blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
7
139
content_id
stringlengths
40
40
detected_licenses
listlengths
0
16
license_type
stringclasses
2 values
repo_name
stringlengths
7
55
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
6 values
visit_date
int64
1,471B
1,694B
revision_date
int64
1,378B
1,694B
committer_date
int64
1,378B
1,694B
github_id
float64
1.33M
604M
star_events_count
int64
0
43.5k
fork_events_count
int64
0
1.5k
gha_license_id
stringclasses
6 values
gha_event_created_at
int64
1,402B
1,695B
gha_created_at
int64
1,359B
1,637B
gha_language
stringclasses
19 values
src_encoding
stringclasses
2 values
language
stringclasses
1 value
is_vendor
bool
1 class
is_generated
bool
1 class
length_bytes
int64
3
6.4M
extension
stringclasses
4 values
content
stringlengths
3
6.12M
fd01bf063b8f9aa5e6205a706b82792c3b180803
618003631150032a5676f229d13a079ac875ff77
/src/data/analysis/topology.lean
f00b71fec6836d5c7ecc7ad721a6d57cd709a2b8
[ "Apache-2.0" ]
permissive
awainverse/mathlib
939b68c8486df66cfda64d327ad3d9165248c777
ea76bd8f3ca0a8bf0a166a06a475b10663dec44a
refs/heads/master
1,659,592,962,036
1,590,987,592,000
1,590,987,592,000
268,436,019
1
0
Apache-2.0
1,590,990,500,000
1,590,990,500,000
null
UTF-8
Lean
false
false
8,459
lean
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro Computational realization of topological spaces (experimental). -/ import topology.bases import data.analysis.filter open set open filter (hiding realizer) open_locale topological_space /-- A `ctop α σ` is a realization of a topology (basis) on `α`, represented by a type `σ` together with operations for the top element and the intersection operation. -/ structure ctop (α σ : Type*) := (f : σ → set α) (top : α → σ) (top_mem : ∀ x : α, x ∈ f (top x)) (inter : Π a b (x : α), x ∈ f a ∩ f b → σ) (inter_mem : ∀ a b x h, x ∈ f (inter a b x h)) (inter_sub : ∀ a b x h, f (inter a b x h) ⊆ f a ∩ f b) variables {α : Type*} {β : Type*} {σ : Type*} {τ : Type*} namespace ctop section variables (F : ctop α σ) instance : has_coe_to_fun (ctop α σ) := ⟨_, ctop.f⟩ @[simp] theorem coe_mk (f T h₁ I h₂ h₃ a) : (@ctop.mk α σ f T h₁ I h₂ h₃) a = f a := rfl /-- Map a ctop to an equivalent representation type. -/ def of_equiv (E : σ ≃ τ) : ctop α σ → ctop α τ | ⟨f, T, h₁, I, h₂, h₃⟩ := { f := λ a, f (E.symm a), top := λ x, E (T x), top_mem := λ x, by simpa using h₁ x, inter := λ a b x h, E (I (E.symm a) (E.symm b) x h), inter_mem := λ a b x h, by simpa using h₂ (E.symm a) (E.symm b) x h, inter_sub := λ a b x h, by simpa using h₃ (E.symm a) (E.symm b) x h } @[simp] theorem of_equiv_val (E : σ ≃ τ) (F : ctop α σ) (a : τ) : F.of_equiv E a = F (E.symm a) := by cases F; refl end /-- Every `ctop` is a topological space. -/ def to_topsp (F : ctop α σ) : topological_space α := topological_space.generate_from (set.range F.f) theorem to_topsp_is_topological_basis (F : ctop α σ) : @topological_space.is_topological_basis _ F.to_topsp (set.range F.f) := ⟨λ u ⟨a, e₁⟩ v ⟨b, e₂⟩, e₁ ▸ e₂ ▸ λ x h, ⟨_, ⟨_, rfl⟩, F.inter_mem a b x h, F.inter_sub a b x h⟩, eq_univ_iff_forall.2 $ λ x, ⟨_, ⟨_, rfl⟩, F.top_mem x⟩, rfl⟩ @[simp] theorem mem_nhds_to_topsp (F : ctop α σ) {s : set α} {a : α} : s ∈ @nhds _ F.to_topsp a ↔ ∃ b, a ∈ F b ∧ F b ⊆ s := (@topological_space.mem_nhds_of_is_topological_basis _ F.to_topsp _ _ _ F.to_topsp_is_topological_basis).trans $ ⟨λ ⟨_, ⟨x, rfl⟩, h⟩, ⟨x, h⟩, λ ⟨x, h⟩, ⟨_, ⟨x, rfl⟩, h⟩⟩ end ctop /-- A `ctop` realizer for the topological space `T` is a `ctop` which generates `T`. -/ structure ctop.realizer (α) [T : topological_space α] := (σ : Type*) (F : ctop α σ) (eq : F.to_topsp = T) open ctop protected def ctop.to_realizer (F : ctop α σ) : @ctop.realizer _ F.to_topsp := @ctop.realizer.mk _ F.to_topsp σ F rfl namespace ctop.realizer protected theorem is_basis [T : topological_space α] (F : realizer α) : topological_space.is_topological_basis (set.range F.F.f) := by have := to_topsp_is_topological_basis F.F; rwa F.eq at this protected theorem mem_nhds [T : topological_space α] (F : realizer α) {s : set α} {a : α} : s ∈ 𝓝 a ↔ ∃ b, a ∈ F.F b ∧ F.F b ⊆ s := by have := mem_nhds_to_topsp F.F; rwa F.eq at this theorem is_open_iff [topological_space α] (F : realizer α) {s : set α} : is_open s ↔ ∀ a ∈ s, ∃ b, a ∈ F.F b ∧ F.F b ⊆ s := is_open_iff_mem_nhds.trans $ ball_congr $ λ a h, F.mem_nhds theorem is_closed_iff [topological_space α] (F : realizer α) {s : set α} : is_closed s ↔ ∀ a, (∀ b, a ∈ F.F b → ∃ z, z ∈ F.F b ∩ s) → a ∈ s := F.is_open_iff.trans $ forall_congr $ λ a, show (a ∉ s → (∃ (b : F.σ), a ∈ F.F b ∧ ∀ z ∈ F.F b, z ∉ s)) ↔ _, by haveI := classical.prop_decidable; rw [not_imp_comm]; simp [not_exists, not_and, not_forall, and_comm] theorem mem_interior_iff [topological_space α] (F : realizer α) {s : set α} {a : α} : a ∈ interior s ↔ ∃ b, a ∈ F.F b ∧ F.F b ⊆ s := mem_interior_iff_mem_nhds.trans F.mem_nhds protected theorem is_open [topological_space α] (F : realizer α) (s : F.σ) : is_open (F.F s) := is_open_iff_nhds.2 $ λ a m, by simpa using F.mem_nhds.2 ⟨s, m, subset.refl _⟩ theorem ext' [T : topological_space α] {σ : Type*} {F : ctop α σ} (H : ∀ a s, s ∈ 𝓝 a ↔ ∃ b, a ∈ F b ∧ F b ⊆ s) : F.to_topsp = T := topological_space_eq $ funext $ λ s, begin have : ∀ T s, @topological_space.is_open _ T s ↔ _ := @is_open_iff_mem_nhds α, rw [this, this], apply congr_arg (λ f : α → filter α, ∀ a ∈ s, s ∈ f a), funext a, apply filter_eq, apply set.ext, intro x, rw [mem_nhds_to_topsp, H] end theorem ext [T : topological_space α] {σ : Type*} {F : ctop α σ} (H₁ : ∀ a, is_open (F a)) (H₂ : ∀ a s, s ∈ 𝓝 a → ∃ b, a ∈ F b ∧ F b ⊆ s) : F.to_topsp = T := ext' $ λ a s, ⟨H₂ a s, λ ⟨b, h₁, h₂⟩, mem_nhds_sets_iff.2 ⟨_, h₂, H₁ _, h₁⟩⟩ variable [topological_space α] protected def id : realizer α := ⟨{x:set α // is_open x}, { f := subtype.val, top := λ _, ⟨univ, is_open_univ⟩, top_mem := mem_univ, inter := λ ⟨x, h₁⟩ ⟨y, h₂⟩ a h₃, ⟨_, is_open_inter h₁ h₂⟩, inter_mem := λ ⟨x, h₁⟩ ⟨y, h₂⟩ a, id, inter_sub := λ ⟨x, h₁⟩ ⟨y, h₂⟩ a h₃, subset.refl _ }, ext subtype.property $ λ x s h, let ⟨t, h, o, m⟩ := mem_nhds_sets_iff.1 h in ⟨⟨t, o⟩, m, h⟩⟩ def of_equiv (F : realizer α) (E : F.σ ≃ τ) : realizer α := ⟨τ, F.F.of_equiv E, ext' (λ a s, F.mem_nhds.trans $ ⟨λ ⟨s, h⟩, ⟨E s, by simpa using h⟩, λ ⟨t, h⟩, ⟨E.symm t, by simpa using h⟩⟩)⟩ @[simp] theorem of_equiv_σ (F : realizer α) (E : F.σ ≃ τ) : (F.of_equiv E).σ = τ := rfl @[simp] theorem of_equiv_F (F : realizer α) (E : F.σ ≃ τ) (s : τ) : (F.of_equiv E).F s = F.F (E.symm s) := by delta of_equiv; simp protected def nhds (F : realizer α) (a : α) : (𝓝 a).realizer := ⟨{s : F.σ // a ∈ F.F s}, { f := λ s, F.F s.1, pt := ⟨_, F.F.top_mem a⟩, inf := λ ⟨x, h₁⟩ ⟨y, h₂⟩, ⟨_, F.F.inter_mem x y a ⟨h₁, h₂⟩⟩, inf_le_left := λ ⟨x, h₁⟩ ⟨y, h₂⟩ z h, (F.F.inter_sub x y a ⟨h₁, h₂⟩ h).1, inf_le_right := λ ⟨x, h₁⟩ ⟨y, h₂⟩ z h, (F.F.inter_sub x y a ⟨h₁, h₂⟩ h).2 }, filter_eq $ set.ext $ λ x, ⟨λ ⟨⟨s, as⟩, h⟩, mem_nhds_sets_iff.2 ⟨_, h, F.is_open _, as⟩, λ h, let ⟨s, h, as⟩ := F.mem_nhds.1 h in ⟨⟨s, h⟩, as⟩⟩⟩ @[simp] theorem nhds_σ (m : α → β) (F : realizer α) (a : α) : (F.nhds a).σ = {s : F.σ // a ∈ F.F s} := rfl @[simp] theorem nhds_F (m : α → β) (F : realizer α) (a : α) (s) : (F.nhds a).F s = F.F s.1 := rfl theorem tendsto_nhds_iff {m : β → α} {f : filter β} (F : f.realizer) (R : realizer α) {a : α} : tendsto m f (𝓝 a) ↔ ∀ t, a ∈ R.F t → ∃ s, ∀ x ∈ F.F s, m x ∈ R.F t := (F.tendsto_iff _ (R.nhds a)).trans subtype.forall end ctop.realizer structure locally_finite.realizer [topological_space α] (F : realizer α) (f : β → set α) := (bas : ∀ a, {s // a ∈ F.F s}) (sets : ∀ x:α, fintype {i | (f i ∩ F.F (bas x)).nonempty}) theorem locally_finite.realizer.to_locally_finite [topological_space α] {F : realizer α} {f : β → set α} (R : locally_finite.realizer F f) : locally_finite f := λ a, ⟨_, F.mem_nhds.2 ⟨(R.bas a).1, (R.bas a).2, subset.refl _⟩, ⟨R.sets a⟩⟩ theorem locally_finite_iff_exists_realizer [topological_space α] (F : realizer α) {f : β → set α} : locally_finite f ↔ nonempty (locally_finite.realizer F f) := ⟨λ h, let ⟨g, h₁⟩ := classical.axiom_of_choice h, ⟨g₂, h₂⟩ := classical.axiom_of_choice (λ x, show ∃ (b : F.σ), x ∈ (F.F) b ∧ (F.F) b ⊆ g x, from let ⟨h, h'⟩ := h₁ x in F.mem_nhds.1 h) in ⟨⟨λ x, ⟨g₂ x, (h₂ x).1⟩, λ x, finite.fintype $ let ⟨h, h'⟩ := h₁ x in finite_subset h' $ λ i hi, hi.mono (inter_subset_inter_right _ (h₂ x).2)⟩⟩, λ ⟨R⟩, R.to_locally_finite⟩ def compact.realizer [topological_space α] (R : realizer α) (s : set α) := ∀ {f : filter α} (F : f.realizer) (x : F.σ), f ≠ ⊥ → F.F x ⊆ s → {a // a∈s ∧ 𝓝 a ⊓ f ≠ ⊥}
480a15bad1001449e3cc7031905f50ccc0949004
b7f22e51856f4989b970961f794f1c435f9b8f78
/tests/lean/run/gcd.lean
b1060595a0cb3cf335d13674e847a205c83ecad1
[ "Apache-2.0" ]
permissive
soonhokong/lean
cb8aa01055ffe2af0fb99a16b4cda8463b882cd1
38607e3eb57f57f77c0ac114ad169e9e4262e24f
refs/heads/master
1,611,187,284,081
1,450,766,737,000
1,476,122,547,000
11,513,992
2
0
null
1,401,763,102,000
1,374,182,235,000
C++
UTF-8
Lean
false
false
1,671
lean
import data.nat data.prod open nat well_founded decidable prod eq.ops namespace playground -- Setup definition pair_nat.lt := lex nat.lt nat.lt definition pair_nat.lt.wf [instance] : well_founded pair_nat.lt := intro_k (prod.lex.wf lt.wf lt.wf) 20 -- the '20' is for being able to execute the examples... it means 20 recursive call without proof computation infixl `≺`:50 := pair_nat.lt -- Lemma for justifying recursive call private lemma lt₁ (x₁ y₁ : nat) : (x₁ - y₁, succ y₁) ≺ (succ x₁, succ y₁) := !lex.left (lt_succ_of_le (sub_le x₁ y₁)) -- Lemma for justifying recursive call private lemma lt₂ (x₁ y₁ : nat) : (succ x₁, y₁ - x₁) ≺ (succ x₁, succ y₁) := !lex.right (lt_succ_of_le (sub_le y₁ x₁)) definition gcd.F (p₁ : nat × nat) : (Π p₂ : nat × nat, p₂ ≺ p₁ → nat) → nat := prod.cases_on p₁ (λ (x y : nat), nat.cases_on x (λ f, y) -- x = 0 (λ x₁, nat.cases_on y (λ f, succ x₁) -- y = 0 (λ y₁ (f : (Π p₂ : nat × nat, p₂ ≺ (succ x₁, succ y₁) → nat)), if y₁ ≤ x₁ then f (x₁ - y₁, succ y₁) !lt₁ else f (succ x₁, y₁ - x₁) !lt₂))) definition gcd (x y : nat) := fix gcd.F (pair x y) theorem gcd_def_z_y (y : nat) : gcd 0 y = y := well_founded.fix_eq gcd.F (0, y) theorem gcd_def_sx_z (x : nat) : gcd (x+1) 0 = x+1 := well_founded.fix_eq gcd.F (x+1, 0) theorem gcd_def_sx_sy (x y : nat) : gcd (x+1) (y+1) = if y ≤ x then gcd (x-y) (y+1) else gcd (x+1) (y-x) := well_founded.fix_eq gcd.F (x+1, y+1) example : gcd 4 6 = 2 := rfl example : gcd 15 6 = 3 := rfl example : gcd 0 2 = 2 := rfl end playground
79b85dd1d2dbbaa19f675c24ccf606dfe85e9c1f
d9d511f37a523cd7659d6f573f990e2a0af93c6f
/src/order/lattice.lean
80a333604c470514c88668035148407ca8a601ee
[ "Apache-2.0" ]
permissive
hikari0108/mathlib
b7ea2b7350497ab1a0b87a09d093ecc025a50dfa
a9e7d333b0cfd45f13a20f7b96b7d52e19fa2901
refs/heads/master
1,690,483,608,260
1,631,541,580,000
1,631,541,580,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
27,038
lean
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl -/ import order.rel_classes import tactic.simps /-! # (Semi-)lattices Semilattices are partially ordered sets with join (greatest lower bound, or `sup`) or meet (least upper bound, or `inf`) operations. Lattices are posets that are both join-semilattices and meet-semilattices. Distributive lattices are lattices which satisfy any of four equivalent distributivity properties, of `sup` over `inf`, on the left or on the right. ## Main declarations * `has_sup`: type class for the `⊔` notation * `has_inf`: type class for the `⊓` notation * `semilattice_sup`: a type class for join semilattices * `semilattice_sup.mk'`: an alternative constructor for `semilattice_sup` via proofs that `⊔` is commutative, associative and idempotent. * `semilattice_inf`: a type class for meet semilattices * `semilattice_sup.mk'`: an alternative constructor for `semilattice_inf` via proofs that `⊓` is commutative, associative and idempotent. * `lattice`: a type class for lattices * `lattice.mk'`: an alternative constructor for `lattice` via profs that `⊔` and `⊓` are commutative, associative and satisfy a pair of "absorption laws". * `distrib_lattice`: a type class for distributive lattices. ## Notations * `a ⊔ b`: the supremum or join of `a` and `b` * `a ⊓ b`: the infimum or meet of `a` and `b` ## TODO * (Semi-)lattice homomorphisms * Alternative constructors for distributive lattices from the other distributive properties ## Tags semilattice, lattice -/ set_option old_structure_cmd true universes u v w variables {α : Type u} {β : Type v} -- TODO: move this eventually, if we decide to use them attribute [ematch] le_trans lt_of_le_of_lt lt_of_lt_of_le lt_trans section -- TODO: this seems crazy, but it also seems to work reasonably well @[ematch] theorem le_antisymm' [partial_order α] : ∀ {a b : α}, (: a ≤ b :) → b ≤ a → a = b := @le_antisymm _ _ end /- TODO: automatic construction of dual definitions / theorems -/ /-- Typeclass for the `⊔` (`\lub`) notation -/ @[notation_class] class has_sup (α : Type u) := (sup : α → α → α) /-- Typeclass for the `⊓` (`\glb`) notation -/ @[notation_class] class has_inf (α : Type u) := (inf : α → α → α) infix ⊔ := has_sup.sup infix ⊓ := has_inf.inf /-! ### Join-semilattices -/ /-- A `semilattice_sup` is a join-semilattice, that is, a partial order with a join (a.k.a. lub / least upper bound, sup / supremum) operation `⊔` which is the least element larger than both factors. -/ class semilattice_sup (α : Type u) extends has_sup α, partial_order α := (le_sup_left : ∀ a b : α, a ≤ a ⊔ b) (le_sup_right : ∀ a b : α, b ≤ a ⊔ b) (sup_le : ∀ a b c : α, a ≤ c → b ≤ c → a ⊔ b ≤ c) /-- A type with a commutative, associative and idempotent binary `sup` operation has the structure of a join-semilattice. The partial order is defined so that `a ≤ b` unfolds to `a ⊔ b = b`; cf. `sup_eq_right`. -/ def semilattice_sup.mk' {α : Type*} [has_sup α] (sup_comm : ∀ (a b : α), a ⊔ b = b ⊔ a) (sup_assoc : ∀ (a b c : α), a ⊔ b ⊔ c = a ⊔ (b ⊔ c)) (sup_idem : ∀ (a : α), a ⊔ a = a) : semilattice_sup α := { sup := (⊔), le := λ a b, a ⊔ b = b, le_refl := sup_idem, le_trans := λ a b c hab hbc, begin dsimp only [(≤)] at *, rwa [←hbc, ←sup_assoc, hab], end, le_antisymm := λ a b hab hba, begin dsimp only [(≤)] at *, rwa [←hba, sup_comm], end, le_sup_left := λ a b, show a ⊔ (a ⊔ b) = (a ⊔ b), by rw [←sup_assoc, sup_idem], le_sup_right := λ a b, show b ⊔ (a ⊔ b) = (a ⊔ b), by rw [sup_comm, sup_assoc, sup_idem], sup_le := λ a b c hac hbc, begin dsimp only [(≤), preorder.le] at *, rwa [sup_assoc, hbc], end } instance (α : Type*) [has_inf α] : has_sup (order_dual α) := ⟨((⊓) : α → α → α)⟩ instance (α : Type*) [has_sup α] : has_inf (order_dual α) := ⟨((⊔) : α → α → α)⟩ section semilattice_sup variables [semilattice_sup α] {a b c d : α} @[simp] theorem le_sup_left : a ≤ a ⊔ b := semilattice_sup.le_sup_left a b @[ematch] theorem le_sup_left' : a ≤ (: a ⊔ b :) := le_sup_left @[simp] theorem le_sup_right : b ≤ a ⊔ b := semilattice_sup.le_sup_right a b @[ematch] theorem le_sup_right' : b ≤ (: a ⊔ b :) := le_sup_right theorem le_sup_of_le_left (h : c ≤ a) : c ≤ a ⊔ b := le_trans h le_sup_left theorem le_sup_of_le_right (h : c ≤ b) : c ≤ a ⊔ b := le_trans h le_sup_right theorem sup_le : a ≤ c → b ≤ c → a ⊔ b ≤ c := semilattice_sup.sup_le a b c @[simp] theorem sup_le_iff : a ⊔ b ≤ c ↔ a ≤ c ∧ b ≤ c := ⟨assume h : a ⊔ b ≤ c, ⟨le_trans le_sup_left h, le_trans le_sup_right h⟩, assume ⟨h₁, h₂⟩, sup_le h₁ h₂⟩ @[simp] theorem sup_eq_left : a ⊔ b = a ↔ b ≤ a := le_antisymm_iff.trans $ by simp [le_refl] theorem sup_of_le_left (h : b ≤ a) : a ⊔ b = a := sup_eq_left.2 h @[simp] theorem left_eq_sup : a = a ⊔ b ↔ b ≤ a := eq_comm.trans sup_eq_left @[simp] theorem sup_eq_right : a ⊔ b = b ↔ a ≤ b := le_antisymm_iff.trans $ by simp [le_refl] theorem sup_of_le_right (h : a ≤ b) : a ⊔ b = b := sup_eq_right.2 h @[simp] theorem right_eq_sup : b = a ⊔ b ↔ a ≤ b := eq_comm.trans sup_eq_right theorem sup_le_sup (h₁ : a ≤ b) (h₂ : c ≤ d) : a ⊔ c ≤ b ⊔ d := sup_le (le_sup_of_le_left h₁) (le_sup_of_le_right h₂) theorem sup_le_sup_left (h₁ : a ≤ b) (c) : c ⊔ a ≤ c ⊔ b := sup_le_sup (le_refl _) h₁ theorem sup_le_sup_right (h₁ : a ≤ b) (c) : a ⊔ c ≤ b ⊔ c := sup_le_sup h₁ (le_refl _) theorem le_of_sup_eq (h : a ⊔ b = b) : a ≤ b := by { rw ← h, simp } lemma sup_ind [is_total α (≤)] (a b : α) {p : α → Prop} (ha : p a) (hb : p b) : p (a ⊔ b) := (is_total.total a b).elim (λ h : a ≤ b, by rwa sup_eq_right.2 h) (λ h, by rwa sup_eq_left.2 h) @[simp] lemma sup_lt_iff [is_total α (≤)] {a b c : α} : b ⊔ c < a ↔ b < a ∧ c < a := ⟨λ h, ⟨le_sup_left.trans_lt h, le_sup_right.trans_lt h⟩, λ h, sup_ind b c h.1 h.2⟩ @[simp] lemma le_sup_iff [is_total α (≤)] {a b c : α} : a ≤ b ⊔ c ↔ a ≤ b ∨ a ≤ c := ⟨λ h, (total_of (≤) c b).imp (λ bc, by rwa sup_eq_left.2 bc at h) (λ bc, by rwa sup_eq_right.2 bc at h), λ h, h.elim le_sup_of_le_left le_sup_of_le_right⟩ @[simp] lemma lt_sup_iff [is_total α (≤)] {a b c : α} : a < b ⊔ c ↔ a < b ∨ a < c := ⟨λ h, (total_of (≤) c b).imp (λ bc, by rwa sup_eq_left.2 bc at h) (λ bc, by rwa sup_eq_right.2 bc at h), λ h, h.elim (λ h, h.trans_le le_sup_left) (λ h, h.trans_le le_sup_right)⟩ @[simp] theorem sup_idem : a ⊔ a = a := by apply le_antisymm; simp instance sup_is_idempotent : is_idempotent α (⊔) := ⟨@sup_idem _ _⟩ theorem sup_comm : a ⊔ b = b ⊔ a := by apply le_antisymm; simp instance sup_is_commutative : is_commutative α (⊔) := ⟨@sup_comm _ _⟩ theorem sup_assoc : a ⊔ b ⊔ c = a ⊔ (b ⊔ c) := le_antisymm (sup_le (sup_le le_sup_left (le_sup_of_le_right le_sup_left)) (le_sup_of_le_right le_sup_right)) (sup_le (le_sup_of_le_left le_sup_left) (sup_le (le_sup_of_le_left le_sup_right) le_sup_right)) instance sup_is_associative : is_associative α (⊔) := ⟨@sup_assoc _ _⟩ lemma sup_left_right_swap (a b c : α) : a ⊔ b ⊔ c = c ⊔ b ⊔ a := by rw [sup_comm, @sup_comm _ _ a, sup_assoc] @[simp] lemma sup_left_idem : a ⊔ (a ⊔ b) = a ⊔ b := by rw [← sup_assoc, sup_idem] @[simp] lemma sup_right_idem : (a ⊔ b) ⊔ b = a ⊔ b := by rw [sup_assoc, sup_idem] lemma sup_left_comm (a b c : α) : a ⊔ (b ⊔ c) = b ⊔ (a ⊔ c) := by rw [← sup_assoc, ← sup_assoc, @sup_comm α _ a] lemma sup_right_comm (a b c : α) : a ⊔ b ⊔ c = a ⊔ c ⊔ b := by rw [sup_assoc, sup_assoc, @sup_comm _ _ b] lemma forall_le_or_exists_lt_sup (a : α) : (∀b, b ≤ a) ∨ (∃b, a < b) := suffices (∃b, ¬b ≤ a) → (∃b, a < b), by rwa [or_iff_not_imp_left, not_forall], assume ⟨b, hb⟩, ⟨a ⊔ b, lt_of_le_of_ne le_sup_left $ mt left_eq_sup.1 hb⟩ /-- If `f` is a monotonically increasing sequence, `g` is a monotonically decreasing sequence, and `f n ≤ g n` for all `n`, then for all `m`, `n` we have `f m ≤ g n`. -/ theorem forall_le_of_monotone_of_mono_decr {β : Type*} [preorder β] {f g : α → β} (hf : monotone f) (hg : ∀ ⦃m n⦄, m ≤ n → g n ≤ g m) (h : ∀ n, f n ≤ g n) (m n : α) : f m ≤ g n := calc f m ≤ f (m ⊔ n) : hf le_sup_left ... ≤ g (m ⊔ n) : h _ ... ≤ g n : hg le_sup_right theorem semilattice_sup.ext_sup {α} {A B : semilattice_sup α} (H : ∀ x y : α, (by haveI := A; exact x ≤ y) ↔ x ≤ y) (x y : α) : (by haveI := A; exact (x ⊔ y)) = x ⊔ y := eq_of_forall_ge_iff $ λ c, by simp only [sup_le_iff]; rw [← H, @sup_le_iff α A, H, H] theorem semilattice_sup.ext {α} {A B : semilattice_sup α} (H : ∀ x y : α, (by haveI := A; exact x ≤ y) ↔ x ≤ y) : A = B := begin have := partial_order.ext H, have ss := funext (λ x, funext $ semilattice_sup.ext_sup H x), casesI A, casesI B, injection this; congr' end end semilattice_sup /-! ### Meet-semilattices -/ /-- A `semilattice_inf` is a meet-semilattice, that is, a partial order with a meet (a.k.a. glb / greatest lower bound, inf / infimum) operation `⊓` which is the greatest element smaller than both factors. -/ class semilattice_inf (α : Type u) extends has_inf α, partial_order α := (inf_le_left : ∀ a b : α, a ⊓ b ≤ a) (inf_le_right : ∀ a b : α, a ⊓ b ≤ b) (le_inf : ∀ a b c : α, a ≤ b → a ≤ c → a ≤ b ⊓ c) instance (α) [semilattice_inf α] : semilattice_sup (order_dual α) := { le_sup_left := semilattice_inf.inf_le_left, le_sup_right := semilattice_inf.inf_le_right, sup_le := assume a b c hca hcb, @semilattice_inf.le_inf α _ _ _ _ hca hcb, .. order_dual.partial_order α, .. order_dual.has_sup α } instance (α) [semilattice_sup α] : semilattice_inf (order_dual α) := { inf_le_left := @le_sup_left α _, inf_le_right := @le_sup_right α _, le_inf := assume a b c hca hcb, @sup_le α _ _ _ _ hca hcb, .. order_dual.partial_order α, .. order_dual.has_inf α } theorem semilattice_sup.dual_dual (α : Type*) [H : semilattice_sup α] : order_dual.semilattice_sup (order_dual α) = H := semilattice_sup.ext $ λ _ _, iff.rfl section semilattice_inf variables [semilattice_inf α] {a b c d : α} @[simp] theorem inf_le_left : a ⊓ b ≤ a := semilattice_inf.inf_le_left a b @[ematch] theorem inf_le_left' : (: a ⊓ b :) ≤ a := semilattice_inf.inf_le_left a b @[simp] theorem inf_le_right : a ⊓ b ≤ b := semilattice_inf.inf_le_right a b @[ematch] theorem inf_le_right' : (: a ⊓ b :) ≤ b := semilattice_inf.inf_le_right a b theorem le_inf : a ≤ b → a ≤ c → a ≤ b ⊓ c := semilattice_inf.le_inf a b c theorem inf_le_of_left_le (h : a ≤ c) : a ⊓ b ≤ c := le_trans inf_le_left h theorem inf_le_of_right_le (h : b ≤ c) : a ⊓ b ≤ c := le_trans inf_le_right h @[simp] theorem le_inf_iff : a ≤ b ⊓ c ↔ a ≤ b ∧ a ≤ c := @sup_le_iff (order_dual α) _ _ _ _ @[simp] theorem inf_eq_left : a ⊓ b = a ↔ a ≤ b := le_antisymm_iff.trans $ by simp [le_refl] theorem inf_of_le_left (h : a ≤ b) : a ⊓ b = a := inf_eq_left.2 h @[simp] theorem left_eq_inf : a = a ⊓ b ↔ a ≤ b := eq_comm.trans inf_eq_left @[simp] theorem inf_eq_right : a ⊓ b = b ↔ b ≤ a := le_antisymm_iff.trans $ by simp [le_refl] theorem inf_of_le_right (h : b ≤ a) : a ⊓ b = b := inf_eq_right.2 h @[simp] theorem right_eq_inf : b = a ⊓ b ↔ b ≤ a := eq_comm.trans inf_eq_right theorem inf_le_inf (h₁ : a ≤ b) (h₂ : c ≤ d) : a ⊓ c ≤ b ⊓ d := le_inf (inf_le_of_left_le h₁) (inf_le_of_right_le h₂) lemma inf_le_inf_right (a : α) {b c : α} (h : b ≤ c) : b ⊓ a ≤ c ⊓ a := inf_le_inf h (le_refl _) lemma inf_le_inf_left (a : α) {b c : α} (h : b ≤ c) : a ⊓ b ≤ a ⊓ c := inf_le_inf (le_refl _) h theorem le_of_inf_eq (h : a ⊓ b = a) : a ≤ b := by { rw ← h, simp } lemma inf_ind [is_total α (≤)] (a b : α) {p : α → Prop} (ha : p a) (hb : p b) : p (a ⊓ b) := @sup_ind (order_dual α) _ _ _ _ _ ha hb @[simp] lemma lt_inf_iff [is_total α (≤)] {a b c : α} : a < b ⊓ c ↔ a < b ∧ a < c := @sup_lt_iff (order_dual α) _ _ _ _ _ @[simp] lemma inf_le_iff [is_total α (≤)] {a b c : α} : b ⊓ c ≤ a ↔ b ≤ a ∨ c ≤ a := @le_sup_iff (order_dual α) _ _ _ _ _ @[simp] theorem inf_idem : a ⊓ a = a := @sup_idem (order_dual α) _ _ instance inf_is_idempotent : is_idempotent α (⊓) := ⟨@inf_idem _ _⟩ theorem inf_comm : a ⊓ b = b ⊓ a := @sup_comm (order_dual α) _ _ _ instance inf_is_commutative : is_commutative α (⊓) := ⟨@inf_comm _ _⟩ theorem inf_assoc : a ⊓ b ⊓ c = a ⊓ (b ⊓ c) := @sup_assoc (order_dual α) _ a b c instance inf_is_associative : is_associative α (⊓) := ⟨@inf_assoc _ _⟩ lemma inf_left_right_swap (a b c : α) : a ⊓ b ⊓ c = c ⊓ b ⊓ a := by rw [inf_comm, @inf_comm _ _ a, inf_assoc] @[simp] lemma inf_left_idem : a ⊓ (a ⊓ b) = a ⊓ b := @sup_left_idem (order_dual α) _ a b @[simp] lemma inf_right_idem : (a ⊓ b) ⊓ b = a ⊓ b := @sup_right_idem (order_dual α) _ a b lemma inf_left_comm (a b c : α) : a ⊓ (b ⊓ c) = b ⊓ (a ⊓ c) := @sup_left_comm (order_dual α) _ a b c lemma inf_right_comm (a b c : α) : a ⊓ b ⊓ c = a ⊓ c ⊓ b := @sup_right_comm (order_dual α) _ a b c lemma forall_le_or_exists_lt_inf (a : α) : (∀b, a ≤ b) ∨ (∃b, b < a) := @forall_le_or_exists_lt_sup (order_dual α) _ a theorem semilattice_inf.ext_inf {α} {A B : semilattice_inf α} (H : ∀ x y : α, (by haveI := A; exact x ≤ y) ↔ x ≤ y) (x y : α) : (by haveI := A; exact (x ⊓ y)) = x ⊓ y := eq_of_forall_le_iff $ λ c, by simp only [le_inf_iff]; rw [← H, @le_inf_iff α A, H, H] theorem semilattice_inf.ext {α} {A B : semilattice_inf α} (H : ∀ x y : α, (by haveI := A; exact x ≤ y) ↔ x ≤ y) : A = B := begin have := partial_order.ext H, have ss := funext (λ x, funext $ semilattice_inf.ext_inf H x), casesI A, casesI B, injection this; congr' end theorem semilattice_inf.dual_dual (α : Type*) [H : semilattice_inf α] : order_dual.semilattice_inf (order_dual α) = H := semilattice_inf.ext $ λ _ _, iff.rfl end semilattice_inf /-- A type with a commutative, associative and idempotent binary `inf` operation has the structure of a meet-semilattice. The partial order is defined so that `a ≤ b` unfolds to `b ⊓ a = a`; cf. `inf_eq_right`. -/ def semilattice_inf.mk' {α : Type*} [has_inf α] (inf_comm : ∀ (a b : α), a ⊓ b = b ⊓ a) (inf_assoc : ∀ (a b c : α), a ⊓ b ⊓ c = a ⊓ (b ⊓ c)) (inf_idem : ∀ (a : α), a ⊓ a = a) : semilattice_inf α := begin haveI : semilattice_sup (order_dual α) := semilattice_sup.mk' inf_comm inf_assoc inf_idem, haveI i := order_dual.semilattice_inf (order_dual α), exact i, end /-! ### Lattices -/ /-- A lattice is a join-semilattice which is also a meet-semilattice. -/ class lattice (α : Type u) extends semilattice_sup α, semilattice_inf α instance (α) [lattice α] : lattice (order_dual α) := { .. order_dual.semilattice_sup α, .. order_dual.semilattice_inf α } /-- The partial orders from `semilattice_sup_mk'` and `semilattice_inf_mk'` agree if `sup` and `inf` satisfy the lattice absorption laws `sup_inf_self` (`a ⊔ a ⊓ b = a`) and `inf_sup_self` (`a ⊓ (a ⊔ b) = a`). -/ lemma semilattice_sup_mk'_partial_order_eq_semilattice_inf_mk'_partial_order {α : Type*} [has_sup α] [has_inf α] (sup_comm : ∀ (a b : α), a ⊔ b = b ⊔ a) (sup_assoc : ∀ (a b c : α), a ⊔ b ⊔ c = a ⊔ (b ⊔ c)) (sup_idem : ∀ (a : α), a ⊔ a = a) (inf_comm : ∀ (a b : α), a ⊓ b = b ⊓ a) (inf_assoc : ∀ (a b c : α), a ⊓ b ⊓ c = a ⊓ (b ⊓ c)) (inf_idem : ∀ (a : α), a ⊓ a = a) (sup_inf_self : ∀ (a b : α), a ⊔ a ⊓ b = a) (inf_sup_self : ∀ (a b : α), a ⊓ (a ⊔ b) = a) : @semilattice_sup.to_partial_order _ (semilattice_sup.mk' sup_comm sup_assoc sup_idem) = @semilattice_inf.to_partial_order _ (semilattice_inf.mk' inf_comm inf_assoc inf_idem) := partial_order.ext $ λ a b, show a ⊔ b = b ↔ b ⊓ a = a, from ⟨λ h, by rw [←h, inf_comm, inf_sup_self], λ h, by rw [←h, sup_comm, sup_inf_self]⟩ /-- A type with a pair of commutative and associative binary operations which satisfy two absorption laws relating the two operations has the structure of a lattice. The partial order is defined so that `a ≤ b` unfolds to `a ⊔ b = b`; cf. `sup_eq_right`. -/ def lattice.mk' {α : Type*} [has_sup α] [has_inf α] (sup_comm : ∀ (a b : α), a ⊔ b = b ⊔ a) (sup_assoc : ∀ (a b c : α), a ⊔ b ⊔ c = a ⊔ (b ⊔ c)) (inf_comm : ∀ (a b : α), a ⊓ b = b ⊓ a) (inf_assoc : ∀ (a b c : α), a ⊓ b ⊓ c = a ⊓ (b ⊓ c)) (sup_inf_self : ∀ (a b : α), a ⊔ a ⊓ b = a) (inf_sup_self : ∀ (a b : α), a ⊓ (a ⊔ b) = a) : lattice α := have sup_idem : ∀ (b : α), b ⊔ b = b := λ b, calc b ⊔ b = b ⊔ b ⊓ (b ⊔ b) : by rw inf_sup_self ... = b : by rw sup_inf_self, have inf_idem : ∀ (b : α), b ⊓ b = b := λ b, calc b ⊓ b = b ⊓ (b ⊔ b ⊓ b) : by rw sup_inf_self ... = b : by rw inf_sup_self, let semilatt_inf_inst := semilattice_inf.mk' inf_comm inf_assoc inf_idem, semilatt_sup_inst := semilattice_sup.mk' sup_comm sup_assoc sup_idem, -- here we help Lean to see that the two partial orders are equal partial_order_inst := @semilattice_sup.to_partial_order _ semilatt_sup_inst in have partial_order_eq : partial_order_inst = @semilattice_inf.to_partial_order _ semilatt_inf_inst := semilattice_sup_mk'_partial_order_eq_semilattice_inf_mk'_partial_order _ _ _ _ _ _ sup_inf_self inf_sup_self, { inf_le_left := λ a b, by { rw partial_order_eq, apply inf_le_left }, inf_le_right := λ a b, by { rw partial_order_eq, apply inf_le_right }, le_inf := λ a b c, by { rw partial_order_eq, apply le_inf }, ..partial_order_inst, ..semilatt_sup_inst, ..semilatt_inf_inst, } section lattice variables [lattice α] {a b c d : α} /-! #### Distributivity laws -/ /- TODO: better names? -/ theorem sup_inf_le : a ⊔ (b ⊓ c) ≤ (a ⊔ b) ⊓ (a ⊔ c) := le_inf (sup_le_sup_left inf_le_left _) (sup_le_sup_left inf_le_right _) theorem le_inf_sup : (a ⊓ b) ⊔ (a ⊓ c) ≤ a ⊓ (b ⊔ c) := sup_le (inf_le_inf_left _ le_sup_left) (inf_le_inf_left _ le_sup_right) theorem inf_sup_self : a ⊓ (a ⊔ b) = a := by simp theorem sup_inf_self : a ⊔ (a ⊓ b) = a := by simp theorem sup_eq_iff_inf_eq : a ⊔ b = b ↔ a ⊓ b = a := by rw [sup_eq_right, ←inf_eq_left] theorem lattice.ext {α} {A B : lattice α} (H : ∀ x y : α, (by haveI := A; exact x ≤ y) ↔ x ≤ y) : A = B := begin have SS : @lattice.to_semilattice_sup α A = @lattice.to_semilattice_sup α B := semilattice_sup.ext H, have II := semilattice_inf.ext H, casesI A, casesI B, injection SS; injection II; congr' end end lattice /-! ### Distributive lattices -/ /-- A distributive lattice is a lattice that satisfies any of four equivalent distributive properties (of `sup` over `inf` or `inf` over `sup`, on the left or right). The definition here chooses `le_sup_inf`: `(x ⊔ y) ⊓ (x ⊔ z) ≤ x ⊔ (y ⊓ z)`. A classic example of a distributive lattice is the lattice of subsets of a set, and in fact this example is generic in the sense that every distributive lattice is realizable as a sublattice of a powerset lattice. -/ class distrib_lattice α extends lattice α := (le_sup_inf : ∀x y z : α, (x ⊔ y) ⊓ (x ⊔ z) ≤ x ⊔ (y ⊓ z)) /- TODO: alternative constructors from the other distributive properties, and perhaps a `tfae` statement -/ section distrib_lattice variables [distrib_lattice α] {x y z : α} theorem le_sup_inf : ∀{x y z : α}, (x ⊔ y) ⊓ (x ⊔ z) ≤ x ⊔ (y ⊓ z) := distrib_lattice.le_sup_inf theorem sup_inf_left : x ⊔ (y ⊓ z) = (x ⊔ y) ⊓ (x ⊔ z) := le_antisymm sup_inf_le le_sup_inf theorem sup_inf_right : (y ⊓ z) ⊔ x = (y ⊔ x) ⊓ (z ⊔ x) := by simp only [sup_inf_left, λy:α, @sup_comm α _ y x, eq_self_iff_true] theorem inf_sup_left : x ⊓ (y ⊔ z) = (x ⊓ y) ⊔ (x ⊓ z) := calc x ⊓ (y ⊔ z) = (x ⊓ (x ⊔ z)) ⊓ (y ⊔ z) : by rw [inf_sup_self] ... = x ⊓ ((x ⊓ y) ⊔ z) : by simp only [inf_assoc, sup_inf_right, eq_self_iff_true] ... = (x ⊔ (x ⊓ y)) ⊓ ((x ⊓ y) ⊔ z) : by rw [sup_inf_self] ... = ((x ⊓ y) ⊔ x) ⊓ ((x ⊓ y) ⊔ z) : by rw [sup_comm] ... = (x ⊓ y) ⊔ (x ⊓ z) : by rw [sup_inf_left] instance (α : Type*) [distrib_lattice α] : distrib_lattice (order_dual α) := { le_sup_inf := assume x y z, le_of_eq inf_sup_left.symm, .. order_dual.lattice α } theorem inf_sup_right : (y ⊔ z) ⊓ x = (y ⊓ x) ⊔ (z ⊓ x) := by simp only [inf_sup_left, λy:α, @inf_comm α _ y x, eq_self_iff_true] lemma le_of_inf_le_sup_le (h₁ : x ⊓ z ≤ y ⊓ z) (h₂ : x ⊔ z ≤ y ⊔ z) : x ≤ y := calc x ≤ (y ⊓ z) ⊔ x : le_sup_right ... = (y ⊔ x) ⊓ (x ⊔ z) : by rw [sup_inf_right, @sup_comm _ _ x] ... ≤ (y ⊔ x) ⊓ (y ⊔ z) : inf_le_inf_left _ h₂ ... = y ⊔ (x ⊓ z) : sup_inf_left.symm ... ≤ y ⊔ (y ⊓ z) : sup_le_sup_left h₁ _ ... ≤ _ : sup_le (le_refl y) inf_le_left lemma eq_of_inf_eq_sup_eq {α : Type u} [distrib_lattice α] {a b c : α} (h₁ : b ⊓ a = c ⊓ a) (h₂ : b ⊔ a = c ⊔ a) : b = c := le_antisymm (le_of_inf_le_sup_le (le_of_eq h₁) (le_of_eq h₂)) (le_of_inf_le_sup_le (le_of_eq h₁.symm) (le_of_eq h₂.symm)) end distrib_lattice /-! ### Lattices derived from linear orders -/ @[priority 100] -- see Note [lower instance priority] instance lattice_of_linear_order {α : Type u} [o : linear_order α] : lattice α := { sup := max, le_sup_left := le_max_left, le_sup_right := le_max_right, sup_le := assume a b c, max_le, inf := min, inf_le_left := min_le_left, inf_le_right := min_le_right, le_inf := assume a b c, le_min, ..o } theorem sup_eq_max [linear_order α] {x y : α} : x ⊔ y = max x y := rfl theorem inf_eq_min [linear_order α] {x y : α} : x ⊓ y = min x y := rfl @[priority 100] -- see Note [lower instance priority] instance distrib_lattice_of_linear_order {α : Type u} [o : linear_order α] : distrib_lattice α := { le_sup_inf := assume a b c, match le_total b c with | or.inl h := inf_le_of_left_le $ sup_le_sup_left (le_inf (le_refl b) h) _ | or.inr h := inf_le_of_right_le $ sup_le_sup_left (le_inf h (le_refl c)) _ end, ..lattice_of_linear_order } instance nat.distrib_lattice : distrib_lattice ℕ := by apply_instance /-! ### Monotone functions and lattices -/ namespace monotone lemma le_map_sup [semilattice_sup α] [semilattice_sup β] {f : α → β} (h : monotone f) (x y : α) : f x ⊔ f y ≤ f (x ⊔ y) := sup_le (h le_sup_left) (h le_sup_right) lemma map_sup [semilattice_sup α] [is_total α (≤)] [semilattice_sup β] {f : α → β} (hf : monotone f) (x y : α) : f (x ⊔ y) = f x ⊔ f y := (is_total.total x y).elim (λ h : x ≤ y, by simp only [h, hf h, sup_of_le_right]) (λ h, by simp only [h, hf h, sup_of_le_left]) lemma map_inf_le [semilattice_inf α] [semilattice_inf β] {f : α → β} (h : monotone f) (x y : α) : f (x ⊓ y) ≤ f x ⊓ f y := le_inf (h inf_le_left) (h inf_le_right) lemma map_inf [semilattice_inf α] [is_total α (≤)] [semilattice_inf β] {f : α → β} (hf : monotone f) (x y : α) : f (x ⊓ y) = f x ⊓ f y := @monotone.map_sup (order_dual α) _ _ _ _ _ hf.order_dual x y end monotone /-! ### Products of (semi-)lattices -/ namespace prod variables (α β) instance [has_sup α] [has_sup β] : has_sup (α × β) := ⟨λp q, ⟨p.1 ⊔ q.1, p.2 ⊔ q.2⟩⟩ instance [has_inf α] [has_inf β] : has_inf (α × β) := ⟨λp q, ⟨p.1 ⊓ q.1, p.2 ⊓ q.2⟩⟩ instance [semilattice_sup α] [semilattice_sup β] : semilattice_sup (α × β) := { sup_le := assume a b c h₁ h₂, ⟨sup_le h₁.1 h₂.1, sup_le h₁.2 h₂.2⟩, le_sup_left := assume a b, ⟨le_sup_left, le_sup_left⟩, le_sup_right := assume a b, ⟨le_sup_right, le_sup_right⟩, .. prod.partial_order α β, .. prod.has_sup α β } instance [semilattice_inf α] [semilattice_inf β] : semilattice_inf (α × β) := { le_inf := assume a b c h₁ h₂, ⟨le_inf h₁.1 h₂.1, le_inf h₁.2 h₂.2⟩, inf_le_left := assume a b, ⟨inf_le_left, inf_le_left⟩, inf_le_right := assume a b, ⟨inf_le_right, inf_le_right⟩, .. prod.partial_order α β, .. prod.has_inf α β } instance [lattice α] [lattice β] : lattice (α × β) := { .. prod.semilattice_inf α β, .. prod.semilattice_sup α β } instance [distrib_lattice α] [distrib_lattice β] : distrib_lattice (α × β) := { le_sup_inf := assume a b c, ⟨le_sup_inf, le_sup_inf⟩, .. prod.lattice α β } end prod /-! ### Subtypes of (semi-)lattices -/ namespace subtype /-- A subtype forms a `⊔`-semilattice if `⊔` preserves the property. See note [reducible non-instances]. -/ @[reducible] protected def semilattice_sup [semilattice_sup α] {P : α → Prop} (Psup : ∀⦃x y⦄, P x → P y → P (x ⊔ y)) : semilattice_sup {x : α // P x} := { sup := λ x y, ⟨x.1 ⊔ y.1, Psup x.2 y.2⟩, le_sup_left := λ x y, @le_sup_left _ _ (x : α) y, le_sup_right := λ x y, @le_sup_right _ _ (x : α) y, sup_le := λ x y z h1 h2, @sup_le α _ _ _ _ h1 h2, ..subtype.partial_order P } /-- A subtype forms a `⊓`-semilattice if `⊓` preserves the property. See note [reducible non-instances]. -/ @[reducible] protected def semilattice_inf [semilattice_inf α] {P : α → Prop} (Pinf : ∀⦃x y⦄, P x → P y → P (x ⊓ y)) : semilattice_inf {x : α // P x} := { inf := λ x y, ⟨x.1 ⊓ y.1, Pinf x.2 y.2⟩, inf_le_left := λ x y, @inf_le_left _ _ (x : α) y, inf_le_right := λ x y, @inf_le_right _ _ (x : α) y, le_inf := λ x y z h1 h2, @le_inf α _ _ _ _ h1 h2, ..subtype.partial_order P } /-- A subtype forms a lattice if `⊔` and `⊓` preserve the property. See note [reducible non-instances]. -/ @[reducible] protected def lattice [lattice α] {P : α → Prop} (Psup : ∀⦃x y⦄, P x → P y → P (x ⊔ y)) (Pinf : ∀⦃x y⦄, P x → P y → P (x ⊓ y)) : lattice {x : α // P x} := { ..subtype.semilattice_inf Pinf, ..subtype.semilattice_sup Psup } end subtype
7832ed515598c5089bdbb4e8f9039233c731b5cf
74addaa0e41490cbaf2abd313a764c96df57b05d
/Mathlib/analysis/analytic/linear_auto.lean
73bdc0c6af533d1922c5359bd0c3d1d4ddc1987b
[]
no_license
AurelienSaue/Mathlib4_auto
f538cfd0980f65a6361eadea39e6fc639e9dae14
590df64109b08190abe22358fabc3eae000943f2
refs/heads/master
1,683,906,849,776
1,622,564,669,000
1,622,564,669,000
371,723,747
0
0
null
null
null
null
UTF-8
Lean
false
false
2,773
lean
/- Copyright (c) 2021 Yury G. Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Yury G. Kudryashov -/ import Mathlib.PrePort import Mathlib.Lean3Lib.init.default import Mathlib.analysis.analytic.basic import Mathlib.PostPort universes u_1 u_2 u_3 namespace Mathlib /-! # Linear functions are analytic In this file we prove that a `continuous_linear_map` defines an analytic function with the formal power series `f x = f a + f (x - a)`. -/ namespace continuous_linear_map /-- Formal power series of a continuous linear map `f : E →L[𝕜] F` at `x : E`: `f y = f x + f (y - x)`. -/ @[simp] def fpower_series {𝕜 : Type u_1} [nondiscrete_normed_field 𝕜] {E : Type u_2} [normed_group E] [normed_space 𝕜 E] {F : Type u_3} [normed_group F] [normed_space 𝕜 F] (f : continuous_linear_map 𝕜 E F) (x : E) : formal_multilinear_series 𝕜 E F := sorry @[simp] theorem fpower_series_apply_add_two {𝕜 : Type u_1} [nondiscrete_normed_field 𝕜] {E : Type u_2} [normed_group E] [normed_space 𝕜 E] {F : Type u_3} [normed_group F] [normed_space 𝕜 F] (f : continuous_linear_map 𝕜 E F) (x : E) (n : ℕ) : fpower_series f x (n + bit0 1) = 0 := rfl @[simp] theorem fpower_series_radius {𝕜 : Type u_1} [nondiscrete_normed_field 𝕜] {E : Type u_2} [normed_group E] [normed_space 𝕜 E] {F : Type u_3} [normed_group F] [normed_space 𝕜 F] (f : continuous_linear_map 𝕜 E F) (x : E) : formal_multilinear_series.radius (fpower_series f x) = ⊤ := formal_multilinear_series.radius_eq_top_of_forall_image_add_eq_zero (fpower_series f x) (bit0 1) fun (n : ℕ) => rfl protected theorem has_fpower_series_on_ball {𝕜 : Type u_1} [nondiscrete_normed_field 𝕜] {E : Type u_2} [normed_group E] [normed_space 𝕜 E] {F : Type u_3} [normed_group F] [normed_space 𝕜 F] (f : continuous_linear_map 𝕜 E F) (x : E) : has_fpower_series_on_ball (⇑f) (fpower_series f x) x ⊤ := sorry protected theorem has_fpower_series_at {𝕜 : Type u_1} [nondiscrete_normed_field 𝕜] {E : Type u_2} [normed_group E] [normed_space 𝕜 E] {F : Type u_3} [normed_group F] [normed_space 𝕜 F] (f : continuous_linear_map 𝕜 E F) (x : E) : has_fpower_series_at (⇑f) (fpower_series f x) x := Exists.intro ⊤ (continuous_linear_map.has_fpower_series_on_ball f x) protected theorem analytic_at {𝕜 : Type u_1} [nondiscrete_normed_field 𝕜] {E : Type u_2} [normed_group E] [normed_space 𝕜 E] {F : Type u_3} [normed_group F] [normed_space 𝕜 F] (f : continuous_linear_map 𝕜 E F) (x : E) : analytic_at 𝕜 (⇑f) x := has_fpower_series_at.analytic_at (continuous_linear_map.has_fpower_series_at f x) end Mathlib
4cc533cf064e654da982db25ca5c2f22d466a36d
07c76fbd96ea1786cc6392fa834be62643cea420
/hott/init/ua.hlean
f7deacc506a6c9475fd696c9558ed84fb2023fa4
[ "Apache-2.0" ]
permissive
fpvandoorn/lean2
5a430a153b570bf70dc8526d06f18fc000a60ad9
0889cf65b7b3cebfb8831b8731d89c2453dd1e9f
refs/heads/master
1,592,036,508,364
1,545,093,958,000
1,545,093,958,000
75,436,854
0
0
null
1,480,718,780,000
1,480,718,780,000
null
UTF-8
Lean
false
false
3,139
hlean
/- Copyright (c) 2014 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jakob von Raumer, Floris van Doorn Ported from Coq HoTT -/ prelude import .equiv open eq equiv is_equiv axiom univalence (A B : Type) : is_equiv (@equiv_of_eq A B) attribute univalence [instance] -- This is the version of univalence axiom we will probably use most often definition ua [reducible] {A B : Type} : A ≃ B → A = B := equiv_of_eq⁻¹ definition eq_equiv_equiv (A B : Type) : (A = B) ≃ (A ≃ B) := equiv.mk equiv_of_eq _ definition equiv_of_eq_ua [reducible] {A B : Type} (f : A ≃ B) : equiv_of_eq (ua f) = f := right_inv equiv_of_eq f definition cast_ua_fn {A B : Type} (f : A ≃ B) : cast (ua f) = f := ap to_fun (equiv_of_eq_ua f) definition cast_ua {A B : Type} (f : A ≃ B) (a : A) : cast (ua f) a = f a := ap10 (cast_ua_fn f) a definition cast_ua_inv_fn {A B : Type} (f : A ≃ B) : cast (ua f)⁻¹ = to_inv f := ap to_inv (equiv_of_eq_ua f) definition cast_ua_inv {A B : Type} (f : A ≃ B) (b : B) : cast (ua f)⁻¹ b = to_inv f b := ap10 (cast_ua_inv_fn f) b definition ua_equiv_of_eq [reducible] {A B : Type} (p : A = B) : ua (equiv_of_eq p) = p := left_inv equiv_of_eq p definition eq_of_equiv_lift {A B : Type} (f : A ≃ B) : A = lift B := ua (f ⬝e !equiv_lift) namespace equiv -- One consequence of UA is that we can transport along equivalencies of types -- We can use this for calculation evironments protected definition transport_of_equiv [subst] (P : Type → Type) {A B : Type} (H : A ≃ B) : P A → P B := eq.transport P (ua H) -- we can "recurse" on equivalences, by replacing them by (equiv_of_eq _) definition rec_on_ua [recursor] {A B : Type} {P : A ≃ B → Type} (f : A ≃ B) (H : Π(q : A = B), P (equiv_of_eq q)) : P f := right_inv equiv_of_eq f ▸ H (ua f) -- a variant where we immediately recurse on the equality in the new goal definition rec_on_ua_idp [recursor] {A : Type} {P : Π{B}, A ≃ B → Type} {B : Type} (f : A ≃ B) (H : P equiv.rfl) : P f := rec_on_ua f (λq, eq.rec_on q H) -- a variant where (equiv_of_eq (ua f)) will be replaced by f in the new goal definition rec_on_ua' {A B : Type} {P : A ≃ B → A = B → Type} (f : A ≃ B) (H : Π(q : A = B), P (equiv_of_eq q) q) : P f (ua f) := right_inv equiv_of_eq f ▸ H (ua f) -- a variant where we do both definition rec_on_ua_idp' {A : Type} {P : Π{B}, A ≃ B → A = B → Type} {B : Type} (f : A ≃ B) (H : P equiv.rfl idp) : P f (ua f) := rec_on_ua' f (λq, eq.rec_on q H) definition ua_refl (A : Type) : ua erfl = idpath A := inj !eq_equiv_equiv (right_inv !eq_equiv_equiv erfl) definition ua_symm {A B : Type} (f : A ≃ B) : ua f⁻¹ᵉ = (ua f)⁻¹ := begin apply rec_on_ua_idp f, refine !ua_refl ⬝ inverse2 !ua_refl⁻¹ end definition ua_trans {A B C : Type} (f : A ≃ B) (g : B ≃ C) : ua (f ⬝e g) = ua f ⬝ ua g := begin apply rec_on_ua_idp g, apply rec_on_ua_idp f, refine !ua_refl ⬝ concat2 !ua_refl⁻¹ !ua_refl⁻¹ end end equiv
bef160337a86a9140f19cd63c2b19dbc694c80ed
de91c42b87530c3bdcc2b138ef1a3c3d9bee0d41
/old/not_in_use/src/physlang.lean
00a31bb5aa4d526053db6d0105f216394e251c97
[]
no_license
kevinsullivan/lang
d3e526ba363dc1ddf5ff1c2f36607d7f891806a7
e9d869bff94fb13ad9262222a6f3c4aafba82d5e
refs/heads/master
1,687,840,064,795
1,628,047,969,000
1,628,047,969,000
282,210,749
0
1
null
1,608,153,830,000
1,595,592,637,000
Lean
UTF-8
Lean
false
false
41,504
lean
import .....phys.src.physlib noncomputable theory /- VARIABLES -/ mutual inductive PhysSpaceVar, EuclideanGeometry3SpaceVar, ClassicalTimeSpaceVar, ClassicalVelocity3SpaceVar, PhysFrameVar, EuclideanGeometry3FrameVar, ClassicalTimeFrameVar, ClassicalVelocity3FrameVar, PhysDimensionalVar, RealScalarVar, EuclideanGeometry3ScalarVar, ClassicalTimeScalarVar, ClassicalVelocity3ScalarVar, EuclideanGeometry3VectorVar, ClassicalTimeVectorVar, ClassicalVelocity3VectorVar, EuclideanGeometry3PointVar, ClassicalTimePointVar with PhysSpaceVar : Type | EuclideanGeometry3 : EuclideanGeometry3SpaceVar → PhysSpaceVar | ClassicalTime : ClassicalTimeSpaceVar → PhysSpaceVar | ClassicalVelocity3 : ClassicalVelocity3SpaceVar → PhysSpaceVar with EuclideanGeometry3SpaceVar : Type | mk : ℕ → EuclideanGeometry3SpaceVar with ClassicalTimeSpaceVar : Type | mk : ℕ → ClassicalTimeSpaceVar with ClassicalVelocity3SpaceVar : Type | mk : ℕ → ClassicalVelocity3SpaceVar with PhysFrameVar : Type | EuclideanGeometry3 : EuclideanGeometry3FrameVar → PhysFrameVar | ClassicalTime : ClassicalTimeFrameVar → PhysFrameVar | ClassicalVelocity3 : ClassicalVelocity3FrameVar → PhysFrameVar with EuclideanGeometry3FrameVar : Type | mk : ℕ → EuclideanGeometry3FrameVar with ClassicalTimeFrameVar : Type | mk : ℕ → ClassicalTimeFrameVar with ClassicalVelocity3FrameVar : Type | mk : ℕ → ClassicalVelocity3FrameVar with PhysDimensionalVar : Type | RealScalar : RealScalarVar → PhysDimensionalVar | EuclideanGeometry3Scalar : EuclideanGeometry3ScalarVar → PhysDimensionalVar | ClassicalTimeScalar : ClassicalTimeScalarVar → PhysDimensionalVar | ClassicalVelocity3Scalar : ClassicalVelocity3ScalarVar → PhysDimensionalVar | EuclideanGeometry3Vector : EuclideanGeometry3VectorVar → PhysDimensionalVar | ClassicalTimeVector : ClassicalTimeVectorVar → PhysDimensionalVar | ClassicalVelocity3Vector : ClassicalVelocity3VectorVar → PhysDimensionalVar | EuclideanGeometry3Point : EuclideanGeometry3PointVar → PhysDimensionalVar | ClassicalTimePoint : ClassicalTimePointVar → PhysDimensionalVar with RealScalarVar : Type | mk : ℕ → RealScalarVar with EuclideanGeometry3ScalarVar : Type | mk : ℕ → EuclideanGeometry3ScalarVar with ClassicalTimeScalarVar : Type | mk : ℕ → ClassicalTimeScalarVar with ClassicalVelocity3ScalarVar : Type | mk : ℕ → ClassicalVelocity3ScalarVar with EuclideanGeometry3VectorVar : Type | mk : ℕ → EuclideanGeometry3VectorVar with ClassicalTimeVectorVar : Type | mk : ℕ → ClassicalTimeVectorVar with ClassicalVelocity3VectorVar : Type | mk : ℕ → ClassicalVelocity3VectorVar with EuclideanGeometry3PointVar : Type | mk : ℕ → EuclideanGeometry3PointVar with ClassicalTimePointVar : Type | mk : ℕ → ClassicalTimePointVar /- Physical quantity expressions -/ mutual inductive --dimensionful (or less) expressions PhysDimensionalExpression, RealScalarExpression, EuclideanGeometry3ScalarExpression, ClassicalTimeScalarExpression, ClassicalVelocity3ScalarExpression, EuclideanGeometry3VectorExpression, ClassicalVelocity3VectorExpression, ClassicalTimeVectorExpression, EuclideanGeometry3PointExpression, ClassicalTimePointExpression with PhysDimensionalExpression : Type | RealScalar : RealScalarExpression → PhysDimensionalExpression | EuclideanGeometry3ScalarExpression : EuclideanGeometry3ScalarExpression → PhysDimensionalExpression | ClassicalTimeScalar : ClassicalTimeScalarExpression → PhysDimensionalExpression | ClassicalVelocity3Scalar : ClassicalVelocity3ScalarExpression → PhysDimensionalExpression | EuclideanGeometry3Vector : EuclideanGeometry3VectorExpression → PhysDimensionalExpression | ClassicalTimeVector : ClassicalTimeVectorExpression → PhysDimensionalExpression | ClassicalVelocity3Vector : ClassicalVelocity3VectorExpression → PhysDimensionalExpression | EuclideanGeometry3Point : EuclideanGeometry3PointExpression → PhysDimensionalExpression | ClassicalTimePoint : ClassicalTimePointExpression → PhysDimensionalExpression with RealScalarExpression : Type | RealLitScalar : RealScalar → RealScalarExpression | RealVarScalar : RealScalarVar → RealScalarExpression | RealAddScalarScalar : RealScalarExpression → RealScalarExpression → RealScalarExpression | RealSubScalarScalar : RealScalarExpression → RealScalarExpression → RealScalarExpression | RealMulScalarScalar : RealScalarExpression → RealScalarExpression → RealScalarExpression | RealDivScalarScalar : RealScalarExpression → RealScalarExpression → RealScalarExpression | RealNegScalar : RealScalarExpression → RealScalarExpression | RealInvScalar : RealScalarExpression → RealScalarExpression | RealParenScalar : RealScalarExpression → RealScalarExpression with EuclideanGeometry3ScalarExpression : Type | GeometricLitScalar : EuclideanGeometry3Scalar → EuclideanGeometry3ScalarExpression | GeometricVarScalar : EuclideanGeometry3ScalarVar → EuclideanGeometry3ScalarExpression | GeometricAddScalarScalar : EuclideanGeometry3ScalarExpression → EuclideanGeometry3ScalarExpression → EuclideanGeometry3ScalarExpression | GeometricSubScalarScalar : EuclideanGeometry3ScalarExpression → EuclideanGeometry3ScalarExpression → EuclideanGeometry3ScalarExpression | GeometricMulScalarScalar : EuclideanGeometry3ScalarExpression → EuclideanGeometry3ScalarExpression → EuclideanGeometry3ScalarExpression | GeometricDivScalarScalar : EuclideanGeometry3ScalarExpression → EuclideanGeometry3ScalarExpression → EuclideanGeometry3ScalarExpression | GeometricNegScalar : EuclideanGeometry3ScalarExpression → EuclideanGeometry3ScalarExpression | GeometricInvScalar : EuclideanGeometry3ScalarExpression → EuclideanGeometry3ScalarExpression | GeometricParenScalar : EuclideanGeometry3ScalarExpression → EuclideanGeometry3ScalarExpression | GeometricNormVector : EuclideanGeometry3VectorExpression → EuclideanGeometry3ScalarExpression with ClassicalTimeScalarExpression : Type | ClassicalTimeLitScalar : ClassicalTimeScalar → ClassicalTimeScalarExpression | ClassicalTimeVarScalar : ClassicalTimeScalarVar → ClassicalTimeScalarExpression | ClassicalTimeAddScalarScalar : ClassicalTimeScalarExpression → ClassicalTimeScalarExpression → ClassicalTimeScalarExpression | ClassicalTimeSubScalarScalar : ClassicalTimeScalarExpression → ClassicalTimeScalarExpression → ClassicalTimeScalarExpression | ClassicalTimeMulScalarScalar : ClassicalTimeScalarExpression → ClassicalTimeScalarExpression → ClassicalTimeScalarExpression | ClassicalTimeDivScalarScalar : ClassicalTimeScalarExpression → ClassicalTimeScalarExpression → ClassicalTimeScalarExpression | ClassicalTimeNegScalar : ClassicalTimeScalarExpression → ClassicalTimeScalarExpression | ClassicalTimeInvScalar : ClassicalTimeScalarExpression → ClassicalTimeScalarExpression | ClassicalTimeParenScalar : ClassicalTimeScalarExpression → ClassicalTimeScalarExpression | ClassicalTimeNormVector : ClassicalTimeVectorExpression → ClassicalTimeScalarExpression with ClassicalVelocity3ScalarExpression : Type | VelocityLitScalar : ClassicalVelocity3Scalar → ClassicalVelocity3ScalarExpression | VelocityVarScalar : ClassicalVelocity3ScalarVar → ClassicalVelocity3ScalarExpression | VelocityAddScalarScalar : ClassicalVelocity3ScalarExpression → ClassicalVelocity3ScalarExpression → ClassicalVelocity3ScalarExpression | VelocitySubScalarScalar : ClassicalVelocity3ScalarExpression → ClassicalVelocity3ScalarExpression → ClassicalVelocity3ScalarExpression | VelocityMulScalarScalar : ClassicalVelocity3ScalarExpression → ClassicalVelocity3ScalarExpression → ClassicalVelocity3ScalarExpression | VelocityDivScalarScalar : ClassicalVelocity3ScalarExpression → ClassicalVelocity3ScalarExpression → ClassicalVelocity3ScalarExpression | VelocityNegScalar : ClassicalVelocity3ScalarExpression → ClassicalVelocity3ScalarExpression | VelocityInvScalar : ClassicalVelocity3ScalarExpression → ClassicalVelocity3ScalarExpression | VelocityParenScalar : ClassicalVelocity3ScalarExpression → ClassicalVelocity3ScalarExpression | VelocityNormVector : ClassicalVelocity3VectorExpression → ClassicalVelocity3ScalarExpression with EuclideanGeometry3VectorExpression : Type | EuclideanGeometry3LitVector (sp : EuclideanGeometrySpace 3) : EuclideanGeometryVector sp → EuclideanGeometry3VectorExpression | EuclideanGeometry3VarVector : EuclideanGeometry3VectorVar → EuclideanGeometry3VectorExpression | EuclideanGeometry3AddVectorVector : EuclideanGeometry3VectorExpression → EuclideanGeometry3VectorExpression → EuclideanGeometry3VectorExpression | EuclideanGeometry3NegVector : EuclideanGeometry3VectorExpression → EuclideanGeometry3VectorExpression | EuclideanGeometry3MulScalarVector : RealScalarExpression → EuclideanGeometry3VectorExpression → EuclideanGeometry3VectorExpression | EuclideanGeometry3MulVectorScalar : EuclideanGeometry3VectorExpression → RealScalarExpression → EuclideanGeometry3VectorExpression | EuclideanGeometry3SubPointPoint : EuclideanGeometry3PointExpression → EuclideanGeometry3PointExpression → EuclideanGeometry3VectorExpression | EuclideanGeometry3ParenVector : EuclideanGeometry3VectorExpression → EuclideanGeometry3VectorExpression | EuclideanGeometry3CoordVector : EuclideanGeometry3ScalarExpression → EuclideanGeometry3ScalarExpression → EuclideanGeometry3ScalarExpression → EuclideanGeometry3VectorExpression with ClassicalVelocity3VectorExpression : Type | ClassicalVelocity3LitVector (sp : ClassicalVelocitySpace 3) : ClassicalVelocityVector sp → ClassicalVelocity3VectorExpression | ClassicalVelocity3VarVector : ClassicalVelocity3VectorVar → ClassicalVelocity3VectorExpression | ClassicalVelocity3AddVectorVector : ClassicalVelocity3VectorExpression → ClassicalVelocity3VectorExpression → ClassicalVelocity3VectorExpression | ClassicalVelocity3NegVector : ClassicalVelocity3VectorExpression → ClassicalVelocity3VectorExpression | ClassicalVelocity3MulScalarVector : RealScalarExpression → ClassicalVelocity3VectorExpression → ClassicalVelocity3VectorExpression | ClassicalVelocity3MulVectorScalar : ClassicalVelocity3VectorExpression → RealScalarExpression → ClassicalVelocity3VectorExpression | ClassicalVelocity3ParenVector : ClassicalVelocity3VectorExpression → ClassicalVelocity3VectorExpression | ClassicalVelocity3CoordVector : ClassicalVelocity3ScalarExpression → ClassicalVelocity3ScalarExpression → ClassicalVelocity3ScalarExpression → ClassicalVelocity3VectorExpression with ClassicalTimeVectorExpression : Type | ClassicalTimeLitVector (sp : ClassicalTimeSpace) : ClassicalTimeVector sp → ClassicalTimeVectorExpression | ClassicalTimeVarVector : ClassicalTimeVectorVar → ClassicalTimeVectorExpression | ClassicalTimeAddVectorVector : ClassicalTimeVectorExpression → ClassicalTimeVectorExpression → ClassicalTimeVectorExpression | ClassicalTimeNegVector : ClassicalTimeVectorExpression → ClassicalTimeVectorExpression | ClassicalTimeMulScalarVector : RealScalarExpression → ClassicalTimeVectorExpression → ClassicalTimeVectorExpression | ClassicalTimeMulVectorScalar : ClassicalTimeVectorExpression → RealScalarExpression → ClassicalTimeVectorExpression | ClassicalTimeSubPointPoint : ClassicalTimePointExpression → ClassicalTimePointExpression → ClassicalTimeVectorExpression | ClassicalTimeParenVector : ClassicalTimeVectorExpression → ClassicalTimeVectorExpression | ClassicalTimeCoordVector : ClassicalTimeScalarExpression → ClassicalTimeVectorExpression with EuclideanGeometry3PointExpression : Type | EuclideanGeometry3LitPoint (sp : EuclideanGeometrySpace 3) : EuclideanGeometryPoint sp → EuclideanGeometry3PointExpression | EuclideanGeometry3VarPoint : EuclideanGeometry3PointVar → EuclideanGeometry3PointExpression | EuclideanGeometry3SubVectorVector : EuclideanGeometry3VectorExpression → EuclideanGeometry3VectorExpression → EuclideanGeometry3PointExpression | EuclideanGeometry3NegPoint : EuclideanGeometry3PointExpression → EuclideanGeometry3PointExpression | EuclideanGeometry3AddPointVector : EuclideanGeometry3PointExpression → EuclideanGeometry3VectorExpression → EuclideanGeometry3PointExpression | EuclideanGeometry3AddVectorPoint : EuclideanGeometry3VectorExpression → EuclideanGeometry3PointExpression → EuclideanGeometry3PointExpression | EuclideanGeometry3ScalarPoint : RealScalarExpression → EuclideanGeometry3PointExpression → EuclideanGeometry3PointExpression | EuclideanGeometry3PointScalar : EuclideanGeometry3PointExpression → RealScalarExpression → EuclideanGeometry3PointExpression | EuclideanGeometry3ParenPoint : EuclideanGeometry3PointExpression → EuclideanGeometry3PointExpression | EuclideanGeometry3CoordPoint : EuclideanGeometry3ScalarExpression → EuclideanGeometry3ScalarExpression → EuclideanGeometry3ScalarExpression → EuclideanGeometry3PointExpression with ClassicalTimePointExpression : Type |ClassicalTimeLitPoint (sp : ClassicalTimeSpace) : ClassicalTimePoint sp →ClassicalTimePointExpression |ClassicalTimeVarPoint :ClassicalTimePointVar →ClassicalTimePointExpression |ClassicalTimeSubVectorVector :ClassicalTimeVectorExpression →ClassicalTimeVectorExpression →ClassicalTimePointExpression |ClassicalTimeNegPoint :ClassicalTimePointExpression →ClassicalTimePointExpression |ClassicalTimeAddPointVector :ClassicalTimePointExpression →ClassicalTimeVectorExpression →ClassicalTimePointExpression |ClassicalTimeAddVectorPoint :ClassicalTimeVectorExpression →ClassicalTimePointExpression →ClassicalTimePointExpression |ClassicalTimeScalarPoint : RealScalarExpression →ClassicalTimePointExpression →ClassicalTimePointExpression |ClassicalTimePointScalar :ClassicalTimePointExpression → RealScalarExpression →ClassicalTimePointExpression |ClassicalTimeParenPoint :ClassicalTimePointExpression →ClassicalTimePointExpression |ClassicalTimeCoordPoint : ClassicalTimeScalarExpression →ClassicalTimePointExpression /- Space and frame expressions -/ mutual inductive PhysSpaceExpression, PhysFrameExpression, EuclideanGeometry3SpaceExpression, ClassicalTimeSpaceExpression, ClassicalVelocity3SpaceExpression, EuclideanGeometry3FrameExpression, ClassicalTimeFrameExpression, ClassicalVelocity3FrameExpression with PhysSpaceExpression : Type | EuclideanGeometry3Expr : EuclideanGeometry3SpaceExpression → PhysSpaceExpression | ClassicalTimeExpr : ClassicalTimeSpaceExpression → PhysSpaceExpression | ClassicalVelocity3Expr : ClassicalVelocity3SpaceExpression → PhysSpaceExpression | Var : PhysSpaceVar → PhysSpaceExpression with PhysFrameExpression : Type | EuclideanGeometry3FrameExpr : EuclideanGeometry3FrameExpression → PhysFrameExpression | ClassicalTimeFrameExpr : ClassicalTimeFrameExpression → PhysFrameExpression | ClassicalVelocity3FrameExpr : ClassicalVelocity3FrameExpression → PhysFrameExpression | Var : PhysFrameVar → PhysFrameExpression with EuclideanGeometry3SpaceExpression: Type | EuclideanGeometry3Literal (sp : EuclideanGeometrySpace 3) : EuclideanGeometry3SpaceExpression with ClassicalTimeSpaceExpression: Type | ClassicalTimeLiteral : ClassicalTimeSpace → ClassicalTimeSpaceExpression with ClassicalVelocity3SpaceExpression : Type | ClassicalVelocity3Literal : ClassicalVelocitySpace 3 → ClassicalVelocity3SpaceExpression with EuclideanGeometry3FrameExpression: Type | FrameLiteral {sp : EuclideanGeometrySpace 3} : EuclideanGeometryFrame sp → EuclideanGeometry3FrameExpression with ClassicalTimeFrameExpression: Type | FrameLiteral {sp : ClassicalTimeSpace} : ClassicalTimeFrame sp → ClassicalTimeFrameExpression with ClassicalVelocity3FrameExpression : Type | FrameLiteral {sp : ClassicalVelocitySpace 3} : ClassicalVelocityFrame sp → ClassicalVelocity3FrameExpression inductive PhysBooleanExpression : Type | BooleanTrue : PhysBooleanExpression | BooleanFalse : PhysBooleanExpression | BooleanAnd : PhysBooleanExpression → PhysBooleanExpression → PhysBooleanExpression | BooleanOr : PhysBooleanExpression → PhysBooleanExpression → PhysBooleanExpression | BooleanNot : PhysBooleanExpression → PhysBooleanExpression -- A LARGE NUMBER OF SCALAR AND VECTOR INEQUALITIES BELONG HERE /- KEVIN: These are kinds of thoughts we want to be able to express when annotating code: var geom := GeometricEuclideanSpace("World geometry",3) var stdGeomFrame := geom.stdFrame() var stdGeomOrigin := stdGeomFrame.origin(); -/ /- Imperative top-level DSL syntax -/ inductive PhysCommand : Type | SpaceAssignment : PhysSpaceVar → PhysSpaceExpression → PhysCommand | FrameAssignment : PhysFrameVar → PhysFrameExpression → PhysCommand | Assignment : PhysDimensionalVar → PhysDimensionalExpression → PhysCommand | While : PhysBooleanExpression → PhysCommand → PhysCommand | IfThenElse : PhysBooleanExpression → PhysCommand → PhysCommand → PhysCommand | Seq : PhysCommand → PhysCommand → PhysCommand | CmdExpr : PhysDimensionalExpression → PhysCommand /- NOTATIONS BEGIN HERE --7/16 (7/15) - OUR MAGIC NOTATION CANDIDATE LIST: --https://www.caam.rice.edu/~heinken/latex/symbols.pdf -/ notation !n := EuclideanGeometry3SpaceVar.mk n notation !n := ClassicalTimeSpaceVar.mk n notation !n := ClassicalVelocity3SpaceVar.mk n notation !n := EuclideanGeometry3FrameVar.mk n notation !n := ClassicalTimeFrameVar.mk n notation !n := ClassicalVelocity3FrameVar.mk n notation !n := RealScalarVar.mk n notation !n := EuclideanGeometry3ScalarVar.mk n notation !n := ClassicalTimeScalarVar.mk n notation !n := ClassicalVelocity3ScalarVar.mk n notation !n := EuclideanGeometry3VectorVar.mk n notation !n := ClassicalTimeVectorVar.mk n notation !n := ClassicalVelocity3VectorVar.mk n notation !n := EuclideanGeometry3PointVar.mk n notation !n := ClassicalTimePointVar.mk n notation ?e := PhysSpaceVar.EuclideanGeometryLiteral e notation ?e := PhysSpaceVar.ClassicalTimeLiteral e notation ?e := PhysSpaceVar.ClassicalVelocityLiteral 3 notation a=b := PhysCommand.Assignment a b notation a=b := PhysCommand.SpaceAssignment a b notation a=b := PhysCommand.FrameAssignment a b notation ⊢e := PhysDimensionalVar.RealScalar e notation ⊢e := PhysDimensionalVar.EuclideanGeometry3Scalar e notation ⊢e := PhysDimensionalVar.ClassicalTimeScalar e notation ⊢e := PhysDimensionalVar.ClassicalVelocity3Scalar e notation ⊢e := PhysDimensionalVar.EuclideanGeometry3Vector e notation ⊢e := PhysDimensionalVar.ClassicalTimeVector e notation ⊢e := PhysDimensionalVar.ClassicalVelocity3Vector e notation ⊢e := PhysDimensionalVar.EuclideanGeometry3Point e notation ⊢e := PhysDimensionalVar.ClassicalTimePoint e notation ⊢e := PhysDimensionalExpression.RealScalarExpression e notation ⊢e := PhysDimensionalExpression.EuclideanGeometry3Scalar e notation ⊢e := PhysDimensionalExpression.ClassicalTimeScalar e notation ⊢e := PhysDimensionalExpression.ClassicalVelocity3Scalar e notation ⊢e := PhysDimensionalExpression.EuclideanGeometry3Vector e notation ⊢e := PhysDimensionalExpression.ClassicalTimeVector e notation ⊢e := PhysDimensionalExpression.ClassicalVelocity3Vector e notation ⊢e := PhysDimensionalExpression.EuclideanGeometry3Point e notation ⊢e := PhysDimensionalExpression.ClassicalTimePoint e notation ⊢v := PhysSpaceVar.ClassicalTime v notation ⊢v := PhysSpaceVar.ClassicalVelocity3 v notation ⊢v := PhysSpaceVar.EuclideanGeometry3 v notation ⊢e := PhysSpaceExpression.ClassicalTimeExpr e notation ⊢e := PhysSpaceExpression.ClassicalVelocity3Expr e notation ⊢e := PhysSpaceExpression.EuclideanGeometry3Expr e notation ⊢v := PhysFrameVar.ClassicalTime v notation ⊢v := PhysFrameVar.ClassicalVelocity3 v notation ⊢v := PhysFrameVar.EuclideanGeometry3 v notation ⊢e := PhysFrameExpression.ClassicalTimeFrameExpr e notation ⊢e := PhysFrameExpression.ClassicalVelocity3FrameExpr e notation ⊢e := PhysFrameExpression.EuclideanGeometry3FrameExpr e notation !n := RealScalarVar.mk n notation !n := EuclideanGeometry3ScalarVar.mk n notation !n := ClassicalTimeScalarVar.mk n notation !n := ClassicalVelocity3ScalarVar.mk n notation !n := EuclideanGeometry3VectorVar.mk n notation !n := ClassicalTimeVectorVar.mk n notation !n := ClassicalVelocity3VectorVar.mk n notation !n := EuclideanGeometry3PointVar.mk n notation !n := ClassicalTimePointVar.mk n --RealScalarExpression Notations notation %e := RealScalarExpression.RealVarScalar e instance : has_add RealScalarExpression := ⟨RealScalarExpression.RealAddScalarScalar⟩ notation e1 - e2 := RealScalarExpression.RealSubScalarScalar e1 e2 notation e1 ⬝ e2 := RealScalarExpression.RealMulScalarScalar e1 e2 notation e1 / e2 := RealScalarExpression.RealDivScalarScalar e1 e2 instance : has_neg RealScalarExpression := ⟨RealScalarExpression.RealNegScalar⟩ notation e⁻¹ := RealScalarExpression.RealInvScalar e notation $e := RealScalarExpression.RealParenScalar e notation ⬝e := RealScalarExpression.RealLitScalar e --EuclideanGeometry3ScalarExpression Notations notation %e := EuclideanGeometry3ScalarExpression.GeometricVarScalar e instance : has_add EuclideanGeometry3ScalarExpression := ⟨EuclideanGeometry3ScalarExpression.GeometricAddScalarScalar⟩ notation e1 - e2 := EuclideanGeometry3ScalarExpression.GeometricSubScalarScalar e1 e2 notation e1 ⬝ e2 := EuclideanGeometry3ScalarExpression.GeometricMulScalarScalar e1 e2 notation e1 / e2 := EuclideanGeometry3ScalarExpression.GeometricDivScalarScalar e1 e2 instance : has_neg EuclideanGeometry3ScalarExpression := ⟨EuclideanGeometry3ScalarExpression.GeometricNegScalar⟩ notation e⁻¹ := EuclideanGeometry3ScalarExpression.GeometricInvScalar e notation $e := EuclideanGeometry3ScalarExpression.GeometricParenScalar e notation |e| := EuclideanGeometry3ScalarExpression.GeometricNormVector e notation ⬝e := EuclideanGeometry3ScalarExpression.GeometricLitScalar e --ClassicalTimeScalarExpression Notations notation %e := ClassicalTimeScalarExpression.ClassicalTimeVarScalar instance : has_add ClassicalTimeScalarExpression := ⟨ClassicalTimeScalarExpression.ClassicalTimeAddScalarScalar⟩ notation e1 - e2 := ClassicalTimeScalarExpression.ClassicalTimeSubScalarScalar e1 e2 notation e1 ⬝ e2 := ClassicalTimeScalarExpression.ClassicalTimeMulScalarScalar e1 e2 notation e1 / e2 := ClassicalTimeScalarExpression.ClassicalTimeDivScalarScalar e1 e2 instance : has_neg ClassicalTimeScalarExpression := ⟨ClassicalTimeScalarExpression.ClassicalTimeNegScalar⟩ notation e⁻¹ := ClassicalTimeScalarExpression.ClassicalTimeInvScalar e notation $e := ClassicalTimeScalarExpression.ClassicalTimeParenScalar e notation |e| := ClassicalTimeScalarExpression.ClassicalTimeNormVector e notation ⬝e := ClassicalTimeScalarExpression.ClassicalTimeLitScalar e --ClassicalVelocity3ScalarExpression Notations notation %e := ClassicalVelocity3ScalarExpression.VelocityVarScalar e instance : has_add ClassicalVelocity3ScalarExpression := ⟨ClassicalVelocity3ScalarExpression.VelocityAddScalarScalar⟩ notation e1 - e2 := ClassicalVelocity3ScalarExpression.VelocitySubScalarScalar e1 e2 notation e1 ⬝ e2 := ClassicalVelocity3ScalarExpression.VelocityMulScalarScalar e1 e2 notation e1 / e2 := ClassicalVelocity3ScalarExpression.VelocityDivScalarScalar e1 e2 instance : has_neg ClassicalVelocity3ScalarExpression := ⟨ClassicalVelocity3ScalarExpression.VelocityNegScalar⟩ notation e⁻¹ := ClassicalVelocity3ScalarExpression.VelocityInvScalar e notation $e := ClassicalVelocity3ScalarExpression.VelocityParenScalar e notation |e| := ClassicalVelocity3ScalarExpression.VelocityNormVector e notation ⬝e := ClassicalVelocity3ScalarExpression.VelocityLitScalar e --Geometric3Vector Notations notation %e := EuclideanGeometry3VectorExpression.EuclideanGeometry3VarVector e instance : has_add EuclideanGeometry3VectorExpression := ⟨EuclideanGeometry3VectorExpression.EuclideanGeometry3AddVectorVector⟩ instance : has_neg EuclideanGeometry3VectorExpression := ⟨EuclideanGeometry3VectorExpression.EuclideanGeometry3NegVector⟩ notation c ⬝ e := EuclideanGeometry3VectorExpression.EuclideanGeometry3MulScalarVector c e notation e ⬝ c := EuclideanGeometry3VectorExpression.EuclideanGeometry3MulVectorScalar e c notation e1 - e2 := EuclideanGeometry3VectorExpression.EuclideanGeometry3SubPointPoint e1 e2 notation $e := EuclideanGeometry3VectorExpression.EuclideanGeometry3ParenVector e notation ~e := EuclideanGeometry3VectorExpression.EuclideanGeometry3LitVector e notation e1⬝e2⬝e3 := EuclideanGeometry3VectorExpression.EuclideanGeometry3CoordVector e1 e2 e3 --ClassicalVelocity3Vector Notations notation %e := ClassicalVelocity3VectorExpression.ClassicalVelocity3VarVector e instance : has_add ClassicalVelocity3VectorExpression := ⟨ClassicalVelocity3VectorExpression.ClassicalVelocity3AddVectorVector⟩ instance : has_neg ClassicalVelocity3VectorExpression := ⟨ClassicalVelocity3VectorExpression.ClassicalVelocity3NegVector⟩ notation c ⬝ e := ClassicalVelocity3VectorExpression.ClassicalVelocity3MulScalarVector c e notation e ⬝ c := ClassicalVelocity3VectorExpression.ClassicalVelocity3MulVectorScalar e c notation e1 - e2 := ClassicalVelocity3VectorExpression.ClassicalVelocity3SubPointPoint e1 e2 notation $e := ClassicalVelocity3VectorExpression.ClassicalVelocity3ParenVector e notation ~e := ClassicalVelocity3VectorExpression.ClassicalVelocity3LitVector e notation e1⬝e2⬝e3 := ClassicalVelocity3VectorExpression.ClassicalVelocity3CoordVector e1 e2 e3 --ClassicalTimeVector Notations notation %e := ClassicalTimeVectorExpression.ClassicalTimeVarVector e instance : has_add ClassicalTimeVectorExpression := ⟨ClassicalTimeVectorExpression.ClassicalTimeAddVectorVector⟩ instance : has_neg ClassicalTimeVectorExpression := ⟨ClassicalTimeVectorExpression.ClassicalTimeNegVector⟩ notation c⬝e := ClassicalTimeVectorExpression.ClassicalTimeMulScalarVector c e notation e⬝c := ClassicalTimeVectorExpression.ClassicalTimeMulVectorScalar e c notation e1-e2 := ClassicalTimeVectorExpression.ClassicalTimeSubPointPoint e1 e2 notation $e := ClassicalTimeVectorExpression.ClassicalTimeParenVector e notation ~e := ClassicalTimeVectorExpression.ClassicalTimeLitVector e notation ⬝e := ClassicalTimeVectorExpression.ClassicalTimeCoordVector e --EuclideanGeometry3Point Notations notation %e := EuclideanGeometry3PointExpression.EuclideanGeometry3VarPoint e notation e1 - e2 := EuclideanGeometry3PointExpression.EuclideanGeometry3SubVectorVector e1 e2 instance : has_neg EuclideanGeometry3PointExpression := ⟨EuclideanGeometry3PointExpression.EuclideanGeometry3NegPoint⟩ instance : has_trans EuclideanGeometry3VectorExpression EuclideanGeometry3PointExpression := ⟨EuclideanGeometry3PointExpression.EuclideanGeometry3AddVectorPoint⟩ notation c • e := EuclideanGeometry3PointExpression.EuclideanGeometry3ScalarPoint c e notation e • c := EuclideanGeometry3PointExpression.EuclideanGeometry3PointScalar e c notation $e := EuclideanGeometry3PointExpression.EuclideanGeometry3ParenPoint e notation ~e := EuclideanGeometry3PointExpression.EuclideanGeometry3LitPoint e notation e1⬝e2⬝e3 := EuclideanGeometry3PointExpression.EuclideanGeometry3CoordPoint e1 e2 e3 --ClassicalTimePoint Notations notation %e := ClassicalTimePointExpression.ClassicalTimeVarPoint e notation e1 ⊹ e2 := ClassicalTimePointExpression.ClassicalTimeAddPointVector e1 e2 instance : has_trans ClassicalTimeVectorExpression ClassicalTimePointExpression := ⟨ClassicalTimePointExpression.ClassicalTimeAddVectorPoint⟩ notation $e := ClassicalTimePointExpression.ClassicalTimeParenPoint e notation e1 - e2 := ClassicalTimePointExpression.ClassicalTimeSubVectorVector e1 e2 instance : has_neg ClassicalTimePointExpression := ⟨ClassicalTimePointExpression.ClassicalTimeNegPoint⟩ notation c • e := ClassicalTimePointExpression.ClassicalTimeScalarPoint c e notation e • c := ClassicalTimePointExpression.ClassicalTimePointScalar e c notation ~e := ClassicalTimePointExpression.ClassicalTimeLitPoint e notation ⬝e := ClassicalTimePointExpression.ClassicalTimeCoordPoint e abbreviation RealScalarInterp := RealScalarVar → RealScalar --abbreviation EuclideanGeometryScalarInterp := EuclideanGeometry3ScalarVar → EuclideanGeometryScalar --abbreviation ClassicalTimeScalarInterp := ClassicalTimeScalarVar → ClassicalTimeScalar --abbreviation ClassicalVelocityScalarInterp := ClassicalVelocity3ScalarVar → ClassicalVelocityScalar abbreviation EuclideanGeometry3ScalarInterp := EuclideanGeometry3ScalarVar → EuclideanGeometry3Scalar abbreviation ClassicalTimeScalarInterp := ClassicalTimeScalarVar → ClassicalTimeScalar abbreviation ClassicalVelocity3ScalarInterp := ClassicalVelocity3ScalarVar → ClassicalVelocity3Scalar abbreviation EuclideanGeometry3VectorInterp (sp : EuclideanGeometrySpace 3) := EuclideanGeometry3VectorVar → EuclideanGeometryVector sp abbreviation ClassicalTimeVectorInterp (sp : ClassicalTimeSpace) := ClassicalTimeVectorVar → ClassicalTimeVector sp abbreviation ClassicalVelocity3VectorInterp (sp : ClassicalVelocitySpace 3):= ClassicalVelocity3VectorVar → ClassicalVelocityVector sp abbreviation EuclideanGeometry3PointInterp (sp : EuclideanGeometrySpace 3):= EuclideanGeometry3PointVar → EuclideanGeometryPoint sp abbreviation ClassicalTimePointInterp (sp : ClassicalTimeSpace) := ClassicalTimePointVar → ClassicalTimePoint sp --abbreviation ClassicalVelocity3PointInterp := ClassicalVelocity3PointVar → ClassicalVelocity3PointStruct def DefaultRealScalarInterp : RealScalarInterp := λ scalar, RealScalarDefault /- EVALUATION / SEMANTICS? -/ def EvalEuclideanGeometry3SpaceExpression : EuclideanGeometry3SpaceExpression → EuclideanGeometrySpace 3 | (EuclideanGeometry3SpaceExpression.EuclideanGeometry3Literal sp) := sp def EvalClassicalVelocity3SpaceExpression : ClassicalVelocity3SpaceExpression → ClassicalVelocitySpace 3 | (ClassicalVelocity3SpaceExpression.ClassicalVelocity3Literal sp) := sp def EvalClassicalTimeSpaceExpression : ClassicalTimeSpaceExpression → ClassicalTimeSpace | (ClassicalTimeSpaceExpression.ClassicalTimeLiteral sp) := sp /- OLD COMMENTS BELOW, SAVED FOR NOW -/ /- -- Imperative top-level DSL syntax mutual inductive PhysProgram, PhysFunction, PhysGlobalCommand, PhysCommand with PhysProgram : Type | Program : PhysGlobalCommand → PhysProgram with PhysFunction : Type | DeclareFunction : PhysCommand → PhysFunction with PhysGlobalCommand : Type | Seq : list PhysGlobalCommand → PhysGlobalCommand | GlobalSpace : PhysSpaceVar → PhysSpaceExpression → PhysGlobalCommand | GlobalFrame : PhysFrameVar → PhysFrameExpression → PhysGlobalCommand | Function : PhysCommand → PhysGlobalCommand | Main : PhysCommand → PhysGlobalCommand with PhysCommand : Type | Seq : list PhysCommand → PhysCommand --| Block : PhysCommand → PhysCommand | While : PhysBooleanExpression → PhysCommand → PhysCommand | IfThenElse : PhysBooleanExpression → PhysCommand → PhysCommand → PhysCommand | Assignment : PhysDimensionalVar → PhysDimensionalExpression → PhysCommand --| Expression : PhysDimensionalExpression -/ /- What exactly does the DSL instance look like for our 0-line program def BuildEuclideanGeometry3Space : EuclideanGeometrySpace 3 := EuclideanGeometrySpace.SpaceLiteral 3 (PhysAffineSpace.SpaceLiteral 3 meters si_standard) <needs to be connected to mathlib> def x := PhysSpaceVar.mk 1 def y := PhysSpaceExpression.SpaceLiteral <a physlib object> def z := PhysGlobalCommand.GlobalSpace x y def a := PhysGlobalCommand.Seq z def prog := PhysProgram z OR def prog := PhysProgram a OR def prog := a def := PhysGlobalGlobal def X : EuclideanGeometry3ScalarExpression := EuclideanGeometry3ScalarExpression.GeometricLitScalar (EuclideanGeometry3Scalar.mk 0 meters) def Y : EuclideanGeometry3ScalarExpression := EuclideanGeometry3ScalarExpression.GeometricLitScalar (EuclideanGeometry3Scalar.mk 0 meters) def Z : EuclideanGeometry3ScalarExpression := EuclideanGeometry3ScalarExpression.GeometricLitScalar (EuclideanGeometry3Scalar.mk 0 meters) def R : RealScalarExpression := RealScalarExpression.RealLitScalar RealScalarDefault def geomexpr : EuclideanGeometry3VectorExpression := EuclideanGeometry3VectorExpression.EuclideanGeometry3CoordVector X Y Z def geom2expr : EuclideanGeometry3VectorExpression := X⬝Y⬝Z #check EuclideanGeometry3VectorExpression.EuclideanGeometry3CoordVector X Y Z #check R ⬝ geomexpr -/ /- def EvalEuclideanGeometry3FrameExpression : EuclideanGeometry3SpaceExpression → EuclideanGeometrySpace 3 | (EuclideanGeometry3SpaceExpression.EuclideanGeometry3Literal sp) := sp def EvalClassicalVelocity3FrameExpression : ClassicalVelocity3SpaceExpression → ClassicalVelocitySpace 3 | (ClassicalVelocity3SpaceExpression.ClassicalVelocity3Literal sp) := sp def EvalClassicalTimeFrameExpression {sp : ClassicalTimeSpace} : ClassicalTimeFrameExpression sp → ClassicalTimeFrame sp | (ClassicalTimeFrameExpression.FrameLiteral fr) := fr -/ --def DefaultEuclideanGeometry3ScalarInterp : EuclideanGeometry3ScalarInterp := λ scalar, EuclideanGeometry3ScalarDefault --def DefaultClassicalTimeScalarInterp : ClassicalTimeScalarInterp := λ scalar, ClassicalTimeScalarDefault --def DefaultClassicalVelocity3ScalarInterp : ClassicalVelocity3ScalarInterp := λ scalar, ClassicalVelocity3ScalarDefault /- def DefaultEuclideanGeometry3VectorInterp : EuclideanGeometry3VectorInterp := λ vector, EuclideanGeometry3VectorDefault geom3 def DefaultClassicalTimeVectorInterp : ClassicalTimeVectorInterp := λ vector, ClassicalTimeVectorDefault ClassicalTime def DefaultClassicalVelocity3VectorInterp : ClassicalVelocity3VectorInterp := λ vector, ClassicalVelocity3VectorDefault vel def DefaultEuclideanGeometry3PointInterp : EuclideanGeometry3PointInterp := λ point, EuclideanGeometry3PointDefault geom3 def DefaultClassicalTimePointInterp : ClassicalTimePointInterp := λ point, ClassicalTimePointDefault ClassicalTime -/ --def DefaultClassicalVelocity3PointInterp : ClassicalVelocity3PointInterp := λ point, ClassicalVelocity3Point_zero /- def realScalarEval : RealScalarExpression → RealScalarInterp → ℝ | (RealScalarExpression.RealLitScalar r) i := r.val | (RealScalarExpression.RealVarScalar v) i := (i v).val | (RealScalarExpression.RealAddScalarScalar e1 e2) i := (realScalarEval e1 i) + (realScalarEval e2 i) | (RealScalarExpression.RealSubScalarScalar e1 e2) i := (realScalarEval e1 i) - (realScalarEval e2 i) | (RealScalarExpression.RealMulScalarScalar e1 e2) i := (realScalarEval e1 i) * (realScalarEval e2 i) | (RealScalarExpression.RealNegScalar e) i := -1 * (realScalarEval e i) | (RealScalarExpression.RealParenScalar e) i := realScalarEval e i | (RealScalarExpression.RealDivScalarScalar e1 e2) i := RealScalarDefault.val | (RealScalarExpression.RealInvScalar e) i := RealScalarDefault.val def EuclideanGeometry3ScalarEval : EuclideanGeometry3ScalarExpression → EuclideanGeometry3ScalarInterp → ℝ | (EuclideanGeometry3ScalarExpression.GeometricLitScalar r) i := r.val | (EuclideanGeometry3ScalarExpression.GeometricVarScalar v) i := (i v).val | (EuclideanGeometry3ScalarExpression.GeometricAddScalarScalar e1 e2) i := (EuclideanGeometry3ScalarEval e1 i) + (EuclideanGeometry3ScalarEval e2 i) | (EuclideanGeometry3ScalarExpression.GeometricSubScalarScalar e1 e2) i := (EuclideanGeometry3ScalarEval e1 i) - (EuclideanGeometry3ScalarEval e2 i) | (EuclideanGeometry3ScalarExpression.GeometricMulScalarScalar e1 e2) i := (EuclideanGeometry3ScalarEval e1 i) * (EuclideanGeometry3ScalarEval e2 i) | (EuclideanGeometry3ScalarExpression.GeometricNegScalar e) i := -1 * (EuclideanGeometry3ScalarEval e i) | (EuclideanGeometry3ScalarExpression.GeometricParenScalar e) i := EuclideanGeometry3ScalarEval e i | (EuclideanGeometry3ScalarExpression.GeometricDivScalarScalar e1 e2) i := EuclideanGeometry3ScalarDefault.val | (EuclideanGeometry3ScalarExpression.GeometricInvScalar e) i := EuclideanGeometry3ScalarDefault.val | (EuclideanGeometry3ScalarExpression.GeometricNormVector v) i := EuclideanGeometry3ScalarDefault.val def ClassicalTimeScalarEval : ClassicalTimeScalarExpression → ClassicalTimeScalarInterp → ℝ | (ClassicalTimeScalarExpression.ClassicalTimeLitScalar r) i := r.val | (ClassicalTimeScalarExpression.ClassicalTimeVarScalar v) i := (i v).val | (ClassicalTimeScalarExpression.ClassicalTimeAddScalarScalar e1 e2) i := (ClassicalTimeScalarEval e1 i) + (ClassicalTimeScalarEval e2 i) | (ClassicalTimeScalarExpression.ClassicalTimeSubScalarScalar e1 e2) i := (ClassicalTimeScalarEval e1 i) - (ClassicalTimeScalarEval e2 i) | (ClassicalTimeScalarExpression.ClassicalTimeMulScalarScalar e1 e2) i := (ClassicalTimeScalarEval e1 i) * (ClassicalTimeScalarEval e2 i) | (ClassicalTimeScalarExpression.ClassicalTimeNegScalar e) i := -1 * (ClassicalTimeScalarEval e i) | (ClassicalTimeScalarExpression.ClassicalTimeParenScalar e) i := ClassicalTimeScalarEval e i | (ClassicalTimeScalarExpression.ClassicalTimeDivScalarScalar e1 e2) i := ClassicalTimeScalarDefault.val | (ClassicalTimeScalarExpression.ClassicalTimeInvScalar e) i := ClassicalTimeScalarDefault.val | (ClassicalTimeScalarExpression.ClassicalTimeNormVector v) i := ClassicalTimeScalarDefault.val def ClassicalVelocity3ScalarEval : ClassicalVelocity3ScalarExpression → ClassicalVelocity3ScalarInterp → ℝ | (ClassicalVelocity3ScalarExpression.VelocityLitScalar r) i := r.val | (ClassicalVelocity3ScalarExpression.VelocityVarScalar v) i := (i v).val | (ClassicalVelocity3ScalarExpression.VelocityAddScalarScalar e1 e2) i := (ClassicalVelocity3ScalarEval e1 i) + (ClassicalVelocity3ScalarEval e2 i) | (ClassicalVelocity3ScalarExpression.VelocitySubScalarScalar e1 e2) i := (ClassicalVelocity3ScalarEval e1 i) - (ClassicalVelocity3ScalarEval e2 i) | (ClassicalVelocity3ScalarExpression.VelocityMulScalarScalar e1 e2) i := (ClassicalVelocity3ScalarEval e1 i) * (ClassicalVelocity3ScalarEval e2 i) | (ClassicalVelocity3ScalarExpression.VelocityNegScalar e) i := -1 * (ClassicalVelocity3ScalarEval e i) | (ClassicalVelocity3ScalarExpression.VelocityParenScalar e) i := ClassicalVelocity3ScalarEval e i | (ClassicalVelocity3ScalarExpression.VelocityDivScalarScalar e1 e2) i := ClassicalVelocity3ScalarDefault.val | (ClassicalVelocity3ScalarExpression.VelocityInvScalar e) i := ClassicalVelocity3ScalarDefault.val | (ClassicalVelocity3ScalarExpression.VelocityNormVector v) i := ClassicalVelocity3ScalarDefault.val def EuclideanGeometry3VectorEval : EuclideanGeometry3VectorExpression → EuclideanGeometry3VectorInterp → EuclideanGeometry3Vector | (EuclideanGeometry3VectorExpression.EuclideanGeometry3LitVector vec) i := vec | (EuclideanGeometry3VectorExpression.EuclideanGeometry3VarVector v) i := i v | (EuclideanGeometry3VectorExpression.EuclideanGeometry3AddVectorVector v1 v2) i := EuclideanGeometry3VectorDefault geom3 | (EuclideanGeometry3VectorExpression.EuclideanGeometry3NegVector v) i := EuclideanGeometry3VectorDefault geom3 | (EuclideanGeometry3VectorExpression.EuclideanGeometry3MulScalarVector c v) i := EuclideanGeometry3VectorDefault geom3 | (EuclideanGeometry3VectorExpression.EuclideanGeometry3MulVectorScalar v c) i := EuclideanGeometry3VectorDefault geom3 | (EuclideanGeometry3VectorExpression.EuclideanGeometry3SubPointPoint p1 p2) i := EuclideanGeometry3VectorDefault geom3 | (EuclideanGeometry3VectorExpression.EuclideanGeometry3ParenVector v) i := EuclideanGeometry3VectorDefault geom3 | (EuclideanGeometry3VectorExpression.EuclideanGeometry3CoordVector x y z) i := EuclideanGeometry3VectorDefault geom3 def ClassicalVelocity3VectorEval : ClassicalVelocity3VectorExpression → ClassicalVelocity3VectorInterp → ClassicalVelocity3Vector | _ _ := ClassicalVelocity3VectorDefault vel def ClassicalTimeVectorEval : ClassicalTimeVectorExpression → ClassicalTimeVectorInterp → ClassicalTimeVector | _ _ := ClassicalTimeVectorDefault ClassicalTime def EuclideanGeometry3PointEval : EuclideanGeometry3PointExpression → EuclideanGeometry3PointInterp → EuclideanGeometry3PointStruct | _ _ := EuclideanGeometry3PointDefault geom3 def ClassicalTimePointEval : ClassicalTimePointExpression → ClassicalTimePointInterp → ClassicalTimePointStruct | _ _ := ClassicalTimePointDefault ClassicalTime -/ /- | (RealScalarExpression.RealLitScalar r) i := r | (RealScalarExpression.RealVarScalar v) i := i v | (RealScalarExpression.RealAddScalarScalar e1 e2) i := realScalarEval e1 i + realScalarEval e2 i | (RealScalarExpression.RealSubScalarScalar e1 e2) i := realScalarEval e1 i - realScalarEval e2 i | (RealScalarExpression.RealMulScalarScalar e1 e2) i := realScalarEval e1 i * realScalarEval e2 i | (RealScalarExpression.RealDivScalarScalar e1 e2) i := realScalarEval e1 i / realScalarEval e2 i | (RealScalarExpression.RealNegScalar e) i := -1 * realScalarEval e i | (RealScalarExpression.RealInvScalar e) i := 1 / realScalarEval e i | (RealScalarExpression.RealParenScalar e) i := realScalarEval e i -/ /- important for static analysis!! 100 scalar variables nontrivial : map them individually to a value that makes sense, can change at different points in program start of program : interp mapping 1 end of program : interp mapping n default : map them all to 0 -/ /- REAL PROGRAM : 100 variables 95 "UNKNOWN" ~ loose bound on "5" of them CTRLH ℝ → ℚ -/
1b9338ec307d3e0119b345a60ecb58f1749ebf74
fa02ed5a3c9c0adee3c26887a16855e7841c668b
/src/data/real/conjugate_exponents.lean
387d6b03fde8d72ee32baa916d52405c2ba2fb68
[ "Apache-2.0" ]
permissive
jjgarzella/mathlib
96a345378c4e0bf26cf604aed84f90329e4896a2
395d8716c3ad03747059d482090e2bb97db612c8
refs/heads/master
1,686,480,124,379
1,625,163,323,000
1,625,163,323,000
281,190,421
2
0
Apache-2.0
1,595,268,170,000
1,595,268,169,000
null
UTF-8
Lean
false
false
3,696
lean
/- Copyright (c) 2020 Sébastien Gouëzel. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Sébastien Gouëzel, Yury Kudryashov -/ import data.real.ennreal /-! # Real conjugate exponents `p.is_conjugate_exponent q` registers the fact that the real numbers `p` and `q` are `> 1` and satisfy `1/p + 1/q = 1`. This property shows up often in analysis, especially when dealing with `L^p` spaces. We make several basic facts available through dot notation in this situation. We also introduce `p.conjugate_exponent` for `p / (p-1)`. When `p > 1`, it is conjugate to `p`. -/ noncomputable theory namespace real /-- Two real exponents `p, q` are conjugate if they are `> 1` and satisfy the equality `1/p + 1/q = 1`. This condition shows up in many theorems in analysis, notably related to `L^p` norms. -/ structure is_conjugate_exponent (p q : ℝ) : Prop := (one_lt : 1 < p) (inv_add_inv_conj : 1/p + 1/q = 1) /-- The conjugate exponent of `p` is `q = p/(p-1)`, so that `1/p + 1/q = 1`. -/ def conjugate_exponent (p : ℝ) : ℝ := p/(p-1) namespace is_conjugate_exponent variables {p q : ℝ} (h : p.is_conjugate_exponent q) include h /- Register several non-vanishing results following from the fact that `p` has a conjugate exponent `q`: many computations using these exponents require clearing out denominators, which can be done with `field_simp` given a proof that these denominators are non-zero, so we record the most usual ones. -/ lemma pos : 0 < p := lt_trans zero_lt_one h.one_lt lemma nonneg : 0 ≤ p := le_of_lt h.pos lemma ne_zero : p ≠ 0 := ne_of_gt h.pos lemma sub_one_pos : 0 < p - 1 := sub_pos.2 h.one_lt lemma sub_one_ne_zero : p - 1 ≠ 0 := ne_of_gt h.sub_one_pos lemma one_div_pos : 0 < 1/p := one_div_pos.2 h.pos lemma one_div_nonneg : 0 ≤ 1/p := le_of_lt h.one_div_pos lemma one_div_ne_zero : 1/p ≠ 0 := ne_of_gt (h.one_div_pos) lemma conj_eq : q = p/(p-1) := begin have := h.inv_add_inv_conj, rw [← eq_sub_iff_add_eq', one_div, inv_eq_iff] at this, field_simp [← this, h.ne_zero] end lemma conjugate_eq : conjugate_exponent p = q := h.conj_eq.symm lemma sub_one_mul_conj : (p - 1) * q = p := mul_comm q (p - 1) ▸ (eq_div_iff h.sub_one_ne_zero).1 h.conj_eq lemma mul_eq_add : p * q = p + q := by simpa only [sub_mul, sub_eq_iff_eq_add, one_mul] using h.sub_one_mul_conj @[symm] protected lemma symm : q.is_conjugate_exponent p := { one_lt := by { rw [h.conj_eq], exact (one_lt_div h.sub_one_pos).mpr (sub_one_lt p) }, inv_add_inv_conj := by simpa [add_comm] using h.inv_add_inv_conj } lemma one_lt_nnreal : 1 < real.to_nnreal p := begin rw [←real.to_nnreal_one, real.to_nnreal_lt_to_nnreal_iff h.pos], exact h.one_lt, end lemma inv_add_inv_conj_nnreal : 1 / real.to_nnreal p + 1 / real.to_nnreal q = 1 := by rw [← real.to_nnreal_one, ← real.to_nnreal_div' h.nonneg, ← real.to_nnreal_div' h.symm.nonneg, ← real.to_nnreal_add h.one_div_nonneg h.symm.one_div_nonneg, h.inv_add_inv_conj] lemma inv_add_inv_conj_ennreal : 1 / ennreal.of_real p + 1 / ennreal.of_real q = 1 := by rw [← ennreal.of_real_one, ← ennreal.of_real_div_of_pos h.pos, ← ennreal.of_real_div_of_pos h.symm.pos, ← ennreal.of_real_add h.one_div_nonneg h.symm.one_div_nonneg, h.inv_add_inv_conj] end is_conjugate_exponent lemma is_conjugate_exponent_iff {p q : ℝ} (h : 1 < p) : p.is_conjugate_exponent q ↔ q = p/(p-1) := ⟨λ H, H.conj_eq, λ H, ⟨h, by field_simp [H, ne_of_gt (lt_trans zero_lt_one h)]⟩⟩ lemma is_conjugate_exponent_conjugate_exponent {p : ℝ} (h : 1 < p) : p.is_conjugate_exponent (conjugate_exponent p) := (is_conjugate_exponent_iff h).2 rfl end real
45538b07b98bc5e393da64e0c43828733e793888
01f6b345a06ece970e589d4bbc68ee8b9b2cf58a
/src/filter.lean
e0ea37fa23645f0a12d29e6878357b42070a7bf5
[]
no_license
mariainesdff/norm_extensions_journal_submission
6077acb98a7200de4553e653d81d54fb5d2314c8
d396130660935464fbc683f9aaf37fff8a890baa
refs/heads/master
1,686,685,693,347
1,684,065,115,000
1,684,065,115,000
603,823,641
0
0
null
null
null
null
UTF-8
Lean
false
false
2,789
lean
/- Copyright (c) 2023 María Inés de Frutos-Fernández. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: María Inés de Frutos-Fernández -/ import topology.instances.nnreal /-! # Limits of monotone and antitone sequences We prove some auxiliary results about limits of `ℝ`-valued and `ℝ≥0`-valued sequences. ## Main Results * `real.tendsto_of_is_bounded_antitone` : an antitone, bounded below sequence `f : ℕ → ℝ` has a finite limit. * `nnreal.tendsto_of_is_bounded_antitone` : an antitone sequence `f : ℕ → ℝ≥0` has a finite limit. ## Tags glb, monotone, antitone, tendsto -/ open_locale filter topological_space /-- A nonempty, bounded below set of real numbers has a greatest lower bound. -/ theorem real.exists_is_glb {S : set ℝ} (hne : S.nonempty) (hbdd : bdd_below S) : ∃ x, is_glb S x := begin set T := - S with hT, have hT_ne : T.nonempty := set.nonempty_neg.mpr hne, have hT_bdd : bdd_above T := bdd_above_neg.mpr hbdd, use -classical.some (real.exists_is_lub T hT_ne hT_bdd), simpa [← is_lub_neg] using (classical.some_spec (real.exists_is_lub T hT_ne hT_bdd)), end /-- An monotone, bounded above sequence `f : ℕ → ℝ` has a finite limit. -/ lemma filter.tendsto_of_is_bounded_monotone {f : ℕ → ℝ} (h_bdd : bdd_above (set.range f)) (h_mon : monotone f) : ∃ r : ℝ, filter.tendsto f filter.at_top (𝓝 r) := begin obtain ⟨B, hB⟩ := (real.exists_is_lub ((set.range f)) (set.range_nonempty f) h_bdd), exact ⟨B, tendsto_at_top_is_lub h_mon hB⟩ end /-- An antitone, bounded below sequence `f : ℕ → ℝ` has a finite limit. -/ lemma real.tendsto_of_is_bounded_antitone {f : ℕ → ℝ} (h_bdd : bdd_below (set.range f)) (h_ant : antitone f) : ∃ r : ℝ, filter.tendsto f filter.at_top (𝓝 r) := begin obtain ⟨B, hB⟩ := (real.exists_is_glb (set.range_nonempty f) h_bdd), exact ⟨B, tendsto_at_top_is_glb h_ant hB⟩, end /-- An antitone sequence `f : ℕ → ℝ≥0` has a finite limit. -/ lemma nnreal.tendsto_of_is_bounded_antitone {f : ℕ → nnreal} (h_ant : antitone f) : ∃ r : nnreal, filter.tendsto f filter.at_top (𝓝 r) := begin have h_bdd_0 : (0 : ℝ) ∈ lower_bounds (set.range (λ (n : ℕ), (f n : ℝ))), { intros r hr, obtain ⟨n, hn⟩ := set.mem_range.mpr hr, simp_rw [← hn], exact nnreal.coe_nonneg _ }, have h_bdd : bdd_below (set.range (λ n, (f n : ℝ))) := ⟨0, h_bdd_0⟩, obtain ⟨L, hL⟩ := real.tendsto_of_is_bounded_antitone h_bdd h_ant, have hL0 : 0 ≤ L, { have h_glb : is_glb (set.range (λ n, (f n : ℝ))) L := is_glb_of_tendsto_at_top h_ant hL, exact (le_is_glb_iff h_glb).mpr h_bdd_0 }, use ⟨L, hL0⟩, rw ← nnreal.tendsto_coe, exact hL, end
f574b141c5f81ae467c6f8abde503468b73af5b9
947fa6c38e48771ae886239b4edce6db6e18d0fb
/src/model_theory/definability.lean
5ebe106658247ae7f5f237d9bec3472eb2af8230
[ "Apache-2.0" ]
permissive
ramonfmir/mathlib
c5dc8b33155473fab97c38bd3aa6723dc289beaa
14c52e990c17f5a00c0cc9e09847af16fabbed25
refs/heads/master
1,661,979,343,526
1,660,830,384,000
1,660,830,384,000
182,072,989
0
0
null
1,555,585,876,000
1,555,585,876,000
null
UTF-8
Lean
false
false
11,926
lean
/- Copyright (c) 2021 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import data.set_like.basic import logic.equiv.fintype import model_theory.semantics /-! # Definable Sets This file defines what it means for a set over a first-order structure to be definable. ## Main Definitions * `set.definable` is defined so that `A.definable L s` indicates that the set `s` of a finite cartesian power of `M` is definable with parameters in `A`. * `set.definable₁` is defined so that `A.definable₁ L s` indicates that `(s : set M)` is definable with parameters in `A`. * `set.definable₂` is defined so that `A.definable₂ L s` indicates that `(s : set (M × M))` is definable with parameters in `A`. * A `first_order.language.definable_set` is defined so that `L.definable_set A α` is the boolean algebra of subsets of `α → M` defined by formulas with parameters in `A`. ## Main Results * `L.definable_set A α` forms a `boolean_algebra` * `set.definable.image_comp` shows that definability is closed under projections in finite dimensions. -/ universes u v w namespace set variables {M : Type w} (A : set M) (L : first_order.language.{u v}) [L.Structure M] open_locale first_order open first_order.language first_order.language.Structure variables {α : Type*} {β : Type*} /-- A subset of a finite Cartesian product of a structure is definable over a set `A` when membership in the set is given by a first-order formula with parameters from `A`. -/ def definable (s : set (α → M)) : Prop := ∃ (φ : L[[A]].formula α), s = set_of φ.realize variables {L} {A} {B : set M} {s : set (α → M)} lemma definable.map_expansion {L' : first_order.language} [L'.Structure M] (h : A.definable L s) (φ : L →ᴸ L') [φ.is_expansion_on M] : A.definable L' s := begin obtain ⟨ψ, rfl⟩ := h, refine ⟨(φ.add_constants A).on_formula ψ, _⟩, ext x, simp only [mem_set_of_eq, Lhom.realize_on_formula], end lemma empty_definable_iff : (∅ : set M).definable L s ↔ ∃ (φ : L.formula α), s = set_of φ.realize := begin rw [definable, equiv.exists_congr_left (Lequiv.add_empty_constants L (∅ : set M)).on_formula], simp, end lemma definable_iff_empty_definable_with_params : A.definable L s ↔ (∅ : set M).definable (L[[A]]) s := empty_definable_iff.symm lemma definable.mono (hAs : A.definable L s) (hAB : A ⊆ B) : B.definable L s := begin rw [definable_iff_empty_definable_with_params] at *, exact hAs.map_expansion (L.Lhom_with_constants_map (set.inclusion hAB)), end @[simp] lemma definable_empty : A.definable L (∅ : set (α → M)) := ⟨⊥, by {ext, simp} ⟩ @[simp] lemma definable_univ : A.definable L (univ : set (α → M)) := ⟨⊤, by {ext, simp} ⟩ @[simp] lemma definable.inter {f g : set (α → M)} (hf : A.definable L f) (hg : A.definable L g) : A.definable L (f ∩ g) := begin rcases hf with ⟨φ, rfl⟩, rcases hg with ⟨θ, rfl⟩, refine ⟨φ ⊓ θ, _⟩, ext, simp, end @[simp] lemma definable.union {f g : set (α → M)} (hf : A.definable L f) (hg : A.definable L g) : A.definable L (f ∪ g) := begin rcases hf with ⟨φ, hφ⟩, rcases hg with ⟨θ, hθ⟩, refine ⟨φ ⊔ θ, _⟩, ext, rw [hφ, hθ, mem_set_of_eq, formula.realize_sup, mem_union_eq, mem_set_of_eq, mem_set_of_eq], end lemma definable_finset_inf {ι : Type*} {f : Π (i : ι), set (α → M)} (hf : ∀ i, A.definable L (f i)) (s : finset ι) : A.definable L (s.inf f) := begin classical, refine finset.induction definable_univ (λ i s is h, _) s, rw finset.inf_insert, exact (hf i).inter h, end lemma definable_finset_sup {ι : Type*} {f : Π (i : ι), set (α → M)} (hf : ∀ i, A.definable L (f i)) (s : finset ι) : A.definable L (s.sup f) := begin classical, refine finset.induction definable_empty (λ i s is h, _) s, rw finset.sup_insert, exact (hf i).union h, end lemma definable_finset_bInter {ι : Type*} {f : Π (i : ι), set (α → M)} (hf : ∀ i, A.definable L (f i)) (s : finset ι) : A.definable L (⋂ i ∈ s, f i) := begin rw ← finset.inf_set_eq_bInter, exact definable_finset_inf hf s, end lemma definable_finset_bUnion {ι : Type*} {f : Π (i : ι), set (α → M)} (hf : ∀ i, A.definable L (f i)) (s : finset ι) : A.definable L (⋃ i ∈ s, f i) := begin rw ← finset.sup_set_eq_bUnion, exact definable_finset_sup hf s, end @[simp] lemma definable.compl {s : set (α → M)} (hf : A.definable L s) : A.definable L sᶜ := begin rcases hf with ⟨φ, hφ⟩, refine ⟨φ.not, _⟩, rw hφ, refl, end @[simp] lemma definable.sdiff {s t : set (α → M)} (hs : A.definable L s) (ht : A.definable L t) : A.definable L (s \ t) := hs.inter ht.compl lemma definable.preimage_comp (f : α → β) {s : set (α → M)} (h : A.definable L s) : A.definable L ((λ g : β → M, g ∘ f) ⁻¹' s) := begin obtain ⟨φ, rfl⟩ := h, refine ⟨(φ.relabel f), _⟩, ext, simp only [set.preimage_set_of_eq, mem_set_of_eq, formula.realize_relabel], end lemma definable.image_comp_equiv {s : set (β → M)} (h : A.definable L s) (f : α ≃ β) : A.definable L ((λ g : β → M, g ∘ f) '' s) := begin refine (congr rfl _).mp (h.preimage_comp f.symm), rw image_eq_preimage_of_inverse, { intro i, ext b, simp only [function.comp_app, equiv.apply_symm_apply], }, { intro i, ext a, simp } end lemma fin.coe_cast_add_zero {m : ℕ} : (fin.cast_add 0 : fin m → fin (m + 0)) = id := funext (λ _, fin.ext rfl) /-- This lemma is only intended as a helper for `definable.image_comp. -/ lemma definable.image_comp_sum_inl_fin (m : ℕ) {s : set ((α ⊕ fin m) → M)} (h : A.definable L s) : A.definable L ((λ g : (α ⊕ fin m) → M, g ∘ sum.inl) '' s) := begin obtain ⟨φ, rfl⟩ := h, refine ⟨(bounded_formula.relabel id φ).exs, _⟩, ext x, simp only [set.mem_image, mem_set_of_eq, bounded_formula.realize_exs, bounded_formula.realize_relabel, function.comp.right_id, fin.coe_cast_add_zero], split, { rintro ⟨y, hy, rfl⟩, exact ⟨y ∘ sum.inr, (congr (congr rfl (sum.elim_comp_inl_inr y).symm) (funext fin_zero_elim)).mp hy⟩ }, { rintro ⟨y, hy⟩, exact ⟨sum.elim x y, (congr rfl (funext fin_zero_elim)).mp hy, sum.elim_comp_inl _ _⟩, }, end /-- Shows that definability is closed under finite projections. -/ lemma definable.image_comp_embedding {s : set (β → M)} (h : A.definable L s) (f : α ↪ β) [fintype β] : A.definable L ((λ g : β → M, g ∘ f) '' s) := begin classical, refine (congr rfl (ext (λ x, _))).mp (((h.image_comp_equiv (equiv.set.sum_compl (range f))).image_comp_equiv (equiv.sum_congr (equiv.of_injective f f.injective) (fintype.equiv_fin _).symm)).image_comp_sum_inl_fin _), simp only [mem_preimage, mem_image, exists_exists_and_eq_and], refine exists_congr (λ y, and_congr_right (λ ys, eq.congr_left (funext (λ a, _)))), simp, end /-- Shows that definability is closed under finite projections. -/ lemma definable.image_comp {s : set (β → M)} (h : A.definable L s) (f : α → β) [fintype α] [fintype β] : A.definable L ((λ g : β → M, g ∘ f) '' s) := begin classical, have h := (((h.image_comp_equiv (equiv.set.sum_compl (range f))).image_comp_equiv (equiv.sum_congr (_root_.equiv.refl _) (fintype.equiv_fin _).symm)).image_comp_sum_inl_fin _).preimage_comp (range_splitting f), have h' : A.definable L ({ x : α → M | ∀ a, x a = x (range_splitting f (range_factorization f a))}), { have h' : ∀ a, A.definable L {x : α → M | x a = x (range_splitting f (range_factorization f a))}, { refine λ a, ⟨(var a).equal (var (range_splitting f (range_factorization f a))), ext _⟩, simp, }, refine (congr rfl (ext _)).mp (definable_finset_bInter h' finset.univ), simp }, refine (congr rfl (ext (λ x, _))).mp (h.inter h'), simp only [equiv.coe_trans, mem_inter_eq, mem_preimage, mem_image, exists_exists_and_eq_and, mem_set_of_eq], split, { rintro ⟨⟨y, ys, hy⟩, hx⟩, refine ⟨y, ys, _⟩, ext a, rw [hx a, ← function.comp_apply x, ← hy], simp, }, { rintro ⟨y, ys, rfl⟩, refine ⟨⟨y, ys, _⟩, λ a, _⟩, { ext, simp [set.apply_range_splitting f] }, { rw [function.comp_apply, function.comp_apply, apply_range_splitting f, range_factorization_coe], }} end variables (L) {M} (A) /-- A 1-dimensional version of `definable`, for `set M`. -/ def definable₁ (s : set M) : Prop := A.definable L { x : fin 1 → M | x 0 ∈ s } /-- A 2-dimensional version of `definable`, for `set (M × M)`. -/ def definable₂ (s : set (M × M)) : Prop := A.definable L { x : fin 2 → M | (x 0, x 1) ∈ s } end set namespace first_order namespace language open set variables (L : first_order.language.{u v}) {M : Type w} [L.Structure M] (A : set M) (α : Type*) /-- Definable sets are subsets of finite Cartesian products of a structure such that membership is given by a first-order formula. -/ def definable_set := { s : set (α → M) // A.definable L s} namespace definable_set variables {L} {A} {α} instance : has_top (L.definable_set A α) := ⟨⟨⊤, definable_univ⟩⟩ instance : has_bot (L.definable_set A α) := ⟨⟨⊥, definable_empty⟩⟩ instance : inhabited (L.definable_set A α) := ⟨⊥⟩ instance : set_like (L.definable_set A α) (α → M) := { coe := subtype.val, coe_injective' := subtype.val_injective } @[simp] lemma mem_top {x : α → M} : x ∈ (⊤ : L.definable_set A α) := mem_univ x @[simp] lemma coe_top : ((⊤ : L.definable_set A α) : set (α → M)) = ⊤ := rfl @[simp] lemma not_mem_bot {x : α → M} : ¬ x ∈ (⊥ : L.definable_set A α) := not_mem_empty x @[simp] lemma coe_bot : ((⊥ : L.definable_set A α) : set (α → M)) = ⊥ := rfl instance : lattice (L.definable_set A α) := subtype.lattice (λ _ _, definable.union) (λ _ _, definable.inter) lemma le_iff {s t : L.definable_set A α} : s ≤ t ↔ (s : set (α → M)) ≤ (t : set (α → M)) := iff.rfl @[simp] lemma coe_sup {s t : L.definable_set A α} : ((s ⊔ t : L.definable_set A α) : set (α → M)) = s ∪ t := rfl @[simp] lemma mem_sup {s t : L.definable_set A α} {x : α → M} : x ∈ s ⊔ t ↔ x ∈ s ∨ x ∈ t := iff.rfl @[simp] lemma coe_inf {s t : L.definable_set A α} : ((s ⊓ t : L.definable_set A α) : set (α → M)) = s ∩ t := rfl @[simp] lemma mem_inf {s t : L.definable_set A α} {x : α → M} : x ∈ s ⊓ t ↔ x ∈ s ∧ x ∈ t := iff.rfl instance : bounded_order (L.definable_set A α) := { bot_le := λ s x hx, false.elim hx, le_top := λ s x hx, mem_univ x, .. definable_set.has_top, .. definable_set.has_bot } instance : distrib_lattice (L.definable_set A α) := { le_sup_inf := begin intros s t u x, simp only [and_imp, mem_inter_eq, set_like.mem_coe, coe_sup, coe_inf, mem_union_eq, subtype.val_eq_coe], tauto, end, .. definable_set.lattice } /-- The complement of a definable set is also definable. -/ @[reducible] instance : has_compl (L.definable_set A α) := ⟨λ ⟨s, hs⟩, ⟨sᶜ, hs.compl⟩⟩ @[simp] lemma mem_compl {s : L.definable_set A α} {x : α → M} : x ∈ sᶜ ↔ ¬ x ∈ s := begin cases s with s hs, refl, end @[simp] lemma coe_compl {s : L.definable_set A α} : ((sᶜ : L.definable_set A α) : set (α → M)) = sᶜ := begin ext, simp, end instance : boolean_algebra (L.definable_set A α) := { sdiff := λ s t, s ⊓ tᶜ, sdiff_eq := λ s t, rfl, inf_compl_le_bot := λ ⟨s, hs⟩, by simp [le_iff], top_le_sup_compl := λ ⟨s, hs⟩, by simp [le_iff], .. definable_set.has_compl, .. definable_set.bounded_order, .. definable_set.distrib_lattice } end definable_set end language end first_order
ede8254b697a0097120f0da33ce81feb986ac5ab
fa02ed5a3c9c0adee3c26887a16855e7841c668b
/src/analysis/special_functions/arsinh.lean
4f2b8114ac6011c77c2b3e5514a16a68d6cbbd90
[ "Apache-2.0" ]
permissive
jjgarzella/mathlib
96a345378c4e0bf26cf604aed84f90329e4896a2
395d8716c3ad03747059d482090e2bb97db612c8
refs/heads/master
1,686,480,124,379
1,625,163,323,000
1,625,163,323,000
281,190,421
2
0
Apache-2.0
1,595,268,170,000
1,595,268,169,000
null
UTF-8
Lean
false
false
2,947
lean
/- Copyright (c) 2020 James Arthur. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: James Arthur, Chris Hughes, Shing Tak Lam -/ import analysis.special_functions.trigonometric /-! # Inverse of the sinh function In this file we prove that sinh is bijective and hence has an inverse, arsinh. ## Main Results - `sinh_injective`: The proof that `sinh` is injective - `sinh_surjective`: The proof that `sinh` is surjective - `sinh_bijective`: The proof `sinh` is bijective - `arsinh`: The inverse function of `sinh` ## Tags arsinh, arcsinh, argsinh, asinh, sinh injective, sinh bijective, sinh surjective -/ noncomputable theory namespace real /-- `arsinh` is defined using a logarithm, `arsinh x = log (x + sqrt(1 + x^2))`. -/ @[pp_nodot] def arsinh (x : ℝ) := log (x + sqrt (1 + x^2)) /-- `sinh` is injective, `∀ a b, sinh a = sinh b → a = b`. -/ lemma sinh_injective : function.injective sinh := sinh_strict_mono.injective private lemma aux_lemma (x : ℝ) : 1 / (x + sqrt (1 + x ^ 2)) = -x + sqrt (1 + x ^ 2) := begin refine (eq_one_div_of_mul_eq_one _).symm, have : 0 ≤ 1 + x ^ 2 := add_nonneg zero_le_one (sq_nonneg x), rw [add_comm, ← sub_eq_neg_add, ← mul_self_sub_mul_self, mul_self_sqrt this, sq, add_sub_cancel] end private lemma b_lt_sqrt_b_one_add_sq (b : ℝ) : b < sqrt (1 + b ^ 2) := calc b ≤ sqrt (b ^ 2) : le_sqrt_of_sq_le $ le_refl _ ... < sqrt (1 + b ^ 2) : (sqrt_lt (sq_nonneg _)).2 (lt_one_add _) private lemma add_sqrt_one_add_sq_pos (b : ℝ) : 0 < b + sqrt (1 + b ^ 2) := by { rw [← neg_neg b, ← sub_eq_neg_add, sub_pos, sq, neg_mul_neg, ← sq], exact b_lt_sqrt_b_one_add_sq (-b) } /-- `arsinh` is the right inverse of `sinh`. -/ lemma sinh_arsinh (x : ℝ) : sinh (arsinh x) = x := by rw [sinh_eq, arsinh, ← log_inv, exp_log (add_sqrt_one_add_sq_pos x), exp_log (inv_pos.2 (add_sqrt_one_add_sq_pos x)), inv_eq_one_div, aux_lemma x, sub_eq_add_neg, neg_add, neg_neg, ← sub_eq_add_neg, add_add_sub_cancel, add_self_div_two] /-- `sinh` is surjective, `∀ b, ∃ a, sinh a = b`. In this case, we use `a = arsinh b`. -/ lemma sinh_surjective : function.surjective sinh := function.left_inverse.surjective sinh_arsinh /-- `sinh` is bijective, both injective and surjective. -/ lemma sinh_bijective : function.bijective sinh := ⟨sinh_injective, sinh_surjective⟩ /-- A rearrangement and `sqrt` of `real.cosh_sq_sub_sinh_sq`. -/ lemma sqrt_one_add_sinh_sq (x : ℝ): sqrt (1 + sinh x ^ 2) = cosh x := begin have H := real.cosh_sq_sub_sinh_sq x, have G : cosh x ^ 2 - sinh x ^ 2 + sinh x ^ 2 = 1 + sinh x ^ 2 := by rw H, rw sub_add_cancel at G, rw [←G, sqrt_sq], exact le_of_lt (cosh_pos x), end /-- `arsinh` is the left inverse of `sinh`. -/ lemma arsinh_sinh (x : ℝ) : arsinh (sinh x) = x := function.right_inverse_of_injective_of_left_inverse sinh_injective sinh_arsinh x end real
32473a02705cd65f9bee144524db6f62c6cee9a1
6bbefddc5d215af92ee0f41cafc343d0802aa6c8
/03-mccarthy-meta.lean
cca2f5e413a67e6e609feabb43a29c1bd8c8e1d6
[ "Unlicense" ]
permissive
bradheintz/lean-ex
0dcfab24e31abd9394247353f4e7dfd06655b2e1
37419b8d014ba3ba416e2252809a89a1604a1330
refs/heads/master
1,645,696,373,325
1,503,243,879,000
1,503,243,879,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
629
lean
import system.io variable [io.interface] open nat io /- McCarthy 91 formal verification test case see https://en.wikipedia.org/wiki/McCarthy_91_function -/ meta def mninetyone : ℕ → ℕ | n := if n > 100 then n - 10 else mninetyone (mninetyone (n + 11)) meta def print_mninetyones : ℕ → io unit | 0 := return () | (succ n) := print_mninetyones n >> put_str ("m91(" ++ nat.to_string n ++ ") = " ++ nat.to_string (mninetyone n) ++ "\n") #eval mninetyone 1 #eval mninetyone 49 #eval mninetyone 100 #eval mninetyone 1000 #eval print_mninetyones 150 #print axioms mninetyone
a5a1aa8223276ea59af7f937f57b9f9c6378a526
7453f4f6074a6d5ce92b7bee2b29c409c061fbef
/src/NewtonMethod/uwyo_sqrt2.lean
af7f153fc46c697af500dba549de1f0b9e731a1a
[ "Apache-2.0" ]
permissive
stanescuUW/numerical-analysis-with-Lean
b7b26755b8e925279f3afc1caa16b0666fc77ef8
98e6974f8b68cc5232ceff40535d776a33444c73
refs/heads/master
1,670,371,433,242
1,598,204,960,000
1,598,204,960,000
282,081,575
0
0
null
null
null
null
UTF-8
Lean
false
false
3,760
lean
import data.nat.prime import data.rat.basic import data.real.basic import tactic -- could use: -- (univ : set X) -- to have X be recognized as a subset of X -- X has Type u for some universe u; it doesn't have type set X theorem sqrt_two_irrational {a b : ℕ} (co : nat.gcd a b = 1) : a^2 ≠ 2 * b^2 := begin intro h, have h1 : 2 ∣ a^2, simp [h], have h2 : 2 ∣ a, from nat.prime.dvd_of_dvd_pow nat.prime_two h1, cases h2 with c aeq, have h3 : 2 * ( 2 * c^2) = 2 * b^2, by simp [eq.symm h, aeq]; simp [nat.pow_succ, mul_comm, mul_assoc, mul_left_comm], have h4 : 2 * c^2 = b^2, from nat.eq_of_mul_eq_mul_left dec_trivial h3, have h5 : 2 ∣ b^2, by simp [eq.symm h4], have hb : 2 ∣ b, from nat.prime.dvd_of_dvd_pow nat.prime_two h5, have ha : 2 ∣ a, from nat.prime.dvd_of_dvd_pow nat.prime_two h1, have h6 : 2 ∣ nat.gcd a b, from nat.dvd_gcd ha hb, have habs : 2 ∣ (1 : ℕ), by {rw co at h6, exact h6}, have h7 : ¬ 2 ∣ 1, exact dec_trivial, exact h7 habs, done end -- Some simple preliminary results. Not really needed, but they make the proof shorter lemma rat_times_rat (r : ℚ) : r * r * ↑(r.denom) ^ 2 = ↑(r.num) ^ 2 := begin have h1 := @rat.mul_denom_eq_num r, rw pow_two, rw mul_assoc, rw ← mul_assoc r r.denom r.denom, rw h1, rw ← mul_assoc, rw mul_comm, rw ← mul_assoc, rw mul_comm ↑r.denom r, rw h1, rw pow_two, done end #check nat.coprime.pow #check nat.coprime.pow_left #check nat.coprime.dvd_of_dvd_mul_left #check nat.coprime.coprime_dvd_left theorem rational_not_sqrt_two : ¬ ∃ r : ℚ, r ^ 2 = (2:ℚ) := begin intro h, cases h with r H, let num := r.num, set den := r.denom with hden, --explicitly build the hypothetical rational number r have hr := @rat.num_denom r, rw ← hr at H, -- use it in the main assumption -- now we can figure out some properties of r.num and r.denom -- first off, the denominator is not zero; this is encoded in r. have hdenom := r.pos, -- the denom is actually positive have hdne : r.denom ≠ 0, linarith, -- so it is non zero; linarith can handle that set n := int.nat_abs num with hn1, have hn : (n ^2 : ℤ) = num ^ 2, norm_cast, rw ← int.nat_abs_pow_two num, rw ← int.coe_nat_pow, have G : (2:ℚ) * (r.denom ^2) = (r.num ^ 2), rw ← H, norm_cast, simp, rw pow_two r, simp * at *, exact rat_times_rat r, norm_cast at G, rw ← hn at G, have g1 : nat.gcd n den = 1, have g11 := r.cop, unfold nat.coprime at g11, have g12 := nat.coprime.pow_left 2 g11, have g13 := nat.coprime.coprime_mul_left g12, rw ← hn1 at g13, exact g13, have E := sqrt_two_irrational g1, have g2 := G.symm, norm_cast at g2, done end example (a b : ℝ) : a = b → a^2 = b^2 := by library_search -- some extra stuff on rationals from Zulip --import data.rat.basic tactic lemma rat_id01 {a b : ℤ} (hb0 : 0 < b) (h : nat.coprime a.nat_abs b.nat_abs) : (a / b : ℚ).num = a ∧ ((a / b : ℚ).denom : ℤ) = b := begin lift b to ℕ using le_of_lt hb0, norm_cast at hb0 h, rw [← rat.mk_eq_div, ← rat.mk_pnat_eq a b hb0, rat.mk_pnat_num, rat.mk_pnat_denom, pnat.mk_coe, h.gcd_eq_one, int.coe_nat_one, int.div_one, nat.div_one], split; refl end --import data.rat.basic tactic lemma rat_id02 {a b : ℤ} (hb0 : 0 < b) (h : nat.coprime a.nat_abs b.nat_abs) : (a / b : ℚ).num = a ∧ ((a / b : ℚ).denom : ℤ) = b := begin lift b to ℕ using le_of_lt hb0, norm_cast at hb0 h, rw [← rat.mk_eq_div, ← rat.mk_pnat_eq a b hb0], split; simp [rat.mk_pnat_num, rat.mk_pnat_denom, h.gcd_eq_one] end
741693843a9acb3d7253616609081e49b12a5214
55c7fc2bf55d496ace18cd6f3376e12bb14c8cc5
/src/data/finsupp/lattice.lean
8e27169b72cf5d92f1df7e0ad963a9d53fdb27ef
[ "Apache-2.0" ]
permissive
dupuisf/mathlib
62de4ec6544bf3b79086afd27b6529acfaf2c1bb
8582b06b0a5d06c33ee07d0bdf7c646cae22cf36
refs/heads/master
1,669,494,854,016
1,595,692,409,000
1,595,692,409,000
272,046,630
0
0
Apache-2.0
1,592,066,143,000
1,592,066,142,000
null
UTF-8
Lean
false
false
4,403
lean
/- Copyright (c) 2020 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import data.finsupp import algebra.ordered_group /-! # Lattice structure on finsupps This file provides instances of ordered structures on finsupps. -/ open_locale classical noncomputable theory variables {α : Type*} {β : Type*} [has_zero β] {μ : Type*} [canonically_ordered_add_monoid μ] variables {γ : Type*} [canonically_linear_ordered_add_monoid γ] namespace finsupp lemma le_def [partial_order β] {a b : α →₀ β} : a ≤ b ↔ ∀ (s : α), a s ≤ b s := by refl instance : order_bot (α →₀ μ) := { bot := 0, bot_le := by simp [finsupp.le_def, ← bot_eq_zero], .. finsupp.partial_order} instance [semilattice_inf β] : semilattice_inf (α →₀ β) := { inf := zip_with (⊓) inf_idem, inf_le_left := λ a b c, inf_le_left, inf_le_right := λ a b c, inf_le_right, le_inf := λ a b c h1 h2 s, le_inf (h1 s) (h2 s), ..finsupp.partial_order, } @[simp] lemma inf_apply [semilattice_inf β] {a : α} {f g : α →₀ β} : (f ⊓ g) a = f a ⊓ g a := rfl @[simp] lemma support_inf {f g : α →₀ γ} : (f ⊓ g).support = f.support ∩ g.support := begin ext, simp only [inf_apply, mem_support_iff, ne.def, finset.mem_union, finset.mem_filter, finset.mem_inter], rw [← decidable.not_or_iff_and_not, ← not_congr], rw inf_eq_min, unfold min, split_ifs; { try {apply or_iff_left_of_imp}, try {apply or_iff_right_of_imp}, intro con, rw con at h, revert h, simp, } end instance [semilattice_sup β] : semilattice_sup (α →₀ β) := { sup := zip_with (⊔) sup_idem, le_sup_left := λ a b c, le_sup_left, le_sup_right := λ a b c, le_sup_right, sup_le := λ a b c h1 h2 s, sup_le (h1 s) (h2 s), ..finsupp.partial_order, } @[simp] lemma sup_apply [semilattice_sup β] {a : α} {f g : α →₀ β} : (f ⊔ g) a = f a ⊔ g a := rfl @[simp] lemma support_sup {f g : α →₀ γ} : (f ⊔ g).support = f.support ∪ g.support := begin ext, simp only [finset.mem_union, mem_support_iff, sup_apply, ne.def, ← bot_eq_zero], rw sup_eq_bot_iff, tauto, end instance lattice [lattice β] : lattice (α →₀ β) := { .. finsupp.semilattice_inf, .. finsupp.semilattice_sup} instance semilattice_inf_bot : semilattice_inf_bot (α →₀ γ) := { ..finsupp.order_bot, ..finsupp.lattice} lemma of_multiset_strict_mono : strict_mono (@finsupp.of_multiset α) := begin unfold strict_mono, intros, rw lt_iff_le_and_ne at *, split, { rw finsupp.le_iff, intros s hs, repeat {rw finsupp.of_multiset_apply}, rw multiset.le_iff_count at a_1, apply a_1.left }, { have h := a_1.right, contrapose h, simp at *, apply finsupp.equiv_multiset.symm.injective h } end lemma bot_eq_zero : (⊥ : α →₀ γ) = 0 := rfl lemma disjoint_iff {x y : α →₀ γ} : disjoint x y ↔ disjoint x.support y.support := begin unfold disjoint, repeat {rw le_bot_iff}, rw [finsupp.bot_eq_zero, ← finsupp.support_eq_empty, finsupp.support_inf], refl, end /-- The lattice of `finsupp`s to `ℕ` is order-isomorphic to that of `multiset`s. -/ def order_iso_multiset : (has_le.le : (α →₀ ℕ) → (α →₀ ℕ) → Prop) ≃o (has_le.le : (multiset α) → (multiset α) → Prop) := ⟨finsupp.equiv_multiset, begin intros a b, unfold finsupp.equiv_multiset, dsimp, rw multiset.le_iff_count, simp only [finsupp.count_to_multiset], refl end ⟩ @[simp] lemma order_iso_multiset_apply {f : α →₀ ℕ} : order_iso_multiset f = f.to_multiset := rfl @[simp] lemma order_iso_multiset_symm_apply {s : multiset α} : order_iso_multiset.symm s = s.to_finsupp := by { conv_rhs { rw ← (order_iso.apply_symm_apply order_iso_multiset) s}, simp } variable [partial_order β] /-- The order on `finsupp`s over a partial order embeds into the order on functions -/ def order_embedding_to_fun : (has_le.le : (α →₀ β) → (α →₀ β) → Prop) ≼o (has_le.le : (α → β) → (α → β) → Prop) := ⟨⟨λ (f : α →₀ β) (a : α), f a, λ f g h, finsupp.ext (λ a, by { dsimp at h, rw h,} )⟩, λ a b, le_def⟩ @[simp] lemma order_embedding_to_fun_apply {f : α →₀ β} {a : α} : order_embedding_to_fun f a = f a := rfl lemma monotone_to_fun : monotone (finsupp.to_fun : (α →₀ β) → (α → β)) := λ f g h a, le_def.1 h a end finsupp
0594d9b222d15f15c5c3f6012f0a9e958d9ea32e
b7f22e51856f4989b970961f794f1c435f9b8f78
/tests/lean/bad_notation.lean
eff773aff3e801c7d8690f5c50bee6a28e23ff7e
[ "Apache-2.0" ]
permissive
soonhokong/lean
cb8aa01055ffe2af0fb99a16b4cda8463b882cd1
38607e3eb57f57f77c0ac114ad169e9e4262e24f
refs/heads/master
1,611,187,284,081
1,450,766,737,000
1,476,122,547,000
11,513,992
2
0
null
1,401,763,102,000
1,374,182,235,000
C++
UTF-8
Lean
false
false
105
lean
import logic open nat section variable a : nat notation `a1`:max := a + 1 end definition foo := a1
07ae53c9622ea75e6466b61d490f45845b974a1b
8d65764a9e5f0923a67fc435eb1a5a1d02fd80e3
/src/data/fin_enum.lean
d0734b2b617de46ee9da05e182d4e56bd38efe40
[ "Apache-2.0" ]
permissive
troyjlee/mathlib
e18d4b8026e32062ab9e89bc3b003a5d1cfec3f5
45e7eb8447555247246e3fe91c87066506c14875
refs/heads/master
1,689,248,035,046
1,629,470,528,000
1,629,470,528,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
8,854
lean
/- Copyright (c) 2019 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon -/ import control.monad.basic import data.fintype.basic /-! Type class for finitely enumerable types. The property is stronger than `fintype` in that it assigns each element a rank in a finite enumeration. -/ universe variables u v open finset /-- `fin_enum α` means that `α` is finite and can be enumerated in some order, i.e. `α` has an explicit bijection with `fin n` for some n. -/ class fin_enum (α : Sort*) := (card : ℕ) (equiv [] : α ≃ fin card) [dec_eq : decidable_eq α] attribute [instance, priority 100] fin_enum.dec_eq namespace fin_enum variables {α : Type u} {β : α → Type v} /-- transport a `fin_enum` instance across an equivalence -/ def of_equiv (α) {β} [fin_enum α] (h : β ≃ α) : fin_enum β := { card := card α, equiv := h.trans (equiv α), dec_eq := (h.trans (equiv _)).decidable_eq } /-- create a `fin_enum` instance from an exhaustive list without duplicates -/ def of_nodup_list [decidable_eq α] (xs : list α) (h : ∀ x : α, x ∈ xs) (h' : list.nodup xs) : fin_enum α := { card := xs.length, equiv := ⟨λ x, ⟨xs.index_of x,by rw [list.index_of_lt_length]; apply h⟩, λ ⟨i,h⟩, xs.nth_le _ h, λ x, by simp [of_nodup_list._match_1], λ ⟨i,h⟩, by simp [of_nodup_list._match_1,*]; rw list.nth_le_index_of; apply list.nodup_erase_dup ⟩ } /-- create a `fin_enum` instance from an exhaustive list; duplicates are removed -/ def of_list [decidable_eq α] (xs : list α) (h : ∀ x : α, x ∈ xs) : fin_enum α := of_nodup_list xs.erase_dup (by simp *) (list.nodup_erase_dup _) /-- create an exhaustive list of the values of a given type -/ def to_list (α) [fin_enum α] : list α := (list.fin_range (card α)).map (equiv α).symm open function @[simp] lemma mem_to_list [fin_enum α] (x : α) : x ∈ to_list α := by simp [to_list]; existsi equiv α x; simp @[simp] lemma nodup_to_list [fin_enum α] : list.nodup (to_list α) := by simp [to_list]; apply list.nodup_map; [apply equiv.injective, apply list.nodup_fin_range] /-- create a `fin_enum` instance using a surjection -/ def of_surjective {β} (f : β → α) [decidable_eq α] [fin_enum β] (h : surjective f) : fin_enum α := of_list ((to_list β).map f) (by intro; simp; exact h _) /-- create a `fin_enum` instance using an injection -/ noncomputable def of_injective {α β} (f : α → β) [decidable_eq α] [fin_enum β] (h : injective f) : fin_enum α := of_list ((to_list β).filter_map (partial_inv f)) begin intro x, simp only [mem_to_list, true_and, list.mem_filter_map], use f x, simp only [h, function.partial_inv_left], end instance pempty : fin_enum pempty := of_list [] (λ x, pempty.elim x) instance empty : fin_enum empty := of_list [] (λ x, empty.elim x) instance punit : fin_enum punit := of_list [punit.star] (λ x, by cases x; simp) instance prod {β} [fin_enum α] [fin_enum β] : fin_enum (α × β) := of_list ( (to_list α).product (to_list β) ) (λ x, by cases x; simp) instance sum {β} [fin_enum α] [fin_enum β] : fin_enum (α ⊕ β) := of_list ( (to_list α).map sum.inl ++ (to_list β).map sum.inr ) (λ x, by cases x; simp) instance fin {n} : fin_enum (fin n) := of_list (list.fin_range _) (by simp) instance quotient.enum [fin_enum α] (s : setoid α) [decidable_rel ((≈) : α → α → Prop)] : fin_enum (quotient s) := fin_enum.of_surjective quotient.mk (λ x, quotient.induction_on x (λ x, ⟨x, rfl⟩)) /-- enumerate all finite sets of a given type -/ def finset.enum [decidable_eq α] : list α → list (finset α) | [] := [∅] | (x :: xs) := do r ← finset.enum xs, [r,{x} ∪ r] @[simp]lemma finset.mem_enum [decidable_eq α] (s : finset α) (xs : list α) : s ∈ finset.enum xs ↔ ∀ x ∈ s, x ∈ xs := begin induction xs generalizing s; simp [*,finset.enum], { simp [finset.eq_empty_iff_forall_not_mem,(∉)], refl }, { split, rintro ⟨a,h,h'⟩ x hx, cases h', { right, apply h, subst a, exact hx, }, { simp only [h', mem_union, mem_singleton] at hx ⊢, cases hx, { exact or.inl hx }, { exact or.inr (h _ hx) } }, intro h, existsi s \ ({xs_hd} : finset α), simp only [and_imp, union_comm, mem_sdiff, mem_singleton], simp only [or_iff_not_imp_left] at h, existsi h, by_cases xs_hd ∈ s, { have : {xs_hd} ⊆ s, simp only [has_subset.subset, *, forall_eq, mem_singleton], simp only [union_sdiff_of_subset this, or_true, finset.union_sdiff_of_subset, eq_self_iff_true], }, { left, symmetry, simp only [sdiff_eq_self], intro a, simp only [and_imp, mem_inter, mem_singleton, not_mem_empty], intros h₀ h₁, subst a, apply h h₀, } } end instance finset.fin_enum [fin_enum α] : fin_enum (finset α) := of_list (finset.enum (to_list α)) (by intro; simp) instance subtype.fin_enum [fin_enum α] (p : α → Prop) [decidable_pred p] : fin_enum {x // p x} := of_list ((to_list α).filter_map $ λ x, if h : p x then some ⟨_,h⟩ else none) (by rintro ⟨x,h⟩; simp; existsi x; simp *) instance (β : α → Type v) [fin_enum α] [∀ a, fin_enum (β a)] : fin_enum (sigma β) := of_list ((to_list α).bind $ λ a, (to_list (β a)).map $ sigma.mk a) (by intro x; cases x; simp) instance psigma.fin_enum [fin_enum α] [∀ a, fin_enum (β a)] : fin_enum (Σ' a, β a) := fin_enum.of_equiv _ (equiv.psigma_equiv_sigma _) instance psigma.fin_enum_prop_left {α : Prop} {β : α → Type v} [∀ a, fin_enum (β a)] [decidable α] : fin_enum (Σ' a, β a) := if h : α then of_list ((to_list (β h)).map $ psigma.mk h) (λ ⟨a,Ba⟩, by simp) else of_list [] (λ ⟨a,Ba⟩, (h a).elim) instance psigma.fin_enum_prop_right {β : α → Prop} [fin_enum α] [∀ a, decidable (β a)] : fin_enum (Σ' a, β a) := fin_enum.of_equiv {a // β a} ⟨λ ⟨x, y⟩, ⟨x, y⟩, λ ⟨x, y⟩, ⟨x, y⟩, λ ⟨x, y⟩, rfl, λ ⟨x, y⟩, rfl⟩ instance psigma.fin_enum_prop_prop {α : Prop} {β : α → Prop} [decidable α] [∀ a, decidable (β a)] : fin_enum (Σ' a, β a) := if h : ∃ a, β a then of_list [⟨h.fst,h.snd⟩] (by rintro ⟨⟩; simp) else of_list [] (λ a, (h ⟨a.fst,a.snd⟩).elim) @[priority 100] instance [fin_enum α] : fintype α := { elems := univ.map (equiv α).symm.to_embedding, complete := by intros; simp; existsi (equiv α x); simp } /-- For `pi.cons x xs y f` create a function where every `i ∈ xs` is mapped to `f i` and `x` is mapped to `y` -/ def pi.cons [decidable_eq α] (x : α) (xs : list α) (y : β x) (f : Π a, a ∈ xs → β a) : Π a, a ∈ (x :: xs : list α) → β a | b h := if h' : b = x then cast (by rw h') y else f b (list.mem_of_ne_of_mem h' h) /-- Given `f` a function whose domain is `x :: xs`, produce a function whose domain is restricted to `xs`. -/ def pi.tail {x : α} {xs : list α} (f : Π a, a ∈ (x :: xs : list α) → β a) : Π a, a ∈ xs → β a | a h := f a (list.mem_cons_of_mem _ h) /-- `pi xs f` creates the list of functions `g` such that, for `x ∈ xs`, `g x ∈ f x` -/ def pi {β : α → Type (max u v)} [decidable_eq α] : Π xs : list α, (Π a, list (β a)) → list (Π a, a ∈ xs → β a) | [] fs := [λ x h, h.elim] | (x :: xs) fs := fin_enum.pi.cons x xs <$> fs x <*> pi xs fs lemma mem_pi {β : α → Type (max u v)} [fin_enum α] [∀a, fin_enum (β a)] (xs : list α) (f : Π a, a ∈ xs → β a) : f ∈ pi xs (λ x, to_list (β x)) := begin induction xs; simp [pi,-list.map_eq_map] with monad_norm functor_norm, { ext a ⟨ ⟩ }, { existsi pi.cons xs_hd xs_tl (f _ (list.mem_cons_self _ _)), split, exact ⟨_,rfl⟩, existsi pi.tail f, split, { apply xs_ih, }, { ext x h, simp [pi.cons], split_ifs, subst x, refl, refl }, } end /-- enumerate all functions whose domain and range are finitely enumerable -/ def pi.enum (β : α → Type (max u v)) [fin_enum α] [∀a, fin_enum (β a)] : list (Π a, β a) := (pi (to_list α) (λ x, to_list (β x))).map (λ f x, f x (mem_to_list _)) lemma pi.mem_enum {β : α → Type (max u v)} [fin_enum α] [∀a, fin_enum (β a)] (f : Π a, β a) : f ∈ pi.enum β := by simp [pi.enum]; refine ⟨λ a h, f a, mem_pi _ _, rfl⟩ instance pi.fin_enum {β : α → Type (max u v)} [fin_enum α] [∀a, fin_enum (β a)] : fin_enum (Πa, β a) := of_list (pi.enum _) (λ x, pi.mem_enum _) instance pfun_fin_enum (p : Prop) [decidable p] (α : p → Type*) [Π hp, fin_enum (α hp)] : fin_enum (Π hp : p, α hp) := if hp : p then of_list ( (to_list (α hp)).map $ λ x hp', x ) (by intro; simp; exact ⟨x hp,rfl⟩) else of_list [λ hp', (hp hp').elim] (by intro; simp; ext hp'; cases hp hp') end fin_enum
81cf5d0cd42dbd901191049a29305d52a3c878d9
e9078bde91465351e1b354b353c9f9d8b8a9c8c2
/two_quotients.hlean
630d36e72205f0ddd269ad8811b7ca30642b9486
[ "Apache-2.0" ]
permissive
EgbertRijke/leansnippets
09fb7a9813477471532fbdd50c99be8d8fe3e6c4
1d9a7059784c92c0281fcc7ce66ac7b3619c8661
refs/heads/master
1,610,743,957,626
1,442,532,603,000
1,442,532,603,000
41,563,379
0
0
null
1,440,787,514,000
1,440,787,514,000
null
UTF-8
Lean
false
false
18,314
hlean
/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn -/ import hit.circle eq2 algebra.e_closure cubical.squareover cubical.cube open quotient eq circle sum sigma equiv function relation namespace simple_two_quotient section parameters {A : Type} (R : A → A → Type) local abbreviation T := e_closure R -- the (type-valued) equivalence closure of R parameter (Q : Π⦃a⦄, T a a → Type) variables ⦃a a' : A⦄ {s : R a a'} {r : T a a} local abbreviation B := A ⊎ Σ(a : A) (r : T a a), Q r inductive pre_two_quotient_rel : B → B → Type := | pre_Rmk {} : Π⦃a a'⦄ (r : R a a'), pre_two_quotient_rel (inl a) (inl a') --BUG: if {} not provided, the alias for pre_Rmk is wrong definition pre_two_quotient := quotient pre_two_quotient_rel open pre_two_quotient_rel local abbreviation C := quotient pre_two_quotient_rel protected definition j [constructor] (a : A) : C := class_of pre_two_quotient_rel (inl a) protected definition pre_aux [constructor] (q : Q r) : C := class_of pre_two_quotient_rel (inr ⟨a, r, q⟩) protected definition e (s : R a a') : j a = j a' := eq_of_rel _ (pre_Rmk s) protected definition et (t : T a a') : j a = j a' := e_closure.elim e t protected definition f [unfold 7] (q : Q r) : S¹ → C := circle.elim (j a) (et r) protected definition pre_rec [unfold 8] {P : C → Type} (Pj : Πa, P (j a)) (Pa : Π⦃a : A⦄ ⦃r : T a a⦄ (q : Q r), P (pre_aux q)) (Pe : Π⦃a a' : A⦄ (s : R a a'), Pj a =[e s] Pj a') (x : C) : P x := begin induction x with p, { induction p, { apply Pj}, { induction a with a1 a2, induction a2, apply Pa}}, { induction H, esimp, apply Pe}, end protected definition pre_elim [unfold 8] {P : Type} (Pj : A → P) (Pa : Π⦃a : A⦄ ⦃r : T a a⦄, Q r → P) (Pe : Π⦃a a' : A⦄ (s : R a a'), Pj a = Pj a') (x : C) : P := pre_rec Pj Pa (λa a' s, pathover_of_eq (Pe s)) x protected theorem rec_e {P : C → Type} (Pj : Πa, P (j a)) (Pa : Π⦃a : A⦄ ⦃r : T a a⦄ (q : Q r), P (pre_aux q)) (Pe : Π⦃a a' : A⦄ (s : R a a'), Pj a =[e s] Pj a') ⦃a a' : A⦄ (s : R a a') : apdo (pre_rec Pj Pa Pe) (e s) = Pe s := !rec_eq_of_rel protected theorem elim_e {P : Type} (Pj : A → P) (Pa : Π⦃a : A⦄ ⦃r : T a a⦄, Q r → P) (Pe : Π⦃a a' : A⦄ (s : R a a'), Pj a = Pj a') ⦃a a' : A⦄ (s : R a a') : ap (pre_elim Pj Pa Pe) (e s) = Pe s := begin apply eq_of_fn_eq_fn_inv !(pathover_constant (e s)), rewrite [▸*,-apdo_eq_pathover_of_eq_ap,↑pre_elim,rec_e], end protected definition elim_et {P : Type} (Pj : A → P) (Pa : Π⦃a : A⦄ ⦃r : T a a⦄, Q r → P) (Pe : Π⦃a a' : A⦄ (s : R a a'), Pj a = Pj a') ⦃a a' : A⦄ (t : T a a') : ap (pre_elim Pj Pa Pe) (et t) = e_closure.elim Pe t := ap_e_closure_elim_h e (elim_e Pj Pa Pe) t inductive simple_two_quotient_rel : C → C → Type := | Rmk {} : Π{a : A} {r : T a a} (q : Q r) (x : circle), simple_two_quotient_rel (f q x) (pre_aux q) open simple_two_quotient_rel definition simple_two_quotient := quotient simple_two_quotient_rel local abbreviation D := simple_two_quotient local abbreviation i := class_of simple_two_quotient_rel definition incl0 (a : A) : D := i (j a) protected definition aux (q : Q r) : D := i (pre_aux q) definition incl1 (s : R a a') : incl0 a = incl0 a' := ap i (e s) definition inclt (t : T a a') : incl0 a = incl0 a' := e_closure.elim incl1 t -- "wrong" version inclt, which is ap i (p ⬝ q) instead of ap i p ⬝ ap i q -- it is used in the proof, because inclt is easier to work with protected definition incltw (t : T a a') : incl0 a = incl0 a' := ap i (et t) protected definition inclt_eq_incltw (t : T a a') : inclt t = incltw t := (ap_e_closure_elim i e t)⁻¹ definition incl2' (q : Q r) (x : S¹) : i (f q x) = aux q := eq_of_rel simple_two_quotient_rel (Rmk q x) protected definition incl2w (q : Q r) : incltw r = idp := (ap02 i (elim_loop (j a) (et r))⁻¹) ⬝ (ap_compose i (f q) loop)⁻¹ ⬝ ap_weakly_constant (incl2' q) loop ⬝ !con.right_inv definition incl2 (q : Q r) : inclt r = idp := inclt_eq_incltw r ⬝ incl2w q local attribute simple_two_quotient f i D incl0 aux incl1 incl2' inclt [reducible] local attribute i aux incl0 [constructor] protected definition elim {P : Type} (P0 : A → P) (P1 : Π⦃a a' : A⦄ (s : R a a'), P0 a = P0 a') (P2 : Π⦃a : A⦄ ⦃r : T a a⦄ (q : Q r), e_closure.elim P1 r = idp) (x : D) : P := begin induction x, { refine (pre_elim _ _ _ a), { exact P0}, { intro a r q, exact P0 a}, { exact P1}}, { exact abstract begin induction H, induction x, { exact idpath (P0 a)}, { unfold f, apply eq_pathover, apply hdeg_square, exact abstract ap_compose (pre_elim P0 _ P1) (f q) loop ⬝ ap _ !elim_loop ⬝ !elim_et ⬝ P2 q ⬝ !ap_constant⁻¹ end } end end}, end local attribute elim [unfold 8] protected definition e_closure.elimo [unfold 6] {B : Type} {P : B → Type} {f : A → B} (p : Π⦃a a' : A⦄, R a a' → f a = f a') {g : Π(a : A), P (f a)} (po : Π⦃a a' : A⦄ (s : R a a'), g a =[p s] g a') (t : T a a') : g a =[e_closure.elim p t] g a' := begin induction t, exact po r, constructor, exact v_0⁻¹ᵒ, exact v_0 ⬝o v_1 end protected definition rec {P : D → Type} (P0 : Π(a : A), P (incl0 a)) (P1 : Π⦃a a' : A⦄ (s : R a a'), P0 a =[incl1 s] P0 a') (P2 : Π⦃a : A⦄ ⦃r : T a a⦄ (q : Q r), squareover P (vdeg_square (incl2 q)) (e_closure.elimo incl1 P1 r) idpo idpo idpo) (x : D) : P x := begin induction x, { refine (pre_rec _ _ _ a), { exact P0}, { intro a r q, exact incl2' q base ▸ P0 a}, { intro a a' s, exact pathover_of_pathover_ap P i (P1 s)}}, { exact abstract begin induction H, induction x, { esimp, exact pathover_tr (incl2' q base) (P0 a)}, { apply pathover_pathover, esimp, fold [i], check_expr (natural_square_tr (incl2' q) loop), apply sorry -- apply hdeg_square, -- exact abstract ap_compose (pre_elim P0 _ P1) (f q) loop ⬝ -- ap _ !elim_loop ⬝ -- !elim_et ⬝ -- P2 q ⬝ -- !ap_constant⁻¹ end } end end}, end -- definition elim_unique {P : Type} {f g : D → P} -- (p0 : Π(a : A), f (incl0 a) = g (incl0 a)) -- (p1 : Π⦃a a' : A⦄ (s : R a a'), square (ap f (incl1 s)) (ap g (incl1 s)) (p0 a) (p0 a')) -- (p2 : Π⦃a : A⦄ ⦃r : T a a⦄ (q : Q r), -- cube (hdeg_square (ap02 f (incl2 q))) (hdeg_square (ap02 g (incl2 q))) -- _ _ _ _) -- (x : D) : f x = g x := -- sorry -- set_option pp.notation false -- protected theorem elim_unique {P : Type} (f : D → P) (d : D) : -- elim (λa, f (incl0 a)) -- (λa a' s, ap f (incl1 s)) -- (λa r q, !ap_e_closure_elim⁻¹ ⬝ ap (ap f) (incl2 q)) -- d = f d := -- begin -- induction d, -- { refine (pre_rec _ _ _ a), -- { clear a, intro a, reflexivity}, -- { clear a, intro a r q, rewrite [↑incl0,↓i], exact ap f (incl2' q base)}, -- { clear a, intro a a' s, esimp, -- apply eq_pathover, apply hdeg_square, -- rewrite [elim_e,ap_compose f (class_of simple_two_quotient_rel)]}}, -- { induction H, esimp, apply eq_pathover, induction x, -- { esimp, rewrite [↓pre_two_quotient], esimp, rewrite [↓incl2' q base], -- /- PREVIOUS REWRITE FAILS -/ -- xrewrite [elim_incl2'], apply square_of_eq, reflexivity}, -- { esimp, apply sorry --apply square_pathover, -- }} -- end /- exit begin { exact abstract begin induction H, induction x, { exact idpath (P0 a)}, { unfold f, apply eq_pathover, apply hdeg_square, exact abstract ap_compose (pre_elim P0 _ P1) (f q) loop ⬝ ap _ !elim_loop ⬝ !elim_et ⬝ P2 q ⬝ !ap_constant⁻¹ end } end end}, end -/ protected definition elim_on {P : Type} (x : D) (P0 : A → P) (P1 : Π⦃a a' : A⦄ (s : R a a'), P0 a = P0 a') (P2 : Π⦃a : A⦄ ⦃r : T a a⦄ (q : Q r), e_closure.elim P1 r = idp) : P := elim P0 P1 P2 x definition elim_incl1 {P : Type} {P0 : A → P} {P1 : Π⦃a a' : A⦄ (s : R a a'), P0 a = P0 a'} (P2 : Π⦃a : A⦄ ⦃r : T a a⦄ (q : Q r), e_closure.elim P1 r = idp) ⦃a a' : A⦄ (s : R a a') : ap (elim P0 P1 P2) (incl1 s) = P1 s := (ap_compose (elim P0 P1 P2) i (e s))⁻¹ ⬝ !elim_e definition elim_inclt [unfold 10] {P : Type} {P0 : A → P} {P1 : Π⦃a a' : A⦄ (s : R a a'), P0 a = P0 a'} (P2 : Π⦃a : A⦄ ⦃r : T a a⦄ (q : Q r), e_closure.elim P1 r = idp) ⦃a a' : A⦄ (t : T a a') : ap (elim P0 P1 P2) (inclt t) = e_closure.elim P1 t := ap_e_closure_elim_h incl1 (elim_incl1 P2) t protected definition elim_incltw {P : Type} {P0 : A → P} {P1 : Π⦃a a' : A⦄ (s : R a a'), P0 a = P0 a'} (P2 : Π⦃a : A⦄ ⦃r : T a a⦄ (q : Q r), e_closure.elim P1 r = idp) ⦃a a' : A⦄ (t : T a a') : ap (elim P0 P1 P2) (incltw t) = e_closure.elim P1 t := (ap_compose (elim P0 P1 P2) i (et t))⁻¹ ⬝ !elim_et protected theorem elim_inclt_eq_elim_incltw {P : Type} {P0 : A → P} {P1 : Π⦃a a' : A⦄ (s : R a a'), P0 a = P0 a'} (P2 : Π⦃a : A⦄ ⦃r : T a a⦄ (q : Q r), e_closure.elim P1 r = idp) ⦃a a' : A⦄ (t : T a a') : elim_inclt P2 t = ap (ap (elim P0 P1 P2)) (inclt_eq_incltw t) ⬝ elim_incltw P2 t := begin unfold [elim_inclt,elim_incltw,inclt_eq_incltw,et], refine !ap_e_closure_elim_h_eq ⬝ _, rewrite [ap_inv,-con.assoc], xrewrite [eq_of_square (ap_ap_e_closure_elim i (elim P0 P1 P2) e t)⁻¹ʰ], rewrite [↓incl1,con.assoc], apply whisker_left, rewrite [↑[elim_et,elim_incl1],+ap_e_closure_elim_h_eq,con_inv,↑[i,function.compose]], rewrite [-con.assoc (_ ⬝ _),con.assoc _⁻¹,con.left_inv,▸*,-ap_inv,-ap_con], apply ap (ap _), krewrite [-eq_of_homotopy3_inv,-eq_of_homotopy3_con] end definition elim_incl2' {P : Type} {P0 : A → P} {P1 : Π⦃a a' : A⦄ (s : R a a'), P0 a = P0 a'} (P2 : Π⦃a : A⦄ ⦃r : T a a⦄ (q : Q r), e_closure.elim P1 r = idp) ⦃a : A⦄ ⦃r : T a a⦄ (q : Q r) : ap (elim P0 P1 P2) (incl2' q base) = idpath (P0 a) := !elim_eq_of_rel -- set_option pp.implicit true protected theorem elim_incl2w {P : Type} (P0 : A → P) (P1 : Π⦃a a' : A⦄ (s : R a a'), P0 a = P0 a') (P2 : Π⦃a : A⦄ ⦃r : T a a⦄ (q : Q r), e_closure.elim P1 r = idp) ⦃a : A⦄ ⦃r : T a a⦄ (q : Q r) : square (ap02 (elim P0 P1 P2) (incl2w q)) (P2 q) (elim_incltw P2 r) idp := begin esimp [incl2w,ap02], rewrite [+ap_con (ap _),▸*], xrewrite [-ap_compose (ap _) (ap i)], rewrite [+ap_inv], xrewrite [eq_top_of_square ((ap_compose_natural (elim P0 P1 P2) i (elim_loop (j a) (et r)))⁻¹ʰ⁻¹ᵛ ⬝h (ap_ap_compose (elim P0 P1 P2) i (f q) loop)⁻¹ʰ⁻¹ᵛ ⬝h ap_ap_weakly_constant (elim P0 P1 P2) (incl2' q) loop ⬝h ap_con_right_inv_sq (elim P0 P1 P2) (incl2' q base)), ↑[elim_incltw]], apply whisker_tl, rewrite [ap_weakly_constant_eq], xrewrite [naturality_apdo_eq (λx, !elim_eq_of_rel) loop], rewrite [↑elim_2,rec_loop,square_of_pathover_concato_eq,square_of_pathover_eq_concato, eq_of_square_vconcat_eq,eq_of_square_eq_vconcat], apply eq_vconcat, { apply ap (λx, _ ⬝ eq_con_inv_of_con_eq ((_ ⬝ x ⬝ _)⁻¹ ⬝ _) ⬝ _), transitivity _, apply ap eq_of_square, apply to_right_inv !eq_pathover_equiv_square (hdeg_square (elim_1 P A R Q P0 P1 a r q P2)), transitivity _, apply eq_of_square_hdeg_square, unfold elim_1, reflexivity}, rewrite [+con_inv,whisker_left_inv,+inv_inv,-whisker_right_inv, con.assoc (whisker_left _ _),con.assoc _ (whisker_right _ _),▸*, whisker_right_con_whisker_left _ !ap_constant], xrewrite [-con.assoc _ _ (whisker_right _ _)], rewrite [con.assoc _ _ (whisker_left _ _),idp_con_whisker_left,▸*, con.assoc _ !ap_constant⁻¹,con.left_inv], xrewrite [eq_con_inv_of_con_eq_whisker_left,▸*], rewrite [+con.assoc _ _ !con.right_inv, right_inv_eq_idp ( (λ(x : ap (elim P0 P1 P2) (incl2' q base) = idpath (elim P0 P1 P2 (class_of simple_two_quotient_rel (f q base)))), x) (elim_incl2' P2 q)), ↑[whisker_left]], xrewrite [con2_con_con2], rewrite [idp_con,↑elim_incl2',con.left_inv,whisker_right_inv,↑whisker_right], xrewrite [con.assoc _ _ (_ ◾ _)], rewrite [con.left_inv,▸*,-+con.assoc,con.assoc _⁻¹,↑[elim,function.compose],con.left_inv, ▸*,↑j,con.left_inv,idp_con], apply square_of_eq, reflexivity end theorem elim_incl2 {P : Type} (P0 : A → P) (P1 : Π⦃a a' : A⦄ (s : R a a'), P0 a = P0 a') (P2 : Π⦃a : A⦄ ⦃r : T a a⦄ (q : Q r), e_closure.elim P1 r = idp) ⦃a : A⦄ ⦃r : T a a⦄ (q : Q r) : square (ap02 (elim P0 P1 P2) (incl2 q)) (P2 q) (elim_inclt P2 r) idp := begin rewrite [↑incl2,↑ap02,ap_con,elim_inclt_eq_elim_incltw], apply whisker_tl, apply elim_incl2w end end end simple_two_quotient --attribute simple_two_quotient.j [constructor] --TODO attribute /-simple_two_quotient.rec-/ simple_two_quotient.elim [unfold 8] [recursor 8] --attribute simple_two_quotient.elim_type [unfold 9] attribute /-simple_two_quotient.rec_on-/ simple_two_quotient.elim_on [unfold 5] --attribute simple_two_quotient.elim_type_on [unfold 6] namespace two_quotient open e_closure simple_two_quotient section parameters {A : Type} (R : A → A → Type) local abbreviation T := e_closure R -- the (type-valued) equivalence closure of R parameter (Q : Π⦃a a'⦄, T a a' → T a a' → Type) variables ⦃a a' : A⦄ {s : R a a'} {t t' : T a a'} inductive two_quotient_Q : Π⦃a : A⦄, e_closure R a a → Type := | Qmk : Π⦃a a' : A⦄ ⦃t t' : T a a'⦄, Q t t' → two_quotient_Q (t ⬝r t'⁻¹ʳ) open two_quotient_Q local abbreviation Q2 := two_quotient_Q definition two_quotient := simple_two_quotient R Q2 definition incl0 (a : A) : two_quotient := incl0 _ _ a definition incl1 (s : R a a') : incl0 a = incl0 a' := incl1 _ _ s definition inclt (t : T a a') : incl0 a = incl0 a' := e_closure.elim incl1 t definition incl2 (q : Q t t') : inclt t = inclt t' := eq_of_con_inv_eq_idp (incl2 _ _ (Qmk R q)) protected definition elim {P : Type} (P0 : A → P) (P1 : Π⦃a a' : A⦄ (s : R a a'), P0 a = P0 a') (P2 : Π⦃a a' : A⦄ ⦃t t' : T a a'⦄ (q : Q t t'), e_closure.elim P1 t = e_closure.elim P1 t') (x : two_quotient) : P := begin induction x, { exact P0 a}, { exact P1 s}, { exact abstract [unfold 10] begin induction q with a a' t t' q, rewrite [↑e_closure.elim], apply con_inv_eq_idp, exact P2 q end end}, end local attribute elim [unfold 8] protected definition elim_on {P : Type} (x : two_quotient) (P0 : A → P) (P1 : Π⦃a a' : A⦄ (s : R a a'), P0 a = P0 a') (P2 : Π⦃a a' : A⦄ ⦃t t' : T a a'⦄ (q : Q t t'), e_closure.elim P1 t = e_closure.elim P1 t') : P := elim P0 P1 P2 x definition elim_incl1 {P : Type} {P0 : A → P} {P1 : Π⦃a a' : A⦄ (s : R a a'), P0 a = P0 a'} (P2 : Π⦃a a' : A⦄ ⦃t t' : T a a'⦄ (q : Q t t'), e_closure.elim P1 t = e_closure.elim P1 t') ⦃a a' : A⦄ (s : R a a') : ap (elim P0 P1 P2) (incl1 s) = P1 s := !elim_incl1 definition elim_inclt {P : Type} {P0 : A → P} {P1 : Π⦃a a' : A⦄ (s : R a a'), P0 a = P0 a'} (P2 : Π⦃a a' : A⦄ ⦃t t' : T a a'⦄ (q : Q t t'), e_closure.elim P1 t = e_closure.elim P1 t') ⦃a a' : A⦄ (t : T a a') : ap (elim P0 P1 P2) (inclt t) = e_closure.elim P1 t := !elim_inclt --ap_e_closure_elim_h incl1 (elim_incl1 P2) t --set_option pp.full_names true print simple_two_quotient.elim_inclt print eq_of_con_inv_eq_idp --print elim theorem elim_incl2 {P : Type} (P0 : A → P) (P1 : Π⦃a a' : A⦄ (s : R a a'), P0 a = P0 a') (P2 : Π⦃a a' : A⦄ ⦃t t' : T a a'⦄ (q : Q t t'), e_closure.elim P1 t = e_closure.elim P1 t') ⦃a a' : A⦄ ⦃t t' : T a a'⦄ (q : Q t t') : square (ap02 (elim P0 P1 P2) (incl2 q)) (P2 q) (elim_inclt P2 t) (elim_inclt P2 t') := begin rewrite [↑[incl2,elim],ap_eq_of_con_inv_eq_idp], xrewrite [eq_top_of_square (elim_incl2 R Q2 P0 P1 (elim_1 A R Q P P0 P1 P2) (Qmk R q))], -- esimp, --doesn't fold elim_inclt back. The following tactic is just a "custom esimp" xrewrite [{simple_two_quotient.elim_inclt R Q2 (elim_1 A R Q P P0 P1 P2) (t ⬝r t'⁻¹ʳ)} idpath (ap_con (simple_two_quotient.elim R Q2 P0 P1 (elim_1 A R Q P P0 P1 P2)) (inclt t) (inclt t')⁻¹ ⬝ (simple_two_quotient.elim_inclt R Q2 (elim_1 A R Q P P0 P1 P2) t ◾ (ap_inv (simple_two_quotient.elim R Q2 P0 P1 (elim_1 A R Q P P0 P1 P2)) (inclt t') ⬝ inverse2 (simple_two_quotient.elim_inclt R Q2 (elim_1 A R Q P P0 P1 P2) t')))),▸*], rewrite [-con.assoc _ _ (con_inv_eq_idp _),-con.assoc _ _ (_ ◾ _),con.assoc _ _ (ap_con _ _ _), con.left_inv,↑whisker_left,con2_con_con2,-con.assoc (ap_inv _ _)⁻¹, con.left_inv,+idp_con,eq_of_con_inv_eq_idp_con2], xrewrite [to_left_inv !eq_equiv_con_inv_eq_idp (P2 q)], apply top_deg_square end end end two_quotient --attribute two_quotient.j [constructor] --TODO attribute /-two_quotient.rec-/ two_quotient.elim [unfold 8] [recursor 8] --attribute two_quotient.elim_type [unfold 9] attribute /-two_quotient.rec_on-/ two_quotient.elim_on [unfold 5] --attribute two_quotient.elim_type_on [unfold 6]
4fbdbc51a87af3a7f0e98e3c7140d8b3c18106f5
d1bbf1801b3dcb214451d48214589f511061da63
/src/analysis/analytic/composition.lean
3173c0e77858c23992ff0994c78e5a3ef62cb7ab
[ "Apache-2.0" ]
permissive
cheraghchi/mathlib
5c366f8c4f8e66973b60c37881889da8390cab86
f29d1c3038422168fbbdb2526abf7c0ff13e86db
refs/heads/master
1,676,577,831,283
1,610,894,638,000
1,610,894,638,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
54,248
lean
