blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
7
139
content_id
stringlengths
40
40
detected_licenses
listlengths
0
16
license_type
stringclasses
2 values
repo_name
stringlengths
7
55
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
6 values
visit_date
int64
1,471B
1,694B
revision_date
int64
1,378B
1,694B
committer_date
int64
1,378B
1,694B
github_id
float64
1.33M
604M
star_events_count
int64
0
43.5k
fork_events_count
int64
0
1.5k
gha_license_id
stringclasses
6 values
gha_event_created_at
int64
1,402B
1,695B
gha_created_at
int64
1,359B
1,637B
gha_language
stringclasses
19 values
src_encoding
stringclasses
2 values
language
stringclasses
1 value
is_vendor
bool
1 class
is_generated
bool
1 class
length_bytes
int64
3
6.4M
extension
stringclasses
4 values
content
stringlengths
3
6.12M
3e80d8c0e82e6d4c9fdc71f1082cf604df5f8108
8cae430f0a71442d02dbb1cbb14073b31048e4b0
/src/data/enat/lattice.lean
887e933c7a73ce42c0c715bd2de713b7e0297236
[ "Apache-2.0" ]
permissive
leanprover-community/mathlib
56a2cadd17ac88caf4ece0a775932fa26327ba0e
442a83d738cb208d3600056c489be16900ba701d
refs/heads/master
1,693,584,102,358
1,693,471,902,000
1,693,471,902,000
97,922,418
1,595
352
Apache-2.0
1,694,693,445,000
1,500,624,130,000
Lean
UTF-8
Lean
false
false
502
lean
/- Copyright (c) 2022 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov -/ import data.nat.lattice import data.enat.basic /-! # Extended natural numbers form a complete linear order > THIS FILE IS SYNCHRONIZED WITH MATHLIB4. > Any changes to this file require a corresponding PR to mathlib4. This instance is not in `data.enat.basic` to avoid dependency on `finset`s. -/ attribute [derive complete_linear_order] enat
80e0864c3775c2f8d65755e2b56c2e2e5fe3316a
d406927ab5617694ec9ea7001f101b7c9e3d9702
/src/category_theory/natural_isomorphism.lean
c3f7d795d66638469cb2bfb65ca8b3f4162f4567
[ "Apache-2.0" ]
permissive
alreadydone/mathlib
dc0be621c6c8208c581f5170a8216c5ba6721927
c982179ec21091d3e102d8a5d9f5fe06c8fafb73
refs/heads/master
1,685,523,275,196
1,670,184,141,000
1,670,184,141,000
287,574,545
0
0
Apache-2.0
1,670,290,714,000
1,597,421,623,000
Lean
UTF-8
Lean
false
false
8,129
lean
/- Copyright (c) 2017 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Tim Baumann, Stephen Morgan, Scott Morrison, Floris van Doorn -/ import category_theory.functor.category import category_theory.isomorphism /-! # Natural isomorphisms For the most part, natural isomorphisms are just another sort of isomorphism. We provide some special support for extracting components: * if `α : F ≅ G`, then `a.app X : F.obj X ≅ G.obj X`, and building natural isomorphisms from components: * ``` nat_iso.of_components (app : ∀ X : C, F.obj X ≅ G.obj X) (naturality : ∀ {X Y : C} (f : X ⟶ Y), F.map f ≫ (app Y).hom = (app X).hom ≫ G.map f) : F ≅ G ``` only needing to check naturality in one direction. ## Implementation Note that `nat_iso` is a namespace without a corresponding definition; we put some declarations that are specifically about natural isomorphisms in the `iso` namespace so that they are available using dot notation. -/ open category_theory -- declare the `v`'s first; see `category_theory.category` for an explanation universes v₁ v₂ v₃ v₄ u₁ u₂ u₃ u₄ namespace category_theory open nat_trans variables {C : Type u₁} [category.{v₁} C] {D : Type u₂} [category.{v₂} D] {E : Type u₃} [category.{v₃} E] namespace iso /-- The application of a natural isomorphism to an object. We put this definition in a different namespace, so that we can use `α.app` -/ @[simps] def app {F G : C ⥤ D} (α : F ≅ G) (X : C) : F.obj X ≅ G.obj X := { hom := α.hom.app X, inv := α.inv.app X, hom_inv_id' := begin rw [← comp_app, iso.hom_inv_id], refl end, inv_hom_id' := begin rw [← comp_app, iso.inv_hom_id], refl end } @[simp, reassoc] lemma hom_inv_id_app {F G : C ⥤ D} (α : F ≅ G) (X : C) : α.hom.app X ≫ α.inv.app X = 𝟙 (F.obj X) := congr_fun (congr_arg nat_trans.app α.hom_inv_id) X @[simp, reassoc] lemma inv_hom_id_app {F G : C ⥤ D} (α : F ≅ G) (X : C) : α.inv.app X ≫ α.hom.app X = 𝟙 (G.obj X) := congr_fun (congr_arg nat_trans.app α.inv_hom_id) X end iso namespace nat_iso open category_theory.category category_theory.functor @[simp] lemma trans_app {F G H : C ⥤ D} (α : F ≅ G) (β : G ≅ H) (X : C) : (α ≪≫ β).app X = α.app X ≪≫ β.app X := rfl lemma app_hom {F G : C ⥤ D} (α : F ≅ G) (X : C) : (α.app X).hom = α.hom.app X := rfl lemma app_inv {F G : C ⥤ D} (α : F ≅ G) (X : C) : (α.app X).inv = α.inv.app X := rfl variables {F G : C ⥤ D} instance hom_app_is_iso (α : F ≅ G) (X : C) : is_iso (α.hom.app X) := ⟨⟨α.inv.app X, ⟨by rw [←comp_app, iso.hom_inv_id, ←id_app], by rw [←comp_app, iso.inv_hom_id, ←id_app]⟩⟩⟩ instance inv_app_is_iso (α : F ≅ G) (X : C) : is_iso (α.inv.app X) := ⟨⟨α.hom.app X, ⟨by rw [←comp_app, iso.inv_hom_id, ←id_app], by rw [←comp_app, iso.hom_inv_id, ←id_app]⟩⟩⟩ section /-! Unfortunately we need a separate set of cancellation lemmas for components of natural isomorphisms, because the `simp` normal form is `α.hom.app X`, rather than `α.app.hom X`. (With the later, the morphism would be visibly part of an isomorphism, so general lemmas about isomorphisms would apply.) In the future, we should consider a redesign that changes this simp norm form, but for now it breaks too many proofs. -/ variables (α : F ≅ G) @[simp] lemma cancel_nat_iso_hom_left {X : C} {Z : D} (g g' : G.obj X ⟶ Z) : α.hom.app X ≫ g = α.hom.app X ≫ g' ↔ g = g' := by simp only [cancel_epi] @[simp] lemma cancel_nat_iso_inv_left {X : C} {Z : D} (g g' : F.obj X ⟶ Z) : α.inv.app X ≫ g = α.inv.app X ≫ g' ↔ g = g' := by simp only [cancel_epi] @[simp] lemma cancel_nat_iso_hom_right {X : D} {Y : C} (f f' : X ⟶ F.obj Y) : f ≫ α.hom.app Y = f' ≫ α.hom.app Y ↔ f = f' := by simp only [cancel_mono] @[simp] lemma cancel_nat_iso_inv_right {X : D} {Y : C} (f f' : X ⟶ G.obj Y) : f ≫ α.inv.app Y = f' ≫ α.inv.app Y ↔ f = f' := by simp only [cancel_mono] @[simp] lemma cancel_nat_iso_hom_right_assoc {W X X' : D} {Y : C} (f : W ⟶ X) (g : X ⟶ F.obj Y) (f' : W ⟶ X') (g' : X' ⟶ F.obj Y) : f ≫ g ≫ α.hom.app Y = f' ≫ g' ≫ α.hom.app Y ↔ f ≫ g = f' ≫ g' := by simp only [←category.assoc, cancel_mono] @[simp] lemma cancel_nat_iso_inv_right_assoc {W X X' : D} {Y : C} (f : W ⟶ X) (g : X ⟶ G.obj Y) (f' : W ⟶ X') (g' : X' ⟶ G.obj Y) : f ≫ g ≫ α.inv.app Y = f' ≫ g' ≫ α.inv.app Y ↔ f ≫ g = f' ≫ g' := by simp only [←category.assoc, cancel_mono] @[simp] lemma inv_inv_app {F G : C ⥤ D} (e : F ≅ G) (X : C) : inv (e.inv.app X) = e.hom.app X := by { ext, simp } end variables {X Y : C} lemma naturality_1 (α : F ≅ G) (f : X ⟶ Y) : α.inv.app X ≫ F.map f ≫ α.hom.app Y = G.map f := by simp lemma naturality_2 (α : F ≅ G) (f : X ⟶ Y) : α.hom.app X ≫ G.map f ≫ α.inv.app Y = F.map f := by simp lemma naturality_1' (α : F ⟶ G) (f : X ⟶ Y) [is_iso (α.app X)] : inv (α.app X) ≫ F.map f ≫ α.app Y = G.map f := by simp @[simp, reassoc] lemma naturality_2' (α : F ⟶ G) (f : X ⟶ Y) [is_iso (α.app Y)] : α.app X ≫ G.map f ≫ inv (α.app Y) = F.map f := by rw [←category.assoc, ←naturality, category.assoc, is_iso.hom_inv_id, category.comp_id] /-- The components of a natural isomorphism are isomorphisms. -/ instance is_iso_app_of_is_iso (α : F ⟶ G) [is_iso α] (X) : is_iso (α.app X) := ⟨⟨(inv α).app X, ⟨congr_fun (congr_arg nat_trans.app (is_iso.hom_inv_id α)) X, congr_fun (congr_arg nat_trans.app (is_iso.inv_hom_id α)) X⟩⟩⟩ @[simp] lemma is_iso_inv_app (α : F ⟶ G) [is_iso α] (X) : (inv α).app X = inv (α.app X) := by { ext, rw ←nat_trans.comp_app, simp, } @[simp] lemma inv_map_inv_app (F : C ⥤ D ⥤ E) {X Y : C} (e : X ≅ Y) (Z : D) : inv ((F.map e.inv).app Z) = (F.map e.hom).app Z := by { ext, simp, } /-- Construct a natural isomorphism between functors by giving object level isomorphisms, and checking naturality only in the forward direction. -/ @[simps] def of_components (app : ∀ X : C, F.obj X ≅ G.obj X) (naturality : ∀ {X Y : C} (f : X ⟶ Y), F.map f ≫ (app Y).hom = (app X).hom ≫ G.map f) : F ≅ G := { hom := { app := λ X, (app X).hom }, inv := { app := λ X, (app X).inv, naturality' := λ X Y f, begin have h := congr_arg (λ f, (app X).inv ≫ (f ≫ (app Y).inv)) (naturality f).symm, simp only [iso.inv_hom_id_assoc, iso.hom_inv_id, assoc, comp_id, cancel_mono] at h, exact h end }, } @[simp] lemma of_components.app (app' : ∀ X : C, F.obj X ≅ G.obj X) (naturality) (X) : (of_components app' naturality).app X = app' X := by tidy /-- A natural transformation is an isomorphism if all its components are isomorphisms. -/ -- Making this an instance would cause a typeclass inference loop with `is_iso_app_of_is_iso`. lemma is_iso_of_is_iso_app (α : F ⟶ G) [∀ X : C, is_iso (α.app X)] : is_iso α := ⟨(is_iso.of_iso (of_components (λ X, as_iso (α.app X)) (by tidy))).1⟩ /-- Horizontal composition of natural isomorphisms. -/ @[simps] def hcomp {F G : C ⥤ D} {H I : D ⥤ E} (α : F ≅ G) (β : H ≅ I) : F ⋙ H ≅ G ⋙ I := begin refine ⟨α.hom ◫ β.hom, α.inv ◫ β.inv, _, _⟩, { ext, rw [←nat_trans.exchange], simp, refl }, ext, rw [←nat_trans.exchange], simp, refl end lemma is_iso_map_iff {F₁ F₂ : C ⥤ D} (e : F₁ ≅ F₂) {X Y : C} (f : X ⟶ Y) : is_iso (F₁.map f) ↔ is_iso (F₂.map f) := begin revert F₁ F₂, suffices : ∀ {F₁ F₂ : C ⥤ D} (e : F₁ ≅ F₂) (hf : is_iso (F₁.map f)), is_iso (F₂.map f), { exact λ F₁ F₂ e, ⟨this e, this e.symm⟩, }, introsI F₁ F₂ e hf, refine is_iso.mk ⟨e.inv.app Y ≫ inv (F₁.map f) ≫ e.hom.app X, _, _⟩, { simp only [nat_trans.naturality_assoc, is_iso.hom_inv_id_assoc, iso.inv_hom_id_app], }, { simp only [assoc, ← e.hom.naturality, is_iso.inv_hom_id_assoc, iso.inv_hom_id_app], }, end end nat_iso end category_theory
c58084ed3b98307637e5173239370cd46e9f92b0
6dc0c8ce7a76229dd81e73ed4474f15f88a9e294
/src/Lean/Parser/Extension.lean
83554712ef34a512c3c459eb892bed836ac555e6
[ "Apache-2.0" ]
permissive
williamdemeo/lean4
72161c58fe65c3ad955d6a3050bb7d37c04c0d54
6d00fcf1d6d873e195f9220c668ef9c58e9c4a35
refs/heads/master
1,678,305,356,877
1,614,708,995,000
1,614,708,995,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
26,249
lean
/- Copyright (c) 2020 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura, Sebastian Ullrich -/ import Lean.ScopedEnvExtension import Lean.Parser.Basic import Lean.Parser.StrInterpolation import Lean.KeyedDeclsAttribute /-! Extensible parsing via attributes -/ namespace Lean namespace Parser builtin_initialize builtinTokenTable : IO.Ref TokenTable ← IO.mkRef {} /- Global table with all SyntaxNodeKind's -/ builtin_initialize builtinSyntaxNodeKindSetRef : IO.Ref SyntaxNodeKindSet ← IO.mkRef {} def registerBuiltinNodeKind (k : SyntaxNodeKind) : IO Unit := builtinSyntaxNodeKindSetRef.modify fun s => s.insert k builtin_initialize registerBuiltinNodeKind choiceKind registerBuiltinNodeKind identKind registerBuiltinNodeKind strLitKind registerBuiltinNodeKind numLitKind registerBuiltinNodeKind scientificLitKind registerBuiltinNodeKind charLitKind registerBuiltinNodeKind nameLitKind builtin_initialize builtinParserCategoriesRef : IO.Ref ParserCategories ← IO.mkRef {} private def throwParserCategoryAlreadyDefined {α} (catName : Name) : ExceptT String Id α := throw s!"parser category '{catName}' has already been defined" private def addParserCategoryCore (categories : ParserCategories) (catName : Name) (initial : ParserCategory) : Except String ParserCategories := if categories.contains catName then throwParserCategoryAlreadyDefined catName else pure $ categories.insert catName initial /-- All builtin parser categories are Pratt's parsers -/ private def addBuiltinParserCategory (catName : Name) (behavior : LeadingIdentBehavior) : IO Unit := do let categories ← builtinParserCategoriesRef.get let categories ← IO.ofExcept $ addParserCategoryCore categories catName { tables := {}, behavior := behavior} builtinParserCategoriesRef.set categories namespace ParserExtension inductive OLeanEntry where | token (val : Token) : OLeanEntry | kind (val : SyntaxNodeKind) : OLeanEntry | category (catName : Name) (behavior : LeadingIdentBehavior) | parser (catName : Name) (declName : Name) (prio : Nat) : OLeanEntry deriving Inhabited inductive Entry where | token (val : Token) : Entry | kind (val : SyntaxNodeKind) : Entry | category (catName : Name) (behavior : LeadingIdentBehavior) | parser (catName : Name) (declName : Name) (leading : Bool) (p : Parser) (prio : Nat) : Entry deriving Inhabited def Entry.toOLeanEntry : Entry → OLeanEntry | token v => OLeanEntry.token v | kind v => OLeanEntry.kind v | category c b => OLeanEntry.category c b | parser c d _ _ prio => OLeanEntry.parser c d prio structure State where tokens : TokenTable := {} kinds : SyntaxNodeKindSet := {} categories : ParserCategories := {} deriving Inhabited end ParserExtension open ParserExtension in abbrev ParserExtension := ScopedEnvExtension OLeanEntry Entry State private def ParserExtension.mkInitial : IO ParserExtension.State := do let tokens ← builtinTokenTable.get let kinds ← builtinSyntaxNodeKindSetRef.get let categories ← builtinParserCategoriesRef.get pure { tokens := tokens, kinds := kinds, categories := categories } private def addTokenConfig (tokens : TokenTable) (tk : Token) : Except String TokenTable := do if tk == "" then throw "invalid empty symbol" else match tokens.find? tk with | none => pure $ tokens.insert tk tk | some _ => pure tokens def throwUnknownParserCategory {α} (catName : Name) : ExceptT String Id α := throw s!"unknown parser category '{catName}'" abbrev getCategory (categories : ParserCategories) (catName : Name) : Option ParserCategory := categories.find? catName def addLeadingParser (categories : ParserCategories) (catName : Name) (parserName : Name) (p : Parser) (prio : Nat) : Except String ParserCategories := match getCategory categories catName with | none => throwUnknownParserCategory catName | some cat => let addTokens (tks : List Token) : Except String ParserCategories := let tks := tks.map $ fun tk => Name.mkSimple tk let tables := tks.eraseDups.foldl (fun (tables : PrattParsingTables) tk => { tables with leadingTable := tables.leadingTable.insert tk (p, prio) }) cat.tables pure $ categories.insert catName { cat with tables := tables } match p.info.firstTokens with | FirstTokens.tokens tks => addTokens tks | FirstTokens.optTokens tks => addTokens tks | _ => let tables := { cat.tables with leadingParsers := (p, prio) :: cat.tables.leadingParsers } pure $ categories.insert catName { cat with tables := tables } private def addTrailingParserAux (tables : PrattParsingTables) (p : TrailingParser) (prio : Nat) : PrattParsingTables := let addTokens (tks : List Token) : PrattParsingTables := let tks := tks.map fun tk => Name.mkSimple tk tks.eraseDups.foldl (fun (tables : PrattParsingTables) tk => { tables with trailingTable := tables.trailingTable.insert tk (p, prio) }) tables match p.info.firstTokens with | FirstTokens.tokens tks => addTokens tks | FirstTokens.optTokens tks => addTokens tks | _ => { tables with trailingParsers := (p, prio) :: tables.trailingParsers } def addTrailingParser (categories : ParserCategories) (catName : Name) (p : TrailingParser) (prio : Nat) : Except String ParserCategories := match getCategory categories catName with | none => throwUnknownParserCategory catName | some cat => pure $ categories.insert catName { cat with tables := addTrailingParserAux cat.tables p prio } def addParser (categories : ParserCategories) (catName : Name) (declName : Name) (leading : Bool) (p : Parser) (prio : Nat) : Except String ParserCategories := match leading, p with | true, p => addLeadingParser categories catName declName p prio | false, p => addTrailingParser categories catName p prio def addParserTokens (tokenTable : TokenTable) (info : ParserInfo) : Except String TokenTable := let newTokens := info.collectTokens [] newTokens.foldlM addTokenConfig tokenTable private def updateBuiltinTokens (info : ParserInfo) (declName : Name) : IO Unit := do let tokenTable ← builtinTokenTable.swap {} match addParserTokens tokenTable info with | Except.ok tokenTable => builtinTokenTable.set tokenTable | Except.error msg => throw (IO.userError s!"invalid builtin parser '{declName}', {msg}") def addBuiltinParser (catName : Name) (declName : Name) (leading : Bool) (p : Parser) (prio : Nat) : IO Unit := do let p := evalInsideQuot declName p let categories ← builtinParserCategoriesRef.get let categories ← IO.ofExcept $ addParser categories catName declName leading p prio builtinParserCategoriesRef.set categories builtinSyntaxNodeKindSetRef.modify p.info.collectKinds updateBuiltinTokens p.info declName def addBuiltinLeadingParser (catName : Name) (declName : Name) (p : Parser) (prio : Nat) : IO Unit := addBuiltinParser catName declName true p prio def addBuiltinTrailingParser (catName : Name) (declName : Name) (p : TrailingParser) (prio : Nat) : IO Unit := addBuiltinParser catName declName false p prio def ParserExtension.addEntryImpl (s : State) (e : Entry) : State := match e with | Entry.token tk => match addTokenConfig s.tokens tk with | Except.ok tokens => { s with tokens := tokens } | _ => unreachable! | Entry.kind k => { s with kinds := s.kinds.insert k } | Entry.category catName behavior => if s.categories.contains catName then s else { s with categories := s.categories.insert catName { tables := {}, behavior := behavior } } | Entry.parser catName declName leading parser prio => match addParser s.categories catName declName leading parser prio with | Except.ok categories => { s with categories := categories } | _ => unreachable! unsafe def mkParserOfConstantUnsafe (categories : ParserCategories) (constName : Name) (compileParserDescr : ParserDescr → ImportM Parser) : ImportM (Bool × Parser) := do let env := (← read).env let opts := (← read).opts match env.find? constName with | none => throw ↑s!"unknow constant '{constName}'" | some info => match info.type with | Expr.const `Lean.Parser.TrailingParser _ _ => let p ← IO.ofExcept $ env.evalConst Parser opts constName pure ⟨false, p⟩ | Expr.const `Lean.Parser.Parser _ _ => let p ← IO.ofExcept $ env.evalConst Parser opts constName pure ⟨true, p⟩ | Expr.const `Lean.ParserDescr _ _ => let d ← IO.ofExcept $ env.evalConst ParserDescr opts constName let p ← compileParserDescr d pure ⟨true, p⟩ | Expr.const `Lean.TrailingParserDescr _ _ => let d ← IO.ofExcept $ env.evalConst TrailingParserDescr opts constName let p ← compileParserDescr d pure ⟨false, p⟩ | _ => throw ↑s!"unexpected parser type at '{constName}' (`ParserDescr`, `TrailingParserDescr`, `Parser` or `TrailingParser` expected" @[implementedBy mkParserOfConstantUnsafe] constant mkParserOfConstantAux (categories : ParserCategories) (constName : Name) (compileParserDescr : ParserDescr → ImportM Parser) : ImportM (Bool × Parser) /- Parser aliases for making `ParserDescr` extensible -/ inductive AliasValue (α : Type) where | const (p : α) | unary (p : α → α) | binary (p : α → α → α) abbrev AliasTable (α) := NameMap (AliasValue α) def registerAliasCore {α} (mapRef : IO.Ref (AliasTable α)) (aliasName : Name) (value : AliasValue α) : IO Unit := do unless (← IO.initializing) do throw ↑"aliases can only be registered during initialization" if (← mapRef.get).contains aliasName then throw ↑s!"alias '{aliasName}' has already been declared" mapRef.modify (·.insert aliasName value) def getAlias {α} (mapRef : IO.Ref (AliasTable α)) (aliasName : Name) : IO (Option (AliasValue α)) := do return (← mapRef.get).find? aliasName def getConstAlias {α} (mapRef : IO.Ref (AliasTable α)) (aliasName : Name) : IO α := do match (← getAlias mapRef aliasName) with | some (AliasValue.const v) => pure v | some (AliasValue.unary _) => throw ↑s!"parser '{aliasName}' is not a constant, it takes one argument" | some (AliasValue.binary _) => throw ↑s!"parser '{aliasName}' is not a constant, it takes two arguments" | none => throw ↑s!"parser '{aliasName}' was not found" def getUnaryAlias {α} (mapRef : IO.Ref (AliasTable α)) (aliasName : Name) : IO (α → α) := do match (← getAlias mapRef aliasName) with | some (AliasValue.unary v) => pure v | some _ => throw ↑s!"parser '{aliasName}' does not take one argument" | none => throw ↑s!"parser '{aliasName}' was not found" def getBinaryAlias {α} (mapRef : IO.Ref (AliasTable α)) (aliasName : Name) : IO (α → α → α) := do match (← getAlias mapRef aliasName) with | some (AliasValue.binary v) => pure v | some _ => throw ↑s!"parser '{aliasName}' does not take two arguments" | none => throw ↑s!"parser '{aliasName}' was not found" abbrev ParserAliasValue := AliasValue Parser builtin_initialize parserAliasesRef : IO.Ref (NameMap ParserAliasValue) ← IO.mkRef {} -- Later, we define macro registerParserAlias! which registers a parser, formatter and parenthesizer def registerAlias (aliasName : Name) (p : ParserAliasValue) : IO Unit := do registerAliasCore parserAliasesRef aliasName p instance : Coe Parser ParserAliasValue := { coe := AliasValue.const } instance : Coe (Parser → Parser) ParserAliasValue := { coe := AliasValue.unary } instance : Coe (Parser → Parser → Parser) ParserAliasValue := { coe := AliasValue.binary } def isParserAlias (aliasName : Name) : IO Bool := do match (← getAlias parserAliasesRef aliasName) with | some _ => pure true | _ => pure false def ensureUnaryParserAlias (aliasName : Name) : IO Unit := discard $ getUnaryAlias parserAliasesRef aliasName def ensureBinaryParserAlias (aliasName : Name) : IO Unit := discard $ getBinaryAlias parserAliasesRef aliasName def ensureConstantParserAlias (aliasName : Name) : IO Unit := discard $ getConstAlias parserAliasesRef aliasName partial def compileParserDescr (categories : ParserCategories) (d : ParserDescr) : ImportM Parser := let rec visit : ParserDescr → ImportM Parser | ParserDescr.const n => getConstAlias parserAliasesRef n | ParserDescr.unary n d => return (← getUnaryAlias parserAliasesRef n) (← visit d) | ParserDescr.binary n d₁ d₂ => return (← getBinaryAlias parserAliasesRef n) (← visit d₁) (← visit d₂) | ParserDescr.node k prec d => return leadingNode k prec (← visit d) | ParserDescr.nodeWithAntiquot n k d => return nodeWithAntiquot n k (← visit d) (anonymous := true) | ParserDescr.sepBy p sep psep trail => return sepBy (← visit p) sep (← visit psep) trail | ParserDescr.sepBy1 p sep psep trail => return sepBy1 (← visit p) sep (← visit psep) trail | ParserDescr.trailingNode k prec d => return trailingNode k prec (← visit d) | ParserDescr.symbol tk => return symbol tk | ParserDescr.nonReservedSymbol tk includeIdent => return nonReservedSymbol tk includeIdent | ParserDescr.parser constName => do let (_, p) ← mkParserOfConstantAux categories constName visit; pure p | ParserDescr.cat catName prec => match getCategory categories catName with | some _ => pure $ categoryParser catName prec | none => IO.ofExcept $ throwUnknownParserCategory catName visit d def mkParserOfConstant (categories : ParserCategories) (constName : Name) : ImportM (Bool × Parser) := mkParserOfConstantAux categories constName (compileParserDescr categories) structure ParserAttributeHook where /- Called after a parser attribute is applied to a declaration. -/ postAdd (catName : Name) (declName : Name) (builtin : Bool) : AttrM Unit builtin_initialize parserAttributeHooks : IO.Ref (List ParserAttributeHook) ← IO.mkRef {} def registerParserAttributeHook (hook : ParserAttributeHook) : IO Unit := do parserAttributeHooks.modify fun hooks => hook::hooks def runParserAttributeHooks (catName : Name) (declName : Name) (builtin : Bool) : AttrM Unit := do let hooks ← parserAttributeHooks.get hooks.forM fun hook => hook.postAdd catName declName builtin builtin_initialize registerBuiltinAttribute { name := `runBuiltinParserAttributeHooks, descr := "explicitly run hooks normally activated by builtin parser attributes", add := fun decl stx persistent => do Attribute.Builtin.ensureNoArgs stx runParserAttributeHooks Name.anonymous decl (builtin := true) } builtin_initialize registerBuiltinAttribute { name := `runParserAttributeHooks, descr := "explicitly run hooks normally activated by parser attributes", add := fun decl stx persistent => do Attribute.Builtin.ensureNoArgs stx runParserAttributeHooks Name.anonymous decl (builtin := false) } private def ParserExtension.OLeanEntry.toEntry (s : State) : OLeanEntry → ImportM Entry | token tk => return Entry.token tk | kind k => return Entry.kind k | category c l => return Entry.category c l | parser catName declName prio => do let (leading, p) ← mkParserOfConstant s.categories declName Entry.parser catName declName leading p prio builtin_initialize parserExtension : ParserExtension ← registerScopedEnvExtension { name := `parserExt mkInitial := ParserExtension.mkInitial addEntry := ParserExtension.addEntryImpl toOLeanEntry := ParserExtension.Entry.toOLeanEntry ofOLeanEntry := ParserExtension.OLeanEntry.toEntry } def isParserCategory (env : Environment) (catName : Name) : Bool := (parserExtension.getState env).categories.contains catName def addParserCategory (env : Environment) (catName : Name) (behavior : LeadingIdentBehavior) : Except String Environment := do if isParserCategory env catName then throwParserCategoryAlreadyDefined catName else return parserExtension.addEntry env <| ParserExtension.Entry.category catName behavior def leadingIdentBehavior (env : Environment) (catName : Name) : LeadingIdentBehavior := match getCategory (parserExtension.getState env).categories catName with | none => LeadingIdentBehavior.default | some cat => cat.behavior def mkCategoryAntiquotParser (kind : Name) : Parser := mkAntiquot kind.toString none -- helper decl to work around inlining issue https://github.com/leanprover/lean4/commit/3f6de2af06dd9a25f62294129f64bc05a29ea912#r41340377 @[inline] private def mkCategoryAntiquotParserFn (kind : Name) : ParserFn := (mkCategoryAntiquotParser kind).fn def categoryParserFnImpl (catName : Name) : ParserFn := fun ctx s => let catName := if catName == `syntax then `stx else catName -- temporary Hack let categories := (parserExtension.getState ctx.env).categories match getCategory categories catName with | some cat => prattParser catName cat.tables cat.behavior (mkCategoryAntiquotParserFn catName) ctx s | none => s.mkUnexpectedError ("unknown parser category '" ++ toString catName ++ "'") @[builtinInit] def setCategoryParserFnRef : IO Unit := categoryParserFnRef.set categoryParserFnImpl def addToken (tk : Token) (kind : AttributeKind) : AttrM Unit := do -- Recall that `ParserExtension.addEntry` is pure, and assumes `addTokenConfig` does not fail. -- So, we must run it here to handle exception. discard <| ofExcept <| addTokenConfig (parserExtension.getState (← getEnv)).tokens tk parserExtension.add (ParserExtension.Entry.token tk) kind def addSyntaxNodeKind (env : Environment) (k : SyntaxNodeKind) : Environment := parserExtension.addEntry env <| ParserExtension.Entry.kind k def isValidSyntaxNodeKind (env : Environment) (k : SyntaxNodeKind) : Bool := let kinds := (parserExtension.getState env).kinds kinds.contains k def getSyntaxNodeKinds (env : Environment) : List SyntaxNodeKind := do let kinds := (parserExtension.getState env).kinds kinds.foldl (fun ks k _ => k::ks) [] def getTokenTable (env : Environment) : TokenTable := (parserExtension.getState env).tokens def mkInputContext (input : String) (fileName : String) : InputContext := { input := input, fileName := fileName, fileMap := input.toFileMap } def mkParserContext (ictx : InputContext) (pmctx : ParserModuleContext) : ParserContext := { prec := 0, toInputContext := ictx, toParserModuleContext := pmctx, tokens := getTokenTable pmctx.env } def mkParserState (input : String) : ParserState := { cache := initCacheForInput input } /- convenience function for testing -/ def runParserCategory (env : Environment) (catName : Name) (input : String) (fileName := "<input>") : Except String Syntax := let c := mkParserContext (mkInputContext input fileName) { env := env, options := {} } let s := mkParserState input let s := whitespace c s let s := categoryParserFnImpl catName c s if s.hasError then Except.error (s.toErrorMsg c) else if input.atEnd s.pos then Except.ok s.stxStack.back else Except.error ((s.mkError "end of input").toErrorMsg c) def declareBuiltinParser (env : Environment) (addFnName : Name) (catName : Name) (declName : Name) (prio : Nat) : IO Environment := let name := `_regBuiltinParser ++ declName let type := mkApp (mkConst `IO) (mkConst `Unit) let val := mkAppN (mkConst addFnName) #[toExpr catName, toExpr declName, mkConst declName, mkNatLit prio] let decl := Declaration.defnDecl { name := name, levelParams := [], type := type, value := val, hints := ReducibilityHints.opaque, safety := DefinitionSafety.safe } match env.addAndCompile {} decl with -- TODO: pretty print error | Except.error _ => throw (IO.userError ("failed to emit registration code for builtin parser '" ++ toString declName ++ "'")) | Except.ok env => IO.ofExcept (setBuiltinInitAttr env name) def declareLeadingBuiltinParser (env : Environment) (catName : Name) (declName : Name) (prio : Nat) : IO Environment := -- TODO: use CoreM? declareBuiltinParser env `Lean.Parser.addBuiltinLeadingParser catName declName prio def declareTrailingBuiltinParser (env : Environment) (catName : Name) (declName : Name) (prio : Nat) : IO Environment := -- TODO: use CoreM? declareBuiltinParser env `Lean.Parser.addBuiltinTrailingParser catName declName prio def getParserPriority (args : Syntax) : Except String Nat := match args.getNumArgs with | 0 => pure 0 | 1 => match (args.getArg 0).isNatLit? with | some prio => pure prio | none => throw "invalid parser attribute, numeral expected" | _ => throw "invalid parser attribute, no argument or numeral expected" private def BuiltinParserAttribute.add (attrName : Name) (catName : Name) (declName : Name) (stx : Syntax) (kind : AttributeKind) : AttrM Unit := do let prio ← Attribute.Builtin.getPrio stx unless kind == AttributeKind.global do throwError! "invalid attribute '{attrName}', must be global" let decl ← getConstInfo declName let env ← getEnv match decl.type with | Expr.const `Lean.Parser.TrailingParser _ _ => do let env ← declareTrailingBuiltinParser env catName declName prio setEnv env | Expr.const `Lean.Parser.Parser _ _ => do let env ← declareLeadingBuiltinParser env catName declName prio setEnv env | _ => throwError! "unexpected parser type at '{declName}' (`Parser` or `TrailingParser` expected)" runParserAttributeHooks catName declName (builtin := true) /- The parsing tables for builtin parsers are "stored" in the extracted source code. -/ def registerBuiltinParserAttribute (attrName : Name) (catName : Name) (behavior := LeadingIdentBehavior.default) : IO Unit := do addBuiltinParserCategory catName behavior registerBuiltinAttribute { name := attrName, descr := "Builtin parser", add := fun declName stx kind => liftM $ BuiltinParserAttribute.add attrName catName declName stx kind, applicationTime := AttributeApplicationTime.afterCompilation } private def ParserAttribute.add (attrName : Name) (catName : Name) (declName : Name) (stx : Syntax) (attrKind : AttributeKind) : AttrM Unit := do let prio ← Attribute.Builtin.getPrio stx let env ← getEnv let opts ← getOptions let categories := (parserExtension.getState env).categories let p ← mkParserOfConstant categories declName let leading := p.1 let parser := p.2 let tokens := parser.info.collectTokens [] tokens.forM fun token => do try addToken token attrKind catch | Exception.error ref msg => throwError! "invalid parser '{declName}', {msg}" | ex => throw ex let kinds := parser.info.collectKinds {} kinds.forM fun kind _ => modifyEnv fun env => addSyntaxNodeKind env kind let entry := ParserExtension.Entry.parser catName declName leading parser prio match addParser categories catName declName leading parser prio with | Except.error ex => throwError ex | Except.ok _ => parserExtension.add entry attrKind runParserAttributeHooks catName declName (builtin := false) def mkParserAttributeImpl (attrName : Name) (catName : Name) : AttributeImpl where name := attrName descr := "parser" add declName stx attrKind := ParserAttribute.add attrName catName declName stx attrKind applicationTime := AttributeApplicationTime.afterCompilation /- A builtin parser attribute that can be extended by users. -/ def registerBuiltinDynamicParserAttribute (attrName : Name) (catName : Name) : IO Unit := do registerBuiltinAttribute (mkParserAttributeImpl attrName catName) @[builtinInit] private def registerParserAttributeImplBuilder : IO Unit := registerAttributeImplBuilder `parserAttr fun args => match args with | [DataValue.ofName attrName, DataValue.ofName catName] => pure $ mkParserAttributeImpl attrName catName | _ => throw "invalid parser attribute implementation builder arguments" def registerParserCategory (env : Environment) (attrName : Name) (catName : Name) (behavior := LeadingIdentBehavior.default) : IO Environment := do let env ← IO.ofExcept $ addParserCategory env catName behavior registerAttributeOfBuilder env `parserAttr [DataValue.ofName attrName, DataValue.ofName catName] -- declare `termParser` here since it is used everywhere via antiquotations builtin_initialize registerBuiltinParserAttribute `builtinTermParser `term builtin_initialize registerBuiltinDynamicParserAttribute `termParser `term -- declare `commandParser` to break cyclic dependency builtin_initialize registerBuiltinParserAttribute `builtinCommandParser `command builtin_initialize registerBuiltinDynamicParserAttribute `commandParser `command @[inline] def commandParser (rbp : Nat := 0) : Parser := categoryParser `command rbp def notFollowedByCategoryTokenFn (catName : Name) : ParserFn := fun ctx s => let categories := (parserExtension.getState ctx.env).categories match getCategory categories catName with | none => s.mkUnexpectedError s!"unknown parser category '{catName}'" | some cat => let (s, stx) := peekToken ctx s match stx with | some (Syntax.atom _ sym) => if ctx.insideQuot && sym == "$" then s else match cat.tables.leadingTable.find? (Name.mkSimple sym) with | some _ => s.mkUnexpectedError (toString catName) | _ => s | _ => s @[inline] def notFollowedByCategoryToken (catName : Name) : Parser := { fn := notFollowedByCategoryTokenFn catName } abbrev notFollowedByCommandToken : Parser := notFollowedByCategoryToken `command abbrev notFollowedByTermToken : Parser := notFollowedByCategoryToken `term end Parser end Lean
14b78163bd218c36599fe7183aece2a24c83e2ec
4727251e0cd73359b15b664c3170e5d754078599
/src/geometry/manifold/algebra/lie_group.lean
f9a3408b9f97e5a8e98f589d7c570f60f9ae1570
[ "Apache-2.0" ]
permissive
Vierkantor/mathlib
0ea59ac32a3a43c93c44d70f441c4ee810ccceca
83bc3b9ce9b13910b57bda6b56222495ebd31c2f
refs/heads/master
1,658,323,012,449
1,652,256,003,000
1,652,256,003,000
209,296,341
0
1
Apache-2.0
1,568,807,655,000
1,568,807,655,000
null
UTF-8
Lean
false
false
6,026
lean
/- Copyright © 2020 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri -/ import geometry.manifold.algebra.monoid /-! # Lie groups A Lie group is a group that is also a smooth manifold, in which the group operations of multiplication and inversion are smooth maps. Smoothness of the group multiplication means that multiplication is a smooth mapping of the product manifold `G` × `G` into `G`. Note that, since a manifold here is not second-countable and Hausdorff a Lie group here is not guaranteed to be second-countable (even though it can be proved it is Hausdorff). Note also that Lie groups here are not necessarily finite dimensional. ## Main definitions and statements * `lie_add_group I G` : a Lie additive group where `G` is a manifold on the model with corners `I`. * `lie_group I G` : a Lie multiplicative group where `G` is a manifold on the model with corners `I`. * `normed_space_lie_add_group` : a normed vector space over a nondiscrete normed field is an additive Lie group. ## Implementation notes A priori, a Lie group here is a manifold with corners. The definition of Lie group cannot require `I : model_with_corners 𝕜 E E` with the same space as the model space and as the model vector space, as one might hope, beause in the product situation, the model space is `model_prod E E'` and the model vector space is `E × E'`, which are not the same, so the definition does not apply. Hence the definition should be more general, allowing `I : model_with_corners 𝕜 E H`. -/ noncomputable theory open_locale manifold /-- A Lie (additive) group is a group and a smooth manifold at the same time in which the addition and negation operations are smooth. -/ -- See note [Design choices about smooth algebraic structures] @[ancestor has_smooth_add] class lie_add_group {𝕜 : Type*} [nondiscrete_normed_field 𝕜] {H : Type*} [topological_space H] {E : Type*} [normed_group E] [normed_space 𝕜 E] (I : model_with_corners 𝕜 E H) (G : Type*) [add_group G] [topological_space G] [charted_space H G] extends has_smooth_add I G : Prop := (smooth_neg : smooth I I (λ a:G, -a)) /-- A Lie group is a group and a smooth manifold at the same time in which the multiplication and inverse operations are smooth. -/ -- See note [Design choices about smooth algebraic structures] @[ancestor has_smooth_mul, to_additive] class lie_group {𝕜 : Type*} [nondiscrete_normed_field 𝕜] {H : Type*} [topological_space H] {E : Type*} [normed_group E] [normed_space 𝕜 E] (I : model_with_corners 𝕜 E H) (G : Type*) [group G] [topological_space G] [charted_space H G] extends has_smooth_mul I G : Prop := (smooth_inv : smooth I I (λ a:G, a⁻¹)) section lie_group variables {𝕜 : Type*} [nondiscrete_normed_field 𝕜] {H : Type*} [topological_space H] {E : Type*} [normed_group E] [normed_space 𝕜 E] {I : model_with_corners 𝕜 E H} {F : Type*} [normed_group F] [normed_space 𝕜 F] {J : model_with_corners 𝕜 F F} {G : Type*} [topological_space G] [charted_space H G] [group G] [lie_group I G] {E' : Type*} [normed_group E'] [normed_space 𝕜 E'] {H' : Type*} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {M : Type*} [topological_space M] [charted_space H' M] {E'' : Type*} [normed_group E''] [normed_space 𝕜 E''] {H'' : Type*} [topological_space H''] {I'' : model_with_corners 𝕜 E'' H''} {M' : Type*} [topological_space M'] [charted_space H'' M'] section variable (I) @[to_additive] lemma smooth_inv : smooth I I (λ x : G, x⁻¹) := lie_group.smooth_inv /-- A Lie group is a topological group. This is not an instance for technical reasons, see note [Design choices about smooth algebraic structures]. -/ @[to_additive "An additive Lie group is an additive topological group. This is not an instance for technical reasons, see note [Design choices about smooth algebraic structures]."] lemma topological_group_of_lie_group : topological_group G := { continuous_inv := (smooth_inv I).continuous, .. has_continuous_mul_of_smooth I } end @[to_additive] lemma smooth.inv {f : M → G} (hf : smooth I' I f) : smooth I' I (λx, (f x)⁻¹) := (smooth_inv I).comp hf @[to_additive] lemma smooth_on.inv {f : M → G} {s : set M} (hf : smooth_on I' I f s) : smooth_on I' I (λx, (f x)⁻¹) s := (smooth_inv I).comp_smooth_on hf @[to_additive] lemma smooth.div {f g : M → G} (hf : smooth I' I f) (hg : smooth I' I g) : smooth I' I (f / g) := by { rw div_eq_mul_inv, exact ((smooth_mul I).comp (hf.prod_mk hg.inv) : _), } @[to_additive] lemma smooth_on.div {f g : M → G} {s : set M} (hf : smooth_on I' I f s) (hg : smooth_on I' I g s) : smooth_on I' I (f / g) s := by { rw div_eq_mul_inv, exact ((smooth_mul I).comp_smooth_on (hf.prod_mk hg.inv) : _), } end lie_group section prod_lie_group /- Instance of product group -/ @[to_additive] instance {𝕜 : Type*} [nondiscrete_normed_field 𝕜] {H : Type*} [topological_space H] {E : Type*} [normed_group E] [normed_space 𝕜 E] {I : model_with_corners 𝕜 E H} {G : Type*} [topological_space G] [charted_space H G] [group G] [lie_group I G] {E' : Type*} [normed_group E'] [normed_space 𝕜 E'] {H' : Type*} [topological_space H'] {I' : model_with_corners 𝕜 E' H'} {G' : Type*} [topological_space G'] [charted_space H' G'] [group G'] [lie_group I' G'] : lie_group (I.prod I') (G×G') := { smooth_inv := smooth_fst.inv.prod_mk smooth_snd.inv, ..has_smooth_mul.prod _ _ _ _ } end prod_lie_group /-! ### Normed spaces are Lie groups -/ instance normed_space_lie_add_group {𝕜 : Type*} [nondiscrete_normed_field 𝕜] {E : Type*} [normed_group E] [normed_space 𝕜 E] : lie_add_group (𝓘(𝕜, E)) E := { smooth_add := smooth_iff.2 ⟨continuous_add, λ x y, cont_diff_add.cont_diff_on⟩, smooth_neg := smooth_iff.2 ⟨continuous_neg, λ x y, cont_diff_neg.cont_diff_on⟩, .. model_space_smooth }
d871269c3ab73e12c6734eeaffba5453fe38c42e
12dabd587ce2621d9a4eff9f16e354d02e206c8e
/world10/level05.lean
96096f58bc7945654c4def5c866666859c1e4c53
[]
no_license
abdelq/natural-number-game
a1b5b8f1d52625a7addcefc97c966d3f06a48263
bbddadc6d2e78ece2e9acd40fa7702ecc2db75c2
refs/heads/master
1,668,606,478,691
1,594,175,058,000
1,594,175,058,000
278,673,209
0
1
null
null
null
null
UTF-8
Lean
false
false
175
lean
theorem le_trans (a b c : mynat) (hab : a ≤ b) (hbc : b ≤ c) : a ≤ c := begin cases hab, cases hbc, use (hab_w + hbc_w), rw ← add_assoc, rw hbc_h, rw hab_h, refl, end
060f1ec6be5b46b15338906b9ee5465d79b4b460
437dc96105f48409c3981d46fb48e57c9ac3a3e4
/src/tactic/norm_cast.lean
d891d9556febf826e3f6132b375c272445ae7ab4
[ "Apache-2.0" ]
permissive
dan-c-k/mathlib
08efec79bd7481ee6da9cc44c24a653bff4fbe0d
96efc220f6225bc7a5ed8349900391a33a38cc56
refs/heads/master
1,658,082,847,093
1,589,013,201,000
1,589,013,201,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
25,154
lean
/- Copyright (c) 2019 Paul-Nicolas Madelaine. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Paul-Nicolas Madelaine, Robert Y. Lewis Normalizing casts inside expressions. -/ import tactic.converter.interactive import tactic.hint /-! # A tactic for normalizing casts inside expressions This tactic normalizes casts inside expressions. It can be thought of as a call to the simplifier with a specific set of lemmas to move casts upwards in the expression. It has special handling of numerals and a simple heuristic to help moving casts "past" binary operators. Contrary to simp, it should be safe to use as a non-terminating tactic. The algorithm implemented here is described in the paper <https://lean-forward.github.io/norm_cast/norm_cast.pdf>. ## Important definitions * `tactic.interactive.norm_cast` * `tactic.interactive.push_cast` * `tactic.interactive.exact_mod_cast` * `tactic.interactive.apply_mod_cast` * `tactic.interactive.rw_mod_cast` * `tactic.interactive.assumption_mod_cast` -/ setup_tactic_parser namespace tactic /-- Runs `mk_instance` with a time limit. This is a work around to the fact that in some cases mk_instance times out instead of failing, for example: `has_lift_t ℤ ℕ` `mk_instance_fast` is used when we assume the type class search should end instantly. -/ meta def mk_instance_fast (e : expr) (timeout := 1000) : tactic expr := try_for timeout (mk_instance e) end tactic namespace norm_cast open tactic expr declare_trace norm_cast /-- Output a trace message if `trace.norm_cast` is enabled. -/ meta def trace_norm_cast {α} [has_to_tactic_format α] (msg : string) (a : α) : tactic unit := when_tracing `norm_cast $ do a ← pp a, trace ("[norm_cast] " ++ msg ++ a : format) mk_simp_attribute push_cast "The `push_cast` simp attribute uses `norm_cast` lemmas to move casts toward the leaf nodes of the expression." /-- `label` is a type used to classify `norm_cast` lemmas. * elim lemma: LHS has 0 head coes and ≥ 1 internal coe * move lemma: LHS has 1 head coe and 0 internal coes, RHS has 0 head coes and ≥ 1 internal coes * squash lemma: LHS has ≥ 1 head coes and 0 internal coes, RHS has fewer head coes -/ @[derive [decidable_eq, has_reflect, inhabited]] inductive label | elim : label | move : label | squash : label namespace label /-- Convert `label` into `string`. -/ protected def to_string : label → string | elim := "elim" | move := "move" | squash := "squash" instance : has_to_string label := ⟨label.to_string⟩ instance : has_repr label := ⟨label.to_string⟩ meta instance : has_to_format label := ⟨λ l, l.to_string⟩ /-- Convert `string` into `label`. -/ def of_string : string -> option label | "elim" := some elim | "move" := some move | "squash" := some squash | _ := none end label open label /-- Count how many coercions are at the top of the expression. -/ meta def count_head_coes : expr → ℕ | `(coe %%e) := count_head_coes e + 1 | `(coe_sort %%e) := count_head_coes e + 1 | `(coe_fn %%e) := count_head_coes e + 1 | _ := 0 /-- Count how many coercions are inside the expression, including the top ones. -/ meta def count_coes : expr → tactic ℕ | `(coe %%e) := (+1) <$> count_coes e | `(coe_sort %%e) := (+1) <$> count_coes e | `(coe_fn %%e) := (+1) <$> count_coes e | (app `(coe_fn %%e) x) := (+) <$> count_coes x <*> (+1) <$> count_coes e | (expr.lam n bi t e) := do l ← mk_local' n bi t, count_coes $ e.instantiate_var l | e := do as ← e.get_simp_args, list.sum <$> as.mmap count_coes /-- Count how many coercions are inside the expression, excluding the top ones. -/ private meta def count_internal_coes (e : expr) : tactic ℕ := do ncoes ← count_coes e, pure $ ncoes - count_head_coes e /-- Classifies a declaration of type `ty` as a `norm_cast` rule. -/ meta def classify_type (ty : expr) : tactic label := do (_, ty) ← mk_local_pis ty, (lhs, rhs) ← match ty with | `(%%lhs = %%rhs) := pure (lhs, rhs) | `(%%lhs ↔ %%rhs) := pure (lhs, rhs) | _ := fail "norm_cast: lemma must be = or ↔" end, lhs_coes ← count_coes lhs, when (lhs_coes = 0) $ fail "norm_cast: badly shaped lemma, lhs must contain at least one coe", let lhs_head_coes := count_head_coes lhs, lhs_internal_coes ← count_internal_coes lhs, let rhs_head_coes := count_head_coes rhs, rhs_internal_coes ← count_internal_coes rhs, if lhs_head_coes = 0 then return elim else if lhs_head_coes = 1 then do when (rhs_head_coes ≠ 0) $ fail "norm_cast: badly shaped lemma, rhs can't start with coe", if rhs_internal_coes = 0 then return squash else return move else if rhs_head_coes < lhs_head_coes then do return squash else do fail "norm_cast: badly shaped shaped squash lemma, rhs must have fewer head coes than lhs" /-- The cache for `norm_cast` attribute stores three `simp_lemma` objects. -/ meta structure norm_cast_cache := (up : simp_lemmas) (down : simp_lemmas) (squash : simp_lemmas) /-- Empty `norm_cast_cache`. -/ meta def empty_cache : norm_cast_cache := { up := simp_lemmas.mk, down := simp_lemmas.mk, squash := simp_lemmas.mk, } meta instance : inhabited norm_cast_cache := ⟨empty_cache⟩ /-- `add_elim cache e` adds `e` as an `elim` lemma to `cache`. -/ meta def add_elim (cache : norm_cast_cache) (e : expr) : tactic norm_cast_cache := do new_up ← simp_lemmas.add cache.up e, return { up := new_up, down := cache.down, squash := cache.squash, } /-- `add_move cache e` adds `e` as a `move` lemma to `cache`. -/ meta def add_move (cache : norm_cast_cache) (e : expr) : tactic norm_cast_cache := do ty ← infer_type e, new_up ← cache.up.add e tt, new_down ← simp_lemmas.add cache.down e, return { up := new_up, down := new_down, squash := cache.squash, } /-- `add_squash cache e` adds `e` as an `squash` lemma to `cache`. -/ meta def add_squash (cache : norm_cast_cache) (e : expr) : tactic norm_cast_cache := do new_squash ← simp_lemmas.add cache.squash e, new_down ← simp_lemmas.add cache.down e, return { up := cache.up, down := new_down, squash := new_squash, } /-- The type of the `norm_cast` attribute. The optional label is used to overwrite the classifier. -/ meta def norm_cast_attr_ty : Type := user_attribute norm_cast_cache (option label) /-- Efficient getter for the `@[norm_cast]` attribute parameter that does not call `eval_expr`. -/ meta def get_label_param (attr : norm_cast_attr_ty) (decl : name) : tactic (option label) := do p ← attr.get_param_untyped decl, match p with | `(none) := pure none | `(some label.elim) := pure label.elim | `(some label.move) := pure label.move | `(some label.squash) := pure label.squash | _ := fail p end /-- `add_lemma cache decl` infers the proper `norm_cast` attribute for `decl` and adds it to `cache`. -/ meta def add_lemma (attr : norm_cast_attr_ty) (cache : norm_cast_cache) (decl : name) : tactic norm_cast_cache := do e ← mk_const decl, param ← get_label_param attr decl, l ← param <|> (infer_type e >>= classify_type), match l with | elim := add_elim cache e | move := add_move cache e | squash := add_squash cache e end -- special lemmas to handle the ≥, > and ≠ operators private lemma ge_from_le {α} [has_le α] : ∀ (x y : α), x ≥ y ↔ y ≤ x := λ _ _, iff.rfl private lemma gt_from_lt {α} [has_lt α] : ∀ (x y : α), x > y ↔ y < x := λ _ _, iff.rfl private lemma ne_from_not_eq {α} : ∀ (x y : α), x ≠ y ↔ ¬(x = y) := λ _ _, iff.rfl /-- `mk_cache names` creates a `norm_cast_cache`. It infers the proper `norm_cast` attributes for names in `names`, and collects the lemmas attributed with specific `norm_cast` attributes. -/ meta def mk_cache (attr : thunk norm_cast_attr_ty) (names : list name) : tactic norm_cast_cache := do -- names has the declarations in reverse order cache ← names.mfoldr (λ name cache, add_lemma (attr ()) cache name) empty_cache, --some special lemmas to handle binary relations let up := cache.up, up ← up.add_simp ``ge_from_le, up ← up.add_simp ``gt_from_lt, up ← up.add_simp ``ne_from_not_eq, let down := cache.down, down ← down.add_simp ``coe_coe, pure { up := up, down := down, squash := cache.squash } /-- The `norm_cast` attribute. -/ @[user_attribute] meta def norm_cast_attr : user_attribute norm_cast_cache (option label) := { name := `norm_cast, descr := "attribute for norm_cast", parser := (do some l ← (label.of_string ∘ to_string) <$> ident, return l) <|> return none, after_set := some (λ decl prio persistent, do param ← get_label_param norm_cast_attr decl, match param with | some l := when (l ≠ elim) $ simp_attr.push_cast.set decl () tt | none := do e ← mk_const decl, ty ← infer_type e, l ← classify_type ty, norm_cast_attr.set decl l persistent prio end), before_unset := some $ λ _ _, tactic.skip, cache_cfg := { mk_cache := mk_cache norm_cast_attr, dependencies := [] } } /-- Classify a declaration as a `norm_cast` rule. -/ meta def make_guess (decl : name) : tactic label := do e ← mk_const decl, ty ← infer_type e, classify_type ty /-- Gets the `norm_cast` classification label for a declaration. Applies the override specified on the attribute, if necessary. -/ meta def get_label (decl : name) : tactic label := do param ← get_label_param norm_cast_attr decl, param <|> make_guess decl end norm_cast namespace tactic.interactive open norm_cast /-- `push_cast` rewrites the expression to move casts toward the leaf nodes. For example, `↑(a + b)` will be written to `↑a + ↑b`. Equivalent to `simp only with push_cast`. Can also be used at hypotheses. -/ meta def push_cast (l : parse location): tactic unit := tactic.interactive.simp none tt [] [`push_cast] l end tactic.interactive namespace norm_cast open tactic expr /-- Prove `a = b` using the given simp set. -/ meta def prove_eq_using (s : simp_lemmas) (a b : expr) : tactic expr := do (a', a_a') ← simplify s [] a {fail_if_unchanged := ff}, (b', b_b') ← simplify s [] b {fail_if_unchanged := ff}, on_exception (trace_norm_cast "failed: " (to_expr ``(%%a' = %%b') >>= pp)) $ is_def_eq a' b' reducible, b'_b ← mk_eq_symm b_b', mk_eq_trans a_a' b'_b /-- Prove `a = b` by simplifying using move and squash lemmas. -/ meta def prove_eq_using_down (a b : expr) : tactic expr := do cache ← norm_cast_attr.get_cache, trace_norm_cast "proving: " (to_expr ``(%%a = %%b) >>= pp), prove_eq_using cache.down a b /-- This is the main heuristic used alongside the elim and move lemmas. The goal is to help casts move past operators by adding intermediate casts. An expression of the shape: op (↑(x : α) : γ) (↑(y : β) : γ) is rewritten to: op (↑(↑(x : α) : β) : γ) (↑(y : β) : γ) when (↑(↑(x : α) : β) : γ) = (↑(x : α) : γ) can be proven with a squash lemma -/ meta def splitting_procedure : expr → tactic (expr × expr) | (app (app op x) y) := (do `(@coe %%α %%δ %%coe1 %%xx) ← return x, `(@coe %%β %%γ %%coe2 %%yy) ← return y, success_if_fail $ is_def_eq α β, is_def_eq δ γ, (do coe3 ← mk_app `has_lift_t [α, β] >>= mk_instance_fast, new_x ← to_expr ``(@coe %%β %%δ %%coe2 (@coe %%α %%β %%coe3 %%xx)), let new_e := app (app op new_x) y, eq_x ← prove_eq_using_down x new_x, pr ← mk_congr_arg op eq_x, pr ← mk_congr_fun pr y, return (new_e, pr) ) <|> (do coe3 ← mk_app `has_lift_t [β, α] >>= mk_instance_fast, new_y ← to_expr ``(@coe %%α %%δ %%coe1 (@coe %%β %%α %%coe3 %%yy)), let new_e := app (app op x) new_y, eq_y ← prove_eq_using_down y new_y, pr ← mk_congr_arg (app op x) eq_y, return (new_e, pr) ) ) <|> (do `(@coe %%α %%β %%coe1 %%xx) ← return x, `(@has_one.one %%β %%h1) ← return y, h2 ← to_expr ``(has_one %%α) >>= mk_instance_fast, new_y ← to_expr ``(@coe %%α %%β %%coe1 (@has_one.one %%α %%h2)), eq_y ← prove_eq_using_down y new_y, let new_e := app (app op x) new_y, pr ← mk_congr_arg (app op x) eq_y, return (new_e, pr) ) <|> (do `(@coe %%α %%β %%coe1 %%xx) ← return x, `(@has_zero.zero %%β %%h1) ← return y, h2 ← to_expr ``(has_zero %%α) >>= mk_instance_fast, new_y ← to_expr ``(@coe %%α %%β %%coe1 (@has_zero.zero %%α %%h2)), eq_y ← prove_eq_using_down y new_y, let new_e := app (app op x) new_y, pr ← mk_congr_arg (app op x) eq_y, return (new_e, pr) ) <|> (do `(@has_one.one %%β %%h1) ← return x, `(@coe %%α %%β %%coe1 %%xx) ← return y, h1 ← to_expr ``(has_one %%α) >>= mk_instance_fast, new_x ← to_expr ``(@coe %%α %%β %%coe1 (@has_one.one %%α %%h1)), eq_x ← prove_eq_using_down x new_x, let new_e := app (app op new_x) y, pr ← mk_congr_arg (lam `x binder_info.default β (app (app op (var 0)) y)) eq_x, return (new_e, pr) ) <|> (do `(@has_zero.zero %%β %%h1) ← return x, `(@coe %%α %%β %%coe1 %%xx) ← return y, h1 ← to_expr ``(has_zero %%α) >>= mk_instance_fast, new_x ← to_expr ``(@coe %%α %%β %%coe1 (@has_zero.zero %%α %%h1)), eq_x ← prove_eq_using_down x new_x, let new_e := app (app op new_x) y, pr ← mk_congr_arg (lam `x binder_info.default β (app (app op (var 0)) y)) eq_x, return (new_e, pr) ) | _ := failed /-- Discharging function used during simplification in the "squash" step. TODO: norm_cast takes a list of expressions to use as lemmas for the discharger TODO: a tactic to print the results the discharger fails to proove -/ private meta def prove : tactic unit := assumption /-- Core rewriting function used in the "squash" step, which moves casts upwards and eliminates them. It tries to rewrite an expression using the elim and move lemmas. On failure, it calls the splitting procedure heuristic. -/ meta def upward_and_elim (s : simp_lemmas) (e : expr) : tactic (expr × expr) := (do r ← mcond (is_prop e) (return `iff) (return `eq), (new_e, pr) ← s.rewrite e prove r, pr ← match r with | `iff := mk_app `propext [pr] | _ := return pr end, return (new_e, pr) ) <|> splitting_procedure e /-! The following auxiliary functions are used to handle numerals. -/ /-- If possible, rewrite `(n : α)` to `((n : ℕ) : α)` where `n` is a numeral and `α ≠ ℕ`. Returns a pair of the new expression and proof that they are equal. -/ meta def numeral_to_coe (e : expr) : tactic (expr × expr) := do α ← infer_type e, success_if_fail $ is_def_eq α `(ℕ), n ← e.to_nat, h1 ← mk_app `has_lift_t [`(ℕ), α] >>= mk_instance_fast, let new_e : expr := reflect n, new_e ← to_expr ``(@coe ℕ %%α %%h1 %%new_e), pr ← prove_eq_using_down e new_e, return (new_e, pr) /-- If possible, rewrite `((n : ℕ) : α)` to `(n : α)` where `n` is a numeral. Returns a pair of the new expression and proof that they are equal. -/ meta def coe_to_numeral (e : expr) : tactic (expr × expr) := do `(@coe ℕ %%α %%h1 %%e') ← return e, n ← e'.to_nat, -- replace e' by normalized numeral is_def_eq (reflect n) e' reducible, let e := e.app_fn (reflect n), new_e ← expr.of_nat α n, pr ← prove_eq_using_down e new_e, return (new_e, pr) /-- A local variant on `simplify_top_down`. -/ private meta def simplify_top_down' {α} (a : α) (pre : α → expr → tactic (α × expr × expr)) (e : expr) (cfg : simp_config := {}) : tactic (α × expr × expr) := ext_simplify_core a cfg simp_lemmas.mk (λ _, failed) (λ a _ _ _ e, do (new_a, new_e, pr) ← pre a e, guard (¬ new_e =ₐ e), return (new_a, new_e, some pr, ff)) (λ _ _ _ _ _, failed) `eq e /-- The core simplification routine of `norm_cast`. -/ meta def derive (e : expr) : tactic (expr × expr) := do cache ← norm_cast_attr.get_cache, e ← instantiate_mvars e, let cfg : simp_config := { zeta := ff, beta := ff, eta := ff, proj := ff, iota := ff, iota_eqn := ff, fail_if_unchanged := ff }, let e0 := e, -- step 1: pre-processing of numerals ((), e1, pr1) ← simplify_top_down' () (λ _ e, prod.mk () <$> numeral_to_coe e) e0 cfg, trace_norm_cast "after numeral_to_coe: " e1, -- step 2: casts are moved upwards and eliminated ((), e2, pr2) ← simplify_bottom_up () (λ _ e, prod.mk () <$> upward_and_elim cache.up e) e1 cfg, trace_norm_cast "after upward_and_elim: " e2, -- step 3: casts are squashed (e3, pr3) ← simplify cache.squash [] e2 cfg, trace_norm_cast "after squashing: " e3, -- step 4: post-processing of numerals ((), e4, pr4) ← simplify_top_down' () (λ _ e, prod.mk () <$> coe_to_numeral e) e3 cfg, trace_norm_cast "after coe_to_numeral: " e4, let new_e := e4, guard (¬ new_e =ₐ e), pr ← mk_eq_trans pr1 pr2, pr ← mk_eq_trans pr pr3, pr ← mk_eq_trans pr pr4, return (new_e, pr) end norm_cast namespace tactic open expr norm_cast /-- `aux_mod_cast e` runs `norm_cast` on `e` and returns the result. If `include_goal` is true, it also normalizes the goal. -/ meta def aux_mod_cast (e : expr) (include_goal : bool := tt) : tactic expr := match e with | local_const _ lc _ _ := do e ← get_local lc, replace_at derive [e] include_goal, get_local lc | e := do t ← infer_type e, e ← assertv `this t e, replace_at derive [e] include_goal, get_local `this end /-- `exact_mod_cast e` runs `norm_cast` on the goal and `e`, and tries to use `e` to close the goal. -/ meta def exact_mod_cast (e : expr) : tactic unit := decorate_error "exact_mod_cast failed:" $ do new_e ← aux_mod_cast e, exact new_e /-- `apply_mod_cast e` runs `norm_cast` on the goal and `e`, and tries to apply `e`. -/ meta def apply_mod_cast (e : expr) : tactic (list (name × expr)) := decorate_error "apply_mod_cast failed:" $ do new_e ← aux_mod_cast e, apply new_e /-- `assumption_mod_cast` runs `norm_cast` on the goal. For each local hypothesis `h`, it also normalizes `h` and tries to use that to close the goal. -/ meta def assumption_mod_cast : tactic unit := decorate_error "assumption_mod_cast failed:" $ do let cfg : simp_config := { fail_if_unchanged := ff, canonize_instances := ff, canonize_proofs := ff, proj := ff }, replace_at derive [] tt, ctx ← local_context, try_lst $ ctx.map (λ h, aux_mod_cast h ff >>= tactic.exact) end tactic namespace tactic.interactive open tactic norm_cast /-- Normalize casts at the given locations by moving them "upwards". As opposed to simp, norm_cast can be used without necessarily closing the goal. -/ meta def norm_cast (loc : parse location) : tactic unit := do ns ← loc.get_locals, tt ← replace_at derive ns loc.include_goal | fail "norm_cast failed to simplify", when loc.include_goal $ try tactic.reflexivity, when loc.include_goal $ try tactic.triv, when (¬ ns.empty) $ try tactic.contradiction /-- Rewrite with the given rules and normalize casts between steps. -/ meta def rw_mod_cast (rs : parse rw_rules) (loc : parse location) : tactic unit := decorate_error "rw_mod_cast failed:" $ do let cfg_norm : simp_config := {}, let cfg_rw : rewrite_cfg := {}, ns ← loc.get_locals, monad.mapm' (λ r : rw_rule, do save_info r.pos, replace_at derive ns loc.include_goal, rw ⟨[r], none⟩ loc {} ) rs.rules, replace_at derive ns loc.include_goal, skip /-- Normalize the goal and the given expression, then close the goal with exact. -/ meta def exact_mod_cast (e : parse texpr) : tactic unit := do e ← i_to_expr e <|> do { ty ← target, e ← i_to_expr_strict ``(%%e : %%ty), pty ← pp ty, ptgt ← pp e, fail ("exact_mod_cast failed, expression type not directly " ++ "inferrable. Try:\n\nexact_mod_cast ...\nshow " ++ to_fmt pty ++ ",\nfrom " ++ ptgt : format) }, tactic.exact_mod_cast e /-- Normalize the goal and the given expression, then apply the expression to the goal. -/ meta def apply_mod_cast (e : parse texpr) : tactic unit := do e ← i_to_expr_for_apply e, concat_tags $ tactic.apply_mod_cast e /-- Normalize the goal and every expression in the local context, then close the goal with assumption. -/ meta def assumption_mod_cast : tactic unit := tactic.assumption_mod_cast end tactic.interactive namespace conv.interactive open conv open norm_cast (derive) /-- the converter version of `norm_cast' -/ meta def norm_cast : conv unit := replace_lhs derive end conv.interactive -- TODO: move this elsewhere? @[norm_cast] lemma ite_cast {α β} [has_lift_t α β] {c : Prop} [decidable c] {a b : α} : ↑(ite c a b) = ite c (↑a : β) (↑b : β) := by by_cases h : c; simp [h] add_hint_tactic "norm_cast at *" /-- The `norm_cast` family of tactics is used to normalize casts inside expressions. It is basically a simp tactic with a specific set of lemmas to move casts upwards in the expression. Therefore it can be used more safely as a non-terminating tactic. It also has special handling of numerals. For instance, given an assumption ```lean a b : ℤ h : ↑a + ↑b < (10 : ℚ) ``` writing `norm_cast at h` will turn `h` into ```lean h : a + b < 10 ``` You can also use `exact_mod_cast`, `apply_mod_cast`, `rw_mod_cast` or `assumption_mod_cast`. Writing `exact_mod_cast h` and `apply_mod_cast h` will normalize the goal and `h` before using `exact h` or `apply h`. Writing `assumption_mod_cast` will normalize the goal and for every expression `h` in the context it will try to normalize `h` and use `exact h`. `rw_mod_cast` acts like the `rw` tactic but it applies `norm_cast` between steps. `push_cast` rewrites the expression to move casts toward the leaf nodes. This uses `norm_cast` lemmas in the forward direction. For example, `↑(a + b)` will be written to `↑a + ↑b`. It is equivalent to `simp only with push_cast`, and can also be used at hypotheses with `push_cast at h`. The implementation and behavior of the `norm_cast` family is described in detail at <https://lean-forward.github.io/norm_cast/norm_cast.pdf>. -/ add_tactic_doc { name := "norm_cast", category := doc_category.tactic, decl_names := [``tactic.interactive.norm_cast, ``tactic.interactive.rw_mod_cast, ``tactic.interactive.apply_mod_cast, ``tactic.interactive.assumption_mod_cast, ``tactic.interactive.exact_mod_cast, ``tactic.interactive.push_cast], tags := ["coercions", "simplification"] } /-- The `norm_cast` attribute should be given to lemmas that describe the behaviour of a coercion in regard to an operator, a relation, or a particular function. It only concerns equality or iff lemmas involving `↑`, `⇑` and `↥`, describing the behavior of the coercion functions. It does not apply to the explicit functions that define the coercions. Examples: ```lean @[norm_cast] theorem coe_nat_inj' {m n : ℕ} : (↑m : ℤ) = ↑n ↔ m = n @[norm_cast] theorem coe_int_denom (n : ℤ) : (n : ℚ).denom = 1 @[norm_cast] theorem cast_id : ∀ n : ℚ, ↑n = n @[norm_cast] theorem coe_nat_add (m n : ℕ) : (↑(m + n) : ℤ) = ↑m + ↑n @[norm_cast] theorem cast_sub [add_group α] [has_one α] {m n} (h : m ≤ n) : ((n - m : ℕ) : α) = n - m @[norm_cast] theorem coe_nat_bit0 (n : ℕ) : (↑(bit0 n) : ℤ) = bit0 ↑n @[norm_cast] theorem cast_coe_nat (n : ℕ) : ((n : ℤ) : α) = n @[norm_cast] theorem cast_one : ((1 : ℚ) : α) = 1 ``` Lemmas tagged with `@[norm_cast]` are classified into three categories: `move`, `elim`, and `squash`. They are classified roughly as follows: * elim lemma: LHS has 0 head coes and ≥ 1 internal coe * move lemma: LHS has 1 head coe and 0 internal coes, RHS has 0 head coes and ≥ 1 internal coes * squash lemma: LHS has ≥ 1 head coes and 0 internal coes, RHS has fewer head coes `norm_cast` uses `move` and `elim` lemmas to factor coercions toward the root of an expression and to cancel them from both sides of an equation or relation. It uses `squash` lemmas to clean up the result. Occasionally you may want to override the automatic classification. You can do this by giving an optional `elim`, `move`, or `squash` parameter to the attribute. ```lean @[simp, norm_cast elim] lemma nat_cast_re (n : ℕ) : (n : ℂ).re = n := by rw [← of_real_nat_cast, of_real_re] ``` Don't do this unless you understand what you are doing. A full description of the tactic, and the use of each lemma category, can be found at <https://lean-forward.github.io/norm_cast/norm_cast.pdf>. -/ add_tactic_doc { name := "norm_cast attributes", category := doc_category.attr, decl_names := [``norm_cast.norm_cast_attr], tags := ["coercions", "simplification"] } -- Lemmas defined in core. attribute [norm_cast] int.nat_abs_of_nat int.coe_nat_sub int.coe_nat_mul int.coe_nat_zero int.coe_nat_one int.coe_nat_add -- Lemmas about nat.succ need to get a low priority, so that they are tried last. -- This is because `nat.succ _` matches `1`, `3`, `x+1`, etc. -- Rewriting would then produce really wrong terms. attribute [norm_cast, priority 500] int.coe_nat_succ
