blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 7
139
| content_id
stringlengths 40
40
| detected_licenses
listlengths 0
16
| license_type
stringclasses 2
values | repo_name
stringlengths 7
55
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringclasses 6
values | visit_date
int64 1,471B
1,694B
| revision_date
int64 1,378B
1,694B
| committer_date
int64 1,378B
1,694B
| github_id
float64 1.33M
604M
⌀ | star_events_count
int64 0
43.5k
| fork_events_count
int64 0
1.5k
| gha_license_id
stringclasses 6
values | gha_event_created_at
int64 1,402B
1,695B
⌀ | gha_created_at
int64 1,359B
1,637B
⌀ | gha_language
stringclasses 19
values | src_encoding
stringclasses 2
values | language
stringclasses 1
value | is_vendor
bool 1
class | is_generated
bool 1
class | length_bytes
int64 3
6.4M
| extension
stringclasses 4
values | content
stringlengths 3
6.12M
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2c8c1791ec1c5b8066df6e5525a7ad2a38ee261e
|
947fa6c38e48771ae886239b4edce6db6e18d0fb
|
/src/logic/basic.lean
|
0a712ccba10a8dc61e05afb98813b50d97829f0f
|
[
"Apache-2.0"
] |
permissive
|
ramonfmir/mathlib
|
c5dc8b33155473fab97c38bd3aa6723dc289beaa
|
14c52e990c17f5a00c0cc9e09847af16fabbed25
|
refs/heads/master
| 1,661,979,343,526
| 1,660,830,384,000
| 1,660,830,384,000
| 182,072,989
| 0
| 0
| null | 1,555,585,876,000
| 1,555,585,876,000
| null |
UTF-8
|
Lean
| false
| false
| 66,796
|
lean
|
/-
Copyright (c) 2016 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Leonardo de Moura
-/
import tactic.doc_commands
import tactic.reserved_notation
/-!
# Basic logic properties
This file is one of the earliest imports in mathlib.
## Implementation notes
Theorems that require decidability hypotheses are in the namespace "decidable".
Classical versions are in the namespace "classical".
In the presence of automation, this whole file may be unnecessary. On the other hand,
maybe it is useful for writing automation.
-/
open function
local attribute [instance, priority 10] classical.prop_decidable
section miscellany
/- We add the `inline` attribute to optimize VM computation using these declarations. For example,
`if p ∧ q then ... else ...` will not evaluate the decidability of `q` if `p` is false. -/
attribute [inline] and.decidable or.decidable decidable.false xor.decidable iff.decidable
decidable.true implies.decidable not.decidable ne.decidable
bool.decidable_eq decidable.to_bool
attribute [simp] cast_eq cast_heq
variables {α : Type*} {β : Type*}
/-- An identity function with its main argument implicit. This will be printed as `hidden` even
if it is applied to a large term, so it can be used for elision,
as done in the `elide` and `unelide` tactics. -/
@[reducible] def hidden {α : Sort*} {a : α} := a
/-- Ex falso, the nondependent eliminator for the `empty` type. -/
def empty.elim {C : Sort*} : empty → C.
instance : subsingleton empty := ⟨λa, a.elim⟩
instance subsingleton.prod {α β : Type*} [subsingleton α] [subsingleton β] : subsingleton (α × β) :=
⟨by { intros a b, cases a, cases b, congr, }⟩
instance : decidable_eq empty := λa, a.elim
instance sort.inhabited : inhabited Sort* := ⟨punit⟩
instance sort.inhabited' : inhabited default := ⟨punit.star⟩
instance psum.inhabited_left {α β} [inhabited α] : inhabited (psum α β) := ⟨psum.inl default⟩
instance psum.inhabited_right {α β} [inhabited β] : inhabited (psum α β) := ⟨psum.inr default⟩
@[priority 10] instance decidable_eq_of_subsingleton
{α} [subsingleton α] : decidable_eq α
| a b := is_true (subsingleton.elim a b)
@[simp] lemma eq_iff_true_of_subsingleton {α : Sort*} [subsingleton α] (x y : α) :
x = y ↔ true :=
by cc
/-- If all points are equal to a given point `x`, then `α` is a subsingleton. -/
lemma subsingleton_of_forall_eq {α : Sort*} (x : α) (h : ∀ y, y = x) : subsingleton α :=
⟨λ a b, (h a).symm ▸ (h b).symm ▸ rfl⟩
lemma subsingleton_iff_forall_eq {α : Sort*} (x : α) : subsingleton α ↔ ∀ y, y = x :=
⟨λ h y, @subsingleton.elim _ h y x, subsingleton_of_forall_eq x⟩
instance subtype.subsingleton (α : Sort*) [subsingleton α] (p : α → Prop) :
subsingleton (subtype p) :=
⟨λ ⟨x,_⟩ ⟨y,_⟩, have x = y, from subsingleton.elim _ _, by { cases this, refl }⟩
/-- Add an instance to "undo" coercion transitivity into a chain of coercions, because
most simp lemmas are stated with respect to simple coercions and will not match when
part of a chain. -/
@[simp] theorem coe_coe {α β γ} [has_coe α β] [has_coe_t β γ]
(a : α) : (a : γ) = (a : β) := rfl
theorem coe_fn_coe_trans
{α β γ δ} [has_coe α β] [has_coe_t_aux β γ] [has_coe_to_fun γ δ]
(x : α) : @coe_fn α _ _ x = @coe_fn β _ _ x := rfl
/-- Non-dependent version of `coe_fn_coe_trans`, helps `rw` figure out the argument. -/
theorem coe_fn_coe_trans'
{α β γ} {δ : out_param $ _} [has_coe α β] [has_coe_t_aux β γ] [has_coe_to_fun γ (λ _, δ)]
(x : α) : @coe_fn α _ _ x = @coe_fn β _ _ x := rfl
@[simp] theorem coe_fn_coe_base
{α β γ} [has_coe α β] [has_coe_to_fun β γ]
(x : α) : @coe_fn α _ _ x = @coe_fn β _ _ x := rfl
/-- Non-dependent version of `coe_fn_coe_base`, helps `rw` figure out the argument. -/
theorem coe_fn_coe_base'
{α β} {γ : out_param $ _} [has_coe α β] [has_coe_to_fun β (λ _, γ)]
(x : α) : @coe_fn α _ _ x = @coe_fn β _ _ x := rfl
-- This instance should have low priority, to ensure we follow the chain
-- `set_like → has_coe_to_sort`
attribute [instance, priority 10] coe_sort_trans
theorem coe_sort_coe_trans
{α β γ δ} [has_coe α β] [has_coe_t_aux β γ] [has_coe_to_sort γ δ]
(x : α) : @coe_sort α _ _ x = @coe_sort β _ _ x := rfl
/--
Many structures such as bundled morphisms coerce to functions so that you can
transparently apply them to arguments. For example, if `e : α ≃ β` and `a : α`
then you can write `e a` and this is elaborated as `⇑e a`. This type of
coercion is implemented using the `has_coe_to_fun` type class. There is one
important consideration:
If a type coerces to another type which in turn coerces to a function,
then it **must** implement `has_coe_to_fun` directly:
```lean
structure sparkling_equiv (α β) extends α ≃ β
-- if we add a `has_coe` instance,
instance {α β} : has_coe (sparkling_equiv α β) (α ≃ β) :=
⟨sparkling_equiv.to_equiv⟩
-- then a `has_coe_to_fun` instance **must** be added as well:
instance {α β} : has_coe_to_fun (sparkling_equiv α β) :=
⟨λ _, α → β, λ f, f.to_equiv.to_fun⟩
```
(Rationale: if we do not declare the direct coercion, then `⇑e a` is not in
simp-normal form. The lemma `coe_fn_coe_base` will unfold it to `⇑↑e a`. This
often causes loops in the simplifier.)
-/
library_note "function coercion"
@[simp] theorem coe_sort_coe_base
{α β γ} [has_coe α β] [has_coe_to_sort β γ]
(x : α) : @coe_sort α _ _ x = @coe_sort β _ _ x := rfl
/-- `pempty` is the universe-polymorphic analogue of `empty`. -/
@[derive decidable_eq]
inductive {u} pempty : Sort u
/-- Ex falso, the nondependent eliminator for the `pempty` type. -/
def pempty.elim {C : Sort*} : pempty → C.
instance subsingleton_pempty : subsingleton pempty := ⟨λa, a.elim⟩
@[simp] lemma not_nonempty_pempty : ¬ nonempty pempty :=
assume ⟨h⟩, h.elim
lemma congr_heq {α β γ : Sort*} {f : α → γ} {g : β → γ} {x : α} {y : β} (h₁ : f == g)
(h₂ : x == y) : f x = g y :=
by { cases h₂, cases h₁, refl }
lemma congr_arg_heq {α} {β : α → Sort*} (f : ∀ a, β a) : ∀ {a₁ a₂ : α}, a₁ = a₂ → f a₁ == f a₂
| a _ rfl := heq.rfl
lemma ulift.down_injective {α : Sort*} : function.injective (@ulift.down α)
| ⟨a⟩ ⟨b⟩ rfl := rfl
@[simp] lemma ulift.down_inj {α : Sort*} {a b : ulift α} : a.down = b.down ↔ a = b :=
⟨λ h, ulift.down_injective h, λ h, by rw h⟩
lemma plift.down_injective {α : Sort*} : function.injective (@plift.down α)
| ⟨a⟩ ⟨b⟩ rfl := rfl
@[simp] lemma plift.down_inj {α : Sort*} {a b : plift α} : a.down = b.down ↔ a = b :=
⟨λ h, plift.down_injective h, λ h, by rw h⟩
-- missing [symm] attribute for ne in core.
attribute [symm] ne.symm
lemma ne_comm {α} {a b : α} : a ≠ b ↔ b ≠ a := ⟨ne.symm, ne.symm⟩
@[simp] lemma eq_iff_eq_cancel_left {b c : α} :
(∀ {a}, a = b ↔ a = c) ↔ (b = c) :=
⟨λ h, by rw [← h], λ h a, by rw h⟩
@[simp] lemma eq_iff_eq_cancel_right {a b : α} :
(∀ {c}, a = c ↔ b = c) ↔ (a = b) :=
⟨λ h, by rw h, λ h a, by rw h⟩
/-- Wrapper for adding elementary propositions to the type class systems.
Warning: this can easily be abused. See the rest of this docstring for details.
Certain propositions should not be treated as a class globally,
but sometimes it is very convenient to be able to use the type class system
in specific circumstances.
For example, `zmod p` is a field if and only if `p` is a prime number.
In order to be able to find this field instance automatically by type class search,
we have to turn `p.prime` into an instance implicit assumption.
On the other hand, making `nat.prime` a class would require a major refactoring of the library,
and it is questionable whether making `nat.prime` a class is desirable at all.
The compromise is to add the assumption `[fact p.prime]` to `zmod.field`.
In particular, this class is not intended for turning the type class system
into an automated theorem prover for first order logic. -/
class fact (p : Prop) : Prop := (out [] : p)
/--
In most cases, we should not have global instances of `fact`; typeclass search only reads the head
symbol and then tries any instances, which means that adding any such instance will cause slowdowns
everywhere. We instead make them as lemmata and make them local instances as required.
-/
library_note "fact non-instances"
lemma fact.elim {p : Prop} (h : fact p) : p := h.1
lemma fact_iff {p : Prop} : fact p ↔ p := ⟨λ h, h.1, λ h, ⟨h⟩⟩
/-- Swaps two pairs of arguments to a function. -/
@[reducible] def function.swap₂ {ι₁ ι₂ : Sort*} {κ₁ : ι₁ → Sort*} {κ₂ : ι₂ → Sort*}
{φ : Π i₁, κ₁ i₁ → Π i₂, κ₂ i₂ → Sort*} (f : Π i₁ j₁ i₂ j₂, φ i₁ j₁ i₂ j₂) :
Π i₂ j₂ i₁ j₁, φ i₁ j₁ i₂ j₂ :=
λ i₂ j₂ i₁ j₁, f i₁ j₁ i₂ j₂
/-- If `x : α . tac_name` then `x.out : α`. These are definitionally equal, but this can
nevertheless be useful for various reasons, e.g. to apply further projection notation or in an
argument to `simp`. -/
def auto_param.out {α : Sort*} {n : name} (x : auto_param α n) : α := x
/-- If `x : α := d` then `x.out : α`. These are definitionally equal, but this can
nevertheless be useful for various reasons, e.g. to apply further projection notation or in an
argument to `simp`. -/
def opt_param.out {α : Sort*} {d : α} (x : α := d) : α := x
end miscellany
open function
/-!
### Declarations about propositional connectives
-/
theorem false_ne_true : false ≠ true
| h := h.symm ▸ trivial
section propositional
variables {a b c d e f : Prop}
/-! ### Declarations about `implies` -/
instance : is_refl Prop iff := ⟨iff.refl⟩
instance : is_trans Prop iff := ⟨λ _ _ _, iff.trans⟩
theorem iff_of_eq (e : a = b) : a ↔ b := e ▸ iff.rfl
theorem iff_iff_eq : (a ↔ b) ↔ a = b := ⟨propext, iff_of_eq⟩
@[simp] lemma eq_iff_iff {p q : Prop} : (p = q) ↔ (p ↔ q) := iff_iff_eq.symm
@[simp] theorem imp_self : (a → a) ↔ true := iff_true_intro id
lemma iff.imp (h₁ : a ↔ b) (h₂ : c ↔ d) : (a → c) ↔ (b → d) := imp_congr h₁ h₂
@[simp] lemma eq_true_eq_id : eq true = id :=
by { funext, simp only [true_iff, id.def, iff_self, eq_iff_iff], }
theorem imp_intro {α β : Prop} (h : α) : β → α := λ _, h
theorem imp_false : (a → false) ↔ ¬ a := iff.rfl
theorem imp_and_distrib {α} : (α → b ∧ c) ↔ (α → b) ∧ (α → c) :=
⟨λ h, ⟨λ ha, (h ha).left, λ ha, (h ha).right⟩,
λ h ha, ⟨h.left ha, h.right ha⟩⟩
@[simp] theorem and_imp : (a ∧ b → c) ↔ (a → b → c) :=
iff.intro (λ h ha hb, h ⟨ha, hb⟩) (λ h ⟨ha, hb⟩, h ha hb)
theorem iff_def : (a ↔ b) ↔ (a → b) ∧ (b → a) :=
iff_iff_implies_and_implies _ _
theorem iff_def' : (a ↔ b) ↔ (b → a) ∧ (a → b) :=
iff_def.trans and.comm
theorem imp_true_iff {α : Sort*} : (α → true) ↔ true :=
iff_true_intro $ λ_, trivial
theorem imp_iff_right (ha : a) : (a → b) ↔ b :=
⟨λf, f ha, imp_intro⟩
lemma imp_iff_not (hb : ¬ b) : a → b ↔ ¬ a := imp_congr_right $ λ _, iff_false_intro hb
theorem decidable.imp_iff_right_iff [decidable a] : ((a → b) ↔ b) ↔ (a ∨ b) :=
⟨λ H, (decidable.em a).imp_right $ λ ha', H.1 $ λ ha, (ha' ha).elim,
λ H, H.elim imp_iff_right $ λ hb, ⟨λ hab, hb, λ _ _, hb⟩⟩
@[simp] theorem imp_iff_right_iff : ((a → b) ↔ b) ↔ (a ∨ b) :=
decidable.imp_iff_right_iff
lemma decidable.and_or_imp [decidable a] : (a ∧ b) ∨ (a → c) ↔ a → (b ∨ c) :=
if ha : a then by simp only [ha, true_and, true_implies_iff]
else by simp only [ha, false_or, false_and, false_implies_iff]
@[simp] theorem and_or_imp : (a ∧ b) ∨ (a → c) ↔ a → (b ∨ c) :=
decidable.and_or_imp
/-! ### Declarations about `not` -/
/-- Ex falso for negation. From `¬ a` and `a` anything follows. This is the same as `absurd` with
the arguments flipped, but it is in the `not` namespace so that projection notation can be used. -/
def not.elim {α : Sort*} (H1 : ¬a) (H2 : a) : α := absurd H2 H1
@[reducible] theorem not.imp {a b : Prop} (H2 : ¬b) (H1 : a → b) : ¬a := mt H1 H2
theorem not_not_of_not_imp : ¬(a → b) → ¬¬a :=
mt not.elim
theorem not_of_not_imp {a : Prop} : ¬(a → b) → ¬b :=
mt imp_intro
theorem dec_em (p : Prop) [decidable p] : p ∨ ¬p := decidable.em p
theorem dec_em' (p : Prop) [decidable p] : ¬p ∨ p := (dec_em p).swap
theorem em (p : Prop) : p ∨ ¬p := classical.em _
theorem em' (p : Prop) : ¬p ∨ p := (em p).swap
theorem or_not {p : Prop} : p ∨ ¬p := em _
section eq_or_ne
variables {α : Sort*} (x y : α)
theorem decidable.eq_or_ne [decidable (x = y)] : x = y ∨ x ≠ y := dec_em $ x = y
theorem decidable.ne_or_eq [decidable (x = y)] : x ≠ y ∨ x = y := dec_em' $ x = y
theorem eq_or_ne : x = y ∨ x ≠ y := em $ x = y
theorem ne_or_eq : x ≠ y ∨ x = y := em' $ x = y
end eq_or_ne
theorem by_contradiction {p} : (¬p → false) → p := decidable.by_contradiction
-- alias by_contradiction ← by_contra
theorem by_contra {p} : (¬p → false) → p := decidable.by_contradiction
/--
In most of mathlib, we use the law of excluded middle (LEM) and the axiom of choice (AC) freely.
The `decidable` namespace contains versions of lemmas from the root namespace that explicitly
attempt to avoid the axiom of choice, usually by adding decidability assumptions on the inputs.
You can check if a lemma uses the axiom of choice by using `#print axioms foo` and seeing if
`classical.choice` appears in the list.
-/
library_note "decidable namespace"
/--
As mathlib is primarily classical,
if the type signature of a `def` or `lemma` does not require any `decidable` instances to state,
it is preferable not to introduce any `decidable` instances that are needed in the proof
as arguments, but rather to use the `classical` tactic as needed.
In the other direction, when `decidable` instances do appear in the type signature,
it is better to use explicitly introduced ones rather than allowing Lean to automatically infer
classical ones, as these may cause instance mismatch errors later.
-/
library_note "decidable arguments"
-- See Note [decidable namespace]
protected theorem decidable.not_not [decidable a] : ¬¬a ↔ a :=
iff.intro decidable.by_contradiction not_not_intro
/-- The Double Negation Theorem: `¬ ¬ P` is equivalent to `P`.
The left-to-right direction, double negation elimination (DNE),
is classically true but not constructively. -/
@[simp] theorem not_not : ¬¬a ↔ a := decidable.not_not
theorem of_not_not : ¬¬a → a := by_contra
lemma not_ne_iff {α : Sort*} {a b : α} : ¬ a ≠ b ↔ a = b := not_not
-- See Note [decidable namespace]
protected theorem decidable.of_not_imp [decidable a] (h : ¬ (a → b)) : a :=
decidable.by_contradiction (not_not_of_not_imp h)
theorem of_not_imp : ¬ (a → b) → a := decidable.of_not_imp
-- See Note [decidable namespace]
protected theorem decidable.not_imp_symm [decidable a] (h : ¬a → b) (hb : ¬b) : a :=
decidable.by_contradiction $ hb ∘ h
theorem not.decidable_imp_symm [decidable a] : (¬a → b) → ¬b → a := decidable.not_imp_symm
theorem not.imp_symm : (¬a → b) → ¬b → a := not.decidable_imp_symm
-- See Note [decidable namespace]
protected theorem decidable.not_imp_comm [decidable a] [decidable b] : (¬a → b) ↔ (¬b → a) :=
⟨not.decidable_imp_symm, not.decidable_imp_symm⟩
theorem not_imp_comm : (¬a → b) ↔ (¬b → a) := decidable.not_imp_comm
@[simp] theorem imp_not_self : (a → ¬a) ↔ ¬a := ⟨λ h ha, h ha ha, λ h _, h⟩
theorem decidable.not_imp_self [decidable a] : (¬a → a) ↔ a :=
by { have := @imp_not_self (¬a), rwa decidable.not_not at this }
@[simp] theorem not_imp_self : (¬a → a) ↔ a := decidable.not_imp_self
theorem imp.swap : (a → b → c) ↔ (b → a → c) :=
⟨swap, swap⟩
theorem imp_not_comm : (a → ¬b) ↔ (b → ¬a) :=
imp.swap
lemma iff.not (h : a ↔ b) : ¬ a ↔ ¬ b := not_congr h
lemma iff.not_left (h : a ↔ ¬ b) : ¬ a ↔ b := h.not.trans not_not
lemma iff.not_right (h : ¬ a ↔ b) : a ↔ ¬ b := not_not.symm.trans h.not
/-! ### Declarations about `xor` -/
@[simp] theorem xor_true : xor true = not := funext $ λ a, by simp [xor]
@[simp] theorem xor_false : xor false = id := funext $ λ a, by simp [xor]
theorem xor_comm (a b) : xor a b = xor b a := by simp [xor, and_comm, or_comm]
instance : is_commutative Prop xor := ⟨xor_comm⟩
@[simp] theorem xor_self (a : Prop) : xor a a = false := by simp [xor]
/-! ### Declarations about `and` -/
lemma iff.and (h₁ : a ↔ b) (h₂ : c ↔ d) : a ∧ c ↔ b ∧ d := and_congr h₁ h₂
theorem and_congr_left (h : c → (a ↔ b)) : a ∧ c ↔ b ∧ c :=
and.comm.trans $ (and_congr_right h).trans and.comm
theorem and_congr_left' (h : a ↔ b) : a ∧ c ↔ b ∧ c := h.and iff.rfl
theorem and_congr_right' (h : b ↔ c) : a ∧ b ↔ a ∧ c := iff.rfl.and h
theorem not_and_of_not_left (b : Prop) : ¬a → ¬(a ∧ b) :=
mt and.left
theorem not_and_of_not_right (a : Prop) {b : Prop} : ¬b → ¬(a ∧ b) :=
mt and.right
theorem and.imp_left (h : a → b) : a ∧ c → b ∧ c :=
and.imp h id
theorem and.imp_right (h : a → b) : c ∧ a → c ∧ b :=
and.imp id h
lemma and.right_comm : (a ∧ b) ∧ c ↔ (a ∧ c) ∧ b :=
by simp only [and.left_comm, and.comm]
lemma and_and_and_comm (a b c d : Prop) : (a ∧ b) ∧ c ∧ d ↔ (a ∧ c) ∧ b ∧ d :=
by rw [←and_assoc, @and.right_comm a, and_assoc]
lemma and_and_distrib_left (a b c : Prop) : a ∧ (b ∧ c) ↔ (a ∧ b) ∧ (a ∧ c) :=
by rw [and_and_and_comm, and_self]
lemma and_and_distrib_right (a b c : Prop) : (a ∧ b) ∧ c ↔ (a ∧ c) ∧ (b ∧ c) :=
by rw [and_and_and_comm, and_self]
lemma and_rotate : a ∧ b ∧ c ↔ b ∧ c ∧ a := by simp only [and.left_comm, and.comm]
lemma and.rotate : a ∧ b ∧ c → b ∧ c ∧ a := and_rotate.1
theorem and_not_self_iff (a : Prop) : a ∧ ¬ a ↔ false :=
iff.intro (assume h, (h.right) (h.left)) (assume h, h.elim)
theorem not_and_self_iff (a : Prop) : ¬ a ∧ a ↔ false :=
iff.intro (assume ⟨hna, ha⟩, hna ha) false.elim
theorem and_iff_left_of_imp {a b : Prop} (h : a → b) : (a ∧ b) ↔ a :=
iff.intro and.left (λ ha, ⟨ha, h ha⟩)
theorem and_iff_right_of_imp {a b : Prop} (h : b → a) : (a ∧ b) ↔ b :=
iff.intro and.right (λ hb, ⟨h hb, hb⟩)
@[simp] theorem and_iff_left_iff_imp {a b : Prop} : ((a ∧ b) ↔ a) ↔ (a → b) :=
⟨λ h ha, (h.2 ha).2, and_iff_left_of_imp⟩
@[simp] theorem and_iff_right_iff_imp {a b : Prop} : ((a ∧ b) ↔ b) ↔ (b → a) :=
⟨λ h ha, (h.2 ha).1, and_iff_right_of_imp⟩
@[simp] lemma iff_self_and {p q : Prop} : (p ↔ p ∧ q) ↔ (p → q) :=
by rw [@iff.comm p, and_iff_left_iff_imp]
@[simp] lemma iff_and_self {p q : Prop} : (p ↔ q ∧ p) ↔ (p → q) :=
by rw [and_comm, iff_self_and]
@[simp] lemma and.congr_right_iff : (a ∧ b ↔ a ∧ c) ↔ (a → (b ↔ c)) :=
⟨λ h ha, by simp [ha] at h; exact h, and_congr_right⟩
@[simp] lemma and.congr_left_iff : (a ∧ c ↔ b ∧ c) ↔ c → (a ↔ b) :=
by simp only [and.comm, ← and.congr_right_iff]
@[simp] lemma and_self_left : a ∧ a ∧ b ↔ a ∧ b :=
⟨λ h, ⟨h.1, h.2.2⟩, λ h, ⟨h.1, h.1, h.2⟩⟩
@[simp] lemma and_self_right : (a ∧ b) ∧ b ↔ a ∧ b :=
⟨λ h, ⟨h.1.1, h.2⟩, λ h, ⟨⟨h.1, h.2⟩, h.2⟩⟩
/-! ### Declarations about `or` -/
lemma iff.or (h₁ : a ↔ b) (h₂ : c ↔ d) : a ∨ c ↔ b ∨ d := or_congr h₁ h₂
lemma or_congr_left' (h : a ↔ b) : a ∨ c ↔ b ∨ c := h.or iff.rfl
lemma or_congr_right' (h : b ↔ c) : a ∨ b ↔ a ∨ c := iff.rfl.or h
theorem or.right_comm : (a ∨ b) ∨ c ↔ (a ∨ c) ∨ b := by rw [or_assoc, or_assoc, or_comm b]
lemma or_or_or_comm (a b c d : Prop) : (a ∨ b) ∨ c ∨ d ↔ (a ∨ c) ∨ b ∨ d :=
by rw [←or_assoc, @or.right_comm a, or_assoc]
lemma or_or_distrib_left (a b c : Prop) : a ∨ (b ∨ c) ↔ (a ∨ b) ∨ (a ∨ c) :=
by rw [or_or_or_comm, or_self]
lemma or_or_distrib_right (a b c : Prop) : (a ∨ b) ∨ c ↔ (a ∨ c) ∨ (b ∨ c) :=
by rw [or_or_or_comm, or_self]
lemma or_rotate : a ∨ b ∨ c ↔ b ∨ c ∨ a := by simp only [or.left_comm, or.comm]
lemma or.rotate : a ∨ b ∨ c → b ∨ c ∨ a := or_rotate.1
theorem or_of_or_of_imp_of_imp (h₁ : a ∨ b) (h₂ : a → c) (h₃ : b → d) : c ∨ d :=
or.imp h₂ h₃ h₁
theorem or_of_or_of_imp_left (h₁ : a ∨ c) (h : a → b) : b ∨ c :=
or.imp_left h h₁
theorem or_of_or_of_imp_right (h₁ : c ∨ a) (h : a → b) : c ∨ b :=
or.imp_right h h₁
theorem or.elim3 (h : a ∨ b ∨ c) (ha : a → d) (hb : b → d) (hc : c → d) : d :=
or.elim h ha (assume h₂, or.elim h₂ hb hc)
lemma or.imp3 (had : a → d) (hbe : b → e) (hcf : c → f) : a ∨ b ∨ c → d ∨ e ∨ f :=
or.imp had $ or.imp hbe hcf
theorem or_imp_distrib : (a ∨ b → c) ↔ (a → c) ∧ (b → c) :=
⟨assume h, ⟨assume ha, h (or.inl ha), assume hb, h (or.inr hb)⟩,
assume ⟨ha, hb⟩, or.rec ha hb⟩
-- See Note [decidable namespace]
protected theorem decidable.or_iff_not_imp_left [decidable a] : a ∨ b ↔ (¬ a → b) :=
⟨or.resolve_left, λ h, dite _ or.inl (or.inr ∘ h)⟩
theorem or_iff_not_imp_left : a ∨ b ↔ (¬ a → b) := decidable.or_iff_not_imp_left
-- See Note [decidable namespace]
protected theorem decidable.or_iff_not_imp_right [decidable b] : a ∨ b ↔ (¬ b → a) :=
or.comm.trans decidable.or_iff_not_imp_left
theorem or_iff_not_imp_right : a ∨ b ↔ (¬ b → a) := decidable.or_iff_not_imp_right
-- See Note [decidable namespace]
protected lemma decidable.not_or_of_imp [decidable a] (h : a → b) : ¬ a ∨ b :=
dite _ (or.inr ∘ h) or.inl
lemma not_or_of_imp : (a → b) → ¬ a ∨ b := decidable.not_or_of_imp
-- See Note [decidable namespace]
protected lemma decidable.or_not_of_imp [decidable a] (h : a → b) : b ∨ ¬ a :=
dite _ (or.inl ∘ h) or.inr
lemma or_not_of_imp : (a → b) → b ∨ ¬ a := decidable.or_not_of_imp
-- See Note [decidable namespace]
protected lemma decidable.imp_iff_not_or [decidable a] : a → b ↔ ¬ a ∨ b :=
⟨decidable.not_or_of_imp, or.neg_resolve_left⟩
lemma imp_iff_not_or : a → b ↔ ¬ a ∨ b := decidable.imp_iff_not_or
-- See Note [decidable namespace]
protected lemma decidable.imp_iff_or_not [decidable b] : b → a ↔ a ∨ ¬ b :=
decidable.imp_iff_not_or.trans or.comm
lemma imp_iff_or_not : b → a ↔ a ∨ ¬ b := decidable.imp_iff_or_not
-- See Note [decidable namespace]
protected theorem decidable.not_imp_not [decidable a] : (¬ a → ¬ b) ↔ (b → a) :=
⟨assume h hb, decidable.by_contradiction $ assume na, h na hb, mt⟩
theorem not_imp_not : (¬ a → ¬ b) ↔ (b → a) := decidable.not_imp_not
-- See Note [decidable namespace]
protected lemma decidable.or_congr_left [decidable c] (h : ¬ c → (a ↔ b)) : a ∨ c ↔ b ∨ c :=
by { rw [decidable.or_iff_not_imp_right, decidable.or_iff_not_imp_right], exact imp_congr_right h }
lemma or_congr_left (h : ¬ c → (a ↔ b)) : a ∨ c ↔ b ∨ c :=
decidable.or_congr_left h
-- See Note [decidable namespace]
protected lemma decidable.or_congr_right [decidable a] (h : ¬ a → (b ↔ c)) : a ∨ b ↔ a ∨ c :=
by { rw [decidable.or_iff_not_imp_left, decidable.or_iff_not_imp_left], exact imp_congr_right h }
lemma or_congr_right (h : ¬ a → (b ↔ c)) : a ∨ b ↔ a ∨ c :=
decidable.or_congr_right h
@[simp] theorem or_iff_left_iff_imp : (a ∨ b ↔ a) ↔ (b → a) :=
⟨λ h hb, h.1 (or.inr hb), or_iff_left_of_imp⟩
@[simp] theorem or_iff_right_iff_imp : (a ∨ b ↔ b) ↔ (a → b) :=
by rw [or_comm, or_iff_left_iff_imp]
lemma or_iff_left (hb : ¬ b) : a ∨ b ↔ a := ⟨λ h, h.resolve_right hb, or.inl⟩
lemma or_iff_right (ha : ¬ a) : a ∨ b ↔ b := ⟨λ h, h.resolve_left ha, or.inr⟩
/-! ### Declarations about distributivity -/
/-- `∧` distributes over `∨` (on the left). -/
theorem and_or_distrib_left : a ∧ (b ∨ c) ↔ (a ∧ b) ∨ (a ∧ c) :=
⟨λ ⟨ha, hbc⟩, hbc.imp (and.intro ha) (and.intro ha),
or.rec (and.imp_right or.inl) (and.imp_right or.inr)⟩
/-- `∧` distributes over `∨` (on the right). -/
theorem or_and_distrib_right : (a ∨ b) ∧ c ↔ (a ∧ c) ∨ (b ∧ c) :=
(and.comm.trans and_or_distrib_left).trans (and.comm.or and.comm)
/-- `∨` distributes over `∧` (on the left). -/
theorem or_and_distrib_left : a ∨ (b ∧ c) ↔ (a ∨ b) ∧ (a ∨ c) :=
⟨or.rec (λha, and.intro (or.inl ha) (or.inl ha)) (and.imp or.inr or.inr),
and.rec $ or.rec (imp_intro ∘ or.inl) (or.imp_right ∘ and.intro)⟩
/-- `∨` distributes over `∧` (on the right). -/
theorem and_or_distrib_right : (a ∧ b) ∨ c ↔ (a ∨ c) ∧ (b ∨ c) :=
(or.comm.trans or_and_distrib_left).trans (or.comm.and or.comm)
@[simp] lemma or_self_left : a ∨ a ∨ b ↔ a ∨ b :=
⟨λ h, h.elim or.inl id, λ h, h.elim or.inl (or.inr ∘ or.inr)⟩
@[simp] lemma or_self_right : (a ∨ b) ∨ b ↔ a ∨ b :=
⟨λ h, h.elim id or.inr, λ h, h.elim (or.inl ∘ or.inl) or.inr⟩
/-! Declarations about `iff` -/
lemma iff.iff (h₁ : a ↔ b) (h₂ : c ↔ d) : (a ↔ c) ↔ (b ↔ d) := iff_congr h₁ h₂
theorem iff_of_true (ha : a) (hb : b) : a ↔ b :=
⟨λ_, hb, λ _, ha⟩
theorem iff_of_false (ha : ¬a) (hb : ¬b) : a ↔ b :=
⟨ha.elim, hb.elim⟩
theorem iff_true_left (ha : a) : (a ↔ b) ↔ b :=
⟨λ h, h.1 ha, iff_of_true ha⟩
theorem iff_true_right (ha : a) : (b ↔ a) ↔ b :=
iff.comm.trans (iff_true_left ha)
theorem iff_false_left (ha : ¬a) : (a ↔ b) ↔ ¬b :=
⟨λ h, mt h.2 ha, iff_of_false ha⟩
theorem iff_false_right (ha : ¬a) : (b ↔ a) ↔ ¬b :=
iff.comm.trans (iff_false_left ha)
@[simp]
lemma iff_mpr_iff_true_intro {P : Prop} (h : P) : iff.mpr (iff_true_intro h) true.intro = h := rfl
-- See Note [decidable namespace]
protected theorem decidable.imp_or_distrib [decidable a] : (a → b ∨ c) ↔ (a → b) ∨ (a → c) :=
by simp [decidable.imp_iff_not_or, or.comm, or.left_comm]
theorem imp_or_distrib : (a → b ∨ c) ↔ (a → b) ∨ (a → c) := decidable.imp_or_distrib
-- See Note [decidable namespace]
protected theorem decidable.imp_or_distrib' [decidable b] : (a → b ∨ c) ↔ (a → b) ∨ (a → c) :=
by by_cases b; simp [h, or_iff_right_of_imp ((∘) false.elim)]
theorem imp_or_distrib' : (a → b ∨ c) ↔ (a → b) ∨ (a → c) := decidable.imp_or_distrib'
theorem not_imp_of_and_not : a ∧ ¬ b → ¬ (a → b)
| ⟨ha, hb⟩ h := hb $ h ha
-- See Note [decidable namespace]
protected theorem decidable.not_imp [decidable a] : ¬(a → b) ↔ a ∧ ¬b :=
⟨λ h, ⟨decidable.of_not_imp h, not_of_not_imp h⟩, not_imp_of_and_not⟩
theorem not_imp : ¬(a → b) ↔ a ∧ ¬b := decidable.not_imp
-- for monotonicity
lemma imp_imp_imp (h₀ : c → a) (h₁ : b → d) : (a → b) → (c → d) :=
assume (h₂ : a → b), h₁ ∘ h₂ ∘ h₀
-- See Note [decidable namespace]
protected theorem decidable.peirce (a b : Prop) [decidable a] : ((a → b) → a) → a :=
if ha : a then λ h, ha else λ h, h ha.elim
theorem peirce (a b : Prop) : ((a → b) → a) → a := decidable.peirce _ _
theorem peirce' {a : Prop} (H : ∀ b : Prop, (a → b) → a) : a := H _ id
-- See Note [decidable namespace]
protected theorem decidable.not_iff_not [decidable a] [decidable b] : (¬ a ↔ ¬ b) ↔ (a ↔ b) :=
by rw [@iff_def (¬ a), @iff_def' a]; exact decidable.not_imp_not.and decidable.not_imp_not
theorem not_iff_not : (¬ a ↔ ¬ b) ↔ (a ↔ b) := decidable.not_iff_not
-- See Note [decidable namespace]
protected theorem decidable.not_iff_comm [decidable a] [decidable b] : (¬ a ↔ b) ↔ (¬ b ↔ a) :=
by rw [@iff_def (¬ a), @iff_def (¬ b)]; exact decidable.not_imp_comm.and imp_not_comm
theorem not_iff_comm : (¬ a ↔ b) ↔ (¬ b ↔ a) := decidable.not_iff_comm
-- See Note [decidable namespace]
protected theorem decidable.not_iff : ∀ [decidable b], ¬ (a ↔ b) ↔ (¬ a ↔ b) :=
by intro h; cases h; simp only [h, iff_true, iff_false]
theorem not_iff : ¬ (a ↔ b) ↔ (¬ a ↔ b) := decidable.not_iff
-- See Note [decidable namespace]
protected theorem decidable.iff_not_comm [decidable a] [decidable b] : (a ↔ ¬ b) ↔ (b ↔ ¬ a) :=
by rw [@iff_def a, @iff_def b]; exact imp_not_comm.and decidable.not_imp_comm
theorem iff_not_comm : (a ↔ ¬ b) ↔ (b ↔ ¬ a) := decidable.iff_not_comm
-- See Note [decidable namespace]
protected theorem decidable.iff_iff_and_or_not_and_not [decidable b] :
(a ↔ b) ↔ (a ∧ b) ∨ (¬ a ∧ ¬ b) :=
by { split; intro h,
{ rw h; by_cases b; [left,right]; split; assumption },
{ cases h with h h; cases h; split; intro; { contradiction <|> assumption } } }
theorem iff_iff_and_or_not_and_not : (a ↔ b) ↔ (a ∧ b) ∨ (¬ a ∧ ¬ b) :=
decidable.iff_iff_and_or_not_and_not
lemma decidable.iff_iff_not_or_and_or_not [decidable a] [decidable b] :
(a ↔ b) ↔ ((¬a ∨ b) ∧ (a ∨ ¬b)) :=
begin
rw [iff_iff_implies_and_implies a b],
simp only [decidable.imp_iff_not_or, or.comm]
end
lemma iff_iff_not_or_and_or_not : (a ↔ b) ↔ ((¬a ∨ b) ∧ (a ∨ ¬b)) :=
decidable.iff_iff_not_or_and_or_not
-- See Note [decidable namespace]
protected theorem decidable.not_and_not_right [decidable b] : ¬(a ∧ ¬b) ↔ (a → b) :=
⟨λ h ha, h.decidable_imp_symm $ and.intro ha, λ h ⟨ha, hb⟩, hb $ h ha⟩
theorem not_and_not_right : ¬(a ∧ ¬b) ↔ (a → b) := decidable.not_and_not_right
/-- Transfer decidability of `a` to decidability of `b`, if the propositions are equivalent.
**Important**: this function should be used instead of `rw` on `decidable b`, because the
kernel will get stuck reducing the usage of `propext` otherwise,
and `dec_trivial` will not work. -/
@[inline] def decidable_of_iff (a : Prop) (h : a ↔ b) [D : decidable a] : decidable b :=
decidable_of_decidable_of_iff D h
/-- Transfer decidability of `b` to decidability of `a`, if the propositions are equivalent.
This is the same as `decidable_of_iff` but the iff is flipped. -/
@[inline] def decidable_of_iff' (b : Prop) (h : a ↔ b) [D : decidable b] : decidable a :=
decidable_of_decidable_of_iff D h.symm
/-- Prove that `a` is decidable by constructing a boolean `b` and a proof that `b ↔ a`.
