doesn't look too bad to use `()` instead of the pattern variable.
-- If it becomes a problem in the future, we should modify the dependent pattern matching compiler, and make sure
-- it adds an annotation to distinguish these two cases.
mkLambdaFVars xs (mkApp e (mkConst ``Unit.unit))
else
mkLambdaFVars xs (mkAppN e xs)
withTheReader SubExpr (fun ctx => { ctx with expr := e }) visitLambda
/--
Delaborate applications of "matchers" such as
```
List.map.match_1 : {α : Type _} →
(motive : List α → Sort _) →
(x : List α) → (Unit → motive List.nil) → ((a : α) → (as : List α) → motive (a :: as)) → motive x
```
-/
@[builtinDelab app]
def delabAppMatch : Delab := whenPPOption getPPNotation <| whenPPOption getPPMatch do
-- incrementally fill `AppMatchState` from arguments
let st ← withAppFnArgs
(do
let (Expr.const c us _) ← getExpr | failure
let (some info) ← getMatcherInfo? c | failure
{ matcherTy := (← getConstInfo c).instantiateTypeLevelParams us, info := info : AppMatchState })
(fun st => do
if st.params.size < st.info.numParams then
pure { st with params := st.params.push (← getExpr) }
else if st.motive.isNone then
-- store motive argument separately
let lamMotive ← getExpr
let piMotive ← lambdaTelescope lamMotive fun xs body => mkForallFVars xs body
-- TODO: pp.analyze has not analyzed `piMotive`, only `lamMotive`
-- Thus the binder types won't have any annotations
let piStx ← withTheReader SubExpr (fun cfg => { cfg with expr := piMotive }) delab
let named ← getPPOption getPPAnalysisNamedArg
pure { st with motive := (piStx, lamMotive), motiveNamed := named }
else if st.discrs.size < st.info.numDiscrs then
pure { st with discrs := st.discrs.push (← delab) }
else if st.rhss.size < st.info.altNumParams.size then
/- We save the variables names here to be able to implement safe_shadowing.
The pattern delaboration must use the names saved here. -/
let (varNames, rhs) ← skippingBinders st.info.altNumParams[st.rhss.size] fun varNames => do
let rhs ← delab
return (varNames, rhs)
pure { st with rhss := st.rhss.push rhs, varNames := st.varNames.push varNames }
else
pure { st with moreArgs := st.moreArgs.push (← delab) })
if st.discrs.size < st.info.numDiscrs || st.rhss.size < st.info.altNumParams.size then
-- underapplied
failure
match st.discrs, st.rhss with
| #[discr], #[] =>
let stx ← `(nomatch $discr)
Syntax.mkApp stx st.moreArgs
| _, #[] => failure
| _, _ =>
let pats ← delabPatterns st
let stx ← do
let (piStx, lamMotive) := st.motive.get!
let opts ← getOptions
-- TODO: disable the match if other implicits are needed?
if ← st.motiveNamed <||> shouldShowMotive lamMotive opts then
`(match $[$st.discrs:term],* : $piStx with $[| $pats,* => $st.rhss]*)
else
`(match $[$st.discrs:term],* with $[| $pats,* => $st.rhss]*)
Syntax.mkApp stx st.moreArgs
@[builtinDelab mdata]
def delabMData : Delab := do
if let some _ := Lean.Meta.Match.inaccessible? (← getExpr) then
let s ← withMDataExpr delab
if (← read).inPattern then
`(.($s)) -- We only include the inaccessible annotation when we are delaborating patterns
else
return s
else if let some _ := isLHSGoal? (← getExpr) then
withMDataExpr <| withAppFn <| withAppArg <| delab
else
withMDataOptions delab
/--
Check for a `Syntax.ident` of the given name anywhere in the tree.
This is usually a bad idea since it does not check for shadowing bindings,
but in the delaborator we assume that bindings are never shadowed.
-/
partial def hasIdent (id : Name) : Syntax → Bool
| Syntax.ident _ _ id' _ => id == id'
| Syntax.node _ args => args.any (hasIdent id)
| _ => false
/--
Return `true` iff current binder should be merged with the nested
binder, if any, into a single binder group:
* both binders must have same binder info and domain
* they cannot be inst-implicit (`[a b : A]` is not valid syntax)
* `pp.binderTypes` must be the same value for both terms
* prefer `fun a b` over `fun (a b)`
-/
private def shouldGroupWithNext : DelabM Bool := do
let e ← getExpr
let ppEType ← getPPOption (getPPBinderTypes e)
let go (e' : Expr) := do
let ppE'Type ← withBindingBody `_ $ getPPOption (getPPBinderTypes e)
pure $ e.binderInfo == e'.binderInfo &&
e.bindingDomain! == e'.bindingDomain! &&
e'.binderInfo != BinderInfo.instImplicit &&
ppEType == ppE'Type &&
(e'.binderInfo != BinderInfo.default || ppE'Type)
match e with
| Expr.lam _ _ e'@(Expr.lam _ _ _ _) _ => go e'
| Expr.forallE _ _ e'@(Expr.forallE _ _ _ _) _ => go e'
| _ => pure false
where
getPPBinderTypes (e : Expr) :=
if e.isForall then getPPPiBinderTypes else getPPFunBinderTypes
private partial def delabBinders (delabGroup : Array Syntax → Syntax → Delab) : optParam (Array Syntax) #[] → Delab
-- Accumulate names (`Syntax.ident`s with position information) of the current, unfinished
-- binder group `(d e ...)` as determined by `shouldGroupWithNext`. We cannot do grouping
-- inside-out, on the Syntax level, because it depends on comparing the Expr binder types.
| curNames => do
if ← shouldGroupWithNext then
-- group with nested binder => recurse immediately
withBindingBodyUnusedName fun stxN => delabBinders delabGroup (curNames.push stxN)
else
-- don't group => delab body and prepend current binder group
let (stx, stxN) ← withBindingBodyUnusedName fun stxN => do (← delab, stxN)
delabGroup (curNames.push stxN) stx
@[builtinDelab lam]
def delabLam : Delab :=
delabBinders fun curNames stxBody => do
let e ← getExpr
let stxT ← withBindingDomain delab
let ppTypes ← getPPOption getPPFunBinderTypes
let expl ← getPPOption getPPExplicit
let usedDownstream ← curNames.any (fun n => hasIdent n.getId stxBody)
-- leave lambda implicit if possible
-- TODO: for now we just always block implicit lambdas when delaborating. We can revisit.
-- Note: the current issue is that it requires state, i.e. if *any* previous binder was implicit,
-- it doesn't seem like we can leave a subsequent binder implicit.
let blockImplicitLambda := true
/-
let blockImplicitLambda := expl ||
e.binderInfo == BinderInfo.default ||
-- Note: the following restriction fixes many issues with roundtripping,
-- but this condition may still not be perfectly in sync with the elaborator.
e.binderInfo == BinderInfo.instImplicit ||
Elab.Term.blockImplicitLambda stxBody ||
usedDownstream
-/
if !blockImplicitLambda then
pure stxBody
else
let group ← match e.binderInfo, ppTypes with
| BinderInfo.default, true =>
-- "default" binder group is the only one that expects binder names
-- as a term, i.e. a single `Syntax.ident` or an application thereof
let stxCurNames ←
if curNames.size > 1 then
`($(curNames.get! 0) $(curNames.eraseIdx 0)*)
else
pure $ curNames.get! 0;
`(funBinder| ($stxCurNames : $stxT))
| BinderInfo.default, false => pure curNames.back -- here `curNames.size == 1`
| BinderInfo.implicit, true => `(funBinder| {$curNames* : $stxT})
| BinderInfo.implicit, false => `(funBinder| {$curNames*})
| BinderInfo.strictImplicit, true => `(funBinder| ⦃$curNames* : $stxT⦄)
| BinderInfo.strictImplicit, false => `(funBinder| ⦃$curNames*⦄)
| BinderInfo.instImplicit, _ =>
if usedDownstream then `(funBinder| [$curNames.back : $stxT]) -- here `curNames.size == 1`
else `(funBinder| [$stxT])
| _ , _ => unreachable!;
match stxBody with
| `(fun $binderGroups* => $stxBody) => `(fun $group $binderGroups* => $stxBody)
| _ => `(fun $group => $stxBody)
@[builtinDelab forallE]
def delabForall : Delab :=
delabBinders fun curNames stxBody => do
let e ← getExpr
let prop ← try isProp e catch _ => false
let stxT ← withBindingDomain delab
let group ← match e.binderInfo with
| BinderInfo.implicit => `(bracketedBinderF|{$curNames* : $stxT})
| BinderInfo.strictImplicit => `(bracketedBinderF|⦃$curNames* : $stxT⦄)
-- here `curNames.size == 1`
| BinderInfo.instImplicit => `(bracketedBinderF|[$curNames.back : $stxT])
| _ =>
-- heuristic: use non-dependent arrows only if possible for whole group to avoid
-- noisy mix like `(α : Type) → Type → (γ : Type) → ...`.
let dependent := curNames.any $ fun n => hasIdent n.getId stxBody
-- NOTE: non-dependent arrows are available only for the default binder info
if dependent then
if prop && !(← getPPOption getPPPiBinderTypes) then
return ← `(∀ $curNames:ident*, $stxBody)
else
`(bracketedBinderF|($curNames* : $stxT))
else
return ← curNames.foldrM (fun _ stxBody => `($stxT → $stxBody)) stxBody
if prop then
match stxBody with
| `(∀ $groups*, $stxBody) => `(∀ $group $groups*, $stxBody)
| _ => `(∀ $group, $stxBody)
else
`($group:bracketedBinder → $stxBody)
@[builtinDelab letE]
def delabLetE : Delab := do
let Expr.letE n t v b _ ← getExpr | unreachable!
let n ← getUnusedName n b
let stxV ← descend v 1 delab
let stxB ← withLetDecl n t v fun fvar =>
let b := b.instantiate1 fvar
descend b 2 delab
if ← getPPOption getPPLetVarTypes <||> getPPOption getPPAnalysisLetVarType then
let stxT ← descend t 0 delab
`(let $(mkIdent n) : $stxT := $stxV; $stxB)
else `(let $(mkIdent n) := $stxV; $stxB)
@[builtinDelab lit]
def delabLit : Delab := do
let Expr.lit l _ ← getExpr | unreachable!
match l with
| Literal.natVal n => pure $ quote n
| Literal.strVal s => pure $ quote s
-- `@OfNat.ofNat _ n _` ~> `n`
@[builtinDelab app.OfNat.ofNat]
def delabOfNat : Delab := whenPPOption getPPCoercions do
let (Expr.app (Expr.app _ (Expr.lit (Literal.natVal n) _) _) _ _) ← getExpr | failure
return quote n
-- `@OfDecimal.ofDecimal _ _ m s e` ~> `m*10^(sign * e)` where `sign == 1` if `s = false` and `sign = -1` if `s = true`
@[builtinDelab app.OfScientific.ofScientific]
def delabOfScientific : Delab := whenPPOption getPPCoercions do
let expr ← getExpr
guard <| expr.getAppNumArgs == 5
let Expr.lit (Literal.natVal m) _ ← pure (expr.getArg! 2) | failure
let Expr.lit (Literal.natVal e) _ ← pure (expr.getArg! 4) | failure
let s ← match expr.getArg! 3 with
| Expr.const `Bool.true _ _ => pure true
| Expr.const `Bool.false _ _ => pure false
| _ => failure
let str := toString m
if s && e == str.length then
return Syntax.mkScientificLit ("0." ++ str)
else if s && e < str.length then
let mStr := str.extract 0 (str.length - e)
let eStr := str.extract (str.length - e) str.length
return Syntax.mkScientificLit (mStr ++ "." ++ eStr)
else
return Syntax.mkScientificLit (str ++ "e" ++ (if s then "-" else "") ++ toString e)
/--
Delaborate a projection primitive. These do not usually occur in
user code, but are pretty-printed when e.g. `#print`ing a projection
function.
-/
@[builtinDelab proj]
def delabProj : Delab := do
let Expr.proj _ idx _ _ ← getExpr | unreachable!
let e ← withProj delab
-- not perfectly authentic: elaborates to the `idx`-th named projection
-- function (e.g. `e.1` is `Prod.fst e`), which unfolds to the actual
-- `proj`.
let idx := Syntax.mkLit fieldIdxKind (toString (idx + 1));
`($(e).$idx:fieldIdx)
/-- Delaborate a call to a projection function such as `Prod.fst`. -/
@[builtinDelab app]
def delabProjectionApp : Delab := whenPPOption getPPStructureProjections $ do
let e@(Expr.app fn _ _) ← getExpr | failure
let Expr.const c@(Name.str _ f _) _ _ ← pure fn.getAppFn | failure
let env ← getEnv
let some info ← pure $ env.getProjectionFnInfo? c | failure
-- can't use with classes since the instance parameter is implicit
guard $ !info.fromClass
-- projection function should be fully applied (#struct params + 1 instance parameter)
-- TODO: support over-application
guard $ e.getAppNumArgs == info.numParams + 1
-- If pp.explicit is true, and the structure has parameters, we should not
-- use field notation because we will not be able to see the parameters.
let expl ← getPPOption getPPExplicit
guard $ !expl || info.numParams == 0
let appStx ← withAppArg delab
`($(appStx).$(mkIdent f):ident)
@[builtinDelab app.dite]
def delabDIte : Delab := whenPPOption getPPNotation do
-- Note: we keep this as a delaborator for now because it actually accesses the expression.
guard $ (← getExpr).getAppNumArgs == 5
let c ← withAppFn $ withAppFn $ withAppFn $ withAppArg delab
let (t, h) ← withAppFn $ withAppArg $ delabBranch none
let (e, _) ← withAppArg $ delabBranch h
`(if $(mkIdent h):ident : $c then $t else $e)
where
delabBranch (h? : Option Name) : DelabM (Syntax × Name) := do
let e ← getExpr
guard e.isLambda
let h ← match h? with
| some h => return (← withBindingBody h delab, h)
| none => withBindingBodyUnusedName fun h => do
return (← delab, h.getId)
@[builtinDelab app.namedPattern]
def delabNamedPattern : Delab := do
-- Note: we keep this as a delaborator because it accesses the DelabM context
guard (← read).inPattern
guard $ (← getExpr).getAppNumArgs == 3
let x ← withAppFn $ withAppArg delab
let p ← withAppArg delab
guard x.isIdent
`($x:ident@$p:term)
partial def delabDoElems : DelabM (List Syntax) := do
let e ← getExpr
if e.isAppOfArity `Bind.bind 6 then
-- Bind.bind.{u, v} : {m : Type u → Type v} → [self : Bind m] → {α β : Type u} → m α → (α → m β) → m β
let α := e.getAppArgs[2]
let ma ← withAppFn $ withAppArg delab
withAppArg do
match (← getExpr) with
| Expr.lam _ _ body _ =>
withBindingBodyUnusedName fun n => do
if body.hasLooseBVars then
prependAndRec `(doElem|let $n:term ← $ma:term)
else if α.isConstOf `Unit || α.isConstOf `PUnit then
prependAndRec `(doElem|$ma:term)
else
prependAndRec `(doElem|let _ ← $ma:term)
| _ => failure
else if e.isLet then
let Expr.letE n t v b _ ← getExpr | unreachable!
let n ← getUnusedName n b
let stxT ← descend t 0 delab
let stxV ← descend v 1 delab
withLetDecl n t v fun fvar =>
let b := b.instantiate1 fvar
descend b 2 $
prependAndRec `(doElem|let $(mkIdent n) : $stxT := $stxV)
else
let stx ← delab
[←`(doElem|$stx:term)]
where
prependAndRec x : DelabM _ := List.cons <$> x <*> delabDoElems
@[builtinDelab app.Bind.bind]
def delabDo : Delab := whenPPOption getPPNotation do
guard <| (← getExpr).isAppOfArity `Bind.bind 6
let elems ← delabDoElems
let items ← elems.toArray.mapM (`(doSeqItem|$(·):doElem))
`(do $items:doSeqItem*)
def reifyName : Expr → DelabM Name
| Expr.const ``Lean.Name.anonymous .. => Name.anonymous
| Expr.app (Expr.app (Expr.const ``Lean.Name.mkStr ..) n _) (Expr.lit (Literal.strVal s) _) _ => do
(← reifyName n).mkStr s
| Expr.app (Expr.app (Expr.const ``Lean.Name.mkNum ..) n _) (Expr.lit (Literal.natVal i) _) _ => do
(← reifyName n).mkNum i
| _ => failure
@[builtinDelab app.Lean.Name.mkStr]
def delabNameMkStr : Delab := whenPPOption getPPNotation do
let n ← reifyName (← getExpr)
-- not guaranteed to be a syntactically valid name, but usually more helpful than the explicit version
mkNode ``Lean.Parser.Term.quotedName #[Syntax.mkNameLit s!"`{n}"]
@[builtinDelab app.Lean.Name.mkNum]
def delabNameMkNum : Delab := delabNameMkStr
end Lean.PrettyPrinter.Delaborator
|
4fe4ab035d9250ab7d68f3cdc2e141fcc9ecf18f
|
d9d511f37a523cd7659d6f573f990e2a0af93c6f
|
/src/data/set/intervals/basic.lean
|
b3694b48a69513744ac9c259959f27dc2176cd45
|
[
"Apache-2.0"
] |
permissive
|
hikari0108/mathlib
|
b7ea2b7350497ab1a0b87a09d093ecc025a50dfa
|
a9e7d333b0cfd45f13a20f7b96b7d52e19fa2901
|
refs/heads/master
| 1,690,483,608,260
| 1,631,541,580,000
| 1,631,541,580,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 53,055
|
lean
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro, Patrick Massot, Yury Kudryashov, Rémy Degenne
-/
import algebra.ordered_group
import data.set.basic
import order.rel_iso
/-!
# Intervals
In any preorder `α`, we define intervals (which on each side can be either infinite, open, or
closed) using the following naming conventions:
- `i`: infinite
- `o`: open
- `c`: closed
Each interval has the name `I` + letter for left side + letter for right side. For instance,
`Ioc a b` denotes the inverval `(a, b]`.
This file contains these definitions, and basic facts on inclusion, intersection, difference of
intervals (where the precise statements may depend on the properties of the order, in particular
for some statements it should be `linear_order` or `densely_ordered`).
TODO: This is just the beginning; a lot of rules are missing
-/
universe u
namespace set
open set
section intervals
variables {α : Type u} [preorder α] {a a₁ a₂ b b₁ b₂ x : α}
/-- Left-open right-open interval -/
def Ioo (a b : α) := {x | a < x ∧ x < b}
/-- Left-closed right-open interval -/
def Ico (a b : α) := {x | a ≤ x ∧ x < b}
/-- Left-infinite right-open interval -/
def Iio (a : α) := {x | x < a}
/-- Left-closed right-closed interval -/
def Icc (a b : α) := {x | a ≤ x ∧ x ≤ b}
/-- Left-infinite right-closed interval -/
def Iic (b : α) := {x | x ≤ b}
/-- Left-open right-closed interval -/
def Ioc (a b : α) := {x | a < x ∧ x ≤ b}
/-- Left-closed right-infinite interval -/
def Ici (a : α) := {x | a ≤ x}
/-- Left-open right-infinite interval -/
def Ioi (a : α) := {x | a < x}
lemma Ioo_def (a b : α) : {x | a < x ∧ x < b} = Ioo a b := rfl
lemma Ico_def (a b : α) : {x | a ≤ x ∧ x < b} = Ico a b := rfl
lemma Iio_def (a : α) : {x | x < a} = Iio a := rfl
lemma Icc_def (a b : α) : {x | a ≤ x ∧ x ≤ b} = Icc a b := rfl
lemma Iic_def (b : α) : {x | x ≤ b} = Iic b := rfl
lemma Ioc_def (a b : α) : {x | a < x ∧ x ≤ b} = Ioc a b := rfl
lemma Ici_def (a : α) : {x | a ≤ x} = Ici a := rfl
lemma Ioi_def (a : α) : {x | a < x} = Ioi a := rfl
@[simp] lemma mem_Ioo : x ∈ Ioo a b ↔ a < x ∧ x < b := iff.rfl
@[simp] lemma mem_Ico : x ∈ Ico a b ↔ a ≤ x ∧ x < b := iff.rfl
@[simp] lemma mem_Iio : x ∈ Iio b ↔ x < b := iff.rfl
@[simp] lemma mem_Icc : x ∈ Icc a b ↔ a ≤ x ∧ x ≤ b := iff.rfl
@[simp] lemma mem_Iic : x ∈ Iic b ↔ x ≤ b := iff.rfl
@[simp] lemma mem_Ioc : x ∈ Ioc a b ↔ a < x ∧ x ≤ b := iff.rfl
@[simp] lemma mem_Ici : x ∈ Ici a ↔ a ≤ x := iff.rfl
@[simp] lemma mem_Ioi : x ∈ Ioi a ↔ a < x := iff.rfl
@[simp] lemma left_mem_Ioo : a ∈ Ioo a b ↔ false := by simp [lt_irrefl]
@[simp] lemma left_mem_Ico : a ∈ Ico a b ↔ a < b := by simp [le_refl]
@[simp] lemma left_mem_Icc : a ∈ Icc a b ↔ a ≤ b := by simp [le_refl]
@[simp] lemma left_mem_Ioc : a ∈ Ioc a b ↔ false := by simp [lt_irrefl]
lemma left_mem_Ici : a ∈ Ici a := by simp
@[simp] lemma right_mem_Ioo : b ∈ Ioo a b ↔ false := by simp [lt_irrefl]
@[simp] lemma right_mem_Ico : b ∈ Ico a b ↔ false := by simp [lt_irrefl]
@[simp] lemma right_mem_Icc : b ∈ Icc a b ↔ a ≤ b := by simp [le_refl]
@[simp] lemma right_mem_Ioc : b ∈ Ioc a b ↔ a < b := by simp [le_refl]
lemma right_mem_Iic : a ∈ Iic a := by simp
@[simp] lemma dual_Ici : @Ici (order_dual α) _ a = @Iic α _ a := rfl
@[simp] lemma dual_Iic : @Iic (order_dual α) _ a = @Ici α _ a := rfl
@[simp] lemma dual_Ioi : @Ioi (order_dual α) _ a = @Iio α _ a := rfl
@[simp] lemma dual_Iio : @Iio (order_dual α) _ a = @Ioi α _ a := rfl
@[simp] lemma dual_Icc : @Icc (order_dual α) _ a b = @Icc α _ b a :=
set.ext $ λ x, and_comm _ _
@[simp] lemma dual_Ioc : @Ioc (order_dual α) _ a b = @Ico α _ b a :=
set.ext $ λ x, and_comm _ _
@[simp] lemma dual_Ico : @Ico (order_dual α) _ a b = @Ioc α _ b a :=
set.ext $ λ x, and_comm _ _
@[simp] lemma dual_Ioo : @Ioo (order_dual α) _ a b = @Ioo α _ b a :=
set.ext $ λ x, and_comm _ _
@[simp] lemma nonempty_Icc : (Icc a b).nonempty ↔ a ≤ b :=
⟨λ ⟨x, hx⟩, hx.1.trans hx.2, λ h, ⟨a, left_mem_Icc.2 h⟩⟩
@[simp] lemma nonempty_Ico : (Ico a b).nonempty ↔ a < b :=
⟨λ ⟨x, hx⟩, hx.1.trans_lt hx.2, λ h, ⟨a, left_mem_Ico.2 h⟩⟩
@[simp] lemma nonempty_Ioc : (Ioc a b).nonempty ↔ a < b :=
⟨λ ⟨x, hx⟩, hx.1.trans_le hx.2, λ h, ⟨b, right_mem_Ioc.2 h⟩⟩
@[simp] lemma nonempty_Ici : (Ici a).nonempty := ⟨a, left_mem_Ici⟩
@[simp] lemma nonempty_Iic : (Iic a).nonempty := ⟨a, right_mem_Iic⟩
@[simp] lemma nonempty_Ioo [densely_ordered α] : (Ioo a b).nonempty ↔ a < b :=
⟨λ ⟨x, ha, hb⟩, ha.trans hb, exists_between⟩
@[simp] lemma nonempty_Ioi [no_top_order α] : (Ioi a).nonempty := no_top a
@[simp] lemma nonempty_Iio [no_bot_order α] : (Iio a).nonempty := no_bot a
lemma nonempty_Icc_subtype (h : a ≤ b) : nonempty (Icc a b) :=
nonempty.to_subtype (nonempty_Icc.mpr h)
lemma nonempty_Ico_subtype (h : a < b) : nonempty (Ico a b) :=
nonempty.to_subtype (nonempty_Ico.mpr h)
lemma nonempty_Ioc_subtype (h : a < b) : nonempty (Ioc a b) :=
nonempty.to_subtype (nonempty_Ioc.mpr h)
/-- An interval `Ici a` is nonempty. -/
instance nonempty_Ici_subtype : nonempty (Ici a) :=
nonempty.to_subtype nonempty_Ici
/-- An interval `Iic a` is nonempty. -/
instance nonempty_Iic_subtype : nonempty (Iic a) :=
nonempty.to_subtype nonempty_Iic
lemma nonempty_Ioo_subtype [densely_ordered α] (h : a < b) : nonempty (Ioo a b) :=
nonempty.to_subtype (nonempty_Ioo.mpr h)
/-- In a `no_top_order`, the intervals `Ioi` are nonempty. -/
instance nonempty_Ioi_subtype [no_top_order α] : nonempty (Ioi a) :=
nonempty.to_subtype nonempty_Ioi
/-- In a `no_bot_order`, the intervals `Iio` are nonempty. -/
instance nonempty_Iio_subtype [no_bot_order α] : nonempty (Iio a) :=
nonempty.to_subtype nonempty_Iio
@[simp] lemma Icc_eq_empty (h : ¬a ≤ b) : Icc a b = ∅ :=
eq_empty_iff_forall_not_mem.2 $ λ x ⟨ha, hb⟩, h (ha.trans hb)
@[simp] lemma Ico_eq_empty (h : ¬a < b) : Ico a b = ∅ :=
eq_empty_iff_forall_not_mem.2 $ λ x ⟨ha, hb⟩, h (ha.trans_lt hb)
@[simp] lemma Ioc_eq_empty (h : ¬a < b) : Ioc a b = ∅ :=
eq_empty_iff_forall_not_mem.2 $ λ x ⟨ha, hb⟩, h (ha.trans_le hb)
@[simp] lemma Ioo_eq_empty (h : ¬a < b) : Ioo a b = ∅ :=
eq_empty_iff_forall_not_mem.2 $ λ x ⟨ha, hb⟩, h (ha.trans hb)
@[simp] lemma Icc_eq_empty_of_lt (h : b < a) : Icc a b = ∅ :=
Icc_eq_empty h.not_le
@[simp] lemma Ico_eq_empty_of_le (h : b ≤ a) : Ico a b = ∅ :=
Ico_eq_empty h.not_lt
@[simp] lemma Ioc_eq_empty_of_le (h : b ≤ a) : Ioc a b = ∅ :=
Ioc_eq_empty h.not_lt
@[simp] lemma Ioo_eq_empty_of_le (h : b ≤ a) : Ioo a b = ∅ :=
Ioo_eq_empty h.not_lt
@[simp] lemma Ico_self (a : α) : Ico a a = ∅ := Ico_eq_empty $ lt_irrefl _
@[simp] lemma Ioc_self (a : α) : Ioc a a = ∅ := Ioc_eq_empty $ lt_irrefl _
@[simp] lemma Ioo_self (a : α) : Ioo a a = ∅ := Ioo_eq_empty $ lt_irrefl _
lemma Ici_subset_Ici : Ici a ⊆ Ici b ↔ b ≤ a :=
⟨λ h, h $ left_mem_Ici, λ h x hx, h.trans hx⟩
lemma Iic_subset_Iic : Iic a ⊆ Iic b ↔ a ≤ b :=
@Ici_subset_Ici (order_dual α) _ _ _
lemma Ici_subset_Ioi : Ici a ⊆ Ioi b ↔ b < a :=
⟨λ h, h left_mem_Ici, λ h x hx, h.trans_le hx⟩
lemma Iic_subset_Iio : Iic a ⊆ Iio b ↔ a < b :=
⟨λ h, h right_mem_Iic, λ h x hx, lt_of_le_of_lt hx h⟩
lemma Ioo_subset_Ioo (h₁ : a₂ ≤ a₁) (h₂ : b₁ ≤ b₂) :
Ioo a₁ b₁ ⊆ Ioo a₂ b₂ :=
λ x ⟨hx₁, hx₂⟩, ⟨h₁.trans_lt hx₁, hx₂.trans_le h₂⟩
lemma Ioo_subset_Ioo_left (h : a₁ ≤ a₂) : Ioo a₂ b ⊆ Ioo a₁ b :=
Ioo_subset_Ioo h le_rfl
lemma Ioo_subset_Ioo_right (h : b₁ ≤ b₂) : Ioo a b₁ ⊆ Ioo a b₂ :=
Ioo_subset_Ioo le_rfl h
lemma Ico_subset_Ico (h₁ : a₂ ≤ a₁) (h₂ : b₁ ≤ b₂) :
Ico a₁ b₁ ⊆ Ico a₂ b₂ :=
λ x ⟨hx₁, hx₂⟩, ⟨h₁.trans hx₁, hx₂.trans_le h₂⟩
lemma Ico_subset_Ico_left (h : a₁ ≤ a₂) : Ico a₂ b ⊆ Ico a₁ b :=
Ico_subset_Ico h le_rfl
lemma Ico_subset_Ico_right (h : b₁ ≤ b₂) : Ico a b₁ ⊆ Ico a b₂ :=
Ico_subset_Ico le_rfl h
lemma Icc_subset_Icc (h₁ : a₂ ≤ a₁) (h₂ : b₁ ≤ b₂) :
Icc a₁ b₁ ⊆ Icc a₂ b₂ :=
λ x ⟨hx₁, hx₂⟩, ⟨h₁.trans hx₁, le_trans hx₂ h₂⟩
lemma Icc_subset_Icc_left (h : a₁ ≤ a₂) : Icc a₂ b ⊆ Icc a₁ b :=
Icc_subset_Icc h le_rfl
lemma Icc_subset_Icc_right (h : b₁ ≤ b₂) : Icc a b₁ ⊆ Icc a b₂ :=
Icc_subset_Icc le_rfl h
lemma Icc_subset_Ioo (ha : a₂ < a₁) (hb : b₁ < b₂) :
Icc a₁ b₁ ⊆ Ioo a₂ b₂ :=
λ x hx, ⟨ha.trans_le hx.1, hx.2.trans_lt hb⟩
lemma Icc_subset_Ici_self : Icc a b ⊆ Ici a := λ x, and.left
lemma Icc_subset_Iic_self : Icc a b ⊆ Iic b := λ x, and.right
lemma Ioc_subset_Iic_self : Ioc a b ⊆ Iic b := λ x, and.right
lemma Ioc_subset_Ioc (h₁ : a₂ ≤ a₁) (h₂ : b₁ ≤ b₂) :
Ioc a₁ b₁ ⊆ Ioc a₂ b₂ :=
λ x ⟨hx₁, hx₂⟩, ⟨h₁.trans_lt hx₁, hx₂.trans h₂⟩
lemma Ioc_subset_Ioc_left (h : a₁ ≤ a₂) : Ioc a₂ b ⊆ Ioc a₁ b :=
Ioc_subset_Ioc h le_rfl
lemma Ioc_subset_Ioc_right (h : b₁ ≤ b₂) : Ioc a b₁ ⊆ Ioc a b₂ :=
Ioc_subset_Ioc le_rfl h
lemma Ico_subset_Ioo_left (h₁ : a₁ < a₂) : Ico a₂ b ⊆ Ioo a₁ b :=
λ x, and.imp_left h₁.trans_le
lemma Ioc_subset_Ioo_right (h : b₁ < b₂) : Ioc a b₁ ⊆ Ioo a b₂ :=
λ x, and.imp_right $ λ h', h'.trans_lt h
lemma Icc_subset_Ico_right (h₁ : b₁ < b₂) : Icc a b₁ ⊆ Ico a b₂ :=
λ x, and.imp_right $ λ h₂, h₂.trans_lt h₁
lemma Ioo_subset_Ico_self : Ioo a b ⊆ Ico a b := λ x, and.imp_left le_of_lt
lemma Ioo_subset_Ioc_self : Ioo a b ⊆ Ioc a b := λ x, and.imp_right le_of_lt
lemma Ico_subset_Icc_self : Ico a b ⊆ Icc a b := λ x, and.imp_right le_of_lt
lemma Ioc_subset_Icc_self : Ioc a b ⊆ Icc a b := λ x, and.imp_left le_of_lt
lemma Ioo_subset_Icc_self : Ioo a b ⊆ Icc a b :=
subset.trans Ioo_subset_Ico_self Ico_subset_Icc_self
lemma Ico_subset_Iio_self : Ico a b ⊆ Iio b := λ x, and.right
lemma Ioo_subset_Iio_self : Ioo a b ⊆ Iio b := λ x, and.right
lemma Ioc_subset_Ioi_self : Ioc a b ⊆ Ioi a := λ x, and.left
lemma Ioo_subset_Ioi_self : Ioo a b ⊆ Ioi a := λ x, and.left
lemma Ioi_subset_Ici_self : Ioi a ⊆ Ici a := λ x hx, le_of_lt hx
lemma Iio_subset_Iic_self : Iio a ⊆ Iic a := λ x hx, le_of_lt hx
lemma Ico_subset_Ici_self : Ico a b ⊆ Ici a := λ x, and.left
lemma Icc_subset_Icc_iff (h₁ : a₁ ≤ b₁) :
Icc a₁ b₁ ⊆ Icc a₂ b₂ ↔ a₂ ≤ a₁ ∧ b₁ ≤ b₂ :=
⟨λ h, ⟨(h ⟨le_rfl, h₁⟩).1, (h ⟨h₁, le_rfl⟩).2⟩,
λ ⟨h, h'⟩ x ⟨hx, hx'⟩, ⟨h.trans hx, hx'.trans h'⟩⟩
lemma Icc_subset_Ioo_iff (h₁ : a₁ ≤ b₁) :
Icc a₁ b₁ ⊆ Ioo a₂ b₂ ↔ a₂ < a₁ ∧ b₁ < b₂ :=
⟨λ h, ⟨(h ⟨le_rfl, h₁⟩).1, (h ⟨h₁, le_rfl⟩).2⟩,
λ ⟨h, h'⟩ x ⟨hx, hx'⟩, ⟨h.trans_le hx, hx'.trans_lt h'⟩⟩
lemma Icc_subset_Ico_iff (h₁ : a₁ ≤ b₁) :
Icc a₁ b₁ ⊆ Ico a₂ b₂ ↔ a₂ ≤ a₁ ∧ b₁ < b₂ :=
⟨λ h, ⟨(h ⟨le_rfl, h₁⟩).1, (h ⟨h₁, le_rfl⟩).2⟩,
λ ⟨h, h'⟩ x ⟨hx, hx'⟩, ⟨h.trans hx, hx'.trans_lt h'⟩⟩
lemma Icc_subset_Ioc_iff (h₁ : a₁ ≤ b₁) :
Icc a₁ b₁ ⊆ Ioc a₂ b₂ ↔ a₂ < a₁ ∧ b₁ ≤ b₂ :=
⟨λ h, ⟨(h ⟨le_rfl, h₁⟩).1, (h ⟨h₁, le_rfl⟩).2⟩,
λ ⟨h, h'⟩ x ⟨hx, hx'⟩, ⟨h.trans_le hx, hx'.trans h'⟩⟩
lemma Icc_subset_Iio_iff (h₁ : a₁ ≤ b₁) :
Icc a₁ b₁ ⊆ Iio b₂ ↔ b₁ < b₂ :=
⟨λ h, h ⟨h₁, le_rfl⟩, λ h x ⟨hx, hx'⟩, hx'.trans_lt h⟩
lemma Icc_subset_Ioi_iff (h₁ : a₁ ≤ b₁) :
Icc a₁ b₁ ⊆ Ioi a₂ ↔ a₂ < a₁ :=
⟨λ h, h ⟨le_rfl, h₁⟩, λ h x ⟨hx, hx'⟩, h.trans_le hx⟩
lemma Icc_subset_Iic_iff (h₁ : a₁ ≤ b₁) :
Icc a₁ b₁ ⊆ Iic b₂ ↔ b₁ ≤ b₂ :=
⟨λ h, h ⟨h₁, le_rfl⟩, λ h x ⟨hx, hx'⟩, hx'.trans h⟩
lemma Icc_subset_Ici_iff (h₁ : a₁ ≤ b₁) :
Icc a₁ b₁ ⊆ Ici a₂ ↔ a₂ ≤ a₁ :=
⟨λ h, h ⟨le_rfl, h₁⟩, λ h x ⟨hx, hx'⟩, h.trans hx⟩
lemma Icc_ssubset_Icc_left (hI : a₂ ≤ b₂) (ha : a₂ < a₁) (hb : b₁ ≤ b₂) :
Icc a₁ b₁ ⊂ Icc a₂ b₂ :=
(ssubset_iff_of_subset (Icc_subset_Icc (le_of_lt ha) hb)).mpr
⟨a₂, left_mem_Icc.mpr hI, not_and.mpr (λ f g, lt_irrefl a₂ (ha.trans_le f))⟩
lemma Icc_ssubset_Icc_right (hI : a₂ ≤ b₂) (ha : a₂ ≤ a₁) (hb : b₁ < b₂) :