/- Copyright (c) 2020 Sébastien Gouëzel. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Sébastien Gouëzel, Johan Commelin -/ import analysis.analytic.basic import combinatorics.composition /-! # Composition of analytic functions in this file we prove that the composition of analytic functions is analytic. The argument is the following. Assume `g z = ∑' qₙ (z, ..., z)` and `f y = ∑' pₖ (y, ..., y)`. Then `g (f y) = ∑' qₙ (∑' pₖ (y, ..., y), ..., ∑' pₖ (y, ..., y)) = ∑' qₙ (p_{i₁} (y, ..., y), ..., p_{iₙ} (y, ..., y))`. For each `n` and `i₁, ..., iₙ`, define a `i₁ + ... + iₙ` multilinear function mapping `(y₀, ..., y_{i₁ + ... + iₙ - 1})` to `qₙ (p_{i₁} (y₀, ..., y_{i₁-1}), p_{i₂} (y_{i₁}, ..., y_{i₁ + i₂ - 1}), ..., p_{iₙ} (....)))`. Then `g ∘ f` is obtained by summing all these multilinear functions. To formalize this, we use compositions of an integer `N`, i.e., its decompositions into a sum `i₁ + ... + iₙ` of positive integers. Given such a composition `c` and two formal multilinear series `q` and `p`, let `q.comp_along_composition p c` be the above multilinear function. Then the `N`-th coefficient in the power series expansion of `g ∘ f` is the sum of these terms over all `c : composition N`. To complete the proof, we need to show that this power series has a positive radius of convergence. This follows from the fact that `composition N` has cardinality `2^(N-1)` and estimates on the norm of `qₙ` and `pₖ`, which give summability. We also need to show that it indeed converges to `g ∘ f`. For this, we note that the composition of partial sums converges to `g ∘ f`, and that it corresponds to a part of the whole sum, on a subset that increases to the whole space. By summability of the norms, this implies the overall convergence. ## Main results * `q.comp p` is the formal composition of the formal multilinear series `q` and `p`. * `has_fpower_series_at.comp` states that if two functions `g` and `f` admit power series expansions `q` and `p`, then `g ∘ f` admits a power series expansion given by `q.comp p`. * `analytic_at.comp` states that the composition of analytic functions is analytic. * `formal_multilinear_series.comp_assoc` states that composition is associative on formal multilinear series. ## Implementation details The main technical difficulty is to write down things. In particular, we need to define precisely `q.comp_along_composition p c` and to show that it is indeed a continuous multilinear function. This requires a whole interface built on the class `composition`. Once this is set, the main difficulty is to reorder the sums, writing the composition of the partial sums as a sum over some subset of `Σ n, composition n`. We need to check that the reordering is a bijection, running over difficulties due to the dependent nature of the types under consideration, that are controlled thanks to the interface for `composition`. The associativity of composition on formal multilinear series is a nontrivial result: it does not follow from the associativity of composition of analytic functions, as there is no uniqueness for the formal multilinear series representing a function (and also, it holds even when the radius of convergence of the series is `0`). Instead, we give a direct proof, which amounts to reordering double sums in a careful way. The change of variables is a canonical (combinatorial) bijection `composition.sigma_equiv_sigma_pi` between `(Σ (a : composition n), composition a.length)` and `(Σ (c : composition n), Π (i : fin c.length), composition (c.blocks_fun i))`, and is described in more details below in the paragraph on associativity. -/ noncomputable theory variables {𝕜 : Type*} [nondiscrete_normed_field 𝕜] {E : Type*} [normed_group E] [normed_space 𝕜 E] {F : Type*} [normed_group F] [normed_space 𝕜 F] {G : Type*} [normed_group G] [normed_space 𝕜 G] {H : Type*} [normed_group H] [normed_space 𝕜 H] open filter list open_locale topological_space big_operators classical nnreal /-! ### Composing formal multilinear series -/ namespace formal_multilinear_series /-! In this paragraph, we define the composition of formal multilinear series, by summing over all possible compositions of `n`. -/ /-- Given a formal multilinear series `p`, a composition `c` of `n` and the index `i` of a block of `c`, we may define a function on `fin n → E` by picking the variables in the `i`-th block of `n`, and applying the corresponding coefficient of `p` to these variables. This function is called `p.apply_composition c v i` for `v : fin n → E` and `i : fin c.length`. -/ def apply_composition (p : formal_multilinear_series 𝕜 E F) {n : ℕ} (c : composition n) : (fin n → E) → (fin (c.length) → F) := λ v i, p (c.blocks_fun i) (v ∘ (c.embedding i)) lemma apply_composition_ones (p : formal_multilinear_series 𝕜 E F) (n : ℕ) : apply_composition p (composition.ones n) = λ v i, p 1 (λ _, v (fin.cast_le (composition.length_le _) i)) := begin funext v i, apply p.congr (composition.ones_blocks_fun _ _), intros j hjn hj1, obtain rfl : j = 0, { linarith }, refine congr_arg v _, rw [fin.ext_iff, fin.coe_cast_le, composition.ones_embedding, fin.coe_mk], end /-- Technical lemma stating how `p.apply_composition` commutes with updating variables. This will be the key point to show that functions constructed from `apply_composition` retain multilinearity. -/ lemma apply_composition_update (p : formal_multilinear_series 𝕜 E F) {n : ℕ} (c : composition n) (j : fin n) (v : fin n → E) (z : E) : p.apply_composition c (function.update v j z) = function.update (p.apply_composition c v) (c.index j) (p (c.blocks_fun (c.index j)) (function.update (v ∘ (c.embedding (c.index j))) (c.inv_embedding j) z)) := begin ext k, by_cases h : k = c.index j, { rw h, let r : fin (c.blocks_fun (c.index j)) → fin n := c.embedding (c.index j), simp only [function.update_same], change p (c.blocks_fun (c.index j)) ((function.update v j z) ∘ r) = _, let j' := c.inv_embedding j, suffices B : (function.update v j z) ∘ r = function.update (v ∘ r) j' z, by rw B, suffices C : (function.update v (r j') z) ∘ r = function.update (v ∘ r) j' z, by { convert C, exact (c.embedding_comp_inv j).symm }, exact function.update_comp_eq_of_injective _ (c.embedding _).injective _ _ }, { simp only [h, function.update_eq_self, function.update_noteq, ne.def, not_false_iff], let r : fin (c.blocks_fun k) → fin n := c.embedding k, change p (c.blocks_fun k) ((function.update v j z) ∘ r) = p (c.blocks_fun k) (v ∘ r), suffices B : (function.update v j z) ∘ r = v ∘ r, by rw B, apply function.update_comp_eq_of_not_mem_range, rwa c.mem_range_embedding_iff' } end /-- Given two formal multilinear series `q` and `p` and a composition `c` of `n`, one may form a multilinear map in `n` variables by applying the right coefficient of `p` to each block of the composition, and then applying `q c.length` to the resulting vector. It is called `q.comp_along_composition_multilinear p c`. This function admits a version as a continuous multilinear map, called `q.comp_along_composition p c` below. -/ def comp_along_composition_multilinear {n : ℕ} (q : formal_multilinear_series 𝕜 F G) (p : formal_multilinear_series 𝕜 E F) (c : composition n) : multilinear_map 𝕜 (λ i : fin n, E) G := { to_fun := λ v, q c.length (p.apply_composition c v), map_add' := λ v i x y, by simp only [apply_composition_update, continuous_multilinear_map.map_add], map_smul' := λ v i c x, by simp only [apply_composition_update, continuous_multilinear_map.map_smul] } /-- The norm of `q.comp_along_composition_multilinear p c` is controlled by the product of the norms of the relevant bits of `q` and `p`. -/ lemma comp_along_composition_multilinear_bound {n : ℕ} (q : formal_multilinear_series 𝕜 F G) (p : formal_multilinear_series 𝕜 E F) (c : composition n) (v : fin n → E) : ∥q.comp_along_composition_multilinear p c v∥ ≤ ∥q c.length∥ * (∏ i, ∥p (c.blocks_fun i)∥) * (∏ i : fin n, ∥v i∥) := calc ∥q.comp_along_composition_multilinear p c v∥ = ∥q c.length (p.apply_composition c v)∥ : rfl ... ≤ ∥q c.length∥ * ∏ i, ∥p.apply_composition c v i∥ : continuous_multilinear_map.le_op_norm _ _ ... ≤ ∥q c.length∥ * ∏ i, ∥p (c.blocks_fun i)∥ * ∏ j : fin (c.blocks_fun i), ∥(v ∘ (c.embedding i)) j∥ : begin apply mul_le_mul_of_nonneg_left _ (norm_nonneg _), refine finset.prod_le_prod (λ i hi, norm_nonneg _) (λ i hi, _), apply continuous_multilinear_map.le_op_norm, end ... = ∥q c.length∥ * (∏ i, ∥p (c.blocks_fun i)∥) * ∏ i (j : fin (c.blocks_fun i)), ∥(v ∘ (c.embedding i)) j∥ : by rw [finset.prod_mul_distrib, mul_assoc] ... = ∥q c.length∥ * (∏ i, ∥p (c.blocks_fun i)∥) * (∏ i : fin n, ∥v i∥) : by { rw [← c.blocks_fin_equiv.prod_comp, ← finset.univ_sigma_univ, finset.prod_sigma], congr } /-- Given two formal multilinear series `q` and `p` and a composition `c` of `n`, one may form a continuous multilinear map in `n` variables by applying the right coefficient of `p` to each block of the composition, and then applying `q c.length` to the resulting vector. It is called `q.comp_along_composition p c`. It is constructed from the analogous multilinear function `q.comp_along_composition_multilinear p c`, together with a norm control to get the continuity. -/ def comp_along_composition {n : ℕ} (q : formal_multilinear_series 𝕜 F G) (p : formal_multilinear_series 𝕜 E F) (c : composition n) : continuous_multilinear_map 𝕜 (λ i : fin n, E) G := (q.comp_along_composition_multilinear p c).mk_continuous _ (q.comp_along_composition_multilinear_bound p c) @[simp] lemma comp_along_composition_apply {n : ℕ} (q : formal_multilinear_series 𝕜 F G) (p : formal_multilinear_series 𝕜 E F) (c : composition n) (v : fin n → E) : (q.comp_along_composition p c) v = q c.length (p.apply_composition c v) := rfl /-- The norm of `q.comp_along_composition p c` is controlled by the product of the norms of the relevant bits of `q` and `p`. -/ lemma comp_along_composition_norm {n : ℕ} (q : formal_multilinear_series 𝕜 F G) (p : formal_multilinear_series 𝕜 E F) (c : composition n) : ∥q.comp_along_composition p c∥ ≤ ∥q c.length∥ * ∏ i, ∥p (c.blocks_fun i)∥ := multilinear_map.mk_continuous_norm_le _ (mul_nonneg (norm_nonneg _) (finset.prod_nonneg (λ i hi, norm_nonneg _))) _ lemma comp_along_composition_nnnorm {n : ℕ} (q : formal_multilinear_series 𝕜 F G) (p : formal_multilinear_series 𝕜 E F) (c : composition n) : nnnorm (q.comp_along_composition p c) ≤ nnnorm (q c.length) * ∏ i, nnnorm (p (c.blocks_fun i)) := by simpa only [← nnreal.coe_le_coe, coe_nnnorm, nnreal.coe_mul, coe_nnnorm, nnreal.coe_prod, coe_nnnorm] using q.comp_along_composition_norm p c /-- Formal composition of two formal multilinear series. The `n`-th coefficient in the composition is defined to be the sum of `q.comp_along_composition p c` over all compositions of `n`. In other words, this term (as a multilinear function applied to `v_0, ..., v_{n-1}`) is `∑'_{k} ∑'_{i₁ + ... + iₖ = n} pₖ (q_{i_1} (...), ..., q_{i_k} (...))`, where one puts all variables `v_0, ..., v_{n-1}` in increasing order in the dots.-/ protected def comp (q : formal_multilinear_series 𝕜 F G) (p : formal_multilinear_series 𝕜 E F) : formal_multilinear_series 𝕜 E G := λ n, ∑ c : composition n, q.comp_along_composition p c /-- The `0`-th coefficient of `q.comp p` is `q 0`. Since these maps are multilinear maps in zero variables, but on different spaces, we can not state this directly, so we state it when applied to arbitrary vectors (which have to be the zero vector). -/ lemma comp_coeff_zero (q : formal_multilinear_series 𝕜 F G) (p : formal_multilinear_series 𝕜 E F) (v : fin 0 → E) (v' : fin 0 → F) : (q.comp p) 0 v = q 0 v' := begin let c : composition 0 := composition.ones 0, dsimp [formal_multilinear_series.comp], have : {c} = (finset.univ : finset (composition 0)), { apply finset.eq_of_subset_of_card_le; simp [finset.card_univ, composition_card 0] }, rw ← this, simp only [finset.sum_singleton, continuous_multilinear_map.sum_apply], change q c.length (p.apply_composition c v) = q 0 v', congr' with i, simp only [composition.ones_length] at i, exact fin_zero_elim i end @[simp] lemma comp_coeff_zero' (q : formal_multilinear_series 𝕜 F G) (p : formal_multilinear_series 𝕜 E F) (v : fin 0 → E) : (q.comp p) 0 v = q 0 (λ i, 0) := q.comp_coeff_zero p v _ /-- The `0`-th coefficient of `q.comp p` is `q 0`. When `p` goes from `E` to `E`, this can be expressed as a direct equality -/ lemma comp_coeff_zero'' (q : formal_multilinear_series 𝕜 E F) (p : formal_multilinear_series 𝕜 E E) : (q.comp p) 0 = q 0 := by { ext v, exact q.comp_coeff_zero p _ _ } /-! ### The identity formal power series We will now define the identity power series, and show that it is a neutral element for left and right composition. -/ section variables (𝕜 E) /-- The identity formal multilinear series, with all coefficients equal to `0` except for `n = 1` where it is (the continuous multilinear version of) the identity. -/ def id : formal_multilinear_series 𝕜 E E | 0 := 0 | 1 := (continuous_multilinear_curry_fin1 𝕜 E E).symm (continuous_linear_map.id 𝕜 E) | _ := 0 /-- The first coefficient of `id 𝕜 E` is the identity. -/ @[simp] lemma id_apply_one (v : fin 1 → E) : (formal_multilinear_series.id 𝕜 E) 1 v = v 0 := rfl /-- The `n`th coefficient of `id 𝕜 E` is the identity when `n = 1`. We state this in a dependent way, as it will often appear in this form. -/ lemma id_apply_one' {n : ℕ} (h : n = 1) (v : fin n → E) : (id 𝕜 E) n v = v ⟨0, h.symm ▸ zero_lt_one⟩ := begin subst n, apply id_apply_one end /-- For `n ≠ 1`, the `n`-th coefficient of `id 𝕜 E` is zero, by definition. -/ @[simp] lemma id_apply_ne_one {n : ℕ} (h : n ≠ 1) : (formal_multilinear_series.id 𝕜 E) n = 0 := by { cases n, { refl }, cases n, { contradiction }, refl } end @[simp] theorem comp_id (p : formal_multilinear_series 𝕜 E F) : p.comp (id 𝕜 E) = p := begin ext1 n, dsimp [formal_multilinear_series.comp], rw finset.sum_eq_single (composition.ones n), show comp_along_composition p (id 𝕜 E) (composition.ones n) = p n, { ext v, rw comp_along_composition_apply, apply p.congr (composition.ones_length n), intros, rw apply_composition_ones, refine congr_arg v _, rw [fin.ext_iff, fin.coe_cast_le, fin.coe_mk, fin.coe_mk], }, show ∀ (b : composition n), b ∈ finset.univ → b ≠ composition.ones n → comp_along_composition p (id 𝕜 E) b = 0, { assume b _ hb, obtain ⟨k, hk, lt_k⟩ : ∃ (k : ℕ) (H : k ∈ composition.blocks b), 1 < k := composition.ne_ones_iff.1 hb, obtain ⟨i, i_lt, hi⟩ : ∃ (i : ℕ) (h : i < b.blocks.length), b.blocks.nth_le i h = k := nth_le_of_mem hk, let j : fin b.length := ⟨i, b.blocks_length ▸ i_lt⟩, have A : 1 < b.blocks_fun j := by convert lt_k, ext v, rw [comp_along_composition_apply, continuous_multilinear_map.zero_apply], apply continuous_multilinear_map.map_coord_zero _ j, dsimp [apply_composition], rw id_apply_ne_one _ _ (ne_of_gt A), refl }, { simp } end theorem id_comp (p : formal_multilinear_series 𝕜 E F) (h : p 0 = 0) : (id 𝕜 F).comp p = p := begin ext1 n, by_cases hn : n = 0, { rw [hn, h], ext v, rw [comp_coeff_zero', id_apply_ne_one _ _ zero_ne_one], refl }, { dsimp [formal_multilinear_series.comp], have n_pos : 0 < n := bot_lt_iff_ne_bot.mpr hn, rw finset.sum_eq_single (composition.single n n_pos), show comp_along_composition (id 𝕜 F) p (composition.single n n_pos) = p n, { ext v, rw [comp_along_composition_apply, id_apply_one' _ _ (composition.single_length n_pos)], dsimp [apply_composition], refine p.congr rfl (λ i him hin, congr_arg v $ _), ext, simp }, show ∀ (b : composition n), b ∈ finset.univ → b ≠ composition.single n n_pos → comp_along_composition (id 𝕜 F) p b = 0, { assume b _ hb, have A : b.length ≠ 1, by simpa [composition.eq_single_iff] using hb, ext v, rw [comp_along_composition_apply, id_apply_ne_one _ _ A], refl }, { simp } } end /-! ### Summability properties of the composition of formal power series-/ /-- If two formal multilinear series have positive radius of convergence, then the terms appearing in the definition of their composition are also summable (when multiplied by a suitable positive geometric term). -/ theorem comp_summable_nnreal (q : formal_multilinear_series 𝕜 F G) (p : formal_multilinear_series 𝕜 E F) (hq : 0 < q.radius) (hp : 0 < p.radius) : ∃ r > (0 : ℝ≥0), summable (λ i : Σ n, composition n, nnnorm (q.comp_along_composition p i.2) * r ^ i.1) := begin /- This follows from the fact that the growth rate of `∥qₙ∥` and `∥pₙ∥` is at most geometric, giving a geometric bound on each `∥q.comp_along_composition p op∥`, together with the fact that there are `2^(n-1)` compositions of `n`, giving at most a geometric loss. -/ rcases ennreal.lt_iff_exists_nnreal_btwn.1 (lt_min ennreal.zero_lt_one hq) with ⟨rq, rq_pos, hrq⟩, rcases ennreal.lt_iff_exists_nnreal_btwn.1 (lt_min ennreal.zero_lt_one hp) with ⟨rp, rp_pos, hrp⟩, simp only [lt_min_iff, ennreal.coe_lt_one_iff, ennreal.coe_pos] at hrp hrq rp_pos rq_pos, obtain ⟨Cq, hCq0, hCq⟩ : ∃ Cq > 0, ∀ n, nnnorm (q n) * rq^n ≤ Cq := q.nnnorm_mul_pow_le_of_lt_radius hrq.2, obtain ⟨Cp, hCp1, hCp⟩ : ∃ Cp ≥ 1, ∀ n, nnnorm (p n) * rp^n ≤ Cp, { rcases p.nnnorm_mul_pow_le_of_lt_radius hrp.2 with ⟨Cp, -, hCp⟩, exact ⟨max Cp 1, le_max_right _ _, λ n, (hCp n).trans (le_max_left _ _)⟩ }, let r0 : ℝ≥0 := (4 * Cp)⁻¹, have r0_pos : 0 < r0 := nnreal.inv_pos.2 (mul_pos zero_lt_four (zero_lt_one.trans_le hCp1)), set r : ℝ≥0 := rp * rq * r0, have r_pos : 0 < r := mul_pos (mul_pos rp_pos rq_pos) r0_pos, have I : ∀ (i : Σ (n : ℕ), composition n), nnnorm (q.comp_along_composition p i.2) * r ^ i.1 ≤ Cq / 4 ^ i.1, { rintros ⟨n, c⟩, have A, calc nnnorm (q c.length) * rq ^ n ≤ nnnorm (q c.length)* rq ^ c.length : mul_le_mul' le_rfl (pow_le_pow_of_le_one rq.2 hrq.1.le c.length_le) ... ≤ Cq : hCq _, have B, calc ((∏ i, nnnorm (p (c.blocks_fun i))) * rp ^ n) ≤ ∏ i, nnnorm (p (c.blocks_fun i)) * rp ^ c.blocks_fun i : by simp only [finset.prod_mul_distrib, finset.prod_pow_eq_pow_sum, c.sum_blocks_fun] ... ≤ ∏ i : fin c.length, Cp : finset.prod_le_prod' (λ i _, hCp _) ... = Cp ^ c.length : by simp ... ≤ Cp ^ n : pow_le_pow hCp1 c.length_le, calc nnnorm (q.comp_along_composition p c) * r ^ n ≤ (nnnorm (q c.length) * ∏ i, nnnorm (p (c.blocks_fun i))) * r ^ n : mul_le_mul' (q.comp_along_composition_nnnorm p c) le_rfl ... = (nnnorm (q c.length) * rq ^ n) * ((∏ i, nnnorm (p (c.blocks_fun i))) * rp ^ n) * r0 ^ n : by { simp only [r, mul_pow], ac_refl } ... ≤ Cq * Cp ^ n * r0 ^ n : mul_le_mul' (mul_le_mul' A B) le_rfl ... = Cq / 4 ^ n : begin simp only [r0], field_simp [mul_pow, (zero_lt_one.trans_le hCp1).ne'], ac_refl end }, refine ⟨r, r_pos, nnreal.summable_of_le I (summable.mul_left _ _)⟩, have h4 : ∀ n : ℕ, 0 < (4 ^ n : ℝ≥0)⁻¹ := λ n, nnreal.inv_pos.2 (pow_pos zero_lt_four _), have : ∀ n : ℕ, has_sum (λ c : composition n, (4 ^ n : ℝ≥0)⁻¹) (2 ^ (n - 1) / 4 ^ n), { intro n, convert has_sum_fintype (λ c : composition n, (4 ^ n : ℝ≥0)⁻¹), simp [finset.card_univ, composition_card, div_eq_mul_inv] }, refine nnreal.summable_sigma.2 ⟨λ n, (this n).summable, (nnreal.summable_nat_add_iff 1).1 _⟩, convert (nnreal.summable_geometric (nnreal.div_lt_one_of_lt one_lt_two)).mul_left (1 / 4), ext1 n, rw [(this _).tsum_eq, nat.add_sub_cancel], field_simp [← mul_assoc, pow_succ', mul_pow, show (4 : ℝ≥0) = 2 * 2, from (two_mul 2).symm, mul_right_comm] end /-- Bounding below the radius of the composition of two formal multilinear series assuming summability over all compositions. -/ theorem le_comp_radius_of_summable (q : formal_multilinear_series 𝕜 F G) (p : formal_multilinear_series 𝕜 E F) (r : ℝ≥0) (hr : summable (λ i : (Σ n, composition n), nnnorm (q.comp_along_composition p i.2) * r ^ i.1)) : (r : ennreal) ≤ (q.comp p).radius := begin refine le_radius_of_bound_nnreal _ (∑' i : (Σ n, composition n), nnnorm (comp_along_composition q p i.snd) * r ^ i.fst) (λ n, _), calc nnnorm (formal_multilinear_series.comp q p n) * r ^ n ≤ ∑' (c : composition n), nnnorm (comp_along_composition q p c) * r ^ n : begin rw [tsum_fintype, ← finset.sum_mul], exact mul_le_mul' (nnnorm_sum_le _ _) le_rfl end ... ≤ ∑' (i : Σ (n : ℕ), composition n), nnnorm (comp_along_composition q p i.snd) * r ^ i.fst : nnreal.tsum_comp_le_tsum_of_inj hr sigma_mk_injective end /-! ### Composing analytic functions Now, we will prove that the composition of the partial sums of `q` and `p` up to order `N` is given by a sum over some large subset of `Σ n, composition n` of `q.comp_along_composition p`, to deduce that the series for `q.comp p` indeed converges to `g ∘ f` when `q` is a power series for `g` and `p` is a power series for `f`. This proof is a big reindexing argument of a sum. Since it is a bit involved, we define first the source of the change of variables (`comp_partial_source`), its target (`comp_partial_target`) and the change of variables itself (`comp_change_of_variables`) before giving the main statement in `comp_partial_sum`. -/ /-- Source set in the change of variables to compute the composition of partial sums of formal power series. See also `comp_partial_sum`. -/ def comp_partial_sum_source (N : ℕ) : finset (Σ n, (fin n) → ℕ) := finset.sigma (finset.range N) (λ (n : ℕ), fintype.pi_finset (λ (i : fin n), finset.Ico 1 N) : _) @[simp] lemma mem_comp_partial_sum_source_iff (N : ℕ) (i : Σ n, (fin n) → ℕ) : i ∈ comp_partial_sum_source N ↔ i.1 < N ∧ ∀ (a : fin i.1), 1 ≤ i.2 a ∧ i.2 a < N := by simp only [comp_partial_sum_source, finset.Ico.mem, fintype.mem_pi_finset, finset.mem_sigma, finset.mem_range] /-- Change of variables appearing to compute the composition of partial sums of formal power series -/ def comp_change_of_variables (N : ℕ) (i : Σ n, (fin n) → ℕ) (hi : i ∈ comp_partial_sum_source N) : (Σ n, composition n) := begin rcases i with ⟨n, f⟩, rw mem_comp_partial_sum_source_iff at hi, refine ⟨∑ j, f j, of_fn (λ a, f a), λ i hi', _, by simp [sum_of_fn]⟩, obtain ⟨j, rfl⟩ : ∃ (j : fin n), f j = i, by rwa [mem_of_fn, set.mem_range] at hi', exact (hi.2 j).1 end @[simp] lemma comp_change_of_variables_length (N : ℕ) {i : Σ n, (fin n) → ℕ} (hi : i ∈ comp_partial_sum_source N) : composition.length (comp_change_of_variables N i hi).2 = i.1 := begin rcases i with ⟨k, blocks_fun⟩, dsimp [comp_change_of_variables], simp only [composition.length, map_of_fn, length_of_fn] end lemma comp_change_of_variables_blocks_fun (N : ℕ) {i : Σ n, (fin n) → ℕ} (hi : i ∈ comp_partial_sum_source N) (j : fin i.1) : (comp_change_of_variables N i hi).2.blocks_fun ⟨j, (comp_change_of_variables_length N hi).symm ▸ j.2⟩ = i.2 j := begin rcases i with ⟨n, f⟩, dsimp [composition.blocks_fun, composition.blocks, comp_change_of_variables], simp only [map_of_fn, nth_le_of_fn', function.comp_app], apply congr_arg, rw [fin.ext_iff, fin.mk_coe] end /-- Target set in the change of variables to compute the composition of partial sums of formal power series, here given a a set. -/ def comp_partial_sum_target_set (N : ℕ) : set (Σ n, composition n) := {i | (i.2.length < N) ∧ (∀ (j : fin i.2.length), i.2.blocks_fun j < N)} lemma comp_partial_sum_target_subset_image_comp_partial_sum_source (N : ℕ) (i : Σ n, composition n) (hi : i ∈ comp_partial_sum_target_set N) : ∃ j (hj : j ∈ comp_partial_sum_source N), i = comp_change_of_variables N j hj := begin rcases i with ⟨n, c⟩, refine ⟨⟨c.length, c.blocks_fun⟩, _, _⟩, { simp only [comp_partial_sum_target_set, set.mem_set_of_eq] at hi, simp only [mem_comp_partial_sum_source_iff, hi.left, hi.right, true_and, and_true], exact λ a, c.one_le_blocks' _ }, { dsimp [comp_change_of_variables], rw composition.sigma_eq_iff_blocks_eq, simp only [composition.blocks_fun, composition.blocks, subtype.coe_eta, nth_le_map'], conv_lhs { rw ← of_fn_nth_le c.blocks }, simp only [fin.val_eq_coe], refl, /- where does this fin.val come from? -/ } end /-- Target set in the change of variables to compute the composition of partial sums of formal power series, here given a a finset. See also `comp_partial_sum`. -/ def comp_partial_sum_target (N : ℕ) : finset (Σ n, composition n) := set.finite.to_finset $ (finset.finite_to_set _).dependent_image (comp_partial_sum_target_subset_image_comp_partial_sum_source N) @[simp] lemma mem_comp_partial_sum_target_iff {N : ℕ} {a : Σ n, composition n} : a ∈ comp_partial_sum_target N ↔ a.2.length < N ∧ (∀ (j : fin a.2.length), a.2.blocks_fun j < N) := by simp [comp_partial_sum_target, comp_partial_sum_target_set] /-- The auxiliary set corresponding to the composition of partial sums asymptotically contains all possible compositions. -/ lemma comp_partial_sum_target_tendsto_at_top : tendsto comp_partial_sum_target at_top at_top := begin apply monotone.tendsto_at_top_finset, { assume m n hmn a ha, have : ∀ i, i < m → i < n := λ i hi, lt_of_lt_of_le hi hmn, tidy }, { rintros ⟨n, c⟩, simp only [mem_comp_partial_sum_target_iff], obtain ⟨n, hn⟩ : bdd_above ↑(finset.univ.image (λ (i : fin c.length), c.blocks_fun i)) := finset.bdd_above _, refine ⟨max n c.length + 1, lt_of_le_of_lt (le_max_right n c.length) (lt_add_one _), λ j, lt_of_le_of_lt (le_trans _ (le_max_left _ _)) (lt_add_one _)⟩, apply hn, simp only [finset.mem_image_of_mem, finset.mem_coe, finset.mem_univ] } end /-- Composing the partial sums of two multilinear series coincides with the sum over all compositions in `comp_partial_sum_target N`. This is precisely the motivation for the definition of `comp_partial_sum_target N`. -/ lemma comp_partial_sum (q : formal_multilinear_series 𝕜 F G) (p : formal_multilinear_series 𝕜 E F) (N : ℕ) (z : E) : q.partial_sum N (∑ i in finset.Ico 1 N, p i (λ j, z)) = ∑ i in comp_partial_sum_target N, q.comp_along_composition_multilinear p i.2 (λ j, z) := begin -- we expand the composition, using the multilinearity of `q` to expand along each coordinate. suffices H : ∑ n in finset.range N, ∑ r in fintype.pi_finset (λ (i : fin n), finset.Ico 1 N), q n (λ (i : fin n), p (r i) (λ j, z)) = ∑ i in comp_partial_sum_target N, q.comp_along_composition_multilinear p i.2 (λ j, z), by simpa only [formal_multilinear_series.partial_sum, continuous_multilinear_map.map_sum_finset] using H, -- rewrite the first sum as a big sum over a sigma type rw [finset.sum_sigma'], -- show that the two sums correspond to each other by reindexing the variables. apply finset.sum_bij (comp_change_of_variables N), -- To conclude, we should show that the correspondance we have set up is indeed a bijection -- between the index sets of the two sums. -- 1 - show that the image belongs to `comp_partial_sum_target N` { rintros ⟨k, blocks_fun⟩ H, rw mem_comp_partial_sum_source_iff at H, simp only [mem_comp_partial_sum_target_iff, composition.length, composition.blocks, H.left, map_of_fn, length_of_fn, true_and, comp_change_of_variables], assume j, simp only [composition.blocks_fun, (H.right _).right, nth_le_of_fn'] }, -- 2 - show that the composition gives the `comp_along_composition` application { rintros ⟨k, blocks_fun⟩ H, apply congr _ (comp_change_of_variables_length N H).symm, intros, rw ← comp_change_of_variables_blocks_fun N H, refl }, -- 3 - show that the map is injective { rintros ⟨k, blocks_fun⟩ ⟨k', blocks_fun'⟩ H H' heq, obtain rfl : k = k', { have := (comp_change_of_variables_length N H).symm, rwa [heq, comp_change_of_variables_length] at this, }, congr, funext i, calc blocks_fun i = (comp_change_of_variables N _ H).2.blocks_fun _ : (comp_change_of_variables_blocks_fun N H i).symm ... = (comp_change_of_variables N _ H').2.blocks_fun _ : begin apply composition.blocks_fun_congr; try { rw heq }, refl end ... = blocks_fun' i : comp_change_of_variables_blocks_fun N H' i }, -- 4 - show that the map is surjective { assume i hi, apply comp_partial_sum_target_subset_image_comp_partial_sum_source N i, simpa [comp_partial_sum_target] using hi } end end formal_multilinear_series open formal_multilinear_series /-- If two functions `g` and `f` have power series `q` and `p` respectively at `f x` and `x`, then `g ∘ f` admits the power series `q.comp p` at `x`. -/ theorem has_fpower_series_at.comp {g : F → G} {f : E → F} {q : formal_multilinear_series 𝕜 F G} {p : formal_multilinear_series 𝕜 E F} {x : E} (hg : has_fpower_series_at g q (f x)) (hf : has_fpower_series_at f p x) : has_fpower_series_at (g ∘ f) (q.comp p) x := begin /- Consider `rf` and `rg` such that `f` and `g` have power series expansion on the disks of radius `rf` and `rg`. -/ rcases hg with ⟨rg, Hg⟩, rcases hf with ⟨rf, Hf⟩, /- The terms defining `q.comp p` are geometrically summable in a disk of some radius `r`. -/ rcases q.comp_summable_nnreal p Hg.radius_pos Hf.radius_pos with ⟨r, r_pos : 0 < r, hr⟩, /- We will consider `y` which is smaller than `r` and `rf`, and also small enough that `f (x + y)` is close enough to `f x` to be in the disk where `g` is well behaved. Let `min (r, rf, δ)` be this new radius.-/ have : continuous_at f x := Hf.analytic_at.continuous_at, obtain ⟨δ, δpos, hδ⟩ : ∃ (δ : ennreal) (H : 0 < δ), ∀ {z : E}, z ∈ emetric.ball x δ → f z ∈ emetric.ball (f x) rg, { have : emetric.ball (f x) rg ∈ 𝓝 (f x) := emetric.ball_mem_nhds _ Hg.r_pos, rcases emetric.mem_nhds_iff.1 (Hf.analytic_at.continuous_at this) with ⟨δ, δpos, Hδ⟩, exact ⟨δ, δpos, λ z hz, Hδ hz⟩ }, let rf' := min rf δ, have min_pos : 0 < min rf' r, by simp only [r_pos, Hf.r_pos, δpos, lt_min_iff, ennreal.coe_pos, and_self], /- We will show that `g ∘ f` admits the power series `q.comp p` in the disk of radius `min (r, rf', δ)`. -/ refine ⟨min rf' r, _⟩, refine ⟨le_trans (min_le_right rf' r) (formal_multilinear_series.le_comp_radius_of_summable q p r hr), min_pos, λ y hy, _⟩, /- Let `y` satisfy `∥y∥ < min (r, rf', δ)`. We want to show that `g (f (x + y))` is the sum of `q.comp p` applied to `y`. -/ -- First, check that `y` is small enough so that estimates for `f` and `g` apply. have y_mem : y ∈ emetric.ball (0 : E) rf := (emetric.ball_subset_ball (le_trans (min_le_left _ _) (min_le_left _ _))) hy, have fy_mem : f (x + y) ∈ emetric.ball (f x) rg, { apply hδ, have : y ∈ emetric.ball (0 : E) δ := (emetric.ball_subset_ball (le_trans (min_le_left _ _) (min_le_right _ _))) hy, simpa [edist_eq_coe_nnnorm_sub, edist_eq_coe_nnnorm] }, /- Now the proof starts. To show that the sum of `q.comp p` at `y` is `g (f (x + y))`, we will write `q.comp p` applied to `y` as a big sum over all compositions. Since the sum is summable, to get its convergence it suffices to get the convergence along some increasing sequence of sets. We will use the sequence of sets `comp_partial_sum_target n`, along which the sum is exactly the composition of the partial sums of `q` and `p`, by design. To show that it converges to `g (f (x + y))`, pointwise convergence would not be enough, but we have uniform convergence to save the day. -/ -- First step: the partial sum of `p` converges to `f (x + y)`. have A : tendsto (λ n, ∑ a in finset.Ico 1 n, p a (λ b, y)) at_top (𝓝 (f (x + y) - f x)), { have L : ∀ᶠ n in at_top, ∑ a in finset.range n, p a (λ b, y) - f x = ∑ a in finset.Ico 1 n, p a (λ b, y), { rw eventually_at_top, refine ⟨1, λ n hn, _⟩, symmetry, rw [eq_sub_iff_add_eq', finset.range_eq_Ico, ← Hf.coeff_zero (λi, y), finset.sum_eq_sum_Ico_succ_bot hn] }, have : tendsto (λ n, ∑ a in finset.range n, p a (λ b, y) - f x) at_top (𝓝 (f (x + y) - f x)) := (Hf.has_sum y_mem).tendsto_sum_nat.sub tendsto_const_nhds, exact tendsto.congr' L this }, -- Second step: the composition of the partial sums of `q` and `p` converges to `g (f (x + y))`. have B : tendsto (λ n, q.partial_sum n (∑ a in finset.Ico 1 n, p a (λ b, y))) at_top (𝓝 (g (f (x + y)))), { -- we use the fact that the partial sums of `q` converge locally uniformly to `g`, and that -- composition passes to the limit under locally uniform convergence. have B₁ : continuous_at (λ (z : F), g (f x + z)) (f (x + y) - f x), { refine continuous_at.comp _ (continuous_const.add continuous_id).continuous_at, simp only [add_sub_cancel'_right, id.def], exact Hg.continuous_on.continuous_at (mem_nhds_sets (emetric.is_open_ball) fy_mem) }, have B₂ : f (x + y) - f x ∈ emetric.ball (0 : F) rg, by simpa [edist_eq_coe_nnnorm, edist_eq_coe_nnnorm_sub] using fy_mem, rw [← nhds_within_eq_of_open B₂ emetric.is_open_ball] at A, convert Hg.tendsto_locally_uniformly_on.tendsto_comp B₁.continuous_within_at B₂ A, simp only [add_sub_cancel'_right] }, -- Third step: the sum over all compositions in `comp_partial_sum_target n` converges to -- `g (f (x + y))`. As this sum is exactly the composition of the partial sum, this is a direct -- consequence of the second step have C : tendsto (λ n, ∑ i in comp_partial_sum_target n, q.comp_along_composition_multilinear p i.2 (λ j, y)) at_top (𝓝 (g (f (x + y)))), by simpa [comp_partial_sum] using B, -- Fourth step: the sum over all compositions is `g (f (x + y))`. This follows from the -- convergence along a subsequence proved in the third step, and the fact that the sum is Cauchy -- thanks to the summability properties. have D : has_sum (λ i : (Σ n, composition n), q.comp_along_composition_multilinear p i.2 (λ j, y)) (g (f (x + y))), { have cau : cauchy_seq (λ (s : finset (Σ n, composition n)), ∑ i in s, q.comp_along_composition_multilinear p i.2 (λ j, y)), { apply cauchy_seq_finset_of_norm_bounded _ (nnreal.summable_coe.2 hr) _, simp only [coe_nnnorm, nnreal.coe_mul, nnreal.coe_pow], rintros ⟨n, c⟩, calc ∥(comp_along_composition q p c) (λ (j : fin n), y)∥ ≤ ∥comp_along_composition q p c∥ * ∏ j : fin n, ∥y∥ : by apply continuous_multilinear_map.le_op_norm ... ≤ ∥comp_along_composition q p c∥ * (r : ℝ) ^ n : begin apply mul_le_mul_of_nonneg_left _ (norm_nonneg _), rw [finset.prod_const, finset.card_fin], apply pow_le_pow_of_le_left (norm_nonneg _), rw [emetric.mem_ball, edist_eq_coe_nnnorm] at hy, have := (le_trans (le_of_lt hy) (min_le_right _ _)), rwa [ennreal.coe_le_coe, ← nnreal.coe_le_coe, coe_nnnorm] at this end }, exact tendsto_nhds_of_cauchy_seq_of_subseq cau comp_partial_sum_target_tendsto_at_top C }, -- Fifth step: the sum over `n` of `q.comp p n` can be expressed as a particular resummation of -- the sum over all compositions, by grouping together the compositions of the same -- integer `n`. The convergence of the whole sum therefore implies the converence of the sum -- of `q.comp p n` have E : has_sum (λ n, (q.comp p) n (λ j, y)) (g (f (x + y))), { apply D.sigma, assume n, dsimp [formal_multilinear_series.comp], convert has_sum_fintype _, simp only [continuous_multilinear_map.sum_apply], refl }, exact E end /-- If two functions `g` and `f` are analytic respectively at `f x` and `x`, then `g ∘ f` is analytic at `x`. -/ theorem analytic_at.comp {g : F → G} {f : E → F} {x : E} (hg : analytic_at 𝕜 g (f x)) (hf : analytic_at 𝕜 f x) : analytic_at 𝕜 (g ∘ f) x := let ⟨q, hq⟩ := hg, ⟨p, hp⟩ := hf in (hq.comp hp).analytic_at /-! ### Associativity of the composition of formal multilinear series In this paragraph, we us prove the associativity of the composition of formal power series. By definition, ``` (r.comp q).comp p n v = ∑_{i₁ + ... + iₖ = n} (r.comp q)ₖ (p_{i₁} (v₀, ..., v_{i₁ -1}), p_{i₂} (...), ..., p_{iₖ}(...)) = ∑_{a : composition n} (r.comp q) a.length (apply_composition p a v) ``` decomposing `r.comp q` in the same way, we get ``` (r.comp q).comp p n v = ∑_{a : composition n} ∑_{b : composition a.length} r b.length (apply_composition q b (apply_composition p a v)) ``` On the other hand, ``` r.comp (q.comp p) n v = ∑_{c : composition n} r c.length (apply_composition (q.comp p) c v) ``` Here, `apply_composition (q.comp p) c v` is a vector of length `c.length`, whose `i`-th term is given by `(q.comp p) (c.blocks_fun i) (v_l, v_{l+1}, ..., v_{m-1})` where `{l, ..., m-1}` is the `i`-th block in the composition `c`, of length `c.blocks_fun i` by definition. To compute this term, we expand it as `∑_{dᵢ : composition (c.blocks_fun i)} q dᵢ.length (apply_composition p dᵢ v')`, where `v' = (v_l, v_{l+1}, ..., v_{m-1})`. Therefore, we get ``` r.comp (q.comp p) n v = ∑_{c : composition n} ∑_{d₀ : composition (c.blocks_fun 0), ..., d_{c.length - 1} : composition (c.blocks_fun (c.length - 1))} r c.length (λ i, q dᵢ.length (apply_composition p dᵢ v'ᵢ)) ``` To show that these terms coincide, we need to explain how to reindex the sums to put them in bijection (and then the terms we are summing will correspond to each other). Suppose we have a composition `a` of `n`, and a composition `b` of `a.length`. Then `b` indicates how to group together some blocks of `a`, giving altogether `b.length` blocks of blocks. These blocks of blocks can be called `d₀, ..., d_{a.length - 1}`, and one obtains a composition `c` of `n` by saying that each `dᵢ` is one single block. Conversely, if one starts from `c` and the `dᵢ`s, one can concatenate the `dᵢ`s to obtain a composition `a` of `n`, and register the lengths of the `dᵢ`s in a composition `b` of `a.length`. An example might be enlightening. Suppose `a = [2, 2, 3, 4, 2]`. It is a composition of length 5 of 13. The content of the blocks may be represented as `0011222333344`. Now take `b = [2, 3]` as a composition of `a.length = 5`. It says that the first 2 blocks of `a` should be merged, and the last 3 blocks of `a` should be merged, giving a new composition of `13` made of two blocks of length `4` and `9`, i.e., `c = [4, 9]`. But one can also remember that the new first block was initially made of two blocks of size `2`, so `d₀ = [2, 2]`, and the new second block was initially made of three blocks of size `3`, `4` and `2`, so `d₁ = [3, 4, 2]`. This equivalence is called `composition.sigma_equiv_sigma_pi n` below. We start with preliminary results on compositions, of a very specialized nature, then define the equivalence `composition.sigma_equiv_sigma_pi n`, and we deduce finally the associativity of composition of formal multilinear series in `formal_multilinear_series.comp_assoc`. -/ namespace composition variable {n : ℕ} /-- Rewriting equality in the dependent type `Σ (a : composition n), composition a.length)` in non-dependent terms with lists, requiring that the blocks coincide. -/ lemma sigma_composition_eq_iff (i j : Σ (a : composition n), composition a.length) : i = j ↔ i.1.blocks = j.1.blocks ∧ i.2.blocks = j.2.blocks := begin refine ⟨by rintro rfl; exact ⟨rfl, rfl⟩, _⟩, rcases i with ⟨a, b⟩, rcases j with ⟨a', b'⟩, rintros ⟨h, h'⟩, have H : a = a', by { ext1, exact h }, induction H, congr, ext1, exact h' end /-- Rewriting equality in the dependent type `Σ (c : composition n), Π (i : fin c.length), composition (c.blocks_fun i)` in non-dependent terms with lists, requiring that the lists of blocks coincide. -/ lemma sigma_pi_composition_eq_iff (u v : Σ (c : composition n), Π (i : fin c.length), composition (c.blocks_fun i)) : u = v ↔ of_fn (λ i, (u.2 i).blocks) = of_fn (λ i, (v.2 i).blocks) := begin refine ⟨λ H, by rw H, λ H, _⟩, rcases u with ⟨a, b⟩, rcases v with ⟨a', b'⟩, dsimp at H, have h : a = a', { ext1, have : map list.sum (of_fn (λ (i : fin (composition.length a)), (b i).blocks)) = map list.sum (of_fn (λ (i : fin (composition.length a')), (b' i).blocks)), by rw H, simp only [map_of_fn] at this, change of_fn (λ (i : fin (composition.length a)), (b i).blocks.sum) = of_fn (λ (i : fin (composition.length a')), (b' i).blocks.sum) at this, simpa [composition.blocks_sum, composition.of_fn_blocks_fun] using this }, induction h, simp only [true_and, eq_self_iff_true, heq_iff_eq], ext i : 2, have : nth_le (of_fn (λ (i : fin (composition.length a)), (b i).blocks)) i (by simp [i.is_lt]) = nth_le (of_fn (λ (i : fin (composition.length a)), (b' i).blocks)) i (by simp [i.is_lt]) := nth_le_of_eq H _, rwa [nth_le_of_fn, nth_le_of_fn] at this end /-- When `a` is a composition of `n` and `b` is a composition of `a.length`, `a.gather b` is the composition of `n` obtained by gathering all the blocks of `a` corresponding to a block of `b`. For instance, if `a = [6, 5, 3, 5, 2]` and `b = [2, 3]`, one should gather together the first two blocks of `a` and its last three blocks, giving `a.gather b = [11, 10]`. -/ def gather (a : composition n) (b : composition a.length) : composition n := { blocks := (a.blocks.split_wrt_composition b).map sum, blocks_pos := begin rw forall_mem_map_iff, intros j hj, suffices H : ∀ i ∈ j, 1 ≤ i, from calc 0 < j.length : length_pos_of_mem_split_wrt_composition hj ... ≤ j.sum : length_le_sum_of_one_le _ H, intros i hi, apply a.one_le_blocks, rw ← a.blocks.join_split_wrt_composition b, exact mem_join_of_mem hj hi, end, blocks_sum := by { rw [← sum_join, join_split_wrt_composition, a.blocks_sum] } } lemma length_gather (a : composition n) (b : composition a.length) : length (a.gather b) = b.length := show (map list.sum (a.blocks.split_wrt_composition b)).length = b.blocks.length, by rw [length_map, length_split_wrt_composition] /-- An auxiliary function used in the definition of `sigma_equiv_sigma_pi` below, associating to two compositions `a` of `n` and `b` of `a.length`, and an index `i` bounded by the length of `a.gather b`, the subcomposition of `a` made of those blocks belonging to the `i`-th block of `a.gather b`. -/ def sigma_composition_aux (a : composition n) (b : composition a.length) (i : fin (a.gather b).length) : composition ((a.gather b).blocks_fun i) := { blocks := nth_le (a.blocks.split_wrt_composition b) i (by { rw [length_split_wrt_composition, ← length_gather], exact i.2 }), blocks_pos := assume i hi, a.blocks_pos (by { rw ← a.blocks.join_split_wrt_composition b, exact mem_join_of_mem (nth_le_mem _ _ _) hi }), blocks_sum := by simp only [composition.blocks_fun, nth_le_map', composition.gather, fin.val_eq_coe] } /- Where did the fin.val come from in the proof on the preceding line? -/ lemma length_sigma_composition_aux (a : composition n) (b : composition a.length) (i : fin b.length) : composition.length (composition.sigma_composition_aux a b ⟨i, (length_gather a b).symm ▸ i.2⟩) = composition.blocks_fun b i := show list.length (nth_le (split_wrt_composition a.blocks b) i _) = blocks_fun b i, by { rw [nth_le_map_rev list.length, nth_le_of_eq (map_length_split_wrt_composition _ _)], refl } lemma blocks_fun_sigma_composition_aux (a : composition n) (b : composition a.length) (i : fin b.length) (j : fin (blocks_fun b i)) : blocks_fun (sigma_composition_aux a b ⟨i, (length_gather a b).symm ▸ i.2⟩) ⟨j, (length_sigma_composition_aux a b i).symm ▸ j.2⟩ = blocks_fun a (embedding b i j) := show nth_le (nth_le _ _ _) _ _ = nth_le a.blocks _ _, by { rw [nth_le_of_eq (nth_le_split_wrt_composition _ _ _), nth_le_drop', nth_le_take'], refl } /-- Auxiliary lemma to prove that the composition of formal multilinear series is associative. Consider a composition `a` of `n` and a composition `b` of `a.length`. Grouping together some blocks of `a` according to `b` as in `a.gather b`, one can compute the total size of the blocks of `a` up to an index `size_up_to b i + j` (where the `j` corresponds to a set of blocks of `a` that do not fill a whole block of `a.gather b`). The first part corresponds to a sum of blocks in `a.gather b`, and the second one to a sum of blocks in the next block of `sigma_composition_aux a b`. This is the content of this lemma. -/ lemma size_up_to_size_up_to_add (a : composition n) (b : composition a.length) {i j : ℕ} (hi : i < b.length) (hj : j < blocks_fun b ⟨i, hi⟩) : size_up_to a (size_up_to b i + j) = size_up_to (a.gather b) i + (size_up_to (sigma_composition_aux a b ⟨i, (length_gather a b).symm ▸ hi⟩) j) := begin induction j with j IHj, { show sum (take ((b.blocks.take i).sum) a.blocks) = sum (take i (map sum (split_wrt_composition a.blocks b))), induction i with i IH, { refl }, { have A : i < b.length := nat.lt_of_succ_lt hi, have B : i < list.length (map list.sum (split_wrt_composition a.blocks b)), by simp [A], have C : 0 < blocks_fun b ⟨i, A⟩ := composition.blocks_pos' _ _ _, rw [sum_take_succ _ _ B, ← IH A C], have : take (sum (take i b.blocks)) a.blocks = take (sum (take i b.blocks)) (take (sum (take (i+1) b.blocks)) a.blocks), { rw [take_take, min_eq_left], apply monotone_sum_take _ (nat.le_succ _) }, rw [this, nth_le_map', nth_le_split_wrt_composition, ← take_append_drop (sum (take i b.blocks)) ((take (sum (take (nat.succ i) b.blocks)) a.blocks)), sum_append], congr, rw [take_append_drop] } }, { have A : j < blocks_fun b ⟨i, hi⟩ := lt_trans (lt_add_one j) hj, have B : j < length (sigma_composition_aux a b ⟨i, (length_gather a b).symm ▸ hi⟩), by { convert A, rw [← length_sigma_composition_aux], refl }, have C : size_up_to b i + j < size_up_to b (i + 1), { simp only [size_up_to_succ b hi, add_lt_add_iff_left], exact A }, have D : size_up_to b i + j < length a := lt_of_lt_of_le C (b.size_up_to_le _), have : size_up_to b i + nat.succ j = (size_up_to b i + j).succ := rfl, rw [this, size_up_to_succ _ D, IHj A, size_up_to_succ _ B], simp only [sigma_composition_aux, add_assoc, add_left_inj, fin.coe_mk], rw [nth_le_of_eq (nth_le_split_wrt_composition _ _ _), nth_le_drop', nth_le_take _ _ C] } end /-- Natural equivalence between `(Σ (a : composition n), composition a.length)` and `(Σ (c : composition n), Π (i : fin c.length), composition (c.blocks_fun i))`, that shows up as a change of variables in the proof that composition of formal multilinear series is associative. Consider a composition `a` of `n` and a composition `b` of `a.length`. Then `b` indicates how to group together some blocks of `a`, giving altogether `b.length` blocks of blocks. These blocks of blocks can be called `d₀, ..., d_{a.length - 1}`, and one obtains a composition `c` of `n` by saying that each `dᵢ` is one single block. The map `⟨a, b⟩ → ⟨c, (d₀, ..., d_{a.length - 1})⟩` is the direct map in the equiv. Conversely, if one starts from `c` and the `dᵢ`s, one can join the `dᵢ`s to obtain a composition `a` of `n`, and register the lengths of the `dᵢ`s in a composition `b` of `a.length`. This is the inverse map of the equiv. -/ def sigma_equiv_sigma_pi (n : ℕ) : (Σ (a : composition n), composition a.length) ≃ (Σ (c : composition n), Π (i : fin c.length), composition (c.blocks_fun i)) := { to_fun := λ i, ⟨i.1.gather i.2, i.1.sigma_composition_aux i.2⟩, inv_fun := λ i, ⟨ { blocks := (of_fn (λ j, (i.2 j).blocks)).join, blocks_pos := begin simp only [and_imp, mem_join, exists_imp_distrib, forall_mem_of_fn_iff], exact λ i j hj, composition.blocks_pos _ hj end, blocks_sum := by simp [sum_of_fn, composition.blocks_sum, composition.sum_blocks_fun] }, { blocks := of_fn (λ j, (i.2 j).length), blocks_pos := forall_mem_of_fn_iff.2 (λ j, composition.length_pos_of_pos _ (composition.blocks_pos' _ _ _)), blocks_sum := by { dsimp only [composition.length], simp [sum_of_fn] } }⟩, left_inv := begin -- the fact that we have a left inverse is essentially `join_split_wrt_composition`, -- but we need to massage it to take care of the dependent setting. rintros ⟨a, b⟩, rw sigma_composition_eq_iff, dsimp, split, { have A := length_map list.sum (split_wrt_composition a.blocks b), conv_rhs { rw [← join_split_wrt_composition a.blocks b, ← of_fn_nth_le (split_wrt_composition a.blocks b)] }, congr, { exact A }, { exact (fin.heq_fun_iff A).2 (λ i, rfl) } }, { have B : composition.length (composition.gather a b) = list.length b.blocks := composition.length_gather _ _, conv_rhs { rw [← of_fn_nth_le b.blocks] }, congr' 1, { exact B }, { apply (fin.heq_fun_iff B).2 (λ i, _), rw [sigma_composition_aux, composition.length, nth_le_map_rev list.length, nth_le_of_eq (map_length_split_wrt_composition _ _)], refl } } end, right_inv := begin -- the fact that we have a right inverse is essentially `split_wrt_composition_join`, -- but we need to massage it to take care of the dependent setting. rintros ⟨c, d⟩, have : map list.sum (of_fn (λ (i : fin (composition.length c)), (d i).blocks)) = c.blocks, by simp [map_of_fn, (∘), composition.blocks_sum, composition.of_fn_blocks_fun], rw sigma_pi_composition_eq_iff, dsimp, congr, { ext1, dsimp [composition.gather], rwa split_wrt_composition_join, simp only [map_of_fn] }, { rw fin.heq_fun_iff, { assume i, dsimp [composition.sigma_composition_aux], rw [nth_le_of_eq (split_wrt_composition_join _ _ _)], { simp only [nth_le_of_fn'] }, { simp only [map_of_fn] } }, { congr, ext1, dsimp [composition.gather], rwa split_wrt_composition_join, simp only [map_of_fn] } } end } end composition namespace formal_multilinear_series open composition theorem comp_assoc (r : formal_multilinear_series 𝕜 G H) (q : formal_multilinear_series 𝕜 F G) (p : formal_multilinear_series 𝕜 E F) : (r.comp q).comp p = r.comp (q.comp p) := begin ext n v, /- First, rewrite the two compositions appearing in the theorem as two sums over complicated sigma types, as in the description of the proof above. -/ let f : (Σ (a : composition n), composition a.length) → H := λ c, r c.2.length (apply_composition q c.2 (apply_composition p c.1 v)), let g : (Σ (c : composition n), Π (i : fin c.length), composition (c.blocks_fun i)) → H := λ c, r c.1.length (λ (i : fin c.1.length), q (c.2 i).length (apply_composition p (c.2 i) (v ∘ c.1.embedding i))), suffices : ∑ c, f c = ∑ c, g c, by simpa only [formal_multilinear_series.comp, continuous_multilinear_map.sum_apply, comp_along_composition_apply, continuous_multilinear_map.map_sum, finset.sum_sigma', apply_composition], /- Now, we use `composition.sigma_equiv_sigma_pi n` to change variables in the second sum, and check that we get exactly the same sums. -/ rw ← (sigma_equiv_sigma_pi n).sum_comp, /- To check that we have the same terms, we should check that we apply the same component of `r`, and the same component of `q`, and the same component of `p`, to the same coordinate of `v`. This is true by definition, but at each step one needs to convince Lean that the types one considers are the same, using a suitable congruence lemma to avoid dependent type issues. This dance has to be done three times, one for `r`, one for `q` and one for `p`.-/ apply finset.sum_congr rfl, rintros ⟨a, b⟩ _, dsimp [f, g, sigma_equiv_sigma_pi], -- check that the `r` components are the same. Based on `composition.length_gather` apply r.congr (composition.length_gather a b).symm, intros i hi1 hi2, -- check that the `q` components are the same. Based on `length_sigma_composition_aux` apply q.congr (length_sigma_composition_aux a b _).symm, intros j hj1 hj2, -- check that the `p` components are the same. Based on `blocks_fun_sigma_composition_aux` apply p.congr (blocks_fun_sigma_composition_aux a b _ _).symm, intros k hk1 hk2, -- finally, check that the coordinates of `v` one is using are the same. Based on -- `size_up_to_size_up_to_add`. refine congr_arg v (fin.eq_of_veq _), dsimp [composition.embedding], rw [size_up_to_size_up_to_add _ _ hi1 hj1, add_assoc], end end formal_multilinear_series
b6e47b09eebc4b52641893cc70f5ebc6beffd8b9
31f556cdeb9239ffc2fad8f905e33987ff4feab9
/stage0/src/Lean/Server/Snapshots.lean
e03e00d9a72defe601952efc5b7b7e1f42c59968
[ "Apache-2.0", "LLVM-exception", "NCSA", "LGPL-3.0-only", "LicenseRef-scancode-inner-net-2.0", "BSD-3-Clause", "LGPL-2.0-or-later", "Spencer-94", "LGPL-2.1-or-later", "HPND", "LicenseRef-scancode-pcre", "ISC", "LGPL-2.1-only", "LicenseRef-scancode-other-permissive", "SunPro", "CMU-Mach" ]
permissive
tobiasgrosser/lean4
ce0fd9cca0feba1100656679bf41f0bffdbabb71
ebdbdc10436a4d9d6b66acf78aae7a23f5bd073f
refs/heads/master
1,673,103,412,948
1,664,930,501,000
1,664,930,501,000
186,870,185
0
0
Apache-2.0
1,665,129,237,000
1,557,939,901,000
Lean
UTF-8
Lean
false
false
7,576
lean
/- Copyright (c) 2020 Wojciech Nawrocki. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Wojciech Nawrocki -/ import Init.System.IO import Lean.Elab.Import import Lean.Elab.Command import Lean.Widget.InteractiveDiagnostic /-! One can think of this module as being a partial reimplementation of Lean.Elab.Frontend which also stores a snapshot of the world after each command. Importantly, we allow (re)starting compilation from any snapshot/position in the file for interactive editing purposes. -/ namespace Lean.Server.Snapshots open Elab /- For `Inhabited Snapshot` -/ builtin_initialize dummyTacticCache : IO.Ref Tactic.Cache ← IO.mkRef {} /-- What Lean knows about the world after the header and each command. -/ structure Snapshot where /-- Where the command which produced this snapshot begins. Note that neighbouring snapshots are *not* necessarily attached beginning-to-end, since inputs outside the grammar advance the parser but do not produce snapshots. -/ beginPos : String.Pos stx : Syntax mpState : Parser.ModuleParserState cmdState : Command.State /-- We cache interactive diagnostics in order not to invoke the pretty-printer again on messages from previous snapshots when publishing diagnostics for every new snapshot (this is quadratic), as well as not to invoke it once again when handling `$/lean/interactiveDiagnostics`. -/ interactiveDiags : PersistentArray Widget.InteractiveDiagnostic tacticCache : IO.Ref Tactic.Cache instance : Inhabited Snapshot where default := { beginPos := default stx := default mpState := default cmdState := default interactiveDiags := default tacticCache := dummyTacticCache } namespace Snapshot def endPos (s : Snapshot) : String.Pos := s.mpState.pos def env (s : Snapshot) : Environment := s.cmdState.env def msgLog (s : Snapshot) : MessageLog := s.cmdState.messages def diagnostics (s : Snapshot) : PersistentArray Lsp.Diagnostic := s.interactiveDiags.map fun d => d.toDiagnostic def infoTree (s : Snapshot) : InfoTree := -- the parser returns exactly one command per snapshot, and the elaborator creates exactly one node per command assert! s.cmdState.infoState.trees.size == 1 s.cmdState.infoState.trees[0]! def isAtEnd (s : Snapshot) : Bool := Parser.isEOI s.stx || Parser.isExitCommand s.stx open Command in /-- Use the command state in the given snapshot to run a `CommandElabM`.-/ def runCommandElabM (snap : Snapshot) (meta : DocumentMeta) (c : CommandElabM α) : EIO Exception α := do let ctx : Command.Context := { cmdPos := snap.beginPos, fileName := meta.uri, fileMap := meta.text, tacticCache? := snap.tacticCache, } c.run ctx |>.run' snap.cmdState /-- Run a `CoreM` computation using the data in the given snapshot.-/ def runCoreM (snap : Snapshot) (meta : DocumentMeta) (c : CoreM α) : EIO Exception α := snap.runCommandElabM meta <| Command.liftCoreM c /-- Run a `TermElabM` computation using the data in the given snapshot.-/ def runTermElabM (snap : Snapshot) (meta : DocumentMeta) (c : TermElabM α) : EIO Exception α := snap.runCommandElabM meta <| Command.liftTermElabM c end Snapshot /-- Parses the next command occurring after the given snapshot without elaborating it. -/ def parseNextCmd (inputCtx : Parser.InputContext) (snap : Snapshot) : IO Syntax := do let cmdState := snap.cmdState let scope := cmdState.scopes.head! let pmctx := { env := cmdState.env, options := scope.opts, currNamespace := scope.currNamespace, openDecls := scope.openDecls } let (cmdStx, _, _) := Parser.parseCommand inputCtx pmctx snap.mpState snap.msgLog return cmdStx register_builtin_option server.stderrAsMessages : Bool := { defValue := true group := "server" descr := "(server) capture output to the Lean stderr channel (such as from `dbg_trace`) during elaboration of a command as a diagnostic message" } /-- Compiles the next command occurring after the given snapshot. If there is no next command (file ended), `Snapshot.isAtEnd` will hold of the return value. -/ -- NOTE: This code is really very similar to Elab.Frontend. But generalizing it -- over "store snapshots"/"don't store snapshots" would likely result in confusing -- isServer? conditionals and not be worth it due to how short it is. def compileNextCmd (inputCtx : Parser.InputContext) (snap : Snapshot) (hasWidgets : Bool) : IO Snapshot := do let cmdState := snap.cmdState let scope := cmdState.scopes.head! let pmctx := { env := cmdState.env, options := scope.opts, currNamespace := scope.currNamespace, openDecls := scope.openDecls } let (cmdStx, cmdParserState, msgLog) := Parser.parseCommand inputCtx pmctx snap.mpState snap.msgLog let cmdPos := cmdStx.getPos?.get! if Parser.isEOI cmdStx || Parser.isExitCommand cmdStx then let endSnap : Snapshot := { beginPos := cmdPos stx := cmdStx mpState := cmdParserState cmdState := snap.cmdState interactiveDiags := ← withNewInteractiveDiags msgLog tacticCache := snap.tacticCache } return endSnap else let cmdStateRef ← IO.mkRef { snap.cmdState with messages := msgLog } /- The same snapshot may be executed by different tasks. So, to make sure `elabCommandTopLevel` has exclusive access to the cache, we create a fresh reference here. Before this change, the following `snap.tacticCache.modify` would reset the tactic post cache while another snapshot was still using it. -/ let tacticCacheNew ← IO.mkRef (← snap.tacticCache.get) let cmdCtx : Elab.Command.Context := { cmdPos := snap.endPos fileName := inputCtx.fileName fileMap := inputCtx.fileMap tacticCache? := some tacticCacheNew } let (output, _) ← IO.FS.withIsolatedStreams (isolateStderr := server.stderrAsMessages.get scope.opts) <| liftM (m := BaseIO) do Elab.Command.catchExceptions (getResetInfoTrees *> Elab.Command.elabCommandTopLevel cmdStx) cmdCtx cmdStateRef let postNew := (← tacticCacheNew.get).post snap.tacticCache.modify fun _ => { pre := postNew, post := {} } let mut postCmdState ← cmdStateRef.get if !output.isEmpty then postCmdState := { postCmdState with messages := postCmdState.messages.add { fileName := inputCtx.fileName severity := MessageSeverity.information pos := inputCtx.fileMap.toPosition snap.endPos data := output } } let postCmdSnap : Snapshot := { beginPos := cmdPos stx := cmdStx mpState := cmdParserState cmdState := postCmdState interactiveDiags := ← withNewInteractiveDiags postCmdState.messages tacticCache := (← IO.mkRef {}) } return postCmdSnap where /-- Compute the current interactive diagnostics log by finding a "diff" relative to the parent snapshot. We need to do this because unlike the `MessageLog` itself, interactive diags are not part of the command state. -/ withNewInteractiveDiags (msgLog : MessageLog) : IO (PersistentArray Widget.InteractiveDiagnostic) := do let newMsgCount := msgLog.msgs.size - snap.msgLog.msgs.size let mut ret := snap.interactiveDiags for i in List.iota newMsgCount do let newMsg := msgLog.msgs.get! (msgLog.msgs.size - i) ret := ret.push (← Widget.msgToInteractiveDiagnostic inputCtx.fileMap newMsg hasWidgets) return ret end Lean.Server.Snapshots
319f4f45b9624a6da92d70d216e2c9934390a443
9be442d9ec2fcf442516ed6e9e1660aa9071b7bd
/tests/playground/flat_parser.lean
de34ff60d90aa37e4ed84d233b49c4d8bc83af87
[ "Apache-2.0", "LLVM-exception", "NCSA", "LGPL-3.0-only", "LicenseRef-scancode-inner-net-2.0", "BSD-3-Clause", "LGPL-2.0-or-later", "Spencer-94", "LGPL-2.1-or-later", "HPND", "LicenseRef-scancode-pcre", "ISC", "LGPL-2.1-only", "LicenseRef-scancode-other-permissive", "SunPro", "CMU-Mach" ]
permissive
EdAyers/lean4
57ac632d6b0789cb91fab2170e8c9e40441221bd
37ba0df5841bde51dbc2329da81ac23d4f6a4de4
refs/heads/master
1,676,463,245,298
1,660,619,433,000
1,660,619,433,000
183,433,437
1
0
Apache-2.0
1,657,612,672,000
1,556,196,574,000
Lean
UTF-8
Lean
false
false
14,557
lean
import init.lean.message init.lean.parser.syntax init.lean.parser.trie init.lean.parser.basic init.lean.parser.stringliteral import init.lean.parser.token namespace Lean namespace flatParser open String open Parser (Syntax Syntax.missing) open Parser (Trie TokenMap) abbreviation pos := String.Pos /-- A precomputed cache for quickly mapping Char offsets to positions. -/ structure FileMap := (offsets : Array Nat) (lines : Array Nat) namespace FileMap private def fromStringAux (s : String) : Nat → Nat → Nat → pos → Array Nat → Array Nat → FileMap | 0 offset line i offsets lines := ⟨offsets.push offset, lines.push line⟩ | (k+1) offset line i offsets lines := if s.atEnd i then ⟨offsets.push offset, lines.push line⟩ else let c := s.get i in let i := s.next i in let offset := offset + 1 in if c = '\n' then fromStringAux k offset (line+1) i (offsets.push offset) (lines.push (line+1)) else fromStringAux k offset line i offsets lines def fromString (s : String) : FileMap := fromStringAux s s.length 0 1 0 (Array.empty.push 0) (Array.empty.push 1) /- Remark: `offset is in [(offsets.get b), (offsets.get e)]` and `b < e` -/ private def toPositionAux (offsets : Array Nat) (lines : Array Nat) (offset : Nat) : Nat → Nat → Nat → Position | 0 b e := ⟨offset, 1⟩ -- unreachable | (k+1) b e := let offsetB := offsets.get b in if e = b + 1 then ⟨offset - offsetB, lines.get b⟩ else let m := (b + e) / 2 in let offsetM := offsets.get m in if offset = offsetM then ⟨0, lines.get m⟩ else if offset > offsetM then toPositionAux k m e else toPositionAux k b m def toPosition : FileMap → Nat → Position | ⟨offsets, lines⟩ offset := toPositionAux offsets lines offset offsets.size 0 (offsets.size-1) end FileMap structure TokenConfig := («prefix» : String) (lbp : Nat := 0) structure FrontendConfig := (filename : String) (input : String) (FileMap : FileMap) /- Remark: if we have a Node in the Trie with `some TokenConfig`, the String induced by the path is equal to the `TokenConfig.prefix`. -/ structure ParserConfig extends FrontendConfig := (tokens : Trie TokenConfig) -- Backtrackable State structure ParserState := (messages : MessageLog) structure TokenCacheEntry := (startPos stopPos : pos) (tk : Syntax) -- Non-backtrackable State structure ParserCache := (tokenCache : Option TokenCacheEntry := none) inductive Result (α : Type) | ok (a : α) (i : pos) (cache : ParserCache) (State : ParserState) (eps : Bool) : Result | error {} (msg : String) (i : pos) (cache : ParserCache) (stx : Syntax) (eps : Bool) : Result inductive Result.IsOk {α : Type} : Result α → Prop | mk (a : α) (i : pos) (cache : ParserCache) (State : ParserState) (eps : Bool) : Result.IsOk (Result.ok a i cache State eps) theorem errorIsNotOk {α : Type} {msg : String} {i : pos} {cache : ParserCache} {stx : Syntax} {eps : Bool} (h : Result.IsOk (@Result.error α msg i cache stx eps)) : False := match h with end @[inline] def unreachableError {α β : Type} {msg : String} {i : pos} {cache : ParserCache} {stx : Syntax} {eps : Bool} (h : Result.IsOk (@Result.error α msg i cache stx eps)) : β := False.elim (errorIsNotOk h) def resultOk := {r : Result Unit // r.IsOk} @[inline] def mkResultOk (i : pos) (cache : ParserCache) (State : ParserState) (eps := true) : resultOk := ⟨Result.ok () i cache State eps, Result.IsOk.mk _ _ _ _ _⟩ def parserCoreM (α : Type) := ParserConfig → resultOk → Result α abbreviation parserCore := parserCoreM Syntax structure recParsers := (cmdParser : parserCore) (termParser : Nat → parserCore) def parserM (α : Type) := recParsers → parserCoreM α abbreviation Parser := parserM Syntax abbreviation trailingParser := Syntax → Parser @[inline] def command.Parser : Parser := λ ps, ps.cmdParser @[inline] def Term.Parser (rbp : Nat := 0) : Parser := λ ps, ps.termParser rbp @[inline] def parserM.pure {α : Type} (a : α) : parserM α := λ _ _ r, match r with | ⟨Result.ok _ it c s _, h⟩ := Result.ok a it c s true | ⟨Result.error _ _ _ _ _, h⟩ := unreachableError h @[inlineIfReduce] def eagerOr (b₁ b₂ : Bool) := b₁ || b₂ @[inlineIfReduce] def eagerAnd (b₁ b₂ : Bool) := b₁ && b₂ @[inline] def parserM.bind {α β : Type} (x : parserM α) (f : α → parserM β) : parserM β := λ ps cfg r, match x ps cfg r with | Result.ok a i c s e₁ := (match f a ps cfg (mkResultOk i c s) with | Result.ok b i c s e₂ := Result.ok b i c s (eagerAnd e₁ e₂) | Result.error msg i c stx e₂ := Result.error msg i c stx (eagerAnd e₁ e₂)) | Result.error msg i c stx e := Result.error msg i c stx e instance : Monad parserM := {pure := @parserM.pure, bind := @parserM.bind} @[inline] protected def orelse {α : Type} (p q : parserM α) : parserM α := λ ps cfg r, match r with | ⟨Result.ok _ i₁ _ s₁ _, _⟩ := (match p ps cfg r with | Result.error msg₁ i₂ c₂ stx₁ true := q ps cfg (mkResultOk i₁ c₂ s₁) | other := other) | ⟨Result.error _ _ _ _ _, h⟩ := unreachableError h @[inline] protected def failure {α : Type} : parserM α := λ _ _ r, match r with | ⟨Result.ok _ i c s _, h⟩ := Result.error "failure" i c Syntax.missing true | ⟨Result.error _ _ _ _ _, h⟩ := unreachableError h instance : Alternative parserM := { orelse := @flatParser.orelse, failure := @flatParser.failure, ..flatParser.Monad } def setSilentError {α : Type} : Result α → Result α | (Result.error i c msg stx _) := Result.error i c msg stx true | other := other /-- `try p` behaves like `p`, but it pretends `p` hasn't consumed any input when `p` fails. -/ @[inline] def try {α : Type} (p : parserM α) : parserM α := λ ps cfg r, setSilentError (p ps cfg r) @[inline] def atEnd (cfg : ParserConfig) (i : pos) : Bool := cfg.input.atEnd i @[inline] def curr (cfg : ParserConfig) (i : pos) : Char := cfg.input.get i @[inline] def next (cfg : ParserConfig) (i : pos) : pos := cfg.input.next i @[inline] def inputSize (cfg : ParserConfig) : Nat := cfg.input.length @[inline] def currPos : resultOk → pos | ⟨Result.ok _ i _ _ _, _⟩ := i | ⟨Result.error _ _ _ _ _, h⟩ := unreachableError h @[inline] def currState : resultOk → ParserState | ⟨Result.ok _ _ _ s _, _⟩ := s | ⟨Result.error _ _ _ _ _, h⟩ := unreachableError h def mkError {α : Type} (r : resultOk) (msg : String) (stx : Syntax := Syntax.missing) (eps := true) : Result α := match r with | ⟨Result.ok _ i c s _, _⟩ := Result.error msg i c stx eps | ⟨Result.error _ _ _ _ _, h⟩ := unreachableError h @[inline] def satisfy (p : Char → Bool) : parserM Char := λ _ cfg r, match r with | ⟨Result.ok _ i ch st e, _⟩ := if atEnd cfg i then mkError r "end of input" else let c := curr cfg i in if p c then Result.ok c (next cfg i) ch st false else mkError r "unexpected character" | ⟨Result.error _ _ _ _ _, h⟩ := unreachableError h def any : parserM Char := satisfy (λ _, true) @[specialize] def takeUntilAux (p : Char → Bool) (cfg : ParserConfig) : Nat → resultOk → Result Unit | 0 r := r.val | (n+1) r := match r with | ⟨Result.ok _ i ch st e, _⟩ := if atEnd cfg i then r.val else let c := curr cfg i in if p c then r.val else takeUntilAux n (mkResultOk (next cfg i) ch st true) | ⟨Result.error _ _ _ _ _, h⟩ := unreachableError h @[specialize] def takeUntil (p : Char → Bool) : parserM Unit := λ ps cfg r, takeUntilAux p cfg (inputSize cfg) r def takeUntilNewLine : parserM Unit := takeUntil (= '\n') def whitespace : parserM Unit := takeUntil (λ c, !c.isWhitespace) -- setOption Trace.Compiler.boxed True --- setOption pp.implicit True def strAux (cfg : ParserConfig) (str : String) (error : String) : Nat → resultOk → pos → Result Unit | 0 r j := mkError r error | (n+1) r j := if str.atEnd j then r.val else match r with | ⟨Result.ok _ i ch st e, _⟩ := if atEnd cfg i then Result.error error i ch Syntax.missing true else if curr cfg i = str.get j then strAux n (mkResultOk (next cfg i) ch st true) (str.next j) else Result.error error i ch Syntax.missing true | ⟨Result.error _ _ _ _ _, h⟩ := unreachableError h -- #exit @[inline] def str (s : String) : parserM Unit := λ ps cfg r, strAux cfg s ("expected " ++ repr s) (inputSize cfg) r 0 @[specialize] def manyAux (p : parserM Unit) : Nat → Bool → parserM Unit | 0 fst := pure () | (k+1) fst := λ ps cfg r, let i₀ := currPos r in let s₀ := currState r in match p ps cfg r with | Result.ok a i c s _ := manyAux k false ps cfg (mkResultOk i c s) | Result.error _ _ c _ _ := Result.ok () i₀ c s₀ fst @[inline] def many (p : parserM Unit) : parserM Unit := λ ps cfg r, manyAux p (inputSize cfg) true ps cfg r @[inline] def many1 (p : parserM Unit) : parserM Unit := p *> many p def dummyParserCore : parserCore := λ cfg r, mkError r "dummy" def testParser {α : Type} (x : parserM α) (input : String) : String := let r := x { cmdParser := dummyParserCore, termParser := λ _, dummyParserCore } { filename := "test", input := input, FileMap := FileMap.fromString input, tokens := Lean.Parser.Trie.empty } (mkResultOk 0 {} {messages := MessageLog.empty}) in match r with | Result.ok _ i _ _ _ := "Ok at " ++ toString i | Result.error msg i _ _ _ := "Error at " ++ toString i ++ ": " ++ msg /- mutual def recCmd, recTerm (parseCmd : Parser) (parseTerm : Nat → Parser) (parseLvl : Nat → parserCore) with recCmd : Nat → parserCore | 0 cfg r := mkError r "Parser: no progress" | (n+1) cfg r := parseCmd ⟨recCmd n, parseLvl, recTerm n⟩ cfg r with recTerm : Nat → Nat → parserCore | 0 rbp cfg r := mkError r "Parser: no progress" | (n+1) rbp cfg r := parseTerm rbp ⟨recCmd n, parseLvl, recTerm n⟩ cfg r -/ /- def runParser (x : Parser) (parseCmd : Parser) (parseLvl : Nat → Parser) (parseTerm : Nat → Parser) (input : Iterator) (cfg : ParserConfig) : Result Syntax := let it := input in let n := it.remaining in let r := mkResultOk it {} {messages := MessageLog.Empty} in let pl := recLvl (parseLvl) n in let ps : recParsers := { cmdParser := recCmd parseCmd parseTerm pl n, lvlParser := pl, termParser := recTerm parseCmd parseTerm pl n } in x ps cfg r -/ structure parsingTables := (leadingTermParsers : TokenMap Parser) (trailingTermParsers : TokenMap trailingParser) abbreviation CommandParserM (α : Type) := parsingTables → parserM α end flatParser end Lean section open Lean.flatParser def flatP : parserM Unit := many1 (str "++" <|> str "**" <|> (str "--" *> takeUntil (= '\n') *> any *> pure ())) end section open Lean.Parser open Lean.Parser.MonadParsec @[reducible] def Parser (α : Type) : Type := ReaderT Lean.flatParser.recParsers (ReaderT Lean.flatParser.ParserConfig (ParsecT Syntax (StateT ParserCache Id))) α def testParsec (p : Parser Unit) (input : String) : String := let ps : Lean.flatParser.recParsers := { cmdParser := Lean.flatParser.dummyParserCore, termParser := λ _, Lean.flatParser.dummyParserCore } in let cfg : Lean.flatParser.ParserConfig := { filename := "test", input := input, FileMap := Lean.flatParser.FileMap.fromString input, tokens := Lean.Parser.Trie.empty } in let r := p ps cfg input.mkOldIterator {} in match r with | (Parsec.Result.ok _ it _, _) := "OK at " ++ toString it.offset | (Parsec.Result.error msg _, _) := "Error " ++ msg.toString @[inline] def str' (s : String) : Parser Unit := str s *> pure () def parsecP : Parser Unit := many1' (str' "++" <|> str' "**" <|> (str "--" *> takeUntil (λ c, c = '\n') *> any *> pure ())) def parsecP2 : Parser Unit := many1' ((parseStringLiteral *> whitespace *> pure ()) <|> (str "--" *> takeUntil (λ c, c = '\n') *> any *> pure ())) end namespace BasicParser open Lean.Parser open Lean.Parser.MonadParsec def testBasicParser (p : BasicParserM Unit) (input : String) : String := let cfg : Lean.Parser.ParserConfig := { filename := "test", input := input, fileMap := { lines := {} }, tokens := Lean.Parser.Trie.empty } in let r := p cfg input.mkOldIterator {} in match r with | (Parsec.Result.ok _ it _, _) := "OK at " ++ toString it.offset | (Parsec.Result.error msg _, _) := "Error " ++ msg.toString @[inline] def str' (s : String) : BasicParserM Unit := str s *> pure () def parserP : BasicParserM Unit := many1' (str' "++" <|> str' "**" <|> (str "--" *> takeUntil (λ c, c = '\n') *> any *> pure ())) def parser2 : BasicParserM Unit := many1' ((parseStringLiteral *> Lean.Parser.MonadParsec.whitespace *> pure ()) <|> (str "--" *> takeUntil (λ c, c = '\n') *> any *> pure ())) def parser3 : BasicParserM Unit := Lean.Parser.whitespace end BasicParser def mkBigString : Nat → String → String | 0 s := s | (n+1) s := mkBigString n (s ++ "-- new comment\n") def mkBigString2 : Nat → String → String | 0 s := s | (n+1) s := mkBigString2 n (s ++ "\"hello\\nworld\"\n-- comment\n") def mkBigString3 : Nat → String → String | 0 s := s | (n+1) s := mkBigString3 n (s ++ "/- /- comment 1 -/ -/ \n -- comment 2 \n \t \n ") @[noinline] def testFlatP (s : String) : IO Unit := IO.println (Lean.flatParser.testParser flatP s) @[noinline] def testParsecP (p : Parser Unit) (s : String) : IO Unit := IO.println (testParsec p s) @[noinline] def testBasicParser (p : Lean.Parser.BasicParserM Unit) (s : String) : IO Unit := IO.println (BasicParser.testBasicParser p s) @[noinline] def prof {α : Type} (msg : String) (p : IO α) : IO α := let msg₁ := "Time for '" ++ msg ++ "':" in let msg₂ := "Memory usage for '" ++ msg ++ "':" in allocprof msg₂ (timeit msg₁ p) def main (xs : List String) : IO Unit := -- let s₁ := mkBigString xs.head.toNat "" in -- let s₂ := s₁ ++ "bad" ++ mkBigString 20 "" in -- let s₃ := mkBigString2 xs.head.toNat "" in let s₄ := mkBigString3 xs.head.toNat "" in -- prof "flat Parser 1" (testFlatP s₁) *> -- prof "flat Parser 2" (testFlatP s₂) *> -- prof "Parsec 1" (testParsecP parsecP s₁) *> -- prof "Parsec 2" (testParsecP parsecP s₂) *> -- prof "Parsec 3" (testParsecP parsecP2 s₃) *> prof "Basic parser 1" (testBasicParser BasicParser.parser3 s₄)
847ea4ace2f9e1a93bcfdf803427d3e175a4a85b
d1a52c3f208fa42c41df8278c3d280f075eb020c
/stage0/src/Lean/Elab/Match.lean
2d1f9289711711b15c610fc263ce82782c2041f9
[ "Apache-2.0", "LLVM-exception", "NCSA", "LGPL-3.0-only", "LicenseRef-scancode-inner-net-2.0", "BSD-3-Clause", "LGPL-2.0-or-later", "Spencer-94", "LGPL-2.1-or-later", "HPND", "LicenseRef-scancode-pcre", "ISC", "LGPL-2.1-only", "LicenseRef-scancode-other-permissive", "SunPro", "CMU-Mach" ]
permissive
cipher1024/lean4
6e1f98bb58e7a92b28f5364eb38a14c8d0aae393
69114d3b50806264ef35b57394391c3e738a9822
refs/heads/master
1,642,227,983,603
1,642,011,696,000
1,642,011,696,000
228,607,691
0
0
Apache-2.0
1,576,584,269,000
1,576,584,268,000
null
UTF-8
Lean
false
false
46,018
lean
/- Copyright (c) 2020 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura -/ import Lean.Util.CollectFVars import Lean.Meta.Match.MatchPatternAttr import Lean.Meta.Match.Match import Lean.Meta.SortLocalDecls import Lean.Meta.GeneralizeVars import Lean.Elab.SyntheticMVars import Lean.Elab.Arg import Lean.Parser.Term import Lean.Elab.PatternVar namespace Lean.Elab.Term open Meta open Lean.Parser.Term private def expandSimpleMatch (stx discr lhsVar rhs : Syntax) (expectedType? : Option Expr) : TermElabM Expr := do let newStx ← `(let $lhsVar := $discr; $rhs) withMacroExpansion stx newStx <| elabTerm newStx expectedType? private def mkUserNameFor (e : Expr) : TermElabM Name := do match e with /- Remark: we use `mkFreshUserName` to make sure we don't add a variable to the local context that can be resolved to `e`. -/ | Expr.fvar fvarId _ => mkFreshUserName ((← getLocalDecl fvarId).userName) | _ => mkFreshBinderName /-- Return true iff `n` is an auxiliary variable created by `expandNonAtomicDiscrs?` -/ def isAuxDiscrName (n : Name) : Bool := n.hasMacroScopes && n.eraseMacroScopes == `_discr /-- We treat `@x` as atomic to avoid unnecessary extra local declarations from being inserted into the local context. Recall that `expandMatchAltsIntoMatch` uses `@` modifier. Thus this is kind of discriminant is quite common. Remark: if the discriminat is `Systax.missing`, we abort the elaboration of the `match`-expression. This can happen due to error recovery. Example ``` example : (p ∨ p) → p := fun h => match ``` If we don't abort, the elaborator loops because we will keep trying to expand ``` match ``` into ``` let d := <Syntax.missing>; match ``` Recall that `Syntax.setArg stx i arg` is a no-op when `i` is out-of-bounds. -/ def isAtomicDiscr? (discr : Syntax) : TermElabM (Option Expr) := do match discr with | `($x:ident) => isLocalIdent? x | `(@$x:ident) => isLocalIdent? x | _ => if discr.isMissing then throwAbortTerm else return none -- See expandNonAtomicDiscrs? private def elabAtomicDiscr (discr : Syntax) : TermElabM Expr := do let term := discr[1] match (← isAtomicDiscr? term) with | some e@(Expr.fvar fvarId _) => let localDecl ← getLocalDecl fvarId if !isAuxDiscrName localDecl.userName then addTermInfo discr e return e -- it is not an auxiliary local created by `expandNonAtomicDiscrs?` else instantiateMVars localDecl.value | _ => throwErrorAt discr "unexpected discriminant" structure ElabMatchTypeAndDiscrsResult where discrs : Array Expr matchType : Expr /- `true` when performing dependent elimination. We use this to decide whether we optimize the "match unit" case. See `isMatchUnit?`. -/ isDep : Bool alts : Array MatchAltView private partial def elabMatchTypeAndDiscrs (discrStxs : Array Syntax) (matchOptType : Syntax) (matchAltViews : Array MatchAltView) (expectedType : Expr) : TermElabM ElabMatchTypeAndDiscrsResult := do let numDiscrs := discrStxs.size if matchOptType.isNone then elabDiscrs 0 #[] else let matchTypeStx := matchOptType[0][1] let matchType ← elabType matchTypeStx let (discrs, isDep) ← elabDiscrsWitMatchType matchType expectedType return { discrs := discrs, matchType := matchType, isDep := isDep, alts := matchAltViews } where /- Easy case: elaborate discriminant when the match-type has been explicitly provided by the user. -/ elabDiscrsWitMatchType (matchType : Expr) (expectedType : Expr) : TermElabM (Array Expr × Bool) := do let mut discrs := #[] let mut i := 0 let mut matchType := matchType let mut isDep := false for discrStx in discrStxs do i := i + 1 matchType ← whnf matchType match matchType with | Expr.forallE _ d b _ => let discr ← fullApproxDefEq <| elabTermEnsuringType discrStx[1] d trace[Elab.match] "discr #{i} {discr} : {d}" if b.hasLooseBVars then isDep := true matchType ← b.instantiate1 discr discrs := discrs.push discr | _ => throwError "invalid type provided to match-expression, function type with arity #{discrStxs.size} expected" return (discrs, isDep) markIsDep (r : ElabMatchTypeAndDiscrsResult) := { r with isDep := true } /- Elaborate discriminants inferring the match-type -/ elabDiscrs (i : Nat) (discrs : Array Expr) : TermElabM ElabMatchTypeAndDiscrsResult := do if h : i < discrStxs.size then let discrStx := discrStxs.get ⟨i, h⟩ let discr ← elabAtomicDiscr discrStx let discr ← instantiateMVars discr let discrType ← inferType discr let discrType ← instantiateMVars discrType let discrs := discrs.push discr let userName ← mkUserNameFor discr if discrStx[0].isNone then let mut result ← elabDiscrs (i + 1) discrs let matchTypeBody ← kabstract result.matchType discr if matchTypeBody.hasLooseBVars then result := markIsDep result return { result with matchType := Lean.mkForall userName BinderInfo.default discrType matchTypeBody } else let discrs := discrs.push (← mkEqRefl discr) let result ← elabDiscrs (i + 1) discrs let result := markIsDep result let identStx := discrStx[0][0] withLocalDeclD userName discrType fun x => do let eqType ← mkEq discr x withLocalDeclD identStx.getId eqType fun h => do let matchTypeBody ← kabstract result.matchType discr let matchTypeBody := matchTypeBody.instantiate1 x let matchType ← mkForallFVars #[x, h] matchTypeBody return { result with matchType := matchType alts := result.alts.map fun altView => if i+1 > altView.patterns.size then -- Unexpected number of patterns. The input is invalid, but we want to process whatever to provide info to users. altView else { altView with patterns := altView.patterns.insertAt (i+1) identStx } } else return { discrs, alts := matchAltViews, isDep := false, matchType := expectedType } def expandMacrosInPatterns (matchAlts : Array MatchAltView) : MacroM (Array MatchAltView) := do matchAlts.mapM fun matchAlt => do let patterns ← matchAlt.patterns.mapM expandMacros pure { matchAlt with patterns := patterns } private def getMatchGeneralizing? : Syntax → Option Bool | `(match (generalizing := true) $discrs,* $[: $ty?]? with $alts:matchAlt*) => some true | `(match (generalizing := false) $discrs,* $[: $ty?]? with $alts:matchAlt*) => some false | _ => none /- Given `stx` a match-expression, return its alternatives. -/ private def getMatchAlts : Syntax → Array MatchAltView | `(match $[$gen]? $discrs,* $[: $ty?]? with $alts:matchAlt*) => alts.filterMap fun alt => match alt with | `(matchAltExpr| | $patterns,* => $rhs) => some { ref := alt, patterns := patterns, rhs := rhs } | _ => none | _ => #[] builtin_initialize Parser.registerBuiltinNodeKind `MVarWithIdKind /-- The elaboration function for `Syntax` created using `mkMVarSyntax`. It just converts the metavariable id wrapped by the Syntax into an `Expr`. -/ @[builtinTermElab MVarWithIdKind] def elabMVarWithIdKind : TermElab := fun stx expectedType? => return mkInaccessible <| mkMVar (getMVarSyntaxMVarId stx) @[builtinTermElab inaccessible] def elabInaccessible : TermElab := fun stx expectedType? => do let e ← elabTerm stx[1] expectedType? return mkInaccessible e open Lean.Elab.Term.Quotation in @[builtinQuotPrecheck Lean.Parser.Term.match] def precheckMatch : Precheck | `(match $[$discrs:term],* with $[| $[$patss],* => $rhss]*) => do discrs.forM precheck for (pats, rhs) in patss.zip rhss do let vars ← try getPatternsVars pats catch | _ => return -- can happen in case of pattern antiquotations Quotation.withNewLocals (getPatternVarNames vars) <| precheck rhs | _ => throwUnsupportedSyntax /- We convert the collected `PatternVar`s intro `PatternVarDecl` -/ inductive PatternVarDecl where /- For `anonymousVar`, we create both a metavariable and a free variable. The free variable is used as an assignment for the metavariable when it is not assigned during pattern elaboration. -/ | anonymousVar (mvarId : MVarId) (fvarId : FVarId) | localVar (fvarId : FVarId) private partial def withPatternVars {α} (pVars : Array PatternVar) (k : Array PatternVarDecl → TermElabM α) : TermElabM α := let rec loop (i : Nat) (decls : Array PatternVarDecl) := do if h : i < pVars.size then match pVars.get ⟨i, h⟩ with | PatternVar.anonymousVar mvarId => let type ← mkFreshTypeMVar let userName ← mkFreshBinderName withLocalDecl userName BinderInfo.default type fun x => loop (i+1) (decls.push (PatternVarDecl.anonymousVar mvarId x.fvarId!)) | PatternVar.localVar userName => let type ← mkFreshTypeMVar withLocalDecl userName BinderInfo.default type fun x => loop (i+1) (decls.push (PatternVarDecl.localVar x.fvarId!)) else /- We must create the metavariables for `PatternVar.anonymousVar` AFTER we create the new local decls using `withLocalDecl`. Reason: their scope must include the new local decls since some of them are assigned by typing constraints. -/ decls.forM fun decl => match decl with | PatternVarDecl.anonymousVar mvarId fvarId => do let type ← inferType (mkFVar fvarId) discard <| mkFreshExprMVarWithId mvarId type | _ => pure () k decls loop 0 #[] /- Remark: when performing dependent pattern matching, we often had to write code such as ```lean def Vec.map' (f : α → β) (xs : Vec α n) : Vec β n := match n, xs with | _, nil => nil | _, cons a as => cons (f a) (map' f as) ``` We had to include `n` and the `_`s because the type of `xs` depends on `n`. Moreover, `nil` and `cons a as` have different types. This was quite tedious. So, we have implemented an automatic "discriminant refinement procedure". The procedure is based on the observation that we get a type error whenenver we forget to include `_`s and the indices a discriminant depends on. So, we catch the exception, check whether the type of the discriminant is an indexed family, and add their indices as new discriminants. The current implementation, adds indices as they are found, and does not try to "sort" the new discriminants. If the refinement process fails, we report the original error message. -/ /- Auxiliary structure for storing an type mismatch exception when processing the pattern #`idx` of some alternative. -/ structure PatternElabException where ex : Exception patternIdx : Nat -- Discriminant that sh pathToIndex : List Nat -- Path to the problematic inductive type index that produced the type mismatch /-- This method is part of the "discriminant refinement" procedure. It in invoked when the type of the `pattern` does not match the expected type. The expected type is based on the motive computed using the `match` discriminants. It tries to compute a path to an index of the discriminant type. For example, suppose the user has written ``` inductive Mem (a : α) : List α → Prop where | head {as} : Mem a (a::as) | tail {as} : Mem a as → Mem a (a'::as) infix:50 " ∈ " => Mem example (a b : Nat) (h : a ∈ [b]) : b = a := match h with | Mem.head => rfl ``` The motive for the match is `a ∈ [b] → b = a`, and get a type mismatch between the type of `Mem.head` and `a ∈ [b]`. This procedure return the path `[2, 1]` to the index `b`. We use it to produce the following refinement ``` example (a b : Nat) (h : a ∈ [b]) : b = a := match b, h with | _, Mem.head => rfl ``` which produces the new motive `(x : Nat) → a ∈ [x] → x = a` After this refinement step, the `match` is elaborated successfully. This method relies on the fact that the dependent pattern matcher compiler solves equations between indices of indexed inductive families. The following kinds of equations are supported by this compiler: - `x = t` - `t = x` - `ctor ... = ctor ...` where `x` is a free variable, `t` is an arbitrary term, and `ctor` is constructor. Our procedure ensures that "information" is not lost, and will *not* succeed in an example such as ``` example (a b : Nat) (f : Nat → Nat) (h : f a ∈ [f b]) : f b = f a := match h with | Mem.head => rfl ``` and will not add `f b` as a new discriminant. We may add an option in the future to enable this more liberal form of refinement. -/ private partial def findDiscrRefinementPath (pattern : Expr) (expected : Expr) : OptionT MetaM (List Nat) := do goType (← instantiateMVars (← inferType pattern)) expected where checkCompatibleApps (t d : Expr) : OptionT MetaM Unit := do guard d.isApp guard <| t.getAppNumArgs == d.getAppNumArgs let tFn := t.getAppFn let dFn := d.getAppFn guard <| tFn.isConst && dFn.isConst guard (← isDefEq tFn dFn) -- Visitor for inductive types goType (t d : Expr) : OptionT MetaM (List Nat) := do trace[Meta.debug] "type {t} =?= {d}" let t ← whnf t let d ← whnf d checkCompatibleApps t d matchConstInduct t.getAppFn (fun _ => failure) fun info _ => do let tArgs := t.getAppArgs let dArgs := d.getAppArgs for i in [:info.numParams] do let tArg := tArgs[i] let dArg := dArgs[i] unless (← isDefEq tArg dArg) do return i :: (← goType tArg dArg) for i in [info.numParams : tArgs.size] do let tArg := tArgs[i] let dArg := dArgs[i] unless (← isDefEq tArg dArg) do return i :: (← goIndex tArg dArg) failure -- Visitor for indexed families goIndex (t d : Expr) : OptionT MetaM (List Nat) := do let t ← whnfD t let d ← whnfD d if t.isFVar || d.isFVar then return [] -- Found refinement path else trace[Meta.debug] "index {t} =?= {d}" checkCompatibleApps t d matchConstCtor t.getAppFn (fun _ => failure) fun info _ => do let tArgs := t.getAppArgs let dArgs := d.getAppArgs for i in [:info.numParams] do let tArg := tArgs[i] let dArg := dArgs[i] unless (← isDefEq tArg dArg) do failure for i in [info.numParams : tArgs.size] do let tArg := tArgs[i] let dArg := dArgs[i] unless (← isDefEq tArg dArg) do return i :: (← goIndex tArg dArg) failure private partial def eraseIndices (type : Expr) : MetaM Expr := do let type' ← whnfD type matchConstInduct type'.getAppFn (fun _ => return type) fun info _ => do let args := type'.getAppArgs let params ← args[:info.numParams].toArray.mapM eraseIndices let result := mkAppN type'.getAppFn params let resultType ← inferType result let (newIndices, _, _) ← forallMetaTelescopeReducing resultType (some (args.size - info.numParams)) return mkAppN result newIndices private def elabPatterns (patternStxs : Array Syntax) (matchType : Expr) : ExceptT PatternElabException TermElabM (Array Expr × Expr) := withReader (fun ctx => { ctx with implicitLambda := false }) do let mut patterns := #[] let mut matchType := matchType for idx in [:patternStxs.size] do let patternStx := patternStxs[idx] matchType ← whnf matchType match matchType with | Expr.forallE _ d b _ => let pattern ← do let s ← saveState try liftM <| withSynthesize <| withoutErrToSorry <| elabTermEnsuringType patternStx d catch ex : Exception => restoreState s match (← liftM <| commitIfNoErrors? <| withoutErrToSorry do elabTermAndSynthesize patternStx (← eraseIndices d)) with | some pattern => match (← findDiscrRefinementPath pattern d |>.run) with | some path => trace[Meta.debug] "refinement path: {path}" restoreState s -- Wrap the type mismatch exception for the "discriminant refinement" feature. throwThe PatternElabException { ex := ex, patternIdx := idx, pathToIndex := path } | none => restoreState s; throw ex | none => throw ex matchType := b.instantiate1 pattern patterns := patterns.push pattern | _ => throwError "unexpected match type" return (patterns, matchType) def finalizePatternDecls (patternVarDecls : Array PatternVarDecl) : TermElabM (Array LocalDecl) := do let mut decls := #[] for pdecl in patternVarDecls do match pdecl with | PatternVarDecl.localVar fvarId => let decl ← getLocalDecl fvarId let decl ← instantiateLocalDeclMVars decl decls := decls.push decl | PatternVarDecl.anonymousVar mvarId fvarId => let e ← instantiateMVars (mkMVar mvarId); trace[Elab.match] "finalizePatternDecls: mvarId: {mvarId.name} := {e}, fvar: {mkFVar fvarId}" match e with | Expr.mvar newMVarId _ => /- Metavariable was not assigned, or assigned to another metavariable. So, we assign to the auxiliary free variable we created at `withPatternVars` to `newMVarId`. -/ assignExprMVar newMVarId (mkFVar fvarId) trace[Elab.match] "finalizePatternDecls: {mkMVar newMVarId} := {mkFVar fvarId}" let decl ← getLocalDecl fvarId let decl ← instantiateLocalDeclMVars decl decls := decls.push decl | _ => pure () /- We perform a topological sort (dependecies) on `decls` because the pattern elaboration process may produce a sequence where a declaration d₁ may occur after d₂ when d₂ depends on d₁. -/ sortLocalDecls decls open Meta.Match (Pattern Pattern.var Pattern.inaccessible Pattern.ctor Pattern.as Pattern.val Pattern.arrayLit AltLHS MatcherResult) namespace ToDepElimPattern structure State where found : FVarIdSet := {} localDecls : Array LocalDecl newLocals : FVarIdSet := {} abbrev M := StateRefT State TermElabM private def alreadyVisited (fvarId : FVarId) : M Bool := do let s ← get return s.found.contains fvarId private def markAsVisited (fvarId : FVarId) : M Unit := modify fun s => { s with found := s.found.insert fvarId } private def throwInvalidPattern {α} (e : Expr) : M α := throwError "invalid pattern {indentExpr e}" /- Create a new LocalDecl `x` for the metavariable `mvar`, and return `Pattern.var x` -/ private def mkLocalDeclFor (mvar : Expr) : M Pattern := do let mvarId := mvar.mvarId! let s ← get match (← getExprMVarAssignment? mvarId) with | some val => return Pattern.inaccessible val | none => let fvarId ← mkFreshFVarId let type ← inferType mvar /- HACK: `fvarId` is not in the scope of `mvarId` If this generates problems in the future, we should update the metavariable declarations. -/ assignExprMVar mvarId (mkFVar fvarId) let userName ← mkFreshBinderName let newDecl := LocalDecl.cdecl arbitrary fvarId userName type BinderInfo.default; modify fun s => { s with newLocals := s.newLocals.insert fvarId, localDecls := match s.localDecls.findIdx? fun decl => mvar.occurs decl.type with | none => s.localDecls.push newDecl -- None of the existing declarations depend on `mvar` | some i => s.localDecls.insertAt i newDecl } return Pattern.var fvarId partial def main (e : Expr) : M Pattern := do let isLocalDecl (fvarId : FVarId) : M Bool := do return (← get).localDecls.any fun d => d.fvarId == fvarId let mkPatternVar (fvarId : FVarId) (e : Expr) : M Pattern := do if (← alreadyVisited fvarId) then return Pattern.inaccessible e else markAsVisited fvarId return Pattern.var e.fvarId! let mkInaccessible (e : Expr) : M Pattern := do match e with | Expr.fvar fvarId _ => if (← isLocalDecl fvarId) then mkPatternVar fvarId e else return Pattern.inaccessible e | _ => return Pattern.inaccessible e match inaccessible? e with | some t => mkInaccessible t | none => match e.arrayLit? with | some (α, lits) => return Pattern.arrayLit α (← lits.mapM main) | none => if e.isAppOfArity `namedPattern 3 then let p ← main <| e.getArg! 2 match e.getArg! 1 with | Expr.fvar fvarId _ => return Pattern.as fvarId p | _ => throwError "unexpected occurrence of auxiliary declaration 'namedPattern'" else if isMatchValue e then return Pattern.val e else if e.isFVar then let fvarId := e.fvarId! unless (← isLocalDecl fvarId) do throwInvalidPattern e mkPatternVar fvarId e else if e.isMVar then mkLocalDeclFor e else let newE ← whnf e if newE != e then main newE else matchConstCtor e.getAppFn (fun _ => do if (← isProof e) then /- We mark nested proofs as inaccessible. This is fine due to proof irrelevance. We need this feature to be able to elaborate definitions such as: ``` def f : Fin 2 → Nat | 0 => 5 | 1 => 45 ``` -/ return Pattern.inaccessible e else throwInvalidPattern e) (fun v us => do let args := e.getAppArgs unless args.size == v.numParams + v.numFields do throwInvalidPattern e let params := args.extract 0 v.numParams let fields := args.extract v.numParams args.size let fields ← fields.mapM main return Pattern.ctor v.name us params.toList fields.toList) end ToDepElimPattern def withDepElimPatterns {α} (localDecls : Array LocalDecl) (ps : Array Expr) (k : Array LocalDecl → Array Pattern → TermElabM α) : TermElabM α := do let (patterns, s) ← (ps.mapM ToDepElimPattern.main).run { localDecls := localDecls } let localDecls ← s.localDecls.mapM fun d => instantiateLocalDeclMVars d /- toDepElimPatterns may have added new localDecls. Thus, we must update the local context before we execute `k` -/ let lctx ← getLCtx let lctx := localDecls.foldl (fun (lctx : LocalContext) d => lctx.erase d.fvarId) lctx let lctx := localDecls.foldl (fun (lctx : LocalContext) d => lctx.addDecl d) lctx withTheReader Meta.Context (fun ctx => { ctx with lctx := lctx }) do k localDecls patterns private def withElaboratedLHS {α} (ref : Syntax) (patternVarDecls : Array PatternVarDecl) (patternStxs : Array Syntax) (matchType : Expr) (k : AltLHS → Expr → TermElabM α) : ExceptT PatternElabException TermElabM α := do let (patterns, matchType) ← withSynthesize <| elabPatterns patternStxs matchType id (α := TermElabM α) do let localDecls ← finalizePatternDecls patternVarDecls let patterns ← patterns.mapM (instantiateMVars ·) withDepElimPatterns localDecls patterns fun localDecls patterns => k { ref := ref, fvarDecls := localDecls.toList, patterns := patterns.toList } matchType private def elabMatchAltView (alt : MatchAltView) (matchType : Expr) : ExceptT PatternElabException TermElabM (AltLHS × Expr) := withRef alt.ref do let (patternVars, alt) ← collectPatternVars alt trace[Elab.match] "patternVars: {patternVars}" withPatternVars patternVars fun patternVarDecls => do withElaboratedLHS alt.ref patternVarDecls alt.patterns matchType fun altLHS matchType => do let rhs ← elabTermEnsuringType alt.rhs matchType let xs := altLHS.fvarDecls.toArray.map LocalDecl.toExpr let rhs ← if xs.isEmpty then pure <| mkSimpleThunk rhs else mkLambdaFVars xs rhs trace[Elab.match] "rhs: {rhs}" return (altLHS, rhs) /-- Collect problematic index for the "discriminant refinement feature". This method is invoked when we detect a type mismatch at a pattern #`idx` of some alternative. -/ private partial def getIndexToInclude? (discr : Expr) (pathToIndex : List Nat) : TermElabM (Option Expr) := do go (← inferType discr) pathToIndex |>.run where go (e : Expr) (path : List Nat) : OptionT MetaM Expr := do match path with | [] => return e | i::path => let e ← whnfD e guard <| e.isApp && i < e.getAppNumArgs go (e.getArg! i) path /-- "Generalize" variables that depend on the discriminants. Remarks and limitations: - If `matchType` is a proposition, then we generalize even when the user did not provide `(generalizing := true)`. Motivation: users should have control about the actual `match`-expressions in their programs. - We currently do not generalize let-decls. - We abort generalization if the new `matchType` is type incorrect. - Only discriminants that are free variables are considered during specialization. - We "generalize" by adding new discriminants and pattern variables. We do not "clear" the generalized variables, but they become inaccessible since they are shadowed by the patterns variables. We assume this is ok since this is the exact behavior users would get if they had written it by hand. Recall there is no `clear` in term mode. -/ private def generalize (discrs : Array Expr) (matchType : Expr) (altViews : Array MatchAltView) (generalizing? : Option Bool) : TermElabM (Array Expr × Expr × Array MatchAltView × Bool) := do let gen ← match generalizing? with | some g => pure g | _ => isProp matchType if !gen then return (discrs, matchType, altViews, false) else let ysFVarIds ← getFVarsToGeneralize discrs /- let-decls are currently being ignored by the generalizer. -/ let ysFVarIds ← ysFVarIds.filterM fun fvarId => return !(← getLocalDecl fvarId).isLet if ysFVarIds.isEmpty then return (discrs, matchType, altViews, false) else let ys := ysFVarIds.map mkFVar -- trace[Meta.debug] "ys: {ys}, discrs: {discrs}" let matchType' ← forallBoundedTelescope matchType discrs.size fun ds type => do let type ← mkForallFVars ys type let (discrs', ds') := Array.unzip <| Array.zip discrs ds |>.filter fun (di, d) => di.isFVar let type := type.replaceFVars discrs' ds' mkForallFVars ds type -- trace[Meta.debug] "matchType': {matchType'}" if (← isTypeCorrect matchType') then let discrs := discrs ++ ys let altViews ← altViews.mapM fun altView => do let patternVars ← getPatternsVars altView.patterns -- We traverse backwards because we want to keep the most recent names. -- For example, if `ys` contains `#[h, h]`, we want to make sure `mkFreshUsername is applied to the first `h`, -- since it is already shadowed by the second. let ysUserNames ← ys.foldrM (init := #[]) fun ys ysUserNames => do let yDecl ← getLocalDecl ys.fvarId! let mut yUserName := yDecl.userName if ysUserNames.contains yUserName then yUserName ← mkFreshUserName yUserName -- Explicitly provided pattern variables shadow `y` else if patternVars.any fun | PatternVar.localVar x => x == yUserName | _ => false then yUserName ← mkFreshUserName yUserName return ysUserNames.push yUserName let ysIds ← ysUserNames.reverse.mapM fun n => return mkIdentFrom (← getRef) n return { altView with patterns := altView.patterns ++ ysIds } return (discrs, matchType', altViews, true) else return (discrs, matchType, altViews, true) private partial def elabMatchAltViews (generalizing? : Option Bool) (discrs : Array Expr) (matchType : Expr) (altViews : Array MatchAltView) : TermElabM (Array Expr × Expr × Array (AltLHS × Expr) × Bool) := do loop discrs matchType altViews none where /- "Discriminant refinement" main loop. `first?` contains the first error message we found before updated the `discrs`. -/ loop (discrs : Array Expr) (matchType : Expr) (altViews : Array MatchAltView) (first? : Option (SavedState × Exception)) : TermElabM (Array Expr × Expr × Array (AltLHS × Expr) × Bool) := do let s ← saveState let (discrs', matchType', altViews', refined) ← generalize discrs matchType altViews generalizing? match (← altViews'.mapM (fun altView => elabMatchAltView altView matchType') |>.run) with | Except.ok alts => return (discrs', matchType', alts, first?.isSome || refined) | Except.error { patternIdx := patternIdx, pathToIndex := pathToIndex, ex := ex } => trace[Meta.debug] "pathToIndex: {toString pathToIndex}" let some index ← getIndexToInclude? discrs[patternIdx] pathToIndex | throwEx (← updateFirst first? ex) trace[Meta.debug] "index: {index}" if (← discrs.anyM fun discr => isDefEq discr index) then throwEx (← updateFirst first? ex) let first ← updateFirst first? ex s.restore let indices ← collectDeps #[index] discrs let matchType ← try updateMatchType indices matchType catch ex => throwEx first let altViews ← addWildcardPatterns indices.size altViews let discrs := indices ++ discrs loop discrs matchType altViews first throwEx {α} (p : SavedState × Exception) : TermElabM α := do p.1.restore; throw p.2 updateFirst (first? : Option (SavedState × Exception)) (ex : Exception) : TermElabM (SavedState × Exception) := do match first? with | none => return (← saveState, ex) | some first => return first containsFVar (es : Array Expr) (fvarId : FVarId) : Bool := es.any fun e => e.isFVar && e.fvarId! == fvarId /- Update `indices` by including any free variable `x` s.t. - Type of some `discr` depends on `x`. - Type of `x` depends on some free variable in `indices`. If we don't include these extra variables in indices, then `updateMatchType` will generate a type incorrect term. For example, suppose `discr` contains `h : @HEq α a α b`, and `indices` is `#[α, b]`, and `matchType` is `@HEq α a α b → B`. `updateMatchType indices matchType` produces the type `(α' : Type) → (b : α') → @HEq α' a α' b → B` which is type incorrect because we have `a : α`. The method `collectDeps` will include `a` into `indices`. This method does not handle dependencies among non-free variables. We rely on the type checking method `check` at `updateMatchType`. Remark: `indices : Array Expr` does not need to be an array anymore. We should cleanup this code, and use `index : Expr` instead. -/ collectDeps (indices : Array Expr) (discrs : Array Expr) : TermElabM (Array Expr) := do let mut s : CollectFVars.State := {} for discr in discrs do s := collectFVars s (← instantiateMVars (← inferType discr)) let (indicesFVar, indicesNonFVar) := indices.split Expr.isFVar let indicesFVar := indicesFVar.map Expr.fvarId! let mut toAdd := #[] for fvarId in s.fvarSet.toList do unless containsFVar discrs fvarId || containsFVar indices fvarId do let localDecl ← getLocalDecl fvarId let mctx ← getMCtx for indexFVarId in indicesFVar do if mctx.localDeclDependsOn localDecl indexFVarId then toAdd := toAdd.push fvarId let indicesFVar ← sortFVarIds (indicesFVar ++ toAdd) return indicesFVar.map mkFVar ++ indicesNonFVar updateMatchType (indices : Array Expr) (matchType : Expr) : TermElabM Expr := do let matchType ← indices.foldrM (init := matchType) fun index matchType => do let indexType ← inferType index let matchTypeBody ← kabstract matchType index let userName ← mkUserNameFor index return Lean.mkForall userName BinderInfo.default indexType matchTypeBody check matchType return matchType addWildcardPatterns (num : Nat) (altViews : Array MatchAltView) : TermElabM (Array MatchAltView) := do let hole := mkHole (← getRef) let wildcards := mkArray num hole return altViews.map fun altView => { altView with patterns := wildcards ++ altView.patterns } def mkMatcher (input : Meta.Match.MkMatcherInput) : TermElabM MatcherResult := Meta.Match.mkMatcher input register_builtin_option match.ignoreUnusedAlts : Bool := { defValue := false descr := "if true, do not generate error if an alternative is not used" } def reportMatcherResultErrors (altLHSS : List AltLHS) (result : MatcherResult) : TermElabM Unit := do unless result.counterExamples.isEmpty do withHeadRefOnly <| logError m!"missing cases:\n{Meta.Match.counterExamplesToMessageData result.counterExamples}" unless match.ignoreUnusedAlts.get (← getOptions) || result.unusedAltIdxs.isEmpty do let mut i := 0 for alt in altLHSS do if result.unusedAltIdxs.contains i then withRef alt.ref do logError "redundant alternative" i := i + 1 /-- If `altLHSS + rhss` is encoding `| PUnit.unit => rhs[0]`, return `rhs[0]` Otherwise, return none. -/ private def isMatchUnit? (altLHSS : List Match.AltLHS) (rhss : Array Expr) : MetaM (Option Expr) := do assert! altLHSS.length == rhss.size match altLHSS with | [ { fvarDecls := [], patterns := [ Pattern.ctor `PUnit.unit .. ], .. } ] => /- Recall that for alternatives of the form `| PUnit.unit => rhs`, `rhss[0]` is of the form `fun _ : Unit => b`. -/ match rhss[0] with | Expr.lam _ _ b _ => return if b.hasLooseBVars then none else b | _ => return none | _ => return none private def elabMatchAux (generalizing? : Option Bool) (discrStxs : Array Syntax) (altViews : Array MatchAltView) (matchOptType : Syntax) (expectedType : Expr) : TermElabM Expr := do let mut generalizing? := generalizing? if !matchOptType.isNone then if generalizing? == some true then throwError "the '(generalizing := true)' parameter is not supported when the 'match' type is explicitly provided" generalizing? := some false let (discrs, matchType, altLHSS, isDep, rhss) ← commitIfDidNotPostpone do let ⟨discrs, matchType, isDep, altViews⟩ ← elabMatchTypeAndDiscrs discrStxs matchOptType altViews expectedType let matchAlts ← liftMacroM <| expandMacrosInPatterns altViews trace[Elab.match] "matchType: {matchType}" let (discrs, matchType, alts, refined) ← elabMatchAltViews generalizing? discrs matchType matchAlts let isDep := isDep || refined /- We should not use `synthesizeSyntheticMVarsNoPostponing` here. Otherwise, we will not be able to elaborate examples such as: ``` def f (x : Nat) : Option Nat := none def g (xs : List (Nat × Nat)) : IO Unit := xs.forM fun x => match f x.fst with | _ => pure () ``` If `synthesizeSyntheticMVarsNoPostponing`, the example above fails at `x.fst` because the type of `x` is only available after we proces the last argument of `List.forM`. We apply pending default types to make sure we can process examples such as ``` let (a, b) := (0, 0) ``` -/ synthesizeSyntheticMVarsUsingDefault let rhss := alts.map Prod.snd let matchType ← instantiateMVars matchType let altLHSS ← alts.toList.mapM fun alt => do let altLHS ← Match.instantiateAltLHSMVars alt.1 /- Remark: we try to postpone before throwing an error. The combinator `commitIfDidNotPostpone` ensures we backtrack any updates that have been performed. The quick-check `waitExpectedTypeAndDiscrs` minimizes the number of scenarios where we have to postpone here. Here is an example that passes the `waitExpectedTypeAndDiscrs` test, but postpones here. ``` def bad (ps : Array (Nat × Nat)) : Array (Nat × Nat) := (ps.filter fun (p : Prod _ _) => match p with | (x, y) => x == 0) ++ ps ``` When we try to elaborate `fun (p : Prod _ _) => ...` for the first time, we haven't propagated the type of `ps` yet because `Array.filter` has type `{α : Type u_1} → (α → Bool) → (as : Array α) → optParam Nat 0 → optParam Nat (Array.size as) → Array α` However, the partial type annotation `(p : Prod _ _)` makes sure we succeed at the quick-check `waitExpectedTypeAndDiscrs`. -/ withRef altLHS.ref do for d in altLHS.fvarDecls do if d.hasExprMVar then withExistingLocalDecls altLHS.fvarDecls do tryPostpone throwMVarError m!"invalid match-expression, type of pattern variable '{d.toExpr}' contains metavariables{indentExpr d.type}" for p in altLHS.patterns do if p.hasExprMVar then withExistingLocalDecls altLHS.fvarDecls do tryPostpone throwMVarError m!"invalid match-expression, pattern contains metavariables{indentExpr (← p.toExpr)}" pure altLHS return (discrs, matchType, altLHSS, isDep, rhss) if let some r ← if isDep then pure none else isMatchUnit? altLHSS rhss then return r else let numDiscrs := discrs.size let matcherName ← mkAuxName `match let matcherResult ← mkMatcher { matcherName, matchType, numDiscrs, lhss := altLHSS } matcherResult.addMatcher let motive ← forallBoundedTelescope matchType numDiscrs fun xs matchType => mkLambdaFVars xs matchType reportMatcherResultErrors altLHSS matcherResult let r := mkApp matcherResult.matcher motive let r := mkAppN r discrs let r := mkAppN r rhss trace[Elab.match] "result: {r}" return r private def getDiscrs (matchStx : Syntax) : Array Syntax := matchStx[2].getSepArgs private def getMatchOptType (matchStx : Syntax) : Syntax := matchStx[3] private def expandNonAtomicDiscrs? (matchStx : Syntax) : TermElabM (Option Syntax) := let matchOptType := getMatchOptType matchStx; if matchOptType.isNone then do let discrs := getDiscrs matchStx; let allLocal ← discrs.allM fun discr => Option.isSome <$> isAtomicDiscr? discr[1] if allLocal then return none else -- We use `foundFVars` to make sure the discriminants are distinct variables. -- See: code for computing "matchType" at `elabMatchTypeAndDiscrs` let rec loop (discrs : List Syntax) (discrsNew : Array Syntax) (foundFVars : FVarIdSet) := do match discrs with | [] => let discrs := Syntax.mkSep discrsNew (mkAtomFrom matchStx ", "); pure (matchStx.setArg 2 discrs) | discr :: discrs => -- Recall that -- matchDiscr := leading_parser optional (ident >> ":") >> termParser let term := discr[1] let addAux : TermElabM Syntax := withFreshMacroScope do let d ← `(_discr); unless isAuxDiscrName d.getId do -- Use assertion? throwError "unexpected internal auxiliary discriminant name" let discrNew := discr.setArg 1 d; let r ← loop discrs (discrsNew.push discrNew) foundFVars `(let _discr := $term; $r) match (← isAtomicDiscr? term) with | some x => if x.isFVar then loop discrs (discrsNew.push discr) (foundFVars.insert x.fvarId!) else addAux | none => addAux return some (← loop discrs.toList #[] {}) else -- We do not pull non atomic discriminants when match type is provided explicitly by the user return none private def waitExpectedType (expectedType? : Option Expr) : TermElabM Expr := do tryPostponeIfNoneOrMVar expectedType? match expectedType? with | some expectedType => pure expectedType | none => mkFreshTypeMVar private def tryPostponeIfDiscrTypeIsMVar (matchStx : Syntax) : TermElabM Unit := do -- We don't wait for the discriminants types when match type is provided by user if getMatchOptType matchStx |>.isNone then let discrs := getDiscrs matchStx for discr in discrs do let term := discr[1] match (← isAtomicDiscr? term) with | none => throwErrorAt discr "unexpected discriminant" -- see `expandNonAtomicDiscrs? | some d => let dType ← inferType d trace[Elab.match] "discr {d} : {dType}" tryPostponeIfMVar dType /- We (try to) elaborate a `match` only when the expected type is available. If the `matchType` has not been provided by the user, we also try to postpone elaboration if the type of a discriminant is not available. That is, it is of the form `(?m ...)`. We use `expandNonAtomicDiscrs?` to make sure all discriminants are local variables. This is a standard trick we use in the elaborator, and it is also used to elaborate structure instances. Suppose, we are trying to elaborate ``` match g x with | ... => ... ``` `expandNonAtomicDiscrs?` converts it intro ``` let _discr := g x match _discr with | ... => ... ``` Thus, at `tryPostponeIfDiscrTypeIsMVar` we only need to check whether the type of `_discr` is not of the form `(?m ...)`. Note that, the auxiliary variable `_discr` is expanded at `elabAtomicDiscr`. This elaboration technique is needed to elaborate terms such as: ```lean xs.filter fun (a, b) => a > b ``` which are syntax sugar for ```lean List.filter (fun p => match p with | (a, b) => a > b) xs ``` When we visit `match p with | (a, b) => a > b`, we don't know the type of `p` yet. -/ private def waitExpectedTypeAndDiscrs (matchStx : Syntax) (expectedType? : Option Expr) : TermElabM Expr := do tryPostponeIfNoneOrMVar expectedType? tryPostponeIfDiscrTypeIsMVar matchStx match expectedType? with | some expectedType => return expectedType | none => mkFreshTypeMVar /- ``` leading_parser:leadPrec "match " >> sepBy1 matchDiscr ", " >> optType >> " with " >> matchAlts ``` Remark the `optIdent` must be `none` at `matchDiscr`. They are expanded by `expandMatchDiscr?`. -/ private def elabMatchCore (stx : Syntax) (expectedType? : Option Expr) : TermElabM Expr := do let expectedType ← waitExpectedTypeAndDiscrs stx expectedType? let discrStxs := (getDiscrs stx).map fun d => d let gen? := getMatchGeneralizing? stx let altViews := getMatchAlts stx let matchOptType := getMatchOptType stx elabMatchAux gen? discrStxs altViews matchOptType expectedType private def isPatternVar (stx : Syntax) : TermElabM Bool := do match (← resolveId? stx "pattern") with | none => isAtomicIdent stx | some f => match f with | Expr.const fName _ _ => match (← getEnv).find? fName with | some (ConstantInfo.ctorInfo _) => return false | some _ => return !hasMatchPatternAttribute (← getEnv) fName | _ => isAtomicIdent stx | _ => isAtomicIdent stx where isAtomicIdent (stx : Syntax) : Bool := stx.isIdent && stx.getId.eraseMacroScopes.isAtomic -- leading_parser "match " >> sepBy1 termParser ", " >> optType >> " with " >> matchAlts /-- Pattern matching. `match e, ... with | p, ... => f | ...` matches each given term `e` against each pattern `p` of a match alternative. When all patterns of an alternative match, the `match` term evaluates to the value of the corresponding right-hand side `f` with the pattern variables bound to the respective matched values. -/ @[builtinTermElab «match»] def elabMatch : TermElab := fun stx expectedType? => do match stx with | `(match $discr:term with | $y:ident => $rhs:term) => if (← isPatternVar y) then expandSimpleMatch stx discr y rhs expectedType? else elabMatchDefault stx expectedType? | _ => elabMatchDefault stx expectedType? where elabMatchDefault (stx : Syntax) (expectedType? : Option Expr) : TermElabM Expr := do match (← expandNonAtomicDiscrs? stx) with | some stxNew => withMacroExpansion stx stxNew <| elabTerm stxNew expectedType? | none => let discrs := getDiscrs stx; let matchOptType := getMatchOptType stx; if !matchOptType.isNone && discrs.any fun d => !d[0].isNone then throwErrorAt matchOptType "match expected type should not be provided when discriminants with equality proofs are used" elabMatchCore stx expectedType? builtin_initialize registerTraceClass `Elab.match -- leading_parser:leadPrec "nomatch " >> termParser /-- Empty match/ex falso. `nomatch e` is of arbitrary type `α : Sort u` if Lean can show that an empty set of patterns is exhaustive given `e`'s type, e.g. because it has no constructors. -/ @[builtinTermElab «nomatch»] def elabNoMatch : TermElab := fun stx expectedType? => do match stx with | `(nomatch $discrExpr) => match (← isLocalIdent? discrExpr) with | some _ => let expectedType ← waitExpectedType expectedType? let discr := mkNode ``Lean.Parser.Term.matchDiscr #[mkNullNode, discrExpr] elabMatchAux none #[discr] #[] mkNullNode expectedType | _ => let stxNew ← `(let _discr := $discrExpr; nomatch _discr) withMacroExpansion stx stxNew <| elabTerm stxNew expectedType? | _ => throwUnsupportedSyntax end Lean.Elab.Term
ba13dd8904a21d2c0799f6b06f459571ef744028
4727251e0cd73359b15b664c3170e5d754078599
/src/measure_theory/measure/open_pos.lean
2bea33870b654517d801a7518319fd5510418b69
[ "Apache-2.0" ]
permissive
Vierkantor/mathlib
0ea59ac32a3a43c93c44d70f441c4ee810ccceca
83bc3b9ce9b13910b57bda6b56222495ebd31c2f
refs/heads/master
1,658,323,012,449
1,652,256,003,000
1,652,256,003,000
209,296,341
0
1
Apache-2.0
1,568,807,655,000
1,568,807,655,000
null
UTF-8
Lean
false
false
7,309
lean
/- Copyright (c) 2022 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov -/ import measure_theory.measure.measure_space /-! # Measures positive on nonempty opens In this file we define a typeclass for measures that are positive on nonempty opens, see `measure_theory.measure.is_open_pos_measure`. Examples include (additive) Haar measures, as well as measures that have positive density with respect to a Haar measure. We also prove some basic facts about these measures. -/ open_locale topological_space ennreal measure_theory open set function filter namespace measure_theory namespace measure section basic variables {X Y : Type*} [topological_space X] {m : measurable_space X} [topological_space Y] [t2_space Y] (μ ν : measure X) /-- A measure is said to be `is_open_pos_measure` if it is positive on nonempty open sets. -/ class is_open_pos_measure : Prop := (open_pos : ∀ (U : set X), is_open U → U.nonempty → μ U ≠ 0) variables [is_open_pos_measure μ] {s U : set X} {x : X} lemma _root_.is_open.measure_ne_zero (hU : is_open U) (hne : U.nonempty) : μ U ≠ 0 := is_open_pos_measure.open_pos U hU hne lemma _root_.is_open.measure_pos (hU : is_open U) (hne : U.nonempty) : 0 < μ U := (hU.measure_ne_zero μ hne).bot_lt lemma _root_.is_open.measure_pos_iff (hU : is_open U) : 0 < μ U ↔ U.nonempty := ⟨λ h, ne_empty_iff_nonempty.1 $ λ he, h.ne' $ he.symm ▸ measure_empty, hU.measure_pos μ⟩ lemma _root_.is_open.measure_eq_zero_iff (hU : is_open U) : μ U = 0 ↔ U = ∅ := by simpa only [not_lt, nonpos_iff_eq_zero, not_nonempty_iff_eq_empty] using not_congr (hU.measure_pos_iff μ) lemma measure_pos_of_nonempty_interior (h : (interior s).nonempty) : 0 < μ s := (is_open_interior.measure_pos μ h).trans_le (measure_mono interior_subset) lemma measure_pos_of_mem_nhds (h : s ∈ 𝓝 x) : 0 < μ s := measure_pos_of_nonempty_interior _ ⟨x, mem_interior_iff_mem_nhds.2 h⟩ lemma is_open_pos_measure_smul {c : ℝ≥0∞} (h : c ≠ 0) : is_open_pos_measure (c • μ) := ⟨λ U Uo Une, mul_ne_zero h (Uo.measure_ne_zero μ Une)⟩ variables {μ ν} protected lemma absolutely_continuous.is_open_pos_measure (h : μ ≪ ν) : is_open_pos_measure ν := ⟨λ U ho hne h₀, ho.measure_ne_zero μ hne (h h₀)⟩ lemma _root_.has_le.le.is_open_pos_measure (h : μ ≤ ν) : is_open_pos_measure ν := h.absolutely_continuous.is_open_pos_measure lemma _root_.is_open.eq_empty_of_measure_zero (hU : is_open U) (h₀ : μ U = 0) : U = ∅ := (hU.measure_eq_zero_iff μ).mp h₀ lemma interior_eq_empty_of_null (hs : μ s = 0) : interior s = ∅ := is_open_interior.eq_empty_of_measure_zero $ measure_mono_null interior_subset hs /-- If two functions are a.e. equal on an open set and are continuous on this set, then they are equal on this set. -/ lemma eq_on_open_of_ae_eq {f g : X → Y} (h : f =ᵐ[μ.restrict U] g) (hU : is_open U) (hf : continuous_on f U) (hg : continuous_on g U) : eq_on f g U := begin replace h := ae_imp_of_ae_restrict h, simp only [eventually_eq, ae_iff, not_imp] at h, have : is_open (U ∩ {a | f a ≠ g a}), { refine is_open_iff_mem_nhds.mpr (λ a ha, inter_mem (hU.mem_nhds ha.1) _), rcases ha with ⟨ha : a ∈ U, ha' : (f a, g a) ∈ (diagonal Y)ᶜ⟩, exact (hf.continuous_at (hU.mem_nhds ha)).prod_mk_nhds (hg.continuous_at (hU.mem_nhds ha)) (is_closed_diagonal.is_open_compl.mem_nhds ha') }, replace := (this.eq_empty_of_measure_zero h).le, exact λ x hx, not_not.1 (λ h, this ⟨hx, h⟩) end /-- If two continuous functions are a.e. equal, then they are equal. -/ lemma eq_of_ae_eq {f g : X → Y} (h : f =ᵐ[μ] g) (hf : continuous f) (hg : continuous g) : f = g := suffices eq_on f g univ, from funext (λ x, this trivial), eq_on_open_of_ae_eq (ae_restrict_of_ae h) is_open_univ hf.continuous_on hg.continuous_on lemma eq_on_of_ae_eq {f g : X → Y} (h : f =ᵐ[μ.restrict s] g) (hf : continuous_on f s) (hg : continuous_on g s) (hU : s ⊆ closure (interior s)) : eq_on f g s := have interior s ⊆ s, from interior_subset, (eq_on_open_of_ae_eq (ae_restrict_of_ae_restrict_of_subset this h) is_open_interior (hf.mono this) (hg.mono this)).of_subset_closure hf hg this hU variable (μ) lemma _root_.continuous.ae_eq_iff_eq {f g : X → Y} (hf : continuous f) (hg : continuous g) : f =ᵐ[μ] g ↔ f = g := ⟨λ h, eq_of_ae_eq h hf hg, λ h, h ▸ eventually_eq.rfl⟩ end basic section linear_order variables {X Y : Type*} [topological_space X] [linear_order X] [order_topology X] {m : measurable_space X} [topological_space Y] [t2_space Y] (μ : measure X) [is_open_pos_measure μ] lemma measure_Ioi_pos [no_max_order X] (a : X) : 0 < μ (Ioi a) := is_open_Ioi.measure_pos μ nonempty_Ioi lemma measure_Iio_pos [no_min_order X] (a : X) : 0 < μ (Iio a) := is_open_Iio.measure_pos μ nonempty_Iio lemma measure_Ioo_pos [densely_ordered X] {a b : X} : 0 < μ (Ioo a b) ↔ a < b := (is_open_Ioo.measure_pos_iff μ).trans nonempty_Ioo lemma measure_Ioo_eq_zero [densely_ordered X] {a b : X} : μ (Ioo a b) = 0 ↔ b ≤ a := (is_open_Ioo.measure_eq_zero_iff μ).trans (Ioo_eq_empty_iff.trans not_lt) lemma eq_on_Ioo_of_ae_eq {a b : X} {f g : X → Y} (hfg : f =ᵐ[μ.restrict (Ioo a b)] g) (hf : continuous_on f (Ioo a b)) (hg : continuous_on g (Ioo a b)) : eq_on f g (Ioo a b) := eq_on_of_ae_eq hfg hf hg Ioo_subset_closure_interior lemma eq_on_Ioc_of_ae_eq [densely_ordered X] {a b : X} {f g : X → Y} (hfg : f =ᵐ[μ.restrict (Ioc a b)] g) (hf : continuous_on f (Ioc a b)) (hg : continuous_on g (Ioc a b)) : eq_on f g (Ioc a b) := eq_on_of_ae_eq hfg hf hg (Ioc_subset_closure_interior _ _) lemma eq_on_Ico_of_ae_eq [densely_ordered X] {a b : X} {f g : X → Y} (hfg : f =ᵐ[μ.restrict (Ico a b)] g) (hf : continuous_on f (Ico a b)) (hg : continuous_on g (Ico a b)) : eq_on f g (Ico a b) := eq_on_of_ae_eq hfg hf hg (Ico_subset_closure_interior _ _) lemma eq_on_Icc_of_ae_eq [densely_ordered X] {a b : X} (hne : a ≠ b) {f g : X → Y} (hfg : f =ᵐ[μ.restrict (Icc a b)] g) (hf : continuous_on f (Icc a b)) (hg : continuous_on g (Icc a b)) : eq_on f g (Icc a b) := eq_on_of_ae_eq hfg hf hg (closure_interior_Icc hne).symm.subset end linear_order end measure end measure_theory open measure_theory measure_theory.measure namespace metric variables {X : Type*} [pseudo_metric_space X] {m : measurable_space X} (μ : measure X) [is_open_pos_measure μ] lemma measure_ball_pos (x : X) {r : ℝ} (hr : 0 < r) : 0 < μ (ball x r) := is_open_ball.measure_pos μ (nonempty_ball.2 hr) lemma measure_closed_ball_pos (x : X) {r : ℝ} (hr : 0 < r) : 0 < μ (closed_ball x r) := (measure_ball_pos μ x hr).trans_le (measure_mono ball_subset_closed_ball) end metric namespace emetric variables {X : Type*} [pseudo_emetric_space X] {m : measurable_space X} (μ : measure X) [is_open_pos_measure μ] lemma measure_ball_pos (x : X) {r : ℝ≥0∞} (hr : r ≠ 0) : 0 < μ (ball x r) := is_open_ball.measure_pos μ ⟨x, mem_ball_self hr.bot_lt⟩ lemma measure_closed_ball_pos (x : X) {r : ℝ≥0∞} (hr : r ≠ 0) : 0 < μ (closed_ball x r) := (measure_ball_pos μ x hr).trans_le (measure_mono ball_subset_closed_ball) end emetric
e6d788819054c26efb1f0c177862a41b6afd0575
26ac254ecb57ffcb886ff709cf018390161a9225
/docs/tutorial/category_theory/calculating_colimits_in_Top.lean
bfead902b2230ed5e71405d51da026e54e96091f
[ "Apache-2.0" ]
permissive
eric-wieser/mathlib
42842584f584359bbe1fc8b88b3ff937c8acd72d
d0df6b81cd0920ad569158c06a3fd5abb9e63301
refs/heads/master
1,669,546,404,255
1,595,254,668,000
1,595,254,668,000
281,173,504
0
0
Apache-2.0
1,595,263,582,000
1,595,263,581,000
null
UTF-8
Lean
false
false
3,593
lean
import topology.category.Top.limits import category_theory.limits.shapes import topology.instances.real /-! This file contains some demos of using the (co)limits API to do topology. -/ noncomputable theory open category_theory open category_theory.limits def R : Top := Top.of ℝ def I : Top := Top.of (set.Icc 0 1 : set ℝ) def pt : Top := Top.of unit section MappingCylinder -- Let's construct the mapping cylinder. def to_pt (X : Top) : X ⟶ pt := { val := λ _, unit.star, property := continuous_const } def I₀ : pt ⟶ I := { val := λ _, ⟨(0 : ℝ), by norm_num [set.left_mem_Icc]⟩, property := continuous_const } def I₁ : pt ⟶ I := { val := λ _, ⟨(1 : ℝ), by norm_num [set.right_mem_Icc]⟩, property := continuous_const } def cylinder (X : Top) : Top := prod X I -- To define a map to the cylinder, we give a map to each factor. -- `prod.lift` is a helper method, providing a wrapper around `limit.lift` for binary products. def cylinder₀ (X : Top) : X ⟶ cylinder X := prod.lift (𝟙 X) (to_pt X ≫ I₀) def cylinder₁ (X : Top) : X ⟶ cylinder X := prod.lift (𝟙 X) (to_pt X ≫ I₁) -- The mapping cylinder is the pushout of the diagram -- X -- ↙ ↘ -- Y (X x I) -- (`pushout` is implemented just as a wrapper around `colimit`) is def mapping_cylinder {X Y : Top} (f : X ⟶ Y) : Top := pushout f (cylinder₁ X) /-- We construct the map from `X` into the "bottom" of the mapping cylinder for `f : X ⟶ Y`, as the composition of the inclusion of `X` into the bottom of the cylinder `prod X I`, followed by the map `pushout.inr` of `prod X I` into `mapping_cylinder f`. -/ def mapping_cylinder₀ {X Y : Top} (f : X ⟶ Y) : X ⟶ mapping_cylinder f := cylinder₀ X ≫ pushout.inr /-- The mapping cone is defined as the pushout of ``` X ↙ ↘ (Cyl f) pt ``` (where the left arrow is `mapping_cylinder₀`). This makes it an iterated colimit; one could also define it in one step as the colimit of ``` -- X X -- ↙ ↘ ↙ ↘ -- Y (X x I) pt ``` -/ def mapping_cone {X Y : Top} (f : X ⟶ Y) : Top := pushout (mapping_cylinder₀ f) (to_pt X) -- TODO Hopefully someone will write a nice tactic for generating diagrams quickly, -- and we'll be able to verify that this iterated construction is the same as the colimit -- over a single diagram. end MappingCylinder section Gluing -- Here's two copies of the real line glued together at a point. def f : pt ⟶ R := { val := λ _, (0 : ℝ), property := continuous_const } /-- Two copies of the real line glued together at 0. -/ def X : Top := pushout f f -- To define a map out of it, we define maps out of each copy of the line, -- and check the maps agree at 0. def g : X ⟶ R := pushout.desc (𝟙 _) (𝟙 _) rfl end Gluing universes v u w section Products /-- The countably infinite product of copies of `ℝ`. -/ def Y : Top := ∏ (λ n : ℕ, R) /-- We can define a point in this infinite product by specifying its coordinates. Let's define the point whose `n`-th coordinate is `n + 1` (as a real number). -/ def q : pt ⟶ Y := pi.lift (λ (n : ℕ), ⟨λ (_ : pt), (n + 1 : ℝ), continuous_const⟩) -- "Looking under the hood", we see that `q` is a `subtype`, whose `val` is a function `unit → Y.α`. -- #check q.val -- q.val : pt.α → Y.α -- `q.property` is the fact this function is continuous (i.e. no content, since `pt` is a singleton) -- We can check that this function is definitionally just the function we specified. example : (q.val ()).val (9 : ℕ) = ((10 : ℕ) : ℝ) := rfl end Products
80e2da12402fec702dc96386f3e799cdf21eaddb
fddcf4b659baa121761c71be606b3f74b86fa695
/objects.lean
790c024653428467525a62d89c8fcf4ae3f82e6a
[]
no_license
swarnpriya/Lean
4218df9392f396cd7e5e745de35a917536ebd2bb
a0a9978fd058041eb1a09aec0e2dd7d19a7436a7
refs/heads/master
1,595,831,634,399
1,568,673,127,000
1,568,673,127,000
208,903,604
0
0
null
null
null
null
UTF-8
Lean
false
false
1,689
lean
constant m : nat #check m #check nat constants α β : Type #check α constant f : Type -> Type #check f #check fun x, f x #check fun x, x constant a : Type #check (fun x : Type, f x) a #reduce (fun x : Type, f x) a #reduce (fun x, f x) a #reduce tt && ff #reduce tt && tt constant m1 : nat constant n1 : nat constant b : bool #print "reducing pairs" #reduce (m1, n1).2 #print "reducing boolean expressions" #reduce b && ff #reduce tt && ff #print "reducing arithmatic expressions" #reduce 2 + 3 constant n : nat #reduce n + 3 #eval 2 * 3 #print "double-definition" def double (x : ℕ) : ℕ := x + x #check double #reduce double 3 def funDouble (x : ℕ) : ℕ -> ℕ := fun x, x + x def do_twice (f : ℕ -> ℕ) : (ℕ -> ℕ) -> ℕ -> ℕ := fun f x, f (f x) #print "square-definition" def square (x : ℕ) : ℕ := x * x #check square #reduce square 8 def funSquare (x : ℕ) : ℕ -> ℕ := fun x, x * x #print "local-definitions" #check let y := 2 + 2 in y * y def t (x : ℕ) : ℕ := let y := x + x in y * y #reduce t 4 #reduce let y := 2 + 2, z := y * y in z * z def foo := let a := ℕ in fun x : a, x + 2 #print "Dependent Types" -- Dependent types are useful because they types can depend on parameters. Pi is dependent function type namespace hide universe u constant list : Type u -> Type u constant cons : Π α : Type u, α -> list α -> list α constant nil : Π α : Type u, list α constant head : Π α : Type u, list α -> α constant tail : Π α : Type u, list α -> list α constant append : Π α : Type u, list α -> list α -> list α end hide open list #check list #check @cons #check @tail #check @append #check @nil
bd8710a0cba536f9baba3846f5b384e8d85f005c
07c6143268cfb72beccd1cc35735d424ebcb187b
/src/measure_theory/l1_space.lean
9a1236d53c32a04af6626fc88ea22894fe880f8c
[ "Apache-2.0" ]
permissive
khoek/mathlib
bc49a842910af13a3c372748310e86467d1dc766
aa55f8b50354b3e11ba64792dcb06cccb2d8ee28
refs/heads/master
1,588,232,063,837
1,587,304,803,000
1,587,304,803,000
176,688,517
0
0
Apache-2.0
1,553,070,585,000
1,553,070,585,000
null
UTF-8
Lean
false
false
28,745
lean
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou -/ import measure_theory.ae_eq_fun /-! # Integrable functions and `L¹` space In the first part of this file, the predicate `integrable` is defined and basic properties of integrable functions are proved. In the second part, the space `L¹` of equivalence classes of integrable functions under the relation of being almost everywhere equal is defined as a subspace of the space `L⁰`. See the file `src/measure_theory/ae_eq_fun.lean` for information on `L⁰` space. ## Notation * `α →₁ β` is the type of `L¹` space, where `α` is a `measure_space` and `β` is a `normed_group` with a `second_countable_topology`. `f : α →ₘ β` is a "function" in `L¹`. In comments, `[f]` is also used to denote an `L¹` function. `₁` can be typed as `\1`. ## Main definitions * Let `f : α → β` be a function, where `α` is a `measure_space` and `β` a `normed_group`. Then `f` is called `integrable` if `(∫⁻ a, nnnorm (f a)) < ⊤` holds. * The space `L¹` is defined as a subspace of `L⁰` : An `ae_eq_fun` `[f] : α →ₘ β` is in the space `L¹` if `edist [f] 0 < ⊤`, which means `(∫⁻ a, edist (f a) 0) < ⊤` if we expand the definition of `edist` in `L⁰`. ## Main statements `L¹`, as a subspace, inherits most of the structures of `L⁰`. ## Implementation notes Maybe `integrable f` should be mean `(∫⁻ a, edist (f a) 0) < ⊤`, so that `integrable` and `ae_eq_fun.integrable` are more aligned. But in the end one can use the lemma `lintegral_nnnorm_eq_lintegral_edist : (∫⁻ a, nnnorm (f a)) = (∫⁻ a, edist (f a) 0)` to switch the two forms. ## Tags integrable, function space, l1 -/ noncomputable theory open_locale classical topological_space set_option class.instance_max_depth 100 namespace measure_theory open set filter topological_space ennreal emetric universes u v w variables {α : Type u} [measure_space α] variables {β : Type v} [normed_group β] {γ : Type w} [normed_group γ] /-- A function is `integrable` if the integral of its pointwise norm is less than infinity. -/ def integrable (f : α → β) : Prop := (∫⁻ a, nnnorm (f a)) < ⊤ lemma integrable_iff_norm (f : α → β) : integrable f ↔ (∫⁻ a, ennreal.of_real ∥f a∥) < ⊤ := by simp only [integrable, of_real_norm_eq_coe_nnnorm] lemma integrable_iff_edist (f : α → β) : integrable f ↔ (∫⁻ a, edist (f a) 0) < ⊤ := have eq : (λa, edist (f a) 0) = (λa, (nnnorm(f a) : ennreal)), by { funext, rw edist_eq_coe_nnnorm }, iff.intro (by { rw eq, exact λh, h }) $ by { rw eq, exact λh, h } lemma integrable_iff_of_real {f : α → ℝ} (h : ∀ₘ a, 0 ≤ f a) : integrable f ↔ (∫⁻ a, ennreal.of_real (f a)) < ⊤ := have lintegral_eq : (∫⁻ a, ennreal.of_real ∥f a∥) = (∫⁻ a, ennreal.of_real (f a)) := begin apply lintegral_congr_ae, filter_upwards [h], simp only [mem_set_of_eq], assume a h, rw [real.norm_eq_abs, abs_of_nonneg], exact h end, by rw [integrable_iff_norm, lintegral_eq] lemma integrable_of_ae_eq {f g : α → β} (hf : integrable f) (h : ∀ₘ a, f a = g a) : integrable g := begin simp only [integrable] at *, have : (∫⁻ (a : α), ↑(nnnorm (f a))) = (∫⁻ (a : α), ↑(nnnorm (g a))), { apply lintegral_congr_ae, filter_upwards [h], assume a, simp only [mem_set_of_eq], assume h, rw h }, rwa ← this end lemma integrable_congr_ae {f g : α → β} (h : ∀ₘ a, f a = g a) : integrable f ↔ integrable g := iff.intro (λhf, integrable_of_ae_eq hf h) (λhg, integrable_of_ae_eq hg (all_ae_eq_symm h)) lemma integrable_of_le_ae {f : α → β} {g : α → γ} (h : ∀ₘ a, ∥f a∥ ≤ ∥g a∥) (hg : integrable g) : integrable f := begin simp only [integrable_iff_norm] at *, calc (∫⁻ a, ennreal.of_real ∥f a∥) ≤ (∫⁻ (a : α), ennreal.of_real ∥g a∥) : lintegral_le_lintegral_ae (by { filter_upwards [h], assume a h, exact of_real_le_of_real h }) ... < ⊤ : hg end lemma integrable_of_le {f : α → β} {g : α → γ} (h : ∀a, ∥f a∥ ≤ ∥g a∥) (hg : integrable g) : integrable f := integrable_of_le_ae (all_ae_of_all h) hg lemma lintegral_nnnorm_eq_lintegral_edist (f : α → β) : (∫⁻ a, nnnorm (f a)) = ∫⁻ a, edist (f a) 0 := by simp only [edist_eq_coe_nnnorm] lemma lintegral_norm_eq_lintegral_edist (f : α → β) : (∫⁻ a, ennreal.of_real ∥f a∥) = ∫⁻ a, edist (f a) 0 := by simp only [of_real_norm_eq_coe_nnnorm, edist_eq_coe_nnnorm] lemma lintegral_edist_triangle [second_countable_topology β] [measurable_space β] [opens_measurable_space β] {f g h : α → β} (hf : measurable f) (hg : measurable g) (hh : measurable h) : (∫⁻ a, edist (f a) (g a)) ≤ (∫⁻ a, edist (f a) (h a)) + ∫⁻ a, edist (g a) (h a) := begin rw ← lintegral_add (hf.edist hh) (hg.edist hh), apply lintegral_mono, assume a, have := edist_triangle (f a) (h a) (g a), convert this, rw edist_comm (h a) (g a), end lemma lintegral_edist_lt_top [second_countable_topology β] [measurable_space β] [opens_measurable_space β] {f g : α → β} (hfm : measurable f) (hfi : integrable f) (hgm : measurable g) (hgi : integrable g) : (∫⁻ a, edist (f a) (g a)) < ⊤ := lt_of_le_of_lt (lintegral_edist_triangle hfm hgm (measurable_const : measurable (λa, (0 : β)))) (ennreal.add_lt_top.2 $ by { split; rw ← integrable_iff_edist; assumption }) lemma lintegral_nnnorm_zero : (∫⁻ a : α, nnnorm (0 : β)) = 0 := by simp variables (α β) @[simp] lemma integrable_zero : integrable (λa:α, (0:β)) := by simp [integrable] variables {α β} lemma lintegral_nnnorm_add [measurable_space β] [opens_measurable_space β] [measurable_space γ] [opens_measurable_space γ] {f : α → β} {g : α → γ} (hf : measurable f) (hg : measurable g) : (∫⁻ a, nnnorm (f a) + nnnorm (g a)) = (∫⁻ a, nnnorm (f a)) + ∫⁻ a, nnnorm (g a) := lintegral_add hf.ennnorm hg.ennnorm lemma integrable.add [measurable_space β] [opens_measurable_space β] {f g : α → β} (hfm : measurable f) (hfi : integrable f) (hgm : measurable g) (hgi : integrable g) : integrable (λa, f a + g a) := calc (∫⁻ (a : α), ↑(nnnorm ((f + g) a))) ≤ ∫⁻ (a : α), ↑(nnnorm (f a)) + ↑(nnnorm (g a)) : lintegral_mono (assume a, by { simp only [← coe_add, coe_le_coe], exact nnnorm_add_le _ _ }) ... = _ : lintegral_nnnorm_add hfm hgm ... < ⊤ : add_lt_top.2 ⟨hfi, hgi⟩ lemma integrable_finset_sum {ι} [measurable_space β] [borel_space β] [second_countable_topology β] (s : finset ι) {f : ι → α → β} (hfm : ∀ i, measurable (f i)) (hfi : ∀ i, integrable (f i)) : integrable (λ a, s.sum (λ i, f i a)) := begin refine finset.induction_on s _ _, { simp only [finset.sum_empty, integrable_zero] }, { assume i s his ih, simp only [his, finset.sum_insert, not_false_iff], refine (hfi _).add (hfm _) (s.measurable_sum hfm) ih } end lemma lintegral_nnnorm_neg {f : α → β} : (∫⁻ (a : α), ↑(nnnorm ((-f) a))) = ∫⁻ (a : α), ↑(nnnorm ((f) a)) := by simp only [pi.neg_apply, nnnorm_neg] lemma integrable.neg {f : α → β} : integrable f → integrable (λa, -f a) := assume hfi, calc _ = _ : lintegral_nnnorm_neg ... < ⊤ : hfi @[simp] lemma integrable_neg_iff (f : α → β) : integrable (λa, -f a) ↔ integrable f := begin split, { assume h, simpa only [_root_.neg_neg] using h.neg }, exact integrable.neg end lemma integrable.sub [measurable_space β] [opens_measurable_space β] {f g : α → β} (hfm : measurable f) (hfi : integrable f) (hgm : measurable g) (hgi : integrable g) : integrable (λa, f a - g a) := calc (∫⁻ (a : α), ↑(nnnorm ((f - g) a))) ≤ ∫⁻ (a : α), ↑(nnnorm (f a)) + ↑(nnnorm (-g a)) : lintegral_mono (assume a, by { simp only [← coe_add, coe_le_coe], exact nnnorm_add_le _ _ }) ... = _ : by { simp only [nnnorm_neg], exact lintegral_nnnorm_add hfm hgm } ... < ⊤ : add_lt_top.2 ⟨hfi, hgi⟩ lemma integrable.norm {f : α → β} (hfi : integrable f) : integrable (λa, ∥f a∥) := have eq : (λa, (nnnorm ∥f a∥ : ennreal)) = λa, (nnnorm (f a) : ennreal), by { funext, rw nnnorm_norm }, by { rwa [integrable, eq] } lemma integrable_norm_iff (f : α → β) : integrable (λa, ∥f a∥) ↔ integrable f := have eq : (λa, (nnnorm ∥f a∥ : ennreal)) = λa, (nnnorm (f a) : ennreal), by { funext, rw nnnorm_norm }, by { rw [integrable, integrable, eq] } lemma integrable_of_integrable_bound {f : α → β} {bound : α → ℝ} (h : integrable bound) (h_bound : ∀ₘ a, ∥f a∥ ≤ bound a) : integrable f := have h₁ : ∀ₘ a, (nnnorm (f a) : ennreal) ≤ ennreal.of_real (bound a), begin filter_upwards [h_bound], simp only [mem_set_of_eq], assume a h, calc (nnnorm (f a) : ennreal) = ennreal.of_real (∥f a∥) : by rw of_real_norm_eq_coe_nnnorm ... ≤ ennreal.of_real (bound a) : ennreal.of_real_le_of_real h end, calc (∫⁻ a, nnnorm (f a)) ≤ (∫⁻ a, ennreal.of_real (bound a)) : by { apply lintegral_le_lintegral_ae, exact h₁ } ... ≤ (∫⁻ a, ennreal.of_real ∥bound a∥) : lintegral_mono $ by { assume a, apply ennreal.of_real_le_of_real, exact le_max_left (bound a) (-bound a) } ... < ⊤ : by { rwa [integrable_iff_norm] at h } section dominated_convergence variables {F : ℕ → α → β} {f : α → β} {bound : α → ℝ} lemma all_ae_of_real_F_le_bound (h : ∀ n, ∀ₘ a, ∥F n a∥ ≤ bound a) : ∀ n, ∀ₘ a, ennreal.of_real ∥F n a∥ ≤ ennreal.of_real (bound a) := λn, by filter_upwards [h n] λ a h, ennreal.of_real_le_of_real h lemma all_ae_tendsto_of_real_norm (h : ∀ₘ a, tendsto (λ n, F n a) at_top $ 𝓝 $ f a) : ∀ₘ a, tendsto (λn, ennreal.of_real ∥F n a∥) at_top $ 𝓝 $ ennreal.of_real ∥f a∥ := by filter_upwards [h] λ a h, tendsto_of_real $ tendsto.comp (continuous.tendsto continuous_norm _) h lemma all_ae_of_real_f_le_bound (h_bound : ∀ n, ∀ₘ a, ∥F n a∥ ≤ bound a) (h_lim : ∀ₘ a, tendsto (λ n, F n a) at_top (𝓝 (f a))) : ∀ₘ a, ennreal.of_real ∥f a∥ ≤ ennreal.of_real (bound a) := begin have F_le_bound := all_ae_of_real_F_le_bound h_bound, rw ← all_ae_all_iff at F_le_bound, apply F_le_bound.mp ((all_ae_tendsto_of_real_norm h_lim).mono _), assume a tendsto_norm F_le_bound, exact le_of_tendsto' at_top_ne_bot tendsto_norm (F_le_bound) end lemma integrable_of_dominated_convergence {F : ℕ → α → β} {f : α → β} {bound : α → ℝ} (bound_integrable : integrable bound) (h_bound : ∀ n, ∀ₘ a, ∥F n a∥ ≤ bound a) (h_lim : ∀ₘ a, tendsto (λ n, F n a) at_top (𝓝 (f a))) : integrable f := /- `∥F n a∥ ≤ bound a` and `∥F n a∥ --> ∥f a∥` implies `∥f a∥ ≤ bound a`, and so `∫ ∥f∥ ≤ ∫ bound < ⊤` since `bound` is integrable -/ begin rw integrable_iff_norm, calc (∫⁻ a, (ennreal.of_real ∥f a∥)) ≤ ∫⁻ a, ennreal.of_real (bound a) : lintegral_le_lintegral_ae $ all_ae_of_real_f_le_bound h_bound h_lim ... < ⊤ : begin rw ← integrable_iff_of_real, { exact bound_integrable }, filter_upwards [h_bound 0] λ a h, le_trans (norm_nonneg _) h, end end lemma tendsto_lintegral_norm_of_dominated_convergence [measurable_space β] [borel_space β] [second_countable_topology β] {F : ℕ → α → β} {f : α → β} {bound : α → ℝ} (F_measurable : ∀ n, measurable (F n)) (f_measurable : measurable f) (bound_integrable : integrable bound) (h_bound : ∀ n, ∀ₘ a, ∥F n a∥ ≤ bound a) (h_lim : ∀ₘ a, tendsto (λ n, F n a) at_top (𝓝 (f a))) : tendsto (λn, ∫⁻ a, ennreal.of_real ∥F n a - f a∥) at_top (𝓝 0) := let b := λa, 2 * ennreal.of_real (bound a) in /- `∥F n a∥ ≤ bound a` and `F n a --> f a` implies `∥f a∥ ≤ bound a`, and thus by the triangle inequality, have `∥F n a - f a∥ ≤ 2 * (bound a). -/ have hb : ∀ n, ∀ₘ a, ennreal.of_real ∥F n a - f a∥ ≤ b a, begin assume n, filter_upwards [all_ae_of_real_F_le_bound h_bound n, all_ae_of_real_f_le_bound h_bound h_lim], assume a h₁ h₂, calc ennreal.of_real ∥F n a - f a∥ ≤ (ennreal.of_real ∥F n a∥) + (ennreal.of_real ∥f a∥) : begin rw [← ennreal.of_real_add], apply of_real_le_of_real, { apply norm_sub_le }, { exact norm_nonneg _ }, { exact norm_nonneg _ } end ... ≤ (ennreal.of_real (bound a)) + (ennreal.of_real (bound a)) : add_le_add' h₁ h₂ ... = b a : by rw ← two_mul end, /- On the other hand, `F n a --> f a` implies that `∥F n a - f a∥ --> 0` -/ have h : ∀ₘ a, tendsto (λ n, ennreal.of_real ∥F n a - f a∥) at_top (𝓝 0), begin suffices h : ∀ₘ a, tendsto (λ n, ennreal.of_real ∥F n a - f a∥) at_top (𝓝 $ ennreal.of_real 0), { rwa ennreal.of_real_zero at h }, filter_upwards [h_lim], assume a h, refine tendsto.comp (continuous.tendsto continuous_of_real _) _, rw ← tendsto_iff_norm_tendsto_zero, exact h end, /- Therefore, by the dominated convergence theorem for nonnegative integration, have ` ∫ ∥f a - F n a∥ --> 0 ` -/ begin suffices h : tendsto (λn, ∫⁻ a, ennreal.of_real ∥F n a - f a∥) at_top (𝓝 (∫⁻ (a:α), 0)), { rwa lintegral_zero at h }, -- Using the dominated convergence theorem. refine tendsto_lintegral_of_dominated_convergence _ _ hb _ _, -- Show `λa, ∥f a - F n a∥` is measurable for all `n` { exact λn, measurable_of_real.comp ((F_measurable n).sub f_measurable).norm }, -- Show `2 * bound` is integrable { rw integrable_iff_of_real at bound_integrable, { calc (∫⁻ a, b a) = 2 * (∫⁻ a, ennreal.of_real (bound a)) : by { rw lintegral_const_mul', exact coe_ne_top } ... < ⊤ : mul_lt_top (coe_lt_top) bound_integrable }, filter_upwards [h_bound 0] λ a h, le_trans (norm_nonneg _) h }, -- Show `∥f a - F n a∥ --> 0` { exact h } end end dominated_convergence section pos_part /-! Lemmas used for defining the positive part of a `L¹` function -/ lemma integrable.max_zero {f : α → ℝ} (hf : integrable f) : integrable (λa, max (f a) 0) := begin simp only [integrable_iff_norm] at *, calc (∫⁻ a, ennreal.of_real ∥max (f a) 0∥) ≤ (∫⁻ (a : α), ennreal.of_real ∥f a∥) : lintegral_mono begin assume a, apply of_real_le_of_real, simp only [real.norm_eq_abs], calc abs (max (f a) 0) = max (f a) 0 : by { rw abs_of_nonneg, apply le_max_right } ... ≤ abs (f a) : max_le (le_abs_self _) (abs_nonneg _) end ... < ⊤ : hf end lemma integrable.min_zero {f : α → ℝ} (hf : integrable f) : integrable (λa, min (f a) 0) := begin have : (λa, min (f a) 0) = (λa, - max (-f a) 0), { funext, rw [min_eq_neg_max_neg_neg, neg_zero] }, rw this, exact (integrable.max_zero hf.neg).neg, end end pos_part section normed_space variables {𝕜 : Type*} [normed_field 𝕜] [normed_space 𝕜 β] lemma integrable.smul (c : 𝕜) {f : α → β} : integrable f → integrable (λa, c • f a) := begin simp only [integrable], assume hfi, calc (∫⁻ (a : α), nnnorm ((c • f) a)) = (∫⁻ (a : α), (nnnorm c) * nnnorm (f a)) : begin apply lintegral_congr_ae, filter_upwards [], assume a, simp only [nnnorm_smul, set.mem_set_of_eq, pi.smul_apply, ennreal.coe_mul] end ... < ⊤ : begin rw lintegral_const_mul', apply mul_lt_top, { exact coe_lt_top }, { exact hfi }, { simp only [ennreal.coe_ne_top, ne.def, not_false_iff] } end end lemma integrable_smul_iff {c : 𝕜} (hc : c ≠ 0) (f : α → β) : integrable (λa, c • f a) ↔ integrable f := begin split, { assume h, simpa only [smul_smul, inv_mul_cancel hc, one_smul] using h.smul c⁻¹ }, exact integrable.smul _ end end normed_space variables [second_countable_topology β] namespace ae_eq_fun variable [measurable_space β] section variable [opens_measurable_space β] /-- An almost everywhere equal function is `integrable` if it has a finite distance to the origin. Should mean the same thing as the predicate `integrable` over functions. -/ def integrable (f : α →ₘ β) : Prop := f ∈ ball (0 : α →ₘ β) ⊤ lemma integrable_mk {f : α → β} (hf : measurable f) : (integrable (mk f hf)) ↔ measure_theory.integrable f := by simp [integrable, zero_def, edist_mk_mk', measure_theory.integrable, nndist_eq_nnnorm] lemma integrable_to_fun (f : α →ₘ β) : integrable f ↔ (measure_theory.integrable f.to_fun) := by conv_lhs { rw [self_eq_mk f, integrable_mk] } local attribute [simp] integrable_mk lemma integrable_zero : integrable (0 : α →ₘ β) := mem_ball_self coe_lt_top end section variable [borel_space β] lemma integrable.add : ∀ {f g : α →ₘ β}, integrable f → integrable g → integrable (f + g) := begin rintros ⟨f, hf⟩ ⟨g, hg⟩, simp only [mem_ball, zero_def, mk_add_mk, integrable_mk, quot_mk_eq_mk], assume hfi hgi, exact hfi.add hf hg hgi end lemma integrable.neg : ∀ {f : α →ₘ β}, integrable f → integrable (-f) := begin rintros ⟨f, hfm⟩ hfi, exact (integrable_mk _).2 ((integrable_mk hfm).1 hfi).neg end lemma integrable.sub : ∀ {f g : α →ₘ β}, integrable f → integrable g → integrable (f - g) := begin rintros ⟨f, hfm⟩ ⟨g, hgm⟩, simp only [quot_mk_eq_mk, integrable_mk, mk_sub_mk], exact λ hfi hgi, hfi.sub hfm hgm hgi end protected lemma is_add_subgroup : is_add_subgroup (ball (0 : α →ₘ β) ⊤) := { zero_mem := integrable_zero, add_mem := λ _ _, integrable.add, neg_mem := λ _, integrable.neg } section normed_space variables {𝕜 : Type*} [normed_field 𝕜] [normed_space 𝕜 β] lemma integrable.smul : ∀ {c : 𝕜} {f : α →ₘ β}, integrable f → integrable (c • f) := begin rintros c ⟨f, hfm⟩, simp only [quot_mk_eq_mk, integrable_mk, smul_mk], exact λ hfi, hfi.smul c end end normed_space end end ae_eq_fun section variables (α β) [measurable_space β] [opens_measurable_space β] /-- The space of equivalence classes of integrable (and measurable) functions, where two integrable functions are equivalent if they agree almost everywhere, i.e., they differ on a set of measure `0`. -/ def l1 : Type (max u v) := subtype (@ae_eq_fun.integrable α _ β _ _ _ _) infixr ` →₁ `:25 := l1 end namespace l1 open ae_eq_fun local attribute [instance] ae_eq_fun.is_add_subgroup variables [measurable_space β] section variable [opens_measurable_space β] instance : has_coe (α →₁ β) (α →ₘ β) := ⟨subtype.val⟩ protected lemma eq {f g : α →₁ β} : (f : α →ₘ β) = (g : α →ₘ β) → f = g := subtype.eq @[norm_cast] protected lemma eq_iff {f g : α →₁ β} : (f : α →ₘ β) = (g : α →ₘ β) ↔ f = g := iff.intro (l1.eq) (congr_arg coe) /- TODO : order structure of l1-/ /-- `L¹` space forms a `emetric_space`, with the emetric being inherited from almost everywhere functions, i.e., `edist f g = ∫⁻ a, edist (f a) (g a)`. -/ instance : emetric_space (α →₁ β) := subtype.emetric_space /-- `L¹` space forms a `metric_space`, with the metric being inherited from almost everywhere functions, i.e., `edist f g = ennreal.to_real (∫⁻ a, edist (f a) (g a))`. -/ instance : metric_space (α →₁ β) := metric_space_emetric_ball 0 ⊤ end variable [borel_space β] instance : add_comm_group (α →₁ β) := subtype.add_comm_group instance : inhabited (α →₁ β) := ⟨0⟩ @[simp, norm_cast] lemma coe_zero : ((0 : α →₁ β) : α →ₘ β) = 0 := rfl @[simp, norm_cast] lemma coe_add (f g : α →₁ β) : ((f + g : α →₁ β) : α →ₘ β) = f + g := rfl @[simp, norm_cast] lemma coe_neg (f : α →₁ β) : ((-f : α →₁ β) : α →ₘ β) = -f := rfl @[simp, norm_cast] lemma coe_sub (f g : α →₁ β) : ((f - g : α →₁ β) : α →ₘ β) = f - g := rfl @[simp] lemma edist_eq (f g : α →₁ β) : edist f g = edist (f : α →ₘ β) (g : α →ₘ β) := rfl lemma dist_eq (f g : α →₁ β) : dist f g = ennreal.to_real (edist (f : α →ₘ β) (g : α →ₘ β)) := rfl /-- The norm on `L¹` space is defined to be `∥f∥ = ∫⁻ a, edist (f a) 0`. -/ instance : has_norm (α →₁ β) := ⟨λ f, dist f 0⟩ lemma norm_eq (f : α →₁ β) : ∥f∥ = ennreal.to_real (edist (f : α →ₘ β) 0) := rfl instance : normed_group (α →₁ β) := normed_group.of_add_dist (λ x, rfl) $ by { intros, simp only [dist_eq, coe_add], rw edist_eq_add_add } section normed_space variables {𝕜 : Type*} [normed_field 𝕜] [normed_space 𝕜 β] instance : has_scalar 𝕜 (α →₁ β) := ⟨λ x f, ⟨x • (f : α →ₘ β), ae_eq_fun.integrable.smul f.2⟩⟩ @[simp, norm_cast] lemma coe_smul (c : 𝕜) (f : α →₁ β) : ((c • f : α →₁ β) : α →ₘ β) = c • (f : α →ₘ β) := rfl instance : semimodule 𝕜 (α →₁ β) := { one_smul := λf, l1.eq (by { simp only [coe_smul], exact one_smul _ _ }), mul_smul := λx y f, l1.eq (by { simp only [coe_smul], exact mul_smul _ _ _ }), smul_add := λx f g, l1.eq (by { simp only [coe_smul, coe_add], exact smul_add _ _ _ }), smul_zero := λx, l1.eq (by { simp only [coe_zero, coe_smul], exact smul_zero _ }), add_smul := λx y f, l1.eq (by { simp only [coe_smul], exact add_smul _ _ _ }), zero_smul := λf, l1.eq (by { simp only [coe_smul], exact zero_smul _ _ }) } instance : module 𝕜 (α →₁ β) := { .. l1.semimodule } instance : vector_space 𝕜 (α →₁ β) := { .. l1.semimodule } instance : normed_space 𝕜 (α →₁ β) := ⟨ begin rintros x ⟨f, hf⟩, show ennreal.to_real (edist (x • f) 0) = ∥x∥ * ennreal.to_real (edist f 0), rw [edist_smul, to_real_of_real_mul], exact norm_nonneg _ end ⟩ end normed_space section of_fun /-- Construct the equivalence class `[f]` of a measurable and integrable function `f`. -/ def of_fun (f : α → β) (hfm : measurable f) (hfi : integrable f) : (α →₁ β) := ⟨mk f hfm, by { rw integrable_mk, exact hfi }⟩ lemma of_fun_eq_mk (f : α → β) (hfm hfi) : (of_fun f hfm hfi : α →ₘ β) = mk f hfm := rfl lemma of_fun_eq_of_fun (f g : α → β) (hfm hfi hgm hgi) : of_fun f hfm hfi = of_fun g hgm hgi ↔ ∀ₘ a, f a = g a := by { rw ← l1.eq_iff, simp only [of_fun_eq_mk, mk_eq_mk] } lemma of_fun_zero : of_fun (λa:α, (0:β)) (@measurable_const _ _ _ _ (0:β)) (integrable_zero α β) = 0 := rfl lemma of_fun_add (f g : α → β) (hfm hfi hgm hgi) : of_fun (λa, f a + g a) (measurable.add hfm hgm) (integrable.add hfm hfi hgm hgi) = of_fun f hfm hfi + of_fun g hgm hgi := rfl lemma of_fun_neg (f : α → β) (hfm hfi) : of_fun (λa, - f a) (measurable.neg hfm) (integrable.neg hfi) = - of_fun f hfm hfi := rfl lemma of_fun_sub (f g : α → β) (hfm hfi hgm hgi) : of_fun (λa, f a - g a) (measurable.sub hfm hgm) (integrable.sub hfm hfi hgm hgi) = of_fun f hfm hfi - of_fun g hgm hgi := rfl lemma norm_of_fun (f : α → β) (hfm hfi) : ∥of_fun f hfm hfi∥ = ennreal.to_real (∫⁻ a, edist (f a) 0) := rfl lemma norm_of_fun_eq_lintegral_norm (f : α → β) (hfm hfi) : ∥of_fun f hfm hfi∥ = ennreal.to_real (∫⁻ a, ennreal.of_real ∥f a∥) := by { rw [norm_of_fun, lintegral_norm_eq_lintegral_edist] } variables {𝕜 : Type*} [normed_field 𝕜] [normed_space 𝕜 β] lemma of_fun_smul (f : α → β) (hfm : measurable f) (hfi : integrable f) (k : 𝕜) : of_fun (λa, k • f a) (hfm.const_smul _) (hfi.smul _) = k • of_fun f hfm hfi := rfl end of_fun section to_fun /-- Find a representative of an `L¹` function [f] -/ @[reducible] protected def to_fun (f : α →₁ β) : α → β := (f : α →ₘ β).to_fun protected lemma measurable (f : α →₁ β) : measurable f.to_fun := f.1.measurable protected lemma integrable (f : α →₁ β) : integrable f.to_fun := by { rw [l1.to_fun, ← integrable_to_fun], exact f.2 } lemma of_fun_to_fun (f : α →₁ β) : of_fun (f.to_fun) f.measurable f.integrable = f := begin rcases f with ⟨f, hfi⟩, rw [of_fun, subtype.mk_eq_mk], exact (self_eq_mk f).symm end lemma mk_to_fun (f : α →₁ β) : mk (f.to_fun) f.measurable = f := by { rw ← of_fun_eq_mk, rw l1.eq_iff, exact of_fun_to_fun f } lemma to_fun_of_fun (f : α → β) (hfm hfi) : ∀ₘ a, (of_fun f hfm hfi).to_fun a = f a := (all_ae_mk_to_fun f hfm).mono $ assume a, id variables (α β) lemma zero_to_fun : ∀ₘ a, (0 : α →₁ β).to_fun a = 0 := ae_eq_fun.zero_to_fun variables {α β} lemma add_to_fun (f g : α →₁ β) : ∀ₘ a, (f + g).to_fun a = f.to_fun a + g.to_fun a := ae_eq_fun.add_to_fun _ _ lemma neg_to_fun (f : α →₁ β) : ∀ₘ a, (-f).to_fun a = -f.to_fun a := ae_eq_fun.neg_to_fun _ lemma sub_to_fun (f g : α →₁ β) : ∀ₘ a, (f - g).to_fun a = f.to_fun a - g.to_fun a := ae_eq_fun.sub_to_fun _ _ lemma dist_to_fun (f g : α →₁ β) : dist f g = ennreal.to_real (∫⁻ x, edist (f.to_fun x) (g.to_fun x)) := by { simp only [dist_eq, edist_to_fun] } lemma norm_eq_nnnorm_to_fun (f : α →₁ β) : ∥f∥ = ennreal.to_real (∫⁻ a, nnnorm (f.to_fun a)) := by { rw [lintegral_nnnorm_eq_lintegral_edist, ← edist_zero_to_fun], refl } lemma norm_eq_norm_to_fun (f : α →₁ β) : ∥f∥ = ennreal.to_real (∫⁻ a, ennreal.of_real ∥f.to_fun a∥) := by { rw norm_eq_nnnorm_to_fun, congr, funext, rw of_real_norm_eq_coe_nnnorm } lemma lintegral_edist_to_fun_lt_top (f g : α →₁ β) : (∫⁻ a, edist (f.to_fun a) (g.to_fun a)) < ⊤ := begin apply lintegral_edist_lt_top, exact f.measurable, exact f.integrable, exact g.measurable, exact g.integrable end variables {𝕜 : Type*} [normed_field 𝕜] [normed_space 𝕜 β] lemma smul_to_fun (c : 𝕜) (f : α →₁ β) : ∀ₘ a, (c • f).to_fun a = c • f.to_fun a := ae_eq_fun.smul_to_fun _ _ end to_fun section pos_part /-- Positive part of a function in `L¹` space. -/ def pos_part (f : α →₁ ℝ) : α →₁ ℝ := ⟨ ae_eq_fun.pos_part f, begin rw [ae_eq_fun.integrable_to_fun, integrable_congr_ae (pos_part_to_fun _)], exact integrable.max_zero f.integrable end ⟩ /-- Negative part of a function in `L¹` space. -/ def neg_part (f : α →₁ ℝ) : α →₁ ℝ := pos_part (-f) @[norm_cast] lemma coe_pos_part (f : α →₁ ℝ) : (f.pos_part : α →ₘ ℝ) = (f : α →ₘ ℝ).pos_part := rfl lemma pos_part_to_fun (f : α →₁ ℝ) : ∀ₘ a, (pos_part f).to_fun a = max (f.to_fun a) 0 := ae_eq_fun.pos_part_to_fun _ lemma neg_part_to_fun_eq_max (f : α →₁ ℝ) : ∀ₘ a, (neg_part f).to_fun a = max (- f.to_fun a) 0 := begin rw neg_part, filter_upwards [pos_part_to_fun (-f), neg_to_fun f], simp only [mem_set_of_eq], assume a h₁ h₂, rw [h₁, h₂] end lemma neg_part_to_fun_eq_min (f : α →₁ ℝ) : ∀ₘ a, (neg_part f).to_fun a = - min (f.to_fun a) 0 := begin filter_upwards [neg_part_to_fun_eq_max f], simp only [mem_set_of_eq], assume a h, rw [h, min_eq_neg_max_neg_neg, _root_.neg_neg, neg_zero], end lemma norm_le_norm_of_ae_le {f g : α →₁ β} (h : ∀ₘ a, ∥f.to_fun a∥ ≤ ∥g.to_fun a∥) : ∥f∥ ≤ ∥g∥ := begin simp only [l1.norm_eq_norm_to_fun], rw to_real_le_to_real, { apply lintegral_le_lintegral_ae, filter_upwards [h], simp only [mem_set_of_eq], assume a h, exact of_real_le_of_real h }, { rw [← lt_top_iff_ne_top, ← integrable_iff_norm], exact f.integrable }, { rw [← lt_top_iff_ne_top, ← integrable_iff_norm], exact g.integrable } end lemma continuous_pos_part : continuous $ λf : α →₁ ℝ, pos_part f := begin simp only [metric.continuous_iff], assume g ε hε, use ε, use hε, simp only [dist_eq_norm], assume f hfg, refine lt_of_le_of_lt (norm_le_norm_of_ae_le _) hfg, filter_upwards [l1.sub_to_fun f g, l1.sub_to_fun (pos_part f) (pos_part g), pos_part_to_fun f, pos_part_to_fun g], simp only [mem_set_of_eq], assume a h₁ h₂ h₃ h₄, simp only [real.norm_eq_abs, h₁, h₂, h₃, h₄], exact abs_max_sub_max_le_abs _ _ _ end lemma continuous_neg_part : continuous $ λf : α →₁ ℝ, neg_part f := have eq : (λf : α →₁ ℝ, neg_part f) = (λf : α →₁ ℝ, pos_part (-f)) := rfl, by { rw eq, exact continuous_pos_part.comp continuous_neg } end pos_part /- TODO: l1 is a complete space -/ end l1 end measure_theory
5054bfd14de447e8d4c63d87ebbb5ca79ea83c4d
4b846d8dabdc64e7ea03552bad8f7fa74763fc67
/tests/lean/io_bug1.lean
8c2340dce9cf58feed557907596b8e1e48887776
[ "Apache-2.0" ]
permissive
pacchiano/lean
9324b33f3ac3b5c5647285160f9f6ea8d0d767dc
fdadada3a970377a6df8afcd629a6f2eab6e84e8
refs/heads/master
1,611,357,380,399
1,489,870,101,000
1,489,870,101,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
415
lean
import system.io open io def bar : io unit := do put_str "one", put_str "two", put_str "three" #eval bar #print "---------" def foo : ℕ → io unit | 0 := put_str "at zero\n" | (n+1) := do put_str "in\n", foo n, put_str "out\n" #eval foo 3 #print "---------" def foo2 : ℕ → io unit | 0 := put_str "at zero\n" | (n+1) := do put_str "in\n", foo2 n, put_str "out\n", put_str "out2\n" #eval foo2 3
d4ff797fb112193403e26d93ef9bd7c7a7ff6784
1a61aba1b67cddccce19532a9596efe44be4285f
/hott/algebra/order.hlean
d9c2c2f13341a953e61aa9976a807faab729364d
[ "Apache-2.0" ]
permissive
eigengrau/lean
07986a0f2548688c13ba36231f6cdbee82abf4c6
f8a773be1112015e2d232661ce616d23f12874d0
refs/heads/master
1,610,939,198,566
1,441,352,386,000
1,441,352,494,000
41,903,576
0
0
null
1,441,352,210,000
1,441,352,210,000
null
UTF-8
Lean
false
false
12,380
hlean
/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Jeremy Avigad Various types of orders. We develop weak orders "≤" and strict orders "<" separately. We also consider structures with both, where the two are related by x < y ↔ (x ≤ y × x ≠ y) (order_pair) x ≤ y ↔ (x < y ⊎ x = y) (strong_order_pair) These might not hold constructively in some applications, but we can define additional structures with both < and ≤ as needed. Ported from the standard library -/ --import logic.eq logic.connectives open core prod namespace algebra variable {A : Type} /- overloaded symbols -/ structure has_le.{l} [class] (A : Type.{l}) : Type.{l+1} := (le : A → A → Type.{l}) structure has_lt [class] (A : Type) := (lt : A → A → Type₀) infixl `<=` := has_le.le infixl `≤` := has_le.le infixl `<` := has_lt.lt definition has_le.ge [reducible] {A : Type} [s : has_le A] (a b : A) := b ≤ a notation a ≥ b := has_le.ge a b notation a >= b := has_le.ge a b definition has_lt.gt [reducible] {A : Type} [s : has_lt A] (a b : A) := b < a notation a > b := has_lt.gt a b /- weak orders -/ structure weak_order [class] (A : Type) extends has_le A := (le_refl : Πa, le a a) (le_trans : Πa b c, le a b → le b c → le a c) (le_antisymm : Πa b, le a b → le b a → a = b) section variable [s : weak_order A] include s definition le.refl (a : A) : a ≤ a := !weak_order.le_refl definition le.trans [trans] {a b c : A} : a ≤ b → b ≤ c → a ≤ c := !weak_order.le_trans definition ge.trans [trans] {a b c : A} (H1 : a ≥ b) (H2: b ≥ c) : a ≥ c := le.trans H2 H1 definition le.antisymm {a b : A} : a ≤ b → b ≤ a → a = b := !weak_order.le_antisymm end structure linear_weak_order [class] (A : Type) extends weak_order A : Type := (le_total : Πa b, le a b ⊎ le b a) definition le.total [s : linear_weak_order A] (a b : A) : a ≤ b ⊎ b ≤ a := !linear_weak_order.le_total /- strict orders -/ structure strict_order [class] (A : Type) extends has_lt A := (lt_irrefl : Πa, ¬ lt a a) (lt_trans : Πa b c, lt a b → lt b c → lt a c) section variable [s : strict_order A] include s definition lt.irrefl (a : A) : ¬ a < a := !strict_order.lt_irrefl definition lt.trans [trans] {a b c : A} : a < b → b < c → a < c := !strict_order.lt_trans definition gt.trans [trans] {a b c : A} (H1 : a > b) (H2: b > c) : a > c := lt.trans H2 H1 definition ne_of_lt {a b : A} (lt_ab : a < b) : a ≠ b := assume eq_ab : a = b, show empty, from lt.irrefl b (eq_ab ▸ lt_ab) definition ne_of_gt {a b : A} (gt_ab : a > b) : a ≠ b := ne.symm (ne_of_lt gt_ab) definition lt.asymm {a b : A} (H : a < b) : ¬ b < a := assume H1 : b < a, lt.irrefl _ (lt.trans H H1) end /- well-founded orders -/ -- TODO: do these duplicate what Leo has done? if so, eliminate structure wf_strict_order [class] (A : Type) extends strict_order A := (wf_rec : ΠP : A → Type, (Πx, (Πy, lt y x → P y) → P x) → Πx, P x) definition wf.rec_on {A : Type} [s : wf_strict_order A] {P : A → Type} (x : A) (H : Πx, (Πy, wf_strict_order.lt y x → P y) → P x) : P x := wf_strict_order.wf_rec P H x definition wf.ind_on := @wf.rec_on /- structures with a weak and a strict order -/ structure order_pair [class] (A : Type) extends weak_order A, has_lt A := (lt_iff_le_and_ne : Πa b, lt a b ↔ (le a b × a ≠ b)) section variable [s : order_pair A] variables {a b c : A} include s definition lt_iff_le_and_ne : a < b ↔ (a ≤ b × a ≠ b) := !order_pair.lt_iff_le_and_ne definition le_of_lt (H : a < b) : a ≤ b := pr1 (iff.mp lt_iff_le_and_ne H) definition lt_of_le_of_ne (H1 : a ≤ b) (H2 : a ≠ b) : a < b := iff.mp (iff.symm lt_iff_le_and_ne) (pair H1 H2) private definition lt_irrefl (s' : order_pair A) (a : A) : ¬ a < a := assume H : a < a, have H1 : a ≠ a, from pr2 (iff.mp !lt_iff_le_and_ne H), H1 rfl private definition lt_trans (s' : order_pair A) (a b c: A) (lt_ab : a < b) (lt_bc : b < c) : a < c := have le_ab : a ≤ b, from le_of_lt lt_ab, have le_bc : b ≤ c, from le_of_lt lt_bc, have le_ac : a ≤ c, from le.trans le_ab le_bc, have ne_ac : a ≠ c, from assume eq_ac : a = c, have le_ba : b ≤ a, from eq_ac⁻¹ ▸ le_bc, have eq_ab : a = b, from le.antisymm le_ab le_ba, have ne_ab : a ≠ b, from pr2 (iff.mp lt_iff_le_and_ne lt_ab), ne_ab eq_ab, show a < c, from lt_of_le_of_ne le_ac ne_ac definition order_pair.to_strict_order [instance] [coercion] [reducible] : strict_order A := ⦃ strict_order, s, lt_irrefl := lt_irrefl s, lt_trans := lt_trans s ⦄ definition lt_of_lt_of_le [trans] : a < b → b ≤ c → a < c := assume lt_ab : a < b, assume le_bc : b ≤ c, have le_ac : a ≤ c, from le.trans (le_of_lt lt_ab) le_bc, have ne_ac : a ≠ c, from assume eq_ac : a = c, have le_ba : b ≤ a, from eq_ac⁻¹ ▸ le_bc, have eq_ab : a = b, from le.antisymm (le_of_lt lt_ab) le_ba, show empty, from ne_of_lt lt_ab eq_ab, show a < c, from lt_of_le_of_ne le_ac ne_ac definition lt_of_le_of_lt [trans] : a ≤ b → b < c → a < c := assume le_ab : a ≤ b, assume lt_bc : b < c, have le_ac : a ≤ c, from le.trans le_ab (le_of_lt lt_bc), have ne_ac : a ≠ c, from assume eq_ac : a = c, have le_cb : c ≤ b, from eq_ac ▸ le_ab, have eq_bc : b = c, from le.antisymm (le_of_lt lt_bc) le_cb, show empty, from ne_of_lt lt_bc eq_bc, show a < c, from lt_of_le_of_ne le_ac ne_ac definition gt_of_gt_of_ge [trans] (H1 : a > b) (H2 : b ≥ c) : a > c := lt_of_le_of_lt H2 H1 definition gt_of_ge_of_gt [trans] (H1 : a ≥ b) (H2 : b > c) : a > c := lt_of_lt_of_le H2 H1 definition not_le_of_lt (H : a < b) : ¬ b ≤ a := assume H1 : b ≤ a, lt.irrefl _ (lt_of_lt_of_le H H1) definition not_lt_of_le (H : a ≤ b) : ¬ b < a := assume H1 : b < a, lt.irrefl _ (lt_of_le_of_lt H H1) end structure strong_order_pair [class] (A : Type) extends order_pair A := (le_iff_lt_or_eq : Πa b, le a b ↔ lt a b ⊎ a = b) definition le_iff_lt_or_eq [s : strong_order_pair A] {a b : A} : a ≤ b ↔ a < b ⊎ a = b := !strong_order_pair.le_iff_lt_or_eq definition lt_or_eq_of_le [s : strong_order_pair A] {a b : A} (le_ab : a ≤ b) : a < b ⊎ a = b := iff.mp le_iff_lt_or_eq le_ab -- We can also construct a strong order pair by defining a strict order, and then defining -- x ≤ y ↔ x < y ⊎ x = y structure strict_order_with_le [class] (A : Type) extends strict_order A, has_le A := (le_iff_lt_or_eq : Πa b, le a b ↔ lt a b ⊎ a = b) private definition le_refl (s : strict_order_with_le A) (a : A) : a ≤ a := iff.mp (iff.symm !strict_order_with_le.le_iff_lt_or_eq) (sum.inr rfl) private definition le_trans (s : strict_order_with_le A) (a b c : A) (le_ab : a ≤ b) (le_bc : b ≤ c) : a ≤ c := sum.rec_on (iff.mp !strict_order_with_le.le_iff_lt_or_eq le_ab) (assume lt_ab : a < b, sum.rec_on (iff.mp !strict_order_with_le.le_iff_lt_or_eq le_bc) (assume lt_bc : b < c, iff.elim_right !strict_order_with_le.le_iff_lt_or_eq (sum.inl (lt.trans lt_ab lt_bc))) (assume eq_bc : b = c, eq_bc ▸ le_ab)) (assume eq_ab : a = b, eq_ab⁻¹ ▸ le_bc) private definition le_antisymm (s : strict_order_with_le A) (a b : A) (le_ab : a ≤ b) (le_ba : b ≤ a) : a = b := sum.rec_on (iff.mp !strict_order_with_le.le_iff_lt_or_eq le_ab) (assume lt_ab : a < b, sum.rec_on (iff.mp !strict_order_with_le.le_iff_lt_or_eq le_ba) (assume lt_ba : b < a, absurd (lt.trans lt_ab lt_ba) (lt.irrefl a)) (assume eq_ba : b = a, eq_ba⁻¹)) (assume eq_ab : a = b, eq_ab) private definition lt_iff_le_ne (s : strict_order_with_le A) (a b : A) : a < b ↔ a ≤ b × a ≠ b := iff.intro (assume lt_ab : a < b, have le_ab : a ≤ b, from iff.elim_right !strict_order_with_le.le_iff_lt_or_eq (sum.inl lt_ab), show a ≤ b × a ≠ b, from pair le_ab (ne_of_lt lt_ab)) (assume H : a ≤ b × a ≠ b, have H1 : a < b ⊎ a = b, from iff.mp !strict_order_with_le.le_iff_lt_or_eq (pr1 H), show a < b, from sum_resolve_left H1 (pr2 H)) definition strict_order_with_le.to_order_pair [instance] [coercion] [reducible] [s : strict_order_with_le A] : strong_order_pair A := ⦃ strong_order_pair, s, le_refl := le_refl s, le_trans := le_trans s, le_antisymm := le_antisymm s, lt_iff_le_and_ne := lt_iff_le_ne s ⦄ /- linear orders -/ structure linear_order_pair [class] (A : Type) extends order_pair A, linear_weak_order A structure linear_strong_order_pair [class] (A : Type) extends strong_order_pair A, linear_weak_order A section variable [s : linear_strong_order_pair A] variables (a b c : A) include s definition lt.trichotomy : a < b ⊎ a = b ⊎ b < a := sum.rec_on (le.total a b) (assume H : a ≤ b, sum.rec_on (iff.mp !le_iff_lt_or_eq H) (assume H1, sum.inl H1) (assume H1, sum.inr (sum.inl H1))) (assume H : b ≤ a, sum.rec_on (iff.mp !le_iff_lt_or_eq H) (assume H1, sum.inr (sum.inr H1)) (assume H1, sum.inr (sum.inl (H1⁻¹)))) definition lt.by_cases {a b : A} {P : Type} (H1 : a < b → P) (H2 : a = b → P) (H3 : b < a → P) : P := sum.rec_on !lt.trichotomy (assume H, H1 H) (assume H, sum.rec_on H (assume H', H2 H') (assume H', H3 H')) definition linear_strong_order_pair.to_linear_order_pair [instance] [coercion] [reducible] : linear_order_pair A := ⦃ linear_order_pair, s ⦄ definition le_of_not_lt {a b : A} (H : ¬ a < b) : b ≤ a := lt.by_cases (assume H', absurd H' H) (assume H', H' ▸ !le.refl) (assume H', le_of_lt H') definition lt_of_not_le {a b : A} (H : ¬ a ≤ b) : b < a := lt.by_cases (assume H', absurd (le_of_lt H') H) (assume H', absurd (H' ▸ !le.refl) H) (assume H', H') definition lt_or_ge : a < b ⊎ a ≥ b := lt.by_cases (assume H1 : a < b, sum.inl H1) (assume H1 : a = b, sum.inr (H1 ▸ le.refl a)) (assume H1 : a > b, sum.inr (le_of_lt H1)) definition le_or_gt : a ≤ b ⊎ a > b := !sum.swap (lt_or_ge b a) definition lt_or_gt_of_ne {a b : A} (H : a ≠ b) : a < b ⊎ a > b := lt.by_cases (assume H1, sum.inl H1) (assume H1, absurd H1 H) (assume H1, sum.inr H1) end structure decidable_linear_order [class] (A : Type) extends linear_strong_order_pair A := (decidable_lt : decidable_rel lt) section variable [s : decidable_linear_order A] variables {a b c d : A} include s open decidable definition decidable_lt [instance] : decidable (a < b) := @decidable_linear_order.decidable_lt _ _ _ _ definition decidable_le [instance] : decidable (a ≤ b) := by_cases (assume H : a < b, inl (le_of_lt H)) (assume H : ¬ a < b, have H1 : b ≤ a, from le_of_not_lt H, by_cases (assume H2 : b < a, inr (not_le_of_lt H2)) (assume H2 : ¬ b < a, inl (le_of_not_lt H2))) definition decidable_eq [instance] : decidable (a = b) := by_cases (assume H : a ≤ b, by_cases (assume H1 : b ≤ a, inl (le.antisymm H H1)) (assume H1 : ¬ b ≤ a, inr (assume H2 : a = b, H1 (H2 ▸ le.refl a)))) (assume H : ¬ a ≤ b, (inr (assume H1 : a = b, H (H1 ▸ !le.refl)))) -- testing equality first may result in more definitional equalities definition lt.cases {B : Type} (a b : A) (t_lt t_eq t_gt : B) : B := if a = b then t_eq else (if a < b then t_lt else t_gt) definition lt.cases_of_eq {B : Type} {a b : A} {t_lt t_eq t_gt : B} (H : a = b) : lt.cases a b t_lt t_eq t_gt = t_eq := if_pos H definition lt.cases_of_lt {B : Type} {a b : A} {t_lt t_eq t_gt : B} (H : a < b) : lt.cases a b t_lt t_eq t_gt = t_lt := if_neg (ne_of_lt H) ⬝ if_pos H definition lt.cases_of_gt {B : Type} {a b : A} {t_lt t_eq t_gt : B} (H : a > b) : lt.cases a b t_lt t_eq t_gt = t_gt := if_neg (ne.symm (ne_of_lt H)) ⬝ if_neg (lt.asymm H) end end algebra /- For reference, these are all the transitivity rules defined in this file: calc_trans le.trans calc_trans lt.trans calc_trans lt_of_lt_of_le calc_trans lt_of_le_of_lt calc_trans ge.trans calc_trans gt.trans calc_trans gt_of_gt_of_ge calc_trans gt_of_ge_of_gt -/
49fd0eb10ca7d5ef5787d79371024dcb69ea57b8
9be442d9ec2fcf442516ed6e9e1660aa9071b7bd
/tests/bench/rbmap_checkpoint.lean
4f057c23cccfb3ddec5a66bb2cf2b8bf6dee6be6
[ "Apache-2.0", "LLVM-exception", "NCSA", "LGPL-3.0-only", "LicenseRef-scancode-inner-net-2.0", "BSD-3-Clause", "LGPL-2.0-or-later", "Spencer-94", "LGPL-2.1-or-later", "HPND", "LicenseRef-scancode-pcre", "ISC", "LGPL-2.1-only", "LicenseRef-scancode-other-permissive", "SunPro", "CMU-Mach" ]
permissive
EdAyers/lean4
57ac632d6b0789cb91fab2170e8c9e40441221bd
37ba0df5841bde51dbc2329da81ac23d4f6a4de4
refs/heads/master
1,676,463,245,298
1,660,619,433,000
1,660,619,433,000
183,433,437
1
0
Apache-2.0
1,657,612,672,000
1,556,196,574,000
Lean
UTF-8
Lean
false
false
3,428
lean
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura -/ prelude import Init.Data.Option.Basic import Init.Data.List.BasicAux import Init.Data.String import Init.System.IO universe u v w w' inductive color | Red | Black inductive Tree | Leaf : Tree | Node (color : color) (lchild : Tree) (key : Nat) (val : Bool) (rchild : Tree) : Tree instance : Inhabited Tree := ⟨Tree.Leaf⟩ variable {σ : Type w} open color Nat Tree def fold (f : Nat → Bool → σ → σ) : Tree → σ → σ | Leaf, b => b | Node _ l k v r, b => fold f r (f k v (fold f l b)) @[inline] def balance1 : Nat → Bool → Tree → Tree → Tree | kv, vv, t, Node _ (Node Red l kx vx r₁) ky vy r₂ => Node Red (Node Black l kx vx r₁) ky vy (Node Black r₂ kv vv t) | kv, vv, t, Node _ l₁ ky vy (Node Red l₂ kx vx r) => Node Red (Node Black l₁ ky vy l₂) kx vx (Node Black r kv vv t) | kv, vv, t, Node _ l ky vy r => Node Black (Node Red l ky vy r) kv vv t | _, _, _, _ => Leaf @[inline] def balance2 : Tree → Nat → Bool → Tree → Tree | t, kv, vv, Node _ (Node Red l kx₁ vx₁ r₁) ky vy r₂ => Node Red (Node Black t kv vv l) kx₁ vx₁ (Node Black r₁ ky vy r₂) | t, kv, vv, Node _ l₁ ky vy (Node Red l₂ kx₂ vx₂ r₂) => Node Red (Node Black t kv vv l₁) ky vy (Node Black l₂ kx₂ vx₂ r₂) | t, kv, vv, Node _ l ky vy r => Node Black t kv vv (Node Red l ky vy r) | _, _, _, _ => Leaf def isRed : Tree → Bool | Node Red _ _ _ _ => true | _ => false def ins : Tree → Nat → Bool → Tree | Leaf, kx, vx => Node Red Leaf kx vx Leaf | Node Red a ky vy b, kx, vx => (if kx < ky then Node Red (ins a kx vx) ky vy b else if kx = ky then Node Red a kx vx b else Node Red a ky vy (ins b kx vx)) | Node Black a ky vy b, kx, vx => if kx < ky then (if isRed a then balance1 ky vy b (ins a kx vx) else Node Black (ins a kx vx) ky vy b) else if kx = ky then Node Black a kx vx b else if isRed b then balance2 a ky vy (ins b kx vx) else Node Black a ky vy (ins b kx vx) def setBlack : Tree → Tree | Node _ l k v r => Node Black l k v r | e => e def insert (t : Tree) (k : Nat) (v : Bool) : Tree := if isRed t then setBlack (ins t k v) else ins t k v def mkMapAux (freq : Nat) : Nat → Tree → List Tree → List Tree | 0, m, r => m::r | n+1, m, r => let m := insert m n (n % 10 = 0); let r := if n % freq == 0 then m::r else r; mkMapAux freq n m r def mkMap (n : Nat) (freq : Nat) : List Tree := mkMapAux freq n Leaf [] def myLen : List Tree → Nat → Nat | Node _ _ _ _ _ :: xs, r => myLen xs (r + 1) | _ :: xs, r => myLen xs r | [], r => r def main (xs : List String) : IO UInt32 := do let [n, freq] ← pure xs | throw $ IO.userError "invalid input"; let n := n.toNat!; let freq := freq.toNat!; let freq := if freq == 0 then 1 else freq; let mList := mkMap n freq; let v := fold (fun (k : Nat) (v : Bool) (r : Nat) => if v then r + 1 else r) mList.head! 0; IO.println (toString (myLen mList 0) ++ " " ++ toString v) *> pure 0
30c63307ae5d8169a241a47e8fe069232c5a90bc
94096349332b0a0e223a22a3917c8f253cd39235
/src/game/world4/level1.lean
dca647009c6fbaae45bf6638398efcb1fcf1ae80
[]
no_license
robertylewis/natural_number_game
26156e10ef7b45248549915cc4d1ab3d8c3afc85
b210c05cd627242f791db1ee3f365ee7829674c9
refs/heads/master
1,598,964,725,038
1,572,602,236,000
1,572,602,236,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
1,501
lean
import game.world3.level8 -- hide import mynat.pow -- new import namespace mynat -- hide -- World name : Power world /- Axiom : pow_zero (a : mynat) : a ^ 0 = 1 -/ /- Axiom : pow_succ (a b : mynat) : a ^ succ(b) = a ^ b * b -/ /- # World 4 : Power World A new world with seven levels. And a new import! This import gives you the power to make powers of your natural numbers. It is defined by recursion, just like addition and multiplication. Here are the two new axioms: * `pow_zero (a : mynat) : a ^ 0 = 1` * `pow_succ (a b : mynat) : a ^ succ(b) = a ^ b * b` The power function has various relations to addition and multiplication. If you have gone through levels 1-6 of addition world and levels 1-8 of multiplication world, then the usual tactics `induction`, `rw` and `refl` should see you through this world. You might want to fiddle with the drop-down menus on the left so you can see which theorems of Power World you have proved at any given time. Addition and multiplication -- we have a solid API for them now, i.e. if you need something about addition or multiplication, it's probably already in the library we have built. Collectibles are indication that we are proving the right things. The levels in this world were designed by Sian Carey, a UROP student at Imperial in the summer of 2019. ## Level 1 : `zero_pow_zero` -/ /- Lemma $0 ^ 0 = 1$. -/ lemma zero_pow_zero : (0 : mynat) ^ (0 : mynat) = 1 := begin [less_leaky] rw pow_zero, refl, end end mynat -- hide
34c6f8706d7dc9a9386ff5fcddaa2314047d82d3
74addaa0e41490cbaf2abd313a764c96df57b05d
/Mathlib/order/compactly_generated.lean
c1b4d65bb2914a099ef8f94ce900a22b8d8455c0
[]
no_license
AurelienSaue/Mathlib4_auto
f538cfd0980f65a6361eadea39e6fc639e9dae14
590df64109b08190abe22358fabc3eae000943f2
refs/heads/master
1,683,906,849,776
1,622,564,669,000
1,622,564,669,000
371,723,747
0
0
null
null
null
null
UTF-8
Lean
false
false
5,656
lean
/- Copyright (c) 2021 Oliver Nash. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Oliver Nash -/ import Mathlib.PrePort import Mathlib.Lean3Lib.init.default import Mathlib.order.well_founded import Mathlib.order.order_iso_nat import Mathlib.data.set.finite import Mathlib.tactic.tfae import Mathlib.PostPort universes u_1 u_2 namespace Mathlib /-! # Compactness properties for complete lattices For complete lattices, there are numerous equivalent ways to express the fact that the relation `>` is well-founded. In this file we define three especially-useful characterisations and provide proofs that they are indeed equivalent to well-foundedness. ## Main definitions * `complete_lattice.is_sup_closed_compact` * `complete_lattice.is_Sup_finite_compact` * `complete_lattice.is_compact_element` * `complete_lattice.is_compactly_generated` ## Main results The main result is that the following four conditions are equivalent for a complete lattice: * `well_founded (>)` * `complete_lattice.is_sup_closed_compact` * `complete_lattice.is_Sup_finite_compact` * `∀ k, complete_lattice.is_compact_element k` This is demonstrated by means of the following four lemmas: * `complete_lattice.well_founded.is_Sup_finite_compact` * `complete_lattice.is_Sup_finite_compact.is_sup_closed_compact` * `complete_lattice.is_sup_closed_compact.well_founded` * `complete_lattice.is_Sup_finite_compact_iff_all_elements_compact` We also show well-founded lattices are compactly generated (`complete_lattice.compactly_generated_of_well_founded`). ## Tags complete lattice, well-founded, compact -/ namespace complete_lattice /-- A compactness property for a complete lattice is that any `sup`-closed non-empty subset contains its `Sup`. -/ def is_sup_closed_compact (α : Type u_1) [complete_lattice α] := ∀ (s : set α), set.nonempty s → (∀ (a b : α), a ∈ s → b ∈ s → a ⊔ b ∈ s) → Sup s ∈ s /-- A compactness property for a complete lattice is that any subset has a finite subset with the same `Sup`. -/ def is_Sup_finite_compact (α : Type u_1) [complete_lattice α] := ∀ (s : set α), ∃ (t : finset α), ↑t ⊆ s ∧ Sup s = finset.sup t id /-- An element `k` of a complete lattice is said to be compact if any set with `Sup` above `k` has a finite subset with `Sup` above `k`. Such an element is also called "finite" or "S-compact". -/ def is_compact_element {α : Type u_1} [complete_lattice α] (k : α) := ∀ (s : set α), k ≤ Sup s → ∃ (t : finset α), ↑t ⊆ s ∧ k ≤ finset.sup t id /-- A complete lattice is said to be compactly generated if any element is the `Sup` of compact elements. -/ def is_compactly_generated (α : Type u_1) [complete_lattice α] := ∀ (x : α), ∃ (s : set α), (∀ (x : α), x ∈ s → is_compact_element x) ∧ Sup s = x /-- An element `k` is compact if and only if any directed set with `Sup` above `k` already got above `k` at some point in the set. -/ theorem is_compact_element_iff_le_of_directed_Sup_le (α : Type u_1) [complete_lattice α] (k : α) : is_compact_element k ↔ ∀ (s : set α), set.nonempty s → directed_on LessEq s → k ≤ Sup s → ∃ (x : α), x ∈ s ∧ k ≤ x := sorry theorem finset_sup_compact_of_compact {α : Type u_1} {β : Type u_2} [complete_lattice α] {f : β → α} (s : finset β) (h : ∀ (x : β), x ∈ s → is_compact_element (f x)) : is_compact_element (finset.sup s f) := sorry theorem well_founded.is_Sup_finite_compact (α : Type u_1) [complete_lattice α] (h : well_founded gt) : is_Sup_finite_compact α := sorry theorem is_Sup_finite_compact.is_sup_closed_compact (α : Type u_1) [complete_lattice α] (h : is_Sup_finite_compact α) : is_sup_closed_compact α := sorry theorem is_sup_closed_compact.well_founded (α : Type u_1) [complete_lattice α] (h : is_sup_closed_compact α) : well_founded gt := sorry theorem is_Sup_finite_compact_iff_all_elements_compact (α : Type u_1) [complete_lattice α] : is_Sup_finite_compact α ↔ ∀ (k : α), is_compact_element k := sorry theorem well_founded_characterisations (α : Type u_1) [complete_lattice α] : tfae [well_founded gt, is_Sup_finite_compact α, is_sup_closed_compact α, ∀ (k : α), is_compact_element k] := sorry theorem well_founded_iff_is_Sup_finite_compact (α : Type u_1) [complete_lattice α] : well_founded gt ↔ is_Sup_finite_compact α := list.tfae.out (well_founded_characterisations α) 0 1 theorem is_Sup_finite_compact_iff_is_sup_closed_compact (α : Type u_1) [complete_lattice α] : is_Sup_finite_compact α ↔ is_sup_closed_compact α := list.tfae.out (well_founded_characterisations α) 1 (bit0 1) theorem is_sup_closed_compact_iff_well_founded (α : Type u_1) [complete_lattice α] : is_sup_closed_compact α ↔ well_founded gt := list.tfae.out (well_founded_characterisations α) (bit0 1) 0 theorem Mathlib.is_Sup_finite_compact.well_founded (α : Type u_1) [complete_lattice α] : is_Sup_finite_compact α → well_founded gt := iff.mpr (well_founded_iff_is_Sup_finite_compact α) theorem Mathlib.is_sup_closed_compact.is_Sup_finite_compact (α : Type u_1) [complete_lattice α] : is_sup_closed_compact α → is_Sup_finite_compact α := iff.mpr (is_Sup_finite_compact_iff_is_sup_closed_compact α) theorem Mathlib.well_founded.is_sup_closed_compact (α : Type u_1) [complete_lattice α] : well_founded gt → is_sup_closed_compact α := iff.mpr (is_sup_closed_compact_iff_well_founded α) theorem compactly_generated_of_well_founded (α : Type u_1) [complete_lattice α] (h : well_founded gt) : is_compactly_generated α := sorry
35aac9db598552a15935547e58f48f75e8b2e685
8cb37a089cdb4af3af9d8bf1002b417e407a8e9e
/tests/lean/run/soundness.lean
99f5e176897d0734b55c3c5199d38f53ce84dc68
[ "Apache-2.0" ]
permissive
kbuzzard/lean
ae3c3db4bb462d750dbf7419b28bafb3ec983ef7
ed1788fd674bb8991acffc8fca585ec746711928
refs/heads/master
1,620,983,366,617
1,618,937,600,000
1,618,937,600,000
359,886,396
1
0
Apache-2.0
1,618,936,987,000
1,618,936,987,000
null
UTF-8
Lean
false
false
6,732
lean
/- Copyright (c) 2015 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura Define propositional calculus, valuation, provability, validity, prove soundness. This file is based on Floris van Doorn Coq files. Similar to soundness.lean, but defines Nc in Type. The idea is to be able to prove soundness using recursive equations. -/ open nat bool list decidable attribute [reducible] definition PropVar := nat inductive PropF | Var : PropVar → PropF | Bot : PropF | Conj : PropF → PropF → PropF | Disj : PropF → PropF → PropF | Impl : PropF → PropF → PropF namespace PropF notation `#`:max P:max := Var P local notation A ∨ B := Disj A B local notation A ∧ B := Conj A B local infixr `⇒`:27 := Impl notation `⊥` := Bot def Neg (A) := A ⇒ ⊥ notation ~ A := Neg A def Top := ~⊥ notation `⊤` := Top def BiImpl (A B) := A ⇒ B ∧ B ⇒ A infixr `⇔`:27 := BiImpl def valuation := PropVar → bool def TrueQ (v : valuation) : PropF → bool | (# P) := v P | ⊥ := ff | (A ∨ B) := TrueQ A || TrueQ B | (A ∧ B) := TrueQ A && TrueQ B | (A ⇒ B) := bnot (TrueQ A) || TrueQ B attribute [reducible] def is_true (b : bool) := b = tt -- the valuation v satisfies a list of PropF, if forall (A : PropF) in Γ, -- (TrueQ v A) is tt (the Boolean true) def Satisfies (v) (Γ : list PropF) := ∀ A, A ∈ Γ → is_true (TrueQ v A) def Models (Γ A) := ∀ v, Satisfies v Γ → is_true (TrueQ v A) infix `⊨`:80 := Models def Valid (p) := [] ⊨ p reserve infix ` ⊢ `:26 /- Provability -/ inductive Nc : list PropF → PropF → Type infix ⊢ := Nc | Nax : ∀ Γ A, A ∈ Γ → Γ ⊢ A | ImpI : ∀ Γ A B, A::Γ ⊢ B → Γ ⊢ A ⇒ B | ImpE : ∀ Γ A B, Γ ⊢ A ⇒ B → Γ ⊢ A → Γ ⊢ B | BotC : ∀ Γ A, (~A)::Γ ⊢ ⊥ → Γ ⊢ A | AndI : ∀ Γ A B, Γ ⊢ A → Γ ⊢ B → Γ ⊢ A ∧ B | AndE₁ : ∀ Γ A B, Γ ⊢ A ∧ B → Γ ⊢ A | AndE₂ : ∀ Γ A B, Γ ⊢ A ∧ B → Γ ⊢ B | OrI₁ : ∀ Γ A B, Γ ⊢ A → Γ ⊢ A ∨ B | OrI₂ : ∀ Γ A B, Γ ⊢ B → Γ ⊢ A ∨ B | OrE : ∀ Γ A B C, Γ ⊢ A ∨ B → A::Γ ⊢ C → B::Γ ⊢ C → Γ ⊢ C infix ⊢ := Nc def Provable (A) := [] ⊢ A def Prop_Soundness := ∀ A, Provable A → Valid A def Prop_Completeness := ∀ A, Valid A → Provable A open Nc lemma weakening2 : ∀ {Γ A Δ}, Γ ⊢ A → Γ ⊆ Δ → Δ ⊢ A | ._ ._ Δ (Nax Γ A Hin) Hs := Nax _ _ (Hs Hin) | ._ .(A ⇒ B) Δ (ImpI Γ A B H) Hs := ImpI _ _ _ (weakening2 H (cons_subset_cons A Hs)) | ._ ._ Δ (ImpE Γ A B H₁ H₂) Hs := ImpE _ _ _ (weakening2 H₁ Hs) (weakening2 H₂ Hs) | ._ ._ Δ (BotC Γ A H) Hs := BotC _ _ (weakening2 H (cons_subset_cons (~A) Hs)) | ._ .(A ∧ B) Δ (AndI Γ A B H₁ H₂) Hs := AndI _ _ _ (weakening2 H₁ Hs) (weakening2 H₂ Hs) | ._ ._ Δ (AndE₁ Γ A B H) Hs := AndE₁ _ _ _ (weakening2 H Hs) | ._ ._ Δ (AndE₂ Γ A B H) Hs := AndE₂ _ _ _ (weakening2 H Hs) | ._ .(A ∨ B) Δ (OrI₁ Γ A B H) Hs := OrI₁ _ _ _ (weakening2 H Hs) | ._ .(A ∨ B) Δ (OrI₂ Γ A B H) Hs := OrI₂ _ _ _ (weakening2 H Hs) | ._ ._ Δ (OrE Γ A B C H₁ H₂ H₃) Hs := OrE _ _ _ _ (weakening2 H₁ Hs) (weakening2 H₂ (cons_subset_cons A Hs)) (weakening2 H₃ (cons_subset_cons B Hs)) lemma weakening : ∀ Γ Δ A, Γ ⊢ A → Γ++Δ ⊢ A := λ Γ Δ A H, weakening2 H (subset_append_left Γ Δ) lemma deduction : ∀ Γ A B, Γ ⊢ A ⇒ B → A::Γ ⊢ B := λ Γ A B H, ImpE _ _ _ (weakening2 H (subset_cons A Γ)) (Nax _ _ (mem_cons_self A Γ)) lemma prov_impl : ∀ A B, Provable (A ⇒ B) → ∀ Γ, Γ ⊢ A → Γ ⊢ B := λ A B Hp Γ Ha, have wHp : Γ ⊢ (A ⇒ B), from weakening _ _ _ Hp, ImpE _ _ _ wHp Ha lemma Satisfies_cons : ∀ {A Γ v}, Satisfies v Γ → is_true (TrueQ v A) → Satisfies v (A::Γ) := λ A Γ v s t B BinAG, or.elim BinAG (λ e : B = A, by rewrite e; exact t) (λ i : B ∈ Γ, s _ i) attribute [simp] is_true TrueQ theorem Soundness_general {v : valuation} : ∀ {A Γ}, Γ ⊢ A → Satisfies v Γ → is_true (TrueQ v A) | ._ ._ (Nax Γ A Hin) s := s _ Hin | .(A ⇒ B) ._ (ImpI Γ A B H) s := by_cases (λ t : is_true (TrueQ v A), have Satisfies v (A::Γ), from Satisfies_cons s t, have TrueQ v B = tt, from Soundness_general H this, by simp[*]) (λ f : ¬ is_true (TrueQ v A), have TrueQ v A = ff, by simp at f; simp[*], have bnot (TrueQ v A) = tt, by simp[*], by simp[*]) | ._ ._ (ImpE Γ A B H₁ H₂) s := have aux : TrueQ v A = tt, from Soundness_general H₂ s, have bnot (TrueQ v A) || TrueQ v B = tt, from Soundness_general H₁ s, by simp [aux] at this; simp[*] | ._ ._ (BotC Γ A H) s := by_contradiction (λ n : TrueQ v A ≠ tt, have TrueQ v A = ff, by {simp at n; simp[*]}, have TrueQ v (~A) = tt, begin change (bnot (TrueQ v A) || ff = tt), simp[*] end, have Satisfies v ((~A)::Γ), from Satisfies_cons s this, have TrueQ v ⊥ = tt, from Soundness_general H this, absurd this ff_ne_tt) | .(A ∧ B) ._ (AndI Γ A B H₁ H₂) s := have TrueQ v A = tt, from Soundness_general H₁ s, have TrueQ v B = tt, from Soundness_general H₂ s, by simp[*] | ._ ._ (AndE₁ Γ A B H) s := have TrueQ v (A ∧ B) = tt, from Soundness_general H s, by simp [TrueQ] at this; simp [*, is_true] | ._ ._ (AndE₂ Γ A B H) s := have TrueQ v (A ∧ B) = tt, from Soundness_general H s, by simp at this; simp[*] | .(A ∨ B) ._ (OrI₁ Γ A B H) s := have TrueQ v A = tt, from Soundness_general H s, by simp[*] | .(A ∨ B) ._ (OrI₂ Γ A B H) s := have TrueQ v B = tt, from Soundness_general H s, by simp[*] | ._ ._ (OrE Γ A B C H₁ H₂ H₃) s := have TrueQ v A || TrueQ v B = tt, from Soundness_general H₁ s, have or (TrueQ v A = tt) (TrueQ v B = tt), by simp at this; simp[*], or.elim this (λ At, have Satisfies v (A::Γ), from Satisfies_cons s At, Soundness_general H₂ this) (λ Bt, have Satisfies v (B::Γ), from Satisfies_cons s Bt, Soundness_general H₃ this) theorem Soundness : Prop_Soundness := λ A H v s, Soundness_general H s end PropF
c3260839a4f49cc94d42fb3036dd82b2ba466953
4d2583807a5ac6caaffd3d7a5f646d61ca85d532
/src/algebra/hierarchy_design.lean
05f0f28e9574f1a825e14ef024200f1ff67da472
[ "Apache-2.0" ]
permissive
AntoineChambert-Loir/mathlib
64aabb896129885f12296a799818061bc90da1ff
07be904260ab6e36a5769680b6012f03a4727134
refs/heads/master
1,693,187,631,771
1,636,719,886,000
1,636,719,886,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
9,116
lean