db2fdcd9aafbec37b70df4d8308bfe9f423d2af7
a8c03ed21a1bd6fc45901943b79dd6574ea3f0c2
/splitting.lean
1eb50df74249831c6e3df61bd296fec17ab06632
[]
no_license
gebner/resolution.lean
716c355fbb5204e5c4d0c5a7f3f3cc825892a2bf
c6fafe06fba1cfad73db68f2aa474b29fe892a2b
refs/heads/master
1,601,111,444,528
1,475,256,701,000
1,475,256,701,000
67,711,151
0
0
null
null
null
null
UTF-8
Lean
false
false
1,744
lean
import prover_state open monad meta def extract_assertions : clause → resolution_prover (clause × list expr) | c := if c↣num_lits = 0 then return (c, []) else if c↣num_quants ≠ 0 then do qf : clause × list expr ← ↑(c↣open_constn c↣num_quants), qf_wo_as ← extract_assertions qf↣1, return (qf_wo_as↣1↣close_constn qf↣2, qf_wo_as↣2) else do hd ← return $ c↣get_lit 0, hyp_opt ← get_sat_hyp_core hd↣formula hd↣is_neg, match hyp_opt with | some h := do wo_as ← extract_assertions (c↣inst h), return (wo_as↣1, h :: wo_as↣2) | _ := do op : clause × expr ← ↑c↣open_const, op_wo_as ← extract_assertions op↣1, return (op_wo_as↣1↣close_const op↣2, op_wo_as↣2) end meta def splitting_inf : inference := take given, if given↣c↣num_lits ≤ 1 then return () else do forM given↣c↣get_lits (λl, if l↣formula↣has_var ∨ l↣formula↣is_not↣is_some then return () else mk_sat_var l↣formula l↣is_neg), with_ass ← extract_assertions given↣c, if with_ass↣2↣length > 0 then do add_inferred with_ass↣1 [given], remove_redundant given↣id [] else return () meta def splitting_pre : resolution_prover unit := preprocessing_rule $ take news, do flip filterM news $ take new, do ass ← collect_ass_hyps new, if new↣num_quants = 0 ∧ new↣num_lits > 1 then do add_sat_clause $ new↣close_constn ass, return ff else if new↣num_quants = 0 ∧ new↣num_lits = 1 then do hd ← return $ new↣get_lit 0, hyp ← get_sat_hyp_core hd↣formula hd↣is_neg, if hyp↣is_some then do add_sat_clause $ new↣close_constn ass, return ff else return tt else return tt
3d8b28ba1a662eb8243051932b18bba76c2b8d50
dd0f5513e11c52db157d2fcc8456d9401a6cd9da
/08_Building_Theories_and_Proofs.org.6.lean
e993a16ef2b68304e96fe0ce6cf40ac1f9d06433
[]
no_license
cjmazey/lean-tutorial
ba559a49f82aa6c5848b9bf17b7389bf7f4ba645
381f61c9fcac56d01d959ae0fa6e376f2c4e3b34
refs/heads/master
1,610,286,098,832
1,447,124,923,000
1,447,124,923,000
43,082,433
0
0
null
null
null
null
UTF-8
Lean
false
false
630
lean
import standard structure Semigroup : Type := (carrier : Type) (mul : carrier → carrier → carrier) (mul_assoc : ∀ a b c : carrier, mul (mul a b) c = mul a (mul b c)) notation a `*` b := Semigroup.mul _ a b attribute Semigroup.carrier [coercion] structure morphism (S1 S2 : Semigroup) : Type := (mor : S1 → S2) (resp_mul : ∀ a b : S1, mor (a * b) = (mor a) * (mor b)) -- BEGIN attribute morphism.mor [coercion] example (S1 S2 : Semigroup) (f : morphism S1 S2) (a : S1) : f (a * a * a) = f a * f a * f a := calc f (a * a * a) = f (a * a) * f a : morphism.resp_mul f ... = f a * f a * f a : morphism.resp_mul f -- END
eb8fad0dc26c4c43729520117d05092af017ae95
618003631150032a5676f229d13a079ac875ff77
/src/category_theory/limits/types.lean
7d03057dbdfe2a1105ed8cd5d16113f020c72311
[ "Apache-2.0" ]
permissive
awainverse/mathlib
939b68c8486df66cfda64d327ad3d9165248c777
ea76bd8f3ca0a8bf0a166a06a475b10663dec44a
refs/heads/master
1,659,592,962,036
1,590,987,592,000
1,590,987,592,000
268,436,019
1
0
Apache-2.0
1,590,990,500,000
1,590,990,500,000
null
UTF-8
Lean
false
false
5,359
lean
/- Copyright (c) 2018 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison, Reid Barton -/ import category_theory.limits.shapes.images universes v u -- declare the `v`'s first; see `category_theory.category` for an explanation open category_theory open category_theory.limits namespace category_theory.limits.types variables {J : Type u} [small_category J] /-- (internal implementation) the limit cone of a functor, implemented as flat sections of a pi type -/ def limit_ (F : J ⥤ Type u) : cone F := { X := F.sections, π := { app := λ j u, u.val j } } local attribute [elab_simple] congr_fun /-- (internal implementation) the fact that the proposed limit cone is the limit -/ def limit_is_limit_ (F : J ⥤ Type u) : is_limit (limit_ F) := { lift := λ s v, ⟨λ j, s.π.app j v, λ j j' f, congr_fun (cone.w s f) _⟩, uniq' := begin intros, ext x, apply subtype.eq, ext j, exact congr_fun (w j) x end } instance : has_limits.{u} (Type u) := { has_limits_of_shape := λ J 𝒥, { has_limit := λ F, by exactI { cone := limit_ F, is_limit := limit_is_limit_ F } } } @[simp] lemma types_limit (F : J ⥤ Type u) : limits.limit F = {u : Π j, F.obj j // ∀ {j j'} f, F.map f (u j) = u j'} := rfl @[simp] lemma types_limit_π (F : J ⥤ Type u) (j : J) (g : limit F) : limit.π F j g = g.val j := rfl @[simp] lemma types_limit_pre (F : J ⥤ Type u) {K : Type u} [𝒦 : small_category K] (E : K ⥤ J) (g : limit F) : limit.pre F E g = (⟨λ k, g.val (E.obj k), by obviously⟩ : limit (E ⋙ F)) := rfl @[simp] lemma types_limit_map {F G : J ⥤ Type u} (α : F ⟶ G) (g : limit F) : (lim.map α : limit F → limit G) g = (⟨λ j, (α.app j) (g.val j), λ j j' f, by {rw ←functor_to_types.naturality, dsimp, rw ←(g.property f)}⟩ : limit G) := rfl @[simp] lemma types_limit_lift (F : J ⥤ Type u) (c : cone F) (x : c.X) : limit.lift F c x = (⟨λ j, c.π.app j x, λ j j' f, congr_fun (cone.w c f) x⟩ : limit F) := rfl /-- (internal implementation) the limit cone of a functor, implemented as a quotient of a sigma type -/ def colimit_ (F : J ⥤ Type u) : cocone F := { X := @quot (Σ j, F.obj j) (λ p p', ∃ f : p.1 ⟶ p'.1, p'.2 = F.map f p.2), ι := { app := λ j x, quot.mk _ ⟨j, x⟩, naturality' := λ j j' f, funext $ λ x, eq.symm (quot.sound ⟨f, rfl⟩) } } local attribute [elab_with_expected_type] quot.lift /-- (internal implementation) the fact that the proposed colimit cocone is the colimit -/ def colimit_is_colimit_ (F : J ⥤ Type u) : is_colimit (colimit_ F) := { desc := λ s, quot.lift (λ (p : Σ j, F.obj j), s.ι.app p.1 p.2) (assume ⟨j, x⟩ ⟨j', x'⟩ ⟨f, hf⟩, by rw hf; exact (congr_fun (cocone.w s f) x).symm) } instance : has_colimits.{u} (Type u) := { has_colimits_of_shape := λ J 𝒥, { has_colimit := λ F, by exactI { cocone := colimit_ F, is_colimit := colimit_is_colimit_ F } } } @[simp] lemma types_colimit (F : J ⥤ Type u) : limits.colimit F = @quot (Σ j, F.obj j) (λ p p', ∃ f : p.1 ⟶ p'.1, p'.2 = F.map f p.2) := rfl @[simp] lemma types_colimit_ι (F : J ⥤ Type u) (j : J) : colimit.ι F j = λ x, quot.mk _ ⟨j, x⟩ := rfl @[simp] lemma types_colimit_pre (F : J ⥤ Type u) {K : Type u} [𝒦 : small_category K] (E : K ⥤ J) : colimit.pre F E = quot.lift (λ p, quot.mk _ ⟨E.obj p.1, p.2⟩) (λ p p' ⟨f, h⟩, quot.sound ⟨E.map f, h⟩) := rfl @[simp] lemma types_colimit_map {F G : J ⥤ Type u} (α : F ⟶ G) : (colim.map α : colimit F → colimit G) = quot.lift (λ p, quot.mk _ ⟨p.1, (α.app p.1) p.2⟩) (λ p p' ⟨f, h⟩, quot.sound ⟨f, by rw h; exact functor_to_types.naturality _ _ α f _⟩) := rfl @[simp] lemma types_colimit_desc (F : J ⥤ Type u) (c : cocone F) : colimit.desc F c = quot.lift (λ p, c.ι.app p.1 p.2) (λ p p' ⟨f, h⟩, by rw h; exact (functor_to_types.naturality _ _ c.ι f _).symm) := rfl variables {α β : Type u} (f : α ⟶ β) section -- implementation of `has_image` /-- the image of a morphism in Type is just `set.range f` -/ def image : Type u := set.range f instance [inhabited α] : inhabited (image f) := { default := ⟨f (default α), ⟨_, rfl⟩⟩ } /-- the inclusion of `image f` into the target -/ def image.ι : image f ⟶ β := subtype.val instance : mono (image.ι f) := (mono_iff_injective _).2 subtype.val_injective variables {f} /-- the universal property for the image factorisation -/ noncomputable def image.lift (F' : mono_factorisation f) : image f ⟶ F'.I := (λ x, F'.e (classical.indefinite_description _ x.2).1 : image f → F'.I) lemma image.lift_fac (F' : mono_factorisation f) : image.lift F' ≫ F'.m = image.ι f := begin ext x, change (F'.e ≫ F'.m) _ = _, rw [F'.fac, (classical.indefinite_description _ x.2).2], refl, end end /-- the factorisation of any morphism in AddCommGroup through a mono. -/ def mono_factorisation : mono_factorisation f := { I := image f, m := image.ι f, e := set.range_factorization f } noncomputable instance : has_image f := { F := mono_factorisation f, is_image := { lift := image.lift, lift_fac' := image.lift_fac } } noncomputable instance : has_images.{u} (Type u) := { has_image := infer_instance } end category_theory.limits.types
0ba4ae4e5ec033cdbf1c1b99b126b20e7469aeb8
6bbefddc5d215af92ee0f41cafc343d0802aa6c8
/02-hundred-squares.lean
9f10d10555b32d7cf169a51f0bf533414a75d55a
[ "Unlicense" ]
permissive
bradheintz/lean-ex
0dcfab24e31abd9394247353f4e7dfd06655b2e1
37419b8d014ba3ba416e2252809a89a1604a1330
refs/heads/master
1,645,696,373,325
1,503,243,879,000
1,503,243,879,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
347
lean
import system.io variable [io.interface] open io nat /- print square of every integer from n to 0 -/ def print_squares : ℕ → io unit | 0 := return () | (succ n) := print_squares n >> put_str (nat.to_string n ++ "^2 = " ++ nat.to_string (n * n) ++ "\n") #eval print_squares 32 #print axioms print_squares
12cefe91c0c131b2c7aaef74a6946d9f07871034
d406927ab5617694ec9ea7001f101b7c9e3d9702
/src/measure_theory/function/ae_eq_of_integral.lean
b847808f2a0ceda7b7aec3119387c0b8ee72718e
[ "Apache-2.0" ]
permissive
alreadydone/mathlib
dc0be621c6c8208c581f5170a8216c5ba6721927
c982179ec21091d3e102d8a5d9f5fe06c8fafb73
refs/heads/master
1,685,523,275,196
1,670,184,141,000
1,670,184,141,000
287,574,545
0
0
Apache-2.0
1,670,290,714,000
1,597,421,623,000
Lean
UTF-8
Lean
false
false
29,195
lean
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rémy Degenne -/ import analysis.normed_space.dual import measure_theory.function.strongly_measurable.lp import measure_theory.integral.set_integral /-! # From equality of integrals to equality of functions This file provides various statements of the general form "if two functions have the same integral on all sets, then they are equal almost everywhere". The different lemmas use various hypotheses on the class of functions, on the target space or on the possible finiteness of the measure. ## Main statements All results listed below apply to two functions `f, g`, together with two main hypotheses, * `f` and `g` are integrable on all measurable sets with finite measure, * for all measurable sets `s` with finite measure, `∫ x in s, f x ∂μ = ∫ x in s, g x ∂μ`. The conclusion is then `f =ᵐ[μ] g`. The main lemmas are: * `ae_eq_of_forall_set_integral_eq_of_sigma_finite`: case of a sigma-finite measure. * `ae_fin_strongly_measurable.ae_eq_of_forall_set_integral_eq`: for functions which are `ae_fin_strongly_measurable`. * `Lp.ae_eq_of_forall_set_integral_eq`: for elements of `Lp`, for `0 < p < ∞`. * `integrable.ae_eq_of_forall_set_integral_eq`: for integrable functions. For each of these results, we also provide a lemma about the equality of one function and 0. For example, `Lp.ae_eq_zero_of_forall_set_integral_eq_zero`. We also register the corresponding lemma for integrals of `ℝ≥0∞`-valued functions, in `ae_eq_of_forall_set_lintegral_eq_of_sigma_finite`. Generally useful lemmas which are not related to integrals: * `ae_eq_zero_of_forall_inner`: if for all constants `c`, `λ x, inner c (f x) =ᵐ[μ] 0` then `f =ᵐ[μ] 0`. * `ae_eq_zero_of_forall_dual`: if for all constants `c` in the dual space, `λ x, c (f x) =ᵐ[μ] 0` then `f =ᵐ[μ] 0`. -/ open measure_theory topological_space normed_space filter open_locale ennreal nnreal measure_theory namespace measure_theory section ae_eq_of_forall variables {α E 𝕜 : Type*} {m : measurable_space α} {μ : measure α} [is_R_or_C 𝕜] lemma ae_eq_zero_of_forall_inner [inner_product_space 𝕜 E] [second_countable_topology E] {f : α → E} (hf : ∀ c : E, (λ x, (inner c (f x) : 𝕜)) =ᵐ[μ] 0) : f =ᵐ[μ] 0 := begin let s := dense_seq E, have hs : dense_range s := dense_range_dense_seq E, have hf' : ∀ᵐ x ∂μ, ∀ n : ℕ, inner (s n) (f x) = (0 : 𝕜), from ae_all_iff.mpr (λ n, hf (s n)), refine hf'.mono (λ x hx, _), rw [pi.zero_apply, ← inner_self_eq_zero], have h_closed : is_closed {c : E | inner c (f x) = (0 : 𝕜)}, from is_closed_eq (continuous_id.inner continuous_const) continuous_const, exact @is_closed_property ℕ E _ s (λ c, inner c (f x) = (0 : 𝕜)) hs h_closed (λ n, hx n) _, end local notation `⟪`x`, `y`⟫` := y x variables (𝕜) lemma ae_eq_zero_of_forall_dual_of_is_separable [normed_add_comm_group E] [normed_space 𝕜 E] {t : set E} (ht : topological_space.is_separable t) {f : α → E} (hf : ∀ c : dual 𝕜 E, (λ x, ⟪f x, c⟫) =ᵐ[μ] 0) (h't : ∀ᵐ x ∂μ, f x ∈ t) : f =ᵐ[μ] 0 := begin rcases ht with ⟨d, d_count, hd⟩, haveI : encodable d := d_count.to_encodable, have : ∀ (x : d), ∃ g : E →L[𝕜] 𝕜, ‖g‖ ≤ 1 ∧ g x = ‖(x : E)‖ := λ x, exists_dual_vector'' 𝕜 x, choose s hs using this, have A : ∀ (a : E), a ∈ t → (∀ x, ⟪a, s x⟫ = (0 : 𝕜)) → a = 0, { assume a hat ha, contrapose! ha, have a_pos : 0 < ‖a‖, by simp only [ha, norm_pos_iff, ne.def, not_false_iff], have a_mem : a ∈ closure d := hd hat, obtain ⟨x, hx⟩ : ∃ (x : d), dist a x < ‖a‖ / 2, { rcases metric.mem_closure_iff.1 a_mem (‖a‖/2) (half_pos a_pos) with ⟨x, h'x, hx⟩, exact ⟨⟨x, h'x⟩, hx⟩ }, use x, have I : ‖a‖/2 < ‖(x : E)‖, { have : ‖a‖ ≤ ‖(x : E)‖ + ‖a - x‖ := norm_le_insert' _ _, have : ‖a - x‖ < ‖a‖/2, by rwa dist_eq_norm at hx, linarith }, assume h, apply lt_irrefl (‖s x x‖), calc ‖s x x‖ = ‖s x (x - a)‖ : by simp only [h, sub_zero, continuous_linear_map.map_sub] ... ≤ 1 * ‖(x : E) - a‖ : continuous_linear_map.le_of_op_norm_le _ (hs x).1 _ ... < ‖a‖ / 2 : by { rw [one_mul], rwa dist_eq_norm' at hx } ... < ‖(x : E)‖ : I ... = ‖s x x‖ : by rw [(hs x).2, is_R_or_C.norm_coe_norm] }, have hfs : ∀ (y : d), ∀ᵐ x ∂μ, ⟪f x, s y⟫ = (0 : 𝕜), from λ y, hf (s y), have hf' : ∀ᵐ x ∂μ, ∀ (y : d), ⟪f x, s y⟫ = (0 : 𝕜), by rwa ae_all_iff, filter_upwards [hf', h't] with x hx h'x, exact A (f x) h'x hx, end lemma ae_eq_zero_of_forall_dual [normed_add_comm_group E] [normed_space 𝕜 E] [second_countable_topology E] {f : α → E} (hf : ∀ c : dual 𝕜 E, (λ x, ⟪f x, c⟫) =ᵐ[μ] 0) : f =ᵐ[μ] 0 := ae_eq_zero_of_forall_dual_of_is_separable 𝕜 (is_separable_of_separable_space (set.univ : set E)) hf (eventually_of_forall (λ x, set.mem_univ _)) variables {𝕜} end ae_eq_of_forall variables {α E : Type*} {m m0 : measurable_space α} {μ : measure α} {s t : set α} [normed_add_comm_group E] [normed_space ℝ E] [complete_space E] {p : ℝ≥0∞} section ae_eq_of_forall_set_integral_eq lemma ae_const_le_iff_forall_lt_measure_zero {β} [linear_order β] [topological_space β] [order_topology β] [first_countable_topology β] (f : α → β) (c : β) : (∀ᵐ x ∂μ, c ≤ f x) ↔ ∀ b < c, μ {x | f x ≤ b} = 0 := begin rw ae_iff, push_neg, split, { assume h b hb, exact measure_mono_null (λ y hy, (lt_of_le_of_lt hy hb : _)) h }, assume hc, by_cases h : ∀ b, c ≤ b, { have : {a : α | f a < c} = ∅, { apply set.eq_empty_iff_forall_not_mem.2 (λ x hx, _), exact (lt_irrefl _ (lt_of_lt_of_le hx (h (f x)))).elim }, simp [this] }, by_cases H : ¬ (is_lub (set.Iio c) c), { have : c ∈ upper_bounds (set.Iio c) := λ y hy, le_of_lt hy, obtain ⟨b, b_up, bc⟩ : ∃ (b : β), b ∈ upper_bounds (set.Iio c) ∧ b < c, by simpa [is_lub, is_least, this, lower_bounds] using H, exact measure_mono_null (λ x hx, b_up hx) (hc b bc) }, push_neg at H h, obtain ⟨u, u_mono, u_lt, u_lim, -⟩ : ∃ (u : ℕ → β), strict_mono u ∧ (∀ (n : ℕ), u n < c) ∧ tendsto u at_top (nhds c) ∧ ∀ (n : ℕ), u n ∈ set.Iio c := H.exists_seq_strict_mono_tendsto_of_not_mem (lt_irrefl c) h, have h_Union : {x | f x < c} = ⋃ (n : ℕ), {x | f x ≤ u n}, { ext1 x, simp_rw [set.mem_Union, set.mem_set_of_eq], split; intro h, { obtain ⟨n, hn⟩ := ((tendsto_order.1 u_lim).1 _ h).exists, exact ⟨n, hn.le⟩ }, { obtain ⟨n, hn⟩ := h, exact hn.trans_lt (u_lt _), }, }, rw [h_Union, measure_Union_null_iff], assume n, exact hc _ (u_lt n), end section ennreal open_locale topological_space lemma ae_le_of_forall_set_lintegral_le_of_sigma_finite [sigma_finite μ] {f g : α → ℝ≥0∞} (hf : measurable f) (hg : measurable g) (h : ∀ s, measurable_set s → μ s < ∞ → ∫⁻ x in s, f x ∂μ ≤ ∫⁻ x in s, g x ∂μ) : f ≤ᵐ[μ] g := begin have A : ∀ (ε N : ℝ≥0) (p : ℕ), 0 < ε → μ ({x | g x + ε ≤ f x ∧ g x ≤ N} ∩ spanning_sets μ p) = 0, { assume ε N p εpos, let s := {x | g x + ε ≤ f x ∧ g x ≤ N} ∩ spanning_sets μ p, have s_meas : measurable_set s, { have A : measurable_set {x | g x + ε ≤ f x} := measurable_set_le (hg.add measurable_const) hf, have B : measurable_set {x | g x ≤ N} := measurable_set_le hg measurable_const, exact (A.inter B).inter (measurable_spanning_sets μ p) }, have s_lt_top : μ s < ∞ := (measure_mono (set.inter_subset_right _ _)).trans_lt (measure_spanning_sets_lt_top μ p), have A : ∫⁻ x in s, g x ∂μ + ε * μ s ≤ ∫⁻ x in s, g x ∂μ + 0 := calc ∫⁻ x in s, g x ∂μ + ε * μ s = ∫⁻ x in s, g x ∂μ + ∫⁻ x in s, ε ∂μ : by simp only [lintegral_const, set.univ_inter, measurable_set.univ, measure.restrict_apply] ... = ∫⁻ x in s, (g x + ε) ∂μ : (lintegral_add_right _ measurable_const).symm ... ≤ ∫⁻ x in s, f x ∂μ : set_lintegral_mono (hg.add measurable_const) hf (λ x hx, hx.1.1) ... ≤ ∫⁻ x in s, g x ∂μ + 0 : by { rw [add_zero], exact h s s_meas s_lt_top }, have B : ∫⁻ x in s, g x ∂μ ≠ ∞, { apply ne_of_lt, calc ∫⁻ x in s, g x ∂μ ≤ ∫⁻ x in s, N ∂μ : set_lintegral_mono hg measurable_const (λ x hx, hx.1.2) ... = N * μ s : by simp only [lintegral_const, set.univ_inter, measurable_set.univ, measure.restrict_apply] ... < ∞ : by simp only [lt_top_iff_ne_top, s_lt_top.ne, and_false, ennreal.coe_ne_top, with_top.mul_eq_top_iff, ne.def, not_false_iff, false_and, or_self] }, have : (ε : ℝ≥0∞) * μ s ≤ 0 := ennreal.le_of_add_le_add_left B A, simpa only [ennreal.coe_eq_zero, nonpos_iff_eq_zero, mul_eq_zero, εpos.ne', false_or] }, obtain ⟨u, u_mono, u_pos, u_lim⟩ : ∃ (u : ℕ → ℝ≥0), strict_anti u ∧ (∀ n, 0 < u n) ∧ tendsto u at_top (nhds 0) := exists_seq_strict_anti_tendsto (0 : ℝ≥0), let s := λ (n : ℕ), {x | g x + u n ≤ f x ∧ g x ≤ (n : ℝ≥0)} ∩ spanning_sets μ n, have μs : ∀ n, μ (s n) = 0 := λ n, A _ _ _ (u_pos n), have B : {x | f x ≤ g x}ᶜ ⊆ ⋃ n, s n, { assume x hx, simp at hx, have L1 : ∀ᶠ n in at_top, g x + u n ≤ f x, { have : tendsto (λ n, g x + u n) at_top (𝓝 (g x + (0 : ℝ≥0))) := tendsto_const_nhds.add (ennreal.tendsto_coe.2 u_lim), simp at this, exact eventually_le_of_tendsto_lt hx this }, have L2 : ∀ᶠ (n : ℕ) in (at_top : filter ℕ), g x ≤ (n : ℝ≥0), { have : tendsto (λ (n : ℕ), ((n : ℝ≥0) : ℝ≥0∞)) at_top (𝓝 ∞), { simp only [ennreal.coe_nat], exact ennreal.tendsto_nat_nhds_top }, exact eventually_ge_of_tendsto_gt (hx.trans_le le_top) this }, apply set.mem_Union.2, exact ((L1.and L2).and (eventually_mem_spanning_sets μ x)).exists }, refine le_antisymm _ bot_le, calc μ {x : α | (λ (x : α), f x ≤ g x) x}ᶜ ≤ μ (⋃ n, s n) : measure_mono B ... ≤ ∑' n, μ (s n) : measure_Union_le _ ... = 0 : by simp only [μs, tsum_zero] end lemma ae_eq_of_forall_set_lintegral_eq_of_sigma_finite [sigma_finite μ] {f g : α → ℝ≥0∞} (hf : measurable f) (hg : measurable g) (h : ∀ s, measurable_set s → μ s < ∞ → ∫⁻ x in s, f x ∂μ = ∫⁻ x in s, g x ∂μ) : f =ᵐ[μ] g := begin have A : f ≤ᵐ[μ] g := ae_le_of_forall_set_lintegral_le_of_sigma_finite hf hg (λ s hs h's, le_of_eq (h s hs h's)), have B : g ≤ᵐ[μ] f := ae_le_of_forall_set_lintegral_le_of_sigma_finite hg hf (λ s hs h's, ge_of_eq (h s hs h's)), filter_upwards [A, B] with x using le_antisymm, end end ennreal section real variables {f : α → ℝ} /-- Don't use this lemma. Use `ae_nonneg_of_forall_set_integral_nonneg`. -/ lemma ae_nonneg_of_forall_set_integral_nonneg_of_strongly_measurable (hfm : strongly_measurable f) (hf : integrable f μ) (hf_zero : ∀ s, measurable_set s → μ s < ∞ → 0 ≤ ∫ x in s, f x ∂μ) : 0 ≤ᵐ[μ] f := begin simp_rw [eventually_le, pi.zero_apply], rw ae_const_le_iff_forall_lt_measure_zero, intros b hb_neg, let s := {x | f x ≤ b}, have hs : measurable_set s, from hfm.measurable_set_le strongly_measurable_const, have mus : μ s < ∞, { let c : ℝ≥0 := ⟨|b|, abs_nonneg _⟩, have c_pos : (c : ℝ≥0∞) ≠ 0, by simpa using hb_neg.ne, calc μ s ≤ μ {x | (c : ℝ≥0∞) ≤ ‖f x‖₊} : begin apply measure_mono, assume x hx, simp only [set.mem_set_of_eq] at hx, simpa only [nnnorm, abs_of_neg hb_neg, abs_of_neg (hx.trans_lt hb_neg), real.norm_eq_abs, subtype.mk_le_mk, neg_le_neg_iff, set.mem_set_of_eq, ennreal.coe_le_coe] using hx, end ... ≤ (∫⁻ x, ‖f x‖₊ ∂μ) / c : meas_ge_le_lintegral_div hfm.ae_measurable.ennnorm c_pos ennreal.coe_ne_top ... < ∞ : ennreal.div_lt_top (ne_of_lt hf.2) c_pos }, have h_int_gt : ∫ x in s, f x ∂μ ≤ b * (μ s).to_real, { have h_const_le : ∫ x in s, f x ∂μ ≤ ∫ x in s, b ∂μ, { refine set_integral_mono_ae_restrict hf.integrable_on (integrable_on_const.mpr (or.inr mus)) _, rw [eventually_le, ae_restrict_iff hs], exact eventually_of_forall (λ x hxs, hxs), }, rwa [set_integral_const, smul_eq_mul, mul_comm] at h_const_le, }, by_contra, refine (lt_self_iff_false (∫ x in s, f x ∂μ)).mp (h_int_gt.trans_lt _), refine (mul_neg_iff.mpr (or.inr ⟨hb_neg, _⟩)).trans_le _, swap, { simp_rw measure.restrict_restrict hs, exact hf_zero s hs mus, }, refine (ennreal.to_real_nonneg).lt_of_ne (λ h_eq, h _), cases (ennreal.to_real_eq_zero_iff _).mp h_eq.symm with hμs_eq_zero hμs_eq_top, { exact hμs_eq_zero, }, { exact absurd hμs_eq_top mus.ne, }, end lemma ae_nonneg_of_forall_set_integral_nonneg (hf : integrable f μ) (hf_zero : ∀ s, measurable_set s → μ s < ∞ → 0 ≤ ∫ x in s, f x ∂μ) : 0 ≤ᵐ[μ] f := begin rcases hf.1 with ⟨f', hf'_meas, hf_ae⟩, have hf'_integrable : integrable f' μ, from integrable.congr hf hf_ae, have hf'_zero : ∀ s, measurable_set s → μ s < ∞ → 0 ≤ ∫ x in s, f' x ∂μ, { intros s hs h's, rw set_integral_congr_ae hs (hf_ae.mono (λ x hx hxs, hx.symm)), exact hf_zero s hs h's, }, exact (ae_nonneg_of_forall_set_integral_nonneg_of_strongly_measurable hf'_meas hf'_integrable hf'_zero).trans hf_ae.symm.le, end lemma ae_le_of_forall_set_integral_le {f g : α → ℝ} (hf : integrable f μ) (hg : integrable g μ) (hf_le : ∀ s, measurable_set s → μ s < ∞ → ∫ x in s, f x ∂μ ≤ ∫ x in s, g x ∂μ) : f ≤ᵐ[μ] g := begin rw ← eventually_sub_nonneg, refine ae_nonneg_of_forall_set_integral_nonneg (hg.sub hf) (λ s hs, _), rw [integral_sub' hg.integrable_on hf.integrable_on, sub_nonneg], exact hf_le s hs end lemma ae_nonneg_restrict_of_forall_set_integral_nonneg_inter {f : α → ℝ} {t : set α} (hf : integrable_on f t μ) (hf_zero : ∀ s, measurable_set s → μ (s ∩ t) < ∞ → 0 ≤ ∫ x in (s ∩ t), f x ∂μ) : 0 ≤ᵐ[μ.restrict t] f := begin refine ae_nonneg_of_forall_set_integral_nonneg hf (λ s hs h's, _), simp_rw measure.restrict_restrict hs, apply hf_zero s hs, rwa measure.restrict_apply hs at h's, end lemma ae_nonneg_of_forall_set_integral_nonneg_of_sigma_finite [sigma_finite μ] {f : α → ℝ} (hf_int_finite : ∀ s, measurable_set s → μ s < ∞ → integrable_on f s μ) (hf_zero : ∀ s, measurable_set s → μ s < ∞ → 0 ≤ ∫ x in s, f x ∂μ) : 0 ≤ᵐ[μ] f := begin apply ae_of_forall_measure_lt_top_ae_restrict, assume t t_meas t_lt_top, apply ae_nonneg_restrict_of_forall_set_integral_nonneg_inter (hf_int_finite t t_meas t_lt_top), assume s s_meas hs, exact hf_zero _ (s_meas.inter t_meas) (lt_of_le_of_lt (measure_mono (set.inter_subset_right _ _)) t_lt_top) end lemma ae_fin_strongly_measurable.ae_nonneg_of_forall_set_integral_nonneg {f : α → ℝ} (hf : ae_fin_strongly_measurable f μ) (hf_int_finite : ∀ s, measurable_set s → μ s < ∞ → integrable_on f s μ) (hf_zero : ∀ s, measurable_set s → μ s < ∞ → 0 ≤ ∫ x in s, f x ∂μ) : 0 ≤ᵐ[μ] f := begin let t := hf.sigma_finite_set, suffices : 0 ≤ᵐ[μ.restrict t] f, from ae_of_ae_restrict_of_ae_restrict_compl _ this hf.ae_eq_zero_compl.symm.le, haveI : sigma_finite (μ.restrict t) := hf.sigma_finite_restrict, refine ae_nonneg_of_forall_set_integral_nonneg_of_sigma_finite (λ s hs hμts, _) (λ s hs hμts, _), { rw [integrable_on, measure.restrict_restrict hs], rw measure.restrict_apply hs at hμts, exact hf_int_finite (s ∩ t) (hs.inter hf.measurable_set) hμts, }, { rw measure.restrict_restrict hs, rw measure.restrict_apply hs at hμts, exact hf_zero (s ∩ t) (hs.inter hf.measurable_set) hμts, }, end lemma ae_nonneg_restrict_of_forall_set_integral_nonneg {f : α → ℝ} (hf_int_finite : ∀ s, measurable_set s → μ s < ∞ → integrable_on f s μ) (hf_zero : ∀ s, measurable_set s → μ s < ∞ → 0 ≤ ∫ x in s, f x ∂μ) {t : set α} (ht : measurable_set t) (hμt : μ t ≠ ∞) : 0 ≤ᵐ[μ.restrict t] f := begin refine ae_nonneg_restrict_of_forall_set_integral_nonneg_inter (hf_int_finite t ht (lt_top_iff_ne_top.mpr hμt)) (λ s hs h's, _), refine (hf_zero (s ∩ t) (hs.inter ht) _), exact (measure_mono (set.inter_subset_right s t)).trans_lt (lt_top_iff_ne_top.mpr hμt), end lemma ae_eq_zero_restrict_of_forall_set_integral_eq_zero_real {f : α → ℝ} (hf_int_finite : ∀ s, measurable_set s → μ s < ∞ → integrable_on f s μ) (hf_zero : ∀ s, measurable_set s → μ s < ∞ → ∫ x in s, f x ∂μ = 0) {t : set α} (ht : measurable_set t) (hμt : μ t ≠ ∞) : f =ᵐ[μ.restrict t] 0 := begin suffices h_and : f ≤ᵐ[μ.restrict t] 0 ∧ 0 ≤ᵐ[μ.restrict t] f, from h_and.1.mp (h_and.2.mono (λ x hx1 hx2, le_antisymm hx2 hx1)), refine ⟨_, ae_nonneg_restrict_of_forall_set_integral_nonneg hf_int_finite (λ s hs hμs, (hf_zero s hs hμs).symm.le) ht hμt⟩, suffices h_neg : 0 ≤ᵐ[μ.restrict t] -f, { refine h_neg.mono (λ x hx, _), rw pi.neg_apply at hx, simpa using hx, }, refine ae_nonneg_restrict_of_forall_set_integral_nonneg (λ s hs hμs, (hf_int_finite s hs hμs).neg) (λ s hs hμs, _) ht hμt, simp_rw pi.neg_apply, rw [integral_neg, neg_nonneg], exact (hf_zero s hs hμs).le, end end real lemma ae_eq_zero_restrict_of_forall_set_integral_eq_zero {f : α → E} (hf_int_finite : ∀ s, measurable_set s → μ s < ∞ → integrable_on f s μ) (hf_zero : ∀ s : set α, measurable_set s → μ s < ∞ → ∫ x in s, f x ∂μ = 0) {t : set α} (ht : measurable_set t) (hμt : μ t ≠ ∞) : f =ᵐ[μ.restrict t] 0 := begin rcases (hf_int_finite t ht hμt.lt_top).ae_strongly_measurable.is_separable_ae_range with ⟨u, u_sep, hu⟩, refine ae_eq_zero_of_forall_dual_of_is_separable ℝ u_sep (λ c, _) hu, refine ae_eq_zero_restrict_of_forall_set_integral_eq_zero_real _ _ ht hμt, { assume s hs hμs, exact continuous_linear_map.integrable_comp c (hf_int_finite s hs hμs) }, { assume s hs hμs, rw [continuous_linear_map.integral_comp_comm c (hf_int_finite s hs hμs), hf_zero s hs hμs], exact continuous_linear_map.map_zero _ } end lemma ae_eq_restrict_of_forall_set_integral_eq {f g : α → E} (hf_int_finite : ∀ s, measurable_set s → μ s < ∞ → integrable_on f s μ) (hg_int_finite : ∀ s, measurable_set s → μ s < ∞ → integrable_on g s μ) (hfg_zero : ∀ s : set α, measurable_set s → μ s < ∞ → ∫ x in s, f x ∂μ = ∫ x in s, g x ∂μ) {t : set α} (ht : measurable_set t) (hμt : μ t ≠ ∞) : f =ᵐ[μ.restrict t] g := begin rw ← sub_ae_eq_zero, have hfg' : ∀ s : set α, measurable_set s → μ s < ∞ → ∫ x in s, (f - g) x ∂μ = 0, { intros s hs hμs, rw integral_sub' (hf_int_finite s hs hμs) (hg_int_finite s hs hμs), exact sub_eq_zero.mpr (hfg_zero s hs hμs), }, have hfg_int : ∀ s, measurable_set s → μ s < ∞ → integrable_on (f-g) s μ, from λ s hs hμs, (hf_int_finite s hs hμs).sub (hg_int_finite s hs hμs), exact ae_eq_zero_restrict_of_forall_set_integral_eq_zero hfg_int hfg' ht hμt, end lemma ae_eq_zero_of_forall_set_integral_eq_of_sigma_finite [sigma_finite μ] {f : α → E} (hf_int_finite : ∀ s, measurable_set s → μ s < ∞ → integrable_on f s μ) (hf_zero : ∀ s : set α, measurable_set s → μ s < ∞ → ∫ x in s, f x ∂μ = 0) : f =ᵐ[μ] 0 := begin let S := spanning_sets μ, rw [← @measure.restrict_univ _ _ μ, ← Union_spanning_sets μ, eventually_eq, ae_iff, measure.restrict_apply' (measurable_set.Union (measurable_spanning_sets μ))], rw [set.inter_Union, measure_Union_null_iff], intro n, have h_meas_n : measurable_set (S n), from (measurable_spanning_sets μ n), have hμn : μ (S n) < ∞, from measure_spanning_sets_lt_top μ n, rw ← measure.restrict_apply' h_meas_n, exact ae_eq_zero_restrict_of_forall_set_integral_eq_zero hf_int_finite hf_zero h_meas_n hμn.ne, end lemma ae_eq_of_forall_set_integral_eq_of_sigma_finite [sigma_finite μ] {f g : α → E} (hf_int_finite : ∀ s, measurable_set s → μ s < ∞ → integrable_on f s μ) (hg_int_finite : ∀ s, measurable_set s → μ s < ∞ → integrable_on g s μ) (hfg_eq : ∀ s : set α, measurable_set s → μ s < ∞ → ∫ x in s, f x ∂μ = ∫ x in s, g x ∂μ) : f =ᵐ[μ] g := begin rw ← sub_ae_eq_zero, have hfg : ∀ s : set α, measurable_set s → μ s < ∞ → ∫ x in s, (f - g) x ∂μ = 0, { intros s hs hμs, rw [integral_sub' (hf_int_finite s hs hμs) (hg_int_finite s hs hμs), sub_eq_zero.mpr (hfg_eq s hs hμs)], }, have hfg_int : ∀ s, measurable_set s → μ s < ∞ → integrable_on (f-g) s μ, from λ s hs hμs, (hf_int_finite s hs hμs).sub (hg_int_finite s hs hμs), exact ae_eq_zero_of_forall_set_integral_eq_of_sigma_finite hfg_int hfg, end lemma ae_fin_strongly_measurable.ae_eq_zero_of_forall_set_integral_eq_zero {f : α → E} (hf_int_finite : ∀ s, measurable_set s → μ s < ∞ → integrable_on f s μ) (hf_zero : ∀ s : set α, measurable_set s → μ s < ∞ → ∫ x in s, f x ∂μ = 0) (hf : ae_fin_strongly_measurable f μ) : f =ᵐ[μ] 0 := begin let t := hf.sigma_finite_set, suffices : f =ᵐ[μ.restrict t] 0, from ae_of_ae_restrict_of_ae_restrict_compl _ this hf.ae_eq_zero_compl, haveI : sigma_finite (μ.restrict t) := hf.sigma_finite_restrict, refine ae_eq_zero_of_forall_set_integral_eq_of_sigma_finite _ _, { intros s hs hμs, rw [integrable_on, measure.restrict_restrict hs], rw [measure.restrict_apply hs] at hμs, exact hf_int_finite _ (hs.inter hf.measurable_set) hμs, }, { intros s hs hμs, rw [measure.restrict_restrict hs], rw [measure.restrict_apply hs] at hμs, exact hf_zero _ (hs.inter hf.measurable_set) hμs, }, end lemma ae_fin_strongly_measurable.ae_eq_of_forall_set_integral_eq {f g : α → E} (hf_int_finite : ∀ s, measurable_set s → μ s < ∞ → integrable_on f s μ) (hg_int_finite : ∀ s, measurable_set s → μ s < ∞ → integrable_on g s μ) (hfg_eq : ∀ s : set α, measurable_set s → μ s < ∞ → ∫ x in s, f x ∂μ = ∫ x in s, g x ∂μ) (hf : ae_fin_strongly_measurable f μ) (hg : ae_fin_strongly_measurable g μ) : f =ᵐ[μ] g := begin rw ← sub_ae_eq_zero, have hfg : ∀ s : set α, measurable_set s → μ s < ∞ → ∫ x in s, (f - g) x ∂μ = 0, { intros s hs hμs, rw [integral_sub' (hf_int_finite s hs hμs) (hg_int_finite s hs hμs), sub_eq_zero.mpr (hfg_eq s hs hμs)], }, have hfg_int : ∀ s, measurable_set s → μ s < ∞ → integrable_on (f-g) s μ, from λ s hs hμs, (hf_int_finite s hs hμs).sub (hg_int_finite s hs hμs), exact (hf.sub hg).ae_eq_zero_of_forall_set_integral_eq_zero hfg_int hfg, end lemma Lp.ae_eq_zero_of_forall_set_integral_eq_zero (f : Lp E p μ) (hp_ne_zero : p ≠ 0) (hp_ne_top : p ≠ ∞) (hf_int_finite : ∀ s, measurable_set s → μ s < ∞ → integrable_on f s μ) (hf_zero : ∀ s : set α, measurable_set s → μ s < ∞ → ∫ x in s, f x ∂μ = 0) : f =ᵐ[μ] 0 := ae_fin_strongly_measurable.ae_eq_zero_of_forall_set_integral_eq_zero hf_int_finite hf_zero (Lp.fin_strongly_measurable _ hp_ne_zero hp_ne_top).ae_fin_strongly_measurable lemma Lp.ae_eq_of_forall_set_integral_eq (f g : Lp E p μ) (hp_ne_zero : p ≠ 0) (hp_ne_top : p ≠ ∞) (hf_int_finite : ∀ s, measurable_set s → μ s < ∞ → integrable_on f s μ) (hg_int_finite : ∀ s, measurable_set s → μ s < ∞ → integrable_on g s μ) (hfg : ∀ s : set α, measurable_set s → μ s < ∞ → ∫ x in s, f x ∂μ = ∫ x in s, g x ∂μ) : f =ᵐ[μ] g := ae_fin_strongly_measurable.ae_eq_of_forall_set_integral_eq hf_int_finite hg_int_finite hfg (Lp.fin_strongly_measurable _ hp_ne_zero hp_ne_top).ae_fin_strongly_measurable (Lp.fin_strongly_measurable _ hp_ne_zero hp_ne_top).ae_fin_strongly_measurable lemma ae_eq_zero_of_forall_set_integral_eq_of_fin_strongly_measurable_trim (hm : m ≤ m0) {f : α → E} (hf_int_finite : ∀ s, measurable_set[m] s → μ s < ∞ → integrable_on f s μ) (hf_zero : ∀ s : set α, measurable_set[m] s → μ s < ∞ → ∫ x in s, f x ∂μ = 0) (hf : fin_strongly_measurable f (μ.trim hm)) : f =ᵐ[μ] 0 := begin obtain ⟨t, ht_meas, htf_zero, htμ⟩ := hf.exists_set_sigma_finite, haveI : sigma_finite ((μ.restrict t).trim hm) := by rwa restrict_trim hm μ ht_meas at htμ, have htf_zero : f =ᵐ[μ.restrict tᶜ] 0, { rw [eventually_eq, ae_restrict_iff' (measurable_set.compl (hm _ ht_meas))], exact eventually_of_forall htf_zero, }, have hf_meas_m : strongly_measurable[m] f, from hf.strongly_measurable, suffices : f =ᵐ[μ.restrict t] 0, from ae_of_ae_restrict_of_ae_restrict_compl _ this htf_zero, refine measure_eq_zero_of_trim_eq_zero hm _, refine ae_eq_zero_of_forall_set_integral_eq_of_sigma_finite _ _, { intros s hs hμs, rw [integrable_on, restrict_trim hm (μ.restrict t) hs, measure.restrict_restrict (hm s hs)], rw [← restrict_trim hm μ ht_meas, measure.restrict_apply hs, trim_measurable_set_eq hm (hs.inter ht_meas)] at hμs, refine integrable.trim hm _ hf_meas_m, exact hf_int_finite _ (hs.inter ht_meas) hμs, }, { intros s hs hμs, rw [restrict_trim hm (μ.restrict t) hs, measure.restrict_restrict (hm s hs)], rw [← restrict_trim hm μ ht_meas, measure.restrict_apply hs, trim_measurable_set_eq hm (hs.inter ht_meas)] at hμs, rw ← integral_trim hm hf_meas_m, exact hf_zero _ (hs.inter ht_meas) hμs, }, end lemma integrable.ae_eq_zero_of_forall_set_integral_eq_zero {f : α → E} (hf : integrable f μ) (hf_zero : ∀ s, measurable_set s → μ s < ∞ → ∫ x in s, f x ∂μ = 0) : f =ᵐ[μ] 0 := begin have hf_Lp : mem_ℒp f 1 μ, from mem_ℒp_one_iff_integrable.mpr hf, let f_Lp := hf_Lp.to_Lp f, have hf_f_Lp : f =ᵐ[μ] f_Lp, from (mem_ℒp.coe_fn_to_Lp hf_Lp).symm, refine hf_f_Lp.trans _, refine Lp.ae_eq_zero_of_forall_set_integral_eq_zero f_Lp one_ne_zero ennreal.coe_ne_top _ _, { exact λ s hs hμs, integrable.integrable_on (L1.integrable_coe_fn _), }, { intros s hs hμs, rw integral_congr_ae (ae_restrict_of_ae hf_f_Lp.symm), exact hf_zero s hs hμs, }, end lemma integrable.ae_eq_of_forall_set_integral_eq (f g : α → E) (hf : integrable f μ) (hg : integrable g μ) (hfg : ∀ s : set α, measurable_set s → μ s < ∞ → ∫ x in s, f x ∂μ = ∫ x in s, g x ∂μ) : f =ᵐ[μ] g := begin rw ← sub_ae_eq_zero, have hfg' : ∀ s : set α, measurable_set s → μ s < ∞ → ∫ x in s, (f - g) x ∂μ = 0, { intros s hs hμs, rw integral_sub' hf.integrable_on hg.integrable_on, exact sub_eq_zero.mpr (hfg s hs hμs), }, exact integrable.ae_eq_zero_of_forall_set_integral_eq_zero (hf.sub hg) hfg', end end ae_eq_of_forall_set_integral_eq section lintegral lemma ae_measurable.ae_eq_of_forall_set_lintegral_eq {f g : α → ℝ≥0∞} (hf : ae_measurable f μ) (hg : ae_measurable g μ) (hfi : ∫⁻ x, f x ∂μ ≠ ∞) (hgi : ∫⁻ x, g x ∂μ ≠ ∞) (hfg : ∀ ⦃s⦄, measurable_set s → μ s < ∞ → ∫⁻ x in s, f x ∂μ = ∫⁻ x in s, g x ∂μ) : f =ᵐ[μ] g := begin refine ennreal.eventually_eq_of_to_real_eventually_eq (ae_lt_top' hf hfi).ne_of_lt (ae_lt_top' hg hgi).ne_of_lt (integrable.ae_eq_of_forall_set_integral_eq _ _ (integrable_to_real_of_lintegral_ne_top hf hfi) (integrable_to_real_of_lintegral_ne_top hg hgi) (λ s hs hs', _)), rw [integral_eq_lintegral_of_nonneg_ae, integral_eq_lintegral_of_nonneg_ae], { congr' 1, rw [lintegral_congr_ae (of_real_to_real_ae_eq _), lintegral_congr_ae (of_real_to_real_ae_eq _)], { exact hfg hs hs' }, { refine (ae_lt_top' hg.restrict (ne_of_lt (lt_of_le_of_lt _ hgi.lt_top))), exact @set_lintegral_univ α _ μ g ▸ lintegral_mono_set (set.subset_univ _) }, { refine (ae_lt_top' hf.restrict (ne_of_lt (lt_of_le_of_lt _ hfi.lt_top))), exact @set_lintegral_univ α _ μ f ▸ lintegral_mono_set (set.subset_univ _) } }, -- putting the proofs where they are used is extremely slow exacts [ ae_of_all _ (λ x, ennreal.to_real_nonneg), hg.ennreal_to_real.restrict.ae_strongly_measurable, ae_of_all _ (λ x, ennreal.to_real_nonneg), hf.ennreal_to_real.restrict.ae_strongly_measurable] end end lintegral end measure_theory
936ae998267a1a199e8cf84f4ab0db1dfd6ce1c3
a9d0fb7b0e4f802bd3857b803e6c5c23d87fef91
/tests/lean/bad_inaccessible2.lean
f288ddeb146837ed389e12d54b3a62547745e47f
[ "Apache-2.0" ]
permissive
soonhokong/lean-osx
4a954262c780e404c1369d6c06516161d07fcb40
3670278342d2f4faa49d95b46d86642d7875b47c
refs/heads/master
1,611,410,334,552
1,474,425,686,000
1,474,425,686,000
12,043,103
5
1
null
null
null
null
UTF-8
Lean
false
false
1,110
lean
universe variables u inductive vec (A : Type u) : nat → Type (max 1 u) | nil {} : vec 0 | cons : Π {n}, A → vec n → vec (n+1) open vec variables {A : Type u} variables f : A → A → A /- The following definition fails because the pattern variables are introduced in the following order: a va n b vb However, the type of va must be (vec A n). That is, it depends on a variable introduced after va. The error message is confusing. Alternatives: 1- Ignore the problem since this is a very obscure use of inaccessible terms. 2- Reorder variables based on their occurrence in inaccessible terms. If we do that, the variables in the pattern will be ordered as: n a va b vb and this example will work. This is not fully satisfactor since we can create another declaration where this heuristic is not the right solution. 3- Produce a better error message. -/ definition map_head : ∀ {n}, vec A n → vec A n → vec A n | .0 nil nil := nil | .(n+1) (@cons .A .n a va) (@cons .A n b vb) := cons (f a b) va
6dc1231de1d10009dc1eb3eab2593e55b37428f6
dd0f5513e11c52db157d2fcc8456d9401a6cd9da
/02_Dependent_Type_Theory.org.15.lean
8e6c03020660a0453e4d03fb776687b6de539575
[]
no_license
cjmazey/lean-tutorial
ba559a49f82aa6c5848b9bf17b7389bf7f4ba645
381f61c9fcac56d01d959ae0fa6e376f2c4e3b34
refs/heads/master
1,610,286,098,832
1,447,124,923,000
1,447,124,923,000
43,082,433
0
0
null
null
null
null
UTF-8
Lean
false
false
386
lean
/- page 19 -/ import standard constants A B C : Type constants (a : A) (f : A → B) (g : B → C) (h : A → A) definition gfa : C := g (f a) check gfa -- C print gfa -- g (f a) -- We can omit the type when Lean can figure it out. definition gfa' := g (f a) print gfa' definition gfha := g (f (h a)) print gfha definition g_comp_f : A → C := λ x, g (f x) print g_comp_f
1e271b2845b66510f4d81246b15a40424322afac
05f637fa14ac28031cb1ea92086a0f4eb23ff2b1
/tests/lean/simp.lean
24819fa8c919c0ce03816047cf65320a77b6024a
[ "Apache-2.0" ]
permissive
codyroux/lean0.1
1ce92751d664aacff0529e139083304a7bbc8a71
0dc6fb974aa85ed6f305a2f4b10a53a44ee5f0ef
refs/heads/master
1,610,830,535,062
1,402,150,480,000
1,402,150,480,000
19,588,851
2
0
null
null
null
null
UTF-8
Lean
false
false
613
lean
variable f : Nat → Nat variable g : Nat → Nat → Nat rewrite_set fgrules axiom Axf1 : ∀ x, f (f x) = x add_rewrite Axf1 : fgrules axiom Axfg : ∀ x, g x x = x add_rewrite Axfg : fgrules variables a b : Nat print rewrite_set fgrules (* local t = parse_lean('g a (f (f a))') print(simplify(t, {'fgrules'})) *) disable_rewrite Axfg : fgrules (* local t = parse_lean('g a (f (f a))') print(simplify(t, {'fgrules'})) *) enable_rewrite Axfg : fgrules (* local t = parse_lean('g a (f (f a))') print(simplify(t, {'fgrules'})) *) (* local t = parse_lean('g a (f (f a))') print(simplify(t, 'fgrules')) *)
d1e69728b58220ddc6f5ba6b969883b36f3422a4
63abd62053d479eae5abf4951554e1064a4c45b4
/src/control/uliftable.lean
93f557cd31b4d5fdfec46c771132690b45717b57
[ "Apache-2.0" ]
permissive
Lix0120/mathlib
0020745240315ed0e517cbf32e738d8f9811dd80
e14c37827456fc6707f31b4d1d16f1f3a3205e91
refs/heads/master
1,673,102,855,024
1,604,151,044,000
1,604,151,044,000
308,930,245
0
0
Apache-2.0
1,604,164,710,000
1,604,163,547,000
null
UTF-8
Lean
false
false
5,579
lean
/- Copyright (c) 2020 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author(s): Simon Hudon -/ import control.monad.basic import control.monad.cont import control.monad.writer import data.equiv.basic import tactic.interactive /-! # Universe lifting for type families Some functors such as `option` and `list` are universe polymorphic. Unlike type polymorphism where `option α` is a function application and reasoning and generalizations that apply to functions can be used, `option.{u}` and `option.{v}` are not one function applied to two universe names but one polymorphic definition instantiated twice. This means that whatever works on `option.{u}` is hard to transport over to `option.{v}`. `uliftable` is an attempt at improving the situation. `uliftable option.{u} option.{v}` gives us a generic and composable way to use `option.{u}` in a context that requires `option.{v}`. It is often used in tandem with `ulift` but the two are purposefully decoupled. ## Main definitions * `uliftable` class ## Tags universe polymorphism functor -/ universes u₀ u₁ v₀ v₁ v₂ w w₀ w₁ /-- Given a universe polymorphic type family `M.{u} : Type u₁ → Type u₂`, this class convert between instantiations, from `M.{u} : Type u₁ → Type u₂` to `M.{v} : Type v₁ → Type v₂` and back -/ class uliftable (f : Type u₀ → Type u₁) (g : Type v₀ → Type v₁) := (congr [] {α β} : α ≃ β → f α ≃ g β) namespace uliftable /-- The most common practical use `uliftable` (together with `up`), this function takes `x : M.{u} α` and lifts it to M.{max u v} (ulift.{v} α) -/ @[reducible] def up {f : Type u₀ → Type u₁} {g : Type (max u₀ v₀) → Type v₁} [uliftable f g] {α} : f α → g (ulift α) := (uliftable.congr f g equiv.ulift.symm).to_fun /-- The most common practical use of `uliftable` (together with `up`), this function takes `x : M.{max u v} (ulift.{v} α)` and lowers it to `M.{u} α` -/ @[reducible] def down {f : Type u₀ → Type u₁} {g : Type (max u₀ v₀) → Type v₁} [uliftable f g] {α} : g (ulift α) → f α := (uliftable.congr f g equiv.ulift.symm).inv_fun /-- convenient shortcut to avoid manipulating `ulift` -/ def adapt_up (F : Type v₀ → Type v₁) (G : Type (max v₀ u₀) → Type u₁) [uliftable F G] [monad G] {α β} (x : F α) (f : α → G β) : G β := up x >>= f ∘ ulift.down /-- convenient shortcut to avoid manipulating `ulift` -/ def adapt_down {F : Type (max u₀ v₀) → Type u₁} {G : Type v₀ → Type v₁} [L : uliftable G F] [monad F] {α β} (x : F α) (f : α → G β) : G β := @down.{v₀ v₁ (max u₀ v₀)} G F L β $ x >>= @up.{v₀ v₁ (max u₀ v₀)} G F L β ∘ f /-- map function that moves up universes -/ def up_map {F : Type u₀ → Type u₁} {G : Type.{max u₀ v₀} → Type v₁} [inst : uliftable F G] [functor G] {α β} (f : α → β) (x : F α) : G β := functor.map (f ∘ ulift.down) (up x) /-- map function that moves down universes -/ def down_map {F : Type.{max u₀ v₀} → Type u₁} {G : Type → Type v₁} [inst : uliftable G F] [functor F] {α β} (f : α → β) (x : F α) : G β := down (functor.map (ulift.up ∘ f) x : F (ulift β)) @[simp] lemma up_down {f : Type u₀ → Type u₁} {g : Type (max u₀ v₀) → Type v₁} [uliftable f g] {α} (x : g (ulift α)) : up (down x : f α) = x := (uliftable.congr f g equiv.ulift.symm).right_inv _ @[simp] lemma down_up {f : Type u₀ → Type u₁} {g : Type (max u₀ v₀) → Type v₁} [uliftable f g] {α} (x : f α) : down (up x : g _) = x := (uliftable.congr f g equiv.ulift.symm).left_inv _ end uliftable open ulift instance : uliftable id id := { congr := λ α β F, F } /-- for specific state types, this function helps to create a uliftable instance -/ def state_t.uliftable' {s : Type u₀} {s' : Type u₁} {m : Type u₀ → Type v₀} {m' : Type u₁ → Type v₁} [uliftable m m'] (F : s ≃ s') : uliftable (state_t s m) (state_t s' m') := { congr := λ α β G, state_t.equiv $ equiv.Pi_congr F $ λ _, uliftable.congr _ _ $ equiv.prod_congr G F } instance {s m m'} [uliftable m m'] : uliftable (state_t s m) (state_t (ulift s) m') := state_t.uliftable' equiv.ulift.symm /-- for specific reader monads, this function helps to create a uliftable instance -/ def reader_t.uliftable' {s s' m m'} [uliftable m m'] (F : s ≃ s') : uliftable (reader_t s m) (reader_t s' m') := { congr := λ α β G, reader_t.equiv $ equiv.Pi_congr F $ λ _, uliftable.congr _ _ G } instance {s m m'} [uliftable m m'] : uliftable (reader_t s m) (reader_t (ulift s) m') := reader_t.uliftable' equiv.ulift.symm /-- for specific continuation passing monads, this function helps to create a uliftable instance -/ def cont_t.uliftable' {r r' m m'} [uliftable m m'] (F : r ≃ r') : uliftable (cont_t r m) (cont_t r' m') := { congr := λ α β, cont_t.equiv (uliftable.congr _ _ F) } instance {s m m'} [uliftable m m'] : uliftable (cont_t s m) (cont_t (ulift s) m') := cont_t.uliftable' equiv.ulift.symm /-- for specific writer monads, this function helps to create a uliftable instance -/ def writer_t.uliftable' {w w' m m'} [uliftable m m'] (F : w ≃ w') : uliftable (writer_t w m) (writer_t w' m') := { congr := λ α β G, writer_t.equiv $ uliftable.congr _ _ $ equiv.prod_congr G F } instance {s m m'} [uliftable m m'] : uliftable (writer_t s m) (writer_t (ulift s) m') := writer_t.uliftable' equiv.ulift.symm
bc72283b592c7dfc3a49d1630a95243620f33c65
88fb7558b0636ec6b181f2a548ac11ad3919f8a5
/tests/lean/run/noncomputable_example.lean
fad39ea5009639498db757f19e5545bcd248210b
[ "Apache-2.0" ]
permissive
moritayasuaki/lean
9f666c323cb6fa1f31ac597d777914aed41e3b7a
ae96ebf6ee953088c235ff7ae0e8c95066ba8001
refs/heads/master
1,611,135,440,814
1,493,852,869,000
1,493,852,869,000
90,269,903
0
0
null
1,493,906,291,000
1,493,906,291,000
null
UTF-8
Lean
false
false
196
lean
open classical psum universe variable u noncomputable example (A : Type u) (h : (A → false) → false) : A := match type_decidable A with | (inl ha) := ha | (inr hna) := false.rec _ (h hna) end
2ee37b0beb574b3fc7d84202f7b91ec7201e6d21
d406927ab5617694ec9ea7001f101b7c9e3d9702
/src/linear_algebra/clifford_algebra/even_equiv.lean
c16e72cfe02b9dc339538eef332ac46665ddc85e
[ "Apache-2.0" ]
permissive
alreadydone/mathlib
dc0be621c6c8208c581f5170a8216c5ba6721927
c982179ec21091d3e102d8a5d9f5fe06c8fafb73
refs/heads/master
1,685,523,275,196
1,670,184,141,000
1,670,184,141,000
287,574,545
0
0
Apache-2.0
1,670,290,714,000
1,597,421,623,000
Lean
UTF-8
Lean
false
false
11,299
lean
/- Copyright (c) 2022 Eric Wieser. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Eric Wieser -/ import linear_algebra.clifford_algebra.conjugation import linear_algebra.clifford_algebra.even import linear_algebra.quadratic_form.prod /-! # Isomorphisms with the even subalgebra of a Clifford algebra This file provides some notable isomorphisms regarding the even subalgebra, `clifford_algebra.even`. ## Main definitions * `clifford_algebra.equiv_even`: Every Clifford algebra is isomorphic as an algebra to the even subalgebra of a Clifford algebra with one more dimension. * `clifford_algebra.even_equiv.Q'`: The quadratic form used by this "one-up" algebra. * `clifford_algebra.to_even`: The simp-normal form of the forward direction of this isomorphism. * `clifford_algebra.of_even`: The simp-normal form of the reverse direction of this isomorphism. * `clifford_algebra.even_equiv_even_neg`: Every even subalgebra is isomorphic to the even subalgebra of the Clifford algebra with negated quadratic form. * `clifford_algebra.even_to_neg`: The simp-normal form of each direction of this isomorphism. ## Main results * `clifford_algebra.coe_to_even_reverse_involute`: the behavior of `clifford_algebra.to_even` on the "Clifford conjugate", that is `clifford_algebra.reverse` composed with `clifford_algebra.involute`. -/ namespace clifford_algebra variables {R M : Type*} [comm_ring R] [add_comm_group M] [module R M] variables (Q : quadratic_form R M) /-! ### Constructions needed for `clifford_algebra.equiv_even` -/ namespace equiv_even /-- The quadratic form on the augmented vector space `M × R` sending `v + r•e0` to `Q v - r^2`. -/ @[reducible] def Q' : quadratic_form R (M × R) := (Q.prod $ -@quadratic_form.sq R _) lemma Q'_apply (m : M × R) : Q' Q m = Q m.1 - m.2 * m.2 := (sub_eq_add_neg _ _).symm /-- The unit vector in the new dimension -/ def e0 : clifford_algebra (Q' Q) := ι (Q' Q) (0, 1) /-- The embedding from the existing vector space -/ def v : M →ₗ[R] clifford_algebra (Q' Q) := (ι (Q' Q)) ∘ₗ linear_map.inl _ _ _ lemma ι_eq_v_add_smul_e0 (m : M) (r : R) : ι (Q' Q) (m, r) = v Q m + r • e0 Q := by rw [e0, v, linear_map.comp_apply, linear_map.inl_apply, ←linear_map.map_smul, prod.smul_mk, smul_zero, smul_eq_mul, mul_one, ←linear_map.map_add, prod.mk_add_mk, zero_add, add_zero] lemma e0_mul_e0 : e0 Q * e0 Q = -1 := (ι_sq_scalar _ _).trans $ by simp lemma v_sq_scalar (m : M) : v Q m * v Q m = algebra_map _ _ (Q m) := (ι_sq_scalar _ _).trans $ by simp lemma neg_e0_mul_v (m : M) : -(e0 Q * v Q m) = v Q m * e0 Q := begin refine neg_eq_of_add_eq_zero_right ((ι_mul_ι_add_swap _ _).trans _), dsimp [quadratic_form.polar], simp only [add_zero, mul_zero, mul_one, zero_add, neg_zero, quadratic_form.map_zero, add_sub_cancel, sub_self, map_zero, zero_sub], end lemma neg_v_mul_e0 (m : M) : -(v Q m * e0 Q) = e0 Q * v Q m := begin rw neg_eq_iff_neg_eq, exact neg_e0_mul_v _ m end @[simp] lemma e0_mul_v_mul_e0 (m : M) : e0 Q * v Q m * e0 Q = v Q m := by rw [←neg_v_mul_e0, ←neg_mul, mul_assoc, e0_mul_e0, mul_neg_one, neg_neg] @[simp] lemma reverse_v (m : M) : reverse (v Q m) = v Q m := reverse_ι _ @[simp] lemma involute_v (m : M) : involute (v Q m) = -v Q m := involute_ι _ @[simp] lemma reverse_e0 : reverse (e0 Q) = e0 Q := reverse_ι _ @[simp] lemma involute_e0 : involute (e0 Q) = -e0 Q := involute_ι _ end equiv_even open equiv_even /-- The embedding from the smaller algebra into the new larger one. -/ def to_even : clifford_algebra Q →ₐ[R] clifford_algebra.even (Q' Q) := begin refine clifford_algebra.lift Q ⟨_, λ m, _⟩, { refine linear_map.cod_restrict _ _ (λ m, submodule.mem_supr_of_mem ⟨2, rfl⟩ _), exact (linear_map.mul_left R $ e0 Q).comp (v Q), rw [subtype.coe_mk, pow_two], exact submodule.mul_mem_mul (linear_map.mem_range_self _ _) (linear_map.mem_range_self _ _), }, { ext1, dsimp only [subalgebra.coe_mul, linear_map.cod_restrict_apply, linear_map.comp_apply, linear_map.mul_left_apply, linear_map.inl_apply, subalgebra.coe_algebra_map], rw [←mul_assoc, e0_mul_v_mul_e0, v_sq_scalar] } end @[simp] lemma to_even_ι (m : M) : (to_even Q (ι Q m) : clifford_algebra (Q' Q)) = e0 Q * v Q m := begin rw [to_even, clifford_algebra.lift_ι_apply, linear_map.cod_restrict_apply], refl, end /-- The embedding from the even subalgebra with an extra dimension into the original algebra. -/ def of_even : clifford_algebra.even (Q' Q) →ₐ[R] clifford_algebra Q := begin /- Recall that we need: * `f ⟨0,1⟩ ⟨x,0⟩ = ι x` * `f ⟨x,0⟩ ⟨0,1⟩ = -ι x` * `f ⟨x,0⟩ ⟨y,0⟩ = ι x * ι y` * `f ⟨0,1⟩ ⟨0,1⟩ = -1` -/ let f : (M × R) →ₗ[R] (M × R) →ₗ[R] clifford_algebra Q := ((algebra.lmul R (clifford_algebra Q)).to_linear_map.comp $ ((ι Q).comp (linear_map.fst _ _ _)) + (algebra.linear_map R _).comp (linear_map.snd _ _ _)).compl₂ (((ι Q).comp (linear_map.fst _ _ _)) - (algebra.linear_map R _).comp (linear_map.snd _ _ _)), have f_apply : ∀ x y, f x y = (ι Q x.1 + algebra_map R _ x.2) * (ι Q y.1 - algebra_map R _ y.2) := λ x y, rfl, have hc : ∀ (r : R) (x : clifford_algebra Q), commute (algebra_map _ _ r) x := algebra.commutes, have hm : ∀ m : M × R, ι Q m.1 * ι Q m.1 - algebra_map R _ m.2 * algebra_map R _ m.2 = algebra_map R _ (Q' Q m), { intro m, rw [ι_sq_scalar, ←ring_hom.map_mul, ←ring_hom.map_sub, sub_eq_add_neg, Q'_apply, sub_eq_add_neg] }, refine even.lift (Q' Q) ⟨f, _, _⟩; simp_rw [f_apply], { intro m, rw [←(hc _ _).symm.mul_self_sub_mul_self_eq, hm] }, { intros m₁ m₂ m₃, rw [←mul_smul_comm, ←mul_assoc, mul_assoc(_ + _), ←(hc _ _).symm.mul_self_sub_mul_self_eq', algebra.smul_def, ←mul_assoc, hm] }, end lemma of_even_ι (x y : M × R) : of_even Q ((even.ι _).bilin x y) = (ι Q x.1 + algebra_map R _ x.2) * (ι Q y.1 - algebra_map R _ y.2) := even.lift_ι _ _ _ _ lemma to_even_comp_of_even : (to_even Q).comp (of_even Q) = alg_hom.id R _ := even.alg_hom_ext (Q' Q) $ even_hom.ext _ _ $ linear_map.ext $ λ m₁, linear_map.ext $ λ m₂, subtype.ext $ let ⟨m₁, r₁⟩ := m₁, ⟨m₂, r₂⟩ := m₂ in calc ↑(to_even Q (of_even Q ((even.ι (Q' Q)).bilin (m₁, r₁) (m₂, r₂)))) = (e0 Q * v Q m₁ + algebra_map R _ r₁) * (e0 Q * v Q m₂ - algebra_map R _ r₂) : by rw [of_even_ι, alg_hom.map_mul, alg_hom.map_add, alg_hom.map_sub, alg_hom.commutes, alg_hom.commutes, subalgebra.coe_mul, subalgebra.coe_add, subalgebra.coe_sub, to_even_ι, to_even_ι, subalgebra.coe_algebra_map, subalgebra.coe_algebra_map] ... = e0 Q * v Q m₁ * (e0 Q * v Q m₂) + r₁ • e0 Q * v Q m₂ - r₂ • e0 Q * v Q m₁ - algebra_map R _ (r₁ * r₂) : by rw [mul_sub, add_mul, add_mul, ←algebra.commutes, ←algebra.smul_def, ←map_mul, ←algebra.smul_def, sub_add_eq_sub_sub, smul_mul_assoc, smul_mul_assoc] ... = v Q m₁ * v Q m₂ + r₁ • e0 Q * v Q m₂ + v Q m₁ * r₂ • e0 Q + (r₁ • e0 Q) * r₂ • e0 Q : have h1 : e0 Q * v Q m₁ * (e0 Q * v Q m₂) = v Q m₁ * v Q m₂, by rw [←mul_assoc, e0_mul_v_mul_e0], have h2 : -(r₂ • e0 Q * v Q m₁) = v Q m₁ * r₂ • e0 Q, by rw [mul_smul_comm, smul_mul_assoc, ←smul_neg, neg_e0_mul_v], have h3 : - algebra_map R _ (r₁ * r₂) = (r₁ • e0 Q) * r₂ • e0 Q, by rw [algebra.algebra_map_eq_smul_one, smul_mul_smul, e0_mul_e0, smul_neg], by rw [sub_eq_add_neg, sub_eq_add_neg, h1, h2, h3] ... = ι _ (m₁, r₁) * ι _ (m₂, r₂) : by rw [ι_eq_v_add_smul_e0, ι_eq_v_add_smul_e0, mul_add, add_mul, add_mul, add_assoc] lemma of_even_comp_to_even : (of_even Q).comp (to_even Q) = alg_hom.id R _ := clifford_algebra.hom_ext $ linear_map.ext $ λ m, calc of_even Q (to_even Q (ι Q m)) = of_even Q ⟨_, (to_even Q (ι Q m)).prop⟩ : by rw subtype.coe_eta ... = (ι Q 0 + algebra_map R _ 1) * (ι Q m - algebra_map R _ 0) : begin simp_rw to_even_ι, exact of_even_ι Q _ _, end ... = ι Q m : by rw [map_one, map_zero, map_zero, sub_zero, zero_add, one_mul] /-- Any clifford algebra is isomorphic to the even subalgebra of a clifford algebra with an extra dimension (that is, with vector space `M × R`), with a quadratic form evaluating to `-1` on that new basis vector. -/ @[simps] def equiv_even : clifford_algebra Q ≃ₐ[R] clifford_algebra.even (Q' Q) := alg_equiv.of_alg_hom (to_even Q) (of_even Q) (to_even_comp_of_even Q) (of_even_comp_to_even Q) /-- The representation of the clifford conjugate (i.e. the reverse of the involute) in the even subalgebra is just the reverse of the representation. -/ lemma coe_to_even_reverse_involute (x : clifford_algebra Q) : ↑(to_even Q (reverse (involute x))) = reverse (to_even Q x : clifford_algebra (Q' Q)) := begin induction x using clifford_algebra.induction, case h_grade0 : r { simp only [alg_hom.commutes, subalgebra.coe_algebra_map, reverse.commutes] }, case h_grade1 : m { simp only [involute_ι, subalgebra.coe_neg, to_even_ι, reverse.map_mul, reverse_v, reverse_e0, reverse_ι, neg_e0_mul_v, map_neg] }, case h_mul : x y hx hy { simp only [map_mul, subalgebra.coe_mul, reverse.map_mul, hx, hy] }, case h_add : x y hx hy { simp only [map_add, subalgebra.coe_add, hx, hy] }, end /-! ### Constructions needed for `clifford_algebra.even_equiv_even_neg` -/ /-- One direction of `clifford_algebra.even_equiv_even_neg` -/ def even_to_neg (Q' : quadratic_form R M) (h : Q' = -Q) : clifford_algebra.even Q →ₐ[R] clifford_algebra.even Q' := even.lift Q { bilin := -(even.ι Q' : _).bilin, contract := λ m, by simp_rw [linear_map.neg_apply, even_hom.contract, h, quadratic_form.neg_apply, map_neg, neg_neg], contract_mid := λ m₁ m₂ m₃, by simp_rw [linear_map.neg_apply, neg_mul_neg, even_hom.contract_mid, h, quadratic_form.neg_apply, smul_neg, neg_smul] } @[simp] lemma even_to_neg_ι (Q' : quadratic_form R M) (h : Q' = -Q) (m₁ m₂ : M) : even_to_neg Q Q' h ((even.ι Q).bilin m₁ m₂) = -(even.ι Q').bilin m₁ m₂ := even.lift_ι _ _ m₁ m₂ lemma even_to_neg_comp_even_to_neg (Q' : quadratic_form R M) (h : Q' = -Q) (h' : Q = -Q') : (even_to_neg Q' Q h').comp (even_to_neg Q Q' h) = alg_hom.id R _ := begin ext m₁ m₂ : 4, dsimp only [even_hom.compr₂_bilin, linear_map.compr₂_apply, alg_hom.to_linear_map_apply, alg_hom.comp_apply, alg_hom.id_apply], rw [even_to_neg_ι, map_neg, even_to_neg_ι, neg_neg] end /-- The even subalgebras of the algebras with quadratic form `Q` and `-Q` are isomorphic. Stated another way, `𝒞ℓ⁺(p,q,r)` and `𝒞ℓ⁺(q,p,r)` are isomorphic. -/ @[simps] def even_equiv_even_neg : clifford_algebra.even Q ≃ₐ[R] clifford_algebra.even (-Q) := alg_equiv.of_alg_hom (even_to_neg Q _ rfl) (even_to_neg (-Q) _ (neg_neg _).symm) (even_to_neg_comp_even_to_neg _ _ _ _) (even_to_neg_comp_even_to_neg _ _ _ _) end clifford_algebra
2124ad524bb7ab1a7d7ce8b198656e09b19798f1
57c233acf9386e610d99ed20ef139c5f97504ba3
/src/topology/tactic.lean
fc9e47d7b13576ff253cd0a432d6b5fff97a585d
[ "Apache-2.0" ]
permissive
robertylewis/mathlib
3d16e3e6daf5ddde182473e03a1b601d2810952c
1d13f5b932f5e40a8308e3840f96fc882fae01f0
refs/heads/master
1,651,379,945,369
1,644,276,960,000
1,644,276,960,000
98,875,504
0
0
Apache-2.0
1,644,253,514,000
1,501,495,700,000
Lean
UTF-8
Lean
false
false
4,068
lean
/- Copyright (c) 2020 Reid Barton. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Reid Barton -/ import tactic.auto_cases import tactic.tidy import tactic.with_local_reducibility import tactic.show_term import topology.basic /-! # Tactics for topology Currently we have one domain-specific tactic for topology: `continuity`. -/ /-! ### `continuity` tactic Automatically solve goals of the form `continuous f`. Mark lemmas with `@[continuity]` to add them to the set of lemmas used by `continuity`. -/ /-- User attribute used to mark tactics used by `continuity`. -/ @[user_attribute] meta def continuity : user_attribute := { name := `continuity, descr := "lemmas usable to prove continuity" } -- Mark some continuity lemmas already defined in `topology.basic` attribute [continuity] continuous_id continuous_const -- As we will be using `apply_rules` with `md := semireducible`, -- we need another version of `continuous_id`. @[continuity] lemma continuous_id' {α : Type*} [topological_space α] : continuous (λ a : α, a) := continuous_id namespace tactic /-- Tactic to apply `continuous.comp` when appropriate. Applying `continuous.comp` is not always a good idea, so we have some extra logic here to try to avoid bad cases. * If the function we're trying to prove continuous is actually constant, and that constant is a function application `f z`, then continuous.comp would produce new goals `continuous f`, `continuous (λ _, z)`, which is silly. We avoid this by failing if we could apply continuous_const. * continuous.comp will always succeed on `continuous (λ x, f x)` and produce new goals `continuous (λ x, x)`, `continuous f`. We detect this by failing if a new goal can be closed by applying continuous_id. -/ meta def apply_continuous.comp : tactic unit := `[fail_if_success { exact continuous_const }; refine continuous.comp _ _; fail_if_success { exact continuous_id }] /-- List of tactics used by `continuity` internally. -/ meta def continuity_tactics (md : transparency := reducible) : list (tactic string) := [ intros1 >>= λ ns, pure ("intros " ++ (" ".intercalate (ns.map (λ e, e.to_string)))), apply_rules [``(continuity)] 50 { md := md } >> pure "apply_rules continuity", apply_continuous.comp >> pure "refine continuous.comp _ _" ] namespace interactive setup_tactic_parser /-- Solve goals of the form `continuous f`. `continuity?` reports back the proof term it found. -/ meta def continuity (bang : parse $ optional (tk "!")) (trace : parse $ optional (tk "?")) (cfg : tidy.cfg := {}) : tactic unit := let md := if bang.is_some then semireducible else reducible, continuity_core := tactic.tidy { tactics := continuity_tactics md, ..cfg }, trace_fn := if trace.is_some then show_term else id in trace_fn continuity_core /-- Version of `continuity` for use with auto_param. -/ meta def continuity' : tactic unit := continuity none none {} /-- `continuity` solves goals of the form `continuous f` by applying lemmas tagged with the `continuity` user attribute. ``` example {X Y : Type*} [topological_space X] [topological_space Y] (f₁ f₂ : X → Y) (hf₁ : continuous f₁) (hf₂ : continuous f₂) (g : Y → ℝ) (hg : continuous g) : continuous (λ x, (max (g (f₁ x)) (g (f₂ x))) + 1) := by continuity ``` will discharge the goal, generating a proof term like `((continuous.comp hg hf₁).max (continuous.comp hg hf₂)).add continuous_const` You can also use `continuity!`, which applies lemmas with `{ md := semireducible }`. The default behaviour is more conservative, and only unfolds `reducible` definitions when attempting to match lemmas with the goal. `continuity?` reports back the proof term it found. -/ add_tactic_doc { name := "continuity / continuity'", category := doc_category.tactic, decl_names := [`tactic.interactive.continuity, `tactic.interactive.continuity'], tags := ["lemma application"] } end interactive end tactic
308557b71861bf9cc6954b9203a7f6ae18143ae8
8cae430f0a71442d02dbb1cbb14073b31048e4b0
/src/group_theory/group_action/option.lean
9afd75f5ee9cc3eaf2a18b6003ca5cec6dcf6b22
[ "Apache-2.0" ]
permissive
leanprover-community/mathlib
56a2cadd17ac88caf4ece0a775932fa26327ba0e
442a83d738cb208d3600056c489be16900ba701d
refs/heads/master
1,693,584,102,358
1,693,471,902,000
1,693,471,902,000
97,922,418
1,595
352
Apache-2.0
1,694,693,445,000
1,500,624,130,000
Lean
UTF-8
Lean
false
false
2,127
lean
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import group_theory.group_action.defs /-! # Option instances for additive and multiplicative actions > THIS FILE IS SYNCHRONIZED WITH MATHLIB4. > Any changes to this file require a corresponding PR to mathlib4. This file defines instances for additive and multiplicative actions on `option` type. Scalar multiplication is defined by `a • some b = some (a • b)` and `a • none = none`. ## See also * `group_theory.group_action.pi` * `group_theory.group_action.prod` * `group_theory.group_action.sigma` * `group_theory.group_action.sum` -/ variables {M N α : Type*} namespace option section has_smul variables [has_smul M α] [has_smul N α] (a : M) (b : α) (x : option α) @[to_additive option.has_vadd] instance : has_smul M (option α) := ⟨λ a, option.map $ (•) a⟩ @[to_additive] lemma smul_def : a • x = x.map ((•) a) := rfl @[simp, to_additive] lemma smul_none : a • (none : option α) = none := rfl @[simp, to_additive] lemma smul_some : a • some b = some (a • b) := rfl @[to_additive] instance [has_smul M N] [is_scalar_tower M N α] : is_scalar_tower M N (option α) := ⟨λ a b x, by { cases x, exacts [rfl, congr_arg some (smul_assoc _ _ _)] }⟩ @[to_additive] instance [smul_comm_class M N α] : smul_comm_class M N (option α) := ⟨λ a b, function.commute.option_map $ smul_comm _ _⟩ @[to_additive] instance [has_smul Mᵐᵒᵖ α] [is_central_scalar M α] : is_central_scalar M (option α) := ⟨λ a x, by { cases x, exacts [rfl, congr_arg some (op_smul_eq_smul _ _)] }⟩ @[to_additive] instance [has_faithful_smul M α] : has_faithful_smul M (option α) := ⟨λ x y h, eq_of_smul_eq_smul $ λ b : α, by injection h (some b)⟩ end has_smul instance [monoid M] [mul_action M α] : mul_action M (option α) := { smul := (•), one_smul := λ b, by { cases b, exacts [rfl, congr_arg some (one_smul _ _)] }, mul_smul := λ a₁ a₂ b, by { cases b, exacts [rfl, congr_arg some (mul_smul _ _ _)] } } end option
59c49042a81ef5643e318a1e3dc12df097c7d1d7
60bf3fa4185ec5075eaea4384181bfbc7e1dc319
/src/game/sup_inf/lub_rationals.lean
4212ddd1b99b185909b13a3799a6deec28baa618
[ "Apache-2.0" ]
permissive
anrddh/real-number-game
660f1127d03a78fd35986c771d65c3132c5f4025
c708c4e02ec306c657e1ea67862177490db041b0
refs/heads/master
1,668,214,277,092
1,593,105,075,000
1,593,105,075,000
264,269,218
0
0
null
1,589,567,264,000
1,589,567,264,000
null
UTF-8
Lean
false
false
940
lean
import data.real.basic namespace xena -- hide /- # Chapter 3 : Sup and Inf ## Level 11 -/ definition is_upper_bound (S : set ℝ) (x : ℝ) := ∀ s ∈ S, s ≤ x definition is_lub' (S : set ℝ) (x : ℝ) := is_upper_bound S x ∧ ∀ y : ℝ, is_upper_bound S y → x ≤ y definition has_lub (S : set ℝ) := ∃ x, is_lub' S x def embedded_rationals : set ℝ := {x : ℝ | ∃ y : ℚ, x = ↑y} /- Lemma The set of rational numbers does not have a supremum -/ lemma not_lub_rationals : ∀ b : ℝ, ¬ (is_lub (embedded_rationals) b) := begin intros b Hlub, have Hbub : b ∈ upper_bounds embedded_rationals := Hlub.left, have H : b < (b+1) := calc b = b+0 : (add_zero _).symm ... < b+1 : add_lt_add_left zero_lt_one _, cases (exists_rat_btwn H) with q Hq, have Hqin : ↑q ∈ embedded_rationals := ⟨q,rfl⟩, have Hwrong2 := Hbub Hqin, exact not_lt.2 Hwrong2 (Hq.left), end end xena -- hide