(This is sometimes taken as an alternate definition of decidability.) -/
def decidable_of_bool : ∀ (b : bool) (h : b ↔ a), decidable a
| tt h := is_true (h.1 rfl)
| ff h := is_false (mt h.2 bool.ff_ne_tt)
/-! ### De Morgan's laws -/
theorem not_and_of_not_or_not (h : ¬ a ∨ ¬ b) : ¬ (a ∧ b)
| ⟨ha, hb⟩ := or.elim h (absurd ha) (absurd hb)
-- See Note [decidable namespace]
protected theorem decidable.not_and_distrib [decidable a] : ¬ (a ∧ b) ↔ ¬a ∨ ¬b :=
⟨λ h, if ha : a then or.inr (λ hb, h ⟨ha, hb⟩) else or.inl ha, not_and_of_not_or_not⟩
-- See Note [decidable namespace]
protected theorem decidable.not_and_distrib' [decidable b] : ¬ (a ∧ b) ↔ ¬a ∨ ¬b :=
⟨λ h, if hb : b then or.inl (λ ha, h ⟨ha, hb⟩) else or.inr hb, not_and_of_not_or_not⟩
/-- One of de Morgan's laws: the negation of a conjunction is logically equivalent to the
disjunction of the negations. -/
theorem not_and_distrib : ¬ (a ∧ b) ↔ ¬a ∨ ¬b := decidable.not_and_distrib
@[simp] theorem not_and : ¬ (a ∧ b) ↔ (a → ¬ b) := and_imp
theorem not_and' : ¬ (a ∧ b) ↔ b → ¬a :=
not_and.trans imp_not_comm
/-- One of de Morgan's laws: the negation of a disjunction is logically equivalent to the
conjunction of the negations. -/
theorem not_or_distrib : ¬ (a ∨ b) ↔ ¬ a ∧ ¬ b :=
⟨λ h, ⟨λ ha, h (or.inl ha), λ hb, h (or.inr hb)⟩,
λ ⟨h₁, h₂⟩ h, or.elim h h₁ h₂⟩
-- See Note [decidable namespace]
protected theorem decidable.or_iff_not_and_not [decidable a] [decidable b] : a ∨ b ↔ ¬ (¬a ∧ ¬b) :=
by rw [← not_or_distrib, decidable.not_not]
theorem or_iff_not_and_not : a ∨ b ↔ ¬ (¬a ∧ ¬b) := decidable.or_iff_not_and_not
-- See Note [decidable namespace]
protected theorem decidable.and_iff_not_or_not [decidable a] [decidable b] :
a ∧ b ↔ ¬ (¬ a ∨ ¬ b) :=
by rw [← decidable.not_and_distrib, decidable.not_not]
theorem and_iff_not_or_not : a ∧ b ↔ ¬ (¬ a ∨ ¬ b) := decidable.and_iff_not_or_not
@[simp] theorem not_xor (P Q : Prop) : ¬ xor P Q ↔ (P ↔ Q) :=
by simp only [not_and, xor, not_or_distrib, not_not, ← iff_iff_implies_and_implies]
theorem xor_iff_not_iff (P Q : Prop) : xor P Q ↔ ¬ (P ↔ Q) :=
by rw [iff_not_comm, not_xor]
end propositional
/-! ### Declarations about equality -/
section mem
variables {α β : Type*} [has_mem α β] {s t : β} {a b : α}
lemma ne_of_mem_of_not_mem (h : a ∈ s) : b ∉ s → a ≠ b := mt $ λ e, e ▸ h
lemma ne_of_mem_of_not_mem' (h : a ∈ s) : a ∉ t → s ≠ t := mt $ λ e, e ▸ h
/-- **Alias** of `ne_of_mem_of_not_mem`. -/
lemma has_mem.mem.ne_of_not_mem : a ∈ s → b ∉ s → a ≠ b := ne_of_mem_of_not_mem
/-- **Alias** of `ne_of_mem_of_not_mem'`. -/
lemma has_mem.mem.ne_of_not_mem' : a ∈ s → a ∉ t → s ≠ t := ne_of_mem_of_not_mem'
end mem
section equality
variables {α : Sort*} {a b : α}
@[simp] theorem heq_iff_eq : a == b ↔ a = b :=
⟨eq_of_heq, heq_of_eq⟩
theorem proof_irrel_heq {p q : Prop} (hp : p) (hq : q) : hp == hq :=
have p = q, from propext ⟨λ _, hq, λ _, hp⟩,
by subst q; refl
-- todo: change name
lemma ball_cond_comm {α} {s : α → Prop} {p : α → α → Prop} :
(∀ a, s a → ∀ b, s b → p a b) ↔ (∀ a b, s a → s b → p a b) :=
⟨λ h a b ha hb, h a ha b hb, λ h a ha b hb, h a b ha hb⟩
lemma ball_mem_comm {α β} [has_mem α β] {s : β} {p : α → α → Prop} :
(∀ a b ∈ s, p a b) ↔ (∀ a b, a ∈ s → b ∈ s → p a b) :=
ball_cond_comm
lemma ne_of_apply_ne {α β : Sort*} (f : α → β) {x y : α} (h : f x ≠ f y) : x ≠ y :=
λ (w : x = y), h (congr_arg f w)
theorem eq_equivalence : equivalence (@eq α) :=
⟨eq.refl, @eq.symm _, @eq.trans _⟩
/-- Transport through trivial families is the identity. -/
@[simp]
lemma eq_rec_constant {α : Sort*} {a a' : α} {β : Sort*} (y : β) (h : a = a') :
(@eq.rec α a (λ a, β) y a' h) = y :=
by { cases h, refl, }
@[simp]
lemma eq_mp_eq_cast {α β : Sort*} (h : α = β) : eq.mp h = cast h := rfl
@[simp]
lemma eq_mpr_eq_cast {α β : Sort*} (h : α = β) : eq.mpr h = cast h.symm := rfl
@[simp]
lemma cast_cast : ∀ {α β γ : Sort*} (ha : α = β) (hb : β = γ) (a : α),
cast hb (cast ha a) = cast (ha.trans hb) a
| _ _ _ rfl rfl a := rfl
@[simp] lemma congr_refl_left {α β : Sort*} (f : α → β) {a b : α} (h : a = b) :
congr (eq.refl f) h = congr_arg f h :=
rfl
@[simp] lemma congr_refl_right {α β : Sort*} {f g : α → β} (h : f = g) (a : α) :
congr h (eq.refl a) = congr_fun h a :=
rfl
@[simp] lemma congr_arg_refl {α β : Sort*} (f : α → β) (a : α) :
congr_arg f (eq.refl a) = eq.refl (f a) :=
rfl
@[simp] lemma congr_fun_rfl {α β : Sort*} (f : α → β) (a : α) :
congr_fun (eq.refl f) a = eq.refl (f a) :=
rfl
@[simp] lemma congr_fun_congr_arg {α β γ : Sort*} (f : α → β → γ) {a a' : α} (p : a = a') (b : β) :
congr_fun (congr_arg f p) b = congr_arg (λ a, f a b) p :=
rfl
lemma heq_of_cast_eq :
∀ {α β : Sort*} {a : α} {a' : β} (e : α = β) (h₂ : cast e a = a'), a == a'
| α ._ a a' rfl h := eq.rec_on h (heq.refl _)
lemma cast_eq_iff_heq {α β : Sort*} {a : α} {a' : β} {e : α = β} : cast e a = a' ↔ a == a' :=
⟨heq_of_cast_eq _, λ h, by cases h; refl⟩
lemma rec_heq_of_heq {β} {C : α → Sort*} {x : C a} {y : β} (eq : a = b) (h : x == y) :
@eq.rec α a C x b eq == y :=
by subst eq; exact h
protected lemma eq.congr {x₁ x₂ y₁ y₂ : α} (h₁ : x₁ = y₁) (h₂ : x₂ = y₂) :
(x₁ = x₂) ↔ (y₁ = y₂) :=
by { subst h₁, subst h₂ }
lemma eq.congr_left {x y z : α} (h : x = y) : x = z ↔ y = z := by rw [h]
lemma eq.congr_right {x y z : α} (h : x = y) : z = x ↔ z = y := by rw [h]
lemma congr_arg2 {α β γ : Sort*} (f : α → β → γ) {x x' : α} {y y' : β}
(hx : x = x') (hy : y = y') : f x y = f x' y' :=
by { subst hx, subst hy }
variables {β : α → Sort*} {γ : Π a, β a → Sort*} {δ : Π a b, γ a b → Sort*}
lemma congr_fun₂ {f g : Π a b, γ a b} (h : f = g) (a : α) (b : β a) : f a b = g a b :=
congr_fun (congr_fun h _) _
lemma congr_fun₃ {f g : Π a b c, δ a b c} (h : f = g) (a : α) (b : β a) (c : γ a b) :
f a b c = g a b c :=
congr_fun₂ (congr_fun h _) _ _
lemma funext₂ {f g : Π a b, γ a b} (h : ∀ a b, f a b = g a b) : f = g :=
funext $ λ _, funext $ h _
lemma funext₃ {f g : Π a b c, δ a b c} (h : ∀ a b c, f a b c = g a b c) : f = g :=
funext $ λ _, funext₂ $ h _
end equality
/-! ### Declarations about quantifiers -/
section quantifiers
variables {α : Sort*}
section dependent
variables {β : α → Sort*} {γ : Π a, β a → Sort*} {δ : Π a b, γ a b → Sort*}
{ε : Π a b c, δ a b c → Sort*}
lemma pi_congr {β' : α → Sort*} (h : ∀ a, β a = β' a) : (Π a, β a) = Π a, β' a :=
(funext h : β = β') ▸ rfl
lemma forall₂_congr {p q : Π a, β a → Prop} (h : ∀ a b, p a b ↔ q a b) :
(∀ a b, p a b) ↔ ∀ a b, q a b :=
forall_congr $ λ a, forall_congr $ h a
lemma forall₃_congr {p q : Π a b, γ a b → Prop} (h : ∀ a b c, p a b c ↔ q a b c) :
(∀ a b c, p a b c) ↔ ∀ a b c, q a b c :=
forall_congr $ λ a, forall₂_congr $ h a
lemma forall₄_congr {p q : Π a b c, δ a b c → Prop} (h : ∀ a b c d, p a b c d ↔ q a b c d) :
(∀ a b c d, p a b c d) ↔ ∀ a b c d, q a b c d :=
forall_congr $ λ a, forall₃_congr $ h a
lemma forall₅_congr {p q : Π a b c d, ε a b c d → Prop}
(h : ∀ a b c d e, p a b c d e ↔ q a b c d e) :
(∀ a b c d e, p a b c d e) ↔ ∀ a b c d e, q a b c d e :=
forall_congr $ λ a, forall₄_congr $ h a
lemma exists₂_congr {p q : Π a, β a → Prop} (h : ∀ a b, p a b ↔ q a b) :
(∃ a b, p a b) ↔ ∃ a b, q a b :=
exists_congr $ λ a, exists_congr $ h a
lemma exists₃_congr {p q : Π a b, γ a b → Prop} (h : ∀ a b c, p a b c ↔ q a b c) :
(∃ a b c, p a b c) ↔ ∃ a b c, q a b c :=
exists_congr $ λ a, exists₂_congr $ h a
lemma exists₄_congr {p q : Π a b c, δ a b c → Prop} (h : ∀ a b c d, p a b c d ↔ q a b c d) :
(∃ a b c d, p a b c d) ↔ ∃ a b c d, q a b c d :=
exists_congr $ λ a, exists₃_congr $ h a
lemma exists₅_congr {p q : Π a b c d, ε a b c d → Prop}
(h : ∀ a b c d e, p a b c d e ↔ q a b c d e) :
(∃ a b c d e, p a b c d e) ↔ ∃ a b c d e, q a b c d e :=
exists_congr $ λ a, exists₄_congr $ h a
lemma forall_imp {p q : α → Prop} (h : ∀ a, p a → q a) : (∀ a, p a) → ∀ a, q a := λ h' a, h a (h' a)
lemma forall₂_imp {p q : Π a, β a → Prop} (h : ∀ a b, p a b → q a b) :
(∀ a b, p a b) → ∀ a b, q a b :=
forall_imp $ λ i, forall_imp $ h i
lemma forall₃_imp {p q : Π a b, γ a b → Prop} (h : ∀ a b c, p a b c → q a b c) :
(∀ a b c, p a b c) → ∀ a b c, q a b c :=
forall_imp $ λ a, forall₂_imp $ h a
lemma Exists.imp {p q : α → Prop} (h : ∀ a, (p a → q a)) : (∃ a, p a) → ∃ a, q a :=
exists_imp_exists h
lemma Exists₂.imp {p q : Π a, β a → Prop} (h : ∀ a b, p a b → q a b) :
(∃ a b, p a b) → ∃ a b, q a b :=
Exists.imp $ λ a, Exists.imp $ h a
lemma Exists₃.imp {p q : Π a b, γ a b → Prop} (h : ∀ a b c, p a b c → q a b c) :
(∃ a b c, p a b c) → ∃ a b c, q a b c :=
Exists.imp $ λ a, Exists₂.imp $ h a
end dependent
variables {ι β : Sort*} {κ : ι → Sort*} {p q : α → Prop} {b : Prop}
lemma exists_imp_exists' {p : α → Prop} {q : β → Prop} (f : α → β) (hpq : ∀ a, p a → q (f a))
(hp : ∃ a, p a) : ∃ b, q b :=
exists.elim hp (λ a hp', ⟨_, hpq _ hp'⟩)
theorem forall_swap {p : α → β → Prop} : (∀ x y, p x y) ↔ ∀ y x, p x y :=
⟨swap, swap⟩
lemma forall₂_swap {ι₁ ι₂ : Sort*} {κ₁ : ι₁ → Sort*} {κ₂ : ι₂ → Sort*}
{p : Π i₁, κ₁ i₁ → Π i₂, κ₂ i₂ → Prop} :
(∀ i₁ j₁ i₂ j₂, p i₁ j₁ i₂ j₂) ↔ ∀ i₂ j₂ i₁ j₁, p i₁ j₁ i₂ j₂ :=
⟨swap₂, swap₂⟩
/-- We intentionally restrict the type of `α` in this lemma so that this is a safer to use in simp
than `forall_swap`. -/
lemma imp_forall_iff {α : Type*} {p : Prop} {q : α → Prop} : (p → ∀ x, q x) ↔ (∀ x, p → q x) :=
forall_swap
theorem exists_swap {p : α → β → Prop} : (∃ x y, p x y) ↔ ∃ y x, p x y :=
⟨λ ⟨x, y, h⟩, ⟨y, x, h⟩, λ ⟨y, x, h⟩, ⟨x, y, h⟩⟩
@[simp] theorem forall_exists_index {q : (∃ x, p x) → Prop} :
(∀ h, q h) ↔ ∀ x (h : p x), q ⟨x, h⟩ :=
⟨λ h x hpx, h ⟨x, hpx⟩, λ h ⟨x, hpx⟩, h x hpx⟩
theorem exists_imp_distrib : ((∃ x, p x) → b) ↔ ∀ x, p x → b :=
forall_exists_index
/--
Extract an element from a existential statement, using `classical.some`.
-/
-- This enables projection notation.
@[reducible] noncomputable def Exists.some {p : α → Prop} (P : ∃ a, p a) : α := classical.some P
/--
Show that an element extracted from `P : ∃ a, p a` using `P.some` satisfies `p`.
-/
lemma Exists.some_spec {p : α → Prop} (P : ∃ a, p a) : p (P.some) := classical.some_spec P
--theorem forall_not_of_not_exists (h : ¬ ∃ x, p x) : ∀ x, ¬ p x :=
--forall_imp_of_exists_imp h
theorem not_exists_of_forall_not (h : ∀ x, ¬ p x) : ¬ ∃ x, p x :=
exists_imp_distrib.2 h
@[simp] theorem not_exists : (¬ ∃ x, p x) ↔ ∀ x, ¬ p x :=
exists_imp_distrib
theorem not_forall_of_exists_not : (∃ x, ¬ p x) → ¬ ∀ x, p x
| ⟨x, hn⟩ h := hn (h x)
-- See Note [decidable namespace]
protected theorem decidable.not_forall {p : α → Prop}
[decidable (∃ x, ¬ p x)] [∀ x, decidable (p x)] : (¬ ∀ x, p x) ↔ ∃ x, ¬ p x :=
⟨not.decidable_imp_symm $ λ nx x, nx.decidable_imp_symm $ λ h, ⟨x, h⟩,
not_forall_of_exists_not⟩
@[simp] theorem not_forall {p : α → Prop} : (¬ ∀ x, p x) ↔ ∃ x, ¬ p x := decidable.not_forall
-- See Note [decidable namespace]
protected theorem decidable.not_forall_not [decidable (∃ x, p x)] :
(¬ ∀ x, ¬ p x) ↔ ∃ x, p x :=
(@decidable.not_iff_comm _ _ _ (decidable_of_iff (¬ ∃ x, p x) not_exists)).1 not_exists
theorem not_forall_not : (¬ ∀ x, ¬ p x) ↔ ∃ x, p x := decidable.not_forall_not
-- See Note [decidable namespace]
protected theorem decidable.not_exists_not [∀ x, decidable (p x)] : (¬ ∃ x, ¬ p x) ↔ ∀ x, p x :=
by simp [decidable.not_not]
@[simp] theorem not_exists_not : (¬ ∃ x, ¬ p x) ↔ ∀ x, p x := decidable.not_exists_not
theorem forall_imp_iff_exists_imp [ha : nonempty α] : ((∀ x, p x) → b) ↔ ∃ x, p x → b :=
let ⟨a⟩ := ha in
⟨λ h, not_forall_not.1 $ λ h', classical.by_cases (λ hb : b, h' a $ λ _, hb)
(λ hb, hb $ h $ λ x, (not_imp.1 (h' x)).1), λ ⟨x, hx⟩ h, hx (h x)⟩
-- TODO: duplicate of a lemma in core
theorem forall_true_iff : (α → true) ↔ true :=
implies_true_iff α
-- Unfortunately this causes simp to loop sometimes, so we
-- add the 2 and 3 cases as simp lemmas instead
theorem forall_true_iff' (h : ∀ a, p a ↔ true) : (∀ a, p a) ↔ true :=
iff_true_intro (λ _, of_iff_true (h _))
@[simp] theorem forall_2_true_iff {β : α → Sort*} : (∀ a, β a → true) ↔ true :=
forall_true_iff' $ λ _, forall_true_iff
@[simp] theorem forall_3_true_iff {β : α → Sort*} {γ : Π a, β a → Sort*} :
(∀ a (b : β a), γ a b → true) ↔ true :=
forall_true_iff' $ λ _, forall_2_true_iff
lemma exists_unique.exists {α : Sort*} {p : α → Prop} (h : ∃! x, p x) : ∃ x, p x :=
exists.elim h (λ x hx, ⟨x, and.left hx⟩)
@[simp] lemma exists_unique_iff_exists {α : Sort*} [subsingleton α] {p : α → Prop} :
(∃! x, p x) ↔ ∃ x, p x :=
⟨λ h, h.exists, Exists.imp $ λ x hx, ⟨hx, λ y _, subsingleton.elim y x⟩⟩
@[simp] theorem forall_const (α : Sort*) [i : nonempty α] : (α → b) ↔ b :=
⟨i.elim, λ hb x, hb⟩
/-- For some reason simp doesn't use `forall_const` to simplify in this case. -/
@[simp] lemma forall_forall_const {α β : Type*} (p : β → Prop) [nonempty α] :
(∀ x, α → p x) ↔ ∀ x, p x :=
forall_congr $ λ x, forall_const α
@[simp] theorem exists_const (α : Sort*) [i : nonempty α] : (∃ x : α, b) ↔ b :=
⟨λ ⟨x, h⟩, h, i.elim exists.intro⟩
theorem exists_unique_const (α : Sort*) [i : nonempty α] [subsingleton α] :
(∃! x : α, b) ↔ b :=
by simp
theorem forall_and_distrib : (∀ x, p x ∧ q x) ↔ (∀ x, p x) ∧ (∀ x, q x) :=
⟨λ h, ⟨λ x, (h x).left, λ x, (h x).right⟩, λ ⟨h₁, h₂⟩ x, ⟨h₁ x, h₂ x⟩⟩
theorem exists_or_distrib : (∃ x, p x ∨ q x) ↔ (∃ x, p x) ∨ (∃ x, q x) :=
⟨λ ⟨x, hpq⟩, hpq.elim (λ hpx, or.inl ⟨x, hpx⟩) (λ hqx, or.inr ⟨x, hqx⟩),
λ hepq, hepq.elim (λ ⟨x, hpx⟩, ⟨x, or.inl hpx⟩) (λ ⟨x, hqx⟩, ⟨x, or.inr hqx⟩)⟩
@[simp] theorem exists_and_distrib_left {q : Prop} {p : α → Prop} :
(∃x, q ∧ p x) ↔ q ∧ (∃x, p x) :=
⟨λ ⟨x, hq, hp⟩, ⟨hq, x, hp⟩, λ ⟨hq, x, hp⟩, ⟨x, hq, hp⟩⟩
@[simp] theorem exists_and_distrib_right {q : Prop} {p : α → Prop} :
(∃x, p x ∧ q) ↔ (∃x, p x) ∧ q :=
by simp [and_comm]
@[simp] theorem forall_eq {a' : α} : (∀a, a = a' → p a) ↔ p a' :=
⟨λ h, h a' rfl, λ h a e, e.symm ▸ h⟩
@[simp] theorem forall_eq' {a' : α} : (∀a, a' = a → p a) ↔ p a' :=
by simp [@eq_comm _ a']
theorem and_forall_ne (a : α) : (p a ∧ ∀ b ≠ a, p b) ↔ ∀ b, p b :=
by simp only [← @forall_eq _ p a, ← forall_and_distrib, ← or_imp_distrib, classical.em,
forall_const]
-- this lemma is needed to simplify the output of `list.mem_cons_iff`
@[simp] theorem forall_eq_or_imp {a' : α} : (∀ a, a = a' ∨ q a → p a) ↔ p a' ∧ ∀ a, q a → p a :=
by simp only [or_imp_distrib, forall_and_distrib, forall_eq]
lemma ne.ne_or_ne {x y : α} (z : α) (h : x ≠ y) : x ≠ z ∨ y ≠ z :=
not_and_distrib.1 $ mt (and_imp.2 eq.substr) h.symm
theorem exists_eq {a' : α} : ∃ a, a = a' := ⟨_, rfl⟩
@[simp] theorem exists_eq' {a' : α} : ∃ a, a' = a := ⟨_, rfl⟩
@[simp] theorem exists_unique_eq {a' : α} : ∃! a, a = a' :=
by simp only [eq_comm, exists_unique, and_self, forall_eq', exists_eq']
@[simp] theorem exists_unique_eq' {a' : α} : ∃! a, a' = a :=
by simp only [exists_unique, and_self, forall_eq', exists_eq']
@[simp] theorem exists_eq_left {a' : α} : (∃ a, a = a' ∧ p a) ↔ p a' :=
⟨λ ⟨a, e, h⟩, e ▸ h, λ h, ⟨_, rfl, h⟩⟩
@[simp] theorem exists_eq_right {a' : α} : (∃ a, p a ∧ a = a') ↔ p a' :=
(exists_congr $ by exact λ a, and.comm).trans exists_eq_left
@[simp] theorem exists_eq_right_right {a' : α} :
(∃ (a : α), p a ∧ q a ∧ a = a') ↔ p a' ∧ q a' :=
⟨λ ⟨_, hp, hq, rfl⟩, ⟨hp, hq⟩, λ ⟨hp, hq⟩, ⟨a', hp, hq, rfl⟩⟩
@[simp] theorem exists_eq_right_right' {a' : α} :
(∃ (a : α), p a ∧ q a ∧ a' = a) ↔ p a' ∧ q a' :=
⟨λ ⟨_, hp, hq, rfl⟩, ⟨hp, hq⟩, λ ⟨hp, hq⟩, ⟨a', hp, hq, rfl⟩⟩
@[simp] theorem exists_apply_eq_apply (f : α → β) (a' : α) : ∃ a, f a = f a' := ⟨a', rfl⟩
@[simp] theorem exists_apply_eq_apply' (f : α → β) (a' : α) : ∃ a, f a' = f a := ⟨a', rfl⟩
@[simp] theorem exists_exists_and_eq_and {f : α → β} {p : α → Prop} {q : β → Prop} :
(∃ b, (∃ a, p a ∧ f a = b) ∧ q b) ↔ ∃ a, p a ∧ q (f a) :=
⟨λ ⟨b, ⟨a, ha, hab⟩, hb⟩, ⟨a, ha, hab.symm ▸ hb⟩, λ ⟨a, hp, hq⟩, ⟨f a, ⟨a, hp, rfl⟩, hq⟩⟩
@[simp] theorem exists_exists_eq_and {f : α → β} {p : β → Prop} :
(∃ b, (∃ a, f a = b) ∧ p b) ↔ ∃ a, p (f a) :=
⟨λ ⟨b, ⟨a, ha⟩, hb⟩, ⟨a, ha.symm ▸ hb⟩, λ ⟨a, ha⟩, ⟨f a, ⟨a, rfl⟩, ha⟩⟩
@[simp] lemma exists_or_eq_left (y : α) (p : α → Prop) : ∃ (x : α), x = y ∨ p x :=
⟨y, or.inl rfl⟩
@[simp] lemma exists_or_eq_right (y : α) (p : α → Prop) : ∃ (x : α), p x ∨ x = y :=
⟨y, or.inr rfl⟩
@[simp] lemma exists_or_eq_left' (y : α) (p : α → Prop) : ∃ (x : α), y = x ∨ p x :=
⟨y, or.inl rfl⟩
@[simp] lemma exists_or_eq_right' (y : α) (p : α → Prop) : ∃ (x : α), p x ∨ y = x :=
⟨y, or.inr rfl⟩
@[simp] theorem forall_apply_eq_imp_iff {f : α → β} {p : β → Prop} :
(∀ a, ∀ b, f a = b → p b) ↔ (∀ a, p (f a)) :=
⟨λ h a, h a (f a) rfl, λ h a b hab, hab ▸ h a⟩
@[simp] theorem forall_apply_eq_imp_iff' {f : α → β} {p : β → Prop} :
(∀ b, ∀ a, f a = b → p b) ↔ (∀ a, p (f a)) :=
by { rw forall_swap, simp }
@[simp] theorem forall_eq_apply_imp_iff {f : α → β} {p : β → Prop} :
(∀ a, ∀ b, b = f a → p b) ↔ (∀ a, p (f a)) :=
by simp [@eq_comm _ _ (f _)]
@[simp] theorem forall_eq_apply_imp_iff' {f : α → β} {p : β → Prop} :
(∀ b, ∀ a, b = f a → p b) ↔ (∀ a, p (f a)) :=
by { rw forall_swap, simp }
@[simp] theorem forall_apply_eq_imp_iff₂ {f : α → β} {p : α → Prop} {q : β → Prop} :
(∀ b, ∀ a, p a → f a = b → q b) ↔ ∀ a, p a → q (f a) :=
⟨λ h a ha, h (f a) a ha rfl, λ h b a ha hb, hb ▸ h a ha⟩
@[simp] theorem exists_eq_left' {a' : α} : (∃ a, a' = a ∧ p a) ↔ p a' :=
by simp [@eq_comm _ a']
@[simp] theorem exists_eq_right' {a' : α} : (∃ a, p a ∧ a' = a) ↔ p a' :=
by simp [@eq_comm _ a']
theorem exists_comm {p : α → β → Prop} : (∃ a b, p a b) ↔ ∃ b a, p a b :=
⟨λ ⟨a, b, h⟩, ⟨b, a, h⟩, λ ⟨b, a, h⟩, ⟨a, b, h⟩⟩
lemma exists₂_comm {ι₁ ι₂ : Sort*} {κ₁ : ι₁ → Sort*} {κ₂ : ι₂ → Sort*}
{p : Π i₁, κ₁ i₁ → Π i₂, κ₂ i₂ → Prop} :
(∃ i₁ j₁ i₂ j₂, p i₁ j₁ i₂ j₂) ↔ ∃ i₂ j₂ i₁ j₁, p i₁ j₁ i₂ j₂ :=
by simp only [@exists_comm (κ₁ _), @exists_comm ι₁]
theorem and.exists {p q : Prop} {f : p ∧ q → Prop} : (∃ h, f h) ↔ ∃ hp hq, f ⟨hp, hq⟩ :=
⟨λ ⟨h, H⟩, ⟨h.1, h.2, H⟩, λ ⟨hp, hq, H⟩, ⟨⟨hp, hq⟩, H⟩⟩
theorem forall_or_of_or_forall (h : b ∨ ∀x, p x) (x) : b ∨ p x :=
h.imp_right $ λ h₂, h₂ x
-- See Note [decidable namespace]
protected theorem decidable.forall_or_distrib_left {q : Prop} {p : α → Prop} [decidable q] :
(∀x, q ∨ p x) ↔ q ∨ (∀x, p x) :=
⟨λ h, if hq : q then or.inl hq else or.inr $ λ x, (h x).resolve_left hq,
forall_or_of_or_forall⟩
theorem forall_or_distrib_left {q : Prop} {p : α → Prop} :
(∀x, q ∨ p x) ↔ q ∨ (∀x, p x) := decidable.forall_or_distrib_left
-- See Note [decidable namespace]
protected theorem decidable.forall_or_distrib_right {q : Prop} {p : α → Prop} [decidable q] :
(∀x, p x ∨ q) ↔ (∀x, p x) ∨ q :=
by simp [or_comm, decidable.forall_or_distrib_left]
theorem forall_or_distrib_right {q : Prop} {p : α → Prop} :
(∀x, p x ∨ q) ↔ (∀x, p x) ∨ q := decidable.forall_or_distrib_right
@[simp] theorem exists_prop {p q : Prop} : (∃ h : p, q) ↔ p ∧ q :=
⟨λ ⟨h₁, h₂⟩, ⟨h₁, h₂⟩, λ ⟨h₁, h₂⟩, ⟨h₁, h₂⟩⟩
theorem exists_unique_prop {p q : Prop} : (∃! h : p, q) ↔ p ∧ q :=
by simp
@[simp] theorem exists_false : ¬ (∃a:α, false) := assume ⟨a, h⟩, h
@[simp] lemma exists_unique_false : ¬ (∃! (a : α), false) := assume ⟨a, h, h'⟩, h
theorem Exists.fst {p : b → Prop} : Exists p → b
| ⟨h, _⟩ := h
theorem Exists.snd {p : b → Prop} : ∀ h : Exists p, p h.fst
| ⟨_, h⟩ := h
theorem forall_prop_of_true {p : Prop} {q : p → Prop} (h : p) : (∀ h' : p, q h') ↔ q h :=
@forall_const (q h) p ⟨h⟩
theorem exists_prop_of_true {p : Prop} {q : p → Prop} (h : p) : (∃ h' : p, q h') ↔ q h :=
@exists_const (q h) p ⟨h⟩
lemma exists_iff_of_forall {p : Prop} {q : p → Prop} (h : ∀ h, q h) : (∃ h, q h) ↔ p :=
⟨Exists.fst, λ H, ⟨H, h H⟩⟩
theorem exists_unique_prop_of_true {p : Prop} {q : p → Prop} (h : p) : (∃! h' : p, q h') ↔ q h :=
@exists_unique_const (q h) p ⟨h⟩ _
theorem forall_prop_of_false {p : Prop} {q : p → Prop} (hn : ¬ p) :
(∀ h' : p, q h') ↔ true :=
iff_true_intro $ λ h, hn.elim h
theorem exists_prop_of_false {p : Prop} {q : p → Prop} : ¬ p → ¬ (∃ h' : p, q h') :=
mt Exists.fst
@[congr] lemma exists_prop_congr {p p' : Prop} {q q' : p → Prop}
(hq : ∀ h, q h ↔ q' h) (hp : p ↔ p') : Exists q ↔ ∃ h : p', q' (hp.2 h) :=
⟨λ ⟨_, _⟩, ⟨hp.1 ‹_›, (hq _).1 ‹_›⟩, λ ⟨_, _⟩, ⟨_, (hq _).2 ‹_›⟩⟩
@[congr] lemma exists_prop_congr' {p p' : Prop} {q q' : p → Prop}
(hq : ∀ h, q h ↔ q' h) (hp : p ↔ p') : Exists q = ∃ h : p', q' (hp.2 h) :=
propext (exists_prop_congr hq _)
/-- See `is_empty.exists_iff` for the `false` version. -/
@[simp] lemma exists_true_left (p : true → Prop) : (∃ x, p x) ↔ p true.intro :=
exists_prop_of_true _
lemma exists_unique.unique {α : Sort*} {p : α → Prop} (h : ∃! x, p x)
{y₁ y₂ : α} (py₁ : p y₁) (py₂ : p y₂) : y₁ = y₂ :=
unique_of_exists_unique h py₁ py₂
@[congr] lemma forall_prop_congr {p p' : Prop} {q q' : p → Prop}
(hq : ∀ h, q h ↔ q' h) (hp : p ↔ p') : (∀ h, q h) ↔ ∀ h : p', q' (hp.2 h) :=
⟨λ h1 h2, (hq _).1 (h1 (hp.2 _)), λ h1 h2, (hq _).2 (h1 (hp.1 h2))⟩
@[congr] lemma forall_prop_congr' {p p' : Prop} {q q' : p → Prop}
(hq : ∀ h, q h ↔ q' h) (hp : p ↔ p') : (∀ h, q h) = ∀ h : p', q' (hp.2 h) :=
propext (forall_prop_congr hq _)
/-- See `is_empty.forall_iff` for the `false` version. -/
@[simp] lemma forall_true_left (p : true → Prop) : (∀ x, p x) ↔ p true.intro :=
forall_prop_of_true _
lemma exists_unique.elim2 {α : Sort*} {p : α → Sort*} [∀ x, subsingleton (p x)]
{q : Π x (h : p x), Prop} {b : Prop} (h₂ : ∃! x (h : p x), q x h)
(h₁ : ∀ x (h : p x), q x h → (∀ y (hy : p y), q y hy → y = x) → b) : b :=
begin
simp only [exists_unique_iff_exists] at h₂,
apply h₂.elim,
exact λ x ⟨hxp, hxq⟩ H, h₁ x hxp hxq (λ y hyp hyq, H y ⟨hyp, hyq⟩)
end
lemma exists_unique.intro2 {α : Sort*} {p : α → Sort*} [∀ x, subsingleton (p x)]
{q : Π (x : α) (h : p x), Prop} (w : α) (hp : p w) (hq : q w hp)
(H : ∀ y (hy : p y), q y hy → y = w) :
∃! x (hx : p x), q x hx :=
begin
simp only [exists_unique_iff_exists],
exact exists_unique.intro w ⟨hp, hq⟩ (λ y ⟨hyp, hyq⟩, H y hyp hyq)
end
lemma exists_unique.exists2 {α : Sort*} {p : α → Sort*} {q : Π (x : α) (h : p x), Prop}
(h : ∃! x (hx : p x), q x hx) :
∃ x (hx : p x), q x hx :=
h.exists.imp (λ x hx, hx.exists)
lemma exists_unique.unique2 {α : Sort*} {p : α → Sort*} [∀ x, subsingleton (p x)]
{q : Π (x : α) (hx : p x), Prop} (h : ∃! x (hx : p x), q x hx)
{y₁ y₂ : α} (hpy₁ : p y₁) (hqy₁ : q y₁ hpy₁)
(hpy₂ : p y₂) (hqy₂ : q y₂ hpy₂) : y₁ = y₂ :=
begin
simp only [exists_unique_iff_exists] at h,
exact h.unique ⟨hpy₁, hqy₁⟩ ⟨hpy₂, hqy₂⟩
end
end quantifiers
/-! ### Classical lemmas -/
namespace classical
variables {α : Sort*} {p : α → Prop}
theorem cases {p : Prop → Prop} (h1 : p true) (h2 : p false) : ∀a, p a :=
assume a, cases_on a h1 h2
/- use shortened names to avoid conflict when classical namespace is open. -/
/-- Any prop `p` is decidable classically. A shorthand for `classical.prop_decidable`. -/
noncomputable def dec (p : Prop) : decidable p :=
by apply_instance
/-- Any predicate `p` is decidable classically. -/
noncomputable def dec_pred (p : α → Prop) : decidable_pred p :=
by apply_instance
/-- Any relation `p` is decidable classically. -/
noncomputable def dec_rel (p : α → α → Prop) : decidable_rel p :=
by apply_instance
/-- Any type `α` has decidable equality classically. -/
noncomputable def dec_eq (α : Sort*) : decidable_eq α :=
by apply_instance
/-- Construct a function from a default value `H0`, and a function to use if there exists a value
satisfying the predicate. -/
@[elab_as_eliminator]
noncomputable def {u} exists_cases {C : Sort u} (H0 : C) (H : ∀ a, p a → C) : C :=
if h : ∃ a, p a then H (classical.some h) (classical.some_spec h) else H0
lemma some_spec2 {α : Sort*} {p : α → Prop} {h : ∃a, p a}
(q : α → Prop) (hpq : ∀a, p a → q a) : q (some h) :=
hpq _ $ some_spec _
/-- A version of classical.indefinite_description which is definitionally equal to a pair -/
noncomputable def subtype_of_exists {α : Type*} {P : α → Prop} (h : ∃ x, P x) : {x // P x} :=
⟨classical.some h, classical.some_spec h⟩
/-- A version of `by_contradiction` that uses types instead of propositions. -/
protected noncomputable def by_contradiction' {α : Sort*} (H : ¬ (α → false)) : α :=
classical.choice $ peirce _ false $ λ h, (H $ λ a, h ⟨a⟩).elim
/-- `classical.by_contradiction'` is equivalent to lean's axiom `classical.choice`. -/
def choice_of_by_contradiction' {α : Sort*} (contra : ¬ (α → false) → α) : nonempty α → α :=
λ H, contra H.elim
end classical
/-- This function has the same type as `exists.rec_on`, and can be used to case on an equality,
but `exists.rec_on` can only eliminate into Prop, while this version eliminates into any universe
using the axiom of choice. -/
@[elab_as_eliminator]
noncomputable def {u} exists.classical_rec_on
{α} {p : α → Prop} (h : ∃ a, p a) {C : Sort u} (H : ∀ a, p a → C) : C :=
H (classical.some h) (classical.some_spec h)
/-! ### Declarations about bounded quantifiers -/
section bounded_quantifiers
variables {α : Sort*} {r p q : α → Prop} {P Q : ∀ x, p x → Prop} {b : Prop}
theorem bex_def : (∃ x (h : p x), q x) ↔ ∃ x, p x ∧ q x :=
⟨λ ⟨x, px, qx⟩, ⟨x, px, qx⟩, λ ⟨x, px, qx⟩, ⟨x, px, qx⟩⟩
theorem bex.elim {b : Prop} : (∃ x h, P x h) → (∀ a h, P a h → b) → b
| ⟨a, h₁, h₂⟩ h' := h' a h₁ h₂
theorem bex.intro (a : α) (h₁ : p a) (h₂ : P a h₁) : ∃ x (h : p x), P x h :=
⟨a, h₁, h₂⟩
theorem ball_congr (H : ∀ x h, P x h ↔ Q x h) :
(∀ x h, P x h) ↔ (∀ x h, Q x h) :=
forall_congr $ λ x, forall_congr (H x)
theorem bex_congr (H : ∀ x h, P x h ↔ Q x h) :
(∃ x h, P x h) ↔ (∃ x h, Q x h) :=
exists_congr $ λ x, exists_congr (H x)
theorem bex_eq_left {a : α} : (∃ x (_ : x = a), p x) ↔ p a :=
by simp only [exists_prop, exists_eq_left]
theorem ball.imp_right (H : ∀ x h, (P x h → Q x h))
(h₁ : ∀ x h, P x h) (x h) : Q x h :=
H _ _ $ h₁ _ _
theorem bex.imp_right (H : ∀ x h, (P x h → Q x h)) :
(∃ x h, P x h) → ∃ x h, Q x h
| ⟨x, h, h'⟩ := ⟨_, _, H _ _ h'⟩
theorem ball.imp_left (H : ∀ x, p x → q x)
(h₁ : ∀ x, q x → r x) (x) (h : p x) : r x :=
h₁ _ $ H _ h
theorem bex.imp_left (H : ∀ x, p x → q x) :
(∃ x (_ : p x), r x) → ∃ x (_ : q x), r x
| ⟨x, hp, hr⟩ := ⟨x, H _ hp, hr⟩
theorem ball_of_forall (h : ∀ x, p x) (x) : p x :=
h x
theorem forall_of_ball (H : ∀ x, p x) (h : ∀ x, p x → q x) (x) : q x :=
h x $ H x
theorem bex_of_exists (H : ∀ x, p x) : (∃ x, q x) → ∃ x (_ : p x), q x
| ⟨x, hq⟩ := ⟨x, H x, hq⟩
theorem exists_of_bex : (∃ x (_ : p x), q x) → ∃ x, q x
| ⟨x, _, hq⟩ := ⟨x, hq⟩
@[simp] theorem bex_imp_distrib : ((∃ x h, P x h) → b) ↔ (∀ x h, P x h → b) :=
by simp
theorem not_bex : (¬ ∃ x h, P x h) ↔ ∀ x h, ¬ P x h :=
bex_imp_distrib
theorem not_ball_of_bex_not : (∃ x h, ¬ P x h) → ¬ ∀ x h, P x h
| ⟨x, h, hp⟩ al := hp $ al x h
-- See Note [decidable namespace]
protected theorem decidable.not_ball [decidable (∃ x h, ¬ P x h)] [∀ x h, decidable (P x h)] :
(¬ ∀ x h, P x h) ↔ (∃ x h, ¬ P x h) :=
⟨not.decidable_imp_symm $ λ nx x h, nx.decidable_imp_symm $ λ h', ⟨x, h, h'⟩,
not_ball_of_bex_not⟩
theorem not_ball : (¬ ∀ x h, P x h) ↔ (∃ x h, ¬ P x h) := decidable.not_ball
theorem ball_true_iff (p : α → Prop) : (∀ x, p x → true) ↔ true :=
iff_true_intro (λ h hrx, trivial)
theorem ball_and_distrib : (∀ x h, P x h ∧ Q x h) ↔ (∀ x h, P x h) ∧ (∀ x h, Q x h) :=
iff.trans (forall_congr $ λ x, forall_and_distrib) forall_and_distrib
theorem bex_or_distrib : (∃ x h, P x h ∨ Q x h) ↔ (∃ x h, P x h) ∨ (∃ x h, Q x h) :=
iff.trans (exists_congr $ λ x, exists_or_distrib) exists_or_distrib
theorem ball_or_left_distrib : (∀ x, p x ∨ q x → r x) ↔ (∀ x, p x → r x) ∧ (∀ x, q x → r x) :=
iff.trans (forall_congr $ λ x, or_imp_distrib) forall_and_distrib
theorem bex_or_left_distrib :
(∃ x (_ : p x ∨ q x), r x) ↔ (∃ x (_ : p x), r x) ∨ (∃ x (_ : q x), r x) :=
by simp only [exists_prop]; exact
iff.trans (exists_congr $ λ x, or_and_distrib_right) exists_or_distrib
end bounded_quantifiers
namespace classical
local attribute [instance] prop_decidable
theorem not_ball {α : Sort*} {p : α → Prop} {P : Π (x : α), p x → Prop} :
(¬ ∀ x h, P x h) ↔ (∃ x h, ¬ P x h) := _root_.not_ball
end classical
section ite
variables {α β γ : Sort*} {σ : α → Sort*} (f : α → β) {P Q : Prop} [decidable P] [decidable Q]
{a b c : α} {A : P → α} {B : ¬ P → α}
lemma dite_eq_iff : dite P A B = c ↔ (∃ h, A h = c) ∨ ∃ h, B h = c :=
by by_cases P; simp [*, exists_prop_of_false not_false]
lemma ite_eq_iff : ite P a b = c ↔ P ∧ a = c ∨ ¬ P ∧ b = c :=
dite_eq_iff.trans $ by rw [exists_prop, exists_prop]
@[simp] lemma dite_eq_left_iff : dite P (λ _, a) B = a ↔ ∀ h, B h = a :=
by by_cases P; simp [*, forall_prop_of_false not_false]
@[simp] lemma dite_eq_right_iff : dite P A (λ _, b) = b ↔ ∀ h, A h = b :=
by by_cases P; simp [*, forall_prop_of_false not_false]
@[simp] lemma ite_eq_left_iff : ite P a b = a ↔ (¬ P → b = a) := dite_eq_left_iff
@[simp] lemma ite_eq_right_iff : ite P a b = b ↔ (P → a = b) := dite_eq_right_iff
lemma dite_ne_left_iff : dite P (λ _, a) B ≠ a ↔ ∃ h, a ≠ B h :=
by { rw [ne.def, dite_eq_left_iff, not_forall], exact exists_congr (λ h, by rw ne_comm) }
lemma dite_ne_right_iff : dite P A (λ _, b) ≠ b ↔ ∃ h, A h ≠ b :=
by simp only [ne.def, dite_eq_right_iff, not_forall]
lemma ite_ne_left_iff : ite P a b ≠ a ↔ ¬ P ∧ a ≠ b := dite_ne_left_iff.trans $ by rw exists_prop
lemma ite_ne_right_iff : ite P a b ≠ b ↔ P ∧ a ≠ b := dite_ne_right_iff.trans $ by rw exists_prop
protected lemma ne.dite_eq_left_iff (h : ∀ h, a ≠ B h) : dite P (λ _, a) B = a ↔ P :=
dite_eq_left_iff.trans $ ⟨λ H, of_not_not $ λ h', h h' (H h').symm, λ h H, (H h).elim⟩
protected lemma ne.dite_eq_right_iff (h : ∀ h, A h ≠ b) : dite P A (λ _, b) = b ↔ ¬ P :=
dite_eq_right_iff.trans $ ⟨λ H h', h h' (H h'), λ h' H, (h' H).elim⟩
protected lemma ne.ite_eq_left_iff (h : a ≠ b) : ite P a b = a ↔ P := ne.dite_eq_left_iff $ λ _, h
protected lemma ne.ite_eq_right_iff (h : a ≠ b) : ite P a b = b ↔ ¬ P :=
ne.dite_eq_right_iff $ λ _, h
protected lemma ne.dite_ne_left_iff (h : ∀ h, a ≠ B h) : dite P (λ _, a) B ≠ a ↔ ¬ P :=
dite_ne_left_iff.trans $ exists_iff_of_forall h
protected lemma ne.dite_ne_right_iff (h : ∀ h, A h ≠ b) : dite P A (λ _, b) ≠ b ↔ P :=
dite_ne_right_iff.trans $ exists_iff_of_forall h
protected lemma ne.ite_ne_left_iff (h : a ≠ b) : ite P a b ≠ a ↔ ¬ P := ne.dite_ne_left_iff $ λ _, h
protected lemma ne.ite_ne_right_iff (h : a ≠ b) : ite P a b ≠ b ↔ P := ne.dite_ne_right_iff $ λ _, h
variables (P Q) (a b)
/-- A `dite` whose results do not actually depend on the condition may be reduced to an `ite`. -/
@[simp] lemma dite_eq_ite : dite P (λ h, a) (λ h, b) = ite P a b := rfl
lemma dite_eq_or_eq : (∃ h, dite P A B = A h) ∨ ∃ h, dite P A B = B h :=
decidable.by_cases (λ h, or.inl ⟨h, dif_pos h⟩) (λ h, or.inr ⟨h, dif_neg h⟩)
lemma ite_eq_or_eq : ite P a b = a ∨ ite P a b = b :=
decidable.by_cases (λ h, or.inl (if_pos h)) (λ h, or.inr (if_neg h))
/-- A function applied to a `dite` is a `dite` of that function applied to each of the branches. -/
lemma apply_dite (x : P → α) (y : ¬P → α) : f (dite P x y) = dite P (λ h, f (x h)) (λ h, f (y h)) :=
by by_cases h : P; simp [h]
/-- A function applied to a `ite` is a `ite` of that function applied to each of the branches. -/
lemma apply_ite : f (ite P a b) = ite P (f a) (f b) := apply_dite f P (λ _, a) (λ _, b)
/-- A two-argument function applied to two `dite`s is a `dite` of that two-argument function
applied to each of the branches. -/
lemma apply_dite2 (f : α → β → γ) (P : Prop) [decidable P] (a : P → α) (b : ¬P → α) (c : P → β)
(d : ¬P → β) :
f (dite P a b) (dite P c d) = dite P (λ h, f (a h) (c h)) (λ h, f (b h) (d h)) :=
by by_cases h : P; simp [h]
/-- A two-argument function applied to two `ite`s is a `ite` of that two-argument function
applied to each of the branches. -/
lemma apply_ite2 (f : α → β → γ) (P : Prop) [decidable P] (a b : α) (c d : β) :
f (ite P a b) (ite P c d) = ite P (f a c) (f b d) :=
apply_dite2 f P (λ _, a) (λ _, b) (λ _, c) (λ _, d)
/-- A 'dite' producing a `Pi` type `Π a, σ a`, applied to a value `a : α` is a `dite` that applies
either branch to `a`. -/
lemma dite_apply (f : P → Π a, σ a) (g : ¬ P → Π a, σ a) (a : α) :
(dite P f g) a = dite P (λ h, f h a) (λ h, g h a) :=
by by_cases h : P; simp [h]
/-- A 'ite' producing a `Pi` type `Π a, σ a`, applied to a value `a : α` is a `ite` that applies
either branch to `a`. -/
lemma ite_apply (f g : Π a, σ a) (a : α) : (ite P f g) a = ite P (f a) (g a) :=
dite_apply P (λ _, f) (λ _, g) a
/-- Negation of the condition `P : Prop` in a `dite` is the same as swapping the branches. -/
@[simp] lemma dite_not (x : ¬ P → α) (y : ¬¬ P → α) :
dite (¬ P) x y = dite P (λ h, y (not_not_intro h)) x :=
by by_cases h : P; simp [h]
/-- Negation of the condition `P : Prop` in a `ite` is the same as swapping the branches. -/
@[simp] lemma ite_not : ite (¬ P) a b = ite P b a := dite_not P (λ _, a) (λ _, b)
lemma ite_and : ite (P ∧ Q) a b = ite P (ite Q a b) b :=
by by_cases hp : P; by_cases hq : Q; simp [hp, hq]
end ite
|
4fc903fdcbacf6553adfcb883b7ba44e5827763e
|
8cae430f0a71442d02dbb1cbb14073b31048e4b0
|
/src/probability/martingale/convergence.lean
|
340f3fba23564d4f8434d78cdc70a3bbd6a50ad3
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/mathlib
|
56a2cadd17ac88caf4ece0a775932fa26327ba0e
|
442a83d738cb208d3600056c489be16900ba701d
|
refs/heads/master
| 1,693,584,102,358
| 1,693,471,902,000
| 1,693,471,902,000
| 97,922,418
| 1,595
| 352
|
Apache-2.0
| 1,694,693,445,000
| 1,500,624,130,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 25,579
|
lean
|
/-
Copyright (c) 2022 Kexing Ying. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kexing Ying
-/
import probability.martingale.upcrossing
import measure_theory.function.uniform_integrable
import measure_theory.constructions.polish
/-!
# Martingale convergence theorems
> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
> Any changes to this file require a corresponding PR to mathlib4.
The martingale convergence theorems are a collection of theorems characterizing the convergence
of a martingale provided it satisfies some boundedness conditions. This file contains the
almost everywhere martingale convergence theorem which provides an almost everywhere limit to
an L¹ bounded submartingale. It also contains the L¹ martingale convergence theorem which provides
an L¹ limit to a uniformly integrable submartingale. Finally, it also contains the Lévy upwards
theorems.
## Main results
* `measure_theory.submartingale.ae_tendsto_limit_process`: the almost everywhere martingale
convergence theorem: an L¹-bounded submartingale adapted to the filtration `ℱ` converges almost
everywhere to its limit process.
* `measure_theory.submartingale.mem_ℒp_limit_process`: the limit process of an Lᵖ-bounded
submartingale is Lᵖ.
* `measure_theory.submartingale.tendsto_snorm_one_limit_process`: part a of the L¹ martingale
convergence theorem: a uniformly integrable submartingale adapted to the filtration `ℱ` converges
almost everywhere and in L¹ to an integrable function which is measurable with respect to
the σ-algebra `⨆ n, ℱ n`.
* `measure_theory.martingale.ae_eq_condexp_limit_process`: part b the L¹ martingale convergence
theorem: if `f` is a uniformly integrable martingale adapted to the filtration `ℱ`, then
`f n` equals `𝔼[g | ℱ n]` almost everywhere where `g` is the limiting process of `f`.
* `measure_theory.integrable.tendsto_ae_condexp`: part c the L¹ martingale convergence theorem:
given a `⨆ n, ℱ n`-measurable function `g` where `ℱ` is a filtration, `𝔼[g | ℱ n]` converges
almost everywhere to `g`.
* `measure_theory.integrable.tendsto_snorm_condexp`: part c the L¹ martingale convergence theorem:
given a `⨆ n, ℱ n`-measurable function `g` where `ℱ` is a filtration, `𝔼[g | ℱ n]` converges in
L¹ to `g`.
-/
open topological_space filter measure_theory.filtration
open_locale nnreal ennreal measure_theory probability_theory big_operators topology
namespace measure_theory
variables {Ω ι : Type*} {m0 : measurable_space Ω} {μ : measure Ω} {ℱ : filtration ℕ m0}
variables {a b : ℝ} {f : ℕ → Ω → ℝ} {ω : Ω} {R : ℝ≥0}
section ae_convergence
/-!
### Almost everywhere martingale convergence theorem
We will now prove the almost everywhere martingale convergence theorem.
The a.e. martingale convergence theorem states: if `f` is an L¹-bounded `ℱ`-submartingale, then
it converges almost everywhere to an integrable function which is measurable with respect to
the σ-algebra `ℱ∞ := ⨆ n, ℱ n`.
Mathematically, we proceed by first noting that a real sequence $(x_n)$ converges if
(a) $\limsup_{n \to \infty} |x_n| < \infty$, (b) for all $a < b \in \mathbb{Q}$ we have the
number of upcrossings of $(x_n)$ from below $a$ to above $b$ is finite.