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison, Eric Weiser -/ import tactic.doc_commands /-! # Documentation of the algebraic hierarchy A library note giving advice on modifying the algebraic hierarchy. (It is not intended as a "tour".) TODO: Add sections about interactions with topological typeclasses, and order typeclasses. -/ /-- # The algebraic hierarchy In any theorem proving environment, there are difficult decisions surrounding the design of the "algebraic hierarchy". There is a danger of exponential explosion in the number of gadgets, especially once interactions between algebraic and order/topological/etc structures are considered. In mathlib, we try to avoid this by only introducing new algebraic typeclasses either 1. when there is "real mathematics" to be done with them, or 2. when there is a meaninful gain in simplicity by factoring out a common substructure. (As examples, at this point we don't have `loop`, or `unital_magma`, but we do have `lie_submodule` and `topological_field`! We also have `group_with_zero`, as an exemplar of point 2.) Generally in mathlib we use the extension mechanism (so `comm_ring` extends `ring`) rather than mixins (e.g. with separate `ring` and `comm_mul` classes), in part because of the potential blow-up in term sizes described at https://www.ralfj.de/blog/2019/05/15/typeclasses-exponential-blowup.html However there is tension here, as it results in considerable duplication in the API, particularly in the interaction with order structures. This library note is not intended as a design document justifying and explaining the history of mathlib's algebraic hierarchy! Instead it is intended as a developer's guide, for contributors wanting to extend (either new leaves, or new intermediate classes) the algebraic hierarchy as it exists. (Ideally we would have both a tour guide to the existing hierarchy, and an account of the design choices. See https://arxiv.org/abs/1910.09336 for an overview of mathlib as a whole, with some attention to the algebraic hierarchy and https://leanprover-community.github.io/mathlib-overview.html for a summary of what is in mathlib today.) ## Instances When adding a new typeclass `Z` to the algebraic hierarchy one should attempt to add the following constructions and results, when applicable: * Instances transferred elementwise to products, like `prod.monoid`. See `algebra.group.prod` for more examples. ``` instance prod.Z [Z M] [Z N] : Z (M × N) := ... ``` * Instances transferred elementwise to pi types, like `pi.monoid`. See `algebra.group.pi` for more examples. ``` instance pi.Z [∀ i, Z $ f i] : Z (Π i : I, f i) := ... ``` * Instances transferred to `opposite M`, like `opposite.monoid`. See `algebra.opposites` for more examples. ``` instance opposite.Z [Z M] : Z (opposite M) := ... ``` * Instances transferred to `ulift M`, like `ulift.monoid`. See `algebra.group.ulift` for more examples. ``` instance ulift.Z [Z M] : Z (ulift M) := ... ``` * Definitions for transferring the proof fields of instances along injective or surjective functions that agree on the data fields, like `function.injective.monoid` and `function.surjective.monoid`. We make these definitions `@[reducible]`, see note [reducible non-instances]. See `algebra.group.inj_surj` for more examples. ``` @[reducible] def function.injective.Z [Z M₂] (f : M₁ → M₂) (hf : injective f) (one : f 1 = 1) (mul : ∀ x y, f (x * y) = f x * f y) : Z M₁ := ... @[reducible] def function.surjective.Z [Z M₁] (f : M₁ → M₂) (hf : surjective f) (one : f 1 = 1) (mul : ∀ x y, f (x * y) = f x * f y) : Z M₂ := ... ``` * Instances transferred elementwise to `finsupp`s, like `finsupp.semigroup`. See `data.finsupp.pointwise` for more examples. ``` instance finsupp.Z [Z β] : Z (α →₀ β) := ... ``` * Instances transferred elementwise to `set`s, like `set.monoid`. See `algebra.pointwise` for more examples. ``` instance set.Z [Z α] : Z (set α) := ... ``` * Definitions for transferring the entire structure across an equivalence, like `equiv.monoid`. See `data.equiv.transfer_instance` for more examples. See also the `transport` tactic. ``` def equiv.Z (e : α ≃ β) [Z β] : Z α := ... /- When there is a new notion of `Z`-equiv: -/ def equiv.Z_equiv (e : α ≃ β) [Z β] : by { letI := equiv.Z e, exact α ≃Z β } := ... ``` ## Subobjects When a new typeclass `Z` adds new data fields, you should also create a new `sub_Z` `structure` with a `carrier` field. This can be a lot of work; for now try to closely follow the existing examples (e.g. `submonoid`, `subring`, `subalgebra`). We would very much like to provide some automation here, but a prerequisite will be making all the existing APIs more uniform. If `Z` extends `Y`, then `sub_Z` should usually extend `sub_Y`. When `Z` adds only new proof fields to an existing structure `Y`, you should provide instances transferring `Z α` to `Z (sub_Y α)`, like `submonoid.to_comm_monoid`. Typically this is done using the `function.injective.Z` definition mentioned above. ``` instance sub_Y.to_Z [Z α] : Z (sub_Y α) := coe_injective.Z coe ... ``` ## Morphisms and equivalences ## Category theory For many algebraic structures, particularly ones used in representation theory, algebraic geometry, etc., we also define "bundled" versions, which carry `category` instances. These bundled versions are usually named in camel case, so for example we have `AddCommGroup` as a bundled `add_comm_group`, and `TopCommRing` (which bundles together `comm_ring`, `topological_space`, and `topological_ring`). These bundled versions have many appealing features: * a uniform notation for morphisms `X ⟶ Y` * a uniform notation (and definition) for isomorphisms `X ≅ Y` * a uniform API for subobjects, via the partial order `subobject X` * interoperability with unbundled structures, via coercions to `Type` (so if `G : AddCommGroup`, you can treat `G` as a type, and it automatically has an `add_comm_group` instance) and lifting maps `AddCommGroup.of G`, when `G` is a type with an `add_comm_group` instance. If, for example you do the work of proving that a typeclass `Z` has a good notion of tensor product, you are strongly encouraged to provide the corresponding `monoidal_category` instance on a bundled version. This ensures that the API for tensor products is complete, and enables use of general machinery. Similarly if you prove universal properties, or adjunctions, you are encouraged to state these using categorical language! One disadvantage of the bundled approach is that we can only speak of morphisms between objects living in the same type-theoretic universe. In practice this is rarely a problem. # Making a pull request With so many moving parts, how do you actually go about changing the algebraic hierarchy? We're still evolving how to handle this, but the current suggestion is: * If you're adding a new "leaf" class, the requirements are lower, and an initial PR can just add whatever is immediately needed. * A new "intermediate" class, especially low down in the hierarchy, needs to be careful about leaving gaps. In a perfect world, there would be a group of simultaneous PRs that basically cover everything! (Or at least an expectation that PRs may not be merged immediately while waiting on other PRs that fill out the API.) However "perfect is the enemy of good", and it would also be completely reasonable to add a TODO list in the main module doc-string for the new class, briefly listing the parts of the API which still need to be provided. Hopefully this document makes it easy to assemble this list. Another alternative to a TODO list in the doc-strings is adding github issues. -/ library_note "the algebraic hierarchy" /-- Some definitions that define objects of a class cannot be instances, because they have an explicit argument that does not occur in the conclusion. An example is `preorder.lift` that has a function `f : α → β` as an explicit argument to lift a preorder on `β` to a preorder on `α`. If these definitions are used to define instances of this class *and* this class is an argument to some other type-class so that type-class inference will have to unfold these instances to check for definitional equality, then these definitions should be marked `@[reducible]`. For example, `preorder.lift` is used to define `units.preorder` and `partial_order.lift` is used to define `units.partial_order`. In some cases it is important that type-class inference can recognize that `units.preorder` and `units.partial_order` give rise to the same `has_le` instance. For example, you might have another class that takes `[has_le α]` as an argument, and this argument sometimes comes from `units.preorder` and sometimes from `units.partial_order`. Therefore, `preorder.lift` and `partial_order.lift` are marked `@[reducible]`. -/ library_note "reducible non-instances"
3bf2854e08e5db19d55a1ad9f74bf04acab2b944
80cc5bf14c8ea85ff340d1d747a127dcadeb966f
/src/order/filter/pointwise.lean
1820c46b060e332b7af25735a7897f5efedca242
[ "Apache-2.0" ]
permissive
lacker/mathlib
f2439c743c4f8eb413ec589430c82d0f73b2d539
ddf7563ac69d42cfa4a1bfe41db1fed521bd795f
refs/heads/master
1,671,948,326,773
1,601,479,268,000
1,601,479,268,000
298,686,743
0
0
Apache-2.0
1,601,070,794,000
1,601,070,794,000
null
UTF-8
Lean
false
false
6,639
lean
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou -/ import algebra.pointwise import order.filter.basic /-! # Pointwise operations on filters. The pointwise operations on filters have nice properties, such as • `map m (f₁ * f₂) = map m f₁ * map m f₂` • `𝓝 x * 𝓝 y = 𝓝 (x * y)` -/ open classical set universes u v w variables {α : Type u} {β : Type v} {γ : Type w} open_locale classical namespace filter open set @[to_additive] instance [has_one α] : has_one (filter α) := ⟨principal 1⟩ @[simp, to_additive] lemma mem_one [has_one α] (s : set α) : s ∈ (1 : filter α) ↔ (1:α) ∈ s := calc s ∈ (1:filter α) ↔ 1 ⊆ s : iff.rfl ... ↔ (1 : α) ∈ s : by simp @[to_additive] instance [monoid α] : has_mul (filter α) := ⟨λf g, { sets := { s | ∃t₁ t₂, t₁ ∈ f ∧ t₂ ∈ g ∧ t₁ * t₂ ⊆ s }, univ_sets := begin have h₁ : (∃x, x ∈ f) := ⟨univ, univ_sets f⟩, have h₂ : (∃x, x ∈ g) := ⟨univ, univ_sets g⟩, simpa using and.intro h₁ h₂ end, sets_of_superset := λx y hx hxy, begin rcases hx with ⟨t₁, ht₁, t₂, ht₂, t₁t₂⟩, exact ⟨t₁, ht₁, t₂, ht₂, subset.trans t₁t₂ hxy⟩ end, inter_sets := λx y, begin simp only [exists_prop, mem_set_of_eq, subset_inter_iff], rintros ⟨s₁, s₂, hs₁, hs₂, s₁s₂⟩ ⟨t₁, t₂, ht₁, ht₂, t₁t₂⟩, exact ⟨s₁ ∩ t₁, s₂ ∩ t₂, inter_sets f hs₁ ht₁, inter_sets g hs₂ ht₂, subset.trans (mul_subset_mul (inter_subset_left _ _) (inter_subset_left _ _)) s₁s₂, subset.trans (mul_subset_mul (inter_subset_right _ _) (inter_subset_right _ _)) t₁t₂⟩, end }⟩ @[to_additive] lemma mem_mul [monoid α] {f g : filter α} {s : set α} : s ∈ f * g ↔ ∃t₁ t₂, t₁ ∈ f ∧ t₂ ∈ g ∧ t₁ * t₂ ⊆ s := iff.rfl @[to_additive] lemma mul_mem_mul [monoid α] {f g : filter α} {s t : set α} (hs : s ∈ f) (ht : t ∈ g) : s * t ∈ f * g := ⟨_, _, hs, ht, subset.refl _⟩ @[to_additive] protected lemma mul_le_mul [monoid α] {f₁ f₂ g₁ g₂ : filter α} (hf : f₁ ≤ f₂) (hg : g₁ ≤ g₂) : f₁ * g₁ ≤ f₂ * g₂ := assume _ ⟨s, t, hs, ht, hst⟩, ⟨s, t, hf hs, hg ht, hst⟩ @[to_additive] lemma ne_bot.mul [monoid α] {f g : filter α} : ne_bot f → ne_bot g → ne_bot (f * g) := begin simp only [forall_sets_nonempty_iff_ne_bot.symm], rintros hf hg s ⟨a, b, ha, hb, ab⟩, exact ((hf a ha).mul (hg b hb)).mono ab end @[to_additive] protected lemma mul_assoc [monoid α] (f g h : filter α) : f * g * h = f * (g * h) := begin ext s, split, { rintros ⟨a, b, ⟨a₁, a₂, ha₁, ha₂, a₁a₂⟩, hb, ab⟩, refine ⟨a₁, a₂ * b, ha₁, mul_mem_mul ha₂ hb, _⟩, rw [← mul_assoc], exact calc a₁ * a₂ * b ⊆ a * b : mul_subset_mul a₁a₂ (subset.refl _) ... ⊆ s : ab }, { rintros ⟨a, b, ha, ⟨b₁, b₂, hb₁, hb₂, b₁b₂⟩, ab⟩, refine ⟨a * b₁, b₂, mul_mem_mul ha hb₁, hb₂, _⟩, rw [mul_assoc], exact calc a * (b₁ * b₂) ⊆ a * b : mul_subset_mul (subset.refl _) b₁b₂ ... ⊆ s : ab } end @[to_additive] protected lemma one_mul [monoid α] (f : filter α) : 1 * f = f := begin ext s, split, { rintros ⟨t₁, t₂, ht₁, ht₂, t₁t₂⟩, refine mem_sets_of_superset (mem_sets_of_superset ht₂ _) t₁t₂, assume x hx, exact ⟨1, x, by rwa [← mem_one], hx, one_mul _⟩ }, { assume hs, refine ⟨(1:set α), s, mem_principal_self _, hs, by simp only [one_mul]⟩ } end @[to_additive] protected lemma mul_one [monoid α] (f : filter α) : f * 1 = f := begin ext s, split, { rintros ⟨t₁, t₂, ht₁, ht₂, t₁t₂⟩, refine mem_sets_of_superset (mem_sets_of_superset ht₁ _) t₁t₂, assume x hx, exact ⟨x, 1, hx, by rwa [← mem_one], mul_one _⟩ }, { assume hs, refine ⟨s, (1:set α), hs, mem_principal_self _, by simp only [mul_one]⟩ } end @[to_additive filter.add_monoid] instance [monoid α] : monoid (filter α) := { mul_assoc := filter.mul_assoc, one_mul := filter.one_mul, mul_one := filter.mul_one, .. filter.has_mul, .. filter.has_one } section map open is_mul_hom variables [monoid α] [monoid β] {f : filter α} (m : α → β) @[to_additive] protected lemma map_mul [is_mul_hom m] {f₁ f₂ : filter α} : map m (f₁ * f₂) = map m f₁ * map m f₂ := filter_eq $ set.ext $ assume s, begin simp only [mem_mul], split, { rintro ⟨t₁, t₂, ht₁, ht₂, t₁t₂⟩, have : m '' (t₁ * t₂) ⊆ s := subset.trans (image_subset m t₁t₂) (image_preimage_subset _ _), refine ⟨m '' t₁, m '' t₂, image_mem_map ht₁, image_mem_map ht₂, _⟩, rwa ← image_mul m }, { rintro ⟨t₁, t₂, ht₁, ht₂, t₁t₂⟩, refine ⟨m ⁻¹' t₁, m ⁻¹' t₂, ht₁, ht₂, image_subset_iff.1 _⟩, rw image_mul m, exact subset.trans (mul_subset_mul (image_preimage_subset _ _) (image_preimage_subset _ _)) t₁t₂ }, end @[to_additive] protected lemma map_one [is_monoid_hom m] : map m (1:filter α) = 1 := le_antisymm (le_principal_iff.2 $ mem_map_sets_iff.2 ⟨(1:set α), by simp, by { assume x, simp [is_monoid_hom.map_one m] }⟩) (le_map $ assume s hs, begin simp only [mem_one], exact ⟨(1:α), (mem_one s).1 hs, is_monoid_hom.map_one _⟩ end) -- TODO: prove similar statements when `m` is group homomorphism etc. @[to_additive map.is_add_monoid_hom] lemma map.is_monoid_hom [is_monoid_hom m] : is_monoid_hom (map m) := { map_one := filter.map_one m, map_mul := λ _ _, filter.map_mul m } -- The other direction does not hold in general. @[to_additive] lemma comap_mul_comap_le [is_mul_hom m] {f₁ f₂ : filter β} : comap m f₁ * comap m f₂ ≤ comap m (f₁ * f₂) := begin rintros s ⟨t, ⟨t₁, t₂, ht₁, ht₂, t₁t₂⟩, mt⟩, refine ⟨m ⁻¹' t₁, m ⁻¹' t₂, ⟨t₁, ht₁, subset.refl _⟩, ⟨t₂, ht₂, subset.refl _⟩, _⟩, have := subset.trans (preimage_mono t₁t₂) mt, exact subset.trans (preimage_mul_preimage_subset m) this end variables {m} @[to_additive] lemma tendsto.mul_mul [is_mul_hom m] {f₁ g₁ : filter α} {f₂ g₂ : filter β} : tendsto m f₁ f₂ → tendsto m g₁ g₂ → tendsto m (f₁ * g₁) (f₂ * g₂) := assume hf hg, by { rw [tendsto, filter.map_mul m], exact filter.mul_le_mul hf hg } end map end filter
9c89f9a0a62b60f8876c80eda22f35a3b97fb490
b7f22e51856f4989b970961f794f1c435f9b8f78
/hott/types/int/hott.hlean
90bcde1815ae90a234fe820e956422cee20f6e54
[ "Apache-2.0" ]
permissive
soonhokong/lean
cb8aa01055ffe2af0fb99a16b4cda8463b882cd1
38607e3eb57f57f77c0ac114ad169e9e4262e24f
refs/heads/master
1,611,187,284,081
1,450,766,737,000
1,476,122,547,000
11,513,992
2
0
null
1,401,763,102,000
1,374,182,235,000
C++
UTF-8
Lean
false
false
6,233
hlean
/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Floris van Doorn Theorems about the integers specific to HoTT -/ import .basic types.eq arity algebra.bundled open core eq is_equiv equiv algebra is_trunc open nat (hiding pred) namespace int section open algebra /- we make these structures reducible, so that n * m in gℤ and agℤ can be interpreted as multiplication on ℤ. For this it's needed that the carriers of gℤ and agℤ reduce to ℤ unfolding only reducible definitions. -/ definition group_integers [reducible] [constructor] : AddGroup := AddGroup.mk ℤ _ notation `gℤ` := group_integers definition CommGroup_int [reducible] [constructor] : AddCommGroup := AddCommGroup.mk ℤ _ notation `agℤ` := CommGroup_int end definition is_equiv_succ [instance] : is_equiv succ := adjointify succ pred (λa, !add_sub_cancel) (λa, !sub_add_cancel) definition equiv_succ : ℤ ≃ ℤ := equiv.mk succ _ definition is_equiv_neg [instance] : is_equiv (neg : ℤ → ℤ) := adjointify neg neg (λx, !neg_neg) (λa, !neg_neg) definition equiv_neg : ℤ ≃ ℤ := equiv.mk neg _ definition iterate {A : Type} (f : A ≃ A) (a : ℤ) : A ≃ A := rec_nat_on a erfl (λb g, f ⬝e g) (λb g, g ⬝e f⁻¹ᵉ) -- definition iterate_trans {A : Type} (f : A ≃ A) (a : ℤ) -- : iterate f a ⬝e f = iterate f (a + 1) := -- sorry -- definition trans_iterate {A : Type} (f : A ≃ A) (a : ℤ) -- : f ⬝e iterate f a = iterate f (a + 1) := -- sorry -- definition iterate_trans_symm {A : Type} (f : A ≃ A) (a : ℤ) -- : iterate f a ⬝e f⁻¹e = iterate f (a - 1) := -- sorry -- definition symm_trans_iterate {A : Type} (f : A ≃ A) (a : ℤ) -- : f⁻¹e ⬝e iterate f a = iterate f (a - 1) := -- sorry -- definition iterate_neg {A : Type} (f : A ≃ A) (a : ℤ) -- : iterate f (-a) = (iterate f a)⁻¹e := -- rec_nat_on a idp -- (λn p, calc -- iterate f (-succ n) = iterate f (-n) ⬝e f⁻¹e : rec_nat_on_neg -- ... = (iterate f n)⁻¹e ⬝e f⁻¹e : by rewrite p -- ... = (f ⬝e iterate f n)⁻¹e : sorry -- ... = (iterate f (succ n))⁻¹e : idp) -- sorry -- definition iterate_add {A : Type} (f : A ≃ A) (a b : ℤ) -- : iterate f (a + b) = equiv.trans (iterate f a) (iterate f b) := -- sorry -- definition iterate_sub {A : Type} (f : A ≃ A) (a b : ℤ) -- : iterate f (a - b) = equiv.trans (iterate f a) (equiv.symm (iterate f b)) := -- sorry -- definition iterate_mul {A : Type} (f : A ≃ A) (a b : ℤ) -- : iterate f (a * b) = iterate (iterate f a) b := -- sorry end int open int namespace eq variables {A : Type} {a : A} (p : a = a) (b c : ℤ) (n : ℕ) definition power : a = a := rec_nat_on b idp (λc q, q ⬝ p) (λc q, q ⬝ p⁻¹) --iterate (equiv_eq_closed_right p a) b idp -- definition power_neg_succ (n : ℕ) : power p (-succ n) = power p (-n) ⬝ p⁻¹ := -- !rec_nat_on_neg -- local attribute nat.add int.add int.of_num nat.of_num int.succ [constructor] definition power_con : power p b ⬝ p = power p (succ b) := rec_nat_on b idp (λn IH, idp) (λn IH, calc power p (-succ n) ⬝ p = (power p (-int.of_nat n) ⬝ p⁻¹) ⬝ p : by krewrite [↑power,rec_nat_on_neg] ... = power p (-int.of_nat n) : inv_con_cancel_right ... = power p (succ (-succ n)) : by rewrite -succ_neg_succ) definition power_con_inv : power p b ⬝ p⁻¹ = power p (pred b) := rec_nat_on b idp (λn IH, calc power p (succ n) ⬝ p⁻¹ = power p n : by apply con_inv_cancel_right ... = power p (pred (succ n)) : by rewrite pred_nat_succ) (λn IH, calc power p (-int.of_nat (succ n)) ⬝ p⁻¹ = power p (-int.of_nat (succ (succ n))) : by krewrite [↑power,*rec_nat_on_neg] ... = power p (pred (-succ n)) : by rewrite -neg_succ) definition con_power : p ⬝ power p b = power p (succ b) := rec_nat_on b ( by rewrite ↑[power];exact !idp_con⁻¹) ( λn IH, proof calc p ⬝ power p (succ n) = (p ⬝ power p n) ⬝ p : con.assoc p _ p ... = power p (succ (succ n)) : by rewrite IH qed) ( λn IH, calc p ⬝ power p (-int.of_nat (succ n)) = p ⬝ (power p (-int.of_nat n) ⬝ p⁻¹) : by rewrite [↑power, rec_nat_on_neg] ... = (p ⬝ power p (-int.of_nat n)) ⬝ p⁻¹ : con.assoc ... = power p (succ (-int.of_nat n)) ⬝ p⁻¹ : by rewrite IH ... = power p (pred (succ (-int.of_nat n))) : power_con_inv ... = power p (succ (-int.of_nat (succ n))) : by rewrite [succ_neg_nat_succ,int.pred_succ]) definition inv_con_power : p⁻¹ ⬝ power p b = power p (pred b) := rec_nat_on b ( by rewrite ↑[power];exact !idp_con⁻¹) (λn IH, calc p⁻¹ ⬝ power p (succ n) = p⁻¹ ⬝ power p n ⬝ p : con.assoc ... = power p (pred n) ⬝ p : by rewrite IH ... = power p (succ (pred n)) : power_con ... = power p (pred (succ n)) : by rewrite [succ_pred,-int.pred_succ n]) ( λn IH, calc p⁻¹ ⬝ power p (-int.of_nat (succ n)) = p⁻¹ ⬝ (power p (-int.of_nat n) ⬝ p⁻¹) : by rewrite [↑power,rec_nat_on_neg] ... = (p⁻¹ ⬝ power p (-int.of_nat n)) ⬝ p⁻¹ : con.assoc ... = power p (pred (-int.of_nat n)) ⬝ p⁻¹ : by rewrite IH ... = power p (-int.of_nat (succ n)) ⬝ p⁻¹ : by rewrite -neg_succ ... = power p (-succ (succ n)) : by krewrite [↑power,*rec_nat_on_neg] ... = power p (pred (-succ n)) : by rewrite -neg_succ) definition power_con_power : Π(b : ℤ), power p b ⬝ power p c = power p (b + c) := rec_nat_on c (λb, by rewrite int.add_zero) (λn IH b, by rewrite [-con_power,-con.assoc,power_con,IH,↑succ,add.assoc, add.comm (int.of_nat n)]) (λn IH b, by rewrite [neg_nat_succ,-inv_con_power,-con.assoc,power_con_inv,IH,↑pred, +sub_eq_add_neg,add.assoc,add.comm (-n)]) end eq
0e0cf6f0e011387717e5c0a629afc5a6c8f56ccf
8cae430f0a71442d02dbb1cbb14073b31048e4b0
/src/analysis/special_functions/bernstein.lean
22e78e0f6d775f45a75c59a2b84ae7e2abcf497b
[ "Apache-2.0" ]
permissive
leanprover-community/mathlib
56a2cadd17ac88caf4ece0a775932fa26327ba0e
442a83d738cb208d3600056c489be16900ba701d
refs/heads/master
1,693,584,102,358
1,693,471,902,000
1,693,471,902,000
97,922,418
1,595
352
Apache-2.0
1,694,693,445,000
1,500,624,130,000
Lean
UTF-8
Lean
false
false
12,944
lean
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import analysis.specific_limits.basic import ring_theory.polynomial.bernstein import topology.continuous_function.polynomial import topology.continuous_function.compact /-! # Bernstein approximations and Weierstrass' theorem > THIS FILE IS SYNCHRONIZED WITH MATHLIB4. > Any changes to this file require a corresponding PR to mathlib4. We prove that the Bernstein approximations ``` ∑ k : fin (n+1), f (k/n : ℝ) * n.choose k * x^k * (1-x)^(n-k) ``` for a continuous function `f : C([0,1], ℝ)` converge uniformly to `f` as `n` tends to infinity. Our proof follows [Richard Beals' *Analysis, an introduction*][beals-analysis], §7D. The original proof, due to [Bernstein](bernstein1912) in 1912, is probabilistic, and relies on Bernoulli's theorem, which gives bounds for how quickly the observed frequencies in a Bernoulli trial approach the underlying probability. The proof here does not directly rely on Bernoulli's theorem, but can also be given a probabilistic account. * Consider a weighted coin which with probability `x` produces heads, and with probability `1-x` produces tails. * The value of `bernstein n k x` is the probability that such a coin gives exactly `k` heads in a sequence of `n` tosses. * If such an appearance of `k` heads results in a payoff of `f(k / n)`, the `n`-th Bernstein approximation for `f` evaluated at `x` is the expected payoff. * The main estimate in the proof bounds the probability that the observed frequency of heads differs from `x` by more than some `δ`, obtaining a bound of `(4 * n * δ^2)⁻¹`, irrespective of `x`. * This ensures that for `n` large, the Bernstein approximation is (uniformly) close to the payoff function `f`. (You don't need to think in these terms to follow the proof below: it's a giant `calc` block!) This result proves Weierstrass' theorem that polynomials are dense in `C([0,1], ℝ)`, although we defer an abstract statement of this until later. -/ noncomputable theory open_locale classical open_locale big_operators open_locale bounded_continuous_function open_locale unit_interval /-- The Bernstein polynomials, as continuous functions on `[0,1]`. -/ def bernstein (n ν : ℕ) : C(I, ℝ) := (bernstein_polynomial ℝ n ν).to_continuous_map_on I @[simp] lemma bernstein_apply (n ν : ℕ) (x : I) : bernstein n ν x = n.choose ν * x^ν * (1-x)^(n-ν) := begin dsimp [bernstein, polynomial.to_continuous_map_on, polynomial.to_continuous_map, bernstein_polynomial], simp, end lemma bernstein_nonneg {n ν : ℕ} {x : I} : 0 ≤ bernstein n ν x := begin simp only [bernstein_apply], exact mul_nonneg (mul_nonneg (nat.cast_nonneg _) (pow_nonneg (by unit_interval) _)) (pow_nonneg (by unit_interval) _), end /-! We now give a slight reformulation of `bernstein_polynomial.variance`. -/ namespace bernstein /-- Send `k : fin (n+1)` to the equally spaced points `k/n` in the unit interval. -/ def z {n : ℕ} (k : fin (n+1)) : I := ⟨(k : ℝ) / n, begin cases n, { norm_num }, { have h₁ : 0 < (n.succ : ℝ) := by exact_mod_cast (nat.succ_pos _), have h₂ : ↑k ≤ n.succ := by exact_mod_cast (fin.le_last k), rw [set.mem_Icc, le_div_iff h₁, div_le_iff h₁], norm_cast, simp [h₂], }, end⟩ local postfix `/ₙ`:90 := z lemma probability (n : ℕ) (x : I) : ∑ k : fin (n+1), bernstein n k x = 1 := begin have := bernstein_polynomial.sum ℝ n, apply_fun (λ p, polynomial.aeval (x : ℝ) p) at this, simp [alg_hom.map_sum, finset.sum_range] at this, exact this, end lemma variance {n : ℕ} (h : 0 < (n : ℝ)) (x : I) : ∑ k : fin (n+1), (x - k/ₙ : ℝ)^2 * bernstein n k x = x * (1-x) / n := begin have h' : (n : ℝ) ≠ 0 := ne_of_gt h, apply_fun (λ x : ℝ, x * n) using group_with_zero.mul_right_injective h', apply_fun (λ x : ℝ, x * n) using group_with_zero.mul_right_injective h', dsimp, conv_lhs { simp only [finset.sum_mul, z], }, conv_rhs { rw div_mul_cancel _ h', }, have := bernstein_polynomial.variance ℝ n, apply_fun (λ p, polynomial.aeval (x : ℝ) p) at this, simp [alg_hom.map_sum, finset.sum_range, ←polynomial.nat_cast_mul] at this, convert this using 1, { congr' 1, funext k, rw [mul_comm _ (n : ℝ), mul_comm _ (n : ℝ), ←mul_assoc, ←mul_assoc], congr' 1, field_simp [h], ring, }, { ring, }, end end bernstein open bernstein local postfix `/ₙ`:2000 := z /-- The `n`-th approximation of a continuous function on `[0,1]` by Bernstein polynomials, given by `∑ k, f (k/n) * bernstein n k x`. -/ def bernstein_approximation (n : ℕ) (f : C(I, ℝ)) : C(I, ℝ) := ∑ k : fin (n+1), f k/ₙ • bernstein n k /-! We now set up some of the basic machinery of the proof that the Bernstein approximations converge uniformly. A key player is the set `S f ε h n x`, for some function `f : C(I, ℝ)`, `h : 0 < ε`, `n : ℕ` and `x : I`. This is the set of points `k` in `fin (n+1)` such that `k/n` is within `δ` of `x`, where `δ` is the modulus of uniform continuity for `f`, chosen so `|f x - f y| < ε/2` when `|x - y| < δ`. We show that if `k ∉ S`, then `1 ≤ δ^-2 * (x - k/n)^2`. -/ namespace bernstein_approximation @[simp] lemma apply (n : ℕ) (f : C(I, ℝ)) (x : I) : bernstein_approximation n f x = ∑ k : fin (n+1), f k/ₙ * bernstein n k x := by simp [bernstein_approximation] /-- The modulus of (uniform) continuity for `f`, chosen so `|f x - f y| < ε/2` when `|x - y| < δ`. -/ def δ (f : C(I, ℝ)) (ε : ℝ) (h : 0 < ε) : ℝ := f.modulus (ε/2) (half_pos h) lemma δ_pos {f : C(I, ℝ)} {ε : ℝ} {h : 0 < ε} : 0 < δ f ε h := f.modulus_pos /-- The set of points `k` so `k/n` is within `δ` of `x`. -/ def S (f : C(I, ℝ)) (ε : ℝ) (h : 0 < ε) (n : ℕ) (x : I) : finset (fin (n+1)) := { k : fin (n+1) | dist k/ₙ x < δ f ε h }.to_finset /-- If `k ∈ S`, then `f(k/n)` is close to `f x`. -/ lemma lt_of_mem_S {f : C(I, ℝ)} {ε : ℝ} {h : 0 < ε} {n : ℕ} {x : I} {k : fin (n+1)} (m : k ∈ S f ε h n x) : |f k/ₙ - f x| < ε/2 := begin apply f.dist_lt_of_dist_lt_modulus (ε/2) (half_pos h), simpa [S] using m, end /-- If `k ∉ S`, then as `δ ≤ |x - k/n|`, we have the inequality `1 ≤ δ^-2 * (x - k/n)^2`. This particular formulation will be helpful later. -/ lemma le_of_mem_S_compl {f : C(I, ℝ)} {ε : ℝ} {h : 0 < ε} {n : ℕ} {x : I} {k : fin (n+1)} (m : k ∈ (S f ε h n x)ᶜ) : (1 : ℝ) ≤ (δ f ε h)^(-2 : ℤ) * (x - k/ₙ) ^ 2 := begin simp only [finset.mem_compl, not_lt, set.mem_to_finset, set.mem_set_of_eq, S] at m, rw [zpow_neg, ← div_eq_inv_mul, zpow_two, ←pow_two, one_le_div (pow_pos δ_pos 2), sq_le_sq, abs_of_pos δ_pos], rwa [dist_comm] at m end end bernstein_approximation open bernstein_approximation open bounded_continuous_function open filter open_locale topology /-- The Bernstein approximations ``` ∑ k : fin (n+1), f (k/n : ℝ) * n.choose k * x^k * (1-x)^(n-k) ``` for a continuous function `f : C([0,1], ℝ)` converge uniformly to `f` as `n` tends to infinity. This is the proof given in [Richard Beals' *Analysis, an introduction*][beals-analysis], §7D, and reproduced on wikipedia. -/ theorem bernstein_approximation_uniform (f : C(I, ℝ)) : tendsto (λ n : ℕ, bernstein_approximation n f) at_top (𝓝 f) := begin simp only [metric.nhds_basis_ball.tendsto_right_iff, metric.mem_ball, dist_eq_norm], intros ε h, let δ := δ f ε h, have nhds_zero := tendsto_const_div_at_top_nhds_0_nat (2 * ‖f‖ * δ ^ (-2 : ℤ)), filter_upwards [nhds_zero.eventually (gt_mem_nhds (half_pos h)), eventually_gt_at_top 0] with n nh npos', have npos : 0 < (n:ℝ) := by exact_mod_cast npos', -- Two easy inequalities we'll need later: have w₁ : 0 ≤ 2 * ‖f‖ := mul_nonneg (by norm_num) (norm_nonneg f), have w₂ : 0 ≤ 2 * ‖f‖ * δ^(-2 : ℤ) := mul_nonneg w₁ (zpow_neg_two_nonneg _), -- As `[0,1]` is compact, it suffices to check the inequality pointwise. rw (continuous_map.norm_lt_iff _ h), intro x, -- The idea is to split up the sum over `k` into two sets, -- `S`, where `x - k/n < δ`, and its complement. let S := S f ε h n x, calc |(bernstein_approximation n f - f) x| = |bernstein_approximation n f x - f x| : rfl ... = |bernstein_approximation n f x - f x * 1| : by rw mul_one ... = |bernstein_approximation n f x - f x * (∑ k : fin (n+1), bernstein n k x)| : by rw bernstein.probability ... = |∑ k : fin (n+1), (f k/ₙ - f x) * bernstein n k x| : by simp [bernstein_approximation, finset.mul_sum, sub_mul] ... ≤ ∑ k : fin (n+1), |(f k/ₙ - f x) * bernstein n k x| : finset.abs_sum_le_sum_abs _ _ ... = ∑ k : fin (n+1), |f k/ₙ - f x| * bernstein n k x : by simp_rw [abs_mul, abs_eq_self.mpr bernstein_nonneg] ... = ∑ k in S, |f k/ₙ - f x| * bernstein n k x + ∑ k in Sᶜ, |f k/ₙ - f x| * bernstein n k x : (S.sum_add_sum_compl _).symm -- We'll now deal with the terms in `S` and the terms in `Sᶜ` in separate calc blocks. ... < ε/2 + ε/2 : add_lt_add_of_le_of_lt _ _ ... = ε : add_halves ε, { -- We now work on the terms in `S`: uniform continuity and `bernstein.probability` -- quickly give us a bound. calc ∑ k in S, |f k/ₙ - f x| * bernstein n k x ≤ ∑ k in S, ε/2 * bernstein n k x : finset.sum_le_sum (λ k m, (mul_le_mul_of_nonneg_right (le_of_lt (lt_of_mem_S m)) bernstein_nonneg)) ... = ε/2 * ∑ k in S, bernstein n k x : by rw finset.mul_sum -- In this step we increase the sum over `S` back to a sum over all of `fin (n+1)`, -- so that we can use `bernstein.probability`. ... ≤ ε/2 * ∑ k : fin (n+1), bernstein n k x : mul_le_mul_of_nonneg_left (finset.sum_le_univ_sum_of_nonneg (λ k, bernstein_nonneg)) (le_of_lt (half_pos h)) ... = ε/2 : by rw [bernstein.probability, mul_one] }, { -- We now turn to working on `Sᶜ`: we control the difference term just using `‖f‖`, -- and then insert a `δ^(-2) * (x - k/n)^2` factor -- (which is at least one because we are not in `S`). calc ∑ k in Sᶜ, |f k/ₙ - f x| * bernstein n k x ≤ ∑ k in Sᶜ, (2 * ‖f‖) * bernstein n k x : finset.sum_le_sum (λ k m, mul_le_mul_of_nonneg_right (f.dist_le_two_norm _ _) bernstein_nonneg) ... = (2 * ‖f‖) * ∑ k in Sᶜ, bernstein n k x : by rw finset.mul_sum ... ≤ (2 * ‖f‖) * ∑ k in Sᶜ, δ^(-2 : ℤ) * (x - k/ₙ)^2 * bernstein n k x : mul_le_mul_of_nonneg_left (finset.sum_le_sum (λ k m, begin conv_lhs { rw ←one_mul (bernstein _ _ _), }, exact mul_le_mul_of_nonneg_right (le_of_mem_S_compl m) bernstein_nonneg, end)) w₁ -- Again enlarging the sum from `Sᶜ` to all of `fin (n+1)` ... ≤ (2 * ‖f‖) * ∑ k : fin (n+1), δ^(-2 : ℤ) * (x - k/ₙ)^2 * bernstein n k x : mul_le_mul_of_nonneg_left (finset.sum_le_univ_sum_of_nonneg (λ k, mul_nonneg (mul_nonneg (zpow_neg_two_nonneg _) (sq_nonneg _)) bernstein_nonneg)) w₁ ... = (2 * ‖f‖) * δ^(-2 : ℤ) * ∑ k : fin (n+1), (x - k/ₙ)^2 * bernstein n k x : by conv_rhs { rw [mul_assoc, finset.mul_sum], simp only [←mul_assoc], } -- `bernstein.variance` and `x ∈ [0,1]` gives the uniform bound ... = (2 * ‖f‖) * δ^(-2 : ℤ) * x * (1-x) / n : by { rw variance npos, ring, } ... ≤ (2 * ‖f‖) * δ^(-2 : ℤ) / n : (div_le_div_right npos).mpr $ by refine mul_le_of_le_of_le_one' (mul_le_of_le_one_right w₂ _) _ _ w₂; unit_interval ... < ε/2 : nh, } end
f3bc414396a620d444f0f73ae6469296e1d27b91
d406927ab5617694ec9ea7001f101b7c9e3d9702
/src/field_theory/finite/galois_field.lean
7c15fdae57145b197c23476e8228ea16579d946c
[ "Apache-2.0" ]
permissive
alreadydone/mathlib
dc0be621c6c8208c581f5170a8216c5ba6721927
c982179ec21091d3e102d8a5d9f5fe06c8fafb73
refs/heads/master
1,685,523,275,196
1,670,184,141,000
1,670,184,141,000
287,574,545
0
0
Apache-2.0
1,670,290,714,000
1,597,421,623,000
Lean
UTF-8
Lean
false
false
8,578
lean
/- Copyright (c) 2021 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson, Alex J. Best, Johan Commelin, Eric Rodriguez, Ruben Van de Velde -/ import algebra.char_p.algebra import data.zmod.algebra import field_theory.finite.basic import field_theory.galois /-! # Galois fields If `p` is a prime number, and `n` a natural number, then `galois_field p n` is defined as the splitting field of `X^(p^n) - X` over `zmod p`. It is a finite field with `p ^ n` elements. ## Main definition * `galois_field p n` is a field with `p ^ n` elements ## Main Results - `galois_field.alg_equiv_galois_field`: Any finite field is isomorphic to some Galois field - `finite_field.alg_equiv_of_card_eq`: Uniqueness of finite fields : algebra isomorphism - `finite_field.ring_equiv_of_card_eq`: Uniqueness of finite fields : ring isomorphism -/ noncomputable theory open polynomial open_locale polynomial lemma galois_poly_separable {K : Type*} [field K] (p q : ℕ) [char_p K p] (h : p ∣ q) : separable (X ^ q - X : K[X]) := begin use [1, (X ^ q - X - 1)], rw [← char_p.cast_eq_zero_iff K[X] p] at h, rw [derivative_sub, derivative_pow, derivative_X, h], ring, end /-- A finite field with `p ^ n` elements. Every field with the same cardinality is (non-canonically) isomorphic to this field. -/ @[derive field] def galois_field (p : ℕ) [fact p.prime] (n : ℕ) := splitting_field (X^(p^n) - X : (zmod p)[X]) instance : inhabited (@galois_field 2 (fact.mk nat.prime_two) 1) := ⟨37⟩ namespace galois_field variables (p : ℕ) [fact p.prime] (n : ℕ) instance : algebra (zmod p) (galois_field p n) := splitting_field.algebra _ instance : is_splitting_field (zmod p) (galois_field p n) (X^(p^n) - X) := polynomial.is_splitting_field.splitting_field _ instance : char_p (galois_field p n) p := (algebra.char_p_iff (zmod p) (galois_field p n) p).mp (by apply_instance) instance : fintype (galois_field p n) := by {dsimp only [galois_field], exact finite_dimensional.fintype_of_fintype (zmod p) (galois_field p n) } lemma finrank {n} (h : n ≠ 0) : finite_dimensional.finrank (zmod p) (galois_field p n) = n := begin set g_poly := (X^(p^n) - X : (zmod p)[X]), have hp : 1 < p := (fact.out (nat.prime p)).one_lt, have aux : g_poly ≠ 0 := finite_field.X_pow_card_pow_sub_X_ne_zero _ h hp, have key : fintype.card ((g_poly).root_set (galois_field p n)) = (g_poly).nat_degree := card_root_set_eq_nat_degree (galois_poly_separable p _ (dvd_pow (dvd_refl p) h)) (splitting_field.splits g_poly), have nat_degree_eq : (g_poly).nat_degree = p ^ n := finite_field.X_pow_card_pow_sub_X_nat_degree_eq _ h hp, rw nat_degree_eq at key, suffices : (g_poly).root_set (galois_field p n) = set.univ, { simp_rw [this, ←fintype.of_equiv_card (equiv.set.univ _)] at key, rw [@card_eq_pow_finrank (zmod p), zmod.card] at key, exact nat.pow_right_injective ((nat.prime.one_lt' p).out) key }, rw set.eq_univ_iff_forall, suffices : ∀ x (hx : x ∈ (⊤ : subalgebra (zmod p) (galois_field p n))), x ∈ (X ^ p ^ n - X : (zmod p)[X]).root_set (galois_field p n), { simpa, }, rw ← splitting_field.adjoin_root_set, simp_rw algebra.mem_adjoin_iff, intros x hx, -- We discharge the `p = 0` separately, to avoid typeclass issues on `zmod p`. unfreezingI { cases p, cases hp, }, apply subring.closure_induction hx; clear_dependent x; simp_rw mem_root_set aux, { rintros x (⟨r, rfl⟩ | hx), { simp only [aeval_X_pow, aeval_X, alg_hom.map_sub], rw [← map_pow, zmod.pow_card_pow, sub_self], }, { dsimp only [galois_field] at hx, rwa mem_root_set aux at hx, }, }, { dsimp only [g_poly], rw [← coeff_zero_eq_aeval_zero'], simp only [coeff_X_pow, coeff_X_zero, sub_zero, _root_.map_eq_zero, ite_eq_right_iff, one_ne_zero, coeff_sub], intro hn, exact nat.not_lt_zero 1 (pow_eq_zero hn.symm ▸ hp), }, { simp, }, { simp only [aeval_X_pow, aeval_X, alg_hom.map_sub, add_pow_char_pow, sub_eq_zero], intros x y hx hy, rw [hx, hy], }, { intros x hx, simp only [sub_eq_zero, aeval_X_pow, aeval_X, alg_hom.map_sub, sub_neg_eq_add] at *, rw [neg_pow, hx, char_p.neg_one_pow_char_pow], simp, }, { simp only [aeval_X_pow, aeval_X, alg_hom.map_sub, mul_pow, sub_eq_zero], intros x y hx hy, rw [hx, hy], }, end lemma card (h : n ≠ 0) : fintype.card (galois_field p n) = p ^ n := begin let b := is_noetherian.finset_basis (zmod p) (galois_field p n), rw [module.card_fintype b, ← finite_dimensional.finrank_eq_card_basis b, zmod.card, finrank p h], end theorem splits_zmod_X_pow_sub_X : splits (ring_hom.id (zmod p)) (X ^ p - X) := begin have hp : 1 < p := (fact.out (nat.prime p)).one_lt, have h1 : roots (X ^ p - X : (zmod p)[X]) = finset.univ.val, { convert finite_field.roots_X_pow_card_sub_X _, exact (zmod.card p).symm }, have h2 := finite_field.X_pow_card_sub_X_nat_degree_eq (zmod p) hp, -- We discharge the `p = 0` separately, to avoid typeclass issues on `zmod p`. unfreezingI { cases p, cases hp, }, rw [splits_iff_card_roots, h1, ←finset.card_def, finset.card_univ, h2, zmod.card], end /-- A Galois field with exponent 1 is equivalent to `zmod` -/ def equiv_zmod_p : galois_field p 1 ≃ₐ[zmod p] (zmod p) := have h : (X ^ p ^ 1 : (zmod p)[X]) = X ^ (fintype.card (zmod p)), by rw [pow_one, zmod.card p], have inst : is_splitting_field (zmod p) (zmod p) (X ^ p ^ 1 - X), by { rw h, apply_instance }, by exactI (is_splitting_field.alg_equiv (zmod p) (X ^ (p ^ 1) - X : (zmod p)[X])).symm variables {K : Type*} [field K] [fintype K] [algebra (zmod p) K] theorem splits_X_pow_card_sub_X : splits (algebra_map (zmod p) K) (X ^ fintype.card K - X) := (finite_field.has_sub.sub.polynomial.is_splitting_field K (zmod p)).splits lemma is_splitting_field_of_card_eq (h : fintype.card K = p ^ n) : is_splitting_field (zmod p) K (X ^ (p ^ n) - X) := h ▸ finite_field.has_sub.sub.polynomial.is_splitting_field K (zmod p) @[priority 100] instance {K K' : Type*} [field K] [field K'] [finite K'] [algebra K K'] : is_galois K K' := begin casesI nonempty_fintype K', obtain ⟨p, hp⟩ := char_p.exists K, haveI : char_p K p := hp, haveI : char_p K' p := char_p_of_injective_algebra_map' K K' p, exact is_galois.of_separable_splitting_field (galois_poly_separable p (fintype.card K') (let ⟨n, hp, hn⟩ := finite_field.card K' p in hn.symm ▸ dvd_pow_self p n.ne_zero)), end /-- Any finite field is (possibly non canonically) isomorphic to some Galois field. -/ def alg_equiv_galois_field (h : fintype.card K = p ^ n) : K ≃ₐ[zmod p] galois_field p n := by haveI := is_splitting_field_of_card_eq _ _ h; exact is_splitting_field.alg_equiv _ _ end galois_field namespace finite_field variables {K : Type*} [field K] [fintype K] {K' : Type*} [field K'] [fintype K'] /-- Uniqueness of finite fields: Any two finite fields of the same cardinality are (possibly non canonically) isomorphic-/ def alg_equiv_of_card_eq (p : ℕ) [fact p.prime] [algebra (zmod p) K] [algebra (zmod p) K'] (hKK' : fintype.card K = fintype.card K') : K ≃ₐ[zmod p] K' := begin haveI : char_p K p, { rw ← algebra.char_p_iff (zmod p) K p, exact zmod.char_p p, }, haveI : char_p K' p, { rw ← algebra.char_p_iff (zmod p) K' p, exact zmod.char_p p, }, choose n a hK using finite_field.card K p, choose n' a' hK' using finite_field.card K' p, rw [hK,hK'] at hKK', have hGalK := galois_field.alg_equiv_galois_field p n hK, have hK'Gal := (galois_field.alg_equiv_galois_field p n' hK').symm, rw (nat.pow_right_injective (fact.out (nat.prime p)).one_lt hKK') at *, use alg_equiv.trans hGalK hK'Gal, end /-- Uniqueness of finite fields: Any two finite fields of the same cardinality are (possibly non canonically) isomorphic-/ def ring_equiv_of_card_eq (hKK' : fintype.card K = fintype.card K') : K ≃+* K' := begin choose p _char_p_K using char_p.exists K, choose p' _char_p'_K' using char_p.exists K', resetI, choose n hp hK using finite_field.card K p, choose n' hp' hK' using finite_field.card K' p', have hpp' : p = p', -- := eq_prime_of_eq_prime_pow { by_contra hne, have h2 := nat.coprime_pow_primes n n' hp hp' hne, rw [(eq.congr hK hK').mp hKK', nat.coprime_self, pow_eq_one_iff (pnat.ne_zero n')] at h2, exact nat.prime.ne_one hp' h2, all_goals {apply_instance}, }, rw ← hpp' at *, haveI := fact_iff.2 hp, exact alg_equiv_of_card_eq p hKK', end end finite_field
683f5a003fe368eb3b15a357ec226c5a9aafb809
8cae430f0a71442d02dbb1cbb14073b31048e4b0
/src/topology/metric_space/contracting.lean
daaac22d041495946618afb5e7a56e05ee450f33
[ "Apache-2.0" ]
permissive
leanprover-community/mathlib
56a2cadd17ac88caf4ece0a775932fa26327ba0e
442a83d738cb208d3600056c489be16900ba701d
refs/heads/master
1,693,584,102,358
1,693,471,902,000
1,693,471,902,000
97,922,418
1,595
352
Apache-2.0
1,694,693,445,000
1,500,624,130,000
Lean
UTF-8
Lean
false
false
15,927
lean
/- Copyright (c) 2019 Rohan Mitta. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Rohan Mitta, Kevin Buzzard, Alistair Tucker, Johannes Hölzl, Yury Kudryashov -/ import analysis.specific_limits.basic import data.setoid.basic import dynamics.fixed_points.topology /-! # Contracting maps > THIS FILE IS SYNCHRONIZED WITH MATHLIB4. > Any changes to this file require a corresponding PR to mathlib4. A Lipschitz continuous self-map with Lipschitz constant `K < 1` is called a *contracting map*. In this file we prove the Banach fixed point theorem, some explicit estimates on the rate of convergence, and some properties of the map sending a contracting map to its fixed point. ## Main definitions * `contracting_with K f` : a Lipschitz continuous self-map with `K < 1`; * `efixed_point` : given a contracting map `f` on a complete emetric space and a point `x` such that `edist x (f x) ≠ ∞`, `efixed_point f hf x hx` is the unique fixed point of `f` in `emetric.ball x ∞`; * `fixed_point` : the unique fixed point of a contracting map on a complete nonempty metric space. ## Tags contracting map, fixed point, Banach fixed point theorem -/ open_locale nnreal topology classical ennreal open filter function variables {α : Type*} /-- A map is said to be `contracting_with K`, if `K < 1` and `f` is `lipschitz_with K`. -/ def contracting_with [emetric_space α] (K : ℝ≥0) (f : α → α) := (K < 1) ∧ lipschitz_with K f namespace contracting_with variables [emetric_space α] [cs : complete_space α] {K : ℝ≥0} {f : α → α} open emetric set lemma to_lipschitz_with (hf : contracting_with K f) : lipschitz_with K f := hf.2 lemma one_sub_K_pos' (hf : contracting_with K f) : (0:ℝ≥0∞) < 1 - K := by simp [hf.1] lemma one_sub_K_ne_zero (hf : contracting_with K f) : (1:ℝ≥0∞) - K ≠ 0 := ne_of_gt hf.one_sub_K_pos' lemma one_sub_K_ne_top : (1:ℝ≥0∞) - K ≠ ∞ := by { norm_cast, exact ennreal.coe_ne_top } lemma edist_inequality (hf : contracting_with K f) {x y} (h : edist x y ≠ ∞) : edist x y ≤ (edist x (f x) + edist y (f y)) / (1 - K) := suffices edist x y ≤ edist x (f x) + edist y (f y) + K * edist x y, by rwa [ennreal.le_div_iff_mul_le (or.inl hf.one_sub_K_ne_zero) (or.inl one_sub_K_ne_top), mul_comm, ennreal.sub_mul (λ _ _, h), one_mul, tsub_le_iff_right], calc edist x y ≤ edist x (f x) + edist (f x) (f y) + edist (f y) y : edist_triangle4 _ _ _ _ ... = edist x (f x) + edist y (f y) + edist (f x) (f y) : by rw [edist_comm y, add_right_comm] ... ≤ edist x (f x) + edist y (f y) + K * edist x y : add_le_add le_rfl (hf.2 _ _) lemma edist_le_of_fixed_point (hf : contracting_with K f) {x y} (h : edist x y ≠ ∞) (hy : is_fixed_pt f y) : edist x y ≤ (edist x (f x)) / (1 - K) := by simpa only [hy.eq, edist_self, add_zero] using hf.edist_inequality h lemma eq_or_edist_eq_top_of_fixed_points (hf : contracting_with K f) {x y} (hx : is_fixed_pt f x) (hy : is_fixed_pt f y) : x = y ∨ edist x y = ∞ := begin refine or_iff_not_imp_right.2 (λ h, edist_le_zero.1 _), simpa only [hx.eq, edist_self, add_zero, ennreal.zero_div] using hf.edist_le_of_fixed_point h hy end /-- If a map `f` is `contracting_with K`, and `s` is a forward-invariant set, then restriction of `f` to `s` is `contracting_with K` as well. -/ lemma restrict (hf : contracting_with K f) {s : set α} (hs : maps_to f s s) : contracting_with K (hs.restrict f s s) := ⟨hf.1, λ x y, hf.2 x y⟩ include cs /-- Banach fixed-point theorem, contraction mapping theorem, `emetric_space` version. A contracting map on a complete metric space has a fixed point. We include more conclusions in this theorem to avoid proving them again later. The main API for this theorem are the functions `efixed_point` and `fixed_point`, and lemmas about these functions. -/ theorem exists_fixed_point (hf : contracting_with K f) (x : α) (hx : edist x (f x) ≠ ∞) : ∃ y, is_fixed_pt f y ∧ tendsto (λ n, f^[n] x) at_top (𝓝 y) ∧ ∀ n:ℕ, edist (f^[n] x) y ≤ (edist x (f x)) * K^n / (1 - K) := have cauchy_seq (λ n, f^[n] x), from cauchy_seq_of_edist_le_geometric K (edist x (f x)) (ennreal.coe_lt_one_iff.2 hf.1) hx (hf.to_lipschitz_with.edist_iterate_succ_le_geometric x), let ⟨y, hy⟩ := cauchy_seq_tendsto_of_complete this in ⟨y, is_fixed_pt_of_tendsto_iterate hy hf.2.continuous.continuous_at, hy, edist_le_of_edist_le_geometric_of_tendsto K (edist x (f x)) (hf.to_lipschitz_with.edist_iterate_succ_le_geometric x) hy⟩ variable (f) -- avoid `efixed_point _` in pretty printer /-- Let `x` be a point of a complete emetric space. Suppose that `f` is a contracting map, and `edist x (f x) ≠ ∞`. Then `efixed_point` is the unique fixed point of `f` in `emetric.ball x ∞`. -/ noncomputable def efixed_point (hf : contracting_with K f) (x : α) (hx : edist x (f x) ≠ ∞) : α := classical.some $ hf.exists_fixed_point x hx variables {f} lemma efixed_point_is_fixed_pt (hf : contracting_with K f) {x : α} (hx : edist x (f x) ≠ ∞) : is_fixed_pt f (efixed_point f hf x hx) := (classical.some_spec $ hf.exists_fixed_point x hx).1 lemma tendsto_iterate_efixed_point (hf : contracting_with K f) {x : α} (hx : edist x (f x) ≠ ∞) : tendsto (λn, f^[n] x) at_top (𝓝 $ efixed_point f hf x hx) := (classical.some_spec $ hf.exists_fixed_point x hx).2.1 lemma apriori_edist_iterate_efixed_point_le (hf : contracting_with K f) {x : α} (hx : edist x (f x) ≠ ∞) (n : ℕ) : edist (f^[n] x) (efixed_point f hf x hx) ≤ (edist x (f x)) * K^n / (1 - K) := (classical.some_spec $ hf.exists_fixed_point x hx).2.2 n lemma edist_efixed_point_le (hf : contracting_with K f) {x : α} (hx : edist x (f x) ≠ ∞) : edist x (efixed_point f hf x hx) ≤ (edist x (f x)) / (1 - K) := by { convert hf.apriori_edist_iterate_efixed_point_le hx 0, simp only [pow_zero, mul_one] } lemma edist_efixed_point_lt_top (hf : contracting_with K f) {x : α} (hx : edist x (f x) ≠ ∞) : edist x (efixed_point f hf x hx) < ∞ := (hf.edist_efixed_point_le hx).trans_lt (ennreal.mul_lt_top hx $ ennreal.inv_ne_top.2 hf.one_sub_K_ne_zero) lemma efixed_point_eq_of_edist_lt_top (hf : contracting_with K f) {x : α} (hx : edist x (f x) ≠ ∞) {y : α} (hy : edist y (f y) ≠ ∞) (h : edist x y ≠ ∞) : efixed_point f hf x hx = efixed_point f hf y hy := begin refine (hf.eq_or_edist_eq_top_of_fixed_points _ _).elim id (λ h', false.elim (ne_of_lt _ h')); try { apply efixed_point_is_fixed_pt }, change edist_lt_top_setoid.rel _ _, transitivity x, by { symmetry, exact hf.edist_efixed_point_lt_top hx }, transitivity y, exacts [lt_top_iff_ne_top.2 h, hf.edist_efixed_point_lt_top hy] end omit cs /-- Banach fixed-point theorem for maps contracting on a complete subset. -/ theorem exists_fixed_point' {s : set α} (hsc : is_complete s) (hsf : maps_to f s s) (hf : contracting_with K $ hsf.restrict f s s) {x : α} (hxs : x ∈ s) (hx : edist x (f x) ≠ ∞) : ∃ y ∈ s, is_fixed_pt f y ∧ tendsto (λ n, f^[n] x) at_top (𝓝 y) ∧ ∀ n:ℕ, edist (f^[n] x) y ≤ (edist x (f x)) * K^n / (1 - K) := begin haveI := hsc.complete_space_coe, rcases hf.exists_fixed_point ⟨x, hxs⟩ hx with ⟨y, hfy, h_tendsto, hle⟩, refine ⟨y, y.2, subtype.ext_iff_val.1 hfy, _, λ n, _⟩, { convert (continuous_subtype_coe.tendsto _).comp h_tendsto, ext n, simp only [(∘), maps_to.iterate_restrict, maps_to.coe_restrict_apply, subtype.coe_mk] }, { convert hle n, rw [maps_to.iterate_restrict, eq_comm, maps_to.coe_restrict_apply, subtype.coe_mk] } end variable (f) -- avoid `efixed_point _` in pretty printer /-- Let `s` be a complete forward-invariant set of a self-map `f`. If `f` contracts on `s` and `x ∈ s` satisfies `edist x (f x) ≠ ∞`, then `efixed_point'` is the unique fixed point of the restriction of `f` to `s ∩ emetric.ball x ∞`. -/ noncomputable def efixed_point' {s : set α} (hsc : is_complete s) (hsf : maps_to f s s) (hf : contracting_with K $ hsf.restrict f s s) (x : α) (hxs : x ∈ s) (hx : edist x (f x) ≠ ∞) : α := classical.some $ hf.exists_fixed_point' hsc hsf hxs hx variables {f} lemma efixed_point_mem' {s : set α} (hsc : is_complete s) (hsf : maps_to f s s) (hf : contracting_with K $ hsf.restrict f s s) {x : α} (hxs : x ∈ s) (hx : edist x (f x) ≠ ∞) : efixed_point' f hsc hsf hf x hxs hx ∈ s := (classical.some_spec $ hf.exists_fixed_point' hsc hsf hxs hx).fst lemma efixed_point_is_fixed_pt' {s : set α} (hsc : is_complete s) (hsf : maps_to f s s) (hf : contracting_with K $ hsf.restrict f s s) {x : α} (hxs : x ∈ s) (hx : edist x (f x) ≠ ∞) : is_fixed_pt f (efixed_point' f hsc hsf hf x hxs hx) := (classical.some_spec $ hf.exists_fixed_point' hsc hsf hxs hx).snd.1 lemma tendsto_iterate_efixed_point' {s : set α} (hsc : is_complete s) (hsf : maps_to f s s) (hf : contracting_with K $ hsf.restrict f s s) {x : α} (hxs : x ∈ s) (hx : edist x (f x) ≠ ∞) : tendsto (λn, f^[n] x) at_top (𝓝 $ efixed_point' f hsc hsf hf x hxs hx) := (classical.some_spec $ hf.exists_fixed_point' hsc hsf hxs hx).snd.2.1 lemma apriori_edist_iterate_efixed_point_le' {s : set α} (hsc : is_complete s) (hsf : maps_to f s s) (hf : contracting_with K $ hsf.restrict f s s) {x : α} (hxs : x ∈ s) (hx : edist x (f x) ≠ ∞) (n : ℕ) : edist (f^[n] x) (efixed_point' f hsc hsf hf x hxs hx) ≤ (edist x (f x)) * K^n / (1 - K) := (classical.some_spec $ hf.exists_fixed_point' hsc hsf hxs hx).snd.2.2 n lemma edist_efixed_point_le' {s : set α} (hsc : is_complete s) (hsf : maps_to f s s) (hf : contracting_with K $ hsf.restrict f s s) {x : α} (hxs : x ∈ s) (hx : edist x (f x) ≠ ∞) : edist x (efixed_point' f hsc hsf hf x hxs hx) ≤ (edist x (f x)) / (1 - K) := by { convert hf.apriori_edist_iterate_efixed_point_le' hsc hsf hxs hx 0, rw [pow_zero, mul_one] } lemma edist_efixed_point_lt_top' {s : set α} (hsc : is_complete s) (hsf : maps_to f s s) (hf : contracting_with K $ hsf.restrict f s s) {x : α} (hxs : x ∈ s) (hx : edist x (f x) ≠ ∞) : edist x (efixed_point' f hsc hsf hf x hxs hx) < ∞ := (hf.edist_efixed_point_le' hsc hsf hxs hx).trans_lt (ennreal.mul_lt_top hx $ ennreal.inv_ne_top.2 hf.one_sub_K_ne_zero) /-- If a globally contracting map `f` has two complete forward-invariant sets `s`, `t`, and `x ∈ s` is at a finite distance from `y ∈ t`, then the `efixed_point'` constructed by `x` is the same as the `efixed_point'` constructed by `y`. This lemma takes additional arguments stating that `f` contracts on `s` and `t` because this way it can be used to prove the desired equality with non-trivial proofs of these facts. -/ lemma efixed_point_eq_of_edist_lt_top' (hf : contracting_with K f) {s : set α} (hsc : is_complete s) (hsf : maps_to f s s) (hfs : contracting_with K $ hsf.restrict f s s) {x : α} (hxs : x ∈ s) (hx : edist x (f x) ≠ ∞) {t : set α} (htc : is_complete t) (htf : maps_to f t t) (hft : contracting_with K $ htf.restrict f t t) {y : α} (hyt : y ∈ t) (hy : edist y (f y) ≠ ∞) (hxy : edist x y ≠ ∞) : efixed_point' f hsc hsf hfs x hxs hx = efixed_point' f htc htf hft y hyt hy := begin refine (hf.eq_or_edist_eq_top_of_fixed_points _ _).elim id (λ h', false.elim (ne_of_lt _ h')); try { apply efixed_point_is_fixed_pt' }, change edist_lt_top_setoid.rel _ _, transitivity x, by { symmetry, apply edist_efixed_point_lt_top' }, transitivity y, exact lt_top_iff_ne_top.2 hxy, apply edist_efixed_point_lt_top' end end contracting_with namespace contracting_with variables [metric_space α] {K : ℝ≥0} {f : α → α} (hf : contracting_with K f) include hf lemma one_sub_K_pos (hf : contracting_with K f) : (0:ℝ) < 1 - K := sub_pos.2 hf.1 lemma dist_le_mul (x y : α) : dist (f x) (f y) ≤ K * dist x y := hf.to_lipschitz_with.dist_le_mul x y lemma dist_inequality (x y) : dist x y ≤ (dist x (f x) + dist y (f y)) / (1 - K) := suffices dist x y ≤ dist x (f x) + dist y (f y) + K * dist x y, by rwa [le_div_iff hf.one_sub_K_pos, mul_comm, sub_mul, one_mul, sub_le_iff_le_add], calc dist x y ≤ dist x (f x) + dist y (f y) + dist (f x) (f y) : dist_triangle4_right _ _ _ _ ... ≤ dist x (f x) + dist y (f y) + K * dist x y : add_le_add_left (hf.dist_le_mul _ _) _ lemma dist_le_of_fixed_point (x) {y} (hy : is_fixed_pt f y) : dist x y ≤ (dist x (f x)) / (1 - K) := by simpa only [hy.eq, dist_self, add_zero] using hf.dist_inequality x y theorem fixed_point_unique' {x y} (hx : is_fixed_pt f x) (hy : is_fixed_pt f y) : x = y := (hf.eq_or_edist_eq_top_of_fixed_points hx hy).resolve_right (edist_ne_top _ _) /-- Let `f` be a contracting map with constant `K`; let `g` be another map uniformly `C`-close to `f`. If `x` and `y` are their fixed points, then `dist x y ≤ C / (1 - K)`. -/ lemma dist_fixed_point_fixed_point_of_dist_le' (g : α → α) {x y} (hx : is_fixed_pt f x) (hy : is_fixed_pt g y) {C} (hfg : ∀ z, dist (f z) (g z) ≤ C) : dist x y ≤ C / (1 - K) := calc dist x y = dist y x : dist_comm x y ... ≤ (dist y (f y)) / (1 - K) : hf.dist_le_of_fixed_point y hx ... = (dist (f y) (g y)) / (1 - K) : by rw [hy.eq, dist_comm] ... ≤ C / (1 - K) : (div_le_div_right hf.one_sub_K_pos).2 (hfg y) noncomputable theory variables [nonempty α] [complete_space α] variable (f) /-- The unique fixed point of a contracting map in a nonempty complete metric space. -/ def fixed_point : α := efixed_point f hf _ (edist_ne_top (classical.choice ‹nonempty α›) _) variable {f} /-- The point provided by `contracting_with.fixed_point` is actually a fixed point. -/ lemma fixed_point_is_fixed_pt : is_fixed_pt f (fixed_point f hf) := hf.efixed_point_is_fixed_pt _ lemma fixed_point_unique {x} (hx : is_fixed_pt f x) : x = fixed_point f hf := hf.fixed_point_unique' hx hf.fixed_point_is_fixed_pt lemma dist_fixed_point_le (x) : dist x (fixed_point f hf) ≤ (dist x (f x)) / (1 - K) := hf.dist_le_of_fixed_point x hf.fixed_point_is_fixed_pt /-- Aposteriori estimates on the convergence of iterates to the fixed point. -/ lemma aposteriori_dist_iterate_fixed_point_le (x n) : dist (f^[n] x) (fixed_point f hf) ≤ (dist (f^[n] x) (f^[n+1] x)) / (1 - K) := by { rw [iterate_succ'], apply hf.dist_fixed_point_le } lemma apriori_dist_iterate_fixed_point_le (x n) : dist (f^[n] x) (fixed_point f hf) ≤ (dist x (f x)) * K^n / (1 - K) := le_trans (hf.aposteriori_dist_iterate_fixed_point_le x n) $ (div_le_div_right hf.one_sub_K_pos).2 $ hf.to_lipschitz_with.dist_iterate_succ_le_geometric x n lemma tendsto_iterate_fixed_point (x) : tendsto (λn, f^[n] x) at_top (𝓝 $ fixed_point f hf) := begin convert tendsto_iterate_efixed_point hf (edist_ne_top x _), refine (fixed_point_unique _ _).symm, apply efixed_point_is_fixed_pt end lemma fixed_point_lipschitz_in_map {g : α → α} (hg : contracting_with K g) {C} (hfg : ∀ z, dist (f z) (g z) ≤ C) : dist (fixed_point f hf) (fixed_point g hg) ≤ C / (1 - K) := hf.dist_fixed_point_fixed_point_of_dist_le' g hf.fixed_point_is_fixed_pt hg.fixed_point_is_fixed_pt hfg omit hf /-- If a map `f` has a contracting iterate `f^[n]`, then the fixed point of `f^[n]` is also a fixed point of `f`. -/ lemma is_fixed_pt_fixed_point_iterate {n : ℕ} (hf : contracting_with K (f^[n])) : is_fixed_pt f (hf.fixed_point (f^[n])) := begin set x := hf.fixed_point (f^[n]), have hx : (f^[n] x) = x := hf.fixed_point_is_fixed_pt, have := hf.to_lipschitz_with.dist_le_mul x (f x), rw [← iterate_succ_apply, iterate_succ_apply', hx] at this, contrapose! this, have := dist_pos.2 (ne.symm this), simpa only [nnreal.coe_one, one_mul, nnreal.val_eq_coe] using (mul_lt_mul_right this).mpr hf.left end end contracting_with
a14494371727829f85427fda7f98511504f3bb85
3adda22358e3c0fbae44c6c35fdddbebf9358ef4
/src/Q1.lean
86c406ec4e338ed897ad215c5b552b21e79b2137
[ "Apache-2.0" ]
permissive
ImperialCollegeLondon/M1F-exam-may-2018
1539951b055cea5bac915bdb6fa1969e2f323402
8b5eca2037d4a14d6cfac3da1858b6c4119216d3
refs/heads/master
1,586,895,978,182
1,557,175,794,000
1,557,175,794,000
164,093,611
2
0
null
null
null
null
UTF-8
Lean
false
false
10,306
lean
import tactic.linarith import data.real.basic import data.complex.exponential import data.polynomial import data.nat.choose /- M1F May exam 2018, question 1. -/ universe u local attribute [instance, priority 0] classical.prop_decidable open nat -- Q1(a)(i) theorem count (n : ℕ) (hn : n ≥ 1) : finset.sum (finset.range (nat.succ n)) (λ m, choose n m) = 2 ^ n --answer := begin have H := (add_pow (1 : ℕ) 1 n).symm, simpa [nat.one_pow, one_mul, one_add_one_eq_two, (finset.sum_nat_cast _ _).symm, nat.cast_id] using H, end -- Q1(a)(ii) theorem countdown (n : ℕ) (hn : n ≥ 1) : finset.sum (finset.range (nat.succ n)) (λ m, (-1 : ℤ) ^ m * choose n m) = 0 -- answer := begin have H := (add_pow (-1 : ℤ) 1 n).symm, have H2 := @_root_.zero_pow ℤ _ _ hn, simpa [nat.one_pow, one_mul, one_add_one_eq_two, nat.zero_pow hn, (finset.sum_nat_cast _ _).symm, nat.cast_id, H2] using H, end -- Q1(b) preparation open real polynomial noncomputable def chebyshev : ℕ → polynomial ℝ | 0 := C 1 | 1 := X | (n + 2) := 2 * X * chebyshev (n + 1) - chebyshev n def chebyshev' : ℕ → polynomial ℤ | 0 := C 1 | 1 := X | (n + 2) := 2 * X * chebyshev' (n + 1) - chebyshev' n lemma polycos_zero (θ : ℝ) : cos (0 * θ) = polynomial.eval (cos θ) (chebyshev 0) := by rw [chebyshev, eval_C, zero_mul, cos_zero] lemma polycos (n : ℕ) (hn : n ≥ 1) : ∀ θ : ℝ, cos (n * θ) = polynomial.eval (cos θ) (chebyshev n) := begin intro θ, apply nat.strong_induction_on n, intros k ih, have ih1 : cos (↑(k - 1) * θ) = polynomial.eval (cos θ) (chebyshev (k - 1)), { by_cases h : k = 0, { rw [h, (show (0 - 1 = 0), by refl)], convert polycos_zero θ}, -- h : k ≠ 0, { exact ih (k - 1) (nat.sub_lt (nat.pos_of_ne_zero h) (by norm_num : 0 < 1)) } }, have ih2 : cos (↑(k - 2) * θ) = polynomial.eval (cos θ) (chebyshev (k - 2)), { by_cases h : k = 0, { rw [h, (show (0 - 2 = 0), from rfl)], convert polycos_zero θ},--, chebyshev, eval_one], -- h : k ≠ 0, { exact ih (k - 2) (nat.sub_lt (nat.pos_of_ne_zero h) (by norm_num : 0 < 2)) } }, by_cases h1 : k = 0, rw h1, exact polycos_zero θ, by_cases h2 : k = 1, { rw [h2, chebyshev, eval_X], congr', convert one_mul θ, simp}, have hk : k = (k - 2) + 2, rw nat.sub_add_cancel, swap, rw [hk, chebyshev, ←hk, nat.succ_eq_add_one, (_ : k - 2 + 1 = k - 1), two_mul, polynomial.eval_sub, polynomial.eval_mul, polynomial.eval_add, polynomial.eval_X, ←two_mul, ←ih1, ←ih2], rw [←complex.of_real_inj, complex.of_real_sub, complex.of_real_mul, complex.of_real_mul, complex.of_real_cos, complex.of_real_cos, complex.of_real_cos, complex.of_real_cos, complex.cos, complex.cos, complex.cos, complex.cos], simp, rw [mul_div_cancel', ←mul_div_assoc, ←neg_div, ←add_div, add_mul, mul_add, mul_add, ←complex.exp_add, ←complex.exp_add, ←complex.exp_add, ←complex.exp_add, mul_assoc, mul_assoc, mul_assoc], rw [←one_mul (↑θ * complex.I)] {occs := occurrences.pos [5, 7]}, rw [←add_mul, ←sub_eq_add_neg, ←sub_mul, ←neg_one_mul (↑θ * complex.I), ←add_mul, ←sub_eq_add_neg, ←sub_mul, @nat.cast_sub _ _ _ 1 k, add_sub, nat.cast_one, add_sub_cancel', ←sub_add, sub_add_eq_add_sub, one_add_one_eq_two, add_sub, ←sub_add_eq_add_sub, ←neg_add', one_add_one_eq_two, ←sub_add, sub_add_eq_add_sub, neg_add_self, zero_sub, nat.cast_sub, neg_mul_eq_neg_mul, neg_mul_eq_neg_mul, neg_sub, nat.cast_two, neg_add, sub_eq_neg_add, ←add_assoc, ←neg_add, ←sub_eq_neg_add, add_sub_add_right_eq_sub, ←add_assoc, sub_add_cancel], all_goals { try { have H : k ≥ 2, apply le_of_not_gt, intro, have h12 : k = 0 ∨ k = 1, clear ih ih1 ih2 h1 h2, try { clear hk }, revert k a, exact dec_trivial, apply or.elim h12 (λ h12, h1 h12) (λ h12, h2 h12) }, try { exact H }, try { exact le_trans (by norm_num : 1 ≤ 2) H } }, apply two_ne_zero', apply @eq_of_add_eq_add_right _ _ _ 1 _, rw [add_assoc, one_add_one_eq_two, nat.sub_add_cancel H, nat.sub_add_cancel (le_trans (by norm_num : 1 ≤ 2) H)], end -- Q1(b)(i) theorem exist_polycos (n : ℕ) (hn : n ≥ 1) : ∃ Pn : polynomial ℝ, ∀ θ : ℝ, cos (n * θ) = polynomial.eval (cos θ) Pn := ---ans Exists.intro (chebyshev n) (polycos n hn) open polynomial -- Q1(b)(ii) example : chebyshev' 4 = 8 * X ^ 4 - 8 * X ^ 2 + 1 := dec_trivial -- Q1(b)(iii) preparation lemma useful (k : ℕ) : polynomial.degree (chebyshev' k) = k := begin apply nat.strong_induction_on k, intros n ih, have ih1 : polynomial.degree (chebyshev' (n - 1)) = ↑(n - 1), { by_cases h : n = 0, { rw h, apply degree_C, norm_num },--simp [h, chebyshev'], }, { exact ih _ (nat.sub_lt (nat.pos_of_ne_zero h) (zero_lt_one)) }, }, have ih2 : polynomial.degree (chebyshev' (n - 2)) = ↑(n - 2), { by_cases h : n ≤ 1, { apply or.elim ((dec_trivial : ∀ j : ℕ, j ≤ 1 → j = 0 ∨ j = 1) n h), { intro h0, rw h0, apply degree_C, norm_num }, { intro h1, rw h1, apply degree_C, norm_num }, }, { apply ih _, apply nat.sub_lt (lt_of_not_ge (λ w, h (le_trans w zero_le_one))), norm_num }, }, by_cases h : n ≥ 2, { have H : n - 2 + 2 = n := nat.sub_add_cancel h, have H' : nat.succ (n - 2) = n - 1, { have W : n ≥ 2, { apply le_of_not_gt, intro, have h12 : n = 0 ∨ n = 1, { clear ih ih1 ih2 H h, revert n a, exact dec_trivial }, apply or.elim h12, intro h1, rw h1 at h, revert h, norm_num, intro h2, rw h2 at h, revert h, norm_num }, apply @eq_of_add_eq_add_right _ _ _ 1 _, show n - 2 + 1 + 1 = n - 1 + 1, rw [add_assoc, one_add_one_eq_two, nat.sub_add_cancel W, nat.sub_add_cancel (le_of_lt h)] }, rw [←H, chebyshev', H, sub_eq_neg_add, polynomial.degree_add_eq_of_degree_lt, polynomial.degree_mul_eq, polynomial.degree_mul_eq, polynomial.degree_X, H', ih1], { show (polynomial.degree (polynomial.C 2) + 1 + ↑(n - 1) = ↑n), rw [polynomial.degree_C, zero_add, ←with_bot.coe_one, ←with_bot.coe_add, add_comm, nat.sub_add_cancel (le_of_lt h)], exact two_ne_zero', }, { rw [polynomial.degree_neg, polynomial.degree_mul_eq, polynomial.degree_mul_eq, ih2, H', ih1], show (↑(n - 2) < polynomial.degree (polynomial.C 2) + polynomial.degree polynomial.X + ↑(n - 1)), rw [polynomial.degree_C, polynomial.degree_X, zero_add, ←with_bot.coe_one, ←with_bot.coe_add, add_comm, nat.sub_add_cancel (le_of_lt h), with_bot.coe_lt_coe], apply nat.sub_lt (lt_trans zero_lt_one h), norm_num, exact two_ne_zero' } }, { apply or.elim ((dec_trivial : ∀ j : ℕ, j ≤ 1 → j = 0 ∨ j = 1) n (le_of_not_gt h)), intro h0, rw h0, apply degree_C, exact dec_trivial, intro h1, rw h1, exact degree_X } end lemma useful' (k : ℕ) : polynomial.degree (chebyshev' (k - 2)) < 1 + polynomial.degree (chebyshev' (k - 1)) := begin rw [useful, useful, ←with_bot.coe_one, ←with_bot.coe_add, with_bot.coe_lt_coe, add_comm], by_cases h : k ≤ 1, apply or.elim ((dec_trivial : ∀ (j : ℕ), j ≤ 1 → j = 0 ∨ j = 1) k h), intro h0, simp [h0], exact zero_lt_one, intro h1, simp [h1], exact zero_lt_one, rw [nat.sub_add_cancel (le_of_not_le h)], apply nat.sub_lt (lt_of_lt_of_le zero_lt_one (le_of_not_le h)), norm_num end -- Q1(b)(iii) theorem leading_coeff (n : ℕ) : polynomial.leading_coeff (chebyshev' n) = 2 ^ (n - 1) := ---ans begin apply nat.strong_induction_on n, intros k hk, have h1 : polynomial.leading_coeff (chebyshev' (k - 1)) = 2 ^ (k - 1 - 1), by_cases h : k = 0, rw h, show (leading_coeff (C (1 : ℤ)) = 1),exact leading_coeff_C (1 : ℤ), exact hk (k - 1) (nat.pred_lt h : k - 1 < k), have h2 : polynomial.leading_coeff (chebyshev' (k - 2)) = 2 ^ (k - 2 - 1), by_cases h : k ≤ 1, apply or.elim ((dec_trivial : ∀ j : ℕ, j ≤ 1 → j = 0 ∨ j = 1) k h), intro h0, rw h0, exact leading_coeff_C (1 : ℤ), intro h1, rw h1, exact leading_coeff_C (1 : ℤ), exact hk (k - 2) (nat.sub_lt (lt_of_not_ge (λ w, h (le_trans w zero_le_one))) (by norm_num)), by_cases h : k ≥ 2, have H : k - 2 + 2 = k := nat.sub_add_cancel h, rw [←H, chebyshev', H, (_ : nat.succ (k - 2) = k - 1), sub_eq_add_neg, add_comm, polynomial.leading_coeff_add_of_degree_lt, polynomial.leading_coeff_mul, polynomial.leading_coeff_mul, ←one_add_one_eq_two, polynomial.leading_coeff_add_of_degree_eq rfl, ←polynomial.C_1, polynomial.leading_coeff_C, polynomial.leading_coeff_X, h1, one_add_one_eq_two, mul_one, (_root_.pow_succ (2 : ℤ) (k - 1 - 1)).symm, nat.sub_add_cancel], change 1 ≤ k - 1, rwa [nat.le_sub_left_iff_add_le (le_of_lt h), one_add_one_eq_two], rw [←polynomial.C_1, polynomial.leading_coeff_C, one_add_one_eq_two], exact two_ne_zero', rw [polynomial.degree_neg, polynomial.degree_mul_eq, polynomial.degree_mul_eq, ((one_add_one_eq_two).symm : ((2 : polynomial ℤ) = 1 + 1)), ←polynomial.C_1, ←polynomial.C_add, one_add_one_eq_two, polynomial.degree_C, zero_add, polynomial.degree_X], exact useful' k, exact two_ne_zero', rw [nat.succ_eq_add_one, eq_comm, ←nat.sub_eq_iff_eq_add, nat.sub_sub, one_add_one_eq_two], rwa [nat.le_sub_left_iff_add_le (le_of_lt h), one_add_one_eq_two], rw not_lt at h, have h' : k = 0 ∨ k = 1, clear hk h1 h2, revert k h, exact dec_trivial, cases h', { rw h', exact leading_coeff_C (1 : ℤ)}, { rw h', exact leading_coeff_C (1 : ℤ)} end -- Q1(b)(iv) theorem cheby1 (n : ℕ) (hn : n ≥ 1) : polynomial.eval 1 (chebyshev n) = 1 := ---ans begin have h := (polycos n hn 0).symm, rwa [mul_zero, cos_zero] at h, end
a7225ba859f8c1946085ad15507a0e506236f18c
80cc5bf14c8ea85ff340d1d747a127dcadeb966f
/src/measure_theory/category/Meas.lean
4523ff17b8a3adf0c7dc7d2a25b7a013c15b3566
[ "Apache-2.0" ]
permissive
lacker/mathlib
f2439c743c4f8eb413ec589430c82d0f73b2d539
ddf7563ac69d42cfa4a1bfe41db1fed521bd795f
refs/heads/master
1,671,948,326,773
1,601,479,268,000
1,601,479,268,000
298,686,743
0
0
Apache-2.0
1,601,070,794,000
1,601,070,794,000
null
UTF-8
Lean
false
false
4,197
lean
/- Copyright (c) 2018 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl -/ import topology.category.Top.basic import measure_theory.giry_monad import category_theory.monad.algebra /- * Meas, the category of measurable spaces Measurable spaces and measurable functions form a (concrete) category Meas. Measure : Meas ⥤ Meas is the functor which sends a measurable space X to the space of measures on X; it is a monad (the "Giry monad"). Borel : Top ⥤ Meas sends a topological space X to X equipped with the σ-algebra of Borel sets (the σ-algebra generated by the open subsets of X). ## Tags measurable space, giry monad, borel -/ noncomputable theory open category_theory measure_theory universes u v @[derive has_coe_to_sort] def Meas : Type (u+1) := bundled measurable_space namespace Meas instance (X : Meas) : measurable_space X := X.str /-- Construct a bundled `Meas` from the underlying type and the typeclass. -/ def of (α : Type u) [measurable_space α] : Meas := ⟨α⟩ @[simp] lemma coe_of (X : Type u) [measurable_space X] : (of X : Type u) = X := rfl instance unbundled_hom : unbundled_hom @measurable := ⟨@measurable_id, @measurable.comp⟩ attribute [derive [large_category, concrete_category]] Meas instance : inhabited Meas := ⟨Meas.of empty⟩ /-- `Measure X` is the measurable space of measures over the measurable space `X`. It is the weakest measurable space, s.t. λμ, μ s is measurable for all measurable sets `s` in `X`. An important purpose is to assign a monadic structure on it, the Giry monad. In the Giry monad, the pure values are the Dirac measure, and the bind operation maps to the integral: `(μ >>= ν) s = ∫ x. (ν x) s dμ`. In probability theory, the `Meas`-morphisms `X → Prob X` are (sub-)Markov kernels (here `Prob` is the restriction of `Measure` to (sub-)probability space.) -/ def Measure : Meas ⥤ Meas := { obj := λX, ⟨@measure_theory.measure X.1 X.2⟩, map := λX Y f, ⟨measure.map (f : X → Y), measure.measurable_map f f.2⟩, map_id' := assume ⟨α, I⟩, subtype.eq $ funext $ assume μ, @measure.map_id α I μ, map_comp':= assume X Y Z ⟨f, hf⟩ ⟨g, hg⟩, subtype.eq $ funext $ assume μ, (measure.map_map hg hf).symm } /-- The Giry monad, i.e. the monadic structure associated with `Measure`. -/ instance : category_theory.monad Measure.{u} := { η := { app := λX, ⟨@measure.dirac X.1 X.2, measure.measurable_dirac⟩, naturality' := assume X Y ⟨f, hf⟩, subtype.eq $ funext $ assume a, (measure.map_dirac hf a).symm }, μ := { app := λX, ⟨@measure.join X.1 X.2, measure.measurable_join⟩, naturality' := assume X Y ⟨f, hf⟩, subtype.eq $ funext $ assume μ, measure.join_map_map hf μ }, assoc' := assume ⟨α, I⟩, subtype.eq $ funext $ assume μ, @measure.join_map_join α I μ, left_unit' := assume ⟨α, I⟩, subtype.eq $ funext $ assume μ, @measure.join_dirac α I μ, right_unit' := assume ⟨α, I⟩, subtype.eq $ funext $ assume μ, @measure.join_map_dirac α I μ } /-- An example for an algebra on `Measure`: the nonnegative Lebesgue integral is a hom, behaving nicely under the monad operations. -/ def Integral : monad.algebra Measure := { A := Meas.of ennreal , a := ⟨λm:measure ennreal, ∫⁻ x, x ∂m, measure.measurable_lintegral measurable_id ⟩, unit' := subtype.eq $ funext $ assume r:ennreal, lintegral_dirac _ measurable_id, assoc' := subtype.eq $ funext $ assume μ : measure (measure ennreal), show ∫⁻ x, x ∂ μ.join = ∫⁻ x, x ∂ (measure.map (λm:measure ennreal, ∫⁻ x, x ∂m) μ), by rw [measure.lintegral_join, lintegral_map]; apply_rules [measurable_id, measure.measurable_lintegral] } end Meas instance Top.has_forget_to_Meas : has_forget₂ Top.{u} Meas.{u} := bundled_hom.mk_has_forget₂ borel (λ X Y f, ⟨f.1, f.2.borel_measurable⟩) (by intros; refl) /-- The Borel functor, the canonical embedding of topological spaces into measurable spaces. -/ @[reducible] def Borel : Top.{u} ⥤ Meas.{u} := forget₂ Top.{u} Meas.{u}
afc80c395fedc107a06ea7b2b1cad9262738c1e1
618003631150032a5676f229d13a079ac875ff77
/src/category_theory/limits/shapes/constructions/preserve_binary_products.lean
4ef04ed88d34097455aef12eb738954d27937f1a
[ "Apache-2.0" ]
permissive
awainverse/mathlib
939b68c8486df66cfda64d327ad3d9165248c777
ea76bd8f3ca0a8bf0a166a06a475b10663dec44a
refs/heads/master
1,659,592,962,036
1,590,987,592,000
1,590,987,592,000
268,436,019
1
0
Apache-2.0
1,590,990,500,000
1,590,990,500,000
null
UTF-8
Lean
false
false
3,452
lean
/- Copyright (c) 2020 Bhavik Mehta. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bhavik Mehta -/ import category_theory.limits.limits import category_theory.limits.preserves import category_theory.limits.shapes.binary_products /-! Show that a functor `F : C ⥤ D` preserves binary products if and only if `⟨Fπ₁, Fπ₂⟩ : F (A ⨯ B) ⟶ F A ⨯ F B` (that is, `prod_comparison`) is an isomorphism for all `A, B`. -/ open category_theory namespace category_theory.limits universes v u₁ u₂ u₃ -- declare the `v`'s first; see `category_theory.category` for an explanation variables {C : Type u₁} [category.{v} C] variables {D : Type u₂} [category.{v} D] variables [has_binary_products.{v} D] (F : C ⥤ D) /-- (Implementation). Construct a cone for `pair A B ⋙ F` which we will show is limiting. -/ @[simps] def alternative_cone (A B : C) : cone (pair A B ⋙ F) := { X := F.obj A ⨯ F.obj B, π := nat_trans.of_homs (λ j, walking_pair.cases_on j limits.prod.fst limits.prod.snd)} /-- (Implementation). Show that we have a limit for the shape `pair A B ⋙ F`. -/ def alternative_cone_is_limit (A B : C) : is_limit (alternative_cone F A B) := { lift := λ s, prod.lift (s.π.app walking_pair.left) (s.π.app walking_pair.right), fac' := λ s j, walking_pair.cases_on j (prod.lift_fst _ _) (prod.lift_snd _ _), uniq' := λ s m w, prod.hom_ext (by { rw prod.lift_fst, apply w walking_pair.left }) (by { rw prod.lift_snd, apply w walking_pair.right }) } variable [has_binary_products.{v} C] /-- If `prod_comparison F A B` is an iso, then `F` preserves the limit `A ⨯ B`. -/ def preserves_binary_prod_of_prod_comparison_iso (A B : C) [is_iso (prod_comparison F A B)] : preserves_limit (pair A B) F := preserves_limit_of_preserves_limit_cone (limit.is_limit (pair A B)) begin apply is_limit.of_iso_limit (alternative_cone_is_limit F A B) _, apply cones.ext _ _, { apply (as_iso (prod_comparison F A B)).symm }, { rintro ⟨j⟩, { apply (as_iso (prod_comparison F A B)).eq_inv_comp.2 (prod.lift_fst _ _) }, { apply (as_iso (prod_comparison F A B)).eq_inv_comp.2 (prod.lift_snd _ _) } }, end /-- If `prod_comparison F A B` is an iso for all `A, B` , then `F` preserves binary products. -/ instance preserves_binary_prods_of_prod_comparison_iso [∀ A B, is_iso (prod_comparison F A B)] : preserves_limits_of_shape (discrete walking_pair) F := { preserves_limit := λ K, begin haveI := preserves_binary_prod_of_prod_comparison_iso F (K.obj walking_pair.left) (K.obj walking_pair.right), apply preserves_limit_of_iso F (diagram_iso_pair K).symm, end } variables [preserves_limits_of_shape (discrete walking_pair) F] /-- The product comparison isomorphism. Technically a special case of `preserves_limit_iso`, but this version is convenient to have. -/ instance prod_comparison_iso_of_preserves_binary_prods (A B : C) : is_iso (prod_comparison F A B) := let t : is_limit (F.map_cone _) := preserves_limit.preserves (limit.is_limit (pair A B)) in { inv := t.lift (alternative_cone F A B), hom_inv_id' := begin apply is_limit.hom_ext t, rintro ⟨j⟩, { rw [category.assoc, t.fac, category.id_comp], apply prod.lift_fst }, { rw [category.assoc, t.fac, category.id_comp], apply prod.lift_snd }, end, inv_hom_id' := by ext ⟨j⟩; { simpa [prod_comparison] using t.fac _ _ } } end category_theory.limits
786d9e6604e6675b3795ff3217cdfb785ebe147d
80cc5bf14c8ea85ff340d1d747a127dcadeb966f
/src/topology/uniform_space/absolute_value.lean
7dd66467e9b152c125a023c0ff0bc15f482936f4
[ "Apache-2.0" ]
permissive
lacker/mathlib
f2439c743c4f8eb413ec589430c82d0f73b2d539
ddf7563ac69d42cfa4a1bfe41db1fed521bd795f
refs/heads/master
1,671,948,326,773
1,601,479,268,000
1,601,479,268,000
298,686,743
0
0
Apache-2.0
1,601,070,794,000
1,601,070,794,000
null
UTF-8
Lean
false
false
2,885
lean
/- Copyright (c) 2019 Patrick Massot. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Patrick Massot -/ import data.real.cau_seq import topology.uniform_space.basic /-! # Uniform structure induced by an absolute value We build a uniform space structure on a commutative ring `R` equipped with an absolute value into a linear ordered field `𝕜`. Of course in the case `R` is `ℚ`, `ℝ` or `ℂ` and `𝕜 = ℝ`, we get the same thing as the metric space construction, and the general construction follows exactly the same path. ## Implementation details Note that we import `data.real.cau_seq` because this is where absolute values are defined, but the current file does not depend on real numbers. TODO: extract absolute values from that `data.real` folder. ## References * [N. Bourbaki, *Topologie générale*][bourbaki1966] ## Tags absolute value, uniform spaces -/ open set function filter uniform_space open_locale filter namespace is_absolute_value variables {𝕜 : Type*} [discrete_linear_ordered_field 𝕜] variables {R : Type*} [comm_ring R] (abv : R → 𝕜) [is_absolute_value abv] /-- The uniformity coming from an absolute value. -/ def uniform_space_core : uniform_space.core R := { uniformity := (⨅ ε>0, 𝓟 {p:R×R | abv (p.2 - p.1) < ε}), refl := le_infi $ assume ε, le_infi $ assume ε_pos, principal_mono.2 (λ ⟨x, y⟩ h, by simpa [show x = y, from h, abv_zero abv]), symm := tendsto_infi.2 $ assume ε, tendsto_infi.2 $ assume h, tendsto_infi' ε $ tendsto_infi' h $ tendsto_principal_principal.2 $ λ ⟨x, y⟩ h, have h : abv (y - x) < ε, by simpa [-sub_eq_add_neg] using h, by rwa abv_sub abv at h, comp := le_infi $ assume ε, le_infi $ assume h, lift'_le (mem_infi_sets (ε / 2) $ mem_infi_sets (div_pos h two_pos) (subset.refl _)) $ have ∀ (a b c : R), abv (c-a) < ε / 2 → abv (b-c) < ε / 2 → abv (b-a) < ε, from assume a b c hac hcb, calc abv (b - a) ≤ _ : abv_sub_le abv b c a ... = abv (c - a) + abv (b - c) : add_comm _ _ ... < ε / 2 + ε / 2 : add_lt_add hac hcb ... = ε : by rw [div_add_div_same, add_self_div_two], by simpa [comp_rel] } /-- The uniform structure coming from an absolute value. -/ def uniform_space : uniform_space R := uniform_space.of_core (uniform_space_core abv) theorem mem_uniformity {s : set (R×R)} : s ∈ (uniform_space_core abv).uniformity ↔ (∃ε>0, ∀{a b:R}, abv (b - a) < ε → (a, b) ∈ s) := begin suffices : s ∈ (⨅ ε: {ε : 𝕜 // ε > 0}, 𝓟 {p:R×R | abv (p.2 - p.1) < ε.val}) ↔ _, { rw infi_subtype at this, exact this }, rw mem_infi, { simp [subset_def] }, { exact assume ⟨r, hr⟩ ⟨p, hp⟩, ⟨⟨min r p, lt_min hr hp⟩, by simp [lt_min_iff, (≥)] {contextual := tt}⟩, }, end end is_absolute_value
80816e647400539db56365f426203fcb24b28025
b70031c8e2c5337b91d7e70f1e0c5f528f7b0e77
/src/algebra/group_power/lemmas.lean
ed4280d74137fcbd238bb43438a9b2ced199d6dd
[ "Apache-2.0" ]
permissive
molodiuc/mathlib
cae2ba3ef1601c1f42ca0b625c79b061b63fef5b
98ebe5a6739fbe254f9ee9d401882d4388f91035
refs/heads/master
1,674,237,127,059
1,606,353,533,000
1,606,353,533,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
26,333
lean
/- Copyright (c) 2015 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Robert Y. Lewis -/ import algebra.group_power.basic import algebra.opposites import data.list.basic import data.int.cast import data.equiv.basic import data.equiv.mul_add import deprecated.group /-! # Lemmas about power operations on monoids and groups This file contains lemmas about `monoid.pow`, `group.pow`, `nsmul`, `gsmul` which require additional imports besides those available in `.basic`. -/ universes u v w x y z u₁ u₂ variables {M : Type u} {N : Type v} {G : Type w} {H : Type x} {A : Type y} {B : Type z} {R : Type u₁} {S : Type u₂} /-! ### (Additive) monoid -/ section monoid variables [monoid M] [monoid N] [add_monoid A] [add_monoid B] @[simp] theorem nsmul_one [has_one A] : ∀ n : ℕ, n •ℕ (1 : A) = n := add_monoid_hom.eq_nat_cast ⟨λ n, n •ℕ (1 : A), zero_nsmul _, λ _ _, add_nsmul _ _ _⟩ (one_nsmul _) @[simp, priority 500] theorem list.prod_repeat (a : M) (n : ℕ) : (list.repeat a n).prod = a ^ n := begin induction n with n ih, { refl }, { rw [list.repeat_succ, list.prod_cons, ih], refl, } end @[simp, priority 500] theorem list.sum_repeat : ∀ (a : A) (n : ℕ), (list.repeat a n).sum = n •ℕ a := @list.prod_repeat (multiplicative A) _ @[simp, norm_cast] lemma units.coe_pow (u : units M) (n : ℕ) : ((u ^ n : units M) : M) = u ^ n := (units.coe_hom M).map_pow u n lemma is_unit_of_pow_eq_one (x : M) (n : ℕ) (hx : x ^ n = 1) (hn : 0 < n) : is_unit x := begin cases n, { exact (nat.not_lt_zero _ hn).elim }, refine ⟨⟨x, x ^ n, _, _⟩, rfl⟩, { rwa [pow_succ] at hx }, { rwa [pow_succ'] at hx } end end monoid theorem nat.nsmul_eq_mul (m n : ℕ) : m •ℕ n = m * n := by induction m with m ih; [rw [zero_nsmul, zero_mul], rw [succ_nsmul', ih, nat.succ_mul]] section group variables [group G] [group H] [add_group A] [add_group B] open int local attribute [ematch] le_of_lt open nat theorem gsmul_one [has_one A] (n : ℤ) : n •ℤ (1 : A) = n := by cases n; simp lemma gpow_add_one (a : G) : ∀ n : ℤ, a ^ (n + 1) = a ^ n * a | (of_nat n) := by simp [← int.coe_nat_succ, pow_succ'] | -[1+0] := by simp [int.neg_succ_of_nat_eq] | -[1+(n+1)] := by rw [int.neg_succ_of_nat_eq, gpow_neg, neg_add, neg_add_cancel_right, gpow_neg, ← int.coe_nat_succ, gpow_coe_nat, gpow_coe_nat, pow_succ _ (n + 1), mul_inv_rev, inv_mul_cancel_right] theorem add_one_gsmul : ∀ (a : A) (i : ℤ), (i + 1) •ℤ a = i •ℤ a + a := @gpow_add_one (multiplicative A) _ lemma gpow_sub_one (a : G) (n : ℤ) : a ^ (n - 1) = a ^ n * a⁻¹ := calc a ^ (n - 1) = a ^ (n - 1) * a * a⁻¹ : (mul_inv_cancel_right _ _).symm ... = a^n * a⁻¹ : by rw [← gpow_add_one, sub_add_cancel] lemma gpow_add (a : G) (m n : ℤ) : a ^ (m + n) = a ^ m * a ^ n := begin induction n using int.induction_on with n ihn n ihn, case hz : { simp }, { simp only [← add_assoc, gpow_add_one, ihn, mul_assoc] }, { rw [gpow_sub_one, ← mul_assoc, ← ihn, ← gpow_sub_one, add_sub_assoc] } end lemma mul_self_gpow (b : G) (m : ℤ) : b*b^m = b^(m+1) := by { conv_lhs {congr, rw ← gpow_one b }, rw [← gpow_add, add_comm] } lemma mul_gpow_self (b : G) (m : ℤ) : b^m*b = b^(m+1) := by { conv_lhs {congr, skip, rw ← gpow_one b }, rw [← gpow_add, add_comm] } theorem add_gsmul : ∀ (a : A) (i j : ℤ), (i + j) •ℤ a = i •ℤ a + j •ℤ a := @gpow_add (multiplicative A) _ lemma gpow_sub (a : G) (m n : ℤ) : a ^ (m - n) = a ^ m * (a ^ n)⁻¹ := by rw [sub_eq_add_neg, gpow_add, gpow_neg] lemma sub_gsmul (m n : ℤ) (a : A) : (m - n) •ℤ a = m •ℤ a - n •ℤ a := @gpow_sub (multiplicative A) _ _ _ _ theorem gpow_one_add (a : G) (i : ℤ) : a ^ (1 + i) = a * a ^ i := by rw [gpow_add, gpow_one] theorem one_add_gsmul : ∀ (a : A) (i : ℤ), (1 + i) •ℤ a = a + i •ℤ a := @gpow_one_add (multiplicative A) _ theorem gpow_mul_comm (a : G) (i j : ℤ) : a ^ i * a ^ j = a ^ j * a ^ i := by rw [← gpow_add, ← gpow_add, add_comm] theorem gsmul_add_comm : ∀ (a : A) (i j), i •ℤ a + j •ℤ a = j •ℤ a + i •ℤ a := @gpow_mul_comm (multiplicative A) _ theorem gpow_mul (a : G) (m n : ℤ) : a ^ (m * n) = (a ^ m) ^ n := int.induction_on n (by simp) (λ n ihn, by simp [mul_add, gpow_add, ihn]) (λ n ihn, by simp only [mul_sub, gpow_sub, ihn, mul_one, gpow_one]) theorem gsmul_mul' : ∀ (a : A) (m n : ℤ), m * n •ℤ a = n •ℤ (m •ℤ a) := @gpow_mul (multiplicative A) _ theorem gpow_mul' (a : G) (m n : ℤ) : a ^ (m * n) = (a ^ n) ^ m := by rw [mul_comm, gpow_mul] theorem gsmul_mul (a : A) (m n : ℤ) : m * n •ℤ a = m •ℤ (n •ℤ a) := by rw [mul_comm, gsmul_mul'] theorem gpow_bit0 (a : G) (n : ℤ) : a ^ bit0 n = a ^ n * a ^ n := gpow_add _ _ _ theorem bit0_gsmul (a : A) (n : ℤ) : bit0 n •ℤ a = n •ℤ a + n •ℤ a := gpow_add _ _ _ theorem gpow_bit1 (a : G) (n : ℤ) : a ^ bit1 n = a ^ n * a ^ n * a := by rw [bit1, gpow_add, gpow_bit0, gpow_one] theorem bit1_gsmul : ∀ (a : A) (n : ℤ), bit1 n •ℤ a = n •ℤ a + n •ℤ a + a := @gpow_bit1 (multiplicative A) _ theorem monoid_hom.map_gpow (f : G →* H) (a : G) (n : ℤ) : f (a ^ n) = f a ^ n := by cases n; [exact f.map_pow _ _, exact (f.map_inv _).trans (congr_arg _ $ f.map_pow _ _)] theorem add_monoid_hom.map_gsmul (f : A →+ B) (a : A) (n : ℤ) : f (n •ℤ a) = n •ℤ f a := f.to_multiplicative.map_gpow a n @[simp, norm_cast] lemma units.coe_gpow (u : units G) (n : ℤ) : ((u ^ n : units G) : G) = u ^ n := (units.coe_hom G).map_gpow u n end group section ordered_add_comm_group variables [ordered_add_comm_group A] /-! Lemmas about `gsmul` under ordering, placed here (rather than in `algebra.group_power.basic` with their friends) because they require facts from `data.int.basic`-/ open int lemma gsmul_pos {a : A} (ha : 0 < a) {k : ℤ} (hk : (0:ℤ) < k) : 0 < k •ℤ a := begin lift k to ℕ using int.le_of_lt hk, apply nsmul_pos ha, exact coe_nat_pos.mp hk, end theorem gsmul_le_gsmul {a : A} {n m : ℤ} (ha : 0 ≤ a) (h : n ≤ m) : n •ℤ a ≤ m •ℤ a := calc n •ℤ a = n •ℤ a + 0 : (add_zero _).symm ... ≤ n •ℤ a + (m - n) •ℤ a : add_le_add_left (gsmul_nonneg ha (sub_nonneg.mpr h)) _ ... = m •ℤ a : by { rw [← add_gsmul], simp } theorem gsmul_lt_gsmul {a : A} {n m : ℤ} (ha : 0 < a) (h : n < m) : n •ℤ a < m •ℤ a := calc n •ℤ a = n •ℤ a + 0 : (add_zero _).symm ... < n •ℤ a + (m - n) •ℤ a : add_lt_add_left (gsmul_pos ha (sub_pos.mpr h)) _ ... = m •ℤ a : by { rw [← add_gsmul], simp } end ordered_add_comm_group section linear_ordered_add_comm_group variable [linear_ordered_add_comm_group A] theorem gsmul_le_gsmul_iff {a : A} {n m : ℤ} (ha : 0 < a) : n •ℤ a ≤ m •ℤ a ↔ n ≤ m := begin refine ⟨λ h, _, gsmul_le_gsmul $ le_of_lt ha⟩, by_contra H, exact lt_irrefl _ (lt_of_lt_of_le (gsmul_lt_gsmul ha (not_le.mp H)) h) end theorem gsmul_lt_gsmul_iff {a : A} {n m : ℤ} (ha : 0 < a) : n •ℤ a < m •ℤ a ↔ n < m := begin refine ⟨λ h, _, gsmul_lt_gsmul ha⟩, by_contra H, exact lt_irrefl _ (lt_of_le_of_lt (gsmul_le_gsmul (le_of_lt ha) $ not_lt.mp H) h) end theorem nsmul_le_nsmul_iff {a : A} {n m : ℕ} (ha : 0 < a) : n •ℕ a ≤ m •ℕ a ↔ n ≤ m := begin refine ⟨λ h, _, nsmul_le_nsmul $ le_of_lt ha⟩, by_contra H, exact lt_irrefl _ (lt_of_lt_of_le (nsmul_lt_nsmul ha (not_le.mp H)) h) end theorem nsmul_lt_nsmul_iff {a : A} {n m : ℕ} (ha : 0 < a) : n •ℕ a < m •ℕ a ↔ n < m := begin refine ⟨λ h, _, nsmul_lt_nsmul ha⟩, by_contra H, exact lt_irrefl _ (lt_of_le_of_lt (nsmul_le_nsmul (le_of_lt ha) $ not_lt.mp H) h) end end linear_ordered_add_comm_group @[simp] lemma with_bot.coe_nsmul [add_monoid A] (a : A) (n : ℕ) : ((nsmul n a : A) : with_bot A) = nsmul n a := add_monoid_hom.map_nsmul ⟨(coe : A → with_bot A), with_bot.coe_zero, with_bot.coe_add⟩ a n theorem nsmul_eq_mul' [semiring R] (a : R) (n : ℕ) : n •ℕ a = a * n := by induction n with n ih; [rw [zero_nsmul, nat.cast_zero, mul_zero], rw [succ_nsmul', ih, nat.cast_succ, mul_add, mul_one]] @[simp] theorem nsmul_eq_mul [semiring R] (n : ℕ) (a : R) : n •ℕ a = n * a := by rw [nsmul_eq_mul', (n.cast_commute a).eq] theorem mul_nsmul_left [semiring R] (a b : R) (n : ℕ) : n •ℕ (a * b) = a * (n •ℕ b) := by rw [nsmul_eq_mul', nsmul_eq_mul', mul_assoc] theorem mul_nsmul_assoc [semiring R] (a b : R) (n : ℕ) : n •ℕ (a * b) = n •ℕ a * b := by rw [nsmul_eq_mul, nsmul_eq_mul, mul_assoc] @[simp, norm_cast] theorem nat.cast_pow [semiring R] (n m : ℕ) : (↑(n ^ m) : R) = ↑n ^ m := by induction m with m ih; [exact nat.cast_one, rw [pow_succ', pow_succ', nat.cast_mul, ih]] @[simp, norm_cast] theorem int.coe_nat_pow (n m : ℕ) : ((n ^ m : ℕ) : ℤ) = n ^ m := by induction m with m ih; [exact int.coe_nat_one, rw [pow_succ', pow_succ', int.coe_nat_mul, ih]] theorem int.nat_abs_pow (n : ℤ) (k : ℕ) : int.nat_abs (n ^ k) = (int.nat_abs n) ^ k := by induction k with k ih; [refl, rw [pow_succ', int.nat_abs_mul, pow_succ', ih]] -- The next four lemmas allow us to replace multiplication by a numeral with a `gsmul` expression. -- They are used by the `noncomm_ring` tactic, to normalise expressions before passing to `abel`. lemma bit0_mul [ring R] {n r : R} : bit0 n * r = gsmul 2 (n * r) := by { dsimp [bit0], rw [add_mul, add_gsmul, one_gsmul], } lemma mul_bit0 [ring R] {n r : R} : r * bit0 n = gsmul 2 (r * n) := by { dsimp [bit0], rw [mul_add, add_gsmul, one_gsmul], } lemma bit1_mul [ring R] {n r : R} : bit1 n * r = gsmul 2 (n * r) + r := by { dsimp [bit1], rw [add_mul, bit0_mul, one_mul], } lemma mul_bit1 [ring R] {n r : R} : r * bit1 n = gsmul 2 (r * n) + r := by { dsimp [bit1], rw [mul_add, mul_bit0, mul_one], } @[simp] theorem gsmul_eq_mul [ring R] (a : R) : ∀ n, n •ℤ a = n * a | (n : ℕ) := nsmul_eq_mul _ _ | -[1+ n] := show -(_ •ℕ _)=-_*_, by rw [neg_mul_eq_neg_mul_symm, nsmul_eq_mul, nat.cast_succ] theorem gsmul_eq_mul' [ring R] (a : R) (n : ℤ) : n •ℤ a = a * n := by rw [gsmul_eq_mul, (n.cast_commute a).eq] theorem mul_gsmul_left [ring R] (a b : R) (n : ℤ) : n •ℤ (a * b) = a * (n •ℤ b) := by rw [gsmul_eq_mul', gsmul_eq_mul', mul_assoc] theorem mul_gsmul_assoc [ring R] (a b : R) (n : ℤ) : n •ℤ (a * b) = n •ℤ a * b := by rw [gsmul_eq_mul, gsmul_eq_mul, mul_assoc] @[simp] lemma gsmul_int_int (a b : ℤ) : a •ℤ b = a * b := by simp [gsmul_eq_mul] lemma gsmul_int_one (n : ℤ) : n •ℤ 1 = n := by simp @[simp, norm_cast] theorem int.cast_pow [ring R] (n : ℤ) (m : ℕ) : (↑(n ^ m) : R) = ↑n ^ m := by induction m with m ih; [exact int.cast_one, rw [pow_succ, pow_succ, int.cast_mul, ih]] lemma neg_one_pow_eq_pow_mod_two [ring R] {n : ℕ} : (-1 : R) ^ n = (-1) ^ (n % 2) := by rw [← nat.mod_add_div n 2, pow_add, pow_mul]; simp [pow_two] section linear_ordered_semiring variable [linear_ordered_semiring R] /-- Bernoulli's inequality. This version works for semirings but requires an additional hypothesis `0 ≤ a * a`. -/ theorem one_add_mul_le_pow' {a : R} (Hsqr : 0 ≤ a * a) (H : 0 ≤ 1 + a) : ∀ (n : ℕ), 1 + n •ℕ a ≤ (1 + a) ^ n | 0 := le_of_eq $ add_zero _ | (n+1) := calc 1 + (n + 1) •ℕ a ≤ (1 + a) * (1 + n •ℕ a) : by simpa [succ_nsmul, mul_add, add_mul, mul_nsmul_left, add_comm, add_left_comm] using nsmul_nonneg Hsqr n ... ≤ (1 + a)^(n+1) : mul_le_mul_of_nonneg_left (one_add_mul_le_pow' n) H private lemma pow_lt_pow_of_lt_one_aux {a : R} (h : 0 < a) (ha : a < 1) (i : ℕ) : ∀ k : ℕ, a ^ (i + k + 1) < a ^ i | 0 := begin simp only [add_zero], rw ←one_mul (a^i), exact mul_lt_mul ha (le_refl _) (pow_pos h _) zero_le_one end | (k+1) := begin rw ←one_mul (a^i), apply mul_lt_mul ha _ _ zero_le_one, { apply le_of_lt, apply pow_lt_pow_of_lt_one_aux }, { show 0 < a ^ (i + (k + 1) + 0), apply pow_pos h } end private lemma pow_le_pow_of_le_one_aux {a : R} (h : 0 ≤ a) (ha : a ≤ 1) (i : ℕ) : ∀ k : ℕ, a ^ (i + k) ≤ a ^ i | 0 := by simp | (k+1) := by rw [←add_assoc, ←one_mul (a^i)]; exact mul_le_mul ha (pow_le_pow_of_le_one_aux _) (pow_nonneg h _) zero_le_one lemma pow_lt_pow_of_lt_one {a : R} (h : 0 < a) (ha : a < 1) {i j : ℕ} (hij : i < j) : a ^ j < a ^ i := let ⟨k, hk⟩ := nat.exists_eq_add_of_lt hij in by rw hk; exact pow_lt_pow_of_lt_one_aux h ha _ _ lemma pow_lt_pow_iff_of_lt_one {a : R} {n m : ℕ} (hpos : 0 < a) (h : a < 1) : a ^ m < a ^ n ↔ n < m := begin have : strict_mono (λ (n : order_dual ℕ), a ^ (id n : ℕ)) := λ m n, pow_lt_pow_of_lt_one hpos h, exact this.lt_iff_lt end lemma pow_le_pow_of_le_one {a : R} (h : 0 ≤ a) (ha : a ≤ 1) {i j : ℕ} (hij : i ≤ j) : a ^ j ≤ a ^ i := let ⟨k, hk⟩ := nat.exists_eq_add_of_le hij in by rw hk; exact pow_le_pow_of_le_one_aux h ha _ _ lemma pow_le_one {x : R} : ∀ (n : ℕ) (h0 : 0 ≤ x) (h1 : x ≤ 1), x ^ n ≤ 1 | 0 h0 h1 := le_refl (1 : R) | (n+1) h0 h1 := mul_le_one h1 (pow_nonneg h0 _) (pow_le_one n h0 h1) end linear_ordered_semiring /-- Bernoulli's inequality for `n : ℕ`, `-2 ≤ a`. -/ theorem one_add_mul_le_pow [linear_ordered_ring R] {a : R} (H : -2 ≤ a) : ∀ (n : ℕ), 1 + n •ℕ a ≤ (1 + a) ^ n | 0 := le_of_eq $ add_zero _ | 1 := by simp | (n+2) := have H' : 0 ≤ 2 + a, from neg_le_iff_add_nonneg.1 H, have 0 ≤ n •ℕ (a * a * (2 + a)) + a * a, from add_nonneg (nsmul_nonneg (mul_nonneg (mul_self_nonneg a) H') n) (mul_self_nonneg a), calc 1 + (n + 2) •ℕ a ≤ 1 + (n + 2) •ℕ a + (n •ℕ (a * a * (2 + a)) + a * a) : (le_add_iff_nonneg_right _).2 this ... = (1 + a) * (1 + a) * (1 + n •ℕ a) : by { simp only [add_mul, mul_add, mul_two, mul_one, one_mul, succ_nsmul, nsmul_add, mul_nsmul_assoc, (mul_nsmul_left _ _ _).symm], ac_refl } ... ≤ (1 + a) * (1 + a) * (1 + a)^n : mul_le_mul_of_nonneg_left (one_add_mul_le_pow n) (mul_self_nonneg (1 + a)) ... = (1 + a)^(n + 2) : by simp only [pow_succ, mul_assoc] /-- Bernoulli's inequality reformulated to estimate `a^n`. -/ theorem one_add_sub_mul_le_pow [linear_ordered_ring R] {a : R} (H : -1 ≤ a) (n : ℕ) : 1 + n •ℕ (a - 1) ≤ a ^ n := have -2 ≤ a - 1, by { rw [bit0, neg_add], exact sub_le_sub_right H 1 }, by simpa only [add_sub_cancel'_right] using one_add_mul_le_pow this n namespace int lemma units_pow_two (u : units ℤ) : u ^ 2 = 1 := (pow_two u).symm ▸ units_mul_self u lemma units_pow_eq_pow_mod_two (u : units ℤ) (n : ℕ) : u ^ n = u ^ (n % 2) := by conv {to_lhs, rw ← nat.mod_add_div n 2}; rw [pow_add, pow_mul, units_pow_two, one_pow, mul_one] @[simp] lemma nat_abs_pow_two (x : ℤ) : (x.nat_abs ^ 2 : ℤ) = x ^ 2 := by rw [pow_two, int.nat_abs_mul_self', pow_two] lemma abs_le_self_pow_two (a : ℤ) : (int.nat_abs a : ℤ) ≤ a ^ 2 := by { rw [← int.nat_abs_pow_two a, pow_two], norm_cast, apply nat.le_mul_self } lemma le_self_pow_two (b : ℤ) : b ≤ b ^ 2 := le_trans (le_nat_abs) (abs_le_self_pow_two _) end int variables (M G A) /-- Monoid homomorphisms from `multiplicative ℕ` are defined by the image of `multiplicative.of_add 1`. -/ def powers_hom [monoid M] : M ≃ (multiplicative ℕ →* M) := { to_fun := λ x, ⟨λ n, x ^ n.to_add, pow_zero x, λ m n, pow_add x m n⟩, inv_fun := λ f, f (multiplicative.of_add 1), left_inv := pow_one, right_inv := λ f, monoid_hom.ext $ λ n, by { simp [← f.map_pow, ← of_add_nsmul] } } /-- Monoid homomorphisms from `multiplicative ℤ` are defined by the image of `multiplicative.of_add 1`. -/ def gpowers_hom [group G] : G ≃ (multiplicative ℤ →* G) := { to_fun := λ x, ⟨λ n, x ^ n.to_add, gpow_zero x, λ m n, gpow_add x m n⟩, inv_fun := λ f, f (multiplicative.of_add 1), left_inv := gpow_one, right_inv := λ f, monoid_hom.ext $ λ n, by { simp [← f.map_gpow, ← of_add_gsmul ] } } /-- Additive homomorphisms from `ℕ` are defined by the image of `1`. -/ def multiples_hom [add_monoid A] : A ≃ (ℕ →+ A) := { to_fun := λ x, ⟨λ n, n •ℕ x, zero_nsmul x, λ m n, add_nsmul _ _ _⟩, inv_fun := λ f, f 1, left_inv := one_nsmul, right_inv := λ f, add_monoid_hom.ext_nat $ one_nsmul (f 1) } /-- Additive homomorphisms from `ℤ` are defined by the image of `1`. -/ def gmultiples_hom [add_group A] : A ≃ (ℤ →+ A) := { to_fun := λ x, ⟨λ n, n •ℤ x, zero_gsmul x, λ m n, add_gsmul _ _ _⟩, inv_fun := λ f, f 1, left_inv := one_gsmul, right_inv := λ f, add_monoid_hom.ext_int $ one_gsmul (f 1) } variables {M G A} @[simp] lemma powers_hom_apply [monoid M] (x : M) (n : multiplicative ℕ) : powers_hom M x n = x ^ n.to_add := rfl @[simp] lemma powers_hom_symm_apply [monoid M] (f : multiplicative ℕ →* M) : (powers_hom M).symm f = f (multiplicative.of_add 1) := rfl @[simp] lemma gpowers_hom_apply [group G] (x : G) (n : multiplicative ℤ) : gpowers_hom G x n = x ^ n.to_add := rfl @[simp] lemma gpowers_hom_symm_apply [group G] (f : multiplicative ℤ →* G) : (gpowers_hom G).symm f = f (multiplicative.of_add 1) := rfl @[simp] lemma multiples_hom_apply [add_monoid A] (x : A) (n : ℕ) : multiples_hom A x n = n •ℕ x := rfl @[simp] lemma multiples_hom_symm_apply [add_monoid A] (f : ℕ →+ A) : (multiples_hom A).symm f = f 1 := rfl @[simp] lemma gmultiples_hom_apply [add_group A] (x : A) (n : ℤ) : gmultiples_hom A x n = n •ℤ x := rfl @[simp] lemma gmultiples_hom_symm_apply [add_group A] (f : ℤ →+ A) : (gmultiples_hom A).symm f = f 1 := rfl lemma monoid_hom.apply_mnat [monoid M] (f : multiplicative ℕ →* M) (n : multiplicative ℕ) : f n = (f (multiplicative.of_add 1)) ^ n.to_add := by rw [← powers_hom_symm_apply, ← powers_hom_apply, equiv.apply_symm_apply] @[ext] lemma monoid_hom.ext_mnat [monoid M] ⦃f g : multiplicative ℕ →* M⦄ (h : f (multiplicative.of_add 1) = g (multiplicative.of_add 1)) : f = g := monoid_hom.ext $ λ n, by rw [f.apply_mnat, g.apply_mnat, h] lemma monoid_hom.apply_mint [group M] (f : multiplicative ℤ →* M) (n : multiplicative ℤ) : f n = (f (multiplicative.of_add 1)) ^ n.to_add := by rw [← gpowers_hom_symm_apply, ← gpowers_hom_apply, equiv.apply_symm_apply] @[ext] lemma monoid_hom.ext_mint [group M] ⦃f g : multiplicative ℤ →* M⦄ (h : f (multiplicative.of_add 1) = g (multiplicative.of_add 1)) : f = g := monoid_hom.ext $ λ n, by rw [f.apply_mint, g.apply_mint, h] lemma add_monoid_hom.apply_nat [add_monoid M] (f : ℕ →+ M) (n : ℕ) : f n = n •ℕ (f 1) := by rw [← multiples_hom_symm_apply, ← multiples_hom_apply, equiv.apply_symm_apply] /-! `add_monoid_hom.ext_nat` is defined in `data.nat.cast` -/ lemma add_monoid_hom.apply_int [add_group M] (f : ℤ →+ M) (n : ℤ) : f n = n •ℤ (f 1) := by rw [← gmultiples_hom_symm_apply, ← gmultiples_hom_apply, equiv.apply_symm_apply] /-! `add_monoid_hom.ext_int` is defined in `data.int.cast` -/ variables (M G A) /-- If `M` is commutative, `powers_hom` is a multiplicative equivalence. -/ def powers_mul_hom [comm_monoid M] : M ≃* (multiplicative ℕ →* M) := { map_mul' := λ a b, monoid_hom.ext $ by simp [mul_pow], ..powers_hom M} /-- If `M` is commutative, `gpowers_hom` is a multiplicative equivalence. -/ def gpowers_mul_hom [comm_group G] : G ≃* (multiplicative ℤ →* G) := { map_mul' := λ a b, monoid_hom.ext $ by simp [mul_gpow], ..gpowers_hom G} /-- If `M` is commutative, `multiples_hom` is an additive equivalence. -/ def multiples_add_hom [add_comm_monoid A] : A ≃+ (ℕ →+ A) := { map_add' := λ a b, add_monoid_hom.ext $ by simp [nsmul_add], ..multiples_hom A} /-- If `M` is commutative, `gmultiples_hom` is an additive equivalence. -/ def gmultiples_add_hom [add_comm_group A] : A ≃+ (ℤ →+ A) := { map_add' := λ a b, add_monoid_hom.ext $ by simp [gsmul_add], ..gmultiples_hom A} variables {M G A} @[simp] lemma powers_mul_hom_apply [comm_monoid M] (x : M) (n : multiplicative ℕ) : powers_mul_hom M x n = x ^ n.to_add := rfl @[simp] lemma powers_mul_hom_symm_apply [comm_monoid M] (f : multiplicative ℕ →* M) : (powers_mul_hom M).symm f = f (multiplicative.of_add 1) := rfl @[simp] lemma gpowers_mul_hom_apply [comm_group G] (x : G) (n : multiplicative ℤ) : gpowers_mul_hom G x n = x ^ n.to_add := rfl @[simp] lemma gpowers_mul_hom_symm_apply [comm_group G] (f : multiplicative ℤ →* G) : (gpowers_mul_hom G).symm f = f (multiplicative.of_add 1) := rfl @[simp] lemma multiples_add_hom_apply [add_comm_monoid A] (x : A) (n : ℕ) : multiples_add_hom A x n = n •ℕ x := rfl @[simp] lemma multiples_add_hom_symm_apply [add_comm_monoid A] (f : ℕ →+ A) : (multiples_add_hom A).symm f = f 1 := rfl @[simp] lemma gmultiples_add_hom_apply [add_comm_group A] (x : A) (n : ℤ) : gmultiples_add_hom A x n = n •ℤ x := rfl @[simp] lemma gmultiples_add_hom_symm_apply [add_comm_group A] (f : ℤ →+ A) : (gmultiples_add_hom A).symm f = f 1 := rfl /-! ### Commutativity (again) Facts about `semiconj_by` and `commute` that require `gpow` or `gsmul`, or the fact that integer multiplication equals semiring multiplication. -/ namespace semiconj_by section variables [semiring R] {a x y : R} @[simp] lemma cast_nat_mul_right (h : semiconj_by a x y) (n : ℕ) : semiconj_by a ((n : R) * x) (n * y) := semiconj_by.mul_right (nat.commute_cast _ _) h @[simp] lemma cast_nat_mul_left (h : semiconj_by a x y) (n : ℕ) : semiconj_by ((n : R) * a) x y := semiconj_by.mul_left (nat.cast_commute _ _) h @[simp] lemma cast_nat_mul_cast_nat_mul (h : semiconj_by a x y) (m n : ℕ) : semiconj_by ((m : R) * a) (n * x) (n * y) := (h.cast_nat_mul_left m).cast_nat_mul_right n end variables [monoid M] [group G] [ring R] @[simp] lemma units_gpow_right {a : M} {x y : units M} (h : semiconj_by a x y) : ∀ m : ℤ, semiconj_by a (↑(x^m)) (↑(y^m)) | (n : ℕ) := by simp only [gpow_coe_nat, units.coe_pow, h, pow_right] | -[1+n] := by simp only [gpow_neg_succ_of_nat, units.coe_pow, units_inv_right, h, pow_right] variables {a b x y x' y' : R} @[simp] lemma cast_int_mul_right (h : semiconj_by a x y) (m : ℤ) : semiconj_by a ((m : ℤ) * x) (m * y) := semiconj_by.mul_right (int.commute_cast _ _) h @[simp] lemma cast_int_mul_left (h : semiconj_by a x y) (m : ℤ) : semiconj_by ((m : R) * a) x y := semiconj_by.mul_left (int.cast_commute _ _) h @[simp] lemma cast_int_mul_cast_int_mul (h : semiconj_by a x y) (m n : ℤ) : semiconj_by ((m : R) * a) (n * x) (n * y) := (h.cast_int_mul_left m).cast_int_mul_right n end semiconj_by namespace commute section variables [semiring R] {a b : R} @[simp] theorem cast_nat_mul_right (h : commute a b) (n : ℕ) : commute a ((n : R) * b) := h.cast_nat_mul_right n @[simp] theorem cast_nat_mul_left (h : commute a b) (n : ℕ) : commute ((n : R) * a) b := h.cast_nat_mul_left n @[simp] theorem cast_nat_mul_cast_nat_mul (h : commute a b) (m n : ℕ) : commute ((m : R) * a) (n * b) := h.cast_nat_mul_cast_nat_mul m n @[simp] theorem self_cast_nat_mul (n : ℕ) : commute a (n * a) := (commute.refl a).cast_nat_mul_right n @[simp] theorem cast_nat_mul_self (n : ℕ) : commute ((n : R) * a) a := (commute.refl a).cast_nat_mul_left n @[simp] theorem self_cast_nat_mul_cast_nat_mul (m n : ℕ) : commute ((m : R) * a) (n * a) := (commute.refl a).cast_nat_mul_cast_nat_mul m n end variables [monoid M] [group G] [ring R] @[simp] lemma units_gpow_right {a : M} {u : units M} (h : commute a u) (m : ℤ) : commute a (↑(u^m)) := h.units_gpow_right m @[simp] lemma units_gpow_left {u : units M} {a : M} (h : commute ↑u a) (m : ℤ) : commute (↑(u^m)) a := (h.symm.units_gpow_right m).symm variables {a b : R} @[simp] lemma cast_int_mul_right (h : commute a b) (m : ℤ) : commute a (m * b) := h.cast_int_mul_right m @[simp] lemma cast_int_mul_left (h : commute a b) (m : ℤ) : commute ((m : R) * a) b := h.cast_int_mul_left m lemma cast_int_mul_cast_int_mul (h : commute a b) (m n : ℤ) : commute ((m : R) * a) (n * b) := h.cast_int_mul_cast_int_mul m n variables (a) (m n : ℤ) @[simp] theorem self_cast_int_mul : commute a (n * a) := (commute.refl a).cast_int_mul_right n @[simp] theorem cast_int_mul_self : commute ((n : R) * a) a := (commute.refl a).cast_int_mul_left n theorem self_cast_int_mul_cast_int_mul : commute ((m : R) * a) (n * a) := (commute.refl a).cast_int_mul_cast_int_mul m n end commute section multiplicative open multiplicative @[simp] lemma nat.to_add_pow (a : multiplicative ℕ) (b : ℕ) : to_add (a ^ b) = to_add a * b := begin induction b with b ih, { erw [pow_zero, to_add_one, mul_zero] }, { simp [*, pow_succ, add_comm, nat.mul_succ] } end @[simp] lemma nat.of_add_mul (a b : ℕ) : of_add (a * b) = of_add a ^ b := (nat.to_add_pow _ _).symm @[simp] lemma int.to_add_pow (a : multiplicative ℤ) (b : ℕ) : to_add (a ^ b) = to_add a * b := by induction b; simp [*, mul_add, pow_succ, add_comm] @[simp] lemma int.to_add_gpow (a : multiplicative ℤ) (b : ℤ) : to_add (a ^ b) = to_add a * b := int.induction_on b (by simp) (by simp [gpow_add, mul_add] {contextual := tt}) (by simp [gpow_add, mul_add, sub_eq_add_neg] {contextual := tt}) @[simp] lemma int.of_add_mul (a b : ℤ) : of_add (a * b) = of_add a ^ b := (int.to_add_gpow _ _).symm end multiplicative namespace units variables [monoid M] lemma conj_pow (u : units M) (x : M) (n : ℕ) : (↑u * x * ↑(u⁻¹))^n = u * x^n * ↑(u⁻¹) := (divp_eq_iff_mul_eq.2 ((u.mk_semiconj_by x).pow_right n).eq.symm).symm lemma conj_pow' (u : units M) (x : M) (n : ℕ) : (↑(u⁻¹) * x * u)^n = ↑(u⁻¹) * x^n * u:= (u⁻¹).conj_pow x n open opposite /-- Moving to the opposite monoid commutes with taking powers. -/ @[simp] lemma op_pow (x : M) (n : ℕ) : op (x ^ n) = (op x) ^ n := begin induction n with n h, { simp }, { rw [pow_succ', op_mul, h, pow_succ] } end @[simp] lemma unop_pow (x : Mᵒᵖ) (n : ℕ) : unop (x ^ n) = (unop x) ^ n := begin induction n with n h, { simp }, { rw [pow_succ', unop_mul, h, pow_succ] } end end units
b533eea726d1b1fc7026cdfa4077ecac0bf838a6
7565ffb53cc64430691ce89265da0f944ee43051
/hott/homotopy/cofiber.hlean
36e20800c78a972145208c6193251c066f8a6185
[ "Apache-2.0" ]
permissive
EgbertRijke/lean2
cacddba3d150f8b38688e044960a208bf851f90e
519dcee739fbca5a4ab77d66db7652097b4604cd
refs/heads/master
1,606,936,954,854
1,498,836,083,000
1,498,910,882,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
4,124
hlean
/- Copyright (c) 2016 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jakob von Raumer The Cofiber Type -/ import hit.pushout function .susp types.unit open eq pushout unit pointed is_trunc is_equiv susp unit equiv definition cofiber {A B : Type} (f : A → B) := pushout f (λ (a : A), ⋆) namespace cofiber section parameters {A B : Type} (f : A → B) definition cod : B → cofiber f := inl definition base : cofiber f := inr ⋆ parameter {f} protected definition glue (a : A) : cofiber.cod f (f a) = cofiber.base f := pushout.glue a protected definition rec {P : cofiber f → Type} (Pcod : Π (b : B), P (cod b)) (Pbase : P base) (Pglue : Π (a : A), pathover P (Pcod (f a)) (glue a) Pbase) : (Π y, P y) := begin intro y, induction y, exact Pcod x, induction x, exact Pbase, exact Pglue x end protected definition rec_on {P : cofiber f → Type} (y : cofiber f) (Pcod : Π (b : B), P (cod b)) (Pbase : P base) (Pglue : Π (a : A), pathover P (Pcod (f a)) (glue a) Pbase) : P y := cofiber.rec Pcod Pbase Pglue y protected theorem rec_glue {P : cofiber f → Type} (Pcod : Π (b : B), P (cod b)) (Pbase : P base) (Pglue : Π (a : A), pathover P (Pcod (f a)) (glue a) Pbase) (a : A) : apd (cofiber.rec Pcod Pbase Pglue) (cofiber.glue a) = Pglue a := !pushout.rec_glue protected definition elim {P : Type} (Pcod : B → P) (Pbase : P) (Pglue : Π (x : A), Pcod (f x) = Pbase) (y : cofiber f) : P := pushout.elim Pcod (λu, Pbase) Pglue y protected definition elim_on {P : Type} (y : cofiber f) (Pcod : B → P) (Pbase : P) (Pglue : Π (x : A), Pcod (f x) = Pbase) : P := cofiber.elim Pcod Pbase Pglue y protected theorem elim_glue {P : Type} (Pcod : B → P) (Pbase : P) (Pglue : Π (x : A), Pcod (f x) = Pbase) (a : A) : ap (cofiber.elim Pcod Pbase Pglue) (cofiber.glue a) = Pglue a := !pushout.elim_glue end end cofiber attribute cofiber.base cofiber.cod [constructor] attribute cofiber.rec cofiber.elim [recursor 8] [unfold 8] attribute cofiber.rec_on cofiber.elim_on [unfold 5] -- pointed version definition pcofiber [constructor] {A B : Type*} (f : A →* B) : Type* := pointed.MK (cofiber f) !cofiber.base notation `ℂ` := pcofiber namespace cofiber variables {A B : Type*} (f : A →* B) definition is_contr_cofiber_of_equiv [H : is_equiv f] : is_contr (cofiber f) := begin fapply is_contr.mk, exact cofiber.base f, intro a, induction a with b a, { exact !glue⁻¹ ⬝ ap inl (right_inv f b) }, { reflexivity }, { apply eq_pathover_constant_left_id_right, apply move_top_of_left, refine _ ⬝pv natural_square_tr cofiber.glue (left_inv f a) ⬝vp !ap_constant, refine ap02 inl _ ⬝ !ap_compose⁻¹, exact adj f a }, end definition pcod [constructor] (f : A →* B) : B →* pcofiber f := pmap.mk (cofiber.cod f) (ap inl (respect_pt f)⁻¹ ⬝ cofiber.glue pt) definition pcod_pcompose [constructor] (f : A →* B) : pcod f ∘* f ~* pconst A (ℂ f) := begin fapply phomotopy.mk, { intro a, exact cofiber.glue a }, { exact !con_inv_cancel_left⁻¹ ⬝ idp ◾ (!ap_inv⁻¹ ◾ idp) } end definition pcofiber_punit (A : Type*) : pcofiber (pconst A punit) ≃* psusp A := begin fapply pequiv_of_pmap, { fconstructor, intro x, induction x, exact north, exact south, exact merid x, exact (merid pt)⁻¹ }, { esimp, fapply adjointify, { intro s, induction s, exact inl ⋆, exact inr ⋆, apply glue a }, { intro s, induction s, do 2 reflexivity, esimp, apply eq_pathover, refine _ ⬝hp !ap_id⁻¹, apply hdeg_square, refine !(ap_compose (pushout.elim _ _ _)) ⬝ _, refine ap _ !elim_merid ⬝ _, apply elim_glue }, { intro c, induction c with u, induction u, reflexivity, reflexivity, esimp, apply eq_pathover, apply hdeg_square, refine _ ⬝ !ap_id⁻¹, refine !(ap_compose (pushout.elim _ _ _)) ⬝ _, refine ap02 _ !elim_glue ⬝ _, apply elim_merid }}, end end cofiber
c411ef67ce33fdd13a6fc814ba3c3ca09b20a0b4
592ee40978ac7604005a4e0d35bbc4b467389241
/Library/generated/mathscheme-lean/Squag.lean
3219097789ce6ef5b2e18e984ca121409444b236
[]
no_license
ysharoda/Deriving-Definitions
3e149e6641fae440badd35ac110a0bd705a49ad2
dfecb27572022de3d4aa702cae8db19957523a59
refs/heads/master
1,679,127,857,700
1,615,939,007,000
1,615,939,007,000
229,785,731
4
0
null
null
null
null
UTF-8
Lean
false
false
5,684
lean
import init.data.nat.basic import init.data.fin.basic import data.vector import .Prelude open Staged open nat open fin open vector section Squag structure Squag (A : Type) : Type := (op : (A → (A → A))) (commutative_op : (∀ {x y : A} , (op x y) = (op y x))) (antiAbsorbent : (∀ {x y : A} , (op x (op x y)) = y)) (idempotent_op : (∀ {x : A} , (op x x) = x)) open Squag structure Sig (AS : Type) : Type := (opS : (AS → (AS → AS))) structure Product (A : Type) : Type := (opP : ((Prod A A) → ((Prod A A) → (Prod A A)))) (commutative_opP : (∀ {xP yP : (Prod A A)} , (opP xP yP) = (opP yP xP))) (antiAbsorbentP : (∀ {xP yP : (Prod A A)} , (opP xP (opP xP yP)) = yP)) (idempotent_opP : (∀ {xP : (Prod A A)} , (opP xP xP) = xP)) structure Hom {A1 : Type} {A2 : Type} (Sq1 : (Squag A1)) (Sq2 : (Squag A2)) : Type := (hom : (A1 → A2)) (pres_op : (∀ {x1 x2 : A1} , (hom ((op Sq1) x1 x2)) = ((op Sq2) (hom x1) (hom x2)))) structure RelInterp {A1 : Type} {A2 : Type} (Sq1 : (Squag A1)) (Sq2 : (Squag A2)) : Type 1 := (interp : (A1 → (A2 → Type))) (interp_op : (∀ {x1 x2 : A1} {y1 y2 : A2} , ((interp x1 y1) → ((interp x2 y2) → (interp ((op Sq1) x1 x2) ((op Sq2) y1 y2)))))) inductive SquagTerm : Type | opL : (SquagTerm → (SquagTerm → SquagTerm)) open SquagTerm inductive ClSquagTerm (A : Type) : Type | sing : (A → ClSquagTerm) | opCl : (ClSquagTerm → (ClSquagTerm → ClSquagTerm)) open ClSquagTerm inductive OpSquagTerm (n : ℕ) : Type | v : ((fin n) → OpSquagTerm) | opOL : (OpSquagTerm → (OpSquagTerm → OpSquagTerm)) open OpSquagTerm inductive OpSquagTerm2 (n : ℕ) (A : Type) : Type | v2 : ((fin n) → OpSquagTerm2) | sing2 : (A → OpSquagTerm2) | opOL2 : (OpSquagTerm2 → (OpSquagTerm2 → OpSquagTerm2)) open OpSquagTerm2 def simplifyCl {A : Type} : ((ClSquagTerm A) → (ClSquagTerm A)) | (opCl x1 x2) := (opCl (simplifyCl x1) (simplifyCl x2)) | (sing x1) := (sing x1) def simplifyOpB {n : ℕ} : ((OpSquagTerm n) → (OpSquagTerm n)) | (opOL x1 x2) := (opOL (simplifyOpB x1) (simplifyOpB x2)) | (v x1) := (v x1) def simplifyOp {n : ℕ} {A : Type} : ((OpSquagTerm2 n A) → (OpSquagTerm2 n A)) | (opOL2 x1 x2) := (opOL2 (simplifyOp x1) (simplifyOp x2)) | (v2 x1) := (v2 x1) | (sing2 x1) := (sing2 x1) def evalB {A : Type} : ((Squag A) → (SquagTerm → A)) | Sq (opL x1 x2) := ((op Sq) (evalB Sq x1) (evalB Sq x2)) def evalCl {A : Type} : ((Squag A) → ((ClSquagTerm A) → A)) | Sq (sing x1) := x1 | Sq (opCl x1 x2) := ((op Sq) (evalCl Sq x1) (evalCl Sq x2)) def evalOpB {A : Type} {n : ℕ} : ((Squag A) → ((vector A n) → ((OpSquagTerm n) → A))) | Sq vars (v x1) := (nth vars x1) | Sq vars (opOL x1 x2) := ((op Sq) (evalOpB Sq vars x1) (evalOpB Sq vars x2)) def evalOp {A : Type} {n : ℕ} : ((Squag A) → ((vector A n) → ((OpSquagTerm2 n A) → A))) | Sq vars (v2 x1) := (nth vars x1) | Sq vars (sing2 x1) := x1 | Sq vars (opOL2 x1 x2) := ((op Sq) (evalOp Sq vars x1) (evalOp Sq vars x2)) def inductionB {P : (SquagTerm → Type)} : ((∀ (x1 x2 : SquagTerm) , ((P x1) → ((P x2) → (P (opL x1 x2))))) → (∀ (x : SquagTerm) , (P x))) | popl (opL x1 x2) := (popl _ _ (inductionB popl x1) (inductionB popl x2)) def inductionCl {A : Type} {P : ((ClSquagTerm A) → Type)} : ((∀ (x1 : A) , (P (sing x1))) → ((∀ (x1 x2 : (ClSquagTerm A)) , ((P x1) → ((P x2) → (P (opCl x1 x2))))) → (∀ (x : (ClSquagTerm A)) , (P x)))) | psing popcl (sing x1) := (psing x1) | psing popcl (opCl x1 x2) := (popcl _ _ (inductionCl psing popcl x1) (inductionCl psing popcl x2)) def inductionOpB {n : ℕ} {P : ((OpSquagTerm n) → Type)} : ((∀ (fin : (fin n)) , (P (v fin))) → ((∀ (x1 x2 : (OpSquagTerm n)) , ((P x1) → ((P x2) → (P (opOL x1 x2))))) → (∀ (x : (OpSquagTerm n)) , (P x)))) | pv popol (v x1) := (pv x1) | pv popol (opOL x1 x2) := (popol _ _ (inductionOpB pv popol x1) (inductionOpB pv popol x2)) def inductionOp {n : ℕ} {A : Type} {P : ((OpSquagTerm2 n A) → Type)} : ((∀ (fin : (fin n)) , (P (v2 fin))) → ((∀ (x1 : A) , (P (sing2 x1))) → ((∀ (x1 x2 : (OpSquagTerm2 n A)) , ((P x1) → ((P x2) → (P (opOL2 x1 x2))))) → (∀ (x : (OpSquagTerm2 n A)) , (P x))))) | pv2 psing2 popol2 (v2 x1) := (pv2 x1) | pv2 psing2 popol2 (sing2 x1) := (psing2 x1) | pv2 psing2 popol2 (opOL2 x1 x2) := (popol2 _ _ (inductionOp pv2 psing2 popol2 x1) (inductionOp pv2 psing2 popol2 x2)) def stageB : (SquagTerm → (Staged SquagTerm)) | (opL x1 x2) := (stage2 opL (codeLift2 opL) (stageB x1) (stageB x2)) def stageCl {A : Type} : ((ClSquagTerm A) → (Staged (ClSquagTerm A))) | (sing x1) := (Now (sing x1)) | (opCl x1 x2) := (stage2 opCl (codeLift2 opCl) (stageCl x1) (stageCl x2)) def stageOpB {n : ℕ} : ((OpSquagTerm n) → (Staged (OpSquagTerm n))) | (v x1) := (const (code (v x1))) | (opOL x1 x2) := (stage2 opOL (codeLift2 opOL) (stageOpB x1) (stageOpB x2)) def stageOp {n : ℕ} {A : Type} : ((OpSquagTerm2 n A) → (Staged (OpSquagTerm2 n A))) | (sing2 x1) := (Now (sing2 x1)) | (v2 x1) := (const (code (v2 x1))) | (opOL2 x1 x2) := (stage2 opOL2 (codeLift2 opOL2) (stageOp x1) (stageOp x2)) structure StagedRepr (A : Type) (Repr : (Type → Type)) : Type := (opT : ((Repr A) → ((Repr A) → (Repr A)))) end Squag
901e6e5c3ea6dc4e220f2c6af76adf2a16a972a3
680b0d1592ce164979dab866b232f6fa743f2cc8
/library/data/set/finite.lean
b4984ac76dad5d3e93c0398a59b6ec9d7f10df17
[ "Apache-2.0" ]
permissive
syohex/lean
657428ab520f8277fc18cf04bea2ad200dbae782
081ad1212b686780f3ff8a6d0e5f8a1d29a7d8bc
refs/heads/master
1,611,274,838,635
1,452,668,188,000
1,452,668,188,000
49,562,028
0
0
null
1,452,675,604,000
1,452,675,602,000
null
UTF-8
Lean
false
false
8,248
lean
/- Copyright (c) 2015 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Jeremy Avigad The notion of "finiteness" for sets. This approach is not computational: for example, just because an element s : set A satsifies finite s doesn't mean that we can compute the cardinality. For a computational representation, use the finset type. -/ import data.finset.to_set .classical_inverse open nat classical variable {A : Type} namespace set definition finite [class] (s : set A) : Prop := ∃ (s' : finset A), s = finset.to_set s' theorem finite_finset [instance] (s : finset A) : finite (finset.to_set s) := exists.intro s rfl /- to finset: casts every set to a finite set -/ noncomputable definition to_finset (s : set A) : finset A := if fins : finite s then some fins else finset.empty theorem to_finset_of_not_finite {s : set A} (nfins : ¬ finite s) : to_finset s = (#finset ∅) := by rewrite [↑to_finset, dif_neg nfins] theorem to_set_to_finset (s : set A) [fins : finite s] : finset.to_set (to_finset s) = s := by rewrite [↑to_finset, dif_pos fins]; exact eq.symm (some_spec fins) theorem mem_to_finset_eq (a : A) (s : set A) [finite s] : (#finset a ∈ to_finset s) = (a ∈ s) := by rewrite [-to_set_to_finset at {2}] theorem to_set_to_finset_of_not_finite {s : set A} (nfins : ¬ finite s) : finset.to_set (to_finset s) = ∅ := by rewrite [to_finset_of_not_finite nfins] theorem to_finset_to_set (s : finset A) : to_finset (finset.to_set s) = s := by rewrite [finset.eq_eq_to_set_eq, to_set_to_finset (finset.to_set s)] theorem to_finset_eq_of_to_set_eq {s : set A} {t : finset A} (H : finset.to_set t = s) : to_finset s = t := finset.eq_of_to_set_eq_to_set (by subst [s]; rewrite to_finset_to_set) /- finiteness -/ theorem finite_of_to_set_to_finset_eq {s : set A} (H : finset.to_set (to_finset s) = s) : finite s := by rewrite -H; apply finite_finset theorem finite_empty [instance] : finite (∅ : set A) := by rewrite [-finset.to_set_empty]; apply finite_finset theorem to_finset_empty : to_finset (∅ : set A) = (#finset ∅) := to_finset_eq_of_to_set_eq !finset.to_set_empty theorem finite_insert [instance] (a : A) (s : set A) [finite s] : finite (insert a s) := exists.intro (finset.insert a (to_finset s)) (by rewrite [finset.to_set_insert, to_set_to_finset]) theorem to_finset_insert (a : A) (s : set A) [finite s] : to_finset (insert a s) = finset.insert a (to_finset s) := by apply to_finset_eq_of_to_set_eq; rewrite [finset.to_set_insert, to_set_to_finset] theorem finite_union [instance] (s t : set A) [finite s] [finite t] : finite (s ∪ t) := exists.intro (#finset to_finset s ∪ to_finset t) (by rewrite [finset.to_set_union, *to_set_to_finset]) theorem to_finset_union (s t : set A) [finite s] [finite t] : to_finset (s ∪ t) = (#finset to_finset s ∪ to_finset t) := by apply to_finset_eq_of_to_set_eq; rewrite [finset.to_set_union, *to_set_to_finset] theorem finite_inter [instance] (s t : set A) [finite s] [finite t] : finite (s ∩ t) := exists.intro (#finset to_finset s ∩ to_finset t) (by rewrite [finset.to_set_inter, *to_set_to_finset]) theorem to_finset_inter (s t : set A) [finite s] [finite t] : to_finset (s ∩ t) = (#finset to_finset s ∩ to_finset t) := by apply to_finset_eq_of_to_set_eq; rewrite [finset.to_set_inter, *to_set_to_finset] theorem finite_sep [instance] (s : set A) (p : A → Prop) [finite s] : finite {x ∈ s | p x} := exists.intro (finset.sep p (to_finset s)) (by rewrite [finset.to_set_sep, *to_set_to_finset]) theorem to_finset_sep (s : set A) (p : A → Prop) [finite s] : to_finset {x ∈ s | p x} = (#finset {x ∈ to_finset s | p x}) := by apply to_finset_eq_of_to_set_eq; rewrite [finset.to_set_sep, to_set_to_finset] theorem finite_image [instance] {B : Type} (f : A → B) (s : set A) [finite s] : finite (f ' s) := exists.intro (finset.image f (to_finset s)) (by rewrite [finset.to_set_image, *to_set_to_finset]) theorem to_finset_image {B : Type} (f : A → B) (s : set A) [fins : finite s] : to_finset (f ' s) = (#finset f ' (to_finset s)) := by apply to_finset_eq_of_to_set_eq; rewrite [finset.to_set_image, to_set_to_finset] theorem finite_diff [instance] (s t : set A) [finite s] : finite (s \ t) := !finite_sep theorem to_finset_diff (s t : set A) [finite s] [finite t] : to_finset (s \ t) = (#finset to_finset s \ to_finset t) := by apply to_finset_eq_of_to_set_eq; rewrite [finset.to_set_diff, *to_set_to_finset] theorem finite_subset {s t : set A} [finite t] (ssubt : s ⊆ t) : finite s := by rewrite (eq_sep_of_subset ssubt); apply finite_sep theorem to_finset_subset_to_finset_eq (s t : set A) [finite s] [finite t] : (#finset to_finset s ⊆ to_finset t) = (s ⊆ t) := by rewrite [finset.subset_eq_to_set_subset, *to_set_to_finset] theorem finite_of_finite_insert {s : set A} {a : A} (finias : finite (insert a s)) : finite s := finite_subset (subset_insert a s) theorem finite_upto [instance] (n : ℕ) : finite {i | i < n} := by rewrite [-finset.to_set_upto n]; apply finite_finset theorem to_finset_upto (n : ℕ) : to_finset {i | i < n} = finset.upto n := by apply (to_finset_eq_of_to_set_eq !finset.to_set_upto) theorem finite_of_surj_on {B : Type} {f : A → B} {s : set A} [finite s] {t : set B} (H : surj_on f s t) : finite t := finite_subset H theorem finite_of_inj_on {B : Type} {f : A → B} {s : set A} {t : set B} [finite t] (mapsto : maps_to f s t) (injf : inj_on f s) : finite s := if H : s = ∅ then by rewrite H; apply _ else obtain (dflt : A) (xs : dflt ∈ s), from exists_mem_of_ne_empty H, let finv := inv_fun f s dflt in have surj_on finv t s, from surj_on_inv_fun_of_inj_on dflt mapsto injf, finite_of_surj_on this theorem finite_of_bij_on {B : Type} {f : A → B} {s : set A} {t : set B} [finite s] (bijf : bij_on f s t) : finite t := finite_of_surj_on (surj_on_of_bij_on bijf) theorem finite_of_bij_on' {B : Type} {f : A → B} {s : set A} {t : set B} [finite t] (bijf : bij_on f s t) : finite s := finite_of_inj_on (maps_to_of_bij_on bijf) (inj_on_of_bij_on bijf) theorem finite_iff_finite_of_bij_on {B : Type} {f : A → B} {s : set A} {t : set B} (bijf : bij_on f s t) : finite s ↔ finite t := iff.intro (assume fs, finite_of_bij_on bijf) (assume ft, finite_of_bij_on' bijf) theorem finite_powerset (s : set A) [finite s] : finite 𝒫 s := assert H : 𝒫 s = finset.to_set ' (finset.to_set (#finset 𝒫 (to_finset s))), from ext (take t, iff.intro (suppose t ∈ 𝒫 s, assert t ⊆ s, from this, assert finite t, from finite_subset this, assert (#finset to_finset t ∈ 𝒫 (to_finset s)), by rewrite [finset.mem_powerset_iff_subset, to_finset_subset_to_finset_eq]; apply `t ⊆ s`, assert to_finset t ∈ (finset.to_set (finset.powerset (to_finset s))), from this, mem_image this (by rewrite to_set_to_finset)) (assume H', obtain t' [(tmem : (#finset t' ∈ 𝒫 (to_finset s))) (teq : finset.to_set t' = t)], from H', show t ⊆ s, begin rewrite [-teq, finset.mem_powerset_iff_subset at tmem, -to_set_to_finset s], rewrite -finset.subset_eq_to_set_subset, assumption end)), by rewrite H; apply finite_image /- induction for finite sets -/ theorem induction_finite [recursor 6] {P : set A → Prop} (H1 : P ∅) (H2 : ∀ ⦃a : A⦄, ∀ {s : set A} [finite s], a ∉ s → P s → P (insert a s)) : ∀ (s : set A) [finite s], P s := begin intro s fins, rewrite [-to_set_to_finset s], generalize to_finset s, intro s', induction s' using finset.induction with a s' nains ih, {rewrite finset.to_set_empty, apply H1}, rewrite [finset.to_set_insert], apply H2, {rewrite -finset.mem_eq_mem_to_set, assumption}, exact ih end theorem induction_on_finite {P : set A → Prop} (s : set A) [finite s] (H1 : P ∅) (H2 : ∀ ⦃a : A⦄, ∀ {s : set A} [finite s], a ∉ s → P s → P (insert a s)) : P s := induction_finite H1 H2 s end set
b9364d76a10adbc1f07ea4bbd3e37bbd4213f2b4
d436468d80b739ba7e06843c4d0d2070e43448e5
/src/category_theory/limits/shapes/finite_products.lean
924636e4896752b66419aafcdb81a4b0a54930c8
[ "Apache-2.0" ]
permissive
roro47/mathlib
761fdc002aef92f77818f3fef06bf6ec6fc1a28e
80aa7d52537571a2ca62a3fdf71c9533a09422cf
refs/heads/master
1,599,656,410,625
1,573,649,488,000
1,573,649,488,000
221,452,951
0
0
Apache-2.0
1,573,647,693,000
1,573,647,692,000
null
UTF-8
Lean
false
false
1,530
lean
/- Copyright (c) 2019 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import category_theory.limits.shapes.products import category_theory.limits.shapes.finite_limits import category_theory.discrete_category import data.fintype universes v u open category_theory namespace category_theory.limits variables (C : Type u) [𝒞 : category.{v} C] include 𝒞 class has_finite_products := (has_limits_of_shape : Π (J : Type v) [fintype J] [decidable_eq J], has_limits_of_shape.{v} (discrete J) C) class has_finite_coproducts := (has_colimits_of_shape : Π (J : Type v) [fintype J] [decidable_eq J], has_colimits_of_shape.{v} (discrete J) C) attribute [instance] has_finite_products.has_limits_of_shape has_finite_coproducts.has_colimits_of_shape instance has_finite_products_of_has_products [has_products.{v} C] : has_finite_products.{v} C := { has_limits_of_shape := λ J _, by apply_instance } instance has_finite_coproducts_of_has_coproducts [has_coproducts.{v} C] : has_finite_coproducts.{v} C := { has_colimits_of_shape := λ J _, by apply_instance } instance has_finite_products_of_has_finite_limits [has_finite_limits.{v} C] : has_finite_products.{v} C := { has_limits_of_shape := λ J _ _, by { resetI, apply_instance } } instance has_finite_coproducts_of_has_finite_colimits [has_finite_colimits.{v} C] : has_finite_coproducts.{v} C := { has_colimits_of_shape := λ J _ _, by { resetI, apply_instance } } end category_theory.limits
1ea14644d9b91d658a9ad37f738f5954e400171a
618003631150032a5676f229d13a079ac875ff77
/src/data/seq/seq.lean
595d328634fa4fbe5a88f1c95a73558c819749eb
[ "Apache-2.0" ]
permissive
awainverse/mathlib
939b68c8486df66cfda64d327ad3d9165248c777
ea76bd8f3ca0a8bf0a166a06a475b10663dec44a
refs/heads/master
1,659,592,962,036
1,590,987,592,000
1,590,987,592,000
268,436,019
1
0
Apache-2.0
1,590,990,500,000
1,590,990,500,000
null
UTF-8
Lean
false
false
28,526
lean
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Mario Carneiro -/ import data.list.basic import data.stream import data.lazy_list import data.seq.computation universes u v w /- coinductive seq (α : Type u) : Type u | nil : seq α | cons : α → seq α → seq α -/ /-- A stream `s : option α` is a sequence if `s.nth n = none` implies `s.nth (n + 1) = none`. -/ def stream.is_seq {α : Type u} (s : stream (option α)) : Prop := ∀ {n : ℕ}, s n = none → s (n + 1) = none /-- `seq α` is the type of possibly infinite lists (referred here as sequences). It is encoded as an infinite stream of options such that if `f n = none`, then `f m = none` for all `m ≥ n`. -/ def seq (α : Type u) : Type u := { f : stream (option α) // f.is_seq } /-- `seq1 α` is the type of nonempty sequences. -/ def seq1 (α) := α × seq α namespace seq variables {α : Type u} {β : Type v} {γ : Type w} /-- The empty sequence -/ def nil : seq α := ⟨stream.const none, λn h, rfl⟩ instance : inhabited (seq α) := ⟨nil⟩ /-- Prepend an element to a sequence -/ def cons (a : α) : seq α → seq α | ⟨f, al⟩ := ⟨some a :: f, λn h, by {cases n with n, contradiction, exact al h}⟩ /-- Get the nth element of a sequence (if it exists) -/ def nth : seq α → ℕ → option α := subtype.val /-- A sequence has terminated at position `n` if the value at position `n` equals `none`. -/ def terminated_at (s : seq α) (n : ℕ) : Prop := s.nth n = none /-- It is decidable whether a sequence terminates at a given position. -/ instance terminated_at_decidable (s : seq α) (n : ℕ) : decidable (s.terminated_at n) := decidable_of_iff' (s.nth n).is_none $ by unfold terminated_at; cases s.nth n; simp /-- A sequence terminates if there is some position `n` at which it has terminated. -/ def terminates (s : seq α) : Prop := ∃ (n : ℕ), s.terminated_at n /-- Functorial action of the functor `option (α × _)` -/ @[simp] def omap (f : β → γ) : option (α × β) → option (α × γ) | none := none | (some (a, b)) := some (a, f b) /-- Get the first element of a sequence -/ def head (s : seq α) : option α := nth s 0 /-- Get the tail of a sequence (or `nil` if the sequence is `nil`) -/ def tail : seq α → seq α | ⟨f, al⟩ := ⟨f.tail, λ n, al⟩ protected def mem (a : α) (s : seq α) := some a ∈ s.1 instance : has_mem α (seq α) := ⟨seq.mem⟩ theorem le_stable (s : seq α) {m n} (h : m ≤ n) : s.1 m = none → s.1 n = none := by {cases s with f al, induction h with n h IH, exacts [id, λ h2, al (IH h2)]} /-- If a sequence terminated at position `n`, it also terminated at `m ≥ n `. -/ lemma terminated_stable (s : seq α) {m n : ℕ} (m_le_n : m ≤ n) (terminated_at_m : s.terminated_at m) : s.terminated_at n := le_stable s m_le_n terminated_at_m /-- If `s.nth n = some aₙ` for some value `aₙ`, then there is also some value `aₘ` such that `s.nth = some aₘ` for `m ≤ n`. -/ lemma ge_stable (s : seq α) {aₙ : α} {n m : ℕ} (m_le_n : m ≤ n) (s_nth_eq_some : s.nth n = some aₙ) : ∃ (aₘ : α), s.nth m = some aₘ := have s.nth n ≠ none, by simp [s_nth_eq_some], have s.nth m ≠ none, from mt (s.le_stable m_le_n) this, with_one.ne_one_iff_exists.elim_left this theorem not_mem_nil (a : α) : a ∉ @nil α := λ ⟨n, (h : some a = none)⟩, by injection h theorem mem_cons (a : α) : ∀ (s : seq α), a ∈ cons a s | ⟨f, al⟩ := stream.mem_cons (some a) _ theorem mem_cons_of_mem (y : α) {a : α} : ∀ {s : seq α}, a ∈ s → a ∈ cons y s | ⟨f, al⟩ := stream.mem_cons_of_mem (some y) theorem eq_or_mem_of_mem_cons {a b : α} : ∀ {s : seq α}, a ∈ cons b s → a = b ∨ a ∈ s | ⟨f, al⟩ h := (stream.eq_or_mem_of_mem_cons h).imp_left (λh, by injection h) @[simp] theorem mem_cons_iff {a b : α} {s : seq α} : a ∈ cons b s ↔ a = b ∨ a ∈ s := ⟨eq_or_mem_of_mem_cons, λo, by cases o with e m; [{rw e, apply mem_cons}, exact mem_cons_of_mem _ m]⟩ /-- Destructor for a sequence, resulting in either `none` (for `nil`) or `some (a, s)` (for `cons a s`). -/ def destruct (s : seq α) : option (seq1 α) := (λa', (a', s.tail)) <$> nth s 0 theorem destruct_eq_nil {s : seq α} : destruct s = none → s = nil := begin dsimp [destruct], induction f0 : nth s 0; intro h, { apply subtype.eq, funext n, induction n with n IH, exacts [f0, s.2 IH] }, { contradiction } end theorem destruct_eq_cons {s : seq α} {a s'} : destruct s = some (a, s') → s = cons a s' := begin dsimp [destruct], induction f0 : nth s 0 with a'; intro h, { contradiction }, { unfold functor.map at h, cases s with f al, injections with _ h1 h2, rw ←h2, apply subtype.eq, dsimp [tail, cons], rw h1 at f0, rw ←f0, exact (stream.eta f).symm } end @[simp] theorem destruct_nil : destruct (nil : seq α) = none := rfl @[simp] theorem destruct_cons (a : α) : ∀ s, destruct (cons a s) = some (a, s) | ⟨f, al⟩ := begin unfold cons destruct functor.map, apply congr_arg (λ s, some (a, s)), apply subtype.eq, dsimp [tail], rw [stream.tail_cons] end theorem head_eq_destruct (s : seq α) : head s = prod.fst <$> destruct s := by unfold destruct head; cases nth s 0; refl @[simp] theorem head_nil : head (nil : seq α) = none := rfl @[simp] theorem head_cons (a : α) (s) : head (cons a s) = some a := by rw [head_eq_destruct, destruct_cons]; refl @[simp] theorem tail_nil : tail (nil : seq α) = nil := rfl @[simp] theorem tail_cons (a : α) (s) : tail (cons a s) = s := by cases s with f al; apply subtype.eq; dsimp [tail, cons]; rw [stream.tail_cons] def cases_on {C : seq α → Sort v} (s : seq α) (h1 : C nil) (h2 : ∀ x s, C (cons x s)) : C s := begin induction H : destruct s with v v, { rw destruct_eq_nil H, apply h1 }, { cases v with a s', rw destruct_eq_cons H, apply h2 } end theorem mem_rec_on {C : seq α → Prop} {a s} (M : a ∈ s) (h1 : ∀ b s', (a = b ∨ C s') → C (cons b s')) : C s := begin cases M with k e, unfold stream.nth at e, induction k with k IH generalizing s, { have TH : s = cons a (tail s), { apply destruct_eq_cons, unfold destruct nth functor.map, rw ←e, refl }, rw TH, apply h1 _ _ (or.inl rfl) }, revert e, apply s.cases_on _ (λ b s', _); intro e, { injection e }, { have h_eq : (cons b s').val (nat.succ k) = s'.val k, { cases s'; refl }, rw [h_eq] at e, apply h1 _ _ (or.inr (IH e)) } end def corec.F (f : β → option (α × β)) : option β → option α × option β | none := (none, none) | (some b) := match f b with none := (none, none) | some (a, b') := (some a, some b') end /-- Corecursor for `seq α` as a coinductive type. Iterates `f` to produce new elements of the sequence until `none` is obtained. -/ def corec (f : β → option (α × β)) (b : β) : seq α := begin refine ⟨stream.corec' (corec.F f) (some b), λn h, _⟩, rw stream.corec'_eq, change stream.corec' (corec.F f) (corec.F f (some b)).2 n = none, revert h, generalize : some b = o, revert o, induction n with n IH; intro o, { change (corec.F f o).1 = none → (corec.F f (corec.F f o).2).1 = none, cases o with b; intro h, { refl }, dsimp [corec.F] at h, dsimp [corec.F], cases f b with s, { refl }, { cases s with a b', contradiction } }, { rw [stream.corec'_eq (corec.F f) (corec.F f o).2, stream.corec'_eq (corec.F f) o], exact IH (corec.F f o).2 } end @[simp] theorem corec_eq (f : β → option (α × β)) (b : β) : destruct (corec f b) = omap (corec f) (f b) := begin dsimp [corec, destruct, nth], change stream.corec' (corec.F f) (some b) 0 with (corec.F f (some b)).1, unfold functor.map, dsimp [corec.F], induction h : f b with s, { refl }, cases s with a b', dsimp [corec.F], apply congr_arg (λ b', some (a, b')), apply subtype.eq, dsimp [corec, tail], rw [stream.corec'_eq, stream.tail_cons], dsimp [corec.F], rw h, refl end /-- Embed a list as a sequence -/ def of_list (l : list α) : seq α := ⟨list.nth l, λn h, begin induction l with a l IH generalizing n, refl, dsimp [list.nth], cases n with n; dsimp [list.nth] at h, { contradiction }, { apply IH _ h } end⟩ instance coe_list : has_coe (list α) (seq α) := ⟨of_list⟩ section bisim variable (R : seq α → seq α → Prop) local infix ~ := R def bisim_o : option (seq1 α) → option (seq1 α) → Prop | none none := true | (some (a, s)) (some (a', s')) := a = a' ∧ R s s' | _ _ := false attribute [simp] bisim_o def is_bisimulation := ∀ ⦃s₁ s₂⦄, s₁ ~ s₂ → bisim_o R (destruct s₁) (destruct s₂) -- If two streams are bisimilar, then they are equal theorem eq_of_bisim (bisim : is_bisimulation R) {s₁ s₂} (r : s₁ ~ s₂) : s₁ = s₂ := begin apply subtype.eq, apply stream.eq_of_bisim (λx y, ∃ s s' : seq α, s.1 = x ∧ s'.1 = y ∧ R s s'), dsimp [stream.is_bisimulation], intros t₁ t₂ e, exact match t₁, t₂, e with ._, ._, ⟨s, s', rfl, rfl, r⟩ := suffices head s = head s' ∧ R (tail s) (tail s'), from and.imp id (λr, ⟨tail s, tail s', by cases s; refl, by cases s'; refl, r⟩) this, begin have := bisim r, revert r this, apply cases_on s _ _; intros; apply cases_on s' _ _; intros; intros r this, { constructor, refl, assumption }, { rw [destruct_nil, destruct_cons] at this, exact false.elim this }, { rw [destruct_nil, destruct_cons] at this, exact false.elim this }, { rw [destruct_cons, destruct_cons] at this, rw [head_cons, head_cons, tail_cons, tail_cons], cases this with h1 h2, constructor, rw h1, exact h2 } end end, exact ⟨s₁, s₂, rfl, rfl, r⟩ end end bisim theorem coinduction : ∀ {s₁ s₂ : seq α}, head s₁ = head s₂ → (∀ (β : Type u) (fr : seq α → β), fr s₁ = fr s₂ → fr (tail s₁) = fr (tail s₂)) → s₁ = s₂ | ⟨f₁, a₁⟩ ⟨f₂, a₂⟩ hh ht := subtype.eq (stream.coinduction hh (λ β fr, ht β (λs, fr s.1))) theorem coinduction2 (s) (f g : seq α → seq β) (H : ∀ s, bisim_o (λ (s1 s2 : seq β), ∃ (s : seq α), s1 = f s ∧ s2 = g s) (destruct (f s)) (destruct (g s))) : f s = g s := begin refine eq_of_bisim (λ s1 s2, ∃ s, s1 = f s ∧ s2 = g s) _ ⟨s, rfl, rfl⟩, intros s1 s2 h, rcases h with ⟨s, h1, h2⟩, rw [h1, h2], apply H end /-- Embed an infinite stream as a sequence -/ def of_stream (s : stream α) : seq α := ⟨s.map some, λn h, by contradiction⟩ instance coe_stream : has_coe (stream α) (seq α) := ⟨of_stream⟩ /-- Embed a `lazy_list α` as a sequence. Note that even though this is non-meta, it will produce infinite sequences if used with cyclic `lazy_list`s created by meta constructions. -/ def of_lazy_list : lazy_list α → seq α := corec (λl, match l with | lazy_list.nil := none | lazy_list.cons a l' := some (a, l' ()) end) instance coe_lazy_list : has_coe (lazy_list α) (seq α) := ⟨of_lazy_list⟩ /-- Translate a sequence into a `lazy_list`. Since `lazy_list` and `list` are isomorphic as non-meta types, this function is necessarily meta. -/ meta def to_lazy_list : seq α → lazy_list α | s := match destruct s with | none := lazy_list.nil | some (a, s') := lazy_list.cons a (to_lazy_list s') end /-- Translate a sequence to a list. This function will run forever if run on an infinite sequence. -/ meta def force_to_list (s : seq α) : list α := (to_lazy_list s).to_list /-- The sequence of natural numbers some 0, some 1, ... -/ def nats : seq ℕ := stream.nats @[simp] lemma nats_nth (n : ℕ) : nats.nth n = some n := rfl /-- Append two sequences. If `s₁` is infinite, then `s₁ ++ s₂ = s₁`, otherwise it puts `s₂` at the location of the `nil` in `s₁`. -/ def append (s₁ s₂ : seq α) : seq α := @corec α (seq α × seq α) (λ⟨s₁, s₂⟩, match destruct s₁ with | none := omap (λs₂, (nil, s₂)) (destruct s₂) | some (a, s₁') := some (a, s₁', s₂) end) (s₁, s₂) /-- Map a function over a sequence. -/ def map (f : α → β) : seq α → seq β | ⟨s, al⟩ := ⟨s.map (option.map f), λn, begin dsimp [stream.map, stream.nth], induction e : s n; intro, { rw al e, assumption }, { contradiction } end⟩ /-- Flatten a sequence of sequences. (It is required that the sequences be nonempty to ensure productivity; in the case of an infinite sequence of `nil`, the first element is never generated.) -/ def join : seq (seq1 α) → seq α := corec (λS, match destruct S with | none := none | some ((a, s), S') := some (a, match destruct s with | none := S' | some s' := cons s' S' end) end) /-- Remove the first `n` elements from the sequence. -/ def drop (s : seq α) : ℕ → seq α | 0 := s | (n+1) := tail (drop n) attribute [simp] drop /-- Take the first `n` elements of the sequence (producing a list) -/ def take : ℕ → seq α → list α | 0 s := [] | (n+1) s := match destruct s with | none := [] | some (x, r) := list.cons x (take n r) end /-- Split a sequence at `n`, producing a finite initial segment and an infinite tail. -/ def split_at : ℕ → seq α → list α × seq α | 0 s := ([], s) | (n+1) s := match destruct s with | none := ([], nil) | some (x, s') := let (l, r) := split_at n s' in (list.cons x l, r) end section zip_with /-- Combine two sequences with a function -/ def zip_with (f : α → β → γ) : seq α → seq β → seq γ | ⟨f₁, a₁⟩ ⟨f₂, a₂⟩ := ⟨λn, match f₁ n, f₂ n with | some a, some b := some (f a b) | _, _ := none end, λn, begin induction h1 : f₁ n, { intro H, simp only [(a₁ h1)], refl }, induction h2 : f₂ n; dsimp [seq.zip_with._match_1]; intro H, { rw (a₂ h2), cases f₁ (n + 1); refl }, { rw [h1, h2] at H, contradiction } end⟩ variables {s : seq α} {s' : seq β} {n : ℕ} lemma zip_with_nth_some {a : α} {b : β} (s_nth_eq_some : s.nth n = some a) (s_nth_eq_some' : s'.nth n = some b) (f : α → β → γ) : (zip_with f s s').nth n = some (f a b) := begin cases s with st, have : st n = some a, from s_nth_eq_some, cases s' with st', have : st' n = some b, from s_nth_eq_some', simp only [zip_with, seq.nth, *] end lemma zip_with_nth_none (s_nth_eq_none : s.nth n = none) (f : α → β → γ) : (zip_with f s s').nth n = none := begin cases s with st, have : st n = none, from s_nth_eq_none, cases s' with st', cases st'_nth_eq : st' n; simp only [zip_with, seq.nth, *] end lemma zip_with_nth_none' (s'_nth_eq_none : s'.nth n = none) (f : α → β → γ) : (zip_with f s s').nth n = none := begin cases s' with st', have : st' n = none, from s'_nth_eq_none, cases s with st, cases st_nth_eq : st n; simp only [zip_with, seq.nth, *] end end zip_with /-- Pair two sequences into a sequence of pairs -/ def zip : seq α → seq β → seq (α × β) := zip_with prod.mk /-- Separate a sequence of pairs into two sequences -/ def unzip (s : seq (α × β)) : seq α × seq β := (map prod.fst s, map prod.snd s) /-- Convert a sequence which is known to terminate into a list -/ def to_list (s : seq α) (h : ∃ n, ¬ (nth s n).is_some) : list α := take (nat.find h) s /-- Convert a sequence which is known not to terminate into a stream -/ def to_stream (s : seq α) (h : ∀ n, (nth s n).is_some) : stream α := λn, option.get (h n) /-- Convert a sequence into either a list or a stream depending on whether it is finite or infinite. (Without decidability of the infiniteness predicate, this is not constructively possible.) -/ def to_list_or_stream (s : seq α) [decidable (∃ n, ¬ (nth s n).is_some)] : list α ⊕ stream α := if h : ∃ n, ¬ (nth s n).is_some then sum.inl (to_list s h) else sum.inr (to_stream s (λn, decidable.by_contradiction (λ hn, h ⟨n, hn⟩))) @[simp] theorem nil_append (s : seq α) : append nil s = s := begin apply coinduction2, intro s, dsimp [append], rw [corec_eq], dsimp [append], apply cases_on s _ _, { trivial }, { intros x s, rw [destruct_cons], dsimp, exact ⟨rfl, s, rfl, rfl⟩ } end @[simp] theorem cons_append (a : α) (s t) : append (cons a s) t = cons a (append s t) := destruct_eq_cons $ begin dsimp [append], rw [corec_eq], dsimp [append], rw [destruct_cons], dsimp [append], refl end @[simp] theorem append_nil (s : seq α) : append s nil = s := begin apply coinduction2 s, intro s, apply cases_on s _ _, { trivial }, { intros x s, rw [cons_append, destruct_cons, destruct_cons], dsimp, exact ⟨rfl, s, rfl, rfl⟩ } end @[simp] theorem append_assoc (s t u : seq α) : append (append s t) u = append s (append t u) := begin apply eq_of_bisim (λs1 s2, ∃ s t u, s1 = append (append s t) u ∧ s2 = append s (append t u)), { intros s1 s2 h, exact match s1, s2, h with ._, ._, ⟨s, t, u, rfl, rfl⟩ := begin apply cases_on s; simp, { apply cases_on t; simp, { apply cases_on u; simp, { intros x u, refine ⟨nil, nil, u, _, _⟩; simp } }, { intros x t, refine ⟨nil, t, u, _, _⟩; simp } }, { intros x s, exact ⟨s, t, u, rfl, rfl⟩ } end end }, { exact ⟨s, t, u, rfl, rfl⟩ } end @[simp] theorem map_nil (f : α → β) : map f nil = nil := rfl @[simp] theorem map_cons (f : α → β) (a) : ∀ s, map f (cons a s) = cons (f a) (map f s) | ⟨s, al⟩ := by apply subtype.eq; dsimp [cons, map]; rw stream.map_cons; refl @[simp] theorem map_id : ∀ (s : seq α), map id s = s | ⟨s, al⟩ := begin apply subtype.eq; dsimp [map], rw [option.map_id, stream.map_id]; refl end @[simp] theorem map_tail (f : α → β) : ∀ s, map f (tail s) = tail (map f s) | ⟨s, al⟩ := by apply subtype.eq; dsimp [tail, map]; rw stream.map_tail; refl theorem map_comp (f : α → β) (g : β → γ) : ∀ (s : seq α), map (g ∘ f) s = map g (map f s) | ⟨s, al⟩ := begin apply subtype.eq; dsimp [map], rw stream.map_map, apply congr_arg (λ f : _ → option γ, stream.map f s), funext x, cases x with x; refl end @[simp] theorem map_append (f : α → β) (s t) : map f (append s t) = append (map f s) (map f t) := begin apply eq_of_bisim (λs1 s2, ∃ s t, s1 = map f (append s t) ∧ s2 = append (map f s) (map f t)) _ ⟨s, t, rfl, rfl⟩, intros s1 s2 h, exact match s1, s2, h with ._, ._, ⟨s, t, rfl, rfl⟩ := begin apply cases_on s; simp, { apply cases_on t; simp, { intros x t, refine ⟨nil, t, _, _⟩; simp } }, { intros x s, refine ⟨s, t, rfl, rfl⟩ } end end end @[simp] theorem map_nth (f : α → β) : ∀ s n, nth (map f s) n = (nth s n).map f | ⟨s, al⟩ n := rfl instance : functor seq := {map := @map} instance : is_lawful_functor seq := { id_map := @map_id, comp_map := @map_comp } @[simp] theorem join_nil : join nil = (nil : seq α) := destruct_eq_nil rfl @[simp] theorem join_cons_nil (a : α) (S) : join (cons (a, nil) S) = cons a (join S) := destruct_eq_cons $ by simp [join] @[simp] theorem join_cons_cons (a b : α) (s S) : join (cons (a, cons b s) S) = cons a (join (cons (b, s) S)) := destruct_eq_cons $ by simp [join] @[simp, priority 990] theorem join_cons (a : α) (s S) : join (cons (a, s) S) = cons a (append s (join S)) := begin apply eq_of_bisim (λs1 s2, s1 = s2 ∨ ∃ a s S, s1 = join (cons (a, s) S) ∧ s2 = cons a (append s (join S))) _ (or.inr ⟨a, s, S, rfl, rfl⟩), intros s1 s2 h, exact match s1, s2, h with | _, _, (or.inl $ eq.refl s) := begin apply cases_on s, { trivial }, { intros x s, rw [destruct_cons], exact ⟨rfl, or.inl rfl⟩ } end | ._, ._, (or.inr ⟨a, s, S, rfl, rfl⟩) := begin apply cases_on s, { simp }, { intros x s, simp, refine or.inr ⟨x, s, S, rfl, rfl⟩ } end end end @[simp] theorem join_append (S T : seq (seq1 α)) : join (append S T) = append (join S) (join T) := begin apply eq_of_bisim (λs1 s2, ∃ s S T, s1 = append s (join (append S T)) ∧ s2 = append s (append (join S) (join T))), { intros s1 s2 h, exact match s1, s2, h with ._, ._, ⟨s, S, T, rfl, rfl⟩ := begin apply cases_on s; simp, { apply cases_on S; simp, { apply cases_on T, { simp }, { intros s T, cases s with a s; simp, refine ⟨s, nil, T, _, _⟩; simp } }, { intros s S, cases s with a s; simp, exact ⟨s, S, T, rfl, rfl⟩ } }, { intros x s, exact ⟨s, S, T, rfl, rfl⟩ } end end }, { refine ⟨nil, S, T, _, _⟩; simp } end @[simp] theorem of_list_nil : of_list [] = (nil : seq α) := rfl @[simp] theorem of_list_cons (a : α) (l) : of_list (a :: l) = cons a (of_list l) := begin apply subtype.eq, simp [of_list, cons], funext n, cases n; simp [list.nth, stream.cons] end @[simp] theorem of_stream_cons (a : α) (s) : of_stream (a :: s) = cons a (of_stream s) := by apply subtype.eq; simp [of_stream, cons]; rw stream.map_cons @[simp] theorem of_list_append (l l' : list α) : of_list (l ++ l') = append (of_list l) (of_list l') := by induction l; simp [*] @[simp] theorem of_stream_append (l : list α) (s : stream α) : of_stream (l ++ₛ s) = append (of_list l) (of_stream s) := by induction l; simp [*, stream.nil_append_stream, stream.cons_append_stream] /-- Convert a sequence into a list, embedded in a computation to allow for the possibility of infinite sequences (in which case the computation never returns anything). -/ def to_list' {α} (s : seq α) : computation (list α) := @computation.corec (list α) (list α × seq α) (λ⟨l, s⟩, match destruct s with | none := sum.inl l.reverse | some (a, s') := sum.inr (a::l, s') end) ([], s) theorem dropn_add (s : seq α) (m) : ∀ n, drop s (m + n) = drop (drop s m) n | 0 := rfl | (n+1) := congr_arg tail (dropn_add n) theorem dropn_tail (s : seq α) (n) : drop (tail s) n = drop s (n + 1) := by rw add_comm; symmetry; apply dropn_add theorem nth_tail : ∀ (s : seq α) n, nth (tail s) n = nth s (n + 1) | ⟨f, al⟩ n := rfl @[ext] protected lemma ext (s s': seq α) (hyp : ∀ (n : ℕ), s.nth n = s'.nth n) : s = s' := begin let ext := (λ (s s' : seq α), ∀ n, s.nth n = s'.nth n), apply seq.eq_of_bisim ext _ hyp, -- we have to show that ext is a bisimulation clear hyp s s', assume s s' (hyp : ext s s'), unfold seq.destruct, rw (hyp 0), cases (s'.nth 0), { simp [seq.bisim_o] }, -- option.none { -- option.some suffices : ext s.tail s'.tail, by simpa, assume n, simp only [seq.nth_tail _ n, (hyp $ n + 1)] } end @[simp] theorem head_dropn (s : seq α) (n) : head (drop s n) = nth s n := begin induction n with n IH generalizing s, { refl }, rw [nat.succ_eq_add_one, ←nth_tail, ←dropn_tail], apply IH end theorem mem_map (f : α → β) {a : α} : ∀ {s : seq α}, a ∈ s → f a ∈ map f s | ⟨g, al⟩ := stream.mem_map (option.map f) theorem exists_of_mem_map {f} {b : β} : ∀ {s : seq α}, b ∈ map f s → ∃ a, a ∈ s ∧ f a = b | ⟨g, al⟩ h := let ⟨o, om, oe⟩ := stream.exists_of_mem_map h in by cases o with a; injection oe with h'; exact ⟨a, om, h'⟩ theorem of_mem_append {s₁ s₂ : seq α} {a : α} (h : a ∈ append s₁ s₂) : a ∈ s₁ ∨ a ∈ s₂ := begin have := h, revert this, generalize e : append s₁ s₂ = ss, intro h, revert s₁, apply mem_rec_on h _, intros b s' o s₁, apply s₁.cases_on _ (λ c t₁, _); intros m e; have := congr_arg destruct e, { apply or.inr, simpa using m }, { cases (show a = c ∨ a ∈ append t₁ s₂, by simpa using m) with e' m, { rw e', exact or.inl (mem_cons _ _) }, { cases (show c = b ∧ append t₁ s₂ = s', by simpa) with i1 i2, cases o with e' IH, { simp [i1, e'] }, { exact or.imp_left (mem_cons_of_mem _) (IH m i2) } } } end theorem mem_append_left {s₁ s₂ : seq α} {a : α} (h : a ∈ s₁) : a ∈ append s₁ s₂ := by apply mem_rec_on h; intros; simp [*] end seq namespace seq1 variables {α : Type u} {β : Type v} {γ : Type w} open seq /-- Convert a `seq1` to a sequence. -/ def to_seq : seq1 α → seq α | (a, s) := cons a s instance coe_seq : has_coe (seq1 α) (seq α) := ⟨to_seq⟩ /-- Map a function on a `seq1` -/ def map (f : α → β) : seq1 α → seq1 β | (a, s) := (f a, seq.map f s) theorem map_id : ∀ (s : seq1 α), map id s = s | ⟨a, s⟩ := by simp [map] /-- Flatten a nonempty sequence of nonempty sequences -/ def join : seq1 (seq1 α) → seq1 α | ((a, s), S) := match destruct s with | none := (a, seq.join S) | some s' := (a, seq.join (cons s' S)) end @[simp] theorem join_nil (a : α) (S) : join ((a, nil), S) = (a, seq.join S) := rfl @[simp] theorem join_cons (a b : α) (s S) : join ((a, cons b s), S) = (a, seq.join (cons (b, s) S)) := by dsimp [join]; rw [destruct_cons]; refl /-- The `return` operator for the `seq1` monad, which produces a singleton sequence. -/ def ret (a : α) : seq1 α := (a, nil) instance [inhabited α] : inhabited (seq1 α) := ⟨ret (default _)⟩ /-- The `bind` operator for the `seq1` monad, which maps `f` on each element of `s` and appends the results together. (Not all of `s` may be evaluated, because the first few elements of `s` may already produce an infinite result.) -/ def bind (s : seq1 α) (f : α → seq1 β) : seq1 β := join (map f s) @[simp] theorem join_map_ret (s : seq α) : seq.join (seq.map ret s) = s := by apply coinduction2 s; intro s; apply cases_on s; simp [ret] @[simp] theorem bind_ret (f : α → β) : ∀ s, bind s (ret ∘ f) = map f s | ⟨a, s⟩ := begin dsimp [bind, map], change (λx, ret (f x)) with (ret ∘ f), rw [map_comp], simp [function.comp, ret] end @[simp] theorem ret_bind (a : α) (f : α → seq1 β) : bind (ret a) f = f a := begin simp [ret, bind, map], cases f a with a s, apply cases_on s; intros; simp end @[simp] theorem map_join' (f : α → β) (S) : seq.map f (seq.join S) = seq.join (seq.map (map f) S) := begin apply eq_of_bisim (λs1 s2, ∃ s S, s1 = append s (seq.map f (seq.join S)) ∧ s2 = append s (seq.join (seq.map (map f) S))), { intros s1 s2 h, exact match s1, s2, h with ._, ._, ⟨s, S, rfl, rfl⟩ := begin apply cases_on s; simp, { apply cases_on S; simp, { intros x S, cases x with a s; simp [map], exact ⟨_, _, rfl, rfl⟩ } }, { intros x s, refine ⟨s, S, rfl, rfl⟩ } end end }, { refine ⟨nil, S, _, _⟩; simp } end @[simp] theorem map_join (f : α → β) : ∀ S, map f (join S) = join (map (map f) S) | ((a, s), S) := by apply cases_on s; intros; simp [map] @[simp] theorem join_join (SS : seq (seq1 (seq1 α))) : seq.join (seq.join SS) = seq.join (seq.map join SS) := begin apply eq_of_bisim (λs1 s2, ∃ s SS, s1 = seq.append s (seq.join (seq.join SS)) ∧ s2 = seq.append s (seq.join (seq.map join SS))), { intros s1 s2 h, exact match s1, s2, h with ._, ._, ⟨s, SS, rfl, rfl⟩ := begin apply cases_on s; simp, { apply cases_on SS; simp, { intros S SS, cases S with s S; cases s with x s; simp [map], apply cases_on s; simp, { exact ⟨_, _, rfl, rfl⟩ }, { intros x s, refine ⟨cons x (append s (seq.join S)), SS, _, _⟩; simp } } }, { intros x s, exact ⟨s, SS, rfl, rfl⟩ } end end }, { refine ⟨nil, SS, _, _⟩; simp } end @[simp] theorem bind_assoc (s : seq1 α) (f : α → seq1 β) (g : β → seq1 γ) : bind (bind s f) g = bind s (λ (x : α), bind (f x) g) := begin cases s with a s, simp [bind, map], rw [←map_comp], change (λ x, join (map g (f x))) with (join ∘ ((map g) ∘ f)), rw [map_comp _ join], generalize : seq.map (map g ∘ f) s = SS, rcases map g (f a) with ⟨⟨a, s⟩, S⟩, apply cases_on s; intros; apply cases_on S; intros; simp, { cases x with x t, apply cases_on t; intros; simp }, { cases x_1 with y t; simp } end instance : monad seq1 := { map := @map, pure := @ret, bind := @bind } instance : is_lawful_monad seq1 := { id_map := @map_id, bind_pure_comp_eq_map := @bind_ret, pure_bind := @ret_bind, bind_assoc := @bind_assoc } end seq1
e6d681b6deddcc4bd101f9ddf2558e35533a9ff8
367134ba5a65885e863bdc4507601606690974c1
/src/control/equiv_functor/instances.lean
44379684e96cb5475f253e5561058805f9b5341c
[ "Apache-2.0" ]
permissive
kodyvajjha/mathlib
9bead00e90f68269a313f45f5561766cfd8d5cad
b98af5dd79e13a38d84438b850a2e8858ec21284
refs/heads/master
1,624,350,366,310
1,615,563,062,000
1,615,563,062,000
162,666,963
0
0
Apache-2.0
1,545,367,651,000
1,545,367,651,000
null
UTF-8
Lean
false
false
925
lean
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Scott Morrison -/ import data.fintype.basic import control.equiv_functor /-! # `equiv_functor` instances We derive some `equiv_functor` instances, to enable `equiv_rw` to rewrite under these functions. -/ open equiv instance equiv_functor_unique : equiv_functor unique := { map := λ α β e, equiv.unique_congr e, } instance equiv_functor_perm : equiv_functor perm := { map := λ α β e p, (e.symm.trans p).trans e } -- There is a classical instance of `is_lawful_functor finset` available, -- but we provide this computable alternative separately. instance equiv_functor_finset : equiv_functor finset := { map := λ α β e s, s.map e.to_embedding, } instance equiv_functor_fintype : equiv_functor fintype := { map := λ α β e s, by exactI fintype.of_bijective e e.bijective, }
4de0780ad415c99623322e7dd18d8cda9ce0a0b2
5e3548e65f2c037cb94cd5524c90c623fbd6d46a
/src_icannos_totilas/aops/2000-USAMO-Problem_1.lean
802b5b07a5b3364638a83280dac42c212347bd46
[]
no_license
ahayat16/lean_exos
d4f08c30adb601a06511a71b5ffb4d22d12ef77f
682f2552d5b04a8c8eb9e4ab15f875a91b03845c
refs/heads/main
1,693,101,073,585
1,636,479,336,000
1,636,479,336,000
415,000,441
0
0
null
null
null
null
UTF-8
Lean
false
false
179
lean
import data.real.basic import set_theory.cardinal theorem USAMO_Problem_3_2000 : {f : ℝ → ℝ | ∀ x y : ℝ, (f(x) + f(y)) / 2 ≥ f((x+y) / 2) + abs(x-y)} = ∅ := sorry
a28827c033fb60ec2ae55ee85f47ea39c9917918
737dc4b96c97368cb66b925eeea3ab633ec3d702
/src/Lean/Server/FileWorker.lean
db25378ad66492e45a5c767994dc1f2d7a5cd0a0
[ "Apache-2.0" ]
permissive
Bioye97/lean4
1ace34638efd9913dc5991443777b01a08983289
bc3900cbb9adda83eed7e6affeaade7cfd07716d
refs/heads/master
1,690,589,820,211
1,631,051,000,000
1,631,067,598,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
20,917
lean
/- Copyright (c) 2020 Marc Huisinga. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Marc Huisinga, Wojciech Nawrocki -/ import Init.System.IO import Std.Data.RBMap import Lean.Environment import Lean.Data.Lsp import Lean.Data.Json.FromToJson import Lean.Server.Utils import Lean.Server.Snapshots import Lean.Server.AsyncList import Lean.Server.FileWorker.Utils import Lean.Server.FileWorker.RequestHandling import Lean.Server.FileWorker.WidgetRequests import Lean.Server.Rpc.Basic import Lean.Widget.InteractiveDiagnostic /-! For general server architecture, see `README.md`. For details of IPC communication, see `Watchdog.lean`. This module implements per-file worker processes. File processing and requests+notifications against a file should be concurrent for two reasons: - By the LSP standard, requests should be cancellable. - Since Lean allows arbitrary user code to be executed during elaboration via the tactic framework, elaboration can be extremely slow and even not halt in some cases. Users should be able to work with the file while this is happening, e.g. make new changes to the file or send requests. To achieve these goals, elaboration is executed in a chain of tasks, where each task corresponds to the elaboration of one command. When the elaboration of one command is done, the next task is spawned. On didChange notifications, we search for the task in which the change occured. If we stumble across a task that has not yet finished before finding the task we're looking for, we terminate it and start the elaboration there, otherwise we start the elaboration at the task where the change occured. Requests iterate over tasks until they find the command that they need to answer the request. In order to not block the main thread, this is done in a request task. If a task that the request task waits for is terminated, a change occured somewhere before the command that the request is looking for and the request sends a "content changed" error. -/ namespace Lean.Server.FileWorker open Lsp open IO open Snapshots open Std (RBMap RBMap.empty) open JsonRpc structure WorkerContext where hIn : FS.Stream hOut : FS.Stream hLog : FS.Stream srcSearchPath : SearchPath /- Asynchronous snapshot elaboration. -/ section Elab abbrev AsyncElabM := ExceptT ElabTaskError (ReaderT WorkerContext IO) /-- Elaborates the next command after `parentSnap` and emits diagnostics into `hOut`. -/ private def nextCmdSnap (m : DocumentMeta) (parentSnap : Snapshot) (cancelTk : CancelToken) : AsyncElabM Snapshot := do cancelTk.check let hOut := (←read).hOut if parentSnap.isAtEnd then publishDiagnostics m parentSnap.diagnostics.toArray hOut publishProgressDone m hOut throw ElabTaskError.eof publishProgressAtPos m parentSnap.endPos hOut let snap ← compileNextCmd m.text parentSnap -- TODO(MH): check for interrupt with increased precision cancelTk.check /- NOTE(MH): This relies on the client discarding old diagnostics upon receiving new ones while prefering newer versions over old ones. The former is necessary because we do not explicitly clear older diagnostics, while the latter is necessary because we do not guarantee that diagnostics are emitted in order. Specifically, it may happen that we interrupted this elaboration task right at this point and a newer elaboration task emits diagnostics, after which we emit old diagnostics because we did not yet detect the interrupt. Explicitly clearing diagnostics is difficult for a similar reason, because we cannot guarantee that no further diagnostics are emitted after clearing them. -/ -- NOTE(WN): this is *not* redundent even if there are no new diagnostics in this snapshot -- because empty diagnostics clear existing error/information squiggles. Therefore we always -- want to publish in case there was previously a message at this position. publishDiagnostics m snap.diagnostics.toArray hOut return snap /-- Elaborates all commands after `initSnap`, emitting the diagnostics into `hOut`. -/ def unfoldCmdSnaps (m : DocumentMeta) (initSnap : Snapshot) (cancelTk : CancelToken) (initial : Bool) : ReaderT WorkerContext IO (AsyncList ElabTaskError Snapshot) := do if initial && initSnap.msgLog.hasErrors then -- treat header processing errors as fatal so users aren't swamped with followup errors AsyncList.nil else AsyncList.unfoldAsync (nextCmdSnap m . cancelTk (← read)) initSnap end Elab -- Pending requests are tracked so they can be cancelled abbrev PendingRequestMap := RBMap RequestID (Task (Except IO.Error Unit)) compare structure WorkerState where doc : EditableDocument pendingRequests : PendingRequestMap /-- A map of RPC session IDs. We allow asynchronous elab tasks and request handlers to modify sessions. A single `Ref` ensures atomic transactions. -/ rpcSessions : Std.RBMap UInt64 (IO.Ref RpcSession) compare abbrev WorkerM := ReaderT WorkerContext <| StateRefT WorkerState IO /- Worker initialization sequence. -/ section Initialization /-- Use `leanpkg print-paths` to compile dependencies on the fly and add them to `LEAN_PATH`. Compilation progress is reported to `hOut` via LSP notifications. Return the search path for source files. -/ partial def leanpkgSetupSearchPath (leanpkgPath : System.FilePath) (m : DocumentMeta) (imports : Array Import) (hOut : FS.Stream) : IO SearchPath := do let leanpkgProc ← Process.spawn { stdin := Process.Stdio.null stdout := Process.Stdio.piped stderr := Process.Stdio.piped cmd := leanpkgPath.toString args := #["print-paths"] ++ imports.map (toString ·.module) } -- progress notification: report latest stderr line let rec processStderr (acc : String) : IO String := do let line ← leanpkgProc.stderr.getLine if line == "" then return acc else publishDiagnostics m #[{ range := ⟨⟨0, 0⟩, ⟨0, 0⟩⟩, severity? := DiagnosticSeverity.information, message := line }] hOut processStderr (acc ++ line) let stderr ← IO.asTask (processStderr "") Task.Priority.dedicated let stdout := String.trim (← leanpkgProc.stdout.readToEnd) let stderr ← IO.ofExcept stderr.get if (← leanpkgProc.wait) == 0 then let leanpkgLines := stdout.split (· == '\n') -- ignore any output up to the last two lines -- TODO: leanpkg should instead redirect nested stdout output to stderr let leanpkgLines := leanpkgLines.drop (leanpkgLines.length - 2) match leanpkgLines with | [""] => pure [] -- e.g. no leanpkg.toml | [leanPath, leanSrcPath] => let sp ← getBuiltinSearchPath let sp ← addSearchPathFromEnv sp let sp := System.SearchPath.parse leanPath ++ sp searchPathRef.set sp let srcPath := System.SearchPath.parse leanSrcPath srcPath.mapM realPathNormalized | _ => throwServerError s!"unexpected output from `leanpkg print-paths`:\n{stdout}\nstderr:\n{stderr}" else throwServerError s!"`leanpkg print-paths` failed:\n{stdout}\nstderr:\n{stderr}" def compileHeader (m : DocumentMeta) (hOut : FS.Stream) : IO (Snapshot × SearchPath) := do let opts := {} -- TODO let inputCtx := Parser.mkInputContext m.text.source "<input>" let (headerStx, headerParserState, msgLog) ← Parser.parseHeader inputCtx let leanpkgPath ← match (← IO.getEnv "LEAN_SYSROOT") with | some path => pure <| System.FilePath.mk path / "bin" / "leanpkg" | _ => pure <| (← appDir) / "leanpkg" let leanpkgPath := leanpkgPath.withExtension System.FilePath.exeExtension let mut srcSearchPath := [(← appDir) / ".." / "lib" / "lean" / "src"] if let some p := (← IO.getEnv "LEAN_SRC_PATH") then srcSearchPath := srcSearchPath ++ System.SearchPath.parse p let (headerEnv, msgLog) ← try -- NOTE: leanpkg does not exist in stage 0 (yet?) if (← System.FilePath.pathExists leanpkgPath) then let pkgSearchPath ← leanpkgSetupSearchPath leanpkgPath m (Lean.Elab.headerToImports headerStx).toArray hOut srcSearchPath := srcSearchPath ++ pkgSearchPath Elab.processHeader headerStx opts msgLog inputCtx catch e => -- should be from `leanpkg print-paths` let msgs := MessageLog.empty.add { fileName := "<ignored>", pos := ⟨0, 0⟩, data := e.toString } pure (← mkEmptyEnvironment, msgs) let cmdState := Elab.Command.mkState headerEnv msgLog opts let cmdState := { cmdState with infoState.enabled := true, scopes := [{ header := "", opts := opts }] } let headerSnap := { beginPos := 0 stx := headerStx mpState := headerParserState cmdState := cmdState interactiveDiags := ← cmdState.messages.msgs.mapM (Widget.msgToInteractiveDiagnostic m.text) } publishDiagnostics m headerSnap.diagnostics.toArray hOut return (headerSnap, srcSearchPath) def initializeWorker (meta : DocumentMeta) (i o e : FS.Stream) : IO (WorkerContext × WorkerState) := do let (headerSnap, srcSearchPath) ← compileHeader meta o let cancelTk ← CancelToken.new let ctx := { hIn := i hOut := o hLog := e srcSearchPath := srcSearchPath } let cmdSnaps ← unfoldCmdSnaps meta headerSnap cancelTk (initial := true) ctx let doc : EditableDocument := ⟨meta, headerSnap, cmdSnaps, cancelTk⟩ return (ctx, { doc := doc pendingRequests := RBMap.empty rpcSessions := Std.RBMap.empty }) end Initialization section Updates def updatePendingRequests (map : PendingRequestMap → PendingRequestMap) : WorkerM Unit := do modify fun st => { st with pendingRequests := map st.pendingRequests } /-- Given the new document and `changePos`, the UTF-8 offset of a change into the pre-change source, updates editable doc state. -/ def updateDocument (newMeta : DocumentMeta) (changePos : String.Pos) : WorkerM Unit := do -- The watchdog only restarts the file worker when the syntax tree of the header changes. -- If e.g. a newline is deleted, it will not restart this file worker, but we still -- need to reparse the header so that the offsets are correct. let ctx ← read let oldDoc := (←get).doc let newHeaderSnap ← reparseHeader newMeta.text.source oldDoc.headerSnap if newHeaderSnap.stx != oldDoc.headerSnap.stx then throwServerError "Internal server error: header changed but worker wasn't restarted." let ⟨cmdSnaps, e?⟩ ← oldDoc.cmdSnaps.updateFinishedPrefix match e? with -- This case should not be possible. only the main task aborts tasks and ensures that aborted tasks -- do not show up in `snapshots` of an EditableDocument. | some ElabTaskError.aborted => throwServerError "Internal server error: elab task was aborted while still in use." | some (ElabTaskError.ioError ioError) => throw ioError | _ => -- No error or EOF oldDoc.cancelTk.set -- NOTE(WN): we invalidate eagerly as `endPos` consumes input greedily. To re-elaborate only -- when really necessary, we could do a whitespace-aware `Syntax` comparison instead. let mut validSnaps := cmdSnaps.finishedPrefix.takeWhile (fun s => s.endPos < changePos) if validSnaps.length = 0 then let cancelTk ← CancelToken.new let newCmdSnaps ← unfoldCmdSnaps newMeta newHeaderSnap cancelTk (initial := true) ctx modify fun st => { st with doc := ⟨newMeta, newHeaderSnap, newCmdSnaps, cancelTk⟩ } else /- When at least one valid non-header snap exists, it may happen that a change does not fall within the syntactic range of that last snap but still modifies it by appending tokens. We check for this here. We do not currently handle crazy grammars in which an appended token can merge two or more previous commands into one. To do so would require reparsing the entire file. -/ let mut lastSnap := validSnaps.getLast! let preLastSnap := if validSnaps.length ≥ 2 then validSnaps.get! (validSnaps.length - 2) else newHeaderSnap let newLastStx ← parseNextCmd newMeta.text.source preLastSnap if newLastStx != lastSnap.stx then validSnaps ← validSnaps.dropLast lastSnap ← preLastSnap let cancelTk ← CancelToken.new let newSnaps ← unfoldCmdSnaps newMeta lastSnap cancelTk (initial := false) ctx let newCmdSnaps := AsyncList.ofList validSnaps ++ newSnaps modify fun st => { st with doc := ⟨newMeta, newHeaderSnap, newCmdSnaps, cancelTk⟩ } end Updates /- Notifications are handled in the main thread. They may change global worker state such as the current file contents. -/ section NotificationHandling def handleDidChange (p : DidChangeTextDocumentParams) : WorkerM Unit := do let docId := p.textDocument let changes := p.contentChanges let oldDoc := (←get).doc let some newVersion ← pure docId.version? | throwServerError "Expected version number" if newVersion ≤ oldDoc.meta.version then -- TODO(WN): This happens on restart sometimes. IO.eprintln s!"Got outdated version number: {newVersion} ≤ {oldDoc.meta.version}" else if ¬ changes.isEmpty then let (newDocText, minStartOff) := foldDocumentChanges changes oldDoc.meta.text updateDocument ⟨docId.uri, newVersion, newDocText⟩ minStartOff def handleCancelRequest (p : CancelParams) : WorkerM Unit := do updatePendingRequests (fun pendingRequests => pendingRequests.erase p.id) def handleRpcRelease (p : Lsp.RpcReleaseParams) : WorkerM Unit := do let st ← get match st.rpcSessions.find? p.sessionId with | none => -- TODO(WN): should only print on log-level debug, if we had log-levels IO.eprintln s!"Trying to release refs '{p.refs}' from outdated RPC session '{p.sessionId}'." | some seshRef => let mut sesh ← seshRef.get for ref in p.refs do sesh := sesh.release ref |>.snd sesh ← sesh.keptAlive seshRef.set sesh def handleRpcKeepAlive (p : Lsp.RpcKeepAliveParams) : WorkerM Unit := do let st ← get match st.rpcSessions.find? p.sessionId with | none => return | some seshRef => let sesh ← seshRef.get let sesh ← sesh.keptAlive seshRef.set sesh end NotificationHandling /-! Requests here are handled synchronously rather than in the asynchronous `RequestM`. -/ section RequestHandling def handleRpcConnect (p : RpcConnectParams) : WorkerM RpcConnected := do let (newId, newSesh) ← RpcSession.new let newSeshRef ← IO.mkRef newSesh modify fun st => { st with rpcSessions := st.rpcSessions.insert newId newSeshRef } return { sessionId := newId } end RequestHandling section MessageHandling def parseParams (paramType : Type) [FromJson paramType] (params : Json) : WorkerM paramType := match fromJson? params with | Except.ok parsed => pure parsed | Except.error inner => throwServerError s!"Got param with wrong structure: {params.compress}\n{inner}" def handleNotification (method : String) (params : Json) : WorkerM Unit := do let handle := fun paramType [FromJson paramType] (handler : paramType → WorkerM Unit) => parseParams paramType params >>= handler match method with | "textDocument/didChange" => handle DidChangeTextDocumentParams handleDidChange | "$/cancelRequest" => handle CancelParams handleCancelRequest | "$/lean/rpc/release" => handle RpcReleaseParams handleRpcRelease | "$/lean/rpc/keepAlive" => handle RpcKeepAliveParams handleRpcKeepAlive | _ => throwServerError s!"Got unsupported notification method: {method}" def queueRequest (id : RequestID) (requestTask : Task (Except IO.Error Unit)) : WorkerM Unit := do updatePendingRequests (fun pendingRequests => pendingRequests.insert id requestTask) def handleRequest (id : RequestID) (method : String) (params : Json) : WorkerM Unit := do let ctx ← read let st ← get if method == "$/lean/rpc/connect" then try let ps ← parseParams RpcConnectParams params let resp ← handleRpcConnect ps ctx.hOut.writeLspResponse ⟨id, resp⟩ catch e => ctx.hOut.writeLspResponseError { id code := ErrorCode.internalError message := toString e } return let rc : RequestContext := { rpcSessions := st.rpcSessions srcSearchPath := ctx.srcSearchPath doc := st.doc hLog := ctx.hLog } let t? ← (ExceptT.run <| handleLspRequest method params rc : IO _) let t₁ ← match t? with | Except.error e => IO.asTask do ctx.hOut.writeLspResponseError <| e.toLspResponseError id | Except.ok t => (IO.mapTask · t) fun | Except.ok resp => ctx.hOut.writeLspResponse ⟨id, resp⟩ | Except.error e => ctx.hOut.writeLspResponseError <| e.toLspResponseError id queueRequest id t₁ end MessageHandling section MainLoop partial def mainLoop : WorkerM Unit := do let ctx ← read let mut st ← get let msg ← ctx.hIn.readLspMessage let filterFinishedTasks (acc : PendingRequestMap) (id : RequestID) (task : Task (Except IO.Error Unit)) : IO PendingRequestMap := do if (←hasFinished task) then /- Handler tasks are constructed so that the only possible errors here are failures of writing a response into the stream. -/ if let Except.error e := task.get then throwServerError s!"Failed responding to request {id}: {e}" acc.erase id else acc let pendingRequests ← st.pendingRequests.foldM (fun acc id task => filterFinishedTasks acc id task) st.pendingRequests st := { st with pendingRequests } -- Opportunistically (i.e. when we wake up on messages) check if any RPC session has expired. for (id, seshRef) in st.rpcSessions do let sesh ← seshRef.get if (← sesh.hasExpired) then st := { st with rpcSessions := st.rpcSessions.erase id } set st match msg with | Message.request id method (some params) => handleRequest id method (toJson params) mainLoop | Message.notification "exit" none => let doc ← (←get).doc doc.cancelTk.set return () | Message.notification method (some params) => handleNotification method (toJson params) mainLoop | _ => throwServerError "Got invalid JSON-RPC message" end MainLoop def initAndRunWorker (i o e : FS.Stream) : IO UInt32 := do let i ← maybeTee "fwIn.txt" false i let o ← maybeTee "fwOut.txt" true o let _ ← i.readLspRequestAs "initialize" InitializeParams let ⟨_, param⟩ ← i.readLspNotificationAs "textDocument/didOpen" DidOpenTextDocumentParams let doc := param.textDocument /- NOTE(WN): `toFileMap` marks line beginnings as immediately following "\n", which should be enough to handle both LF and CRLF correctly. This is because LSP always refers to characters by (line, column), so if we get the line number correct it shouldn't matter that there is a CR there. -/ let meta : DocumentMeta := ⟨doc.uri, doc.version, doc.text.toFileMap⟩ let e ← e.withPrefix s!"[{param.textDocument.uri}] " let _ ← IO.setStderr e try let (ctx, st) ← initializeWorker meta i o e let _ ← StateRefT'.run (s := st) <| ReaderT.run (r := ctx) mainLoop return (0 : UInt32) catch e => IO.eprintln e publishDiagnostics meta #[{ range := ⟨⟨0, 0⟩, ⟨0, 0⟩⟩, severity? := DiagnosticSeverity.error, message := e.toString }] o return (1 : UInt32) @[export lean_server_worker_main] def workerMain : IO UInt32 := do let i ← IO.getStdin let o ← IO.getStdout let e ← IO.getStderr try let seed ← (UInt64.toNat ∘ ByteArray.toUInt64LE!) <$> IO.getRandomBytes 8 IO.setRandSeed seed let exitCode ← initAndRunWorker i o e -- HACK: all `Task`s are currently "foreground", i.e. we join on them on main thread exit, but we definitely don't -- want to do that in the case of the worker processes, which can produce non-terminating tasks evaluating user code o.flush e.flush IO.Process.exit exitCode.toUInt8 catch err => e.putStrLn s!"worker initialization error: {err}" return (1 : UInt32) end Lean.Server.FileWorker