Icc a₁ b₁ ⊂ Icc a₂ b₂ :=
(ssubset_iff_of_subset (Icc_subset_Icc ha (le_of_lt hb))).mpr
⟨b₂, right_mem_Icc.mpr hI, (λ f, lt_irrefl b₁ (hb.trans_le f.2))⟩
/-- If `a ≤ b`, then `(b, +∞) ⊆ (a, +∞)`. In preorders, this is just an implication. If you need
the equivalence in linear orders, use `Ioi_subset_Ioi_iff`. -/
lemma Ioi_subset_Ioi (h : a ≤ b) : Ioi b ⊆ Ioi a :=
λ x hx, h.trans_lt hx
/-- If `a ≤ b`, then `(b, +∞) ⊆ [a, +∞)`. In preorders, this is just an implication. If you need
the equivalence in dense linear orders, use `Ioi_subset_Ici_iff`. -/
lemma Ioi_subset_Ici (h : a ≤ b) : Ioi b ⊆ Ici a :=
subset.trans (Ioi_subset_Ioi h) Ioi_subset_Ici_self
/-- If `a ≤ b`, then `(-∞, a) ⊆ (-∞, b)`. In preorders, this is just an implication. If you need
the equivalence in linear orders, use `Iio_subset_Iio_iff`. -/
lemma Iio_subset_Iio (h : a ≤ b) : Iio a ⊆ Iio b :=
λ x hx, lt_of_lt_of_le hx h
/-- If `a ≤ b`, then `(-∞, a) ⊆ (-∞, b]`. In preorders, this is just an implication. If you need
the equivalence in dense linear orders, use `Iio_subset_Iic_iff`. -/
lemma Iio_subset_Iic (h : a ≤ b) : Iio a ⊆ Iic b :=
subset.trans (Iio_subset_Iio h) Iio_subset_Iic_self
lemma Ici_inter_Iic : Ici a ∩ Iic b = Icc a b := rfl
lemma Ici_inter_Iio : Ici a ∩ Iio b = Ico a b := rfl
lemma Ioi_inter_Iic : Ioi a ∩ Iic b = Ioc a b := rfl
lemma Ioi_inter_Iio : Ioi a ∩ Iio b = Ioo a b := rfl
lemma mem_Icc_of_Ioo (h : x ∈ Ioo a b) : x ∈ Icc a b := Ioo_subset_Icc_self h
lemma mem_Ico_of_Ioo (h : x ∈ Ioo a b) : x ∈ Ico a b := Ioo_subset_Ico_self h
lemma mem_Ioc_of_Ioo (h : x ∈ Ioo a b) : x ∈ Ioc a b := Ioo_subset_Ioc_self h
lemma mem_Icc_of_Ico (h : x ∈ Ico a b) : x ∈ Icc a b := Ico_subset_Icc_self h
lemma mem_Icc_of_Ioc (h : x ∈ Ioc a b) : x ∈ Icc a b := Ioc_subset_Icc_self h
lemma mem_Ici_of_Ioi (h : x ∈ Ioi a) : x ∈ Ici a := Ioi_subset_Ici_self h
lemma mem_Iic_of_Iio (h : x ∈ Iio a) : x ∈ Iic a := Iio_subset_Iic_self h
lemma Icc_eq_empty_iff : Icc a b = ∅ ↔ ¬a ≤ b :=
by rw [←not_nonempty_iff_eq_empty, not_iff_not, nonempty_Icc]
lemma Ico_eq_empty_iff : Ico a b = ∅ ↔ ¬a < b :=
by rw [←not_nonempty_iff_eq_empty, not_iff_not, nonempty_Ico]
lemma Ioc_eq_empty_iff : Ioc a b = ∅ ↔ ¬a < b :=
by rw [←not_nonempty_iff_eq_empty, not_iff_not, nonempty_Ioc]
lemma Ioo_eq_empty_iff [densely_ordered α] : Ioo a b = ∅ ↔ ¬a < b :=
by rw [←not_nonempty_iff_eq_empty, not_iff_not, nonempty_Ioo]
end intervals
section partial_order
variables {α : Type u} [partial_order α] {a b : α}
@[simp] lemma Icc_self (a : α) : Icc a a = {a} :=
set.ext $ by simp [Icc, le_antisymm_iff, and_comm]
@[simp] lemma Icc_diff_left : Icc a b \ {a} = Ioc a b :=
ext $ λ x, by simp [lt_iff_le_and_ne, eq_comm, and.right_comm]
@[simp] lemma Icc_diff_right : Icc a b \ {b} = Ico a b :=
ext $ λ x, by simp [lt_iff_le_and_ne, and_assoc]
@[simp] lemma Ico_diff_left : Ico a b \ {a} = Ioo a b :=
ext $ λ x, by simp [and.right_comm, ← lt_iff_le_and_ne, eq_comm]
@[simp] lemma Ioc_diff_right : Ioc a b \ {b} = Ioo a b :=
ext $ λ x, by simp [and_assoc, ← lt_iff_le_and_ne]
@[simp] lemma Icc_diff_both : Icc a b \ {a, b} = Ioo a b :=
by rw [insert_eq, ← diff_diff, Icc_diff_left, Ioc_diff_right]
@[simp] lemma Ici_diff_left : Ici a \ {a} = Ioi a :=
ext $ λ x, by simp [lt_iff_le_and_ne, eq_comm]
@[simp] lemma Iic_diff_right : Iic a \ {a} = Iio a :=
ext $ λ x, by simp [lt_iff_le_and_ne]
@[simp] lemma Ico_diff_Ioo_same (h : a < b) : Ico a b \ Ioo a b = {a} :=
by rw [← Ico_diff_left, diff_diff_cancel_left (singleton_subset_iff.2 $ left_mem_Ico.2 h)]
@[simp] lemma Ioc_diff_Ioo_same (h : a < b) : Ioc a b \ Ioo a b = {b} :=
by rw [← Ioc_diff_right, diff_diff_cancel_left (singleton_subset_iff.2 $ right_mem_Ioc.2 h)]
@[simp] lemma Icc_diff_Ico_same (h : a ≤ b) : Icc a b \ Ico a b = {b} :=
by rw [← Icc_diff_right, diff_diff_cancel_left (singleton_subset_iff.2 $ right_mem_Icc.2 h)]
@[simp] lemma Icc_diff_Ioc_same (h : a ≤ b) : Icc a b \ Ioc a b = {a} :=
by rw [← Icc_diff_left, diff_diff_cancel_left (singleton_subset_iff.2 $ left_mem_Icc.2 h)]
@[simp] lemma Icc_diff_Ioo_same (h : a ≤ b) : Icc a b \ Ioo a b = {a, b} :=
by { rw [← Icc_diff_both, diff_diff_cancel_left], simp [insert_subset, h] }
@[simp] lemma Ici_diff_Ioi_same : Ici a \ Ioi a = {a} :=
by rw [← Ici_diff_left, diff_diff_cancel_left (singleton_subset_iff.2 left_mem_Ici)]
@[simp] lemma Iic_diff_Iio_same : Iic a \ Iio a = {a} :=
by rw [← Iic_diff_right, diff_diff_cancel_left (singleton_subset_iff.2 right_mem_Iic)]
@[simp] lemma Ioi_union_left : Ioi a ∪ {a} = Ici a := ext $ λ x, by simp [eq_comm, le_iff_eq_or_lt]
@[simp] lemma Iio_union_right : Iio a ∪ {a} = Iic a := ext $ λ x, le_iff_lt_or_eq.symm
lemma Ioo_union_left (hab : a < b) : Ioo a b ∪ {a} = Ico a b :=
by rw [← Ico_diff_left, diff_union_self,
union_eq_self_of_subset_right (singleton_subset_iff.2 $ left_mem_Ico.2 hab)]
lemma Ioo_union_right (hab : a < b) : Ioo a b ∪ {b} = Ioc a b :=
by simpa only [dual_Ioo, dual_Ico] using @Ioo_union_left (order_dual α) _ b a hab
lemma Ioc_union_left (hab : a ≤ b) : Ioc a b ∪ {a} = Icc a b :=
by rw [← Icc_diff_left, diff_union_self,
union_eq_self_of_subset_right (singleton_subset_iff.2 $ left_mem_Icc.2 hab)]
lemma Ico_union_right (hab : a ≤ b) : Ico a b ∪ {b} = Icc a b :=
by simpa only [dual_Ioc, dual_Icc] using @Ioc_union_left (order_dual α) _ b a hab
lemma mem_Ici_Ioi_of_subset_of_subset {s : set α} (ho : Ioi a ⊆ s) (hc : s ⊆ Ici a) :
s ∈ ({Ici a, Ioi a} : set (set α)) :=
classical.by_cases
(λ h : a ∈ s, or.inl $ subset.antisymm hc $ by rw [← Ioi_union_left, union_subset_iff]; simp *)
(λ h, or.inr $ subset.antisymm (λ x hx, lt_of_le_of_ne (hc hx) (λ heq, h $ heq.symm ▸ hx)) ho)
lemma mem_Iic_Iio_of_subset_of_subset {s : set α} (ho : Iio a ⊆ s) (hc : s ⊆ Iic a) :
s ∈ ({Iic a, Iio a} : set (set α)) :=
@mem_Ici_Ioi_of_subset_of_subset (order_dual α) _ a s ho hc
lemma mem_Icc_Ico_Ioc_Ioo_of_subset_of_subset {s : set α} (ho : Ioo a b ⊆ s) (hc : s ⊆ Icc a b) :
s ∈ ({Icc a b, Ico a b, Ioc a b, Ioo a b} : set (set α)) :=
begin
classical,
by_cases ha : a ∈ s; by_cases hb : b ∈ s,
{ refine or.inl (subset.antisymm hc _),
rwa [← Ico_diff_left, diff_singleton_subset_iff, insert_eq_of_mem ha,
← Icc_diff_right, diff_singleton_subset_iff, insert_eq_of_mem hb] at ho },
{ refine (or.inr $ or.inl $ subset.antisymm _ _),
{ rw [← Icc_diff_right],
exact subset_diff_singleton hc hb },
{ rwa [← Ico_diff_left, diff_singleton_subset_iff, insert_eq_of_mem ha] at ho } },
{ refine (or.inr $ or.inr $ or.inl $ subset.antisymm _ _),
{ rw [← Icc_diff_left],
exact subset_diff_singleton hc ha },
{ rwa [← Ioc_diff_right, diff_singleton_subset_iff, insert_eq_of_mem hb] at ho } },
{ refine (or.inr $ or.inr $ or.inr $ subset.antisymm _ ho),
rw [← Ico_diff_left, ← Icc_diff_right],
apply_rules [subset_diff_singleton] }
end
lemma mem_Ioo_or_eq_endpoints_of_mem_Icc {x : α} (hmem : x ∈ Icc a b) :
x = a ∨ x = b ∨ x ∈ Ioo a b :=
begin
rw [mem_Icc, le_iff_lt_or_eq, le_iff_lt_or_eq] at hmem,
rcases hmem with ⟨hxa | hxa, hxb | hxb⟩,
{ exact or.inr (or.inr ⟨hxa, hxb⟩) },
{ exact or.inr (or.inl hxb) },
all_goals { exact or.inl hxa.symm }
end
lemma mem_Ioo_or_eq_left_of_mem_Ico {x : α} (hmem : x ∈ Ico a b) :
x = a ∨ x ∈ Ioo a b :=
begin
rw [mem_Ico, le_iff_lt_or_eq] at hmem,
rcases hmem with ⟨hxa | hxa, hxb⟩,
{ exact or.inr ⟨hxa, hxb⟩ },
{ exact or.inl hxa.symm }
end
lemma mem_Ioo_or_eq_right_of_mem_Ioc {x : α} (hmem : x ∈ Ioc a b) :
x = b ∨ x ∈ Ioo a b :=
begin
have := @mem_Ioo_or_eq_left_of_mem_Ico (order_dual α) _ b a x,
rw [dual_Ioo, dual_Ico] at this,
exact this hmem
end
lemma Ici_singleton_of_top {a : α} (h_top : ∀ x, x ≤ a) : Ici a = {a} :=
begin
ext,
exact ⟨λ h, (h_top _).antisymm h, λ h, h.ge⟩,
end
lemma Iic_singleton_of_bot {a : α} (h_bot : ∀ x, a ≤ x) : Iic a = {a} :=
@Ici_singleton_of_top (order_dual α) _ a h_bot
end partial_order
section order_top
variables {α : Type u} [order_top α] {a : α}
@[simp] lemma Ici_top : Ici (⊤ : α) = {⊤} := Ici_singleton_of_top (λ _, le_top)
@[simp] lemma Iic_top : Iic (⊤ : α) = univ := eq_univ_of_forall $ λ x, le_top
@[simp] lemma Icc_top : Icc a ⊤ = Ici a := by simp [← Ici_inter_Iic]
@[simp] lemma Ioc_top : Ioc a ⊤ = Ioi a := by simp [← Ioi_inter_Iic]
end order_top
section order_bot
variables {α : Type u} [order_bot α] {a : α}
@[simp] lemma Iic_bot : Iic (⊥ : α) = {⊥} := Iic_singleton_of_bot (λ _, bot_le)
@[simp] lemma Ici_bot : Ici (⊥ : α) = univ := @Iic_top (order_dual α) _
@[simp] lemma Icc_bot : Icc ⊥ a = Iic a := by simp [← Ici_inter_Iic]
@[simp] lemma Ico_bot : Ico ⊥ a = Iio a := by simp [← Ici_inter_Iio]
end order_bot
section linear_order
variables {α : Type u} [linear_order α] {a a₁ a₂ b b₁ b₂ c d : α}
lemma not_mem_Ici : c ∉ Ici a ↔ c < a := not_le
lemma not_mem_Iic : c ∉ Iic b ↔ b < c := not_le
lemma not_mem_Icc_of_lt (ha : c < a) : c ∉ Icc a b :=
not_mem_subset Icc_subset_Ici_self $ not_mem_Ici.mpr ha
lemma not_mem_Icc_of_gt (hb : b < c) : c ∉ Icc a b :=
not_mem_subset Icc_subset_Iic_self $ not_mem_Iic.mpr hb
lemma not_mem_Ico_of_lt (ha : c < a) : c ∉ Ico a b :=
not_mem_subset Ico_subset_Ici_self $ not_mem_Ici.mpr ha
lemma not_mem_Ioc_of_gt (hb : b < c) : c ∉ Ioc a b :=
not_mem_subset Ioc_subset_Iic_self $ not_mem_Iic.mpr hb
lemma not_mem_Ioi : c ∉ Ioi a ↔ c ≤ a := not_lt
lemma not_mem_Iio : c ∉ Iio b ↔ b ≤ c := not_lt
lemma not_mem_Ioc_of_le (ha : c ≤ a) : c ∉ Ioc a b :=
not_mem_subset Ioc_subset_Ioi_self $ not_mem_Ioi.mpr ha
lemma not_mem_Ico_of_ge (hb : b ≤ c) : c ∉ Ico a b :=
not_mem_subset Ico_subset_Iio_self $ not_mem_Iio.mpr hb
lemma not_mem_Ioo_of_le (ha : c ≤ a) : c ∉ Ioo a b :=
not_mem_subset Ioo_subset_Ioi_self $ not_mem_Ioi.mpr ha
lemma not_mem_Ioo_of_ge (hb : b ≤ c) : c ∉ Ioo a b :=
not_mem_subset Ioo_subset_Iio_self $ not_mem_Iio.mpr hb
@[simp] lemma compl_Iic : (Iic a)ᶜ = Ioi a := ext $ λ _, not_le
@[simp] lemma compl_Ici : (Ici a)ᶜ = Iio a := ext $ λ _, not_le
@[simp] lemma compl_Iio : (Iio a)ᶜ = Ici a := ext $ λ _, not_lt
@[simp] lemma compl_Ioi : (Ioi a)ᶜ = Iic a := ext $ λ _, not_lt
@[simp] lemma Ici_diff_Ici : Ici a \ Ici b = Ico a b :=
by rw [diff_eq, compl_Ici, Ici_inter_Iio]
@[simp] lemma Ici_diff_Ioi : Ici a \ Ioi b = Icc a b :=
by rw [diff_eq, compl_Ioi, Ici_inter_Iic]
@[simp] lemma Ioi_diff_Ioi : Ioi a \ Ioi b = Ioc a b :=
by rw [diff_eq, compl_Ioi, Ioi_inter_Iic]
@[simp] lemma Ioi_diff_Ici : Ioi a \ Ici b = Ioo a b :=
by rw [diff_eq, compl_Ici, Ioi_inter_Iio]
@[simp] lemma Iic_diff_Iic : Iic b \ Iic a = Ioc a b :=
by rw [diff_eq, compl_Iic, inter_comm, Ioi_inter_Iic]
@[simp] lemma Iio_diff_Iic : Iio b \ Iic a = Ioo a b :=
by rw [diff_eq, compl_Iic, inter_comm, Ioi_inter_Iio]
@[simp] lemma Iic_diff_Iio : Iic b \ Iio a = Icc a b :=
by rw [diff_eq, compl_Iio, inter_comm, Ici_inter_Iic]
@[simp] lemma Iio_diff_Iio : Iio b \ Iio a = Ico a b :=
by rw [diff_eq, compl_Iio, inter_comm, Ici_inter_Iio]
lemma Ico_subset_Ico_iff (h₁ : a₁ < b₁) :
Ico a₁ b₁ ⊆ Ico a₂ b₂ ↔ a₂ ≤ a₁ ∧ b₁ ≤ b₂ :=
⟨λ h, have a₂ ≤ a₁ ∧ a₁ < b₂ := h ⟨le_rfl, h₁⟩,
⟨this.1, le_of_not_lt $ λ h', lt_irrefl b₂ (h ⟨this.2.le, h'⟩).2⟩,
λ ⟨h₁, h₂⟩, Ico_subset_Ico h₁ h₂⟩
lemma Ioc_subset_Ioc_iff (h₁ : a₁ < b₁) :
Ioc a₁ b₁ ⊆ Ioc a₂ b₂ ↔ b₁ ≤ b₂ ∧ a₂ ≤ a₁ :=
by { convert @Ico_subset_Ico_iff (order_dual α) _ b₁ b₂ a₁ a₂ h₁; exact (@dual_Ico α _ _ _).symm }
lemma Ioo_subset_Ioo_iff [densely_ordered α] (h₁ : a₁ < b₁) :
Ioo a₁ b₁ ⊆ Ioo a₂ b₂ ↔ a₂ ≤ a₁ ∧ b₁ ≤ b₂ :=
⟨λ h, begin
rcases exists_between h₁ with ⟨x, xa, xb⟩,
split; refine le_of_not_lt (λ h', _),
{ have ab := (h ⟨xa, xb⟩).1.trans xb,
exact lt_irrefl _ (h ⟨h', ab⟩).1 },
{ have ab := xa.trans (h ⟨xa, xb⟩).2,
exact lt_irrefl _ (h ⟨ab, h'⟩).2 }
end, λ ⟨h₁, h₂⟩, Ioo_subset_Ioo h₁ h₂⟩
lemma Ico_eq_Ico_iff (h : a₁ < b₁ ∨ a₂ < b₂) : Ico a₁ b₁ = Ico a₂ b₂ ↔ a₁ = a₂ ∧ b₁ = b₂ :=
⟨λ e, begin
simp [subset.antisymm_iff] at e, simp [le_antisymm_iff],
cases h; simp [Ico_subset_Ico_iff h] at e;
[ rcases e with ⟨⟨h₁, h₂⟩, e'⟩, rcases e with ⟨e', ⟨h₁, h₂⟩⟩ ];
have := (Ico_subset_Ico_iff $ h₁.trans_lt $ h.trans_le h₂).1 e';
tauto
end, λ ⟨h₁, h₂⟩, by rw [h₁, h₂]⟩
open_locale classical
@[simp] lemma Ioi_subset_Ioi_iff : Ioi b ⊆ Ioi a ↔ a ≤ b :=
begin
refine ⟨λ h, _, λ h, Ioi_subset_Ioi h⟩,
by_contradiction ba,
exact lt_irrefl _ (h (not_le.mp ba))
end
@[simp] lemma Ioi_subset_Ici_iff [densely_ordered α] : Ioi b ⊆ Ici a ↔ a ≤ b :=
begin
refine ⟨λ h, _, λ h, Ioi_subset_Ici h⟩,
by_contradiction ba,
obtain ⟨c, bc, ca⟩ : ∃c, b < c ∧ c < a := exists_between (not_le.mp ba),
exact lt_irrefl _ (ca.trans_le (h bc))
end
@[simp] lemma Iio_subset_Iio_iff : Iio a ⊆ Iio b ↔ a ≤ b :=
begin
refine ⟨λ h, _, λ h, Iio_subset_Iio h⟩,
by_contradiction ab,
exact lt_irrefl _ (h (not_le.mp ab))
end
@[simp] lemma Iio_subset_Iic_iff [densely_ordered α] : Iio a ⊆ Iic b ↔ a ≤ b :=
by rw [←diff_eq_empty, Iio_diff_Iic, Ioo_eq_empty_iff, not_lt]
/-! ### Unions of adjacent intervals -/
/-! #### Two infinite intervals -/
@[simp] lemma Iic_union_Ici : Iic a ∪ Ici a = univ := eq_univ_of_forall (λ x, le_total x a)
@[simp] lemma Iio_union_Ici : Iio a ∪ Ici a = univ := eq_univ_of_forall (λ x, lt_or_le x a)
@[simp] lemma Iic_union_Ioi : Iic a ∪ Ioi a = univ := eq_univ_of_forall (λ x, le_or_lt x a)
/-! #### A finite and an infinite interval -/
lemma Ioo_union_Ioi' (h₁ : c < b) :
Ioo a b ∪ Ioi c = Ioi (min a c) :=
begin
ext1 x,
simp_rw [mem_union, mem_Ioo, mem_Ioi, min_lt_iff],
by_cases hc : c < x,
{ tauto },
{ have hxb : x < b := (le_of_not_gt hc).trans_lt h₁,
tauto },
end
lemma Ioo_union_Ioi (h : c < max a b) :
Ioo a b ∪ Ioi c = Ioi (min a c) :=
begin
cases le_total a b with hab hab; simp [hab] at h,
{ exact Ioo_union_Ioi' h },
{ rw min_comm,
simp [*, min_eq_left_of_lt] },
end
lemma Ioi_subset_Ioo_union_Ici : Ioi a ⊆ Ioo a b ∪ Ici b :=
λ x hx, (lt_or_le x b).elim (λ hxb, or.inl ⟨hx, hxb⟩) (λ hxb, or.inr hxb)
@[simp] lemma Ioo_union_Ici_eq_Ioi (h : a < b) : Ioo a b ∪ Ici b = Ioi a :=
subset.antisymm (λ x hx, hx.elim and.left h.trans_le) Ioi_subset_Ioo_union_Ici
lemma Ici_subset_Ico_union_Ici : Ici a ⊆ Ico a b ∪ Ici b :=
λ x hx, (lt_or_le x b).elim (λ hxb, or.inl ⟨hx, hxb⟩) (λ hxb, or.inr hxb)
@[simp] lemma Ico_union_Ici_eq_Ici (h : a ≤ b) : Ico a b ∪ Ici b = Ici a :=
subset.antisymm (λ x hx, hx.elim and.left h.trans) Ici_subset_Ico_union_Ici
lemma Ico_union_Ici' (h₁ : c ≤ b) :
Ico a b ∪ Ici c = Ici (min a c) :=
begin
ext1 x,
simp_rw [mem_union, mem_Ico, mem_Ici, min_le_iff],
by_cases hc : c ≤ x,
{ tauto },
{ have hxb : x < b := (lt_of_not_ge hc).trans_le h₁,
tauto },
end
lemma Ico_union_Ici (h : c ≤ max a b) :
Ico a b ∪ Ici c = Ici (min a c) :=
begin
cases le_total a b with hab hab; simp [hab] at h,
{ exact Ico_union_Ici' h },
{ simp [*] },
end
lemma Ioi_subset_Ioc_union_Ioi : Ioi a ⊆ Ioc a b ∪ Ioi b :=
λ x hx, (le_or_lt x b).elim (λ hxb, or.inl ⟨hx, hxb⟩) (λ hxb, or.inr hxb)
@[simp] lemma Ioc_union_Ioi_eq_Ioi (h : a ≤ b) : Ioc a b ∪ Ioi b = Ioi a :=
subset.antisymm (λ x hx, hx.elim and.left h.trans_lt) Ioi_subset_Ioc_union_Ioi
lemma Ioc_union_Ioi' (h₁ : c ≤ b) :
Ioc a b ∪ Ioi c = Ioi (min a c) :=
begin
ext1 x,
simp_rw [mem_union, mem_Ioc, mem_Ioi, min_lt_iff],
by_cases hc : c < x,
{ tauto },
{ have hxb : x ≤ b := (le_of_not_gt hc).trans h₁,
tauto },
end
lemma Ioc_union_Ioi (h : c ≤ max a b) :
Ioc a b ∪ Ioi c = Ioi (min a c) :=
begin
cases le_total a b with hab hab; simp [hab] at h,
{ exact Ioc_union_Ioi' h },
{ simp [*] },
end
lemma Ici_subset_Icc_union_Ioi : Ici a ⊆ Icc a b ∪ Ioi b :=
λ x hx, (le_or_lt x b).elim (λ hxb, or.inl ⟨hx, hxb⟩) (λ hxb, or.inr hxb)
@[simp] lemma Icc_union_Ioi_eq_Ici (h : a ≤ b) : Icc a b ∪ Ioi b = Ici a :=
subset.antisymm (λ x hx, hx.elim and.left $ λ hx', h.trans $ le_of_lt hx') Ici_subset_Icc_union_Ioi
lemma Ioi_subset_Ioc_union_Ici : Ioi a ⊆ Ioc a b ∪ Ici b :=
subset.trans Ioi_subset_Ioo_union_Ici (union_subset_union_left _ Ioo_subset_Ioc_self)
@[simp] lemma Ioc_union_Ici_eq_Ioi (h : a < b) : Ioc a b ∪ Ici b = Ioi a :=
subset.antisymm (λ x hx, hx.elim and.left h.trans_le) Ioi_subset_Ioc_union_Ici
lemma Ici_subset_Icc_union_Ici : Ici a ⊆ Icc a b ∪ Ici b :=
subset.trans Ici_subset_Ico_union_Ici (union_subset_union_left _ Ico_subset_Icc_self)
@[simp] lemma Icc_union_Ici_eq_Ici (h : a ≤ b) : Icc a b ∪ Ici b = Ici a :=
subset.antisymm (λ x hx, hx.elim and.left h.trans) Ici_subset_Icc_union_Ici
lemma Icc_union_Ici' (h₁ : c ≤ b) :
Icc a b ∪ Ici c = Ici (min a c) :=
begin
ext1 x,
simp_rw [mem_union, mem_Icc, mem_Ici, min_le_iff],
by_cases hc : c ≤ x,
{ tauto },
{ have hxb : x ≤ b := (le_of_not_ge hc).trans h₁,
tauto },
end
lemma Icc_union_Ici (h : c ≤ max a b) :
Icc a b ∪ Ici c = Ici (min a c) :=
begin
cases le_or_lt a b with hab hab; simp [hab] at h,
{ exact Icc_union_Ici' h },
{ cases h,
{ simp [*] },
{ have hca : c ≤ a := h.trans hab.le,
simp [*] } },
end
/-! #### An infinite and a finite interval -/
lemma Iic_subset_Iio_union_Icc : Iic b ⊆ Iio a ∪ Icc a b :=
λ x hx, (lt_or_le x a).elim (λ hxa, or.inl hxa) (λ hxa, or.inr ⟨hxa, hx⟩)
@[simp] lemma Iio_union_Icc_eq_Iic (h : a ≤ b) : Iio a ∪ Icc a b = Iic b :=
subset.antisymm (λ x hx, hx.elim (λ hx, (le_of_lt hx).trans h) and.right)
Iic_subset_Iio_union_Icc
lemma Iio_subset_Iio_union_Ico : Iio b ⊆ Iio a ∪ Ico a b :=
λ x hx, (lt_or_le x a).elim (λ hxa, or.inl hxa) (λ hxa, or.inr ⟨hxa, hx⟩)
@[simp] lemma Iio_union_Ico_eq_Iio (h : a ≤ b) : Iio a ∪ Ico a b = Iio b :=
subset.antisymm (λ x hx, hx.elim (λ hx', lt_of_lt_of_le hx' h) and.right) Iio_subset_Iio_union_Ico
lemma Iio_union_Ico' (h₁ : c ≤ b) :
Iio b ∪ Ico c d = Iio (max b d) :=
begin
ext1 x,
simp_rw [mem_union, mem_Iio, mem_Ico, lt_max_iff],
by_cases hc : c ≤ x,
{ tauto },
{ have hxb : x < b := (lt_of_not_ge hc).trans_le h₁,
tauto },
end
lemma Iio_union_Ico (h : min c d ≤ b) :
Iio b ∪ Ico c d = Iio (max b d) :=
begin
cases le_total c d with hcd hcd; simp [hcd] at h,
{ exact Iio_union_Ico' h },
{ simp [*] },
end
lemma Iic_subset_Iic_union_Ioc : Iic b ⊆ Iic a ∪ Ioc a b :=
λ x hx, (le_or_lt x a).elim (λ hxa, or.inl hxa) (λ hxa, or.inr ⟨hxa, hx⟩)
@[simp] lemma Iic_union_Ioc_eq_Iic (h : a ≤ b) : Iic a ∪ Ioc a b = Iic b :=
subset.antisymm (λ x hx, hx.elim (λ hx', le_trans hx' h) and.right) Iic_subset_Iic_union_Ioc
lemma Iic_union_Ioc' (h₁ : c < b) :
Iic b ∪ Ioc c d = Iic (max b d) :=
begin
ext1 x,
simp_rw [mem_union, mem_Iic, mem_Ioc, le_max_iff],
by_cases hc : c < x,
{ tauto },
{ have hxb : x ≤ b := (le_of_not_gt hc).trans h₁.le,
tauto },
end
lemma Iic_union_Ioc (h : min c d < b) :
Iic b ∪ Ioc c d = Iic (max b d) :=
begin
cases le_total c d with hcd hcd; simp [hcd] at h,
{ exact Iic_union_Ioc' h },
{ rw max_comm,
simp [*, max_eq_right_of_lt h] },
end
lemma Iio_subset_Iic_union_Ioo : Iio b ⊆ Iic a ∪ Ioo a b :=
λ x hx, (le_or_lt x a).elim (λ hxa, or.inl hxa) (λ hxa, or.inr ⟨hxa, hx⟩)
@[simp] lemma Iic_union_Ioo_eq_Iio (h : a < b) : Iic a ∪ Ioo a b = Iio b :=
subset.antisymm (λ x hx, hx.elim (λ hx', lt_of_le_of_lt hx' h) and.right) Iio_subset_Iic_union_Ioo
lemma Iio_union_Ioo' (h₁ : c < b) :
Iio b ∪ Ioo c d = Iio (max b d) :=
begin
ext x,
cases lt_or_le x b with hba hba,
{ simp [hba, h₁] },
{ simp only [mem_Iio, mem_union_eq, mem_Ioo, lt_max_iff],
refine or_congr iff.rfl ⟨and.right, _⟩,
exact λ h₂, ⟨h₁.trans_le hba, h₂⟩ },
end
lemma Iio_union_Ioo (h : min c d < b) :
Iio b ∪ Ioo c d = Iio (max b d) :=
begin
cases le_total c d with hcd hcd; simp [hcd] at h,
{ exact Iio_union_Ioo' h },
{ rw max_comm,
simp [*, max_eq_right_of_lt h] },
end
lemma Iic_subset_Iic_union_Icc : Iic b ⊆ Iic a ∪ Icc a b :=
subset.trans Iic_subset_Iic_union_Ioc (union_subset_union_right _ Ioc_subset_Icc_self)
@[simp] lemma Iic_union_Icc_eq_Iic (h : a ≤ b) : Iic a ∪ Icc a b = Iic b :=
subset.antisymm (λ x hx, hx.elim (λ hx', le_trans hx' h) and.right) Iic_subset_Iic_union_Icc
lemma Iic_union_Icc' (h₁ : c ≤ b) :
Iic b ∪ Icc c d = Iic (max b d) :=
begin
ext1 x,
simp_rw [mem_union, mem_Iic, mem_Icc, le_max_iff],
by_cases hc : c ≤ x,
{ tauto },
{ have hxb : x ≤ b := (le_of_not_ge hc).trans h₁,
tauto },
end
lemma Iic_union_Icc (h : min c d ≤ b) :
Iic b ∪ Icc c d = Iic (max b d) :=
begin
cases le_or_lt c d with hcd hcd; simp [hcd] at h,
{ exact Iic_union_Icc' h },
{ cases h,
{ have hdb : d ≤ b := hcd.le.trans h,
simp [*] },
{ simp [*] } },
end
lemma Iio_subset_Iic_union_Ico : Iio b ⊆ Iic a ∪ Ico a b :=
subset.trans Iio_subset_Iic_union_Ioo (union_subset_union_right _ Ioo_subset_Ico_self)
@[simp] lemma Iic_union_Ico_eq_Iio (h : a < b) : Iic a ∪ Ico a b = Iio b :=
subset.antisymm (λ x hx, hx.elim (λ hx', lt_of_le_of_lt hx' h) and.right) Iio_subset_Iic_union_Ico
/-! #### Two finite intervals, `I?o` and `Ic?` -/
lemma Ioo_subset_Ioo_union_Ico : Ioo a c ⊆ Ioo a b ∪ Ico b c :=
λ x hx, (lt_or_le x b).elim (λ hxb, or.inl ⟨hx.1, hxb⟩) (λ hxb, or.inr ⟨hxb, hx.2⟩)
@[simp] lemma Ioo_union_Ico_eq_Ioo (h₁ : a < b) (h₂ : b ≤ c) : Ioo a b ∪ Ico b c = Ioo a c :=
subset.antisymm
(λ x hx, hx.elim (λ hx, ⟨hx.1, hx.2.trans_le h₂⟩) (λ hx, ⟨h₁.trans_le hx.1, hx.2⟩))
Ioo_subset_Ioo_union_Ico
lemma Ico_subset_Ico_union_Ico : Ico a c ⊆ Ico a b ∪ Ico b c :=
λ x hx, (lt_or_le x b).elim (λ hxb, or.inl ⟨hx.1, hxb⟩) (λ hxb, or.inr ⟨hxb, hx.2⟩)
@[simp] lemma Ico_union_Ico_eq_Ico (h₁ : a ≤ b) (h₂ : b ≤ c) : Ico a b ∪ Ico b c = Ico a c :=
subset.antisymm
(λ x hx, hx.elim (λ hx, ⟨hx.1, hx.2.trans_le h₂⟩) (λ hx, ⟨h₁.trans hx.1, hx.2⟩))
Ico_subset_Ico_union_Ico
lemma Ico_union_Ico' (h₁ : c ≤ b) (h₂ : a ≤ d) :
Ico a b ∪ Ico c d = Ico (min a c) (max b d) :=
begin
ext1 x,
simp_rw [mem_union, mem_Ico, min_le_iff, lt_max_iff],
by_cases hc : c ≤ x; by_cases hd : x < d,
{ tauto },
{ have hax : a ≤ x := h₂.trans (le_of_not_gt hd),
tauto },
{ have hxb : x < b := (lt_of_not_ge hc).trans_le h₁,
tauto },
{ tauto },
end
lemma Ico_union_Ico (h₁ : min a b ≤ max c d) (h₂ : min c d ≤ max a b) :
Ico a b ∪ Ico c d = Ico (min a c) (max b d) :=
begin
cases le_total a b with hab hab; cases le_total c d with hcd hcd; simp [hab, hcd] at h₁ h₂,
{ exact Ico_union_Ico' h₂ h₁ },
all_goals { simp [*] },
end
lemma Icc_subset_Ico_union_Icc : Icc a c ⊆ Ico a b ∪ Icc b c :=
λ x hx, (lt_or_le x b).elim (λ hxb, or.inl ⟨hx.1, hxb⟩) (λ hxb, or.inr ⟨hxb, hx.2⟩)
@[simp] lemma Ico_union_Icc_eq_Icc (h₁ : a ≤ b) (h₂ : b ≤ c) : Ico a b ∪ Icc b c = Icc a c :=
subset.antisymm
(λ x hx, hx.elim (λ hx, ⟨hx.1, hx.2.le.trans h₂⟩) (λ hx, ⟨h₁.trans hx.1, hx.2⟩))
Icc_subset_Ico_union_Icc
lemma Ioc_subset_Ioo_union_Icc : Ioc a c ⊆ Ioo a b ∪ Icc b c :=
λ x hx, (lt_or_le x b).elim (λ hxb, or.inl ⟨hx.1, hxb⟩) (λ hxb, or.inr ⟨hxb, hx.2⟩)
@[simp] lemma Ioo_union_Icc_eq_Ioc (h₁ : a < b) (h₂ : b ≤ c) : Ioo a b ∪ Icc b c = Ioc a c :=
subset.antisymm
(λ x hx, hx.elim (λ hx, ⟨hx.1, hx.2.le.trans h₂⟩)
(λ hx, ⟨h₁.trans_le hx.1, hx.2⟩))
Ioc_subset_Ioo_union_Icc
/-! #### Two finite intervals, `I?c` and `Io?` -/
lemma Ioo_subset_Ioc_union_Ioo : Ioo a c ⊆ Ioc a b ∪ Ioo b c :=
λ x hx, (le_or_lt x b).elim (λ hxb, or.inl ⟨hx.1, hxb⟩) (λ hxb, or.inr ⟨hxb, hx.2⟩)
@[simp] lemma Ioc_union_Ioo_eq_Ioo (h₁ : a ≤ b) (h₂ : b < c) : Ioc a b ∪ Ioo b c = Ioo a c :=
subset.antisymm
(λ x hx, hx.elim (λ hx, ⟨hx.1, hx.2.trans_lt h₂⟩) (λ hx, ⟨h₁.trans_lt hx.1, hx.2⟩))
Ioo_subset_Ioc_union_Ioo
lemma Ico_subset_Icc_union_Ioo : Ico a c ⊆ Icc a b ∪ Ioo b c :=
λ x hx, (le_or_lt x b).elim (λ hxb, or.inl ⟨hx.1, hxb⟩) (λ hxb, or.inr ⟨hxb, hx.2⟩)
@[simp] lemma Icc_union_Ioo_eq_Ico (h₁ : a ≤ b) (h₂ : b < c) : Icc a b ∪ Ioo b c = Ico a c :=
subset.antisymm
(λ x hx, hx.elim (λ hx, ⟨hx.1, hx.2.trans_lt h₂⟩)
(λ hx, ⟨h₁.trans hx.1.le, hx.2⟩))
Ico_subset_Icc_union_Ioo
lemma Icc_subset_Icc_union_Ioc : Icc a c ⊆ Icc a b ∪ Ioc b c :=
λ x hx, (le_or_lt x b).elim (λ hxb, or.inl ⟨hx.1, hxb⟩) (λ hxb, or.inr ⟨hxb, hx.2⟩)
@[simp] lemma Icc_union_Ioc_eq_Icc (h₁ : a ≤ b) (h₂ : b ≤ c) : Icc a b ∪ Ioc b c = Icc a c :=
subset.antisymm
(λ x hx, hx.elim (λ hx, ⟨hx.1, hx.2.trans h₂⟩) (λ hx, ⟨h₁.trans hx.1.le, hx.2⟩))
Icc_subset_Icc_union_Ioc
lemma Ioc_subset_Ioc_union_Ioc : Ioc a c ⊆ Ioc a b ∪ Ioc b c :=
λ x hx, (le_or_lt x b).elim (λ hxb, or.inl ⟨hx.1, hxb⟩) (λ hxb, or.inr ⟨hxb, hx.2⟩)
@[simp] lemma Ioc_union_Ioc_eq_Ioc (h₁ : a ≤ b) (h₂ : b ≤ c) : Ioc a b ∪ Ioc b c = Ioc a c :=
subset.antisymm
(λ x hx, hx.elim (λ hx, ⟨hx.1, hx.2.trans h₂⟩) (λ hx, ⟨h₁.trans_lt hx.1, hx.2⟩))
Ioc_subset_Ioc_union_Ioc
lemma Ioc_union_Ioc' (h₁ : c ≤ b) (h₂ : a ≤ d) :
Ioc a b ∪ Ioc c d = Ioc (min a c) (max b d) :=
begin
ext1 x,
simp_rw [mem_union, mem_Ioc, min_lt_iff, le_max_iff],
by_cases hc : c < x; by_cases hd : x ≤ d,
{ tauto },
{ have hax : a < x := h₂.trans_lt (lt_of_not_ge hd),
tauto },
{ have hxb : x ≤ b := (le_of_not_gt hc).trans h₁,
tauto },
{ tauto },
end
lemma Ioc_union_Ioc (h₁ : min a b ≤ max c d) (h₂ : min c d ≤ max a b) :
Ioc a b ∪ Ioc c d = Ioc (min a c) (max b d) :=
begin
cases le_total a b with hab hab; cases le_total c d with hcd hcd; simp [hab, hcd] at h₁ h₂,
{ exact Ioc_union_Ioc' h₂ h₁ },
all_goals { simp [*] },
end
/-! #### Two finite intervals with a common point -/
lemma Ioo_subset_Ioc_union_Ico : Ioo a c ⊆ Ioc a b ∪ Ico b c :=
subset.trans Ioo_subset_Ioc_union_Ioo (union_subset_union_right _ Ioo_subset_Ico_self)
@[simp] lemma Ioc_union_Ico_eq_Ioo (h₁ : a < b) (h₂ : b < c) : Ioc a b ∪ Ico b c = Ioo a c :=
subset.antisymm
(λ x hx, hx.elim (λ hx', ⟨hx'.1, hx'.2.trans_lt h₂⟩) (λ hx', ⟨h₁.trans_le hx'.1, hx'.2⟩))
Ioo_subset_Ioc_union_Ico
lemma Ico_subset_Icc_union_Ico : Ico a c ⊆ Icc a b ∪ Ico b c :=
subset.trans Ico_subset_Icc_union_Ioo (union_subset_union_right _ Ioo_subset_Ico_self)
@[simp] lemma Icc_union_Ico_eq_Ico (h₁ : a ≤ b) (h₂ : b < c) : Icc a b ∪ Ico b c = Ico a c :=
subset.antisymm
(λ x hx, hx.elim (λ hx, ⟨hx.1, hx.2.trans_lt h₂⟩) (λ hx, ⟨h₁.trans hx.1, hx.2⟩))
Ico_subset_Icc_union_Ico
lemma Icc_subset_Icc_union_Icc : Icc a c ⊆ Icc a b ∪ Icc b c :=
subset.trans Icc_subset_Icc_union_Ioc (union_subset_union_right _ Ioc_subset_Icc_self)
@[simp] lemma Icc_union_Icc_eq_Icc (h₁ : a ≤ b) (h₂ : b ≤ c) : Icc a b ∪ Icc b c = Icc a c :=
subset.antisymm
(λ x hx, hx.elim (λ hx, ⟨hx.1, hx.2.trans h₂⟩) (λ hx, ⟨h₁.trans hx.1, hx.2⟩))
Icc_subset_Icc_union_Icc
lemma Icc_union_Icc' (h₁ : c ≤ b) (h₂ : a ≤ d) :
Icc a b ∪ Icc c d = Icc (min a c) (max b d) :=
begin
ext1 x,
simp_rw [mem_union, mem_Icc, min_le_iff, le_max_iff],
by_cases hc : c ≤ x; by_cases hd : x ≤ d,
{ tauto },
{ have hax : a ≤ x := h₂.trans (le_of_not_ge hd),
tauto },
{ have hxb : x ≤ b := (le_of_not_ge hc).trans h₁,
tauto },
{ tauto }
end
/--
We cannot replace `<` by `≤` in the hypotheses.