Thus, for all $\omega$ satisfying $\limsup_{n \to \infty} |f_n(\omega)| < \infty$ and the number of
upcrossings of $(f_n(\omega))$ from below $a$ to above $b$ is finite for all $a < b \in \mathbb{Q}$,
we have $(f_n(\omega))$ is convergent.
Hence, assuming $(f_n)$ is L¹-bounded, using Fatou's lemma, we have
$$
\mathbb{E} \limsup_{n \to \infty} |f_n| \le \limsup_{n \to \infty} \mathbb{E}|f_n| < \infty
$$
implying $\limsup_{n \to \infty} |f_n| < \infty$ a.e. Furthermore, by the upcrossing estimate,
the number of upcrossings is finite almost everywhere implying $f$ converges pointwise almost
everywhere.
Thus, denoting $g$ the a.e. limit of $(f_n)$, $g$ is $\mathcal{F}_\infty$-measurable as for all
$n$, $f_n$ is $\mathcal{F}_n$-measurable and $\mathcal{F}_n \le \mathcal{F}_\infty$. Finally, $g$
is integrable as $|g| \le \liminf_{n \to \infty} |f_n|$ so
$$
\mathbb{E}|g| \le \mathbb{E} \limsup_{n \to \infty} |f_n| \le
\limsup_{n \to \infty} \mathbb{E}|f_n| < \infty
$$
as required.
Implementation wise, we have `tendsto_of_no_upcrossings` which showed that
a bounded sequence converges if it does not visit below $a$ and above $b$ infinitely often
for all $a, b ∈ s$ for some dense set $s$. So, we may skip the first step provided we can prove
that the realizations are bounded almost everywhere. Indeed, suppose $(|f_n(\omega)|)$ is not
bounded, then either $f_n(\omega) \to \pm \infty$ or one of $\limsup f_n(\omega)$ or
$\liminf f_n(\omega)$ equals $\pm \infty$ while the other is finite. But the first case
contradicts $\liminf |f_n(\omega)| < \infty$ while the second case contradicts finite upcrossings.
Furthermore, we introduced `filtration.limit_process` which chooses the limiting random variable
of a stochastic process if it exists, otherwise it returns 0. Hence, instead of showing an
existence statement, we phrased the a.e. martingale convergence theorem by showed that a
submartingale converges to its `limit_process` almost everywhere.
-/
/-- If a stochastic process has bounded upcrossing from below `a` to above `b`,
then it does not frequently visit both below `a` and above `b`. -/
lemma not_frequently_of_upcrossings_lt_top (hab : a < b) (hω : upcrossings a b f ω ≠ ∞) :
¬((∃ᶠ n in at_top, f n ω < a) ∧ (∃ᶠ n in at_top, b < f n ω)) :=
begin
rw [← lt_top_iff_ne_top, upcrossings_lt_top_iff] at hω,
replace hω : ∃ k, ∀ N, upcrossings_before a b f N ω < k,
{ obtain ⟨k, hk⟩ := hω,
exact ⟨k + 1, λ N, lt_of_le_of_lt (hk N) k.lt_succ_self⟩ },
rintro ⟨h₁, h₂⟩,
rw frequently_at_top at h₁ h₂,
refine not_not.2 hω _,
push_neg,
intro k,
induction k with k ih,
{ simp only [zero_le', exists_const] },
{ obtain ⟨N, hN⟩ := ih,
obtain ⟨N₁, hN₁, hN₁'⟩ := h₁ N,
obtain ⟨N₂, hN₂, hN₂'⟩ := h₂ N₁,
exact ⟨(N₂ + 1), nat.succ_le_of_lt $ lt_of_le_of_lt hN
(upcrossings_before_lt_of_exists_upcrossing hab hN₁ hN₁' hN₂ hN₂')⟩ }
end
/-- A stochastic process that frequently visits below `a` and above `b` have infinite
upcrossings. -/
lemma upcrossings_eq_top_of_frequently_lt (hab : a < b)
(h₁ : ∃ᶠ n in at_top, f n ω < a) (h₂ : ∃ᶠ n in at_top, b < f n ω) :
upcrossings a b f ω = ∞ :=
classical.by_contradiction (λ h, not_frequently_of_upcrossings_lt_top hab h ⟨h₁, h₂⟩)
/-- A realization of a stochastic process with bounded upcrossings and bounded liminfs is
convergent.
We use the spelling `< ∞` instead of the standard `≠ ∞` in the assumptions since it is not as easy
to change `<` to `≠` under binders. -/
lemma tendsto_of_uncrossing_lt_top
(hf₁ : liminf (λ n, (‖f n ω‖₊ : ℝ≥0∞)) at_top < ∞)
(hf₂ : ∀ a b : ℚ, a < b → upcrossings a b f ω < ∞) :
∃ c, tendsto (λ n, f n ω) at_top (𝓝 c) :=
begin
by_cases h : is_bounded_under (≤) at_top (λ n, |f n ω|),
{ rw is_bounded_under_le_abs at h,
refine tendsto_of_no_upcrossings rat.dense_range_cast _ h.1 h.2,
{ intros a ha b hb hab,
obtain ⟨⟨a, rfl⟩, ⟨b, rfl⟩⟩ := ⟨ha, hb⟩,
exact not_frequently_of_upcrossings_lt_top hab (hf₂ a b (rat.cast_lt.1 hab)).ne } },
{ obtain ⟨a, b, hab, h₁, h₂⟩ := ennreal.exists_upcrossings_of_not_bounded_under hf₁.ne h,
exact false.elim ((hf₂ a b hab).ne
(upcrossings_eq_top_of_frequently_lt (rat.cast_lt.2 hab) h₁ h₂)) }
end
/-- An L¹-bounded submartingale has bounded upcrossings almost everywhere. -/
lemma submartingale.upcrossings_ae_lt_top' [is_finite_measure μ]
(hf : submartingale f ℱ μ) (hbdd : ∀ n, snorm (f n) 1 μ ≤ R) (hab : a < b) :
∀ᵐ ω ∂μ, upcrossings a b f ω < ∞ :=
begin
refine ae_lt_top (hf.adapted.measurable_upcrossings hab) _,
have := hf.mul_lintegral_upcrossings_le_lintegral_pos_part a b,
rw [mul_comm, ← ennreal.le_div_iff_mul_le] at this,
{ refine (lt_of_le_of_lt this (ennreal.div_lt_top _ _)).ne,
{ have hR' : ∀ n, ∫⁻ ω, ‖f n ω - a‖₊ ∂μ ≤ R + ‖a‖₊ * μ set.univ,
{ simp_rw snorm_one_eq_lintegral_nnnorm at hbdd,
intro n,
refine (lintegral_mono _ : ∫⁻ ω, ‖f n ω - a‖₊ ∂μ ≤ ∫⁻ ω, ‖f n ω‖₊ + ‖a‖₊ ∂μ).trans _,
{ intro ω,
simp_rw [sub_eq_add_neg, ← nnnorm_neg a, ← ennreal.coe_add, ennreal.coe_le_coe],
exact nnnorm_add_le _ _ },
{ simp_rw [ lintegral_add_right _ measurable_const, lintegral_const],
exact add_le_add (hbdd _) le_rfl } },
refine ne_of_lt (supr_lt_iff.2 ⟨R + ‖a‖₊ * μ set.univ, ennreal.add_lt_top.2
⟨ennreal.coe_lt_top, ennreal.mul_lt_top ennreal.coe_lt_top.ne (measure_ne_top _ _)⟩,
λ n, le_trans _ (hR' n)⟩),
refine lintegral_mono (λ ω, _),
rw [ennreal.of_real_le_iff_le_to_real, ennreal.coe_to_real, coe_nnnorm],
by_cases hnonneg : 0 ≤ f n ω - a,
{ rw [lattice_ordered_comm_group.pos_of_nonneg _ hnonneg,
real.norm_eq_abs, abs_of_nonneg hnonneg] },
{ rw lattice_ordered_comm_group.pos_of_nonpos _ (not_le.1 hnonneg).le,
exact norm_nonneg _ },
{ simp only [ne.def, ennreal.coe_ne_top, not_false_iff] } },
{ simp only [hab, ne.def, ennreal.of_real_eq_zero, sub_nonpos, not_le] } },
{ simp only [hab, ne.def, ennreal.of_real_eq_zero, sub_nonpos, not_le, true_or]},
{ simp only [ne.def, ennreal.of_real_ne_top, not_false_iff, true_or] }
end
lemma submartingale.upcrossings_ae_lt_top [is_finite_measure μ]
(hf : submartingale f ℱ μ) (hbdd : ∀ n, snorm (f n) 1 μ ≤ R) :
∀ᵐ ω ∂μ, ∀ a b : ℚ, a < b → upcrossings a b f ω < ∞ :=
begin
simp only [ae_all_iff, eventually_imp_distrib_left],
rintro a b hab,
exact hf.upcrossings_ae_lt_top' hbdd (rat.cast_lt.2 hab),
end
/-- An L¹-bounded submartingale converges almost everywhere. -/
lemma submartingale.exists_ae_tendsto_of_bdd [is_finite_measure μ]
(hf : submartingale f ℱ μ) (hbdd : ∀ n, snorm (f n) 1 μ ≤ R) :
∀ᵐ ω ∂μ, ∃ c, tendsto (λ n, f n ω) at_top (𝓝 c) :=
begin
filter_upwards [hf.upcrossings_ae_lt_top hbdd, ae_bdd_liminf_at_top_of_snorm_bdd one_ne_zero
(λ n, (hf.strongly_measurable n).measurable.mono (ℱ.le n) le_rfl) hbdd] with ω h₁ h₂,
exact tendsto_of_uncrossing_lt_top h₂ h₁,
end
lemma submartingale.exists_ae_trim_tendsto_of_bdd [is_finite_measure μ]
(hf : submartingale f ℱ μ) (hbdd : ∀ n, snorm (f n) 1 μ ≤ R) :
∀ᵐ ω ∂(μ.trim (Sup_le (λ m ⟨n, hn⟩, hn ▸ ℱ.le _) : (⨆ n, ℱ n) ≤ m0)),
∃ c, tendsto (λ n, f n ω) at_top (𝓝 c) :=
begin
rw [ae_iff, trim_measurable_set_eq],
{ exact hf.exists_ae_tendsto_of_bdd hbdd },
{ exact measurable_set.compl (@measurable_set_exists_tendsto _ _ _ _ _ _ (⨆ n, ℱ n) _ _ _ _ _
(λ n, ((hf.strongly_measurable n).measurable.mono (le_Sup ⟨n, rfl⟩) le_rfl))) }
end
/-- **Almost everywhere martingale convergence theorem**: An L¹-bounded submartingale converges
almost everywhere to a `⨆ n, ℱ n`-measurable function. -/
lemma submartingale.ae_tendsto_limit_process [is_finite_measure μ]
(hf : submartingale f ℱ μ) (hbdd : ∀ n, snorm (f n) 1 μ ≤ R) :
∀ᵐ ω ∂μ, tendsto (λ n, f n ω) at_top (𝓝 (ℱ.limit_process f μ ω)) :=
begin
classical,
suffices : ∃ g, strongly_measurable[⨆ n, ℱ n] g ∧ ∀ᵐ ω ∂μ, tendsto (λ n, f n ω) at_top (𝓝 (g ω)),
{ rw [limit_process, dif_pos this],
exact (classical.some_spec this).2 },
set g' : Ω → ℝ := λ ω, if h : ∃ c, tendsto (λ n, f n ω) at_top (𝓝 c) then h.some else 0,
have hle : (⨆ n, ℱ n) ≤ m0 := Sup_le (λ m ⟨n, hn⟩, hn ▸ ℱ.le _),
have hg' : ∀ᵐ ω ∂(μ.trim hle), tendsto (λ n, f n ω) at_top (𝓝 (g' ω)),
{ filter_upwards [hf.exists_ae_trim_tendsto_of_bdd hbdd] with ω hω,
simp_rw [g', dif_pos hω],
exact hω.some_spec },
have hg'm : @ae_strongly_measurable _ _ _ (⨆ n, ℱ n) g' (μ.trim hle) :=
(@ae_measurable_of_tendsto_metrizable_ae' _ _ (⨆ n, ℱ n) _ _ _ _ _ _ _
(λ n, ((hf.strongly_measurable n).measurable.mono
(le_Sup ⟨n, rfl⟩ : ℱ n ≤ ⨆ n, ℱ n) le_rfl).ae_measurable) hg').ae_strongly_measurable,
obtain ⟨g, hgm, hae⟩ := hg'm,
have hg : ∀ᵐ ω ∂μ.trim hle, tendsto (λ n, f n ω) at_top (𝓝 (g ω)),
{ filter_upwards [hae, hg'] with ω hω hg'ω,
exact hω ▸ hg'ω },
exact ⟨g, hgm, measure_eq_zero_of_trim_eq_zero hle hg⟩,
end
/-- The limiting process of an Lᵖ-bounded submartingale is Lᵖ. -/
lemma submartingale.mem_ℒp_limit_process {p : ℝ≥0∞}
(hf : submartingale f ℱ μ) (hbdd : ∀ n, snorm (f n) p μ ≤ R) :
mem_ℒp (ℱ.limit_process f μ) p μ :=
mem_ℒp_limit_process_of_snorm_bdd
(λ n, ((hf.strongly_measurable n).mono (ℱ.le n)).ae_strongly_measurable) hbdd
end ae_convergence
section L1_convergence
variables [is_finite_measure μ] {g : Ω → ℝ}
/-!
### L¹ martingale convergence theorem
We will now prove the L¹ martingale convergence theorems.
The L¹ martingale convergence theorem states that:
(a) if `f` is a uniformly integrable (in the probability sense) submartingale adapted to the
filtration `ℱ`, it converges in L¹ to an integrable function `g` which is measurable with
respect to `ℱ∞ := ⨆ n, ℱ n` and
(b) if `f` is actually a martingale, `f n = 𝔼[g | ℱ n]` almost everywhere.
(c) Finally, if `h` is integrable and measurable with respect to `ℱ∞`, `(𝔼[h | ℱ n])ₙ` is a
uniformly integrable martingale which converges to `h` almost everywhere and in L¹.
The proof is quite simple. (a) follows directly from the a.e. martingale convergence theorem
and the Vitali convergence theorem as our definition of uniform integrability (in the probability
sense) directly implies L¹-uniform boundedness. We note that our definition of uniform
integrability is slightly non-standard but is equivalent to the usual literary definition. This
equivalence is provided by `measure_theory.uniform_integrable_iff`.
(b) follows since given $n$, we have for all $m \ge n$,
$$
\|f_n - \mathbb{E}[g \mid \mathcal{F}_n]\|_1 =
\|\mathbb{E}[f_m - g \mid \mathcal{F}_n]\|_1 \le \|\|f_m - g\|_1.
$$
Thus, taking $m \to \infty$ provides the almost everywhere equality.
Finally, to prove (c), we define $f_n := \mathbb{E}[h \mid \mathcal{F}_n]$. It is clear that
$(f_n)_n$ is a martingale by the tower property for conditional expectations. Furthermore,
$(f_n)_n$ is uniformly integrable in the probability sense. Indeed, as a single function is
uniformly integrable in the measure theory sense, for all $\epsilon > 0$, there exists some
$\delta > 0$ such that for all measurable set $A$ with $\mu(A) < δ$, we have
$\mathbb{E}|h|\mathbf{1}_A < \epsilon$. So, since for sufficently large $\lambda$, by the Markov
inequality, we have for all $n$,
$$
\mu(|f_n| \ge \lambda) \le \lambda^{-1}\mathbb{E}|f_n| \le \lambda^{-1}\mathbb|g| < \delta,
$$
we have for sufficently large $\lambda$, for all $n$,
$$
\mathbb{E}|f_n|\mathbf{1}_{|f_n| \ge \lambda} \le
\mathbb|g|\mathbf{1}_{|f_n| \ge \lambda} < \epsilon,
$$
implying $(f_n)_n$ is uniformly integrable. Now, to prove $f_n \to h$ almost everywhere and in
L¹, it suffices to show that $h = g$ almost everywhere where $g$ is the almost everywhere and L¹
limit of $(f_n)_n$ from part (b) of the theorem. By noting that, for all $s \in \mathcal{F}_n$,
we have
$$
\mathbb{E}g\mathbf{1}_s = \mathbb{E}[\mathbb{E}[g \mid \mathcal{F}_n]\mathbf{1}_s] =
\mathbb{E}[\mathbb{E}[h \mid \mathcal{F}_n]\mathbf{1}_s] = \mathbb{E}h\mathbf{1}_s
$$
where $\mathbb{E}[g \mid \mathcal{F}_n = \mathbb{E}[h \mid \mathcal{F}_n]$ almost everywhere
by part (b); the equality also holds for all $s \in \mathcal{F}_\infty$ by Dynkin's theorem.
Thus, as both $h$ and $g$ are $\mathcal{F}_\infty$-measurable, $h = g$ almost everywhere as
required.
Similar to the a.e. martingale convergence theorem, rather than showing the existence of the
limiting process, we phrased the L¹-martingale convergence theorem by proving that a submartingale
does converge in L¹ to its `limit_process`. However, in contrast to the a.e. martingale convergence
theorem, we do not need to introduce a L¹ version of `filtration.limit_process` as the L¹ limit
and the a.e. limit of a submartingale coincide.
-/
/-- Part a of the **L¹ martingale convergence theorem**: a uniformly integrable submartingale
adapted to the filtration `ℱ` converges a.e. and in L¹ to an integrable function which is
measurable with respect to the σ-algebra `⨆ n, ℱ n`. -/
lemma submartingale.tendsto_snorm_one_limit_process
(hf : submartingale f ℱ μ) (hunif : uniform_integrable f 1 μ) :
tendsto (λ n, snorm (f n - ℱ.limit_process f μ) 1 μ) at_top (𝓝 0) :=
begin
obtain ⟨R, hR⟩ := hunif.2.2,
have hmeas : ∀ n, ae_strongly_measurable (f n) μ :=
λ n, ((hf.strongly_measurable n).mono (ℱ.le _)).ae_strongly_measurable,
exact tendsto_Lp_of_tendsto_in_measure _ le_rfl ennreal.one_ne_top hmeas
(mem_ℒp_limit_process_of_snorm_bdd hmeas hR) hunif.2.1
(tendsto_in_measure_of_tendsto_ae hmeas $ hf.ae_tendsto_limit_process hR),
end
lemma submartingale.ae_tendsto_limit_process_of_uniform_integrable
(hf : submartingale f ℱ μ) (hunif : uniform_integrable f 1 μ) :
∀ᵐ ω ∂μ, tendsto (λ n, f n ω) at_top (𝓝 (ℱ.limit_process f μ ω)) :=
let ⟨R, hR⟩ := hunif.2.2 in hf.ae_tendsto_limit_process hR
/-- If a martingale `f` adapted to `ℱ` converges in L¹ to `g`, then for all `n`, `f n` is almost
everywhere equal to `𝔼[g | ℱ n]`. -/
lemma martingale.eq_condexp_of_tendsto_snorm {μ : measure Ω}
(hf : martingale f ℱ μ) (hg : integrable g μ)
(hgtends : tendsto (λ n, snorm (f n - g) 1 μ) at_top (𝓝 0)) (n : ℕ) :
f n =ᵐ[μ] μ[g | ℱ n] :=
begin
rw [← sub_ae_eq_zero, ← snorm_eq_zero_iff ((((hf.strongly_measurable n).mono (ℱ.le _)).sub
(strongly_measurable_condexp.mono (ℱ.le _))).ae_strongly_measurable) one_ne_zero],
have ht : tendsto (λ m, snorm (μ[f m - g | ℱ n]) 1 μ) at_top (𝓝 0),
{ have hint : ∀ m, integrable (f m - g) μ := λ m, (hf.integrable m).sub hg,
exact tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds hgtends (λ m, zero_le _)
(λ m, snorm_one_condexp_le_snorm _) },
have hev : ∀ m ≥ n, snorm (μ[f m - g | ℱ n]) 1 μ = snorm (f n - μ[g | ℱ n]) 1 μ,
{ refine λ m hm, snorm_congr_ae
((condexp_sub (hf.integrable m) hg).trans _),
filter_upwards [hf.2 n m hm] with x hx,
simp only [hx, pi.sub_apply] },
exact tendsto_nhds_unique (tendsto_at_top_of_eventually_const hev) ht,
end
/-- Part b of the **L¹ martingale convergence theorem**: if `f` is a uniformly integrable martingale
adapted to the filtration `ℱ`, then for all `n`, `f n` is almost everywhere equal to the conditional
expectation of its limiting process wrt. `ℱ n`. -/
lemma martingale.ae_eq_condexp_limit_process
(hf : martingale f ℱ μ) (hbdd : uniform_integrable f 1 μ) (n : ℕ) :
f n =ᵐ[μ] μ[ℱ.limit_process f μ | ℱ n] :=
let ⟨R, hR⟩ := hbdd.2.2 in hf.eq_condexp_of_tendsto_snorm
((mem_ℒp_limit_process_of_snorm_bdd hbdd.1 hR).integrable le_rfl)
(hf.submartingale.tendsto_snorm_one_limit_process hbdd) n
/-- Part c of the **L¹ martingale convergnce theorem**: Given a integrable function `g` which
is measurable with respect to `⨆ n, ℱ n` where `ℱ` is a filtration, the martingale defined by
`𝔼[g | ℱ n]` converges almost everywhere to `g`.
This martingale also converges to `g` in L¹ and this result is provided by
`measure_theory.integrable.tendsto_snorm_condexp` -/
lemma integrable.tendsto_ae_condexp
(hg : integrable g μ) (hgmeas : strongly_measurable[⨆ n, ℱ n] g) :
∀ᵐ x ∂μ, tendsto (λ n, μ[g | ℱ n] x) at_top (𝓝 (g x)) :=
begin
have hle : (⨆ n, ℱ n) ≤ m0 := Sup_le (λ m ⟨n, hn⟩, hn ▸ ℱ.le _),
have hunif : uniform_integrable (λ n, μ[g | ℱ n]) 1 μ := hg.uniform_integrable_condexp_filtration,
obtain ⟨R, hR⟩ := hunif.2.2,
have hlimint : integrable (ℱ.limit_process (λ n, μ[g | ℱ n]) μ) μ :=
(mem_ℒp_limit_process_of_snorm_bdd hunif.1 hR).integrable le_rfl,
suffices : g =ᵐ[μ] ℱ.limit_process (λ n x, μ[g | ℱ n] x) μ,
{ filter_upwards [this, (martingale_condexp g ℱ μ).submartingale.ae_tendsto_limit_process hR]
with x heq ht,
rwa heq },
have : ∀ n s, measurable_set[ℱ n] s → ∫ x in s, g x ∂μ =
∫ x in s, ℱ.limit_process (λ n x, μ[g | ℱ n] x) μ x ∂μ,
{ intros n s hs,
rw [← set_integral_condexp (ℱ.le n) hg hs, ← set_integral_condexp (ℱ.le n) hlimint hs],
refine set_integral_congr_ae (ℱ.le _ _ hs) _,
filter_upwards [(martingale_condexp g ℱ μ).ae_eq_condexp_limit_process hunif n] with x hx _,
rwa hx },
refine ae_eq_of_forall_set_integral_eq_of_sigma_finite' hle
(λ s _ _, hg.integrable_on) (λ s _ _, hlimint.integrable_on) (λ s hs, _)
hgmeas.ae_strongly_measurable' strongly_measurable_limit_process.ae_strongly_measurable',
refine @measurable_space.induction_on_inter _ _ _ (⨆ n, ℱ n)
(measurable_space.measurable_space_supr_eq ℱ) _ _ _ _ _ _ hs,
{ rintro s ⟨n, hs⟩ t ⟨m, ht⟩ -,
by_cases hnm : n ≤ m,
{ exact ⟨m, (ℱ.mono hnm _ hs).inter ht⟩ },
{ exact ⟨n, hs.inter (ℱ.mono (not_le.1 hnm).le _ ht)⟩ } },
{ simp only [measure_empty, with_top.zero_lt_top, measure.restrict_empty,
integral_zero_measure, forall_true_left] },
{ rintro t ⟨n, ht⟩ -,
exact this n _ ht },
{ rintro t htmeas ht -,
have hgeq := @integral_add_compl _ _ (⨆ n, ℱ n) _ _ _ _ _ _ htmeas (hg.trim hle hgmeas),
have hheq := @integral_add_compl _ _ (⨆ n, ℱ n) _ _ _ _ _ _ htmeas
(hlimint.trim hle strongly_measurable_limit_process),
rw [add_comm, ← eq_sub_iff_add_eq] at hgeq hheq,
rw [set_integral_trim hle hgmeas htmeas.compl,
set_integral_trim hle strongly_measurable_limit_process htmeas.compl,
hgeq, hheq, ← set_integral_trim hle hgmeas htmeas,
← set_integral_trim hle strongly_measurable_limit_process htmeas,
← integral_trim hle hgmeas, ← integral_trim hle strongly_measurable_limit_process,
← integral_univ, this 0 _ measurable_set.univ, integral_univ, ht (measure_lt_top _ _)] },
{ rintro f hf hfmeas heq -,
rw [integral_Union (λ n, hle _ (hfmeas n)) hf hg.integrable_on,
integral_Union (λ n, hle _ (hfmeas n)) hf hlimint.integrable_on],
exact tsum_congr (λ n, heq _ (measure_lt_top _ _)) }
end
/-- Part c of the **L¹ martingale convergnce theorem**: Given a integrable function `g` which
is measurable with respect to `⨆ n, ℱ n` where `ℱ` is a filtration, the martingale defined by
`𝔼[g | ℱ n]` converges in L¹ to `g`.
This martingale also converges to `g` almost everywhere and this result is provided by
`measure_theory.integrable.tendsto_ae_condexp` -/
lemma integrable.tendsto_snorm_condexp
(hg : integrable g μ) (hgmeas : strongly_measurable[⨆ n, ℱ n] g) :
tendsto (λ n, snorm (μ[g | ℱ n] - g) 1 μ) at_top (𝓝 0) :=
tendsto_Lp_of_tendsto_in_measure _ le_rfl ennreal.one_ne_top
(λ n, (strongly_measurable_condexp.mono (ℱ.le n)).ae_strongly_measurable)
(mem_ℒp_one_iff_integrable.2 hg) (hg.uniform_integrable_condexp_filtration).2.1
(tendsto_in_measure_of_tendsto_ae
(λ n,(strongly_measurable_condexp.mono (ℱ.le n)).ae_strongly_measurable)
(hg.tendsto_ae_condexp hgmeas))
/-- **Lévy's upward theorem**, almost everywhere version: given a function `g` and a filtration
`ℱ`, the sequence defined by `𝔼[g | ℱ n]` converges almost everywhere to `𝔼[g | ⨆ n, ℱ n]`. -/
lemma tendsto_ae_condexp (g : Ω → ℝ) :
∀ᵐ x ∂μ, tendsto (λ n, μ[g | ℱ n] x) at_top (𝓝 (μ[g | ⨆ n, ℱ n] x)) :=
begin
have ht : ∀ᵐ x ∂μ, tendsto (λ n, μ[μ[g | ⨆ n, ℱ n] | ℱ n] x) at_top (𝓝 (μ[g | ⨆ n, ℱ n] x)) :=
integrable_condexp.tendsto_ae_condexp strongly_measurable_condexp,
have heq : ∀ n, ∀ᵐ x ∂μ, μ[μ[g | ⨆ n, ℱ n] | ℱ n] x = μ[g | ℱ n] x :=
λ n, condexp_condexp_of_le (le_supr _ n) (supr_le (λ n, ℱ.le n)),
rw ← ae_all_iff at heq,
filter_upwards [heq, ht] with x hxeq hxt,
exact hxt.congr hxeq,
end
/-- **Lévy's upward theorem**, L¹ version: given a function `g` and a filtration `ℱ`, the
sequence defined by `𝔼[g | ℱ n]` converges in L¹ to `𝔼[g | ⨆ n, ℱ n]`. -/
lemma tendsto_snorm_condexp (g : Ω → ℝ) :
tendsto (λ n, snorm (μ[g | ℱ n] - μ[g | ⨆ n, ℱ n]) 1 μ) at_top (𝓝 0) :=
begin
have ht : tendsto (λ n, snorm (μ[μ[g | ⨆ n, ℱ n] | ℱ n] - μ[g | ⨆ n, ℱ n]) 1 μ) at_top (𝓝 0) :=
integrable_condexp.tendsto_snorm_condexp strongly_measurable_condexp,
have heq : ∀ n, ∀ᵐ x ∂μ, μ[μ[g | ⨆ n, ℱ n] | ℱ n] x = μ[g | ℱ n] x :=
λ n, condexp_condexp_of_le (le_supr _ n) (supr_le (λ n, ℱ.le n)),
refine ht.congr (λ n, snorm_congr_ae _),
filter_upwards [heq n] with x hxeq,
simp only [hxeq, pi.sub_apply],
end
end L1_convergence
end measure_theory
|
a8682a7f3bf4b890d9164a34b5f1d62667051204
|
fe25de614feb5587799621c41487aaee0d083b08
|
/stage0/src/Lean/Elab/Quotation.lean
|
1687eea006923b6237b5ebea7063cdf33b29c1c0
|
[
"Apache-2.0"
] |
permissive
|
pollend/lean4
|
e8469c2f5fb8779b773618c3267883cf21fb9fac
|
c913886938c4b3b83238a3f99673c6c5a9cec270
|
refs/heads/master
| 1,687,973,251,481
| 1,628,039,739,000
| 1,628,039,739,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 24,833
|
lean
|
/-
Copyright (c) 2019 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sebastian Ullrich
Elaboration of syntax quotations as terms and patterns (in `match_syntax`). See also `./Hygiene.lean` for the basic
hygiene workings and data types.
-/
import Lean.Syntax
import Lean.ResolveName
import Lean.Elab.Term
import Lean.Elab.Quotation.Util
import Lean.Elab.Quotation.Precheck
import Lean.Parser.Term
namespace Lean.Elab.Term.Quotation
open Lean.Parser.Term
open Lean.Syntax
open Meta
/-- `C[$(e)]` ~> `let a := e; C[$a]`. Used in the implementation of antiquot splices. -/
private partial def floatOutAntiquotTerms : Syntax → StateT (Syntax → TermElabM Syntax) TermElabM Syntax
| stx@(Syntax.node k args) => do
if isAntiquot stx && !isEscapedAntiquot stx then
let e := getAntiquotTerm stx
if !e.isIdent || !e.getId.isAtomic then
return ← withFreshMacroScope do
let a ← `(a)
modify (fun cont stx => (`(let $a:ident := $e; $stx) : TermElabM _))
stx.setArg 2 a
Syntax.node k (← args.mapM floatOutAntiquotTerms)
| stx => pure stx
private def getSepFromSplice (splice : Syntax) : Syntax := do
let Syntax.atom _ sep ← getAntiquotSpliceSuffix splice | unreachable!
Syntax.mkStrLit (sep.dropRight 1)
partial def mkTuple : Array Syntax → TermElabM Syntax
| #[] => `(Unit.unit)
| #[e] => e
| es => do
let stx ← mkTuple (es.eraseIdx 0)
`(Prod.mk $(es[0]) $stx)
def resolveSectionVariable (sectionVars : NameMap Name) (id : Name) : List (Name × List String) :=
-- decode macro scopes from name before recursion
let extractionResult := extractMacroScopes id
let rec loop : Name → List String → List (Name × List String)
| id@(Name.str p s _), projs =>
-- NOTE: we assume that macro scopes always belong to the projected constant, not the projections
let id := { extractionResult with name := id }.review
match sectionVars.find? id with
| some newId => [(newId, projs)]
| none => loop p (s::projs)
| _, _ => []
loop extractionResult.name []
/-- Transform sequence of pushes and appends into acceptable code -/
def ArrayStxBuilder := Sum (Array Syntax) Syntax
namespace ArrayStxBuilder
def empty : ArrayStxBuilder := Sum.inl #[]
def build : ArrayStxBuilder → Syntax
| Sum.inl elems => quote elems
| Sum.inr arr => arr
def push (b : ArrayStxBuilder) (elem : Syntax) : ArrayStxBuilder :=
match b with
| Sum.inl elems => Sum.inl <| elems.push elem
| Sum.inr arr => Sum.inr <| mkCApp ``Array.push #[arr, elem]
def append (b : ArrayStxBuilder) (arr : Syntax) (appendName := ``Array.append) : ArrayStxBuilder :=
Sum.inr <| mkCApp appendName #[b.build, arr]
end ArrayStxBuilder
-- Elaborate the content of a syntax quotation term
private partial def quoteSyntax : Syntax → TermElabM Syntax
| Syntax.ident info rawVal val preresolved => do
if !hygiene.get (← getOptions) then
return ← `(Syntax.ident info $(quote rawVal) $(quote val) $(quote preresolved))
-- Add global scopes at compilation time (now), add macro scope at runtime (in the quotation).
-- See the paper for details.
let r ← resolveGlobalName val
-- extension of the paper algorithm: also store unique section variable names as top-level scopes
-- so they can be captured and used inside the section, but not outside
let r' := resolveSectionVariable (← read).sectionVars val
let preresolved := r ++ r' ++ preresolved
let val := quote val
-- `scp` is bound in stxQuot.expand
`(Syntax.ident info $(quote rawVal) (addMacroScope mainModule $val scp) $(quote preresolved))
-- if antiquotation, insert contents as-is, else recurse
| stx@(Syntax.node k _) => do
if isAntiquot stx && !isEscapedAntiquot stx then
getAntiquotTerm stx
else if isTokenAntiquot stx && !isEscapedAntiquot stx then
match stx[0] with
| Syntax.atom _ val => `(Syntax.atom (Option.getD (getHeadInfo? $(getAntiquotTerm stx)) info) $(quote val))
| _ => throwErrorAt stx "expected token"
else if isAntiquotSuffixSplice stx && !isEscapedAntiquot stx then
-- splices must occur in a `many` node
throwErrorAt stx "unexpected antiquotation splice"
else if isAntiquotSplice stx && !isEscapedAntiquot stx then
throwErrorAt stx "unexpected antiquotation splice"
else
-- if escaped antiquotation, decrement by one escape level
let stx := unescapeAntiquot stx
let mut args := ArrayStxBuilder.empty
let appendName := if (← getEnv).contains ``Array.append then ``Array.append else ``Array.appendCore
for arg in stx.getArgs do
if k == nullKind && isAntiquotSuffixSplice arg then
let antiquot := getAntiquotSuffixSpliceInner arg
args := args.append (appendName := appendName) <| ←
match antiquotSuffixSplice? arg with
| `optional => `(match $(getAntiquotTerm antiquot):term with
| some x => Array.empty.push x
| none => Array.empty)
| `many => getAntiquotTerm antiquot
| `sepBy => `(@SepArray.elemsAndSeps $(getSepFromSplice arg) $(getAntiquotTerm antiquot))
| k => throwErrorAt arg "invalid antiquotation suffix splice kind '{k}'"
else if k == nullKind && isAntiquotSplice arg then
let k := antiquotSpliceKind? arg
let (arg, bindLets) ← floatOutAntiquotTerms arg |>.run pure
let inner ← (getAntiquotSpliceContents arg).mapM quoteSyntax
let ids ← getAntiquotationIds arg
if ids.isEmpty then
throwErrorAt stx "antiquotation splice must contain at least one antiquotation"
let arr ← match k with
| `optional => `(match $[$ids:ident],* with
| $[some $ids:ident],* => $(quote inner)
| none => Array.empty)
| _ =>
let arr ← ids[:ids.size-1].foldrM (fun id arr => `(Array.zip $id $arr)) ids.back
`(Array.map (fun $(← mkTuple ids) => $(inner[0])) $arr)
let arr ←
if k == `sepBy then
`(mkSepArray $arr (mkAtom $(getSepFromSplice arg)))
else arr
let arr ← bindLets arr
args := args.append arr
else do
let arg ← quoteSyntax arg
args := args.push arg
`(Syntax.node $(quote k) $(args.build))
| Syntax.atom _ val =>
`(Syntax.atom info $(quote val))
| Syntax.missing => throwUnsupportedSyntax
def stxQuot.expand (stx : Syntax) : TermElabM Syntax := do
/- Syntax quotations are monadic values depending on the current macro scope. For efficiency, we bind
the macro scope once for each quotation, then build the syntax tree in a completely pure computation
depending on this binding. Note that regular function calls do not introduce a new macro scope (i.e.
we preserve referential transparency), so we can refer to this same `scp` inside `quoteSyntax` by
including it literally in a syntax quotation. -/
-- TODO: simplify to `(do scp ← getCurrMacroScope; pure $(quoteSyntax quoted))
let stx ← quoteSyntax stx.getQuotContent;
`(Bind.bind MonadRef.mkInfoFromRefPos (fun info =>
Bind.bind getCurrMacroScope (fun scp =>
Bind.bind getMainModule (fun mainModule => Pure.pure $stx))))
/- NOTE: It may seem like the newly introduced binding `scp` may accidentally
capture identifiers in an antiquotation introduced by `quoteSyntax`. However,
note that the syntax quotation above enjoys the same hygiene guarantees as
anywhere else in Lean; that is, we implement hygienic quotations by making
use of the hygienic quotation support of the bootstrapped Lean compiler!
Aside: While this might sound "dangerous", it is in fact less reliant on a
"chain of trust" than other bootstrapping parts of Lean: because this
implementation itself never uses `scp` (or any other identifier) both inside
and outside quotations, it can actually correctly be compiled by an
unhygienic (but otherwise correct) implementation of syntax quotations. As
long as it is then compiled again with the resulting executable (i.e. up to
stage 2), the result is a correct hygienic implementation. In this sense the
implementation is "self-stabilizing". It was in fact originally compiled
by an unhygienic prototype implementation. -/
macro "elab_stx_quot" kind:ident : command =>
`(@[builtinTermElab $kind:ident] def elabQuot : TermElab := adaptExpander stxQuot.expand)
--
elab_stx_quot Parser.Level.quot
elab_stx_quot Parser.Term.quot
elab_stx_quot Parser.Term.funBinder.quot
elab_stx_quot Parser.Term.bracketedBinder.quot
elab_stx_quot Parser.Term.matchDiscr.quot
elab_stx_quot Parser.Tactic.quot
elab_stx_quot Parser.Tactic.quotSeq
elab_stx_quot Parser.Term.stx.quot
elab_stx_quot Parser.Term.prec.quot
elab_stx_quot Parser.Term.attr.quot
elab_stx_quot Parser.Term.prio.quot
elab_stx_quot Parser.Term.doElem.quot
elab_stx_quot Parser.Term.dynamicQuot
/- match -/
-- an "alternative" of patterns plus right-hand side
private abbrev Alt := List Syntax × Syntax
/--
In a single match step, we match the first discriminant against the "head" of the first pattern of the first
alternative. This datatype describes what kind of check this involves, which helps other patterns decide if
they are covered by the same check and don't have to be checked again (see also `MatchResult`). -/
inductive HeadCheck where
-- match step that always succeeds: _, x, `($x), ...
| unconditional
-- match step based on kind and, optionally, arity of discriminant
-- If `arity` is given, that number of new discriminants is introduced. `covered` patterns should then introduce the
-- same number of new patterns.
-- We actually check the arity at run time only in the case of `null` nodes since it should otherwise by implied by
-- the node kind.
-- without arity: `($x:k)
-- with arity: any quotation without an antiquotation head pattern
| shape (k : SyntaxNodeKind) (arity : Option Nat)
-- Match step that succeeds on `null` nodes of arity at least `numPrefix + numSuffix`, introducing discriminants
-- for the first `numPrefix` children, one `null` node for those in between, and for the `numSuffix` last children.
-- example: `([$x, $xs,*, $y]) is `slice 2 2`
| slice (numPrefix numSuffix : Nat)
-- other, complicated match step that will probably only cover identical patterns
-- example: antiquotation splices `($[...]*)
| other (pat : Syntax)
open HeadCheck
/-- Describe whether a pattern is covered by a head check (induced by the pattern itself or a different pattern). -/
inductive MatchResult where
-- Pattern agrees with head check, remove and transform remaining alternative.
-- If `exhaustive` is `false`, *also* include unchanged alternative in the "no" branch.
| covered (f : Alt → TermElabM Alt) (exhaustive : Bool)
-- Pattern disagrees with head check, include in "no" branch only
| uncovered
-- Pattern is not quite sure yet; include unchanged in both branches
| undecided
open MatchResult
/-- All necessary information on a pattern head. -/
structure HeadInfo where
-- check induced by the pattern
check : HeadCheck
-- compute compatibility of pattern with given head check
onMatch (taken : HeadCheck) : MatchResult
-- actually run the specified head check, with the discriminant bound to `discr`
doMatch (yes : (newDiscrs : List Syntax) → TermElabM Syntax) (no : TermElabM Syntax) : TermElabM Syntax
/-- Adapt alternatives that do not introduce new discriminants in `doMatch`, but are covered by those that do so. -/
private def noOpMatchAdaptPats : HeadCheck → Alt → Alt
| shape k (some sz), (pats, rhs) => (List.replicate sz (Unhygienic.run `(_)) ++ pats, rhs)
| slice p s, (pats, rhs) => (List.replicate (p + 1 + s) (Unhygienic.run `(_)) ++ pats, rhs)
| _, alt => alt
private def adaptRhs (fn : Syntax → TermElabM Syntax) : Alt → TermElabM Alt
| (pats, rhs) => do (pats, ← fn rhs)
private partial def getHeadInfo (alt : Alt) : TermElabM HeadInfo :=
let pat := alt.fst.head!
let unconditionally (rhsFn) := pure {
check := unconditional,
doMatch := fun yes no => yes [],
onMatch := fun taken => covered (adaptRhs rhsFn ∘ noOpMatchAdaptPats taken) (match taken with | unconditional => true | _ => false)
}
-- quotation pattern
if isQuot pat then
let quoted := getQuotContent pat
if quoted.isAtom then
-- We assume that atoms are uniquely determined by the node kind and never have to be checked
unconditionally pure
else if quoted.isTokenAntiquot then
unconditionally (`(let $(quoted.getAntiquotTerm) := discr; $(·)))
else if isAntiquot quoted && !isEscapedAntiquot quoted then
-- quotation contains a single antiquotation
let k := antiquotKind? quoted |>.get!
let rhsFn := match getAntiquotTerm quoted with
| `(_) => pure
| `($id:ident) => fun stx => `(let $id := discr; $(stx))
| anti => fun _ => throwErrorAt anti "unsupported antiquotation kind in pattern"
-- Antiquotation kinds like `$id:ident` influence the parser, but also need to be considered by
-- `match` (but not by quotation terms). For example, `($id:ident) and `($e) are not
-- distinguishable without checking the kind of the node to be captured. Note that some
-- antiquotations like the latter one for terms do not correspond to any actual node kind
-- (signified by `k == Name.anonymous`), so we would only check for `ident` here.
--
-- if stx.isOfKind `ident then
-- let id := stx; let e := stx; ...
-- else
-- let e := stx; ...
if k == Name.anonymous then unconditionally rhsFn else pure {
check := shape k none,
onMatch := fun
| other _ => undecided
| taken@(shape k' sz) =>
if k' == k then
covered (adaptRhs rhsFn ∘ noOpMatchAdaptPats taken) (exhaustive := sz.isNone)
else uncovered
| _ => uncovered,
doMatch := fun yes no => do `(cond (Syntax.isOfKind discr $(quote k)) $(← yes []) $(← no)),
}
else if isAntiquotSuffixSplice quoted then throwErrorAt quoted "unexpected antiquotation splice"
else if isAntiquotSplice quoted then throwErrorAt quoted "unexpected antiquotation splice"
else if quoted.getArgs.size == 1 && isAntiquotSuffixSplice quoted[0] then
let anti := getAntiquotTerm (getAntiquotSuffixSpliceInner quoted[0])
unconditionally fun rhs => match antiquotSuffixSplice? quoted[0] with
| `optional => `(let $anti := Syntax.getOptional? discr; $rhs)
| `many => `(let $anti := Syntax.getArgs discr; $rhs)
| `sepBy => `(let $anti := @SepArray.mk $(getSepFromSplice quoted[0]) (Syntax.getArgs discr); $rhs)
| k => throwErrorAt quoted "invalid antiquotation suffix splice kind '{k}'"
else if quoted.getArgs.size == 1 && isAntiquotSplice quoted[0] then pure {
check := other pat,
onMatch := fun
| other pat' => if pat' == pat then covered pure (exhaustive := true) else undecided
| _ => undecided,
doMatch := fun yes no => do
let splice := quoted[0]
let k := antiquotSpliceKind? splice
let contents := getAntiquotSpliceContents splice
let ids ← getAntiquotationIds splice
let yes ← yes []
let no ← no
match k with
| `optional =>
let nones := mkArray ids.size (← `(none))
`(let_delayed yes _ $ids* := $yes;
if discr.isNone then yes () $[ $nones]*
else match discr with
| `($(mkNullNode contents)) => yes () $[ (some $ids)]*
| _ => $no)
| _ =>
let mut discrs ← `(Syntax.getArgs discr)
if k == `sepBy then
discrs ← `(Array.getSepElems $discrs)
let tuple ← mkTuple ids
let mut yes := yes
let resId ← match ids with
| #[id] => id
| _ =>
for id in ids do
yes ← `(let $id := tuples.map (fun $tuple => $id); $yes)
`(tuples)
let contents := if contents.size == 1
then contents[0]
else mkNullNode contents
`(match OptionM.run ($(discrs).sequenceMap fun
| `($contents) => some $tuple
| _ => none) with
| some $resId => $yes
| none => $no)
}
else if let some idx := quoted.getArgs.findIdx? (fun arg => isAntiquotSuffixSplice arg || isAntiquotSplice arg) then do
/-
pattern of the form `match discr, ... with | `(pat_0 ... pat_(idx-1) $[...]* pat_(idx+1) ...), ...`
transform to
```
if discr.getNumArgs >= $quoted.getNumArgs - 1 then
match discr[0], ..., discr[idx-1], mkNullNode (discr.getArgs.extract idx (discr.getNumArgs - $numSuffix))), ..., discr[quoted.getNumArgs - 1] with
| `(pat_0), ... `(pat_(idx-1)), `($[...])*, `(pat_(idx+1)), ...