352ca26724676bb6b646510e7991ce83075d8bf5
ce89339993655da64b6ccb555c837ce6c10f9ef4
/zeptometer/topprover/27.lean
9f5ec78b7c4c803056e2180ebed68860e7a16273
[]
no_license
zeptometer/LearnLean
ef32dc36a22119f18d843f548d0bb42f907bff5d
bb84d5dbe521127ba134d4dbf9559b294a80b9f7
refs/heads/master
1,625,710,824,322
1,601,382,570,000
1,601,382,570,000
195,228,870
2
0
null
null
null
null
UTF-8
Lean
false
false
433
lean
inductive Two : Type | C21 : Two | C22 : Two inductive Three : Type | C31 : Three | C32 : Three | C33 : Three theorem two_is_not_three : Two ≠ Three := begin intro two_is_three, have hatonosu : ∀a b c: Two, a = b ∨ b = c ∨ c = a := by intros a b c; cases a; cases b; cases c; simp, rw two_is_three at hatonosu, have uso := hatonosu Three.C31 Three.C32 Three.C33, simp at uso, assumption end
04359793e286bb2d68b29235a7eda26d54521d10
8cae430f0a71442d02dbb1cbb14073b31048e4b0
/src/analysis/normed/group/seminorm.lean
2386f19137eb20f87f3627c221f6c47460045224
[ "Apache-2.0" ]
permissive
leanprover-community/mathlib
56a2cadd17ac88caf4ece0a775932fa26327ba0e
442a83d738cb208d3600056c489be16900ba701d
refs/heads/master
1,693,584,102,358
1,693,471,902,000
1,693,471,902,000
97,922,418
1,595
352
Apache-2.0
1,694,693,445,000
1,500,624,130,000
Lean
UTF-8
Lean
false
false
27,883
lean
/- Copyright (c) 2022 María Inés de Frutos-Fernández, Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: María Inés de Frutos-Fernández, Yaël Dillies -/ import tactic.positivity import data.real.nnreal /-! # Group seminorms > THIS FILE IS SYNCHRONIZED WITH MATHLIB4. > Any changes to this file require a corresponding PR to mathlib4. This file defines norms and seminorms in a group. A group seminorm is a function to the reals which is positive-semidefinite and subadditive. A norm further only maps zero to zero. ## Main declarations * `add_group_seminorm`: A function `f` from an additive group `G` to the reals that preserves zero, takes nonnegative values, is subadditive and such that `f (-x) = f x` for all `x`. * `nonarch_add_group_seminorm`: A function `f` from an additive group `G` to the reals that preserves zero, takes nonnegative values, is nonarchimedean and such that `f (-x) = f x` for all `x`. * `group_seminorm`: A function `f` from a group `G` to the reals that sends one to zero, takes nonnegative values, is submultiplicative and such that `f x⁻¹ = f x` for all `x`. * `add_group_norm`: A seminorm `f` such that `f x = 0 → x = 0` for all `x`. * `nonarch_add_group_norm`: A nonarchimedean seminorm `f` such that `f x = 0 → x = 0` for all `x`. * `group_norm`: A seminorm `f` such that `f x = 0 → x = 1` for all `x`. ## Notes The corresponding hom classes are defined in `analysis.order.hom.basic` to be used by absolute values. We do not define `nonarch_add_group_seminorm` as an extension of `add_group_seminorm` to avoid having a superfluous `add_le'` field in the resulting structure. The same applies to `nonarch_add_group_norm`. ## References * [H. H. Schaefer, *Topological Vector Spaces*][schaefer1966] ## Tags norm, seminorm -/ set_option old_structure_cmd true open set open_locale nnreal variables {ι R R' E F G : Type*} /-- A seminorm on an additive group `G` is a function `f : G → ℝ` that preserves zero, is subadditive and such that `f (-x) = f x` for all `x`. -/ @[protect_proj] structure add_group_seminorm (G : Type*) [add_group G] extends zero_hom G ℝ := (add_le' : ∀ r s, to_fun (r + s) ≤ to_fun r + to_fun s) (neg' : ∀ r, to_fun (-r) = to_fun r) /-- A seminorm on a group `G` is a function `f : G → ℝ` that sends one to zero, is submultiplicative and such that `f x⁻¹ = f x` for all `x`. -/ @[to_additive, protect_proj] structure group_seminorm (G : Type*) [group G] := (to_fun : G → ℝ) (map_one' : to_fun 1 = 0) (mul_le' : ∀ x y, to_fun (x * y) ≤ to_fun x + to_fun y) (inv' : ∀ x, to_fun x⁻¹ = to_fun x) /-- A nonarchimedean seminorm on an additive group `G` is a function `f : G → ℝ` that preserves zero, is nonarchimedean and such that `f (-x) = f x` for all `x`. -/ @[protect_proj] structure nonarch_add_group_seminorm (G : Type*) [add_group G] extends zero_hom G ℝ := (add_le_max' : ∀ r s, to_fun (r + s) ≤ max (to_fun r) (to_fun s)) (neg' : ∀ r, to_fun (-r) = to_fun r) /-! NOTE: We do not define `nonarch_add_group_seminorm` as an extension of `add_group_seminorm` to avoid having a superfluous `add_le'` field in the resulting structure. The same applies to `nonarch_add_group_norm` below. -/ /-- A norm on an additive group `G` is a function `f : G → ℝ` that preserves zero, is subadditive and such that `f (-x) = f x` and `f x = 0 → x = 0` for all `x`. -/ @[protect_proj] structure add_group_norm (G : Type*) [add_group G] extends add_group_seminorm G := (eq_zero_of_map_eq_zero' : ∀ x, to_fun x = 0 → x = 0) /-- A seminorm on a group `G` is a function `f : G → ℝ` that sends one to zero, is submultiplicative and such that `f x⁻¹ = f x` and `f x = 0 → x = 1` for all `x`. -/ @[protect_proj, to_additive] structure group_norm (G : Type*) [group G] extends group_seminorm G := (eq_one_of_map_eq_zero' : ∀ x, to_fun x = 0 → x = 1) /-- A nonarchimedean norm on an additive group `G` is a function `f : G → ℝ` that preserves zero, is nonarchimedean and such that `f (-x) = f x` and `f x = 0 → x = 0` for all `x`. -/ @[protect_proj] structure nonarch_add_group_norm (G : Type*) [add_group G] extends nonarch_add_group_seminorm G := (eq_zero_of_map_eq_zero' : ∀ x, to_fun x = 0 → x = 0) attribute [nolint doc_blame] add_group_seminorm.to_zero_hom add_group_norm.to_add_group_seminorm group_norm.to_group_seminorm nonarch_add_group_seminorm.to_zero_hom nonarch_add_group_norm.to_nonarch_add_group_seminorm attribute [to_additive] group_norm.to_group_seminorm /-- `nonarch_add_group_seminorm_class F α` states that `F` is a type of nonarchimedean seminorms on the additive group `α`. You should extend this class when you extend `nonarch_add_group_seminorm`. -/ @[protect_proj] class nonarch_add_group_seminorm_class (F : Type*) (α : out_param $ Type*) [add_group α] extends nonarchimedean_hom_class F α ℝ := (map_zero (f : F) : f 0 = 0) (map_neg_eq_map' (f : F) (a : α) : f (-a) = f a) /-- `nonarch_add_group_norm_class F α` states that `F` is a type of nonarchimedean norms on the additive group `α`. You should extend this class when you extend `nonarch_add_group_norm`. -/ @[protect_proj] class nonarch_add_group_norm_class (F : Type*) (α : out_param $ Type*) [add_group α] extends nonarch_add_group_seminorm_class F α := (eq_zero_of_map_eq_zero (f : F) {a : α} : f a = 0 → a = 0) section nonarch_add_group_seminorm_class variables [add_group E] [nonarch_add_group_seminorm_class F E] (f : F) (x y : E) include E lemma map_sub_le_max : f (x - y) ≤ max (f x) (f y) := by { rw [sub_eq_add_neg, ← nonarch_add_group_seminorm_class.map_neg_eq_map' f y], exact map_add_le_max _ _ _ } end nonarch_add_group_seminorm_class @[priority 100] -- See note [lower instance priority] instance nonarch_add_group_seminorm_class.to_add_group_seminorm_class [add_group E] [nonarch_add_group_seminorm_class F E] : add_group_seminorm_class F E ℝ := { map_add_le_add := λ f x y, begin have h_nonneg : ∀ a, 0 ≤ f a, { intro a, rw [← nonarch_add_group_seminorm_class.map_zero f, ← sub_self a], exact le_trans (map_sub_le_max _ _ _) (by rw max_self (f a)) }, exact le_trans (map_add_le_max _ _ _) (max_le (le_add_of_nonneg_right (h_nonneg _)) (le_add_of_nonneg_left (h_nonneg _))), end, map_neg_eq_map := nonarch_add_group_seminorm_class.map_neg_eq_map', ..‹nonarch_add_group_seminorm_class F E› } @[priority 100] -- See note [lower instance priority] instance nonarch_add_group_norm_class.to_add_group_norm_class [add_group E] [nonarch_add_group_norm_class F E] : add_group_norm_class F E ℝ := { map_add_le_add := map_add_le_add, map_neg_eq_map := nonarch_add_group_seminorm_class.map_neg_eq_map', ..‹nonarch_add_group_norm_class F E› } /-! ### Seminorms -/ namespace group_seminorm section group variables [group E] [group F] [group G] {p q : group_seminorm E} @[to_additive] instance group_seminorm_class : group_seminorm_class (group_seminorm E) E ℝ := { coe := λ f, f.to_fun, coe_injective' := λ f g h, by cases f; cases g; congr', map_one_eq_zero := λ f, f.map_one', map_mul_le_add := λ f, f.mul_le', map_inv_eq_map := λ f, f.inv' } /-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun`. -/ @[to_additive "Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun`. "] instance : has_coe_to_fun (group_seminorm E) (λ _, E → ℝ) := ⟨group_seminorm.to_fun⟩ @[simp, to_additive] lemma to_fun_eq_coe : p.to_fun = p := rfl @[ext, to_additive] lemma ext : (∀ x, p x = q x) → p = q := fun_like.ext p q @[to_additive] instance : partial_order (group_seminorm E) := partial_order.lift _ fun_like.coe_injective @[to_additive] lemma le_def : p ≤ q ↔ (p : E → ℝ) ≤ q := iff.rfl @[to_additive] lemma lt_def : p < q ↔ (p : E → ℝ) < q := iff.rfl @[simp, to_additive, norm_cast] lemma coe_le_coe : (p : E → ℝ) ≤ q ↔ p ≤ q := iff.rfl @[simp, to_additive, norm_cast] lemma coe_lt_coe : (p : E → ℝ) < q ↔ p < q := iff.rfl variables (p q) (f : F →* E) @[to_additive] instance : has_zero (group_seminorm E) := ⟨{ to_fun := 0, map_one' := pi.zero_apply _, mul_le' := λ _ _, (zero_add _).ge, inv' := λ x, rfl}⟩ @[simp, to_additive, norm_cast] lemma coe_zero : ⇑(0 : group_seminorm E) = 0 := rfl @[simp, to_additive] lemma zero_apply (x : E) : (0 : group_seminorm E) x = 0 := rfl @[to_additive] instance : inhabited (group_seminorm E) := ⟨0⟩ @[to_additive] instance : has_add (group_seminorm E) := ⟨λ p q, { to_fun := λ x, p x + q x, map_one' := by rw [map_one_eq_zero p, map_one_eq_zero q, zero_add], mul_le' := λ _ _, (add_le_add (map_mul_le_add p _ _) $ map_mul_le_add q _ _).trans_eq $ add_add_add_comm _ _ _ _, inv' := λ x, by rw [map_inv_eq_map p, map_inv_eq_map q] }⟩ @[simp, to_additive] lemma coe_add : ⇑(p + q) = p + q := rfl @[simp, to_additive] lemma add_apply (x : E) : (p + q) x = p x + q x := rfl -- TODO: define `has_Sup` too, from the skeleton at -- https://github.com/leanprover-community/mathlib/pull/11329#issuecomment-1008915345 @[to_additive] instance : has_sup (group_seminorm E) := ⟨λ p q, { to_fun := p ⊔ q, map_one' := by rw [pi.sup_apply, ←map_one_eq_zero p, sup_eq_left, map_one_eq_zero p, map_one_eq_zero q], mul_le' := λ x y, sup_le ((map_mul_le_add p x y).trans $ add_le_add le_sup_left le_sup_left) ((map_mul_le_add q x y).trans $ add_le_add le_sup_right le_sup_right), inv' := λ x, by rw [pi.sup_apply, pi.sup_apply, map_inv_eq_map p, map_inv_eq_map q] }⟩ @[simp, to_additive, norm_cast] lemma coe_sup : ⇑(p ⊔ q) = p ⊔ q := rfl @[simp, to_additive] lemma sup_apply (x : E) : (p ⊔ q) x = p x ⊔ q x := rfl @[to_additive] instance : semilattice_sup (group_seminorm E) := fun_like.coe_injective.semilattice_sup _ coe_sup /-- Composition of a group seminorm with a monoid homomorphism as a group seminorm. -/ @[to_additive "Composition of an additive group seminorm with an additive monoid homomorphism as an additive group seminorm."] def comp (p : group_seminorm E) (f : F →* E) : group_seminorm F := { to_fun := λ x, p (f x), map_one' := by rw [f.map_one, map_one_eq_zero p], mul_le' := λ _ _, (congr_arg p $ f.map_mul _ _).trans_le $ map_mul_le_add p _ _, inv' := λ x, by rw [map_inv, map_inv_eq_map p] } @[simp, to_additive] lemma coe_comp : ⇑(p.comp f) = p ∘ f := rfl @[simp, to_additive] lemma comp_apply (x : F) : (p.comp f) x = p (f x) := rfl @[simp, to_additive] lemma comp_id : p.comp (monoid_hom.id _) = p := ext $ λ _, rfl @[simp, to_additive] lemma comp_zero : p.comp (1 : F →* E) = 0 := ext $ λ _, map_one_eq_zero p @[simp, to_additive] lemma zero_comp : (0 : group_seminorm E).comp f = 0 := ext $ λ _, rfl @[to_additive] lemma comp_assoc (g : F →* E) (f : G →* F) : p.comp (g.comp f) = (p.comp g).comp f := ext $ λ _, rfl @[to_additive] lemma add_comp (f : F →* E) : (p + q).comp f = p.comp f + q.comp f := ext $ λ _, rfl variables {p q} @[to_additive] lemma comp_mono (hp : p ≤ q) : p.comp f ≤ q.comp f := λ _, hp _ end group section comm_group variables [comm_group E] [comm_group F] (p q : group_seminorm E) (x y : E) @[to_additive] lemma comp_mul_le (f g : F →* E) : p.comp (f * g) ≤ p.comp f + p.comp g := λ _, map_mul_le_add p _ _ @[to_additive] lemma mul_bdd_below_range_add {p q : group_seminorm E} {x : E} : bdd_below (range $ λ y, p y + q (x / y)) := ⟨0, by { rintro _ ⟨x, rfl⟩, dsimp, positivity }⟩ @[to_additive] noncomputable instance : has_inf (group_seminorm E) := ⟨λ p q, { to_fun := λ x, ⨅ y, p y + q (x / y), map_one' := cinfi_eq_of_forall_ge_of_forall_gt_exists_lt (λ x, by positivity) (λ r hr, ⟨1, by rwa [div_one, map_one_eq_zero p, map_one_eq_zero q, add_zero]⟩), mul_le' := λ x y, le_cinfi_add_cinfi $ λ u v, begin refine cinfi_le_of_le mul_bdd_below_range_add (u * v) _, rw [mul_div_mul_comm, add_add_add_comm], exact add_le_add (map_mul_le_add p _ _) (map_mul_le_add q _ _), end, inv' := λ x, (inv_surjective.infi_comp _).symm.trans $ by simp_rw [map_inv_eq_map p, ←inv_div', map_inv_eq_map q] }⟩ @[simp, to_additive] lemma inf_apply : (p ⊓ q) x = ⨅ y, p y + q (x / y) := rfl @[to_additive] noncomputable instance : lattice (group_seminorm E) := { inf := (⊓), inf_le_left := λ p q x, cinfi_le_of_le mul_bdd_below_range_add x $ by rw [div_self', map_one_eq_zero q, add_zero], inf_le_right := λ p q x, cinfi_le_of_le mul_bdd_below_range_add (1 : E) $ by simp only [div_one, map_one_eq_zero p, zero_add], le_inf := λ a b c hb hc x, le_cinfi $ λ u, (le_map_add_map_div a _ _).trans $ add_le_add (hb _) (hc _), ..group_seminorm.semilattice_sup } end comm_group end group_seminorm /- TODO: All the following ought to be automated using `to_additive`. The problem is that it doesn't see that `has_smul R ℝ` should be fixed because `ℝ` is fixed. -/ namespace add_group_seminorm variables [add_group E] [has_smul R ℝ] [has_smul R ℝ≥0] [is_scalar_tower R ℝ≥0 ℝ] (p : add_group_seminorm E) instance [decidable_eq E] : has_one (add_group_seminorm E) := ⟨{ to_fun := λ x, if x = 0 then 0 else 1, map_zero' := if_pos rfl, add_le' := λ x y, begin by_cases hx : x = 0, { rw [if_pos hx, hx, zero_add, zero_add] }, { rw if_neg hx, refine le_add_of_le_of_nonneg _ _; split_ifs; norm_num } end, neg' := λ x, by simp_rw neg_eq_zero }⟩ @[simp] lemma apply_one [decidable_eq E] (x : E) : (1 : add_group_seminorm E) x = if x = 0 then 0 else 1 := rfl /-- Any action on `ℝ` which factors through `ℝ≥0` applies to an `add_group_seminorm`. -/ instance : has_smul R (add_group_seminorm E) := ⟨λ r p, { to_fun := λ x, r • p x, map_zero' := by simp only [←smul_one_smul ℝ≥0 r (_ : ℝ), nnreal.smul_def, smul_eq_mul, map_zero, mul_zero], add_le' := λ _ _, begin simp only [←smul_one_smul ℝ≥0 r (_ : ℝ), nnreal.smul_def, smul_eq_mul], exact (mul_le_mul_of_nonneg_left (map_add_le_add _ _ _) $ nnreal.coe_nonneg _).trans_eq (mul_add _ _ _), end, neg' := λ x, by rw map_neg_eq_map }⟩ @[simp, norm_cast] lemma coe_smul (r : R) (p : add_group_seminorm E) : ⇑(r • p) = r • p := rfl @[simp] lemma smul_apply (r : R) (p : add_group_seminorm E) (x : E) : (r • p) x = r • p x := rfl instance [has_smul R' ℝ] [has_smul R' ℝ≥0] [is_scalar_tower R' ℝ≥0 ℝ] [has_smul R R'] [is_scalar_tower R R' ℝ] : is_scalar_tower R R' (add_group_seminorm E) := ⟨λ r a p, ext $ λ x, smul_assoc r a (p x)⟩ lemma smul_sup (r : R) (p q : add_group_seminorm E) : r • (p ⊔ q) = r • p ⊔ r • q := have real.smul_max : ∀ x y : ℝ, r • max x y = max (r • x) (r • y), from λ x y, by simpa only [←smul_eq_mul, ←nnreal.smul_def, smul_one_smul ℝ≥0 r (_ : ℝ)] using mul_max_of_nonneg x y (r • 1 : ℝ≥0).coe_nonneg, ext $ λ x, real.smul_max _ _ end add_group_seminorm namespace nonarch_add_group_seminorm section add_group variables [add_group E] [add_group F] [add_group G] {p q : nonarch_add_group_seminorm E} instance nonarch_add_group_seminorm_class : nonarch_add_group_seminorm_class (nonarch_add_group_seminorm E) E := { coe := λ f, f.to_fun, coe_injective' := λ f g h, by cases f; cases g; congr', map_add_le_max := λ f, f.add_le_max', map_zero := λ f, f.map_zero', map_neg_eq_map' := λ f, f.neg', } /-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun`. -/ instance : has_coe_to_fun (nonarch_add_group_seminorm E) (λ _, E → ℝ) := ⟨nonarch_add_group_seminorm.to_fun⟩ @[simp] lemma to_fun_eq_coe : p.to_fun = p := rfl @[ext] lemma ext : (∀ x, p x = q x) → p = q := fun_like.ext p q noncomputable instance : partial_order (nonarch_add_group_seminorm E) := partial_order.lift _ fun_like.coe_injective lemma le_def : p ≤ q ↔ (p : E → ℝ) ≤ q := iff.rfl lemma lt_def : p < q ↔ (p : E → ℝ) < q := iff.rfl @[simp, norm_cast] lemma coe_le_coe : (p : E → ℝ) ≤ q ↔ p ≤ q := iff.rfl @[simp, norm_cast] lemma coe_lt_coe : (p : E → ℝ) < q ↔ p < q := iff.rfl variables (p q) (f : F →+ E) instance : has_zero (nonarch_add_group_seminorm E) := ⟨{ to_fun := 0, map_zero' := pi.zero_apply _, add_le_max' := λ r s, by simp only [pi.zero_apply, max_eq_right], neg' := λ x, rfl}⟩ @[simp, norm_cast] lemma coe_zero : ⇑(0 : nonarch_add_group_seminorm E) = 0 := rfl @[simp] lemma zero_apply (x : E) : (0 : nonarch_add_group_seminorm E) x = 0 := rfl instance : inhabited (nonarch_add_group_seminorm E) := ⟨0⟩ -- TODO: define `has_Sup` too, from the skeleton at -- https://github.com/leanprover-community/mathlib/pull/11329#issuecomment-1008915345 instance : has_sup (nonarch_add_group_seminorm E) := ⟨λ p q, { to_fun := p ⊔ q, map_zero' := by rw [pi.sup_apply, ←map_zero p, sup_eq_left, map_zero p, map_zero q], add_le_max' := λ x y, sup_le ((map_add_le_max p x y).trans $ max_le_max le_sup_left le_sup_left) ((map_add_le_max q x y).trans $ max_le_max le_sup_right le_sup_right), neg' := λ x, by rw [pi.sup_apply, pi.sup_apply, map_neg_eq_map p, map_neg_eq_map q] }⟩ @[simp, norm_cast] lemma coe_sup : ⇑(p ⊔ q) = p ⊔ q := rfl @[simp] lemma sup_apply (x : E) : (p ⊔ q) x = p x ⊔ q x := rfl noncomputable instance : semilattice_sup (nonarch_add_group_seminorm E) := fun_like.coe_injective.semilattice_sup _ coe_sup end add_group section add_comm_group variables [add_comm_group E] [add_comm_group F] (p q : nonarch_add_group_seminorm E) (x y : E) lemma add_bdd_below_range_add {p q : nonarch_add_group_seminorm E} {x : E} : bdd_below (range $ λ y, p y + q (x - y)) := ⟨0, by { rintro _ ⟨x, rfl⟩, dsimp, positivity }⟩ end add_comm_group end nonarch_add_group_seminorm namespace group_seminorm variables [group E] [has_smul R ℝ] [has_smul R ℝ≥0] [is_scalar_tower R ℝ≥0 ℝ] @[to_additive add_group_seminorm.has_one] instance [decidable_eq E] : has_one (group_seminorm E) := ⟨{ to_fun := λ x, if x = 1 then 0 else 1, map_one' := if_pos rfl, mul_le' := λ x y, begin by_cases hx : x = 1, { rw [if_pos hx, hx, one_mul, zero_add] }, { rw if_neg hx, refine le_add_of_le_of_nonneg _ _; split_ifs; norm_num } end, inv' := λ x, by simp_rw inv_eq_one }⟩ @[simp, to_additive add_group_seminorm.apply_one] lemma apply_one [decidable_eq E] (x : E) : (1 : group_seminorm E) x = if x = 1 then 0 else 1 := rfl /-- Any action on `ℝ` which factors through `ℝ≥0` applies to an `add_group_seminorm`. -/ @[to_additive add_group_seminorm.has_smul] instance : has_smul R (group_seminorm E) := ⟨λ r p, { to_fun := λ x, r • p x, map_one' := by simp only [←smul_one_smul ℝ≥0 r (_ : ℝ), nnreal.smul_def, smul_eq_mul, map_one_eq_zero p, mul_zero], mul_le' := λ _ _, begin simp only [←smul_one_smul ℝ≥0 r (_ : ℝ), nnreal.smul_def, smul_eq_mul], exact (mul_le_mul_of_nonneg_left (map_mul_le_add p _ _) $ nnreal.coe_nonneg _).trans_eq (mul_add _ _ _), end, inv' := λ x, by rw map_inv_eq_map p }⟩ @[to_additive add_group_seminorm.is_scalar_tower] instance [has_smul R' ℝ] [has_smul R' ℝ≥0] [is_scalar_tower R' ℝ≥0 ℝ] [has_smul R R'] [is_scalar_tower R R' ℝ] : is_scalar_tower R R' (group_seminorm E) := ⟨λ r a p, ext $ λ x, smul_assoc r a $ p x⟩ @[simp, to_additive add_group_seminorm.coe_smul, norm_cast] lemma coe_smul (r : R) (p : group_seminorm E) : ⇑(r • p) = r • p := rfl @[simp, to_additive add_group_seminorm.smul_apply] lemma smul_apply (r : R) (p : group_seminorm E) (x : E) : (r • p) x = r • p x := rfl @[to_additive add_group_seminorm.smul_sup] lemma smul_sup (r : R) (p q : group_seminorm E) : r • (p ⊔ q) = r • p ⊔ r • q := have real.smul_max : ∀ x y : ℝ, r • max x y = max (r • x) (r • y), from λ x y, by simpa only [←smul_eq_mul, ←nnreal.smul_def, smul_one_smul ℝ≥0 r (_ : ℝ)] using mul_max_of_nonneg x y (r • 1 : ℝ≥0).coe_nonneg, ext $ λ x, real.smul_max _ _ end group_seminorm namespace nonarch_add_group_seminorm variables [add_group E] [has_smul R ℝ] [has_smul R ℝ≥0] [is_scalar_tower R ℝ≥0 ℝ] instance [decidable_eq E] : has_one (nonarch_add_group_seminorm E) := ⟨{ to_fun := λ x, if x = 0 then 0 else 1, map_zero' := if_pos rfl, add_le_max' := λ x y, begin by_cases hx : x = 0, { rw [if_pos hx, hx, zero_add], exact le_max_of_le_right (le_refl _) }, { rw if_neg hx, split_ifs; norm_num } end, neg' := λ x, by simp_rw neg_eq_zero }⟩ @[simp] lemma apply_one [decidable_eq E] (x : E) : (1 : nonarch_add_group_seminorm E) x = if x = 0 then 0 else 1 := rfl /-- Any action on `ℝ` which factors through `ℝ≥0` applies to a `nonarch_add_group_seminorm`. -/ instance : has_smul R (nonarch_add_group_seminorm E) := ⟨λ r p, { to_fun := λ x, r • p x, map_zero' := by simp only [←smul_one_smul ℝ≥0 r (_ : ℝ), nnreal.smul_def, smul_eq_mul, map_zero p, mul_zero], add_le_max' := λ x y, begin simp only [←smul_one_smul ℝ≥0 r (_ : ℝ), nnreal.smul_def, smul_eq_mul, ← mul_max_of_nonneg _ _ nnreal.zero_le_coe], exact mul_le_mul_of_nonneg_left (map_add_le_max p _ _) nnreal.zero_le_coe, end, neg' := λ x, by rw map_neg_eq_map p }⟩ instance [has_smul R' ℝ] [has_smul R' ℝ≥0] [is_scalar_tower R' ℝ≥0 ℝ] [has_smul R R'] [is_scalar_tower R R' ℝ] : is_scalar_tower R R' (nonarch_add_group_seminorm E) := ⟨λ r a p, ext $ λ x, smul_assoc r a $ p x⟩ @[simp, norm_cast] lemma coe_smul (r : R) (p : nonarch_add_group_seminorm E) : ⇑(r • p) = r • p := rfl @[simp] lemma smul_apply (r : R) (p : nonarch_add_group_seminorm E) (x : E) : (r • p) x = r • p x := rfl lemma smul_sup (r : R) (p q : nonarch_add_group_seminorm E) : r • (p ⊔ q) = r • p ⊔ r • q := have real.smul_max : ∀ x y : ℝ, r • max x y = max (r • x) (r • y), from λ x y, by simpa only [←smul_eq_mul, ←nnreal.smul_def, smul_one_smul ℝ≥0 r (_ : ℝ)] using mul_max_of_nonneg x y (r • 1 : ℝ≥0).coe_nonneg, ext $ λ x, real.smul_max _ _ end nonarch_add_group_seminorm /-! ### Norms -/ namespace group_norm section group variables [group E] [group F] [group G] {p q : group_norm E} @[to_additive] instance group_norm_class : group_norm_class (group_norm E) E ℝ := { coe := λ f, f.to_fun, coe_injective' := λ f g h, by cases f; cases g; congr', map_one_eq_zero := λ f, f.map_one', map_mul_le_add := λ f, f.mul_le', map_inv_eq_map := λ f, f.inv', eq_one_of_map_eq_zero := λ f, f.eq_one_of_map_eq_zero' } /-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun` directly. -/ @[to_additive "Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun` directly. "] instance : has_coe_to_fun (group_norm E) (λ _, E → ℝ) := fun_like.has_coe_to_fun @[simp, to_additive] lemma to_fun_eq_coe : p.to_fun = p := rfl @[ext, to_additive] lemma ext : (∀ x, p x = q x) → p = q := fun_like.ext p q @[to_additive] instance : partial_order (group_norm E) := partial_order.lift _ fun_like.coe_injective @[to_additive] lemma le_def : p ≤ q ↔ (p : E → ℝ) ≤ q := iff.rfl @[to_additive] lemma lt_def : p < q ↔ (p : E → ℝ) < q := iff.rfl @[simp, to_additive, norm_cast] lemma coe_le_coe : (p : E → ℝ) ≤ q ↔ p ≤ q := iff.rfl @[simp, to_additive, norm_cast] lemma coe_lt_coe : (p : E → ℝ) < q ↔ p < q := iff.rfl variables (p q) (f : F →* E) @[to_additive] instance : has_add (group_norm E) := ⟨λ p q, { eq_one_of_map_eq_zero' := λ x hx, of_not_not $ λ h, hx.not_gt $ add_pos (map_pos_of_ne_one p h) (map_pos_of_ne_one q h), ..p.to_group_seminorm + q.to_group_seminorm }⟩ @[simp, to_additive] lemma coe_add : ⇑(p + q) = p + q := rfl @[simp, to_additive] lemma add_apply (x : E) : (p + q) x = p x + q x := rfl -- TODO: define `has_Sup` @[to_additive] instance : has_sup (group_norm E) := ⟨λ p q, { eq_one_of_map_eq_zero' := λ x hx, of_not_not $ λ h, hx.not_gt $ lt_sup_iff.2 $ or.inl $ map_pos_of_ne_one p h, ..p.to_group_seminorm ⊔ q.to_group_seminorm }⟩ @[simp, to_additive, norm_cast] lemma coe_sup : ⇑(p ⊔ q) = p ⊔ q := rfl @[simp, to_additive] lemma sup_apply (x : E) : (p ⊔ q) x = p x ⊔ q x := rfl @[to_additive] instance : semilattice_sup (group_norm E) := fun_like.coe_injective.semilattice_sup _ coe_sup end group end group_norm namespace add_group_norm variables [add_group E] [decidable_eq E] instance : has_one (add_group_norm E) := ⟨{ eq_zero_of_map_eq_zero' := λ x, zero_ne_one.ite_eq_left_iff.1, ..(1 : add_group_seminorm E) }⟩ @[simp] lemma apply_one (x : E) : (1 : add_group_norm E) x = if x = 0 then 0 else 1 := rfl instance : inhabited (add_group_norm E) := ⟨1⟩ end add_group_norm namespace group_norm variables [group E] [decidable_eq E] @[to_additive add_group_norm.has_one] instance : has_one (group_norm E) := ⟨{ eq_one_of_map_eq_zero' := λ x, zero_ne_one.ite_eq_left_iff.1, ..(1 : group_seminorm E) }⟩ @[simp, to_additive add_group_norm.apply_one] lemma apply_one (x : E) : (1 : group_norm E) x = if x = 1 then 0 else 1 := rfl @[to_additive] instance : inhabited (group_norm E) := ⟨1⟩ end group_norm namespace nonarch_add_group_norm section add_group variables [add_group E] [add_group F] {p q : nonarch_add_group_norm E} instance nonarch_add_group_norm_class : nonarch_add_group_norm_class (nonarch_add_group_norm E) E := { coe := λ f, f.to_fun, coe_injective' := λ f g h, by cases f; cases g; congr', map_add_le_max := λ f, f.add_le_max', map_zero := λ f, f.map_zero', map_neg_eq_map' := λ f, f.neg', eq_zero_of_map_eq_zero := λ f, f.eq_zero_of_map_eq_zero' } /-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun`. -/ noncomputable instance : has_coe_to_fun (nonarch_add_group_norm E) (λ _, E → ℝ) := fun_like.has_coe_to_fun @[simp] lemma to_fun_eq_coe : p.to_fun = p := rfl @[ext] lemma ext : (∀ x, p x = q x) → p = q := fun_like.ext p q noncomputable instance : partial_order (nonarch_add_group_norm E) := partial_order.lift _ fun_like.coe_injective lemma le_def : p ≤ q ↔ (p : E → ℝ) ≤ q := iff.rfl lemma lt_def : p < q ↔ (p : E → ℝ) < q := iff.rfl @[simp, norm_cast] lemma coe_le_coe : (p : E → ℝ) ≤ q ↔ p ≤ q := iff.rfl @[simp, norm_cast] lemma coe_lt_coe : (p : E → ℝ) < q ↔ p < q := iff.rfl variables (p q) (f : F →+ E) instance : has_sup (nonarch_add_group_norm E) := ⟨λ p q, { eq_zero_of_map_eq_zero' := λ x hx, of_not_not $ λ h, hx.not_gt $ lt_sup_iff.2 $ or.inl $ map_pos_of_ne_zero p h, ..p.to_nonarch_add_group_seminorm ⊔ q.to_nonarch_add_group_seminorm }⟩ @[simp, norm_cast] lemma coe_sup : ⇑(p ⊔ q) = p ⊔ q := rfl @[simp] lemma sup_apply (x : E) : (p ⊔ q) x = p x ⊔ q x := rfl noncomputable instance : semilattice_sup (nonarch_add_group_norm E) := fun_like.coe_injective.semilattice_sup _ coe_sup instance [decidable_eq E] : has_one (nonarch_add_group_norm E) := ⟨{ eq_zero_of_map_eq_zero' := λ x, zero_ne_one.ite_eq_left_iff.1, ..(1 : nonarch_add_group_seminorm E) }⟩ @[simp] lemma apply_one [decidable_eq E] (x : E) : (1 : nonarch_add_group_norm E) x = if x = 0 then 0 else 1 := rfl instance [decidable_eq E] : inhabited (nonarch_add_group_norm E) := ⟨1⟩ end add_group end nonarch_add_group_norm
bce93e10bac1629f3c31dc291d8e493349135482
618003631150032a5676f229d13a079ac875ff77
/src/data/real/ereal.lean
c2a83064dc986eed55e5aea584087e907d53deab
[ "Apache-2.0" ]
permissive
awainverse/mathlib
939b68c8486df66cfda64d327ad3d9165248c777
ea76bd8f3ca0a8bf0a166a06a475b10663dec44a
refs/heads/master
1,659,592,962,036
1,590,987,592,000
1,590,987,592,000
268,436,019
1
0
Apache-2.0
1,590,990,500,000
1,590,990,500,000
null
UTF-8
Lean
false
false
3,263
lean
/- Copyright (c) 2019 Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kevin Buzzard -/ import data.real.basic /-! # The extended reals [-∞, ∞]. This file defines `ereal`, the real numbers together with a top and bottom element, referred to as ⊤ and ⊥. It is implemented as `with_top (with_bot ℝ)` Addition and multiplication are problematic in the presence of ±∞, but negation has a natural definition and satisfies the usual properties. An addition is derived, but `ereal` is not even a monoid (there is no identity). `ereal` is a `complete_lattice`; this is now deduced by type class inference from the fact that `with_top (with_bot L)` is a complete lattice if `L` is a conditionally complete lattice. ## Tags real, ereal, complete lattice ## TODO abs : ereal → ennreal In Isabelle they define + - * and / (making junk choices for things like -∞ + ∞) and then prove whatever bits of the ordered ring/field axioms still hold. They also do some limits stuff (liminf/limsup etc). See https://isabelle.in.tum.de/dist/library/HOL/HOL-Library/Extended_Real.html -/ /-- ereal : The type `[-∞, ∞]` -/ @[derive [linear_order, order_bot, order_top, has_Sup, has_Inf, complete_lattice, has_add]] def ereal := with_top (with_bot ℝ) namespace ereal instance : has_coe ℝ ereal := ⟨some ∘ some⟩ @[simp, norm_cast] protected lemma coe_real_le {x y : ℝ} : (x : ereal) ≤ (y : ereal) ↔ x ≤ y := by { unfold_coes, norm_num } @[simp, norm_cast] protected lemma coe_real_lt {x y : ℝ} : (x : ereal) < (y : ereal) ↔ x < y := by { unfold_coes, norm_num } @[simp, norm_cast] protected lemma coe_real_inj' {x y : ℝ} : (x : ereal) = (y : ereal) ↔ x = y := by { unfold_coes, simp [option.some_inj] } /- neg -/ /-- negation on ereal -/ protected def neg : ereal → ereal | ⊥ := ⊤ | ⊤ := ⊥ | (x : ℝ) := (-x : ℝ) instance : has_neg ereal := ⟨ereal.neg⟩ @[norm_cast] protected lemma neg_def (x : ℝ) : ((-x : ℝ) : ereal) = -x := rfl /-- - -a = a on ereal -/ protected theorem neg_neg : ∀ (a : ereal), - (- a) = a | ⊥ := rfl | ⊤ := rfl | (a : ℝ) := by { norm_cast, simp [neg_neg a] } theorem neg_inj (a b : ereal) (h : -a = -b) : a = b := by rw [←ereal.neg_neg a, h, ereal.neg_neg b] /-- Even though ereal is not an additive group, -a = b ↔ -b = a still holds -/ theorem neg_eq_iff_neg_eq {a b : ereal} : -a = b ↔ -b = a := ⟨by {intro h, rw ←h, exact ereal.neg_neg a}, by {intro h, rw ←h, exact ereal.neg_neg b}⟩ /-- if -a ≤ b then -b ≤ a on ereal -/ protected theorem neg_le_of_neg_le : ∀ {a b : ereal} (h : -a ≤ b), -b ≤ a | ⊥ ⊥ h := h | ⊥ (some b) h := by cases (top_le_iff.1 h) | ⊤ l h := le_top | (a : ℝ) ⊥ h := by cases (le_bot_iff.1 h) | l ⊤ h := bot_le | (a : ℝ) (b : ℝ) h := by { norm_cast at h ⊢, exact _root_.neg_le_of_neg_le h } /-- -a ≤ b ↔ -b ≤ a on ereal-/ protected theorem neg_le {a b : ereal} : -a ≤ b ↔ -b ≤ a := ⟨ereal.neg_le_of_neg_le, ereal.neg_le_of_neg_le⟩ /-- a ≤ -b → b ≤ -a on ereal -/ theorem le_neg_of_le_neg {a b : ereal} (h : a ≤ -b) : b ≤ -a := by rwa [←ereal.neg_neg b, ereal.neg_le, ereal.neg_neg] end ereal
a47683342b83a2e23a7d67608efc79ff1feb9da8
35960c5b117752aca7e3e7767c0b393e4dbd72a7
/src/exp/lc.lean
3243b827b4e16214dc3db5b4c4f68af009028630
[ "Apache-2.0" ]
permissive
spl/tts
461dc76b83df8db47e4660d0941dc97e6d4fd7d1
b65298fea68ce47c8ed3ba3dbce71c1a20dd3481
refs/heads/master
1,541,049,198,347
1,537,967,023,000
1,537,967,029,000
119,653,145
1
0
null
null
null
null
UTF-8
Lean
false
false
3,278
lean
import exp.open namespace tts ------------------------------------------------------------------ namespace exp ------------------------------------------------------------------ variables {V : Type} [decidable_eq V] -- Type of variable names variables {k k₂ k₃ : ℕ} -- Natural numbers variables {v : V} -- Variable names variables {x : tagged V} -- Variables variables {e ea eb ed ef e₁ e₂ e₃ : exp V} -- Expressions open occurs /-- Locally-close expression -/ inductive lc : exp V → Prop | var : Π x, lc (var free x) | app : Π {ef ea : exp V}, lc ef → lc ea → lc (app ef ea) | lam : Π {v} (L : finset (tagged V)) {eb : exp V}, (∀ {x : tagged V}, x ∉ L → lc (open_var x eb)) → lc (lam v eb) | let_ : Π {v} (L : finset (tagged V)) {ed eb : exp V}, lc ed → (∀ {x : tagged V}, x ∉ L → lc (open_var x eb)) → lc (let_ v ed eb) /-- Locally-closed body of a lambda- or let-expression -/ def lc_body (e : exp V) : Prop := ∃ (L : finset (tagged V)), ∀ {x : tagged V}, x ∉ L → lc (open_var x e) @[simp] theorem lc_var (x : tagged V) : lc (var free x) := lc.var x @[simp] theorem lc_app : lc (app ef ea) ↔ lc ef ∧ lc ea := ⟨λ l, by cases l with _ _ _ l₁ l₂; exact ⟨l₁, l₂⟩, λ ⟨l₁, l₂⟩, lc.app l₁ l₂⟩ @[simp] theorem lc_lam : lc (lam v eb) ↔ lc_body eb := ⟨λ l, by cases l; apply exists.intro; assumption; assumption, λ l, by cases l; apply lc.lam; assumption; assumption⟩ @[simp] theorem lc_let_ : lc (let_ v ed eb) ↔ lc ed ∧ lc_body eb := ⟨λ l, by cases l; exact ⟨by assumption, ⟨by assumption, by assumption⟩⟩, by rintro ⟨_, _, _⟩; apply lc.let_; repeat {assumption}⟩ theorem open_exp_of_lc_aux (p : k₂ ≠ k₃) : open_exp e₂ k₂ (open_exp e₃ k₃ e₁) = open_exp e₃ k₃ e₁ → open_exp e₂ k₂ e₁ = e₁ := begin induction e₁ generalizing e₂ e₃ k₂ k₃; repeat {rw open_exp}, case exp.var : o x { cases o, case occurs.bound { cases x with _ i, by_cases h : k₃ = i, { induction h, simp [p] }, { simp [h] } }, case occurs.free { exact id }, }, case exp.app : ef ea ihf iha { intro h, injection h with hf ha, conv {to_lhs, rw [ihf p hf, iha p ha]} }, case exp.lam : v eb rb { intro h, injection h with _ hb, conv {to_lhs, rw rb (mt nat.succ.inj p) hb} }, case exp.let_ : v ed eb rd rb { intro h, injection h with _ hd hb, conv {to_lhs, rw [rd p hd, rb (mt nat.succ.inj p) hb]} } end @[simp] theorem open_exp_id (l : lc e₁) : open_exp e₂ k e₁ = e₁ := begin induction l generalizing e₂ k; rw open_exp, case lc.app : ef ea lf la rf ra { rw [rf, ra] }, case lc.lam : v L eb lb rb { rw open_exp_of_lc_aux k.succ_ne_zero (rb ((fresh.tagged v).gen_not_mem L)) }, case lc.let_ : v L ed eb ld Fb rd rb { rw [rd, open_exp_of_lc_aux k.succ_ne_zero (rb ((fresh.tagged v).gen_not_mem L))] } end end /- namespace -/ exp -------------------------------------------------------- end /- namespace -/ tts --------------------------------------------------------
1c083c944d84e168b2963194365dde3f3df37c45
1546f9083f4babf70df0329497d1ee05adc8c665
/src/monoidal_categories_reboot/rigid_monoidal_category.lean
8dcbc34f77d6488723022233263434e8f36733c8
[ "Apache-2.0" ]
permissive
khoek/monoidal-categories-reboot
0899b0d4552ff039388042059c91f7207c6c34e5
ed3df8ecce5d4e3d95cb858911bad12bb632cf8a
refs/heads/master
1,588,877,903,131
1,554,987,273,000
1,554,987,273,000
180,791,863
0
0
null
1,554,987,295,000
1,554,987,295,000
null
UTF-8
Lean
false
false
2,488
lean
-- Copyright (c) 2018 Michael Jendrusch. All rights reserved. import .monoidal_category import .braided_monoidal_category universes u v namespace category_theory.monoidal open monoidal_category class right_duality {C : Sort u} (A A' : C) [monoidal_category.{u v} C] := (right_unit : tensor_unit C ⟶ A ⊗ A') (right_counit : A' ⊗ A ⟶ tensor_unit C) (triangle_right_1' : ((𝟙 A') ⊗ right_unit) ≫ (associator A' A A').inv ≫ (right_counit ⊗ (𝟙 A')) = (right_unitor A').hom ≫ (left_unitor A').inv . obviously) (triangle_right_2' : (right_unit ⊗ (𝟙 A)) ≫ (associator A A' A).hom ≫ ((𝟙 A) ⊗ right_counit) = (left_unitor A).hom ≫ (right_unitor A).inv . obviously) class left_duality {C : Sort u} (A A' : C) [monoidal_category.{u v} C] := (left_unit : tensor_unit C ⟶ A' ⊗ A) (left_counit : A ⊗ A' ⟶ tensor_unit C) (triangle_left_1' : ((𝟙 A) ⊗ left_unit) ≫ (associator A A' A).inv ≫ (left_counit ⊗ (𝟙 A)) = (right_unitor A).hom ≫ (left_unitor A).inv . obviously) (triangle_left_2' : (left_unit ⊗ (𝟙 A')) ≫ (associator A' A A').hom ≫ ((𝟙 A') ⊗ left_counit) = (left_unitor A').hom ≫ (right_unitor A').inv . obviously) class duality {C : Sort u} (A A' : C) [braided_monoidal_category.{u v} C] extends right_duality.{u} A A', left_duality.{u} A A' def self_duality {C : Sort u} (A : C) [braided_monoidal_category.{u v} C] := duality A A class right_rigid (C : Sort u) [monoidal_category.{u v} C] := (right_rigidity' : Π X : C, Σ X' : C, right_duality X X') class left_rigid (C : Sort u) [monoidal_category.{u v} C] := (left_rigidity' : Π X : C, Σ X' : C, left_duality X X') class rigid (C : Sort u) [monoidal_category.{u v} C] extends right_rigid.{v} C, left_rigid.{v} C class self_dual (C : Sort u) [braided_monoidal_category.{u v} C] := (self_duality' : Π X : C, self_duality X) def compact_closed (C : Sort u) [symmetric_monoidal_category.{u v} C] := rigid.{v} C section open self_dual open left_duality instance rigid_of_self_dual (C : Sort u) [braided_monoidal_category.{u v} C] [𝒟 : self_dual.{v} C] : rigid.{v} C := { left_rigidity' := λ X : C, sigma.mk X (self_duality' X).to_left_duality, right_rigidity' := λ X : C, sigma.mk X (self_duality' X).to_right_duality } end end category_theory.monoidal
d694ceedf5db7be626c3b1ccf62690d9fd417e28
02fbe05a45fda5abde7583464416db4366eedfbf
/library/init/data/sigma/lex.lean
43510fa99c694e6eab6758f9dcfb12460fb0b570
[ "Apache-2.0" ]
permissive
jasonrute/lean
cc12807e11f9ac6b01b8951a8bfb9c2eb35a0154
4be962c167ca442a0ec5e84472d7ff9f5302788f
refs/heads/master
1,672,036,664,637
1,601,642,826,000
1,601,642,826,000
260,777,966
0
0
Apache-2.0
1,588,454,819,000
1,588,454,818,000
null
UTF-8
Lean
false
false
5,713
lean
/- Copyright (c) 2016 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura -/ prelude import init.data.sigma.basic init.meta universes u v namespace psigma section variables {α : Sort u} {β : α → Sort v} variable (r : α → α → Prop) variable (s : ∀ a, β a → β a → Prop) -- Lexicographical order based on r and s inductive lex : psigma β → psigma β → Prop | left : ∀ {a₁ : α} (b₁ : β a₁) {a₂ : α} (b₂ : β a₂), r a₁ a₂ → lex ⟨a₁, b₁⟩ ⟨a₂, b₂⟩ | right : ∀ (a : α) {b₁ b₂ : β a}, s a b₁ b₂ → lex ⟨a, b₁⟩ ⟨a, b₂⟩ end section open well_founded tactic parameters {α : Sort u} {β : α → Sort v} parameters {r : α → α → Prop} {s : Π a : α, β a → β a → Prop} local infix `≺`:50 := lex r s def lex_accessible {a} (aca : acc r a) (acb : ∀ a, well_founded (s a)) : ∀ (b : β a), acc (lex r s) ⟨a, b⟩ := acc.rec_on aca (λ xa aca (iha : ∀ y, r y xa → ∀ b : β y, acc (lex r s) ⟨y, b⟩), λ b : β xa, acc.rec_on (well_founded.apply (acb xa) b) (λ xb acb (ihb : ∀ (y : β xa), s xa y xb → acc (lex r s) ⟨xa, y⟩), acc.intro ⟨xa, xb⟩ (λ p (lt : p ≺ ⟨xa, xb⟩), have aux : xa = xa → xb == xb → acc (lex r s) p, from @psigma.lex.rec_on α β r s (λ p₁ p₂, p₂.1 = xa → p₂.2 == xb → acc (lex r s) p₁) p ⟨xa, xb⟩ lt (λ (a₁ : α) (b₁ : β a₁) (a₂ : α) (b₂ : β a₂) (h : r a₁ a₂) (eq₂ : a₂ = xa) (eq₃ : b₂ == xb), begin subst eq₂, exact iha a₁ h b₁ end) (λ (a : α) (b₁ b₂ : β a) (h : s a b₁ b₂) (eq₂ : a = xa) (eq₃ : b₂ == xb), begin subst eq₂, have new_eq₃ := eq_of_heq eq₃, subst new_eq₃, exact ihb b₁ h end), aux rfl (heq.refl xb)))) -- The lexicographical order of well founded relations is well-founded def lex_wf (ha : well_founded r) (hb : ∀ x, well_founded (s x)) : well_founded (lex r s) := well_founded.intro $ λ ⟨a, b⟩, lex_accessible (well_founded.apply ha a) hb b end section parameters {α : Sort u} {β : Sort v} def lex_ndep (r : α → α → Prop) (s : β → β → Prop) := lex r (λ a : α, s) def lex_ndep_wf {r : α → α → Prop} {s : β → β → Prop} (ha : well_founded r) (hb : well_founded s) : well_founded (lex_ndep r s) := well_founded.intro $ λ ⟨a, b⟩, lex_accessible (well_founded.apply ha a) (λ x, hb) b end section variables {α : Sort u} {β : Sort v} variable (r : α → α → Prop) variable (s : β → β → Prop) -- Reverse lexicographical order based on r and s inductive rev_lex : @psigma α (λ a, β) → @psigma α (λ a, β) → Prop | left : ∀ {a₁ a₂ : α} (b : β), r a₁ a₂ → rev_lex ⟨a₁, b⟩ ⟨a₂, b⟩ | right : ∀ (a₁ : α) {b₁ : β} (a₂ : α) {b₂ : β}, s b₁ b₂ → rev_lex ⟨a₁, b₁⟩ ⟨a₂, b₂⟩ end section open well_founded tactic parameters {α : Sort u} {β : Sort v} parameters {r : α → α → Prop} {s : β → β → Prop} local infix `≺`:50 := rev_lex r s def rev_lex_accessible {b} (acb : acc s b) (aca : ∀ a, acc r a): ∀ a, acc (rev_lex r s) ⟨a, b⟩ := acc.rec_on acb (λ xb acb (ihb : ∀ y, s y xb → ∀ a, acc (rev_lex r s) ⟨a, y⟩), λ a, acc.rec_on (aca a) (λ xa aca (iha : ∀ y, r y xa → acc (rev_lex r s) (mk y xb)), acc.intro ⟨xa, xb⟩ (λ p (lt : p ≺ ⟨xa, xb⟩), have aux : xa = xa → xb = xb → acc (rev_lex r s) p, from @rev_lex.rec_on α β r s (λ p₁ p₂, fst p₂ = xa → snd p₂ = xb → acc (rev_lex r s) p₁) p ⟨xa, xb⟩ lt (λ a₁ a₂ b (h : r a₁ a₂) (eq₂ : a₂ = xa) (eq₃ : b = xb), show acc (rev_lex r s) ⟨a₁, b⟩, from have r₁ : r a₁ xa, from eq.rec_on eq₂ h, have aux : acc (rev_lex r s) ⟨a₁, xb⟩, from iha a₁ r₁, eq.rec_on (eq.symm eq₃) aux) (λ a₁ b₁ a₂ b₂ (h : s b₁ b₂) (eq₂ : a₂ = xa) (eq₃ : b₂ = xb), show acc (rev_lex r s) (mk a₁ b₁), from have s₁ : s b₁ xb, from eq.rec_on eq₃ h, ihb b₁ s₁ a₁), aux rfl rfl))) def rev_lex_wf (ha : well_founded r) (hb : well_founded s) : well_founded (rev_lex r s) := well_founded.intro $ λ ⟨a, b⟩, rev_lex_accessible (apply hb b) (well_founded.apply ha) a end section def skip_left (α : Type u) {β : Type v} (s : β → β → Prop) : @psigma α (λ a, β) → @psigma α (λ a, β) → Prop := rev_lex empty_relation s def skip_left_wf (α : Type u) {β : Type v} {s : β → β → Prop} (hb : well_founded s) : well_founded (skip_left α s) := rev_lex_wf empty_wf hb def mk_skip_left {α : Type u} {β : Type v} {b₁ b₂ : β} {s : β → β → Prop} (a₁ a₂ : α) (h : s b₁ b₂) : skip_left α s ⟨a₁, b₁⟩ ⟨a₂, b₂⟩ := rev_lex.right _ _ h end instance has_well_founded {α : Type u} {β : α → Type v} [s₁ : has_well_founded α] [s₂ : ∀ a, has_well_founded (β a)] : has_well_founded (psigma β) := {r := lex s₁.r (λ a, (s₂ a).r), wf := lex_wf s₁.wf (λ a, (s₂ a).wf)} end psigma
4035dc8879d8ef3530f35bce7ee2d3388cf7b76e
57c233acf9386e610d99ed20ef139c5f97504ba3
/src/linear_algebra/finsupp.lean
c50bef6df093156892c3e4497671db3dc0f89e2c
[ "Apache-2.0" ]
permissive
robertylewis/mathlib
3d16e3e6daf5ddde182473e03a1b601d2810952c
1d13f5b932f5e40a8308e3840f96fc882fae01f0
refs/heads/master
1,651,379,945,369
1,644,276,960,000
1,644,276,960,000
98,875,504
0
0
Apache-2.0
1,644,253,514,000
1,501,495,700,000
Lean
UTF-8
Lean
false
false
39,479
lean
/- Copyright (c) 2019 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl -/ import data.finsupp.basic import linear_algebra.pi /-! # Properties of the module `α →₀ M` Given an `R`-module `M`, the `R`-module structure on `α →₀ M` is defined in `data.finsupp.basic`. In this file we define `finsupp.supported s` to be the set `{f : α →₀ M | f.support ⊆ s}` interpreted as a submodule of `α →₀ M`. We also define `linear_map` versions of various maps: * `finsupp.lsingle a : M →ₗ[R] ι →₀ M`: `finsupp.single a` as a linear map; * `finsupp.lapply a : (ι →₀ M) →ₗ[R] M`: the map `λ f, f a` as a linear map; * `finsupp.lsubtype_domain (s : set α) : (α →₀ M) →ₗ[R] (s →₀ M)`: restriction to a subtype as a linear map; * `finsupp.restrict_dom`: `finsupp.filter` as a linear map to `finsupp.supported s`; * `finsupp.lsum`: `finsupp.sum` or `finsupp.lift_add_hom` as a `linear_map`; * `finsupp.total α M R (v : ι → M)`: sends `l : ι → R` to the linear combination of `v i` with coefficients `l i`; * `finsupp.total_on`: a restricted version of `finsupp.total` with domain `finsupp.supported R R s` and codomain `submodule.span R (v '' s)`; * `finsupp.supported_equiv_finsupp`: a linear equivalence between the functions `α →₀ M` supported on `s` and the functions `s →₀ M`; * `finsupp.lmap_domain`: a linear map version of `finsupp.map_domain`; * `finsupp.dom_lcongr`: a `linear_equiv` version of `finsupp.dom_congr`; * `finsupp.congr`: if the sets `s` and `t` are equivalent, then `supported M R s` is equivalent to `supported M R t`; * `finsupp.lcongr`: a `linear_equiv`alence between `α →₀ M` and `β →₀ N` constructed using `e : α ≃ β` and `e' : M ≃ₗ[R] N`. ## Tags function with finite support, module, linear algebra -/ noncomputable theory open set linear_map submodule open_locale classical big_operators namespace finsupp variables {α : Type*} {M : Type*} {N : Type*} {P : Type*} {R : Type*} {S : Type*} variables [semiring R] [semiring S] [add_comm_monoid M] [module R M] variables [add_comm_monoid N] [module R N] variables [add_comm_monoid P] [module R P] /-- Interpret `finsupp.single a` as a linear map. -/ def lsingle (a : α) : M →ₗ[R] (α →₀ M) := { map_smul' := assume a b, (smul_single _ _ _).symm, ..finsupp.single_add_hom a } /-- Two `R`-linear maps from `finsupp X M` which agree on each `single x y` agree everywhere. -/ lemma lhom_ext ⦃φ ψ : (α →₀ M) →ₗ[R] N⦄ (h : ∀ a b, φ (single a b) = ψ (single a b)) : φ = ψ := linear_map.to_add_monoid_hom_injective $ add_hom_ext h /-- Two `R`-linear maps from `finsupp X M` which agree on each `single x y` agree everywhere. We formulate this fact using equality of linear maps `φ.comp (lsingle a)` and `ψ.comp (lsingle a)` so that the `ext` tactic can apply a type-specific extensionality lemma to prove equality of these maps. E.g., if `M = R`, then it suffices to verify `φ (single a 1) = ψ (single a 1)`. -/ @[ext] lemma lhom_ext' ⦃φ ψ : (α →₀ M) →ₗ[R] N⦄ (h : ∀ a, φ.comp (lsingle a) = ψ.comp (lsingle a)) : φ = ψ := lhom_ext $ λ a, linear_map.congr_fun (h a) /-- Interpret `λ (f : α →₀ M), f a` as a linear map. -/ def lapply (a : α) : (α →₀ M) →ₗ[R] M := { map_smul' := assume a b, rfl, ..finsupp.apply_add_hom a } section lsubtype_domain variables (s : set α) /-- Interpret `finsupp.subtype_domain s` as a linear map. -/ def lsubtype_domain : (α →₀ M) →ₗ[R] (s →₀ M) := { to_fun := subtype_domain (λx, x ∈ s), map_add' := λ a b, subtype_domain_add, map_smul' := λ c a, ext $ λ a, rfl } lemma lsubtype_domain_apply (f : α →₀ M) : (lsubtype_domain s : (α →₀ M) →ₗ[R] (s →₀ M)) f = subtype_domain (λx, x ∈ s) f := rfl end lsubtype_domain @[simp] lemma lsingle_apply (a : α) (b : M) : (lsingle a : M →ₗ[R] (α →₀ M)) b = single a b := rfl @[simp] lemma lapply_apply (a : α) (f : α →₀ M) : (lapply a : (α →₀ M) →ₗ[R] M) f = f a := rfl @[simp] lemma ker_lsingle (a : α) : (lsingle a : M →ₗ[R] (α →₀ M)).ker = ⊥ := ker_eq_bot_of_injective (single_injective a) lemma lsingle_range_le_ker_lapply (s t : set α) (h : disjoint s t) : (⨆a∈s, (lsingle a : M →ₗ[R] (α →₀ M)).range) ≤ (⨅a∈t, ker (lapply a)) := begin refine supr_le (assume a₁, supr_le $ assume h₁, range_le_iff_comap.2 _), simp only [(ker_comp _ _).symm, eq_top_iff, set_like.le_def, mem_ker, comap_infi, mem_infi], assume b hb a₂ h₂, have : a₁ ≠ a₂ := assume eq, h ⟨h₁, eq.symm ▸ h₂⟩, exact single_eq_of_ne this end lemma infi_ker_lapply_le_bot : (⨅a, ker (lapply a : (α →₀ M) →ₗ[R] M)) ≤ ⊥ := begin simp only [set_like.le_def, mem_infi, mem_ker, mem_bot, lapply_apply], exact assume a h, finsupp.ext h end lemma supr_lsingle_range : (⨆a, (lsingle a : M →ₗ[R] (α →₀ M)).range) = ⊤ := begin refine (eq_top_iff.2 $ set_like.le_def.2 $ assume f _, _), rw [← sum_single f], exact sum_mem _ (assume a ha, submodule.mem_supr_of_mem a ⟨_, rfl⟩), end lemma disjoint_lsingle_lsingle (s t : set α) (hs : disjoint s t) : disjoint (⨆a∈s, (lsingle a : M →ₗ[R] (α →₀ M)).range) (⨆a∈t, (lsingle a).range) := begin refine disjoint.mono (lsingle_range_le_ker_lapply _ _ $ disjoint_compl_right) (lsingle_range_le_ker_lapply _ _ $ disjoint_compl_right) (le_trans (le_infi $ assume i, _) infi_ker_lapply_le_bot), classical, by_cases his : i ∈ s, { by_cases hit : i ∈ t, { exact (hs ⟨his, hit⟩).elim }, exact inf_le_of_right_le (infi_le_of_le i $ infi_le _ hit) }, exact inf_le_of_left_le (infi_le_of_le i $ infi_le _ his) end lemma span_single_image (s : set M) (a : α) : submodule.span R (single a '' s) = (submodule.span R s).map (lsingle a) := by rw ← span_image; refl variables (M R) /-- `finsupp.supported M R s` is the `R`-submodule of all `p : α →₀ M` such that `p.support ⊆ s`. -/ def supported (s : set α) : submodule R (α →₀ M) := begin refine ⟨ {p | ↑p.support ⊆ s }, _, _, _ ⟩, { simp only [subset_def, finset.mem_coe, set.mem_set_of_eq, mem_support_iff, zero_apply], assume h ha, exact (ha rfl).elim }, { assume p q hp hq, refine subset.trans (subset.trans (finset.coe_subset.2 support_add) _) (union_subset hp hq), rw [finset.coe_union] }, { assume a p hp, refine subset.trans (finset.coe_subset.2 support_smul) hp } end variables {M} lemma mem_supported {s : set α} (p : α →₀ M) : p ∈ (supported M R s) ↔ ↑p.support ⊆ s := iff.rfl lemma mem_supported' {s : set α} (p : α →₀ M) : p ∈ supported M R s ↔ ∀ x ∉ s, p x = 0 := by haveI := classical.dec_pred (λ (x : α), x ∈ s); simp [mem_supported, set.subset_def, not_imp_comm] lemma mem_supported_support (p : α →₀ M) : p ∈ finsupp.supported M R (p.support : set α) := by rw finsupp.mem_supported lemma single_mem_supported {s : set α} {a : α} (b : M) (h : a ∈ s) : single a b ∈ supported M R s := set.subset.trans support_single_subset (finset.singleton_subset_set_iff.2 h) lemma supported_eq_span_single (s : set α) : supported R R s = span R ((λ i, single i 1) '' s) := begin refine (span_eq_of_le _ _ (set_like.le_def.2 $ λ l hl, _)).symm, { rintro _ ⟨_, hp, rfl ⟩ , exact single_mem_supported R 1 hp }, { rw ← l.sum_single, refine sum_mem _ (λ i il, _), convert @smul_mem R (α →₀ R) _ _ _ _ (single i 1) (l i) _, { simp }, apply subset_span, apply set.mem_image_of_mem _ (hl il) } end variables (M R) /-- Interpret `finsupp.filter s` as a linear map from `α →₀ M` to `supported M R s`. -/ def restrict_dom (s : set α) : (α →₀ M) →ₗ[R] supported M R s := linear_map.cod_restrict _ { to_fun := filter (∈ s), map_add' := λ l₁ l₂, filter_add, map_smul' := λ a l, filter_smul } (λ l, (mem_supported' _ _).2 $ λ x, filter_apply_neg (∈ s) l) variables {M R} section @[simp] theorem restrict_dom_apply (s : set α) (l : α →₀ M) : ((restrict_dom M R s : (α →₀ M) →ₗ[R] supported M R s) l : α →₀ M) = finsupp.filter (∈ s) l := rfl end theorem restrict_dom_comp_subtype (s : set α) : (restrict_dom M R s).comp (submodule.subtype _) = linear_map.id := begin ext l a, by_cases a ∈ s; simp [h], exact ((mem_supported' R l.1).1 l.2 a h).symm end theorem range_restrict_dom (s : set α) : (restrict_dom M R s).range = ⊤ := range_eq_top.2 $ function.right_inverse.surjective $ linear_map.congr_fun (restrict_dom_comp_subtype s) theorem supported_mono {s t : set α} (st : s ⊆ t) : supported M R s ≤ supported M R t := λ l h, set.subset.trans h st @[simp] theorem supported_empty : supported M R (∅ : set α) = ⊥ := eq_bot_iff.2 $ λ l h, (submodule.mem_bot R).2 $ by ext; simp [*, mem_supported'] at * @[simp] theorem supported_univ : supported M R (set.univ : set α) = ⊤ := eq_top_iff.2 $ λ l _, set.subset_univ _ theorem supported_Union {δ : Type*} (s : δ → set α) : supported M R (⋃ i, s i) = ⨆ i, supported M R (s i) := begin refine le_antisymm _ (supr_le $ λ i, supported_mono $ set.subset_Union _ _), haveI := classical.dec_pred (λ x, x ∈ (⋃ i, s i)), suffices : ((submodule.subtype _).comp (restrict_dom M R (⋃ i, s i))).range ≤ ⨆ i, supported M R (s i), { rwa [linear_map.range_comp, range_restrict_dom, map_top, range_subtype] at this }, rw [range_le_iff_comap, eq_top_iff], rintro l ⟨⟩, apply finsupp.induction l, {exact zero_mem _}, refine λ x a l hl a0, add_mem _ _, by_cases (∃ i, x ∈ s i); simp [h], { cases h with i hi, exact le_supr (λ i, supported M R (s i)) i (single_mem_supported R _ hi) } end theorem supported_union (s t : set α) : supported M R (s ∪ t) = supported M R s ⊔ supported M R t := by erw [set.union_eq_Union, supported_Union, supr_bool_eq]; refl theorem supported_Inter {ι : Type*} (s : ι → set α) : supported M R (⋂ i, s i) = ⨅ i, supported M R (s i) := submodule.ext $ λ x, by simp [mem_supported, subset_Inter_iff] theorem supported_inter (s t : set α) : supported M R (s ∩ t) = supported M R s ⊓ supported M R t := by rw [set.inter_eq_Inter, supported_Inter, infi_bool_eq]; refl theorem disjoint_supported_supported {s t : set α} (h : disjoint s t) : disjoint (supported M R s) (supported M R t) := disjoint_iff.2 $ by rw [← supported_inter, disjoint_iff_inter_eq_empty.1 h, supported_empty] theorem disjoint_supported_supported_iff [nontrivial M] {s t : set α} : disjoint (supported M R s) (supported M R t) ↔ disjoint s t := begin refine ⟨λ h x hx, _, disjoint_supported_supported⟩, rcases exists_ne (0 : M) with ⟨y, hy⟩, have := h ⟨single_mem_supported R y hx.1, single_mem_supported R y hx.2⟩, rw [mem_bot, single_eq_zero] at this, exact hy this end /-- Interpret `finsupp.restrict_support_equiv` as a linear equivalence between `supported M R s` and `s →₀ M`. -/ def supported_equiv_finsupp (s : set α) : (supported M R s) ≃ₗ[R] (s →₀ M) := begin let F : (supported M R s) ≃ (s →₀ M) := restrict_support_equiv s M, refine F.to_linear_equiv _, have : (F : (supported M R s) → (↥s →₀ M)) = ((lsubtype_domain s : (α →₀ M) →ₗ[R] (s →₀ M)).comp (submodule.subtype (supported M R s))) := rfl, rw this, exact linear_map.is_linear _ end section lsum variables (S) [module S N] [smul_comm_class R S N] /-- Lift a family of linear maps `M →ₗ[R] N` indexed by `x : α` to a linear map from `α →₀ M` to `N` using `finsupp.sum`. This is an upgraded version of `finsupp.lift_add_hom`. See note [bundled maps over different rings] for why separate `R` and `S` semirings are used. -/ def lsum : (α → M →ₗ[R] N) ≃ₗ[S] ((α →₀ M) →ₗ[R] N) := { to_fun := λ F, { to_fun := λ d, d.sum (λ i, F i), map_add' := (lift_add_hom (λ x, (F x).to_add_monoid_hom)).map_add, map_smul' := λ c f, by simp [sum_smul_index', smul_sum] }, inv_fun := λ F x, F.comp (lsingle x), left_inv := λ F, by { ext x y, simp }, right_inv := λ F, by { ext x y, simp }, map_add' := λ F G, by { ext x y, simp }, map_smul' := λ F G, by { ext x y, simp } } @[simp] lemma coe_lsum (f : α → M →ₗ[R] N) : (lsum S f : (α →₀ M) → N) = λ d, d.sum (λ i, f i) := rfl theorem lsum_apply (f : α → M →ₗ[R] N) (l : α →₀ M) : finsupp.lsum S f l = l.sum (λ b, f b) := rfl theorem lsum_single (f : α → M →ₗ[R] N) (i : α) (m : M) : finsupp.lsum S f (finsupp.single i m) = f i m := finsupp.sum_single_index (f i).map_zero theorem lsum_symm_apply (f : (α →₀ M) →ₗ[R] N) (x : α) : (lsum S).symm f x = f.comp (lsingle x) := rfl end lsum section variables (M) (R) (X : Type*) /-- A slight rearrangement from `lsum` gives us the bijection underlying the free-forgetful adjunction for R-modules. -/ noncomputable def lift : (X → M) ≃+ ((X →₀ R) →ₗ[R] M) := (add_equiv.arrow_congr (equiv.refl X) (ring_lmap_equiv_self R ℕ M).to_add_equiv.symm).trans (lsum _ : _ ≃ₗ[ℕ] _).to_add_equiv @[simp] lemma lift_symm_apply (f) (x) : ((lift M R X).symm f) x = f (single x 1) := rfl @[simp] lemma lift_apply (f) (g) : ((lift M R X) f) g = g.sum (λ x r, r • f x) := rfl end section lmap_domain variables {α' : Type*} {α'' : Type*} (M R) /-- Interpret `finsupp.map_domain` as a linear map. -/ def lmap_domain (f : α → α') : (α →₀ M) →ₗ[R] (α' →₀ M) := { to_fun := map_domain f, map_add' := λ a b, map_domain_add, map_smul' := map_domain_smul } @[simp] theorem lmap_domain_apply (f : α → α') (l : α →₀ M) : (lmap_domain M R f : (α →₀ M) →ₗ[R] (α' →₀ M)) l = map_domain f l := rfl @[simp] theorem lmap_domain_id : (lmap_domain M R id : (α →₀ M) →ₗ[R] α →₀ M) = linear_map.id := linear_map.ext $ λ l, map_domain_id theorem lmap_domain_comp (f : α → α') (g : α' → α'') : lmap_domain M R (g ∘ f) = (lmap_domain M R g).comp (lmap_domain M R f) := linear_map.ext $ λ l, map_domain_comp theorem supported_comap_lmap_domain (f : α → α') (s : set α') : supported M R (f ⁻¹' s) ≤ (supported M R s).comap (lmap_domain M R f) := λ l (hl : ↑l.support ⊆ f ⁻¹' s), show ↑(map_domain f l).support ⊆ s, begin rw [← set.image_subset_iff, ← finset.coe_image] at hl, exact set.subset.trans map_domain_support hl end theorem lmap_domain_supported [nonempty α] (f : α → α') (s : set α) : (supported M R s).map (lmap_domain M R f) = supported M R (f '' s) := begin inhabit α, refine le_antisymm (map_le_iff_le_comap.2 $ le_trans (supported_mono $ set.subset_preimage_image _ _) (supported_comap_lmap_domain _ _ _ _)) _, intros l hl, refine ⟨(lmap_domain M R (function.inv_fun_on f s) : (α' →₀ M) →ₗ[R] α →₀ M) l, λ x hx, _, _⟩, { rcases finset.mem_image.1 (map_domain_support hx) with ⟨c, hc, rfl⟩, exact function.inv_fun_on_mem (by simpa using hl hc) }, { rw [← linear_map.comp_apply, ← lmap_domain_comp], refine (map_domain_congr $ λ c hc, _).trans map_domain_id, exact function.inv_fun_on_eq (by simpa using hl hc) } end theorem lmap_domain_disjoint_ker (f : α → α') {s : set α} (H : ∀ a b ∈ s, f a = f b → a = b) : disjoint (supported M R s) (lmap_domain M R f).ker := begin rintro l ⟨h₁, h₂⟩, rw [set_like.mem_coe, mem_ker, lmap_domain_apply, map_domain] at h₂, simp, ext x, haveI := classical.dec_pred (λ x, x ∈ s), by_cases xs : x ∈ s, { have : finsupp.sum l (λ a, finsupp.single (f a)) (f x) = 0, {rw h₂, refl}, rw [finsupp.sum_apply, finsupp.sum, finset.sum_eq_single x] at this, { simpa [finsupp.single_apply] }, { intros y hy xy, simp [mt (H _ (h₁ hy) _ xs) xy] }, { simp {contextual := tt} } }, { by_contra h, exact xs (h₁ $ finsupp.mem_support_iff.2 h) } end end lmap_domain section total variables (α) {α' : Type*} (M) {M' : Type*} (R) [add_comm_monoid M'] [module R M'] (v : α → M) {v' : α' → M'} /-- Interprets (l : α →₀ R) as linear combination of the elements in the family (v : α → M) and evaluates this linear combination. -/ protected def total : (α →₀ R) →ₗ[R] M := finsupp.lsum ℕ (λ i, linear_map.id.smul_right (v i)) variables {α M v} theorem total_apply (l : α →₀ R) : finsupp.total α M R v l = l.sum (λ i a, a • v i) := rfl theorem total_apply_of_mem_supported {l : α →₀ R} {s : finset α} (hs : l ∈ supported R R (↑s : set α)) : finsupp.total α M R v l = s.sum (λ i, l i • v i) := finset.sum_subset hs $ λ x _ hxg, show l x • v x = 0, by rw [not_mem_support_iff.1 hxg, zero_smul] @[simp] theorem total_single (c : R) (a : α) : finsupp.total α M R v (single a c) = c • (v a) := by simp [total_apply, sum_single_index] theorem apply_total (f : M →ₗ[R] M') (v) (l : α →₀ R) : f (finsupp.total α M R v l) = finsupp.total α M' R (f ∘ v) l := by apply finsupp.induction_linear l; simp { contextual := tt, } theorem total_unique [unique α] (l : α →₀ R) (v) : finsupp.total α M R v l = l default • v default := by rw [← total_single, ← unique_single l] lemma total_surjective (h : function.surjective v) : function.surjective (finsupp.total α M R v) := begin intro x, obtain ⟨y, hy⟩ := h x, exact ⟨finsupp.single y 1, by simp [hy]⟩ end theorem total_range (h : function.surjective v) : (finsupp.total α M R v).range = ⊤ := range_eq_top.2 $ total_surjective R h /-- Any module is a quotient of a free module. This is stated as surjectivity of `finsupp.total M M R id : (M →₀ R) →ₗ[R] M`. -/ lemma total_id_surjective (M) [add_comm_monoid M] [module R M] : function.surjective (finsupp.total M M R id) := total_surjective R function.surjective_id lemma range_total : (finsupp.total α M R v).range = span R (range v) := begin ext x, split, { intros hx, rw [linear_map.mem_range] at hx, rcases hx with ⟨l, hl⟩, rw ← hl, rw finsupp.total_apply, unfold finsupp.sum, apply sum_mem (span R (range v)), exact λ i hi, submodule.smul_mem _ _ (subset_span (mem_range_self i)) }, { apply span_le.2, intros x hx, rcases hx with ⟨i, hi⟩, rw [set_like.mem_coe, linear_map.mem_range], use finsupp.single i 1, simp [hi] } end theorem lmap_domain_total (f : α → α') (g : M →ₗ[R] M') (h : ∀ i, g (v i) = v' (f i)) : (finsupp.total α' M' R v').comp (lmap_domain R R f) = g.comp (finsupp.total α M R v) := by ext l; simp [total_apply, finsupp.sum_map_domain_index, add_smul, h] @[simp] theorem total_emb_domain (f : α ↪ α') (l : α →₀ R) : (finsupp.total α' M' R v') (emb_domain f l) = (finsupp.total α M' R (v' ∘ f)) l := by simp [total_apply, finsupp.sum, support_emb_domain, emb_domain_apply] theorem total_map_domain (f : α → α') (hf : function.injective f) (l : α →₀ R) : (finsupp.total α' M' R v') (map_domain f l) = (finsupp.total α M' R (v' ∘ f)) l := begin have : map_domain f l = emb_domain ⟨f, hf⟩ l, { rw emb_domain_eq_map_domain ⟨f, hf⟩, refl }, rw this, apply total_emb_domain R ⟨f, hf⟩ l end @[simp] theorem total_equiv_map_domain (f : α ≃ α') (l : α →₀ R) : (finsupp.total α' M' R v') (equiv_map_domain f l) = (finsupp.total α M' R (v' ∘ f)) l := by rw [equiv_map_domain_eq_map_domain, total_map_domain _ _ f.injective] /-- A version of `finsupp.range_total` which is useful for going in the other direction -/ theorem span_eq_range_total (s : set M) : span R s = (finsupp.total s M R coe).range := by rw [range_total, subtype.range_coe_subtype, set.set_of_mem_eq] theorem mem_span_iff_total (s : set M) (x : M) : x ∈ span R s ↔ ∃ l : s →₀ R, finsupp.total s M R coe l = x := (set_like.ext_iff.1 $ span_eq_range_total _ _) x theorem span_image_eq_map_total (s : set α): span R (v '' s) = submodule.map (finsupp.total α M R v) (supported R R s) := begin apply span_eq_of_le, { intros x hx, rw set.mem_image at hx, apply exists.elim hx, intros i hi, exact ⟨_, finsupp.single_mem_supported R 1 hi.1, by simp [hi.2]⟩ }, { refine map_le_iff_le_comap.2 (λ z hz, _), have : ∀i, z i • v i ∈ span R (v '' s), { intro c, haveI := classical.dec_pred (λ x, x ∈ s), by_cases c ∈ s, { exact smul_mem _ _ (subset_span (set.mem_image_of_mem _ h)) }, { simp [(finsupp.mem_supported' R _).1 hz _ h] } }, refine sum_mem _ _, simp [this] } end theorem mem_span_image_iff_total {s : set α} {x : M} : x ∈ span R (v '' s) ↔ ∃ l ∈ supported R R s, finsupp.total α M R v l = x := by { rw span_image_eq_map_total, simp, } lemma total_option (v : option α → M) (f : option α →₀ R) : finsupp.total (option α) M R v f = f none • v none + finsupp.total α M R (v ∘ option.some) f.some := by rw [total_apply, sum_option_index_smul, total_apply] lemma total_total {α β : Type*} (A : α → M) (B : β → (α →₀ R)) (f : β →₀ R) : finsupp.total α M R A (finsupp.total β (α →₀ R) R B f) = finsupp.total β M R (λ b, finsupp.total α M R A (B b)) f := begin simp only [total_apply], apply induction_linear f, { simp only [sum_zero_index], }, { intros f₁ f₂ h₁ h₂, simp [sum_add_index, h₁, h₂, add_smul], }, { simp [sum_single_index, sum_smul_index, smul_sum, mul_smul], } end @[simp] lemma total_fin_zero (f : fin 0 → M) : finsupp.total (fin 0) M R f = 0 := by { ext i, apply fin_zero_elim i } variables (α) (M) (v) /-- `finsupp.total_on M v s` interprets `p : α →₀ R` as a linear combination of a subset of the vectors in `v`, mapping it to the span of those vectors. The subset is indicated by a set `s : set α` of indices. -/ protected def total_on (s : set α) : supported R R s →ₗ[R] span R (v '' s) := linear_map.cod_restrict _ ((finsupp.total _ _ _ v).comp (submodule.subtype (supported R R s))) $ λ ⟨l, hl⟩, (mem_span_image_iff_total _).2 ⟨l, hl, rfl⟩ variables {α} {M} {v} theorem total_on_range (s : set α) : (finsupp.total_on α M R v s).range = ⊤ := begin rw [finsupp.total_on, linear_map.range_eq_map, linear_map.map_cod_restrict, ← linear_map.range_le_iff_comap, range_subtype, map_top, linear_map.range_comp, range_subtype], exact (span_image_eq_map_total _ _).le end theorem total_comp (f : α' → α) : (finsupp.total α' M R (v ∘ f)) = (finsupp.total α M R v).comp (lmap_domain R R f) := by { ext, simp [total_apply] } lemma total_comap_domain (f : α → α') (l : α' →₀ R) (hf : set.inj_on f (f ⁻¹' ↑l.support)) : finsupp.total α M R v (finsupp.comap_domain f l hf) = (l.support.preimage f hf).sum (λ i, (l (f i)) • (v i)) := by rw finsupp.total_apply; refl lemma total_on_finset {s : finset α} {f : α → R} (g : α → M) (hf : ∀ a, f a ≠ 0 → a ∈ s): finsupp.total α M R g (finsupp.on_finset s f hf) = finset.sum s (λ (x : α), f x • g x) := begin simp only [finsupp.total_apply, finsupp.sum, finsupp.on_finset_apply, finsupp.support_on_finset], rw finset.sum_filter_of_ne, intros x hx h, contrapose! h, simp [h], end end total /-- An equivalence of domains induces a linear equivalence of finitely supported functions. This is `finsupp.dom_congr` as a `linear_equiv`. See also `linear_map.fun_congr_left` for the case of arbitrary functions. -/ protected def dom_lcongr {α₁ α₂ : Type*} (e : α₁ ≃ α₂) : (α₁ →₀ M) ≃ₗ[R] (α₂ →₀ M) := (finsupp.dom_congr e : (α₁ →₀ M) ≃+ (α₂ →₀ M)).to_linear_equiv $ by simpa only [equiv_map_domain_eq_map_domain, dom_congr_apply] using (lmap_domain M R e).map_smul @[simp] lemma dom_lcongr_apply {α₁ : Type*} {α₂ : Type*} (e : α₁ ≃ α₂) (v : α₁ →₀ M) : (finsupp.dom_lcongr e : _ ≃ₗ[R] _) v = finsupp.dom_congr e v := rfl @[simp] lemma dom_lcongr_refl : finsupp.dom_lcongr (equiv.refl α) = linear_equiv.refl R (α →₀ M) := linear_equiv.ext $ λ _, equiv_map_domain_refl _ lemma dom_lcongr_trans {α₁ α₂ α₃ : Type*} (f : α₁ ≃ α₂) (f₂ : α₂ ≃ α₃) : (finsupp.dom_lcongr f).trans (finsupp.dom_lcongr f₂) = (finsupp.dom_lcongr (f.trans f₂) : (_ →₀ M) ≃ₗ[R] _) := linear_equiv.ext $ λ _, (equiv_map_domain_trans _ _ _).symm @[simp] lemma dom_lcongr_symm {α₁ α₂ : Type*} (f : α₁ ≃ α₂) : ((finsupp.dom_lcongr f).symm : (_ →₀ M) ≃ₗ[R] _) = finsupp.dom_lcongr f.symm := linear_equiv.ext $ λ x, rfl @[simp] theorem dom_lcongr_single {α₁ : Type*} {α₂ : Type*} (e : α₁ ≃ α₂) (i : α₁) (m : M) : (finsupp.dom_lcongr e : _ ≃ₗ[R] _) (finsupp.single i m) = finsupp.single (e i) m := by simp [finsupp.dom_lcongr, finsupp.dom_congr, equiv_map_domain_single] /-- An equivalence of sets induces a linear equivalence of `finsupp`s supported on those sets. -/ noncomputable def congr {α' : Type*} (s : set α) (t : set α') (e : s ≃ t) : supported M R s ≃ₗ[R] supported M R t := begin haveI := classical.dec_pred (λ x, x ∈ s), haveI := classical.dec_pred (λ x, x ∈ t), refine (finsupp.supported_equiv_finsupp s) ≪≫ₗ (_ ≪≫ₗ (finsupp.supported_equiv_finsupp t).symm), exact finsupp.dom_lcongr e end /-- `finsupp.map_range` as a `linear_map`. -/ @[simps] def map_range.linear_map (f : M →ₗ[R] N) : (α →₀ M) →ₗ[R] (α →₀ N) := { to_fun := (map_range f f.map_zero : (α →₀ M) → (α →₀ N)), map_smul' := λ c v, map_range_smul c v (f.map_smul c), ..map_range.add_monoid_hom f.to_add_monoid_hom } @[simp] lemma map_range.linear_map_id : map_range.linear_map linear_map.id = (linear_map.id : (α →₀ M) →ₗ[R] _):= linear_map.ext map_range_id lemma map_range.linear_map_comp (f : N →ₗ[R] P) (f₂ : M →ₗ[R] N) : (map_range.linear_map (f.comp f₂) : (α →₀ _) →ₗ[R] _) = (map_range.linear_map f).comp (map_range.linear_map f₂) := linear_map.ext $ map_range_comp _ _ _ _ _ @[simp] lemma map_range.linear_map_to_add_monoid_hom (f : M →ₗ[R] N) : (map_range.linear_map f).to_add_monoid_hom = (map_range.add_monoid_hom f.to_add_monoid_hom : (α →₀ M) →+ _):= add_monoid_hom.ext $ λ _, rfl /-- `finsupp.map_range` as a `linear_equiv`. -/ @[simps apply] def map_range.linear_equiv (e : M ≃ₗ[R] N) : (α →₀ M) ≃ₗ[R] (α →₀ N) := { to_fun := map_range e e.map_zero, inv_fun := map_range e.symm e.symm.map_zero, ..map_range.linear_map e.to_linear_map, ..map_range.add_equiv e.to_add_equiv} @[simp] lemma map_range.linear_equiv_refl : map_range.linear_equiv (linear_equiv.refl R M) = linear_equiv.refl R (α →₀ M) := linear_equiv.ext map_range_id lemma map_range.linear_equiv_trans (f : M ≃ₗ[R] N) (f₂ : N ≃ₗ[R] P) : (map_range.linear_equiv (f.trans f₂) : (α →₀ _) ≃ₗ[R] _) = (map_range.linear_equiv f).trans (map_range.linear_equiv f₂) := linear_equiv.ext $ map_range_comp _ _ _ _ _ @[simp] lemma map_range.linear_equiv_symm (f : M ≃ₗ[R] N) : ((map_range.linear_equiv f).symm : (α →₀ _) ≃ₗ[R] _) = map_range.linear_equiv f.symm := linear_equiv.ext $ λ x, rfl @[simp] lemma map_range.linear_equiv_to_add_equiv (f : M ≃ₗ[R] N) : (map_range.linear_equiv f).to_add_equiv = (map_range.add_equiv f.to_add_equiv : (α →₀ M) ≃+ _):= add_equiv.ext $ λ _, rfl @[simp] lemma map_range.linear_equiv_to_linear_map (f : M ≃ₗ[R] N) : (map_range.linear_equiv f).to_linear_map = (map_range.linear_map f.to_linear_map : (α →₀ M) →ₗ[R] _):= linear_map.ext $ λ _, rfl /-- An equivalence of domain and a linear equivalence of codomain induce a linear equivalence of the corresponding finitely supported functions. -/ def lcongr {ι κ : Sort*} (e₁ : ι ≃ κ) (e₂ : M ≃ₗ[R] N) : (ι →₀ M) ≃ₗ[R] (κ →₀ N) := (finsupp.dom_lcongr e₁).trans (map_range.linear_equiv e₂) @[simp] theorem lcongr_single {ι κ : Sort*} (e₁ : ι ≃ κ) (e₂ : M ≃ₗ[R] N) (i : ι) (m : M) : lcongr e₁ e₂ (finsupp.single i m) = finsupp.single (e₁ i) (e₂ m) := by simp [lcongr] @[simp] lemma lcongr_apply_apply {ι κ : Sort*} (e₁ : ι ≃ κ) (e₂ : M ≃ₗ[R] N) (f : ι →₀ M) (k : κ) : lcongr e₁ e₂ f k = e₂ (f (e₁.symm k)) := rfl theorem lcongr_symm_single {ι κ : Sort*} (e₁ : ι ≃ κ) (e₂ : M ≃ₗ[R] N) (k : κ) (n : N) : (lcongr e₁ e₂).symm (finsupp.single k n) = finsupp.single (e₁.symm k) (e₂.symm n) := begin apply_fun lcongr e₁ e₂ using (lcongr e₁ e₂).injective, simp, end @[simp] lemma lcongr_symm {ι κ : Sort*} (e₁ : ι ≃ κ) (e₂ : M ≃ₗ[R] N) : (lcongr e₁ e₂).symm = lcongr e₁.symm e₂.symm := begin ext f i, simp only [equiv.symm_symm, finsupp.lcongr_apply_apply], apply finsupp.induction_linear f, { simp, }, { intros f g hf hg, simp [map_add, hf, hg], }, { intros k m, simp only [finsupp.lcongr_symm_single], simp only [finsupp.single, equiv.symm_apply_eq, finsupp.coe_mk], split_ifs; simp, }, end section sum variables (R) /-- The linear equivalence between `(α ⊕ β) →₀ M` and `(α →₀ M) × (β →₀ M)`. This is the `linear_equiv` version of `finsupp.sum_finsupp_equiv_prod_finsupp`. -/ @[simps apply symm_apply] def sum_finsupp_lequiv_prod_finsupp {α β : Type*} : ((α ⊕ β) →₀ M) ≃ₗ[R] (α →₀ M) × (β →₀ M) := { map_smul' := by { intros, ext; simp only [add_equiv.to_fun_eq_coe, prod.smul_fst, prod.smul_snd, smul_apply, snd_sum_finsupp_add_equiv_prod_finsupp, fst_sum_finsupp_add_equiv_prod_finsupp, ring_hom.id_apply] }, .. sum_finsupp_add_equiv_prod_finsupp } lemma fst_sum_finsupp_lequiv_prod_finsupp {α β : Type*} (f : (α ⊕ β) →₀ M) (x : α) : (sum_finsupp_lequiv_prod_finsupp R f).1 x = f (sum.inl x) := rfl lemma snd_sum_finsupp_lequiv_prod_finsupp {α β : Type*} (f : (α ⊕ β) →₀ M) (y : β) : (sum_finsupp_lequiv_prod_finsupp R f).2 y = f (sum.inr y) := rfl lemma sum_finsupp_lequiv_prod_finsupp_symm_inl {α β : Type*} (fg : (α →₀ M) × (β →₀ M)) (x : α) : ((sum_finsupp_lequiv_prod_finsupp R).symm fg) (sum.inl x) = fg.1 x := rfl lemma sum_finsupp_lequiv_prod_finsupp_symm_inr {α β : Type*} (fg : (α →₀ M) × (β →₀ M)) (y : β) : ((sum_finsupp_lequiv_prod_finsupp R).symm fg) (sum.inr y) = fg.2 y := rfl end sum section sigma variables {η : Type*} [fintype η] {ιs : η → Type*} [has_zero α] variables (R) /-- On a `fintype η`, `finsupp.split` is a linear equivalence between `(Σ (j : η), ιs j) →₀ M` and `Π j, (ιs j →₀ M)`. This is the `linear_equiv` version of `finsupp.sigma_finsupp_add_equiv_pi_finsupp`. -/ noncomputable def sigma_finsupp_lequiv_pi_finsupp {M : Type*} {ιs : η → Type*} [add_comm_monoid M] [module R M] : ((Σ j, ιs j) →₀ M) ≃ₗ[R] Π j, (ιs j →₀ M) := { map_smul' := λ c f, by { ext, simp }, .. sigma_finsupp_add_equiv_pi_finsupp } @[simp] lemma sigma_finsupp_lequiv_pi_finsupp_apply {M : Type*} {ιs : η → Type*} [add_comm_monoid M] [module R M] (f : (Σ j, ιs j) →₀ M) (j i) : sigma_finsupp_lequiv_pi_finsupp R f j i = f ⟨j, i⟩ := rfl @[simp] lemma sigma_finsupp_lequiv_pi_finsupp_symm_apply {M : Type*} {ιs : η → Type*} [add_comm_monoid M] [module R M] (f : Π j, (ιs j →₀ M)) (ji) : (finsupp.sigma_finsupp_lequiv_pi_finsupp R).symm f ji = f ji.1 ji.2 := rfl end sigma section prod /-- The linear equivalence between `α × β →₀ M` and `α →₀ β →₀ M`. This is the `linear_equiv` version of `finsupp.finsupp_prod_equiv`. -/ noncomputable def finsupp_prod_lequiv {α β : Type*} (R : Type*) {M : Type*} [semiring R] [add_comm_monoid M] [module R M] : (α × β →₀ M) ≃ₗ[R] (α →₀ β →₀ M) := { map_add' := λ f g, by { ext, simp [finsupp_prod_equiv, curry_apply] }, map_smul' := λ c f, by { ext, simp [finsupp_prod_equiv, curry_apply] }, .. finsupp_prod_equiv } @[simp] lemma finsupp_prod_lequiv_apply {α β R M : Type*} [semiring R] [add_comm_monoid M] [module R M] (f : α × β →₀ M) (x y) : finsupp_prod_lequiv R f x y = f (x, y) := by rw [finsupp_prod_lequiv, linear_equiv.coe_mk, finsupp_prod_equiv, finsupp.curry_apply] @[simp] lemma finsupp_prod_lequiv_symm_apply {α β R M : Type*} [semiring R] [add_comm_monoid M] [module R M] (f : α →₀ β →₀ M) (xy) : (finsupp_prod_lequiv R).symm f xy = f xy.1 xy.2 := by conv_rhs { rw [← (finsupp_prod_lequiv R).apply_symm_apply f, finsupp_prod_lequiv_apply, prod.mk.eta] } end prod end finsupp variables {R : Type*} {M : Type*} {N : Type*} variables [semiring R] [add_comm_monoid M] [module R M] [add_comm_monoid N] [module R N] section variables (R) /-- Pick some representation of `x : span R w` as a linear combination in `w`, using the axiom of choice. -/ def span.repr (w : set M) (x : span R w) : w →₀ R := ((finsupp.mem_span_iff_total _ _ _).mp x.2).some @[simp] lemma span.finsupp_total_repr {w : set M} (x : span R w) : finsupp.total w M R coe (span.repr R w x) = x := ((finsupp.mem_span_iff_total _ _ _).mp x.2).some_spec attribute [irreducible] span.repr end lemma submodule.finsupp_sum_mem {ι β : Type*} [has_zero β] (S : submodule R M) (f : ι →₀ β) (g : ι → β → M) (h : ∀ c, f c ≠ 0 → g c (f c) ∈ S) : f.sum g ∈ S := S.to_add_submonoid.finsupp_sum_mem f g h lemma linear_map.map_finsupp_total (f : M →ₗ[R] N) {ι : Type*} {g : ι → M} (l : ι →₀ R) : f (finsupp.total ι M R g l) = finsupp.total ι N R (f ∘ g) l := by simp only [finsupp.total_apply, finsupp.total_apply, finsupp.sum, f.map_sum, f.map_smul] lemma submodule.exists_finset_of_mem_supr {ι : Sort*} (p : ι → submodule R M) {m : M} (hm : m ∈ ⨆ i, p i) : ∃ s : finset ι, m ∈ ⨆ i ∈ s, p i := begin obtain ⟨f, hf, rfl⟩ : ∃ f ∈ finsupp.supported R R (⋃ i, ↑(p i)), finsupp.total M M R id f = m, { have aux : (id : M → M) '' (⋃ (i : ι), ↑(p i)) = (⋃ (i : ι), ↑(p i)) := set.image_id _, rwa [supr_eq_span, ← aux, finsupp.mem_span_image_iff_total R] at hm }, let t : finset M := f.support, have ht : ∀ x : {x // x ∈ t}, ∃ i, ↑x ∈ p i, { intros x, rw finsupp.mem_supported at hf, specialize hf x.2, rwa set.mem_Union at hf }, choose g hg using ht, let s : finset ι := finset.univ.image g, use s, simp only [mem_supr, supr_le_iff], assume N hN, rw [finsupp.total_apply, finsupp.sum, ← set_like.mem_coe], apply N.sum_mem, assume x hx, apply submodule.smul_mem, let i : ι := g ⟨x, hx⟩, have hi : i ∈ s, { rw finset.mem_image, exact ⟨⟨x, hx⟩, finset.mem_univ _, rfl⟩ }, exact hN i hi (hg _), end /-- `submodule.exists_finset_of_mem_supr` as an `iff` -/ lemma submodule.mem_supr_iff_exists_finset {ι : Sort*} {p : ι → submodule R M} {m : M} : (m ∈ ⨆ i, p i) ↔ ∃ s : finset ι, m ∈ ⨆ i ∈ s, p i := ⟨submodule.exists_finset_of_mem_supr p, λ ⟨_, hs⟩, supr_le_supr (λ i, (supr_const_le : _ ≤ p i)) hs⟩ lemma mem_span_finset {s : finset M} {x : M} : x ∈ span R (↑s : set M) ↔ ∃ f : M → R, ∑ i in s, f i • i = x := ⟨λ hx, let ⟨v, hvs, hvx⟩ := (finsupp.mem_span_image_iff_total _).1 (show x ∈ span R (id '' (↑s : set M)), by rwa set.image_id) in ⟨v, hvx ▸ (finsupp.total_apply_of_mem_supported _ hvs).symm⟩, λ ⟨f, hf⟩, hf ▸ sum_mem _ (λ i hi, smul_mem _ _ $ subset_span hi)⟩ /-- An element `m ∈ M` is contained in the `R`-submodule spanned by a set `s ⊆ M`, if and only if `m` can be written as a finite `R`-linear combination of elements of `s`. The implementation uses `finsupp.sum`. -/ lemma mem_span_set {m : M} {s : set M} : m ∈ submodule.span R s ↔ ∃ c : M →₀ R, (c.support : set M) ⊆ s ∧ c.sum (λ mi r, r • mi) = m := begin conv_lhs { rw ←set.image_id s }, simp_rw ←exists_prop, exact finsupp.mem_span_image_iff_total R, end /-- If `subsingleton R`, then `M ≃ₗ[R] ι →₀ R` for any type `ι`. -/ @[simps] def module.subsingleton_equiv (R M ι: Type*) [semiring R] [subsingleton R] [add_comm_monoid M] [module R M] : M ≃ₗ[R] ι →₀ R := { to_fun := λ m, 0, inv_fun := λ f, 0, left_inv := λ m, by { letI := module.subsingleton R M, simp only [eq_iff_true_of_subsingleton] }, right_inv := λ f, by simp only [eq_iff_true_of_subsingleton], map_add' := λ m n, (add_zero 0).symm, map_smul' := λ r m, (smul_zero r).symm } namespace linear_map variables {R M} {α : Type*} open finsupp function /-- A surjective linear map to finitely supported functions has a splitting. -/ -- See also `linear_map.splitting_of_fun_on_fintype_surjective` def splitting_of_finsupp_surjective (f : M →ₗ[R] (α →₀ R)) (s : surjective f) : (α →₀ R) →ₗ[R] M := finsupp.lift _ _ _ (λ x : α, (s (finsupp.single x 1)).some) lemma splitting_of_finsupp_surjective_splits (f : M →ₗ[R] (α →₀ R)) (s : surjective f) : f.comp (splitting_of_finsupp_surjective f s) = linear_map.id := begin ext x y, dsimp [splitting_of_finsupp_surjective], congr, rw [sum_single_index, one_smul], { exact (s (finsupp.single x 1)).some_spec, }, { rw zero_smul, }, end lemma left_inverse_splitting_of_finsupp_surjective (f : M →ₗ[R] (α →₀ R)) (s : surjective f) : left_inverse f (splitting_of_finsupp_surjective f s) := λ g, linear_map.congr_fun (splitting_of_finsupp_surjective_splits f s) g lemma splitting_of_finsupp_surjective_injective (f : M →ₗ[R] (α →₀ R)) (s : surjective f) : injective (splitting_of_finsupp_surjective f s) := (left_inverse_splitting_of_finsupp_surjective f s).injective /-- A surjective linear map to functions on a finite type has a splitting. -/ -- See also `linear_map.splitting_of_finsupp_surjective` def splitting_of_fun_on_fintype_surjective [fintype α] (f : M →ₗ[R] (α → R)) (s : surjective f) : (α → R) →ₗ[R] M := (finsupp.lift _ _ _ (λ x : α, (s (finsupp.single x 1)).some)).comp (linear_equiv_fun_on_fintype R R α).symm.to_linear_map lemma splitting_of_fun_on_fintype_surjective_splits [fintype α] (f : M →ₗ[R] (α → R)) (s : surjective f) : f.comp (splitting_of_fun_on_fintype_surjective f s) = linear_map.id := begin ext x y, dsimp [splitting_of_fun_on_fintype_surjective], rw [linear_equiv_fun_on_fintype_symm_single, finsupp.sum_single_index, one_smul, linear_map.id_coe, id_def, (s (finsupp.single x 1)).some_spec, finsupp.single_eq_pi_single], rw [zero_smul], end lemma left_inverse_splitting_of_fun_on_fintype_surjective [fintype α] (f : M →ₗ[R] (α → R)) (s : surjective f) : left_inverse f (splitting_of_fun_on_fintype_surjective f s) := λ g, linear_map.congr_fun (splitting_of_fun_on_fintype_surjective_splits f s) g lemma splitting_of_fun_on_fintype_surjective_injective [fintype α] (f : M →ₗ[R] (α → R)) (s : surjective f) : injective (splitting_of_fun_on_fintype_surjective f s) := (left_inverse_splitting_of_fun_on_fintype_surjective f s).injective end linear_map
87c3e39115d971570b82d09b5f3656f41162cc3d
fa02ed5a3c9c0adee3c26887a16855e7841c668b
/test/generalizes.lean
a67bbca1422410c61b27850652420c915c64b400
[ "Apache-2.0" ]
permissive
jjgarzella/mathlib
96a345378c4e0bf26cf604aed84f90329e4896a2
395d8716c3ad03747059d482090e2bb97db612c8
refs/heads/master
1,686,480,124,379
1,625,163,323,000
1,625,163,323,000
281,190,421
2
0
Apache-2.0
1,595,268,170,000
1,595,268,169,000
null
UTF-8
Lean
false
false
3,532
lean
/- Copyright (c) 2020 Jannis Limperg. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jannis Limperg -/ import tactic.generalizes universes u lemma example_from_docs₁ (P : ∀ n, fin n → Prop) (n : ℕ) (f : fin n) (p : ∀ n xs, P n xs) : P (nat.succ n) (fin.succ f) := begin generalizes [n'_eq : nat.succ n = n', f'_eq : fin.succ f == f'], guard_hyp n' : ℕ, guard_hyp n'_eq : n' = nat.succ n, guard_hyp f' : fin n', guard_hyp f'_eq : f' == fin.succ f, exact p n' f' -- Note: `generalizes` fails if we write `n + 1` instead of `nat.succ n` in -- the target because `kabstract` works with a notion of equality that is -- weaker than definitional equality. This is annoying, but we can't do much -- about it short of reimplementing `kabstract`. end lemma example_from_docs₂ (P : ∀ n, fin n → Prop) (n : ℕ) (f : fin n) (p : ∀ n xs, P n xs) : P (nat.succ n) (fin.succ f) := begin generalizes [(nat.succ n = n'), (fin.succ f == f')], guard_hyp n' : ℕ, success_if_fail { guard_hyp n'_eq : n' = nat.succ n }, guard_hyp f' : fin n', success_if_fail { guard_hyp f'_eq : f' == fin.succ f }, exact p n' f' end inductive Vec (α : Sort u) : ℕ → Sort (max 1 u) | nil : Vec 0 | cons {n} (x : α) (xs : Vec n) : Vec (n + 1) namespace Vec inductive eq {α} : ∀ (n m : ℕ), Vec α n → Vec α m → Prop | nil : eq 0 0 nil nil | cons {n m x y xs ys} : x = y → eq n m xs ys → eq (n + 1) (m + 1) (cons x xs) (cons y ys) inductive fancy_unit {α} : ∀ n, Vec α n → Prop | intro (n xs) : fancy_unit n xs -- An example of the difference between multiple calls to `generalize` and -- one call to `generalizes`. lemma test₁ {α n} {x : α} {xs} : fancy_unit (n + 1) (cons x xs) := begin -- Successive `generalize` invocations don't give us the right goal: -- The second generalisation fails due to the dependency between -- `xs' : Vec α (n + 1)` and `n + 1`. success_if_fail { generalize eq_xs' : cons x xs = xs', generalize eq_n' : n + 1 = n', exact fancy_unit.intro n' xs' }, -- `generalizes` gives us the expected result with everything generalised. generalizes [eq_n' : n + 1 = n', eq_xs' : cons x xs = xs'], guard_hyp n' : ℕ, guard_hyp eq_n' : n' = n + 1, guard_hyp xs' : Vec α n', guard_hyp eq_xs' : xs' == cons x xs, exact fancy_unit.intro n' xs' end -- We can also choose to introduce equations for only some of the generalised -- expressions. lemma test₂ {α n} {x : α} {xs} : fancy_unit (n + 1) (cons x xs) := begin generalizes [n + 1 = n', eq_xs' : cons x xs = xs'], guard_hyp n' : ℕ, success_if_fail { guard_hyp eq_n' : n' = n + 1 }, guard_hyp xs' : Vec α n', guard_hyp eq_xs' : xs' == cons x xs, exact fancy_unit.intro n' xs' end -- An example where `generalizes` enables a successful `induction` (though in -- this case, `cases` would suffice and already performs the generalisation). lemma eq_cons_inversion {α} {n m x y} {xs : Vec α n} {ys : Vec α m} : eq (n + 1) (m + 1) (cons x xs) (cons y ys) → eq n m xs ys := begin generalizes [ n'_eq : n + 1 = n' , m'_eq : m + 1 = m' , xs'_eq : cons x xs = xs' , ys'_eq : cons y ys = ys' ], intro h, induction h, case nil { cases n'_eq, }, case cons : n'' m'' x y xs'' ys'' eq_xy eq_xsys'' ih { cases n'_eq, clear n'_eq, cases m'_eq, clear m'_eq, cases xs'_eq, clear xs'_eq, cases ys'_eq, clear ys'_eq, exact eq_xsys'', } end end Vec
c6c37fc7ea0e1adc42ba6fc1015d4c6cc68f9541
a2ee6a66690e8da666951cac0c243d42db11f9f3
/src/algebra/group_power/basic.lean
2a977e618695844f7474337a1bb27f50b5c2a44c
[ "Apache-2.0" ]
permissive
shyamalschandra/mathlib
6d414d7c334bf383e764336843f065bd14c44273
ca679acad147870b2c5087d90fe3550f107dea49
refs/heads/master
1,671,730,354,335
1,601,883,576,000
1,601,883,576,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
21,297
lean
/- Copyright (c) 2015 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Robert Y. Lewis -/ import algebra.order_functions import deprecated.group /-! # Power operations on monoids and groups The power operation on monoids and groups. We separate this from group, because it depends on `ℕ`, which in turn depends on other parts of algebra. This module contains the definitions of `monoid.pow` and `group.pow` and their additive counterparts `nsmul` and `gsmul`, along with a few lemmas. Further lemmas can be found in `algebra.group_power.lemmas`. ## Notation The class `has_pow α β` provides the notation `a^b` for powers. We define instances of `has_pow M ℕ`, for monoids `M`, and `has_pow G ℤ` for groups `G`. We also define infix operators `•ℕ` and `•ℤ` for scalar multiplication by a natural and an integer numbers, respectively. ## Implementation details We adopt the convention that `0^0 = 1`. This module provides the instance `has_pow ℕ ℕ` (via `monoid.has_pow`) and is imported by `data.nat.basic`, so it has to live low in the import hierarchy. Not all of its imports are needed yet; the intent is to move more lemmas here from `.lemmas` so that they are available in `data.nat.basic`, and the imports will be required then. -/ universes u v w x y z u₁ u₂ variables {M : Type u} {N : Type v} {G : Type w} {H : Type x} {A : Type y} {B : Type z} {R : Type u₁} {S : Type u₂} /-- The power operation in a monoid. `a^n = a*a*...*a` n times. -/ def monoid.pow [has_mul M] [has_one M] (a : M) : ℕ → M | 0 := 1 | (n+1) := a * monoid.pow n /-- The scalar multiplication in an additive monoid. `n •ℕ a = a+a+...+a` n times. -/ def nsmul [has_add A] [has_zero A] (n : ℕ) (a : A) : A := @monoid.pow (multiplicative A) _ { one := (0 : A) } a n infix ` •ℕ `:70 := nsmul @[priority 5] instance monoid.has_pow [monoid M] : has_pow M ℕ := ⟨monoid.pow⟩ /-! ### Commutativity First we prove some facts about `semiconj_by` and `commute`. They do not require any theory about `pow` and/or `nsmul` and will be useful later in this file. -/ namespace semiconj_by variables [monoid M] @[simp] lemma pow_right {a x y : M} (h : semiconj_by a x y) (n : ℕ) : semiconj_by a (x^n) (y^n) := nat.rec_on n (one_right a) $ λ n ihn, h.mul_right ihn end semiconj_by namespace commute variables [monoid M] {a b : M} @[simp] theorem pow_right (h : commute a b) (n : ℕ) : commute a (b ^ n) := h.pow_right n @[simp] theorem pow_left (h : commute a b) (n : ℕ) : commute (a ^ n) b := (h.symm.pow_right n).symm @[simp] theorem pow_pow (h : commute a b) (m n : ℕ) : commute (a ^ m) (b ^ n) := (h.pow_left m).pow_right n @[simp] theorem self_pow (a : M) (n : ℕ) : commute a (a ^ n) := (commute.refl a).pow_right n @[simp] theorem pow_self (a : M) (n : ℕ) : commute (a ^ n) a := (commute.refl a).pow_left n @[simp] theorem pow_pow_self (a : M) (m n : ℕ) : commute (a ^ m) (a ^ n) := (commute.refl a).pow_pow m n end commute section monoid variables [monoid M] [monoid N] [add_monoid A] [add_monoid B] @[simp] theorem pow_zero (a : M) : a^0 = 1 := rfl @[simp] theorem zero_nsmul (a : A) : 0 •ℕ a = 0 := rfl theorem pow_succ (a : M) (n : ℕ) : a^(n+1) = a * a^n := rfl theorem succ_nsmul (a : A) (n : ℕ) : (n+1) •ℕ a = a + n •ℕ a := rfl theorem pow_two (a : M) : a^2 = a * a := show a*(a*1)=a*a, by rw mul_one theorem two_nsmul (a : A) : 2 •ℕ a = a + a := @pow_two (multiplicative A) _ a theorem pow_mul_comm' (a : M) (n : ℕ) : a^n * a = a * a^n := commute.pow_self a n theorem nsmul_add_comm' : ∀ (a : A) (n : ℕ), n •ℕ a + a = a + n •ℕ a := @pow_mul_comm' (multiplicative A) _ theorem pow_succ' (a : M) (n : ℕ) : a^(n+1) = a^n * a := by rw [pow_succ, pow_mul_comm'] theorem succ_nsmul' (a : A) (n : ℕ) : (n+1) •ℕ a = n •ℕ a + a := @pow_succ' (multiplicative A) _ _ _ theorem pow_add (a : M) (m n : ℕ) : a^(m + n) = a^m * a^n := by induction n with n ih; [rw [nat.add_zero, pow_zero, mul_one], rw [pow_succ', ← mul_assoc, ← ih, ← pow_succ', nat.add_assoc]] theorem add_nsmul : ∀ (a : A) (m n : ℕ), (m + n) •ℕ a = m •ℕ a + n •ℕ a := @pow_add (multiplicative A) _ @[simp] theorem pow_one (a : M) : a^1 = a := mul_one _ @[simp] theorem one_nsmul (a : A) : 1 •ℕ a = a := add_zero _ @[simp] lemma pow_ite (P : Prop) [decidable P] (a : M) (b c : ℕ) : a ^ (if P then b else c) = if P then a ^ b else a ^ c := by split_ifs; refl @[simp] lemma ite_pow (P : Prop) [decidable P] (a b : M) (c : ℕ) : (if P then a else b) ^ c = if P then a ^ c else b ^ c := by split_ifs; refl @[simp] lemma pow_boole (P : Prop) [decidable P] (a : M) : a ^ (if P then 1 else 0) = if P then a else 1 := by simp @[simp] theorem one_pow (n : ℕ) : (1 : M)^n = 1 := by induction n with n ih; [refl, rw [pow_succ, ih, one_mul]] @[simp] theorem nsmul_zero (n : ℕ) : n •ℕ (0 : A) = 0 := by induction n with n ih; [refl, rw [succ_nsmul, ih, zero_add]] theorem pow_mul (a : M) (m n : ℕ) : a^(m * n) = (a^m)^n := by induction n with n ih; [rw nat.mul_zero, rw [nat.mul_succ, pow_add, pow_succ', ih]]; refl theorem mul_nsmul' : ∀ (a : A) (m n : ℕ), m * n •ℕ a = n •ℕ (m •ℕ a) := @pow_mul (multiplicative A) _ theorem pow_mul' (a : M) (m n : ℕ) : a^(m * n) = (a^n)^m := by rw [nat.mul_comm, pow_mul] theorem mul_nsmul (a : A) (m n : ℕ) : m * n •ℕ a = m •ℕ (n •ℕ a) := @pow_mul' (multiplicative A) _ a m n theorem pow_mul_pow_sub (a : M) {m n : ℕ} (h : m ≤ n) : a ^ m * a ^ (n - m) = a ^ n := by rw [←pow_add, nat.add_comm, nat.sub_add_cancel h] theorem nsmul_add_sub_nsmul (a : A) {m n : ℕ} (h : m ≤ n) : (m •ℕ a) + ((n - m) •ℕ a) = n •ℕ a := @pow_mul_pow_sub (multiplicative A) _ _ _ _ h theorem pow_sub_mul_pow (a : M) {m n : ℕ} (h : m ≤ n) : a ^ (n - m) * a ^ m = a ^ n := by rw [←pow_add, nat.sub_add_cancel h] theorem sub_nsmul_nsmul_add (a : A) {m n : ℕ} (h : m ≤ n) : ((n - m) •ℕ a) + (m •ℕ a) = n •ℕ a := @pow_sub_mul_pow (multiplicative A) _ _ _ _ h theorem pow_bit0 (a : M) (n : ℕ) : a ^ bit0 n = a^n * a^n := pow_add _ _ _ theorem bit0_nsmul (a : A) (n : ℕ) : bit0 n •ℕ a = n •ℕ a + n •ℕ a := add_nsmul _ _ _ theorem pow_bit1 (a : M) (n : ℕ) : a ^ bit1 n = a^n * a^n * a := by rw [bit1, pow_succ', pow_bit0] theorem bit1_nsmul : ∀ (a : A) (n : ℕ), bit1 n •ℕ a = n •ℕ a + n •ℕ a + a := @pow_bit1 (multiplicative A) _ theorem pow_mul_comm (a : M) (m n : ℕ) : a^m * a^n = a^n * a^m := commute.pow_pow_self a m n theorem nsmul_add_comm : ∀ (a : A) (m n : ℕ), m •ℕ a + n •ℕ a = n •ℕ a + m •ℕ a := @pow_mul_comm (multiplicative A) _ theorem monoid_hom.map_pow (f : M →* N) (a : M) : ∀(n : ℕ), f (a ^ n) = (f a) ^ n | 0 := f.map_one | (n+1) := by rw [pow_succ, pow_succ, f.map_mul, monoid_hom.map_pow] theorem add_monoid_hom.map_nsmul (f : A →+ B) (a : A) (n : ℕ) : f (n •ℕ a) = n •ℕ f a := f.to_multiplicative.map_pow a n theorem is_monoid_hom.map_pow (f : M → N) [is_monoid_hom f] (a : M) : ∀(n : ℕ), f (a ^ n) = (f a) ^ n := (monoid_hom.of f).map_pow a theorem is_add_monoid_hom.map_nsmul (f : A → B) [is_add_monoid_hom f] (a : A) (n : ℕ) : f (n •ℕ a) = n •ℕ f a := (add_monoid_hom.of f).map_nsmul a n lemma commute.mul_pow {a b : M} (h : commute a b) (n : ℕ) : (a * b) ^ n = a ^ n * b ^ n := nat.rec_on n (by simp) $ λ n ihn, by simp only [pow_succ, ihn, ← mul_assoc, (h.pow_left n).right_comm] theorem neg_pow [ring R] (a : R) (n : ℕ) : (- a) ^ n = (-1) ^ n * a ^ n := (neg_one_mul a) ▸ (commute.neg_one_left a).mul_pow n end monoid /-! ### Commutative (additive) monoid -/ section comm_monoid variables [comm_monoid M] [add_comm_monoid A] theorem mul_pow (a b : M) (n : ℕ) : (a * b)^n = a^n * b^n := (commute.all a b).mul_pow n theorem nsmul_add : ∀ (a b : A) (n : ℕ), n •ℕ (a + b) = n •ℕ a + n •ℕ b := @mul_pow (multiplicative A) _ instance pow.is_monoid_hom (n : ℕ) : is_monoid_hom ((^ n) : M → M) := { map_mul := λ _ _, mul_pow _ _ _, map_one := one_pow _ } instance nsmul.is_add_monoid_hom (n : ℕ) : is_add_monoid_hom (nsmul n : A → A) := { map_add := λ _ _, nsmul_add _ _ _, map_zero := nsmul_zero _ } lemma dvd_pow {x y : M} : ∀ {n : ℕ} (hxy : x ∣ y) (hn : n ≠ 0), x ∣ y^n | 0 hxy hn := (hn rfl).elim | (n+1) hxy hn := by { rw [pow_succ], exact dvd_mul_of_dvd_left hxy _ } end comm_monoid section group variables [group G] [group H] [add_group A] [add_group B] open int /-- The power operation in a group. This extends `monoid.pow` to negative integers with the definition `a^(-n) = (a^n)⁻¹`. -/ def gpow (a : G) : ℤ → G | (of_nat n) := a^n | -[1+n] := (a^(nat.succ n))⁻¹ /-- The scalar multiplication by integers on an additive group. This extends `nsmul` to negative integers with the definition `(-n) •ℤ a = -(n •ℕ a)`. -/ def gsmul (n : ℤ) (a : A) : A := @gpow (multiplicative A) _ a n @[priority 10] instance group.has_pow : has_pow G ℤ := ⟨gpow⟩ infix ` •ℤ `:70 := gsmul section nat @[simp] theorem inv_pow (a : G) (n : ℕ) : (a⁻¹)^n = (a^n)⁻¹ := by induction n with n ih; [exact one_inv.symm, rw [pow_succ', pow_succ, ih, mul_inv_rev]] @[simp] theorem neg_nsmul : ∀ (a : A) (n : ℕ), n •ℕ (-a) = -(n •ℕ a) := @inv_pow (multiplicative A) _ theorem pow_sub (a : G) {m n : ℕ} (h : n ≤ m) : a^(m - n) = a^m * (a^n)⁻¹ := have h1 : m - n + n = m, from nat.sub_add_cancel h, have h2 : a^(m - n) * a^n = a^m, by rw [←pow_add, h1], eq_mul_inv_of_mul_eq h2 theorem nsmul_sub : ∀ (a : A) {m n : ℕ}, n ≤ m → (m - n) •ℕ a = m •ℕ a - n •ℕ a := @pow_sub (multiplicative A) _ theorem pow_inv_comm (a : G) (m n : ℕ) : (a⁻¹)^m * a^n = a^n * (a⁻¹)^m := (commute.refl a).inv_left.pow_pow m n theorem nsmul_neg_comm : ∀ (a : A) (m n : ℕ), m •ℕ (-a) + n •ℕ a = n •ℕ a + m •ℕ (-a) := @pow_inv_comm (multiplicative A) _ end nat @[simp] theorem gpow_coe_nat (a : G) (n : ℕ) : a ^ (n:ℤ) = a ^ n := rfl @[simp] theorem gsmul_coe_nat (a : A) (n : ℕ) : n •ℤ a = n •ℕ a := rfl theorem gpow_of_nat (a : G) (n : ℕ) : a ^ of_nat n = a ^ n := rfl theorem gsmul_of_nat (a : A) (n : ℕ) : of_nat n •ℤ a = n •ℕ a := rfl @[simp] theorem gpow_neg_succ_of_nat (a : G) (n : ℕ) : a ^ -[1+n] = (a ^ n.succ)⁻¹ := rfl @[simp] theorem gsmul_neg_succ_of_nat (a : A) (n : ℕ) : -[1+n] •ℤ a = - (n.succ •ℕ a) := rfl @[simp] theorem gpow_zero (a : G) : a ^ (0:ℤ) = 1 := rfl @[simp] theorem zero_gsmul (a : A) : (0:ℤ) •ℤ a = 0 := rfl @[simp] theorem gpow_one (a : G) : a ^ (1:ℤ) = a := pow_one a @[simp] theorem one_gsmul (a : A) : (1:ℤ) •ℤ a = a := add_zero _ @[simp] theorem one_gpow : ∀ (n : ℤ), (1 : G) ^ n = 1 | (n : ℕ) := one_pow _ | -[1+ n] := show _⁻¹=(1:G), by rw [one_pow, one_inv] @[simp] theorem gsmul_zero : ∀ (n : ℤ), n •ℤ (0 : A) = 0 := @one_gpow (multiplicative A) _ @[simp] theorem gpow_neg (a : G) : ∀ (n : ℤ), a ^ -n = (a ^ n)⁻¹ | (n+1:ℕ) := rfl | 0 := one_inv.symm | -[1+ n] := (inv_inv _).symm lemma mul_gpow_neg_one (a b : G) : (a*b)^(-(1:ℤ)) = b^(-(1:ℤ))*a^(-(1:ℤ)) := by simp only [mul_inv_rev, gpow_one, gpow_neg] @[simp] theorem neg_gsmul : ∀ (a : A) (n : ℤ), -n •ℤ a = -(n •ℤ a) := @gpow_neg (multiplicative A) _ theorem gpow_neg_one (x : G) : x ^ (-1:ℤ) = x⁻¹ := congr_arg has_inv.inv $ pow_one x theorem neg_one_gsmul (x : A) : (-1:ℤ) •ℤ x = -x := congr_arg has_neg.neg $ one_nsmul x theorem inv_gpow (a : G) : ∀n:ℤ, a⁻¹ ^ n = (a ^ n)⁻¹ | (n : ℕ) := inv_pow a n | -[1+ n] := congr_arg has_inv.inv $ inv_pow a (n+1) theorem gsmul_neg (a : A) (n : ℤ) : gsmul n (- a) = - gsmul n a := @inv_gpow (multiplicative A) _ a n theorem commute.mul_gpow {a b : G} (h : commute a b) : ∀ n : ℤ, (a * b) ^ n = a ^ n * b ^ n | (n : ℕ) := h.mul_pow n | -[1+n] := by simp [h.mul_pow, (h.pow_pow n.succ n.succ).inv_inv.symm.eq] end group section comm_group variables [comm_group G] [add_comm_group A] theorem mul_gpow (a b : G) (n : ℤ) : (a * b)^n = a^n * b^n := (commute.all a b).mul_gpow n theorem gsmul_add : ∀ (a b : A) (n : ℤ), n •ℤ (a + b) = n •ℤ a + n •ℤ b := @mul_gpow (multiplicative A) _ theorem gsmul_sub (a b : A) (n : ℤ) : gsmul n (a - b) = gsmul n a - gsmul n b := by simp only [gsmul_add, gsmul_neg, sub_eq_add_neg] instance gpow.is_group_hom (n : ℤ) : is_group_hom ((^ n) : G → G) := { map_mul := λ _ _, mul_gpow _ _ n } instance gsmul.is_add_group_hom (n : ℤ) : is_add_group_hom (gsmul n : A → A) := { map_add := λ _ _, gsmul_add _ _ n } end comm_group lemma zero_pow [monoid_with_zero R] : ∀ {n : ℕ}, 0 < n → (0 : R) ^ n = 0 | (n+1) _ := zero_mul _ namespace ring_hom variables [semiring R] [semiring S] @[simp] lemma map_pow (f : R →+* S) (a) : ∀ n : ℕ, f (a ^ n) = (f a) ^ n := f.to_monoid_hom.map_pow a end ring_hom theorem neg_one_pow_eq_or [ring R] : ∀ n : ℕ, (-1 : R)^n = 1 ∨ (-1 : R)^n = -1 | 0 := or.inl rfl | (n+1) := (neg_one_pow_eq_or n).swap.imp (λ h, by rw [pow_succ, h, neg_one_mul, neg_neg]) (λ h, by rw [pow_succ, h, mul_one]) lemma pow_dvd_pow [monoid R] (a : R) {m n : ℕ} (h : m ≤ n) : a ^ m ∣ a ^ n := ⟨a ^ (n - m), by rw [← pow_add, nat.add_comm, nat.sub_add_cancel h]⟩ theorem pow_dvd_pow_of_dvd [comm_monoid R] {a b : R} (h : a ∣ b) : ∀ n : ℕ, a ^ n ∣ b ^ n | 0 := dvd_refl _ | (n+1) := mul_dvd_mul h (pow_dvd_pow_of_dvd n) lemma pow_two_sub_pow_two {R : Type*} [comm_ring R] (a b : R) : a ^ 2 - b ^ 2 = (a + b) * (a - b) := by simp only [pow_two, mul_sub, add_mul, sub_sub, add_sub, mul_comm, sub_add_cancel] lemma eq_or_eq_neg_of_pow_two_eq_pow_two [integral_domain R] (a b : R) (h : a ^ 2 = b ^ 2) : a = b ∨ a = -b := by rwa [← add_eq_zero_iff_eq_neg, ← sub_eq_zero, or_comm, ← mul_eq_zero, ← pow_two_sub_pow_two a b, sub_eq_zero] theorem sq_sub_sq [comm_ring R] (a b : R) : a ^ 2 - b ^ 2 = (a + b) * (a - b) := by rw [pow_two, pow_two, mul_self_sub_mul_self] theorem pow_eq_zero [monoid_with_zero R] [no_zero_divisors R] {x : R} {n : ℕ} (H : x^n = 0) : x = 0 := begin induction n with n ih, { rw pow_zero at H, rw [← mul_one x, H, mul_zero] }, exact or.cases_on (mul_eq_zero.1 H) id ih end @[field_simps] theorem pow_ne_zero [monoid_with_zero R] [no_zero_divisors R] {a : R} (n : ℕ) (h : a ≠ 0) : a ^ n ≠ 0 := mt pow_eq_zero h lemma pow_abs [decidable_linear_ordered_comm_ring R] (a : R) (n : ℕ) : (abs a)^n = abs (a^n) := by induction n with n ih; [exact (abs_one).symm, rw [pow_succ, pow_succ, ih, abs_mul]] lemma abs_neg_one_pow [decidable_linear_ordered_comm_ring R] (n : ℕ) : abs ((-1 : R)^n) = 1 := by rw [←pow_abs, abs_neg, abs_one, one_pow] section add_monoid variable [ordered_add_comm_monoid A] theorem nsmul_nonneg {a : A} (H : 0 ≤ a) : ∀ n : ℕ, 0 ≤ n •ℕ a | 0 := le_refl _ | (n+1) := add_nonneg H (nsmul_nonneg n) lemma nsmul_pos {a : A} (ha : 0 < a) {k : ℕ} (hk : 0 < k) : 0 < k •ℕ a := begin rcases nat.exists_eq_succ_of_ne_zero (ne_of_gt hk) with ⟨l, rfl⟩, clear hk, induction l with l IH, { simpa using ha }, { exact add_pos ha IH } end theorem nsmul_le_nsmul {a : A} {n m : ℕ} (ha : 0 ≤ a) (h : n ≤ m) : n •ℕ a ≤ m •ℕ a := let ⟨k, hk⟩ := nat.le.dest h in calc n •ℕ a = n •ℕ a + 0 : (add_zero _).symm ... ≤ n •ℕ a + k •ℕ a : add_le_add_left (nsmul_nonneg ha _) _ ... = m •ℕ a : by rw [← hk, add_nsmul] lemma nsmul_le_nsmul_of_le_right {a b : A} (hab : a ≤ b) : ∀ i : ℕ, i •ℕ a ≤ i •ℕ b | 0 := by simp | (k+1) := add_le_add hab (nsmul_le_nsmul_of_le_right _) end add_monoid section add_group variable [ordered_add_comm_group A] theorem gsmul_nonneg {a : A} (H : 0 ≤ a) {n : ℤ} (hn : 0 ≤ n) : 0 ≤ n •ℤ a := begin lift n to ℕ using hn, apply nsmul_nonneg H end end add_group section cancel_add_monoid variable [ordered_cancel_add_comm_monoid A] theorem nsmul_lt_nsmul {a : A} {n m : ℕ} (ha : 0 < a) (h : n < m) : n •ℕ a < m •ℕ a := let ⟨k, hk⟩ := nat.le.dest h in begin have succ_swap : n.succ + k = n + k.succ := nat.succ_add n k, calc n •ℕ a = (n •ℕ a : A) + (0 : A) : (add_zero _).symm ... < n •ℕ a + (k.succ •ℕ a : A) : add_lt_add_left (nsmul_pos ha (nat.succ_pos k)) _ ... = m •ℕ a : by rw [← hk, succ_swap, add_nsmul] end end cancel_add_monoid namespace canonically_ordered_semiring variable [canonically_ordered_comm_semiring R] theorem pow_pos {a : R} (H : 0 < a) : ∀ n : ℕ, 0 < a ^ n | 0 := canonically_ordered_semiring.zero_lt_one | (n+1) := canonically_ordered_semiring.mul_pos.2 ⟨H, pow_pos n⟩ lemma pow_le_pow_of_le_left {a b : R} (hab : a ≤ b) : ∀ i : ℕ, a^i ≤ b^i | 0 := by simp | (k+1) := canonically_ordered_semiring.mul_le_mul hab (pow_le_pow_of_le_left k) theorem one_le_pow_of_one_le {a : R} (H : 1 ≤ a) (n : ℕ) : 1 ≤ a ^ n := by simpa only [one_pow] using pow_le_pow_of_le_left H n theorem pow_le_one {a : R} (H : a ≤ 1) (n : ℕ) : a ^ n ≤ 1:= by simpa only [one_pow] using pow_le_pow_of_le_left H n end canonically_ordered_semiring section linear_ordered_semiring variable [linear_ordered_semiring R] @[simp] theorem pow_pos {a : R} (H : 0 < a) : ∀ (n : ℕ), 0 < a ^ n | 0 := zero_lt_one | (n+1) := mul_pos H (pow_pos _) @[simp] theorem pow_nonneg {a : R} (H : 0 ≤ a) : ∀ (n : ℕ), 0 ≤ a ^ n | 0 := zero_le_one | (n+1) := mul_nonneg H (pow_nonneg _) theorem pow_lt_pow_of_lt_left {x y : R} {n : ℕ} (Hxy : x < y) (Hxpos : 0 ≤ x) (Hnpos : 0 < n) : x ^ n < y ^ n := begin cases lt_or_eq_of_le Hxpos, { rw ←nat.sub_add_cancel Hnpos, induction (n - 1), { simpa only [pow_one] }, rw [pow_add, pow_add, nat.succ_eq_add_one, pow_one, pow_one], apply mul_lt_mul ih (le_of_lt Hxy) h (le_of_lt (pow_pos (lt_trans h Hxy) _)) }, { rw [←h, zero_pow Hnpos], apply pow_pos (by rwa ←h at Hxy : 0 < y),} end theorem pow_left_inj {x y : R} {n : ℕ} (Hxpos : 0 ≤ x) (Hypos : 0 ≤ y) (Hnpos : 0 < n) (Hxyn : x ^ n = y ^ n) : x = y := begin rcases lt_trichotomy x y with hxy | rfl | hyx, { exact absurd Hxyn (ne_of_lt (pow_lt_pow_of_lt_left hxy Hxpos Hnpos)) }, { refl }, { exact absurd Hxyn (ne_of_gt (pow_lt_pow_of_lt_left hyx Hypos Hnpos)) }, end theorem one_le_pow_of_one_le {a : R} (H : 1 ≤ a) : ∀ (n : ℕ), 1 ≤ a ^ n | 0 := le_refl _ | (n+1) := by simpa only [mul_one] using mul_le_mul H (one_le_pow_of_one_le n) zero_le_one (le_trans zero_le_one H) theorem pow_le_pow {a : R} {n m : ℕ} (ha : 1 ≤ a) (h : n ≤ m) : a ^ n ≤ a ^ m := let ⟨k, hk⟩ := nat.le.dest h in calc a ^ n = a ^ n * 1 : (mul_one _).symm ... ≤ a ^ n * a ^ k : mul_le_mul_of_nonneg_left (one_le_pow_of_one_le ha _) (pow_nonneg (le_trans zero_le_one ha) _) ... = a ^ m : by rw [←hk, pow_add] lemma pow_lt_pow {a : R} {n m : ℕ} (h : 1 < a) (h2 : n < m) : a ^ n < a ^ m := begin have h' : 1 ≤ a := le_of_lt h, have h'' : 0 < a := lt_trans zero_lt_one h, cases m, cases h2, rw [pow_succ, ←one_mul (a ^ n)], exact mul_lt_mul h (pow_le_pow h' (nat.le_of_lt_succ h2)) (pow_pos h'' _) (le_of_lt h'') end lemma pow_le_pow_of_le_left {a b : R} (ha : 0 ≤ a) (hab : a ≤ b) : ∀ i : ℕ, a^i ≤ b^i | 0 := by simp | (k+1) := mul_le_mul hab (pow_le_pow_of_le_left _) (pow_nonneg ha _) (le_trans ha hab) lemma lt_of_pow_lt_pow {a b : R} (n : ℕ) (hb : 0 ≤ b) (h : a ^ n < b ^ n) : a < b := lt_of_not_ge $ λ hn, not_lt_of_ge (pow_le_pow_of_le_left hb hn _) h end linear_ordered_semiring theorem pow_two_nonneg [linear_ordered_ring R] (a : R) : 0 ≤ a ^ 2 := by { rw pow_two, exact mul_self_nonneg _ } theorem pow_two_pos_of_ne_zero [linear_ordered_ring R] (a : R) (h : a ≠ 0) : 0 < a ^ 2 := lt_of_le_of_ne (pow_two_nonneg a) (pow_ne_zero 2 h).symm @[simp] lemma neg_square {α} [ring α] (z : α) : (-z)^2 = z^2 := by simp [pow, monoid.pow] lemma of_add_nsmul [add_monoid A] (x : A) (n : ℕ) : multiplicative.of_add (n •ℕ x) = (multiplicative.of_add x)^n := rfl lemma of_add_gsmul [add_group A] (x : A) (n : ℤ) : multiplicative.of_add (n •ℤ x) = (multiplicative.of_add x)^n := rfl @[simp] lemma semiconj_by.gpow_right [group G] {a x y : G} (h : semiconj_by a x y) : ∀ m : ℤ, semiconj_by a (x^m) (y^m) | (n : ℕ) := h.pow_right n | -[1+n] := (h.pow_right n.succ).inv_right namespace commute variables [group G] {a b : G} @[simp] lemma gpow_right (h : commute a b) (m : ℤ) : commute a (b^m) := h.gpow_right m @[simp] lemma gpow_left (h : commute a b) (m : ℤ) : commute (a^m) b := (h.symm.gpow_right m).symm lemma gpow_gpow (h : commute a b) (m n : ℤ) : commute (a^m) (b^n) := (h.gpow_left m).gpow_right n variables (a) (m n : ℕ) @[simp] theorem self_gpow : commute a (a ^ n) := (commute.refl a).gpow_right n @[simp] theorem gpow_self : commute (a ^ n) a := (commute.refl a).gpow_left n @[simp] theorem gpow_gpow_self : commute (a ^ m) (a ^ n) := (commute.refl a).gpow_gpow m n end commute
2f5ac068805a5467c9f7e61bb70603d63dd364f6
02005f45e00c7ecf2c8ca5db60251bd1e9c860b5
/src/topology/algebra/ordered.lean
2cf2e5830b479252b2cac946d5f85ed12b830ca7
[ "Apache-2.0" ]
permissive
anthony2698/mathlib
03cd69fe5c280b0916f6df2d07c614c8e1efe890
407615e05814e98b24b2ff322b14e8e3eb5e5d67
refs/heads/master
1,678,792,774,873
1,614,371,563,000
1,614,371,563,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
151,984
lean
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro, Yury Kudryashov -/ import tactic.linarith import tactic.tfae import algebra.archimedean import algebra.group.pi import algebra.ordered_ring import order.liminf_limsup import data.set.intervals.image_preimage import data.set.intervals.ord_connected import data.set.intervals.surj_on import data.set.intervals.pi import topology.algebra.group import topology.extend_from_subset import order.filter.interval /-! # Theory of topology on ordered spaces ## Main definitions The order topology on an ordered space is the topology generated by all open intervals (or equivalently by those of the form `(-∞, a)` and `(b, +∞)`). We define it as `preorder.topology α`. However, we do *not* register it as an instance (as many existing ordered types already have topologies, which would be equal but not definitionally equal to `preorder.topology α`). Instead, we introduce a class `order_topology α`(which is a `Prop`, also known as a mixin) saying that on the type `α` having already a topological space structure and a preorder structure, the topological structure is equal to the order topology. We also introduce another (mixin) class `order_closed_topology α` saying that the set of points `(x, y)` with `x ≤ y` is closed in the product space. This is automatically satisfied on a linear order with the order topology. We prove many basic properties of such topologies. ## Main statements This file contains the proofs of the following facts. For exact requirements (`order_closed_topology` vs `order_topology`, `preorder` vs `partial_order` vs `linear_order` etc) see their statements. ### Open / closed sets * `is_open_lt` : if `f` and `g` are continuous functions, then `{x | f x < g x}` is open; * `is_open_Iio`, `is_open_Ioi`, `is_open_Ioo` : open intervals are open; * `is_closed_le` : if `f` and `g` are continuous functions, then `{x | f x ≤ g x}` is closed; * `is_closed_Iic`, `is_closed_Ici`, `is_closed_Icc` : closed intervals are closed; * `frontier_le_subset_eq`, `frontier_lt_subset_eq` : frontiers of both `{x | f x ≤ g x}` and `{x | f x < g x}` are included by `{x | f x = g x}`; * `exists_Ioc_subset_of_mem_nhds`, `exists_Ico_subset_of_mem_nhds` : if `x < y`, then any neighborhood of `x` includes an interval `[x, z)` for some `z ∈ (x, y]`, and any neighborhood of `y` includes an interval `(z, y]` for some `z ∈ [x, y)`. ### Convergence and inequalities * `le_of_tendsto_of_tendsto` : if `f` converges to `a`, `g` converges to `b`, and eventually `f x ≤ g x`, then `a ≤ b` * `le_of_tendsto`, `ge_of_tendsto` : if `f` converges to `a` and eventually `f x ≤ b` (resp., `b ≤ f x`), then `a ≤ b` (resp., `b ≤ a); we also provide primed versions that assume the inequalities to hold for all `x`. ### Min, max, `Sup` and `Inf` * `continuous.min`, `continuous.max`: pointwise `min`/`max` of two continuous functions is continuous. * `tendsto.min`, `tendsto.max` : if `f` tends to `a` and `g` tends to `b`, then their pointwise `min`/`max` tend to `min a b` and `max a b`, respectively. * `tendsto_of_tendsto_of_tendsto_of_le_of_le` : theorem known as squeeze theorem, sandwich theorem, theorem of Carabinieri, and two policemen (and a drunk) theorem; if `g` and `h` both converge to `a`, and eventually `g x ≤ f x ≤ h x`, then `f` converges to `a`. ### Connected sets and Intermediate Value Theorem * `is_preconnected_I??` : all intervals `I??` are preconnected, * `is_preconnected.intermediate_value`, `intermediate_value_univ` : Intermediate Value Theorem for connected sets and connected spaces, respectively; * `intermediate_value_Icc`, `intermediate_value_Icc'`: Intermediate Value Theorem for functions on closed intervals. ### Miscellaneous facts * `is_compact.exists_forall_le`, `is_compact.exists_forall_ge` : extreme value theorem, a continuous function on a compact set takes its minimum and maximum values. * `is_closed.Icc_subset_of_forall_mem_nhds_within` : “Continuous induction” principle; if `s ∩ [a, b]` is closed, `a ∈ s`, and for each `x ∈ [a, b) ∩ s` some of its right neighborhoods is included `s`, then `[a, b] ⊆ s`. * `is_closed.Icc_subset_of_forall_exists_gt`, `is_closed.mem_of_ge_of_forall_exists_gt` : two other versions of the “continuous induction” principle. ## Implementation We do _not_ register the order topology as an instance on a preorder (or even on a linear order). Indeed, on many such spaces, a topology has already been constructed in a different way (think of the discrete spaces `ℕ` or `ℤ`, or `ℝ` that could inherit a topology as the completion of `ℚ`), and is in general not defeq to the one generated by the intervals. We make it available as a definition `preorder.topology α` though, that can be registered as an instance when necessary, or for specific types. -/ open classical set filter topological_space open function (curry uncurry) open_locale topological_space classical filter universes u v w variables {α : Type u} {β : Type v} {γ : Type w} /-- A topology on a set which is both a topological space and a preorder is _order-closed_ if the set of points `(x, y)` with `x ≤ y` is closed in the product space. We introduce this as a mixin. This property is satisfied for the order topology on a linear order, but it can be satisfied more generally, and suffices to derive many interesting properties relating order and topology. -/ class order_closed_topology (α : Type*) [topological_space α] [preorder α] : Prop := (is_closed_le' : is_closed {p:α×α | p.1 ≤ p.2}) instance : Π [topological_space α], topological_space (order_dual α) := id section order_closed_topology section preorder variables [topological_space α] [preorder α] [t : order_closed_topology α] include t lemma is_closed_le_prod : is_closed {p : α × α | p.1 ≤ p.2} := t.is_closed_le' lemma is_closed_le [topological_space β] {f g : β → α} (hf : continuous f) (hg : continuous g) : is_closed {b | f b ≤ g b} := continuous_iff_is_closed.mp (hf.prod_mk hg) _ is_closed_le_prod lemma is_closed_le' (a : α) : is_closed {b | b ≤ a} := is_closed_le continuous_id continuous_const lemma is_closed_Iic {a : α} : is_closed (Iic a) := is_closed_le' a lemma is_closed_ge' (a : α) : is_closed {b | a ≤ b} := is_closed_le continuous_const continuous_id lemma is_closed_Ici {a : α} : is_closed (Ici a) := is_closed_ge' a instance : order_closed_topology (order_dual α) := ⟨(@order_closed_topology.is_closed_le' α _ _ _).preimage continuous_swap⟩ lemma is_closed_Icc {a b : α} : is_closed (Icc a b) := is_closed_inter is_closed_Ici is_closed_Iic @[simp] lemma closure_Icc (a b : α) : closure (Icc a b) = Icc a b := is_closed_Icc.closure_eq @[simp] lemma closure_Iic (a : α) : closure (Iic a) = Iic a := is_closed_Iic.closure_eq @[simp] lemma closure_Ici (a : α) : closure (Ici a) = Ici a := is_closed_Ici.closure_eq lemma le_of_tendsto_of_tendsto {f g : β → α} {b : filter β} {a₁ a₂ : α} [ne_bot b] (hf : tendsto f b (𝓝 a₁)) (hg : tendsto g b (𝓝 a₂)) (h : f ≤ᶠ[b] g) : a₁ ≤ a₂ := have tendsto (λb, (f b, g b)) b (𝓝 (a₁, a₂)), by rw [nhds_prod_eq]; exact hf.prod_mk hg, show (a₁, a₂) ∈ {p:α×α | p.1 ≤ p.2}, from t.is_closed_le'.mem_of_tendsto this h lemma le_of_tendsto_of_tendsto' {f g : β → α} {b : filter β} {a₁ a₂ : α} [ne_bot b] (hf : tendsto f b (𝓝 a₁)) (hg : tendsto g b (𝓝 a₂)) (h : ∀ x, f x ≤ g x) : a₁ ≤ a₂ := le_of_tendsto_of_tendsto hf hg (eventually_of_forall h) lemma le_of_tendsto {f : β → α} {a b : α} {x : filter β} [ne_bot x] (lim : tendsto f x (𝓝 a)) (h : ∀ᶠ c in x, f c ≤ b) : a ≤ b := le_of_tendsto_of_tendsto lim tendsto_const_nhds h lemma le_of_tendsto' {f : β → α} {a b : α} {x : filter β} [ne_bot x] (lim : tendsto f x (𝓝 a)) (h : ∀ c, f c ≤ b) : a ≤ b := le_of_tendsto lim (eventually_of_forall h) lemma ge_of_tendsto {f : β → α} {a b : α} {x : filter β} [ne_bot x] (lim : tendsto f x (𝓝 a)) (h : ∀ᶠ c in x, b ≤ f c) : b ≤ a := le_of_tendsto_of_tendsto tendsto_const_nhds lim h lemma ge_of_tendsto' {f : β → α} {a b : α} {x : filter β} [ne_bot x] (lim : tendsto f x (𝓝 a)) (h : ∀ c, b ≤ f c) : b ≤ a := ge_of_tendsto lim (eventually_of_forall h) @[simp] lemma closure_le_eq [topological_space β] {f g : β → α} (hf : continuous f) (hg : continuous g) : closure {b | f b ≤ g b} = {b | f b ≤ g b} := (is_closed_le hf hg).closure_eq lemma closure_lt_subset_le [topological_space β] {f g : β → α} (hf : continuous f) (hg : continuous g) : closure {b | f b < g b} ⊆ {b | f b ≤ g b} := by { rw [←closure_le_eq hf hg], exact closure_mono (λ b, le_of_lt) } lemma continuous_within_at.closure_le [topological_space β] {f g : β → α} {s : set β} {x : β} (hx : x ∈ closure s) (hf : continuous_within_at f s x) (hg : continuous_within_at g s x) (h : ∀ y ∈ s, f y ≤ g y) : f x ≤ g x := show (f x, g x) ∈ {p : α × α | p.1 ≤ p.2}, from order_closed_topology.is_closed_le'.closure_subset ((hf.prod hg).mem_closure hx h) /-- If `s` is a closed set and two functions `f` and `g` are continuous on `s`, then the set `{x ∈ s | f x ≤ g x}` is a closed set. -/ lemma is_closed.is_closed_le [topological_space β] {f g : β → α} {s : set β} (hs : is_closed s) (hf : continuous_on f s) (hg : continuous_on g s) : is_closed {x ∈ s | f x ≤ g x} := (hf.prod hg).preimage_closed_of_closed hs order_closed_topology.is_closed_le' omit t lemma nhds_within_Ici_ne_bot {a b : α} (H₂ : a ≤ b) : ne_bot (𝓝[Ici a] b) := nhds_within_ne_bot_of_mem H₂ @[instance] lemma nhds_within_Ici_self_ne_bot (a : α) : ne_bot (𝓝[Ici a] a) := nhds_within_Ici_ne_bot (le_refl a) lemma nhds_within_Iic_ne_bot {a b : α} (H : a ≤ b) : ne_bot (𝓝[Iic b] a) := nhds_within_ne_bot_of_mem H @[instance] lemma nhds_within_Iic_self_ne_bot (a : α) : ne_bot (𝓝[Iic a] a) := nhds_within_Iic_ne_bot (le_refl a) end preorder section partial_order variables [topological_space α] [partial_order α] [t : order_closed_topology α] include t private lemma is_closed_eq : is_closed {p : α × α | p.1 = p.2} := by simp only [le_antisymm_iff]; exact is_closed_inter t.is_closed_le' (is_closed_le continuous_snd continuous_fst) @[priority 90] -- see Note [lower instance priority] instance order_closed_topology.to_t2_space : t2_space α := { t2 := have is_open {p : α × α | p.1 ≠ p.2}, from is_closed_eq, assume a b h, let ⟨u, v, hu, hv, ha, hb, h⟩ := is_open_prod_iff.mp this a b h in ⟨u, v, hu, hv, ha, hb, set.eq_empty_iff_forall_not_mem.2 $ assume a ⟨h₁, h₂⟩, have a ≠ a, from @h (a, a) ⟨h₁, h₂⟩, this rfl⟩ } end partial_order section linear_order variables [topological_space α] [linear_order α] [order_closed_topology α] lemma is_open_lt_prod : is_open {p : α × α | p.1 < p.2} := by { simp_rw [← is_closed_compl_iff, compl_set_of, not_lt], exact is_closed_le continuous_snd continuous_fst } lemma is_open_lt [topological_space β] {f g : β → α} (hf : continuous f) (hg : continuous g) : is_open {b | f b < g b} := by simp [lt_iff_not_ge, -not_le]; exact is_closed_le hg hf variables {a b : α} lemma is_open_Iio : is_open (Iio a) := is_open_lt continuous_id continuous_const lemma is_open_Ioi : is_open (Ioi a) := is_open_lt continuous_const continuous_id lemma is_open_Ioo : is_open (Ioo a b) := is_open_inter is_open_Ioi is_open_Iio @[simp] lemma interior_Ioi : interior (Ioi a) = Ioi a := is_open_Ioi.interior_eq @[simp] lemma interior_Iio : interior (Iio a) = Iio a := is_open_Iio.interior_eq @[simp] lemma interior_Ioo : interior (Ioo a b) = Ioo a b := is_open_Ioo.interior_eq variables [topological_space γ] /-- Intermediate value theorem for two functions: if `f` and `g` are two continuous functions on a preconnected space and `f a ≤ g a` and `g b ≤ f b`, then for some `x` we have `f x = g x`. -/ lemma intermediate_value_univ₂ [preconnected_space γ] {a b : γ} {f g : γ → α} (hf : continuous f) (hg : continuous g) (ha : f a ≤ g a) (hb : g b ≤ f b) : ∃ x, f x = g x := begin obtain ⟨x, h, hfg, hgf⟩ : (univ ∩ {x | f x ≤ g x ∧ g x ≤ f x}).nonempty, from is_preconnected_closed_iff.1 preconnected_space.is_preconnected_univ _ _ (is_closed_le hf hg) (is_closed_le hg hf) (λ x hx, le_total _ _) ⟨a, trivial, ha⟩ ⟨b, trivial, hb⟩, exact ⟨x, le_antisymm hfg hgf⟩ end /-- Intermediate value theorem for two functions: if `f` and `g` are two functions continuous on a preconnected set `s` and for some `a b ∈ s` we have `f a ≤ g a` and `g b ≤ f b`, then for some `x ∈ s` we have `f x = g x`. -/ lemma is_preconnected.intermediate_value₂ {s : set γ} (hs : is_preconnected s) {a b : γ} (ha : a ∈ s) (hb : b ∈ s) {f g : γ → α} (hf : continuous_on f s) (hg : continuous_on g s) (ha' : f a ≤ g a) (hb' : g b ≤ f b) : ∃ x ∈ s, f x = g x := let ⟨x, hx⟩ := @intermediate_value_univ₂ α s _ _ _ _ (subtype.preconnected_space hs) ⟨a, ha⟩ ⟨b, hb⟩ _ _ (continuous_on_iff_continuous_restrict.1 hf) (continuous_on_iff_continuous_restrict.1 hg) ha' hb' in ⟨x, x.2, hx⟩ /-- Intermediate Value Theorem for continuous functions on connected sets. -/ lemma is_preconnected.intermediate_value {s : set γ} (hs : is_preconnected s) {a b : γ} (ha : a ∈ s) (hb : b ∈ s) {f : γ → α} (hf : continuous_on f s) : Icc (f a) (f b) ⊆ f '' s := λ x hx, mem_image_iff_bex.2 $ hs.intermediate_value₂ ha hb hf continuous_on_const hx.1 hx.2 /-- Intermediate Value Theorem for continuous functions on connected spaces. -/ lemma intermediate_value_univ [preconnected_space γ] (a b : γ) {f : γ → α} (hf : continuous f) : Icc (f a) (f b) ⊆ range f := λ x hx, intermediate_value_univ₂ hf continuous_const hx.1 hx.2 /-- Intermediate Value Theorem for continuous functions on connected spaces. -/ lemma mem_range_of_exists_le_of_exists_ge [preconnected_space γ] {c : α} {f : γ → α} (hf : continuous f) (h₁ : ∃ a, f a ≤ c) (h₂ : ∃ b, c ≤ f b) : c ∈ range f := let ⟨a, ha⟩ := h₁, ⟨b, hb⟩ := h₂ in intermediate_value_univ a b hf ⟨ha, hb⟩ /-- If a preconnected set contains endpoints of an interval, then it includes the whole interval. -/ lemma is_preconnected.Icc_subset {s : set α} (hs : is_preconnected s) {a b : α} (ha : a ∈ s) (hb : b ∈ s) : Icc a b ⊆ s := by simpa only [image_id] using hs.intermediate_value ha hb continuous_on_id /-- If a preconnected set contains endpoints of an interval, then it includes the whole interval. -/ lemma is_connected.Icc_subset {s : set α} (hs : is_connected s) {a b : α} (ha : a ∈ s) (hb : b ∈ s) : Icc a b ⊆ s := hs.2.Icc_subset ha hb /-- If preconnected set in a linear order space is unbounded below and above, then it is the whole space. -/ lemma is_preconnected.eq_univ_of_unbounded {s : set α} (hs : is_preconnected s) (hb : ¬bdd_below s) (ha : ¬bdd_above s) : s = univ := begin refine eq_univ_of_forall (λ x, _), obtain ⟨y, ys, hy⟩ : ∃ y ∈ s, y < x := not_bdd_below_iff.1 hb x, obtain ⟨z, zs, hz⟩ : ∃ z ∈ s, x < z := not_bdd_above_iff.1 ha x, exact hs.Icc_subset ys zs ⟨le_of_lt hy, le_of_lt hz⟩ end /-! ### Neighborhoods to the left and to the right on an `order_closed_topology` Limits to the left and to the right of real functions are defined in terms of neighborhoods to the left and to the right, either open or closed, i.e., members of `𝓝[Ioi a] a` and `𝓝[Ici a] a` on the right, and similarly on the left. Here we simply prove that all right-neighborhoods of a point are equal, and we'll prove later other useful characterizations which require the stronger hypothesis `order_topology α` -/ /-! #### Right neighborhoods, point excluded -/ lemma Ioo_mem_nhds_within_Ioi {a b c : α} (H : b ∈ Ico a c) : Ioo a c ∈ 𝓝[Ioi b] b := mem_nhds_within.2 ⟨Iio c, is_open_Iio, H.2, by rw [inter_comm, Ioi_inter_Iio]; exact Ioo_subset_Ioo_left H.1⟩ lemma Ioc_mem_nhds_within_Ioi {a b c : α} (H : b ∈ Ico a c) : Ioc a c ∈ 𝓝[Ioi b] b := mem_sets_of_superset (Ioo_mem_nhds_within_Ioi H) Ioo_subset_Ioc_self lemma Ico_mem_nhds_within_Ioi {a b c : α} (H : b ∈ Ico a c) : Ico a c ∈ 𝓝[Ioi b] b := mem_sets_of_superset (Ioo_mem_nhds_within_Ioi H) Ioo_subset_Ico_self lemma Icc_mem_nhds_within_Ioi {a b c : α} (H : b ∈ Ico a c) : Icc a c ∈ 𝓝[Ioi b] b := mem_sets_of_superset (Ioo_mem_nhds_within_Ioi H) Ioo_subset_Icc_self @[simp] lemma nhds_within_Ioc_eq_nhds_within_Ioi {a b : α} (h : a < b) : 𝓝[Ioc a b] a = 𝓝[Ioi a] a := le_antisymm (nhds_within_mono _ Ioc_subset_Ioi_self) $ nhds_within_le_of_mem $ Ioc_mem_nhds_within_Ioi $ left_mem_Ico.2 h @[simp] lemma nhds_within_Ioo_eq_nhds_within_Ioi {a b : α} (h : a < b) : 𝓝[Ioo a b] a = 𝓝[Ioi a] a := le_antisymm (nhds_within_mono _ Ioo_subset_Ioi_self) $ nhds_within_le_of_mem $ Ioo_mem_nhds_within_Ioi $ left_mem_Ico.2 h @[simp] lemma continuous_within_at_Ioc_iff_Ioi [topological_space β] {a b : α} {f : α → β} (h : a < b) : continuous_within_at f (Ioc a b) a ↔ continuous_within_at f (Ioi a) a := by simp only [continuous_within_at, nhds_within_Ioc_eq_nhds_within_Ioi h] @[simp] lemma continuous_within_at_Ioo_iff_Ioi [topological_space β] {a b : α} {f : α → β} (h : a < b) : continuous_within_at f (Ioo a b) a ↔ continuous_within_at f (Ioi a) a := by simp only [continuous_within_at, nhds_within_Ioo_eq_nhds_within_Ioi h] /-! #### Left neighborhoods, point excluded -/ lemma Ioo_mem_nhds_within_Iio {a b c : α} (H : b ∈ Ioc a c) : Ioo a c ∈ 𝓝[Iio b] b := by simpa only [dual_Ioo] using @Ioo_mem_nhds_within_Ioi (order_dual α) _ _ _ _ _ _ ⟨H.2, H.1⟩ lemma Ico_mem_nhds_within_Iio {a b c : α} (H : b ∈ Ioc a c) : Ico a c ∈ 𝓝[Iio b] b := mem_sets_of_superset (Ioo_mem_nhds_within_Iio H) Ioo_subset_Ico_self lemma Ioc_mem_nhds_within_Iio {a b c : α} (H : b ∈ Ioc a c) : Ioc a c ∈ 𝓝[Iio b] b := mem_sets_of_superset (Ioo_mem_nhds_within_Iio H) Ioo_subset_Ioc_self lemma Icc_mem_nhds_within_Iio {a b c : α} (H : b ∈ Ioc a c) : Icc a c ∈ 𝓝[Iio b] b := mem_sets_of_superset (Ioo_mem_nhds_within_Iio H) Ioo_subset_Icc_self @[simp] lemma nhds_within_Ico_eq_nhds_within_Iio {a b : α} (h : a < b) : 𝓝[Ico a b] b = 𝓝[Iio b] b := by simpa only [dual_Ioc] using @nhds_within_Ioc_eq_nhds_within_Ioi (order_dual α) _ _ _ _ _ h @[simp] lemma nhds_within_Ioo_eq_nhds_within_Iio {a b : α} (h : a < b) : 𝓝[Ioo a b] b = 𝓝[Iio b] b := by simpa only [dual_Ioo] using @nhds_within_Ioo_eq_nhds_within_Ioi (order_dual α) _ _ _ _ _ h @[simp] lemma continuous_within_at_Ico_iff_Iio {a b : α} {f : α → γ} (h : a < b) : continuous_within_at f (Ico a b) b ↔ continuous_within_at f (Iio b) b := by simp only [continuous_within_at, nhds_within_Ico_eq_nhds_within_Iio h] @[simp] lemma continuous_within_at_Ioo_iff_Iio {a b : α} {f : α → γ} (h : a < b) : continuous_within_at f (Ioo a b) b ↔ continuous_within_at f (Iio b) b := by simp only [continuous_within_at, nhds_within_Ioo_eq_nhds_within_Iio h] /-! #### Right neighborhoods, point included -/ lemma Ioo_mem_nhds_within_Ici {a b c : α} (H : b ∈ Ioo a c) : Ioo a c ∈ 𝓝[Ici b] b := mem_nhds_within_of_mem_nhds $ mem_nhds_sets is_open_Ioo H lemma Ioc_mem_nhds_within_Ici {a b c : α} (H : b ∈ Ioo a c) : Ioc a c ∈ 𝓝[Ici b] b := mem_sets_of_superset (Ioo_mem_nhds_within_Ici H) Ioo_subset_Ioc_self lemma Ico_mem_nhds_within_Ici {a b c : α} (H : b ∈ Ico a c) : Ico a c ∈ 𝓝[Ici b] b := mem_nhds_within.2 ⟨Iio c, is_open_Iio, H.2, by simp only [inter_comm, Ici_inter_Iio, Ico_subset_Ico_left H.1]⟩ lemma Icc_mem_nhds_within_Ici {a b c : α} (H : b ∈ Ico a c) : Icc a c ∈ 𝓝[Ici b] b := mem_sets_of_superset (Ico_mem_nhds_within_Ici H) Ico_subset_Icc_self @[simp] lemma nhds_within_Icc_eq_nhds_within_Ici {a b : α} (h : a < b) : 𝓝[Icc a b] a = 𝓝[Ici a] a := le_antisymm (nhds_within_mono _ Icc_subset_Ici_self) $ nhds_within_le_of_mem $ Icc_mem_nhds_within_Ici $ left_mem_Ico.2 h @[simp] lemma nhds_within_Ico_eq_nhds_within_Ici {a b : α} (h : a < b) : 𝓝[Ico a b] a = 𝓝[Ici a] a := le_antisymm (nhds_within_mono _ (λ x, and.left)) $ nhds_within_le_of_mem $ Ico_mem_nhds_within_Ici $ left_mem_Ico.2 h @[simp] lemma continuous_within_at_Icc_iff_Ici [topological_space β] {a b : α} {f : α → β} (h : a < b) : continuous_within_at f (Icc a b) a ↔ continuous_within_at f (Ici a) a := by simp only [continuous_within_at, nhds_within_Icc_eq_nhds_within_Ici h] @[simp] lemma continuous_within_at_Ico_iff_Ici [topological_space β] {a b : α} {f : α → β} (h : a < b) : continuous_within_at f (Ico a b) a ↔ continuous_within_at f (Ici a) a := by simp only [continuous_within_at, nhds_within_Ico_eq_nhds_within_Ici h] /-! #### Left neighborhoods, point included -/ lemma Ioo_mem_nhds_within_Iic {a b c : α} (H : b ∈ Ioo a c) : Ioo a c ∈ 𝓝[Iic b] b := mem_nhds_within_of_mem_nhds $ mem_nhds_sets is_open_Ioo H lemma Ico_mem_nhds_within_Iic {a b c : α} (H : b ∈ Ioo a c) : Ico a c ∈ 𝓝[Iic b] b := mem_sets_of_superset (Ioo_mem_nhds_within_Iic H) Ioo_subset_Ico_self lemma Ioc_mem_nhds_within_Iic {a b c : α} (H : b ∈ Ioc a c) : Ioc a c ∈ 𝓝[Iic b] b := by simpa only [dual_Ico] using @Ico_mem_nhds_within_Ici (order_dual α) _ _ _ _ _ _ ⟨H.2, H.1⟩ lemma Icc_mem_nhds_within_Iic {a b c : α} (H : b ∈ Ioc a c) : Icc a c ∈ 𝓝[Iic b] b := mem_sets_of_superset (Ioc_mem_nhds_within_Iic H) Ioc_subset_Icc_self @[simp] lemma nhds_within_Icc_eq_nhds_within_Iic {a b : α} (h : a < b) : 𝓝[Icc a b] b = 𝓝[Iic b] b := by simpa only [dual_Icc] using @nhds_within_Icc_eq_nhds_within_Ici (order_dual α) _ _ _ _ _ h @[simp] lemma nhds_within_Ioc_eq_nhds_within_Iic {a b : α} (h : a < b) : 𝓝[Ioc a b] b = 𝓝[Iic b] b := by simpa only [dual_Ico] using @nhds_within_Ico_eq_nhds_within_Ici (order_dual α) _ _ _ _ _ h @[simp] lemma continuous_within_at_Icc_iff_Iic [topological_space β] {a b : α} {f : α → β} (h : a < b) : continuous_within_at f (Icc a b) b ↔ continuous_within_at f (Iic b) b := by simp only [continuous_within_at, nhds_within_Icc_eq_nhds_within_Iic h] @[simp] lemma continuous_within_at_Ioc_iff_Iic [topological_space β] {a b : α} {f : α → β} (h : a < b) : continuous_within_at f (Ioc a b) b ↔ continuous_within_at f (Iic b) b := by simp only [continuous_within_at, nhds_within_Ioc_eq_nhds_within_Iic h] end linear_order section linear_order variables [topological_space α] [linear_order α] [order_closed_topology α] {f g : β → α} section variables [topological_space β] lemma frontier_le_subset_eq (hf : continuous f) (hg : continuous g) : frontier {b | f b ≤ g b} ⊆ {b | f b = g b} := begin rw [frontier_eq_closure_inter_closure, closure_le_eq hf hg], rintros b ⟨hb₁, hb₂⟩, refine le_antisymm hb₁ (closure_lt_subset_le hg hf _), convert hb₂ using 2, simp only [not_le.symm], refl end lemma frontier_lt_subset_eq (hf : continuous f) (hg : continuous g) : frontier {b | f b < g b} ⊆ {b | f b = g b} := by rw ← frontier_compl; convert frontier_le_subset_eq hg hf; simp [ext_iff, eq_comm] lemma continuous_if_le [topological_space γ] [Π x, decidable (f x ≤ g x)] {f' g' : β → γ} (hf : continuous f) (hg : continuous g) (hf' : continuous_on f' {x | f x ≤ g x}) (hg' : continuous_on g' {x | g x ≤ f x}) (hfg : ∀ x, f x = g x → f' x = g' x) : continuous (λ x, if f x ≤ g x then f' x else g' x) := begin refine continuous_if (λ a ha, hfg _ (frontier_le_subset_eq hf hg ha)) _ (hg'.mono _), { rwa [(is_closed_le hf hg).closure_eq] }, { simp only [not_le], exact closure_lt_subset_le hg hf } end lemma continuous.if_le [topological_space γ] [Π x, decidable (f x ≤ g x)] {f' g' : β → γ} (hf' : continuous f') (hg' : continuous g') (hf : continuous f) (hg : continuous g) (hfg : ∀ x, f x = g x → f' x = g' x) : continuous (λ x, if f x ≤ g x then f' x else g' x) := continuous_if_le hf hg hf'.continuous_on hg'.continuous_on hfg @[continuity] lemma continuous.min (hf : continuous f) (hg : continuous g) : continuous (λb, min (f b) (g b)) := hf.if_le hg hf hg (λ x, id) @[continuity] lemma continuous.max (hf : continuous f) (hg : continuous g) : continuous (λb, max (f b) (g b)) := @continuous.min (order_dual α) _ _ _ _ _ _ _ hf hg end lemma continuous_min : continuous (λ p : α × α, min p.1 p.2) := continuous_fst.min continuous_snd lemma continuous_max : continuous (λ p : α × α, max p.1 p.2) := continuous_fst.max continuous_snd lemma tendsto.max {b : filter β} {a₁ a₂ : α} (hf : tendsto f b (𝓝 a₁)) (hg : tendsto g b (𝓝 a₂)) : tendsto (λb, max (f b) (g b)) b (𝓝 (max a₁ a₂)) := (continuous_max.tendsto (a₁, a₂)).comp (hf.prod_mk_nhds hg) lemma tendsto.min {b : filter β} {a₁ a₂ : α} (hf : tendsto f b (𝓝 a₁)) (hg : tendsto g b (𝓝 a₂)) : tendsto (λb, min (f b) (g b)) b (𝓝 (min a₁ a₂)) := (continuous_min.tendsto (a₁, a₂)).comp (hf.prod_mk_nhds hg) end linear_order end order_closed_topology /-- The order topology on an ordered type is the topology generated by open intervals. We register it on a preorder, but it is mostly interesting in linear orders, where it is also order-closed. We define it as a mixin. If you want to introduce the order topology on a preorder, use `preorder.topology`. -/ class order_topology (α : Type*) [t : topological_space α] [preorder α] : Prop := (topology_eq_generate_intervals : t = generate_from {s | ∃a, s = Ioi a ∨ s = Iio a}) /-- (Order) topology on a partial order `α` generated by the subbase of open intervals `(a, ∞) = { x ∣ a < x }, (-∞ , b) = {x ∣ x < b}` for all `a, b` in `α`. We do not register it as an instance as many ordered sets are already endowed with the same topology, most often in a non-defeq way though. Register as a local instance when necessary. -/ def preorder.topology (α : Type*) [preorder α] : topological_space α := generate_from {s : set α | ∃ (a : α), s = {b : α | a < b} ∨ s = {b : α | b < a}} section order_topology instance {α : Type*} [topological_space α] [partial_order α] [order_topology α] : order_topology (order_dual α) := ⟨by convert @order_topology.topology_eq_generate_intervals α _ _ _; conv in (_ ∨ _) { rw or.comm }; refl⟩ section partial_order variables [topological_space α] [partial_order α] [t : order_topology α] include t lemma is_open_iff_generate_intervals {s : set α} : is_open s ↔ generate_open {s | ∃a, s = Ioi a ∨ s = Iio a} s := by rw [t.topology_eq_generate_intervals]; refl lemma is_open_lt' (a : α) : is_open {b:α | a < b} := by rw [@is_open_iff_generate_intervals α _ _ t]; exact generate_open.basic _ ⟨a, or.inl rfl⟩ lemma is_open_gt' (a : α) : is_open {b:α | b < a} := by rw [@is_open_iff_generate_intervals α _ _ t]; exact generate_open.basic _ ⟨a, or.inr rfl⟩ lemma lt_mem_nhds {a b : α} (h : a < b) : ∀ᶠ x in 𝓝 b, a < x := mem_nhds_sets (is_open_lt' _) h lemma le_mem_nhds {a b : α} (h : a < b) : ∀ᶠ x in 𝓝 b, a ≤ x := (𝓝 b).sets_of_superset (lt_mem_nhds h) $ assume b hb, le_of_lt hb lemma gt_mem_nhds {a b : α} (h : a < b) : ∀ᶠ x in 𝓝 a, x < b := mem_nhds_sets (is_open_gt' _) h lemma ge_mem_nhds {a b : α} (h : a < b) : ∀ᶠ x in 𝓝 a, x ≤ b := (𝓝 a).sets_of_superset (gt_mem_nhds h) $ assume b hb, le_of_lt hb lemma nhds_eq_order (a : α) : 𝓝 a = (⨅b ∈ Iio a, 𝓟 (Ioi b)) ⊓ (⨅b ∈ Ioi a, 𝓟 (Iio b)) := by rw [t.topology_eq_generate_intervals, nhds_generate_from]; from le_antisymm (le_inf (le_binfi $ assume b hb, infi_le_of_le {c : α | b < c} $ infi_le _ ⟨hb, b, or.inl rfl⟩) (le_binfi $ assume b hb, infi_le_of_le {c : α | c < b} $ infi_le _ ⟨hb, b, or.inr rfl⟩)) (le_infi $ assume s, le_infi $ assume ⟨ha, b, hs⟩, match s, ha, hs with | _, h, (or.inl rfl) := inf_le_left_of_le $ infi_le_of_le b $ infi_le _ h | _, h, (or.inr rfl) := inf_le_right_of_le $ infi_le_of_le b $ infi_le _ h end) lemma tendsto_order {f : β → α} {a : α} {x : filter β} : tendsto f x (𝓝 a) ↔ (∀ a' < a, ∀ᶠ b in x, a' < f b) ∧ (∀ a' > a, ∀ᶠ b in x, f b < a') := by simp [nhds_eq_order a, tendsto_inf, tendsto_infi, tendsto_principal] instance tendsto_Icc_class_nhds (a : α) : tendsto_Ixx_class Icc (𝓝 a) (𝓝 a) := begin simp only [nhds_eq_order, infi_subtype'], refine ((has_basis_infi_principal_finite _).inf (has_basis_infi_principal_finite _)).tendsto_Ixx_class (λ s hs, _), refine (ord_connected_bInter _).inter (ord_connected_bInter _); intros _ _, exacts [ord_connected_Ioi, ord_connected_Iio] end instance tendsto_Ico_class_nhds (a : α) : tendsto_Ixx_class Ico (𝓝 a) (𝓝 a) := tendsto_Ixx_class_of_subset (λ _ _, Ico_subset_Icc_self) instance tendsto_Ioc_class_nhds (a : α) : tendsto_Ixx_class Ioc (𝓝 a) (𝓝 a) := tendsto_Ixx_class_of_subset (λ _ _, Ioc_subset_Icc_self) instance tendsto_Ioo_class_nhds (a : α) : tendsto_Ixx_class Ioo (𝓝 a) (𝓝 a) := tendsto_Ixx_class_of_subset (λ _ _, Ioo_subset_Icc_self) /-- Also known as squeeze or sandwich theorem. This version assumes that inequalities hold eventually for the filter. -/ lemma tendsto_of_tendsto_of_tendsto_of_le_of_le' {f g h : β → α} {b : filter β} {a : α} (hg : tendsto g b (𝓝 a)) (hh : tendsto h b (𝓝 a)) (hgf : ∀ᶠ b in b, g b ≤ f b) (hfh : ∀ᶠ b in b, f b ≤ h b) : tendsto f b (𝓝 a) := tendsto_order.2 ⟨assume a' h', have ∀ᶠ b in b, a' < g b, from (tendsto_order.1 hg).left a' h', by filter_upwards [this, hgf] assume a, lt_of_lt_of_le, assume a' h', have ∀ᶠ b in b, h b < a', from (tendsto_order.1 hh).right a' h', by filter_upwards [this, hfh] assume a h₁ h₂, lt_of_le_of_lt h₂ h₁⟩ /-- Also known as squeeze or sandwich theorem. This version assumes that inequalities hold everywhere. -/ lemma tendsto_of_tendsto_of_tendsto_of_le_of_le {f g h : β → α} {b : filter β} {a : α} (hg : tendsto g b (𝓝 a)) (hh : tendsto h b (𝓝 a)) (hgf : g ≤ f) (hfh : f ≤ h) : tendsto f b (𝓝 a) := tendsto_of_tendsto_of_tendsto_of_le_of_le' hg hh (eventually_of_forall hgf) (eventually_of_forall hfh) lemma nhds_order_unbounded {a : α} (hu : ∃u, a < u) (hl : ∃l, l < a) : 𝓝 a = (⨅l (h₂ : l < a) u (h₂ : a < u), 𝓟 (Ioo l u)) := have ∃ u, u ∈ Ioi a, from hu, have ∃ l, l ∈ Iio a, from hl, by { simp only [nhds_eq_order, inf_binfi, binfi_inf, *, inf_principal, Ioi_inter_Iio], refl } lemma tendsto_order_unbounded {f : β → α} {a : α} {x : filter β} (hu : ∃u, a < u) (hl : ∃l, l < a) (h : ∀l u, l < a → a < u → ∀ᶠ b in x, l < f b ∧ f b < u) : tendsto f x (𝓝 a) := by rw [nhds_order_unbounded hu hl]; from (tendsto_infi.2 $ assume l, tendsto_infi.2 $ assume hl, tendsto_infi.2 $ assume u, tendsto_infi.2 $ assume hu, tendsto_principal.2 $ h l u hl hu) end partial_order instance tendsto_Ixx_nhds_within {α : Type*} [preorder α] [topological_space α] (a : α) {s t : set α} {Ixx} [tendsto_Ixx_class Ixx (𝓝 a) (𝓝 a)] [tendsto_Ixx_class Ixx (𝓟 s) (𝓟 t)]: tendsto_Ixx_class Ixx (𝓝[s] a) (𝓝[t] a) := filter.tendsto_Ixx_class_inf instance tendsto_Icc_class_nhds_pi {ι : Type*} {α : ι → Type*} [nonempty ι] [Π i, partial_order (α i)] [Π i, topological_space (α i)] [∀ i, order_topology (α i)] (f : Π i, α i) : tendsto_Ixx_class Icc (𝓝 f) (𝓝 f) := begin constructor, conv in ((𝓝 f).lift' powerset) { rw [nhds_pi] }, simp only [lift'_infi_powerset, comap_lift'_eq2 monotone_powerset, tendsto_infi, tendsto_lift', mem_powerset_iff, subset_def, mem_preimage], intros i s hs, have : tendsto (λ g : Π i, α i, g i) (𝓝 f) (𝓝 (f i)) := ((continuous_apply i).tendsto f), refine (tendsto_lift'.1 ((this.comp tendsto_fst).Icc (this.comp tendsto_snd)) s hs).mono _, exact λ p hp g hg, hp ⟨hg.1 _, hg.2 _⟩ end theorem induced_order_topology' {α : Type u} {β : Type v} [partial_order α] [ta : topological_space β] [partial_order β] [order_topology β] (f : α → β) (hf : ∀ {x y}, f x < f y ↔ x < y) (H₁ : ∀ {a x}, x < f a → ∃ b < a, x ≤ f b) (H₂ : ∀ {a x}, f a < x → ∃ b > a, f b ≤ x) : @order_topology _ (induced f ta) _ := begin letI := induced f ta, refine ⟨eq_of_nhds_eq_nhds (λ a, _)⟩, rw [nhds_induced, nhds_generate_from, nhds_eq_order (f a)], apply le_antisymm, { refine le_infi (λ s, le_infi $ λ hs, le_principal_iff.2 _), rcases hs with ⟨ab, b, rfl|rfl⟩, { exact mem_comap_sets.2 ⟨{x | f b < x}, mem_inf_sets_of_left $ mem_infi_sets _ $ mem_infi_sets (hf.2 ab) $ mem_principal_self _, λ x, hf.1⟩ }, { exact mem_comap_sets.2 ⟨{x | x < f b}, mem_inf_sets_of_right $ mem_infi_sets _ $ mem_infi_sets (hf.2 ab) $ mem_principal_self _, λ x, hf.1⟩ } }, { rw [← map_le_iff_le_comap], refine le_inf _ _; refine le_infi (λ x, le_infi $ λ h, le_principal_iff.2 _); simp, { rcases H₁ h with ⟨b, ab, xb⟩, refine mem_infi_sets _ (mem_infi_sets ⟨ab, b, or.inl rfl⟩ (mem_principal_sets.2 _)), exact λ c hc, lt_of_le_of_lt xb (hf.2 hc) }, { rcases H₂ h with ⟨b, ab, xb⟩, refine mem_infi_sets _ (mem_infi_sets ⟨ab, b, or.inr rfl⟩ (mem_principal_sets.2 _)), exact λ c hc, lt_of_lt_of_le (hf.2 hc) xb } }, end theorem induced_order_topology {α : Type u} {β : Type v} [partial_order α] [ta : topological_space β] [partial_order β] [order_topology β] (f : α → β) (hf : ∀ {x y}, f x < f y ↔ x < y) (H : ∀ {x y}, x < y → ∃ a, x < f a ∧ f a < y) : @order_topology _ (induced f ta) _ := induced_order_topology' f @hf (λ a x xa, let ⟨b, xb, ba⟩ := H xa in ⟨b, hf.1 ba, le_of_lt xb⟩) (λ a x ax, let ⟨b, ab, bx⟩ := H ax in ⟨b, hf.1 ab, le_of_lt bx⟩) /-- On an `ord_connected` subset of a linear order, the order topology for the restriction of the order is the same as the restriction to the subset of the order topology. -/ instance order_topology_of_ord_connected {α : Type u} [ta : topological_space α] [linear_order α] [order_topology α] {t : set α} [ht : ord_connected t] : order_topology t := begin letI := induced (coe : t → α) ta, refine ⟨eq_of_nhds_eq_nhds (λ a, _)⟩, rw [nhds_induced, nhds_generate_from, nhds_eq_order (a : α)], apply le_antisymm, { refine le_infi (λ s, le_infi $ λ hs, le_principal_iff.2 _), rcases hs with ⟨ab, b, rfl|rfl⟩, { refine ⟨Ioi b, _, λ _, id⟩, refine mem_inf_sets_of_left (mem_infi_sets b _), exact mem_infi_sets ab (mem_principal_self (Ioi ↑b)) }, { refine ⟨Iio b, _, λ _, id⟩, refine mem_inf_sets_of_right (mem_infi_sets b _), exact mem_infi_sets ab (mem_principal_self (Iio b)) } }, { rw [← map_le_iff_le_comap], refine le_inf _ _, { refine le_infi (λ x, le_infi $ λ h, le_principal_iff.2 _), by_cases hx : x ∈ t, { refine mem_infi_sets (Ioi ⟨x, hx⟩) (mem_infi_sets ⟨h, ⟨⟨x, hx⟩, or.inl rfl⟩⟩ _), exact λ _, id }, simp only [set_coe.exists, mem_set_of_eq, mem_map], convert univ_sets _, suffices hx' : ∀ (y : t), ↑y ∈ Ioi x, { simp [hx'] }, intros y, revert hx, contrapose!, -- here we use the `ord_connected` hypothesis exact λ hx, ht y.2 a.2 ⟨le_of_not_gt hx, le_of_lt h⟩ }, { refine le_infi (λ x, le_infi $ λ h, le_principal_iff.2 _), by_cases hx : x ∈ t, { refine mem_infi_sets (Iio ⟨x, hx⟩) (mem_infi_sets ⟨h, ⟨⟨x, hx⟩, or.inr rfl⟩⟩ _), exact λ _, id }, simp only [set_coe.exists, mem_set_of_eq, mem_map], convert univ_sets _, suffices hx' : ∀ (y : t), ↑y ∈ Iio x, { simp [hx'] }, intros y, revert hx, contrapose!, -- here we use the `ord_connected` hypothesis exact λ hx, ht a.2 y.2 ⟨le_of_lt h, le_of_not_gt hx⟩ } } end lemma nhds_top_order [topological_space α] [order_top α] [order_topology α] : 𝓝 (⊤:α) = (⨅l (h₂ : l < ⊤), 𝓟 (Ioi l)) := by simp [nhds_eq_order (⊤:α)] lemma nhds_bot_order [topological_space α] [order_bot α] [order_topology α] : 𝓝 (⊥:α) = (⨅l (h₂ : ⊥ < l), 𝓟 (Iio l)) := by simp [nhds_eq_order (⊥:α)] lemma tendsto_nhds_top_mono [topological_space β] [order_top β] [order_topology β] {l : filter α} {f g : α → β} (hf : tendsto f l (𝓝 ⊤)) (hg : f ≤ᶠ[l] g) : tendsto g l (𝓝 ⊤) := begin simp only [nhds_top_order, tendsto_infi, tendsto_principal] at hf ⊢, intros x hx, filter_upwards [hf x hx, hg], exact λ x, lt_of_lt_of_le end lemma tendsto_nhds_bot_mono [topological_space β] [order_bot β] [order_topology β] {l : filter α} {f g : α → β} (hf : tendsto f l (𝓝 ⊥)) (hg : g ≤ᶠ[l] f) : tendsto g l (𝓝 ⊥) := @tendsto_nhds_top_mono α (order_dual β) _ _ _ _ _ _ hf hg lemma tendsto_nhds_top_mono' [topological_space β] [order_top β] [order_topology β] {l : filter α} {f g : α → β} (hf : tendsto f l (𝓝 ⊤)) (hg : f ≤ g) : tendsto g l (𝓝 ⊤) := tendsto_nhds_top_mono hf (eventually_of_forall hg) lemma tendsto_nhds_bot_mono' [topological_space β] [order_bot β] [order_topology β] {l : filter α} {f g : α → β} (hf : tendsto f l (𝓝 ⊥)) (hg : g ≤ f) : tendsto g l (𝓝 ⊥) := tendsto_nhds_bot_mono hf (eventually_of_forall hg) section linear_order variables [topological_space α] [linear_order α] [order_topology α] lemma exists_Ioc_subset_of_mem_nhds' {a : α} {s : set α} (hs : s ∈ 𝓝 a) {l : α} (hl : l < a) : ∃ l' ∈ Ico l a, Ioc l' a ⊆ s := begin rw [nhds_eq_order a] at hs, rcases hs with ⟨t₁, ht₁, t₂, ht₂, hts⟩, -- First we show that `t₂` includes `(-∞, a]`, so it suffices to show `(l', ∞) ⊆ t₁` suffices : ∃ l' ∈ Ico l a, Ioi l' ⊆ t₁, { have A : 𝓟 (Iic a) ≤ ⨅ b ∈ Ioi a, 𝓟 (Iio b), from (le_infi $ λ b, le_infi $ λ hb, principal_mono.2 $ Iic_subset_Iio.2 hb), have B : t₁ ∩ Iic a ⊆ s, from subset.trans (inter_subset_inter_right _ (A ht₂)) hts, from this.imp (λ l', Exists.imp $ λ hl' hl x hx, B ⟨hl hx.1, hx.2⟩) }, clear hts ht₂ t₂, -- Now we find `l` such that `(l', ∞) ⊆ t₁` rw [mem_binfi] at ht₁, { rcases ht₁ with ⟨b, hb, hb'⟩, exact ⟨max b l, ⟨le_max_right _ _, max_lt hb hl⟩, λ x hx, hb' $ Ioi_subset_Ioi (le_max_left _ _) hx⟩ }, { intros b hb b' hb', simp only [mem_Iio] at hb hb', use [max b b', max_lt hb hb'], simp [le_refl] }, exact ⟨l, hl⟩ end lemma exists_Ico_subset_of_mem_nhds' {a : α} {s : set α} (hs : s ∈ 𝓝 a) {u : α} (hu : a < u) : ∃ u' ∈ Ioc a u, Ico a u' ⊆ s := begin convert @exists_Ioc_subset_of_mem_nhds' (order_dual α) _ _ _ _ _ hs _ hu, ext, rw [dual_Ico, dual_Ioc] end lemma exists_Ioc_subset_of_mem_nhds {a : α} {s : set α} (hs : s ∈ 𝓝 a) (h : ∃ l, l < a) : ∃ l < a, Ioc l a ⊆ s := let ⟨l', hl'⟩ := h in let ⟨l, hl⟩ := exists_Ioc_subset_of_mem_nhds' hs hl' in ⟨l, hl.fst.2, hl.snd⟩ lemma exists_Ico_subset_of_mem_nhds {a : α} {s : set α} (hs : s ∈ 𝓝 a) (h : ∃ u, a < u) : ∃ u (_ : a < u), Ico a u ⊆ s := let ⟨l', hl'⟩ := h in let ⟨l, hl⟩ := exists_Ico_subset_of_mem_nhds' hs hl' in ⟨l, hl.fst.1, hl.snd⟩ lemma order_separated {a₁ a₂ : α} (h : a₁ < a₂) : ∃u v : set α, is_open u ∧ is_open v ∧ a₁ ∈ u ∧ a₂ ∈ v ∧ (∀b₁∈u, ∀b₂∈v, b₁ < b₂) := match dense_or_discrete a₁ a₂ with | or.inl ⟨a, ha₁, ha₂⟩ := ⟨{a' | a' < a}, {a' | a < a'}, is_open_gt' a, is_open_lt' a, ha₁, ha₂, assume b₁ h₁ b₂ h₂, lt_trans h₁ h₂⟩ | or.inr ⟨h₁, h₂⟩ := ⟨{a | a < a₂}, {a | a₁ < a}, is_open_gt' a₂, is_open_lt' a₁, h, h, assume b₁ hb₁ b₂ hb₂, calc b₁ ≤ a₁ : h₂ _ hb₁ ... < a₂ : h ... ≤ b₂ : h₁ _ hb₂⟩ end @[priority 100] -- see Note [lower instance priority] instance order_topology.to_order_closed_topology : order_closed_topology α := { is_closed_le' := is_open_prod_iff.mpr $ assume a₁ a₂ (h : ¬ a₁ ≤ a₂), have h : a₂ < a₁, from lt_of_not_ge h, let ⟨u, v, hu, hv, ha₁, ha₂, h⟩ := order_separated h in ⟨v, u, hv, hu, ha₂, ha₁, assume ⟨b₁, b₂⟩ ⟨h₁, h₂⟩, not_le_of_gt $ h b₂ h₂ b₁ h₁⟩ } lemma order_topology.t2_space : t2_space α := by apply_instance @[priority 100] -- see Note [lower instance priority] instance order_topology.regular_space : regular_space α := { regular := assume s a hs ha, have hs' : sᶜ ∈ 𝓝 a, from mem_nhds_sets hs ha, have ∃t:set α, is_open t ∧ (∀l∈ s, l < a → l ∈ t) ∧ 𝓝[t] a = ⊥, from by_cases (assume h : ∃l, l < a, let ⟨l, hl, h⟩ := exists_Ioc_subset_of_mem_nhds hs' h in match dense_or_discrete l a with | or.inl ⟨b, hb₁, hb₂⟩ := ⟨{a | a < b}, is_open_gt' _, assume c hcs hca, show c < b, from lt_of_not_ge $ assume hbc, h ⟨lt_of_lt_of_le hb₁ hbc, le_of_lt hca⟩ hcs, inf_principal_eq_bot $ (𝓝 a).sets_of_superset (mem_nhds_sets (is_open_lt' _) hb₂) $ assume x (hx : b < x), show ¬ x < b, from not_lt.2 $ le_of_lt hx⟩ | or.inr ⟨h₁, h₂⟩ := ⟨{a' | a' < a}, is_open_gt' _, assume b hbs hba, hba, inf_principal_eq_bot $ (𝓝 a).sets_of_superset (mem_nhds_sets (is_open_lt' _) hl) $ assume x (hx : l < x), show ¬ x < a, from not_lt.2 $ h₁ _ hx⟩ end) (assume : ¬ ∃l, l < a, ⟨∅, is_open_empty, assume l _ hl, (this ⟨l, hl⟩).elim, nhds_within_empty _⟩), let ⟨t₁, ht₁o, ht₁s, ht₁a⟩ := this in have ∃t:set α, is_open t ∧ (∀u∈ s, u>a → u ∈ t) ∧ 𝓝[t] a = ⊥, from by_cases (assume h : ∃u, u > a, let ⟨u, hu, h⟩ := exists_Ico_subset_of_mem_nhds hs' h in match dense_or_discrete a u with | or.inl ⟨b, hb₁, hb₂⟩ := ⟨{a | b < a}, is_open_lt' _, assume c hcs hca, show c > b, from lt_of_not_ge $ assume hbc, h ⟨le_of_lt hca, lt_of_le_of_lt hbc hb₂⟩ hcs, inf_principal_eq_bot $ (𝓝 a).sets_of_superset (mem_nhds_sets (is_open_gt' _) hb₁) $ assume x (hx : b > x), show ¬ x > b, from not_lt.2 $ le_of_lt hx⟩ | or.inr ⟨h₁, h₂⟩ := ⟨{a' | a' > a}, is_open_lt' _, assume b hbs hba, hba, inf_principal_eq_bot $ (𝓝 a).sets_of_superset (mem_nhds_sets (is_open_gt' _) hu) $ assume x (hx : u > x), show ¬ x > a, from not_lt.2 $ h₂ _ hx⟩ end) (assume : ¬ ∃u, u > a, ⟨∅, is_open_empty, assume l _ hl, (this ⟨l, hl⟩).elim, nhds_within_empty _⟩), let ⟨t₂, ht₂o, ht₂s, ht₂a⟩ := this in ⟨t₁ ∪ t₂, is_open_union ht₁o ht₂o, assume x hx, have x ≠ a, from assume eq, ha $ eq ▸ hx, (ne_iff_lt_or_gt.mp this).imp (ht₁s _ hx) (ht₂s _ hx), by rw [nhds_within_union, ht₁a, ht₂a, bot_sup_eq]⟩, ..order_topology.t2_space } /-- A set is a neighborhood of `a` if and only if it contains an interval `(l, u)` containing `a`, provided `a` is neither a bottom element nor a top element. -/ lemma mem_nhds_iff_exists_Ioo_subset' {a : α} {s : set α} (hl : ∃ l, l < a) (hu : ∃ u, a < u) : s ∈ 𝓝 a ↔ ∃l u, a ∈ Ioo l u ∧ Ioo l u ⊆ s := begin split, { assume h, rcases exists_Ico_subset_of_mem_nhds h hu with ⟨u, au, hu⟩, rcases exists_Ioc_subset_of_mem_nhds h hl with ⟨l, la, hl⟩, refine ⟨l, u, ⟨la, au⟩, λx hx, _⟩, cases le_total a x with hax hax, { exact hu ⟨hax, hx.2⟩ }, { exact hl ⟨hx.1, hax⟩ } }, { rintros ⟨l, u, ha, h⟩, apply mem_sets_of_superset (mem_nhds_sets is_open_Ioo ha) h } end /-- A set is a neighborhood of `a` if and only if it contains an interval `(l, u)` containing `a`. -/ lemma mem_nhds_iff_exists_Ioo_subset [no_top_order α] [no_bot_order α] {a : α} {s : set α} : s ∈ 𝓝 a ↔ ∃l u, a ∈ Ioo l u ∧ Ioo l u ⊆ s := mem_nhds_iff_exists_Ioo_subset' (no_bot a) (no_top a) lemma nhds_basis_Ioo' {a : α} (hl : ∃l, l < a) (hu : ∃u, a < u) : (𝓝 a).has_basis (λ b : α × α, b.1 < a ∧ a < b.2) (λ b, Ioo b.1 b.2) := ⟨λ s, (mem_nhds_iff_exists_Ioo_subset' hl hu).trans $ by simp⟩ lemma nhds_basis_Ioo [no_top_order α] [no_bot_order α] {a : α} : (𝓝 a).has_basis (λ b : α × α, b.1 < a ∧ a < b.2) (λ b, Ioo b.1 b.2) := nhds_basis_Ioo' (no_bot a) (no_top a) lemma filter.eventually.exists_Ioo_subset [no_top_order α] [no_bot_order α] {a : α} {p : α → Prop} (hp : ∀ᶠ x in 𝓝 a, p x) : ∃ l u, a ∈ Ioo l u ∧ Ioo l u ⊆ {x | p x} := mem_nhds_iff_exists_Ioo_subset.1 hp lemma Iio_mem_nhds {a b : α} (h : a < b) : Iio b ∈ 𝓝 a := mem_nhds_sets is_open_Iio h lemma Ioi_mem_nhds {a b : α} (h : a < b) : Ioi a ∈ 𝓝 b := mem_nhds_sets is_open_Ioi h lemma Iic_mem_nhds {a b : α} (h : a < b) : Iic b ∈ 𝓝 a := mem_sets_of_superset (Iio_mem_nhds h) Iio_subset_Iic_self lemma Ici_mem_nhds {a b : α} (h : a < b) : Ici a ∈ 𝓝 b := mem_sets_of_superset (Ioi_mem_nhds h) Ioi_subset_Ici_self lemma Ioo_mem_nhds {a b x : α} (ha : a < x) (hb : x < b) : Ioo a b ∈ 𝓝 x := mem_nhds_sets is_open_Ioo ⟨ha, hb⟩ lemma Ioc_mem_nhds {a b x : α} (ha : a < x) (hb : x < b) : Ioc a b ∈ 𝓝 x := mem_sets_of_superset (Ioo_mem_nhds ha hb) Ioo_subset_Ioc_self lemma Ico_mem_nhds {a b x : α} (ha : a < x) (hb : x < b) : Ico a b ∈ 𝓝 x := mem_sets_of_superset (Ioo_mem_nhds ha hb) Ioo_subset_Ico_self lemma Icc_mem_nhds {a b x : α} (ha : a < x) (hb : x < b) : Icc a b ∈ 𝓝 x := mem_sets_of_superset (Ioo_mem_nhds ha hb) Ioo_subset_Icc_self section pi /-! ### Intervals in `Π i, π i` belong to `𝓝 x` For each leamma `pi_Ixx_mem_nhds` we add a non-dependent version `pi_Ixx_mem_nhds'` because sometimes Lean fails to unify different instances while trying to apply the dependent version to, e.g., `ι → ℝ`. -/ variables {ι : Type*} {π : ι → Type*} [fintype ι] [Π i, linear_order (π i)] [Π i, topological_space (π i)] [∀ i, order_topology (π i)] {a b x : Π i, π i} {a' b' x' : ι → α} lemma pi_Iic_mem_nhds (ha : ∀ i, x i < a i) : Iic a ∈ 𝓝 x := pi_univ_Iic a ▸ set_pi_mem_nhds (finite.of_fintype _) (λ i _, Iic_mem_nhds (ha _)) lemma pi_Iic_mem_nhds' (ha : ∀ i, x' i < a' i) : Iic a' ∈ 𝓝 x' := pi_Iic_mem_nhds ha lemma pi_Ici_mem_nhds (ha : ∀ i, a i < x i) : Ici a ∈ 𝓝 x := pi_univ_Ici a ▸ set_pi_mem_nhds (finite.of_fintype _) (λ i _, Ici_mem_nhds (ha _)) lemma pi_Ici_mem_nhds' (ha : ∀ i, a' i < x' i) : Ici a' ∈ 𝓝 x' := pi_Ici_mem_nhds ha lemma pi_Icc_mem_nhds (ha : ∀ i, a i < x i) (hb : ∀ i, x i < b i) : Icc a b ∈ 𝓝 x := pi_univ_Icc a b ▸ set_pi_mem_nhds (finite.of_fintype _) (λ i _, Icc_mem_nhds (ha _) (hb _)) lemma pi_Icc_mem_nhds' (ha : ∀ i, a' i < x' i) (hb : ∀ i, x' i < b' i) : Icc a' b' ∈ 𝓝 x' := pi_Icc_mem_nhds ha hb variables [nonempty ι] lemma pi_Iio_mem_nhds (ha : ∀ i, x i < a i) : Iio a ∈ 𝓝 x := begin refine mem_sets_of_superset (set_pi_mem_nhds (finite.of_fintype _) (λ i _, _)) (pi_univ_Iio_subset a), exact Iio_mem_nhds (ha i) end lemma pi_Iio_mem_nhds' (ha : ∀ i, x' i < a' i) : Iio a' ∈ 𝓝 x' := pi_Iio_mem_nhds ha lemma pi_Ioi_mem_nhds (ha : ∀ i, a i < x i) : Ioi a ∈ 𝓝 x := @pi_Iio_mem_nhds ι (λ i, order_dual (π i)) _ _ _ _ _ _ _ ha lemma pi_Ioi_mem_nhds' (ha : ∀ i, a' i < x' i) : Ioi a' ∈ 𝓝 x' := pi_Ioi_mem_nhds ha lemma pi_Ioc_mem_nhds (ha : ∀ i, a i < x i) (hb : ∀ i, x i < b i) : Ioc a b ∈ 𝓝 x := begin refine mem_sets_of_superset (set_pi_mem_nhds (finite.of_fintype _) (λ i _, _)) (pi_univ_Ioc_subset a b), exact Ioc_mem_nhds (ha i) (hb i) end lemma pi_Ioc_mem_nhds' (ha : ∀ i, a' i < x' i) (hb : ∀ i, x' i < b' i) : Ioc a' b' ∈ 𝓝 x' := pi_Ioc_mem_nhds ha hb lemma pi_Ico_mem_nhds (ha : ∀ i, a i < x i) (hb : ∀ i, x i < b i) : Ico a b ∈ 𝓝 x := begin refine mem_sets_of_superset (set_pi_mem_nhds (finite.of_fintype _) (λ i _, _)) (pi_univ_Ico_subset a b), exact Ico_mem_nhds (ha i) (hb i) end lemma pi_Ico_mem_nhds' (ha : ∀ i, a' i < x' i) (hb : ∀ i, x' i < b' i) : Ico a' b' ∈ 𝓝 x' := pi_Ico_mem_nhds ha hb lemma pi_Ioo_mem_nhds (ha : ∀ i, a i < x i) (hb : ∀ i, x i < b i) : Ioo a b ∈ 𝓝 x := begin refine mem_sets_of_superset (set_pi_mem_nhds (finite.of_fintype _) (λ i _, _)) (pi_univ_Ioo_subset a b), exact Ioo_mem_nhds (ha i) (hb i) end lemma pi_Ioo_mem_nhds' (ha : ∀ i, a' i < x' i) (hb : ∀ i, x' i < b' i) : Ioo a' b' ∈ 𝓝 x' := pi_Ioo_mem_nhds ha hb end pi lemma disjoint_nhds_at_top [no_top_order α] (x : α) : disjoint (𝓝 x) at_top := begin rw filter.disjoint_iff, cases no_top x with a ha, use [Iio a, Iio_mem_nhds ha, Ici a, mem_at_top a], rw [inter_comm, Ici_inter_Iio, Ico_self] end @[simp] lemma inf_nhds_at_top [no_top_order α] (x : α) : 𝓝 x ⊓ at_top = ⊥ := disjoint_iff.1 (disjoint_nhds_at_top x) lemma disjoint_nhds_at_bot [no_bot_order α] (x : α) : disjoint (𝓝 x) at_bot := @disjoint_nhds_at_top (order_dual α) _ _ _ _ x @[simp] lemma inf_nhds_at_bot [no_bot_order α] (x : α) : 𝓝 x ⊓ at_bot = ⊥ := @inf_nhds_at_top (order_dual α) _ _ _ _ x lemma not_tendsto_nhds_of_tendsto_at_top [no_top_order α] {F : filter β} [ne_bot F] {f : β → α} (hf : tendsto f F at_top) (x : α) : ¬ tendsto f F (𝓝 x) := hf.not_tendsto (disjoint_nhds_at_top x).symm lemma not_tendsto_at_top_of_tendsto_nhds [no_top_order α] {F : filter β} [ne_bot F] {f : β → α} {x : α} (hf : tendsto f F (𝓝 x)) : ¬ tendsto f F at_top := hf.not_tendsto (disjoint_nhds_at_top x) lemma not_tendsto_nhds_of_tendsto_at_bot [no_bot_order α] {F : filter β} [ne_bot F] {f : β → α} (hf : tendsto f F at_bot) (x : α) : ¬ tendsto f F (𝓝 x) := hf.not_tendsto (disjoint_nhds_at_bot x).symm lemma not_tendsto_at_bot_of_tendsto_nhds [no_bot_order α] {F : filter β} [ne_bot F] {f : β → α} {x : α} (hf : tendsto f F (𝓝 x)) : ¬ tendsto f F at_bot := hf.not_tendsto (disjoint_nhds_at_bot x) /-! ### Neighborhoods to the left and to the right on an `order_topology` We've seen some properties of left and right neighborhood of a point in an `order_closed_topology`. In an `order_topology`, such neighborhoods can be characterized as the sets containing suitable intervals to the right or to the left of `a`. We give now these characterizations. -/ -- NB: If you extend the list, append to the end please to avoid breaking the API /-- The following statements are equivalent: 0. `s` is a neighborhood of `a` within `(a, +∞)` 1. `s` is a neighborhood of `a` within `(a, b]` 2. `s` is a neighborhood of `a` within `(a, b)` 3. `s` includes `(a, u)` for some `u ∈ (a, b]` 4. `s` includes `(a, u)` for some `u > a` -/ lemma tfae_mem_nhds_within_Ioi {a b : α} (hab : a < b) (s : set α) : tfae [s ∈ 𝓝[Ioi a] a, -- 0 : `s` is a neighborhood of `a` within `(a, +∞)` s ∈ 𝓝[Ioc a b] a, -- 1 : `s` is a neighborhood of `a` within `(a, b]` s ∈ 𝓝[Ioo a b] a, -- 2 : `s` is a neighborhood of `a` within `(a, b)` ∃ u ∈ Ioc a b, Ioo a u ⊆ s, -- 3 : `s` includes `(a, u)` for some `u ∈ (a, b]` ∃ u ∈ Ioi a, Ioo a u ⊆ s] := -- 4 : `s` includes `(a, u)` for some `u > a` begin tfae_have : 1 ↔ 2, by rw [nhds_within_Ioc_eq_nhds_within_Ioi hab], tfae_have : 1 ↔ 3, by rw [nhds_within_Ioo_eq_nhds_within_Ioi hab], tfae_have : 4 → 5, from λ ⟨u, umem, hu⟩, ⟨u, umem.1, hu⟩, tfae_have : 5 → 1, { rintros ⟨u, hau, hu⟩, exact mem_sets_of_superset (Ioo_mem_nhds_within_Ioi ⟨le_refl a, hau⟩) hu }, tfae_have : 1 → 4, { assume h, rcases mem_nhds_within_iff_exists_mem_nhds_inter.1 h with ⟨v, va, hv⟩, rcases exists_Ico_subset_of_mem_nhds' va hab with ⟨u, au, hu⟩, refine ⟨u, au, λx hx, _⟩, refine hv ⟨hu ⟨le_of_lt hx.1, hx.2⟩, _⟩, exact hx.1 }, tfae_finish end lemma mem_nhds_within_Ioi_iff_exists_mem_Ioc_Ioo_subset {a u' : α} {s : set α} (hu' : a < u') : s ∈ 𝓝[Ioi a] a ↔ ∃u ∈ Ioc a u', Ioo a u ⊆ s := (tfae_mem_nhds_within_Ioi hu' s).out 0 3 /-- A set is a neighborhood of `a` within `(a, +∞)` if and only if it contains an interval `(a, u)` with `a < u < u'`, provided `a` is not a top element. -/ lemma mem_nhds_within_Ioi_iff_exists_Ioo_subset' {a u' : α} {s : set α} (hu' : a < u') : s ∈ 𝓝[Ioi a] a ↔ ∃u ∈ Ioi a, Ioo a u ⊆ s := (tfae_mem_nhds_within_Ioi hu' s).out 0 4 /-- A set is a neighborhood of `a` within `(a, +∞)` if and only if it contains an interval `(a, u)` with `a < u`. -/ lemma mem_nhds_within_Ioi_iff_exists_Ioo_subset [no_top_order α] {a : α} {s : set α} : s ∈ 𝓝[Ioi a] a ↔ ∃u ∈ Ioi a, Ioo a u ⊆ s := let ⟨u', hu'⟩ := no_top a in mem_nhds_within_Ioi_iff_exists_Ioo_subset' hu' /-- A set is a neighborhood of `a` within `(a, +∞)` if and only if it contains an interval `(a, u]` with `a < u`. -/ lemma mem_nhds_within_Ioi_iff_exists_Ioc_subset [no_top_order α] [densely_ordered α] {a : α} {s : set α} : s ∈ 𝓝[Ioi a] a ↔ ∃u ∈ Ioi a, Ioc a u ⊆ s := begin rw mem_nhds_within_Ioi_iff_exists_Ioo_subset, split, { rintros ⟨u, au, as⟩, rcases exists_between au with ⟨v, hv⟩, exact ⟨v, hv.1, λx hx, as ⟨hx.1, lt_of_le_of_lt hx.2 hv.2⟩⟩ }, { rintros ⟨u, au, as⟩, exact ⟨u, au, subset.trans Ioo_subset_Ioc_self as⟩ } end /-- The following statements are equivalent: 0. `s` is a neighborhood of `b` within `(-∞, b)` 1. `s` is a neighborhood of `b` within `[a, b)` 2. `s` is a neighborhood of `b` within `(a, b)` 3. `s` includes `(l, b)` for some `l ∈ [a, b)` 4. `s` includes `(l, b)` for some `l < b` -/ lemma tfae_mem_nhds_within_Iio {a b : α} (h : a < b) (s : set α) : tfae [s ∈ 𝓝[Iio b] b, -- 0 : `s` is a neighborhood of `b` within `(-∞, b)` s ∈ 𝓝[Ico a b] b, -- 1 : `s` is a neighborhood of `b` within `[a, b)` s ∈ 𝓝[Ioo a b] b, -- 2 : `s` is a neighborhood of `b` within `(a, b)` ∃ l ∈ Ico a b, Ioo l b ⊆ s, -- 3 : `s` includes `(l, b)` for some `l ∈ [a, b)` ∃ l ∈ Iio b, Ioo l b ⊆ s] := -- 4 : `s` includes `(l, b)` for some `l < b` begin have := @tfae_mem_nhds_within_Ioi (order_dual α) _ _ _ _ _ h s, -- If we call `convert` here, it generates wrong equations, so we need to simplify first simp only [exists_prop] at this ⊢, rw [dual_Ioi, dual_Ioc, dual_Ioo] at this, convert this; ext l; rw [dual_Ioo] end lemma mem_nhds_within_Iio_iff_exists_mem_Ico_Ioo_subset {a l' : α} {s : set α} (hl' : l' < a) : s ∈ 𝓝[Iio a] a ↔ ∃l ∈ Ico l' a, Ioo l a ⊆ s := (tfae_mem_nhds_within_Iio hl' s).out 0 3 /-- A set is a neighborhood of `a` within `(-∞, a)` if and only if it contains an interval `(l, a)` with `l < a`, provided `a` is not a bottom element. -/ lemma mem_nhds_within_Iio_iff_exists_Ioo_subset' {a l' : α} {s : set α} (hl' : l' < a) : s ∈ 𝓝[Iio a] a ↔ ∃l ∈ Iio a, Ioo l a ⊆ s := (tfae_mem_nhds_within_Iio hl' s).out 0 4 /-- A set is a neighborhood of `a` within `(-∞, a)` if and only if it contains an interval `(l, a)` with `l < a`. -/ lemma mem_nhds_within_Iio_iff_exists_Ioo_subset [no_bot_order α] {a : α} {s : set α} : s ∈ 𝓝[Iio a] a ↔ ∃l ∈ Iio a, Ioo l a ⊆ s := let ⟨l', hl'⟩ := no_bot a in mem_nhds_within_Iio_iff_exists_Ioo_subset' hl' /-- A set is a neighborhood of `a` within `(-∞, a)` if and only if it contains an interval `[l, a)` with `l < a`. -/ lemma mem_nhds_within_Iio_iff_exists_Ico_subset [no_bot_order α] [densely_ordered α] {a : α} {s : set α} : s ∈ 𝓝[Iio a] a ↔ ∃l ∈ Iio a, Ico l a ⊆ s := begin convert @mem_nhds_within_Ioi_iff_exists_Ioc_subset (order_dual α) _ _ _ _ _ _ _, simp only [dual_Ioc], refl end /-- The following statements are equivalent: 0. `s` is a neighborhood of `a` within `[a, +∞)` 1. `s` is a neighborhood of `a` within `[a, b]` 2. `s` is a neighborhood of `a` within `[a, b)` 3. `s` includes `[a, u)` for some `u ∈ (a, b]` 4. `s` includes `[a, u)` for some `u > a` -/ lemma tfae_mem_nhds_within_Ici {a b : α} (hab : a < b) (s : set α) : tfae [s ∈ 𝓝[Ici a] a, -- 0 : `s` is a neighborhood of `a` within `[a, +∞)` s ∈ 𝓝[Icc a b] a, -- 1 : `s` is a neighborhood of `a` within `[a, b]` s ∈ 𝓝[Ico a b] a, -- 2 : `s` is a neighborhood of `a` within `[a, b)` ∃ u ∈ Ioc a b, Ico a u ⊆ s, -- 3 : `s` includes `[a, u)` for some `u ∈ (a, b]` ∃ u ∈ Ioi a, Ico a u ⊆ s] := -- 4 : `s` includes `[a, u)` for some `u > a` begin tfae_have : 1 ↔ 2, by rw [nhds_within_Icc_eq_nhds_within_Ici hab], tfae_have : 1 ↔ 3, by rw [nhds_within_Ico_eq_nhds_within_Ici hab], tfae_have : 4 → 5, from λ ⟨u, umem, hu⟩, ⟨u, umem.1, hu⟩, tfae_have : 5 → 1, { rintros ⟨u, hau, hu⟩, exact mem_sets_of_superset (Ico_mem_nhds_within_Ici ⟨le_refl a, hau⟩) hu }, tfae_have : 1 → 4, { assume h, rcases mem_nhds_within_iff_exists_mem_nhds_inter.1 h with ⟨v, va, hv⟩, rcases exists_Ico_subset_of_mem_nhds' va hab with ⟨u, au, hu⟩, refine ⟨u, au, λx hx, _⟩, refine hv ⟨hu ⟨hx.1, hx.2⟩, _⟩, exact hx.1 }, tfae_finish end lemma mem_nhds_within_Ici_iff_exists_mem_Ioc_Ico_subset {a u' : α} {s : set α} (hu' : a < u') : s ∈ 𝓝[Ici a] a ↔ ∃u ∈ Ioc a u', Ico a u ⊆ s := (tfae_mem_nhds_within_Ici hu' s).out 0 3 (by norm_num) (by norm_num) /-- A set is a neighborhood of `a` within `[a, +∞)` if and only if it contains an interval `[a, u)` with `a < u < u'`, provided `a` is not a top element. -/ lemma mem_nhds_within_Ici_iff_exists_Ico_subset' {a u' : α} {s : set α} (hu' : a < u') : s ∈ 𝓝[Ici a] a ↔ ∃u ∈ Ioi a, Ico a u ⊆ s := (tfae_mem_nhds_within_Ici hu' s).out 0 4 (by norm_num) (by norm_num) /-- A set is a neighborhood of `a` within `[a, +∞)` if and only if it contains an interval `[a, u)` with `a < u`. -/ lemma mem_nhds_within_Ici_iff_exists_Ico_subset [no_top_order α] {a : α} {s : set α} : s ∈ 𝓝[Ici a] a ↔ ∃u ∈ Ioi a, Ico a u ⊆ s := let ⟨u', hu'⟩ := no_top a in mem_nhds_within_Ici_iff_exists_Ico_subset' hu' /-- A set is a neighborhood of `a` within `[a, +∞)` if and only if it contains an interval `[a, u]` with `a < u`. -/ lemma mem_nhds_within_Ici_iff_exists_Icc_subset' [no_top_order α] [densely_ordered α] {a : α} {s : set α} : s ∈ 𝓝[Ici a] a ↔ ∃u ∈ Ioi a, Icc a u ⊆ s := begin rw mem_nhds_within_Ici_iff_exists_Ico_subset, split, { rintros ⟨u, au, as⟩, rcases exists_between au with ⟨v, hv⟩, exact ⟨v, hv.1, λx hx, as ⟨hx.1, lt_of_le_of_lt hx.2 hv.2⟩⟩ }, { rintros ⟨u, au, as⟩, exact ⟨u, au, subset.trans Ico_subset_Icc_self as⟩ } end /-- The following statements are equivalent: 0. `s` is a neighborhood of `b` within `(-∞, b]` 1. `s` is a neighborhood of `b` within `[a, b]` 2. `s` is a neighborhood of `b` within `(a, b]` 3. `s` includes `(l, b]` for some `l ∈ [a, b)` 4. `s` includes `(l, b]` for some `l < b` -/ lemma tfae_mem_nhds_within_Iic {a b : α} (h : a < b) (s : set α) : tfae [s ∈ 𝓝[Iic b] b, -- 0 : `s` is a neighborhood of `b` within `(-∞, b]` s ∈ 𝓝[Icc a b] b, -- 1 : `s` is a neighborhood of `b` within `[a, b]` s ∈ 𝓝[Ioc a b] b, -- 2 : `s` is a neighborhood of `b` within `(a, b]` ∃ l ∈ Ico a b, Ioc l b ⊆ s, -- 3 : `s` includes `(l, b]` for some `l ∈ [a, b)` ∃ l ∈ Iio b, Ioc l b ⊆ s] := -- 4 : `s` includes `(l, b]` for some `l < b` begin have := @tfae_mem_nhds_within_Ici (order_dual α) _ _ _ _ _ h s, -- If we call `convert` here, it generates wrong equations, so we need to simplify first simp only [exists_prop] at this ⊢, rw [dual_Icc, dual_Ioc, dual_Ioi] at this, convert this; ext l; rw [dual_Ico] end lemma mem_nhds_within_Iic_iff_exists_mem_Ico_Ioc_subset {a l' : α} {s : set α} (hl' : l' < a) : s ∈ 𝓝[Iic a] a ↔ ∃l ∈ Ico l' a, Ioc l a ⊆ s := (tfae_mem_nhds_within_Iic hl' s).out 0 3 (by norm_num) (by norm_num) /-- A set is a neighborhood of `a` within `(-∞, a]` if and only if it contains an interval `(l, a]` with `l < a`, provided `a` is not a bottom element. -/ lemma mem_nhds_within_Iic_iff_exists_Ioc_subset' {a l' : α} {s : set α} (hl' : l' < a) : s ∈ 𝓝[Iic a] a ↔ ∃l ∈ Iio a, Ioc l a ⊆ s := (tfae_mem_nhds_within_Iic hl' s).out 0 4 (by norm_num) (by norm_num) /-- A set is a neighborhood of `a` within `(-∞, a]` if and only if it contains an interval `(l, a]` with `l < a`. -/ lemma mem_nhds_within_Iic_iff_exists_Ioc_subset [no_bot_order α] {a : α} {s : set α} : s ∈ 𝓝[Iic a] a ↔ ∃l ∈ Iio a, Ioc l a ⊆ s := let ⟨l', hl'⟩ := no_bot a in mem_nhds_within_Iic_iff_exists_Ioc_subset' hl' /-- A set is a neighborhood of `a` within `(-∞, a]` if and only if it contains an interval `[l, a]` with `l < a`. -/ lemma mem_nhds_within_Iic_iff_exists_Icc_subset' [no_bot_order α] [densely_ordered α] {a : α} {s : set α} : s ∈ 𝓝[Iic a] a ↔ ∃l ∈ Iio a, Icc l a ⊆ s := begin convert @mem_nhds_within_Ici_iff_exists_Icc_subset' (order_dual α) _ _ _ _ _ _ _, simp_rw (show ∀ u : order_dual α, @Icc (order_dual α) _ a u = @Icc α _ u a, from λ u, dual_Icc), refl, end /-- A set is a neighborhood of `a` within `[a, +∞)` if and only if it contains an interval `[a, u]` with `a < u`. -/ lemma mem_nhds_within_Ici_iff_exists_Icc_subset [no_top_order α] [densely_ordered α] {a : α} {s : set α} : s ∈ 𝓝[Ici a] a ↔ ∃u, a < u ∧ Icc a u ⊆ s := begin rw mem_nhds_within_Ici_iff_exists_Ico_subset, split, { rintros ⟨u, au, as⟩, rcases exists_between au with ⟨v, hv⟩, exact ⟨v, hv.1, λx hx, as ⟨hx.1, lt_of_le_of_lt hx.2 hv.2⟩⟩ }, { rintros ⟨u, au, as⟩, exact ⟨u, au, subset.trans Ico_subset_Icc_self as⟩ } end /-- A set is a neighborhood of `a` within `(-∞, a]` if and only if it contains an interval `[l, a]` with `l < a`. -/ lemma mem_nhds_within_Iic_iff_exists_Icc_subset [no_bot_order α] [densely_ordered α] {a : α} {s : set α} : s ∈ 𝓝[Iic a] a ↔ ∃l, l < a ∧ Icc l a ⊆ s := begin rw mem_nhds_within_Iic_iff_exists_Ioc_subset, split, { rintros ⟨l, la, as⟩, rcases exists_between la with ⟨v, hv⟩, refine ⟨v, hv.2, λx hx, as ⟨lt_of_lt_of_le hv.1 hx.1, hx.2⟩⟩, }, { rintros ⟨l, la, as⟩, exact ⟨l, la, subset.trans Ioc_subset_Icc_self as⟩ } end end linear_order section linear_ordered_add_comm_group variables [topological_space α] [linear_ordered_add_comm_group α] [order_topology α] variables {l : filter β} {f g : β → α} local notation `|` x `|` := abs x lemma nhds_eq_infi_abs_sub (a : α) : 𝓝 a = (⨅r>0, 𝓟 {b | |a - b| < r}) := begin simp only [le_antisymm_iff, nhds_eq_order, le_inf_iff, le_infi_iff, le_principal_iff, mem_Ioi, mem_Iio, abs_sub_lt_iff, @sub_lt_iff_lt_add _ _ _ _ a, @sub_lt _ _ a, set_of_and], refine ⟨_, _, _⟩, { intros ε ε0, exact inter_mem_inf_sets (mem_infi_sets (a - ε) $ mem_infi_sets (sub_lt_self a ε0) (mem_principal_self _)) (mem_infi_sets (ε + a) $ mem_infi_sets (by simpa) (mem_principal_self _)) }, { intros b hb, exact mem_infi_sets (a - b) (mem_infi_sets (sub_pos.2 hb) (by simp [Ioi])) }, { intros b hb, exact mem_infi_sets (b - a) (mem_infi_sets (sub_pos.2 hb) (by simp [Iio])) } end lemma order_topology_of_nhds_abs {α : Type*} [topological_space α] [linear_ordered_add_comm_group α] (h_nhds : ∀a:α, 𝓝 a = (⨅r>0, 𝓟 {b | |a - b| < r})) : order_topology α := begin refine ⟨eq_of_nhds_eq_nhds $ λ a, _⟩, rw [h_nhds], letI := preorder.topology α, letI : order_topology α := ⟨rfl⟩, exact (nhds_eq_infi_abs_sub a).symm end lemma linear_ordered_add_comm_group.tendsto_nhds {x : filter β} {a : α} : tendsto f x (𝓝 a) ↔ ∀ ε > (0 : α), ∀ᶠ b in x, |f b - a| < ε := by simp [nhds_eq_infi_abs_sub, abs_sub a] lemma eventually_abs_sub_lt (a : α) {ε : α} (hε : 0 < ε) : ∀ᶠ x in 𝓝 a, |x - a| < ε := (nhds_eq_infi_abs_sub a).symm ▸ mem_infi_sets ε (mem_infi_sets hε $ by simp only [abs_sub, mem_principal_self]) @[priority 100] -- see Note [lower instance priority] instance linear_ordered_add_comm_group.topological_add_group : topological_add_group α := { continuous_add := begin refine continuous_iff_continuous_at.2 _, rintro ⟨a, b⟩, refine linear_ordered_add_comm_group.tendsto_nhds.2 (λ ε ε0, _), rcases dense_or_discrete 0 ε with (⟨δ, δ0, δε⟩|⟨h₁, h₂⟩), { -- If there exists `δ ∈ (0, ε)`, then we choose `δ`-nhd of `a` and `(ε-δ)`-nhd of `b` filter_upwards [prod_mem_nhds_sets (eventually_abs_sub_lt a δ0) (eventually_abs_sub_lt b (sub_pos.2 δε))], rintros ⟨x, y⟩ ⟨hx : |x - a| < δ, hy : |y - b| < ε - δ⟩, rw [add_sub_comm], calc |x - a + (y - b)| ≤ |x - a| + |y - b| : abs_add _ _ ... < δ + (ε - δ) : add_lt_add hx hy ... = ε : add_sub_cancel'_right _ _ }, { -- Otherewise `ε`-nhd of each point `a` is `{a}` have hε : ∀ {x y}, abs (x - y) < ε → x = y, { intros x y h, simpa [sub_eq_zero] using h₂ _ h }, filter_upwards [prod_mem_nhds_sets (eventually_abs_sub_lt a ε0) (eventually_abs_sub_lt b ε0)], rintros ⟨x, y⟩ ⟨hx : |x - a| < ε, hy : |y - b| < ε⟩, simpa [hε hx, hε hy] } end, continuous_neg := continuous_iff_continuous_at.2 $ λ a, linear_ordered_add_comm_group.tendsto_nhds.2 $ λ ε ε0, (eventually_abs_sub_lt a ε0).mono $ λ x hx, by rwa [neg_sub_neg, abs_sub] } @[continuity] lemma continuous_abs : continuous (abs : α → α) := continuous_id.max continuous_neg lemma filter.tendsto.abs {f : β → α} {a : α} {l : filter β} (h : tendsto f l (𝓝 a)) : tendsto (λ x, |f x|) l (𝓝 (|a|)) := (continuous_abs.tendsto _).comp h section variables [topological_space β] {b : β} {a : α} {s : set β} lemma continuous.abs (h : continuous f) : continuous (λ x, |f x|) := continuous_abs.comp h lemma continuous_at.abs (h : continuous_at f b) : continuous_at (λ x, |f x|) b := h.abs lemma continuous_within_at.abs (h : continuous_within_at f s b) : continuous_within_at (λ x, |f x|) s b := h.abs lemma continuous_on.abs (h : continuous_on f s) : continuous_on (λ x, |f x|) s := λ x hx, (h x hx).abs lemma tendsto_abs_nhds_within_zero : tendsto (abs : α → α) (𝓝[{0}ᶜ] 0) (𝓝[Ioi 0] 0) := (continuous_abs.tendsto' (0 : α) 0 abs_zero).inf $ tendsto_principal_principal.2 $ λ x, abs_pos.2 end /-- In a linearly ordered additive commutative group with the order topology, if `f` tends to `C` and `g` tends to `at_top` then `f + g` tends to `at_top`. -/ lemma filter.tendsto.add_at_top {C : α} (hf : tendsto f l (𝓝 C)) (hg : tendsto g l at_top) : tendsto (λ x, f x + g x) l at_top := begin nontriviality α, obtain ⟨C', hC'⟩ : ∃ C', C' < C := no_bot C, refine tendsto_at_top_add_left_of_le' _ C' _ hg, exact (hf.eventually (lt_mem_nhds hC')).mono (λ x, le_of_lt) end /-- In a linearly ordered additive commutative group with the order topology, if `f` tends to `C` and `g` tends to `at_bot` then `f + g` tends to `at_bot`. -/ lemma filter.tendsto.add_at_bot {C : α} (hf : tendsto f l (𝓝 C)) (hg : tendsto g l at_bot) : tendsto (λ x, f x + g x) l at_bot := @filter.tendsto.add_at_top (order_dual α) _ _ _ _ _ _ _ _ hf hg /-- In a linearly ordered additive commutative group with the order topology, if `f` tends to `at_top` and `g` tends to `C` then `f + g` tends to `at_top`. -/ lemma filter.tendsto.at_top_add {C : α} (hf : tendsto f l at_top) (hg : tendsto g l (𝓝 C)) : tendsto (λ x, f x + g x) l at_top := by { conv in (_ + _) { rw add_comm }, exact hg.add_at_top hf } /-- In a linearly ordered additive commutative group with the order topology, if `f` tends to `at_bot` and `g` tends to `C` then `f + g` tends to `at_bot`. -/ lemma filter.tendsto.at_bot_add {C : α} (hf : tendsto f l at_bot) (hg : tendsto g l (𝓝 C)) : tendsto (λ x, f x + g x) l at_bot := by { conv in (_ + _) { rw add_comm }, exact hg.add_at_bot hf } end linear_ordered_add_comm_group section linear_ordered_field variables [linear_ordered_field α] [topological_space α] [order_topology α] variables {l : filter β} {f g : β → α} /-- In a linearly ordered field with the order topology, if `f` tends to `at_top` and `g` tends to a positive constant `C` then `f * g` tends to `at_top`. -/ lemma filter.tendsto.at_top_mul {C : α} (hC : 0 < C) (hf : tendsto f l at_top) (hg : tendsto g l (𝓝 C)) : tendsto (λ x, (f x * g x)) l at_top := begin refine tendsto_at_top_mono' _ _ (hf.at_top_mul_const (half_pos hC)), filter_upwards [hg.eventually (lt_mem_nhds (half_lt_self hC)), hf.eventually (eventually_ge_at_top 0)], exact λ x hg hf, mul_le_mul_of_nonneg_left hg.le hf end /-- In a linearly ordered field with the order topology, if `f` tends to a positive constant `C` and `g` tends to `at_top` then `f * g` tends to `at_top`. -/ lemma filter.tendsto.mul_at_top {C : α} (hC : 0 < C) (hf : tendsto f l (𝓝 C)) (hg : tendsto g l at_top) : tendsto (λ x, (f x * g x)) l at_top := by simpa only [mul_comm] using hg.at_top_mul hC hf /-- In a linearly ordered field with the order topology, if `f` tends to `at_top` and `g` tends to a negative constant `C` then `f * g` tends to `at_bot`. -/ lemma filter.tendsto.at_top_mul_neg {C : α} (hC : C < 0) (hf : tendsto f l at_top) (hg : tendsto g l (𝓝 C)) : tendsto (λ x, (f x * g x)) l at_bot := by simpa only [(∘), neg_mul_eq_mul_neg, neg_neg] using tendsto_neg_at_top_at_bot.comp (hf.at_top_mul (neg_pos.2 hC) hg.neg) /-- In a linearly ordered field with the order topology, if `f` tends to a negative constant `C` and `g` tends to `at_top` then `f * g` tends to `at_bot`. -/ lemma filter.tendsto.neg_mul_at_top {C : α} (hC : C < 0) (hf : tendsto f l (𝓝 C)) (hg : tendsto g l at_top) : tendsto (λ x, (f x * g x)) l at_bot := by simpa only [mul_comm] using hg.at_top_mul_neg hC hf /-- In a linearly ordered field with the order topology, if `f` tends to `at_bot` and `g` tends to a positive constant `C` then `f * g` tends to `at_bot`. -/ lemma filter.tendsto.at_bot_mul {C : α} (hC : 0 < C) (hf : tendsto f l at_bot) (hg : tendsto g l (𝓝 C)) : tendsto (λ x, (f x * g x)) l at_bot := by simpa [(∘)] using tendsto_neg_at_top_at_bot.comp ((tendsto_neg_at_bot_at_top.comp hf).at_top_mul hC hg) /-- In a linearly ordered field with the order topology, if `f` tends to `at_bot` and `g` tends to a negative constant `C` then `f * g` tends to `at_top`. -/ lemma filter.tendsto.at_bot_mul_neg {C : α} (hC : C < 0) (hf : tendsto f l at_bot) (hg : tendsto g l (𝓝 C)) : tendsto (λ x, (f x * g x)) l at_top := by simpa [(∘)] using tendsto_neg_at_bot_at_top.comp ((tendsto_neg_at_bot_at_top.comp hf).at_top_mul_neg hC hg) /-- In a linearly ordered field with the order topology, if `f` tends to a positive constant `C` and `g` tends to `at_bot` then `f * g` tends to `at_bot`. -/ lemma filter.tendsto.mul_at_bot {C : α} (hC : 0 < C) (hf : tendsto f l (𝓝 C)) (hg : tendsto g l at_bot) : tendsto (λ x, (f x * g x)) l at_bot := by simpa only [mul_comm] using hg.at_bot_mul hC hf /-- In a linearly ordered field with the order topology, if `f` tends to a negative constant `C` and `g` tends to `at_bot` then `f * g` tends to `at_top`. -/ lemma filter.tendsto.neg_mul_at_bot {C : α} (hC : C < 0) (hf : tendsto f l (𝓝 C)) (hg : tendsto g l at_bot) : tendsto (λ x, (f x * g x)) l at_top := by simpa only [mul_comm] using hg.at_bot_mul_neg hC hf /-- The function `x ↦ x⁻¹` tends to `+∞` on the right of `0`. -/ lemma tendsto_inv_zero_at_top : tendsto (λx:α, x⁻¹) (𝓝[set.Ioi (0:α)] 0) at_top := begin refine (at_top_basis' 1).tendsto_right_iff.2 (λ b hb, _), have hb' : 0 < b := zero_lt_one.trans_le hb, filter_upwards [Ioc_mem_nhds_within_Ioi ⟨le_rfl, inv_pos.2 hb'⟩], exact λ x hx, (le_inv hx.1 hb').1 hx.2 end /-- The function `r ↦ r⁻¹` tends to `0` on the right as `r → +∞`. -/ lemma tendsto_inv_at_top_zero' : tendsto (λr:α, r⁻¹) at_top (𝓝[set.Ioi (0:α)] 0) := begin refine (has_basis.tendsto_iff at_top_basis ⟨λ s, mem_nhds_within_Ioi_iff_exists_Ioc_subset⟩).2 _, refine λ b hb, ⟨b⁻¹, trivial, λ x hx, _⟩, have : 0 < x := lt_of_lt_of_le (inv_pos.2 hb) hx, exact ⟨inv_pos.2 this, (inv_le this hb).2 hx⟩ end lemma tendsto_inv_at_top_zero : tendsto (λr:α, r⁻¹) at_top (𝓝 0) := tendsto_inv_at_top_zero'.mono_right inf_le_left lemma filter.tendsto.div_at_top [has_continuous_mul α] {f g : β → α} {l : filter β} {a : α} (h : tendsto f l (𝓝 a)) (hg : tendsto g l at_top) : tendsto (λ x, f x / g x) l (𝓝 0) := by { simp only [div_eq_mul_inv], exact mul_zero a ▸ h.mul (tendsto_inv_at_top_zero.comp hg) } lemma tendsto.inv_tendsto_at_top (h : tendsto f l at_top) : tendsto (f⁻¹) l (𝓝 0) := tendsto_inv_at_top_zero.comp h lemma tendsto.inv_tendsto_zero (h : tendsto f l (𝓝[set.Ioi 0] 0)) : tendsto (f⁻¹) l at_top := tendsto_inv_zero_at_top.comp h /-- The function `x^(-n)` tends to `0` at `+∞` for any positive natural `n`. A version for positive real powers exists as `tendsto_rpow_neg_at_top`. -/ lemma tendsto_pow_neg_at_top {n : ℕ} (hn : 1 ≤ n) : tendsto (λ x : α, x ^ (-(n:ℤ))) at_top (𝓝 0) := tendsto.congr (λ x, (fpow_neg x n).symm) (tendsto.inv_tendsto_at_top (tendsto_pow_at_top hn)) lemma tendsto_fpow_at_top_zero {n : ℤ} (hn : n < 0) : tendsto (λ x : α, x^n) at_top (𝓝 0) := begin have : 1 ≤ -n, by linarith, apply tendsto.congr (show ∀ x : α, x^-(-n) = x^n, by simp), lift -n to ℕ using le_of_lt (neg_pos.mpr hn) with N, exact tendsto_pow_neg_at_top (by exact_mod_cast this) end end linear_ordered_field lemma preimage_neg [add_group α] : preimage (has_neg.neg : α → α) = image (has_neg.neg : α → α) := (image_eq_preimage_of_inverse neg_neg neg_neg).symm lemma filter.map_neg [add_group α] : map (has_neg.neg : α → α) = comap (has_neg.neg : α → α) := funext $ assume f, map_eq_comap_of_inverse (funext neg_neg) (funext neg_neg) section order_topology variables [topological_space α] [topological_space β] [linear_order α] [linear_order β] [order_topology α] [order_topology β] lemma is_lub.nhds_within_ne_bot {a : α} {s : set α} (ha : is_lub s a) (hs : s.nonempty) : ne_bot (𝓝[s] a) := let ⟨a', ha'⟩ := hs in forall_sets_nonempty_iff_ne_bot.mp $ assume t ht, let ⟨t₁, ht₁, t₂, ht₂, ht⟩ := mem_inf_sets.mp ht in by_cases (assume h : a = a', have a ∈ t₁, from mem_of_nhds ht₁, have a ∈ t₂, from ht₂ $ by rwa [h], ⟨a, ht ⟨‹a ∈ t₁›, ‹a ∈ t₂›⟩⟩) (assume : a ≠ a', have a' < a, from lt_of_le_of_ne (ha.left ‹a' ∈ s›) this.symm, let ⟨l, hl, hlt₁⟩ := exists_Ioc_subset_of_mem_nhds ht₁ ⟨a', this⟩ in have ∃a'∈s, l < a', from classical.by_contradiction $ assume : ¬ ∃a'∈s, l < a', have ∀a'∈s, a' ≤ l, from assume a ha, not_lt.1 $ assume ha', this ⟨a, ha, ha'⟩, have ¬ l < a, from not_lt.2 $ ha.right this, this ‹l < a›, let ⟨a', ha', ha'l⟩ := this in have a' ∈ t₁, from hlt₁ ⟨‹l < a'›, ha.left ha'⟩, ⟨a', ht ⟨‹a' ∈ t₁›, ht₂ ‹a' ∈ s›⟩⟩) lemma is_glb.nhds_within_ne_bot : ∀ {a : α} {s : set α}, is_glb s a → s.nonempty → ne_bot (𝓝[s] a) := @is_lub.nhds_within_ne_bot (order_dual α) _ _ _ lemma is_lub_of_mem_nhds {s : set α} {a : α} {f : filter α} (hsa : a ∈ upper_bounds s) (hsf : s ∈ f) [ne_bot (f ⊓ 𝓝 a)] : is_lub s a := ⟨hsa, assume b hb, not_lt.1 $ assume hba, have s ∩ {a | b < a} ∈ f ⊓ 𝓝 a, from inter_mem_inf_sets hsf (mem_nhds_sets (is_open_lt' _) hba), let ⟨x, ⟨hxs, hxb⟩⟩ := nonempty_of_mem_sets this in have b < b, from lt_of_lt_of_le hxb $ hb hxs, lt_irrefl b this⟩ lemma is_glb_of_mem_nhds : ∀ {s : set α} {a : α} {f : filter α}, a ∈ lower_bounds s → s ∈ f → ne_bot (f ⊓ 𝓝 a) → is_glb s a := @is_lub_of_mem_nhds (order_dual α) _ _ _ lemma is_lub_of_is_lub_of_tendsto {f : α → β} {s : set α} {a : α} {b : β} (hf : ∀x∈s, ∀y∈s, x ≤ y → f x ≤ f y) (ha : is_lub s a) (hs : s.nonempty) (hb : tendsto f (𝓝[s] a) (𝓝 b)) : is_lub (f '' s) b := have hnbot : ne_bot (𝓝[s] a), from ha.nhds_within_ne_bot hs, have ∀a'∈s, ¬ b < f a', from assume a' ha' h, have ∀ᶠ x in 𝓝 b, x < f a', from mem_nhds_sets (is_open_gt' _) h, let ⟨t₁, ht₁, t₂, ht₂, hs⟩ := mem_inf_sets.mp (hb this) in by_cases (assume h : a = a', have a ∈ t₁ ∩ t₂, from ⟨mem_of_nhds ht₁, ht₂ $ by rwa [h]⟩, have f a < f a', from hs this, lt_irrefl (f a') $ by rwa [h] at this) (assume h : a ≠ a', have a' < a, from lt_of_le_of_ne (ha.left ha') h.symm, have {x | a' < x} ∈ 𝓝 a, from mem_nhds_sets (is_open_lt' _) this, have {x | a' < x} ∩ t₁ ∈ 𝓝 a, from inter_mem_sets this ht₁, have ({x | a' < x} ∩ t₁) ∩ s ∈ 𝓝[s] a, from inter_mem_inf_sets this (subset.refl s), let ⟨x, ⟨hx₁, hx₂⟩, hx₃⟩ := hnbot.nonempty_of_mem this in have hxa' : f x < f a', from hs ⟨hx₂, ht₂ hx₃⟩, have ha'x : f a' ≤ f x, from hf _ ha' _ hx₃ $ le_of_lt hx₁, lt_irrefl _ (lt_of_le_of_lt ha'x hxa')), and.intro (assume b' ⟨a', ha', h_eq⟩, h_eq ▸ not_lt.1 $ this _ ha') (assume b' hb', by exactI (le_of_tendsto hb $ mem_inf_sets_of_right $ assume x hx, hb' $ mem_image_of_mem _ hx)) lemma is_glb_of_is_glb_of_tendsto {f : α → β} {s : set α} {a : α} {b : β} (hf : ∀x∈s, ∀y∈s, x ≤ y → f x ≤ f y) : is_glb s a → s.nonempty → tendsto f (𝓝[s] a) (𝓝 b) → is_glb (f '' s) b := @is_lub_of_is_lub_of_tendsto (order_dual α) (order_dual β) _ _ _ _ _ _ f s a b (λ x hx y hy, hf y hy x hx) lemma is_glb_of_is_lub_of_tendsto : ∀ {f : α → β} {s : set α} {a : α} {b : β}, (∀x∈s, ∀y∈s, x ≤ y → f y ≤ f x) → is_lub s a → s.nonempty → tendsto f (𝓝[s] a) (𝓝 b) → is_glb (f '' s) b := @is_lub_of_is_lub_of_tendsto α (order_dual β) _ _ _ _ _ _ lemma is_lub_of_is_glb_of_tendsto : ∀ {f : α → β} {s : set α} {a : α} {b : β}, (∀x∈s, ∀y∈s, x ≤ y → f y ≤ f x) → is_glb s a → s.nonempty → tendsto f (𝓝[s] a) (𝓝 b) → is_lub (f '' s) b := @is_glb_of_is_glb_of_tendsto α (order_dual β) _ _ _ _ _ _ lemma mem_closure_of_is_lub {a : α} {s : set α} (ha : is_lub s a) (hs : s.nonempty) : a ∈ closure s := by rw closure_eq_cluster_pts; exact ha.nhds_within_ne_bot hs lemma mem_of_is_lub_of_is_closed {a : α} {s : set α} (ha : is_lub s a) (hs : s.nonempty) (sc : is_closed s) : a ∈ s := by rw ←sc.closure_eq; exact mem_closure_of_is_lub ha hs lemma mem_closure_of_is_glb {a : α} {s : set α} (ha : is_glb s a) (hs : s.nonempty) : a ∈ closure s := by rw closure_eq_cluster_pts; exact ha.nhds_within_ne_bot hs lemma mem_of_is_glb_of_is_closed {a : α} {s : set α} (ha : is_glb s a) (hs : s.nonempty) (sc : is_closed s) : a ∈ s := by rw ←sc.closure_eq; exact mem_closure_of_is_glb ha hs /-- A compact set is bounded below -/ lemma is_compact.bdd_below {α : Type u} [topological_space α] [linear_order α] [order_closed_topology α] [nonempty α] {s : set α} (hs : is_compact s) : bdd_below s := begin by_contra H, rcases hs.elim_finite_subcover_image (λ x (_ : x ∈ s), @is_open_Ioi _ _ _ _ x) _ with ⟨t, st, ft, ht⟩, { refine H (ft.bdd_below.imp $ λ C hC y hy, _), rcases mem_bUnion_iff.1 (ht hy) with ⟨x, hx, xy⟩, exact le_trans (hC hx) (le_of_lt xy) }, { refine λ x hx, mem_bUnion_iff.2 (not_imp_comm.1 _ H), exact λ h, ⟨x, λ y hy, le_of_not_lt (h.imp $ λ ys, ⟨_, hy, ys⟩)⟩ } end /-- A compact set is bounded above -/ lemma is_compact.bdd_above {α : Type u} [topological_space α] [linear_order α] [order_topology α] : Π [nonempty α] {s : set α}, is_compact s → bdd_above s := @is_compact.bdd_below (order_dual α) _ _ _ end order_topology section linear_order variables [topological_space α] [linear_order α] [order_topology α] [densely_ordered α] /-- The closure of the interval `(a, +∞)` is the closed interval `[a, +∞)`, unless `a` is a top element. -/ lemma closure_Ioi' {a b : α} (hab : a < b) : closure (Ioi a) = Ici a := begin apply subset.antisymm, { exact closure_minimal Ioi_subset_Ici_self is_closed_Ici }, { assume x hx, by_cases h : x = a, { rw h, exact mem_closure_of_is_glb is_glb_Ioi ⟨_, hab⟩ }, { exact subset_closure (lt_of_le_of_ne hx (ne.symm h)) } } end /-- The closure of the interval `(a, +∞)` is the closed interval `[a, +∞)`. -/ @[simp] lemma closure_Ioi (a : α) [no_top_order α] : closure (Ioi a) = Ici a := let ⟨b, hb⟩ := no_top a in closure_Ioi' hb /-- The closure of the interval `(-∞, a)` is the closed interval `(-∞, a]`, unless `a` is a bottom element. -/ lemma closure_Iio' {a b : α} (hab : b < a) : closure (Iio a) = Iic a := begin apply subset.antisymm, { exact closure_minimal Iio_subset_Iic_self is_closed_Iic }, { assume x hx, by_cases h : x = a, { rw h, exact mem_closure_of_is_lub is_lub_Iio ⟨_, hab⟩ }, { apply subset_closure, by simpa [h] using lt_or_eq_of_le hx } } end /-- The closure of the interval `(-∞, a)` is the interval `(-∞, a]`. -/ @[simp] lemma closure_Iio (a : α) [no_bot_order α] : closure (Iio a) = Iic a := let ⟨b, hb⟩ := no_bot a in closure_Iio' hb /-- The closure of the open interval `(a, b)` is the closed interval `[a, b]`. -/ @[simp] lemma closure_Ioo {a b : α} (hab : a < b) : closure (Ioo a b) = Icc a b := begin apply subset.antisymm, { exact closure_minimal Ioo_subset_Icc_self is_closed_Icc }, { have hab' : (Ioo a b).nonempty, from nonempty_Ioo.2 hab, assume x hx, by_cases h : x = a, { rw h, exact mem_closure_of_is_glb (is_glb_Ioo hab) hab' }, by_cases h' : x = b, { rw h', refine mem_closure_of_is_lub (is_lub_Ioo hab) hab' }, exact subset_closure ⟨lt_of_le_of_ne hx.1 (ne.symm h), by simpa [h'] using lt_or_eq_of_le hx.2⟩ } end /-- The closure of the interval `(a, b]` is the closed interval `[a, b]`. -/ @[simp] lemma closure_Ioc {a b : α} (hab : a < b) : closure (Ioc a b) = Icc a b := begin apply subset.antisymm, { exact closure_minimal Ioc_subset_Icc_self is_closed_Icc }, { apply subset.trans _ (closure_mono Ioo_subset_Ioc_self), rw closure_Ioo hab } end /-- The closure of the interval `[a, b)` is the closed interval `[a, b]`. -/ @[simp] lemma closure_Ico {a b : α} (hab : a < b) : closure (Ico a b) = Icc a b := begin apply subset.antisymm, { exact closure_minimal Ico_subset_Icc_self is_closed_Icc }, { apply subset.trans _ (closure_mono Ioo_subset_Ico_self), rw closure_Ioo hab } end @[simp] lemma interior_Ici [no_bot_order α] {a : α} : interior (Ici a) = Ioi a := by rw [← compl_Iio, interior_compl, closure_Iio, compl_Iic] @[simp] lemma interior_Iic [no_top_order α] {a : α} : interior (Iic a) = Iio a := by rw [← compl_Ioi, interior_compl, closure_Ioi, compl_Ici] @[simp] lemma interior_Icc [no_bot_order α] [no_top_order α] {a b : α}: interior (Icc a b) = Ioo a b := by rw [← Ici_inter_Iic, interior_inter, interior_Ici, interior_Iic, Ioi_inter_Iio] @[simp] lemma interior_Ico [no_bot_order α] {a b : α} : interior (Ico a b) = Ioo a b := by rw [← Ici_inter_Iio, interior_inter, interior_Ici, interior_Iio, Ioi_inter_Iio] @[simp] lemma interior_Ioc [no_top_order α] {a b : α} : interior (Ioc a b) = Ioo a b := by rw [← Ioi_inter_Iic, interior_inter, interior_Ioi, interior_Iic, Ioi_inter_Iio] @[simp] lemma frontier_Ici [no_bot_order α] {a : α} : frontier (Ici a) = {a} := by simp [frontier] @[simp] lemma frontier_Iic [no_top_order α] {a : α} : frontier (Iic a) = {a} := by simp [frontier] @[simp] lemma frontier_Ioi [no_top_order α] {a : α} : frontier (Ioi a) = {a} := by simp [frontier] @[simp] lemma frontier_Iio [no_bot_order α] {a : α} : frontier (Iio a) = {a} := by simp [frontier] @[simp] lemma frontier_Icc [no_bot_order α] [no_top_order α] {a b : α} (h : a < b) : frontier (Icc a b) = {a, b} := by simp [frontier, le_of_lt h, Icc_diff_Ioo_same] @[simp] lemma frontier_Ioo {a b : α} (h : a < b) : frontier (Ioo a b) = {a, b} := by simp [frontier, h, le_of_lt h, Icc_diff_Ioo_same] @[simp] lemma frontier_Ico [no_bot_order α] {a b : α} (h : a < b) : frontier (Ico a b) = {a, b} := by simp [frontier, h, le_of_lt h, Icc_diff_Ioo_same] @[simp] lemma frontier_Ioc [no_top_order α] {a b : α} (h : a < b) : frontier (Ioc a b) = {a, b} := by simp [frontier, h, le_of_lt h, Icc_diff_Ioo_same] lemma nhds_within_Ioi_ne_bot' {a b c : α} (H₁ : a < c) (H₂ : a ≤ b) : ne_bot (𝓝[Ioi a] b) := mem_closure_iff_nhds_within_ne_bot.1 $ by { rw [closure_Ioi' H₁], exact H₂ } lemma nhds_within_Ioi_ne_bot [no_top_order α] {a b : α} (H : a ≤ b) : ne_bot (𝓝[Ioi a] b) := let ⟨c, hc⟩ := no_top a in nhds_within_Ioi_ne_bot' hc H lemma nhds_within_Ioi_self_ne_bot' {a b : α} (H : a < b) : ne_bot (𝓝[Ioi a] a) := nhds_within_Ioi_ne_bot' H (le_refl a) @[instance] lemma nhds_within_Ioi_self_ne_bot [no_top_order α] (a : α) : ne_bot (𝓝[Ioi a] a) := nhds_within_Ioi_ne_bot (le_refl a) lemma nhds_within_Iio_ne_bot' {a b c : α} (H₁ : a < c) (H₂ : b ≤ c) : ne_bot (𝓝[Iio c] b) := mem_closure_iff_nhds_within_ne_bot.1 $ by { rw [closure_Iio' H₁], exact H₂ } lemma nhds_within_Iio_ne_bot [no_bot_order α] {a b : α} (H : a ≤ b) : ne_bot (𝓝[Iio b] a) := let ⟨c, hc⟩ := no_bot b in nhds_within_Iio_ne_bot' hc H lemma nhds_within_Iio_self_ne_bot' {a b : α} (H : a < b) : ne_bot (𝓝[Iio b] b) := nhds_within_Iio_ne_bot' H (le_refl b) @[instance] lemma nhds_within_Iio_self_ne_bot [no_bot_order α] (a : α) : ne_bot (𝓝[Iio a] a) := nhds_within_Iio_ne_bot (le_refl a) end linear_order section linear_order variables [topological_space α] [linear_order α] [order_topology α] [densely_ordered α] {a b : α} {s : set α} lemma comap_coe_nhds_within_Iio_of_Ioo_subset (hb : s ⊆ Iio b) (hs : s.nonempty → ∃ a < b, Ioo a b ⊆ s) : comap (coe : s → α) (𝓝[Iio b] b) = at_top := begin nontriviality, haveI : nonempty s := nontrivial_iff_nonempty.1 ‹_›, rcases hs (nonempty_subtype.1 ‹_›) with ⟨a, h, hs⟩, ext u, split, { rintros ⟨t, ht, hts⟩, obtain ⟨x, ⟨hxa : a ≤ x, hxb : x < b⟩, hxt : Ioo x b ⊆ t⟩ := (mem_nhds_within_Iio_iff_exists_mem_Ico_Ioo_subset h).mp ht, obtain ⟨y, hxy, hyb⟩ := exists_between hxb, refine mem_sets_of_superset (mem_at_top ⟨y, hs ⟨hxa.trans_lt hxy, hyb⟩⟩) _, rintros ⟨z, hzs⟩ (hyz : y ≤ z), refine hts (hxt ⟨hxy.trans_le _, hb _⟩); assumption }, { intros hu, obtain ⟨x : s, hx : ∀ z, x ≤ z → z ∈ u⟩ := mem_at_top_sets.1 hu, exact ⟨Ioo x b, Ioo_mem_nhds_within_Iio (right_mem_Ioc.2 $ hb x.2), λ z hz, hx _ hz.1.le⟩ } end lemma comap_coe_nhds_within_Ioi_of_Ioo_subset (ha : s ⊆ Ioi a) (hs : s.nonempty → ∃ b > a, Ioo a b ⊆ s) : comap (coe : s → α) (𝓝[Ioi a] a) = at_bot := begin refine @comap_coe_nhds_within_Iio_of_Ioo_subset (order_dual α) _ _ _ _ _ _ ha (λ h, _), rcases hs h with ⟨b, hab, h⟩, use [b, hab], rwa dual_Ioo end lemma map_coe_at_top_of_Ioo_subset (hb : s ⊆ Iio b) (hs : ∀ a' < b, ∃ a < b, Ioo a b ⊆ s) : map (coe : s → α) at_top = 𝓝[Iio b] b := begin rcases eq_empty_or_nonempty (Iio b) with (hb'|⟨a, ha⟩), { rw [filter_eq_bot_of_not_nonempty at_top, map_bot, hb', nhds_within_empty], exact λ ⟨⟨x, hx⟩⟩, not_nonempty_iff_eq_empty.2 hb' ⟨x, hb hx⟩ }, { rw [← comap_coe_nhds_within_Iio_of_Ioo_subset hb (λ _, hs a ha), map_comap_of_mem], rw subtype.range_coe, exact (mem_nhds_within_Iio_iff_exists_Ioo_subset' ha).2 (hs a ha) }, end lemma map_coe_at_bot_of_Ioo_subset (ha : s ⊆ Ioi a) (hs : ∀ b' > a, ∃ b > a, Ioo a b ⊆ s) : map (coe : s → α) at_bot = (𝓝[Ioi a] a) := begin refine @map_coe_at_top_of_Ioo_subset (order_dual α) _ _ _ _ a s ha (λ b' hb', _), rcases hs b' hb' with ⟨b, hab, hbs⟩, use [b, hab], rwa dual_Ioo end /-- The `at_top` filter for an open interval `Ioo a b` comes from the left-neighbourhoods filter at the right endpoint in the ambient order. -/ lemma comap_coe_Ioo_nhds_within_Iio (a b : α) : comap (coe : Ioo a b → α) (𝓝[Iio b] b) = at_top := comap_coe_nhds_within_Iio_of_Ioo_subset Ioo_subset_Iio_self $ λ h, ⟨a, nonempty_Ioo.1 h, subset.refl _⟩ /-- The `at_bot` filter for an open interval `Ioo a b` comes from the right-neighbourhoods filter at the left endpoint in the ambient order. -/ lemma comap_coe_Ioo_nhds_within_Ioi (a b : α) : comap (coe : Ioo a b → α) (𝓝[Ioi a] a) = at_bot := comap_coe_nhds_within_Ioi_of_Ioo_subset Ioo_subset_Ioi_self $ λ h, ⟨b, nonempty_Ioo.1 h, subset.refl _⟩ lemma comap_coe_Ioi_nhds_within_Ioi (a : α) : comap (coe : Ioi a → α) (𝓝[Ioi a] a) = at_bot := comap_coe_nhds_within_Ioi_of_Ioo_subset (subset.refl _) $ λ ⟨x, hx⟩, ⟨x, hx, Ioo_subset_Ioi_self⟩ lemma comap_coe_Iio_nhds_within_Iio (a : α) : comap (coe : Iio a → α) (𝓝[Iio a] a) = at_top := @comap_coe_Ioi_nhds_within_Ioi (order_dual α) _ _ _ _ a @[simp] lemma map_coe_Ioo_at_top {a b : α} (h : a < b) : map (coe : Ioo a b → α) at_top = 𝓝[Iio b] b := map_coe_at_top_of_Ioo_subset Ioo_subset_Iio_self $ λ _ _, ⟨_, h, subset.refl _⟩ @[simp] lemma map_coe_Ioo_at_bot {a b : α} (h : a < b) : map (coe : Ioo a b → α) at_bot = 𝓝[Ioi a] a := map_coe_at_bot_of_Ioo_subset Ioo_subset_Ioi_self $ λ _ _, ⟨_, h, subset.refl _⟩ @[simp] lemma map_coe_Ioi_at_bot (a : α) : map (coe : Ioi a → α) at_bot = 𝓝[Ioi a] a := map_coe_at_bot_of_Ioo_subset (subset.refl _) $ λ b hb, ⟨b, hb, Ioo_subset_Ioi_self⟩ @[simp] lemma map_coe_Iio_at_top (a : α) : map (coe : Iio a → α) at_top = 𝓝[Iio a] a := @map_coe_Ioi_at_bot (order_dual α) _ _ _ _ _ variables {l : filter β} {f : α → β} @[simp] lemma tendsto_comp_coe_Ioo_at_top (h : a < b) : tendsto (λ x : Ioo a b, f x) at_top l ↔ tendsto f (𝓝[Iio b] b) l := by rw [← map_coe_Ioo_at_top h, tendsto_map'_iff] @[simp] lemma tendsto_comp_coe_Ioo_at_bot (h : a < b) : tendsto (λ x : Ioo a b, f x) at_bot l ↔ tendsto f (𝓝[Ioi a] a) l := by rw [← map_coe_Ioo_at_bot h, tendsto_map'_iff] @[simp] lemma tendsto_comp_coe_Ioi_at_bot : tendsto (λ x : Ioi a, f x) at_bot l ↔ tendsto f (𝓝[Ioi a] a) l := by rw [← map_coe_Ioi_at_bot, tendsto_map'_iff] @[simp] lemma tendsto_comp_coe_Iio_at_top : tendsto (λ x : Iio a, f x) at_top l ↔ tendsto f (𝓝[Iio a] a) l := by rw [← map_coe_Iio_at_top, tendsto_map'_iff] @[simp] lemma tendsto_Ioo_at_top {f : β → Ioo a b} : tendsto f l at_top ↔ tendsto (λ x, (f x : α)) l (𝓝[Iio b] b) := by rw [← comap_coe_Ioo_nhds_within_Iio, tendsto_comap_iff] @[simp] lemma tendsto_Ioo_at_bot {f : β → Ioo a b} : tendsto f l at_bot ↔ tendsto (λ x, (f x : α)) l (𝓝[Ioi a] a) := by rw [← comap_coe_Ioo_nhds_within_Ioi, tendsto_comap_iff] @[simp] lemma tendsto_Ioi_at_bot {f : β → Ioi a} : tendsto f l at_bot ↔ tendsto (λ x, (f x : α)) l (𝓝[Ioi a] a) := by rw [← comap_coe_Ioi_nhds_within_Ioi, tendsto_comap_iff] @[simp] lemma tendsto_Iio_at_top {f : β → Iio a} : tendsto f l at_top ↔ tendsto (λ x, (f x : α)) l (𝓝[Iio a] a) := by rw [← comap_coe_Iio_nhds_within_Iio, tendsto_comap_iff] end linear_order section complete_linear_order variables [complete_linear_order α] [topological_space α] [order_topology α] [complete_linear_order β] [topological_space β] [order_topology β] [nonempty γ] lemma Sup_mem_closure {α : Type u} [topological_space α] [complete_linear_order α] [order_topology α] {s : set α} (hs : s.nonempty) : Sup s ∈ closure s := mem_closure_of_is_lub (is_lub_Sup _) hs lemma Inf_mem_closure {α : Type u} [topological_space α] [complete_linear_order α] [order_topology α] {s : set α} (hs : s.nonempty) : Inf s ∈ closure s := mem_closure_of_is_glb (is_glb_Inf _) hs lemma is_closed.Sup_mem {α : Type u} [topological_space α] [complete_linear_order α] [order_topology α] {s : set α} (hs : s.nonempty) (hc : is_closed s) : Sup s ∈ s := mem_of_is_lub_of_is_closed (is_lub_Sup _) hs hc lemma is_closed.Inf_mem {α : Type u} [topological_space α] [complete_linear_order α] [order_topology α] {s : set α} (hs : s.nonempty) (hc : is_closed s) : Inf s ∈ s := mem_of_is_glb_of_is_closed (is_glb_Inf _) hs hc /-- A monotone function continuous at the supremum of a nonempty set sends this supremum to the supremum of the image of this set. -/ lemma map_Sup_of_continuous_at_of_monotone' {f : α → β} {s : set α} (Cf : continuous_at f (Sup s)) (Mf : monotone f) (hs : s.nonempty) : f (Sup s) = Sup (f '' s) := --This is a particular case of the more general is_lub_of_is_lub_of_tendsto (is_lub_of_is_lub_of_tendsto (λ x hx y hy xy, Mf xy) (is_lub_Sup _) hs $ Cf.mono_left inf_le_left).Sup_eq.symm /-- A monotone function `s` sending `bot` to `bot` and continuous at the supremum of a set sends this supremum to the supremum of the image of this set. -/ lemma map_Sup_of_continuous_at_of_monotone {f : α → β} {s : set α} (Cf : continuous_at f (Sup s)) (Mf : monotone f) (fbot : f ⊥ = ⊥) : f (Sup s) = Sup (f '' s) := begin cases s.eq_empty_or_nonempty with h h, { simp [h, fbot] }, { exact map_Sup_of_continuous_at_of_monotone' Cf Mf h } end /-- A monotone function continuous at the indexed supremum over a nonempty `Sort` sends this indexed supremum to the indexed supremum of the composition. -/ lemma map_supr_of_continuous_at_of_monotone' {ι : Sort*} [nonempty ι] {f : α → β} {g : ι → α} (Cf : continuous_at f (supr g)) (Mf : monotone f) : f (⨆ i, g i) = ⨆ i, f (g i) := by rw [supr, map_Sup_of_continuous_at_of_monotone' Cf Mf (range_nonempty g), ← range_comp, supr] /-- If a monotone function sending `bot` to `bot` is continuous at the indexed supremum over a `Sort`, then it sends this indexed supremum to the indexed supremum of the composition. -/ lemma map_supr_of_continuous_at_of_monotone {ι : Sort*} {f : α → β} {g : ι → α} (Cf : continuous_at f (supr g)) (Mf : monotone f) (fbot : f ⊥ = ⊥) : f (⨆ i, g i) = ⨆ i, f (g i) := by rw [supr, map_Sup_of_continuous_at_of_monotone Cf Mf fbot, ← range_comp, supr] /-- A monotone function continuous at the infimum of a nonempty set sends this infimum to the infimum of the image of this set. -/ lemma map_Inf_of_continuous_at_of_monotone' {f : α → β} {s : set α} (Cf : continuous_at f (Inf s)) (Mf : monotone f) (hs : s.nonempty) : f (Inf s) = Inf (f '' s) := @map_Sup_of_continuous_at_of_monotone' (order_dual α) (order_dual β) _ _ _ _ _ _ f s Cf Mf.order_dual hs /-- A monotone function `s` sending `top` to `top` and continuous at the infimum of a set sends this infimum to the infimum of the image of this set. -/ lemma map_Inf_of_continuous_at_of_monotone {f : α → β} {s : set α} (Cf : continuous_at f (Inf s)) (Mf : monotone f) (ftop : f ⊤ = ⊤) : f (Inf s) = Inf (f '' s) := @map_Sup_of_continuous_at_of_monotone (order_dual α) (order_dual β) _ _ _ _ _ _ f s Cf Mf.order_dual ftop /-- A monotone function continuous at the indexed infimum over a nonempty `Sort` sends this indexed infimum to the indexed infimum of the composition. -/ lemma map_infi_of_continuous_at_of_monotone' {ι : Sort*} [nonempty ι] {f : α → β} {g : ι → α} (Cf : continuous_at f (infi g)) (Mf : monotone f) : f (⨅ i, g i) = ⨅ i, f (g i) := @map_supr_of_continuous_at_of_monotone' (order_dual α) (order_dual β) _ _ _ _ _ _ ι _ f g Cf Mf.order_dual /-- If a monotone function sending `top` to `top` is continuous at the indexed infimum over a `Sort`, then it sends this indexed infimum to the indexed infimum of the composition. -/ lemma map_infi_of_continuous_at_of_monotone {ι : Sort*} {f : α → β} {g : ι → α} (Cf : continuous_at f (infi g)) (Mf : monotone f) (ftop : f ⊤ = ⊤) : f (infi g) = infi (f ∘ g) := @map_supr_of_continuous_at_of_monotone (order_dual α) (order_dual β) _ _ _ _ _ _ ι f g Cf Mf.order_dual ftop end complete_linear_order section conditionally_complete_linear_order variables [conditionally_complete_linear_order α] [topological_space α] [order_topology α] [conditionally_complete_linear_order β] [topological_space β] [order_topology β] [nonempty γ] lemma cSup_mem_closure {s : set α} (hs : s.nonempty) (B : bdd_above s) : Sup s ∈ closure s := mem_closure_of_is_lub (is_lub_cSup hs B) hs lemma cInf_mem_closure {s : set α} (hs : s.nonempty) (B : bdd_below s) : Inf s ∈ closure s := mem_closure_of_is_glb (is_glb_cInf hs B) hs lemma is_closed.cSup_mem {s : set α} (hc : is_closed s) (hs : s.nonempty) (B : bdd_above s) : Sup s ∈ s := mem_of_is_lub_of_is_closed (is_lub_cSup hs B) hs hc lemma is_closed.cInf_mem {s : set α} (hc : is_closed s) (hs : s.nonempty) (B : bdd_below s) : Inf s ∈ s := mem_of_is_glb_of_is_closed (is_glb_cInf hs B) hs hc /-- If a monotone function is continuous at the supremum of a nonempty bounded above set `s`, then it sends this supremum to the supremum of the image of `s`. -/ lemma map_cSup_of_continuous_at_of_monotone {f : α → β} {s : set α} (Cf : continuous_at f (Sup s)) (Mf : monotone f) (ne : s.nonempty) (H : bdd_above s) : f (Sup s) = Sup (f '' s) := begin refine ((is_lub_cSup (ne.image f) (Mf.map_bdd_above H)).unique _).symm, refine is_lub_of_is_lub_of_tendsto (λx hx y hy xy, Mf xy) (is_lub_cSup ne H) ne _, exact Cf.mono_left inf_le_left end /-- If a monotone function is continuous at the indexed supremum of a bounded function on a nonempty `Sort`, then it sends this supremum to the supremum of the composition. -/ lemma map_csupr_of_continuous_at_of_monotone {f : α → β} {g : γ → α} (Cf : continuous_at f (⨆ i, g i)) (Mf : monotone f) (H : bdd_above (range g)) : f (⨆ i, g i) = ⨆ i, f (g i) := by rw [supr, map_cSup_of_continuous_at_of_monotone Cf Mf (range_nonempty _) H, ← range_comp, supr] /-- If a monotone function is continuous at the infimum of a nonempty bounded below set `s`, then it sends this infimum to the infimum of the image of `s`. -/ lemma map_cInf_of_continuous_at_of_monotone {f : α → β} {s : set α} (Cf : continuous_at f (Inf s)) (Mf : monotone f) (ne : s.nonempty) (H : bdd_below s) : f (Inf s) = Inf (f '' s) := @map_cSup_of_continuous_at_of_monotone (order_dual α) (order_dual β) _ _ _ _ _ _ f s Cf Mf.order_dual ne H /-- A continuous monotone function sends indexed infimum to indexed infimum in conditionally complete linear order, under a boundedness assumption. -/ lemma map_cinfi_of_continuous_at_of_monotone {f : α → β} {g : γ → α} (Cf : continuous_at f (⨅ i, g i)) (Mf : monotone f) (H : bdd_below (range g)) : f (⨅ i, g i) = ⨅ i, f (g i) := @map_csupr_of_continuous_at_of_monotone (order_dual α) (order_dual β) _ _ _ _ _ _ _ _ _ _ Cf Mf.order_dual H /-- A bounded connected subset of a conditionally complete linear order includes the open interval `(Inf s, Sup s)`. -/ lemma is_connected.Ioo_cInf_cSup_subset {s : set α} (hs : is_connected s) (hb : bdd_below s) (ha : bdd_above s) : Ioo (Inf s) (Sup s) ⊆ s := λ x hx, let ⟨y, ys, hy⟩ := (is_glb_lt_iff (is_glb_cInf hs.nonempty hb)).1 hx.1 in let ⟨z, zs, hz⟩ := (lt_is_lub_iff (is_lub_cSup hs.nonempty ha)).1 hx.2 in hs.Icc_subset ys zs ⟨le_of_lt hy, le_of_lt hz⟩ lemma eq_Icc_cInf_cSup_of_connected_bdd_closed {s : set α} (hc : is_connected s) (hb : bdd_below s) (ha : bdd_above s) (hcl : is_closed s) : s = Icc (Inf s) (Sup s) := subset.antisymm (subset_Icc_cInf_cSup hb ha) $ hc.Icc_subset (hcl.cInf_mem hc.nonempty hb) (hcl.cSup_mem hc.nonempty ha) lemma is_preconnected.Ioi_cInf_subset {s : set α} (hs : is_preconnected s) (hb : bdd_below s) (ha : ¬bdd_above s) : Ioi (Inf s) ⊆ s := begin have sne : s.nonempty := @nonempty_of_not_bdd_above α _ s ⟨Inf ∅⟩ ha, intros x hx, obtain ⟨y, ys, hy⟩ : ∃ y ∈ s, y < x := (is_glb_lt_iff (is_glb_cInf sne hb)).1 hx, obtain ⟨z, zs, hz⟩ : ∃ z ∈ s, x < z := not_bdd_above_iff.1 ha x, exact hs.Icc_subset ys zs ⟨le_of_lt hy, le_of_lt hz⟩ end lemma is_preconnected.Iio_cSup_subset {s : set α} (hs : is_preconnected s) (hb : ¬bdd_below s) (ha : bdd_above s) : Iio (Sup s) ⊆ s := @is_preconnected.Ioi_cInf_subset (order_dual α) _ _ _ s hs ha hb /-- A preconnected set in a conditionally complete linear order is either one of the intervals `[Inf s, Sup s]`, `[Inf s, Sup s)`, `(Inf s, Sup s]`, `(Inf s, Sup s)`, `[Inf s, +∞)`, `(Inf s, +∞)`, `(-∞, Sup s]`, `(-∞, Sup s)`, `(-∞, +∞)`, or `∅`. The converse statement requires `α` to be densely ordererd. -/ lemma is_preconnected.mem_intervals {s : set α} (hs : is_preconnected s) : s ∈ ({Icc (Inf s) (Sup s), Ico (Inf s) (Sup s), Ioc (Inf s) (Sup s), Ioo (Inf s) (Sup s), Ici (Inf s), Ioi (Inf s), Iic (Sup s), Iio (Sup s), univ, ∅} : set (set α)) := begin rcases s.eq_empty_or_nonempty with rfl|hne, { apply_rules [or.inr, mem_singleton] }, have hs' : is_connected s := ⟨hne, hs⟩, by_cases hb : bdd_below s; by_cases ha : bdd_above s, { rcases mem_Icc_Ico_Ioc_Ioo_of_subset_of_subset (hs'.Ioo_cInf_cSup_subset hb ha) (subset_Icc_cInf_cSup hb ha) with hs|hs|hs|hs, { exact (or.inl hs) }, { exact (or.inr $ or.inl hs) }, { exact (or.inr $ or.inr $ or.inl hs) }, { exact (or.inr $ or.inr $ or.inr $ or.inl hs) } }, { refine (or.inr $ or.inr $ or.inr $ or.inr _), cases mem_Ici_Ioi_of_subset_of_subset (hs.Ioi_cInf_subset hb ha) (λ x hx, cInf_le hb hx) with hs hs, { exact or.inl hs }, { exact or.inr (or.inl hs) } }, { iterate 6 { apply or.inr }, cases mem_Iic_Iio_of_subset_of_subset (hs.Iio_cSup_subset hb ha) (λ x hx, le_cSup ha hx) with hs hs, { exact or.inl hs }, { exact or.inr (or.inl hs) } }, { iterate 8 { apply or.inr }, exact or.inl (hs.eq_univ_of_unbounded hb ha) } end /-- A preconnected set is either one of the intervals `Icc`, `Ico`, `Ioc`, `Ioo`, `Ici`, `Ioi`, `Iic`, `Iio`, or `univ`, or `∅`. The converse statement requires `α` to be densely ordererd. Though one can represent `∅` as `(Inf s, Inf s)`, we include it into the list of possible cases to improve readability. -/ lemma set_of_is_preconnected_subset_of_ordered : {s : set α | is_preconnected s} ⊆ -- bounded intervals (range (uncurry Icc) ∪ range (uncurry Ico) ∪ range (uncurry Ioc) ∪ range (uncurry Ioo)) ∪ -- unbounded intervals and `univ` (range Ici ∪ range Ioi ∪ range Iic ∪ range Iio ∪ {univ, ∅}) := begin intros s hs, rcases hs.mem_intervals with hs|hs|hs|hs|hs|hs|hs|hs|hs|hs, { exact (or.inl $ or.inl $ or.inl $ or.inl ⟨(Inf s, Sup s), hs.symm⟩) }, { exact (or.inl $ or.inl $ or.inl $ or.inr ⟨(Inf s, Sup s), hs.symm⟩) }, { exact (or.inl $ or.inl $ or.inr ⟨(Inf s, Sup s), hs.symm⟩) }, { exact (or.inl $ or.inr ⟨(Inf s, Sup s), hs.symm⟩) }, { exact (or.inr $ or.inl $ or.inl $ or.inl $ or.inl ⟨Inf s, hs.symm⟩) }, { exact (or.inr $ or.inl $ or.inl $ or.inl $ or.inr ⟨Inf s, hs.symm⟩) }, { exact (or.inr $ or.inl $ or.inl $ or.inr ⟨Sup s, hs.symm⟩) }, { exact (or.inr $ or.inl $ or.inr ⟨Sup s, hs.symm⟩) }, { exact (or.inr $ or.inr $ or.inl hs) }, { exact (or.inr $ or.inr $ or.inr hs) } end /-- A "continuous induction principle" for a closed interval: if a set `s` meets `[a, b]` on a closed subset, contains `a`, and the set `s ∩ [a, b)` has no maximal point, then `b ∈ s`. -/ lemma is_closed.mem_of_ge_of_forall_exists_gt {a b : α} {s : set α} (hs : is_closed (s ∩ Icc a b)) (ha : a ∈ s) (hab : a ≤ b) (hgt : ∀ x ∈ s ∩ Ico a b, (s ∩ Ioc x b).nonempty) : b ∈ s := begin let S := s ∩ Icc a b, replace ha : a ∈ S, from ⟨ha, left_mem_Icc.2 hab⟩, have Sbd : bdd_above S, from ⟨b, λ z hz, hz.2.2⟩, let c := Sup (s ∩ Icc a b), have c_mem : c ∈ S, from hs.cSup_mem ⟨_, ha⟩ Sbd, have c_le : c ≤ b, from cSup_le ⟨_, ha⟩ (λ x hx, hx.2.2), cases eq_or_lt_of_le c_le with hc hc, from hc ▸ c_mem.1, exfalso, rcases hgt c ⟨c_mem.1, c_mem.2.1, hc⟩ with ⟨x, xs, cx, xb⟩, exact not_lt_of_le (le_cSup Sbd ⟨xs, le_trans (le_cSup Sbd ha) (le_of_lt cx), xb⟩) cx end /-- A "continuous induction principle" for a closed interval: if a set `s` meets `[a, b]` on a closed subset, contains `a`, and for any `a ≤ x < y ≤ b`, `x ∈ s`, the set `s ∩ (x, y]` is not empty, then `[a, b] ⊆ s`. -/ lemma is_closed.Icc_subset_of_forall_exists_gt {a b : α} {s : set α} (hs : is_closed (s ∩ Icc a b)) (ha : a ∈ s) (hgt : ∀ x ∈ s ∩ Ico a b, ∀ y ∈ Ioi x, (s ∩ Ioc x y).nonempty) : Icc a b ⊆ s := begin assume y hy, have : is_closed (s ∩ Icc a y), { suffices : s ∩ Icc a y = s ∩ Icc a b ∩ Icc a y, { rw this, exact is_closed_inter hs is_closed_Icc }, rw [inter_assoc], congr, exact (inter_eq_self_of_subset_right $ Icc_subset_Icc_right hy.2).symm }, exact is_closed.mem_of_ge_of_forall_exists_gt this ha hy.1 (λ x hx, hgt x ⟨hx.1, Ico_subset_Ico_right hy.2 hx.2⟩ y hx.2.2) end section densely_ordered variables [densely_ordered α] {a b : α} /-- A "continuous induction principle" for a closed interval: if a set `s` meets `[a, b]` on a closed subset, contains `a`, and for any `x ∈ s ∩ [a, b)` the set `s` includes some open neighborhood of `x` within `(x, +∞)`, then `[a, b] ⊆ s`. -/ lemma is_closed.Icc_subset_of_forall_mem_nhds_within {a b : α} {s : set α} (hs : is_closed (s ∩ Icc a b)) (ha : a ∈ s) (hgt : ∀ x ∈ s ∩ Ico a b, s ∈ 𝓝[Ioi x] x) : Icc a b ⊆ s := begin apply hs.Icc_subset_of_forall_exists_gt ha, rintros x ⟨hxs, hxab⟩ y hyxb, have : s ∩ Ioc x y ∈ 𝓝[Ioi x] x, from inter_mem_sets (hgt x ⟨hxs, hxab⟩) (Ioc_mem_nhds_within_Ioi ⟨le_refl _, hyxb⟩), exact (nhds_within_Ioi_self_ne_bot' hxab.2).nonempty_of_mem this end /-- A closed interval in a densely ordered conditionally complete linear order is preconnected. -/ lemma is_preconnected_Icc : is_preconnected (Icc a b) := is_preconnected_closed_iff.2 begin rintros s t hs ht hab ⟨x, hx⟩ ⟨y, hy⟩, wlog hxy : x ≤ y := le_total x y using [x y s t, y x t s], have xyab : Icc x y ⊆ Icc a b := Icc_subset_Icc hx.1.1 hy.1.2, by_contradiction hst, suffices : Icc x y ⊆ s, from hst ⟨y, xyab $ right_mem_Icc.2 hxy, this $ right_mem_Icc.2 hxy, hy.2⟩, apply (is_closed_inter hs is_closed_Icc).Icc_subset_of_forall_mem_nhds_within hx.2, rintros z ⟨zs, hz⟩, have zt : z ∈ tᶜ, from λ zt, hst ⟨z, xyab $ Ico_subset_Icc_self hz, zs, zt⟩, have : tᶜ ∩ Ioc z y ∈ 𝓝[Ioi z] z, { rw [← nhds_within_Ioc_eq_nhds_within_Ioi hz.2], exact mem_nhds_within.2 ⟨tᶜ, ht, zt, subset.refl _⟩}, apply mem_sets_of_superset this, have : Ioc z y ⊆ s ∪ t, from λ w hw, hab (xyab ⟨le_trans hz.1 (le_of_lt hw.1), hw.2⟩), exact λ w ⟨wt, wzy⟩, (this wzy).elim id (λ h, (wt h).elim) end lemma is_preconnected_interval : is_preconnected (interval a b) := is_preconnected_Icc lemma is_preconnected_iff_ord_connected {s : set α} : is_preconnected s ↔ ord_connected s := ⟨λ h x hx y hy, h.Icc_subset hx hy, λ h, is_preconnected_of_forall_pair $ λ x y hx hy, ⟨interval x y, h.interval_subset hx hy, left_mem_interval, right_mem_interval, is_preconnected_interval⟩⟩ alias is_preconnected_iff_ord_connected ↔ is_preconnected.ord_connected set.ord_connected.is_preconnected lemma is_preconnected_Ici : is_preconnected (Ici a) := ord_connected_Ici.is_preconnected lemma is_preconnected_Iic : is_preconnected (Iic a) := ord_connected_Iic.is_preconnected lemma is_preconnected_Iio : is_preconnected (Iio a) := ord_connected_Iio.is_preconnected lemma is_preconnected_Ioi : is_preconnected (Ioi a) := ord_connected_Ioi.is_preconnected lemma is_preconnected_Ioo : is_preconnected (Ioo a b) := ord_connected_Ioo.is_preconnected lemma is_preconnected_Ioc : is_preconnected (Ioc a b) := ord_connected_Ioc.is_preconnected lemma is_preconnected_Ico : is_preconnected (Ico a b) := ord_connected_Ico.is_preconnected @[priority 100] instance ordered_connected_space : preconnected_space α := ⟨ord_connected_univ.is_preconnected⟩ /-- In a dense conditionally complete linear order, the set of preconnected sets is exactly the set of the intervals `Icc`, `Ico`, `Ioc`, `Ioo`, `Ici`, `Ioi`, `Iic`, `Iio`, `(-∞, +∞)`, or `∅`. Though one can represent `∅` as `(Inf s, Inf s)`, we include it into the list of possible cases to improve readability. -/ lemma set_of_is_preconnected_eq_of_ordered : {s : set α | is_preconnected s} = -- bounded intervals (range (uncurry Icc) ∪ range (uncurry Ico) ∪ range (uncurry Ioc) ∪ range (uncurry Ioo)) ∪ -- unbounded intervals and `univ` (range Ici ∪ range Ioi ∪ range Iic ∪ range Iio ∪ {univ, ∅}) := begin refine subset.antisymm set_of_is_preconnected_subset_of_ordered _, simp only [subset_def, -mem_range, forall_range_iff, uncurry, or_imp_distrib, forall_and_distrib, mem_union, mem_set_of_eq, insert_eq, mem_singleton_iff, forall_eq, forall_true_iff, and_true, is_preconnected_Icc, is_preconnected_Ico, is_preconnected_Ioc, is_preconnected_Ioo, is_preconnected_Ioi, is_preconnected_Iio, is_preconnected_Ici, is_preconnected_Iic, is_preconnected_univ, is_preconnected_empty], end variables {δ : Type*} [linear_order δ] [topological_space δ] [order_closed_topology δ] /--Intermediate Value Theorem for continuous functions on closed intervals, case `f a ≤ t ≤ f b`.-/ lemma intermediate_value_Icc {a b : α} (hab : a ≤ b) {f : α → δ} (hf : continuous_on f (Icc a b)) : Icc (f a) (f b) ⊆ f '' (Icc a b) := is_preconnected_Icc.intermediate_value (left_mem_Icc.2 hab) (right_mem_Icc.2 hab) hf /--Intermediate Value Theorem for continuous functions on closed intervals, case `f a ≥ t ≥ f b`.-/ lemma intermediate_value_Icc' {a b : α} (hab : a ≤ b) {f : α → δ} (hf : continuous_on f (Icc a b)) : Icc (f b) (f a) ⊆ f '' (Icc a b) := is_preconnected_Icc.intermediate_value (right_mem_Icc.2 hab) (left_mem_Icc.2 hab) hf /-- A continuous function which tendsto `at_top` `at_top` and to `at_bot` `at_bot` is surjective. -/ lemma continuous.surjective {f : α → δ} (hf : continuous f) (h_top : tendsto f at_top at_top) (h_bot : tendsto f at_bot at_bot) : function.surjective f := λ p, mem_range_of_exists_le_of_exists_ge hf (h_bot.eventually (eventually_le_at_bot p)).exists (h_top.eventually (eventually_ge_at_top p)).exists /-- A continuous function which tendsto `at_bot` `at_top` and to `at_top` `at_bot` is surjective. -/ lemma continuous.surjective' {f : α → δ} (hf : continuous f) (h_top : tendsto f at_bot at_top) (h_bot : tendsto f at_top at_bot) : function.surjective f := @continuous.surjective (order_dual α) _ _ _ _ _ _ _ _ _ hf h_top h_bot /-- If a function `f : α → β` is continuous on a nonempty interval `s`, its restriction to `s` tends to `at_bot : filter β` along `at_bot : filter ↥s` and tends to `at_top : filter β` along `at_top : filter ↥s`, then the restriction of `f` to `s` is surjective. We formulate the conclusion as `surj_on f s univ`. -/ lemma continuous_on.surj_on_of_tendsto {f : α → β} {s : set α} [ord_connected s] (hs : s.nonempty) (hf : continuous_on f s) (hbot : tendsto (λ x : s, f x) at_bot at_bot) (htop : tendsto (λ x : s, f x) at_top at_top) : surj_on f s univ := by haveI := inhabited_of_nonempty hs.to_subtype; exact (surj_on_iff_surjective.2 $ (continuous_on_iff_continuous_restrict.1 hf).surjective htop hbot) /-- If a function `f : α → β` is continuous on a nonempty interval `s`, its restriction to `s` tends to `at_top : filter β` along `at_bot : filter ↥s` and tends to `at_bot : filter β` along `at_top : filter ↥s`, then the restriction of `f` to `s` is surjective. We formulate the conclusion as `surj_on f s univ`. -/ lemma continuous_on.surj_on_of_tendsto' {f : α → β} {s : set α} [ord_connected s] (hs : s.nonempty) (hf : continuous_on f s) (hbot : tendsto (λ x : s, f x) at_bot at_top) (htop : tendsto (λ x : s, f x) at_top at_bot) : surj_on f s univ := @continuous_on.surj_on_of_tendsto α (order_dual β) _ _ _ _ _ _ _ _ _ _ hs hf hbot htop end densely_ordered lemma is_compact.Inf_mem {s : set α} (hs : is_compact s) (ne_s : s.nonempty) : Inf s ∈ s := hs.is_closed.cInf_mem ne_s hs.bdd_below lemma is_compact.Sup_mem {s : set α} (hs : is_compact s) (ne_s : s.nonempty) : Sup s ∈ s := @is_compact.Inf_mem (order_dual α) _ _ _ _ hs ne_s lemma is_compact.is_glb_Inf {s : set α} (hs : is_compact s) (ne_s : s.nonempty) : is_glb s (Inf s) := is_glb_cInf ne_s hs.bdd_below lemma is_compact.is_lub_Sup {s : set α} (hs : is_compact s) (ne_s : s.nonempty) : is_lub s (Sup s) := @is_compact.is_glb_Inf (order_dual α) _ _ _ _ hs ne_s lemma is_compact.is_least_Inf {s : set α} (hs : is_compact s) (ne_s : s.nonempty) : is_least s (Inf s) := ⟨hs.Inf_mem ne_s, (hs.is_glb_Inf ne_s).1⟩ lemma is_compact.is_greatest_Sup {s : set α} (hs : is_compact s) (ne_s : s.nonempty) : is_greatest s (Sup s) := @is_compact.is_least_Inf (order_dual α) _ _ _ _ hs ne_s lemma is_compact.exists_is_least {s : set α} (hs : is_compact s) (ne_s : s.nonempty) : ∃ x, is_least s x := ⟨_, hs.is_least_Inf ne_s⟩ lemma is_compact.exists_is_greatest {s : set α} (hs : is_compact s) (ne_s : s.nonempty) : ∃ x, is_greatest s x := ⟨_, hs.is_greatest_Sup ne_s⟩ lemma is_compact.exists_is_glb {s : set α} (hs : is_compact s) (ne_s : s.nonempty) : ∃ x ∈ s, is_glb s x := ⟨_, hs.Inf_mem ne_s, hs.is_glb_Inf ne_s⟩ lemma is_compact.exists_is_lub {s : set α} (hs : is_compact s) (ne_s : s.nonempty) : ∃ x ∈ s, is_lub s x := ⟨_, hs.Sup_mem ne_s, hs.is_lub_Sup ne_s⟩ lemma is_compact.exists_Inf_image_eq {α : Type u} [topological_space α] {s : set α} (hs : is_compact s) (ne_s : s.nonempty) {f : α → β} (hf : continuous_on f s) : ∃ x ∈ s, Inf (f '' s) = f x := let ⟨x, hxs, hx⟩ := (hs.image_of_continuous_on hf).Inf_mem (ne_s.image f) in ⟨x, hxs, hx.symm⟩ lemma is_compact.exists_Sup_image_eq {α : Type u} [topological_space α]: ∀ {s : set α}, is_compact s → s.nonempty → ∀ {f : α → β}, continuous_on f s → ∃ x ∈ s, Sup (f '' s) = f x := @is_compact.exists_Inf_image_eq (order_dual β) _ _ _ _ _ lemma eq_Icc_of_connected_compact {s : set α} (h₁ : is_connected s) (h₂ : is_compact s) : s = Icc (Inf s) (Sup s) := eq_Icc_cInf_cSup_of_connected_bdd_closed h₁ h₂.bdd_below h₂.bdd_above h₂.is_closed /-- The extreme value theorem: a continuous function realizes its minimum on a compact set -/ lemma is_compact.exists_forall_le {α : Type u} [topological_space α] {s : set α} (hs : is_compact s) (ne_s : s.nonempty) {f : α → β} (hf : continuous_on f s) : ∃x∈s, ∀y∈s, f x ≤ f y := begin rcases hs.exists_Inf_image_eq ne_s hf with ⟨x, hxs, hx⟩, refine ⟨x, hxs, λ y hy, _⟩, rw ← hx, exact ((hs.image_of_continuous_on hf).is_glb_Inf (ne_s.image f)).1 (mem_image_of_mem _ hy) end /-- The extreme value theorem: a continuous function realizes its maximum on a compact set -/ lemma is_compact.exists_forall_ge {α : Type u} [topological_space α]: ∀ {s : set α}, is_compact s → s.nonempty → ∀ {f : α → β}, continuous_on f s → ∃x∈s, ∀y∈s, f y ≤ f x := @is_compact.exists_forall_le (order_dual β) _ _ _ _ _ /-- The extreme value theorem: if a continuous function `f` tends to infinity away from compact sets, then it has a global minimum. -/ lemma continuous.exists_forall_le {α : Type*} [topological_space α] [nonempty α] {f : α → β} (hf : continuous f) (hlim : tendsto f (cocompact α) at_top) : ∃ x, ∀ y, f x ≤ f y := begin inhabit α, obtain ⟨s : set α, hsc : is_compact s, hsf : ∀ x ∉ s, f (default α) ≤ f x⟩ := (has_basis_cocompact.tendsto_iff at_top_basis).1 hlim (f $ default α) trivial, obtain ⟨x, -, hx⟩ := (hsc.insert (default α)).exists_forall_le (nonempty_insert _ _) hf.continuous_on, refine ⟨x, λ y, _⟩, by_cases hy : y ∈ s, exacts [hx y (or.inr hy), (hx _ (or.inl rfl)).trans (hsf y hy)] end /-- The extreme value theorem: if a continuous function `f` tends to negative infinity away from compactx sets, then it has a global maximum. -/ lemma continuous.exists_forall_ge {α : Type*} [topological_space α] [nonempty α] {f : α → β} (hf : continuous f) (hlim : tendsto f (cocompact α) at_bot) : ∃ x, ∀ y, f y ≤ f x := @continuous.exists_forall_le (order_dual β) _ _ _ _ _ _ _ hf hlim end conditionally_complete_linear_order section liminf_limsup section order_closed_topology variables [semilattice_sup α] [topological_space α] [order_topology α] lemma is_bounded_le_nhds (a : α) : (𝓝 a).is_bounded (≤) := match forall_le_or_exists_lt_sup a with | or.inl h := ⟨a, eventually_of_forall h⟩ | or.inr ⟨b, hb⟩ := ⟨b, ge_mem_nhds hb⟩ end lemma filter.tendsto.is_bounded_under_le {f : filter β} {u : β → α} {a : α} (h : tendsto u f (𝓝 a)) : f.is_bounded_under (≤) u := (is_bounded_le_nhds a).mono h lemma is_cobounded_ge_nhds (a : α) : (𝓝 a).is_cobounded (≥) := (is_bounded_le_nhds a).is_cobounded_flip lemma filter.tendsto.is_cobounded_under_ge {f : filter β} {u : β → α} {a : α} [ne_bot f] (h : tendsto u f (𝓝 a)) : f.is_cobounded_under (≥) u := h.is_bounded_under_le.is_cobounded_flip end order_closed_topology section order_closed_topology variables [semilattice_inf α] [topological_space α] [order_topology α] lemma is_bounded_ge_nhds (a : α) : (𝓝 a).is_bounded (≥) := @is_bounded_le_nhds (order_dual α) _ _ _ a lemma filter.tendsto.is_bounded_under_ge {f : filter β} {u : β → α} {a : α} (h : tendsto u f (𝓝 a)) : f.is_bounded_under (≥) u := (is_bounded_ge_nhds a).mono h lemma is_cobounded_le_nhds (a : α) : (𝓝 a).is_cobounded (≤) := (is_bounded_ge_nhds a).is_cobounded_flip lemma filter.tendsto.is_cobounded_under_le {f : filter β} {u : β → α} {a : α} [ne_bot f] (h : tendsto u f (𝓝 a)) : f.is_cobounded_under (≤) u := h.is_bounded_under_ge.is_cobounded_flip end order_closed_topology section conditionally_complete_linear_order variables [conditionally_complete_linear_order α] theorem lt_mem_sets_of_Limsup_lt {f : filter α} {b} (h : f.is_bounded (≤)) (l : f.Limsup < b) : ∀ᶠ a in f, a < b := let ⟨c, (h : ∀ᶠ a in f, a ≤ c), hcb⟩ := exists_lt_of_cInf_lt h l in mem_sets_of_superset h $ assume a hac, lt_of_le_of_lt hac hcb theorem gt_mem_sets_of_Liminf_gt : ∀ {f : filter α} {b}, f.is_bounded (≥) → b < f.Liminf → ∀ᶠ a in f, b < a := @lt_mem_sets_of_Limsup_lt (order_dual α) _ variables [topological_space α] [order_topology α] /-- If the liminf and the limsup of a filter coincide, then this filter converges to their common value, at least if the filter is eventually bounded above and below. -/ theorem le_nhds_of_Limsup_eq_Liminf {f : filter α} {a : α} (hl : f.is_bounded (≤)) (hg : f.is_bounded (≥)) (hs : f.Limsup = a) (hi : f.Liminf = a) : f ≤ 𝓝 a := tendsto_order.2 $ and.intro (assume b hb, gt_mem_sets_of_Liminf_gt hg $ hi.symm ▸ hb) (assume b hb, lt_mem_sets_of_Limsup_lt hl $ hs.symm ▸ hb) theorem Limsup_nhds (a : α) : Limsup (𝓝 a) = a := cInf_intro (is_bounded_le_nhds a) (assume a' (h : {n : α | n ≤ a'} ∈ 𝓝 a), show a ≤ a', from @mem_of_nhds α _ a _ h) (assume b (hba : a < b), show ∃c (h : {n : α | n ≤ c} ∈ 𝓝 a), c < b, from match dense_or_discrete a b with | or.inl ⟨c, hac, hcb⟩ := ⟨c, ge_mem_nhds hac, hcb⟩ | or.inr ⟨_, h⟩ := ⟨a, (𝓝 a).sets_of_superset (gt_mem_nhds hba) h, hba⟩ end) theorem Liminf_nhds : ∀ (a : α), Liminf (𝓝 a) = a := @Limsup_nhds (order_dual α) _ _ _ /-- If a filter is converging, its limsup coincides with its limit. -/ theorem Liminf_eq_of_le_nhds {f : filter α} {a : α} [ne_bot f] (h : f ≤ 𝓝 a) : f.Liminf = a := have hb_ge : is_bounded (≥) f, from (is_bounded_ge_nhds a).mono h, have hb_le : is_bounded (≤) f, from (is_bounded_le_nhds a).mono h, le_antisymm (calc f.Liminf ≤ f.Limsup : Liminf_le_Limsup hb_le hb_ge ... ≤ (𝓝 a).Limsup : Limsup_le_Limsup_of_le h hb_ge.is_cobounded_flip (is_bounded_le_nhds a) ... = a : Limsup_nhds a) (calc a = (𝓝 a).Liminf : (Liminf_nhds a).symm ... ≤ f.Liminf : Liminf_le_Liminf_of_le h (is_bounded_ge_nhds a) hb_le.is_cobounded_flip) /-- If a filter is converging, its liminf coincides with its limit. -/ theorem Limsup_eq_of_le_nhds : ∀ {f : filter α} {a : α} [ne_bot f], f ≤ 𝓝 a → f.Limsup = a := @Liminf_eq_of_le_nhds (order_dual α) _ _ _ /-- If a function has a limit, then its limsup coincides with its limit. -/ theorem filter.tendsto.limsup_eq {f : filter β} {u : β → α} {a : α} [ne_bot f] (h : tendsto u f (𝓝 a)) : limsup f u = a := Limsup_eq_of_le_nhds h /-- If a function has a limit, then its liminf coincides with its limit. -/ theorem filter.tendsto.liminf_eq {f : filter β} {u : β → α} {a : α} [ne_bot f] (h : tendsto u f (𝓝 a)) : liminf f u = a := Liminf_eq_of_le_nhds h end conditionally_complete_linear_order section complete_linear_order variables [complete_linear_order α] [topological_space α] [order_topology α] -- In complete_linear_order, the above theorems take a simpler form /-- If the liminf and the limsup of a function coincide, then the limit of the function exists and has the same value -/ theorem tendsto_of_liminf_eq_limsup {f : filter β} {u : β → α} {a : α} (hinf : liminf f u = a) (hsup : limsup f u = a) : tendsto u f (𝓝 a) := le_nhds_of_Limsup_eq_Liminf is_bounded_le_of_top is_bounded_ge_of_bot hsup hinf /-- If a number `a` is less than or equal to the `liminf` of a function `f` at some filter and is greater than or equal to the `limsup` of `f`, then `f` tends to `a` along this filter. -/ theorem tendsto_of_le_liminf_of_limsup_le {f : filter β} {u : β → α} {a : α} (hinf : a ≤ liminf f u) (hsup : limsup f u ≤ a) : tendsto u f (𝓝 a) := if hf : f = ⊥ then hf.symm ▸ tendsto_bot else by haveI : ne_bot f := ⟨hf⟩; exact tendsto_of_liminf_eq_limsup (le_antisymm (le_trans liminf_le_limsup hsup) hinf) (le_antisymm hsup (le_trans hinf liminf_le_limsup)) end complete_linear_order end liminf_limsup end order_topology /-! Here is a counter-example to a version of the following with `conditionally_complete_lattice α`. Take `α = [0, 1) → ℝ` with the natural lattice structure, `ι = ℕ`. Put `f n x = -x^n`. Then `⨆ n, f n = 0` while none of `f n` is strictly greater than the constant function `-0.5`. -/ lemma tendsto_at_top_csupr {ι α : Type*} [preorder ι] [topological_space α] [conditionally_complete_linear_order α] [order_topology α] {f : ι → α} (h_mono : monotone f) (hbdd : bdd_above $ range f) : tendsto f at_top (𝓝 (⨆i, f i)) := begin by_cases hi : nonempty ι, { resetI, rw tendsto_order, split, { intros a h, cases exists_lt_of_lt_csupr h with N hN, apply eventually.mono (mem_at_top N), exact λ i hi, lt_of_lt_of_le hN (h_mono hi) }, { exact λ a h, eventually_of_forall (λ n, lt_of_le_of_lt (le_csupr hbdd n) h) } }, { exact tendsto_of_not_nonempty hi } end lemma tendsto_at_top_cinfi {ι α : Type*} [preorder ι] [topological_space α] [conditionally_complete_linear_order α] [order_topology α] {f : ι → α} (h_mono : ∀ ⦃i j⦄, i ≤ j → f j ≤ f i) (hbdd : bdd_below $ range f) : tendsto f at_top (𝓝 (⨅i, f i)) := @tendsto_at_top_csupr _ (order_dual α) _ _ _ _ _ @h_mono hbdd lemma tendsto_at_top_supr {ι α : Type*} [preorder ι] [topological_space α] [complete_linear_order α] [order_topology α] {f : ι → α} (h_mono : monotone f) : tendsto f at_top (𝓝 (⨆i, f i)) := tendsto_at_top_csupr h_mono (order_top.bdd_above _) lemma tendsto_at_top_infi {ι α : Type*} [preorder ι] [topological_space α] [complete_linear_order α] [order_topology α] {f : ι → α} (h_mono : ∀ ⦃i j⦄, i ≤ j → f j ≤ f i) : tendsto f at_top (𝓝 (⨅i, f i)) := tendsto_at_top_cinfi @h_mono (order_bot.bdd_below _) lemma tendsto_of_monotone {ι α : Type*} [preorder ι] [topological_space α] [conditionally_complete_linear_order α] [order_topology α] {f : ι → α} (h_mono : monotone f) : tendsto f at_top at_top ∨ (∃ l, tendsto f at_top (𝓝 l)) := if H : bdd_above (range f) then or.inr ⟨_, tendsto_at_top_csupr h_mono H⟩ else or.inl $ tendsto_at_top_at_top_of_monotone' h_mono H lemma supr_eq_of_tendsto {α β} [topological_space α] [complete_linear_order α] [order_topology α] [nonempty β] [semilattice_sup β] {f : β → α} {a : α} (hf : monotone f) : tendsto f at_top (𝓝 a) → supr f = a := tendsto_nhds_unique (tendsto_at_top_supr hf) lemma infi_eq_of_tendsto {α} [topological_space α] [complete_linear_order α] [order_topology α] [nonempty β] [semilattice_sup β] {f : β → α} {a : α} (hf : ∀n m, n ≤ m → f m ≤ f n) : tendsto f at_top (𝓝 a) → infi f = a := tendsto_nhds_unique (tendsto_at_top_infi hf) @[to_additive] lemma tendsto_inv_nhds_within_Ioi [ordered_comm_group α] [topological_space α] [topological_group α] {a : α} : tendsto has_inv.inv (𝓝[Ioi a] a) (𝓝[Iio (a⁻¹)] (a⁻¹)) := (continuous_inv.tendsto a).inf $ by simp [tendsto_principal_principal] @[to_additive] lemma tendsto_inv_nhds_within_Iio [ordered_comm_group α] [topological_space α] [topological_group α] {a : α} : tendsto has_inv.inv (𝓝[Iio a] a) (𝓝[Ioi (a⁻¹)] (a⁻¹)) := (continuous_inv.tendsto a).inf $ by simp [tendsto_principal_principal] @[to_additive] lemma tendsto_inv_nhds_within_Ioi_inv [ordered_comm_group α] [topological_space α] [topological_group α] {a : α} : tendsto has_inv.inv (𝓝[Ioi (a⁻¹)] (a⁻¹)) (𝓝[Iio a] a) := by simpa only [inv_inv] using @tendsto_inv_nhds_within_Ioi _ _ _ _ (a⁻¹) @[to_additive] lemma tendsto_inv_nhds_within_Iio_inv [ordered_comm_group α] [topological_space α] [topological_group α] {a : α} : tendsto has_inv.inv (𝓝[Iio (a⁻¹)] (a⁻¹)) (𝓝[Ioi a] a) := by simpa only [inv_inv] using @tendsto_inv_nhds_within_Iio _ _ _ _ (a⁻¹) @[to_additive] lemma tendsto_inv_nhds_within_Ici [ordered_comm_group α] [topological_space α] [topological_group α] {a : α} : tendsto has_inv.inv (𝓝[Ici a] a) (𝓝[Iic (a⁻¹)] (a⁻¹)) := (continuous_inv.tendsto a).inf $ by simp [tendsto_principal_principal] @[to_additive] lemma tendsto_inv_nhds_within_Iic [ordered_comm_group α] [topological_space α] [topological_group α] {a : α} : tendsto has_inv.inv (𝓝[Iic a] a) (𝓝[Ici (a⁻¹)] (a⁻¹)) := (continuous_inv.tendsto a).inf $ by simp [tendsto_principal_principal] @[to_additive] lemma tendsto_inv_nhds_within_Ici_inv [ordered_comm_group α] [topological_space α] [topological_group α] {a : α} : tendsto has_inv.inv (𝓝[Ici (a⁻¹)] (a⁻¹)) (𝓝[Iic a] a) := by simpa only [inv_inv] using @tendsto_inv_nhds_within_Ici _ _ _ _ (a⁻¹) @[to_additive] lemma tendsto_inv_nhds_within_Iic_inv [ordered_comm_group α] [topological_space α] [topological_group α] {a : α} : tendsto has_inv.inv (𝓝[Iic (a⁻¹)] (a⁻¹)) (𝓝[Ici a] a) := by simpa only [inv_inv] using @tendsto_inv_nhds_within_Iic _ _ _ _ (a⁻¹) lemma nhds_left_sup_nhds_right (a : α) [topological_space α] [linear_order α] : 𝓝[Iic a] a ⊔ 𝓝[Ici a] a = 𝓝 a := by rw [← nhds_within_union, Iic_union_Ici, nhds_within_univ] lemma nhds_left'_sup_nhds_right (a : α) [topological_space α] [linear_order α] : 𝓝[Iio a] a ⊔ 𝓝[Ici a] a = 𝓝 a := by rw [← nhds_within_union, Iio_union_Ici, nhds_within_univ] lemma nhds_left_sup_nhds_right' (a : α) [topological_space α] [linear_order α] : 𝓝[Iic a] a ⊔ 𝓝[Ioi a] a = 𝓝 a := by rw [← nhds_within_union, Iic_union_Ioi, nhds_within_univ] lemma continuous_at_iff_continuous_left_right [topological_space α] [linear_order α] [topological_space β] {a : α} {f : α → β} : continuous_at f a ↔ continuous_within_at f (Iic a) a ∧ continuous_within_at f (Ici a) a := by simp only [continuous_within_at, continuous_at, ← tendsto_sup, nhds_left_sup_nhds_right] lemma continuous_on_Icc_extend_from_Ioo [topological_space α] [linear_order α] [densely_ordered α] [order_topology α] [topological_space β] [regular_space β] {f : α → β} {a b : α} {la lb : β} (hab : a < b) (hf : continuous_on f (Ioo a b)) (ha : tendsto f (𝓝[Ioi a] a) (𝓝 la)) (hb : tendsto f (𝓝[Iio b] b) (𝓝 lb)) : continuous_on (extend_from (Ioo a b) f) (Icc a b) := begin apply continuous_on_extend_from, { rw closure_Ioo hab, }, { intros x x_in, rcases mem_Ioo_or_eq_endpoints_of_mem_Icc x_in with rfl | rfl | h, { use la, simpa [hab] }, { use lb, simpa [hab] }, { use [f x, hf x h] } } end lemma eq_lim_at_left_extend_from_Ioo [topological_space α] [linear_order α] [densely_ordered α] [order_topology α] [topological_space β] [t2_space β] {f : α → β} {a b : α} {la : β} (hab : a < b) (ha : tendsto f (𝓝[Ioi a] a) (𝓝 la)) : extend_from (Ioo a b) f a = la := begin apply extend_from_eq, { rw closure_Ioo hab, simp only [le_of_lt hab, left_mem_Icc, right_mem_Icc] }, { simpa [hab] } end lemma eq_lim_at_right_extend_from_Ioo [topological_space α] [linear_order α] [densely_ordered α] [order_topology α] [topological_space β] [t2_space β] {f : α → β} {a b : α} {lb : β} (hab : a < b) (hb : tendsto f (𝓝[Iio b] b) (𝓝 lb)) : extend_from (Ioo a b) f b = lb := begin apply extend_from_eq, { rw closure_Ioo hab, simp only [le_of_lt hab, left_mem_Icc, right_mem_Icc] }, { simpa [hab] } end lemma continuous_on_Ico_extend_from_Ioo [topological_space α] [linear_order α] [densely_ordered α] [order_topology α] [topological_space β] [regular_space β] {f : α → β} {a b : α} {la : β} (hab : a < b) (hf : continuous_on f (Ioo a b)) (ha : tendsto f (𝓝[Ioi a] a) (𝓝 la)) : continuous_on (extend_from (Ioo a b) f) (Ico a b) := begin apply continuous_on_extend_from, { rw [closure_Ioo hab], exact Ico_subset_Icc_self, }, { intros x x_in, rcases mem_Ioo_or_eq_left_of_mem_Ico x_in with rfl | h, { use la, simpa [hab] }, { use [f x, hf x h] } } end lemma continuous_on_Ioc_extend_from_Ioo [topological_space α] [linear_order α] [densely_ordered α] [order_topology α] [topological_space β] [regular_space β] {f : α → β} {a b : α} {lb : β} (hab : a < b) (hf : continuous_on f (Ioo a b)) (hb : tendsto f (𝓝[Iio b] b) (𝓝 lb)) : continuous_on (extend_from (Ioo a b) f) (Ioc a b) := begin have := @continuous_on_Ico_extend_from_Ioo (order_dual α) _ _ _ _ _ _ _ f _ _ _ hab, erw [dual_Ico, dual_Ioi, dual_Ioo] at this, exact this hf hb end lemma continuous_within_at_Ioi_iff_Ici {α β : Type*} [topological_space α] [partial_order α] [topological_space β] {a : α} {f : α → β} : continuous_within_at f (Ioi a) a ↔ continuous_within_at f (Ici a) a := by simp only [← Ici_diff_left, continuous_within_at_diff_self] lemma continuous_within_at_Iio_iff_Iic {α β : Type*} [topological_space α] [linear_order α] [topological_space β] {a : α} {f : α → β} : continuous_within_at f (Iio a) a ↔ continuous_within_at f (Iic a) a := begin have := @continuous_within_at_Ioi_iff_Ici (order_dual α) _ _ _ _ _ f, erw [dual_Ici, dual_Ioi] at this, exact this, end lemma continuous_at_iff_continuous_left'_right' [topological_space α] [linear_order α] [topological_space β] {a : α} {f : α → β} : continuous_at f a ↔ continuous_within_at f (Iio a) a ∧ continuous_within_at f (Ioi a) a := by rw [continuous_within_at_Ioi_iff_Ici, continuous_within_at_Iio_iff_Iic, continuous_at_iff_continuous_left_right] /-! ### Continuity of monotone functions In this section we prove the following fact: if `f` is a monotone function on a neighborhood of `a` and the image of this neighborhood is a neighborhood of `f a`, then `f` is continuous at `a`, see `continuous_at_of_mono_incr_on_of_image_mem_nhds`, as well as several similar facts. -/ section linear_order variables [linear_order α] [topological_space α] [order_topology α] variables [linear_order β] [topological_space β] [order_topology β] /-- If `f` is a function strictly monotonically increasing on a right neighborhood of `a` and the image of this neighborhood under `f` meets every interval `(f a, b]`, `b > f a`, then `f` is continuous at `a` from the right. The assumption `hfs : ∀ b > f a, ∃ c ∈ s, f c ∈ Ioc (f a) b` is required because otherwise the function `f : ℝ → ℝ` given by `f x = if x ≤ 0 then x else x + 1` would be a counter-example at `a = 0`. -/ lemma strict_mono_incr_on.continuous_at_right_of_exists_between {f : α → β} {s : set α} {a : α} (h_mono : strict_mono_incr_on f s) (hs : s ∈ 𝓝[Ici a] a) (hfs : ∀ b > f a, ∃ c ∈ s, f c ∈ Ioc (f a) b) : continuous_within_at f (Ici a) a := begin have ha : a ∈ Ici a := left_mem_Ici, have has : a ∈ s := mem_of_mem_nhds_within ha hs, refine tendsto_order.2 ⟨λ b hb, _, λ b hb, _⟩, { filter_upwards [hs, self_mem_nhds_within], intros x hxs hxa, exact hb.trans_le ((h_mono.le_iff_le has hxs).2 hxa) }, { rcases hfs b hb with ⟨c, hcs, hac, hcb⟩, rw [h_mono.lt_iff_lt has hcs] at hac, filter_upwards [hs, Ico_mem_nhds_within_Ici (left_mem_Ico.2 hac)], rintros x hx ⟨hax, hxc⟩, exact ((h_mono.lt_iff_lt hx hcs).2 hxc).trans_le hcb } end /-- If `f` is a function monotonically increasing function on a right neighborhood of `a` and the image of this neighborhood under `f` meets every interval `(f a, b)`, `b > f a`, then `f` is continuous at `a` from the right. The assumption `hfs : ∀ b > f a, ∃ c ∈ s, f c ∈ Ioo (f a) b` cannot be replaced by the weaker assumption `hfs : ∀ b > f a, ∃ c ∈ s, f c ∈ Ioc (f a) b` we use for strictly monotone functions because otherwise the function `ceil : ℝ → ℤ` would be a counter-example at `a = 0`. -/ lemma continuous_at_right_of_mono_incr_on_of_exists_between {f : α → β} {s : set α} {a : α} (h_mono : ∀ (x ∈ s) (y ∈ s), x ≤ y → f x ≤ f y) (hs : s ∈ 𝓝[Ici a] a) (hfs : ∀ b > f a, ∃ c ∈ s, f c ∈ Ioo (f a) b) : continuous_within_at f (Ici a) a := begin have ha : a ∈ Ici a := left_mem_Ici, have has : a ∈ s := mem_of_mem_nhds_within ha hs, refine tendsto_order.2 ⟨λ b hb, _, λ b hb, _⟩, { filter_upwards [hs, self_mem_nhds_within], intros x hxs hxa, exact hb.trans_le (h_mono _ has _ hxs hxa) }, { rcases hfs b hb with ⟨c, hcs, hac, hcb⟩, have : a < c, from not_le.1 (λ h, hac.not_le $ h_mono _ hcs _ has h), filter_upwards [hs, Ico_mem_nhds_within_Ici (left_mem_Ico.2 this)], rintros x hx ⟨hax, hxc⟩, exact (h_mono _ hx _ hcs hxc.le).trans_lt hcb } end /-- If a function `f` with a densely ordered codomain is monotonically increasing on a right neighborhood of `a` and the closure of the image of this neighborhood under `f` is a right neighborhood of `f a`, then `f` is continuous at `a` from the right. -/ lemma continuous_at_right_of_mono_incr_on_of_closure_image_mem_nhds_within [densely_ordered β] {f : α → β} {s : set α} {a : α} (h_mono : ∀ (x ∈ s) (y ∈ s), x ≤ y → f x ≤ f y) (hs : s ∈ 𝓝[Ici a] a) (hfs : closure (f '' s) ∈ 𝓝[Ici (f a)] (f a)) : continuous_within_at f (Ici a) a := begin refine continuous_at_right_of_mono_incr_on_of_exists_between h_mono hs (λ b hb, _), rcases (mem_nhds_within_Ici_iff_exists_mem_Ioc_Ico_subset hb).1 hfs with ⟨b', ⟨hab', hbb'⟩, hb'⟩, rcases exists_between hab' with ⟨c', hc'⟩, rcases mem_closure_iff.1 (hb' ⟨hc'.1.le, hc'.2⟩) (Ioo (f a) b') is_open_Ioo hc' with ⟨_, hc, ⟨c, hcs, rfl⟩⟩, exact ⟨c, hcs, hc.1, hc.2.trans_le hbb'⟩ end /-- If a function `f` with a densely ordered codomain is monotonically increasing on a right neighborhood of `a` and the image of this neighborhood under `f` is a right neighborhood of `f a`, then `f` is continuous at `a` from the right. -/ lemma continuous_at_right_of_mono_incr_on_of_image_mem_nhds_within [densely_ordered β] {f : α → β} {s : set α} {a : α} (h_mono : ∀ (x ∈ s) (y ∈ s), x ≤ y → f x ≤ f y) (hs : s ∈ 𝓝[Ici a] a) (hfs : f '' s ∈ 𝓝[Ici (f a)] (f a)) : continuous_within_at f (Ici a) a := continuous_at_right_of_mono_incr_on_of_closure_image_mem_nhds_within h_mono hs $ mem_sets_of_superset hfs subset_closure /-- If a function `f` with a densely ordered codomain is strictly monotonically increasing on a right neighborhood of `a` and the closure of the image of this neighborhood under `f` is a right neighborhood of `f a`, then `f` is continuous at `a` from the right. -/ lemma strict_mono_incr_on.continuous_at_right_of_closure_image_mem_nhds_within [densely_ordered β] {f : α → β} {s : set α} {a : α} (h_mono : strict_mono_incr_on f s) (hs : s ∈ 𝓝[Ici a] a) (hfs : closure (f '' s) ∈ 𝓝[Ici (f a)] (f a)) : continuous_within_at f (Ici a) a := continuous_at_right_of_mono_incr_on_of_closure_image_mem_nhds_within (λ x hx y hy, (h_mono.le_iff_le hx hy).2) hs hfs /-- If a function `f` with a densely ordered codomain is strictly monotonically increasing on a right neighborhood of `a` and the image of this neighborhood under `f` is a right neighborhood of `f a`, then `f` is continuous at `a` from the right. -/ lemma strict_mono_incr_on.continuous_at_right_of_image_mem_nhds_within [densely_ordered β] {f : α → β} {s : set α} {a : α} (h_mono : strict_mono_incr_on f s) (hs : s ∈ 𝓝[Ici a] a) (hfs : f '' s ∈ 𝓝[Ici (f a)] (f a)) : continuous_within_at f (Ici a) a := h_mono.continuous_at_right_of_closure_image_mem_nhds_within hs (mem_sets_of_superset hfs subset_closure) /-- If a function `f` is strictly monotonically increasing on a right neighborhood of `a` and the image of this neighborhood under `f` includes `Ioi (f a)`, then `f` is continuous at `a` from the right. -/ lemma strict_mono_incr_on.continuous_at_right_of_surj_on {f : α → β} {s : set α} {a : α} (h_mono : strict_mono_incr_on f s) (hs : s ∈ 𝓝[Ici a] a) (hfs : surj_on f s (Ioi (f a))) : continuous_within_at f (Ici a) a := h_mono.continuous_at_right_of_exists_between hs $ λ b hb, let ⟨c, hcs, hcb⟩ := hfs hb in ⟨c, hcs, hcb.symm ▸ hb, hcb.le⟩ /-- If `f` is a function strictly monotonically increasing on a left neighborhood of `a` and the image of this neighborhood under `f` meets every interval `[b, f a)`, `b < f a`, then `f` is continuous at `a` from the left. The assumption `hfs : ∀ b < f a, ∃ c ∈ s, f c ∈ Ico b (f a)` is required because otherwise the function `f : ℝ → ℝ` given by `f x = if x < 0 then x else x + 1` would be a counter-example at `a = 0`. -/ lemma strict_mono_incr_on.continuous_at_left_of_exists_between {f : α → β} {s : set α} {a : α} (h_mono : strict_mono_incr_on f s) (hs : s ∈ 𝓝[Iic a] a) (hfs : ∀ b < f a, ∃ c ∈ s, f c ∈ Ico b (f a)) : continuous_within_at f (Iic a) a := h_mono.dual.continuous_at_right_of_exists_between hs $ λ b hb, let ⟨c, hcs, hcb, hca⟩ := hfs b hb in ⟨c, hcs, hca, hcb⟩ /-- If `f` is a function monotonically increasing function on a left neighborhood of `a` and the image of this neighborhood under `f` meets every interval `(b, f a)`, `b < f a`, then `f` is continuous at `a` from the left. The assumption `hfs : ∀ b < f a, ∃ c ∈ s, f c ∈ Ioo b (f a)` cannot be replaced by the weaker assumption `hfs : ∀ b < f a, ∃ c ∈ s, f c ∈ Ico b (f a)` we use for strictly monotone functions because otherwise the function `floor : ℝ → ℤ` would be a counter-example at `a = 0`. -/ lemma continuous_at_left_of_mono_incr_on_of_exists_between {f : α → β} {s : set α} {a : α} (h_mono : ∀ (x ∈ s) (y ∈ s), x ≤ y → f x ≤ f y) (hs : s ∈ 𝓝[Iic a] a) (hfs : ∀ b < f a, ∃ c ∈ s, f c ∈ Ioo b (f a)) : continuous_within_at f (Iic a) a := @continuous_at_right_of_mono_incr_on_of_exists_between (order_dual α) (order_dual β) _ _ _ _ _ _ f s a (λ x hx y hy, h_mono y hy x hx) hs $ λ b hb, let ⟨c, hcs, hcb, hca⟩ := hfs b hb in ⟨c, hcs, hca, hcb⟩ /-- If a function `f` with a densely ordered codomain is monotonically increasing on a left neighborhood of `a` and the closure of the image of this neighborhood under `f` is a left neighborhood of `f a`, then `f` is continuous at `a` from the left -/ lemma continuous_at_left_of_mono_incr_on_of_closure_image_mem_nhds_within [densely_ordered β] {f : α → β} {s : set α} {a : α} (h_mono : ∀ (x ∈ s) (y ∈ s), x ≤ y → f x ≤ f y) (hs : s ∈ 𝓝[Iic a] a) (hfs : closure (f '' s) ∈ 𝓝[Iic (f a)] (f a)) : continuous_within_at f (Iic a) a := @continuous_at_right_of_mono_incr_on_of_closure_image_mem_nhds_within (order_dual α) (order_dual β) _ _ _ _ _ _ _ f s a (λ x hx y hy, h_mono y hy x hx) hs hfs /-- If a function `f` with a densely ordered codomain is monotonically increasing on a left neighborhood of `a` and the image of this neighborhood under `f` is a left neighborhood of `f a`, then `f` is continuous at `a` from the left. -/ lemma continuous_at_left_of_mono_incr_on_of_image_mem_nhds_within [densely_ordered β] {f : α → β} {s : set α} {a : α} (h_mono : ∀ (x ∈ s) (y ∈ s), x ≤ y → f x ≤ f y) (hs : s ∈ 𝓝[Iic a] a) (hfs : f '' s ∈ 𝓝[Iic (f a)] (f a)) : continuous_within_at f (Iic a) a := continuous_at_left_of_mono_incr_on_of_closure_image_mem_nhds_within h_mono hs (mem_sets_of_superset hfs subset_closure) /-- If a function `f` with a densely ordered codomain is strictly monotonically increasing on a left neighborhood of `a` and the closure of the image of this neighborhood under `f` is a left neighborhood of `f a`, then `f` is continuous at `a` from the left. -/ lemma strict_mono_incr_on.continuous_at_left_of_closure_image_mem_nhds_within [densely_ordered β] {f : α → β} {s : set α} {a : α} (h_mono : strict_mono_incr_on f s) (hs : s ∈ 𝓝[Iic a] a) (hfs : closure (f '' s) ∈ 𝓝[Iic (f a)] (f a)) : continuous_within_at f (Iic a) a := h_mono.dual.continuous_at_right_of_closure_image_mem_nhds_within hs hfs /-- If a function `f` with a densely ordered codomain is strictly monotonically increasing on a left neighborhood of `a` and the image of this neighborhood under `f` is a left neighborhood of `f a`, then `f` is continuous at `a` from the left. -/ lemma strict_mono_incr_on.continuous_at_left_of_image_mem_nhds_within [densely_ordered β] {f : α → β} {s : set α} {a : α} (h_mono : strict_mono_incr_on f s) (hs : s ∈ 𝓝[Iic a] a) (hfs : f '' s ∈ 𝓝[Iic (f a)] (f a)) : continuous_within_at f (Iic a) a := h_mono.dual.continuous_at_right_of_image_mem_nhds_within hs hfs /-- If a function `f` is strictly monotonically increasing on a left neighborhood of `a` and the image of this neighborhood under `f` includes `Iio (f a)`, then `f` is continuous at `a` from the left. -/ lemma strict_mono_incr_on.continuous_at_left_of_surj_on {f : α → β} {s : set α} {a : α} (h_mono : strict_mono_incr_on f s) (hs : s ∈ 𝓝[Iic a] a) (hfs : surj_on f s (Iio (f a))) : continuous_within_at f (Iic a) a := h_mono.dual.continuous_at_right_of_surj_on hs hfs /-- If a function `f` is strictly monotonically increasing on a neighborhood of `a` and the image of this neighborhood under `f` meets every interval `[b, f a)`, `b < f a`, and every interval `(f a, b]`, `b > f a`, then `f` is continuous at `a`. -/ lemma strict_mono_incr_on.continuous_at_of_exists_between {f : α → β} {s : set α} {a : α} (h_mono : strict_mono_incr_on f s) (hs : s ∈ 𝓝 a) (hfs_l : ∀ b < f a, ∃ c ∈ s, f c ∈ Ico b (f a)) (hfs_r : ∀ b > f a, ∃ c ∈ s, f c ∈ Ioc (f a) b) : continuous_at f a := continuous_at_iff_continuous_left_right.2 ⟨h_mono.continuous_at_left_of_exists_between (mem_nhds_within_of_mem_nhds hs) hfs_l, h_mono.continuous_at_right_of_exists_between (mem_nhds_within_of_mem_nhds hs) hfs_r⟩ /-- If a function `f` with a densely ordered codomain is strictly monotonically increasing on a neighborhood of `a` and the closure of the image of this neighborhood under `f` is a neighborhood of `f a`, then `f` is continuous at `a`. -/ lemma strict_mono_incr_on.continuous_at_of_closure_image_mem_nhds [densely_ordered β] {f : α → β} {s : set α} {a : α} (h_mono : strict_mono_incr_on f s) (hs : s ∈ 𝓝 a) (hfs : closure (f '' s) ∈ 𝓝 (f a)) : continuous_at f a := continuous_at_iff_continuous_left_right.2 ⟨h_mono.continuous_at_left_of_closure_image_mem_nhds_within (mem_nhds_within_of_mem_nhds hs) (mem_nhds_within_of_mem_nhds hfs), h_mono.continuous_at_right_of_closure_image_mem_nhds_within (mem_nhds_within_of_mem_nhds hs) (mem_nhds_within_of_mem_nhds hfs)⟩ /-- If a function `f` with a densely ordered codomain is strictly monotonically increasing on a neighborhood of `a` and the image of this set under `f` is a neighborhood of `f a`, then `f` is continuous at `a`. -/ lemma strict_mono_incr_on.continuous_at_of_image_mem_nhds [densely_ordered β] {f : α → β} {s : set α} {a : α} (h_mono : strict_mono_incr_on f s) (hs : s ∈ 𝓝 a) (hfs : f '' s ∈ 𝓝 (f a)) : continuous_at f a := h_mono.continuous_at_of_closure_image_mem_nhds hs (mem_sets_of_superset hfs subset_closure) /-- If `f` is a function monotonically increasing function on a neighborhood of `a` and the image of this neighborhood under `f` meets every interval `(b, f a)`, `b < f a`, and every interval `(f a, b)`, `b > f a`, then `f` is continuous at `a`. -/ lemma continuous_at_of_mono_incr_on_of_exists_between {f : α → β} {s : set α} {a : α} (h_mono : ∀ (x ∈ s) (y ∈ s), x ≤ y → f x ≤ f y) (hs : s ∈ 𝓝 a) (hfs_l : ∀ b < f a, ∃ c ∈ s, f c ∈ Ioo b (f a)) (hfs_r : ∀ b > f a, ∃ c ∈ s, f c ∈ Ioo (f a) b) : continuous_at f a := continuous_at_iff_continuous_left_right.2 ⟨continuous_at_left_of_mono_incr_on_of_exists_between h_mono (mem_nhds_within_of_mem_nhds hs) hfs_l, continuous_at_right_of_mono_incr_on_of_exists_between h_mono (mem_nhds_within_of_mem_nhds hs) hfs_r⟩ /-- If a function `f` with a densely ordered codomain is monotonically increasing on a neighborhood of `a` and the closure of the image of this neighborhood under `f` is a neighborhood of `f a`, then `f` is continuous at `a`. -/ lemma continuous_at_of_mono_incr_on_of_closure_image_mem_nhds [densely_ordered β] {f : α → β} {s : set α} {a : α} (h_mono : ∀ (x ∈ s) (y ∈ s), x ≤ y → f x ≤ f y) (hs : s ∈ 𝓝 a) (hfs : closure (f '' s) ∈ 𝓝 (f a)) : continuous_at f a := continuous_at_iff_continuous_left_right.2 ⟨continuous_at_left_of_mono_incr_on_of_closure_image_mem_nhds_within h_mono (mem_nhds_within_of_mem_nhds hs) (mem_nhds_within_of_mem_nhds hfs), continuous_at_right_of_mono_incr_on_of_closure_image_mem_nhds_within h_mono (mem_nhds_within_of_mem_nhds hs) (mem_nhds_within_of_mem_nhds hfs)⟩ /-- If a function `f` with a densely ordered codomain is monotonically increasing on a neighborhood of `a` and the image of this neighborhood under `f` is a neighborhood of `f a`, then `f` is continuous at `a`. -/ lemma continuous_at_of_mono_incr_on_of_image_mem_nhds [densely_ordered β] {f : α → β} {s : set α} {a : α} (h_mono : ∀ (x ∈ s) (y ∈ s), x ≤ y → f x ≤ f y) (hs : s ∈ 𝓝 a) (hfs : f '' s ∈ 𝓝 (f a)) : continuous_at f a := continuous_at_of_mono_incr_on_of_closure_image_mem_nhds h_mono hs (mem_sets_of_superset hfs subset_closure) /-- A monotone function with densely ordered codomain and a dense range is continuous. -/ lemma monotone.continuous_of_dense_range [densely_ordered β] {f : α → β} (h_mono : monotone f) (h_dense : dense_range f) : continuous f := continuous_iff_continuous_at.mpr $ λ a, continuous_at_of_mono_incr_on_of_closure_image_mem_nhds (λ x hx y hy hxy, h_mono hxy) univ_mem_sets $ by simp only [image_univ, h_dense.closure_eq, univ_mem_sets] /-- A monotone surjective function with a densely ordered codomain is surjective. -/ lemma monotone.continuous_of_surjective [densely_ordered β] {f : α → β} (h_mono : monotone f) (h_surj : function.surjective f) : continuous f := h_mono.continuous_of_dense_range h_surj.dense_range end linear_order /-! ### Continuity of order isomorphisms In this section we prove that an `order_iso` is continuous, hence it is a `homeomorph`. We prove this for an `order_iso` between to partial orders with order topology. -/ namespace order_iso variables [partial_order α] [partial_order β] [topological_space α] [topological_space β] [order_topology α] [order_topology β] protected lemma continuous (e : α ≃o β) : continuous e := begin rw [‹order_topology β›.topology_eq_generate_intervals], refine continuous_generated_from (λ s hs, _), rcases hs with ⟨a, rfl|rfl⟩, { rw e.preimage_Ioi, apply is_open_lt' }, { rw e.preimage_Iio, apply is_open_gt' } end /-- An order isomorphism between two linear order `order_topology` spaces is a homeomorphism. -/ def to_homeomorph (e : α ≃o β) : α ≃ₜ β := { continuous_to_fun := e.continuous, continuous_inv_fun := e.symm.continuous, .. e } @[simp] lemma coe_to_homeomorph (e : α ≃o β) : ⇑e.to_homeomorph = e := rfl @[simp] lemma coe_to_homeomorph_symm (e : α ≃o β) : ⇑e.to_homeomorph.symm = e.symm := rfl end order_iso
8d3e2c41d0cc53214593b772b55980dbcd872057
5ae26df177f810c5006841e9c73dc56e01b978d7
/src/topology/Top/open_nhds.lean
94bd180f37f6abdc8eb9e9dc46d06ea4b717e4e9
[ "Apache-2.0" ]
permissive
ChrisHughes24/mathlib
98322577c460bc6b1fe5c21f42ce33ad1c3e5558
a2a867e827c2a6702beb9efc2b9282bd801d5f9a
refs/heads/master
1,583,848,251,477
1,565,164,247,000
1,565,164,247,000
129,409,993
0
1
Apache-2.0
1,565,164,817,000
1,523,628,059,000
Lean
UTF-8
Lean
false
false
1,783
lean
/- Copyright (c) 2019 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import topology.Top.opens import category_theory.full_subcategory open category_theory open topological_space open opposite universe u namespace topological_space.open_nhds variables {X Y : Top.{u}} (f : X ⟶ Y) def open_nhds (x : X.α) := { U : opens X // x ∈ U } instance open_nhds_category (x : X.α) : category.{u+1} (open_nhds x) := by {unfold open_nhds, apply_instance} def inclusion (x : X.α) : open_nhds x ⥤ opens X := full_subcategory_inclusion _ @[simp] lemma inclusion_obj (x : X.α) (U) (p) : (inclusion x).obj ⟨U,p⟩ = U := rfl def map (x : X) : open_nhds (f x) ⥤ open_nhds x := { obj := λ U, ⟨(opens.map f).obj U.1, by tidy⟩, map := λ U V i, (opens.map f).map i } @[simp] lemma map_obj (x : X) (U) (q) : (map f x).obj ⟨U, q⟩ = ⟨(opens.map f).obj U, by tidy⟩ := rfl @[simp] lemma map_id_obj' (x : X) (U) (p) (q) : (map (𝟙 X) x).obj ⟨⟨U, p⟩, q⟩ = ⟨⟨U, p⟩, q⟩ := rfl @[simp] lemma map_id_obj (x : X) (U) : (map (𝟙 X) x).obj U = U := by tidy @[simp] lemma map_id_obj_unop (x : X) (U : (open_nhds x)ᵒᵖ) : (map (𝟙 X) x).obj (unop U) = unop U := by simp @[simp] lemma op_map_id_obj (x : X) (U : (open_nhds x)ᵒᵖ) : (map (𝟙 X) x).op.obj U = U := by simp def inclusion_map_iso (x : X) : inclusion (f x) ⋙ opens.map f ≅ map f x ⋙ inclusion x := nat_iso.of_components (λ U, begin split, exact 𝟙 _, exact 𝟙 _ end) (by tidy) @[simp] lemma inclusion_map_iso_hom (x : X) : (inclusion_map_iso f x).hom = 𝟙 _ := rfl @[simp] lemma inclusion_map_iso_inv (x : X) : (inclusion_map_iso f x).inv = 𝟙 _ := rfl end topological_space.open_nhds
54f6d3ff168a2752021f2261c745584130b4a72c
fa02ed5a3c9c0adee3c26887a16855e7841c668b
/src/data/complex/exponential.lean
9025309e8de7975eb82466e895a8c0b689e3ccda
[ "Apache-2.0" ]
permissive
jjgarzella/mathlib
96a345378c4e0bf26cf604aed84f90329e4896a2
395d8716c3ad03747059d482090e2bb97db612c8
refs/heads/master
1,686,480,124,379
1,625,163,323,000
1,625,163,323,000
281,190,421
2
0
Apache-2.0
1,595,268,170,000
1,595,268,169,000
null
UTF-8
Lean
false
false
61,920
lean
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Abhimanyu Pallavi Sudhir -/ import algebra.geom_sum import data.nat.choose.sum import data.complex.basic /-! # Exponential, trigonometric and hyperbolic trigonometric functions This file contains the definitions of the real and complex exponential, sine, cosine, tangent, hyperbolic sine, hyperbolic cosine, and hyperbolic tangent functions. -/ local notation `abs'` := _root_.abs open is_absolute_value open_locale classical big_operators nat section open real is_absolute_value finset lemma forall_ge_le_of_forall_le_succ {α : Type*} [preorder α] (f : ℕ → α) {m : ℕ} (h : ∀ n ≥ m, f n.succ ≤ f n) : ∀ {l}, ∀ k ≥ m, k ≤ l → f l ≤ f k := begin assume l k hkm hkl, generalize hp : l - k = p, have : l = k + p := add_comm p k ▸ (nat.sub_eq_iff_eq_add hkl).1 hp, subst this, clear hkl hp, induction p with p ih, { simp }, { exact le_trans (h _ (le_trans hkm (nat.le_add_right _ _))) ih } end section variables {α : Type*} {β : Type*} [ring β] [linear_ordered_field α] [archimedean α] {abv : β → α} [is_absolute_value abv] lemma is_cau_of_decreasing_bounded (f : ℕ → α) {a : α} {m : ℕ} (ham : ∀ n ≥ m, abs (f n) ≤ a) (hnm : ∀ n ≥ m, f n.succ ≤ f n) : is_cau_seq abs f := λ ε ε0, let ⟨k, hk⟩ := archimedean.arch a ε0 in have h : ∃ l, ∀ n ≥ m, a - l • ε < f n := ⟨k + k + 1, λ n hnm, lt_of_lt_of_le (show a - (k + (k + 1)) • ε < -abs (f n), from lt_neg.1 $ lt_of_le_of_lt (ham n hnm) (begin rw [neg_sub, lt_sub_iff_add_lt, add_nsmul, add_nsmul, one_nsmul], exact add_lt_add_of_le_of_lt hk (lt_of_le_of_lt hk (lt_add_of_pos_right _ ε0)), end)) (neg_le.2 $ (abs_neg (f n)) ▸ le_abs_self _)⟩, let l := nat.find h in have hl : ∀ (n : ℕ), n ≥ m → f n > a - l • ε := nat.find_spec h, have hl0 : l ≠ 0 := λ hl0, not_lt_of_ge (ham m (le_refl _)) (lt_of_lt_of_le (by have := hl m (le_refl m); simpa [hl0] using this) (le_abs_self (f m))), begin cases not_forall.1 (nat.find_min h (nat.pred_lt hl0)) with i hi, rw [not_imp, not_lt] at hi, existsi i, assume j hj, have hfij : f j ≤ f i := forall_ge_le_of_forall_le_succ f hnm _ hi.1 hj, rw [abs_of_nonpos (sub_nonpos.2 hfij), neg_sub, sub_lt_iff_lt_add'], exact calc f i ≤ a - (nat.pred l) • ε : hi.2 ... = a - l • ε + ε : by conv {to_rhs, rw [← nat.succ_pred_eq_of_pos (nat.pos_of_ne_zero hl0), succ_nsmul', sub_add, add_sub_cancel] } ... < f j + ε : add_lt_add_right (hl j (le_trans hi.1 hj)) _ end lemma is_cau_of_mono_bounded (f : ℕ → α) {a : α} {m : ℕ} (ham : ∀ n ≥ m, abs (f n) ≤ a) (hnm : ∀ n ≥ m, f n ≤ f n.succ) : is_cau_seq abs f := begin refine @eq.rec_on (ℕ → α) _ (is_cau_seq abs) _ _ (-⟨_, @is_cau_of_decreasing_bounded _ _ _ (λ n, -f n) a m (by simpa) (by simpa)⟩ : cau_seq α abs).2, ext, exact neg_neg _ end end section no_archimedean variables {α : Type*} {β : Type*} [ring β] [linear_ordered_field α] {abv : β → α} [is_absolute_value abv] lemma is_cau_series_of_abv_le_cau {f : ℕ → β} {g : ℕ → α} (n : ℕ) : (∀ m, n ≤ m → abv (f m) ≤ g m) → is_cau_seq abs (λ n, ∑ i in range n, g i) → is_cau_seq abv (λ n, ∑ i in range n, f i) := begin assume hm hg ε ε0, cases hg (ε / 2) (div_pos ε0 (by norm_num)) with i hi, existsi max n i, assume j ji, have hi₁ := hi j (le_trans (le_max_right n i) ji), have hi₂ := hi (max n i) (le_max_right n i), have sub_le := abs_sub_le (∑ k in range j, g k) (∑ k in range i, g k) (∑ k in range (max n i), g k), have := add_lt_add hi₁ hi₂, rw [abs_sub_comm (∑ k in range (max n i), g k), add_halves ε] at this, refine lt_of_le_of_lt (le_trans (le_trans _ (le_abs_self _)) sub_le) this, generalize hk : j - max n i = k, clear this hi₂ hi₁ hi ε0 ε hg sub_le, rw nat.sub_eq_iff_eq_add ji at hk, rw hk, clear hk ji j, induction k with k' hi, { simp [abv_zero abv] }, { simp only [nat.succ_add, sum_range_succ_comm, sub_eq_add_neg, add_assoc], refine le_trans (abv_add _ _ _) _, simp only [sub_eq_add_neg] at hi, exact add_le_add (hm _ (le_add_of_nonneg_of_le (nat.zero_le _) (le_max_left _ _))) hi }, end lemma is_cau_series_of_abv_cau {f : ℕ → β} : is_cau_seq abs (λ m, ∑ n in range m, abv (f n)) → is_cau_seq abv (λ m, ∑ n in range m, f n) := is_cau_series_of_abv_le_cau 0 (λ n h, le_refl _) end no_archimedean section variables {α : Type*} {β : Type*} [ring β] [linear_ordered_field α] [archimedean α] {abv : β → α} [is_absolute_value abv] lemma is_cau_geo_series {β : Type*} [field β] {abv : β → α} [is_absolute_value abv] (x : β) (hx1 : abv x < 1) : is_cau_seq abv (λ n, ∑ m in range n, x ^ m) := have hx1' : abv x ≠ 1 := λ h, by simpa [h, lt_irrefl] using hx1, is_cau_series_of_abv_cau begin simp only [abv_pow abv] {eta := ff}, have : (λ (m : ℕ), ∑ n in range m, (abv x) ^ n) = λ m, geom_sum (abv x) m := rfl, simp only [this, geom_sum_eq hx1'] {eta := ff}, conv in (_ / _) { rw [← neg_div_neg_eq, neg_sub, neg_sub] }, refine @is_cau_of_mono_bounded _ _ _ _ ((1 : α) / (1 - abv x)) 0 _ _, { assume n hn, rw abs_of_nonneg, refine div_le_div_of_le (le_of_lt $ sub_pos.2 hx1) (sub_le_self _ (abv_pow abv x n ▸ abv_nonneg _ _)), refine div_nonneg (sub_nonneg.2 _) (sub_nonneg.2 $ le_of_lt hx1), clear hn, induction n with n ih, { simp }, { rw [pow_succ, ← one_mul (1 : α)], refine mul_le_mul (le_of_lt hx1) ih (abv_pow abv x n ▸ abv_nonneg _ _) (by norm_num) } }, { assume n hn, refine div_le_div_of_le (le_of_lt $ sub_pos.2 hx1) (sub_le_sub_left _ _), rw [← one_mul (_ ^ n), pow_succ], exact mul_le_mul_of_nonneg_right (le_of_lt hx1) (pow_nonneg (abv_nonneg _ _) _) } end lemma is_cau_geo_series_const (a : α) {x : α} (hx1 : abs x < 1) : is_cau_seq abs (λ m, ∑ n in range m, a * x ^ n) := have is_cau_seq abs (λ m, a * ∑ n in range m, x ^ n) := (cau_seq.const abs a * ⟨_, is_cau_geo_series x hx1⟩).2, by simpa only [mul_sum] lemma series_ratio_test {f : ℕ → β} (n : ℕ) (r : α) (hr0 : 0 ≤ r) (hr1 : r < 1) (h : ∀ m, n ≤ m → abv (f m.succ) ≤ r * abv (f m)) : is_cau_seq abv (λ m, ∑ n in range m, f n) := have har1 : abs r < 1, by rwa abs_of_nonneg hr0, begin refine is_cau_series_of_abv_le_cau n.succ _ (is_cau_geo_series_const (abv (f n.succ) * r⁻¹ ^ n.succ) har1), assume m hmn, cases classical.em (r = 0) with r_zero r_ne_zero, { have m_pos := lt_of_lt_of_le (nat.succ_pos n) hmn, have := h m.pred (nat.le_of_succ_le_succ (by rwa [nat.succ_pred_eq_of_pos m_pos])), simpa [r_zero, nat.succ_pred_eq_of_pos m_pos, pow_succ] }, generalize hk : m - n.succ = k, have r_pos : 0 < r := lt_of_le_of_ne hr0 (ne.symm r_ne_zero), replace hk : m = k + n.succ := (nat.sub_eq_iff_eq_add hmn).1 hk, induction k with k ih generalizing m n, { rw [hk, zero_add, mul_right_comm, inv_pow' _ _, ← div_eq_mul_inv, mul_div_cancel], exact (ne_of_lt (pow_pos r_pos _)).symm }, { have kn : k + n.succ ≥ n.succ, by rw ← zero_add n.succ; exact add_le_add (zero_le _) (by simp), rw [hk, nat.succ_add, pow_succ' r, ← mul_assoc], exact le_trans (by rw mul_comm; exact h _ (nat.le_of_succ_le kn)) (mul_le_mul_of_nonneg_right (ih (k + n.succ) n h kn rfl) hr0) } end lemma sum_range_diag_flip {α : Type*} [add_comm_monoid α] (n : ℕ) (f : ℕ → ℕ → α) : ∑ m in range n, ∑ k in range (m + 1), f k (m - k) = ∑ m in range n, ∑ k in range (n - m), f m k := by rw [sum_sigma', sum_sigma']; exact sum_bij (λ a _, ⟨a.2, a.1 - a.2⟩) (λ a ha, have h₁ : a.1 < n := mem_range.1 (mem_sigma.1 ha).1, have h₂ : a.2 < nat.succ a.1 := mem_range.1 (mem_sigma.1 ha).2, mem_sigma.2 ⟨mem_range.2 (lt_of_lt_of_le h₂ h₁), mem_range.2 ((nat.sub_lt_sub_right_iff (nat.le_of_lt_succ h₂)).2 h₁)⟩) (λ _ _, rfl) (λ ⟨a₁, a₂⟩ ⟨b₁, b₂⟩ ha hb h, have ha : a₁ < n ∧ a₂ ≤ a₁ := ⟨mem_range.1 (mem_sigma.1 ha).1, nat.le_of_lt_succ (mem_range.1 (mem_sigma.1 ha).2)⟩, have hb : b₁ < n ∧ b₂ ≤ b₁ := ⟨mem_range.1 (mem_sigma.1 hb).1, nat.le_of_lt_succ (mem_range.1 (mem_sigma.1 hb).2)⟩, have h : a₂ = b₂ ∧ _ := sigma.mk.inj h, have h' : a₁ = b₁ - b₂ + a₂ := (nat.sub_eq_iff_eq_add ha.2).1 (eq_of_heq h.2), sigma.mk.inj_iff.2 ⟨nat.sub_add_cancel hb.2 ▸ h'.symm ▸ h.1 ▸ rfl, (heq_of_eq h.1)⟩) (λ ⟨a₁, a₂⟩ ha, have ha : a₁ < n ∧ a₂ < n - a₁ := ⟨mem_range.1 (mem_sigma.1 ha).1, (mem_range.1 (mem_sigma.1 ha).2)⟩, ⟨⟨a₂ + a₁, a₁⟩, ⟨mem_sigma.2 ⟨mem_range.2 (nat.lt_sub_right_iff_add_lt.1 ha.2), mem_range.2 (nat.lt_succ_of_le (nat.le_add_left _ _))⟩, sigma.mk.inj_iff.2 ⟨rfl, heq_of_eq (nat.add_sub_cancel _ _).symm⟩⟩⟩) lemma sum_range_sub_sum_range {α : Type*} [add_comm_group α] {f : ℕ → α} {n m : ℕ} (hnm : n ≤ m) : ∑ k in range m, f k - ∑ k in range n, f k = ∑ k in (range m).filter (λ k, n ≤ k), f k := begin rw [← sum_sdiff (@filter_subset _ (λ k, n ≤ k) _ (range m)), sub_eq_iff_eq_add, ← eq_sub_iff_add_eq, add_sub_cancel'], refine finset.sum_congr (finset.ext $ λ a, ⟨λ h, by simp at *; finish, λ h, have ham : a < m := lt_of_lt_of_le (mem_range.1 h) hnm, by simp * at *⟩) (λ _ _, rfl), end end section no_archimedean variables {α : Type*} {β : Type*} [ring β] [linear_ordered_field α] {abv : β → α} [is_absolute_value abv] lemma abv_sum_le_sum_abv {γ : Type*} (f : γ → β) (s : finset γ) : abv (∑ k in s, f k) ≤ ∑ k in s, abv (f k) := by haveI := classical.dec_eq γ; exact finset.induction_on s (by simp [abv_zero abv]) (λ a s has ih, by rw [sum_insert has, sum_insert has]; exact le_trans (abv_add abv _ _) (add_le_add_left ih _)) lemma cauchy_product {a b : ℕ → β} (ha : is_cau_seq abs (λ m, ∑ n in range m, abv (a n))) (hb : is_cau_seq abv (λ m, ∑ n in range m, b n)) (ε : α) (ε0 : 0 < ε) : ∃ i : ℕ, ∀ j ≥ i, abv ((∑ k in range j, a k) * (∑ k in range j, b k) - ∑ n in range j, ∑ m in range (n + 1), a m * b (n - m)) < ε := let ⟨Q, hQ⟩ := cau_seq.bounded ⟨_, hb⟩ in let ⟨P, hP⟩ := cau_seq.bounded ⟨_, ha⟩ in have hP0 : 0 < P, from lt_of_le_of_lt (abs_nonneg _) (hP 0), have hPε0 : 0 < ε / (2 * P), from div_pos ε0 (mul_pos (show (2 : α) > 0, from by norm_num) hP0), let ⟨N, hN⟩ := cau_seq.cauchy₂ ⟨_, hb⟩ hPε0 in have hQε0 : 0 < ε / (4 * Q), from div_pos ε0 (mul_pos (show (0 : α) < 4, by norm_num) (lt_of_le_of_lt (abv_nonneg _ _) (hQ 0))), let ⟨M, hM⟩ := cau_seq.cauchy₂ ⟨_, ha⟩ hQε0 in ⟨2 * (max N M + 1), λ K hK, have h₁ : ∑ m in range K, ∑ k in range (m + 1), a k * b (m - k) = ∑ m in range K, ∑ n in range (K - m), a m * b n, by simpa using sum_range_diag_flip K (λ m n, a m * b n), have h₂ : (λ i, ∑ k in range (K - i), a i * b k) = (λ i, a i * ∑ k in range (K - i), b k), by simp [finset.mul_sum], have h₃ : ∑ i in range K, a i * ∑ k in range (K - i), b k = ∑ i in range K, a i * (∑ k in range (K - i), b k - ∑ k in range K, b k) + ∑ i in range K, a i * ∑ k in range K, b k, by rw ← sum_add_distrib; simp [(mul_add _ _ _).symm], have two_mul_two : (4 : α) = 2 * 2, by norm_num, have hQ0 : Q ≠ 0, from λ h, by simpa [h, lt_irrefl] using hQε0, have h2Q0 : 2 * Q ≠ 0, from mul_ne_zero two_ne_zero hQ0, have hε : ε / (2 * P) * P + ε / (4 * Q) * (2 * Q) = ε, by rw [← div_div_eq_div_mul, div_mul_cancel _ (ne.symm (ne_of_lt hP0)), two_mul_two, mul_assoc, ← div_div_eq_div_mul, div_mul_cancel _ h2Q0, add_halves], have hNMK : max N M + 1 < K, from lt_of_lt_of_le (by rw two_mul; exact lt_add_of_pos_left _ (nat.succ_pos _)) hK, have hKN : N < K, from calc N ≤ max N M : le_max_left _ _ ... < max N M + 1 : nat.lt_succ_self _ ... < K : hNMK, have hsumlesum : ∑ i in range (max N M + 1), abv (a i) * abv (∑ k in range (K - i), b k - ∑ k in range K, b k) ≤ ∑ i in range (max N M + 1), abv (a i) * (ε / (2 * P)), from sum_le_sum (λ m hmJ, mul_le_mul_of_nonneg_left (le_of_lt (hN (K - m) K (nat.le_sub_left_of_add_le (le_trans (by rw two_mul; exact add_le_add (le_of_lt (mem_range.1 hmJ)) (le_trans (le_max_left _ _) (le_of_lt (lt_add_one _)))) hK)) (le_of_lt hKN))) (abv_nonneg abv _)), have hsumltP : ∑ n in range (max N M + 1), abv (a n) < P := calc ∑ n in range (max N M + 1), abv (a n) = abs (∑ n in range (max N M + 1), abv (a n)) : eq.symm (abs_of_nonneg (sum_nonneg (λ x h, abv_nonneg abv (a x)))) ... < P : hP (max N M + 1), begin rw [h₁, h₂, h₃, sum_mul, ← sub_sub, sub_right_comm, sub_self, zero_sub, abv_neg abv], refine lt_of_le_of_lt (abv_sum_le_sum_abv _ _) _, suffices : ∑ i in range (max N M + 1), abv (a i) * abv (∑ k in range (K - i), b k - ∑ k in range K, b k) + (∑ i in range K, abv (a i) * abv (∑ k in range (K - i), b k - ∑ k in range K, b k) - ∑ i in range (max N M + 1), abv (a i) * abv (∑ k in range (K - i), b k - ∑ k in range K, b k)) < ε / (2 * P) * P + ε / (4 * Q) * (2 * Q), { rw hε at this, simpa [abv_mul abv] }, refine add_lt_add (lt_of_le_of_lt hsumlesum (by rw [← sum_mul, mul_comm]; exact (mul_lt_mul_left hPε0).mpr hsumltP)) _, rw sum_range_sub_sum_range (le_of_lt hNMK), exact calc ∑ i in (range K).filter (λ k, max N M + 1 ≤ k), abv (a i) * abv (∑ k in range (K - i), b k - ∑ k in range K, b k) ≤ ∑ i in (range K).filter (λ k, max N M + 1 ≤ k), abv (a i) * (2 * Q) : sum_le_sum (λ n hn, begin refine mul_le_mul_of_nonneg_left _ (abv_nonneg _ _), rw sub_eq_add_neg, refine le_trans (abv_add _ _ _) _, rw [two_mul, abv_neg abv], exact add_le_add (le_of_lt (hQ _)) (le_of_lt (hQ _)), end) ... < ε / (4 * Q) * (2 * Q) : by rw [← sum_mul, ← sum_range_sub_sum_range (le_of_lt hNMK)]; refine (mul_lt_mul_right $ by rw two_mul; exact add_pos (lt_of_le_of_lt (abv_nonneg _ _) (hQ 0)) (lt_of_le_of_lt (abv_nonneg _ _) (hQ 0))).2 (lt_of_le_of_lt (le_abs_self _) (hM _ _ (le_trans (nat.le_succ_of_le (le_max_right _ _)) (le_of_lt hNMK)) (nat.le_succ_of_le (le_max_right _ _)))) end⟩ end no_archimedean end open finset open cau_seq namespace complex lemma is_cau_abs_exp (z : ℂ) : is_cau_seq _root_.abs (λ n, ∑ m in range n, abs (z ^ m / m!)) := let ⟨n, hn⟩ := exists_nat_gt (abs z) in have hn0 : (0 : ℝ) < n, from lt_of_le_of_lt (abs_nonneg _) hn, series_ratio_test n (complex.abs z / n) (div_nonneg (complex.abs_nonneg _) (le_of_lt hn0)) (by rwa [div_lt_iff hn0, one_mul]) (λ m hm, by rw [abs_abs, abs_abs, nat.factorial_succ, pow_succ, mul_comm m.succ, nat.cast_mul, ← div_div_eq_div_mul, mul_div_assoc, mul_div_right_comm, abs_mul, abs_div, abs_cast_nat]; exact mul_le_mul_of_nonneg_right (div_le_div_of_le_left (abs_nonneg _) hn0 (nat.cast_le.2 (le_trans hm (nat.le_succ _)))) (abs_nonneg _)) noncomputable theory lemma is_cau_exp (z : ℂ) : is_cau_seq abs (λ n, ∑ m in range n, z ^ m / m!) := is_cau_series_of_abv_cau (is_cau_abs_exp z) /-- The Cauchy sequence consisting of partial sums of the Taylor series of the complex exponential function -/ @[pp_nodot] def exp' (z : ℂ) : cau_seq ℂ complex.abs := ⟨λ n, ∑ m in range n, z ^ m / m!, is_cau_exp z⟩ /-- The complex exponential function, defined via its Taylor series -/ @[pp_nodot] def exp (z : ℂ) : ℂ := lim (exp' z) /-- The complex sine function, defined via `exp` -/ @[pp_nodot] def sin (z : ℂ) : ℂ := ((exp (-z * I) - exp (z * I)) * I) / 2 /-- The complex cosine function, defined via `exp` -/ @[pp_nodot] def cos (z : ℂ) : ℂ := (exp (z * I) + exp (-z * I)) / 2 /-- The complex tangent function, defined as `sin z / cos z` -/ @[pp_nodot] def tan (z : ℂ) : ℂ := sin z / cos z /-- The complex hyperbolic sine function, defined via `exp` -/ @[pp_nodot] def sinh (z : ℂ) : ℂ := (exp z - exp (-z)) / 2 /-- The complex hyperbolic cosine function, defined via `exp` -/ @[pp_nodot] def cosh (z : ℂ) : ℂ := (exp z + exp (-z)) / 2 /-- The complex hyperbolic tangent function, defined as `sinh z / cosh z` -/ @[pp_nodot] def tanh (z : ℂ) : ℂ := sinh z / cosh z end complex namespace real open complex /-- The real exponential function, defined as the real part of the complex exponential -/ @[pp_nodot] def exp (x : ℝ) : ℝ := (exp x).re /-- The real sine function, defined as the real part of the complex sine -/ @[pp_nodot] def sin (x : ℝ) : ℝ := (sin x).re /-- The real cosine function, defined as the real part of the complex cosine -/ @[pp_nodot] def cos (x : ℝ) : ℝ := (cos x).re /-- The real tangent function, defined as the real part of the complex tangent -/ @[pp_nodot] def tan (x : ℝ) : ℝ := (tan x).re /-- The real hypebolic sine function, defined as the real part of the complex hyperbolic sine -/ @[pp_nodot] def sinh (x : ℝ) : ℝ := (sinh x).re /-- The real hypebolic cosine function, defined as the real part of the complex hyperbolic cosine -/ @[pp_nodot] def cosh (x : ℝ) : ℝ := (cosh x).re /-- The real hypebolic tangent function, defined as the real part of the complex hyperbolic tangent -/ @[pp_nodot] def tanh (x : ℝ) : ℝ := (tanh x).re end real namespace complex variables (x y : ℂ) @[simp] lemma exp_zero : exp 0 = 1 := lim_eq_of_equiv_const $ λ ε ε0, ⟨1, λ j hj, begin convert ε0, cases j, { exact absurd hj (not_le_of_gt zero_lt_one) }, { dsimp [exp'], induction j with j ih, { dsimp [exp']; simp }, { rw ← ih dec_trivial, simp only [sum_range_succ, pow_succ], simp } } end⟩ lemma exp_add : exp (x + y) = exp x * exp y := show lim (⟨_, is_cau_exp (x + y)⟩ : cau_seq ℂ abs) = lim (show cau_seq ℂ abs, from ⟨_, is_cau_exp x⟩) * lim (show cau_seq ℂ abs, from ⟨_, is_cau_exp y⟩), from have hj : ∀ j : ℕ, ∑ m in range j, (x + y) ^ m / m! = ∑ i in range j, ∑ k in range (i + 1), x ^ k / k! * (y ^ (i - k) / (i - k)!), from assume j, finset.sum_congr rfl (λ m hm, begin rw [add_pow, div_eq_mul_inv, sum_mul], refine finset.sum_congr rfl (λ i hi, _), have h₁ : (m.choose i : ℂ) ≠ 0 := nat.cast_ne_zero.2 (pos_iff_ne_zero.1 (nat.choose_pos (nat.le_of_lt_succ (mem_range.1 hi)))), have h₂ := nat.choose_mul_factorial_mul_factorial (nat.le_of_lt_succ $ finset.mem_range.1 hi), rw [← h₂, nat.cast_mul, nat.cast_mul, mul_inv', mul_inv'], simp only [mul_left_comm (m.choose i : ℂ), mul_assoc, mul_left_comm (m.choose i : ℂ)⁻¹, mul_comm (m.choose i : ℂ)], rw inv_mul_cancel h₁, simp [div_eq_mul_inv, mul_comm, mul_assoc, mul_left_comm] end), by rw lim_mul_lim; exact eq.symm (lim_eq_lim_of_equiv (by dsimp; simp only [hj]; exact cauchy_product (is_cau_abs_exp x) (is_cau_exp y))) attribute [irreducible] complex.exp lemma exp_list_sum (l : list ℂ) : exp l.sum = (l.map exp).prod := @monoid_hom.map_list_prod (multiplicative ℂ) ℂ _ _ ⟨exp, exp_zero, exp_add⟩ l lemma exp_multiset_sum (s : multiset ℂ) : exp s.sum = (s.map exp).prod := @monoid_hom.map_multiset_prod (multiplicative ℂ) ℂ _ _ ⟨exp, exp_zero, exp_add⟩ s lemma exp_sum {α : Type*} (s : finset α) (f : α → ℂ) : exp (∑ x in s, f x) = ∏ x in s, exp (f x) := @monoid_hom.map_prod (multiplicative ℂ) α ℂ _ _ ⟨exp, exp_zero, exp_add⟩ f s lemma exp_nat_mul (x : ℂ) : ∀ n : ℕ, exp(n*x) = (exp x)^n | 0 := by rw [nat.cast_zero, zero_mul, exp_zero, pow_zero] | (nat.succ n) := by rw [pow_succ', nat.cast_add_one, add_mul, exp_add, ←exp_nat_mul, one_mul] lemma exp_ne_zero : exp x ≠ 0 := λ h, zero_ne_one $ by rw [← exp_zero, ← add_neg_self x, exp_add, h]; simp lemma exp_neg : exp (-x) = (exp x)⁻¹ := by rw [← mul_right_inj' (exp_ne_zero x), ← exp_add]; simp [mul_inv_cancel (exp_ne_zero x)] lemma exp_sub : exp (x - y) = exp x / exp y := by simp [sub_eq_add_neg, exp_add, exp_neg, div_eq_mul_inv] lemma exp_int_mul (z : ℂ) (n : ℤ) : complex.exp (n * z) = (complex.exp z) ^ n := begin cases n, { apply complex.exp_nat_mul }, { simpa [complex.exp_neg, add_comm, ← neg_mul_eq_neg_mul_symm] using complex.exp_nat_mul (-z) (1 + n) }, end @[simp] lemma exp_conj : exp (conj x) = conj (exp x) := begin dsimp [exp], rw [← lim_conj], refine congr_arg lim (cau_seq.ext (λ _, _)), dsimp [exp', function.comp, cau_seq_conj], rw conj.map_sum, refine sum_congr rfl (λ n hn, _), rw [conj.map_div, conj.map_pow, ← of_real_nat_cast, conj_of_real] end @[simp] lemma of_real_exp_of_real_re (x : ℝ) : ((exp x).re : ℂ) = exp x := eq_conj_iff_re.1 $ by rw [← exp_conj, conj_of_real] @[simp, norm_cast] lemma of_real_exp (x : ℝ) : (real.exp x : ℂ) = exp x := of_real_exp_of_real_re _ @[simp] lemma exp_of_real_im (x : ℝ) : (exp x).im = 0 := by rw [← of_real_exp_of_real_re, of_real_im] lemma exp_of_real_re (x : ℝ) : (exp x).re = real.exp x := rfl lemma two_sinh : 2 * sinh x = exp x - exp (-x) := mul_div_cancel' _ two_ne_zero' lemma two_cosh : 2 * cosh x = exp x + exp (-x) := mul_div_cancel' _ two_ne_zero' @[simp] lemma sinh_zero : sinh 0 = 0 := by simp [sinh] @[simp] lemma sinh_neg : sinh (-x) = -sinh x := by simp [sinh, exp_neg, (neg_div _ _).symm, add_mul] private lemma sinh_add_aux {a b c d : ℂ} : (a - b) * (c + d) + (a + b) * (c - d) = 2 * (a * c - b * d) := by ring lemma sinh_add : sinh (x + y) = sinh x * cosh y + cosh x * sinh y := begin rw [← mul_right_inj' (@two_ne_zero' ℂ _ _ _), two_sinh, exp_add, neg_add, exp_add, eq_comm, mul_add, ← mul_assoc, two_sinh, mul_left_comm, two_sinh, ← mul_right_inj' (@two_ne_zero' ℂ _ _ _), mul_add, mul_left_comm, two_cosh, ← mul_assoc, two_cosh], exact sinh_add_aux end @[simp] lemma cosh_zero : cosh 0 = 1 := by simp [cosh] @[simp] lemma cosh_neg : cosh (-x) = cosh x := by simp [add_comm, cosh, exp_neg] private lemma cosh_add_aux {a b c d : ℂ} : (a + b) * (c + d) + (a - b) * (c - d) = 2 * (a * c + b * d) := by ring lemma cosh_add : cosh (x + y) = cosh x * cosh y + sinh x * sinh y := begin rw [← mul_right_inj' (@two_ne_zero' ℂ _ _ _), two_cosh, exp_add, neg_add, exp_add, eq_comm, mul_add, ← mul_assoc, two_cosh, ← mul_assoc, two_sinh, ← mul_right_inj' (@two_ne_zero' ℂ _ _ _), mul_add, mul_left_comm, two_cosh, mul_left_comm, two_sinh], exact cosh_add_aux end lemma sinh_sub : sinh (x - y) = sinh x * cosh y - cosh x * sinh y := by simp [sub_eq_add_neg, sinh_add, sinh_neg, cosh_neg] lemma cosh_sub : cosh (x - y) = cosh x * cosh y - sinh x * sinh y := by simp [sub_eq_add_neg, cosh_add, sinh_neg, cosh_neg] lemma sinh_conj : sinh (conj x) = conj (sinh x) := by rw [sinh, ← conj.map_neg, exp_conj, exp_conj, ← conj.map_sub, sinh, conj.map_div, conj_bit0, conj.map_one] @[simp] lemma of_real_sinh_of_real_re (x : ℝ) : ((sinh x).re : ℂ) = sinh x := eq_conj_iff_re.1 $ by rw [← sinh_conj, conj_of_real] @[simp, norm_cast] lemma of_real_sinh (x : ℝ) : (real.sinh x : ℂ) = sinh x := of_real_sinh_of_real_re _ @[simp] lemma sinh_of_real_im (x : ℝ) : (sinh x).im = 0 := by rw [← of_real_sinh_of_real_re, of_real_im] lemma sinh_of_real_re (x : ℝ) : (sinh x).re = real.sinh x := rfl lemma cosh_conj : cosh (conj x) = conj (cosh x) := begin rw [cosh, ← conj.map_neg, exp_conj, exp_conj, ← conj.map_add, cosh, conj.map_div, conj_bit0, conj.map_one] end @[simp] lemma of_real_cosh_of_real_re (x : ℝ) : ((cosh x).re : ℂ) = cosh x := eq_conj_iff_re.1 $ by rw [← cosh_conj, conj_of_real] @[simp, norm_cast] lemma of_real_cosh (x : ℝ) : (real.cosh x : ℂ) = cosh x := of_real_cosh_of_real_re _ @[simp] lemma cosh_of_real_im (x : ℝ) : (cosh x).im = 0 := by rw [← of_real_cosh_of_real_re, of_real_im] lemma cosh_of_real_re (x : ℝ) : (cosh x).re = real.cosh x := rfl lemma tanh_eq_sinh_div_cosh : tanh x = sinh x / cosh x := rfl @[simp] lemma tanh_zero : tanh 0 = 0 := by simp [tanh] @[simp] lemma tanh_neg : tanh (-x) = -tanh x := by simp [tanh, neg_div] lemma tanh_conj : tanh (conj x) = conj (tanh x) := by rw [tanh, sinh_conj, cosh_conj, ← conj.map_div, tanh] @[simp] lemma of_real_tanh_of_real_re (x : ℝ) : ((tanh x).re : ℂ) = tanh x := eq_conj_iff_re.1 $ by rw [← tanh_conj, conj_of_real] @[simp, norm_cast] lemma of_real_tanh (x : ℝ) : (real.tanh x : ℂ) = tanh x := of_real_tanh_of_real_re _ @[simp] lemma tanh_of_real_im (x : ℝ) : (tanh x).im = 0 := by rw [← of_real_tanh_of_real_re, of_real_im] lemma tanh_of_real_re (x : ℝ) : (tanh x).re = real.tanh x := rfl lemma cosh_add_sinh : cosh x + sinh x = exp x := by rw [← mul_right_inj' (@two_ne_zero' ℂ _ _ _), mul_add, two_cosh, two_sinh, add_add_sub_cancel, two_mul] lemma sinh_add_cosh : sinh x + cosh x = exp x := by rw [add_comm, cosh_add_sinh] lemma cosh_sub_sinh : cosh x - sinh x = exp (-x) := by rw [← mul_right_inj' (@two_ne_zero' ℂ _ _ _), mul_sub, two_cosh, two_sinh, add_sub_sub_cancel, two_mul] lemma cosh_sq_sub_sinh_sq : cosh x ^ 2 - sinh x ^ 2 = 1 := by rw [sq_sub_sq, cosh_add_sinh, cosh_sub_sinh, ← exp_add, add_neg_self, exp_zero] lemma cosh_sq : cosh x ^ 2 = sinh x ^ 2 + 1 := begin rw ← cosh_sq_sub_sinh_sq x, ring end lemma sinh_sq : sinh x ^ 2 = cosh x ^ 2 - 1 := begin rw ← cosh_sq_sub_sinh_sq x, ring end lemma cosh_two_mul : cosh (2 * x) = cosh x ^ 2 + sinh x ^ 2 := by rw [two_mul, cosh_add, sq, sq] lemma sinh_two_mul : sinh (2 * x) = 2 * sinh x * cosh x := begin rw [two_mul, sinh_add], ring end lemma cosh_three_mul : cosh (3 * x) = 4 * cosh x ^ 3 - 3 * cosh x := begin have h1 : x + 2 * x = 3 * x, by ring, rw [← h1, cosh_add x (2 * x)], simp only [cosh_two_mul, sinh_two_mul], have h2 : sinh x * (2 * sinh x * cosh x) = 2 * cosh x * sinh x ^ 2, by ring, rw [h2, sinh_sq], ring end lemma sinh_three_mul : sinh (3 * x) = 4 * sinh x ^ 3 + 3 * sinh x := begin have h1 : x + 2 * x = 3 * x, by ring, rw [← h1, sinh_add x (2 * x)], simp only [cosh_two_mul, sinh_two_mul], have h2 : cosh x * (2 * sinh x * cosh x) = 2 * sinh x * cosh x ^ 2, by ring, rw [h2, cosh_sq], ring, end @[simp] lemma sin_zero : sin 0 = 0 := by simp [sin] @[simp] lemma sin_neg : sin (-x) = -sin x := by simp [sin, sub_eq_add_neg, exp_neg, (neg_div _ _).symm, add_mul] lemma two_sin : 2 * sin x = (exp (-x * I) - exp (x * I)) * I := mul_div_cancel' _ two_ne_zero' lemma two_cos : 2 * cos x = exp (x * I) + exp (-x * I) := mul_div_cancel' _ two_ne_zero' lemma sinh_mul_I : sinh (x * I) = sin x * I := by rw [← mul_right_inj' (@two_ne_zero' ℂ _ _ _), two_sinh, ← mul_assoc, two_sin, mul_assoc, I_mul_I, mul_neg_one, neg_sub, neg_mul_eq_neg_mul] lemma cosh_mul_I : cosh (x * I) = cos x := by rw [← mul_right_inj' (@two_ne_zero' ℂ _ _ _), two_cosh, two_cos, neg_mul_eq_neg_mul] lemma tanh_mul_I : tanh (x * I) = tan x * I := by rw [tanh_eq_sinh_div_cosh, cosh_mul_I, sinh_mul_I, mul_div_right_comm, tan] lemma cos_mul_I : cos (x * I) = cosh x := by rw ← cosh_mul_I; ring_nf; simp lemma sin_mul_I : sin (x * I) = sinh x * I := have h : I * sin (x * I) = -sinh x := by { rw [mul_comm, ← sinh_mul_I], ring_nf, simp }, by simpa only [neg_mul_eq_neg_mul_symm, div_I, neg_neg] using cancel_factors.cancel_factors_eq_div h I_ne_zero lemma tan_mul_I : tan (x * I) = tanh x * I := by rw [tan, sin_mul_I, cos_mul_I, mul_div_right_comm, tanh_eq_sinh_div_cosh] lemma sin_add : sin (x + y) = sin x * cos y + cos x * sin y := by rw [← mul_left_inj' I_ne_zero, ← sinh_mul_I, add_mul, add_mul, mul_right_comm, ← sinh_mul_I, mul_assoc, ← sinh_mul_I, ← cosh_mul_I, ← cosh_mul_I, sinh_add] @[simp] lemma cos_zero : cos 0 = 1 := by simp [cos] @[simp] lemma cos_neg : cos (-x) = cos x := by simp [cos, sub_eq_add_neg, exp_neg, add_comm] private lemma cos_add_aux {a b c d : ℂ} : (a + b) * (c + d) - (b - a) * (d - c) * (-1) = 2 * (a * c + b * d) := by ring lemma cos_add : cos (x + y) = cos x * cos y - sin x * sin y := by rw [← cosh_mul_I, add_mul, cosh_add, cosh_mul_I, cosh_mul_I, sinh_mul_I, sinh_mul_I, mul_mul_mul_comm, I_mul_I, mul_neg_one, sub_eq_add_neg] lemma sin_sub : sin (x - y) = sin x * cos y - cos x * sin y := by simp [sub_eq_add_neg, sin_add, sin_neg, cos_neg] lemma cos_sub : cos (x - y) = cos x * cos y + sin x * sin y := by simp [sub_eq_add_neg, cos_add, sin_neg, cos_neg] lemma sin_add_mul_I (x y : ℂ) : sin (x + y*I) = sin x * cosh y + cos x * sinh y * I := by rw [sin_add, cos_mul_I, sin_mul_I, mul_assoc] lemma sin_eq (z : ℂ) : sin z = sin z.re * cosh z.im + cos z.re * sinh z.im * I := by convert sin_add_mul_I z.re z.im; exact (re_add_im z).symm lemma cos_add_mul_I (x y : ℂ) : cos (x + y*I) = cos x * cosh y - sin x * sinh y * I := by rw [cos_add, cos_mul_I, sin_mul_I, mul_assoc] lemma cos_eq (z : ℂ) : cos z = cos z.re * cosh z.im - sin z.re * sinh z.im * I := by convert cos_add_mul_I z.re z.im; exact (re_add_im z).symm theorem sin_sub_sin : sin x - sin y = 2 * sin((x - y)/2) * cos((x + y)/2) := begin have s1 := sin_add ((x + y) / 2) ((x - y) / 2), have s2 := sin_sub ((x + y) / 2) ((x - y) / 2), rw [div_add_div_same, add_sub, add_right_comm, add_sub_cancel, half_add_self] at s1, rw [div_sub_div_same, ←sub_add, add_sub_cancel', half_add_self] at s2, rw [s1, s2], ring end theorem cos_sub_cos : cos x - cos y = -2 * sin((x + y)/2) * sin((x - y)/2) := begin have s1 := cos_add ((x + y) / 2) ((x - y) / 2), have s2 := cos_sub ((x + y) / 2) ((x - y) / 2), rw [div_add_div_same, add_sub, add_right_comm, add_sub_cancel, half_add_self] at s1, rw [div_sub_div_same, ←sub_add, add_sub_cancel', half_add_self] at s2, rw [s1, s2], ring, end lemma cos_add_cos : cos x + cos y = 2 * cos ((x + y) / 2) * cos ((x - y) / 2) := begin have h2 : (2:ℂ) ≠ 0 := by norm_num, calc cos x + cos y = cos ((x + y) / 2 + (x - y) / 2) + cos ((x + y) / 2 - (x - y) / 2) : _ ... = (cos ((x + y) / 2) * cos ((x - y) / 2) - sin ((x + y) / 2) * sin ((x - y) / 2)) + (cos ((x + y) / 2) * cos ((x - y) / 2) + sin ((x + y) / 2) * sin ((x - y) / 2)) : _ ... = 2 * cos ((x + y) / 2) * cos ((x - y) / 2) : _, { congr; field_simp [h2]; ring }, { rw [cos_add, cos_sub] }, ring, end lemma sin_conj : sin (conj x) = conj (sin x) := by rw [← mul_left_inj' I_ne_zero, ← sinh_mul_I, ← conj_neg_I, ← conj.map_mul, ← conj.map_mul, sinh_conj, mul_neg_eq_neg_mul_symm, sinh_neg, sinh_mul_I, mul_neg_eq_neg_mul_symm] @[simp] lemma of_real_sin_of_real_re (x : ℝ) : ((sin x).re : ℂ) = sin x := eq_conj_iff_re.1 $ by rw [← sin_conj, conj_of_real] @[simp, norm_cast] lemma of_real_sin (x : ℝ) : (real.sin x : ℂ) = sin x := of_real_sin_of_real_re _ @[simp] lemma sin_of_real_im (x : ℝ) : (sin x).im = 0 := by rw [← of_real_sin_of_real_re, of_real_im] lemma sin_of_real_re (x : ℝ) : (sin x).re = real.sin x := rfl lemma cos_conj : cos (conj x) = conj (cos x) := by rw [← cosh_mul_I, ← conj_neg_I, ← conj.map_mul, ← cosh_mul_I, cosh_conj, mul_neg_eq_neg_mul_symm, cosh_neg] @[simp] lemma of_real_cos_of_real_re (x : ℝ) : ((cos x).re : ℂ) = cos x := eq_conj_iff_re.1 $ by rw [← cos_conj, conj_of_real] @[simp, norm_cast] lemma of_real_cos (x : ℝ) : (real.cos x : ℂ) = cos x := of_real_cos_of_real_re _ @[simp] lemma cos_of_real_im (x : ℝ) : (cos x).im = 0 := by rw [← of_real_cos_of_real_re, of_real_im] lemma cos_of_real_re (x : ℝ) : (cos x).re = real.cos x := rfl @[simp] lemma tan_zero : tan 0 = 0 := by simp [tan] lemma tan_eq_sin_div_cos : tan x = sin x / cos x := rfl lemma tan_mul_cos {x : ℂ} (hx : cos x ≠ 0) : tan x * cos x = sin x := by rw [tan_eq_sin_div_cos, div_mul_cancel _ hx] @[simp] lemma tan_neg : tan (-x) = -tan x := by simp [tan, neg_div] lemma tan_conj : tan (conj x) = conj (tan x) := by rw [tan, sin_conj, cos_conj, ← conj.map_div, tan] @[simp] lemma of_real_tan_of_real_re (x : ℝ) : ((tan x).re : ℂ) = tan x := eq_conj_iff_re.1 $ by rw [← tan_conj, conj_of_real] @[simp, norm_cast] lemma of_real_tan (x : ℝ) : (real.tan x : ℂ) = tan x := of_real_tan_of_real_re _ @[simp] lemma tan_of_real_im (x : ℝ) : (tan x).im = 0 := by rw [← of_real_tan_of_real_re, of_real_im] lemma tan_of_real_re (x : ℝ) : (tan x).re = real.tan x := rfl lemma cos_add_sin_I : cos x + sin x * I = exp (x * I) := by rw [← cosh_add_sinh, sinh_mul_I, cosh_mul_I] lemma cos_sub_sin_I : cos x - sin x * I = exp (-x * I) := by rw [← neg_mul_eq_neg_mul, ← cosh_sub_sinh, sinh_mul_I, cosh_mul_I] @[simp] lemma sin_sq_add_cos_sq : sin x ^ 2 + cos x ^ 2 = 1 := eq.trans (by rw [cosh_mul_I, sinh_mul_I, mul_pow, I_sq, mul_neg_one, sub_neg_eq_add, add_comm]) (cosh_sq_sub_sinh_sq (x * I)) @[simp] lemma cos_sq_add_sin_sq : cos x ^ 2 + sin x ^ 2 = 1 := by rw [add_comm, sin_sq_add_cos_sq] lemma cos_two_mul' : cos (2 * x) = cos x ^ 2 - sin x ^ 2 := by rw [two_mul, cos_add, ← sq, ← sq] lemma cos_two_mul : cos (2 * x) = 2 * cos x ^ 2 - 1 := by rw [cos_two_mul', eq_sub_iff_add_eq.2 (sin_sq_add_cos_sq x), ← sub_add, sub_add_eq_add_sub, two_mul] lemma sin_two_mul : sin (2 * x) = 2 * sin x * cos x := by rw [two_mul, sin_add, two_mul, add_mul, mul_comm] lemma cos_sq : cos x ^ 2 = 1 / 2 + cos (2 * x) / 2 := by simp [cos_two_mul, div_add_div_same, mul_div_cancel_left, two_ne_zero', -one_div] lemma cos_sq' : cos x ^ 2 = 1 - sin x ^ 2 := by rw [←sin_sq_add_cos_sq x, add_sub_cancel'] lemma sin_sq : sin x ^ 2 = 1 - cos x ^ 2 := by rw [←sin_sq_add_cos_sq x, add_sub_cancel] lemma inv_one_add_tan_sq {x : ℂ} (hx : cos x ≠ 0) : (1 + tan x ^ 2)⁻¹ = cos x ^ 2 := have cos x ^ 2 ≠ 0, from pow_ne_zero 2 hx, by { rw [tan_eq_sin_div_cos, div_pow], field_simp [this] } lemma tan_sq_div_one_add_tan_sq {x : ℂ} (hx : cos x ≠ 0) : tan x ^ 2 / (1 + tan x ^ 2) = sin x ^ 2 := by simp only [← tan_mul_cos hx, mul_pow, ← inv_one_add_tan_sq hx, div_eq_mul_inv, one_mul] lemma cos_three_mul : cos (3 * x) = 4 * cos x ^ 3 - 3 * cos x := begin have h1 : x + 2 * x = 3 * x, by ring, rw [← h1, cos_add x (2 * x)], simp only [cos_two_mul, sin_two_mul, mul_add, mul_sub, mul_one, sq], have h2 : 4 * cos x ^ 3 = 2 * cos x * cos x * cos x + 2 * cos x * cos x ^ 2, by ring, rw [h2, cos_sq'], ring end lemma sin_three_mul : sin (3 * x) = 3 * sin x - 4 * sin x ^ 3 := begin have h1 : x + 2 * x = 3 * x, by ring, rw [← h1, sin_add x (2 * x)], simp only [cos_two_mul, sin_two_mul, cos_sq'], have h2 : cos x * (2 * sin x * cos x) = 2 * sin x * cos x ^ 2, by ring, rw [h2, cos_sq'], ring end lemma exp_mul_I : exp (x * I) = cos x + sin x * I := (cos_add_sin_I _).symm lemma exp_add_mul_I : exp (x + y * I) = exp x * (cos y + sin y * I) := by rw [exp_add, exp_mul_I] lemma exp_eq_exp_re_mul_sin_add_cos : exp x = exp x.re * (cos x.im + sin x.im * I) := by rw [← exp_add_mul_I, re_add_im] lemma exp_re : (exp x).re = real.exp x.re * real.cos x.im := by { rw [exp_eq_exp_re_mul_sin_add_cos], simp [exp_of_real_re, cos_of_real_re] } lemma exp_im : (exp x).im = real.exp x.re * real.sin x.im := by { rw [exp_eq_exp_re_mul_sin_add_cos], simp [exp_of_real_re, sin_of_real_re] } /-- De Moivre's formula -/ theorem cos_add_sin_mul_I_pow (n : ℕ) (z : ℂ) : (cos z + sin z * I) ^ n = cos (↑n * z) + sin (↑n * z) * I := begin rw [← exp_mul_I, ← exp_mul_I], induction n with n ih, { rw [pow_zero, nat.cast_zero, zero_mul, zero_mul, exp_zero] }, { rw [pow_succ', ih, nat.cast_succ, add_mul, add_mul, one_mul, exp_add] } end end complex namespace real open complex variables (x y : ℝ) @[simp] lemma exp_zero : exp 0 = 1 := by simp [real.exp] lemma exp_add : exp (x + y) = exp x * exp y := by simp [exp_add, exp] lemma exp_list_sum (l : list ℝ) : exp l.sum = (l.map exp).prod := @monoid_hom.map_list_prod (multiplicative ℝ) ℝ _ _ ⟨exp, exp_zero, exp_add⟩ l lemma exp_multiset_sum (s : multiset ℝ) : exp s.sum = (s.map exp).prod := @monoid_hom.map_multiset_prod (multiplicative ℝ) ℝ _ _ ⟨exp, exp_zero, exp_add⟩ s lemma exp_sum {α : Type*} (s : finset α) (f : α → ℝ) : exp (∑ x in s, f x) = ∏ x in s, exp (f x) := @monoid_hom.map_prod (multiplicative ℝ) α ℝ _ _ ⟨exp, exp_zero, exp_add⟩ f s lemma exp_nat_mul (x : ℝ) : ∀ n : ℕ, exp(n*x) = (exp x)^n | 0 := by rw [nat.cast_zero, zero_mul, exp_zero, pow_zero] | (nat.succ n) := by rw [pow_succ', nat.cast_add_one, add_mul, exp_add, ←exp_nat_mul, one_mul] lemma exp_ne_zero : exp x ≠ 0 := λ h, exp_ne_zero x $ by rw [exp, ← of_real_inj] at h; simp * at * lemma exp_neg : exp (-x) = (exp x)⁻¹ := by rw [← of_real_inj, exp, of_real_exp_of_real_re, of_real_neg, exp_neg, of_real_inv, of_real_exp] lemma exp_sub : exp (x - y) = exp x / exp y := by simp [sub_eq_add_neg, exp_add, exp_neg, div_eq_mul_inv] @[simp] lemma sin_zero : sin 0 = 0 := by simp [sin] @[simp] lemma sin_neg : sin (-x) = -sin x := by simp [sin, exp_neg, (neg_div _ _).symm, add_mul] lemma sin_add : sin (x + y) = sin x * cos y + cos x * sin y := by rw [← of_real_inj]; simp [sin, sin_add] @[simp] lemma cos_zero : cos 0 = 1 := by simp [cos] @[simp] lemma cos_neg : cos (-x) = cos x := by simp [cos, exp_neg] lemma cos_add : cos (x + y) = cos x * cos y - sin x * sin y := by rw ← of_real_inj; simp [cos, cos_add] lemma sin_sub : sin (x - y) = sin x * cos y - cos x * sin y := by simp [sub_eq_add_neg, sin_add, sin_neg, cos_neg] lemma cos_sub : cos (x - y) = cos x * cos y + sin x * sin y := by simp [sub_eq_add_neg, cos_add, sin_neg, cos_neg] lemma sin_sub_sin : sin x - sin y = 2 * sin((x - y)/2) * cos((x + y)/2) := begin rw ← of_real_inj, simp only [sin, cos, of_real_sin_of_real_re, of_real_sub, of_real_add, of_real_div, of_real_mul, of_real_one, of_real_bit0], convert sin_sub_sin _ _; norm_cast end theorem cos_sub_cos : cos x - cos y = -2 * sin((x + y)/2) * sin((x - y)/2) := begin rw ← of_real_inj, simp only [cos, neg_mul_eq_neg_mul_symm, of_real_sin, of_real_sub, of_real_add, of_real_cos_of_real_re, of_real_div, of_real_mul, of_real_one, of_real_neg, of_real_bit0], convert cos_sub_cos _ _, ring, end lemma cos_add_cos : cos x + cos y = 2 * cos ((x + y) / 2) * cos ((x - y) / 2) := begin rw ← of_real_inj, simp only [cos, of_real_sub, of_real_add, of_real_cos_of_real_re, of_real_div, of_real_mul, of_real_one, of_real_bit0], convert cos_add_cos _ _; norm_cast, end lemma tan_eq_sin_div_cos : tan x = sin x / cos x := by rw [← of_real_inj, of_real_tan, tan_eq_sin_div_cos, of_real_div, of_real_sin, of_real_cos] lemma tan_mul_cos {x : ℝ} (hx : cos x ≠ 0) : tan x * cos x = sin x := by rw [tan_eq_sin_div_cos, div_mul_cancel _ hx] @[simp] lemma tan_zero : tan 0 = 0 := by simp [tan] @[simp] lemma tan_neg : tan (-x) = -tan x := by simp [tan, neg_div] @[simp] lemma sin_sq_add_cos_sq : sin x ^ 2 + cos x ^ 2 = 1 := of_real_inj.1 $ by simp @[simp] lemma cos_sq_add_sin_sq : cos x ^ 2 + sin x ^ 2 = 1 := by rw [add_comm, sin_sq_add_cos_sq] lemma sin_sq_le_one : sin x ^ 2 ≤ 1 := by rw ← sin_sq_add_cos_sq x; exact le_add_of_nonneg_right (sq_nonneg _) lemma cos_sq_le_one : cos x ^ 2 ≤ 1 := by rw ← sin_sq_add_cos_sq x; exact le_add_of_nonneg_left (sq_nonneg _) lemma abs_sin_le_one : abs' (sin x) ≤ 1 := abs_le_one_iff_mul_self_le_one.2 $ by simp only [← sq, sin_sq_le_one] lemma abs_cos_le_one : abs' (cos x) ≤ 1 := abs_le_one_iff_mul_self_le_one.2 $ by simp only [← sq, cos_sq_le_one] lemma sin_le_one : sin x ≤ 1 := (abs_le.1 (abs_sin_le_one _)).2 lemma cos_le_one : cos x ≤ 1 := (abs_le.1 (abs_cos_le_one _)).2 lemma neg_one_le_sin : -1 ≤ sin x := (abs_le.1 (abs_sin_le_one _)).1 lemma neg_one_le_cos : -1 ≤ cos x := (abs_le.1 (abs_cos_le_one _)).1 lemma cos_two_mul : cos (2 * x) = 2 * cos x ^ 2 - 1 := by rw ← of_real_inj; simp [cos_two_mul] lemma cos_two_mul' : cos (2 * x) = cos x ^ 2 - sin x ^ 2 := by rw ← of_real_inj; simp [cos_two_mul'] lemma sin_two_mul : sin (2 * x) = 2 * sin x * cos x := by rw ← of_real_inj; simp [sin_two_mul] lemma cos_sq : cos x ^ 2 = 1 / 2 + cos (2 * x) / 2 := of_real_inj.1 $ by simpa using cos_sq x lemma cos_sq' : cos x ^ 2 = 1 - sin x ^ 2 := by rw [←sin_sq_add_cos_sq x, add_sub_cancel'] lemma sin_sq : sin x ^ 2 = 1 - cos x ^ 2 := eq_sub_iff_add_eq.2 $ sin_sq_add_cos_sq _ lemma abs_sin_eq_sqrt_one_sub_cos_sq (x : ℝ) : abs' (sin x) = sqrt (1 - cos x ^ 2) := by rw [← sin_sq, sqrt_sq_eq_abs] lemma abs_cos_eq_sqrt_one_sub_sin_sq (x : ℝ) : abs' (cos x) = sqrt (1 - sin x ^ 2) := by rw [← cos_sq', sqrt_sq_eq_abs] lemma inv_one_add_tan_sq {x : ℝ} (hx : cos x ≠ 0) : (1 + tan x ^ 2)⁻¹ = cos x ^ 2 := have complex.cos x ≠ 0, from mt (congr_arg re) hx, of_real_inj.1 $ by simpa using complex.inv_one_add_tan_sq this lemma tan_sq_div_one_add_tan_sq {x : ℝ} (hx : cos x ≠ 0) : tan x ^ 2 / (1 + tan x ^ 2) = sin x ^ 2 := by simp only [← tan_mul_cos hx, mul_pow, ← inv_one_add_tan_sq hx, div_eq_mul_inv, one_mul] lemma inv_sqrt_one_add_tan_sq {x : ℝ} (hx : 0 < cos x) : (sqrt (1 + tan x ^ 2))⁻¹ = cos x := by rw [← sqrt_sq hx.le, ← sqrt_inv, inv_one_add_tan_sq hx.ne'] lemma tan_div_sqrt_one_add_tan_sq {x : ℝ} (hx : 0 < cos x) : tan x / sqrt (1 + tan x ^ 2) = sin x := by rw [← tan_mul_cos hx.ne', ← inv_sqrt_one_add_tan_sq hx, div_eq_mul_inv] lemma cos_three_mul : cos (3 * x) = 4 * cos x ^ 3 - 3 * cos x := by rw ← of_real_inj; simp [cos_three_mul] lemma sin_three_mul : sin (3 * x) = 3 * sin x - 4 * sin x ^ 3 := by rw ← of_real_inj; simp [sin_three_mul] /-- The definition of `sinh` in terms of `exp`. -/ lemma sinh_eq (x : ℝ) : sinh x = (exp x - exp (-x)) / 2 := eq_div_of_mul_eq two_ne_zero $ by rw [sinh, exp, exp, complex.of_real_neg, complex.sinh, mul_two, ← complex.add_re, ← mul_two, div_mul_cancel _ (two_ne_zero' : (2 : ℂ) ≠ 0), complex.sub_re] @[simp] lemma sinh_zero : sinh 0 = 0 := by simp [sinh] @[simp] lemma sinh_neg : sinh (-x) = -sinh x := by simp [sinh, exp_neg, (neg_div _ _).symm, add_mul] lemma sinh_add : sinh (x + y) = sinh x * cosh y + cosh x * sinh y := by rw ← of_real_inj; simp [sinh_add] /-- The definition of `cosh` in terms of `exp`. -/ lemma cosh_eq (x : ℝ) : cosh x = (exp x + exp (-x)) / 2 := eq_div_of_mul_eq two_ne_zero $ by rw [cosh, exp, exp, complex.of_real_neg, complex.cosh, mul_two, ← complex.add_re, ← mul_two, div_mul_cancel _ (two_ne_zero' : (2 : ℂ) ≠ 0), complex.add_re] @[simp] lemma cosh_zero : cosh 0 = 1 := by simp [cosh] @[simp] lemma cosh_neg : cosh (-x) = cosh x := by simp [cosh, exp_neg] lemma cosh_add : cosh (x + y) = cosh x * cosh y + sinh x * sinh y := by rw ← of_real_inj; simp [cosh, cosh_add] lemma sinh_sub : sinh (x - y) = sinh x * cosh y - cosh x * sinh y := by simp [sub_eq_add_neg, sinh_add, sinh_neg, cosh_neg] lemma cosh_sub : cosh (x - y) = cosh x * cosh y - sinh x * sinh y := by simp [sub_eq_add_neg, cosh_add, sinh_neg, cosh_neg] lemma tanh_eq_sinh_div_cosh : tanh x = sinh x / cosh x := of_real_inj.1 $ by simp [tanh_eq_sinh_div_cosh] @[simp] lemma tanh_zero : tanh 0 = 0 := by simp [tanh] @[simp] lemma tanh_neg : tanh (-x) = -tanh x := by simp [tanh, neg_div] lemma cosh_add_sinh : cosh x + sinh x = exp x := by rw ← of_real_inj; simp [cosh_add_sinh] lemma sinh_add_cosh : sinh x + cosh x = exp x := by rw ← of_real_inj; simp [sinh_add_cosh] lemma cosh_sq_sub_sinh_sq (x : ℝ) : cosh x ^ 2 - sinh x ^ 2 = 1 := by rw ← of_real_inj; simp [cosh_sq_sub_sinh_sq] lemma cosh_sq : cosh x ^ 2 = sinh x ^ 2 + 1 := by rw ← of_real_inj; simp [cosh_sq] lemma sinh_sq : sinh x ^ 2 = cosh x ^ 2 - 1 := by rw ← of_real_inj; simp [sinh_sq] lemma cosh_two_mul : cosh (2 * x) = cosh x ^ 2 + sinh x ^ 2 := by rw ← of_real_inj; simp [cosh_two_mul] lemma sinh_two_mul : sinh (2 * x) = 2 * sinh x * cosh x := by rw ← of_real_inj; simp [sinh_two_mul] lemma cosh_three_mul : cosh (3 * x) = 4 * cosh x ^ 3 - 3 * cosh x := by rw ← of_real_inj; simp [cosh_three_mul] lemma sinh_three_mul : sinh (3 * x) = 4 * sinh x ^ 3 + 3 * sinh x := by rw ← of_real_inj; simp [sinh_three_mul] open is_absolute_value /- TODO make this private and prove ∀ x -/ lemma add_one_le_exp_of_nonneg {x : ℝ} (hx : 0 ≤ x) : x + 1 ≤ exp x := calc x + 1 ≤ lim (⟨(λ n : ℕ, ((exp' x) n).re), is_cau_seq_re (exp' x)⟩ : cau_seq ℝ abs') : le_lim (cau_seq.le_of_exists ⟨2, λ j hj, show x + (1 : ℝ) ≤ (∑ m in range j, (x ^ m / m! : ℂ)).re, from have h₁ : (((λ m : ℕ, (x ^ m / m! : ℂ)) ∘ nat.succ) 0).re = x, by simp, have h₂ : ((x : ℂ) ^ 0 / 0!).re = 1, by simp, begin rw [← nat.sub_add_cancel hj, sum_range_succ', sum_range_succ', add_re, add_re, h₁, h₂, add_assoc, ← @sum_hom _ _ _ _ _ _ _ complex.re (is_add_group_hom.to_is_add_monoid_hom _)], refine le_add_of_nonneg_of_le (sum_nonneg (λ m hm, _)) (le_refl _), rw [← of_real_pow, ← of_real_nat_cast, ← of_real_div, of_real_re], exact div_nonneg (pow_nonneg hx _) (nat.cast_nonneg _), end⟩) ... = exp x : by rw [exp, complex.exp, ← cau_seq_re, lim_re] lemma one_le_exp {x : ℝ} (hx : 0 ≤ x) : 1 ≤ exp x := by linarith [add_one_le_exp_of_nonneg hx] lemma exp_pos (x : ℝ) : 0 < exp x := (le_total 0 x).elim (lt_of_lt_of_le zero_lt_one ∘ one_le_exp) (λ h, by rw [← neg_neg x, real.exp_neg]; exact inv_pos.2 (lt_of_lt_of_le zero_lt_one (one_le_exp (neg_nonneg.2 h)))) @[simp] lemma abs_exp (x : ℝ) : abs' (exp x) = exp x := abs_of_pos (exp_pos _) lemma exp_strict_mono : strict_mono exp := λ x y h, by rw [← sub_add_cancel y x, real.exp_add]; exact (lt_mul_iff_one_lt_left (exp_pos _)).2 (lt_of_lt_of_le (by linarith) (add_one_le_exp_of_nonneg (by linarith))) @[mono] lemma exp_monotone : ∀ {x y : ℝ}, x ≤ y → exp x ≤ exp y := exp_strict_mono.monotone @[simp] lemma exp_lt_exp {x y : ℝ} : exp x < exp y ↔ x < y := exp_strict_mono.lt_iff_lt @[simp] lemma exp_le_exp {x y : ℝ} : exp x ≤ exp y ↔ x ≤ y := exp_strict_mono.le_iff_le lemma exp_injective : function.injective exp := exp_strict_mono.injective @[simp] lemma exp_eq_exp {x y : ℝ} : exp x = exp y ↔ x = y := exp_injective.eq_iff @[simp] lemma exp_eq_one_iff : exp x = 1 ↔ x = 0 := by rw [← exp_zero, exp_injective.eq_iff] @[simp] lemma one_lt_exp_iff {x : ℝ} : 1 < exp x ↔ 0 < x := by rw [← exp_zero, exp_lt_exp] @[simp] lemma exp_lt_one_iff {x : ℝ} : exp x < 1 ↔ x < 0 := by rw [← exp_zero, exp_lt_exp] @[simp] lemma exp_le_one_iff {x : ℝ} : exp x ≤ 1 ↔ x ≤ 0 := exp_zero ▸ exp_le_exp @[simp] lemma one_le_exp_iff {x : ℝ} : 1 ≤ exp x ↔ 0 ≤ x := exp_zero ▸ exp_le_exp /-- `real.cosh` is always positive -/ lemma cosh_pos (x : ℝ) : 0 < real.cosh x := (cosh_eq x).symm ▸ half_pos (add_pos (exp_pos x) (exp_pos (-x))) end real namespace complex lemma sum_div_factorial_le {α : Type*} [linear_ordered_field α] (n j : ℕ) (hn : 0 < n) : ∑ m in filter (λ k, n ≤ k) (range j), (1 / m! : α) ≤ n.succ / (n! * n) := calc ∑ m in filter (λ k, n ≤ k) (range j), (1 / m! : α) = ∑ m in range (j - n), 1 / (m + n)! : sum_bij (λ m _, m - n) (λ m hm, mem_range.2 $ (nat.sub_lt_sub_right_iff (by simp at hm; tauto)).2 (by simp at hm; tauto)) (λ m hm, by rw nat.sub_add_cancel; simp at *; tauto) (λ a₁ a₂ ha₁ ha₂ h, by rwa [nat.sub_eq_iff_eq_add, ← nat.sub_add_comm, eq_comm, nat.sub_eq_iff_eq_add, add_left_inj, eq_comm] at h; simp at *; tauto) (λ b hb, ⟨b + n, mem_filter.2 ⟨mem_range.2 $ nat.add_lt_of_lt_sub_right (mem_range.1 hb), nat.le_add_left _ _⟩, by rw nat.add_sub_cancel⟩) ... ≤ ∑ m in range (j - n), (n! * n.succ ^ m)⁻¹ : begin refine sum_le_sum (assume m n, _), rw [one_div, inv_le_inv], { rw [← nat.cast_pow, ← nat.cast_mul, nat.cast_le, add_comm], exact nat.factorial_mul_pow_le_factorial }, { exact nat.cast_pos.2 (nat.factorial_pos _) }, { exact mul_pos (nat.cast_pos.2 (nat.factorial_pos _)) (pow_pos (nat.cast_pos.2 (nat.succ_pos _)) _) }, end ... = n!⁻¹ * ∑ m in range (j - n), n.succ⁻¹ ^ m : by simp [mul_inv', mul_sum.symm, sum_mul.symm, -nat.factorial_succ, mul_comm, inv_pow'] ... = (n.succ - n.succ * n.succ⁻¹ ^ (j - n)) / (n! * n) : have h₁ : (n.succ : α) ≠ 1, from @nat.cast_one α _ _ ▸ mt nat.cast_inj.1 (mt nat.succ.inj (pos_iff_ne_zero.1 hn)), have h₂ : (n.succ : α) ≠ 0, from nat.cast_ne_zero.2 (nat.succ_ne_zero _), have h₃ : (n! * n : α) ≠ 0, from mul_ne_zero (nat.cast_ne_zero.2 (pos_iff_ne_zero.1 (nat.factorial_pos _))) (nat.cast_ne_zero.2 (pos_iff_ne_zero.1 hn)), have h₄ : (n.succ - 1 : α) = n, by simp, by rw [← geom_sum_def, geom_sum_inv h₁ h₂, eq_div_iff_mul_eq h₃, mul_comm _ (n! * n : α), ← mul_assoc (n!⁻¹ : α), ← mul_inv_rev', h₄, ← mul_assoc (n! * n : α), mul_comm (n : α) n!, mul_inv_cancel h₃]; simp [mul_add, add_mul, mul_assoc, mul_comm] ... ≤ n.succ / (n! * n) : begin refine iff.mpr (div_le_div_right (mul_pos _ _)) _, exact nat.cast_pos.2 (nat.factorial_pos _), exact nat.cast_pos.2 hn, exact sub_le_self _ (mul_nonneg (nat.cast_nonneg _) (pow_nonneg (inv_nonneg.2 (nat.cast_nonneg _)) _)) end lemma exp_bound {x : ℂ} (hx : abs x ≤ 1) {n : ℕ} (hn : 0 < n) : abs (exp x - ∑ m in range n, x ^ m / m!) ≤ abs x ^ n * (n.succ * (n! * n)⁻¹) := begin rw [← lim_const (∑ m in range n, _), exp, sub_eq_add_neg, ← lim_neg, lim_add, ← lim_abs], refine lim_le (cau_seq.le_of_exists ⟨n, λ j hj, _⟩), simp_rw ← sub_eq_add_neg, show abs (∑ m in range j, x ^ m / m! - ∑ m in range n, x ^ m / m!) ≤ abs x ^ n * (n.succ * (n! * n)⁻¹), rw sum_range_sub_sum_range hj, exact calc abs (∑ m in (range j).filter (λ k, n ≤ k), (x ^ m / m! : ℂ)) = abs (∑ m in (range j).filter (λ k, n ≤ k), (x ^ n * (x ^ (m - n) / m!) : ℂ)) : begin refine congr_arg abs (sum_congr rfl (λ m hm, _)), rw [mem_filter, mem_range] at hm, rw [← mul_div_assoc, ← pow_add, nat.add_sub_cancel' hm.2] end ... ≤ ∑ m in filter (λ k, n ≤ k) (range j), abs (x ^ n * (_ / m!)) : abv_sum_le_sum_abv _ _ ... ≤ ∑ m in filter (λ k, n ≤ k) (range j), abs x ^ n * (1 / m!) : begin refine sum_le_sum (λ m hm, _), rw [abs_mul, abv_pow abs, abs_div, abs_cast_nat], refine mul_le_mul_of_nonneg_left ((div_le_div_right _).2 _) _, exact nat.cast_pos.2 (nat.factorial_pos _), rw abv_pow abs, exact (pow_le_one _ (abs_nonneg _) hx), exact pow_nonneg (abs_nonneg _) _ end ... = abs x ^ n * (∑ m in (range j).filter (λ k, n ≤ k), (1 / m! : ℝ)) : by simp [abs_mul, abv_pow abs, abs_div, mul_sum.symm] ... ≤ abs x ^ n * (n.succ * (n! * n)⁻¹) : mul_le_mul_of_nonneg_left (sum_div_factorial_le _ _ hn) (pow_nonneg (abs_nonneg _) _) end lemma abs_exp_sub_one_le {x : ℂ} (hx : abs x ≤ 1) : abs (exp x - 1) ≤ 2 * abs x := calc abs (exp x - 1) = abs (exp x - ∑ m in range 1, x ^ m / m!) : by simp [sum_range_succ] ... ≤ abs x ^ 1 * ((nat.succ 1) * (1! * (1 : ℕ))⁻¹) : exp_bound hx dec_trivial ... = 2 * abs x : by simp [two_mul, mul_two, mul_add, mul_comm] lemma abs_exp_sub_one_sub_id_le {x : ℂ} (hx : abs x ≤ 1) : abs (exp x - 1 - x) ≤ (abs x)^2 := calc abs (exp x - 1 - x) = abs (exp x - ∑ m in range 2, x ^ m / m!) : by simp [sub_eq_add_neg, sum_range_succ_comm, add_assoc] ... ≤ (abs x)^2 * (nat.succ 2 * (2! * (2 : ℕ))⁻¹) : exp_bound hx dec_trivial ... ≤ (abs x)^2 * 1 : mul_le_mul_of_nonneg_left (by norm_num) (sq_nonneg (abs x)) ... = (abs x)^2 : by rw [mul_one] end complex namespace real open complex finset lemma exp_bound {x : ℝ} (hx : abs' x ≤ 1) {n : ℕ} (hn : 0 < n) : abs' (exp x - ∑ m in range n, x ^ m / m!) ≤ abs' x ^ n * (n.succ / (n! * n)) := begin have hxc : complex.abs x ≤ 1, by exact_mod_cast hx, convert exp_bound hxc hn; norm_cast end /-- A finite initial segment of the exponential series, followed by an arbitrary tail. For fixed `n` this is just a linear map wrt `r`, and each map is a simple linear function of the previous (see `exp_near_succ`), with `exp_near n x r ⟶ exp x` as `n ⟶ ∞`, for any `r`. -/ def exp_near (n : ℕ) (x r : ℝ) : ℝ := ∑ m in range n, x ^ m / m! + x ^ n / n! * r @[simp] theorem exp_near_zero (x r) : exp_near 0 x r = r := by simp [exp_near] @[simp] theorem exp_near_succ (n x r) : exp_near (n + 1) x r = exp_near n x (1 + x / (n+1) * r) := by simp [exp_near, range_succ, mul_add, add_left_comm, add_assoc, pow_succ, div_eq_mul_inv, mul_inv']; ac_refl theorem exp_near_sub (n x r₁ r₂) : exp_near n x r₁ - exp_near n x r₂ = x ^ n / n! * (r₁ - r₂) := by simp [exp_near, mul_sub] lemma exp_approx_end (n m : ℕ) (x : ℝ) (e₁ : n + 1 = m) (h : abs' x ≤ 1) : abs' (exp x - exp_near m x 0) ≤ abs' x ^ m / m! * ((m+1)/m) := by { simp [exp_near], convert exp_bound h _ using 1, field_simp [mul_comm], linarith } lemma exp_approx_succ {n} {x a₁ b₁ : ℝ} (m : ℕ) (e₁ : n + 1 = m) (a₂ b₂ : ℝ) (e : abs' (1 + x / m * a₂ - a₁) ≤ b₁ - abs' x / m * b₂) (h : abs' (exp x - exp_near m x a₂) ≤ abs' x ^ m / m! * b₂) : abs' (exp x - exp_near n x a₁) ≤ abs' x ^ n / n! * b₁ := begin refine (_root_.abs_sub_le _ _ _).trans ((add_le_add_right h _).trans _), subst e₁, rw [exp_near_succ, exp_near_sub, _root_.abs_mul], convert mul_le_mul_of_nonneg_left (le_sub_iff_add_le'.1 e) _, { simp [mul_add, pow_succ', div_eq_mul_inv, _root_.abs_mul, _root_.abs_inv, ← pow_abs, mul_inv'], ac_refl }, { simp [_root_.div_nonneg, _root_.abs_nonneg] } end lemma exp_approx_end' {n} {x a b : ℝ} (m : ℕ) (e₁ : n + 1 = m) (rm : ℝ) (er : ↑m = rm) (h : abs' x ≤ 1) (e : abs' (1 - a) ≤ b - abs' x / rm * ((rm+1)/rm)) : abs' (exp x - exp_near n x a) ≤ abs' x ^ n / n! * b := by subst er; exact exp_approx_succ _ e₁ _ _ (by simpa using e) (exp_approx_end _ _ _ e₁ h) lemma exp_1_approx_succ_eq {n} {a₁ b₁ : ℝ} {m : ℕ} (en : n + 1 = m) {rm : ℝ} (er : ↑m = rm) (h : abs' (exp 1 - exp_near m 1 ((a₁ - 1) * rm)) ≤ abs' 1 ^ m / m! * (b₁ * rm)) : abs' (exp 1 - exp_near n 1 a₁) ≤ abs' 1 ^ n / n! * b₁ := begin subst er, refine exp_approx_succ _ en _ _ _ h, field_simp [show (m : ℝ) ≠ 0, by norm_cast; linarith], end lemma exp_approx_start (x a b : ℝ) (h : abs' (exp x - exp_near 0 x a) ≤ abs' x ^ 0 / 0! * b) : abs' (exp x - a) ≤ b := by simpa using h lemma cos_bound {x : ℝ} (hx : abs' x ≤ 1) : abs' (cos x - (1 - x ^ 2 / 2)) ≤ abs' x ^ 4 * (5 / 96) := calc abs' (cos x - (1 - x ^ 2 / 2)) = abs (complex.cos x - (1 - x ^ 2 / 2)) : by rw ← abs_of_real; simp [of_real_bit0, of_real_one, of_real_inv] ... = abs ((complex.exp (x * I) + complex.exp (-x * I) - (2 - x ^ 2)) / 2) : by simp [complex.cos, sub_div, add_div, neg_div, div_self (@two_ne_zero' ℂ _ _ _)] ... = abs (((complex.exp (x * I) - ∑ m in range 4, (x * I) ^ m / m!) + ((complex.exp (-x * I) - ∑ m in range 4, (-x * I) ^ m / m!))) / 2) : congr_arg abs (congr_arg (λ x : ℂ, x / 2) begin simp only [sum_range_succ], simp [pow_succ], apply complex.ext; simp [div_eq_mul_inv, norm_sq]; ring end) ... ≤ abs ((complex.exp (x * I) - ∑ m in range 4, (x * I) ^ m / m!) / 2) + abs ((complex.exp (-x * I) - ∑ m in range 4, (-x * I) ^ m / m!) / 2) : by rw add_div; exact abs_add _ _ ... = (abs ((complex.exp (x * I) - ∑ m in range 4, (x * I) ^ m / m!)) / 2 + abs ((complex.exp (-x * I) - ∑ m in range 4, (-x * I) ^ m / m!)) / 2) : by simp [complex.abs_div] ... ≤ ((complex.abs (x * I) ^ 4 * (nat.succ 4 * (4! * (4 : ℕ))⁻¹)) / 2 + (complex.abs (-x * I) ^ 4 * (nat.succ 4 * (4! * (4 : ℕ))⁻¹)) / 2) : add_le_add ((div_le_div_right (by norm_num)).2 (complex.exp_bound (by simpa) dec_trivial)) ((div_le_div_right (by norm_num)).2 (complex.exp_bound (by simpa) dec_trivial)) ... ≤ abs' x ^ 4 * (5 / 96) : by norm_num; simp [mul_assoc, mul_comm, mul_left_comm, mul_div_assoc] lemma sin_bound {x : ℝ} (hx : abs' x ≤ 1) : abs' (sin x - (x - x ^ 3 / 6)) ≤ abs' x ^ 4 * (5 / 96) := calc abs' (sin x - (x - x ^ 3 / 6)) = abs (complex.sin x - (x - x ^ 3 / 6)) : by rw ← abs_of_real; simp [of_real_bit0, of_real_one, of_real_inv] ... = abs (((complex.exp (-x * I) - complex.exp (x * I)) * I - (2 * x - x ^ 3 / 3)) / 2) : by simp [complex.sin, sub_div, add_div, neg_div, mul_div_cancel_left _ (@two_ne_zero' ℂ _ _ _), div_div_eq_div_mul, show (3 : ℂ) * 2 = 6, by norm_num] ... = abs ((((complex.exp (-x * I) - ∑ m in range 4, (-x * I) ^ m / m!) - (complex.exp (x * I) - ∑ m in range 4, (x * I) ^ m / m!)) * I) / 2) : congr_arg abs (congr_arg (λ x : ℂ, x / 2) begin simp only [sum_range_succ], simp [pow_succ], apply complex.ext; simp [div_eq_mul_inv, norm_sq]; ring end) ... ≤ abs ((complex.exp (-x * I) - ∑ m in range 4, (-x * I) ^ m / m!) * I / 2) + abs (-((complex.exp (x * I) - ∑ m in range 4, (x * I) ^ m / m!) * I) / 2) : by rw [sub_mul, sub_eq_add_neg, add_div]; exact abs_add _ _ ... = (abs ((complex.exp (x * I) - ∑ m in range 4, (x * I) ^ m / m!)) / 2 + abs ((complex.exp (-x * I) - ∑ m in range 4, (-x * I) ^ m / m!)) / 2) : by simp [add_comm, complex.abs_div, complex.abs_mul] ... ≤ ((complex.abs (x * I) ^ 4 * (nat.succ 4 * (4! * (4 : ℕ))⁻¹)) / 2 + (complex.abs (-x * I) ^ 4 * (nat.succ 4 * (4! * (4 : ℕ))⁻¹)) / 2) : add_le_add ((div_le_div_right (by norm_num)).2 (complex.exp_bound (by simpa) dec_trivial)) ((div_le_div_right (by norm_num)).2 (complex.exp_bound (by simpa) dec_trivial)) ... ≤ abs' x ^ 4 * (5 / 96) : by norm_num; simp [mul_assoc, mul_comm, mul_left_comm, mul_div_assoc] lemma cos_pos_of_le_one {x : ℝ} (hx : abs' x ≤ 1) : 0 < cos x := calc 0 < (1 - x ^ 2 / 2) - abs' x ^ 4 * (5 / 96) : sub_pos.2 $ lt_sub_iff_add_lt.2 (calc abs' x ^ 4 * (5 / 96) + x ^ 2 / 2 ≤ 1 * (5 / 96) + 1 / 2 : add_le_add (mul_le_mul_of_nonneg_right (pow_le_one _ (abs_nonneg _) hx) (by norm_num)) ((div_le_div_right (by norm_num)).2 (by rw [sq, ← abs_mul_self, _root_.abs_mul]; exact mul_le_one hx (abs_nonneg _) hx)) ... < 1 : by norm_num) ... ≤ cos x : sub_le.1 (abs_sub_le_iff.1 (cos_bound hx)).2 lemma sin_pos_of_pos_of_le_one {x : ℝ} (hx0 : 0 < x) (hx : x ≤ 1) : 0 < sin x := calc 0 < x - x ^ 3 / 6 - abs' x ^ 4 * (5 / 96) : sub_pos.2 $ lt_sub_iff_add_lt.2 (calc abs' x ^ 4 * (5 / 96) + x ^ 3 / 6 ≤ x * (5 / 96) + x / 6 : add_le_add (mul_le_mul_of_nonneg_right (calc abs' x ^ 4 ≤ abs' x ^ 1 : pow_le_pow_of_le_one (abs_nonneg _) (by rwa _root_.abs_of_nonneg (le_of_lt hx0)) dec_trivial ... = x : by simp [_root_.abs_of_nonneg (le_of_lt (hx0))]) (by norm_num)) ((div_le_div_right (by norm_num)).2 (calc x ^ 3 ≤ x ^ 1 : pow_le_pow_of_le_one (le_of_lt hx0) hx dec_trivial ... = x : pow_one _)) ... < x : by linarith) ... ≤ sin x : sub_le.1 (abs_sub_le_iff.1 (sin_bound (by rwa [_root_.abs_of_nonneg (le_of_lt hx0)]))).2 lemma sin_pos_of_pos_of_le_two {x : ℝ} (hx0 : 0 < x) (hx : x ≤ 2) : 0 < sin x := have x / 2 ≤ 1, from (div_le_iff (by norm_num)).mpr (by simpa), calc 0 < 2 * sin (x / 2) * cos (x / 2) : mul_pos (mul_pos (by norm_num) (sin_pos_of_pos_of_le_one (half_pos hx0) this)) (cos_pos_of_le_one (by rwa [_root_.abs_of_nonneg (le_of_lt (half_pos hx0))])) ... = sin x : by rw [← sin_two_mul, two_mul, add_halves] lemma cos_one_le : cos 1 ≤ 2 / 3 := calc cos 1 ≤ abs' (1 : ℝ) ^ 4 * (5 / 96) + (1 - 1 ^ 2 / 2) : sub_le_iff_le_add.1 (abs_sub_le_iff.1 (cos_bound (by simp))).1 ... ≤ 2 / 3 : by norm_num lemma cos_one_pos : 0 < cos 1 := cos_pos_of_le_one (le_of_eq abs_one) lemma cos_two_neg : cos 2 < 0 := calc cos 2 = cos (2 * 1) : congr_arg cos (mul_one _).symm ... = _ : real.cos_two_mul 1 ... ≤ 2 * (2 / 3) ^ 2 - 1 : sub_le_sub_right (mul_le_mul_of_nonneg_left (by { rw [sq, sq], exact mul_self_le_mul_self (le_of_lt cos_one_pos) cos_one_le }) zero_le_two) _ ... < 0 : by norm_num end real namespace complex lemma abs_cos_add_sin_mul_I (x : ℝ) : abs (cos x + sin x * I) = 1 := have _ := real.sin_sq_add_cos_sq x, by simp [add_comm, abs, norm_sq, sq, *, sin_of_real_re, cos_of_real_re, mul_re] at * lemma abs_exp_eq_iff_re_eq {x y : ℂ} : abs (exp x) = abs (exp y) ↔ x.re = y.re := by rw [exp_eq_exp_re_mul_sin_add_cos, exp_eq_exp_re_mul_sin_add_cos y, abs_mul, abs_mul, abs_cos_add_sin_mul_I, abs_cos_add_sin_mul_I, ← of_real_exp, ← of_real_exp, abs_of_nonneg (le_of_lt (real.exp_pos _)), abs_of_nonneg (le_of_lt (real.exp_pos _)), mul_one, mul_one]; exact ⟨λ h, real.exp_injective h, congr_arg _⟩ @[simp] lemma abs_exp_of_real (x : ℝ) : abs (exp x) = real.exp x := by rw [← of_real_exp]; exact abs_of_nonneg (le_of_lt (real.exp_pos _)) end complex
1640a2ab8982dc9abd1d0221823bd24251c015bf
7cef822f3b952965621309e88eadf618da0c8ae9
/src/order/complete_lattice.lean
91da277c96c53d23ead359978dc6d0e533fce982
[ "Apache-2.0" ]
permissive
rmitta/mathlib
8d90aee30b4db2b013e01f62c33f297d7e64a43d
883d974b608845bad30ae19e27e33c285200bf84
refs/heads/master
1,585,776,832,544
1,576,874,096,000
1,576,874,096,000
153,663,165
0
2
Apache-2.0
1,544,806,490,000
1,539,884,365,000
Lean
UTF-8
Lean
false
false
35,137
lean
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl Theory of complete lattices. -/ import order.bounded_lattice order.bounds data.set.basic tactic.pi_instances set_option old_structure_cmd true open set namespace lattice universes u v w w₂ variables {α : Type u} {β : Type v} {ι : Sort w} {ι₂ : Sort w₂} /-- class for the `Sup` operator -/ class has_Sup (α : Type u) := (Sup : set α → α) /-- class for the `Inf` operator -/ class has_Inf (α : Type u) := (Inf : set α → α) /-- Supremum of a set -/ def Sup [has_Sup α] : set α → α := has_Sup.Sup /-- Infimum of a set -/ def Inf [has_Inf α] : set α → α := has_Inf.Inf /-- Indexed supremum -/ def supr [has_Sup α] (s : ι → α) : α := Sup (range s) /-- Indexed infimum -/ def infi [has_Inf α] (s : ι → α) : α := Inf (range s) lemma has_Inf_to_nonempty (α) [has_Inf α] : nonempty α := ⟨Inf ∅⟩ lemma has_Sup_to_nonempty (α) [has_Sup α] : nonempty α := ⟨Sup ∅⟩ notation `⨆` binders `, ` r:(scoped f, supr f) := r notation `⨅` binders `, ` r:(scoped f, infi f) := r section prio set_option default_priority 100 -- see Note [default priority] /-- A complete lattice is a bounded lattice which has suprema and infima for every subset. -/ class complete_lattice (α : Type u) extends bounded_lattice α, has_Sup α, has_Inf α := (le_Sup : ∀s, ∀a∈s, a ≤ Sup s) (Sup_le : ∀s a, (∀b∈s, b ≤ a) → Sup s ≤ a) (Inf_le : ∀s, ∀a∈s, Inf s ≤ a) (le_Inf : ∀s a, (∀b∈s, a ≤ b) → a ≤ Inf s) /-- A complete linear order is a linear order whose lattice structure is complete. -/ class complete_linear_order (α : Type u) extends complete_lattice α, decidable_linear_order α end prio section variables [complete_lattice α] {s t : set α} {a b : α} @[ematch] theorem le_Sup : a ∈ s → a ≤ Sup s := complete_lattice.le_Sup s a theorem Sup_le : (∀b∈s, b ≤ a) → Sup s ≤ a := complete_lattice.Sup_le s a @[ematch] theorem Inf_le : a ∈ s → Inf s ≤ a := complete_lattice.Inf_le s a theorem le_Inf : (∀b∈s, a ≤ b) → a ≤ Inf s := complete_lattice.le_Inf s a lemma is_lub_Sup : is_lub s (Sup s) := ⟨assume x, le_Sup, assume x, Sup_le⟩ lemma is_lub_iff_Sup_eq : is_lub s a ↔ Sup s = a := is_lub_iff_eq_of_is_lub is_lub_Sup lemma is_glb_Inf : is_glb s (Inf s) := ⟨assume a, Inf_le, assume a, le_Inf⟩ lemma is_glb_iff_Inf_eq : is_glb s a ↔ Inf s = a := is_glb_iff_eq_of_is_glb is_glb_Inf theorem le_Sup_of_le (hb : b ∈ s) (h : a ≤ b) : a ≤ Sup s := le_trans h (le_Sup hb) theorem Inf_le_of_le (hb : b ∈ s) (h : b ≤ a) : Inf s ≤ a := le_trans (Inf_le hb) h theorem Sup_le_Sup (h : s ⊆ t) : Sup s ≤ Sup t := Sup_le (assume a, assume ha : a ∈ s, le_Sup $ h ha) theorem Inf_le_Inf (h : s ⊆ t) : Inf t ≤ Inf s := le_Inf (assume a, assume ha : a ∈ s, Inf_le $ h ha) @[simp] theorem Sup_le_iff : Sup s ≤ a ↔ (∀b ∈ s, b ≤ a) := ⟨assume : Sup s ≤ a, assume b, assume : b ∈ s, le_trans (le_Sup ‹b ∈ s›) ‹Sup s ≤ a›, Sup_le⟩ @[simp] theorem le_Inf_iff : a ≤ Inf s ↔ (∀b ∈ s, a ≤ b) := ⟨assume : a ≤ Inf s, assume b, assume : b ∈ s, le_trans ‹a ≤ Inf s› (Inf_le ‹b ∈ s›), le_Inf⟩ -- how to state this? instead a parameter `a`, use `∃a, a ∈ s` or `s ≠ ∅`? theorem Inf_le_Sup (h : a ∈ s) : Inf s ≤ Sup s := by have := le_Sup h; finish --Inf_le_of_le h (le_Sup h) -- TODO: it is weird that we have to add union_def theorem Sup_union {s t : set α} : Sup (s ∪ t) = Sup s ⊔ Sup t := le_antisymm (by finish) (sup_le (Sup_le_Sup $ subset_union_left _ _) (Sup_le_Sup $ subset_union_right _ _)) /- old proof: le_antisymm (Sup_le $ assume a h, or.rec_on h (le_sup_left_of_le ∘ le_Sup) (le_sup_right_of_le ∘ le_Sup)) (sup_le (Sup_le_Sup $ subset_union_left _ _) (Sup_le_Sup $ subset_union_right _ _)) -/ theorem Sup_inter_le {s t : set α} : Sup (s ∩ t) ≤ Sup s ⊓ Sup t := by finish /- Sup_le (assume a ⟨a_s, a_t⟩, le_inf (le_Sup a_s) (le_Sup a_t)) -/ theorem Inf_union {s t : set α} : Inf (s ∪ t) = Inf s ⊓ Inf t := le_antisymm (le_inf (Inf_le_Inf $ subset_union_left _ _) (Inf_le_Inf $ subset_union_right _ _)) (by finish) /- old proof: le_antisymm (le_inf (Inf_le_Inf $ subset_union_left _ _) (Inf_le_Inf $ subset_union_right _ _)) (le_Inf $ assume a h, or.rec_on h (inf_le_left_of_le ∘ Inf_le) (inf_le_right_of_le ∘ Inf_le)) -/ theorem le_Inf_inter {s t : set α} : Inf s ⊔ Inf t ≤ Inf (s ∩ t) := by finish /- le_Inf (assume a ⟨a_s, a_t⟩, sup_le (Inf_le a_s) (Inf_le a_t)) -/ @[simp] theorem Sup_empty : Sup ∅ = (⊥ : α) := le_antisymm (by finish) (by finish) -- le_antisymm (Sup_le (assume _, false.elim)) bot_le @[simp] theorem Inf_empty : Inf ∅ = (⊤ : α) := le_antisymm (by finish) (by finish) --le_antisymm le_top (le_Inf (assume _, false.elim)) @[simp] theorem Sup_univ : Sup univ = (⊤ : α) := le_antisymm (by finish) (le_Sup ⟨⟩) -- finish fails because ⊤ ≤ a simplifies to a = ⊤ --le_antisymm le_top (le_Sup ⟨⟩) @[simp] theorem Inf_univ : Inf univ = (⊥ : α) := le_antisymm (Inf_le ⟨⟩) bot_le -- TODO(Jeremy): get this automatically @[simp] theorem Sup_insert {a : α} {s : set α} : Sup (insert a s) = a ⊔ Sup s := have Sup {b | b = a} = a, from le_antisymm (Sup_le $ assume b b_eq, b_eq ▸ le_refl _) (le_Sup rfl), calc Sup (insert a s) = Sup {b | b = a} ⊔ Sup s : Sup_union ... = a ⊔ Sup s : by rw [this] @[simp] theorem Inf_insert {a : α} {s : set α} : Inf (insert a s) = a ⊓ Inf s := have Inf {b | b = a} = a, from le_antisymm (Inf_le rfl) (le_Inf $ assume b b_eq, b_eq ▸ le_refl _), calc Inf (insert a s) = Inf {b | b = a} ⊓ Inf s : Inf_union ... = a ⊓ Inf s : by rw [this] @[simp] theorem Sup_singleton {a : α} : Sup {a} = a := by finish [singleton_def] --eq.trans Sup_insert $ by simp @[simp] theorem Inf_singleton {a : α} : Inf {a} = a := by finish [singleton_def] --eq.trans Inf_insert $ by simp @[simp] theorem Inf_eq_top : Inf s = ⊤ ↔ (∀a∈s, a = ⊤) := iff.intro (assume h a ha, top_unique $ h ▸ Inf_le ha) (assume h, top_unique $ le_Inf $ assume a ha, top_le_iff.2 $ h a ha) @[simp] theorem Sup_eq_bot : Sup s = ⊥ ↔ (∀a∈s, a = ⊥) := iff.intro (assume h a ha, bot_unique $ h ▸ le_Sup ha) (assume h, bot_unique $ Sup_le $ assume a ha, le_bot_iff.2 $ h a ha) end section complete_linear_order variables [complete_linear_order α] {s t : set α} {a b : α} lemma Inf_lt_iff : Inf s < b ↔ (∃a∈s, a < b) := iff.intro (assume : Inf s < b, classical.by_contradiction $ assume : ¬ (∃a∈s, a < b), have b ≤ Inf s, from le_Inf $ assume a ha, le_of_not_gt $ assume h, this ⟨a, ha, h⟩, lt_irrefl b (lt_of_le_of_lt ‹b ≤ Inf s› ‹Inf s < b›)) (assume ⟨a, ha, h⟩, lt_of_le_of_lt (Inf_le ha) h) lemma lt_Sup_iff : b < Sup s ↔ (∃a∈s, b < a) := iff.intro (assume : b < Sup s, classical.by_contradiction $ assume : ¬ (∃a∈s, b < a), have Sup s ≤ b, from Sup_le $ assume a ha, le_of_not_gt $ assume h, this ⟨a, ha, h⟩, lt_irrefl b (lt_of_lt_of_le ‹b < Sup s› ‹Sup s ≤ b›)) (assume ⟨a, ha, h⟩, lt_of_lt_of_le h $ le_Sup ha) lemma Sup_eq_top : Sup s = ⊤ ↔ (∀b<⊤, ∃a∈s, b < a) := iff.intro (assume (h : Sup s = ⊤) b hb, by rwa [←h, lt_Sup_iff] at hb) (assume h, top_unique $ le_of_not_gt $ assume h', let ⟨a, ha, h⟩ := h _ h' in lt_irrefl a $ lt_of_le_of_lt (le_Sup ha) h) lemma Inf_eq_bot : Inf s = ⊥ ↔ (∀b>⊥, ∃a∈s, a < b) := iff.intro (assume (h : Inf s = ⊥) b (hb : ⊥ < b), by rwa [←h, Inf_lt_iff] at hb) (assume h, bot_unique $ le_of_not_gt $ assume h', let ⟨a, ha, h⟩ := h _ h' in lt_irrefl a $ lt_of_lt_of_le h (Inf_le ha)) lemma lt_supr_iff {ι : Sort*} {f : ι → α} : a < supr f ↔ (∃i, a < f i) := iff.trans lt_Sup_iff $ iff.intro (assume ⟨a', ⟨i, rfl⟩, ha⟩, ⟨i, ha⟩) (assume ⟨i, hi⟩, ⟨f i, ⟨i, rfl⟩, hi⟩) lemma infi_lt_iff {ι : Sort*} {f : ι → α} : infi f < a ↔ (∃i, f i < a) := iff.trans Inf_lt_iff $ iff.intro (assume ⟨a', ⟨i, rfl⟩, ha⟩, ⟨i, ha⟩) (assume ⟨i, hi⟩, ⟨f i, ⟨i, rfl⟩, hi⟩) end complete_linear_order /- supr & infi -/ section variables [complete_lattice α] {s t : ι → α} {a b : α} -- TODO: this declaration gives error when starting smt state --@[ematch] theorem le_supr (s : ι → α) (i : ι) : s i ≤ supr s := le_Sup ⟨i, rfl⟩ @[ematch] theorem le_supr' (s : ι → α) (i : ι) : (: s i ≤ supr s :) := le_Sup ⟨i, rfl⟩ /- TODO: this version would be more powerful, but, alas, the pattern matcher doesn't accept it. @[ematch] theorem le_supr' (s : ι → α) (i : ι) : (: s i :) ≤ (: supr s :) := le_Sup ⟨i, rfl⟩ -/ lemma is_lub_supr : is_lub (range s) (⨆j, s j) := is_lub_Sup lemma is_lub_iff_supr_eq : is_lub (range s) a ↔ (⨆j, s j) = a := is_lub_iff_eq_of_is_lub is_lub_supr lemma is_glb_infi : is_glb (range s) (⨅j, s j) := is_glb_Inf lemma is_glb_iff_infi_eq : is_glb (range s) a ↔ (⨅j, s j) = a := is_glb_iff_eq_of_is_glb is_glb_infi theorem le_supr_of_le (i : ι) (h : a ≤ s i) : a ≤ supr s := le_trans h (le_supr _ i) theorem supr_le (h : ∀i, s i ≤ a) : supr s ≤ a := Sup_le $ assume b ⟨i, eq⟩, eq ▸ h i theorem supr_le_supr (h : ∀i, s i ≤ t i) : supr s ≤ supr t := supr_le $ assume i, le_supr_of_le i (h i) theorem supr_le_supr2 {t : ι₂ → α} (h : ∀i, ∃j, s i ≤ t j) : supr s ≤ supr t := supr_le $ assume j, exists.elim (h j) le_supr_of_le theorem supr_le_supr_const (h : ι → ι₂) : (⨆ i:ι, a) ≤ (⨆ j:ι₂, a) := supr_le $ le_supr _ ∘ h @[simp] theorem supr_le_iff : supr s ≤ a ↔ (∀i, s i ≤ a) := ⟨assume : supr s ≤ a, assume i, le_trans (le_supr _ _) this, supr_le⟩ -- TODO: finish doesn't do well here. @[congr] theorem supr_congr_Prop {α : Type u} [has_Sup α] {p q : Prop} {f₁ : p → α} {f₂ : q → α} (pq : p ↔ q) (f : ∀x, f₁ (pq.mpr x) = f₂ x) : supr f₁ = supr f₂ := begin unfold supr, apply congr_arg, ext, simp, split, exact λ⟨h, W⟩, ⟨pq.1 h, eq.trans (f (pq.1 h)).symm W⟩, exact λ⟨h, W⟩, ⟨pq.2 h, eq.trans (f h) W⟩ end theorem infi_le (s : ι → α) (i : ι) : infi s ≤ s i := Inf_le ⟨i, rfl⟩ @[ematch] theorem infi_le' (s : ι → α) (i : ι) : (: infi s ≤ s i :) := Inf_le ⟨i, rfl⟩ /- I wanted to see if this would help for infi_comm; it doesn't. @[ematch] theorem infi_le₂' (s : ι → ι₂ → α) (i : ι) (j : ι₂) : (: ⨅ i j, s i j :) ≤ (: s i j :) := begin transitivity, apply (infi_le (λ i, ⨅ j, s i j) i), apply infi_le end -/ theorem infi_le_of_le (i : ι) (h : s i ≤ a) : infi s ≤ a := le_trans (infi_le _ i) h theorem le_infi (h : ∀i, a ≤ s i) : a ≤ infi s := le_Inf $ assume b ⟨i, eq⟩, eq ▸ h i theorem infi_le_infi (h : ∀i, s i ≤ t i) : infi s ≤ infi t := le_infi $ assume i, infi_le_of_le i (h i) theorem infi_le_infi2 {t : ι₂ → α} (h : ∀j, ∃i, s i ≤ t j) : infi s ≤ infi t := le_infi $ assume j, exists.elim (h j) infi_le_of_le theorem infi_le_infi_const (h : ι₂ → ι) : (⨅ i:ι, a) ≤ (⨅ j:ι₂, a) := le_infi $ infi_le _ ∘ h @[simp] theorem le_infi_iff : a ≤ infi s ↔ (∀i, a ≤ s i) := ⟨assume : a ≤ infi s, assume i, le_trans this (infi_le _ _), le_infi⟩ @[congr] theorem infi_congr_Prop {α : Type u} [has_Inf α] {p q : Prop} {f₁ : p → α} {f₂ : q → α} (pq : p ↔ q) (f : ∀x, f₁ (pq.mpr x) = f₂ x) : infi f₁ = infi f₂ := begin unfold infi, apply congr_arg, ext, simp, split, exact λ⟨h, W⟩, ⟨pq.1 h, eq.trans (f (pq.1 h)).symm W⟩, exact λ⟨h, W⟩, ⟨pq.2 h, eq.trans (f h) W⟩ end @[simp] theorem infi_const {a : α} : ∀[nonempty ι], (⨅ b:ι, a) = a | ⟨i⟩ := le_antisymm (Inf_le ⟨i, rfl⟩) (by finish) @[simp] theorem supr_const {a : α} : ∀[nonempty ι], (⨆ b:ι, a) = a | ⟨i⟩ := le_antisymm (by finish) (le_Sup ⟨i, rfl⟩) @[simp] lemma infi_top : (⨅i:ι, ⊤ : α) = ⊤ := top_unique $ le_infi $ assume i, le_refl _ @[simp] lemma supr_bot : (⨆i:ι, ⊥ : α) = ⊥ := bot_unique $ supr_le $ assume i, le_refl _ @[simp] lemma infi_eq_top : infi s = ⊤ ↔ (∀i, s i = ⊤) := iff.intro (assume eq i, top_unique $ eq ▸ infi_le _ _) (assume h, top_unique $ le_infi $ assume i, top_le_iff.2 $ h i) @[simp] lemma supr_eq_bot : supr s = ⊥ ↔ (∀i, s i = ⊥) := iff.intro (assume eq i, bot_unique $ eq ▸ le_supr _ _) (assume h, bot_unique $ supr_le $ assume i, le_bot_iff.2 $ h i) @[simp] lemma infi_pos {p : Prop} {f : p → α} (hp : p) : (⨅ h : p, f h) = f hp := le_antisymm (infi_le _ _) (le_infi $ assume h, le_refl _) @[simp] lemma infi_neg {p : Prop} {f : p → α} (hp : ¬ p) : (⨅ h : p, f h) = ⊤ := le_antisymm le_top $ le_infi $ assume h, (hp h).elim @[simp] lemma supr_pos {p : Prop} {f : p → α} (hp : p) : (⨆ h : p, f h) = f hp := le_antisymm (supr_le $ assume h, le_refl _) (le_supr _ _) @[simp] lemma supr_neg {p : Prop} {f : p → α} (hp : ¬ p) : (⨆ h : p, f h) = ⊥ := le_antisymm (supr_le $ assume h, (hp h).elim) bot_le lemma supr_eq_dif {p : Prop} [decidable p] (a : p → α) : (⨆h:p, a h) = (if h : p then a h else ⊥) := by by_cases p; simp [h] lemma supr_eq_if {p : Prop} [decidable p] (a : α) : (⨆h:p, a) = (if p then a else ⊥) := by rw [supr_eq_dif, dif_eq_if] lemma infi_eq_dif {p : Prop} [decidable p] (a : p → α) : (⨅h:p, a h) = (if h : p then a h else ⊤) := by by_cases p; simp [h] lemma infi_eq_if {p : Prop} [decidable p] (a : α) : (⨅h:p, a) = (if p then a else ⊤) := by rw [infi_eq_dif, dif_eq_if] -- TODO: should this be @[simp]? theorem infi_comm {f : ι → ι₂ → α} : (⨅i, ⨅j, f i j) = (⨅j, ⨅i, f i j) := le_antisymm (le_infi $ assume i, le_infi $ assume j, infi_le_of_le j $ infi_le _ i) (le_infi $ assume j, le_infi $ assume i, infi_le_of_le i $ infi_le _ j) /- TODO: this is strange. In the proof below, we get exactly the desired among the equalities, but close does not get it. begin apply @le_antisymm, simp, intros, begin [smt] ematch, ematch, ematch, trace_state, have := le_refl (f i_1 i), trace_state, close end end -/ -- TODO: should this be @[simp]? theorem supr_comm {f : ι → ι₂ → α} : (⨆i, ⨆j, f i j) = (⨆j, ⨆i, f i j) := le_antisymm (supr_le $ assume i, supr_le $ assume j, le_supr_of_le j $ le_supr _ i) (supr_le $ assume j, supr_le $ assume i, le_supr_of_le i $ le_supr _ j) @[simp] theorem infi_infi_eq_left {b : β} {f : Πx:β, x = b → α} : (⨅x, ⨅h:x = b, f x h) = f b rfl := le_antisymm (infi_le_of_le b $ infi_le _ rfl) (le_infi $ assume b', le_infi $ assume eq, match b', eq with ._, rfl := le_refl _ end) @[simp] theorem infi_infi_eq_right {b : β} {f : Πx:β, b = x → α} : (⨅x, ⨅h:b = x, f x h) = f b rfl := le_antisymm (infi_le_of_le b $ infi_le _ rfl) (le_infi $ assume b', le_infi $ assume eq, match b', eq with ._, rfl := le_refl _ end) @[simp] theorem supr_supr_eq_left {b : β} {f : Πx:β, x = b → α} : (⨆x, ⨆h : x = b, f x h) = f b rfl := le_antisymm (supr_le $ assume b', supr_le $ assume eq, match b', eq with ._, rfl := le_refl _ end) (le_supr_of_le b $ le_supr _ rfl) @[simp] theorem supr_supr_eq_right {b : β} {f : Πx:β, b = x → α} : (⨆x, ⨆h : b = x, f x h) = f b rfl := le_antisymm (supr_le $ assume b', supr_le $ assume eq, match b', eq with ._, rfl := le_refl _ end) (le_supr_of_le b $ le_supr _ rfl) attribute [ematch] le_refl theorem infi_inf_eq {f g : ι → α} : (⨅ x, f x ⊓ g x) = (⨅ x, f x) ⊓ (⨅ x, g x) := le_antisymm (le_inf (le_infi $ assume i, infi_le_of_le i inf_le_left) (le_infi $ assume i, infi_le_of_le i inf_le_right)) (le_infi $ assume i, le_inf (inf_le_left_of_le $ infi_le _ _) (inf_le_right_of_le $ infi_le _ _)) /- TODO: here is another example where more flexible pattern matching might help. begin apply @le_antisymm, safe, pose h := f a ⊓ g a, begin [smt] ematch, ematch end end -/ lemma infi_inf {f : ι → α} {a : α} (i : ι) : (⨅x, f x) ⊓ a = (⨅ x, f x ⊓ a) := le_antisymm (le_infi $ assume i, le_inf (inf_le_left_of_le $ infi_le _ _) inf_le_right) (le_inf (infi_le_infi $ assume i, inf_le_left) (infi_le_of_le i inf_le_right)) lemma inf_infi {f : ι → α} {a : α} (i : ι) : a ⊓ (⨅x, f x) = (⨅ x, a ⊓ f x) := by rw [inf_comm, infi_inf i]; simp [inf_comm] lemma binfi_inf {ι : Sort*} {p : ι → Prop} {f : Πi, p i → α} {a : α} {i : ι} (hi : p i) : (⨅i (h : p i), f i h) ⊓ a = (⨅ i (h : p i), f i h ⊓ a) := le_antisymm (le_infi $ assume i, le_infi $ assume hi, le_inf (inf_le_left_of_le $ infi_le_of_le i $ infi_le _ _) inf_le_right) (le_inf (infi_le_infi $ assume i, infi_le_infi $ assume hi, inf_le_left) (infi_le_of_le i $ infi_le_of_le hi $ inf_le_right)) theorem supr_sup_eq {f g : β → α} : (⨆ x, f x ⊔ g x) = (⨆ x, f x) ⊔ (⨆ x, g x) := le_antisymm (supr_le $ assume i, sup_le (le_sup_left_of_le $ le_supr _ _) (le_sup_right_of_le $ le_supr _ _)) (sup_le (supr_le $ assume i, le_supr_of_le i le_sup_left) (supr_le $ assume i, le_supr_of_le i le_sup_right)) /- supr and infi under Prop -/ @[simp] theorem infi_false {s : false → α} : infi s = ⊤ := le_antisymm le_top (le_infi $ assume i, false.elim i) @[simp] theorem supr_false {s : false → α} : supr s = ⊥ := le_antisymm (supr_le $ assume i, false.elim i) bot_le @[simp] theorem infi_true {s : true → α} : infi s = s trivial := le_antisymm (infi_le _ _) (le_infi $ assume ⟨⟩, le_refl _) @[simp] theorem supr_true {s : true → α} : supr s = s trivial := le_antisymm (supr_le $ assume ⟨⟩, le_refl _) (le_supr _ _) @[simp] theorem infi_exists {p : ι → Prop} {f : Exists p → α} : (⨅ x, f x) = (⨅ i, ⨅ h:p i, f ⟨i, h⟩) := le_antisymm (le_infi $ assume i, le_infi $ assume : p i, infi_le _ _) (le_infi $ assume ⟨i, h⟩, infi_le_of_le i $ infi_le _ _) @[simp] theorem supr_exists {p : ι → Prop} {f : Exists p → α} : (⨆ x, f x) = (⨆ i, ⨆ h:p i, f ⟨i, h⟩) := le_antisymm (supr_le $ assume ⟨i, h⟩, le_supr_of_le i $ le_supr (λh:p i, f ⟨i, h⟩) _) (supr_le $ assume i, supr_le $ assume : p i, le_supr _ _) theorem infi_and {p q : Prop} {s : p ∧ q → α} : infi s = (⨅ h₁ h₂, s ⟨h₁, h₂⟩) := le_antisymm (le_infi $ assume i, le_infi $ assume j, infi_le _ _) (le_infi $ assume ⟨i, h⟩, infi_le_of_le i $ infi_le _ _) theorem supr_and {p q : Prop} {s : p ∧ q → α} : supr s = (⨆ h₁ h₂, s ⟨h₁, h₂⟩) := le_antisymm (supr_le $ assume ⟨i, h⟩, le_supr_of_le i $ le_supr (λj, s ⟨i, j⟩) _) (supr_le $ assume i, supr_le $ assume j, le_supr _ _) theorem infi_or {p q : Prop} {s : p ∨ q → α} : infi s = (⨅ h : p, s (or.inl h)) ⊓ (⨅ h : q, s (or.inr h)) := le_antisymm (le_inf (infi_le_infi2 $ assume j, ⟨_, le_refl _⟩) (infi_le_infi2 $ assume j, ⟨_, le_refl _⟩)) (le_infi $ assume i, match i with | or.inl i := inf_le_left_of_le $ infi_le _ _ | or.inr j := inf_le_right_of_le $ infi_le _ _ end) theorem supr_or {p q : Prop} {s : p ∨ q → α} : (⨆ x, s x) = (⨆ i, s (or.inl i)) ⊔ (⨆ j, s (or.inr j)) := le_antisymm (supr_le $ assume s, match s with | or.inl i := le_sup_left_of_le $ le_supr _ i | or.inr j := le_sup_right_of_le $ le_supr _ j end) (sup_le (supr_le_supr2 $ assume i, ⟨or.inl i, le_refl _⟩) (supr_le_supr2 $ assume j, ⟨or.inr j, le_refl _⟩)) theorem Inf_eq_infi {s : set α} : Inf s = (⨅a ∈ s, a) := le_antisymm (le_infi $ assume b, le_infi $ assume h, Inf_le h) (le_Inf $ assume b h, infi_le_of_le b $ infi_le _ h) theorem Sup_eq_supr {s : set α} : Sup s = (⨆a ∈ s, a) := le_antisymm (Sup_le $ assume b h, le_supr_of_le b $ le_supr _ h) (supr_le $ assume b, supr_le $ assume h, le_Sup h) lemma Sup_range {α : Type u} [has_Sup α] {f : ι → α} : Sup (range f) = supr f := rfl lemma Inf_range {α : Type u} [has_Inf α] {f : ι → α} : Inf (range f) = infi f := rfl lemma supr_range {g : β → α} {f : ι → β} : (⨆b∈range f, g b) = (⨆i, g (f i)) := le_antisymm (supr_le $ assume b, supr_le $ assume ⟨i, (h : f i = b)⟩, h ▸ le_supr _ i) (supr_le $ assume i, le_supr_of_le (f i) $ le_supr (λp, g (f i)) (mem_range_self _)) lemma infi_range {g : β → α} {f : ι → β} : (⨅b∈range f, g b) = (⨅i, g (f i)) := le_antisymm (le_infi $ assume i, infi_le_of_le (f i) $ infi_le (λp, g (f i)) (mem_range_self _)) (le_infi $ assume b, le_infi $ assume ⟨i, (h : f i = b)⟩, h ▸ infi_le _ i) theorem Inf_image {s : set β} {f : β → α} : Inf (f '' s) = (⨅ a ∈ s, f a) := calc Inf (set.image f s) = (⨅a, ⨅h : ∃b, b ∈ s ∧ f b = a, a) : Inf_eq_infi ... = (⨅a, ⨅b, ⨅h : f b = a ∧ b ∈ s, a) : by simp [and_comm] ... = (⨅a, ⨅b, ⨅h : a = f b, ⨅h : b ∈ s, a) : by simp [infi_and, eq_comm] ... = (⨅b, ⨅a, ⨅h : a = f b, ⨅h : b ∈ s, a) : by rw [infi_comm] ... = (⨅a∈s, f a) : congr_arg infi $ by funext x; rw [infi_infi_eq_left] theorem Sup_image {s : set β} {f : β → α} : Sup (f '' s) = (⨆ a ∈ s, f a) := calc Sup (set.image f s) = (⨆a, ⨆h : ∃b, b ∈ s ∧ f b = a, a) : Sup_eq_supr ... = (⨆a, ⨆b, ⨆h : f b = a ∧ b ∈ s, a) : by simp [and_comm] ... = (⨆a, ⨆b, ⨆h : a = f b, ⨆h : b ∈ s, a) : by simp [supr_and, eq_comm] ... = (⨆b, ⨆a, ⨆h : a = f b, ⨆h : b ∈ s, a) : by rw [supr_comm] ... = (⨆a∈s, f a) : congr_arg supr $ by funext x; rw [supr_supr_eq_left] /- supr and infi under set constructions -/ /- should work using the simplifier! -/ @[simp] theorem infi_emptyset {f : β → α} : (⨅ x ∈ (∅ : set β), f x) = ⊤ := le_antisymm le_top (le_infi $ assume x, le_infi false.elim) @[simp] theorem supr_emptyset {f : β → α} : (⨆ x ∈ (∅ : set β), f x) = ⊥ := le_antisymm (supr_le $ assume x, supr_le false.elim) bot_le @[simp] theorem infi_univ {f : β → α} : (⨅ x ∈ (univ : set β), f x) = (⨅ x, f x) := show (⨅ (x : β) (H : true), f x) = ⨅ (x : β), f x, from congr_arg infi $ funext $ assume x, infi_const @[simp] theorem supr_univ {f : β → α} : (⨆ x ∈ (univ : set β), f x) = (⨆ x, f x) := show (⨆ (x : β) (H : true), f x) = ⨆ (x : β), f x, from congr_arg supr $ funext $ assume x, supr_const @[simp] theorem infi_union {f : β → α} {s t : set β} : (⨅ x ∈ s ∪ t, f x) = (⨅x∈s, f x) ⊓ (⨅x∈t, f x) := calc (⨅ x ∈ s ∪ t, f x) = (⨅ x, (⨅h : x∈s, f x) ⊓ (⨅h : x∈t, f x)) : congr_arg infi $ funext $ assume x, infi_or ... = (⨅x∈s, f x) ⊓ (⨅x∈t, f x) : infi_inf_eq theorem infi_le_infi_of_subset {f : β → α} {s t : set β} (h : s ⊆ t) : (⨅ x ∈ t, f x) ≤ (⨅ x ∈ s, f x) := by rw [(union_eq_self_of_subset_left h).symm, infi_union]; exact inf_le_left @[simp] theorem supr_union {f : β → α} {s t : set β} : (⨆ x ∈ s ∪ t, f x) = (⨆x∈s, f x) ⊔ (⨆x∈t, f x) := calc (⨆ x ∈ s ∪ t, f x) = (⨆ x, (⨆h : x∈s, f x) ⊔ (⨆h : x∈t, f x)) : congr_arg supr $ funext $ assume x, supr_or ... = (⨆x∈s, f x) ⊔ (⨆x∈t, f x) : supr_sup_eq theorem supr_le_supr_of_subset {f : β → α} {s t : set β} (h : s ⊆ t) : (⨆ x ∈ s, f x) ≤ (⨆ x ∈ t, f x) := by rw [(union_eq_self_of_subset_left h).symm, supr_union]; exact le_sup_left @[simp] theorem insert_of_has_insert {α : Type*} (x : α) (a : set α) : has_insert.insert x a = insert x a := rfl @[simp] theorem infi_insert {f : β → α} {s : set β} {b : β} : (⨅ x ∈ insert b s, f x) = f b ⊓ (⨅x∈s, f x) := eq.trans infi_union $ congr_arg (λx:α, x ⊓ (⨅x∈s, f x)) infi_infi_eq_left @[simp] theorem supr_insert {f : β → α} {s : set β} {b : β} : (⨆ x ∈ insert b s, f x) = f b ⊔ (⨆x∈s, f x) := eq.trans supr_union $ congr_arg (λx:α, x ⊔ (⨆x∈s, f x)) supr_supr_eq_left @[simp] theorem infi_singleton {f : β → α} {b : β} : (⨅ x ∈ (singleton b : set β), f x) = f b := show (⨅ x ∈ insert b (∅ : set β), f x) = f b, by simp @[simp] theorem infi_pair {f : β → α} {a b : β} : (⨅ x ∈ ({a, b} : set β), f x) = f a ⊓ f b := by { rw [show {a, b} = (insert b {a} : set β), from rfl, infi_insert, inf_comm], simp } @[simp] theorem supr_singleton {f : β → α} {b : β} : (⨆ x ∈ (singleton b : set β), f x) = f b := show (⨆ x ∈ insert b (∅ : set β), f x) = f b, by simp @[simp] theorem supr_pair {f : β → α} {a b : β} : (⨆ x ∈ ({a, b} : set β), f x) = f a ⊔ f b := by { rw [show {a, b} = (insert b {a} : set β), from rfl, supr_insert, sup_comm], simp } lemma infi_image {γ} {f : β → γ} {g : γ → α} {t : set β} : (⨅ c ∈ f '' t, g c) = (⨅ b ∈ t, g (f b)) := le_antisymm (le_infi $ assume b, le_infi $ assume hbt, infi_le_of_le (f b) $ infi_le (λ_, g (f b)) (mem_image_of_mem f hbt)) (le_infi $ assume c, le_infi $ assume ⟨b, hbt, eq⟩, eq ▸ infi_le_of_le b $ infi_le (λ_, g (f b)) hbt) lemma supr_image {γ} {f : β → γ} {g : γ → α} {t : set β} : (⨆ c ∈ f '' t, g c) = (⨆ b ∈ t, g (f b)) := le_antisymm (supr_le $ assume c, supr_le $ assume ⟨b, hbt, eq⟩, eq ▸ le_supr_of_le b $ le_supr (λ_, g (f b)) hbt) (supr_le $ assume b, supr_le $ assume hbt, le_supr_of_le (f b) $ le_supr (λ_, g (f b)) (mem_image_of_mem f hbt)) /- supr and infi under Type -/ @[simp] theorem infi_empty {s : empty → α} : infi s = ⊤ := le_antisymm le_top (le_infi $ assume i, empty.rec_on _ i) @[simp] theorem supr_empty {s : empty → α} : supr s = ⊥ := le_antisymm (supr_le $ assume i, empty.rec_on _ i) bot_le @[simp] theorem infi_unit {f : unit → α} : (⨅ x, f x) = f () := le_antisymm (infi_le _ _) (le_infi $ assume ⟨⟩, le_refl _) @[simp] theorem supr_unit {f : unit → α} : (⨆ x, f x) = f () := le_antisymm (supr_le $ assume ⟨⟩, le_refl _) (le_supr _ _) lemma supr_bool_eq {f : bool → α} : (⨆b:bool, f b) = f tt ⊔ f ff := le_antisymm (supr_le $ assume b, match b with tt := le_sup_left | ff := le_sup_right end) (sup_le (le_supr _ _) (le_supr _ _)) lemma infi_bool_eq {f : bool → α} : (⨅b:bool, f b) = f tt ⊓ f ff := le_antisymm (le_inf (infi_le _ _) (infi_le _ _)) (le_infi $ assume b, match b with tt := inf_le_left | ff := inf_le_right end) theorem infi_subtype {p : ι → Prop} {f : subtype p → α} : (⨅ x, f x) = (⨅ i (h:p i), f ⟨i, h⟩) := le_antisymm (le_infi $ assume i, le_infi $ assume : p i, infi_le _ _) (le_infi $ assume ⟨i, h⟩, infi_le_of_le i $ infi_le _ _) lemma infi_subtype' {p : ι → Prop} {f : ∀ i, p i → α} : (⨅ i (h : p i), f i h) = (⨅ x : subtype p, f x.val x.property) := (@infi_subtype _ _ _ p (λ x, f x.val x.property)).symm theorem supr_subtype {p : ι → Prop} {f : subtype p → α} : (⨆ x, f x) = (⨆ i (h:p i), f ⟨i, h⟩) := le_antisymm (supr_le $ assume ⟨i, h⟩, le_supr_of_le i $ le_supr (λh:p i, f ⟨i, h⟩) _) (supr_le $ assume i, supr_le $ assume : p i, le_supr _ _) theorem infi_sigma {p : β → Type w} {f : sigma p → α} : (⨅ x, f x) = (⨅ i (h:p i), f ⟨i, h⟩) := le_antisymm (le_infi $ assume i, le_infi $ assume : p i, infi_le _ _) (le_infi $ assume ⟨i, h⟩, infi_le_of_le i $ infi_le _ _) theorem supr_sigma {p : β → Type w} {f : sigma p → α} : (⨆ x, f x) = (⨆ i (h:p i), f ⟨i, h⟩) := le_antisymm (supr_le $ assume ⟨i, h⟩, le_supr_of_le i $ le_supr (λh:p i, f ⟨i, h⟩) _) (supr_le $ assume i, supr_le $ assume : p i, le_supr _ _) theorem infi_prod {γ : Type w} {f : β × γ → α} : (⨅ x, f x) = (⨅ i j, f (i, j)) := le_antisymm (le_infi $ assume i, le_infi $ assume j, infi_le _ _) (le_infi $ assume ⟨i, h⟩, infi_le_of_le i $ infi_le _ _) theorem supr_prod {γ : Type w} {f : β × γ → α} : (⨆ x, f x) = (⨆ i j, f (i, j)) := le_antisymm (supr_le $ assume ⟨i, h⟩, le_supr_of_le i $ le_supr (λj, f ⟨i, j⟩) _) (supr_le $ assume i, supr_le $ assume j, le_supr _ _) theorem infi_sum {γ : Type w} {f : β ⊕ γ → α} : (⨅ x, f x) = (⨅ i, f (sum.inl i)) ⊓ (⨅ j, f (sum.inr j)) := le_antisymm (le_inf (infi_le_infi2 $ assume i, ⟨_, le_refl _⟩) (infi_le_infi2 $ assume j, ⟨_, le_refl _⟩)) (le_infi $ assume s, match s with | sum.inl i := inf_le_left_of_le $ infi_le _ _ | sum.inr j := inf_le_right_of_le $ infi_le _ _ end) theorem supr_sum {γ : Type w} {f : β ⊕ γ → α} : (⨆ x, f x) = (⨆ i, f (sum.inl i)) ⊔ (⨆ j, f (sum.inr j)) := le_antisymm (supr_le $ assume s, match s with | sum.inl i := le_sup_left_of_le $ le_supr _ i | sum.inr j := le_sup_right_of_le $ le_supr _ j end) (sup_le (supr_le_supr2 $ assume i, ⟨sum.inl i, le_refl _⟩) (supr_le_supr2 $ assume j, ⟨sum.inr j, le_refl _⟩)) end section complete_linear_order variables [complete_linear_order α] lemma supr_eq_top (f : ι → α) : supr f = ⊤ ↔ (∀b<⊤, ∃i, b < f i) := by rw [← Sup_range, Sup_eq_top]; from forall_congr (assume b, forall_congr (assume hb, set.exists_range_iff)) lemma infi_eq_bot (f : ι → α) : infi f = ⊥ ↔ (∀b>⊥, ∃i, b > f i) := by rw [← Inf_range, Inf_eq_bot]; from forall_congr (assume b, forall_congr (assume hb, set.exists_range_iff)) end complete_linear_order /- Instances -/ instance complete_lattice_Prop : complete_lattice Prop := { Sup := λs, ∃a∈s, a, le_Sup := assume s a h p, ⟨a, h, p⟩, Sup_le := assume s a h ⟨b, h', p⟩, h b h' p, Inf := λs, ∀a:Prop, a∈s → a, Inf_le := assume s a h p, p a h, le_Inf := assume s a h p b hb, h b hb p, ..lattice.bounded_lattice_Prop } lemma Inf_Prop_eq {s : set Prop} : Inf s = (∀p ∈ s, p) := rfl lemma Sup_Prop_eq {s : set Prop} : Sup s = (∃p ∈ s, p) := rfl lemma infi_Prop_eq {ι : Sort*} {p : ι → Prop} : (⨅i, p i) = (∀i, p i) := le_antisymm (assume h i, h _ ⟨i, rfl⟩ ) (assume h p ⟨i, eq⟩, eq ▸ h i) lemma supr_Prop_eq {ι : Sort*} {p : ι → Prop} : (⨆i, p i) = (∃i, p i) := le_antisymm (assume ⟨q, ⟨i, (eq : p i = q)⟩, hq⟩, ⟨i, eq.symm ▸ hq⟩) (assume ⟨i, hi⟩, ⟨p i, ⟨i, rfl⟩, hi⟩) instance pi.complete_lattice {α : Type u} {β : α → Type v} [∀ i, complete_lattice (β i)] : complete_lattice (Π i, β i) := by { pi_instance; { intros, intro, apply_field, intros, simp at H, rcases H with ⟨ x, H₀, H₁ ⟩, subst b, apply a_1 _ H₀ i, } } lemma Inf_apply {α : Type u} {β : α → Type v} [∀ i, complete_lattice (β i)] {s : set (Πa, β a)} {a : α} : (Inf s) a = (⨅f∈s, (f : Πa, β a) a) := by rw [← Inf_image]; refl lemma infi_apply {α : Type u} {β : α → Type v} {ι : Sort*} [∀ i, complete_lattice (β i)] {f : ι → Πa, β a} {a : α} : (⨅i, f i) a = (⨅i, f i a) := by erw [← Inf_range, Inf_apply, infi_range] lemma Sup_apply {α : Type u} {β : α → Type v} [∀ i, complete_lattice (β i)] {s : set (Πa, β a)} {a : α} : (Sup s) a = (⨆f∈s, (f : Πa, β a) a) := by rw [← Sup_image]; refl lemma supr_apply {α : Type u} {β : α → Type v} {ι : Sort*} [∀ i, complete_lattice (β i)] {f : ι → Πa, β a} {a : α} : (⨆i, f i) a = (⨆i, f i a) := by erw [← Sup_range, Sup_apply, supr_range] section complete_lattice variables [preorder α] [complete_lattice β] theorem monotone_Sup_of_monotone {s : set (α → β)} (m_s : ∀f∈s, monotone f) : monotone (Sup s) := assume x y h, Sup_le $ assume x' ⟨f, f_in, fx_eq⟩, le_Sup_of_le ⟨f, f_in, rfl⟩ $ fx_eq ▸ m_s _ f_in h theorem monotone_Inf_of_monotone {s : set (α → β)} (m_s : ∀f∈s, monotone f) : monotone (Inf s) := assume x y h, le_Inf $ assume x' ⟨f, f_in, fx_eq⟩, Inf_le_of_le ⟨f, f_in, rfl⟩ $ fx_eq ▸ m_s _ f_in h end complete_lattice section ord_continuous open lattice variables [complete_lattice α] [complete_lattice β] /-- A function `f` between complete lattices is order-continuous if it preserves all suprema. -/ def ord_continuous (f : α → β) := ∀s : set α, f (Sup s) = (⨆i∈s, f i) lemma ord_continuous_sup {f : α → β} {a₁ a₂ : α} (hf : ord_continuous f) : f (a₁ ⊔ a₂) = f a₁ ⊔ f a₂ := have h : f (Sup {a₁, a₂}) = (⨆i∈({a₁, a₂} : set α), f i), from hf _, have h₁ : {a₁, a₂} = (insert a₂ {a₁} : set α), from rfl, begin rw [h₁, Sup_insert, Sup_singleton, sup_comm] at h, rw [h, supr_insert, supr_singleton, sup_comm] end lemma ord_continuous_mono {f : α → β} (hf : ord_continuous f) : monotone f := assume a₁ a₂ h, calc f a₁ ≤ f a₁ ⊔ f a₂ : le_sup_left ... = f (a₁ ⊔ a₂) : (ord_continuous_sup hf).symm ... = _ : by rw [sup_of_le_right h] end ord_continuous end lattice namespace order_dual open lattice variable (α : Type*) instance [has_Inf α] : has_Sup (order_dual α) := ⟨(Inf : set α → α)⟩ instance [has_Sup α] : has_Inf (order_dual α) := ⟨(Sup : set α → α)⟩ instance [complete_lattice α] : complete_lattice (order_dual α) := { le_Sup := @complete_lattice.Inf_le α _, Sup_le := @complete_lattice.le_Inf α _, Inf_le := @complete_lattice.le_Sup α _, le_Inf := @complete_lattice.Sup_le α _, .. order_dual.lattice.bounded_lattice α, ..order_dual.lattice.has_Sup α, ..order_dual.lattice.has_Inf α } instance [complete_linear_order α] : complete_linear_order (order_dual α) := { .. order_dual.lattice.complete_lattice α, .. order_dual.decidable_linear_order α } end order_dual namespace prod open lattice variables (α : Type*) (β : Type*) instance [has_Inf α] [has_Inf β] : has_Inf (α × β) := ⟨λs, (Inf (prod.fst '' s), Inf (prod.snd '' s))⟩ instance [has_Sup α] [has_Sup β] : has_Sup (α × β) := ⟨λs, (Sup (prod.fst '' s), Sup (prod.snd '' s))⟩ instance [complete_lattice α] [complete_lattice β] : complete_lattice (α × β) := { le_Sup := assume s p hab, ⟨le_Sup $ mem_image_of_mem _ hab, le_Sup $ mem_image_of_mem _ hab⟩, Sup_le := assume s p h, ⟨ Sup_le $ ball_image_of_ball $ assume p hp, (h p hp).1, Sup_le $ ball_image_of_ball $ assume p hp, (h p hp).2⟩, Inf_le := assume s p hab, ⟨Inf_le $ mem_image_of_mem _ hab, Inf_le $ mem_image_of_mem _ hab⟩, le_Inf := assume s p h, ⟨ le_Inf $ ball_image_of_ball $ assume p hp, (h p hp).1, le_Inf $ ball_image_of_ball $ assume p hp, (h p hp).2⟩, .. prod.lattice.bounded_lattice α β, .. prod.lattice.has_Sup α β, .. prod.lattice.has_Inf α β } end prod