c33d277f7a92fd4120e8786e1d30491c1fda88a6
64874bd1010548c7f5a6e3e8902efa63baaff785
/library/data/num.lean
01f68a9bb9e551a28f8950719abfcd330baa7a7b
[ "Apache-2.0" ]
permissive
tjiaqi/lean
4634d729795c164664d10d093f3545287c76628f
d0ce4cf62f4246b0600c07e074d86e51f2195e30
refs/heads/master
1,622,323,796,480
1,422,643,069,000
1,422,643,069,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
2,059
lean
/- Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: data.num Author: Leonardo de Moura -/ import logic.eq open bool namespace pos_num theorem succ_not_is_one (a : pos_num) : is_one (succ a) = ff := induction_on a rfl (take n iH, rfl) (take n iH, rfl) theorem pred.succ (a : pos_num) : pred (succ a) = a := rec_on a rfl (take (n : pos_num) (iH : pred (succ n) = n), calc pred (succ (bit1 n)) = cond (is_one (succ n)) one (bit1 (pred (succ n))) : rfl ... = cond ff one (bit1 (pred (succ n))) : succ_not_is_one ... = bit1 (pred (succ n)) : rfl ... = bit1 n : iH) (take (n : pos_num) (iH : pred (succ n) = n), rfl) section variables (a b : pos_num) theorem add.one_one : one + one = bit0 one := rfl theorem add.one_bit0 : one + (bit0 a) = bit1 a := rfl theorem add.one_bit1 : one + (bit1 a) = succ (bit1 a) := rfl theorem add.bit0_one : (bit0 a) + one = bit1 a := rfl theorem add.bit1_one : (bit1 a) + one = succ (bit1 a) := rfl theorem add.bit0_bit0 : (bit0 a) + (bit0 b) = bit0 (a + b) := rfl theorem add.bit0_bit1 : (bit0 a) + (bit1 b) = bit1 (a + b) := rfl theorem add.bit1_bit0 : (bit1 a) + (bit0 b) = bit1 (a + b) := rfl theorem add.bit1_bit1 : (bit1 a) + (bit1 b) = succ (bit1 (a + b)) := rfl end theorem mul.one_left (a : pos_num) : one * a = a := rfl theorem mul.one_right (a : pos_num) : a * one = a := induction_on a rfl (take (n : pos_num) (iH : n * one = n), calc bit1 n * one = bit0 (n * one) + one : rfl ... = bit0 n + one : iH ... = bit1 n : add.bit0_one) (take (n : pos_num) (iH : n * one = n), calc bit0 n * one = bit0 (n * one) : rfl ... = bit0 n : iH) end pos_num
91a0a1ef37d894c399e9896e2f7907d967ee7bb8
8cae430f0a71442d02dbb1cbb14073b31048e4b0
/src/category_theory/bicategory/coherence.lean
9cf7ea46cddf73fe2aee7f4540f02648b92918ca
[ "Apache-2.0" ]
permissive
leanprover-community/mathlib
56a2cadd17ac88caf4ece0a775932fa26327ba0e
442a83d738cb208d3600056c489be16900ba701d
refs/heads/master
1,693,584,102,358
1,693,471,902,000
1,693,471,902,000
97,922,418
1,595
352
Apache-2.0
1,694,693,445,000
1,500,624,130,000
Lean
UTF-8
Lean
false
false
9,235
lean
/- Copyright (c) 2022 Yuma Mizuno. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yuma Mizuno, Junyan Xu -/ import category_theory.path_category import category_theory.functor.fully_faithful import category_theory.bicategory.free import category_theory.bicategory.locally_discrete /-! # The coherence theorem for bicategories > THIS FILE IS SYNCHRONIZED WITH MATHLIB4. > Any changes to this file require a corresponding PR to mathlib4. In this file, we prove the coherence theorem for bicategories, stated in the following form: the free bicategory over any quiver is locally thin. The proof is almost the same as the proof of the coherence theorem for monoidal categories that has been previously formalized in mathlib, which is based on the proof described by Ilya Beylin and Peter Dybjer. The idea is to view a path on a quiver as a normal form of a 1-morphism in the free bicategory on the same quiver. A normalization procedure is then described by `normalize : pseudofunctor (free_bicategory B) (locally_discrete (paths B))`, which is a pseudofunctor from the free bicategory to the locally discrete bicategory on the path category. It turns out that this pseudofunctor is locally an equivalence of categories, and the coherence theorem follows immediately from this fact. ## Main statements * `locally_thin` : the free bicategory is locally thin, that is, there is at most one 2-morphism between two fixed 1-morphisms. ## References * [Ilya Beylin and Peter Dybjer, Extracting a proof of coherence for monoidal categories from a proof of normalization for monoids][beylin1996] -/ open quiver (path) quiver.path namespace category_theory open bicategory category open_locale bicategory universes v u namespace free_bicategory variables {B : Type u} [quiver.{v+1} B] /-- Auxiliary definition for `inclusion_path`. -/ @[simp] def inclusion_path_aux {a : B} : ∀ {b : B}, path a b → hom a b | _ nil := hom.id a | _ (cons p f) := (inclusion_path_aux p).comp (hom.of f) /-- The discrete category on the paths includes into the category of 1-morphisms in the free bicategory. -/ def inclusion_path (a b : B) : discrete (path.{v+1} a b) ⥤ hom a b := discrete.functor inclusion_path_aux /-- The inclusion from the locally discrete bicategory on the path category into the free bicategory as a prelax functor. This will be promoted to a pseudofunctor after proving the coherence theorem. See `inclusion`. -/ def preinclusion (B : Type u) [quiver.{v+1} B] : prelax_functor (locally_discrete (paths B)) (free_bicategory B) := { obj := id, map := λ a b, (inclusion_path a b).obj, map₂ := λ a b f g η, (inclusion_path a b).map η } @[simp] lemma preinclusion_obj (a : B) : (preinclusion B).obj a = a := rfl @[simp] lemma preinclusion_map₂ {a b : B} (f g : discrete (path.{v+1} a b)) (η : f ⟶ g) : (preinclusion B).map₂ η = eq_to_hom (congr_arg _ (discrete.ext _ _ (discrete.eq_of_hom η))) := begin rcases η with ⟨⟨⟩⟩, cases discrete.ext _ _ η, exact (inclusion_path a b).map_id _ end /-- The normalization of the composition of `p : path a b` and `f : hom b c`. `p` will eventually be taken to be `nil` and we then get the normalization of `f` alone, but the auxiliary `p` is necessary for Lean to accept the definition of `normalize_iso` and the `whisker_left` case of `normalize_aux_congr` and `normalize_naturality`. -/ @[simp] def normalize_aux {a : B} : ∀ {b c : B}, path a b → hom b c → path a c | _ _ p (hom.of f) := p.cons f | _ _ p (hom.id b) := p | _ _ p (hom.comp f g) := normalize_aux (normalize_aux p f) g /- We may define ``` def normalize_aux' : ∀ {a b : B}, hom a b → path a b | _ _ (hom.of f) := f.to_path | _ _ (hom.id b) := nil | _ _ (hom.comp f g) := (normalize_aux' f).comp (normalize_aux' g) ``` and define `normalize_aux p f` to be `p.comp (normalize_aux' f)` and this will be equal to the above definition, but the equality proof requires `comp_assoc`, and it thus lacks the correct definitional property to make the definition of `normalize_iso` typecheck. ``` example {a b c : B} (p : path a b) (f : hom b c) : normalize_aux p f = p.comp (normalize_aux' f) := by { induction f, refl, refl, case comp : _ _ _ _ _ ihf ihg { rw [normalize_aux, ihf, ihg], apply comp_assoc } } ``` -/ /-- A 2-isomorphism between a partially-normalized 1-morphism in the free bicategory to the fully-normalized 1-morphism. -/ @[simp] def normalize_iso {a : B} : ∀ {b c : B} (p : path a b) (f : hom b c), (preinclusion B).map ⟨p⟩ ≫ f ≅ (preinclusion B).map ⟨normalize_aux p f⟩ | _ _ p (hom.of f) := iso.refl _ | _ _ p (hom.id b) := ρ_ _ | _ _ p (hom.comp f g) := (α_ _ _ _).symm ≪≫ whisker_right_iso (normalize_iso p f) g ≪≫ normalize_iso (normalize_aux p f) g /-- Given a 2-morphism between `f` and `g` in the free bicategory, we have the equality `normalize_aux p f = normalize_aux p g`. -/ lemma normalize_aux_congr {a b c : B} (p : path a b) {f g : hom b c} (η : f ⟶ g) : normalize_aux p f = normalize_aux p g := begin rcases η, apply @congr_fun _ _ (λ p, normalize_aux p f), clear p, induction η, case vcomp { apply eq.trans; assumption }, /- p ≠ nil required! See the docstring of `normalize_aux`. -/ case whisker_left : _ _ _ _ _ _ _ ih { funext, apply congr_fun ih }, case whisker_right : _ _ _ _ _ _ _ ih { funext, apply congr_arg2 _ (congr_fun ih p) rfl }, all_goals { funext, refl } end /-- The 2-isomorphism `normalize_iso p f` is natural in `f`. -/ lemma normalize_naturality {a b c : B} (p : path a b) {f g : hom b c} (η : f ⟶ g) : (preinclusion B).map ⟨p⟩ ◁ η ≫ (normalize_iso p g).hom = (normalize_iso p f).hom ≫ (preinclusion B).map₂ (eq_to_hom (discrete.ext _ _ (normalize_aux_congr p η))) := begin rcases η, induction η, case id : { simp }, case vcomp : _ _ _ _ _ _ _ ihf ihg { rw [mk_vcomp, bicategory.whisker_left_comp], slice_lhs 2 3 { rw ihg }, slice_lhs 1 2 { rw ihf }, simp }, case whisker_left : _ _ _ _ _ _ _ ih /- p ≠ nil required! See the docstring of `normalize_aux`. -/ { dsimp, simp_rw [associator_inv_naturality_right_assoc, whisker_exchange_assoc, ih, assoc] }, case whisker_right : _ _ _ _ _ h η ih { dsimp, rw [associator_inv_naturality_middle_assoc, ←comp_whisker_right_assoc, ih, comp_whisker_right], have := dcongr_arg (λ x, (normalize_iso x h).hom) (normalize_aux_congr p (quot.mk _ η)), dsimp at this, simp [this] }, all_goals { dsimp, dsimp [id_def, comp_def], simp } end @[simp] lemma normalize_aux_nil_comp {a b c : B} (f : hom a b) (g : hom b c) : normalize_aux nil (f.comp g) = (normalize_aux nil f).comp (normalize_aux nil g) := begin induction g generalizing a, case id { refl }, case of { refl }, case comp : _ _ _ g _ ihf ihg { erw [ihg (f.comp g), ihf f, ihg g, comp_assoc] } end /-- The normalization pseudofunctor for the free bicategory on a quiver `B`. -/ def normalize (B : Type u) [quiver.{v+1} B] : pseudofunctor (free_bicategory B) (locally_discrete (paths B)) := { obj := id, map := λ a b f, ⟨normalize_aux nil f⟩, map₂ := λ a b f g η, eq_to_hom $ discrete.ext _ _ $ normalize_aux_congr nil η, map_id := λ a, eq_to_iso $ discrete.ext _ _ rfl, map_comp := λ a b c f g, eq_to_iso $ discrete.ext _ _ $ normalize_aux_nil_comp f g } /-- Auxiliary definition for `normalize_equiv`. -/ def normalize_unit_iso (a b : free_bicategory B) : 𝟭 (a ⟶ b) ≅ (normalize B).map_functor a b ⋙ inclusion_path a b := nat_iso.of_components (λ f, (λ_ f).symm ≪≫ normalize_iso nil f) begin intros f g η, erw [left_unitor_inv_naturality_assoc, assoc], congr' 1, exact normalize_naturality nil η end /-- Normalization as an equivalence of categories. -/ def normalize_equiv (a b : B) : hom a b ≌ discrete (path.{v+1} a b) := equivalence.mk ((normalize _).map_functor a b) (inclusion_path a b) (normalize_unit_iso a b) (discrete.nat_iso (λ f, eq_to_iso (by { induction f; induction f; tidy }))) /-- The coherence theorem for bicategories. -/ instance locally_thin {a b : free_bicategory B} : quiver.is_thin (a ⟶ b) := λ _ _, ⟨λ η θ, (normalize_equiv a b).functor.map_injective (subsingleton.elim _ _)⟩ /-- Auxiliary definition for `inclusion`. -/ def inclusion_map_comp_aux {a b : B} : ∀ {c : B} (f : path a b) (g : path b c), (preinclusion _).map (⟨f⟩ ≫ ⟨g⟩) ≅ (preinclusion _).map ⟨f⟩ ≫ (preinclusion _).map ⟨g⟩ | _ f nil := (ρ_ ((preinclusion _).map ⟨f⟩)).symm | _ f (cons g₁ g₂) := whisker_right_iso (inclusion_map_comp_aux f g₁) (hom.of g₂) ≪≫ α_ _ _ _ /-- The inclusion pseudofunctor from the locally discrete bicategory on the path category into the free bicategory. -/ def inclusion (B : Type u) [quiver.{v+1} B] : pseudofunctor (locally_discrete (paths B)) (free_bicategory B) := { map_id := λ a, iso.refl (𝟙 a), map_comp := λ a b c f g, inclusion_map_comp_aux f.as g.as, -- All the conditions for 2-morphisms are trivial thanks to the coherence theorem! .. preinclusion B } end free_bicategory end category_theory
7c572118623f44c5b76c5a6dbfdae75a411d3f53
11d98f23718b57e0a9dd4c0889d2c1e37ced2afa
/lean/effects.lean
c46a07f73e23c7c0d23d36d0df41addd0a0add07
[]
no_license
ulidtko/exe
401805a37bba87e16b78f1ff923fffef383e31fa
2a326f233895bc46ae48c559da3ded1b0481232f
refs/heads/master
1,611,519,189,455
1,452,174,370,000
1,452,174,409,000
49,207,131
0
0
null
1,452,174,448,000
1,452,174,447,000
null
UTF-8
Lean
false
false
626
lean
import data.nat data.bool data.prod data.list data.sum data.stream data.unit data.uprod data.tuple data.option namespace effects open nat bool prod sum list classical option stream record eff (x: Type) := (carrier : x) record io (x: Type) extends eff x := (get: unit → eff x) (put: x → eff x) record exception (x: Type) extends eff x := (raise: x → eff x) record comm (x: Type) extends eff x := (recv: unit → eff x) (send: x → eff x) definition unpure (x: Type) := Type → x → eff x print unpure end effects
88088c51a1ef6d17f1803cafbdff07b9be600c85
4d2583807a5ac6caaffd3d7a5f646d61ca85d532
/src/group_theory/perm/support.lean
f7a3eac9fe4dc17c82741a50cc1ae3f5947f2d86
[ "Apache-2.0" ]
permissive
AntoineChambert-Loir/mathlib
64aabb896129885f12296a799818061bc90da1ff
07be904260ab6e36a5769680b6012f03a4727134
refs/heads/master
1,693,187,631,771
1,636,719,886,000
1,636,719,886,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
20,231
lean
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Aaron Anderson, Yakov Pechersky -/ import data.finset.sort import data.fintype.basic import group_theory.perm.basic /-! # Support of a permutation ## Main definitions In the following, `f g : equiv.perm α`. * `equiv.perm.disjoint`: two permutations `f` and `g` are `disjoint` if every element is fixed either by `f`, or by `g`. Equivalently, `f` and `g` are `disjoint` iff their `support` are disjoint. * `equiv.perm.is_swap`: `f = swap x y` for `x ≠ y`. * `equiv.perm.support`: the elements `x : α` that are not fixed by `f`. -/ open equiv finset namespace equiv.perm variables {α : Type*} section disjoint /-- Two permutations `f` and `g` are `disjoint` if their supports are disjoint, i.e., every element is fixed either by `f`, or by `g`. -/ def disjoint (f g : perm α) := ∀ x, f x = x ∨ g x = x variables {f g h : perm α} @[symm] lemma disjoint.symm : disjoint f g → disjoint g f := by simp only [disjoint, or.comm, imp_self] lemma disjoint.symmetric : symmetric (@disjoint α) := λ _ _, disjoint.symm lemma disjoint_comm : disjoint f g ↔ disjoint g f := ⟨disjoint.symm, disjoint.symm⟩ lemma disjoint.commute (h : disjoint f g) : commute f g := equiv.ext $ λ x, (h x).elim (λ hf, (h (g x)).elim (λ hg, by simp [mul_apply, hf, hg]) (λ hg, by simp [mul_apply, hf, g.injective hg])) (λ hg, (h (f x)).elim (λ hf, by simp [mul_apply, f.injective hf, hg]) (λ hf, by simp [mul_apply, hf, hg])) @[simp] lemma disjoint_one_left (f : perm α) : disjoint 1 f := λ _, or.inl rfl @[simp] lemma disjoint_one_right (f : perm α) : disjoint f 1 := λ _, or.inr rfl lemma disjoint_iff_eq_or_eq : disjoint f g ↔ ∀ (x : α), f x = x ∨ g x = x := iff.rfl @[simp] lemma disjoint_refl_iff : disjoint f f ↔ f = 1 := begin refine ⟨λ h, _, λ h, h.symm ▸ disjoint_one_left 1⟩, ext x, cases h x with hx hx; simp [hx] end lemma disjoint.inv_left (h : disjoint f g) : disjoint f⁻¹ g := begin intro x, rw [inv_eq_iff_eq, eq_comm], exact h x end lemma disjoint.inv_right (h : disjoint f g) : disjoint f g⁻¹ := h.symm.inv_left.symm @[simp] lemma disjoint_inv_left_iff : disjoint f⁻¹ g ↔ disjoint f g := begin refine ⟨λ h, _, disjoint.inv_left⟩, convert h.inv_left, exact (inv_inv _).symm end @[simp] lemma disjoint_inv_right_iff : disjoint f g⁻¹ ↔ disjoint f g := by rw [disjoint_comm, disjoint_inv_left_iff, disjoint_comm] lemma disjoint.mul_left (H1 : disjoint f h) (H2 : disjoint g h) : disjoint (f * g) h := λ x, by cases H1 x; cases H2 x; simp * lemma disjoint.mul_right (H1 : disjoint f g) (H2 : disjoint f h) : disjoint f (g * h) := by { rw disjoint_comm, exact H1.symm.mul_left H2.symm } lemma disjoint_prod_right (l : list (perm α)) (h : ∀ g ∈ l, disjoint f g) : disjoint f l.prod := begin induction l with g l ih, { exact disjoint_one_right _ }, { rw list.prod_cons, exact (h _ (list.mem_cons_self _ _)).mul_right (ih (λ g hg, h g (list.mem_cons_of_mem _ hg))) } end lemma disjoint_prod_perm {l₁ l₂ : list (perm α)} (hl : l₁.pairwise disjoint) (hp : l₁ ~ l₂) : l₁.prod = l₂.prod := hp.prod_eq' $ hl.imp $ λ f g, disjoint.commute lemma nodup_of_pairwise_disjoint {l : list (perm α)} (h1 : (1 : perm α) ∉ l) (h2 : l.pairwise disjoint) : l.nodup := begin refine list.pairwise.imp_of_mem _ h2, rintros σ - h_mem - h_disjoint rfl, suffices : σ = 1, { rw this at h_mem, exact h1 h_mem }, exact ext (λ a, (or_self _).mp (h_disjoint a)), end lemma pow_apply_eq_self_of_apply_eq_self {x : α} (hfx : f x = x) : ∀ n : ℕ, (f ^ n) x = x | 0 := rfl | (n+1) := by rw [pow_succ', mul_apply, hfx, pow_apply_eq_self_of_apply_eq_self] lemma zpow_apply_eq_self_of_apply_eq_self {x : α} (hfx : f x = x) : ∀ n : ℤ, (f ^ n) x = x | (n : ℕ) := pow_apply_eq_self_of_apply_eq_self hfx n | -[1+ n] := by rw [zpow_neg_succ_of_nat, inv_eq_iff_eq, pow_apply_eq_self_of_apply_eq_self hfx] lemma pow_apply_eq_of_apply_apply_eq_self {x : α} (hffx : f (f x) = x) : ∀ n : ℕ, (f ^ n) x = x ∨ (f ^ n) x = f x | 0 := or.inl rfl | (n+1) := (pow_apply_eq_of_apply_apply_eq_self n).elim (λ h, or.inr (by rw [pow_succ, mul_apply, h])) (λ h, or.inl (by rw [pow_succ, mul_apply, h, hffx])) lemma zpow_apply_eq_of_apply_apply_eq_self {x : α} (hffx : f (f x) = x) : ∀ i : ℤ, (f ^ i) x = x ∨ (f ^ i) x = f x | (n : ℕ) := pow_apply_eq_of_apply_apply_eq_self hffx n | -[1+ n] := by { rw [zpow_neg_succ_of_nat, inv_eq_iff_eq, ← f.injective.eq_iff, ← mul_apply, ← pow_succ, eq_comm, inv_eq_iff_eq, ← mul_apply, ← pow_succ', @eq_comm _ x, or.comm], exact pow_apply_eq_of_apply_apply_eq_self hffx _ } lemma disjoint.mul_apply_eq_iff {σ τ : perm α} (hστ : disjoint σ τ) {a : α} : (σ * τ) a = a ↔ σ a = a ∧ τ a = a := begin refine ⟨λ h, _, λ h, by rw [mul_apply, h.2, h.1]⟩, cases hστ a with hσ hτ, { exact ⟨hσ, σ.injective (h.trans hσ.symm)⟩ }, { exact ⟨(congr_arg σ hτ).symm.trans h, hτ⟩ }, end lemma disjoint.mul_eq_one_iff {σ τ : perm α} (hστ : disjoint σ τ) : σ * τ = 1 ↔ σ = 1 ∧ τ = 1 := by simp_rw [ext_iff, one_apply, hστ.mul_apply_eq_iff, forall_and_distrib] lemma disjoint.zpow_disjoint_zpow {σ τ : perm α} (hστ : disjoint σ τ) (m n : ℤ) : disjoint (σ ^ m) (τ ^ n) := λ x, or.imp (λ h, zpow_apply_eq_self_of_apply_eq_self h m) (λ h, zpow_apply_eq_self_of_apply_eq_self h n) (hστ x) lemma disjoint.pow_disjoint_pow {σ τ : perm α} (hστ : disjoint σ τ) (m n : ℕ) : disjoint (σ ^ m) (τ ^ n) := hστ.zpow_disjoint_zpow m n end disjoint section is_swap variable [decidable_eq α] /-- `f.is_swap` indicates that the permutation `f` is a transposition of two elements. -/ def is_swap (f : perm α) : Prop := ∃ x y, x ≠ y ∧ f = swap x y lemma is_swap.of_subtype_is_swap {p : α → Prop} [decidable_pred p] {f : perm (subtype p)} (h : f.is_swap) : (of_subtype f).is_swap := let ⟨⟨x, hx⟩, ⟨y, hy⟩, hxy⟩ := h in ⟨x, y, by { simp only [ne.def] at hxy, exact hxy.1 }, equiv.ext $ λ z, begin rw [hxy.2, of_subtype], simp only [swap_apply_def, coe_fn_mk, swap_inv, subtype.mk_eq_mk, monoid_hom.coe_mk], split_ifs; rw subtype.coe_mk <|> cc, end⟩ lemma ne_and_ne_of_swap_mul_apply_ne_self {f : perm α} {x y : α} (hy : (swap x (f x) * f) y ≠ y) : f y ≠ y ∧ y ≠ x := begin simp only [swap_apply_def, mul_apply, f.injective.eq_iff] at *, by_cases h : f y = x, { split; intro; simp only [*, if_true, eq_self_iff_true, not_true, ne.def] at * }, { split_ifs at hy; cc } end end is_swap section support section set variables (p q : perm α) lemma set_support_inv_eq : {x | p⁻¹ x ≠ x} = {x | p x ≠ x} := begin ext x, simp only [set.mem_set_of_eq, ne.def], rw [inv_def, symm_apply_eq, eq_comm] end lemma set_support_apply_mem {p : perm α} {a : α} : p a ∈ {x | p x ≠ x} ↔ a ∈ {x | p x ≠ x} := by simp lemma set_support_zpow_subset (n : ℤ) : {x | (p ^ n) x ≠ x} ⊆ {x | p x ≠ x} := begin intros x, simp only [set.mem_set_of_eq, ne.def], intros hx H, simpa [zpow_apply_eq_self_of_apply_eq_self H] using hx end lemma set_support_mul_subset : {x | (p * q) x ≠ x} ⊆ {x | p x ≠ x} ∪ {x | q x ≠ x} := begin intro x, simp only [perm.coe_mul, function.comp_app, ne.def, set.mem_union_eq, set.mem_set_of_eq], by_cases hq : q x = x; simp [hq] end end set variables [decidable_eq α] [fintype α] {f g : perm α} /-- The `finset` of nonfixed points of a permutation. -/ def support (f : perm α) : finset α := univ.filter (λ x, f x ≠ x) @[simp] lemma mem_support {x : α} : x ∈ f.support ↔ f x ≠ x := by rw [support, mem_filter, and_iff_right (mem_univ x)] lemma not_mem_support {x : α} : x ∉ f.support ↔ f x = x := by simp lemma coe_support_eq_set_support (f : perm α) : (f.support : set α) = {x | f x ≠ x} := by { ext, simp } @[simp] lemma support_eq_empty_iff {σ : perm α} : σ.support = ∅ ↔ σ = 1 := by simp_rw [finset.ext_iff, mem_support, finset.not_mem_empty, iff_false, not_not, equiv.perm.ext_iff, one_apply] @[simp] lemma support_one : (1 : perm α).support = ∅ := by rw support_eq_empty_iff @[simp] lemma support_refl : support (equiv.refl α) = ∅ := support_one lemma support_congr (h : f.support ⊆ g.support) (h' : ∀ x ∈ g.support, f x = g x) : f = g := begin ext x, by_cases hx : x ∈ g.support, { exact h' x hx }, { rw [not_mem_support.mp hx, ←not_mem_support], exact λ H, hx (h H) } end lemma support_mul_le (f g : perm α) : (f * g).support ≤ f.support ⊔ g.support := λ x, begin rw [sup_eq_union, mem_union, mem_support, mem_support, mem_support, mul_apply, ←not_and_distrib, not_imp_not], rintro ⟨hf, hg⟩, rw [hg, hf] end lemma exists_mem_support_of_mem_support_prod {l : list (perm α)} {x : α} (hx : x ∈ l.prod.support) : ∃ f : perm α, f ∈ l ∧ x ∈ f.support := begin contrapose! hx, simp_rw [mem_support, not_not] at hx ⊢, induction l with f l ih generalizing hx, { refl }, { rw [list.prod_cons, mul_apply, ih (λ g hg, hx g (or.inr hg)), hx f (or.inl rfl)] }, end lemma support_pow_le (σ : perm α) (n : ℕ) : (σ ^ n).support ≤ σ.support := λ x h1, mem_support.mpr (λ h2, mem_support.mp h1 (pow_apply_eq_self_of_apply_eq_self h2 n)) @[simp] lemma support_inv (σ : perm α) : support (σ⁻¹) = σ.support := by simp_rw [finset.ext_iff, mem_support, not_iff_not, (inv_eq_iff_eq).trans eq_comm, iff_self, imp_true_iff] @[simp] lemma apply_mem_support {x : α} : f x ∈ f.support ↔ x ∈ f.support := by rw [mem_support, mem_support, ne.def, ne.def, not_iff_not, apply_eq_iff_eq] @[simp] lemma pow_apply_mem_support {n : ℕ} {x : α} : (f ^ n) x ∈ f.support ↔ x ∈ f.support := begin induction n with n ih, { refl }, rw [pow_succ, perm.mul_apply, apply_mem_support, ih] end @[simp] lemma zpow_apply_mem_support {n : ℤ} {x : α} : (f ^ n) x ∈ f.support ↔ x ∈ f.support := begin cases n, { rw [int.of_nat_eq_coe, zpow_coe_nat, pow_apply_mem_support] }, { rw [zpow_neg_succ_of_nat, ← support_inv, ← inv_pow, pow_apply_mem_support] } end lemma pow_eq_on_of_mem_support (h : ∀ (x ∈ f.support ∩ g.support), f x = g x) (k : ℕ) : ∀ (x ∈ f.support ∩ g.support), (f ^ k) x = (g ^ k) x := begin induction k with k hk, { simp }, { intros x hx, rw [pow_succ', mul_apply, pow_succ', mul_apply, h _ hx, hk], rwa [mem_inter, apply_mem_support, ←h _ hx, apply_mem_support, ←mem_inter] } end lemma disjoint_iff_disjoint_support : disjoint f g ↔ _root_.disjoint f.support g.support := by simp [disjoint_iff_eq_or_eq, disjoint_iff, finset.ext_iff, not_and_distrib] lemma disjoint.disjoint_support (h : disjoint f g) : _root_.disjoint f.support g.support := disjoint_iff_disjoint_support.1 h lemma disjoint.support_mul (h : disjoint f g) : (f * g).support = f.support ∪ g.support := begin refine le_antisymm (support_mul_le _ _) (λ a, _), rw [mem_union, mem_support, mem_support, mem_support, mul_apply, ←not_and_distrib, not_imp_not], exact (h a).elim (λ hf h, ⟨hf, f.apply_eq_iff_eq.mp (h.trans hf.symm)⟩) (λ hg h, ⟨(congr_arg f hg).symm.trans h, hg⟩), end lemma support_prod_of_pairwise_disjoint (l : list (perm α)) (h : l.pairwise disjoint) : l.prod.support = (l.map support).foldr (⊔) ⊥ := begin induction l with hd tl hl, { simp }, { rw [list.pairwise_cons] at h, have : disjoint hd tl.prod := disjoint_prod_right _ h.left, simp [this.support_mul, hl h.right] } end lemma support_prod_le (l : list (perm α)) : l.prod.support ≤ (l.map support).foldr (⊔) ⊥ := begin induction l with hd tl hl, { simp }, { rw [list.prod_cons, list.map_cons, list.foldr_cons], refine (support_mul_le hd tl.prod).trans _, exact sup_le_sup (le_refl _) hl } end lemma support_zpow_le (σ : perm α) (n : ℤ) : (σ ^ n).support ≤ σ.support := λ x h1, mem_support.mpr (λ h2, mem_support.mp h1 (zpow_apply_eq_self_of_apply_eq_self h2 n)) @[simp] lemma support_swap {x y : α} (h : x ≠ y) : support (swap x y) = {x, y} := begin ext z, by_cases hx : z = x; by_cases hy : z = y, any_goals { simpa [hx, hy] using h.symm }, { simp [swap_apply_of_ne_of_ne, hx, hy] } end lemma support_swap_iff (x y : α) : support (swap x y) = {x, y} ↔ x ≠ y := begin refine ⟨λ h H, _, support_swap⟩, subst H, simp only [swap_self, support_refl, insert_singleton_self_eq] at h, have : x ∈ ∅, { rw h, exact mem_singleton.mpr rfl }, simpa end lemma support_swap_mul_swap {x y z : α} (h : list.nodup [x, y, z]) : support (swap x y * swap y z) = {x, y, z} := begin simp only [list.not_mem_nil, and_true, list.mem_cons_iff, not_false_iff, list.nodup_cons, list.mem_singleton, and_self, list.nodup_nil] at h, push_neg at h, apply le_antisymm, { convert support_mul_le _ _, rw [support_swap h.left.left, support_swap h.right], ext, simp [or.comm, or.left_comm] }, { intro, simp only [mem_insert, mem_singleton], rintro (rfl | rfl | rfl | _); simp [swap_apply_of_ne_of_ne, h.left.left, h.left.left.symm, h.left.right, h.left.right.symm, h.right.symm] } end lemma support_swap_mul_ge_support_diff (f : perm α) (x y : α) : f.support \ {x, y} ≤ (swap x y * f).support := begin intro, simp only [and_imp, perm.coe_mul, function.comp_app, ne.def, mem_support, mem_insert, mem_sdiff, mem_singleton], push_neg, rintro ha ⟨hx, hy⟩ H, rw [swap_apply_eq_iff, swap_apply_of_ne_of_ne hx hy] at H, exact ha H end lemma support_swap_mul_eq (f : perm α) (x : α) (h : f (f x) ≠ x) : (swap x (f x) * f).support = f.support \ {x} := begin by_cases hx : f x = x, { simp [hx, sdiff_singleton_eq_erase, not_mem_support.mpr hx, erase_eq_of_not_mem] }, ext z, by_cases hzx : z = x, { simp [hzx] }, by_cases hzf : z = f x, { simp [hzf, hx, h, swap_apply_of_ne_of_ne], }, by_cases hzfx : f z = x, { simp [ne.symm hzx, hzx, ne.symm hzf, hzfx] }, { simp [ne.symm hzx, hzx, ne.symm hzf, hzfx, f.injective.ne hzx, swap_apply_of_ne_of_ne] } end lemma mem_support_swap_mul_imp_mem_support_ne {x y : α} (hy : y ∈ support (swap x (f x) * f)) : y ∈ support f ∧ y ≠ x := begin simp only [mem_support, swap_apply_def, mul_apply, f.injective.eq_iff] at *, by_cases h : f y = x, { split; intro; simp only [*, if_true, eq_self_iff_true, not_true, ne.def] at * }, { split_ifs at hy; cc } end lemma disjoint.mem_imp (h : disjoint f g) {x : α} (hx : x ∈ f.support) : x ∉ g.support := λ H, h.disjoint_support (mem_inter_of_mem hx H) lemma eq_on_support_mem_disjoint {l : list (perm α)} (h : f ∈ l) (hl : l.pairwise disjoint) : ∀ (x ∈ f.support), f x = l.prod x := begin induction l with hd tl IH, { simpa using h }, { intros x hx, rw list.pairwise_cons at hl, rw list.mem_cons_iff at h, rcases h with rfl|h, { rw [list.prod_cons, mul_apply, not_mem_support.mp ((disjoint_prod_right tl hl.left).mem_imp hx)] }, { rw [list.prod_cons, mul_apply, ←IH h hl.right _ hx, eq_comm, ←not_mem_support], refine (hl.left _ h).symm.mem_imp _, simpa using hx } } end lemma disjoint.mono {x y : perm α} (h : disjoint f g) (hf : x.support ≤ f.support) (hg : y.support ≤ g.support) : disjoint x y := begin rw disjoint_iff_disjoint_support at h ⊢, intros a ha, exact h (mem_inter_of_mem (hf (mem_of_mem_inter_left ha)) (hg (mem_of_mem_inter_right ha))) end lemma support_le_prod_of_mem {l : list (perm α)} (h : f ∈ l) (hl : l.pairwise disjoint) : f.support ≤ l.prod.support := begin intros x hx, rwa [mem_support, ←eq_on_support_mem_disjoint h hl _ hx, ←mem_support], end section extend_domain variables {β : Type*} [decidable_eq β] [fintype β] {p : β → Prop} [decidable_pred p] @[simp] lemma support_extend_domain (f : α ≃ subtype p) {g : perm α} : support (g.extend_domain f) = g.support.map f.as_embedding := begin ext b, simp only [exists_prop, function.embedding.coe_fn_mk, to_embedding_apply, mem_map, ne.def, function.embedding.trans_apply, mem_support], by_cases pb : p b, { rw [extend_domain_apply_subtype _ _ pb], split, { rintro h, refine ⟨f.symm ⟨b, pb⟩, _, by simp⟩, contrapose! h, simp [h] }, { rintro ⟨a, ha, hb⟩, contrapose! ha, obtain rfl : a = f.symm ⟨b, pb⟩, { rw eq_symm_apply, exact subtype.coe_injective hb }, rw eq_symm_apply, exact subtype.coe_injective ha } }, { rw [extend_domain_apply_not_subtype _ _ pb], simp only [not_exists, false_iff, not_and, eq_self_iff_true, not_true], rintros a ha rfl, exact pb (subtype.prop _) } end lemma card_support_extend_domain (f : α ≃ subtype p) {g : perm α} : (g.extend_domain f).support.card = g.support.card := by simp end extend_domain section card @[simp] lemma card_support_eq_zero {f : perm α} : f.support.card = 0 ↔ f = 1 := by rw [finset.card_eq_zero, support_eq_empty_iff] lemma one_lt_card_support_of_ne_one {f : perm α} (h : f ≠ 1) : 1 < f.support.card := begin simp_rw [one_lt_card_iff, mem_support, ←not_or_distrib], contrapose! h, ext a, specialize h (f a) a, rwa [apply_eq_iff_eq, or_self, or_self] at h, end lemma card_support_ne_one (f : perm α) : f.support.card ≠ 1 := begin by_cases h : f = 1, { exact ne_of_eq_of_ne (card_support_eq_zero.mpr h) zero_ne_one }, { exact ne_of_gt (one_lt_card_support_of_ne_one h) }, end @[simp] lemma card_support_le_one {f : perm α} : f.support.card ≤ 1 ↔ f = 1 := by rw [le_iff_lt_or_eq, nat.lt_succ_iff, nat.le_zero_iff, card_support_eq_zero, or_iff_not_imp_right, imp_iff_right f.card_support_ne_one] lemma two_le_card_support_of_ne_one {f : perm α} (h : f ≠ 1) : 2 ≤ f.support.card := one_lt_card_support_of_ne_one h lemma card_support_swap_mul {f : perm α} {x : α} (hx : f x ≠ x) : (swap x (f x) * f).support.card < f.support.card := finset.card_lt_card ⟨λ z hz, (mem_support_swap_mul_imp_mem_support_ne hz).left, λ h, absurd (h (mem_support.2 hx)) (mt mem_support.1 (by simp))⟩ lemma card_support_swap {x y : α} (hxy : x ≠ y) : (swap x y).support.card = 2 := show (swap x y).support.card = finset.card ⟨x ::ₘ y ::ₘ 0, by simp [hxy]⟩, from congr_arg card $ by simp [support_swap hxy, *, finset.ext_iff] @[simp] lemma card_support_eq_two {f : perm α} : f.support.card = 2 ↔ is_swap f := begin split; intro h, { obtain ⟨x, t, hmem, hins, ht⟩ := card_eq_succ.1 h, obtain ⟨y, rfl⟩ := card_eq_one.1 ht, rw mem_singleton at hmem, refine ⟨x, y, hmem, _⟩, ext a, have key : ∀ b, f b ≠ b ↔ _ := λ b, by rw [←mem_support, ←hins, mem_insert, mem_singleton], by_cases ha : f a = a, { have ha' := not_or_distrib.mp (mt (key a).mpr (not_not.mpr ha)), rw [ha, swap_apply_of_ne_of_ne ha'.1 ha'.2] }, { have ha' := (key (f a)).mp (mt f.apply_eq_iff_eq.mp ha), obtain rfl | rfl := ((key a).mp ha), { rw [or.resolve_left ha' ha, swap_apply_left] }, { rw [or.resolve_right ha' ha, swap_apply_right] } } }, { obtain ⟨x, y, hxy, rfl⟩ := h, exact card_support_swap hxy } end lemma disjoint.card_support_mul (h : disjoint f g) : (f * g).support.card = f.support.card + g.support.card := begin rw ←finset.card_disjoint_union, { congr, ext, simp [h.support_mul] }, { simpa using h.disjoint_support } end lemma card_support_prod_list_of_pairwise_disjoint {l : list (perm α)} (h : l.pairwise disjoint) : l.prod.support.card = (l.map (finset.card ∘ support)).sum := begin induction l with a t ih, { exact card_support_eq_zero.mpr rfl, }, { obtain ⟨ha, ht⟩ := list.pairwise_cons.1 h, rw [list.prod_cons, list.map_cons, list.sum_cons, ←ih ht], exact (disjoint_prod_right _ ha).card_support_mul } end end card end support end equiv.perm
ea6e34956eafdf8c745bf8cb38b0b6ac5875ce40
36cfb52a5926b96dc8a44d3b71d2f14a21ef8574
/sort.lean
a2196b4ba2c96373d77d6568e3ac30ae53e5da98
[]
no_license
minchaowu/relevance_filter
b46e3cc166b8225b19fac61b8f9911eeecdd42d8
3ae59d297ed5a07bd14749112e520b74209f10fd
refs/heads/master
1,631,071,413,821
1,507,745,131,000
1,507,745,131,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
2,724
lean
/- Sorting on arrays. -/ section quicksort variables {α : Type} [inhabited α] (op : α → α → bool) local infix `<` := op variable [has_to_format α] meta def swap {n : ℕ} (A : array α n) (i j : ℕ) : array α n := let tmp_j := A.read' j, tmp_i := A.read' i in (A.write' j tmp_i).write' i tmp_j meta def partition_aux (hi : ℕ) (pivot : α) {n : ℕ} : Π (A : array α n) (i j : ℕ), ℕ × array α n | A i j := if j = hi then (i, A) else let tmp_j := A.read' j in if bnot (tmp_j < pivot) then partition_aux A i (j+1) else let tmp_i := A.read' i, A' := (A.write' j tmp_i).write' i tmp_j in partition_aux A' (i+1) (j+1) --else -- partition_aux A i (j+1) meta def partition {n : ℕ} (A : array α n) (lo hi : ℕ) : ℕ × array α n := let pivot := A.read' hi, i := lo, (i', A') := partition_aux op hi pivot A i lo, A'' := if A'.read' hi < A'.read' i' then swap A' i' hi else A' in (i', A'') meta def quicksort_aux {n : ℕ} : Π (A : array α n) (lo hi : ℕ), array α n | A lo hi := if bnot (nat.lt lo hi) then A else let (p, A') := partition op A lo hi in quicksort_aux (quicksort_aux A' lo (p-1)) (p+1) hi meta def quicksort {n : ℕ} (A : array α n) : array α n := quicksort_aux op A 0 (n-1) meta def partial_quicksort_aux {n : ℕ} : Π (A : array α n) (lo hi k : ℕ), array α n | A lo hi k := if nat.lt lo hi then let (p, A') := partition op A lo hi, A'' := partial_quicksort_aux A' lo (p-1) k in if nat.lt p (k-1) then partial_quicksort_aux A'' (p+1) hi k else A'' else A meta def partial_quicksort {n : ℕ} (A : array α n) (k : ℕ) : array α n := partial_quicksort_aux op A 0 (n-1) k end quicksort -- super inefficient, for comparison section mergesort meta def merge {α : Type} [decidable_linear_order α] [inhabited α] [has_to_format α] {m n} (lhs : array α m) (rhs : array α n) : array α (m + n) := let bgn := mk_array (m+n) (default α), pr := bgn.iterate (0, 0, bgn) (λ i a interm, match interm with | (ln, rn, arr) := if (rn ≥ n) || ((ln < m) && (lhs.read' ln ≤ rhs.read' rn)) then (ln+1, rn, arr.write i (lhs.read' ln)) else (ln, rn+1, arr.write i (rhs.read' rn)) end) in pr.2.2 meta def merge_sort {α : Type} [decidable_linear_order α] [inhabited α] [has_to_format α] : Π {n}, array α n → array α n | 0 a := a | 1 a := a | (n+2) a := let lhs := merge_sort (a.slice 0 (n/2 + 1) undefined undefined), rhs := merge_sort (a.slice (n/2 + 1) (n+2) undefined undefined) in unchecked_cast $ merge lhs rhs end mergesort
176cee64a1affec74e5ff2b54a07b4a4975dcd86
4727251e0cd73359b15b664c3170e5d754078599
/src/algebra/module/ulift.lean
c75da83edbf521b417493bf70ae204db26423a66
[ "Apache-2.0" ]
permissive
Vierkantor/mathlib
0ea59ac32a3a43c93c44d70f441c4ee810ccceca
83bc3b9ce9b13910b57bda6b56222495ebd31c2f
refs/heads/master
1,658,323,012,449
1,652,256,003,000
1,652,256,003,000
209,296,341
0
1
Apache-2.0
1,568,807,655,000
1,568,807,655,000
null
UTF-8
Lean
false
false
4,372
lean
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import algebra.ring.ulift import algebra.module.equiv /-! # `ulift` instances for module and multiplicative actions This file defines instances for module, mul_action and related structures on `ulift` types. (Recall `ulift α` is just a "copy" of a type `α` in a higher universe.) We also provide `ulift.module_equiv : ulift M ≃ₗ[R] M`. -/ namespace ulift universes u v w variable {R : Type u} variable {M : Type v} variable {N : Type w} instance has_scalar_left [has_scalar R M] : has_scalar (ulift R) M := ⟨λ s x, s.down • x⟩ @[simp] lemma smul_down [has_scalar R M] (s : ulift R) (x : M) : (s • x) = s.down • x := rfl @[simp] lemma smul_down' [has_scalar R M] (s : R) (x : ulift M) : (s • x).down = s • x.down := rfl instance is_scalar_tower [has_scalar R M] [has_scalar M N] [has_scalar R N] [is_scalar_tower R M N] : is_scalar_tower (ulift R) M N := ⟨λ x y z, show (x.down • y) • z = x.down • y • z, from smul_assoc _ _ _⟩ instance is_scalar_tower' [has_scalar R M] [has_scalar M N] [has_scalar R N] [is_scalar_tower R M N] : is_scalar_tower R (ulift M) N := ⟨λ x y z, show (x • y.down) • z = x • y.down • z, from smul_assoc _ _ _⟩ instance is_scalar_tower'' [has_scalar R M] [has_scalar M N] [has_scalar R N] [is_scalar_tower R M N] : is_scalar_tower R M (ulift N) := ⟨λ x y z, show up ((x • y) • z.down) = ⟨x • y • z.down⟩, by rw smul_assoc⟩ instance [has_scalar R M] [has_scalar Rᵐᵒᵖ M] [is_central_scalar R M] : is_central_scalar R (ulift M) := ⟨λ r m, congr_arg up $ op_smul_eq_smul r m.down⟩ instance mul_action [monoid R] [mul_action R M] : mul_action (ulift R) M := { smul := (•), mul_smul := λ _ _, mul_smul _ _, one_smul := one_smul _ } instance mul_action' [monoid R] [mul_action R M] : mul_action R (ulift M) := { smul := (•), mul_smul := λ r s f, by { cases f, ext, simp [mul_smul], }, one_smul := λ f, by { ext, simp [one_smul], } } instance distrib_mul_action [monoid R] [add_monoid M] [distrib_mul_action R M] : distrib_mul_action (ulift R) M := { smul_zero := λ _, smul_zero _, smul_add := λ _, smul_add _ } instance distrib_mul_action' [monoid R] [add_monoid M] [distrib_mul_action R M] : distrib_mul_action R (ulift M) := { smul_zero := λ c, by { ext, simp [smul_zero], }, smul_add := λ c f g, by { ext, simp [smul_add], }, ..ulift.mul_action' } instance mul_distrib_mul_action [monoid R] [monoid M] [mul_distrib_mul_action R M] : mul_distrib_mul_action (ulift R) M := { smul_one := λ _, smul_one _, smul_mul := λ _, smul_mul' _ } instance mul_distrib_mul_action' [monoid R] [monoid M] [mul_distrib_mul_action R M] : mul_distrib_mul_action R (ulift M) := { smul_one := λ _, by { ext, simp [smul_one], }, smul_mul := λ c f g, by { ext, simp [smul_mul'], }, ..ulift.mul_action' } instance smul_with_zero [has_zero R] [has_zero M] [smul_with_zero R M] : smul_with_zero (ulift R) M := { smul_zero := λ _, smul_zero' _ _, zero_smul := zero_smul _, ..ulift.has_scalar_left } instance smul_with_zero' [has_zero R] [has_zero M] [smul_with_zero R M] : smul_with_zero R (ulift M) := { smul_zero := λ _, ulift.ext _ _ $ smul_zero' _ _, zero_smul := λ _, ulift.ext _ _ $ zero_smul _ _ } instance mul_action_with_zero [monoid_with_zero R] [has_zero M] [mul_action_with_zero R M] : mul_action_with_zero (ulift R) M := { ..ulift.smul_with_zero } instance mul_action_with_zero' [monoid_with_zero R] [has_zero M] [mul_action_with_zero R M] : mul_action_with_zero R (ulift M) := { ..ulift.smul_with_zero' } instance module [semiring R] [add_comm_monoid M] [module R M] : module (ulift R) M := { add_smul := λ _ _, add_smul _ _, ..ulift.smul_with_zero } instance module' [semiring R] [add_comm_monoid M] [module R M] : module R (ulift M) := { add_smul := λ _ _ _, ulift.ext _ _ $ add_smul _ _ _, ..ulift.smul_with_zero' } /-- The `R`-linear equivalence between `ulift M` and `M`. -/ def module_equiv [semiring R] [add_comm_monoid M] [module R M] : ulift M ≃ₗ[R] M := { to_fun := ulift.down, inv_fun := ulift.up, map_smul' := λ r x, rfl, map_add' := λ x y, rfl, left_inv := by tidy, right_inv := by tidy, } end ulift
751891fde7e8846a07c4a7be128a3fa614efae9f
969dbdfed67fda40a6f5a2b4f8c4a3c7dc01e0fb
/src/topology/algebra/group.lean
8910c2c5a400793db0e0522548e9160660e9f90c
[ "Apache-2.0" ]
permissive
SAAluthwela/mathlib
62044349d72dd63983a8500214736aa7779634d3
83a4b8b990907291421de54a78988c024dc8a552
refs/heads/master
1,679,433,873,417
1,615,998,031,000
1,615,998,031,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
28,141
lean
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro, Patrick Massot -/ import order.filter.pointwise import group_theory.quotient_group import topology.algebra.monoid import topology.homeomorph /-! # Theory of topological groups This file defines the following typeclasses: * `topological_group`, `topological_add_group`: multiplicative and additive topological groups, i.e., groups with continuous `(*)` and `(⁻¹)` / `(+)` and `(-)`; * `has_continuous_sub G` means that `G` has a continuous subtraction operation. There is an instance deducing `has_continuous_sub` from `topological_group` but we use a separate typeclass because, e.g., `ℕ` and `ℝ≥0` have continuous subtraction but are not additive groups. We also define `homeomorph` versions of several `equiv`s: `homeomorph.mul_left`, `homeomorph.mul_right`, `homeomorph.inv`, and prove a few facts about neighbourhood filters in groups. ## Tags topological space, group, topological group -/ open classical set filter topological_space function open_locale classical topological_space filter universes u v w x variables {α : Type u} {β : Type v} {G : Type w} {H : Type x} section continuous_mul_group /-! ### Groups with continuous multiplication In this section we prove a few statements about groups with continuous `(*)`. -/ variables [topological_space G] [group G] [has_continuous_mul G] /-- Multiplication from the left in a topological group as a homeomorphism. -/ @[to_additive "Addition from the left in a topological additive group as a homeomorphism."] protected def homeomorph.mul_left (a : G) : G ≃ₜ G := { continuous_to_fun := continuous_const.mul continuous_id, continuous_inv_fun := continuous_const.mul continuous_id, .. equiv.mul_left a } @[simp, to_additive] lemma homeomorph.coe_mul_left (a : G) : ⇑(homeomorph.mul_left a) = (*) a := rfl @[to_additive] lemma homeomorph.mul_left_symm (a : G) : (homeomorph.mul_left a).symm = homeomorph.mul_left a⁻¹ := by { ext, refl } @[to_additive] lemma is_open_map_mul_left (a : G) : is_open_map (λ x, a * x) := (homeomorph.mul_left a).is_open_map @[to_additive] lemma is_closed_map_mul_left (a : G) : is_closed_map (λ x, a * x) := (homeomorph.mul_left a).is_closed_map /-- Multiplication from the right in a topological group as a homeomorphism. -/ @[to_additive "Addition from the right in a topological additive group as a homeomorphism."] protected def homeomorph.mul_right (a : G) : G ≃ₜ G := { continuous_to_fun := continuous_id.mul continuous_const, continuous_inv_fun := continuous_id.mul continuous_const, .. equiv.mul_right a } @[to_additive] lemma is_open_map_mul_right (a : G) : is_open_map (λ x, x * a) := (homeomorph.mul_right a).is_open_map @[to_additive] lemma is_closed_map_mul_right (a : G) : is_closed_map (λ x, x * a) := (homeomorph.mul_right a).is_closed_map @[to_additive] lemma is_open_map_div_right (a : G) : is_open_map (λ x, x / a) := by simpa only [div_eq_mul_inv] using is_open_map_mul_right (a⁻¹) @[to_additive] lemma is_closed_map_div_right (a : G) : is_closed_map (λ x, x / a) := by simpa only [div_eq_mul_inv] using is_closed_map_mul_right (a⁻¹) @[to_additive] lemma discrete_topology_of_open_singleton_one (h : is_open ({1} : set G)) : discrete_topology G := begin rw ← singletons_open_iff_discrete, intro g, suffices : {g} = (λ (x : G), g⁻¹ * x) ⁻¹' {1}, { rw this, exact (continuous_mul_left (g⁻¹)).is_open_preimage _ h, }, simp only [mul_one, set.preimage_mul_left_singleton, eq_self_iff_true, inv_inv, set.singleton_eq_singleton_iff], end end continuous_mul_group section topological_group /-! ### Topological groups A topological group is a group in which the multiplication and inversion operations are continuous. Topological additive groups are defined in the same way. Equivalently, we can require that the division operation `λ x y, x * y⁻¹` (resp., subtraction) is continuous. -/ /-- A topological (additive) group is a group in which the addition and negation operations are continuous. -/ class topological_add_group (G : Type u) [topological_space G] [add_group G] extends has_continuous_add G : Prop := (continuous_neg : continuous (λa:G, -a)) /-- A topological group is a group in which the multiplication and inversion operations are continuous. -/ @[to_additive] class topological_group (G : Type*) [topological_space G] [group G] extends has_continuous_mul G : Prop := (continuous_inv : continuous (has_inv.inv : G → G)) variables [topological_space G] [group G] [topological_group G] export topological_group (continuous_inv) export topological_add_group (continuous_neg) @[to_additive] lemma continuous_on_inv {s : set G} : continuous_on has_inv.inv s := continuous_inv.continuous_on @[to_additive] lemma continuous_within_at_inv {s : set G} {x : G} : continuous_within_at has_inv.inv s x := continuous_inv.continuous_within_at @[to_additive] lemma continuous_at_inv {x : G} : continuous_at has_inv.inv x := continuous_inv.continuous_at @[to_additive] lemma tendsto_inv (a : G) : tendsto has_inv.inv (𝓝 a) (𝓝 (a⁻¹)) := continuous_at_inv /-- If a function converges to a value in a multiplicative topological group, then its inverse converges to the inverse of this value. For the version in normed fields assuming additionally that the limit is nonzero, use `tendsto.inv'`. -/ @[to_additive] lemma filter.tendsto.inv {f : α → G} {l : filter α} {y : G} (h : tendsto f l (𝓝 y)) : tendsto (λ x, (f x)⁻¹) l (𝓝 y⁻¹) := (continuous_inv.tendsto y).comp h variables [topological_space α] {f : α → G} {s : set α} {x : α} @[continuity, to_additive] lemma continuous.inv (hf : continuous f) : continuous (λx, (f x)⁻¹) := continuous_inv.comp hf attribute [continuity] continuous.neg -- TODO @[to_additive] lemma continuous_on.inv (hf : continuous_on f s) : continuous_on (λx, (f x)⁻¹) s := continuous_inv.comp_continuous_on hf @[to_additive] lemma continuous_within_at.inv (hf : continuous_within_at f s x) : continuous_within_at (λ x, (f x)⁻¹) s x := hf.inv @[instance, to_additive] instance [topological_space H] [group H] [topological_group H] : topological_group (G × H) := { continuous_inv := continuous_inv.prod_map continuous_inv } variable (G) /-- Inversion in a topological group as a homeomorphism. -/ @[to_additive "Negation in a topological group as a homeomorphism."] protected def homeomorph.inv : G ≃ₜ G := { continuous_to_fun := continuous_inv, continuous_inv_fun := continuous_inv, .. equiv.inv G } @[to_additive] lemma nhds_one_symm : comap has_inv.inv (𝓝 (1 : G)) = 𝓝 (1 : G) := ((homeomorph.inv G).comap_nhds_eq _).trans (congr_arg nhds one_inv) /-- The map `(x, y) ↦ (x, xy)` as a homeomorphism. This is a shear mapping. -/ @[to_additive "The map `(x, y) ↦ (x, x + y)` as a homeomorphism. This is a shear mapping."] protected def homeomorph.shear_mul_right : G × G ≃ₜ G × G := { continuous_to_fun := continuous_fst.prod_mk continuous_mul, continuous_inv_fun := continuous_fst.prod_mk $ continuous_fst.inv.mul continuous_snd, .. equiv.prod_shear (equiv.refl _) equiv.mul_left } @[simp, to_additive] lemma homeomorph.shear_mul_right_coe : ⇑(homeomorph.shear_mul_right G) = λ z : G × G, (z.1, z.1 * z.2) := rfl @[simp, to_additive] lemma homeomorph.shear_mul_right_symm_coe : ⇑(homeomorph.shear_mul_right G).symm = λ z : G × G, (z.1, z.1⁻¹ * z.2) := rfl variable {G} @[to_additive] lemma inv_closure (s : set G) : (closure s)⁻¹ = closure s⁻¹ := (homeomorph.inv G).preimage_closure s /-- The (topological-space) closure of a subgroup of a space `M` with `has_continuous_mul` is itself a subgroup. -/ @[to_additive "The (topological-space) closure of an additive subgroup of a space `M` with `has_continuous_add` is itself an additive subgroup."] def subgroup.topological_closure (s : subgroup G) : subgroup G := { carrier := closure (s : set G), inv_mem' := λ g m, by simpa [←mem_inv, inv_closure] using m, ..s.to_submonoid.topological_closure } @[to_additive] instance subgroup.topological_closure_topological_group (s : subgroup G) : topological_group (s.topological_closure) := { continuous_inv := begin apply continuous_induced_rng, change continuous (λ p : s.topological_closure, (p : G)⁻¹), continuity, end ..s.to_submonoid.topological_closure_has_continuous_mul} lemma subgroup.subgroup_topological_closure (s : subgroup G) : s ≤ s.topological_closure := subset_closure lemma subgroup.is_closed_topological_closure (s : subgroup G) : is_closed (s.topological_closure : set G) := by convert is_closed_closure lemma subgroup.topological_closure_minimal (s : subgroup G) {t : subgroup G} (h : s ≤ t) (ht : is_closed (t : set G)) : s.topological_closure ≤ t := closure_minimal h ht @[to_additive exists_nhds_half_neg] lemma exists_nhds_split_inv {s : set G} (hs : s ∈ 𝓝 (1 : G)) : ∃ V ∈ 𝓝 (1 : G), ∀ (v ∈ V) (w ∈ V), v / w ∈ s := have ((λp : G × G, p.1 * p.2⁻¹) ⁻¹' s) ∈ 𝓝 ((1, 1) : G × G), from continuous_at_fst.mul continuous_at_snd.inv (by simpa), by simpa only [div_eq_mul_inv, nhds_prod_eq, mem_prod_self_iff, prod_subset_iff, mem_preimage] using this @[to_additive] lemma nhds_translation_mul_inv (x : G) : comap (λ y : G, y * x⁻¹) (𝓝 1) = 𝓝 x := ((homeomorph.mul_right x⁻¹).comap_nhds_eq 1).trans $ show 𝓝 (1 * x⁻¹⁻¹) = 𝓝 x, by simp @[simp, to_additive] lemma map_mul_left_nhds (x y : G) : map ((*) x) (𝓝 y) = 𝓝 (x * y) := (homeomorph.mul_left x).map_nhds_eq y @[to_additive] lemma map_mul_left_nhds_one (x : G) : map ((*) x) (𝓝 1) = 𝓝 x := by simp @[to_additive] lemma topological_group.ext {G : Type*} [group G] {t t' : topological_space G} (tg : @topological_group G t _) (tg' : @topological_group G t' _) (h : @nhds G t 1 = @nhds G t' 1) : t = t' := eq_of_nhds_eq_nhds $ λ x, by rw [← @nhds_translation_mul_inv G t _ _ x , ← @nhds_translation_mul_inv G t' _ _ x , ← h] @[to_additive] lemma topological_group.of_nhds_aux {G : Type*} [group G] [topological_space G] (hinv : tendsto (λ (x : G), x⁻¹) (𝓝 1) (𝓝 1)) (hleft : ∀ (x₀ : G), 𝓝 x₀ = map (λ (x : G), x₀ * x) (𝓝 1)) (hconj : ∀ (x₀ : G), map (λ (x : G), x₀ * x * x₀⁻¹) (𝓝 1) ≤ 𝓝 1) : continuous (λ x : G, x⁻¹) := begin rw continuous_iff_continuous_at, rintros x₀, have key : (λ x, (x₀*x)⁻¹) = (λ x, x₀⁻¹*x) ∘ (λ x, x₀*x*x₀⁻¹) ∘ (λ x, x⁻¹), by {ext ; simp[mul_assoc] }, calc map (λ x, x⁻¹) (𝓝 x₀) = map (λ x, x⁻¹) (map (λ x, x₀*x) $ 𝓝 1) : by rw hleft ... = map (λ x, (x₀*x)⁻¹) (𝓝 1) : by rw filter.map_map ... = map (((λ x, x₀⁻¹*x) ∘ (λ x, x₀*x*x₀⁻¹)) ∘ (λ x, x⁻¹)) (𝓝 1) : by rw key ... = map ((λ x, x₀⁻¹*x) ∘ (λ x, x₀*x*x₀⁻¹)) _ : by rw ← filter.map_map ... ≤ map ((λ x, x₀⁻¹ * x) ∘ λ x, x₀ * x * x₀⁻¹) (𝓝 1) : map_mono hinv ... = map (λ x, x₀⁻¹ * x) (map (λ x, x₀ * x * x₀⁻¹) (𝓝 1)) : filter.map_map ... ≤ map (λ x, x₀⁻¹ * x) (𝓝 1) : map_mono (hconj x₀) ... = 𝓝 x₀⁻¹ : (hleft _).symm end @[to_additive] lemma topological_group.of_nhds_one' {G : Type*} [group G] [topological_space G] (hmul : tendsto (uncurry ((*) : G → G → G)) ((𝓝 1) ×ᶠ 𝓝 1) (𝓝 1)) (hinv : tendsto (λ x : G, x⁻¹) (𝓝 1) (𝓝 1)) (hleft : ∀ x₀ : G, 𝓝 x₀ = map (λ x, x₀*x) (𝓝 1)) (hright : ∀ x₀ : G, 𝓝 x₀ = map (λ x, x*x₀) (𝓝 1)) : topological_group G := begin refine { continuous_mul := (has_continuous_mul.of_nhds_one hmul hleft hright).continuous_mul, continuous_inv := topological_group.of_nhds_aux hinv hleft _ }, intros x₀, suffices : map (λ (x : G), x₀ * x * x₀⁻¹) (𝓝 1) = 𝓝 1, by simp [this, le_refl], rw [show (λ x, x₀ * x * x₀⁻¹) = (λ x, x₀ * x) ∘ λ x, x*x₀⁻¹, by {ext, simp [mul_assoc] }, ← filter.map_map, ← hright, hleft x₀⁻¹, filter.map_map], convert map_id, ext, simp end @[to_additive] lemma topological_group.of_nhds_one {G : Type u} [group G] [topological_space G] (hmul : tendsto (uncurry ((*) : G → G → G)) ((𝓝 1) ×ᶠ 𝓝 1) (𝓝 1)) (hinv : tendsto (λ x : G, x⁻¹) (𝓝 1) (𝓝 1)) (hleft : ∀ x₀ : G, 𝓝 x₀ = map (λ x, x₀*x) (𝓝 1)) (hconj : ∀ x₀ : G, tendsto (λ x, x₀*x*x₀⁻¹) (𝓝 1) (𝓝 1)) : topological_group G := { continuous_mul := begin rw continuous_iff_continuous_at, rintros ⟨x₀, y₀⟩, have key : (λ (p : G × G), x₀ * p.1 * (y₀ * p.2)) = ((λ x, x₀*y₀*x) ∘ (uncurry (*)) ∘ (prod.map (λ x, y₀⁻¹*x*y₀) id)), by { ext, simp [uncurry, prod.map, mul_assoc] }, specialize hconj y₀⁻¹, rw inv_inv at hconj, calc map (λ (p : G × G), p.1 * p.2) (𝓝 (x₀, y₀)) = map (λ (p : G × G), p.1 * p.2) ((𝓝 x₀) ×ᶠ 𝓝 y₀) : by rw nhds_prod_eq ... = map (λ (p : G × G), x₀ * p.1 * (y₀ * p.2)) ((𝓝 1) ×ᶠ (𝓝 1)) : by rw [hleft x₀, hleft y₀, prod_map_map_eq, filter.map_map] ... = map (((λ x, x₀*y₀*x) ∘ (uncurry (*))) ∘ (prod.map (λ x, y₀⁻¹*x*y₀) id))((𝓝 1) ×ᶠ (𝓝 1)) : by rw key ... = map ((λ x, x₀*y₀*x) ∘ (uncurry (*))) ((map (λ x, y₀⁻¹*x*y₀) $ 𝓝 1) ×ᶠ (𝓝 1)) : by rw [← filter.map_map, ← prod_map_map_eq', map_id] ... ≤ map ((λ x, x₀*y₀*x) ∘ (uncurry (*))) ((𝓝 1) ×ᶠ (𝓝 1)) : map_mono (filter.prod_mono hconj $ le_refl _) ... = map (λ x, x₀*y₀*x) (map (uncurry (*)) ((𝓝 1) ×ᶠ (𝓝 1))) : by rw filter.map_map ... ≤ map (λ x, x₀*y₀*x) (𝓝 1) : map_mono hmul ... = 𝓝 (x₀*y₀) : (hleft _).symm end, continuous_inv := topological_group.of_nhds_aux hinv hleft hconj} @[to_additive] lemma topological_group.of_comm_of_nhds_one {G : Type*} [comm_group G] [topological_space G] (hmul : tendsto (uncurry ((*) : G → G → G)) ((𝓝 1) ×ᶠ 𝓝 1) (𝓝 1)) (hinv : tendsto (λ x : G, x⁻¹) (𝓝 1) (𝓝 1)) (hleft : ∀ x₀ : G, 𝓝 x₀ = map (λ x, x₀*x) (𝓝 1)) : topological_group G := topological_group.of_nhds_one hmul hinv hleft (by simpa using tendsto_id) end topological_group section quotient_topological_group variables [topological_space G] [group G] [topological_group G] (N : subgroup G) (n : N.normal) @[to_additive] instance {G : Type*} [group G] [topological_space G] (N : subgroup G) : topological_space (quotient_group.quotient N) := quotient.topological_space open quotient_group @[to_additive] lemma quotient_group.is_open_map_coe : is_open_map (coe : G → quotient N) := begin intros s s_op, change is_open ((coe : G → quotient N) ⁻¹' (coe '' s)), rw quotient_group.preimage_image_coe N s, exact is_open_Union (λ n, is_open_map_mul_right n s s_op) end @[to_additive] instance topological_group_quotient [N.normal] : topological_group (quotient N) := { continuous_mul := begin have cont : continuous ((coe : G → quotient N) ∘ (λ (p : G × G), p.fst * p.snd)) := continuous_quot_mk.comp continuous_mul, have quot : quotient_map (λ p : G × G, ((p.1:quotient N), (p.2:quotient N))), { apply is_open_map.to_quotient_map, { exact (quotient_group.is_open_map_coe N).prod (quotient_group.is_open_map_coe N) }, { exact continuous_quot_mk.prod_map continuous_quot_mk }, { exact (surjective_quot_mk _).prod_map (surjective_quot_mk _) } }, exact (quotient_map.continuous_iff quot).2 cont, end, continuous_inv := begin have : continuous ((coe : G → quotient N) ∘ (λ (a : G), a⁻¹)) := continuous_quot_mk.comp continuous_inv, convert continuous_quotient_lift _ this, end } attribute [instance] topological_add_group_quotient end quotient_topological_group /-- A typeclass saying that `λ p : G × G, p.1 - p.2` is a continuous function. This property automatically holds for topological additive groups but it also holds, e.g., for `ℝ≥0`. -/ class has_continuous_sub (G : Type*) [topological_space G] [has_sub G] : Prop := (continuous_sub : continuous (λ p : G × G, p.1 - p.2)) @[priority 100] -- see Note [lower instance priority] instance topological_add_group.to_has_continuous_sub [topological_space G] [add_group G] [topological_add_group G] : has_continuous_sub G := ⟨by { simp only [sub_eq_add_neg], exact continuous_fst.add continuous_snd.neg }⟩ export has_continuous_sub (continuous_sub) section has_continuous_sub variables [topological_space G] [has_sub G] [has_continuous_sub G] lemma filter.tendsto.sub {f g : α → G} {l : filter α} {a b : G} (hf : tendsto f l (𝓝 a)) (hg : tendsto g l (𝓝 b)) : tendsto (λx, f x - g x) l (𝓝 (a - b)) := (continuous_sub.tendsto (a, b)).comp (hf.prod_mk_nhds hg) variables [topological_space α] {f g : α → G} {s : set α} {x : α} @[continuity] lemma continuous.sub (hf : continuous f) (hg : continuous g) : continuous (λ x, f x - g x) := continuous_sub.comp (hf.prod_mk hg : _) lemma continuous_within_at.sub (hf : continuous_within_at f s x) (hg : continuous_within_at g s x) : continuous_within_at (λ x, f x - g x) s x := hf.sub hg lemma continuous_on.sub (hf : continuous_on f s) (hg : continuous_on g s) : continuous_on (λx, f x - g x) s := λ x hx, (hf x hx).sub (hg x hx) end has_continuous_sub lemma nhds_translation [topological_space G] [add_group G] [topological_add_group G] (x : G) : comap (λy:G, y - x) (𝓝 0) = 𝓝 x := by simpa only [sub_eq_add_neg] using nhds_translation_add_neg x /-- additive group with a neighbourhood around 0. Only used to construct a topology and uniform space. This is currently only available for commutative groups, but it can be extended to non-commutative groups too. -/ class add_group_with_zero_nhd (G : Type u) extends add_comm_group G := (Z [] : filter G) (zero_Z : pure 0 ≤ Z) (sub_Z : tendsto (λp:G×G, p.1 - p.2) (Z ×ᶠ Z) Z) namespace add_group_with_zero_nhd variables (G) [add_group_with_zero_nhd G] local notation `Z` := add_group_with_zero_nhd.Z @[priority 100] -- see Note [lower instance priority] instance : topological_space G := topological_space.mk_of_nhds $ λa, map (λx, x + a) (Z G) variables {G} lemma neg_Z : tendsto (λa:G, - a) (Z G) (Z G) := have tendsto (λa, (0:G)) (Z G) (Z G), by refine le_trans (assume h, _) zero_Z; simp [univ_mem_sets'] {contextual := tt}, have tendsto (λa:G, 0 - a) (Z G) (Z G), from sub_Z.comp (tendsto.prod_mk this tendsto_id), by simpa lemma add_Z : tendsto (λp:G×G, p.1 + p.2) (Z G ×ᶠ Z G) (Z G) := suffices tendsto (λp:G×G, p.1 - -p.2) (Z G ×ᶠ Z G) (Z G), by simpa [sub_eq_add_neg], sub_Z.comp (tendsto.prod_mk tendsto_fst (neg_Z.comp tendsto_snd)) lemma exists_Z_half {s : set G} (hs : s ∈ Z G) : ∃ V ∈ Z G, ∀ (v ∈ V) (w ∈ V), v + w ∈ s := begin have : ((λa:G×G, a.1 + a.2) ⁻¹' s) ∈ Z G ×ᶠ Z G := add_Z (by simpa using hs), rcases mem_prod_self_iff.1 this with ⟨V, H, H'⟩, exact ⟨V, H, prod_subset_iff.1 H'⟩ end lemma nhds_eq (a : G) : 𝓝 a = map (λx, x + a) (Z G) := topological_space.nhds_mk_of_nhds _ _ (assume a, calc pure a = map (λx, x + a) (pure 0) : by simp ... ≤ _ : map_mono zero_Z) (assume b s hs, let ⟨t, ht, eqt⟩ := exists_Z_half hs in have t0 : (0:G) ∈ t, by simpa using zero_Z ht, begin refine ⟨(λx:G, x + b) '' t, image_mem_map ht, _, _⟩, { refine set.image_subset_iff.2 (assume b hbt, _), simpa using eqt 0 t0 b hbt }, { rintros _ ⟨c, hb, rfl⟩, refine (Z G).sets_of_superset ht (assume x hxt, _), simpa [add_assoc] using eqt _ hxt _ hb } end) lemma nhds_zero_eq_Z : 𝓝 0 = Z G := by simp [nhds_eq]; exact filter.map_id @[priority 100] -- see Note [lower instance priority] instance : has_continuous_add G := ⟨ continuous_iff_continuous_at.2 $ assume ⟨a, b⟩, begin rw [continuous_at, nhds_prod_eq, nhds_eq, nhds_eq, nhds_eq, filter.prod_map_map_eq, tendsto_map'_iff], suffices : tendsto ((λx:G, (a + b) + x) ∘ (λp:G×G,p.1 + p.2)) (Z G ×ᶠ Z G) (map (λx:G, (a + b) + x) (Z G)), { simpa [(∘), add_comm, add_left_comm] }, exact tendsto_map.comp add_Z end ⟩ @[priority 100] -- see Note [lower instance priority] instance : topological_add_group G := ⟨continuous_iff_continuous_at.2 $ assume a, begin rw [continuous_at, nhds_eq, nhds_eq, tendsto_map'_iff], suffices : tendsto ((λx:G, x - a) ∘ (λx:G, -x)) (Z G) (map (λx:G, x - a) (Z G)), { simpa [(∘), add_comm, sub_eq_add_neg] using this }, exact tendsto_map.comp neg_Z end⟩ end add_group_with_zero_nhd section filter_mul section variables [topological_space G] [group G] [topological_group G] @[to_additive] lemma is_open.mul_left {s t : set G} : is_open t → is_open (s * t) := λ ht, begin have : ∀a, is_open ((λ (x : G), a * x) '' t) := assume a, is_open_map_mul_left a t ht, rw ← Union_mul_left_image, exact is_open_Union (λa, is_open_Union $ λha, this _), end @[to_additive] lemma is_open.mul_right {s t : set G} : is_open s → is_open (s * t) := λ hs, begin have : ∀a, is_open ((λ (x : G), x * a) '' s), assume a, apply is_open_map_mul_right, exact hs, rw ← Union_mul_right_image, exact is_open_Union (λa, is_open_Union $ λha, this _), end variables (G) lemma topological_group.t1_space (h : @is_closed G _ {1}) : t1_space G := ⟨assume x, by { convert is_closed_map_mul_right x _ h, simp }⟩ lemma topological_group.regular_space [t1_space G] : regular_space G := ⟨assume s a hs ha, let f := λ p : G × G, p.1 * (p.2)⁻¹ in have hf : continuous f := continuous_fst.mul continuous_snd.inv, -- a ∈ -s implies f (a, 1) ∈ -s, and so (a, 1) ∈ f⁻¹' (-s); -- and so can find t₁ t₂ open such that a ∈ t₁ × t₂ ⊆ f⁻¹' (-s) let ⟨t₁, t₂, ht₁, ht₂, a_mem_t₁, one_mem_t₂, t_subset⟩ := is_open_prod_iff.1 ((is_open_compl_iff.2 hs).preimage hf) a (1:G) (by simpa [f]) in begin use [s * t₂, ht₂.mul_left, λ x hx, ⟨x, 1, hx, one_mem_t₂, mul_one _⟩], rw [nhds_within, inf_principal_eq_bot, mem_nhds_sets_iff], refine ⟨t₁, _, ht₁, a_mem_t₁⟩, rintros x hx ⟨y, z, hy, hz, yz⟩, have : x * z⁻¹ ∈ sᶜ := (prod_subset_iff.1 t_subset) x hx z hz, have : x * z⁻¹ ∈ s, rw ← yz, simpa, contradiction end⟩ local attribute [instance] topological_group.regular_space lemma topological_group.t2_space [t1_space G] : t2_space G := regular_space.t2_space G end section /-! Some results about an open set containing the product of two sets in a topological group. -/ variables [topological_space G] [group G] [topological_group G] /-- Given a compact set `K` inside an open set `U`, there is a open neighborhood `V` of `1` such that `KV ⊆ U`. -/ @[to_additive "Given a compact set `K` inside an open set `U`, there is a open neighborhood `V` of `0` such that `K + V ⊆ U`."] lemma compact_open_separated_mul {K U : set G} (hK : is_compact K) (hU : is_open U) (hKU : K ⊆ U) : ∃ V : set G, is_open V ∧ (1 : G) ∈ V ∧ K * V ⊆ U := begin let W : G → set G := λ x, (λ y, x * y) ⁻¹' U, have h1W : ∀ x, is_open (W x) := λ x, hU.preimage (continuous_mul_left x), have h2W : ∀ x ∈ K, (1 : G) ∈ W x := λ x hx, by simp only [mem_preimage, mul_one, hKU hx], choose V hV using λ x : K, exists_open_nhds_one_mul_subset (mem_nhds_sets (h1W x) (h2W x.1 x.2)), let X : K → set G := λ x, (λ y, (x : G)⁻¹ * y) ⁻¹' (V x), obtain ⟨t, ht⟩ : ∃ t : finset ↥K, K ⊆ ⋃ i ∈ t, X i, { refine hK.elim_finite_subcover X (λ x, (hV x).1.preimage (continuous_mul_left x⁻¹)) _, intros x hx, rw [mem_Union], use ⟨x, hx⟩, rw [mem_preimage], convert (hV _).2.1, simp only [mul_left_inv, subtype.coe_mk] }, refine ⟨⋂ x ∈ t, V x, is_open_bInter (finite_mem_finset _) (λ x hx, (hV x).1), _, _⟩, { simp only [mem_Inter], intros x hx, exact (hV x).2.1 }, rintro _ ⟨x, y, hx, hy, rfl⟩, simp only [mem_Inter] at hy, have := ht hx, simp only [mem_Union, mem_preimage] at this, rcases this with ⟨z, h1z, h2z⟩, have : (z : G)⁻¹ * x * y ∈ W z := (hV z).2.2 (mul_mem_mul h2z (hy z h1z)), rw [mem_preimage] at this, convert this using 1, simp only [mul_assoc, mul_inv_cancel_left] end /-- A compact set is covered by finitely many left multiplicative translates of a set with non-empty interior. -/ @[to_additive "A compact set is covered by finitely many left additive translates of a set with non-empty interior."] lemma compact_covered_by_mul_left_translates {K V : set G} (hK : is_compact K) (hV : (interior V).nonempty) : ∃ t : finset G, K ⊆ ⋃ g ∈ t, (λ h, g * h) ⁻¹' V := begin obtain ⟨t, ht⟩ : ∃ t : finset G, K ⊆ ⋃ x ∈ t, interior (((*) x) ⁻¹' V), { refine hK.elim_finite_subcover (λ x, interior $ ((*) x) ⁻¹' V) (λ x, is_open_interior) _, cases hV with g₀ hg₀, refine λ g hg, mem_Union.2 ⟨g₀ * g⁻¹, _⟩, refine preimage_interior_subset_interior_preimage (continuous_const.mul continuous_id) _, rwa [mem_preimage, inv_mul_cancel_right] }, exact ⟨t, subset.trans ht $ bUnion_subset_bUnion_right $ λ g hg, interior_subset⟩ end /-- Every locally compact separable topological group is σ-compact. Note: this is not true if we drop the topological group hypothesis. -/ @[priority 100] instance separable_locally_compact_group.sigma_compact_space [separable_space G] [locally_compact_space G] : sigma_compact_space G := begin obtain ⟨L, hLc, hL1⟩ := exists_compact_mem_nhds (1 : G), refine ⟨⟨λ n, (λ x, x * dense_seq G n) ⁻¹' L, _, _⟩⟩, { intro n, exact (homeomorph.mul_right _).compact_preimage.mpr hLc }, { refine Union_eq_univ_iff.2 (λ x, _), obtain ⟨_, ⟨n, rfl⟩, hn⟩ : (range (dense_seq G) ∩ (λ y, x * y) ⁻¹' L).nonempty, { rw [← (homeomorph.mul_left x).apply_symm_apply 1] at hL1, exact (dense_range_dense_seq G).inter_nhds_nonempty ((homeomorph.mul_left x).continuous.continuous_at $ hL1) }, exact ⟨n, hn⟩ } end end section variables [topological_space G] [comm_group G] [topological_group G] @[to_additive] lemma nhds_mul (x y : G) : 𝓝 (x * y) = 𝓝 x * 𝓝 y := filter_eq $ set.ext $ assume s, begin rw [← nhds_translation_mul_inv x, ← nhds_translation_mul_inv y, ← nhds_translation_mul_inv (x*y)], split, { rintros ⟨t, ht, ts⟩, rcases exists_nhds_one_split ht with ⟨V, V1, h⟩, refine ⟨(λa, a * x⁻¹) ⁻¹' V, (λa, a * y⁻¹) ⁻¹' V, ⟨V, V1, subset.refl _⟩, ⟨V, V1, subset.refl _⟩, _⟩, rintros a ⟨v, w, v_mem, w_mem, rfl⟩, apply ts, simpa [mul_comm, mul_assoc, mul_left_comm] using h (v * x⁻¹) v_mem (w * y⁻¹) w_mem }, { rintros ⟨a, c, ⟨b, hb, ba⟩, ⟨d, hd, dc⟩, ac⟩, refine ⟨b ∩ d, inter_mem_sets hb hd, assume v, _⟩, simp only [preimage_subset_iff, mul_inv_rev, mem_preimage] at *, rintros ⟨vb, vd⟩, refine ac ⟨v * y⁻¹, y, _, _, _⟩, { rw ← mul_assoc _ _ _ at vb, exact ba _ vb }, { apply dc y, rw mul_right_inv, exact mem_of_nhds hd }, { simp only [inv_mul_cancel_right] } } end @[to_additive] lemma nhds_is_mul_hom : is_mul_hom (λx:G, 𝓝 x) := ⟨λ_ _, nhds_mul _ _⟩ end end filter_mul instance additive.topological_add_group {G} [h : topological_space G] [group G] [topological_group G] : @topological_add_group (additive G) h _ := { continuous_neg := @continuous_inv G _ _ _ } instance multiplicative.topological_group {G} [h : topological_space G] [add_group G] [topological_add_group G] : @topological_group (multiplicative G) h _ := { continuous_inv := @continuous_neg G _ _ _ }