```
-/
let numSuffix := quoted.getNumArgs - 1 - idx
pure {
check := slice idx numSuffix
onMatch := fun
| other _ => undecided
| slice p s =>
if p == idx && s == numSuffix then
let argPats := quoted.getArgs.mapIdx fun i arg =>
let arg := if (i : Nat) == idx then mkNullNode #[arg] else arg
Unhygienic.run `(`($(arg)))
covered (fun (pats, rhs) => (argPats.toList ++ pats, rhs)) (exhaustive := true)
else uncovered
| _ => uncovered
doMatch := fun yes no => do
let prefixDiscrs ← (List.range idx).mapM (`(Syntax.getArg discr $(quote ·)))
let sliceDiscr ← `(mkNullNode (discr.getArgs.extract $(quote idx) (discr.getNumArgs - $(quote numSuffix))))
let suffixDiscrs ← (List.range numSuffix).mapM fun i =>
`(Syntax.getArg discr (discr.getNumArgs - $(quote (numSuffix - i))))
`(ite (GE.ge discr.getNumArgs $(quote (quoted.getNumArgs - 1)))
$(← yes (prefixDiscrs ++ sliceDiscr :: suffixDiscrs))
$(← no))
}
else
-- not an antiquotation, or an escaped antiquotation: match head shape
let quoted := unescapeAntiquot quoted
let kind := quoted.getKind
let argPats := quoted.getArgs.map fun arg => Unhygienic.run `(`($(arg)))
pure {
check :=
if quoted.isIdent then
-- identifiers only match identical identifiers
-- NOTE: We could make this case more precise by including the matched identifier,
-- if any, in the `shape` constructor, but matching on literal identifiers is quite
-- rare.
other quoted
else
shape kind argPats.size,
onMatch := fun
| other stx' =>
if quoted.isIdent && quoted == stx' then
covered pure (exhaustive := true)
else
uncovered
| shape k' sz =>
if k' == kind && sz == argPats.size then
covered (fun (pats, rhs) => (argPats.toList ++ pats, rhs)) (exhaustive := true)
else
uncovered
| _ => uncovered,
doMatch := fun yes no => do
let cond ← match kind with
| `null => `(Syntax.matchesNull discr $(quote argPats.size))
| `ident => `(Syntax.matchesIdent discr $(quote quoted.getId))
| _ => `(Syntax.isOfKind discr $(quote kind))
let newDiscrs ← (List.range argPats.size).mapM fun i => `(Syntax.getArg discr $(quote i))
`(ite (Eq $cond true) $(← yes newDiscrs) $(← no))
}
else match pat with
| `(_) => unconditionally pure
| `($id:ident) => unconditionally (`(let $id := discr; $(·)))
| `($id:ident@$pat) => do
let info ← getHeadInfo (pat::alt.1.tail!, alt.2)
{ info with onMatch := fun taken => match info.onMatch taken with
| covered f exh => covered (fun alt => f alt >>= adaptRhs (`(let $id := discr; $(·)))) exh
| r => r }
| _ => throwErrorAt pat "match (syntax) : unexpected pattern kind {pat}"
-- Bind right-hand side to new `let_delayed` decl in order to prevent code duplication
private def deduplicate (floatedLetDecls : Array Syntax) : Alt → TermElabM (Array Syntax × Alt)
-- NOTE: new macro scope so that introduced bindings do not collide
| (pats, rhs) => do
if let `($f:ident $[ $args:ident]*) := rhs then
-- looks simple enough/created by this function, skip
return (floatedLetDecls, (pats, rhs))
withFreshMacroScope do
match (← getPatternsVars pats.toArray) with
| #[] =>
-- no antiquotations => introduce Unit parameter to preserve evaluation order
let rhs' ← `(rhs Unit.unit)
(floatedLetDecls.push (← `(letDecl|rhs _ := $rhs)), (pats, rhs'))
| vars =>
let rhs' ← `(rhs $vars*)
(floatedLetDecls.push (← `(letDecl|rhs $vars:ident* := $rhs)), (pats, rhs'))
private partial def compileStxMatch (discrs : List Syntax) (alts : List Alt) : TermElabM Syntax := do
trace[Elab.match_syntax] "match {discrs} with {alts}"
match discrs, alts with
| [], ([], rhs)::_ => pure rhs -- nothing left to match
| _, [] =>
logError "non-exhaustive 'match' (syntax)"
pure Syntax.missing
| discr::discrs, alt::alts => do
let info ← getHeadInfo alt
let pat := alt.1.head!
let alts ← (alt::alts).mapM fun alt => do ((← getHeadInfo alt).onMatch info.check, alt)
let mut yesAlts := #[]
let mut undecidedAlts := #[]
let mut nonExhaustiveAlts := #[]
let mut floatedLetDecls := #[]
for alt in alts do
let mut alt := alt
match alt with
| (covered f exh, alt') =>
-- we can only factor out a common check if there are no undecided patterns in between;
-- otherwise we would change the order of alternatives
if undecidedAlts.isEmpty then
yesAlts ← yesAlts.push <$> f (alt'.1.tail!, alt'.2)
if !exh then
nonExhaustiveAlts := nonExhaustiveAlts.push alt'
else
(floatedLetDecls, alt) ← deduplicate floatedLetDecls alt'
undecidedAlts := undecidedAlts.push alt
nonExhaustiveAlts := nonExhaustiveAlts.push alt
| (undecided, alt') =>
(floatedLetDecls, alt) ← deduplicate floatedLetDecls alt'
undecidedAlts := undecidedAlts.push alt
nonExhaustiveAlts := nonExhaustiveAlts.push alt
| (uncovered, alt') =>
nonExhaustiveAlts := nonExhaustiveAlts.push alt'
let mut stx ← info.doMatch
(yes := fun newDiscrs => do
let mut yesAlts := yesAlts
if !undecidedAlts.isEmpty then
-- group undecided alternatives in a new default case `| discr2, ... => match discr, discr2, ... with ...`
let vars ← discrs.mapM fun _ => withFreshMacroScope `(discr)
let pats := List.replicate newDiscrs.length (Unhygienic.run `(_)) ++ vars
let alts ← undecidedAlts.mapM fun alt => `(matchAltExpr| | $(alt.1.toArray),* => $(alt.2))
let rhs ← `(match discr, $[$(vars.toArray):term],* with $alts:matchAlt*)
yesAlts := yesAlts.push (pats, rhs)
withFreshMacroScope $ compileStxMatch (newDiscrs ++ discrs) yesAlts.toList)
(no := withFreshMacroScope $ compileStxMatch (discr::discrs) nonExhaustiveAlts.toList)
for d in floatedLetDecls do
stx ← `(let_delayed $d:letDecl; $stx)
`(let discr := $discr; $stx)
| _, _ => unreachable!
def match_syntax.expand (stx : Syntax) : TermElabM Syntax := do
match stx with
| `(match $[$discrs:term],* with $[| $[$patss],* => $rhss]*) => do
if !patss.any (·.any (fun
| `($id@$pat) => pat.isQuot
| pat => pat.isQuot)) then
-- no quotations => fall back to regular `match`
throwUnsupportedSyntax
let stx ← compileStxMatch discrs.toList (patss.map (·.toList) |>.zip rhss).toList
trace[Elab.match_syntax.result] "{stx}"
stx
| _ => throwUnsupportedSyntax
@[builtinTermElab «match»] def elabMatchSyntax : TermElab :=
adaptExpander match_syntax.expand
builtin_initialize
registerTraceClass `Elab.match_syntax
registerTraceClass `Elab.match_syntax.result
end Lean.Elab.Term.Quotation
|
21100b5d3578d729cbe798d2fdf49acff20f8389
|
8cae430f0a71442d02dbb1cbb14073b31048e4b0
|
/src/logic/embedding/basic.lean
|
06cf19825d7907e053ae648f8dcd2b99b9f11205
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/mathlib
|
56a2cadd17ac88caf4ece0a775932fa26327ba0e
|
442a83d738cb208d3600056c489be16900ba701d
|
refs/heads/master
| 1,693,584,102,358
| 1,693,471,902,000
| 1,693,471,902,000
| 97,922,418
| 1,595
| 352
|
Apache-2.0
| 1,694,693,445,000
| 1,500,624,130,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 15,040
|
lean
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import data.fun_like.embedding
import data.prod.pprod
import data.sigma.basic
import data.option.basic
import data.subtype
import logic.equiv.basic
/-!
# Injective functions
> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
> Any changes to this file require a corresponding PR to mathlib4.
-/
universes u v w x
namespace function
/-- `α ↪ β` is a bundled injective function. -/
@[nolint has_nonempty_instance] -- depending on cardinalities, an injective function may not exist
structure embedding (α : Sort*) (β : Sort*) :=
(to_fun : α → β)
(inj' : injective to_fun)
infixr ` ↪ `:25 := embedding
instance {α : Sort u} {β : Sort v} : has_coe_to_fun (α ↪ β) (λ _, α → β) := ⟨embedding.to_fun⟩
initialize_simps_projections embedding (to_fun → apply)
instance {α : Sort u} {β : Sort v} : embedding_like (α ↪ β) α β :=
{ coe := embedding.to_fun,
injective' := embedding.inj',
coe_injective' := λ f g h, by { cases f, cases g, congr' } }
instance {α β : Sort*} : can_lift (α → β) (α ↪ β) coe_fn injective :=
{ prf := λ f hf, ⟨⟨f, hf⟩, rfl⟩ }
end function
section equiv
variables {α : Sort u} {β : Sort v} (f : α ≃ β)
/-- Convert an `α ≃ β` to `α ↪ β`.
This is also available as a coercion `equiv.coe_embedding`.
The explicit `equiv.to_embedding` version is preferred though, since the coercion can have issues
inferring the type of the resulting embedding. For example:
```lean
-- Works:
example (s : finset (fin 3)) (f : equiv.perm (fin 3)) : s.map f.to_embedding = s.map f := by simp
-- Error, `f` has type `fin 3 ≃ fin 3` but is expected to have type `fin 3 ↪ ?m_1 : Type ?`
example (s : finset (fin 3)) (f : equiv.perm (fin 3)) : s.map f = s.map f.to_embedding := by simp
```
-/
protected def equiv.to_embedding : α ↪ β := ⟨f, f.injective⟩
@[simp] lemma equiv.coe_to_embedding : ⇑f.to_embedding = f := rfl
lemma equiv.to_embedding_apply (a : α) : f.to_embedding a = f a := rfl
instance equiv.coe_embedding : has_coe (α ≃ β) (α ↪ β) := ⟨equiv.to_embedding⟩
@[reducible]
instance equiv.perm.coe_embedding : has_coe (equiv.perm α) (α ↪ α) := equiv.coe_embedding
@[simp] lemma equiv.coe_eq_to_embedding : ↑f = f.to_embedding := rfl
/-- Given an equivalence to a subtype, produce an embedding to the elements of the corresponding
set. -/
@[simps]
def equiv.as_embedding {p : β → Prop} (e : α ≃ subtype p) : α ↪ β :=
⟨coe ∘ e, subtype.coe_injective.comp e.injective⟩
end equiv
namespace function
namespace embedding
lemma coe_injective {α β} : @function.injective (α ↪ β) (α → β) coe_fn := fun_like.coe_injective
@[ext] lemma ext {α β} {f g : embedding α β} (h : ∀ x, f x = g x) : f = g := fun_like.ext f g h
lemma ext_iff {α β} {f g : embedding α β} : (∀ x, f x = g x) ↔ f = g := fun_like.ext_iff.symm
@[simp] theorem to_fun_eq_coe {α β} (f : α ↪ β) : to_fun f = f := rfl
@[simp] theorem coe_fn_mk {α β} (f : α → β) (i) :
(@mk _ _ f i : α → β) = f := rfl
@[simp] lemma mk_coe {α β : Type*} (f : α ↪ β) (inj) : (⟨f, inj⟩ : α ↪ β) = f :=
by { ext, simp }
protected theorem injective {α β} (f : α ↪ β) : injective f := embedding_like.injective f
lemma apply_eq_iff_eq {α β} (f : α ↪ β) (x y : α) : f x = f y ↔ x = y :=
embedding_like.apply_eq_iff_eq f
/-- The identity map as a `function.embedding`. -/
@[refl, simps {simp_rhs := tt}]
protected def refl (α : Sort*) : α ↪ α :=
⟨id, injective_id⟩
/-- Composition of `f : α ↪ β` and `g : β ↪ γ`. -/
@[trans, simps {simp_rhs := tt}]
protected def trans {α β γ} (f : α ↪ β) (g : β ↪ γ) : α ↪ γ :=
⟨g ∘ f, g.injective.comp f.injective⟩
@[simp]
lemma equiv_to_embedding_trans_symm_to_embedding {α β : Sort*} (e : α ≃ β) :
e.to_embedding.trans e.symm.to_embedding = embedding.refl _ :=
by { ext, simp, }
@[simp]
lemma equiv_symm_to_embedding_trans_to_embedding {α β : Sort*} (e : α ≃ β) :
e.symm.to_embedding.trans e.to_embedding = embedding.refl _ :=
by { ext, simp, }
/-- Transfer an embedding along a pair of equivalences. -/
@[simps { fully_applied := ff }]
protected def congr {α : Sort u} {β : Sort v} {γ : Sort w} {δ : Sort x}
(e₁ : α ≃ β) (e₂ : γ ≃ δ) (f : α ↪ γ) : (β ↪ δ) :=
(equiv.to_embedding e₁.symm).trans (f.trans e₂.to_embedding)
/-- A right inverse `surj_inv` of a surjective function as an `embedding`. -/
protected noncomputable def of_surjective {α β} (f : β → α) (hf : surjective f) :
α ↪ β :=
⟨surj_inv hf, injective_surj_inv _⟩
/-- Convert a surjective `embedding` to an `equiv` -/
protected noncomputable def equiv_of_surjective {α β} (f : α ↪ β) (hf : surjective f) :
α ≃ β :=
equiv.of_bijective f ⟨f.injective, hf⟩
/-- There is always an embedding from an empty type. -/
protected def of_is_empty {α β} [is_empty α] : α ↪ β :=
⟨is_empty_elim, is_empty_elim⟩
/-- Change the value of an embedding `f` at one point. If the prescribed image
is already occupied by some `f a'`, then swap the values at these two points. -/
def set_value {α β} (f : α ↪ β) (a : α) (b : β) [∀ a', decidable (a' = a)]
[∀ a', decidable (f a' = b)] : α ↪ β :=
⟨λ a', if a' = a then b else if f a' = b then f a else f a',
begin
intros x y h,
dsimp at h,
split_ifs at h; try { substI b }; try { simp only [f.injective.eq_iff] at * }; cc
end⟩
theorem set_value_eq {α β} (f : α ↪ β) (a : α) (b : β) [∀ a', decidable (a' = a)]
[∀ a', decidable (f a' = b)] : set_value f a b a = b :=
by simp [set_value]
/-- Embedding into `option α` using `some`. -/
@[simps { fully_applied := ff }] protected def some {α} : α ↪ option α :=
⟨some, option.some_injective α⟩
/-- Embedding into `option α` using `coe`. Usually the correct synctatical form for `simp`. -/
@[simps { fully_applied := ff }]
def coe_option {α} : α ↪ option α := ⟨coe, option.some_injective α⟩
/-- A version of `option.map` for `function.embedding`s. -/
@[simps { fully_applied := ff }]
def option_map {α β} (f : α ↪ β) : option α ↪ option β :=
⟨option.map f, option.map_injective f.injective⟩
/-- Embedding of a `subtype`. -/
def subtype {α} (p : α → Prop) : subtype p ↪ α :=
⟨coe, λ _ _, subtype.ext_val⟩
@[simp] lemma coe_subtype {α} (p : α → Prop) : ⇑(subtype p) = coe := rfl
/-- `quotient.out` as an embedding. -/
noncomputable def quotient_out (α) [s : setoid α] : quotient s ↪ α :=
⟨_, quotient.out_injective⟩
@[simp] theorem coe_quotient_out (α) [s : setoid α] : ⇑(quotient_out α) = quotient.out := rfl
/-- Choosing an element `b : β` gives an embedding of `punit` into `β`. -/
def punit {β : Sort*} (b : β) : punit ↪ β :=
⟨λ _, b, by { rintros ⟨⟩ ⟨⟩ _, refl, }⟩
/-- Fixing an element `b : β` gives an embedding `α ↪ α × β`. -/
@[simps] def sectl (α : Sort*) {β : Sort*} (b : β) : α ↪ α × β :=
⟨λ a, (a, b), λ a a' h, congr_arg prod.fst h⟩
/-- Fixing an element `a : α` gives an embedding `β ↪ α × β`. -/
@[simps] def sectr {α : Sort*} (a : α) (β : Sort*): β ↪ α × β :=
⟨λ b, (a, b), λ b b' h, congr_arg prod.snd h⟩
/-- If `e₁` and `e₂` are embeddings, then so is `prod.map e₁ e₂ : (a, b) ↦ (e₁ a, e₂ b)`. -/
def prod_map {α β γ δ : Type*} (e₁ : α ↪ β) (e₂ : γ ↪ δ) : α × γ ↪ β × δ :=
⟨prod.map e₁ e₂, e₁.injective.prod_map e₂.injective⟩
@[simp] lemma coe_prod_map {α β γ δ : Type*} (e₁ : α ↪ β) (e₂ : γ ↪ δ) :
⇑(e₁.prod_map e₂) = prod.map e₁ e₂ :=
rfl
/-- If `e₁` and `e₂` are embeddings, then so is `λ ⟨a, b⟩, ⟨e₁ a, e₂ b⟩ : pprod α γ → pprod β δ`. -/
def pprod_map {α β γ δ : Sort*} (e₁ : α ↪ β) (e₂ : γ ↪ δ) : pprod α γ ↪ pprod β δ :=
⟨λ x, ⟨e₁ x.1, e₂ x.2⟩, e₁.injective.pprod_map e₂.injective⟩
section sum
open sum
/-- If `e₁` and `e₂` are embeddings, then so is `sum.map e₁ e₂`. -/
def sum_map {α β γ δ : Type*} (e₁ : α ↪ β) (e₂ : γ ↪ δ) : α ⊕ γ ↪ β ⊕ δ :=
⟨sum.map e₁ e₂,
assume s₁ s₂ h, match s₁, s₂, h with
| inl a₁, inl a₂, h := congr_arg inl $ e₁.injective $ inl.inj h
| inr b₁, inr b₂, h := congr_arg inr $ e₂.injective $ inr.inj h
end⟩
@[simp] theorem coe_sum_map {α β γ δ} (e₁ : α ↪ β) (e₂ : γ ↪ δ) :
⇑(sum_map e₁ e₂) = sum.map e₁ e₂ :=
rfl
/-- The embedding of `α` into the sum `α ⊕ β`. -/
@[simps] def inl {α β : Type*} : α ↪ α ⊕ β :=
⟨sum.inl, λ a b, sum.inl.inj⟩
/-- The embedding of `β` into the sum `α ⊕ β`. -/
@[simps] def inr {α β : Type*} : β ↪ α ⊕ β :=
⟨sum.inr, λ a b, sum.inr.inj⟩
end sum
section sigma
variables {α α' : Type*} {β : α → Type*} {β' : α' → Type*}
/-- `sigma.mk` as an `function.embedding`. -/
@[simps apply] def sigma_mk (a : α) : β a ↪ Σ x, β x :=
⟨sigma.mk a, sigma_mk_injective⟩
/-- If `f : α ↪ α'` is an embedding and `g : Π a, β α ↪ β' (f α)` is a family
of embeddings, then `sigma.map f g` is an embedding. -/
@[simps apply] def sigma_map (f : α ↪ α') (g : Π a, β a ↪ β' (f a)) :
(Σ a, β a) ↪ Σ a', β' a' :=
⟨sigma.map f (λ a, g a), f.injective.sigma_map (λ a, (g a).injective)⟩
end sigma
/-- Define an embedding `(Π a : α, β a) ↪ (Π a : α, γ a)` from a family of embeddings
`e : Π a, (β a ↪ γ a)`. This embedding sends `f` to `λ a, e a (f a)`. -/
@[simps] def Pi_congr_right {α : Sort*} {β γ : α → Sort*} (e : ∀ a, β a ↪ γ a) :
(Π a, β a) ↪ (Π a, γ a) :=
⟨λf a, e a (f a), λ f₁ f₂ h, funext $ λ a, (e a).injective (congr_fun h a)⟩
/-- An embedding `e : α ↪ β` defines an embedding `(γ → α) ↪ (γ → β)` that sends each `f`
to `e ∘ f`. -/
def arrow_congr_right {α : Sort u} {β : Sort v} {γ : Sort w}
(e : α ↪ β) : (γ → α) ↪ (γ → β) :=
Pi_congr_right (λ _, e)
@[simp] lemma arrow_congr_right_apply {α : Sort u} {β : Sort v} {γ : Sort w}
(e : α ↪ β) (f : γ ↪ α) : arrow_congr_right e f = e ∘ f := rfl
/-- An embedding `e : α ↪ β` defines an embedding `(α → γ) ↪ (β → γ)` for any inhabited type `γ`.
This embedding sends each `f : α → γ` to a function `g : β → γ` such that `g ∘ e = f` and
`g y = default` whenever `y ∉ range e`. -/
noncomputable def arrow_congr_left {α : Sort u} {β : Sort v} {γ : Sort w} [inhabited γ]
(e : α ↪ β) : (α → γ) ↪ (β → γ) :=
⟨λ f, extend e f default, λ f₁ f₂ h, funext $ λ x,
by simpa only [e.injective.extend_apply] using congr_fun h (e x)⟩
/-- Restrict both domain and codomain of an embedding. -/
protected def subtype_map {α β} {p : α → Prop} {q : β → Prop} (f : α ↪ β)
(h : ∀{{x}}, p x → q (f x)) : {x : α // p x} ↪ {y : β // q y} :=
⟨subtype.map f h, subtype.map_injective h f.2⟩
open set
lemma swap_apply {α β : Type*} [decidable_eq α] [decidable_eq β] (f : α ↪ β) (x y z : α) :
equiv.swap (f x) (f y) (f z) = f (equiv.swap x y z) :=
f.injective.swap_apply x y z
lemma swap_comp {α β : Type*} [decidable_eq α] [decidable_eq β] (f : α ↪ β) (x y : α) :
equiv.swap (f x) (f y) ∘ f = f ∘ equiv.swap x y :=
f.injective.swap_comp x y
end embedding
end function
namespace equiv
open function.embedding
/-- The type of embeddings `α ↪ β` is equivalent to
the subtype of all injective functions `α → β`. -/
def subtype_injective_equiv_embedding (α β : Sort*) :
{f : α → β // function.injective f} ≃ (α ↪ β) :=
{ to_fun := λ f, ⟨f.val, f.property⟩,
inv_fun := λ f, ⟨f, f.injective⟩,
left_inv := λ f, by simp,
right_inv := λ f, by {ext, refl} }
/-- If `α₁ ≃ α₂` and `β₁ ≃ β₂`, then the type of embeddings `α₁ ↪ β₁`
is equivalent to the type of embeddings `α₂ ↪ β₂`. -/
@[congr, simps apply] def embedding_congr {α β γ δ : Sort*}
(h : α ≃ β) (h' : γ ≃ δ) : (α ↪ γ) ≃ (β ↪ δ) :=
{ to_fun := λ f, f.congr h h',
inv_fun := λ f, f.congr h.symm h'.symm,
left_inv := λ x, by {ext, simp},
right_inv := λ x, by {ext, simp} }
@[simp] lemma embedding_congr_refl {α β : Sort*} :
embedding_congr (equiv.refl α) (equiv.refl β) = equiv.refl (α ↪ β) :=
by {ext, refl}
@[simp] lemma embedding_congr_trans {α₁ β₁ α₂ β₂ α₃ β₃ : Sort*}
(e₁ : α₁ ≃ α₂) (e₁' : β₁ ≃ β₂) (e₂ : α₂ ≃ α₃) (e₂' : β₂ ≃ β₃) :
embedding_congr (e₁.trans e₂) (e₁'.trans e₂') =
(embedding_congr e₁ e₁').trans (embedding_congr e₂ e₂') :=
rfl
@[simp] lemma embedding_congr_symm {α₁ β₁ α₂ β₂ : Sort*} (e₁ : α₁ ≃ α₂) (e₂ : β₁ ≃ β₂) :
(embedding_congr e₁ e₂).symm = embedding_congr e₁.symm e₂.symm :=
rfl
lemma embedding_congr_apply_trans {α₁ β₁ γ₁ α₂ β₂ γ₂ : Sort*}
(ea : α₁ ≃ α₂) (eb : β₁ ≃ β₂) (ec : γ₁ ≃ γ₂) (f : α₁ ↪ β₁) (g : β₁ ↪ γ₁) :
equiv.embedding_congr ea ec (f.trans g) =
(equiv.embedding_congr ea eb f).trans (equiv.embedding_congr eb ec g) :=
by {ext, simp}
@[simp]
lemma refl_to_embedding {α : Type*} : (equiv.refl α).to_embedding = function.embedding.refl α := rfl
@[simp]
lemma trans_to_embedding {α β γ : Type*} (e : α ≃ β) (f : β ≃ γ) :
(e.trans f).to_embedding = e.to_embedding.trans f.to_embedding := rfl
end equiv
section subtype
variable {α : Type*}
/-- A subtype `{x // p x ∨ q x}` over a disjunction of `p q : α → Prop` can be injectively split
into a sum of subtypes `{x // p x} ⊕ {x // q x}` such that `¬ p x` is sent to the right. -/
def subtype_or_left_embedding (p q : α → Prop) [decidable_pred p] :
{x // p x ∨ q x} ↪ {x // p x} ⊕ {x // q x} :=
⟨λ x, if h : p x then sum.inl ⟨x, h⟩ else sum.inr ⟨x, x.prop.resolve_left h⟩,
begin
intros x y,
dsimp only,
split_ifs;
simp [subtype.ext_iff]
end⟩
lemma subtype_or_left_embedding_apply_left {p q : α → Prop} [decidable_pred p]
(x : {x // p x ∨ q x}) (hx : p x) : subtype_or_left_embedding p q x = sum.inl ⟨x, hx⟩ :=
dif_pos hx
lemma subtype_or_left_embedding_apply_right {p q : α → Prop} [decidable_pred p]
(x : {x // p x ∨ q x}) (hx : ¬ p x) :
subtype_or_left_embedding p q x = sum.inr ⟨x, x.prop.resolve_left hx⟩ :=
dif_neg hx
/-- A subtype `{x // p x}` can be injectively sent to into a subtype `{x // q x}`,
if `p x → q x` for all `x : α`. -/
@[simps] def subtype.imp_embedding (p q : α → Prop) (h : ∀ x, p x → q x) :
{x // p x} ↪ {x // q x} :=
⟨λ x, ⟨x, h x x.prop⟩, λ x y, by simp [subtype.ext_iff]⟩
end subtype
|
63e37e78fe04199e24e1b4e469aa8e9f54e9a5ae
|
d406927ab5617694ec9ea7001f101b7c9e3d9702
|
/archive/100-theorems-list/54_konigsberg.lean
|
683d7314664dbf85417c74824117de72d82d506d
|
[
"Apache-2.0"
] |
permissive
|
alreadydone/mathlib
|
dc0be621c6c8208c581f5170a8216c5ba6721927
|
c982179ec21091d3e102d8a5d9f5fe06c8fafb73
|
refs/heads/master
| 1,685,523,275,196
| 1,670,184,141,000
| 1,670,184,141,000
| 287,574,545
| 0
| 0
|
Apache-2.0
| 1,670,290,714,000
| 1,597,421,623,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 2,801
|
lean
|
/-
Copyright (c) 2022 Kyle Miller. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kyle Miller
-/
import combinatorics.simple_graph.trails
import tactic.derive_fintype
/-!
# The Königsberg bridges problem
We show that a graph that represents the islands and mainlands of Königsberg and seven bridges
between them has no Eulerian trail.
-/
namespace konigsberg
/-- The vertices for the Königsberg graph; four vertices for the bodies of land and seven
vertices for the bridges. -/
@[derive [decidable_eq, fintype], nolint has_inhabited_instance]
inductive verts : Type
| V1 | V2 | V3 | V4 -- The islands and mainlands
| B1 | B2 | B3 | B4 | B5 | B6 | B7 -- The bridges
open verts
/-- Each of the connections between the islands/mainlands and the bridges.
These are ordered pairs, but the data becomes symmetric in `konigsberg.adj`. -/
def edges : list (verts × verts) :=
[ (V1, B1), (V1, B2), (V1, B3), (V1, B4), (V1, B5),
(B1, V2), (B2, V2), (B3, V4), (B4, V3), (B5, V3),
(V2, B6), (B6, V4),
(V3, B7), (B7, V4) ]
/-- The adjacency relation for the Königsberg graph. -/
def adj (v w : verts) : bool := ((v, w) ∈ edges) || ((w, v) ∈ edges)
/-- The Königsberg graph structure. While the Königsberg bridge problem
is usually described using a multigraph, the we use a "mediant" construction
to transform it into a simple graph -- every edge in the multigraph is subdivided
into a path of two edges. This construction preserves whether a graph is Eulerian.
(TODO: once mathlib has multigraphs, either prove the mediant construction preserves the
Eulerian property or switch this file to use multigraphs. -/
@[simps]
def graph : simple_graph verts :=
{ adj := λ v w, adj v w,
symm := begin
dsimp [symmetric, adj],
dec_trivial,
end,
loopless := begin
dsimp [irreflexive, adj],
dec_trivial
end }
instance : decidable_rel graph.adj := λ a b, decidable_of_bool (adj a b) iff.rfl
/-- To speed up the proof, this is a cache of all the degrees of each vertex,
proved in `konigsberg.degree_eq_degree`. -/
@[simp]
def degree : verts → ℕ
| V1 := 5 | V2 := 3 | V3 := 3 | V4 := 3
| B1 := 2 | B2 := 2 | B3 := 2 | B4 := 2 | B5 := 2 | B6 := 2 | B7 := 2
@[simp] lemma degree_eq_degree (v : verts) : graph.degree v = degree v := by cases v; refl
/-- The Königsberg graph is not Eulerian. -/
theorem not_is_eulerian {u v : verts} (p : graph.walk u v) (h : p.is_eulerian) : false :=
begin
have : {v | odd (graph.degree v)} = {verts.V1, verts.V2, verts.V3, verts.V4},
{ ext w,
simp only [degree_eq_degree, nat.odd_iff_not_even, set.mem_set_of_eq, set.mem_insert_iff,
set.mem_singleton_iff],
cases w; simp, },
have h := h.card_odd_degree,
simp_rw [this] at h,
norm_num at h,
end
end konigsberg
|
7d80fed668b338c6df86be1d1504263053ae91be
|
94e33a31faa76775069b071adea97e86e218a8ee
|
/src/topology/continuous_function/zero_at_infty.lean
|
2c019c816e7433df7c667f6c364eb1b67d451201
|
[
"Apache-2.0"
] |
permissive
|
urkud/mathlib
|
eab80095e1b9f1513bfb7f25b4fa82fa4fd02989
|
6379d39e6b5b279df9715f8011369a301b634e41
|
refs/heads/master
| 1,658,425,342,662
| 1,658,078,703,000
| 1,658,078,703,000
| 186,910,338
| 0
| 0
|
Apache-2.0
| 1,568,512,083,000
| 1,557,958,709,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 22,496
|
lean
|
/-
Copyright (c) 2022 Jireh Loreaux. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jireh Loreaux
-/
import topology.continuous_function.bounded
import topology.continuous_function.cocompact_map
/-!
# Continuous functions vanishing at infinity
The type of continuous functions vanishing at infinity. When the domain is compact
`C(α, β) ≃ C₀(α, β)` via the identity map. When the codomain is a metric space, every continuous
map which vanishes at infinity is a bounded continuous function. When the domain is a locally
compact space, this type has nice properties.
## TODO
* Create more intances of algebraic structures (e.g., `non_unital_semiring`) once the necessary
type classes (e.g., `topological_ring`) are sufficiently generalized.
* Relate the unitization of `C₀(α, β)` to the Alexandroff compactification.
-/
universes u v w
variables {F : Type*} {α : Type u} {β : Type v} {γ : Type w} [topological_space α]
open_locale bounded_continuous_function topological_space
open filter metric
/-- `C₀(α, β)` is the type of continuous functions `α → β` which vanish at infinity from a
topological space to a metric space with a zero element.
When possible, instead of parametrizing results over `(f : C₀(α, β))`,
you should parametrize over `(F : Type*) [zero_at_infty_continuous_map_class F α β] (f : F)`.
When you extend this structure, make sure to extend `zero_at_infty_continuous_map_class`. -/
structure zero_at_infty_continuous_map (α : Type u) (β : Type v)
[topological_space α] [has_zero β] [topological_space β] extends continuous_map α β :
Type (max u v) :=
(zero_at_infty' : tendsto to_fun (cocompact α) (𝓝 0))
localized "notation [priority 2000] `C₀(` α `, ` β `)` := zero_at_infty_continuous_map α β"
in zero_at_infty
localized "notation α ` →C₀ ` β := zero_at_infty_continuous_map α β" in zero_at_infty
/-- `zero_at_infty_continuous_map_class F α β` states that `F` is a type of continuous maps which
vanish at infinity.
You should also extend this typeclass when you extend `zero_at_infty_continuous_map`. -/
class zero_at_infty_continuous_map_class (F : Type*) (α β : out_param $ Type*) [topological_space α]
[has_zero β] [topological_space β] extends continuous_map_class F α β :=
(zero_at_infty (f : F) : tendsto f (cocompact α) (𝓝 0))
export zero_at_infty_continuous_map_class (zero_at_infty)
namespace zero_at_infty_continuous_map
section basics
variables [topological_space β] [has_zero β] [zero_at_infty_continuous_map_class F α β]
instance : zero_at_infty_continuous_map_class C₀(α, β) α β :=
{ coe := λ f, f.to_fun,
coe_injective' := λ f g h, by { obtain ⟨⟨_, _⟩, _⟩ := f, obtain ⟨⟨_, _⟩, _⟩ := g, congr' },
map_continuous := λ f, f.continuous_to_fun,
zero_at_infty := λ f, f.zero_at_infty' }
/-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun`
directly. -/
instance : has_coe_to_fun C₀(α, β) (λ _, α → β) := fun_like.has_coe_to_fun
instance : has_coe_t F C₀(α, β) :=
⟨λ f, { to_fun := f, continuous_to_fun := map_continuous f, zero_at_infty' := zero_at_infty f }⟩
@[simp] lemma coe_to_continuous_fun (f : C₀(α, β)) : (f.to_continuous_map : α → β) = f := rfl
@[ext] lemma ext {f g : C₀(α, β)} (h : ∀ x, f x = g x) : f = g := fun_like.ext _ _ h
/-- Copy of a `zero_at_infinity_continuous_map` with a new `to_fun` equal to the old one. Useful
to fix definitional equalities. -/
protected def copy (f : C₀(α, β)) (f' : α → β) (h : f' = f) : C₀(α, β) :=
{ to_fun := f',
continuous_to_fun := by { rw h, exact f.continuous_to_fun },
zero_at_infty' := by { simp_rw h, exact f.zero_at_infty' } }
lemma eq_of_empty [is_empty α] (f g : C₀(α, β)) : f = g :=
ext $ is_empty.elim ‹_›
/-- A continuous function on a compact space is automatically a continuous function vanishing at
infinity. -/
@[simps]
def continuous_map.lift_zero_at_infty [compact_space α] : C(α, β) ≃ C₀(α, β) :=
{ to_fun := λ f, { to_fun := f, continuous_to_fun := f.continuous, zero_at_infty' := by simp },
inv_fun := λ f, f,
left_inv := λ f, by { ext, refl },
right_inv := λ f, by { ext, refl } }
/-- A continuous function on a compact space is automatically a continuous function vanishing at
infinity. This is not an instance to avoid type class loops. -/
@[simps]
def zero_at_infty_continuous_map_class.of_compact {G : Type*} [continuous_map_class G α β]
[compact_space α] : zero_at_infty_continuous_map_class G α β :=
{ coe := λ g, g,
coe_injective' := λ f g h, fun_like.coe_fn_eq.mp h,
map_continuous := map_continuous,
zero_at_infty := by simp }
end basics
/-! ### Algebraic structure
Whenever `β` has suitable algebraic structure and a compatible topological structure, then
`C₀(α, β)` inherits a corresponding algebraic structure. The primary exception to this is that
`C₀(α, β)` will not have a multiplicative identity.
-/
section algebraic_structure
variables [topological_space β] (x : α)
instance [has_zero β] : has_zero C₀(α, β) := ⟨⟨0, tendsto_const_nhds⟩⟩
instance [has_zero β] : inhabited C₀(α, β) := ⟨0⟩
@[simp] lemma coe_zero [has_zero β] : ⇑(0 : C₀(α, β)) = 0 := rfl
lemma zero_apply [has_zero β] : (0 : C₀(α, β)) x = 0 := rfl
instance [mul_zero_class β] [has_continuous_mul β] : has_mul C₀(α, β) :=
⟨λ f g, ⟨f * g, by simpa only [mul_zero] using (zero_at_infty f).mul (zero_at_infty g)⟩⟩
@[simp] lemma coe_mul [mul_zero_class β] [has_continuous_mul β] (f g : C₀(α, β)) :
⇑(f * g) = f * g := rfl
lemma mul_apply [mul_zero_class β] [has_continuous_mul β] (f g : C₀(α, β)) :
(f * g) x = f x * g x := rfl
instance [mul_zero_class β] [has_continuous_mul β] : mul_zero_class C₀(α, β) :=
fun_like.coe_injective.mul_zero_class _ coe_zero coe_mul
instance [semigroup_with_zero β] [has_continuous_mul β] : semigroup_with_zero C₀(α, β) :=
fun_like.coe_injective.semigroup_with_zero _ coe_zero coe_mul
instance [add_zero_class β] [has_continuous_add β] : has_add C₀(α, β) :=
⟨λ f g, ⟨f + g, by simpa only [add_zero] using (zero_at_infty f).add (zero_at_infty g)⟩⟩
@[simp] lemma coe_add [add_zero_class β] [has_continuous_add β] (f g : C₀(α, β)) :
⇑(f + g) = f + g := rfl
lemma add_apply [add_zero_class β] [has_continuous_add β] (f g : C₀(α, β)) :
(f + g) x = f x + g x := rfl
instance [add_zero_class β] [has_continuous_add β] : add_zero_class C₀(α, β) :=
fun_like.coe_injective.add_zero_class _ coe_zero coe_add
section add_monoid
variables [add_monoid β] [has_continuous_add β] (f g : C₀(α, β))
@[simp] lemma coe_nsmul_rec : ∀ n, ⇑(nsmul_rec n f) = n • f
| 0 := by rw [nsmul_rec, zero_smul, coe_zero]
| (n + 1) := by rw [nsmul_rec, succ_nsmul, coe_add, coe_nsmul_rec]
instance has_nat_scalar : has_smul ℕ C₀(α, β) :=
⟨λ n f, ⟨n • f, by simpa [coe_nsmul_rec] using zero_at_infty (nsmul_rec n f)⟩⟩
instance : add_monoid C₀(α, β) :=
fun_like.coe_injective.add_monoid _ coe_zero coe_add (λ _ _, rfl)
end add_monoid
instance [add_comm_monoid β] [has_continuous_add β] : add_comm_monoid C₀(α, β) :=
fun_like.coe_injective.add_comm_monoid _ coe_zero coe_add (λ _ _, rfl)
section add_group
variables [add_group β] [topological_add_group β] (f g : C₀(α, β))
instance : has_neg C₀(α, β) :=
⟨λ f, ⟨-f, by simpa only [neg_zero] using (zero_at_infty f).neg⟩⟩
@[simp] lemma coe_neg : ⇑(-f) = -f := rfl
lemma neg_apply : (-f) x = -f x := rfl
instance : has_sub C₀(α, β) :=
⟨λ f g, ⟨f - g, by simpa only [sub_zero] using (zero_at_infty f).sub (zero_at_infty g)⟩⟩
@[simp] lemma coe_sub : ⇑(f - g) = f - g := rfl
lemma sub_apply : (f - g) x = f x - g x := rfl
@[simp] lemma coe_zsmul_rec : ∀ z, ⇑(zsmul_rec z f) = z • f
| (int.of_nat n) := by rw [zsmul_rec, int.of_nat_eq_coe, coe_nsmul_rec, coe_nat_zsmul]
| -[1+ n] := by rw [zsmul_rec, zsmul_neg_succ_of_nat, coe_neg, coe_nsmul_rec]
instance has_int_scalar : has_smul ℤ C₀(α, β) :=
⟨λ n f, ⟨n • f, by simpa using zero_at_infty (zsmul_rec n f)⟩⟩
instance : add_group C₀(α, β) :=
fun_like.coe_injective.add_group _ coe_zero coe_add coe_neg coe_sub (λ _ _, rfl) (λ _ _, rfl)
end add_group
instance [add_comm_group β] [topological_add_group β] : add_comm_group C₀(α, β) :=
fun_like.coe_injective.add_comm_group _ coe_zero coe_add coe_neg coe_sub (λ _ _, rfl) (λ _ _, rfl)
instance [has_zero β] {R : Type*} [has_zero R] [smul_with_zero R β]
[has_continuous_const_smul R β] : has_smul R C₀(α, β) :=
⟨λ r f, ⟨r • f, by simpa [smul_zero] using (zero_at_infty f).const_smul r⟩⟩
@[simp] lemma coe_smul [has_zero β] {R : Type*} [has_zero R] [smul_with_zero R β]
[has_continuous_const_smul R β] (r : R) (f : C₀(α, β)) : ⇑(r • f) = r • f := rfl
lemma smul_apply [has_zero β] {R : Type*} [has_zero R] [smul_with_zero R β]
[has_continuous_const_smul R β] (r : R) (f : C₀(α, β)) (x : α) : (r • f) x = r • f x := rfl
instance [has_zero β] {R : Type*} [has_zero R] [smul_with_zero R β] [smul_with_zero Rᵐᵒᵖ β]
[has_continuous_const_smul R β] [is_central_scalar R β] : is_central_scalar R C₀(α, β) :=
⟨λ r f, ext $ λ x, op_smul_eq_smul _ _⟩
instance [has_zero β] {R : Type*} [has_zero R] [smul_with_zero R β]
[has_continuous_const_smul R β] : smul_with_zero R C₀(α, β) :=
function.injective.smul_with_zero ⟨_, coe_zero⟩ fun_like.coe_injective coe_smul
instance [has_zero β] {R : Type*} [monoid_with_zero R] [mul_action_with_zero R β]
[has_continuous_const_smul R β] : mul_action_with_zero R C₀(α, β) :=
function.injective.mul_action_with_zero ⟨_, coe_zero⟩ fun_like.coe_injective coe_smul
instance [add_comm_monoid β] [has_continuous_add β] {R : Type*} [semiring R] [module R β]
[has_continuous_const_smul R β] : module R C₀(α, β) :=
function.injective.module R ⟨_, coe_zero, coe_add⟩ fun_like.coe_injective coe_smul
instance [non_unital_non_assoc_semiring β] [topological_semiring β] :
non_unital_non_assoc_semiring C₀(α, β) :=
fun_like.coe_injective.non_unital_non_assoc_semiring _ coe_zero coe_add coe_mul (λ _ _, rfl)
instance [non_unital_semiring β] [topological_semiring β] :
non_unital_semiring C₀(α, β) :=
fun_like.coe_injective.non_unital_semiring _ coe_zero coe_add coe_mul (λ _ _, rfl)
instance [non_unital_comm_semiring β] [topological_semiring β] :
non_unital_comm_semiring C₀(α, β) :=
fun_like.coe_injective.non_unital_comm_semiring _ coe_zero coe_add coe_mul (λ _ _, rfl)
instance [non_unital_non_assoc_ring β] [topological_ring β] :
non_unital_non_assoc_ring C₀(α, β) :=
fun_like.coe_injective.non_unital_non_assoc_ring _ coe_zero coe_add coe_mul coe_neg coe_sub
(λ _ _, rfl) (λ _ _, rfl)
instance [non_unital_ring β] [topological_ring β] :
non_unital_ring C₀(α, β) :=
fun_like.coe_injective.non_unital_ring _ coe_zero coe_add coe_mul coe_neg coe_sub (λ _ _, rfl)
(λ _ _, rfl)
instance [non_unital_comm_ring β] [topological_ring β] :
non_unital_comm_ring C₀(α, β) :=
fun_like.coe_injective.non_unital_comm_ring _ coe_zero coe_add coe_mul coe_neg coe_sub (λ _ _, rfl)
(λ _ _, rfl)
instance {R : Type*} [semiring R] [non_unital_non_assoc_semiring β] [topological_semiring β]
[module R β] [has_continuous_const_smul R β] [is_scalar_tower R β β] :
is_scalar_tower R C₀(α, β) C₀(α, β) :=
{ smul_assoc := λ r f g,
begin
ext,
simp only [smul_eq_mul, coe_mul, coe_smul, pi.mul_apply, pi.smul_apply],
rw [←smul_eq_mul, ←smul_eq_mul, smul_assoc],
end }
instance {R : Type*} [semiring R] [non_unital_non_assoc_semiring β] [topological_semiring β]
[module R β] [has_continuous_const_smul R β] [smul_comm_class R β β] :
smul_comm_class R C₀(α, β) C₀(α, β) :=
{ smul_comm := λ r f g,
begin
ext,
simp only [smul_eq_mul, coe_smul, coe_mul, pi.smul_apply, pi.mul_apply],
rw [←smul_eq_mul, ←smul_eq_mul, smul_comm],
end }
end algebraic_structure
/-! ### Metric structure
When `β` is a metric space, then every element of `C₀(α, β)` is bounded, and so there is a natural
inclusion map `zero_at_infty_continuous_map.to_bcf : C₀(α, β) → (α →ᵇ β)`. Via this map `C₀(α, β)`
inherits a metric as the pullback of the metric on `α →ᵇ β`. Moreover, this map has closed range
in `α →ᵇ β` and consequently `C₀(α, β)` is a complete space whenever `β` is complete.