Otherwise for `b < a = d < c` the l.h.s. is `∅` and the r.h.s. is `{a}`.
-/
lemma Icc_union_Icc (h₁ : min a b < max c d) (h₂ : min c d < max a b) :
Icc a b ∪ Icc c d = Icc (min a c) (max b d) :=
begin
cases le_or_lt a b with hab hab; cases le_or_lt c d with hcd hcd;
simp only [min_eq_left, min_eq_right, max_eq_left, max_eq_right, min_eq_left_of_lt,
min_eq_right_of_lt, max_eq_left_of_lt, max_eq_right_of_lt, hab, hcd] at h₁ h₂,
{ exact Icc_union_Icc' h₂.le h₁.le },
all_goals { simp [*, min_eq_left_of_lt, max_eq_left_of_lt, min_eq_right_of_lt,
max_eq_right_of_lt] },
end
lemma Ioc_subset_Ioc_union_Icc : Ioc a c ⊆ Ioc a b ∪ Icc b c :=
subset.trans Ioc_subset_Ioc_union_Ioc (union_subset_union_right _ Ioc_subset_Icc_self)
@[simp] lemma Ioc_union_Icc_eq_Ioc (h₁ : a < b) (h₂ : b ≤ c) : Ioc a b ∪ Icc b c = Ioc a c :=
subset.antisymm
(λ x hx, hx.elim (λ hx, ⟨hx.1, hx.2.trans h₂⟩) (λ hx, ⟨h₁.trans_le hx.1, hx.2⟩))
Ioc_subset_Ioc_union_Icc
lemma Ioo_union_Ioo' (h₁ : c < b) (h₂ : a < d) :
Ioo a b ∪ Ioo c d = Ioo (min a c) (max b d) :=
begin
ext1 x,
simp_rw [mem_union, mem_Ioo, min_lt_iff, lt_max_iff],
by_cases hc : c < x; by_cases hd : x < d,
{ tauto },
{ have hax : a < x := h₂.trans_le (le_of_not_lt hd),
tauto },
{ have hxb : x < b := (le_of_not_lt hc).trans_lt h₁,
tauto },
{ tauto }
end
lemma Ioo_union_Ioo (h₁ : min a b < max c d) (h₂ : min c d < max a b) :
Ioo a b ∪ Ioo c d = Ioo (min a c) (max b d) :=
begin
cases le_total a b with hab hab; cases le_total c d with hcd hcd;
simp only [min_eq_left, min_eq_right, max_eq_left, max_eq_right, hab, hcd] at h₁ h₂,
{ exact Ioo_union_Ioo' h₂ h₁ },
all_goals {
simp [*, min_eq_left_of_lt, min_eq_right_of_lt, max_eq_left_of_lt, max_eq_right_of_lt,
le_of_lt h₂, le_of_lt h₁] },
end
end linear_order
section lattice
section inf
variables {α : Type u} [semilattice_inf α]
@[simp] lemma Iic_inter_Iic {a b : α} : Iic a ∩ Iic b = Iic (a ⊓ b) :=
by { ext x, simp [Iic] }
@[simp] lemma Iio_inter_Iio [is_total α (≤)] {a b : α} : Iio a ∩ Iio b = Iio (a ⊓ b) :=
by { ext x, simp [Iio] }
end inf
section sup
variables {α : Type u} [semilattice_sup α]
@[simp] lemma Ici_inter_Ici {a b : α} : Ici a ∩ Ici b = Ici (a ⊔ b) :=
by { ext x, simp [Ici] }
@[simp] lemma Ioi_inter_Ioi [is_total α (≤)] {a b : α} : Ioi a ∩ Ioi b = Ioi (a ⊔ b) :=
by { ext x, simp [Ioi] }
@[simp] lemma Ioc_inter_Ioi [is_total α (≤)] {a b c : α} : Ioc a b ∩ Ioi c = Ioc (a ⊔ c) b :=
by rw [← Ioi_inter_Iic, inter_assoc, inter_comm, inter_assoc, Ioi_inter_Ioi, inter_comm,
Ioi_inter_Iic, sup_comm]
end sup
section both
variables {α : Type u} [lattice α] [ht : is_total α (≤)] {a b c a₁ a₂ b₁ b₂ : α}
lemma Icc_inter_Icc : Icc a₁ b₁ ∩ Icc a₂ b₂ = Icc (a₁ ⊔ a₂) (b₁ ⊓ b₂) :=
by simp only [Ici_inter_Iic.symm, Ici_inter_Ici.symm, Iic_inter_Iic.symm]; ac_refl
@[simp] lemma Icc_inter_Icc_eq_singleton (hab : a ≤ b) (hbc : b ≤ c) :
Icc a b ∩ Icc b c = {b} :=
by rw [Icc_inter_Icc, sup_of_le_right hab, inf_of_le_left hbc, Icc_self]
include ht
lemma Ico_inter_Ico : Ico a₁ b₁ ∩ Ico a₂ b₂ = Ico (a₁ ⊔ a₂) (b₁ ⊓ b₂) :=
by simp only [Ici_inter_Iio.symm, Ici_inter_Ici.symm, Iio_inter_Iio.symm]; ac_refl
lemma Ioc_inter_Ioc : Ioc a₁ b₁ ∩ Ioc a₂ b₂ = Ioc (a₁ ⊔ a₂) (b₁ ⊓ b₂) :=
by simp only [Ioi_inter_Iic.symm, Ioi_inter_Ioi.symm, Iic_inter_Iic.symm]; ac_refl
lemma Ioo_inter_Ioo : Ioo a₁ b₁ ∩ Ioo a₂ b₂ = Ioo (a₁ ⊔ a₂) (b₁ ⊓ b₂) :=
by simp only [Ioi_inter_Iio.symm, Ioi_inter_Ioi.symm, Iio_inter_Iio.symm]; ac_refl
end both
lemma Icc_bot_top {α} [bounded_lattice α] : Icc (⊥ : α) ⊤ = univ := by simp
end lattice
section linear_order
variables {α : Type u} [linear_order α] {a a₁ a₂ b b₁ b₂ c d : α}
lemma Ioc_inter_Ioo_of_left_lt (h : b₁ < b₂) : Ioc a₁ b₁ ∩ Ioo a₂ b₂ = Ioc (max a₁ a₂) b₁ :=
ext $ λ x, by simp [and_assoc, @and.left_comm (x ≤ _),
and_iff_left_iff_imp.2 (λ h', lt_of_le_of_lt h' h)]
lemma Ioc_inter_Ioo_of_right_le (h : b₂ ≤ b₁) : Ioc a₁ b₁ ∩ Ioo a₂ b₂ = Ioo (max a₁ a₂) b₂ :=
ext $ λ x, by simp [and_assoc, @and.left_comm (x ≤ _),
and_iff_right_iff_imp.2 (λ h', ((le_of_lt h').trans h))]
lemma Ioo_inter_Ioc_of_left_le (h : b₁ ≤ b₂) : Ioo a₁ b₁ ∩ Ioc a₂ b₂ = Ioo (max a₁ a₂) b₁ :=
by rw [inter_comm, Ioc_inter_Ioo_of_right_le h, max_comm]
lemma Ioo_inter_Ioc_of_right_lt (h : b₂ < b₁) : Ioo a₁ b₁ ∩ Ioc a₂ b₂ = Ioc (max a₁ a₂) b₂ :=
by rw [inter_comm, Ioc_inter_Ioo_of_left_lt h, max_comm]
lemma Iic_inter_Ioc_of_le (h : a₂ ≤ a) : Iic a₂ ∩ Ioc a₁ a = Ioc a₁ a₂ :=
ext $ λ x, ⟨λ H, ⟨H.2.1, H.1⟩, λ H, ⟨H.2, H.1, H.2.trans h⟩⟩
@[simp] lemma Ico_diff_Iio : Ico a b \ Iio c = Ico (max a c) b :=
ext $ by simp [iff_def] {contextual:=tt}
@[simp] lemma Ioc_diff_Ioi : Ioc a b \ Ioi c = Ioc a (min b c) :=
ext $ by simp [iff_def] {contextual:=tt}
@[simp] lemma Ico_inter_Iio : Ico a b ∩ Iio c = Ico a (min b c) :=
ext $ by simp [iff_def] {contextual:=tt}
@[simp] lemma Ioc_union_Ioc_right : Ioc a b ∪ Ioc a c = Ioc a (max b c) :=
by rw [Ioc_union_Ioc, min_self]; exact (min_le_left _ _).trans (le_max_left _ _)
@[simp] lemma Ioc_union_Ioc_left : Ioc a c ∪ Ioc b c = Ioc (min a b) c :=
by rw [Ioc_union_Ioc, max_self]; exact (min_le_right _ _).trans (le_max_right _ _)
@[simp] lemma Ioc_union_Ioc_symm : Ioc a b ∪ Ioc b a = Ioc (min a b) (max a b) :=
by { rw max_comm, apply Ioc_union_Ioc; rw max_comm; exact min_le_max }
@[simp] lemma Ioc_union_Ioc_union_Ioc_cycle :
Ioc a b ∪ Ioc b c ∪ Ioc c a = Ioc (min a (min b c)) (max a (max b c)) :=
begin
rw [Ioc_union_Ioc, Ioc_union_Ioc],
ac_refl,
all_goals { solve_by_elim [min_le_of_left_le, min_le_of_right_le, le_max_of_le_left,
le_max_of_le_right, le_refl] { max_depth := 5 }}
end
end linear_order
/-! ### Lemmas about membership of arithmetic operations -/
section ordered_comm_group
variables {α : Type*} [ordered_comm_group α] {a b c d : α}
/-! `inv_mem_Ixx_iff`, `sub_mem_Ixx_iff` -/
@[to_additive] lemma inv_mem_Icc_iff : a⁻¹ ∈ set.Icc c d ↔ a ∈ set.Icc (d⁻¹) (c⁻¹) :=
(and_comm _ _).trans $ and_congr inv_le' le_inv'
@[to_additive] lemma inv_mem_Ico_iff : a⁻¹ ∈ set.Ico c d ↔ a ∈ set.Ioc (d⁻¹) (c⁻¹) :=
(and_comm _ _).trans $ and_congr inv_lt' le_inv'
@[to_additive] lemma inv_mem_Ioc_iff : a⁻¹ ∈ set.Ioc c d ↔ a ∈ set.Ico (d⁻¹) (c⁻¹) :=
(and_comm _ _).trans $ and_congr inv_le' lt_inv'
@[to_additive] lemma inv_mem_Ioo_iff : a⁻¹ ∈ set.Ioo c d ↔ a ∈ set.Ioo (d⁻¹) (c⁻¹) :=
(and_comm _ _).trans $ and_congr inv_lt' lt_inv'
end ordered_comm_group
section ordered_add_comm_group
variables {α : Type*} [ordered_add_comm_group α] {a b c d : α}
/-! `add_mem_Ixx_iff_left` -/
lemma add_mem_Icc_iff_left : a + b ∈ set.Icc c d ↔ a ∈ set.Icc (c - b) (d - b) :=
(and_congr sub_le_iff_le_add le_sub_iff_add_le).symm
lemma add_mem_Ico_iff_left : a + b ∈ set.Ico c d ↔ a ∈ set.Ico (c - b) (d - b) :=
(and_congr sub_le_iff_le_add lt_sub_iff_add_lt).symm
lemma add_mem_Ioc_iff_left : a + b ∈ set.Ioc c d ↔ a ∈ set.Ioc (c - b) (d - b) :=
(and_congr sub_lt_iff_lt_add le_sub_iff_add_le).symm
lemma add_mem_Ioo_iff_left : a + b ∈ set.Ioo c d ↔ a ∈ set.Ioo (c - b) (d - b) :=
(and_congr sub_lt_iff_lt_add lt_sub_iff_add_lt).symm
/-! `add_mem_Ixx_iff_right` -/
lemma add_mem_Icc_iff_right : a + b ∈ set.Icc c d ↔ b ∈ set.Icc (c - a) (d - a) :=
(and_congr sub_le_iff_le_add' le_sub_iff_add_le').symm
lemma add_mem_Ico_iff_right : a + b ∈ set.Ico c d ↔ b ∈ set.Ico (c - a) (d - a) :=
(and_congr sub_le_iff_le_add' lt_sub_iff_add_lt').symm
lemma add_mem_Ioc_iff_right : a + b ∈ set.Ioc c d ↔ b ∈ set.Ioc (c - a) (d - a) :=
(and_congr sub_lt_iff_lt_add' le_sub_iff_add_le').symm
lemma add_mem_Ioo_iff_right : a + b ∈ set.Ioo c d ↔ b ∈ set.Ioo (c - a) (d - a) :=
(and_congr sub_lt_iff_lt_add' lt_sub_iff_add_lt').symm
/-! `sub_mem_Ixx_iff_left` -/
lemma sub_mem_Icc_iff_left : a - b ∈ set.Icc c d ↔ a ∈ set.Icc (c + b) (d + b) :=
and_congr le_sub_iff_add_le sub_le_iff_le_add
lemma sub_mem_Ico_iff_left : a - b ∈ set.Ico c d ↔ a ∈ set.Ico (c + b) (d + b) :=
and_congr le_sub_iff_add_le sub_lt_iff_lt_add
lemma sub_mem_Ioc_iff_left : a - b ∈ set.Ioc c d ↔ a ∈ set.Ioc (c + b) (d + b) :=
and_congr lt_sub_iff_add_lt sub_le_iff_le_add
lemma sub_mem_Ioo_iff_left : a - b ∈ set.Ioo c d ↔ a ∈ set.Ioo (c + b) (d + b) :=
and_congr lt_sub_iff_add_lt sub_lt_iff_lt_add
/-! `sub_mem_Ixx_iff_right` -/
lemma sub_mem_Icc_iff_right : a - b ∈ set.Icc c d ↔ b ∈ set.Icc (a - d) (a - c) :=
(and_comm _ _).trans $ and_congr sub_le le_sub
lemma sub_mem_Ico_iff_right : a - b ∈ set.Ico c d ↔ b ∈ set.Ioc (a - d) (a - c) :=
(and_comm _ _).trans $ and_congr sub_lt le_sub
lemma sub_mem_Ioc_iff_right : a - b ∈ set.Ioc c d ↔ b ∈ set.Ico (a - d) (a - c) :=
(and_comm _ _).trans $ and_congr sub_le lt_sub
lemma sub_mem_Ioo_iff_right : a - b ∈ set.Ioo c d ↔ b ∈ set.Ioo (a - d) (a - c) :=
(and_comm _ _).trans $ and_congr sub_lt lt_sub
-- I think that symmetric intervals deserve attention and API: they arise all the time,
-- for instance when considering metric balls in `ℝ`.
lemma mem_Icc_iff_abs_le {R : Type*} [linear_ordered_add_comm_group R] {x y z : R} :
abs (x - y) ≤ z ↔ y ∈ Icc (x - z) (x + z) :=
abs_le.trans $ (and_comm _ _).trans $ and_congr sub_le neg_le_sub_iff_le_add
end ordered_add_comm_group
section linear_ordered_add_comm_group
variables {α : Type u} [linear_ordered_add_comm_group α]
/-- If we remove a smaller interval from a larger, the result is nonempty -/
lemma nonempty_Ico_sdiff {x dx y dy : α} (h : dy < dx) (hx : 0 < dx) :
nonempty ↥(Ico x (x + dx) \ Ico y (y + dy)) :=
begin
cases lt_or_le x y with h' h',
{ use x, simp [*, not_le.2 h'] },
{ use max x (x + dy), simp [*, le_refl] }
end
end linear_ordered_add_comm_group
end set
namespace order_iso
variables {α β : Type*}
open set
section preorder
variables [preorder α] [preorder β]
@[simp] lemma preimage_Iic (e : α ≃o β) (b : β) : e ⁻¹' (Iic b) = Iic (e.symm b) :=
by { ext x, simp [← e.le_iff_le] }
@[simp] lemma preimage_Ici (e : α ≃o β) (b : β) : e ⁻¹' (Ici b) = Ici (e.symm b) :=
by { ext x, simp [← e.le_iff_le] }
@[simp] lemma preimage_Iio (e : α ≃o β) (b : β) : e ⁻¹' (Iio b) = Iio (e.symm b) :=
by { ext x, simp [← e.lt_iff_lt] }
@[simp] lemma preimage_Ioi (e : α ≃o β) (b : β) : e ⁻¹' (Ioi b) = Ioi (e.symm b) :=
by { ext x, simp [← e.lt_iff_lt] }
@[simp] lemma preimage_Icc (e : α ≃o β) (a b : β) : e ⁻¹' (Icc a b) = Icc (e.symm a) (e.symm b) :=
by simp [← Ici_inter_Iic]
@[simp] lemma preimage_Ico (e : α ≃o β) (a b : β) : e ⁻¹' (Ico a b) = Ico (e.symm a) (e.symm b) :=
by simp [← Ici_inter_Iio]
@[simp] lemma preimage_Ioc (e : α ≃o β) (a b : β) : e ⁻¹' (Ioc a b) = Ioc (e.symm a) (e.symm b) :=
by simp [← Ioi_inter_Iic]
@[simp] lemma preimage_Ioo (e : α ≃o β) (a b : β) : e ⁻¹' (Ioo a b) = Ioo (e.symm a) (e.symm b) :=
by simp [← Ioi_inter_Iio]
end preorder
/-- Order isomorphism between `Iic (⊤ : α)` and `α` when `α` has a top element -/
def Iic_top [order_top α] : set.Iic (⊤ : α) ≃o α :=
{ map_rel_iff' := λ x y, by refl,
.. (@equiv.subtype_univ_equiv α (set.Iic (⊤ : α)) (λ x, le_top)), }
/-- Order isomorphism between `Ici (⊥ : α)` and `α` when `α` has a bottom element -/
def Ici_bot [order_bot α] : set.Ici (⊥ : α) ≃o α :=
{ map_rel_iff' := λ x y, by refl,
.. (@equiv.subtype_univ_equiv α (set.Ici (⊥ : α)) (λ x, bot_le)) }
end order_iso
|
379e620027f33225ac792e7ebecf35e2087995b5
|
8cae430f0a71442d02dbb1cbb14073b31048e4b0
|
/src/linear_algebra/matrix/dot_product.lean
|
e3c81c8f65d1669d11be1462381ab5ce25741465
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/mathlib
|
56a2cadd17ac88caf4ece0a775932fa26327ba0e
|
442a83d738cb208d3600056c489be16900ba701d
|
refs/heads/master
| 1,693,584,102,358
| 1,693,471,902,000
| 1,693,471,902,000
| 97,922,418
| 1,595
| 352
|
Apache-2.0
| 1,694,693,445,000
| 1,500,624,130,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 3,307
|
lean
|
/-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Patrick Massot, Casper Putz, Anne Baanen
-/
import algebra.star.order
import data.matrix.basic
import linear_algebra.std_basis
/-!
# Dot product of two vectors
> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
> Any changes to this file require a corresponding PR to mathlib4.
This file contains some results on the map `matrix.dot_product`, which maps two
vectors `v w : n → R` to the sum of the entrywise products `v i * w i`.
## Main results
* `matrix.dot_product_std_basis_one`: the dot product of `v` with the `i`th
standard basis vector is `v i`
* `matrix.dot_product_eq_zero_iff`: if `v`'s' dot product with all `w` is zero,
then `v` is zero
## Tags
matrix, reindex
-/
universes v w
variables {R : Type v} {n : Type w}
namespace matrix
section semiring
variables [semiring R] [fintype n]
@[simp] lemma dot_product_std_basis_eq_mul [decidable_eq n] (v : n → R) (c : R) (i : n) :
dot_product v (linear_map.std_basis R (λ _, R) i c) = v i * c :=
begin
rw [dot_product, finset.sum_eq_single i, linear_map.std_basis_same],
exact λ _ _ hb, by rw [linear_map.std_basis_ne _ _ _ _ hb, mul_zero],
exact λ hi, false.elim (hi $ finset.mem_univ _)
end
@[simp] lemma dot_product_std_basis_one [decidable_eq n] (v : n → R) (i : n) :
dot_product v (linear_map.std_basis R (λ _, R) i 1) = v i :=
by rw [dot_product_std_basis_eq_mul, mul_one]
lemma dot_product_eq
(v w : n → R) (h : ∀ u, dot_product v u = dot_product w u) : v = w :=
begin
funext x,
classical,
rw [← dot_product_std_basis_one v x, ← dot_product_std_basis_one w x, h],
end
lemma dot_product_eq_iff {v w : n → R} :
(∀ u, dot_product v u = dot_product w u) ↔ v = w :=
⟨λ h, dot_product_eq v w h, λ h _, h ▸ rfl⟩
lemma dot_product_eq_zero (v : n → R) (h : ∀ w, dot_product v w = 0) : v = 0 :=
dot_product_eq _ _ $ λ u, (h u).symm ▸ (zero_dot_product u).symm
lemma dot_product_eq_zero_iff {v : n → R} : (∀ w, dot_product v w = 0) ↔ v = 0 :=
⟨λ h, dot_product_eq_zero v h, λ h w, h.symm ▸ zero_dot_product w⟩
end semiring
section self
variables [fintype n]
@[simp] lemma dot_product_self_eq_zero [linear_ordered_ring R] {v : n → R} :
dot_product v v = 0 ↔ v = 0 :=
(finset.sum_eq_zero_iff_of_nonneg $ λ i _, mul_self_nonneg (v i)).trans $
by simp [function.funext_iff]
/-- Note that this applies to `ℂ` via `complex.strict_ordered_comm_ring`. -/
@[simp] lemma dot_product_star_self_eq_zero
[partial_order R] [non_unital_ring R] [star_ordered_ring R] [no_zero_divisors R] {v : n → R} :
dot_product (star v) v = 0 ↔ v = 0 :=
(finset.sum_eq_zero_iff_of_nonneg $ λ i _, (@star_mul_self_nonneg _ _ _ _ (v i) : _)).trans $
by simp [function.funext_iff, mul_eq_zero]
/-- Note that this applies to `ℂ` via `complex.strict_ordered_comm_ring`. -/
@[simp] lemma dot_product_self_star_eq_zero
[partial_order R] [non_unital_ring R] [star_ordered_ring R] [no_zero_divisors R] {v : n → R} :
dot_product v (star v) = 0 ↔ v = 0 :=
(finset.sum_eq_zero_iff_of_nonneg $ λ i _, (@star_mul_self_nonneg' _ _ _ _ (v i) : _)).trans $
by simp [function.funext_iff, mul_eq_zero]
end self
end matrix
|
1e2a60a8d13db93e2544ff0fbed65c19618277a4
|
3c9dc4ea6cc92e02634ef557110bde9eae393338
|
/src/Lean/Message.lean
|
5190505f0c443fa4de9f2c9771ec7ce7d6ba91bf
|
[
"Apache-2.0"
] |
permissive
|
shingtaklam1324/lean4
|
3d7efe0c8743a4e33d3c6f4adbe1300df2e71492
|
351285a2e8ad0cef37af05851cfabf31edfb5970
|
refs/heads/master
| 1,676,827,679,740
| 1,610,462,623,000
| 1,610,552,340,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 13,205
|
lean
|
/-
Copyright (c) 2018 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Sebastian Ullrich, Leonardo de Moura
Message Type used by the Lean frontend
-/
import Lean.Data.Position
import Lean.Data.OpenDecl
import Lean.Syntax
import Lean.MetavarContext
import Lean.Environment
import Lean.Util.PPExt
namespace Lean
def mkErrorStringWithPos (fileName : String) (line col : Nat) (msg : String) : String :=
fileName ++ ":" ++ toString line ++ ":" ++ toString col ++ ": " ++ toString msg
inductive MessageSeverity where
| information | warning | error
deriving Inhabited, BEq
structure MessageDataContext where
env : Environment
mctx : MetavarContext
lctx : LocalContext
opts : Options
structure NamingContext where
currNamespace : Name
openDecls : List OpenDecl
/- Structure message data. We use it for reporting errors, trace messages, etc. -/
inductive MessageData where
| ofFormat : Format → MessageData
| ofSyntax : Syntax → MessageData
| ofExpr : Expr → MessageData
| ofLevel : Level → MessageData
| ofName : Name → MessageData
| ofGoal : MVarId → MessageData
/- `withContext ctx d` specifies the pretty printing context `(env, mctx, lctx, opts)` for the nested expressions in `d`. -/
| withContext : MessageDataContext → MessageData → MessageData
| withNamingContext : NamingContext → MessageData → MessageData
/- Lifted `Format.nest` -/
| nest : Nat → MessageData → MessageData
/- Lifted `Format.group` -/
| group : MessageData → MessageData
/- Lifted `Format.compose` -/
| compose : MessageData → MessageData → MessageData
/- Tagged sections. `Name` should be viewed as a "kind", and is used by `MessageData` inspector functions.