eaa3484573558a044038b337f339414f7dcceaa0
3dc4623269159d02a444fe898d33e8c7e7e9461b
/.github/workflows/geo/src/limits.lean
71655057cd726af1fd2375d86d40e4b343f810ec
[]
no_license
Or7ando/lean
cc003e6c41048eae7c34aa6bada51c9e9add9e66
d41169cf4e416a0d42092fb6bdc14131cee9dd15
refs/heads/master
1,650,600,589,722
1,587,262,906,000
1,587,262,906,000
255,387,160
0
0
null
null
null
null
UTF-8
Lean
false
false
438
lean
import category_theory.limits.shapes open category_theory category_theory.category category_theory.limits universes u v variables {C : Type u} [𝒞 : category.{v} C] variables {J : Type v} [small_category J] include 𝒞 @[simp] lemma limit.lift_self_id (F : J ⥤ C) [has_limit F] : limit.lift F (limit.cone F) = 𝟙 (limit F) := begin symmetry, refine is_limit.uniq _ _ _ _, intro j, erw [id_comp _ (limit.π F j)], refl, end
c4c83a4edfaf032a4751b48b758eaf04ea3e1789
01f6b345a06ece970e589d4bbc68ee8b9b2cf58a
/src/ring_seminorm.lean
bd8d44e7bdffc9406a97fba20954f473a9ae9e41
[]
no_license
mariainesdff/norm_extensions_journal_submission
6077acb98a7200de4553e653d81d54fb5d2314c8
d396130660935464fbc683f9aaf37fff8a890baa
refs/heads/master
1,686,685,693,347
1,684,065,115,000
1,684,065,115,000
603,823,641
0
0
null
null
null
null
UTF-8
Lean
false
false
19,168
lean
/- Copyright (c) 2023 María Inés de Frutos-Fernández. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: María Inés de Frutos-Fernández -/ import analysis.normed.ring.seminorm import analysis.seminorm /-! # Nonarchimedean ring seminorms and algebra norms In this file, we define some properties of functions (power-multiplicative, extends, nonarchimedean) which will be of special interest to us when applied to ring seminorms or additive group seminorms. We prove several properties of nonarchimedean functions. We also define algebra norms and multiplicative algebra norms. ## Main Definitions * `is_pow_mul` : `f : R → ℝ` is power-multiplicative if for all `r ∈ R` and all positive `n ∈ ℕ`, `f (r ^ n) = (f r) ^ n`. * `function_extends` : given an `α`-algebra `β`, a function `f : β → ℝ` extends a function `g : α → ℝ` if `∀ x : α, f (algebra_map α β x) = g x`. * `is_nonarchimedean`: a function `f : R → ℝ≥0` is nonarchimedean if it satisfies the strong triangle inequality `f (r + s) ≤ max (f r) (f s)` for all `r s : R`. * `algebra_norm` : an algebra norm on an `R`-algebra norm `S` is a ring norm on `S` compatible with the action of `R`. * `mul_algebra_norm` : amultiplicative algebra norm on an `R`-algebra norm `S` is a multiplicative ring norm on `S` compatible with the action of `R`. ## Main Results * `is_nonarchimedean_multiset_image_add` : given a nonarchimedean additive group seminorm `f` on `α`, a function `g : β → α` and a multiset `s : multiset β`, we can always find `b : β`, belonging to `s` if `s` is nonempty, such that `f (t.sum g) ≤ f (g b)` . ## Tags norm, nonarchimedean, pow_mul, power-multiplicative, algebra norm -/ set_option old_structure_cmd true open metric namespace nat lemma one_div_cast_pos {n : ℕ} (hn : n ≠ 0) : 0 < 1/(n : ℝ) := begin rw [one_div, inv_pos, cast_pos], exact nat.pos_of_ne_zero hn, end lemma one_div_cast_nonneg (n : ℕ): 0 ≤ 1/(n : ℝ) := begin by_cases hn : n = 0, { rw [hn, cast_zero, div_zero] }, { refine le_of_lt (one_div_cast_pos hn), } end lemma one_div_cast_ne_zero {n : ℕ} (hn : n ≠ 0) : 1/(n : ℝ) ≠ 0 := ne_of_gt (one_div_cast_pos hn) end nat /-- A function `f : R → ℝ` is power-multiplicative if for all `r ∈ R` and all positive `n ∈ ℕ`, `f (r ^ n) = (f r) ^ n`. -/ def is_pow_mul {R : Type*} [ring R] (f : R → ℝ) := ∀ (a : R) {n : ℕ} (hn : 1 ≤ n), f (a^n) = (f a) ^ n /-- Given an `α`-algebra `β`, a function `f : β → ℝ` extends a function `g : α → ℝ` if `∀ x : α, f (algebra_map α β x) = g x`. -/ def function_extends {α : Type*} [comm_ring α] (g : α → ℝ) {β : Type*} [ring β] [algebra α β] (f : β → ℝ) : Prop := ∀ x : α, f (algebra_map α β x) = g x /-- A function `f : R → ℝ≥0` is nonarchimedean if it satisfies the strong triangle inequality `f (r + s) ≤ max (f r) (f s)` for all `r s : R`. -/ def is_nonarchimedean {R : Type*} [add_group R] (f : R → ℝ) : Prop := ∀ r s, f (r + s) ≤ max (f r) (f s) /-- A nonarchimedean function satisfies the triangle inequality. -/ lemma add_le_of_is_nonarchimedean {α : Type*} [add_comm_group α] {f : α → ℝ} (hf : ∀ x : α, 0 ≤ f x) (hna : is_nonarchimedean f) (a b : α) : f (a + b) ≤ f a + f b := begin apply le_trans (hna _ _), rw [max_le_iff, le_add_iff_nonneg_right, le_add_iff_nonneg_left], exact ⟨hf _, hf _⟩, end /-- If `f` is a nonarchimedean additive group seminorm on `α`, then for every `n : ℕ` and `a : α`, we have `f (n • a) ≤ (f a)`. -/ lemma is_nonarchimedean_nsmul {F α : Type*} [add_comm_group α] [add_group_seminorm_class F α] {f : F} (hna : is_nonarchimedean f) (n : ℕ) (a : α) : f (n • a) ≤ (f a) := begin induction n with n hn, { rw [zero_smul, (map_zero _)], exact map_nonneg _ _ }, { have : n.succ • a = (n + 1) • a := rfl, rw [this, add_smul, one_smul], exact le_trans (hna _ _) (max_le_iff.mpr ⟨hn, le_refl _⟩) } end /-- If `f` is a nonarchimedean additive group seminorm on `α`, then for every `n : ℕ` and `a : α`, we have `f (n * a) ≤ (f a)`. -/ lemma is_nonarchimedean_nmul {F α : Type*} [ring α] [add_group_seminorm_class F α] {f : F} (hna : is_nonarchimedean f) (n : ℕ) (a : α) : f (n * a) ≤ (f a) := begin rw ← nsmul_eq_mul, exact is_nonarchimedean_nsmul hna _ _, end /-- If `f` is a nonarchimedean additive group seminorm on `α` and `x y : α` are such that `f y ≠ f x`, then `f (x + y) = max (f x) (f y)`. -/ lemma is_nonarchimedean_add_eq_max_of_ne {F α : Type*} [ring α] [add_group_seminorm_class F α] {f : F} (hna : is_nonarchimedean f) {x y : α} (hne : f y ≠ f x) : f (x + y) = max (f x) (f y) := begin wlog hle := le_total (f y) (f x) using [x y], have hlt : f y < f x, from lt_of_le_of_ne hle hne, have : f x ≤ max (f (x + y)) (f y), from calc f x = f (x + y + (-y)) : by rw [add_neg_cancel_right] ... ≤ max (f (x + y)) (f (-y)) : hna _ _ ... = max (f (x + y)) (f y) : by rw map_neg_eq_map f y, have hnge : f y ≤ f (x + y), { apply le_of_not_gt, intro hgt, rw max_eq_right_of_lt hgt at this, apply not_lt_of_ge this, assumption }, have : f x ≤ f (x + y), by rwa [max_eq_left hnge] at this, apply le_antisymm, { exact hna _ _ }, { rw max_eq_left_of_lt hlt, assumption }, rw [add_comm, max_comm], exact this (ne.symm hne), end open_locale classical /-- Given a nonarchimedean additive group seminorm `f` on `α`, a function `g : β → α` and a finset `t : finset β`, we can always find `b : β`, belonging to `t` if `t` is nonempty, such that `f (t.sum g) ≤ f (g b)` . -/ lemma is_nonarchimedean_finset_image_add {F α : Type*} [ring α] [add_group_seminorm_class F α] {f : F} (hna : is_nonarchimedean f) {β : Type*} [hβ : nonempty β] (g : β → α) (t : finset β) : ∃ (b : β) (hb : t.nonempty → b ∈ t), f (t.sum g) ≤ f (g b) := begin apply finset.induction_on t, { rw [finset.sum_empty], refine ⟨hβ.some, by simp only [finset.not_nonempty_empty, is_empty.forall_iff], _⟩, rw map_zero f, exact map_nonneg f _ }, { rintros a s has ⟨M, hMs, hM⟩, rw [finset.sum_insert has], by_cases hMa : f (g M) ≤ f (g a), { refine ⟨a, _, le_trans (hna _ _) (max_le_iff.mpr (⟨le_refl _,le_trans hM hMa⟩))⟩, simp only [finset.nonempty_coe_sort, finset.insert_nonempty, finset.mem_insert, eq_self_iff_true, true_or, forall_true_left] }, { rw not_le at hMa, by_cases hs : s.nonempty, { refine ⟨M, _, le_trans (hna _ _) (max_le_iff.mpr ⟨le_of_lt hMa, hM⟩)⟩, simp only [finset.nonempty_coe_sort, finset.insert_nonempty, finset.mem_insert, forall_true_left], exact or.intro_right _ (hMs hs) }, { use a, split, { simp only [finset.insert_nonempty, finset.mem_insert, eq_self_iff_true, true_or, forall_true_left] }, have h0 : f (s.sum g) = 0, { rw [finset.not_nonempty_iff_eq_empty.mp hs, finset.sum_empty, map_zero] }, apply le_trans (hna _ _), rw h0, exact max_le_iff.mpr ⟨le_refl _, map_nonneg _ _⟩ }}} end /-- Given a nonarchimedean additive group seminorm `f` on `α`, a function `g : β → α` and a multiset `s : multiset β`, we can always find `b : β`, belonging to `s` if `s` is nonempty, such that `f (t.sum g) ≤ f (g b)` . -/ lemma is_nonarchimedean_multiset_image_add {F α : Type*} [ring α] [add_group_seminorm_class F α] {f : F} (hna : is_nonarchimedean f) {β : Type*} [hβ : nonempty β] (g : β → α) (s : multiset β) : ∃ (b : β) (hb : 0 < s.card → b ∈ s), f ((multiset.map g s).sum) ≤ f (g b) := begin apply multiset.induction_on s, { rw [multiset.map_zero, multiset.sum_zero, multiset.card_zero, map_zero f], refine ⟨hβ.some, by simp only [not_lt_zero', is_empty.forall_iff], map_nonneg _ _⟩ }, { rintros a t ⟨M, hMs, hM⟩, by_cases hMa : f (g M) ≤ f (g a), { refine ⟨a, _, _⟩, { simp only [multiset.card_cons, nat.succ_pos', multiset.mem_cons_self, forall_true_left] }, { rw [multiset.map_cons, multiset.sum_cons], exact le_trans (hna _ _) (max_le_iff.mpr (⟨le_refl _,le_trans hM hMa⟩)), }}, { rw not_le at hMa, by_cases ht : 0 < t.card, { refine ⟨M, _, _⟩, { simp only [multiset.card_cons, nat.succ_pos', multiset.mem_cons, forall_true_left], exact or.intro_right _ (hMs ht) }, rw [multiset.map_cons, multiset.sum_cons], exact le_trans (hna _ _) (max_le_iff.mpr ⟨le_of_lt hMa, hM⟩) }, { refine ⟨a, _, _⟩, { simp only [multiset.card_cons, nat.succ_pos', multiset.mem_cons_self, forall_true_left] }, { have h0 : f (multiset.map g t).sum = 0, { simp only [not_lt, le_zero_iff, multiset.card_eq_zero] at ht, rw [ht, multiset.map_zero, multiset.sum_zero, map_zero f] }, rw [multiset.map_cons, multiset.sum_cons], apply le_trans (hna _ _), rw h0, exact max_le_iff.mpr ⟨le_refl _, map_nonneg _ _⟩ }}}} end /-- Given a nonarchimedean additive group seminorm `f` on `α`, a number `n : ℕ` and a function `g : ℕ → α`, there exists `m : ℕ` such that `f ((finset.range n).sum g) ≤ f (g m)`. If `0 < n`, this `m` satisfies `m < n`. -/ lemma is_nonarchimedean_finset_range_add_le {F α : Type*} [ring α] [add_group_seminorm_class F α] {f : F} (hna : is_nonarchimedean f) (n : ℕ) (g : ℕ → α) : ∃ (m : ℕ) (hm : 0 < n → m < n), f ((finset.range n).sum g) ≤ f (g m) := begin obtain ⟨m, hm, h⟩ := is_nonarchimedean_finset_image_add hna g (finset.range n), rw [finset.nonempty_range_iff, ← zero_lt_iff, finset.mem_range] at hm, exact ⟨m, hm, h⟩, end /-- If `f` is a nonarchimedean additive group seminorm on a commutative ring `α`, `n : ℕ`, and `a b : α`, then we can find `m : ℕ` such that `m ≤ n` and `f ((a + b) ^ n) ≤ (f (a ^ m)) * (f (b ^ (n - m)))`. -/ lemma is_nonarchimedean_add_pow {F α : Type*} [comm_ring α] [ring_seminorm_class F α] {f : F} (hna : is_nonarchimedean f) (n : ℕ) (a b : α) : ∃ (m : ℕ) (hm : m ∈ list.range(n + 1)), f ((a + b) ^ n) ≤ (f (a ^ m)) * (f (b ^ (n - m))) := begin obtain ⟨m, hm_lt, hM⟩ := is_nonarchimedean_finset_image_add hna (λ (m : ℕ), a ^ m * b ^ (n - m) * ↑(n.choose m)) (finset.range (n + 1)), simp only [finset.nonempty_range_iff, ne.def, nat.succ_ne_zero, not_false_iff, finset.mem_range, if_true, forall_true_left] at hm_lt, refine ⟨m, list.mem_range.mpr hm_lt, _⟩, simp only [← add_pow] at hM, rw mul_comm at hM, exact le_trans hM (le_trans (is_nonarchimedean_nmul hna _ _) (map_mul_le_mul _ _ _)), end /-- If `f` is a ring seminorm on `a`, then `∀ {n : ℕ}, n ≠ 0 → f (a ^ n) ≤ f a ^ n`. -/ lemma map_pow_le_pow {F α : Type*} [ring α] [ring_seminorm_class F α] (f : F) (a : α) : ∀ {n : ℕ}, n ≠ 0 → f (a ^ n) ≤ f a ^ n | 0 h := absurd rfl h | 1 h := by simp only [pow_one] | (n + 2) h := by simp only [pow_succ _ (n + 1)]; exact le_trans (map_mul_le_mul f a _) (mul_le_mul_of_nonneg_left (map_pow_le_pow n.succ_ne_zero) (map_nonneg f a)) /-- If `f` is a ring seminorm on `a` with `f 1 ≤ `, then `∀ (n : ℕ), f (a ^ n) ≤ f a ^ n`. -/ lemma map_pow_le_pow' {F α : Type*} [ring α] [ring_seminorm_class F α] {f : F} (hf1 : f 1 ≤ 1) (a : α) : ∀ (n : ℕ), f (a ^ n) ≤ f a ^ n | 0 := by simp only [pow_zero, hf1] | (n + 1) := by simp only [pow_succ _ n]; exact le_trans (map_mul_le_mul f a _) (mul_le_mul_of_nonneg_left (map_pow_le_pow' n) (map_nonneg f a)) /-- An algebra norm on an `R`-algebra norm `S` is a ring norm on `S` compatible with the action of `R`. -/ structure algebra_norm (R : Type*) [semi_normed_comm_ring R] (S : Type*) [ring S] [algebra R S] extends seminorm R S, ring_norm S attribute [nolint doc_blame] algebra_norm.to_seminorm algebra_norm.to_ring_norm instance (K : Type*) [normed_field K] : inhabited (algebra_norm K K) := ⟨{ to_fun := norm, map_zero' := norm_zero, add_le' := norm_add_le, neg' := norm_neg, smul' := norm_mul, mul_le' := norm_mul_le, eq_zero_of_map_eq_zero' := λ x, norm_eq_zero.mp}⟩ /-- `algebra_norm_class F α` states that `F` is a type of algebra norms on the ring `β`. You should extend this class when you extend `algebra_norm`. -/ class algebra_norm_class (F : Type*) (R : out_param $ Type*) [semi_normed_comm_ring R] (S : out_param $ Type*) [ring S] [algebra R S] extends seminorm_class F R S, ring_norm_class F S -- `R` is an `out_param`, so this is a false positive. attribute [nolint dangerous_instance] algebra_norm_class.to_ring_norm_class namespace algebra_norm variables {R : Type*} [semi_normed_comm_ring R] {S : Type*} [ring S] [algebra R S] {f : algebra_norm R S} /-- The ring_seminorm underlying an algebra norm. -/ def to_ring_seminorm (f : algebra_norm R S) : ring_seminorm S := f.to_ring_norm.to_ring_seminorm instance algebra_norm_class : algebra_norm_class (algebra_norm R S) R S := { coe := λ f, f.to_fun, coe_injective' := λ f f' h, begin simp only [ring_norm.to_fun_eq_coe, fun_like.coe_fn_eq] at h, cases f; cases f'; congr', end, map_zero := λ f, f.map_zero', map_add_le_add := λ f, f.add_le', map_mul_le_mul := λ f, f.mul_le', map_neg_eq_map := λ f, f.neg', eq_zero_of_map_eq_zero := λ f, f.eq_zero_of_map_eq_zero', map_smul_eq_mul := λ f, f.smul' } /-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun`. -/ instance : has_coe_to_fun (algebra_norm R S) (λ _, S → ℝ) := fun_like.has_coe_to_fun @[simp] lemma to_fun_eq_coe (p : algebra_norm R S) : p.to_fun = p := rfl @[ext] lemma ext {p q : algebra_norm R S} : (∀ x, p x = q x) → p = q := fun_like.ext p q /-- An `R`-algebra norm such that `f 1 = 1` extends the norm on `R`. -/ lemma extends_norm' {f : algebra_norm R S} (hf1 : f 1 = 1) (a : R) : f (a • 1) = ‖ a ‖ := by rw [← mul_one ‖ a ‖ , ← hf1]; exact f.smul' _ _ /-- An `R`-algebra norm such that `f 1 = 1` extends the norm on `R`. -/ lemma extends_norm {f : algebra_norm R S} (hf1 : f 1 = 1) (a : R) : f (algebra_map R S a) = ‖ a ‖ := by rw algebra.algebra_map_eq_smul_one; exact extends_norm' hf1 _ end algebra_norm /-- A multiplicative algebra norm on an `R`-algebra norm `S` is a multiplicative ring norm on `S` compatible with the action of `R`. -/ structure mul_algebra_norm (R : Type*) [semi_normed_comm_ring R] (S : Type*) [ring S] [algebra R S] extends seminorm R S, mul_ring_norm S attribute [nolint doc_blame] mul_algebra_norm.to_seminorm mul_algebra_norm.to_mul_ring_norm instance (K : Type*) [normed_field K] : inhabited (mul_algebra_norm K K) := ⟨{ to_fun := norm, map_zero' := norm_zero, add_le' := norm_add_le, neg' := norm_neg, smul' := norm_mul, map_one' := norm_one, map_mul' := norm_mul, eq_zero_of_map_eq_zero' := λ x, norm_eq_zero.mp}⟩ /-- `algebra_norm_class F α` states that `F` is a type of algebra norms on the ring `β`. You should extend this class when you extend `algebra_norm`. -/ class mul_algebra_norm_class (F : Type*) (R : out_param $ Type*) [semi_normed_comm_ring R] (S : out_param $ Type*) [ring S] [algebra R S] extends seminorm_class F R S, mul_ring_norm_class F S -- `R` is an `out_param`, so this is a false positive. attribute [nolint dangerous_instance] mul_algebra_norm_class.to_mul_ring_norm_class namespace mul_algebra_norm variables {R S : out_param $ Type*} [semi_normed_comm_ring R] [ring S] [algebra R S] {f : algebra_norm R S} instance mul_algebra_norm_class : mul_algebra_norm_class (mul_algebra_norm R S) R S := { coe := λ f, f.to_fun, coe_injective' := λ f f' h, begin simp only [ring_norm.to_fun_eq_coe, fun_like.coe_fn_eq] at h, cases f; cases f'; congr', end, map_zero := λ f, f.map_zero', map_add_le_add := λ f, f.add_le', map_one := λ f, f.map_one', map_mul := λ f, f.map_mul', map_neg_eq_map := λ f, f.neg', eq_zero_of_map_eq_zero := λ f, f.eq_zero_of_map_eq_zero', map_smul_eq_mul := λ f, f.smul' } /-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun`. -/ instance : has_coe_to_fun (mul_algebra_norm R S) (λ _, S → ℝ) := fun_like.has_coe_to_fun @[simp] lemma to_fun_eq_coe (p : mul_algebra_norm R S) : p.to_fun = p := rfl @[ext] lemma ext {p q : mul_algebra_norm R S} : (∀ x, p x = q x) → p = q := fun_like.ext p q /-- A multiplicative `R`-algebra norm extends the norm on `R`. -/ lemma extends_norm' (f : mul_algebra_norm R S) (a : R) : f (a • 1) = ‖ a ‖ := by rw [← mul_one ‖ a ‖, ← f.map_one', ← f.smul']; refl /-- A multiplicative `R`-algebra norm extends the norm on `R`. -/ lemma extends_norm (f : mul_algebra_norm R S) (a : R) : f (algebra_map R S a) = ‖ a ‖ := by rw algebra.algebra_map_eq_smul_one; exact extends_norm' _ _ end mul_algebra_norm namespace mul_ring_norm variables {R : Type*} [non_assoc_ring R] /-- The ring norm underlying a multiplicative ring norm. -/ def to_ring_norm (f : mul_ring_norm R) : ring_norm R := { to_fun := f, map_zero' := f.map_zero', add_le' := f.add_le', neg' := f.neg', mul_le' := λ x y, le_of_eq (f.map_mul' x y), eq_zero_of_map_eq_zero' := f.eq_zero_of_map_eq_zero' } /-- A multiplicative ring norm is power-multiplicative. -/ lemma is_pow_mul {A : Type*} [ring A] (f : mul_ring_norm A) : is_pow_mul f := λ x n hn, begin induction n with n ih, { exfalso, linarith }, { by_cases hn1 : 1 ≤ n, { rw [pow_succ, pow_succ, map_mul, ih hn1] }, { rw [not_le, nat.lt_one_iff] at hn1, rw [hn1, pow_one, pow_one], }} end end mul_ring_norm /-- The seminorm on a `semi_normed_ring`, as a `ring_seminorm`. -/ def seminormed_ring.to_ring_seminorm (R : Type*) [semi_normed_ring R] : ring_seminorm R := { to_fun := norm, map_zero' := norm_zero, add_le' := norm_add_le, mul_le' := norm_mul_le, neg' := norm_neg, } /-- The norm on a `normed_ring`, as a `ring_norm`. -/ @[simps] def normed_ring.to_ring_norm (R : Type*) [normed_ring R] : ring_norm R := { to_fun := norm, map_zero' := norm_zero, add_le' := norm_add_le, mul_le' := norm_mul_le, neg' := norm_neg, eq_zero_of_map_eq_zero' := λ x hx, by { rw ← norm_eq_zero, exact hx }} @[simp] lemma normed_ring.to_ring_norm_apply (R : Type*) [normed_ring R] (x : R): (normed_ring.to_ring_norm R) x = ‖ x ‖ := rfl /-- The norm on a `normed_field`, as a `mul_ring_norm`. -/ def normed_field.to_mul_ring_norm (R : Type*) [normed_field R] : mul_ring_norm R := { to_fun := norm, map_zero' := norm_zero, map_one' := norm_one, add_le' := norm_add_le, map_mul' := norm_mul, neg' := norm_neg, eq_zero_of_map_eq_zero' := λ x hx, by { rw ← norm_eq_zero, exact hx }}
58f1ef33b3502d38de22d1dd427f2bb09aa34f94
07c6143268cfb72beccd1cc35735d424ebcb187b
/src/data/zmod/basic.lean
643904952168dfc6c6d6f751239f41383179b359
[ "Apache-2.0" ]
permissive
khoek/mathlib
bc49a842910af13a3c372748310e86467d1dc766
aa55f8b50354b3e11ba64792dcb06cccb2d8ee28
refs/heads/master
1,588,232,063,837
1,587,304,803,000
1,587,304,803,000
176,688,517
0
0
Apache-2.0
1,553,070,585,000
1,553,070,585,000
null
UTF-8
Lean
false
false
21,640
lean
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Chris Hughes -/ import data.int.modeq data.int.gcd data.fintype.basic data.pnat.basic tactic.ring /-! # Integers mod `n` Definition of the integers mod n, and the field structure on the integers mod p. There are two types defined, `zmod n`, which is for integers modulo a positive nat `n : ℕ+`. `zmodp` is the type of integers modulo a prime number, for which a field structure is defined. ## Definitions * `val` is inherited from `fin` and returns the least natural number in the equivalence class * `val_min_abs` returns the integer closest to zero in the equivalence class. * A coercion `cast` is defined from `zmod n` into any semiring. This is a semiring hom if the ring has characteristic dividing `n` ## Implementation notes `zmod` and `zmodp` are implemented as different types so that the field instance for `zmodp` can be synthesized. This leads to a lot of code duplication and most of the functions and theorems for `zmod` are restated for `zmodp` -/ open nat nat.modeq int def zmod (n : ℕ+) := fin n namespace zmod instance (n : ℕ+) : has_neg (zmod n) := ⟨λ a, ⟨nat_mod (-(a.1 : ℤ)) n, have h : (n : ℤ) ≠ 0 := int.coe_nat_ne_zero_iff_pos.2 n.pos, have h₁ : ((n : ℕ) : ℤ) = abs n := (abs_of_nonneg (int.coe_nat_nonneg n)).symm, by rw [← int.coe_nat_lt, nat_mod, to_nat_of_nonneg (int.mod_nonneg _ h), h₁]; exact int.mod_lt _ h⟩⟩ instance (n : ℕ+) : add_comm_semigroup (zmod n) := { add_assoc := λ ⟨a, ha⟩ ⟨b, hb⟩ ⟨c, hc⟩, fin.eq_of_veq (show ((a + b) % n + c) ≡ (a + (b + c) % n) [MOD n], from calc ((a + b) % n + c) ≡ a + b + c [MOD n] : modeq_add (nat.mod_mod _ _) rfl ... ≡ a + (b + c) [MOD n] : by rw add_assoc ... ≡ (a + (b + c) % n) [MOD n] : modeq_add rfl (nat.mod_mod _ _).symm), add_comm := λ ⟨a, _⟩ ⟨b, _⟩, fin.eq_of_veq (show (a + b) % n = (b + a) % n, by rw add_comm), ..fin.has_add } instance (n : ℕ+) : comm_semigroup (zmod n) := { mul_assoc := λ ⟨a, ha⟩ ⟨b, hb⟩ ⟨c, hc⟩, fin.eq_of_veq (calc ((a * b) % n * c) ≡ a * b * c [MOD n] : modeq_mul (nat.mod_mod _ _) rfl ... ≡ a * (b * c) [MOD n] : by rw mul_assoc ... ≡ a * (b * c % n) [MOD n] : modeq_mul rfl (nat.mod_mod _ _).symm), mul_comm := λ ⟨a, _⟩ ⟨b, _⟩, fin.eq_of_veq (show (a * b) % n = (b * a) % n, by rw mul_comm), ..fin.has_mul } instance (n : ℕ+) : has_one (zmod n) := ⟨⟨(1 % n), nat.mod_lt _ n.pos⟩⟩ instance (n : ℕ+) : has_zero (zmod n) := ⟨⟨0, n.pos⟩⟩ instance (n : ℕ+) : inhabited (zmod n) := ⟨0⟩ instance zmod_one.subsingleton : subsingleton (zmod 1) := ⟨λ a b, fin.eq_of_veq (by rw [eq_zero_of_le_zero (le_of_lt_succ a.2), eq_zero_of_le_zero (le_of_lt_succ b.2)])⟩ lemma add_val {n : ℕ+} : ∀ a b : zmod n, (a + b).val = (a.val + b.val) % n | ⟨_, _⟩ ⟨_, _⟩ := rfl lemma mul_val {n : ℕ+} : ∀ a b : zmod n, (a * b).val = (a.val * b.val) % n | ⟨_, _⟩ ⟨_, _⟩ := rfl lemma one_val {n : ℕ+} : (1 : zmod n).val = 1 % n := rfl @[simp] lemma zero_val (n : ℕ+) : (0 : zmod n).val = 0 := rfl private lemma one_mul_aux (n : ℕ+) (a : zmod n) : (1 : zmod n) * a = a := begin cases n with n hn, cases n with n, { exact (lt_irrefl _ hn).elim }, { cases n with n, { exact @subsingleton.elim (zmod 1) _ _ _ }, { have h₁ : a.1 % n.succ.succ = a.1 := nat.mod_eq_of_lt a.2, have h₂ : 1 % n.succ.succ = 1 := nat.mod_eq_of_lt dec_trivial, refine fin.eq_of_veq _, simp [mul_val, one_val, h₁, h₂] } } end private lemma left_distrib_aux (n : ℕ+) : ∀ a b c : zmod n, a * (b + c) = a * b + a * c := λ ⟨a, ha⟩ ⟨b, hb⟩ ⟨c, hc⟩, fin.eq_of_veq (calc a * ((b + c) % n) ≡ a * (b + c) [MOD n] : modeq_mul rfl (nat.mod_mod _ _) ... ≡ a * b + a * c [MOD n] : by rw mul_add ... ≡ (a * b) % n + (a * c) % n [MOD n] : modeq_add (nat.mod_mod _ _).symm (nat.mod_mod _ _).symm) instance (n : ℕ+) : comm_ring (zmod n) := { zero_add := λ ⟨a, ha⟩, fin.eq_of_veq (show (0 + a) % n = a, by rw zero_add; exact nat.mod_eq_of_lt ha), add_zero := λ ⟨a, ha⟩, fin.eq_of_veq (nat.mod_eq_of_lt ha), add_left_neg := λ ⟨a, ha⟩, fin.eq_of_veq (show (((-a : ℤ) % n).to_nat + a) % n = 0, from int.coe_nat_inj begin have hn : (n : ℤ) ≠ 0 := (ne_of_lt (int.coe_nat_lt.2 n.pos)).symm, rw [int.coe_nat_mod, int.coe_nat_add, to_nat_of_nonneg (int.mod_nonneg _ hn), add_comm], simp, end), one_mul := one_mul_aux n, mul_one := λ a, by rw mul_comm; exact one_mul_aux n a, left_distrib := left_distrib_aux n, right_distrib := λ a b c, by rw [mul_comm, left_distrib_aux, mul_comm _ b, mul_comm]; refl, ..zmod.has_zero n, ..zmod.has_one n, ..zmod.has_neg n, ..zmod.add_comm_semigroup n, ..zmod.comm_semigroup n } lemma val_cast_nat {n : ℕ+} (a : ℕ) : (a : zmod n).val = a % n := begin induction a with a ih, { rw [nat.zero_mod]; refl }, { rw [succ_eq_add_one, nat.cast_add, add_val, ih], show (a % n + ((0 + (1 % n)) % n)) % n = (a + 1) % n, rw [zero_add, nat.mod_mod], exact nat.modeq.modeq_add (nat.mod_mod a n) (nat.mod_mod 1 n) } end lemma neg_val' {m : pnat} (n : zmod m) : (-n).val = (m - n.val) % m := have ((-n).val + n.val) % m = (m - n.val + n.val) % m, by { rw [←add_val, add_left_neg, nat.sub_add_cancel (le_of_lt n.is_lt), nat.mod_self], refl }, (nat.mod_eq_of_lt (fin.is_lt _)).symm.trans (nat.modeq.modeq_add_cancel_right rfl this) lemma neg_val {m : pnat} (n : zmod m) : (-n).val = if n = 0 then 0 else m - n.val := begin rw neg_val', by_cases h : n = 0; simp [h], cases n with n nlt; cases n; dsimp, { contradiction }, rw nat.mod_eq_of_lt, apply nat.sub_lt m.2 (nat.succ_pos _), end lemma mk_eq_cast {n : ℕ+} {a : ℕ} (h : a < n) : (⟨a, h⟩ : zmod n) = (a : zmod n) := fin.eq_of_veq (by rw [val_cast_nat, nat.mod_eq_of_lt h]) @[simp] lemma cast_self_eq_zero {n : ℕ+} : ((n : ℕ) : zmod n) = 0 := fin.eq_of_veq (show (n : zmod n).val = 0, by simp [val_cast_nat]) lemma val_cast_of_lt {n : ℕ+} {a : ℕ} (h : a < n) : (a : zmod n).val = a := by rw [val_cast_nat, nat.mod_eq_of_lt h] @[simp] lemma cast_mod_nat (n : ℕ+) (a : ℕ) : ((a % n : ℕ) : zmod n) = a := by conv {to_rhs, rw ← nat.mod_add_div a n}; simp @[simp, priority 980] lemma cast_mod_nat' {n : ℕ} (hn : 0 < n) (a : ℕ) : ((a % n : ℕ) : zmod ⟨n, hn⟩) = a := cast_mod_nat ⟨n, hn⟩ a @[simp] lemma cast_val {n : ℕ+} (a : zmod n) : (a.val : zmod n) = a := by cases a; simp [mk_eq_cast] @[simp] lemma cast_mod_int (n : ℕ+) (a : ℤ) : ((a % (n : ℕ) : ℤ) : zmod n) = a := by conv {to_rhs, rw ← int.mod_add_div a n}; simp @[simp, priority 980] lemma cast_mod_int' {n : ℕ} (hn : 0 < n) (a : ℤ) : ((a % (n : ℕ) : ℤ) : zmod ⟨n, hn⟩) = a := cast_mod_int ⟨n, hn⟩ a lemma val_cast_int {n : ℕ+} (a : ℤ) : (a : zmod n).val = (a % (n : ℕ)).nat_abs := have h : nat_abs (a % (n : ℕ)) < n := int.coe_nat_lt.1 begin rw [nat_abs_of_nonneg (mod_nonneg _ (int.coe_nat_ne_zero_iff_pos.2 n.pos))], conv {to_rhs, rw ← abs_of_nonneg (int.coe_nat_nonneg n)}, exact int.mod_lt _ (int.coe_nat_ne_zero_iff_pos.2 n.pos) end, int.coe_nat_inj $ by conv {to_lhs, rw [← cast_mod_int n a, ← nat_abs_of_nonneg (mod_nonneg _ (int.coe_nat_ne_zero_iff_pos.2 n.pos)), int.cast_coe_nat, val_cast_of_lt h] } lemma coe_val_cast_int {n : ℕ+} (a : ℤ) : ((a : zmod n).val : ℤ) = a % (n : ℕ) := by rw [val_cast_int, int.nat_abs_of_nonneg (mod_nonneg _ (int.coe_nat_ne_zero_iff_pos.2 n.pos))] lemma eq_iff_modeq_nat {n : ℕ+} {a b : ℕ} : (a : zmod n) = b ↔ a ≡ b [MOD n] := ⟨λ h, by have := fin.veq_of_eq h; rwa [val_cast_nat, val_cast_nat] at this, λ h, fin.eq_of_veq $ by rwa [val_cast_nat, val_cast_nat]⟩ lemma eq_iff_modeq_nat' {n : ℕ} (hn : 0 < n) {a b : ℕ} : (a : zmod ⟨n, hn⟩) = b ↔ a ≡ b [MOD n] := eq_iff_modeq_nat lemma eq_iff_modeq_int {n : ℕ+} {a b : ℤ} : (a : zmod n) = b ↔ a ≡ b [ZMOD (n : ℕ)] := ⟨λ h, by have := fin.veq_of_eq h; rwa [val_cast_int, val_cast_int, ← int.coe_nat_eq_coe_nat_iff, nat_abs_of_nonneg (int.mod_nonneg _ (int.coe_nat_ne_zero_iff_pos.2 n.pos)), nat_abs_of_nonneg (int.mod_nonneg _ (int.coe_nat_ne_zero_iff_pos.2 n.pos))] at this, λ h : a % (n : ℕ) = b % (n : ℕ), by rw [← cast_mod_int n a, ← cast_mod_int n b, h]⟩ lemma eq_iff_modeq_int' {n : ℕ} (hn : 0 < n) {a b : ℤ} : (a : zmod ⟨n, hn⟩) = b ↔ a ≡ b [ZMOD (n : ℕ)] := eq_iff_modeq_int lemma eq_zero_iff_dvd_nat {n : ℕ+} {a : ℕ} : (a : zmod n) = 0 ↔ (n : ℕ) ∣ a := by rw [← @nat.cast_zero (zmod n), eq_iff_modeq_nat, nat.modeq.modeq_zero_iff] lemma eq_zero_iff_dvd_int {n : ℕ+} {a : ℤ} : (a : zmod n) = 0 ↔ ((n : ℕ) : ℤ) ∣ a := by rw [← @int.cast_zero (zmod n), eq_iff_modeq_int, int.modeq.modeq_zero_iff] instance (n : ℕ+) : fintype (zmod n) := fin.fintype _ instance decidable_eq (n : ℕ+) : decidable_eq (zmod n) := fin.decidable_eq _ instance (n : ℕ+) : has_repr (zmod n) := fin.has_repr _ lemma card_zmod (n : ℕ+) : fintype.card (zmod n) = n := fintype.card_fin n instance : subsingleton (units (zmod 2)) := ⟨λ x y, begin cases x with x xi, cases y with y yi, revert x y xi yi, exact dec_trivial end⟩ lemma le_div_two_iff_lt_neg {n : ℕ+} (hn : (n : ℕ) % 2 = 1) {x : zmod n} (hx0 : x ≠ 0) : x.1 ≤ (n / 2 : ℕ) ↔ (n / 2 : ℕ) < (-x).1 := have hn2 : (n : ℕ) / 2 < n := nat.div_lt_of_lt_mul ((lt_mul_iff_one_lt_left n.pos).2 dec_trivial), have hn2' : (n : ℕ) - n / 2 = n / 2 + 1, by conv {to_lhs, congr, rw [← succ_sub_one n, succ_sub n.pos]}; rw [← two_mul_odd_div_two hn, two_mul, ← succ_add, nat.add_sub_cancel], have hxn : (n : ℕ) - x.val < n, begin rw [nat.sub_lt_iff (le_of_lt x.2) (le_refl _), nat.sub_self], rw ← zmod.cast_val x at hx0, exact nat.pos_of_ne_zero (λ h, by simpa [h] using hx0) end, by conv {to_rhs, rw [← nat.succ_le_iff, succ_eq_add_one, ← hn2', ← zero_add (- x), ← zmod.cast_self_eq_zero, ← sub_eq_add_neg, ← zmod.cast_val x, ← nat.cast_sub (le_of_lt x.2), zmod.val_cast_nat, mod_eq_of_lt hxn, nat.sub_le_sub_left_iff (le_of_lt x.2)] } lemma ne_neg_self {n : ℕ+} (hn1 : (n : ℕ) % 2 = 1) {a : zmod n} (ha : a ≠ 0) : a ≠ -a := λ h, have a.val ≤ n / 2 ↔ (n : ℕ) / 2 < (-a).val := le_div_two_iff_lt_neg hn1 ha, by rwa [← h, ← not_lt, not_iff_self] at this @[simp] lemma cast_mul_right_val_cast {n m : ℕ+} (a : ℕ) : ((a : zmod (m * n)).val : zmod m) = (a : zmod m) := zmod.eq_iff_modeq_nat.2 (by rw zmod.val_cast_nat; exact nat.modeq.modeq_of_modeq_mul_right _ (nat.mod_mod _ _)) @[simp] lemma cast_mul_left_val_cast {n m : ℕ+} (a : ℕ) : ((a : zmod (n * m)).val : zmod m) = (a : zmod m) := zmod.eq_iff_modeq_nat.2 (by rw zmod.val_cast_nat; exact nat.modeq.modeq_of_modeq_mul_left _ (nat.mod_mod _ _)) lemma cast_val_cast_of_dvd {n m : ℕ+} (h : (m : ℕ) ∣ n) (a : ℕ) : ((a : zmod n).val : zmod m) = (a : zmod m) := let ⟨k , hk⟩ := h in zmod.eq_iff_modeq_nat.2 (nat.modeq.modeq_of_modeq_mul_right k (by rw [← hk, zmod.val_cast_nat]; exact nat.mod_mod _ _)) /-- `unit_of_coprime` makes an element of `units (zmod n)` given a natural number `x` and a proof that `x` is coprime to `n` -/ def unit_of_coprime {n : ℕ+} (x : ℕ) (h : nat.coprime x n) : units (zmod n) := have (x * gcd_a x ↑n : zmod n) = 1, by rw [← int.cast_coe_nat, ← int.cast_one, ← int.cast_mul, zmod.eq_iff_modeq_int, ← int.coe_nat_one, ← (show nat.gcd _ _ = _, from h)]; simpa using int.modeq.gcd_a_modeq x n, ⟨x, gcd_a x n, this, by simpa [mul_comm] using this⟩ @[simp] lemma cast_unit_of_coprime {n : ℕ+} (x : ℕ) (h : nat.coprime x n) : (unit_of_coprime x h : zmod n) = x := rfl def units_equiv_coprime {n : ℕ+} : units (zmod n) ≃ {x : zmod n // nat.coprime x.1 n} := { to_fun := λ x, ⟨x, nat.modeq.coprime_of_mul_modeq_one (x⁻¹).1.1 begin have := units.ext_iff.1 (mul_right_inv x), rwa [← zmod.cast_val ((1 : units (zmod n)) : zmod n), units.coe_one, zmod.one_val, ← zmod.cast_val ((x * x⁻¹ : units (zmod n)) : zmod n), units.coe_mul, zmod.mul_val, zmod.cast_mod_nat, zmod.cast_mod_nat, zmod.eq_iff_modeq_nat] at this end⟩, inv_fun := λ x, unit_of_coprime x.1.1 x.2, left_inv := λ ⟨_, _, _, _⟩, units.ext (by simp), right_inv := λ ⟨_, _⟩, by simp } /-- `val_min_abs x` returns the integer in the same equivalence class as `x` that is closest to `0`, The result will be in the interval `(-n/2, n/2]` -/ def val_min_abs {n : ℕ+} (x : zmod n) : ℤ := if x.val ≤ n / 2 then x.val else x.val - n @[simp] lemma coe_val_min_abs {n : ℕ+} (x : zmod n) : (x.val_min_abs : zmod n) = x := by simp [zmod.val_min_abs]; split_ifs; simp [sub_eq_add_neg] lemma nat_abs_val_min_abs_le {n : ℕ+} (x : zmod n) : x.val_min_abs.nat_abs ≤ n / 2 := have (x.val - n : ℤ) ≤ 0, from sub_nonpos.2 $ int.coe_nat_le.2 $ le_of_lt x.2, begin rw zmod.val_min_abs, split_ifs with h, { exact h }, { rw [← int.coe_nat_le, int.of_nat_nat_abs_of_nonpos this, neg_sub], conv_lhs { congr, rw [coe_coe, ← nat.mod_add_div n 2, int.coe_nat_add, int.coe_nat_mul, int.coe_nat_bit0, int.coe_nat_one] }, rw ← sub_nonneg, suffices : (0 : ℤ) ≤ x.val - ((n % 2 : ℕ) + (n / 2 : ℕ)), { exact le_trans this (le_of_eq $ by ring) }, exact sub_nonneg.2 (by rw [← int.coe_nat_add, int.coe_nat_le]; exact calc (n : ℕ) % 2 + n / 2 ≤ 1 + n / 2 : add_le_add (nat.le_of_lt_succ (nat.mod_lt _ dec_trivial)) (le_refl _) ... ≤ x.val : by rw add_comm; exact nat.succ_le_of_lt (lt_of_not_ge h)) } end @[simp] lemma val_min_abs_zero {n : ℕ+} : (0 : zmod n).val_min_abs = 0 := by simp [zmod.val_min_abs] @[simp] lemma val_min_abs_eq_zero {n : ℕ+} (x : zmod n) : x.val_min_abs = 0 ↔ x = 0 := ⟨λ h, begin dsimp [zmod.val_min_abs] at h, split_ifs at h, { exact fin.eq_of_veq (by simp * at *) }, { exact absurd h (mt sub_eq_zero.1 (ne_of_lt $ int.coe_nat_lt.2 x.2)) } end, λ hx0, hx0.symm ▸ zmod.val_min_abs_zero⟩ lemma cast_nat_abs_val_min_abs {n : ℕ+} (a : zmod n) : (a.val_min_abs.nat_abs : zmod n) = if a.val ≤ (n : ℕ) / 2 then a else -a := have (a.val : ℤ) + -n ≤ 0, by erw [sub_nonpos, int.coe_nat_le]; exact le_of_lt a.2, begin dsimp [zmod.val_min_abs], split_ifs, { simp }, { erw [← int.cast_coe_nat, int.of_nat_nat_abs_of_nonpos this], simp } end @[simp] lemma nat_abs_val_min_abs_neg {n : ℕ+} (a : zmod n) : (-a).val_min_abs.nat_abs = a.val_min_abs.nat_abs := if haa : -a = a then by rw [haa] else have hpa : (n : ℕ) - a.val ≤ n / 2 ↔ (n : ℕ) / 2 < a.val, from suffices (((n : ℕ) % 2) + 2 * (n / 2)) - a.val ≤ (n : ℕ) / 2 ↔ (n : ℕ) / 2 < a.val, by rwa [nat.mod_add_div] at this, begin rw [nat.sub_le_iff, two_mul, ← add_assoc, nat.add_sub_cancel], cases (n : ℕ).mod_two_eq_zero_or_one with hn0 hn1, { split, { exact λ h, lt_of_le_of_ne (le_trans (nat.le_add_left _ _) h) begin assume hna, rw [← zmod.cast_val a, ← hna, neg_eq_iff_add_eq_zero, ← nat.cast_add, zmod.eq_zero_iff_dvd_nat, ← two_mul, ← zero_add (2 * _), ← hn0, nat.mod_add_div] at haa, exact haa (dvd_refl _) end }, { rw [hn0, zero_add], exact le_of_lt } }, { rw [hn1, add_comm, nat.succ_le_iff] } end, have ha0 : ¬ a = 0, from λ ha0, by simp * at *, begin dsimp [zmod.val_min_abs], rw [← not_le] at hpa, simp only [if_neg ha0, zmod.neg_val, hpa, int.coe_nat_sub (le_of_lt a.2)], split_ifs, { simp [sub_eq_add_neg] }, { rw [← int.nat_abs_neg], simp } end lemma val_eq_ite_val_min_abs {n : ℕ+} (a : zmod n) : (a.val : ℤ) = a.val_min_abs + if a.val ≤ n / 2 then 0 else n := by simp [zmod.val_min_abs]; split_ifs; simp lemma neg_eq_self_mod_two : ∀ (a : zmod 2), -a = a := dec_trivial @[simp] lemma nat_abs_mod_two (a : ℤ) : (a.nat_abs : zmod 2) = a := by cases a; simp [zmod.neg_eq_self_mod_two] section variables {α : Type*} [has_zero α] [has_one α] [has_add α] {n : ℕ+} def cast : zmod n → α := nat.cast ∘ fin.val end end zmod def zmodp (p : ℕ) (hp : prime p) : Type := zmod ⟨p, hp.pos⟩ namespace zmodp variables {p : ℕ} (hp : prime p) instance : comm_ring (zmodp p hp) := zmod.comm_ring ⟨p, hp.pos⟩ instance : inhabited (zmodp p hp) := ⟨0⟩ instance {p : ℕ} (hp : prime p) : has_inv (zmodp p hp) := ⟨λ a, gcd_a a.1 p⟩ lemma add_val : ∀ a b : zmodp p hp, (a + b).val = (a.val + b.val) % p | ⟨_, _⟩ ⟨_, _⟩ := rfl lemma mul_val : ∀ a b : zmodp p hp, (a * b).val = (a.val * b.val) % p | ⟨_, _⟩ ⟨_, _⟩ := rfl @[simp] lemma one_val : (1 : zmodp p hp).val = 1 := nat.mod_eq_of_lt hp.one_lt @[simp] lemma zero_val : (0 : zmodp p hp).val = 0 := rfl lemma val_cast_nat (a : ℕ) : (a : zmodp p hp).val = a % p := @zmod.val_cast_nat ⟨p, hp.pos⟩ _ lemma mk_eq_cast {a : ℕ} (h : a < p) : (⟨a, h⟩ : zmodp p hp) = (a : zmodp p hp) := @zmod.mk_eq_cast ⟨p, hp.pos⟩ _ _ @[simp] lemma cast_self_eq_zero: (p : zmodp p hp) = 0 := fin.eq_of_veq $ by simp [val_cast_nat] lemma val_cast_of_lt {a : ℕ} (h : a < p) : (a : zmodp p hp).val = a := @zmod.val_cast_of_lt ⟨p, hp.pos⟩ _ h @[simp] lemma cast_mod_nat (a : ℕ) : ((a % p : ℕ) : zmodp p hp) = a := @zmod.cast_mod_nat ⟨p, hp.pos⟩ _ @[simp] lemma cast_val (a : zmodp p hp) : (a.val : zmodp p hp) = a := @zmod.cast_val ⟨p, hp.pos⟩ _ @[simp] lemma cast_mod_int (a : ℤ) : ((a % p : ℤ) : zmodp p hp) = a := @zmod.cast_mod_int ⟨p, hp.pos⟩ _ lemma val_cast_int (a : ℤ) : (a : zmodp p hp).val = (a % p).nat_abs := @zmod.val_cast_int ⟨p, hp.pos⟩ _ lemma coe_val_cast_int (a : ℤ) : ((a : zmodp p hp).val : ℤ) = a % (p : ℕ) := @zmod.coe_val_cast_int ⟨p, hp.pos⟩ _ lemma eq_iff_modeq_nat {a b : ℕ} : (a : zmodp p hp) = b ↔ a ≡ b [MOD p] := @zmod.eq_iff_modeq_nat ⟨p, hp.pos⟩ _ _ lemma eq_iff_modeq_int {a b : ℤ} : (a : zmodp p hp) = b ↔ a ≡ b [ZMOD p] := @zmod.eq_iff_modeq_int ⟨p, hp.pos⟩ _ _ lemma eq_zero_iff_dvd_nat (a : ℕ) : (a : zmodp p hp) = 0 ↔ p ∣ a := @zmod.eq_zero_iff_dvd_nat ⟨p, hp.pos⟩ _ lemma eq_zero_iff_dvd_int (a : ℤ) : (a : zmodp p hp) = 0 ↔ (p : ℤ) ∣ a := @zmod.eq_zero_iff_dvd_int ⟨p, hp.pos⟩ _ instance : fintype (zmodp p hp) := @zmod.fintype ⟨p, hp.pos⟩ instance decidable_eq : decidable_eq (zmodp p hp) := fin.decidable_eq _ instance X (h : prime 2) : subsingleton (units (zmodp 2 h)) := zmod.subsingleton instance : has_repr (zmodp p hp) := fin.has_repr _ @[simp] lemma card_zmodp : fintype.card (zmodp p hp) = p := @zmod.card_zmod ⟨p, hp.pos⟩ lemma le_div_two_iff_lt_neg {p : ℕ} (hp : prime p) (hp1 : p % 2 = 1) {x : zmodp p hp} (hx0 : x ≠ 0) : x.1 ≤ (p / 2 : ℕ) ↔ (p / 2 : ℕ) < (-x).1 := @zmod.le_div_two_iff_lt_neg ⟨p, hp.pos⟩ hp1 _ hx0 lemma ne_neg_self (hp1 : p % 2 = 1) {a : zmodp p hp} (ha : a ≠ 0) : a ≠ -a := @zmod.ne_neg_self ⟨p, hp.pos⟩ hp1 _ ha variable {hp} /-- `val_min_abs x` returns the integer in the same equivalence class as `x` that is closest to `0`, The result will be in the interval `(-n/2, n/2]` -/ def val_min_abs (x : zmodp p hp) : ℤ := zmod.val_min_abs x @[simp] lemma coe_val_min_abs (x : zmodp p hp) : (x.val_min_abs : zmodp p hp) = x := zmod.coe_val_min_abs x lemma nat_abs_val_min_abs_le (x : zmodp p hp) : x.val_min_abs.nat_abs ≤ p / 2 := zmod.nat_abs_val_min_abs_le x @[simp] lemma val_min_abs_zero : (0 : zmodp p hp).val_min_abs = 0 := zmod.val_min_abs_zero @[simp] lemma val_min_abs_eq_zero (x : zmodp p hp) : x.val_min_abs = 0 ↔ x = 0 := zmod.val_min_abs_eq_zero x lemma cast_nat_abs_val_min_abs (a : zmodp p hp) : (a.val_min_abs.nat_abs : zmodp p hp) = if a.val ≤ p / 2 then a else -a := zmod.cast_nat_abs_val_min_abs a @[simp] lemma nat_abs_val_min_abs_neg (a : zmodp p hp) : (-a).val_min_abs.nat_abs = a.val_min_abs.nat_abs := zmod.nat_abs_val_min_abs_neg _ lemma val_eq_ite_val_min_abs (a : zmodp p hp) : (a.val : ℤ) = a.val_min_abs + if a.val ≤ p / 2 then 0 else p := zmod.val_eq_ite_val_min_abs _ variable (hp) lemma prime_ne_zero {q : ℕ} (hq : prime q) (hpq : p ≠ q) : (q : zmodp p hp) ≠ 0 := by rwa [← nat.cast_zero, ne.def, zmodp.eq_iff_modeq_nat, nat.modeq.modeq_zero_iff, ← hp.coprime_iff_not_dvd, coprime_primes hp hq] lemma mul_inv_eq_gcd (a : ℕ) : (a : zmodp p hp) * a⁻¹ = nat.gcd a p := by rw [← int.cast_coe_nat (nat.gcd _ _), nat.gcd_comm, nat.gcd_rec, ← (eq_iff_modeq_int _).2 (int.modeq.gcd_a_modeq _ _)]; simp [has_inv.inv, val_cast_nat] private lemma mul_inv_cancel_aux : ∀ a : zmodp p hp, a ≠ 0 → a * a⁻¹ = 1 := λ ⟨a, hap⟩ ha0, begin rw [mk_eq_cast, ne.def, ← @nat.cast_zero (zmodp p hp), eq_iff_modeq_nat, modeq_zero_iff] at ha0, have : nat.gcd p a = 1 := (prime.coprime_iff_not_dvd hp).2 ha0, rw [mk_eq_cast _ hap, mul_inv_eq_gcd, nat.gcd_comm], simp [nat.gcd_comm, this] end instance : field (zmodp p hp) := { zero_ne_one := fin.ne_of_vne $ show 0 ≠ 1 % p, by rw nat.mod_eq_of_lt hp.one_lt; exact zero_ne_one, mul_inv_cancel := mul_inv_cancel_aux hp, inv_zero := show (gcd_a 0 p : zmodp p hp) = 0, by unfold gcd_a xgcd xgcd_aux; refl, ..zmodp.comm_ring hp, ..zmodp.has_inv hp } end zmodp
39d905529bd3e4c78705075a6819b16a452f5750
8cae430f0a71442d02dbb1cbb14073b31048e4b0
/src/algebra/category/fgModule/limits.lean
6c02caa86c10039dd142afa9c06105f5c80e32c2
[ "Apache-2.0" ]
permissive
leanprover-community/mathlib
56a2cadd17ac88caf4ece0a775932fa26327ba0e
442a83d738cb208d3600056c489be16900ba701d
refs/heads/master
1,693,584,102,358
1,693,471,902,000
1,693,471,902,000
97,922,418
1,595
352
Apache-2.0
1,694,693,445,000
1,500,624,130,000
Lean
UTF-8
Lean
false
false
3,031
lean
/- Copyright (c) 2022 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import algebra.category.fgModule.basic import algebra.category.Module.limits import algebra.category.Module.products import algebra.category.Module.epi_mono import category_theory.limits.creates import category_theory.limits.shapes.finite_limits import category_theory.limits.constructions.limits_of_products_and_equalizers /-! # `forget₂ (fgModule K) (Module K)` creates all finite limits. > THIS FILE IS SYNCHRONIZED WITH MATHLIB4. > Any changes to this file require a corresponding PR to mathlib4. And hence `fgModule K` has all finite limits. ## Future work After generalising `fgModule` to allow the ring and the module to live in different universes, generalize this construction so we can take limits over smaller diagrams, as is done for the other algebraic categories. Analogous constructions for Noetherian modules. -/ noncomputable theory universes v u open category_theory open category_theory.limits namespace fgModule variables {J : Type} [small_category J] [fin_category J] variables {k : Type v} [field k] instance {J : Type} [fintype J] (Z : J → Module.{v} k) [∀ j, finite_dimensional k (Z j)] : finite_dimensional k (∏ λ j, Z j : Module.{v} k) := begin haveI : finite_dimensional k (Module.of k (Π j, Z j)), { dsimp, apply_instance, }, exact finite_dimensional.of_injective (Module.pi_iso_pi _).hom ((Module.mono_iff_injective _).1 (by apply_instance)), end /-- Finite limits of finite dimensional vectors spaces are finite dimensional, because we can realise them as subobjects of a finite product. -/ instance (F : J ⥤ fgModule k) : finite_dimensional k (limit (F ⋙ forget₂ (fgModule k) (Module.{v} k)) : Module.{v} k) := begin haveI : ∀ j, finite_dimensional k ((F ⋙ forget₂ (fgModule k) (Module.{v} k)).obj j), { intro j, change finite_dimensional k (F.obj j).obj, apply_instance, }, exact finite_dimensional.of_injective (limit_subobject_product (F ⋙ forget₂ (fgModule k) (Module.{v} k))) ((Module.mono_iff_injective _).1 (by apply_instance)), end /-- The forgetful functor from `fgModule k` to `Module k` creates all finite limits. -/ def forget₂_creates_limit (F : J ⥤ fgModule k) : creates_limit F (forget₂ (fgModule k) (Module.{v} k)) := creates_limit_of_fully_faithful_of_iso ⟨(limit (F ⋙ forget₂ (fgModule k) (Module.{v} k)) : Module.{v} k), by apply_instance⟩ (iso.refl _) instance : creates_limits_of_shape J (forget₂ (fgModule k) (Module.{v} k)) := { creates_limit := λ F, forget₂_creates_limit F, } instance : has_finite_limits (fgModule k) := { out := λ J _ _, by exactI has_limits_of_shape_of_has_limits_of_shape_creates_limits_of_shape (forget₂ (fgModule k) (Module.{v} k)), } instance : preserves_finite_limits (forget₂ (fgModule k) (Module.{v} k)) := { preserves_finite_limits := λ J _ _, by exactI infer_instance, } end fgModule
f8d524d261703f6dcfb512da6431fec609f7feb8
d1a52c3f208fa42c41df8278c3d280f075eb020c
/tests/lean/run/isDefEqCheckAssignmentBug.lean
8d33cc220a5882993d2de9793e88871ab9a5870e
[ "Apache-2.0", "LLVM-exception", "NCSA", "LGPL-3.0-only", "LicenseRef-scancode-inner-net-2.0", "BSD-3-Clause", "LGPL-2.0-or-later", "Spencer-94", "LGPL-2.1-or-later", "HPND", "LicenseRef-scancode-pcre", "ISC", "LGPL-2.1-only", "LicenseRef-scancode-other-permissive", "SunPro", "CMU-Mach" ]
permissive
cipher1024/lean4
6e1f98bb58e7a92b28f5364eb38a14c8d0aae393
69114d3b50806264ef35b57394391c3e738a9822
refs/heads/master
1,642,227,983,603
1,642,011,696,000
1,642,011,696,000
228,607,691
0
0
Apache-2.0
1,576,584,269,000
1,576,584,268,000
null
UTF-8
Lean
false
false
828
lean
import Lean open Lean open Lean.Meta def f (x : Type) := x def tst : MetaM Unit := do let m1 ← mkFreshExprMVar none withLocalDeclD `x m1 fun x => do trace[Meta.debug] "{x} : {← inferType x}" trace[Meta.debug] "{m1} : {← inferType m1}" let m2 ← mkFreshExprMVar (mkSort levelOne) let t ← mkAppM ``f #[m2] trace[Meta.debug] "{m2} : {← inferType m2}" unless (← fullApproxDefEq <| isDefEq m1 t) do -- m1 := f m3 -- where `m3` has a smaller scope than `m2` throwError "isDefEq failed" trace[Meta.debug] "{m2} : {← inferType m2}" trace[Meta.debug] "{m1} : {← inferType m1}" let e ← mkForallFVars #[x] m2 -- `forall (x : f ?m2), ?m2` trace[Meta.debug] "{e} : {← e}" return () set_option trace.Meta.isDefEq true set_option trace.Meta.debug true #eval tst
4f89c768fa4e359fbd2cc3ce2285c8fa48f160d6
9ad8d18fbe5f120c22b5e035bc240f711d2cbd7e
/src/combinatorics/fibonacci.lean
05e3e81b570885c1326784021f871e342c9f94fb
[]
no_license
agusakov/lean_lib
c0e9cc29fc7d2518004e224376adeb5e69b5cc1a
f88d162da2f990b87c4d34f5f46bbca2bbc5948e
refs/heads/master
1,642,141,461,087
1,557,395,798,000
1,557,395,798,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
5,151
lean
/- Copyright (c) 2019 Neil Strickland. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Neil Strickland This file defines Fibonacci numbers and their reductions mod `n`. It was intended to make computation efficient, but does not succeed very well. Some better approaches were discussed on Zulip by Mario and Kenny; they should be incorporated here. -/ import data.real.basic data.fintype algebra.big_operators data.nat.modeq import tactic.find tactic.squeeze tactic.norm_num tactic.ring namespace combinatorics /- This is the basic definition of fibonacci numbers. It is not good for efficient evaluation. -/ def fibonacci : ℕ → ℕ | 0 := 0 | 1 := 1 | (n + 2) := (fibonacci n) + (fibonacci (n + 1)) /- We now do a more efficient version, and prove that it is consistent with the original one. -/ def fibonacci_step : ℕ × ℕ → ℕ × ℕ := λ ⟨a,b⟩, ⟨b, a + b⟩ def fibonacci_pair : ℕ → ℕ × ℕ | 0 := ⟨0,1⟩ | (n + 1) := fibonacci_step (fibonacci_pair n) lemma fibonacci_pair_spec : ∀ n , fibonacci_pair n = ⟨fibonacci n,fibonacci n.succ⟩ | 0 := rfl | (nat.succ n) := begin rw[fibonacci_pair,fibonacci_pair_spec n,fibonacci_step,fibonacci], ext,refl,refl, end lemma fibonacci_from_pair (n : ℕ) : fibonacci n = (fibonacci_pair n).fst := by rw[fibonacci_pair_spec n]. /- We now prove a fact about the fibonacci numbers mod 2. Later we will generalise this for an arbitrary modulus. -/ lemma fibonacci_bodd_step (n : ℕ) : (fibonacci (n + 3)).bodd = (fibonacci n).bodd := begin rw[fibonacci,fibonacci,nat.bodd_add,nat.bodd_add], cases (fibonacci (n + 1)).bodd; cases (fibonacci n).bodd; refl, end lemma fibonacci_bodd : ∀ n, (fibonacci n).bodd = bnot (n % 3 = 0) | 0 := rfl | 1 := rfl | 2 := rfl | (n + 3) := begin rw[fibonacci_bodd_step n,fibonacci_bodd n],congr, end /- We now do a more general theory of modular periodicity of fibonacci numbers. For computational efficiency, we give an inductive definition of modular fibonacci numbers that does not require us to calculate the non-modular ones. We then prove that it is consistent with the original definition. -/ def pair_mod (p : ℕ) : ℕ × ℕ → ℕ × ℕ := λ ⟨a,b⟩, ⟨a % p,b % p⟩ lemma pair_mod_mod (p : ℕ) : ∀ (c : ℕ × ℕ), pair_mod p (pair_mod p c) = pair_mod p c := λ ⟨a,b⟩, by {simp[pair_mod,nat.mod_mod],} def fibonacci_pair_mod (p : ℕ) : ℕ → ℕ × ℕ | 0 := pair_mod p ⟨0,1⟩ | (n + 1) := pair_mod p (fibonacci_step (fibonacci_pair_mod n)) lemma fibonacci_pair_mod_mod (p : ℕ) : ∀ n, pair_mod p (fibonacci_pair_mod p n) = fibonacci_pair_mod p n | 0 := by {rw[fibonacci_pair_mod,pair_mod_mod],} | (n + 1) := by {rw[fibonacci_pair_mod,pair_mod_mod],} lemma mod_step_mod (p : ℕ) : ∀ (c : ℕ × ℕ), pair_mod p (fibonacci_step c) = pair_mod p (fibonacci_step (pair_mod p c)) := λ ⟨a,b⟩, begin change (⟨b % p,(a + b) % p⟩ : ℕ × ℕ) = ⟨b % p % p,(a % p + b % p) % p⟩, have e0 : b % p % p = b % p := nat.mod_mod b p, have e1 : (a % p + b % p) % p = (a + b) % p := nat.modeq.modeq_add (nat.mod_mod a p) (nat.mod_mod b p), rw[e0,e1], end lemma fibonacci_pair_mod_spec (p : ℕ) : ∀ n, fibonacci_pair_mod p n = pair_mod p (fibonacci_pair n) | 0 := rfl | (n + 1) := begin rw[fibonacci_pair_mod,fibonacci_pair,fibonacci_pair_mod_spec n], rw[← mod_step_mod], end lemma fibonacci_mod_spec (p : ℕ) (n : ℕ) : (fibonacci_pair_mod p n).fst = (fibonacci n) % p := begin rw[fibonacci_pair_mod_spec,fibonacci_pair_spec,pair_mod], refl, end lemma fibonacci_pair_period₀ {p : ℕ} {d : ℕ} (h : fibonacci_pair_mod p d = pair_mod p ⟨0,1⟩) : ∀ n, fibonacci_pair_mod p (n + d) = fibonacci_pair_mod p n | 0 := by {rw[zero_add,h,fibonacci_pair_mod],} | (n + 1) := by { rw[add_assoc,add_comm 1 d,← add_assoc], rw[fibonacci_pair_mod,fibonacci_pair_mod], rw[fibonacci_pair_period₀ n], } lemma fibonacci_pair_period₁ {p : ℕ} {d : ℕ} (h : fibonacci_pair_mod p d = pair_mod p ⟨0,1⟩) (m : ℕ) : ∀ n, fibonacci_pair_mod p (m + d * n) = fibonacci_pair_mod p m | 0 := by {rw[mul_zero,add_zero]} | (n + 1) := by { have : m + d * (n + 1) = (m + d * n) + d := by ring, rw[this,fibonacci_pair_period₀ h,fibonacci_pair_period₁], } lemma fibonacci_pair_period {p : ℕ} {d : ℕ} (h : fibonacci_pair_mod p d = pair_mod p ⟨0,1⟩) (n : ℕ) : fibonacci_pair_mod p n = fibonacci_pair_mod p (n % d) := calc fibonacci_pair_mod p n = fibonacci_pair_mod p (n % d + d * (n / d)) : congr_arg (fibonacci_pair_mod p) (nat.mod_add_div n d).symm ... = fibonacci_pair_mod p (n % d) : fibonacci_pair_period₁ h (n % d) (n / d) lemma fibonacci_period {p : ℕ} {d : ℕ} (h : fibonacci_pair_mod p d = pair_mod p ⟨0,1⟩) (n : ℕ) : (fibonacci n) ≡ (fibonacci (n % d)) [MOD p] := begin rw[nat.modeq,← fibonacci_mod_spec,← fibonacci_mod_spec], rw[fibonacci_pair_period], exact h, end /- Prove the identity (fibonacci n) = (choose n 0) + (choose n-1 1) + (choose n-2 2) + ... -/ end combinatorics
0b4cd14c439bc500d53f0d4f4d03e4ff953690b6
b7f22e51856f4989b970961f794f1c435f9b8f78
/hott/hit/quotient.hlean
3f49a44b04f4a98a95d53a9833553e975611afe7
[ "Apache-2.0" ]
permissive
soonhokong/lean
cb8aa01055ffe2af0fb99a16b4cda8463b882cd1
38607e3eb57f57f77c0ac114ad169e9e4262e24f
refs/heads/master
1,611,187,284,081
1,450,766,737,000
1,476,122,547,000
11,513,992
2
0
null
1,401,763,102,000
1,374,182,235,000
C++
UTF-8
Lean
false
false
8,554
hlean
/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn Quotients. This is a quotient without truncation for an arbitrary type-valued binary relation. See also .set_quotient -/ /- The hit quotient is primitive, declared in init.hit. The constructors are, given {A : Type} (R : A → A → Type), * class_of : A → quotient R (A implicit, R explicit) * eq_of_rel : Π{a a' : A}, R a a' → class_of a = class_of a' (R explicit) -/ import arity cubical.squareover types.arrow cubical.pathover2 types.pointed open eq equiv sigma sigma.ops pi is_trunc pointed namespace quotient variables {A : Type} {R : A → A → Type} protected definition elim {P : Type} (Pc : A → P) (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a = Pc a') (x : quotient R) : P := quotient.rec Pc (λa a' H, pathover_of_eq _ (Pp H)) x protected definition elim_on [reducible] {P : Type} (x : quotient R) (Pc : A → P) (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a = Pc a') : P := quotient.elim Pc Pp x theorem elim_eq_of_rel {P : Type} (Pc : A → P) (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a = Pc a') {a a' : A} (H : R a a') : ap (quotient.elim Pc Pp) (eq_of_rel R H) = Pp H := begin apply eq_of_fn_eq_fn_inv !(pathover_constant (eq_of_rel R H)), rewrite [▸*,-apd_eq_pathover_of_eq_ap,↑quotient.elim,rec_eq_of_rel], end protected definition rec_prop {A : Type} {R : A → A → Type} {P : quotient R → Type} [H : Πx, is_prop (P x)] (Pc : Π(a : A), P (class_of R a)) (x : quotient R) : P x := quotient.rec Pc (λa a' H, !is_prop.elimo) x protected definition elim_prop {P : Type} [H : is_prop P] (Pc : A → P) (x : quotient R) : P := quotient.elim Pc (λa a' H, !is_prop.elim) x protected definition elim_type (Pc : A → Type) (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a ≃ Pc a') : quotient R → Type := quotient.elim Pc (λa a' H, ua (Pp H)) protected definition elim_type_on [reducible] (x : quotient R) (Pc : A → Type) (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a ≃ Pc a') : Type := quotient.elim_type Pc Pp x theorem elim_type_eq_of_rel_fn (Pc : A → Type) (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a ≃ Pc a') {a a' : A} (H : R a a') : transport (quotient.elim_type Pc Pp) (eq_of_rel R H) = to_fun (Pp H) := by rewrite [tr_eq_cast_ap_fn, ↑quotient.elim_type, elim_eq_of_rel]; apply cast_ua_fn -- rename to elim_type_eq_of_rel_fn_inv theorem elim_type_eq_of_rel_inv (Pc : A → Type) (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a ≃ Pc a') {a a' : A} (H : R a a') : transport (quotient.elim_type Pc Pp) (eq_of_rel R H)⁻¹ = to_inv (Pp H) := by rewrite [tr_eq_cast_ap_fn, ↑quotient.elim_type, ap_inv, elim_eq_of_rel]; apply cast_ua_inv_fn -- remove ' theorem elim_type_eq_of_rel_inv' (Pc : A → Type) (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a ≃ Pc a') {a a' : A} (H : R a a') (x : Pc a') : transport (quotient.elim_type Pc Pp) (eq_of_rel R H)⁻¹ x = to_inv (Pp H) x := ap10 (elim_type_eq_of_rel_inv Pc Pp H) x theorem elim_type_eq_of_rel.{u} (Pc : A → Type.{u}) (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a ≃ Pc a') {a a' : A} (H : R a a') (p : Pc a) : transport (quotient.elim_type Pc Pp) (eq_of_rel R H) p = to_fun (Pp H) p := ap10 (elim_type_eq_of_rel_fn Pc Pp H) p definition elim_type_eq_of_rel' (Pc : A → Type) (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a ≃ Pc a') {a a' : A} (H : R a a') (p : Pc a) : pathover (quotient.elim_type Pc Pp) p (eq_of_rel R H) (to_fun (Pp H) p) := pathover_of_tr_eq (elim_type_eq_of_rel Pc Pp H p) definition elim_type_uncurried (H : Σ(Pc : A → Type), Π⦃a a' : A⦄ (H : R a a'), Pc a ≃ Pc a') : quotient R → Type := quotient.elim_type H.1 H.2 end quotient attribute quotient.rec [recursor] attribute quotient.elim [unfold 6] [recursor 6] attribute quotient.elim_type [unfold 5] attribute quotient.elim_on [unfold 4] attribute quotient.elim_type_on [unfold 3] namespace quotient section variables {A : Type} (R : A → A → Type) /- The dependent universal property -/ definition quotient_pi_equiv (C : quotient R → Type) : (Πx, C x) ≃ (Σ(f : Π(a : A), C (class_of R a)), Π⦃a a' : A⦄ (H : R a a'), f a =[eq_of_rel R H] f a') := begin fapply equiv.MK, { intro f, exact ⟨λa, f (class_of R a), λa a' H, apd f (eq_of_rel R H)⟩}, { intro v x, induction v with i p, induction x, exact (i a), exact (p H)}, { intro v, induction v with i p, esimp, apply ap (sigma.mk i), apply eq_of_homotopy3, intro a a' H, apply rec_eq_of_rel}, { intro f, apply eq_of_homotopy, intro x, induction x: esimp, apply eq_pathover_dep, esimp, rewrite rec_eq_of_rel, exact hrflo}, end end definition pquotient [constructor] {A : Type*} (R : A → A → Type) : Type* := pType.mk (quotient R) (class_of R pt) /- the flattening lemma -/ namespace flattening section parameters {A : Type} (R : A → A → Type) (C : A → Type) (f : Π⦃a a'⦄, R a a' → C a ≃ C a') include f variables {a a' : A} {r : R a a'} local abbreviation P [unfold 5] := quotient.elim_type C f definition flattening_type : Type := Σa, C a local abbreviation X := flattening_type inductive flattening_rel : X → X → Type := | mk : Π⦃a a' : A⦄ (r : R a a') (c : C a), flattening_rel ⟨a, c⟩ ⟨a', f r c⟩ definition Ppt [constructor] (c : C a) : sigma P := ⟨class_of R a, c⟩ definition Peq (r : R a a') (c : C a) : Ppt c = Ppt (f r c) := begin fapply sigma_eq: esimp, { apply eq_of_rel R r}, { refine elim_type_eq_of_rel' C f r c} end definition rec {Q : sigma P → Type} (Qpt : Π{a : A} (x : C a), Q (Ppt x)) (Qeq : Π⦃a a' : A⦄ (r : R a a') (c : C a), Qpt c =[Peq r c] Qpt (f r c)) (v : sigma P) : Q v := begin induction v with q p, induction q, { exact Qpt p}, { apply pi_pathover_left', esimp, intro c, refine _ ⬝op apdt Qpt (elim_type_eq_of_rel C f H c)⁻¹ᵖ, refine _ ⬝op (tr_compose Q Ppt _ _)⁻¹ , rewrite ap_inv, refine pathover_cancel_right _ !tr_pathover⁻¹ᵒ, refine change_path _ (Qeq H c), symmetry, rewrite [↑[Ppt, Peq]], refine whisker_left _ !ap_dpair ⬝ _, refine !dpair_eq_dpair_con⁻¹ ⬝ _, esimp, apply ap (dpair_eq_dpair _), esimp [elim_type_eq_of_rel',pathover_idp_of_eq], exact !pathover_of_tr_eq_eq_concato⁻¹}, end definition elim {Q : Type} (Qpt : Π{a : A}, C a → Q) (Qeq : Π⦃a a' : A⦄ (r : R a a') (c : C a), Qpt c = Qpt (f r c)) (v : sigma P) : Q := begin induction v with q p, induction q, { exact Qpt p}, { apply arrow_pathover_constant_right, esimp, intro c, exact Qeq H c ⬝ ap Qpt (elim_type_eq_of_rel C f H c)⁻¹}, end theorem elim_Peq {Q : Type} (Qpt : Π{a : A}, C a → Q) (Qeq : Π⦃a a' : A⦄ (r : R a a') (c : C a), Qpt c = Qpt (f r c)) {a a' : A} (r : R a a') (c : C a) : ap (elim @Qpt Qeq) (Peq r c) = Qeq r c := begin refine !ap_dpair_eq_dpair ⬝ _, refine !apd011_eq_apo11_apd ⬝ _, rewrite [rec_eq_of_rel, ▸*], refine !apo11_arrow_pathover_constant_right ⬝ _, rewrite [↑elim_type_eq_of_rel', to_right_inv !pathover_equiv_tr_eq, ap_inv], apply inv_con_cancel_right end open flattening_rel definition flattening_lemma : sigma P ≃ quotient flattening_rel := begin fapply equiv.MK, { refine elim _ _, { intro a c, exact class_of _ ⟨a, c⟩}, { intro a a' r c, apply eq_of_rel, constructor}}, { intro q, induction q with x x x' H, { exact Ppt x.2}, { induction H, esimp, apply Peq}}, { intro q, induction q with x x x' H: esimp, { induction x with a c, reflexivity}, { induction H, esimp, apply eq_pathover, apply hdeg_square, refine ap_compose (elim _ _) (quotient.elim _ _) _ ⬝ _, rewrite [elim_eq_of_rel, ap_id, ▸*], apply elim_Peq}}, { refine rec (λa x, idp) _, intros, apply eq_pathover, apply hdeg_square, refine ap_compose (quotient.elim _ _) (elim _ _) _ ⬝ _, rewrite [elim_Peq, ap_id, ▸*], apply elim_eq_of_rel} end end end flattening end quotient
c69392008608c630442537018ba3ae4a617cbac2
2a70b774d16dbdf5a533432ee0ebab6838df0948
/_target/deps/mathlib/src/data/pnat/basic.lean
87856d143cd1b473d4712545bbf0f3ffb22957ac
[ "Apache-2.0" ]
permissive
hjvromen/lewis
40b035973df7c77ebf927afab7878c76d05ff758
105b675f73630f028ad5d890897a51b3c1146fb0
refs/heads/master
1,677,944,636,343
1,676,555,301,000
1,676,555,301,000
327,553,599
0
0
null
null
null
null
UTF-8
Lean
false
false
14,154
lean