-/
section metric
open metric set
variables [metric_space β] [has_zero β] [zero_at_infty_continuous_map_class F α β]
protected lemma bounded (f : F) : ∃ C, ∀ x y : α, dist ((f : α → β) x) (f y) ≤ C :=
begin
obtain ⟨K : set α, hK₁, hK₂⟩ := mem_cocompact.mp (tendsto_def.mp (zero_at_infty (f : F)) _
(closed_ball_mem_nhds (0 : β) zero_lt_one)),
obtain ⟨C, hC⟩ := (hK₁.image (map_continuous f)).bounded.subset_ball (0 : β),
refine ⟨max C 1 + max C 1, (λ x y, _)⟩,
have : ∀ x, f x ∈ closed_ball (0 : β) (max C 1),
{ intro x,
by_cases hx : x ∈ K,
{ exact (mem_closed_ball.mp $ hC ⟨x, hx, rfl⟩).trans (le_max_left _ _) },
{ exact (mem_closed_ball.mp $ mem_preimage.mp (hK₂ hx)).trans (le_max_right _ _) } },
exact (dist_triangle (f x) 0 (f y)).trans
(add_le_add (mem_closed_ball.mp $ this x) (mem_closed_ball'.mp $ this y)),
end
lemma bounded_range (f : C₀(α, β)) : bounded (range f) :=
bounded_range_iff.2 f.bounded
lemma bounded_image (f : C₀(α, β)) (s : set α) : bounded (f '' s) :=
f.bounded_range.mono $ image_subset_range _ _
@[priority 100]
instance : bounded_continuous_map_class F α β :=
{ map_bounded := λ f, zero_at_infty_continuous_map.bounded f }
/-- Construct a bounded continuous function from a continuous function vanishing at infinity. -/
@[simps]
def to_bcf (f : C₀(α, β)) : α →ᵇ β :=
⟨f, map_bounded f⟩
section
variables (α) (β)
lemma to_bcf_injective :
function.injective (to_bcf : C₀(α, β) → α →ᵇ β) :=
λ f g h, by { ext, simpa only using fun_like.congr_fun h x, }
end
variables {C : ℝ} {f g : C₀(α, β)}
/-- The type of continuous functions vanishing at infinity, with the uniform distance induced by the
inclusion `zero_at_infinity_continuous_map.to_bcf`, is a metric space. -/
noncomputable instance : metric_space C₀(α, β) :=
metric_space.induced _ (to_bcf_injective α β) (by apply_instance)
@[simp]
lemma dist_to_bcf_eq_dist {f g : C₀(α, β)} : dist f.to_bcf g.to_bcf = dist f g := rfl
open bounded_continuous_function
/-- Convergence in the metric on `C₀(α, β)` is uniform convergence. -/
lemma tendsto_iff_tendsto_uniformly {ι : Type*} {F : ι → C₀(α, β)} {f : C₀(α, β)} {l : filter ι} :
tendsto F l (𝓝 f) ↔ tendsto_uniformly (λ i, F i) f l :=
by simpa only [metric.tendsto_nhds] using @bounded_continuous_function.tendsto_iff_tendsto_uniformly
_ _ _ _ _ (λ i, (F i).to_bcf) f.to_bcf l
lemma isometry_to_bcf : isometry (to_bcf : C₀(α, β) → α →ᵇ β) := by tauto
lemma closed_range_to_bcf : is_closed (range (to_bcf : C₀(α, β) → α →ᵇ β)) :=
begin
refine is_closed_iff_cluster_pt.mpr (λ f hf, _),
rw cluster_pt_principal_iff at hf,
have : tendsto f (cocompact α) (𝓝 0),
{ refine metric.tendsto_nhds.mpr (λ ε hε, _),
obtain ⟨_, hg, g, rfl⟩ := hf (ball f (ε / 2)) (ball_mem_nhds f $ half_pos hε),
refine (metric.tendsto_nhds.mp (zero_at_infty g) (ε / 2)
(half_pos hε)).mp (eventually_of_forall $ λ x hx, _),
calc dist (f x) 0 ≤ dist (g.to_bcf x) (f x) + dist (g x) 0 : dist_triangle_left _ _ _
... < dist g.to_bcf f + ε / 2 : add_lt_add_of_le_of_lt (dist_coe_le_dist x) hx
... < ε : by simpa [add_halves ε] using add_lt_add_right hg (ε / 2) },
exact ⟨⟨f.to_continuous_map, this⟩, by {ext, refl}⟩,
end
/-- Continuous functions vanishing at infinity taking values in a complete space form a
complete space. -/
instance [complete_space β] : complete_space C₀(α, β) :=
(complete_space_iff_is_complete_range isometry_to_bcf.uniform_inducing).mpr
closed_range_to_bcf.is_complete
end metric
section norm
/-! ### Normed space
The norm structure on `C₀(α, β)` is the one induced by the inclusion `to_bcf : C₀(α, β) → (α →ᵇ b)`,
viewed as an additive monoid homomorphism. Then `C₀(α, β)` is naturally a normed space over a normed
field `𝕜` whenever `β` is as well.
-/
section normed_space
variables [normed_group β] {𝕜 : Type*} [normed_field 𝕜] [normed_space 𝕜 β]
/-- The natural inclusion `to_bcf : C₀(α, β) → (α →ᵇ β)` realized as an additive monoid
homomorphism. -/
def to_bcf_add_monoid_hom : C₀(α, β) →+ (α →ᵇ β) :=
{ to_fun := to_bcf,
map_zero' := rfl,
map_add' := λ x y, rfl }
@[simp]
lemma coe_to_bcf_add_monoid_hom (f : C₀(α, β)) : (f.to_bcf_add_monoid_hom : α → β) = f := rfl
noncomputable instance : normed_group C₀(α, β) :=
normed_group.induced to_bcf_add_monoid_hom (to_bcf_injective α β)
@[simp]
lemma norm_to_bcf_eq_norm {f : C₀(α, β)} : ∥f.to_bcf∥ = ∥f∥ := rfl
instance : normed_space 𝕜 C₀(α, β) :=
{ norm_smul_le := λ k f, (norm_smul k f.to_bcf).le }
end normed_space
section normed_ring
variables [non_unital_normed_ring β]
noncomputable instance : non_unital_normed_ring C₀(α, β) :=
{ norm_mul := λ f g, norm_mul_le f.to_bcf g.to_bcf,
..zero_at_infty_continuous_map.non_unital_ring,
..zero_at_infty_continuous_map.normed_group }
end normed_ring
end norm
section star
/-! ### Star structure
It is possible to equip `C₀(α, β)` with a pointwise `star` operation whenever there is a continuous
`star : β → β` for which `star (0 : β) = 0`. We don't have quite this weak a typeclass, but
`star_add_monoid` is close enough.
The `star_add_monoid` and `normed_star_group` classes on `C₀(α, β)` are inherited from their
counterparts on `α →ᵇ β`. Ultimately, when `β` is a C⋆-ring, then so is `C₀(α, β)`.
-/
variables [topological_space β] [add_monoid β] [star_add_monoid β] [has_continuous_star β]
instance : has_star C₀(α, β) :=
{ star := λ f,
{ to_fun := λ x, star (f x),
continuous_to_fun := (map_continuous f).star,
zero_at_infty' := by simpa only [star_zero]
using (continuous_star.tendsto (0 : β)).comp (zero_at_infty f) } }
@[simp]
lemma coe_star (f : C₀(α, β)) : ⇑(star f) = star f := rfl
lemma star_apply (f : C₀(α, β)) (x : α) :
(star f) x = star (f x) := rfl
instance [has_continuous_add β] : star_add_monoid C₀(α, β) :=
{ star_involutive := λ f, ext $ λ x, star_star (f x),
star_add := λ f g, ext $ λ x, star_add (f x) (g x) }
end star
section normed_star
variables [normed_group β] [star_add_monoid β] [normed_star_group β]
instance : normed_star_group C₀(α, β) :=
{ norm_star := λ f, (norm_star f.to_bcf : _) }
end normed_star
section star_module
variables {𝕜 : Type*} [has_zero 𝕜] [has_star 𝕜]
[add_monoid β] [star_add_monoid β] [topological_space β] [has_continuous_star β]
[smul_with_zero 𝕜 β] [has_continuous_const_smul 𝕜 β] [star_module 𝕜 β]
instance : star_module 𝕜 C₀(α, β) :=
{ star_smul := λ k f, ext $ λ x, star_smul k (f x) }
end star_module
section star_ring
variables [non_unital_semiring β] [star_ring β] [topological_space β] [has_continuous_star β]
[topological_semiring β]
instance : star_ring C₀(α, β) :=
{ star_mul := λ f g, ext $ λ x, star_mul (f x) (g x),
..zero_at_infty_continuous_map.star_add_monoid }
end star_ring
section cstar_ring
instance [non_unital_normed_ring β] [star_ring β] [cstar_ring β] : cstar_ring C₀(α, β) :=
{ norm_star_mul_self := λ f, @cstar_ring.norm_star_mul_self _ _ _ _ f.to_bcf }
end cstar_ring
/-! ### C₀ as a functor
For each `β` with sufficient structure, there is a contravariant functor `C₀(-, β)` from the
category of topological spaces with morphisms given by `cocompact_map`s.
-/
variables {δ : Type*} [topological_space β] [topological_space γ] [topological_space δ]
local notation α ` →co ` β := cocompact_map α β
section
variables [has_zero δ]
/-- Composition of a continuous function vanishing at infinity with a cocompact map yields another
continuous function vanishing at infinity. -/
def comp (f : C₀(γ, δ)) (g : β →co γ) : C₀(β, δ) :=
{ to_continuous_map := (f : C(γ, δ)).comp g,
zero_at_infty' := (zero_at_infty f).comp (cocompact_tendsto g) }
@[simp] lemma coe_comp_to_continuous_fun (f : C₀(γ, δ)) (g : β →co γ) :
((f.comp g).to_continuous_map : β → δ) = f ∘ g := rfl
@[simp] lemma comp_id (f : C₀(γ, δ)) : f.comp (cocompact_map.id γ) = f := ext (λ x, rfl)
@[simp] lemma comp_assoc (f : C₀(γ, δ)) (g : β →co γ) (h : α →co β) :
(f.comp g).comp h = f.comp (g.comp h) := rfl
@[simp] lemma zero_comp (g : β →co γ) : (0 : C₀(γ, δ)).comp g = 0 := rfl
end
/-- Composition as an additive monoid homomorphism. -/
def comp_add_monoid_hom [add_monoid δ] [has_continuous_add δ] (g : β →co γ) :
C₀(γ, δ) →+ C₀(β, δ) :=
{ to_fun := λ f, f.comp g,
map_zero' := zero_comp g,
map_add' := λ f₁ f₂, rfl }
/-- Composition as a semigroup homomorphism. -/
def comp_mul_hom [mul_zero_class δ] [has_continuous_mul δ]
(g : β →co γ) : C₀(γ, δ) →ₙ* C₀(β, δ) :=
{ to_fun := λ f, f.comp g,
map_mul' := λ f₁ f₂, rfl }
/-- Composition as a linear map. -/
def comp_linear_map [add_comm_monoid δ] [has_continuous_add δ] {R : Type*}
[semiring R] [module R δ] [has_continuous_const_smul R δ] (g : β →co γ) :
C₀(γ, δ) →ₗ[R] C₀(β, δ) :=
{ to_fun := λ f, f.comp g,
map_add' := λ f₁ f₂, rfl,
map_smul' := λ r f, rfl }
/-- Composition as a non-unital algebra homomorphism. -/
def comp_non_unital_alg_hom {R : Type*} [semiring R] [non_unital_non_assoc_semiring δ]
[topological_semiring δ] [module R δ] [has_continuous_const_smul R δ] (g : β →co γ) :
C₀(γ, δ) →ₙₐ[R] C₀(β, δ) :=
{ to_fun := λ f, f.comp g,
map_smul' := λ r f, rfl,
map_zero' := rfl,
map_add' := λ f₁ f₂, rfl,
map_mul' := λ f₁ f₂, rfl }
end zero_at_infty_continuous_map
|
7b358d51f9c4dc81b0ae3bcb64eea77694089cc5
|
367134ba5a65885e863bdc4507601606690974c1
|
/src/data/real/ereal.lean
|
c5590e5b6981cf6c50b9579a316950975a95ed42
|
[
"Apache-2.0"
] |
permissive
|
kodyvajjha/mathlib
|
9bead00e90f68269a313f45f5561766cfd8d5cad
|
b98af5dd79e13a38d84438b850a2e8858ec21284
|
refs/heads/master
| 1,624,350,366,310
| 1,615,563,062,000
| 1,615,563,062,000
| 162,666,963
| 0
| 0
|
Apache-2.0
| 1,545,367,651,000
| 1,545,367,651,000
| null |
UTF-8
|
Lean
| false
| false
| 3,359
|
lean
|
/-
Copyright (c) 2019 Kevin Buzzard. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kevin Buzzard
-/
import data.real.basic
/-!
# The extended reals [-∞, ∞].
This file defines `ereal`, the real numbers together with a top and bottom element,
referred to as ⊤ and ⊥. It is implemented as `with_top (with_bot ℝ)`
Addition and multiplication are problematic in the presence of ±∞, but
negation has a natural definition and satisfies the usual properties.
An addition is derived, but `ereal` is not even a monoid (there is no identity).
`ereal` is a `complete_lattice`; this is now deduced by type class inference from
the fact that `with_top (with_bot L)` is a complete lattice if `L` is
a conditionally complete lattice.
## Tags
real, ereal, complete lattice
## TODO
abs : ereal → ℝ≥0∞
In Isabelle they define + - * and / (making junk choices for things like -∞ + ∞)
and then prove whatever bits of the ordered ring/field axioms still hold. They
also do some limits stuff (liminf/limsup etc).
See https://isabelle.in.tum.de/dist/library/HOL/HOL-Library/Extended_Real.html
-/
/-- ereal : The type `[-∞, ∞]` -/
@[derive [linear_order, order_bot, order_top,
has_Sup, has_Inf, complete_lattice, has_add]]
def ereal := with_top (with_bot ℝ)
namespace ereal
instance : has_coe ℝ ereal := ⟨some ∘ some⟩
@[simp, norm_cast] protected lemma coe_real_le {x y : ℝ} : (x : ereal) ≤ (y : ereal) ↔ x ≤ y :=
by { unfold_coes, norm_num }
@[simp, norm_cast] protected lemma coe_real_lt {x y : ℝ} : (x : ereal) < (y : ereal) ↔ x < y :=
by { unfold_coes, norm_num }
@[simp, norm_cast] protected lemma coe_real_inj' {x y : ℝ} : (x : ereal) = (y : ereal) ↔ x = y :=
by { unfold_coes, simp [option.some_inj] }
instance : has_zero ereal := ⟨(0 : ℝ)⟩
instance : inhabited ereal := ⟨0⟩
/-! ### Negation -/
/-- negation on ereal -/
protected def neg : ereal → ereal
| ⊥ := ⊤
| ⊤ := ⊥
| (x : ℝ) := (-x : ℝ)
instance : has_neg ereal := ⟨ereal.neg⟩
@[norm_cast] protected lemma neg_def (x : ℝ) : ((-x : ℝ) : ereal) = -x := rfl
/-- - -a = a on ereal -/
protected theorem neg_neg : ∀ (a : ereal), - (- a) = a
| ⊥ := rfl
| ⊤ := rfl
| (a : ℝ) := by { norm_cast, simp [neg_neg a] }
theorem neg_inj (a b : ereal) (h : -a = -b) : a = b := by rw [←ereal.neg_neg a, h, ereal.neg_neg b]
/-- Even though ereal is not an additive group, -a = b ↔ -b = a still holds -/
theorem neg_eq_iff_neg_eq {a b : ereal} : -a = b ↔ -b = a :=
⟨by {intro h, rw ←h, exact ereal.neg_neg a},
by {intro h, rw ←h, exact ereal.neg_neg b}⟩
/-- if -a ≤ b then -b ≤ a on ereal -/
protected theorem neg_le_of_neg_le : ∀ {a b : ereal} (h : -a ≤ b), -b ≤ a
| ⊥ ⊥ h := h
| ⊥ (some b) h := by cases (top_le_iff.1 h)
| ⊤ l h := le_top
| (a : ℝ) ⊥ h := by cases (le_bot_iff.1 h)
| l ⊤ h := bot_le
| (a : ℝ) (b : ℝ) h := by { norm_cast at h ⊢, exact _root_.neg_le_of_neg_le h }
/-- -a ≤ b ↔ -b ≤ a on ereal-/
protected theorem neg_le {a b : ereal} : -a ≤ b ↔ -b ≤ a :=
⟨ereal.neg_le_of_neg_le, ereal.neg_le_of_neg_le⟩
/-- a ≤ -b → b ≤ -a on ereal -/
theorem le_neg_of_le_neg {a b : ereal} (h : a ≤ -b) : b ≤ -a :=
by rwa [←ereal.neg_neg b, ereal.neg_le, ereal.neg_neg]
end ereal
|
5e24d50e272816649433e7f0718cd11b7211f896
|
82e44445c70db0f03e30d7be725775f122d72f3e
|
/src/linear_algebra/determinant.lean
|
04bcc4513a14d4c3b46dcab3cabe5dad51d1c952
|
[
"Apache-2.0"
] |
permissive
|
stjordanis/mathlib
|
51e286d19140e3788ef2c470bc7b953e4991f0c9
|
2568d41bca08f5d6bf39d915434c8447e21f42ee
|
refs/heads/master
| 1,631,748,053,501
| 1,627,938,886,000
| 1,627,938,886,000
| 228,728,358
| 0
| 0
|
Apache-2.0
| 1,576,630,588,000
| 1,576,630,587,000
| null |
UTF-8
|
Lean
| false
| false
| 12,417
|
lean
|
/-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Patrick Massot, Casper Putz, Anne Baanen
-/
import linear_algebra.free_module_pid
import linear_algebra.matrix.basis
import linear_algebra.matrix.diagonal
import linear_algebra.matrix.to_linear_equiv
import linear_algebra.matrix.reindex
import linear_algebra.multilinear
import linear_algebra.dual
import ring_theory.algebra_tower
/-!
# Determinant of families of vectors
This file defines the determinant of an endomorphism, and of a family of vectors
with respect to some basis. For the determinant of a matrix, see the file
`linear_algebra.matrix.determinant`.
## Main definitions
In the list below, and in all this file, `R` is a commutative ring (semiring
is sometimes enough), `M` and its variations are `R`-modules, `ι`, `κ`, `n` and `m` are finite
types used for indexing.
* `basis.det`: the determinant of a family of vectors with respect to a basis,
as a multilinear map
* `linear_map.det`: the determinant of an endomorphism `f : End R M` as a
multiplicative homomorphism (if `M` does not have a finite `R`-basis, the
result is `1` instead)
## Tags
basis, det, determinant
-/
noncomputable theory
open_locale big_operators
open_locale matrix
open linear_map
open submodule
universes u v w
open linear_map matrix
variables {R : Type*} [comm_ring R]
variables {M : Type*} [add_comm_group M] [module R M]
variables {M' : Type*} [add_comm_group M'] [module R M']
variables {ι : Type*} [decidable_eq ι] [fintype ι]
variables (e : basis ι R M)
section conjugate
variables {A : Type*} [integral_domain A]
variables {m n : Type*} [fintype m] [fintype n]
/-- If `R^m` and `R^n` are linearly equivalent, then `m` and `n` are also equivalent. -/
def equiv_of_pi_lequiv_pi {R : Type*} [integral_domain R]
(e : (m → R) ≃ₗ[R] (n → R)) : m ≃ n :=
basis.index_equiv (basis.of_equiv_fun e.symm) (pi.basis_fun _ _)
/-- If `M` and `M'` are each other's inverse matrices, they are square matrices up to
equivalence of types. -/
def matrix.index_equiv_of_inv [decidable_eq m] [decidable_eq n]
{M : matrix m n A} {M' : matrix n m A}
(hMM' : M ⬝ M' = 1) (hM'M : M' ⬝ M = 1) :
m ≃ n :=
equiv_of_pi_lequiv_pi (matrix.to_lin'_of_inv hMM' hM'M)
/-- If `M'` is a two-sided inverse for `M` (indexed differently), `det (M ⬝ N ⬝ M') = det N`. -/
lemma matrix.det_conj
[decidable_eq m] [decidable_eq n]
{M : matrix m n A} {M' : matrix n m A} {N : matrix n n A}
(hMM' : M ⬝ M' = 1) (hM'M : M' ⬝ M = 1) :
det (M ⬝ N ⬝ M') = det N :=
begin
-- Although `m` and `n` are different a priori, we will show they have the same cardinality.
-- This turns the problem into one for square matrices (`matrix.det_units_conj`), which is easy.
let e : m ≃ n := matrix.index_equiv_of_inv hMM' hM'M,
let U : units (matrix n n A) :=
⟨M.minor e.symm (equiv.refl _),
M'.minor (equiv.refl _) e.symm,
by rw [mul_eq_mul, ←minor_mul_equiv, hMM', minor_one_equiv],
by rw [mul_eq_mul, ←minor_mul_equiv, hM'M, minor_one_equiv]⟩,
rw [← matrix.det_units_conj U N, ← det_minor_equiv_self e.symm],
simp only [minor_mul_equiv _ _ _ (equiv.refl n) _, equiv.coe_refl, minor_id_id,
units.coe_mk, units.inv_mk]
end
end conjugate
namespace linear_map
/-! ### Determinant of a linear map -/
variables {A : Type*} [integral_domain A] [module A M]
variables {κ : Type*} [fintype κ]
/-- The determinant of `linear_map.to_matrix` does not depend on the choice of basis. -/
lemma det_to_matrix_eq_det_to_matrix [decidable_eq κ]
(b : basis ι A M) (c : basis κ A M) (f : M →ₗ[A] M) :
det (linear_map.to_matrix b b f) = det (linear_map.to_matrix c c f) :=
by rw [← linear_map_to_matrix_mul_basis_to_matrix c b c,
← basis_to_matrix_mul_linear_map_to_matrix b c b,
matrix.det_conj]; rw [basis.to_matrix_mul_to_matrix, basis.to_matrix_self]
/-- The determinant of an endomorphism given a basis.
See `linear_map.det` for a version that populates the basis non-computably.
Although the `trunc (basis ι A M)` parameter makes it slightly more convenient to switch bases,
there is no good way to generalize over universe parameters, so we can't fully state in `det_aux`'s
type that it does not depend on the choice of basis. Instead you can use the `det_aux_def'` lemma,
or avoid mentioning a basis at all using `linear_map.det`.
-/
def det_aux : trunc (basis ι A M) → (M →ₗ[A] M) →* A :=
trunc.lift
(λ b : basis ι A M,
(det_monoid_hom).comp (to_matrix_alg_equiv b : (M →ₗ[A] M) →* matrix ι ι A))
(λ b c, monoid_hom.ext $ det_to_matrix_eq_det_to_matrix b c)
/-- Unfold lemma for `det_aux`.
See also `det_aux_def'` which allows you to vary the basis.
-/
lemma det_aux_def (b : basis ι A M) (f : M →ₗ[A] M) :
linear_map.det_aux (trunc.mk b) f = matrix.det (linear_map.to_matrix b b f) :=
rfl
-- Discourage the elaborator from unfolding `det_aux` and producing a huge term.
attribute [irreducible] linear_map.det_aux
lemma det_aux_def' {ι' : Type*} [fintype ι'] [decidable_eq ι']
(tb : trunc $ basis ι A M) (b' : basis ι' A M) (f : M →ₗ[A] M) :
linear_map.det_aux tb f = matrix.det (linear_map.to_matrix b' b' f) :=
by { apply trunc.induction_on tb, intro b, rw [det_aux_def, det_to_matrix_eq_det_to_matrix b b'] }
@[simp]
lemma det_aux_id (b : trunc $ basis ι A M) : linear_map.det_aux b (linear_map.id) = 1 :=
(linear_map.det_aux b).map_one
@[simp]
lemma det_aux_comp (b : trunc $ basis ι A M) (f g : M →ₗ[A] M) :
linear_map.det_aux b (f.comp g) = linear_map.det_aux b f * linear_map.det_aux b g :=
(linear_map.det_aux b).map_mul f g
section
open_locale classical
/-- The determinant of an endomorphism independent of basis.
If there is no finite basis on `M`, the result is `1` instead.
-/
protected def det : (M →ₗ[A] M) →* A :=
if H : ∃ (s : finset M), nonempty (basis s A M)
then linear_map.det_aux (trunc.mk H.some_spec.some)
else 1
lemma coe_det [decidable_eq M] : ⇑(linear_map.det : (M →ₗ[A] M) →* A) =
if H : ∃ (s : finset M), nonempty (basis s A M)
then linear_map.det_aux (trunc.mk H.some_spec.some)
else 1 :=
by { ext, unfold linear_map.det,
split_ifs,
{ congr }, -- use the correct `decidable_eq` instance
refl }
end
-- Discourage the elaborator from unfolding `det` and producing a huge term.
attribute [irreducible] linear_map.det
-- Auxiliary lemma, the `simp` normal form goes in the other direction
-- (using `linear_map.det_to_matrix`)
lemma det_eq_det_to_matrix_of_finset [decidable_eq M]
{s : finset M} (b : basis s A M) (f : M →ₗ[A] M) :
f.det = matrix.det (linear_map.to_matrix b b f) :=
have ∃ (s : finset M), nonempty (basis s A M),
from ⟨s, ⟨b⟩⟩,
by rw [linear_map.coe_det, dif_pos, det_aux_def' _ b]; assumption
@[simp] lemma det_to_matrix
(b : basis ι A M) (f : M →ₗ[A] M) :
matrix.det (to_matrix b b f) = f.det :=
by { haveI := classical.dec_eq M,
rw [det_eq_det_to_matrix_of_finset b.reindex_finset_range, det_to_matrix_eq_det_to_matrix b] }
/-- To show `P f.det` it suffices to consider `P (to_matrix _ _ f).det` and `P 1`. -/
@[elab_as_eliminator]
lemma det_cases [decidable_eq M] {P : A → Prop} (f : M →ₗ[A] M)
(hb : ∀ (s : finset M) (b : basis s A M), P (to_matrix b b f).det) (h1 : P 1) :
P f.det :=
begin
unfold linear_map.det,
split_ifs with h,
{ convert hb _ h.some_spec.some,
apply det_aux_def' },
{ exact h1 }
end
@[simp]
lemma det_comp (f g : M →ₗ[A] M) : (f.comp g).det = f.det * g.det :=
linear_map.det.map_mul f g
@[simp]
lemma det_id : (linear_map.id : M →ₗ[A] M).det = 1 :=
linear_map.det.map_one
lemma det_zero {ι : Type*} [fintype ι] [nonempty ι] (b : basis ι A M) :
linear_map.det (0 : M →ₗ[A] M) = 0 :=
by { haveI := classical.dec_eq ι,
rw [← det_to_matrix b, linear_equiv.map_zero, det_zero],
assumption }
end linear_map
-- Cannot be stated using `linear_map.det` because `f` is not an endomorphism.
lemma linear_equiv.is_unit_det (f : M ≃ₗ[R] M') (v : basis ι R M) (v' : basis ι R M') :
is_unit (linear_map.to_matrix v v' f).det :=
begin
apply is_unit_det_of_left_inverse,
simpa using (linear_map.to_matrix_comp v v' v f.symm f).symm
end
/-- Specialization of `linear_equiv.is_unit_det` -/
lemma linear_equiv.is_unit_det' {A : Type*} [integral_domain A] [module A M]
(f : M ≃ₗ[A] M) : is_unit (linear_map.det (f : M →ₗ[A] M)) :=
by haveI := classical.dec_eq M; exact
(f : M →ₗ[A] M).det_cases (λ s b, f.is_unit_det _ _) is_unit_one
/-- Builds a linear equivalence from a linear map whose determinant in some bases is a unit. -/
@[simps]
def linear_equiv.of_is_unit_det {f : M →ₗ[R] M'} {v : basis ι R M} {v' : basis ι R M'}
(h : is_unit (linear_map.to_matrix v v' f).det) : M ≃ₗ[R] M' :=
{ to_fun := f,
map_add' := f.map_add,
map_smul' := f.map_smul,
inv_fun := to_lin v' v (to_matrix v v' f)⁻¹,
left_inv := λ x,
calc to_lin v' v (to_matrix v v' f)⁻¹ (f x)
= to_lin v v ((to_matrix v v' f)⁻¹ ⬝ to_matrix v v' f) x :
by { rw [to_lin_mul v v' v, to_lin_to_matrix, linear_map.comp_apply] }
... = x : by simp [h],
right_inv := λ x,
calc f (to_lin v' v (to_matrix v v' f)⁻¹ x)
= to_lin v' v' (to_matrix v v' f ⬝ (to_matrix v v' f)⁻¹) x :
by { rw [to_lin_mul v' v v', linear_map.comp_apply, to_lin_to_matrix v v'] }
... = x : by simp [h] }
/-- The determinant of a family of vectors with respect to some basis, as an alternating
multilinear map. -/
def basis.det : alternating_map R M R ι :=
{ to_fun := λ v, det (e.to_matrix v),
map_add' := begin
intros v i x y,
simp only [e.to_matrix_update, linear_equiv.map_add],
apply det_update_column_add
end,
map_smul' := begin
intros u i c x,
simp only [e.to_matrix_update, algebra.id.smul_eq_mul, linear_equiv.map_smul],
apply det_update_column_smul
end,
map_eq_zero_of_eq' := begin
intros v i j h hij,
rw [←function.update_eq_self i v, h, ←det_transpose, e.to_matrix_update,
←update_row_transpose, ←e.to_matrix_transpose_apply],
apply det_zero_of_row_eq hij,
rw [update_row_ne hij.symm, update_row_self],
end }
lemma basis.det_apply (v : ι → M) : e.det v = det (e.to_matrix v) := rfl
lemma basis.det_self : e.det e = 1 :=
by simp [e.det_apply]
lemma is_basis_iff_det {v : ι → M} :
linear_independent R v ∧ span R (set.range v) = ⊤ ↔ is_unit (e.det v) :=
begin
split,
{ rintro ⟨hli, hspan⟩,
set v' := basis.mk hli hspan with v'_eq,
rw e.det_apply,
convert linear_equiv.is_unit_det (linear_equiv.refl _ _) v' e using 2,
ext i j,
simp },
{ intro h,
rw [basis.det_apply, basis.to_matrix_eq_to_matrix_constr] at h,
set v' := basis.map e (linear_equiv.of_is_unit_det h) with v'_def,
have : ⇑ v' = v,
{ ext i, rw [v'_def, basis.map_apply, linear_equiv.of_is_unit_det_apply, e.constr_basis] },
rw ← this,
exact ⟨v'.linear_independent, v'.span_eq⟩ },
end
lemma basis.is_unit_det (e' : basis ι R M) : is_unit (e.det e') :=
(is_basis_iff_det e).mp ⟨e'.linear_independent, e'.span_eq⟩
variables {A : Type*} [integral_domain A] [module A M]
@[simp] lemma basis.det_comp (e : basis ι A M) (f : M →ₗ[A] M) (v : ι → M) :
e.det (f ∘ v) = f.det * e.det v :=
by { rw [basis.det_apply, basis.det_apply, ← f.det_to_matrix e, ← matrix.det_mul,
e.to_matrix_eq_to_matrix_constr (f ∘ v), e.to_matrix_eq_to_matrix_constr v,
← to_matrix_comp, e.constr_comp] }
lemma basis.det_reindex {ι' : Type*} [fintype ι'] [decidable_eq ι']
(b : basis ι R M) (v : ι' → M) (e : ι ≃ ι') :
(b.reindex e).det v = b.det (v ∘ e) :=
by rw [basis.det_apply, basis.to_matrix_reindex', det_reindex_alg_equiv, basis.det_apply]
lemma basis.det_reindex_symm {ι' : Type*} [fintype ι'] [decidable_eq ι']
(b : basis ι R M) (v : ι → M) (e : ι' ≃ ι) :
(b.reindex e.symm).det (v ∘ e) = b.det v :=
by rw [basis.det_reindex, function.comp.assoc, e.self_comp_symm, function.comp.right_id]
@[simp]
lemma basis.det_map (b : basis ι R M) (f : M ≃ₗ[R] M') (v : ι → M') :
(b.map f).det v = b.det (f.symm ∘ v) :=
by { rw [basis.det_apply, basis.to_matrix_map, basis.det_apply] }
|
dbcae0b7d4cf2d7b06d3f0b0854caff33d68e0ec
|
432d948a4d3d242fdfb44b81c9e1b1baacd58617
|
/src/topology/metric_space/gromov_hausdorff_realized.lean
|
8d4e36ff93b81faa87e9f187f93769f832f411f7
|
[
"Apache-2.0"
] |
permissive
|
JLimperg/aesop3
|
306cc6570c556568897ed2e508c8869667252e8a
|
a4a116f650cc7403428e72bd2e2c4cda300fe03f
|
refs/heads/master
| 1,682,884,916,368
| 1,620,320,033,000
| 1,620,320,033,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 26,254
|
lean
|
/-
Copyright (c) 2019 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
Construction of a good coupling between nonempty compact metric spaces, minimizing
their Hausdorff distance. This construction is instrumental to study the Gromov-Hausdorff
distance between nonempty compact metric spaces -/
import topology.metric_space.gluing
import topology.metric_space.hausdorff_distance
import topology.continuous_function.bounded
noncomputable theory
open_locale classical topological_space nnreal
universes u v w
open classical set function topological_space filter metric quotient
open bounded_continuous_function
open sum (inl inr)
local attribute [instance] metric_space_sum
namespace Gromov_Hausdorff
section Gromov_Hausdorff_realized
/- This section shows that the Gromov-Hausdorff distance
is realized. For this, we consider candidate distances on the disjoint union
α ⊕ β of two compact nonempty metric spaces, almost realizing the Gromov-Hausdorff
distance, and show that they form a compact family by applying Arzela-Ascoli
theorem. The existence of a minimizer follows. -/
section definitions
variables (α : Type u) (β : Type v)
[metric_space α] [compact_space α] [nonempty α]
[metric_space β] [compact_space β] [nonempty β]
@[reducible] private def prod_space_fun : Type* := ((α ⊕ β) × (α ⊕ β)) → ℝ
@[reducible] private def Cb : Type* := bounded_continuous_function ((α ⊕ β) × (α ⊕ β)) ℝ
private def max_var : ℝ≥0 :=
2 * ⟨diam (univ : set α), diam_nonneg⟩ + 1 + 2 * ⟨diam (univ : set β), diam_nonneg⟩
private lemma one_le_max_var : 1 ≤ max_var α β := calc
(1 : real) = 2 * 0 + 1 + 2 * 0 : by simp
... ≤ 2 * diam (univ : set α) + 1 + 2 * diam (univ : set β) :
by apply_rules [add_le_add, mul_le_mul_of_nonneg_left, diam_nonneg]; norm_num
/-- The set of functions on α ⊕ β that are candidates distances to realize the
minimum of the Hausdorff distances between α and β in a coupling -/
def candidates : set (prod_space_fun α β) :=
{f | (((((∀x y : α, f (sum.inl x, sum.inl y) = dist x y)
∧ (∀x y : β, f (sum.inr x, sum.inr y) = dist x y))
∧ (∀x y, f (x, y) = f (y, x)))
∧ (∀x y z, f (x, z) ≤ f (x, y) + f (y, z)))
∧ (∀x, f (x, x) = 0))
∧ (∀x y, f (x, y) ≤ max_var α β) }
/-- Version of the set of candidates in bounded_continuous_functions, to apply
Arzela-Ascoli -/
private def candidates_b : set (Cb α β) := {f : Cb α β | f.to_fun ∈ candidates α β}
end definitions --section
section constructions
variables {α : Type u} {β : Type v}
[metric_space α] [compact_space α] [nonempty α] [metric_space β] [compact_space β] [nonempty β]
{f : prod_space_fun α β} {x y z t : α ⊕ β}
local attribute [instance, priority 10] inhabited_of_nonempty'
private lemma max_var_bound : dist x y ≤ max_var α β := calc
dist x y ≤ diam (univ : set (α ⊕ β)) :
dist_le_diam_of_mem (bounded_of_compact compact_univ) (mem_univ _) (mem_univ _)
... = diam (inl '' (univ : set α) ∪ inr '' (univ : set β)) :
by apply congr_arg; ext x y z; cases x; simp [mem_univ, mem_range_self]
... ≤ diam (inl '' (univ : set α)) + dist (inl (default α)) (inr (default β)) +
diam (inr '' (univ : set β)) :
diam_union (mem_image_of_mem _ (mem_univ _)) (mem_image_of_mem _ (mem_univ _))
... = diam (univ : set α) + (dist (default α) (default α) + 1 + dist (default β) (default β)) +
diam (univ : set β) :
by { rw [isometry_on_inl.diam_image, isometry_on_inr.diam_image], refl }
... = 1 * diam (univ : set α) + 1 + 1 * diam (univ : set β) : by simp
... ≤ 2 * diam (univ : set α) + 1 + 2 * diam (univ : set β) :
begin
apply_rules [add_le_add, mul_le_mul_of_nonneg_right, diam_nonneg, le_refl],
norm_num, norm_num
end
private lemma candidates_symm (fA : f ∈ candidates α β) : f (x, y) = f (y ,x) := fA.1.1.1.2 x y
private lemma candidates_triangle (fA : f ∈ candidates α β) : f (x, z) ≤ f (x, y) + f (y, z) :=
fA.1.1.2 x y z
private lemma candidates_refl (fA : f ∈ candidates α β) : f (x, x) = 0 := fA.1.2 x
private lemma candidates_nonneg (fA : f ∈ candidates α β) : 0 ≤ f (x, y) :=
begin
have : 0 ≤ 2 * f (x, y) := calc
0 = f (x, x) : (candidates_refl fA).symm
... ≤ f (x, y) + f (y, x) : candidates_triangle fA
... = f (x, y) + f (x, y) : by rw [candidates_symm fA]
... = 2 * f (x, y) : by ring,
by linarith
end
private lemma candidates_dist_inl (fA : f ∈ candidates α β) (x y: α) :
f (inl x, inl y) = dist x y :=
fA.1.1.1.1.1 x y
private lemma candidates_dist_inr (fA : f ∈ candidates α β) (x y : β) :
f (inr x, inr y) = dist x y :=
fA.1.1.1.1.2 x y
private lemma candidates_le_max_var (fA : f ∈ candidates α β) : f (x, y) ≤ max_var α β :=
fA.2 x y
/-- candidates are bounded by max_var α β -/
private lemma candidates_dist_bound (fA : f ∈ candidates α β) :
∀ {x y : α ⊕ β}, f (x, y) ≤ max_var α β * dist x y
| (inl x) (inl y) := calc
f (inl x, inl y) = dist x y : candidates_dist_inl fA x y
... = dist (inl x) (inl y) : by { rw @sum.dist_eq α β, refl }
... = 1 * dist (inl x) (inl y) : by simp
... ≤ max_var α β * dist (inl x) (inl y) :
mul_le_mul_of_nonneg_right (one_le_max_var α β) dist_nonneg
| (inl x) (inr y) := calc
f (inl x, inr y) ≤ max_var α β : candidates_le_max_var fA
... = max_var α β * 1 : by simp
... ≤ max_var α β * dist (inl x) (inr y) :
mul_le_mul_of_nonneg_left sum.one_dist_le (le_trans (zero_le_one) (one_le_max_var α β))
| (inr x) (inl y) := calc
f (inr x, inl y) ≤ max_var α β : candidates_le_max_var fA
... = max_var α β * 1 : by simp
... ≤ max_var α β * dist (inl x) (inr y) :
mul_le_mul_of_nonneg_left sum.one_dist_le (le_trans (zero_le_one) (one_le_max_var α β))
| (inr x) (inr y) := calc
f (inr x, inr y) = dist x y : candidates_dist_inr fA x y
... = dist (inr x) (inr y) : by { rw @sum.dist_eq α β, refl }
... = 1 * dist (inr x) (inr y) : by simp
... ≤ max_var α β * dist (inr x) (inr y) :
mul_le_mul_of_nonneg_right (one_le_max_var α β) dist_nonneg
/-- Technical lemma to prove that candidates are Lipschitz -/
private lemma candidates_lipschitz_aux (fA : f ∈ candidates α β) :
f (x, y) - f (z, t) ≤ 2 * max_var α β * dist (x, y) (z, t) :=
calc
f (x, y) - f(z, t) ≤ f (x, t) + f (t, y) - f (z, t) : sub_le_sub_right (candidates_triangle fA) _
... ≤ (f (x, z) + f (z, t) + f(t, y)) - f (z, t) :
sub_le_sub_right (add_le_add_right (candidates_triangle fA) _ ) _
... = f (x, z) + f (t, y) : by simp [sub_eq_add_neg, add_assoc]
... ≤ max_var α β * dist x z + max_var α β * dist t y :
add_le_add (candidates_dist_bound fA) (candidates_dist_bound fA)
... ≤ max_var α β * max (dist x z) (dist t y) + max_var α β * max (dist x z) (dist t y) :
begin
apply add_le_add,
apply mul_le_mul_of_nonneg_left (le_max_left (dist x z) (dist t y))
(zero_le_one.trans (one_le_max_var α β)),
apply mul_le_mul_of_nonneg_left (le_max_right (dist x z) (dist t y))
(zero_le_one.trans (one_le_max_var α β)),
end
... = 2 * max_var α β * max (dist x z) (dist y t) :
by { simp [dist_comm], ring }
... = 2 * max_var α β * dist (x, y) (z, t) : by refl
/-- Candidates are Lipschitz -/
private lemma candidates_lipschitz (fA : f ∈ candidates α β) :
lipschitz_with (2 * max_var α β) f :=
begin
apply lipschitz_with.of_dist_le_mul,
rintros ⟨x, y⟩ ⟨z, t⟩,
rw [real.dist_eq, abs_sub_le_iff],
use candidates_lipschitz_aux fA,
rw [dist_comm],
exact candidates_lipschitz_aux fA
end
/-- candidates give rise to elements of bounded_continuous_functions -/
def candidates_b_of_candidates (f : prod_space_fun α β) (fA : f ∈ candidates α β) : Cb α β :=
bounded_continuous_function.mk_of_compact ⟨f, (candidates_lipschitz fA).continuous⟩
lemma candidates_b_of_candidates_mem (f : prod_space_fun α β) (fA : f ∈ candidates α β) :
candidates_b_of_candidates f fA ∈ candidates_b α β := fA
/-- The distance on α ⊕ β is a candidate -/
private lemma dist_mem_candidates : (λp : (α ⊕ β) × (α ⊕ β), dist p.1 p.2) ∈ candidates α β :=
begin
simp only [candidates, dist_comm, forall_const, and_true, add_comm, eq_self_iff_true,
and_self, sum.forall, set.mem_set_of_eq, dist_self],
repeat { split
<|> exact (λa y z, dist_triangle_left _ _ _)
<|> exact (λx y, by refl)
<|> exact (λx y, max_var_bound) }
end
def candidates_b_dist (α : Type u) (β : Type v) [metric_space α] [compact_space α] [inhabited α]
[metric_space β] [compact_space β] [inhabited β] : Cb α β :=
candidates_b_of_candidates _ dist_mem_candidates
lemma candidates_b_dist_mem_candidates_b : candidates_b_dist α β ∈ candidates_b α β :=
candidates_b_of_candidates_mem _ _
private lemma candidates_b_nonempty : (candidates_b α β).nonempty :=
⟨_, candidates_b_dist_mem_candidates_b⟩
/-- To apply Arzela-Ascoli, we need to check that the set of candidates is closed and
equicontinuous. Equicontinuity follows from the Lipschitz control, we check closedness. -/
private lemma closed_candidates_b : is_closed (candidates_b α β) :=
begin
have I1 : ∀x y, is_closed {f : Cb α β | f (inl x, inl y) = dist x y} :=
λx y, is_closed_eq continuous_evalx continuous_const,
have I2 : ∀x y, is_closed {f : Cb α β | f (inr x, inr y) = dist x y } :=
λx y, is_closed_eq continuous_evalx continuous_const,
have I3 : ∀x y, is_closed {f : Cb α β | f (x, y) = f (y, x)} :=
λx y, is_closed_eq continuous_evalx continuous_evalx,
have I4 : ∀x y z, is_closed {f : Cb α β | f (x, z) ≤ f (x, y) + f (y, z)} :=
λx y z, is_closed_le continuous_evalx (continuous_evalx.add continuous_evalx),
have I5 : ∀x, is_closed {f : Cb α β | f (x, x) = 0} :=
λx, is_closed_eq continuous_evalx continuous_const,
have I6 : ∀x y, is_closed {f : Cb α β | f (x, y) ≤ max_var α β} :=
λx y, is_closed_le continuous_evalx continuous_const,
have : candidates_b α β = (⋂x y, {f : Cb α β | f ((@inl α β x), (@inl α β y)) = dist x y})
∩ (⋂x y, {f : Cb α β | f ((@inr α β x), (@inr α β y)) = dist x y})
∩ (⋂x y, {f : Cb α β | f (x, y) = f (y, x)})
∩ (⋂x y z, {f : Cb α β | f (x, z) ≤ f (x, y) + f (y, z)})
∩ (⋂x, {f : Cb α β | f (x, x) = 0})
∩ (⋂x y, {f : Cb α β | f (x, y) ≤ max_var α β}) :=
begin ext, unfold candidates_b, unfold candidates, simp [-sum.forall], refl end,
rw this,
repeat { apply is_closed_inter _ _
<|> apply is_closed_Inter _
<|> apply I1 _ _
<|> apply I2 _ _
<|> apply I3 _ _
<|> apply I4 _ _ _
<|> apply I5 _
<|> apply I6 _ _
<|> assume x },
end
/-- Compactness of candidates (in bounded_continuous_functions) follows. -/
private lemma compact_candidates_b : is_compact (candidates_b α β) :=
begin
refine arzela_ascoli₂ (Icc 0 (max_var α β)) compact_Icc (candidates_b α β)
closed_candidates_b _ _,
{ rintros f ⟨x1, x2⟩ hf,
simp only [set.mem_Icc],
exact ⟨candidates_nonneg hf, candidates_le_max_var hf⟩ },
{ refine equicontinuous_of_continuity_modulus (λt, 2 * max_var α β * t) _ _ _,
{ have : tendsto (λ (t : ℝ), 2 * (max_var α β : ℝ) * t) (𝓝 0) (𝓝 (2 * max_var α β * 0)) :=
tendsto_const_nhds.mul tendsto_id,
simpa using this },
{ assume x y f hf,
exact (candidates_lipschitz hf).dist_le_mul _ _ } }
end
/-- We will then choose the candidate minimizing the Hausdorff distance. Except that we are not