Example: an inspector that tries to find "definitional equality failures" may look for the tag "DefEqFailure". -/
| tagged : Name → MessageData → MessageData
| node : Array MessageData → MessageData
deriving Inhabited
namespace MessageData
def nil : MessageData :=
ofFormat Format.nil
def isNil : MessageData → Bool
| ofFormat Format.nil => true
| _ => false
def isNest : MessageData → Bool
| nest _ _ => true
| _ => false
def mkPPContext (nCtx : NamingContext) (ctx : MessageDataContext) : PPContext := {
env := ctx.env, mctx := ctx.mctx, lctx := ctx.lctx, opts := ctx.opts,
currNamespace := nCtx.currNamespace, openDecls := nCtx.openDecls
}
partial def formatAux : NamingContext → Option MessageDataContext → MessageData → IO Format
| _, _, ofFormat fmt => pure fmt
| _, _, ofLevel u => pure $ fmt u
| _, _, ofName n => pure $ fmt n
| nCtx, some ctx, ofSyntax s => ppTerm (mkPPContext nCtx ctx) s -- HACK: might not be a term
| _, none, ofSyntax s => pure $ s.formatStx
| _, none, ofExpr e => pure $ format (toString e)
| nCtx, some ctx, ofExpr e => ppExpr (mkPPContext nCtx ctx) e
| _, none, ofGoal mvarId => pure $ "goal " ++ format (mkMVar mvarId)
| nCtx, some ctx, ofGoal mvarId => ppGoal (mkPPContext nCtx ctx) mvarId
| nCtx, _, withContext ctx d => formatAux nCtx ctx d
| _, ctx, withNamingContext nCtx d => formatAux nCtx ctx d
| nCtx, ctx, tagged cls d => do let d ← formatAux nCtx ctx d; pure $ Format.sbracket (format cls) ++ " " ++ d
| nCtx, ctx, nest n d => Format.nest n <$> formatAux nCtx ctx d
| nCtx, ctx, compose d₁ d₂ => do let d₁ ← formatAux nCtx ctx d₁; let d₂ ← formatAux nCtx ctx d₂; pure $ d₁ ++ d₂
| nCtx, ctx, group d => Format.group <$> formatAux nCtx ctx d
| nCtx, ctx, node ds => Format.nest 2 <$> ds.foldlM (fun r d => do let d ← formatAux nCtx ctx d; pure $ r ++ Format.line ++ d) Format.nil
protected def format (msgData : MessageData) : IO Format :=
formatAux { currNamespace := Name.anonymous, openDecls := [] } none msgData
protected def toString (msgData : MessageData) : IO String := do
let fmt ← msgData.format
pure $ toString fmt
instance : Append MessageData := ⟨compose⟩
instance : Coe String MessageData := ⟨ofFormat ∘ format⟩
instance : Coe Format MessageData := ⟨ofFormat⟩
instance : Coe Level MessageData := ⟨ofLevel⟩
instance : Coe Expr MessageData := ⟨ofExpr⟩
instance : Coe Name MessageData := ⟨ofName⟩
instance : Coe Syntax MessageData := ⟨ofSyntax⟩
instance : Coe (Option Expr) MessageData := ⟨fun o => match o with | none => "none" | some e => ofExpr e⟩
partial def arrayExpr.toMessageData (es : Array Expr) (i : Nat) (acc : MessageData) : MessageData :=
if h : i < es.size then
let e := es.get ⟨i, h⟩;
let acc := if i == 0 then acc ++ ofExpr e else acc ++ ", " ++ ofExpr e;
toMessageData es (i+1) acc
else
acc ++ "]"
instance : Coe (Array Expr) MessageData := ⟨fun es => arrayExpr.toMessageData es 0 "#["⟩
def bracket (l : String) (f : MessageData) (r : String) : MessageData := group (nest l.length $ l ++ f ++ r)
def paren (f : MessageData) : MessageData := bracket "(" f ")"
def sbracket (f : MessageData) : MessageData := bracket "[" f "]"
def joinSep : List MessageData → MessageData → MessageData
| [], sep => Format.nil
| [a], sep => a
| a::as, sep => a ++ sep ++ joinSep as sep
def ofList: List MessageData → MessageData
| [] => "[]"
| xs => sbracket $ joinSep xs (ofFormat "," ++ Format.line)
def ofArray (msgs : Array MessageData) : MessageData :=
ofList msgs.toList
instance : Coe (List MessageData) MessageData := ⟨ofList⟩
instance : Coe (List Expr) MessageData := ⟨fun es => ofList $ es.map ofExpr⟩
end MessageData
structure Message where
fileName : String
pos : Position
endPos : Option Position := none
severity : MessageSeverity := MessageSeverity.error
caption : String := ""
data : MessageData
deriving Inhabited
@[export lean_mk_message]
def mkMessageEx (fileName : String) (pos : Position) (endPos : Option Position) (severity : MessageSeverity) (caption : String) (text : String) : Message :=
{ fileName := fileName, pos := pos, endPos := endPos, severity := severity, caption := caption, data := text }
namespace Message
protected def toString (msg : Message) : IO String := do
let mut str ← msg.data.toString
unless msg.caption == "" do
str := msg.caption ++ ":\n" ++ str
match msg.severity with
| MessageSeverity.information => pure ()
| MessageSeverity.warning => str := mkErrorStringWithPos msg.fileName msg.pos.line msg.pos.column "warning: " ++ str
| MessageSeverity.error => str := mkErrorStringWithPos msg.fileName msg.pos.line msg.pos.column "error: " ++ str
if str.isEmpty || str.back != '\n' then
str := str ++ "\n"
return str
end Message
structure MessageLog where
msgs : Std.PersistentArray Message := {}
deriving Inhabited
namespace MessageLog
def empty : MessageLog := ⟨{}⟩
def isEmpty (log : MessageLog) : Bool :=
log.msgs.isEmpty
def add (msg : Message) (log : MessageLog) : MessageLog :=
⟨log.msgs.push msg⟩
protected def append (l₁ l₂ : MessageLog) : MessageLog :=
⟨l₁.msgs ++ l₂.msgs⟩
instance : Append MessageLog :=
⟨MessageLog.append⟩
def hasErrors (log : MessageLog) : Bool :=
log.msgs.any fun m => match m.severity with
| MessageSeverity.error => true
| _ => false
def errorsToWarnings (log : MessageLog) : MessageLog :=
{ msgs := log.msgs.map (fun m => match m.severity with | MessageSeverity.error => { m with severity := MessageSeverity.warning } | _ => m) }
def getInfoMessages (log : MessageLog) : MessageLog :=
{ msgs := log.msgs.filter fun m => match m.severity with | MessageSeverity.information => true | _ => false }
def forM {m : Type → Type} [Monad m] (log : MessageLog) (f : Message → m Unit) : m Unit :=
log.msgs.forM f
def toList (log : MessageLog) : List Message :=
(log.msgs.foldl (fun acc msg => msg :: acc) []).reverse
end MessageLog
def MessageData.nestD (msg : MessageData) : MessageData :=
MessageData.nest 2 msg
def indentD (msg : MessageData) : MessageData :=
MessageData.nestD (Format.line ++ msg)
def indentExpr (e : Expr) : MessageData :=
indentD e
class AddMessageContext (m : Type → Type) where
addMessageContext : MessageData → m MessageData
export AddMessageContext (addMessageContext)
instance (m n) [AddMessageContext m] [MonadLift m n] : AddMessageContext n :=
{ addMessageContext := fun msg => liftM (addMessageContext msg : m _) }
def addMessageContextPartial {m} [Monad m] [MonadEnv m] [MonadOptions m] (msgData : MessageData) : m MessageData := do
let env ← getEnv
let opts ← getOptions
pure $ MessageData.withContext { env := env, mctx := {}, lctx := {}, opts := opts } msgData
def addMessageContextFull {m} [Monad m] [MonadEnv m] [MonadMCtx m] [MonadLCtx m] [MonadOptions m] (msgData : MessageData) : m MessageData := do
let env ← getEnv
let mctx ← getMCtx
let lctx ← getLCtx
let opts ← getOptions
pure $ MessageData.withContext { env := env, mctx := mctx, lctx := lctx, opts := opts } msgData
class ToMessageData (α : Type) where
toMessageData : α → MessageData
export ToMessageData (toMessageData)
def stringToMessageData (str : String) : MessageData :=
let lines := str.split (· == '\n')
let lines := lines.map (MessageData.ofFormat ∘ fmt)
MessageData.joinSep lines (MessageData.ofFormat Format.line)
instance {α} [ToFormat α] : ToMessageData α := ⟨MessageData.ofFormat ∘ fmt⟩
instance : ToMessageData Expr := ⟨MessageData.ofExpr⟩
instance : ToMessageData Level := ⟨MessageData.ofLevel⟩
instance : ToMessageData Name := ⟨MessageData.ofName⟩
instance : ToMessageData String := ⟨stringToMessageData⟩
instance : ToMessageData Syntax := ⟨MessageData.ofSyntax⟩
instance : ToMessageData Format := ⟨MessageData.ofFormat⟩
instance : ToMessageData MessageData := ⟨id⟩
instance {α} [ToMessageData α] : ToMessageData (List α) := ⟨fun as => MessageData.ofList $ as.map toMessageData⟩
instance {α} [ToMessageData α] : ToMessageData (Array α) := ⟨fun as => toMessageData as.toList⟩
instance {α} [ToMessageData α] : ToMessageData (Option α) := ⟨fun | none => "none" | some e => "some (" ++ toMessageData e ++ ")"⟩
instance : ToMessageData (Option Expr) := ⟨fun | none => "<not-available>" | some e => toMessageData e⟩
syntax:max "m!" interpolatedStr(term) : term
macro_rules
| `(m! $interpStr) => do interpStr.expandInterpolatedStr (← `(MessageData)) (← `(toMessageData))
namespace KernelException
private def mkCtx (env : Environment) (lctx : LocalContext) (opts : Options) (msg : MessageData) : MessageData :=
MessageData.withContext { env := env, mctx := {}, lctx := lctx, opts := opts } msg
def toMessageData (e : KernelException) (opts : Options) : MessageData :=
match e with
| unknownConstant env constName => mkCtx env {} opts m!"(kernel) unknown constant '{constName}'"
| alreadyDeclared env constName => mkCtx env {} opts m!"(kernel) constant has already been declared '{constName}'"
| declTypeMismatch env decl givenType =>
let process (n : Name) (expectedType : Expr) : MessageData :=
m!"(kernel) declaration type mismatch, '{n}' has type{indentExpr givenType}\nbut it is expected to have type{indentExpr expectedType}";
match decl with
| Declaration.defnDecl { name := n, type := type, .. } => process n type
| Declaration.thmDecl { name := n, type := type, .. } => process n type
| _ => "(kernel) declaration type mismatch" -- TODO fix type checker, type mismatch for mutual decls does not have enough information
| declHasMVars env constName _ => mkCtx env {} opts m!"(kernel) declaration has metavariables '{constName}'"
| declHasFVars env constName _ => mkCtx env {} opts m!"(kernel) declaration has free variables '{constName}'"
| funExpected env lctx e => mkCtx env lctx opts m!"(kernel) function expected{indentExpr e}"
| typeExpected env lctx e => mkCtx env lctx opts m!"(kernel) type expected{indentExpr e}"
| letTypeMismatch env lctx n _ _ => mkCtx env lctx opts m!"(kernel) let-declaration type mismatch '{n}'"
| exprTypeMismatch env lctx e _ => mkCtx env lctx opts m!"(kernel) type mismatch at{indentExpr e}"
| appTypeMismatch env lctx e fnType argType =>
mkCtx env lctx opts m!"application type mismatch{indentExpr e}\nargument has type{indentExpr argType}\nbut function has type{indentExpr fnType}"
| invalidProj env lctx e => mkCtx env lctx opts m!"(kernel) invalid projection{indentExpr e}"
| other msg => m!"(kernel) {msg}"
end KernelException
end Lean
|
54c21bf8d6855c47da62985a04f04550347d3621
|
6e8de6b43162bef473b4a0bd93b71db886df98ce
|
/src/pregeom/basic.lean
|
49e0ef5aa170115c42d7d8f242bc4c96e27a30ad
|
[
"Unlicense"
] |
permissive
|
adamtopaz/comb_geom
|
38ec6fde8d2543f56227ec50cdfb86cac6ac33c1
|
e16b629d6de3fbdea54a528755e7305dfb51e902
|
refs/heads/master
| 1,668,613,552,530
| 1,593,199,940,000
| 1,593,199,940,000
| 269,824,442
| 6
| 0
|
Unlicense
| 1,593,119,545,000
| 1,591,404,975,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 5,084
|
lean
|
import data.set
import tactic
import ..tactics
/-!
# Pregeometries
This file defines the typeclass `pregeom` of pregeometries.
These are types endowed with a "closure operator" `cl` acting on subsets, satisfying various axioms.
A pregeometry is a geometry provided that the closure of ∅ is ∅ and that the closure of a singleton is itself.
# Implementation Details
Typeclasses:
1. `has_cl` -- a typeclass for the cl operator
2. `pregeom` -- see above
3. `geom` -- see above
# Remarks
See the `geometrize.lean` file for the construction of a geometry from a pregeometry.
-/
set_option default_priority 100
open_locale classical
/-- Typeclass for the `cl` operator -/
class has_cl (T : Type*) := (cl : set T → set T)
/-- Typeclass of `pregeometries` -/
class pregeom (T : Type*) extends has_cl T :=
(inclusive {S} : S ≤ cl S)
(monotone {A B} : A ≤ B → cl A ≤ cl B)
(idempotent {S} : cl (cl S) = cl S)
(exchange {x y S} : x ∈ cl (insert y S) → x ∉ cl S → y ∈ cl (insert x S))
(finchar {x S} : x ∈ cl S → ∃ A : finset T, ↑A ≤ S ∧ x ∈ cl ↑A)
/-- Typeclass for geometries -/
class geometry (T : Type*) extends pregeom T :=
(cl_singleton {x} : cl {x} = {x})
(cl_empty : cl ∅ = ∅)
notation `cl` := has_cl.cl
namespace pregeom
variables {T : Type*}
/-- A set S is closed if there exists some other set A such that `cl A = S` -/
def is_closed [has_cl T] (S : set T) := ∃ A, cl A = S
/-- `cls x` is the closure of the singleton `{x}` -/
def cls [has_cl T] (x : T) := cl ({x} : set T)
lemma mem_cls [pregeom T] {x : T} : x ∈ cls x := inclusive (set.mem_singleton x)
@[simp]
lemma cls_le_iff_mem_cl [pregeom T] {x : T} {S : set T} : cls x ⊆ cl S ↔ x ∈ cl S :=
begin
split,
{ intro hx,
apply hx,
exact mem_cls, },
{ intro hx,
suffices : cls x ≤ cl (cl S), by rwa idempotent at this,
apply monotone,
rintros y ⟨rfl⟩,
assumption, }
end
@[simp]
lemma Sup_le_eq_cl [pregeom T] {S : set T} : Sup { A | (∃ x, A = cls x) ∧ A ⊆ cl S } = cl S :=
begin
ext, split,
{ intro hx,
rcases hx with ⟨A,⟨⟨t,rfl⟩,h⟩,hA⟩,
exact h hA, },
{ intro hx,
refine ⟨cls x,⟨⟨x,rfl⟩,_⟩,_⟩,
{ change _ ⊆ _, rw cls_le_iff_mem_cl, exact hx },
{ exact mem_cls }, }
end
lemma exchange_cls [pregeom T] {u v : T} (u_in_cls : u ∈ cls v) (u_regular : u ∉ cl (∅ : set T)) : v ∈ cls u :=
begin
unfold cls at *,
rw set.singleton_def at *,
exact exchange u_in_cls u_regular,
end
lemma mem_cl_iff_cls_le_cl [pregeom T] {x : T} {S : set T} : x ∈ cl S ↔ cls x ≤ cl S :=
begin
split; intro hx,
{ have : ({x} : set T) ≤ cl S,
{ rintros y ⟨hy⟩,
assumption, },
replace this := monotone this,
rw idempotent at this,
assumption, },
{ apply hx,
exact mem_cls, }
end
@[simp]
lemma cl_cl_union_eq_cl_union [pregeom T] {A B : set T} : cl (cl A ∪ B) = cl (A ∪ B) :=
begin
ext, split; intro h,
{ rw ←idempotent,
refine monotone _ h,
intros y hy,
cases hy,
{ refine monotone _ hy,
intros a ha,
left, assumption, },
{ apply inclusive,
right, assumption, }},
{ refine monotone _ h,
intros z hz,
cases hz,
{ left,
apply inclusive, assumption, },
{ right, assumption, }}
end
lemma cl_union_cl_eq_cl_union [pregeom T] {A B : set T} : cl (A ∪ cl B) = cl (A ∪ B) :=
calc cl (A ∪ cl B) = cl (A ⊔ cl B) : rfl
... = cl (cl B ⊔ A) : by rw sup_comm
... = cl (B ∪ A) : cl_cl_union_eq_cl_union
... = cl (B ⊔ A) : rfl
... = cl (A ⊔ B) : by rw sup_comm
lemma cl_cl_union_cl_eq_cl_union [pregeom T] {A B : set T} : cl (cl A ∪ cl B) = cl (A ∪ B) :=
calc cl (cl A ∪ cl B) = cl (cl A ∪ B) : cl_union_cl_eq_cl_union
... = cl (A ∪ B) : cl_cl_union_eq_cl_union
@[simp]
lemma cl_union_cl_empty [pregeom T] {A : set T} : cl (cl (∅ : set T) ∪ A) = cl A :=
begin
rw pregeom.cl_cl_union_eq_cl_union,
rw set.empty_union,
end
lemma cl_union_eq [pregeom T] {A S : set T}: A ≤ cl S → cl (A ∪ S) = cl S :=
begin
intro hA,
rw ←cl_union_cl_eq_cl_union,
suffices : A ∪ cl S = cl S, by rw [this, idempotent],
tidy, finish,
end
/-- If `As` is a set of sets, `map_cl As` is the set of sets obtained by
applying `cl` to every memeber of `As`. -/
def map_cl [has_cl T] : set (set T) → set (set T) := set.image cl
lemma le_map_cl [pregeom T] (As : set (set T)) : Sup As ≤ Sup (map_cl As) :=
λ a ⟨A,hA,ha⟩, ⟨cl A,⟨A,hA,rfl⟩,inclusive ha⟩
lemma cl_le_cl_Sup [pregeom T] {As : set (set T)} {A : set T} : A ∈ As →
cl A ≤ cl (Sup As) := λ h, monotone (λ x hx, ⟨A,h,hx⟩)
lemma map_cl_le_cl_Sup [pregeom T] (As : set (set T)) : Sup (map_cl As) ≤ cl (Sup As) :=
λ x ⟨B,⟨C,hC,h⟩,hx⟩, by rw ←h at *; exact cl_le_cl_Sup hC hx
@[simp]
lemma cl_Sup_cl [pregeom T] {As : set (set T)} : cl (Sup (map_cl As)) = cl (Sup As) :=
begin
ext,
refine ⟨_,λ h, monotone (le_map_cl _) h⟩,
intro hx,
rw ←idempotent,
refine monotone _ hx,
apply map_cl_le_cl_Sup,
end
end pregeom
|
8efabe58ac68b392ef1cb7c457d99475706ca61f
|
f5f7e6fae601a5fe3cac7cc3ed353ed781d62419
|
/src/ring_theory/algebra_operations.lean
|
9b1c11cb3ee07d8a72dcaaa74bf106f325731b4d
|
[
"Apache-2.0"
] |
permissive
|
EdAyers/mathlib
|
9ecfb2f14bd6caad748b64c9c131befbff0fb4e0
|
ca5d4c1f16f9c451cf7170b10105d0051db79e1b
|
refs/heads/master
| 1,626,189,395,845
| 1,555,284,396,000
| 1,555,284,396,000
| 144,004,030
| 0
| 0
|
Apache-2.0
| 1,533,727,664,000
| 1,533,727,663,000
| null |
UTF-8
|
Lean
| false
| false
| 5,612
|
lean
|
/-
Copyright (c) 2019 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
Multiplication of submodules of an algebra.
-/
import ring_theory.algebra algebra.pointwise ring_theory.ideals
import tactic.chain
universes u v
open lattice algebra
local attribute [instance] set.pointwise_mul_semiring
namespace submodule
variables {R : Type u} [comm_ring R]
section ring
variables {A : Type v} [ring A] [algebra R A]
variables (S T : set A) {M N P Q : submodule R A} {m n : A}
instance : has_one (submodule R A) :=
⟨submodule.map (of_id R A).to_linear_map (⊤ : ideal R)⟩
theorem one_eq_map_top :
(1 : submodule R A) = submodule.map (of_id R A).to_linear_map (⊤ : ideal R) := rfl
theorem one_eq_span : (1 : submodule R A) = span R {1} :=
begin
apply submodule.ext,
intro a,
erw [mem_map, mem_span_singleton],
apply exists_congr,
intro r,
simpa [smul_def],
end
theorem one_le : (1 : submodule R A) ≤ P ↔ (1 : A) ∈ P :=
by simpa only [one_eq_span, span_le, set.singleton_subset_iff]
set_option class.instance_max_depth 50
instance : has_mul (submodule R A) :=
⟨λ M N, ⨆ s : M, N.map $ algebra.lmul R A s.1⟩
set_option class.instance_max_depth 32
theorem mul_mem_mul (hm : m ∈ M) (hn : n ∈ N) : m * n ∈ M * N :=
(le_supr _ ⟨m, hm⟩ : _ ≤ M * N) ⟨n, hn, rfl⟩
theorem mul_le : M * N ≤ P ↔ ∀ (m ∈ M) (n ∈ N), m * n ∈ P :=
⟨λ H m hm n hn, H $ mul_mem_mul hm hn,
λ H, supr_le $ λ ⟨m, hm⟩, map_le_iff_le_comap.2 $ λ n hn, H m hm n hn⟩
@[elab_as_eliminator] protected theorem mul_induction_on
{C : A → Prop} {r : A} (hr : r ∈ M * N)
(hm : ∀ (m ∈ M) (n ∈ N), C (m * n))
(h0 : C 0) (ha : ∀ x y, C x → C y → C (x + y))
(hs : ∀ (r : R) x, C x → C (r • x)) : C r :=
(@mul_le _ _ _ _ _ _ _ ⟨C, h0, ha, hs⟩).2 hm hr
variables R
theorem span_mul_span : span R S * span R T = span R (S * T) :=
begin
apply le_antisymm,
{ rw mul_le, intros a ha b hb,
apply span_induction ha,
work_on_goal 0 { intros, apply span_induction hb,
work_on_goal 0 { intros, exact subset_span ⟨_, ‹_›, _, ‹_›, rfl⟩ } },
all_goals { intros, simp only [mul_zero, zero_mul, zero_mem,
left_distrib, right_distrib, mul_smul_comm, smul_mul_assoc],
try {apply add_mem _ _ _}, try {apply smul_mem _ _ _} }, assumption' },
{ rw span_le, rintros _ ⟨a, ha, b, hb, rfl⟩,
exact mul_mem_mul (subset_span ha) (subset_span hb) }
end
variables {R}
variables (M N P Q)
set_option class.instance_max_depth 50
protected theorem mul_assoc : (M * N) * P = M * (N * P) :=
le_antisymm (mul_le.2 $ λ mn hmn p hp, suffices M * N ≤ (M * (N * P)).comap ((algebra.lmul R A).flip p), from this hmn,
mul_le.2 $ λ m hm n hn, show m * n * p ∈ M * (N * P), from
(mul_assoc m n p).symm ▸ mul_mem_mul hm (mul_mem_mul hn hp))
(mul_le.2 $ λ m hm np hnp, suffices N * P ≤ (M * N * P).comap (algebra.lmul R A m), from this hnp,
mul_le.2 $ λ n hn p hp, show m * (n * p) ∈ M * N * P, from
mul_assoc m n p ▸ mul_mem_mul (mul_mem_mul hm hn) hp)
set_option class.instance_max_depth 32
@[simp] theorem mul_bot : M * ⊥ = ⊥ :=
eq_bot_iff.2 $ mul_le.2 $ λ m hm n hn, by rw [submodule.mem_bot] at hn ⊢; rw [hn, mul_zero]
@[simp] theorem bot_mul : ⊥ * M = ⊥ :=
eq_bot_iff.2 $ mul_le.2 $ λ m hm n hn, by rw [submodule.mem_bot] at hm ⊢; rw [hm, zero_mul]
@[simp] protected theorem one_mul : (1 : submodule R A) * M = M :=
by { conv_lhs { rw [one_eq_span, ← span_eq M] }, erw [span_mul_span, one_mul, span_eq] }
@[simp] protected theorem mul_one : M * 1 = M :=
by { conv_lhs { rw [one_eq_span, ← span_eq M] }, erw [span_mul_span, mul_one, span_eq] }
variables {M N P Q}
@[mono] theorem mul_le_mul (hmp : M ≤ P) (hnq : N ≤ Q) : M * N ≤ P * Q :=
mul_le.2 $ λ m hm n hn, mul_mem_mul (hmp hm) (hnq hn)
theorem mul_le_mul_left (h : M ≤ N) : M * P ≤ N * P :=
mul_le_mul h (le_refl P)
theorem mul_le_mul_right (h : N ≤ P) : M * N ≤ M * P :=
mul_le_mul (le_refl M) h
variables (M N P)
theorem mul_sup : M * (N ⊔ P) = M * N ⊔ M * P :=
le_antisymm (mul_le.2 $ λ m hm np hnp, let ⟨n, hn, p, hp, hnp⟩ := mem_sup.1 hnp in
mem_sup.2 ⟨_, mul_mem_mul hm hn, _, mul_mem_mul hm hp, hnp ▸ (mul_add m n p).symm⟩)
(sup_le (mul_le_mul_right le_sup_left) (mul_le_mul_right le_sup_right))
theorem sup_mul : (M ⊔ N) * P = M * P ⊔ N * P :=
le_antisymm (mul_le.2 $ λ mn hmn p hp, let ⟨m, hm, n, hn, hmn⟩ := mem_sup.1 hmn in
mem_sup.2 ⟨_, mul_mem_mul hm hp, _, mul_mem_mul hn hp, hmn ▸ (add_mul m n p).symm⟩)
(sup_le (mul_le_mul_left le_sup_left) (mul_le_mul_left le_sup_right))
variables {M N P}
instance : semiring (submodule R A) :=
{ one_mul := submodule.one_mul,
mul_one := submodule.mul_one,
mul_assoc := submodule.mul_assoc,
zero_mul := bot_mul,
mul_zero := mul_bot,
left_distrib := mul_sup,
right_distrib := sup_mul,
..submodule.add_comm_monoid,
..submodule.has_one,
..submodule.has_mul }
end ring
section comm_ring
variables {A : Type v} [comm_ring A] [algebra R A]
variables {M N : submodule R A} {m n : A}
theorem mul_mem_mul_rev (hm : m ∈ M) (hn : n ∈ N) : n * m ∈ M * N :=
mul_comm m n ▸ mul_mem_mul hm hn
variables (M N)
protected theorem mul_comm : M * N = N * M :=
le_antisymm (mul_le.2 $ λ r hrm s hsn, mul_mem_mul_rev hsn hrm)
(mul_le.2 $ λ r hrn s hsm, mul_mem_mul_rev hsm hrn)
instance : comm_semiring (submodule R A) :=
{ mul_comm := submodule.mul_comm,
.. submodule.semiring }
end comm_ring
end submodule
|
a5af73d49ac565b46db0ebc29c48695aef74aa9a
|
46125763b4dbf50619e8846a1371029346f4c3db
|
/src/tactic/simp_rw.lean
|
babbe89f8a3d377c6d3d8c7b8acac4bd45b95ca1
|
[
"Apache-2.0"
] |
permissive
|
thjread/mathlib
|
a9d97612cedc2c3101060737233df15abcdb9eb1
|
7cffe2520a5518bba19227a107078d83fa725ddc
|
refs/heads/master
| 1,615,637,696,376
| 1,583,953,063,000
| 1,583,953,063,000
| 246,680,271
| 0
| 0
|
Apache-2.0
| 1,583,960,875,000
| 1,583,960,875,000
| null |
UTF-8
|
Lean
| false
| false
| 1,831
|
lean
|
/-
Copyright (c) 2020 Anne Baanen. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Anne Baanen
The `simp_rw` tactic, a mix of `simp` and `rewrite`.
-/
import tactic.core
/-!
# The `simp_rw` tactic
This module defines a tactic `simp_rw` which functions as a mix of `simp` and
`rw`. Like `rw`, it applies each rewrite rule in the given order, but like
`simp` it repeatedly applies these rules and also under binders like `∀ x, ...`,
`∃ x, ...` and `λ x, ...`.
## Implementation notes
The tactic works by taking each rewrite rule in turn and applying `simp only` to
it. It should be possible to support backwards rewriting in the tactic, i.e.
`simp_rw [←lemma]`, but it will be more useful and not much more work to add
support for this directly to `simp`.
-/
namespace tactic.interactive
open interactive interactive.types tactic
/-- `simp_rw` is a mix of `simp` and `rw`: it applies rewrite rules in the given order repeatedly,
and can also rewrite under binders like `λ x, ...`
Usage:
- `simp_rw [l₁, ..., lₙ]` will rewrite the goal by applying lemmas `l₁, ..., lₙ` in that order.
- `simp_rw [l₁, ..., lₙ] at h₁ ... hₙ` will rewrite hypotheses `h₁, ..., hₙ` in that order.
Include `⊢` to also rewrite the goal.
- `simp_rw [l₁, ..., lₙ] at *` will rewrite in the whole context.
Lemmas passed to `simp_rw` must be expressions that are valid arguments to `simp`.
-/
meta def simp_rw (q : parse rw_rules) (l : parse location) : tactic unit :=
q.rules.mmap' (λ rule, if rule.symm
then fail "simp_rw [← ...] not supported: can only rewrite in forward direction"
else do
save_info rule.pos,
simp none tt [simp_arg_type.expr rule.rule] [] l) -- equivalent to `simp only [rule] at l`
end tactic.interactive
|
b787c4b451a647ba3699da8ffb753e293d8abb06
|
32fa6b3db8c34b5b2996ed46f2eef23e6cd58023
|
/string.lean
|
eccf5f1963fb21035db1cdcd68f261dbe4f1c20c
|
[] |
no_license
|
skbaek/strassen
|
3568459f9aa85beb9d3a653e92225bd9518985a5
|
396c94805360b10896d436813c1e4d0190885840
|
refs/heads/master
| 1,587,522,553,720
| 1,549,860,051,000
| 1,549,860,051,000
| 170,051,087
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 127
|
lean
|
def spaces : nat → string
| 0 := ""
| (n+1) := " " ++ spaces n
def string.pad (l s) : string :=
s ++ spaces (l - s.length)
|
8370017c2f83b7d8b7ceeb0c4d055be020df4c46
|
9dd3f3912f7321eb58ee9aa8f21778ad6221f87c
|
/tests/lean/run/meta_env1.lean
|
8dfd7dc481e77a68fad062a99394372ca47a6831
|
[
"Apache-2.0"
] |
permissive
|
bre7k30/lean
|
de893411bcfa7b3c5572e61b9e1c52951b310aa4
|
5a924699d076dab1bd5af23a8f910b433e598d7a
|
refs/heads/master
| 1,610,900,145,817
| 1,488,006,845,000
| 1,488,006,845,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 2,058
|
lean
|
open list
meta definition e := environment.mk_std 0
definition hints := reducibility_hints.regular 10 tt
vm_eval environment.trust_lvl e
vm_eval (environment.add e (declaration.defn `foo []
(expr.sort (level.succ (level.zero)))
(expr.sort (level.succ (level.zero)))
hints tt) : exceptional environment)
meta definition e1 := (environment.add e (declaration.defn `foo []
(expr.sort (level.succ (level.zero)))
(expr.sort level.zero)
hints tt) : exceptional environment)
print "-----------"
open name
vm_eval do
e₁ ← environment.add e (declaration.defn `foo []
(expr.sort (level.succ (level.zero)))
(expr.sort level.zero)
hints tt),
e₂ ← environment.add_inductive e₁ `Two [] 0 (expr.sort (level.succ level.zero))
[(`Zero, expr.const `Two []),
(`One, expr.const `Two [])] tt,
d₁ ← environment.get e₂ `Zero,
d₂ ← environment.get e₂ `foo,
/- TODO(leo): use
return (declaration.type d)
We currently don't use 'return' because the type is too high-order.
return : ∀ {m : Type → Type} [monad m] {A : Type}, A → m A
It is the kind of example where we should fallback to first-order unification for
inferring the (m : Type → Type)
The new elaborator should be able to handle it.
-/
exceptional.success (declaration.type d₁, declaration.type d₂,
environment.is_recursor e₂ `Two.rec,
environment.constructors_of e₂ `Two,
environment.fold e₂ (to_format "") (λ d r, r ++ format.line ++ to_fmt (declaration.to_name d)))
|
b3759ce7027dbb9543be31827577fddeb044a4a3
|
f9d775fd3e03626a42bf00ec5d0bc27ab0f77a4e
|
/src/Chapter 1.1.lean
|
45000cceb2e7f041b5db8df1f30f8d3cf721fe8b
|
[] |
no_license
|
Nolrai/SummerCategory
|
d03d8340d431eb2b37c742dbe65f2611ba548430
|
ce74ae4487ca7c0791bde8d14da4e0ca0ff838af
|
refs/heads/master
| 1,588,316,039,936
| 1,553,374,940,000
| 1,553,374,940,000
| 177,340,028
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 606
|
lean
|
/-Partitions Part 1-/
section
parameter α : Type
structure part := (box : α -> α -> Prop) (is_equiv : is_equiv _ box)
def refines (pl pr : part) := ∀ x y, pr.box x y -> pl.box x y
lemma refines_refl : ∀ p, refines p p
| p := begin simp [refines], intros, assumption end
lemma refines_trans : ∀ a b c, refines a b -> refines b c -> refines a c :=
begin simp [refines], intros a b c ab bc x y H
, apply (ab x y (bc x y H)) end
#print refines_trans
instance Part_preorder : preorder part :=
{preorder
. le := refines
, le_refl := refines_refl
, le_trans :=
}
#print
end
|
73c3445958f7b7b74dccf8ad82f0370d5d2d085f
|
75db7e3219bba2fbf41bf5b905f34fcb3c6ca3f2
|
/hott/homotopy/cellcomplex.hlean
|
63a45400f994985358e15b75fb3ea3d1b11911eb
|
[
"Apache-2.0"
] |
permissive
|
jroesch/lean
|
30ef0860fa905d35b9ad6f76de1a4f65c9af6871
|
3de4ec1a6ce9a960feb2a48eeea8b53246fa34f2
|
refs/heads/master
| 1,586,090,835,348
| 1,455,142,203,000
| 1,455,142,277,000
| 51,536,958
| 1
| 0
| null | 1,455,215,811,000
| 1,455,215,811,000
| null |
UTF-8
|
Lean
| false
| false
| 1,882
|
hlean
|
/-
Copyright (c) 2015 Ulrik Buchholtz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Ulrik Buchholtz
-/
import types.trunc homotopy.sphere hit.pushout
open eq is_trunc is_equiv nat equiv trunc prod pushout sigma sphere_index unit
-- where should this be?
definition family : Type := ΣX, X → Type
-- this should be in init!
namespace nat
definition cases {M : ℕ → Type} (mz : M zero) (ms : Πn, M (succ n)) : Πn, M n :=
nat.rec mz (λn dummy, ms n)
end nat
namespace cellcomplex
/-
define by recursion on ℕ
both the type of fdccs of dimension n
and the realization map fdcc n → Type
in other words, we define a function
fdcc : ℕ → family
an alternative to the approach here (perhaps necessary) is to
define relative cell complexes relative to a type A, and then use
spherical indexing, so a -1-dimensional relative cell complex is
just star : unit with realization A
-/
definition fdcc_family [reducible] : ℕ → family :=
nat.rec
-- a zero-dimensional cell complex is just an hset
-- with realization the identity map
⟨hset , λA, trunctype.carrier A⟩
(λn fdcc_family_n, -- sigma.rec (λ fdcc_n realize_n,
/- a (succ n)-dimensional cell complex is a triple of
an n-dimensional cell complex X, an hset of (succ n)-cells A,
and an attaching map f : A × sphere n → |X| -/
⟨Σ X : pr1 fdcc_family_n , Σ A : hset, A × sphere n → pr2 fdcc_family_n X ,
/- the realization of such is the pushout of f with
canonical map A × sphere n → unit -/
sigma.rec (λX , sigma.rec (λA f, pushout (λx , star) f))
⟩)
definition fdcc (n : ℕ) : Type := pr1 (fdcc_family n)
definition cell : Πn, fdcc n → hset :=
nat.cases (λA, A) (λn T, pr1 (pr2 T))
end cellcomplex
|
77d963d8e7d66692cf3b583c0e4c49abccf028a0
|
d9d511f37a523cd7659d6f573f990e2a0af93c6f
|
/src/algebra/algebra/operations.lean
|
0aed542473aac668b75b2d411e1220bce1a634d9
|
[
"Apache-2.0"
] |
permissive
|
hikari0108/mathlib
|
b7ea2b7350497ab1a0b87a09d093ecc025a50dfa
|
a9e7d333b0cfd45f13a20f7b96b7d52e19fa2901
|
refs/heads/master
| 1,690,483,608,260
| 1,631,541,580,000
| 1,631,541,580,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 13,884
|
lean
|
/-
Copyright (c) 2019 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import algebra.algebra.basic
/-!
# Multiplication and division of submodules of an algebra.
An interface for multiplication and division of sub-R-modules of an R-algebra A is developed.
## Main definitions
Let `R` be a commutative ring (or semiring) and aet `A` be an `R`-algebra.
* `1 : submodule R A` : the R-submodule R of the R-algebra A
* `has_mul (submodule R A)` : multiplication of two sub-R-modules M and N of A is defined to be
the smallest submodule containing all the products `m * n`.
* `has_div (submodule R A)` : `I / J` is defined to be the submodule consisting of all `a : A` such
that `a • J ⊆ I`
It is proved that `submodule R A` is a semiring, and also an algebra over `set A`.