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Mario Carneiro, Neil Strickland -/ import data.nat.basic /-! # The positive natural numbers This file defines the type `ℕ+` or `pnat`, the subtype of natural numbers that are positive. -/ /-- `ℕ+` is the type of positive natural numbers. It is defined as a subtype, and the VM representation of `ℕ+` is the same as `ℕ` because the proof is not stored. -/ def pnat := {n : ℕ // 0 < n} notation `ℕ+` := pnat instance coe_pnat_nat : has_coe ℕ+ ℕ := ⟨subtype.val⟩ instance : has_repr ℕ+ := ⟨λ n, repr n.1⟩ /-- Predecessor of a `ℕ+`, as a `ℕ`. -/ def pnat.nat_pred (i : ℕ+) : ℕ := i - 1 namespace nat /-- Convert a natural number to a positive natural number. The positivity assumption is inferred by `dec_trivial`. -/ def to_pnat (n : ℕ) (h : 0 < n . tactic.exact_dec_trivial) : ℕ+ := ⟨n, h⟩ /-- Write a successor as an element of `ℕ+`. -/ def succ_pnat (n : ℕ) : ℕ+ := ⟨succ n, succ_pos n⟩ @[simp] theorem succ_pnat_coe (n : ℕ) : (succ_pnat n : ℕ) = succ n := rfl theorem succ_pnat_inj {n m : ℕ} : succ_pnat n = succ_pnat m → n = m := λ h, by { let h' := congr_arg (coe : ℕ+ → ℕ) h, exact nat.succ.inj h' } /-- Convert a natural number to a pnat. `n+1` is mapped to itself, and `0` becomes `1`. -/ def to_pnat' (n : ℕ) : ℕ+ := succ_pnat (pred n) @[simp] theorem to_pnat'_coe : ∀ (n : ℕ), ((to_pnat' n) : ℕ) = ite (0 < n) n 1 | 0 := rfl | (m + 1) := by {rw [if_pos (succ_pos m)], refl} end nat namespace pnat open nat /-- We now define a long list of structures on ℕ+ induced by similar structures on ℕ. Most of these behave in a completely obvious way, but there are a few things to be said about subtraction, division and powers. -/ instance : decidable_eq ℕ+ := λ (a b : ℕ+), by apply_instance instance : linear_order ℕ+ := subtype.linear_order _ @[simp] lemma mk_le_mk (n k : ℕ) (hn : 0 < n) (hk : 0 < k) : (⟨n, hn⟩ : ℕ+) ≤ ⟨k, hk⟩ ↔ n ≤ k := iff.rfl @[simp] lemma mk_lt_mk (n k : ℕ) (hn : 0 < n) (hk : 0 < k) : (⟨n, hn⟩ : ℕ+) < ⟨k, hk⟩ ↔ n < k := iff.rfl @[simp, norm_cast] lemma coe_le_coe (n k : ℕ+) : (n:ℕ) ≤ k ↔ n ≤ k := iff.rfl @[simp, norm_cast] lemma coe_lt_coe (n k : ℕ+) : (n:ℕ) < k ↔ n < k := iff.rfl @[simp] theorem pos (n : ℕ+) : 0 < (n : ℕ) := n.2 theorem eq {m n : ℕ+} : (m : ℕ) = n → m = n := subtype.eq @[simp] lemma coe_inj {m n : ℕ+} : (m : ℕ) = n ↔ m = n := set_coe.ext_iff @[simp] theorem mk_coe (n h) : ((⟨n, h⟩ : ℕ+) : ℕ) = n := rfl instance : add_comm_semigroup ℕ+ := { add := λ a b, ⟨(a + b : ℕ), add_pos a.pos b.pos⟩, add_comm := λ a b, subtype.eq (add_comm a b), add_assoc := λ a b c, subtype.eq (add_assoc a b c) } @[simp] theorem add_coe (m n : ℕ+) : ((m + n : ℕ+) : ℕ) = m + n := rfl instance coe_add_hom : is_add_hom (coe : ℕ+ → ℕ) := ⟨add_coe⟩ instance : add_left_cancel_semigroup ℕ+ := { add_left_cancel := λ a b c h, by { replace h := congr_arg (coe : ℕ+ → ℕ) h, rw [add_coe, add_coe] at h, exact eq ((add_right_inj (a : ℕ)).mp h)}, .. (pnat.add_comm_semigroup) } instance : add_right_cancel_semigroup ℕ+ := { add_right_cancel := λ a b c h, by { replace h := congr_arg (coe : ℕ+ → ℕ) h, rw [add_coe, add_coe] at h, exact eq ((add_left_inj (b : ℕ)).mp h)}, .. (pnat.add_comm_semigroup) } @[simp] theorem ne_zero (n : ℕ+) : (n : ℕ) ≠ 0 := ne_of_gt n.2 theorem to_pnat'_coe {n : ℕ} : 0 < n → (n.to_pnat' : ℕ) = n := succ_pred_eq_of_pos @[simp] theorem coe_to_pnat' (n : ℕ+) : (n : ℕ).to_pnat' = n := eq (to_pnat'_coe n.pos) instance : comm_monoid ℕ+ := { mul := λ m n, ⟨m.1 * n.1, mul_pos m.2 n.2⟩, mul_assoc := λ a b c, subtype.eq (mul_assoc _ _ _), one := succ_pnat 0, one_mul := λ a, subtype.eq (one_mul _), mul_one := λ a, subtype.eq (mul_one _), mul_comm := λ a b, subtype.eq (mul_comm _ _) } theorem lt_add_one_iff : ∀ {a b : ℕ+}, a < b + 1 ↔ a ≤ b := λ a b, nat.lt_add_one_iff theorem add_one_le_iff : ∀ {a b : ℕ+}, a + 1 ≤ b ↔ a < b := λ a b, nat.add_one_le_iff @[simp] lemma one_le (n : ℕ+) : (1 : ℕ+) ≤ n := n.2 instance : order_bot ℕ+ := { bot := 1, bot_le := λ a, a.property, ..(by apply_instance : partial_order ℕ+) } @[simp] lemma bot_eq_zero : (⊥ : ℕ+) = 1 := rfl instance : inhabited ℕ+ := ⟨1⟩ -- Some lemmas that rewrite `pnat.mk n h`, for `n` an explicit numeral, into explicit numerals. @[simp] lemma mk_one {h} : (⟨1, h⟩ : ℕ+) = (1 : ℕ+) := rfl @[simp] lemma mk_bit0 (n) {h} : (⟨bit0 n, h⟩ : ℕ+) = (bit0 ⟨n, pos_of_bit0_pos h⟩ : ℕ+) := rfl @[simp] lemma mk_bit1 (n) {h} {k} : (⟨bit1 n, h⟩ : ℕ+) = (bit1 ⟨n, k⟩ : ℕ+) := rfl -- Some lemmas that rewrite inequalities between explicit numerals in `pnat` -- into the corresponding inequalities in `nat`. -- TODO: perhaps this should not be attempted by `simp`, -- and instead we should expect `norm_num` to take care of these directly? -- TODO: these lemmas are perhaps incomplete: -- * 1 is not represented as a bit0 or bit1 -- * strict inequalities? @[simp] lemma bit0_le_bit0 (n m : ℕ+) : (bit0 n) ≤ (bit0 m) ↔ (bit0 (n : ℕ)) ≤ (bit0 (m : ℕ)) := iff.rfl @[simp] lemma bit0_le_bit1 (n m : ℕ+) : (bit0 n) ≤ (bit1 m) ↔ (bit0 (n : ℕ)) ≤ (bit1 (m : ℕ)) := iff.rfl @[simp] lemma bit1_le_bit0 (n m : ℕ+) : (bit1 n) ≤ (bit0 m) ↔ (bit1 (n : ℕ)) ≤ (bit0 (m : ℕ)) := iff.rfl @[simp] lemma bit1_le_bit1 (n m : ℕ+) : (bit1 n) ≤ (bit1 m) ↔ (bit1 (n : ℕ)) ≤ (bit1 (m : ℕ)) := iff.rfl @[simp] theorem one_coe : ((1 : ℕ+) : ℕ) = 1 := rfl @[simp] theorem mul_coe (m n : ℕ+) : ((m * n : ℕ+) : ℕ) = m * n := rfl instance coe_mul_hom : is_monoid_hom (coe : ℕ+ → ℕ) := {map_one := one_coe, map_mul := mul_coe} @[simp] lemma coe_eq_one_iff {m : ℕ+} : (m : ℕ) = 1 ↔ m = 1 := by { split; intro h; try { apply pnat.eq}; rw h; simp } @[simp] lemma coe_bit0 (a : ℕ+) : ((bit0 a : ℕ+) : ℕ) = bit0 (a : ℕ) := rfl @[simp] lemma coe_bit1 (a : ℕ+) : ((bit1 a : ℕ+) : ℕ) = bit1 (a : ℕ) := rfl @[simp] theorem pow_coe (m : ℕ+) (n : ℕ) : ((m ^ n : ℕ+) : ℕ) = (m : ℕ) ^ n := by induction n with n ih; [refl, rw [pow_succ', pow_succ, mul_coe, mul_comm, ih]] instance : left_cancel_semigroup ℕ+ := { mul_left_cancel := λ a b c h, by { replace h := congr_arg (coe : ℕ+ → ℕ) h, exact eq ((nat.mul_right_inj a.pos).mp h)}, .. (pnat.comm_monoid) } instance : right_cancel_semigroup ℕ+ := { mul_right_cancel := λ a b c h, by { replace h := congr_arg (coe : ℕ+ → ℕ) h, exact eq ((nat.mul_left_inj b.pos).mp h)}, .. (pnat.comm_monoid) } instance : ordered_cancel_comm_monoid ℕ+ := { mul_le_mul_left := by { intros, apply nat.mul_le_mul_left, assumption }, le_of_mul_le_mul_left := by { intros a b c h, apply nat.le_of_mul_le_mul_left h a.property, }, .. (pnat.left_cancel_semigroup), .. (pnat.right_cancel_semigroup), .. (pnat.linear_order), .. (pnat.comm_monoid)} instance : distrib ℕ+ := { left_distrib := λ a b c, eq (mul_add a b c), right_distrib := λ a b c, eq (add_mul a b c), ..(pnat.add_comm_semigroup), ..(pnat.comm_monoid) } /-- Subtraction a - b is defined in the obvious way when a > b, and by a - b = 1 if a ≤ b. -/ instance : has_sub ℕ+ := ⟨λ a b, to_pnat' (a - b : ℕ)⟩ theorem sub_coe (a b : ℕ+) : ((a - b : ℕ+) : ℕ) = ite (b < a) (a - b : ℕ) 1 := begin change ((to_pnat' ((a : ℕ) - (b : ℕ)) : ℕ)) = ite ((a : ℕ) > (b : ℕ)) ((a : ℕ) - (b : ℕ)) 1, split_ifs with h, { exact to_pnat'_coe (nat.sub_pos_of_lt h) }, { rw [nat.sub_eq_zero_iff_le.mpr (le_of_not_gt h)], refl } end theorem add_sub_of_lt {a b : ℕ+} : a < b → a + (b - a) = b := λ h, eq $ by { rw [add_coe, sub_coe, if_pos h], exact nat.add_sub_of_le (le_of_lt h) } instance : has_well_founded ℕ+ := ⟨(<), measure_wf coe⟩ /-- Strong induction on `pnat`. -/ lemma strong_induction_on {p : pnat → Prop} : ∀ (n : pnat) (h : ∀ k, (∀ m, m < k → p m) → p k), p n | n := λ IH, IH _ (λ a h, strong_induction_on a IH) using_well_founded { dec_tac := `[assumption] } /-- If `(n : pnat)` is different from `1`, then it is the successor of some `(k : pnat)`. -/ lemma exists_eq_succ_of_ne_one : ∀ {n : pnat} (h1 : n ≠ 1), ∃ (k : pnat), n = k + 1 | ⟨1, _⟩ h1 := false.elim $ h1 rfl | ⟨n+2, _⟩ _ := ⟨⟨n+1, by simp⟩, rfl⟩ lemma case_strong_induction_on {p : pnat → Prop} (a : pnat) (hz : p 1) (hi : ∀ n, (∀ m, m ≤ n → p m) → p (n + 1)) : p a := begin apply strong_induction_on a, intros k hk, by_cases h1 : k = 1, { rwa h1 }, obtain ⟨b, rfl⟩ := exists_eq_succ_of_ne_one h1, simp only [lt_add_one_iff] at hk, exact hi b hk end /-- We define `m % k` and `m / k` in the same way as for `ℕ` except that when `m = n * k` we take `m % k = k` and `m / k = n - 1`. This ensures that `m % k` is always positive and `m = (m % k) + k * (m / k)` in all cases. Later we define a function `div_exact` which gives the usual `m / k` in the case where `k` divides `m`. -/ def mod_div_aux : ℕ+ → ℕ → ℕ → ℕ+ × ℕ | k 0 q := ⟨k, q.pred⟩ | k (r + 1) q := ⟨⟨r + 1, nat.succ_pos r⟩, q⟩ lemma mod_div_aux_spec : ∀ (k : ℕ+) (r q : ℕ) (h : ¬ (r = 0 ∧ q = 0)), (((mod_div_aux k r q).1 : ℕ) + k * (mod_div_aux k r q).2 = (r + k * q)) | k 0 0 h := (h ⟨rfl, rfl⟩).elim | k 0 (q + 1) h := by { change (k : ℕ) + (k : ℕ) * (q + 1).pred = 0 + (k : ℕ) * (q + 1), rw [nat.pred_succ, nat.mul_succ, zero_add, add_comm]} | k (r + 1) q h := rfl /-- `mod_div m k = (m % k, m / k)`. We define `m % k` and `m / k` in the same way as for `ℕ` except that when `m = n * k` we take `m % k = k` and `m / k = n - 1`. This ensures that `m % k` is always positive and `m = (m % k) + k * (m / k)` in all cases. Later we define a function `div_exact` which gives the usual `m / k` in the case where `k` divides `m`. -/ def mod_div (m k : ℕ+) : ℕ+ × ℕ := mod_div_aux k ((m : ℕ) % (k : ℕ)) ((m : ℕ) / (k : ℕ)) /-- We define `m % k` in the same way as for `ℕ` except that when `m = n * k` we take `m % k = k` This ensures that `m % k` is always positive. -/ def mod (m k : ℕ+) : ℕ+ := (mod_div m k).1 /-- We define `m / k` in the same way as for `ℕ` except that when `m = n * k` we take `m / k = n - 1`. This ensures that `m = (m % k) + k * (m / k)` in all cases. Later we define a function `div_exact` which gives the usual `m / k` in the case where `k` divides `m`. -/ def div (m k : ℕ+) : ℕ := (mod_div m k).2 theorem mod_add_div (m k : ℕ+) : (m : ℕ) = (mod m k) + k * (div m k) := begin let h₀ := nat.mod_add_div (m : ℕ) (k : ℕ), have : ¬ ((m : ℕ) % (k : ℕ) = 0 ∧ (m : ℕ) / (k : ℕ) = 0), by { rintro ⟨hr, hq⟩, rw [hr, hq, mul_zero, zero_add] at h₀, exact (m.ne_zero h₀.symm).elim }, have := mod_div_aux_spec k ((m : ℕ) % (k : ℕ)) ((m : ℕ) / (k : ℕ)) this, exact (this.trans h₀).symm, end theorem mod_coe (m k : ℕ+) : ((mod m k) : ℕ) = ite ((m : ℕ) % (k : ℕ) = 0) (k : ℕ) ((m : ℕ) % (k : ℕ)) := begin dsimp [mod, mod_div], cases (m : ℕ) % (k : ℕ), { rw [if_pos rfl], refl }, { rw [if_neg n.succ_ne_zero], refl } end theorem div_coe (m k : ℕ+) : ((div m k) : ℕ) = ite ((m : ℕ) % (k : ℕ) = 0) ((m : ℕ) / (k : ℕ)).pred ((m : ℕ) / (k : ℕ)) := begin dsimp [div, mod_div], cases (m : ℕ) % (k : ℕ), { rw [if_pos rfl], refl }, { rw [if_neg n.succ_ne_zero], refl } end theorem mod_le (m k : ℕ+) : mod m k ≤ m ∧ mod m k ≤ k := begin change ((mod m k) : ℕ) ≤ (m : ℕ) ∧ ((mod m k) : ℕ) ≤ (k : ℕ), rw [mod_coe], split_ifs, { have hm : (m : ℕ) > 0 := m.pos, rw [← nat.mod_add_div (m : ℕ) (k : ℕ), h, zero_add] at hm ⊢, by_cases h' : ((m : ℕ) / (k : ℕ)) = 0, { rw [h', mul_zero] at hm, exact (lt_irrefl _ hm).elim}, { let h' := nat.mul_le_mul_left (k : ℕ) (nat.succ_le_of_lt (nat.pos_of_ne_zero h')), rw [mul_one] at h', exact ⟨h', le_refl (k : ℕ)⟩ } }, { exact ⟨nat.mod_le (m : ℕ) (k : ℕ), le_of_lt (nat.mod_lt (m : ℕ) k.pos)⟩ } end theorem dvd_iff {k m : ℕ+} : k ∣ m ↔ (k : ℕ) ∣ (m : ℕ) := begin split; intro h, rcases h with ⟨_, rfl⟩, apply dvd_mul_right, rcases h with ⟨a, h⟩, cases a, { contrapose h, apply ne_zero, }, use a.succ, apply nat.succ_pos, rw [← coe_inj, h, mul_coe, mk_coe], end theorem dvd_iff' {k m : ℕ+} : k ∣ m ↔ mod m k = k := begin rw dvd_iff, rw [nat.dvd_iff_mod_eq_zero], split, { intro h, apply eq, rw [mod_coe, if_pos h] }, { intro h, by_cases h' : (m : ℕ) % (k : ℕ) = 0, { exact h'}, { replace h : ((mod m k) : ℕ) = (k : ℕ) := congr_arg _ h, rw [mod_coe, if_neg h'] at h, exact (ne_of_lt (nat.mod_lt (m : ℕ) k.pos) h).elim } } end lemma le_of_dvd {m n : ℕ+} : m ∣ n → m ≤ n := by { rw dvd_iff', intro h, rw ← h, apply (mod_le n m).left } /-- If `h : k | m`, then `k * (div_exact m k) = m`. Note that this is not equal to `m / k`. -/ def div_exact (m k : ℕ+) : ℕ+ := ⟨(div m k).succ, nat.succ_pos _⟩ theorem mul_div_exact {m k : ℕ+} (h : k ∣ m) : k * (div_exact m k) = m := begin apply eq, rw [mul_coe], change (k : ℕ) * (div m k).succ = m, rw [mod_add_div m k, dvd_iff'.mp h, nat.mul_succ, add_comm], end theorem dvd_antisymm {m n : ℕ+} : m ∣ n → n ∣ m → m = n := λ hmn hnm, le_antisymm (le_of_dvd hmn) (le_of_dvd hnm) theorem dvd_one_iff (n : ℕ+) : n ∣ 1 ↔ n = 1 := ⟨λ h, dvd_antisymm h (one_dvd n), λ h, h.symm ▸ (dvd_refl 1)⟩ lemma pos_of_div_pos {n : ℕ+} {a : ℕ} (h : a ∣ n) : 0 < a := begin apply pos_iff_ne_zero.2, intro hzero, rw hzero at h, exact pnat.ne_zero n (eq_zero_of_zero_dvd h) end end pnat
59d6aa16342cbd28d8a0807129f7cf0ea9b4db81
618003631150032a5676f229d13a079ac875ff77
/src/measure_theory/category/Meas.lean
168195aea5b831779af6391ed539347d0fb4d2a0
[ "Apache-2.0" ]
permissive
awainverse/mathlib
939b68c8486df66cfda64d327ad3d9165248c777
ea76bd8f3ca0a8bf0a166a06a475b10663dec44a
refs/heads/master
1,659,592,962,036
1,590,987,592,000
1,590,987,592,000
268,436,019
1
0
Apache-2.0
1,590,990,500,000
1,590,990,500,000
null
UTF-8
Lean
false
false
4,031
lean
/- Copyright (c) 2018 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl -/ import topology.category.Top.basic import measure_theory.giry_monad import category_theory.monad.algebra /- * Meas, the category of measurable spaces Measurable spaces and measurable functions form a (concrete) category Meas. Measure : Meas ⥤ Meas is the functor which sends a measurable space X to the space of measures on X; it is a monad (the "Giry monad"). Borel : Top ⥤ Meas sends a topological space X to X equipped with the σ-algebra of Borel sets (the σ-algebra generated by the open subsets of X). ## Tags measurable space, giry monad, borel -/ noncomputable theory open category_theory measure_theory universes u v @[reducible] def Meas : Type (u+1) := bundled measurable_space namespace Meas instance (X : Meas) : measurable_space X := X.str /-- Construct a bundled `Meas` from the underlying type and the typeclass. -/ def of (α : Type u) [measurable_space α] : Meas := ⟨α⟩ instance unbundled_hom : unbundled_hom @measurable := ⟨@measurable_id, @measurable.comp⟩ /-- `Measure X` is the measurable space of measures over the measurable space `X`. It is the weakest measurable space, s.t. λμ, μ s is measurable for all measurable sets `s` in `X`. An important purpose is to assign a monadic structure on it, the Giry monad. In the Giry monad, the pure values are the Dirac measure, and the bind operation maps to the integral: `(μ >>= ν) s = ∫ x. (ν x) s dμ`. In probability theory, the `Meas`-morphisms `X → Prob X` are (sub-)Markov kernels (here `Prob` is the restriction of `Measure` to (sub-)probability space.) -/ def Measure : Meas ⥤ Meas := { obj := λX, ⟨@measure_theory.measure X.1 X.2⟩, map := λX Y f, ⟨measure.map f, measure.measurable_map f f.2⟩, map_id' := assume ⟨α, I⟩, subtype.eq $ funext $ assume μ, @measure.map_id α I μ, map_comp':= assume X Y Z ⟨f, hf⟩ ⟨g, hg⟩, subtype.eq $ funext $ assume μ, (measure.map_map hg hf).symm } /-- The Giry monad, i.e. the monadic structure associated with `Measure`. -/ instance : category_theory.monad Measure.{u} := { η := { app := λX, ⟨@measure.dirac X.1 X.2, measure.measurable_dirac⟩, naturality' := assume X Y ⟨f, hf⟩, subtype.eq $ funext $ assume a, (measure.map_dirac hf a).symm }, μ := { app := λX, ⟨@measure.join X.1 X.2, measure.measurable_join⟩, naturality' := assume X Y ⟨f, hf⟩, subtype.eq $ funext $ assume μ, measure.join_map_map hf μ }, assoc' := assume ⟨α, I⟩, subtype.eq $ funext $ assume μ, @measure.join_map_join α I μ, left_unit' := assume ⟨α, I⟩, subtype.eq $ funext $ assume μ, @measure.join_dirac α I μ, right_unit' := assume ⟨α, I⟩, subtype.eq $ funext $ assume μ, @measure.join_map_dirac α I μ } /-- An example for an algebra on `Measure`: the nonnegative Lebesgue integral is a hom, behaving nicely under the monad operations. -/ def Integral : monad.algebra Measure := { A := Meas.of ennreal , a := ⟨ λm:measure ennreal, m.integral id, measure.measurable_integral _ measurable_id ⟩, unit' := subtype.eq $ funext $ assume r:ennreal, measure.integral_dirac _ measurable_id, assoc' := subtype.eq $ funext $ assume μ : measure (measure ennreal), show μ.join.integral id = measure.integral (μ.map (λm:measure ennreal, m.integral id)) id, from begin rw [measure.integral_join measurable_id, measure.integral_map measurable_id], refl, exact measure.measurable_integral _ measurable_id end } end Meas instance Top.has_forget_to_Meas : has_forget₂ Top.{u} Meas.{u} := bundled_hom.mk_has_forget₂ borel (λ X Y f, ⟨f.1, f.2.borel_measurable⟩) (by intros; refl) /-- The Borel functor, the canonical embedding of topological spaces into measurable spaces. -/ @[reducible] def Borel : Top.{u} ⥤ Meas.{u} := forget₂ Top.{u} Meas.{u}
4a06466253610062da9b1c7ddf133a8f83eddda3
1446f520c1db37e157b631385707cc28a17a595e
/stage0/src/Init/Lean/Util.lean
3b439978df83f88de43dae1ea8531c24ef56cd29
[ "Apache-2.0" ]
permissive
bdbabiak/lean4
cab06b8a2606d99a168dd279efdd404edb4e825a
3f4d0d78b2ce3ef541cb643bbe21496bd6b057ac
refs/heads/master
1,615,045,275,530
1,583,793,696,000
1,583,793,696,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
640
lean
/- Copyright (c) 2020 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura -/ prelude import Init.Lean.Util.CollectFVars import Init.Lean.Util.CollectLevelParams import Init.Lean.Util.CollectMVars import Init.Lean.Util.FindMVar import Init.Lean.Util.MonadCache import Init.Lean.Util.PPExt import Init.Lean.Util.PPGoal import Init.Lean.Util.Path import Init.Lean.Util.Profile import Init.Lean.Util.RecDepth import Init.Lean.Util.Sorry import Init.Lean.Util.Trace import Init.Lean.Util.WHNF import Init.Lean.Util.FindExpr import Init.Lean.Util.ReplaceExpr
7263e9a7d146d3124bdcb4a39c328c4952d7dacc
6432ea7a083ff6ba21ea17af9ee47b9c371760f7
/src/Lean/Elab/RecAppSyntax.lean
f482029aad75a39c99328460808a134c231da916
[ "Apache-2.0", "LLVM-exception", "NCSA", "LGPL-3.0-only", "LicenseRef-scancode-inner-net-2.0", "BSD-3-Clause", "LGPL-2.0-or-later", "Spencer-94", "LGPL-2.1-or-later", "HPND", "LicenseRef-scancode-pcre", "ISC", "LGPL-2.1-only", "LicenseRef-scancode-other-permissive", "SunPro", "CMU-Mach" ]
permissive
leanprover/lean4
4bdf9790294964627eb9be79f5e8f6157780b4cc
f1f9dc0f2f531af3312398999d8b8303fa5f096b
refs/heads/master
1,693,360,665,786
1,693,350,868,000
1,693,350,868,000
129,571,436
2,827
311
Apache-2.0
1,694,716,156,000
1,523,760,560,000
Lean
UTF-8
Lean
false
false
829
lean
/- Copyright (c) 2021 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura -/ import Lean.Expr namespace Lean private def recAppKey := `_recApp /-- We store the syntax at recursive applications to be able to generate better error messages when performing well-founded and structural recursion. -/ def mkRecAppWithSyntax (e : Expr) (stx : Syntax) : Expr := mkMData (KVMap.empty.insert recAppKey (DataValue.ofSyntax stx)) e /-- Retrieve (if available) the syntax object attached to a recursive application. -/ def getRecAppSyntax? (e : Expr) : Option Syntax := match e with | Expr.mdata d _ => match d.find recAppKey with | some (DataValue.ofSyntax stx) => some stx | _ => none | _ => none end Lean
d3b66b8f81aad0457d28350858803efe72fda76c
2a73ce8bc0731b170b40e8c9faca9b49d34ba5c6
/weak_convergence_of_measures.lean
eed91da296b79134e79b19174882b2571de61572
[]
no_license
kkytola/lean-questions
f383016b7870432807d8f4ced256f7506a59b0ff
9a7ded8036534575b682e28ddfed4c2f1089959d
refs/heads/main
1,692,989,428,439
1,634,665,853,000
1,634,665,853,000
353,850,251
0
0
null
null
null
null
UTF-8
Lean
false
false
30,078
lean
/- Copyright (c) 2021 Kalle Kytölä. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kalle Kytölä -/ import tactic import weak_dual import measure_theory.integral.bochner noncomputable theory open measure_theory open set open filter open_locale topological_space bounded_continuous_function ennreal nnreal section finite_measures /-! ### Finite measures In this section, we define the `Type` of finite measures on a given measurable space. This type will be equipped with the topology of weak convergence of measures when the measurable space is a topological space equipped with its Borel sigma-algebra. -/ variables {α : Type} [measurable_space α] /-- Finite measures are defined as the subtype of measures that have the property of being finite measures (i.e., their total mass is finite). -/ def finite_measures (α : Type*) [measurable_space α] : Type := { μ : measure α // finite_measure μ } namespace finite_measures instance has_zero {α : Type*} [measurable_space α] : has_zero (finite_measures α) := ⟨{ val := 0, property := measure_theory.finite_measure_zero, }⟩ instance finite_measure_add {α : Type*} [measurable_space α] (μ ν : measure α) [finite_measure μ] [finite_measure ν] : finite_measure (μ + ν) := { measure_univ_lt_top := begin simp only [measure.coe_add, pi.add_apply, ennreal.add_lt_top], exact ⟨measure_lt_top μ univ, measure_lt_top ν univ⟩, end, } instance {α : Type*} [measurable_space α] : has_add (finite_measures α) := { add := (λ (μ ν : finite_measures α), { val := μ.val + ν.val, property := @finite_measures.finite_measure_add _ _ _ _ μ.prop ν.prop, }), } instance : inhabited (finite_measures α) := { default := 0 } /-- A finite measure can be interpreted as a measure. -/ def to_measure (μ : finite_measures α) : (measure_theory.measure α) := subtype.val μ instance to_measure.finite_measure (μ : finite_measures α) : finite_measure μ.to_measure := μ.prop instance (α : Type*) [measurable_space α] : has_coe_to_fun (finite_measures α) := ⟨(λ _, set α → ℝ≥0), (λ μ, (λ s, (μ.val.measure_of s).to_nnreal))⟩ lemma to_fun_eq_to_measure_to_nnreal (ν : finite_measures α) : (ν : set α → ℝ≥0) = λ s, (ν.to_measure s).to_nnreal := rfl lemma to_measure_eq_val (ν : finite_measures α) : ν.to_measure = ν.val := rfl lemma to_measure_injective : function.injective (@finite_measures.to_measure α ‹measurable_space α›) := by { intros μ ν, exact subtype.eq, } lemma to_measure_zero : (@finite_measures.to_measure α ‹measurable_space α›) 0 = 0 := rfl lemma to_measure_add (μ ν : finite_measures α) : μ.to_measure + ν.to_measure = (μ + ν).to_measure := rfl /-- The (total) mass of a finite measure `μ` is `μ univ`, i.e., the cast to `nnreal` of `μ.to_measure univ`. -/ def mass {α : Type*} [measurable_space α] (μ : finite_measures α) : ℝ≥0 := μ univ lemma mass_def {α : Type*} [measurable_space α] {μ : finite_measures α} : μ.mass = μ univ := rfl @[simp] lemma mass_ennreal {α : Type*} [measurable_space α] {μ : finite_measures α} : (μ.mass : ℝ≥0∞) = μ.to_measure univ := begin apply ennreal.coe_to_nnreal, exact ennreal.lt_top_iff_ne_top.mp (μ.prop).measure_univ_lt_top, end instance {α : Type*} [measurable_space α] : add_comm_monoid (finite_measures α) := (@finite_measures.to_measure_injective α ‹measurable_space α›).add_comm_monoid (@finite_measures.to_measure α ‹measurable_space α›) finite_measures.to_measure_zero finite_measures.to_measure_add --TODO: Make `finite_measures α` an `ℝ≥0`-module, so that it makes sense (later) -- to define a continuous linear map `finite_measures α → weak_dual ℝ≥0 (α →ᵇ ℝ≥0)`. --instance finite_measures.module : module ℝ≥0 (finite_measures α) := sorry end finite_measures -- end namespace end finite_measures -- end section section probability_measures /-! ### Probability measures In this section, we define the `Type` of probability measures on a given measurable space. This type will be equipped with the topology of weak convergence of measures when the measurable space is a topological space equipped with its Borel sigma-algebra. There is a coercion (embedding) to finite measures on the same space. -/ variables {α : Type} [measurable_space α] /-- Probability measures are defined as the subtype of measures that have the property of being probability measures (i.e., their total mass is one). -/ def probability_measures (α : Type) [measurable_space α] : Type := {μ : measure α // probability_measure μ} namespace probability_measures instance [inhabited α] : inhabited (probability_measures α) := ⟨{ val := measure_theory.measure.dirac (default α), property := measure_theory.measure.dirac.probability_measure, }⟩ /-- A probability measure can be interpreted as a measure. -/ def to_measure (μ : probability_measures α) : (measure_theory.measure α) := μ.val instance to_measure.probability_measure (μ : probability_measures α) : probability_measure μ.to_measure := μ.prop instance (α : Type*) [measurable_space α] : has_coe_to_fun (probability_measures α) := ⟨(λ _, set α → ℝ≥0), (λ μ, (λ s, (μ.val.measure_of s).to_nnreal))⟩ lemma to_fun_eq_to_measure_to_nnreal (ν : probability_measures α) : (ν : set α → ℝ≥0) = λ s, (ν.to_measure s).to_nnreal := rfl @[simp] lemma to_fun_univ (ν : probability_measures α) : ν univ = 1 := begin rw [to_fun_eq_to_measure_to_nnreal, ←ennreal.one_to_nnreal], exact congr_arg ennreal.to_nnreal ν.prop.measure_univ, end lemma to_measure_eq_val (ν : probability_measures α) : ν.to_measure = ν.val := rfl lemma to_measure_injective : function.injective (@probability_measures.to_measure α ‹measurable_space α›) := by { intros μ ν, exact subtype.eq, } instance has_coe_to_finite_measures (α : Type*) [measurable_space α] : has_coe (probability_measures α) (finite_measures α) := { coe := λ μ , { val := μ.val, property := begin have key : (1 : ennreal) < ⊤ := ennreal.one_lt_top, rw [←μ.prop.measure_univ] at key, exact ⟨key⟩, end, }} /-- A probability measure can be interpreted as a finite measure. -/ def to_finite_measure (μ : probability_measures α) : (finite_measures α) := μ @[simp] lemma to_finite_measure_to_measure_eq_to_measure (ν : probability_measures α) : (ν.to_finite_measure).to_measure = ν.to_measure := rfl lemma to_finite_measure_to_measure_eq_val (ν : probability_measures α) : (ν.to_finite_measure).to_measure = ν.val := rfl @[simp] lemma to_finite_measure_to_fun_eq_to_fun (ν : probability_measures α) : (ν.to_finite_measure : set α → ℝ≥0) = (ν : set α → ℝ≥0) := rfl @[simp] lemma to_finite_measure_mass (μ : probability_measures α) : μ.to_finite_measure.mass = 1 := begin unfold finite_measures.mass, rw [←μ.to_fun_univ, to_finite_measure_to_fun_eq_to_fun], end end probability_measures -- end namespace end probability_measures -- end section section various_lemmas -- NOTE: Eh, what is the right way to do this `nnreal_mul_ennreal_to_nnreal`? -- If this deserves to be added, then perhaps in `data.real.ennreal`? -- It seems like a typical coercion issue to me, although it is only used once here. lemma nnreal_mul_ennreal_to_nnreal (c : ℝ≥0) (z : ℝ≥0∞) : c * z.to_nnreal = ((c : ℝ≥0∞) * z).to_nnreal := begin by_cases z_infty : z = ⊤, { rw z_infty, simp only [ennreal.top_to_nnreal, ennreal.to_nnreal_mul_top, mul_zero], }, { have z_lt_top : z < ⊤ := ennreal.lt_top_iff_ne_top.mpr z_infty, simp only [ennreal.to_nnreal_mul, ennreal.to_nnreal_coe], }, end -- NOTE: I have been almost wondering why the following is not the definition of -- boundedness. I have not found it in the library, but believe it should be there. -- Is `topology.continuous_function.bounded` the appropriate place? The proof needs golf, though. lemma bounded_continuous_function.radius_bounded {α β : Type*} [topological_space α] [metric_space β] (f : α →ᵇ β) (z : β): ∃ (c : ℝ), ∀ (a : α), dist z (f(a)) ≤ c := begin cases f.bounded with c hc , by_cases is_empty α, { use 0, intros a, exfalso, exact is_empty_iff.mp h a, }, cases not_is_empty_iff.mp h with a₀, use (dist z (f(a₀))) + c, intros a, have le : ∀ (y : ℝ), y + (dist (f(a₀)) (f(a))) ≤ y + c := λ y, add_le_add rfl.ge (hc a₀ a), exact (dist_triangle z (f(a₀)) (f(a))).trans (le _), end -- NOTE: The following is a "special case" of the above. I think it is also worthwhile, although -- it is not needed in this file. If it should be added, what is the right place? lemma bounded_continuous_function.norm_bounded {α β : Type*} [topological_space α] [normed_group β] (f : α →ᵇ β) : ∃ (c : ℝ), ∀ x, ∥ f x ∥ ≤ c := begin have norm_eq_dist : ∀ (z : β), ∥ z ∥ = dist 0 z := λ z, congr_fun (dist_zero_left).symm z, simp_rw [norm_eq_dist], exact bounded_continuous_function.radius_bounded f 0, end -- NOTE: The following is another "special case". While special, I think it may be worthwhile. -- If so, what is the right place? How to golf? lemma bounded_continuous_function.nnreal.upper_bound {α : Type*} [topological_space α] (f : α →ᵇ ℝ≥0) : ∃ (c : nnreal), (∀ x, f(x) ≤ c) := begin have val_eq_dist_nnreal : ∀ (z : ℝ≥0), (z : ℝ) = dist 0 z, { intros z, simp only [nnreal.dist_eq, nnreal.coe_zero, zero_sub, nnreal.abs_eq, abs_neg], }, cases bounded_continuous_function.radius_bounded f 0 with c hc, simp_rw ←val_eq_dist_nnreal at hc, use (max c 0).to_nnreal, intros x, apply (@real.le_to_nnreal_iff_coe_le (f x) _ (le_max_right c 0)).mpr, apply (hc x).trans (le_max_left c 0), end -- NOTE: This one is not actually needed in the current version with nonnegative test functions. -- It will be needed later. If this doesn't exist yet, then after golfing the proof, this might -- be appropriate in `measure_theory.function.L1_space` (not in -- `topology.continuous_function.bounded` because of imports?). lemma bounded_continuous_function.integrable {α β: Type} [topological_space α] [measurable_space α] [opens_measurable_space α] [normed_group β] [measurable_space β] [borel_space β] (μ : measure α) [finite_measure μ] (f : α →ᵇ β) : integrable f μ := begin set f' := ennreal.of_real ∘ norm ∘ f with hf' , suffices : lintegral μ f' < ⊤ , { have ae_mble : @ae_measurable α β ‹measurable_space β› ‹measurable_space α› f μ := continuous.ae_measurable f.continuous μ, exact ⟨ ae_mble , (has_finite_integral_iff_norm f).mpr this ⟩, } , have bdd : ∀ (x : α), f' x ≤ ennreal.of_real (∥ f ∥) , { intros x, exact ennreal.of_real_le_of_real (bounded_continuous_function.norm_coe_le_norm f x), }, have integr_bdd := @lintegral_mono α _ μ _ _ bdd, set c' := ennreal.of_real (∥ f ∥) with hc', have const_integr : lintegral μ (λ x , c') = c' * (μ(univ)) := by rw lintegral_const, have total : c' * (μ(univ)) < ⊤, { apply ennreal.mul_lt_top ennreal.of_real_lt_top (‹finite_measure μ›).measure_univ_lt_top, }, rw ← const_integr at total, exact lt_of_le_of_lt integr_bdd total, end -- NOTE: I believe this is useful, but what is the right place? -- `measure_theory.function.L1_space`? `topology.continuous_function.bounded`? lemma bounded_continuous_function.coe_nnreal_comp_measurable {α : Type*} [topological_space α] [measurable_space α] [opens_measurable_space α] (f : α →ᵇ ℝ≥0) : measurable ((coe : ℝ≥0 → ℝ≥0∞) ∘ f) := measurable.comp measurable_coe_nnreal_ennreal (continuous.measurable f.continuous) -- NOTE: The following is probably too special for anywhere else, but is a useful standalone -- lemma here. lemma lintegral_lt_top_of_bounded_continuous_to_nnreal {α : Type*} [topological_space α] [measurable_space α] (μ : measure α) [μ_fin : finite_measure μ] (f : α →ᵇ ℝ≥0) : lintegral μ ((coe : ℝ≥0 → ℝ≥0∞) ∘ f) < ⊤ := begin cases bounded_continuous_function.nnreal.upper_bound f with c hc, have le' : (coe : ℝ≥0 → ℝ≥0∞) ∘ f ≤ (λ (x : α), c), by { intros x, simp only [hc, ennreal.coe_le_coe], }, apply lt_of_le_of_lt (@lintegral_mono _ _ μ _ _ le'), rw lintegral_const, exact ennreal.mul_lt_top ennreal.coe_lt_top μ_fin.measure_univ_lt_top, end -- TODO: What to do with this? Hmm... I've ended up using it quite regularly in the definitions -- of certain topologies. lemma tendsto_induced_iff {α β γ : Type*} {F : filter γ} [topological_space β] {f : α → β} {xs : γ → α} {x : α} : tendsto xs F (@nhds α (topological_space.induced f infer_instance) x) ↔ tendsto (λ i, f(xs(i))) F (𝓝 (f(x))) := begin split, { intros conv_induced, have f_cont := @continuous_induced_dom α β f infer_instance, have key := @continuous.tendsto α β (topological_space.induced f infer_instance) infer_instance f f_cont, exact tendsto.comp (key x) conv_induced, }, { intros conv_image, rw nhds_induced, exact map_le_iff_le_comap.mp conv_image, }, end end various_lemmas section weak_convergence_of_measures /-! ### The topology of weak convergence of measures In this section, we define the topology of weak convergence on the set of Borel probability measures and on the set of finite Borel measures on a topological space. -/ /- NOTE / TODO: The pairing of measures with test functions are called `test_against_nn` since the test functions are taken to be `ℝ≥0`-valued in the definition of the topology (this allows us to use the Lebesgue integral `lintegral`, but requires some coercions). It seems natural to later add `test_against` for pairings via Bochner integrals (`integral`) with (bounded continuous) functions with values in an arbitrary Banach spaces, especially with values in `ℝ` and `ℂ`. -/ variables {α : Type} [measurable_space α] [topological_space α] /-- The pairing of a (Borel) probability measure `μ` with a nonnegative bounded continuous function is obtained by (Lebesgue) integrating the (test) function against the measure. This is `probability_measures.test_against'`. -/ abbreviation probability_measures.test_against_nn (μ : probability_measures α) (f : α →ᵇ nnreal) : ℝ≥0 := (lintegral μ.to_measure ((coe : ℝ≥0 → ℝ≥0∞) ∘ f)).to_nnreal lemma probability_measures.test_against_nn_def (μ : probability_measures α) {f : α →ᵇ nnreal} : μ.test_against_nn f = (lintegral μ.to_measure ((coe : ℝ≥0 → ℝ≥0∞) ∘ f)).to_nnreal := by refl /-- The pairing of a finite (Borel) measure `μ` with a nonnegative bounded continuous function is obtained by (Lebesgue) integrating the (test) function against the measure. This is `finite_measures.test_against'`. -/ abbreviation finite_measures.test_against_nn (μ : finite_measures α) (f : α →ᵇ nnreal) : ℝ≥0 := (lintegral μ.to_measure ((coe : ℝ≥0 → ℝ≥0∞) ∘ f)).to_nnreal lemma finite_measures.test_against_nn_def (μ : finite_measures α) {f : α →ᵇ nnreal} : μ.test_against_nn f = (lintegral μ.to_measure ((coe : ℝ≥0 → ℝ≥0∞) ∘ f)).to_nnreal := by refl lemma finite_measures.test_against_nn_coe_eq {μ : finite_measures α} {f : α →ᵇ nnreal} : (μ.test_against_nn f : ℝ≥0∞) = lintegral μ.to_measure ((coe : ℝ≥0 → ℝ≥0∞) ∘ f) := begin have key_lt := lintegral_lt_top_of_bounded_continuous_to_nnreal μ.to_measure f, exact ennreal.coe_to_nnreal (ennreal.lt_top_iff_ne_top.mp key_lt), end lemma probability_measures.test_against_nn_coe_eq {μ : probability_measures α} {f : α →ᵇ nnreal} : (μ.test_against_nn f : ℝ≥0∞) = lintegral μ.to_measure ((coe : ℝ≥0 → ℝ≥0∞) ∘ f) := begin have key_lt := lintegral_lt_top_of_bounded_continuous_to_nnreal μ.to_measure f, exact ennreal.coe_to_nnreal (ennreal.lt_top_iff_ne_top.mp key_lt), end @[simp] lemma probability_measures.to_finite_measure_test_against_nn_eq_test_against_nn (α : Type*) [measurable_space α] [topological_space α] {μ : probability_measures α} {f : α →ᵇ nnreal} : μ.to_finite_measure.test_against_nn f = μ.test_against_nn f := rfl lemma finite_measures.test_against_nn_const (μ : finite_measures α) (c : ℝ≥0) : μ.test_against_nn (bounded_continuous_function.const α c) = c * μ.mass := begin rw finite_measures.test_against_nn_def, have eq : (coe : ℝ≥0 → ℝ≥0∞) ∘ (bounded_continuous_function.const α c) = (λ x, (c : ennreal)), by refl, rw [eq, lintegral_const, ennreal.to_nnreal_mul], simp only [mul_eq_mul_left_iff, ennreal.to_nnreal_coe, finite_measures.mass_def], left, refl, end lemma probability_measures.test_against_nn_const (μ : probability_measures α) (c : ℝ≥0) : μ.test_against_nn (bounded_continuous_function.const α c) = c := begin have key := finite_measures.test_against_nn_const μ.to_finite_measure c, simp only [mul_one, probability_measures.to_finite_measure_mass] at key, exact key, end lemma finite_measures.test_against_nn_mono (μ : finite_measures α) {f g : α →ᵇ ℝ≥0} (f_le_g : (f : α → ℝ≥0) ≤ g) : μ.test_against_nn f ≤ μ.test_against_nn g := begin repeat { rw finite_measures.test_against_nn_def, }, apply ennreal.coe_le_coe.mp, repeat { rw ennreal.coe_to_nnreal, }, { apply lintegral_mono, intros x, apply ennreal.coe_mono, exact f_le_g x, }, repeat { apply ennreal.lt_top_iff_ne_top.mp, apply lintegral_lt_top_of_bounded_continuous_to_nnreal, }, end lemma probability_measures.test_against_nn_mono (μ : probability_measures α) {f g : α →ᵇ ℝ≥0} (f_le_g : (f : α → ℝ≥0) ≤ g) : μ.test_against_nn f ≤ μ.test_against_nn g := begin have key := finite_measures.test_against_nn_mono μ.to_finite_measure f_le_g, simp only [probability_measures.to_finite_measure_test_against_nn_eq_test_against_nn] at key, exact key, end lemma continuous_bounded_nn_add_comp_coe {β : Type*} [topological_space β] {f₁ f₂ : β →ᵇ ℝ≥0} : (coe : ℝ≥0 → ℝ≥0∞) ∘ (f₁ + f₂) = ( ((coe : ℝ≥0 → ℝ≥0∞) ∘ f₁) + ((coe : ℝ≥0 → ℝ≥0∞) ∘ f₂)) := by { funext x, simp only [ennreal.coe_add, pi.add_apply, function.comp_app], } lemma continuous_bounded_nn_smul_comp_coe {β : Type*} [topological_space β] {c : ℝ≥0} {f : β →ᵇ ℝ≥0} : (coe : ℝ≥0 → ℝ≥0∞) ∘ (c • f) = c • ( ((coe : ℝ≥0 → ℝ≥0∞) ∘ f)) := begin funext x, simpa only [algebra.id.smul_eq_mul, function.comp_app, pi.smul_apply, ennreal.coe_mul], end lemma continuous_bounded_nn_smul_eq {β : Type*} [topological_space β] {c : ℝ≥0} {f : β →ᵇ ℝ≥0} : (c • (f : β → ℝ≥0)) = ((c • f) : β →ᵇ ℝ≥0) := by refl lemma continuous_bounded_nn_smul_comp_coe' {β : Type*} [topological_space β] {c : ℝ≥0} {f : β →ᵇ ℝ≥0} : (coe : ℝ≥0 → ℝ≥0∞) ∘ (c • f) = c • ( ((coe : ℝ≥0 → ℝ≥0∞) ∘ f)) := begin funext x, simpa only [algebra.id.smul_eq_mul, function.comp_app, pi.smul_apply, ennreal.coe_mul], end variables [opens_measurable_space α] -- [borel_space α] lemma finite_measures.test_against_nn_add (μ : finite_measures α) (f₁ f₂ : α →ᵇ ℝ≥0) : μ.test_against_nn (f₁ + f₂) = μ.test_against_nn f₁ + μ.test_against_nn f₂ := begin rw ← ennreal.to_nnreal_add (lintegral_lt_top_of_bounded_continuous_to_nnreal μ.to_measure f₁) (lintegral_lt_top_of_bounded_continuous_to_nnreal μ.to_measure f₂), rw ← @lintegral_add _ _ μ.to_measure _ _ f₁.coe_nnreal_comp_measurable f₂.coe_nnreal_comp_measurable, refl, end lemma finite_measures.test_against_nn_smul (μ : finite_measures α) (c : ℝ≥0) (f : α →ᵇ ℝ≥0) : μ.test_against_nn (c • f) = c * μ.test_against_nn f := begin have key_smul := @lintegral_mul_const _ _ μ.to_measure c _ f.coe_nnreal_comp_measurable, simp_rw mul_comm at key_smul, repeat { rw finite_measures.test_against_nn_def, }, rw [nnreal_mul_ennreal_to_nnreal, ←key_smul], rw [←continuous_bounded_nn_smul_eq, @continuous_bounded_nn_smul_comp_coe _ _ c f], refl, end /-- Integration against a finite_measure defines a linear map from nonnegative bounded continuous functions to nonnegative real numbers. -/ def finite_measures.test_against_nn_linear_map (μ : finite_measures α) : linear_map ℝ≥0 (α →ᵇ ℝ≥0) ℝ≥0 := { to_fun := μ.test_against_nn, map_add' := finite_measures.test_against_nn_add μ, map_smul' := finite_measures.test_against_nn_smul μ, } lemma nnreal.le_add_dist (a b : ℝ≥0) : a ≤ b + (dist a b).to_nnreal := begin suffices : (a : ℝ) ≤ (b : ℝ) + (dist a b), { have coe_eq : (coe : ℝ≥0 → ℝ) (b + (dist a b).to_nnreal) = (b : ℝ) + dist a b, { rw nnreal.coe_add, simp only [real.coe_to_nnreal', max_eq_left_iff, add_right_inj], exact dist_nonneg, }, rw ←coe_eq at this, apply nnreal.coe_le_coe.mp this, }, have key : abs (a-b : ℝ) ≤ (dist a b) := by refl, linarith [le_of_abs_le key], end lemma finite_measures.lipschitz_estimate (μ : finite_measures α) (f g : α →ᵇ ℝ≥0) : μ.test_against_nn f ≤ μ.test_against_nn g + (dist f g).to_nnreal * μ.mass := begin have coe_eq : ennreal.of_real (dist f g) = ((dist f g).to_nnreal : ℝ≥0∞) := by refl, rw ←finite_measures.test_against_nn_const μ (dist f g).to_nnreal, rw ←finite_measures.test_against_nn_add, repeat { rw finite_measures.test_against_nn_def, }, apply ennreal.coe_le_coe.mp, repeat { rw ennreal.coe_to_nnreal, }, { apply lintegral_mono, have le_dist : ∀ x, dist (f x) (g x) ≤ (dist f g) := bounded_continuous_function.dist_coe_le_dist, have le' : ∀ x, f(x) ≤ g(x) + (dist f g).to_nnreal, { intros x, apply (nnreal.le_add_dist (f x) (g x)).trans, rw add_le_add_iff_left, exact real.to_nnreal_mono (le_dist x), }, have le : ∀ x, (f(x) : ℝ≥0∞) ≤ (g(x) : ℝ≥0∞) + ennreal.of_real (dist f g), { intros x, rw [coe_eq, ←ennreal.coe_add], exact ennreal.coe_mono (le' x), }, exact le, }, repeat { apply ennreal.lt_top_iff_ne_top.mp, apply lintegral_lt_top_of_bounded_continuous_to_nnreal, }, end lemma finite_measures.test_against_nn_lipschitz (μ : finite_measures α) : lipschitz_with μ.mass μ.test_against_nn := begin rw lipschitz_with_iff_dist_le_mul, intros f₁ f₂, suffices : abs (μ.test_against_nn f₁ - μ.test_against_nn f₂ : ℝ) ≤ μ.mass * (dist f₁ f₂), { rwa nnreal.dist_eq, }, apply (@abs_le ℝ _ _ _ _ _).mpr, split, { have key' := μ.lipschitz_estimate f₂ f₁, rw mul_comm at key', suffices : ↑(μ.test_against_nn f₂) ≤ ↑(μ.test_against_nn f₁) + ↑(μ.mass) * dist f₁ f₂, { linarith, }, have key := nnreal.coe_mono key', rwa [nnreal.coe_add, nnreal.coe_mul, real.coe_to_nnreal, dist_comm] at key, exact dist_nonneg, }, { have key' := μ.lipschitz_estimate f₁ f₂, rw mul_comm at key', suffices : ↑(μ.test_against_nn f₁) ≤ ↑(μ.test_against_nn f₂) + ↑(μ.mass) * dist f₁ f₂, { linarith, }, have key := nnreal.coe_mono key', rwa [nnreal.coe_add, nnreal.coe_mul, real.coe_to_nnreal] at key, exact dist_nonneg, }, end lemma probability_measures.test_against_nn_lipschitz (μ : probability_measures α) : lipschitz_with 1 μ.test_against_nn := begin have key := μ.to_finite_measure.test_against_nn_lipschitz, rwa μ.to_finite_measure_mass at key, end /-- A finite measure can be interpreted as an element of the (weak) dual of nonnegative bounded continuous functions, the duality pairing being integration. -/ def finite_measures.to_weak_dual_of_bcnn (μ : finite_measures α) : weak_dual ℝ≥0 (α →ᵇ ℝ≥0) := { to_fun := μ.test_against_nn, map_add' := finite_measures.test_against_nn_add μ, map_smul' := finite_measures.test_against_nn_smul μ, cont := μ.test_against_nn_lipschitz.continuous, } /- --TODO: Need `ℝ≥0`-module structure on `finite_measures α`. -- Currently only `add_comm_monoid` is implemented. def finite_measures.to_weak_dual_of_bounded_continuous_nn : finite_measures α →L[ℝ≥0] weak_dual ℝ≥0 (α →ᵇ ℝ≥0) := sorry -/ /-- A probability measure can be interpreted as an element of the (weak) dual of nonnegative bounded continuous functions (random variables), the duality pairing being integration (expected value). -/ def probability_measures.to_weak_dual_of_bcnn (μ : probability_measures α) : weak_dual ℝ≥0 (α →ᵇ ℝ≥0) := { to_fun := μ.test_against_nn, map_add' := μ.to_finite_measure.test_against_nn_add, map_smul' := μ.to_finite_measure.test_against_nn_smul, cont := μ.test_against_nn_lipschitz.continuous, } lemma finite_measures.test_against_eq_to_weak_dual_test (μ : finite_measures α) : (μ.to_weak_dual_of_bcnn : (α →ᵇ ℝ≥0) → ℝ≥0) = μ.test_against_nn := by refl lemma probability_measures.test_against_eq_to_weak_dual_test (μ : probability_measures α) : (μ.to_weak_dual_of_bcnn : (α →ᵇ ℝ≥0) → ℝ≥0) = μ.test_against_nn := by refl /-- The topology of weak convergence on `finite_measures α` is inherited (induced) from the weak-* topology on `weak_dual ℝ≥0 (α →ᵇ ℝ≥0)` via the function `finite_measures.to_weak_dual_of_bcnn`. -/ instance : topological_space (finite_measures α) := topological_space.induced (λ (μ : finite_measures α), μ.to_weak_dual_of_bcnn) infer_instance /-- The topology of weak convergence on `probability_measures α`. This is inherited (induced) from the weak-* topology on `weak_dual ℝ≥0 (α →ᵇ ℝ≥0)` via the function `probability_measures.to_weak_dual_of_bcnn`. -/ instance : topological_space (probability_measures α) := topological_space.induced (λ (μ : probability_measures α), μ.to_weak_dual_of_bcnn) infer_instance /- Integration of (nonnegative bounded continuous) test functions against finite Borel measures depends continuously on the measure. -/ lemma finite_measures.to_weak_dual_continuous : continuous (@finite_measures.to_weak_dual_of_bcnn α _ _ _) := continuous_induced_dom /- Integration of (nonnegative bounded continuous) test functions against Borel probability measures depends continuously on the measure. -/ lemma probability_measures.to_weak_dual_continuous : continuous (@probability_measures.to_weak_dual_of_bcnn α _ _ _) := continuous_induced_dom /- The canonical mapping from probability measures to finite measures is an embedding. -/ lemma probability_measures.coe_embedding (α : Type*) [measurable_space α] [topological_space α] [opens_measurable_space α] : embedding (coe : probability_measures α → finite_measures α) := { induced := begin have key := @induced_compose (probability_measures α) (finite_measures α) _ _ coe (@finite_measures.to_weak_dual_of_bcnn α _ _ _), exact key.symm, end, inj := begin intros μ ν h, apply subtype.eq, rw [←μ.to_finite_measure_to_measure_eq_val, ←ν.to_finite_measure_to_measure_eq_val], apply congr_arg _ h, end, } lemma probability_measures.tendsto_nhds_iff_to_finite_measures_tendsto_nhds {δ : Type*} (F : filter δ) {μs : δ → probability_measures α} {μ₀ : probability_measures α} : tendsto μs F (𝓝 μ₀) ↔ tendsto (coe ∘ μs) F (𝓝 (μ₀.to_finite_measure)) := embedding.tendsto_nhds_iff (probability_measures.coe_embedding α) lemma finite_measures.tendsto_iff_weak_star_tendsto {γ : Type*} {F : filter γ} {μs : γ → finite_measures α} {μ : finite_measures α} : tendsto μs F (𝓝 μ) ↔ tendsto (λ i, (μs(i)).to_weak_dual_of_bcnn) F (𝓝 μ.to_weak_dual_of_bcnn) := by apply tendsto_induced_iff theorem finite_measures.tendsto_iff_forall_test_against_nn_tendsto {γ : Type*} {F : filter γ} {μs : γ → finite_measures α} {μ : finite_measures α} : tendsto μs F (𝓝 μ) ↔ ∀ (f : α →ᵇ ℝ≥0), tendsto (λ i, (μs(i)).to_weak_dual_of_bcnn f) F (𝓝 (μ.to_weak_dual_of_bcnn f)) := by rw [finite_measures.tendsto_iff_weak_star_tendsto, weak_dual.tendsto_iff_forall_test_tendsto] theorem finite_measures.tendsto_iff_forall_lintegral_tendsto {γ : Type*} {F : filter γ} {μs : γ → finite_measures α} {μ : finite_measures α} : tendsto μs F (𝓝 μ) ↔ ∀ (f : α →ᵇ ℝ≥0), tendsto (λ i, lintegral (μs(i)).to_measure (coe ∘ f)) F (𝓝 (lintegral μ.to_measure (coe ∘ f))) := begin rw finite_measures.tendsto_iff_forall_test_against_nn_tendsto, simp_rw finite_measures.test_against_eq_to_weak_dual_test, simp_rw ←finite_measures.test_against_nn_coe_eq, simp_rw ennreal.tendsto_coe, end /-- The usual definition of weak convergence of probability measures is given in terms of sequences of probability measures: it is the requirement that the integrals of all continuous bounded functions against members of the sequence converge. This version is a characterization using nonnegative bounded continuous functions. -/ theorem probability_measures.tendsto_iff_forall_lintegral_tendsto {γ : Type*} {F : filter γ} {μs : γ → probability_measures α} {μ : probability_measures α} : tendsto μs F (𝓝 μ) ↔ ∀ (f : α →ᵇ ℝ≥0), tendsto (λ i, lintegral (μs(i)).to_measure (coe ∘ f)) F (𝓝 (lintegral μ.to_measure (coe ∘ f))) := begin rw [probability_measures.tendsto_nhds_iff_to_finite_measures_tendsto_nhds, finite_measures.tendsto_iff_forall_lintegral_tendsto], refl, end end weak_convergence_of_measures
a0eb8a288f05ef2a65ffda5045ce9d312639c734
e5169dbb8b1bea3ec2a32737442bc91a4a94b46a
/library/data/set/basic.lean
3c2710ac4016cc1ddade9ad39bea4fce38a28b68
[ "Apache-2.0" ]
permissive
pazthor/lean
733b775e3123f6bbd2c4f7ccb5b560b467b76800
c923120db54276a22a75b12c69765765608a8e76
refs/heads/master
1,610,703,744,289
1,448,419,395,000
1,448,419,703,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
13,649
lean
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Jeremy Avigad, Leonardo de Moura -/ import logic.connectives logic.identities algebra.binary open eq.ops binary definition set (X : Type) := X → Prop namespace set variable {X : Type} /- membership and subset -/ definition mem (x : X) (a : set X) := a x infix ∈ := mem notation a ∉ b := ¬ mem a b theorem ext {a b : set X} (H : ∀x, x ∈ a ↔ x ∈ b) : a = b := funext (take x, propext (H x)) definition subset (a b : set X) := ∀⦃x⦄, x ∈ a → x ∈ b infix ⊆ := subset definition superset (s t : set X) : Prop := t ⊆ s infix ⊇ := superset theorem subset.refl (a : set X) : a ⊆ a := take x, assume H, H theorem subset.trans {a b c : set X} (subab : a ⊆ b) (subbc : b ⊆ c) : a ⊆ c := take x, assume ax, subbc (subab ax) theorem subset.antisymm {a b : set X} (h₁ : a ⊆ b) (h₂ : b ⊆ a) : a = b := ext (λ x, iff.intro (λ ina, h₁ ina) (λ inb, h₂ inb)) -- an alterantive name theorem eq_of_subset_of_subset {a b : set X} (h₁ : a ⊆ b) (h₂ : b ⊆ a) : a = b := subset.antisymm h₁ h₂ theorem mem_of_subset_of_mem {s₁ s₂ : set X} {a : X} : s₁ ⊆ s₂ → a ∈ s₁ → a ∈ s₂ := assume h₁ h₂, h₁ _ h₂ /- strict subset -/ definition strict_subset (a b : set X) := a ⊆ b ∧ a ≠ b infix ` ⊂ `:50 := strict_subset theorem strict_subset.irrefl (a : set X) : ¬ a ⊂ a := assume h, absurd rfl (and.elim_right h) /- bounded quantification -/ abbreviation bounded_forall (a : set X) (P : X → Prop) := ∀⦃x⦄, x ∈ a → P x notation `forallb` binders `∈` a `, ` r:(scoped:1 P, P) := bounded_forall a r notation `∀₀` binders `∈` a `, ` r:(scoped:1 P, P) := bounded_forall a r abbreviation bounded_exists (a : set X) (P : X → Prop) := ∃⦃x⦄, x ∈ a ∧ P x notation `existsb` binders `∈` a `, ` r:(scoped:1 P, P) := bounded_exists a r notation `∃₀` binders `∈` a `, ` r:(scoped:1 P, P) := bounded_exists a r theorem bounded_exists.intro {P : X → Prop} {s : set X} {x : X} (xs : x ∈ s) (Px : P x) : ∃₀ x ∈ s, P x := exists.intro x (and.intro xs Px) /- empty set -/ definition empty : set X := λx, false notation `∅` := empty theorem not_mem_empty (x : X) : ¬ (x ∈ ∅) := assume H : x ∈ ∅, H theorem mem_empty_eq (x : X) : x ∈ ∅ = false := rfl theorem eq_empty_of_forall_not_mem {s : set X} (H : ∀ x, x ∉ s) : s = ∅ := ext (take x, iff.intro (assume xs, absurd xs (H x)) (assume xe, absurd xe !not_mem_empty)) theorem empty_subset (s : set X) : ∅ ⊆ s := take x, assume H, false.elim H theorem eq_empty_of_subset_empty {s : set X} (H : s ⊆ ∅) : s = ∅ := subset.antisymm H (empty_subset s) theorem subset_empty_iff (s : set X) : s ⊆ ∅ ↔ s = ∅ := iff.intro eq_empty_of_subset_empty (take xeq, by rewrite xeq; apply subset.refl ∅) /- universal set -/ definition univ : set X := λx, true theorem mem_univ (x : X) : x ∈ univ := trivial theorem mem_univ_iff (x : X) : x ∈ univ ↔ true := !iff.refl theorem mem_univ_eq (x : X) : x ∈ univ = true := rfl theorem empty_ne_univ [h : inhabited X] : (empty : set X) ≠ univ := assume H : empty = univ, absurd (mem_univ (inhabited.value h)) (eq.rec_on H (not_mem_empty _)) theorem subset_univ (s : set X) : s ⊆ univ := λ x H, trivial theorem eq_univ_of_univ_subset {s : set X} (H : univ ⊆ s) : s = univ := eq_of_subset_of_subset (subset_univ s) H theorem eq_univ_of_forall {s : set X} (H : ∀ x, x ∈ s) : s = univ := ext (take x, iff.intro (assume H', trivial) (assume H', H x)) /- union -/ definition union (a b : set X) : set X := λx, x ∈ a ∨ x ∈ b notation a ∪ b := union a b theorem mem_union_left {x : X} {a : set X} (b : set X) : x ∈ a → x ∈ a ∪ b := assume h, or.inl h theorem mem_union_right {x : X} {b : set X} (a : set X) : x ∈ b → x ∈ a ∪ b := assume h, or.inr h theorem mem_unionl {x : X} {a b : set X} : x ∈ a → x ∈ a ∪ b := assume h, or.inl h theorem mem_unionr {x : X} {a b : set X} : x ∈ b → x ∈ a ∪ b := assume h, or.inr h theorem mem_or_mem_of_mem_union {x : X} {a b : set X} (H : x ∈ a ∪ b) : x ∈ a ∨ x ∈ b := H theorem mem_union.elim {x : X} {a b : set X} {P : Prop} (H₁ : x ∈ a ∪ b) (H₂ : x ∈ a → P) (H₃ : x ∈ b → P) : P := or.elim H₁ H₂ H₃ theorem mem_union_iff (x : X) (a b : set X) : x ∈ a ∪ b ↔ x ∈ a ∨ x ∈ b := !iff.refl theorem mem_union_eq (x : X) (a b : set X) : x ∈ a ∪ b = (x ∈ a ∨ x ∈ b) := rfl theorem union_self (a : set X) : a ∪ a = a := ext (take x, !or_self) theorem union_empty (a : set X) : a ∪ ∅ = a := ext (take x, !or_false) theorem empty_union (a : set X) : ∅ ∪ a = a := ext (take x, !false_or) theorem union.comm (a b : set X) : a ∪ b = b ∪ a := ext (take x, or.comm) theorem union.assoc (a b c : set X) : (a ∪ b) ∪ c = a ∪ (b ∪ c) := ext (take x, or.assoc) theorem union.left_comm (s₁ s₂ s₃ : set X) : s₁ ∪ (s₂ ∪ s₃) = s₂ ∪ (s₁ ∪ s₃) := !left_comm union.comm union.assoc s₁ s₂ s₃ theorem union.right_comm (s₁ s₂ s₃ : set X) : (s₁ ∪ s₂) ∪ s₃ = (s₁ ∪ s₃) ∪ s₂ := !right_comm union.comm union.assoc s₁ s₂ s₃ theorem subset_union_left (s t : set X) : s ⊆ s ∪ t := λ x H, or.inl H theorem subset_union_right (s t : set X) : t ⊆ s ∪ t := λ x H, or.inr H theorem union_subset {s t r : set X} (sr : s ⊆ r) (tr : t ⊆ r) : s ∪ t ⊆ r := λ x xst, or.elim xst (λ xs, sr xs) (λ xt, tr xt) /- intersection -/ definition inter (a b : set X) : set X := λx, x ∈ a ∧ x ∈ b notation a ∩ b := inter a b theorem mem_inter_iff (x : X) (a b : set X) : x ∈ a ∩ b ↔ x ∈ a ∧ x ∈ b := !iff.refl theorem mem_inter_eq (x : X) (a b : set X) : x ∈ a ∩ b = (x ∈ a ∧ x ∈ b) := rfl theorem mem_inter {x : X} {a b : set X} (Ha : x ∈ a) (Hb : x ∈ b) : x ∈ a ∩ b := and.intro Ha Hb theorem mem_of_mem_inter_left {x : X} {a b : set X} (H : x ∈ a ∩ b) : x ∈ a := and.left H theorem mem_of_mem_inter_right {x : X} {a b : set X} (H : x ∈ a ∩ b) : x ∈ b := and.right H theorem inter_self (a : set X) : a ∩ a = a := ext (take x, !and_self) theorem inter_empty (a : set X) : a ∩ ∅ = ∅ := ext (take x, !and_false) theorem empty_inter (a : set X) : ∅ ∩ a = ∅ := ext (take x, !false_and) theorem inter.comm (a b : set X) : a ∩ b = b ∩ a := ext (take x, !and.comm) theorem inter.assoc (a b c : set X) : (a ∩ b) ∩ c = a ∩ (b ∩ c) := ext (take x, !and.assoc) theorem inter.left_comm (s₁ s₂ s₃ : set X) : s₁ ∩ (s₂ ∩ s₃) = s₂ ∩ (s₁ ∩ s₃) := !left_comm inter.comm inter.assoc s₁ s₂ s₃ theorem inter.right_comm (s₁ s₂ s₃ : set X) : (s₁ ∩ s₂) ∩ s₃ = (s₁ ∩ s₃) ∩ s₂ := !right_comm inter.comm inter.assoc s₁ s₂ s₃ theorem inter_univ (a : set X) : a ∩ univ = a := ext (take x, !and_true) theorem univ_inter (a : set X) : univ ∩ a = a := ext (take x, !true_and) theorem inter_subset_left (s t : set X) : s ∩ t ⊆ s := λ x H, and.left H theorem inter_subset_right (s t : set X) : s ∩ t ⊆ t := λ x H, and.right H theorem subset_inter {s t r : set X} (rs : r ⊆ s) (rt : r ⊆ t) : r ⊆ s ∩ t := λ x xr, and.intro (rs xr) (rt xr) /- distributivity laws -/ theorem inter.distrib_left (s t u : set X) : s ∩ (t ∪ u) = (s ∩ t) ∪ (s ∩ u) := ext (take x, !and.left_distrib) theorem inter.distrib_right (s t u : set X) : (s ∪ t) ∩ u = (s ∩ u) ∪ (t ∩ u) := ext (take x, !and.right_distrib) theorem union.distrib_left (s t u : set X) : s ∪ (t ∩ u) = (s ∪ t) ∩ (s ∪ u) := ext (take x, !or.left_distrib) theorem union.distrib_right (s t u : set X) : (s ∩ t) ∪ u = (s ∪ u) ∩ (t ∪ u) := ext (take x, !or.right_distrib) /- set-builder notation -/ -- {x : X | P} definition set_of (P : X → Prop) : set X := P notation `{` binder ` | ` r:(scoped:1 P, set_of P) `}` := r -- {x ∈ s | P} definition sep (P : X → Prop) (s : set X) : set X := λx, x ∈ s ∧ P x notation `{` binder ` ∈ ` s ` | ` r:(scoped:1 p, sep p s) `}` := r /- insert -/ definition insert (x : X) (a : set X) : set X := {y : X | y = x ∨ y ∈ a} -- '{x, y, z} notation `'{`:max a:(foldr `, ` (x b, insert x b) ∅) `}`:0 := a theorem subset_insert (x : X) (a : set X) : a ⊆ insert x a := take y, assume ys, or.inr ys theorem mem_insert (x : X) (s : set X) : x ∈ insert x s := or.inl rfl theorem mem_insert_of_mem {x : X} {s : set X} (y : X) : x ∈ s → x ∈ insert y s := assume h, or.inr h theorem eq_or_mem_of_mem_insert {x a : X} {s : set X} : x ∈ insert a s → x = a ∨ x ∈ s := assume h, h theorem mem_of_mem_insert_of_ne {x a : X} {s : set X} (xin : x ∈ insert a s) : x ≠ a → x ∈ s := or_resolve_right (eq_or_mem_of_mem_insert xin) theorem mem_insert_eq (x a : X) (s : set X) : x ∈ insert a s = (x = a ∨ x ∈ s) := propext (iff.intro !eq_or_mem_of_mem_insert (or.rec (λH', (eq.substr H' !mem_insert)) !mem_insert_of_mem)) theorem insert_eq_of_mem {a : X} {s : set X} (H : a ∈ s) : insert a s = s := ext (λ x, eq.substr (mem_insert_eq x a s) (or_iff_right_of_imp (λH1, eq.substr H1 H))) theorem insert.comm (x y : X) (s : set X) : insert x (insert y s) = insert y (insert x s) := ext (take a, by rewrite [*mem_insert_eq, propext !or.left_comm]) /- singleton -/ theorem mem_singleton_iff (a b : X) : a ∈ '{b} ↔ a = b := iff.intro (assume ainb, or.elim ainb (λ aeqb, aeqb) (λ f, false.elim f)) (assume aeqb, or.inl aeqb) theorem mem_singleton (a : X) : a ∈ '{a} := !mem_insert theorem eq_of_mem_singleton {x y : X} : x ∈ insert y ∅ → x = y := assume h, or.elim (eq_or_mem_of_mem_insert h) (suppose x = y, this) (suppose x ∈ ∅, absurd this !not_mem_empty) /- separation -/ theorem mem_sep {s : set X} {P : X → Prop} {x : X} (xs : x ∈ s) (Px : P x) : x ∈ {x ∈ s | P x} := and.intro xs Px theorem eq_sep_of_subset {s t : set X} (ssubt : s ⊆ t) : s = {x ∈ t | x ∈ s} := ext (take x, iff.intro (suppose x ∈ s, and.intro (ssubt this) this) (suppose x ∈ {x ∈ t | x ∈ s}, and.right this)) theorem mem_sep_iff {s : set X} {P : X → Prop} {x : X} : x ∈ {x ∈ s | P x} ↔ x ∈ s ∧ P x := !iff.refl theorem sep_subset (s : set X) (P : X → Prop) : {x ∈ s | P x} ⊆ s := take x, assume H, and.left H /- complement -/ definition complement (s : set X) : set X := {x | x ∉ s} prefix `-` := complement theorem mem_comp {s : set X} {x : X} (H : x ∉ s) : x ∈ -s := H theorem not_mem_of_mem_comp {s : set X} {x : X} (H : x ∈ -s) : x ∉ s := H theorem mem_comp_iff (s : set X) (x : X) : x ∈ -s ↔ x ∉ s := !iff.refl theorem inter_comp_self (s : set X) : s ∩ -s = ∅ := ext (take x, !and_not_self_iff) theorem comp_inter_self (s : set X) : -s ∩ s = ∅ := ext (take x, !not_and_self_iff) /- some classical identities -/ section open classical theorem union_eq_comp_comp_inter_comp (s t : set X) : s ∪ t = -(-s ∩ -t) := ext (take x, !or_iff_not_and_not) theorem inter_eq_comp_comp_union_comp (s t : set X) : s ∩ t = -(-s ∪ -t) := ext (take x, !and_iff_not_or_not) theorem union_comp_self (s : set X) : s ∪ -s = univ := ext (take x, !or_not_self_iff) theorem comp_union_self (s : set X) : -s ∪ s = univ := ext (take x, !not_or_self_iff) end /- set difference -/ definition diff (s t : set X) : set X := {x ∈ s | x ∉ t} infix `\`:70 := diff theorem mem_diff {s t : set X} {x : X} (H1 : x ∈ s) (H2 : x ∉ t) : x ∈ s \ t := and.intro H1 H2 theorem mem_of_mem_diff {s t : set X} {x : X} (H : x ∈ s \ t) : x ∈ s := and.left H theorem not_mem_of_mem_diff {s t : set X} {x : X} (H : x ∈ s \ t) : x ∉ t := and.right H theorem mem_diff_iff (s t : set X) (x : X) : x ∈ s \ t ↔ x ∈ s ∧ x ∉ t := !iff.refl theorem mem_diff_eq (s t : set X) (x : X) : x ∈ s \ t = (x ∈ s ∧ x ∉ t) := rfl theorem diff_eq (s t : set X) : s \ t = s ∩ -t := rfl theorem union_diff_cancel {s t : set X} [dec : Π x, decidable (x ∈ s)] (H : s ⊆ t) : s ∪ (t \ s) = t := ext (take x, iff.intro (assume H1 : x ∈ s ∪ (t \ s), or.elim H1 (assume H2, !H H2) (assume H2, and.left H2)) (assume H1 : x ∈ t, decidable.by_cases (suppose x ∈ s, or.inl this) (suppose x ∉ s, or.inr (and.intro H1 this)))) theorem diff_subset (s t : set X) : s \ t ⊆ s := inter_subset_left s _ /- powerset -/ definition powerset (s : set X) : set (set X) := {x : set X | x ⊆ s} prefix `𝒫`:100 := powerset theorem mem_powerset {x s : set X} (H : x ⊆ s) : x ∈ 𝒫 s := H theorem subset_of_mem_powerset {x s : set X} (H : x ∈ 𝒫 s) : x ⊆ s := H theorem mem_powerset_iff (x s : set X) : x ∈ 𝒫 s ↔ x ⊆ s := !iff.refl /- large unions -/ section variables {I : Type} variable a : set I variable b : I → set X variable C : set (set X) definition Inter : set X := {x : X | ∀i, x ∈ b i} definition bInter : set X := {x : X | ∀₀ i ∈ a, x ∈ b i} definition sInter : set X := {x : X | ∀₀ c ∈ C, x ∈ c} definition Union : set X := {x : X | ∃i, x ∈ b i} definition bUnion : set X := {x : X | ∃₀ i ∈ a, x ∈ b i} definition sUnion : set X := {x : X | ∃₀ c ∈ C, x ∈ c} -- TODO: need notation for these theorem Union_subset {b : I → set X} {c : set X} (H : ∀ i, b i ⊆ c) : Union b ⊆ c := take x, suppose x ∈ Union b, obtain i (Hi : x ∈ b i), from this, show x ∈ c, from H i Hi end end set
26534129cc0a64e99979b449320ba5122ffe4956
86f6f4f8d827a196a32bfc646234b73328aeb306
/examples/basics/unnamed_1037.lean
4d6cec6ded407368955885e5f55affa53d0ae181
[]
no_license
jamescheuk91/mathematics_in_lean
09f1f87d2b0dce53464ff0cbe592c568ff59cf5e
4452499264e2975bca2f42565c0925506ba5dda3
refs/heads/master
1,679,716,410,967
1,613,957,947,000
1,613,957,947,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
612
lean
import data.real.basic -- BEGIN example (x y z : ℝ) (h₀ : x ≤ y) (h₁ : y ≤ z) : x ≤ z := begin apply le_trans, { apply h₀ }, apply h₁ end example (x y z : ℝ) (h₀ : x ≤ y) (h₁ : y ≤ z) : x ≤ z := begin apply le_trans h₀, apply h₁ end example (x y z : ℝ) (h₀ : x ≤ y) (h₁ : y ≤ z) : x ≤ z := by exact le_trans h₀ h₁ example (x y z : ℝ) (h₀ : x ≤ y) (h₁ : y ≤ z) : x ≤ z := le_trans h₀ h₁ example (x : ℝ) : x ≤ x := by apply le_refl example (x : ℝ) : x ≤ x := by exact le_refl x example (x : ℝ) : x ≤ x := le_refl x -- END
c37834ed04b5bd5b5a054a07a4e7dce039025465
75db7e3219bba2fbf41bf5b905f34fcb3c6ca3f2
/tests/lean/run/new_obtain4.lean
0af8bac43ef3a98de762f6af6e4511ac95277248
[ "Apache-2.0" ]
permissive
jroesch/lean
30ef0860fa905d35b9ad6f76de1a4f65c9af6871
3de4ec1a6ce9a960feb2a48eeea8b53246fa34f2
refs/heads/master
1,586,090,835,348
1,455,142,203,000
1,455,142,277,000
51,536,958
1
0
null
1,455,215,811,000
1,455,215,811,000
null
UTF-8
Lean
false
false
447
lean
import data.set open set function eq.ops variables {X Y Z : Type} lemma image_compose (f : Y → X) (g : X → Y) (a : set X) : (f ∘ g) ' a = f ' (g ' a) := ext (take z, iff.intro (assume Hz, obtain x Hx₁ Hx₂, from Hz, by repeat (apply mem_image | assumption | reflexivity)) (assume Hz, obtain y [x Hz₁ Hz₂] Hy₂, from Hz, by repeat (apply mem_image | assumption | esimp [compose] | rewrite Hz₂)))
4f5403d341d85c87e990261c4e32ef274371e05b
d9ed0fce1c218297bcba93e046cb4e79c83c3af8
/library/init/category/functor.lean
d87680fc6d0ca9d9265ab114edb2e53d48395933
[ "Apache-2.0" ]
permissive
leodemoura/lean_clone
005c63aa892a6492f2d4741ee3c2cb07a6be9d7f
cc077554b584d39bab55c360bc12a6fe7957afe6
refs/heads/master
1,610,506,475,484
1,482,348,354,000
1,482,348,543,000
77,091,586
0
0
null
null
null
null
UTF-8
Lean
false
false
464
lean
/- Copyright (c) Luke Nelson and Jared Roesch. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Luke Nelson and Jared Roesch -/ prelude universe variables u v class functor (f : Type u → Type v) : Type (max u+1 v) := (map : Π {a b : Type u}, (a → b) → f a → f b) @[inline] def fmap {f : Type u → Type v} [functor f] {a b : Type u} : (a → b) → f a → f b := functor.map infixr ` <$> `:100 := fmap
41db0b1640b5ef188e3ff1e0ad0dc9562227626c
80cc5bf14c8ea85ff340d1d747a127dcadeb966f
/src/topology/bases.lean
1eb02bb44a141c3dd80efa9b8850877559bbfdb1
[ "Apache-2.0" ]
permissive
lacker/mathlib
f2439c743c4f8eb413ec589430c82d0f73b2d539
ddf7563ac69d42cfa4a1bfe41db1fed521bd795f
refs/heads/master
1,671,948,326,773
1,601,479,268,000
1,601,479,268,000
298,686,743
0
0
Apache-2.0
1,601,070,794,000
1,601,070,794,000
null
UTF-8
Lean
false
false
13,344
lean
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro Bases of topologies. Countability axioms. -/ import topology.continuous_on open set filter classical open_locale topological_space filter noncomputable theory namespace topological_space /- countability axioms For our applications we are interested that there exists a countable basis, but we do not need the concrete basis itself. This allows us to declare these type classes as `Prop` to use them as mixins. -/ universe u variables {α : Type u} [t : topological_space α] include t /-- A topological basis is one that satisfies the necessary conditions so that it suffices to take unions of the basis sets to get a topology (without taking finite intersections as well). -/ def is_topological_basis (s : set (set α)) : Prop := (∀t₁∈s, ∀t₂∈s, ∀ x ∈ t₁ ∩ t₂, ∃ t₃∈s, x ∈ t₃ ∧ t₃ ⊆ t₁ ∩ t₂) ∧ (⋃₀ s) = univ ∧ t = generate_from s lemma is_topological_basis_of_subbasis {s : set (set α)} (hs : t = generate_from s) : is_topological_basis ((λf, ⋂₀ f) '' {f:set (set α) | finite f ∧ f ⊆ s ∧ (⋂₀ f).nonempty}) := let b' := (λf, ⋂₀ f) '' {f:set (set α) | finite f ∧ f ⊆ s ∧ (⋂₀ f).nonempty} in ⟨assume s₁ ⟨t₁, ⟨hft₁, ht₁b, ht₁⟩, eq₁⟩ s₂ ⟨t₂, ⟨hft₂, ht₂b, ht₂⟩, eq₂⟩, have ie : ⋂₀(t₁ ∪ t₂) = ⋂₀ t₁ ∩ ⋂₀ t₂, from Inf_union, eq₁ ▸ eq₂ ▸ assume x h, ⟨_, ⟨t₁ ∪ t₂, ⟨hft₁.union hft₂, union_subset ht₁b ht₂b, ie.symm ▸ ⟨_, h⟩⟩, ie⟩, h, subset.refl _⟩, eq_univ_iff_forall.2 $ assume a, ⟨univ, ⟨∅, ⟨finite_empty, empty_subset _, by rw sInter_empty; exact ⟨a, mem_univ a⟩⟩, sInter_empty⟩, mem_univ _⟩, have generate_from s = generate_from b', from le_antisymm (le_generate_from $ assume u ⟨t, ⟨hft, htb, ne⟩, eq⟩, eq ▸ @is_open_sInter _ (generate_from s) _ hft (assume s hs, generate_open.basic _ $ htb hs)) (le_generate_from $ assume s hs, s.eq_empty_or_nonempty.elim (assume : s = ∅, by rw [this]; apply @is_open_empty _ _) (assume : s.nonempty, generate_open.basic _ ⟨{s}, ⟨finite_singleton s, singleton_subset_iff.2 hs, by rwa sInter_singleton⟩, sInter_singleton s⟩)), this ▸ hs⟩ lemma is_topological_basis_of_open_of_nhds {s : set (set α)} (h_open : ∀ u ∈ s, is_open u) (h_nhds : ∀(a:α) (u : set α), a ∈ u → is_open u → ∃v ∈ s, a ∈ v ∧ v ⊆ u) : is_topological_basis s := ⟨assume t₁ ht₁ t₂ ht₂ x ⟨xt₁, xt₂⟩, h_nhds x (t₁ ∩ t₂) ⟨xt₁, xt₂⟩ (is_open_inter (h_open _ ht₁) (h_open _ ht₂)), eq_univ_iff_forall.2 $ assume a, let ⟨u, h₁, h₂, _⟩ := h_nhds a univ trivial is_open_univ in ⟨u, h₁, h₂⟩, le_antisymm (le_generate_from h_open) (assume u hu, (@is_open_iff_nhds α (generate_from _) _).mpr $ assume a hau, let ⟨v, hvs, hav, hvu⟩ := h_nhds a u hau hu in by rw nhds_generate_from; exact infi_le_of_le v (infi_le_of_le ⟨hav, hvs⟩ $ le_principal_iff.2 hvu))⟩ lemma mem_nhds_of_is_topological_basis {a : α} {s : set α} {b : set (set α)} (hb : is_topological_basis b) : s ∈ 𝓝 a ↔ ∃t∈b, a ∈ t ∧ t ⊆ s := begin change s ∈ (𝓝 a).sets ↔ ∃t∈b, a ∈ t ∧ t ⊆ s, rw [hb.2.2, nhds_generate_from, binfi_sets_eq], { simp only [mem_bUnion_iff, exists_prop, mem_set_of_eq, and_assoc, and.left_comm], refl }, { exact assume s ⟨hs₁, hs₂⟩ t ⟨ht₁, ht₂⟩, have a ∈ s ∩ t, from ⟨hs₁, ht₁⟩, let ⟨u, hu₁, hu₂, hu₃⟩ := hb.1 _ hs₂ _ ht₂ _ this in ⟨u, ⟨hu₂, hu₁⟩, le_principal_iff.2 (subset.trans hu₃ (inter_subset_left _ _)), le_principal_iff.2 (subset.trans hu₃ (inter_subset_right _ _))⟩ }, { rcases eq_univ_iff_forall.1 hb.2.1 a with ⟨i, h1, h2⟩, exact ⟨i, h2, h1⟩ } end lemma is_open_of_is_topological_basis {s : set α} {b : set (set α)} (hb : is_topological_basis b) (hs : s ∈ b) : is_open s := is_open_iff_mem_nhds.2 $ λ a as, (mem_nhds_of_is_topological_basis hb).2 ⟨s, hs, as, subset.refl _⟩ lemma mem_basis_subset_of_mem_open {b : set (set α)} (hb : is_topological_basis b) {a:α} {u : set α} (au : a ∈ u) (ou : is_open u) : ∃v ∈ b, a ∈ v ∧ v ⊆ u := (mem_nhds_of_is_topological_basis hb).1 $ mem_nhds_sets ou au lemma sUnion_basis_of_is_open {B : set (set α)} (hB : is_topological_basis B) {u : set α} (ou : is_open u) : ∃ S ⊆ B, u = ⋃₀ S := ⟨{s ∈ B | s ⊆ u}, λ s h, h.1, set.ext $ λ a, ⟨λ ha, let ⟨b, hb, ab, bu⟩ := mem_basis_subset_of_mem_open hB ha ou in ⟨b, ⟨hb, bu⟩, ab⟩, λ ⟨b, ⟨hb, bu⟩, ab⟩, bu ab⟩⟩ lemma Union_basis_of_is_open {B : set (set α)} (hB : is_topological_basis B) {u : set α} (ou : is_open u) : ∃ (β : Type u) (f : β → set α), u = (⋃ i, f i) ∧ ∀ i, f i ∈ B := let ⟨S, sb, su⟩ := sUnion_basis_of_is_open hB ou in ⟨S, subtype.val, su.trans set.sUnion_eq_Union, λ ⟨b, h⟩, sb h⟩ variables (α) /-- A separable space is one with a countable dense subset. -/ class separable_space : Prop := (exists_countable_closure_eq_univ : ∃s:set α, countable s ∧ closure s = univ) lemma exists_dense_seq [separable_space α] [nonempty α] : ∃ u : ℕ → α, closure (range u) = univ := begin obtain ⟨s : set α, hs, s_dense⟩ := @separable_space.exists_countable_closure_eq_univ α _ _, cases countable_iff_exists_surjective.mp hs with u hu, use u, apply eq_univ_of_univ_subset, simpa [s_dense] using closure_mono hu end /-- A sequence dense in a non-empty separable topological space. -/ def dense_seq [separable_space α] [nonempty α] : ℕ → α := classical.some (exists_dense_seq α) @[simp] lemma dense_seq_dense [separable_space α] [nonempty α] : closure (range $ dense_seq α) = univ := classical.some_spec (exists_dense_seq α) /-- A first-countable space is one in which every point has a countable neighborhood basis. -/ class first_countable_topology : Prop := (nhds_generated_countable : ∀a:α, (𝓝 a).is_countably_generated) namespace first_countable_topology variable {α} lemma tendsto_subseq [first_countable_topology α] {u : ℕ → α} {x : α} (hx : map_cluster_pt x at_top u) : ∃ (ψ : ℕ → ℕ), (strict_mono ψ) ∧ (tendsto (u ∘ ψ) at_top (𝓝 x)) := (nhds_generated_countable x).subseq_tendsto hx end first_countable_topology variables {α} lemma is_countably_generated_nhds [first_countable_topology α] (x : α) : is_countably_generated (𝓝 x) := first_countable_topology.nhds_generated_countable x lemma is_countably_generated_nhds_within [first_countable_topology α] (x : α) (s : set α) : is_countably_generated (𝓝[s] x) := (is_countably_generated_nhds x).inf_principal s variable (α) /-- A second-countable space is one with a countable basis. -/ class second_countable_topology : Prop := (is_open_generated_countable [] : ∃b:set (set α), countable b ∧ t = topological_space.generate_from b) @[priority 100] -- see Note [lower instance priority] instance second_countable_topology.to_first_countable_topology [second_countable_topology α] : first_countable_topology α := let ⟨b, hb, eq⟩ := second_countable_topology.is_open_generated_countable α in ⟨begin intros, rw [eq, nhds_generate_from], exact is_countably_generated_binfi_principal (hb.mono (assume x, and.right)), end⟩ lemma second_countable_topology_induced (β) [t : topological_space β] [second_countable_topology β] (f : α → β) : @second_countable_topology α (t.induced f) := begin rcases second_countable_topology.is_open_generated_countable β with ⟨b, hb, eq⟩, refine { is_open_generated_countable := ⟨preimage f '' b, hb.image _, _⟩ }, rw [eq, induced_generate_from_eq] end instance subtype.second_countable_topology (s : set α) [second_countable_topology α] : second_countable_topology s := second_countable_topology_induced s α coe lemma is_open_generated_countable_inter [second_countable_topology α] : ∃b:set (set α), countable b ∧ ∅ ∉ b ∧ is_topological_basis b := let ⟨b, hb₁, hb₂⟩ := second_countable_topology.is_open_generated_countable α in let b' := (λs, ⋂₀ s) '' {s:set (set α) | finite s ∧ s ⊆ b ∧ (⋂₀ s).nonempty} in ⟨b', ((countable_set_of_finite_subset hb₁).mono (by { simp only [← and_assoc], apply inter_subset_left })).image _, assume ⟨s, ⟨_, _, hn⟩, hp⟩, absurd hn (not_nonempty_iff_eq_empty.2 hp), is_topological_basis_of_subbasis hb₂⟩ /- TODO: more fine grained instances for first_countable_topology, separable_space, t2_space, ... -/ instance {β : Type*} [topological_space β] [second_countable_topology α] [second_countable_topology β] : second_countable_topology (α × β) := ⟨let ⟨a, ha₁, ha₂, ha₃, ha₄, ha₅⟩ := is_open_generated_countable_inter α in let ⟨b, hb₁, hb₂, hb₃, hb₄, hb₅⟩ := is_open_generated_countable_inter β in ⟨{g | ∃u∈a, ∃v∈b, g = set.prod u v}, have {g | ∃u∈a, ∃v∈b, g = set.prod u v} = (⋃u∈a, ⋃v∈b, {set.prod u v}), by apply set.ext; simp, by rw [this]; exact (ha₁.bUnion $ assume u hu, hb₁.bUnion $ by simp), by rw [ha₅, hb₅, prod_generate_from_generate_from_eq ha₄ hb₄]⟩⟩ instance second_countable_topology_fintype {ι : Type*} {π : ι → Type*} [fintype ι] [t : ∀a, topological_space (π a)] [sc : ∀a, second_countable_topology (π a)] : second_countable_topology (∀a, π a) := have ∀i, ∃b : set (set (π i)), countable b ∧ ∅ ∉ b ∧ is_topological_basis b, from assume a, @is_open_generated_countable_inter (π a) _ (sc a), let ⟨g, hg⟩ := classical.axiom_of_choice this in have t = (λa, generate_from (g a)), from funext $ assume a, (hg a).2.2.2.2, begin constructor, refine ⟨pi univ '' pi univ g, countable.image _ _, _⟩, { suffices : countable {f : Πa, set (π a) | ∀a, f a ∈ g a}, { simpa [pi] }, exact countable_pi (assume i, (hg i).1), }, rw [this, pi_generate_from_eq_fintype], { congr' 1 with f, simp [pi, eq_comm] }, exact assume a, (hg a).2.2.2.1 end @[priority 100] -- see Note [lower instance priority] instance second_countable_topology.to_separable_space [second_countable_topology α] : separable_space α := begin rcases is_open_generated_countable_inter α with ⟨b, hbc, hbne, hb, hbU, eq⟩, set S : α → set (set α) := λ a, {s : set α | a ∈ s ∧ s ∈ b}, have nhds_eq : ∀a, 𝓝 a = (⨅ s ∈ S a, 𝓟 s), { intro a, rw [eq, nhds_generate_from] }, have : ∀ s ∈ b, set.nonempty s := assume s hs, ne_empty_iff_nonempty.1 $ λ eq, absurd hs (eq.symm ▸ hbne), choose f hf, refine ⟨⟨⋃ s ∈ b, {f s ‹_›}, hbc.bUnion (λ _ _, countable_singleton _), _⟩⟩, refine eq_univ_of_forall (λ a, _), suffices : (⨅ s ∈ S a, 𝓟 (s ∩ ⋃ t ∈ b, {f t ‹_›})).ne_bot, { obtain ⟨t, htb, hta⟩ : a ∈ ⋃₀ b, { simp only [hbU] }, have A : ∃ s, s ∈ S a := ⟨t, hta, htb⟩, simpa only [← inf_principal, mem_closure_iff_cluster_pt, cluster_pt, nhds_eq, binfi_inf A] using this }, rw [infi_subtype'], haveI : nonempty α := ⟨a⟩, refine infi_ne_bot_of_directed _ _, { rintros ⟨s₁, has₁, hs₁⟩ ⟨s₂, has₂, hs₂⟩, obtain ⟨t, htb, hta, ht⟩ : ∃ t ∈ b, a ∈ t ∧ t ⊆ s₁ ∩ s₂, from hb _ hs₁ _ hs₂ a ⟨has₁, has₂⟩, refine ⟨⟨t, hta, htb⟩, _⟩, simp only [subset_inter_iff] at ht, simp only [principal_mono, subtype.coe_mk, (≥)], exact ⟨inter_subset_inter_left _ ht.1, inter_subset_inter_left _ ht.2⟩ }, rintros ⟨s, hsa, hsb⟩, suffices : (s ∩ ⋃ t ∈ b, {f t ‹_›}).nonempty, { simpa [principal_ne_bot_iff] }, refine ⟨_, hf _ hsb, _⟩, simp only [mem_Union], exact ⟨s, hsb, rfl⟩ end variables {α} lemma is_open_Union_countable [second_countable_topology α] {ι} (s : ι → set α) (H : ∀ i, is_open (s i)) : ∃ T : set ι, countable T ∧ (⋃ i ∈ T, s i) = ⋃ i, s i := let ⟨B, cB, _, bB⟩ := is_open_generated_countable_inter α in begin let B' := {b ∈ B | ∃ i, b ⊆ s i}, choose f hf using λ b:B', b.2.2, haveI : encodable B' := (cB.mono (sep_subset _ _)).to_encodable, refine ⟨_, countable_range f, subset.antisymm (bUnion_subset_Union _ _) (sUnion_subset _)⟩, rintro _ ⟨i, rfl⟩ x xs, rcases mem_basis_subset_of_mem_open bB xs (H _) with ⟨b, hb, xb, bs⟩, exact ⟨_, ⟨_, rfl⟩, _, ⟨⟨⟨_, hb, _, bs⟩, rfl⟩, rfl⟩, hf _ (by exact xb)⟩ end lemma is_open_sUnion_countable [second_countable_topology α] (S : set (set α)) (H : ∀ s ∈ S, is_open s) : ∃ T : set (set α), countable T ∧ T ⊆ S ∧ ⋃₀ T = ⋃₀ S := let ⟨T, cT, hT⟩ := is_open_Union_countable (λ s:S, s.1) (λ s, H s.1 s.2) in ⟨subtype.val '' T, cT.image _, image_subset_iff.2 $ λ ⟨x, xs⟩ xt, xs, by rwa [sUnion_image, sUnion_eq_Union]⟩ end topological_space