in a metric space setting, so we need to define our custom version of Hausdorff distance,
called HD, and prove its basic properties. -/
def HD (f : Cb α β) := max (⨆ x, ⨅ y, f (inl x, inr y)) (⨆ y, ⨅ x, f (inl x, inr y))
/- We will show that HD is continuous on bounded_continuous_functions, to deduce that its
minimum on the compact set candidates_b is attained. Since it is defined in terms of
infimum and supremum on ℝ, which is only conditionnally complete, we will need all the time
to check that the defining sets are bounded below or above. This is done in the next few
technical lemmas -/
lemma HD_below_aux1 {f : Cb α β} (C : ℝ) {x : α} :
bdd_below (range (λ (y : β), f (inl x, inr y) + C)) :=
let ⟨cf, hcf⟩ := (real.bounded_iff_bdd_below_bdd_above.1 bounded_range).1 in
⟨cf + C, forall_range_iff.2 (λi, add_le_add_right ((λx, hcf (mem_range_self x)) _) _)⟩
private lemma HD_bound_aux1 (f : Cb α β) (C : ℝ) :
bdd_above (range (λ (x : α), ⨅ y, f (inl x, inr y) + C)) :=
begin
rcases (real.bounded_iff_bdd_below_bdd_above.1 bounded_range).2 with ⟨Cf, hCf⟩,
refine ⟨Cf + C, forall_range_iff.2 (λx, _)⟩,
calc (⨅ y, f (inl x, inr y) + C) ≤ f (inl x, inr (default β)) + C :
cinfi_le (HD_below_aux1 C) (default β)
... ≤ Cf + C : add_le_add ((λx, hCf (mem_range_self x)) _) (le_refl _)
end
lemma HD_below_aux2 {f : Cb α β} (C : ℝ) {y : β} :
bdd_below (range (λ (x : α), f (inl x, inr y) + C)) :=
let ⟨cf, hcf⟩ := (real.bounded_iff_bdd_below_bdd_above.1 bounded_range).1 in
⟨cf + C, forall_range_iff.2 (λi, add_le_add_right ((λx, hcf (mem_range_self x)) _) _)⟩
private lemma HD_bound_aux2 (f : Cb α β) (C : ℝ) :
bdd_above (range (λ (y : β), ⨅ x, f (inl x, inr y) + C)) :=
begin
rcases (real.bounded_iff_bdd_below_bdd_above.1 bounded_range).2 with ⟨Cf, hCf⟩,
refine ⟨Cf + C, forall_range_iff.2 (λy, _)⟩,
calc (⨅ x, f (inl x, inr y) + C) ≤ f (inl (default α), inr y) + C :
cinfi_le (HD_below_aux2 C) (default α)
... ≤ Cf + C : add_le_add ((λx, hCf (mem_range_self x)) _) (le_refl _)
end
/-- Explicit bound on HD (dist). This means that when looking for minimizers it will
be sufficient to look for functions with HD(f) bounded by this bound. -/
lemma HD_candidates_b_dist_le :
HD (candidates_b_dist α β) ≤ diam (univ : set α) + 1 + diam (univ : set β) :=
begin
refine max_le (csupr_le (λx, _)) (csupr_le (λy, _)),
{ have A : (⨅ y, candidates_b_dist α β (inl x, inr y)) ≤
candidates_b_dist α β (inl x, inr (default β)) :=
cinfi_le (by simpa using HD_below_aux1 0) (default β),
have B : dist (inl x) (inr (default β)) ≤ diam (univ : set α) + 1 + diam (univ : set β) := calc
dist (inl x) (inr (default β)) = dist x (default α) + 1 + dist (default β) (default β) : rfl
... ≤ diam (univ : set α) + 1 + diam (univ : set β) :
begin
apply add_le_add (add_le_add _ (le_refl _)),
exact dist_le_diam_of_mem (bounded_of_compact (compact_univ)) (mem_univ _) (mem_univ _),
exact dist_le_diam_of_mem (bounded_of_compact (compact_univ)) (mem_univ _) (mem_univ _)
end,
exact le_trans A B },
{ have A : (⨅ x, candidates_b_dist α β (inl x, inr y)) ≤
candidates_b_dist α β (inl (default α), inr y) :=
cinfi_le (by simpa using HD_below_aux2 0) (default α),
have B : dist (inl (default α)) (inr y) ≤ diam (univ : set α) + 1 + diam (univ : set β) := calc
dist (inl (default α)) (inr y) = dist (default α) (default α) + 1 + dist (default β) y : rfl
... ≤ diam (univ : set α) + 1 + diam (univ : set β) :
begin
apply add_le_add (add_le_add _ (le_refl _)),
exact dist_le_diam_of_mem (bounded_of_compact (compact_univ)) (mem_univ _) (mem_univ _),
exact dist_le_diam_of_mem (bounded_of_compact (compact_univ)) (mem_univ _) (mem_univ _)
end,
exact le_trans A B },
end
/- To check that HD is continuous, we check that it is Lipschitz. As HD is a max, we
prove separately inequalities controlling the two terms (relying too heavily on copy-paste...) -/
private lemma HD_lipschitz_aux1 (f g : Cb α β) :
(⨆ x, ⨅ y, f (inl x, inr y)) ≤ (⨆ x, ⨅ y, g (inl x, inr y)) + dist f g :=
begin
rcases (real.bounded_iff_bdd_below_bdd_above.1 bounded_range).1 with ⟨cg, hcg⟩,
have Hcg : ∀x, cg ≤ g x := λx, hcg (mem_range_self x),
rcases (real.bounded_iff_bdd_below_bdd_above.1 bounded_range).1 with ⟨cf, hcf⟩,
have Hcf : ∀x, cf ≤ f x := λx, hcf (mem_range_self x),
-- prove the inequality but with `dist f g` inside, by using inequalities comparing
-- supr to supr and infi to infi
have Z : (⨆ x, ⨅ y, f (inl x, inr y)) ≤ ⨆ x, ⨅ y, g (inl x, inr y) + dist f g :=
csupr_le_csupr (HD_bound_aux1 _ (dist f g))
(λx, cinfi_le_cinfi ⟨cf, forall_range_iff.2(λi, Hcf _)⟩ (λy, coe_le_coe_add_dist)),
-- move the `dist f g` out of the infimum and the supremum, arguing that continuous monotone maps
-- (here the addition of `dist f g`) preserve infimum and supremum
have E1 : ∀x, (⨅ y, g (inl x, inr y)) + dist f g = ⨅ y, g (inl x, inr y) + dist f g,
{ assume x,
refine map_cinfi_of_continuous_at_of_monotone (continuous_at_id.add continuous_at_const) _ _,
{ assume x y hx, simpa },
{ show bdd_below (range (λ (y : β), g (inl x, inr y))),
from ⟨cg, forall_range_iff.2(λi, Hcg _)⟩ } },
have E2 : (⨆ x, ⨅ y, g (inl x, inr y)) + dist f g = ⨆ x, (⨅ y, g (inl x, inr y)) + dist f g,
{ refine map_csupr_of_continuous_at_of_monotone (continuous_at_id.add continuous_at_const) _ _,
{ assume x y hx, simpa },
{ by simpa using HD_bound_aux1 _ 0 } },
-- deduce the result from the above two steps
simpa [E2, E1, function.comp]
end
private lemma HD_lipschitz_aux2 (f g : Cb α β) :
(⨆ y, ⨅ x, f (inl x, inr y)) ≤ (⨆ y, ⨅ x, g (inl x, inr y)) + dist f g :=
begin
rcases (real.bounded_iff_bdd_below_bdd_above.1 bounded_range).1 with ⟨cg, hcg⟩,
have Hcg : ∀x, cg ≤ g x := λx, hcg (mem_range_self x),
rcases (real.bounded_iff_bdd_below_bdd_above.1 bounded_range).1 with ⟨cf, hcf⟩,
have Hcf : ∀x, cf ≤ f x := λx, hcf (mem_range_self x),
-- prove the inequality but with `dist f g` inside, by using inequalities comparing
-- supr to supr and infi to infi
have Z : (⨆ y, ⨅ x, f (inl x, inr y)) ≤ ⨆ y, ⨅ x, g (inl x, inr y) + dist f g :=
csupr_le_csupr (HD_bound_aux2 _ (dist f g))
(λy, cinfi_le_cinfi ⟨cf, forall_range_iff.2(λi, Hcf _)⟩ (λy, coe_le_coe_add_dist)),
-- move the `dist f g` out of the infimum and the supremum, arguing that continuous monotone maps
-- (here the addition of `dist f g`) preserve infimum and supremum
have E1 : ∀y, (⨅ x, g (inl x, inr y)) + dist f g = ⨅ x, g (inl x, inr y) + dist f g,
{ assume y,
refine map_cinfi_of_continuous_at_of_monotone (continuous_at_id.add continuous_at_const) _ _,
{ assume x y hx, simpa },
{ show bdd_below (range (λx:α, g (inl x, inr y))),
from ⟨cg, forall_range_iff.2 (λi, Hcg _)⟩ } },
have E2 : (⨆ y, ⨅ x, g (inl x, inr y)) + dist f g = ⨆ y, (⨅ x, g (inl x, inr y)) + dist f g,
{ refine map_csupr_of_continuous_at_of_monotone (continuous_at_id.add continuous_at_const) _ _,
{ assume x y hx, simpa },
{ by simpa using HD_bound_aux2 _ 0 } },
-- deduce the result from the above two steps
simpa [E2, E1]
end
private lemma HD_lipschitz_aux3 (f g : Cb α β) : HD f ≤ HD g + dist f g :=
max_le (le_trans (HD_lipschitz_aux1 f g) (add_le_add_right (le_max_left _ _) _))
(le_trans (HD_lipschitz_aux2 f g) (add_le_add_right (le_max_right _ _) _))
/-- Conclude that HD, being Lipschitz, is continuous -/
private lemma HD_continuous : continuous (HD : Cb α β → ℝ) :=
lipschitz_with.continuous (lipschitz_with.of_le_add HD_lipschitz_aux3)
end constructions --section
section consequences
variables (α : Type u) (β : Type v) [metric_space α] [compact_space α] [nonempty α] [metric_space β]
[compact_space β] [nonempty β]
/- Now that we have proved that the set of candidates is compact, and that HD is continuous,
we can finally select a candidate minimizing HD. This will be the candidate realizing the
optimal coupling. -/
private lemma exists_minimizer : ∃f ∈ candidates_b α β, ∀g ∈ candidates_b α β, HD f ≤ HD g :=
compact_candidates_b.exists_forall_le candidates_b_nonempty HD_continuous.continuous_on
private definition optimal_GH_dist : Cb α β := classical.some (exists_minimizer α β)
private lemma optimal_GH_dist_mem_candidates_b : optimal_GH_dist α β ∈ candidates_b α β :=
by cases (classical.some_spec (exists_minimizer α β)); assumption
private lemma HD_optimal_GH_dist_le (g : Cb α β) (hg : g ∈ candidates_b α β) :
HD (optimal_GH_dist α β) ≤ HD g :=
let ⟨Z1, Z2⟩ := classical.some_spec (exists_minimizer α β) in Z2 g hg
/-- With the optimal candidate, construct a premetric space structure on α ⊕ β, on which the
predistance is given by the candidate. Then, we will identify points at 0 predistance
to obtain a genuine metric space -/
def premetric_optimal_GH_dist : pseudo_metric_space (α ⊕ β) :=
{ dist := λp q, optimal_GH_dist α β (p, q),
dist_self := λx, candidates_refl (optimal_GH_dist_mem_candidates_b α β),
dist_comm := λx y, candidates_symm (optimal_GH_dist_mem_candidates_b α β),
dist_triangle := λx y z, candidates_triangle (optimal_GH_dist_mem_candidates_b α β) }
local attribute [instance] premetric_optimal_GH_dist pseudo_metric.dist_setoid
/-- A metric space which realizes the optimal coupling between α and β -/
@[derive [metric_space]] definition optimal_GH_coupling : Type* :=
pseudo_metric_quot (α ⊕ β)
/-- Injection of α in the optimal coupling between α and β -/
def optimal_GH_injl (x : α) : optimal_GH_coupling α β := ⟦inl x⟧
/-- The injection of α in the optimal coupling between α and β is an isometry. -/
lemma isometry_optimal_GH_injl : isometry (optimal_GH_injl α β) :=
begin
refine isometry_emetric_iff_metric.2 (λx y, _),
change dist ⟦inl x⟧ ⟦inl y⟧ = dist x y,
exact candidates_dist_inl (optimal_GH_dist_mem_candidates_b α β) _ _,
end
/-- Injection of β in the optimal coupling between α and β -/
def optimal_GH_injr (y : β) : optimal_GH_coupling α β := ⟦inr y⟧
/-- The injection of β in the optimal coupling between α and β is an isometry. -/
lemma isometry_optimal_GH_injr : isometry (optimal_GH_injr α β) :=
begin
refine isometry_emetric_iff_metric.2 (λx y, _),
change dist ⟦inr x⟧ ⟦inr y⟧ = dist x y,
exact candidates_dist_inr (optimal_GH_dist_mem_candidates_b α β) _ _,
end
/-- The optimal coupling between two compact spaces α and β is still a compact space -/
instance compact_space_optimal_GH_coupling : compact_space (optimal_GH_coupling α β) :=
⟨begin
have : (univ : set (optimal_GH_coupling α β)) =
(optimal_GH_injl α β '' univ) ∪ (optimal_GH_injr α β '' univ),
{ refine subset.antisymm (λxc hxc, _) (subset_univ _),
rcases quotient.exists_rep xc with ⟨x, hx⟩,
cases x; rw ← hx,
{ have : ⟦inl x⟧ = optimal_GH_injl α β x := rfl,
rw this,
exact mem_union_left _ (mem_image_of_mem _ (mem_univ _)) },
{ have : ⟦inr x⟧ = optimal_GH_injr α β x := rfl,
rw this,
exact mem_union_right _ (mem_image_of_mem _ (mem_univ _)) } },
rw this,
exact (compact_univ.image (isometry_optimal_GH_injl α β).continuous).union
(compact_univ.image (isometry_optimal_GH_injr α β).continuous)
end⟩
/-- For any candidate f, HD(f) is larger than or equal to the Hausdorff distance in the
optimal coupling. This follows from the fact that HD of the optimal candidate is exactly
the Hausdorff distance in the optimal coupling, although we only prove here the inequality
we need. -/
lemma Hausdorff_dist_optimal_le_HD {f} (h : f ∈ candidates_b α β) :
Hausdorff_dist (range (optimal_GH_injl α β)) (range (optimal_GH_injr α β)) ≤ HD f :=
begin
refine le_trans (le_of_forall_le_of_dense (λr hr, _)) (HD_optimal_GH_dist_le α β f h),
have A : ∀ x ∈ range (optimal_GH_injl α β), ∃ y ∈ range (optimal_GH_injr α β), dist x y ≤ r,
{ assume x hx,
rcases mem_range.1 hx with ⟨z, hz⟩,
rw ← hz,
have I1 : (⨆ x, ⨅ y, optimal_GH_dist α β (inl x, inr y)) < r :=
lt_of_le_of_lt (le_max_left _ _) hr,
have I2 : (⨅ y, optimal_GH_dist α β (inl z, inr y)) ≤
⨆ x, ⨅ y, optimal_GH_dist α β (inl x, inr y) :=
le_cSup (by simpa using HD_bound_aux1 _ 0) (mem_range_self _),
have I : (⨅ y, optimal_GH_dist α β (inl z, inr y)) < r := lt_of_le_of_lt I2 I1,
rcases exists_lt_of_cInf_lt (range_nonempty _) I with ⟨r', r'range, hr'⟩,
rcases mem_range.1 r'range with ⟨z', hz'⟩,
existsi [optimal_GH_injr α β z', mem_range_self _],
have : (optimal_GH_dist α β) (inl z, inr z') ≤ r := begin rw hz', exact le_of_lt hr' end,
exact this },
refine Hausdorff_dist_le_of_mem_dist _ A _,
{ rcases exists_mem_of_nonempty α with ⟨xα, _⟩,
have : optimal_GH_injl α β xα ∈ range (optimal_GH_injl α β) := mem_range_self _,
rcases A _ this with ⟨y, yrange, hy⟩,
exact le_trans dist_nonneg hy },
{ assume y hy,
rcases mem_range.1 hy with ⟨z, hz⟩,
rw ← hz,
have I1 : (⨆ y, ⨅ x, optimal_GH_dist α β (inl x, inr y)) < r :=
lt_of_le_of_lt (le_max_right _ _) hr,
have I2 : (⨅ x, optimal_GH_dist α β (inl x, inr z)) ≤
⨆ y, ⨅ x, optimal_GH_dist α β (inl x, inr y) :=
le_cSup (by simpa using HD_bound_aux2 _ 0) (mem_range_self _),
have I : (⨅ x, optimal_GH_dist α β (inl x, inr z)) < r := lt_of_le_of_lt I2 I1,
rcases exists_lt_of_cInf_lt (range_nonempty _) I with ⟨r', r'range, hr'⟩,
rcases mem_range.1 r'range with ⟨z', hz'⟩,
existsi [optimal_GH_injl α β z', mem_range_self _],
have : (optimal_GH_dist α β) (inl z', inr z) ≤ r := begin rw hz', exact le_of_lt hr' end,
rw dist_comm,
exact this }
end
end consequences
/- We are done with the construction of the optimal coupling -/
end Gromov_Hausdorff_realized
end Gromov_Hausdorff
|
7eaaa7e2649dfde03e3f5751567fea9c497e148f
|
d406927ab5617694ec9ea7001f101b7c9e3d9702
|
/src/measure_theory/constructions/polish.lean
|
94562f03a28854059d6668eb44120046309d8432
|
[
"Apache-2.0"
] |
permissive
|
alreadydone/mathlib
|
dc0be621c6c8208c581f5170a8216c5ba6721927
|
c982179ec21091d3e102d8a5d9f5fe06c8fafb73
|
refs/heads/master
| 1,685,523,275,196
| 1,670,184,141,000
| 1,670,184,141,000
| 287,574,545
| 0
| 0
|
Apache-2.0
| 1,670,290,714,000
| 1,597,421,623,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 34,610
|
lean
|
/-
Copyright (c) 2022 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import topology.metric_space.polish
import measure_theory.constructions.borel_space
/-!
# The Borel sigma-algebra on Polish spaces
We discuss several results pertaining to the relationship between the topology and the Borel
structure on Polish spaces.
## Main definitions and results
First, we define the class of analytic sets and establish its basic properties.
* `measure_theory.analytic_set s`: a set in a topological space is analytic if it is the continuous
image of a Polish space. Equivalently, it is empty, or the image of `ℕ → ℕ`.
* `measure_theory.analytic_set.image_of_continuous`: a continuous image of an analytic set is
analytic.
* `measurable_set.analytic_set`: in a Polish space, any Borel-measurable set is analytic.
Then, we show Lusin's theorem that two disjoint analytic sets can be separated by Borel sets.
* `measurably_separable s t` states that there exists a measurable set containing `s` and disjoint
from `t`.
* `analytic_set.measurably_separable` shows that two disjoint analytic sets are separated by a
Borel set.
Finally, we prove the Lusin-Souslin theorem that a continuous injective image of a Borel subset of
a Polish space is Borel. The proof of this nontrivial result relies on the above results on
analytic sets.
* `measurable_set.image_of_continuous_on_inj_on` asserts that, if `s` is a Borel measurable set in
a Polish space, then the image of `s` under a continuous injective map is still Borel measurable.
* `continuous.measurable_embedding` states that a continuous injective map on a Polish space
is a measurable embedding for the Borel sigma-algebra.
* `continuous_on.measurable_embedding` is the same result for a map restricted to a measurable set
on which it is continuous.
* `measurable.measurable_embedding` states that a measurable injective map from a Polish space
to a second-countable topological space is a measurable embedding.
* `is_clopenable_iff_measurable_set`: in a Polish space, a set is clopenable (i.e., it can be made
open and closed by using a finer Polish topology) if and only if it is Borel-measurable.
-/
open set function polish_space pi_nat topological_space metric filter
open_locale topological_space measure_theory filter
variables {α : Type*} [topological_space α] {ι : Type*}
namespace measure_theory
/-! ### Analytic sets -/
/-- An analytic set is a set which is the continuous image of some Polish space. There are several
equivalent characterizations of this definition. For the definition, we pick one that avoids
universe issues: a set is analytic if and only if it is a continuous image of `ℕ → ℕ` (or if it
is empty). The above more usual characterization is given
in `analytic_set_iff_exists_polish_space_range`.
Warning: these are analytic sets in the context of descriptive set theory (which is why they are
registered in the namespace `measure_theory`). They have nothing to do with analytic sets in the
context of complex analysis. -/
@[irreducible] def analytic_set (s : set α) : Prop :=
s = ∅ ∨ ∃ (f : (ℕ → ℕ) → α), continuous f ∧ range f = s
lemma analytic_set_empty : analytic_set (∅ : set α) :=
begin
rw analytic_set,
exact or.inl rfl
end
lemma analytic_set_range_of_polish_space
{β : Type*} [topological_space β] [polish_space β] {f : β → α} (f_cont : continuous f) :
analytic_set (range f) :=
begin
casesI is_empty_or_nonempty β,
{ rw range_eq_empty,
exact analytic_set_empty },
{ rw analytic_set,
obtain ⟨g, g_cont, hg⟩ : ∃ (g : (ℕ → ℕ) → β), continuous g ∧ surjective g :=
exists_nat_nat_continuous_surjective β,
refine or.inr ⟨f ∘ g, f_cont.comp g_cont, _⟩,
rwa hg.range_comp }
end
/-- The image of an open set under a continuous map is analytic. -/
lemma _root_.is_open.analytic_set_image {β : Type*} [topological_space β] [polish_space β]
{s : set β} (hs : is_open s) {f : β → α} (f_cont : continuous f) :
analytic_set (f '' s) :=
begin
rw image_eq_range,
haveI : polish_space s := hs.polish_space,
exact analytic_set_range_of_polish_space (f_cont.comp continuous_subtype_coe),
end
/-- A set is analytic if and only if it is the continuous image of some Polish space. -/
theorem analytic_set_iff_exists_polish_space_range {s : set α} :
analytic_set s ↔ ∃ (β : Type) (h : topological_space β) (h' : @polish_space β h) (f : β → α),
@continuous _ _ h _ f ∧ range f = s :=
begin
split,
{ assume h,
rw analytic_set at h,
cases h,
{ refine ⟨empty, by apply_instance, by apply_instance, empty.elim, continuous_bot, _⟩,
rw h,
exact range_eq_empty _ },
{ exact ⟨ℕ → ℕ, by apply_instance, by apply_instance, h⟩ } },
{ rintros ⟨β, h, h', f, f_cont, f_range⟩,
resetI,
rw ← f_range,
exact analytic_set_range_of_polish_space f_cont }
end
/-- The continuous image of an analytic set is analytic -/
lemma analytic_set.image_of_continuous_on {β : Type*} [topological_space β]
{s : set α} (hs : analytic_set s) {f : α → β} (hf : continuous_on f s) :
analytic_set (f '' s) :=
begin
rcases analytic_set_iff_exists_polish_space_range.1 hs with ⟨γ, γtop, γpolish, g, g_cont, gs⟩,
resetI,
have : f '' s = range (f ∘ g), by rw [range_comp, gs],
rw this,
apply analytic_set_range_of_polish_space,
apply hf.comp_continuous g_cont (λ x, _),
rw ← gs,
exact mem_range_self _
end
lemma analytic_set.image_of_continuous {β : Type*} [topological_space β]
{s : set α} (hs : analytic_set s) {f : α → β} (hf : continuous f) :
analytic_set (f '' s) :=
hs.image_of_continuous_on hf.continuous_on
/-- A countable intersection of analytic sets is analytic. -/
theorem analytic_set.Inter [hι : nonempty ι] [countable ι] [t2_space α]
{s : ι → set α} (hs : ∀ n, analytic_set (s n)) :
analytic_set (⋂ n, s n) :=
begin
unfreezingI { rcases hι with ⟨i₀⟩ },
/- For the proof, write each `s n` as the continuous image under a map `f n` of a
Polish space `β n`. The product space `γ = Π n, β n` is also Polish, and so is the subset
`t` of sequences `x n` for which `f n (x n)` is independent of `n`. The set `t` is Polish, and the
range of `x ↦ f 0 (x 0)` on `t` is exactly `⋂ n, s n`, so this set is analytic. -/
choose β hβ h'β f f_cont f_range using λ n, analytic_set_iff_exists_polish_space_range.1 (hs n),
resetI,
let γ := Π n, β n,
let t : set γ := ⋂ n, {x | f n (x n) = f i₀ (x i₀)},
have t_closed : is_closed t,
{ apply is_closed_Inter,
assume n,
exact is_closed_eq ((f_cont n).comp (continuous_apply n))
((f_cont i₀).comp (continuous_apply i₀)) },
haveI : polish_space t := t_closed.polish_space,
let F : t → α := λ x, f i₀ ((x : γ) i₀),
have F_cont : continuous F :=
(f_cont i₀).comp ((continuous_apply i₀).comp continuous_subtype_coe),
have F_range : range F = ⋂ (n : ι), s n,
{ apply subset.antisymm,
{ rintros y ⟨x, rfl⟩,
apply mem_Inter.2 (λ n, _),
have : f n ((x : γ) n) = F x := (mem_Inter.1 x.2 n : _),
rw [← this, ← f_range n],
exact mem_range_self _ },
{ assume y hy,
have A : ∀ n, ∃ (x : β n), f n x = y,
{ assume n,
rw [← mem_range, f_range n],
exact mem_Inter.1 hy n },
choose x hx using A,
have xt : x ∈ t,
{ apply mem_Inter.2 (λ n, _),
simp [hx] },
refine ⟨⟨x, xt⟩, _⟩,
exact hx i₀ } },
rw ← F_range,
exact analytic_set_range_of_polish_space F_cont,
end
/-- A countable union of analytic sets is analytic. -/
theorem analytic_set.Union [countable ι] {s : ι → set α} (hs : ∀ n, analytic_set (s n)) :
analytic_set (⋃ n, s n) :=
begin
/- For the proof, write each `s n` as the continuous image under a map `f n` of a
Polish space `β n`. The union space `γ = Σ n, β n` is also Polish, and the map `F : γ → α` which
coincides with `f n` on `β n` sends it to `⋃ n, s n`. -/
choose β hβ h'β f f_cont f_range using λ n, analytic_set_iff_exists_polish_space_range.1 (hs n),
resetI,
let γ := Σ n, β n,
let F : γ → α := by { rintros ⟨n, x⟩, exact f n x },
have F_cont : continuous F := continuous_sigma f_cont,
have F_range : range F = ⋃ n, s n,
{ rw [range_sigma_eq_Union_range],
congr,
ext1 n,
rw ← f_range n },
rw ← F_range,
exact analytic_set_range_of_polish_space F_cont,
end
theorem _root_.is_closed.analytic_set [polish_space α] {s : set α} (hs : is_closed s) :
analytic_set s :=
begin
haveI : polish_space s := hs.polish_space,
rw ← @subtype.range_val α s,
exact analytic_set_range_of_polish_space continuous_subtype_coe,
end
/-- Given a Borel-measurable set in a Polish space, there exists a finer Polish topology making
it clopen. This is in fact an equivalence, see `is_clopenable_iff_measurable_set`. -/
lemma _root_.measurable_set.is_clopenable [polish_space α] [measurable_space α] [borel_space α]
{s : set α} (hs : measurable_set s) :
is_clopenable s :=
begin
revert s,
apply measurable_set.induction_on_open,
{ exact λ u hu, hu.is_clopenable },
{ exact λ u hu h'u, h'u.compl },
{ exact λ f f_disj f_meas hf, is_clopenable.Union hf }
end
theorem _root_.measurable_set.analytic_set
{α : Type*} [t : topological_space α] [polish_space α] [measurable_space α] [borel_space α]
{s : set α} (hs : measurable_set s) :
analytic_set s :=
begin
/- For a short proof (avoiding measurable induction), one sees `s` as a closed set for a finer
topology `t'`. It is analytic for this topology. As the identity from `t'` to `t` is continuous
and the image of an analytic set is analytic, it follows that `s` is also analytic for `t`. -/
obtain ⟨t', t't, t'_polish, s_closed, s_open⟩ :
∃ (t' : topological_space α), t' ≤ t ∧ @polish_space α t' ∧ @is_closed α t' s ∧
@is_open α t' s := hs.is_clopenable,
have A := @is_closed.analytic_set α t' t'_polish s s_closed,
convert @analytic_set.image_of_continuous α t' α t s A id (continuous_id_of_le t't),
simp only [id.def, image_id'],
end
/-- Given a Borel-measurable function from a Polish space to a second-countable space, there exists
a finer Polish topology on the source space for which the function is continuous. -/
lemma _root_.measurable.exists_continuous {α β : Type*}
[t : topological_space α] [polish_space α] [measurable_space α] [borel_space α]
[tβ : topological_space β] [second_countable_topology β] [measurable_space β] [borel_space β]
{f : α → β} (hf : measurable f) :
∃ (t' : topological_space α), t' ≤ t ∧ @continuous α β t' tβ f ∧ @polish_space α t' :=
begin
obtain ⟨b, b_count, -, hb⟩ : ∃b : set (set β), b.countable ∧ ∅ ∉ b ∧ is_topological_basis b :=
exists_countable_basis β,
haveI : encodable b := b_count.to_encodable,
have : ∀ (s : b), is_clopenable (f ⁻¹' s),
{ assume s,
apply measurable_set.is_clopenable,
exact hf (hb.is_open s.2).measurable_set },
choose T Tt Tpolish Tclosed Topen using this,
obtain ⟨t', t'T, t't, t'_polish⟩ :
∃ (t' : topological_space α), (∀ i, t' ≤ T i) ∧ (t' ≤ t) ∧ @polish_space α t' :=
exists_polish_space_forall_le T Tt Tpolish,
refine ⟨t', t't, _, t'_polish⟩,
apply hb.continuous _ (λ s hs, _),
exact t'T ⟨s, hs⟩ _ (Topen ⟨s, hs⟩),
end
/-! ### Separating sets with measurable sets -/
/-- Two sets `u` and `v` in a measurable space are measurably separable if there
exists a measurable set containing `u` and disjoint from `v`.
This is mostly interesting for Borel-separable sets. -/
def measurably_separable {α : Type*} [measurable_space α] (s t : set α) : Prop :=
∃ u, s ⊆ u ∧ disjoint t u ∧ measurable_set u
lemma measurably_separable.Union [countable ι]
{α : Type*} [measurable_space α] {s t : ι → set α}
(h : ∀ m n, measurably_separable (s m) (t n)) :
measurably_separable (⋃ n, s n) (⋃ m, t m) :=
begin
choose u hsu htu hu using h,
refine ⟨⋃ m, (⋂ n, u m n), _, _, _⟩,
{ refine Union_subset (λ m, subset_Union_of_subset m _),
exact subset_Inter (λ n, hsu m n) },
{ simp_rw [disjoint_Union_left, disjoint_Union_right],
assume n m,
apply disjoint.mono_right _ (htu m n),
apply Inter_subset },
{ refine measurable_set.Union (λ m, _),
exact measurable_set.Inter (λ n, hu m n) }
end
/-- The hard part of the Lusin separation theorem saying that two disjoint analytic sets are
contained in disjoint Borel sets (see the full statement in `analytic_set.measurably_separable`).
Here, we prove this when our analytic sets are the ranges of functions from `ℕ → ℕ`.
-/
lemma measurably_separable_range_of_disjoint [t2_space α] [measurable_space α] [borel_space α]
{f g : (ℕ → ℕ) → α} (hf : continuous f) (hg : continuous g) (h : disjoint (range f) (range g)) :
measurably_separable (range f) (range g) :=
begin
/- We follow [Kechris, *Classical Descriptive Set Theory* (Theorem 14.7)][kechris1995].
If the ranges are not Borel-separated, then one can find two cylinders of length one whose images
are not Borel-separated, and then two smaller cylinders of length two whose images are not
Borel-separated, and so on. One thus gets two sequences of cylinders, that decrease to two
points `x` and `y`. Their images are different by the disjointness assumption, hence contained
in two disjoint open sets by the T2 property. By continuity, long enough cylinders around `x`
and `y` have images which are separated by these two disjoint open sets, a contradiction.
-/
by_contra hfg,
have I : ∀ n x y, (¬(measurably_separable (f '' (cylinder x n)) (g '' (cylinder y n))))
→ ∃ x' y', x' ∈ cylinder x n ∧ y' ∈ cylinder y n ∧
¬(measurably_separable (f '' (cylinder x' (n+1))) (g '' (cylinder y' (n+1)))),
{ assume n x y,
contrapose!,
assume H,
rw [← Union_cylinder_update x n, ← Union_cylinder_update y n, image_Union, image_Union],
refine measurably_separable.Union (λ i j, _),
exact H _ _ (update_mem_cylinder _ _ _) (update_mem_cylinder _ _ _) },
-- consider the set of pairs of cylinders of some length whose images are not Borel-separated
let A := {p : ℕ × (ℕ → ℕ) × (ℕ → ℕ) //
¬(measurably_separable (f '' (cylinder p.2.1 p.1)) (g '' (cylinder p.2.2 p.1)))},
-- for each such pair, one can find longer cylinders whose images are not Borel-separated either
have : ∀ (p : A), ∃ (q : A), q.1.1 = p.1.1 + 1 ∧ q.1.2.1 ∈ cylinder p.1.2.1 p.1.1
∧ q.1.2.2 ∈ cylinder p.1.2.2 p.1.1,
{ rintros ⟨⟨n, x, y⟩, hp⟩,
rcases I n x y hp with ⟨x', y', hx', hy', h'⟩,
exact ⟨⟨⟨n+1, x', y'⟩, h'⟩, rfl, hx', hy'⟩ },
choose F hFn hFx hFy using this,
let p0 : A := ⟨⟨0, λ n, 0, λ n, 0⟩, by simp [hfg]⟩,
-- construct inductively decreasing sequences of cylinders whose images are not separated
let p : ℕ → A := λ n, F^[n] p0,
have prec : ∀ n, p (n+1) = F (p n) := λ n, by simp only [p, iterate_succ'],
-- check that at the `n`-th step we deal with cylinders of length `n`
have pn_fst : ∀ n, (p n).1.1 = n,
{ assume n,
induction n with n IH,
{ refl },
{ simp only [prec, hFn, IH] } },
-- check that the cylinders we construct are indeed decreasing, by checking that the coordinates
-- are stationary.
have Ix : ∀ m n, m + 1 ≤ n → (p n).1.2.1 m = (p (m+1)).1.2.1 m,
{ assume m,
apply nat.le_induction,
{ refl },
assume n hmn IH,
have I : (F (p n)).val.snd.fst m = (p n).val.snd.fst m,
{ apply hFx (p n) m,
rw pn_fst,
exact hmn },
rw [prec, I, IH] },
have Iy : ∀ m n, m + 1 ≤ n → (p n).1.2.2 m = (p (m+1)).1.2.2 m,
{ assume m,
apply nat.le_induction,
{ refl },
assume n hmn IH,
have I : (F (p n)).val.snd.snd m = (p n).val.snd.snd m,
{ apply hFy (p n) m,
rw pn_fst,
exact hmn },
rw [prec, I, IH] },
-- denote by `x` and `y` the limit points of these two sequences of cylinders.
set x : ℕ → ℕ := λ n, (p (n+1)).1.2.1 n with hx,
set y : ℕ → ℕ := λ n, (p (n+1)).1.2.2 n with hy,
-- by design, the cylinders around these points have images which are not Borel-separable.
have M : ∀ n, ¬(measurably_separable (f '' (cylinder x n)) (g '' (cylinder y n))),
{ assume n,
convert (p n).2 using 3,
{ rw [pn_fst, ← mem_cylinder_iff_eq, mem_cylinder_iff],
assume i hi,
rw hx,
exact (Ix i n hi).symm },
{ rw [pn_fst, ← mem_cylinder_iff_eq, mem_cylinder_iff],
assume i hi,
rw hy,
exact (Iy i n hi).symm } },
-- consider two open sets separating `f x` and `g y`.
obtain ⟨u, v, u_open, v_open, xu, yv, huv⟩ :
∃ u v : set α, is_open u ∧ is_open v ∧ f x ∈ u ∧ g y ∈ v ∧ disjoint u v,
{ apply t2_separation,
exact disjoint_iff_forall_ne.1 h _ (mem_range_self _) _ (mem_range_self _) },
letI : metric_space (ℕ → ℕ) := metric_space_nat_nat,
obtain ⟨εx, εxpos, hεx⟩ : ∃ (εx : ℝ) (H : εx > 0), metric.ball x εx ⊆ f ⁻¹' u,
{ apply metric.mem_nhds_iff.1,
exact hf.continuous_at.preimage_mem_nhds (u_open.mem_nhds xu) },
obtain ⟨εy, εypos, hεy⟩ : ∃ (εy : ℝ) (H : εy > 0), metric.ball y εy ⊆ g ⁻¹' v,
{ apply metric.mem_nhds_iff.1,
exact hg.continuous_at.preimage_mem_nhds (v_open.mem_nhds yv) },
obtain ⟨n, hn⟩ : ∃ (n : ℕ), (1/2 : ℝ)^n < min εx εy :=
exists_pow_lt_of_lt_one (lt_min εxpos εypos) (by norm_num),
-- for large enough `n`, these open sets separate the images of long cylinders around `x` and `y`
have B : measurably_separable (f '' (cylinder x n)) (g '' (cylinder y n)),
{ refine ⟨u, _, _, u_open.measurable_set⟩,
{ rw image_subset_iff,
apply subset.trans _ hεx,
assume z hz,
rw mem_cylinder_iff_dist_le at hz,
exact hz.trans_lt (hn.trans_le (min_le_left _ _)) },
{ refine disjoint.mono_left _ huv.symm,
change g '' cylinder y n ⊆ v,
rw image_subset_iff,
apply subset.trans _ hεy,
assume z hz,
rw mem_cylinder_iff_dist_le at hz,
exact hz.trans_lt (hn.trans_le (min_le_right _ _)) } },
-- this is a contradiction.
exact M n B
end
/-- The Lusin separation theorem: if two analytic sets are disjoint, then they are contained in
disjoint Borel sets. -/
theorem analytic_set.measurably_separable [t2_space α] [measurable_space α] [borel_space α]
{s t : set α} (hs : analytic_set s) (ht : analytic_set t) (h : disjoint s t) :
measurably_separable s t :=
begin
rw analytic_set at hs ht,
rcases hs with rfl|⟨f, f_cont, rfl⟩,
{ refine ⟨∅, subset.refl _, by simp, measurable_set.empty⟩ },
rcases ht with rfl|⟨g, g_cont, rfl⟩,
{ exact ⟨univ, subset_univ _, by simp, measurable_set.univ⟩ },
exact measurably_separable_range_of_disjoint f_cont g_cont h,
end
/-! ### Injective images of Borel sets -/
variables {γ : Type*} [tγ : topological_space γ] [polish_space γ]
include tγ
/-- The Lusin-Souslin theorem: the range of a continuous injective function defined on a Polish
space is Borel-measurable. -/
theorem measurable_set_range_of_continuous_injective {β : Type*}
[topological_space β] [t2_space β] [measurable_space β] [borel_space β]
{f : γ → β} (f_cont : continuous f) (f_inj : injective f) :
measurable_set (range f) :=
begin
/- We follow [Fremlin, *Measure Theory* (volume 4, 423I)][fremlin_vol4].
Let `b = {s i}` be a countable basis for `α`. When `s i` and `s j` are disjoint, their images are
disjoint analytic sets, hence by the separation theorem one can find a Borel-measurable set
`q i j` separating them.
Let `E i = closure (f '' s i) ∩ ⋂ j, q i j \ q j i`. It contains `f '' (s i)` and it is
measurable. Let `F n = ⋃ E i`, where the union is taken over those `i` for which `diam (s i)`
is bounded by some number `u n` tending to `0` with `n`.
We claim that `range f = ⋂ F n`, from which the measurability is obvious. The inclusion `⊆` is
straightforward. To show `⊇`, consider a point `x` in the intersection. For each `n`, it belongs
to some `E i` with `diam (s i) ≤ u n`. Pick a point `y i ∈ s i`. We claim that for such `i`
and `j`, the intersection `s i ∩ s j` is nonempty: if it were empty, then thanks to the
separating set `q i j` in the definition of `E i` one could not have `x ∈ E i ∩ E j`.
Since these two sets have small diameter, it follows that `y i` and `y j` are close.
Thus, `y` is a Cauchy sequence, converging to a limit `z`. We claim that `f z = x`, completing
the proof.
Otherwise, one could find open sets `v` and `w` separating `f z` from `x`. Then, for large `n`,
the image `f '' (s i)` would be included in `v` by continuity of `f`, so its closure would be
contained in the closure of `v`, and therefore it would be disjoint from `w`. This is a
contradiction since `x` belongs both to this closure and to `w`. -/
letI := upgrade_polish_space γ,
obtain ⟨b, b_count, b_nonempty, hb⟩ :
∃ b : set (set γ), b.countable ∧ ∅ ∉ b ∧ is_topological_basis b := exists_countable_basis γ,
haveI : encodable b := b_count.to_encodable,
let A := {p : b × b // disjoint (p.1 : set γ) p.2},
-- for each pair of disjoint sets in the topological basis `b`, consider Borel sets separating
-- their images, by injectivity of `f` and the Lusin separation theorem.
have : ∀ (p : A), ∃ (q : set β), f '' (p.1.1 : set γ) ⊆ q ∧ disjoint (f '' (p.1.2 : set γ)) q
∧ measurable_set q,
{ assume p,
apply analytic_set.measurably_separable ((hb.is_open p.1.1.2).analytic_set_image f_cont)
((hb.is_open p.1.2.2).analytic_set_image f_cont),
exact disjoint.image p.2 (f_inj.inj_on univ) (subset_univ _) (subset_univ _) },
choose q hq1 hq2 q_meas using this,
-- define sets `E i` and `F n` as in the proof sketch above
let E : b → set β := λ s, closure (f '' s) ∩
(⋂ (t : b) (ht : disjoint s.1 t.1), q ⟨(s, t), ht⟩ \ q ⟨(t, s), ht.symm⟩),
obtain ⟨u, u_anti, u_pos, u_lim⟩ :
∃ (u : ℕ → ℝ), strict_anti u ∧ (∀ (n : ℕ), 0 < u n) ∧ tendsto u at_top (𝓝 0) :=
exists_seq_strict_anti_tendsto (0 : ℝ),
let F : ℕ → set β := λ n, ⋃ (s : b) (hs : bounded s.1 ∧ diam s.1 ≤ u n), E s,
-- it is enough to show that `range f = ⋂ F n`, as the latter set is obviously measurable.
suffices : range f = ⋂ n, F n,
{ have E_meas : ∀ (s : b), measurable_set (E s),
{ assume b,
refine is_closed_closure.measurable_set.inter _,
refine measurable_set.Inter (λ s, _),
exact measurable_set.Inter (λ hs, (q_meas _).diff (q_meas _)) },
have F_meas : ∀ n, measurable_set (F n),
{ assume n,
refine measurable_set.Union (λ s, _),
exact measurable_set.Union (λ hs, E_meas _) },
rw this,
exact measurable_set.Inter (λ n, F_meas n) },
-- we check both inclusions.
apply subset.antisymm,
-- we start with the easy inclusion `range f ⊆ ⋂ F n`. One just needs to unfold the definitions.
{ rintros x ⟨y, rfl⟩,
apply mem_Inter.2 (λ n, _),
obtain ⟨s, sb, ys, hs⟩ : ∃ (s : set γ) (H : s ∈ b), y ∈ s ∧ s ⊆ ball y (u n / 2),
{ apply hb.mem_nhds_iff.1,
exact ball_mem_nhds _ (half_pos (u_pos n)) },
have diam_s : diam s ≤ u n,
{ apply (diam_mono hs bounded_ball).trans,
convert diam_ball (half_pos (u_pos n)).le,
ring },
refine mem_Union.2 ⟨⟨s, sb⟩, _⟩,
refine mem_Union.2 ⟨⟨metric.bounded.mono hs bounded_ball, diam_s⟩, _⟩,
apply mem_inter (subset_closure (mem_image_of_mem _ ys)),
refine mem_Inter.2 (λ t, mem_Inter.2 (λ ht, ⟨_, _⟩)),
{ apply hq1,
exact mem_image_of_mem _ ys },
{ apply disjoint_left.1 (hq2 ⟨(t, ⟨s, sb⟩), ht.symm⟩),
exact mem_image_of_mem _ ys } },
-- Now, let us prove the harder inclusion `⋂ F n ⊆ range f`.