## Tags
multiplication of submodules, division of subodules, submodule semiring
-/
universes uι u v
open algebra set
open_locale pointwise
namespace submodule
variables {ι : Sort uι}
variables {R : Type u} [comm_semiring R]
section ring
variables {A : Type v} [semiring A] [algebra R A]
variables (S T : set A) {M N P Q : submodule R A} {m n : A}
/-- `1 : submodule R A` is the submodule R of A. -/
instance : has_one (submodule R A) :=
⟨(algebra.linear_map R A).range⟩
theorem one_eq_range :
(1 : submodule R A) = (algebra.linear_map R A).range := rfl
lemma algebra_map_mem (r : R) : algebra_map R A r ∈ (1 : submodule R A) :=
linear_map.mem_range_self _ _
@[simp] lemma mem_one {x : A} : x ∈ (1 : submodule R A) ↔ ∃ y, algebra_map R A y = x :=
by simp only [one_eq_range, linear_map.mem_range, algebra.linear_map_apply]
theorem one_eq_span : (1 : submodule R A) = R ∙ 1 :=
begin
apply submodule.ext,
intro a,
simp only [mem_one, mem_span_singleton, algebra.smul_def, mul_one]
end
theorem one_le : (1 : submodule R A) ≤ P ↔ (1 : A) ∈ P :=
by simpa only [one_eq_span, span_le, set.singleton_subset_iff]
/-- Multiplication of sub-R-modules of an R-algebra A. The submodule `M * N` is the
smallest R-submodule of `A` containing the elements `m * n` for `m ∈ M` and `n ∈ N`. -/
instance : has_mul (submodule R A) :=
⟨λ M N, ⨆ s : M, N.map $ algebra.lmul R A s.1⟩
theorem mul_mem_mul (hm : m ∈ M) (hn : n ∈ N) : m * n ∈ M * N :=
(le_supr _ ⟨m, hm⟩ : _ ≤ M * N) ⟨n, hn, rfl⟩
theorem mul_le : M * N ≤ P ↔ ∀ (m ∈ M) (n ∈ N), m * n ∈ P :=
⟨λ H m hm n hn, H $ mul_mem_mul hm hn,
λ H, supr_le $ λ ⟨m, hm⟩, map_le_iff_le_comap.2 $ λ n hn, H m hm n hn⟩
@[elab_as_eliminator] protected theorem mul_induction_on
{C : A → Prop} {r : A} (hr : r ∈ M * N)
(hm : ∀ (m ∈ M) (n ∈ N), C (m * n))
(h0 : C 0) (ha : ∀ x y, C x → C y → C (x + y))
(hs : ∀ (r : R) x, C x → C (r • x)) : C r :=
(@mul_le _ _ _ _ _ _ _ ⟨C, h0, ha, hs⟩).2 hm hr
variables R
theorem span_mul_span : span R S * span R T = span R (S * T) :=
begin
apply le_antisymm,
{ rw mul_le, intros a ha b hb,
apply span_induction ha,
work_on_goal 0 { intros, apply span_induction hb,
work_on_goal 0 { intros, exact subset_span ⟨_, _, ‹_›, ‹_›, rfl⟩ } },
all_goals { intros, simp only [mul_zero, zero_mul, zero_mem,
left_distrib, right_distrib, mul_smul_comm, smul_mul_assoc],
try {apply add_mem _ _ _}, try {apply smul_mem _ _ _} }, assumption' },
{ rw span_le, rintros _ ⟨a, b, ha, hb, rfl⟩,
exact mul_mem_mul (subset_span ha) (subset_span hb) }
end
variables {R}
variables (M N P Q)
protected theorem mul_assoc : (M * N) * P = M * (N * P) :=
le_antisymm (mul_le.2 $ λ mn hmn p hp,
suffices M * N ≤ (M * (N * P)).comap (algebra.lmul_right R p), from this hmn,
mul_le.2 $ λ m hm n hn, show m * n * p ∈ M * (N * P), from
(mul_assoc m n p).symm ▸ mul_mem_mul hm (mul_mem_mul hn hp))
(mul_le.2 $ λ m hm np hnp,
suffices N * P ≤ (M * N * P).comap (algebra.lmul_left R m), from this hnp,
mul_le.2 $ λ n hn p hp, show m * (n * p) ∈ M * N * P, from
mul_assoc m n p ▸ mul_mem_mul (mul_mem_mul hm hn) hp)
@[simp] theorem mul_bot : M * ⊥ = ⊥ :=
eq_bot_iff.2 $ mul_le.2 $ λ m hm n hn, by rw [submodule.mem_bot] at hn ⊢; rw [hn, mul_zero]
@[simp] theorem bot_mul : ⊥ * M = ⊥ :=
eq_bot_iff.2 $ mul_le.2 $ λ m hm n hn, by rw [submodule.mem_bot] at hm ⊢; rw [hm, zero_mul]
@[simp] protected theorem one_mul : (1 : submodule R A) * M = M :=
by { conv_lhs { rw [one_eq_span, ← span_eq M] }, erw [span_mul_span, one_mul, span_eq] }
@[simp] protected theorem mul_one : M * 1 = M :=
by { conv_lhs { rw [one_eq_span, ← span_eq M] }, erw [span_mul_span, mul_one, span_eq] }
variables {M N P Q}
@[mono] theorem mul_le_mul (hmp : M ≤ P) (hnq : N ≤ Q) : M * N ≤ P * Q :=
mul_le.2 $ λ m hm n hn, mul_mem_mul (hmp hm) (hnq hn)
theorem mul_le_mul_left (h : M ≤ N) : M * P ≤ N * P :=
mul_le_mul h (le_refl P)
theorem mul_le_mul_right (h : N ≤ P) : M * N ≤ M * P :=
mul_le_mul (le_refl M) h
variables (M N P)
theorem mul_sup : M * (N ⊔ P) = M * N ⊔ M * P :=
le_antisymm (mul_le.2 $ λ m hm np hnp, let ⟨n, hn, p, hp, hnp⟩ := mem_sup.1 hnp in
mem_sup.2 ⟨_, mul_mem_mul hm hn, _, mul_mem_mul hm hp, hnp ▸ (mul_add m n p).symm⟩)
(sup_le (mul_le_mul_right le_sup_left) (mul_le_mul_right le_sup_right))
theorem sup_mul : (M ⊔ N) * P = M * P ⊔ N * P :=
le_antisymm (mul_le.2 $ λ mn hmn p hp, let ⟨m, hm, n, hn, hmn⟩ := mem_sup.1 hmn in
mem_sup.2 ⟨_, mul_mem_mul hm hp, _, mul_mem_mul hn hp, hmn ▸ (add_mul m n p).symm⟩)
(sup_le (mul_le_mul_left le_sup_left) (mul_le_mul_left le_sup_right))
lemma mul_subset_mul : (↑M : set A) * (↑N : set A) ⊆ (↑(M * N) : set A) :=
by { rintros _ ⟨i, j, hi, hj, rfl⟩, exact mul_mem_mul hi hj }
lemma map_mul {A'} [semiring A'] [algebra R A'] (f : A →ₐ[R] A') :
map f.to_linear_map (M * N) = map f.to_linear_map M * map f.to_linear_map N :=
calc map f.to_linear_map (M * N)
= ⨆ (i : M), (N.map (lmul R A i)).map f.to_linear_map : map_supr _ _
... = map f.to_linear_map M * map f.to_linear_map N :
begin
apply congr_arg Sup,
ext S,
split; rintros ⟨y, hy⟩,
{ use [f y, mem_map.mpr ⟨y.1, y.2, rfl⟩],
refine trans _ hy,
ext,
simp },
{ obtain ⟨y', hy', fy_eq⟩ := mem_map.mp y.2,
use [y', hy'],
refine trans _ hy,
rw f.to_linear_map_apply at fy_eq,
ext,
simp [fy_eq] }
end
section decidable_eq
open_locale classical
lemma mem_span_mul_finite_of_mem_span_mul {S : set A} {S' : set A} {x : A}
(hx : x ∈ span R (S * S')) :
∃ (T T' : finset A), ↑T ⊆ S ∧ ↑T' ⊆ S' ∧ x ∈ span R (T * T' : set A) :=
begin
obtain ⟨U, h, hU⟩ := mem_span_finite_of_mem_span hx,
obtain ⟨T, T', hS, hS', h⟩ := finset.subset_mul h,
use [T, T', hS, hS'],
have h' : (U : set A) ⊆ T * T', { assumption_mod_cast, },
have h'' := span_mono h' hU,
assumption,
end
end decidable_eq
lemma mul_eq_span_mul_set (s t : submodule R A) : s * t = span R ((s : set A) * (t : set A)) :=
by rw [← span_mul_span, span_eq, span_eq]
lemma supr_mul (s : ι → submodule R A) (t : submodule R A) : (⨆ i, s i) * t = ⨆ i, s i * t :=
begin
suffices : (⨆ i, span R (s i : set A)) * span R t = (⨆ i, span R (s i) * span R t),
{ simpa only [span_eq] using this },
simp_rw [span_mul_span, ← span_Union, span_mul_span, set.Union_mul],
end
lemma mul_supr (t : submodule R A) (s : ι → submodule R A) : t * (⨆ i, s i) = ⨆ i, t * s i :=
begin
suffices : span R (t : set A) * (⨆ i, span R (s i)) = (⨆ i, span R t * span R (s i)),
{ simpa only [span_eq] using this },
simp_rw [span_mul_span, ← span_Union, span_mul_span, set.mul_Union],
end
lemma mem_span_mul_finite_of_mem_mul {P Q : submodule R A} {x : A} (hx : x ∈ P * Q) :
∃ (T T' : finset A), (T : set A) ⊆ P ∧ (T' : set A) ⊆ Q ∧ x ∈ span R (T * T' : set A) :=
submodule.mem_span_mul_finite_of_mem_span_mul
(by rwa [← submodule.span_eq P, ← submodule.span_eq Q, submodule.span_mul_span] at hx)
variables {M N P}
/-- Sub-R-modules of an R-algebra form a semiring. -/
instance : semiring (submodule R A) :=
{ one_mul := submodule.one_mul,
mul_one := submodule.mul_one,
mul_assoc := submodule.mul_assoc,
zero_mul := bot_mul,
mul_zero := mul_bot,
left_distrib := mul_sup,
right_distrib := sup_mul,
..submodule.pointwise_add_comm_monoid,
..submodule.has_one,
..submodule.has_mul }
variables (M)
lemma pow_subset_pow {n : ℕ} : (↑M : set A)^n ⊆ ↑(M^n : submodule R A) :=
begin
induction n with n ih,
{ erw [pow_zero, pow_zero, set.singleton_subset_iff],
rw [set_like.mem_coe, ← one_le],
exact le_refl _ },
{ rw [pow_succ, pow_succ],
refine set.subset.trans (set.mul_subset_mul (subset.refl _) ih) _,
apply mul_subset_mul }
end
/-- `span` is a semiring homomorphism (recall multiplication is pointwise multiplication of subsets
on either side). -/
def span.ring_hom : set_semiring A →+* submodule R A :=
{ to_fun := submodule.span R,
map_zero' := span_empty,
map_one' := one_eq_span.symm,
map_add' := span_union,
map_mul' := λ s t, by erw [span_mul_span, ← image_mul_prod] }
end ring
section comm_ring
variables {A : Type v} [comm_semiring A] [algebra R A]
variables {M N : submodule R A} {m n : A}
theorem mul_mem_mul_rev (hm : m ∈ M) (hn : n ∈ N) : n * m ∈ M * N :=
mul_comm m n ▸ mul_mem_mul hm hn
variables (M N)
protected theorem mul_comm : M * N = N * M :=
le_antisymm (mul_le.2 $ λ r hrm s hsn, mul_mem_mul_rev hsn hrm)
(mul_le.2 $ λ r hrn s hsm, mul_mem_mul_rev hsm hrn)
/-- Sub-R-modules of an R-algebra A form a semiring. -/
instance : comm_semiring (submodule R A) :=
{ mul_comm := submodule.mul_comm,
.. submodule.semiring }
variables (R A)
/-- R-submodules of the R-algebra A are a module over `set A`. -/
instance module_set : module (set_semiring A) (submodule R A) :=
{ smul := λ s P, span R s * P,
smul_add := λ _ _ _, mul_add _ _ _,
add_smul := λ s t P, show span R (s ⊔ t) * P = _, by { erw [span_union, right_distrib] },
mul_smul := λ s t P, show _ = _ * (_ * _),
by { rw [← mul_assoc, span_mul_span, ← image_mul_prod] },
one_smul := λ P, show span R {(1 : A)} * P = _,
by { conv_lhs {erw ← span_eq P}, erw [span_mul_span, one_mul, span_eq] },
zero_smul := λ P, show span R ∅ * P = ⊥, by erw [span_empty, bot_mul],
smul_zero := λ _, mul_bot _ }
variables {R A}
lemma smul_def {s : set_semiring A} {P : submodule R A} : s • P = span R s * P := rfl
lemma smul_le_smul {s t : set_semiring A} {M N : submodule R A} (h₁ : s.down ≤ t.down)
(h₂ : M ≤ N) : s • M ≤ t • N :=
mul_le_mul (span_mono h₁) h₂
lemma smul_singleton (a : A) (M : submodule R A) :
({a} : set A).up • M = M.map (lmul_left _ a) :=
begin
conv_lhs {rw ← span_eq M},
change span _ _ * span _ _ = _,
rw [span_mul_span],
apply le_antisymm,
{ rw span_le,
rintros _ ⟨b, m, hb, hm, rfl⟩,
rw [set_like.mem_coe, mem_map, set.mem_singleton_iff.mp hb],
exact ⟨m, hm, rfl⟩ },
{ rintros _ ⟨m, hm, rfl⟩, exact subset_span ⟨a, m, set.mem_singleton a, hm, rfl⟩ }
end
section quotient
/-- The elements of `I / J` are the `x` such that `x • J ⊆ I`.
In fact, we define `x ∈ I / J` to be `∀ y ∈ J, x * y ∈ I` (see `mem_div_iff_forall_mul_mem`),
which is equivalent to `x • J ⊆ I` (see `mem_div_iff_smul_subset`), but nicer to use in proofs.
This is the general form of the ideal quotient, traditionally written $I : J$.
-/
instance : has_div (submodule R A) :=
⟨ λ I J, {
carrier := { x | ∀ y ∈ J, x * y ∈ I },
zero_mem' := λ y hy, by { rw zero_mul, apply submodule.zero_mem },
add_mem' := λ a b ha hb y hy, by { rw add_mul, exact submodule.add_mem _ (ha _ hy) (hb _ hy) },
smul_mem' := λ r x hx y hy, by { rw algebra.smul_mul_assoc,
exact submodule.smul_mem _ _ (hx _ hy) } } ⟩
lemma mem_div_iff_forall_mul_mem {x : A} {I J : submodule R A} :
x ∈ I / J ↔ ∀ y ∈ J, x * y ∈ I :=
iff.refl _
lemma mem_div_iff_smul_subset {x : A} {I J : submodule R A} : x ∈ I / J ↔ x • (J : set A) ⊆ I :=
⟨ λ h y ⟨y', hy', xy'_eq_y⟩, by { rw ← xy'_eq_y, apply h, assumption },
λ h y hy, h (set.smul_mem_smul_set hy) ⟩
lemma le_div_iff {I J K : submodule R A} : I ≤ J / K ↔ ∀ (x ∈ I) (z ∈ K), x * z ∈ J := iff.refl _
lemma le_div_iff_mul_le {I J K : submodule R A} : I ≤ J / K ↔ I * K ≤ J :=
by rw [le_div_iff, mul_le]
@[simp] lemma one_le_one_div {I : submodule R A} :
1 ≤ 1 / I ↔ I ≤ 1 :=
begin
split, all_goals {intro hI},
{rwa [le_div_iff_mul_le, one_mul] at hI},
{rwa [le_div_iff_mul_le, one_mul]},
end
lemma le_self_mul_one_div {I : submodule R A} (hI : I ≤ 1) :
I ≤ I * (1 / I) :=
begin
rw [← mul_one I] {occs := occurrences.pos [1]},
apply mul_le_mul_right (one_le_one_div.mpr hI),
end
lemma mul_one_div_le_one {I : submodule R A} : I * (1 / I) ≤ 1 :=
begin
rw submodule.mul_le,
intros m hm n hn,
rw [submodule.mem_div_iff_forall_mul_mem] at hn,
rw mul_comm,
exact hn m hm,
end
@[simp] lemma map_div {B : Type*} [comm_ring B] [algebra R B]
(I J : submodule R A) (h : A ≃ₐ[R] B) :
(I / J).map h.to_linear_map = I.map h.to_linear_map / J.map h.to_linear_map :=
begin
ext x,
simp only [mem_map, mem_div_iff_forall_mul_mem],
split,
{ rintro ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩,
exact ⟨x * y, hx _ hy, h.map_mul x y⟩ },
{ rintro hx,
refine ⟨h.symm x, λ z hz, _, h.apply_symm_apply x⟩,
obtain ⟨xz, xz_mem, hxz⟩ := hx (h z) ⟨z, hz, rfl⟩,
convert xz_mem,
apply h.injective,
erw [h.map_mul, h.apply_symm_apply, hxz] }
end
end quotient
end comm_ring
end submodule
|
2de6c572af016954ba56f11ff1592c81640e4215
|
1abd1ed12aa68b375cdef28959f39531c6e95b84
|
/src/linear_algebra/affine_space/independent.lean
|
250475ff584037839a59f9ce281e3a9f8aa8d954
|
[
"Apache-2.0"
] |
permissive
|
jumpy4/mathlib
|
d3829e75173012833e9f15ac16e481e17596de0f
|
af36f1a35f279f0e5b3c2a77647c6bf2cfd51a13
|
refs/heads/master
| 1,693,508,842,818
| 1,636,203,271,000
| 1,636,203,271,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 31,033
|
lean
|
/-
Copyright (c) 2020 Joseph Myers. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Myers
-/
import data.finset.sort
import data.matrix.notation
import linear_algebra.affine_space.combination
import linear_algebra.affine_space.affine_equiv
import linear_algebra.basis
/-!
# Affine independence
This file defines affinely independent families of points.
## Main definitions
* `affine_independent` defines affinely independent families of points
as those where no nontrivial weighted subtraction is `0`. This is
proved equivalent to two other formulations: linear independence of
the results of subtracting a base point in the family from the other
points in the family, or any equal affine combinations having the
same weights. A bundled type `simplex` is provided for finite
affinely independent families of points, with an abbreviation
`triangle` for the case of three points.
## References
* https://en.wikipedia.org/wiki/Affine_space
-/
noncomputable theory
open_locale big_operators classical affine
open function
section affine_independent
variables (k : Type*) {V : Type*} {P : Type*} [ring k] [add_comm_group V] [module k V]
variables [affine_space V P] {ι : Type*}
include V
/-- An indexed family is said to be affinely independent if no
nontrivial weighted subtractions (where the sum of weights is 0) are
0. -/
def affine_independent (p : ι → P) : Prop :=
∀ (s : finset ι) (w : ι → k), ∑ i in s, w i = 0 → s.weighted_vsub p w = (0:V) → ∀ i ∈ s, w i = 0
/-- The definition of `affine_independent`. -/
lemma affine_independent_def (p : ι → P) :
affine_independent k p ↔
∀ (s : finset ι) (w : ι → k),
∑ i in s, w i = 0 → s.weighted_vsub p w = (0 : V) → ∀ i ∈ s, w i = 0 :=
iff.rfl
/-- A family with at most one point is affinely independent. -/
lemma affine_independent_of_subsingleton [subsingleton ι] (p : ι → P) :
affine_independent k p :=
λ s w h hs i hi, fintype.eq_of_subsingleton_of_sum_eq h i hi
/-- A family indexed by a `fintype` is affinely independent if and
only if no nontrivial weighted subtractions over `finset.univ` (where
the sum of the weights is 0) are 0. -/
lemma affine_independent_iff_of_fintype [fintype ι] (p : ι → P) :
affine_independent k p ↔
∀ w : ι → k, ∑ i, w i = 0 → finset.univ.weighted_vsub p w = (0 : V) → ∀ i, w i = 0 :=
begin
split,
{ exact λ h w hw hs i, h finset.univ w hw hs i (finset.mem_univ _) },
{ intros h s w hw hs i hi,
rw finset.weighted_vsub_indicator_subset _ _ (finset.subset_univ s) at hs,
rw set.sum_indicator_subset _ (finset.subset_univ s) at hw,
replace h := h ((↑s : set ι).indicator w) hw hs i,
simpa [hi] using h }
end
/-- A family is affinely independent if and only if the differences
from a base point in that family are linearly independent. -/
lemma affine_independent_iff_linear_independent_vsub (p : ι → P) (i1 : ι) :
affine_independent k p ↔ linear_independent k (λ i : {x // x ≠ i1}, (p i -ᵥ p i1 : V)) :=
begin
split,
{ intro h,
rw linear_independent_iff',
intros s g hg i hi,
set f : ι → k := λ x, if hx : x = i1 then -∑ y in s, g y else g ⟨x, hx⟩ with hfdef,
let s2 : finset ι := insert i1 (s.map (embedding.subtype _)),
have hfg : ∀ x : {x // x ≠ i1}, g x = f x,
{ intro x,
rw hfdef,
dsimp only [],
erw [dif_neg x.property, subtype.coe_eta] },
rw hfg,
have hf : ∑ ι in s2, f ι = 0,
{ rw [finset.sum_insert (finset.not_mem_map_subtype_of_not_property s (not_not.2 rfl)),
finset.sum_subtype_map_embedding (λ x hx, (hfg x).symm)],
rw hfdef,
dsimp only [],
rw dif_pos rfl,
exact neg_add_self _ },
have hs2 : s2.weighted_vsub p f = (0:V),
{ set f2 : ι → V := λ x, f x • (p x -ᵥ p i1) with hf2def,
set g2 : {x // x ≠ i1} → V := λ x, g x • (p x -ᵥ p i1) with hg2def,
have hf2g2 : ∀ x : {x // x ≠ i1}, f2 x = g2 x,
{ simp_rw [hf2def, hg2def, hfg],
exact λ x, rfl },
rw [finset.weighted_vsub_eq_weighted_vsub_of_point_of_sum_eq_zero s2 f p hf (p i1),
finset.weighted_vsub_of_point_insert, finset.weighted_vsub_of_point_apply,
finset.sum_subtype_map_embedding (λ x hx, hf2g2 x)],
exact hg },
exact h s2 f hf hs2 i (finset.mem_insert_of_mem (finset.mem_map.2 ⟨i, hi, rfl⟩)) },
{ intro h,
rw linear_independent_iff' at h,
intros s w hw hs i hi,
rw [finset.weighted_vsub_eq_weighted_vsub_of_point_of_sum_eq_zero s w p hw (p i1),
←s.weighted_vsub_of_point_erase w p i1, finset.weighted_vsub_of_point_apply] at hs,
let f : ι → V := λ i, w i • (p i -ᵥ p i1),
have hs2 : ∑ i in (s.erase i1).subtype (λ i, i ≠ i1), f i = 0,
{ rw [←hs],
convert finset.sum_subtype_of_mem f (λ x, finset.ne_of_mem_erase) },
have h2 := h ((s.erase i1).subtype (λ i, i ≠ i1)) (λ x, w x) hs2,
simp_rw [finset.mem_subtype] at h2,
have h2b : ∀ i ∈ s, i ≠ i1 → w i = 0 :=
λ i his hi, h2 ⟨i, hi⟩ (finset.mem_erase_of_ne_of_mem hi his),
exact finset.eq_zero_of_sum_eq_zero hw h2b i hi }
end
/-- A set is affinely independent if and only if the differences from
a base point in that set are linearly independent. -/
lemma affine_independent_set_iff_linear_independent_vsub {s : set P} {p₁ : P} (hp₁ : p₁ ∈ s) :
affine_independent k (λ p, p : s → P) ↔
linear_independent k (λ v, v : (λ p, (p -ᵥ p₁ : V)) '' (s \ {p₁}) → V) :=
begin
rw affine_independent_iff_linear_independent_vsub k (λ p, p : s → P) ⟨p₁, hp₁⟩,
split,
{ intro h,
have hv : ∀ v : (λ p, (p -ᵥ p₁ : V)) '' (s \ {p₁}), (v : V) +ᵥ p₁ ∈ s \ {p₁} :=
λ v, (vsub_left_injective p₁).mem_set_image.1
((vadd_vsub (v : V) p₁).symm ▸ v.property),
let f : (λ p : P, (p -ᵥ p₁ : V)) '' (s \ {p₁}) → {x : s // x ≠ ⟨p₁, hp₁⟩} :=
λ x, ⟨⟨(x : V) +ᵥ p₁, set.mem_of_mem_diff (hv x)⟩,
λ hx, set.not_mem_of_mem_diff (hv x) (subtype.ext_iff.1 hx)⟩,
convert h.comp f
(λ x1 x2 hx, (subtype.ext (vadd_right_cancel p₁ (subtype.ext_iff.1 (subtype.ext_iff.1 hx))))),
ext v,
exact (vadd_vsub (v : V) p₁).symm },
{ intro h,
let f : {x : s // x ≠ ⟨p₁, hp₁⟩} → (λ p : P, (p -ᵥ p₁ : V)) '' (s \ {p₁}) :=
λ x, ⟨((x : s) : P) -ᵥ p₁, ⟨x, ⟨⟨(x : s).property, λ hx, x.property (subtype.ext hx)⟩, rfl⟩⟩⟩,
convert h.comp f
(λ x1 x2 hx, subtype.ext (subtype.ext (vsub_left_cancel (subtype.ext_iff.1 hx)))) }
end
/-- A set of nonzero vectors is linearly independent if and only if,
given a point `p₁`, the vectors added to `p₁` and `p₁` itself are
affinely independent. -/
lemma linear_independent_set_iff_affine_independent_vadd_union_singleton {s : set V}
(hs : ∀ v ∈ s, v ≠ (0 : V)) (p₁ : P) : linear_independent k (λ v, v : s → V) ↔
affine_independent k (λ p, p : {p₁} ∪ ((λ v, v +ᵥ p₁) '' s) → P) :=
begin
rw affine_independent_set_iff_linear_independent_vsub k
(set.mem_union_left _ (set.mem_singleton p₁)),
have h : (λ p, (p -ᵥ p₁ : V)) '' (({p₁} ∪ (λ v, v +ᵥ p₁) '' s) \ {p₁}) = s,
{ simp_rw [set.union_diff_left, set.image_diff (vsub_left_injective p₁), set.image_image,
set.image_singleton, vsub_self, vadd_vsub, set.image_id'],
exact set.diff_singleton_eq_self (λ h, hs 0 h rfl) },
rw h
end
/-- A family is affinely independent if and only if any affine
combinations (with sum of weights 1) that evaluate to the same point
have equal `set.indicator`. -/
lemma affine_independent_iff_indicator_eq_of_affine_combination_eq (p : ι → P) :
affine_independent k p ↔ ∀ (s1 s2 : finset ι) (w1 w2 : ι → k), ∑ i in s1, w1 i = 1 →
∑ i in s2, w2 i = 1 → s1.affine_combination p w1 = s2.affine_combination p w2 →
set.indicator ↑s1 w1 = set.indicator ↑s2 w2 :=
begin
split,
{ intros ha s1 s2 w1 w2 hw1 hw2 heq,
ext i,
by_cases hi : i ∈ (s1 ∪ s2),
{ rw ←sub_eq_zero,
rw set.sum_indicator_subset _ (finset.subset_union_left s1 s2) at hw1,
rw set.sum_indicator_subset _ (finset.subset_union_right s1 s2) at hw2,
have hws : ∑ i in s1 ∪ s2, (set.indicator ↑s1 w1 - set.indicator ↑s2 w2) i = 0,
{ simp [hw1, hw2] },
rw [finset.affine_combination_indicator_subset _ _ (finset.subset_union_left s1 s2),
finset.affine_combination_indicator_subset _ _ (finset.subset_union_right s1 s2),
←@vsub_eq_zero_iff_eq V, finset.affine_combination_vsub] at heq,
exact ha (s1 ∪ s2) (set.indicator ↑s1 w1 - set.indicator ↑s2 w2) hws heq i hi },
{ rw [←finset.mem_coe, finset.coe_union] at hi,
simp [mt (set.mem_union_left ↑s2) hi, mt (set.mem_union_right ↑s1) hi] } },
{ intros ha s w hw hs i0 hi0,
let w1 : ι → k := function.update (function.const ι 0) i0 1,
have hw1 : ∑ i in s, w1 i = 1,
{ rw [finset.sum_update_of_mem hi0, finset.sum_const_zero, add_zero] },
have hw1s : s.affine_combination p w1 = p i0 :=
s.affine_combination_of_eq_one_of_eq_zero w1 p hi0 (function.update_same _ _ _)
(λ _ _ hne, function.update_noteq hne _ _),
let w2 := w + w1,
have hw2 : ∑ i in s, w2 i = 1,
{ simp [w2, finset.sum_add_distrib, hw, hw1] },
have hw2s : s.affine_combination p w2 = p i0,
{ simp [w2, ←finset.weighted_vsub_vadd_affine_combination, hs, hw1s] },
replace ha := ha s s w2 w1 hw2 hw1 (hw1s.symm ▸ hw2s),
have hws : w2 i0 - w1 i0 = 0,
{ rw ←finset.mem_coe at hi0,
rw [←set.indicator_of_mem hi0 w2, ←set.indicator_of_mem hi0 w1, ha, sub_self] },
simpa [w2] using hws }
end
variables {k}
/-- If we single out one member of an affine-independent family of points and affinely transport
all others along the line joining them to this member, the resulting new family of points is affine-
independent.