89c2b9b19de256bff77bc302b3e81cedb7827ef3
9be442d9ec2fcf442516ed6e9e1660aa9071b7bd
/stage0/src/Lean/DeclarationRange.lean
1a8e7e369ce5fb49608ef2030f424dc181c3c8e3
[ "Apache-2.0", "LLVM-exception", "NCSA", "LGPL-3.0-only", "LicenseRef-scancode-inner-net-2.0", "BSD-3-Clause", "LGPL-2.0-or-later", "Spencer-94", "LGPL-2.1-or-later", "HPND", "LicenseRef-scancode-pcre", "ISC", "LGPL-2.1-only", "LicenseRef-scancode-other-permissive", "SunPro", "CMU-Mach" ]
permissive
EdAyers/lean4
57ac632d6b0789cb91fab2170e8c9e40441221bd
37ba0df5841bde51dbc2329da81ac23d4f6a4de4
refs/heads/master
1,676,463,245,298
1,660,619,433,000
1,660,619,433,000
183,433,437
1
0
Apache-2.0
1,657,612,672,000
1,556,196,574,000
Lean
UTF-8
Lean
false
false
2,510
lean
/- Copyright (c) 2021 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura -/ import Lean.MonadEnv import Lean.AuxRecursor import Lean.ToExpr namespace Lean /-- Store position information for declarations. -/ structure DeclarationRange where pos : Position /-- A precomputed UTF-16 `character` field as in `Lean.Lsp.Position`. We need to store this because LSP clients want us to report the range in terms of UTF-16, but converting a Unicode codepoint stored in `Lean.Position` to UTF-16 requires loading and mapping the target source file, which is IO-heavy. -/ charUtf16 : Nat endPos : Position /-- See `charUtf16`. -/ endCharUtf16 : Nat deriving Inhabited, DecidableEq, Repr instance : ToExpr DeclarationRange where toExpr r := mkAppN (mkConst ``DeclarationRange.mk) #[toExpr r.pos, toExpr r.charUtf16, toExpr r.endPos, toExpr r.endCharUtf16] toTypeExpr := mkConst ``DeclarationRange structure DeclarationRanges where range : DeclarationRange selectionRange : DeclarationRange deriving Inhabited, Repr instance : ToExpr DeclarationRanges where toExpr r := mkAppN (mkConst ``DeclarationRanges.mk) #[toExpr r.range, toExpr r.selectionRange] toTypeExpr := mkConst ``DeclarationRanges builtin_initialize builtinDeclRanges : IO.Ref (NameMap DeclarationRanges) ← IO.mkRef {} builtin_initialize declRangeExt : MapDeclarationExtension DeclarationRanges ← mkMapDeclarationExtension `declranges def addBuiltinDeclarationRanges (declName : Name) (declRanges : DeclarationRanges) : IO Unit := builtinDeclRanges.modify (·.insert declName declRanges) def addDeclarationRanges [MonadEnv m] (declName : Name) (declRanges : DeclarationRanges) : m Unit := modifyEnv fun env => declRangeExt.insert env declName declRanges def findDeclarationRangesCore? [Monad m] [MonadEnv m] (declName : Name) : m (Option DeclarationRanges) := return declRangeExt.find? (← getEnv) declName def findDeclarationRanges? [Monad m] [MonadEnv m] [MonadLiftT IO m] (declName : Name) : m (Option DeclarationRanges) := do let env ← getEnv let ranges ← if isAuxRecursor env declName || isNoConfusion env declName || (← isRec declName) then findDeclarationRangesCore? declName.getPrefix else findDeclarationRangesCore? declName match ranges with | none => return (← builtinDeclRanges.get (m := IO)).find? declName | some _ => return ranges end Lean
c99e3e5351b0840d2cce5a2e9fe63a70f4422a33
a975e2962782fb953969766cc7133ba18aaa60c9
/src/alc.lean
e5ce602f4a022379627d58fa9d08f12a79b37fb8
[]
no_license
leodemoura/alc-lean
f3d3efa0f11b0a663ea74c74c10085212ba52295
6e3fce980ec3bb95aeda667062da86a45036fce9
refs/heads/master
1,678,082,711,848
1,612,907,314,000
1,612,907,314,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
2,873
lean
import data.set open set namespace ALC inductive Role (AtomicRole : Type) : Type | Atomic : AtomicRole → Role inductive Concept (AtomicConcept AtomicRole : Type) : Type | TopConcept : Concept | BottomConcept : Concept | Atomic : AtomicConcept → Concept | Negation : Concept → Concept | Intersection : Concept → Concept → Concept | Union : Concept → Concept → Concept | Some : Role AtomicRole → Concept → Concept | Every : Role AtomicRole → Concept → Concept open Concept Role -- notation `⊤` := Concept.TopConcept -- \top -- notation `⊥` := Concept.BottomConcept -- \bot -- prefix `¬` := Concept.Negation -- \neg -- infix `⊓` :51 := Concept.Intersection -- \sqcap -- infix `⊔` :51 := Concept.Union -- \sqcup -- notation `Some` R . C := Concept.Ex R C -- notation `Only` R . C := Concept.Al R C -- interpretation structure structure Interpretation (AtomicConcept AtomicRole : Type) := mk :: (δ : Type) (atom_C : AtomicConcept → set δ) (atom_R : AtomicRole → set (δ × δ)) variables {AtomicConcept AtomicRole : Type} -- role interpretation definition r_interp {I : Interpretation AtomicConcept AtomicRole} : Role AtomicRole → set (I.δ × I.δ) | (Role.Atomic R) := I.atom_R R -- concept interpretation definition interp {I : Interpretation AtomicConcept AtomicRole} : Concept AtomicConcept AtomicRole → set I.δ | TopConcept := univ | BottomConcept := ∅ | (Atomic C) := I.atom_C C | (Negation C) := compl (interp C) | (Intersection C1 C2) := (interp C1) ∩ (interp C2) | (Union C1 C2) := (interp C1) ∪ (interp C2) | (Some R C) := { a: I.δ | ∃ b : I.δ, (a, b) ∈ (@r_interp _ _ I R) ∧ b ∈ (interp C) } | (Every R C) := { a: I.δ | ∀ b : I.δ, (a, b) ∈ (@r_interp _ _ I R) → b ∈ (interp C) } end ALC namespace test open ALC open ALC.Concept inductive ac : Type | man : ac | woman : ac inductive ar : Type | hasChild : ar open ac open ar def ic : ac → set ℕ | man := ({2,4} : set ℕ) | woman := ({1,3} : set ℕ) def ir : ar → set (ℕ × ℕ) | hasChild := ({(1,2),(4,3)} : set (ℕ × ℕ)) def i := Interpretation.mk ℕ ic ir #check Concept.Atomic man -- ∀ hasChild.man (the concept of all things such that all its fillers -- for the role 'hasChild' are of type 'man') #reduce @interp ac ar i (Every (Role.Atomic hasChild) (Concept.Atomic man)) #reduce interp (Every (Role.Atomic hasChild) (Concept.Atomic man)) end test /- References: - DL Prime: https://arxiv.org/abs/1201.4089v3 -/
aaf3a33d2acad351c22765d984b2986e7cea8101
4efff1f47634ff19e2f786deadd394270a59ecd2
/src/analysis/specific_limits.lean
72b1360fa1665d57d8b192794b6381753900ef59
[ "Apache-2.0" ]
permissive
agjftucker/mathlib
d634cd0d5256b6325e3c55bb7fb2403548371707
87fe50de17b00af533f72a102d0adefe4a2285e8
refs/heads/master
1,625,378,131,941
1,599,166,526,000
1,599,166,526,000
160,748,509
0
0
Apache-2.0
1,544,141,789,000
1,544,141,789,000
null
UTF-8
Lean
false
false
30,200
lean
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl A collection of specific limit computations. -/ import analysis.normed_space.basic import algebra.geom_sum import topology.instances.ennreal import tactic.ring_exp noncomputable theory open_locale classical topological_space open classical function filter finset metric open_locale big_operators variables {α : Type*} {β : Type*} {ι : Type*} lemma tendsto_norm_at_top_at_top : tendsto (norm : ℝ → ℝ) at_top at_top := tendsto_abs_at_top_at_top /-- If a function tends to infinity along a filter, then this function multiplied by a positive constant (on the left) also tends to infinity. The archimedean assumption is convenient to get a statement that works on `ℕ`, `ℤ` and `ℝ`, although not necessary (a version in ordered fields is given in `tendsto_at_top_mul_left'`). -/ lemma tendsto_at_top_mul_left [decidable_linear_ordered_semiring α] [archimedean α] {l : filter β} {r : α} (hr : 0 < r) {f : β → α} (hf : tendsto f l at_top) : tendsto (λx, r * f x) l at_top := begin apply (tendsto_at_top _ _).2 (λb, _), obtain ⟨n : ℕ, hn : 1 ≤ n •ℕ r⟩ := archimedean.arch 1 hr, have hn' : 1 ≤ r * n, by rwa nsmul_eq_mul' at hn, filter_upwards [(tendsto_at_top _ _).1 hf (n * max b 0)], assume x hx, calc b ≤ 1 * max b 0 : by { rw [one_mul], exact le_max_left _ _ } ... ≤ (r * n) * max b 0 : mul_le_mul_of_nonneg_right hn' (le_max_right _ _) ... = r * (n * max b 0) : by rw [mul_assoc] ... ≤ r * f x : mul_le_mul_of_nonneg_left hx (le_of_lt hr) end /-- If a function tends to infinity along a filter, then this function multiplied by a positive constant (on the right) also tends to infinity. The archimedean assumption is convenient to get a statement that works on `ℕ`, `ℤ` and `ℝ`, although not necessary (a version in ordered fields is given in `tendsto_at_top_mul_right'`). -/ lemma tendsto_at_top_mul_right [decidable_linear_ordered_semiring α] [archimedean α] {l : filter β} {r : α} (hr : 0 < r) {f : β → α} (hf : tendsto f l at_top) : tendsto (λx, f x * r) l at_top := begin apply (tendsto_at_top _ _).2 (λb, _), obtain ⟨n : ℕ, hn : 1 ≤ n •ℕ r⟩ := archimedean.arch 1 hr, have hn' : 1 ≤ (n : α) * r, by rwa nsmul_eq_mul at hn, filter_upwards [(tendsto_at_top _ _).1 hf (max b 0 * n)], assume x hx, calc b ≤ max b 0 * 1 : by { rw [mul_one], exact le_max_left _ _ } ... ≤ max b 0 * (n * r) : mul_le_mul_of_nonneg_left hn' (le_max_right _ _) ... = (max b 0 * n) * r : by rw [mul_assoc] ... ≤ f x * r : mul_le_mul_of_nonneg_right hx (le_of_lt hr) end /-- If a function tends to infinity along a filter, then this function multiplied by a positive constant (on the left) also tends to infinity. For a version working in `ℕ` or `ℤ`, use `tendsto_at_top_mul_left` instead. -/ lemma tendsto_at_top_mul_left' [linear_ordered_field α] {l : filter β} {r : α} (hr : 0 < r) {f : β → α} (hf : tendsto f l at_top) : tendsto (λx, r * f x) l at_top := begin apply (tendsto_at_top _ _).2 (λb, _), filter_upwards [(tendsto_at_top _ _).1 hf (b/r)], assume x hx, simpa [div_le_iff' hr] using hx end /-- If a function tends to infinity along a filter, then this function multiplied by a positive constant (on the right) also tends to infinity. For a version working in `ℕ` or `ℤ`, use `tendsto_at_top_mul_right` instead. -/ lemma tendsto_at_top_mul_right' [linear_ordered_field α] {l : filter β} {r : α} (hr : 0 < r) {f : β → α} (hf : tendsto f l at_top) : tendsto (λx, f x * r) l at_top := by simpa [mul_comm] using tendsto_at_top_mul_left' hr hf /-- If a function tends to infinity along a filter, then this function divided by a positive constant also tends to infinity. -/ lemma tendsto_at_top_div [linear_ordered_field α] {l : filter β} {r : α} (hr : 0 < r) {f : β → α} (hf : tendsto f l at_top) : tendsto (λx, f x / r) l at_top := tendsto_at_top_mul_right' (inv_pos.2 hr) hf /-- The function `x ↦ x⁻¹` tends to `+∞` on the right of `0`. -/ lemma tendsto_inv_zero_at_top [discrete_linear_ordered_field α] [topological_space α] [order_topology α] : tendsto (λx:α, x⁻¹) (𝓝[set.Ioi (0:α)] 0) at_top := begin apply (tendsto_at_top _ _).2 (λb, _), refine mem_nhds_within_Ioi_iff_exists_Ioo_subset.2 ⟨(max b 1)⁻¹, by simp [zero_lt_one], λx hx, _⟩, calc b ≤ max b 1 : le_max_left _ _ ... ≤ x⁻¹ : begin apply (le_inv _ hx.1).2 (le_of_lt hx.2), exact lt_of_lt_of_le zero_lt_one (le_max_right _ _) end end /-- The function `r ↦ r⁻¹` tends to `0` on the right as `r → +∞`. -/ lemma tendsto_inv_at_top_zero' [discrete_linear_ordered_field α] [topological_space α] [order_topology α] : tendsto (λr:α, r⁻¹) at_top (𝓝[set.Ioi (0:α)] 0) := begin assume s hs, rw mem_nhds_within_Ioi_iff_exists_Ioc_subset at hs, rcases hs with ⟨C, C0, hC⟩, change 0 < C at C0, refine filter.mem_map.2 (mem_sets_of_superset (mem_at_top C⁻¹) (λ x hx, hC _)), have : 0 < x, from lt_of_lt_of_le (inv_pos.2 C0) hx, exact ⟨inv_pos.2 this, (inv_le C0 this).1 hx⟩ end lemma tendsto_inv_at_top_zero [discrete_linear_ordered_field α] [topological_space α] [order_topology α] : tendsto (λr:α, r⁻¹) at_top (𝓝 0) := tendsto_inv_at_top_zero'.mono_right inf_le_left lemma summable_of_absolute_convergence_real {f : ℕ → ℝ} : (∃r, tendsto (λn, (∑ i in range n, abs (f i))) at_top (𝓝 r)) → summable f | ⟨r, hr⟩ := begin refine summable_of_summable_norm ⟨r, (has_sum_iff_tendsto_nat_of_nonneg _ _).2 _⟩, exact assume i, norm_nonneg _, simpa only using hr end lemma tendsto_inverse_at_top_nhds_0_nat : tendsto (λ n : ℕ, (n : ℝ)⁻¹) at_top (𝓝 0) := tendsto_inv_at_top_zero.comp (tendsto_coe_nat_real_at_top_iff.2 tendsto_id) lemma tendsto_const_div_at_top_nhds_0_nat (C : ℝ) : tendsto (λ n : ℕ, C / n) at_top (𝓝 0) := by simpa only [mul_zero] using tendsto_const_nhds.mul tendsto_inverse_at_top_nhds_0_nat lemma nnreal.tendsto_inverse_at_top_nhds_0_nat : tendsto (λ n : ℕ, (n : nnreal)⁻¹) at_top (𝓝 0) := by { rw ← nnreal.tendsto_coe, convert tendsto_inverse_at_top_nhds_0_nat, simp } lemma nnreal.tendsto_const_div_at_top_nhds_0_nat (C : nnreal) : tendsto (λ n : ℕ, C / n) at_top (𝓝 0) := by simpa using tendsto_const_nhds.mul nnreal.tendsto_inverse_at_top_nhds_0_nat lemma tendsto_one_div_add_at_top_nhds_0_nat : tendsto (λ n : ℕ, 1 / ((n : ℝ) + 1)) at_top (𝓝 0) := suffices tendsto (λ n : ℕ, 1 / (↑(n + 1) : ℝ)) at_top (𝓝 0), by simpa, (tendsto_add_at_top_iff_nat 1).2 (tendsto_const_div_at_top_nhds_0_nat 1) /-! ### Powers -/ lemma tendsto_add_one_pow_at_top_at_top_of_pos [linear_ordered_semiring α] [archimedean α] {r : α} (h : 0 < r) : tendsto (λ n:ℕ, (r + 1)^n) at_top at_top := tendsto_at_top_at_top_of_monotone' (λ n m, pow_le_pow (le_add_of_nonneg_left (le_of_lt h))) $ not_bdd_above_iff.2 $ λ x, set.exists_range_iff.2 $ add_one_pow_unbounded_of_pos _ h lemma tendsto_pow_at_top_at_top_of_one_lt [linear_ordered_ring α] [archimedean α] {r : α} (h : 1 < r) : tendsto (λn:ℕ, r ^ n) at_top at_top := sub_add_cancel r 1 ▸ tendsto_add_one_pow_at_top_at_top_of_pos (sub_pos.2 h) lemma nat.tendsto_pow_at_top_at_top_of_one_lt {m : ℕ} (h : 1 < m) : tendsto (λn:ℕ, m ^ n) at_top at_top := begin simp only [← nat.pow_eq_pow], exact nat.sub_add_cancel (le_of_lt h) ▸ tendsto_add_one_pow_at_top_at_top_of_pos (nat.sub_pos_of_lt h) end lemma lim_norm_zero' {𝕜 : Type*} [normed_group 𝕜] : tendsto (norm : 𝕜 → ℝ) (𝓝[{x | x ≠ 0}] 0) (𝓝[set.Ioi 0] 0) := lim_norm_zero.inf $ tendsto_principal_principal.2 $ λ x hx, norm_pos_iff.2 hx lemma normed_field.tendsto_norm_inverse_nhds_within_0_at_top {𝕜 : Type*} [normed_field 𝕜] : tendsto (λ x:𝕜, ∥x⁻¹∥) (𝓝[{x | x ≠ 0}] 0) at_top := (tendsto_inv_zero_at_top.comp lim_norm_zero').congr $ λ x, (normed_field.norm_inv x).symm lemma tendsto_pow_at_top_nhds_0_of_lt_1 {r : ℝ} (h₁ : 0 ≤ r) (h₂ : r < 1) : tendsto (λn:ℕ, r^n) at_top (𝓝 0) := by_cases (assume : r = 0, (tendsto_add_at_top_iff_nat 1).mp $ by simp [pow_succ, this, tendsto_const_nhds]) (assume : r ≠ 0, have tendsto (λn, (r⁻¹ ^ n)⁻¹) at_top (𝓝 0), from tendsto_inv_at_top_zero.comp (tendsto_pow_at_top_at_top_of_one_lt $ one_lt_inv (lt_of_le_of_ne h₁ this.symm) h₂), tendsto.congr' (univ_mem_sets' $ by simp *) this) lemma geom_lt {u : ℕ → ℝ} {k : ℝ} (hk : 0 < k) {n : ℕ} (h : ∀ m ≤ n, k*u m < u (m + 1)) : k^(n + 1) *u 0 < u (n + 1) := begin induction n with n ih, { simpa using h 0 (le_refl _) }, have : (∀ (m : ℕ), m ≤ n → k * u m < u (m + 1)), intros m hm, apply h, exact nat.le_succ_of_le hm, specialize ih this, change k ^ (n + 2) * u 0 < u (n + 2), replace h : k * u (n + 1) < u (n + 2) := h (n+1) (le_refl _), calc k ^ (n + 2) * u 0 = k*(k ^ (n + 1) * u 0) : by ring_exp ... < k*(u (n + 1)) : mul_lt_mul_of_pos_left ih hk ... < u (n + 2) : h, end /-- If a sequence `v` of real numbers satisfies `k*v n < v (n+1)` with `1 < k`, then it goes to +∞. -/ lemma tendsto_at_top_of_geom_lt {v : ℕ → ℝ} {k : ℝ} (h₀ : 0 < v 0) (hk : 1 < k) (hu : ∀ n, k*v n < v (n+1)) : tendsto v at_top at_top := begin apply tendsto_at_top_mono, show ∀ n, k^n*v 0 ≤ v n, { intro n, induction n with n ih, { simp }, calc k ^ (n + 1) * v 0 = k*(k^n*v 0) : by ring_exp ... ≤ k*v n : mul_le_mul_of_nonneg_left ih (by linarith) ... ≤ v (n + 1) : le_of_lt (hu n) }, apply tendsto_at_top_mul_right h₀, exact tendsto_pow_at_top_at_top_of_one_lt hk, end lemma nnreal.tendsto_pow_at_top_nhds_0_of_lt_1 {r : nnreal} (hr : r < 1) : tendsto (λ n:ℕ, r^n) at_top (𝓝 0) := nnreal.tendsto_coe.1 $ by simp only [nnreal.coe_pow, nnreal.coe_zero, tendsto_pow_at_top_nhds_0_of_lt_1 r.coe_nonneg hr] lemma ennreal.tendsto_pow_at_top_nhds_0_of_lt_1 {r : ennreal} (hr : r < 1) : tendsto (λ n:ℕ, r^n) at_top (𝓝 0) := begin rcases ennreal.lt_iff_exists_coe.1 hr with ⟨r, rfl, hr'⟩, rw [← ennreal.coe_zero], norm_cast at *, apply nnreal.tendsto_pow_at_top_nhds_0_of_lt_1 hr end /-- In a normed ring, the powers of an element x with `∥x∥ < 1` tend to zero. -/ lemma tendsto_pow_at_top_nhds_0_of_norm_lt_1 {R : Type*} [normed_ring R] {x : R} (h : ∥x∥ < 1) : tendsto (λ (n : ℕ), x ^ n) at_top (𝓝 0) := begin apply squeeze_zero_norm' (eventually_norm_pow_le x), exact tendsto_pow_at_top_nhds_0_of_lt_1 (norm_nonneg _) h, end lemma tendsto_pow_at_top_nhds_0_of_abs_lt_1 {r : ℝ} (h : abs r < 1) : tendsto (λn:ℕ, r^n) at_top (𝓝 0) := tendsto_pow_at_top_nhds_0_of_norm_lt_1 h /-! ### Geometric series-/ section geometric lemma has_sum_geometric_of_lt_1 {r : ℝ} (h₁ : 0 ≤ r) (h₂ : r < 1) : has_sum (λn:ℕ, r ^ n) (1 - r)⁻¹ := have r ≠ 1, from ne_of_lt h₂, have r + -1 ≠ 0, by rw [←sub_eq_add_neg, ne, sub_eq_iff_eq_add]; simp; assumption, have tendsto (λn, (r ^ n - 1) * (r - 1)⁻¹) at_top (𝓝 ((0 - 1) * (r - 1)⁻¹)), from ((tendsto_pow_at_top_nhds_0_of_lt_1 h₁ h₂).sub tendsto_const_nhds).mul tendsto_const_nhds, have (λ n, (∑ i in range n, r ^ i)) = (λ n, geom_series r n) := rfl, (has_sum_iff_tendsto_nat_of_nonneg (pow_nonneg h₁) _).mpr $ by simp [neg_inv, geom_sum, div_eq_mul_inv, *] at * lemma summable_geometric_of_lt_1 {r : ℝ} (h₁ : 0 ≤ r) (h₂ : r < 1) : summable (λn:ℕ, r ^ n) := ⟨_, has_sum_geometric_of_lt_1 h₁ h₂⟩ lemma tsum_geometric_of_lt_1 {r : ℝ} (h₁ : 0 ≤ r) (h₂ : r < 1) : (∑'n:ℕ, r ^ n) = (1 - r)⁻¹ := (has_sum_geometric_of_lt_1 h₁ h₂).tsum_eq lemma has_sum_geometric_two : has_sum (λn:ℕ, ((1:ℝ)/2) ^ n) 2 := by convert has_sum_geometric_of_lt_1 _ _; norm_num lemma summable_geometric_two : summable (λn:ℕ, ((1:ℝ)/2) ^ n) := ⟨_, has_sum_geometric_two⟩ lemma tsum_geometric_two : (∑'n:ℕ, ((1:ℝ)/2) ^ n) = 2 := has_sum_geometric_two.tsum_eq lemma sum_geometric_two_le (n : ℕ) : ∑ (i : ℕ) in range n, (1 / (2 : ℝ)) ^ i ≤ 2 := begin have : ∀ i, 0 ≤ (1 / (2 : ℝ)) ^ i, { intro i, apply pow_nonneg, norm_num }, convert sum_le_tsum (range n) (λ i _, this i) summable_geometric_two, exact tsum_geometric_two.symm end lemma has_sum_geometric_two' (a : ℝ) : has_sum (λn:ℕ, (a / 2) / 2 ^ n) a := begin convert has_sum.mul_left (a / 2) (has_sum_geometric_of_lt_1 (le_of_lt one_half_pos) one_half_lt_one), { funext n, simp, refl, }, { norm_num } end lemma summable_geometric_two' (a : ℝ) : summable (λ n:ℕ, (a / 2) / 2 ^ n) := ⟨a, has_sum_geometric_two' a⟩ lemma tsum_geometric_two' (a : ℝ) : (∑' n:ℕ, (a / 2) / 2^n) = a := (has_sum_geometric_two' a).tsum_eq lemma nnreal.has_sum_geometric {r : nnreal} (hr : r < 1) : has_sum (λ n : ℕ, r ^ n) (1 - r)⁻¹ := begin apply nnreal.has_sum_coe.1, push_cast, rw [nnreal.coe_sub (le_of_lt hr)], exact has_sum_geometric_of_lt_1 r.coe_nonneg hr end lemma nnreal.summable_geometric {r : nnreal} (hr : r < 1) : summable (λn:ℕ, r ^ n) := ⟨_, nnreal.has_sum_geometric hr⟩ lemma tsum_geometric_nnreal {r : nnreal} (hr : r < 1) : (∑'n:ℕ, r ^ n) = (1 - r)⁻¹ := (nnreal.has_sum_geometric hr).tsum_eq /-- The series `pow r` converges to `(1-r)⁻¹`. For `r < 1` the RHS is a finite number, and for `1 ≤ r` the RHS equals `∞`. -/ lemma ennreal.tsum_geometric (r : ennreal) : (∑'n:ℕ, r ^ n) = (1 - r)⁻¹ := begin cases lt_or_le r 1 with hr hr, { rcases ennreal.lt_iff_exists_coe.1 hr with ⟨r, rfl, hr'⟩, norm_cast at *, convert ennreal.tsum_coe_eq (nnreal.has_sum_geometric hr), rw [ennreal.coe_inv $ ne_of_gt $ nnreal.sub_pos.2 hr] }, { rw [ennreal.sub_eq_zero_of_le hr, ennreal.inv_zero, ennreal.tsum_eq_supr_nat, supr_eq_top], refine λ a ha, (ennreal.exists_nat_gt (lt_top_iff_ne_top.1 ha)).imp (λ n hn, lt_of_lt_of_le hn _), have : ∀ k:ℕ, 1 ≤ r^k, by simpa using canonically_ordered_semiring.pow_le_pow_of_le_left hr, calc (n:ennreal) = (∑ i in range n, 1) : by rw [sum_const, nsmul_one, card_range] ... ≤ ∑ i in range n, r ^ i : sum_le_sum (λ k _, this k) } end variables {K : Type*} [normed_field K] {ξ : K} lemma has_sum_geometric_of_norm_lt_1 (h : ∥ξ∥ < 1) : has_sum (λn:ℕ, ξ ^ n) (1 - ξ)⁻¹ := begin have xi_ne_one : ξ ≠ 1, by { contrapose! h, simp [h] }, have A : tendsto (λn, (ξ ^ n - 1) * (ξ - 1)⁻¹) at_top (𝓝 ((0 - 1) * (ξ - 1)⁻¹)), from ((tendsto_pow_at_top_nhds_0_of_norm_lt_1 h).sub tendsto_const_nhds).mul tendsto_const_nhds, have B : (λ n, (∑ i in range n, ξ ^ i)) = (λ n, geom_series ξ n) := rfl, rw [has_sum_iff_tendsto_nat_of_summable_norm, B], { simpa [geom_sum, xi_ne_one, neg_inv] using A }, { simp [normed_field.norm_pow, summable_geometric_of_lt_1 (norm_nonneg _) h] } end lemma summable_geometric_of_norm_lt_1 (h : ∥ξ∥ < 1) : summable (λn:ℕ, ξ ^ n) := ⟨_, has_sum_geometric_of_norm_lt_1 h⟩ lemma tsum_geometric_of_norm_lt_1 (h : ∥ξ∥ < 1) : (∑'n:ℕ, ξ ^ n) = (1 - ξ)⁻¹ := (has_sum_geometric_of_norm_lt_1 h).tsum_eq lemma has_sum_geometric_of_abs_lt_1 {r : ℝ} (h : abs r < 1) : has_sum (λn:ℕ, r ^ n) (1 - r)⁻¹ := has_sum_geometric_of_norm_lt_1 h lemma summable_geometric_of_abs_lt_1 {r : ℝ} (h : abs r < 1) : summable (λn:ℕ, r ^ n) := summable_geometric_of_norm_lt_1 h lemma tsum_geometric_of_abs_lt_1 {r : ℝ} (h : abs r < 1) : (∑'n:ℕ, r ^ n) = (1 - r)⁻¹ := tsum_geometric_of_norm_lt_1 h end geometric /-! ### Sequences with geometrically decaying distance in metric spaces In this paragraph, we discuss sequences in metric spaces or emetric spaces for which the distance between two consecutive terms decays geometrically. We show that such sequences are Cauchy sequences, and bound their distances to the limit. We also discuss series with geometrically decaying terms. -/ section edist_le_geometric variables [emetric_space α] (r C : ennreal) (hr : r < 1) (hC : C ≠ ⊤) {f : ℕ → α} (hu : ∀n, edist (f n) (f (n+1)) ≤ C * r^n) include hr hC hu /-- If `edist (f n) (f (n+1))` is bounded by `C * r^n`, `C ≠ ∞`, `r < 1`, then `f` is a Cauchy sequence.-/ lemma cauchy_seq_of_edist_le_geometric : cauchy_seq f := begin refine cauchy_seq_of_edist_le_of_tsum_ne_top _ hu _, rw [ennreal.tsum_mul_left, ennreal.tsum_geometric], refine ennreal.mul_ne_top hC (ennreal.inv_ne_top.2 _), exact ne_of_gt (ennreal.zero_lt_sub_iff_lt.2 hr) end omit hr hC /-- If `edist (f n) (f (n+1))` is bounded by `C * r^n`, then the distance from `f n` to the limit of `f` is bounded above by `C * r^n / (1 - r)`. -/ lemma edist_le_of_edist_le_geometric_of_tendsto {a : α} (ha : tendsto f at_top (𝓝 a)) (n : ℕ) : edist (f n) a ≤ (C * r^n) / (1 - r) := begin convert edist_le_tsum_of_edist_le_of_tendsto _ hu ha _, simp only [pow_add, ennreal.tsum_mul_left, ennreal.tsum_geometric, ennreal.div_def, mul_assoc] end /-- If `edist (f n) (f (n+1))` is bounded by `C * r^n`, then the distance from `f 0` to the limit of `f` is bounded above by `C / (1 - r)`. -/ lemma edist_le_of_edist_le_geometric_of_tendsto₀ {a : α} (ha : tendsto f at_top (𝓝 a)) : edist (f 0) a ≤ C / (1 - r) := by simpa only [pow_zero, mul_one] using edist_le_of_edist_le_geometric_of_tendsto r C hu ha 0 end edist_le_geometric section edist_le_geometric_two variables [emetric_space α] (C : ennreal) (hC : C ≠ ⊤) {f : ℕ → α} (hu : ∀n, edist (f n) (f (n+1)) ≤ C / 2^n) {a : α} (ha : tendsto f at_top (𝓝 a)) include hC hu /-- If `edist (f n) (f (n+1))` is bounded by `C * 2^-n`, then `f` is a Cauchy sequence.-/ lemma cauchy_seq_of_edist_le_geometric_two : cauchy_seq f := begin simp only [ennreal.div_def, ennreal.inv_pow] at hu, refine cauchy_seq_of_edist_le_geometric 2⁻¹ C _ hC hu, simp [ennreal.one_lt_two] end omit hC include ha /-- If `edist (f n) (f (n+1))` is bounded by `C * 2^-n`, then the distance from `f n` to the limit of `f` is bounded above by `2 * C * 2^-n`. -/ lemma edist_le_of_edist_le_geometric_two_of_tendsto (n : ℕ) : edist (f n) a ≤ 2 * C / 2^n := begin simp only [ennreal.div_def, ennreal.inv_pow] at hu, rw [ennreal.div_def, mul_assoc, mul_comm, ennreal.inv_pow], convert edist_le_of_edist_le_geometric_of_tendsto 2⁻¹ C hu ha n, rw [ennreal.one_sub_inv_two, ennreal.inv_inv] end /-- If `edist (f n) (f (n+1))` is bounded by `C * 2^-n`, then the distance from `f 0` to the limit of `f` is bounded above by `2 * C`. -/ lemma edist_le_of_edist_le_geometric_two_of_tendsto₀: edist (f 0) a ≤ 2 * C := by simpa only [pow_zero, ennreal.div_def, ennreal.inv_one, mul_one] using edist_le_of_edist_le_geometric_two_of_tendsto C hu ha 0 end edist_le_geometric_two section le_geometric variables [metric_space α] {r C : ℝ} (hr : r < 1) {f : ℕ → α} (hu : ∀n, dist (f n) (f (n+1)) ≤ C * r^n) include hr hu lemma aux_has_sum_of_le_geometric : has_sum (λ n : ℕ, C * r^n) (C / (1 - r)) := begin have h0 : 0 ≤ C, by simpa using le_trans dist_nonneg (hu 0), rcases eq_or_lt_of_le h0 with rfl | Cpos, { simp [has_sum_zero] }, { have rnonneg: r ≥ 0, from nonneg_of_mul_nonneg_left (by simpa only [pow_one] using le_trans dist_nonneg (hu 1)) Cpos, refine has_sum.mul_left C _, by simpa using has_sum_geometric_of_lt_1 rnonneg hr } end variables (r C) /-- If `dist (f n) (f (n+1))` is bounded by `C * r^n`, `r < 1`, then `f` is a Cauchy sequence. Note that this lemma does not assume `0 ≤ C` or `0 ≤ r`. -/ lemma cauchy_seq_of_le_geometric : cauchy_seq f := cauchy_seq_of_dist_le_of_summable _ hu ⟨_, aux_has_sum_of_le_geometric hr hu⟩ /-- If `dist (f n) (f (n+1))` is bounded by `C * r^n`, `r < 1`, then the distance from `f n` to the limit of `f` is bounded above by `C * r^n / (1 - r)`. -/ lemma dist_le_of_le_geometric_of_tendsto₀ {a : α} (ha : tendsto f at_top (𝓝 a)) : dist (f 0) a ≤ C / (1 - r) := (aux_has_sum_of_le_geometric hr hu).tsum_eq ▸ dist_le_tsum_of_dist_le_of_tendsto₀ _ hu ⟨_, aux_has_sum_of_le_geometric hr hu⟩ ha /-- If `dist (f n) (f (n+1))` is bounded by `C * r^n`, `r < 1`, then the distance from `f 0` to the limit of `f` is bounded above by `C / (1 - r)`. -/ lemma dist_le_of_le_geometric_of_tendsto {a : α} (ha : tendsto f at_top (𝓝 a)) (n : ℕ) : dist (f n) a ≤ (C * r^n) / (1 - r) := begin have := aux_has_sum_of_le_geometric hr hu, convert dist_le_tsum_of_dist_le_of_tendsto _ hu ⟨_, this⟩ ha n, simp only [pow_add, mul_left_comm C, mul_div_right_comm], rw [mul_comm], exact (this.mul_left _).tsum_eq.symm end omit hr hu variable (hu₂ : ∀ n, dist (f n) (f (n+1)) ≤ (C / 2) / 2^n) /-- If `dist (f n) (f (n+1))` is bounded by `(C / 2) / 2^n`, then `f` is a Cauchy sequence. -/ lemma cauchy_seq_of_le_geometric_two : cauchy_seq f := cauchy_seq_of_dist_le_of_summable _ hu₂ $ ⟨_, has_sum_geometric_two' C⟩ /-- If `dist (f n) (f (n+1))` is bounded by `(C / 2) / 2^n`, then the distance from `f 0` to the limit of `f` is bounded above by `C`. -/ lemma dist_le_of_le_geometric_two_of_tendsto₀ {a : α} (ha : tendsto f at_top (𝓝 a)) : dist (f 0) a ≤ C := (tsum_geometric_two' C) ▸ dist_le_tsum_of_dist_le_of_tendsto₀ _ hu₂ (summable_geometric_two' C) ha include hu₂ /-- If `dist (f n) (f (n+1))` is bounded by `(C / 2) / 2^n`, then the distance from `f n` to the limit of `f` is bounded above by `C / 2^n`. -/ lemma dist_le_of_le_geometric_two_of_tendsto {a : α} (ha : tendsto f at_top (𝓝 a)) (n : ℕ) : dist (f n) a ≤ C / 2^n := begin convert dist_le_tsum_of_dist_le_of_tendsto _ hu₂ (summable_geometric_two' C) ha n, simp only [add_comm n, pow_add, (div_div_eq_div_mul _ _ _).symm], symmetry, exact ((has_sum_geometric_two' C).mul_right _).tsum_eq end end le_geometric section summable_le_geometric variables [normed_group α] {r C : ℝ} {f : ℕ → α} lemma dist_partial_sum_le_of_le_geometric (hf : ∀n, ∥f n∥ ≤ C * r^n) (n : ℕ) : dist (∑ i in range n, f i) (∑ i in range (n+1), f i) ≤ C * r ^ n := begin rw [sum_range_succ, dist_eq_norm, ← norm_neg], convert hf n, rw [neg_sub, add_sub_cancel] end /-- If `∥f n∥ ≤ C * r ^ n` for all `n : ℕ` and some `r < 1`, then the partial sums of `f` form a Cauchy sequence. This lemma does not assume `0 ≤ r` or `0 ≤ C`. -/ lemma cauchy_seq_finset_of_geometric_bound (hr : r < 1) (hf : ∀n, ∥f n∥ ≤ C * r^n) : cauchy_seq (λ s : finset (ℕ), ∑ x in s, f x) := cauchy_seq_finset_of_norm_bounded _ (aux_has_sum_of_le_geometric hr (dist_partial_sum_le_of_le_geometric hf)).summable hf /-- If `∥f n∥ ≤ C * r ^ n` for all `n : ℕ` and some `r < 1`, then the partial sums of `f` are within distance `C * r ^ n / (1 - r)` of the sum of the series. This lemma does not assume `0 ≤ r` or `0 ≤ C`. -/ lemma norm_sub_le_of_geometric_bound_of_has_sum (hr : r < 1) (hf : ∀n, ∥f n∥ ≤ C * r^n) {a : α} (ha : has_sum f a) (n : ℕ) : ∥(∑ x in finset.range n, f x) - a∥ ≤ (C * r ^ n) / (1 - r) := begin rw ← dist_eq_norm, apply dist_le_of_le_geometric_of_tendsto r C hr (dist_partial_sum_le_of_le_geometric hf), exact ha.tendsto_sum_nat end end summable_le_geometric section normed_ring_geometric variables {R : Type*} [normed_ring R] [complete_space R] open normed_space /-- A geometric series in a complete normed ring is summable. Proved above (same name, different namespace) for not-necessarily-complete normed fields. -/ lemma normed_ring.summable_geometric_of_norm_lt_1 (x : R) (h : ∥x∥ < 1) : summable (λ (n:ℕ), x ^ n) := begin have h1 : summable (λ (n:ℕ), ∥x∥ ^ n) := summable_geometric_of_lt_1 (norm_nonneg _) h, refine summable_of_norm_bounded_eventually _ h1 _, rw nat.cofinite_eq_at_top, exact eventually_norm_pow_le x, end /-- Bound for the sum of a geometric series in a normed ring. This formula does not assume that the normed ring satisfies the axiom `∥1∥ = 1`. -/ lemma normed_ring.tsum_geometric_of_norm_lt_1 (x : R) (h : ∥x∥ < 1) : ∥(∑' (n:ℕ), x ^ n)∥ ≤ ∥(1:R)∥ - 1 + (1 - ∥x∥)⁻¹ := begin rw tsum_eq_zero_add (normed_ring.summable_geometric_of_norm_lt_1 x h), simp only [pow_zero], refine le_trans (norm_add_le _ _) _, have : ∥(∑' (b : ℕ), (λ n, x ^ (n + 1)) b)∥ ≤ (1 - ∥x∥)⁻¹ - 1, { refine tsum_of_norm_bounded _ (λ b, norm_pow_le _ (nat.succ_pos b)), convert (has_sum_nat_add_iff' 1).mpr (has_sum_geometric_of_lt_1 (norm_nonneg x) h), simp }, linarith end lemma geom_series_mul_neg (x : R) (h : ∥x∥ < 1) : (∑' (i:ℕ), x ^ i) * (1 - x) = 1 := begin have := has_sum_of_bounded_monoid_hom_of_summable (normed_ring.summable_geometric_of_norm_lt_1 x h) (∥1 - x∥) (mul_right_bound (1 - x)), refine tendsto_nhds_unique this.tendsto_sum_nat _, have : tendsto (λ (n : ℕ), 1 - x ^ n) at_top (nhds 1), { simpa using tendsto_const_nhds.sub (tendsto_pow_at_top_nhds_0_of_norm_lt_1 h) }, convert ← this, ext n, rw [←geom_sum_mul_neg, geom_series_def, finset.sum_mul], simp, end lemma mul_neg_geom_series (x : R) (h : ∥x∥ < 1) : (1 - x) * (∑' (i:ℕ), x ^ i) = 1 := begin have := has_sum_of_bounded_monoid_hom_of_summable (normed_ring.summable_geometric_of_norm_lt_1 x h) (∥1 - x∥) (mul_left_bound (1 - x)), refine tendsto_nhds_unique this.tendsto_sum_nat _, have : tendsto (λ (n : ℕ), 1 - x ^ n) at_top (nhds 1), { simpa using tendsto_const_nhds.sub (tendsto_pow_at_top_nhds_0_of_norm_lt_1 h) }, convert ← this, ext n, rw [←mul_neg_geom_sum, geom_series_def, finset.mul_sum], simp, end end normed_ring_geometric /-! ### Positive sequences with small sums on encodable types -/ /-- For any positive `ε`, define on an encodable type a positive sequence with sum less than `ε` -/ def pos_sum_of_encodable {ε : ℝ} (hε : 0 < ε) (ι) [encodable ι] : {ε' : ι → ℝ // (∀ i, 0 < ε' i) ∧ ∃ c, has_sum ε' c ∧ c ≤ ε} := begin let f := λ n, (ε / 2) / 2 ^ n, have hf : has_sum f ε := has_sum_geometric_two' _, have f0 : ∀ n, 0 < f n := λ n, div_pos (half_pos hε) (pow_pos two_pos _), refine ⟨f ∘ encodable.encode, λ i, f0 _, _⟩, rcases hf.summable.comp_injective (@encodable.encode_injective ι _) with ⟨c, hg⟩, refine ⟨c, hg, has_sum_le_inj _ (@encodable.encode_injective ι _) _ _ hg hf⟩, { assume i _, exact le_of_lt (f0 _) }, { assume n, exact le_refl _ } end namespace nnreal theorem exists_pos_sum_of_encodable {ε : nnreal} (hε : 0 < ε) (ι) [encodable ι] : ∃ ε' : ι → nnreal, (∀ i, 0 < ε' i) ∧ ∃c, has_sum ε' c ∧ c < ε := let ⟨a, a0, aε⟩ := dense hε in let ⟨ε', hε', c, hc, hcε⟩ := pos_sum_of_encodable a0 ι in ⟨ λi, ⟨ε' i, le_of_lt $ hε' i⟩, assume i, nnreal.coe_lt_coe.2 $ hε' i, ⟨c, has_sum_le (assume i, le_of_lt $ hε' i) has_sum_zero hc ⟩, nnreal.has_sum_coe.1 hc, lt_of_le_of_lt (nnreal.coe_le_coe.1 hcε) aε ⟩ end nnreal namespace ennreal theorem exists_pos_sum_of_encodable {ε : ennreal} (hε : 0 < ε) (ι) [encodable ι] : ∃ ε' : ι → nnreal, (∀ i, 0 < ε' i) ∧ (∑' i, (ε' i : ennreal)) < ε := begin rcases dense hε with ⟨r, h0r, hrε⟩, rcases lt_iff_exists_coe.1 hrε with ⟨x, rfl, hx⟩, rcases nnreal.exists_pos_sum_of_encodable (coe_lt_coe.1 h0r) ι with ⟨ε', hp, c, hc, hcr⟩, exact ⟨ε', hp, (ennreal.tsum_coe_eq hc).symm ▸ lt_trans (coe_lt_coe.2 hcr) hrε⟩ end end ennreal /-! ### Harmonic series Here we define the harmonic series and prove some basic lemmas about it, leading to a proof of its divergence to +∞ -/ /-- The harmonic series `1 + 1/2 + 1/3 + ... + 1/n`-/ def harmonic_series (n : ℕ) : ℝ := ∑ i in range n, 1/(i+1 : ℝ) lemma mono_harmonic : monotone harmonic_series := begin intros p q hpq, apply sum_le_sum_of_subset_of_nonneg, rwa range_subset, intros x h _, exact le_of_lt nat.one_div_pos_of_nat, end lemma half_le_harmonic_double_sub_harmonic (n : ℕ) (hn : 0 < n) : 1/2 ≤ harmonic_series (2*n) - harmonic_series n := begin suffices : harmonic_series n + 1 / 2 ≤ harmonic_series (n + n), { rw two_mul, linarith }, have : harmonic_series n + ∑ k in Ico n (n + n), 1/(k + 1 : ℝ) = harmonic_series (n + n) := sum_range_add_sum_Ico _ (show n ≤ n+n, by linarith), rw [← this, add_le_add_iff_left], have : ∑ k in Ico n (n + n), 1/(n+n : ℝ) = 1/2, { have : (n : ℝ) + n ≠ 0, { norm_cast, linarith }, rw [sum_const, Ico.card], field_simp [this], ring }, rw ← this, apply sum_le_sum, intros x hx, rw one_div_le_one_div, { exact_mod_cast nat.succ_le_of_lt (Ico.mem.mp hx).2 }, { norm_cast, linarith }, { exact_mod_cast nat.zero_lt_succ x } end lemma self_div_two_le_harmonic_two_pow (n : ℕ) : (n / 2 : ℝ) ≤ harmonic_series (2^n) := begin induction n with n hn, unfold harmonic_series, simp only [one_div, nat.cast_zero, zero_div, nat.cast_succ, sum_singleton, inv_one, zero_add, nat.pow_zero, range_one, zero_le_one], have : harmonic_series (2^n) + 1 / 2 ≤ harmonic_series (2^(n+1)), { have := half_le_harmonic_double_sub_harmonic (2^n) (by {apply nat.pow_pos, linarith}), rw [nat.mul_comm, ← nat.pow_succ] at this, linarith }, apply le_trans _ this, rw (show (n.succ / 2 : ℝ) = (n/2 : ℝ) + (1/2), by field_simp), linarith, end /-- The harmonic series diverges to +∞ -/ theorem harmonic_tendsto_at_top : tendsto harmonic_series at_top at_top := begin suffices : tendsto (λ n : ℕ, harmonic_series (2^n)) at_top at_top, by { exact tendsto_at_top_of_monotone_of_subseq mono_harmonic this }, apply tendsto_at_top_mono self_div_two_le_harmonic_two_pow, apply tendsto_at_top_div, norm_num, exact tendsto_coe_nat_real_at_top_at_top end
e21611189b05dff0e3a4d5ca5307d49e85cc5179
6329dd15b8fd567a4737f2dacd02bd0e8c4b3ae4
/src/game/world1/level9.lean
4fa87841f604bc69e6094ab2e6f984d0375cd581
[ "Apache-2.0" ]
permissive
agusakov/mathematics_in_lean_game
76e455a688a8826b05160c16c0490b9e3d39f071
ad45fd42148f2203b973537adec7e8a48677ba2a
refs/heads/master
1,666,147,402,274
1,592,119,137,000
1,592,119,137,000
272,111,226
0
0
null
null
null
null
UTF-8
Lean
false
false
564
lean
import data.real.basic --imports the real numbers import tactic.maths_in_lean_game -- hide namespace calculating -- hide /- Theorem : sub_self -/ /- #Calculating ## Level 9: Practice For this problem, you can use the theorem `sub_self`, where `sub_self a` is the identity `a - a = 0`. -/ /- Lemma : no-side-bar For all natural numbers $a$, we have $$a + \operatorname{succ}(0) = \operatorname{succ}(a).$$ -/ lemma example9 (a b c d : ℝ) (hyp : c = b * a - d) (hyp' : d = a * b) : c = 0 := begin [maths_in_lean_game] sorry end end calculating -- hide
a9ac52920d1f27304286b366babf2bd912d7e462
fa02ed5a3c9c0adee3c26887a16855e7841c668b
/src/data/list/erase_dup.lean
38a4a9619905ca37ee78f27b4ffb0df379c825fc
[ "Apache-2.0" ]
permissive
jjgarzella/mathlib
96a345378c4e0bf26cf604aed84f90329e4896a2
395d8716c3ad03747059d482090e2bb97db612c8
refs/heads/master
1,686,480,124,379
1,625,163,323,000
1,625,163,323,000
281,190,421
2
0
Apache-2.0
1,595,268,170,000
1,595,268,169,000
null
UTF-8
Lean
false
false
2,545
lean
/- Copyright (c) 2018 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import data.list.nodup /-! # Erasure of duplicates in a list This file proves basic results about `list.erase_dup` (definition in `data.list.defs`). `erase_dup l` returns `l` without its duplicates. It keeps the earliest (that is, rightmost) occurrence of each. ## Tags duplicate, multiplicity, nodup, `nub` -/ universes u namespace list variables {α : Type u} [decidable_eq α] @[simp] theorem erase_dup_nil : erase_dup [] = ([] : list α) := rfl theorem erase_dup_cons_of_mem' {a : α} {l : list α} (h : a ∈ erase_dup l) : erase_dup (a :: l) = erase_dup l := pw_filter_cons_of_neg $ by simpa only [forall_mem_ne] using h theorem erase_dup_cons_of_not_mem' {a : α} {l : list α} (h : a ∉ erase_dup l) : erase_dup (a :: l) = a :: erase_dup l := pw_filter_cons_of_pos $ by simpa only [forall_mem_ne] using h @[simp] theorem mem_erase_dup {a : α} {l : list α} : a ∈ erase_dup l ↔ a ∈ l := by simpa only [erase_dup, forall_mem_ne, not_not] using not_congr (@forall_mem_pw_filter α (≠) _ (λ x y z xz, not_and_distrib.1 $ mt (and.rec eq.trans) xz) a l) @[simp] theorem erase_dup_cons_of_mem {a : α} {l : list α} (h : a ∈ l) : erase_dup (a :: l) = erase_dup l := erase_dup_cons_of_mem' $ mem_erase_dup.2 h @[simp] theorem erase_dup_cons_of_not_mem {a : α} {l : list α} (h : a ∉ l) : erase_dup (a :: l) = a :: erase_dup l := erase_dup_cons_of_not_mem' $ mt mem_erase_dup.1 h theorem erase_dup_sublist : ∀ (l : list α), erase_dup l <+ l := pw_filter_sublist theorem erase_dup_subset : ∀ (l : list α), erase_dup l ⊆ l := pw_filter_subset theorem subset_erase_dup (l : list α) : l ⊆ erase_dup l := λ a, mem_erase_dup.2 theorem nodup_erase_dup : ∀ l : list α, nodup (erase_dup l) := pairwise_pw_filter theorem erase_dup_eq_self {l : list α} : erase_dup l = l ↔ nodup l := pw_filter_eq_self @[simp] theorem erase_dup_idempotent {l : list α} : erase_dup (erase_dup l) = erase_dup l := pw_filter_idempotent theorem erase_dup_append (l₁ l₂ : list α) : erase_dup (l₁ ++ l₂) = l₁ ∪ erase_dup l₂ := begin induction l₁ with a l₁ IH, {refl}, rw [cons_union, ← IH], show erase_dup (a :: (l₁ ++ l₂)) = insert a (erase_dup (l₁ ++ l₂)), by_cases a ∈ erase_dup (l₁ ++ l₂); [ rw [erase_dup_cons_of_mem' h, insert_of_mem h], rw [erase_dup_cons_of_not_mem' h, insert_of_not_mem h]] end end list
26fbe08e304ff7637b68fd3c9ba53df5c0b27cdd
e0f9ba56b7fedc16ef8697f6caeef5898b435143
/src/topology/homeomorph.lean
e9947077d9d8712b4c20225cfe7e0491f04672f6
[ "Apache-2.0" ]
permissive
anrddh/mathlib
6a374da53c7e3a35cb0298b0cd67824efef362b4
a4266a01d2dcb10de19369307c986d038c7bb6a6
refs/heads/master
1,656,710,827,909
1,589,560,456,000
1,589,560,456,000
264,271,800
0
0
Apache-2.0
1,589,568,062,000
1,589,568,061,000
null
UTF-8
Lean
false
false
7,203
lean
/- Copyright (c) 2019 Reid Barton. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Patrick Massot, Sébastien Gouëzel, Zhouhang Zhou, Reid Barton -/ import topology.dense_embedding open set variables {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} /-- α and β are homeomorph, also called topological isomoph -/ structure homeomorph (α : Type*) (β : Type*) [topological_space α] [topological_space β] extends α ≃ β := (continuous_to_fun : continuous to_fun) (continuous_inv_fun : continuous inv_fun) infix ` ≃ₜ `:25 := homeomorph namespace homeomorph variables [topological_space α] [topological_space β] [topological_space γ] [topological_space δ] instance : has_coe_to_fun (α ≃ₜ β) := ⟨λ_, α → β, λe, e.to_equiv⟩ lemma coe_eq_to_equiv (h : α ≃ₜ β) (a : α) : h a = h.to_equiv a := rfl /-- Identity map is a homeomorphism. -/ protected def refl (α : Type*) [topological_space α] : α ≃ₜ α := { continuous_to_fun := continuous_id, continuous_inv_fun := continuous_id, .. equiv.refl α } /-- Composition of two homeomorphisms. -/ protected def trans (h₁ : α ≃ₜ β) (h₂ : β ≃ₜ γ) : α ≃ₜ γ := { continuous_to_fun := h₂.continuous_to_fun.comp h₁.continuous_to_fun, continuous_inv_fun := h₁.continuous_inv_fun.comp h₂.continuous_inv_fun, .. equiv.trans h₁.to_equiv h₂.to_equiv } /-- Inverse of a homeomorphism. -/ protected def symm (h : α ≃ₜ β) : β ≃ₜ α := { continuous_to_fun := h.continuous_inv_fun, continuous_inv_fun := h.continuous_to_fun, .. h.to_equiv.symm } protected lemma continuous (h : α ≃ₜ β) : continuous h := h.continuous_to_fun lemma symm_comp_self (h : α ≃ₜ β) : ⇑h.symm ∘ ⇑h = id := funext $ assume a, h.to_equiv.left_inv a lemma self_comp_symm (h : α ≃ₜ β) : ⇑h ∘ ⇑h.symm = id := funext $ assume a, h.to_equiv.right_inv a lemma range_coe (h : α ≃ₜ β) : range h = univ := eq_univ_of_forall $ assume b, ⟨h.symm b, congr_fun h.self_comp_symm b⟩ lemma image_symm (h : α ≃ₜ β) : image h.symm = preimage h := funext h.symm.to_equiv.image_eq_preimage lemma preimage_symm (h : α ≃ₜ β) : preimage h.symm = image h := (funext h.to_equiv.image_eq_preimage).symm lemma induced_eq {α : Type*} {β : Type*} [tα : topological_space α] [tβ : topological_space β] (h : α ≃ₜ β) : tβ.induced h = tα := le_antisymm (calc topological_space.induced ⇑h tβ ≤ _ : induced_mono (coinduced_le_iff_le_induced.1 h.symm.continuous) ... ≤ tα : by rw [induced_compose, symm_comp_self, induced_id] ; exact le_refl _) (coinduced_le_iff_le_induced.1 h.continuous) lemma coinduced_eq {α : Type*} {β : Type*} [tα : topological_space α] [tβ : topological_space β] (h : α ≃ₜ β) : tα.coinduced h = tβ := le_antisymm h.continuous begin have : (tβ.coinduced h.symm).coinduced h ≤ tα.coinduced h := coinduced_mono h.symm.continuous, rwa [coinduced_compose, self_comp_symm, coinduced_id] at this, end protected lemma embedding (h : α ≃ₜ β) : embedding h := ⟨⟨h.induced_eq.symm⟩, h.to_equiv.injective⟩ lemma compact_image {s : set α} (h : α ≃ₜ β) : compact (h '' s) ↔ compact s := h.embedding.compact_iff_compact_image.symm lemma compact_preimage {s : set β} (h : α ≃ₜ β) : compact (h ⁻¹' s) ↔ compact s := by rw ← image_symm; exact h.symm.compact_image protected lemma dense_embedding (h : α ≃ₜ β) : dense_embedding h := { dense := assume a, by rw [h.range_coe, closure_univ]; trivial, inj := h.to_equiv.injective, induced := (induced_iff_nhds_eq _).2 (assume a, by rw [← nhds_induced, h.induced_eq]) } protected lemma is_open_map (h : α ≃ₜ β) : is_open_map h := begin assume s, rw ← h.preimage_symm, exact h.symm.continuous s end protected lemma is_closed_map (h : α ≃ₜ β) : is_closed_map h := begin assume s, rw ← h.preimage_symm, exact continuous_iff_is_closed.1 (h.symm.continuous) _ end /-- If an bijective map `e : α ≃ β` is continuous and open, then it is a homeomorphism. -/ def homeomorph_of_continuous_open (e : α ≃ β) (h₁ : continuous e) (h₂ : is_open_map e) : α ≃ₜ β := { continuous_to_fun := h₁, continuous_inv_fun := begin intros s hs, convert ← h₂ s hs using 1, apply e.image_eq_preimage end, .. e } lemma comp_continuous_on_iff (h : α ≃ₜ β) (f : γ → α) (s : set γ) : continuous_on (h ∘ f) s ↔ continuous_on f s := begin split, { assume H, have : continuous_on (h.symm ∘ (h ∘ f)) s := h.symm.continuous.comp_continuous_on H, rwa [← function.comp.assoc h.symm h f, symm_comp_self h] at this }, { exact λ H, h.continuous.comp_continuous_on H } end lemma comp_continuous_iff (h : α ≃ₜ β) (f : γ → α) : continuous (h ∘ f) ↔ continuous f := by simp [continuous_iff_continuous_on_univ, comp_continuous_on_iff] protected lemma quotient_map (h : α ≃ₜ β) : quotient_map h := ⟨h.to_equiv.surjective, h.coinduced_eq.symm⟩ /-- If two sets are equal, then they are homeomorphic. -/ def set_congr {s t : set α} (h : s = t) : s ≃ₜ t := { continuous_to_fun := continuous_subtype_mk _ continuous_subtype_val, continuous_inv_fun := continuous_subtype_mk _ continuous_subtype_val, .. equiv.set_congr h } /-- Product of two homeomorphisms. -/ def prod_congr (h₁ : α ≃ₜ β) (h₂ : γ ≃ₜ δ) : α × γ ≃ₜ β × δ := { continuous_to_fun := continuous.prod_mk (h₁.continuous.comp continuous_fst) (h₂.continuous.comp continuous_snd), continuous_inv_fun := continuous.prod_mk (h₁.symm.continuous.comp continuous_fst) (h₂.symm.continuous.comp continuous_snd), .. h₁.to_equiv.prod_congr h₂.to_equiv } section variables (α β γ) /-- `α × β` is homeomorphic to `β × α`. -/ def prod_comm : α × β ≃ₜ β × α := { continuous_to_fun := continuous.prod_mk continuous_snd continuous_fst, continuous_inv_fun := continuous.prod_mk continuous_snd continuous_fst, .. equiv.prod_comm α β } /-- `(α × β) × γ` is homeomorphic to `α × (β × γ)`. -/ def prod_assoc : (α × β) × γ ≃ₜ α × (β × γ) := { continuous_to_fun := continuous.prod_mk (continuous_fst.comp continuous_fst) (continuous.prod_mk (continuous_snd.comp continuous_fst) continuous_snd), continuous_inv_fun := continuous.prod_mk (continuous.prod_mk continuous_fst (continuous_fst.comp continuous_snd)) (continuous_snd.comp continuous_snd), .. equiv.prod_assoc α β γ } end section distrib variables {ι : Type*} {σ : ι → Type*} [Π i, topological_space (σ i)] /-- `(Σ i, σ i) × β` is homeomorphic to `Σ i, (σ i × β)`. -/ def sigma_prod_distrib : ((Σ i, σ i) × β) ≃ₜ (Σ i, (σ i × β)) := homeomorph.symm $ homeomorph_of_continuous_open (equiv.sigma_prod_distrib σ β).symm (continuous_sigma $ λ i, continuous.prod_mk (continuous_sigma_mk.comp continuous_fst) continuous_snd) (is_open_map_sigma $ λ i, (open_embedding.prod open_embedding_sigma_mk open_embedding_id).is_open_map) end distrib end homeomorph
b3e1e449664e36b4460ea7c76b88cd84e72d8308
4950bf76e5ae40ba9f8491647d0b6f228ddce173
/src/measure_theory/lp_space.lean
96e32d70d2eb6a8f130aecb9b0fef2a3eccae5f7
[ "Apache-2.0" ]
permissive
ntzwq/mathlib
ca50b21079b0a7c6781c34b62199a396dd00cee2
36eec1a98f22df82eaccd354a758ef8576af2a7f
refs/heads/master
1,675,193,391,478
1,607,822,996,000
1,607,822,996,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
5,655
lean
/- Copyright (c) 2020 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Rémy Degenne. -/ import measure_theory.l1_space import analysis.mean_inequalities /-! # ℒp space This file describes properties of measurable functions with finite seminorm `(∫ ∥f a∥^p ∂μ) ^ (1/p)` for `p:ℝ` with `1 ≤ p`. ## Main definitions * `mem_ℒp f p μ` : the function `f` has finite p-seminorm for measure `μ`, for `p:ℝ` such that `hp1 : 1 ≤ p`, ## Notation * `snorm f p μ` : `(∫ ∥f a∥^p ∂μ) ^ (1/p)` for `f : α → F`, where `α` is a measurable space and `F` is a normed group. -/ open measure_theory noncomputable theory namespace ℒp_space variables {α E F : Type*} [measurable_space α] {μ : measure α} [measurable_space E] [normed_group E] [normed_group F] {p : ℝ} section ℒp_space_definition /-- The property that `f:α→E` is measurable and `∫ ∥f a∥^p ∂μ` is finite -/ def mem_ℒp (f : α → E) (p : ℝ) (μ : measure α) : Prop := measurable f ∧ ∫⁻ a, (nnnorm (f a)) ^ p ∂μ < ⊤ /-- `(∫ ∥f a∥^p ∂μ) ^ (1/p)`, which is a seminorm on the space of measurable functions for which this quantity is finite -/ def snorm (f : α → F) (p : ℝ) (μ : measure α) : ennreal := (∫⁻ a, (nnnorm (f a))^p ∂μ) ^ (1/p) lemma lintegral_rpow_nnnorm_eq_rpow_snorm {f : α → F} (hp0_lt : 0 < p) : ∫⁻ a, (nnnorm (f a)) ^ p ∂μ = (snorm f p μ) ^ p := begin rw [snorm, ←ennreal.rpow_mul, one_div, inv_mul_cancel, ennreal.rpow_one], exact (ne_of_lt hp0_lt).symm, end end ℒp_space_definition lemma mem_ℒp_one_iff_integrable {f : α → E} : mem_ℒp f 1 μ ↔ integrable f μ := by simp only [integrable, has_finite_integral, mem_ℒp, ennreal.rpow_one, nnreal.coe_one] section top lemma mem_ℒp.snorm_lt_top {f : α → E} (hp0 : 0 ≤ p) (hfp : mem_ℒp f p μ) : snorm f p μ < ⊤ := begin refine ennreal.rpow_lt_top_of_nonneg _ (ne_of_lt hfp.right), rw [one_div, inv_nonneg], exact hp0, end lemma mem_ℒp.snorm_ne_top {f : α → E} (hp0 : 0 ≤ p) (hfp : mem_ℒp f p μ) : snorm f p μ ≠ ⊤ := ne_of_lt (hfp.snorm_lt_top hp0) lemma lintegral_rpow_nnnorm_lt_top_of_snorm_lt_top {f : α → F} (hp0_lt : 0 < p) (hfp : snorm f p μ < ⊤) : ∫⁻ a, (nnnorm (f a)) ^ p ∂μ < ⊤ := begin rw lintegral_rpow_nnnorm_eq_rpow_snorm hp0_lt, exact ennreal.rpow_lt_top_of_nonneg (le_of_lt hp0_lt) (ne_of_lt hfp), end lemma mem_ℒp_of_snorm_lt_top {f : α → E} (hp0_lt : 0 < p) (hfm : measurable f) (hfp : snorm f p μ < ⊤) : mem_ℒp f p μ := ⟨hfm, lintegral_rpow_nnnorm_lt_top_of_snorm_lt_top hp0_lt hfp⟩ end top section zero lemma zero_mem_ℒp (hp0_lt : 0 < p) : mem_ℒp (0 : α → E) p μ := ⟨measurable_zero, by simp [hp0_lt]⟩ @[simp] lemma snorm_zero (hp0_lt : 0 < p) : snorm (0 : α → F) p μ = 0 := by simp [snorm, hp0_lt] end zero @[simp] lemma snorm_neg {f : α → F} : snorm (-f) p μ = snorm f p μ := by simp [snorm] section borel_space variable [borel_space E] lemma mem_ℒp.neg {f : α → E} (hf : mem_ℒp f p μ) : mem_ℒp (-f) p μ := ⟨measurable.neg hf.1, by simp [hf.right]⟩ variable [topological_space.second_countable_topology E] lemma mem_ℒp.add {f g : α → E} (hf : mem_ℒp f p μ) (hg : mem_ℒp g p μ) (hp1 : 1 ≤ p) : mem_ℒp (f+g) p μ := begin have hp0_lt : 0 < p, from lt_of_lt_of_le zero_lt_one hp1, have hp0 : 0 ≤ p, from le_of_lt hp0_lt, split, { exact measurable.add hf.1 hg.1, }, simp_rw [pi.add_apply, ennreal.coe_rpow_of_nonneg _ hp0], -- step 1: use nnnorm_add_le calc ∫⁻ (a : α), ↑(nnnorm (f a + g a) ^ p) ∂μ ≤ ∫⁻ a, ↑((nnnorm (f a) + nnnorm (g a)) ^ p) ∂ μ : begin refine lintegral_mono_nnreal (λ a, _), exact nnreal.rpow_le_rpow (nnnorm_add_le (f a) (g a)) (le_of_lt hp0_lt) end -- step 2: use convexity of rpow ... ≤ ∫⁻ a, ↑((2:nnreal)^(p-1) * (nnnorm (f a)) ^ p + (2:nnreal)^(p-1) * (nnnorm (g a)) ^ p) ∂ μ : begin refine lintegral_mono_nnreal (λ a, _), have h_zero_lt_half_rpow : (0 : nnreal) < (1 / 2) ^ p, { rw [←nnreal.zero_rpow (ne_of_lt hp0_lt).symm, nnreal.rpow_lt_rpow_iff hp0_lt], simp [zero_lt_one], }, have h_rw : (1 / 2) ^ p * (2:nnreal) ^ (p - 1) = 1 / 2, { rw [nnreal.rpow_sub two_ne_zero, nnreal.div_rpow, nnreal.one_rpow, nnreal.rpow_one, ←mul_div_assoc, one_div, inv_mul_cancel], simp [two_ne_zero], }, rw [←mul_le_mul_left h_zero_lt_half_rpow, mul_add, ← mul_assoc, ← mul_assoc, h_rw, ←nnreal.mul_rpow, mul_add], refine nnreal.rpow_arith_mean_le_arith_mean2_rpow (1/2 : nnreal) (1/2 : nnreal) (nnnorm (f a)) (nnnorm (g a)) _ hp1, rw [nnreal.div_add_div_same, one_add_one_eq_two, nnreal.div_self two_ne_zero] end -- step 3: use hypotheses hf and hg ... < ⊤ : begin simp_rw [ennreal.coe_add, ennreal.coe_mul, ←ennreal.coe_rpow_of_nonneg _ hp0], rw [lintegral_add, lintegral_const_mul, lintegral_const_mul, ennreal.add_lt_top], { simp [ennreal.mul_lt_top_iff, hf.2, hg.2] }, -- finish by proving the measurability of all functions involved { exact hg.left.nnnorm.ennreal_coe.ennreal_rpow_const, }, { exact hf.left.nnnorm.ennreal_coe.ennreal_rpow_const, }, { exact (ennreal.continuous_const_mul (by simp)).measurable.comp hf.left.nnnorm.ennreal_coe.ennreal_rpow_const, }, { exact (ennreal.continuous_const_mul (by simp)).measurable.comp hg.left.nnnorm.ennreal_coe.ennreal_rpow_const }, end end end borel_space end ℒp_space
a94697075d3896341e0a6eb3dc046dbe0948a87b
1437b3495ef9020d5413178aa33c0a625f15f15f
/data/equiv/algebra.lean
4ccd6ffa21e83b0cdf570e2c4165c9ed3b337f6c
[ "Apache-2.0" ]
permissive
jean002/mathlib
c66bbb2d9fdc9c03ae07f869acac7ddbfce67a30
dc6c38a765799c99c4d9c8d5207d9e6c9e0e2cfd
refs/heads/master
1,587,027,806,375
1,547,306,358,000
1,547,306,358,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
2,875
lean
/- Copyright (c) 2018 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl -/ import data.equiv.basic algebra.field universes u v w namespace equiv variables {α : Type u} [group α] protected def mul_left (a : α) : α ≃ α := { to_fun := λx, a * x, inv_fun := λx, a⁻¹ * x, left_inv := assume x, show a⁻¹ * (a * x) = x, from inv_mul_cancel_left a x, right_inv := assume x, show a * (a⁻¹ * x) = x, from mul_inv_cancel_left a x } attribute [to_additive equiv.add_left._proof_1] equiv.mul_left._proof_1 attribute [to_additive equiv.add_left._proof_2] equiv.mul_left._proof_2 attribute [to_additive equiv.add_left] equiv.mul_left protected def mul_right (a : α) : α ≃ α := { to_fun := λx, x * a, inv_fun := λx, x * a⁻¹, left_inv := assume x, show (x * a) * a⁻¹ = x, from mul_inv_cancel_right x a, right_inv := assume x, show (x * a⁻¹) * a = x, from inv_mul_cancel_right x a } attribute [to_additive equiv.add_right._proof_1] equiv.mul_right._proof_1 attribute [to_additive equiv.add_right._proof_2] equiv.mul_right._proof_2 attribute [to_additive equiv.add_right] equiv.mul_right protected def inv (α) [group α] : α ≃ α := { to_fun := λa, a⁻¹, inv_fun := λa, a⁻¹, left_inv := assume a, inv_inv a, right_inv := assume a, inv_inv a } attribute [to_additive equiv.neg._proof_1] equiv.inv._proof_1 attribute [to_additive equiv.neg._proof_2] equiv.inv._proof_2 attribute [to_additive equiv.neg] equiv.inv def units_equiv_ne_zero (α : Type*) [field α] : units α ≃ {a : α | a ≠ 0} := ⟨λ a, ⟨a.1, units.ne_zero _⟩, λ a, units.mk0 _ a.2, λ ⟨_, _, _, _⟩, units.ext rfl, λ ⟨_, _⟩, rfl⟩ @[simp] lemma coe_units_equiv_ne_zero [field α] (a : units α) : ((units_equiv_ne_zero α a) : α) = a := rfl end equiv structure ring_equiv (α β : Type*) [ring α] [ring β] extends α ≃ β := (hom : is_ring_hom to_fun) infix ` ≃r `:50 := ring_equiv namespace ring_equiv variables {α : Type u} {β : Type v} {γ : Type w} variables [ring α] [ring β] [ring γ] instance {e : α ≃r β} : is_ring_hom e.to_equiv := hom _ protected def refl (α : Type*) [ring α] : α ≃r α := { hom := is_ring_hom.id, .. equiv.refl α } protected def symm {α β : Type*} [ring α] [ring β] (e : α ≃r β) : β ≃r α := { hom := ⟨(equiv.symm_apply_eq _).2 e.hom.1.symm, λ x y, (equiv.symm_apply_eq _).2 $ show _ = e.to_equiv.to_fun _, by rw [e.2.2, e.1.4, e.1.4], λ x y, (equiv.symm_apply_eq _).2 $ show _ = e.to_equiv.to_fun _, by rw [e.2.3, e.1.4, e.1.4]⟩, .. e.to_equiv.symm } protected def trans {α β γ : Type*} [ring α] [ring β] [ring γ] (e₁ : α ≃r β) (e₂ : β ≃r γ) : α ≃r γ := { hom := is_ring_hom.comp _ _, .. e₁.1.trans e₂.1 } end ring_equiv
b88a12890c6ce171ba46d3f7b945c1fbe0877e5d
8e2026ac8a0660b5a490dfb895599fb445bb77a0
/library/init/algebra/group.lean
991816c2c7a88c4a2ae14546b689a3d1435040d4
[ "Apache-2.0" ]
permissive
pcmoritz/lean
6a8575115a724af933678d829b4f791a0cb55beb
35eba0107e4cc8a52778259bb5392300267bfc29
refs/heads/master
1,607,896,326,092
1,490,752,175,000
1,490,752,175,000
86,612,290
0
0
null
1,490,809,641,000
1,490,809,641,000
null
UTF-8
Lean
false
false
15,728
lean