{ assume x hx,
-- pick for each `n` a good set `s n` of small diameter for which `x ∈ E (s n)`.
have C1 : ∀ n, ∃ (s : b) (hs : bounded s.1 ∧ diam s.1 ≤ u n), x ∈ E s :=
λ n, by simpa only [mem_Union] using mem_Inter.1 hx n,
choose s hs hxs using C1,
have C2 : ∀ n, (s n).1.nonempty,
{ assume n,
rw ← ne_empty_iff_nonempty,
assume hn,
have := (s n).2,
rw hn at this,
exact b_nonempty this },
-- choose a point `y n ∈ s n`.
choose y hy using C2,
have I : ∀ m n, ((s m).1 ∩ (s n).1).nonempty,
{ assume m n,
rw ← not_disjoint_iff_nonempty_inter,
by_contra' h,
have A : x ∈ q ⟨(s m, s n), h⟩ \ q ⟨(s n, s m), h.symm⟩,
{ have := mem_Inter.1 (hxs m).2 (s n), exact (mem_Inter.1 this h : _) },
have B : x ∈ q ⟨(s n, s m), h.symm⟩ \ q ⟨(s m, s n), h⟩,
{ have := mem_Inter.1 (hxs n).2 (s m), exact (mem_Inter.1 this h.symm : _) },
exact A.2 B.1 },
-- the points `y n` are nearby, and therefore they form a Cauchy sequence.
have cauchy_y : cauchy_seq y,
{ have : tendsto (λ n, 2 * u n) at_top (𝓝 0), by simpa only [mul_zero] using u_lim.const_mul 2,
apply cauchy_seq_of_le_tendsto_0' (λ n, 2 * u n) (λ m n hmn, _) this,
rcases I m n with ⟨z, zsm, zsn⟩,
calc dist (y m) (y n) ≤ dist (y m) z + dist z (y n) : dist_triangle _ _ _
... ≤ u m + u n :
add_le_add ((dist_le_diam_of_mem (hs m).1 (hy m) zsm).trans (hs m).2)
((dist_le_diam_of_mem (hs n).1 zsn (hy n)).trans (hs n).2)
... ≤ 2 * u m : by linarith [u_anti.antitone hmn] },
haveI : nonempty γ := ⟨y 0⟩,
-- let `z` be its limit.
let z := lim at_top y,
have y_lim : tendsto y at_top (𝓝 z) := cauchy_y.tendsto_lim,
suffices : f z = x, by { rw ← this, exact mem_range_self _ },
-- assume for a contradiction that `f z ≠ x`.
by_contra' hne,
-- introduce disjoint open sets `v` and `w` separating `f z` from `x`.
obtain ⟨v, w, v_open, w_open, fzv, xw, hvw⟩ := t2_separation hne,
obtain ⟨δ, δpos, hδ⟩ : ∃ δ > (0 : ℝ), ball z δ ⊆ f ⁻¹' v,
{ apply metric.mem_nhds_iff.1,
exact f_cont.continuous_at.preimage_mem_nhds (v_open.mem_nhds fzv) },
obtain ⟨n, hn⟩ : ∃ n, u n + dist (y n) z < δ,
{ have : tendsto (λ n, u n + dist (y n) z) at_top (𝓝 0),
by simpa only [add_zero] using u_lim.add (tendsto_iff_dist_tendsto_zero.1 y_lim),
exact ((tendsto_order.1 this).2 _ δpos).exists },
-- for large enough `n`, the image of `s n` is contained in `v`, by continuity of `f`.
have fsnv : f '' (s n) ⊆ v,
{ rw image_subset_iff,
apply subset.trans _ hδ,
assume a ha,
calc dist a z ≤ dist a (y n) + dist (y n) z : dist_triangle _ _ _
... ≤ u n + dist (y n) z :
add_le_add_right ((dist_le_diam_of_mem (hs n).1 ha (hy n)).trans (hs n).2) _
... < δ : hn },
-- as `x` belongs to the closure of `f '' (s n)`, it belongs to the closure of `v`.
have : x ∈ closure v := closure_mono fsnv (hxs n).1,
-- this is a contradiction, as `x` is supposed to belong to `w`, which is disjoint from
-- the closure of `v`.
exact disjoint_left.1 (hvw.closure_left w_open) this xw }
end
theorem _root_.is_closed.measurable_set_image_of_continuous_on_inj_on
{β : Type*} [topological_space β] [t2_space β] [measurable_space β] [borel_space β]
{s : set γ} (hs : is_closed s) {f : γ → β} (f_cont : continuous_on f s) (f_inj : inj_on f s) :
measurable_set (f '' s) :=
begin
rw image_eq_range,
haveI : polish_space s := is_closed.polish_space hs,
apply measurable_set_range_of_continuous_injective,
{ rwa continuous_on_iff_continuous_restrict at f_cont },
{ rwa inj_on_iff_injective at f_inj }
end
variables [measurable_space γ] [hγb : borel_space γ]
{β : Type*} [tβ : topological_space β] [t2_space β] [measurable_space β] [borel_space β]
{s : set γ} {f : γ → β}
include tβ hγb
/-- The Lusin-Souslin theorem: if `s` is Borel-measurable in a Polish space, then its image under
a continuous injective map is also Borel-measurable. -/
theorem _root_.measurable_set.image_of_continuous_on_inj_on
(hs : measurable_set s) (f_cont : continuous_on f s) (f_inj : inj_on f s) :
measurable_set (f '' s) :=
begin
obtain ⟨t', t't, t'_polish, s_closed, s_open⟩ :
∃ (t' : topological_space γ), t' ≤ tγ ∧ @polish_space γ t' ∧ @is_closed γ t' s ∧
@is_open γ t' s := hs.is_clopenable,
exact @is_closed.measurable_set_image_of_continuous_on_inj_on γ t' t'_polish β _ _ _ _ s
s_closed f (f_cont.mono_dom t't) f_inj,
end
/-- The Lusin-Souslin theorem: if `s` is Borel-measurable in a Polish space, then its image under
a measurable injective map taking values in a second-countable topological space
is also Borel-measurable. -/
theorem _root_.measurable_set.image_of_measurable_inj_on [second_countable_topology β]
(hs : measurable_set s) (f_meas : measurable f) (f_inj : inj_on f s) :
measurable_set (f '' s) :=
begin
-- for a finer Polish topology, `f` is continuous. Therefore, one may apply the corresponding
-- result for continuous maps.
obtain ⟨t', t't, f_cont, t'_polish⟩ :
∃ (t' : topological_space γ), t' ≤ tγ ∧ @continuous γ β t' tβ f ∧ @polish_space γ t' :=
f_meas.exists_continuous,
have M : measurable_set[@borel γ t'] s :=
@continuous.measurable γ γ t' (@borel γ t')
(@borel_space.opens_measurable γ t' (@borel γ t') (by { constructor, refl }))
tγ _ _ _ (continuous_id_of_le t't) s hs,
exact @measurable_set.image_of_continuous_on_inj_on γ t' t'_polish
(@borel γ t') (by { constructor, refl }) β _ _ _ _ s f M
(@continuous.continuous_on γ β t' tβ f s f_cont) f_inj,
end
/-- An injective continuous function on a Polish space is a measurable embedding. -/
theorem _root_.continuous.measurable_embedding (f_cont : continuous f) (f_inj : injective f) :
measurable_embedding f :=
{ injective := f_inj,
measurable := f_cont.measurable,
measurable_set_image' := λ u hu,
hu.image_of_continuous_on_inj_on f_cont.continuous_on (f_inj.inj_on _) }
/-- If `s` is Borel-measurable in a Polish space and `f` is continuous injective on `s`, then
the restriction of `f` to `s` is a measurable embedding. -/
theorem _root_.continuous_on.measurable_embedding (hs : measurable_set s)
(f_cont : continuous_on f s) (f_inj : inj_on f s) :
measurable_embedding (s.restrict f) :=
{ injective := inj_on_iff_injective.1 f_inj,
measurable := (continuous_on_iff_continuous_restrict.1 f_cont).measurable,
measurable_set_image' :=
begin
assume u hu,
have A : measurable_set ((coe : s → γ) '' u) :=
(measurable_embedding.subtype_coe hs).measurable_set_image.2 hu,
have B : measurable_set (f '' ((coe : s → γ) '' u)) :=
A.image_of_continuous_on_inj_on (f_cont.mono (subtype.coe_image_subset s u))
(f_inj.mono ((subtype.coe_image_subset s u))),
rwa ← image_comp at B,
end }
/-- An injective measurable function from a Polish space to a second-countable topological space
is a measurable embedding. -/
theorem _root_.measurable.measurable_embedding [second_countable_topology β]
(f_meas : measurable f) (f_inj : injective f) :
measurable_embedding f :=
{ injective := f_inj,
measurable := f_meas,
measurable_set_image' := λ u hu, hu.image_of_measurable_inj_on f_meas (f_inj.inj_on _) }
omit tβ
/-- In a Polish space, a set is clopenable if and only if it is Borel-measurable. -/
lemma is_clopenable_iff_measurable_set :
is_clopenable s ↔ measurable_set s :=
begin
-- we already know that a measurable set is clopenable. Conversely, assume that `s` is clopenable.
refine ⟨λ hs, _, λ hs, hs.is_clopenable⟩,
-- consider a finer topology `t'` in which `s` is open and closed.
obtain ⟨t', t't, t'_polish, s_closed, s_open⟩ :
∃ (t' : topological_space γ), t' ≤ tγ ∧ @polish_space γ t' ∧ @is_closed γ t' s ∧
@is_open γ t' s := hs,
-- the identity is continuous from `t'` to `tγ`.
have C : @continuous γ γ t' tγ id := continuous_id_of_le t't,
-- therefore, it is also a measurable embedding, by the Lusin-Souslin theorem
have E := @continuous.measurable_embedding γ t' t'_polish (@borel γ t') (by { constructor, refl })
γ tγ (polish_space.t2_space γ) _ _ id C injective_id,
-- the set `s` is measurable for `t'` as it is closed.
have M : @measurable_set γ (@borel γ t') s :=
@is_closed.measurable_set γ s t' (@borel γ t')
(@borel_space.opens_measurable γ t' (@borel γ t') (by { constructor, refl })) s_closed,
-- therefore, its image under the measurable embedding `id` is also measurable for `tγ`.
convert E.measurable_set_image.2 M,
simp only [id.def, image_id'],
end
omit hγb
/-- The set of points for which a measurable sequence of functions converges is measurable. -/
@[measurability] lemma measurable_set_exists_tendsto
[hγ : opens_measurable_space γ] [countable ι] {l : filter ι}
[l.is_countably_generated] {f : ι → β → γ} (hf : ∀ i, measurable (f i)) :
measurable_set {x | ∃ c, tendsto (λ n, f n x) l (𝓝 c)} :=
begin
by_cases hl : l.ne_bot,
swap, { rw not_ne_bot at hl, simp [hl] },
letI := upgrade_polish_space γ,
rcases l.exists_antitone_basis with ⟨u, hu⟩,
simp_rw ← cauchy_map_iff_exists_tendsto,
change measurable_set {x | _ ∧ _},
have : ∀ x, ((map (λ i, f i x) l) ×ᶠ (map (λ i, f i x) l)).has_antitone_basis
(λ n, ((λ i, f i x) '' u n) ×ˢ ((λ i, f i x) '' u n)) := λ x, hu.map.prod hu.map,
simp_rw [and_iff_right (hl.map _), filter.has_basis.le_basis_iff (this _).to_has_basis
metric.uniformity_basis_dist_inv_nat_succ, set.set_of_forall],
refine measurable_set.bInter set.countable_univ (λ K _, _),
simp_rw set.set_of_exists,
refine measurable_set.bUnion set.countable_univ (λ N hN, _),
simp_rw [prod_image_image_eq, image_subset_iff, prod_subset_iff, set.set_of_forall],
exact measurable_set.bInter (to_countable (u N)) (λ i _,
measurable_set.bInter (to_countable (u N)) (λ j _,
measurable_set_lt (measurable.dist (hf i) (hf j)) measurable_const)),
end
end measure_theory
|
c8f3fb6f4f11840a45517d8902ff28921e26b2e3
|
d1a52c3f208fa42c41df8278c3d280f075eb020c
|
/tests/lean/inductive1.lean
|
f9d638bbe4a224dcc75270aecde6675c597c3700
|
[
"Apache-2.0",
"LLVM-exception",
"NCSA",
"LGPL-3.0-only",
"LicenseRef-scancode-inner-net-2.0",
"BSD-3-Clause",
"LGPL-2.0-or-later",
"Spencer-94",
"LGPL-2.1-or-later",
"HPND",
"LicenseRef-scancode-pcre",
"ISC",
"LGPL-2.1-only",
"LicenseRef-scancode-other-permissive",
"SunPro",
"CMU-Mach"
] |
permissive
|
cipher1024/lean4
|
6e1f98bb58e7a92b28f5364eb38a14c8d0aae393
|
69114d3b50806264ef35b57394391c3e738a9822
|
refs/heads/master
| 1,642,227,983,603
| 1,642,011,696,000
| 1,642,011,696,000
| 228,607,691
| 0
| 0
|
Apache-2.0
| 1,576,584,269,000
| 1,576,584,268,000
| null |
UTF-8
|
Lean
| false
| false
| 1,927
|
lean
|
-- Test1
inductive T1 : Nat -- Error, resultant type is not a sort
-- Test2
mutual
inductive T1 : Prop
inductive T2 : Type -- Error resulting universe mismatch
end
-- Test3
universe u v
mutual
inductive T1 (x : Nat) : Type u
inductive T2 (x : Nat) : Nat → Type v -- Error resulting universe mismatch
end
-- Test4
mutual
inductive T1 (b : Bool) (x : Nat) : Type
inductive T2 (b : Bool) (x : Bool) : Type -- Type mismatch at 'x'
end
-- Test5
mutual
inductive T1 (b : Bool) (x : Nat) : Type
inductive T2 (x : Bool) : Type -- number of parameters mismatch
end
-- Test6
mutual
inductive T1 (b : Bool) (x : Nat) : Type
inductive T2 (b : Bool) {x : Nat} : Type -- binder annotation mismatch at 'x'
end
-- Test7
mutual
inductive T1.{w1} (b : Bool) (x : Nat) : Type
inductive T2.{w2} (b : Bool) (x : Nat) : Type -- universe parameter mismatch
end
-- Test8
namespace Boo
def T1.bla := 10
inductive T1 : Type
| bla : T1 -- Boo.T1.bla has already been defined
def T1 := 20
inductive T1 : Type -- Boo.T1 has already been defined
| bla : T1
end Boo
-- Test9
partial inductive T1 : Type -- invalid use of partial
noncomputable inductive T1 : Type -- invalid use of noncomputable
@[inline] inductive T1' : Type -- declaration is not a definition
private inductive T1 : Type
| private mk : T1 -- invalid private constructor in private inductive type
-- Test10
mutual
inductive T1 : Type
unsafe inductive T2 : Type
end
-- Test11
inductive T1 : Nat → Type
| z1 : T1 0
| z2 -- constructor resulting type must be specified in inductive family declaration
-- Test12
inductive T1 : Nat → Type
| z1 : T1 -- unexpected constructor resulting type
inductive T1 : Nat → Type
| z1 : Nat -- unexpected constructor resulting type
-- Test13
inductive A (α : Type u) (β : Type v)
| nil {}
| protected cons : α → β → A α β → A α β
open A
#check cons -- unknown `cons`, it is protected
|
ea03a89316fb05cac0b18ece926b6290dfac43e0
|
4727251e0cd73359b15b664c3170e5d754078599
|
/src/ring_theory/witt_vector/defs.lean
|
09ca4b5ebfe2fcabf8ce43a9e48226fe0019dd07
|
[
"Apache-2.0"
] |
permissive
|
Vierkantor/mathlib
|
0ea59ac32a3a43c93c44d70f441c4ee810ccceca
|
83bc3b9ce9b13910b57bda6b56222495ebd31c2f
|
refs/heads/master
| 1,658,323,012,449
| 1,652,256,003,000
| 1,652,256,003,000
| 209,296,341
| 0
| 1
|
Apache-2.0
| 1,568,807,655,000
| 1,568,807,655,000
| null |
UTF-8
|
Lean
| false
| false
| 14,129
|
lean
|
/-
Copyright (c) 2020 Johan Commelin. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin, Robert Y. Lewis
-/
import ring_theory.witt_vector.structure_polynomial
/-!
# Witt vectors
In this file we define the type of `p`-typical Witt vectors and ring operations on it.
The ring axioms are verified in `ring_theory/witt_vector/basic.lean`.
For a fixed commutative ring `R` and prime `p`,
a Witt vector `x : 𝕎 R` is an infinite sequence `ℕ → R` of elements of `R`.
However, the ring operations `+` and `*` are not defined in the obvious component-wise way.
Instead, these operations are defined via certain polynomials
using the machinery in `structure_polynomial.lean`.
The `n`th value of the sum of two Witt vectors can depend on the `0`-th through `n`th values
of the summands. This effectively simulates a “carrying” operation.
## Main definitions
* `witt_vector p R`: the type of `p`-typical Witt vectors with coefficients in `R`.
* `witt_vector.coeff x n`: projects the `n`th value of the Witt vector `x`.
## Notation
We use notation `𝕎 R`, entered `\bbW`, for the Witt vectors over `R`.
## References
* [Hazewinkel, *Witt Vectors*][Haze09]
* [Commelin and Lewis, *Formalizing the Ring of Witt Vectors*][CL21]
-/
noncomputable theory
/-- `witt_vector p R` is the ring of `p`-typical Witt vectors over the commutative ring `R`,
where `p` is a prime number.
If `p` is invertible in `R`, this ring is isomorphic to `ℕ → R` (the product of `ℕ` copies of `R`).
If `R` is a ring of characteristic `p`, then `witt_vector p R` is a ring of characteristic `0`.
The canonical example is `witt_vector p (zmod p)`,
which is isomorphic to the `p`-adic integers `ℤ_[p]`. -/
structure witt_vector (p : ℕ) (R : Type*) :=
mk [] :: (coeff : ℕ → R)
variables {p : ℕ}
/- We cannot make this `localized` notation, because the `p` on the RHS doesn't occur on the left
Hiding the `p` in the notation is very convenient, so we opt for repeating the `local notation`
in other files that use Witt vectors. -/
local notation `𝕎` := witt_vector p -- type as `\bbW`
namespace witt_vector
variables (p) {R : Type*}
/-- Construct a Witt vector `mk p x : 𝕎 R` from a sequence `x` of elements of `R`. -/
add_decl_doc witt_vector.mk
/--
`x.coeff n` is the `n`th coefficient of the Witt vector `x`.
This concept does not have a standard name in the literature.
-/
add_decl_doc witt_vector.coeff
@[ext] lemma ext {x y : 𝕎 R} (h : ∀ n, x.coeff n = y.coeff n) : x = y :=
begin
cases x,
cases y,
simp only at h,
simp [function.funext_iff, h]
end
lemma ext_iff {x y : 𝕎 R} : x = y ↔ ∀ n, x.coeff n = y.coeff n :=
⟨λ h n, by rw h, ext⟩
lemma coeff_mk (x : ℕ → R) :
(mk p x).coeff = x := rfl
/- These instances are not needed for the rest of the development,
but it is interesting to establish early on that `witt_vector p` is a lawful functor. -/
instance : functor (witt_vector p) :=
{ map := λ α β f v, mk p (f ∘ v.coeff),
map_const := λ α β a v, mk p (λ _, a) }
instance : is_lawful_functor (witt_vector p) :=
{ map_const_eq := λ α β, rfl,
id_map := λ α ⟨v, _⟩, rfl,
comp_map := λ α β γ f g v, rfl }
variables (p) [hp : fact p.prime] [comm_ring R]
include hp
open mv_polynomial
section ring_operations
/-- The polynomials used for defining the element `0` of the ring of Witt vectors. -/
def witt_zero : ℕ → mv_polynomial (fin 0 × ℕ) ℤ :=
witt_structure_int p 0
/-- The polynomials used for defining the element `1` of the ring of Witt vectors. -/
def witt_one : ℕ → mv_polynomial (fin 0 × ℕ) ℤ :=
witt_structure_int p 1
/-- The polynomials used for defining the addition of the ring of Witt vectors. -/
def witt_add : ℕ → mv_polynomial (fin 2 × ℕ) ℤ :=
witt_structure_int p (X 0 + X 1)
/-- The polynomials used for defining repeated addition of the ring of Witt vectors. -/
def witt_nsmul (n : ℕ) : ℕ → mv_polynomial (fin 1 × ℕ) ℤ :=
witt_structure_int p (n • X 0)
/-- The polynomials used for defining repeated addition of the ring of Witt vectors. -/
def witt_zsmul (n : ℤ) : ℕ → mv_polynomial (fin 1 × ℕ) ℤ :=
witt_structure_int p (n • X 0)
/-- The polynomials used for describing the subtraction of the ring of Witt vectors. -/
def witt_sub : ℕ → mv_polynomial (fin 2 × ℕ) ℤ :=
witt_structure_int p (X 0 - X 1)
/-- The polynomials used for defining the multiplication of the ring of Witt vectors. -/
def witt_mul : ℕ → mv_polynomial (fin 2 × ℕ) ℤ :=
witt_structure_int p (X 0 * X 1)
/-- The polynomials used for defining the negation of the ring of Witt vectors. -/
def witt_neg : ℕ → mv_polynomial (fin 1 × ℕ) ℤ :=
witt_structure_int p (-X 0)
/-- The polynomials used for defining repeated addition of the ring of Witt vectors. -/
def witt_pow (n : ℕ) : ℕ → mv_polynomial (fin 1 × ℕ) ℤ :=
witt_structure_int p (X 0 ^ n)
variable {p}
omit hp
/-- An auxiliary definition used in `witt_vector.eval`.
Evaluates a polynomial whose variables come from the disjoint union of `k` copies of `ℕ`,
with a curried evaluation `x`.
This can be defined more generally but we use only a specific instance here. -/
def peval {k : ℕ} (φ : mv_polynomial (fin k × ℕ) ℤ) (x : fin k → ℕ → R) : R :=
aeval (function.uncurry x) φ
/--
Let `φ` be a family of polynomials, indexed by natural numbers, whose variables come from the
disjoint union of `k` copies of `ℕ`, and let `xᵢ` be a Witt vector for `0 ≤ i < k`.
`eval φ x` evaluates `φ` mapping the variable `X_(i, n)` to the `n`th coefficient of `xᵢ`.
Instantiating `φ` with certain polynomials defined in `structure_polynomial.lean` establishes the
ring operations on `𝕎 R`. For example, `witt_vector.witt_add` is such a `φ` with `k = 2`;
evaluating this at `(x₀, x₁)` gives us the sum of two Witt vectors `x₀ + x₁`.
-/
def eval {k : ℕ} (φ : ℕ → mv_polynomial (fin k × ℕ) ℤ) (x : fin k → 𝕎 R) : 𝕎 R :=
mk p $ λ n, peval (φ n) $ λ i, (x i).coeff
variables (R) [fact p.prime]
instance : has_zero (𝕎 R) :=
⟨eval (witt_zero p) ![]⟩
instance : inhabited (𝕎 R) := ⟨0⟩
instance : has_one (𝕎 R) :=
⟨eval (witt_one p) ![]⟩
instance : has_add (𝕎 R) :=
⟨λ x y, eval (witt_add p) ![x, y]⟩
instance : has_sub (𝕎 R) :=
⟨λ x y, eval (witt_sub p) ![x, y]⟩
instance has_nat_scalar : has_scalar ℕ (𝕎 R) :=
⟨λ n x, eval (witt_nsmul p n) ![x]⟩
instance has_int_scalar : has_scalar ℤ (𝕎 R) :=
⟨λ n x, eval (witt_zsmul p n) ![x]⟩
instance : has_mul (𝕎 R) :=
⟨λ x y, eval (witt_mul p) ![x, y]⟩
instance : has_neg (𝕎 R) :=
⟨λ x, eval (witt_neg p) ![x]⟩
instance has_nat_pow : has_pow (𝕎 R) ℕ :=
⟨λ x n, eval (witt_pow p n) ![x]⟩
end ring_operations
section witt_structure_simplifications
@[simp] lemma witt_zero_eq_zero (n : ℕ) : witt_zero p n = 0 :=
begin
apply mv_polynomial.map_injective (int.cast_ring_hom ℚ) int.cast_injective,
simp only [witt_zero, witt_structure_rat, bind₁, aeval_zero',
constant_coeff_X_in_terms_of_W, ring_hom.map_zero,
alg_hom.map_zero, map_witt_structure_int],
end
@[simp] lemma witt_one_zero_eq_one : witt_one p 0 = 1 :=
begin
apply mv_polynomial.map_injective (int.cast_ring_hom ℚ) int.cast_injective,
simp only [witt_one, witt_structure_rat, X_in_terms_of_W_zero, alg_hom.map_one,
ring_hom.map_one, bind₁_X_right, map_witt_structure_int]
end
@[simp] lemma witt_one_pos_eq_zero (n : ℕ) (hn : 0 < n) : witt_one p n = 0 :=
begin
apply mv_polynomial.map_injective (int.cast_ring_hom ℚ) int.cast_injective,
simp only [witt_one, witt_structure_rat, ring_hom.map_zero, alg_hom.map_one,
ring_hom.map_one, map_witt_structure_int],
revert hn, apply nat.strong_induction_on n, clear n,
intros n IH hn,
rw X_in_terms_of_W_eq,
simp only [alg_hom.map_mul, alg_hom.map_sub, alg_hom.map_sum, alg_hom.map_pow,
bind₁_X_right, bind₁_C_right],
rw [sub_mul, one_mul],
rw [finset.sum_eq_single 0],
{ simp only [inv_of_eq_inv, one_mul, inv_pow₀, tsub_zero, ring_hom.map_one, pow_zero],
simp only [one_pow, one_mul, X_in_terms_of_W_zero, sub_self, bind₁_X_right] },
{ intros i hin hi0,
rw [finset.mem_range] at hin,
rw [IH _ hin (nat.pos_of_ne_zero hi0), zero_pow (pow_pos hp.1.pos _), mul_zero], },
{ rw finset.mem_range, intro, contradiction }
end
@[simp] lemma witt_add_zero : witt_add p 0 = X (0,0) + X (1,0) :=
begin
apply mv_polynomial.map_injective (int.cast_ring_hom ℚ) int.cast_injective,
simp only [witt_add, witt_structure_rat, alg_hom.map_add, ring_hom.map_add,
rename_X, X_in_terms_of_W_zero, map_X,
witt_polynomial_zero, bind₁_X_right, map_witt_structure_int],
end
@[simp] lemma witt_sub_zero : witt_sub p 0 = X (0,0) - X (1,0) :=
begin
apply mv_polynomial.map_injective (int.cast_ring_hom ℚ) int.cast_injective,
simp only [witt_sub, witt_structure_rat, alg_hom.map_sub, ring_hom.map_sub,
rename_X, X_in_terms_of_W_zero, map_X,
witt_polynomial_zero, bind₁_X_right, map_witt_structure_int],
end
@[simp] lemma witt_mul_zero : witt_mul p 0 = X (0,0) * X (1,0) :=
begin
apply mv_polynomial.map_injective (int.cast_ring_hom ℚ) int.cast_injective,
simp only [witt_mul, witt_structure_rat, rename_X, X_in_terms_of_W_zero, map_X,
witt_polynomial_zero, ring_hom.map_mul,
bind₁_X_right, alg_hom.map_mul, map_witt_structure_int]
end
@[simp] lemma witt_neg_zero : witt_neg p 0 = - X (0,0) :=
begin
apply mv_polynomial.map_injective (int.cast_ring_hom ℚ) int.cast_injective,
simp only [witt_neg, witt_structure_rat, rename_X, X_in_terms_of_W_zero, map_X,
witt_polynomial_zero, ring_hom.map_neg,
alg_hom.map_neg, bind₁_X_right, map_witt_structure_int]
end
@[simp] lemma constant_coeff_witt_add (n : ℕ) :
constant_coeff (witt_add p n) = 0 :=
begin
apply constant_coeff_witt_structure_int p _ _ n,
simp only [add_zero, ring_hom.map_add, constant_coeff_X],
end
@[simp] lemma constant_coeff_witt_sub (n : ℕ) :
constant_coeff (witt_sub p n) = 0 :=
begin
apply constant_coeff_witt_structure_int p _ _ n,
simp only [sub_zero, ring_hom.map_sub, constant_coeff_X],
end
@[simp] lemma constant_coeff_witt_mul (n : ℕ) :
constant_coeff (witt_mul p n) = 0 :=
begin
apply constant_coeff_witt_structure_int p _ _ n,
simp only [mul_zero, ring_hom.map_mul, constant_coeff_X],
end
@[simp] lemma constant_coeff_witt_neg (n : ℕ) :
constant_coeff (witt_neg p n) = 0 :=
begin
apply constant_coeff_witt_structure_int p _ _ n,
simp only [neg_zero, ring_hom.map_neg, constant_coeff_X],
end
@[simp] lemma constant_coeff_witt_nsmul (m : ℕ) (n : ℕ):
constant_coeff (witt_nsmul p m n) = 0 :=
begin
apply constant_coeff_witt_structure_int p _ _ n,
simp only [smul_zero, map_nsmul, constant_coeff_X],
end
@[simp] lemma constant_coeff_witt_zsmul (z : ℤ) (n : ℕ):
constant_coeff (witt_zsmul p z n) = 0 :=
begin
apply constant_coeff_witt_structure_int p _ _ n,
simp only [smul_zero, map_zsmul, constant_coeff_X],
end
end witt_structure_simplifications
section coeff
variables (p R)
@[simp] lemma zero_coeff (n : ℕ) : (0 : 𝕎 R).coeff n = 0 :=
show (aeval _ (witt_zero p n) : R) = 0,
by simp only [witt_zero_eq_zero, alg_hom.map_zero]
@[simp] lemma one_coeff_zero : (1 : 𝕎 R).coeff 0 = 1 :=
show (aeval _ (witt_one p 0) : R) = 1,
by simp only [witt_one_zero_eq_one, alg_hom.map_one]
@[simp] lemma one_coeff_eq_of_pos (n : ℕ) (hn : 0 < n) : coeff (1 : 𝕎 R) n = 0 :=
show (aeval _ (witt_one p n) : R) = 0,
by simp only [hn, witt_one_pos_eq_zero, alg_hom.map_zero]
variables {p R}
omit hp
@[simp]
lemma v2_coeff {p' R'} (x y : witt_vector p' R') (i : fin 2) :
(![x, y] i).coeff = ![x.coeff, y.coeff] i :=
by fin_cases i; simp
include hp
lemma add_coeff (x y : 𝕎 R) (n : ℕ) :
(x + y).coeff n = peval (witt_add p n) ![x.coeff, y.coeff] :=
by simp [(+), eval]
lemma sub_coeff (x y : 𝕎 R) (n : ℕ) :
(x - y).coeff n = peval (witt_sub p n) ![x.coeff, y.coeff] :=
by simp [has_sub.sub, eval]
lemma mul_coeff (x y : 𝕎 R) (n : ℕ) :
(x * y).coeff n = peval (witt_mul p n) ![x.coeff, y.coeff] :=
by simp [(*), eval]
lemma neg_coeff (x : 𝕎 R) (n : ℕ) :
(-x).coeff n = peval (witt_neg p n) ![x.coeff] :=
by simp [has_neg.neg, eval, matrix.cons_fin_one]
lemma nsmul_coeff (m : ℕ) (x : 𝕎 R) (n : ℕ) :
(m • x).coeff n = peval (witt_nsmul p m n) ![x.coeff] :=
by simp [has_scalar.smul, eval, matrix.cons_fin_one]
lemma zsmul_coeff (m : ℤ) (x : 𝕎 R) (n : ℕ) :
(m • x).coeff n = peval (witt_zsmul p m n) ![x.coeff] :=
by simp [has_scalar.smul, eval, matrix.cons_fin_one]
lemma pow_coeff (m : ℕ) (x : 𝕎 R) (n : ℕ) :
(x ^ m).coeff n = peval (witt_pow p m n) ![x.coeff] :=
by simp [has_pow.pow, eval, matrix.cons_fin_one]
lemma add_coeff_zero (x y : 𝕎 R) : (x + y).coeff 0 = x.coeff 0 + y.coeff 0 :=
by simp [add_coeff, peval]
lemma mul_coeff_zero (x y : 𝕎 R) : (x * y).coeff 0 = x.coeff 0 * y.coeff 0 :=
by simp [mul_coeff, peval]
end coeff
lemma witt_add_vars (n : ℕ) :
(witt_add p n).vars ⊆ finset.univ.product (finset.range (n + 1)) :=
witt_structure_int_vars _ _ _
lemma witt_sub_vars (n : ℕ) :
(witt_sub p n).vars ⊆ finset.univ.product (finset.range (n + 1)) :=
witt_structure_int_vars _ _ _
lemma witt_mul_vars (n : ℕ) :
(witt_mul p n).vars ⊆ finset.univ.product (finset.range (n + 1)) :=
witt_structure_int_vars _ _ _
lemma witt_neg_vars (n : ℕ) :
(witt_neg p n).vars ⊆ finset.univ.product (finset.range (n + 1)) :=
witt_structure_int_vars _ _ _
lemma witt_nsmul_vars (m : ℕ) (n : ℕ) :
(witt_nsmul p m n).vars ⊆ finset.univ.product (finset.range (n + 1)) :=
witt_structure_int_vars _ _ _
lemma witt_zsmul_vars (m : ℤ) (n : ℕ) :
(witt_zsmul p m n).vars ⊆ finset.univ.product (finset.range (n + 1)) :=
witt_structure_int_vars _ _ _
lemma witt_pow_vars (m : ℕ) (n : ℕ) :
(witt_pow p m n).vars ⊆ finset.univ.product (finset.range (n + 1)) :=
witt_structure_int_vars _ _ _
end witt_vector
|
40e969445b4ff5533f494086c2d14415b5f220de
|
302c785c90d40ad3d6be43d33bc6a558354cc2cf
|
/src/data/polynomial/degree/definitions.lean
|
6bcad8756d4ee1ba488b90697f5050b5bf0075af
|
[
"Apache-2.0"
] |
permissive
|
ilitzroth/mathlib
|
ea647e67f1fdfd19a0f7bdc5504e8acec6180011
|
5254ef14e3465f6504306132fe3ba9cec9ffff16
|
refs/heads/master
| 1,680,086,661,182
| 1,617,715,647,000
| 1,617,715,647,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 38,663
|
lean
|
/-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Johannes Hölzl, Scott Morrison, Jens Wagemaker
-/
import data.polynomial.coeff
import data.nat.with_bot
/-!
# Theory of univariate polynomials
The definitions include
`degree`, `monic`, `leading_coeff`
Results include
- `degree_mul` : The degree of the product is the sum of degrees
- `leading_coeff_add_of_degree_eq` and `leading_coeff_add_of_degree_lt` :
The leading_coefficient of a sum is determined by the leading coefficients and degrees
-/
noncomputable theory
local attribute [instance, priority 100] classical.prop_decidable
open finsupp finset
open_locale big_operators
namespace polynomial
universes u v
variables {R : Type u} {S : Type v} {a b : R} {n m : ℕ}
section semiring
variables [semiring R] {p q r : polynomial R}
/-- `degree p` is the degree of the polynomial `p`, i.e. the largest `X`-exponent in `p`.
`degree p = some n` when `p ≠ 0` and `n` is the highest power of `X` that appears in `p`, otherwise
`degree 0 = ⊥`. -/
def degree (p : polynomial R) : with_bot ℕ := p.support.sup some
lemma degree_lt_wf : well_founded (λp q : polynomial R, degree p < degree q) :=
inv_image.wf degree (with_bot.well_founded_lt nat.lt_wf)
instance : has_well_founded (polynomial R) := ⟨_, degree_lt_wf⟩
/-- `nat_degree p` forces `degree p` to ℕ, by defining nat_degree 0 = 0. -/
def nat_degree (p : polynomial R) : ℕ := (degree p).get_or_else 0
/-- `leading_coeff p` gives the coefficient of the highest power of `X` in `p`-/
def leading_coeff (p : polynomial R) : R := coeff p (nat_degree p)
/-- a polynomial is `monic` if its leading coefficient is 1 -/
def monic (p : polynomial R) := leading_coeff p = (1 : R)
@[nontriviality] lemma monic_of_subsingleton [subsingleton R] (p : polynomial R) : monic p :=
subsingleton.elim _ _
lemma monic.def : monic p ↔ leading_coeff p = 1 := iff.rfl
instance monic.decidable [decidable_eq R] : decidable (monic p) :=
by unfold monic; apply_instance
@[simp] lemma monic.leading_coeff {p : polynomial R} (hp : p.monic) :
leading_coeff p = 1 := hp
lemma monic.coeff_nat_degree {p : polynomial R} (hp : p.monic) : p.coeff p.nat_degree = 1 := hp
@[simp] lemma degree_zero : degree (0 : polynomial R) = ⊥ := rfl
@[simp] lemma nat_degree_zero : nat_degree (0 : polynomial R) = 0 := rfl
@[simp] lemma coeff_nat_degree : coeff p (nat_degree p) = leading_coeff p := rfl
lemma degree_eq_bot : degree p = ⊥ ↔ p = 0 :=
⟨λ h, by rw [degree, ← max_eq_sup_with_bot] at h;
exact support_eq_empty.1 (max_eq_none.1 h),
λ h, h.symm ▸ rfl⟩
@[nontriviality] lemma degree_of_subsingleton [subsingleton R] : degree p = ⊥ :=
by rw [subsingleton.elim p 0, degree_zero]
@[nontriviality] lemma nat_degree_of_subsingleton [subsingleton R] : nat_degree p = 0 :=
by rw [subsingleton.elim p 0, nat_degree_zero]
lemma degree_eq_nat_degree (hp : p ≠ 0) : degree p = (nat_degree p : with_bot ℕ) :=
let ⟨n, hn⟩ :=
not_forall.1 (mt option.eq_none_iff_forall_not_mem.2 (mt degree_eq_bot.1 hp)) in
have hn : degree p = some n := not_not.1 hn,
by rw [nat_degree, hn]; refl
lemma degree_eq_iff_nat_degree_eq {p : polynomial R} {n : ℕ} (hp : p ≠ 0) :
p.degree = n ↔ p.nat_degree = n :=
by rw [degree_eq_nat_degree hp, with_bot.coe_eq_coe]
lemma degree_eq_iff_nat_degree_eq_of_pos {p : polynomial R} {n : ℕ} (hn : 0 < n) :
p.degree = n ↔ p.nat_degree = n :=
begin
split,
{ intro H, rwa ← degree_eq_iff_nat_degree_eq, rintro rfl,
rw degree_zero at H, exact option.no_confusion H },
{ intro H, rwa degree_eq_iff_nat_degree_eq, rintro rfl,
rw nat_degree_zero at H, rw H at hn, exact lt_irrefl _ hn }
end
lemma nat_degree_eq_of_degree_eq_some {p : polynomial R} {n : ℕ}
(h : degree p = n) : nat_degree p = n :=
have hp0 : p ≠ 0, from λ hp0, by rw hp0 at h; exact option.no_confusion h,
option.some_inj.1 $ show (nat_degree p : with_bot ℕ) = n,
by rwa [← degree_eq_nat_degree hp0]
@[simp] lemma degree_le_nat_degree : degree p ≤ nat_degree p :=
with_bot.gi_get_or_else_bot.gc.le_u_l _
lemma nat_degree_eq_of_degree_eq [semiring S] {q : polynomial S} (h : degree p = degree q) :
nat_degree p = nat_degree q :=
by unfold nat_degree; rw h
lemma le_degree_of_ne_zero (h : coeff p n ≠ 0) : (n : with_bot ℕ) ≤ degree p :=
show @has_le.le (with_bot ℕ) _ (some n : with_bot ℕ) (p.support.sup some : with_bot ℕ),
from finset.le_sup (finsupp.mem_support_iff.2 h)
lemma le_nat_degree_of_ne_zero (h : coeff p n ≠ 0) : n ≤ nat_degree p :=
begin
rw [← with_bot.coe_le_coe, ← degree_eq_nat_degree],
exact le_degree_of_ne_zero h,
{ assume h, subst h, exact h rfl }
end
lemma le_nat_degree_of_mem_supp (a : ℕ) :
a ∈ p.support → a ≤ nat_degree p:=
le_nat_degree_of_ne_zero ∘ mem_support_iff.mp
lemma supp_subset_range (h : nat_degree p < m) : p.support ⊆ finset.range m :=
λ n hn, mem_range.2 $ (le_nat_degree_of_mem_supp _ hn).trans_lt h
lemma supp_subset_range_nat_degree_succ : p.support ⊆ finset.range (nat_degree p + 1) :=
supp_subset_range (nat.lt_succ_self _)
lemma degree_le_degree (h : coeff q (nat_degree p) ≠ 0) : degree p ≤ degree q :=
begin
by_cases hp : p = 0,
{ rw hp, exact bot_le },
{ rw degree_eq_nat_degree hp, exact le_degree_of_ne_zero h }
end
lemma degree_ne_of_nat_degree_ne {n : ℕ} :
p.nat_degree ≠ n → degree p ≠ n :=
mt $ λ h, by rw [nat_degree, h, option.get_or_else_coe]
theorem nat_degree_le_iff_degree_le {n : ℕ} : nat_degree p ≤ n ↔ degree p ≤ n :=
with_bot.get_or_else_bot_le_iff
alias polynomial.nat_degree_le_iff_degree_le ↔ . .
lemma nat_degree_le_nat_degree (hpq : p.degree ≤ q.degree) : p.nat_degree ≤ q.nat_degree :=
with_bot.gi_get_or_else_bot.gc.monotone_l hpq
@[simp] lemma degree_C (ha : a ≠ 0) : degree (C a) = (0 : with_bot ℕ) :=
show sup (ite (a = 0) ∅ {0}) some = 0, by rw if_neg ha; refl
lemma degree_C_le : degree (C a) ≤ (0 : with_bot ℕ) :=
by by_cases h : a = 0; [rw [h, C_0], rw [degree_C h]]; [exact bot_le, exact le_refl _]
lemma degree_one_le : degree (1 : polynomial R) ≤ (0 : with_bot ℕ) :=
by rw [← C_1]; exact degree_C_le
@[simp] lemma nat_degree_C (a : R) : nat_degree (C a) = 0 :=
begin
by_cases ha : a = 0,
{ have : C a = 0, { rw [ha, C_0] },
rw [nat_degree, degree_eq_bot.2 this],
refl },
{ rw [nat_degree, degree_C ha], refl }
end
@[simp] lemma nat_degree_one : nat_degree (1 : polynomial R) = 0 := nat_degree_C 1
@[simp] lemma nat_degree_nat_cast (n : ℕ) : nat_degree (n : polynomial R) = 0 :=
by simp only [←C_eq_nat_cast, nat_degree_C]
@[simp] lemma degree_monomial (n : ℕ) (ha : a ≠ 0) : degree (monomial n a) = n :=
by rw [degree, support_monomial _ _ ha]; refl
@[simp] lemma degree_C_mul_X_pow (n : ℕ) (ha : a ≠ 0) : degree (C a * X ^ n) = n :=
by rw [← single_eq_C_mul_X, degree_monomial n ha]
lemma degree_monomial_le (n : ℕ) (a : R) : degree (monomial n a) ≤ n :=
if h : a = 0 then by rw [h, (monomial n).map_zero]; exact bot_le else le_of_eq (degree_monomial n h)
lemma degree_C_mul_X_pow_le (n : ℕ) (a : R) : degree (C a * X ^ n) ≤ n :=
by { rw C_mul_X_pow_eq_monomial, apply degree_monomial_le }
@[simp] lemma nat_degree_C_mul_X_pow (n : ℕ) (a : R) (ha : a ≠ 0) : nat_degree (C a * X ^ n) = n :=
nat_degree_eq_of_degree_eq_some (degree_C_mul_X_pow n ha)
@[simp] lemma nat_degree_C_mul_X (a : R) (ha : a ≠ 0) : nat_degree (C a * X) = 1 :=
by simpa only [pow_one] using nat_degree_C_mul_X_pow 1 a ha
@[simp] lemma nat_degree_monomial (i : ℕ) (r : R) (hr : r ≠ 0) :
nat_degree (monomial i r) = i :=
by rw [← C_mul_X_pow_eq_monomial, nat_degree_C_mul_X_pow i r hr]
lemma coeff_eq_zero_of_degree_lt (h : degree p < n) : coeff p n = 0 :=
not_not.1 (mt le_degree_of_ne_zero (not_le_of_gt h))
lemma coeff_eq_zero_of_nat_degree_lt {p : polynomial R} {n : ℕ} (h : p.nat_degree < n) :
p.coeff n = 0 :=
begin
apply coeff_eq_zero_of_degree_lt,
by_cases hp : p = 0,
{ subst hp, exact with_bot.bot_lt_coe n },
{ rwa [degree_eq_nat_degree hp, with_bot.coe_lt_coe] }
end
@[simp] lemma coeff_nat_degree_succ_eq_zero {p : polynomial R} : p.coeff (p.nat_degree + 1) = 0 :=
coeff_eq_zero_of_nat_degree_lt (lt_add_one _)
-- We need the explicit `decidable` argument here because an exotic one shows up in a moment!
lemma ite_le_nat_degree_coeff (p : polynomial R) (n : ℕ) (I : decidable (n < 1 + nat_degree p)) :
@ite _ (n < 1 + nat_degree p) I (coeff p n) 0 = coeff p n :=
begin
split_ifs,
{ refl },
{ exact (coeff_eq_zero_of_nat_degree_lt (not_le.1 (λ w, h (nat.lt_one_add_iff.2 w)))).symm, }
end
lemma as_sum_support (p : polynomial R) :
p = ∑ i in p.support, monomial i (p.coeff i) :=
p.sum_single.symm
lemma as_sum_support_C_mul_X_pow (p : polynomial R) :
p = ∑ i in p.support, C (p.coeff i) * X^i :=
trans p.as_sum_support $ by simp only [C_mul_X_pow_eq_monomial]
/--
We can reexpress a sum over `p.support` as a sum over `range n`,
for any `n` satisfying `p.nat_degree < n`.
-/
lemma sum_over_range' [add_comm_monoid S] (p : polynomial R) {f : ℕ → R → S} (h : ∀ n, f n 0 = 0)
(n : ℕ) (w : p.nat_degree < n) :
p.sum f = ∑ (a : ℕ) in range n, f a (coeff p a) :=
finsupp.sum_of_support_subset _ (supp_subset_range w) _ $ λ n hn, h n
/--
We can reexpress a sum over `p.support` as a sum over `range (p.nat_degree + 1)`.