This is the affine version of `linear_independent.units_smul`. -/
lemma affine_independent.units_line_map
{p : ι → P} (hp : affine_independent k p) (j : ι) (w : ι → units k) :
affine_independent k (λ i, affine_map.line_map (p j) (p i) (w i : k)) :=
begin
rw affine_independent_iff_linear_independent_vsub k _ j at hp ⊢,
simp only [affine_map.line_map_vsub_left, affine_map.coe_const, affine_map.line_map_same],
exact hp.units_smul (λ i, w i),
end
lemma affine_independent.indicator_eq_of_affine_combination_eq {p : ι → P}
(ha : affine_independent k p) (s₁ s₂ : finset ι) (w₁ w₂ : ι → k) (hw₁ : ∑ i in s₁, w₁ i = 1)
(hw₂ : ∑ i in s₂, w₂ i = 1) (h : s₁.affine_combination p w₁ = s₂.affine_combination p w₂) :
set.indicator ↑s₁ w₁ = set.indicator ↑s₂ w₂ :=
(affine_independent_iff_indicator_eq_of_affine_combination_eq k p).1 ha s₁ s₂ w₁ w₂ hw₁ hw₂ h
/-- An affinely independent family is injective, if the underlying
ring is nontrivial. -/
protected lemma affine_independent.injective [nontrivial k] {p : ι → P}
(ha : affine_independent k p) :
function.injective p :=
begin
intros i j hij,
rw affine_independent_iff_linear_independent_vsub _ _ j at ha,
by_contra hij',
exact ha.ne_zero ⟨i, hij'⟩ (vsub_eq_zero_iff_eq.mpr hij)
end
/-- If a family is affinely independent, so is any subfamily given by
composition of an embedding into index type with the original
family. -/
lemma affine_independent.comp_embedding {ι2 : Type*} (f : ι2 ↪ ι) {p : ι → P}
(ha : affine_independent k p) : affine_independent k (p ∘ f) :=
begin
intros fs w hw hs i0 hi0,
let fs' := fs.map f,
let w' := λ i, if h : ∃ i2, f i2 = i then w h.some else 0,
have hw' : ∀ i2 : ι2, w' (f i2) = w i2,
{ intro i2,
have h : ∃ i : ι2, f i = f i2 := ⟨i2, rfl⟩,
have hs : h.some = i2 := f.injective h.some_spec,
simp_rw [w', dif_pos h, hs] },
have hw's : ∑ i in fs', w' i = 0,
{ rw [←hw, finset.sum_map],
simp [hw'] },
have hs' : fs'.weighted_vsub p w' = (0:V),
{ rw [←hs, finset.weighted_vsub_map],
congr' with i,
simp [hw'] },
rw [←ha fs' w' hw's hs' (f i0) ((finset.mem_map' _).2 hi0), hw']
end
/-- If a family is affinely independent, so is any subfamily indexed
by a subtype of the index type. -/
protected lemma affine_independent.subtype {p : ι → P}
(ha : affine_independent k p) (s : set ι) : affine_independent k (λ i : s, p i) :=
ha.comp_embedding (embedding.subtype _)
/-- If an indexed family of points is affinely independent, so is the
corresponding set of points. -/
protected lemma affine_independent.range {p : ι → P} (ha : affine_independent k p) :
affine_independent k (λ x, x : set.range p → P) :=
begin
let f : set.range p → ι := λ x, x.property.some,
have hf : ∀ x, p (f x) = x := λ x, x.property.some_spec,
let fe : set.range p ↪ ι := ⟨f, λ x₁ x₂ he, subtype.ext (hf x₁ ▸ hf x₂ ▸ he ▸ rfl)⟩,
convert ha.comp_embedding fe,
ext,
simp [hf]
end
lemma affine_independent_equiv {ι' : Type*} (e : ι ≃ ι') {p : ι' → P} :
affine_independent k (p ∘ e) ↔ affine_independent k p :=
begin
refine ⟨_, affine_independent.comp_embedding e.to_embedding⟩,
intros h,
have : p = p ∘ e ∘ e.symm.to_embedding, { ext, simp, },
rw this,
exact h.comp_embedding e.symm.to_embedding,
end
/-- If a set of points is affinely independent, so is any subset. -/
protected lemma affine_independent.mono {s t : set P}
(ha : affine_independent k (λ x, x : t → P)) (hs : s ⊆ t) :
affine_independent k (λ x, x : s → P) :=
ha.comp_embedding (s.embedding_of_subset t hs)
/-- If the range of an injective indexed family of points is affinely
independent, so is that family. -/
lemma affine_independent.of_set_of_injective {p : ι → P}
(ha : affine_independent k (λ x, x : set.range p → P)) (hi : function.injective p) :
affine_independent k p :=
ha.comp_embedding
(⟨λ i, ⟨p i, set.mem_range_self _⟩, λ x y h, hi (subtype.mk_eq_mk.1 h)⟩ : ι ↪ set.range p)
section composition
variables {V₂ P₂ : Type*} [add_comm_group V₂] [module k V₂] [affine_space V₂ P₂]
include V₂
/-- If the image of a family of points in affine space under an affine transformation is affine-
independent, then the original family of points is also affine-independent. -/
lemma affine_independent.of_comp {p : ι → P} (f : P →ᵃ[k] P₂) (hai : affine_independent k (f ∘ p)) :
affine_independent k p :=
begin
cases is_empty_or_nonempty ι with h h, { haveI := h, apply affine_independent_of_subsingleton, },
obtain ⟨i⟩ := h,
rw affine_independent_iff_linear_independent_vsub k p i,
simp_rw [affine_independent_iff_linear_independent_vsub k (f ∘ p) i, function.comp_app,
← f.linear_map_vsub] at hai,
exact linear_independent.of_comp f.linear hai,
end
/-- The image of a family of points in affine space, under an injective affine transformation, is
affine-independent. -/
lemma affine_independent.map'
{p : ι → P} (hai : affine_independent k p) (f : P →ᵃ[k] P₂) (hf : function.injective f) :
affine_independent k (f ∘ p) :=
begin
cases is_empty_or_nonempty ι with h h, { haveI := h, apply affine_independent_of_subsingleton, },
obtain ⟨i⟩ := h,
rw affine_independent_iff_linear_independent_vsub k p i at hai,
simp_rw [affine_independent_iff_linear_independent_vsub k (f ∘ p) i, function.comp_app,
← f.linear_map_vsub],
have hf' : f.linear.ker = ⊥, { rwa [linear_map.ker_eq_bot, f.injective_iff_linear_injective], },
exact linear_independent.map' hai f.linear hf',
end
/-- Injective affine maps preserve affine independence. -/
lemma affine_map.affine_independent_iff {p : ι → P} (f : P →ᵃ[k] P₂) (hf : function.injective f) :
affine_independent k (f ∘ p) ↔ affine_independent k p :=
⟨affine_independent.of_comp f, λ hai, affine_independent.map' hai f hf⟩
/-- Affine equivalences preserve affine independence of families of points. -/
lemma affine_equiv.affine_independent_iff {p : ι → P} (e : P ≃ᵃ[k] P₂) :
affine_independent k (e ∘ p) ↔ affine_independent k p :=
e.to_affine_map.affine_independent_iff e.to_equiv.injective
/-- Affine equivalences preserve affine independence of subsets. -/
lemma affine_equiv.affine_independent_set_of_eq_iff {s : set P} (e : P ≃ᵃ[k] P₂) :
affine_independent k (coe : (e '' s) → P₂) ↔ affine_independent k (coe : s → P) :=
begin
have : e ∘ (coe : s → P) = (coe : e '' s → P₂) ∘ ((e : P ≃ P₂).image s) := rfl,
rw [← e.affine_independent_iff, this, affine_independent_equiv],
end
end composition
/-- If a family is affinely independent, and the spans of points
indexed by two subsets of the index type have a point in common, those
subsets of the index type have an element in common, if the underlying
ring is nontrivial. -/
lemma affine_independent.exists_mem_inter_of_exists_mem_inter_affine_span [nontrivial k]
{p : ι → P} (ha : affine_independent k p) {s1 s2 : set ι} {p0 : P}
(hp0s1 : p0 ∈ affine_span k (p '' s1)) (hp0s2 : p0 ∈ affine_span k (p '' s2)):
∃ (i : ι), i ∈ s1 ∩ s2 :=
begin
rw set.image_eq_range at hp0s1 hp0s2,
rw [mem_affine_span_iff_eq_affine_combination,
←finset.eq_affine_combination_subset_iff_eq_affine_combination_subtype] at hp0s1 hp0s2,
rcases hp0s1 with ⟨fs1, hfs1, w1, hw1, hp0s1⟩,
rcases hp0s2 with ⟨fs2, hfs2, w2, hw2, hp0s2⟩,
rw affine_independent_iff_indicator_eq_of_affine_combination_eq at ha,
replace ha := ha fs1 fs2 w1 w2 hw1 hw2 (hp0s1 ▸ hp0s2),
have hnz : ∑ i in fs1, w1 i ≠ 0 := hw1.symm ▸ one_ne_zero,
rcases finset.exists_ne_zero_of_sum_ne_zero hnz with ⟨i, hifs1, hinz⟩,
simp_rw [←set.indicator_of_mem (finset.mem_coe.2 hifs1) w1, ha] at hinz,
use [i, hfs1 hifs1, hfs2 (set.mem_of_indicator_ne_zero hinz)]
end
/-- If a family is affinely independent, the spans of points indexed
by disjoint subsets of the index type are disjoint, if the underlying
ring is nontrivial. -/
lemma affine_independent.affine_span_disjoint_of_disjoint [nontrivial k] {p : ι → P}
(ha : affine_independent k p) {s1 s2 : set ι} (hd : s1 ∩ s2 = ∅) :
(affine_span k (p '' s1) : set P) ∩ affine_span k (p '' s2) = ∅ :=
begin
by_contradiction hne,
change (affine_span k (p '' s1) : set P) ∩ affine_span k (p '' s2) ≠ ∅ at hne,
rw set.ne_empty_iff_nonempty at hne,
rcases hne with ⟨p0, hp0s1, hp0s2⟩,
cases ha.exists_mem_inter_of_exists_mem_inter_affine_span hp0s1 hp0s2 with i hi,
exact set.not_mem_empty i (hd ▸ hi)
end
/-- If a family is affinely independent, a point in the family is in
the span of some of the points given by a subset of the index type if
and only if that point's index is in the subset, if the underlying
ring is nontrivial. -/
@[simp] protected lemma affine_independent.mem_affine_span_iff [nontrivial k] {p : ι → P}
(ha : affine_independent k p) (i : ι) (s : set ι) :
p i ∈ affine_span k (p '' s) ↔ i ∈ s :=
begin
split,
{ intro hs,
have h := affine_independent.exists_mem_inter_of_exists_mem_inter_affine_span
ha hs (mem_affine_span k (set.mem_image_of_mem _ (set.mem_singleton _))),
rwa [←set.nonempty_def, set.inter_singleton_nonempty] at h },
{ exact λ h, mem_affine_span k (set.mem_image_of_mem p h) }
end
/-- If a family is affinely independent, a point in the family is not
in the affine span of the other points, if the underlying ring is
nontrivial. -/
lemma affine_independent.not_mem_affine_span_diff [nontrivial k] {p : ι → P}
(ha : affine_independent k p) (i : ι) (s : set ι) :
p i ∉ affine_span k (p '' (s \ {i})) :=
by simp [ha]
lemma exists_nontrivial_relation_sum_zero_of_not_affine_ind
{t : finset V} (h : ¬ affine_independent k (coe : t → V)) :
∃ f : V → k, ∑ e in t, f e • e = 0 ∧ ∑ e in t, f e = 0 ∧ ∃ x ∈ t, f x ≠ 0 :=
begin
classical,
rw affine_independent_iff_of_fintype at h,
simp only [exists_prop, not_forall] at h,
obtain ⟨w, hw, hwt, i, hi⟩ := h,
simp only [finset.weighted_vsub_eq_weighted_vsub_of_point_of_sum_eq_zero _ w (coe : t → V) hw 0,
vsub_eq_sub, finset.weighted_vsub_of_point_apply, sub_zero] at hwt,
let f : Π (x : V), x ∈ t → k := λ x hx, w ⟨x, hx⟩,
refine ⟨λ x, if hx : x ∈ t then f x hx else (0 : k), _, _, by { use i, simp [hi, f], }⟩,
suffices : ∑ (e : V) in t, dite (e ∈ t) (λ hx, (f e hx) • e) (λ hx, 0) = 0,
{ convert this, ext, by_cases hx : x ∈ t; simp [hx], },
all_goals
{ simp only [finset.sum_dite_of_true (λx h, h), subtype.val_eq_coe, finset.mk_coe, f, hwt, hw], },
end
end affine_independent
section division_ring
variables {k : Type*} {V : Type*} {P : Type*} [division_ring k] [add_comm_group V] [module k V]
variables [affine_space V P] {ι : Type*}
include V
/-- An affinely independent set of points can be extended to such a
set that spans the whole space. -/
lemma exists_subset_affine_independent_affine_span_eq_top {s : set P}
(h : affine_independent k (λ p, p : s → P)) :
∃ t : set P, s ⊆ t ∧ affine_independent k (λ p, p : t → P) ∧ affine_span k t = ⊤ :=
begin
rcases s.eq_empty_or_nonempty with rfl | ⟨p₁, hp₁⟩,
{ have p₁ : P := add_torsor.nonempty.some,
let hsv := basis.of_vector_space k V,
have hsvi := hsv.linear_independent,
have hsvt := hsv.span_eq,
rw basis.coe_of_vector_space at hsvi hsvt,
have h0 : ∀ v : V, v ∈ (basis.of_vector_space_index _ _) → v ≠ 0,
{ intros v hv, simpa using hsv.ne_zero ⟨v, hv⟩ },
rw linear_independent_set_iff_affine_independent_vadd_union_singleton k h0 p₁ at hsvi,
exact ⟨{p₁} ∪ (λ v, v +ᵥ p₁) '' _, set.empty_subset _, hsvi,
affine_span_singleton_union_vadd_eq_top_of_span_eq_top p₁ hsvt⟩ },
{ rw affine_independent_set_iff_linear_independent_vsub k hp₁ at h,
let bsv := basis.extend h,
have hsvi := bsv.linear_independent,
have hsvt := bsv.span_eq,
rw basis.coe_extend at hsvi hsvt,
have hsv := h.subset_extend (set.subset_univ _),
have h0 : ∀ v : V, v ∈ (h.extend _) → v ≠ 0,
{ intros v hv, simpa using bsv.ne_zero ⟨v, hv⟩ },
rw linear_independent_set_iff_affine_independent_vadd_union_singleton k h0 p₁ at hsvi,
refine ⟨{p₁} ∪ (λ v, v +ᵥ p₁) '' h.extend (set.subset_univ _), _, _⟩,
{ refine set.subset.trans _ (set.union_subset_union_right _ (set.image_subset _ hsv)),
simp [set.image_image] },
{ use [hsvi, affine_span_singleton_union_vadd_eq_top_of_span_eq_top p₁ hsvt] } }
end
variables (k V)
lemma exists_affine_independent (s : set P) :
∃ t ⊆ s, affine_span k t = affine_span k s ∧ affine_independent k (coe : t → P) :=
begin
rcases s.eq_empty_or_nonempty with rfl | ⟨p, hp⟩,
{ exact ⟨∅, set.empty_subset ∅, rfl, affine_independent_of_subsingleton k _⟩, },
obtain ⟨b, hb₁, hb₂, hb₃⟩ := exists_linear_independent k ((equiv.vadd_const p).symm '' s),
have hb₀ : ∀ (v : V), v ∈ b → v ≠ 0, { exact λ v hv, hb₃.ne_zero (⟨v, hv⟩ : b), },
rw linear_independent_set_iff_affine_independent_vadd_union_singleton k hb₀ p at hb₃,
refine ⟨{p} ∪ (equiv.vadd_const p) '' b, _, _, hb₃⟩,
{ apply set.union_subset (set.singleton_subset_iff.mpr hp),
rwa ← (equiv.vadd_const p).subset_image' b s, },
{ rw [equiv.coe_vadd_const_symm, ← vector_span_eq_span_vsub_set_right k hp] at hb₂,
apply affine_subspace.ext_of_direction_eq,
{ have : submodule.span k b = submodule.span k (insert 0 b), { by simp, },
simp only [direction_affine_span, ← hb₂, equiv.coe_vadd_const, set.singleton_union,
vector_span_eq_span_vsub_set_right k (set.mem_insert p _), this],
congr,
change (equiv.vadd_const p).symm '' insert p ((equiv.vadd_const p) '' b) = _,
rw [set.image_insert_eq, ← set.image_comp],
simp, },
{ use p,
simp only [equiv.coe_vadd_const, set.singleton_union, set.mem_inter_eq, coe_affine_span],
exact ⟨mem_span_points k _ _ (set.mem_insert p _), mem_span_points k _ _ hp⟩, }, },
end
variables (k) {V P}
/-- Two different points are affinely independent. -/
lemma affine_independent_of_ne {p₁ p₂ : P} (h : p₁ ≠ p₂) : affine_independent k ![p₁, p₂] :=
begin
rw affine_independent_iff_linear_independent_vsub k ![p₁, p₂] 0,
let i₁ : {x // x ≠ (0 : fin 2)} := ⟨1, by norm_num⟩,
have he' : ∀ i, i = i₁,
{ rintro ⟨i, hi⟩,
ext,
fin_cases i,
{ simpa using hi } },
haveI : unique {x // x ≠ (0 : fin 2)} := ⟨⟨i₁⟩, he'⟩,
have hz : (![p₁, p₂] ↑(default {x // x ≠ (0 : fin 2)}) -ᵥ ![p₁, p₂] 0 : V) ≠ 0,
{ rw he' (default _), simp, cc },
exact linear_independent_unique _ hz
end
end division_ring
namespace affine
variables (k : Type*) {V : Type*} (P : Type*) [ring k] [add_comm_group V] [module k V]
variables [affine_space V P]
include V
/-- A `simplex k P n` is a collection of `n + 1` affinely
independent points. -/
structure simplex (n : ℕ) :=
(points : fin (n + 1) → P)
(independent : affine_independent k points)
/-- A `triangle k P` is a collection of three affinely independent points. -/
abbreviation triangle := simplex k P 2
namespace simplex
variables {P}
/-- Construct a 0-simplex from a point. -/
def mk_of_point (p : P) : simplex k P 0 :=
⟨λ _, p, affine_independent_of_subsingleton k _⟩
/-- The point in a simplex constructed with `mk_of_point`. -/
@[simp] lemma mk_of_point_points (p : P) (i : fin 1) : (mk_of_point k p).points i = p :=
rfl
instance [inhabited P] : inhabited (simplex k P 0) :=
⟨mk_of_point k $ default P⟩
instance nonempty : nonempty (simplex k P 0) :=
⟨mk_of_point k $ add_torsor.nonempty.some⟩
variables {k V}
/-- Two simplices are equal if they have the same points. -/
@[ext] lemma ext {n : ℕ} {s1 s2 : simplex k P n} (h : ∀ i, s1.points i = s2.points i) :
s1 = s2 :=
begin
cases s1,
cases s2,
congr' with i,
exact h i
end
/-- Two simplices are equal if and only if they have the same points. -/
lemma ext_iff {n : ℕ} (s1 s2 : simplex k P n): s1 = s2 ↔ ∀ i, s1.points i = s2.points i :=
⟨λ h _, h ▸ rfl, ext⟩
/-- A face of a simplex is a simplex with the given subset of
points. -/
def face {n : ℕ} (s : simplex k P n) {fs : finset (fin (n + 1))} {m : ℕ} (h : fs.card = m + 1) :
simplex k P m :=
⟨s.points ∘ fs.order_emb_of_fin h,
s.independent.comp_embedding (fs.order_emb_of_fin h).to_embedding⟩
/-- The points of a face of a simplex are given by `mono_of_fin`. -/
lemma face_points {n : ℕ} (s : simplex k P n) {fs : finset (fin (n + 1))} {m : ℕ}
(h : fs.card = m + 1) (i : fin (m + 1)) :
(s.face h).points i = s.points (fs.order_emb_of_fin h i) :=
rfl
/-- The points of a face of a simplex are given by `mono_of_fin`. -/
lemma face_points' {n : ℕ} (s : simplex k P n) {fs : finset (fin (n + 1))} {m : ℕ}
(h : fs.card = m + 1) : (s.face h).points = s.points ∘ (fs.order_emb_of_fin h) :=
rfl
/-- A single-point face equals the 0-simplex constructed with
`mk_of_point`. -/
@[simp] lemma face_eq_mk_of_point {n : ℕ} (s : simplex k P n) (i : fin (n + 1)) :
s.face (finset.card_singleton i) = mk_of_point k (s.points i) :=
by { ext, simp [face_points] }
/-- The set of points of a face. -/
@[simp] lemma range_face_points {n : ℕ} (s : simplex k P n) {fs : finset (fin (n + 1))}
{m : ℕ} (h : fs.card = m + 1) : set.range (s.face h).points = s.points '' ↑fs :=
by rw [face_points', set.range_comp, finset.range_order_emb_of_fin]
end simplex
end affine
namespace affine
namespace simplex
variables {k : Type*} {V : Type*} {P : Type*} [division_ring k]
[add_comm_group V] [module k V] [affine_space V P]
include V
/-- The centroid of a face of a simplex as the centroid of a subset of
the points. -/
@[simp] lemma face_centroid_eq_centroid {n : ℕ} (s : simplex k P n) {fs : finset (fin (n + 1))}
{m : ℕ} (h : fs.card = m + 1) :
finset.univ.centroid k (s.face h).points = fs.centroid k s.points :=
begin
convert (finset.univ.centroid_map k (fs.order_emb_of_fin h).to_embedding s.points).symm,
rw [← finset.coe_inj, finset.coe_map, finset.coe_univ, set.image_univ],
simp
end
/-- Over a characteristic-zero division ring, the centroids given by
two subsets of the points of a simplex are equal if and only if those
faces are given by the same subset of points. -/
@[simp] lemma centroid_eq_iff [char_zero k] {n : ℕ} (s : simplex k P n)
{fs₁ fs₂ : finset (fin (n + 1))} {m₁ m₂ : ℕ} (h₁ : fs₁.card = m₁ + 1) (h₂ : fs₂.card = m₂ + 1) :
fs₁.centroid k s.points = fs₂.centroid k s.points ↔ fs₁ = fs₂ :=
begin
split,
{ intro h,
rw [finset.centroid_eq_affine_combination_fintype,
finset.centroid_eq_affine_combination_fintype] at h,
have ha := (affine_independent_iff_indicator_eq_of_affine_combination_eq k s.points).1
s.independent _ _ _ _ (fs₁.sum_centroid_weights_indicator_eq_one_of_card_eq_add_one k h₁)
(fs₂.sum_centroid_weights_indicator_eq_one_of_card_eq_add_one k h₂) h,
simp_rw [finset.coe_univ, set.indicator_univ, function.funext_iff,
finset.centroid_weights_indicator_def, finset.centroid_weights, h₁, h₂] at ha,
ext i,
replace ha := ha i,
split,
all_goals
{ intro hi,
by_contradiction hni,
simp [hi, hni] at ha,
norm_cast at ha } },
{ intro h,
have hm : m₁ = m₂,
{ subst h,
simpa [h₁] using h₂ },
subst hm,
congr,
exact h }
end
/-- Over a characteristic-zero division ring, the centroids of two
faces of a simplex are equal if and only if those faces are given by
the same subset of points. -/
lemma face_centroid_eq_iff [char_zero k] {n : ℕ} (s : simplex k P n)
{fs₁ fs₂ : finset (fin (n + 1))} {m₁ m₂ : ℕ} (h₁ : fs₁.card = m₁ + 1) (h₂ : fs₂.card = m₂ + 1) :
finset.univ.centroid k (s.face h₁).points = finset.univ.centroid k (s.face h₂).points ↔
fs₁ = fs₂ :=
begin
rw [face_centroid_eq_centroid, face_centroid_eq_centroid],
exact s.centroid_eq_iff h₁ h₂
end
/-- Two simplices with the same points have the same centroid. -/
lemma centroid_eq_of_range_eq {n : ℕ} {s₁ s₂ : simplex k P n}
(h : set.range s₁.points = set.range s₂.points) :
finset.univ.centroid k s₁.points = finset.univ.centroid k s₂.points :=
begin
rw [←set.image_univ, ←set.image_univ, ←finset.coe_univ] at h,
exact finset.univ.centroid_eq_of_inj_on_of_image_eq k _
(λ _ _ _ _ he, affine_independent.injective s₁.independent he)
(λ _ _ _ _ he, affine_independent.injective s₂.independent he) h
end
end simplex
end affine
|
26656013b0a019efc6855cde4867ac620daf85ad
|
958488bc7f3c2044206e0358e56d7690b6ae696c
|
/lean/Func.lean
|
432f172ebed81a58a887db7f41e3247ff046ca17
|
[] |
no_license
|
possientis/Prog
|
a08eec1c1b121c2fd6c70a8ae89e2fbef952adb4
|
d4b3debc37610a88e0dac3ac5914903604fd1d1f
|
refs/heads/master
| 1,692,263,717,723
| 1,691,757,179,000
| 1,691,757,179,000
| 40,361,602
| 3
| 0
| null | 1,679,896,438,000
| 1,438,953,859,000
|
Coq
|
UTF-8
|
Lean
| false
| false
| 387
|
lean
|
def compose (α β γ : Type) (g : β → γ) (f : α → β) (x : α) : γ := g (f x)
def twice (α : Type) (f : α → α) (x : α) : α := f (f x)
def thrice (α : Type) (f : α → α) (x : α) : α := f ( f (f x))
variables (α β γ : Type)
def compose' (g : β → γ) (f : α → β) (x : α) : γ := g (f x)
#check compose
#check compose'
#print compose
#print compose'
|
201cc9594e78b863a0eede9c09d501164aed5339
|
8cae430f0a71442d02dbb1cbb14073b31048e4b0
|
/src/data/finset/sups.lean
|
0c2c69a05642722faba960c87bb4075e8c87f51a
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/mathlib
|
56a2cadd17ac88caf4ece0a775932fa26327ba0e
|
442a83d738cb208d3600056c489be16900ba701d
|
refs/heads/master
| 1,693,584,102,358
| 1,693,471,902,000
| 1,693,471,902,000
| 97,922,418
| 1,595
| 352
|
Apache-2.0
| 1,694,693,445,000
| 1,500,624,130,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 13,908
|
lean
|
/-
Copyright (c) 2022 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import data.finset.n_ary
import data.set.sups
/-!
# Set family operations
> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
> Any changes to this file require a corresponding PR to mathlib4.
This file defines a few binary operations on `finset α` for use in set family combinatorics.
## Main declarations
* `s ⊻ t`: Finset of elements of the form `a ⊔ b` where `a ∈ s`, `b ∈ t`.
* `s ⊼ t`: Finset of elements of the form `a ⊓ b` where `a ∈ s`, `b ∈ t`.
* `finset.disj_sups s t`: Finset of elements of the form `a ⊔ b` where `a ∈ s`, `b ∈ t` and `a`
and `b` are disjoint.
## Notation
We define the following notation in locale `finset_family`:
* `s ⊻ t`
* `s ⊼ t`
* `s ○ t` for `finset.disj_sups s t`
## References
[B. Bollobás, *Combinatorics*][bollobas1986]
-/
open function
open_locale set_family
variables {α : Type*} [decidable_eq α]
namespace finset
section sups
variables [semilattice_sup α] (s s₁ s₂ t t₁ t₂ u v : finset α)
/-- `s ⊻ t` is the finset of elements of the form `a ⊔ b` where `a ∈ s`, `b ∈ t`. -/
protected def has_sups : has_sups (finset α) := ⟨image₂ (⊔)⟩
localized "attribute [instance] finset.has_sups" in finset_family
variables {s t} {a b c : α}
@[simp] lemma mem_sups : c ∈ s ⊻ t ↔ ∃ (a ∈ s) (b ∈ t), a ⊔ b = c := by simp [(⊻)]
variables (s t)
@[simp, norm_cast] lemma coe_sups : (↑(s ⊻ t) : set α) = s ⊻ t := coe_image₂ _ _ _
lemma card_sups_le : (s ⊻ t).card ≤ s.card * t.card := card_image₂_le _ _ _
lemma card_sups_iff :
(s ⊻ t).card = s.card * t.card ↔ (s ×ˢ t : set (α × α)).inj_on (λ x, x.1 ⊔ x.2) :=
card_image₂_iff
variables {s s₁ s₂ t t₁ t₂ u}
lemma sup_mem_sups : a ∈ s → b ∈ t → a ⊔ b ∈ s ⊻ t := mem_image₂_of_mem
lemma sups_subset : s₁ ⊆ s₂ → t₁ ⊆ t₂ → s₁ ⊻ t₁ ⊆ s₂ ⊻ t₂ := image₂_subset
lemma sups_subset_left : t₁ ⊆ t₂ → s ⊻ t₁ ⊆ s ⊻ t₂ := image₂_subset_left
lemma sups_subset_right : s₁ ⊆ s₂ → s₁ ⊻ t ⊆ s₂ ⊻ t := image₂_subset_right
lemma image_subset_sups_left : b ∈ t → s.image (λ a, a ⊔ b) ⊆ s ⊻ t := image_subset_image₂_left
lemma image_subset_sups_right : a ∈ s → t.image ((⊔) a) ⊆ s ⊻ t := image_subset_image₂_right
lemma forall_sups_iff {p : α → Prop} : (∀ c ∈ s ⊻ t, p c) ↔ ∀ (a ∈ s) (b ∈ t), p (a ⊔ b) :=
forall_image₂_iff
@[simp] lemma sups_subset_iff : s ⊻ t ⊆ u ↔ ∀ (a ∈ s) (b ∈ t), a ⊔ b ∈ u := image₂_subset_iff
@[simp] lemma sups_nonempty : (s ⊻ t).nonempty ↔ s.nonempty ∧ t.nonempty := image₂_nonempty_iff
protected lemma nonempty.sups : s.nonempty → t.nonempty → (s ⊻ t).nonempty := nonempty.image₂
lemma nonempty.of_sups_left : (s ⊻ t).nonempty → s.nonempty := nonempty.of_image₂_left
lemma nonempty.of_sups_right : (s ⊻ t).nonempty → t.nonempty := nonempty.of_image₂_right
@[simp] lemma empty_sups : ∅ ⊻ t = ∅ := image₂_empty_left
@[simp] lemma sups_empty : s ⊻ ∅ = ∅ := image₂_empty_right
@[simp] lemma sups_eq_empty : s ⊻ t = ∅ ↔ s = ∅ ∨ t = ∅ := image₂_eq_empty_iff
@[simp] lemma singleton_sups : {a} ⊻ t = t.image (λ b, a ⊔ b) := image₂_singleton_left
@[simp] lemma sups_singleton : s ⊻ {b} = s.image (λ a, a ⊔ b) := image₂_singleton_right
lemma singleton_sups_singleton : ({a} ⊻ {b} : finset α) = {a ⊔ b} := image₂_singleton
lemma sups_union_left : (s₁ ∪ s₂) ⊻ t = s₁ ⊻ t ∪ s₂ ⊻ t := image₂_union_left
lemma sups_union_right : s ⊻ (t₁ ∪ t₂) = s ⊻ t₁ ∪ s ⊻ t₂ := image₂_union_right
lemma sups_inter_subset_left : (s₁ ∩ s₂) ⊻ t ⊆ s₁ ⊻ t ∩ s₂ ⊻ t := image₂_inter_subset_left
lemma sups_inter_subset_right : s ⊻ (t₁ ∩ t₂) ⊆ s ⊻ t₁ ∩ s ⊻ t₂ := image₂_inter_subset_right
lemma subset_sups {s t : set α} :
↑u ⊆ s ⊻ t → ∃ s' t' : finset α, ↑s' ⊆ s ∧ ↑t' ⊆ t ∧ u ⊆ s' ⊻ t' :=
subset_image₂
variables (s t u v)
lemma bUnion_image_sup_left : s.bUnion (λ a, t.image $ (⊔) a) = s ⊻ t := bUnion_image_left
lemma bUnion_image_sup_right : t.bUnion (λ b, s.image $ λ a, a ⊔ b) = s ⊻ t := bUnion_image_right
@[simp] lemma image_sup_product (s t : finset α) : (s ×ˢ t).image (uncurry (⊔)) = s ⊻ t :=
image_uncurry_product _ _ _
lemma sups_assoc : (s ⊻ t) ⊻ u = s ⊻ (t ⊻ u) := image₂_assoc $ λ _ _ _, sup_assoc
lemma sups_comm : s ⊻ t = t ⊻ s := image₂_comm $ λ _ _, sup_comm
lemma sups_left_comm : s ⊻ (t ⊻ u) = t ⊻ (s ⊻ u) := image₂_left_comm sup_left_comm
lemma sups_right_comm : (s ⊻ t) ⊻ u = (s ⊻ u) ⊻ t := image₂_right_comm sup_right_comm
lemma sups_sups_sups_comm : (s ⊻ t) ⊻ (u ⊻ v) = (s ⊻ u) ⊻ (t ⊻ v) :=
image₂_image₂_image₂_comm sup_sup_sup_comm
end sups
section infs
variables [semilattice_inf α] (s s₁ s₂ t t₁ t₂ u v : finset α)
/-- `s ⊼ t` is the finset of elements of the form `a ⊓ b` where `a ∈ s`, `b ∈ t`. -/
protected def has_infs : has_infs (finset α) := ⟨image₂ (⊓)⟩
localized "attribute [instance] finset.has_infs" in finset_family
variables {s t} {a b c : α}
@[simp] lemma mem_infs : c ∈ s ⊼ t ↔ ∃ (a ∈ s) (b ∈ t), a ⊓ b = c := by simp [(⊼)]
variables (s t)
@[simp, norm_cast] lemma coe_infs : (↑(s ⊼ t) : set α) = s ⊼ t := coe_image₂ _ _ _
lemma card_infs_le : (s ⊼ t).card ≤ s.card * t.card := card_image₂_le _ _ _
lemma card_infs_iff :
(s ⊼ t).card = s.card * t.card ↔ (s ×ˢ t : set (α × α)).inj_on (λ x, x.1 ⊓ x.2) :=
card_image₂_iff
variables {s s₁ s₂ t t₁ t₂ u}
lemma inf_mem_infs : a ∈ s → b ∈ t → a ⊓ b ∈ s ⊼ t := mem_image₂_of_mem
lemma infs_subset : s₁ ⊆ s₂ → t₁ ⊆ t₂ → s₁ ⊼ t₁ ⊆ s₂ ⊼ t₂ := image₂_subset
lemma infs_subset_left : t₁ ⊆ t₂ → s ⊼ t₁ ⊆ s ⊼ t₂ := image₂_subset_left
lemma infs_subset_right : s₁ ⊆ s₂ → s₁ ⊼ t ⊆ s₂ ⊼ t := image₂_subset_right
lemma image_subset_infs_left : b ∈ t → s.image (λ a, a ⊓ b) ⊆ s ⊼ t := image_subset_image₂_left
lemma image_subset_infs_right : a ∈ s → t.image ((⊓) a) ⊆ s ⊼ t := image_subset_image₂_right
lemma forall_infs_iff {p : α → Prop} : (∀ c ∈ s ⊼ t, p c) ↔ ∀ (a ∈ s) (b ∈ t), p (a ⊓ b) :=
forall_image₂_iff
@[simp] lemma infs_subset_iff : s ⊼ t ⊆ u ↔ ∀ (a ∈ s) (b ∈ t), a ⊓ b ∈ u := image₂_subset_iff
@[simp] lemma infs_nonempty : (s ⊼ t).nonempty ↔ s.nonempty ∧ t.nonempty := image₂_nonempty_iff
protected lemma nonempty.infs : s.nonempty → t.nonempty → (s ⊼ t).nonempty := nonempty.image₂
lemma nonempty.of_infs_left : (s ⊼ t).nonempty → s.nonempty := nonempty.of_image₂_left
lemma nonempty.of_infs_right : (s ⊼ t).nonempty → t.nonempty := nonempty.of_image₂_right
@[simp] lemma empty_infs : ∅ ⊼ t = ∅ := image₂_empty_left
@[simp] lemma infs_empty : s ⊼ ∅ = ∅ := image₂_empty_right
@[simp] lemma infs_eq_empty : s ⊼ t = ∅ ↔ s = ∅ ∨ t = ∅ := image₂_eq_empty_iff
@[simp] lemma singleton_infs : {a} ⊼ t = t.image (λ b, a ⊓ b) := image₂_singleton_left
@[simp] lemma infs_singleton : s ⊼ {b} = s.image (λ a, a ⊓ b) := image₂_singleton_right
lemma singleton_infs_singleton : ({a} ⊼ {b} : finset α) = {a ⊓ b} := image₂_singleton
lemma infs_union_left : (s₁ ∪ s₂) ⊼ t = s₁ ⊼ t ∪ s₂ ⊼ t := image₂_union_left
lemma infs_union_right : s ⊼ (t₁ ∪ t₂) = s ⊼ t₁ ∪ s ⊼ t₂ := image₂_union_right
lemma infs_inter_subset_left : (s₁ ∩ s₂) ⊼ t ⊆ s₁ ⊼ t ∩ s₂ ⊼ t := image₂_inter_subset_left
lemma infs_inter_subset_right : s ⊼ (t₁ ∩ t₂) ⊆ s ⊼ t₁ ∩ s ⊼ t₂ := image₂_inter_subset_right
lemma subset_infs {s t : set α} :
↑u ⊆ s ⊼ t → ∃ s' t' : finset α, ↑s' ⊆ s ∧ ↑t' ⊆ t ∧ u ⊆ s' ⊼ t' :=
subset_image₂
variables (s t u v)
lemma bUnion_image_inf_left : s.bUnion (λ a, t.image $ (⊓) a) = s ⊼ t := bUnion_image_left
lemma bUnion_image_inf_right : t.bUnion (λ b, s.image $ λ a, a ⊓ b) = s ⊼ t := bUnion_image_right
@[simp] lemma image_inf_product (s t : finset α) : (s ×ˢ t).image (uncurry (⊓)) = s ⊼ t :=
image_uncurry_product _ _ _
lemma infs_assoc : (s ⊼ t) ⊼ u = s ⊼ (t ⊼ u) := image₂_assoc $ λ _ _ _, inf_assoc
lemma infs_comm : s ⊼ t = t ⊼ s := image₂_comm $ λ _ _, inf_comm
lemma infs_left_comm : s ⊼ (t ⊼ u) = t ⊼ (s ⊼ u) := image₂_left_comm inf_left_comm
lemma infs_right_comm : (s ⊼ t) ⊼ u = (s ⊼ u) ⊼ t := image₂_right_comm inf_right_comm
lemma infs_infs_infs_comm : (s ⊼ t) ⊼ (u ⊼ v) = (s ⊼ u) ⊼ (t ⊼ v) :=
image₂_image₂_image₂_comm inf_inf_inf_comm
end infs
open_locale finset_family
section distrib_lattice
variables [distrib_lattice α] (s t u : finset α)
lemma sups_infs_subset_left : s ⊻ (t ⊼ u) ⊆ (s ⊻ t) ⊼ (s ⊻ u) :=
image₂_distrib_subset_left $ λ _ _ _, sup_inf_left
lemma sups_infs_subset_right : (t ⊼ u) ⊻ s ⊆ (t ⊻ s) ⊼ (u ⊻ s) :=
image₂_distrib_subset_right $ λ _ _ _, sup_inf_right
lemma infs_sups_subset_left : s ⊼ (t ⊻ u) ⊆ (s ⊼ t) ⊻ (s ⊼ u) :=
image₂_distrib_subset_left $ λ _ _ _, inf_sup_left
lemma infs_sups_subset_right : (t ⊻ u) ⊼ s ⊆ (t ⊼ s) ⊻ (u ⊼ s) :=
image₂_distrib_subset_right $ λ _ _ _, inf_sup_right
end distrib_lattice
section disj_sups
variables [semilattice_sup α] [order_bot α] [@decidable_rel α disjoint]
(s s₁ s₂ t t₁ t₂ u : finset α)
/-- The finset of elements of the form `a ⊔ b` where `a ∈ s`, `b ∈ t` and `a` and `b` are disjoint.
-/
def disj_sups : finset α :=
((s ×ˢ t).filter $ λ ab : α × α, disjoint ab.1 ab.2).image $ λ ab, ab.1 ⊔ ab.2
localized "infix (name := finset.disj_sups) ` ○ `:74 := finset.disj_sups" in finset_family
variables {s t u} {a b c : α}
@[simp] lemma mem_disj_sups : c ∈ s ○ t ↔ ∃ (a ∈ s) (b ∈ t), disjoint a b ∧ a ⊔ b = c :=
by simp [disj_sups, and_assoc]
lemma disj_sups_subset_sups : s ○ t ⊆ s ⊻ t :=
begin
simp_rw [subset_iff, mem_sups, mem_disj_sups],
exact λ c ⟨a, b, ha, hb, h, hc⟩, ⟨a, b, ha, hb, hc⟩,
end
variables (s t)
lemma card_disj_sups_le : (s ○ t).card ≤ s.card * t.card :=
(card_le_of_subset disj_sups_subset_sups).trans $ card_sups_le _ _
variables {s s₁ s₂ t t₁ t₂ u}
lemma disj_sups_subset (hs : s₁ ⊆ s₂) (ht : t₁ ⊆ t₂) : s₁ ○ t₁ ⊆ s₂ ○ t₂ :=
image_subset_image $ filter_subset_filter _ $ product_subset_product hs ht
lemma disj_sups_subset_left (ht : t₁ ⊆ t₂) : s ○ t₁ ⊆ s ○ t₂ := disj_sups_subset subset.rfl ht
lemma disj_sups_subset_right (hs : s₁ ⊆ s₂) : s₁ ○ t ⊆ s₂ ○ t := disj_sups_subset hs subset.rfl
lemma forall_disj_sups_iff {p : α → Prop} :
(∀ c ∈ s ○ t, p c) ↔ ∀ (a ∈ s) (b ∈ t), disjoint a b → p (a ⊔ b) :=
begin
simp_rw mem_disj_sups,
refine ⟨λ h a ha b hb hab, h _ ⟨_, ha, _, hb, hab, rfl⟩, _⟩,
rintro h _ ⟨a, ha, b, hb, hab, rfl⟩,
exact h _ ha _ hb hab,
end
@[simp] lemma disj_sups_subset_iff : s ○ t ⊆ u ↔ ∀ (a ∈ s) (b ∈ t), disjoint a b → a ⊔ b ∈ u :=
forall_disj_sups_iff
lemma nonempty.of_disj_sups_left : (s ○ t).nonempty → s.nonempty :=
by { simp_rw [finset.nonempty, mem_disj_sups], exact λ ⟨_, a, ha, _⟩, ⟨a, ha⟩ }
lemma nonempty.of_disj_sups_right : (s ○ t).nonempty → t.nonempty :=
by { simp_rw [finset.nonempty, mem_disj_sups], exact λ ⟨_, _, _, b, hb, _⟩, ⟨b, hb⟩ }
@[simp] lemma disj_sups_empty_left : ∅ ○ t = ∅ := by simp [disj_sups]
@[simp] lemma disj_sups_empty_right : s ○ ∅ = ∅ := by simp [disj_sups]
lemma disj_sups_singleton : ({a} ○ {b} : finset α) = if disjoint a b then {a ⊔ b} else ∅ :=
by split_ifs; simp [disj_sups, filter_singleton, h]
lemma disj_sups_union_left : (s₁ ∪ s₂) ○ t = s₁ ○ t ∪ s₂ ○ t :=
by simp [disj_sups, filter_union, image_union]
lemma disj_sups_union_right : s ○ (t₁ ∪ t₂) = s ○ t₁ ∪ s ○ t₂ :=
by simp [disj_sups, filter_union, image_union]
lemma disj_sups_inter_subset_left : (s₁ ∩ s₂) ○ t ⊆ s₁ ○ t ∩ s₂ ○ t :=
by simpa only [disj_sups, inter_product, filter_inter_distrib] using image_inter_subset _ _ _
lemma disj_sups_inter_subset_right : s ○ (t₁ ∩ t₂) ⊆ s ○ t₁ ∩ s ○ t₂ :=
by simpa only [disj_sups, product_inter, filter_inter_distrib] using image_inter_subset _ _ _
variables (s t)
lemma disj_sups_comm : s ○ t = t ○ s :=
by { ext, rw [mem_disj_sups, exists₂_comm], simp [sup_comm, disjoint.comm] }
end disj_sups
open_locale finset_family
section distrib_lattice
variables [distrib_lattice α] [order_bot α] [@decidable_rel α disjoint] (s t u v : finset α)
lemma disj_sups_assoc : ∀ s t u : finset α, (s ○ t) ○ u = s ○ (t ○ u) :=
begin
refine associative_of_commutative_of_le disj_sups_comm _,
simp only [le_eq_subset, disj_sups_subset_iff, mem_disj_sups],
rintro s t u _ ⟨a, ha, b, hb, hab, rfl⟩ c hc habc,
rw disjoint_sup_left at habc,
exact ⟨a, ha, _, ⟨b, hb, c, hc, habc.2, rfl⟩, hab.sup_right habc.1, sup_assoc.symm⟩,
end
lemma disj_sups_left_comm : s ○ (t ○ u) = t ○ (s ○ u) :=
by simp_rw [←disj_sups_assoc, disj_sups_comm s]
lemma disj_sups_right_comm : (s ○ t) ○ u = (s ○ u) ○ t :=
by simp_rw [disj_sups_assoc, disj_sups_comm]
lemma disj_sups_disj_sups_disj_sups_comm : (s ○ t) ○ (u ○ v) = (s ○ u) ○ (t ○ v) :=
by simp_rw [←disj_sups_assoc, disj_sups_right_comm]
end distrib_lattice
end finset
|
ba42e290d0b428f850dfd295513b95f6301b4469
|
367134ba5a65885e863bdc4507601606690974c1
|
/src/data/set/function.lean
|
d18225edce0d947cbf2d19060ee9c8cff96da78c
|
[
"Apache-2.0"
] |
permissive
|
kodyvajjha/mathlib
|
9bead00e90f68269a313f45f5561766cfd8d5cad
|
b98af5dd79e13a38d84438b850a2e8858ec21284
|
refs/heads/master
| 1,624,350,366,310
| 1,615,563,062,000
| 1,615,563,062,000
| 162,666,963
| 0
| 0
|
Apache-2.0
| 1,545,367,651,000
| 1,545,367,651,000
| null |
UTF-8
|
Lean
| false
| false
| 34,211
|
lean
|
/-
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Jeremy Avigad, Andrew Zipperer, Haitao Zhang, Minchao Wu, Yury Kudryashov
-/
import data.set.basic
import logic.function.conjugate
/-!