a6ea619dcacb33d60157e063f3a4e2ad6994e7bc
853df553b1d6ca524e3f0a79aedd32dde5d27ec3
/src/measure_theory/integration.lean
93a5747c4f955b0a6ad608eeb0123524abbaef76
[ "Apache-2.0" ]
permissive
DanielFabian/mathlib
efc3a50b5dde303c59eeb6353ef4c35a345d7112
f520d07eba0c852e96fe26da71d85bf6d40fcc2a
refs/heads/master
1,668,739,922,971
1,595,201,756,000
1,595,201,756,000
279,469,476
0
0
null
1,594,696,604,000
1,594,696,604,000
null
UTF-8
Lean
false
false
56,705
lean
/- Copyright (c) 2018 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Johannes Hölzl -/ import measure_theory.measure_space import measure_theory.borel_space /-! # Lebesgue integral for `ennreal`-valued functions We define simple functions and show that each Borel measurable function on `ennreal` can be approximated by a sequence of simple functions. -/ noncomputable theory open set (hiding restrict restrict_apply) filter open_locale classical topological_space big_operators namespace measure_theory variables {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} /-- A function `f` from a measurable space to any type is called *simple*, if every preimage `f ⁻¹' {x}` is measurable, and the range is finite. This structure bundles a function with these properties. -/ structure {u v} simple_func (α : Type u) [measurable_space α] (β : Type v) := (to_fun : α → β) (measurable_sn : ∀ x, is_measurable (to_fun ⁻¹' {x})) (finite : (set.range to_fun).finite) local infixr ` →ₛ `:25 := simple_func namespace simple_func section measurable variables [measurable_space α] instance has_coe_to_fun : has_coe_to_fun (α →ₛ β) := ⟨_, to_fun⟩ @[ext] theorem ext {f g : α →ₛ β} (H : ∀ a, f a = g a) : f = g := by cases f; cases g; congr; exact funext H /-- Range of a simple function `α →ₛ β` as a `finset β`. -/ protected def range (f : α →ₛ β) : finset β := f.finite.to_finset @[simp] theorem mem_range {f : α →ₛ β} {b} : b ∈ f.range ↔ ∃ a, f a = b := finite.mem_to_finset lemma preimage_eq_empty_iff (f : α →ₛ β) (b : β) : f ⁻¹' {b} = ∅ ↔ b ∉ f.range := preimage_singleton_eq_empty.trans $ not_congr mem_range.symm /-- Constant function as a `simple_func`. -/ def const (α) {β} [measurable_space α] (b : β) : α →ₛ β := ⟨λ a, b, λ x, is_measurable.const _, finite_range_const⟩ instance [inhabited β] : inhabited (α →ₛ β) := ⟨const _ (default _)⟩ @[simp] theorem const_apply (a : α) (b : β) : (const α b) a = b := rfl lemma range_const (α) [measurable_space α] [nonempty α] (b : β) : (const α b).range = {b} := begin ext b', simp [mem_range, eq_comm] end lemma is_measurable_cut (p : α → β → Prop) (f : α →ₛ β) (h : ∀b, is_measurable {a | p a b}) : is_measurable {a | p a (f a)} := begin rw (_ : {a | p a (f a)} = ⋃ b ∈ set.range f, {a | p a b} ∩ f ⁻¹' {b}), { exact is_measurable.bUnion f.finite.countable (λ b _, is_measurable.inter (h b) (f.measurable_sn _)) }, ext a, simp, exact ⟨λ h, ⟨a, ⟨h, rfl⟩⟩, λ ⟨a', ⟨h', e⟩⟩, e.symm ▸ h'⟩ end theorem preimage_measurable (f : α →ₛ β) (s) : is_measurable (f ⁻¹' s) := is_measurable_cut (λ _ b, b ∈ s) f (λ b, is_measurable.const (b ∈ s)) /-- A simple function is measurable -/ protected theorem measurable [measurable_space β] (f : α →ₛ β) : measurable f := λ s _, preimage_measurable f s /-- If-then-else as a `simple_func`. -/ def ite {s : set α} (hs : is_measurable s) (f g : α →ₛ β) : α →ₛ β := ⟨λ a, if a ∈ s then f a else g a, λ x, by letI : measurable_space β := ⊤; exact measurable.if hs f.measurable g.measurable _ trivial, (f.finite.union g.finite).subset begin rintro _ ⟨a, rfl⟩, by_cases a ∈ s; simp [h], exacts [or.inl ⟨_, rfl⟩, or.inr ⟨_, rfl⟩] end⟩ @[simp] theorem ite_apply {s : set α} (hs : is_measurable s) (f g : α →ₛ β) (a) : ite hs f g a = if a ∈ s then f a else g a := rfl /-- If `f : α →ₛ β` is a simple function and `g : β → α →ₛ γ` is a family of simple functions, then `f.bind g` binds the first argument of `g` to `f`. In other words, `f.bind g a = g (f a) a`. -/ def bind (f : α →ₛ β) (g : β → α →ₛ γ) : α →ₛ γ := ⟨λa, g (f a) a, λ c, is_measurable_cut (λa b, g b a ∈ ({c} : set γ)) f (λ b, (g b).measurable_sn c), (f.finite.bUnion (λ b _, (g b).finite)).subset $ by rintro _ ⟨a, rfl⟩; simp; exact ⟨a, a, rfl⟩⟩ @[simp] theorem bind_apply (f : α →ₛ β) (g : β → α →ₛ γ) (a) : f.bind g a = g (f a) a := rfl /-- Restrict a simple function `f : α →ₛ β` to a set `s`. If `s` is measurable, then `f.restrict s a = if a ∈ s then f a else 0`, otherwise `f.restrict s = const α 0`. -/ def restrict [has_zero β] (f : α →ₛ β) (s : set α) : α →ₛ β := if hs : is_measurable s then ite hs f (const α 0) else const α 0 @[simp] theorem restrict_apply [has_zero β] (f : α →ₛ β) {s : set α} (hs : is_measurable s) (a) : restrict f s a = if a ∈ s then f a else 0 := by unfold_coes; simp [restrict, hs]; apply ite_apply hs theorem restrict_preimage [has_zero β] (f : α →ₛ β) {s : set α} (hs : is_measurable s) {t : set β} (ht : (0:β) ∉ t) : restrict f s ⁻¹' t = s ∩ f ⁻¹' t := by ext a; dsimp [preimage]; rw [restrict_apply]; by_cases a ∈ s; simp [h, hs, ht] /-- Given a function `g : β → γ` and a simple function `f : α →ₛ β`, `f.map g` return the simple function `g ∘ f : α →ₛ γ` -/ def map (g : β → γ) (f : α →ₛ β) : α →ₛ γ := bind f (const α ∘ g) @[simp] theorem map_apply (g : β → γ) (f : α →ₛ β) (a) : f.map g a = g (f a) := rfl theorem map_map (g : β → γ) (h: γ → δ) (f : α →ₛ β) : (f.map g).map h = f.map (h ∘ g) := rfl theorem coe_map (g : β → γ) (f : α →ₛ β) : (f.map g : α → γ) = g ∘ f := rfl @[simp] theorem range_map [decidable_eq γ] (g : β → γ) (f : α →ₛ β) : (f.map g).range = f.range.image g := begin ext c, simp only [mem_range, exists_prop, mem_range, finset.mem_image, map_apply], split, { rintros ⟨a, rfl⟩, exact ⟨f a, ⟨_, rfl⟩, rfl⟩ }, { rintros ⟨_, ⟨a, rfl⟩, rfl⟩, exact ⟨_, rfl⟩ } end lemma map_preimage (f : α →ₛ β) (g : β → γ) (s : set γ) : (f.map g) ⁻¹' s = (⋃b∈f.range.filter (λb, g b ∈ s), f ⁻¹' {b}) := begin /- True because `f` only takes finitely many values. -/ ext a', simp only [mem_Union, set.mem_preimage, exists_prop, set.mem_preimage, map_apply, finset.mem_filter, mem_range, mem_singleton_iff, exists_eq_right'], split, { assume eq, exact ⟨⟨_, rfl⟩, eq⟩ }, { rintros ⟨_, eq⟩, exact eq } end lemma map_preimage_singleton (f : α →ₛ β) (g : β → γ) (c : γ) : (f.map g) ⁻¹' {c} = (⋃b∈f.range.filter (λb, g b = c), f ⁻¹' {b}) := map_preimage _ _ _ /-- If `f` is a simple function taking values in `β → γ` and `g` is another simple function with the same domain and codomain `β`, then `f.seq g = f a (g a)`. -/ def seq (f : α →ₛ (β → γ)) (g : α →ₛ β) : α →ₛ γ := f.bind (λf, g.map f) @[simp] lemma seq_apply (f : α →ₛ (β → γ)) (g : α →ₛ β) (a : α) : f.seq g a = f a (g a) := rfl /-- Combine two simple functions `f : α →ₛ β` and `g : α →ₛ β` into `λ a, (f a, g a)`. -/ def pair (f : α →ₛ β) (g : α →ₛ γ) : α →ₛ (β × γ) := (f.map prod.mk).seq g @[simp] lemma pair_apply (f : α →ₛ β) (g : α →ₛ γ) (a) : pair f g a = (f a, g a) := rfl lemma pair_preimage (f : α →ₛ β) (g : α →ₛ γ) (s : set β) (t : set γ) : (pair f g) ⁻¹' (set.prod s t) = (f ⁻¹' s) ∩ (g ⁻¹' t) := rfl /- A special form of `pair_preimage` -/ lemma pair_preimage_singleton (f : α →ₛ β) (g : α →ₛ γ) (b : β) (c : γ) : (pair f g) ⁻¹' {(b, c)} = (f ⁻¹' {b}) ∩ (g ⁻¹' {c}) := by { rw ← prod_singleton_singleton, exact pair_preimage _ _ _ _ } theorem bind_const (f : α →ₛ β) : f.bind (const α) = f := by ext; simp instance [has_zero β] : has_zero (α →ₛ β) := ⟨const α 0⟩ instance [has_add β] : has_add (α →ₛ β) := ⟨λf g, (f.map (+)).seq g⟩ instance [has_mul β] : has_mul (α →ₛ β) := ⟨λf g, (f.map (*)).seq g⟩ instance [has_sup β] : has_sup (α →ₛ β) := ⟨λf g, (f.map (⊔)).seq g⟩ instance [has_inf β] : has_inf (α →ₛ β) := ⟨λf g, (f.map (⊓)).seq g⟩ instance [has_le β] : has_le (α →ₛ β) := ⟨λf g, ∀a, f a ≤ g a⟩ @[simp] lemma sup_apply [has_sup β] (f g : α →ₛ β) (a : α) : (f ⊔ g) a = f a ⊔ g a := rfl @[simp] lemma mul_apply [has_mul β] (f g : α →ₛ β) (a : α) : (f * g) a = f a * g a := rfl lemma add_apply [has_add β] (f g : α →ₛ β) (a : α) : (f + g) a = f a + g a := rfl lemma add_eq_map₂ [has_add β] (f g : α →ₛ β) : f + g = (pair f g).map (λp:β×β, p.1 + p.2) := rfl lemma sup_eq_map₂ [has_sup β] (f g : α →ₛ β) : f ⊔ g = (pair f g).map (λp:β×β, p.1 ⊔ p.2) := rfl lemma const_mul_eq_map [has_mul β] (f : α →ₛ β) (b : β) : const α b * f = f.map (λa, b * a) := rfl instance [add_monoid β] : add_monoid (α →ₛ β) := { add := (+), zero := 0, add_assoc := assume f g h, ext (assume a, add_assoc _ _ _), zero_add := assume f, ext (assume a, zero_add _), add_zero := assume f, ext (assume a, add_zero _) } instance add_comm_monoid [add_comm_monoid β] : add_comm_monoid (α →ₛ β) := { add_comm := λ f g, ext (λa, add_comm _ _), .. simple_func.add_monoid } instance [has_neg β] : has_neg (α →ₛ β) := ⟨λf, f.map (has_neg.neg)⟩ instance [add_group β] : add_group (α →ₛ β) := { neg := has_neg.neg, add_left_neg := λf, ext (λa, add_left_neg _), .. simple_func.add_monoid } instance [add_comm_group β] : add_comm_group (α →ₛ β) := { add_comm := λ f g, ext (λa, add_comm _ _) , .. simple_func.add_group } variables {K : Type*} instance [has_scalar K β] : has_scalar K (α →ₛ β) := ⟨λk f, f.map (λb, k • b)⟩ instance [semiring K] [add_comm_monoid β] [semimodule K β] : semimodule K (α →ₛ β) := { one_smul := λ f, ext (λa, one_smul _ _), mul_smul := λ x y f, ext (λa, mul_smul _ _ _), smul_add := λ r f g, ext (λa, smul_add _ _ _), smul_zero := λ r, ext (λa, smul_zero _), add_smul := λ r s f, ext (λa, add_smul _ _ _), zero_smul := λ f, ext (λa, zero_smul _ _) } lemma smul_apply [has_scalar K β] (k : K) (f : α →ₛ β) (a : α) : (k • f) a = k • f a := rfl lemma smul_eq_map [has_scalar K β] (k : K) (f : α →ₛ β) : k • f = f.map (λb, k • b) := rfl instance [preorder β] : preorder (α →ₛ β) := { le_refl := λf a, le_refl _, le_trans := λf g h hfg hgh a, le_trans (hfg _) (hgh a), .. simple_func.has_le } instance [partial_order β] : partial_order (α →ₛ β) := { le_antisymm := assume f g hfg hgf, ext $ assume a, le_antisymm (hfg a) (hgf a), .. simple_func.preorder } instance [order_bot β] : order_bot (α →ₛ β) := { bot := const α ⊥, bot_le := λf a, bot_le, .. simple_func.partial_order } instance [order_top β] : order_top (α →ₛ β) := { top := const α⊤, le_top := λf a, le_top, .. simple_func.partial_order } instance [semilattice_inf β] : semilattice_inf (α →ₛ β) := { inf := (⊓), inf_le_left := assume f g a, inf_le_left, inf_le_right := assume f g a, inf_le_right, le_inf := assume f g h hfh hgh a, le_inf (hfh a) (hgh a), .. simple_func.partial_order } instance [semilattice_sup β] : semilattice_sup (α →ₛ β) := { sup := (⊔), le_sup_left := assume f g a, le_sup_left, le_sup_right := assume f g a, le_sup_right, sup_le := assume f g h hfh hgh a, sup_le (hfh a) (hgh a), .. simple_func.partial_order } instance [semilattice_sup_bot β] : semilattice_sup_bot (α →ₛ β) := { .. simple_func.semilattice_sup,.. simple_func.order_bot } instance [lattice β] : lattice (α →ₛ β) := { .. simple_func.semilattice_sup,.. simple_func.semilattice_inf } instance [bounded_lattice β] : bounded_lattice (α →ₛ β) := { .. simple_func.lattice, .. simple_func.order_bot, .. simple_func.order_top } lemma finset_sup_apply [semilattice_sup_bot β] {f : γ → α →ₛ β} (s : finset γ) (a : α) : s.sup f a = s.sup (λc, f c a) := begin refine finset.induction_on s rfl _, assume a s hs ih, rw [finset.sup_insert, finset.sup_insert, sup_apply, ih] end section approx section variables [semilattice_sup_bot β] [has_zero β] /-- Fix a sequence `i : ℕ → β`. Given a function `α → β`, its `n`-th approximation by simple functions is defined so that in case `β = ennreal` it sends each `a` to the supremum of the set `{i k | k ≤ n ∧ i k ≤ f a}`, see `approx_apply` and `supr_approx_apply` for details. -/ def approx (i : ℕ → β) (f : α → β) (n : ℕ) : α →ₛ β := (finset.range n).sup (λk, restrict (const α (i k)) {a:α | i k ≤ f a}) lemma approx_apply [topological_space β] [order_closed_topology β] [measurable_space β] [opens_measurable_space β] {i : ℕ → β} {f : α → β} {n : ℕ} (a : α) (hf : _root_.measurable f) : (approx i f n : α →ₛ β) a = (finset.range n).sup (λk, if i k ≤ f a then i k else 0) := begin dsimp only [approx], rw [finset_sup_apply], congr, funext k, rw [restrict_apply], refl, exact (hf.preimage is_measurable_Ici) end lemma monotone_approx (i : ℕ → β) (f : α → β) : monotone (approx i f) := assume n m h, finset.sup_mono $ finset.range_subset.2 h lemma approx_comp [topological_space β] [order_closed_topology β] [measurable_space β] [opens_measurable_space β] [measurable_space γ] {i : ℕ → β} {f : γ → β} {g : α → γ} {n : ℕ} (a : α) (hf : _root_.measurable f) (hg : _root_.measurable g) : (approx i (f ∘ g) n : α →ₛ β) a = (approx i f n : γ →ₛ β) (g a) := by rw [approx_apply _ hf, approx_apply _ (hf.comp hg)] end lemma supr_approx_apply [topological_space β] [complete_lattice β] [order_closed_topology β] [has_zero β] [measurable_space β] [opens_measurable_space β] (i : ℕ → β) (f : α → β) (a : α) (hf : _root_.measurable f) (h_zero : (0 : β) = ⊥) : (⨆n, (approx i f n : α →ₛ β) a) = (⨆k (h : i k ≤ f a), i k) := begin refine le_antisymm (supr_le $ assume n, _) (supr_le $ assume k, supr_le $ assume hk, _), { rw [approx_apply a hf, h_zero], refine finset.sup_le (assume k hk, _), split_ifs, exact le_supr_of_le k (le_supr _ h), exact bot_le }, { refine le_supr_of_le (k+1) _, rw [approx_apply a hf], have : k ∈ finset.range (k+1) := finset.mem_range.2 (nat.lt_succ_self _), refine le_trans (le_of_eq _) (finset.le_sup this), rw [if_pos hk] } end end approx section eapprox /-- A sequence of `ennreal`s such that its range is the set of non-negative rational numbers. -/ def ennreal_rat_embed (n : ℕ) : ennreal := nnreal.of_real ((encodable.decode ℚ n).get_or_else (0 : ℚ)) lemma ennreal_rat_embed_encode (q : ℚ) : ennreal_rat_embed (encodable.encode q) = nnreal.of_real q := by rw [ennreal_rat_embed, encodable.encodek]; refl /-- Approximate a function `α → ennreal` by a sequence of simple functions. -/ def eapprox : (α → ennreal) → ℕ → α →ₛ ennreal := approx ennreal_rat_embed lemma monotone_eapprox (f : α → ennreal) : monotone (eapprox f) := monotone_approx _ f lemma supr_eapprox_apply (f : α → ennreal) (hf : _root_.measurable f) (a : α) : (⨆n, (eapprox f n : α →ₛ ennreal) a) = f a := begin rw [eapprox, supr_approx_apply ennreal_rat_embed f a hf rfl], refine le_antisymm (supr_le $ assume i, supr_le $ assume hi, hi) (le_of_not_gt _), assume h, rcases ennreal.lt_iff_exists_rat_btwn.1 h with ⟨q, hq, lt_q, q_lt⟩, have : (nnreal.of_real q : ennreal) ≤ (⨆ (k : ℕ) (h : ennreal_rat_embed k ≤ f a), ennreal_rat_embed k), { refine le_supr_of_le (encodable.encode q) _, rw [ennreal_rat_embed_encode q], refine le_supr_of_le (le_of_lt q_lt) _, exact le_refl _ }, exact lt_irrefl _ (lt_of_le_of_lt this lt_q) end lemma eapprox_comp [measurable_space γ] {f : γ → ennreal} {g : α → γ} {n : ℕ} (hf : _root_.measurable f) (hg : _root_.measurable g) : (eapprox (f ∘ g) n : α → ennreal) = (eapprox f n : γ →ₛ ennreal) ∘ g := funext $ assume a, approx_comp a hf hg end eapprox end measurable section measure variables [measure_space α] lemma volume_bUnion_preimage (s : finset β) (f : α →ₛ β) : volume (⋃b ∈ s, f ⁻¹' {b}) = ∑ b in s, volume (f ⁻¹' {b}) := begin /- Taking advantage of the fact that `f ⁻¹' {b}` are disjoint for `b ∈ s`. -/ rw [measure_bUnion_finset], { simp only [pairwise_on, (on), finset.mem_coe, ne.def], rintros _ _ _ _ ne _ ⟨h₁, h₂⟩, simp only [mem_singleton_iff, mem_preimage] at h₁ h₂, rw [← h₁, h₂] at ne, exact ne rfl }, exact assume a ha, preimage_measurable _ _ end /-- Integral of a simple function whose codomain is `ennreal`. -/ def integral (f : α →ₛ ennreal) : ennreal := ∑ x in f.range, x * volume (f ⁻¹' {x}) /-- Calculate the integral of `(g ∘ f)`, where `g : β → ennreal` and `f : α →ₛ β`. -/ lemma map_integral (g : β → ennreal) (f : α →ₛ β) : (f.map g).integral = ∑ x in f.range, g x * volume (f ⁻¹' {x}) := begin simp only [integral, range_map], refine finset.sum_image' _ (assume b hb, _), rcases mem_range.1 hb with ⟨a, rfl⟩, rw [map_preimage_singleton, volume_bUnion_preimage, finset.mul_sum], refine finset.sum_congr _ _, { congr }, { assume x, simp only [finset.mem_filter], rintro ⟨_, h⟩, rw h } end lemma zero_integral : (0 : α →ₛ ennreal).integral = 0 := begin refine (finset.sum_eq_zero_iff_of_nonneg $ assume _ _, zero_le _).2 _, assume r hr, rcases mem_range.1 hr with ⟨a, rfl⟩, exact zero_mul _ end lemma add_integral (f g : α →ₛ ennreal) : (f + g).integral = f.integral + g.integral := calc (f + g).integral = ∑ x in (pair f g).range, (x.1 * volume (pair f g ⁻¹' {x}) + x.2 * volume (pair f g ⁻¹' {x})) : by rw [add_eq_map₂, map_integral]; exact finset.sum_congr rfl (assume a ha, add_mul _ _ _) ... = ∑ x in (pair f g).range, x.1 * volume (pair f g ⁻¹' {x}) + ∑ x in (pair f g).range, x.2 * volume (pair f g ⁻¹' {x}) : by rw [finset.sum_add_distrib] ... = ((pair f g).map prod.fst).integral + ((pair f g).map prod.snd).integral : by rw [map_integral, map_integral] ... = integral f + integral g : rfl lemma const_mul_integral (f : α →ₛ ennreal) (x : ennreal) : (const α x * f).integral = x * f.integral := calc (f.map (λa, x * a)).integral = ∑ r in f.range, x * r * volume (f ⁻¹' {r}) : by rw [map_integral] ... = ∑ r in f.range, x * (r * volume (f ⁻¹' {r})) : finset.sum_congr rfl (assume a ha, mul_assoc _ _ _) ... = x * f.integral : finset.mul_sum.symm lemma mem_restrict_range [has_zero β] {r : β} {s : set α} {f : α →ₛ β} (hs : is_measurable s) : r ∈ (restrict f s).range ↔ (r = 0 ∧ s ≠ univ) ∨ (∃a∈s, f a = r) := begin simp only [mem_range, restrict_apply, hs], split, { rintros ⟨a, ha⟩, split_ifs at ha, { exact or.inr ⟨a, h, ha⟩ }, { exact or.inl ⟨ha.symm, assume eq, h $ eq.symm ▸ trivial⟩ } }, { rintros (⟨rfl, h⟩ | ⟨a, ha, rfl⟩), { have : ¬ ∀a, a ∈ s := assume this, h $ eq_univ_of_forall this, rcases not_forall.1 this with ⟨a, ha⟩, refine ⟨a, _⟩, rw [if_neg ha] }, { refine ⟨a, _⟩, rw [if_pos ha] } } end lemma restrict_preimage' {r : ennreal} {s : set α} (f : α →ₛ ennreal) (hs : is_measurable s) (hr : r ≠ 0) : (restrict f s) ⁻¹' {r} = (f ⁻¹' {r} ∩ s) := begin ext a, by_cases a ∈ s; simp [hs, h, hr.symm] end lemma restrict_integral (f : α →ₛ ennreal) (s : set α) (hs : is_measurable s) : (restrict f s).integral = ∑ r in f.range, r * volume (f ⁻¹' {r} ∩ s) := begin refine finset.sum_bij_ne_zero (λr _ _, r) _ _ _ _, { assume r hr, rcases (mem_restrict_range hs).1 hr with ⟨rfl, h⟩ | ⟨a, ha, rfl⟩, { simp }, { assume _, exact mem_range.2 ⟨a, rfl⟩ } }, { assume a b _ _ _ _ h, exact h }, { assume r hr, by_cases r0 : r = 0, { simp [r0] }, assume h0, rcases mem_range.1 hr with ⟨a, rfl⟩, have : f ⁻¹' {f a} ∩ s ≠ ∅, { assume h, simpa [h] using h0 }, rcases ne_empty_iff_nonempty.1 this with ⟨a', eq', ha'⟩, refine ⟨_, (mem_restrict_range hs).2 (or.inr ⟨a', ha', _⟩), _, rfl⟩, { simpa using eq' }, { rwa [restrict_preimage' _ hs r0] } }, { assume r hr ne, by_cases r = 0, { simp [h] }, rw [restrict_preimage' _ hs h] } end lemma restrict_const_integral (c : ennreal) (s : set α) (hs : is_measurable s) : (restrict (const α c) s).integral = c * volume s := have (@const α ennreal _ c) ⁻¹' {c} = univ, begin refine eq_univ_of_forall (assume a, _), simp, end, calc (restrict (const α c) s).integral = c * volume ((const α c) ⁻¹' {c} ∩ s) : begin rw [restrict_integral (const α c) s hs], refine finset.sum_eq_single c _ _, { assume r hr, rcases mem_range.1 hr with ⟨a, rfl⟩, contradiction }, { by_cases nonempty α, { assume ne, rcases h with ⟨a⟩, exfalso, exact ne (mem_range.2 ⟨a, rfl⟩) }, { assume empty, have : (@const α ennreal _ c) ⁻¹' {c} ∩ s = ∅, { ext a, exfalso, exact h ⟨a⟩ }, simp only [this, measure_empty, mul_zero] } } end ... = c * volume s : by rw [this, univ_inter] lemma integral_sup_le (f g : α →ₛ ennreal) : f.integral ⊔ g.integral ≤ (f ⊔ g).integral := calc f.integral ⊔ g.integral = ((pair f g).map prod.fst).integral ⊔ ((pair f g).map prod.snd).integral : rfl ... ≤ ∑ x in (pair f g).range, (x.1 ⊔ x.2) * volume (pair f g ⁻¹' {x}) : begin rw [map_integral, map_integral], refine sup_le _ _; refine finset.sum_le_sum (λ a _, canonically_ordered_semiring.mul_le_mul _ (le_refl _)), exact le_sup_left, exact le_sup_right end ... = (f ⊔ g).integral : by rw [sup_eq_map₂, map_integral] lemma integral_le_integral (f g : α →ₛ ennreal) (h : f ≤ g) : f.integral ≤ g.integral := calc f.integral ≤ f.integral ⊔ g.integral : le_sup_left ... ≤ (f ⊔ g).integral : integral_sup_le _ _ ... = g.integral : by rw [sup_of_le_right h] lemma integral_congr (f g : α →ₛ ennreal) (h : ∀ₘ a, f a = g a) : f.integral = g.integral := show ((pair f g).map prod.fst).integral = ((pair f g).map prod.snd).integral, from begin rw [map_integral, map_integral], refine finset.sum_congr rfl (assume p hp, _), rcases mem_range.1 hp with ⟨a, rfl⟩, by_cases eq : f a = g a, { dsimp only [pair_apply], rw eq }, { have : volume ((pair f g) ⁻¹' {(f a, g a)}) = 0, { refine measure_mono_null (assume a' ha', _) h, simp at ha', show f a' ≠ g a', rwa [ha'.1, ha'.2] }, simp [this] } end lemma integral_map {β} [measure_space β] (f : α →ₛ ennreal) (g : β →ₛ ennreal)(m : α → β) (eq : ∀a:α, f a = g (m a)) (h : ∀s:set β, is_measurable s → volume s = volume (m ⁻¹' s)) : f.integral = g.integral := have f_eq : (f : α → ennreal) = g ∘ m := funext eq, have vol_f : ∀r, volume (f ⁻¹' {r}) = volume (g ⁻¹' {r}), by { assume r, rw [h, f_eq, preimage_comp], exact measurable_sn _ _ }, begin simp [integral, vol_f], refine finset.sum_subset _ _, { simp [finset.subset_iff, f_eq], rintros r a rfl, exact ⟨_, rfl⟩ }, { assume r hrg hrf, rw [simple_func.mem_range, not_exists] at hrf, have : f ⁻¹' {r} = ∅ := set.eq_empty_of_subset_empty (assume a, by simpa using hrf a), simp [(vol_f _).symm, this] } end end measure section fin_vol_supp variables [measure_space α] [has_zero β] [has_zero γ] open finset ennreal protected def fin_vol_supp (f : α →ₛ β) : Prop := ∀b ≠ 0, volume (f ⁻¹' {b}) < ⊤ lemma fin_vol_supp_map {f : α →ₛ β} {g : β → γ} (hf : f.fin_vol_supp) (hg : g 0 = 0) : (f.map g).fin_vol_supp := begin assume c hc, simp only [map_preimage, volume_bUnion_preimage], apply sum_lt_top, intro b, simp only [mem_filter, mem_range, mem_singleton_iff, and_imp, exists_imp_distrib], intros a fab gbc, apply hf, intro b0, rw [b0, hg] at gbc, rw gbc at hc, contradiction end lemma fin_vol_supp_of_fin_vol_supp_map (f : α →ₛ β) {g : β → γ} (h : (f.map g).fin_vol_supp) (hg : ∀b, g b = 0 → b = 0) : f.fin_vol_supp := begin assume b hb, by_cases b_mem : b ∈ f.range, { have gb0 : g b ≠ 0, { assume h, have := hg b h, contradiction }, have : f ⁻¹' {b} ⊆ (f.map g) ⁻¹' {g b}, rw [coe_map, @preimage_comp _ _ _ f g, preimage_subset_preimage_iff], { simp only [set.mem_preimage, set.mem_singleton, set.singleton_subset_iff] }, { rw set.singleton_subset_iff, rw mem_range at b_mem, exact b_mem }, exact lt_of_le_of_lt (measure_mono this) (h (g b) gb0) }, { rw ← preimage_eq_empty_iff at b_mem, rw [b_mem, measure_empty], exact with_top.zero_lt_top } end lemma fin_vol_supp_pair {f : α →ₛ β} {g : α →ₛ γ} (hf : f.fin_vol_supp) (hg : g.fin_vol_supp) : (pair f g).fin_vol_supp := begin rintros ⟨b, c⟩ hbc, rw [pair_preimage_singleton], rw [ne.def, prod.eq_iff_fst_eq_snd_eq, not_and_distrib] at hbc, refine or.elim hbc (λ h : b≠0, _) (λ h : c≠0, _), { calc _ ≤ volume (f ⁻¹' {b}) : measure_mono (set.inter_subset_left _ _) ... < ⊤ : hf _ h }, { calc _ ≤ volume (g ⁻¹' {c}) : measure_mono (set.inter_subset_right _ _) ... < ⊤ : hg _ h }, end lemma integral_lt_top_of_fin_vol_supp {f : α →ₛ ennreal} (h₁ : ∀ₘ a, f a < ⊤) (h₂ : f.fin_vol_supp) : integral f < ⊤ := begin rw integral, apply sum_lt_top, intros a ha, have : f ⁻¹' {⊤} = {a : α | f a < ⊤}ᶜ, { ext, simp }, have vol_top : volume (f ⁻¹' {⊤}) = 0, { rw [this, ← mem_ae_iff], exact h₁ }, by_cases hat : a = ⊤, { rw [hat, vol_top, mul_zero], exact with_top.zero_lt_top }, { by_cases haz : a = 0, { rw [haz, zero_mul], exact with_top.zero_lt_top }, apply mul_lt_top, { rw ennreal.lt_top_iff_ne_top, exact hat }, apply h₂, exact haz } end lemma fin_vol_supp_of_integral_lt_top {f : α →ₛ ennreal} (h : integral f < ⊤) : f.fin_vol_supp := begin assume b hb, rw [integral, sum_lt_top_iff] at h, by_cases b_mem : b ∈ f.range, { rw ennreal.lt_top_iff_ne_top, have h : ¬ _ = ⊤ := ennreal.lt_top_iff_ne_top.1 (h b b_mem), simp only [mul_eq_top, not_or_distrib, not_and_distrib] at h, rcases h with ⟨h, h'⟩, refine or.elim h (λh, by contradiction) (λh, h) }, { rw ← preimage_eq_empty_iff at b_mem, rw [b_mem, measure_empty], exact with_top.zero_lt_top } end /-- A technical lemma dealing with the definition of `integrable` in `l1_space.lean`. -/ lemma integral_map_coe_lt_top {f : α →ₛ β} {g : β → nnreal} (h : f.fin_vol_supp) (hg : g 0 = 0) : integral (f.map ((coe : nnreal → ennreal) ∘ g)) < ⊤ := integral_lt_top_of_fin_vol_supp (by { filter_upwards[], assume a, simp only [mem_set_of_eq, map_apply], exact ennreal.coe_lt_top}) (by { apply fin_vol_supp_map h, simp only [hg, function.comp_app, ennreal.coe_zero] }) end fin_vol_supp end simple_func section lintegral open simple_func variable [measure_space α] /-- The lower Lebesgue integral -/ def lintegral (f : α → ennreal) : ennreal := ⨆ (s : α →ₛ ennreal) (hf : ⇑s ≤ f), s.integral notation `∫⁻` binders `, ` r:(scoped f, lintegral f) := r theorem simple_func.lintegral_eq_integral (f : α →ₛ ennreal) : (∫⁻ a, f a) = f.integral := le_antisymm (supr_le $ assume s, supr_le $ assume hs, integral_le_integral _ _ hs) (le_supr_of_le f $ le_supr_of_le (le_refl f) $ le_refl _) lemma lintegral_mono ⦃f g : α → ennreal⦄ (h : f ≤ g) : (∫⁻ a, f a) ≤ (∫⁻ a, g a) := supr_le_supr_of_subset $ assume s hs, le_trans hs h lemma monotone_lintegral (α : Type*) [measure_space α] : monotone (@lintegral α _) := λ f g h, lintegral_mono h lemma lintegral_eq_nnreal (f : α → ennreal) : (∫⁻ a, f a) = (⨆ (s : α →ₛ nnreal) (hf : ⇑(s.map (coe : nnreal → ennreal)) ≤ f), (s.map (coe : nnreal → ennreal)).integral) := begin let c : nnreal → ennreal := coe, refine le_antisymm (supr_le $ assume s, supr_le $ assume hs, _) (supr_le $ assume s, supr_le $ assume hs, le_supr_of_le (s.map c) $ le_supr _ hs), by_cases ∀ₘ a, s a ≠ ⊤, { have : f ≥ (s.map ennreal.to_nnreal).map c := le_trans (assume a, ennreal.coe_to_nnreal_le_self) hs, refine le_supr_of_le (s.map ennreal.to_nnreal) (le_supr_of_le this (le_of_eq $ integral_congr _ _ _)), exact filter.mem_sets_of_superset h (assume a ha, (ennreal.coe_to_nnreal ha).symm) }, { have h_vol_s : volume {a : α | s a = ⊤} ≠ 0, from mt measure_zero_iff_ae_nmem.1 h, let n : ℕ → (α →ₛ nnreal) := λn, restrict (const α (n : nnreal)) (s ⁻¹' {⊤}), have n_le_s : ∀i, (n i).map c ≤ s, { assume i a, dsimp [n, c], rw [restrict_apply _ (s.preimage_measurable _)], split_ifs with ha, { simp at ha, exact ha.symm ▸ le_top }, { exact zero_le _ } }, have approx_s : ∀ (i : ℕ), ↑i * volume {a : α | s a = ⊤} ≤ integral (map c (n i)), { assume i, have : {a : α | s a = ⊤} = s ⁻¹' {⊤}, { ext a, simp }, rw [this, ← restrict_const_integral _ _ (s.preimage_measurable _)], { refine integral_le_integral _ _ (assume a, le_of_eq _), simp [n, c, restrict_apply, s.preimage_measurable], split_ifs; simp [ennreal.coe_nat] }, }, calc s.integral ≤ ⊤ : le_top ... = (⨆i:ℕ, (i : ennreal) * volume {a | s a = ⊤}) : by rw [← ennreal.supr_mul, ennreal.supr_coe_nat, ennreal.top_mul, if_neg h_vol_s] ... ≤ (⨆i, ((n i).map c).integral) : supr_le_supr approx_s ... ≤ ⨆ (s : α →ₛ nnreal) (hf : f ≥ s.map c), (s.map c).integral : have ∀i, ((n i).map c : α → ennreal) ≤ f := assume i, le_trans (n_le_s i) hs, (supr_le $ assume i, le_supr_of_le (n i) (le_supr (λh, ((n i).map c).integral) (this i))) } end theorem supr_lintegral_le {ι : Sort*} (f : ι → α → ennreal) : (⨆i, ∫⁻ a, f i a) ≤ (∫⁻ a, ⨆i, f i a) := by { simp only [← supr_apply], exact (monotone_lintegral α).le_map_supr } theorem supr2_lintegral_le {ι : Sort*} {ι' : ι → Sort*} (f : Π i, ι' i → α → ennreal) : (⨆i (h : ι' i), ∫⁻ a, f i h a) ≤ (∫⁻ a, ⨆i (h : ι' i), f i h a) := by { convert (monotone_lintegral α).le_map_supr2 f, ext1 a, simp only [supr_apply] } theorem le_infi_lintegral {ι : Sort*} (f : ι → α → ennreal) : (∫⁻ a, ⨅i, f i a) ≤ (⨅i, ∫⁻ a, f i a) := by { simp only [← infi_apply], exact (monotone_lintegral α).map_infi_le } theorem le_infi2_lintegral {ι : Sort*} {ι' : ι → Sort*} (f : Π i, ι' i → α → ennreal) : (∫⁻ a, ⨅ i (h : ι' i), f i h a) ≤ (⨅ i (h : ι' i), ∫⁻ a, f i h a) := by { convert (monotone_lintegral α).map_infi2_le f, ext1 a, simp only [infi_apply] } /-- Monotone convergence theorem -- sometimes called Beppo-Levi convergence. See `lintegral_supr_directed` for a more general form. -/ theorem lintegral_supr {f : ℕ → α → ennreal} (hf : ∀n, measurable (f n)) (h_mono : monotone f) : (∫⁻ a, ⨆n, f n a) = (⨆n, ∫⁻ a, f n a) := begin set c : nnreal → ennreal := coe, set F := λ a:α, ⨆n, f n a, have hF : measurable F := measurable_supr hf, refine le_antisymm _ (supr_lintegral_le _), rw [lintegral_eq_nnreal], refine supr_le (assume s, supr_le (assume hsf, _)), refine ennreal.le_of_forall_lt_one_mul_lt (assume a ha, _), rcases ennreal.lt_iff_exists_coe.1 ha with ⟨r, rfl, ha⟩, have ha : r < 1 := ennreal.coe_lt_coe.1 ha, let rs := s.map (λa, r * a), have eq_rs : (const α r : α →ₛ ennreal) * map c s = rs.map c, { ext1 a, exact ennreal.coe_mul.symm }, have eq : ∀p, (rs.map c) ⁻¹' {p} = (⋃n, (rs.map c) ⁻¹' {p} ∩ {a | p ≤ f n a}), { assume p, rw [← inter_Union, ← inter_univ ((map c rs) ⁻¹' {p})] {occs := occurrences.pos [1]}, refine set.ext (assume x, and_congr_right $ assume hx, (true_iff _).2 _), by_cases p_eq : p = 0, { simp [p_eq] }, simp at hx, subst hx, have : r * s x ≠ 0, { rwa [(≠), ← ennreal.coe_eq_zero] }, have : s x ≠ 0, { refine mt _ this, assume h, rw [h, mul_zero] }, have : (rs.map c) x < ⨆ (n : ℕ), f n x, { refine lt_of_lt_of_le (ennreal.coe_lt_coe.2 (_)) (hsf x), suffices : r * s x < 1 * s x, simpa [rs], exact mul_lt_mul_of_pos_right ha (zero_lt_iff_ne_zero.2 this) }, rcases lt_supr_iff.1 this with ⟨i, hi⟩, exact mem_Union.2 ⟨i, le_of_lt hi⟩ }, have mono : ∀r:ennreal, monotone (λn, (rs.map c) ⁻¹' {r} ∩ {a | r ≤ f n a}), { assume r i j h, refine inter_subset_inter (subset.refl _) _, assume x hx, exact le_trans hx (h_mono h x) }, have h_meas : ∀n, is_measurable {a : α | ⇑(map c rs) a ≤ f n a} := assume n, is_measurable_le (simple_func.measurable _) (hf n), calc (r:ennreal) * integral (s.map c) = ∑ r in (rs.map c).range, r * volume ((rs.map c) ⁻¹' {r}) : by rw [← const_mul_integral, integral, eq_rs] ... ≤ ∑ r in (rs.map c).range, r * volume (⋃n, (rs.map c) ⁻¹' {r} ∩ {a | r ≤ f n a}) : le_of_eq (finset.sum_congr rfl $ assume x hx, by rw ← eq) ... ≤ ∑ r in (rs.map c).range, (⨆n, r * volume ((rs.map c) ⁻¹' {r} ∩ {a | r ≤ f n a})) : le_of_eq (finset.sum_congr rfl $ assume x hx, begin rw [measure_Union_eq_supr_nat _ (mono x), ennreal.mul_supr], { assume i, refine ((rs.map c).preimage_measurable _).inter _, exact (hf i).preimage is_measurable_Ici } end) ... ≤ ⨆n, ∑ r in (rs.map c).range, r * volume ((rs.map c) ⁻¹' {r} ∩ {a | r ≤ f n a}) : begin refine le_of_eq _, rw [ennreal.finset_sum_supr_nat], assume p i j h, exact canonically_ordered_semiring.mul_le_mul (le_refl _) (measure_mono $ mono p h) end ... ≤ (⨆n:ℕ, ((rs.map c).restrict {a | (rs.map c) a ≤ f n a}).integral) : begin refine supr_le_supr (assume n, _), rw [restrict_integral _ _ (h_meas n)], { refine le_of_eq (finset.sum_congr rfl $ assume r hr, _), congr' 2, ext a, refine and_congr_right _, simp {contextual := tt} } end ... ≤ (⨆n, ∫⁻ a, f n a) : begin refine supr_le_supr (assume n, _), rw [← simple_func.lintegral_eq_integral], refine lintegral_mono (assume a, _), dsimp, rw [restrict_apply], split_ifs; simp, simpa using h, exact h_meas n end end lemma lintegral_eq_supr_eapprox_integral {f : α → ennreal} (hf : measurable f) : (∫⁻ a, f a) = (⨆n, (eapprox f n).integral) := calc (∫⁻ a, f a) = (∫⁻ a, ⨆n, (eapprox f n : α → ennreal) a) : by congr; ext a; rw [supr_eapprox_apply f hf] ... = (⨆n, ∫⁻ a, (eapprox f n : α → ennreal) a) : begin rw [lintegral_supr], { assume n, exact (eapprox f n).measurable }, { assume i j h, exact (monotone_eapprox f h) } end ... = (⨆n, (eapprox f n).integral) : by congr; ext n; rw [(eapprox f n).lintegral_eq_integral] lemma lintegral_add {f g : α → ennreal} (hf : measurable f) (hg : measurable g) : (∫⁻ a, f a + g a) = (∫⁻ a, f a) + (∫⁻ a, g a) := calc (∫⁻ a, f a + g a) = (∫⁻ a, (⨆n, (eapprox f n : α → ennreal) a) + (⨆n, (eapprox g n : α → ennreal) a)) : by congr; funext a; rw [supr_eapprox_apply f hf, supr_eapprox_apply g hg] ... = (∫⁻ a, (⨆n, (eapprox f n + eapprox g n : α → ennreal) a)) : begin congr, funext a, rw [ennreal.supr_add_supr_of_monotone], { refl }, { assume i j h, exact monotone_eapprox _ h a }, { assume i j h, exact monotone_eapprox _ h a }, end ... = (⨆n, (eapprox f n).integral + (eapprox g n).integral) : begin rw [lintegral_supr], { congr, funext n, rw [← simple_func.add_integral, ← simple_func.lintegral_eq_integral], refl }, { assume n, exact measurable.add (eapprox f n).measurable (eapprox g n).measurable }, { assume i j h a, exact add_le_add (monotone_eapprox _ h _) (monotone_eapprox _ h _) } end ... = (⨆n, (eapprox f n).integral) + (⨆n, (eapprox g n).integral) : by refine (ennreal.supr_add_supr_of_monotone _ _).symm; { assume i j h, exact simple_func.integral_le_integral _ _ (monotone_eapprox _ h) } ... = (∫⁻ a, f a) + (∫⁻ a, g a) : by rw [lintegral_eq_supr_eapprox_integral hf, lintegral_eq_supr_eapprox_integral hg] @[simp] lemma lintegral_zero : (∫⁻ a:α, 0) = 0 := show (∫⁻ a:α, (0 : α →ₛ ennreal) a) = 0, by rw [simple_func.lintegral_eq_integral, zero_integral] lemma lintegral_finset_sum (s : finset β) {f : β → α → ennreal} (hf : ∀b, measurable (f b)) : (∫⁻ a, ∑ b in s, f b a) = ∑ b in s, ∫⁻ a, f b a := begin refine finset.induction_on s _ _, { simp }, { assume a s has ih, simp only [finset.sum_insert has], rw [lintegral_add (hf _) (s.measurable_sum hf), ih] } end lemma lintegral_const_mul (r : ennreal) {f : α → ennreal} (hf : measurable f) : (∫⁻ a, r * f a) = r * (∫⁻ a, f a) := calc (∫⁻ a, r * f a) = (∫⁻ a, (⨆n, (const α r * eapprox f n) a)) : by { congr, funext a, rw [← supr_eapprox_apply f hf, ennreal.mul_supr], refl } ... = (⨆n, r * (eapprox f n).integral) : begin rw [lintegral_supr], { congr, funext n, rw [← simple_func.const_mul_integral, ← simple_func.lintegral_eq_integral] }, { assume n, dsimp, exact simple_func.measurable _ }, { assume i j h a, exact canonically_ordered_semiring.mul_le_mul (le_refl _) (monotone_eapprox _ h _) } end ... = r * (∫⁻ a, f a) : by rw [← ennreal.mul_supr, lintegral_eq_supr_eapprox_integral hf] lemma lintegral_const_mul_le (r : ennreal) (f : α → ennreal) : r * (∫⁻ a, f a) ≤ (∫⁻ a, r * f a) := begin rw [lintegral, ennreal.mul_supr], refine supr_le (λs, _), rw [ennreal.mul_supr], simp only [supr_le_iff, ge_iff_le], assume hs, rw ← simple_func.const_mul_integral, refine le_supr_of_le (const α r * s) (le_supr_of_le (λx, _) (le_refl _)), exact canonically_ordered_semiring.mul_le_mul (le_refl _) (hs x) end lemma lintegral_const_mul' (r : ennreal) (f : α → ennreal) (hr : r ≠ ⊤) : (∫⁻ a, r * f a) = r * (∫⁻ a, f a) := begin by_cases h : r = 0, { simp [h] }, apply le_antisymm _ (lintegral_const_mul_le r f), have rinv : r * r⁻¹ = 1 := ennreal.mul_inv_cancel h hr, have rinv' : r ⁻¹ * r = 1, by { rw mul_comm, exact rinv }, have := lintegral_const_mul_le (r⁻¹) (λx, r * f x), simp [(mul_assoc _ _ _).symm, rinv'] at this, simpa [(mul_assoc _ _ _).symm, rinv] using canonically_ordered_semiring.mul_le_mul (le_refl r) this end lemma lintegral_supr_const (r : ennreal) {s : set α} (hs : is_measurable s) : (∫⁻ a, ⨆(h : a ∈ s), r) = r * volume s := begin rw [← restrict_const_integral r s hs, ← (restrict (const α r) s).lintegral_eq_integral], congr; ext a; by_cases a ∈ s; simp [h, hs] end lemma lintegral_le_lintegral_ae {f g : α → ennreal} (h : ∀ₘ a, f a ≤ g a) : (∫⁻ a, f a) ≤ (∫⁻ a, g a) := begin rcases exists_is_measurable_superset_of_measure_eq_zero h with ⟨t, hts, ht, ht0⟩, have : tᶜ ∈ (@volume α _).ae, { rw [mem_ae_iff, compl_compl, ht0] }, refine (supr_le $ assume s, supr_le $ assume hfs, le_supr_of_le (s.restrict tᶜ) $ le_supr_of_le _ _), { assume a, by_cases a ∈ t; simp [h, restrict_apply, ht.compl], exact le_trans (hfs a) (by_contradiction $ assume hnfg, h (hts hnfg)) }, { refine le_of_eq (s.integral_congr _ _), filter_upwards [this], refine assume a hnt, _, by_cases hat : a ∈ t; simp [hat, ht.compl], exact (hnt hat).elim } end lemma lintegral_congr_ae {f g : α → ennreal} (h : ∀ₘ a, f a = g a) : (∫⁻ a, f a) = (∫⁻ a, g a) := le_antisymm (lintegral_le_lintegral_ae $ h.mono $ assume a h, le_of_eq h) (lintegral_le_lintegral_ae $ h.mono $ assume a h, le_of_eq h.symm) lemma lintegral_congr {f g : α → ennreal} (h : ∀ a, f a = g a) : (∫⁻ a, f a) = (∫⁻ a, g a) := by simp only [h] -- TODO: Need a better way of rewriting inside of a integral lemma lintegral_rw₁ {f f' : α → β} (h : ∀ₘ a, f a = f' a) (g : β → ennreal) : (∫⁻ a, g (f a)) = (∫⁻ a, g (f' a)) := lintegral_congr_ae $ h.mono $ λ a h, by rw h -- TODO: Need a better way of rewriting inside of a integral lemma lintegral_rw₂ {f₁ f₁' : α → β} {f₂ f₂' : α → γ} (h₁ : ∀ₘ a, f₁ a = f₁' a) (h₂ : ∀ₘ a, f₂ a = f₂' a) (g : β → γ → ennreal) : (∫⁻ a, g (f₁ a) (f₂ a)) = (∫⁻ a, g (f₁' a) (f₂' a)) := lintegral_congr_ae $ h₁.mp $ h₂.mono $ λ _ h₂ h₁, by rw [h₁, h₂] lemma simple_func.lintegral_map (f : α →ₛ β) (g : β → ennreal) : (∫⁻ a, (f.map g) a) = ∫⁻ a, g (f a) := by simp only [map_apply] /-- Chebyshev's inequality -/ lemma mul_volume_ge_le_lintegral {f : α → ennreal} (hf : measurable f) (ε : ennreal) : ε * volume {x | ε ≤ f x} ≤ ∫⁻ a, f a := begin have : is_measurable {a : α | ε ≤ f a }, from hf.preimage is_measurable_Ici, rw [← simple_func.restrict_const_integral _ _ this, ← simple_func.lintegral_eq_integral], refine lintegral_mono (λ a, _), simp only [restrict_apply _ this], split_ifs; [assumption, exact zero_le _] end lemma volume_ge_le_lintegral_div {f : α → ennreal} (hf : measurable f) {ε : ennreal} (hε : ε ≠ 0) (hε' : ε ≠ ⊤) : volume {x | ε ≤ f x} ≤ (∫⁻ a, f a) / ε := (ennreal.le_div_iff_mul_le (or.inl hε) (or.inl hε')).2 $ by { rw [mul_comm], exact mul_volume_ge_le_lintegral hf ε } lemma lintegral_eq_zero_iff {f : α → ennreal} (hf : measurable f) : lintegral f = 0 ↔ (∀ₘ a, f a = 0) := begin refine iff.intro (assume h, _) (assume h, _), { have : ∀n:ℕ, ∀ₘ a, f a < n⁻¹, { assume n, rw [ae_iff, ← le_zero_iff_eq, ← @ennreal.zero_div n⁻¹, ennreal.le_div_iff_mul_le, mul_comm], simp only [not_lt], -- TODO: why `rw ← h` fails with "not an equality or an iff"? exacts [h ▸ mul_volume_ge_le_lintegral hf n⁻¹, or.inl (ennreal.inv_ne_zero.2 ennreal.coe_nat_ne_top), or.inr ennreal.zero_ne_top] }, refine (ae_all_iff.2 this).mono (λ a ha, _), by_contradiction h, rcases ennreal.exists_inv_nat_lt h with ⟨n, hn⟩, exact (lt_irrefl _ $ lt_trans hn $ ha n).elim }, { calc lintegral f = lintegral (λa:α, 0) : lintegral_congr_ae h ... = 0 : lintegral_zero } end /-- Weaker version of the monotone convergence theorem-/ lemma lintegral_supr_ae {f : ℕ → α → ennreal} (hf : ∀n, measurable (f n)) (h_mono : ∀n, ∀ₘ a, f n a ≤ f n.succ a) : (∫⁻ a, ⨆n, f n a) = (⨆n, ∫⁻ a, f n a) := let ⟨s, hs⟩ := exists_is_measurable_superset_of_measure_eq_zero (ae_iff.1 (ae_all_iff.2 h_mono)) in let g := λ n a, if a ∈ s then 0 else f n a in have g_eq_f : ∀ₘ a, ∀n, g n a = f n a, begin have := hs.2.2, rw [← compl_compl s] at this, filter_upwards [(mem_ae_iff sᶜ).2 this] assume a ha n, if_neg ha end, calc (∫⁻ a, ⨆n, f n a) = (∫⁻ a, ⨆n, g n a) : lintegral_congr_ae begin filter_upwards [g_eq_f], assume a ha, congr, funext, exact (ha n).symm end ... = ⨆n, (∫⁻ a, g n a) : lintegral_supr (assume n, measurable.if hs.2.1 measurable_const (hf n)) (monotone_of_monotone_nat $ assume n a, classical.by_cases (assume h : a ∈ s, by simp [g, if_pos h]) (assume h : a ∉ s, begin simp only [g, if_neg h], have := hs.1, rw subset_def at this, have := mt (this a) h, simp only [not_not, mem_set_of_eq] at this, exact this n end)) ... = ⨆n, (∫⁻ a, f n a) : begin congr, funext, apply lintegral_congr_ae, filter_upwards [g_eq_f] assume a ha, ha n end lemma lintegral_sub {f g : α → ennreal} (hf : measurable f) (hg : measurable g) (hg_fin : lintegral g < ⊤) (h_le : ∀ₘ a, g a ≤ f a) : (∫⁻ a, f a - g a) = (∫⁻ a, f a) - (∫⁻ a, g a) := begin rw [← ennreal.add_left_inj hg_fin, ennreal.sub_add_cancel_of_le (lintegral_le_lintegral_ae h_le), ← lintegral_add (hf.ennreal_sub hg) hg], show (∫⁻ (a : α), f a - g a + g a) = ∫⁻ (a : α), f a, apply lintegral_congr_ae, filter_upwards [h_le], simp only [add_comm, mem_set_of_eq], assume a ha, exact ennreal.add_sub_cancel_of_le ha end /-- Monotone convergence theorem for nonincreasing sequences of functions -/ lemma lintegral_infi_ae {f : ℕ → α → ennreal} (h_meas : ∀n, measurable (f n)) (h_mono : ∀n:ℕ, ∀ₘ a, f n.succ a ≤ f n a) (h_fin : lintegral (f 0) < ⊤) : (∫⁻ a, ⨅n, f n a) = (⨅n, ∫⁻ a, f n a) := have fn_le_f0 : (∫⁻ a, ⨅n, f n a) ≤ lintegral (f 0), from lintegral_mono (assume a, infi_le_of_le 0 (le_refl _)), have fn_le_f0' : (⨅n, ∫⁻ a, f n a) ≤ lintegral (f 0), from infi_le_of_le 0 (le_refl _), (ennreal.sub_right_inj h_fin fn_le_f0 fn_le_f0').1 $ show lintegral (f 0) - (∫⁻ a, ⨅n, f n a) = lintegral (f 0) - (⨅n, ∫⁻ a, f n a), from calc lintegral (f 0) - (∫⁻ a, ⨅n, f n a) = ∫⁻ a, f 0 a - ⨅n, f n a : (lintegral_sub (h_meas 0) (measurable_infi h_meas) (calc (∫⁻ a, ⨅n, f n a) ≤ lintegral (f 0) : lintegral_mono (assume a, infi_le _ _) ... < ⊤ : h_fin ) (ae_of_all _ $ assume a, infi_le _ _)).symm ... = ∫⁻ a, ⨆n, f 0 a - f n a : congr rfl (funext (assume a, ennreal.sub_infi)) ... = ⨆n, ∫⁻ a, f 0 a - f n a : lintegral_supr_ae (assume n, (h_meas 0).ennreal_sub (h_meas n)) (assume n, by filter_upwards [h_mono n] assume a ha, ennreal.sub_le_sub (le_refl _) ha) ... = ⨆n, lintegral (f 0) - ∫⁻ a, f n a : have h_mono : ∀ₘ a, ∀n:ℕ, f n.succ a ≤ f n a := ae_all_iff.2 h_mono, have h_mono : ∀n, ∀ₘa, f n a ≤ f 0 a := assume n, begin filter_upwards [h_mono], simp only [mem_set_of_eq], assume a, assume h, induction n with n ih, {exact le_refl _}, {exact le_trans (h n) ih} end, congr rfl (funext $ assume n, lintegral_sub (h_meas _) (h_meas _) (calc (∫⁻ a, f n a) ≤ ∫⁻ a, f 0 a : lintegral_le_lintegral_ae $ h_mono n ... < ⊤ : h_fin) (h_mono n)) ... = lintegral (f 0) - (⨅n, ∫⁻ a, f n a) : ennreal.sub_infi.symm /-- Monotone convergence theorem for nonincreasing sequences of functions -/ lemma lintegral_infi {f : ℕ → α → ennreal} (h_meas : ∀n, measurable (f n)) (h_mono : ∀ ⦃m n⦄, m ≤ n → f n ≤ f m) (h_fin : lintegral (f 0) < ⊤) : (∫⁻ a, ⨅n, f n a) = (⨅n, ∫⁻ a, f n a) := lintegral_infi_ae h_meas (λ n, ae_of_all _ $ h_mono $ le_of_lt n.lt_succ_self) h_fin section priority -- for some reason the next proof fails without changing the priority of this instance local attribute [instance, priority 1000] classical.prop_decidable /-- Known as Fatou's lemma -/ lemma lintegral_liminf_le {f : ℕ → α → ennreal} (h_meas : ∀n, measurable (f n)) : (∫⁻ a, liminf at_top (λ n, f n a)) ≤ liminf at_top (λ n, lintegral (f n)) := calc (∫⁻ a, liminf at_top (λ n, f n a)) = ∫⁻ a, ⨆n:ℕ, ⨅i≥n, f i a : by simp only [liminf_eq_supr_infi_of_nat] ... = ⨆n:ℕ, ∫⁻ a, ⨅i≥n, f i a : lintegral_supr (assume n, measurable_binfi _ h_meas) (assume n m hnm a, infi_le_infi_of_subset $ λ i hi, le_trans hnm hi) ... ≤ ⨆n:ℕ, ⨅i≥n, lintegral (f i) : supr_le_supr $ λ n, le_infi2_lintegral _ ... = liminf at_top (λ n, lintegral (f n)) : liminf_eq_supr_infi_of_nat.symm end priority lemma limsup_lintegral_le {f : ℕ → α → ennreal} {g : α → ennreal} (hf_meas : ∀ n, measurable (f n)) (h_bound : ∀n, ∀ₘa, f n a ≤ g a) (h_fin : lintegral g < ⊤) : limsup at_top (λn, lintegral (f n)) ≤ ∫⁻ a, limsup at_top (λn, f n a) := calc limsup at_top (λn, lintegral (f n)) = ⨅n:ℕ, ⨆i≥n, lintegral (f i) : limsup_eq_infi_supr_of_nat ... ≤ ⨅n:ℕ, ∫⁻ a, ⨆i≥n, f i a : infi_le_infi $ assume n, supr2_lintegral_le _ ... = ∫⁻ a, ⨅n:ℕ, ⨆i≥n, f i a : begin refine (lintegral_infi _ _ _).symm, { assume n, exact measurable_bsupr _ hf_meas }, { assume n m hnm a, exact (supr_le_supr_of_subset $ λ i hi, le_trans hnm hi) }, { refine lt_of_le_of_lt (lintegral_le_lintegral_ae _) h_fin, refine (ae_all_iff.2 h_bound).mono (λ n hn, _), exact supr_le (λ i, supr_le $ λ hi, hn i) } end ... = ∫⁻ a, limsup at_top (λn, f n a) : by simp only [limsup_eq_infi_supr_of_nat] /-- Dominated convergence theorem for nonnegative functions -/ lemma tendsto_lintegral_of_dominated_convergence {F : ℕ → α → ennreal} {f : α → ennreal} (bound : α → ennreal) (hF_meas : ∀n, measurable (F n)) (h_bound : ∀n, ∀ₘ a, F n a ≤ bound a) (h_fin : lintegral bound < ⊤) (h_lim : ∀ₘ a, tendsto (λ n, F n a) at_top (𝓝 (f a))) : tendsto (λn, lintegral (F n)) at_top (𝓝 (lintegral f)) := begin have limsup_le_lintegral := calc limsup at_top (λ (n : ℕ), lintegral (F n)) ≤ ∫⁻ (a : α), limsup at_top (λn, F n a) : limsup_lintegral_le hF_meas h_bound h_fin ... = lintegral f : lintegral_congr_ae $ by filter_upwards [h_lim] assume a h, limsup_eq_of_tendsto at_top_ne_bot h, have lintegral_le_liminf := calc lintegral f = ∫⁻ (a : α), liminf at_top (λ (n : ℕ), F n a) : lintegral_congr_ae $ by filter_upwards [h_lim] assume a h, (liminf_eq_of_tendsto at_top_ne_bot h).symm ... ≤ liminf at_top (λ n, lintegral (F n)) : lintegral_liminf_le hF_meas, have liminf_eq_limsup := le_antisymm (liminf_le_limsup (map_ne_bot at_top_ne_bot)) (le_trans limsup_le_lintegral lintegral_le_liminf), have liminf_eq_lintegral : liminf at_top (λ n, lintegral (F n)) = lintegral f := le_antisymm (by convert limsup_le_lintegral) lintegral_le_liminf, have limsup_eq_lintegral : limsup at_top (λ n, lintegral (F n)) = lintegral f := le_antisymm limsup_le_lintegral begin convert lintegral_le_liminf, exact liminf_eq_limsup.symm end, exact tendsto_of_liminf_eq_limsup ⟨liminf_eq_lintegral, limsup_eq_lintegral⟩ end /-- Dominated convergence theorem for filters with a countable basis -/ lemma tendsto_lintegral_filter_of_dominated_convergence {ι} {l : filter ι} {F : ι → α → ennreal} {f : α → ennreal} (bound : α → ennreal) (hl_cb : l.is_countably_generated) (hF_meas : ∀ᶠ n in l, measurable (F n)) (h_bound : ∀ᶠ n in l, ∀ₘ a, F n a ≤ bound a) (h_fin : lintegral bound < ⊤) (h_lim : ∀ₘ a, tendsto (λ n, F n a) l (nhds (f a))) : tendsto (λn, lintegral (F n)) l (nhds (lintegral f)) := begin rw hl_cb.tendsto_iff_seq_tendsto, { intros x xl, have hxl, { rw tendsto_at_top' at xl, exact xl }, have h := inter_mem_sets hF_meas h_bound, replace h := hxl _ h, rcases h with ⟨k, h⟩, rw ← tendsto_add_at_top_iff_nat k, refine tendsto_lintegral_of_dominated_convergence _ _ _ _ _, { exact bound }, { intro, refine (h _ _).1, exact nat.le_add_left _ _ }, { intro, refine (h _ _).2, exact nat.le_add_left _ _ }, { assumption }, { filter_upwards [h_lim], simp only [mem_set_of_eq], assume a h_lim, apply @tendsto.comp _ _ _ (λn, x (n + k)) (λn, F n a), { assumption }, rw tendsto_add_at_top_iff_nat, assumption } }, end section open encodable /-- Monotone convergence for a suprema over a directed family and indexed by an encodable type -/ theorem lintegral_supr_directed [encodable β] {f : β → α → ennreal} (hf : ∀b, measurable (f b)) (h_directed : directed (≤) f) : (∫⁻ a, ⨆b, f b a) = (⨆b, ∫⁻ a, f b a) := begin by_cases hβ : ¬ nonempty β, { have : ∀f : β → ennreal, (⨆(b : β), f b) = 0 := assume f, supr_eq_bot.2 (assume b, (hβ ⟨b⟩).elim), simp [this] }, cases of_not_not hβ with b, haveI iβ : inhabited β := ⟨b⟩, clear hβ b, have : ∀a, (⨆ b, f b a) = (⨆ n, f (h_directed.sequence f n) a), { assume a, refine le_antisymm (supr_le $ assume b, _) (supr_le $ assume n, le_supr (λn, f n a) _), exact le_supr_of_le (encode b + 1) (h_directed.le_sequence b a) }, calc (∫⁻ a, ⨆ b, f b a) = (∫⁻ a, ⨆ n, f (h_directed.sequence f n) a) : by simp only [this] ... = (⨆ n, ∫⁻ a, f (h_directed.sequence f n) a) : lintegral_supr (assume n, hf _) h_directed.sequence_mono ... = (⨆ b, ∫⁻ a, f b a) : begin refine le_antisymm (supr_le $ assume n, _) (supr_le $ assume b, _), { exact le_supr (λb, lintegral (f b)) _ }, { exact le_supr_of_le (encode b + 1) (lintegral_mono $ h_directed.le_sequence b) } end end end lemma lintegral_tsum [encodable β] {f : β → α → ennreal} (hf : ∀i, measurable (f i)) : (∫⁻ a, ∑' i, f i a) = (∑' i, ∫⁻ a, f i a) := begin simp only [ennreal.tsum_eq_supr_sum], rw [lintegral_supr_directed], { simp [lintegral_finset_sum _ hf] }, { assume b, exact finset.measurable_sum _ hf }, { assume s t, use [s ∪ t], split, exact assume a, finset.sum_le_sum_of_subset (finset.subset_union_left _ _), exact assume a, finset.sum_le_sum_of_subset (finset.subset_union_right _ _) } end end lintegral namespace measure def integral [measurable_space α] (m : measure α) (f : α → ennreal) : ennreal := @lintegral α { volume := m } f variables [measurable_space α] {m : measure α} @[simp] lemma integral_zero : m.integral (λa, 0) = 0 := @lintegral_zero α { volume := m } lemma integral_map [measurable_space β] {f : β → ennreal} {g : α → β} (hf : measurable f) (hg : measurable g) : (map g m).integral f = m.integral (f ∘ g) := begin rw [integral, integral, lintegral_eq_supr_eapprox_integral, lintegral_eq_supr_eapprox_integral], { congr, funext n, symmetry, apply simple_func.integral_map, { assume a, exact congr_fun (simple_func.eapprox_comp hf hg) a }, { assume s hs, exact map_apply hg hs } }, exact hf.comp hg, assumption end lemma integral_dirac (a : α) {f : α → ennreal} (hf : measurable f) : (dirac a).integral f = f a := have ∀f:α →ₛ ennreal, @simple_func.integral α {volume := dirac a} f = f a, begin assume f, have : ∀r, @volume α { volume := dirac a } (⇑f ⁻¹' {r}) = ⨆ h : f a = r, 1, { assume r, transitivity, apply dirac_apply, apply simple_func.measurable_sn, refine supr_congr_Prop _ _; simp }, transitivity, apply finset.sum_eq_single (f a), { assume b hb h, simp [this, ne.symm h], }, { assume h, simp at h, exact (h a rfl).elim }, { rw [this], simp } end, begin rw [integral, lintegral_eq_supr_eapprox_integral], { simp [this, simple_func.supr_eapprox_apply f hf] }, assumption end def with_density (m : measure α) (f : α → ennreal) : measure α := if hf : measurable f then measure.of_measurable (λs hs, m.integral (λa, ⨆(h : a ∈ s), f a)) (by simp) begin assume s hs hd, have : ∀a, (⨆ (h : a ∈ ⋃i, s i), f a) = (∑'i, (⨆ (h : a ∈ s i), f a)), { assume a, by_cases ha : ∃j, a ∈ s j, { rcases ha with ⟨j, haj⟩, have : ∀i, a ∈ s i ↔ j = i := assume i, iff.intro (assume hai, by_contradiction $ assume hij, hd j i hij ⟨haj, hai⟩) (by rintros rfl; assumption), simp [this, ennreal.tsum_supr_eq] }, { have : ∀i, ¬ a ∈ s i, { simpa using ha }, simp [this] } }, simp only [this], apply lintegral_tsum, { assume i, simp [supr_eq_if], exact measurable.if (hs i) hf measurable_const } end else 0 lemma with_density_apply {m : measure α} {f : α → ennreal} {s : set α} (hf : measurable f) (hs : is_measurable s) : m.with_density f s = m.integral (λa, ⨆(h : a ∈ s), f a) := by rw [with_density, dif_pos hf]; exact measure.of_measurable_apply s hs end measure end measure_theory
1c36bec1ddc9a37a7b1c8938f1564ec3c112d162
74addaa0e41490cbaf2abd313a764c96df57b05d
/Mathlib/algebra/group_with_zero/power.lean
3e4cc72cab51b1268875b644873f29d6494e0d2c
[]
no_license
AurelienSaue/Mathlib4_auto
f538cfd0980f65a6361eadea39e6fc639e9dae14
590df64109b08190abe22358fabc3eae000943f2
refs/heads/master
1,683,906,849,776
1,622,564,669,000
1,622,564,669,000
371,723,747
0
0
null
null
null
null
UTF-8
Lean
false
false
9,809
lean
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin -/ import Mathlib.PrePort import Mathlib.Lean3Lib.init.default import Mathlib.algebra.group_power.default import Mathlib.PostPort universes u_1 u_2 namespace Mathlib /-! # Powers of elements of groups with an adjoined zero element In this file we define integer power functions for groups with an adjoined zero element. This generalises the integer power function on a division ring. -/ @[simp] theorem zero_pow' {M : Type u_1} [monoid_with_zero M] (n : ℕ) : n ≠ 0 → 0 ^ n = 0 := sorry theorem ne_zero_pow {M : Type u_1} [monoid_with_zero M] {a : M} {n : ℕ} (hn : n ≠ 0) : a ^ n ≠ 0 → a ≠ 0 := imp_of_not_imp_not (a ^ n ≠ 0) (a ≠ 0) (eq.mpr (id (imp_congr_eq (push_neg.not_not_eq (a = 0)) (push_neg.not_not_eq (a ^ n = 0)))) fun (ᾰ : a = 0) => Eq._oldrec (zero_pow' n hn) (Eq.symm ᾰ)) @[simp] theorem zero_pow_eq_zero {M : Type u_1} [monoid_with_zero M] [nontrivial M] {n : ℕ} : 0 ^ n = 0 ↔ 0 < n := sorry @[simp] theorem inv_pow' {G₀ : Type u_1} [group_with_zero G₀] (a : G₀) (n : ℕ) : a⁻¹ ^ n = (a ^ n⁻¹) := sorry theorem pow_sub' {G₀ : Type u_1} [group_with_zero G₀] (a : G₀) {m : ℕ} {n : ℕ} (ha : a ≠ 0) (h : n ≤ m) : a ^ (m - n) = a ^ m * (a ^ n⁻¹) := sorry theorem pow_inv_comm' {G₀ : Type u_1} [group_with_zero G₀] (a : G₀) (m : ℕ) (n : ℕ) : a⁻¹ ^ m * a ^ n = a ^ n * a⁻¹ ^ m := commute.pow_pow (commute.inv_left' (commute.refl a)) m n /-- The power operation in a group with zero. This extends `monoid.pow` to negative integers with the definition `a ^ (-n) = (a ^ n)⁻¹`. -/ def fpow {G₀ : Type u_1} [group_with_zero G₀] (a : G₀) : ℤ → G₀ := sorry protected instance int.has_pow {G₀ : Type u_1} [group_with_zero G₀] : has_pow G₀ ℤ := has_pow.mk fpow @[simp] theorem fpow_coe_nat {G₀ : Type u_1} [group_with_zero G₀] (a : G₀) (n : ℕ) : a ^ ↑n = a ^ n := rfl theorem fpow_of_nat {G₀ : Type u_1} [group_with_zero G₀] (a : G₀) (n : ℕ) : a ^ Int.ofNat n = a ^ n := rfl @[simp] theorem fpow_neg_succ_of_nat {G₀ : Type u_1} [group_with_zero G₀] (a : G₀) (n : ℕ) : a ^ Int.negSucc n = (a ^ Nat.succ n⁻¹) := rfl @[simp] theorem fpow_zero {G₀ : Type u_1} [group_with_zero G₀] (a : G₀) : a ^ 0 = 1 := rfl @[simp] theorem fpow_one {G₀ : Type u_1} [group_with_zero G₀] (a : G₀) : a ^ 1 = a := mul_one a @[simp] theorem one_fpow {G₀ : Type u_1} [group_with_zero G₀] (n : ℤ) : 1 ^ n = 1 := sorry theorem zero_fpow {G₀ : Type u_1} [group_with_zero G₀] (z : ℤ) : z ≠ 0 → 0 ^ z = 0 := sorry @[simp] theorem fpow_neg {G₀ : Type u_1} [group_with_zero G₀] (a : G₀) (n : ℤ) : a ^ (-n) = (a ^ n⁻¹) := sorry theorem fpow_neg_one {G₀ : Type u_1} [group_with_zero G₀] (x : G₀) : x ^ (-1) = (x⁻¹) := congr_arg has_inv.inv (pow_one x) theorem inv_fpow {G₀ : Type u_1} [group_with_zero G₀] (a : G₀) (n : ℤ) : a⁻¹ ^ n = (a ^ n⁻¹) := int.cases_on n (fun (n : ℕ) => idRhs (a⁻¹ ^ n = (a ^ n⁻¹)) (inv_pow' a n)) fun (n : ℕ) => idRhs (a⁻¹ ^ (n + 1)⁻¹ = (a ^ (n + 1)⁻¹⁻¹)) (congr_arg has_inv.inv (inv_pow' a (n + 1))) theorem fpow_add_one {G₀ : Type u_1} [group_with_zero G₀] {a : G₀} (ha : a ≠ 0) (n : ℤ) : a ^ (n + 1) = a ^ n * a := sorry theorem fpow_sub_one {G₀ : Type u_1} [group_with_zero G₀] {a : G₀} (ha : a ≠ 0) (n : ℤ) : a ^ (n - 1) = a ^ n * (a⁻¹) := sorry theorem fpow_add {G₀ : Type u_1} [group_with_zero G₀] {a : G₀} (ha : a ≠ 0) (m : ℤ) (n : ℤ) : a ^ (m + n) = a ^ m * a ^ n := sorry theorem fpow_add' {G₀ : Type u_1} [group_with_zero G₀] {a : G₀} {m : ℤ} {n : ℤ} (h : a ≠ 0 ∨ m + n ≠ 0 ∨ m = 0 ∧ n = 0) : a ^ (m + n) = a ^ m * a ^ n := sorry theorem fpow_one_add {G₀ : Type u_1} [group_with_zero G₀] {a : G₀} (h : a ≠ 0) (i : ℤ) : a ^ (1 + i) = a * a ^ i := eq.mpr (id (Eq._oldrec (Eq.refl (a ^ (1 + i) = a * a ^ i)) (fpow_add h 1 i))) (eq.mpr (id (Eq._oldrec (Eq.refl (a ^ 1 * a ^ i = a * a ^ i)) (fpow_one a))) (Eq.refl (a * a ^ i))) theorem semiconj_by.fpow_right {G₀ : Type u_1} [group_with_zero G₀] {a : G₀} {x : G₀} {y : G₀} (h : semiconj_by a x y) (m : ℤ) : semiconj_by a (x ^ m) (y ^ m) := int.cases_on m (fun (m : ℕ) => idRhs (semiconj_by a (x ^ m) (y ^ m)) (semiconj_by.pow_right h m)) fun (m : ℕ) => idRhs (semiconj_by a (x ^ (m + 1)⁻¹) (y ^ (m + 1)⁻¹)) (semiconj_by.inv_right' (semiconj_by.pow_right h (m + 1))) theorem commute.fpow_right {G₀ : Type u_1} [group_with_zero G₀] {a : G₀} {b : G₀} (h : commute a b) (m : ℤ) : commute a (b ^ m) := semiconj_by.fpow_right h theorem commute.fpow_left {G₀ : Type u_1} [group_with_zero G₀] {a : G₀} {b : G₀} (h : commute a b) (m : ℤ) : commute (a ^ m) b := commute.symm (commute.fpow_right (commute.symm h) m) theorem commute.fpow_fpow {G₀ : Type u_1} [group_with_zero G₀] {a : G₀} {b : G₀} (h : commute a b) (m : ℤ) (n : ℤ) : commute (a ^ m) (b ^ n) := commute.fpow_right (commute.fpow_left h m) n theorem commute.fpow_self {G₀ : Type u_1} [group_with_zero G₀] (a : G₀) (n : ℤ) : commute (a ^ n) a := commute.fpow_left (commute.refl a) n theorem commute.self_fpow {G₀ : Type u_1} [group_with_zero G₀] (a : G₀) (n : ℤ) : commute a (a ^ n) := commute.fpow_right (commute.refl a) n theorem commute.fpow_fpow_self {G₀ : Type u_1} [group_with_zero G₀] (a : G₀) (m : ℤ) (n : ℤ) : commute (a ^ m) (a ^ n) := commute.fpow_fpow (commute.refl a) m n theorem fpow_bit0 {G₀ : Type u_1} [group_with_zero G₀] (a : G₀) (n : ℤ) : a ^ bit0 n = a ^ n * a ^ n := sorry theorem fpow_bit1 {G₀ : Type u_1} [group_with_zero G₀] (a : G₀) (n : ℤ) : a ^ bit1 n = a ^ n * a ^ n * a := sorry theorem fpow_mul {G₀ : Type u_1} [group_with_zero G₀] (a : G₀) (m : ℤ) (n : ℤ) : a ^ (m * n) = (a ^ m) ^ n := sorry theorem fpow_mul' {G₀ : Type u_1} [group_with_zero G₀] (a : G₀) (m : ℤ) (n : ℤ) : a ^ (m * n) = (a ^ n) ^ m := eq.mpr (id (Eq._oldrec (Eq.refl (a ^ (m * n) = (a ^ n) ^ m)) (mul_comm m n))) (eq.mpr (id (Eq._oldrec (Eq.refl (a ^ (n * m) = (a ^ n) ^ m)) (fpow_mul a n m))) (Eq.refl ((a ^ n) ^ m))) @[simp] theorem units.coe_gpow' {G₀ : Type u_1} [group_with_zero G₀] (u : units G₀) (n : ℤ) : ↑(u ^ n) = ↑u ^ n := sorry theorem fpow_ne_zero_of_ne_zero {G₀ : Type u_1} [group_with_zero G₀] {a : G₀} (ha : a ≠ 0) (z : ℤ) : a ^ z ≠ 0 := int.cases_on z (fun (z : ℕ) => idRhs (a ^ z ≠ 0) (pow_ne_zero z ha)) fun (z : ℕ) => idRhs (a ^ Nat.succ z⁻¹ ≠ 0) (inv_ne_zero (pow_ne_zero (Nat.succ z) ha)) theorem fpow_sub {G₀ : Type u_1} [group_with_zero G₀] {a : G₀} (ha : a ≠ 0) (z1 : ℤ) (z2 : ℤ) : a ^ (z1 - z2) = a ^ z1 / a ^ z2 := sorry theorem commute.mul_fpow {G₀ : Type u_1} [group_with_zero G₀] {a : G₀} {b : G₀} (h : commute a b) (i : ℤ) : (a * b) ^ i = a ^ i * b ^ i := sorry theorem mul_fpow {G₀ : Type u_1} [comm_group_with_zero G₀] (a : G₀) (b : G₀) (m : ℤ) : (a * b) ^ m = a ^ m * b ^ m := commute.mul_fpow (commute.all a b) m theorem fpow_bit0' {G₀ : Type u_1} [group_with_zero G₀] (a : G₀) (n : ℤ) : a ^ bit0 n = (a * a) ^ n := Eq.trans (fpow_bit0 a n) (Eq.symm (commute.mul_fpow (commute.refl a) n)) theorem fpow_bit1' {G₀ : Type u_1} [group_with_zero G₀] (a : G₀) (n : ℤ) : a ^ bit1 n = (a * a) ^ n * a := eq.mpr (id (Eq._oldrec (Eq.refl (a ^ bit1 n = (a * a) ^ n * a)) (fpow_bit1 a n))) (eq.mpr (id (Eq._oldrec (Eq.refl (a ^ n * a ^ n * a = (a * a) ^ n * a)) (commute.mul_fpow (commute.refl a) n))) (Eq.refl (a ^ n * a ^ n * a))) theorem fpow_eq_zero {G₀ : Type u_1} [group_with_zero G₀] {x : G₀} {n : ℤ} (h : x ^ n = 0) : x = 0 := classical.by_contradiction fun (hx : ¬x = 0) => fpow_ne_zero_of_ne_zero hx n h theorem fpow_ne_zero {G₀ : Type u_1} [group_with_zero G₀] {x : G₀} (n : ℤ) : x ≠ 0 → x ^ n ≠ 0 := mt fpow_eq_zero theorem fpow_neg_mul_fpow_self {G₀ : Type u_1} [group_with_zero G₀] (n : ℤ) {x : G₀} (h : x ≠ 0) : x ^ (-n) * x ^ n = 1 := eq.mpr (id (Eq._oldrec (Eq.refl (x ^ (-n) * x ^ n = 1)) (fpow_neg x n))) (inv_mul_cancel (fpow_ne_zero n h)) theorem one_div_pow {G₀ : Type u_1} [group_with_zero G₀] {a : G₀} (n : ℕ) : (1 / a) ^ n = 1 / a ^ n := sorry theorem one_div_fpow {G₀ : Type u_1} [group_with_zero G₀] {a : G₀} (n : ℤ) : (1 / a) ^ n = 1 / a ^ n := sorry @[simp] theorem inv_fpow' {G₀ : Type u_1} [group_with_zero G₀] {a : G₀} (n : ℤ) : a⁻¹ ^ n = a ^ (-n) := sorry @[simp] theorem div_pow {G₀ : Type u_1} [comm_group_with_zero G₀] (a : G₀) (b : G₀) (n : ℕ) : (a / b) ^ n = a ^ n / b ^ n := sorry @[simp] theorem div_fpow {G₀ : Type u_1} [comm_group_with_zero G₀] (a : G₀) {b : G₀} (n : ℤ) : (a / b) ^ n = a ^ n / b ^ n := sorry theorem div_sq_cancel {G₀ : Type u_1} [comm_group_with_zero G₀] {a : G₀} (ha : a ≠ 0) (b : G₀) : a ^ bit0 1 * b / a = a * b := eq.mpr (id (Eq._oldrec (Eq.refl (a ^ bit0 1 * b / a = a * b)) (pow_two a))) (eq.mpr (id (Eq._oldrec (Eq.refl (a * a * b / a = a * b)) (mul_assoc a a b))) (eq.mpr (id (Eq._oldrec (Eq.refl (a * (a * b) / a = a * b)) (mul_div_cancel_left (a * b) ha))) (Eq.refl (a * b)))) /-- If a monoid homomorphism `f` between two `group_with_zero`s maps `0` to `0`, then it maps `x^n`, `n : ℤ`, to `(f x)^n`. -/ theorem monoid_with_zero_hom.map_fpow {G₀ : Type u_1} {G₀' : Type u_2} [group_with_zero G₀] [group_with_zero G₀'] (f : monoid_with_zero_hom G₀ G₀') (x : G₀) (n : ℤ) : coe_fn f (x ^ n) = coe_fn f x ^ n := sorry
9df933001f1e5b46a15cc8805e81e76ef22ca7c0
f3849be5d845a1cb97680f0bbbe03b85518312f0
/library/init/meta/default.lean
d31e74d7d407692feef430400f64f1670f3e4e98
[ "Apache-2.0" ]
permissive
bjoeris/lean
0ed95125d762b17bfcb54dad1f9721f953f92eeb
4e496b78d5e73545fa4f9a807155113d8e6b0561
refs/heads/master
1,611,251,218,281
1,495,337,658,000
1,495,337,658,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
886
lean
/- Copyright (c) 2016 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura -/ prelude import init.meta.name init.meta.options init.meta.format init.meta.rb_map import init.meta.level init.meta.expr init.meta.environment init.meta.attribute import init.meta.tactic init.meta.contradiction_tactic init.meta.constructor_tactic import init.meta.injection_tactic init.meta.relation_tactics init.meta.fun_info import init.meta.congr_lemma init.meta.match_tactic init.meta.ac_tactics import init.meta.backward init.meta.rewrite_tactic import init.meta.mk_dec_eq_instance init.meta.mk_inhabited_instance import init.meta.simp_tactic init.meta.set_get_option_tactics import init.meta.interactive init.meta.converter init.meta.vm import init.meta.comp_value_tactics init.meta.smt import init.meta.async_tactic
5a9a904c10b1bd704ceb5b4e66cc36ab42b49efd
9dc8cecdf3c4634764a18254e94d43da07142918
/src/topology/vector_bundle/pullback.lean
68abd4579383474abcbd7f36d3f2cc5c2daf36e7
[ "Apache-2.0" ]
permissive
jcommelin/mathlib
d8456447c36c176e14d96d9e76f39841f69d2d9b
ee8279351a2e434c2852345c51b728d22af5a156
refs/heads/master
1,664,782,136,488
1,663,638,983,000
1,663,638,983,000
132,563,656
0
0
Apache-2.0
1,663,599,929,000
1,525,760,539,000
Lean
UTF-8
Lean
false
false
6,676
lean
/- Copyright © 2022 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri, Sebastien Gouezel, Heather Macbeth, Floris van Doorn -/ import topology.vector_bundle.basic /-! # Pullbacks of topological vector bundles We construct the pullback bundle for a map `f : B' → B` whose fiber map is given simply by `f *ᵖ E = E ∘ f` (the type synonym is there for typeclass instance problems). -/ noncomputable theory open bundle set topological_space topological_vector_bundle open_locale classical variables (R 𝕜 : Type*) {B : Type*} (F : Type*) (E E' : B → Type*) variables {B' : Type*} (f : B' → B) instance [∀ (x : B), topological_space (E' x)] : ∀ (x : B'), topological_space ((f *ᵖ E') x) := by delta_instance bundle.pullback instance [∀ (x : B), add_comm_monoid (E' x)] : ∀ (x : B'), add_comm_monoid ((f *ᵖ E') x) := by delta_instance bundle.pullback instance [semiring R] [∀ (x : B), add_comm_monoid (E' x)] [∀ x, module R (E' x)] : ∀ (x : B'), module R ((f *ᵖ E') x) := by delta_instance bundle.pullback variables [topological_space B'] [topological_space (total_space E)] /-- Definition of `pullback.total_space.topological_space`, which we make irreducible. -/ @[irreducible] def pullback_topology : topological_space (total_space (f *ᵖ E)) := induced total_space.proj ‹topological_space B'› ⊓ induced (pullback.lift f) ‹topological_space (total_space E)› /-- The topology on the total space of a pullback bundle is the coarsest topology for which both the projections to the base and the map to the original bundle are continuous. -/ instance pullback.total_space.topological_space : topological_space (total_space (f *ᵖ E)) := pullback_topology E f lemma pullback.continuous_proj (f : B' → B) : continuous (@total_space.proj _ (f *ᵖ E)) := begin rw [continuous_iff_le_induced, pullback.total_space.topological_space, pullback_topology], exact inf_le_left, end lemma pullback.continuous_lift (f : B' → B) : continuous (@pullback.lift B E B' f) := begin rw [continuous_iff_le_induced, pullback.total_space.topological_space, pullback_topology], exact inf_le_right, end lemma inducing_pullback_total_space_embedding (f : B' → B) : inducing (@pullback_total_space_embedding B E B' f) := begin constructor, simp_rw [prod.topological_space, induced_inf, induced_compose, pullback.total_space.topological_space, pullback_topology], refl end variables (F) [nontrivially_normed_field 𝕜] [normed_add_comm_group F] [normed_space 𝕜 F] [topological_space B] [∀ x, add_comm_monoid (E x)] [∀ x, module 𝕜 (E x)] lemma pullback.continuous_total_space_mk [∀ x, topological_space (E x)] [topological_vector_bundle 𝕜 F E] {f : B' → B} {x : B'} : continuous (@total_space_mk _ (f *ᵖ E) x) := begin simp only [continuous_iff_le_induced, pullback.total_space.topological_space, induced_compose, induced_inf, function.comp, total_space_mk, total_space.proj, induced_const, top_inf_eq, pullback_topology], exact le_of_eq (topological_vector_bundle.total_space_mk_inducing 𝕜 F E (f x)).induced, end variables {E 𝕜 F} {K : Type*} [continuous_map_class K B' B] /-- A vector bundle trivialization can be pulled back to a trivialization on the pullback bundle. -/ def topological_vector_bundle.trivialization.pullback (e : trivialization 𝕜 F E) (f : K) : trivialization 𝕜 F ((f : B' → B) *ᵖ E) := { to_fun := λ z, (z.proj, (e (pullback.lift f z)).2), inv_fun := λ y, @total_space_mk _ (f *ᵖ E) y.1 (e.symm (f y.1) y.2), source := pullback.lift f ⁻¹' e.source, base_set := f ⁻¹' e.base_set, target := (f ⁻¹' e.base_set) ×ˢ univ, map_source' := λ x h, by { simp_rw [e.source_eq, mem_preimage, pullback.proj_lift] at h, simp_rw [prod_mk_mem_set_prod_eq, mem_univ, and_true, mem_preimage, h] }, map_target' := λ y h, by { rw [mem_prod, mem_preimage] at h, simp_rw [e.source_eq, mem_preimage, pullback.proj_lift, h.1] }, left_inv' := λ x h, by { simp_rw [mem_preimage, e.mem_source, pullback.proj_lift] at h, simp_rw [pullback.lift, e.symm_apply_apply_mk h, total_space.eta] }, right_inv' := λ x h, by { simp_rw [mem_prod, mem_preimage, mem_univ, and_true] at h, simp_rw [total_space.proj_mk, pullback.lift_mk, e.apply_mk_symm h, prod.mk.eta] }, open_source := by { simp_rw [e.source_eq, ← preimage_comp], exact ((map_continuous f).comp $ pullback.continuous_proj E f).is_open_preimage _ e.open_base_set }, open_target := ((map_continuous f).is_open_preimage _ e.open_base_set).prod is_open_univ, open_base_set := (map_continuous f).is_open_preimage _ e.open_base_set, continuous_to_fun := (pullback.continuous_proj E f).continuous_on.prod (continuous_snd.comp_continuous_on $ e.continuous_on.comp (pullback.continuous_lift E f).continuous_on subset.rfl), continuous_inv_fun := begin dsimp only, simp_rw [(inducing_pullback_total_space_embedding E f).continuous_on_iff, function.comp, pullback_total_space_embedding, total_space.proj_mk], dsimp only [total_space.proj_mk], refine continuous_on_fst.prod (e.continuous_on_symm.comp ((map_continuous f).prod_map continuous_id).continuous_on subset.rfl) end, source_eq := by { dsimp only, rw e.source_eq, refl, }, target_eq := rfl, proj_to_fun := λ y h, rfl, linear' := λ x h, e.linear h } instance topological_vector_bundle.pullback [∀ x, topological_space (E x)] [topological_vector_bundle 𝕜 F E] (f : K) : topological_vector_bundle 𝕜 F ((f : B' → B) *ᵖ E) := { total_space_mk_inducing := λ x, inducing_of_inducing_compose (pullback.continuous_total_space_mk 𝕜 F E) (pullback.continuous_lift E f) (total_space_mk_inducing 𝕜 F E (f x)), trivialization_atlas := (λ e : trivialization 𝕜 F E, e.pullback f) '' trivialization_atlas 𝕜 F E, trivialization_at := λ x, (trivialization_at 𝕜 F E (f x)).pullback f, mem_base_set_trivialization_at := λ x, mem_base_set_trivialization_at 𝕜 F E (f x), trivialization_mem_atlas := λ x, mem_image_of_mem _ (trivialization_mem_atlas 𝕜 F E (f x)), continuous_on_coord_change := begin rintro _ ⟨e, he, rfl⟩ _ ⟨e', he', rfl⟩, refine ((continuous_on_coord_change e he e' he').comp (map_continuous f).continuous_on (λ b hb, hb)).congr _, rintro b (hb : f b ∈ e.base_set ∩ e'.base_set), ext v, show ((e.pullback f).coord_change (e'.pullback f) b) v = (e.coord_change e' (f b)) v, rw [e.coord_change_apply e' hb, (e.pullback f).coord_change_apply' _], exacts [rfl, hb] end }
8e032593095fd6cb3034695a05384854f91e68d5
d29d82a0af640c937e499f6be79fc552eae0aa13
/src/linear_algebra/linear_independent.lean
d9c860025051dcaa4d267119a054283cd40ca05f
[ "Apache-2.0" ]
permissive
AbdulMajeedkhurasani/mathlib
835f8a5c5cf3075b250b3737172043ab4fa1edf6
79bc7323b164aebd000524ebafd198eb0e17f956
refs/heads/master
1,688,003,895,660
1,627,788,521,000
1,627,788,521,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
52,933
lean
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro, Alexander Bentkamp, Anne Baanen -/ import algebra.big_operators.finsupp import linear_algebra.finsupp import linear_algebra.prod import linear_algebra.pi import order.zorn import data.finset.order import data.equiv.fin /-! # Linear independence This file defines linear independence in a module or vector space. It is inspired by Isabelle/HOL's linear algebra, and hence indirectly by HOL Light. We define `linear_independent R v` as `ker (finsupp.total ι M R v) = ⊥`. Here `finsupp.total` is the linear map sending a function `f : ι →₀ R` with finite support to the linear combination of vectors from `v` with these coefficients. Then we prove that several other statements are equivalent to this one, including injectivity of `finsupp.total ι M R v` and some versions with explicitly written linear combinations. ## Main definitions All definitions are given for families of vectors, i.e. `v : ι → M` where `M` is the module or vector space and `ι : Type*` is an arbitrary indexing type. * `linear_independent R v` states that the elements of the family `v` are linearly independent. * `linear_independent.repr hv x` returns the linear combination representing `x : span R (range v)` on the linearly independent vectors `v`, given `hv : linear_independent R v` (using classical choice). `linear_independent.repr hv` is provided as a linear map. ## Main statements We prove several specialized tests for linear independence of families of vectors and of sets of vectors. * `fintype.linear_independent_iff`: if `ι` is a finite type, then any function `f : ι → R` has finite support, so we can reformulate the statement using `∑ i : ι, f i • v i` instead of a sum over an auxiliary `s : finset ι`; * `linear_independent_empty_type`: a family indexed by an empty type is linearly independent; * `linear_independent_unique_iff`: if `ι` is a singleton, then `linear_independent K v` is equivalent to `v (default ι) ≠ 0`; * linear_independent_option`, `linear_independent_sum`, `linear_independent_fin_cons`, `linear_independent_fin_succ`: type-specific tests for linear independence of families of vector fields; * `linear_independent_insert`, `linear_independent_union`, `linear_independent_pair`, `linear_independent_singleton`: linear independence tests for set operations. In many cases we additionally provide dot-style operations (e.g., `linear_independent.union`) to make the linear independence tests usable as `hv.insert ha` etc. We also prove that any family of vectors includes a linear independent subfamily spanning the same submodule. ## Implementation notes We use families instead of sets because it allows us to say that two identical vectors are linearly dependent. If you want to use sets, use the family `(λ x, x : s → M)` given a set `s : set M`. The lemmas `linear_independent.to_subtype_range` and `linear_independent.of_subtype_range` connect those two worlds. ## Tags linearly dependent, linear dependence, linearly independent, linear independence -/ noncomputable theory open function set submodule open_locale classical big_operators universe u variables {ι : Type*} {ι' : Type*} {R : Type*} {K : Type*} variables {M : Type*} {M' M'' : Type*} {V : Type u} {V' : Type*} section module variables {v : ι → M} variables [semiring R] [add_comm_monoid M] [add_comm_monoid M'] [add_comm_monoid M''] variables [module R M] [module R M'] [module R M''] variables {a b : R} {x y : M} variables (R) (v) /-- `linear_independent R v` states the family of vectors `v` is linearly independent over `R`. -/ def linear_independent : Prop := (finsupp.total ι M R v).ker = ⊥ variables {R} {v} theorem linear_independent_iff : linear_independent R v ↔ ∀l, finsupp.total ι M R v l = 0 → l = 0 := by simp [linear_independent, linear_map.ker_eq_bot'] theorem linear_independent_iff' : linear_independent R v ↔ ∀ s : finset ι, ∀ g : ι → R, ∑ i in s, g i • v i = 0 → ∀ i ∈ s, g i = 0 := linear_independent_iff.trans ⟨λ hf s g hg i his, have h : _ := hf (∑ i in s, finsupp.single i (g i)) $ by simpa only [linear_map.map_sum, finsupp.total_single] using hg, calc g i = (finsupp.lapply i : (ι →₀ R) →ₗ[R] R) (finsupp.single i (g i)) : by rw [finsupp.lapply_apply, finsupp.single_eq_same] ... = ∑ j in s, (finsupp.lapply i : (ι →₀ R) →ₗ[R] R) (finsupp.single j (g j)) : eq.symm $ finset.sum_eq_single i (λ j hjs hji, by rw [finsupp.lapply_apply, finsupp.single_eq_of_ne hji]) (λ hnis, hnis.elim his) ... = (∑ j in s, finsupp.single j (g j)) i : (finsupp.lapply i : (ι →₀ R) →ₗ[R] R).map_sum.symm ... = 0 : finsupp.ext_iff.1 h i, λ hf l hl, finsupp.ext $ λ i, classical.by_contradiction $ λ hni, hni $ hf _ _ hl _ $ finsupp.mem_support_iff.2 hni⟩ theorem linear_independent_iff'' : linear_independent R v ↔ ∀ (s : finset ι) (g : ι → R) (hg : ∀ i ∉ s, g i = 0), ∑ i in s, g i • v i = 0 → ∀ i, g i = 0 := linear_independent_iff'.trans ⟨λ H s g hg hv i, if his : i ∈ s then H s g hv i his else hg i his, λ H s g hg i hi, by { convert H s (λ j, if j ∈ s then g j else 0) (λ j hj, if_neg hj) (by simp_rw [ite_smul, zero_smul, finset.sum_extend_by_zero, hg]) i, exact (if_pos hi).symm }⟩ theorem linear_dependent_iff : ¬ linear_independent R v ↔ ∃ s : finset ι, ∃ g : ι → R, (∑ i in s, g i • v i) = 0 ∧ (∃ i ∈ s, g i ≠ 0) := begin rw linear_independent_iff', simp only [exists_prop, not_forall], end theorem fintype.linear_independent_iff [fintype ι] : linear_independent R v ↔ ∀ g : ι → R, ∑ i, g i • v i = 0 → ∀ i, g i = 0 := begin refine ⟨λ H g, by simpa using linear_independent_iff'.1 H finset.univ g, λ H, linear_independent_iff''.2 $ λ s g hg hs i, H _ _ _⟩, rw ← hs, refine (finset.sum_subset (finset.subset_univ _) (λ i _ hi, _)).symm, rw [hg i hi, zero_smul] end /-- A finite family of vectors `v i` is linear independent iff the linear map that sends `c : ι → R` to `∑ i, c i • v i` has the trivial kernel. -/ theorem fintype.linear_independent_iff' [fintype ι] : linear_independent R v ↔ (linear_map.lsum R (λ i : ι, R) ℕ (λ i, linear_map.id.smul_right (v i))).ker = ⊥ := by simp [fintype.linear_independent_iff, linear_map.ker_eq_bot', funext_iff] lemma linear_independent_empty_type [is_empty ι] : linear_independent R v := linear_independent_iff.mpr $ λ v hv, subsingleton.elim v 0 lemma linear_independent.ne_zero [nontrivial R] (i : ι) (hv : linear_independent R v) : v i ≠ 0 := λ h, @zero_ne_one R _ _ $ eq.symm begin suffices : (finsupp.single i 1 : ι →₀ R) i = 0, {simpa}, rw linear_independent_iff.1 hv (finsupp.single i 1), { simp }, { simp [h] } end /-- A subfamily of a linearly independent family (i.e., a composition with an injective map) is a linearly independent family. -/ lemma linear_independent.comp (h : linear_independent R v) (f : ι' → ι) (hf : injective f) : linear_independent R (v ∘ f) := begin rw [linear_independent_iff, finsupp.total_comp], intros l hl, have h_map_domain : ∀ x, (finsupp.map_domain f l) (f x) = 0, by rw linear_independent_iff.1 h (finsupp.map_domain f l) hl; simp, ext x, convert h_map_domain x, rw [finsupp.map_domain_apply hf] end /-- If `v` is a linearly independent family of vectors and the kernel of a linear map `f` is disjoint with the sumodule spaned by the vectors of `v`, then `f ∘ v` is a linearly independent family of vectors. See also `linear_independent.map'` for a special case assuming `ker f = ⊥`. -/ lemma linear_independent.map (hv : linear_independent R v) {f : M →ₗ[R] M'} (hf_inj : disjoint (span R (range v)) f.ker) : linear_independent R (f ∘ v) := begin rw [disjoint, ← set.image_univ, finsupp.span_image_eq_map_total, map_inf_eq_map_inf_comap, map_le_iff_le_comap, comap_bot, finsupp.supported_univ, top_inf_eq] at hf_inj, unfold linear_independent at hv ⊢, rw [hv, le_bot_iff] at hf_inj, haveI : inhabited M := ⟨0⟩, rw [finsupp.total_comp, @finsupp.lmap_domain_total _ _ R _ _ _ _ _ _ _ _ _ _ f, linear_map.ker_comp, hf_inj], exact λ _, rfl, end /-- An injective linear map sends linearly independent families of vectors to linearly independent families of vectors. See also `linear_independent.map` for a more general statement. -/ lemma linear_independent.map' (hv : linear_independent R v) (f : M →ₗ[R] M') (hf_inj : f.ker = ⊥) : linear_independent R (f ∘ v) := hv.map $ by simp [hf_inj] /-- If the image of a family of vectors under a linear map is linearly independent, then so is the original family. -/ lemma linear_independent.of_comp (f : M →ₗ[R] M') (hfv : linear_independent R (f ∘ v)) : linear_independent R v := linear_independent_iff'.2 $ λ s g hg i his, have ∑ (i : ι) in s, g i • f (v i) = 0, by simp_rw [← f.map_smul, ← f.map_sum, hg, f.map_zero], linear_independent_iff'.1 hfv s g this i his /-- If `f` is an injective linear map, then the family `f ∘ v` is linearly independent if and only if the family `v` is linearly independent. -/ protected lemma linear_map.linear_independent_iff (f : M →ₗ[R] M') (hf_inj : f.ker = ⊥) : linear_independent R (f ∘ v) ↔ linear_independent R v := ⟨λ h, h.of_comp f, λ h, h.map $ by simp only [hf_inj, disjoint_bot_right]⟩ @[nontriviality] lemma linear_independent_of_subsingleton [subsingleton R] : linear_independent R v := linear_independent_iff.2 (λ l hl, subsingleton.elim _ _) theorem linear_independent_equiv (e : ι ≃ ι') {f : ι' → M} : linear_independent R (f ∘ e) ↔ linear_independent R f := ⟨λ h, function.comp.right_id f ▸ e.self_comp_symm ▸ h.comp _ e.symm.injective, λ h, h.comp _ e.injective⟩ theorem linear_independent_equiv' (e : ι ≃ ι') {f : ι' → M} {g : ι → M} (h : f ∘ e = g) : linear_independent R g ↔ linear_independent R f := h ▸ linear_independent_equiv e theorem linear_independent_subtype_range {ι} {f : ι → M} (hf : injective f) : linear_independent R (coe : range f → M) ↔ linear_independent R f := iff.symm $ linear_independent_equiv' (equiv.of_injective f hf) rfl alias linear_independent_subtype_range ↔ linear_independent.of_subtype_range _ theorem linear_independent_image {ι} {s : set ι} {f : ι → M} (hf : set.inj_on f s) : linear_independent R (λ x : s, f x) ↔ linear_independent R (λ x : f '' s, (x : M)) := linear_independent_equiv' (equiv.set.image_of_inj_on _ _ hf) rfl lemma linear_independent_span (hs : linear_independent R v) : @linear_independent ι R (span R (range v)) (λ i : ι, ⟨v i, subset_span (mem_range_self i)⟩) _ _ _ := linear_independent.of_comp (span R (range v)).subtype hs /-- See `linear_independent.fin_cons` for a family of elements in a vector space. -/ lemma linear_independent.fin_cons' {m : ℕ} (x : M) (v : fin m → M) (hli : linear_independent R v) (x_ortho : (∀ (c : R) (y : submodule.span R (set.range v)), c • x + y = (0 : M) → c = 0)) : linear_independent R (fin.cons x v : fin m.succ → M) := begin rw fintype.linear_independent_iff at hli ⊢, rintros g total_eq j, have zero_not_mem : (0 : fin m.succ) ∉ finset.univ.image (fin.succ : fin m → fin m.succ), { rw finset.mem_image, rintro ⟨x, hx, succ_eq⟩, exact fin.succ_ne_zero _ succ_eq }, simp only [submodule.coe_mk, fin.univ_succ, finset.sum_insert zero_not_mem, fin.cons_zero, fin.cons_succ, forall_true_iff, imp_self, fin.succ_inj, finset.sum_image] at total_eq, have : g 0 = 0, { refine x_ortho (g 0) ⟨∑ (i : fin m), g i.succ • v i, _⟩ total_eq, exact sum_mem _ (λ i _, smul_mem _ _ (subset_span ⟨i, rfl⟩)) }, refine fin.cases this (λ j, _) j, apply hli (λ i, g i.succ), simpa only [this, zero_smul, zero_add] using total_eq end /-- A set of linearly independent vectors in a module `M` over a semiring `K` is also linearly independent over a subring `R` of `K`. The implementation uses minimal assumptions about the relationship between `R`, `K` and `M`. The version where `K` is an `R`-algebra is `linear_independent.restrict_scalars_algebras`. -/ lemma linear_independent.restrict_scalars [semiring K] [smul_with_zero R K] [module K M] [is_scalar_tower R K M] (hinj : function.injective (λ r : R, r • (1 : K))) (li : linear_independent K v) : linear_independent R v := begin refine linear_independent_iff'.mpr (λ s g hg i hi, hinj (eq.trans _ (zero_smul _ _).symm)), refine (linear_independent_iff'.mp li : _) _ _ _ i hi, simp_rw [smul_assoc, one_smul], exact hg, end section subtype /-! The following lemmas use the subtype defined by a set in `M` as the index set `ι`. -/ theorem linear_independent_comp_subtype {s : set ι} : linear_independent R (v ∘ coe : s → M) ↔ ∀ l ∈ (finsupp.supported R R s), (finsupp.total ι M R v) l = 0 → l = 0 := begin simp only [linear_independent_iff, (∘), finsupp.mem_supported, finsupp.total_apply, set.subset_def, finset.mem_coe], split, { intros h l hl₁ hl₂, have := h (l.subtype_domain s) ((finsupp.sum_subtype_domain_index hl₁).trans hl₂), exact (finsupp.subtype_domain_eq_zero_iff hl₁).1 this }, { intros h l hl, refine finsupp.emb_domain_eq_zero.1 (h (l.emb_domain $ function.embedding.subtype s) _ _), { suffices : ∀ i hi, ¬l ⟨i, hi⟩ = 0 → i ∈ s, by simpa, intros, assumption }, { rwa [finsupp.emb_domain_eq_map_domain, finsupp.sum_map_domain_index], exacts [λ _, zero_smul _ _, λ _ _ _, add_smul _ _ _] } } end lemma linear_dependent_comp_subtype' {s : set ι} : ¬ linear_independent R (v ∘ coe : s → M) ↔ ∃ f : ι →₀ R, f ∈ finsupp.supported R R s ∧ finsupp.total ι M R v f = 0 ∧ f ≠ 0 := by simp [linear_independent_comp_subtype] /-- A version of `linear_dependent_comp_subtype'` with `finsupp.total` unfolded. -/ lemma linear_dependent_comp_subtype {s : set ι} : ¬ linear_independent R (v ∘ coe : s → M) ↔ ∃ f : ι →₀ R, f ∈ finsupp.supported R R s ∧ ∑ i in f.support, f i • v i = 0 ∧ f ≠ 0 := linear_dependent_comp_subtype' theorem linear_independent_subtype {s : set M} : linear_independent R (λ x, x : s → M) ↔ ∀ l ∈ (finsupp.supported R R s), (finsupp.total M M R id) l = 0 → l = 0 := by apply @linear_independent_comp_subtype _ _ _ id theorem linear_independent_comp_subtype_disjoint {s : set ι} : linear_independent R (v ∘ coe : s → M) ↔ disjoint (finsupp.supported R R s) (finsupp.total ι M R v).ker := by rw [linear_independent_comp_subtype, linear_map.disjoint_ker] theorem linear_independent_subtype_disjoint {s : set M} : linear_independent R (λ x, x : s → M) ↔ disjoint (finsupp.supported R R s) (finsupp.total M M R id).ker := by apply @linear_independent_comp_subtype_disjoint _ _ _ id theorem linear_independent_iff_total_on {s : set M} : linear_independent R (λ x, x : s → M) ↔ (finsupp.total_on M M R id s).ker = ⊥ := by rw [finsupp.total_on, linear_map.ker, linear_map.comap_cod_restrict, map_bot, comap_bot, linear_map.ker_comp, linear_independent_subtype_disjoint, disjoint, ← map_comap_subtype, map_le_iff_le_comap, comap_bot, ker_subtype, le_bot_iff] lemma linear_independent.restrict_of_comp_subtype {s : set ι} (hs : linear_independent R (v ∘ coe : s → M)) : linear_independent R (s.restrict v) := hs variables (R M) lemma linear_independent_empty : linear_independent R (λ x, x : (∅ : set M) → M) := by simp [linear_independent_subtype_disjoint] variables {R M} lemma linear_independent.mono {t s : set M} (h : t ⊆ s) : linear_independent R (λ x, x : s → M) → linear_independent R (λ x, x : t → M) := begin simp only [linear_independent_subtype_disjoint], exact (disjoint.mono_left (finsupp.supported_mono h)) end lemma linear_independent_of_finite (s : set M) (H : ∀ t ⊆ s, finite t → linear_independent R (λ x, x : t → M)) : linear_independent R (λ x, x : s → M) := linear_independent_subtype.2 $ λ l hl, linear_independent_subtype.1 (H _ hl (finset.finite_to_set _)) l (subset.refl _) lemma linear_independent_Union_of_directed {η : Type*} {s : η → set M} (hs : directed (⊆) s) (h : ∀ i, linear_independent R (λ x, x : s i → M)) : linear_independent R (λ x, x : (⋃ i, s i) → M) := begin by_cases hη : nonempty η, { resetI, refine linear_independent_of_finite (⋃ i, s i) (λ t ht ft, _), rcases finite_subset_Union ft ht with ⟨I, fi, hI⟩, rcases hs.finset_le fi.to_finset with ⟨i, hi⟩, exact (h i).mono (subset.trans hI $ bUnion_subset $ λ j hj, hi j (fi.mem_to_finset.2 hj)) }, { refine (linear_independent_empty _ _).mono _, rintro _ ⟨_, ⟨i, _⟩, _⟩, exact hη ⟨i⟩ } end lemma linear_independent_sUnion_of_directed {s : set (set M)} (hs : directed_on (⊆) s) (h : ∀ a ∈ s, linear_independent R (λ x, x : (a : set M) → M)) : linear_independent R (λ x, x : (⋃₀ s) → M) := by rw sUnion_eq_Union; exact linear_independent_Union_of_directed hs.directed_coe (by simpa using h) lemma linear_independent_bUnion_of_directed {η} {s : set η} {t : η → set M} (hs : directed_on (t ⁻¹'o (⊆)) s) (h : ∀a∈s, linear_independent R (λ x, x : t a → M)) : linear_independent R (λ x, x : (⋃a∈s, t a) → M) := by rw bUnion_eq_Union; exact linear_independent_Union_of_directed (directed_comp.2 $ hs.directed_coe) (by simpa using h) end subtype end module /-! ### Properties which require `ring R` -/ section module variables {v : ι → M} variables [ring R] [add_comm_group M] [add_comm_group M'] [add_comm_group M''] variables [module R M] [module R M'] [module R M''] variables {a b : R} {x y : M} theorem linear_independent_iff_injective_total : linear_independent R v ↔ function.injective (finsupp.total ι M R v) := linear_independent_iff.trans (finsupp.total ι M R v).to_add_monoid_hom.injective_iff.symm alias linear_independent_iff_injective_total ↔ linear_independent.injective_total _ lemma linear_independent.injective [nontrivial R] (hv : linear_independent R v) : injective v := begin intros i j hij, let l : ι →₀ R := finsupp.single i (1 : R) - finsupp.single j 1, have h_total : finsupp.total ι M R v l = 0, { simp_rw [linear_map.map_sub, finsupp.total_apply], simp [hij] }, have h_single_eq : finsupp.single i (1 : R) = finsupp.single j 1, { rw linear_independent_iff at hv, simp [eq_add_of_sub_eq' (hv l h_total)] }, simpa [finsupp.single_eq_single_iff] using h_single_eq end theorem linear_independent.to_subtype_range {ι} {f : ι → M} (hf : linear_independent R f) : linear_independent R (coe : range f → M) := begin nontriviality R, exact (linear_independent_subtype_range hf.injective).2 hf end theorem linear_independent.to_subtype_range' {ι} {f : ι → M} (hf : linear_independent R f) {t} (ht : range f = t) : linear_independent R (coe : t → M) := ht ▸ hf.to_subtype_range theorem linear_independent.image_of_comp {ι ι'} (s : set ι) (f : ι → ι') (g : ι' → M) (hs : linear_independent R (λ x : s, g (f x))) : linear_independent R (λ x : f '' s, g x) := begin nontriviality R, have : inj_on f s, from inj_on_iff_injective.2 hs.injective.of_comp, exact (linear_independent_equiv' (equiv.set.image_of_inj_on f s this) rfl).1 hs end theorem linear_independent.image {ι} {s : set ι} {f : ι → M} (hs : linear_independent R (λ x : s, f x)) : linear_independent R (λ x : f '' s, (x : M)) := by convert linear_independent.image_of_comp s f id hs lemma linear_independent.group_smul {G : Type*} [hG : group G] [distrib_mul_action G R] [distrib_mul_action G M] [is_scalar_tower G R M] [smul_comm_class G R M] {v : ι → M} (hv : linear_independent R v) (w : ι → G) : linear_independent R (w • v) := begin rw linear_independent_iff'' at hv ⊢, intros s g hgs hsum i, refine (smul_eq_zero_iff_eq (w i)).1 _, refine hv s (λ i, w i • g i) (λ i hi, _) _ i, { dsimp only, exact (hgs i hi).symm ▸ smul_zero _ }, { rw [← hsum, finset.sum_congr rfl _], intros, erw [pi.smul_apply, smul_assoc, smul_comm] }, end -- This lemma cannot be proved with `linear_independent.group_smul` since the action of -- `units R` on `R` is not commutative. lemma linear_independent.units_smul {v : ι → M} (hv : linear_independent R v) (w : ι → units R) : linear_independent R (w • v) := begin rw linear_independent_iff'' at hv ⊢, intros s g hgs hsum i, rw ← (w i).mul_left_eq_zero, refine hv s (λ i, g i • w i) (λ i hi, _) _ i, { dsimp only, exact (hgs i hi).symm ▸ zero_smul _ _ }, { rw [← hsum, finset.sum_congr rfl _], intros, erw [pi.smul_apply, smul_assoc], refl } end section subtype /-! The following lemmas use the subtype defined by a set in `M` as the index set `ι`. -/ lemma linear_independent.disjoint_span_image (hv : linear_independent R v) {s t : set ι} (hs : disjoint s t) : disjoint (submodule.span R $ v '' s) (submodule.span R $ v '' t) := begin simp only [disjoint_def, finsupp.mem_span_image_iff_total], rintros _ ⟨l₁, hl₁, rfl⟩ ⟨l₂, hl₂, H⟩, rw [hv.injective_total.eq_iff] at H, subst l₂, have : l₁ = 0 := finsupp.disjoint_supported_supported hs (submodule.mem_inf.2 ⟨hl₁, hl₂⟩), simp [this] end lemma linear_independent.not_mem_span_image [nontrivial R] (hv : linear_independent R v) {s : set ι} {x : ι} (h : x ∉ s) : v x ∉ submodule.span R (v '' s) := begin have h' : v x ∈ submodule.span R (v '' {x}), { rw set.image_singleton, exact mem_span_singleton_self (v x), }, intro w, apply linear_independent.ne_zero x hv, refine disjoint_def.1 (hv.disjoint_span_image _) (v x) h' w, simpa using h, end lemma linear_independent.total_ne_of_not_mem_support [nontrivial R] (hv : linear_independent R v) {x : ι} (f : ι →₀ R) (h : x ∉ f.support) : finsupp.total ι M R v f ≠ v x := begin replace h : x ∉ (f.support : set ι) := h, have p := hv.not_mem_span_image h, intro w, rw ←w at p, rw finsupp.span_image_eq_map_total at p, simp only [not_exists, not_and, mem_map] at p, exact p f (f.mem_supported_support R) rfl, end lemma linear_independent_sum {v : ι ⊕ ι' → M} : linear_independent R v ↔ linear_independent R (v ∘ sum.inl) ∧ linear_independent R (v ∘ sum.inr) ∧ disjoint (submodule.span R (range (v ∘ sum.inl))) (submodule.span R (range (v ∘ sum.inr))) := begin rw [range_comp v, range_comp v], refine ⟨λ h, ⟨h.comp _ sum.inl_injective, h.comp _ sum.inr_injective, h.disjoint_span_image is_compl_range_inl_range_inr.1⟩, _⟩, rintro ⟨hl, hr, hlr⟩, rw [linear_independent_iff'] at *, intros s g hg i hi, have : ∑ i in s.preimage sum.inl (sum.inl_injective.inj_on _), (λ x, g x • v x) (sum.inl i) + ∑ i in s.preimage sum.inr (sum.inr_injective.inj_on _), (λ x, g x • v x) (sum.inr i) = 0, { rw [finset.sum_preimage', finset.sum_preimage', ← finset.sum_union, ← finset.filter_or], { simpa only [← mem_union, range_inl_union_range_inr, mem_univ, finset.filter_true] }, { exact finset.disjoint_filter.2 (λ x hx, disjoint_left.1 is_compl_range_inl_range_inr.1) } }, { rw ← eq_neg_iff_add_eq_zero at this, rw [disjoint_def'] at hlr, have A := hlr _ (sum_mem _ $ λ i hi, _) _ (neg_mem _ $ sum_mem _ $ λ i hi, _) this, { cases i with i i, { exact hl _ _ A i (finset.mem_preimage.2 hi) }, { rw [this, neg_eq_zero] at A, exact hr _ _ A i (finset.mem_preimage.2 hi) } }, { exact smul_mem _ _ (subset_span ⟨sum.inl i, mem_range_self _, rfl⟩) }, { exact smul_mem _ _ (subset_span ⟨sum.inr i, mem_range_self _, rfl⟩) } } end lemma linear_independent.sum_type {v' : ι' → M} (hv : linear_independent R v) (hv' : linear_independent R v') (h : disjoint (submodule.span R (range v)) (submodule.span R (range v'))) : linear_independent R (sum.elim v v') := linear_independent_sum.2 ⟨hv, hv', h⟩ lemma linear_independent.union {s t : set M} (hs : linear_independent R (λ x, x : s → M)) (ht : linear_independent R (λ x, x : t → M)) (hst : disjoint (span R s) (span R t)) : linear_independent R (λ x, x : (s ∪ t) → M) := (hs.sum_type ht $ by simpa).to_subtype_range' $ by simp lemma linear_independent_Union_finite_subtype {ι : Type*} {f : ι → set M} (hl : ∀i, linear_independent R (λ x, x : f i → M)) (hd : ∀i, ∀t:set ι, finite t → i ∉ t → disjoint (span R (f i)) (⨆i∈t, span R (f i))) : linear_independent R (λ x, x : (⋃i, f i) → M) := begin rw [Union_eq_Union_finset f], apply linear_independent_Union_of_directed, apply directed_of_sup, exact (assume t₁ t₂ ht, Union_subset_Union $ assume i, Union_subset_Union_const $ assume h, ht h), assume t, rw [set.Union, ← finset.sup_eq_supr], refine t.induction_on _ _, { rw finset.sup_empty, apply linear_independent_empty_type, }, { rintros i s his ih, rw [finset.sup_insert], refine (hl _).union ih _, rw [finset.sup_eq_supr], refine (hd i _ _ his).mono_right _, { simp only [(span_Union _).symm], refine span_mono (@supr_le_supr2 (set M) _ _ _ _ _ _), rintros i, exact ⟨i, le_refl _⟩ }, { exact s.finite_to_set } } end lemma linear_independent_Union_finite {η : Type*} {ιs : η → Type*} {f : Π j : η, ιs j → M} (hindep : ∀j, linear_independent R (f j)) (hd : ∀i, ∀t:set η, finite t → i ∉ t → disjoint (span R (range (f i))) (⨆i∈t, span R (range (f i)))) : linear_independent R (λ ji : Σ j, ιs j, f ji.1 ji.2) := begin nontriviality R, apply linear_independent.of_subtype_range, { rintros ⟨x₁, x₂⟩ ⟨y₁, y₂⟩ hxy, by_cases h_cases : x₁ = y₁, subst h_cases, { apply sigma.eq, rw linear_independent.injective (hindep _) hxy, refl }, { have h0 : f x₁ x₂ = 0, { apply disjoint_def.1 (hd x₁ {y₁} (finite_singleton y₁) (λ h, h_cases (eq_of_mem_singleton h))) (f x₁ x₂) (subset_span (mem_range_self _)), rw supr_singleton, simp only at hxy, rw hxy, exact (subset_span (mem_range_self y₂)) }, exact false.elim ((hindep x₁).ne_zero _ h0) } }, rw range_sigma_eq_Union_range, apply linear_independent_Union_finite_subtype (λ j, (hindep j).to_subtype_range) hd, end end subtype section repr variables (hv : linear_independent R v) /-- Canonical isomorphism between linear combinations and the span of linearly independent vectors. -/ @[simps] def linear_independent.total_equiv (hv : linear_independent R v) : (ι →₀ R) ≃ₗ[R] span R (range v) := begin apply linear_equiv.of_bijective (linear_map.cod_restrict (span R (range v)) (finsupp.total ι M R v) _), { rw linear_map.ker_cod_restrict, apply hv }, { rw [linear_map.range_eq_map, linear_map.map_cod_restrict, ← linear_map.range_le_iff_comap, range_subtype, map_top], rw finsupp.range_total, apply le_refl (span R (range v)) }, { intro l, rw ← finsupp.range_total, rw linear_map.mem_range, apply mem_range_self l } end /-- Linear combination representing a vector in the span of linearly independent vectors. Given a family of linearly independent vectors, we can represent any vector in their span as a linear combination of these vectors. These are provided by this linear map. It is simply one direction of `linear_independent.total_equiv`. -/ def linear_independent.repr (hv : linear_independent R v) : span R (range v) →ₗ[R] ι →₀ R := hv.total_equiv.symm @[simp] lemma linear_independent.total_repr (x) : finsupp.total ι M R v (hv.repr x) = x := subtype.ext_iff.1 (linear_equiv.apply_symm_apply hv.total_equiv x) lemma linear_independent.total_comp_repr : (finsupp.total ι M R v).comp hv.repr = submodule.subtype _ := linear_map.ext $ hv.total_repr lemma linear_independent.repr_ker : hv.repr.ker = ⊥ := by rw [linear_independent.repr, linear_equiv.ker] lemma linear_independent.repr_range : hv.repr.range = ⊤ := by rw [linear_independent.repr, linear_equiv.range] lemma linear_independent.repr_eq {l : ι →₀ R} {x} (eq : finsupp.total ι M R v l = ↑x) : hv.repr x = l := begin have : ↑((linear_independent.total_equiv hv : (ι →₀ R) →ₗ[R] span R (range v)) l) = finsupp.total ι M R v l := rfl, have : (linear_independent.total_equiv hv : (ι →₀ R) →ₗ[R] span R (range v)) l = x, { rw eq at this, exact subtype.ext_iff.2 this }, rw ←linear_equiv.symm_apply_apply hv.total_equiv l, rw ←this, refl, end lemma linear_independent.repr_eq_single (i) (x) (hx : ↑x = v i) : hv.repr x = finsupp.single i 1 := begin apply hv.repr_eq, simp [finsupp.total_single, hx] end lemma linear_independent.span_repr_eq [nontrivial R] (x) : span.repr R (set.range v) x = (hv.repr x).equiv_map_domain (equiv.of_injective _ hv.injective) := begin have p : (span.repr R (set.range v) x).equiv_map_domain (equiv.of_injective _ hv.injective).symm = hv.repr x, { apply (linear_independent.total_equiv hv).injective, ext, simp, }, ext ⟨_, ⟨i, rfl⟩⟩, simp [←p], end -- TODO: why is this so slow? lemma linear_independent_iff_not_smul_mem_span : linear_independent R v ↔ (∀ (i : ι) (a : R), a • (v i) ∈ span R (v '' (univ \ {i})) → a = 0) := ⟨ λ hv i a ha, begin rw [finsupp.span_image_eq_map_total, mem_map] at ha, rcases ha with ⟨l, hl, e⟩, rw sub_eq_zero.1 (linear_independent_iff.1 hv (l - finsupp.single i a) (by simp [e])) at hl, by_contra hn, exact (not_mem_of_mem_diff (hl $ by simp [hn])) (mem_singleton _), end, λ H, linear_independent_iff.2 $ λ l hl, begin ext i, simp only [finsupp.zero_apply], by_contra hn, refine hn (H i _ _), refine (finsupp.mem_span_image_iff_total _).2 ⟨finsupp.single i (l i) - l, _, _⟩, { rw finsupp.mem_supported', intros j hj, have hij : j = i := not_not.1 (λ hij : j ≠ i, hj ((mem_diff _).2 ⟨mem_univ _, λ h, hij (eq_of_mem_singleton h)⟩)), simp [hij] }, { simp [hl] } end⟩ variable (R) lemma exists_maximal_independent' (s : ι → M) : ∃ I : set ι, linear_independent R (λ x : I, s x) ∧ ∀ J : set ι, I ⊆ J → linear_independent R (λ x : J, s x) → I = J := begin let indep : set ι → Prop := λ I, linear_independent R (s ∘ coe : I → M), let X := { I : set ι // indep I }, let r : X → X → Prop := λ I J, I.1 ⊆ J.1, have key : ∀ c : set X, zorn.chain r c → indep (⋃ (I : X) (H : I ∈ c), I), { intros c hc, dsimp [indep], rw [linear_independent_comp_subtype], intros f hsupport hsum, rcases eq_empty_or_nonempty c with rfl | ⟨a, hac⟩, { simpa using hsupport }, haveI : is_refl X r := ⟨λ _, set.subset.refl _⟩, obtain ⟨I, I_mem, hI⟩ : ∃ I ∈ c, (f.support : set ι) ⊆ I := finset.exists_mem_subset_of_subset_bUnion_of_directed_on hac hc.directed_on hsupport, exact linear_independent_comp_subtype.mp I.2 f hI hsum }, have trans : transitive r := λ I J K, set.subset.trans, obtain ⟨⟨I, hli : indep I⟩, hmax : ∀ a, r ⟨I, hli⟩ a → r a ⟨I, hli⟩⟩ := @zorn.exists_maximal_of_chains_bounded _ r (λ c hc, ⟨⟨⋃ I ∈ c, (I : set ι), key c hc⟩, λ I, set.subset_bUnion_of_mem⟩) trans, exact ⟨I, hli, λ J hsub hli, set.subset.antisymm hsub (hmax ⟨J, hli⟩ hsub)⟩, end lemma exists_maximal_independent (s : ι → M) : ∃ I : set ι, linear_independent R (λ x : I, s x) ∧ ∀ i ∉ I, ∃ a : R, a ≠ 0 ∧ a • s i ∈ span R (s '' I) := begin classical, rcases exists_maximal_independent' R s with ⟨I, hIlinind, hImaximal⟩, use [I, hIlinind], intros i hi, specialize hImaximal (I ∪ {i}) (by simp), set J := I ∪ {i} with hJ, have memJ : ∀ {x}, x ∈ J ↔ x = i ∨ x ∈ I, by simp [hJ], have hiJ : i ∈ J := by simp, have h := mt hImaximal _, swap, { intro h2, rw h2 at hi, exact absurd hiJ hi }, obtain ⟨f, supp_f, sum_f, f_ne⟩ := linear_dependent_comp_subtype.mp h, have hfi : f i ≠ 0, { contrapose hIlinind, refine linear_dependent_comp_subtype.mpr ⟨f, _, sum_f, f_ne⟩, simp only [finsupp.mem_supported, hJ] at ⊢ supp_f, rintro x hx, refine (memJ.mp (supp_f hx)).resolve_left _, rintro rfl, exact hIlinind (finsupp.mem_support_iff.mp hx) }, use [f i, hfi], have hfi' : i ∈ f.support := finsupp.mem_support_iff.mpr hfi, rw [← finset.insert_erase hfi', finset.sum_insert (finset.not_mem_erase _ _), add_eq_zero_iff_eq_neg] at sum_f, rw sum_f, refine neg_mem _ (sum_mem _ (λ c hc, smul_mem _ _ (subset_span ⟨c, _, rfl⟩))), exact (memJ.mp (supp_f (finset.erase_subset _ _ hc))).resolve_left (finset.ne_of_mem_erase hc), end end repr lemma surjective_of_linear_independent_of_span [nontrivial R] (hv : linear_independent R v) (f : ι' ↪ ι) (hss : range v ⊆ span R (range (v ∘ f))) : surjective f := begin intros i, let repr : (span R (range (v ∘ f)) : Type*) → ι' →₀ R := (hv.comp f f.injective).repr, let l := (repr ⟨v i, hss (mem_range_self i)⟩).map_domain f, have h_total_l : finsupp.total ι M R v l = v i, { dsimp only [l], rw finsupp.total_map_domain, rw (hv.comp f f.injective).total_repr, { refl }, { exact f.injective } }, have h_total_eq : (finsupp.total ι M R v) l = (finsupp.total ι M R v) (finsupp.single i 1), by rw [h_total_l, finsupp.total_single, one_smul], have l_eq : l = _ := linear_map.ker_eq_bot.1 hv h_total_eq, dsimp only [l] at l_eq, rw ←finsupp.emb_domain_eq_map_domain at l_eq, rcases finsupp.single_of_emb_domain_single (repr ⟨v i, _⟩) f i (1 : R) zero_ne_one.symm l_eq with ⟨i', hi'⟩, use i', exact hi'.2 end lemma eq_of_linear_independent_of_span_subtype [nontrivial R] {s t : set M} (hs : linear_independent R (λ x, x : s → M)) (h : t ⊆ s) (hst : s ⊆ span R t) : s = t := begin let f : t ↪ s := ⟨λ x, ⟨x.1, h x.2⟩, λ a b hab, subtype.coe_injective (subtype.mk.inj hab)⟩, have h_surj : surjective f, { apply surjective_of_linear_independent_of_span hs f _, convert hst; simp [f, comp], }, show s = t, { apply subset.antisymm _ h, intros x hx, rcases h_surj ⟨x, hx⟩ with ⟨y, hy⟩, convert y.mem, rw ← subtype.mk.inj hy, refl } end open linear_map lemma linear_independent.image_subtype {s : set M} {f : M →ₗ M'} (hs : linear_independent R (λ x, x : s → M)) (hf_inj : disjoint (span R s) f.ker) : linear_independent R (λ x, x : f '' s → M') := begin rw [← @subtype.range_coe _ s] at hf_inj, refine (hs.map hf_inj).to_subtype_range' _, simp [set.range_comp f] end lemma linear_independent.inl_union_inr {s : set M} {t : set M'} (hs : linear_independent R (λ x, x : s → M)) (ht : linear_independent R (λ x, x : t → M')) : linear_independent R (λ x, x : inl R M M' '' s ∪ inr R M M' '' t → M × M') := begin refine (hs.image_subtype _).union (ht.image_subtype _) _; [simp, simp, skip], simp only [span_image], simp [disjoint_iff, prod_inf_prod] end lemma linear_independent_inl_union_inr' {v : ι → M} {v' : ι' → M'} (hv : linear_independent R v) (hv' : linear_independent R v') : linear_independent R (sum.elim (inl R M M' ∘ v) (inr R M M' ∘ v')) := (hv.map' (inl R M M') ker_inl).sum_type (hv'.map' (inr R M M') ker_inr) $ begin refine is_compl_range_inl_inr.disjoint.mono _ _; simp only [span_le, range_coe, range_comp_subset_range], end /-- Dedekind's linear independence of characters -/ -- See, for example, Keith Conrad's note -- <https://kconrad.math.uconn.edu/blurbs/galoistheory/linearchar.pdf> theorem linear_independent_monoid_hom (G : Type*) [monoid G] (L : Type*) [comm_ring L] [no_zero_divisors L] : @linear_independent _ L (G → L) (λ f, f : (G →* L) → (G → L)) _ _ _ := by letI := classical.dec_eq (G →* L); letI : mul_action L L := distrib_mul_action.to_mul_action; -- We prove linear independence by showing that only the trivial linear combination vanishes. exact linear_independent_iff'.2 -- To do this, we use `finset` induction, (λ s, finset.induction_on s (λ g hg i, false.elim) $ λ a s has ih g hg, -- Here -- * `a` is a new character we will insert into the `finset` of characters `s`, -- * `ih` is the fact that only the trivial linear combination of characters in `s` is zero -- * `hg` is the fact that `g` are the coefficients of a linear combination summing to zero -- and it remains to prove that `g` vanishes on `insert a s`. -- We now make the key calculation: -- For any character `i` in the original `finset`, we have `g i • i = g i • a` as functions on the -- monoid `G`. have h1 : ∀ i ∈ s, (g i • i : G → L) = g i • a, from λ i his, funext $ λ x : G, -- We prove these expressions are equal by showing -- the differences of their values on each monoid element `x` is zero eq_of_sub_eq_zero $ ih (λ j, g j * j x - g j * a x) (funext $ λ y : G, calc -- After that, it's just a chase scene. (∑ i in s, ((g i * i x - g i * a x) • i : G → L)) y = ∑ i in s, (g i * i x - g i * a x) * i y : finset.sum_apply _ _ _ ... = ∑ i in s, (g i * i x * i y - g i * a x * i y) : finset.sum_congr rfl (λ _ _, sub_mul _ _ _) ... = ∑ i in s, g i * i x * i y - ∑ i in s, g i * a x * i y : finset.sum_sub_distrib ... = (g a * a x * a y + ∑ i in s, g i * i x * i y) - (g a * a x * a y + ∑ i in s, g i * a x * i y) : by rw add_sub_add_left_eq_sub ... = ∑ i in insert a s, g i * i x * i y - ∑ i in insert a s, g i * a x * i y : by rw [finset.sum_insert has, finset.sum_insert has] ... = ∑ i in insert a s, g i * i (x * y) - ∑ i in insert a s, a x * (g i * i y) : congr (congr_arg has_sub.sub (finset.sum_congr rfl $ λ i _, by rw [i.map_mul, mul_assoc])) (finset.sum_congr rfl $ λ _ _, by rw [mul_assoc, mul_left_comm]) ... = (∑ i in insert a s, (g i • i : G → L)) (x * y) - a x * (∑ i in insert a s, (g i • i : G → L)) y : by rw [finset.sum_apply, finset.sum_apply, finset.mul_sum]; refl ... = 0 - a x * 0 : by rw hg; refl ... = 0 : by rw [mul_zero, sub_zero]) i his, -- On the other hand, since `a` is not already in `s`, for any character `i ∈ s` -- there is some element of the monoid on which it differs from `a`. have h2 : ∀ i : G →* L, i ∈ s → ∃ y, i y ≠ a y, from λ i his, classical.by_contradiction $ λ h, have hia : i = a, from monoid_hom.ext $ λ y, classical.by_contradiction $ λ hy, h ⟨y, hy⟩, has $ hia ▸ his, -- From these two facts we deduce that `g` actually vanishes on `s`, have h3 : ∀ i ∈ s, g i = 0, from λ i his, let ⟨y, hy⟩ := h2 i his in have h : g i • i y = g i • a y, from congr_fun (h1 i his) y, or.resolve_right (mul_eq_zero.1 $ by rw [mul_sub, sub_eq_zero]; exact h) (sub_ne_zero_of_ne hy), -- And so, using the fact that the linear combination over `s` and over `insert a s` both vanish, -- we deduce that `g a = 0`. have h4 : g a = 0, from calc g a = g a * 1 : (mul_one _).symm ... = (g a • a : G → L) 1 : by rw ← a.map_one; refl ... = (∑ i in insert a s, (g i • i : G → L)) 1 : begin rw finset.sum_eq_single a, { intros i his hia, rw finset.mem_insert at his, rw [h3 i (his.resolve_left hia), zero_smul] }, { intros haas, exfalso, apply haas, exact finset.mem_insert_self a s } end ... = 0 : by rw hg; refl, -- Now we're done; the last two facts together imply that `g` vanishes on every element -- of `insert a s`. (finset.forall_mem_insert _ _ _).2 ⟨h4, h3⟩) lemma le_of_span_le_span [nontrivial R] {s t u: set M} (hl : linear_independent R (coe : u → M )) (hsu : s ⊆ u) (htu : t ⊆ u) (hst : span R s ≤ span R t) : s ⊆ t := begin have := eq_of_linear_independent_of_span_subtype (hl.mono (set.union_subset hsu htu)) (set.subset_union_right _ _) (set.union_subset (set.subset.trans subset_span hst) subset_span), rw ← this, apply set.subset_union_left end lemma span_le_span_iff [nontrivial R] {s t u: set M} (hl : linear_independent R (coe : u → M)) (hsu : s ⊆ u) (htu : t ⊆ u) : span R s ≤ span R t ↔ s ⊆ t := ⟨le_of_span_le_span hl hsu htu, span_mono⟩ end module section nontrivial variables [ring R] [nontrivial R] [add_comm_group M] [add_comm_group M'] variables [module R M] [no_zero_smul_divisors R M] [module R M'] variables {v : ι → M} {s t : set M} {x y z : M} lemma linear_independent_unique_iff (v : ι → M) [unique ι] : linear_independent R v ↔ v (default ι) ≠ 0 := begin simp only [linear_independent_iff, finsupp.total_unique, smul_eq_zero], refine ⟨λ h hv, _, λ hv l hl, finsupp.unique_ext $ hl.resolve_right hv⟩, have := h (finsupp.single (default ι) 1) (or.inr hv), exact one_ne_zero (finsupp.single_eq_zero.1 this) end alias linear_independent_unique_iff ↔ _ linear_independent_unique lemma linear_independent_singleton {x : M} (hx : x ≠ 0) : linear_independent R (λ x, x : ({x} : set M) → M) := linear_independent_unique coe hx end nontrivial /-! ### Properties which require `division_ring K` These can be considered generalizations of properties of linear independence in vector spaces. -/ section module variables [division_ring K] [add_comm_group V] [add_comm_group V'] variables [module K V] [module K V'] variables {v : ι → V} {s t : set V} {x y z : V} open submodule /- TODO: some of the following proofs can generalized with a zero_ne_one predicate type class (instead of a data containing type class) -/ lemma mem_span_insert_exchange : x ∈ span K (insert y s) → x ∉ span K s → y ∈ span K (insert x s) := begin simp [mem_span_insert], rintro a z hz rfl h, refine ⟨a⁻¹, -a⁻¹ • z, smul_mem _ _ hz, _⟩, have a0 : a ≠ 0, {rintro rfl, simp * at *}, simp [a0, smul_add, smul_smul] end lemma linear_independent_iff_not_mem_span : linear_independent K v ↔ (∀i, v i ∉ span K (v '' (univ \ {i}))) := begin apply linear_independent_iff_not_smul_mem_span.trans, split, { intros h i h_in_span, apply one_ne_zero (h i 1 (by simp [h_in_span])) }, { intros h i a ha, by_contradiction ha', exact false.elim (h _ ((smul_mem_iff _ ha').1 ha)) } end lemma linear_independent.insert (hs : linear_independent K (λ b, b : s → V)) (hx : x ∉ span K s) : linear_independent K (λ b, b : insert x s → V) := begin rw ← union_singleton, have x0 : x ≠ 0 := mt (by rintro rfl; apply zero_mem _) hx, apply hs.union (linear_independent_singleton x0), rwa [disjoint_span_singleton' x0] end lemma linear_independent_option' : linear_independent K (λ o, option.cases_on' o x v : option ι → V) ↔ linear_independent K v ∧ (x ∉ submodule.span K (range v)) := begin rw [← linear_independent_equiv (equiv.option_equiv_sum_punit ι).symm, linear_independent_sum, @range_unique _ punit, @linear_independent_unique_iff punit, disjoint_span_singleton], dsimp [(∘)], refine ⟨λ h, ⟨h.1, λ hx, h.2.1 $ h.2.2 hx⟩, λ h, ⟨h.1, _, λ hx, (h.2 hx).elim⟩⟩, rintro rfl, exact h.2 (zero_mem _) end lemma linear_independent.option (hv : linear_independent K v) (hx : x ∉ submodule.span K (range v)) : linear_independent K (λ o, option.cases_on' o x v : option ι → V) := linear_independent_option'.2 ⟨hv, hx⟩ lemma linear_independent_option {v : option ι → V} : linear_independent K v ↔ linear_independent K (v ∘ coe : ι → V) ∧ v none ∉ submodule.span K (range (v ∘ coe : ι → V)) := by simp only [← linear_independent_option', option.cases_on'_none_coe] theorem linear_independent_insert' {ι} {s : set ι} {a : ι} {f : ι → V} (has : a ∉ s) : linear_independent K (λ x : insert a s, f x) ↔ linear_independent K (λ x : s, f x) ∧ f a ∉ submodule.span K (f '' s) := by { rw [← linear_independent_equiv ((equiv.option_equiv_sum_punit _).trans (equiv.set.insert has).symm), linear_independent_option], simp [(∘), range_comp f] } theorem linear_independent_insert (hxs : x ∉ s) : linear_independent K (λ b : insert x s, (b : V)) ↔ linear_independent K (λ b : s, (b : V)) ∧ x ∉ submodule.span K s := (@linear_independent_insert' _ _ _ _ _ _ _ _ id hxs).trans $ by simp lemma linear_independent_pair {x y : V} (hx : x ≠ 0) (hy : ∀ a : K, a • x ≠ y) : linear_independent K (coe : ({x, y} : set V) → V) := pair_comm y x ▸ (linear_independent_singleton hx).insert $ mt mem_span_singleton.1 (not_exists.2 hy) lemma linear_independent_fin_cons {n} {v : fin n → V} : linear_independent K (fin.cons x v : fin (n + 1) → V) ↔ linear_independent K v ∧ x ∉ submodule.span K (range v) := begin rw [← linear_independent_equiv (fin_succ_equiv n).symm, linear_independent_option], convert iff.rfl, { ext, -- TODO: why doesn't simp use `fin_succ_equiv_symm_coe` here? rw [comp_app, comp_app, fin_succ_equiv_symm_coe, fin.cons_succ] }, { rw [comp_app, fin_succ_equiv_symm_none, fin.cons_zero] }, { ext, rw [comp_app, comp_app, fin_succ_equiv_symm_coe, fin.cons_succ] } end lemma linear_independent_fin_snoc {n} {v : fin n → V} : linear_independent K (fin.snoc v x : fin (n + 1) → V) ↔ linear_independent K v ∧ x ∉ submodule.span K (range v) := by rw [fin.snoc_eq_cons_rotate, linear_independent_equiv, linear_independent_fin_cons] /-- See `linear_independent.fin_cons'` for an uglier version that works if you only have a module over a semiring. -/ lemma linear_independent.fin_cons {n} {v : fin n → V} (hv : linear_independent K v) (hx : x ∉ submodule.span K (range v)) : linear_independent K (fin.cons x v : fin (n + 1) → V) := linear_independent_fin_cons.2 ⟨hv, hx⟩ lemma linear_independent_fin_succ {n} {v : fin (n + 1) → V} : linear_independent K v ↔ linear_independent K (fin.tail v) ∧ v 0 ∉ submodule.span K (range $ fin.tail v) := by rw [← linear_independent_fin_cons, fin.cons_self_tail] lemma linear_independent_fin_succ' {n} {v : fin (n + 1) → V} : linear_independent K v ↔ linear_independent K (fin.init v) ∧ v (fin.last _) ∉ submodule.span K (range $ fin.init v) := by rw [← linear_independent_fin_snoc, fin.snoc_init_self] lemma linear_independent_fin2 {f : fin 2 → V} : linear_independent K f ↔ f 1 ≠ 0 ∧ ∀ a : K, a • f 1 ≠ f 0 := by rw [linear_independent_fin_succ, linear_independent_unique_iff, range_unique, mem_span_singleton, not_exists, show fin.tail f (default (fin 1)) = f 1, by rw ← fin.succ_zero_eq_one; refl] lemma exists_linear_independent (hs : linear_independent K (λ x, x : s → V)) (hst : s ⊆ t) : ∃b⊆t, s ⊆ b ∧ t ⊆ span K b ∧ linear_independent K (λ x, x : b → V) := begin rcases zorn.zorn_subset_nonempty {b | b ⊆ t ∧ linear_independent K (λ x, x : b → V)} _ _ ⟨hst, hs⟩ with ⟨b, ⟨bt, bi⟩, sb, h⟩, { refine ⟨b, bt, sb, λ x xt, _, bi⟩, by_contra hn, apply hn, rw ← h _ ⟨insert_subset.2 ⟨xt, bt⟩, bi.insert hn⟩ (subset_insert _ _), exact subset_span (mem_insert _ _) }, { refine λ c hc cc c0, ⟨⋃₀ c, ⟨_, _⟩, λ x, _⟩, { exact sUnion_subset (λ x xc, (hc xc).1) }, { exact linear_independent_sUnion_of_directed cc.directed_on (λ x xc, (hc xc).2) }, { exact subset_sUnion_of_mem } } end /-- `linear_independent.extend` adds vectors to a linear independent set `s ⊆ t` until it spans all elements of `t`. -/ noncomputable def linear_independent.extend (hs : linear_independent K (λ x, x : s → V)) (hst : s ⊆ t) : set V := classical.some (exists_linear_independent hs hst) lemma linear_independent.extend_subset (hs : linear_independent K (λ x, x : s → V)) (hst : s ⊆ t) : hs.extend hst ⊆ t := let ⟨hbt, hsb, htb, hli⟩ := classical.some_spec (exists_linear_independent hs hst) in hbt lemma linear_independent.subset_extend (hs : linear_independent K (λ x, x : s → V)) (hst : s ⊆ t) : s ⊆ hs.extend hst := let ⟨hbt, hsb, htb, hli⟩ := classical.some_spec (exists_linear_independent hs hst) in hsb lemma linear_independent.subset_span_extend (hs : linear_independent K (λ x, x : s → V)) (hst : s ⊆ t) : t ⊆ span K (hs.extend hst) := let ⟨hbt, hsb, htb, hli⟩ := classical.some_spec (exists_linear_independent hs hst) in htb lemma linear_independent.linear_independent_extend (hs : linear_independent K (λ x, x : s → V)) (hst : s ⊆ t) : linear_independent K (coe : hs.extend hst → V) := let ⟨hbt, hsb, htb, hli⟩ := classical.some_spec (exists_linear_independent hs hst) in hli variables {K V} -- TODO(Mario): rewrite? lemma exists_of_linear_independent_of_finite_span {t : finset V} (hs : linear_independent K (λ x, x : s → V)) (hst : s ⊆ (span K ↑t : submodule K V)) : ∃t':finset V, ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ t'.card = t.card := have ∀t, ∀(s' : finset V), ↑s' ⊆ s → s ∩ ↑t = ∅ → s ⊆ (span K ↑(s' ∪ t) : submodule K V) → ∃t':finset V, ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ t'.card = (s' ∪ t).card := assume t, finset.induction_on t (assume s' hs' _ hss', have s = ↑s', from eq_of_linear_independent_of_span_subtype hs hs' $ by simpa using hss', ⟨s', by simp [this]⟩) (assume b₁ t hb₁t ih s' hs' hst hss', have hb₁s : b₁ ∉ s, from assume h, have b₁ ∈ s ∩ ↑(insert b₁ t), from ⟨h, finset.mem_insert_self _ _⟩, by rwa [hst] at this, have hb₁s' : b₁ ∉ s', from assume h, hb₁s $ hs' h, have hst : s ∩ ↑t = ∅, from eq_empty_of_subset_empty $ subset.trans (by simp [inter_subset_inter, subset.refl]) (le_of_eq hst), classical.by_cases (assume : s ⊆ (span K ↑(s' ∪ t) : submodule K V), let ⟨u, hust, hsu, eq⟩ := ih _ hs' hst this in have hb₁u : b₁ ∉ u, from assume h, (hust h).elim hb₁s hb₁t, ⟨insert b₁ u, by simp [insert_subset_insert hust], subset.trans hsu (by simp), by simp [eq, hb₁t, hb₁s', hb₁u]⟩) (assume : ¬ s ⊆ (span K ↑(s' ∪ t) : submodule K V), let ⟨b₂, hb₂s, hb₂t⟩ := not_subset.mp this in have hb₂t' : b₂ ∉ s' ∪ t, from assume h, hb₂t $ subset_span h, have s ⊆ (span K ↑(insert b₂ s' ∪ t) : submodule K V), from assume b₃ hb₃, have ↑(s' ∪ insert b₁ t) ⊆ insert b₁ (insert b₂ ↑(s' ∪ t) : set V), by simp [insert_eq, -singleton_union, -union_singleton, union_subset_union, subset.refl, subset_union_right], have hb₃ : b₃ ∈ span K (insert b₁ (insert b₂ ↑(s' ∪ t) : set V)), from span_mono this (hss' hb₃), have s ⊆ (span K (insert b₁ ↑(s' ∪ t)) : submodule K V), by simpa [insert_eq, -singleton_union, -union_singleton] using hss', have hb₁ : b₁ ∈ span K (insert b₂ ↑(s' ∪ t)), from mem_span_insert_exchange (this hb₂s) hb₂t, by rw [span_insert_eq_span hb₁] at hb₃; simpa using hb₃, let ⟨u, hust, hsu, eq⟩ := ih _ (by simp [insert_subset, hb₂s, hs']) hst this in ⟨u, subset.trans hust $ union_subset_union (subset.refl _) (by simp [subset_insert]), hsu, by simp [eq, hb₂t', hb₁t, hb₁s']⟩)), begin have eq : t.filter (λx, x ∈ s) ∪ t.filter (λx, x ∉ s) = t, { ext1 x, by_cases x ∈ s; simp * }, apply exists.elim (this (t.filter (λx, x ∉ s)) (t.filter (λx, x ∈ s)) (by simp [set.subset_def]) (by simp [set.ext_iff] {contextual := tt}) (by rwa [eq])), intros u h, exact ⟨u, subset.trans h.1 (by simp [subset_def, and_imp, or_imp_distrib] {contextual:=tt}), h.2.1, by simp only [h.2.2, eq]⟩ end lemma exists_finite_card_le_of_finite_of_linear_independent_of_span (ht : finite t) (hs : linear_independent K (λ x, x : s → V)) (hst : s ⊆ span K t) : ∃h : finite s, h.to_finset.card ≤ ht.to_finset.card := have s ⊆ (span K ↑(ht.to_finset) : submodule K V), by simp; assumption, let ⟨u, hust, hsu, eq⟩ := exists_of_linear_independent_of_finite_span hs this in have finite s, from u.finite_to_set.subset hsu, ⟨this, by rw [←eq]; exact (finset.card_le_of_subset $ finset.coe_subset.mp $ by simp [hsu])⟩ end module
74aab0cb9655f588794afafff922e2465c4b8925
8cae430f0a71442d02dbb1cbb14073b31048e4b0
/src/algebra/group_with_zero/units/basic.lean
a306052d3e7c8e57da58ac29a379d99346da3ef2
[ "Apache-2.0" ]
permissive
leanprover-community/mathlib
56a2cadd17ac88caf4ece0a775932fa26327ba0e
442a83d738cb208d3600056c489be16900ba701d
refs/heads/master
1,693,584,102,358
1,693,471,902,000
1,693,471,902,000
97,922,418
1,595
352
Apache-2.0
1,694,693,445,000
1,500,624,130,000
Lean
UTF-8
Lean
false
false
10,411
lean
/- Copyright (c) 2020 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin -/ import algebra.group_with_zero.basic import algebra.group.units import tactic.nontriviality import tactic.assert_exists /-! # Lemmas about units in a `monoid_with_zero` or a `group_with_zero`. > THIS FILE IS SYNCHRONIZED WITH MATHLIB4. > Any changes to this file require a corresponding PR to mathlib4. We also define `ring.inverse`, a globally defined function on any ring (in fact any `monoid_with_zero`), which inverts units and sends non-units to zero. -/ variables {α M₀ G₀ M₀' G₀' F F' : Type*} variables [monoid_with_zero M₀] namespace units /-- An element of the unit group of a nonzero monoid with zero represented as an element of the monoid is nonzero. -/ @[simp] lemma ne_zero [nontrivial M₀] (u : M₀ˣ) : (u : M₀) ≠ 0 := left_ne_zero_of_mul_eq_one u.mul_inv -- We can't use `mul_eq_zero` + `units.ne_zero` in the next two lemmas because we don't assume -- `nonzero M₀`. @[simp] lemma mul_left_eq_zero (u : M₀ˣ) {a : M₀} : a * u = 0 ↔ a = 0 := ⟨λ h, by simpa using mul_eq_zero_of_left h ↑u⁻¹, λ h, mul_eq_zero_of_left h u⟩ @[simp] lemma mul_right_eq_zero (u : M₀ˣ) {a : M₀} : ↑u * a = 0 ↔ a = 0 := ⟨λ h, by simpa using mul_eq_zero_of_right ↑u⁻¹ h, mul_eq_zero_of_right u⟩ end units namespace is_unit lemma ne_zero [nontrivial M₀] {a : M₀} (ha : is_unit a) : a ≠ 0 := let ⟨u, hu⟩ := ha in hu ▸ u.ne_zero lemma mul_right_eq_zero {a b : M₀} (ha : is_unit a) : a * b = 0 ↔ b = 0 := let ⟨u, hu⟩ := ha in hu ▸ u.mul_right_eq_zero lemma mul_left_eq_zero {a b : M₀} (hb : is_unit b) : a * b = 0 ↔ a = 0 := let ⟨u, hu⟩ := hb in hu ▸ u.mul_left_eq_zero end is_unit @[simp] theorem is_unit_zero_iff : is_unit (0 : M₀) ↔ (0:M₀) = 1 := ⟨λ ⟨⟨_, a, (a0 : 0 * a = 1), _⟩, rfl⟩, by rwa zero_mul at a0, λ h, @is_unit_of_subsingleton _ _ (subsingleton_of_zero_eq_one h) 0⟩ @[simp] theorem not_is_unit_zero [nontrivial M₀] : ¬ is_unit (0 : M₀) := mt is_unit_zero_iff.1 zero_ne_one namespace ring open_locale classical /-- Introduce a function `inverse` on a monoid with zero `M₀`, which sends `x` to `x⁻¹` if `x` is invertible and to `0` otherwise. This definition is somewhat ad hoc, but one needs a fully (rather than partially) defined inverse function for some purposes, including for calculus. Note that while this is in the `ring` namespace for brevity, it requires the weaker assumption `monoid_with_zero M₀` instead of `ring M₀`. -/ noncomputable def inverse : M₀ → M₀ := λ x, if h : is_unit x then ((h.unit⁻¹ : M₀ˣ) : M₀) else 0 /-- By definition, if `x` is invertible then `inverse x = x⁻¹`. -/ @[simp] lemma inverse_unit (u : M₀ˣ) : inverse (u : M₀) = (u⁻¹ : M₀ˣ) := begin simp only [units.is_unit, inverse, dif_pos], exact units.inv_unique rfl end /-- By definition, if `x` is not invertible then `inverse x = 0`. -/ @[simp] lemma inverse_non_unit (x : M₀) (h : ¬(is_unit x)) : inverse x = 0 := dif_neg h lemma mul_inverse_cancel (x : M₀) (h : is_unit x) : x * inverse x = 1 := by { rcases h with ⟨u, rfl⟩, rw [inverse_unit, units.mul_inv], } lemma inverse_mul_cancel (x : M₀) (h : is_unit x) : inverse x * x = 1 := by { rcases h with ⟨u, rfl⟩, rw [inverse_unit, units.inv_mul], } lemma mul_inverse_cancel_right (x y : M₀) (h : is_unit x) : y * x * inverse x = y := by rw [mul_assoc, mul_inverse_cancel x h, mul_one] lemma inverse_mul_cancel_right (x y : M₀) (h : is_unit x) : y * inverse x * x = y := by rw [mul_assoc, inverse_mul_cancel x h, mul_one] lemma mul_inverse_cancel_left (x y : M₀) (h : is_unit x) : x * (inverse x * y) = y := by rw [← mul_assoc, mul_inverse_cancel x h, one_mul] lemma inverse_mul_cancel_left (x y : M₀) (h : is_unit x) : inverse x * (x * y) = y := by rw [← mul_assoc, inverse_mul_cancel x h, one_mul] lemma inverse_mul_eq_iff_eq_mul (x y z : M₀) (h : is_unit x) : inverse x * y = z ↔ y = x * z := ⟨λ h1, by rw [← h1, mul_inverse_cancel_left _ _ h], λ h1, by rw [h1, inverse_mul_cancel_left _ _ h]⟩ lemma eq_mul_inverse_iff_mul_eq (x y z : M₀) (h : is_unit z) : x = y * inverse z ↔ x * z = y := ⟨λ h1, by rw [h1, inverse_mul_cancel_right _ _ h], λ h1, by rw [← h1, mul_inverse_cancel_right _ _ h]⟩ variables (M₀) @[simp] lemma inverse_one : inverse (1 : M₀) = 1 := inverse_unit 1 @[simp] lemma inverse_zero : inverse (0 : M₀) = 0 := by { nontriviality, exact inverse_non_unit _ not_is_unit_zero } variables {M₀} end ring lemma is_unit.ring_inverse {a : M₀} : is_unit a → is_unit (ring.inverse a) | ⟨u, hu⟩ := hu ▸ ⟨u⁻¹, (ring.inverse_unit u).symm⟩ @[simp] lemma is_unit_ring_inverse {a : M₀} : is_unit (ring.inverse a) ↔ is_unit a := ⟨λ h, begin casesI subsingleton_or_nontrivial M₀, { convert h }, { contrapose h, rw ring.inverse_non_unit _ h, exact not_is_unit_zero, }, end, is_unit.ring_inverse⟩ namespace units variables [group_with_zero G₀] variables {a b : G₀} /-- Embed a non-zero element of a `group_with_zero` into the unit group. By combining this function with the operations on units, or the `/ₚ` operation, it is possible to write a division as a partial function with three arguments. -/ def mk0 (a : G₀) (ha : a ≠ 0) : G₀ˣ := ⟨a, a⁻¹, mul_inv_cancel ha, inv_mul_cancel ha⟩ @[simp] lemma mk0_one (h := one_ne_zero) : mk0 (1 : G₀) h = 1 := by { ext, refl } @[simp] lemma coe_mk0 {a : G₀} (h : a ≠ 0) : (mk0 a h : G₀) = a := rfl @[simp] lemma mk0_coe (u : G₀ˣ) (h : (u : G₀) ≠ 0) : mk0 (u : G₀) h = u := units.ext rfl @[simp] lemma mul_inv' (u : G₀ˣ) : (u : G₀) * u⁻¹ = 1 := mul_inv_cancel u.ne_zero @[simp] lemma inv_mul' (u : G₀ˣ) : (u⁻¹ : G₀) * u = 1 := inv_mul_cancel u.ne_zero @[simp] lemma mk0_inj {a b : G₀} (ha : a ≠ 0) (hb : b ≠ 0) : units.mk0 a ha = units.mk0 b hb ↔ a = b := ⟨λ h, by injection h, λ h, units.ext h⟩ /-- In a group with zero, an existential over a unit can be rewritten in terms of `units.mk0`. -/ lemma exists0 {p : G₀ˣ → Prop} : (∃ g : G₀ˣ, p g) ↔ ∃ (g : G₀) (hg : g ≠ 0), p (units.mk0 g hg) := ⟨λ ⟨g, pg⟩, ⟨g, g.ne_zero, (g.mk0_coe g.ne_zero).symm ▸ pg⟩, λ ⟨g, hg, pg⟩, ⟨units.mk0 g hg, pg⟩⟩ /-- An alternative version of `units.exists0`. This one is useful if Lean cannot figure out `p` when using `units.exists0` from right to left. -/ lemma exists0' {p : Π g : G₀, g ≠ 0 → Prop} : (∃ (g : G₀) (hg : g ≠ 0), p g hg) ↔ ∃ g : G₀ˣ, p g g.ne_zero := iff.trans (by simp_rw [coe_mk0]) exists0.symm @[simp] lemma exists_iff_ne_zero {x : G₀} : (∃ u : G₀ˣ, ↑u = x) ↔ x ≠ 0 := by simp [exists0] lemma _root_.group_with_zero.eq_zero_or_unit (a : G₀) : a = 0 ∨ ∃ u : G₀ˣ, a = u := begin by_cases h : a = 0, { left, exact h }, { right, simpa only [eq_comm] using units.exists_iff_ne_zero.mpr h } end end units section group_with_zero variables [group_with_zero G₀] {a b c : G₀} lemma is_unit.mk0 (x : G₀) (hx : x ≠ 0) : is_unit x := (units.mk0 x hx).is_unit lemma is_unit_iff_ne_zero : is_unit a ↔ a ≠ 0 := units.exists_iff_ne_zero alias is_unit_iff_ne_zero ↔ _ ne.is_unit attribute [protected] ne.is_unit @[priority 10] -- see Note [lower instance priority] instance group_with_zero.no_zero_divisors : no_zero_divisors G₀ := { eq_zero_or_eq_zero_of_mul_eq_zero := λ a b h, begin contrapose! h, exact ((units.mk0 a h.1) * (units.mk0 b h.2)).ne_zero end, .. (‹_› : group_with_zero G₀) } -- Can't be put next to the other `mk0` lemmas because it depends on the -- `no_zero_divisors` instance, which depends on `mk0`. @[simp] lemma units.mk0_mul (x y : G₀) (hxy) : units.mk0 (x * y) hxy = units.mk0 x (mul_ne_zero_iff.mp hxy).1 * units.mk0 y (mul_ne_zero_iff.mp hxy).2 := by { ext, refl } lemma div_ne_zero (ha : a ≠ 0) (hb : b ≠ 0) : a / b ≠ 0 := by { rw div_eq_mul_inv, exact mul_ne_zero ha (inv_ne_zero hb) } @[simp] lemma div_eq_zero_iff : a / b = 0 ↔ a = 0 ∨ b = 0:= by simp [div_eq_mul_inv] lemma div_ne_zero_iff : a / b ≠ 0 ↔ a ≠ 0 ∧ b ≠ 0 := div_eq_zero_iff.not.trans not_or_distrib lemma ring.inverse_eq_inv (a : G₀) : ring.inverse a = a⁻¹ := begin obtain rfl | ha := eq_or_ne a 0, { simp }, { exact ring.inverse_unit (units.mk0 a ha) } end @[simp] lemma ring.inverse_eq_inv' : (ring.inverse : G₀ → G₀) = has_inv.inv := funext ring.inverse_eq_inv end group_with_zero section comm_group_with_zero -- comm variables [comm_group_with_zero G₀] {a b c d : G₀} @[priority 10] -- see Note [lower instance priority] instance comm_group_with_zero.to_cancel_comm_monoid_with_zero : cancel_comm_monoid_with_zero G₀ := { ..group_with_zero.to_cancel_monoid_with_zero, ..comm_group_with_zero.to_comm_monoid_with_zero G₀ } @[priority 100] -- See note [lower instance priority] instance comm_group_with_zero.to_division_comm_monoid : division_comm_monoid G₀ := { ..‹comm_group_with_zero G₀›, ..group_with_zero.to_division_monoid } end comm_group_with_zero section noncomputable_defs open_locale classical variables {M : Type*} [nontrivial M] /-- Constructs a `group_with_zero` structure on a `monoid_with_zero` consisting only of units and 0. -/ noncomputable def group_with_zero_of_is_unit_or_eq_zero [hM : monoid_with_zero M] (h : ∀ (a : M), is_unit a ∨ a = 0) : group_with_zero M := { inv := λ a, if h0 : a = 0 then 0 else ↑((h a).resolve_right h0).unit⁻¹, inv_zero := dif_pos rfl, mul_inv_cancel := λ a h0, by { change a * (if h0 : a = 0 then 0 else ↑((h a).resolve_right h0).unit⁻¹) = 1, rw [dif_neg h0, units.mul_inv_eq_iff_eq_mul, one_mul, is_unit.unit_spec] }, exists_pair_ne := nontrivial.exists_pair_ne, .. hM } /-- Constructs a `comm_group_with_zero` structure on a `comm_monoid_with_zero` consisting only of units and 0. -/ noncomputable def comm_group_with_zero_of_is_unit_or_eq_zero [hM : comm_monoid_with_zero M] (h : ∀ (a : M), is_unit a ∨ a = 0) : comm_group_with_zero M := { .. (group_with_zero_of_is_unit_or_eq_zero h), .. hM } end noncomputable_defs -- Guard against import creep assert_not_exists multiplicative
47a0ea2e7b19d971fa0c59eb0220e7b49becd804
b7f22e51856f4989b970961f794f1c435f9b8f78
/tests/lean/backward_rule1.lean
e4841e5ea7c75321e8ea37a68353cc741d14f4cc
[ "Apache-2.0" ]
permissive
soonhokong/lean
cb8aa01055ffe2af0fb99a16b4cda8463b882cd1
38607e3eb57f57f77c0ac114ad169e9e4262e24f
refs/heads/master
1,611,187,284,081
1,450,766,737,000
1,476,122,547,000
11,513,992
2
0
null
1,401,763,102,000
1,374,182,235,000
C++
UTF-8
Lean
false
false
194
lean
constants (A B C : Prop) (H : A → B) (G : A → B → C) constants (T : Type) (f : T → A) attribute H [intro] attribute G [intro] attribute f [intro] print H print G print f print [intro]
7dc31ff1cd8111aa7882274d90612378a295b780
d436468d80b739ba7e06843c4d0d2070e43448e5
/src/algebra/ordered_field.lean
1af895815bdb19dbe7fc66058259396d93ddf702
[ "Apache-2.0" ]
permissive
roro47/mathlib
761fdc002aef92f77818f3fef06bf6ec6fc1a28e
80aa7d52537571a2ca62a3fdf71c9533a09422cf
refs/heads/master
1,599,656,410,625
1,573,649,488,000
1,573,649,488,000
221,452,951
0
0
Apache-2.0
1,573,647,693,000
1,573,647,692,000
null
UTF-8
Lean
false
false
9,839
lean
/- Copyright (c) 2018 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import algebra.ordered_ring algebra.field section linear_ordered_field variables {α : Type*} [linear_ordered_field α] {a b c d : α} lemma div_pos : 0 < a → 0 < b → 0 < a / b := div_pos_of_pos_of_pos lemma inv_pos {a : α} : 0 < a → 0 < a⁻¹ := by rw [inv_eq_one_div]; exact div_pos zero_lt_one lemma inv_lt_zero {a : α} : a < 0 → a⁻¹ < 0 := by rw [inv_eq_one_div]; exact div_neg_of_pos_of_neg zero_lt_one lemma one_le_div_iff_le (hb : 0 < b) : 1 ≤ a / b ↔ b ≤ a := ⟨le_of_one_le_div a hb, one_le_div_of_le a hb⟩ lemma one_lt_div_iff_lt (hb : 0 < b) : 1 < a / b ↔ b < a := ⟨lt_of_one_lt_div a hb, one_lt_div_of_lt a hb⟩ lemma div_le_one_iff_le (hb : 0 < b) : a / b ≤ 1 ↔ a ≤ b := le_iff_le_iff_lt_iff_lt.2 (one_lt_div_iff_lt hb) lemma div_lt_one_iff_lt (hb : 0 < b) : a / b < 1 ↔ a < b := lt_iff_lt_of_le_iff_le (one_le_div_iff_le hb) lemma le_div_iff (hc : 0 < c) : a ≤ b / c ↔ a * c ≤ b := ⟨mul_le_of_le_div hc, le_div_of_mul_le hc⟩ lemma le_div_iff' (hc : 0 < c) : a ≤ b / c ↔ c * a ≤ b := by rw [mul_comm, le_div_iff hc] lemma div_le_iff (hb : 0 < b) : a / b ≤ c ↔ a ≤ c * b := ⟨le_mul_of_div_le hb, by rw [mul_comm]; exact div_le_of_le_mul hb⟩ lemma div_le_iff' (hb : 0 < b) : a / b ≤ c ↔ a ≤ b * c := by rw [mul_comm, div_le_iff hb] lemma lt_div_iff (hc : 0 < c) : a < b / c ↔ a * c < b := ⟨mul_lt_of_lt_div hc, lt_div_of_mul_lt hc⟩ lemma lt_div_iff' (hc : 0 < c) : a < b / c ↔ c * a < b := by rw [mul_comm, lt_div_iff hc] lemma div_le_iff_of_neg (hc : c < 0) : b / c ≤ a ↔ a * c ≤ b := ⟨mul_le_of_div_le_of_neg hc, div_le_of_mul_le_of_neg hc⟩ lemma le_div_iff_of_neg (hc : c < 0) : a ≤ b / c ↔ b ≤ a * c := by rw [← neg_neg c, mul_neg_eq_neg_mul_symm, div_neg _ (ne_of_gt (neg_pos.2 hc)), le_neg, div_le_iff (neg_pos.2 hc), neg_mul_eq_neg_mul_symm] lemma div_lt_iff (hc : 0 < c) : b / c < a ↔ b < a * c := lt_iff_lt_of_le_iff_le (le_div_iff hc) lemma div_lt_iff' (hc : 0 < c) : b / c < a ↔ b < c * a := by rw [mul_comm, div_lt_iff hc] lemma div_lt_iff_of_neg (hc : c < 0) : b / c < a ↔ a * c < b := ⟨mul_lt_of_gt_div_of_neg hc, div_lt_of_mul_gt_of_neg hc⟩ lemma inv_le_inv (ha : 0 < a) (hb : 0 < b) : a⁻¹ ≤ b⁻¹ ↔ b ≤ a := by rw [inv_eq_one_div, div_le_iff ha, ← div_eq_inv_mul, one_le_div_iff_le hb] lemma inv_le (ha : 0 < a) (hb : 0 < b) : a⁻¹ ≤ b ↔ b⁻¹ ≤ a := by rw [← inv_le_inv hb (inv_pos ha), division_ring.inv_inv (ne_of_gt ha)] lemma le_inv (ha : 0 < a) (hb : 0 < b) : a ≤ b⁻¹ ↔ b ≤ a⁻¹ := by rw [← inv_le_inv (inv_pos hb) ha, division_ring.inv_inv (ne_of_gt hb)] lemma one_div_le_one_div (ha : 0 < a) (hb : 0 < b) : 1 / a ≤ 1 / b ↔ b ≤ a := by simpa [one_div_eq_inv] using inv_le_inv ha hb lemma inv_lt_inv (ha : 0 < a) (hb : 0 < b) : a⁻¹ < b⁻¹ ↔ b < a := lt_iff_lt_of_le_iff_le (inv_le_inv hb ha) lemma inv_lt (ha : 0 < a) (hb : 0 < b) : a⁻¹ < b ↔ b⁻¹ < a := lt_iff_lt_of_le_iff_le (le_inv hb ha) lemma one_div_lt (ha : 0 < a) (hb : 0 < b) : 1 / a < b ↔ 1 / b < a := (one_div_eq_inv a).symm ▸ (one_div_eq_inv b).symm ▸ inv_lt ha hb lemma lt_inv (ha : 0 < a) (hb : 0 < b) : a < b⁻¹ ↔ b < a⁻¹ := lt_iff_lt_of_le_iff_le (inv_le hb ha) lemma one_div_lt_one_div (ha : 0 < a) (hb : 0 < b) : 1 / a < 1 / b ↔ b < a := lt_iff_lt_of_le_iff_le (one_div_le_one_div hb ha) lemma div_nonneg : 0 ≤ a → 0 < b → 0 ≤ a / b := div_nonneg_of_nonneg_of_pos lemma div_lt_div_right (hc : 0 < c) : a / c < b / c ↔ a < b := ⟨lt_imp_lt_of_le_imp_le (λ h, div_le_div_of_le_of_pos h hc), λ h, div_lt_div_of_lt_of_pos h hc⟩ lemma div_le_div_right (hc : 0 < c) : a / c ≤ b / c ↔ a ≤ b := le_iff_le_iff_lt_iff_lt.2 (div_lt_div_right hc) lemma div_lt_div_right_of_neg (hc : c < 0) : a / c < b / c ↔ b < a := ⟨lt_imp_lt_of_le_imp_le (λ h, div_le_div_of_le_of_neg h hc), λ h, div_lt_div_of_lt_of_neg h hc⟩ lemma div_le_div_right_of_neg (hc : c < 0) : a / c ≤ b / c ↔ b ≤ a := le_iff_le_iff_lt_iff_lt.2 (div_lt_div_right_of_neg hc) lemma div_lt_div_left (ha : 0 < a) (hb : 0 < b) (hc : 0 < c) : a / b < a / c ↔ c < b := (mul_lt_mul_left ha).trans (inv_lt_inv hb hc) lemma div_le_div_left (ha : 0 < a) (hb : 0 < b) (hc : 0 < c) : a / b ≤ a / c ↔ c ≤ b := le_iff_le_iff_lt_iff_lt.2 (div_lt_div_left ha hc hb) lemma div_lt_div_iff (b0 : 0 < b) (d0 : 0 < d) : a / b < c / d ↔ a * d < c * b := by rw [lt_div_iff d0, div_mul_eq_mul_div, div_lt_iff b0] lemma div_lt_div (hac : a < c) (hbd : d ≤ b) (c0 : 0 ≤ c) (d0 : 0 < d) : a / b < c / d := (div_lt_div_iff (lt_of_lt_of_le d0 hbd) d0).2 (mul_lt_mul hac hbd d0 c0) lemma div_lt_div' (hac : a ≤ c) (hbd : d < b) (c0 : 0 < c) (d0 : 0 < d) : a / b < c / d := (div_lt_div_iff (lt_trans d0 hbd) d0).2 (mul_lt_mul' hac hbd (le_of_lt d0) c0) lemma half_pos {a : α} (h : 0 < a) : 0 < a / 2 := div_pos h two_pos lemma one_half_pos : (0:α) < 1 / 2 := half_pos zero_lt_one lemma half_lt_self : 0 < a → a / 2 < a := div_two_lt_of_pos lemma one_half_lt_one : (1 / 2 : α) < 1 := half_lt_self zero_lt_one lemma ivl_translate : (λx, x + c) '' {r:α | a ≤ r ∧ r ≤ b } = {r:α | a + c ≤ r ∧ r ≤ b + c} := calc (λx, x + c) '' {r | a ≤ r ∧ r ≤ b } = (λx, x - c) ⁻¹' {r | a ≤ r ∧ r ≤ b } : congr_fun (set.image_eq_preimage_of_inverse (assume a, add_sub_cancel a c) (assume b, sub_add_cancel b c)) _ ... = {r | a + c ≤ r ∧ r ≤ b + c} : set.ext $ by simp [-sub_eq_add_neg, le_sub_iff_add_le, sub_le_iff_le_add] lemma ivl_stretch (hc : 0 < c) : (λx, x * c) '' {r | a ≤ r ∧ r ≤ b } = {r | a * c ≤ r ∧ r ≤ b * c} := calc (λx, x * c) '' {r | a ≤ r ∧ r ≤ b } = (λx, x / c) ⁻¹' {r | a ≤ r ∧ r ≤ b } : congr_fun (set.image_eq_preimage_of_inverse (assume a, mul_div_cancel _ $ ne_of_gt hc) (assume b, div_mul_cancel _ $ ne_of_gt hc)) _ ... = {r | a * c ≤ r ∧ r ≤ b * c} : set.ext $ by simp [le_div_iff, div_le_iff, hc] instance linear_ordered_field.to_densely_ordered : densely_ordered α := { dense := assume a₁ a₂ h, ⟨(a₁ + a₂) / 2, calc a₁ = (a₁ + a₁) / 2 : (add_self_div_two a₁).symm ... < (a₁ + a₂) / 2 : div_lt_div_of_lt_of_pos (add_lt_add_left h _) two_pos, calc (a₁ + a₂) / 2 < (a₂ + a₂) / 2 : div_lt_div_of_lt_of_pos (add_lt_add_right h _) two_pos ... = a₂ : add_self_div_two a₂⟩ } instance linear_ordered_field.to_no_top_order : no_top_order α := { no_top := assume a, ⟨a + 1, lt_add_of_le_of_pos (le_refl a) zero_lt_one ⟩ } instance linear_ordered_field.to_no_bot_order : no_bot_order α := { no_bot := assume a, ⟨a + -1, add_lt_of_le_of_neg (le_refl _) (neg_lt_of_neg_lt $ by simp [zero_lt_one]) ⟩ } lemma inv_lt_one {a : α} (ha : 1 < a) : a⁻¹ < 1 := by rw [inv_eq_one_div]; exact div_lt_of_mul_lt_of_pos (lt_trans zero_lt_one ha) (by simp *) lemma one_lt_inv (h₁ : 0 < a) (h₂ : a < 1) : 1 < a⁻¹ := by rw [inv_eq_one_div, lt_div_iff h₁]; simp [h₂] lemma inv_le_one {a : α} (ha : 1 ≤ a) : a⁻¹ ≤ 1 := by rw [inv_eq_one_div]; exact div_le_of_le_mul (lt_of_lt_of_le zero_lt_one ha) (by simp *) lemma one_le_inv {x : α} (hx0 : 0 < x) (hx : x ≤ 1) : 1 ≤ x⁻¹ := le_of_mul_le_mul_left (by simpa [mul_inv_cancel (ne.symm (ne_of_lt hx0))]) hx0 lemma mul_self_inj_of_nonneg {a b : α} (a0 : 0 ≤ a) (b0 : 0 ≤ b) : a * a = b * b ↔ a = b := (mul_self_eq_mul_self_iff a b).trans $ or_iff_left_of_imp $ λ h, by subst a; rw [le_antisymm (neg_nonneg.1 a0) b0, neg_zero] lemma div_le_div_of_le_left {a b c : α} (ha : 0 ≤ a) (hc : 0 < c) (h : c ≤ b) : a / b ≤ a / c := by haveI := classical.dec_eq α; exact if ha0 : a = 0 then by simp [ha0] else (div_le_div_left (lt_of_le_of_ne ha (ne.symm ha0)) (lt_of_lt_of_le hc h) hc).2 h end linear_ordered_field namespace nat variables {α : Type*} [linear_ordered_field α] lemma inv_pos_of_nat {n : ℕ} : 0 < ((n : α) + 1)⁻¹ := inv_pos $ add_pos_of_nonneg_of_pos n.cast_nonneg zero_lt_one lemma one_div_pos_of_nat {n : ℕ} : 0 < 1 / ((n : α) + 1) := by { rw one_div_eq_inv, exact inv_pos_of_nat } lemma one_div_le_one_div {n m : ℕ} (h : n ≤ m) : 1 / ((m : α) + 1) ≤ 1 / ((n : α) + 1) := by { refine one_div_le_one_div_of_le _ _, exact nat.cast_add_one_pos _, simpa } lemma one_div_lt_one_div {n m : ℕ} (h : n < m) : 1 / ((m : α) + 1) < 1 / ((n : α) + 1) := by { refine one_div_lt_one_div_of_lt _ _, exact nat.cast_add_one_pos _, simpa } end nat section variables {α : Type*} [discrete_linear_ordered_field α] (a b c : α) @[simp] lemma inv_pos' {a : α} : 0 < a⁻¹ ↔ 0 < a := ⟨by rw [inv_eq_one_div]; exact pos_of_one_div_pos, inv_pos⟩ @[simp] lemma inv_neg' {a : α} : a⁻¹ < 0 ↔ a < 0 := ⟨by rw [inv_eq_one_div]; exact neg_of_one_div_neg, inv_lt_zero⟩ @[simp] lemma inv_nonneg {a : α} : 0 ≤ a⁻¹ ↔ 0 ≤ a := le_iff_le_iff_lt_iff_lt.2 inv_neg' @[simp] lemma inv_nonpos {a : α} : a⁻¹ ≤ 0 ↔ a ≤ 0 := le_iff_le_iff_lt_iff_lt.2 inv_pos' lemma abs_inv : abs a⁻¹ = (abs a)⁻¹ := have h : abs (1 / a) = 1 / abs a, begin rw [abs_div, abs_of_nonneg], exact zero_le_one end, by simp [*] at * lemma inv_neg : (-a)⁻¹ = -(a⁻¹) := if h : a = 0 then by simp [h, inv_zero] else by rwa [inv_eq_one_div, inv_eq_one_div, div_neg_eq_neg_div] lemma inv_le_inv_of_le {a b : α} (hb : 0 < b) (h : b ≤ a) : a⁻¹ ≤ b⁻¹ := begin rw [inv_eq_one_div, inv_eq_one_div], exact one_div_le_one_div_of_le hb h end lemma div_nonneg' {a b : α} (ha : 0 ≤ a) (hb : 0 ≤ b) : 0 ≤ a / b := (lt_or_eq_of_le hb).elim (div_nonneg ha) (λ h, by simp [h.symm]) end
193b1683086787645c6be4f4d2f23d74b80958b2
df561f413cfe0a88b1056655515399c546ff32a5
/6-advanced-addition-world/l5.lean
53214460f2a6d25c634cc74145824b93da663ac0
[]
no_license
nicholaspun/natural-number-game-solutions
31d5158415c6f582694680044c5c6469032c2a06
1e2aed86d2e76a3f4a275c6d99e795ad30cf6df0
refs/heads/main
1,675,123,625,012
1,607,633,548,000
1,607,633,548,000
318,933,860
3
1
null
null
null
null
UTF-8
Lean
false
false
229
lean
theorem add_right_cancel (a t b : mynat) : a + t = b + t → a = b := begin induction t with k Pk, intro h, repeat { rw add_zero at h }, exact h, intro h_2, repeat { rw add_succ at h_2 }, have q := succ_inj h_2, exact Pk(q), end
5a58cfb0a4510bdec5124216d11ed41eb7233aa8
63abd62053d479eae5abf4951554e1064a4c45b4
/src/number_theory/lucas_lehmer.lean
6177532211e70bf5da721e53b605b487070f0706
[ "Apache-2.0" ]
permissive
Lix0120/mathlib
0020745240315ed0e517cbf32e738d8f9811dd80
e14c37827456fc6707f31b4d1d16f1f3a3205e91
refs/heads/master
1,673,102,855,024
1,604,151,044,000
1,604,151,044,000
308,930,245
0
0
Apache-2.0
1,604,164,710,000
1,604,163,547,000
null
UTF-8
Lean
false
false
17,270
lean
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Mario Carneiro, Scott Morrison, Ainsley Pahljina -/ import tactic.ring_exp import tactic.interval_cases import data.nat.parity import data.zmod.basic import group_theory.order_of_element import ring_theory.fintype /-! # The Lucas-Lehmer test for Mersenne primes. We define `lucas_lehmer_residue : Π p : ℕ, zmod (2^p - 1)`, and prove `lucas_lehmer_residue p = 0 → prime (mersenne p)`. We construct a tactic `lucas_lehmer.run_test`, which iteratively certifies the arithmetic required to calculate the residue, and enables us to prove ``` example : prime (mersenne 127) := lucas_lehmer_sufficiency _ (by norm_num) (by lucas_lehmer.run_test) ``` ## TODO - Show reverse implication. - Speed up the calculations using `n ≡ (n % 2^p) + (n / 2^p) [MOD 2^p - 1]`. - Find some bigger primes! ## History This development began as a student project by Ainsley Pahljina, and was then cleaned up for mathlib by Scott Morrison. The tactic for certified computation of Lucas-Lehmer residues was provided by Mario Carneiro. -/ /-- The Mersenne numbers, 2^p - 1. -/ def mersenne (p : ℕ) : ℕ := 2^p - 1 lemma mersenne_pos {p : ℕ} (h : 0 < p) : 0 < mersenne p := begin dsimp [mersenne], calc 0 < 2^1 - 1 : by norm_num ... ≤ 2^p - 1 : nat.pred_le_pred (nat.pow_le_pow_of_le_right (nat.succ_pos 1) h) end @[simp] lemma succ_mersenne (k : ℕ) : mersenne k + 1 = 2 ^ k := begin rw [mersenne, nat.sub_add_cancel], exact one_le_pow_of_one_le (by norm_num) k end namespace lucas_lehmer open nat /-! We now define three(!) different versions of the recurrence `s (i+1) = (s i)^2 - 2`. These versions take values either in `ℤ`, in `zmod (2^p - 1)`, or in `ℤ` but applying `% (2^p - 1)` at each step. They are each useful at different points in the proof, so we take a moment setting up the lemmas relating them. -/ /-- The recurrence `s (i+1) = (s i)^2 - 2` in `ℤ`. -/ def s : ℕ → ℤ | 0 := 4 | (i+1) := (s i)^2 - 2 /-- The recurrence `s (i+1) = (s i)^2 - 2` in `zmod (2^p - 1)`. -/ def s_zmod (p : ℕ) : ℕ → zmod (2^p - 1) | 0 := 4 | (i+1) := (s_zmod i)^2 - 2 /-- The recurrence `s (i+1) = ((s i)^2 - 2) % (2^p - 1)` in `ℤ`. -/ def s_mod (p : ℕ) : ℕ → ℤ | 0 := 4 % (2^p - 1) | (i+1) := ((s_mod i)^2 - 2) % (2^p - 1) lemma mersenne_int_ne_zero (p : ℕ) (w : 0 < p) : (2^p - 1 : ℤ) ≠ 0 := begin apply ne_of_gt, simp only [gt_iff_lt, sub_pos], exact_mod_cast nat.one_lt_two_pow p w, end lemma s_mod_nonneg (p : ℕ) (w : 0 < p) (i : ℕ) : 0 ≤ s_mod p i := begin cases i; dsimp [s_mod], { exact sup_eq_left.mp rfl }, { apply int.mod_nonneg, exact mersenne_int_ne_zero p w }, end lemma s_mod_mod (p i : ℕ) : s_mod p i % (2^p - 1) = s_mod p i := by cases i; simp [s_mod] lemma s_mod_lt (p : ℕ) (w : 0 < p) (i : ℕ) : s_mod p i < 2^p - 1 := begin rw ←s_mod_mod, convert int.mod_lt _ _, { refine (abs_of_nonneg _).symm, simp only [sub_nonneg, ge_iff_le], exact_mod_cast nat.one_le_two_pow p, }, { exact mersenne_int_ne_zero p w, }, end lemma s_zmod_eq_s (p' : ℕ) (i : ℕ) : s_zmod (p'+2) i = (s i : zmod (2^(p'+2) - 1)):= begin induction i with i ih, { dsimp [s, s_zmod], norm_num, }, { push_cast [s, s_zmod, ih] }, end -- These next two don't make good `norm_cast` lemmas. lemma int.coe_nat_pow_pred (b p : ℕ) (w : 0 < b) : ((b^p - 1 : ℕ) : ℤ) = (b^p - 1 : ℤ) := begin have : 1 ≤ b^p := nat.one_le_pow p b w, push_cast [this], end lemma int.coe_nat_two_pow_pred (p : ℕ) : ((2^p - 1 : ℕ) : ℤ) = (2^p - 1 : ℤ) := int.coe_nat_pow_pred 2 p dec_trivial lemma s_zmod_eq_s_mod (p : ℕ) (i : ℕ) : s_zmod p i = (s_mod p i : zmod (2^p - 1)) := by induction i; push_cast [←int.coe_nat_two_pow_pred p, s_mod, s_zmod, *] /-- The Lucas-Lehmer residue is `s p (p-2)` in `zmod (2^p - 1)`. -/ def lucas_lehmer_residue (p : ℕ) : zmod (2^p - 1) := s_zmod p (p-2) lemma residue_eq_zero_iff_s_mod_eq_zero (p : ℕ) (w : 1 < p) : lucas_lehmer_residue p = 0 ↔ s_mod p (p-2) = 0 := begin dsimp [lucas_lehmer_residue], rw s_zmod_eq_s_mod p, split, { -- We want to use that fact that `0 ≤ s_mod p (p-2) < 2^p - 1` -- and `lucas_lehmer_residue p = 0 → 2^p - 1 ∣ s_mod p (p-2)`. intro h, simp [zmod.int_coe_zmod_eq_zero_iff_dvd] at h, apply int.eq_zero_of_dvd_of_nonneg_of_lt _ _ h; clear h, apply s_mod_nonneg _ (nat.lt_of_succ_lt w), convert s_mod_lt _ (nat.lt_of_succ_lt w) (p-2), push_cast [nat.one_le_two_pow p], refl, }, { intro h, rw h, simp, }, end /-- A Mersenne number `2^p-1` is prime if and only if the Lucas-Lehmer residue `s p (p-2) % (2^p - 1)` is zero. -/ @[derive decidable_pred] def lucas_lehmer_test (p : ℕ) : Prop := lucas_lehmer_residue p = 0 /-- `q` is defined as the minimum factor of `mersenne p`, bundled as an `ℕ+`. -/ def q (p : ℕ) : ℕ+ := ⟨nat.min_fac (mersenne p), nat.min_fac_pos (mersenne p)⟩ instance fact_pnat_pos (q : ℕ+) : fact (0 < (q : ℕ)) := q.2 /-- We construct the ring `X q` as ℤ/qℤ + √3 ℤ/qℤ. -/ -- It would be nice to define this as (ℤ/qℤ)[x] / (x^2 - 3), -- obtaining the ring structure for free, -- but that seems to be more trouble than it's worth; -- if it were easy to make the definition, -- cardinality calculations would be somewhat more involved, too. @[derive [add_comm_group, decidable_eq, fintype, inhabited]] def X (q : ℕ+) : Type := (zmod q) × (zmod q) namespace X variable {q : ℕ+} @[ext] lemma ext {x y : X q} (h₁ : x.1 = y.1) (h₂ : x.2 = y.2) : x = y := begin cases x, cases y, congr; assumption end @[simp] lemma add_fst (x y : X q) : (x + y).1 = x.1 + y.1 := rfl @[simp] lemma add_snd (x y : X q) : (x + y).2 = x.2 + y.2 := rfl @[simp] lemma neg_fst (x : X q) : (-x).1 = -x.1 := rfl @[simp] lemma neg_snd (x : X q) : (-x).2 = -x.2 := rfl instance : has_mul (X q) := { mul := λ x y, (x.1*y.1 + 3*x.2*y.2, x.1*y.2 + x.2*y.1) } @[simp] lemma mul_fst (x y : X q) : (x * y).1 = x.1 * y.1 + 3 * x.2 * y.2 := rfl @[simp] lemma mul_snd (x y : X q) : (x * y).2 = x.1 * y.2 + x.2 * y.1 := rfl instance : has_one (X q) := { one := ⟨1,0⟩ } @[simp] lemma one_fst : (1 : X q).1 = 1 := rfl @[simp] lemma one_snd : (1 : X q).2 = 0 := rfl @[simp] lemma bit0_fst (x : X q) : (bit0 x).1 = bit0 x.1 := rfl @[simp] lemma bit0_snd (x : X q) : (bit0 x).2 = bit0 x.2 := rfl @[simp] lemma bit1_fst (x : X q) : (bit1 x).1 = bit1 x.1 := rfl @[simp] lemma bit1_snd (x : X q) : (bit1 x).2 = bit0 x.2 := by { dsimp [bit1], simp, } instance : monoid (X q) := { mul_assoc := λ x y z, by { ext; { dsimp, ring }, }, one := ⟨1,0⟩, one_mul := λ x, by { ext; simp, }, mul_one := λ x, by { ext; simp, }, ..(infer_instance : has_mul (X q)) } lemma left_distrib (x y z : X q) : x * (y + z) = x * y + x * z := by { ext; { dsimp, ring }, } lemma right_distrib (x y z : X q) : (x + y) * z = x * z + y * z := by { ext; { dsimp, ring }, } instance : ring (X q) := { left_distrib := left_distrib, right_distrib := right_distrib, ..(infer_instance : add_comm_group (X q)), ..(infer_instance : monoid (X q)) } instance : comm_ring (X q) := { mul_comm := λ x y, by { ext; { dsimp, ring }, }, ..(infer_instance : ring (X q))} instance [fact (1 < (q : ℕ))] : nontrivial (X q) := ⟨⟨0, 1, λ h, by { injection h with h1 _, exact zero_ne_one h1 } ⟩⟩ @[simp] lemma nat_coe_fst (n : ℕ) : (n : X q).fst = (n : zmod q) := begin induction n, { refl, }, { dsimp, simp only [add_left_inj], exact n_ih, } end @[simp] lemma nat_coe_snd (n : ℕ) : (n : X q).snd = (0 : zmod q) := begin induction n, { refl, }, { dsimp, simp only [add_zero], exact n_ih, } end @[simp] lemma int_coe_fst (n : ℤ) : (n : X q).fst = (n : zmod q) := by { induction n; simp, } @[simp] lemma int_coe_snd (n : ℤ) : (n : X q).snd = (0 : zmod q) := by { induction n; simp, } @[norm_cast] lemma coe_mul (n m : ℤ) : ((n * m : ℤ) : X q) = (n : X q) * (m : X q) := by { ext; simp; ring } @[norm_cast] lemma coe_nat (n : ℕ) : ((n : ℤ) : X q) = (n : X q) := by { ext; simp, } /-- The cardinality of `X` is `q^2`. -/ lemma X_card : fintype.card (X q) = q^2 := begin dsimp [X], rw [fintype.card_prod, zmod.card q], ring, end /-- There are strictly fewer than `q^2` units, since `0` is not a unit. -/ lemma units_card (w : 1 < q) : fintype.card (units (X q)) < q^2 := begin haveI : fact (1 < (q : ℕ)) := w, convert card_units_lt (X q), rw X_card, end /-- We define `ω = 2 + √3`. -/ def ω : X q := (2, 1) /-- We define `ωb = 2 - √3`, which is the inverse of `ω`. -/ def ωb : X q := (2, -1) lemma ω_mul_ωb (q : ℕ+) : (ω : X q) * ωb = 1 := begin dsimp [ω, ωb], ext; simp; ring, end lemma ωb_mul_ω (q : ℕ+) : (ωb : X q) * ω = 1 := begin dsimp [ω, ωb], ext; simp; ring, end /-- A closed form for the recurrence relation. -/ lemma closed_form (i : ℕ) : (s i : X q) = (ω : X q)^(2^i) + (ωb : X q)^(2^i) := begin induction i with i ih, { dsimp [s, ω, ωb], ext; { simp; refl, }, }, { calc (s (i + 1) : X q) = ((s i)^2 - 2 : ℤ) : rfl ... = ((s i : X q)^2 - 2) : by push_cast ... = (ω^(2^i) + ωb^(2^i))^2 - 2 : by rw ih ... = (ω^(2^i))^2 + (ωb^(2^i))^2 + 2*(ωb^(2^i)*ω^(2^i)) - 2 : by ring ... = (ω^(2^i))^2 + (ωb^(2^i))^2 : by rw [←mul_pow ωb ω, ωb_mul_ω, one_pow, mul_one, add_sub_cancel] ... = ω^(2^(i+1)) + ωb^(2^(i+1)) : by rw [←pow_mul, ←pow_mul, pow_succ'] } end end X open X /-! Here and below, we introduce `p' = p - 2`, in order to avoid using subtraction in `ℕ`. -/ /-- If `1 < p`, then `q p`, the smallest prime factor of `mersenne p`, is more than 2. -/ lemma two_lt_q (p' : ℕ) : 2 < q (p'+2) := begin by_contradiction H, simp at H, interval_cases q (p'+2); clear H, { -- If q = 1, we get a contradiction from 2^p = 2 dsimp [q] at h, injection h with h', clear h, simp [mersenne] at h', exact lt_irrefl 2 (calc 2 ≤ p'+2 : nat.le_add_left _ _ ... < 2^(p'+2) : nat.lt_two_pow _ ... = 2 : nat.pred_inj (nat.one_le_two_pow _) dec_trivial h'), }, { -- If q = 2, we get a contradiction from 2 ∣ 2^p - 1 dsimp [q] at h, injection h with h', clear h, rw [mersenne, pnat.one_coe, nat.min_fac_eq_two_iff, pow_succ] at h', exact nat.two_not_dvd_two_mul_sub_one (nat.one_le_two_pow _) h', } end theorem ω_pow_formula (p' : ℕ) (h : lucas_lehmer_residue (p'+2) = 0) : ∃ (k : ℤ), (ω : X (q (p'+2)))^(2^(p'+1)) = k * (mersenne (p'+2)) * ((ω : X (q (p'+2)))^(2^p')) - 1 := begin dsimp [lucas_lehmer_residue] at h, rw s_zmod_eq_s p' at h, simp [zmod.int_coe_zmod_eq_zero_iff_dvd] at h, cases h with k h, use k, replace h := congr_arg (λ (n : ℤ), (n : X (q (p'+2)))) h, -- coercion from ℤ to X q dsimp at h, rw closed_form at h, replace h := congr_arg (λ x, ω^2^p' * x) h, dsimp at h, have t : 2^p' + 2^p' = 2^(p'+1) := by ring_exp, rw [mul_add, ←pow_add ω, t, ←mul_pow ω ωb (2^p'), ω_mul_ωb, one_pow] at h, rw [mul_comm, coe_mul] at h, rw [mul_comm _ (k : X (q (p'+2)))] at h, replace h := eq_sub_of_add_eq h, exact_mod_cast h, end /-- `q` is the minimum factor of `mersenne p`, so `M p = 0` in `X q`. -/ theorem mersenne_coe_X (p : ℕ) : (mersenne p : X (q p)) = 0 := begin ext; simp [mersenne, q, zmod.nat_coe_zmod_eq_zero_iff_dvd, -pow_pos], apply nat.min_fac_dvd, end theorem ω_pow_eq_neg_one (p' : ℕ) (h : lucas_lehmer_residue (p'+2) = 0) : (ω : X (q (p'+2)))^(2^(p'+1)) = -1 := begin cases ω_pow_formula p' h with k w, rw [mersenne_coe_X] at w, simpa using w, end theorem ω_pow_eq_one (p' : ℕ) (h : lucas_lehmer_residue (p'+2) = 0) : (ω : X (q (p'+2)))^(2^(p'+2)) = 1 := calc (ω : X (q (p'+2)))^2^(p'+2) = (ω^(2^(p'+1)))^2 : by rw [←pow_mul, ←pow_succ'] ... = (-1)^2 : by rw ω_pow_eq_neg_one p' h ... = 1 : by simp /-- `ω` as an element of the group of units. -/ def ω_unit (p : ℕ) : units (X (q p)) := { val := ω, inv := ωb, val_inv := by simp [ω_mul_ωb], inv_val := by simp [ωb_mul_ω], } @[simp] lemma ω_unit_coe (p : ℕ) : (ω_unit p : X (q p)) = ω := rfl /-- The order of `ω` in the unit group is exactly `2^p`. -/ theorem order_ω (p' : ℕ) (h : lucas_lehmer_residue (p'+2) = 0) : order_of (ω_unit (p'+2)) = 2^(p'+2) := begin apply nat.eq_prime_pow_of_dvd_least_prime_pow, -- the order of ω divides 2^p { norm_num, }, { intro o, have ω_pow := order_of_dvd_iff_pow_eq_one.1 o, replace ω_pow := congr_arg (units.coe_hom (X (q (p'+2))) : units (X (q (p'+2))) → X (q (p'+2))) ω_pow, simp at ω_pow, have h : (1 : zmod (q (p'+2))) = -1 := congr_arg (prod.fst) ((ω_pow.symm).trans (ω_pow_eq_neg_one p' h)), haveI : fact (2 < (q (p'+2) : ℕ)) := two_lt_q _, apply zmod.neg_one_ne_one h.symm, }, { apply order_of_dvd_iff_pow_eq_one.2, apply units.ext, push_cast, exact ω_pow_eq_one p' h, } end lemma order_ineq (p' : ℕ) (h : lucas_lehmer_residue (p'+2) = 0) : 2^(p'+2) < (q (p'+2) : ℕ)^2 := calc 2^(p'+2) = order_of (ω_unit (p'+2)) : (order_ω p' h).symm ... ≤ fintype.card (units (X _)) : order_of_le_card_univ ... < (q (p'+2) : ℕ)^2 : units_card (nat.lt_of_succ_lt (two_lt_q _)) end lucas_lehmer export lucas_lehmer (lucas_lehmer_test lucas_lehmer_residue) open lucas_lehmer theorem lucas_lehmer_sufficiency (p : ℕ) (w : 1 < p) : lucas_lehmer_test p → (mersenne p).prime := begin let p' := p - 2, have z : p = p' + 2 := (nat.sub_eq_iff_eq_add w).mp rfl, have w : 1 < p' + 2 := (nat.lt_of_sub_eq_succ rfl), contrapose, intros a t, rw z at a, rw z at t, have h₁ := order_ineq p' t, have h₂ := nat.min_fac_sq_le_self (mersenne_pos (nat.lt_of_succ_lt w)) a, have h := lt_of_lt_of_le h₁ h₂, exact not_lt_of_ge (nat.sub_le _ _) h, end -- Here we calculate the residue, very inefficiently, using `dec_trivial`. We can do much better. example : (mersenne 5).prime := lucas_lehmer_sufficiency 5 (by norm_num) dec_trivial -- Next we use `norm_num` to calculate each `s p i`. namespace lucas_lehmer open tactic meta instance nat_pexpr : has_to_pexpr ℕ := ⟨pexpr.of_expr ∘ λ n, reflect n⟩ meta instance int_pexpr : has_to_pexpr ℤ := ⟨pexpr.of_expr ∘ λ n, reflect n⟩ lemma s_mod_succ {p a i b c} (h1 : (2^p - 1 : ℤ) = a) (h2 : s_mod p i = b) (h3 : (b * b - 2) % a = c) : s_mod p (i+1) = c := by { dsimp [s_mod, mersenne], rw [h1, h2, pow_two, h3] } /-- Given a goal of the form `lucas_lehmer_test p`, attempt to do the calculation using `norm_num` to certify each step. -/ meta def run_test : tactic unit := do `(lucas_lehmer_test %%p) ← target, `[dsimp [lucas_lehmer_test]], `[rw lucas_lehmer.residue_eq_zero_iff_s_mod_eq_zero, swap, norm_num], p ← eval_expr ℕ p, -- Calculate the candidate Mersenne prime let M : ℤ := 2^p - 1, t ← to_expr ``(2^%%p - 1 = %%M), v ← to_expr ``(by norm_num : 2^%%p - 1 = %%M), w ← assertv `w t v, -- Unfortunately this creates something like `w : 2^5 - 1 = int.of_nat 31`. -- We could make a better `has_to_pexpr ℤ` instance, or just: `[simp only [int.coe_nat_zero, int.coe_nat_succ, int.of_nat_eq_coe, zero_add, int.coe_nat_bit1] at w], -- base case t ← to_expr ``(s_mod %%p 0 = 4), v ← to_expr ``(by norm_num [lucas_lehmer.s_mod] : s_mod %%p 0 = 4), h ← assertv `h t v, -- step case, repeated p-2 times iterate_exactly (p-2) `[replace h := lucas_lehmer.s_mod_succ w h (by { norm_num, refl })], -- now close the goal h ← get_local `h, exact h end lucas_lehmer /-- We verify that the tactic works to prove `127.prime`. -/ example : (mersenne 7).prime := lucas_lehmer_sufficiency _ (by norm_num) (by lucas_lehmer.run_test). /-! This implementation works successfully to prove `(2^127 - 1).prime`, and all the Mersenne primes up to this point appear in [archive/examples/mersenne_primes.lean]. `(2^127 - 1).prime` takes about 5 minutes to run (depending on your CPU!), and unfortunately the next Mersenne prime `(2^521 - 1)`, which was the first "computer era" prime, is out of reach with the current implementation. There's still low hanging fruit available to do faster computations based on the formula n ≡ (n % 2^p) + (n / 2^p) [MOD 2^p - 1] and the fact that `% 2^p` and `/ 2^p` can be very efficient on the binary representation. Someone should do this, too! -/ lemma modeq_mersenne (n k : ℕ) : k ≡ ((k / 2^n) + (k % 2^n)) [MOD 2^n - 1] := -- See https://leanprover.zulipchat.com/#narrow/stream/113489-new-members/topic/help.20finding.20a.20lemma/near/177698446 begin conv in k {rw [← nat.mod_add_div k (2^n), add_comm]}, refine nat.modeq.modeq_add _ (by refl), conv {congr, skip, skip, rw ← one_mul (k/2^n)}, refine nat.modeq.modeq_mul _ (by refl), symmetry, rw [nat.modeq.modeq_iff_dvd, int.coe_nat_sub], exact pow_pos (show 0 < 2, from dec_trivial) _ end -- It's hard to know what the limiting factor for large Mersenne primes would be. -- In the purely computational world, I think it's the squaring operation in `s`.