/- Copyright (c) 2016 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura -/ prelude import init.logic init.algebra.ac init.meta init.meta.decl_cmds init.meta.smt.rsimp /- Make sure instances defined in this file have lower priority than the ones defined for concrete structures -/ set_option default_priority 100 universe u variables {α : Type u} class semigroup (α : Type u) extends has_mul α := (mul_assoc : ∀ a b c : α, a * b * c = a * (b * c)) class comm_semigroup (α : Type u) extends semigroup α := (mul_comm : ∀ a b : α, a * b = b * a) class left_cancel_semigroup (α : Type u) extends semigroup α := (mul_left_cancel : ∀ a b c : α, a * b = a * c → b = c) class right_cancel_semigroup (α : Type u) extends semigroup α := (mul_right_cancel : ∀ a b c : α, a * b = c * b → a = c) class monoid (α : Type u) extends semigroup α, has_one α := (one_mul : ∀ a : α, 1 * a = a) (mul_one : ∀ a : α, a * 1 = a) class comm_monoid (α : Type u) extends monoid α, comm_semigroup α class group (α : Type u) extends monoid α, has_inv α := (mul_left_inv : ∀ a : α, a⁻¹ * a = 1) class comm_group (α : Type u) extends group α, comm_monoid α @[simp] lemma mul_assoc [semigroup α] : ∀ a b c : α, a * b * c = a * (b * c) := semigroup.mul_assoc instance semigroup_to_is_associative [semigroup α] : is_associative α mul := ⟨mul_assoc⟩ @[simp] lemma mul_comm [comm_semigroup α] : ∀ a b : α, a * b = b * a := comm_semigroup.mul_comm instance comm_semigroup_to_is_commutative [comm_semigroup α] : is_commutative α mul := ⟨mul_comm⟩ @[simp] lemma mul_left_comm [comm_semigroup α] : ∀ a b c : α, a * (b * c) = b * (a * c) := left_comm mul mul_comm mul_assoc lemma mul_left_cancel [left_cancel_semigroup α] {a b c : α} : a * b = a * c → b = c := left_cancel_semigroup.mul_left_cancel a b c lemma mul_right_cancel [right_cancel_semigroup α] {a b c : α} : a * b = c * b → a = c := right_cancel_semigroup.mul_right_cancel a b c lemma mul_left_cancel_iff [left_cancel_semigroup α] {a b c : α} : a * b = a * c ↔ b = c := ⟨mul_left_cancel, congr_arg _⟩ lemma mul_right_cancel_iff [right_cancel_semigroup α] {a b c : α} : b * a = c * a ↔ b = c := ⟨mul_right_cancel, congr_arg _⟩ @[simp] lemma one_mul [monoid α] : ∀ a : α, 1 * a = a := monoid.one_mul @[simp] lemma mul_one [monoid α] : ∀ a : α, a * 1 = a := monoid.mul_one @[simp] lemma mul_left_inv [group α] : ∀ a : α, a⁻¹ * a = 1 := group.mul_left_inv def inv_mul_self := @mul_left_inv @[simp] lemma inv_mul_cancel_left [group α] (a b : α) : a⁻¹ * (a * b) = b := by rw [-mul_assoc, mul_left_inv, one_mul] @[simp] lemma inv_mul_cancel_right [group α] (a b : α) : a * b⁻¹ * b = a := by simp @[simp] lemma inv_eq_of_mul_eq_one [group α] {a b : α} (h : a * b = 1) : a⁻¹ = b := by rw [-mul_one a⁻¹, -h, -mul_assoc, mul_left_inv, one_mul] @[simp] lemma one_inv [group α] : 1⁻¹ = (1 : α) := inv_eq_of_mul_eq_one (one_mul 1) @[simp] lemma inv_inv [group α] (a : α) : (a⁻¹)⁻¹ = a := inv_eq_of_mul_eq_one (mul_left_inv a) @[simp] lemma mul_right_inv [group α] (a : α) : a * a⁻¹ = 1 := have a⁻¹⁻¹ * a⁻¹ = 1, by rw mul_left_inv, by rwa [inv_inv] at this def mul_inv_self := @mul_right_inv lemma inv_inj [group α] {a b : α} (h : a⁻¹ = b⁻¹) : a = b := have a = a⁻¹⁻¹, by simp, begin rw this, simp [h] end lemma group.mul_left_cancel [group α] {a b c : α} (h : a * b = a * c) : b = c := have a⁻¹ * (a * b) = b, by simp, begin simp [h] at this, rw this end lemma group.mul_right_cancel [group α] {a b c : α} (h : a * b = c * b) : a = c := have a * b * b⁻¹ = a, by simp, begin simp [h] at this, rw this end instance group.to_left_cancel_semigroup [s : group α] : left_cancel_semigroup α := { s with mul_left_cancel := @group.mul_left_cancel α s } instance group.to_right_cancel_semigroup [s : group α] : right_cancel_semigroup α := { s with mul_right_cancel := @group.mul_right_cancel α s } lemma mul_inv_cancel_left [group α] (a b : α) : a * (a⁻¹ * b) = b := by rw [-mul_assoc, mul_right_inv, one_mul] lemma mul_inv_cancel_right [group α] (a b : α) : a * b * b⁻¹ = a := by rw [mul_assoc, mul_right_inv, mul_one] @[simp] lemma mul_inv_rev [group α] (a b : α) : (a * b)⁻¹ = b⁻¹ * a⁻¹ := inv_eq_of_mul_eq_one begin rw [mul_assoc, -mul_assoc b, mul_right_inv, one_mul, mul_right_inv] end lemma eq_inv_of_eq_inv [group α] {a b : α} (h : a = b⁻¹) : b = a⁻¹ := by simp [h] lemma eq_inv_of_mul_eq_one [group α] {a b : α} (h : a * b = 1) : a = b⁻¹ := have a⁻¹ = b, from inv_eq_of_mul_eq_one h, by simp [this.symm] lemma eq_mul_inv_of_mul_eq [group α] {a b c : α} (h : a * c = b) : a = b * c⁻¹ := by simp [h.symm] lemma eq_inv_mul_of_mul_eq [group α] {a b c : α} (h : b * a = c) : a = b⁻¹ * c := by simp [h.symm] lemma inv_mul_eq_of_eq_mul [group α] {a b c : α} (h : b = a * c) : a⁻¹ * b = c := by simp [h] lemma mul_inv_eq_of_eq_mul [group α] {a b c : α} (h : a = c * b) : a * b⁻¹ = c := by simp [h] lemma eq_mul_of_mul_inv_eq [group α] {a b c : α} (h : a * c⁻¹ = b) : a = b * c := by simp [h.symm] lemma eq_mul_of_inv_mul_eq [group α] {a b c : α} (h : b⁻¹ * a = c) : a = b * c := by simp [h.symm, mul_inv_cancel_left] lemma mul_eq_of_eq_inv_mul [group α] {a b c : α} (h : b = a⁻¹ * c) : a * b = c := by rw [h, mul_inv_cancel_left] lemma mul_eq_of_eq_mul_inv [group α] {a b c : α} (h : a = c * b⁻¹) : a * b = c := by simp [h] lemma mul_inv [comm_group α] (a b : α) : (a * b)⁻¹ = a⁻¹ * b⁻¹ := by rw [mul_inv_rev, mul_comm] /- αdditive "sister" structures. Example, add_semigroup mirrors semigroup. These structures exist just to help automation. In an alternative design, we could have the binary operation as an extra argument for semigroup, monoid, group, etc. However, the lemmas would be hard to index since they would not contain any constant. For example, mul_assoc would be lemma mul_assoc {α : Type u} {op : α → α → α} [semigroup α op] : ∀ a b c : α, op (op a b) c = op a (op b c) := semigroup.mul_assoc The simplifier cannot effectively use this lemma since the pattern for the left-hand-side would be ?op (?op ?a ?b) ?c Remark: we use a tactic for transporting theorems from the multiplicative fragment to the additive one. -/ class add_semigroup (α : Type u) extends has_add α := (add_assoc : ∀ a b c : α, a + b + c = a + (b + c)) class add_comm_semigroup (α : Type u) extends add_semigroup α := (add_comm : ∀ a b : α, a + b = b + a) class add_left_cancel_semigroup (α : Type u) extends add_semigroup α := (add_left_cancel : ∀ a b c : α, a + b = a + c → b = c) class add_right_cancel_semigroup (α : Type u) extends add_semigroup α := (add_right_cancel : ∀ a b c : α, a + b = c + b → a = c) class add_monoid (α : Type u) extends add_semigroup α, has_zero α := (zero_add : ∀ a : α, 0 + a = a) (add_zero : ∀ a : α, a + 0 = a) class add_comm_monoid (α : Type u) extends add_monoid α, add_comm_semigroup α class add_group (α : Type u) extends add_monoid α, has_neg α := (add_left_neg : ∀ a : α, -a + a = 0) class add_comm_group (α : Type u) extends add_group α, add_comm_monoid α open tactic meta def transport_with_dict (dict : name_map name) (src : name) (tgt : name) : command := copy_decl_using dict src tgt >> copy_attribute `reducible src tt tgt >> copy_attribute `simp src tt tgt >> copy_attribute `instance src tt tgt meta def multiplicative_to_additive_pairs : list (name × name) := [/- map operations -/ (`mul, `add), (`one, `zero), (`inv, `neg), (`has_mul, `has_add), (`has_one, `has_zero), (`has_inv, `has_neg), /- map constructors -/ (`has_mul.mk, `has_add.mk), (`has_one, `has_zero.mk), (`has_inv, `has_neg.mk), /- map structures -/ (`semigroup, `add_semigroup), (`monoid, `add_monoid), (`group, `add_group), (`comm_semigroup, `add_comm_semigroup), (`comm_monoid, `add_comm_monoid), (`comm_group, `add_comm_group), (`left_cancel_semigroup, `add_left_cancel_semigroup), (`right_cancel_semigroup, `add_right_cancel_semigroup), (`left_cancel_semigroup.mk, `add_left_cancel_semigroup.mk), (`right_cancel_semigroup.mk, `add_right_cancel_semigroup.mk), /- map instances -/ (`semigroup.to_has_mul, `add_semigroup.to_has_add), (`monoid.to_has_one, `add_monoid.to_has_zero), (`group.to_has_inv, `add_group.to_has_neg), (`comm_semigroup.to_semigroup, `add_comm_semigroup.to_add_semigroup), (`monoid.to_semigroup, `add_monoid.to_add_semigroup), (`comm_monoid.to_monoid, `add_comm_monoid.to_add_monoid), (`comm_monoid.to_comm_semigroup, `add_comm_monoid.to_add_comm_semigroup), (`group.to_monoid, `add_group.to_add_monoid), (`comm_group.to_group, `add_comm_group.to_add_group), (`comm_group.to_comm_monoid, `add_comm_group.to_add_comm_monoid), (`left_cancel_semigroup.to_semigroup, `add_left_cancel_semigroup.to_add_semigroup), (`right_cancel_semigroup.to_semigroup, `add_right_cancel_semigroup.to_add_semigroup), /- map projections -/ (`semigroup.mul_assoc, `add_semigroup.add_assoc), (`comm_semigroup.mul_comm, `add_comm_semigroup.add_comm), (`left_cancel_semigroup.mul_left_cancel, `add_left_cancel_semigroup.add_left_cancel), (`right_cancel_semigroup.mul_right_cancel, `add_right_cancel_semigroup.add_right_cancel), (`monoid.one_mul, `add_monoid.zero_add), (`monoid.mul_one, `add_monoid.add_zero), (`group.mul_left_inv, `add_group.add_left_neg), (`group.mul, `add_group.add), (`group.mul_assoc, `add_group.add_assoc), /- map lemmas -/ (`mul_assoc, `add_assoc), (`mul_comm, `add_comm), (`mul_left_comm, `add_left_comm), (`one_mul, `zero_add), (`mul_one, `add_zero), (`mul_left_inv, `add_left_neg), (`mul_left_cancel, `add_left_cancel), (`mul_right_cancel, `add_right_cancel), (`mul_left_cancel_iff, `add_left_cancel_iff), (`mul_right_cancel_iff, `add_right_cancel_iff), (`inv_mul_cancel_left, `neg_add_cancel_left), (`inv_mul_cancel_right, `neg_add_cancel_right), (`eq_inv_mul_of_mul_eq, `eq_neg_add_of_add_eq), (`inv_eq_of_mul_eq_one, `neg_eq_of_add_eq_zero), (`inv_inv, `neg_neg), (`mul_right_inv, `add_right_neg), (`mul_inv_cancel_left, `add_neg_cancel_left), (`mul_inv_cancel_right, `add_neg_cancel_right), (`mul_inv_rev, `neg_add_rev), (`mul_inv, `neg_add), (`inv_inj, `neg_inj), (`group.mul_left_cancel, `add_group.add_left_cancel), (`group.mul_right_cancel, `add_group.add_right_cancel), (`group.to_left_cancel_semigroup, `add_group.to_left_cancel_add_semigroup), (`group.to_right_cancel_semigroup, `add_group.to_right_cancel_add_semigroup), (`eq_inv_of_eq_inv, `eq_neg_of_eq_neg), (`eq_inv_of_mul_eq_one, `eq_neg_of_add_eq_zero), (`eq_mul_inv_of_mul_eq, `eq_add_neg_of_add_eq), (`inv_mul_eq_of_eq_mul, `neg_add_eq_of_eq_add), (`mul_inv_eq_of_eq_mul, `add_neg_eq_of_eq_add), (`eq_mul_of_mul_inv_eq, `eq_add_of_add_neg_eq), (`eq_mul_of_inv_mul_eq, `eq_add_of_neg_add_eq), (`mul_eq_of_eq_inv_mul, `add_eq_of_eq_neg_add), (`mul_eq_of_eq_mul_inv, `add_eq_of_eq_add_neg), (`one_inv, `neg_zero) ] /- Transport multiplicative to additive -/ meta def transport_multiplicative_to_additive : command := let dict := rb_map.of_list multiplicative_to_additive_pairs in multiplicative_to_additive_pairs.foldl (λ t ⟨src, tgt⟩, do env ← get_env, if (env.get tgt).to_bool = ff then t >> transport_with_dict dict src tgt else t) skip run_cmd transport_multiplicative_to_additive instance add_semigroup_to_is_eq_associative [add_semigroup α] : is_associative α add := ⟨add_assoc⟩ instance add_comm_semigroup_to_is_eq_commutative [add_comm_semigroup α] : is_commutative α add := ⟨add_comm⟩ def neg_add_self := @add_left_neg def add_neg_self := @add_right_neg def eq_of_add_eq_add_left := @add_left_cancel def eq_of_add_eq_add_right := @add_right_cancel @[reducible] protected def algebra.sub [add_group α] (a b : α) : α := a + -b instance add_group_has_sub [add_group α] : has_sub α := ⟨algebra.sub⟩ @[simp] lemma sub_eq_add_neg [add_group α] (a b : α) : a - b = a + -b := rfl lemma sub_self [add_group α] (a : α) : a - a = 0 := add_right_neg a lemma sub_add_cancel [add_group α] (a b : α) : a - b + b = a := neg_add_cancel_right a b lemma add_sub_cancel [add_group α] (a b : α) : a + b - b = a := add_neg_cancel_right a b lemma add_sub_assoc [add_group α] (a b c : α) : a + b - c = a + (b - c) := by rw [sub_eq_add_neg, add_assoc, -sub_eq_add_neg] lemma eq_of_sub_eq_zero [add_group α] {a b : α} (h : a - b = 0) : a = b := have 0 + b = b, by rw zero_add, have (a - b) + b = b, by rwa h, by rwa [sub_eq_add_neg, neg_add_cancel_right] at this lemma sub_eq_zero_of_eq [add_group α] {a b : α} (h : a = b) : a - b = 0 := by rw [h, sub_self] lemma zero_sub [add_group α] (a : α) : 0 - a = -a := zero_add (-a) lemma sub_zero [add_group α] (a : α) : a - 0 = a := by rw [sub_eq_add_neg, neg_zero, add_zero] lemma sub_ne_zero_of_ne [add_group α] {a b : α} (h : a ≠ b) : a - b ≠ 0 := begin intro hab, apply h, apply eq_of_sub_eq_zero hab end lemma sub_neg_eq_add [add_group α] (a b : α) : a - (-b) = a + b := by rw [sub_eq_add_neg, neg_neg] lemma neg_sub [add_group α] (a b : α) : -(a - b) = b - a := neg_eq_of_add_eq_zero (by rw [sub_eq_add_neg, sub_eq_add_neg, add_assoc, neg_add_cancel_left, add_right_neg]) lemma add_sub [add_group α] (a b c : α) : a + (b - c) = a + b - c := by simp lemma sub_add_eq_sub_sub_swap [add_group α] (a b c : α) : a - (b + c) = a - c - b := by simp lemma eq_sub_of_add_eq [add_group α] {a b c : α} (h : a + c = b) : a = b - c := by simp [h.symm] lemma sub_eq_of_eq_add [add_group α] {a b c : α} (h : a = c + b) : a - b = c := by simp [h] lemma eq_add_of_sub_eq [add_group α] {a b c : α} (h : a - c = b) : a = b + c := by simp [h.symm] lemma add_eq_of_eq_sub [add_group α] {a b c : α} (h : a = c - b) : a + b = c := by simp [h] lemma sub_add_eq_sub_sub [add_comm_group α] (a b c : α) : a - (b + c) = a - b - c := by simp lemma neg_add_eq_sub [add_comm_group α] (a b : α) : -a + b = b - a := by simp lemma sub_add_eq_add_sub [add_comm_group α] (a b c : α) : a - b + c = a + c - b := by simp lemma sub_sub [add_comm_group α] (a b c : α) : a - b - c = a - (b + c) := by simp lemma add_sub_add_left_eq_sub [add_comm_group α] (a b c : α) : (c + a) - (c + b) = a - b := by simp lemma eq_sub_of_add_eq' [add_comm_group α] {a b c : α} (h : c + a = b) : a = b - c := by simp [h.symm] lemma sub_eq_of_eq_add' [add_comm_group α] {a b c : α} (h : a = b + c) : a - b = c := by simp [h] lemma eq_add_of_sub_eq' [add_comm_group α] {a b c : α} (h : a - b = c) : a = b + c := by simp [h.symm] lemma add_eq_of_eq_sub' [add_comm_group α] {a b c : α} (h : b = c - a) : a + b = c := begin simp [h], rw [add_comm c, add_neg_cancel_left] end lemma sub_sub_self [add_comm_group α] (a b : α) : a - (a - b) = b := begin simp, rw [add_comm b, add_neg_cancel_left] end lemma add_sub_comm [add_comm_group α] (a b c d : α) : a + b - (c + d) = (a - c) + (b - d) := by simp lemma sub_eq_sub_add_sub [add_comm_group α] (a b c : α) : a - b = c - b + (a - c) := by simp lemma neg_neg_sub_neg [add_comm_group α] (a b : α) : - (-a - -b) = a - b := by simp /- The following lemmas generate too many instances for rsimp -/ attribute [no_rsimp] mul_assoc mul_comm mul_left_comm add_assoc add_comm add_left_comm
74ae6677c046db0857445f809051aece31f0e194
57c233acf9386e610d99ed20ef139c5f97504ba3
/src/geometry/euclidean/circumcenter.lean
b44646ccc308e60e675e8aecf1d21c57d2a95401
[ "Apache-2.0" ]
permissive
robertylewis/mathlib
3d16e3e6daf5ddde182473e03a1b601d2810952c
1d13f5b932f5e40a8308e3840f96fc882fae01f0
refs/heads/master
1,651,379,945,369
1,644,276,960,000
1,644,276,960,000
98,875,504
0
0
Apache-2.0
1,644,253,514,000
1,501,495,700,000
Lean
UTF-8
Lean
false
false
38,244
lean
/- Copyright (c) 2020 Joseph Myers. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Myers -/ import geometry.euclidean.basic import linear_algebra.affine_space.finite_dimensional import tactic.derive_fintype /-! # Circumcenter and circumradius This file proves some lemmas on points equidistant from a set of points, and defines the circumradius and circumcenter of a simplex. There are also some definitions for use in calculations where it is convenient to work with affine combinations of vertices together with the circumcenter. ## Main definitions * `circumcenter` and `circumradius` are the circumcenter and circumradius of a simplex. ## References * https://en.wikipedia.org/wiki/Circumscribed_circle -/ noncomputable theory open_locale big_operators open_locale classical open_locale real open_locale real_inner_product_space namespace euclidean_geometry open inner_product_geometry variables {V : Type*} {P : Type*} [inner_product_space ℝ V] [metric_space P] [normed_add_torsor V P] include V open affine_subspace /-- `p` is equidistant from two points in `s` if and only if its `orthogonal_projection` is. -/ lemma dist_eq_iff_dist_orthogonal_projection_eq {s : affine_subspace ℝ P} [nonempty s] [complete_space s.direction] {p1 p2 : P} (p3 : P) (hp1 : p1 ∈ s) (hp2 : p2 ∈ s) : dist p1 p3 = dist p2 p3 ↔ dist p1 (orthogonal_projection s p3) = dist p2 (orthogonal_projection s p3) := begin rw [←mul_self_inj_of_nonneg dist_nonneg dist_nonneg, ←mul_self_inj_of_nonneg dist_nonneg dist_nonneg, dist_sq_eq_dist_orthogonal_projection_sq_add_dist_orthogonal_projection_sq p3 hp1, dist_sq_eq_dist_orthogonal_projection_sq_add_dist_orthogonal_projection_sq p3 hp2], simp end /-- `p` is equidistant from a set of points in `s` if and only if its `orthogonal_projection` is. -/ lemma dist_set_eq_iff_dist_orthogonal_projection_eq {s : affine_subspace ℝ P} [nonempty s] [complete_space s.direction] {ps : set P} (hps : ps ⊆ s) (p : P) : set.pairwise ps (λ p1 p2, dist p1 p = dist p2 p) ↔ (set.pairwise ps (λ p1 p2, dist p1 (orthogonal_projection s p) = dist p2 (orthogonal_projection s p))) := ⟨λ h p1 hp1 p2 hp2 hne, (dist_eq_iff_dist_orthogonal_projection_eq p (hps hp1) (hps hp2)).1 (h hp1 hp2 hne), λ h p1 hp1 p2 hp2 hne, (dist_eq_iff_dist_orthogonal_projection_eq p (hps hp1) (hps hp2)).2 (h hp1 hp2 hne)⟩ /-- There exists `r` such that `p` has distance `r` from all the points of a set of points in `s` if and only if there exists (possibly different) `r` such that its `orthogonal_projection` has that distance from all the points in that set. -/ lemma exists_dist_eq_iff_exists_dist_orthogonal_projection_eq {s : affine_subspace ℝ P} [nonempty s] [complete_space s.direction] {ps : set P} (hps : ps ⊆ s) (p : P) : (∃ r, ∀ p1 ∈ ps, dist p1 p = r) ↔ ∃ r, ∀ p1 ∈ ps, dist p1 ↑(orthogonal_projection s p) = r := begin have h := dist_set_eq_iff_dist_orthogonal_projection_eq hps p, simp_rw set.pairwise_eq_iff_exists_eq at h, exact h end /-- The induction step for the existence and uniqueness of the circumcenter. Given a nonempty set of points in a nonempty affine subspace whose direction is complete, such that there is a unique (circumcenter, circumradius) pair for those points in that subspace, and a point `p` not in that subspace, there is a unique (circumcenter, circumradius) pair for the set with `p` added, in the span of the subspace with `p` added. -/ lemma exists_unique_dist_eq_of_insert {s : affine_subspace ℝ P} [complete_space s.direction] {ps : set P} (hnps : ps.nonempty) {p : P} (hps : ps ⊆ s) (hp : p ∉ s) (hu : ∃! cccr : (P × ℝ), cccr.fst ∈ s ∧ ∀ p1 ∈ ps, dist p1 cccr.fst = cccr.snd) : ∃! cccr₂ : (P × ℝ), cccr₂.fst ∈ affine_span ℝ (insert p (s : set P)) ∧ ∀ p1 ∈ insert p ps, dist p1 cccr₂.fst = cccr₂.snd := begin haveI : nonempty s := set.nonempty.to_subtype (hnps.mono hps), rcases hu with ⟨⟨cc, cr⟩, ⟨hcc, hcr⟩, hcccru⟩, simp only [prod.fst, prod.snd] at hcc hcr hcccru, let x := dist cc (orthogonal_projection s p), let y := dist p (orthogonal_projection s p), have hy0 : y ≠ 0 := dist_orthogonal_projection_ne_zero_of_not_mem hp, let ycc₂ := (x * x + y * y - cr * cr) / (2 * y), let cc₂ := (ycc₂ / y) • (p -ᵥ orthogonal_projection s p : V) +ᵥ cc, let cr₂ := real.sqrt (cr * cr + ycc₂ * ycc₂), use (cc₂, cr₂), simp only [prod.fst, prod.snd], have hpo : p = (1 : ℝ) • (p -ᵥ orthogonal_projection s p : V) +ᵥ orthogonal_projection s p, { simp }, split, { split, { refine vadd_mem_of_mem_direction _ (mem_affine_span ℝ (set.mem_insert_of_mem _ hcc)), rw direction_affine_span, exact submodule.smul_mem _ _ (vsub_mem_vector_span ℝ (set.mem_insert _ _) (set.mem_insert_of_mem _ (orthogonal_projection_mem _))) }, { intros p1 hp1, rw [←mul_self_inj_of_nonneg dist_nonneg (real.sqrt_nonneg _), real.mul_self_sqrt (add_nonneg (mul_self_nonneg _) (mul_self_nonneg _))], cases hp1, { rw hp1, rw [hpo, dist_sq_smul_orthogonal_vadd_smul_orthogonal_vadd (orthogonal_projection_mem p) hcc _ _ (vsub_orthogonal_projection_mem_direction_orthogonal s p), ←dist_eq_norm_vsub V p, dist_comm _ cc], field_simp [hy0], ring }, { rw [dist_sq_eq_dist_orthogonal_projection_sq_add_dist_orthogonal_projection_sq _ (hps hp1), orthogonal_projection_vadd_smul_vsub_orthogonal_projection _ _ hcc, subtype.coe_mk, hcr _ hp1, dist_eq_norm_vsub V cc₂ cc, vadd_vsub, norm_smul, ←dist_eq_norm_vsub V, real.norm_eq_abs, abs_div, abs_of_nonneg dist_nonneg, div_mul_cancel _ hy0, abs_mul_abs_self] } } }, { rintros ⟨cc₃, cr₃⟩ ⟨hcc₃, hcr₃⟩, simp only [prod.fst, prod.snd] at hcc₃ hcr₃, obtain ⟨t₃, cc₃', hcc₃', hcc₃''⟩ : ∃ (r : ℝ) (p0 : P) (hp0 : p0 ∈ s), cc₃ = r • (p -ᵥ ↑((orthogonal_projection s) p)) +ᵥ p0, { rwa mem_affine_span_insert_iff (orthogonal_projection_mem p) at hcc₃ }, have hcr₃' : ∃ r, ∀ p1 ∈ ps, dist p1 cc₃ = r := ⟨cr₃, λ p1 hp1, hcr₃ p1 (set.mem_insert_of_mem _ hp1)⟩, rw [exists_dist_eq_iff_exists_dist_orthogonal_projection_eq hps cc₃, hcc₃'', orthogonal_projection_vadd_smul_vsub_orthogonal_projection _ _ hcc₃'] at hcr₃', cases hcr₃' with cr₃' hcr₃', have hu := hcccru (cc₃', cr₃'), simp only [prod.fst, prod.snd] at hu, replace hu := hu ⟨hcc₃', hcr₃'⟩, rw prod.ext_iff at hu, simp only [prod.fst, prod.snd] at hu, cases hu with hucc hucr, substs hucc hucr, have hcr₃val : cr₃ = real.sqrt (cr₃' * cr₃' + (t₃ * y) * (t₃ * y)), { cases hnps with p0 hp0, have h' : ↑(⟨cc₃', hcc₃'⟩ : s) = cc₃' := rfl, rw [←hcr₃ p0 (set.mem_insert_of_mem _ hp0), hcc₃'', ←mul_self_inj_of_nonneg dist_nonneg (real.sqrt_nonneg _), real.mul_self_sqrt (add_nonneg (mul_self_nonneg _) (mul_self_nonneg _)), dist_sq_eq_dist_orthogonal_projection_sq_add_dist_orthogonal_projection_sq _ (hps hp0), orthogonal_projection_vadd_smul_vsub_orthogonal_projection _ _ hcc₃', h', hcr p0 hp0, dist_eq_norm_vsub V _ cc₃', vadd_vsub, norm_smul, ←dist_eq_norm_vsub V p, real.norm_eq_abs, ←mul_assoc, mul_comm _ (|t₃|), ←mul_assoc, abs_mul_abs_self], ring }, replace hcr₃ := hcr₃ p (set.mem_insert _ _), rw [hpo, hcc₃'', hcr₃val, ←mul_self_inj_of_nonneg dist_nonneg (real.sqrt_nonneg _), dist_sq_smul_orthogonal_vadd_smul_orthogonal_vadd (orthogonal_projection_mem p) hcc₃' _ _ (vsub_orthogonal_projection_mem_direction_orthogonal s p), dist_comm, ←dist_eq_norm_vsub V p, real.mul_self_sqrt (add_nonneg (mul_self_nonneg _) (mul_self_nonneg _))] at hcr₃, change x * x + _ * (y * y) = _ at hcr₃, rw [(show x * x + (1 - t₃) * (1 - t₃) * (y * y) = x * x + y * y - 2 * y * (t₃ * y) + t₃ * y * (t₃ * y), by ring), add_left_inj] at hcr₃, have ht₃ : t₃ = ycc₂ / y, { field_simp [←hcr₃, hy0], ring }, subst ht₃, change cc₃ = cc₂ at hcc₃'', congr', rw hcr₃val, congr' 2, field_simp [hy0], ring } end /-- Given a finite nonempty affinely independent family of points, there is a unique (circumcenter, circumradius) pair for those points in the affine subspace they span. -/ lemma _root_.affine_independent.exists_unique_dist_eq {ι : Type*} [hne : nonempty ι] [fintype ι] {p : ι → P} (ha : affine_independent ℝ p) : ∃! cccr : (P × ℝ), cccr.fst ∈ affine_span ℝ (set.range p) ∧ ∀ i, dist (p i) cccr.fst = cccr.snd := begin unfreezingI { induction hn : fintype.card ι with m hm generalizing ι }, { exfalso, have h := fintype.card_pos_iff.2 hne, rw hn at h, exact lt_irrefl 0 h }, { cases m, { rw fintype.card_eq_one_iff at hn, cases hn with i hi, haveI : unique ι := ⟨⟨i⟩, hi⟩, use (p i, 0), simp only [prod.fst, prod.snd, set.range_unique, affine_subspace.mem_affine_span_singleton], split, { simp_rw [hi default], use rfl, intro i1, rw hi i1, exact dist_self _ }, { rintros ⟨cc, cr⟩, simp only [prod.fst, prod.snd], rintros ⟨rfl, hdist⟩, rw hi default, congr', rw ←hdist default, exact dist_self _ } }, { have i := hne.some, let ι2 := {x // x ≠ i}, have hc : fintype.card ι2 = m + 1, { rw fintype.card_of_subtype (finset.univ.filter (λ x, x ≠ i)), { rw finset.filter_not, simp_rw eq_comm, rw [finset.filter_eq, if_pos (finset.mem_univ _), finset.card_sdiff (finset.subset_univ _), finset.card_singleton, finset.card_univ, hn], simp }, { simp } }, haveI : nonempty ι2 := fintype.card_pos_iff.1 (hc.symm ▸ nat.zero_lt_succ _), have ha2 : affine_independent ℝ (λ i2 : ι2, p i2) := ha.subtype _, replace hm := hm ha2 hc, have hr : set.range p = insert (p i) (set.range (λ i2 : ι2, p i2)), { change _ = insert _ (set.range (λ i2 : {x | x ≠ i}, p i2)), rw [←set.image_eq_range, ←set.image_univ, ←set.image_insert_eq], congr' with j, simp [classical.em] }, change ∃! (cccr : P × ℝ), (_ ∧ ∀ i2, (λ q, dist q cccr.fst = cccr.snd) (p i2)), conv { congr, funext, conv { congr, skip, rw ←set.forall_range_iff } }, dsimp only, rw hr, change ∃! (cccr : P × ℝ), (_ ∧ ∀ (i2 : ι2), (λ q, dist q cccr.fst = cccr.snd) (p i2)) at hm, conv at hm { congr, funext, conv { congr, skip, rw ←set.forall_range_iff } }, rw ←affine_span_insert_affine_span, refine exists_unique_dist_eq_of_insert (set.range_nonempty _) (subset_span_points ℝ _) _ hm, convert ha.not_mem_affine_span_diff i set.univ, change set.range (λ i2 : {x | x ≠ i}, p i2) = _, rw ←set.image_eq_range, congr' with j, simp, refl } } end end euclidean_geometry namespace affine namespace simplex open finset affine_subspace euclidean_geometry variables {V : Type*} {P : Type*} [inner_product_space ℝ V] [metric_space P] [normed_add_torsor V P] include V /-- The pair (circumcenter, circumradius) of a simplex. -/ def circumcenter_circumradius {n : ℕ} (s : simplex ℝ P n) : (P × ℝ) := s.independent.exists_unique_dist_eq.some /-- The property satisfied by the (circumcenter, circumradius) pair. -/ lemma circumcenter_circumradius_unique_dist_eq {n : ℕ} (s : simplex ℝ P n) : (s.circumcenter_circumradius.fst ∈ affine_span ℝ (set.range s.points) ∧ ∀ i, dist (s.points i) s.circumcenter_circumradius.fst = s.circumcenter_circumradius.snd) ∧ (∀ cccr : (P × ℝ), (cccr.fst ∈ affine_span ℝ (set.range s.points) ∧ ∀ i, dist (s.points i) cccr.fst = cccr.snd) → cccr = s.circumcenter_circumradius) := s.independent.exists_unique_dist_eq.some_spec /-- The circumcenter of a simplex. -/ def circumcenter {n : ℕ} (s : simplex ℝ P n) : P := s.circumcenter_circumradius.fst /-- The circumradius of a simplex. -/ def circumradius {n : ℕ} (s : simplex ℝ P n) : ℝ := s.circumcenter_circumradius.snd /-- The circumcenter lies in the affine span. -/ lemma circumcenter_mem_affine_span {n : ℕ} (s : simplex ℝ P n) : s.circumcenter ∈ affine_span ℝ (set.range s.points) := s.circumcenter_circumradius_unique_dist_eq.1.1 /-- All points have distance from the circumcenter equal to the circumradius. -/ @[simp] lemma dist_circumcenter_eq_circumradius {n : ℕ} (s : simplex ℝ P n) : ∀ i, dist (s.points i) s.circumcenter = s.circumradius := s.circumcenter_circumradius_unique_dist_eq.1.2 /-- All points have distance to the circumcenter equal to the circumradius. -/ @[simp] lemma dist_circumcenter_eq_circumradius' {n : ℕ} (s : simplex ℝ P n) : ∀ i, dist s.circumcenter (s.points i) = s.circumradius := begin intro i, rw dist_comm, exact dist_circumcenter_eq_circumradius _ _ end /-- Given a point in the affine span from which all the points are equidistant, that point is the circumcenter. -/ lemma eq_circumcenter_of_dist_eq {n : ℕ} (s : simplex ℝ P n) {p : P} (hp : p ∈ affine_span ℝ (set.range s.points)) {r : ℝ} (hr : ∀ i, dist (s.points i) p = r) : p = s.circumcenter := begin have h := s.circumcenter_circumradius_unique_dist_eq.2 (p, r), simp only [hp, hr, forall_const, eq_self_iff_true, and_self, prod.ext_iff] at h, exact h.1 end /-- Given a point in the affine span from which all the points are equidistant, that distance is the circumradius. -/ lemma eq_circumradius_of_dist_eq {n : ℕ} (s : simplex ℝ P n) {p : P} (hp : p ∈ affine_span ℝ (set.range s.points)) {r : ℝ} (hr : ∀ i, dist (s.points i) p = r) : r = s.circumradius := begin have h := s.circumcenter_circumradius_unique_dist_eq.2 (p, r), simp only [hp, hr, forall_const, eq_self_iff_true, and_self, prod.ext_iff] at h, exact h.2 end /-- The circumradius is non-negative. -/ lemma circumradius_nonneg {n : ℕ} (s : simplex ℝ P n) : 0 ≤ s.circumradius := s.dist_circumcenter_eq_circumradius 0 ▸ dist_nonneg /-- The circumradius of a simplex with at least two points is positive. -/ lemma circumradius_pos {n : ℕ} (s : simplex ℝ P (n + 1)) : 0 < s.circumradius := begin refine lt_of_le_of_ne s.circumradius_nonneg _, intro h, have hr := s.dist_circumcenter_eq_circumradius, simp_rw [←h, dist_eq_zero] at hr, have h01 := s.independent.injective.ne (dec_trivial : (0 : fin (n + 2)) ≠ 1), simpa [hr] using h01 end /-- The circumcenter of a 0-simplex equals its unique point. -/ lemma circumcenter_eq_point (s : simplex ℝ P 0) (i : fin 1) : s.circumcenter = s.points i := begin have h := s.circumcenter_mem_affine_span, rw [set.range_unique, mem_affine_span_singleton] at h, rw h, congr end /-- The circumcenter of a 1-simplex equals its centroid. -/ lemma circumcenter_eq_centroid (s : simplex ℝ P 1) : s.circumcenter = finset.univ.centroid ℝ s.points := begin have hr : set.pairwise set.univ (λ i j : fin 2, dist (s.points i) (finset.univ.centroid ℝ s.points) = dist (s.points j) (finset.univ.centroid ℝ s.points)), { intros i hi j hj hij, rw [finset.centroid_insert_singleton_fin, dist_eq_norm_vsub V (s.points i), dist_eq_norm_vsub V (s.points j), vsub_vadd_eq_vsub_sub, vsub_vadd_eq_vsub_sub, ←one_smul ℝ (s.points i -ᵥ s.points 0), ←one_smul ℝ (s.points j -ᵥ s.points 0)], fin_cases i; fin_cases j; simp [-one_smul, ←sub_smul]; norm_num }, rw set.pairwise_eq_iff_exists_eq at hr, cases hr with r hr, exact (s.eq_circumcenter_of_dist_eq (centroid_mem_affine_span_of_card_eq_add_one ℝ _ (finset.card_fin 2)) (λ i, hr i (set.mem_univ _))).symm end /-- If there exists a distance that a point has from all vertices of a simplex, the orthogonal projection of that point onto the subspace spanned by that simplex is its circumcenter. -/ lemma orthogonal_projection_eq_circumcenter_of_exists_dist_eq {n : ℕ} (s : simplex ℝ P n) {p : P} (hr : ∃ r, ∀ i, dist (s.points i) p = r) : ↑(orthogonal_projection (affine_span ℝ (set.range s.points)) p) = s.circumcenter := begin change ∃ r : ℝ, ∀ i, (λ x, dist x p = r) (s.points i) at hr, conv at hr { congr, funext, rw ←set.forall_range_iff }, rw exists_dist_eq_iff_exists_dist_orthogonal_projection_eq (subset_affine_span ℝ _) p at hr, cases hr with r hr, exact s.eq_circumcenter_of_dist_eq (orthogonal_projection_mem p) (λ i, hr _ (set.mem_range_self i)), end /-- If a point has the same distance from all vertices of a simplex, the orthogonal projection of that point onto the subspace spanned by that simplex is its circumcenter. -/ lemma orthogonal_projection_eq_circumcenter_of_dist_eq {n : ℕ} (s : simplex ℝ P n) {p : P} {r : ℝ} (hr : ∀ i, dist (s.points i) p = r) : ↑(orthogonal_projection (affine_span ℝ (set.range s.points)) p) = s.circumcenter := s.orthogonal_projection_eq_circumcenter_of_exists_dist_eq ⟨r, hr⟩ /-- The orthogonal projection of the circumcenter onto a face is the circumcenter of that face. -/ lemma orthogonal_projection_circumcenter {n : ℕ} (s : simplex ℝ P n) {fs : finset (fin (n + 1))} {m : ℕ} (h : fs.card = m + 1) : ↑(orthogonal_projection (affine_span ℝ (set.range (s.face h).points)) s.circumcenter) = (s.face h).circumcenter := begin have hr : ∃ r, ∀ i, dist ((s.face h).points i) s.circumcenter = r, { use s.circumradius, simp [face_points] }, exact orthogonal_projection_eq_circumcenter_of_exists_dist_eq _ hr end /-- Two simplices with the same points have the same circumcenter. -/ lemma circumcenter_eq_of_range_eq {n : ℕ} {s₁ s₂ : simplex ℝ P n} (h : set.range s₁.points = set.range s₂.points) : s₁.circumcenter = s₂.circumcenter := begin have hs : s₁.circumcenter ∈ affine_span ℝ (set.range s₂.points) := h ▸ s₁.circumcenter_mem_affine_span, have hr : ∀ i, dist (s₂.points i) s₁.circumcenter = s₁.circumradius, { intro i, have hi : s₂.points i ∈ set.range s₂.points := set.mem_range_self _, rw [←h, set.mem_range] at hi, rcases hi with ⟨j, hj⟩, rw [←hj, s₁.dist_circumcenter_eq_circumradius j] }, exact s₂.eq_circumcenter_of_dist_eq hs hr end omit V /-- An index type for the vertices of a simplex plus its circumcenter. This is for use in calculations where it is convenient to work with affine combinations of vertices together with the circumcenter. (An equivalent form sometimes used in the literature is placing the circumcenter at the origin and working with vectors for the vertices.) -/ @[derive fintype] inductive points_with_circumcenter_index (n : ℕ) | point_index : fin (n + 1) → points_with_circumcenter_index | circumcenter_index : points_with_circumcenter_index open points_with_circumcenter_index instance points_with_circumcenter_index_inhabited (n : ℕ) : inhabited (points_with_circumcenter_index n) := ⟨circumcenter_index⟩ /-- `point_index` as an embedding. -/ def point_index_embedding (n : ℕ) : fin (n + 1) ↪ points_with_circumcenter_index n := ⟨λ i, point_index i, λ _ _ h, by injection h⟩ /-- The sum of a function over `points_with_circumcenter_index`. -/ lemma sum_points_with_circumcenter {α : Type*} [add_comm_monoid α] {n : ℕ} (f : points_with_circumcenter_index n → α) : ∑ i, f i = (∑ (i : fin (n + 1)), f (point_index i)) + f circumcenter_index := begin have h : univ = insert circumcenter_index (univ.map (point_index_embedding n)), { ext x, refine ⟨λ h, _, λ _, mem_univ _⟩, cases x with i, { exact mem_insert_of_mem (mem_map_of_mem _ (mem_univ i)) }, { exact mem_insert_self _ _ } }, change _ = ∑ i, f (point_index_embedding n i) + _, rw [add_comm, h, ←sum_map, sum_insert], simp_rw [finset.mem_map, not_exists], intros x hx h, injection h end include V /-- The vertices of a simplex plus its circumcenter. -/ def points_with_circumcenter {n : ℕ} (s : simplex ℝ P n) : points_with_circumcenter_index n → P | (point_index i) := s.points i | circumcenter_index := s.circumcenter /-- `points_with_circumcenter`, applied to a `point_index` value, equals `points` applied to that value. -/ @[simp] lemma points_with_circumcenter_point {n : ℕ} (s : simplex ℝ P n) (i : fin (n + 1)) : s.points_with_circumcenter (point_index i) = s.points i := rfl /-- `points_with_circumcenter`, applied to `circumcenter_index`, equals the circumcenter. -/ @[simp] lemma points_with_circumcenter_eq_circumcenter {n : ℕ} (s : simplex ℝ P n) : s.points_with_circumcenter circumcenter_index = s.circumcenter := rfl omit V /-- The weights for a single vertex of a simplex, in terms of `points_with_circumcenter`. -/ def point_weights_with_circumcenter {n : ℕ} (i : fin (n + 1)) : points_with_circumcenter_index n → ℝ | (point_index j) := if j = i then 1 else 0 | circumcenter_index := 0 /-- `point_weights_with_circumcenter` sums to 1. -/ @[simp] lemma sum_point_weights_with_circumcenter {n : ℕ} (i : fin (n + 1)) : ∑ j, point_weights_with_circumcenter i j = 1 := begin convert sum_ite_eq' univ (point_index i) (function.const _ (1 : ℝ)), { ext j, cases j ; simp [point_weights_with_circumcenter] }, { simp } end include V /-- A single vertex, in terms of `points_with_circumcenter`. -/ lemma point_eq_affine_combination_of_points_with_circumcenter {n : ℕ} (s : simplex ℝ P n) (i : fin (n + 1)) : s.points i = (univ : finset (points_with_circumcenter_index n)).affine_combination s.points_with_circumcenter (point_weights_with_circumcenter i) := begin rw ←points_with_circumcenter_point, symmetry, refine affine_combination_of_eq_one_of_eq_zero _ _ _ (mem_univ _) (by simp [point_weights_with_circumcenter]) _, intros i hi hn, cases i, { have h : i_1 ≠ i := λ h, hn (h ▸ rfl), simp [point_weights_with_circumcenter, h] }, { refl } end omit V /-- The weights for the centroid of some vertices of a simplex, in terms of `points_with_circumcenter`. -/ def centroid_weights_with_circumcenter {n : ℕ} (fs : finset (fin (n + 1))) : points_with_circumcenter_index n → ℝ | (point_index i) := if i ∈ fs then ((card fs : ℝ) ⁻¹) else 0 | circumcenter_index := 0 /-- `centroid_weights_with_circumcenter` sums to 1, if the `finset` is nonempty. -/ @[simp] lemma sum_centroid_weights_with_circumcenter {n : ℕ} {fs : finset (fin (n + 1))} (h : fs.nonempty) : ∑ i, centroid_weights_with_circumcenter fs i = 1 := begin simp_rw [sum_points_with_circumcenter, centroid_weights_with_circumcenter, add_zero, ←fs.sum_centroid_weights_eq_one_of_nonempty ℝ h, set.sum_indicator_subset _ fs.subset_univ], rcongr end include V /-- The centroid of some vertices of a simplex, in terms of `points_with_circumcenter`. -/ lemma centroid_eq_affine_combination_of_points_with_circumcenter {n : ℕ} (s : simplex ℝ P n) (fs : finset (fin (n + 1))) : fs.centroid ℝ s.points = (univ : finset (points_with_circumcenter_index n)).affine_combination s.points_with_circumcenter (centroid_weights_with_circumcenter fs) := begin simp_rw [centroid_def, affine_combination_apply, weighted_vsub_of_point_apply, sum_points_with_circumcenter, centroid_weights_with_circumcenter, points_with_circumcenter_point, zero_smul, add_zero, centroid_weights, set.sum_indicator_subset_of_eq_zero (function.const (fin (n + 1)) ((card fs : ℝ)⁻¹)) (λ i wi, wi • (s.points i -ᵥ classical.choice add_torsor.nonempty)) fs.subset_univ (λ i, zero_smul ℝ _), set.indicator_apply], congr, funext, congr' 2 end omit V /-- The weights for the circumcenter of a simplex, in terms of `points_with_circumcenter`. -/ def circumcenter_weights_with_circumcenter (n : ℕ) : points_with_circumcenter_index n → ℝ | (point_index i) := 0 | circumcenter_index := 1 /-- `circumcenter_weights_with_circumcenter` sums to 1. -/ @[simp] lemma sum_circumcenter_weights_with_circumcenter (n : ℕ) : ∑ i, circumcenter_weights_with_circumcenter n i = 1 := begin convert sum_ite_eq' univ circumcenter_index (function.const _ (1 : ℝ)), { ext ⟨j⟩ ; simp [circumcenter_weights_with_circumcenter] }, { simp } end include V /-- The circumcenter of a simplex, in terms of `points_with_circumcenter`. -/ lemma circumcenter_eq_affine_combination_of_points_with_circumcenter {n : ℕ} (s : simplex ℝ P n) : s.circumcenter = (univ : finset (points_with_circumcenter_index n)).affine_combination s.points_with_circumcenter (circumcenter_weights_with_circumcenter n) := begin rw ←points_with_circumcenter_eq_circumcenter, symmetry, refine affine_combination_of_eq_one_of_eq_zero _ _ _ (mem_univ _) rfl _, rintros ⟨i⟩ hi hn ; tauto end omit V /-- The weights for the reflection of the circumcenter in an edge of a simplex. This definition is only valid with `i₁ ≠ i₂`. -/ def reflection_circumcenter_weights_with_circumcenter {n : ℕ} (i₁ i₂ : fin (n + 1)) : points_with_circumcenter_index n → ℝ | (point_index i) := if i = i₁ ∨ i = i₂ then 1 else 0 | circumcenter_index := -1 /-- `reflection_circumcenter_weights_with_circumcenter` sums to 1. -/ @[simp] lemma sum_reflection_circumcenter_weights_with_circumcenter {n : ℕ} {i₁ i₂ : fin (n + 1)} (h : i₁ ≠ i₂) : ∑ i, reflection_circumcenter_weights_with_circumcenter i₁ i₂ i = 1 := begin simp_rw [sum_points_with_circumcenter, reflection_circumcenter_weights_with_circumcenter, sum_ite, sum_const, filter_or, filter_eq'], rw card_union_eq, { simp }, { simpa only [if_true, mem_univ, disjoint_singleton] using h } end include V /-- The reflection of the circumcenter of a simplex in an edge, in terms of `points_with_circumcenter`. -/ lemma reflection_circumcenter_eq_affine_combination_of_points_with_circumcenter {n : ℕ} (s : simplex ℝ P n) {i₁ i₂ : fin (n + 1)} (h : i₁ ≠ i₂) : reflection (affine_span ℝ (s.points '' {i₁, i₂})) s.circumcenter = (univ : finset (points_with_circumcenter_index n)).affine_combination s.points_with_circumcenter (reflection_circumcenter_weights_with_circumcenter i₁ i₂) := begin have hc : card ({i₁, i₂} : finset (fin (n + 1))) = 2, { simp [h] }, have h_faces : ↑(orthogonal_projection (affine_span ℝ (s.points '' {i₁, i₂})) s.circumcenter) = ↑(orthogonal_projection (affine_span ℝ (set.range (s.face hc).points)) s.circumcenter), { apply eq_orthogonal_projection_of_eq_subspace, simp }, rw [euclidean_geometry.reflection_apply, h_faces, s.orthogonal_projection_circumcenter hc, circumcenter_eq_centroid, s.face_centroid_eq_centroid hc, centroid_eq_affine_combination_of_points_with_circumcenter, circumcenter_eq_affine_combination_of_points_with_circumcenter, ←@vsub_eq_zero_iff_eq V, affine_combination_vsub, weighted_vsub_vadd_affine_combination, affine_combination_vsub, weighted_vsub_apply, sum_points_with_circumcenter], simp_rw [pi.sub_apply, pi.add_apply, pi.sub_apply, sub_smul, add_smul, sub_smul, centroid_weights_with_circumcenter, circumcenter_weights_with_circumcenter, reflection_circumcenter_weights_with_circumcenter, ite_smul, zero_smul, sub_zero, apply_ite2 (+), add_zero, ←add_smul, hc, zero_sub, neg_smul, sub_self, add_zero], convert sum_const_zero, norm_num end end simplex end affine namespace euclidean_geometry open affine affine_subspace finite_dimensional variables {V : Type*} {P : Type*} [inner_product_space ℝ V] [metric_space P] [normed_add_torsor V P] include V /-- Given a nonempty affine subspace, whose direction is complete, that contains a set of points, those points are cospherical if and only if they are equidistant from some point in that subspace. -/ lemma cospherical_iff_exists_mem_of_complete {s : affine_subspace ℝ P} {ps : set P} (h : ps ⊆ s) [nonempty s] [complete_space s.direction] : cospherical ps ↔ ∃ (center ∈ s) (radius : ℝ), ∀ p ∈ ps, dist p center = radius := begin split, { rintro ⟨c, hcr⟩, rw exists_dist_eq_iff_exists_dist_orthogonal_projection_eq h c at hcr, exact ⟨orthogonal_projection s c, orthogonal_projection_mem _, hcr⟩ }, { exact λ ⟨c, hc, hd⟩, ⟨c, hd⟩ } end /-- Given a nonempty affine subspace, whose direction is finite-dimensional, that contains a set of points, those points are cospherical if and only if they are equidistant from some point in that subspace. -/ lemma cospherical_iff_exists_mem_of_finite_dimensional {s : affine_subspace ℝ P} {ps : set P} (h : ps ⊆ s) [nonempty s] [finite_dimensional ℝ s.direction] : cospherical ps ↔ ∃ (center ∈ s) (radius : ℝ), ∀ p ∈ ps, dist p center = radius := cospherical_iff_exists_mem_of_complete h /-- All n-simplices among cospherical points in an n-dimensional subspace have the same circumradius. -/ lemma exists_circumradius_eq_of_cospherical_subset {s : affine_subspace ℝ P} {ps : set P} (h : ps ⊆ s) [nonempty s] {n : ℕ} [finite_dimensional ℝ s.direction] (hd : finrank ℝ s.direction = n) (hc : cospherical ps) : ∃ r : ℝ, ∀ sx : simplex ℝ P n, set.range sx.points ⊆ ps → sx.circumradius = r := begin rw cospherical_iff_exists_mem_of_finite_dimensional h at hc, rcases hc with ⟨c, hc, r, hcr⟩, use r, intros sx hsxps, have hsx : affine_span ℝ (set.range sx.points) = s, { refine sx.independent.affine_span_eq_of_le_of_card_eq_finrank_add_one (span_points_subset_coe_of_subset_coe (hsxps.trans h)) _, simp [hd] }, have hc : c ∈ affine_span ℝ (set.range sx.points) := hsx.symm ▸ hc, exact (sx.eq_circumradius_of_dist_eq hc (λ i, hcr (sx.points i) (hsxps (set.mem_range_self i)))).symm end /-- Two n-simplices among cospherical points in an n-dimensional subspace have the same circumradius. -/ lemma circumradius_eq_of_cospherical_subset {s : affine_subspace ℝ P} {ps : set P} (h : ps ⊆ s) [nonempty s] {n : ℕ} [finite_dimensional ℝ s.direction] (hd : finrank ℝ s.direction = n) (hc : cospherical ps) {sx₁ sx₂ : simplex ℝ P n} (hsx₁ : set.range sx₁.points ⊆ ps) (hsx₂ : set.range sx₂.points ⊆ ps) : sx₁.circumradius = sx₂.circumradius := begin rcases exists_circumradius_eq_of_cospherical_subset h hd hc with ⟨r, hr⟩, rw [hr sx₁ hsx₁, hr sx₂ hsx₂] end /-- All n-simplices among cospherical points in n-space have the same circumradius. -/ lemma exists_circumradius_eq_of_cospherical {ps : set P} {n : ℕ} [finite_dimensional ℝ V] (hd : finrank ℝ V = n) (hc : cospherical ps) : ∃ r : ℝ, ∀ sx : simplex ℝ P n, set.range sx.points ⊆ ps → sx.circumradius = r := begin haveI : nonempty (⊤ : affine_subspace ℝ P) := set.univ.nonempty, rw [←finrank_top, ←direction_top ℝ V P] at hd, refine exists_circumradius_eq_of_cospherical_subset _ hd hc, exact set.subset_univ _ end /-- Two n-simplices among cospherical points in n-space have the same circumradius. -/ lemma circumradius_eq_of_cospherical {ps : set P} {n : ℕ} [finite_dimensional ℝ V] (hd : finrank ℝ V = n) (hc : cospherical ps) {sx₁ sx₂ : simplex ℝ P n} (hsx₁ : set.range sx₁.points ⊆ ps) (hsx₂ : set.range sx₂.points ⊆ ps) : sx₁.circumradius = sx₂.circumradius := begin rcases exists_circumradius_eq_of_cospherical hd hc with ⟨r, hr⟩, rw [hr sx₁ hsx₁, hr sx₂ hsx₂] end /-- All n-simplices among cospherical points in an n-dimensional subspace have the same circumcenter. -/ lemma exists_circumcenter_eq_of_cospherical_subset {s : affine_subspace ℝ P} {ps : set P} (h : ps ⊆ s) [nonempty s] {n : ℕ} [finite_dimensional ℝ s.direction] (hd : finrank ℝ s.direction = n) (hc : cospherical ps) : ∃ c : P, ∀ sx : simplex ℝ P n, set.range sx.points ⊆ ps → sx.circumcenter = c := begin rw cospherical_iff_exists_mem_of_finite_dimensional h at hc, rcases hc with ⟨c, hc, r, hcr⟩, use c, intros sx hsxps, have hsx : affine_span ℝ (set.range sx.points) = s, { refine sx.independent.affine_span_eq_of_le_of_card_eq_finrank_add_one (span_points_subset_coe_of_subset_coe (hsxps.trans h)) _, simp [hd] }, have hc : c ∈ affine_span ℝ (set.range sx.points) := hsx.symm ▸ hc, exact (sx.eq_circumcenter_of_dist_eq hc (λ i, hcr (sx.points i) (hsxps (set.mem_range_self i)))).symm end /-- Two n-simplices among cospherical points in an n-dimensional subspace have the same circumcenter. -/ lemma circumcenter_eq_of_cospherical_subset {s : affine_subspace ℝ P} {ps : set P} (h : ps ⊆ s) [nonempty s] {n : ℕ} [finite_dimensional ℝ s.direction] (hd : finrank ℝ s.direction = n) (hc : cospherical ps) {sx₁ sx₂ : simplex ℝ P n} (hsx₁ : set.range sx₁.points ⊆ ps) (hsx₂ : set.range sx₂.points ⊆ ps) : sx₁.circumcenter = sx₂.circumcenter := begin rcases exists_circumcenter_eq_of_cospherical_subset h hd hc with ⟨r, hr⟩, rw [hr sx₁ hsx₁, hr sx₂ hsx₂] end /-- All n-simplices among cospherical points in n-space have the same circumcenter. -/ lemma exists_circumcenter_eq_of_cospherical {ps : set P} {n : ℕ} [finite_dimensional ℝ V] (hd : finrank ℝ V = n) (hc : cospherical ps) : ∃ c : P, ∀ sx : simplex ℝ P n, set.range sx.points ⊆ ps → sx.circumcenter = c := begin haveI : nonempty (⊤ : affine_subspace ℝ P) := set.univ.nonempty, rw [←finrank_top, ←direction_top ℝ V P] at hd, refine exists_circumcenter_eq_of_cospherical_subset _ hd hc, exact set.subset_univ _ end /-- Two n-simplices among cospherical points in n-space have the same circumcenter. -/ lemma circumcenter_eq_of_cospherical {ps : set P} {n : ℕ} [finite_dimensional ℝ V] (hd : finrank ℝ V = n) (hc : cospherical ps) {sx₁ sx₂ : simplex ℝ P n} (hsx₁ : set.range sx₁.points ⊆ ps) (hsx₂ : set.range sx₂.points ⊆ ps) : sx₁.circumcenter = sx₂.circumcenter := begin rcases exists_circumcenter_eq_of_cospherical hd hc with ⟨r, hr⟩, rw [hr sx₁ hsx₁, hr sx₂ hsx₂] end /-- Suppose all distances from `p₁` and `p₂` to the points of a simplex are equal, and that `p₁` and `p₂` lie in the affine span of `p` with the vertices of that simplex. Then `p₁` and `p₂` are equal or reflections of each other in the affine span of the vertices of the simplex. -/ lemma eq_or_eq_reflection_of_dist_eq {n : ℕ} {s : simplex ℝ P n} {p p₁ p₂ : P} {r : ℝ} (hp₁ : p₁ ∈ affine_span ℝ (insert p (set.range s.points))) (hp₂ : p₂ ∈ affine_span ℝ (insert p (set.range s.points))) (h₁ : ∀ i, dist (s.points i) p₁ = r) (h₂ : ∀ i, dist (s.points i) p₂ = r) : p₁ = p₂ ∨ p₁ = reflection (affine_span ℝ (set.range s.points)) p₂ := begin let span_s := affine_span ℝ (set.range s.points), have h₁' := s.orthogonal_projection_eq_circumcenter_of_dist_eq h₁, have h₂' := s.orthogonal_projection_eq_circumcenter_of_dist_eq h₂, rw [←affine_span_insert_affine_span, mem_affine_span_insert_iff (orthogonal_projection_mem p)] at hp₁ hp₂, obtain ⟨r₁, p₁o, hp₁o, hp₁⟩ := hp₁, obtain ⟨r₂, p₂o, hp₂o, hp₂⟩ := hp₂, obtain rfl : ↑(orthogonal_projection span_s p₁) = p₁o, { have := orthogonal_projection_vadd_smul_vsub_orthogonal_projection _ _ hp₁o, rw ← hp₁ at this, rw this, refl }, rw h₁' at hp₁, obtain rfl : ↑(orthogonal_projection span_s p₂) = p₂o, { have := orthogonal_projection_vadd_smul_vsub_orthogonal_projection _ _ hp₂o, rw ← hp₂ at this, rw this, refl }, rw h₂' at hp₂, have h : s.points 0 ∈ span_s := mem_affine_span ℝ (set.mem_range_self _), have hd₁ : dist p₁ s.circumcenter * dist p₁ s.circumcenter = r * r - s.circumradius * s.circumradius, { rw [dist_comm, ←h₁ 0, dist_sq_eq_dist_orthogonal_projection_sq_add_dist_orthogonal_projection_sq p₁ h], simp only [h₁', dist_comm p₁, add_sub_cancel', simplex.dist_circumcenter_eq_circumradius] }, have hd₂ : dist p₂ s.circumcenter * dist p₂ s.circumcenter = r * r - s.circumradius * s.circumradius, { rw [dist_comm, ←h₂ 0, dist_sq_eq_dist_orthogonal_projection_sq_add_dist_orthogonal_projection_sq p₂ h], simp only [h₂', dist_comm p₂, add_sub_cancel', simplex.dist_circumcenter_eq_circumradius] }, rw [←hd₂, hp₁, hp₂, dist_eq_norm_vsub V _ s.circumcenter, dist_eq_norm_vsub V _ s.circumcenter, vadd_vsub, vadd_vsub, ←real_inner_self_eq_norm_mul_norm, ←real_inner_self_eq_norm_mul_norm, real_inner_smul_left, real_inner_smul_left, real_inner_smul_right, real_inner_smul_right, ←mul_assoc, ←mul_assoc] at hd₁, by_cases hp : p = orthogonal_projection span_s p, { rw [hp₁, hp₂, ←hp], simp only [true_or, eq_self_iff_true, smul_zero, vsub_self] }, { have hz : ⟪p -ᵥ orthogonal_projection span_s p, p -ᵥ orthogonal_projection span_s p⟫ ≠ 0, by simpa only [ne.def, vsub_eq_zero_iff_eq, inner_self_eq_zero] using hp, rw [mul_left_inj' hz, mul_self_eq_mul_self_iff] at hd₁, rw [hp₁, hp₂], cases hd₁, { left, rw hd₁ }, { right, rw [hd₁, reflection_vadd_smul_vsub_orthogonal_projection p r₂ s.circumcenter_mem_affine_span, neg_smul] } } end end euclidean_geometry
6db79011d55b51b4401676284d716113bec1fb06
c777c32c8e484e195053731103c5e52af26a25d1
/src/measure_theory/integral/set_to_l1.lean
4b2fece04f2c5a72a2aa13cfc93f078aebaee408
[ "Apache-2.0" ]
permissive
kbuzzard/mathlib
2ff9e85dfe2a46f4b291927f983afec17e946eb8
58537299e922f9c77df76cb613910914a479c1f7
refs/heads/master
1,685,313,702,744
1,683,974,212,000
1,683,974,212,000
128,185,277
1
0
null
1,522,920,600,000
1,522,920,600,000
null
UTF-8
Lean
false
false
88,218
lean
/- Copyright (c) 2021 Rémy Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou, Yury Kudryashov, Sébastien Gouëzel, Rémy Degenne -/ import measure_theory.function.simple_func_dense_lp /-! # Extension of a linear function from indicators to L1 Let `T : set α → E →L[ℝ] F` be additive for measurable sets with finite measure, in the sense that for `s, t` two such sets, `s ∩ t = ∅ → T (s ∪ t) = T s + T t`. `T` is akin to a bilinear map on `set α × E`, or a linear map on indicator functions. This file constructs an extension of `T` to integrable simple functions, which are finite sums of indicators of measurable sets with finite measure, then to integrable functions, which are limits of integrable simple functions. The main result is a continuous linear map `(α →₁[μ] E) →L[ℝ] F`. This extension process is used to define the Bochner integral in the `measure_theory.integral.bochner` file and the conditional expectation of an integrable function in `measure_theory.function.conditional_expectation`. ## Main Definitions - `fin_meas_additive μ T`: the property that `T` is additive on measurable sets with finite measure. For two such sets, `s ∩ t = ∅ → T (s ∪ t) = T s + T t`. - `dominated_fin_meas_additive μ T C`: `fin_meas_additive μ T ∧ ∀ s, ‖T s‖ ≤ C * (μ s).to_real`. This is the property needed to perform the extension from indicators to L1. - `set_to_L1 (hT : dominated_fin_meas_additive μ T C) : (α →₁[μ] E) →L[ℝ] F`: the extension of `T` from indicators to L1. - `set_to_fun μ T (hT : dominated_fin_meas_additive μ T C) (f : α → E) : F`: a version of the extension which applies to functions (with value 0 if the function is not integrable). ## Properties For most properties of `set_to_fun`, we provide two lemmas. One version uses hypotheses valid on all sets, like `T = T'`, and a second version which uses a primed name uses hypotheses on measurable sets with finite measure, like `∀ s, measurable_set s → μ s < ∞ → T s = T' s`. The lemmas listed here don't show all hypotheses. Refer to the actual lemmas for details. Linearity: - `set_to_fun_zero_left : set_to_fun μ 0 hT f = 0` - `set_to_fun_add_left : set_to_fun μ (T + T') _ f = set_to_fun μ T hT f + set_to_fun μ T' hT' f` - `set_to_fun_smul_left : set_to_fun μ (λ s, c • (T s)) (hT.smul c) f = c • set_to_fun μ T hT f` - `set_to_fun_zero : set_to_fun μ T hT (0 : α → E) = 0` - `set_to_fun_neg : set_to_fun μ T hT (-f) = - set_to_fun μ T hT f` If `f` and `g` are integrable: - `set_to_fun_add : set_to_fun μ T hT (f + g) = set_to_fun μ T hT f + set_to_fun μ T hT g` - `set_to_fun_sub : set_to_fun μ T hT (f - g) = set_to_fun μ T hT f - set_to_fun μ T hT g` If `T` is verifies `∀ c : 𝕜, ∀ s x, T s (c • x) = c • T s x`: - `set_to_fun_smul : set_to_fun μ T hT (c • f) = c • set_to_fun μ T hT f` Other: - `set_to_fun_congr_ae (h : f =ᵐ[μ] g) : set_to_fun μ T hT f = set_to_fun μ T hT g` - `set_to_fun_measure_zero (h : μ = 0) : set_to_fun μ T hT f = 0` If the space is a `normed_lattice_add_comm_group` and `T` is such that `0 ≤ T s x` for `0 ≤ x`, we also prove order-related properties: - `set_to_fun_mono_left (h : ∀ s x, T s x ≤ T' s x) : set_to_fun μ T hT f ≤ set_to_fun μ T' hT' f` - `set_to_fun_nonneg (hf : 0 ≤ᵐ[μ] f) : 0 ≤ set_to_fun μ T hT f` - `set_to_fun_mono (hfg : f ≤ᵐ[μ] g) : set_to_fun μ T hT f ≤ set_to_fun μ T hT g` ## Implementation notes The starting object `T : set α → E →L[ℝ] F` matters only through its restriction on measurable sets with finite measure. Its value on other sets is ignored. -/ noncomputable theory open_locale classical topology big_operators nnreal ennreal measure_theory pointwise open set filter topological_space ennreal emetric namespace measure_theory variables {α E F F' G 𝕜 : Type*} {p : ℝ≥0∞} [normed_add_comm_group E] [normed_space ℝ E] [normed_add_comm_group F] [normed_space ℝ F] [normed_add_comm_group F'] [normed_space ℝ F'] [normed_add_comm_group G] {m : measurable_space α} {μ : measure α} local infixr ` →ₛ `:25 := simple_func open finset section fin_meas_additive /-- A set function is `fin_meas_additive` if its value on the union of two disjoint measurable sets with finite measure is the sum of its values on each set. -/ def fin_meas_additive {β} [add_monoid β] {m : measurable_space α} (μ : measure α) (T : set α → β) : Prop := ∀ s t, measurable_set s → measurable_set t → μ s ≠ ∞ → μ t ≠ ∞ → s ∩ t = ∅ → T (s ∪ t) = T s + T t namespace fin_meas_additive variables {β : Type*} [add_comm_monoid β] {T T' : set α → β} lemma zero : fin_meas_additive μ (0 : set α → β) := λ s t hs ht hμs hμt hst, by simp lemma add (hT : fin_meas_additive μ T) (hT' : fin_meas_additive μ T') : fin_meas_additive μ (T + T') := begin intros s t hs ht hμs hμt hst, simp only [hT s t hs ht hμs hμt hst, hT' s t hs ht hμs hμt hst, pi.add_apply], abel, end lemma smul [monoid 𝕜] [distrib_mul_action 𝕜 β] (hT : fin_meas_additive μ T) (c : 𝕜) : fin_meas_additive μ (λ s, c • (T s)) := λ s t hs ht hμs hμt hst, by simp [hT s t hs ht hμs hμt hst] lemma of_eq_top_imp_eq_top {μ' : measure α} (h : ∀ s, measurable_set s → μ s = ∞ → μ' s = ∞) (hT : fin_meas_additive μ T) : fin_meas_additive μ' T := λ s t hs ht hμ's hμ't hst, hT s t hs ht (mt (h s hs) hμ's) (mt (h t ht) hμ't) hst lemma of_smul_measure (c : ℝ≥0∞) (hc_ne_top : c ≠ ∞) (hT : fin_meas_additive (c • μ) T) : fin_meas_additive μ T := begin refine of_eq_top_imp_eq_top (λ s hs hμs, _) hT, rw [measure.smul_apply, smul_eq_mul, with_top.mul_eq_top_iff] at hμs, simp only [hc_ne_top, or_false, ne.def, false_and] at hμs, exact hμs.2, end lemma smul_measure (c : ℝ≥0∞) (hc_ne_zero : c ≠ 0) (hT : fin_meas_additive μ T) : fin_meas_additive (c • μ) T := begin refine of_eq_top_imp_eq_top (λ s hs hμs, _) hT, rw [measure.smul_apply, smul_eq_mul, with_top.mul_eq_top_iff], simp only [hc_ne_zero, true_and, ne.def, not_false_iff], exact or.inl hμs, end lemma smul_measure_iff (c : ℝ≥0∞) (hc_ne_zero : c ≠ 0) (hc_ne_top : c ≠ ∞) : fin_meas_additive (c • μ) T ↔ fin_meas_additive μ T := ⟨λ hT, of_smul_measure c hc_ne_top hT, λ hT, smul_measure c hc_ne_zero hT⟩ lemma map_empty_eq_zero {β} [add_cancel_monoid β] {T : set α → β} (hT : fin_meas_additive μ T) : T ∅ = 0 := begin have h_empty : μ ∅ ≠ ∞, from (measure_empty.le.trans_lt ennreal.coe_lt_top).ne, specialize hT ∅ ∅ measurable_set.empty measurable_set.empty h_empty h_empty (set.inter_empty ∅), rw set.union_empty at hT, nth_rewrite 0 ← add_zero (T ∅) at hT, exact (add_left_cancel hT).symm, end lemma map_Union_fin_meas_set_eq_sum (T : set α → β) (T_empty : T ∅ = 0) (h_add : fin_meas_additive μ T) {ι} (S : ι → set α) (sι : finset ι) (hS_meas : ∀ i, measurable_set (S i)) (hSp : ∀ i ∈ sι, μ (S i) ≠ ∞) (h_disj : ∀ i j ∈ sι, i ≠ j → disjoint (S i) (S j)) : T (⋃ i ∈ sι, S i) = ∑ i in sι, T (S i) := begin revert hSp h_disj, refine finset.induction_on sι _ _, { simp only [finset.not_mem_empty, is_empty.forall_iff, Union_false, Union_empty, sum_empty, forall_2_true_iff, implies_true_iff, forall_true_left, not_false_iff, T_empty], }, intros a s has h hps h_disj, rw [finset.sum_insert has, ← h], swap, { exact λ i hi, hps i (finset.mem_insert_of_mem hi), }, swap, { exact λ i hi j hj hij, h_disj i (finset.mem_insert_of_mem hi) j (finset.mem_insert_of_mem hj) hij, }, rw ← h_add (S a) (⋃ i ∈ s, S i) (hS_meas a) (measurable_set_bUnion _ (λ i _, hS_meas i)) (hps a (finset.mem_insert_self a s)), { congr, convert finset.supr_insert a s S, }, { exact ((measure_bUnion_finset_le _ _).trans_lt $ ennreal.sum_lt_top $ λ i hi, hps i $ finset.mem_insert_of_mem hi).ne, }, { simp_rw set.inter_Union, refine Union_eq_empty.mpr (λ i, Union_eq_empty.mpr (λ hi, _)), rw ← set.disjoint_iff_inter_eq_empty, refine h_disj a (finset.mem_insert_self a s) i (finset.mem_insert_of_mem hi) (λ hai, _), rw ← hai at hi, exact has hi, }, end end fin_meas_additive /-- A `fin_meas_additive` set function whose norm on every set is less than the measure of the set (up to a multiplicative constant). -/ def dominated_fin_meas_additive {β} [seminormed_add_comm_group β] {m : measurable_space α} (μ : measure α) (T : set α → β) (C : ℝ) : Prop := fin_meas_additive μ T ∧ ∀ s, measurable_set s → μ s < ∞ → ‖T s‖ ≤ C * (μ s).to_real namespace dominated_fin_meas_additive variables {β : Type*} [seminormed_add_comm_group β] {T T' : set α → β} {C C' : ℝ} lemma zero {m : measurable_space α} (μ : measure α) (hC : 0 ≤ C) : dominated_fin_meas_additive μ (0 : set α → β) C := begin refine ⟨fin_meas_additive.zero, λ s hs hμs, _⟩, rw [pi.zero_apply, norm_zero], exact mul_nonneg hC to_real_nonneg, end lemma eq_zero_of_measure_zero {β : Type*} [normed_add_comm_group β] {T : set α → β} {C : ℝ} (hT : dominated_fin_meas_additive μ T C) {s : set α} (hs : measurable_set s) (hs_zero : μ s = 0) : T s = 0 := begin refine norm_eq_zero.mp _, refine ((hT.2 s hs (by simp [hs_zero])).trans (le_of_eq _)).antisymm (norm_nonneg _), rw [hs_zero, ennreal.zero_to_real, mul_zero], end lemma eq_zero {β : Type*} [normed_add_comm_group β] {T : set α → β} {C : ℝ} {m : measurable_space α} (hT : dominated_fin_meas_additive (0 : measure α) T C) {s : set α} (hs : measurable_set s) : T s = 0 := eq_zero_of_measure_zero hT hs (by simp only [measure.coe_zero, pi.zero_apply]) lemma add (hT : dominated_fin_meas_additive μ T C) (hT' : dominated_fin_meas_additive μ T' C') : dominated_fin_meas_additive μ (T + T') (C + C') := begin refine ⟨hT.1.add hT'.1, λ s hs hμs, _⟩, rw [pi.add_apply, add_mul], exact (norm_add_le _ _).trans (add_le_add (hT.2 s hs hμs) (hT'.2 s hs hμs)), end lemma smul [normed_field 𝕜] [normed_space 𝕜 β] (hT : dominated_fin_meas_additive μ T C) (c : 𝕜) : dominated_fin_meas_additive μ (λ s, c • (T s)) (‖c‖ * C) := begin refine ⟨hT.1.smul c, λ s hs hμs, _⟩, dsimp only, rw [norm_smul, mul_assoc], exact mul_le_mul le_rfl (hT.2 s hs hμs) (norm_nonneg _) (norm_nonneg _), end lemma of_measure_le {μ' : measure α} (h : μ ≤ μ') (hT : dominated_fin_meas_additive μ T C) (hC : 0 ≤ C) : dominated_fin_meas_additive μ' T C := begin have h' : ∀ s, measurable_set s → μ s = ∞ → μ' s = ∞, { intros s hs hμs, rw [eq_top_iff, ← hμs], exact h s hs, }, refine ⟨hT.1.of_eq_top_imp_eq_top h', λ s hs hμ's, _⟩, have hμs : μ s < ∞, from (h s hs).trans_lt hμ's, refine (hT.2 s hs hμs).trans (mul_le_mul le_rfl _ ennreal.to_real_nonneg hC), rw to_real_le_to_real hμs.ne hμ's.ne, exact h s hs, end lemma add_measure_right {m : measurable_space α} (μ ν : measure α) (hT : dominated_fin_meas_additive μ T C) (hC : 0 ≤ C) : dominated_fin_meas_additive (μ + ν) T C := of_measure_le (measure.le_add_right le_rfl) hT hC lemma add_measure_left {m : measurable_space α} (μ ν : measure α) (hT : dominated_fin_meas_additive ν T C) (hC : 0 ≤ C) : dominated_fin_meas_additive (μ + ν) T C := of_measure_le (measure.le_add_left le_rfl) hT hC lemma of_smul_measure (c : ℝ≥0∞) (hc_ne_top : c ≠ ∞) (hT : dominated_fin_meas_additive (c • μ) T C) : dominated_fin_meas_additive μ T (c.to_real * C) := begin have h : ∀ s, measurable_set s → c • μ s = ∞ → μ s = ∞, { intros s hs hcμs, simp only [hc_ne_top, algebra.id.smul_eq_mul, with_top.mul_eq_top_iff, or_false, ne.def, false_and] at hcμs, exact hcμs.2, }, refine ⟨hT.1.of_eq_top_imp_eq_top h, λ s hs hμs, _⟩, have hcμs : c • μ s ≠ ∞, from mt (h s hs) hμs.ne, rw smul_eq_mul at hcμs, simp_rw [dominated_fin_meas_additive, measure.smul_apply, smul_eq_mul, to_real_mul] at hT, refine (hT.2 s hs hcμs.lt_top).trans (le_of_eq _), ring, end lemma of_measure_le_smul {μ' : measure α} (c : ℝ≥0∞) (hc : c ≠ ∞) (h : μ ≤ c • μ') (hT : dominated_fin_meas_additive μ T C) (hC : 0 ≤ C) : dominated_fin_meas_additive μ' T (c.to_real * C) := (hT.of_measure_le h hC).of_smul_measure c hc end dominated_fin_meas_additive end fin_meas_additive namespace simple_func /-- Extend `set α → (F →L[ℝ] F')` to `(α →ₛ F) → F'`. -/ def set_to_simple_func {m : measurable_space α} (T : set α → F →L[ℝ] F') (f : α →ₛ F) : F' := ∑ x in f.range, T (f ⁻¹' {x}) x @[simp] lemma set_to_simple_func_zero {m : measurable_space α} (f : α →ₛ F) : set_to_simple_func (0 : set α → F →L[ℝ] F') f = 0 := by simp [set_to_simple_func] lemma set_to_simple_func_zero' {T : set α → E →L[ℝ] F'} (h_zero : ∀ s, measurable_set s → μ s < ∞ → T s = 0) (f : α →ₛ E) (hf : integrable f μ) : set_to_simple_func T f = 0 := begin simp_rw set_to_simple_func, refine sum_eq_zero (λ x hx, _), by_cases hx0 : x = 0, { simp [hx0], }, rw [h_zero (f ⁻¹' ({x} : set E)) (measurable_set_fiber _ _) (measure_preimage_lt_top_of_integrable f hf hx0), continuous_linear_map.zero_apply], end @[simp] lemma set_to_simple_func_zero_apply {m : measurable_space α} (T : set α → F →L[ℝ] F') : set_to_simple_func T (0 : α →ₛ F) = 0 := by casesI is_empty_or_nonempty α; simp [set_to_simple_func] lemma set_to_simple_func_eq_sum_filter {m : measurable_space α} (T : set α → F →L[ℝ] F') (f : α →ₛ F) : set_to_simple_func T f = ∑ x in f.range.filter (λ x, x ≠ 0), (T (f ⁻¹' {x})) x := begin symmetry, refine sum_filter_of_ne (λ x hx, mt (λ hx0, _)), rw hx0, exact continuous_linear_map.map_zero _, end lemma map_set_to_simple_func (T : set α → F →L[ℝ] F') (h_add : fin_meas_additive μ T) {f : α →ₛ G} (hf : integrable f μ) {g : G → F} (hg : g 0 = 0) : (f.map g).set_to_simple_func T = ∑ x in f.range, T (f ⁻¹' {x}) (g x) := begin have T_empty : T ∅ = 0, from h_add.map_empty_eq_zero, have hfp : ∀ x ∈ f.range, x ≠ 0 → μ (f ⁻¹' {x}) ≠ ∞, from λ x hx hx0, (measure_preimage_lt_top_of_integrable f hf hx0).ne, simp only [set_to_simple_func, range_map], refine finset.sum_image' _ (assume b hb, _), rcases mem_range.1 hb with ⟨a, rfl⟩, by_cases h0 : g (f a) = 0, { simp_rw h0, rw [continuous_linear_map.map_zero, finset.sum_eq_zero (λ x hx, _)], rw mem_filter at hx, rw [hx.2, continuous_linear_map.map_zero], }, have h_left_eq : T ((map g f) ⁻¹' {g (f a)}) (g (f a)) = T (f ⁻¹' ↑(f.range.filter (λ b, g b = g (f a)))) (g (f a)), { congr, rw map_preimage_singleton, }, rw h_left_eq, have h_left_eq' : T (f ⁻¹' ↑(filter (λ (b : G), g b = g (f a)) f.range)) (g (f a)) = T (⋃ y ∈ (filter (λ (b : G), g b = g (f a)) f.range), f ⁻¹' {y}) (g (f a)), { congr, rw ← finset.set_bUnion_preimage_singleton, }, rw h_left_eq', rw h_add.map_Union_fin_meas_set_eq_sum T T_empty, { simp only [filter_congr_decidable, sum_apply, continuous_linear_map.coe_sum'], refine finset.sum_congr rfl (λ x hx, _), rw mem_filter at hx, rw hx.2, }, { exact λ i, measurable_set_fiber _ _, }, { intros i hi, rw mem_filter at hi, refine hfp i hi.1 (λ hi0, _), rw [hi0, hg] at hi, exact h0 hi.2.symm, }, { intros i j hi hj hij, rw set.disjoint_iff, intros x hx, rw [set.mem_inter_iff, set.mem_preimage, set.mem_preimage, set.mem_singleton_iff, set.mem_singleton_iff] at hx, rw [← hx.1, ← hx.2] at hij, exact absurd rfl hij, }, end lemma set_to_simple_func_congr' (T : set α → E →L[ℝ] F) (h_add : fin_meas_additive μ T) {f g : α →ₛ E} (hf : integrable f μ) (hg : integrable g μ) (h : ∀ x y, x ≠ y → T ((f ⁻¹' {x}) ∩ (g ⁻¹' {y})) = 0) : f.set_to_simple_func T = g.set_to_simple_func T := show ((pair f g).map prod.fst).set_to_simple_func T = ((pair f g).map prod.snd).set_to_simple_func T, from begin have h_pair : integrable (f.pair g) μ, from integrable_pair hf hg, rw map_set_to_simple_func T h_add h_pair prod.fst_zero, rw map_set_to_simple_func T h_add h_pair prod.snd_zero, refine finset.sum_congr rfl (λ p hp, _), rcases mem_range.1 hp with ⟨a, rfl⟩, by_cases eq : f a = g a, { dsimp only [pair_apply], rw eq }, { have : T ((pair f g) ⁻¹' {(f a, g a)}) = 0, { have h_eq : T (⇑(f.pair g) ⁻¹' {(f a, g a)}) = T ((f ⁻¹' {f a}) ∩ (g ⁻¹' {g a})), { congr, rw pair_preimage_singleton f g, }, rw h_eq, exact h (f a) (g a) eq, }, simp only [this, continuous_linear_map.zero_apply, pair_apply], }, end lemma set_to_simple_func_congr (T : set α → (E →L[ℝ] F)) (h_zero : ∀ s, measurable_set s → μ s = 0 → T s = 0) (h_add : fin_meas_additive μ T) {f g : α →ₛ E} (hf : integrable f μ) (h : f =ᵐ[μ] g) : f.set_to_simple_func T = g.set_to_simple_func T := begin refine set_to_simple_func_congr' T h_add hf ((integrable_congr h).mp hf) _, refine λ x y hxy, h_zero _ ((measurable_set_fiber f x).inter (measurable_set_fiber g y)) _, rw [eventually_eq, ae_iff] at h, refine measure_mono_null (λ z, _) h, simp_rw [set.mem_inter_iff, set.mem_set_of_eq, set.mem_preimage, set.mem_singleton_iff], intro h, rwa [h.1, h.2], end lemma set_to_simple_func_congr_left (T T' : set α → E →L[ℝ] F) (h : ∀ s, measurable_set s → μ s < ∞ → T s = T' s) (f : α →ₛ E) (hf : integrable f μ) : set_to_simple_func T f = set_to_simple_func T' f := begin simp_rw set_to_simple_func, refine sum_congr rfl (λ x hx, _), by_cases hx0 : x = 0, { simp [hx0], }, { rw h (f ⁻¹' {x}) (simple_func.measurable_set_fiber _ _) (simple_func.measure_preimage_lt_top_of_integrable _ hf hx0), }, end lemma set_to_simple_func_add_left {m : measurable_space α} (T T' : set α → F →L[ℝ] F') {f : α →ₛ F} : set_to_simple_func (T + T') f = set_to_simple_func T f + set_to_simple_func T' f := begin simp_rw [set_to_simple_func, pi.add_apply], push_cast, simp_rw [pi.add_apply, sum_add_distrib], end lemma set_to_simple_func_add_left' (T T' T'' : set α → E →L[ℝ] F) (h_add : ∀ s, measurable_set s → μ s < ∞ → T'' s = T s + T' s) {f : α →ₛ E} (hf : integrable f μ) : set_to_simple_func (T'') f = set_to_simple_func T f + set_to_simple_func T' f := begin simp_rw [set_to_simple_func_eq_sum_filter], suffices : ∀ x ∈ filter (λ (x : E), x ≠ 0) f.range, T'' (f ⁻¹' {x}) = T (f ⁻¹' {x}) + T' (f ⁻¹' {x}), { rw ← sum_add_distrib, refine finset.sum_congr rfl (λ x hx, _), rw this x hx, push_cast, rw pi.add_apply, }, intros x hx, refine h_add (f ⁻¹' {x}) (measurable_set_preimage _ _) (measure_preimage_lt_top_of_integrable _ hf _), rw mem_filter at hx, exact hx.2, end lemma set_to_simple_func_smul_left {m : measurable_space α} (T : set α → F →L[ℝ] F') (c : ℝ) (f : α →ₛ F) : set_to_simple_func (λ s, c • (T s)) f = c • set_to_simple_func T f := by simp_rw [set_to_simple_func, continuous_linear_map.smul_apply, smul_sum] lemma set_to_simple_func_smul_left' (T T' : set α → E →L[ℝ] F') (c : ℝ) (h_smul : ∀ s, measurable_set s → μ s < ∞ → T' s = c • (T s)) {f : α →ₛ E} (hf : integrable f μ) : set_to_simple_func T' f = c • set_to_simple_func T f := begin simp_rw [set_to_simple_func_eq_sum_filter], suffices : ∀ x ∈ filter (λ (x : E), x ≠ 0) f.range, T' (f ⁻¹' {x}) = c • (T (f ⁻¹' {x})), { rw smul_sum, refine finset.sum_congr rfl (λ x hx, _), rw this x hx, refl, }, intros x hx, refine h_smul (f ⁻¹' {x}) (measurable_set_preimage _ _) (measure_preimage_lt_top_of_integrable _ hf _), rw mem_filter at hx, exact hx.2, end lemma set_to_simple_func_add (T : set α → E →L[ℝ] F) (h_add : fin_meas_additive μ T) {f g : α →ₛ E} (hf : integrable f μ) (hg : integrable g μ) : set_to_simple_func T (f + g) = set_to_simple_func T f + set_to_simple_func T g := have hp_pair : integrable (f.pair g) μ, from integrable_pair hf hg, calc set_to_simple_func T (f + g) = ∑ x in (pair f g).range, T ((pair f g) ⁻¹' {x}) (x.fst + x.snd) : by { rw [add_eq_map₂, map_set_to_simple_func T h_add hp_pair], simp, } ... = ∑ x in (pair f g).range, (T ((pair f g) ⁻¹' {x}) x.fst + T ((pair f g) ⁻¹' {x}) x.snd) : finset.sum_congr rfl $ assume a ha, continuous_linear_map.map_add _ _ _ ... = ∑ x in (pair f g).range, T ((pair f g) ⁻¹' {x}) x.fst + ∑ x in (pair f g).range, T ((pair f g) ⁻¹' {x}) x.snd : by rw finset.sum_add_distrib ... = ((pair f g).map prod.fst).set_to_simple_func T + ((pair f g).map prod.snd).set_to_simple_func T : by rw [map_set_to_simple_func T h_add hp_pair prod.snd_zero, map_set_to_simple_func T h_add hp_pair prod.fst_zero] lemma set_to_simple_func_neg (T : set α → E →L[ℝ] F) (h_add : fin_meas_additive μ T) {f : α →ₛ E} (hf : integrable f μ) : set_to_simple_func T (-f) = - set_to_simple_func T f := calc set_to_simple_func T (-f) = set_to_simple_func T (f.map (has_neg.neg)) : rfl ... = - set_to_simple_func T f : begin rw [map_set_to_simple_func T h_add hf neg_zero, set_to_simple_func, ← sum_neg_distrib], exact finset.sum_congr rfl (λ x h, continuous_linear_map.map_neg _ _), end lemma set_to_simple_func_sub (T : set α → E →L[ℝ] F) (h_add : fin_meas_additive μ T) {f g : α →ₛ E} (hf : integrable f μ) (hg : integrable g μ) : set_to_simple_func T (f - g) = set_to_simple_func T f - set_to_simple_func T g := begin rw [sub_eq_add_neg, set_to_simple_func_add T h_add hf, set_to_simple_func_neg T h_add hg, sub_eq_add_neg], rw integrable_iff at hg ⊢, intros x hx_ne, change μ ((has_neg.neg ∘ g) ⁻¹' {x}) < ∞, rw [preimage_comp, neg_preimage, set.neg_singleton], refine hg (-x) _, simp [hx_ne], end lemma set_to_simple_func_smul_real (T : set α → E →L[ℝ] F) (h_add : fin_meas_additive μ T) (c : ℝ) {f : α →ₛ E} (hf : integrable f μ) : set_to_simple_func T (c • f) = c • set_to_simple_func T f := calc set_to_simple_func T (c • f) = ∑ x in f.range, T (f ⁻¹' {x}) (c • x) : by { rw [smul_eq_map c f, map_set_to_simple_func T h_add hf], rw smul_zero, } ... = ∑ x in f.range, c • (T (f ⁻¹' {x}) x) : finset.sum_congr rfl $ λ b hb, by { rw continuous_linear_map.map_smul (T (f ⁻¹' {b})) c b, } ... = c • set_to_simple_func T f : by simp only [set_to_simple_func, smul_sum, smul_smul, mul_comm] lemma set_to_simple_func_smul {E} [normed_add_comm_group E] [normed_field 𝕜] [normed_space 𝕜 E] [normed_space ℝ E] [normed_space 𝕜 F] (T : set α → E →L[ℝ] F) (h_add : fin_meas_additive μ T) (h_smul : ∀ c : 𝕜, ∀ s x, T s (c • x) = c • T s x) (c : 𝕜) {f : α →ₛ E} (hf : integrable f μ) : set_to_simple_func T (c • f) = c • set_to_simple_func T f := calc set_to_simple_func T (c • f) = ∑ x in f.range, T (f ⁻¹' {x}) (c • x) : by { rw [smul_eq_map c f, map_set_to_simple_func T h_add hf], rw smul_zero, } ... = ∑ x in f.range, c • (T (f ⁻¹' {x}) x) : finset.sum_congr rfl $ λ b hb, by { rw h_smul, } ... = c • set_to_simple_func T f : by simp only [set_to_simple_func, smul_sum, smul_smul, mul_comm] section order variables {G' G'' : Type*} [normed_lattice_add_comm_group G''] [normed_space ℝ G''] [normed_lattice_add_comm_group G'] [normed_space ℝ G'] lemma set_to_simple_func_mono_left {m : measurable_space α} (T T' : set α → F →L[ℝ] G'') (hTT' : ∀ s x, T s x ≤ T' s x) (f : α →ₛ F) : set_to_simple_func T f ≤ set_to_simple_func T' f := by { simp_rw set_to_simple_func, exact sum_le_sum (λ i hi, hTT' _ i), } lemma set_to_simple_func_mono_left' (T T' : set α → E →L[ℝ] G'') (hTT' : ∀ s, measurable_set s → μ s < ∞ → ∀ x, T s x ≤ T' s x) (f : α →ₛ E) (hf : integrable f μ) : set_to_simple_func T f ≤ set_to_simple_func T' f := begin refine sum_le_sum (λ i hi, _), by_cases h0 : i = 0, { simp [h0], }, { exact hTT' _ (measurable_set_fiber _ _) (measure_preimage_lt_top_of_integrable _ hf h0) i, } end lemma set_to_simple_func_nonneg {m : measurable_space α} (T : set α → G' →L[ℝ] G'') (hT_nonneg : ∀ s x, 0 ≤ x → 0 ≤ T s x) (f : α →ₛ G') (hf : 0 ≤ f) : 0 ≤ set_to_simple_func T f := begin refine sum_nonneg (λ i hi, hT_nonneg _ i _), rw mem_range at hi, obtain ⟨y, hy⟩ := set.mem_range.mp hi, rw ← hy, refine le_trans _ (hf y), simp, end lemma set_to_simple_func_nonneg' (T : set α → G' →L[ℝ] G'') (hT_nonneg : ∀ s, measurable_set s → μ s < ∞ → ∀ x, 0 ≤ x → 0 ≤ T s x) (f : α →ₛ G') (hf : 0 ≤ f) (hfi : integrable f μ) : 0 ≤ set_to_simple_func T f := begin refine sum_nonneg (λ i hi, _), by_cases h0 : i = 0, { simp [h0], }, refine hT_nonneg _ (measurable_set_fiber _ _) (measure_preimage_lt_top_of_integrable _ hfi h0) i _, rw mem_range at hi, obtain ⟨y, hy⟩ := set.mem_range.mp hi, rw ← hy, convert (hf y), end lemma set_to_simple_func_mono {T : set α → G' →L[ℝ] G''} (h_add : fin_meas_additive μ T) (hT_nonneg : ∀ s, measurable_set s → μ s < ∞ → ∀ x, 0 ≤ x → 0 ≤ T s x) {f g : α →ₛ G'} (hfi : integrable f μ) (hgi : integrable g μ) (hfg : f ≤ g) : set_to_simple_func T f ≤ set_to_simple_func T g := begin rw [← sub_nonneg, ← set_to_simple_func_sub T h_add hgi hfi], refine set_to_simple_func_nonneg' T hT_nonneg _ _ (hgi.sub hfi), intro x, simp only [coe_sub, sub_nonneg, coe_zero, pi.zero_apply, pi.sub_apply], exact hfg x, end end order lemma norm_set_to_simple_func_le_sum_op_norm {m : measurable_space α} (T : set α → F' →L[ℝ] F) (f : α →ₛ F') : ‖f.set_to_simple_func T‖ ≤ ∑ x in f.range, ‖T (f ⁻¹' {x})‖ * ‖x‖ := calc ‖∑ x in f.range, T (f ⁻¹' {x}) x‖ ≤ ∑ x in f.range, ‖T (f ⁻¹' {x}) x‖ : norm_sum_le _ _ ... ≤ ∑ x in f.range, ‖T (f ⁻¹' {x})‖ * ‖x‖ : by { refine finset.sum_le_sum (λb hb, _), simp_rw continuous_linear_map.le_op_norm, } lemma norm_set_to_simple_func_le_sum_mul_norm (T : set α → F →L[ℝ] F') {C : ℝ} (hT_norm : ∀ s, measurable_set s → ‖T s‖ ≤ C * (μ s).to_real) (f : α →ₛ F) : ‖f.set_to_simple_func T‖ ≤ C * ∑ x in f.range, (μ (f ⁻¹' {x})).to_real * ‖x‖ := calc ‖f.set_to_simple_func T‖ ≤ ∑ x in f.range, ‖T (f ⁻¹' {x})‖ * ‖x‖ : norm_set_to_simple_func_le_sum_op_norm T f ... ≤ ∑ x in f.range, C * (μ (f ⁻¹' {x})).to_real * ‖x‖ : sum_le_sum $ λ b hb, mul_le_mul_of_nonneg_right (hT_norm _ $ simple_func.measurable_set_fiber _ _) $ norm_nonneg _ ... ≤ C * ∑ x in f.range, (μ (f ⁻¹' {x})).to_real * ‖x‖ : by simp_rw [mul_sum, ← mul_assoc] lemma norm_set_to_simple_func_le_sum_mul_norm_of_integrable (T : set α → E →L[ℝ] F') {C : ℝ} (hT_norm : ∀ s, measurable_set s → μ s < ∞ → ‖T s‖ ≤ C * (μ s).to_real) (f : α →ₛ E) (hf : integrable f μ) : ‖f.set_to_simple_func T‖ ≤ C * ∑ x in f.range, (μ (f ⁻¹' {x})).to_real * ‖x‖ := calc ‖f.set_to_simple_func T‖ ≤ ∑ x in f.range, ‖T (f ⁻¹' {x})‖ * ‖x‖ : norm_set_to_simple_func_le_sum_op_norm T f ... ≤ ∑ x in f.range, C * (μ (f ⁻¹' {x})).to_real * ‖x‖ : begin refine finset.sum_le_sum (λ b hb, _), obtain rfl | hb := eq_or_ne b 0, { simp }, exact mul_le_mul_of_nonneg_right (hT_norm _ (simple_func.measurable_set_fiber _ _) $ simple_func.measure_preimage_lt_top_of_integrable _ hf hb) (norm_nonneg _), end ... ≤ C * ∑ x in f.range, (μ (f ⁻¹' {x})).to_real * ‖x‖ : by simp_rw [mul_sum, ← mul_assoc] lemma set_to_simple_func_indicator (T : set α → F →L[ℝ] F') (hT_empty : T ∅ = 0) {m : measurable_space α} {s : set α} (hs : measurable_set s) (x : F) : simple_func.set_to_simple_func T (simple_func.piecewise s hs (simple_func.const α x) (simple_func.const α 0)) = T s x := begin obtain rfl | hs_empty := s.eq_empty_or_nonempty, { simp only [hT_empty, continuous_linear_map.zero_apply, piecewise_empty, const_zero, set_to_simple_func_zero_apply], }, simp_rw set_to_simple_func, obtain rfl | hs_univ := eq_or_ne s univ, { haveI hα := hs_empty.to_type, simp }, rw range_indicator hs hs_empty hs_univ, by_cases hx0 : x = 0, { simp_rw hx0, simp, }, rw sum_insert, swap, { rw finset.mem_singleton, exact hx0, }, rw [sum_singleton, (T _).map_zero, add_zero], congr, simp only [coe_piecewise, piecewise_eq_indicator, coe_const, pi.const_zero, piecewise_eq_indicator], rw [indicator_preimage, preimage_const_of_mem], swap, { exact set.mem_singleton x, }, rw [← pi.const_zero, preimage_const_of_not_mem], swap, { rw set.mem_singleton_iff, exact ne.symm hx0, }, simp, end lemma set_to_simple_func_const' [nonempty α] (T : set α → F →L[ℝ] F') (x : F) {m : measurable_space α} : simple_func.set_to_simple_func T (simple_func.const α x) = T univ x := by simp only [set_to_simple_func, range_const, set.mem_singleton, preimage_const_of_mem, sum_singleton, coe_const] lemma set_to_simple_func_const (T : set α → F →L[ℝ] F') (hT_empty : T ∅ = 0) (x : F) {m : measurable_space α} : simple_func.set_to_simple_func T (simple_func.const α x) = T univ x := begin casesI hα : is_empty_or_nonempty α, { have h_univ_empty : (univ : set α) = ∅, from subsingleton.elim _ _, rw [h_univ_empty, hT_empty], simp only [set_to_simple_func, continuous_linear_map.zero_apply, sum_empty, range_eq_empty_of_is_empty], }, { exact set_to_simple_func_const' T x, }, end end simple_func namespace L1 open ae_eq_fun Lp.simple_func Lp variables {α E μ} namespace simple_func lemma norm_eq_sum_mul (f : α →₁ₛ[μ] G) : ‖f‖ = ∑ x in (to_simple_func f).range, (μ ((to_simple_func f) ⁻¹' {x})).to_real * ‖x‖ := begin rw [norm_to_simple_func, snorm_one_eq_lintegral_nnnorm], have h_eq := simple_func.map_apply (λ x, (‖x‖₊ : ℝ≥0∞)) (to_simple_func f), dsimp only at h_eq, simp_rw ← h_eq, rw [simple_func.lintegral_eq_lintegral, simple_func.map_lintegral, ennreal.to_real_sum], { congr, ext1 x, rw [ennreal.to_real_mul, mul_comm, ← of_real_norm_eq_coe_nnnorm, ennreal.to_real_of_real (norm_nonneg _)], }, { intros x hx, by_cases hx0 : x = 0, { rw hx0, simp, }, { exact ennreal.mul_ne_top ennreal.coe_ne_top (simple_func.measure_preimage_lt_top_of_integrable _ (simple_func.integrable f) hx0).ne } } end section set_to_L1s variables [normed_field 𝕜] [normed_space 𝕜 E] local attribute [instance] Lp.simple_func.module local attribute [instance] Lp.simple_func.normed_space /-- Extend `set α → (E →L[ℝ] F')` to `(α →₁ₛ[μ] E) → F'`. -/ def set_to_L1s (T : set α → E →L[ℝ] F) (f : α →₁ₛ[μ] E) : F := (to_simple_func f).set_to_simple_func T lemma set_to_L1s_eq_set_to_simple_func (T : set α → E →L[ℝ] F) (f : α →₁ₛ[μ] E) : set_to_L1s T f = (to_simple_func f).set_to_simple_func T := rfl @[simp] lemma set_to_L1s_zero_left (f : α →₁ₛ[μ] E) : set_to_L1s (0 : set α → E →L[ℝ] F) f = 0 := simple_func.set_to_simple_func_zero _ lemma set_to_L1s_zero_left' {T : set α → E →L[ℝ] F} (h_zero : ∀ s, measurable_set s → μ s < ∞ → T s = 0) (f : α →₁ₛ[μ] E) : set_to_L1s T f = 0 := simple_func.set_to_simple_func_zero' h_zero _ (simple_func.integrable f) lemma set_to_L1s_congr (T : set α → E →L[ℝ] F) (h_zero : ∀ s, measurable_set s → μ s = 0 → T s = 0) (h_add : fin_meas_additive μ T) {f g : α →₁ₛ[μ] E} (h : to_simple_func f =ᵐ[μ] to_simple_func g) : set_to_L1s T f = set_to_L1s T g := simple_func.set_to_simple_func_congr T h_zero h_add (simple_func.integrable f) h lemma set_to_L1s_congr_left (T T' : set α → E →L[ℝ] F) (h : ∀ s, measurable_set s → μ s < ∞ → T s = T' s) (f : α →₁ₛ[μ] E) : set_to_L1s T f = set_to_L1s T' f := simple_func.set_to_simple_func_congr_left T T' h (simple_func.to_simple_func f) (simple_func.integrable f) /-- `set_to_L1s` does not change if we replace the measure `μ` by `μ'` with `μ ≪ μ'`. The statement uses two functions `f` and `f'` because they have to belong to different types, but morally these are the same function (we have `f =ᵐ[μ] f'`). -/ lemma set_to_L1s_congr_measure {μ' : measure α} (T : set α → E →L[ℝ] F) (h_zero : ∀ s, measurable_set s → μ s = 0 → T s = 0) (h_add : fin_meas_additive μ T) (hμ : μ ≪ μ') (f : α →₁ₛ[μ] E) (f' : α →₁ₛ[μ'] E) (h : f =ᵐ[μ] f') : set_to_L1s T f = set_to_L1s T f' := begin refine simple_func.set_to_simple_func_congr T h_zero h_add (simple_func.integrable f) _, refine (to_simple_func_eq_to_fun f).trans _, suffices : f' =ᵐ[μ] ⇑(simple_func.to_simple_func f'), from h.trans this, have goal' : f' =ᵐ[μ'] simple_func.to_simple_func f', from (to_simple_func_eq_to_fun f').symm, exact hμ.ae_eq goal', end lemma set_to_L1s_add_left (T T' : set α → E →L[ℝ] F) (f : α →₁ₛ[μ] E) : set_to_L1s (T + T') f = set_to_L1s T f + set_to_L1s T' f := simple_func.set_to_simple_func_add_left T T' lemma set_to_L1s_add_left' (T T' T'' : set α → E →L[ℝ] F) (h_add : ∀ s, measurable_set s → μ s < ∞ → T'' s = T s + T' s) (f : α →₁ₛ[μ] E) : set_to_L1s T'' f = set_to_L1s T f + set_to_L1s T' f := simple_func.set_to_simple_func_add_left' T T' T'' h_add (simple_func.integrable f) lemma set_to_L1s_smul_left (T : set α → E →L[ℝ] F) (c : ℝ) (f : α →₁ₛ[μ] E) : set_to_L1s (λ s, c • (T s)) f = c • set_to_L1s T f := simple_func.set_to_simple_func_smul_left T c _ lemma set_to_L1s_smul_left' (T T' : set α → E →L[ℝ] F) (c : ℝ) (h_smul : ∀ s, measurable_set s → μ s < ∞ → T' s = c • (T s)) (f : α →₁ₛ[μ] E) : set_to_L1s T' f = c • set_to_L1s T f := simple_func.set_to_simple_func_smul_left' T T' c h_smul (simple_func.integrable f) lemma set_to_L1s_add (T : set α → E →L[ℝ] F) (h_zero : ∀ s, measurable_set s → μ s = 0 → T s = 0) (h_add : fin_meas_additive μ T) (f g : α →₁ₛ[μ] E) : set_to_L1s T (f + g) = set_to_L1s T f + set_to_L1s T g := begin simp_rw set_to_L1s, rw ← simple_func.set_to_simple_func_add T h_add (simple_func.integrable f) (simple_func.integrable g), exact simple_func.set_to_simple_func_congr T h_zero h_add (simple_func.integrable _) (add_to_simple_func f g), end lemma set_to_L1s_neg {T : set α → E →L[ℝ] F} (h_zero : ∀ s, measurable_set s → μ s = 0 → T s = 0) (h_add : fin_meas_additive μ T) (f : α →₁ₛ[μ] E) : set_to_L1s T (-f) = - set_to_L1s T f := begin simp_rw set_to_L1s, have : simple_func.to_simple_func (-f) =ᵐ[μ] ⇑(-simple_func.to_simple_func f), from neg_to_simple_func f, rw simple_func.set_to_simple_func_congr T h_zero h_add (simple_func.integrable _) this, exact simple_func.set_to_simple_func_neg T h_add (simple_func.integrable f), end lemma set_to_L1s_sub {T : set α → E →L[ℝ] F} (h_zero : ∀ s, measurable_set s → μ s = 0 → T s = 0) (h_add : fin_meas_additive μ T) (f g : α →₁ₛ[μ] E) : set_to_L1s T (f - g) = set_to_L1s T f - set_to_L1s T g := by rw [sub_eq_add_neg, set_to_L1s_add T h_zero h_add, set_to_L1s_neg h_zero h_add, sub_eq_add_neg] lemma set_to_L1s_smul_real (T : set α → E →L[ℝ] F) (h_zero : ∀ s, measurable_set s → μ s = 0 → T s = 0) (h_add : fin_meas_additive μ T) (c : ℝ) (f : α →₁ₛ[μ] E) : set_to_L1s T (c • f) = c • set_to_L1s T f := begin simp_rw set_to_L1s, rw ← simple_func.set_to_simple_func_smul_real T h_add c (simple_func.integrable f), refine simple_func.set_to_simple_func_congr T h_zero h_add (simple_func.integrable _) _, exact smul_to_simple_func c f, end lemma set_to_L1s_smul {E} [normed_add_comm_group E] [normed_space ℝ E] [normed_space 𝕜 E] [normed_space 𝕜 F] (T : set α → E →L[ℝ] F) (h_zero : ∀ s, measurable_set s → μ s = 0 → T s = 0) (h_add : fin_meas_additive μ T) (h_smul : ∀ c : 𝕜, ∀ s x, T s (c • x) = c • T s x) (c : 𝕜) (f : α →₁ₛ[μ] E) : set_to_L1s T (c • f) = c • set_to_L1s T f := begin simp_rw set_to_L1s, rw ← simple_func.set_to_simple_func_smul T h_add h_smul c (simple_func.integrable f), refine simple_func.set_to_simple_func_congr T h_zero h_add (simple_func.integrable _) _, exact smul_to_simple_func c f, end lemma norm_set_to_L1s_le (T : set α → E →L[ℝ] F) {C : ℝ} (hT_norm : ∀ s, measurable_set s → μ s < ∞ → ‖T s‖ ≤ C * (μ s).to_real) (f : α →₁ₛ[μ] E) : ‖set_to_L1s T f‖ ≤ C * ‖f‖ := begin rw [set_to_L1s, norm_eq_sum_mul f], exact simple_func.norm_set_to_simple_func_le_sum_mul_norm_of_integrable T hT_norm _ (simple_func.integrable f), end lemma set_to_L1s_indicator_const {T : set α → E →L[ℝ] F} {s : set α} (h_zero : ∀ s, measurable_set s → μ s = 0 → T s = 0) (h_add : fin_meas_additive μ T) (hs : measurable_set s) (hμs : μ s < ∞) (x : E) : set_to_L1s T (simple_func.indicator_const 1 hs hμs.ne x) = T s x := begin have h_empty : T ∅ = 0, from h_zero _ measurable_set.empty measure_empty, rw set_to_L1s_eq_set_to_simple_func, refine eq.trans _ (simple_func.set_to_simple_func_indicator T h_empty hs x), refine simple_func.set_to_simple_func_congr T h_zero h_add (simple_func.integrable _) _, exact to_simple_func_indicator_const hs hμs.ne x, end lemma set_to_L1s_const [is_finite_measure μ] {T : set α → E →L[ℝ] F} (h_zero : ∀ s, measurable_set s → μ s = 0 → T s = 0) (h_add : fin_meas_additive μ T) (x : E) : set_to_L1s T (simple_func.indicator_const 1 measurable_set.univ (measure_ne_top μ _) x) = T univ x := set_to_L1s_indicator_const h_zero h_add measurable_set.univ (measure_lt_top _ _) x section order variables {G'' G' : Type*} [normed_lattice_add_comm_group G'] [normed_space ℝ G'] [normed_lattice_add_comm_group G''] [normed_space ℝ G''] {T : set α → G'' →L[ℝ] G'} lemma set_to_L1s_mono_left {T T' : set α → E →L[ℝ] G''} (hTT' : ∀ s x, T s x ≤ T' s x) (f : α →₁ₛ[μ] E) : set_to_L1s T f ≤ set_to_L1s T' f := simple_func.set_to_simple_func_mono_left T T' hTT' _ lemma set_to_L1s_mono_left' {T T' : set α → E →L[ℝ] G''} (hTT' : ∀ s, measurable_set s → μ s < ∞ → ∀ x, T s x ≤ T' s x) (f : α →₁ₛ[μ] E) : set_to_L1s T f ≤ set_to_L1s T' f := simple_func.set_to_simple_func_mono_left' T T' hTT' _ (simple_func.integrable f) lemma set_to_L1s_nonneg (h_zero : ∀ s, measurable_set s → μ s = 0 → T s = 0) (h_add : fin_meas_additive μ T) (hT_nonneg : ∀ s, measurable_set s → μ s < ∞ → ∀ x, 0 ≤ x → 0 ≤ T s x) {f : α →₁ₛ[μ] G''} (hf : 0 ≤ f) : 0 ≤ set_to_L1s T f := begin simp_rw set_to_L1s, obtain ⟨f', hf', hff'⟩ : ∃ f' : α →ₛ G'', 0 ≤ f' ∧ simple_func.to_simple_func f =ᵐ[μ] f', { obtain ⟨f'', hf'', hff''⟩ := exists_simple_func_nonneg_ae_eq hf, exact ⟨f'', hf'', (Lp.simple_func.to_simple_func_eq_to_fun f).trans hff''⟩, }, rw simple_func.set_to_simple_func_congr _ h_zero h_add (simple_func.integrable _) hff', exact simple_func.set_to_simple_func_nonneg' T hT_nonneg _ hf' ((simple_func.integrable f).congr hff'), end lemma set_to_L1s_mono (h_zero : ∀ s, measurable_set s → μ s = 0 → T s = 0) (h_add : fin_meas_additive μ T) (hT_nonneg : ∀ s, measurable_set s → μ s < ∞ → ∀ x, 0 ≤ x → 0 ≤ T s x) {f g : α →₁ₛ[μ] G''} (hfg : f ≤ g) : set_to_L1s T f ≤ set_to_L1s T g := begin rw ← sub_nonneg at ⊢ hfg, rw ← set_to_L1s_sub h_zero h_add, exact set_to_L1s_nonneg h_zero h_add hT_nonneg hfg, end end order variables [normed_space 𝕜 F] variables (α E μ 𝕜) /-- Extend `set α → E →L[ℝ] F` to `(α →₁ₛ[μ] E) →L[𝕜] F`. -/ def set_to_L1s_clm' {T : set α → E →L[ℝ] F} {C : ℝ} (hT : dominated_fin_meas_additive μ T C) (h_smul : ∀ c : 𝕜, ∀ s x, T s (c • x) = c • T s x) : (α →₁ₛ[μ] E) →L[𝕜] F := linear_map.mk_continuous ⟨set_to_L1s T, set_to_L1s_add T (λ _, hT.eq_zero_of_measure_zero) hT.1, set_to_L1s_smul T (λ _, hT.eq_zero_of_measure_zero) hT.1 h_smul⟩ C (λ f, norm_set_to_L1s_le T hT.2 f) /-- Extend `set α → E →L[ℝ] F` to `(α →₁ₛ[μ] E) →L[ℝ] F`. -/ def set_to_L1s_clm {T : set α → E →L[ℝ] F} {C : ℝ} (hT : dominated_fin_meas_additive μ T C) : (α →₁ₛ[μ] E) →L[ℝ] F := linear_map.mk_continuous ⟨set_to_L1s T, set_to_L1s_add T (λ _, hT.eq_zero_of_measure_zero) hT.1, set_to_L1s_smul_real T (λ _, hT.eq_zero_of_measure_zero) hT.1⟩ C (λ f, norm_set_to_L1s_le T hT.2 f) variables {α E μ 𝕜} variables {T T' T'' : set α → E →L[ℝ] F} {C C' C'' : ℝ} @[simp] lemma set_to_L1s_clm_zero_left (hT : dominated_fin_meas_additive μ (0 : set α → E →L[ℝ] F) C) (f : α →₁ₛ[μ] E) : set_to_L1s_clm α E μ hT f = 0 := set_to_L1s_zero_left _ lemma set_to_L1s_clm_zero_left' (hT : dominated_fin_meas_additive μ T C) (h_zero : ∀ s, measurable_set s → μ s < ∞ → T s = 0) (f : α →₁ₛ[μ] E) : set_to_L1s_clm α E μ hT f = 0 := set_to_L1s_zero_left' h_zero f lemma set_to_L1s_clm_congr_left (hT : dominated_fin_meas_additive μ T C) (hT' : dominated_fin_meas_additive μ T' C') (h : T = T') (f : α →₁ₛ[μ] E) : set_to_L1s_clm α E μ hT f = set_to_L1s_clm α E μ hT' f := set_to_L1s_congr_left T T' (λ _ _ _, by rw h) f lemma set_to_L1s_clm_congr_left' (hT : dominated_fin_meas_additive μ T C) (hT' : dominated_fin_meas_additive μ T' C') (h : ∀ s, measurable_set s → μ s < ∞ → T s = T' s) (f : α →₁ₛ[μ] E) : set_to_L1s_clm α E μ hT f = set_to_L1s_clm α E μ hT' f := set_to_L1s_congr_left T T' h f lemma set_to_L1s_clm_congr_measure {μ' : measure α} (hT : dominated_fin_meas_additive μ T C) (hT' : dominated_fin_meas_additive μ' T C') (hμ : μ ≪ μ') (f : α →₁ₛ[μ] E) (f' : α →₁ₛ[μ'] E) (h : f =ᵐ[μ] f') : set_to_L1s_clm α E μ hT f = set_to_L1s_clm α E μ' hT' f' := set_to_L1s_congr_measure T (λ s, hT.eq_zero_of_measure_zero) hT.1 hμ _ _ h lemma set_to_L1s_clm_add_left (hT : dominated_fin_meas_additive μ T C) (hT' : dominated_fin_meas_additive μ T' C') (f : α →₁ₛ[μ] E) : set_to_L1s_clm α E μ (hT.add hT') f = set_to_L1s_clm α E μ hT f + set_to_L1s_clm α E μ hT' f := set_to_L1s_add_left T T' f lemma set_to_L1s_clm_add_left' (hT : dominated_fin_meas_additive μ T C) (hT' : dominated_fin_meas_additive μ T' C') (hT'' : dominated_fin_meas_additive μ T'' C'') (h_add : ∀ s, measurable_set s → μ s < ∞ → T'' s = T s + T' s) (f : α →₁ₛ[μ] E) : set_to_L1s_clm α E μ hT'' f = set_to_L1s_clm α E μ hT f + set_to_L1s_clm α E μ hT' f := set_to_L1s_add_left' T T' T'' h_add f lemma set_to_L1s_clm_smul_left (c : ℝ) (hT : dominated_fin_meas_additive μ T C) (f : α →₁ₛ[μ] E) : set_to_L1s_clm α E μ (hT.smul c) f = c • set_to_L1s_clm α E μ hT f := set_to_L1s_smul_left T c f lemma set_to_L1s_clm_smul_left' (c : ℝ) (hT : dominated_fin_meas_additive μ T C) (hT' : dominated_fin_meas_additive μ T' C') (h_smul : ∀ s, measurable_set s → μ s < ∞ → T' s = c • (T s)) (f : α →₁ₛ[μ] E) : set_to_L1s_clm α E μ hT' f = c • set_to_L1s_clm α E μ hT f := set_to_L1s_smul_left' T T' c h_smul f lemma norm_set_to_L1s_clm_le {T : set α → E →L[ℝ] F} {C : ℝ} (hT : dominated_fin_meas_additive μ T C) (hC : 0 ≤ C) : ‖set_to_L1s_clm α E μ hT‖ ≤ C := linear_map.mk_continuous_norm_le _ hC _ lemma norm_set_to_L1s_clm_le' {T : set α → E →L[ℝ] F} {C : ℝ} (hT : dominated_fin_meas_additive μ T C) : ‖set_to_L1s_clm α E μ hT‖ ≤ max C 0 := linear_map.mk_continuous_norm_le' _ _ lemma set_to_L1s_clm_const [is_finite_measure μ] {T : set α → E →L[ℝ] F} {C : ℝ} (hT : dominated_fin_meas_additive μ T C) (x : E) : set_to_L1s_clm α E μ hT (simple_func.indicator_const 1 measurable_set.univ (measure_ne_top μ _) x) = T univ x := set_to_L1s_const (λ s, hT.eq_zero_of_measure_zero) hT.1 x section order variables {G' G'' : Type*} [normed_lattice_add_comm_group G''] [normed_space ℝ G''] [normed_lattice_add_comm_group G'] [normed_space ℝ G'] lemma set_to_L1s_clm_mono_left {T T' : set α → E →L[ℝ] G''} {C C' : ℝ} (hT : dominated_fin_meas_additive μ T C) (hT' : dominated_fin_meas_additive μ T' C') (hTT' : ∀ s x, T s x ≤ T' s x) (f : α →₁ₛ[μ] E) : set_to_L1s_clm α E μ hT f ≤ set_to_L1s_clm α E μ hT' f := simple_func.set_to_simple_func_mono_left T T' hTT' _ lemma set_to_L1s_clm_mono_left' {T T' : set α → E →L[ℝ] G''} {C C' : ℝ} (hT : dominated_fin_meas_additive μ T C) (hT' : dominated_fin_meas_additive μ T' C') (hTT' : ∀ s, measurable_set s → μ s < ∞ → ∀ x, T s x ≤ T' s x) (f : α →₁ₛ[μ] E) : set_to_L1s_clm α E μ hT f ≤ set_to_L1s_clm α E μ hT' f := simple_func.set_to_simple_func_mono_left' T T' hTT' _ (simple_func.integrable f) lemma set_to_L1s_clm_nonneg {T : set α → G' →L[ℝ] G''} {C : ℝ} (hT : dominated_fin_meas_additive μ T C) (hT_nonneg : ∀ s, measurable_set s → μ s < ∞ → ∀ x, 0 ≤ x → 0 ≤ T s x) {f : α →₁ₛ[μ] G'} (hf : 0 ≤ f) : 0 ≤ set_to_L1s_clm α G' μ hT f := set_to_L1s_nonneg (λ s, hT.eq_zero_of_measure_zero) hT.1 hT_nonneg hf lemma set_to_L1s_clm_mono {T : set α → G' →L[ℝ] G''} {C : ℝ} (hT : dominated_fin_meas_additive μ T C) (hT_nonneg : ∀ s, measurable_set s → μ s < ∞ → ∀ x, 0 ≤ x → 0 ≤ T s x) {f g : α →₁ₛ[μ] G'} (hfg : f ≤ g) : set_to_L1s_clm α G' μ hT f ≤ set_to_L1s_clm α G' μ hT g := set_to_L1s_mono (λ s, hT.eq_zero_of_measure_zero) hT.1 hT_nonneg hfg end order end set_to_L1s end simple_func open simple_func section set_to_L1 local attribute [instance] Lp.simple_func.module local attribute [instance] Lp.simple_func.normed_space variables (𝕜) [nontrivially_normed_field 𝕜] [normed_space 𝕜 E] [normed_space 𝕜 F] [complete_space F] {T T' T'' : set α → E →L[ℝ] F} {C C' C'' : ℝ} /-- Extend `set α → (E →L[ℝ] F)` to `(α →₁[μ] E) →L[𝕜] F`. -/ def set_to_L1' (hT : dominated_fin_meas_additive μ T C) (h_smul : ∀ c : 𝕜, ∀ s x, T s (c • x) = c • T s x) : (α →₁[μ] E) →L[𝕜] F := (set_to_L1s_clm' α E 𝕜 μ hT h_smul).extend (coe_to_Lp α E 𝕜) (simple_func.dense_range one_ne_top) simple_func.uniform_inducing variables {𝕜} /-- Extend `set α → E →L[ℝ] F` to `(α →₁[μ] E) →L[ℝ] F`. -/ def set_to_L1 (hT : dominated_fin_meas_additive μ T C) : (α →₁[μ] E) →L[ℝ] F := (set_to_L1s_clm α E μ hT).extend (coe_to_Lp α E ℝ) (simple_func.dense_range one_ne_top) simple_func.uniform_inducing lemma set_to_L1_eq_set_to_L1s_clm (hT : dominated_fin_meas_additive μ T C) (f : α →₁ₛ[μ] E) : set_to_L1 hT f = set_to_L1s_clm α E μ hT f := uniformly_extend_of_ind simple_func.uniform_inducing (simple_func.dense_range one_ne_top) (set_to_L1s_clm α E μ hT).uniform_continuous _ lemma set_to_L1_eq_set_to_L1' (hT : dominated_fin_meas_additive μ T C) (h_smul : ∀ c : 𝕜, ∀ s x, T s (c • x) = c • T s x) (f : α →₁[μ] E) : set_to_L1 hT f = set_to_L1' 𝕜 hT h_smul f := rfl @[simp] lemma set_to_L1_zero_left (hT : dominated_fin_meas_additive μ (0 : set α → E →L[ℝ] F) C) (f : α →₁[μ] E) : set_to_L1 hT f = 0 := begin suffices : set_to_L1 hT = 0, by { rw this, simp, }, refine continuous_linear_map.extend_unique (set_to_L1s_clm α E μ hT) _ _ _ _ _, ext1 f, rw [set_to_L1s_clm_zero_left hT f, continuous_linear_map.zero_comp, continuous_linear_map.zero_apply], end lemma set_to_L1_zero_left' (hT : dominated_fin_meas_additive μ T C) (h_zero : ∀ s, measurable_set s → μ s < ∞ → T s = 0) (f : α →₁[μ] E) : set_to_L1 hT f = 0 := begin suffices : set_to_L1 hT = 0, by { rw this, simp, }, refine continuous_linear_map.extend_unique (set_to_L1s_clm α E μ hT) _ _ _ _ _, ext1 f, rw [set_to_L1s_clm_zero_left' hT h_zero f, continuous_linear_map.zero_comp, continuous_linear_map.zero_apply], end lemma set_to_L1_congr_left (T T' : set α → E →L[ℝ] F) {C C' : ℝ} (hT : dominated_fin_meas_additive μ T C) (hT' : dominated_fin_meas_additive μ T' C') (h : T = T') (f : α →₁[μ] E) : set_to_L1 hT f = set_to_L1 hT' f := begin suffices : set_to_L1 hT = set_to_L1 hT', by rw this, refine continuous_linear_map.extend_unique (set_to_L1s_clm α E μ hT) _ _ _ _ _, ext1 f, suffices : set_to_L1 hT' f = set_to_L1s_clm α E μ hT f, by { rw ← this, congr' 1, }, rw set_to_L1_eq_set_to_L1s_clm, exact set_to_L1s_clm_congr_left hT' hT h.symm f, end lemma set_to_L1_congr_left' (T T' : set α → E →L[ℝ] F) {C C' : ℝ} (hT : dominated_fin_meas_additive μ T C) (hT' : dominated_fin_meas_additive μ T' C') (h : ∀ s, measurable_set s → μ s < ∞ → T s = T' s) (f : α →₁[μ] E) : set_to_L1 hT f = set_to_L1 hT' f := begin suffices : set_to_L1 hT = set_to_L1 hT', by rw this, refine continuous_linear_map.extend_unique (set_to_L1s_clm α E μ hT) _ _ _ _ _, ext1 f, suffices : set_to_L1 hT' f = set_to_L1s_clm α E μ hT f, by { rw ← this, congr' 1, }, rw set_to_L1_eq_set_to_L1s_clm, exact (set_to_L1s_clm_congr_left' hT hT' h f).symm, end lemma set_to_L1_add_left (hT : dominated_fin_meas_additive μ T C) (hT' : dominated_fin_meas_additive μ T' C') (f : α →₁[μ] E) : set_to_L1 (hT.add hT') f = set_to_L1 hT f + set_to_L1 hT' f := begin suffices : set_to_L1 (hT.add hT') = set_to_L1 hT + set_to_L1 hT', by { rw [this, continuous_linear_map.add_apply], }, refine continuous_linear_map.extend_unique (set_to_L1s_clm α E μ (hT.add hT')) _ _ _ _ _, ext1 f, simp only [continuous_linear_map.add_comp, continuous_linear_map.coe_comp', function.comp_app, continuous_linear_map.add_apply], suffices : set_to_L1 hT f + set_to_L1 hT' f = set_to_L1s_clm α E μ (hT.add hT') f, by { rw ← this, congr, }, rw [set_to_L1_eq_set_to_L1s_clm, set_to_L1_eq_set_to_L1s_clm, set_to_L1s_clm_add_left hT hT'], end lemma set_to_L1_add_left' (hT : dominated_fin_meas_additive μ T C) (hT' : dominated_fin_meas_additive μ T' C') (hT'' : dominated_fin_meas_additive μ T'' C'') (h_add : ∀ s, measurable_set s → μ s < ∞ → T'' s = T s + T' s) (f : α →₁[μ] E) : set_to_L1 hT'' f = set_to_L1 hT f + set_to_L1 hT' f := begin suffices : set_to_L1 hT'' = set_to_L1 hT + set_to_L1 hT', by { rw [this, continuous_linear_map.add_apply], }, refine continuous_linear_map.extend_unique (set_to_L1s_clm α E μ hT'') _ _ _ _ _, ext1 f, simp only [continuous_linear_map.add_comp, continuous_linear_map.coe_comp', function.comp_app, continuous_linear_map.add_apply], suffices : set_to_L1 hT f + set_to_L1 hT' f = set_to_L1s_clm α E μ hT'' f, by { rw ← this, congr, }, rw [set_to_L1_eq_set_to_L1s_clm, set_to_L1_eq_set_to_L1s_clm, set_to_L1s_clm_add_left' hT hT' hT'' h_add], end lemma set_to_L1_smul_left (hT : dominated_fin_meas_additive μ T C) (c : ℝ) (f : α →₁[μ] E) : set_to_L1 (hT.smul c) f = c • set_to_L1 hT f := begin suffices : set_to_L1 (hT.smul c) = c • set_to_L1 hT, by { rw [this, continuous_linear_map.smul_apply], }, refine continuous_linear_map.extend_unique (set_to_L1s_clm α E μ (hT.smul c)) _ _ _ _ _, ext1 f, simp only [continuous_linear_map.coe_comp', function.comp_app, continuous_linear_map.smul_comp, pi.smul_apply, continuous_linear_map.coe_smul'], suffices : c • set_to_L1 hT f = set_to_L1s_clm α E μ (hT.smul c) f, by { rw ← this, congr, }, rw [set_to_L1_eq_set_to_L1s_clm, set_to_L1s_clm_smul_left c hT], end lemma set_to_L1_smul_left' (hT : dominated_fin_meas_additive μ T C) (hT' : dominated_fin_meas_additive μ T' C') (c : ℝ) (h_smul : ∀ s, measurable_set s → μ s < ∞ → T' s = c • (T s)) (f : α →₁[μ] E) : set_to_L1 hT' f = c • set_to_L1 hT f := begin suffices : set_to_L1 hT' = c • set_to_L1 hT, by { rw [this, continuous_linear_map.smul_apply], }, refine continuous_linear_map.extend_unique (set_to_L1s_clm α E μ hT') _ _ _ _ _, ext1 f, simp only [continuous_linear_map.coe_comp', function.comp_app, continuous_linear_map.smul_comp, pi.smul_apply, continuous_linear_map.coe_smul'], suffices : c • set_to_L1 hT f = set_to_L1s_clm α E μ hT' f, by { rw ← this, congr, }, rw [set_to_L1_eq_set_to_L1s_clm, set_to_L1s_clm_smul_left' c hT hT' h_smul], end lemma set_to_L1_smul (hT : dominated_fin_meas_additive μ T C) (h_smul : ∀ c : 𝕜, ∀ s x, T s (c • x) = c • T s x) (c : 𝕜) (f : α →₁[μ] E) : set_to_L1 hT (c • f) = c • set_to_L1 hT f := begin rw [set_to_L1_eq_set_to_L1' hT h_smul, set_to_L1_eq_set_to_L1' hT h_smul], exact continuous_linear_map.map_smul _ _ _, end lemma set_to_L1_simple_func_indicator_const (hT : dominated_fin_meas_additive μ T C) {s : set α} (hs : measurable_set s) (hμs : μ s < ∞) (x : E) : set_to_L1 hT (simple_func.indicator_const 1 hs hμs.ne x) = T s x := begin rw set_to_L1_eq_set_to_L1s_clm, exact set_to_L1s_indicator_const (λ s, hT.eq_zero_of_measure_zero) hT.1 hs hμs x, end lemma set_to_L1_indicator_const_Lp (hT : dominated_fin_meas_additive μ T C) {s : set α} (hs : measurable_set s) (hμs : μ s ≠ ∞) (x : E) : set_to_L1 hT (indicator_const_Lp 1 hs hμs x) = T s x := begin rw ← Lp.simple_func.coe_indicator_const hs hμs x, exact set_to_L1_simple_func_indicator_const hT hs hμs.lt_top x, end lemma set_to_L1_const [is_finite_measure μ] (hT : dominated_fin_meas_additive μ T C) (x : E) : set_to_L1 hT (indicator_const_Lp 1 measurable_set.univ (measure_ne_top _ _) x) = T univ x := set_to_L1_indicator_const_Lp hT measurable_set.univ (measure_ne_top _ _) x section order variables {G' G'' : Type*} [normed_lattice_add_comm_group G''] [normed_space ℝ G''] [complete_space G''] [normed_lattice_add_comm_group G'] [normed_space ℝ G'] lemma set_to_L1_mono_left' {T T' : set α → E →L[ℝ] G''} {C C' : ℝ} (hT : dominated_fin_meas_additive μ T C) (hT' : dominated_fin_meas_additive μ T' C') (hTT' : ∀ s, measurable_set s → μ s < ∞ → ∀ x, T s x ≤ T' s x) (f : α →₁[μ] E) : set_to_L1 hT f ≤ set_to_L1 hT' f := begin refine Lp.induction one_ne_top _ _ _ _ f, { intros c s hs hμs, rw [set_to_L1_simple_func_indicator_const hT hs hμs, set_to_L1_simple_func_indicator_const hT' hs hμs], exact hTT' s hs hμs c, }, { intros f g hf hg hfg_disj hf_le hg_le, rw [(set_to_L1 hT).map_add, (set_to_L1 hT').map_add], exact add_le_add hf_le hg_le, }, { exact is_closed_le (set_to_L1 hT).continuous (set_to_L1 hT').continuous, }, end lemma set_to_L1_mono_left {T T' : set α → E →L[ℝ] G''} {C C' : ℝ} (hT : dominated_fin_meas_additive μ T C) (hT' : dominated_fin_meas_additive μ T' C') (hTT' : ∀ s x, T s x ≤ T' s x) (f : α →₁[μ] E) : set_to_L1 hT f ≤ set_to_L1 hT' f := set_to_L1_mono_left' hT hT' (λ s _ _ x, hTT' s x) f lemma set_to_L1_nonneg {T : set α → G' →L[ℝ] G''} {C : ℝ} (hT : dominated_fin_meas_additive μ T C) (hT_nonneg : ∀ s, measurable_set s → μ s < ∞ → ∀ x, 0 ≤ x → 0 ≤ T s x) {f : α →₁[μ] G'} (hf : 0 ≤ f) : 0 ≤ set_to_L1 hT f := begin suffices : ∀ f : {g : α →₁[μ] G' // 0 ≤ g}, 0 ≤ set_to_L1 hT f, from this (⟨f, hf⟩ : {g : α →₁[μ] G' // 0 ≤ g}), refine λ g, @is_closed_property {g : α →₁ₛ[μ] G' // 0 ≤ g} {g : α →₁[μ] G' // 0 ≤ g} _ _ _ (dense_range_coe_simple_func_nonneg_to_Lp_nonneg 1 μ G' one_ne_top) _ _ g, { exact is_closed_le continuous_zero ((set_to_L1 hT).continuous.comp continuous_induced_dom), }, { intros g, have : (coe_simple_func_nonneg_to_Lp_nonneg 1 μ G' g : α →₁[μ] G') = (g : α →₁ₛ[μ] G') := rfl, rw [this, set_to_L1_eq_set_to_L1s_clm], exact set_to_L1s_nonneg (λ s, hT.eq_zero_of_measure_zero) hT.1 hT_nonneg g.2, }, end lemma set_to_L1_mono {T : set α → G' →L[ℝ] G''} {C : ℝ} (hT : dominated_fin_meas_additive μ T C) (hT_nonneg : ∀ s, measurable_set s → μ s < ∞ → ∀ x, 0 ≤ x → 0 ≤ T s x) {f g : α →₁[μ] G'} (hfg : f ≤ g) : set_to_L1 hT f ≤ set_to_L1 hT g := begin rw ← sub_nonneg at hfg ⊢, rw ← (set_to_L1 hT).map_sub, exact set_to_L1_nonneg hT hT_nonneg hfg, end end order lemma norm_set_to_L1_le_norm_set_to_L1s_clm (hT : dominated_fin_meas_additive μ T C) : ‖set_to_L1 hT‖ ≤ ‖set_to_L1s_clm α E μ hT‖ := calc ‖set_to_L1 hT‖ ≤ (1 : ℝ≥0) * ‖set_to_L1s_clm α E μ hT‖ : begin refine continuous_linear_map.op_norm_extend_le (set_to_L1s_clm α E μ hT) (coe_to_Lp α E ℝ) (simple_func.dense_range one_ne_top) (λ x, le_of_eq _), rw [nnreal.coe_one, one_mul], refl, end ... = ‖set_to_L1s_clm α E μ hT‖ : by rw [nnreal.coe_one, one_mul] lemma norm_set_to_L1_le_mul_norm (hT : dominated_fin_meas_additive μ T C) (hC : 0 ≤ C) (f : α →₁[μ] E) : ‖set_to_L1 hT f‖ ≤ C * ‖f‖ := calc ‖set_to_L1 hT f‖ ≤ ‖set_to_L1s_clm α E μ hT‖ * ‖f‖ : continuous_linear_map.le_of_op_norm_le _ (norm_set_to_L1_le_norm_set_to_L1s_clm hT) _ ... ≤ C * ‖f‖ : mul_le_mul (norm_set_to_L1s_clm_le hT hC) le_rfl (norm_nonneg _) hC lemma norm_set_to_L1_le_mul_norm' (hT : dominated_fin_meas_additive μ T C) (f : α →₁[μ] E) : ‖set_to_L1 hT f‖ ≤ max C 0 * ‖f‖ := calc ‖set_to_L1 hT f‖ ≤ ‖set_to_L1s_clm α E μ hT‖ * ‖f‖ : continuous_linear_map.le_of_op_norm_le _ (norm_set_to_L1_le_norm_set_to_L1s_clm hT) _ ... ≤ max C 0 * ‖f‖ : mul_le_mul (norm_set_to_L1s_clm_le' hT) le_rfl (norm_nonneg _) (le_max_right _ _) lemma norm_set_to_L1_le (hT : dominated_fin_meas_additive μ T C) (hC : 0 ≤ C) : ‖set_to_L1 hT‖ ≤ C := continuous_linear_map.op_norm_le_bound _ hC (norm_set_to_L1_le_mul_norm hT hC) lemma norm_set_to_L1_le' (hT : dominated_fin_meas_additive μ T C) : ‖set_to_L1 hT‖ ≤ max C 0 := continuous_linear_map.op_norm_le_bound _ (le_max_right _ _) (norm_set_to_L1_le_mul_norm' hT) lemma set_to_L1_lipschitz (hT : dominated_fin_meas_additive μ T C) : lipschitz_with (real.to_nnreal C) (set_to_L1 hT) := (set_to_L1 hT).lipschitz.weaken (norm_set_to_L1_le' hT) /-- If `fs i → f` in `L1`, then `set_to_L1 hT (fs i) → set_to_L1 hT f`. -/ lemma tendsto_set_to_L1 (hT : dominated_fin_meas_additive μ T C) (f : α →₁[μ] E) {ι} (fs : ι → α →₁[μ] E) {l : filter ι} (hfs : tendsto fs l (𝓝 f)) : tendsto (λ i, set_to_L1 hT (fs i)) l (𝓝 $ set_to_L1 hT f) := ((set_to_L1 hT).continuous.tendsto _).comp hfs end set_to_L1 end L1 section function variables [complete_space F] {T T' T'': set α → E →L[ℝ] F} {C C' C'' : ℝ} {f g : α → E} variables (μ T) /-- Extend `T : set α → E →L[ℝ] F` to `(α → E) → F` (for integrable functions `α → E`). We set it to 0 if the function is not integrable. -/ def set_to_fun (hT : dominated_fin_meas_additive μ T C) (f : α → E) : F := if hf : integrable f μ then L1.set_to_L1 hT (hf.to_L1 f) else 0 variables {μ T} lemma set_to_fun_eq (hT : dominated_fin_meas_additive μ T C) (hf : integrable f μ) : set_to_fun μ T hT f = L1.set_to_L1 hT (hf.to_L1 f) := dif_pos hf lemma L1.set_to_fun_eq_set_to_L1 (hT : dominated_fin_meas_additive μ T C) (f : α →₁[μ] E) : set_to_fun μ T hT f = L1.set_to_L1 hT f := by rw [set_to_fun_eq hT (L1.integrable_coe_fn f), integrable.to_L1_coe_fn] lemma set_to_fun_undef (hT : dominated_fin_meas_additive μ T C) (hf : ¬ integrable f μ) : set_to_fun μ T hT f = 0 := dif_neg hf lemma set_to_fun_non_ae_strongly_measurable (hT : dominated_fin_meas_additive μ T C) (hf : ¬ ae_strongly_measurable f μ) : set_to_fun μ T hT f = 0 := set_to_fun_undef hT (not_and_of_not_left _ hf) lemma set_to_fun_congr_left (hT : dominated_fin_meas_additive μ T C) (hT' : dominated_fin_meas_additive μ T' C') (h : T = T') (f : α → E) : set_to_fun μ T hT f = set_to_fun μ T' hT' f := begin by_cases hf : integrable f μ, { simp_rw [set_to_fun_eq _ hf, L1.set_to_L1_congr_left T T' hT hT' h], }, { simp_rw [set_to_fun_undef _ hf], }, end lemma set_to_fun_congr_left' (hT : dominated_fin_meas_additive μ T C) (hT' : dominated_fin_meas_additive μ T' C') (h : ∀ s, measurable_set s → μ s < ∞ → T s = T' s) (f : α → E) : set_to_fun μ T hT f = set_to_fun μ T' hT' f := begin by_cases hf : integrable f μ, { simp_rw [set_to_fun_eq _ hf, L1.set_to_L1_congr_left' T T' hT hT' h], }, { simp_rw [set_to_fun_undef _ hf], }, end lemma set_to_fun_add_left (hT : dominated_fin_meas_additive μ T C) (hT' : dominated_fin_meas_additive μ T' C') (f : α → E) : set_to_fun μ (T + T') (hT.add hT') f = set_to_fun μ T hT f + set_to_fun μ T' hT' f := begin by_cases hf : integrable f μ, { simp_rw [set_to_fun_eq _ hf, L1.set_to_L1_add_left hT hT'], }, { simp_rw [set_to_fun_undef _ hf, add_zero], }, end lemma set_to_fun_add_left' (hT : dominated_fin_meas_additive μ T C) (hT' : dominated_fin_meas_additive μ T' C') (hT'' : dominated_fin_meas_additive μ T'' C'') (h_add : ∀ s, measurable_set s → μ s < ∞ → T'' s = T s + T' s) (f : α → E) : set_to_fun μ T'' hT'' f = set_to_fun μ T hT f + set_to_fun μ T' hT' f := begin by_cases hf : integrable f μ, { simp_rw [set_to_fun_eq _ hf, L1.set_to_L1_add_left' hT hT' hT'' h_add], }, { simp_rw [set_to_fun_undef _ hf, add_zero], }, end lemma set_to_fun_smul_left (hT : dominated_fin_meas_additive μ T C) (c : ℝ) (f : α → E) : set_to_fun μ (λ s, c • (T s)) (hT.smul c) f = c • set_to_fun μ T hT f := begin by_cases hf : integrable f μ, { simp_rw [set_to_fun_eq _ hf, L1.set_to_L1_smul_left hT c], }, { simp_rw [set_to_fun_undef _ hf, smul_zero], }, end lemma set_to_fun_smul_left' (hT : dominated_fin_meas_additive μ T C) (hT' : dominated_fin_meas_additive μ T' C') (c : ℝ) (h_smul : ∀ s, measurable_set s → μ s < ∞ → T' s = c • (T s)) (f : α → E) : set_to_fun μ T' hT' f = c • set_to_fun μ T hT f := begin by_cases hf : integrable f μ, { simp_rw [set_to_fun_eq _ hf, L1.set_to_L1_smul_left' hT hT' c h_smul], }, { simp_rw [set_to_fun_undef _ hf, smul_zero], }, end @[simp] lemma set_to_fun_zero (hT : dominated_fin_meas_additive μ T C) : set_to_fun μ T hT (0 : α → E) = 0 := begin rw set_to_fun_eq hT, { simp only [integrable.to_L1_zero, continuous_linear_map.map_zero], }, { exact integrable_zero _ _ _, }, end @[simp] lemma set_to_fun_zero_left {hT : dominated_fin_meas_additive μ (0 : set α → E →L[ℝ] F) C} : set_to_fun μ 0 hT f = 0 := begin by_cases hf : integrable f μ, { rw set_to_fun_eq hT hf, exact L1.set_to_L1_zero_left hT _, }, { exact set_to_fun_undef hT hf, }, end lemma set_to_fun_zero_left' (hT : dominated_fin_meas_additive μ T C) (h_zero : ∀ s, measurable_set s → μ s < ∞ → T s = 0) : set_to_fun μ T hT f = 0 := begin by_cases hf : integrable f μ, { rw set_to_fun_eq hT hf, exact L1.set_to_L1_zero_left' hT h_zero _, }, { exact set_to_fun_undef hT hf, }, end lemma set_to_fun_add (hT : dominated_fin_meas_additive μ T C) (hf : integrable f μ) (hg : integrable g μ) : set_to_fun μ T hT (f + g) = set_to_fun μ T hT f + set_to_fun μ T hT g := by rw [set_to_fun_eq hT (hf.add hg), set_to_fun_eq hT hf, set_to_fun_eq hT hg, integrable.to_L1_add, (L1.set_to_L1 hT).map_add] lemma set_to_fun_finset_sum' (hT : dominated_fin_meas_additive μ T C) {ι} (s : finset ι) {f : ι → α → E} (hf : ∀ i ∈ s, integrable (f i) μ) : set_to_fun μ T hT (∑ i in s, f i) = ∑ i in s, set_to_fun μ T hT (f i) := begin revert hf, refine finset.induction_on s _ _, { intro h, simp only [set_to_fun_zero, finset.sum_empty] }, { assume i s his ih hf, simp only [his, finset.sum_insert, not_false_iff], rw set_to_fun_add hT (hf i (finset.mem_insert_self i s)) _, { rw ih (λ i hi, hf i (finset.mem_insert_of_mem hi)), }, { convert (integrable_finset_sum s (λ i hi, hf i (finset.mem_insert_of_mem hi))), ext1 x, simp, }, } end lemma set_to_fun_finset_sum (hT : dominated_fin_meas_additive μ T C) {ι} (s : finset ι) {f : ι → α → E} (hf : ∀ i ∈ s, integrable (f i) μ) : set_to_fun μ T hT (λ a, ∑ i in s, f i a) = ∑ i in s, set_to_fun μ T hT (f i) := by { convert set_to_fun_finset_sum' hT s hf, ext1 a, simp, } lemma set_to_fun_neg (hT : dominated_fin_meas_additive μ T C) (f : α → E) : set_to_fun μ T hT (-f) = - set_to_fun μ T hT f := begin by_cases hf : integrable f μ, { rw [set_to_fun_eq hT hf, set_to_fun_eq hT hf.neg, integrable.to_L1_neg, (L1.set_to_L1 hT).map_neg], }, { rw [set_to_fun_undef hT hf, set_to_fun_undef hT, neg_zero], rwa [← integrable_neg_iff] at hf, } end lemma set_to_fun_sub (hT : dominated_fin_meas_additive μ T C) (hf : integrable f μ) (hg : integrable g μ) : set_to_fun μ T hT (f - g) = set_to_fun μ T hT f - set_to_fun μ T hT g := by rw [sub_eq_add_neg, sub_eq_add_neg, set_to_fun_add hT hf hg.neg, set_to_fun_neg hT g] lemma set_to_fun_smul [nontrivially_normed_field 𝕜] [normed_space 𝕜 E] [normed_space 𝕜 F] (hT : dominated_fin_meas_additive μ T C) (h_smul : ∀ c : 𝕜, ∀ s x, T s (c • x) = c • T s x) (c : 𝕜) (f : α → E) : set_to_fun μ T hT (c • f) = c • set_to_fun μ T hT f := begin by_cases hf : integrable f μ, { rw [set_to_fun_eq hT hf, set_to_fun_eq hT, integrable.to_L1_smul', L1.set_to_L1_smul hT h_smul c _], }, { by_cases hr : c = 0, { rw hr, simp, }, { have hf' : ¬ integrable (c • f) μ, by rwa [integrable_smul_iff hr f], rw [set_to_fun_undef hT hf, set_to_fun_undef hT hf', smul_zero], }, }, end lemma set_to_fun_congr_ae (hT : dominated_fin_meas_additive μ T C) (h : f =ᵐ[μ] g) : set_to_fun μ T hT f = set_to_fun μ T hT g := begin by_cases hfi : integrable f μ, { have hgi : integrable g μ := hfi.congr h, rw [set_to_fun_eq hT hfi, set_to_fun_eq hT hgi, (integrable.to_L1_eq_to_L1_iff f g hfi hgi).2 h] }, { have hgi : ¬ integrable g μ, { rw integrable_congr h at hfi, exact hfi }, rw [set_to_fun_undef hT hfi, set_to_fun_undef hT hgi] }, end lemma set_to_fun_measure_zero (hT : dominated_fin_meas_additive μ T C) (h : μ = 0) : set_to_fun μ T hT f = 0 := by { have : f =ᵐ[μ] 0, by simp [h], rw [set_to_fun_congr_ae hT this, set_to_fun_zero], } lemma set_to_fun_measure_zero' (hT : dominated_fin_meas_additive μ T C) (h : ∀ s, measurable_set s → μ s < ∞ → μ s = 0) : set_to_fun μ T hT f = 0 := set_to_fun_zero_left' hT (λ s hs hμs, hT.eq_zero_of_measure_zero hs (h s hs hμs)) lemma set_to_fun_to_L1 (hT : dominated_fin_meas_additive μ T C) (hf : integrable f μ) : set_to_fun μ T hT (hf.to_L1 f) = set_to_fun μ T hT f := set_to_fun_congr_ae hT hf.coe_fn_to_L1 lemma set_to_fun_indicator_const (hT : dominated_fin_meas_additive μ T C) {s : set α} (hs : measurable_set s) (hμs : μ s ≠ ∞) (x : E) : set_to_fun μ T hT (s.indicator (λ _, x)) = T s x := begin rw set_to_fun_congr_ae hT (@indicator_const_Lp_coe_fn _ _ _ 1 _ _ _ hs hμs x).symm, rw L1.set_to_fun_eq_set_to_L1 hT, exact L1.set_to_L1_indicator_const_Lp hT hs hμs x, end lemma set_to_fun_const [is_finite_measure μ] (hT : dominated_fin_meas_additive μ T C) (x : E) : set_to_fun μ T hT (λ _, x) = T univ x := begin have : (λ (_ : α) , x) = set.indicator univ (λ _, x), from (indicator_univ _).symm, rw this, exact set_to_fun_indicator_const hT measurable_set.univ (measure_ne_top _ _) x, end section order variables {G' G'' : Type*} [normed_lattice_add_comm_group G''] [normed_space ℝ G''] [complete_space G''] [normed_lattice_add_comm_group G'] [normed_space ℝ G'] lemma set_to_fun_mono_left' {T T' : set α → E →L[ℝ] G''} {C C' : ℝ} (hT : dominated_fin_meas_additive μ T C) (hT' : dominated_fin_meas_additive μ T' C') (hTT' : ∀ s, measurable_set s → μ s < ∞ → ∀ x, T s x ≤ T' s x) (f : α → E) : set_to_fun μ T hT f ≤ set_to_fun μ T' hT' f := begin by_cases hf : integrable f μ, { simp_rw set_to_fun_eq _ hf, exact L1.set_to_L1_mono_left' hT hT' hTT' _, }, { simp_rw set_to_fun_undef _ hf, }, end lemma set_to_fun_mono_left {T T' : set α → E →L[ℝ] G''} {C C' : ℝ} (hT : dominated_fin_meas_additive μ T C) (hT' : dominated_fin_meas_additive μ T' C') (hTT' : ∀ s x, T s x ≤ T' s x) (f : α →₁[μ] E) : set_to_fun μ T hT f ≤ set_to_fun μ T' hT' f := set_to_fun_mono_left' hT hT' (λ s _ _ x, hTT' s x) f lemma set_to_fun_nonneg {T : set α → G' →L[ℝ] G''} {C : ℝ} (hT : dominated_fin_meas_additive μ T C) (hT_nonneg : ∀ s, measurable_set s → μ s < ∞ → ∀ x, 0 ≤ x → 0 ≤ T s x) {f : α → G'} (hf : 0 ≤ᵐ[μ] f) : 0 ≤ set_to_fun μ T hT f := begin by_cases hfi : integrable f μ, { simp_rw set_to_fun_eq _ hfi, refine L1.set_to_L1_nonneg hT hT_nonneg _, rw ← Lp.coe_fn_le, have h0 := Lp.coe_fn_zero G' 1 μ, have h := integrable.coe_fn_to_L1 hfi, filter_upwards [h0, h, hf] with _ h0a ha hfa, rw [h0a, ha], exact hfa, }, { simp_rw set_to_fun_undef _ hfi, }, end lemma set_to_fun_mono {T : set α → G' →L[ℝ] G''} {C : ℝ} (hT : dominated_fin_meas_additive μ T C) (hT_nonneg : ∀ s, measurable_set s → μ s < ∞ → ∀ x, 0 ≤ x → 0 ≤ T s x) {f g : α → G'} (hf : integrable f μ) (hg : integrable g μ) (hfg : f ≤ᵐ[μ] g) : set_to_fun μ T hT f ≤ set_to_fun μ T hT g := begin rw [← sub_nonneg, ← set_to_fun_sub hT hg hf], refine set_to_fun_nonneg hT hT_nonneg (hfg.mono (λ a ha, _)), rw [pi.sub_apply, pi.zero_apply, sub_nonneg], exact ha, end end order @[continuity] lemma continuous_set_to_fun (hT : dominated_fin_meas_additive μ T C) : continuous (λ (f : α →₁[μ] E), set_to_fun μ T hT f) := by { simp_rw L1.set_to_fun_eq_set_to_L1 hT, exact continuous_linear_map.continuous _, } /-- If `F i → f` in `L1`, then `set_to_fun μ T hT (F i) → set_to_fun μ T hT f`. -/ lemma tendsto_set_to_fun_of_L1 (hT : dominated_fin_meas_additive μ T C) {ι} (f : α → E) (hfi : integrable f μ) {fs : ι → α → E} {l : filter ι} (hfsi : ∀ᶠ i in l, integrable (fs i) μ) (hfs : tendsto (λ i, ∫⁻ x, ‖fs i x - f x‖₊ ∂μ) l (𝓝 0)) : tendsto (λ i, set_to_fun μ T hT (fs i)) l (𝓝 $ set_to_fun μ T hT f) := begin classical, let f_lp := hfi.to_L1 f, let F_lp := λ i, if hFi : integrable (fs i) μ then hFi.to_L1 (fs i) else 0, have tendsto_L1 : tendsto F_lp l (𝓝 f_lp), { rw Lp.tendsto_Lp_iff_tendsto_ℒp', simp_rw [snorm_one_eq_lintegral_nnnorm, pi.sub_apply], refine (tendsto_congr' _).mp hfs, filter_upwards [hfsi] with i hi, refine lintegral_congr_ae _, filter_upwards [hi.coe_fn_to_L1, hfi.coe_fn_to_L1] with x hxi hxf, simp_rw [F_lp, dif_pos hi, hxi, hxf], }, suffices : tendsto (λ i, set_to_fun μ T hT (F_lp i)) l (𝓝 (set_to_fun μ T hT f)), { refine (tendsto_congr' _).mp this, filter_upwards [hfsi] with i hi, suffices h_ae_eq : F_lp i =ᵐ[μ] fs i, from set_to_fun_congr_ae hT h_ae_eq, simp_rw [F_lp, dif_pos hi], exact hi.coe_fn_to_L1, }, rw set_to_fun_congr_ae hT (hfi.coe_fn_to_L1).symm, exact ((continuous_set_to_fun hT).tendsto f_lp).comp tendsto_L1, end lemma tendsto_set_to_fun_approx_on_of_measurable (hT : dominated_fin_meas_additive μ T C) [measurable_space E] [borel_space E] {f : α → E} {s : set E} [separable_space s] (hfi : integrable f μ) (hfm : measurable f) (hs : ∀ᵐ x ∂μ, f x ∈ closure s) {y₀ : E} (h₀ : y₀ ∈ s) (h₀i : integrable (λ x, y₀) μ) : tendsto (λ n, set_to_fun μ T hT (simple_func.approx_on f hfm s y₀ h₀ n)) at_top (𝓝 $ set_to_fun μ T hT f) := tendsto_set_to_fun_of_L1 hT _ hfi (eventually_of_forall (simple_func.integrable_approx_on hfm hfi h₀ h₀i)) (simple_func.tendsto_approx_on_L1_nnnorm hfm _ hs (hfi.sub h₀i).2) lemma tendsto_set_to_fun_approx_on_of_measurable_of_range_subset (hT : dominated_fin_meas_additive μ T C) [measurable_space E] [borel_space E] {f : α → E} (fmeas : measurable f) (hf : integrable f μ) (s : set E) [separable_space s] (hs : range f ∪ {0} ⊆ s) : tendsto (λ n, set_to_fun μ T hT (simple_func.approx_on f fmeas s 0 (hs $ by simp) n)) at_top (𝓝 $ set_to_fun μ T hT f) := begin refine tendsto_set_to_fun_approx_on_of_measurable hT hf fmeas _ _ (integrable_zero _ _ _), exact eventually_of_forall (λ x, subset_closure (hs (set.mem_union_left _ (mem_range_self _)))), end /-- Auxiliary lemma for `set_to_fun_congr_measure`: the function sending `f : α →₁[μ] G` to `f : α →₁[μ'] G` is continuous when `μ' ≤ c' • μ` for `c' ≠ ∞`. -/ lemma continuous_L1_to_L1 {μ' : measure α} (c' : ℝ≥0∞) (hc' : c' ≠ ∞) (hμ'_le : μ' ≤ c' • μ) : continuous (λ f : α →₁[μ] G, (integrable.of_measure_le_smul c' hc' hμ'_le (L1.integrable_coe_fn f)).to_L1 f) := begin by_cases hc'0 : c' = 0, { have hμ'0 : μ' = 0, { rw ← measure.nonpos_iff_eq_zero', refine hμ'_le.trans _, simp [hc'0], }, have h_im_zero : (λ f : α →₁[μ] G, (integrable.of_measure_le_smul c' hc' hμ'_le (L1.integrable_coe_fn f)).to_L1 f) = 0, by { ext1 f, ext1, simp_rw hμ'0, simp only [ae_zero], }, rw h_im_zero, exact continuous_zero, }, rw metric.continuous_iff, intros f ε hε_pos, use (ε / 2) / c'.to_real, refine ⟨div_pos (half_pos hε_pos) (to_real_pos hc'0 hc'), _⟩, intros g hfg, rw Lp.dist_def at hfg ⊢, let h_int := λ f' : α →₁[μ] G, (L1.integrable_coe_fn f').of_measure_le_smul c' hc' hμ'_le, have : snorm (integrable.to_L1 g (h_int g) - integrable.to_L1 f (h_int f)) 1 μ' = snorm (g - f) 1 μ', from snorm_congr_ae ((integrable.coe_fn_to_L1 _).sub (integrable.coe_fn_to_L1 _)), rw this, have h_snorm_ne_top : snorm (g - f) 1 μ ≠ ∞, by { rw ← snorm_congr_ae (Lp.coe_fn_sub _ _), exact Lp.snorm_ne_top _, }, have h_snorm_ne_top' : snorm (g - f) 1 μ' ≠ ∞, { refine ((snorm_mono_measure _ hμ'_le).trans_lt _).ne, rw [snorm_smul_measure_of_ne_zero hc'0, smul_eq_mul], refine ennreal.mul_lt_top _ h_snorm_ne_top, simp [hc', hc'0], }, calc (snorm (g - f) 1 μ').to_real ≤ (c' * snorm (g - f) 1 μ).to_real : by { rw to_real_le_to_real h_snorm_ne_top' (ennreal.mul_ne_top hc' h_snorm_ne_top), refine (snorm_mono_measure (⇑g - ⇑f) hμ'_le).trans _, rw [snorm_smul_measure_of_ne_zero hc'0, smul_eq_mul], simp, } ... = c'.to_real * (snorm (⇑g - ⇑f) 1 μ).to_real : to_real_mul ... ≤ c'.to_real * ((ε / 2) / c'.to_real) : mul_le_mul le_rfl hfg.le to_real_nonneg to_real_nonneg ... = ε / 2 : by { refine mul_div_cancel' (ε / 2) _, rw [ne.def, to_real_eq_zero_iff], simp [hc', hc'0], } ... < ε : half_lt_self hε_pos, end lemma set_to_fun_congr_measure_of_integrable {μ' : measure α} (c' : ℝ≥0∞) (hc' : c' ≠ ∞) (hμ'_le : μ' ≤ c' • μ) (hT : dominated_fin_meas_additive μ T C) (hT' : dominated_fin_meas_additive μ' T C') (f : α → E) (hfμ : integrable f μ) : set_to_fun μ T hT f = set_to_fun μ' T hT' f := begin /- integrability for `μ` implies integrability for `μ'`. -/ have h_int : ∀ g : α → E, integrable g μ → integrable g μ', from λ g hg, integrable.of_measure_le_smul c' hc' hμ'_le hg, /- We use `integrable.induction` -/ refine hfμ.induction _ _ _ _ _, { intros c s hs hμs, have hμ's : μ' s ≠ ∞, { refine ((hμ'_le s hs).trans_lt _).ne, rw [measure.smul_apply, smul_eq_mul], exact ennreal.mul_lt_top hc' hμs.ne, }, rw [set_to_fun_indicator_const hT hs hμs.ne, set_to_fun_indicator_const hT' hs hμ's], }, { intros f₂ g₂ h_dish hf₂ hg₂ h_eq_f h_eq_g, rw [set_to_fun_add hT hf₂ hg₂, set_to_fun_add hT' (h_int f₂ hf₂) (h_int g₂ hg₂), h_eq_f, h_eq_g], }, { refine is_closed_eq (continuous_set_to_fun hT) _, have : (λ f : α →₁[μ] E, set_to_fun μ' T hT' f) = (λ f : α →₁[μ] E, set_to_fun μ' T hT' ((h_int f (L1.integrable_coe_fn f)).to_L1 f)), { ext1 f, exact set_to_fun_congr_ae hT' (integrable.coe_fn_to_L1 _).symm, }, rw this, exact (continuous_set_to_fun hT').comp (continuous_L1_to_L1 c' hc' hμ'_le), }, { intros f₂ g₂ hfg hf₂ hf_eq, have hfg' : f₂ =ᵐ[μ'] g₂, from (measure.absolutely_continuous_of_le_smul hμ'_le).ae_eq hfg, rw [← set_to_fun_congr_ae hT hfg, hf_eq, set_to_fun_congr_ae hT' hfg'], }, end lemma set_to_fun_congr_measure {μ' : measure α} (c c' : ℝ≥0∞) (hc : c ≠ ∞) (hc' : c' ≠ ∞) (hμ_le : μ ≤ c • μ') (hμ'_le : μ' ≤ c' • μ) (hT : dominated_fin_meas_additive μ T C) (hT' : dominated_fin_meas_additive μ' T C') (f : α → E) : set_to_fun μ T hT f = set_to_fun μ' T hT' f := begin by_cases hf : integrable f μ, { exact set_to_fun_congr_measure_of_integrable c' hc' hμ'_le hT hT' f hf, }, { /- if `f` is not integrable, both `set_to_fun` are 0. -/ have h_int : ∀ g : α → E, ¬ integrable g μ → ¬ integrable g μ', from λ g, mt (λ h, h.of_measure_le_smul _ hc hμ_le), simp_rw [set_to_fun_undef _ hf, set_to_fun_undef _ (h_int f hf)], }, end lemma set_to_fun_congr_measure_of_add_right {μ' : measure α} (hT_add : dominated_fin_meas_additive (μ + μ') T C') (hT : dominated_fin_meas_additive μ T C) (f : α → E) (hf : integrable f (μ + μ')) : set_to_fun (μ + μ') T hT_add f = set_to_fun μ T hT f := begin refine set_to_fun_congr_measure_of_integrable 1 one_ne_top _ hT_add hT f hf, rw one_smul, nth_rewrite 0 ← add_zero μ, exact add_le_add le_rfl bot_le, end lemma set_to_fun_congr_measure_of_add_left {μ' : measure α} (hT_add : dominated_fin_meas_additive (μ + μ') T C') (hT : dominated_fin_meas_additive μ' T C) (f : α → E) (hf : integrable f (μ + μ')) : set_to_fun (μ + μ') T hT_add f = set_to_fun μ' T hT f := begin refine set_to_fun_congr_measure_of_integrable 1 one_ne_top _ hT_add hT f hf, rw one_smul, nth_rewrite 0 ← zero_add μ', exact add_le_add bot_le le_rfl, end lemma set_to_fun_top_smul_measure (hT : dominated_fin_meas_additive (∞ • μ) T C) (f : α → E) : set_to_fun (∞ • μ) T hT f = 0 := begin refine set_to_fun_measure_zero' hT (λ s hs hμs, _), rw lt_top_iff_ne_top at hμs, simp only [true_and, measure.smul_apply, with_top.mul_eq_top_iff, eq_self_iff_true, top_ne_zero, ne.def, not_false_iff, not_or_distrib, not_not, smul_eq_mul] at hμs, simp only [hμs.right, measure.smul_apply, mul_zero, smul_eq_mul], end lemma set_to_fun_congr_smul_measure (c : ℝ≥0∞) (hc_ne_top : c ≠ ∞) (hT : dominated_fin_meas_additive μ T C) (hT_smul : dominated_fin_meas_additive (c • μ) T C') (f : α → E) : set_to_fun μ T hT f = set_to_fun (c • μ) T hT_smul f := begin by_cases hc0 : c = 0, { simp [hc0] at hT_smul, have h : ∀ s, measurable_set s → μ s < ∞ → T s = 0, from λ s hs hμs, hT_smul.eq_zero hs, rw [set_to_fun_zero_left' _ h, set_to_fun_measure_zero], simp [hc0], }, refine set_to_fun_congr_measure c⁻¹ c _ hc_ne_top (le_of_eq _) le_rfl hT hT_smul f, { simp [hc0], }, { rw [smul_smul, ennreal.inv_mul_cancel hc0 hc_ne_top, one_smul], }, end lemma norm_set_to_fun_le_mul_norm (hT : dominated_fin_meas_additive μ T C) (f : α →₁[μ] E) (hC : 0 ≤ C) : ‖set_to_fun μ T hT f‖ ≤ C * ‖f‖ := by { rw L1.set_to_fun_eq_set_to_L1, exact L1.norm_set_to_L1_le_mul_norm hT hC f, } lemma norm_set_to_fun_le_mul_norm' (hT : dominated_fin_meas_additive μ T C) (f : α →₁[μ] E) : ‖set_to_fun μ T hT f‖ ≤ max C 0 * ‖f‖ := by { rw L1.set_to_fun_eq_set_to_L1, exact L1.norm_set_to_L1_le_mul_norm' hT f, } lemma norm_set_to_fun_le (hT : dominated_fin_meas_additive μ T C) (hf : integrable f μ) (hC : 0 ≤ C) : ‖set_to_fun μ T hT f‖ ≤ C * ‖hf.to_L1 f‖ := by { rw set_to_fun_eq hT hf, exact L1.norm_set_to_L1_le_mul_norm hT hC _, } lemma norm_set_to_fun_le' (hT : dominated_fin_meas_additive μ T C) (hf : integrable f μ) : ‖set_to_fun μ T hT f‖ ≤ max C 0 * ‖hf.to_L1 f‖ := by { rw set_to_fun_eq hT hf, exact L1.norm_set_to_L1_le_mul_norm' hT _, } /-- Lebesgue dominated convergence theorem provides sufficient conditions under which almost everywhere convergence of a sequence of functions implies the convergence of their image by `set_to_fun`. We could weaken the condition `bound_integrable` to require `has_finite_integral bound μ` instead (i.e. not requiring that `bound` is measurable), but in all applications proving integrability is easier. -/ theorem tendsto_set_to_fun_of_dominated_convergence (hT : dominated_fin_meas_additive μ T C) {fs : ℕ → α → E} {f : α → E} (bound : α → ℝ) (fs_measurable : ∀ n, ae_strongly_measurable (fs n) μ) (bound_integrable : integrable bound μ) (h_bound : ∀ n, ∀ᵐ a ∂μ, ‖fs n a‖ ≤ bound a) (h_lim : ∀ᵐ a ∂μ, tendsto (λ n, fs n a) at_top (𝓝 (f a))) : tendsto (λ n, set_to_fun μ T hT (fs n)) at_top (𝓝 $ set_to_fun μ T hT f) := begin /- `f` is a.e.-measurable, since it is the a.e.-pointwise limit of a.e.-measurable functions. -/ have f_measurable : ae_strongly_measurable f μ := ae_strongly_measurable_of_tendsto_ae _ fs_measurable h_lim, /- all functions we consider are integrable -/ have fs_int : ∀ n, integrable (fs n) μ := λ n, bound_integrable.mono' (fs_measurable n) (h_bound _), have f_int : integrable f μ := ⟨f_measurable, has_finite_integral_of_dominated_convergence bound_integrable.has_finite_integral h_bound h_lim⟩, /- it suffices to prove the result for the corresponding L1 functions -/ suffices : tendsto (λ n, L1.set_to_L1 hT ((fs_int n).to_L1 (fs n))) at_top (𝓝 (L1.set_to_L1 hT (f_int.to_L1 f))), { convert this, { ext1 n, exact set_to_fun_eq hT (fs_int n), }, { exact set_to_fun_eq hT f_int, }, }, /- the convergence of set_to_L1 follows from the convergence of the L1 functions -/ refine L1.tendsto_set_to_L1 hT _ _ _, /- up to some rewriting, what we need to prove is `h_lim` -/ rw tendsto_iff_norm_tendsto_zero, have lintegral_norm_tendsto_zero : tendsto (λn, ennreal.to_real $ ∫⁻ a, (ennreal.of_real ‖fs n a - f a‖) ∂μ) at_top (𝓝 0) := (tendsto_to_real zero_ne_top).comp (tendsto_lintegral_norm_of_dominated_convergence fs_measurable bound_integrable.has_finite_integral h_bound h_lim), convert lintegral_norm_tendsto_zero, ext1 n, rw L1.norm_def, congr' 1, refine lintegral_congr_ae _, rw ← integrable.to_L1_sub, refine ((fs_int n).sub f_int).coe_fn_to_L1.mono (λ x hx, _), dsimp only, rw [hx, of_real_norm_eq_coe_nnnorm, pi.sub_apply], end /-- Lebesgue dominated convergence theorem for filters with a countable basis -/ lemma tendsto_set_to_fun_filter_of_dominated_convergence (hT : dominated_fin_meas_additive μ T C) {ι} {l : _root_.filter ι} [l.is_countably_generated] {fs : ι → α → E} {f : α → E} (bound : α → ℝ) (hfs_meas : ∀ᶠ n in l, ae_strongly_measurable (fs n) μ) (h_bound : ∀ᶠ n in l, ∀ᵐ a ∂μ, ‖fs n a‖ ≤ bound a) (bound_integrable : integrable bound μ) (h_lim : ∀ᵐ a ∂μ, tendsto (λ n, fs n a) l (𝓝 (f a))) : tendsto (λ n, set_to_fun μ T hT (fs n)) l (𝓝 $ set_to_fun μ T hT f) := begin rw tendsto_iff_seq_tendsto, intros x xl, have hxl : ∀ s ∈ l, ∃ a, ∀ b ≥ a, x b ∈ s, by { rwa tendsto_at_top' at xl, }, have h : {x : ι | (λ n, ae_strongly_measurable (fs n) μ) x} ∩ {x : ι | (λ n, ∀ᵐ a ∂μ, ‖fs n a‖ ≤ bound a) x} ∈ l, from inter_mem hfs_meas h_bound, obtain ⟨k, h⟩ := hxl _ h, rw ← tendsto_add_at_top_iff_nat k, refine tendsto_set_to_fun_of_dominated_convergence hT bound _ bound_integrable _ _, { exact λ n, (h _ (self_le_add_left _ _)).1, }, { exact λ n, (h _ (self_le_add_left _ _)).2, }, { filter_upwards [h_lim], refine λ a h_lin, @tendsto.comp _ _ _ (λ n, x (n + k)) (λ n, fs n a) _ _ _ h_lin _, rw tendsto_add_at_top_iff_nat, assumption } end variables {X : Type*} [topological_space X] [first_countable_topology X] lemma continuous_within_at_set_to_fun_of_dominated (hT : dominated_fin_meas_additive μ T C) {fs : X → α → E} {x₀ : X} {bound : α → ℝ} {s : set X} (hfs_meas : ∀ᶠ x in 𝓝[s] x₀, ae_strongly_measurable (fs x) μ) (h_bound : ∀ᶠ x in 𝓝[s] x₀, ∀ᵐ a ∂μ, ‖fs x a‖ ≤ bound a) (bound_integrable : integrable bound μ) (h_cont : ∀ᵐ a ∂μ, continuous_within_at (λ x, fs x a) s x₀) : continuous_within_at (λ x, set_to_fun μ T hT (fs x)) s x₀ := tendsto_set_to_fun_filter_of_dominated_convergence hT bound ‹_› ‹_› ‹_› ‹_› lemma continuous_at_set_to_fun_of_dominated (hT : dominated_fin_meas_additive μ T C) {fs : X → α → E} {x₀ : X} {bound : α → ℝ} (hfs_meas : ∀ᶠ x in 𝓝 x₀, ae_strongly_measurable (fs x) μ) (h_bound : ∀ᶠ x in 𝓝 x₀, ∀ᵐ a ∂μ, ‖fs x a‖ ≤ bound a) (bound_integrable : integrable bound μ) (h_cont : ∀ᵐ a ∂μ, continuous_at (λ x, fs x a) x₀) : continuous_at (λ x, set_to_fun μ T hT (fs x)) x₀ := tendsto_set_to_fun_filter_of_dominated_convergence hT bound ‹_› ‹_› ‹_› ‹_› lemma continuous_on_set_to_fun_of_dominated (hT : dominated_fin_meas_additive μ T C) {fs : X → α → E} {bound : α → ℝ} {s : set X} (hfs_meas : ∀ x ∈ s, ae_strongly_measurable (fs x) μ) (h_bound : ∀ x ∈ s, ∀ᵐ a ∂μ, ‖fs x a‖ ≤ bound a) (bound_integrable : integrable bound μ) (h_cont : ∀ᵐ a ∂μ, continuous_on (λ x, fs x a) s) : continuous_on (λ x, set_to_fun μ T hT (fs x)) s := begin assume x hx, refine continuous_within_at_set_to_fun_of_dominated hT _ _ bound_integrable _, { filter_upwards [self_mem_nhds_within] with x hx using hfs_meas x hx }, { filter_upwards [self_mem_nhds_within] with x hx using h_bound x hx }, { filter_upwards [h_cont] with a ha using ha x hx } end lemma continuous_set_to_fun_of_dominated (hT : dominated_fin_meas_additive μ T C) {fs : X → α → E} {bound : α → ℝ} (hfs_meas : ∀ x, ae_strongly_measurable (fs x) μ) (h_bound : ∀ x, ∀ᵐ a ∂μ, ‖fs x a‖ ≤ bound a) (bound_integrable : integrable bound μ) (h_cont : ∀ᵐ a ∂μ, continuous (λ x, fs x a)) : continuous (λ x, set_to_fun μ T hT (fs x)) := continuous_iff_continuous_at.mpr (λ x₀, continuous_at_set_to_fun_of_dominated hT (eventually_of_forall hfs_meas) (eventually_of_forall h_bound) ‹_› $ h_cont.mono $ λ _, continuous.continuous_at) end function end measure_theory
3b6860a64868568e742f48c184d3e8c14fd12313
a45212b1526d532e6e83c44ddca6a05795113ddc
/src/data/real/irrational.lean
006e0db47bdf84648acc18563f66d2329fef3c2c
[ "Apache-2.0" ]
permissive
fpvandoorn/mathlib
b21ab4068db079cbb8590b58fda9cc4bc1f35df4
b3433a51ea8bc07c4159c1073838fc0ee9b8f227
refs/heads/master
1,624,791,089,608
1,556,715,231,000
1,556,715,231,000
165,722,980
5
0
Apache-2.0
1,552,657,455,000
1,547,494,646,000
Lean
UTF-8
Lean
false
false
4,747
lean
/- Copyright (c) 2018 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne. Irrationality of real numbers. -/ import data.real.basic data.padics.padic_norm open rat real multiplicity def irrational (x : ℝ) := ¬ ∃ q : ℚ, x = q theorem irr_nrt_of_notint_nrt {x : ℝ} (n : ℕ) (m : ℤ) (hxr : x ^ n = m) (hv : ¬ ∃ y : ℤ, x = y) (hnpos : n > 0) : irrational x | ⟨q, e⟩ := begin rw [e, ← cast_pow] at hxr, cases q with N D P C, have c1 : ((D : ℤ) : ℝ) ≠ 0, { rw [int.cast_ne_zero, int.coe_nat_ne_zero], exact ne_of_gt P }, have c2 : ((D : ℤ) : ℝ) ^ n ≠ 0 := pow_ne_zero _ c1, rw [num_denom', cast_pow, cast_mk, div_pow _ c1, div_eq_iff_mul_eq c2, ← int.cast_pow, ← int.cast_pow, ← int.cast_mul, int.cast_inj] at hxr, have hdivn : ↑D ^ n ∣ N ^ n := dvd.intro_left m hxr, rw [← int.dvd_nat_abs, ← int.coe_nat_pow, int.coe_nat_dvd, int.nat_abs_pow, nat.pow_dvd_pow_iff hnpos] at hdivn, have hdivn' : nat.gcd N.nat_abs D = D := nat.gcd_eq_right hdivn, refine hv ⟨N, _⟩, rwa [num_denom', ← hdivn', C.gcd_eq_one, int.coe_nat_one, mk_eq_div, int.cast_one, div_one, cast_coe_int] at e end theorem irr_nrt_of_n_not_dvd_multiplicity {x : ℝ} (n : ℕ) {m : ℤ} (hm : m ≠ 0) (p : ℕ) [hp : nat.prime p] (hxr : x ^ n = m) (hv : (multiplicity (p : ℤ) m).get (finite_int_iff.2 ⟨hp.ne_one, hm⟩) % n ≠ 0) : irrational x := begin rcases nat.eq_zero_or_pos n with rfl | hnpos, { rw [eq_comm, pow_zero, ← int.cast_one, int.cast_inj] at hxr, simpa [hxr, multiplicity.one_right (mt is_unit_iff_dvd_one.1 (mt int.coe_nat_dvd.1 hp.not_dvd_one)), nat.zero_mod] using hv }, refine irr_nrt_of_notint_nrt _ _ hxr _ hnpos, rintro ⟨y, rfl⟩, rw [← int.cast_pow, int.cast_inj] at hxr, subst m, have : y ≠ 0, { rintro rfl, rw zero_pow hnpos at hm, exact hm rfl }, erw [multiplicity.pow' (nat.prime_iff_prime_int.1 hp) (finite_int_iff.2 ⟨hp.ne_one, this⟩), nat.mul_mod_right] at hv, exact hv rfl end theorem irr_sqrt_of_multiplicity_odd (m : ℤ) (hm : 0 < m) (p : ℕ) [hp : nat.prime p] (Hpv : (multiplicity (p : ℤ) m).get (finite_int_iff.2 ⟨hp.ne_one, ne.symm (ne_of_lt hm)⟩) % 2 = 1) : irrational (sqrt m) := irr_nrt_of_n_not_dvd_multiplicity 2 (ne.symm (ne_of_lt hm)) p (sqr_sqrt (int.cast_nonneg.2 $ le_of_lt hm)) (by rw Hpv; exact one_ne_zero) theorem irr_sqrt_of_prime (p : ℕ) (hp : nat.prime p) : irrational (sqrt p) := irr_sqrt_of_multiplicity_odd p (int.coe_nat_pos.2 hp.pos) p $ by simp [multiplicity_self (mt is_unit_iff_dvd_one.1 (mt int.coe_nat_dvd.1 hp.not_dvd_one) : _)]; refl theorem irr_sqrt_two : irrational (sqrt 2) := by simpa using irr_sqrt_of_prime 2 nat.prime_two theorem irr_sqrt_rat_iff (q : ℚ) : irrational (sqrt q) ↔ rat.sqrt q * rat.sqrt q ≠ q ∧ 0 ≤ q := if H1 : rat.sqrt q * rat.sqrt q = q then iff_of_false (not_not_intro ⟨rat.sqrt q, by rw [← H1, cast_mul, sqrt_mul_self (cast_nonneg.2 $ rat.sqrt_nonneg q), sqrt_eq, abs_of_nonneg (rat.sqrt_nonneg q)]⟩) (λ h, h.1 H1) else if H2 : 0 ≤ q then iff_of_true (λ ⟨r, hr⟩, H1 $ (exists_mul_self _).1 ⟨r, by rwa [sqrt_eq_iff_mul_self_eq (cast_nonneg.2 H2), ← cast_mul, cast_inj] at hr; rw [← hr]; exact real.sqrt_nonneg _⟩) ⟨H1, H2⟩ else iff_of_false (not_not_intro ⟨0, by rw cast_zero; exact sqrt_eq_zero_of_nonpos (rat.cast_nonpos.2 $ le_of_not_le H2)⟩) (λ h, H2 h.2) instance (q : ℚ) : decidable (irrational (sqrt q)) := decidable_of_iff' _ (irr_sqrt_rat_iff q) variables {q : ℚ} {x : ℝ} theorem irr_rat_add_of_irr : irrational x → irrational (q + x) := mt $ λ ⟨a, h⟩, ⟨-q + a, by rw [rat.cast_add, ← h, rat.cast_neg, neg_add_cancel_left]⟩ @[simp] theorem irr_rat_add_iff_irr : irrational (q + x) ↔ irrational x := ⟨by simpa only [cast_neg, neg_add_cancel_left] using @irr_rat_add_of_irr (-q) (q+x), irr_rat_add_of_irr⟩ @[simp] theorem irr_add_rat_iff_irr : irrational (x + q) ↔ irrational x := by rw [add_comm, irr_rat_add_iff_irr] theorem irr_mul_rat_iff_irr (Hqn0 : q ≠ 0) : irrational (x * ↑q) ↔ irrational x := ⟨mt $ λ ⟨r, hr⟩, ⟨r * q, hr.symm ▸ (rat.cast_mul _ _).symm⟩, mt $ λ ⟨r, hr⟩, ⟨r / q, by rw [cast_div, ← hr, mul_div_cancel]; rwa cast_ne_zero⟩⟩ theorem irr_of_irr_mul_self : irrational (x * x) → irrational x := mt $ λ ⟨p, e⟩, ⟨p * p, by rw [e, cast_mul]⟩ @[simp] theorem irr_neg : irrational (-x) ↔ irrational x := ⟨λ hn ⟨q, hx⟩, hn ⟨-q, by rw [hx, cast_neg]⟩, λ hx ⟨q, hn⟩, hx ⟨-q, by rw [←neg_neg x, hn, cast_neg]⟩⟩