# Functions over sets
## Main definitions
### Predicate
* `eq_on f₁ f₂ s` : functions `f₁` and `f₂` are equal at every point of `s`;
* `maps_to f s t` : `f` sends every point of `s` to a point of `t`;
* `inj_on f s` : restriction of `f` to `s` is injective;
* `surj_on f s t` : every point in `s` has a preimage in `s`;
* `bij_on f s t` : `f` is a bijection between `s` and `t`;
* `left_inv_on f' f s` : for every `x ∈ s` we have `f' (f x) = x`;
* `right_inv_on f' f t` : for every `y ∈ t` we have `f (f' y) = y`;
* `inv_on f' f s t` : `f'` is a two-side inverse of `f` on `s` and `t`, i.e.
we have `left_inv_on f' f s` and `right_inv_on f' f t`.
### Functions
* `restrict f s` : restrict the domain of `f` to the set `s`;
* `cod_restrict f s h` : given `h : ∀ x, f x ∈ s`, restrict the codomain of `f` to the set `s`;
* `maps_to.restrict f s t h`: given `h : maps_to f s t`, restrict the domain of `f` to `s`
and the codomain to `t`.
-/
universes u v w x y
variables {α : Type u} {β : Type v} {γ : Type w} {ι : Sort x}
open function
namespace set
/-! ### Restrict -/
/-- Restrict domain of a function `f` to a set `s`. Same as `subtype.restrict` but this version
takes an argument `↥s` instead of `subtype s`. -/
def restrict (f : α → β) (s : set α) : s → β := λ x, f x
lemma restrict_eq (f : α → β) (s : set α) : s.restrict f = f ∘ coe := rfl
@[simp] lemma restrict_apply (f : α → β) (s : set α) (x : s) : restrict f s x = f x := rfl
@[simp] lemma range_restrict (f : α → β) (s : set α) : set.range (restrict f s) = f '' s :=
(range_comp _ _).trans $ congr_arg (('') f) subtype.range_coe
lemma image_restrict (f : α → β) (s t : set α) : s.restrict f '' (coe ⁻¹' t) = f '' (t ∩ s) :=
by rw [restrict, image_comp, image_preimage_eq_inter_range, subtype.range_coe]
/-- Restrict codomain of a function `f` to a set `s`. Same as `subtype.coind` but this version
has codomain `↥s` instead of `subtype s`. -/
def cod_restrict (f : α → β) (s : set β) (h : ∀ x, f x ∈ s) : α → s :=
λ x, ⟨f x, h x⟩
@[simp] lemma coe_cod_restrict_apply (f : α → β) (s : set β) (h : ∀ x, f x ∈ s) (x : α) :
(cod_restrict f s h x : β) = f x :=
rfl
variables {s s₁ s₂ : set α} {t t₁ t₂ : set β} {p : set γ} {f f₁ f₂ f₃ : α → β} {g : β → γ}
{f' f₁' f₂' : β → α} {g' : γ → β}
/-! ### Equality on a set -/
/-- Two functions `f₁ f₂ : α → β` are equal on `s`
if `f₁ x = f₂ x` for all `x ∈ a`. -/
@[reducible] def eq_on (f₁ f₂ : α → β) (s : set α) : Prop :=
∀ ⦃x⦄, x ∈ s → f₁ x = f₂ x
@[symm] lemma eq_on.symm (h : eq_on f₁ f₂ s) : eq_on f₂ f₁ s :=
λ x hx, (h hx).symm
lemma eq_on_comm : eq_on f₁ f₂ s ↔ eq_on f₂ f₁ s :=
⟨eq_on.symm, eq_on.symm⟩
@[refl] lemma eq_on_refl (f : α → β) (s : set α) : eq_on f f s :=
λ _ _, rfl
@[trans] lemma eq_on.trans (h₁ : eq_on f₁ f₂ s) (h₂ : eq_on f₂ f₃ s) : eq_on f₁ f₃ s :=
λ x hx, (h₁ hx).trans (h₂ hx)
theorem eq_on.image_eq (heq : eq_on f₁ f₂ s) : f₁ '' s = f₂ '' s :=
image_congr heq
theorem eq_on.inter_preimage_eq (heq : eq_on f₁ f₂ s) (t : set β) : s ∩ f₁ ⁻¹' t = s ∩ f₂ ⁻¹' t :=
ext $ λ x, and.congr_right_iff.2 $ λ hx, by rw [mem_preimage, mem_preimage, heq hx]
lemma eq_on.mono (hs : s₁ ⊆ s₂) (hf : eq_on f₁ f₂ s₂) : eq_on f₁ f₂ s₁ :=
λ x hx, hf (hs hx)
lemma comp_eq_of_eq_on_range {ι : Sort*} {f : ι → α} {g₁ g₂ : α → β} (h : eq_on g₁ g₂ (range f)) :
g₁ ∘ f = g₂ ∘ f :=
funext $ λ x, h $ mem_range_self _
/-! ### maps to -/
/-- `maps_to f a b` means that the image of `a` is contained in `b`. -/
@[reducible] def maps_to (f : α → β) (s : set α) (t : set β) : Prop := ∀ ⦃x⦄, x ∈ s → f x ∈ t
/-- Given a map `f` sending `s : set α` into `t : set β`, restrict domain of `f` to `s`
and the codomain to `t`. Same as `subtype.map`. -/
def maps_to.restrict (f : α → β) (s : set α) (t : set β) (h : maps_to f s t) :
s → t :=
subtype.map f h
@[simp] lemma maps_to.coe_restrict_apply (h : maps_to f s t) (x : s) :
(h.restrict f s t x : β) = f x := rfl
lemma maps_to_iff_exists_map_subtype : maps_to f s t ↔ ∃ g : s → t, ∀ x : s, f x = g x :=
⟨λ h, ⟨h.restrict f s t, λ _, rfl⟩,
λ ⟨g, hg⟩ x hx, by { erw [hg ⟨x, hx⟩], apply subtype.coe_prop }⟩
theorem maps_to' : maps_to f s t ↔ f '' s ⊆ t :=
image_subset_iff.symm
theorem maps_to_empty (f : α → β) (t : set β) : maps_to f ∅ t := empty_subset _
theorem maps_to.image_subset (h : maps_to f s t) : f '' s ⊆ t :=
maps_to'.1 h
theorem maps_to.congr (h₁ : maps_to f₁ s t) (h : eq_on f₁ f₂ s) :
maps_to f₂ s t :=
λ x hx, h hx ▸ h₁ hx
theorem eq_on.maps_to_iff (H : eq_on f₁ f₂ s) : maps_to f₁ s t ↔ maps_to f₂ s t :=
⟨λ h, h.congr H, λ h, h.congr H.symm⟩
theorem maps_to.comp (h₁ : maps_to g t p) (h₂ : maps_to f s t) : maps_to (g ∘ f) s p :=
λ x h, h₁ (h₂ h)
theorem maps_to_id (s : set α) : maps_to id s s := λ x, id
theorem maps_to.iterate {f : α → α} {s : set α} (h : maps_to f s s) :
∀ n, maps_to (f^[n]) s s
| 0 := λ _, id
| (n+1) := (maps_to.iterate n).comp h
theorem maps_to.iterate_restrict {f : α → α} {s : set α} (h : maps_to f s s) (n : ℕ) :
(h.restrict f s s^[n]) = (h.iterate n).restrict _ _ _ :=
begin
funext x,
rw [subtype.ext_iff, maps_to.coe_restrict_apply],
induction n with n ihn generalizing x,
{ refl },
{ simp [nat.iterate, ihn] }
end
theorem maps_to.mono (hs : s₂ ⊆ s₁) (ht : t₁ ⊆ t₂) (hf : maps_to f s₁ t₁) :
maps_to f s₂ t₂ :=
λ x hx, ht (hf $ hs hx)
theorem maps_to.union_union (h₁ : maps_to f s₁ t₁) (h₂ : maps_to f s₂ t₂) :
maps_to f (s₁ ∪ s₂) (t₁ ∪ t₂) :=
λ x hx, hx.elim (λ hx, or.inl $ h₁ hx) (λ hx, or.inr $ h₂ hx)
theorem maps_to.union (h₁ : maps_to f s₁ t) (h₂ : maps_to f s₂ t) :
maps_to f (s₁ ∪ s₂) t :=
union_self t ▸ h₁.union_union h₂
@[simp] theorem maps_to_union : maps_to f (s₁ ∪ s₂) t ↔ maps_to f s₁ t ∧ maps_to f s₂ t :=
⟨λ h, ⟨h.mono (subset_union_left s₁ s₂) (subset.refl t),
h.mono (subset_union_right s₁ s₂) (subset.refl t)⟩, λ h, h.1.union h.2⟩
theorem maps_to.inter (h₁ : maps_to f s t₁) (h₂ : maps_to f s t₂) :
maps_to f s (t₁ ∩ t₂) :=
λ x hx, ⟨h₁ hx, h₂ hx⟩
theorem maps_to.inter_inter (h₁ : maps_to f s₁ t₁) (h₂ : maps_to f s₂ t₂) :
maps_to f (s₁ ∩ s₂) (t₁ ∩ t₂) :=
λ x hx, ⟨h₁ hx.1, h₂ hx.2⟩
@[simp] theorem maps_to_inter : maps_to f s (t₁ ∩ t₂) ↔ maps_to f s t₁ ∧ maps_to f s t₂ :=
⟨λ h, ⟨h.mono (subset.refl s) (inter_subset_left t₁ t₂),
h.mono (subset.refl s) (inter_subset_right t₁ t₂)⟩, λ h, h.1.inter h.2⟩
theorem maps_to_univ (f : α → β) (s : set α) : maps_to f s univ := λ x h, trivial
theorem maps_to_image (f : α → β) (s : set α) : maps_to f s (f '' s) := by rw maps_to'
theorem maps_to_preimage (f : α → β) (t : set β) : maps_to f (f ⁻¹' t) t := subset.refl _
theorem maps_to_range (f : α → β) (s : set α) : maps_to f s (range f) :=
(maps_to_image f s).mono (subset.refl s) (image_subset_range _ _)
@[simp] lemma maps_image_to (f : α → β) (g : γ → α) (s : set γ) (t : set β) :
maps_to f (g '' s) t ↔ maps_to (f ∘ g) s t :=
⟨λ h c hc, h ⟨c, hc, rfl⟩, λ h d ⟨c, hc⟩, hc.2 ▸ h hc.1⟩
@[simp] lemma maps_univ_to (f : α → β) (s : set β) :
maps_to f univ s ↔ ∀ a, f a ∈ s :=
⟨λ h a, h (mem_univ _), λ h x _, h x⟩
@[simp] lemma maps_range_to (f : α → β) (g : γ → α) (s : set β) :
maps_to f (range g) s ↔ maps_to (f ∘ g) univ s :=
by rw [←image_univ, maps_image_to]
theorem surjective_maps_to_image_restrict (f : α → β) (s : set α) :
surjective ((maps_to_image f s).restrict f s (f '' s)) :=
λ ⟨y, x, hs, hxy⟩, ⟨⟨x, hs⟩, subtype.ext hxy⟩
theorem maps_to.mem_iff (h : maps_to f s t) (hc : maps_to f sᶜ tᶜ) {x} : f x ∈ t ↔ x ∈ s :=
⟨λ ht, by_contra $ λ hs, hc hs ht, λ hx, h hx⟩
/-! ### Injectivity on a set -/
/-- `f` is injective on `a` if the restriction of `f` to `a` is injective. -/
@[reducible] def inj_on (f : α → β) (s : set α) : Prop :=
∀ ⦃x₁ : α⦄, x₁ ∈ s → ∀ ⦃x₂ : α⦄, x₂ ∈ s → f x₁ = f x₂ → x₁ = x₂
theorem inj_on_empty (f : α → β) : inj_on f ∅ :=
λ _ h₁, false.elim h₁
theorem inj_on.eq_iff {x y} (h : inj_on f s) (hx : x ∈ s) (hy : y ∈ s) :
f x = f y ↔ x = y :=
⟨h hx hy, λ h, h ▸ rfl⟩
theorem inj_on.congr (h₁ : inj_on f₁ s) (h : eq_on f₁ f₂ s) :
inj_on f₂ s :=
λ x hx y hy, h hx ▸ h hy ▸ h₁ hx hy
theorem eq_on.inj_on_iff (H : eq_on f₁ f₂ s) : inj_on f₁ s ↔ inj_on f₂ s :=
⟨λ h, h.congr H, λ h, h.congr H.symm⟩
theorem inj_on.mono (h : s₁ ⊆ s₂) (ht : inj_on f s₂) : inj_on f s₁ :=
λ x hx y hy H, ht (h hx) (h hy) H
theorem inj_on_insert {f : α → β} {s : set α} {a : α} (has : a ∉ s) :
set.inj_on f (insert a s) ↔ set.inj_on f s ∧ f a ∉ f '' s :=
⟨λ hf, ⟨hf.mono $ subset_insert a s,
λ ⟨x, hxs, hx⟩, has $ mem_of_eq_of_mem (hf (or.inl rfl) (or.inr hxs) hx.symm) hxs⟩,
λ ⟨h1, h2⟩ x hx y hy hfxy, or.cases_on hx
(λ hxa : x = a, or.cases_on hy
(λ hya : y = a, hxa.trans hya.symm)
(λ hys : y ∈ s, h2.elim ⟨y, hys, hxa ▸ hfxy.symm⟩))
(λ hxs : x ∈ s, or.cases_on hy
(λ hya : y = a, h2.elim ⟨x, hxs, hya ▸ hfxy⟩)
(λ hys : y ∈ s, h1 hxs hys hfxy))⟩
lemma injective_iff_inj_on_univ : injective f ↔ inj_on f univ :=
⟨λ h x hx y hy hxy, h hxy, λ h _ _ heq, h trivial trivial heq⟩
lemma inj_on_of_injective (h : injective f) (s : set α) : inj_on f s :=
λ x hx y hy hxy, h hxy
alias inj_on_of_injective ← function.injective.inj_on
theorem inj_on.comp (hg : inj_on g t) (hf: inj_on f s) (h : maps_to f s t) :
inj_on (g ∘ f) s :=
λ x hx y hy heq, hf hx hy $ hg (h hx) (h hy) heq
lemma inj_on_iff_injective : inj_on f s ↔ injective (restrict f s) :=
⟨λ H a b h, subtype.eq $ H a.2 b.2 h,
λ H a as b bs h, congr_arg subtype.val $ @H ⟨a, as⟩ ⟨b, bs⟩ h⟩
lemma inj_on_preimage {B : set (set β)} (hB : B ⊆ powerset (range f)) :
inj_on (preimage f) B :=
λ s hs t ht hst, (preimage_eq_preimage' (hB hs) (hB ht)).1 hst
lemma inj_on.mem_of_mem_image {x} (hf : inj_on f s) (hs : s₁ ⊆ s) (h : x ∈ s) (h₁ : f x ∈ f '' s₁) :
x ∈ s₁ :=
let ⟨x', h', eq⟩ := h₁ in hf (hs h') h eq ▸ h'
lemma inj_on.mem_image_iff {x} (hf : inj_on f s) (hs : s₁ ⊆ s) (hx : x ∈ s) :
f x ∈ f '' s₁ ↔ x ∈ s₁ :=
⟨hf.mem_of_mem_image hs hx, mem_image_of_mem f⟩
lemma inj_on.preimage_image_inter (hf : inj_on f s) (hs : s₁ ⊆ s) :
f ⁻¹' (f '' s₁) ∩ s = s₁ :=
ext $ λ x, ⟨λ ⟨h₁, h₂⟩, hf.mem_of_mem_image hs h₂ h₁, λ h, ⟨mem_image_of_mem _ h, hs h⟩⟩
/-! ### Surjectivity on a set -/
/-- `f` is surjective from `a` to `b` if `b` is contained in the image of `a`. -/
@[reducible] def surj_on (f : α → β) (s : set α) (t : set β) : Prop := t ⊆ f '' s
theorem surj_on.subset_range (h : surj_on f s t) : t ⊆ range f :=
subset.trans h $ image_subset_range f s
lemma surj_on_iff_exists_map_subtype :
surj_on f s t ↔ ∃ (t' : set β) (g : s → t'), t ⊆ t' ∧ surjective g ∧ ∀ x : s, f x = g x :=
⟨λ h, ⟨_, (maps_to_image f s).restrict f s _, h, surjective_maps_to_image_restrict _ _, λ _, rfl⟩,
λ ⟨t', g, htt', hg, hfg⟩ y hy, let ⟨x, hx⟩ := hg ⟨y, htt' hy⟩ in
⟨x, x.2, by rw [hfg, hx, subtype.coe_mk]⟩⟩
theorem surj_on_empty (f : α → β) (s : set α) : surj_on f s ∅ := empty_subset _
theorem surj_on_image (f : α → β) (s : set α) : surj_on f s (f '' s) := subset.rfl
theorem surj_on.comap_nonempty (h : surj_on f s t) (ht : t.nonempty) : s.nonempty :=
(ht.mono h).of_image
theorem surj_on.congr (h : surj_on f₁ s t) (H : eq_on f₁ f₂ s) : surj_on f₂ s t :=
by rwa [surj_on, ← H.image_eq]
theorem eq_on.surj_on_iff (h : eq_on f₁ f₂ s) : surj_on f₁ s t ↔ surj_on f₂ s t :=
⟨λ H, H.congr h, λ H, H.congr h.symm⟩
theorem surj_on.mono (hs : s₁ ⊆ s₂) (ht : t₁ ⊆ t₂) (hf : surj_on f s₁ t₂) : surj_on f s₂ t₁ :=
subset.trans ht $ subset.trans hf $ image_subset _ hs
theorem surj_on.union (h₁ : surj_on f s t₁) (h₂ : surj_on f s t₂) : surj_on f s (t₁ ∪ t₂) :=
λ x hx, hx.elim (λ hx, h₁ hx) (λ hx, h₂ hx)
theorem surj_on.union_union (h₁ : surj_on f s₁ t₁) (h₂ : surj_on f s₂ t₂) :
surj_on f (s₁ ∪ s₂) (t₁ ∪ t₂) :=
(h₁.mono (subset_union_left _ _) (subset.refl _)).union
(h₂.mono (subset_union_right _ _) (subset.refl _))
theorem surj_on.inter_inter (h₁ : surj_on f s₁ t₁) (h₂ : surj_on f s₂ t₂) (h : inj_on f (s₁ ∪ s₂)) :
surj_on f (s₁ ∩ s₂) (t₁ ∩ t₂) :=
begin
intros y hy,
rcases h₁ hy.1 with ⟨x₁, hx₁, rfl⟩,
rcases h₂ hy.2 with ⟨x₂, hx₂, heq⟩,
have : x₁ = x₂, from h (or.inl hx₁) (or.inr hx₂) heq.symm,
subst x₂,
exact mem_image_of_mem f ⟨hx₁, hx₂⟩
end
theorem surj_on.inter (h₁ : surj_on f s₁ t) (h₂ : surj_on f s₂ t) (h : inj_on f (s₁ ∪ s₂)) :
surj_on f (s₁ ∩ s₂) t :=
inter_self t ▸ h₁.inter_inter h₂ h
theorem surj_on.comp (hg : surj_on g t p) (hf : surj_on f s t) : surj_on (g ∘ f) s p :=
subset.trans hg $ subset.trans (image_subset g hf) $ (image_comp g f s) ▸ subset.refl _
lemma surjective_iff_surj_on_univ : surjective f ↔ surj_on f univ univ :=
by simp [surjective, surj_on, subset_def]
lemma surj_on_iff_surjective : surj_on f s univ ↔ surjective (restrict f s) :=
⟨λ H b, let ⟨a, as, e⟩ := @H b trivial in ⟨⟨a, as⟩, e⟩,
λ H b _, let ⟨⟨a, as⟩, e⟩ := H b in ⟨a, as, e⟩⟩
lemma surj_on.image_eq_of_maps_to (h₁ : surj_on f s t) (h₂ : maps_to f s t) :
f '' s = t :=
eq_of_subset_of_subset h₂.image_subset h₁
lemma surj_on.maps_to_compl (h : surj_on f s t) (h' : injective f) : maps_to f sᶜ tᶜ :=
λ x hs ht, let ⟨x', hx', heq⟩ := h ht in hs $ h' heq ▸ hx'
lemma maps_to.surj_on_compl (h : maps_to f s t) (h' : surjective f) : surj_on f sᶜ tᶜ :=
h'.forall.2 $ λ x ht, mem_image_of_mem _ $ λ hs, ht (h hs)
/-! ### Bijectivity -/
/-- `f` is bijective from `s` to `t` if `f` is injective on `s` and `f '' s = t`. -/
@[reducible] def bij_on (f : α → β) (s : set α) (t : set β) : Prop :=
maps_to f s t ∧ inj_on f s ∧ surj_on f s t
lemma bij_on.maps_to (h : bij_on f s t) : maps_to f s t := h.left
lemma bij_on.inj_on (h : bij_on f s t) : inj_on f s := h.right.left
lemma bij_on.surj_on (h : bij_on f s t) : surj_on f s t := h.right.right
lemma bij_on.mk (h₁ : maps_to f s t) (h₂ : inj_on f s) (h₃ : surj_on f s t) :
bij_on f s t :=
⟨h₁, h₂, h₃⟩
lemma bij_on_empty (f : α → β) : bij_on f ∅ ∅ :=
⟨maps_to_empty f ∅, inj_on_empty f, surj_on_empty f ∅⟩
lemma bij_on.inter (h₁ : bij_on f s₁ t₁) (h₂ : bij_on f s₂ t₂) (h : inj_on f (s₁ ∪ s₂)) :
bij_on f (s₁ ∩ s₂) (t₁ ∩ t₂) :=
⟨h₁.maps_to.inter_inter h₂.maps_to, h₁.inj_on.mono $ inter_subset_left _ _,
h₁.surj_on.inter_inter h₂.surj_on h⟩
lemma bij_on.union (h₁ : bij_on f s₁ t₁) (h₂ : bij_on f s₂ t₂) (h : inj_on f (s₁ ∪ s₂)) :
bij_on f (s₁ ∪ s₂) (t₁ ∪ t₂) :=
⟨h₁.maps_to.union_union h₂.maps_to, h, h₁.surj_on.union_union h₂.surj_on⟩
theorem bij_on.subset_range (h : bij_on f s t) : t ⊆ range f :=
h.surj_on.subset_range
lemma inj_on.bij_on_image (h : inj_on f s) : bij_on f s (f '' s) :=
bij_on.mk (maps_to_image f s) h (subset.refl _)
theorem bij_on.congr (h₁ : bij_on f₁ s t) (h : eq_on f₁ f₂ s) :
bij_on f₂ s t :=
bij_on.mk (h₁.maps_to.congr h) (h₁.inj_on.congr h) (h₁.surj_on.congr h)
theorem eq_on.bij_on_iff (H : eq_on f₁ f₂ s) : bij_on f₁ s t ↔ bij_on f₂ s t :=
⟨λ h, h.congr H, λ h, h.congr H.symm⟩
lemma bij_on.image_eq (h : bij_on f s t) :
f '' s = t :=
h.surj_on.image_eq_of_maps_to h.maps_to
theorem bij_on.comp (hg : bij_on g t p) (hf : bij_on f s t) : bij_on (g ∘ f) s p :=
bij_on.mk (hg.maps_to.comp hf.maps_to) (hg.inj_on.comp hf.inj_on hf.maps_to)
(hg.surj_on.comp hf.surj_on)
theorem bij_on.bijective (h : bij_on f s t) :
bijective (t.cod_restrict (s.restrict f) $ λ x, h.maps_to x.val_prop) :=
⟨λ x y h', subtype.ext $ h.inj_on x.2 y.2 $ subtype.ext_iff.1 h',
λ ⟨y, hy⟩, let ⟨x, hx, hxy⟩ := h.surj_on hy in ⟨⟨x, hx⟩, subtype.eq hxy⟩⟩
lemma bijective_iff_bij_on_univ : bijective f ↔ bij_on f univ univ :=
iff.intro
(λ h, let ⟨inj, surj⟩ := h in
⟨maps_to_univ f _, inj.inj_on _, iff.mp surjective_iff_surj_on_univ surj⟩)
(λ h, let ⟨map, inj, surj⟩ := h in
⟨iff.mpr injective_iff_inj_on_univ inj, iff.mpr surjective_iff_surj_on_univ surj⟩)
lemma bij_on.compl (hst : bij_on f s t) (hf : bijective f) : bij_on f sᶜ tᶜ :=
⟨hst.surj_on.maps_to_compl hf.1, hf.1.inj_on _, hst.maps_to.surj_on_compl hf.2⟩
/-! ### left inverse -/
/-- `g` is a left inverse to `f` on `a` means that `g (f x) = x` for all `x ∈ a`. -/
@[reducible] def left_inv_on (f' : β → α) (f : α → β) (s : set α) : Prop :=
∀ ⦃x⦄, x ∈ s → f' (f x) = x
lemma left_inv_on.eq_on (h : left_inv_on f' f s) : eq_on (f' ∘ f) id s := h
lemma left_inv_on.eq (h : left_inv_on f' f s) {x} (hx : x ∈ s) : f' (f x) = x := h hx
lemma left_inv_on.congr_left (h₁ : left_inv_on f₁' f s)
{t : set β} (h₁' : maps_to f s t) (heq : eq_on f₁' f₂' t) : left_inv_on f₂' f s :=
λ x hx, heq (h₁' hx) ▸ h₁ hx
theorem left_inv_on.congr_right (h₁ : left_inv_on f₁' f₁ s) (heq : eq_on f₁ f₂ s) :
left_inv_on f₁' f₂ s :=
λ x hx, heq hx ▸ h₁ hx
theorem left_inv_on.inj_on (h : left_inv_on f₁' f s) : inj_on f s :=
λ x₁ h₁ x₂ h₂ heq,
calc
x₁ = f₁' (f x₁) : eq.symm $ h h₁
... = f₁' (f x₂) : congr_arg f₁' heq
... = x₂ : h h₂
theorem left_inv_on.surj_on (h : left_inv_on f' f s) (hf : maps_to f s t) : surj_on f' t s :=
λ x hx, ⟨f x, hf hx, h hx⟩
theorem left_inv_on.maps_to (h : left_inv_on f' f s) (hf : surj_on f s t) : maps_to f' t s :=
λ y hy, let ⟨x, hs, hx⟩ := hf hy in by rwa [← hx, h hs]
theorem left_inv_on.comp
(hf' : left_inv_on f' f s) (hg' : left_inv_on g' g t) (hf : maps_to f s t) :
left_inv_on (f' ∘ g') (g ∘ f) s :=
λ x h,
calc
(f' ∘ g') ((g ∘ f) x) = f' (f x) : congr_arg f' (hg' (hf h))
... = x : hf' h
theorem left_inv_on.mono (hf : left_inv_on f' f s) (ht : s₁ ⊆ s) : left_inv_on f' f s₁ :=
λ x hx, hf (ht hx)
theorem left_inv_on.image_inter' (hf : left_inv_on f' f s) :
f '' (s₁ ∩ s) = f' ⁻¹' s₁ ∩ f '' s :=
begin
apply subset.antisymm,
{ rintro _ ⟨x, ⟨h₁, h⟩, rfl⟩, exact ⟨by rwa [mem_preimage, hf h], mem_image_of_mem _ h⟩ },
{ rintro _ ⟨h₁, ⟨x, h, rfl⟩⟩, exact mem_image_of_mem _ ⟨by rwa ← hf h, h⟩ }
end
theorem left_inv_on.image_inter (hf : left_inv_on f' f s) :
f '' (s₁ ∩ s) = f' ⁻¹' (s₁ ∩ s) ∩ f '' s :=
begin
rw hf.image_inter',
refine subset.antisymm _ (inter_subset_inter_left _ (preimage_mono $ inter_subset_left _ _)),
rintro _ ⟨h₁, x, hx, rfl⟩, exact ⟨⟨h₁, by rwa hf hx⟩, mem_image_of_mem _ hx⟩
end
theorem left_inv_on.image_image (hf : left_inv_on f' f s) :
f' '' (f '' s) = s :=
by rw [image_image, image_congr hf, image_id']
theorem left_inv_on.image_image' (hf : left_inv_on f' f s) (hs : s₁ ⊆ s) :
f' '' (f '' s₁) = s₁ :=
(hf.mono hs).image_image
/-! ### Right inverse -/
/-- `g` is a right inverse to `f` on `b` if `f (g x) = x` for all `x ∈ b`. -/
@[reducible] def right_inv_on (f' : β → α) (f : α → β) (t : set β) : Prop :=
left_inv_on f f' t
lemma right_inv_on.eq_on (h : right_inv_on f' f t) : eq_on (f ∘ f') id t := h
lemma right_inv_on.eq (h : right_inv_on f' f t) {y} (hy : y ∈ t) : f (f' y) = y := h hy
lemma left_inv_on.right_inv_on_image (h : left_inv_on f' f s) : right_inv_on f' f (f '' s) :=
λ y ⟨x, hx, eq⟩, eq ▸ congr_arg f $ h.eq hx
theorem right_inv_on.congr_left (h₁ : right_inv_on f₁' f t) (heq : eq_on f₁' f₂' t) :
right_inv_on f₂' f t :=
h₁.congr_right heq
theorem right_inv_on.congr_right (h₁ : right_inv_on f' f₁ t) (hg : maps_to f' t s)
(heq : eq_on f₁ f₂ s) : right_inv_on f' f₂ t :=
left_inv_on.congr_left h₁ hg heq
theorem right_inv_on.surj_on (hf : right_inv_on f' f t) (hf' : maps_to f' t s) :
surj_on f s t :=
hf.surj_on hf'
theorem right_inv_on.maps_to (h : right_inv_on f' f t) (hf : surj_on f' t s) : maps_to f s t :=
h.maps_to hf
theorem right_inv_on.comp (hf : right_inv_on f' f t) (hg : right_inv_on g' g p)
(g'pt : maps_to g' p t) : right_inv_on (f' ∘ g') (g ∘ f) p :=
hg.comp hf g'pt
theorem right_inv_on.mono (hf : right_inv_on f' f t) (ht : t₁ ⊆ t) : right_inv_on f' f t₁ :=
hf.mono ht
theorem inj_on.right_inv_on_of_left_inv_on (hf : inj_on f s) (hf' : left_inv_on f f' t)
(h₁ : maps_to f s t) (h₂ : maps_to f' t s) :
right_inv_on f f' s :=
λ x h, hf (h₂ $ h₁ h) h (hf' (h₁ h))
theorem eq_on_of_left_inv_on_of_right_inv_on (h₁ : left_inv_on f₁' f s) (h₂ : right_inv_on f₂' f t)
(h : maps_to f₂' t s) : eq_on f₁' f₂' t :=
λ y hy,
calc f₁' y = (f₁' ∘ f ∘ f₂') y : congr_arg f₁' (h₂ hy).symm
... = f₂' y : h₁ (h hy)
theorem surj_on.left_inv_on_of_right_inv_on (hf : surj_on f s t) (hf' : right_inv_on f f' s) :
left_inv_on f f' t :=
λ y hy, let ⟨x, hx, heq⟩ := hf hy in by rw [← heq, hf' hx]
/-! ### Two-side inverses -/
/-- `g` is an inverse to `f` viewed as a map from `a` to `b` -/
@[reducible] def inv_on (g : β → α) (f : α → β) (s : set α) (t : set β) : Prop :=
left_inv_on g f s ∧ right_inv_on g f t
lemma inv_on.symm (h : inv_on f' f s t) : inv_on f f' t s := ⟨h.right, h.left⟩
lemma inv_on.mono (h : inv_on f' f s t) (hs : s₁ ⊆ s) (ht : t₁ ⊆ t) : inv_on f' f s₁ t₁ :=
⟨h.1.mono hs, h.2.mono ht⟩
/-- If functions `f'` and `f` are inverse on `s` and `t`, `f` maps `s` into `t`, and `f'` maps `t`
into `s`, then `f` is a bijection between `s` and `t`. The `maps_to` arguments can be deduced from
`surj_on` statements using `left_inv_on.maps_to` and `right_inv_on.maps_to`. -/
theorem inv_on.bij_on (h : inv_on f' f s t) (hf : maps_to f s t) (hf' : maps_to f' t s) :
bij_on f s t :=
⟨hf, h.left.inj_on, h.right.surj_on hf'⟩
/-! ### `inv_fun_on` is a left/right inverse -/
theorem inj_on.left_inv_on_inv_fun_on [nonempty α] (h : inj_on f s) :
left_inv_on (inv_fun_on f s) f s :=
λ x hx, inv_fun_on_eq' h hx
lemma inj_on.inv_fun_on_image [nonempty α] (h : inj_on f s₂) (ht : s₁ ⊆ s₂) :
(inv_fun_on f s₂) '' (f '' s₁) = s₁ :=
h.left_inv_on_inv_fun_on.image_image' ht
theorem surj_on.right_inv_on_inv_fun_on [nonempty α] (h : surj_on f s t) :
right_inv_on (inv_fun_on f s) f t :=
λ y hy, inv_fun_on_eq $ mem_image_iff_bex.1 $ h hy
theorem bij_on.inv_on_inv_fun_on [nonempty α] (h : bij_on f s t) :
inv_on (inv_fun_on f s) f s t :=
⟨h.inj_on.left_inv_on_inv_fun_on, h.surj_on.right_inv_on_inv_fun_on⟩
theorem surj_on.inv_on_inv_fun_on [nonempty α] (h : surj_on f s t) :
inv_on (inv_fun_on f s) f (inv_fun_on f s '' t) t :=
begin
refine ⟨_, h.right_inv_on_inv_fun_on⟩,
rintros _ ⟨y, hy, rfl⟩,
rw [h.right_inv_on_inv_fun_on hy]
end
theorem surj_on.maps_to_inv_fun_on [nonempty α] (h : surj_on f s t) :
maps_to (inv_fun_on f s) t s :=
λ y hy, mem_preimage.2 $ inv_fun_on_mem $ mem_image_iff_bex.1 $ h hy
theorem surj_on.bij_on_subset [nonempty α] (h : surj_on f s t) :
bij_on f (inv_fun_on f s '' t) t :=
begin
refine h.inv_on_inv_fun_on.bij_on _ (maps_to_image _ _),
rintros _ ⟨y, hy, rfl⟩,
rwa [h.right_inv_on_inv_fun_on hy]
end
theorem surj_on_iff_exists_bij_on_subset :
surj_on f s t ↔ ∃ s' ⊆ s, bij_on f s' t :=
begin
split,
{ rcases eq_empty_or_nonempty t with rfl|ht,
{ exact λ _, ⟨∅, empty_subset _, bij_on_empty f⟩ },
{ assume h,
haveI : nonempty α := ⟨classical.some (h.comap_nonempty ht)⟩,
exact ⟨_, h.maps_to_inv_fun_on.image_subset, h.bij_on_subset⟩ }},
{ rintros ⟨s', hs', hfs'⟩,
exact hfs'.surj_on.mono hs' (subset.refl _) }
end
lemma preimage_inv_fun_of_mem [n : nonempty α] {f : α → β} (hf : injective f) {s : set α}
(h : classical.choice n ∈ s) : inv_fun f ⁻¹' s = f '' s ∪ (range f)ᶜ :=
begin
ext x,
rcases em (x ∈ range f) with ⟨a, rfl⟩|hx,
{ simp [left_inverse_inv_fun hf _, mem_image_of_injective hf] },
{ simp [mem_preimage, inv_fun_neg hx, h, hx] }
end
lemma preimage_inv_fun_of_not_mem [n : nonempty α] {f : α → β} (hf : injective f)
{s : set α} (h : classical.choice n ∉ s) : inv_fun f ⁻¹' s = f '' s :=
begin
ext x,
rcases em (x ∈ range f) with ⟨a, rfl⟩|hx,
{ rw [mem_preimage, left_inverse_inv_fun hf, mem_image_of_injective hf] },
{ have : x ∉ f '' s, from λ h', hx (image_subset_range _ _ h'),
simp only [mem_preimage, inv_fun_neg hx, h, this] },
end
end set
/-! ### Piecewise defined function -/
namespace set
variables {δ : α → Sort y} (s : set α) (f g : Πi, δ i)
@[simp] lemma piecewise_empty [∀i : α, decidable (i ∈ (∅ : set α))] : piecewise ∅ f g = g :=
by { ext i, simp [piecewise] }
@[simp] lemma piecewise_univ [∀i : α, decidable (i ∈ (set.univ : set α))] :
piecewise set.univ f g = f :=
by { ext i, simp [piecewise] }
@[simp] lemma piecewise_insert_self {j : α} [∀i, decidable (i ∈ insert j s)] :
(insert j s).piecewise f g j = f j :=
by simp [piecewise]
variable [∀j, decidable (j ∈ s)]
instance compl.decidable_mem (j : α) : decidable (j ∈ sᶜ) := not.decidable
lemma piecewise_insert [decidable_eq α] (j : α) [∀i, decidable (i ∈ insert j s)] :
(insert j s).piecewise f g = function.update (s.piecewise f g) j (f j) :=
begin
simp [piecewise],
ext i,
by_cases h : i = j,
{ rw h, simp },
{ by_cases h' : i ∈ s; simp [h, h'] }
end
@[simp, priority 990]
lemma piecewise_eq_of_mem {i : α} (hi : i ∈ s) : s.piecewise f g i = f i :=
by simp [piecewise, hi]
@[simp, priority 990]
lemma piecewise_eq_of_not_mem {i : α} (hi : i ∉ s) : s.piecewise f g i = g i :=
by simp [piecewise, hi]
lemma piecewise_singleton (x : α) [Π y, decidable (y ∈ ({x} : set α))] [decidable_eq α]