c3a31876bb0b58745f902492f52bc6e60e35eb7d
35677d2df3f081738fa6b08138e03ee36bc33cad
/src/data/list/pairwise.lean
a8ce084676ef661096bebe25e34463ae5a71294d
[ "Apache-2.0" ]
permissive
gebner/mathlib
eab0150cc4f79ec45d2016a8c21750244a2e7ff0
cc6a6edc397c55118df62831e23bfbd6e6c6b4ab
refs/heads/master
1,625,574,853,976
1,586,712,827,000
1,586,712,827,000
99,101,412
1
0
Apache-2.0
1,586,716,389,000
1,501,667,958,000
Lean
UTF-8
Lean
false
false
14,281
lean
/- Copyright (c) 2018 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import data.list.basic open nat function universes u v variables {α : Type u} {β : Type v} namespace list /- pairwise relation (generalized no duplicate) -/ run_cmd tactic.mk_iff_of_inductive_prop `list.pairwise `list.pairwise_iff variable {R : α → α → Prop} theorem rel_of_pairwise_cons {a : α} {l : list α} (p : pairwise R (a::l)) : ∀ {a'}, a' ∈ l → R a a' := (pairwise_cons.1 p).1 theorem pairwise_of_pairwise_cons {a : α} {l : list α} (p : pairwise R (a::l)) : pairwise R l := (pairwise_cons.1 p).2 theorem pairwise.imp_of_mem {S : α → α → Prop} {l : list α} (H : ∀ {a b}, a ∈ l → b ∈ l → R a b → S a b) (p : pairwise R l) : pairwise S l := begin induction p with a l r p IH generalizing H; constructor, { exact ball.imp_right (λ x h, H (mem_cons_self _ _) (mem_cons_of_mem _ h)) r }, { exact IH (λ a b m m', H (mem_cons_of_mem _ m) (mem_cons_of_mem _ m')) } end theorem pairwise.imp {S : α → α → Prop} (H : ∀ a b, R a b → S a b) {l : list α} : pairwise R l → pairwise S l := pairwise.imp_of_mem (λ a b _ _, H a b) theorem pairwise.and {S : α → α → Prop} {l : list α} : pairwise (λ a b, R a b ∧ S a b) l ↔ pairwise R l ∧ pairwise S l := ⟨λ h, ⟨h.imp (λ a b h, h.1), h.imp (λ a b h, h.2)⟩, λ ⟨hR, hS⟩, begin clear_, induction hR with a l R1 R2 IH; simp only [pairwise.nil, pairwise_cons] at *, exact ⟨λ b bl, ⟨R1 b bl, hS.1 b bl⟩, IH hS.2⟩ end⟩ theorem pairwise.imp₂ {S : α → α → Prop} {T : α → α → Prop} (H : ∀ a b, R a b → S a b → T a b) {l : list α} (hR : pairwise R l) (hS : pairwise S l) : pairwise T l := (pairwise.and.2 ⟨hR, hS⟩).imp $ λ a b, and.rec (H a b) theorem pairwise.iff_of_mem {S : α → α → Prop} {l : list α} (H : ∀ {a b}, a ∈ l → b ∈ l → (R a b ↔ S a b)) : pairwise R l ↔ pairwise S l := ⟨pairwise.imp_of_mem (λ a b m m', (H m m').1), pairwise.imp_of_mem (λ a b m m', (H m m').2)⟩ theorem pairwise.iff {S : α → α → Prop} (H : ∀ a b, R a b ↔ S a b) {l : list α} : pairwise R l ↔ pairwise S l := pairwise.iff_of_mem (λ a b _ _, H a b) theorem pairwise_of_forall {l : list α} (H : ∀ x y, R x y) : pairwise R l := by induction l; [exact pairwise.nil, simp only [*, pairwise_cons, forall_2_true_iff, and_true]] theorem pairwise.and_mem {l : list α} : pairwise R l ↔ pairwise (λ x y, x ∈ l ∧ y ∈ l ∧ R x y) l := pairwise.iff_of_mem (by simp only [true_and, iff_self, forall_2_true_iff] {contextual := tt}) theorem pairwise.imp_mem {l : list α} : pairwise R l ↔ pairwise (λ x y, x ∈ l → y ∈ l → R x y) l := pairwise.iff_of_mem (by simp only [forall_prop_of_true, iff_self, forall_2_true_iff] {contextual := tt}) theorem pairwise_of_sublist : Π {l₁ l₂ : list α}, l₁ <+ l₂ → pairwise R l₂ → pairwise R l₁ | ._ ._ sublist.slnil h := h | ._ ._ (sublist.cons l₁ l₂ a s) (pairwise.cons i n) := pairwise_of_sublist s n | ._ ._ (sublist.cons2 l₁ l₂ a s) (pairwise.cons i n) := (pairwise_of_sublist s n).cons (ball.imp_left (subset_of_sublist s) i) theorem forall_of_forall_of_pairwise (H : symmetric R) {l : list α} (H₁ : ∀ x ∈ l, R x x) (H₂ : pairwise R l) : ∀ (x ∈ l) (y ∈ l), R x y := begin induction l with a l IH, { exact forall_mem_nil _ }, cases forall_mem_cons.1 H₁ with H₁₁ H₁₂, cases pairwise_cons.1 H₂ with H₂₁ H₂₂, rintro x (rfl | hx) y (rfl | hy), exacts [H₁₁, H₂₁ _ hy, H (H₂₁ _ hx), IH H₁₂ H₂₂ _ hx _ hy] end lemma forall_of_pairwise (H : symmetric R) {l : list α} (hl : pairwise R l) : (∀a∈l, ∀b∈l, a ≠ b → R a b) := forall_of_forall_of_pairwise (λ a b h hne, H (h hne.symm)) (λ _ _ h, (h rfl).elim) (pairwise.imp (λ _ _ h _, h) hl) theorem pairwise_singleton (R) (a : α) : pairwise R [a] := by simp only [pairwise_cons, mem_singleton, forall_prop_of_false (not_mem_nil _), forall_true_iff, pairwise.nil, and_true] theorem pairwise_pair {a b : α} : pairwise R [a, b] ↔ R a b := by simp only [pairwise_cons, mem_singleton, forall_eq, forall_prop_of_false (not_mem_nil _), forall_true_iff, pairwise.nil, and_true] theorem pairwise_append {l₁ l₂ : list α} : pairwise R (l₁++l₂) ↔ pairwise R l₁ ∧ pairwise R l₂ ∧ ∀ x ∈ l₁, ∀ y ∈ l₂, R x y := by induction l₁ with x l₁ IH; [simp only [list.pairwise.nil, forall_prop_of_false (not_mem_nil _), forall_true_iff, and_true, true_and, nil_append], simp only [cons_append, pairwise_cons, forall_mem_append, IH, forall_mem_cons, forall_and_distrib, and_assoc, and.left_comm]] theorem pairwise_append_comm (s : symmetric R) {l₁ l₂ : list α} : pairwise R (l₁++l₂) ↔ pairwise R (l₂++l₁) := have ∀ l₁ l₂ : list α, (∀ (x : α), x ∈ l₁ → ∀ (y : α), y ∈ l₂ → R x y) → (∀ (x : α), x ∈ l₂ → ∀ (y : α), y ∈ l₁ → R x y), from λ l₁ l₂ a x xm y ym, s (a y ym x xm), by simp only [pairwise_append, and.left_comm]; rw iff.intro (this l₁ l₂) (this l₂ l₁) theorem pairwise_middle (s : symmetric R) {a : α} {l₁ l₂ : list α} : pairwise R (l₁ ++ a::l₂) ↔ pairwise R (a::(l₁++l₂)) := show pairwise R (l₁ ++ ([a] ++ l₂)) ↔ pairwise R ([a] ++ l₁ ++ l₂), by rw [← append_assoc, pairwise_append, @pairwise_append _ _ ([a] ++ l₁), pairwise_append_comm s]; simp only [mem_append, or_comm] theorem pairwise_map (f : β → α) : ∀ {l : list β}, pairwise R (map f l) ↔ pairwise (λ a b : β, R (f a) (f b)) l | [] := by simp only [map, pairwise.nil] | (b::l) := have (∀ a b', b' ∈ l → f b' = a → R (f b) a) ↔ ∀ (b' : β), b' ∈ l → R (f b) (f b'), from forall_swap.trans $ forall_congr $ λ a, forall_swap.trans $ by simp only [forall_eq'], by simp only [map, pairwise_cons, mem_map, exists_imp_distrib, and_imp, this, pairwise_map] theorem pairwise_of_pairwise_map {S : β → β → Prop} (f : α → β) (H : ∀ a b : α, S (f a) (f b) → R a b) {l : list α} (p : pairwise S (map f l)) : pairwise R l := ((pairwise_map f).1 p).imp H theorem pairwise_map_of_pairwise {S : β → β → Prop} (f : α → β) (H : ∀ a b : α, R a b → S (f a) (f b)) {l : list α} (p : pairwise R l) : pairwise S (map f l) := (pairwise_map f).2 $ p.imp H theorem pairwise_filter_map (f : β → option α) {l : list β} : pairwise R (filter_map f l) ↔ pairwise (λ a a' : β, ∀ (b ∈ f a) (b' ∈ f a'), R b b') l := let S (a a' : β) := ∀ (b ∈ f a) (b' ∈ f a'), R b b' in begin simp only [option.mem_def], induction l with a l IH, { simp only [filter_map, pairwise.nil] }, cases e : f a with b, { rw [filter_map_cons_none _ _ e, IH, pairwise_cons], simp only [e, forall_prop_of_false not_false, forall_3_true_iff, true_and] }, rw [filter_map_cons_some _ _ _ e], simp only [pairwise_cons, mem_filter_map, exists_imp_distrib, and_imp, IH, e, forall_eq'], show (∀ (a' : α) (x : β), x ∈ l → f x = some a' → R b a') ∧ pairwise S l ↔ (∀ (a' : β), a' ∈ l → ∀ (b' : α), f a' = some b' → R b b') ∧ pairwise S l, from and_congr ⟨λ h b mb a ma, h a b mb ma, λ h a b mb ma, h b mb a ma⟩ iff.rfl end theorem pairwise_filter_map_of_pairwise {S : β → β → Prop} (f : α → option β) (H : ∀ (a a' : α), R a a' → ∀ (b ∈ f a) (b' ∈ f a'), S b b') {l : list α} (p : pairwise R l) : pairwise S (filter_map f l) := (pairwise_filter_map _).2 $ p.imp H theorem pairwise_filter (p : α → Prop) [decidable_pred p] {l : list α} : pairwise R (filter p l) ↔ pairwise (λ x y, p x → p y → R x y) l := begin rw [← filter_map_eq_filter, pairwise_filter_map], apply pairwise.iff, intros, simp only [option.mem_def, option.guard_eq_some, and_imp, forall_eq'], end theorem pairwise_filter_of_pairwise (p : α → Prop) [decidable_pred p] {l : list α} : pairwise R l → pairwise R (filter p l) := pairwise_of_sublist (filter_sublist _) theorem pairwise_join {L : list (list α)} : pairwise R (join L) ↔ (∀ l ∈ L, pairwise R l) ∧ pairwise (λ l₁ l₂, ∀ (x ∈ l₁) (y ∈ l₂), R x y) L := begin induction L with l L IH, {simp only [join, pairwise.nil, forall_prop_of_false (not_mem_nil _), forall_const, and_self]}, have : (∀ (x : α), x ∈ l → ∀ (y : α) (x_1 : list α), x_1 ∈ L → y ∈ x_1 → R x y) ↔ ∀ (a' : list α), a' ∈ L → ∀ (x : α), x ∈ l → ∀ (y : α), y ∈ a' → R x y := ⟨λ h a b c d e, h c d e a b, λ h c d e a b, h a b c d e⟩, simp only [join, pairwise_append, IH, mem_join, exists_imp_distrib, and_imp, this, forall_mem_cons, pairwise_cons], simp only [and_assoc, and_comm, and.left_comm], end @[simp] theorem pairwise_reverse : ∀ {R} {l : list α}, pairwise R (reverse l) ↔ pairwise (λ x y, R y x) l := suffices ∀ {R l}, @pairwise α R l → pairwise (λ x y, R y x) (reverse l), from λ R l, ⟨λ p, reverse_reverse l ▸ this p, this⟩, λ R l p, by induction p with a l h p IH; [apply pairwise.nil, simpa only [reverse_cons, pairwise_append, IH, pairwise_cons, forall_prop_of_false (not_mem_nil _), forall_true_iff, pairwise.nil, mem_reverse, mem_singleton, forall_eq, true_and] using h] theorem pairwise_iff_nth_le {R} : ∀ {l : list α}, pairwise R l ↔ ∀ i j (h₁ : j < length l) (h₂ : i < j), R (nth_le l i (lt_trans h₂ h₁)) (nth_le l j h₁) | [] := by simp only [pairwise.nil, true_iff]; exact λ i j h, (not_lt_zero j).elim h | (a::l) := begin rw [pairwise_cons, pairwise_iff_nth_le], refine ⟨λ H i j h₁ h₂, _, λ H, ⟨λ a' m, _, λ i j h₁ h₂, H _ _ (succ_lt_succ h₁) (succ_lt_succ h₂)⟩⟩, { cases j with j, {exact (not_lt_zero _).elim h₂}, cases i with i, { exact H.1 _ (nth_le_mem l _ _) }, { exact H.2 _ _ (lt_of_succ_lt_succ h₁) (lt_of_succ_lt_succ h₂) } }, { rcases nth_le_of_mem m with ⟨n, h, rfl⟩, exact H _ _ (succ_lt_succ h) (succ_pos _) } end theorem pairwise_sublists' {R} : ∀ {l : list α}, pairwise R l → pairwise (lex (swap R)) (sublists' l) | _ pairwise.nil := pairwise_singleton _ _ | _ (@pairwise.cons _ _ a l H₁ H₂) := begin simp only [sublists'_cons, pairwise_append, pairwise_map, mem_sublists', mem_map, exists_imp_distrib, and_imp], have IH := pairwise_sublists' H₂, refine ⟨IH, IH.imp (λ l₁ l₂, lex.cons), _⟩, intros l₁ sl₁ x l₂ sl₂ e, subst e, cases l₁ with b l₁, {constructor}, exact lex.rel (H₁ _ $ subset_of_sublist sl₁ $ mem_cons_self _ _) end theorem pairwise_sublists {R} {l : list α} (H : pairwise R l) : pairwise (λ l₁ l₂, lex R (reverse l₁) (reverse l₂)) (sublists l) := by have := pairwise_sublists' (pairwise_reverse.2 H); rwa [sublists'_reverse, pairwise_map] at this /- pairwise reduct -/ variable [decidable_rel R] @[simp] theorem pw_filter_nil : pw_filter R [] = [] := rfl @[simp] theorem pw_filter_cons_of_pos {a : α} {l : list α} (h : ∀ b ∈ pw_filter R l, R a b) : pw_filter R (a::l) = a :: pw_filter R l := if_pos h @[simp] theorem pw_filter_cons_of_neg {a : α} {l : list α} (h : ¬ ∀ b ∈ pw_filter R l, R a b) : pw_filter R (a::l) = pw_filter R l := if_neg h theorem pw_filter_map (f : β → α) : Π (l : list β), pw_filter R (map f l) = map f (pw_filter (λ x y, R (f x) (f y)) l) | [] := rfl | (x :: xs) := if h : ∀ b ∈ pw_filter R (map f xs), R (f x) b then have h' : ∀ (b : β), b ∈ pw_filter (λ (x y : β), R (f x) (f y)) xs → R (f x) (f b), from λ b hb, h _ (by rw [pw_filter_map]; apply mem_map_of_mem _ hb), by rw [map,pw_filter_cons_of_pos h,pw_filter_cons_of_pos h',pw_filter_map,map] else have h' : ¬∀ (b : β), b ∈ pw_filter (λ (x y : β), R (f x) (f y)) xs → R (f x) (f b), from λ hh, h $ λ a ha, by { rw [pw_filter_map,mem_map] at ha, rcases ha with ⟨b,hb₀,hb₁⟩, subst a, exact hh _ hb₀, }, by rw [map,pw_filter_cons_of_neg h,pw_filter_cons_of_neg h',pw_filter_map] theorem pw_filter_sublist : ∀ (l : list α), pw_filter R l <+ l | [] := nil_sublist _ | (x::l) := begin by_cases (∀ y ∈ pw_filter R l, R x y), { rw [pw_filter_cons_of_pos h], exact cons_sublist_cons _ (pw_filter_sublist l) }, { rw [pw_filter_cons_of_neg h], exact sublist_cons_of_sublist _ (pw_filter_sublist l) }, end theorem pw_filter_subset (l : list α) : pw_filter R l ⊆ l := subset_of_sublist (pw_filter_sublist _) theorem pairwise_pw_filter : ∀ (l : list α), pairwise R (pw_filter R l) | [] := pairwise.nil | (x::l) := begin by_cases (∀ y ∈ pw_filter R l, R x y), { rw [pw_filter_cons_of_pos h], exact pairwise_cons.2 ⟨h, pairwise_pw_filter l⟩ }, { rw [pw_filter_cons_of_neg h], exact pairwise_pw_filter l }, end theorem pw_filter_eq_self {l : list α} : pw_filter R l = l ↔ pairwise R l := ⟨λ e, e ▸ pairwise_pw_filter l, λ p, begin induction l with x l IH, {refl}, cases pairwise_cons.1 p with al p, rw [pw_filter_cons_of_pos (ball.imp_left (pw_filter_subset l) al), IH p], end⟩ @[simp] theorem pw_filter_idempotent {l : list α} : pw_filter R (pw_filter R l) = pw_filter R l := pw_filter_eq_self.mpr (pairwise_pw_filter l) theorem forall_mem_pw_filter (neg_trans : ∀ {x y z}, R x z → R x y ∨ R y z) (a : α) (l : list α) : (∀ b ∈ pw_filter R l, R a b) ↔ (∀ b ∈ l, R a b) := ⟨begin induction l with x l IH, { exact λ _ _, false.elim }, simp only [forall_mem_cons], by_cases (∀ y ∈ pw_filter R l, R x y); dsimp at h, { simp only [pw_filter_cons_of_pos h, forall_mem_cons, and_imp], exact λ r H, ⟨r, IH H⟩ }, { rw [pw_filter_cons_of_neg h], refine λ H, ⟨_, IH H⟩, cases e : find (λ y, ¬ R x y) (pw_filter R l) with k, { refine h.elim (ball.imp_right _ (find_eq_none.1 e)), exact λ y _, not_not.1 }, { have := find_some e, exact (neg_trans (H k (find_mem e))).resolve_right this } } end, ball.imp_left (pw_filter_subset l)⟩ end list
7df5a365224a7bba0bbb39ba09d97cc4190efcd3
13133fade54057ee588bc056e4eaa14a24773d23
/Proofs/fib_minus_one.lean
7b91f0e4892775a83eab661f837691945041fb28
[]
no_license
lkloh/lean-project-15815
444cbdca1d1a2dfa258c76c41a6ff846392e13d1
2cb657c0e41baa318193f7dce85974ff37d80883
refs/heads/master
1,611,402,038,933
1,432,020,760,000
1,432,020,760,000
33,372,120
0
0
null
1,431,932,928,000
1,428,078,840,000
Lean
UTF-8
Lean
false
false
1,695
lean
import data.nat open nat -- source: the official tutorial for lean definition fib : nat → nat | fib 0 := 1 | fib 1 := 1 | fib (n+2) := fib (n+1) + fib n definition sumF : nat → nat | sumF 0 := 1 | sumF(n+1) := sumF(n) + fib(n+1) eval sumF(2) -- ****************************************************************** -- theorem fibminus: ∀ n, sumF(n)+1 = fib(n+2) | fibminus(0) := show 2 = 2, from rfl | fibminus(n+1) := calc sumF(n+1)+1 = (sumF(n) + fib(n+1)) + 1 : rfl ... = sumF(n) + (fib(n+1)+1) : add.assoc ... = sumF(n) + (1+fib(n+1)) : add.comm ... = (sumF(n)+1) + fib(n+1) : add.assoc ... = fib(n+2) + fib(n+1) : {fibminus n} ... = fib(n+3) : rfl -- ****************************************************************** -- theorem fib_pos : ∀ n, 0 < fib n, fib_pos 0 := show 0 < 1, from zero_lt_succ 0, fib_pos 1 := show 0 < 1, from zero_lt_succ 0, fib_pos (a+2) := calc 0 = 0 + 0 : rfl ... < fib (a+1) + 0 : add_lt_add_right (fib_pos (a+1)) 0 ... < fib (a+1) + fib a : add_lt_add_left (fib_pos a) (fib (a+1)) ... = fib (a+2) : rfl -- ****************************************************************** -- -- "fib (n + k + 1) = fib (k + 1) * fib (n + 1) + fib k * fib n" theorem fib_test (n k : ℕ) : fib(n + k + 1) = fib (k + 1) * fib (n + 1) + fib k * fib n := nat.induction_on n (calc fib (0 + k + 1) = fib (k + 1) * fib (0 + 1) + fib k * fib 0 : sorry) (take n' IH, calc fib (succ (succ n') + k + 1) = fib (k + 1) * fib (succ (succ n') + 1) + fib k * fib (succ (succ n')) : sorry) -- ****************************************************************** --
342d36c0a6fddf73530789236a7a6a3ea87709ff
9be442d9ec2fcf442516ed6e9e1660aa9071b7bd
/stage0/src/Lean/Data/SMap.lean
38d9e1a4d3008a97a821339bf04fa1d1a13ed3bf
[ "Apache-2.0", "LLVM-exception", "NCSA", "LGPL-3.0-only", "LicenseRef-scancode-inner-net-2.0", "BSD-3-Clause", "LGPL-2.0-or-later", "Spencer-94", "LGPL-2.1-or-later", "HPND", "LicenseRef-scancode-pcre", "ISC", "LGPL-2.1-only", "LicenseRef-scancode-other-permissive", "SunPro", "CMU-Mach" ]
permissive
EdAyers/lean4
57ac632d6b0789cb91fab2170e8c9e40441221bd
37ba0df5841bde51dbc2329da81ac23d4f6a4de4
refs/heads/master
1,676,463,245,298
1,660,619,433,000
1,660,619,433,000
183,433,437
1
0
Apache-2.0
1,657,612,672,000
1,556,196,574,000
Lean
UTF-8
Lean
false
false
4,060
lean
/- Copyright (c) 2019 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura -/ import Std.Data.HashMap import Std.Data.PersistentHashMap universe u v w w' namespace Lean open Std (HashMap PHashMap) /-- Staged map for implementing the Environment. The idea is to store imported entries into a hashtable and local entries into a persistent hashtable. Hypotheses: - The number of entries (i.e., declarations) coming from imported files is much bigger than the number of entries in the current file. - HashMap is faster than PersistentHashMap. - When we are reading imported files, we have exclusive access to the map, and efficient destructive updates are performed. Remarks: - We never remove declarations from the Environment. In principle, we could support deletion by using `(PHashMap α (Option β))` where the value `none` would indicate that an entry was "removed" from the hashtable. - We do not need additional bookkeeping for extracting the local entries. -/ structure SMap (α : Type u) (β : Type v) [BEq α] [Hashable α] where stage₁ : Bool := true map₁ : HashMap α β := {} map₂ : PHashMap α β := {} namespace SMap variable {α : Type u} {β : Type v} [BEq α] [Hashable α] instance : Inhabited (SMap α β) := ⟨{}⟩ def empty : SMap α β := {} @[inline] def fromHashMap (m : HashMap α β) (stage₁ := true) : SMap α β := { map₁ := m, stage₁ := stage₁ } @[specialize] def insert : SMap α β → α → β → SMap α β | ⟨true, m₁, m₂⟩, k, v => ⟨true, m₁.insert k v, m₂⟩ | ⟨false, m₁, m₂⟩, k, v => ⟨false, m₁, m₂.insert k v⟩ @[specialize] def insert' : SMap α β → α → β → SMap α β | ⟨true, m₁, m₂⟩, k, v => ⟨true, m₁.insert k v, m₂⟩ | ⟨false, m₁, m₂⟩, k, v => ⟨false, m₁, m₂.insert k v⟩ @[specialize] def find? : SMap α β → α → Option β | ⟨true, m₁, _⟩, k => m₁.find? k | ⟨false, m₁, m₂⟩, k => (m₂.find? k).orElse fun _ => m₁.find? k @[inline] def findD (m : SMap α β) (a : α) (b₀ : β) : β := (m.find? a).getD b₀ @[inline] def find! [Inhabited β] (m : SMap α β) (a : α) : β := match m.find? a with | some b => b | none => panic! "key is not in the map" @[specialize] def contains : SMap α β → α → Bool | ⟨true, m₁, _⟩, k => m₁.contains k | ⟨false, m₁, m₂⟩, k => m₁.contains k || m₂.contains k /-- Similar to `find?`, but searches for result in the hashmap first. So, the result is correct only if we never "overwrite" `map₁` entries using `map₂`. -/ @[specialize] def find?' : SMap α β → α → Option β | ⟨true, m₁, _⟩, k => m₁.find? k | ⟨false, m₁, m₂⟩, k => (m₁.find? k).orElse fun _ => m₂.find? k def forM [Monad m] (s : SMap α β) (f : α → β → m PUnit) : m PUnit := do s.map₁.forM f s.map₂.forM f /-- Move from stage 1 into stage 2. -/ def switch (m : SMap α β) : SMap α β := if m.stage₁ then { m with stage₁ := false } else m @[inline] def foldStage2 {σ : Type w} (f : σ → α → β → σ) (s : σ) (m : SMap α β) : σ := m.map₂.foldl f s def fold {σ : Type w} (f : σ → α → β → σ) (init : σ) (m : SMap α β) : σ := m.map₂.foldl f $ m.map₁.fold f init def size (m : SMap α β) : Nat := m.map₁.size + m.map₂.size def stageSizes (m : SMap α β) : Nat × Nat := (m.map₁.size, m.map₂.size) def numBuckets (m : SMap α β) : Nat := m.map₁.numBuckets def toList (m : SMap α β) : List (α × β) := m.fold (init := []) fun es a b => (a, b)::es end SMap def List.toSMap [BEq α] [Hashable α] (es : List (α × β)) : SMap α β := es.foldl (init := {}) fun s (a, b) => s.insert a b instance {_ : BEq α} {_ : Hashable α} [Repr α] [Repr β] : Repr (SMap α β) where reprPrec v prec := Repr.addAppParen (reprArg v.toList ++ ".toSMap") prec end Lean
55309a2a57d28823c50b5b95098a405fa47a433f
a0e23cfdd129a671bf3154ee1a8a3a72bf4c7940
/src/Lean/Data/Options.lean
bfc164804f8181dcabf4fab3ede9cf551f610bc5
[ "Apache-2.0" ]
permissive
WojciechKarpiel/lean4
7f89706b8e3c1f942b83a2c91a3a00b05da0e65b
f6e1314fa08293dea66a329e05b6c196a0189163
refs/heads/master
1,686,633,402,214
1,625,821,189,000
1,625,821,258,000
384,640,886
0
0
Apache-2.0
1,625,903,617,000
1,625,903,026,000
null
UTF-8
Lean
false
false
4,822
lean
/- Copyright (c) 2018 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Sebastian Ullrich and Leonardo de Moura -/ import Lean.Data.KVMap namespace Lean def Options := KVMap def Options.empty : Options := {} instance : Inhabited Options where default := {} instance : ToString Options := inferInstanceAs (ToString KVMap) instance : ForIn m Options (Name × DataValue) := inferInstanceAs (ForIn _ KVMap _) structure OptionDecl where defValue : DataValue group : String := "" descr : String := "" deriving Inhabited def OptionDecls := NameMap OptionDecl instance : Inhabited OptionDecls := ⟨({} : NameMap OptionDecl)⟩ private def initOptionDeclsRef : IO (IO.Ref OptionDecls) := IO.mkRef (mkNameMap OptionDecl) @[builtinInit initOptionDeclsRef] private constant optionDeclsRef : IO.Ref OptionDecls @[export lean_register_option] def registerOption (name : Name) (decl : OptionDecl) : IO Unit := do let decls ← optionDeclsRef.get if decls.contains name then throw $ IO.userError s!"invalid option declaration '{name}', option already exists" optionDeclsRef.set $ decls.insert name decl def getOptionDecls : IO OptionDecls := optionDeclsRef.get @[export lean_get_option_decls_array] def getOptionDeclsArray : IO (Array (Name × OptionDecl)) := do let decls ← getOptionDecls pure $ decls.fold (fun (r : Array (Name × OptionDecl)) k v => r.push (k, v)) #[] def getOptionDecl (name : Name) : IO OptionDecl := do let decls ← getOptionDecls let (some decl) ← pure (decls.find? name) | throw $ IO.userError s!"unknown option '{name}'" pure decl def getOptionDefaulValue (name : Name) : IO DataValue := do let decl ← getOptionDecl name pure decl.defValue def getOptionDescr (name : Name) : IO String := do let decl ← getOptionDecl name pure decl.descr def setOptionFromString (opts : Options) (entry : String) : IO Options := do let ps := (entry.splitOn "=").map String.trim let [key, val] ← pure ps | throw $ IO.userError "invalid configuration option entry, it must be of the form '<key> = <value>'" let key := Name.mkSimple key let defValue ← getOptionDefaulValue key match defValue with | DataValue.ofString v => pure $ opts.setString key val | DataValue.ofBool v => if key == `true then pure $ opts.setBool key true else if key == `false then pure $ opts.setBool key false else throw $ IO.userError s!"invalid Bool option value '{val}'" | DataValue.ofName v => pure $ opts.setName key val.toName | DataValue.ofNat v => match val.toNat? with | none => throw (IO.userError s!"invalid Nat option value '{val}'") | some v => pure $ opts.setNat key v | DataValue.ofInt v => match val.toInt? with | none => throw (IO.userError s!"invalid Int option value '{val}'") | some v => pure $ opts.setInt key v class MonadOptions (m : Type → Type) where getOptions : m Options export MonadOptions (getOptions) instance (m n) [MonadLift m n] [MonadOptions m] : MonadOptions n where getOptions := liftM (getOptions : m _) variable {m} [Monad m] [MonadOptions m] def getBoolOption (k : Name) (defValue := false) : m Bool := do let opts ← getOptions pure $ opts.getBool k defValue def getNatOption (k : Name) (defValue := 0) : m Nat := do let opts ← getOptions pure $ opts.getNat k defValue /-- A strongly-typed reference to an option. -/ protected structure Option (α : Type) where name : Name defValue : α deriving Inhabited namespace Option protected structure Decl (α : Type) where defValue : α group : String := "" descr : String := "" protected def get? [KVMap.Value α] (opts : Options) (opt : Lean.Option α) : Option α := opts.get? opt.name protected def get [KVMap.Value α] (opts : Options) (opt : Lean.Option α) : α := opts.get opt.name opt.defValue protected def set [KVMap.Value α] (opts : Options) (opt : Lean.Option α) (val : α) : Options := opts.set opt.name val /-- Similar to `set`, but update `opts` only if it doesn't already contains an setting for `opt.name` -/ protected def setIfNotSet [KVMap.Value α] (opts : Options) (opt : Lean.Option α) (val : α) : Options := if opts.contains opt.name then opts else opt.set opts val protected def register [KVMap.Value α] (name : Name) (decl : Lean.Option.Decl α) : IO (Lean.Option α) := do registerOption name { defValue := KVMap.Value.toDataValue decl.defValue, group := decl.group, descr := decl.descr } return { name := name, defValue := decl.defValue } macro "register_builtin_option" name:ident " : " type:term " := " decl:term : command => `(builtin_initialize $name : Lean.Option $type ← Lean.Option.register $(quote name.getId) $decl) end Option end Lean
d1e53396d6c7c14450c99c28fe7c56485499242e
c777c32c8e484e195053731103c5e52af26a25d1
/archive/imo/imo1964_q1.lean
fd987ba4f5f1054e8b1c7c96b7eaf5fe1deeec6a
[ "Apache-2.0" ]
permissive
kbuzzard/mathlib
2ff9e85dfe2a46f4b291927f983afec17e946eb8
58537299e922f9c77df76cb613910914a479c1f7
refs/heads/master
1,685,313,702,744
1,683,974,212,000
1,683,974,212,000
128,185,277
1
0
null
1,522,920,600,000
1,522,920,600,000
null
UTF-8
Lean
false
false
2,820
lean
/- Copyright (c) 2020 Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kevin Buzzard -/ import tactic.interval_cases import data.nat.modeq /-! # IMO 1964 Q1 (a) Find all positive integers $n$ for which $2^n-1$ is divisible by $7$. (b) Prove that there is no positive integer $n$ for which $2^n+1$ is divisible by $7$. We define a predicate for the solutions in (a), and prove that it is the set of positive integers which are a multiple of 3. -/ /-! ## Intermediate lemmas -/ open nat namespace imo1964_q1 lemma two_pow_three_mul_mod_seven (m : ℕ) : 2 ^ (3 * m) ≡ 1 [MOD 7] := begin rw pow_mul, have h : 8 ≡ 1 [MOD 7] := modeq_of_dvd (by {use -1, norm_num }), convert h.pow _, simp, end lemma two_pow_three_mul_add_one_mod_seven (m : ℕ) : 2 ^ (3 * m + 1) ≡ 2 [MOD 7] := begin rw pow_add, exact (two_pow_three_mul_mod_seven m).mul_right _, end lemma two_pow_three_mul_add_two_mod_seven (m : ℕ) : 2 ^ (3 * m + 2) ≡ 4 [MOD 7] := begin rw pow_add, exact (two_pow_three_mul_mod_seven m).mul_right _, end /-! ## The question -/ def problem_predicate (n : ℕ) : Prop := 7 ∣ 2 ^ n - 1 lemma aux (n : ℕ) : problem_predicate n ↔ 2 ^ n ≡ 1 [MOD 7] := begin rw nat.modeq.comm, apply (modeq_iff_dvd' _).symm, apply nat.one_le_pow' end theorem imo1964_q1a (n : ℕ) (hn : 0 < n) : problem_predicate n ↔ 3 ∣ n := begin rw aux, split, { intro h, let t := n % 3, rw [(show n = 3 * (n / 3) + t, from (nat.div_add_mod n 3).symm)] at h, have ht : t < 3 := nat.mod_lt _ dec_trivial, interval_cases t with hr; rw hr at h, { exact nat.dvd_of_mod_eq_zero hr }, { exfalso, have nonsense := (two_pow_three_mul_add_one_mod_seven _).symm.trans h, rw modeq_iff_dvd at nonsense, norm_num at nonsense }, { exfalso, have nonsense := (two_pow_three_mul_add_two_mod_seven _).symm.trans h, rw modeq_iff_dvd at nonsense, norm_num at nonsense } }, { rintro ⟨m, rfl⟩, apply two_pow_three_mul_mod_seven } end end imo1964_q1 open imo1964_q1 theorem imo1964_q1b (n : ℕ) : ¬ (7 ∣ 2 ^ n + 1) := begin let t := n % 3, rw [← modeq_zero_iff_dvd, (show n = 3 * (n / 3) + t, from (nat.div_add_mod n 3).symm)], have ht : t < 3 := nat.mod_lt _ dec_trivial, interval_cases t with hr; rw hr, { rw add_zero, intro h, have := h.symm.trans ((two_pow_three_mul_mod_seven _).add_right _), rw modeq_iff_dvd at this, norm_num at this }, { intro h, have := h.symm.trans ((two_pow_three_mul_add_one_mod_seven _).add_right _), rw modeq_iff_dvd at this, norm_num at this }, { intro h, have := h.symm.trans ((two_pow_three_mul_add_two_mod_seven _).add_right _), rw modeq_iff_dvd at this, norm_num at this }, end
604c332864b74086eff4290323e9d9008467bea9
46125763b4dbf50619e8846a1371029346f4c3db
/src/tactic/hint.lean
11225b84689319c690925db07c104d0a5db2a8fd
[ "Apache-2.0" ]
permissive
thjread/mathlib
a9d97612cedc2c3101060737233df15abcdb9eb1
7cffe2520a5518bba19227a107078d83fa725ddc
refs/heads/master
1,615,637,696,376
1,583,953,063,000
1,583,953,063,000
246,680,271
0
0
Apache-2.0
1,583,960,875,000
1,583,960,875,000
null
UTF-8
Lean
false
false
2,354
lean
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import tactic.solve_by_elim import tactic.interactive namespace tactic namespace hint /-- An attribute marking a `tactic unit` or `tactic string` which should be used by the `hint` tactic. -/ @[user_attribute] meta def hint_tactic_attribute : user_attribute := { name := `hint_tactic, descr := "A tactic that should be tried by `hint`." } open lean lean.parser interactive private meta def add_tactic_hint (n : name) (t : expr) : tactic unit := do add_decl $ declaration.defn n [] `(tactic string) t reducibility_hints.opaque ff, hint_tactic_attribute.set n () tt /-- `add_hint_tactic t` runs the tactic `t` whenever `hint` is invoked. The typical use case is `add_hint_tactic "foo"` for some interactive tactic `foo`. -/ @[user_command] meta def add_hint_tactic (_ : parse (tk "add_hint_tactic")) : parser unit := do n ← parser.pexpr, e ← to_expr n, s ← eval_expr string e, let t := "`[" ++ s ++ "]", (t, _) ← with_input parser.pexpr t, of_tactic $ do let h := s <.> "_hint", t ← to_expr ``(do %%t, pure %%n), add_tactic_hint h t. add_hint_tactic "refl" add_hint_tactic "exact dec_trivial" add_hint_tactic "assumption" add_hint_tactic "intro" -- tidy does something better here: it suggests the actual "intros X Y f" string; perhaps add a wrapper? add_hint_tactic "apply_auto_param" add_hint_tactic "dsimp at *" add_hint_tactic "simp at *" -- TODO hook up to squeeze_simp? add_hint_tactic "fconstructor" add_hint_tactic "injections_and_clear" add_hint_tactic "solve_by_elim" add_hint_tactic "unfold_coes" add_hint_tactic "unfold_aux" end hint /-- report a list of tactics that can make progress against the current goal -/ meta def hint : tactic (list string) := do names ← attribute.get_instances `hint_tactic, try_all_sorted (names.reverse.map name_to_tactic) namespace interactive /-- report a list of tactics that can make progress against the current goal -/ meta def hint : tactic unit := do hints ← tactic.hint, if hints.length = 0 then fail "no hints available" else do trace "the following tactics make progress:\n----", hints.mmap' (λ s, tactic.trace format!"Try this: {s}") end interactive end tactic
cdccf41587d30bcd677cffd62113772251d5b94c
947fa6c38e48771ae886239b4edce6db6e18d0fb
/src/data/bundle.lean
946d03f62ac00213f9527f43f6d282846d373b4a
[ "Apache-2.0" ]
permissive
ramonfmir/mathlib
c5dc8b33155473fab97c38bd3aa6723dc289beaa
14c52e990c17f5a00c0cc9e09847af16fabbed25
refs/heads/master
1,661,979,343,526
1,660,830,384,000
1,660,830,384,000
182,072,989
0
0
null
1,555,585,876,000
1,555,585,876,000
null
UTF-8
Lean
false
false
5,132
lean
/- Copyright © 2021 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Nicolò Cavalleri -/ import tactic.basic import algebra.module.basic /-! # Bundle Basic data structure to implement fiber bundles, vector bundles (maybe fibrations?), etc. This file should contain all possible results that do not involve any topology. We represent a bundle `E` over a base space `B` as a dependent type `E : B → Type*`. We provide a type synonym of `Σ x, E x` as `bundle.total_space E`, to be able to endow it with a topology which is not the disjoint union topology `sigma.topological_space`. In general, the constructions of fiber bundles we will make will be of this form. ## Main Definitions * `bundle.total_space` the total space of a bundle. * `bundle.total_space.proj` the projection from the total space to the base space. * `bundle.total_space_mk` the constructor for the total space. ## References - https://en.wikipedia.org/wiki/Bundle_(mathematics) -/ namespace bundle variables {B : Type*} (E : B → Type*) /-- `bundle.total_space E` is the total space of the bundle `Σ x, E x`. This type synonym is used to avoid conflicts with general sigma types. -/ def total_space := Σ x, E x instance [inhabited B] [inhabited (E default)] : inhabited (total_space E) := ⟨⟨default, default⟩⟩ variables {E} /-- `bundle.total_space.proj` is the canonical projection `bundle.total_space E → B` from the total space to the base space. -/ @[simp, reducible] def total_space.proj : total_space E → B := sigma.fst /-- Constructor for the total space of a bundle. -/ @[simp, reducible] def total_space_mk (b : B) (a : E b) : bundle.total_space E := ⟨b, a⟩ lemma total_space.proj_mk {x : B} {y : E x} : (total_space_mk x y).proj = x := rfl lemma sigma_mk_eq_total_space_mk {x : B} {y : E x} : sigma.mk x y = total_space_mk x y := rfl lemma total_space.mk_cast {x x' : B} (h : x = x') (b : E x) : total_space_mk x' (cast (congr_arg E h) b) = total_space_mk x b := by { subst h, refl } lemma total_space.eta (z : total_space E) : total_space_mk z.proj z.2 = z := sigma.eta z instance {x : B} : has_coe_t (E x) (total_space E) := ⟨total_space_mk x⟩ @[simp] lemma coe_fst (x : B) (v : E x) : (v : total_space E).fst = x := rfl @[simp] lemma coe_snd {x : B} {y : E x} : (y : total_space E).snd = y := rfl lemma to_total_space_coe {x : B} (v : E x) : (v : total_space E) = total_space_mk x v := rfl -- notation for the direct sum of two bundles over the same base notation E₁ `×ᵇ`:100 E₂ := λ x, E₁ x × E₂ x /-- `bundle.trivial B F` is the trivial bundle over `B` of fiber `F`. -/ def trivial (B : Type*) (F : Type*) : B → Type* := function.const B F instance {F : Type*} [inhabited F] {b : B} : inhabited (bundle.trivial B F b) := ⟨(default : F)⟩ /-- The trivial bundle, unlike other bundles, has a canonical projection on the fiber. -/ def trivial.proj_snd (B : Type*) (F : Type*) : total_space (bundle.trivial B F) → F := sigma.snd section pullback variable {B' : Type*} /-- The pullback of a bundle `E` over a base `B` under a map `f : B' → B`, denoted by `pullback f E` or `f *ᵖ E`, is the bundle over `B'` whose fiber over `b'` is `E (f b')`. -/ @[nolint has_nonempty_instance] def pullback (f : B' → B) (E : B → Type*) := λ x, E (f x) notation f ` *ᵖ ` E := pullback f E /-- Natural embedding of the total space of `f *ᵖ E` into `B' × total_space E`. -/ @[simp] def pullback_total_space_embedding (f : B' → B) : total_space (f *ᵖ E) → B' × total_space E := λ z, (z.proj, total_space_mk (f z.proj) z.2) /-- The base map `f : B' → B` lifts to a canonical map on the total spaces. -/ def pullback.lift (f : B' → B) : total_space (f *ᵖ E) → total_space E := λ z, total_space_mk (f z.proj) z.2 @[simp] lemma pullback.proj_lift (f : B' → B) (x : total_space (f *ᵖ E)) : (pullback.lift f x).proj = f x.1 := rfl @[simp] lemma pullback.lift_mk (f : B' → B) (x : B') (y : E (f x)) : pullback.lift f (total_space_mk x y) = total_space_mk (f x) y := rfl lemma pullback_total_space_embedding_snd (f : B' → B) (x : total_space (f *ᵖ E)) : (pullback_total_space_embedding f x).2 = pullback.lift f x := rfl end pullback section fiber_structures variable [∀ x, add_comm_monoid (E x)] @[simp] lemma coe_snd_map_apply (x : B) (v w : E x) : (↑(v + w) : total_space E).snd = (v : total_space E).snd + (w : total_space E).snd := rfl variables (R : Type*) [semiring R] [∀ x, module R (E x)] @[simp] lemma coe_snd_map_smul (x : B) (r : R) (v : E x) : (↑(r • v) : total_space E).snd = r • (v : total_space E).snd := rfl end fiber_structures section trivial_instances variables {F : Type*} {R : Type*} [semiring R] (b : B) instance [add_comm_monoid F] : add_comm_monoid (bundle.trivial B F b) := ‹add_comm_monoid F› instance [add_comm_group F] : add_comm_group (bundle.trivial B F b) := ‹add_comm_group F› instance [add_comm_monoid F] [module R F] : module R (bundle.trivial B F b) := ‹module R F› end trivial_instances end bundle
9606e1c3d498b7a985d5fe9d2b76bedc2c0afebe
b7f22e51856f4989b970961f794f1c435f9b8f78
/tests/lean/487.hlean
8f97f049634b3f403304225abcfd7e9186860b01
[ "Apache-2.0" ]
permissive
soonhokong/lean
cb8aa01055ffe2af0fb99a16b4cda8463b882cd1
38607e3eb57f57f77c0ac114ad169e9e4262e24f
refs/heads/master
1,611,187,284,081
1,450,766,737,000
1,476,122,547,000
11,513,992
2
0
null
1,401,763,102,000
1,374,182,235,000
C++
UTF-8
Lean
false
false
450
hlean
open eq is_trunc structure is_retraction [class] {A B : Type} (f : A → B) := (sect : B → A) (right_inverse : Π(b : B), f (sect b) = b) definition foo {A : Type} {B : Type} (f : A → B) (g : B → A) (ε : Πb, f (g b) = b) (b b' : B) : is_retraction (λ (q : g b = g b'), (ε b) ⁻¹ ⬝ ap f q ⬝ ε b') := begin fapply is_retraction.mk, {exact (@ap B A g b b') }, {intro p, cases p, esimp [eq.ap, eq.rec_on, eq.idp] } end
9cbc2ee28434991719a52e743136f7526bdd4070
c777c32c8e484e195053731103c5e52af26a25d1
/src/geometry/euclidean/angle/oriented/right_angle.lean
a245fc84aa0d47320292be4692f7b7e14113bd61
[ "Apache-2.0" ]
permissive
kbuzzard/mathlib
2ff9e85dfe2a46f4b291927f983afec17e946eb8
58537299e922f9c77df76cb613910914a479c1f7
refs/heads/master
1,685,313,702,744
1,683,974,212,000
1,683,974,212,000
128,185,277
1
0
null
1,522,920,600,000
1,522,920,600,000
null
UTF-8
Lean
false
false
45,590
lean
/- Copyright (c) 2022 Joseph Myers. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Myers -/ import geometry.euclidean.angle.oriented.affine import geometry.euclidean.angle.unoriented.right_angle /-! # Oriented angles in right-angled triangles. This file proves basic geometrical results about distances and oriented angles in (possibly degenerate) right-angled triangles in real inner product spaces and Euclidean affine spaces. -/ noncomputable theory open_locale euclidean_geometry open_locale real open_locale real_inner_product_space namespace orientation open finite_dimensional variables {V : Type*} [normed_add_comm_group V] [inner_product_space ℝ V] variables [hd2 : fact (finrank ℝ V = 2)] (o : orientation ℝ V (fin 2)) include hd2 o /-- An angle in a right-angled triangle expressed using `arccos`. -/ lemma oangle_add_right_eq_arccos_of_oangle_eq_pi_div_two {x y : V} (h : o.oangle x y = ↑(π / 2)) : o.oangle x (x + y) = real.arccos (‖x‖ / ‖x + y‖) := begin have hs : (o.oangle x (x + y)).sign = 1, { rw [oangle_sign_add_right, h, real.angle.sign_coe_pi_div_two] }, rw [o.oangle_eq_angle_of_sign_eq_one hs, inner_product_geometry.angle_add_eq_arccos_of_inner_eq_zero (o.inner_eq_zero_of_oangle_eq_pi_div_two h)] end /-- An angle in a right-angled triangle expressed using `arccos`. -/ lemma oangle_add_left_eq_arccos_of_oangle_eq_pi_div_two {x y : V} (h : o.oangle x y = ↑(π / 2)) : o.oangle (x + y) y = real.arccos (‖y‖ / ‖x + y‖) := begin rw [←neg_inj, oangle_rev, ←oangle_neg_orientation_eq_neg, neg_inj] at h ⊢, rw add_comm, exact (-o).oangle_add_right_eq_arccos_of_oangle_eq_pi_div_two h end /-- An angle in a right-angled triangle expressed using `arcsin`. -/ lemma oangle_add_right_eq_arcsin_of_oangle_eq_pi_div_two {x y : V} (h : o.oangle x y = ↑(π / 2)) : o.oangle x (x + y) = real.arcsin (‖y‖ / ‖x + y‖) := begin have hs : (o.oangle x (x + y)).sign = 1, { rw [oangle_sign_add_right, h, real.angle.sign_coe_pi_div_two] }, rw [o.oangle_eq_angle_of_sign_eq_one hs, inner_product_geometry.angle_add_eq_arcsin_of_inner_eq_zero (o.inner_eq_zero_of_oangle_eq_pi_div_two h) (or.inl (o.left_ne_zero_of_oangle_eq_pi_div_two h))] end /-- An angle in a right-angled triangle expressed using `arcsin`. -/ lemma oangle_add_left_eq_arcsin_of_oangle_eq_pi_div_two {x y : V} (h : o.oangle x y = ↑(π / 2)) : o.oangle (x + y) y = real.arcsin (‖x‖ / ‖x + y‖) := begin rw [←neg_inj, oangle_rev, ←oangle_neg_orientation_eq_neg, neg_inj] at h ⊢, rw add_comm, exact (-o).oangle_add_right_eq_arcsin_of_oangle_eq_pi_div_two h end /-- An angle in a right-angled triangle expressed using `arctan`. -/ lemma oangle_add_right_eq_arctan_of_oangle_eq_pi_div_two {x y : V} (h : o.oangle x y = ↑(π / 2)) : o.oangle x (x + y) = real.arctan (‖y‖ / ‖x‖) := begin have hs : (o.oangle x (x + y)).sign = 1, { rw [oangle_sign_add_right, h, real.angle.sign_coe_pi_div_two] }, rw [o.oangle_eq_angle_of_sign_eq_one hs, inner_product_geometry.angle_add_eq_arctan_of_inner_eq_zero (o.inner_eq_zero_of_oangle_eq_pi_div_two h) (o.left_ne_zero_of_oangle_eq_pi_div_two h)] end /-- An angle in a right-angled triangle expressed using `arctan`. -/ lemma oangle_add_left_eq_arctan_of_oangle_eq_pi_div_two {x y : V} (h : o.oangle x y = ↑(π / 2)) : o.oangle (x + y) y = real.arctan (‖x‖ / ‖y‖) := begin rw [←neg_inj, oangle_rev, ←oangle_neg_orientation_eq_neg, neg_inj] at h ⊢, rw add_comm, exact (-o).oangle_add_right_eq_arctan_of_oangle_eq_pi_div_two h end /-- The cosine of an angle in a right-angled triangle as a ratio of sides. -/ lemma cos_oangle_add_right_of_oangle_eq_pi_div_two {x y : V} (h : o.oangle x y = ↑(π / 2)) : real.angle.cos (o.oangle x (x + y)) = ‖x‖ / ‖x + y‖ := begin have hs : (o.oangle x (x + y)).sign = 1, { rw [oangle_sign_add_right, h, real.angle.sign_coe_pi_div_two] }, rw [o.oangle_eq_angle_of_sign_eq_one hs, real.angle.cos_coe, inner_product_geometry.cos_angle_add_of_inner_eq_zero (o.inner_eq_zero_of_oangle_eq_pi_div_two h)] end /-- The cosine of an angle in a right-angled triangle as a ratio of sides. -/ lemma cos_oangle_add_left_of_oangle_eq_pi_div_two {x y : V} (h : o.oangle x y = ↑(π / 2)) : real.angle.cos (o.oangle (x + y) y) = ‖y‖ / ‖x + y‖ := begin rw [←neg_inj, oangle_rev, ←oangle_neg_orientation_eq_neg, neg_inj] at h ⊢, rw add_comm, exact (-o).cos_oangle_add_right_of_oangle_eq_pi_div_two h end /-- The sine of an angle in a right-angled triangle as a ratio of sides. -/ lemma sin_oangle_add_right_of_oangle_eq_pi_div_two {x y : V} (h : o.oangle x y = ↑(π / 2)) : real.angle.sin (o.oangle x (x + y)) = ‖y‖ / ‖x + y‖ := begin have hs : (o.oangle x (x + y)).sign = 1, { rw [oangle_sign_add_right, h, real.angle.sign_coe_pi_div_two] }, rw [o.oangle_eq_angle_of_sign_eq_one hs, real.angle.sin_coe, inner_product_geometry.sin_angle_add_of_inner_eq_zero (o.inner_eq_zero_of_oangle_eq_pi_div_two h) (or.inl (o.left_ne_zero_of_oangle_eq_pi_div_two h))] end /-- The sine of an angle in a right-angled triangle as a ratio of sides. -/ lemma sin_oangle_add_left_of_oangle_eq_pi_div_two {x y : V} (h : o.oangle x y = ↑(π / 2)) : real.angle.sin (o.oangle (x + y) y) = ‖x‖ / ‖x + y‖ := begin rw [←neg_inj, oangle_rev, ←oangle_neg_orientation_eq_neg, neg_inj] at h ⊢, rw add_comm, exact (-o).sin_oangle_add_right_of_oangle_eq_pi_div_two h end /-- The tangent of an angle in a right-angled triangle as a ratio of sides. -/ lemma tan_oangle_add_right_of_oangle_eq_pi_div_two {x y : V} (h : o.oangle x y = ↑(π / 2)) : real.angle.tan (o.oangle x (x + y)) = ‖y‖ / ‖x‖ := begin have hs : (o.oangle x (x + y)).sign = 1, { rw [oangle_sign_add_right, h, real.angle.sign_coe_pi_div_two] }, rw [o.oangle_eq_angle_of_sign_eq_one hs, real.angle.tan_coe, inner_product_geometry.tan_angle_add_of_inner_eq_zero (o.inner_eq_zero_of_oangle_eq_pi_div_two h)] end /-- The tangent of an angle in a right-angled triangle as a ratio of sides. -/ lemma tan_oangle_add_left_of_oangle_eq_pi_div_two {x y : V} (h : o.oangle x y = ↑(π / 2)) : real.angle.tan (o.oangle (x + y) y) = ‖x‖ / ‖y‖ := begin rw [←neg_inj, oangle_rev, ←oangle_neg_orientation_eq_neg, neg_inj] at h ⊢, rw add_comm, exact (-o).tan_oangle_add_right_of_oangle_eq_pi_div_two h end /-- The cosine of an angle in a right-angled triangle multiplied by the hypotenuse equals the adjacent side. -/ lemma cos_oangle_add_right_mul_norm_of_oangle_eq_pi_div_two {x y : V} (h : o.oangle x y = ↑(π / 2)) : real.angle.cos (o.oangle x (x + y)) * ‖x + y‖ = ‖x‖ := begin have hs : (o.oangle x (x + y)).sign = 1, { rw [oangle_sign_add_right, h, real.angle.sign_coe_pi_div_two] }, rw [o.oangle_eq_angle_of_sign_eq_one hs, real.angle.cos_coe, inner_product_geometry.cos_angle_add_mul_norm_of_inner_eq_zero (o.inner_eq_zero_of_oangle_eq_pi_div_two h)] end /-- The cosine of an angle in a right-angled triangle multiplied by the hypotenuse equals the adjacent side. -/ lemma cos_oangle_add_left_mul_norm_of_oangle_eq_pi_div_two {x y : V} (h : o.oangle x y = ↑(π / 2)) : real.angle.cos (o.oangle (x + y) y) * ‖x + y‖ = ‖y‖ := begin rw [←neg_inj, oangle_rev, ←oangle_neg_orientation_eq_neg, neg_inj] at h ⊢, rw add_comm, exact (-o).cos_oangle_add_right_mul_norm_of_oangle_eq_pi_div_two h end /-- The sine of an angle in a right-angled triangle multiplied by the hypotenuse equals the opposite side. -/ lemma sin_oangle_add_right_mul_norm_of_oangle_eq_pi_div_two {x y : V} (h : o.oangle x y = ↑(π / 2)) : real.angle.sin (o.oangle x (x + y)) * ‖x + y‖ = ‖y‖ := begin have hs : (o.oangle x (x + y)).sign = 1, { rw [oangle_sign_add_right, h, real.angle.sign_coe_pi_div_two] }, rw [o.oangle_eq_angle_of_sign_eq_one hs, real.angle.sin_coe, inner_product_geometry.sin_angle_add_mul_norm_of_inner_eq_zero (o.inner_eq_zero_of_oangle_eq_pi_div_two h)] end /-- The sine of an angle in a right-angled triangle multiplied by the hypotenuse equals the opposite side. -/ lemma sin_oangle_add_left_mul_norm_of_oangle_eq_pi_div_two {x y : V} (h : o.oangle x y = ↑(π / 2)) : real.angle.sin (o.oangle (x + y) y) * ‖x + y‖ = ‖x‖ := begin rw [←neg_inj, oangle_rev, ←oangle_neg_orientation_eq_neg, neg_inj] at h ⊢, rw add_comm, exact (-o).sin_oangle_add_right_mul_norm_of_oangle_eq_pi_div_two h end /-- The tangent of an angle in a right-angled triangle multiplied by the adjacent side equals the opposite side. -/ lemma tan_oangle_add_right_mul_norm_of_oangle_eq_pi_div_two {x y : V} (h : o.oangle x y = ↑(π / 2)) : real.angle.tan (o.oangle x (x + y)) * ‖x‖ = ‖y‖ := begin have hs : (o.oangle x (x + y)).sign = 1, { rw [oangle_sign_add_right, h, real.angle.sign_coe_pi_div_two] }, rw [o.oangle_eq_angle_of_sign_eq_one hs, real.angle.tan_coe, inner_product_geometry.tan_angle_add_mul_norm_of_inner_eq_zero (o.inner_eq_zero_of_oangle_eq_pi_div_two h) (or.inl (o.left_ne_zero_of_oangle_eq_pi_div_two h))] end /-- The tangent of an angle in a right-angled triangle multiplied by the adjacent side equals the opposite side. -/ lemma tan_oangle_add_left_mul_norm_of_oangle_eq_pi_div_two {x y : V} (h : o.oangle x y = ↑(π / 2)) : real.angle.tan (o.oangle (x + y) y) * ‖y‖ = ‖x‖ := begin rw [←neg_inj, oangle_rev, ←oangle_neg_orientation_eq_neg, neg_inj] at h ⊢, rw add_comm, exact (-o).tan_oangle_add_right_mul_norm_of_oangle_eq_pi_div_two h end /-- A side of a right-angled triangle divided by the cosine of the adjacent angle equals the hypotenuse. -/ lemma norm_div_cos_oangle_add_right_of_oangle_eq_pi_div_two {x y : V} (h : o.oangle x y = ↑(π / 2)) : ‖x‖ / real.angle.cos (o.oangle x (x + y)) = ‖x + y‖ := begin have hs : (o.oangle x (x + y)).sign = 1, { rw [oangle_sign_add_right, h, real.angle.sign_coe_pi_div_two] }, rw [o.oangle_eq_angle_of_sign_eq_one hs, real.angle.cos_coe, inner_product_geometry.norm_div_cos_angle_add_of_inner_eq_zero (o.inner_eq_zero_of_oangle_eq_pi_div_two h) (or.inl (o.left_ne_zero_of_oangle_eq_pi_div_two h))] end /-- A side of a right-angled triangle divided by the cosine of the adjacent angle equals the hypotenuse. -/ lemma norm_div_cos_oangle_add_left_of_oangle_eq_pi_div_two {x y : V} (h : o.oangle x y = ↑(π / 2)) : ‖y‖ / real.angle.cos (o.oangle (x + y) y) = ‖x + y‖ := begin rw [←neg_inj, oangle_rev, ←oangle_neg_orientation_eq_neg, neg_inj] at h ⊢, rw add_comm, exact (-o).norm_div_cos_oangle_add_right_of_oangle_eq_pi_div_two h end /-- A side of a right-angled triangle divided by the sine of the opposite angle equals the hypotenuse. -/ lemma norm_div_sin_oangle_add_right_of_oangle_eq_pi_div_two {x y : V} (h : o.oangle x y = ↑(π / 2)) : ‖y‖ / real.angle.sin (o.oangle x (x + y)) = ‖x + y‖ := begin have hs : (o.oangle x (x + y)).sign = 1, { rw [oangle_sign_add_right, h, real.angle.sign_coe_pi_div_two] }, rw [o.oangle_eq_angle_of_sign_eq_one hs, real.angle.sin_coe, inner_product_geometry.norm_div_sin_angle_add_of_inner_eq_zero (o.inner_eq_zero_of_oangle_eq_pi_div_two h) (or.inr (o.right_ne_zero_of_oangle_eq_pi_div_two h))] end /-- A side of a right-angled triangle divided by the sine of the opposite angle equals the hypotenuse. -/ lemma norm_div_sin_oangle_add_left_of_oangle_eq_pi_div_two {x y : V} (h : o.oangle x y = ↑(π / 2)) : ‖x‖ / real.angle.sin (o.oangle (x + y) y) = ‖x + y‖ := begin rw [←neg_inj, oangle_rev, ←oangle_neg_orientation_eq_neg, neg_inj] at h ⊢, rw add_comm, exact (-o).norm_div_sin_oangle_add_right_of_oangle_eq_pi_div_two h end /-- A side of a right-angled triangle divided by the tangent of the opposite angle equals the adjacent side. -/ lemma norm_div_tan_oangle_add_right_of_oangle_eq_pi_div_two {x y : V} (h : o.oangle x y = ↑(π / 2)) : ‖y‖ / real.angle.tan (o.oangle x (x + y)) = ‖x‖ := begin have hs : (o.oangle x (x + y)).sign = 1, { rw [oangle_sign_add_right, h, real.angle.sign_coe_pi_div_two] }, rw [o.oangle_eq_angle_of_sign_eq_one hs, real.angle.tan_coe, inner_product_geometry.norm_div_tan_angle_add_of_inner_eq_zero (o.inner_eq_zero_of_oangle_eq_pi_div_two h) (or.inr (o.right_ne_zero_of_oangle_eq_pi_div_two h))] end /-- A side of a right-angled triangle divided by the tangent of the opposite angle equals the adjacent side. -/ lemma norm_div_tan_oangle_add_left_of_oangle_eq_pi_div_two {x y : V} (h : o.oangle x y = ↑(π / 2)) : ‖x‖ / real.angle.tan (o.oangle (x + y) y) = ‖y‖ := begin rw [←neg_inj, oangle_rev, ←oangle_neg_orientation_eq_neg, neg_inj] at h ⊢, rw add_comm, exact (-o).norm_div_tan_oangle_add_right_of_oangle_eq_pi_div_two h end /-- An angle in a right-angled triangle expressed using `arccos`, version subtracting vectors. -/ lemma oangle_sub_right_eq_arccos_of_oangle_eq_pi_div_two {x y : V} (h : o.oangle x y = ↑(π / 2)) : o.oangle y (y - x) = real.arccos (‖y‖ / ‖y - x‖) := begin have hs : (o.oangle y (y - x)).sign = 1, { rw [oangle_sign_sub_right_swap, h, real.angle.sign_coe_pi_div_two] }, rw [o.oangle_eq_angle_of_sign_eq_one hs, inner_product_geometry.angle_sub_eq_arccos_of_inner_eq_zero (o.inner_rev_eq_zero_of_oangle_eq_pi_div_two h)] end /-- An angle in a right-angled triangle expressed using `arccos`, version subtracting vectors. -/ lemma oangle_sub_left_eq_arccos_of_oangle_eq_pi_div_two {x y : V} (h : o.oangle x y = ↑(π / 2)) : o.oangle (x - y) x = real.arccos (‖x‖ / ‖x - y‖) := begin rw [←neg_inj, oangle_rev, ←oangle_neg_orientation_eq_neg, neg_inj] at h ⊢, exact (-o).oangle_sub_right_eq_arccos_of_oangle_eq_pi_div_two h end /-- An angle in a right-angled triangle expressed using `arcsin`, version subtracting vectors. -/ lemma oangle_sub_right_eq_arcsin_of_oangle_eq_pi_div_two {x y : V} (h : o.oangle x y = ↑(π / 2)) : o.oangle y (y - x) = real.arcsin (‖x‖ / ‖y - x‖) := begin have hs : (o.oangle y (y - x)).sign = 1, { rw [oangle_sign_sub_right_swap, h, real.angle.sign_coe_pi_div_two] }, rw [o.oangle_eq_angle_of_sign_eq_one hs, inner_product_geometry.angle_sub_eq_arcsin_of_inner_eq_zero (o.inner_rev_eq_zero_of_oangle_eq_pi_div_two h) (or.inl (o.right_ne_zero_of_oangle_eq_pi_div_two h))] end /-- An angle in a right-angled triangle expressed using `arcsin`, version subtracting vectors. -/ lemma oangle_sub_left_eq_arcsin_of_oangle_eq_pi_div_two {x y : V} (h : o.oangle x y = ↑(π / 2)) : o.oangle (x - y) x = real.arcsin (‖y‖ / ‖x - y‖) := begin rw [←neg_inj, oangle_rev, ←oangle_neg_orientation_eq_neg, neg_inj] at h ⊢, exact (-o).oangle_sub_right_eq_arcsin_of_oangle_eq_pi_div_two h end /-- An angle in a right-angled triangle expressed using `arctan`, version subtracting vectors. -/ lemma oangle_sub_right_eq_arctan_of_oangle_eq_pi_div_two {x y : V} (h : o.oangle x y = ↑(π / 2)) : o.oangle y (y - x) = real.arctan (‖x‖ / ‖y‖) := begin have hs : (o.oangle y (y - x)).sign = 1, { rw [oangle_sign_sub_right_swap, h, real.angle.sign_coe_pi_div_two] }, rw [o.oangle_eq_angle_of_sign_eq_one hs, inner_product_geometry.angle_sub_eq_arctan_of_inner_eq_zero (o.inner_rev_eq_zero_of_oangle_eq_pi_div_two h) (o.right_ne_zero_of_oangle_eq_pi_div_two h)] end /-- An angle in a right-angled triangle expressed using `arctan`, version subtracting vectors. -/ lemma oangle_sub_left_eq_arctan_of_oangle_eq_pi_div_two {x y : V} (h : o.oangle x y = ↑(π / 2)) : o.oangle (x - y) x = real.arctan (‖y‖ / ‖x‖) := begin rw [←neg_inj, oangle_rev, ←oangle_neg_orientation_eq_neg, neg_inj] at h ⊢, exact (-o).oangle_sub_right_eq_arctan_of_oangle_eq_pi_div_two h end /-- The cosine of an angle in a right-angled triangle as a ratio of sides, version subtracting vectors. -/ lemma cos_oangle_sub_right_of_oangle_eq_pi_div_two {x y : V} (h : o.oangle x y = ↑(π / 2)) : real.angle.cos (o.oangle y (y - x)) = ‖y‖ / ‖y - x‖ := begin have hs : (o.oangle y (y - x)).sign = 1, { rw [oangle_sign_sub_right_swap, h, real.angle.sign_coe_pi_div_two] }, rw [o.oangle_eq_angle_of_sign_eq_one hs, real.angle.cos_coe, inner_product_geometry.cos_angle_sub_of_inner_eq_zero (o.inner_rev_eq_zero_of_oangle_eq_pi_div_two h)] end /-- The cosine of an angle in a right-angled triangle as a ratio of sides, version subtracting vectors. -/ lemma cos_oangle_sub_left_of_oangle_eq_pi_div_two {x y : V} (h : o.oangle x y = ↑(π / 2)) : real.angle.cos (o.oangle (x - y) x) = ‖x‖ / ‖x - y‖ := begin rw [←neg_inj, oangle_rev, ←oangle_neg_orientation_eq_neg, neg_inj] at h ⊢, exact (-o).cos_oangle_sub_right_of_oangle_eq_pi_div_two h end /-- The sine of an angle in a right-angled triangle as a ratio of sides, version subtracting vectors. -/ lemma sin_oangle_sub_right_of_oangle_eq_pi_div_two {x y : V} (h : o.oangle x y = ↑(π / 2)) : real.angle.sin (o.oangle y (y - x)) = ‖x‖ / ‖y - x‖ := begin have hs : (o.oangle y (y - x)).sign = 1, { rw [oangle_sign_sub_right_swap, h, real.angle.sign_coe_pi_div_two] }, rw [o.oangle_eq_angle_of_sign_eq_one hs, real.angle.sin_coe, inner_product_geometry.sin_angle_sub_of_inner_eq_zero (o.inner_rev_eq_zero_of_oangle_eq_pi_div_two h) (or.inl (o.right_ne_zero_of_oangle_eq_pi_div_two h))] end /-- The sine of an angle in a right-angled triangle as a ratio of sides, version subtracting vectors. -/ lemma sin_oangle_sub_left_of_oangle_eq_pi_div_two {x y : V} (h : o.oangle x y = ↑(π / 2)) : real.angle.sin (o.oangle (x - y) x) = ‖y‖ / ‖x - y‖ := begin rw [←neg_inj, oangle_rev, ←oangle_neg_orientation_eq_neg, neg_inj] at h ⊢, exact (-o).sin_oangle_sub_right_of_oangle_eq_pi_div_two h end /-- The tangent of an angle in a right-angled triangle as a ratio of sides, version subtracting vectors. -/ lemma tan_oangle_sub_right_of_oangle_eq_pi_div_two {x y : V} (h : o.oangle x y = ↑(π / 2)) : real.angle.tan (o.oangle y (y - x)) = ‖x‖ / ‖y‖ := begin have hs : (o.oangle y (y - x)).sign = 1, { rw [oangle_sign_sub_right_swap, h, real.angle.sign_coe_pi_div_two] }, rw [o.oangle_eq_angle_of_sign_eq_one hs, real.angle.tan_coe, inner_product_geometry.tan_angle_sub_of_inner_eq_zero (o.inner_rev_eq_zero_of_oangle_eq_pi_div_two h)] end /-- The tangent of an angle in a right-angled triangle as a ratio of sides, version subtracting vectors. -/ lemma tan_oangle_sub_left_of_oangle_eq_pi_div_two {x y : V} (h : o.oangle x y = ↑(π / 2)) : real.angle.tan (o.oangle (x - y) x) = ‖y‖ / ‖x‖ := begin rw [←neg_inj, oangle_rev, ←oangle_neg_orientation_eq_neg, neg_inj] at h ⊢, exact (-o).tan_oangle_sub_right_of_oangle_eq_pi_div_two h end /-- The cosine of an angle in a right-angled triangle multiplied by the hypotenuse equals the adjacent side, version subtracting vectors. -/ lemma cos_oangle_sub_right_mul_norm_of_oangle_eq_pi_div_two {x y : V} (h : o.oangle x y = ↑(π / 2)) : real.angle.cos (o.oangle y (y - x)) * ‖y - x‖ = ‖y‖ := begin have hs : (o.oangle y (y - x)).sign = 1, { rw [oangle_sign_sub_right_swap, h, real.angle.sign_coe_pi_div_two] }, rw [o.oangle_eq_angle_of_sign_eq_one hs, real.angle.cos_coe, inner_product_geometry.cos_angle_sub_mul_norm_of_inner_eq_zero (o.inner_rev_eq_zero_of_oangle_eq_pi_div_two h)] end /-- The cosine of an angle in a right-angled triangle multiplied by the hypotenuse equals the adjacent side, version subtracting vectors. -/ lemma cos_oangle_sub_left_mul_norm_of_oangle_eq_pi_div_two {x y : V} (h : o.oangle x y = ↑(π / 2)) : real.angle.cos (o.oangle (x - y) x) * ‖x - y‖ = ‖x‖ := begin rw [←neg_inj, oangle_rev, ←oangle_neg_orientation_eq_neg, neg_inj] at h ⊢, exact (-o).cos_oangle_sub_right_mul_norm_of_oangle_eq_pi_div_two h end /-- The sine of an angle in a right-angled triangle multiplied by the hypotenuse equals the opposite side, version subtracting vectors. -/ lemma sin_oangle_sub_right_mul_norm_of_oangle_eq_pi_div_two {x y : V} (h : o.oangle x y = ↑(π / 2)) : real.angle.sin (o.oangle y (y - x)) * ‖y - x‖ = ‖x‖ := begin have hs : (o.oangle y (y - x)).sign = 1, { rw [oangle_sign_sub_right_swap, h, real.angle.sign_coe_pi_div_two] }, rw [o.oangle_eq_angle_of_sign_eq_one hs, real.angle.sin_coe, inner_product_geometry.sin_angle_sub_mul_norm_of_inner_eq_zero (o.inner_rev_eq_zero_of_oangle_eq_pi_div_two h)] end /-- The sine of an angle in a right-angled triangle multiplied by the hypotenuse equals the opposite side, version subtracting vectors. -/ lemma sin_oangle_sub_left_mul_norm_of_oangle_eq_pi_div_two {x y : V} (h : o.oangle x y = ↑(π / 2)) : real.angle.sin (o.oangle (x - y) x) * ‖x - y‖ = ‖y‖ := begin rw [←neg_inj, oangle_rev, ←oangle_neg_orientation_eq_neg, neg_inj] at h ⊢, exact (-o).sin_oangle_sub_right_mul_norm_of_oangle_eq_pi_div_two h end /-- The tangent of an angle in a right-angled triangle multiplied by the adjacent side equals the opposite side, version subtracting vectors. -/ lemma tan_oangle_sub_right_mul_norm_of_oangle_eq_pi_div_two {x y : V} (h : o.oangle x y = ↑(π / 2)) : real.angle.tan (o.oangle y (y - x)) * ‖y‖ = ‖x‖ := begin have hs : (o.oangle y (y - x)).sign = 1, { rw [oangle_sign_sub_right_swap, h, real.angle.sign_coe_pi_div_two] }, rw [o.oangle_eq_angle_of_sign_eq_one hs, real.angle.tan_coe, inner_product_geometry.tan_angle_sub_mul_norm_of_inner_eq_zero (o.inner_rev_eq_zero_of_oangle_eq_pi_div_two h) (or.inl (o.right_ne_zero_of_oangle_eq_pi_div_two h))] end /-- The tangent of an angle in a right-angled triangle multiplied by the adjacent side equals the opposite side, version subtracting vectors. -/ lemma tan_oangle_sub_left_mul_norm_of_oangle_eq_pi_div_two {x y : V} (h : o.oangle x y = ↑(π / 2)) : real.angle.tan (o.oangle (x - y) x) * ‖x‖ = ‖y‖ := begin rw [←neg_inj, oangle_rev, ←oangle_neg_orientation_eq_neg, neg_inj] at h ⊢, exact (-o).tan_oangle_sub_right_mul_norm_of_oangle_eq_pi_div_two h end /-- A side of a right-angled triangle divided by the cosine of the adjacent angle equals the hypotenuse, version subtracting vectors. -/ lemma norm_div_cos_oangle_sub_right_of_oangle_eq_pi_div_two {x y : V} (h : o.oangle x y = ↑(π / 2)) : ‖y‖ / real.angle.cos (o.oangle y (y - x)) = ‖y - x‖ := begin have hs : (o.oangle y (y - x)).sign = 1, { rw [oangle_sign_sub_right_swap, h, real.angle.sign_coe_pi_div_two] }, rw [o.oangle_eq_angle_of_sign_eq_one hs, real.angle.cos_coe, inner_product_geometry.norm_div_cos_angle_sub_of_inner_eq_zero (o.inner_rev_eq_zero_of_oangle_eq_pi_div_two h) (or.inl (o.right_ne_zero_of_oangle_eq_pi_div_two h))] end /-- A side of a right-angled triangle divided by the cosine of the adjacent angle equals the hypotenuse, version subtracting vectors. -/ lemma norm_div_cos_oangle_sub_left_of_oangle_eq_pi_div_two {x y : V} (h : o.oangle x y = ↑(π / 2)) : ‖x‖ / real.angle.cos (o.oangle (x - y) x) = ‖x - y‖ := begin rw [←neg_inj, oangle_rev, ←oangle_neg_orientation_eq_neg, neg_inj] at h ⊢, exact (-o).norm_div_cos_oangle_sub_right_of_oangle_eq_pi_div_two h end /-- A side of a right-angled triangle divided by the sine of the opposite angle equals the hypotenuse, version subtracting vectors. -/ lemma norm_div_sin_oangle_sub_right_of_oangle_eq_pi_div_two {x y : V} (h : o.oangle x y = ↑(π / 2)) : ‖x‖ / real.angle.sin (o.oangle y (y - x)) = ‖y - x‖ := begin have hs : (o.oangle y (y - x)).sign = 1, { rw [oangle_sign_sub_right_swap, h, real.angle.sign_coe_pi_div_two] }, rw [o.oangle_eq_angle_of_sign_eq_one hs, real.angle.sin_coe, inner_product_geometry.norm_div_sin_angle_sub_of_inner_eq_zero (o.inner_rev_eq_zero_of_oangle_eq_pi_div_two h) (or.inr (o.left_ne_zero_of_oangle_eq_pi_div_two h))] end /-- A side of a right-angled triangle divided by the sine of the opposite angle equals the hypotenuse, version subtracting vectors. -/ lemma norm_div_sin_oangle_sub_left_of_oangle_eq_pi_div_two {x y : V} (h : o.oangle x y = ↑(π / 2)) : ‖y‖ / real.angle.sin (o.oangle (x - y) x) = ‖x - y‖ := begin rw [←neg_inj, oangle_rev, ←oangle_neg_orientation_eq_neg, neg_inj] at h ⊢, exact (-o).norm_div_sin_oangle_sub_right_of_oangle_eq_pi_div_two h end /-- A side of a right-angled triangle divided by the tangent of the opposite angle equals the adjacent side, version subtracting vectors. -/ lemma norm_div_tan_oangle_sub_right_of_oangle_eq_pi_div_two {x y : V} (h : o.oangle x y = ↑(π / 2)) : ‖x‖ / real.angle.tan (o.oangle y (y - x)) = ‖y‖ := begin have hs : (o.oangle y (y - x)).sign = 1, { rw [oangle_sign_sub_right_swap, h, real.angle.sign_coe_pi_div_two] }, rw [o.oangle_eq_angle_of_sign_eq_one hs, real.angle.tan_coe, inner_product_geometry.norm_div_tan_angle_sub_of_inner_eq_zero (o.inner_rev_eq_zero_of_oangle_eq_pi_div_two h) (or.inr (o.left_ne_zero_of_oangle_eq_pi_div_two h))] end /-- A side of a right-angled triangle divided by the tangent of the opposite angle equals the adjacent side, version subtracting vectors. -/ lemma norm_div_tan_oangle_sub_left_of_oangle_eq_pi_div_two {x y : V} (h : o.oangle x y = ↑(π / 2)) : ‖y‖ / real.angle.tan (o.oangle (x - y) x) = ‖x‖ := begin rw [←neg_inj, oangle_rev, ←oangle_neg_orientation_eq_neg, neg_inj] at h ⊢, exact (-o).norm_div_tan_oangle_sub_right_of_oangle_eq_pi_div_two h end /-- An angle in a right-angled triangle expressed using `arctan`, where one side is a multiple of a rotation of another by `π / 2`. -/ lemma oangle_add_right_smul_rotation_pi_div_two {x : V} (h : x ≠ 0) (r : ℝ) : o.oangle x (x + r • o.rotation (π / 2 : ℝ) x) = real.arctan r := begin rcases lt_trichotomy r 0 with hr | rfl | hr, { have ha : o.oangle x (r • o.rotation (π / 2 : ℝ) x) = -(π / 2 : ℝ), { rw [o.oangle_smul_right_of_neg _ _ hr, o.oangle_neg_right h, o.oangle_rotation_self_right h, ←sub_eq_zero, add_comm, sub_neg_eq_add, ←real.angle.coe_add, ←real.angle.coe_add, add_assoc, add_halves, ←two_mul, real.angle.coe_two_pi], simpa using h }, rw [←neg_inj, ←oangle_neg_orientation_eq_neg, neg_neg] at ha, rw [←neg_inj, oangle_rev, ←oangle_neg_orientation_eq_neg, neg_inj, oangle_rev, (-o).oangle_add_right_eq_arctan_of_oangle_eq_pi_div_two ha, norm_smul, linear_isometry_equiv.norm_map, mul_div_assoc, div_self (norm_ne_zero_iff.2 h), mul_one, real.norm_eq_abs, abs_of_neg hr, real.arctan_neg, real.angle.coe_neg, neg_neg] }, { rw [zero_smul, add_zero, oangle_self, real.arctan_zero, real.angle.coe_zero] }, { have ha : o.oangle x (r • o.rotation (π / 2 : ℝ) x) = (π / 2 : ℝ), { rw [o.oangle_smul_right_of_pos _ _ hr, o.oangle_rotation_self_right h] }, rw [o.oangle_add_right_eq_arctan_of_oangle_eq_pi_div_two ha, norm_smul, linear_isometry_equiv.norm_map, mul_div_assoc, div_self (norm_ne_zero_iff.2 h), mul_one, real.norm_eq_abs, abs_of_pos hr] } end /-- An angle in a right-angled triangle expressed using `arctan`, where one side is a multiple of a rotation of another by `π / 2`. -/ lemma oangle_add_left_smul_rotation_pi_div_two {x : V} (h : x ≠ 0) (r : ℝ) : o.oangle (x + r • o.rotation (π / 2 : ℝ) x) (r • o.rotation (π / 2 : ℝ) x) = real.arctan r⁻¹ := begin by_cases hr : r = 0, { simp [hr] }, rw [←neg_inj, oangle_rev, ←oangle_neg_orientation_eq_neg, neg_inj, ←neg_neg ((π / 2 : ℝ) : real.angle), ←rotation_neg_orientation_eq_neg, add_comm], have hx : x = r⁻¹ • ((-o).rotation (π / 2 : ℝ) (r • ((-o).rotation (-(π / 2 : ℝ)) x))), { simp [hr] }, nth_rewrite 2 hx, refine (-o).oangle_add_right_smul_rotation_pi_div_two _ _, simp [hr, h] end /-- The tangent of an angle in a right-angled triangle, where one side is a multiple of a rotation of another by `π / 2`. -/ lemma tan_oangle_add_right_smul_rotation_pi_div_two {x : V} (h : x ≠ 0) (r : ℝ) : real.angle.tan (o.oangle x (x + r • o.rotation (π / 2 : ℝ) x)) = r := by rw [o.oangle_add_right_smul_rotation_pi_div_two h, real.angle.tan_coe, real.tan_arctan] /-- The tangent of an angle in a right-angled triangle, where one side is a multiple of a rotation of another by `π / 2`. -/ lemma tan_oangle_add_left_smul_rotation_pi_div_two {x : V} (h : x ≠ 0) (r : ℝ) : real.angle.tan (o.oangle (x + r • o.rotation (π / 2 : ℝ) x) (r • o.rotation (π / 2 : ℝ) x)) = r⁻¹ := by rw [o.oangle_add_left_smul_rotation_pi_div_two h, real.angle.tan_coe, real.tan_arctan] /-- An angle in a right-angled triangle expressed using `arctan`, where one side is a multiple of a rotation of another by `π / 2`, version subtracting vectors. -/ lemma oangle_sub_right_smul_rotation_pi_div_two {x : V} (h : x ≠ 0) (r : ℝ) : o.oangle (r • o.rotation (π / 2 : ℝ) x) (r • o.rotation (π / 2 : ℝ) x - x) = real.arctan r⁻¹ := begin by_cases hr : r = 0, { simp [hr] }, have hx : -x = r⁻¹ • (o.rotation (π / 2 : ℝ) (r • (o.rotation (π / 2 : ℝ) x))), { simp [hr, ←real.angle.coe_add] }, rw [sub_eq_add_neg, hx, o.oangle_add_right_smul_rotation_pi_div_two], simpa [hr] using h end /-- An angle in a right-angled triangle expressed using `arctan`, where one side is a multiple of a rotation of another by `π / 2`, version subtracting vectors. -/ lemma oangle_sub_left_smul_rotation_pi_div_two {x : V} (h : x ≠ 0) (r : ℝ) : o.oangle (x - r • o.rotation (π / 2 : ℝ) x) x = real.arctan r := begin by_cases hr : r = 0, { simp [hr] }, have hx : x = r⁻¹ • (o.rotation (π / 2 : ℝ) (-(r • (o.rotation (π / 2 : ℝ) x)))), { simp [hr, ←real.angle.coe_add] }, rw [sub_eq_add_neg, add_comm], nth_rewrite 2 hx, nth_rewrite 1 hx, rw [o.oangle_add_left_smul_rotation_pi_div_two, inv_inv], simpa [hr] using h end end orientation namespace euclidean_geometry open finite_dimensional variables {V : Type*} {P : Type*} [normed_add_comm_group V] [inner_product_space ℝ V] [metric_space P] [normed_add_torsor V P] [hd2 : fact (finrank ℝ V = 2)] [module.oriented ℝ V (fin 2)] include hd2 /-- An angle in a right-angled triangle expressed using `arccos`. -/ lemma oangle_right_eq_arccos_of_oangle_eq_pi_div_two {p₁ p₂ p₃ : P} (h : ∡ p₁ p₂ p₃ = ↑(π / 2)) : ∡ p₂ p₃ p₁ = real.arccos (dist p₃ p₂ / dist p₁ p₃) := begin have hs : (∡ p₂ p₃ p₁).sign = 1, { rw [oangle_rotate_sign, h, real.angle.sign_coe_pi_div_two] }, rw [oangle_eq_angle_of_sign_eq_one hs, angle_eq_arccos_of_angle_eq_pi_div_two (angle_eq_pi_div_two_of_oangle_eq_pi_div_two h)] end /-- An angle in a right-angled triangle expressed using `arccos`. -/ lemma oangle_left_eq_arccos_of_oangle_eq_pi_div_two {p₁ p₂ p₃ : P} (h : ∡ p₁ p₂ p₃ = ↑(π / 2)) : ∡ p₃ p₁ p₂ = real.arccos (dist p₁ p₂ / dist p₁ p₃) := begin have hs : (∡ p₃ p₁ p₂).sign = 1, { rw [←oangle_rotate_sign, h, real.angle.sign_coe_pi_div_two] }, rw [oangle_eq_angle_of_sign_eq_one hs, angle_comm, angle_eq_arccos_of_angle_eq_pi_div_two (angle_rev_eq_pi_div_two_of_oangle_eq_pi_div_two h), dist_comm p₁ p₃] end /-- An angle in a right-angled triangle expressed using `arcsin`. -/ lemma oangle_right_eq_arcsin_of_oangle_eq_pi_div_two {p₁ p₂ p₃ : P} (h : ∡ p₁ p₂ p₃ = ↑(π / 2)) : ∡ p₂ p₃ p₁ = real.arcsin (dist p₁ p₂ / dist p₁ p₃) := begin have hs : (∡ p₂ p₃ p₁).sign = 1, { rw [oangle_rotate_sign, h, real.angle.sign_coe_pi_div_two] }, rw [oangle_eq_angle_of_sign_eq_one hs, angle_eq_arcsin_of_angle_eq_pi_div_two (angle_eq_pi_div_two_of_oangle_eq_pi_div_two h) (or.inl (left_ne_of_oangle_eq_pi_div_two h))] end /-- An angle in a right-angled triangle expressed using `arcsin`. -/ lemma oangle_left_eq_arcsin_of_oangle_eq_pi_div_two {p₁ p₂ p₃ : P} (h : ∡ p₁ p₂ p₃ = ↑(π / 2)) : ∡ p₃ p₁ p₂ = real.arcsin (dist p₃ p₂ / dist p₁ p₃) := begin have hs : (∡ p₃ p₁ p₂).sign = 1, { rw [←oangle_rotate_sign, h, real.angle.sign_coe_pi_div_two] }, rw [oangle_eq_angle_of_sign_eq_one hs, angle_comm, angle_eq_arcsin_of_angle_eq_pi_div_two (angle_rev_eq_pi_div_two_of_oangle_eq_pi_div_two h) (or.inr (left_ne_of_oangle_eq_pi_div_two h)), dist_comm p₁ p₃] end /-- An angle in a right-angled triangle expressed using `arctan`. -/ lemma oangle_right_eq_arctan_of_oangle_eq_pi_div_two {p₁ p₂ p₃ : P} (h : ∡ p₁ p₂ p₃ = ↑(π / 2)) : ∡ p₂ p₃ p₁ = real.arctan (dist p₁ p₂ / dist p₃ p₂) := begin have hs : (∡ p₂ p₃ p₁).sign = 1, { rw [oangle_rotate_sign, h, real.angle.sign_coe_pi_div_two] }, rw [oangle_eq_angle_of_sign_eq_one hs, angle_eq_arctan_of_angle_eq_pi_div_two (angle_eq_pi_div_two_of_oangle_eq_pi_div_two h) (right_ne_of_oangle_eq_pi_div_two h)] end /-- An angle in a right-angled triangle expressed using `arctan`. -/ lemma oangle_left_eq_arctan_of_oangle_eq_pi_div_two {p₁ p₂ p₃ : P} (h : ∡ p₁ p₂ p₃ = ↑(π / 2)) : ∡ p₃ p₁ p₂ = real.arctan (dist p₃ p₂ / dist p₁ p₂) := begin have hs : (∡ p₃ p₁ p₂).sign = 1, { rw [←oangle_rotate_sign, h, real.angle.sign_coe_pi_div_two] }, rw [oangle_eq_angle_of_sign_eq_one hs, angle_comm, angle_eq_arctan_of_angle_eq_pi_div_two (angle_rev_eq_pi_div_two_of_oangle_eq_pi_div_two h) (left_ne_of_oangle_eq_pi_div_two h)] end /-- The cosine of an angle in a right-angled triangle as a ratio of sides. -/ lemma cos_oangle_right_of_oangle_eq_pi_div_two {p₁ p₂ p₃ : P} (h : ∡ p₁ p₂ p₃ = ↑(π / 2)) : real.angle.cos (∡ p₂ p₃ p₁) = dist p₃ p₂ / dist p₁ p₃ := begin have hs : (∡ p₂ p₃ p₁).sign = 1, { rw [oangle_rotate_sign, h, real.angle.sign_coe_pi_div_two] }, rw [oangle_eq_angle_of_sign_eq_one hs, real.angle.cos_coe, cos_angle_of_angle_eq_pi_div_two (angle_eq_pi_div_two_of_oangle_eq_pi_div_two h)] end /-- The cosine of an angle in a right-angled triangle as a ratio of sides. -/ lemma cos_oangle_left_of_oangle_eq_pi_div_two {p₁ p₂ p₃ : P} (h : ∡ p₁ p₂ p₃ = ↑(π / 2)) : real.angle.cos (∡ p₃ p₁ p₂) = dist p₁ p₂ / dist p₁ p₃ := begin have hs : (∡ p₃ p₁ p₂).sign = 1, { rw [←oangle_rotate_sign, h, real.angle.sign_coe_pi_div_two] }, rw [oangle_eq_angle_of_sign_eq_one hs, angle_comm, real.angle.cos_coe, cos_angle_of_angle_eq_pi_div_two (angle_rev_eq_pi_div_two_of_oangle_eq_pi_div_two h), dist_comm p₁ p₃] end /-- The sine of an angle in a right-angled triangle as a ratio of sides. -/ lemma sin_oangle_right_of_oangle_eq_pi_div_two {p₁ p₂ p₃ : P} (h : ∡ p₁ p₂ p₃ = ↑(π / 2)) : real.angle.sin (∡ p₂ p₃ p₁) = dist p₁ p₂ / dist p₁ p₃ := begin have hs : (∡ p₂ p₃ p₁).sign = 1, { rw [oangle_rotate_sign, h, real.angle.sign_coe_pi_div_two] }, rw [oangle_eq_angle_of_sign_eq_one hs, real.angle.sin_coe, sin_angle_of_angle_eq_pi_div_two (angle_eq_pi_div_two_of_oangle_eq_pi_div_two h) (or.inl (left_ne_of_oangle_eq_pi_div_two h))] end /-- The sine of an angle in a right-angled triangle as a ratio of sides. -/ lemma sin_oangle_left_of_oangle_eq_pi_div_two {p₁ p₂ p₃ : P} (h : ∡ p₁ p₂ p₃ = ↑(π / 2)) : real.angle.sin (∡ p₃ p₁ p₂) = dist p₃ p₂ / dist p₁ p₃ := begin have hs : (∡ p₃ p₁ p₂).sign = 1, { rw [←oangle_rotate_sign, h, real.angle.sign_coe_pi_div_two] }, rw [oangle_eq_angle_of_sign_eq_one hs, angle_comm, real.angle.sin_coe, sin_angle_of_angle_eq_pi_div_two (angle_rev_eq_pi_div_two_of_oangle_eq_pi_div_two h) (or.inr (left_ne_of_oangle_eq_pi_div_two h)), dist_comm p₁ p₃] end /-- The tangent of an angle in a right-angled triangle as a ratio of sides. -/ lemma tan_oangle_right_of_oangle_eq_pi_div_two {p₁ p₂ p₃ : P} (h : ∡ p₁ p₂ p₃ = ↑(π / 2)) : real.angle.tan (∡ p₂ p₃ p₁) = dist p₁ p₂ / dist p₃ p₂ := begin have hs : (∡ p₂ p₃ p₁).sign = 1, { rw [oangle_rotate_sign, h, real.angle.sign_coe_pi_div_two] }, rw [oangle_eq_angle_of_sign_eq_one hs, real.angle.tan_coe, tan_angle_of_angle_eq_pi_div_two (angle_eq_pi_div_two_of_oangle_eq_pi_div_two h)] end /-- The tangent of an angle in a right-angled triangle as a ratio of sides. -/ lemma tan_oangle_left_of_oangle_eq_pi_div_two {p₁ p₂ p₃ : P} (h : ∡ p₁ p₂ p₃ = ↑(π / 2)) : real.angle.tan (∡ p₃ p₁ p₂) = dist p₃ p₂ / dist p₁ p₂ := begin have hs : (∡ p₃ p₁ p₂).sign = 1, { rw [←oangle_rotate_sign, h, real.angle.sign_coe_pi_div_two] }, rw [oangle_eq_angle_of_sign_eq_one hs, angle_comm, real.angle.tan_coe, tan_angle_of_angle_eq_pi_div_two (angle_rev_eq_pi_div_two_of_oangle_eq_pi_div_two h)] end /-- The cosine of an angle in a right-angled triangle multiplied by the hypotenuse equals the adjacent side. -/ lemma cos_oangle_right_mul_dist_of_oangle_eq_pi_div_two {p₁ p₂ p₃ : P} (h : ∡ p₁ p₂ p₃ = ↑(π / 2)) : real.angle.cos (∡ p₂ p₃ p₁) * dist p₁ p₃ = dist p₃ p₂ := begin have hs : (∡ p₂ p₃ p₁).sign = 1, { rw [oangle_rotate_sign, h, real.angle.sign_coe_pi_div_two] }, rw [oangle_eq_angle_of_sign_eq_one hs, real.angle.cos_coe, cos_angle_mul_dist_of_angle_eq_pi_div_two (angle_eq_pi_div_two_of_oangle_eq_pi_div_two h)] end /-- The cosine of an angle in a right-angled triangle multiplied by the hypotenuse equals the adjacent side. -/ lemma cos_oangle_left_mul_dist_of_oangle_eq_pi_div_two {p₁ p₂ p₃ : P} (h : ∡ p₁ p₂ p₃ = ↑(π / 2)) : real.angle.cos (∡ p₃ p₁ p₂) * dist p₁ p₃ = dist p₁ p₂ := begin have hs : (∡ p₃ p₁ p₂).sign = 1, { rw [←oangle_rotate_sign, h, real.angle.sign_coe_pi_div_two] }, rw [oangle_eq_angle_of_sign_eq_one hs, angle_comm, real.angle.cos_coe, dist_comm p₁ p₃, cos_angle_mul_dist_of_angle_eq_pi_div_two (angle_rev_eq_pi_div_two_of_oangle_eq_pi_div_two h)] end /-- The sine of an angle in a right-angled triangle multiplied by the hypotenuse equals the opposite side. -/ lemma sin_oangle_right_mul_dist_of_oangle_eq_pi_div_two {p₁ p₂ p₃ : P} (h : ∡ p₁ p₂ p₃ = ↑(π / 2)) : real.angle.sin (∡ p₂ p₃ p₁) * dist p₁ p₃ = dist p₁ p₂ := begin have hs : (∡ p₂ p₃ p₁).sign = 1, { rw [oangle_rotate_sign, h, real.angle.sign_coe_pi_div_two] }, rw [oangle_eq_angle_of_sign_eq_one hs, real.angle.sin_coe, sin_angle_mul_dist_of_angle_eq_pi_div_two (angle_eq_pi_div_two_of_oangle_eq_pi_div_two h)] end /-- The sine of an angle in a right-angled triangle multiplied by the hypotenuse equals the opposite side. -/ lemma sin_oangle_left_mul_dist_of_oangle_eq_pi_div_two {p₁ p₂ p₃ : P} (h : ∡ p₁ p₂ p₃ = ↑(π / 2)) : real.angle.sin (∡ p₃ p₁ p₂) * dist p₁ p₃ = dist p₃ p₂ := begin have hs : (∡ p₃ p₁ p₂).sign = 1, { rw [←oangle_rotate_sign, h, real.angle.sign_coe_pi_div_two] }, rw [oangle_eq_angle_of_sign_eq_one hs, angle_comm, real.angle.sin_coe, dist_comm p₁ p₃, sin_angle_mul_dist_of_angle_eq_pi_div_two (angle_rev_eq_pi_div_two_of_oangle_eq_pi_div_two h)] end /-- The tangent of an angle in a right-angled triangle multiplied by the adjacent side equals the opposite side. -/ lemma tan_oangle_right_mul_dist_of_oangle_eq_pi_div_two {p₁ p₂ p₃ : P} (h : ∡ p₁ p₂ p₃ = ↑(π / 2)) : real.angle.tan (∡ p₂ p₃ p₁) * dist p₃ p₂ = dist p₁ p₂ := begin have hs : (∡ p₂ p₃ p₁).sign = 1, { rw [oangle_rotate_sign, h, real.angle.sign_coe_pi_div_two] }, rw [oangle_eq_angle_of_sign_eq_one hs, real.angle.tan_coe, tan_angle_mul_dist_of_angle_eq_pi_div_two (angle_eq_pi_div_two_of_oangle_eq_pi_div_two h) (or.inr (right_ne_of_oangle_eq_pi_div_two h))] end /-- The tangent of an angle in a right-angled triangle multiplied by the adjacent side equals the opposite side. -/ lemma tan_oangle_left_mul_dist_of_oangle_eq_pi_div_two {p₁ p₂ p₃ : P} (h : ∡ p₁ p₂ p₃ = ↑(π / 2)) : real.angle.tan (∡ p₃ p₁ p₂) * dist p₁ p₂ = dist p₃ p₂ := begin have hs : (∡ p₃ p₁ p₂).sign = 1, { rw [←oangle_rotate_sign, h, real.angle.sign_coe_pi_div_two] }, rw [oangle_eq_angle_of_sign_eq_one hs, angle_comm, real.angle.tan_coe, tan_angle_mul_dist_of_angle_eq_pi_div_two (angle_rev_eq_pi_div_two_of_oangle_eq_pi_div_two h) (or.inr (left_ne_of_oangle_eq_pi_div_two h))] end /-- A side of a right-angled triangle divided by the cosine of the adjacent angle equals the hypotenuse. -/ lemma dist_div_cos_oangle_right_of_oangle_eq_pi_div_two {p₁ p₂ p₃ : P} (h : ∡ p₁ p₂ p₃ = ↑(π / 2)) : dist p₃ p₂ / real.angle.cos (∡ p₂ p₃ p₁) = dist p₁ p₃ := begin have hs : (∡ p₂ p₃ p₁).sign = 1, { rw [oangle_rotate_sign, h, real.angle.sign_coe_pi_div_two] }, rw [oangle_eq_angle_of_sign_eq_one hs, real.angle.cos_coe, dist_div_cos_angle_of_angle_eq_pi_div_two (angle_eq_pi_div_two_of_oangle_eq_pi_div_two h) (or.inr (right_ne_of_oangle_eq_pi_div_two h))] end /-- A side of a right-angled triangle divided by the cosine of the adjacent angle equals the hypotenuse. -/ lemma dist_div_cos_oangle_left_of_oangle_eq_pi_div_two {p₁ p₂ p₃ : P} (h : ∡ p₁ p₂ p₃ = ↑(π / 2)) : dist p₁ p₂ / real.angle.cos (∡ p₃ p₁ p₂) = dist p₁ p₃ := begin have hs : (∡ p₃ p₁ p₂).sign = 1, { rw [←oangle_rotate_sign, h, real.angle.sign_coe_pi_div_two] }, rw [oangle_eq_angle_of_sign_eq_one hs, angle_comm, real.angle.cos_coe, dist_comm p₁ p₃, dist_div_cos_angle_of_angle_eq_pi_div_two (angle_rev_eq_pi_div_two_of_oangle_eq_pi_div_two h) (or.inr (left_ne_of_oangle_eq_pi_div_two h))] end /-- A side of a right-angled triangle divided by the sine of the opposite angle equals the hypotenuse. -/ lemma dist_div_sin_oangle_right_of_oangle_eq_pi_div_two {p₁ p₂ p₃ : P} (h : ∡ p₁ p₂ p₃ = ↑(π / 2)) : dist p₁ p₂ / real.angle.sin (∡ p₂ p₃ p₁) = dist p₁ p₃ := begin have hs : (∡ p₂ p₃ p₁).sign = 1, { rw [oangle_rotate_sign, h, real.angle.sign_coe_pi_div_two] }, rw [oangle_eq_angle_of_sign_eq_one hs, real.angle.sin_coe, dist_div_sin_angle_of_angle_eq_pi_div_two (angle_eq_pi_div_two_of_oangle_eq_pi_div_two h) (or.inl (left_ne_of_oangle_eq_pi_div_two h))] end /-- A side of a right-angled triangle divided by the sine of the opposite angle equals the hypotenuse. -/ lemma dist_div_sin_oangle_left_of_oangle_eq_pi_div_two {p₁ p₂ p₃ : P} (h : ∡ p₁ p₂ p₃ = ↑(π / 2)) : dist p₃ p₂ / real.angle.sin (∡ p₃ p₁ p₂) = dist p₁ p₃ := begin have hs : (∡ p₃ p₁ p₂).sign = 1, { rw [←oangle_rotate_sign, h, real.angle.sign_coe_pi_div_two] }, rw [oangle_eq_angle_of_sign_eq_one hs, angle_comm, real.angle.sin_coe, dist_comm p₁ p₃, dist_div_sin_angle_of_angle_eq_pi_div_two (angle_rev_eq_pi_div_two_of_oangle_eq_pi_div_two h) (or.inl (right_ne_of_oangle_eq_pi_div_two h))] end /-- A side of a right-angled triangle divided by the tangent of the opposite angle equals the adjacent side. -/ lemma dist_div_tan_oangle_right_of_oangle_eq_pi_div_two {p₁ p₂ p₃ : P} (h : ∡ p₁ p₂ p₃ = ↑(π / 2)) : dist p₁ p₂ / real.angle.tan (∡ p₂ p₃ p₁) = dist p₃ p₂ := begin have hs : (∡ p₂ p₃ p₁).sign = 1, { rw [oangle_rotate_sign, h, real.angle.sign_coe_pi_div_two] }, rw [oangle_eq_angle_of_sign_eq_one hs, real.angle.tan_coe, dist_div_tan_angle_of_angle_eq_pi_div_two (angle_eq_pi_div_two_of_oangle_eq_pi_div_two h) (or.inl (left_ne_of_oangle_eq_pi_div_two h))] end /-- A side of a right-angled triangle divided by the tangent of the opposite angle equals the adjacent side. -/ lemma dist_div_tan_oangle_left_of_oangle_eq_pi_div_two {p₁ p₂ p₃ : P} (h : ∡ p₁ p₂ p₃ = ↑(π / 2)) : dist p₃ p₂ / real.angle.tan (∡ p₃ p₁ p₂) = dist p₁ p₂ := begin have hs : (∡ p₃ p₁ p₂).sign = 1, { rw [←oangle_rotate_sign, h, real.angle.sign_coe_pi_div_two] }, rw [oangle_eq_angle_of_sign_eq_one hs, angle_comm, real.angle.tan_coe, dist_div_tan_angle_of_angle_eq_pi_div_two (angle_rev_eq_pi_div_two_of_oangle_eq_pi_div_two h) (or.inl (right_ne_of_oangle_eq_pi_div_two h))] end end euclidean_geometry
a970fd6da6d470313923591682c4baec0cd35467
55c7fc2bf55d496ace18cd6f3376e12bb14c8cc5
/src/analysis/normed_space/finite_dimension.lean
8f3fef426701b14979fd90070b71b085fc424f36
[ "Apache-2.0" ]
permissive
dupuisf/mathlib
62de4ec6544bf3b79086afd27b6529acfaf2c1bb
8582b06b0a5d06c33ee07d0bdf7c646cae22cf36
refs/heads/master
1,669,494,854,016
1,595,692,409,000
1,595,692,409,000
272,046,630
0
0
Apache-2.0
1,592,066,143,000
1,592,066,142,000
null
UTF-8
Lean
false
false
12,334
lean
/- Copyright (c) 2019 Sébastien Gouëzel. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Sébastien Gouëzel -/ import analysis.normed_space.operator_norm import linear_algebra.finite_dimensional import tactic.omega /-! # Finite dimensional normed spaces over complete fields Over a complete nondiscrete field, in finite dimension, all norms are equivalent and all linear maps are continuous. Moreover, a finite-dimensional subspace is always complete and closed. ## Main results: * `linear_map.continuous_of_finite_dimensional` : a linear map on a finite-dimensional space over a complete field is continuous. * `finite_dimensional.complete` : a finite-dimensional space over a complete field is complete. This is not registered as an instance, as the field would be an unknown metavariable in typeclass resolution. * `submodule.closed_of_finite_dimensional` : a finite-dimensional subspace over a complete field is closed * `finite_dimensional.proper` : a finite-dimensional space over a proper field is proper. This is not registered as an instance, as the field would be an unknown metavariable in typeclass resolution. It is however registered as an instance for `𝕜 = ℝ` and `𝕜 = ℂ`. As properness implies completeness, there is no need to also register `finite_dimensional.complete` on `ℝ` or `ℂ`. ## Implementation notes The fact that all norms are equivalent is not written explicitly, as it would mean having two norms on a single space, which is not the way type classes work. However, if one has a finite-dimensional vector space `E` with a norm, and a copy `E'` of this type with another norm, then the identities from `E` to `E'` and from `E'`to `E` are continuous thanks to `linear_map.continuous_of_finite_dimensional`. This gives the desired norm equivalence. -/ universes u v w x open set finite_dimensional open_locale classical big_operators /-- A linear map on `ι → 𝕜` (where `ι` is a fintype) is continuous -/ lemma linear_map.continuous_on_pi {ι : Type w} [fintype ι] {𝕜 : Type u} [normed_field 𝕜] {E : Type v} [add_comm_group E] [vector_space 𝕜 E] [topological_space E] [topological_add_group E] [topological_vector_space 𝕜 E] (f : (ι → 𝕜) →ₗ[𝕜] E) : continuous f := begin -- for the proof, write `f` in the standard basis, and use that each coordinate is a continuous -- function. have : (f : (ι → 𝕜) → E) = (λx, ∑ i : ι, x i • (f (λj, if i = j then 1 else 0))), by { ext x, exact f.pi_apply_eq_sum_univ x }, rw this, refine continuous_finset_sum _ (λi hi, _), exact (continuous_apply i).smul continuous_const end section complete_field variables {𝕜 : Type u} [nondiscrete_normed_field 𝕜] {E : Type v} [normed_group E] [normed_space 𝕜 E] {F : Type w} [normed_group F] [normed_space 𝕜 F] {F' : Type x} [add_comm_group F'] [vector_space 𝕜 F'] [topological_space F'] [topological_add_group F'] [topological_vector_space 𝕜 F'] [complete_space 𝕜] /-- In finite dimension over a complete field, the canonical identification (in terms of a basis) with `𝕜^n` together with its sup norm is continuous. This is the nontrivial part in the fact that all norms are equivalent in finite dimension. This statement is superceded by the fact that every linear map on a finite-dimensional space is continuous, in `linear_map.continuous_of_finite_dimensional`. -/ lemma continuous_equiv_fun_basis {ι : Type v} [fintype ι] (ξ : ι → E) (hξ : is_basis 𝕜 ξ) : continuous (equiv_fun_basis hξ) := begin unfreezingI { induction hn : fintype.card ι with n IH generalizing ι E }, { apply linear_map.continuous_of_bound _ 0 (λx, _), have : equiv_fun_basis hξ x = 0, by { ext i, exact (fintype.card_eq_zero_iff.1 hn i).elim }, change ∥equiv_fun_basis hξ x∥ ≤ 0 * ∥x∥, rw this, simp [norm_nonneg] }, { haveI : finite_dimensional 𝕜 E := of_finite_basis hξ, -- first step: thanks to the inductive assumption, any n-dimensional subspace is equivalent -- to a standard space of dimension n, hence it is complete and therefore closed. have H₁ : ∀s : submodule 𝕜 E, findim 𝕜 s = n → is_closed (s : set E), { assume s s_dim, rcases exists_is_basis_finite 𝕜 s with ⟨b, b_basis, b_finite⟩, letI : fintype b := finite.fintype b_finite, have U : uniform_embedding (equiv_fun_basis b_basis).symm.to_equiv, { have : fintype.card b = n, by { rw ← s_dim, exact (findim_eq_card_basis b_basis).symm }, have : continuous (equiv_fun_basis b_basis) := IH (subtype.val : b → s) b_basis this, exact (equiv_fun_basis b_basis).symm.uniform_embedding (linear_map.continuous_on_pi _) this }, have : is_complete (s : set E), from complete_space_coe_iff_is_complete.1 ((complete_space_congr U).1 (by apply_instance)), exact this.is_closed }, -- second step: any linear form is continuous, as its kernel is closed by the first step have H₂ : ∀f : E →ₗ[𝕜] 𝕜, continuous f, { assume f, have : findim 𝕜 f.ker = n ∨ findim 𝕜 f.ker = n.succ, { have Z := f.findim_range_add_findim_ker, rw [findim_eq_card_basis hξ, hn] at Z, have : findim 𝕜 f.range = 0 ∨ findim 𝕜 f.range = 1, { have I : ∀(k : ℕ), k ≤ 1 ↔ k = 0 ∨ k = 1, by omega manual, have : findim 𝕜 f.range ≤ findim 𝕜 𝕜 := submodule.findim_le _, rwa [findim_of_field, I] at this }, cases this, { rw this at Z, right, simpa using Z }, { left, rw [this, add_comm, nat.add_one] at Z, exact nat.succ.inj Z } }, have : is_closed (f.ker : set E), { cases this, { exact H₁ _ this }, { have : f.ker = ⊤, by { apply eq_top_of_findim_eq, rw [findim_eq_card_basis hξ, hn, this] }, simp [this] } }, exact linear_map.continuous_iff_is_closed_ker.2 this }, -- third step: applying the continuity to the linear form corresponding to a coefficient in the -- basis decomposition, deduce that all such coefficients are controlled in terms of the norm have : ∀i:ι, ∃C, 0 ≤ C ∧ ∀(x:E), ∥equiv_fun_basis hξ x i∥ ≤ C * ∥x∥, { assume i, let f : E →ₗ[𝕜] 𝕜 := (linear_map.proj i).comp (equiv_fun_basis hξ), let f' : E →L[𝕜] 𝕜 := { cont := H₂ f, ..f }, exact ⟨∥f'∥, norm_nonneg _, λx, continuous_linear_map.le_op_norm f' x⟩ }, -- fourth step: combine the bound on each coefficient to get a global bound and the continuity choose C0 hC0 using this, let C := ∑ i, C0 i, have C_nonneg : 0 ≤ C := finset.sum_nonneg (λi hi, (hC0 i).1), have C0_le : ∀i, C0 i ≤ C := λi, finset.single_le_sum (λj hj, (hC0 j).1) (finset.mem_univ _), apply linear_map.continuous_of_bound _ C (λx, _), rw pi_norm_le_iff, { exact λi, le_trans ((hC0 i).2 x) (mul_le_mul_of_nonneg_right (C0_le i) (norm_nonneg _)) }, { exact mul_nonneg C_nonneg (norm_nonneg _) } } end /-- Any linear map on a finite dimensional space over a complete field is continuous. -/ theorem linear_map.continuous_of_finite_dimensional [finite_dimensional 𝕜 E] (f : E →ₗ[𝕜] F') : continuous f := begin -- for the proof, go to a model vector space `b → 𝕜` thanks to `continuous_equiv_fun_basis`, and -- argue that all linear maps there are continuous. rcases exists_is_basis_finite 𝕜 E with ⟨b, b_basis, b_finite⟩, letI : fintype b := finite.fintype b_finite, have A : continuous (equiv_fun_basis b_basis) := continuous_equiv_fun_basis _ b_basis, have B : continuous (f.comp ((equiv_fun_basis b_basis).symm : (b → 𝕜) →ₗ[𝕜] E)) := linear_map.continuous_on_pi _, have : continuous ((f.comp ((equiv_fun_basis b_basis).symm : (b → 𝕜) →ₗ[𝕜] E)) ∘ (equiv_fun_basis b_basis)) := B.comp A, convert this, ext x, dsimp, rw linear_equiv.symm_apply_apply end /-- The continuous linear map induced by a linear map on a finite dimensional space -/ def linear_map.to_continuous_linear_map [finite_dimensional 𝕜 E] (f : E →ₗ[𝕜] F') : E →L[𝕜] F' := { cont := f.continuous_of_finite_dimensional, ..f } /-- The continuous linear equivalence induced by a linear equivalence on a finite dimensional space. -/ def linear_equiv.to_continuous_linear_equiv [finite_dimensional 𝕜 E] (e : E ≃ₗ[𝕜] F) : E ≃L[𝕜] F := { continuous_to_fun := e.to_linear_map.continuous_of_finite_dimensional, continuous_inv_fun := begin haveI : finite_dimensional 𝕜 F := e.finite_dimensional, exact e.symm.to_linear_map.continuous_of_finite_dimensional end, ..e } /-- Any finite-dimensional vector space over a complete field is complete. We do not register this as an instance to avoid an instance loop when trying to prove the completeness of `𝕜`, and the search for `𝕜` as an unknown metavariable. Declare the instance explicitly when needed. -/ variables (𝕜 E) lemma finite_dimensional.complete [finite_dimensional 𝕜 E] : complete_space E := begin rcases exists_is_basis_finite 𝕜 E with ⟨b, b_basis, b_finite⟩, letI : fintype b := finite.fintype b_finite, have : uniform_embedding (equiv_fun_basis b_basis).symm := linear_equiv.uniform_embedding _ (linear_map.continuous_of_finite_dimensional _) (linear_map.continuous_of_finite_dimensional _), change uniform_embedding (equiv_fun_basis b_basis).symm.to_equiv at this, exact (complete_space_congr this).1 (by apply_instance) end variables {𝕜 E} /-- A finite-dimensional subspace is complete. -/ lemma submodule.complete_of_finite_dimensional (s : submodule 𝕜 E) [finite_dimensional 𝕜 s] : is_complete (s : set E) := complete_space_coe_iff_is_complete.1 (finite_dimensional.complete 𝕜 s) /-- A finite-dimensional subspace is closed. -/ lemma submodule.closed_of_finite_dimensional (s : submodule 𝕜 E) [finite_dimensional 𝕜 s] : is_closed (s : set E) := s.complete_of_finite_dimensional.is_closed lemma continuous_linear_map.exists_right_inverse_of_surjective [finite_dimensional 𝕜 F] (f : E →L[𝕜] F) (hf : f.range = ⊤) : ∃ g : F →L[𝕜] E, f.comp g = continuous_linear_map.id 𝕜 F := let ⟨g, hg⟩ := (f : E →ₗ[𝕜] F).exists_right_inverse_of_surjective hf in ⟨g.to_continuous_linear_map, continuous_linear_map.ext $ linear_map.ext_iff.1 hg⟩ end complete_field section proper_field variables (𝕜 : Type u) [nondiscrete_normed_field 𝕜] (E : Type v) [normed_group E] [normed_space 𝕜 E] [proper_space 𝕜] /-- Any finite-dimensional vector space over a proper field is proper. We do not register this as an instance to avoid an instance loop when trying to prove the properness of `𝕜`, and the search for `𝕜` as an unknown metavariable. Declare the instance explicitly when needed. -/ lemma finite_dimensional.proper [finite_dimensional 𝕜 E] : proper_space E := begin rcases exists_is_basis_finite 𝕜 E with ⟨b, b_basis, b_finite⟩, letI : fintype b := finite.fintype b_finite, let e := equiv_fun_basis b_basis, let f : E →L[𝕜] (b → 𝕜) := { cont := linear_map.continuous_of_finite_dimensional _, ..e.to_linear_map }, refine metric.proper_image_of_proper e.symm (linear_map.continuous_of_finite_dimensional _) _ (∥f∥) (λx y, _), { exact equiv.range_eq_univ e.symm.to_equiv }, { have A : e (e.symm x) = x := linear_equiv.apply_symm_apply _ _, have B : e (e.symm y) = y := linear_equiv.apply_symm_apply _ _, conv_lhs { rw [← A, ← B] }, change dist (f (e.symm x)) (f (e.symm y)) ≤ ∥f∥ * dist (e.symm x) (e.symm y), unfreezingI { exact f.lipschitz.dist_le_mul _ _ } } end end proper_field /- Over the real numbers, we can register the previous statement as an instance as it will not cause problems in instance resolution since the properness of `ℝ` is already known. -/ instance finite_dimensional.proper_real (E : Type u) [normed_group E] [normed_space ℝ E] [finite_dimensional ℝ E] : proper_space E := finite_dimensional.proper ℝ E attribute [instance, priority 900] finite_dimensional.proper_real
e2d035e844ea1fb7fb18e055c590e30d358ef254
f3a5af2927397cf346ec0e24312bfff077f00425
/src/game/world10/level1.lean
9ef23a10ac42fe71622f1b00de9459a4c9762205
[ "Apache-2.0" ]
permissive
ImperialCollegeLondon/natural_number_game
05c39e1586408cfb563d1a12e1085a90726ab655
f29b6c2884299fc63fdfc81ae5d7daaa3219f9fd
refs/heads/master
1,688,570,964,990
1,636,908,242,000
1,636,908,242,000
195,403,790
277
84
Apache-2.0
1,694,547,955,000
1,562,328,792,000
Lean
UTF-8
Lean
false
false
3,515
lean
import mynat.le -- import definition of ≤ import game.world9.level4 -- hide import game.world4.level8 -- hide namespace mynat -- hide /- Axiom : le_iff_exists_add (a b : mynat) a ≤ b ↔ ∃ (c : mynat), b = a + c -/ /- Tactic : use ## Summary `use` works on the goal. If your goal is `⊢ ∃ c : mynat, 1 + x = x + c` then `use 1` will turn the goal into `⊢ 1 + x = x + 1`, and the rather more unwise `use 0` will turn it into the impossible-to-prove `⊢ 1 + x = x + 0`. ## Details `use` is a tactic which works on goals of the form `⊢ ∃ c, P(c)` where `P(c)` is some proposition which depends on `c`. With a goal of this form, `use 0` will turn the goal into `⊢ P(0)`, `use x + y` (assuming `x` and `y` are natural numbers in your local context) will turn the goal into `P(x + y)` and so on. -/ /- # Inequality world. A new import, giving us a new definition. If `a` and `b` are naturals, `a ≤ b` is *defined* to mean `∃ (c : mynat), b = a + c` The upside-down E means "there exists". So in words, $a\le b$ if and only if there exists a natural $c$ such that $b=a+c$. If you really want to change an `a ≤ b` to `∃ c, b = a + c` then you can do so with `rw le_iff_exists_add`: ``` le_iff_exists_add (a b : mynat) : a ≤ b ↔ ∃ (c : mynat), b = a + c ``` But because `a ≤ b` is *defined as* `∃ (c : mynat), b = a + c`, you do not need to `rw le_iff_exists_add`, you can just pretend when you see `a ≤ b` that it says `∃ (c : mynat), b = a + c`. You will see a concrete example of this below. A new construction like `∃` means that we need to learn how to manipulate it. There are two situations. Firstly we need to know how to solve a goal of the form `⊢ ∃ c, ...`, and secondly we need to know how to use a hypothesis of the form `∃ c, ...`. ## Level 1: the `use` tactic. The goal below is to prove $x\le 1+x$ for any natural number $x$. First let's turn the goal explicitly into an existence problem with `rw le_iff_exists_add,` and now the goal has become `∃ c : mynat, 1 + x = x + c`. Clearly this statement is true, and the proof is that $c=1$ will work (we also need the fact that addition is commutative, but we proved that a long time ago). How do we make progress with this goal? The `use` tactic can be used on goals of the form `∃ c, ...`. The idea is that we choose which natural number we want to use, and then we use it. So try `use 1,` and now the goal becomes `⊢ 1 + x = x + 1`. You can solve this by `exact add_comm 1 x`, or if you are lazy you can just use the `ring` tactic, which is a powerful AI which will solve any equality in algebra which can be proved using the standard rules of addition and multiplication. Now look at your proof. We're going to remove a line. ## Important An important time-saver here is to note that because `a ≤ b` is *defined* as `∃ c : mynat, b = a + c`, you *do not need to write* `rw le_iff_exists_add`. The `use` tactic will work directly on a goal of the form `a ≤ b`. Just use the difference `b - a` (note that we have not defined subtraction so this does not formally make sense, but you can do the calculation in your head). If you have written `rw le_iff_exists_add` below, then just put two minus signs `--` before it and comment it out. See that the proof still compiles. -/ /- Lemma : no-side-bar If $x$ is a natural number, then $x\le 1+x$. -/ lemma one_add_le_self (x : mynat) : x ≤ 1 + x := begin rw le_iff_exists_add, use 1, ring, end end mynat -- hide
c46d2fa3488195ca584ff19d9e47169739df92dd
c777c32c8e484e195053731103c5e52af26a25d1
/src/measure_theory/constructions/pi.lean
4fb749a467fee9d673dbedc18df8c60907c633af
[ "Apache-2.0" ]
permissive
kbuzzard/mathlib
2ff9e85dfe2a46f4b291927f983afec17e946eb8
58537299e922f9c77df76cb613910914a479c1f7
refs/heads/master
1,685,313,702,744
1,683,974,212,000
1,683,974,212,000
128,185,277
1
0
null
1,522,920,600,000
1,522,920,600,000
null
UTF-8
Lean
false
false
33,095
lean
/- Copyright (c) 2020 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn -/ import measure_theory.constructions.prod import measure_theory.group.measure import topology.constructions /-! # Product measures In this file we define and prove properties about finite products of measures (and at some point, countable products of measures). ## Main definition * `measure_theory.measure.pi`: The product of finitely many σ-finite measures. Given `μ : Π i : ι, measure (α i)` for `[fintype ι]` it has type `measure (Π i : ι, α i)`. To apply Fubini along some subset of the variables, use `measure_theory.measure_preserving_pi_equiv_pi_subtype_prod` to reduce to the situation of a product of two measures: this lemma states that the bijection `measurable_equiv.pi_equiv_pi_subtype_prod α p` between `(Π i : ι, α i)` and `(Π i : {i // p i}, α i) × (Π i : {i // ¬ p i}, α i)` maps a product measure to a direct product of product measures, to which one can apply the usual Fubini for direct product of measures. ## Implementation Notes We define `measure_theory.outer_measure.pi`, the product of finitely many outer measures, as the maximal outer measure `n` with the property that `n (pi univ s) ≤ ∏ i, m i (s i)`, where `pi univ s` is the product of the sets `{s i | i : ι}`. We then show that this induces a product of measures, called `measure_theory.measure.pi`. For a collection of σ-finite measures `μ` and a collection of measurable sets `s` we show that `measure.pi μ (pi univ s) = ∏ i, m i (s i)`. To do this, we follow the following steps: * We know that there is some ordering on `ι`, given by an element of `[countable ι]`. * Using this, we have an equivalence `measurable_equiv.pi_measurable_equiv_tprod` between `Π ι, α i` and an iterated product of `α i`, called `list.tprod α l` for some list `l`. * On this iterated product we can easily define a product measure `measure_theory.measure.tprod` by iterating `measure_theory.measure.prod` * Using the previous two steps we construct `measure_theory.measure.pi'` on `Π ι, α i` for countable `ι`. * We know that `measure_theory.measure.pi'` sends products of sets to products of measures, and since `measure_theory.measure.pi` is the maximal such measure (or at least, it comes from an outer measure which is the maximal such outer measure), we get the same rule for `measure_theory.measure.pi`. ## Tags finitary product measure -/ noncomputable theory open function set measure_theory.outer_measure filter measurable_space encodable open_locale classical big_operators topology ennreal universes u v variables {ι ι' : Type*} {α : ι → Type*} /-! We start with some measurability properties -/ /-- Boxes formed by π-systems form a π-system. -/ lemma is_pi_system.pi {C : Π i, set (set (α i))} (hC : ∀ i, is_pi_system (C i)) : is_pi_system (pi univ '' pi univ C) := begin rintro _ ⟨s₁, hs₁, rfl⟩ _ ⟨s₂, hs₂, rfl⟩ hst, rw [← pi_inter_distrib] at hst ⊢, rw [univ_pi_nonempty_iff] at hst, exact mem_image_of_mem _ (λ i _, hC i _ (hs₁ i (mem_univ i)) _ (hs₂ i (mem_univ i)) (hst i)) end /-- Boxes form a π-system. -/ lemma is_pi_system_pi [Π i, measurable_space (α i)] : is_pi_system (pi univ '' pi univ (λ i, {s : set (α i) | measurable_set s})) := is_pi_system.pi (λ i, is_pi_system_measurable_set) section finite variables [finite ι] [finite ι'] /-- Boxes of countably spanning sets are countably spanning. -/ lemma is_countably_spanning.pi {C : Π i, set (set (α i))} (hC : ∀ i, is_countably_spanning (C i)) : is_countably_spanning (pi univ '' pi univ C) := begin choose s h1s h2s using hC, casesI nonempty_encodable (ι → ℕ), let e : ℕ → (ι → ℕ) := λ n, (decode (ι → ℕ) n).iget, refine ⟨λ n, pi univ (λ i, s i (e n i)), λ n, mem_image_of_mem _ (λ i _, h1s i _), _⟩, simp_rw [(surjective_decode_iget (ι → ℕ)).Union_comp (λ x, pi univ (λ i, s i (x i))), Union_univ_pi s, h2s, pi_univ] end /-- The product of generated σ-algebras is the one generated by boxes, if both generating sets are countably spanning. -/ lemma generate_from_pi_eq {C : Π i, set (set (α i))} (hC : ∀ i, is_countably_spanning (C i)) : @measurable_space.pi _ _ (λ i, generate_from (C i)) = generate_from (pi univ '' pi univ C) := begin casesI nonempty_encodable ι, apply le_antisymm, { refine supr_le _, intro i, rw [comap_generate_from], apply generate_from_le, rintro _ ⟨s, hs, rfl⟩, dsimp, choose t h1t h2t using hC, simp_rw [eval_preimage, ← h2t], rw [← @Union_const _ ℕ _ s], have : (pi univ (update (λ (i' : ι), Union (t i')) i (⋃ (i' : ℕ), s))) = (pi univ (λ k, ⋃ j : ℕ, @update ι (λ i', set (α i')) _ (λ i', t i' j) i s k)), { ext, simp_rw [mem_univ_pi], apply forall_congr, intro i', by_cases (i' = i), { subst h, simp }, { rw [← ne.def] at h, simp [h] }}, rw [this, ← Union_univ_pi], apply measurable_set.Union, intro n, apply measurable_set_generate_from, apply mem_image_of_mem, intros j _, dsimp only, by_cases h: j = i, subst h, rwa [update_same], rw [update_noteq h], apply h1t }, { apply generate_from_le, rintro _ ⟨s, hs, rfl⟩, rw [univ_pi_eq_Inter], apply measurable_set.Inter, intro i, apply measurable_pi_apply, exact measurable_set_generate_from (hs i (mem_univ i)) } end /-- If `C` and `D` generate the σ-algebras on `α` resp. `β`, then rectangles formed by `C` and `D` generate the σ-algebra on `α × β`. -/ lemma generate_from_eq_pi [h : Π i, measurable_space (α i)] {C : Π i, set (set (α i))} (hC : ∀ i, generate_from (C i) = h i) (h2C : ∀ i, is_countably_spanning (C i)) : generate_from (pi univ '' pi univ C) = measurable_space.pi := by rw [← funext hC, generate_from_pi_eq h2C] /-- The product σ-algebra is generated from boxes, i.e. `s ×ˢ t` for sets `s : set α` and `t : set β`. -/ lemma generate_from_pi [Π i, measurable_space (α i)] : generate_from (pi univ '' pi univ (λ i, { s : set (α i) | measurable_set s})) = measurable_space.pi := generate_from_eq_pi (λ i, generate_from_measurable_set) (λ i, is_countably_spanning_measurable_set) end finite namespace measure_theory variables [fintype ι] {m : Π i, outer_measure (α i)} /-- An upper bound for the measure in a finite product space. It is defined to by taking the image of the set under all projections, and taking the product of the measures of these images. For measurable boxes it is equal to the correct measure. -/ @[simp] def pi_premeasure (m : Π i, outer_measure (α i)) (s : set (Π i, α i)) : ℝ≥0∞ := ∏ i, m i (eval i '' s) lemma pi_premeasure_pi {s : Π i, set (α i)} (hs : (pi univ s).nonempty) : pi_premeasure m (pi univ s) = ∏ i, m i (s i) := by simp [hs] lemma pi_premeasure_pi' {s : Π i, set (α i)} : pi_premeasure m (pi univ s) = ∏ i, m i (s i) := begin casesI is_empty_or_nonempty ι, { simp, }, cases (pi univ s).eq_empty_or_nonempty with h h, { rcases univ_pi_eq_empty_iff.mp h with ⟨i, hi⟩, have : ∃ i, m i (s i) = 0 := ⟨i, by simp [hi]⟩, simpa [h, finset.card_univ, zero_pow (fintype.card_pos_iff.mpr ‹_›), @eq_comm _ (0 : ℝ≥0∞), finset.prod_eq_zero_iff] }, { simp [h] } end lemma pi_premeasure_pi_mono {s t : set (Π i, α i)} (h : s ⊆ t) : pi_premeasure m s ≤ pi_premeasure m t := finset.prod_le_prod' (λ i _, (m i).mono' (image_subset _ h)) lemma pi_premeasure_pi_eval {s : set (Π i, α i)} : pi_premeasure m (pi univ (λ i, eval i '' s)) = pi_premeasure m s := by simp [pi_premeasure_pi'] namespace outer_measure /-- `outer_measure.pi m` is the finite product of the outer measures `{m i | i : ι}`. It is defined to be the maximal outer measure `n` with the property that `n (pi univ s) ≤ ∏ i, m i (s i)`, where `pi univ s` is the product of the sets `{s i | i : ι}`. -/ protected def pi (m : Π i, outer_measure (α i)) : outer_measure (Π i, α i) := bounded_by (pi_premeasure m) lemma pi_pi_le (m : Π i, outer_measure (α i)) (s : Π i, set (α i)) : outer_measure.pi m (pi univ s) ≤ ∏ i, m i (s i) := by { cases (pi univ s).eq_empty_or_nonempty with h h, simp [h], exact (bounded_by_le _).trans_eq (pi_premeasure_pi h) } lemma le_pi {m : Π i, outer_measure (α i)} {n : outer_measure (Π i, α i)} : n ≤ outer_measure.pi m ↔ ∀ (s : Π i, set (α i)), (pi univ s).nonempty → n (pi univ s) ≤ ∏ i, m i (s i) := begin rw [outer_measure.pi, le_bounded_by'], split, { intros h s hs, refine (h _ hs).trans_eq (pi_premeasure_pi hs) }, { intros h s hs, refine le_trans (n.mono $ subset_pi_eval_image univ s) (h _ _), simp [univ_pi_nonempty_iff, hs] } end end outer_measure namespace measure variables [Π i, measurable_space (α i)] (μ : Π i, measure (α i)) section tprod open list variables {δ : Type*} {π : δ → Type*} [∀ x, measurable_space (π x)] /-- A product of measures in `tprod α l`. -/ -- for some reason the equation compiler doesn't like this definition protected def tprod (l : list δ) (μ : Π i, measure (π i)) : measure (tprod π l) := by { induction l with i l ih, exact dirac punit.star, exact (μ i).prod ih } @[simp] lemma tprod_nil (μ : Π i, measure (π i)) : measure.tprod [] μ = dirac punit.star := rfl @[simp] lemma tprod_cons (i : δ) (l : list δ) (μ : Π i, measure (π i)) : measure.tprod (i :: l) μ = (μ i).prod (measure.tprod l μ) := rfl instance sigma_finite_tprod (l : list δ) (μ : Π i, measure (π i)) [∀ i, sigma_finite (μ i)] : sigma_finite (measure.tprod l μ) := begin induction l with i l ih, { rw [tprod_nil], apply_instance }, { rw [tprod_cons], resetI, apply_instance } end lemma tprod_tprod (l : list δ) (μ : Π i, measure (π i)) [∀ i, sigma_finite (μ i)] (s : Π i, set (π i)) : measure.tprod l μ (set.tprod l s) = (l.map (λ i, (μ i) (s i))).prod := begin induction l with i l ih, { simp }, rw [tprod_cons, set.tprod, prod_prod, map_cons, prod_cons, ih] end end tprod section encodable open list measurable_equiv variables [encodable ι] /-- The product measure on an encodable finite type, defined by mapping `measure.tprod` along the equivalence `measurable_equiv.pi_measurable_equiv_tprod`. The definition `measure_theory.measure.pi` should be used instead of this one. -/ def pi' : measure (Π i, α i) := measure.map (tprod.elim' mem_sorted_univ) (measure.tprod (sorted_univ ι) μ) lemma pi'_pi [∀ i, sigma_finite (μ i)] (s : Π i, set (α i)) : pi' μ (pi univ s) = ∏ i, μ i (s i) := by rw [pi', ← measurable_equiv.pi_measurable_equiv_tprod_symm_apply, measurable_equiv.map_apply, measurable_equiv.pi_measurable_equiv_tprod_symm_apply, elim_preimage_pi, tprod_tprod _ μ, ← list.prod_to_finset, sorted_univ_to_finset]; exact sorted_univ_nodup ι end encodable lemma pi_caratheodory : measurable_space.pi ≤ (outer_measure.pi (λ i, (μ i).to_outer_measure)).caratheodory := begin refine supr_le _, intros i s hs, rw [measurable_space.comap] at hs, rcases hs with ⟨s, hs, rfl⟩, apply bounded_by_caratheodory, intro t, simp_rw [pi_premeasure], refine finset.prod_add_prod_le' (finset.mem_univ i) _ _ _, { simp [image_inter_preimage, image_diff_preimage, measure_inter_add_diff _ hs, le_refl] }, { rintro j - hj, apply mono', apply image_subset, apply inter_subset_left }, { rintro j - hj, apply mono', apply image_subset, apply diff_subset } end /-- `measure.pi μ` is the finite product of the measures `{μ i | i : ι}`. It is defined to be measure corresponding to `measure_theory.outer_measure.pi`. -/ @[irreducible] protected def pi : measure (Π i, α i) := to_measure (outer_measure.pi (λ i, (μ i).to_outer_measure)) (pi_caratheodory μ) lemma pi_pi_aux [∀ i, sigma_finite (μ i)] (s : Π i, set (α i)) (hs : ∀ i, measurable_set (s i)) : measure.pi μ (pi univ s) = ∏ i, μ i (s i) := begin refine le_antisymm _ _, { rw [measure.pi, to_measure_apply _ _ (measurable_set.pi countable_univ (λ i _, hs i))], apply outer_measure.pi_pi_le }, { haveI : encodable ι := fintype.to_encodable ι, rw [← pi'_pi μ s], simp_rw [← pi'_pi μ s, measure.pi, to_measure_apply _ _ (measurable_set.pi countable_univ (λ i _, hs i)), ← to_outer_measure_apply], suffices : (pi' μ).to_outer_measure ≤ outer_measure.pi (λ i, (μ i).to_outer_measure), { exact this _ }, clear hs s, rw [outer_measure.le_pi], intros s hs, simp_rw [to_outer_measure_apply], exact (pi'_pi μ s).le } end variable {μ} /-- `measure.pi μ` has finite spanning sets in rectangles of finite spanning sets. -/ def finite_spanning_sets_in.pi {C : Π i, set (set (α i))} (hμ : ∀ i, (μ i).finite_spanning_sets_in (C i)) : (measure.pi μ).finite_spanning_sets_in (pi univ '' pi univ C) := begin haveI := λ i, (hμ i).sigma_finite, haveI := fintype.to_encodable ι, refine ⟨λ n, pi univ (λ i, (hμ i).set ((decode (ι → ℕ) n).iget i)), λ n, _, λ n, _, _⟩; -- TODO (kmill) If this let comes before the refine, while the noncomputability checker -- correctly sees this definition is computable, the Lean VM fails to see the binding is -- computationally irrelevant. The `noncomputable theory` doesn't help because all it does -- is insert `noncomputable` for you when necessary. let e : ℕ → (ι → ℕ) := λ n, (decode (ι → ℕ) n).iget, { refine mem_image_of_mem _ (λ i _, (hμ i).set_mem _) }, { calc measure.pi μ (pi univ (λ i, (hμ i).set (e n i))) ≤ measure.pi μ (pi univ (λ i, to_measurable (μ i) ((hμ i).set (e n i)))) : measure_mono (pi_mono $ λ i hi, subset_to_measurable _ _) ... = ∏ i, μ i (to_measurable (μ i) ((hμ i).set (e n i))) : pi_pi_aux μ _ (λ i, measurable_set_to_measurable _ _) ... = ∏ i, μ i ((hμ i).set (e n i)) : by simp only [measure_to_measurable] ... < ∞ : ennreal.prod_lt_top (λ i hi, ((hμ i).finite _).ne) }, { simp_rw [(surjective_decode_iget (ι → ℕ)).Union_comp (λ x, pi univ (λ i, (hμ i).set (x i))), Union_univ_pi (λ i, (hμ i).set), (hμ _).spanning, set.pi_univ] } end /-- A measure on a finite product space equals the product measure if they are equal on rectangles with as sides sets that generate the corresponding σ-algebras. -/ lemma pi_eq_generate_from {C : Π i, set (set (α i))} (hC : ∀ i, generate_from (C i) = by apply_assumption) (h2C : ∀ i, is_pi_system (C i)) (h3C : ∀ i, (μ i).finite_spanning_sets_in (C i)) {μν : measure (Π i, α i)} (h₁ : ∀ s : Π i, set (α i), (∀ i, s i ∈ C i) → μν (pi univ s) = ∏ i, μ i (s i)) : measure.pi μ = μν := begin have h4C : ∀ i (s : set (α i)), s ∈ C i → measurable_set s, { intros i s hs, rw [← hC], exact measurable_set_generate_from hs }, refine (finite_spanning_sets_in.pi h3C).ext (generate_from_eq_pi hC (λ i, (h3C i).is_countably_spanning)).symm (is_pi_system.pi h2C) _, rintro _ ⟨s, hs, rfl⟩, rw [mem_univ_pi] at hs, haveI := λ i, (h3C i).sigma_finite, simp_rw [h₁ s hs, pi_pi_aux μ s (λ i, h4C i _ (hs i))] end variables [∀ i, sigma_finite (μ i)] /-- A measure on a finite product space equals the product measure if they are equal on rectangles. -/ lemma pi_eq {μ' : measure (Π i, α i)} (h : ∀ s : Π i, set (α i), (∀ i, measurable_set (s i)) → μ' (pi univ s) = ∏ i, μ i (s i)) : measure.pi μ = μ' := pi_eq_generate_from (λ i, generate_from_measurable_set) (λ i, is_pi_system_measurable_set) (λ i, (μ i).to_finite_spanning_sets_in) h variables (μ) lemma pi'_eq_pi [encodable ι] : pi' μ = measure.pi μ := eq.symm $ pi_eq $ λ s hs, pi'_pi μ s @[simp] lemma pi_pi (s : Π i, set (α i)) : measure.pi μ (pi univ s) = ∏ i, μ i (s i) := begin haveI : encodable ι := fintype.to_encodable ι, rw [← pi'_eq_pi, pi'_pi] end lemma pi_univ : measure.pi μ univ = ∏ i, μ i univ := by rw [← pi_univ, pi_pi μ] lemma pi_ball [∀ i, metric_space (α i)] (x : Π i, α i) {r : ℝ} (hr : 0 < r) : measure.pi μ (metric.ball x r) = ∏ i, μ i (metric.ball (x i) r) := by rw [ball_pi _ hr, pi_pi] lemma pi_closed_ball [∀ i, metric_space (α i)] (x : Π i, α i) {r : ℝ} (hr : 0 ≤ r) : measure.pi μ (metric.closed_ball x r) = ∏ i, μ i (metric.closed_ball (x i) r) := by rw [closed_ball_pi _ hr, pi_pi] instance pi.sigma_finite : sigma_finite (measure.pi μ) := (finite_spanning_sets_in.pi (λ i, (μ i).to_finite_spanning_sets_in)).sigma_finite lemma pi_of_empty {α : Type*} [is_empty α] {β : α → Type*} {m : Π a, measurable_space (β a)} (μ : Π a : α, measure (β a)) (x : Π a, β a := is_empty_elim) : measure.pi μ = dirac x := begin haveI : ∀ a, sigma_finite (μ a) := is_empty_elim, refine pi_eq (λ s hs, _), rw [fintype.prod_empty, dirac_apply_of_mem], exact is_empty_elim end lemma pi_eval_preimage_null {i : ι} {s : set (α i)} (hs : μ i s = 0) : measure.pi μ (eval i ⁻¹' s) = 0 := begin /- WLOG, `s` is measurable -/ rcases exists_measurable_superset_of_null hs with ⟨t, hst, htm, hμt⟩, suffices : measure.pi μ (eval i ⁻¹' t) = 0, from measure_mono_null (preimage_mono hst) this, clear_dependent s, /- Now rewrite it as `set.pi`, and apply `pi_pi` -/ rw [← univ_pi_update_univ, pi_pi], apply finset.prod_eq_zero (finset.mem_univ i), simp [hμt] end lemma pi_hyperplane (i : ι) [has_no_atoms (μ i)] (x : α i) : measure.pi μ {f : Π i, α i | f i = x} = 0 := show measure.pi μ (eval i ⁻¹' {x}) = 0, from pi_eval_preimage_null _ (measure_singleton x) lemma ae_eval_ne (i : ι) [has_no_atoms (μ i)] (x : α i) : ∀ᵐ y : Π i, α i ∂measure.pi μ, y i ≠ x := compl_mem_ae_iff.2 (pi_hyperplane μ i x) variable {μ} lemma tendsto_eval_ae_ae {i : ι} : tendsto (eval i) (measure.pi μ).ae (μ i).ae := λ s hs, pi_eval_preimage_null μ hs lemma ae_pi_le_pi : (measure.pi μ).ae ≤ filter.pi (λ i, (μ i).ae) := le_infi $ λ i, tendsto_eval_ae_ae.le_comap lemma ae_eq_pi {β : ι → Type*} {f f' : Π i, α i → β i} (h : ∀ i, f i =ᵐ[μ i] f' i) : (λ (x : Π i, α i) i, f i (x i)) =ᵐ[measure.pi μ] (λ x i, f' i (x i)) := (eventually_all.2 (λ i, tendsto_eval_ae_ae.eventually (h i))).mono $ λ x hx, funext hx lemma ae_le_pi {β : ι → Type*} [Π i, preorder (β i)] {f f' : Π i, α i → β i} (h : ∀ i, f i ≤ᵐ[μ i] f' i) : (λ (x : Π i, α i) i, f i (x i)) ≤ᵐ[measure.pi μ] (λ x i, f' i (x i)) := (eventually_all.2 (λ i, tendsto_eval_ae_ae.eventually (h i))).mono $ λ x hx, hx lemma ae_le_set_pi {I : set ι} {s t : Π i, set (α i)} (h : ∀ i ∈ I, s i ≤ᵐ[μ i] t i) : (set.pi I s) ≤ᵐ[measure.pi μ] (set.pi I t) := ((eventually_all_finite I.to_finite).2 (λ i hi, tendsto_eval_ae_ae.eventually (h i hi))).mono $ λ x hst hx i hi, hst i hi $ hx i hi lemma ae_eq_set_pi {I : set ι} {s t : Π i, set (α i)} (h : ∀ i ∈ I, s i =ᵐ[μ i] t i) : (set.pi I s) =ᵐ[measure.pi μ] (set.pi I t) := (ae_le_set_pi (λ i hi, (h i hi).le)).antisymm (ae_le_set_pi (λ i hi, (h i hi).symm.le)) section intervals variables {μ} [Π i, partial_order (α i)] [∀ i, has_no_atoms (μ i)] lemma pi_Iio_ae_eq_pi_Iic {s : set ι} {f : Π i, α i} : pi s (λ i, Iio (f i)) =ᵐ[measure.pi μ] pi s (λ i, Iic (f i)) := ae_eq_set_pi $ λ i hi, Iio_ae_eq_Iic lemma pi_Ioi_ae_eq_pi_Ici {s : set ι} {f : Π i, α i} : pi s (λ i, Ioi (f i)) =ᵐ[measure.pi μ] pi s (λ i, Ici (f i)) := ae_eq_set_pi $ λ i hi, Ioi_ae_eq_Ici lemma univ_pi_Iio_ae_eq_Iic {f : Π i, α i} : pi univ (λ i, Iio (f i)) =ᵐ[measure.pi μ] Iic f := by { rw ← pi_univ_Iic, exact pi_Iio_ae_eq_pi_Iic } lemma univ_pi_Ioi_ae_eq_Ici {f : Π i, α i} : pi univ (λ i, Ioi (f i)) =ᵐ[measure.pi μ] Ici f := by { rw ← pi_univ_Ici, exact pi_Ioi_ae_eq_pi_Ici } lemma pi_Ioo_ae_eq_pi_Icc {s : set ι} {f g : Π i, α i} : pi s (λ i, Ioo (f i) (g i)) =ᵐ[measure.pi μ] pi s (λ i, Icc (f i) (g i)) := ae_eq_set_pi $ λ i hi, Ioo_ae_eq_Icc lemma pi_Ioo_ae_eq_pi_Ioc {s : set ι} {f g : Π i, α i} : pi s (λ i, Ioo (f i) (g i)) =ᵐ[measure.pi μ] pi s (λ i, Ioc (f i) (g i)) := ae_eq_set_pi $ λ i hi, Ioo_ae_eq_Ioc lemma univ_pi_Ioo_ae_eq_Icc {f g : Π i, α i} : pi univ (λ i, Ioo (f i) (g i)) =ᵐ[measure.pi μ] Icc f g := by { rw ← pi_univ_Icc, exact pi_Ioo_ae_eq_pi_Icc } lemma pi_Ioc_ae_eq_pi_Icc {s : set ι} {f g : Π i, α i} : pi s (λ i, Ioc (f i) (g i)) =ᵐ[measure.pi μ] pi s (λ i, Icc (f i) (g i)) := ae_eq_set_pi $ λ i hi, Ioc_ae_eq_Icc lemma univ_pi_Ioc_ae_eq_Icc {f g : Π i, α i} : pi univ (λ i, Ioc (f i) (g i)) =ᵐ[measure.pi μ] Icc f g := by { rw ← pi_univ_Icc, exact pi_Ioc_ae_eq_pi_Icc } lemma pi_Ico_ae_eq_pi_Icc {s : set ι} {f g : Π i, α i} : pi s (λ i, Ico (f i) (g i)) =ᵐ[measure.pi μ] pi s (λ i, Icc (f i) (g i)) := ae_eq_set_pi $ λ i hi, Ico_ae_eq_Icc lemma univ_pi_Ico_ae_eq_Icc {f g : Π i, α i} : pi univ (λ i, Ico (f i) (g i)) =ᵐ[measure.pi μ] Icc f g := by { rw ← pi_univ_Icc, exact pi_Ico_ae_eq_pi_Icc } end intervals /-- If one of the measures `μ i` has no atoms, them `measure.pi µ` has no atoms. The instance below assumes that all `μ i` have no atoms. -/ lemma pi_has_no_atoms (i : ι) [has_no_atoms (μ i)] : has_no_atoms (measure.pi μ) := ⟨λ x, flip measure_mono_null (pi_hyperplane μ i (x i)) (singleton_subset_iff.2 rfl)⟩ instance [h : nonempty ι] [∀ i, has_no_atoms (μ i)] : has_no_atoms (measure.pi μ) := h.elim $ λ i, pi_has_no_atoms i instance [Π i, topological_space (α i)] [∀ i, is_locally_finite_measure (μ i)] : is_locally_finite_measure (measure.pi μ) := begin refine ⟨λ x, _⟩, choose s hxs ho hμ using λ i, (μ i).exists_is_open_measure_lt_top (x i), refine ⟨pi univ s, set_pi_mem_nhds finite_univ (λ i hi, is_open.mem_nhds (ho i) (hxs i)), _⟩, rw [pi_pi], exact ennreal.prod_lt_top (λ i _, (hμ i).ne) end variable (μ) @[to_additive] instance pi.is_mul_left_invariant [∀ i, group (α i)] [∀ i, has_measurable_mul (α i)] [∀ i, is_mul_left_invariant (μ i)] : is_mul_left_invariant (measure.pi μ) := begin refine ⟨λ v, (pi_eq $ λ s hs, _).symm⟩, rw [map_apply (measurable_const_mul _) (measurable_set.univ_pi hs), (show (*) v ⁻¹' univ.pi s = univ.pi (λ i, (*) (v i) ⁻¹' s i), by refl), pi_pi], simp_rw measure_preimage_mul, end @[to_additive] instance pi.is_mul_right_invariant [Π i, group (α i)] [∀ i, has_measurable_mul (α i)] [∀ i, is_mul_right_invariant (μ i)] : is_mul_right_invariant (measure.pi μ) := begin refine ⟨λ v, (pi_eq $ λ s hs, _).symm⟩, rw [map_apply (measurable_mul_const _) (measurable_set.univ_pi hs), (show (* v) ⁻¹' univ.pi s = univ.pi (λ i, (* v i) ⁻¹' s i), by refl), pi_pi], simp_rw measure_preimage_mul_right, end @[to_additive] instance pi.is_inv_invariant [∀ i, group (α i)] [∀ i, has_measurable_inv (α i)] [∀ i, is_inv_invariant (μ i)] : is_inv_invariant (measure.pi μ) := begin refine ⟨(measure.pi_eq (λ s hs, _)).symm⟩, have A : has_inv.inv ⁻¹' (pi univ s) = set.pi univ (λ i, has_inv.inv ⁻¹' s i), { ext, simp }, simp_rw [measure.inv, measure.map_apply measurable_inv (measurable_set.univ_pi hs), A, pi_pi, measure_preimage_inv] end instance pi.is_open_pos_measure [Π i, topological_space (α i)] [Π i, is_open_pos_measure (μ i)] : is_open_pos_measure (measure_theory.measure.pi μ) := begin constructor, rintros U U_open ⟨a, ha⟩, obtain ⟨s, ⟨hs, hsU⟩⟩ := is_open_pi_iff'.1 U_open a ha, refine ne_of_gt (lt_of_lt_of_le _ (measure_mono hsU)), simp only [pi_pi], rw canonically_ordered_comm_semiring.prod_pos, intros i _, apply ((hs i).1.measure_pos (μ i) ⟨a i, (hs i).2⟩), end instance pi.is_finite_measure_on_compacts [Π i, topological_space (α i)] [Π i, is_finite_measure_on_compacts (μ i)] : is_finite_measure_on_compacts (measure_theory.measure.pi μ) := begin constructor, intros K hK, suffices : measure.pi μ (set.univ.pi ( λ j, (function.eval j) '' K)) < ⊤, { exact lt_of_le_of_lt (measure_mono (univ.subset_pi_eval_image K)) this, }, rw measure.pi_pi, refine with_top.prod_lt_top _, exact λ i _, ne_of_lt (is_compact.measure_lt_top (is_compact.image hK (continuous_apply i))), end @[to_additive] instance pi.is_haar_measure [Π i, group (α i)] [Π i, topological_space (α i)] [Π i, is_haar_measure (μ i)] [Π i, has_measurable_mul (α i)] : is_haar_measure (measure.pi μ) := {} end measure instance measure_space.pi [Π i, measure_space (α i)] : measure_space (Π i, α i) := ⟨measure.pi (λ i, volume)⟩ lemma volume_pi [Π i, measure_space (α i)] : (volume : measure (Π i, α i)) = measure.pi (λ i, volume) := rfl lemma volume_pi_pi [Π i, measure_space (α i)] [∀ i, sigma_finite (volume : measure (α i))] (s : Π i, set (α i)) : volume (pi univ s) = ∏ i, volume (s i) := measure.pi_pi (λ i, volume) s lemma volume_pi_ball [Π i, measure_space (α i)] [∀ i, sigma_finite (volume : measure (α i))] [∀ i, metric_space (α i)] (x : Π i, α i) {r : ℝ} (hr : 0 < r) : volume (metric.ball x r) = ∏ i, volume (metric.ball (x i) r) := measure.pi_ball _ _ hr lemma volume_pi_closed_ball [Π i, measure_space (α i)] [∀ i, sigma_finite (volume : measure (α i))] [∀ i, metric_space (α i)] (x : Π i, α i) {r : ℝ} (hr : 0 ≤ r) : volume (metric.closed_ball x r) = ∏ i, volume (metric.closed_ball (x i) r) := measure.pi_closed_ball _ _ hr open measure /-- We intentionally restrict this only to the nondependent function space, since type-class inference cannot find an instance for `ι → ℝ` when this is stated for dependent function spaces. -/ @[to_additive "We intentionally restrict this only to the nondependent function space, since type-class inference cannot find an instance for `ι → ℝ` when this is stated for dependent function spaces."] instance pi.is_mul_left_invariant_volume {α} [group α] [measure_space α] [sigma_finite (volume : measure α)] [has_measurable_mul α] [is_mul_left_invariant (volume : measure α)] : is_mul_left_invariant (volume : measure (ι → α)) := pi.is_mul_left_invariant _ /-- We intentionally restrict this only to the nondependent function space, since type-class inference cannot find an instance for `ι → ℝ` when this is stated for dependent function spaces. -/ @[to_additive "We intentionally restrict this only to the nondependent function space, since type-class inference cannot find an instance for `ι → ℝ` when this is stated for dependent function spaces."] instance pi.is_inv_invariant_volume {α} [group α] [measure_space α] [sigma_finite (volume : measure α)] [has_measurable_inv α] [is_inv_invariant (volume : measure α)] : is_inv_invariant (volume : measure (ι → α)) := pi.is_inv_invariant _ /-! ### Measure preserving equivalences In this section we prove that some measurable equivalences (e.g., between `fin 1 → α` and `α` or between `fin 2 → α` and `α × α`) preserve measure or volume. These lemmas can be used to prove that measures of corresponding sets (images or preimages) have equal measures and functions `f ∘ e` and `f` have equal integrals, see lemmas in the `measure_theory.measure_preserving` prefix. -/ section measure_preserving lemma measure_preserving_pi_equiv_pi_subtype_prod {ι : Type u} {α : ι → Type v} [fintype ι] {m : Π i, measurable_space (α i)} (μ : Π i, measure (α i)) [∀ i, sigma_finite (μ i)] (p : ι → Prop) [decidable_pred p] : measure_preserving (measurable_equiv.pi_equiv_pi_subtype_prod α p) (measure.pi μ) ((measure.pi $ λ i : subtype p, μ i).prod (measure.pi $ λ i, μ i)) := begin set e := (measurable_equiv.pi_equiv_pi_subtype_prod α p).symm, refine measure_preserving.symm e _, refine ⟨e.measurable, (pi_eq $ λ s hs, _).symm⟩, have : e ⁻¹' (pi univ s) = (pi univ (λ i : {i // p i}, s i)) ×ˢ (pi univ (λ i : {i // ¬p i}, s i)), from equiv.preimage_pi_equiv_pi_subtype_prod_symm_pi p s, rw [e.map_apply, this, prod_prod, pi_pi, pi_pi], exact fintype.prod_subtype_mul_prod_subtype p (λ i, μ i (s i)) end lemma volume_preserving_pi_equiv_pi_subtype_prod {ι : Type*} (α : ι → Type*) [fintype ι] [Π i, measure_space (α i)] [∀ i, sigma_finite (volume : measure (α i))] (p : ι → Prop) [decidable_pred p] : measure_preserving (measurable_equiv.pi_equiv_pi_subtype_prod α p) := measure_preserving_pi_equiv_pi_subtype_prod (λ i, volume) p lemma measure_preserving_pi_fin_succ_above_equiv {n : ℕ} {α : fin (n + 1) → Type u} {m : Π i, measurable_space (α i)} (μ : Π i, measure (α i)) [∀ i, sigma_finite (μ i)] (i : fin (n + 1)) : measure_preserving (measurable_equiv.pi_fin_succ_above_equiv α i) (measure.pi μ) ((μ i).prod $ measure.pi $ λ j, μ (i.succ_above j)) := begin set e := (measurable_equiv.pi_fin_succ_above_equiv α i).symm, refine measure_preserving.symm e _, refine ⟨e.measurable, (pi_eq $ λ s hs, _).symm⟩, rw [e.map_apply, i.prod_univ_succ_above _, ← pi_pi, ← prod_prod], congr' 1 with ⟨x, f⟩, simp [i.forall_iff_succ_above] end lemma volume_preserving_pi_fin_succ_above_equiv {n : ℕ} (α : fin (n + 1) → Type u) [Π i, measure_space (α i)] [∀ i, sigma_finite (volume : measure (α i))] (i : fin (n + 1)) : measure_preserving (measurable_equiv.pi_fin_succ_above_equiv α i) := measure_preserving_pi_fin_succ_above_equiv (λ _, volume) i lemma measure_preserving_fun_unique {β : Type u} {m : measurable_space β} (μ : measure β) (α : Type v) [unique α] : measure_preserving (measurable_equiv.fun_unique α β) (measure.pi (λ a : α, μ)) μ := begin set e := measurable_equiv.fun_unique α β, have : pi_premeasure (λ _ : α, μ.to_outer_measure) = measure.map e.symm μ, { ext1 s, rw [pi_premeasure, fintype.prod_unique, to_outer_measure_apply, e.symm.map_apply], congr' 1, exact e.to_equiv.image_eq_preimage s }, simp only [measure.pi, outer_measure.pi, this, bounded_by_measure, to_outer_measure_to_measure], exact (e.symm.measurable.measure_preserving _).symm e.symm end lemma volume_preserving_fun_unique (α : Type u) (β : Type v) [unique α] [measure_space β] : measure_preserving (measurable_equiv.fun_unique α β) volume volume := measure_preserving_fun_unique volume α lemma measure_preserving_pi_fin_two {α : fin 2 → Type u} {m : Π i, measurable_space (α i)} (μ : Π i, measure (α i)) [∀ i, sigma_finite (μ i)] : measure_preserving (measurable_equiv.pi_fin_two α) (measure.pi μ) ((μ 0).prod (μ 1)) := begin refine ⟨measurable_equiv.measurable _, (measure.prod_eq $ λ s t hs ht, _).symm⟩, rw [measurable_equiv.map_apply, measurable_equiv.pi_fin_two_apply, fin.preimage_apply_01_prod, measure.pi_pi, fin.prod_univ_two], refl end lemma volume_preserving_pi_fin_two (α : fin 2 → Type u) [Π i, measure_space (α i)] [∀ i, sigma_finite (volume : measure (α i))] : measure_preserving (measurable_equiv.pi_fin_two α) volume volume := measure_preserving_pi_fin_two _ lemma measure_preserving_fin_two_arrow_vec {α : Type u} {m : measurable_space α} (μ ν : measure α) [sigma_finite μ] [sigma_finite ν] : measure_preserving measurable_equiv.fin_two_arrow (measure.pi ![μ, ν]) (μ.prod ν) := begin haveI : ∀ i, sigma_finite (![μ, ν] i) := fin.forall_fin_two.2 ⟨‹_›, ‹_›⟩, exact measure_preserving_pi_fin_two _ end lemma measure_preserving_fin_two_arrow {α : Type u} {m : measurable_space α} (μ : measure α) [sigma_finite μ] : measure_preserving measurable_equiv.fin_two_arrow (measure.pi (λ _, μ)) (μ.prod μ) := by simpa only [matrix.vec_single_eq_const, matrix.vec_cons_const] using measure_preserving_fin_two_arrow_vec μ μ lemma volume_preserving_fin_two_arrow (α : Type u) [measure_space α] [sigma_finite (volume : measure α)] : measure_preserving (@measurable_equiv.fin_two_arrow α _) volume volume := measure_preserving_fin_two_arrow volume lemma measure_preserving_pi_empty {ι : Type u} {α : ι → Type v} [is_empty ι] {m : Π i, measurable_space (α i)} (μ : Π i, measure (α i)) : measure_preserving (measurable_equiv.of_unique_of_unique (Π i, α i) unit) (measure.pi μ) (measure.dirac ()) := begin set e := (measurable_equiv.of_unique_of_unique (Π i, α i) unit), refine ⟨e.measurable, _⟩, rw [measure.pi_of_empty, measure.map_dirac e.measurable], refl end lemma volume_preserving_pi_empty {ι : Type u} (α : ι → Type v) [is_empty ι] [Π i, measure_space (α i)] : measure_preserving (measurable_equiv.of_unique_of_unique (Π i, α i) unit) volume volume := measure_preserving_pi_empty (λ _, volume) end measure_preserving end measure_theory
fabd630a57cccbd05046880a7edc76ff6c480351
cf39355caa609c0f33405126beee2739aa3cb77e
/tests/lean/run/cases_bug.lean
a848ae9899cc4440893bff32d5187a6b0aea80bb
[ "Apache-2.0" ]
permissive
leanprover-community/lean
12b87f69d92e614daea8bcc9d4de9a9ace089d0e
cce7990ea86a78bdb383e38ed7f9b5ba93c60ce0
refs/heads/master
1,687,508,156,644
1,684,951,104,000
1,684,951,104,000
169,960,991
457
107
Apache-2.0
1,686,744,372,000
1,549,790,268,000
C++
UTF-8
Lean
false
false
127
lean
theorem cast_heq₂ : ∀ {A B : Type} (H : A = B) (a : A), cast H a == a | A .(A) (eq.refl .(A)) a := heq_of_eq $ cast_eq _ _
57baf7388deb6a8cef0cde3d68c1e7809ca4fc86
63abd62053d479eae5abf4951554e1064a4c45b4
/src/category_theory/sites/spaces.lean
00c92d99542334f761eca39c61cb04b9e97a2a12
[ "Apache-2.0" ]
permissive
Lix0120/mathlib
0020745240315ed0e517cbf32e738d8f9811dd80
e14c37827456fc6707f31b4d1d16f1f3a3205e91
refs/heads/master
1,673,102,855,024
1,604,151,044,000
1,604,151,044,000
308,930,245
0
0
Apache-2.0
1,604,164,710,000
1,604,163,547,000
null
UTF-8
Lean
false
false
3,060
lean
/- Copyright (c) 2020 Bhavik Mehta. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bhavik Mehta -/ import topology.opens import category_theory.sites.grothendieck import category_theory.sites.pretopology import category_theory.limits.lattice /-! # Grothendieck topology on a topological space Define the Grothendieck topology and the pretopology associated to a topological space, and show that the pretopology induces the topology. The covering (pre)sieves on `X` are those for which the union of domains contains `X`. ## Tags site, Grothendieck topology, space ## References * [https://ncatlab.org/nlab/show/Grothendieck+topology][nlab] * [S. MacLane, I. Moerdijk, *Sheaves in Geometry and Logic*][MM92] ## Implementation notes We define the two separately, rather than defining the Grothendieck topology as that generated by the pretopology for the purpose of having nice definitional properties for the sieves. -/ universe u namespace opens variables (T : Type u) [topological_space T] open category_theory topological_space category_theory.limits /-- The Grothendieck topology associated to a topological space. -/ def grothendieck_topology : grothendieck_topology (opens T) := { sieves := λ X S, ∀ x ∈ X, ∃ U (f : U ⟶ X), S f ∧ x ∈ U, top_mem' := λ X x hx, ⟨_, 𝟙 _, trivial, hx⟩, pullback_stable' := λ X Y S f hf y hy, begin rcases hf y (le_of_hom f hy) with ⟨U, g, hg, hU⟩, refine ⟨U ⊓ Y, hom_of_le inf_le_right, _, hU, hy⟩, apply S.downward_closed hg (hom_of_le inf_le_left), end, transitive' := λ X S hS R hR x hx, begin rcases hS x hx with ⟨U, f, hf, hU⟩, rcases hR hf _ hU with ⟨V, g, hg, hV⟩, exact ⟨_, g ≫ f, hg, hV⟩, end } /-- The Grothendieck pretopology associated to a topological space. -/ def pretopology : pretopology (opens T) := { coverings := λ X R, ∀ x ∈ X, ∃ U (f : U ⟶ X), R f ∧ x ∈ U, has_isos := λ X Y f i x hx, by exactI ⟨_, _, presieve.singleton_self _, le_of_hom (inv f) hx⟩, pullbacks := λ X Y f S hS x hx, begin rcases hS _ (le_of_hom f hx) with ⟨U, g, hg, hU⟩, refine ⟨_, _, ⟨_, _, hg, rfl, rfl⟩, _⟩, have : U ⊓ Y ≤ pullback g f, refine le_of_hom (pullback.lift (hom_of_le inf_le_left) (hom_of_le inf_le_right) rfl), apply this ⟨hU, hx⟩, end, transitive := λ X S Ti hS hTi x hx, begin rcases hS x hx with ⟨U, f, hf, hU⟩, rcases hTi f hf x hU with ⟨V, g, hg, hV⟩, exact ⟨_, _, ⟨_, g, f, hf, hg, rfl⟩, hV⟩, end } /-- The pretopology associated to a space induces the Grothendieck topology associated to the space. -/ @[simp] lemma pretopology_to_grothendieck : pretopology.to_grothendieck _ (opens.pretopology T) = opens.grothendieck_topology T := begin apply le_antisymm, { rintro X S ⟨R, hR, RS⟩ x hx, rcases hR x hx with ⟨U, f, hf, hU⟩, exact ⟨_, f, RS _ hf, hU⟩ }, { intros X S hS, exact ⟨S, hS, le_refl _⟩ } end end opens
de7e5b33311cb375bd622ad55c4244c9ab974fe4
94637389e03c919023691dcd05bd4411b1034aa5
/src/inClassNotes/type_library/option.lean
9cc341725c41ca88df92f700317f81f096037ac1
[]
no_license
kevinsullivan/complogic-s21
7c4eef2105abad899e46502270d9829d913e8afc
99039501b770248c8ceb39890be5dfe129dc1082
refs/heads/master
1,682,985,669,944
1,621,126,241,000
1,621,126,241,000
335,706,272
0
38
null
1,618,325,669,000
1,612,374,118,000
Lean
UTF-8
Lean
false
false
141
lean
#print option namespace hidden universe u inductive option (α : Type u) : Type u | none {} : option | some (a : α) : option end hidden
386c21824ebbe5aba6e915bbfa6e4831c8fc58a8
5ae26df177f810c5006841e9c73dc56e01b978d7
/src/tactic/ring.lean
a9b009b0736ab6b9fe78a101d0bfbcda77620063
[ "Apache-2.0" ]
permissive
ChrisHughes24/mathlib
98322577c460bc6b1fe5c21f42ce33ad1c3e5558
a2a867e827c2a6702beb9efc2b9282bd801d5f9a
refs/heads/master
1,583,848,251,477
1,565,164,247,000
1,565,164,247,000
129,409,993
0
1
Apache-2.0
1,565,164,817,000
1,523,628,059,000
Lean
UTF-8
Lean
false
false
20,824
lean
/- Copyright (c) 2018 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro Evaluate expressions in the language of (semi-)rings. Based on http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf . -/ import algebra.group_power tactic.norm_num import tactic.converter.interactive namespace tactic namespace ring def horner {α} [comm_semiring α] (a x : α) (n : ℕ) (b : α) := a * x ^ n + b meta structure cache := (α : expr) (univ : level) (comm_semiring_inst : expr) (red : transparency) meta def ring_m (α : Type) : Type := reader_t cache (state_t (buffer expr) tactic) α meta instance : monad ring_m := by dunfold ring_m; apply_instance meta instance : alternative ring_m := by dunfold ring_m; apply_instance meta def get_cache : ring_m cache := reader_t.read meta def get_atom (n : ℕ) : ring_m expr := reader_t.lift $ (λ es : buffer expr, es.read' n) <$> state_t.get meta def get_transparency : ring_m transparency := cache.red <$> get_cache meta def add_atom (e : expr) : ring_m ℕ := do red ← get_transparency, reader_t.lift ⟨λ es, (do n ← es.iterate failed (λ n e' t, t <|> (is_def_eq e e' red $> n)), return (n, es)) <|> return (es.size, es.push_back e)⟩ meta def lift {α} (m : tactic α) : ring_m α := reader_t.lift (state_t.lift m) meta def ring_m.run (red : transparency) (e : expr) {α} (m : ring_m α) : tactic α := do α ← infer_type e, c ← mk_app ``comm_semiring [α] >>= mk_instance, u ← mk_meta_univ, infer_type α >>= unify (expr.sort (level.succ u)), u ← get_univ_assignment u, prod.fst <$> state_t.run (reader_t.run m ⟨α, u, c, red⟩) mk_buffer meta def cache.cs_app (c : cache) (n : name) : list expr → expr := (@expr.const tt n [c.univ] c.α c.comm_semiring_inst).mk_app meta def ring_m.mk_app (n inst : name) (l : list expr) : ring_m expr := do c ← get_cache, m ← lift $ mk_instance ((expr.const inst [c.univ] : expr) c.α), return $ (@expr.const tt n [c.univ] c.α m).mk_app l meta inductive horner_expr : Type | const (e : expr) : horner_expr | xadd (e : expr) (a : horner_expr) (x : expr × ℕ) (n : expr × ℕ) (b : horner_expr) : horner_expr meta def horner_expr.e : horner_expr → expr | (horner_expr.const e) := e | (horner_expr.xadd e _ _ _ _) := e meta instance : has_coe horner_expr expr := ⟨horner_expr.e⟩ meta def horner_expr.xadd' (c : cache) (a : horner_expr) (x : expr × ℕ) (n : expr × ℕ) (b : horner_expr) : horner_expr := horner_expr.xadd (c.cs_app ``horner [a, x.1, n.1, b]) a x n b open horner_expr meta def horner_expr.to_string : horner_expr → string | (const e) := to_string e | (xadd e a x (_, n) b) := "(" ++ a.to_string ++ ") * (" ++ to_string x ++ ")^" ++ to_string n ++ " + " ++ b.to_string meta def horner_expr.pp : horner_expr → tactic format | (const e) := pp e | (xadd e a x (_, n) b) := do pa ← a.pp, pb ← b.pp, px ← pp x, return $ "(" ++ pa ++ ") * (" ++ px ++ ")^" ++ to_string n ++ " + " ++ pb meta instance : has_to_tactic_format horner_expr := ⟨horner_expr.pp⟩ meta def horner_expr.refl_conv (e : horner_expr) : ring_m (horner_expr × expr) := do p ← lift $ mk_eq_refl e, return (e, p) theorem zero_horner {α} [comm_semiring α] (x n b) : @horner α _ 0 x n b = b := by simp [horner] theorem horner_horner {α} [comm_semiring α] (a₁ x n₁ n₂ b n') (h : n₁ + n₂ = n') : @horner α _ (horner a₁ x n₁ 0) x n₂ b = horner a₁ x n' b := by simp [h.symm, horner, pow_add, mul_assoc] meta def eval_horner : horner_expr → expr × ℕ → expr × ℕ → horner_expr → ring_m (horner_expr × expr) | ha@(const a) x n b := do c ← get_cache, if a.to_nat = some 0 then return (b, c.cs_app ``zero_horner [x.1, n.1, b]) else (xadd' c ha x n b).refl_conv | ha@(xadd a a₁ x₁ n₁ b₁) x n b := do c ← get_cache, if x₁.2 = x.2 ∧ b₁.e.to_nat = some 0 then do (n', h) ← lift $ mk_app ``has_add.add [n₁.1, n.1] >>= norm_num, return (xadd' c a₁ x (n', n₁.2 + n.2) b, c.cs_app ``horner_horner [a₁, x.1, n₁.1, n.1, b, n', h]) else (xadd' c ha x n b).refl_conv theorem const_add_horner {α} [comm_semiring α] (k a x n b b') (h : k + b = b') : k + @horner α _ a x n b = horner a x n b' := by simp [h.symm, horner] theorem horner_add_const {α} [comm_semiring α] (a x n b k b') (h : b + k = b') : @horner α _ a x n b + k = horner a x n b' := by simp [h.symm, horner] theorem horner_add_horner_lt {α} [comm_semiring α] (a₁ x n₁ b₁ a₂ n₂ b₂ k a' b') (h₁ : n₁ + k = n₂) (h₂ : (a₁ + horner a₂ x k 0 : α) = a') (h₃ : b₁ + b₂ = b') : @horner α _ a₁ x n₁ b₁ + horner a₂ x n₂ b₂ = horner a' x n₁ b' := by simp [h₂.symm, h₃.symm, h₁.symm, horner, pow_add, mul_add, mul_comm, mul_left_comm] theorem horner_add_horner_gt {α} [comm_semiring α] (a₁ x n₁ b₁ a₂ n₂ b₂ k a' b') (h₁ : n₂ + k = n₁) (h₂ : (horner a₁ x k 0 + a₂ : α) = a') (h₃ : b₁ + b₂ = b') : @horner α _ a₁ x n₁ b₁ + horner a₂ x n₂ b₂ = horner a' x n₂ b' := by simp [h₂.symm, h₃.symm, h₁.symm, horner, pow_add, mul_add, mul_comm, mul_left_comm] theorem horner_add_horner_eq {α} [comm_semiring α] (a₁ x n b₁ a₂ b₂ a' b' t) (h₁ : a₁ + a₂ = a') (h₂ : b₁ + b₂ = b') (h₃ : horner a' x n b' = t) : @horner α _ a₁ x n b₁ + horner a₂ x n b₂ = t := by simp [h₃.symm, h₂.symm, h₁.symm, horner, add_mul, mul_comm] meta def eval_add : horner_expr → horner_expr → ring_m (horner_expr × expr) | (const e₁) (const e₂) := do (e, p) ← lift $ mk_app ``has_add.add [e₁, e₂] >>= norm_num, return (const e, p) | he₁@(const e₁) he₂@(xadd e₂ a x n b) := do c ← get_cache, if e₁.to_nat = some 0 then do p ← lift $ mk_app ``zero_add [e₂], return (he₂, p) else do (b', h) ← eval_add he₁ b, return (xadd' c a x n b', c.cs_app ``const_add_horner [e₁, a, x.1, n.1, b, b', h]) | he₁@(xadd e₁ a x n b) he₂@(const e₂) := do c ← get_cache, if e₂.to_nat = some 0 then do p ← lift $ mk_app ``add_zero [e₁], return (he₁, p) else do (b', h) ← eval_add b he₂, return (xadd' c a x n b', c.cs_app ``horner_add_const [a, x.1, n.1, b, e₂, b', h]) | he₁@(xadd e₁ a₁ x₁ n₁ b₁) he₂@(xadd e₂ a₂ x₂ n₂ b₂) := do c ← get_cache, if x₁.2 < x₂.2 then do (b', h) ← eval_add b₁ he₂, return (xadd' c a₁ x₁ n₁ b', c.cs_app ``horner_add_const [a₁, x₁.1, n₁.1, b₁, e₂, b', h]) else if x₁.2 ≠ x₂.2 then do (b', h) ← eval_add he₁ b₂, return (xadd' c a₂ x₂ n₂ b', c.cs_app ``const_add_horner [e₁, a₂, x₂.1, n₂.1, b₂, b', h]) else if n₁.2 < n₂.2 then do let k := n₂.2 - n₁.2, ek ← lift $ expr.of_nat (expr.const `nat []) k, (_, h₁) ← lift $ mk_app ``has_add.add [n₁.1, ek] >>= norm_num, α0 ← lift $ expr.of_nat c.α 0, (a', h₂) ← eval_add a₁ (xadd' c a₂ x₁ (ek, k) (const α0)), (b', h₃) ← eval_add b₁ b₂, return (xadd' c a' x₁ n₁ b', c.cs_app ``horner_add_horner_lt [a₁, x₁.1, n₁.1, b₁, a₂, n₂.1, b₂, ek, a', b', h₁, h₂, h₃]) else if n₁.2 ≠ n₂.2 then do let k := n₁.2 - n₂.2, ek ← lift $ expr.of_nat (expr.const `nat []) k, (_, h₁) ← lift $ mk_app ``has_add.add [n₂.1, ek] >>= norm_num, α0 ← lift $ expr.of_nat c.α 0, (a', h₂) ← eval_add (xadd' c a₁ x₁ (ek, k) (const α0)) a₂, (b', h₃) ← eval_add b₁ b₂, return (xadd' c a' x₁ n₂ b', c.cs_app ``horner_add_horner_gt [a₁, x₁.1, n₁.1, b₁, a₂, n₂.1, b₂, ek, a', b', h₁, h₂, h₃]) else do (a', h₁) ← eval_add a₁ a₂, (b', h₂) ← eval_add b₁ b₂, (t, h₃) ← eval_horner a' x₁ n₁ b', return (t, c.cs_app ``horner_add_horner_eq [a₁, x₁.1, n₁.1, b₁, a₂, b₂, a', b', t, h₁, h₂, h₃]) theorem horner_neg {α} [comm_ring α] (a x n b a' b') (h₁ : -a = a') (h₂ : -b = b') : -@horner α _ a x n b = horner a' x n b' := by simp [h₂.symm, h₁.symm, horner] meta def eval_neg : horner_expr → ring_m (horner_expr × expr) | (const e) := do (e', p) ← lift $ mk_app ``has_neg.neg [e] >>= norm_num, return (const e', p) | (xadd e a x n b) := do c ← get_cache, (a', h₁) ← eval_neg a, (b', h₂) ← eval_neg b, p ← ring_m.mk_app ``horner_neg ``comm_ring [a, x.1, n.1, b, a', b', h₁, h₂], return (xadd' c a' x n b', p) theorem horner_const_mul {α} [comm_semiring α] (c a x n b a' b') (h₁ : c * a = a') (h₂ : c * b = b') : c * @horner α _ a x n b = horner a' x n b' := by simp [h₂.symm, h₁.symm, horner, mul_add, mul_assoc] theorem horner_mul_const {α} [comm_semiring α] (a x n b c a' b') (h₁ : a * c = a') (h₂ : b * c = b') : @horner α _ a x n b * c = horner a' x n b' := by simp [h₂.symm, h₁.symm, horner, add_mul, mul_right_comm] meta def eval_const_mul (k : expr) : horner_expr → ring_m (horner_expr × expr) | (const e) := do (e', p) ← lift $ mk_app ``has_mul.mul [k, e] >>= norm_num, return (const e', p) | (xadd e a x n b) := do c ← get_cache, (a', h₁) ← eval_const_mul a, (b', h₂) ← eval_const_mul b, return (xadd' c a' x n b', c.cs_app ``horner_const_mul [k, a, x.1, n.1, b, a', b', h₁, h₂]) theorem horner_mul_horner_zero {α} [comm_semiring α] (a₁ x n₁ b₁ a₂ n₂ aa t) (h₁ : @horner α _ a₁ x n₁ b₁ * a₂ = aa) (h₂ : horner aa x n₂ 0 = t) : horner a₁ x n₁ b₁ * horner a₂ x n₂ 0 = t := by rw [← h₂, ← h₁]; simp [horner, mul_add, mul_comm, mul_left_comm, mul_assoc] theorem horner_mul_horner {α} [comm_semiring α] (a₁ x n₁ b₁ a₂ n₂ b₂ aa haa ab bb t) (h₁ : @horner α _ a₁ x n₁ b₁ * a₂ = aa) (h₂ : horner aa x n₂ 0 = haa) (h₃ : a₁ * b₂ = ab) (h₄ : b₁ * b₂ = bb) (H : haa + horner ab x n₁ bb = t) : horner a₁ x n₁ b₁ * horner a₂ x n₂ b₂ = t := by rw [← H, ← h₂, ← h₁, ← h₃, ← h₄]; simp [horner, mul_add, mul_comm, mul_left_comm, mul_assoc] meta def eval_mul : horner_expr → horner_expr → ring_m (horner_expr × expr) | (const e₁) (const e₂) := do (e', p) ← lift $ mk_app ``has_mul.mul [e₁, e₂] >>= norm_num, return (const e', p) | (const e₁) e₂ := match e₁.to_nat with | (some 0) := do c ← get_cache, α0 ← lift $ expr.of_nat c.α 0, p ← lift $ mk_app ``zero_mul [e₂], return (const α0, p) | (some 1) := do p ← lift $ mk_app ``one_mul [e₂], return (e₂, p) | _ := eval_const_mul e₁ e₂ end | e₁ he₂@(const e₂) := do p₁ ← lift $ mk_app ``mul_comm [e₁, e₂], (e', p₂) ← eval_mul he₂ e₁, p ← lift $ mk_eq_trans p₁ p₂, return (e', p) | he₁@(xadd e₁ a₁ x₁ n₁ b₁) he₂@(xadd e₂ a₂ x₂ n₂ b₂) := do c ← get_cache, if x₁.2 < x₂.2 then do (a', h₁) ← eval_mul a₁ he₂, (b', h₂) ← eval_mul b₁ he₂, return (xadd' c a' x₁ n₁ b', c.cs_app ``horner_mul_const [a₁, x₁.1, n₁.1, b₁, e₂, a', b', h₁, h₂]) else if x₁.2 ≠ x₂.2 then do (a', h₁) ← eval_mul he₁ a₂, (b', h₂) ← eval_mul he₁ b₂, return (xadd' c a' x₂ n₂ b', c.cs_app ``horner_const_mul [e₁, a₂, x₂.1, n₂.1, b₂, a', b', h₁, h₂]) else do (aa, h₁) ← eval_mul he₁ a₂, α0 ← lift $ expr.of_nat c.α 0, (haa, h₂) ← eval_horner aa x₁ n₂ (const α0), if b₂.e.to_nat = some 0 then return (haa, c.cs_app ``horner_mul_horner_zero [a₁, x₁.1, n₁.1, b₁, a₂, n₂.1, aa, haa, h₁, h₂]) else do (ab, h₃) ← eval_mul a₁ b₂, (bb, h₄) ← eval_mul b₁ b₂, (t, H) ← eval_add haa (xadd' c ab x₁ n₁ bb), return (t, c.cs_app ``horner_mul_horner [a₁, x₁.1, n₁.1, b₁, a₂, n₂.1, b₂, aa, haa, ab, bb, t, h₁, h₂, h₃, h₄, H]) theorem horner_pow {α} [comm_semiring α] (a x n m n' a') (h₁ : n * m = n') (h₂ : a ^ m = a') : @horner α _ a x n 0 ^ m = horner a' x n' 0 := by simp [h₁.symm, h₂.symm, horner, mul_pow, pow_mul] meta def eval_pow : horner_expr → expr × ℕ → ring_m (horner_expr × expr) | e (_, 0) := do c ← get_cache, α1 ← lift $ expr.of_nat c.α 1, p ← lift $ mk_app ``pow_zero [e], return (const α1, p) | e (_, 1) := do p ← lift $ mk_app ``pow_one [e], return (e, p) | (const e) (e₂, m) := do (e', p) ← lift $ mk_app ``monoid.pow [e, e₂] >>= norm_num.derive, return (const e', p) | he@(xadd e a x n b) m := do c ← get_cache, let N : expr := expr.const `nat [], match b.e.to_nat with | some 0 := do (n', h₁) ← lift $ mk_app ``has_mul.mul [n.1, m.1] >>= norm_num, (a', h₂) ← eval_pow a m, α0 ← lift $ expr.of_nat c.α 0, return (xadd' c a' x (n', n.2 * m.2) (const α0), c.cs_app ``horner_pow [a, x.1, n.1, m.1, n', a', h₁, h₂]) | _ := do e₂ ← lift $ expr.of_nat N (m.2-1), l ← lift $ mk_app ``monoid.pow [e, e₂], (tl, hl) ← eval_pow he (e₂, m.2-1), (t, p₂) ← eval_mul tl he, hr ← lift $ mk_eq_refl e, p₂ ← ring_m.mk_app ``norm_num.subst_into_prod ``has_mul [l, e, tl, e, t, hl, hr, p₂], p₁ ← lift $ mk_app ``pow_succ' [e, e₂], p ← lift $ mk_eq_trans p₁ p₂, return (t, p) end theorem horner_atom {α} [comm_semiring α] (x : α) : x = horner 1 x 1 0 := by simp [horner] meta def eval_atom (e : expr) : ring_m (horner_expr × expr) := do c ← get_cache, i ← add_atom e, α0 ← lift $ expr.of_nat c.α 0, α1 ← lift $ expr.of_nat c.α 1, n1 ← lift $ expr.of_nat (expr.const `nat []) 1, return (xadd' c (const α1) (e, i) (n1, 1) (const α0), c.cs_app ``horner_atom [e]) lemma subst_into_pow {α} [monoid α] (l r tl tr t) (prl : (l : α) = tl) (prr : (r : ℕ) = tr) (prt : tl ^ tr = t) : l ^ r = t := by simp [prl, prr, prt] lemma unfold_sub {α} [add_group α] (a b c : α) (h : a + -b = c) : a - b = c := h lemma unfold_div {α} [division_ring α] (a b c : α) (h : a * b⁻¹ = c) : a / b = c := h meta def eval : expr → ring_m (horner_expr × expr) | `(%%e₁ + %%e₂) := do (e₁', p₁) ← eval e₁, (e₂', p₂) ← eval e₂, (e', p') ← eval_add e₁' e₂', p ← ring_m.mk_app ``norm_num.subst_into_sum ``has_add [e₁, e₂, e₁', e₂', e', p₁, p₂, p'], return (e', p) | `(%%e₁ - %%e₂) := do c ← get_cache, e₂' ← lift $ mk_app ``has_neg.neg [e₂], e ← lift $ mk_app ``has_add.add [e₁, e₂'], (e', p) ← eval e, p' ← ring_m.mk_app ``unfold_sub ``add_group [e₁, e₂, e', p], return (e', p') | `(- %%e) := do (e₁, p₁) ← eval e, (e₂, p₂) ← eval_neg e₁, p ← ring_m.mk_app ``norm_num.subst_into_neg ``has_neg [e, e₁, e₂, p₁, p₂], return (e₂, p) | `(%%e₁ * %%e₂) := do (e₁', p₁) ← eval e₁, (e₂', p₂) ← eval e₂, (e', p') ← eval_mul e₁' e₂', p ← ring_m.mk_app ``norm_num.subst_into_prod ``has_mul [e₁, e₂, e₁', e₂', e', p₁, p₂, p'], return (e', p) | e@`(has_inv.inv %%_) := (do (e', p) ← lift $ norm_num.derive e, lift $ e'.to_rat, return (const e', p)) <|> eval_atom e | `(%%e₁ / %%e₂) := do e₂' ← lift $ mk_app ``has_inv.inv [e₂], e ← lift $ mk_app ``has_mul.mul [e₁, e₂'], (e', p) ← eval e, p' ← ring_m.mk_app ``unfold_div ``division_ring [e₁, e₂, e', p], return (e', p') | e@`(@has_pow.pow _ _ %%P %%e₁ %%e₂) := do (e₂', p₂) ← eval e₂, match e₂'.e.to_nat, P with | some k, `(monoid.has_pow) := do (e₁', p₁) ← eval e₁, (e', p') ← eval_pow e₁' (e₂, k), p ← ring_m.mk_app ``subst_into_pow ``monoid [e₁, e₂, e₁', e₂', e', p₁, p₂, p'], return (e', p) | some k, `(nat.has_pow) := do (e₁', p₁) ← eval e₁, (e', p') ← eval_pow e₁' (e₂, k), p₃ ← ring_m.mk_app ``subst_into_pow ``monoid [e₁, e₂, e₁', e₂', e', p₁, p₂, p'], p₄ ← lift $ mk_app ``nat.pow_eq_pow [e₁, e₂] >>= mk_eq_symm, p ← lift $ mk_eq_trans p₄ p₃, return (e', p) | _, _ := eval_atom e end | e := match e.to_nat with | some n := (const e).refl_conv | none := eval_atom e end meta def eval' (red : transparency) (e : expr) : tactic (expr × expr) := ring_m.run red e $ do (e', p) ← eval e, return (e', p) theorem horner_def' {α} [comm_semiring α] (a x n b) : @horner α _ a x n b = x ^ n * a + b := by simp [horner, mul_comm] theorem mul_assoc_rev {α} [semigroup α] (a b c : α) : a * (b * c) = a * b * c := by simp [mul_assoc] theorem pow_add_rev {α} [monoid α] (a b : α) (m n : ℕ) : a ^ m * a ^ n = a ^ (m + n) := by simp [pow_add] theorem pow_add_rev_right {α} [monoid α] (a b : α) (m n : ℕ) : b * a ^ m * a ^ n = b * a ^ (m + n) := by simp [pow_add, mul_assoc] theorem add_neg_eq_sub {α} [add_group α] (a b : α) : a + -b = a - b := rfl @[derive has_reflect] inductive normalize_mode | raw | SOP | horner meta def normalize (red : transparency) (mode := normalize_mode.horner) (e : expr) : tactic (expr × expr) := do pow_lemma ← simp_lemmas.mk.add_simp ``pow_one, let lemmas := match mode with | normalize_mode.SOP := [``horner_def', ``add_zero, ``mul_one, ``mul_add, ``mul_sub, ``mul_assoc_rev, ``pow_add_rev, ``pow_add_rev_right, ``mul_neg_eq_neg_mul_symm, ``add_neg_eq_sub] | normalize_mode.horner := [``horner.equations._eqn_1, ``add_zero, ``one_mul, ``pow_one, ``neg_mul_eq_neg_mul_symm, ``add_neg_eq_sub] | _ := [] end, lemmas ← lemmas.mfoldl simp_lemmas.add_simp simp_lemmas.mk, (_, e', pr) ← ext_simplify_core () {} simp_lemmas.mk (λ _, failed) (λ _ _ _ _ e, do (new_e, pr) ← match mode with | normalize_mode.raw := eval' red | normalize_mode.horner := trans_conv (eval' red) (simplify lemmas []) | normalize_mode.SOP := trans_conv (eval' red) $ trans_conv (simplify lemmas []) $ simp_bottom_up' (λ e, norm_num e <|> pow_lemma.rewrite e) end e, guard (¬ new_e =ₐ e), return ((), new_e, some pr, ff)) (λ _ _ _ _ _, failed) `eq e, return (e', pr) end ring namespace interactive open interactive interactive.types lean.parser open tactic.ring local postfix `?`:9001 := optional /-- Tactic for solving equations in the language of rings. This version of `ring` fails if the target is not an equality that is provable by the axioms of commutative (semi)rings. -/ meta def ring1 (red : parse (tk "!")?) : tactic unit := let transp := if red.is_some then semireducible else reducible in do `(%%e₁ = %%e₂) ← target, ((e₁', p₁), (e₂', p₂)) ← ring_m.run transp e₁ $ prod.mk <$> eval e₁ <*> eval e₂, is_def_eq e₁' e₂', p ← mk_eq_symm p₂ >>= mk_eq_trans p₁, tactic.exact p meta def ring.mode : lean.parser ring.normalize_mode := with_desc "(SOP|raw|horner)?" $ do mode ← ident?, match mode with | none := return ring.normalize_mode.horner | some `horner := return ring.normalize_mode.horner | some `SOP := return ring.normalize_mode.SOP | some `raw := return ring.normalize_mode.raw | _ := failed end /-- Tactic for solving equations in the language of rings. Attempts to prove the goal outright if there is no `at` specifier and the target is an equality, but if this fails it falls back to rewriting all ring expressions into a normal form. When writing a normal form, `ring SOP` will use sum-of-products form instead of horner form. `ring!` will use a more aggressive reducibility setting to identify atoms. -/ meta def ring (red : parse (tk "!")?) (SOP : parse ring.mode) (loc : parse location) : tactic unit := match loc with | interactive.loc.ns [none] := ring1 red | _ := failed end <|> do ns ← loc.get_locals, let transp := if red.is_some then semireducible else reducible, tt ← tactic.replace_at (normalize transp SOP) ns loc.include_goal | fail "ring failed to simplify", when loc.include_goal $ try tactic.reflexivity end interactive end tactic namespace conv.interactive open conv interactive open tactic tactic.interactive (ring.mode ring1) open tactic.ring (normalize) local postfix `?`:9001 := optional meta def ring (red : parse (lean.parser.tk "!")?) (SOP : parse ring.mode) : conv unit := let transp := if red.is_some then semireducible else reducible in discharge_eq_lhs (ring1 red) <|> replace_lhs (normalize transp SOP) <|> fail "ring failed to simplify" end conv.interactive
250036bfb09ded2daf357bbbb76f6e53f8e906de
22e97a5d648fc451e25a06c668dc03ac7ed7bc25
/src/algebra/ordered_group.lean
9cce55361a4d3393954e38cb5851217aeb1684d4
[ "Apache-2.0" ]
permissive
keeferrowan/mathlib
f2818da875dbc7780830d09bd4c526b0764a4e50
aad2dfc40e8e6a7e258287a7c1580318e865817e
refs/heads/master
1,661,736,426,952
1,590,438,032,000
1,590,438,032,000
266,892,663
0
0
Apache-2.0
1,590,445,835,000
1,590,445,835,000
null
UTF-8
Lean
false
false
55,625
lean
/- Copyright (c) 2016 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Mario Carneiro, Johannes Hölzl -/ import algebra.group.units import algebra.group.with_one import algebra.group.type_tags import order.bounded_lattice set_option old_structure_cmd true set_option default_priority 100 -- see Note [default priority] /-! # Ordered monoids and groups -/ universe u variable {α : Type u} /-- An ordered (additive) commutative monoid is a commutative monoid with a partial order such that addition is an order embedding, i.e. `a + b ≤ a + c ↔ b ≤ c`. These monoids are automatically cancellative. -/ class ordered_add_comm_monoid (α : Type*) extends add_comm_monoid α, partial_order α := (add_le_add_left : ∀ a b : α, a ≤ b → ∀ c : α, c + a ≤ c + b) (lt_of_add_lt_add_left : ∀ a b c : α, a + b < a + c → b < c) section ordered_add_comm_monoid variables [ordered_add_comm_monoid α] {a b c d : α} lemma add_le_add_left' (h : a ≤ b) : c + a ≤ c + b := ordered_add_comm_monoid.add_le_add_left a b h c lemma add_le_add_right' (h : a ≤ b) : a + c ≤ b + c := add_comm c a ▸ add_comm c b ▸ add_le_add_left' h lemma lt_of_add_lt_add_left' : a + b < a + c → b < c := ordered_add_comm_monoid.lt_of_add_lt_add_left a b c lemma add_le_add' (h₁ : a ≤ b) (h₂ : c ≤ d) : a + c ≤ b + d := le_trans (add_le_add_right' h₁) (add_le_add_left' h₂) lemma le_add_of_nonneg_right' (h : 0 ≤ b) : a ≤ a + b := have a + b ≥ a + 0, from add_le_add_left' h, by rwa add_zero at this lemma le_add_of_nonneg_left' (h : 0 ≤ b) : a ≤ b + a := have 0 + a ≤ b + a, from add_le_add_right' h, by rwa zero_add at this lemma lt_of_add_lt_add_right' (h : a + b < c + b) : a < c := lt_of_add_lt_add_left' (show b + a < b + c, begin rw [add_comm b a, add_comm b c], assumption end) -- here we start using properties of zero. lemma le_add_of_nonneg_of_le' (ha : 0 ≤ a) (hbc : b ≤ c) : b ≤ a + c := zero_add b ▸ add_le_add' ha hbc lemma le_add_of_le_of_nonneg' (hbc : b ≤ c) (ha : 0 ≤ a) : b ≤ c + a := add_zero b ▸ add_le_add' hbc ha lemma add_nonneg' (ha : 0 ≤ a) (hb : 0 ≤ b) : 0 ≤ a + b := le_add_of_nonneg_of_le' ha hb lemma add_pos_of_pos_of_nonneg' (ha : 0 < a) (hb : 0 ≤ b) : 0 < a + b := lt_of_lt_of_le ha $ le_add_of_nonneg_right' hb lemma add_pos' (ha : 0 < a) (hb : 0 < b) : 0 < a + b := add_pos_of_pos_of_nonneg' ha $ le_of_lt hb lemma add_pos_of_nonneg_of_pos' (ha : 0 ≤ a) (hb : 0 < b) : 0 < a + b := lt_of_lt_of_le hb $ le_add_of_nonneg_left' ha lemma add_nonpos' (ha : a ≤ 0) (hb : b ≤ 0) : a + b ≤ 0 := zero_add (0:α) ▸ (add_le_add' ha hb) lemma add_le_of_nonpos_of_le' (ha : a ≤ 0) (hbc : b ≤ c) : a + b ≤ c := zero_add c ▸ add_le_add' ha hbc lemma add_le_of_le_of_nonpos' (hbc : b ≤ c) (ha : a ≤ 0) : b + a ≤ c := add_zero c ▸ add_le_add' hbc ha lemma add_neg_of_neg_of_nonpos' (ha : a < 0) (hb : b ≤ 0) : a + b < 0 := lt_of_le_of_lt (add_le_of_le_of_nonpos' (le_refl _) hb) ha lemma add_neg_of_nonpos_of_neg' (ha : a ≤ 0) (hb : b < 0) : a + b < 0 := lt_of_le_of_lt (add_le_of_nonpos_of_le' ha (le_refl _)) hb lemma add_neg' (ha : a < 0) (hb : b < 0) : a + b < 0 := add_neg_of_nonpos_of_neg' (le_of_lt ha) hb lemma lt_add_of_nonneg_of_lt' (ha : 0 ≤ a) (hbc : b < c) : b < a + c := lt_of_lt_of_le hbc $ le_add_of_nonneg_left' ha lemma lt_add_of_lt_of_nonneg' (hbc : b < c) (ha : 0 ≤ a) : b < c + a := lt_of_lt_of_le hbc $ le_add_of_nonneg_right' ha lemma lt_add_of_pos_of_lt' (ha : 0 < a) (hbc : b < c) : b < a + c := lt_add_of_nonneg_of_lt' (le_of_lt ha) hbc lemma lt_add_of_lt_of_pos' (hbc : b < c) (ha : 0 < a) : b < c + a := lt_add_of_lt_of_nonneg' hbc (le_of_lt ha) lemma add_lt_of_nonpos_of_lt' (ha : a ≤ 0) (hbc : b < c) : a + b < c := lt_of_le_of_lt (add_le_of_nonpos_of_le' ha (le_refl _)) hbc lemma add_lt_of_lt_of_nonpos' (hbc : b < c) (ha : a ≤ 0) : b + a < c := lt_of_le_of_lt (add_le_of_le_of_nonpos' (le_refl _) ha) hbc lemma add_lt_of_neg_of_lt' (ha : a < 0) (hbc : b < c) : a + b < c := add_lt_of_nonpos_of_lt' (le_of_lt ha) hbc lemma add_lt_of_lt_of_neg' (hbc : b < c) (ha : a < 0) : b + a < c := add_lt_of_lt_of_nonpos' hbc (le_of_lt ha) lemma add_eq_zero_iff' (ha : 0 ≤ a) (hb : 0 ≤ b) : a + b = 0 ↔ a = 0 ∧ b = 0 := iff.intro (assume hab : a + b = 0, have a ≤ 0, from hab ▸ le_add_of_le_of_nonneg' (le_refl _) hb, have a = 0, from le_antisymm this ha, have b ≤ 0, from hab ▸ le_add_of_nonneg_of_le' ha (le_refl _), have b = 0, from le_antisymm this hb, and.intro ‹a = 0› ‹b = 0›) (assume ⟨ha', hb'⟩, by rw [ha', hb', add_zero]) lemma bit0_pos {a : α} (h : 0 < a) : 0 < bit0 a := add_pos' h h section mono variables {β : Type*} [preorder β] {f g : β → α} lemma monotone.add (hf : monotone f) (hg : monotone g) : monotone (λ x, f x + g x) := λ x y h, add_le_add' (hf h) (hg h) lemma monotone.add_const (hf : monotone f) (a : α) : monotone (λ x, f x + a) := hf.add monotone_const lemma monotone.const_add (hf : monotone f) (a : α) : monotone (λ x, a + f x) := monotone_const.add hf end mono end ordered_add_comm_monoid namespace units instance [monoid α] [i : preorder α] : preorder (units α) := preorder.lift (coe : units α → α) i @[simp] theorem coe_le_coe [monoid α] [preorder α] {a b : units α} : (a : α) ≤ b ↔ a ≤ b := iff.rfl @[simp] theorem coe_lt_coe [monoid α] [preorder α] {a b : units α} : (a : α) < b ↔ a < b := iff.rfl instance [monoid α] [i : partial_order α] : partial_order (units α) := partial_order.lift (coe : units α → α) (by ext) i instance [monoid α] [i : linear_order α] : linear_order (units α) := linear_order.lift (coe : units α → α) (by ext) i instance [monoid α] [i : decidable_linear_order α] : decidable_linear_order (units α) := decidable_linear_order.lift (coe : units α → α) (by ext) i theorem max_coe [monoid α] [decidable_linear_order α] {a b : units α} : (↑(max a b) : α) = max a b := by by_cases a ≤ b; simp [max, h] theorem min_coe [monoid α] [decidable_linear_order α] {a b : units α} : (↑(min a b) : α) = min a b := by by_cases a ≤ b; simp [min, h] end units namespace with_zero instance [preorder α] : preorder (with_zero α) := with_bot.preorder instance [partial_order α] : partial_order (with_zero α) := with_bot.partial_order instance [partial_order α] : order_bot (with_zero α) := with_bot.order_bot instance [lattice α] : lattice (with_zero α) := with_bot.lattice instance [linear_order α] : linear_order (with_zero α) := with_bot.linear_order instance [decidable_linear_order α] : decidable_linear_order (with_zero α) := with_bot.decidable_linear_order /-- If `0` is the least element in `α`, then `with_zero α` is an `ordered_add_comm_monoid`. -/ def ordered_add_comm_monoid [ordered_add_comm_monoid α] (zero_le : ∀ a : α, 0 ≤ a) : ordered_add_comm_monoid (with_zero α) := begin suffices, refine { add_le_add_left := this, ..with_zero.partial_order, ..with_zero.add_comm_monoid, .. }, { intros a b c h, have h' := lt_iff_le_not_le.1 h, rw lt_iff_le_not_le at ⊢, refine ⟨λ b h₂, _, λ h₂, h'.2 $ this _ _ h₂ _⟩, cases h₂, cases c with c, { cases h'.2 (this _ _ bot_le a) }, { refine ⟨_, rfl, _⟩, cases a with a, { exact with_bot.some_le_some.1 h'.1 }, { exact le_of_lt (lt_of_add_lt_add_left' $ with_bot.some_lt_some.1 h), } } }, { intros a b h c ca h₂, cases b with b, { rw le_antisymm h bot_le at h₂, exact ⟨_, h₂, le_refl _⟩ }, cases a with a, { change c + 0 = some ca at h₂, simp at h₂, simp [h₂], exact ⟨_, rfl, by simpa using add_le_add_left' (zero_le b)⟩ }, { simp at h, cases c with c; change some _ = _ at h₂; simp [-add_comm] at h₂; subst ca; refine ⟨_, rfl, _⟩, { exact h }, { exact add_le_add_left' h } } } end end with_zero namespace with_top instance [add_semigroup α] : add_semigroup (with_top α) := { add := λ o₁ o₂, o₁.bind (λ a, o₂.map (λ b, a + b)), ..@additive.add_semigroup _ $ @with_zero.semigroup (multiplicative α) _ } lemma coe_add [add_semigroup α] {a b : α} : ((a + b : α) : with_top α) = a + b := rfl instance [add_comm_semigroup α] : add_comm_semigroup (with_top α) := { ..@additive.add_comm_semigroup _ $ @with_zero.comm_semigroup (multiplicative α) _ } instance [add_monoid α] : add_monoid (with_top α) := { zero := some 0, add := (+), ..@additive.add_monoid _ $ @with_zero.monoid (multiplicative α) _ } instance [add_comm_monoid α] : add_comm_monoid (with_top α) := { zero := 0, add := (+), ..@additive.add_comm_monoid _ $ @with_zero.comm_monoid (multiplicative α) _ } instance [ordered_add_comm_monoid α] : ordered_add_comm_monoid (with_top α) := begin suffices, refine { add_le_add_left := this, ..with_top.partial_order, ..with_top.add_comm_monoid, ..}, { intros a b c h, have h' := h, rw lt_iff_le_not_le at h' ⊢, refine ⟨λ c h₂, _, λ h₂, h'.2 $ this _ _ h₂ _⟩, cases h₂, cases a with a, { exact (not_le_of_lt h).elim le_top }, cases b with b, { exact (not_le_of_lt h).elim le_top }, { exact ⟨_, rfl, le_of_lt (lt_of_add_lt_add_left' $ with_top.some_lt_some.1 h)⟩ } }, { intros a b h c ca h₂, cases c with c, {cases h₂}, cases b with b; cases h₂, cases a with a, {cases le_antisymm h le_top }, simp at h, exact ⟨_, rfl, add_le_add_left' h⟩, } end @[simp] lemma zero_lt_top [ordered_add_comm_monoid α] : (0 : with_top α) < ⊤ := coe_lt_top 0 @[simp] lemma zero_lt_coe [ordered_add_comm_monoid α] (a : α) : (0 : with_top α) < a ↔ 0 < a := coe_lt_coe @[simp] lemma add_top [ordered_add_comm_monoid α] : ∀{a : with_top α}, a + ⊤ = ⊤ | none := rfl | (some a) := rfl @[simp] lemma top_add [ordered_add_comm_monoid α] {a : with_top α} : ⊤ + a = ⊤ := rfl lemma add_eq_top [ordered_add_comm_monoid α] (a b : with_top α) : a + b = ⊤ ↔ a = ⊤ ∨ b = ⊤ := by cases a; cases b; simp [none_eq_top, some_eq_coe, coe_add.symm] lemma add_lt_top [ordered_add_comm_monoid α] (a b : with_top α) : a + b < ⊤ ↔ a < ⊤ ∧ b < ⊤ := begin apply not_iff_not.1, simp [lt_top_iff_ne_top, add_eq_top], finish, apply classical.dec _, apply classical.dec _, end end with_top namespace with_bot instance [add_semigroup α] : add_semigroup (with_bot α) := with_top.add_semigroup instance [add_comm_semigroup α] : add_comm_semigroup (with_bot α) := with_top.add_comm_semigroup instance [add_monoid α] : add_monoid (with_bot α) := with_top.add_monoid instance [add_comm_monoid α] : add_comm_monoid (with_bot α) := with_top.add_comm_monoid instance [ordered_add_comm_monoid α] : ordered_add_comm_monoid (with_bot α) := begin suffices, refine { add_le_add_left := this, ..with_bot.partial_order, ..with_bot.add_comm_monoid, ..}, { intros a b c h, have h' := h, rw lt_iff_le_not_le at h' ⊢, refine ⟨λ b h₂, _, λ h₂, h'.2 $ this _ _ h₂ _⟩, cases h₂, cases a with a, { exact (not_le_of_lt h).elim bot_le }, cases c with c, { exact (not_le_of_lt h).elim bot_le }, { exact ⟨_, rfl, le_of_lt (lt_of_add_lt_add_left' $ with_bot.some_lt_some.1 h)⟩ } }, { intros a b h c ca h₂, cases c with c, {cases h₂}, cases a with a; cases h₂, cases b with b, {cases le_antisymm h bot_le}, simp at h, exact ⟨_, rfl, add_le_add_left' h⟩, } end @[simp] lemma coe_zero [add_monoid α] : ((0 : α) : with_bot α) = 0 := rfl @[simp] lemma coe_add [add_semigroup α] (a b : α) : ((a + b : α) : with_bot α) = a + b := rfl @[simp] lemma bot_add [ordered_add_comm_monoid α] (a : with_bot α) : ⊥ + a = ⊥ := rfl @[simp] lemma add_bot [ordered_add_comm_monoid α] (a : with_bot α) : a + ⊥ = ⊥ := by cases a; refl instance has_one [has_one α] : has_one (with_bot α) := ⟨(1 : α)⟩ @[simp] lemma coe_one [has_one α] : ((1 : α) : with_bot α) = 1 := rfl end with_bot /-- A canonically ordered monoid is an ordered commutative monoid in which the ordering coincides with the divisibility relation, which is to say, `a ≤ b` iff there exists `c` with `b = a + c`. This is satisfied by the natural numbers, for example, but not the integers or other ordered groups. -/ class canonically_ordered_add_monoid (α : Type*) extends ordered_add_comm_monoid α, order_bot α := (le_iff_exists_add : ∀a b:α, a ≤ b ↔ ∃c, b = a + c) section canonically_ordered_add_monoid variables [canonically_ordered_add_monoid α] {a b c d : α} lemma le_iff_exists_add : a ≤ b ↔ ∃c, b = a + c := canonically_ordered_add_monoid.le_iff_exists_add a b @[simp] lemma zero_le (a : α) : 0 ≤ a := le_iff_exists_add.mpr ⟨a, by simp⟩ @[simp] lemma bot_eq_zero : (⊥ : α) = 0 := le_antisymm bot_le (zero_le ⊥) @[simp] lemma add_eq_zero_iff : a + b = 0 ↔ a = 0 ∧ b = 0 := add_eq_zero_iff' (zero_le _) (zero_le _) @[simp] lemma le_zero_iff_eq : a ≤ 0 ↔ a = 0 := iff.intro (assume h, le_antisymm h (zero_le a)) (assume h, h ▸ le_refl a) protected lemma zero_lt_iff_ne_zero : 0 < a ↔ a ≠ 0 := iff.intro ne_of_gt $ assume hne, lt_of_le_of_ne (zero_le _) hne.symm lemma le_add_left (h : a ≤ c) : a ≤ b + c := calc a = 0 + a : by simp ... ≤ b + c : add_le_add' (zero_le _) h lemma le_add_right (h : a ≤ b) : a ≤ b + c := calc a = a + 0 : by simp ... ≤ b + c : add_le_add' h (zero_le _) instance with_zero.canonically_ordered_add_monoid : canonically_ordered_add_monoid (with_zero α) := { le_iff_exists_add := λ a b, begin cases a with a, { exact iff_of_true bot_le ⟨b, (zero_add b).symm⟩ }, cases b with b, { exact iff_of_false (mt (le_antisymm bot_le) (by simp)) (λ ⟨c, h⟩, by cases c; cases h) }, { simp [le_iff_exists_add, -add_comm], split; intro h; rcases h with ⟨c, h⟩, { exact ⟨some c, congr_arg some h⟩ }, { cases c; cases h, { exact ⟨_, (add_zero _).symm⟩ }, { exact ⟨_, rfl⟩ } } } end, bot := 0, bot_le := assume a a' h, option.no_confusion h, .. with_zero.ordered_add_comm_monoid zero_le } instance with_top.canonically_ordered_add_monoid : canonically_ordered_add_monoid (with_top α) := { le_iff_exists_add := assume a b, match a, b with | a, none := show a ≤ ⊤ ↔ ∃c, ⊤ = a + c, by simp; refine ⟨⊤, _⟩; cases a; refl | (some a), (some b) := show (a:with_top α) ≤ ↑b ↔ ∃c:with_top α, ↑b = ↑a + c, begin simp [canonically_ordered_add_monoid.le_iff_exists_add, -add_comm], split, { rintro ⟨c, rfl⟩, refine ⟨c, _⟩, simp [with_top.coe_add] }, { exact assume h, match b, h with _, ⟨some c, rfl⟩ := ⟨_, rfl⟩ end } end | none, some b := show (⊤ : with_top α) ≤ b ↔ ∃c:with_top α, ↑b = ⊤ + c, by simp end, .. with_top.order_bot, .. with_top.ordered_add_comm_monoid } end canonically_ordered_add_monoid class ordered_cancel_add_comm_monoid (α : Type u) extends add_comm_monoid α, add_left_cancel_semigroup α, add_right_cancel_semigroup α, partial_order α := (add_le_add_left : ∀ a b : α, a ≤ b → ∀ c : α, c + a ≤ c + b) (le_of_add_le_add_left : ∀ a b c : α, a + b ≤ a + c → b ≤ c) section ordered_cancel_add_comm_monoid variables [ordered_cancel_add_comm_monoid α] {a b c d : α} lemma add_le_add_left : ∀ {a b : α} (h : a ≤ b) (c : α), c + a ≤ c + b := ordered_cancel_add_comm_monoid.add_le_add_left lemma le_of_add_le_add_left : ∀ {a b c : α}, a + b ≤ a + c → b ≤ c := ordered_cancel_add_comm_monoid.le_of_add_le_add_left lemma add_lt_add_left (h : a < b) (c : α) : c + a < c + b := lt_of_le_not_le (add_le_add_left (le_of_lt h) _) $ mt le_of_add_le_add_left (not_le_of_gt h) lemma lt_of_add_lt_add_left (h : a + b < a + c) : b < c := lt_of_le_not_le (le_of_add_le_add_left (le_of_lt h)) $ mt (λ h, add_le_add_left h _) (not_le_of_gt h) lemma add_le_add_right (h : a ≤ b) (c : α) : a + c ≤ b + c := add_comm c a ▸ add_comm c b ▸ add_le_add_left h c theorem add_lt_add_right (h : a < b) (c : α) : a + c < b + c := begin rw [add_comm a c, add_comm b c], exact (add_lt_add_left h c) end lemma add_le_add {a b c d : α} (h₁ : a ≤ b) (h₂ : c ≤ d) : a + c ≤ b + d := le_trans (add_le_add_right h₁ c) (add_le_add_left h₂ b) lemma le_add_of_nonneg_right (h : b ≥ 0) : a ≤ a + b := have a + b ≥ a + 0, from add_le_add_left h a, by rwa add_zero at this lemma le_add_of_nonneg_left (h : b ≥ 0) : a ≤ b + a := have 0 + a ≤ b + a, from add_le_add_right h a, by rwa zero_add at this lemma add_lt_add (h₁ : a < b) (h₂ : c < d) : a + c < b + d := lt_trans (add_lt_add_right h₁ c) (add_lt_add_left h₂ b) lemma add_lt_add_of_le_of_lt (h₁ : a ≤ b) (h₂ : c < d) : a + c < b + d := lt_of_le_of_lt (add_le_add_right h₁ c) (add_lt_add_left h₂ b) lemma add_lt_add_of_lt_of_le (h₁ : a < b) (h₂ : c ≤ d) : a + c < b + d := lt_of_lt_of_le (add_lt_add_right h₁ c) (add_le_add_left h₂ b) lemma lt_add_of_pos_right (a : α) {b : α} (h : b > 0) : a < a + b := have a + 0 < a + b, from add_lt_add_left h a, by rwa [add_zero] at this lemma lt_add_of_pos_left (a : α) {b : α} (h : b > 0) : a < b + a := have 0 + a < b + a, from add_lt_add_right h a, by rwa [zero_add] at this lemma le_of_add_le_add_right (h : a + b ≤ c + b) : a ≤ c := le_of_add_le_add_left (show b + a ≤ b + c, begin rw [add_comm b a, add_comm b c], assumption end) lemma lt_of_add_lt_add_right (h : a + b < c + b) : a < c := lt_of_add_lt_add_left (show b + a < b + c, begin rw [add_comm b a, add_comm b c], assumption end) -- here we start using properties of zero. lemma add_nonneg (ha : 0 ≤ a) (hb : 0 ≤ b) : 0 ≤ a + b := zero_add (0:α) ▸ (add_le_add ha hb) lemma add_pos (ha : 0 < a) (hb : 0 < b) : 0 < a + b := zero_add (0:α) ▸ (add_lt_add ha hb) lemma add_pos_of_pos_of_nonneg (ha : 0 < a) (hb : 0 ≤ b) : 0 < a + b := zero_add (0:α) ▸ (add_lt_add_of_lt_of_le ha hb) lemma add_pos_of_nonneg_of_pos (ha : 0 ≤ a) (hb : 0 < b) : 0 < a + b := zero_add (0:α) ▸ (add_lt_add_of_le_of_lt ha hb) lemma add_nonpos (ha : a ≤ 0) (hb : b ≤ 0) : a + b ≤ 0 := zero_add (0:α) ▸ (add_le_add ha hb) lemma add_neg (ha : a < 0) (hb : b < 0) : a + b < 0 := zero_add (0:α) ▸ (add_lt_add ha hb) lemma add_neg_of_neg_of_nonpos (ha : a < 0) (hb : b ≤ 0) : a + b < 0 := zero_add (0:α) ▸ (add_lt_add_of_lt_of_le ha hb) lemma add_neg_of_nonpos_of_neg (ha : a ≤ 0) (hb : b < 0) : a + b < 0 := zero_add (0:α) ▸ (add_lt_add_of_le_of_lt ha hb) lemma add_eq_zero_iff_eq_zero_and_eq_zero_of_nonneg_of_nonneg (ha : 0 ≤ a) (hb : 0 ≤ b) : a + b = 0 ↔ a = 0 ∧ b = 0 := iff.intro (assume hab : a + b = 0, have ha' : a ≤ 0, from calc a = a + 0 : by rw add_zero ... ≤ a + b : add_le_add_left hb _ ... = 0 : hab, have haz : a = 0, from le_antisymm ha' ha, have hb' : b ≤ 0, from calc b = 0 + b : by rw zero_add ... ≤ a + b : by exact add_le_add_right ha _ ... = 0 : hab, have hbz : b = 0, from le_antisymm hb' hb, and.intro haz hbz) (assume ⟨ha', hb'⟩, by rw [ha', hb', add_zero]) lemma le_add_of_nonneg_of_le (ha : 0 ≤ a) (hbc : b ≤ c) : b ≤ a + c := zero_add b ▸ add_le_add ha hbc lemma le_add_of_le_of_nonneg (hbc : b ≤ c) (ha : 0 ≤ a) : b ≤ c + a := add_zero b ▸ add_le_add hbc ha lemma lt_add_of_pos_of_le (ha : 0 < a) (hbc : b ≤ c) : b < a + c := zero_add b ▸ add_lt_add_of_lt_of_le ha hbc lemma lt_add_of_le_of_pos (hbc : b ≤ c) (ha : 0 < a) : b < c + a := add_zero b ▸ add_lt_add_of_le_of_lt hbc ha lemma add_le_of_nonpos_of_le (ha : a ≤ 0) (hbc : b ≤ c) : a + b ≤ c := zero_add c ▸ add_le_add ha hbc lemma add_le_of_le_of_nonpos (hbc : b ≤ c) (ha : a ≤ 0) : b + a ≤ c := add_zero c ▸ add_le_add hbc ha lemma add_lt_of_neg_of_le (ha : a < 0) (hbc : b ≤ c) : a + b < c := zero_add c ▸ add_lt_add_of_lt_of_le ha hbc lemma add_lt_of_le_of_neg (hbc : b ≤ c) (ha : a < 0) : b + a < c := add_zero c ▸ add_lt_add_of_le_of_lt hbc ha lemma lt_add_of_nonneg_of_lt (ha : 0 ≤ a) (hbc : b < c) : b < a + c := zero_add b ▸ add_lt_add_of_le_of_lt ha hbc lemma lt_add_of_lt_of_nonneg (hbc : b < c) (ha : 0 ≤ a) : b < c + a := add_zero b ▸ add_lt_add_of_lt_of_le hbc ha lemma lt_add_of_pos_of_lt (ha : 0 < a) (hbc : b < c) : b < a + c := zero_add b ▸ add_lt_add ha hbc lemma lt_add_of_lt_of_pos (hbc : b < c) (ha : 0 < a) : b < c + a := add_zero b ▸ add_lt_add hbc ha lemma add_lt_of_nonpos_of_lt (ha : a ≤ 0) (hbc : b < c) : a + b < c := zero_add c ▸ add_lt_add_of_le_of_lt ha hbc lemma add_lt_of_lt_of_nonpos (hbc : b < c) (ha : a ≤ 0) : b + a < c := add_zero c ▸ add_lt_add_of_lt_of_le hbc ha lemma add_lt_of_neg_of_lt (ha : a < 0) (hbc : b < c) : a + b < c := zero_add c ▸ add_lt_add ha hbc lemma add_lt_of_lt_of_neg (hbc : b < c) (ha : a < 0) : b + a < c := add_zero c ▸ add_lt_add hbc ha instance ordered_cancel_add_comm_monoid.to_ordered_add_comm_monoid : ordered_add_comm_monoid α := { lt_of_add_lt_add_left := @lt_of_add_lt_add_left _ _, ..‹ordered_cancel_add_comm_monoid α› } instance ordered_cancel_add_comm_monoid.to_add_left_cancel_monoid : add_left_cancel_monoid α := { ..‹ordered_cancel_add_comm_monoid α› } @[simp] lemma add_le_add_iff_left (a : α) {b c : α} : a + b ≤ a + c ↔ b ≤ c := ⟨le_of_add_le_add_left, λ h, add_le_add_left h _⟩ @[simp] lemma add_le_add_iff_right (c : α) : a + c ≤ b + c ↔ a ≤ b := add_comm c a ▸ add_comm c b ▸ add_le_add_iff_left c @[simp] lemma add_lt_add_iff_left (a : α) {b c : α} : a + b < a + c ↔ b < c := ⟨lt_of_add_lt_add_left, λ h, add_lt_add_left h _⟩ @[simp] lemma add_lt_add_iff_right (c : α) : a + c < b + c ↔ a < b := add_comm c a ▸ add_comm c b ▸ add_lt_add_iff_left c @[simp] lemma le_add_iff_nonneg_right (a : α) {b : α} : a ≤ a + b ↔ 0 ≤ b := have a + 0 ≤ a + b ↔ 0 ≤ b, from add_le_add_iff_left a, by rwa add_zero at this @[simp] lemma le_add_iff_nonneg_left (a : α) {b : α} : a ≤ b + a ↔ 0 ≤ b := by rw [add_comm, le_add_iff_nonneg_right] @[simp] lemma lt_add_iff_pos_right (a : α) {b : α} : a < a + b ↔ 0 < b := have a + 0 < a + b ↔ 0 < b, from add_lt_add_iff_left a, by rwa add_zero at this @[simp] lemma lt_add_iff_pos_left (a : α) {b : α} : a < b + a ↔ 0 < b := by rw [add_comm, lt_add_iff_pos_right] @[simp] lemma add_le_iff_nonpos_left : a + b ≤ b ↔ a ≤ 0 := by { convert add_le_add_iff_right b, rw [zero_add] } @[simp] lemma add_le_iff_nonpos_right : a + b ≤ a ↔ b ≤ 0 := by { convert add_le_add_iff_left a, rw [add_zero] } @[simp] lemma add_lt_iff_neg_right : a + b < b ↔ a < 0 := by { convert add_lt_add_iff_right b, rw [zero_add] } @[simp] lemma add_lt_iff_neg_left : a + b < a ↔ b < 0 := by { convert add_lt_add_iff_left a, rw [add_zero] } lemma add_eq_zero_iff_eq_zero_of_nonneg (ha : 0 ≤ a) (hb : 0 ≤ b) : a + b = 0 ↔ a = 0 ∧ b = 0 := ⟨λ hab : a + b = 0, by split; apply le_antisymm; try {assumption}; rw ← hab; simp [ha, hb], λ ⟨ha', hb'⟩, by rw [ha', hb', add_zero]⟩ lemma with_top.add_lt_add_iff_left : ∀{a b c : with_top α}, a < ⊤ → (a + c < a + b ↔ c < b) | none := assume b c h, (lt_irrefl ⊤ h).elim | (some a) := begin assume b c h, cases b; cases c; simp [with_top.none_eq_top, with_top.some_eq_coe, with_top.coe_lt_top, with_top.coe_lt_coe], { rw [← with_top.coe_add], exact with_top.coe_lt_top _ }, { rw [← with_top.coe_add, ← with_top.coe_add, with_top.coe_lt_coe], exact add_lt_add_iff_left _ } end lemma with_top.add_lt_add_iff_right {a b c : with_top α} : a < ⊤ → (c + a < b + a ↔ c < b) := by simpa [add_comm] using @with_top.add_lt_add_iff_left _ _ a b c section mono variables {β : Type*} [preorder β] {f g : β → α} lemma monotone.add_strict_mono (hf : monotone f) (hg : strict_mono g) : strict_mono (λ x, f x + g x) := λ x y h, add_lt_add_of_le_of_lt (hf $ le_of_lt h) (hg h) lemma strict_mono.add_monotone (hf : strict_mono f) (hg : monotone g) : strict_mono (λ x, f x + g x) := λ x y h, add_lt_add_of_lt_of_le (hf h) (hg $ le_of_lt h) end mono end ordered_cancel_add_comm_monoid class ordered_add_comm_group (α : Type u) extends add_comm_group α, partial_order α := (add_le_add_left : ∀ a b : α, a ≤ b → ∀ c : α, c + a ≤ c + b) section ordered_add_comm_group variables [ordered_add_comm_group α] {a b c d : α} lemma ordered_add_comm_group.add_lt_add_left (a b : α) (h : a < b) (c : α) : c + a < c + b := begin rw lt_iff_le_not_le at h ⊢, split, { apply ordered_add_comm_group.add_le_add_left _ _ h.1 }, { intro w, have w : -c + (c + b) ≤ -c + (c + a) := ordered_add_comm_group.add_le_add_left _ _ w _, simp only [add_zero, add_comm, add_left_neg, add_left_comm] at w, exact h.2 w }, end lemma ordered_add_comm_group.le_of_add_le_add_left (h : a + b ≤ a + c) : b ≤ c := have -a + (a + b) ≤ -a + (a + c), from ordered_add_comm_group.add_le_add_left _ _ h _, begin simp [neg_add_cancel_left] at this, assumption end lemma ordered_add_comm_group.lt_of_add_lt_add_left (h : a + b < a + c) : b < c := have -a + (a + b) < -a + (a + c), from ordered_add_comm_group.add_lt_add_left _ _ h _, begin simp [neg_add_cancel_left] at this, assumption end instance ordered_add_comm_group.to_ordered_cancel_add_comm_monoid (α : Type u) [s : ordered_add_comm_group α] : ordered_cancel_add_comm_monoid α := { add_left_cancel := @add_left_cancel α _, add_right_cancel := @add_right_cancel α _, le_of_add_le_add_left := @ordered_add_comm_group.le_of_add_le_add_left α _, ..s } lemma neg_le_neg (h : a ≤ b) : -b ≤ -a := have 0 ≤ -a + b, from add_left_neg a ▸ add_le_add_left h (-a), have 0 + -b ≤ -a + b + -b, from add_le_add_right this (-b), by rwa [add_neg_cancel_right, zero_add] at this lemma le_of_neg_le_neg (h : -b ≤ -a) : a ≤ b := suffices -(-a) ≤ -(-b), from begin simp [neg_neg] at this, assumption end, neg_le_neg h lemma nonneg_of_neg_nonpos (h : -a ≤ 0) : 0 ≤ a := have -a ≤ -0, by rwa neg_zero, le_of_neg_le_neg this lemma neg_nonpos_of_nonneg (h : 0 ≤ a) : -a ≤ 0 := have -a ≤ -0, from neg_le_neg h, by rwa neg_zero at this lemma nonpos_of_neg_nonneg (h : 0 ≤ -a) : a ≤ 0 := have -0 ≤ -a, by rwa neg_zero, le_of_neg_le_neg this lemma neg_nonneg_of_nonpos (h : a ≤ 0) : 0 ≤ -a := have -0 ≤ -a, from neg_le_neg h, by rwa neg_zero at this lemma neg_lt_neg (h : a < b) : -b < -a := have 0 < -a + b, from add_left_neg a ▸ add_lt_add_left h (-a), have 0 + -b < -a + b + -b, from add_lt_add_right this (-b), by rwa [add_neg_cancel_right, zero_add] at this lemma lt_of_neg_lt_neg (h : -b < -a) : a < b := neg_neg a ▸ neg_neg b ▸ neg_lt_neg h lemma pos_of_neg_neg (h : -a < 0) : 0 < a := have -a < -0, by rwa neg_zero, lt_of_neg_lt_neg this lemma neg_neg_of_pos (h : 0 < a) : -a < 0 := have -a < -0, from neg_lt_neg h, by rwa neg_zero at this lemma neg_of_neg_pos (h : 0 < -a) : a < 0 := have -0 < -a, by rwa neg_zero, lt_of_neg_lt_neg this lemma neg_pos_of_neg (h : a < 0) : 0 < -a := have -0 < -a, from neg_lt_neg h, by rwa neg_zero at this lemma le_neg_of_le_neg (h : a ≤ -b) : b ≤ -a := begin have h := neg_le_neg h, rwa neg_neg at h end lemma neg_le_of_neg_le (h : -a ≤ b) : -b ≤ a := begin have h := neg_le_neg h, rwa neg_neg at h end lemma lt_neg_of_lt_neg (h : a < -b) : b < -a := begin have h := neg_lt_neg h, rwa neg_neg at h end lemma neg_lt_of_neg_lt (h : -a < b) : -b < a := begin have h := neg_lt_neg h, rwa neg_neg at h end lemma sub_nonneg_of_le (h : b ≤ a) : 0 ≤ a - b := begin have h := add_le_add_right h (-b), rwa add_right_neg at h end lemma le_of_sub_nonneg (h : 0 ≤ a - b) : b ≤ a := begin have h := add_le_add_right h b, rwa [sub_add_cancel, zero_add] at h end lemma sub_nonpos_of_le (h : a ≤ b) : a - b ≤ 0 := begin have h := add_le_add_right h (-b), rwa add_right_neg at h end lemma le_of_sub_nonpos (h : a - b ≤ 0) : a ≤ b := begin have h := add_le_add_right h b, rwa [sub_add_cancel, zero_add] at h end lemma sub_pos_of_lt (h : b < a) : 0 < a - b := begin have h := add_lt_add_right h (-b), rwa add_right_neg at h end lemma lt_of_sub_pos (h : 0 < a - b) : b < a := begin have h := add_lt_add_right h b, rwa [sub_add_cancel, zero_add] at h end lemma sub_neg_of_lt (h : a < b) : a - b < 0 := begin have h := add_lt_add_right h (-b), rwa add_right_neg at h end lemma lt_of_sub_neg (h : a - b < 0) : a < b := begin have h := add_lt_add_right h b, rwa [sub_add_cancel, zero_add] at h end lemma add_le_of_le_neg_add (h : b ≤ -a + c) : a + b ≤ c := begin have h := add_le_add_left h a, rwa add_neg_cancel_left at h end lemma le_neg_add_of_add_le (h : a + b ≤ c) : b ≤ -a + c := begin have h := add_le_add_left h (-a), rwa neg_add_cancel_left at h end lemma add_le_of_le_sub_left (h : b ≤ c - a) : a + b ≤ c := begin have h := add_le_add_left h a, rwa [← add_sub_assoc, add_comm a c, add_sub_cancel] at h end lemma le_sub_left_of_add_le (h : a + b ≤ c) : b ≤ c - a := begin have h := add_le_add_right h (-a), rwa [add_comm a b, add_neg_cancel_right] at h end lemma add_le_of_le_sub_right (h : a ≤ c - b) : a + b ≤ c := begin have h := add_le_add_right h b, rwa sub_add_cancel at h end lemma le_sub_right_of_add_le (h : a + b ≤ c) : a ≤ c - b := begin have h := add_le_add_right h (-b), rwa add_neg_cancel_right at h end lemma le_add_of_neg_add_le (h : -b + a ≤ c) : a ≤ b + c := begin have h := add_le_add_left h b, rwa add_neg_cancel_left at h end lemma neg_add_le_of_le_add (h : a ≤ b + c) : -b + a ≤ c := begin have h := add_le_add_left h (-b), rwa neg_add_cancel_left at h end lemma le_add_of_sub_left_le (h : a - b ≤ c) : a ≤ b + c := begin have h := add_le_add_right h b, rwa [sub_add_cancel, add_comm] at h end lemma sub_left_le_of_le_add (h : a ≤ b + c) : a - b ≤ c := begin have h := add_le_add_right h (-b), rwa [add_comm b c, add_neg_cancel_right] at h end lemma le_add_of_sub_right_le (h : a - c ≤ b) : a ≤ b + c := begin have h := add_le_add_right h c, rwa sub_add_cancel at h end lemma sub_right_le_of_le_add (h : a ≤ b + c) : a - c ≤ b := begin have h := add_le_add_right h (-c), rwa add_neg_cancel_right at h end lemma le_add_of_neg_add_le_left (h : -b + a ≤ c) : a ≤ b + c := begin rw add_comm at h, exact le_add_of_sub_left_le h end lemma neg_add_le_left_of_le_add (h : a ≤ b + c) : -b + a ≤ c := begin rw add_comm, exact sub_left_le_of_le_add h end lemma le_add_of_neg_add_le_right (h : -c + a ≤ b) : a ≤ b + c := begin rw add_comm at h, exact le_add_of_sub_right_le h end lemma neg_add_le_right_of_le_add (h : a ≤ b + c) : -c + a ≤ b := begin rw add_comm at h, apply neg_add_le_left_of_le_add h end lemma le_add_of_neg_le_sub_left (h : -a ≤ b - c) : c ≤ a + b := le_add_of_neg_add_le_left (add_le_of_le_sub_right h) lemma neg_le_sub_left_of_le_add (h : c ≤ a + b) : -a ≤ b - c := begin have h := le_neg_add_of_add_le (sub_left_le_of_le_add h), rwa add_comm at h end lemma le_add_of_neg_le_sub_right (h : -b ≤ a - c) : c ≤ a + b := le_add_of_sub_right_le (add_le_of_le_sub_left h) lemma neg_le_sub_right_of_le_add (h : c ≤ a + b) : -b ≤ a - c := le_sub_left_of_add_le (sub_right_le_of_le_add h) lemma sub_le_of_sub_le (h : a - b ≤ c) : a - c ≤ b := sub_left_le_of_le_add (le_add_of_sub_right_le h) lemma sub_le_sub_left (h : a ≤ b) (c : α) : c - b ≤ c - a := add_le_add_left (neg_le_neg h) c lemma sub_le_sub_right (h : a ≤ b) (c : α) : a - c ≤ b - c := add_le_add_right h (-c) lemma sub_le_sub (hab : a ≤ b) (hcd : c ≤ d) : a - d ≤ b - c := add_le_add hab (neg_le_neg hcd) lemma add_lt_of_lt_neg_add (h : b < -a + c) : a + b < c := begin have h := add_lt_add_left h a, rwa add_neg_cancel_left at h end lemma lt_neg_add_of_add_lt (h : a + b < c) : b < -a + c := begin have h := add_lt_add_left h (-a), rwa neg_add_cancel_left at h end lemma add_lt_of_lt_sub_left (h : b < c - a) : a + b < c := begin have h := add_lt_add_left h a, rwa [← add_sub_assoc, add_comm a c, add_sub_cancel] at h end lemma lt_sub_left_of_add_lt (h : a + b < c) : b < c - a := begin have h := add_lt_add_right h (-a), rwa [add_comm a b, add_neg_cancel_right] at h end lemma add_lt_of_lt_sub_right (h : a < c - b) : a + b < c := begin have h := add_lt_add_right h b, rwa sub_add_cancel at h end lemma lt_sub_right_of_add_lt (h : a + b < c) : a < c - b := begin have h := add_lt_add_right h (-b), rwa add_neg_cancel_right at h end lemma lt_add_of_neg_add_lt (h : -b + a < c) : a < b + c := begin have h := add_lt_add_left h b, rwa add_neg_cancel_left at h end lemma neg_add_lt_of_lt_add (h : a < b + c) : -b + a < c := begin have h := add_lt_add_left h (-b), rwa neg_add_cancel_left at h end lemma lt_add_of_sub_left_lt (h : a - b < c) : a < b + c := begin have h := add_lt_add_right h b, rwa [sub_add_cancel, add_comm] at h end lemma sub_left_lt_of_lt_add (h : a < b + c) : a - b < c := begin have h := add_lt_add_right h (-b), rwa [add_comm b c, add_neg_cancel_right] at h end lemma lt_add_of_sub_right_lt (h : a - c < b) : a < b + c := begin have h := add_lt_add_right h c, rwa sub_add_cancel at h end lemma sub_right_lt_of_lt_add (h : a < b + c) : a - c < b := begin have h := add_lt_add_right h (-c), rwa add_neg_cancel_right at h end lemma lt_add_of_neg_add_lt_left (h : -b + a < c) : a < b + c := begin rw add_comm at h, exact lt_add_of_sub_left_lt h end lemma neg_add_lt_left_of_lt_add (h : a < b + c) : -b + a < c := begin rw add_comm, exact sub_left_lt_of_lt_add h end lemma lt_add_of_neg_add_lt_right (h : -c + a < b) : a < b + c := begin rw add_comm at h, exact lt_add_of_sub_right_lt h end lemma neg_add_lt_right_of_lt_add (h : a < b + c) : -c + a < b := begin rw add_comm at h, apply neg_add_lt_left_of_lt_add h end lemma lt_add_of_neg_lt_sub_left (h : -a < b - c) : c < a + b := lt_add_of_neg_add_lt_left (add_lt_of_lt_sub_right h) lemma neg_lt_sub_left_of_lt_add (h : c < a + b) : -a < b - c := begin have h := lt_neg_add_of_add_lt (sub_left_lt_of_lt_add h), rwa add_comm at h end lemma lt_add_of_neg_lt_sub_right (h : -b < a - c) : c < a + b := lt_add_of_sub_right_lt (add_lt_of_lt_sub_left h) lemma neg_lt_sub_right_of_lt_add (h : c < a + b) : -b < a - c := lt_sub_left_of_add_lt (sub_right_lt_of_lt_add h) lemma sub_lt_of_sub_lt (h : a - b < c) : a - c < b := sub_left_lt_of_lt_add (lt_add_of_sub_right_lt h) lemma sub_lt_sub_left (h : a < b) (c : α) : c - b < c - a := add_lt_add_left (neg_lt_neg h) c lemma sub_lt_sub_right (h : a < b) (c : α) : a - c < b - c := add_lt_add_right h (-c) lemma sub_lt_sub (hab : a < b) (hcd : c < d) : a - d < b - c := add_lt_add hab (neg_lt_neg hcd) lemma sub_lt_sub_of_le_of_lt (hab : a ≤ b) (hcd : c < d) : a - d < b - c := add_lt_add_of_le_of_lt hab (neg_lt_neg hcd) lemma sub_lt_sub_of_lt_of_le (hab : a < b) (hcd : c ≤ d) : a - d < b - c := add_lt_add_of_lt_of_le hab (neg_le_neg hcd) lemma sub_le_self (a : α) {b : α} (h : b ≥ 0) : a - b ≤ a := calc a - b = a + -b : rfl ... ≤ a + 0 : add_le_add_left (neg_nonpos_of_nonneg h) _ ... = a : by rw add_zero lemma sub_lt_self (a : α) {b : α} (h : b > 0) : a - b < a := calc a - b = a + -b : rfl ... < a + 0 : add_lt_add_left (neg_neg_of_pos h) _ ... = a : by rw add_zero lemma add_le_add_three {a b c d e f : α} (h₁ : a ≤ d) (h₂ : b ≤ e) (h₃ : c ≤ f) : a + b + c ≤ d + e + f := begin apply le_trans, apply add_le_add, apply add_le_add, assumption', apply le_refl end @[simp] lemma neg_neg_iff_pos : -a < 0 ↔ 0 < a := ⟨ pos_of_neg_neg, neg_neg_of_pos ⟩ @[simp] lemma neg_le_neg_iff : -a ≤ -b ↔ b ≤ a := have a + b - a ≤ a + b - b ↔ -a ≤ -b, from add_le_add_iff_left _, by simp at this; simp [this] lemma neg_le : -a ≤ b ↔ -b ≤ a := have -a ≤ -(-b) ↔ -b ≤ a, from neg_le_neg_iff, by rwa neg_neg at this lemma le_neg : a ≤ -b ↔ b ≤ -a := have -(-a) ≤ -b ↔ b ≤ -a, from neg_le_neg_iff, by rwa neg_neg at this lemma neg_le_iff_add_nonneg : -a ≤ b ↔ 0 ≤ a + b := (add_le_add_iff_left a).symm.trans $ by rw add_neg_self lemma le_neg_iff_add_nonpos : a ≤ -b ↔ a + b ≤ 0 := (add_le_add_iff_right b).symm.trans $ by rw neg_add_self @[simp] lemma neg_nonpos : -a ≤ 0 ↔ 0 ≤ a := have -a ≤ -0 ↔ 0 ≤ a, from neg_le_neg_iff, by rwa neg_zero at this @[simp] lemma neg_nonneg : 0 ≤ -a ↔ a ≤ 0 := have -0 ≤ -a ↔ a ≤ 0, from neg_le_neg_iff, by rwa neg_zero at this lemma neg_le_self (h : 0 ≤ a) : -a ≤ a := le_trans (neg_nonpos.2 h) h lemma self_le_neg (h : a ≤ 0) : a ≤ -a := le_trans h (neg_nonneg.2 h) @[simp] lemma neg_lt_neg_iff : -a < -b ↔ b < a := have a + b - a < a + b - b ↔ -a < -b, from add_lt_add_iff_left _, by simp at this; simp [this] lemma neg_lt_zero : -a < 0 ↔ 0 < a := have -a < -0 ↔ 0 < a, from neg_lt_neg_iff, by rwa neg_zero at this lemma neg_pos : 0 < -a ↔ a < 0 := have -0 < -a ↔ a < 0, from neg_lt_neg_iff, by rwa neg_zero at this lemma neg_lt : -a < b ↔ -b < a := have -a < -(-b) ↔ -b < a, from neg_lt_neg_iff, by rwa neg_neg at this lemma lt_neg : a < -b ↔ b < -a := have -(-a) < -b ↔ b < -a, from neg_lt_neg_iff, by rwa neg_neg at this @[simp] lemma sub_le_sub_iff_left (a : α) {b c : α} : a - b ≤ a - c ↔ c ≤ b := (add_le_add_iff_left _).trans neg_le_neg_iff @[simp] lemma sub_le_sub_iff_right (c : α) : a - c ≤ b - c ↔ a ≤ b := add_le_add_iff_right _ @[simp] lemma sub_lt_sub_iff_left (a : α) {b c : α} : a - b < a - c ↔ c < b := (add_lt_add_iff_left _).trans neg_lt_neg_iff @[simp] lemma sub_lt_sub_iff_right (c : α) : a - c < b - c ↔ a < b := add_lt_add_iff_right _ @[simp] lemma sub_nonneg : 0 ≤ a - b ↔ b ≤ a := have a - a ≤ a - b ↔ b ≤ a, from sub_le_sub_iff_left a, by rwa sub_self at this @[simp] lemma sub_nonpos : a - b ≤ 0 ↔ a ≤ b := have a - b ≤ b - b ↔ a ≤ b, from sub_le_sub_iff_right b, by rwa sub_self at this @[simp] lemma sub_pos : 0 < a - b ↔ b < a := have a - a < a - b ↔ b < a, from sub_lt_sub_iff_left a, by rwa sub_self at this @[simp] lemma sub_lt_zero : a - b < 0 ↔ a < b := have a - b < b - b ↔ a < b, from sub_lt_sub_iff_right b, by rwa sub_self at this lemma le_neg_add_iff_add_le : b ≤ -a + c ↔ a + b ≤ c := have -a + (a + b) ≤ -a + c ↔ a + b ≤ c, from add_le_add_iff_left _, by rwa neg_add_cancel_left at this lemma le_sub_iff_add_le' : b ≤ c - a ↔ a + b ≤ c := by rw [sub_eq_add_neg, add_comm, le_neg_add_iff_add_le] lemma le_sub_iff_add_le : a ≤ c - b ↔ a + b ≤ c := by rw [le_sub_iff_add_le', add_comm] @[simp] lemma neg_add_le_iff_le_add : -b + a ≤ c ↔ a ≤ b + c := have -b + a ≤ -b + (b + c) ↔ a ≤ b + c, from add_le_add_iff_left _, by rwa neg_add_cancel_left at this lemma sub_le_iff_le_add' : a - b ≤ c ↔ a ≤ b + c := by rw [sub_eq_add_neg, add_comm, neg_add_le_iff_le_add] lemma sub_le_iff_le_add : a - c ≤ b ↔ a ≤ b + c := by rw [sub_le_iff_le_add', add_comm] lemma add_neg_le_iff_le_add : a + -c ≤ b ↔ a ≤ b + c := sub_le_iff_le_add @[simp] lemma add_neg_le_iff_le_add' : a + -b ≤ c ↔ a ≤ b + c := sub_le_iff_le_add' lemma neg_add_le_iff_le_add' : -c + a ≤ b ↔ a ≤ b + c := by rw [neg_add_le_iff_le_add, add_comm] @[simp] lemma neg_le_sub_iff_le_add : -b ≤ a - c ↔ c ≤ a + b := le_sub_iff_add_le.trans neg_add_le_iff_le_add' lemma neg_le_sub_iff_le_add' : -a ≤ b - c ↔ c ≤ a + b := by rw [neg_le_sub_iff_le_add, add_comm] lemma sub_le : a - b ≤ c ↔ a - c ≤ b := sub_le_iff_le_add'.trans sub_le_iff_le_add.symm theorem le_sub : a ≤ b - c ↔ c ≤ b - a := le_sub_iff_add_le'.trans le_sub_iff_add_le.symm @[simp] lemma lt_neg_add_iff_add_lt : b < -a + c ↔ a + b < c := have -a + (a + b) < -a + c ↔ a + b < c, from add_lt_add_iff_left _, by rwa neg_add_cancel_left at this lemma lt_sub_iff_add_lt' : b < c - a ↔ a + b < c := by rw [sub_eq_add_neg, add_comm, lt_neg_add_iff_add_lt] lemma lt_sub_iff_add_lt : a < c - b ↔ a + b < c := by rw [lt_sub_iff_add_lt', add_comm] @[simp] lemma neg_add_lt_iff_lt_add : -b + a < c ↔ a < b + c := have -b + a < -b + (b + c) ↔ a < b + c, from add_lt_add_iff_left _, by rwa neg_add_cancel_left at this lemma sub_lt_iff_lt_add' : a - b < c ↔ a < b + c := by rw [sub_eq_add_neg, add_comm, neg_add_lt_iff_lt_add] lemma sub_lt_iff_lt_add : a - c < b ↔ a < b + c := by rw [sub_lt_iff_lt_add', add_comm] lemma neg_add_lt_iff_lt_add_right : -c + a < b ↔ a < b + c := by rw [neg_add_lt_iff_lt_add, add_comm] @[simp] lemma neg_lt_sub_iff_lt_add : -b < a - c ↔ c < a + b := lt_sub_iff_add_lt.trans neg_add_lt_iff_lt_add_right lemma neg_lt_sub_iff_lt_add' : -a < b - c ↔ c < a + b := by rw [neg_lt_sub_iff_lt_add, add_comm] lemma sub_lt : a - b < c ↔ a - c < b := sub_lt_iff_lt_add'.trans sub_lt_iff_lt_add.symm theorem lt_sub : a < b - c ↔ c < b - a := lt_sub_iff_add_lt'.trans lt_sub_iff_add_lt.symm lemma sub_le_self_iff (a : α) {b : α} : a - b ≤ a ↔ 0 ≤ b := sub_le_iff_le_add'.trans (le_add_iff_nonneg_left _) lemma sub_lt_self_iff (a : α) {b : α} : a - b < a ↔ 0 < b := sub_lt_iff_lt_add'.trans (lt_add_iff_pos_left _) end ordered_add_comm_group /-- The `add_lt_add_left` field of `ordered_add_comm_group` is redundant, but it is in core so we can't remove it for now. This alternative constructor is the best we can do. -/ def ordered_add_comm_group.mk' {α : Type u} [add_comm_group α] [partial_order α] (add_le_add_left : ∀ a b : α, a ≤ b → ∀ c : α, c + a ≤ c + b) : ordered_add_comm_group α := { add_le_add_left := add_le_add_left, ..(by apply_instance : add_comm_group α), ..(by apply_instance : partial_order α) } class decidable_linear_ordered_cancel_add_comm_monoid (α : Type u) extends ordered_cancel_add_comm_monoid α, decidable_linear_order α section decidable_linear_ordered_cancel_add_comm_monoid variables [decidable_linear_ordered_cancel_add_comm_monoid α] lemma min_add_add_left (a b c : α) : min (a + b) (a + c) = a + min b c := eq.symm (eq_min (show a + min b c ≤ a + b, from add_le_add_left (min_le_left _ _) _) (show a + min b c ≤ a + c, from add_le_add_left (min_le_right _ _) _) (assume d, assume : d ≤ a + b, assume : d ≤ a + c, decidable.by_cases (assume : b ≤ c, by rwa [min_eq_left this]) (assume : ¬ b ≤ c, by rwa [min_eq_right (le_of_lt (lt_of_not_ge this))]))) lemma min_add_add_right (a b c : α) : min (a + c) (b + c) = min a b + c := begin rw [add_comm a c, add_comm b c, add_comm _ c], apply min_add_add_left end lemma max_add_add_left (a b c : α) : max (a + b) (a + c) = a + max b c := eq.symm (eq_max (add_le_add_left (le_max_left _ _) _) (add_le_add_left (le_max_right _ _) _) (assume d, assume : a + b ≤ d, assume : a + c ≤ d, decidable.by_cases (assume : b ≤ c, by rwa [max_eq_right this]) (assume : ¬ b ≤ c, by rwa [max_eq_left (le_of_lt (lt_of_not_ge this))]))) lemma max_add_add_right (a b c : α) : max (a + c) (b + c) = max a b + c := begin rw [add_comm a c, add_comm b c, add_comm _ c], apply max_add_add_left end end decidable_linear_ordered_cancel_add_comm_monoid class decidable_linear_ordered_add_comm_group (α : Type u) extends add_comm_group α, decidable_linear_order α := (add_le_add_left : ∀ a b : α, a ≤ b → ∀ c : α, c + a ≤ c + b) instance decidable_linear_ordered_comm_group.to_ordered_add_comm_group (α : Type u) [s : decidable_linear_ordered_add_comm_group α] : ordered_add_comm_group α := { add := s.add, ..s } section decidable_linear_ordered_add_comm_group variables [decidable_linear_ordered_add_comm_group α] @[priority 100] -- see Note [lower instance priority] instance decidable_linear_ordered_add_comm_group.to_decidable_linear_ordered_cancel_add_comm_monoid : decidable_linear_ordered_cancel_add_comm_monoid α := { le_of_add_le_add_left := λ x y z, le_of_add_le_add_left, add_left_cancel := λ x y z, add_left_cancel, add_right_cancel := λ x y z, add_right_cancel, ..‹decidable_linear_ordered_add_comm_group α› } lemma decidable_linear_ordered_add_comm_group.add_lt_add_left (a b : α) (h : a < b) (c : α) : c + a < c + b := ordered_add_comm_group.add_lt_add_left a b h c lemma max_neg_neg (a b : α) : max (-a) (-b) = - min a b := eq.symm (eq_max (show -a ≤ -(min a b), from neg_le_neg $ min_le_left a b) (show -b ≤ -(min a b), from neg_le_neg $ min_le_right a b) (assume d, assume H₁ : -a ≤ d, assume H₂ : -b ≤ d, have H : -d ≤ min a b, from le_min (neg_le_of_neg_le H₁) (neg_le_of_neg_le H₂), show -(min a b) ≤ d, from neg_le_of_neg_le H)) lemma min_eq_neg_max_neg_neg (a b : α) : min a b = - max (-a) (-b) := by rw [max_neg_neg, neg_neg] lemma min_neg_neg (a b : α) : min (-a) (-b) = - max a b := by rw [min_eq_neg_max_neg_neg, neg_neg, neg_neg] lemma max_eq_neg_min_neg_neg (a b : α) : max a b = - min (-a) (-b) := by rw [min_neg_neg, neg_neg] def abs (a : α) : α := max a (-a) lemma abs_of_nonneg {a : α} (h : a ≥ 0) : abs a = a := have h' : -a ≤ a, from le_trans (neg_nonpos_of_nonneg h) h, max_eq_left h' lemma abs_of_pos {a : α} (h : a > 0) : abs a = a := abs_of_nonneg (le_of_lt h) lemma abs_of_nonpos {a : α} (h : a ≤ 0) : abs a = -a := have h' : a ≤ -a, from le_trans h (neg_nonneg_of_nonpos h), max_eq_right h' lemma abs_of_neg {a : α} (h : a < 0) : abs a = -a := abs_of_nonpos (le_of_lt h) lemma abs_zero : abs 0 = (0:α) := abs_of_nonneg (le_refl _) lemma abs_neg (a : α) : abs (-a) = abs a := begin unfold abs, rw [max_comm, neg_neg] end lemma abs_pos_of_pos {a : α} (h : a > 0) : abs a > 0 := by rwa (abs_of_pos h) lemma abs_pos_of_neg {a : α} (h : a < 0) : abs a > 0 := abs_neg a ▸ abs_pos_of_pos (neg_pos_of_neg h) lemma abs_sub (a b : α) : abs (a - b) = abs (b - a) := by rw [← neg_sub, abs_neg] lemma ne_zero_of_abs_ne_zero {a : α} (h : abs a ≠ 0) : a ≠ 0 := assume ha, h (eq.symm ha ▸ abs_zero) /- these assume a linear order -/ lemma eq_zero_of_neg_eq {a : α} (h : -a = a) : a = 0 := match lt_trichotomy a 0 with | or.inl h₁ := have a > 0, from h ▸ neg_pos_of_neg h₁, absurd h₁ (lt_asymm this) | or.inr (or.inl h₁) := h₁ | or.inr (or.inr h₁) := have a < 0, from h ▸ neg_neg_of_pos h₁, absurd h₁ (lt_asymm this) end lemma abs_nonneg (a : α) : abs a ≥ 0 := or.elim (le_total 0 a) (assume h : 0 ≤ a, by rwa (abs_of_nonneg h)) (assume h : a ≤ 0, calc 0 ≤ -a : neg_nonneg_of_nonpos h ... = abs a : eq.symm (abs_of_nonpos h)) lemma abs_abs (a : α) : abs (abs a) = abs a := abs_of_nonneg $ abs_nonneg a lemma le_abs_self (a : α) : a ≤ abs a := or.elim (le_total 0 a) (assume h : 0 ≤ a, begin rw [abs_of_nonneg h] end) (assume h : a ≤ 0, le_trans h $ abs_nonneg a) lemma neg_le_abs_self (a : α) : -a ≤ abs a := abs_neg a ▸ le_abs_self (-a) lemma eq_zero_of_abs_eq_zero {a : α} (h : abs a = 0) : a = 0 := have h₁ : a ≤ 0, from h ▸ le_abs_self a, have h₂ : -a ≤ 0, from h ▸ abs_neg a ▸ le_abs_self (-a), le_antisymm h₁ (nonneg_of_neg_nonpos h₂) lemma eq_of_abs_sub_eq_zero {a b : α} (h : abs (a - b) = 0) : a = b := have a - b = 0, from eq_zero_of_abs_eq_zero h, show a = b, from eq_of_sub_eq_zero this lemma abs_pos_of_ne_zero {a : α} (h : a ≠ 0) : abs a > 0 := or.elim (lt_or_gt_of_ne h) abs_pos_of_neg abs_pos_of_pos lemma abs_by_cases (P : α → Prop) {a : α} (h1 : P a) (h2 : P (-a)) : P (abs a) := or.elim (le_total 0 a) (assume h : 0 ≤ a, eq.symm (abs_of_nonneg h) ▸ h1) (assume h : a ≤ 0, eq.symm (abs_of_nonpos h) ▸ h2) lemma abs_le_of_le_of_neg_le {a b : α} (h1 : a ≤ b) (h2 : -a ≤ b) : abs a ≤ b := abs_by_cases (λ x : α, x ≤ b) h1 h2 lemma abs_lt_of_lt_of_neg_lt {a b : α} (h1 : a < b) (h2 : -a < b) : abs a < b := abs_by_cases (λ x : α, x < b) h1 h2 private lemma aux1 {a b : α} (h1 : a + b ≥ 0) (h2 : a ≥ 0) : abs (a + b) ≤ abs a + abs b := decidable.by_cases (assume h3 : b ≥ 0, calc abs (a + b) ≤ abs (a + b) : by apply le_refl ... = a + b : by rw (abs_of_nonneg h1) ... = abs a + b : by rw (abs_of_nonneg h2) ... = abs a + abs b : by rw (abs_of_nonneg h3)) (assume h3 : ¬ b ≥ 0, have h4 : b ≤ 0, from le_of_lt (lt_of_not_ge h3), calc abs (a + b) = a + b : by rw (abs_of_nonneg h1) ... = abs a + b : by rw (abs_of_nonneg h2) ... ≤ abs a + 0 : add_le_add_left h4 _ ... ≤ abs a + -b : add_le_add_left (neg_nonneg_of_nonpos h4) _ ... = abs a + abs b : by rw (abs_of_nonpos h4)) private lemma aux2 {a b : α} (h1 : a + b ≥ 0) : abs (a + b) ≤ abs a + abs b := or.elim (le_total b 0) (assume h2 : b ≤ 0, have h3 : ¬ a < 0, from assume h4 : a < 0, have h5 : a + b < 0, begin have aux := add_lt_add_of_lt_of_le h4 h2, rwa [add_zero] at aux end, not_lt_of_ge h1 h5, aux1 h1 (le_of_not_gt h3)) (assume h2 : 0 ≤ b, begin have h3 : abs (b + a) ≤ abs b + abs a, begin rw add_comm at h1, exact aux1 h1 h2 end, rw [add_comm, add_comm (abs a)], exact h3 end) lemma abs_add_le_abs_add_abs (a b : α) : abs (a + b) ≤ abs a + abs b := or.elim (le_total 0 (a + b)) (assume h2 : 0 ≤ a + b, aux2 h2) (assume h2 : a + b ≤ 0, have h3 : -a + -b = -(a + b), by rw neg_add, have h4 : -(a + b) ≥ 0, from neg_nonneg_of_nonpos h2, have h5 : -a + -b ≥ 0, begin rw [← h3] at h4, exact h4 end, calc abs (a + b) = abs (-a + -b) : by rw [← abs_neg, neg_add] ... ≤ abs (-a) + abs (-b) : aux2 h5 ... = abs a + abs b : by rw [abs_neg, abs_neg]) lemma abs_sub_abs_le_abs_sub (a b : α) : abs a - abs b ≤ abs (a - b) := have h1 : abs a - abs b + abs b ≤ abs (a - b) + abs b, from calc abs a - abs b + abs b = abs a : by rw sub_add_cancel ... = abs (a - b + b) : by rw sub_add_cancel ... ≤ abs (a - b) + abs b : by apply abs_add_le_abs_add_abs, le_of_add_le_add_right h1 lemma abs_sub_le (a b c : α) : abs (a - c) ≤ abs (a - b) + abs (b - c) := calc abs (a - c) = abs (a - b + (b - c)) : by rw [sub_eq_add_neg, sub_eq_add_neg, sub_eq_add_neg, add_assoc, neg_add_cancel_left] ... ≤ abs (a - b) + abs (b - c) : by apply abs_add_le_abs_add_abs lemma abs_add_three (a b c : α) : abs (a + b + c) ≤ abs a + abs b + abs c := begin apply le_trans, apply abs_add_le_abs_add_abs, apply le_trans, apply add_le_add_right, apply abs_add_le_abs_add_abs, apply le_refl end lemma dist_bdd_within_interval {a b lb ub : α} (h : lb < ub) (hal : lb ≤ a) (hau : a ≤ ub) (hbl : lb ≤ b) (hbu : b ≤ ub) : abs (a - b) ≤ ub - lb := begin cases (decidable.em (b ≤ a)) with hba hba, rw (abs_of_nonneg (sub_nonneg_of_le hba)), apply sub_le_sub, apply hau, apply hbl, rw [abs_of_neg (sub_neg_of_lt (lt_of_not_ge hba)), neg_sub], apply sub_le_sub, apply hbu, apply hal end lemma decidable_linear_ordered_add_comm_group.eq_of_abs_sub_nonpos {a b : α} (h : abs (a - b) ≤ 0) : a = b := eq_of_abs_sub_eq_zero (le_antisymm h (abs_nonneg (a - b))) end decidable_linear_ordered_add_comm_group set_option old_structure_cmd true section prio set_option default_priority 100 -- see Note [default priority] /-- This is not so much a new structure as a construction mechanism for ordered groups, by specifying only the "positive cone" of the group. -/ class nonneg_add_comm_group (α : Type*) extends add_comm_group α := (nonneg : α → Prop) (pos : α → Prop := λ a, nonneg a ∧ ¬ nonneg (neg a)) (pos_iff : ∀ a, pos a ↔ nonneg a ∧ ¬ nonneg (-a) . order_laws_tac) (zero_nonneg : nonneg 0) (add_nonneg : ∀ {a b}, nonneg a → nonneg b → nonneg (a + b)) (nonneg_antisymm : ∀ {a}, nonneg a → nonneg (-a) → a = 0) end prio namespace nonneg_add_comm_group variable [s : nonneg_add_comm_group α] include s @[reducible, priority 100] -- see Note [lower instance priority] instance to_ordered_add_comm_group : ordered_add_comm_group α := { le := λ a b, nonneg (b - a), lt := λ a b, pos (b - a), lt_iff_le_not_le := λ a b, by simp; rw [pos_iff]; simp, le_refl := λ a, by simp [zero_nonneg], le_trans := λ a b c nab nbc, by simp [-sub_eq_add_neg]; rw ← sub_add_sub_cancel; exact add_nonneg nbc nab, le_antisymm := λ a b nab nba, eq_of_sub_eq_zero $ nonneg_antisymm nba (by rw neg_sub; exact nab), add_le_add_left := λ a b nab c, by simpa [(≤), preorder.le] using nab, ..s } theorem nonneg_def {a : α} : nonneg a ↔ 0 ≤ a := show _ ↔ nonneg _, by simp theorem pos_def {a : α} : pos a ↔ 0 < a := show _ ↔ pos _, by simp theorem not_zero_pos : ¬ pos (0 : α) := mt pos_def.1 (lt_irrefl _) theorem zero_lt_iff_nonneg_nonneg {a : α} : 0 < a ↔ nonneg a ∧ ¬ nonneg (-a) := pos_def.symm.trans (pos_iff _) theorem nonneg_total_iff : (∀ a : α, nonneg a ∨ nonneg (-a)) ↔ (∀ a b : α, a ≤ b ∨ b ≤ a) := ⟨λ h a b, by have := h (b - a); rwa [neg_sub] at this, λ h a, by rw [nonneg_def, nonneg_def, neg_nonneg]; apply h⟩ /-- A `nonneg_add_comm_group` is a `decidable_linear_ordered_add_comm_group` if `nonneg` is total and decidable. -/ def to_decidable_linear_ordered_add_comm_group [decidable_pred (@nonneg α _)] (nonneg_total : ∀ a : α, nonneg a ∨ nonneg (-a)) : decidable_linear_ordered_add_comm_group α := { le := (≤), lt := (<), lt_iff_le_not_le := @lt_iff_le_not_le _ _, le_refl := @le_refl _ _, le_trans := @le_trans _ _, le_antisymm := @le_antisymm _ _, le_total := nonneg_total_iff.1 nonneg_total, decidable_le := by apply_instance, decidable_lt := by apply_instance, ..@nonneg_add_comm_group.to_ordered_add_comm_group _ s } end nonneg_add_comm_group namespace order_dual instance [ordered_add_comm_monoid α] : ordered_add_comm_monoid (order_dual α) := { add_le_add_left := λ a b h c, @add_le_add_left' α _ b a c h, lt_of_add_lt_add_left := λ a b c h, @lt_of_add_lt_add_left' α _ a c b h, ..order_dual.partial_order α, ..show add_comm_monoid α, by apply_instance } instance [ordered_cancel_add_comm_monoid α] : ordered_cancel_add_comm_monoid (order_dual α) := { le_of_add_le_add_left := λ a b c : α, le_of_add_le_add_left, add_left_cancel := @add_left_cancel α _, add_right_cancel := @add_right_cancel α _, ..order_dual.ordered_add_comm_monoid } instance [ordered_add_comm_group α] : ordered_add_comm_group (order_dual α) := { add_left_neg := λ a : α, add_left_neg a, ..order_dual.ordered_add_comm_monoid, ..show add_comm_group α, by apply_instance } end order_dual
ef83227959a297e40741d236aff1a816df03423c
6432ea7a083ff6ba21ea17af9ee47b9c371760f7
/src/lake/examples/hello/Main.lean
224ef6bc4dc8a7f2fbcb59b49c8a0ea9270b1bc4
[ "Apache-2.0", "LLVM-exception", "NCSA", "LGPL-3.0-only", "LicenseRef-scancode-inner-net-2.0", "BSD-3-Clause", "LGPL-2.0-or-later", "Spencer-94", "LGPL-2.1-or-later", "HPND", "LicenseRef-scancode-pcre", "ISC", "LGPL-2.1-only", "LicenseRef-scancode-other-permissive", "SunPro", "CMU-Mach" ]
permissive
leanprover/lean4
4bdf9790294964627eb9be79f5e8f6157780b4cc
f1f9dc0f2f531af3312398999d8b8303fa5f096b
refs/heads/master
1,693,360,665,786
1,693,350,868,000
1,693,350,868,000
129,571,436
2,827
311
Apache-2.0
1,694,716,156,000
1,523,760,560,000
Lean
UTF-8
Lean
false
false
173
lean
import Hello def main (args : List String) : IO Unit := if args.isEmpty then IO.println s!"Hello, {hello}!" else IO.println s!"Hello, {", ".intercalate args}!"