(f g : α → β) : piecewise {x} f g = function.update g x (f x) :=
by { ext y, by_cases hy : y = x, { subst y, simp }, { simp [hy] } }
lemma piecewise_eq_on (f g : α → β) : eq_on (s.piecewise f g) f s :=
λ _, piecewise_eq_of_mem _ _ _
lemma piecewise_eq_on_compl (f g : α → β) : eq_on (s.piecewise f g) g sᶜ :=
λ _, piecewise_eq_of_not_mem _ _ _
@[simp, priority 990]
lemma piecewise_insert_of_ne {i j : α} (h : i ≠ j) [∀i, decidable (i ∈ insert j s)] :
(insert j s).piecewise f g i = s.piecewise f g i :=
by simp [piecewise, h]
@[simp] lemma piecewise_compl [∀ i, decidable (i ∈ sᶜ)] : sᶜ.piecewise f g = s.piecewise g f :=
funext $ λ x, if hx : x ∈ s then by simp [hx] else by simp [hx]
@[simp] lemma piecewise_range_comp {ι : Sort*} (f : ι → α) [Π j, decidable (j ∈ range f)]
(g₁ g₂ : α → β) :
(range f).piecewise g₁ g₂ ∘ f = g₁ ∘ f :=
comp_eq_of_eq_on_range $ piecewise_eq_on _ _ _
lemma piecewise_preimage (f g : α → β) (t) :
s.piecewise f g ⁻¹' t = s ∩ f ⁻¹' t ∪ sᶜ ∩ g ⁻¹' t :=
ext $ λ x, by by_cases x ∈ s; simp *
lemma comp_piecewise (h : β → γ) {f g : α → β} {x : α} :
h (s.piecewise f g x) = s.piecewise (h ∘ f) (h ∘ g) x :=
by by_cases hx : x ∈ s; simp [hx]
@[simp] lemma piecewise_same : s.piecewise f f = f :=
by { ext x, by_cases hx : x ∈ s; simp [hx] }
lemma range_piecewise (f g : α → β) : range (s.piecewise f g) = f '' s ∪ g '' sᶜ :=
begin
ext y, split,
{ rintro ⟨x, rfl⟩, by_cases h : x ∈ s;[left, right]; use x; simp [h] },
{ rintro (⟨x, hx, rfl⟩|⟨x, hx, rfl⟩); use x; simp * at * }
end
lemma piecewise_mem_pi {δ : α → Type*} {t : set α} {t' : Π i, set (δ i)}
{f g} (hf : f ∈ pi t t') (hg : g ∈ pi t t') :
s.piecewise f g ∈ pi t t' :=
by { intros i ht, by_cases hs : i ∈ s; simp [hf i ht, hg i ht, hs] }
@[simp] lemma pi_piecewise {ι : Type*} {α : ι → Type*} (s s' : set ι)
(t t' : Π i, set (α i)) [Π x, decidable (x ∈ s')] :
pi s (s'.piecewise t t') = pi (s ∩ s') t ∩ pi (s \ s') t' :=
begin
ext x,
simp only [mem_pi, mem_inter_eq, ← forall_and_distrib],
refine forall_congr (λ i, _),
by_cases hi : i ∈ s'; simp *
end
lemma univ_pi_piecewise {ι : Type*} {α : ι → Type*} (s : set ι)
(t : Π i, set (α i)) [Π x, decidable (x ∈ s)] :
pi univ (s.piecewise t (λ _, univ)) = pi s t :=
by simp
end set
lemma strict_mono_incr_on.inj_on [linear_order α] [preorder β] {f : α → β} {s : set α}
(H : strict_mono_incr_on f s) :
s.inj_on f :=
λ x hx y hy hxy, show ordering.eq.compares x y, from (H.compares hx hy).1 hxy
lemma strict_mono_decr_on.inj_on [linear_order α] [preorder β] {f : α → β} {s : set α}
(H : strict_mono_decr_on f s) :
s.inj_on f :=
@strict_mono_incr_on.inj_on α (order_dual β) _ _ f s H
lemma strict_mono_incr_on.comp [preorder α] [preorder β] [preorder γ]
{g : β → γ} {f : α → β} {s : set α} {t : set β} (hg : strict_mono_incr_on g t)
(hf : strict_mono_incr_on f s) (hs : set.maps_to f s t) :
strict_mono_incr_on (g ∘ f) s :=
λ x hx y hy hxy, hg (hs hx) (hs hy) $ hf hx hy hxy
lemma strict_mono.comp_strict_mono_incr_on [preorder α] [preorder β] [preorder γ]
{g : β → γ} {f : α → β} {s : set α} (hg : strict_mono g)
(hf : strict_mono_incr_on f s) :
strict_mono_incr_on (g ∘ f) s :=
λ x hx y hy hxy, hg $ hf hx hy hxy
lemma strict_mono.cod_restrict [preorder α] [preorder β] {f : α → β} (hf : strict_mono f)
{s : set β} (hs : ∀ x, f x ∈ s) :
strict_mono (set.cod_restrict f s hs) :=
hf
namespace function
open set
variables {fa : α → α} {fb : β → β} {f : α → β} {g : β → γ} {s t : set α}
lemma injective.comp_inj_on (hg : injective g) (hf : s.inj_on f) : s.inj_on (g ∘ f) :=
(hg.inj_on univ).comp hf (maps_to_univ _ _)
lemma surjective.surj_on (hf : surjective f) (s : set β) :
surj_on f univ s :=
(surjective_iff_surj_on_univ.1 hf).mono (subset.refl _) (subset_univ _)
lemma left_inverse.left_inv_on {g : β → α} (h : left_inverse f g) (s : set β) :
left_inv_on f g s :=
λ x hx, h x
lemma right_inverse.right_inv_on {g : β → α} (h : right_inverse f g) (s : set α) :
right_inv_on f g s :=
λ x hx, h x
lemma left_inverse.right_inv_on_range {g : β → α} (h : left_inverse f g) :
right_inv_on f g (range g) :=
forall_range_iff.2 $ λ i, congr_arg g (h i)
namespace semiconj
lemma maps_to_image (h : semiconj f fa fb) (ha : maps_to fa s t) :
maps_to fb (f '' s) (f '' t) :=
λ y ⟨x, hx, hy⟩, hy ▸ ⟨fa x, ha hx, h x⟩
lemma maps_to_range (h : semiconj f fa fb) : maps_to fb (range f) (range f) :=
λ y ⟨x, hy⟩, hy ▸ ⟨fa x, h x⟩
lemma surj_on_image (h : semiconj f fa fb) (ha : surj_on fa s t) :
surj_on fb (f '' s) (f '' t) :=
begin
rintros y ⟨x, hxt, rfl⟩,
rcases ha hxt with ⟨x, hxs, rfl⟩,
rw [h x],
exact mem_image_of_mem _ (mem_image_of_mem _ hxs)
end
lemma surj_on_range (h : semiconj f fa fb) (ha : surjective fa) :
surj_on fb (range f) (range f) :=
by { rw ← image_univ, exact h.surj_on_image (ha.surj_on univ) }
lemma inj_on_image (h : semiconj f fa fb) (ha : inj_on fa s) (hf : inj_on f (fa '' s)) :
inj_on fb (f '' s) :=
begin
rintros _ ⟨x, hx, rfl⟩ _ ⟨y, hy, rfl⟩ H,
simp only [← h.eq] at H,
exact congr_arg f (ha hx hy $ hf (mem_image_of_mem fa hx) (mem_image_of_mem fa hy) H)
end
lemma inj_on_range (h : semiconj f fa fb) (ha : injective fa) (hf : inj_on f (range fa)) :
inj_on fb (range f) :=
by { rw ← image_univ at *, exact h.inj_on_image (ha.inj_on univ) hf }
lemma bij_on_image (h : semiconj f fa fb) (ha : bij_on fa s t) (hf : inj_on f t) :
bij_on fb (f '' s) (f '' t) :=
⟨h.maps_to_image ha.maps_to, h.inj_on_image ha.inj_on (ha.image_eq.symm ▸ hf),
h.surj_on_image ha.surj_on⟩
lemma bij_on_range (h : semiconj f fa fb) (ha : bijective fa) (hf : injective f) :
bij_on fb (range f) (range f) :=
begin
rw [← image_univ],
exact h.bij_on_image (bijective_iff_bij_on_univ.1 ha) (hf.inj_on univ)
end
lemma maps_to_preimage (h : semiconj f fa fb) {s t : set β} (hb : maps_to fb s t) :
maps_to fa (f ⁻¹' s) (f ⁻¹' t) :=
λ x hx, by simp only [mem_preimage, h x, hb hx]
lemma inj_on_preimage (h : semiconj f fa fb) {s : set β} (hb : inj_on fb s)
(hf : inj_on f (f ⁻¹' s)) :
inj_on fa (f ⁻¹' s) :=
begin
intros x hx y hy H,
have := congr_arg f H,
rw [h.eq, h.eq] at this,
exact hf hx hy (hb hx hy this)
end
end semiconj
lemma update_comp_eq_of_not_mem_range' {α β : Sort*} {γ : β → Sort*} [decidable_eq β]
(g : Π b, γ b) {f : α → β} {i : β} (a : γ i) (h : i ∉ set.range f) :
(λ j, (function.update g i a) (f j)) = (λ j, g (f j)) :=
update_comp_eq_of_forall_ne' _ _ $ λ x hx, h ⟨x, hx⟩
/-- Non-dependent version of `function.update_comp_eq_of_not_mem_range'` -/
lemma update_comp_eq_of_not_mem_range {α β γ : Sort*} [decidable_eq β]
(g : β → γ) {f : α → β} {i : β} (a : γ) (h : i ∉ set.range f) :
(function.update g i a) ∘ f = g ∘ f :=
update_comp_eq_of_not_mem_range' g a h
end function
|
39c1caad6966764aa1944ef2e855993378f6818d
|
9dc8cecdf3c4634764a18254e94d43da07142918
|
/src/probability/probability_mass_function/uniform.lean
|
576be0142d8db558197c8150d2d3d09a71d06fa8
|
[
"Apache-2.0"
] |
permissive
|
jcommelin/mathlib
|
d8456447c36c176e14d96d9e76f39841f69d2d9b
|
ee8279351a2e434c2852345c51b728d22af5a156
|
refs/heads/master
| 1,664,782,136,488
| 1,663,638,983,000
| 1,663,638,983,000
| 132,563,656
| 0
| 0
|
Apache-2.0
| 1,663,599,929,000
| 1,525,760,539,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 7,189
|
lean
|
/-
Copyright (c) 2022 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Devon Tuma
-/
import probability.probability_mass_function.constructions
/-!
# Uniform Probability Mass Functions
This file defines a number of uniform `pmf` distributions from various inputs,
uniformly drawing from the corresponding object.
`pmf.uniform_of_finset` gives each element in the set equal probability,
with `0` probability for elements not in the set.
`pmf.uniform_of_fintype` gives all elements equal probability,
equal to the inverse of the size of the `fintype`.
`pmf.of_multiset` draws randomly from the given `multiset`, treating duplicate values as distinct.
Each probability is given by the count of the element divided by the size of the `multiset`
-/
namespace pmf
noncomputable theory
variables {α β γ : Type*}
open_locale classical big_operators nnreal ennreal
section uniform_of_finset
/-- Uniform distribution taking the same non-zero probability on the nonempty finset `s` -/
def uniform_of_finset (s : finset α) (hs : s.nonempty) : pmf α :=
of_finset (λ a, if a ∈ s then (s.card : ℝ≥0)⁻¹ else 0) s (Exists.rec_on hs (λ x hx,
calc ∑ (a : α) in s, ite (a ∈ s) (s.card : ℝ≥0)⁻¹ 0
= ∑ (a : α) in s, (s.card : ℝ≥0)⁻¹ : finset.sum_congr rfl (λ x hx, by simp [hx])
... = s.card • (s.card : ℝ≥0)⁻¹ : finset.sum_const _
... = (s.card : ℝ≥0) * (s.card : ℝ≥0)⁻¹ : by rw nsmul_eq_mul
... = 1 : div_self (nat.cast_ne_zero.2 $ finset.card_ne_zero_of_mem hx)
)) (λ x hx, by simp only [hx, if_false])
variables {s : finset α} (hs : s.nonempty) {a : α}
@[simp] lemma uniform_of_finset_apply (a : α) :
uniform_of_finset s hs a = if a ∈ s then (s.card : ℝ≥0)⁻¹ else 0 := rfl
lemma uniform_of_finset_apply_of_mem (ha : a ∈ s) : uniform_of_finset s hs a = (s.card)⁻¹ :=
by simp [ha]
lemma uniform_of_finset_apply_of_not_mem (ha : a ∉ s) : uniform_of_finset s hs a = 0 :=
by simp [ha]
@[simp] lemma support_uniform_of_finset : (uniform_of_finset s hs).support = s :=
set.ext (let ⟨a, ha⟩ := hs in by simp [mem_support_iff, finset.ne_empty_of_mem ha])
lemma mem_support_uniform_of_finset_iff (a : α) : a ∈ (uniform_of_finset s hs).support ↔ a ∈ s :=
by simp
section measure
variable (t : set α)
@[simp] lemma to_outer_measure_uniform_of_finset_apply :
(uniform_of_finset s hs).to_outer_measure t = (s.filter (∈ t)).card / s.card :=
calc (uniform_of_finset s hs).to_outer_measure t
= ↑(∑' x, if x ∈ t then (uniform_of_finset s hs x) else 0) :
to_outer_measure_apply' (uniform_of_finset s hs) t
... = ↑(∑' x, if x ∈ s ∧ x ∈ t then (s.card : ℝ≥0)⁻¹ else 0) :
begin
refine (ennreal.coe_eq_coe.2 $ tsum_congr (λ x, _)),
by_cases hxt : x ∈ t,
{ by_cases hxs : x ∈ s; simp [hxt, hxs] },
{ simp [hxt] }
end
... = ↑(∑ x in (s.filter (∈ t)), if x ∈ s ∧ x ∈ t then (s.card : ℝ≥0)⁻¹ else 0) :
begin
refine ennreal.coe_eq_coe.2 (tsum_eq_sum (λ x hx, _)),
have : ¬ (x ∈ s ∧ x ∈ t) := λ h, hx (finset.mem_filter.2 h),
simp [this]
end
... = ↑(∑ x in (s.filter (∈ t)), (s.card : ℝ≥0)⁻¹) :
ennreal.coe_eq_coe.2 (finset.sum_congr rfl $
λ x hx, let this : x ∈ s ∧ x ∈ t := by simpa using hx in by simp [this])
... = (s.filter (∈ t)).card / s.card :
let this : (s.card : ℝ≥0) ≠ 0 := nat.cast_ne_zero.2
(hs.rec_on $ λ _, finset.card_ne_zero_of_mem) in
by simp [div_eq_mul_inv, ennreal.coe_inv this]
@[simp] lemma to_measure_uniform_of_finset_apply [measurable_space α] (ht : measurable_set t) :
(uniform_of_finset s hs).to_measure t = (s.filter (∈ t)).card / s.card :=
(to_measure_apply_eq_to_outer_measure_apply _ t ht).trans
(to_outer_measure_uniform_of_finset_apply hs t)
end measure
end uniform_of_finset
section uniform_of_fintype
/-- The uniform pmf taking the same uniform value on all of the fintype `α` -/
def uniform_of_fintype (α : Type*) [fintype α] [nonempty α] : pmf α :=
uniform_of_finset (finset.univ) (finset.univ_nonempty)
variables [fintype α] [nonempty α]
@[simp] lemma uniform_of_fintype_apply (a : α) : uniform_of_fintype α a = (fintype.card α)⁻¹ :=
by simpa only [uniform_of_fintype, finset.mem_univ, if_true, uniform_of_finset_apply]
@[simp] lemma support_uniform_of_fintype (α : Type*) [fintype α] [nonempty α] :
(uniform_of_fintype α).support = ⊤ :=
set.ext (λ x, by simpa [mem_support_iff] using fintype.card_ne_zero)
lemma mem_support_uniform_of_fintype (a : α) : a ∈ (uniform_of_fintype α).support := by simp
section measure
variable (s : set α)
lemma to_outer_measure_uniform_of_fintype_apply :
(uniform_of_fintype α).to_outer_measure s = fintype.card s / fintype.card α :=
by simpa [uniform_of_fintype]
lemma to_measure_uniform_of_fintype_apply [measurable_space α] (hs : measurable_set s) :
(uniform_of_fintype α).to_measure s = fintype.card s / fintype.card α :=
by simpa [uniform_of_fintype, hs]
end measure
end uniform_of_fintype
section of_multiset
/-- Given a non-empty multiset `s` we construct the `pmf` which sends `a` to the fraction of
elements in `s` that are `a`. -/
def of_multiset (s : multiset α) (hs : s ≠ 0) : pmf α :=
⟨λ a, s.count a / s.card,
have ∑ a in s.to_finset, (s.count a : ℝ) / s.card = 1,
{ simp only [div_eq_inv_mul, ← finset.mul_sum, ← nat.cast_sum, multiset.to_finset_sum_count_eq],
rw [inv_mul_cancel], simp [hs] },
have ∑ a in s.to_finset, (s.count a : ℝ≥0) / s.card = 1,
by rw [← nnreal.eq_iff, nnreal.coe_one, ← this, nnreal.coe_sum]; simp,
begin
rw ← this,
apply has_sum_sum_of_ne_finset_zero,
simp {contextual := tt},
end⟩
variables {s : multiset α} (hs : s ≠ 0)
@[simp] lemma of_multiset_apply (a : α) : of_multiset s hs a = s.count a / s.card := rfl
@[simp] lemma support_of_multiset : (of_multiset s hs).support = s.to_finset :=
set.ext (by simp [mem_support_iff, hs])
lemma mem_support_of_multiset_iff (a : α) : a ∈ (of_multiset s hs).support ↔ a ∈ s.to_finset :=
by simp
lemma of_multiset_apply_of_not_mem {a : α} (ha : a ∉ s) : of_multiset s hs a = 0 :=
div_eq_zero_iff.2 (or.inl $ nat.cast_eq_zero.2 $ multiset.count_eq_zero_of_not_mem ha)
section measure
variable (t : set α)
@[simp] lemma to_outer_measure_of_multiset_apply :
(of_multiset s hs).to_outer_measure t = (∑' x, (s.filter (∈ t)).count x) / s.card :=
begin
rw [div_eq_mul_inv, ← ennreal.tsum_mul_right, to_outer_measure_apply],
refine tsum_congr (λ x, _),
by_cases hx : x ∈ t,
{ have : (multiset.card s : ℝ≥0) ≠ 0 := by simp [hs],
simp [set.indicator, hx, div_eq_mul_inv, ennreal.coe_inv this] },
{ simp [hx] }
end
@[simp] lemma to_measure_of_multiset_apply [measurable_space α] (ht : measurable_set t) :
(of_multiset s hs).to_measure t = (∑' x, (s.filter (∈ t)).count x) / s.card :=
(to_measure_apply_eq_to_outer_measure_apply _ t ht).trans
(to_outer_measure_of_multiset_apply hs t)
end measure
end of_multiset
end pmf
|
e27bd229a9d5013a4479090ef643f93aa07bc648
|
947fa6c38e48771ae886239b4edce6db6e18d0fb
|
/src/algebraic_geometry/locally_ringed_space.lean
|
ab03f1d82675c7b633d05f05db28b3722ff30120
|
[
"Apache-2.0"
] |
permissive
|
ramonfmir/mathlib
|
c5dc8b33155473fab97c38bd3aa6723dc289beaa
|
14c52e990c17f5a00c0cc9e09847af16fabbed25
|
refs/heads/master
| 1,661,979,343,526
| 1,660,830,384,000
| 1,660,830,384,000
| 182,072,989
| 0
| 0
| null | 1,555,585,876,000
| 1,555,585,876,000
| null |
UTF-8
|
Lean
| false
| false
| 10,267
|
lean
|
/-
Copyright (c) 2020 Johan Commelin. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin
-/
import algebraic_geometry.ringed_space
import algebraic_geometry.stalks
import logic.equiv.transfer_instance
/-!
# The category of locally ringed spaces
We define (bundled) locally ringed spaces (as `SheafedSpace CommRing` along with the fact that the
stalks are local rings), and morphisms between these (morphisms in `SheafedSpace` with
`is_local_ring_hom` on the stalk maps).
-/
universes v u
open category_theory
open Top
open topological_space
open opposite
open category_theory.category category_theory.functor
namespace algebraic_geometry
/-- A `LocallyRingedSpace` is a topological space equipped with a sheaf of commutative rings
such that all the stalks are local rings.
A morphism of locally ringed spaces is a morphism of ringed spaces
such that the morphisms induced on stalks are local ring homomorphisms. -/
@[nolint has_nonempty_instance]
structure LocallyRingedSpace extends SheafedSpace CommRing :=
(local_ring : ∀ x, local_ring (presheaf.stalk x))
attribute [instance] LocallyRingedSpace.local_ring
namespace LocallyRingedSpace
variables (X : LocallyRingedSpace)
/--
An alias for `to_SheafedSpace`, where the result type is a `RingedSpace`.
This allows us to use dot-notation for the `RingedSpace` namespace.
-/
def to_RingedSpace : RingedSpace := X.to_SheafedSpace
/-- The underlying topological space of a locally ringed space. -/
def to_Top : Top := X.1.carrier
instance : has_coe_to_sort LocallyRingedSpace (Type u) :=
⟨λ X : LocallyRingedSpace, (X.to_Top : Type u)⟩
instance (x : X) : _root_.local_ring (X.to_PresheafedSpace.stalk x) := X.local_ring x
-- PROJECT: how about a typeclass "has_structure_sheaf" to mediate the 𝒪 notation, rather
-- than defining it over and over for PresheafedSpace, LRS, Scheme, etc.
/-- The structure sheaf of a locally ringed space. -/
def 𝒪 : sheaf CommRing X.to_Top := X.to_SheafedSpace.sheaf
/-- A morphism of locally ringed spaces is a morphism of ringed spaces
such that the morphims induced on stalks are local ring homomorphisms. -/
def hom (X Y : LocallyRingedSpace) : Type* :=
{ f : X.to_SheafedSpace ⟶ Y.to_SheafedSpace //
∀ x, is_local_ring_hom (PresheafedSpace.stalk_map f x) }
instance : quiver LocallyRingedSpace := ⟨hom⟩
@[ext] lemma hom_ext {X Y : LocallyRingedSpace} (f g : hom X Y) (w : f.1 = g.1) : f = g :=
subtype.eq w
/--
The stalk of a locally ringed space, just as a `CommRing`.
-/
-- TODO perhaps we should make a bundled `LocalRing` and return one here?
-- TODO define `sheaf.stalk` so we can write `X.𝒪.stalk` here?
noncomputable
def stalk (X : LocallyRingedSpace) (x : X) : CommRing := X.presheaf.stalk x
/--
A morphism of locally ringed spaces `f : X ⟶ Y` induces
a local ring homomorphism from `Y.stalk (f x)` to `X.stalk x` for any `x : X`.
-/
noncomputable
def stalk_map {X Y : LocallyRingedSpace} (f : X ⟶ Y) (x : X) :
Y.stalk (f.1.1 x) ⟶ X.stalk x :=
PresheafedSpace.stalk_map f.1 x
instance {X Y : LocallyRingedSpace} (f : X ⟶ Y) (x : X) :
is_local_ring_hom (stalk_map f x) := f.2 x
instance {X Y : LocallyRingedSpace} (f : X ⟶ Y) (x : X) :
is_local_ring_hom (PresheafedSpace.stalk_map f.1 x) := f.2 x
/-- The identity morphism on a locally ringed space. -/
@[simps]
def id (X : LocallyRingedSpace) : hom X X :=
⟨𝟙 _, λ x, by { erw PresheafedSpace.stalk_map.id, apply is_local_ring_hom_id, }⟩
instance (X : LocallyRingedSpace) : inhabited (hom X X) := ⟨id X⟩
/-- Composition of morphisms of locally ringed spaces. -/
@[simps]
def comp {X Y Z : LocallyRingedSpace} (f : hom X Y) (g : hom Y Z) : hom X Z :=
⟨f.val ≫ g.val, λ x,
begin
erw PresheafedSpace.stalk_map.comp,
exact @is_local_ring_hom_comp _ _ _ _ _ _ _ _ (f.2 _) (g.2 _),
end⟩
/-- The category of locally ringed spaces. -/
instance : category LocallyRingedSpace :=
{ hom := hom,
id := id,
comp := λ X Y Z f g, comp f g,
comp_id' := by { intros, ext1, simp, },
id_comp' := by { intros, ext1, simp, },
assoc' := by { intros, ext1, simp, }, }.
/-- The forgetful functor from `LocallyRingedSpace` to `SheafedSpace CommRing`. -/
@[simps] def forget_to_SheafedSpace : LocallyRingedSpace ⥤ SheafedSpace CommRing :=
{ obj := λ X, X.to_SheafedSpace,
map := λ X Y f, f.1, }
instance : faithful forget_to_SheafedSpace := {}
/-- The forgetful functor from `LocallyRingedSpace` to `Top`. -/
@[simps]
def forget_to_Top : LocallyRingedSpace ⥤ Top :=
forget_to_SheafedSpace ⋙ SheafedSpace.forget _
@[simp] lemma comp_val {X Y Z : LocallyRingedSpace} (f : X ⟶ Y) (g : Y ⟶ Z) :
(f ≫ g).val = f.val ≫ g.val := rfl
@[simp] lemma comp_val_c {X Y Z : LocallyRingedSpace} (f : X ⟶ Y) (g : Y ⟶ Z) :
(f ≫ g).val.c = g.val.c ≫ (presheaf.pushforward _ g.val.base).map f.val.c := rfl
lemma comp_val_c_app {X Y Z : LocallyRingedSpace} (f : X ⟶ Y) (g : Y ⟶ Z) (U : (opens Z)ᵒᵖ) :
(f ≫ g).val.c.app U = g.val.c.app U ≫ f.val.c.app (op $ (opens.map g.val.base).obj U.unop) :=
rfl
/--
Given two locally ringed spaces `X` and `Y`, an isomorphism between `X` and `Y` as _sheafed_
spaces can be lifted to a morphism `X ⟶ Y` as locally ringed spaces.
See also `iso_of_SheafedSpace_iso`.
-/
@[simps]
def hom_of_SheafedSpace_hom_of_is_iso {X Y : LocallyRingedSpace}
(f : X.to_SheafedSpace ⟶ Y.to_SheafedSpace) [is_iso f] : X ⟶ Y :=
subtype.mk f $ λ x,
-- Here we need to see that the stalk maps are really local ring homomorphisms.
-- This can be solved by type class inference, because stalk maps of isomorphisms are isomorphisms
-- and isomorphisms are local ring homomorphisms.
show is_local_ring_hom (PresheafedSpace.stalk_map
(SheafedSpace.forget_to_PresheafedSpace.map f) x),
by apply_instance
/--
Given two locally ringed spaces `X` and `Y`, an isomorphism between `X` and `Y` as _sheafed_
spaces can be lifted to an isomorphism `X ⟶ Y` as locally ringed spaces.
This is related to the property that the functor `forget_to_SheafedSpace` reflects isomorphisms.
In fact, it is slightly stronger as we do not require `f` to come from a morphism between
_locally_ ringed spaces.
-/
def iso_of_SheafedSpace_iso {X Y : LocallyRingedSpace}
(f : X.to_SheafedSpace ≅ Y.to_SheafedSpace) : X ≅ Y :=
{ hom := hom_of_SheafedSpace_hom_of_is_iso f.hom,
inv := hom_of_SheafedSpace_hom_of_is_iso f.inv,
hom_inv_id' := hom_ext _ _ f.hom_inv_id,
inv_hom_id' := hom_ext _ _ f.inv_hom_id }
instance : reflects_isomorphisms forget_to_SheafedSpace :=
{ reflects := λ X Y f i,
{ out := by exactI
⟨hom_of_SheafedSpace_hom_of_is_iso (category_theory.inv (forget_to_SheafedSpace.map f)),
hom_ext _ _ (is_iso.hom_inv_id _), hom_ext _ _ (is_iso.inv_hom_id _)⟩ } }
instance is_SheafedSpace_iso {X Y : LocallyRingedSpace} (f : X ⟶ Y) [is_iso f] :
is_iso f.1 :=
LocallyRingedSpace.forget_to_SheafedSpace.map_is_iso f
/--
The restriction of a locally ringed space along an open embedding.
-/
@[simps]
def restrict {U : Top} (X : LocallyRingedSpace) {f : U ⟶ X.to_Top}
(h : open_embedding f) : LocallyRingedSpace :=
{ local_ring :=
begin
intro x,
dsimp at *,
-- We show that the stalk of the restriction is isomorphic to the original stalk,
apply @ring_equiv.local_ring _ _ _ (X.local_ring (f x)),
exact (X.to_PresheafedSpace.restrict_stalk_iso h x).symm.CommRing_iso_to_ring_equiv,
end,
to_SheafedSpace := X.to_SheafedSpace.restrict h }
/-- The canonical map from the restriction to the supspace. -/
def of_restrict {U : Top} (X : LocallyRingedSpace) {f : U ⟶ X.to_Top}
(h : open_embedding f) : X.restrict h ⟶ X :=
⟨X.to_PresheafedSpace.of_restrict h, λ x, infer_instance⟩
/--
The restriction of a locally ringed space `X` to the top subspace is isomorphic to `X` itself.
-/
def restrict_top_iso (X : LocallyRingedSpace) :
X.restrict (opens.open_embedding ⊤) ≅ X :=
@iso_of_SheafedSpace_iso (X.restrict (opens.open_embedding ⊤)) X
X.to_SheafedSpace.restrict_top_iso
/--
The global sections, notated Gamma.
-/
def Γ : LocallyRingedSpaceᵒᵖ ⥤ CommRing :=
forget_to_SheafedSpace.op ⋙ SheafedSpace.Γ
lemma Γ_def : Γ = forget_to_SheafedSpace.op ⋙ SheafedSpace.Γ := rfl
@[simp] lemma Γ_obj (X : LocallyRingedSpaceᵒᵖ) : Γ.obj X = (unop X).presheaf.obj (op ⊤) := rfl
lemma Γ_obj_op (X : LocallyRingedSpace) : Γ.obj (op X) = X.presheaf.obj (op ⊤) := rfl
@[simp] lemma Γ_map {X Y : LocallyRingedSpaceᵒᵖ} (f : X ⟶ Y) :
Γ.map f = f.unop.1.c.app (op ⊤) := rfl
lemma Γ_map_op {X Y : LocallyRingedSpace} (f : X ⟶ Y) :
Γ.map f.op = f.1.c.app (op ⊤) := rfl
lemma preimage_basic_open {X Y : LocallyRingedSpace} (f : X ⟶ Y) {U : opens Y}
(s : Y.presheaf.obj (op U)) :
(opens.map f.1.base).obj (Y.to_RingedSpace.basic_open s) =
@RingedSpace.basic_open X.to_RingedSpace ((opens.map f.1.base).obj U) (f.1.c.app _ s) :=
begin
ext,
split,
{ rintros ⟨⟨y, hyU⟩, (hy : is_unit _), (rfl : y = _)⟩,
erw RingedSpace.mem_basic_open _ _ ⟨x, show x ∈ (opens.map f.1.base).obj U, from hyU⟩,
rw ← PresheafedSpace.stalk_map_germ_apply,
exact (PresheafedSpace.stalk_map f.1 _).is_unit_map hy },
{ rintros ⟨y, (hy : is_unit _), rfl⟩,
erw RingedSpace.mem_basic_open _ _ ⟨f.1.base y.1, y.2⟩,
rw ← PresheafedSpace.stalk_map_germ_apply at hy,
exact (is_unit_map_iff (PresheafedSpace.stalk_map f.1 _) _).mp hy }
end
-- This actually holds for all ringed spaces with nontrivial stalks.
@[simp] lemma basic_open_zero (X : LocallyRingedSpace) (U : opens X.carrier) :
X.to_RingedSpace.basic_open (0 : X.presheaf.obj $ op U) = ∅ :=
begin
ext,
simp only [set.mem_empty_eq, topological_space.opens.empty_eq, topological_space.opens.mem_coe,
opens.coe_bot, iff_false, RingedSpace.basic_open, is_unit_zero_iff, set.mem_set_of_eq,
map_zero],
rintro ⟨⟨y, _⟩, h, e⟩,
exact @zero_ne_one (X.presheaf.stalk y) _ _ h,
end
instance component_nontrivial (X : LocallyRingedSpace) (U : opens X.carrier)
[hU : nonempty U] : nontrivial (X.presheaf.obj $ op U) :=
(X.to_PresheafedSpace.presheaf.germ hU.some).domain_nontrivial
end LocallyRingedSpace
end algebraic_geometry
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.