fde97ba297171b9ae0a5ce947a9b2771714630b5
b82c5bb4c3b618c23ba67764bc3e93f4999a1a39
/src/formal_ml/sum.lean
df5d204f0366575d6da560935911720ad7577ec4
[ "Apache-2.0" ]
permissive
nouretienne/formal-ml
83c4261016955bf9bcb55bd32b4f2621b44163e0
40b6da3b6e875f47412d50c7cd97936cb5091a2b
refs/heads/master
1,671,216,448,724
1,600,472,285,000
1,600,472,285,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
47,739
lean
/- Copyright 2020 Google LLC Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. -/ import order.filter.basic import topology.bases import data.real.nnreal import topology.instances.real import topology.instances.nnreal import topology.instances.ennreal import topology.algebra.infinite_sum import formal_ml.set import formal_ml.finset import formal_ml.nat import formal_ml.ennreal import formal_ml.nnreal import data.finset import order.complete_lattice import formal_ml.filter_util import formal_ml.real /- A high-level point: On closer inspection of infinite-sum.lean, several of these theorems are covered. -/ open finset -- See cfilter /- There are some useful functions already in the library: finset.sum_subset -/ lemma le_add_of_nonneg {β:Type*} [ordered_add_comm_monoid β] (a b:β): 0 ≤ b → a ≤ a + b := begin intros A1, have B1:a + 0 ≤ a + b, { apply @add_le_add, apply le_refl a, apply A1, }, rw add_zero at B1, apply B1, end lemma le_add_nonnegative {β:Type*} [canonically_ordered_add_monoid β] (a b:β): a ≤ a + b := begin apply le_add_of_nonneg, apply zero_le, end --The core of this is finset.sum_const. However, there are not many lemmas that I found --around add_monoid.smul. lemma finset_sum_const {α:Type*} {S:finset α} {f:α → ennreal} {c:ennreal}:(∀ k, f k =c) → S.sum f = S.card * c := begin intros A1, have A2:f = λ k, c, { ext, rw A1, }, rw A2, rw (@finset.sum_const α ennreal S _ c), rw ennreal_add_monoid_smul_def, end --This is a combination of finset.sum_congr and finset.sum_const_zero. lemma finite_sum_zero_eq_zero {α β:Type*} [add_comm_monoid α] [decidable_eq β] (f:β → α) (S:finset β): (∀ s∈ S, f s = 0) → S.sum f = 0 := begin intro A1, let g:β → α := λ a:β, (0:α), begin have B1:S = S := rfl, have B2:(∀ x∈ S, f x = g x), { intros x B2A, rw A1 x B2A, }, rw finset.sum_congr B1 B2, apply finset.sum_const_zero, end end lemma finset_sum_le2 {α β:Type*} [decidable_eq α] [ordered_add_comm_monoid β] {S:finset α} {f g:α → β}: (∀ s∈ S, f s ≤ g s) → S.sum f ≤ S.sum g := begin apply finset.induction_on S, { intros A1, simp, }, { intros a S2 A1 A2 A3, rw finset.sum_insert, rw finset.sum_insert, apply add_le_add, apply A3, simp, apply A2, { intros a2 A4, apply A3, simp, right, exact A4, }, exact A1, exact A1, } end --Drop, and use finset_sum_le2 lemma finset_sum_le {α:Type*} [decidable_eq α] {S:finset α} {f g:α → nnreal}: (∀ s∈ S, f s ≤ g s) → S.sum f ≤ S.sum g := begin apply finset_sum_le2, end lemma finset_sum_le3 {α β:Type*} [decidable_eq α] [ordered_add_comm_monoid β] {f g:α → β} {S:finset α}: f ≤ g → S.sum f ≤ S.sum g := begin intro A1, apply finset_sum_le2, intros n A2, apply A1, end lemma finset.sum_nonnegative_of_nonnegative {α β:Type*} [decidable_eq α] [ordered_add_comm_monoid β] {S:finset α} {f:α → β}:(0 ≤ f) → 0 ≤ S.sum f := begin intros A1, have A2:S.sum (0:α → β) = (0:β), { apply finite_sum_zero_eq_zero, intros a A2A, refl, }, rw ← A2, apply finset_sum_le3, apply A1, end lemma finset.sum_monotone_of_nonnegative {α β:Type*} [decidable_eq α] [ordered_add_comm_monoid β] {S T:finset α} {f:α → β}:0 ≤ f → S ⊆ T → S.sum f ≤ T.sum f := begin intros A1 A2, rw ← finset.sum_sdiff A2, rw add_comm, apply le_add_of_nonneg, apply finset.sum_nonnegative_of_nonnegative, apply A1, end lemma finset.sum_monotone {α β:Type*} [decidable_eq α] [canonically_ordered_add_monoid β] {S T:finset α} {f:α → β}:S ⊆ T → S.sum f ≤ T.sum f := begin intros A2, rw ← finset.sum_sdiff A2, rw add_comm, apply le_add_nonnegative, end lemma finset.element_le_sum {α β:Type*} [D:decidable_eq α] [canonically_ordered_add_monoid β] {S:finset α} {a:α} {f:α → β}:(a ∈ S) → f a ≤ S.sum f := begin intros A2, rw ← @finset.sum_singleton α β a f, apply finset.sum_monotone, simp, apply A2, end lemma finset.sum_monotone' {α β:Type*} [D:decidable_eq α] [canonically_ordered_add_monoid β] {f:α → β}:monotone (λ S:finset α, S.sum f) := begin intros S T B1, apply finset.sum_monotone B1, end lemma ennreal.sum_monotone {α:Type*} [decidable_eq α] {S T:finset α} {f:α → ennreal}:S ⊆ T → S.sum f ≤ T.sum f := begin intro A1, apply finset.sum_monotone A1, end --This should be removed, and finset.sum_nonnegative_of_nonnegative should be used directly. lemma nn_sum_nonneg {α:Type*} [decidable_eq α] (f:α → real) (S:finset α): (∀ n, f n ≥ 0) → (0≤ (S.sum f) ) := begin intro A1, apply finset.sum_nonnegative_of_nonnegative, rw le_func_def2, intros n, apply A1, end --This should be removed, and finset.sum_monotone_of_nonnegative should be used directly. lemma nn_sum_monotonic {α:Type*} [decidable_eq α] (f:α → real) (S T:finset α): (∀ n, f n ≥ 0) → (S⊆ T)→ ((S.sum f) ≤ (T.sum f)) := begin intro A1, apply finset.sum_monotone_of_nonnegative, rw le_func_def2, intros n, apply A1, end lemma sum_monotonic_of_nnreal {α:Type*} [D:decidable_eq α] (f:α → nnreal) (S T:finset α): (S⊆ T)→ ((S.sum f) ≤ (T.sum f)) := begin apply finset.sum_monotone, end lemma sum_monotone_of_nonneg {α:Type*} [D:decidable_eq α] {f:α → ℝ}: 0 ≤ f → monotone (λ s:finset α, s.sum f) := begin intros A1 a b A2, simp, apply @nn_sum_monotonic α D f a b, apply A1, apply A2, end lemma sum_monotone_of_nnreal {α:Type*} [D:decidable_eq α] {f:α → nnreal}: monotone (λ s:finset α, s.sum f) := begin apply finset.sum_monotone', end /- This concept of sum is similar to absolutely convergent, as opposed to convergent. To eliminate the difference, we just insist the function is positive. TODO: revisit in the context of later theories. -/ lemma has_classical_limit_real (f:ℕ → real) (v:real): (∀ n, f n ≥ 0) → (∀ e>0, ∃ m,∀ m', m < m' → ((v - e <(finset.sum (finset.range m') f)) ∧ (finset.sum (finset.range m') f) < v + e) ) → has_sum f v := begin intros, unfold has_sum, apply filter_tendsto_intro, intros, unfold set.preimage, -- lemma mem_nhds_elim_real_bound (b:set real) (x:real): b∈ nhds x → -- (∃ r>0, (set.Ioo (x-r) (x+r)) ⊆ b) have A1:(∃ r>0, (set.Ioo (v-r) (v+r)) ⊆ b), { apply mem_nhds_elim_real_bound, exact H, }, cases A1, cases A1_h, apply filter_contains_preimage_superset, { apply A1_h_h, }, have A2:(∃ (m : ℕ), ∀ (m' : ℕ), m < m' → v - A1_w < finset.sum (range m') f ∧ finset.sum (range m') f < v + A1_w ), { apply a_1, apply A1_h_w, }, cases A2, apply filter_at_top_intro3, show finset ℕ, { exact finset.range (nat.succ A2_w), }, { intros, unfold set.Ioo, simp, split, { have D1:(range (nat.succ A2_w)).sum f ≤ d.sum f, { apply nn_sum_monotonic, apply a, apply H_1, }, have D2:v - A1_w < finset.sum (range (nat.succ A2_w)) f ∧ finset.sum (range (nat.succ A2_w)) f < v + A1_w, { apply A2_h, apply nat.lt_succ_self, }, cases D2, apply lt_of_lt_of_le, { apply D2_left, }, { apply D1, }, }, { have B1:∃ n, (d⊆ finset.range n), { apply finset_range_bound, }, cases B1, cases (nat.decidable_le B1_w A2_w), { have B2:A2_w<B1_w, { have B3:A2_w<B1_w ∨ A2_w ≥ B1_w, { apply nat.lt_or_ge, }, cases B3, { apply B3, }, { exfalso, apply h, apply B3, } }, have B4:d.sum f ≤ (range B1_w).sum f, { apply nn_sum_monotonic, { apply a, }, { apply B1_h, } }, --rw ← finite_sum_real_finset at B4, have B5:v - A1_w < (finset.sum (range B1_w) f) ∧ finset.sum (range B1_w) f < v + A1_w, { apply A2_h, apply B2, }, cases B5, apply lt_of_le_of_lt, { apply B4, }, { apply B5_right, } }, { have C1:range B1_w ⊆ range (nat.succ A2_w), { apply finset_range_monotonic, apply le_trans, apply h, apply nat.le_of_lt, apply nat.lt_succ_self, }, have C2:v - A1_w < finset.sum (range (nat.succ A2_w)) f ∧ finset.sum (range (nat.succ A2_w)) f < v + A1_w, { apply A2_h, apply nat.lt_succ_self, }, cases C2, have C3:d⊆ range (nat.succ A2_w), { apply finset.subset.trans, apply B1_h, apply C1, }, have C4:d.sum f ≤ (range (nat.succ A2_w)).sum f, { apply nn_sum_monotonic, apply a, apply C3, }, apply lt_of_le_of_lt, { apply C4, }, { apply C2_right, } } } } end lemma finite_sum_real_eq_finite_sum2 (f:ℕ → nnreal) (n:ℕ): (finset.sum (range n) (λ (a : ℕ), ((f a):real))) = ((@finset.sum ℕ nnreal _ (range n) f):real) := begin rw nnreal.coe_sum, end lemma has_classical_limit_nnreal (f:ℕ → nnreal) (v:nnreal): (∀ e>0, ∃ m,∀ m', m < m' → v < (finset.sum (range m') f) + e) → (∀ m', (finset.sum (range m') f) ≤ v) → has_sum f v := begin intros, apply (@nnreal.has_sum_coe _ f v).mp, apply has_classical_limit_real, { intros, simp, }, { intros, have A1:0 < e, { apply H, }, have A2:max e 0 = e, { apply max_eq_left, apply le_of_lt, apply A1, }, rw ← A2 at A1, have A2B:(nnreal.of_real e) > 0, { unfold nnreal.of_real, apply A1, }, have A3:(∃ (m : ℕ), ∀ (m' : ℕ), m < m' → v < (finset.sum (range m') f) + (nnreal.of_real e)), { apply a, apply A2B, }, cases A3, apply exists.intro A3_w, intros, have A4:v < finset.sum (range m') f + nnreal.of_real e, { apply A3_h, apply a_2, }, split, { rw finite_sum_real_eq_finite_sum2, apply (@sub_lt_iff_lt_add real _ (↑v) ↑(finset.sum (range m') (λ (a : ℕ), f a)) e).mpr, simp, rw real.decidable_linear_ordered_comm_ring.add_comm, have A5: (v:ℝ) < (((@finset.sum ℕ nnreal _ (range m') f) + nnreal.of_real e):ℝ), { apply A4, }, have A6:((nnreal.of_real e):ℝ) = e, { unfold nnreal.of_real, simp, exact A2, }, rw A6 at A5, rw add_comm, apply A5, }, { rw finite_sum_real_eq_finite_sum2, have A7:finset.sum (range m') f ≤ v, { apply a_1, }, simp, have A8:((@finset.sum ℕ nnreal _ (range m') f):ℝ) ≤ (v:ℝ), { apply A7, }, apply lt_of_le_of_lt, { apply A8, }, rw add_comm, apply (@sub_lt_iff_lt_add real _ (↑v) e (↑v)).mp, simp, apply H, } } end --Not quite the classical way of thinking about a limit, but --more practical for nonnegative sums. lemma has_classical_limit_nnreal' (f:ℕ → nnreal) (v:nnreal): (∀ e>0, ∃ m, v < (finset.sum (range m) f) + e) → (∀ m', (finset.sum (range m') f) ≤ v) → has_sum f v := begin intros A1 A2, apply has_classical_limit_nnreal f v _ A2, intros e B1, have B2 := A1 e B1, cases B2 with m B2, apply exists.intro m, intro m', intro B3, have B4:(range m).sum f ≤ (range m').sum f, { apply sum_monotonic_of_nnreal, simp, apply le_of_lt B3, }, have B5:(range m).sum f + e ≤ (range m').sum f + e, { simp, apply B4, }, apply lt_of_lt_of_le B2 B5, end --Definitely this is in the mathlib libtary under a different name. lemma disjoint_partition_sum_eq {α β:Type*} [decidable_eq α] [add_comm_monoid β] (f:α → β) (S T:finset α): (T ≥ S) → S.sum f + (T\S).sum f = T.sum f := begin intros, have A1:disjoint S (T\ S), { apply (@disjoint.symm (finset α) _ (T \ S) S), apply finset.sdiff_disjoint, }, have A2:S.sum f + (T\S).sum f = (S ∪ T \ S).sum f, { apply (sum_disjoint_add f S (T \ S)), apply A1, }, rw finset.union_sdiff_of_subset at A2, { exact A2, }, { apply a, } end --This is a special case of finset.sum_subset --TODO: remove, and use summable.has_sum. lemma has_sum_tsum {α β: Type*} [add_comm_monoid α] [topological_space α] {f:β → α}:summable f → has_sum f (tsum f) := begin intro A1, apply summable.has_sum A1, end --TODO: remove, and use has_sum_sum_of_ne_finset_zero. --This is certainly a lemma in infinite_sum. lemma has_finite_sum (α β:Type*) [topological_space α] [add_comm_monoid α] [decidable_eq β] (f:β → α) (S:finset β): (∀ s∉ S, f s = 0) → (has_sum f (S.sum f)) := begin intros, apply has_sum_sum_of_ne_finset_zero, apply a, end lemma finite_sum_eq3 (α β:Type*) [topological_space α] [t2_space α] [add_comm_monoid α] [decidable_eq β] (f:β → α) (S:finset β): (∀ s∉ S, f s = 0) → (tsum f) = (S.sum f) := begin intros, have A1:has_sum f (S.sum f), { apply has_finite_sum, apply a, }, have A2:summable f, { apply has_sum.summable, apply A1, }, apply has_sum.tsum_eq, apply A1, end --TODO: replace with finset.sum_congr lemma finset_sum_subst2 {α β:Type*} [decidable_eq α] [add_comm_monoid β] {S:finset α} {f g:α → β}: (∀ s∈ S, f s = g s) → S.sum f = S.sum g := begin intros A1, apply finset.sum_congr, refl, apply A1, end lemma finset_sum_subst {α:Type*} [decidable_eq α] {S:finset α} {f g:α → nnreal}: (∀ s∈ S, f s = g s) → S.sum f = S.sum g := begin apply finset_sum_subst2, end /- add_monoid.smul (card S) k = ↑(card S) * k -/ lemma finset_sum_le_const {α:Type*} [D:decidable_eq α] {S:finset α} {f:α → nnreal} {k:nnreal}: (∀ s∈ S, f s ≤ k) → S.sum f ≤ S.card * k := begin have A1:S.sum (λ s, k) = S.card * k, { rw finset.sum_const, apply nnreal_add_monoid_smul_def, }, intro A2, rw ← A1, apply finset_sum_le, intros s A4, apply A2, apply A4, end /- canonically_ordered_comm_semiring.mul_eq_zero_iff : ∀ {α : Type u_1} [c : canonically_ordered_comm_semiring α] (a b : α), a * b = 0 ↔ a = 0 ∨ b = 0 -/ lemma finset_sum_eq_zero_iff {α:Type*} [decidable_eq α] {S:finset α} {f:α → nnreal}: S.sum f = 0 ↔ ∀ s∈ S, f s = 0 := begin split, { apply finset.induction_on S, { intros A1 s A2, exfalso, apply A2, }, { intros, rw finset.sum_insert at a_3, rw nnreal_add_eq_zero_iff (f a) (finset.sum s f) at a_3, cases a_3 with A3 A4, simp at H, cases H, { subst s_1, exact A3, }, { apply a_2, exact A4, exact H, }, apply a_1, } }, { intros A1, have A2:∀ s:α, s ∈ S→ f s = (λ k:α, 0) s, { simp, exact A1, }, rw finset_sum_subst A2, simp, } end lemma finset_sum_neg {α:Type*} {f:α → ℝ} {S:finset α}: (S).sum (-f) = -((S).sum f) := begin apply finset.sum_neg_distrib, end lemma finset_sum_mul_const {α:Type*} {f:α → ℝ} {S:finset α} {k:ℝ}: S.sum (λ n, k * (f n)) = k * S.sum f := begin apply finset.sum_hom, end ----- Working on the relationship between the supremum and the sum of a nonnegative function-------- /- A lot of times, it helps to think about a sum over nonnegative values. In particular, if 0 ≤ f ≤ g, then if g is summable, then f is summable. For example, this allows us to write: 0 ≤ pos_only g ≤ abs g 0 ≤ -neg_only g ≤ abs g This seemingly innocuous result is tricky, but there is a simple way to achieve it. In particular, we can show that if the image of finset.sum. Some of the lemmas below might hold for a conditionally complete linear order. -/ /- A more explicit interpretation of summation over the reals. -/ lemma has_sum_real {α:Type*} {f:α → ℝ} [decidable_eq α] {x:ℝ}: (∀ ε>0, ∃ S:finset α, ∀ T⊇S, abs (T.sum f - x) < ε) ↔ (has_sum f x) := begin split;intro A1, { unfold has_sum, apply filter_tendsto_intro, intros b A2, have A3:= mem_nhds_elim_real_bound b x A2, cases A3 with ε A4, cases A4 with A5 A6, have A7 := A1 ε A5, cases A7 with S A8, apply filter_at_top_intro3 S, intros T A9, have A10 := A8 T A9, apply A6, rw ← abs_lt_iff_in_Ioo, simp, apply A10, }, { intros ε A2, unfold has_sum at A1, have A3:set.Ioo (x - ε) (x + ε) ∈ nhds x := Ioo_nbhd A2, have A4 := filter_tendsto_elim A1 A3, have A5 := mem_filter_at_top_elim A4, cases A5 with S A6, apply exists.intro S, intros T A7, rw set.subset_def at A6, have A8 := A6 T A7, have A9:T.sum f ∈ set.Ioo (x - ε) (x + ε) := A8, rw abs_lt_iff_in_Ioo, apply A9, } end lemma real_le_of_forall_lt {x y:ℝ}:(∀ ε > 0, x < y + ε) → x ≤ y := begin intro A1, apply le_of_not_gt, intro A2, have A3:0 < x-y := sub_pos_of_lt A2, have A4:= A1 (x-y) A3, simp at A4, apply lt_irrefl x A4, end lemma has_sum_real_nonnegh {α:Type*} {f:α → ℝ} [decidable_eq α] {x:ℝ}: (0 ≤ f) → (((∀ ε>0, ∃ S:finset α, x - ε < S.sum f) ∧ (∀ T:finset α, T.sum f ≤ x)) ↔ (∀ ε>0, ∃ S:finset α, ∀ T⊇S, abs (T.sum f - x) < ε)) := begin intro A1, split;intros A2, { cases A2 with A3 A4, intros ε A5, have A6 := A3 ε A5, cases A6 with S A7, apply exists.intro S, intros T A8, rw abs_lt2, split, { apply lt_of_lt_of_le, apply A7, apply sum_monotone_of_nonneg A1 A8, }, { apply lt_of_le_of_lt, apply A4, simp, apply A5, } }, { split, { intros ε A5, have A6 := A2 ε A5, cases A6 with S A7, apply exists.intro S, have A8:S ⊆ S := finset.subset.refl S, have A9:= A7 S A8, rw abs_lt2 at A9, apply A9.left, }, { intro T, apply real_le_of_forall_lt, intros ε A3, have A4 := A2 ε A3, cases A4 with S A5, have A6:S ⊆ S ∪ T := finset.subset_union_left S T, have A7:T ⊆ S ∪ T := finset.subset_union_right S T, have A8 := A5 (S ∪ T) A6, rw abs_lt2 at A8, cases A8 with A9 A10, apply lt_of_le_of_lt, apply sum_monotone_of_nonneg A1 A7, apply A10, } } end lemma has_sum_real_nonneg {α:Type*} {f:α → ℝ} [decidable_eq α] {x:ℝ}: (0 ≤ f) → (((∀ ε>0, ∃ S:finset α, x - ε < S.sum f) ∧ (∀ T:finset α, T.sum f ≤ x)) ↔ (has_sum f x)) := begin intro A1, apply iff.trans, rw has_sum_real_nonnegh A1, apply has_sum_real, end lemma mem_upper_bounds_of_has_sum {α:Type*} {f:α → ℝ} [decidable_eq α] {x:ℝ}: 0 ≤ f → has_sum f x → x∈ upper_bounds (set.range (λ s:finset α, s.sum f)) := begin intros A1 A2, rw ← has_sum_real_nonneg at A2, cases A2 with A3 A4, unfold upper_bounds, simp, intros a S A5, subst a, apply A4, apply A1 end lemma lower_not_upper_bound_of_has_sum {α:Type*} {f:α → ℝ} [decidable_eq α] {x y:ℝ}: 0 ≤ f → has_sum f x → y < x → (∃ z∈ (set.range (λ s:finset α, s.sum f)), y < z) := begin intros A1 A2 A3, rw ← has_sum_real_nonneg A1 at A2, cases A2 with A4 A5, have A6:0 < x-y := sub_pos_of_lt A3, have A7:= A4 (x-y) A6, cases A7 with S A8, apply exists.intro (S.sum f), split, { simp, }, { rw sub_inv at A8, apply A8 } end lemma le_upper_bound_intro {s : set ℝ} {b c: ℝ}: (∀ (w : ℝ), w < b → (∃ (a : ℝ) (H : a ∈ s), w < a)) → (c∈ upper_bounds s) → (b ≤ c) := begin intros A1 A2, apply le_of_not_lt, intro A3, have A4 := A1 c A3, cases A4 with z A5, cases A5 with A6 A7, unfold upper_bounds at A2, simp at A2, have A8:= A2 A6, apply not_le_of_lt A7, apply A8, end lemma least_upper_bounds_of_has_sum {α:Type*} {f:α → ℝ} [decidable_eq α] {x y:ℝ}: 0 ≤ f → has_sum f x → y∈ upper_bounds (set.range (λ s:finset α, s.sum f)) → (x ≤ y):= begin intros A1 A2 A3, apply @le_upper_bound_intro (set.range (λ s:finset α, s.sum f)), { intros w A4, apply lower_not_upper_bound_of_has_sum;assumption, }, { apply A3, }, end lemma set_range_inhabited_domain {α:Type*} {β:Type*} {f:α → β} [A1:inhabited α]:(set.range f).nonempty := begin unfold set.range, apply exists.intro (f A1.default), simp, end lemma set_range_finset_nonempty {α β:Type*} [add_comm_monoid β] {f:α → β}: (set.range (λ (s : finset α), s.sum f)).nonempty := begin apply set_range_inhabited_domain, end lemma bdd_above_def {α:Type*} [preorder α] {s:set α}: bdd_above s = (upper_bounds s).nonempty := rfl lemma bdd_above_of_has_sum {α:Type*} {f:α → ℝ} [decidable_eq α] {x:ℝ}: 0 ≤ f → has_sum f x → bdd_above (set.range (λ s:finset α, s.sum f)) := begin intros A1 A2, rw bdd_above_def, apply exists.intro x, apply mem_upper_bounds_of_has_sum A1 A2, end lemma supr_of_has_sum {α:Type*} {f:α → ℝ} [decidable_eq α] {x:ℝ}: 0 ≤ f → has_sum f x → x = ⨆ (s : finset α), s.sum f := begin intros A1 A2, unfold supr, symmetry, apply cSup_intro, { apply set_range_finset_nonempty, }, { intros x2 A3, have A4:=mem_upper_bounds_of_has_sum A1 A2, unfold upper_bounds at A4, simp at A4, simp at A3, cases A3 with y A5, subst x2, have A6:y.sum f = y.sum f := rfl, have A6 := A4 y A6, apply A6, }, { intros w A7, apply lower_not_upper_bound_of_has_sum;assumption, } end lemma tsum_eq_supr_of_summable {α:Type*} {f:α → ℝ} [decidable_eq α] {x:ℝ}: 0 ≤ f → summable f → tsum f = ⨆ (s : finset α), s.sum f := begin intros A1 A2, have A3:=summable.has_sum A2, apply supr_of_has_sum A1 A3, end lemma tsum_in_upper_bounds_of_summable {α:Type*} {f:α → ℝ} [decidable_eq α]: 0 ≤ f → summable f → (tsum f)∈ upper_bounds (set.range (λ s:finset α, s.sum f)) := begin intros A1 A2, have A3 := summable.has_sum A2, apply mem_upper_bounds_of_has_sum A1 A3, end lemma has_sum_of_bdd_above {α:Type*} {f:α → ℝ} [decidable_eq α] {x:ℝ}: 0 ≤ f → bdd_above (set.range (λ s:finset α, s.sum f)) → (x = ⨆ (s : finset α), s.sum f) → has_sum f x := begin intros A1 AX A2, unfold supr at A2, unfold has_sum, apply filter_tendsto_intro, intros S A3, have A4 := mem_nhds_elim_real A3, cases A4 with a A5, cases A5 with b A6, cases A6 with A7 A8, cases A8 with A9 A10, cases A10 with A11 A12, rw A2 at A11, have A13:(set.range (λ (s : finset α), s.sum f)).nonempty, { apply set_range_finset_nonempty, }, have A14:= exists_lt_of_lt_cSup A13 A11, cases A14 with d A15, cases A15 with A16 A17, simp at A16, cases A16 with T A18, subst d, apply filter_at_top_intro3 T, intros V A19, apply A9, simp, split, { apply lt_of_lt_of_le A17, apply sum_monotone_of_nonneg A1 A19, }, { have A20:V.sum f ≤ x, { rw A2, apply le_cSup, apply AX, simp, }, apply lt_of_le_of_lt, apply A20, apply A12, } end lemma has_sum_of_supr2 {α:Type*} {f:α → ℝ} [decidable_eq α]: 0 ≤ f → bdd_above (set.range (λ s:finset α, s.sum f)) → has_sum f (⨆ (s : finset α), s.sum f) := begin intros A1 A2, apply has_sum_of_bdd_above A1 A2, refl, end lemma summable_of_bdd_above {α:Type*} {f:α → ℝ} [decidable_eq α]: 0 ≤ f → bdd_above (set.range (λ s:finset α, s.sum f)) → summable f := begin intros A1 A2, unfold summable, apply exists.intro (⨆ (s : finset α), s.sum f), apply has_sum_of_supr2 A1 A2, end lemma bdd_above_of_le_of_bdd_above {α:Type*} [D:decidable_eq α] {f g:α → ℝ}: f ≤ g → bdd_above (set.range (λ (s : finset α), s.sum g)) → bdd_above (set.range (λ (s : finset α), s.sum f)) := begin intros A1 A2, rw bdd_above_def at A2, cases A2 with x A3, unfold upper_bounds at A3, simp at A3, rw bdd_above_def, apply exists.intro x, unfold upper_bounds, simp, intros x2 S A4, subst x2, have A5:S.sum g = S.sum g := rfl, have A6 := A3 S A5, have A7:S.sum f ≤ S.sum g, { apply finset_sum_le2, intros a A7A, apply A1, }, apply le_trans A7 A6, end lemma has_sum_of_le_of_le_of_has_sum {α:Type*} {f g:α → ℝ} [D:decidable_eq α]: 0 ≤ f → f ≤ g → summable g → summable f := begin intros A1 A2 A3, have A4:0 ≤ g, { apply le_trans A1 A2, }, apply summable_of_bdd_above A1, cases A3 with x A5, --have A6 := supr_of_has_sum A4 A5, have A7 := bdd_above_of_has_sum A4 A5, --have A11 := A7, apply bdd_above_of_le_of_bdd_above A2 A7, end -- is_bdd lemma le_func_def {α:Type*} {f g:α → ℝ}:(f ≤ g) ↔ (∀ n:α, f n ≤ g n) := begin refl, end lemma le_func_refl {α:Type*} {f:α → ℝ}:f ≤ f := begin rw le_func_def, intro n, refl, end lemma le_func_trans {α:Type*} {f g h:α → ℝ}:f ≤ g → g ≤ h → f ≤ h := begin rw le_func_def, rw le_func_def, rw le_func_def, intros A1 A2, intro n, apply le_trans (A1 n) (A2 n), end lemma nonpos_iff_neg_nonneg_func {α:Type*} {f:α → ℝ}:(f ≤ 0) ↔ (0 ≤ -f) := begin rw le_func_def, rw le_func_def, split;intros A1 n, { apply neg_nonneg_of_nonpos, apply A1, }, { apply nonpos_of_neg_nonneg, apply A1, } end noncomputable def pos_only (x:ℝ):ℝ := if (0 ≤ x) then x else 0 noncomputable def neg_only (x:ℝ):ℝ := if (x ≤ 0) then x else 0 def restrict_real (P:ℝ → Prop) (D:decidable_pred P) (x:ℝ):ℝ := if (P x) then x else 0 lemma pos_only_add_neg_only_eq {α:Type*} {f:α → ℝ}:(pos_only ∘ f) + (neg_only ∘ f) = f := begin ext x, simp, unfold pos_only neg_only, have A1:0 <f x ∨ 0 =f x ∨ f x < 0 := lt_trichotomy 0 (f x), cases A1, { rw if_pos, rw if_neg, rw add_zero, apply not_le_of_lt A1, apply le_of_lt A1, }, cases A1, { rw if_pos, rw if_pos, rw ← A1, rw zero_add, rw ← A1, rw ← A1, }, { rw if_neg, rw if_pos, rw zero_add, apply le_of_lt A1, apply not_le_of_lt A1, } end lemma pos_only_sub_neg_only_eq_abs {α:Type*} {f:α → ℝ}:(pos_only ∘ f) - (neg_only ∘ f) = abs ∘ f := begin ext x, have A1:((pos_only ∘ f) - (neg_only ∘ f) ) x = ((pos_only (f x)) - (neg_only (f x))) := rfl, have A2:((abs ∘ f) x) = (abs (f x)) := rfl, rw A1, rw A2, unfold pos_only neg_only, have A3:0 <f x ∨ 0 =f x ∨ f x < 0 := lt_trichotomy 0 (f x), cases A3, { rw if_pos, rw if_neg, simp, rw abs_of_pos, apply A3, apply not_le_of_lt A3, apply le_of_lt A3, }, cases A3, { rw if_pos, rw if_pos, rw ← A3, rw sub_zero, simp, rw ← A3, rw ← A3, }, { rw if_neg, rw if_pos, simp, rw abs_of_neg, apply A3, apply le_of_lt A3, apply not_le_of_lt A3, } end lemma le_of_add_nonneg_le {α:Type*} {f g h:α → ℝ}:f + g ≤ h → 0 ≤ g → f ≤ h := begin rw le_func_def, rw le_func_def, rw le_func_def, intros A1 A2 n, have A3 := A1 n, have A4 := A2 n, simp at A3, have A5:f n + 0 ≤ f n + g n, { apply add_le_add_left A4, }, rw add_zero at A5, apply le_trans, apply A5, apply A3, end lemma le_of_add_nonneg_eq {α:Type*} {f g h:α → ℝ}:f + g = h → 0 ≤ g → f ≤ h := begin intros A1 A2, have A3:f + g ≤ h, { rw A1, apply le_func_refl, }, apply le_of_add_nonneg_le A3 A2, end lemma pos_only_nonneg {α:Type*} {f:α → ℝ}:0≤ (pos_only ∘ f) := begin rw le_func_def, intro n, simp, unfold pos_only, have A1:(0 ≤ f n) ∨ ¬(0 ≤ f n) := le_or_not_le, cases A1, { rw if_pos, apply A1, apply A1, }, { rw if_neg, apply A1, } end lemma neg_neg_only_nonneg {α:Type*} {f:α → ℝ}:0≤ -(neg_only ∘ f) := begin rw le_func_def, intro n, simp, unfold neg_only, have A1:(f n ≤ 0) ∨ ¬(f n ≤ 0) := le_or_not_le, cases A1, { rw if_pos, apply A1, apply A1, }, { rw if_neg, apply A1, } end lemma neg_only_nonpos {α:Type*} {f:α → ℝ}:(neg_only ∘ f) ≤ 0 := begin rw nonpos_iff_neg_nonneg_func, apply neg_neg_only_nonneg, end lemma pos_only_le_abs {α:Type*} {f:α → ℝ}: (pos_only ∘ f ≤ abs ∘ f) := begin have A1:=@pos_only_sub_neg_only_eq_abs α f, apply le_of_add_nonneg_eq A1, apply neg_neg_only_nonneg, end lemma neg_neg_only_le_abs {α:Type*} {f:α → ℝ}: (-neg_only ∘ f ≤ abs ∘ f) := begin have A1:=@pos_only_sub_neg_only_eq_abs α f, rw sub_eq_add_neg at A1, rw add_comm at A1, apply le_of_add_nonneg_eq A1, apply pos_only_nonneg, end lemma pos_only_neg_eq_neg_only {α:Type*} {f:α → ℝ}: (pos_only ∘ (-f)) = -(neg_only ∘ f) := begin ext x, simp, unfold pos_only neg_only, have A3:0 <f x ∨ 0 =f x ∨ f x < 0 := lt_trichotomy 0 (f x), cases A3, { rw if_neg, rw if_neg, { simp, }, { intro A4, apply not_le_of_lt A3, apply A4, }, { intro A4, apply not_le_of_lt A3, apply nonpos_of_neg_nonneg, apply A4, } }, cases A3, { rw if_pos, rw if_pos, rw ← A3, simp, rw ← A3, }, { rw if_pos, rw if_pos, apply le_of_lt A3, apply neg_nonneg_of_nonpos, apply le_of_lt A3, } end lemma neg_only_le {α:Type*} {f:α → ℝ}: (neg_only ∘ f ≤ f) := begin have A1:=@pos_only_add_neg_only_eq α f, --simp at A1, rw add_comm at A1, apply le_of_add_nonneg_eq A1, apply pos_only_nonneg, end /- Okay, so far I have: pos_only f ∧ neg_only f → f pos_only f ∧ neg_only f → abs f Now, with the new result, I get: abs f → pos_only f abs f → -neg_only f → neg_only f What remains is either: f → pos_only f f → neg_only f f → abs f The solution is that if summable f, -/ lemma neg_neg_func {α:Type*} {f:α → ℝ}:-(-f)=f := begin simp, end lemma finset_sum_lower_bound {α:Type*} [decidable_eq α] {f:α → ℝ} {S:finset α}: S.sum (neg_only ∘ f) ≤ S.sum (f) := begin apply finset_sum_le2, intros s A1, apply neg_only_le, end lemma finset_sum_diff {α:Type*} [decidable_eq α] {f:α → ℝ} {S T:finset α}: T.sum f = (T ∪ S).sum f - (S \ T).sum f := begin have A1:T ∪ S = T ∪ (S\ T), { simp, }, have A2:disjoint T (S \ T), { apply finset_disjoint_symm, apply finset.sdiff_disjoint, }, have A3:(T ∪ S).sum f = T.sum f + (S \ T).sum f, { rw A1, symmetry, apply sum_disjoint_add, apply A2, }, have A4:(T ∪ S).sum f - (S \ T).sum f= T.sum f + (S \ T).sum f - (S \ T).sum f, { rw A3, }, symmetry, simp at A4, apply A4, end lemma finset_sum_neg_monotone_neg {α:Type*} [decidable_eq α] {f:α → ℝ} {S T:finset α}: f ≤ 0 → T ⊆ S → S.sum f ≤ T.sum (f) := begin intros A1 A2, apply le_of_neg_le_neg, rw ← finset_sum_neg, rw ← finset_sum_neg, apply sum_monotone_of_nonneg, { rw ← nonpos_iff_neg_nonneg_func, apply A1, }, { apply A2, } end lemma finset_sum_diff_lower_bound {α:Type*} [decidable_eq α] {f:α → ℝ} {S T:finset α}: S.sum (neg_only ∘ f) ≤ (S \ T).sum (f) := begin have A1:S.sum (neg_only ∘ f) ≤ (S \ T).sum (neg_only ∘ f), { apply finset_sum_neg_monotone_neg, apply neg_only_nonpos, apply finset.sdiff_subset, }, have A2:(S \ T).sum (neg_only ∘ f) ≤ (S \ T).sum f, { apply finset_sum_lower_bound, }, apply le_trans A1 A2, end lemma bdd_above_of_summable_f {α:Type*} [decidable_eq α] {f:α → ℝ}: summable f → bdd_above (set.range (λ (s : finset α), s.sum f)) := begin intro A1, unfold summable at A1, cases A1 with x A2, unfold has_sum at A2, have A5:(0:ℝ) < (1:ℝ) := zero_lt_one, have A6:set.Ioo (x - 1) (x + 1) ∈ nhds x := Ioo_nbhd A5, have A7:=filter_tendsto_elim A2 A6, simp at A7, cases A7 with S A8, let z:=x + 1 - (S.sum (neg_only ∘ f)), begin have B1:z=x + 1 - (S.sum (neg_only ∘ f)) := rfl, rw bdd_above_def, unfold upper_bounds, apply exists.intro z, simp, intros x2 T B2, subst x2, have B3:T.sum f = (T ∪ S).sum f - (S \ T).sum f := finset_sum_diff, rw B3, have B4:(T ∪ S).sum f - (S \ T).sum f ≤ (T ∪ S).sum f - S.sum (neg_only ∘ f), { apply sub_le_sub_left, apply finset_sum_diff_lower_bound, }, apply le_trans B4 , have B5:= (A8 (T ∪ S) (subset_union_right T S)).right, rw B1, simp, apply le_of_lt B5, end end lemma finset_sum_pos_only_eq_sum {α:Type*} [decidable_eq α] {f:α → ℝ} {S:finset α}: ∃ {T:finset α}, T⊆ S ∧ T.sum f = S.sum (pos_only ∘ f) := begin apply finset.induction_on S, { apply exists.intro ∅, split, { simp, }, { simp, refl, } }, { intros a V A1 A2, cases A2 with T A3, cases A3 with A4 A5, have A6: (0 ≤ f a) ∨ ¬ (0 ≤ f a) := le_or_not_le, cases A6, { apply exists.intro (insert a T), split, { rw finset.subset_iff, intros x A7, simp at A7, simp, cases A7, { left, apply A7, }, { right, apply A4, apply A7, } }, { rw sum_insert_add, rw sum_insert_add, rw ← A5, simp, unfold pos_only, rw if_pos, apply A6, { intro A8, apply A1, apply A8, }, { intro A9, apply A1, rw finset.subset_iff at A4, apply A4, apply A9, } } }, { apply exists.intro T, split, { rw finset.subset_iff, intros x A10, simp, right, apply A4, apply A10, }, { rw sum_insert_add, rw ← A5, simp, have A11:pos_only (f a) = 0, { unfold pos_only, apply if_neg, apply A6, }, rw A11, simp, apply A1, } } } end lemma summable_pos_only_of_summable {α:Type*} [decidable_eq α] {f:α → ℝ}: summable f → summable (pos_only ∘ f) := begin intro A1, apply summable_of_bdd_above, apply pos_only_nonneg, have A2:=bdd_above_of_summable_f A1, rw bdd_above_def, unfold upper_bounds, rw bdd_above_def at A2, unfold upper_bounds at A2, cases A2 with x A3, apply exists.intro x, simp, intros x2 S A4, subst x2, have A5 := @finset_sum_pos_only_eq_sum α _ f S, cases A5 with T A6, cases A6 with A7 A8, rw ← A8, simp at A3, have A9:T.sum f = T.sum f := rfl, have A10 := A3 T A9, apply A10, end lemma summable_neg_only_of_summable {α:Type*} [decidable_eq α] {f:α → ℝ}: summable f → summable (neg_only ∘ f) := begin intro A1, have A2:-(-(neg_only ∘ f)) = neg_only ∘ f := neg_neg_func, rw ← A2, apply summable.neg, rw ← pos_only_neg_eq_neg_only, apply summable_pos_only_of_summable, apply summable.neg, apply A1, end lemma summable_iff_pos_only_summable_neg_only_summable {α:Type*} [decidable_eq α] {f:α → ℝ}: summable f ↔ (summable (pos_only ∘ f) ∧ summable (neg_only ∘ f)) := begin split;intro A1, { split, apply summable_pos_only_of_summable A1, apply summable_neg_only_of_summable A1, }, { rw ← @pos_only_add_neg_only_eq α f, apply summable.add, apply A1.left, apply A1.right, } end lemma summable_iff_abs_summable {α:Type*} [decidable_eq α] {f:α → ℝ}: summable f ↔ summable (abs ∘ f) := begin apply iff.trans, apply summable_iff_pos_only_summable_neg_only_summable, split;intro A1, { rw ← pos_only_sub_neg_only_eq_abs, apply summable.sub, apply A1.left, apply A1.right, }, { split, { apply has_sum_of_le_of_le_of_has_sum, { apply pos_only_nonneg, }, { apply pos_only_le_abs, }, { apply A1, } }, { have A2:(-(-neg_only ∘ f))=neg_only ∘ f := neg_neg_func, rw ← A2, apply summable.neg, apply has_sum_of_le_of_le_of_has_sum, { apply neg_neg_only_nonneg, }, { apply neg_neg_only_le_abs, }, { apply A1, } } } end lemma summable_intro {α β:Type*} [add_comm_monoid β] [topological_space β] {f:α → β} {x:β}: has_sum f x → summable f := begin intro A1, unfold summable, apply exists.intro x, apply A1, end lemma has_sum_nnreal_bounds {α:Type*} {f:α → nnreal} [D:decidable_eq α] {x:nnreal}:(x≠ 0) → (has_sum f x) → (∀ S:finset α, S.sum f ≤ x) := begin intros A1 A2, intro S, unfold has_sum at A2, apply le_of_not_lt, intro A3, let r := (finset.sum S f) - x, --let B := {C:finset α|S ≤ C}, begin have A5:set.Iio (finset.sum S f) ∈ nhds x, { apply set_Iio_in_nhds_of_lt A1 A3, }, --have A4:set.Ioo (x - r) (x + r) ∈ filter.at_top, --unfold filter.tendsto at A2, --unfold filter.map at A2, --apply filter_at_top_intro, have A6:= filter_tendsto_elim A2 A5, have A7 := filter_at_top_elim A6, cases A7 with B A7, rw set.subset_def at A7, have A8:(B∪ S) ∈ {b : finset α | B ≤ b}, { simp, apply finset.subset_union_left, }, have A9 := A7 (B ∪ S) A8, simp at A9, have A10 := not_le_of_lt A9, apply A10, apply sum_monotone_of_nnreal, simp, apply finset.subset_union_right, end end lemma has_sum_nnreal_ne_zero {α:Type*} {f:α → nnreal} [decidable_eq α] {x:nnreal}:(x≠ 0) → ((∀ ε>0, ∃ S:finset α, ∀ T⊇S, (T.sum f ≤ x) ∧ x - ε < T.sum f )↔ (has_sum f x)) := begin intro AX, split;intro A1, { unfold has_sum, apply filter_tendsto_intro, intros b A2, have A3:= mem_nhds_elim_nnreal_bound b x AX A2, cases A3 with ε A4, cases A4 with A5 A6, have A7 := A1 ε A5, cases A7 with S A8, apply filter_at_top_intro3 S, intros T A9, have A10 := A8 T A9, apply A6, simp, split, { apply A10.right, }, { apply lt_of_le_of_lt, apply A10.left, apply lt_add_of_pos_right, apply A5, }, }, { intros ε A2, have A10 := has_sum_nnreal_bounds AX A1, unfold has_sum at A1, have A3:set.Ioo (x - ε) (x + ε) ∈ nhds x, { apply set_Ioo_in_nhds_of_ne_zero AX A2, }, have A4 := filter_tendsto_elim A1 A3, have A5 := mem_filter_at_top_elim A4, cases A5 with S A6, apply exists.intro S, intros T A7, rw set.subset_def at A6, have A8 := A6 T A7, have A9:T.sum f ∈ set.Ioo (x - ε) (x + ε) := A8, split, { apply A10 T, }, { simp at A9, apply A9.left, }, } end /- lemma summable_bounded_nnreal {β:Type*} (f:β → nnreal): (∀ S:finset β, S.sum f = 0) → has_sum f 0 := begin apply has_sum_zero, end -/ lemma nnreal.minus_half_eq_half {ε:nnreal}:ε - ε/2 = ε/2 := begin have A1:(ε/2 + ε/2) - ε/2 = ε - ε/2, { rw nnreal.add_halves, }, rw ← A1, rw nnreal.add_sub_cancel, end lemma all_finset_sum_eq_zero_iff_eq_zero {β:Type*} [D:decidable_eq β] (f:β → nnreal): (∀ S:finset β, S.sum f = 0) ↔ f = 0 := begin split;intros A1, { ext b, have A2 := A1 {b}, simp at A2, rw A2, simp, }, { intros S, apply finite_sum_zero_eq_zero, intros b A2, rw A1, simp, }, end lemma has_sum_of_bounded_nnreal {β:Type*} [D:decidable_eq β] (f:β → nnreal) (v:nnreal): (∀ S:finset β, S.sum f ≤ v) → (∀ ε>0, ∃ S:finset β, v - ε ≤ S.sum f) → has_sum f v := begin intros A1 A2, have A3:v = 0 ∨ v ≠ 0 := @eq_or_ne nnreal _ v 0, cases A3, { subst v, have A4:f = 0, { rw ← all_finset_sum_eq_zero_iff_eq_zero, intro S, apply le_bot_iff.mp, apply A1 S, }, subst f, apply has_sum_zero, }, { have A10:0 < v, { apply bot_lt_iff_ne_bot.mpr A3, }, rw ← has_sum_nnreal_ne_zero A3, intros ε A4, let k:nnreal := (min ε v)/2, begin have A8:k = ((min ε v)/2) := rfl, have A11:0 < min ε v, { rw lt_min_iff, split, apply A4, apply A10, }, have A7:0 < k, { rw A8, apply nnreal.half_pos, apply A11, }, have A12:k < min ε v, { apply nnreal.half_lt_self, apply bot_lt_iff_ne_bot.mp A11, }, have A6 := A2 k A7, cases A6 with S A6, apply exists.intro S, intro T, intro A5, split, { apply A1, }, { apply lt_of_lt_of_le, have A9:v - ε < v - k, { apply nnreal_sub_lt_sub_of_lt, { apply lt_of_lt_of_le, apply A12, apply min_le_left, }, { apply lt_of_lt_of_le, apply A12, apply min_le_right, }, }, apply A9, apply le_trans, apply A6, apply sum_monotone_of_nnreal, --simp, apply A5, }, end, apply D, }, end lemma nnreal.le_Sup {S:set nnreal}:(∃ (x : nnreal), ∀ (y : nnreal), y ∈ S → y ≤ x) → ∀ {x : nnreal}, x ∈ S → x ≤ Sup S := begin intro A1, intros x A2, rw ← nnreal.coe_le_coe, rw nnreal.coe_Sup, apply real.le_Sup, cases A1 with z A1, apply exists.intro (coe z), intros y A3, cases A3 with y2 A3, cases A3 with A3 A4, subst y, rw nnreal.coe_le_coe, apply A1 y2 A3, simp, apply A2, end lemma nnreal.le_Sup_of_bdd_above {S:set nnreal}: bdd_above S → (∀ x∈ S, (x ≤ Sup S)) := begin intros A1 y A2, apply nnreal.le_Sup, rw bdd_above_def at A1, unfold set.nonempty upper_bounds at A1, cases A1 with x A1, apply exists.intro x, apply A1, apply A2, end lemma nnreal.le_supr_of_bdd_above {α:Type*} {f:α → nnreal}: bdd_above (set.range f) → (∀ x:α, (f x ≤ ⨆ (s : α), f s)) := begin intro A1, unfold supr, intro a, simp, apply nnreal.le_Sup_of_bdd_above A1, simp, end lemma nnreal.x_eq_zero_of_supr_finset_sum_eq_zero {S:set nnreal}: (bdd_above S) → (Sup S = 0) → (∀ x:nnreal, x∈ S → x = 0):= begin intros A1 A2 x A3, have A4:x≤ 0, { rw ← A2, apply nnreal.le_Sup_of_bdd_above, apply A1, apply A3, }, apply le_bot_iff.mp A4, end lemma zero_of_supr_finset_sum_eq_zero {α:Type*} [D:decidable_eq α] {f:α → nnreal}: (bdd_above (set.range (λ s:finset α, s.sum f))) → ((⨆ (s :finset α), finset.sum s f) = 0) → (f = 0) := begin intros A1 A2, have A3:(∀ (s :finset α), finset.sum s f= 0), { intros S, --apply le_bot_iff.mp, apply nnreal.x_eq_zero_of_supr_finset_sum_eq_zero A1, unfold supr at A2, apply A2, simp, }, rw @all_finset_sum_eq_zero_iff_eq_zero α D f at A3, apply A3 end noncomputable def nnreal.conditionally_complete_lattice:conditionally_complete_lattice nnreal := conditionally_complete_linear_order_bot.to_conditionally_complete_lattice nnreal noncomputable instance nnreal.conditionally_complete_linear_order:conditionally_complete_linear_order nnreal := { .. nnreal.conditionally_complete_lattice, .. nnreal.decidable_linear_order } lemma nnreal.has_sum_of_bdd_above {α:Type*} {f:α → nnreal} [decidable_eq α] {x:nnreal}: bdd_above (set.range (λ s:finset α, s.sum f)) → (x = ⨆ (s : finset α), s.sum f) → has_sum f x := begin intros AX A2, apply has_sum_of_bounded_nnreal, { intro S, rw A2, apply @nnreal.le_supr_of_bdd_above (finset α) (λ s:finset α, s.sum f) AX, }, { have A3:(x = 0) ∨ (x ≠ 0) := eq_or_ne, cases A3, { subst x, intro ε, intro A4, apply exists.intro ∅, rw A3, have A4:0 - ε ≤ 0, { apply nnreal.sub_le_self, }, apply le_trans A4, apply bot_le, have A3A:f = 0, { apply zero_of_supr_finset_sum_eq_zero, apply AX, apply A3, }, apply finset.has_emptyc, }, { intros ε A1, have A4:x - ε < x, { apply nnreal.sub_lt_self, apply bot_lt_iff_ne_bot.mpr, apply A3, apply A1, }, --apply nnreal. let T := (set.range (λ (s : finset α), finset.sum s f)), begin have A5:T = (set.range (λ (s : finset α), finset.sum s f)) := rfl, have A6:Sup T = x, { rw A2, refl, }, have A7:∃b∈ T, x-ε< b, { apply @exists_lt_of_lt_cSup nnreal _ T, rw A5, apply @set_range_finset_nonempty α nnreal _ f, rw A6, apply A4, }, cases A7 with b A7, cases A7 with A7 A8, rw A5 at A7, simp at A7, cases A7 with S A7, subst b, apply exists.intro S, apply le_of_lt A8, end }, }, end lemma nnreal.has_sum_of_supr {α:Type*} {f:α → nnreal} [decidable_eq α]: bdd_above (set.range (λ s:finset α, s.sum f)) → has_sum f (⨆ (s : finset α), s.sum f) := begin intros A1 A2, have A3:(⨆ (s : finset α), s.sum f) = (⨆ (s : finset α), s.sum f), { refl, }, apply nnreal.has_sum_of_bdd_above A1 A3, end lemma summable_bounded_nnreal {β:Type*} [decidable_eq β] (f:β → nnreal) (v:nnreal): (∀ S:finset β, S.sum f ≤ v) → summable f := begin intro A1, apply has_sum.summable, apply nnreal.has_sum_of_supr, rw bdd_above_def, unfold upper_bounds, apply @set.nonempty_of_mem _ _ v, simp, intros a S A3, subst a, apply A1, end
506911686565e1b553e177e12d2b517097470ef3
17d3c61bf162bf88be633867ed4cb201378a8769
/library/init/meta/constructor_tactic.lean
d965e9f4afa71fc823bd8b1ae7f49683f346ff09
[ "Apache-2.0" ]
permissive
u20024804/lean
11def01468fb4796fb0da76015855adceac7e311
d315e424ff17faf6fe096a0a1407b70193009726
refs/heads/master
1,611,388,567,561
1,485,836,506,000
1,485,836,625,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
2,535
lean
/- Copyright (c) 2016 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura -/ prelude import init.meta.tactic init.function namespace tactic private meta def get_constructors_for (e : expr) : tactic (list name) := do env ← get_env, I ← return $ expr.const_name (expr.get_app_fn e), when (environment.is_inductive env I = ff) (fail "constructor tactic failed, target is not an inductive datatype"), return $ environment.constructors_of env I private meta def try_constructors : list name → tactic unit | [] := fail "constructor tactic failed, none of the constructors is applicable" | (c::cs) := (mk_const c >>= apply) <|> try_constructors cs meta def constructor : tactic unit := target >>= get_constructors_for >>= try_constructors meta def left : tactic unit := do tgt ← target, [c₁, c₂] ← get_constructors_for tgt | fail "left tactic failed, target is not an inductive datatype with two constructors", mk_const c₁ >>= apply meta def right : tactic unit := do tgt ← target, [c₁, c₂] ← get_constructors_for tgt | fail "left tactic failed, target is not an inductive datatype with two constructors", mk_const c₂ >>= apply meta def constructor_idx (idx : nat) : tactic unit := do cs ← target >>= get_constructors_for, some c ← return $ list.nth cs (idx - 1) | fail "constructor_idx tactic failed, target is an inductive datatype, but it does not have sufficient constructors", mk_const c >>= apply meta def split : tactic unit := do [c] ← target >>= get_constructors_for | fail "split tactic failed, target is not an inductive datatype with only one constructor", mk_const c >>= apply open expr private meta def apply_num_metavars : expr → expr → nat → tactic expr | f ftype 0 := return f | f ftype (n+1) := do pi m bi d b ← whnf ftype | failed, a ← mk_meta_var d, new_f ← return $ f a, new_ftype ← return $ expr.instantiate_var b a, apply_num_metavars new_f new_ftype n meta def existsi (e : expr) : tactic unit := do [c] ← target >>= get_constructors_for | fail "existsi tactic failed, target is not an inductive datatype with only one constructor", fn ← mk_const c, fn_type ← infer_type fn, n ← get_arity fn, when (n < 2) (fail "existsi tactic failed, constructor must have at least two arguments"), t ← apply_num_metavars fn fn_type (n - 2), apply (app t e) end tactic
0e43c81dbb547fbc0a0e9159e34c7e2c1d20becb
9ad8d18fbe5f120c22b5e035bc240f711d2cbd7e
/src/undergraduate/MAS114/Semester 1/Q12.lean
f1ea3039ea49312d7a31f0e913c6ec7e2c08bb3c
[]
no_license
agusakov/lean_lib
c0e9cc29fc7d2518004e224376adeb5e69b5cc1a
f88d162da2f990b87c4d34f5f46bbca2bbc5948e
refs/heads/master
1,642,141,461,087
1,557,395,798,000
1,557,395,798,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
578
lean
import algebra.big_operators tactic.ring namespace MAS114 namespace exercises_1 namespace Q12 def f : ℚ → ℚ := λ x, x * (x + 1) * (2 * x + 1) / 6 lemma f_step (x : ℚ) : f (x + 1) = (x + 1) ^ 2 + f x := begin dsimp[f], apply sub_eq_zero.mp, rw[pow_two], ring, end lemma sum_of_squares : ∀ (n : ℕ), (((finset.range n.succ).sum (λ i, i ^ 2)) : ℚ) = f n | 0 := rfl | (n + 1) := begin rw[finset.sum_range_succ,sum_of_squares n], have : (((n + 1) : ℕ) : ℚ) = ((n + 1) : ℚ ) := by simp, rw[this,f_step n] end end Q12 end exercises_1 end MAS114
f0e347ee1ff584728aac5819fa20e91645462be2
4727251e0cd73359b15b664c3170e5d754078599
/src/linear_algebra/basic.lean
55d77335da1e2f2fa4bc53728c898e880b94e0b8
[ "Apache-2.0" ]
permissive
Vierkantor/mathlib
0ea59ac32a3a43c93c44d70f441c4ee810ccceca
83bc3b9ce9b13910b57bda6b56222495ebd31c2f
refs/heads/master
1,658,323,012,449
1,652,256,003,000
1,652,256,003,000
209,296,341
0
1
Apache-2.0
1,568,807,655,000
1,568,807,655,000
null
UTF-8
Lean
false
false
83,041
lean
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro, Kevin Buzzard, Yury Kudryashov, Frédéric Dupuis, Heather Macbeth -/ import algebra.big_operators.pi import algebra.module.hom import algebra.module.prod import algebra.module.submodule.lattice import data.dfinsupp.basic import data.finsupp.basic import order.compactly_generated /-! # Linear algebra This file defines the basics of linear algebra. It sets up the "categorical/lattice structure" of modules over a ring, submodules, and linear maps. Many of the relevant definitions, including `module`, `submodule`, and `linear_map`, are found in `src/algebra/module`. ## Main definitions * Many constructors for (semi)linear maps * The kernel `ker` and range `range` of a linear map are submodules of the domain and codomain respectively. * The general linear group is defined to be the group of invertible linear maps from `M` to itself. See `linear_algebra.span` for the span of a set (as a submodule), and `linear_algebra.quotient` for quotients by submodules. ## Main theorems See `linear_algebra.isomorphisms` for Noether's three isomorphism theorems for modules. ## Notations * We continue to use the notations `M →ₛₗ[σ] M₂` and `M →ₗ[R] M₂` for the type of semilinear (resp. linear) maps from `M` to `M₂` over the ring homomorphism `σ` (resp. over the ring `R`). ## Implementation notes We note that, when constructing linear maps, it is convenient to use operations defined on bundled maps (`linear_map.prod`, `linear_map.coprod`, arithmetic operations like `+`) instead of defining a function and proving it is linear. ## TODO * Parts of this file have not yet been generalized to semilinear maps ## Tags linear algebra, vector space, module -/ open function open_locale big_operators pointwise variables {R : Type*} {R₁ : Type*} {R₂ : Type*} {R₃ : Type*} {R₄ : Type*} variables {S : Type*} variables {K : Type*} {K₂ : Type*} variables {M : Type*} {M' : Type*} {M₁ : Type*} {M₂ : Type*} {M₃ : Type*} {M₄ : Type*} variables {N : Type*} {N₂ : Type*} variables {ι : Type*} variables {V : Type*} {V₂ : Type*} namespace finsupp lemma smul_sum {α : Type*} {β : Type*} {R : Type*} {M : Type*} [has_zero β] [monoid R] [add_comm_monoid M] [distrib_mul_action R M] {v : α →₀ β} {c : R} {h : α → β → M} : c • (v.sum h) = v.sum (λa b, c • h a b) := finset.smul_sum @[simp] lemma sum_smul_index_linear_map' {α : Type*} {R : Type*} {M : Type*} {M₂ : Type*} [semiring R] [add_comm_monoid M] [module R M] [add_comm_monoid M₂] [module R M₂] {v : α →₀ M} {c : R} {h : α → M →ₗ[R] M₂} : (c • v).sum (λ a, h a) = c • (v.sum (λ a, h a)) := begin rw [finsupp.sum_smul_index', finsupp.smul_sum], { simp only [linear_map.map_smul], }, { intro i, exact (h i).map_zero }, end variables (α : Type*) [fintype α] variables (R M) [add_comm_monoid M] [semiring R] [module R M] /-- Given `fintype α`, `linear_equiv_fun_on_fintype R` is the natural `R`-linear equivalence between `α →₀ β` and `α → β`. -/ @[simps apply] noncomputable def linear_equiv_fun_on_fintype : (α →₀ M) ≃ₗ[R] (α → M) := { to_fun := coe_fn, map_add' := λ f g, by { ext, refl }, map_smul' := λ c f, by { ext, refl }, .. equiv_fun_on_fintype } @[simp] lemma linear_equiv_fun_on_fintype_single [decidable_eq α] (x : α) (m : M) : (linear_equiv_fun_on_fintype R M α) (single x m) = pi.single x m := begin ext a, change (equiv_fun_on_fintype (single x m)) a = _, convert _root_.congr_fun (equiv_fun_on_fintype_single x m) a, end @[simp] lemma linear_equiv_fun_on_fintype_symm_single [decidable_eq α] (x : α) (m : M) : (linear_equiv_fun_on_fintype R M α).symm (pi.single x m) = single x m := begin ext a, change (equiv_fun_on_fintype.symm (pi.single x m)) a = _, convert congr_fun (equiv_fun_on_fintype_symm_single x m) a, end @[simp] lemma linear_equiv_fun_on_fintype_symm_coe (f : α →₀ M) : (linear_equiv_fun_on_fintype R M α).symm f = f := by { ext, simp [linear_equiv_fun_on_fintype], } end finsupp section open_locale classical /-- decomposing `x : ι → R` as a sum along the canonical basis -/ lemma pi_eq_sum_univ {ι : Type*} [fintype ι] {R : Type*} [semiring R] (x : ι → R) : x = ∑ i, x i • (λj, if i = j then 1 else 0) := by { ext, simp } end /-! ### Properties of linear maps -/ namespace linear_map section add_comm_monoid variables [semiring R] [semiring R₂] [semiring R₃] [semiring R₄] variables [add_comm_monoid M] [add_comm_monoid M₁] [add_comm_monoid M₂] variables [add_comm_monoid M₃] [add_comm_monoid M₄] variables [module R M] [module R M₁] [module R₂ M₂] [module R₃ M₃] [module R₄ M₄] variables {σ₁₂ : R →+* R₂} {σ₂₃ : R₂ →+* R₃} {σ₃₄ : R₃ →+* R₄} variables {σ₁₃ : R →+* R₃} {σ₂₄ : R₂ →+* R₄} {σ₁₄ : R →+* R₄} variables [ring_hom_comp_triple σ₁₂ σ₂₃ σ₁₃] [ring_hom_comp_triple σ₂₃ σ₃₄ σ₂₄] variables [ring_hom_comp_triple σ₁₃ σ₃₄ σ₁₄] [ring_hom_comp_triple σ₁₂ σ₂₄ σ₁₄] variables (f : M →ₛₗ[σ₁₂] M₂) (g : M₂ →ₛₗ[σ₂₃] M₃) include R R₂ theorem comp_assoc (h : M₃ →ₛₗ[σ₃₄] M₄) : ((h.comp g : M₂ →ₛₗ[σ₂₄] M₄).comp f : M →ₛₗ[σ₁₄] M₄) = h.comp (g.comp f : M →ₛₗ[σ₁₃] M₃) := rfl omit R R₂ /-- The restriction of a linear map `f : M → M₂` to a submodule `p ⊆ M` gives a linear map `p → M₂`. -/ def dom_restrict (f : M →ₛₗ[σ₁₂] M₂) (p : submodule R M) : p →ₛₗ[σ₁₂] M₂ := f.comp p.subtype @[simp] lemma dom_restrict_apply (f : M →ₛₗ[σ₁₂] M₂) (p : submodule R M) (x : p) : f.dom_restrict p x = f x := rfl /-- A linear map `f : M₂ → M` whose values lie in a submodule `p ⊆ M` can be restricted to a linear map M₂ → p. -/ def cod_restrict (p : submodule R₂ M₂) (f : M →ₛₗ[σ₁₂] M₂) (h : ∀c, f c ∈ p) : M →ₛₗ[σ₁₂] p := by refine {to_fun := λc, ⟨f c, h c⟩, ..}; intros; apply set_coe.ext; simp @[simp] theorem cod_restrict_apply (p : submodule R₂ M₂) (f : M →ₛₗ[σ₁₂] M₂) {h} (x : M) : (cod_restrict p f h x : M₂) = f x := rfl @[simp] lemma comp_cod_restrict (p : submodule R₃ M₃) (h : ∀b, g b ∈ p) : ((cod_restrict p g h).comp f : M →ₛₗ[σ₁₃] p) = cod_restrict p (g.comp f) (assume b, h _) := ext $ assume b, rfl @[simp] lemma subtype_comp_cod_restrict (p : submodule R₂ M₂) (h : ∀b, f b ∈ p) : p.subtype.comp (cod_restrict p f h) = f := ext $ assume b, rfl /-- Restrict domain and codomain of an endomorphism. -/ def restrict (f : M →ₗ[R] M) {p : submodule R M} (hf : ∀ x ∈ p, f x ∈ p) : p →ₗ[R] p := (f.dom_restrict p).cod_restrict p $ set_like.forall.2 hf lemma restrict_apply {f : M →ₗ[R] M} {p : submodule R M} (hf : ∀ x ∈ p, f x ∈ p) (x : p) : f.restrict hf x = ⟨f x, hf x.1 x.2⟩ := rfl lemma subtype_comp_restrict {f : M →ₗ[R] M} {p : submodule R M} (hf : ∀ x ∈ p, f x ∈ p) : p.subtype.comp (f.restrict hf) = f.dom_restrict p := rfl lemma restrict_eq_cod_restrict_dom_restrict {f : M →ₗ[R] M} {p : submodule R M} (hf : ∀ x ∈ p, f x ∈ p) : f.restrict hf = (f.dom_restrict p).cod_restrict p (λ x, hf x.1 x.2) := rfl lemma restrict_eq_dom_restrict_cod_restrict {f : M →ₗ[R] M} {p : submodule R M} (hf : ∀ x, f x ∈ p) : f.restrict (λ x _, hf x) = (f.cod_restrict p hf).dom_restrict p := rfl instance unique_of_left [subsingleton M] : unique (M →ₛₗ[σ₁₂] M₂) := { uniq := λ f, ext $ λ x, by rw [subsingleton.elim x 0, map_zero, map_zero], .. linear_map.inhabited } instance unique_of_right [subsingleton M₂] : unique (M →ₛₗ[σ₁₂] M₂) := coe_injective.unique /-- Evaluation of a `σ₁₂`-linear map at a fixed `a`, as an `add_monoid_hom`. -/ def eval_add_monoid_hom (a : M) : (M →ₛₗ[σ₁₂] M₂) →+ M₂ := { to_fun := λ f, f a, map_add' := λ f g, linear_map.add_apply f g a, map_zero' := rfl } /-- `linear_map.to_add_monoid_hom` promoted to an `add_monoid_hom` -/ def to_add_monoid_hom' : (M →ₛₗ[σ₁₂] M₂) →+ (M →+ M₂) := { to_fun := to_add_monoid_hom, map_zero' := by ext; refl, map_add' := by intros; ext; refl } lemma sum_apply (t : finset ι) (f : ι → M →ₛₗ[σ₁₂] M₂) (b : M) : (∑ d in t, f d) b = ∑ d in t, f d b := add_monoid_hom.map_sum ((add_monoid_hom.eval b).comp to_add_monoid_hom') f _ section smul_right variables [semiring S] [module R S] [module S M] [is_scalar_tower R S M] /-- When `f` is an `R`-linear map taking values in `S`, then `λb, f b • x` is an `R`-linear map. -/ def smul_right (f : M₁ →ₗ[R] S) (x : M) : M₁ →ₗ[R] M := { to_fun := λb, f b • x, map_add' := λ x y, by rw [f.map_add, add_smul], map_smul' := λ b y, by dsimp; rw [f.map_smul, smul_assoc] } @[simp] theorem coe_smul_right (f : M₁ →ₗ[R] S) (x : M) : (smul_right f x : M₁ → M) = λ c, f c • x := rfl theorem smul_right_apply (f : M₁ →ₗ[R] S) (x : M) (c : M₁) : smul_right f x c = f c • x := rfl end smul_right instance [nontrivial M] : nontrivial (module.End R M) := begin obtain ⟨m, ne⟩ := (nontrivial_iff_exists_ne (0 : M)).mp infer_instance, exact nontrivial_of_ne 1 0 (λ p, ne (linear_map.congr_fun p m)), end @[simp, norm_cast] lemma coe_fn_sum {ι : Type*} (t : finset ι) (f : ι → M →ₛₗ[σ₁₂] M₂) : ⇑(∑ i in t, f i) = ∑ i in t, (f i : M → M₂) := add_monoid_hom.map_sum ⟨@to_fun R R₂ _ _ σ₁₂ M M₂ _ _ _ _, rfl, λ x y, rfl⟩ _ _ @[simp] lemma pow_apply (f : M →ₗ[R] M) (n : ℕ) (m : M) : (f^n) m = (f^[n] m) := begin induction n with n ih, { refl, }, { simp only [function.comp_app, function.iterate_succ, linear_map.mul_apply, pow_succ, ih], exact (function.commute.iterate_self _ _ m).symm, }, end lemma pow_map_zero_of_le {f : module.End R M} {m : M} {k l : ℕ} (hk : k ≤ l) (hm : (f^k) m = 0) : (f^l) m = 0 := by rw [← tsub_add_cancel_of_le hk, pow_add, mul_apply, hm, map_zero] lemma commute_pow_left_of_commute {f : M →ₛₗ[σ₁₂] M₂} {g : module.End R M} {g₂ : module.End R₂ M₂} (h : g₂.comp f = f.comp g) (k : ℕ) : (g₂^k).comp f = f.comp (g^k) := begin induction k with k ih, { simpa only [pow_zero], }, { rw [pow_succ, pow_succ, linear_map.mul_eq_comp, linear_map.comp_assoc, ih, ← linear_map.comp_assoc, h, linear_map.comp_assoc, linear_map.mul_eq_comp], }, end lemma submodule_pow_eq_zero_of_pow_eq_zero {N : submodule R M} {g : module.End R N} {G : module.End R M} (h : G.comp N.subtype = N.subtype.comp g) {k : ℕ} (hG : G^k = 0) : g^k = 0 := begin ext m, have hg : N.subtype.comp (g^k) m = 0, { rw [← commute_pow_left_of_commute h, hG, zero_comp, zero_apply], }, simp only [submodule.subtype_apply, comp_app, submodule.coe_eq_zero, coe_comp] at hg, rw [hg, linear_map.zero_apply], end lemma coe_pow (f : M →ₗ[R] M) (n : ℕ) : ⇑(f^n) = (f^[n]) := by { ext m, apply pow_apply, } @[simp] lemma id_pow (n : ℕ) : (id : M →ₗ[R] M)^n = id := one_pow n section variables {f' : M →ₗ[R] M} lemma iterate_succ (n : ℕ) : (f' ^ (n + 1)) = comp (f' ^ n) f' := by rw [pow_succ', mul_eq_comp] lemma iterate_surjective (h : surjective f') : ∀ n : ℕ, surjective ⇑(f' ^ n) | 0 := surjective_id | (n + 1) := by { rw [iterate_succ], exact surjective.comp (iterate_surjective n) h, } lemma iterate_injective (h : injective f') : ∀ n : ℕ, injective ⇑(f' ^ n) | 0 := injective_id | (n + 1) := by { rw [iterate_succ], exact injective.comp (iterate_injective n) h, } lemma iterate_bijective (h : bijective f') : ∀ n : ℕ, bijective ⇑(f' ^ n) | 0 := bijective_id | (n + 1) := by { rw [iterate_succ], exact bijective.comp (iterate_bijective n) h, } lemma injective_of_iterate_injective {n : ℕ} (hn : n ≠ 0) (h : injective ⇑(f' ^ n)) : injective f' := begin rw [← nat.succ_pred_eq_of_pos (pos_iff_ne_zero.mpr hn), iterate_succ, coe_comp] at h, exact injective.of_comp h, end lemma surjective_of_iterate_surjective {n : ℕ} (hn : n ≠ 0) (h : surjective ⇑(f' ^ n)) : surjective f' := begin rw [← nat.succ_pred_eq_of_pos (pos_iff_ne_zero.mpr hn), nat.succ_eq_add_one, add_comm, pow_add] at h, exact surjective.of_comp h, end end section open_locale classical /-- A linear map `f` applied to `x : ι → R` can be computed using the image under `f` of elements of the canonical basis. -/ lemma pi_apply_eq_sum_univ [fintype ι] (f : (ι → R) →ₗ[R] M) (x : ι → R) : f x = ∑ i, x i • (f (λj, if i = j then 1 else 0)) := begin conv_lhs { rw [pi_eq_sum_univ x, f.map_sum] }, apply finset.sum_congr rfl (λl hl, _), rw f.map_smul end end end add_comm_monoid section module variables [semiring R] [semiring S] [add_comm_monoid M] [add_comm_monoid M₂] [add_comm_monoid M₃] [module R M] [module R M₂] [module R M₃] [module S M₂] [module S M₃] [smul_comm_class R S M₂] [smul_comm_class R S M₃] (f : M →ₗ[R] M₂) variable (S) /-- Applying a linear map at `v : M`, seen as `S`-linear map from `M →ₗ[R] M₂` to `M₂`. See `linear_map.applyₗ` for a version where `S = R`. -/ @[simps] def applyₗ' : M →+ (M →ₗ[R] M₂) →ₗ[S] M₂ := { to_fun := λ v, { to_fun := λ f, f v, map_add' := λ f g, f.add_apply g v, map_smul' := λ x f, f.smul_apply x v }, map_zero' := linear_map.ext $ λ f, f.map_zero, map_add' := λ x y, linear_map.ext $ λ f, f.map_add _ _ } section variables (R M) /-- The equivalence between R-linear maps from `R` to `M`, and points of `M` itself. This says that the forgetful functor from `R`-modules to types is representable, by `R`. This as an `S`-linear equivalence, under the assumption that `S` acts on `M` commuting with `R`. When `R` is commutative, we can take this to be the usual action with `S = R`. Otherwise, `S = ℕ` shows that the equivalence is additive. See note [bundled maps over different rings]. -/ @[simps] def ring_lmap_equiv_self [module S M] [smul_comm_class R S M] : (R →ₗ[R] M) ≃ₗ[S] M := { to_fun := λ f, f 1, inv_fun := smul_right (1 : R →ₗ[R] R), left_inv := λ f, by { ext, simp }, right_inv := λ x, by simp, .. applyₗ' S (1 : R) } end end module section comm_semiring variables [comm_semiring R] [add_comm_monoid M] [add_comm_monoid M₂] [add_comm_monoid M₃] variables [module R M] [module R M₂] [module R M₃] variables (f g : M →ₗ[R] M₂) include R /-- Composition by `f : M₂ → M₃` is a linear map from the space of linear maps `M → M₂` to the space of linear maps `M₂ → M₃`. -/ def comp_right (f : M₂ →ₗ[R] M₃) : (M →ₗ[R] M₂) →ₗ[R] (M →ₗ[R] M₃) := { to_fun := f.comp, map_add' := λ _ _, linear_map.ext $ λ _, f.map_add _ _, map_smul' := λ _ _, linear_map.ext $ λ _, f.map_smul _ _ } @[simp] lemma comp_right_apply (f : M₂ →ₗ[R] M₃) (g : M →ₗ[R] M₂) : comp_right f g = f.comp g := rfl /-- Applying a linear map at `v : M`, seen as a linear map from `M →ₗ[R] M₂` to `M₂`. See also `linear_map.applyₗ'` for a version that works with two different semirings. This is the `linear_map` version of `add_monoid_hom.eval`. -/ @[simps] def applyₗ : M →ₗ[R] (M →ₗ[R] M₂) →ₗ[R] M₂ := { to_fun := λ v, { to_fun := λ f, f v, ..applyₗ' R v }, map_smul' := λ x y, linear_map.ext $ λ f, f.map_smul _ _, ..applyₗ' R } /-- Alternative version of `dom_restrict` as a linear map. -/ def dom_restrict' (p : submodule R M) : (M →ₗ[R] M₂) →ₗ[R] (p →ₗ[R] M₂) := { to_fun := λ φ, φ.dom_restrict p, map_add' := by simp [linear_map.ext_iff], map_smul' := by simp [linear_map.ext_iff] } @[simp] lemma dom_restrict'_apply (f : M →ₗ[R] M₂) (p : submodule R M) (x : p) : dom_restrict' p f x = f x := rfl end comm_semiring section comm_ring variables [comm_ring R] [add_comm_group M] [add_comm_group M₂] [add_comm_group M₃] variables [module R M] [module R M₂] [module R M₃] /-- The family of linear maps `M₂ → M` parameterised by `f ∈ M₂ → R`, `x ∈ M`, is linear in `f`, `x`. -/ def smul_rightₗ : (M₂ →ₗ[R] R) →ₗ[R] M →ₗ[R] M₂ →ₗ[R] M := { to_fun := λ f, { to_fun := linear_map.smul_right f, map_add' := λ m m', by { ext, apply smul_add, }, map_smul' := λ c m, by { ext, apply smul_comm, } }, map_add' := λ f f', by { ext, apply add_smul, }, map_smul' := λ c f, by { ext, apply mul_smul, } } @[simp] lemma smul_rightₗ_apply (f : M₂ →ₗ[R] R) (x : M) (c : M₂) : (smul_rightₗ : (M₂ →ₗ[R] R) →ₗ[R] M →ₗ[R] M₂ →ₗ[R] M) f x c = (f c) • x := rfl end comm_ring end linear_map /-- The `R`-linear equivalence between additive morphisms `A →+ B` and `ℕ`-linear morphisms `A →ₗ[ℕ] B`. -/ @[simps] def add_monoid_hom_lequiv_nat {A B : Type*} (R : Type*) [semiring R] [add_comm_monoid A] [add_comm_monoid B] [module R B] : (A →+ B) ≃ₗ[R] (A →ₗ[ℕ] B) := { to_fun := add_monoid_hom.to_nat_linear_map, inv_fun := linear_map.to_add_monoid_hom, map_add' := by { intros, ext, refl }, map_smul' := by { intros, ext, refl }, left_inv := by { intros f, ext, refl }, right_inv := by { intros f, ext, refl } } /-- The `R`-linear equivalence between additive morphisms `A →+ B` and `ℤ`-linear morphisms `A →ₗ[ℤ] B`. -/ @[simps] def add_monoid_hom_lequiv_int {A B : Type*} (R : Type*) [semiring R] [add_comm_group A] [add_comm_group B] [module R B] : (A →+ B) ≃ₗ[R] (A →ₗ[ℤ] B) := { to_fun := add_monoid_hom.to_int_linear_map, inv_fun := linear_map.to_add_monoid_hom, map_add' := by { intros, ext, refl }, map_smul' := by { intros, ext, refl }, left_inv := by { intros f, ext, refl }, right_inv := by { intros f, ext, refl } } /-! ### Properties of submodules -/ namespace submodule section add_comm_monoid variables [semiring R] [semiring R₂] [semiring R₃] variables [add_comm_monoid M] [add_comm_monoid M₂] [add_comm_monoid M₃] [add_comm_monoid M'] variables [module R M] [module R M'] [module R₂ M₂] [module R₃ M₃] variables {σ₁₂ : R →+* R₂} {σ₂₃ : R₂ →+* R₃} {σ₁₃ : R →+* R₃} variables {σ₂₁ : R₂ →+* R} variables [ring_hom_inv_pair σ₁₂ σ₂₁] [ring_hom_inv_pair σ₂₁ σ₁₂] variables [ring_hom_comp_triple σ₁₂ σ₂₃ σ₁₃] variables (p p' : submodule R M) (q q' : submodule R₂ M₂) variables (q₁ q₁' : submodule R M') variables {r : R} {x y : M} open set variables {p p'} /-- If two submodules `p` and `p'` satisfy `p ⊆ p'`, then `of_le p p'` is the linear map version of this inclusion. -/ def of_le (h : p ≤ p') : p →ₗ[R] p' := p.subtype.cod_restrict p' $ λ ⟨x, hx⟩, h hx @[simp] theorem coe_of_le (h : p ≤ p') (x : p) : (of_le h x : M) = x := rfl theorem of_le_apply (h : p ≤ p') (x : p) : of_le h x = ⟨x, h x.2⟩ := rfl theorem of_le_injective (h : p ≤ p') : function.injective (of_le h) := λ x y h, subtype.val_injective (subtype.mk.inj h) variables (p p') lemma subtype_comp_of_le (p q : submodule R M) (h : p ≤ q) : q.subtype.comp (of_le h) = p.subtype := by { ext ⟨b, hb⟩, refl } variables (R) @[simp] lemma subsingleton_iff : subsingleton (submodule R M) ↔ subsingleton M := have h : subsingleton (submodule R M) ↔ subsingleton (add_submonoid M), { rw [←subsingleton_iff_bot_eq_top, ←subsingleton_iff_bot_eq_top], convert to_add_submonoid_eq.symm; refl, }, h.trans add_submonoid.subsingleton_iff @[simp] lemma nontrivial_iff : nontrivial (submodule R M) ↔ nontrivial M := not_iff_not.mp ( (not_nontrivial_iff_subsingleton.trans $ subsingleton_iff R).trans not_nontrivial_iff_subsingleton.symm) variables {R} instance [subsingleton M] : unique (submodule R M) := ⟨⟨⊥⟩, λ a, @subsingleton.elim _ ((subsingleton_iff R).mpr ‹_›) a _⟩ instance unique' [subsingleton R] : unique (submodule R M) := by haveI := module.subsingleton R M; apply_instance instance [nontrivial M] : nontrivial (submodule R M) := (nontrivial_iff R).mpr ‹_› theorem mem_right_iff_eq_zero_of_disjoint {p p' : submodule R M} (h : disjoint p p') {x : p} : (x:M) ∈ p' ↔ x = 0 := ⟨λ hx, coe_eq_zero.1 $ disjoint_def.1 h x x.2 hx, λ h, h.symm ▸ p'.zero_mem⟩ theorem mem_left_iff_eq_zero_of_disjoint {p p' : submodule R M} (h : disjoint p p') {x : p'} : (x:M) ∈ p ↔ x = 0 := ⟨λ hx, coe_eq_zero.1 $ disjoint_def.1 h x hx x.2, λ h, h.symm ▸ p.zero_mem⟩ section variables [ring_hom_surjective σ₁₂] /-- The pushforward of a submodule `p ⊆ M` by `f : M → M₂` -/ def map (f : M →ₛₗ[σ₁₂] M₂) (p : submodule R M) : submodule R₂ M₂ := { carrier := f '' p, smul_mem' := begin rintro c x ⟨y, hy, rfl⟩, obtain ⟨a, rfl⟩ := σ₁₂.is_surjective c, exact ⟨_, p.smul_mem a hy, f.map_smulₛₗ _ _⟩, end, .. p.to_add_submonoid.map f.to_add_monoid_hom } @[simp] lemma map_coe (f : M →ₛₗ[σ₁₂] M₂) (p : submodule R M) : (map f p : set M₂) = f '' p := rfl lemma map_to_add_submonoid (f : M →ₛₗ[σ₁₂] M₂) (p : submodule R M) : (p.map f).to_add_submonoid = p.to_add_submonoid.map f := set_like.coe_injective rfl @[simp] lemma mem_map {f : M →ₛₗ[σ₁₂] M₂} {p : submodule R M} {x : M₂} : x ∈ map f p ↔ ∃ y, y ∈ p ∧ f y = x := iff.rfl theorem mem_map_of_mem {f : M →ₛₗ[σ₁₂] M₂} {p : submodule R M} {r} (h : r ∈ p) : f r ∈ map f p := set.mem_image_of_mem _ h lemma apply_coe_mem_map (f : M →ₛₗ[σ₁₂] M₂) {p : submodule R M} (r : p) : f r ∈ map f p := mem_map_of_mem r.prop @[simp] lemma map_id : map (linear_map.id : M →ₗ[R] M) p = p := submodule.ext $ λ a, by simp lemma map_comp [ring_hom_surjective σ₂₃] [ring_hom_surjective σ₁₃] (f : M →ₛₗ[σ₁₂] M₂) (g : M₂ →ₛₗ[σ₂₃] M₃) (p : submodule R M) : map (g.comp f : M →ₛₗ[σ₁₃] M₃) p = map g (map f p) := set_like.coe_injective $ by simp [map_coe]; rw ← image_comp lemma map_mono {f : M →ₛₗ[σ₁₂] M₂} {p p' : submodule R M} : p ≤ p' → map f p ≤ map f p' := image_subset _ @[simp] lemma map_zero : map (0 : M →ₛₗ[σ₁₂] M₂) p = ⊥ := have ∃ (x : M), x ∈ p := ⟨0, p.zero_mem⟩, ext $ by simp [this, eq_comm] lemma map_add_le (f g : M →ₛₗ[σ₁₂] M₂) : map (f + g) p ≤ map f p ⊔ map g p := begin rintros x ⟨m, hm, rfl⟩, exact add_mem_sup (mem_map_of_mem hm) (mem_map_of_mem hm), end lemma range_map_nonempty (N : submodule R M) : (set.range (λ ϕ, submodule.map ϕ N : (M →ₛₗ[σ₁₂] M₂) → submodule R₂ M₂)).nonempty := ⟨_, set.mem_range.mpr ⟨0, rfl⟩⟩ end include σ₂₁ /-- The pushforward of a submodule by an injective linear map is linearly equivalent to the original submodule. See also `linear_equiv.submodule_map` for a computable version when `f` has an explicit inverse. -/ noncomputable def equiv_map_of_injective (f : M →ₛₗ[σ₁₂] M₂) (i : injective f) (p : submodule R M) : p ≃ₛₗ[σ₁₂] p.map f := { map_add' := by { intros, simp, refl, }, map_smul' := by { intros, simp, refl, }, ..(equiv.set.image f p i) } @[simp] lemma coe_equiv_map_of_injective_apply (f : M →ₛₗ[σ₁₂] M₂) (i : injective f) (p : submodule R M) (x : p) : (equiv_map_of_injective f i p x : M₂) = f x := rfl omit σ₂₁ /-- The pullback of a submodule `p ⊆ M₂` along `f : M → M₂` -/ def comap (f : M →ₛₗ[σ₁₂] M₂) (p : submodule R₂ M₂) : submodule R M := { carrier := f ⁻¹' p, smul_mem' := λ a x h, by simp [p.smul_mem _ h], .. p.to_add_submonoid.comap f.to_add_monoid_hom } @[simp] lemma comap_coe (f : M →ₛₗ[σ₁₂] M₂) (p : submodule R₂ M₂) : (comap f p : set M) = f ⁻¹' p := rfl @[simp] lemma mem_comap {f : M →ₛₗ[σ₁₂] M₂} {p : submodule R₂ M₂} : x ∈ comap f p ↔ f x ∈ p := iff.rfl @[simp] lemma comap_id : comap linear_map.id p = p := set_like.coe_injective rfl lemma comap_comp (f : M →ₛₗ[σ₁₂] M₂) (g : M₂ →ₛₗ[σ₂₃] M₃) (p : submodule R₃ M₃) : comap (g.comp f : M →ₛₗ[σ₁₃] M₃) p = comap f (comap g p) := rfl lemma comap_mono {f : M →ₛₗ[σ₁₂] M₂} {q q' : submodule R₂ M₂} : q ≤ q' → comap f q ≤ comap f q' := preimage_mono lemma le_comap_pow_of_le_comap (p : submodule R M) {f : M →ₗ[R] M} (h : p ≤ p.comap f) (k : ℕ) : p ≤ p.comap (f^k) := begin induction k with k ih, { simp [linear_map.one_eq_id], }, { simp [linear_map.iterate_succ, comap_comp, h.trans (comap_mono ih)], }, end section variables [ring_hom_surjective σ₁₂] lemma map_le_iff_le_comap {f : M →ₛₗ[σ₁₂] M₂} {p : submodule R M} {q : submodule R₂ M₂} : map f p ≤ q ↔ p ≤ comap f q := image_subset_iff lemma gc_map_comap (f : M →ₛₗ[σ₁₂] M₂) : galois_connection (map f) (comap f) | p q := map_le_iff_le_comap @[simp] lemma map_bot (f : M →ₛₗ[σ₁₂] M₂) : map f ⊥ = ⊥ := (gc_map_comap f).l_bot @[simp] lemma map_sup (f : M →ₛₗ[σ₁₂] M₂) : map f (p ⊔ p') = map f p ⊔ map f p' := (gc_map_comap f).l_sup @[simp] lemma map_supr {ι : Sort*} (f : M →ₛₗ[σ₁₂] M₂) (p : ι → submodule R M) : map f (⨆i, p i) = (⨆i, map f (p i)) := (gc_map_comap f).l_supr end @[simp] lemma comap_top (f : M →ₛₗ[σ₁₂] M₂) : comap f ⊤ = ⊤ := rfl @[simp] lemma comap_inf (f : M →ₛₗ[σ₁₂] M₂) : comap f (q ⊓ q') = comap f q ⊓ comap f q' := rfl @[simp] lemma comap_infi [ring_hom_surjective σ₁₂] {ι : Sort*} (f : M →ₛₗ[σ₁₂] M₂) (p : ι → submodule R₂ M₂) : comap f (⨅i, p i) = (⨅i, comap f (p i)) := (gc_map_comap f).u_infi @[simp] lemma comap_zero : comap (0 : M →ₛₗ[σ₁₂] M₂) q = ⊤ := ext $ by simp lemma map_comap_le [ring_hom_surjective σ₁₂] (f : M →ₛₗ[σ₁₂] M₂) (q : submodule R₂ M₂) : map f (comap f q) ≤ q := (gc_map_comap f).l_u_le _ lemma le_comap_map [ring_hom_surjective σ₁₂] (f : M →ₛₗ[σ₁₂] M₂) (p : submodule R M) : p ≤ comap f (map f p) := (gc_map_comap f).le_u_l _ section galois_insertion variables {f : M →ₛₗ[σ₁₂] M₂} (hf : surjective f) variables [ring_hom_surjective σ₁₂] include hf /-- `map f` and `comap f` form a `galois_insertion` when `f` is surjective. -/ def gi_map_comap : galois_insertion (map f) (comap f) := (gc_map_comap f).to_galois_insertion (λ S x hx, begin rcases hf x with ⟨y, rfl⟩, simp only [mem_map, mem_comap], exact ⟨y, hx, rfl⟩ end) lemma map_comap_eq_of_surjective (p : submodule R₂ M₂) : (p.comap f).map f = p := (gi_map_comap hf).l_u_eq _ lemma map_surjective_of_surjective : function.surjective (map f) := (gi_map_comap hf).l_surjective lemma comap_injective_of_surjective : function.injective (comap f) := (gi_map_comap hf).u_injective lemma map_sup_comap_of_surjective (p q : submodule R₂ M₂) : (p.comap f ⊔ q.comap f).map f = p ⊔ q := (gi_map_comap hf).l_sup_u _ _ lemma map_supr_comap_of_sujective {ι : Sort*} (S : ι → submodule R₂ M₂) : (⨆ i, (S i).comap f).map f = supr S := (gi_map_comap hf).l_supr_u _ lemma map_inf_comap_of_surjective (p q : submodule R₂ M₂) : (p.comap f ⊓ q.comap f).map f = p ⊓ q := (gi_map_comap hf).l_inf_u _ _ lemma map_infi_comap_of_surjective {ι : Sort*} (S : ι → submodule R₂ M₂) : (⨅ i, (S i).comap f).map f = infi S := (gi_map_comap hf).l_infi_u _ lemma comap_le_comap_iff_of_surjective (p q : submodule R₂ M₂) : p.comap f ≤ q.comap f ↔ p ≤ q := (gi_map_comap hf).u_le_u_iff lemma comap_strict_mono_of_surjective : strict_mono (comap f) := (gi_map_comap hf).strict_mono_u end galois_insertion section galois_coinsertion variables [ring_hom_surjective σ₁₂] {f : M →ₛₗ[σ₁₂] M₂} (hf : injective f) include hf /-- `map f` and `comap f` form a `galois_coinsertion` when `f` is injective. -/ def gci_map_comap : galois_coinsertion (map f) (comap f) := (gc_map_comap f).to_galois_coinsertion (λ S x, by simp [mem_comap, mem_map, hf.eq_iff]) lemma comap_map_eq_of_injective (p : submodule R M) : (p.map f).comap f = p := (gci_map_comap hf).u_l_eq _ lemma comap_surjective_of_injective : function.surjective (comap f) := (gci_map_comap hf).u_surjective lemma map_injective_of_injective : function.injective (map f) := (gci_map_comap hf).l_injective lemma comap_inf_map_of_injective (p q : submodule R M) : (p.map f ⊓ q.map f).comap f = p ⊓ q := (gci_map_comap hf).u_inf_l _ _ lemma comap_infi_map_of_injective {ι : Sort*} (S : ι → submodule R M) : (⨅ i, (S i).map f).comap f = infi S := (gci_map_comap hf).u_infi_l _ lemma comap_sup_map_of_injective (p q : submodule R M) : (p.map f ⊔ q.map f).comap f = p ⊔ q := (gci_map_comap hf).u_sup_l _ _ lemma comap_supr_map_of_injective {ι : Sort*} (S : ι → submodule R M) : (⨆ i, (S i).map f).comap f = supr S := (gci_map_comap hf).u_supr_l _ lemma map_le_map_iff_of_injective (p q : submodule R M) : p.map f ≤ q.map f ↔ p ≤ q := (gci_map_comap hf).l_le_l_iff lemma map_strict_mono_of_injective : strict_mono (map f) := (gci_map_comap hf).strict_mono_l end galois_coinsertion --TODO(Mario): is there a way to prove this from order properties? lemma map_inf_eq_map_inf_comap [ring_hom_surjective σ₁₂] {f : M →ₛₗ[σ₁₂] M₂} {p : submodule R M} {p' : submodule R₂ M₂} : map f p ⊓ p' = map f (p ⊓ comap f p') := le_antisymm (by rintro _ ⟨⟨x, h₁, rfl⟩, h₂⟩; exact ⟨_, ⟨h₁, h₂⟩, rfl⟩) (le_inf (map_mono inf_le_left) (map_le_iff_le_comap.2 inf_le_right)) lemma map_comap_subtype : map p.subtype (comap p.subtype p') = p ⊓ p' := ext $ λ x, ⟨by rintro ⟨⟨_, h₁⟩, h₂, rfl⟩; exact ⟨h₁, h₂⟩, λ ⟨h₁, h₂⟩, ⟨⟨_, h₁⟩, h₂, rfl⟩⟩ lemma eq_zero_of_bot_submodule : ∀(b : (⊥ : submodule R M)), b = 0 | ⟨b', hb⟩ := subtype.eq $ show b' = 0, from (mem_bot R).1 hb /-- The infimum of a family of invariant submodule of an endomorphism is also an invariant submodule. -/ lemma _root_.linear_map.infi_invariant {σ : R →+* R} [ring_hom_surjective σ] {ι : Sort*} (f : M →ₛₗ[σ] M) {p : ι → submodule R M} (hf : ∀ i, ∀ v ∈ (p i), f v ∈ p i) : ∀ v ∈ infi p, f v ∈ infi p := begin have : ∀ i, (p i).map f ≤ p i, { rintros i - ⟨v, hv, rfl⟩, exact hf i v hv }, suffices : (infi p).map f ≤ infi p, { exact λ v hv, this ⟨v, hv, rfl⟩, }, exact le_infi (λ i, (submodule.map_mono (infi_le p i)).trans (this i)), end end add_comm_monoid section add_comm_group variables [ring R] [add_comm_group M] [module R M] (p : submodule R M) variables [add_comm_group M₂] [module R M₂] @[simp] lemma neg_coe : -(p : set M) = p := set.ext $ λ x, p.neg_mem_iff @[simp] protected lemma map_neg (f : M →ₗ[R] M₂) : map (-f) p = map f p := ext $ λ y, ⟨λ ⟨x, hx, hy⟩, hy ▸ ⟨-x, show -x ∈ p, from neg_mem hx, map_neg f x⟩, λ ⟨x, hx, hy⟩, hy ▸ ⟨-x, show -x ∈ p, from neg_mem hx, (map_neg (-f) _).trans (neg_neg (f x))⟩⟩ end add_comm_group end submodule namespace submodule variables [field K] variables [add_comm_group V] [module K V] variables [add_comm_group V₂] [module K V₂] lemma comap_smul (f : V →ₗ[K] V₂) (p : submodule K V₂) (a : K) (h : a ≠ 0) : p.comap (a • f) = p.comap f := by ext b; simp only [submodule.mem_comap, p.smul_mem_iff h, linear_map.smul_apply] lemma map_smul (f : V →ₗ[K] V₂) (p : submodule K V) (a : K) (h : a ≠ 0) : p.map (a • f) = p.map f := le_antisymm begin rw [map_le_iff_le_comap, comap_smul f _ a h, ← map_le_iff_le_comap], exact le_rfl end begin rw [map_le_iff_le_comap, ← comap_smul f _ a h, ← map_le_iff_le_comap], exact le_rfl end lemma comap_smul' (f : V →ₗ[K] V₂) (p : submodule K V₂) (a : K) : p.comap (a • f) = (⨅ h : a ≠ 0, p.comap f) := by classical; by_cases a = 0; simp [h, comap_smul] lemma map_smul' (f : V →ₗ[K] V₂) (p : submodule K V) (a : K) : p.map (a • f) = (⨆ h : a ≠ 0, p.map f) := by classical; by_cases a = 0; simp [h, map_smul] end submodule /-! ### Properties of linear maps -/ namespace linear_map section add_comm_monoid variables [semiring R] [semiring R₂] [semiring R₃] variables [add_comm_monoid M] [add_comm_monoid M₂] [add_comm_monoid M₃] variables {σ₁₂ : R →+* R₂} {σ₂₃ : R₂ →+* R₃} {σ₁₃ : R →+* R₃} variables [ring_hom_comp_triple σ₁₂ σ₂₃ σ₁₃] variables [module R M] [module R₂ M₂] [module R₃ M₃] include R open submodule section finsupp variables {γ : Type*} [has_zero γ] @[simp] lemma map_finsupp_sum (f : M →ₛₗ[σ₁₂] M₂) {t : ι →₀ γ} {g : ι → γ → M} : f (t.sum g) = t.sum (λ i d, f (g i d)) := f.map_sum lemma coe_finsupp_sum (t : ι →₀ γ) (g : ι → γ → M →ₛₗ[σ₁₂] M₂) : ⇑(t.sum g) = t.sum (λ i d, g i d) := coe_fn_sum _ _ @[simp] lemma finsupp_sum_apply (t : ι →₀ γ) (g : ι → γ → M →ₛₗ[σ₁₂] M₂) (b : M) : (t.sum g) b = t.sum (λ i d, g i d b) := sum_apply _ _ _ end finsupp section dfinsupp open dfinsupp variables {γ : ι → Type*} [decidable_eq ι] section sum variables [Π i, has_zero (γ i)] [Π i (x : γ i), decidable (x ≠ 0)] @[simp] lemma map_dfinsupp_sum (f : M →ₛₗ[σ₁₂] M₂) {t : Π₀ i, γ i} {g : Π i, γ i → M} : f (t.sum g) = t.sum (λ i d, f (g i d)) := f.map_sum lemma coe_dfinsupp_sum (t : Π₀ i, γ i) (g : Π i, γ i → M →ₛₗ[σ₁₂] M₂) : ⇑(t.sum g) = t.sum (λ i d, g i d) := coe_fn_sum _ _ @[simp] lemma dfinsupp_sum_apply (t : Π₀ i, γ i) (g : Π i, γ i → M →ₛₗ[σ₁₂] M₂) (b : M) : (t.sum g) b = t.sum (λ i d, g i d b) := sum_apply _ _ _ end sum section sum_add_hom variables [Π i, add_zero_class (γ i)] @[simp] lemma map_dfinsupp_sum_add_hom (f : M →ₛₗ[σ₁₂] M₂) {t : Π₀ i, γ i} {g : Π i, γ i →+ M} : f (sum_add_hom g t) = sum_add_hom (λ i, f.to_add_monoid_hom.comp (g i)) t := f.to_add_monoid_hom.map_dfinsupp_sum_add_hom _ _ end sum_add_hom end dfinsupp variables {σ₂₁ : R₂ →+* R} {τ₁₂ : R →+* R₂} {τ₂₃ : R₂ →+* R₃} {τ₁₃ : R →+* R₃} variables [ring_hom_comp_triple τ₁₂ τ₂₃ τ₁₃] theorem map_cod_restrict [ring_hom_surjective σ₂₁] (p : submodule R M) (f : M₂ →ₛₗ[σ₂₁] M) (h p') : submodule.map (cod_restrict p f h) p' = comap p.subtype (p'.map f) := submodule.ext $ λ ⟨x, hx⟩, by simp [subtype.ext_iff_val] theorem comap_cod_restrict (p : submodule R M) (f : M₂ →ₛₗ[σ₂₁] M) (hf p') : submodule.comap (cod_restrict p f hf) p' = submodule.comap f (map p.subtype p') := submodule.ext $ λ x, ⟨λ h, ⟨⟨_, hf x⟩, h, rfl⟩, by rintro ⟨⟨_, _⟩, h, ⟨⟩⟩; exact h⟩ section /-- The range of a linear map `f : M → M₂` is a submodule of `M₂`. See Note [range copy pattern]. -/ def range [ring_hom_surjective τ₁₂] (f : M →ₛₗ[τ₁₂] M₂) : submodule R₂ M₂ := (map f ⊤).copy (set.range f) set.image_univ.symm theorem range_coe [ring_hom_surjective τ₁₂] (f : M →ₛₗ[τ₁₂] M₂) : (range f : set M₂) = set.range f := rfl lemma range_to_add_submonoid [ring_hom_surjective τ₁₂] (f : M →ₛₗ[τ₁₂] M₂) : f.range.to_add_submonoid = f.to_add_monoid_hom.mrange := rfl @[simp] theorem mem_range [ring_hom_surjective τ₁₂] {f : M →ₛₗ[τ₁₂] M₂} {x} : x ∈ range f ↔ ∃ y, f y = x := iff.rfl lemma range_eq_map [ring_hom_surjective τ₁₂] (f : M →ₛₗ[τ₁₂] M₂) : f.range = map f ⊤ := by { ext, simp } theorem mem_range_self [ring_hom_surjective τ₁₂] (f : M →ₛₗ[τ₁₂] M₂) (x : M) : f x ∈ f.range := ⟨x, rfl⟩ @[simp] theorem range_id : range (linear_map.id : M →ₗ[R] M) = ⊤ := set_like.coe_injective set.range_id theorem range_comp [ring_hom_surjective τ₁₂] [ring_hom_surjective τ₂₃] [ring_hom_surjective τ₁₃] (f : M →ₛₗ[τ₁₂] M₂) (g : M₂ →ₛₗ[τ₂₃] M₃) : range (g.comp f : M →ₛₗ[τ₁₃] M₃) = map g (range f) := set_like.coe_injective (set.range_comp g f) theorem range_comp_le_range [ring_hom_surjective τ₂₃] [ring_hom_surjective τ₁₃] (f : M →ₛₗ[τ₁₂] M₂) (g : M₂ →ₛₗ[τ₂₃] M₃) : range (g.comp f : M →ₛₗ[τ₁₃] M₃) ≤ range g := set_like.coe_mono (set.range_comp_subset_range f g) theorem range_eq_top [ring_hom_surjective τ₁₂] {f : M →ₛₗ[τ₁₂] M₂} : range f = ⊤ ↔ surjective f := by rw [set_like.ext'_iff, range_coe, top_coe, set.range_iff_surjective] lemma range_le_iff_comap [ring_hom_surjective τ₁₂] {f : M →ₛₗ[τ₁₂] M₂} {p : submodule R₂ M₂} : range f ≤ p ↔ comap f p = ⊤ := by rw [range_eq_map, map_le_iff_le_comap, eq_top_iff] lemma map_le_range [ring_hom_surjective τ₁₂] {f : M →ₛₗ[τ₁₂] M₂} {p : submodule R M} : map f p ≤ range f := set_like.coe_mono (set.image_subset_range f p) @[simp] lemma range_neg {R : Type*} {R₂ : Type*} {M : Type*} {M₂ : Type*} [semiring R] [ring R₂] [add_comm_monoid M] [add_comm_group M₂] [module R M] [module R₂ M₂] {τ₁₂ : R →+* R₂} [ring_hom_surjective τ₁₂] (f : M →ₛₗ[τ₁₂] M₂) : (-f).range = f.range := begin change ((-linear_map.id : M₂ →ₗ[R₂] M₂).comp f).range = _, rw [range_comp, submodule.map_neg, submodule.map_id], end end /-- The decreasing sequence of submodules consisting of the ranges of the iterates of a linear map. -/ @[simps] def iterate_range (f : M →ₗ[R] M) : ℕ →o (submodule R M)ᵒᵈ := ⟨λ n, (f ^ n).range, λ n m w x h, begin obtain ⟨c, rfl⟩ := le_iff_exists_add.mp w, rw linear_map.mem_range at h, obtain ⟨m, rfl⟩ := h, rw linear_map.mem_range, use (f ^ c) m, rw [pow_add, linear_map.mul_apply], end⟩ /-- Restrict the codomain of a linear map `f` to `f.range`. This is the bundled version of `set.range_factorization`. -/ @[reducible] def range_restrict [ring_hom_surjective τ₁₂] (f : M →ₛₗ[τ₁₂] M₂) : M →ₛₗ[τ₁₂] f.range := f.cod_restrict f.range f.mem_range_self /-- The range of a linear map is finite if the domain is finite. Note: this instance can form a diamond with `subtype.fintype` in the presence of `fintype M₂`. -/ instance fintype_range [fintype M] [decidable_eq M₂] [ring_hom_surjective τ₁₂] (f : M →ₛₗ[τ₁₂] M₂) : fintype (range f) := set.fintype_range f /-- The kernel of a linear map `f : M → M₂` is defined to be `comap f ⊥`. This is equivalent to the set of `x : M` such that `f x = 0`. The kernel is a submodule of `M`. -/ def ker (f : M →ₛₗ[τ₁₂] M₂) : submodule R M := comap f ⊥ @[simp] theorem mem_ker {f : M →ₛₗ[τ₁₂] M₂} {y} : y ∈ ker f ↔ f y = 0 := mem_bot R₂ @[simp] theorem ker_id : ker (linear_map.id : M →ₗ[R] M) = ⊥ := rfl @[simp] theorem map_coe_ker (f : M →ₛₗ[τ₁₂] M₂) (x : ker f) : f x = 0 := mem_ker.1 x.2 lemma ker_to_add_submonoid (f : M →ₛₗ[τ₁₂] M₂) : f.ker.to_add_submonoid = f.to_add_monoid_hom.mker := rfl lemma comp_ker_subtype (f : M →ₛₗ[τ₁₂] M₂) : f.comp f.ker.subtype = 0 := linear_map.ext $ λ x, suffices f x = 0, by simp [this], mem_ker.1 x.2 theorem ker_comp (f : M →ₛₗ[τ₁₂] M₂) (g : M₂ →ₛₗ[τ₂₃] M₃) : ker (g.comp f : M →ₛₗ[τ₁₃] M₃) = comap f (ker g) := rfl theorem ker_le_ker_comp (f : M →ₛₗ[τ₁₂] M₂) (g : M₂ →ₛₗ[τ₂₃] M₃) : ker f ≤ ker (g.comp f : M →ₛₗ[τ₁₃] M₃) := by rw ker_comp; exact comap_mono bot_le theorem disjoint_ker {f : M →ₛₗ[τ₁₂] M₂} {p : submodule R M} : disjoint p (ker f) ↔ ∀ x ∈ p, f x = 0 → x = 0 := by simp [disjoint_def] theorem ker_eq_bot' {f : M →ₛₗ[τ₁₂] M₂} : ker f = ⊥ ↔ (∀ m, f m = 0 → m = 0) := by simpa [disjoint] using @disjoint_ker _ _ _ _ _ _ _ _ _ _ _ f ⊤ theorem ker_eq_bot_of_inverse {τ₂₁ : R₂ →+* R} [ring_hom_inv_pair τ₁₂ τ₂₁] {f : M →ₛₗ[τ₁₂] M₂} {g : M₂ →ₛₗ[τ₂₁] M} (h : (g.comp f : M →ₗ[R] M) = id) : ker f = ⊥ := ker_eq_bot'.2 $ λ m hm, by rw [← id_apply m, ← h, comp_apply, hm, g.map_zero] lemma le_ker_iff_map [ring_hom_surjective τ₁₂] {f : M →ₛₗ[τ₁₂] M₂} {p : submodule R M} : p ≤ ker f ↔ map f p = ⊥ := by rw [ker, eq_bot_iff, map_le_iff_le_comap] lemma ker_cod_restrict {τ₂₁ : R₂ →+* R} (p : submodule R M) (f : M₂ →ₛₗ[τ₂₁] M) (hf) : ker (cod_restrict p f hf) = ker f := by rw [ker, comap_cod_restrict, map_bot]; refl lemma range_cod_restrict {τ₂₁ : R₂ →+* R} [ring_hom_surjective τ₂₁] (p : submodule R M) (f : M₂ →ₛₗ[τ₂₁] M) (hf) : range (cod_restrict p f hf) = comap p.subtype f.range := by simpa only [range_eq_map] using map_cod_restrict _ _ _ _ lemma ker_restrict {p : submodule R M} {f : M →ₗ[R] M} (hf : ∀ x : M, x ∈ p → f x ∈ p) : ker (f.restrict hf) = (f.dom_restrict p).ker := by rw [restrict_eq_cod_restrict_dom_restrict, ker_cod_restrict] lemma _root_.submodule.map_comap_eq [ring_hom_surjective τ₁₂] (f : M →ₛₗ[τ₁₂] M₂) (q : submodule R₂ M₂) : map f (comap f q) = range f ⊓ q := le_antisymm (le_inf map_le_range (map_comap_le _ _)) $ by rintro _ ⟨⟨x, _, rfl⟩, hx⟩; exact ⟨x, hx, rfl⟩ lemma _root_.submodule.map_comap_eq_self [ring_hom_surjective τ₁₂] {f : M →ₛₗ[τ₁₂] M₂} {q : submodule R₂ M₂} (h : q ≤ range f) : map f (comap f q) = q := by rwa [submodule.map_comap_eq, inf_eq_right] @[simp] theorem ker_zero : ker (0 : M →ₛₗ[τ₁₂] M₂) = ⊤ := eq_top_iff'.2 $ λ x, by simp @[simp] theorem range_zero [ring_hom_surjective τ₁₂] : range (0 : M →ₛₗ[τ₁₂] M₂) = ⊥ := by simpa only [range_eq_map] using submodule.map_zero _ theorem ker_eq_top {f : M →ₛₗ[τ₁₂] M₂} : ker f = ⊤ ↔ f = 0 := ⟨λ h, ext $ λ x, mem_ker.1 $ h.symm ▸ trivial, λ h, h.symm ▸ ker_zero⟩ section variables [ring_hom_surjective τ₁₂] lemma range_le_bot_iff (f : M →ₛₗ[τ₁₂] M₂) : range f ≤ ⊥ ↔ f = 0 := by rw [range_le_iff_comap]; exact ker_eq_top theorem range_eq_bot {f : M →ₛₗ[τ₁₂] M₂} : range f = ⊥ ↔ f = 0 := by rw [← range_le_bot_iff, le_bot_iff] lemma range_le_ker_iff {f : M →ₛₗ[τ₁₂] M₂} {g : M₂ →ₛₗ[τ₂₃] M₃} : range f ≤ ker g ↔ (g.comp f : M →ₛₗ[τ₁₃] M₃) = 0 := ⟨λ h, ker_eq_top.1 $ eq_top_iff'.2 $ λ x, h $ ⟨_, rfl⟩, λ h x hx, mem_ker.2 $ exists.elim hx $ λ y hy, by rw [←hy, ←comp_apply, h, zero_apply]⟩ theorem comap_le_comap_iff {f : M →ₛₗ[τ₁₂] M₂} (hf : range f = ⊤) {p p'} : comap f p ≤ comap f p' ↔ p ≤ p' := ⟨λ H x hx, by rcases range_eq_top.1 hf x with ⟨y, hy, rfl⟩; exact H hx, comap_mono⟩ theorem comap_injective {f : M →ₛₗ[τ₁₂] M₂} (hf : range f = ⊤) : injective (comap f) := λ p p' h, le_antisymm ((comap_le_comap_iff hf).1 (le_of_eq h)) ((comap_le_comap_iff hf).1 (ge_of_eq h)) end theorem ker_eq_bot_of_injective {f : M →ₛₗ[τ₁₂] M₂} (hf : injective f) : ker f = ⊥ := begin have : disjoint ⊤ f.ker, by { rw [disjoint_ker, ← map_zero f], exact λ x hx H, hf H }, simpa [disjoint] end /-- The increasing sequence of submodules consisting of the kernels of the iterates of a linear map. -/ @[simps] def iterate_ker (f : M →ₗ[R] M) : ℕ →o submodule R M := ⟨λ n, (f ^ n).ker, λ n m w x h, begin obtain ⟨c, rfl⟩ := le_iff_exists_add.mp w, rw linear_map.mem_ker at h, rw [linear_map.mem_ker, add_comm, pow_add, linear_map.mul_apply, h, linear_map.map_zero], end⟩ end add_comm_monoid section ring variables [ring R] [ring R₂] [ring R₃] variables [add_comm_group M] [add_comm_group M₂] [add_comm_group M₃] variables [module R M] [module R₂ M₂] [module R₃ M₃] variables {τ₁₂ : R →+* R₂} {τ₂₃ : R₂ →+* R₃} {τ₁₃ : R →+* R₃} variables [ring_hom_comp_triple τ₁₂ τ₂₃ τ₁₃] variables {f : M →ₛₗ[τ₁₂] M₂} include R open submodule lemma range_to_add_subgroup [ring_hom_surjective τ₁₂] (f : M →ₛₗ[τ₁₂] M₂) : f.range.to_add_subgroup = f.to_add_monoid_hom.range := rfl lemma ker_to_add_subgroup (f : M →ₛₗ[τ₁₂] M₂) : f.ker.to_add_subgroup = f.to_add_monoid_hom.ker := rfl theorem sub_mem_ker_iff {x y} : x - y ∈ f.ker ↔ f x = f y := by rw [mem_ker, map_sub, sub_eq_zero] theorem disjoint_ker' {p : submodule R M} : disjoint p (ker f) ↔ ∀ x y ∈ p, f x = f y → x = y := disjoint_ker.trans ⟨λ H x hx y hy h, eq_of_sub_eq_zero $ H _ (sub_mem hx hy) (by simp [h]), λ H x h₁ h₂, H x h₁ 0 (zero_mem _) (by simpa using h₂)⟩ theorem inj_of_disjoint_ker {p : submodule R M} {s : set M} (h : s ⊆ p) (hd : disjoint p (ker f)) : ∀ x y ∈ s, f x = f y → x = y := λ x hx y hy, disjoint_ker'.1 hd _ (h hx) _ (h hy) theorem ker_eq_bot : ker f = ⊥ ↔ injective f := by simpa [disjoint] using @disjoint_ker' _ _ _ _ _ _ _ _ _ _ _ f ⊤ lemma ker_le_iff [ring_hom_surjective τ₁₂] {p : submodule R M} : ker f ≤ p ↔ ∃ (y ∈ range f), f ⁻¹' {y} ⊆ p := begin split, { intros h, use 0, rw [← set_like.mem_coe, f.range_coe], exact ⟨⟨0, map_zero f⟩, h⟩, }, { rintros ⟨y, h₁, h₂⟩, rw set_like.le_def, intros z hz, simp only [mem_ker, set_like.mem_coe] at hz, rw [← set_like.mem_coe, f.range_coe, set.mem_range] at h₁, obtain ⟨x, hx⟩ := h₁, have hx' : x ∈ p, { exact h₂ hx, }, have hxz : z + x ∈ p, { apply h₂, simp [hx, hz], }, suffices : z + x - x ∈ p, { simpa only [this, add_sub_cancel], }, exact p.sub_mem hxz hx', }, end end ring section field variables [field K] [field K₂] variables [add_comm_group V] [module K V] variables [add_comm_group V₂] [module K V₂] lemma ker_smul (f : V →ₗ[K] V₂) (a : K) (h : a ≠ 0) : ker (a • f) = ker f := submodule.comap_smul f _ a h lemma ker_smul' (f : V →ₗ[K] V₂) (a : K) : ker (a • f) = ⨅(h : a ≠ 0), ker f := submodule.comap_smul' f _ a lemma range_smul (f : V →ₗ[K] V₂) (a : K) (h : a ≠ 0) : range (a • f) = range f := by simpa only [range_eq_map] using submodule.map_smul f _ a h lemma range_smul' (f : V →ₗ[K] V₂) (a : K) : range (a • f) = ⨆(h : a ≠ 0), range f := by simpa only [range_eq_map] using submodule.map_smul' f _ a end field end linear_map namespace is_linear_map lemma is_linear_map_add [semiring R] [add_comm_monoid M] [module R M] : is_linear_map R (λ (x : M × M), x.1 + x.2) := begin apply is_linear_map.mk, { intros x y, simp, cc }, { intros x y, simp [smul_add] } end lemma is_linear_map_sub {R M : Type*} [semiring R] [add_comm_group M] [module R M]: is_linear_map R (λ (x : M × M), x.1 - x.2) := begin apply is_linear_map.mk, { intros x y, simp [add_comm, add_left_comm, sub_eq_add_neg] }, { intros x y, simp [smul_sub] } end end is_linear_map namespace submodule section add_comm_monoid variables [semiring R] [semiring R₂] [add_comm_monoid M] [add_comm_monoid M₂] variables [module R M] [module R₂ M₂] variables (p p' : submodule R M) (q : submodule R₂ M₂) variables {τ₁₂ : R →+* R₂} open linear_map @[simp] theorem map_top [ring_hom_surjective τ₁₂] (f : M →ₛₗ[τ₁₂] M₂) : map f ⊤ = range f := f.range_eq_map.symm @[simp] theorem comap_bot (f : M →ₛₗ[τ₁₂] M₂) : comap f ⊥ = ker f := rfl @[simp] theorem ker_subtype : p.subtype.ker = ⊥ := ker_eq_bot_of_injective $ λ x y, subtype.ext_val @[simp] theorem range_subtype : p.subtype.range = p := by simpa using map_comap_subtype p ⊤ lemma map_subtype_le (p' : submodule R p) : map p.subtype p' ≤ p := by simpa using (map_le_range : map p.subtype p' ≤ p.subtype.range) /-- Under the canonical linear map from a submodule `p` to the ambient space `M`, the image of the maximal submodule of `p` is just `p `. -/ @[simp] lemma map_subtype_top : map p.subtype (⊤ : submodule R p) = p := by simp @[simp] lemma comap_subtype_eq_top {p p' : submodule R M} : comap p.subtype p' = ⊤ ↔ p ≤ p' := eq_top_iff.trans $ map_le_iff_le_comap.symm.trans $ by rw [map_subtype_top] @[simp] lemma comap_subtype_self : comap p.subtype p = ⊤ := comap_subtype_eq_top.2 le_rfl @[simp] theorem ker_of_le (p p' : submodule R M) (h : p ≤ p') : (of_le h).ker = ⊥ := by rw [of_le, ker_cod_restrict, ker_subtype] lemma range_of_le (p q : submodule R M) (h : p ≤ q) : (of_le h).range = comap q.subtype p := by rw [← map_top, of_le, linear_map.map_cod_restrict, map_top, range_subtype] @[simp] lemma map_subtype_range_of_le {p p' : submodule R M} (h : p ≤ p') : map p'.subtype (of_le h).range = p := by simp [range_of_le, map_comap_eq, h] lemma disjoint_iff_comap_eq_bot {p q : submodule R M} : disjoint p q ↔ comap p.subtype q = ⊥ := by rw [←(map_injective_of_injective (show injective p.subtype, from subtype.coe_injective)).eq_iff, map_comap_subtype, map_bot, disjoint_iff] /-- If `N ⊆ M` then submodules of `N` are the same as submodules of `M` contained in `N` -/ def map_subtype.rel_iso : submodule R p ≃o {p' : submodule R M // p' ≤ p} := { to_fun := λ p', ⟨map p.subtype p', map_subtype_le p _⟩, inv_fun := λ q, comap p.subtype q, left_inv := λ p', comap_map_eq_of_injective subtype.coe_injective p', right_inv := λ ⟨q, hq⟩, subtype.ext_val $ by simp [map_comap_subtype p, inf_of_le_right hq], map_rel_iff' := λ p₁ p₂, subtype.coe_le_coe.symm.trans begin dsimp, rw [map_le_iff_le_comap, comap_map_eq_of_injective (show injective p.subtype, from subtype.coe_injective) p₂], end } /-- If `p ⊆ M` is a submodule, the ordering of submodules of `p` is embedded in the ordering of submodules of `M`. -/ def map_subtype.order_embedding : submodule R p ↪o submodule R M := (rel_iso.to_rel_embedding $ map_subtype.rel_iso p).trans (subtype.rel_embedding _ _) @[simp] lemma map_subtype_embedding_eq (p' : submodule R p) : map_subtype.order_embedding p p' = map p.subtype p' := rfl end add_comm_monoid end submodule namespace linear_map section semiring variables [semiring R] [semiring R₂] [semiring R₃] variables [add_comm_monoid M] [add_comm_monoid M₂] [add_comm_monoid M₃] variables [module R M] [module R₂ M₂] [module R₃ M₃] variables {τ₁₂ : R →+* R₂} {τ₂₃ : R₂ →+* R₃} {τ₁₃ : R →+* R₃} variables [ring_hom_comp_triple τ₁₂ τ₂₃ τ₁₃] /-- A monomorphism is injective. -/ lemma ker_eq_bot_of_cancel {f : M →ₛₗ[τ₁₂] M₂} (h : ∀ (u v : f.ker →ₗ[R] M), f.comp u = f.comp v → u = v) : f.ker = ⊥ := begin have h₁ : f.comp (0 : f.ker →ₗ[R] M) = 0 := comp_zero _, rw [←submodule.range_subtype f.ker, ←h 0 f.ker.subtype (eq.trans h₁ (comp_ker_subtype f).symm)], exact range_zero end lemma range_comp_of_range_eq_top [ring_hom_surjective τ₁₂] [ring_hom_surjective τ₂₃] [ring_hom_surjective τ₁₃] {f : M →ₛₗ[τ₁₂] M₂} (g : M₂ →ₛₗ[τ₂₃] M₃) (hf : range f = ⊤) : range (g.comp f : M →ₛₗ[τ₁₃] M₃) = range g := by rw [range_comp, hf, submodule.map_top] lemma ker_comp_of_ker_eq_bot (f : M →ₛₗ[τ₁₂] M₂) {g : M₂ →ₛₗ[τ₂₃] M₃} (hg : ker g = ⊥) : ker (g.comp f : M →ₛₗ[τ₁₃] M₃) = ker f := by rw [ker_comp, hg, submodule.comap_bot] section image /-- If `O` is a submodule of `M`, and `Φ : O →ₗ M'` is a linear map, then `(ϕ : O →ₗ M').submodule_image N` is `ϕ(N)` as a submodule of `M'` -/ def submodule_image {M' : Type*} [add_comm_monoid M'] [module R M'] {O : submodule R M} (ϕ : O →ₗ[R] M') (N : submodule R M) : submodule R M' := (N.comap O.subtype).map ϕ @[simp] lemma mem_submodule_image {M' : Type*} [add_comm_monoid M'] [module R M'] {O : submodule R M} {ϕ : O →ₗ[R] M'} {N : submodule R M} {x : M'} : x ∈ ϕ.submodule_image N ↔ ∃ y (yO : y ∈ O) (yN : y ∈ N), ϕ ⟨y, yO⟩ = x := begin refine submodule.mem_map.trans ⟨_, _⟩; simp_rw submodule.mem_comap, { rintro ⟨⟨y, yO⟩, (yN : y ∈ N), h⟩, exact ⟨y, yO, yN, h⟩ }, { rintro ⟨y, yO, yN, h⟩, exact ⟨⟨y, yO⟩, yN, h⟩ } end lemma mem_submodule_image_of_le {M' : Type*} [add_comm_monoid M'] [module R M'] {O : submodule R M} {ϕ : O →ₗ[R] M'} {N : submodule R M} (hNO : N ≤ O) {x : M'} : x ∈ ϕ.submodule_image N ↔ ∃ y (yN : y ∈ N), ϕ ⟨y, hNO yN⟩ = x := begin refine mem_submodule_image.trans ⟨_, _⟩, { rintro ⟨y, yO, yN, h⟩, exact ⟨y, yN, h⟩ }, { rintro ⟨y, yN, h⟩, exact ⟨y, hNO yN, yN, h⟩ } end lemma submodule_image_apply_of_le {M' : Type*} [add_comm_group M'] [module R M'] {O : submodule R M} (ϕ : O →ₗ[R] M') (N : submodule R M) (hNO : N ≤ O) : ϕ.submodule_image N = (ϕ.comp (submodule.of_le hNO)).range := by rw [submodule_image, range_comp, submodule.range_of_le] end image end semiring end linear_map @[simp] lemma linear_map.range_range_restrict [semiring R] [add_comm_monoid M] [add_comm_monoid M₂] [module R M] [module R M₂] (f : M →ₗ[R] M₂) : f.range_restrict.range = ⊤ := by simp [f.range_cod_restrict _] /-! ### Linear equivalences -/ namespace linear_equiv section add_comm_monoid section subsingleton variables [semiring R] [semiring R₂] [semiring R₃] [semiring R₄] variables [add_comm_monoid M] [add_comm_monoid M₂] [add_comm_monoid M₃] [add_comm_monoid M₄] variables [module R M] [module R₂ M₂] variables [subsingleton M] [subsingleton M₂] variables {σ₁₂ : R →+* R₂} {σ₂₁ : R₂ →+* R} variables [ring_hom_inv_pair σ₁₂ σ₂₁] [ring_hom_inv_pair σ₂₁ σ₁₂] include σ₂₁ /-- Between two zero modules, the zero map is an equivalence. -/ instance : has_zero (M ≃ₛₗ[σ₁₂] M₂) := ⟨{ to_fun := 0, inv_fun := 0, right_inv := λ x, subsingleton.elim _ _, left_inv := λ x, subsingleton.elim _ _, ..(0 : M →ₛₗ[σ₁₂] M₂)}⟩ omit σ₂₁ -- Even though these are implied by `subsingleton.elim` via the `unique` instance below, they're -- nice to have as `rfl`-lemmas for `dsimp`. include σ₂₁ @[simp] lemma zero_symm : (0 : M ≃ₛₗ[σ₁₂] M₂).symm = 0 := rfl @[simp] lemma coe_zero : ⇑(0 : M ≃ₛₗ[σ₁₂] M₂) = 0 := rfl lemma zero_apply (x : M) : (0 : M ≃ₛₗ[σ₁₂] M₂) x = 0 := rfl /-- Between two zero modules, the zero map is the only equivalence. -/ instance : unique (M ≃ₛₗ[σ₁₂] M₂) := { uniq := λ f, to_linear_map_injective (subsingleton.elim _ _), default := 0 } omit σ₂₁ end subsingleton section variables [semiring R] [semiring R₂] [semiring R₃] [semiring R₄] variables [add_comm_monoid M] [add_comm_monoid M₂] [add_comm_monoid M₃] [add_comm_monoid M₄] variables {module_M : module R M} {module_M₂ : module R₂ M₂} variables {σ₁₂ : R →+* R₂} {σ₂₁ : R₂ →+* R} variables {re₁₂ : ring_hom_inv_pair σ₁₂ σ₂₁} {re₂₁ : ring_hom_inv_pair σ₂₁ σ₁₂} variables (e e' : M ≃ₛₗ[σ₁₂] M₂) lemma map_eq_comap {p : submodule R M} : (p.map (e : M →ₛₗ[σ₁₂] M₂) : submodule R₂ M₂) = p.comap (e.symm : M₂ →ₛₗ[σ₂₁] M) := set_like.coe_injective $ by simp [e.image_eq_preimage] /-- A linear equivalence of two modules restricts to a linear equivalence from any submodule `p` of the domain onto the image of that submodule. This is the linear version of `add_equiv.submonoid_map` and `add_equiv.subgroup_map`. This is `linear_equiv.of_submodule'` but with `map` on the right instead of `comap` on the left. -/ def submodule_map (p : submodule R M) : p ≃ₛₗ[σ₁₂] ↥(p.map (e : M →ₛₗ[σ₁₂] M₂) : submodule R₂ M₂) := { inv_fun := λ y, ⟨(e.symm : M₂ →ₛₗ[σ₂₁] M) y, by { rcases y with ⟨y', hy⟩, rw submodule.mem_map at hy, rcases hy with ⟨x, hx, hxy⟩, subst hxy, simp only [symm_apply_apply, submodule.coe_mk, coe_coe, hx], }⟩, left_inv := λ x, by simp only [linear_map.dom_restrict_apply, linear_map.cod_restrict_apply, linear_map.to_fun_eq_coe, linear_equiv.coe_coe, linear_equiv.symm_apply_apply, set_like.eta], right_inv := λ y, by { apply set_coe.ext, simp only [linear_map.dom_restrict_apply, linear_map.cod_restrict_apply, linear_map.to_fun_eq_coe, linear_equiv.coe_coe, set_like.coe_mk, linear_equiv.apply_symm_apply] }, ..((e : M →ₛₗ[σ₁₂] M₂).dom_restrict p).cod_restrict (p.map (e : M →ₛₗ[σ₁₂] M₂)) (λ x, ⟨x, by simp only [linear_map.dom_restrict_apply, eq_self_iff_true, and_true, set_like.coe_mem, set_like.mem_coe]⟩) } include σ₂₁ @[simp] lemma submodule_map_apply (p : submodule R M) (x : p) : ↑(e.submodule_map p x) = e x := rfl @[simp] lemma submodule_map_symm_apply (p : submodule R M) (x : (p.map (e : M →ₛₗ[σ₁₂] M₂) : submodule R₂ M₂)) : ↑((e.submodule_map p).symm x) = e.symm x := rfl omit σ₂₁ end section finsupp variables {γ : Type*} variables [semiring R] [semiring R₂] variables [add_comm_monoid M] [add_comm_monoid M₂] variables [module R M] [module R₂ M₂] [has_zero γ] variables {τ₁₂ : R →+* R₂} {τ₂₁ : R₂ →+* R} variables [ring_hom_inv_pair τ₁₂ τ₂₁] [ring_hom_inv_pair τ₂₁ τ₁₂] include τ₂₁ @[simp] lemma map_finsupp_sum (f : M ≃ₛₗ[τ₁₂] M₂) {t : ι →₀ γ} {g : ι → γ → M} : f (t.sum g) = t.sum (λ i d, f (g i d)) := f.map_sum _ omit τ₂₁ end finsupp section dfinsupp open dfinsupp variables [semiring R] [semiring R₂] variables [add_comm_monoid M] [add_comm_monoid M₂] variables [module R M] [module R₂ M₂] variables {τ₁₂ : R →+* R₂} {τ₂₁ : R₂ →+* R} variables [ring_hom_inv_pair τ₁₂ τ₂₁] [ring_hom_inv_pair τ₂₁ τ₁₂] variables {γ : ι → Type*} [decidable_eq ι] include τ₂₁ @[simp] lemma map_dfinsupp_sum [Π i, has_zero (γ i)] [Π i (x : γ i), decidable (x ≠ 0)] (f : M ≃ₛₗ[τ₁₂] M₂) (t : Π₀ i, γ i) (g : Π i, γ i → M) : f (t.sum g) = t.sum (λ i d, f (g i d)) := f.map_sum _ @[simp] lemma map_dfinsupp_sum_add_hom [Π i, add_zero_class (γ i)] (f : M ≃ₛₗ[τ₁₂] M₂) (t : Π₀ i, γ i) (g : Π i, γ i →+ M) : f (sum_add_hom g t) = sum_add_hom (λ i, f.to_add_equiv.to_add_monoid_hom.comp (g i)) t := f.to_add_equiv.map_dfinsupp_sum_add_hom _ _ end dfinsupp section uncurry variables [semiring R] [semiring R₂] [semiring R₃] [semiring R₄] variables [add_comm_monoid M] [add_comm_monoid M₂] [add_comm_monoid M₃] [add_comm_monoid M₄] variables (V V₂ R) /-- Linear equivalence between a curried and uncurried function. Differs from `tensor_product.curry`. -/ protected def curry : (V × V₂ → R) ≃ₗ[R] (V → V₂ → R) := { map_add' := λ _ _, by { ext, refl }, map_smul' := λ _ _, by { ext, refl }, .. equiv.curry _ _ _ } @[simp] lemma coe_curry : ⇑(linear_equiv.curry R V V₂) = curry := rfl @[simp] lemma coe_curry_symm : ⇑(linear_equiv.curry R V V₂).symm = uncurry := rfl end uncurry section variables [semiring R] [semiring R₂] [semiring R₃] [semiring R₄] variables [add_comm_monoid M] [add_comm_monoid M₂] [add_comm_monoid M₃] [add_comm_monoid M₄] variables {module_M : module R M} {module_M₂ : module R₂ M₂} {module_M₃ : module R₃ M₃} variables {σ₁₂ : R →+* R₂} {σ₂₁ : R₂ →+* R} variables {σ₂₃ : R₂ →+* R₃} {σ₁₃ : R →+* R₃} [ring_hom_comp_triple σ₁₂ σ₂₃ σ₁₃] variables {σ₃₂ : R₃ →+* R₂} variables {re₁₂ : ring_hom_inv_pair σ₁₂ σ₂₁} {re₂₁ : ring_hom_inv_pair σ₂₁ σ₁₂} variables {re₂₃ : ring_hom_inv_pair σ₂₃ σ₃₂} {re₃₂ : ring_hom_inv_pair σ₃₂ σ₂₃} variables (f : M →ₛₗ[σ₁₂] M₂) (g : M₂ →ₛₗ[σ₂₁] M) (e : M ≃ₛₗ[σ₁₂] M₂) (h : M₂ →ₛₗ[σ₂₃] M₃) variables (e'' : M₂ ≃ₛₗ[σ₂₃] M₃) variables (p q : submodule R M) /-- Linear equivalence between two equal submodules. -/ def of_eq (h : p = q) : p ≃ₗ[R] q := { map_smul' := λ _ _, rfl, map_add' := λ _ _, rfl, .. equiv.set.of_eq (congr_arg _ h) } variables {p q} @[simp] lemma coe_of_eq_apply (h : p = q) (x : p) : (of_eq p q h x : M) = x := rfl @[simp] lemma of_eq_symm (h : p = q) : (of_eq p q h).symm = of_eq q p h.symm := rfl include σ₂₁ /-- A linear equivalence which maps a submodule of one module onto another, restricts to a linear equivalence of the two submodules. -/ def of_submodules (p : submodule R M) (q : submodule R₂ M₂) (h : p.map (e : M →ₛₗ[σ₁₂] M₂) = q) : p ≃ₛₗ[σ₁₂] q := (e.submodule_map p).trans (linear_equiv.of_eq _ _ h) @[simp] lemma of_submodules_apply {p : submodule R M} {q : submodule R₂ M₂} (h : p.map ↑e = q) (x : p) : ↑(e.of_submodules p q h x) = e x := rfl @[simp] lemma of_submodules_symm_apply {p : submodule R M} {q : submodule R₂ M₂} (h : p.map ↑e = q) (x : q) : ↑((e.of_submodules p q h).symm x) = e.symm x := rfl include re₁₂ re₂₁ /-- A linear equivalence of two modules restricts to a linear equivalence from the preimage of any submodule to that submodule. This is `linear_equiv.of_submodule` but with `comap` on the left instead of `map` on the right. -/ def of_submodule' [module R M] [module R₂ M₂] (f : M ≃ₛₗ[σ₁₂] M₂) (U : submodule R₂ M₂) : U.comap (f : M →ₛₗ[σ₁₂] M₂) ≃ₛₗ[σ₁₂] U := (f.symm.of_submodules _ _ f.symm.map_eq_comap).symm lemma of_submodule'_to_linear_map [module R M] [module R₂ M₂] (f : M ≃ₛₗ[σ₁₂] M₂) (U : submodule R₂ M₂) : (f.of_submodule' U).to_linear_map = (f.to_linear_map.dom_restrict _).cod_restrict _ subtype.prop := by { ext, refl } @[simp] lemma of_submodule'_apply [module R M] [module R₂ M₂] (f : M ≃ₛₗ[σ₁₂] M₂) (U : submodule R₂ M₂) (x : U.comap (f : M →ₛₗ[σ₁₂] M₂)) : (f.of_submodule' U x : M₂) = f (x : M) := rfl @[simp] lemma of_submodule'_symm_apply [module R M] [module R₂ M₂] (f : M ≃ₛₗ[σ₁₂] M₂) (U : submodule R₂ M₂) (x : U) : ((f.of_submodule' U).symm x : M) = f.symm (x : M₂) := rfl variable (p) omit σ₂₁ re₁₂ re₂₁ /-- The top submodule of `M` is linearly equivalent to `M`. -/ def of_top (h : p = ⊤) : p ≃ₗ[R] M := { inv_fun := λ x, ⟨x, h.symm ▸ trivial⟩, left_inv := λ ⟨x, h⟩, rfl, right_inv := λ x, rfl, .. p.subtype } @[simp] theorem of_top_apply {h} (x : p) : of_top p h x = x := rfl @[simp] theorem coe_of_top_symm_apply {h} (x : M) : ((of_top p h).symm x : M) = x := rfl theorem of_top_symm_apply {h} (x : M) : (of_top p h).symm x = ⟨x, h.symm ▸ trivial⟩ := rfl include σ₂₁ re₁₂ re₂₁ /-- If a linear map has an inverse, it is a linear equivalence. -/ def of_linear (h₁ : f.comp g = linear_map.id) (h₂ : g.comp f = linear_map.id) : M ≃ₛₗ[σ₁₂] M₂ := { inv_fun := g, left_inv := linear_map.ext_iff.1 h₂, right_inv := linear_map.ext_iff.1 h₁, ..f } omit σ₂₁ re₁₂ re₂₁ include σ₂₁ re₁₂ re₂₁ @[simp] theorem of_linear_apply {h₁ h₂} (x : M) : of_linear f g h₁ h₂ x = f x := rfl omit σ₂₁ re₁₂ re₂₁ include σ₂₁ re₁₂ re₂₁ @[simp] theorem of_linear_symm_apply {h₁ h₂} (x : M₂) : (of_linear f g h₁ h₂).symm x = g x := rfl omit σ₂₁ re₁₂ re₂₁ @[simp] protected theorem range : (e : M →ₛₗ[σ₁₂] M₂).range = ⊤ := linear_map.range_eq_top.2 e.to_equiv.surjective include σ₂₁ re₁₂ re₂₁ lemma eq_bot_of_equiv [module R₂ M₂] (e : p ≃ₛₗ[σ₁₂] (⊥ : submodule R₂ M₂)) : p = ⊥ := begin refine bot_unique (set_like.le_def.2 $ assume b hb, (submodule.mem_bot R).2 _), rw [← p.mk_eq_zero hb, ← e.map_eq_zero_iff], apply submodule.eq_zero_of_bot_submodule end omit σ₂₁ re₁₂ re₂₁ @[simp] protected theorem ker : (e : M →ₛₗ[σ₁₂] M₂).ker = ⊥ := linear_map.ker_eq_bot_of_injective e.to_equiv.injective @[simp] theorem range_comp [ring_hom_surjective σ₁₂] [ring_hom_surjective σ₂₃] [ring_hom_surjective σ₁₃] : (h.comp (e : M →ₛₗ[σ₁₂] M₂) : M →ₛₗ[σ₁₃] M₃).range = h.range := linear_map.range_comp_of_range_eq_top _ e.range include module_M @[simp] theorem ker_comp (l : M →ₛₗ[σ₁₂] M₂) : (((e'' : M₂ →ₛₗ[σ₂₃] M₃).comp l : M →ₛₗ[σ₁₃] M₃) : M →ₛₗ[σ₁₃] M₃).ker = l.ker := linear_map.ker_comp_of_ker_eq_bot _ e''.ker omit module_M variables {f g} include σ₂₁ /-- An linear map `f : M →ₗ[R] M₂` with a left-inverse `g : M₂ →ₗ[R] M` defines a linear equivalence between `M` and `f.range`. This is a computable alternative to `linear_equiv.of_injective`, and a bidirectional version of `linear_map.range_restrict`. -/ def of_left_inverse [ring_hom_inv_pair σ₁₂ σ₂₁] [ring_hom_inv_pair σ₂₁ σ₁₂] {g : M₂ → M} (h : function.left_inverse g f) : M ≃ₛₗ[σ₁₂] f.range := { to_fun := f.range_restrict, inv_fun := g ∘ f.range.subtype, left_inv := h, right_inv := λ x, subtype.ext $ let ⟨x', hx'⟩ := linear_map.mem_range.mp x.prop in show f (g x) = x, by rw [←hx', h x'], .. f.range_restrict } omit σ₂₁ @[simp] lemma of_left_inverse_apply [ring_hom_inv_pair σ₁₂ σ₂₁] [ring_hom_inv_pair σ₂₁ σ₁₂] (h : function.left_inverse g f) (x : M) : ↑(of_left_inverse h x) = f x := rfl include σ₂₁ @[simp] lemma of_left_inverse_symm_apply [ring_hom_inv_pair σ₁₂ σ₂₁] [ring_hom_inv_pair σ₂₁ σ₁₂] (h : function.left_inverse g f) (x : f.range) : (of_left_inverse h).symm x = g x := rfl omit σ₂₁ variables (f) /-- An `injective` linear map `f : M →ₗ[R] M₂` defines a linear equivalence between `M` and `f.range`. See also `linear_map.of_left_inverse`. -/ noncomputable def of_injective [ring_hom_inv_pair σ₁₂ σ₂₁] [ring_hom_inv_pair σ₂₁ σ₁₂] (h : injective f) : M ≃ₛₗ[σ₁₂] f.range := of_left_inverse $ classical.some_spec h.has_left_inverse @[simp] theorem of_injective_apply [ring_hom_inv_pair σ₁₂ σ₂₁] [ring_hom_inv_pair σ₂₁ σ₁₂] {h : injective f} (x : M) : ↑(of_injective f h x) = f x := rfl /-- A bijective linear map is a linear equivalence. -/ noncomputable def of_bijective [ring_hom_inv_pair σ₁₂ σ₂₁] [ring_hom_inv_pair σ₂₁ σ₁₂] (hf₁ : injective f) (hf₂ : surjective f) : M ≃ₛₗ[σ₁₂] M₂ := (of_injective f hf₁).trans (of_top _ $ linear_map.range_eq_top.2 hf₂) @[simp] theorem of_bijective_apply [ring_hom_inv_pair σ₁₂ σ₂₁] [ring_hom_inv_pair σ₂₁ σ₁₂] {hf₁ hf₂} (x : M) : of_bijective f hf₁ hf₂ x = f x := rfl end end add_comm_monoid section add_comm_group variables [semiring R] [semiring R₂] [semiring R₃] [semiring R₄] variables [add_comm_group M] [add_comm_group M₂] [add_comm_group M₃] [add_comm_group M₄] variables {module_M : module R M} {module_M₂ : module R₂ M₂} variables {module_M₃ : module R₃ M₃} {module_M₄ : module R₄ M₄} variables {σ₁₂ : R →+* R₂} {σ₃₄ : R₃ →+* R₄} variables {σ₂₁ : R₂ →+* R} {σ₄₃ : R₄ →+* R₃} variables {re₁₂ : ring_hom_inv_pair σ₁₂ σ₂₁} {re₂₁ : ring_hom_inv_pair σ₂₁ σ₁₂} variables {re₃₄ : ring_hom_inv_pair σ₃₄ σ₄₃} {re₄₃ : ring_hom_inv_pair σ₄₃ σ₃₄} variables (e e₁ : M ≃ₛₗ[σ₁₂] M₂) (e₂ : M₃ ≃ₛₗ[σ₃₄] M₄) @[simp] theorem map_neg (a : M) : e (-a) = -e a := e.to_linear_map.map_neg a @[simp] theorem map_sub (a b : M) : e (a - b) = e a - e b := e.to_linear_map.map_sub a b end add_comm_group section neg variables (R) [semiring R] [add_comm_group M] [module R M] /-- `x ↦ -x` as a `linear_equiv` -/ def neg : M ≃ₗ[R] M := { .. equiv.neg M, .. (-linear_map.id : M →ₗ[R] M) } variable {R} @[simp] lemma coe_neg : ⇑(neg R : M ≃ₗ[R] M) = -id := rfl lemma neg_apply (x : M) : neg R x = -x := by simp @[simp] lemma symm_neg : (neg R : M ≃ₗ[R] M).symm = neg R := rfl end neg section comm_semiring variables [comm_semiring R] [add_comm_monoid M] [add_comm_monoid M₂] [add_comm_monoid M₃] variables [module R M] [module R M₂] [module R M₃] open _root_.linear_map /-- Multiplying by a unit `a` of the ring `R` is a linear equivalence. -/ def smul_of_unit (a : Rˣ) : M ≃ₗ[R] M := distrib_mul_action.to_linear_equiv R M a /-- A linear isomorphism between the domains and codomains of two spaces of linear maps gives a linear isomorphism between the two function spaces. -/ def arrow_congr {R M₁ M₂ M₂₁ M₂₂ : Sort*} [comm_semiring R] [add_comm_monoid M₁] [add_comm_monoid M₂] [add_comm_monoid M₂₁] [add_comm_monoid M₂₂] [module R M₁] [module R M₂] [module R M₂₁] [module R M₂₂] (e₁ : M₁ ≃ₗ[R] M₂) (e₂ : M₂₁ ≃ₗ[R] M₂₂) : (M₁ →ₗ[R] M₂₁) ≃ₗ[R] (M₂ →ₗ[R] M₂₂) := { to_fun := λ f : M₁ →ₗ[R] M₂₁, (e₂ : M₂₁ →ₗ[R] M₂₂).comp $ f.comp (e₁.symm : M₂ →ₗ[R] M₁), inv_fun := λ f, (e₂.symm : M₂₂ →ₗ[R] M₂₁).comp $ f.comp (e₁ : M₁ →ₗ[R] M₂), left_inv := λ f, by { ext x, simp only [symm_apply_apply, comp_app, coe_comp, coe_coe]}, right_inv := λ f, by { ext x, simp only [comp_app, apply_symm_apply, coe_comp, coe_coe]}, map_add' := λ f g, by { ext x, simp only [map_add, add_apply, comp_app, coe_comp, coe_coe]}, map_smul' := λ c f, by { ext x, simp only [smul_apply, comp_app, coe_comp, map_smulₛₗ, coe_coe]} } @[simp] lemma arrow_congr_apply {R M₁ M₂ M₂₁ M₂₂ : Sort*} [comm_semiring R] [add_comm_monoid M₁] [add_comm_monoid M₂] [add_comm_monoid M₂₁] [add_comm_monoid M₂₂] [module R M₁] [module R M₂] [module R M₂₁] [module R M₂₂] (e₁ : M₁ ≃ₗ[R] M₂) (e₂ : M₂₁ ≃ₗ[R] M₂₂) (f : M₁ →ₗ[R] M₂₁) (x : M₂) : arrow_congr e₁ e₂ f x = e₂ (f (e₁.symm x)) := rfl @[simp] lemma arrow_congr_symm_apply {R M₁ M₂ M₂₁ M₂₂ : Sort*} [comm_semiring R] [add_comm_monoid M₁] [add_comm_monoid M₂] [add_comm_monoid M₂₁] [add_comm_monoid M₂₂] [module R M₁] [module R M₂] [module R M₂₁] [module R M₂₂] (e₁ : M₁ ≃ₗ[R] M₂) (e₂ : M₂₁ ≃ₗ[R] M₂₂) (f : M₂ →ₗ[R] M₂₂) (x : M₁) : (arrow_congr e₁ e₂).symm f x = e₂.symm (f (e₁ x)) := rfl lemma arrow_congr_comp {N N₂ N₃ : Sort*} [add_comm_monoid N] [add_comm_monoid N₂] [add_comm_monoid N₃] [module R N] [module R N₂] [module R N₃] (e₁ : M ≃ₗ[R] N) (e₂ : M₂ ≃ₗ[R] N₂) (e₃ : M₃ ≃ₗ[R] N₃) (f : M →ₗ[R] M₂) (g : M₂ →ₗ[R] M₃) : arrow_congr e₁ e₃ (g.comp f) = (arrow_congr e₂ e₃ g).comp (arrow_congr e₁ e₂ f) := by { ext, simp only [symm_apply_apply, arrow_congr_apply, linear_map.comp_apply], } lemma arrow_congr_trans {M₁ M₂ M₃ N₁ N₂ N₃ : Sort*} [add_comm_monoid M₁] [module R M₁] [add_comm_monoid M₂] [module R M₂] [add_comm_monoid M₃] [module R M₃] [add_comm_monoid N₁] [module R N₁] [add_comm_monoid N₂] [module R N₂] [add_comm_monoid N₃] [module R N₃] (e₁ : M₁ ≃ₗ[R] M₂) (e₂ : N₁ ≃ₗ[R] N₂) (e₃ : M₂ ≃ₗ[R] M₃) (e₄ : N₂ ≃ₗ[R] N₃) : (arrow_congr e₁ e₂).trans (arrow_congr e₃ e₄) = arrow_congr (e₁.trans e₃) (e₂.trans e₄) := rfl /-- If `M₂` and `M₃` are linearly isomorphic then the two spaces of linear maps from `M` into `M₂` and `M` into `M₃` are linearly isomorphic. -/ def congr_right (f : M₂ ≃ₗ[R] M₃) : (M →ₗ[R] M₂) ≃ₗ[R] (M →ₗ[R] M₃) := arrow_congr (linear_equiv.refl R M) f /-- If `M` and `M₂` are linearly isomorphic then the two spaces of linear maps from `M` and `M₂` to themselves are linearly isomorphic. -/ def conj (e : M ≃ₗ[R] M₂) : (module.End R M) ≃ₗ[R] (module.End R M₂) := arrow_congr e e lemma conj_apply (e : M ≃ₗ[R] M₂) (f : module.End R M) : e.conj f = ((↑e : M →ₗ[R] M₂).comp f).comp (e.symm : M₂ →ₗ[R] M) := rfl lemma symm_conj_apply (e : M ≃ₗ[R] M₂) (f : module.End R M₂) : e.symm.conj f = ((↑e.symm : M₂ →ₗ[R] M).comp f).comp (e : M →ₗ[R] M₂) := rfl lemma conj_comp (e : M ≃ₗ[R] M₂) (f g : module.End R M) : e.conj (g.comp f) = (e.conj g).comp (e.conj f) := arrow_congr_comp e e e f g lemma conj_trans (e₁ : M ≃ₗ[R] M₂) (e₂ : M₂ ≃ₗ[R] M₃) : e₁.conj.trans e₂.conj = (e₁.trans e₂).conj := by { ext f x, refl, } @[simp] lemma conj_id (e : M ≃ₗ[R] M₂) : e.conj linear_map.id = linear_map.id := by { ext, simp [conj_apply], } end comm_semiring section field variables [field K] [add_comm_group M] [add_comm_group M₂] [add_comm_group M₃] variables [module K M] [module K M₂] [module K M₃] variables (K) (M) open _root_.linear_map /-- Multiplying by a nonzero element `a` of the field `K` is a linear equivalence. -/ @[simps] def smul_of_ne_zero (a : K) (ha : a ≠ 0) : M ≃ₗ[K] M := smul_of_unit $ units.mk0 a ha end field end linear_equiv namespace submodule section module variables [semiring R] [add_comm_monoid M] [module R M] /-- Given `p` a submodule of the module `M` and `q` a submodule of `p`, `p.equiv_subtype_map q` is the natural `linear_equiv` between `q` and `q.map p.subtype`. -/ def equiv_subtype_map (p : submodule R M) (q : submodule R p) : q ≃ₗ[R] q.map p.subtype := { inv_fun := begin rintro ⟨x, hx⟩, refine ⟨⟨x, _⟩, _⟩; rcases hx with ⟨⟨_, h⟩, _, rfl⟩; assumption end, left_inv := λ ⟨⟨_, _⟩, _⟩, rfl, right_inv := λ ⟨x, ⟨_, h⟩, _, rfl⟩, rfl, .. (p.subtype.dom_restrict q).cod_restrict _ begin rintro ⟨x, hx⟩, refine ⟨x, hx, rfl⟩, end } @[simp] lemma equiv_subtype_map_apply {p : submodule R M} {q : submodule R p} (x : q) : (p.equiv_subtype_map q x : M) = p.subtype.dom_restrict q x := rfl @[simp] lemma equiv_subtype_map_symm_apply {p : submodule R M} {q : submodule R p} (x : q.map p.subtype) : ((p.equiv_subtype_map q).symm x : M) = x := by { cases x, refl } /-- If `s ≤ t`, then we can view `s` as a submodule of `t` by taking the comap of `t.subtype`. -/ @[simps] def comap_subtype_equiv_of_le {p q : submodule R M} (hpq : p ≤ q) : comap q.subtype p ≃ₗ[R] p := { to_fun := λ x, ⟨x, x.2⟩, inv_fun := λ x, ⟨⟨x, hpq x.2⟩, x.2⟩, left_inv := λ x, by simp only [coe_mk, set_like.eta, coe_coe], right_inv := λ x, by simp only [subtype.coe_mk, set_like.eta, coe_coe], map_add' := λ x y, rfl, map_smul' := λ c x, rfl } end module end submodule namespace submodule variables [comm_semiring R] [comm_semiring R₂] variables [add_comm_monoid M] [add_comm_monoid M₂] [module R M] [module R₂ M₂] variables [add_comm_monoid N] [add_comm_monoid N₂] [module R N] [module R N₂] variables {τ₁₂ : R →+* R₂} {τ₂₁ : R₂ →+* R} variables [ring_hom_inv_pair τ₁₂ τ₂₁] [ring_hom_inv_pair τ₂₁ τ₁₂] variables (p : submodule R M) (q : submodule R₂ M₂) variables (pₗ : submodule R N) (qₗ : submodule R N₂) include τ₂₁ @[simp] lemma mem_map_equiv {e : M ≃ₛₗ[τ₁₂] M₂} {x : M₂} : x ∈ p.map (e : M →ₛₗ[τ₁₂] M₂) ↔ e.symm x ∈ p := begin rw submodule.mem_map, split, { rintros ⟨y, hy, hx⟩, simp [←hx, hy], }, { intros hx, refine ⟨e.symm x, hx, by simp⟩, }, end omit τ₂₁ lemma map_equiv_eq_comap_symm (e : M ≃ₛₗ[τ₁₂] M₂) (K : submodule R M) : K.map (e : M →ₛₗ[τ₁₂] M₂) = K.comap (e.symm : M₂ →ₛₗ[τ₂₁] M) := submodule.ext (λ _, by rw [mem_map_equiv, mem_comap, linear_equiv.coe_coe]) lemma comap_equiv_eq_map_symm (e : M ≃ₛₗ[τ₁₂] M₂) (K : submodule R₂ M₂) : K.comap (e : M →ₛₗ[τ₁₂] M₂) = K.map (e.symm : M₂ →ₛₗ[τ₂₁] M) := (map_equiv_eq_comap_symm e.symm K).symm lemma comap_le_comap_smul (fₗ : N →ₗ[R] N₂) (c : R) : comap fₗ qₗ ≤ comap (c • fₗ) qₗ := begin rw set_like.le_def, intros m h, change c • (fₗ m) ∈ qₗ, change fₗ m ∈ qₗ at h, apply qₗ.smul_mem _ h, end lemma inf_comap_le_comap_add (f₁ f₂ : M →ₛₗ[τ₁₂] M₂) : comap f₁ q ⊓ comap f₂ q ≤ comap (f₁ + f₂) q := begin rw set_like.le_def, intros m h, change f₁ m + f₂ m ∈ q, change f₁ m ∈ q ∧ f₂ m ∈ q at h, apply q.add_mem h.1 h.2, end /-- Given modules `M`, `M₂` over a commutative ring, together with submodules `p ⊆ M`, `q ⊆ M₂`, the set of maps $\{f ∈ Hom(M, M₂) | f(p) ⊆ q \}$ is a submodule of `Hom(M, M₂)`. -/ def compatible_maps : submodule R (N →ₗ[R] N₂) := { carrier := {fₗ | pₗ ≤ comap fₗ qₗ}, zero_mem' := by { change pₗ ≤ comap 0 qₗ, rw comap_zero, refine le_top, }, add_mem' := λ f₁ f₂ h₁ h₂, by { apply le_trans _ (inf_comap_le_comap_add qₗ f₁ f₂), rw le_inf_iff, exact ⟨h₁, h₂⟩, }, smul_mem' := λ c fₗ h, le_trans h (comap_le_comap_smul qₗ fₗ c), } end submodule namespace equiv variables [semiring R] [add_comm_monoid M] [module R M] [add_comm_monoid M₂] [module R M₂] /-- An equivalence whose underlying function is linear is a linear equivalence. -/ def to_linear_equiv (e : M ≃ M₂) (h : is_linear_map R (e : M → M₂)) : M ≃ₗ[R] M₂ := { .. e, .. h.mk' e} end equiv section fun_left variables (R M) [semiring R] [add_comm_monoid M] [module R M] variables {m n p : Type*} namespace linear_map /-- Given an `R`-module `M` and a function `m → n` between arbitrary types, construct a linear map `(n → M) →ₗ[R] (m → M)` -/ def fun_left (f : m → n) : (n → M) →ₗ[R] (m → M) := { to_fun := (∘ f), map_add' := λ _ _, rfl, map_smul' := λ _ _, rfl } @[simp] theorem fun_left_apply (f : m → n) (g : n → M) (i : m) : fun_left R M f g i = g (f i) := rfl @[simp] theorem fun_left_id (g : n → M) : fun_left R M _root_.id g = g := rfl theorem fun_left_comp (f₁ : n → p) (f₂ : m → n) : fun_left R M (f₁ ∘ f₂) = (fun_left R M f₂).comp (fun_left R M f₁) := rfl theorem fun_left_surjective_of_injective (f : m → n) (hf : injective f) : surjective (fun_left R M f) := begin classical, intro g, refine ⟨λ x, if h : ∃ y, f y = x then g h.some else 0, _⟩, { ext, dsimp only [fun_left_apply], split_ifs with w, { congr, exact hf w.some_spec, }, { simpa only [not_true, exists_apply_eq_apply] using w } }, end theorem fun_left_injective_of_surjective (f : m → n) (hf : surjective f) : injective (fun_left R M f) := begin obtain ⟨g, hg⟩ := hf.has_right_inverse, suffices : left_inverse (fun_left R M g) (fun_left R M f), { exact this.injective }, intro x, rw [←linear_map.comp_apply, ← fun_left_comp, hg.id, fun_left_id], end end linear_map namespace linear_equiv open _root_.linear_map /-- Given an `R`-module `M` and an equivalence `m ≃ n` between arbitrary types, construct a linear equivalence `(n → M) ≃ₗ[R] (m → M)` -/ def fun_congr_left (e : m ≃ n) : (n → M) ≃ₗ[R] (m → M) := linear_equiv.of_linear (fun_left R M e) (fun_left R M e.symm) (linear_map.ext $ λ x, funext $ λ i, by rw [id_apply, ← fun_left_comp, equiv.symm_comp_self, fun_left_id]) (linear_map.ext $ λ x, funext $ λ i, by rw [id_apply, ← fun_left_comp, equiv.self_comp_symm, fun_left_id]) @[simp] theorem fun_congr_left_apply (e : m ≃ n) (x : n → M) : fun_congr_left R M e x = fun_left R M e x := rfl @[simp] theorem fun_congr_left_id : fun_congr_left R M (equiv.refl n) = linear_equiv.refl R (n → M) := rfl @[simp] theorem fun_congr_left_comp (e₁ : m ≃ n) (e₂ : n ≃ p) : fun_congr_left R M (equiv.trans e₁ e₂) = linear_equiv.trans (fun_congr_left R M e₂) (fun_congr_left R M e₁) := rfl @[simp] lemma fun_congr_left_symm (e : m ≃ n) : (fun_congr_left R M e).symm = fun_congr_left R M e.symm := rfl end linear_equiv end fun_left namespace linear_map variables [semiring R] [add_comm_monoid M] [module R M] variables (R M) /-- The group of invertible linear maps from `M` to itself -/ @[reducible] def general_linear_group := (M →ₗ[R] M)ˣ namespace general_linear_group variables {R M} instance : has_coe_to_fun (general_linear_group R M) (λ _, M → M) := by apply_instance /-- An invertible linear map `f` determines an equivalence from `M` to itself. -/ def to_linear_equiv (f : general_linear_group R M) : (M ≃ₗ[R] M) := { inv_fun := f.inv.to_fun, left_inv := λ m, show (f.inv * f.val) m = m, by erw f.inv_val; simp, right_inv := λ m, show (f.val * f.inv) m = m, by erw f.val_inv; simp, ..f.val } /-- An equivalence from `M` to itself determines an invertible linear map. -/ def of_linear_equiv (f : (M ≃ₗ[R] M)) : general_linear_group R M := { val := f, inv := (f.symm : M →ₗ[R] M), val_inv := linear_map.ext $ λ _, f.apply_symm_apply _, inv_val := linear_map.ext $ λ _, f.symm_apply_apply _ } variables (R M) /-- The general linear group on `R` and `M` is multiplicatively equivalent to the type of linear equivalences between `M` and itself. -/ def general_linear_equiv : general_linear_group R M ≃* (M ≃ₗ[R] M) := { to_fun := to_linear_equiv, inv_fun := of_linear_equiv, left_inv := λ f, by { ext, refl }, right_inv := λ f, by { ext, refl }, map_mul' := λ x y, by {ext, refl} } @[simp] lemma general_linear_equiv_to_linear_map (f : general_linear_group R M) : (general_linear_equiv R M f : M →ₗ[R] M) = f := by {ext, refl} @[simp] lemma coe_fn_general_linear_equiv (f : general_linear_group R M) : ⇑(general_linear_equiv R M f) = (f : M → M) := rfl end general_linear_group end linear_map
dc0c47834f299d1a4bf43e9e1a3ad569b03dbf67
69d4931b605e11ca61881fc4f66db50a0a875e39
/src/topology/algebra/monoid.lean
33bea77518794f47498b54b5f7b8b02b4d154896
[ "Apache-2.0" ]
permissive
abentkamp/mathlib
d9a75d291ec09f4637b0f30cc3880ffb07549ee5
5360e476391508e092b5a1e5210bd0ed22dc0755
refs/heads/master
1,682,382,954,948
1,622,106,077,000
1,622,106,077,000
149,285,665
0
0
null
null
null
null
UTF-8
Lean
false
false
15,949
lean
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import topology.continuous_on import group_theory.submonoid.operations import algebra.group.prod import algebra.pointwise import algebra.big_operators.finprod /-! # Theory of topological monoids In this file we define mixin classes `has_continuous_mul` and `has_continuous_add`. While in many applications the underlying type is a monoid (multiplicative or additive), we do not require this in the definitions. -/ open classical set filter topological_space open_locale classical topological_space big_operators variables {ι α X M N : Type*} [topological_space X] /-- Basic hypothesis to talk about a topological additive monoid or a topological additive semigroup. A topological additive monoid over `M`, for example, is obtained by requiring both the instances `add_monoid M` and `has_continuous_add M`. -/ class has_continuous_add (M : Type*) [topological_space M] [has_add M] : Prop := (continuous_add : continuous (λ p : M × M, p.1 + p.2)) /-- Basic hypothesis to talk about a topological monoid or a topological semigroup. A topological monoid over `M`, for example, is obtained by requiring both the instances `monoid M` and `has_continuous_mul M`. -/ @[to_additive] class has_continuous_mul (M : Type*) [topological_space M] [has_mul M] : Prop := (continuous_mul : continuous (λ p : M × M, p.1 * p.2)) section has_continuous_mul variables [topological_space M] [has_mul M] [has_continuous_mul M] @[to_additive] lemma continuous_mul : continuous (λp:M×M, p.1 * p.2) := has_continuous_mul.continuous_mul @[continuity, to_additive] lemma continuous.mul {f g : X → M} (hf : continuous f) (hg : continuous g) : continuous (λx, f x * g x) := continuous_mul.comp (hf.prod_mk hg : _) -- should `to_additive` be doing this? attribute [continuity] continuous.add @[to_additive] lemma continuous_mul_left (a : M) : continuous (λ b:M, a * b) := continuous_const.mul continuous_id @[to_additive] lemma continuous_mul_right (a : M) : continuous (λ b:M, b * a) := continuous_id.mul continuous_const @[to_additive] lemma continuous_on.mul {f g : X → M} {s : set X} (hf : continuous_on f s) (hg : continuous_on g s) : continuous_on (λx, f x * g x) s := (continuous_mul.comp_continuous_on (hf.prod hg) : _) @[to_additive] lemma tendsto_mul {a b : M} : tendsto (λp:M×M, p.fst * p.snd) (𝓝 (a, b)) (𝓝 (a * b)) := continuous_iff_continuous_at.mp has_continuous_mul.continuous_mul (a, b) @[to_additive] lemma filter.tendsto.mul {f g : α → M} {x : filter α} {a b : M} (hf : tendsto f x (𝓝 a)) (hg : tendsto g x (𝓝 b)) : tendsto (λx, f x * g x) x (𝓝 (a * b)) := tendsto_mul.comp (hf.prod_mk_nhds hg) @[to_additive] lemma filter.tendsto.const_mul (b : M) {c : M} {f : α → M} {l : filter α} (h : tendsto (λ (k:α), f k) l (𝓝 c)) : tendsto (λ (k:α), b * f k) l (𝓝 (b * c)) := tendsto_const_nhds.mul h @[to_additive] lemma filter.tendsto.mul_const (b : M) {c : M} {f : α → M} {l : filter α} (h : tendsto (λ (k:α), f k) l (𝓝 c)) : tendsto (λ (k:α), f k * b) l (𝓝 (c * b)) := h.mul tendsto_const_nhds @[to_additive] lemma continuous_at.mul {f g : X → M} {x : X} (hf : continuous_at f x) (hg : continuous_at g x) : continuous_at (λx, f x * g x) x := hf.mul hg @[to_additive] lemma continuous_within_at.mul {f g : X → M} {s : set X} {x : X} (hf : continuous_within_at f s x) (hg : continuous_within_at g s x) : continuous_within_at (λx, f x * g x) s x := hf.mul hg @[to_additive] instance [topological_space N] [has_mul N] [has_continuous_mul N] : has_continuous_mul (M × N) := ⟨((continuous_fst.comp continuous_fst).mul (continuous_fst.comp continuous_snd)).prod_mk ((continuous_snd.comp continuous_fst).mul (continuous_snd.comp continuous_snd))⟩ @[to_additive] instance pi.has_continuous_mul {C : ι → Type*} [∀ i, topological_space (C i)] [∀ i, has_mul (C i)] [∀ i, has_continuous_mul (C i)] : has_continuous_mul (Π i, C i) := { continuous_mul := continuous_pi (λ i, continuous.mul ((continuous_apply i).comp continuous_fst) ((continuous_apply i).comp continuous_snd)) } @[priority 100, to_additive] instance has_continuous_mul_of_discrete_topology [topological_space N] [has_mul N] [discrete_topology N] : has_continuous_mul N := ⟨continuous_of_discrete_topology⟩ open_locale filter open function @[to_additive] lemma has_continuous_mul.of_nhds_one {M : Type*} [monoid M] [topological_space M] (hmul : tendsto (uncurry ((*) : M → M → M)) (𝓝 1 ×ᶠ 𝓝 1) $ 𝓝 1) (hleft : ∀ x₀ : M, 𝓝 x₀ = map (λ x, x₀*x) (𝓝 1)) (hright : ∀ x₀ : M, 𝓝 x₀ = map (λ x, x*x₀) (𝓝 1)) : has_continuous_mul M := ⟨begin rw continuous_iff_continuous_at, rintros ⟨x₀, y₀⟩, have key : (λ p : M × M, x₀ * p.1 * (p.2 * y₀)) = ((λ x, x₀*x) ∘ (λ x, x*y₀)) ∘ (uncurry (*)), { ext p, simp [uncurry, mul_assoc] }, have key₂ : (λ x, x₀*x) ∘ (λ x, y₀*x) = λ x, (x₀ *y₀)*x, { ext x, simp }, calc map (uncurry (*)) (𝓝 (x₀, y₀)) = map (uncurry (*)) (𝓝 x₀ ×ᶠ 𝓝 y₀) : by rw nhds_prod_eq ... = map (λ (p : M × M), x₀ * p.1 * (p.2 * y₀)) ((𝓝 1) ×ᶠ (𝓝 1)) : by rw [uncurry, hleft x₀, hright y₀, prod_map_map_eq, filter.map_map] ... = map ((λ x, x₀ * x) ∘ λ x, x * y₀) (map (uncurry (*)) (𝓝 1 ×ᶠ 𝓝 1)) : by { rw [key, ← filter.map_map], } ... ≤ map ((λ (x : M), x₀ * x) ∘ λ x, x * y₀) (𝓝 1) : map_mono hmul ... = 𝓝 (x₀*y₀) : by rw [← filter.map_map, ← hright, hleft y₀, filter.map_map, key₂, ← hleft] end⟩ @[to_additive] lemma has_continuous_mul_of_comm_of_nhds_one (M : Type*) [comm_monoid M] [topological_space M] (hmul : tendsto (uncurry ((*) : M → M → M)) (𝓝 1 ×ᶠ 𝓝 1) (𝓝 1)) (hleft : ∀ x₀ : M, 𝓝 x₀ = map (λ x, x₀*x) (𝓝 1)) : has_continuous_mul M := begin apply has_continuous_mul.of_nhds_one hmul hleft, intros x₀, simp_rw [mul_comm, hleft x₀] end end has_continuous_mul section has_continuous_mul variables [topological_space M] [monoid M] [has_continuous_mul M] @[to_additive] lemma submonoid.top_closure_mul_self_subset (s : submonoid M) : (closure (s : set M)) * closure (s : set M) ⊆ closure (s : set M) := calc (closure (s : set M)) * closure (s : set M) = (λ p : M × M, p.1 * p.2) '' (closure ((s : set M).prod s)) : by simp [closure_prod_eq] ... ⊆ closure ((λ p : M × M, p.1 * p.2) '' ((s : set M).prod s)) : image_closure_subset_closure_image continuous_mul ... = closure s : by simp [s.coe_mul_self_eq] @[to_additive] lemma submonoid.top_closure_mul_self_eq (s : submonoid M) : (closure (s : set M)) * closure (s : set M) = closure (s : set M) := subset.antisymm s.top_closure_mul_self_subset (λ x hx, ⟨x, 1, hx, subset_closure s.one_mem, mul_one _⟩) /-- The (topological-space) closure of a submonoid of a space `M` with `has_continuous_mul` is itself a submonoid. -/ @[to_additive "The (topological-space) closure of an additive submonoid of a space `M` with `has_continuous_add` is itself an additive submonoid."] def submonoid.topological_closure (s : submonoid M) : submonoid M := { carrier := closure (s : set M), one_mem' := subset_closure s.one_mem, mul_mem' := λ a b ha hb, s.top_closure_mul_self_subset ⟨a, b, ha, hb, rfl⟩ } @[to_additive] instance submonoid.topological_closure_has_continuous_mul (s : submonoid M) : has_continuous_mul (s.topological_closure) := { continuous_mul := begin apply continuous_induced_rng, change continuous (λ p : s.topological_closure × s.topological_closure, (p.1 : M) * (p.2 : M)), continuity, end } lemma submonoid.submonoid_topological_closure (s : submonoid M) : s ≤ s.topological_closure := subset_closure lemma submonoid.is_closed_topological_closure (s : submonoid M) : is_closed (s.topological_closure : set M) := by convert is_closed_closure lemma submonoid.topological_closure_minimal (s : submonoid M) {t : submonoid M} (h : s ≤ t) (ht : is_closed (t : set M)) : s.topological_closure ≤ t := closure_minimal h ht @[to_additive exists_open_nhds_zero_half] lemma exists_open_nhds_one_split {s : set M} (hs : s ∈ 𝓝 (1 : M)) : ∃ V : set M, is_open V ∧ (1 : M) ∈ V ∧ ∀ (v ∈ V) (w ∈ V), v * w ∈ s := have ((λa:M×M, a.1 * a.2) ⁻¹' s) ∈ 𝓝 ((1, 1) : M × M), from tendsto_mul (by simpa only [one_mul] using hs), by simpa only [prod_subset_iff] using exists_nhds_square this @[to_additive exists_nhds_zero_half] lemma exists_nhds_one_split {s : set M} (hs : s ∈ 𝓝 (1 : M)) : ∃ V ∈ 𝓝 (1 : M), ∀ (v ∈ V) (w ∈ V), v * w ∈ s := let ⟨V, Vo, V1, hV⟩ := exists_open_nhds_one_split hs in ⟨V, is_open.mem_nhds Vo V1, hV⟩ @[to_additive exists_nhds_zero_quarter] lemma exists_nhds_one_split4 {u : set M} (hu : u ∈ 𝓝 (1 : M)) : ∃ V ∈ 𝓝 (1 : M), ∀ {v w s t}, v ∈ V → w ∈ V → s ∈ V → t ∈ V → v * w * s * t ∈ u := begin rcases exists_nhds_one_split hu with ⟨W, W1, h⟩, rcases exists_nhds_one_split W1 with ⟨V, V1, h'⟩, use [V, V1], intros v w s t v_in w_in s_in t_in, simpa only [mul_assoc] using h _ (h' v v_in w w_in) _ (h' s s_in t t_in) end /-- Given a neighborhood `U` of `1` there is an open neighborhood `V` of `1` such that `VV ⊆ U`. -/ @[to_additive "Given a open neighborhood `U` of `0` there is a open neighborhood `V` of `0` such that `V + V ⊆ U`."] lemma exists_open_nhds_one_mul_subset {U : set M} (hU : U ∈ 𝓝 (1 : M)) : ∃ V : set M, is_open V ∧ (1 : M) ∈ V ∧ V * V ⊆ U := begin rcases exists_open_nhds_one_split hU with ⟨V, Vo, V1, hV⟩, use [V, Vo, V1], rintros _ ⟨x, y, hx, hy, rfl⟩, exact hV _ hx _ hy end @[to_additive] lemma tendsto_list_prod {f : ι → α → M} {x : filter α} {a : ι → M} : ∀ l:list ι, (∀i∈l, tendsto (f i) x (𝓝 (a i))) → tendsto (λb, (l.map (λc, f c b)).prod) x (𝓝 ((l.map a).prod)) | [] _ := by simp [tendsto_const_nhds] | (f :: l) h := begin simp only [list.map_cons, list.prod_cons], exact (h f (list.mem_cons_self _ _)).mul (tendsto_list_prod l (assume c hc, h c (list.mem_cons_of_mem _ hc))) end @[to_additive] lemma continuous_list_prod {f : ι → X → M} (l : list ι) (h : ∀i∈l, continuous (f i)) : continuous (λa, (l.map (λi, f i a)).prod) := continuous_iff_continuous_at.2 $ assume x, tendsto_list_prod l $ assume c hc, continuous_iff_continuous_at.1 (h c hc) x -- @[to_additive continuous_smul] @[continuity] lemma continuous_pow : ∀ n : ℕ, continuous (λ a : M, a ^ n) | 0 := by simpa using continuous_const | (k+1) := by { simp only [pow_succ], exact continuous_id.mul (continuous_pow _) } @[continuity] lemma continuous.pow {f : X → M} (h : continuous f) (n : ℕ) : continuous (λ b, (f b) ^ n) := (continuous_pow n).comp h lemma continuous_on_pow {s : set M} (n : ℕ) : continuous_on (λ x, x ^ n) s := (continuous_pow n).continuous_on end has_continuous_mul section op open opposite /-- Put the same topological space structure on the opposite monoid as on the original space. -/ instance [_i : topological_space α] : topological_space αᵒᵖ := topological_space.induced (unop : αᵒᵖ → α) _i variables [topological_space α] lemma continuous_unop : continuous (unop : αᵒᵖ → α) := continuous_induced_dom lemma continuous_op : continuous (op : α → αᵒᵖ) := continuous_induced_rng continuous_id variables [monoid α] [has_continuous_mul α] /-- If multiplication is continuous in the monoid `α`, then it also is in the monoid `αᵒᵖ`. -/ instance : has_continuous_mul αᵒᵖ := ⟨ let h₁ := @continuous_mul α _ _ _ in let h₂ : continuous (λ p : α × α, _) := continuous_snd.prod_mk continuous_fst in continuous_induced_rng $ (h₁.comp h₂).comp (continuous_unop.prod_map continuous_unop) ⟩ end op namespace units open opposite variables [topological_space α] [monoid α] /-- The units of a monoid are equipped with a topology, via the embedding into `α × α`. -/ instance : topological_space (units α) := topological_space.induced (embed_product α) (by apply_instance) lemma continuous_embed_product : continuous (embed_product α) := continuous_induced_dom lemma continuous_coe : continuous (coe : units α → α) := by convert continuous_fst.comp continuous_induced_dom variables [has_continuous_mul α] /-- If multiplication on a monoid is continuous, then multiplication on the units of the monoid, with respect to the induced topology, is continuous. Inversion is also continuous, but we register this in a later file, `topology.algebra.group`, because the predicate `has_continuous_inv` has not yet been defined. -/ instance : has_continuous_mul (units α) := ⟨ let h := @continuous_mul (α × αᵒᵖ) _ _ _ in continuous_induced_rng $ h.comp $ continuous_embed_product.prod_map continuous_embed_product ⟩ end units section variables [topological_space M] [comm_monoid M] @[to_additive] lemma submonoid.mem_nhds_one (S : submonoid M) (oS : is_open (S : set M)) : (S : set M) ∈ 𝓝 (1 : M) := is_open.mem_nhds oS S.one_mem variable [has_continuous_mul M] @[to_additive] lemma tendsto_multiset_prod {f : ι → α → M} {x : filter α} {a : ι → M} (s : multiset ι) : (∀ i ∈ s, tendsto (f i) x (𝓝 (a i))) → tendsto (λb, (s.map (λc, f c b)).prod) x (𝓝 ((s.map a).prod)) := by { rcases s with ⟨l⟩, simpa using tendsto_list_prod l } @[to_additive] lemma tendsto_finset_prod {f : ι → α → M} {x : filter α} {a : ι → M} (s : finset ι) : (∀ i ∈ s, tendsto (f i) x (𝓝 (a i))) → tendsto (λb, ∏ c in s, f c b) x (𝓝 (∏ c in s, a c)) := tendsto_multiset_prod _ @[to_additive, continuity] lemma continuous_multiset_prod {f : ι → X → M} (s : multiset ι) : (∀i ∈ s, continuous (f i)) → continuous (λ a, (s.map (λ i, f i a)).prod) := by { rcases s with ⟨l⟩, simpa using continuous_list_prod l } attribute [continuity] continuous_multiset_sum @[continuity, to_additive] lemma continuous_finset_prod {f : ι → X → M} (s : finset ι) : (∀ i ∈ s, continuous (f i)) → continuous (λa, ∏ i in s, f i a) := continuous_multiset_prod _ -- should `to_additive` be doing this? attribute [continuity] continuous_finset_sum open function @[to_additive] lemma continuous_finprod {f : ι → X → M} (hc : ∀ i, continuous (f i)) (hf : locally_finite (λ i, mul_support (f i))) : continuous (λ x, ∏ᶠ i, f i x) := begin refine continuous_iff_continuous_at.2 (λ x, _), rcases hf x with ⟨U, hxU, hUf⟩, have : continuous_at (λ x, ∏ i in hUf.to_finset, f i x) x, from tendsto_finset_prod _ (λ i hi, (hc i).continuous_at), refine this.congr (mem_sets_of_superset hxU $ λ y hy, _), refine (finprod_eq_prod_of_mul_support_subset _ (λ i hi, _)).symm, rw [hUf.coe_to_finset], exact ⟨y, hi, hy⟩ end @[to_additive] lemma continuous_finprod_cond {f : ι → X → M} {p : ι → Prop} (hc : ∀ i, p i → continuous (f i)) (hf : locally_finite (λ i, mul_support (f i))) : continuous (λ x, ∏ᶠ i (hi : p i), f i x) := begin simp only [← finprod_subtype_eq_finprod_cond], exact continuous_finprod (λ i, hc i i.2) (hf.comp_injective subtype.coe_injective) end end instance additive.has_continuous_add {M} [h : topological_space M] [has_mul M] [has_continuous_mul M] : @has_continuous_add (additive M) h _ := { continuous_add := @continuous_mul M _ _ _ } instance multiplicative.has_continuous_mul {M} [h : topological_space M] [has_add M] [has_continuous_add M] : @has_continuous_mul (multiplicative M) h _ := { continuous_mul := @continuous_add M _ _ _ }
a4d0c1c249cf1b32f960bf9a33d2f1fa1fa953f0
35677d2df3f081738fa6b08138e03ee36bc33cad
/src/data/analysis/filter.lean
97892b40094008ac9e487c8487b018e96b885ce3
[ "Apache-2.0" ]
permissive
gebner/mathlib
eab0150cc4f79ec45d2016a8c21750244a2e7ff0
cc6a6edc397c55118df62831e23bfbd6e6c6b4ab
refs/heads/master
1,625,574,853,976
1,586,712,827,000
1,586,712,827,000
99,101,412
1
0
Apache-2.0
1,586,716,389,000
1,501,667,958,000
Lean
UTF-8
Lean
false
false
11,837
lean
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro Computational realization of filters (experimental). -/ import order.filter.basic open set filter /-- A `cfilter α σ` is a realization of a filter (base) on `α`, represented by a type `σ` together with operations for the top element and the binary inf operation. -/ structure cfilter (α σ : Type*) [partial_order α] := (f : σ → α) (pt : σ) (inf : σ → σ → σ) (inf_le_left : ∀ a b : σ, f (inf a b) ≤ f a) (inf_le_right : ∀ a b : σ, f (inf a b) ≤ f b) variables {α : Type*} {β : Type*} {σ : Type*} {τ : Type*} namespace cfilter section variables [partial_order α] (F : cfilter α σ) instance : has_coe_to_fun (cfilter α σ) := ⟨_, cfilter.f⟩ @[simp] theorem coe_mk (f pt inf h₁ h₂ a) : (@cfilter.mk α σ _ f pt inf h₁ h₂) a = f a := rfl /-- Map a cfilter to an equivalent representation type. -/ def of_equiv (E : σ ≃ τ) : cfilter α σ → cfilter α τ | ⟨f, p, g, h₁, h₂⟩ := { f := λ a, f (E.symm a), pt := E p, inf := λ a b, E (g (E.symm a) (E.symm b)), inf_le_left := λ a b, by simpa using h₁ (E.symm a) (E.symm b), inf_le_right := λ a b, by simpa using h₂ (E.symm a) (E.symm b) } @[simp] theorem of_equiv_val (E : σ ≃ τ) (F : cfilter α σ) (a : τ) : F.of_equiv E a = F (E.symm a) := by cases F; refl end /-- The filter represented by a `cfilter` is the collection of supersets of elements of the filter base. -/ def to_filter (F : cfilter (set α) σ) : filter α := { sets := {a | ∃ b, F b ⊆ a}, univ_sets := ⟨F.pt, subset_univ _⟩, sets_of_superset := λ x y ⟨b, h⟩ s, ⟨b, subset.trans h s⟩, inter_sets := λ x y ⟨a, h₁⟩ ⟨b, h₂⟩, ⟨F.inf a b, subset_inter (subset.trans (F.inf_le_left _ _) h₁) (subset.trans (F.inf_le_right _ _) h₂)⟩ } @[simp] theorem mem_to_filter_sets (F : cfilter (set α) σ) {a : set α} : a ∈ F.to_filter ↔ ∃ b, F b ⊆ a := iff.rfl end cfilter /-- A realizer for filter `f` is a cfilter which generates `f`. -/ structure filter.realizer (f : filter α) := (σ : Type*) (F : cfilter (set α) σ) (eq : F.to_filter = f) protected def cfilter.to_realizer (F : cfilter (set α) σ) : F.to_filter.realizer := ⟨σ, F, rfl⟩ namespace filter.realizer theorem mem_sets {f : filter α} (F : f.realizer) {a : set α} : a ∈ f ↔ ∃ b, F.F b ⊆ a := by cases F; subst f; simp -- Used because it has better definitional equalities than the eq.rec proof def of_eq {f g : filter α} (e : f = g) (F : f.realizer) : g.realizer := ⟨F.σ, F.F, F.eq.trans e⟩ /-- A filter realizes itself. -/ def of_filter (f : filter α) : f.realizer := ⟨f.sets, { f := subtype.val, pt := ⟨univ, univ_mem_sets⟩, inf := λ ⟨x, h₁⟩ ⟨y, h₂⟩, ⟨_, inter_mem_sets h₁ h₂⟩, inf_le_left := λ ⟨x, h₁⟩ ⟨y, h₂⟩, inter_subset_left x y, inf_le_right := λ ⟨x, h₁⟩ ⟨y, h₂⟩, inter_subset_right x y }, filter_eq $ set.ext $ λ x, set_coe.exists.trans exists_sets_subset_iff⟩ /-- Transfer a filter realizer to another realizer on a different base type. -/ def of_equiv {f : filter α} (F : f.realizer) (E : F.σ ≃ τ) : f.realizer := ⟨τ, F.F.of_equiv E, by refine eq.trans _ F.eq; exact filter_eq (set.ext $ λ x, ⟨λ ⟨s, h⟩, ⟨E.symm s, by simpa using h⟩, λ ⟨t, h⟩, ⟨E t, by simp [h]⟩⟩)⟩ @[simp] theorem of_equiv_σ {f : filter α} (F : f.realizer) (E : F.σ ≃ τ) : (F.of_equiv E).σ = τ := rfl @[simp] theorem of_equiv_F {f : filter α} (F : f.realizer) (E : F.σ ≃ τ) (s : τ) : (F.of_equiv E).F s = F.F (E.symm s) := by delta of_equiv; simp /-- `unit` is a realizer for the principal filter -/ protected def principal (s : set α) : (principal s).realizer := ⟨unit, { f := λ _, s, pt := (), inf := λ _ _, (), inf_le_left := λ _ _, le_refl _, inf_le_right := λ _ _, le_refl _ }, filter_eq $ set.ext $ λ x, ⟨λ ⟨_, s⟩, s, λ h, ⟨(), h⟩⟩⟩ @[simp] theorem principal_σ (s : set α) : (realizer.principal s).σ = unit := rfl @[simp] theorem principal_F (s : set α) (u : unit) : (realizer.principal s).F u = s := rfl /-- `unit` is a realizer for the top filter -/ protected def top : (⊤ : filter α).realizer := (realizer.principal _).of_eq principal_univ @[simp] theorem top_σ : (@realizer.top α).σ = unit := rfl @[simp] theorem top_F (u : unit) : (@realizer.top α).F u = univ := rfl /-- `unit` is a realizer for the bottom filter -/ protected def bot : (⊥ : filter α).realizer := (realizer.principal _).of_eq principal_empty @[simp] theorem bot_σ : (@realizer.bot α).σ = unit := rfl @[simp] theorem bot_F (u : unit) : (@realizer.bot α).F u = ∅ := rfl /-- Construct a realizer for `map m f` given a realizer for `f` -/ protected def map (m : α → β) {f : filter α} (F : f.realizer) : (map m f).realizer := ⟨F.σ, { f := λ s, image m (F.F s), pt := F.F.pt, inf := F.F.inf, inf_le_left := λ a b, image_subset _ (F.F.inf_le_left _ _), inf_le_right := λ a b, image_subset _ (F.F.inf_le_right _ _) }, filter_eq $ set.ext $ λ x, by simp [cfilter.to_filter]; rw F.mem_sets; exact exists_congr (λ s, image_subset_iff)⟩ @[simp] theorem map_σ (m : α → β) {f : filter α} (F : f.realizer) : (F.map m).σ = F.σ := rfl @[simp] theorem map_F (m : α → β) {f : filter α} (F : f.realizer) (s) : (F.map m).F s = image m (F.F s) := rfl /-- Construct a realizer for `comap m f` given a realizer for `f` -/ protected def comap (m : α → β) {f : filter β} (F : f.realizer) : (comap m f).realizer := ⟨F.σ, { f := λ s, preimage m (F.F s), pt := F.F.pt, inf := F.F.inf, inf_le_left := λ a b, preimage_mono (F.F.inf_le_left _ _), inf_le_right := λ a b, preimage_mono (F.F.inf_le_right _ _) }, filter_eq $ set.ext $ λ x, by cases F; subst f; simp [cfilter.to_filter, mem_comap_sets]; exact ⟨λ ⟨s, h⟩, ⟨_, ⟨s, subset.refl _⟩, h⟩, λ ⟨y, ⟨s, h⟩, h₂⟩, ⟨s, subset.trans (preimage_mono h) h₂⟩⟩⟩ /-- Construct a realizer for the sup of two filters -/ protected def sup {f g : filter α} (F : f.realizer) (G : g.realizer) : (f ⊔ g).realizer := ⟨F.σ × G.σ, { f := λ ⟨s, t⟩, F.F s ∪ G.F t, pt := (F.F.pt, G.F.pt), inf := λ ⟨a, a'⟩ ⟨b, b'⟩, (F.F.inf a b, G.F.inf a' b'), inf_le_left := λ ⟨a, a'⟩ ⟨b, b'⟩, union_subset_union (F.F.inf_le_left _ _) (G.F.inf_le_left _ _), inf_le_right := λ ⟨a, a'⟩ ⟨b, b'⟩, union_subset_union (F.F.inf_le_right _ _) (G.F.inf_le_right _ _) }, filter_eq $ set.ext $ λ x, by cases F; cases G; substs f g; simp [cfilter.to_filter]; exact ⟨λ ⟨s, t, h⟩, ⟨⟨s, subset.trans (subset_union_left _ _) h⟩, ⟨t, subset.trans (subset_union_right _ _) h⟩⟩, λ ⟨⟨s, h₁⟩, ⟨t, h₂⟩⟩, ⟨s, t, union_subset h₁ h₂⟩⟩⟩ /-- Construct a realizer for the inf of two filters -/ protected def inf {f g : filter α} (F : f.realizer) (G : g.realizer) : (f ⊓ g).realizer := ⟨F.σ × G.σ, { f := λ ⟨s, t⟩, F.F s ∩ G.F t, pt := (F.F.pt, G.F.pt), inf := λ ⟨a, a'⟩ ⟨b, b'⟩, (F.F.inf a b, G.F.inf a' b'), inf_le_left := λ ⟨a, a'⟩ ⟨b, b'⟩, inter_subset_inter (F.F.inf_le_left _ _) (G.F.inf_le_left _ _), inf_le_right := λ ⟨a, a'⟩ ⟨b, b'⟩, inter_subset_inter (F.F.inf_le_right _ _) (G.F.inf_le_right _ _) }, filter_eq $ set.ext $ λ x, by cases F; cases G; substs f g; simp [cfilter.to_filter]; exact ⟨λ ⟨s, t, h⟩, ⟨_, ⟨s, subset.refl _⟩, _, ⟨t, subset.refl _⟩, h⟩, λ ⟨y, ⟨s, h₁⟩, z, ⟨t, h₂⟩, h⟩, ⟨s, t, subset.trans (inter_subset_inter h₁ h₂) h⟩⟩⟩ /-- Construct a realizer for the cofinite filter -/ protected def cofinite [decidable_eq α] : (@cofinite α).realizer := ⟨finset α, { f := λ s, {a | a ∉ s}, pt := ∅, inf := (∪), inf_le_left := λ s t a, mt (finset.mem_union_left _), inf_le_right := λ s t a, mt (finset.mem_union_right _) }, filter_eq $ set.ext $ λ x, by simp [cfilter.to_filter]; exactI ⟨λ ⟨s, h⟩, finite_subset (finite_mem_finset s) (compl_subset_comm.1 h), λ ⟨fs⟩, ⟨(-x).to_finset, λ a (h : a ∉ (-x).to_finset), classical.by_contradiction $ λ h', h (mem_to_finset.2 h')⟩⟩⟩ /-- Construct a realizer for filter bind -/ protected def bind {f : filter α} {m : α → filter β} (F : f.realizer) (G : ∀ i, (m i).realizer) : (f.bind m).realizer := ⟨Σ s : F.σ, Π i ∈ F.F s, (G i).σ, { f := λ ⟨s, f⟩, ⋃ i ∈ F.F s, (G i).F (f i H), pt := ⟨F.F.pt, λ i H, (G i).F.pt⟩, inf := λ ⟨a, f⟩ ⟨b, f'⟩, ⟨F.F.inf a b, λ i h, (G i).F.inf (f i (F.F.inf_le_left _ _ h)) (f' i (F.F.inf_le_right _ _ h))⟩, inf_le_left := λ ⟨a, f⟩ ⟨b, f'⟩ x, show (x ∈ ⋃ (i : α) (H : i ∈ F.F (F.F.inf a b)), _) → x ∈ ⋃ i (H : i ∈ F.F a), ((G i).F) (f i H), by simp; exact λ i h₁ h₂, ⟨i, F.F.inf_le_left _ _ h₁, (G i).F.inf_le_left _ _ h₂⟩, inf_le_right := λ ⟨a, f⟩ ⟨b, f'⟩ x, show (x ∈ ⋃ (i : α) (H : i ∈ F.F (F.F.inf a b)), _) → x ∈ ⋃ i (H : i ∈ F.F b), ((G i).F) (f' i H), by simp; exact λ i h₁ h₂, ⟨i, F.F.inf_le_right _ _ h₁, (G i).F.inf_le_right _ _ h₂⟩ }, filter_eq $ set.ext $ λ x, by cases F with _ F _; subst f; simp [cfilter.to_filter, mem_bind_sets]; exact ⟨λ ⟨s, f, h⟩, ⟨F s, ⟨s, subset.refl _⟩, λ i H, (G i).mem_sets.2 ⟨f i H, λ a h', h ⟨_, ⟨i, rfl⟩, _, ⟨H, rfl⟩, h'⟩⟩⟩, λ ⟨y, ⟨s, h⟩, f⟩, let ⟨f', h'⟩ := classical.axiom_of_choice (λ i:F s, (G i).mem_sets.1 (f i (h i.2))) in ⟨s, λ i h, f' ⟨i, h⟩, λ a ⟨_, ⟨i, rfl⟩, _, ⟨H, rfl⟩, m⟩, h' ⟨_, H⟩ m⟩⟩⟩ /-- Construct a realizer for indexed supremum -/ protected def Sup {f : α → filter β} (F : ∀ i, (f i).realizer) : (⨆ i, f i).realizer := let F' : (⨆ i, f i).realizer := ((realizer.bind realizer.top F).of_eq $ filter_eq $ set.ext $ by simp [filter.bind, eq_univ_iff_forall, supr_sets_eq]) in F'.of_equiv $ show (Σ u:unit, Π (i : α), true → (F i).σ) ≃ Π i, (F i).σ, from ⟨λ⟨_,f⟩ i, f i ⟨⟩, λ f, ⟨(), λ i _, f i⟩, λ ⟨⟨⟩, f⟩, by dsimp; congr; simp, λ f, rfl⟩ /-- Construct a realizer for the product of filters -/ protected def prod {f g : filter α} (F : f.realizer) (G : g.realizer) : (f.prod g).realizer := (F.comap _).inf (G.comap _) theorem le_iff {f g : filter α} (F : f.realizer) (G : g.realizer) : f ≤ g ↔ ∀ b : G.σ, ∃ a : F.σ, F.F a ≤ G.F b := ⟨λ H t, F.mem_sets.1 (H (G.mem_sets.2 ⟨t, subset.refl _⟩)), λ H x h, F.mem_sets.2 $ let ⟨s, h₁⟩ := G.mem_sets.1 h, ⟨t, h₂⟩ := H s in ⟨t, subset.trans h₂ h₁⟩⟩ theorem tendsto_iff (f : α → β) {l₁ : filter α} {l₂ : filter β} (L₁ : l₁.realizer) (L₂ : l₂.realizer) : tendsto f l₁ l₂ ↔ ∀ b, ∃ a, ∀ x ∈ L₁.F a, f x ∈ L₂.F b := (le_iff (L₁.map f) L₂).trans $ forall_congr $ λ b, exists_congr $ λ a, image_subset_iff theorem ne_bot_iff {f : filter α} (F : f.realizer) : f ≠ ⊥ ↔ ∀ a : F.σ, (F.F a).nonempty := begin classical, rw [not_iff_comm, ← le_bot_iff, F.le_iff realizer.bot, not_forall], simp only [set.not_nonempty_iff_eq_empty], exact ⟨λ ⟨x, e⟩ _, ⟨x, le_of_eq e⟩, λ h, let ⟨x, h⟩ := h () in ⟨x, le_bot_iff.1 h⟩⟩ end end filter.realizer
6f63b6847117f332519240912dd2608c31676755
80cc5bf14c8ea85ff340d1d747a127dcadeb966f
/src/linear_algebra/finsupp.lean
37c50bbc7a78577c7dcc15d84198d0ae4f87e330
[ "Apache-2.0" ]
permissive
lacker/mathlib
f2439c743c4f8eb413ec589430c82d0f73b2d539
ddf7563ac69d42cfa4a1bfe41db1fed521bd795f
refs/heads/master
1,671,948,326,773
1,601,479,268,000
1,601,479,268,000
298,686,743
0
0
Apache-2.0
1,601,070,794,000
1,601,070,794,000
null
UTF-8
Lean
false
false
19,639
lean
/- Copyright (c) 2019 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Johannes Hölzl Linear structures on function with finite support `α →₀ M`. -/ import data.monoid_algebra noncomputable theory open set linear_map submodule open_locale classical namespace finsupp variables {α : Type*} {M : Type*} {N : Type*} {R : Type*} variables [ring R] [add_comm_group M] [module R M] [add_comm_group N] [module R N] def lsingle (a : α) : M →ₗ[R] (α →₀ M) := ⟨single a, assume a b, single_add, assume c b, (smul_single _ _ _).symm⟩ def lapply (a : α) : (α →₀ M) →ₗ[R] M := ⟨λg, g a, assume a b, rfl, assume a b, rfl⟩ section lsubtype_domain variables (s : set α) def lsubtype_domain : (α →₀ M) →ₗ[R] (s →₀ M) := ⟨subtype_domain (λx, x ∈ s), assume a b, subtype_domain_add, assume c a, ext $ assume a, rfl⟩ lemma lsubtype_domain_apply (f : α →₀ M) : (lsubtype_domain s : (α →₀ M) →ₗ[R] (s →₀ M)) f = subtype_domain (λx, x ∈ s) f := rfl end lsubtype_domain @[simp] lemma lsingle_apply (a : α) (b : M) : (lsingle a : M →ₗ[R] (α →₀ M)) b = single a b := rfl @[simp] lemma lapply_apply (a : α) (f : α →₀ M) : (lapply a : (α →₀ M) →ₗ[R] M) f = f a := rfl @[simp] lemma ker_lsingle (a : α) : (lsingle a : M →ₗ[R] (α →₀ M)).ker = ⊥ := ker_eq_bot.2 (single_injective a) lemma lsingle_range_le_ker_lapply (s t : set α) (h : disjoint s t) : (⨆a∈s, (lsingle a : M →ₗ[R] (α →₀ M)).range) ≤ (⨅a∈t, ker (lapply a)) := begin refine supr_le (assume a₁, supr_le $ assume h₁, range_le_iff_comap.2 _), simp only [(ker_comp _ _).symm, eq_top_iff, le_def', mem_ker, comap_infi, mem_infi], assume b hb a₂ h₂, have : a₁ ≠ a₂ := assume eq, h ⟨h₁, eq.symm ▸ h₂⟩, exact single_eq_of_ne this end lemma infi_ker_lapply_le_bot : (⨅a, ker (lapply a : (α →₀ M) →ₗ[R] M)) ≤ ⊥ := begin simp only [le_def', mem_infi, mem_ker, mem_bot, lapply_apply], exact assume a h, finsupp.ext h end lemma supr_lsingle_range : (⨆a, (lsingle a : M →ₗ[R] (α →₀ M)).range) = ⊤ := begin refine (eq_top_iff.2 $ le_def'.2 $ assume f _, _), rw [← sum_single f], refine sum_mem _ (assume a ha, submodule.mem_supr_of_mem a $ set.mem_image_of_mem _ trivial) end lemma disjoint_lsingle_lsingle (s t : set α) (hs : disjoint s t) : disjoint (⨆a∈s, (lsingle a : M →ₗ[R] (α →₀ M)).range) (⨆a∈t, (lsingle a).range) := begin refine disjoint.mono (lsingle_range_le_ker_lapply _ _ $ disjoint_compl_right s) (lsingle_range_le_ker_lapply _ _ $ disjoint_compl_right t) (le_trans (le_infi $ assume i, _) infi_ker_lapply_le_bot), classical, by_cases his : i ∈ s, { by_cases hit : i ∈ t, { exact (hs ⟨his, hit⟩).elim }, exact inf_le_right_of_le (infi_le_of_le i $ infi_le _ hit) }, exact inf_le_left_of_le (infi_le_of_le i $ infi_le _ his) end lemma span_single_image (s : set M) (a : α) : submodule.span R (single a '' s) = (submodule.span R s).map (lsingle a) := by rw ← span_image; refl variables (M R) def supported (s : set α) : submodule R (α →₀ M) := begin refine ⟨ {p | ↑p.support ⊆ s }, _, _, _ ⟩, { simp only [subset_def, finset.mem_coe, set.mem_set_of_eq, mem_support_iff, zero_apply], assume h ha, exact (ha rfl).elim }, { assume p q hp hq, refine subset.trans (subset.trans (finset.coe_subset.2 support_add) _) (union_subset hp hq), rw [finset.coe_union] }, { assume a p hp, refine subset.trans (finset.coe_subset.2 support_smul) hp } end variables {M} lemma mem_supported {s : set α} (p : α →₀ M) : p ∈ (supported M R s) ↔ ↑p.support ⊆ s := iff.rfl lemma mem_supported' {s : set α} (p : α →₀ M) : p ∈ supported M R s ↔ ∀ x ∉ s, p x = 0 := by haveI := classical.dec_pred (λ (x : α), x ∈ s); simp [mem_supported, set.subset_def, not_imp_comm] lemma single_mem_supported {s : set α} {a : α} (b : M) (h : a ∈ s) : single a b ∈ supported M R s := set.subset.trans support_single_subset (finset.singleton_subset_set_iff.2 h) lemma supported_eq_span_single (s : set α) : supported R R s = span R ((λ i, single i 1) '' s) := begin refine (span_eq_of_le _ _ (le_def'.2 $ λ l hl, _)).symm, { rintro _ ⟨_, hp, rfl ⟩ , exact single_mem_supported R 1 hp }, { rw ← l.sum_single, refine sum_mem _ (λ i il, _), convert @smul_mem R (α →₀ R) _ _ _ _ (single i 1) (l i) _, { simp }, apply subset_span, apply set.mem_image_of_mem _ (hl il) } end variables (M R) def restrict_dom (s : set α) : (α →₀ M) →ₗ supported M R s := linear_map.cod_restrict _ { to_fun := filter (∈ s), map_add' := λ l₁ l₂, filter_add, map_smul' := λ a l, filter_smul } (λ l, (mem_supported' _ _).2 $ λ x, filter_apply_neg (∈ s) l) variables {M R} section @[simp] theorem restrict_dom_apply (s : set α) (l : α →₀ M) : ((restrict_dom M R s : (α →₀ M) →ₗ supported M R s) l : α →₀ M) = finsupp.filter (∈ s) l := rfl end theorem restrict_dom_comp_subtype (s : set α) : (restrict_dom M R s).comp (submodule.subtype _) = linear_map.id := begin ext l a, by_cases a ∈ s; simp [h], exact ((mem_supported' R l.1).1 l.2 a h).symm end theorem range_restrict_dom (s : set α) : (restrict_dom M R s).range = ⊤ := begin have := linear_map.range_comp (submodule.subtype _) (restrict_dom M R s), rw [restrict_dom_comp_subtype, linear_map.range_id] at this, exact eq_top_mono (submodule.map_mono le_top) this.symm end theorem supported_mono {s t : set α} (st : s ⊆ t) : supported M R s ≤ supported M R t := λ l h, set.subset.trans h st @[simp] theorem supported_empty : supported M R (∅ : set α) = ⊥ := eq_bot_iff.2 $ λ l h, (submodule.mem_bot R).2 $ by ext; simp [*, mem_supported'] at * @[simp] theorem supported_univ : supported M R (set.univ : set α) = ⊤ := eq_top_iff.2 $ λ l _, set.subset_univ _ theorem supported_Union {δ : Type*} (s : δ → set α) : supported M R (⋃ i, s i) = ⨆ i, supported M R (s i) := begin refine le_antisymm _ (supr_le $ λ i, supported_mono $ set.subset_Union _ _), haveI := classical.dec_pred (λ x, x ∈ (⋃ i, s i)), suffices : ((submodule.subtype _).comp (restrict_dom M R (⋃ i, s i))).range ≤ ⨆ i, supported M R (s i), { rwa [linear_map.range_comp, range_restrict_dom, map_top, range_subtype] at this }, rw [range_le_iff_comap, eq_top_iff], rintro l ⟨⟩, apply finsupp.induction l, {exact zero_mem _}, refine λ x a l hl a0, add_mem _ _, by_cases (∃ i, x ∈ s i); simp [h], { cases h with i hi, exact le_supr (λ i, supported M R (s i)) i (single_mem_supported R _ hi) } end theorem supported_union (s t : set α) : supported M R (s ∪ t) = supported M R s ⊔ supported M R t := by erw [set.union_eq_Union, supported_Union, supr_bool_eq]; refl theorem supported_Inter {ι : Type*} (s : ι → set α) : supported M R (⋂ i, s i) = ⨅ i, supported M R (s i) := begin refine le_antisymm (le_infi $ λ i, supported_mono $ set.Inter_subset _ _) _, simp [le_def, infi_coe, set.subset_def], exact λ l, set.subset_Inter end def supported_equiv_finsupp (s : set α) : (supported M R s) ≃ₗ[R] (s →₀ M) := begin let F : (supported M R s) ≃ (s →₀ M) := restrict_support_equiv s M, refine F.to_linear_equiv _, have : (F : (supported M R s) → (↥s →₀ M)) = ((lsubtype_domain s : (α →₀ M) →ₗ[R] (s →₀ M)).comp (submodule.subtype (supported M R s))) := rfl, rw this, exact linear_map.is_linear _ end /-- finsupp.sum as a linear map. -/ def lsum (f : α → M →ₗ[R] N) : (α →₀ M) →ₗ[R] N := ⟨λ d, d.sum (λ i, f i), assume d₁ d₂, by simp [sum_add_index], assume a d, by simp [sum_smul_index', smul_sum]⟩ @[simp] lemma coe_lsum (f : α → M →ₗ[R] N) : (lsum f : (α →₀ M) → N) = λ d, d.sum (λ i, f i) := rfl theorem lsum_apply (f : α → M →ₗ[R] N) (l : α →₀ M) : finsupp.lsum f l = l.sum (λ b, f b) := rfl theorem lsum_single (f : α → M →ₗ[R] N) (i : α) (m : M) : finsupp.lsum f (finsupp.single i m) = f i m := finsupp.sum_single_index (f i).map_zero section lmap_domain variables {α' : Type*} {α'' : Type*} (M R) def lmap_domain (f : α → α') : (α →₀ M) →ₗ[R] (α' →₀ M) := ⟨map_domain f, assume a b, map_domain_add, map_domain_smul⟩ @[simp] theorem lmap_domain_apply (f : α → α') (l : α →₀ M) : (lmap_domain M R f : (α →₀ M) →ₗ[R] (α' →₀ M)) l = map_domain f l := rfl @[simp] theorem lmap_domain_id : (lmap_domain M R id : (α →₀ M) →ₗ[R] α →₀ M) = linear_map.id := linear_map.ext $ λ l, map_domain_id theorem lmap_domain_comp (f : α → α') (g : α' → α'') : lmap_domain M R (g ∘ f) = (lmap_domain M R g).comp (lmap_domain M R f) := linear_map.ext $ λ l, map_domain_comp theorem supported_comap_lmap_domain (f : α → α') (s : set α') : supported M R (f ⁻¹' s) ≤ (supported M R s).comap (lmap_domain M R f) := λ l (hl : ↑l.support ⊆ f ⁻¹' s), show ↑(map_domain f l).support ⊆ s, begin rw [← set.image_subset_iff, ← finset.coe_image] at hl, exact set.subset.trans map_domain_support hl end theorem lmap_domain_supported [nonempty α] (f : α → α') (s : set α) : (supported M R s).map (lmap_domain M R f) = supported M R (f '' s) := begin inhabit α, refine le_antisymm (map_le_iff_le_comap.2 $ le_trans (supported_mono $ set.subset_preimage_image _ _) (supported_comap_lmap_domain _ _ _ _)) _, intros l hl, refine ⟨(lmap_domain M R (function.inv_fun_on f s) : (α' →₀ M) →ₗ α →₀ M) l, λ x hx, _, _⟩, { rcases finset.mem_image.1 (map_domain_support hx) with ⟨c, hc, rfl⟩, exact function.inv_fun_on_mem (by simpa using hl hc) }, { rw [← linear_map.comp_apply, ← lmap_domain_comp], refine (map_domain_congr $ λ c hc, _).trans map_domain_id, exact function.inv_fun_on_eq (by simpa using hl hc) } end theorem lmap_domain_disjoint_ker (f : α → α') {s : set α} (H : ∀ a b ∈ s, f a = f b → a = b) : disjoint (supported M R s) (lmap_domain M R f).ker := begin rintro l ⟨h₁, h₂⟩, rw [mem_coe, mem_ker, lmap_domain_apply, map_domain] at h₂, simp, ext x, haveI := classical.dec_pred (λ x, x ∈ s), by_cases xs : x ∈ s, { have : finsupp.sum l (λ a, finsupp.single (f a)) (f x) = 0, {rw h₂, refl}, rw [finsupp.sum_apply, finsupp.sum, finset.sum_eq_single x] at this, { simpa [finsupp.single_apply] }, { intros y hy xy, simp [mt (H _ _ (h₁ hy) xs) xy] }, { simp {contextual := tt} } }, { by_contra h, exact xs (h₁ $ finsupp.mem_support_iff.2 h) } end end lmap_domain section total variables (α) {α' : Type*} (M) {M' : Type*} (R) [add_comm_group M'] [module R M'] (v : α → M) {v' : α' → M'} /-- Interprets (l : α →₀ R) as linear combination of the elements in the family (v : α → M) and evaluates this linear combination. -/ protected def total : (α →₀ R) →ₗ M := finsupp.lsum (λ i, linear_map.id.smul_right (v i)) variables {α M v} theorem total_apply (l : α →₀ R) : finsupp.total α M R v l = l.sum (λ i a, a • v i) := rfl theorem total_apply_of_mem_supported {l : α →₀ R} {s : finset α} (hs : l ∈ supported R R (↑s : set α)) : finsupp.total α M R v l = s.sum (λ i, l i • v i) := finset.sum_subset hs $ λ x _ hxg, show l x • v x = 0, by rw [not_mem_support_iff.1 hxg, zero_smul] @[simp] theorem total_single (c : R) (a : α) : finsupp.total α M R v (single a c) = c • (v a) := by simp [total_apply, sum_single_index] theorem total_range (h : function.surjective v) : (finsupp.total α M R v).range = ⊤ := begin apply range_eq_top.2, intros x, apply exists.elim (h x), exact λ i hi, ⟨single i 1, by simp [hi]⟩ end lemma range_total : (finsupp.total α M R v).range = span R (range v) := begin ext x, split, { intros hx, rw [linear_map.mem_range] at hx, rcases hx with ⟨l, hl⟩, rw ← hl, rw finsupp.total_apply, unfold finsupp.sum, apply sum_mem (span R (range v)), exact λ i hi, submodule.smul_mem _ _ (subset_span (mem_range_self i)) }, { apply span_le.2, intros x hx, rcases hx with ⟨i, hi⟩, rw [mem_coe, linear_map.mem_range], use finsupp.single i 1, simp [hi] } end theorem lmap_domain_total (f : α → α') (g : M →ₗ[R] M') (h : ∀ i, g (v i) = v' (f i)) : (finsupp.total α' M' R v').comp (lmap_domain R R f) = g.comp (finsupp.total α M R v) := by ext l; simp [total_apply, finsupp.sum_map_domain_index, add_smul, h] theorem total_emb_domain (f : α ↪ α') (l : α →₀ R) : (finsupp.total α' M' R v') (emb_domain f l) = (finsupp.total α M' R (v' ∘ f)) l := by simp [total_apply, finsupp.sum, support_emb_domain, emb_domain_apply] theorem total_map_domain (f : α → α') (hf : function.injective f) (l : α →₀ R) : (finsupp.total α' M' R v') (map_domain f l) = (finsupp.total α M' R (v' ∘ f)) l := begin have : map_domain f l = emb_domain ⟨f, hf⟩ l, { rw emb_domain_eq_map_domain ⟨f, hf⟩, refl }, rw this, apply total_emb_domain R ⟨f, hf⟩ l end theorem span_eq_map_total (s : set α): span R (v '' s) = submodule.map (finsupp.total α M R v) (supported R R s) := begin apply span_eq_of_le, { intros x hx, rw set.mem_image at hx, apply exists.elim hx, intros i hi, exact ⟨_, finsupp.single_mem_supported R 1 hi.1, by simp [hi.2]⟩ }, { refine map_le_iff_le_comap.2 (λ z hz, _), have : ∀i, z i • v i ∈ span R (v '' s), { intro c, haveI := classical.dec_pred (λ x, x ∈ s), by_cases c ∈ s, { exact smul_mem _ _ (subset_span (set.mem_image_of_mem _ h)) }, { simp [(finsupp.mem_supported' R _).1 hz _ h] } }, refine sum_mem _ _, simp [this] } end theorem mem_span_iff_total {s : set α} {x : M} : x ∈ span R (v '' s) ↔ ∃ l ∈ supported R R s, finsupp.total α M R v l = x := by rw span_eq_map_total; simp variables (α) (M) (v) protected def total_on (s : set α) : supported R R s →ₗ[R] span R (v '' s) := linear_map.cod_restrict _ ((finsupp.total _ _ _ v).comp (submodule.subtype (supported R R s))) $ λ ⟨l, hl⟩, (mem_span_iff_total _).2 ⟨l, hl, rfl⟩ variables {α} {M} {v} theorem total_on_range (s : set α) : (finsupp.total_on α M R v s).range = ⊤ := by rw [finsupp.total_on, linear_map.range, linear_map.map_cod_restrict, ← linear_map.range_le_iff_comap, range_subtype, map_top, linear_map.range_comp, range_subtype]; exact le_of_eq (span_eq_map_total _ _) theorem total_comp (f : α' → α) : (finsupp.total α' M R (v ∘ f)) = (finsupp.total α M R v).comp (lmap_domain R R f) := begin ext l, simp [total_apply], rw sum_map_domain_index; simp [add_smul], end lemma total_comap_domain (f : α → α') (l : α' →₀ R) (hf : set.inj_on f (f ⁻¹' ↑l.support)) : finsupp.total α M R v (finsupp.comap_domain f l hf) = (l.support.preimage f hf).sum (λ i, (l (f i)) • (v i)) := by rw finsupp.total_apply; refl lemma total_on_finset {s : finset α} {f : α → R} (g : α → M) (hf : ∀ a, f a ≠ 0 → a ∈ s): finsupp.total α M R g (finsupp.on_finset s f hf) = finset.sum s (λ (x : α), f x • g x) := begin simp only [finsupp.total_apply, finsupp.sum, finsupp.on_finset_apply, finsupp.support_on_finset], rw finset.sum_filter_of_ne, intros x hx h, contrapose! h, simp [h], end end total /-- An equivalence of domains induces a linear equivalence of finitely supported functions. -/ protected def dom_lcongr {α₁ : Type*} {α₂ : Type*} (e : α₁ ≃ α₂) : (α₁ →₀ M) ≃ₗ[R] (α₂ →₀ M) := (finsupp.dom_congr e).to_linear_equiv begin change is_linear_map R (lmap_domain M R e : (α₁ →₀ M) →ₗ[R] (α₂ →₀ M)), exact linear_map.is_linear _ end @[simp] theorem dom_lcongr_single {α₁ : Type*} {α₂ : Type*} (e : α₁ ≃ α₂) (i : α₁) (m : M) : (finsupp.dom_lcongr e : _ ≃ₗ[R] _) (finsupp.single i m) = finsupp.single (e i) m := by simp [finsupp.dom_lcongr, equiv.to_linear_equiv, finsupp.dom_congr, map_domain_single] noncomputable def congr {α' : Type*} (s : set α) (t : set α') (e : s ≃ t) : supported M R s ≃ₗ[R] supported M R t := begin haveI := classical.dec_pred (λ x, x ∈ s), haveI := classical.dec_pred (λ x, x ∈ t), refine linear_equiv.trans (finsupp.supported_equiv_finsupp s) (linear_equiv.trans _ (finsupp.supported_equiv_finsupp t).symm), exact finsupp.dom_lcongr e end /-- An equivalence of domain and a linear equivalence of codomain induce a linear equivalence of the corresponding finitely supported functions. -/ def lcongr {ι κ : Sort*} (e₁ : ι ≃ κ) (e₂ : M ≃ₗ[R] N) : (ι →₀ M) ≃ₗ[R] (κ →₀ N) := (finsupp.dom_lcongr e₁).trans { to_fun := map_range e₂ e₂.map_zero, inv_fun := map_range e₂.symm e₂.symm.map_zero, left_inv := λ f, finsupp.induction f (by simp_rw map_range_zero) $ λ a b f ha hb ih, by rw [map_range_add e₂.map_add, map_range_add e₂.symm.map_add, map_range_single, map_range_single, e₂.symm_apply_apply, ih], right_inv := λ f, finsupp.induction f (by simp_rw map_range_zero) $ λ a b f ha hb ih, by rw [map_range_add e₂.symm.map_add, map_range_add e₂.map_add, map_range_single, map_range_single, e₂.apply_symm_apply, ih], map_add' := map_range_add e₂.map_add, map_smul' := λ c f, finsupp.induction f (by rw [smul_zero, map_range_zero, smul_zero]) $ λ a b f ha hb ih, by rw [smul_add, smul_single, map_range_add e₂.map_add, map_range_single, e₂.map_smul, ih, map_range_add e₂.map_add, smul_add, map_range_single, smul_single] } @[simp] theorem lcongr_single {ι κ : Sort*} (e₁ : ι ≃ κ) (e₂ : M ≃ₗ[R] N) (i : ι) (m : M) : lcongr e₁ e₂ (finsupp.single i m) = finsupp.single (e₁ i) (e₂ m) := by simp [lcongr] end finsupp variables {R : Type*} {M : Type*} {N : Type*} variables [ring R] [add_comm_group M] [module R M] [add_comm_group N] [module R N] lemma linear_map.map_finsupp_total (f : M →ₗ[R] N) {ι : Type*} {g : ι → M} (l : ι →₀ R) : f (finsupp.total ι M R g l) = finsupp.total ι N R (f ∘ g) l := by simp only [finsupp.total_apply, finsupp.total_apply, finsupp.sum, f.map_sum, f.map_smul] lemma submodule.exists_finset_of_mem_supr {ι : Sort*} (p : ι → submodule R M) {m : M} (hm : m ∈ ⨆ i, p i) : ∃ s : finset ι, m ∈ ⨆ i ∈ s, p i := begin obtain ⟨f, hf, rfl⟩ : ∃ f ∈ finsupp.supported R R (⋃ i, ↑(p i)), finsupp.total M M R id f = m, { have aux : (id : M → M) '' (⋃ (i : ι), ↑(p i)) = (⋃ (i : ι), ↑(p i)) := set.image_id _, rwa [supr_eq_span, ← aux, finsupp.mem_span_iff_total R] at hm }, let t : finset M := f.support, have ht : ∀ x : {x // x ∈ t}, ∃ i, ↑x ∈ p i, { intros x, rw finsupp.mem_supported at hf, specialize hf x.2, rwa set.mem_Union at hf }, choose g hg using ht, let s : finset ι := finset.univ.image g, use s, simp only [mem_supr, supr_le_iff], assume N hN, rw [finsupp.total_apply, finsupp.sum, ← submodule.mem_coe], apply N.sum_mem, assume x hx, apply submodule.smul_mem, let i : ι := g ⟨x, hx⟩, have hi : i ∈ s, { rw finset.mem_image, exact ⟨⟨x, hx⟩, finset.mem_univ _, rfl⟩ }, exact hN i hi (hg _), end
2f4ee973ab5eb314b0833fd173825b7a9a32d32c
680b0d1592ce164979dab866b232f6fa743f2cc8
/hott/hit/pushout.hlean
a743486a0c2407692b72b3dfbb108f19706c082f
[ "Apache-2.0" ]
permissive
syohex/lean
657428ab520f8277fc18cf04bea2ad200dbae782
081ad1212b686780f3ff8a6d0e5f8a1d29a7d8bc
refs/heads/master
1,611,274,838,635
1,452,668,188,000
1,452,668,188,000
49,562,028
0
0
null
1,452,675,604,000
1,452,675,602,000
null
UTF-8
Lean
false
false
7,743
hlean
/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn Declaration of the pushout -/ import .quotient cubical.square types.sigma open quotient eq sum equiv equiv.ops is_trunc namespace pushout section parameters {TL BL TR : Type} (f : TL → BL) (g : TL → TR) local abbreviation A := BL + TR inductive pushout_rel : A → A → Type := | Rmk : Π(x : TL), pushout_rel (inl (f x)) (inr (g x)) open pushout_rel local abbreviation R := pushout_rel definition pushout : Type := quotient R -- TODO: define this in root namespace parameters {f g} definition inl (x : BL) : pushout := class_of R (inl x) definition inr (x : TR) : pushout := class_of R (inr x) definition glue (x : TL) : inl (f x) = inr (g x) := eq_of_rel pushout_rel (Rmk f g x) protected definition rec {P : pushout → Type} (Pinl : Π(x : BL), P (inl x)) (Pinr : Π(x : TR), P (inr x)) (Pglue : Π(x : TL), Pinl (f x) =[glue x] Pinr (g x)) (y : pushout) : P y := begin induction y, { cases a, apply Pinl, apply Pinr}, { cases H, apply Pglue} end protected definition rec_on [reducible] {P : pushout → Type} (y : pushout) (Pinl : Π(x : BL), P (inl x)) (Pinr : Π(x : TR), P (inr x)) (Pglue : Π(x : TL), Pinl (f x) =[glue x] Pinr (g x)) : P y := rec Pinl Pinr Pglue y theorem rec_glue {P : pushout → Type} (Pinl : Π(x : BL), P (inl x)) (Pinr : Π(x : TR), P (inr x)) (Pglue : Π(x : TL), Pinl (f x) =[glue x] Pinr (g x)) (x : TL) : apdo (rec Pinl Pinr Pglue) (glue x) = Pglue x := !rec_eq_of_rel protected definition elim {P : Type} (Pinl : BL → P) (Pinr : TR → P) (Pglue : Π(x : TL), Pinl (f x) = Pinr (g x)) (y : pushout) : P := rec Pinl Pinr (λx, pathover_of_eq (Pglue x)) y protected definition elim_on [reducible] {P : Type} (y : pushout) (Pinl : BL → P) (Pinr : TR → P) (Pglue : Π(x : TL), Pinl (f x) = Pinr (g x)) : P := elim Pinl Pinr Pglue y theorem elim_glue {P : Type} (Pinl : BL → P) (Pinr : TR → P) (Pglue : Π(x : TL), Pinl (f x) = Pinr (g x)) (x : TL) : ap (elim Pinl Pinr Pglue) (glue x) = Pglue x := begin apply eq_of_fn_eq_fn_inv !(pathover_constant (glue x)), rewrite [▸*,-apdo_eq_pathover_of_eq_ap,↑pushout.elim,rec_glue], end protected definition elim_type (Pinl : BL → Type) (Pinr : TR → Type) (Pglue : Π(x : TL), Pinl (f x) ≃ Pinr (g x)) (y : pushout) : Type := elim Pinl Pinr (λx, ua (Pglue x)) y protected definition elim_type_on [reducible] (y : pushout) (Pinl : BL → Type) (Pinr : TR → Type) (Pglue : Π(x : TL), Pinl (f x) ≃ Pinr (g x)) : Type := elim_type Pinl Pinr Pglue y theorem elim_type_glue (Pinl : BL → Type) (Pinr : TR → Type) (Pglue : Π(x : TL), Pinl (f x) ≃ Pinr (g x)) (x : TL) : transport (elim_type Pinl Pinr Pglue) (glue x) = Pglue x := by rewrite [tr_eq_cast_ap_fn,↑elim_type,elim_glue];apply cast_ua_fn protected definition rec_hprop {P : pushout → Type} [H : Πx, is_hprop (P x)] (Pinl : Π(x : BL), P (inl x)) (Pinr : Π(x : TR), P (inr x)) (y : pushout) := rec Pinl Pinr (λx, !is_hprop.elimo) y protected definition elim_hprop {P : Type} [H : is_hprop P] (Pinl : BL → P) (Pinr : TR → P) (y : pushout) : P := elim Pinl Pinr (λa, !is_hprop.elim) y end end pushout attribute pushout.inl pushout.inr [constructor] attribute pushout.rec pushout.elim [unfold 10] [recursor 10] attribute pushout.elim_type [unfold 9] attribute pushout.rec_on pushout.elim_on [unfold 7] attribute pushout.elim_type_on [unfold 6] open sigma namespace pushout variables {TL BL TR : Type} (f : TL → BL) (g : TL → TR) /- The non-dependent universal property -/ definition pushout_arrow_equiv (C : Type) : (pushout f g → C) ≃ (Σ(i : BL → C) (j : TR → C), Πc, i (f c) = j (g c)) := begin fapply equiv.MK, { intro f, exact ⟨λx, f (inl x), λx, f (inr x), λx, ap f (glue x)⟩}, { intro v x, induction v with i w, induction w with j p, induction x, exact (i a), exact (j a), exact (p x)}, { intro v, induction v with i w, induction w with j p, esimp, apply ap (λp, ⟨i, j, p⟩), apply eq_of_homotopy, intro x, apply elim_glue}, { intro f, apply eq_of_homotopy, intro x, induction x: esimp, apply eq_pathover, apply hdeg_square, esimp, apply elim_glue}, end end pushout open function sigma.ops namespace pushout /- The flattening lemma -/ section universe variable u parameters {TL BL TR : Type} (f : TL → BL) (g : TL → TR) (Pinl : BL → Type.{u}) (Pinr : TR → Type.{u}) (Pglue : Π(x : TL), Pinl (f x) ≃ Pinr (g x)) include Pglue local abbreviation A := BL + TR local abbreviation R : A → A → Type := pushout_rel f g local abbreviation P [unfold 5] := pushout.elim_type Pinl Pinr Pglue local abbreviation F : sigma (Pinl ∘ f) → sigma Pinl := λz, ⟨ f z.1 , z.2 ⟩ local abbreviation G : sigma (Pinl ∘ f) → sigma Pinr := λz, ⟨ g z.1 , Pglue z.1 z.2 ⟩ local abbreviation Pglue' : Π ⦃a a' : A⦄, R a a' → sum.rec Pinl Pinr a ≃ sum.rec Pinl Pinr a' := @pushout_rel.rec TL BL TR f g (λ ⦃a a' ⦄ (r : R a a'), (sum.rec Pinl Pinr a) ≃ (sum.rec Pinl Pinr a')) Pglue protected definition flattening : sigma P ≃ pushout F G := begin assert H : Πz, P z ≃ quotient.elim_type (sum.rec Pinl Pinr) Pglue' z, { intro z, apply equiv_of_eq, assert H1 : pushout.elim_type Pinl Pinr Pglue = quotient.elim_type (sum.rec Pinl Pinr) Pglue', { change quotient.rec (sum.rec Pinl Pinr) (λa a' r, pushout_rel.cases_on r (λx, pathover_of_eq (ua (Pglue x)))) = quotient.rec (sum.rec Pinl Pinr) (λa a' r, pathover_of_eq (ua (pushout_rel.cases_on r Pglue))), assert H2 : Π⦃a a'⦄ r : pushout_rel f g a a', pushout_rel.cases_on r (λx, pathover_of_eq (ua (Pglue x))) = pathover_of_eq (ua (pushout_rel.cases_on r Pglue)) :> sum.rec Pinl Pinr a =[eq_of_rel (pushout_rel f g) r] sum.rec Pinl Pinr a', { intros a a' r, cases r, reflexivity }, rewrite (eq_of_homotopy3 H2) }, apply ap10 H1 }, apply equiv.trans (sigma_equiv_sigma_id H), apply equiv.trans (quotient.flattening.flattening_lemma R (sum.rec Pinl Pinr) Pglue'), fapply equiv.MK, { intro q, induction q with z z z' fr, { induction z with a p, induction a with x x, { exact inl ⟨x, p⟩ }, { exact inr ⟨x, p⟩ } }, { induction fr with a a' r p, induction r with x, exact glue ⟨x, p⟩ } }, { intro q, induction q with xp xp xp, { exact class_of _ ⟨sum.inl xp.1, xp.2⟩ }, { exact class_of _ ⟨sum.inr xp.1, xp.2⟩ }, { apply eq_of_rel, constructor } }, { intro q, induction q with xp xp xp: induction xp with x p, { apply ap inl, reflexivity }, { apply ap inr, reflexivity }, { unfold F, unfold G, apply eq_pathover, rewrite [ap_id,ap_compose' (quotient.elim _ _)], krewrite elim_glue, krewrite elim_eq_of_rel, apply hrefl } }, { intro q, induction q with z z z' fr, { induction z with a p, induction a with x x, { reflexivity }, { reflexivity } }, { induction fr with a a' r p, induction r with x, esimp, apply eq_pathover, rewrite [ap_id,ap_compose' (pushout.elim _ _ _)], krewrite elim_eq_of_rel, krewrite elim_glue, apply hrefl } } end end end pushout
2d1e3d35619693e93ecbea84fa300e17789f1d0a
d6124c8dbe5661dcc5b8c9da0a56fbf1f0480ad6
/test/out/script/jit.lean
332919b70ae56a34fdacd1a2f047acca850c0c85
[ "Apache-2.0" ]
permissive
xubaiw/lean4-papyrus
c3fbbf8ba162eb5f210155ae4e20feb2d32c8182
02e82973a5badda26fc0f9fd15b3d37e2eb309e0
refs/heads/master
1,691,425,756,824
1,632,122,825,000
1,632,123,075,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
284
lean
import Papyrus open Papyrus Script llvm module exit do define i32 @main() do ret i32 101 #jit exit llvm module echo do define i32 @main(i32 %argc) do ret %argc #jit echo #["a", "b", "c"] llvm module empty do pure () #jit empty -- Error: Module has no main function
2b0ef70dee965a064920d49eb411190cfc1c4d6e
0b8bcc39ea384da78d7a2528731fd15e35d89be3
/src/datalog.lean
b144f28780da5b8453b55aa40cc67957e8034b76
[]
no_license
cipher1024/lean-datalog
40298fd5a9feb5abc4b05ebca6aa67a7e82c8903
9f2de341b0a7ed022144e230950ed65d1e49bcec
refs/heads/lean-3.4.2
1,596,448,625,238
1,569,818,367,000
1,569,818,367,000
211,711,322
1
1
null
1,569,818,368,000
1,569,783,568,000
Lean
UTF-8
Lean
false
false
1,809
lean
/- Copyright (c) 2019 Simon Hudon and James King. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author(s): Simon Hudon and James King -/ namespace datalog def ident := string -- start with upper case def sym := string -- start with lower case inductive term | var : ident → term | sym : sym → term structure atom := (name : string) (args : list term) structure rule := (head : atom) (body : list (bool × atom)) structure program := (facts : list atom) (rules : list rule) (queries : list rule) def term.vars : term → set ident | (term.var v) := {v} | (term.sym _) := ∅ def big_union {α β γ} (S : γ) [has_mem α γ] (f : α → set β) : set β := λ x : β, ∃ a ∈ S, x ∈ f a notation `⋃ ` binder `, ` r:(scoped p, big_union set.univ p) := r notation `⋃ ` binder ` ∈ ` S `, ` r:(scoped p, big_union S p) := r def atom.vars (a : atom) : set ident := ⋃ x ∈ a.args, x.vars def rule.neg_vars (r : rule) : set ident := ⋃ x ∈ r.body, if x.1 then ∅ else x.2.vars def safe (r : rule) : Prop := (r.head.vars ⊆ ⋃ a ∈ r.body, a.2.vars) ∧ r.neg_vars ∩ r.head.vars = ∅ def fact := sym × list sym def query := bool × atom def fact.unify : fact → query → bool := sorry def rule.unify : rule → query → set query := sorry inductive run : set fact → -- result of the query set fact → -- input data base set rule → -- set of rules set query → -- queries Prop | nil (db : set fact) (rs : set rule) : run ∅ db rs ∅ | step (r db : set fact) (rs : set rule) (qs : set query) (cq : query) : run r db rs ((⋃ r ∈ rs, r.unify cq) ∪ qs) → run ({ k ∈ db | k.unify cq } ∪ r) db rs ({cq} ∪ qs) end datalog