-/
lemma sum_over_range [add_comm_monoid S] (p : polynomial R) {f : ℕ → R → S} (h : ∀ n, f n 0 = 0) :
p.sum f = ∑ (a : ℕ) in range (p.nat_degree + 1), f a (coeff p a) :=
sum_over_range' p h (p.nat_degree + 1) (lt_add_one _)
lemma as_sum_range' (p : polynomial R) (n : ℕ) (w : p.nat_degree < n) :
p = ∑ i in range n, monomial i (coeff p i) :=
p.sum_single.symm.trans $ p.sum_over_range' (λ n, single_zero) _ w
lemma as_sum_range (p : polynomial R) :
p = ∑ i in range (p.nat_degree + 1), monomial i (coeff p i) :=
p.sum_single.symm.trans $ p.sum_over_range $ λ n, single_zero
lemma as_sum_range_C_mul_X_pow (p : polynomial R) :
p = ∑ i in range (p.nat_degree + 1), C (coeff p i) * X ^ i :=
p.as_sum_range.trans $ by simp only [C_mul_X_pow_eq_monomial]
lemma coeff_ne_zero_of_eq_degree (hn : degree p = n) :
coeff p n ≠ 0 :=
λ h, mem_support_iff.mp (mem_of_max hn) h
lemma eq_X_add_C_of_degree_le_one (h : degree p ≤ 1) :
p = C (p.coeff 1) * X + C (p.coeff 0) :=
ext (λ n, nat.cases_on n (by simp)
(λ n, nat.cases_on n (by simp [coeff_C])
(λ m, have degree p < m.succ.succ, from lt_of_le_of_lt h dec_trivial,
by simp [coeff_eq_zero_of_degree_lt this, coeff_C, nat.succ_ne_zero, coeff_X,
nat.succ_inj', @eq_comm ℕ 0])))
lemma eq_X_add_C_of_degree_eq_one (h : degree p = 1) :
p = C (p.leading_coeff) * X + C (p.coeff 0) :=
(eq_X_add_C_of_degree_le_one (show degree p ≤ 1, from h ▸ le_refl _)).trans
(by simp [leading_coeff, nat_degree_eq_of_degree_eq_some h])
lemma eq_X_add_C_of_nat_degree_le_one (h : nat_degree p ≤ 1) :
p = C (p.coeff 1) * X + C (p.coeff 0) :=
eq_X_add_C_of_degree_le_one $ degree_le_of_nat_degree_le h
lemma exists_eq_X_add_C_of_nat_degree_le_one (h : nat_degree p ≤ 1) :
∃ a b, p = C a * X + C b :=
⟨p.coeff 1, p.coeff 0, eq_X_add_C_of_nat_degree_le_one h⟩
theorem degree_X_pow_le (n : ℕ) : degree (X^n : polynomial R) ≤ n :=
by simpa only [C_1, one_mul] using degree_C_mul_X_pow_le n (1:R)
theorem degree_X_le : degree (X : polynomial R) ≤ 1 :=
degree_monomial_le _ _
lemma nat_degree_X_le : (X : polynomial R).nat_degree ≤ 1 :=
nat_degree_le_of_degree_le degree_X_le
lemma support_C_mul_X_pow (c : R) (n : ℕ) : (C c * X ^ n).support ⊆ singleton n :=
begin
rw [C_mul_X_pow_eq_monomial],
exact support_single_subset
end
lemma mem_support_C_mul_X_pow {n a : ℕ} {c : R} (h : a ∈ (C c * X ^ n).support) : a = n :=
mem_singleton.1 $ support_C_mul_X_pow _ _ h
lemma card_support_C_mul_X_pow_le_one {c : R} {n : ℕ} : (C c * X ^ n).support.card ≤ 1 :=
begin
rw ← card_singleton n,
apply card_le_of_subset (support_C_mul_X_pow c n),
end
lemma card_supp_le_succ_nat_degree (p : polynomial R) : p.support.card ≤ p.nat_degree + 1 :=
begin
rw ← finset.card_range (p.nat_degree + 1),
exact finset.card_le_of_subset supp_subset_range_nat_degree_succ,
end
lemma le_degree_of_mem_supp (a : ℕ) :
a ∈ p.support → ↑a ≤ degree p :=
le_degree_of_ne_zero ∘ mem_support_iff.mp
lemma nonempty_support_iff : p.support.nonempty ↔ p ≠ 0 :=
by rw [ne.def, nonempty_iff_ne_empty, ne.def, ← support_eq_empty]
lemma support_C_mul_X_pow_nonzero {c : R} {n : ℕ} (h : c ≠ 0) :
(C c * X ^ n).support = singleton n :=
begin
rw [C_mul_X_pow_eq_monomial],
exact support_single_ne_zero h
end
end semiring
section nonzero_semiring
variables [semiring R] [nontrivial R] {p q : polynomial R}
@[simp] lemma degree_one : degree (1 : polynomial R) = (0 : with_bot ℕ) :=
degree_C (show (1 : R) ≠ 0, from zero_ne_one.symm)
@[simp] lemma degree_X : degree (X : polynomial R) = 1 :=
degree_monomial _ one_ne_zero
@[simp] lemma nat_degree_X : (X : polynomial R).nat_degree = 1 :=
nat_degree_eq_of_degree_eq_some degree_X
end nonzero_semiring
section ring
variables [ring R]
lemma coeff_mul_X_sub_C {p : polynomial R} {r : R} {a : ℕ} :
coeff (p * (X - C r)) (a + 1) = coeff p a - coeff p (a + 1) * r :=
by simp [mul_sub]
lemma C_eq_int_cast (n : ℤ) : C (n : R) = n :=
(C : R →+* _).map_int_cast n
@[simp] lemma degree_neg (p : polynomial R) : degree (-p) = degree p :=
by unfold degree; rw support_neg
@[simp] lemma nat_degree_neg (p : polynomial R) : nat_degree (-p) = nat_degree p :=
by simp [nat_degree]
@[simp] lemma nat_degree_int_cast (n : ℤ) : nat_degree (n : polynomial R) = 0 :=
by simp only [←C_eq_int_cast, nat_degree_C]
end ring
section semiring
variables [semiring R]
/-- The second-highest coefficient, or 0 for constants -/
def next_coeff (p : polynomial R) : R :=
if p.nat_degree = 0 then 0 else p.coeff (p.nat_degree - 1)
@[simp]
lemma next_coeff_C_eq_zero (c : R) :
next_coeff (C c) = 0 := by { rw next_coeff, simp }
lemma next_coeff_of_pos_nat_degree (p : polynomial R) (hp : 0 < p.nat_degree) :
next_coeff p = p.coeff (p.nat_degree - 1) :=
by { rw [next_coeff, if_neg], contrapose! hp, simpa }
end semiring
section semiring
variables [semiring R] {p q : polynomial R} {ι : Type*}
lemma coeff_nat_degree_eq_zero_of_degree_lt (h : degree p < degree q) :
coeff p (nat_degree q) = 0 :=
coeff_eq_zero_of_degree_lt (lt_of_lt_of_le h degree_le_nat_degree)
lemma ne_zero_of_degree_gt {n : with_bot ℕ} (h : n < degree p) : p ≠ 0 :=
mt degree_eq_bot.2 (ne.symm (ne_of_lt (lt_of_le_of_lt bot_le h)))
lemma ne_zero_of_nat_degree_gt {n : ℕ} (h : n < nat_degree p) : p ≠ 0 :=
λ H, by simpa [H, nat.not_lt_zero] using h
lemma degree_lt_degree (h : nat_degree p < nat_degree q) : degree p < degree q :=
begin
by_cases hp : p = 0,
{ simp [hp],
rw bot_lt_iff_ne_bot,
intro hq,
simpa [hp, degree_eq_bot.mp hq, lt_irrefl] using h },
{ rw [degree_eq_nat_degree hp, degree_eq_nat_degree $ ne_zero_of_nat_degree_gt h],
exact_mod_cast h }
end
lemma nat_degree_lt_nat_degree_iff (hp : p ≠ 0) :
nat_degree p < nat_degree q ↔ degree p < degree q :=
⟨degree_lt_degree, begin
intro h,
have hq : q ≠ 0 := ne_zero_of_degree_gt h,
rw [degree_eq_nat_degree hp, degree_eq_nat_degree hq] at h,
exact_mod_cast h
end⟩
lemma eq_C_of_degree_le_zero (h : degree p ≤ 0) : p = C (coeff p 0) :=
begin
ext (_|n), { simp },
rw [coeff_C, if_neg (nat.succ_ne_zero _), coeff_eq_zero_of_degree_lt],
exact h.trans_lt (with_bot.some_lt_some.2 n.succ_pos),
end
lemma eq_C_of_degree_eq_zero (h : degree p = 0) : p = C (coeff p 0) :=
eq_C_of_degree_le_zero (h ▸ le_refl _)
lemma degree_le_zero_iff : degree p ≤ 0 ↔ p = C (coeff p 0) :=
⟨eq_C_of_degree_le_zero, λ h, h.symm ▸ degree_C_le⟩
lemma degree_add_le (p q : polynomial R) : degree (p + q) ≤ max (degree p) (degree q) :=
calc degree (p + q) = ((p + q).support).sup some : rfl
... ≤ (p.support ∪ q.support).sup some : by convert sup_mono support_add
... = p.support.sup some ⊔ q.support.sup some : by convert sup_union
... = _ : with_bot.sup_eq_max _ _
@[simp] lemma leading_coeff_zero : leading_coeff (0 : polynomial R) = 0 := rfl
@[simp] lemma leading_coeff_eq_zero : leading_coeff p = 0 ↔ p = 0 :=
⟨λ h, by_contradiction $ λ hp, mt mem_support_iff.1
(not_not.2 h) (mem_of_max (degree_eq_nat_degree hp)),
λ h, h.symm ▸ leading_coeff_zero⟩
lemma leading_coeff_ne_zero : leading_coeff p ≠ 0 ↔ p ≠ 0 :=
by rw [ne.def, leading_coeff_eq_zero]
lemma leading_coeff_eq_zero_iff_deg_eq_bot : leading_coeff p = 0 ↔ degree p = ⊥ :=
by rw [leading_coeff_eq_zero, degree_eq_bot]
lemma nat_degree_mem_support_of_nonzero (H : p ≠ 0) : p.nat_degree ∈ p.support :=
(p.mem_support_to_fun p.nat_degree).mpr ((not_congr leading_coeff_eq_zero).mpr H)
lemma nat_degree_eq_support_max' (h : p ≠ 0) :
p.nat_degree = p.support.max' (nonempty_support_iff.mpr h) :=
(le_max' _ _ $ nat_degree_mem_support_of_nonzero h).antisymm $
max'_le _ _ _ le_nat_degree_of_mem_supp
lemma nat_degree_C_mul_X_pow_le (a : R) (n : ℕ) : nat_degree (C a * X ^ n) ≤ n :=
nat_degree_le_iff_degree_le.2 $ degree_C_mul_X_pow_le _ _
lemma degree_add_eq_left_of_degree_lt (h : degree q < degree p) : degree (p + q) = degree p :=
le_antisymm (max_eq_left_of_lt h ▸ degree_add_le _ _) $ degree_le_degree $
begin
rw [coeff_add, coeff_nat_degree_eq_zero_of_degree_lt h, add_zero],
exact mt leading_coeff_eq_zero.1 (ne_zero_of_degree_gt h)
end
lemma degree_add_eq_right_of_degree_lt (h : degree p < degree q) : degree (p + q) = degree q :=
by rw [add_comm, degree_add_eq_left_of_degree_lt h]
lemma degree_add_C (hp : 0 < degree p) : degree (p + C a) = degree p :=
add_comm (C a) p ▸ degree_add_eq_right_of_degree_lt $ lt_of_le_of_lt degree_C_le hp
lemma degree_add_eq_of_leading_coeff_add_ne_zero (h : leading_coeff p + leading_coeff q ≠ 0) :
degree (p + q) = max p.degree q.degree :=
le_antisymm (degree_add_le _ _) $
match lt_trichotomy (degree p) (degree q) with
| or.inl hlt :=
by rw [degree_add_eq_right_of_degree_lt hlt, max_eq_right_of_lt hlt]; exact le_refl _
| or.inr (or.inl heq) :=
le_of_not_gt $
assume hlt : max (degree p) (degree q) > degree (p + q),
h $ show leading_coeff p + leading_coeff q = 0,
begin
rw [heq, max_self] at hlt,
rw [leading_coeff, leading_coeff, nat_degree_eq_of_degree_eq heq, ← coeff_add],
exact coeff_nat_degree_eq_zero_of_degree_lt hlt
end
| or.inr (or.inr hlt) :=
by rw [degree_add_eq_left_of_degree_lt hlt, max_eq_left_of_lt hlt]; exact le_refl _
end
lemma degree_erase_le (p : polynomial R) (n : ℕ) : degree (p.erase n) ≤ degree p :=
by convert sup_mono (erase_subset _ _)
lemma degree_erase_lt (hp : p ≠ 0) : degree (p.erase (nat_degree p)) < degree p :=
lt_of_le_of_ne (degree_erase_le _ _) $
(degree_eq_nat_degree hp).symm ▸ (by convert λ h, not_mem_erase _ _ (mem_of_max h))
lemma degree_sum_le (s : finset ι) (f : ι → polynomial R) :
degree (∑ i in s, f i) ≤ s.sup (λ b, degree (f b)) :=
finset.induction_on s (by simp only [sum_empty, sup_empty, degree_zero, le_refl]) $
assume a s has ih,
calc degree (∑ i in insert a s, f i) ≤ max (degree (f a)) (degree (∑ i in s, f i)) :
by rw sum_insert has; exact degree_add_le _ _
... ≤ _ : by rw [sup_insert, with_bot.sup_eq_max]; exact max_le_max (le_refl _) ih
lemma degree_mul_le (p q : polynomial R) : degree (p * q) ≤ degree p + degree q :=
calc degree (p * q) ≤ (p.support).sup (λi, degree (sum q (λj a, C (coeff p i * a) * X ^ (i + j)))) :
by simp only [single_eq_C_mul_X.symm]; exact degree_sum_le _ _
... ≤ p.support.sup (λi, q.support.sup (λj, degree (C (coeff p i * coeff q j) * X ^ (i + j)))) :
finset.sup_mono_fun (assume i hi, degree_sum_le _ _)
... ≤ degree p + degree q :
begin
refine finset.sup_le (λ a ha, finset.sup_le (λ b hb, le_trans (degree_C_mul_X_pow_le _ _) _)),
rw [with_bot.coe_add],
rw mem_support_iff at ha hb,
exact add_le_add (le_degree_of_ne_zero ha) (le_degree_of_ne_zero hb)
end
lemma degree_pow_le (p : polynomial R) : ∀ n, degree (p ^ n) ≤ n •ℕ (degree p)
| 0 := by rw [pow_zero, zero_nsmul]; exact degree_one_le
| (n+1) := calc degree (p ^ (n + 1)) ≤ degree p + degree (p ^ n) :
by rw pow_succ; exact degree_mul_le _ _
... ≤ _ : by rw succ_nsmul; exact add_le_add (le_refl _) (degree_pow_le _)
@[simp] lemma leading_coeff_monomial (a : R) (n : ℕ) : leading_coeff (monomial n a) = a :=
begin
by_cases ha : a = 0,
{ simp only [ha, (monomial n).map_zero, leading_coeff_zero] },
{ rw [leading_coeff, nat_degree_monomial _ _ ha],
exact @finsupp.single_eq_same _ _ _ n a }
end
lemma leading_coeff_C_mul_X_pow (a : R) (n : ℕ) : leading_coeff (C a * X ^ n) = a :=
by rw [C_mul_X_pow_eq_monomial, leading_coeff_monomial]
@[simp] lemma leading_coeff_C (a : R) : leading_coeff (C a) = a :=
leading_coeff_monomial a 0
@[simp] lemma leading_coeff_X_pow (n : ℕ) : leading_coeff ((X : polynomial R) ^ n) = 1 :=
by simpa only [C_1, one_mul] using leading_coeff_C_mul_X_pow (1 : R) n
@[simp] lemma leading_coeff_X : leading_coeff (X : polynomial R) = 1 :=
by simpa only [pow_one] using @leading_coeff_X_pow R _ 1
@[simp] lemma monic_X_pow (n : ℕ) : monic (X ^ n : polynomial R) := leading_coeff_X_pow n
@[simp] lemma monic_X : monic (X : polynomial R) := leading_coeff_X
@[simp] lemma leading_coeff_one : leading_coeff (1 : polynomial R) = 1 :=
leading_coeff_C 1
@[simp] lemma monic_one : monic (1 : polynomial R) := leading_coeff_C _
lemma monic.ne_zero {R : Type*} [semiring R] [nontrivial R] {p : polynomial R} (hp : p.monic) :
p ≠ 0 :=
by { rintro rfl, simpa [monic] using hp }
lemma monic.ne_zero_of_ne (h : (0:R) ≠ 1) {p : polynomial R} (hp : p.monic) :
p ≠ 0 :=
by { nontriviality R, exact hp.ne_zero }
lemma monic.ne_zero_of_polynomial_ne {r} (hp : monic p) (hne : q ≠ r) : p ≠ 0 :=
by { haveI := nontrivial.of_polynomial_ne hne, exact hp.ne_zero }
lemma leading_coeff_add_of_degree_lt (h : degree p < degree q) :
leading_coeff (p + q) = leading_coeff q :=
have coeff p (nat_degree q) = 0, from coeff_nat_degree_eq_zero_of_degree_lt h,
by simp only [leading_coeff, nat_degree_eq_of_degree_eq (degree_add_eq_right_of_degree_lt h),
this, coeff_add, zero_add]
lemma leading_coeff_add_of_degree_eq (h : degree p = degree q)
(hlc : leading_coeff p + leading_coeff q ≠ 0) :
leading_coeff (p + q) = leading_coeff p + leading_coeff q :=
have nat_degree (p + q) = nat_degree p,
by apply nat_degree_eq_of_degree_eq;
rw [degree_add_eq_of_leading_coeff_add_ne_zero hlc, h, max_self],
by simp only [leading_coeff, this, nat_degree_eq_of_degree_eq h, coeff_add]
@[simp] lemma coeff_mul_degree_add_degree (p q : polynomial R) :
coeff (p * q) (nat_degree p + nat_degree q) = leading_coeff p * leading_coeff q :=
calc coeff (p * q) (nat_degree p + nat_degree q) =
∑ x in nat.antidiagonal (nat_degree p + nat_degree q),
coeff p x.1 * coeff q x.2 : coeff_mul _ _ _
... = coeff p (nat_degree p) * coeff q (nat_degree q) :
begin
refine finset.sum_eq_single (nat_degree p, nat_degree q) _ _,
{ rintro ⟨i,j⟩ h₁ h₂, rw nat.mem_antidiagonal at h₁,
by_cases H : nat_degree p < i,
{ rw [coeff_eq_zero_of_degree_lt
(lt_of_le_of_lt degree_le_nat_degree (with_bot.coe_lt_coe.2 H)), zero_mul] },
{ rw not_lt_iff_eq_or_lt at H, cases H,
{ subst H, rw add_left_cancel_iff at h₁, dsimp at h₁, subst h₁, exfalso, exact h₂ rfl },
{ suffices : nat_degree q < j,
{ rw [coeff_eq_zero_of_degree_lt
(lt_of_le_of_lt degree_le_nat_degree (with_bot.coe_lt_coe.2 this)), mul_zero] },
{ by_contra H', rw not_lt at H',
exact ne_of_lt (nat.lt_of_lt_of_le
(nat.add_lt_add_right H j) (nat.add_le_add_left H' _)) h₁ } } } },
{ intro H, exfalso, apply H, rw nat.mem_antidiagonal }
end
lemma degree_mul' (h : leading_coeff p * leading_coeff q ≠ 0) :
degree (p * q) = degree p + degree q :=
have hp : p ≠ 0 := by refine mt _ h; exact λ hp, by rw [hp, leading_coeff_zero, zero_mul],
have hq : q ≠ 0 := by refine mt _ h; exact λ hq, by rw [hq, leading_coeff_zero, mul_zero],
le_antisymm (degree_mul_le _ _)
begin
rw [degree_eq_nat_degree hp, degree_eq_nat_degree hq],
refine le_degree_of_ne_zero _,
rwa coeff_mul_degree_add_degree
end
lemma degree_mul_monic (hq : monic q) : degree (p * q) = degree p + degree q :=
if hp : p = 0 then by simp [hp]
else degree_mul' $ by rwa [hq.leading_coeff, mul_one, ne.def, leading_coeff_eq_zero]
lemma nat_degree_mul' (h : leading_coeff p * leading_coeff q ≠ 0) :
nat_degree (p * q) = nat_degree p + nat_degree q :=
have hp : p ≠ 0 := mt leading_coeff_eq_zero.2 (λ h₁, h $ by rw [h₁, zero_mul]),
have hq : q ≠ 0 := mt leading_coeff_eq_zero.2 (λ h₁, h $ by rw [h₁, mul_zero]),
nat_degree_eq_of_degree_eq_some $
by rw [degree_mul' h, with_bot.coe_add, degree_eq_nat_degree hp, degree_eq_nat_degree hq]
lemma leading_coeff_mul' (h : leading_coeff p * leading_coeff q ≠ 0) :
leading_coeff (p * q) = leading_coeff p * leading_coeff q :=
begin
unfold leading_coeff,
rw [nat_degree_mul' h, coeff_mul_degree_add_degree],
refl
end
lemma leading_coeff_pow' : leading_coeff p ^ n ≠ 0 →
leading_coeff (p ^ n) = leading_coeff p ^ n :=
nat.rec_on n (by simp) $
λ n ih h,
have h₁ : leading_coeff p ^ n ≠ 0 :=
λ h₁, h $ by rw [pow_succ, h₁, mul_zero],
have h₂ : leading_coeff p * leading_coeff (p ^ n) ≠ 0 :=
by rwa [pow_succ, ← ih h₁] at h,
by rw [pow_succ, pow_succ, leading_coeff_mul' h₂, ih h₁]
lemma degree_pow' : ∀ {n}, leading_coeff p ^ n ≠ 0 →
degree (p ^ n) = n •ℕ (degree p)
| 0 := λ h, by rw [pow_zero, ← C_1] at *;
rw [degree_C h, zero_nsmul]
| (n+1) := λ h,
have h₁ : leading_coeff p ^ n ≠ 0 := λ h₁, h $
by rw [pow_succ, h₁, mul_zero],
have h₂ : leading_coeff p * leading_coeff (p ^ n) ≠ 0 :=
by rwa [pow_succ, ← leading_coeff_pow' h₁] at h,
by rw [pow_succ, degree_mul' h₂, succ_nsmul, degree_pow' h₁]
lemma nat_degree_pow' {n : ℕ} (h : leading_coeff p ^ n ≠ 0) :
nat_degree (p ^ n) = n * nat_degree p :=
if hp0 : p = 0 then
if hn0 : n = 0 then by simp *
else by rw [hp0, zero_pow (nat.pos_of_ne_zero hn0)]; simp
else
have hpn : p ^ n ≠ 0, from λ hpn0, have h1 : _ := h,
by rw [← leading_coeff_pow' h1, hpn0, leading_coeff_zero] at h;
exact h rfl,
option.some_inj.1 $ show (nat_degree (p ^ n) : with_bot ℕ) = (n * nat_degree p : ℕ),
by rw [← degree_eq_nat_degree hpn, degree_pow' h, degree_eq_nat_degree hp0,
← with_bot.coe_nsmul]; simp
theorem leading_coeff_mul_monic {p q : polynomial R} (hq : monic q) :
leading_coeff (p * q) = leading_coeff p :=
decidable.by_cases
(λ H : leading_coeff p = 0, by rw [H, leading_coeff_eq_zero.1 H, zero_mul, leading_coeff_zero])
(λ H : leading_coeff p ≠ 0,
by rw [leading_coeff_mul', hq.leading_coeff, mul_one];
rwa [hq.leading_coeff, mul_one])
@[simp] theorem leading_coeff_mul_X_pow {p : polynomial R} {n : ℕ} :
leading_coeff (p * X ^ n) = leading_coeff p :=
leading_coeff_mul_monic (monic_X_pow n)
@[simp] theorem leading_coeff_mul_X {p : polynomial R} :
leading_coeff (p * X) = leading_coeff p :=
leading_coeff_mul_monic monic_X
lemma nat_degree_mul_le {p q : polynomial R} : nat_degree (p * q) ≤ nat_degree p + nat_degree q :=
begin
apply nat_degree_le_of_degree_le,
apply le_trans (degree_mul_le p q),
rw with_bot.coe_add,
refine add_le_add _ _; apply degree_le_nat_degree,
end
lemma subsingleton_of_monic_zero (h : monic (0 : polynomial R)) :
(∀ p q : polynomial R, p = q) ∧ (∀ a b : R, a = b) :=
by rw [monic.def, leading_coeff_zero] at h;
exact ⟨λ p q, by rw [← mul_one p, ← mul_one q, ← C_1, ← h, C_0, mul_zero, mul_zero],
λ a b, by rw [← mul_one a, ← mul_one b, ← h, mul_zero, mul_zero]⟩
lemma zero_le_degree_iff {p : polynomial R} : 0 ≤ degree p ↔ p ≠ 0 :=
by rw [ne.def, ← degree_eq_bot];
cases degree p; exact dec_trivial
lemma degree_nonneg_iff_ne_zero : 0 ≤ degree p ↔ p ≠ 0 :=
⟨λ h0p hp0, absurd h0p (by rw [hp0, degree_zero]; exact dec_trivial),
λ hp0, le_of_not_gt (λ h, by simp [gt, degree_eq_bot, *] at *)⟩
lemma nat_degree_eq_zero_iff_degree_le_zero : p.nat_degree = 0 ↔ p.degree ≤ 0 :=
by rw [← nonpos_iff_eq_zero, nat_degree_le_iff_degree_le, with_bot.coe_zero]
theorem degree_le_iff_coeff_zero (f : polynomial R) (n : with_bot ℕ) :
degree f ≤ n ↔ ∀ m : ℕ, n < m → coeff f m = 0 :=
⟨λ (H : finset.sup (f.support) some ≤ n) m (Hm : n < (m : with_bot ℕ)), decidable.of_not_not $ λ H4,
have H1 : m ∉ f.support,
from λ H2, not_lt_of_ge ((finset.sup_le_iff.1 H) m H2 : ((m : with_bot ℕ) ≤ n)) Hm,
H1 $ (finsupp.mem_support_to_fun f m).2 H4,
λ H, finset.sup_le $ λ b Hb, decidable.of_not_not $ λ Hn,
(finsupp.mem_support_to_fun f b).1 Hb $ H b $ lt_of_not_ge Hn⟩
theorem degree_lt_iff_coeff_zero (f : polynomial R) (n : ℕ) :
degree f < n ↔ ∀ m : ℕ, n ≤ m → coeff f m = 0 :=
begin
refine ⟨λ hf m hm, coeff_eq_zero_of_degree_lt (lt_of_lt_of_le hf (with_bot.coe_le_coe.2 hm)), _⟩,
simp only [degree, finset.sup_lt_iff (with_bot.bot_lt_coe n), mem_support_iff,
with_bot.some_eq_coe, with_bot.coe_lt_coe, ← @not_le ℕ],
exact λ h m, mt (h m),
end
lemma degree_lt_degree_mul_X (hp : p ≠ 0) : p.degree < (p * X).degree :=
by haveI := nontrivial.of_polynomial_ne hp; exact
have leading_coeff p * leading_coeff X ≠ 0, by simpa,
by erw [degree_mul' this, degree_eq_nat_degree hp,
degree_X, ← with_bot.coe_one, ← with_bot.coe_add, with_bot.coe_lt_coe];
exact nat.lt_succ_self _
lemma nat_degree_pos_iff_degree_pos :
0 < nat_degree p ↔ 0 < degree p :=
lt_iff_lt_of_le_iff_le nat_degree_le_iff_degree_le
lemma eq_C_of_nat_degree_le_zero (h : nat_degree p ≤ 0) : p = C (coeff p 0) :=
eq_C_of_degree_le_zero $ degree_le_of_nat_degree_le h
lemma eq_C_of_nat_degree_eq_zero (h : nat_degree p = 0) : p = C (coeff p 0) :=
eq_C_of_nat_degree_le_zero h.le
lemma ne_zero_of_coe_le_degree (hdeg : ↑n ≤ p.degree) : p ≠ 0 :=
by rw ← degree_nonneg_iff_ne_zero; exact trans (by exact_mod_cast n.zero_le) hdeg
lemma le_nat_degree_of_coe_le_degree (hdeg : ↑n ≤ p.degree) :
n ≤ p.nat_degree :=
with_bot.coe_le_coe.mp ((degree_eq_nat_degree $ ne_zero_of_coe_le_degree hdeg) ▸ hdeg)
end semiring
section nonzero_semiring
variables [semiring R] [nontrivial R] {p q : polynomial R}
@[simp] lemma degree_X_pow (n : ℕ) : degree ((X : polynomial R) ^ n) = n :=
by rw [X_pow_eq_monomial, degree_monomial _ (@one_ne_zero R _ _)]
@[simp] lemma nat_degree_X_pow (n : ℕ) : nat_degree ((X : polynomial R) ^ n) = n :=
nat_degree_eq_of_degree_eq_some (degree_X_pow n)
theorem not_is_unit_X : ¬ is_unit (X : polynomial R) :=
λ ⟨⟨_, g, hfg, hgf⟩, rfl⟩, @zero_ne_one R _ _ $ by { rw [← coeff_one_zero, ← hgf], simp }
@[simp] lemma degree_mul_X : degree (p * X) = degree p + 1 := by simp [degree_mul_monic monic_X]
@[simp] lemma degree_mul_X_pow : degree (p * X ^ n) = degree p + n :=
by simp [degree_mul_monic (monic_X_pow n)]
end nonzero_semiring
section ring
variables [ring R] {p q : polynomial R}
lemma degree_sub_le (p q : polynomial R) : degree (p - q) ≤ max (degree p) (degree q) :=
by simpa only [sub_eq_add_neg, degree_neg q] using degree_add_le p (-q)
lemma degree_sub_lt (hd : degree p = degree q)
(hp0 : p ≠ 0) (hlc : leading_coeff p = leading_coeff q) :
degree (p - q) < degree p :=
have hp : single (nat_degree p) (leading_coeff p) + p.erase (nat_degree p) = p :=
finsupp.single_add_erase _ _,
have hq : single (nat_degree q) (leading_coeff q) + q.erase (nat_degree q) = q :=
finsupp.single_add_erase _ _,
have hd' : nat_degree p = nat_degree q := by unfold nat_degree; rw hd,
have hq0 : q ≠ 0 := mt degree_eq_bot.2 (hd ▸ mt degree_eq_bot.1 hp0),
calc degree (p - q) = degree (erase (nat_degree q) p + -erase (nat_degree q) q) :
by conv {to_lhs, rw [← hp, ← hq, hlc, hd', add_sub_add_left_eq_sub, sub_eq_add_neg]}
... ≤ max (degree (erase (nat_degree q) p)) (degree (erase (nat_degree q) q))
: degree_neg (erase (nat_degree q) q) ▸ degree_add_le _ _
... < degree p : max_lt_iff.2 ⟨hd' ▸ degree_erase_lt hp0, hd.symm ▸ degree_erase_lt hq0⟩
lemma nat_degree_X_sub_C_le {r : R} : (X - C r).nat_degree ≤ 1 :=
nat_degree_le_iff_degree_le.2 $ le_trans (degree_sub_le _ _) $ max_le degree_X_le $
le_trans degree_C_le $ with_bot.coe_le_coe.2 zero_le_one
lemma degree_sum_fin_lt {n : ℕ} (f : fin n → R) :
degree (∑ i : fin n, C (f i) * X ^ (i : ℕ)) < n :=
begin
haveI : is_commutative (with_bot ℕ) max := ⟨max_comm⟩,
haveI : is_associative (with_bot ℕ) max := ⟨max_assoc⟩,
calc (∑ i, C (f i) * X ^ (i : ℕ)).degree
≤ finset.univ.fold (⊔) ⊥ (λ i, (C (f i) * X ^ (i : ℕ)).degree) : degree_sum_le _ _
... = finset.univ.fold max ⊥ (λ i, (C (f i) * X ^ (i : ℕ)).degree) :
(@finset.fold_hom _ _ _ (⊔) _ _ _ ⊥ finset.univ _ _ _ id (with_bot.sup_eq_max)).symm
... < n : (finset.fold_max_lt (n : with_bot ℕ)).mpr ⟨with_bot.bot_lt_some _, _⟩,
rintros ⟨i, hi⟩ -,
calc (C (f ⟨i, hi⟩) * X ^ i).degree
≤ (C _).degree + (X ^ i).degree : degree_mul_le _ _
... ≤ 0 + i : add_le_add degree_C_le (degree_X_pow_le i)
... = i : zero_add _
... < n : with_bot.some_lt_some.mpr hi,
end
lemma degree_sub_eq_left_of_degree_lt (h : degree q < degree p) : degree (p - q) = degree p :=
by { rw ← degree_neg q at h, rw [sub_eq_add_neg, degree_add_eq_left_of_degree_lt h] }
lemma degree_sub_eq_right_of_degree_lt (h : degree p < degree q) : degree (p - q) = degree q :=
by { rw ← degree_neg q at h, rw [sub_eq_add_neg, degree_add_eq_right_of_degree_lt h, degree_neg] }
end ring
section nonzero_ring
variables [nontrivial R] [ring R]
@[simp] lemma degree_X_sub_C (a : R) : degree (X - C a) = 1 :=
have degree (C a) < degree (X : polynomial R),
from calc degree (C a) ≤ 0 : degree_C_le
... < 1 : with_bot.some_lt_some.mpr zero_lt_one
... = degree X : degree_X.symm,
by rw [degree_sub_eq_left_of_degree_lt this, degree_X]
@[simp] lemma degree_X_add_C (a : R) : degree (X + C a) = 1 :=
have degree (C a) < degree (X : polynomial R),
from calc degree (C a) ≤ 0 : degree_C_le
... < 1 : with_bot.some_lt_some.mpr zero_lt_one
... = degree X : degree_X.symm,
by rw [degree_add_eq_left_of_degree_lt this, degree_X]
@[simp] lemma nat_degree_X_sub_C (x : R) : (X - C x).nat_degree = 1 :=
nat_degree_eq_of_degree_eq_some $ degree_X_sub_C x
@[simp]
lemma next_coeff_X_sub_C (c : R) : next_coeff (X - C c) = - c :=
by simp [next_coeff_of_pos_nat_degree]
lemma degree_X_pow_sub_C {n : ℕ} (hn : 0 < n) (a : R) :
degree ((X : polynomial R) ^ n - C a) = n :=
have degree (C a) < degree ((X : polynomial R) ^ n),
from calc degree (C a) ≤ 0 : degree_C_le
... < degree ((X : polynomial R) ^ n) : by rwa [degree_X_pow];
exact with_bot.coe_lt_coe.2 hn,
by rw [degree_sub_eq_left_of_degree_lt this, degree_X_pow]
lemma X_pow_sub_C_ne_zero {n : ℕ} (hn : 0 < n) (a : R) :
(X : polynomial R) ^ n - C a ≠ 0 :=
mt degree_eq_bot.2 (show degree ((X : polynomial R) ^ n - C a) ≠ ⊥,
by rw degree_X_pow_sub_C hn a; exact dec_trivial)
theorem X_sub_C_ne_zero (r : R) : X - C r ≠ 0 :=
pow_one (X : polynomial R) ▸ X_pow_sub_C_ne_zero zero_lt_one r
theorem zero_nmem_multiset_map_X_sub_C {α : Type*} (m : multiset α) (f : α → R) :
(0 : polynomial R) ∉ m.map (λ a, X - C (f a)) :=
λ mem, let ⟨a, _, ha⟩ := multiset.mem_map.mp mem in X_sub_C_ne_zero _ ha
lemma nat_degree_X_pow_sub_C {n : ℕ} {r : R} :
(X ^ n - C r).nat_degree = n :=
begin
by_cases hn : n = 0,
{ rw [hn, pow_zero, ←C_1, ←ring_hom.map_sub, nat_degree_C] },
{ exact nat_degree_eq_of_degree_eq_some (degree_X_pow_sub_C (pos_iff_ne_zero.mpr hn) r) },
end
@[simp] lemma leading_coeff_X_pow_sub_C {n : ℕ} (hn : 0 < n) {r : R} :
(X ^ n - C r).leading_coeff = 1 :=
by rw [leading_coeff, nat_degree_X_pow_sub_C, coeff_sub, coeff_X_pow_self,
coeff_C, if_neg (pos_iff_ne_zero.mp hn), sub_zero]
@[simp] lemma leading_coeff_X_pow_sub_one {n : ℕ} (hn : 0 < n) :
(X ^ n - 1 : polynomial R).leading_coeff = 1 :=
leading_coeff_X_pow_sub_C hn
end nonzero_ring
section no_zero_divisors
variables [semiring R] [no_zero_divisors R] {p q : polynomial R}
@[simp] lemma degree_mul : degree (p * q) = degree p + degree q :=
if hp0 : p = 0 then by simp only [hp0, degree_zero, zero_mul, with_bot.bot_add]
else if hq0 : q = 0 then by simp only [hq0, degree_zero, mul_zero, with_bot.add_bot]
else degree_mul' $ mul_ne_zero (mt leading_coeff_eq_zero.1 hp0)
(mt leading_coeff_eq_zero.1 hq0)
@[simp] lemma degree_pow [nontrivial R] (p : polynomial R) (n : ℕ) :
degree (p ^ n) = n •ℕ (degree p) :=
by induction n; [simp only [pow_zero, degree_one, zero_nsmul],
simp only [*, pow_succ, succ_nsmul, degree_mul]]
@[simp] lemma leading_coeff_mul (p q : polynomial R) : leading_coeff (p * q) =
leading_coeff p * leading_coeff q :=
begin
by_cases hp : p = 0,
{ simp only [hp, zero_mul, leading_coeff_zero] },
{ by_cases hq : q = 0,
{ simp only [hq, mul_zero, leading_coeff_zero] },
{ rw [leading_coeff_mul'],
exact mul_ne_zero (mt leading_coeff_eq_zero.1 hp) (mt leading_coeff_eq_zero.1 hq) } }
end
@[simp] lemma leading_coeff_X_add_C [nontrivial R] (a b : R) (ha : a ≠ 0):
leading_coeff (C a * X + C b) = a :=
begin
rw [add_comm, leading_coeff_add_of_degree_lt],
{ simp },
{ simpa [degree_C ha] using lt_of_le_of_lt degree_C_le (with_bot.coe_lt_coe.2 zero_lt_one)}
end
/-- `polynomial.leading_coeff` bundled as a `monoid_hom` when `R` has `no_zero_divisors`, and thus
`leading_coeff` is multiplicative -/
def leading_coeff_hom : polynomial R →* R :=
{ to_fun := leading_coeff,
map_one' := by simp,
map_mul' := leading_coeff_mul }
@[simp] lemma leading_coeff_hom_apply (p : polynomial R) :
leading_coeff_hom p = leading_coeff p := rfl
@[simp] lemma leading_coeff_pow (p : polynomial R) (n : ℕ) :
leading_coeff (p ^ n) = leading_coeff p ^ n :=
leading_coeff_hom.map_pow p n
end no_zero_divisors
end polynomial
|
e5c63f8a2711168a17ba68c60c5629e2c190b107
|
96e44fc78cabfc9d646dc37d0e756189b6b79181
|
/library/init/meta/interactive.lean
|
7ca4dd82f6644e5c0f21ee572302f2943f2ee189
|
[
"Apache-2.0"
] |
permissive
|
TwoFX/lean
|
23c73c10a340f5a381f6abf27a27f53f1fb7e2e3
|
7e3f336714055869690b7309b6bb651fbc67e76e
|
refs/heads/master
| 1,612,504,908,183
| 1,594,641,622,000
| 1,594,641,622,000
| 243,750,847
| 0
| 0
|
Apache-2.0
| 1,582,890,661,000
| 1,582,890,661,000
| null |
UTF-8
|
Lean
| false
| false
| 71,322
|
lean
|
/-
Copyright (c) 2016 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura, Jannis Limperg
-/
prelude
import init.meta.tactic init.meta.rewrite_tactic init.meta.simp_tactic
import init.meta.smt.congruence_closure init.control.combinators
import init.meta.interactive_base init.meta.derive init.meta.match_tactic
import init.meta.congr_tactic init.meta.case_tag
open lean
open lean.parser
open native
local postfix `?`:9001 := optional
local postfix *:9001 := many
namespace tactic
/- allows metavars -/
meta def i_to_expr (q : pexpr) : tactic expr :=
to_expr q tt
/- allow metavars and no subgoals -/
meta def i_to_expr_no_subgoals (q : pexpr) : tactic expr :=
to_expr q tt ff
/- doesn't allows metavars -/
meta def i_to_expr_strict (q : pexpr) : tactic expr :=
to_expr q ff
/- Auxiliary version of i_to_expr for apply-like tactics.
This is a workaround for comment
https://github.com/leanprover/lean/issues/1342#issuecomment-307912291
at issue #1342.
In interactive mode, given a tactic
apply f
we want the apply tactic to create all metavariables. The following
definition will return `@f` for `f`. That is, it will **not** create
metavariables for implicit arguments.
Before we added `i_to_expr_for_apply`, the tactic
apply le_antisymm
would first elaborate `le_antisymm`, and create
@le_antisymm ?m_1 ?m_2 ?m_3 ?m_4
The type class resolution problem
?m_2 : weak_order ?m_1
by the elaborator since ?m_1 is not assigned yet, and the problem is
discarded.
Then, we would invoke `apply_core`, which would create two
new metavariables for the explicit arguments, and try to unify the resulting
type with the current target. After the unification,
the metavariables ?m_1, ?m_3 and ?m_4 are assigned, but we lost
the information about the pending type class resolution problem.
With `i_to_expr_for_apply`, `le_antisymm` is elaborate into `@le_antisymm`,
the apply_core tactic creates all metavariables, and solves the ones that
can be solved by type class resolution.
Another possible fix: we modify the elaborator to return pending
type class resolution problems, and store them in the tactic_state.
-/
meta def i_to_expr_for_apply (q : pexpr) : tactic expr :=
let aux (n : name) : tactic expr := do
p ← resolve_name n,
match p with
| (expr.const c []) := do r ← mk_const c, save_type_info r q, return r
| _ := i_to_expr p
end
in match q with
| (expr.const c []) := aux c
| (expr.local_const c _ _ _) := aux c
| _ := i_to_expr q
end
namespace interactive
open interactive interactive.types expr
/--
itactic: parse a nested "interactive" tactic. That is, parse
`{` tactic `}`
-/
meta def itactic : Type :=
tactic unit
meta def propagate_tags (tac : tactic unit) : tactic unit :=
do tag ← get_main_tag,
if tag = [] then tac
else focus1 $ do
tac,
gs ← get_goals,
when (bnot gs.empty) $ do
new_tag ← get_main_tag,
when new_tag.empty $ with_enable_tags (set_main_tag tag)
meta def concat_tags (tac : tactic (list (name × expr))) : tactic unit :=
mcond tags_enabled
(do in_tag ← get_main_tag,
r ← tac,
/- remove assigned metavars -/
r ← r.mfilter $ λ ⟨n, m⟩, bnot <$> is_assigned m,
match r with
| [(_, m)] := set_tag m in_tag /- if there is only new subgoal, we just propagate `in_tag` -/
| _ := r.mmap' (λ ⟨n, m⟩, set_tag m (n::in_tag))
end)
(tac >> skip)
/--
If the current goal is a Pi/forall `∀ x : t, u` (resp. `let x := t in u`) then `intro` puts `x : t` (resp. `x := t`) in the local context. The new subgoal target is `u`.
If the goal is an arrow `t → u`, then it puts `h : t` in the local context and the new goal target is `u`.
If the goal is neither a Pi/forall nor begins with a let binder, the tactic `intro` applies the tactic `whnf` until an introduction can be applied or the goal is not head reducible. In the latter case, the tactic fails.
-/
meta def intro : parse ident_? → tactic unit
| none := propagate_tags (intro1 >> skip)
| (some h) := propagate_tags (tactic.intro h >> skip)
/--
Similar to `intro` tactic. The tactic `intros` will keep introducing new hypotheses until the goal target is not a Pi/forall or let binder.
The variant `intros h₁ ... hₙ` introduces `n` new hypotheses using the given identifiers to name them.
-/
meta def intros : parse ident_* → tactic unit
| [] := propagate_tags (tactic.intros >> skip)
| hs := propagate_tags (intro_lst hs >> skip)
/--
The tactic `introv` allows the user to automatically introduce the variables of a theorem and explicitly name the hypotheses involved. The given names are used to name non-dependent hypotheses.
Examples:
```
example : ∀ a b : nat, a = b → b = a :=
begin
introv h,
exact h.symm
end
```
The state after `introv h` is
```
a b : ℕ,
h : a = b
⊢ b = a
```
```
example : ∀ a b : nat, a = b → ∀ c, b = c → a = c :=
begin
introv h₁ h₂,
exact h₁.trans h₂
end
```
The state after `introv h₁ h₂` is
```
a b : ℕ,
h₁ : a = b,
c : ℕ,
h₂ : b = c
⊢ a = c
```
-/
meta def introv (ns : parse ident_*) : tactic unit :=
propagate_tags (tactic.introv ns >> return ())
/-- Parse a current name and new name for `rename`. -/
private meta def rename_arg_parser : parser (name × name) :=
prod.mk <$> ident <*> (optional (tk "->") *> ident)
/-- Parse the arguments of `rename`. -/
private meta def rename_args_parser : parser (list (name × name)) :=
(functor.map (λ x, [x]) rename_arg_parser)
<|>
(tk "[" *> sep_by (tk ",") rename_arg_parser <* tk "]")
/--
Rename one or more local hypotheses. The renamings are given as follows:
```
rename x y -- rename x to y
rename x → y -- ditto
rename [x y, a b] -- rename x to y and a to b
rename [x → y, a → b] -- ditto
```
Note that if there are multiple hypotheses called `x` in the context, then
`rename x y` will rename *all* of them. If you want to rename only one, use
`dedup` first.
-/
meta def rename (renames : parse rename_args_parser) : tactic unit :=
propagate_tags $ tactic.rename_many $ native.rb_map.of_list renames
/--
The `apply` tactic tries to match the current goal against the conclusion of the type of term. The argument term should be a term well-formed in the local context of the main goal. If it succeeds, then the tactic returns as many subgoals as the number of premises that have not been fixed by type inference or type class resolution. Non-dependent premises are added before dependent ones.
The `apply` tactic uses higher-order pattern matching, type class resolution, and first-order unification with dependent types.
-/
meta def apply (q : parse texpr) : tactic unit :=
concat_tags (do h ← i_to_expr_for_apply q, tactic.apply h)
/--
Similar to the `apply` tactic, but does not reorder goals.
-/
meta def fapply (q : parse texpr) : tactic unit :=
concat_tags (i_to_expr_for_apply q >>= tactic.fapply)
/--
Similar to the `apply` tactic, but only creates subgoals for non-dependent premises that have not been fixed by type inference or type class resolution.
-/
meta def eapply (q : parse texpr) : tactic unit :=
concat_tags (i_to_expr_for_apply q >>= tactic.eapply)
/--
Similar to the `apply` tactic, but allows the user to provide a `apply_cfg` configuration object.
-/
meta def apply_with (q : parse parser.pexpr) (cfg : apply_cfg) : tactic unit :=
concat_tags (do e ← i_to_expr_for_apply q, tactic.apply e cfg)
/--
Similar to the `apply` tactic, but uses matching instead of unification.
`apply_match t` is equivalent to `apply_with t {unify := ff}`
-/
meta def mapply (q : parse texpr) : tactic unit :=
concat_tags (do e ← i_to_expr_for_apply q, tactic.apply e {unify := ff})
/--
This tactic tries to close the main goal `... ⊢ t` by generating a term of type `t` using type class resolution.
-/
meta def apply_instance : tactic unit :=
tactic.apply_instance
/--
This tactic behaves like `exact`, but with a big difference: the user can put underscores `_` in the expression as placeholders for holes that need to be filled, and `refine` will generate as many subgoals as there are holes.
Note that some holes may be implicit. The type of each hole must either be synthesized by the system or declared by an explicit type ascription like `(_ : nat → Prop)`.
-/
meta def refine (q : parse texpr) : tactic unit :=
tactic.refine q
/--
This tactic looks in the local context for a hypothesis whose type is equal to the goal target. If it finds one, it uses it to prove the goal, and otherwise it fails.
-/
meta def assumption : tactic unit :=
tactic.assumption
/-- Try to apply `assumption` to all goals. -/
meta def assumption' : tactic unit :=
tactic.any_goals' tactic.assumption
private meta def change_core (e : expr) : option expr → tactic unit
| none := tactic.change e
| (some h) :=
do num_reverted : ℕ ← revert h,
expr.pi n bi d b ← target,
tactic.change $ expr.pi n bi e b,
intron num_reverted
/--
`change u` replaces the target `t` of the main goal to `u` provided that `t` is well formed with respect to the local context of the main goal and `t` and `u` are definitionally equal.
`change u at h` will change a local hypothesis to `u`.
`change t with u at h1 h2 ...` will replace `t` with `u` in all the supplied hypotheses (or `*`), or in the goal if no `at` clause is specified, provided that `t` and `u` are definitionally equal.
-/
meta def change (q : parse texpr) : parse (tk "with" *> texpr)? → parse location → tactic unit
| none (loc.ns [none]) := do e ← i_to_expr q, change_core e none
| none (loc.ns [some h]) := do eq ← i_to_expr q, eh ← get_local h, change_core eq (some eh)
| none _ := fail "change-at does not support multiple locations"
| (some w) l :=
do u ← mk_meta_univ,
ty ← mk_meta_var (sort u),
eq ← i_to_expr ``(%%q : %%ty),
ew ← i_to_expr ``(%%w : %%ty),
let repl := λe : expr, e.replace (λ a n, if a = eq then some ew else none),
l.try_apply
(λh, do e ← infer_type h, change_core (repl e) (some h))
(do g ← target, change_core (repl g) none)
/--
This tactic provides an exact proof term to solve the main goal. If `t` is the goal and `p` is a term of type `u` then `exact p` succeeds if and only if `t` and `u` can be unified.
-/
meta def exact (q : parse texpr) : tactic unit :=
do tgt : expr ← target,
i_to_expr_strict ``(%%q : %%tgt) >>= tactic.exact
/--
Like `exact`, but takes a list of terms and checks that all goals are discharged after the tactic.
-/
meta def exacts : parse pexpr_list_or_texpr → tactic unit
| [] := done
| (t :: ts) := exact t >> exacts ts
/--
A synonym for `exact` that allows writing `have/suffices/show ..., from ...` in tactic mode.
-/
meta def «from» := exact
/--
`revert h₁ ... hₙ` applies to any goal with hypotheses `h₁` ... `hₙ`. It moves the hypotheses and their dependencies to the target of the goal. This tactic is the inverse of `intro`.
-/
meta def revert (ids : parse ident*) : tactic unit :=
propagate_tags (do hs ← mmap tactic.get_local ids, revert_lst hs, skip)
private meta def resolve_name' (n : name) : tactic expr :=
do {
p ← resolve_name n,
match p with
| expr.const n _ := mk_const n -- create metavars for universe levels
| _ := i_to_expr p
end
}
/- Version of to_expr that tries to bypass the elaborator if `p` is just a constant or local constant.
This is not an optimization, by skipping the elaborator we make sure that no unwanted resolution is used.
Example: the elaborator will force any unassigned ?A that must have be an instance of (has_one ?A) to nat.
Remark: another benefit is that auxiliary temporary metavariables do not appear in error messages. -/
meta def to_expr' (p : pexpr) : tactic expr :=
match p with
| (const c []) := do new_e ← resolve_name' c, save_type_info new_e p, return new_e
| (local_const c _ _ _) := do new_e ← resolve_name' c, save_type_info new_e p, return new_e
| _ := i_to_expr p
end
@[derive has_reflect]
meta structure rw_rule :=
(pos : pos)
(symm : bool)
(rule : pexpr)
meta def get_rule_eqn_lemmas (r : rw_rule) : tactic (list name) :=
let aux (n : name) : tactic (list name) := do {
p ← resolve_name n,
-- unpack local refs
let e := p.erase_annotations.get_app_fn.erase_annotations,
match e with
| const n _ := get_eqn_lemmas_for tt n
| _ := return []
end } <|> return [] in
match r.rule with
| const n _ := aux n
| local_const n _ _ _ := aux n
| _ := return []
end
private meta def rw_goal (cfg : rewrite_cfg) (rs : list rw_rule) : tactic unit :=
rs.mmap' $ λ r, do
save_info r.pos,
eq_lemmas ← get_rule_eqn_lemmas r,
orelse'
(do e ← to_expr' r.rule, rewrite_target e {symm := r.symm, ..cfg})
(eq_lemmas.mfirst $ λ n, do e ← mk_const n, rewrite_target e {symm := r.symm, ..cfg})
(eq_lemmas.empty)
private meta def uses_hyp (e : expr) (h : expr) : bool :=
e.fold ff $ λ t _ r, r || to_bool (t = h)
private meta def rw_hyp (cfg : rewrite_cfg) : list rw_rule → expr → tactic unit
| [] hyp := skip
| (r::rs) hyp := do
save_info r.pos,
eq_lemmas ← get_rule_eqn_lemmas r,
orelse'
(do e ← to_expr' r.rule, when (not (uses_hyp e hyp)) $ rewrite_hyp e hyp {symm := r.symm, ..cfg} >>= rw_hyp rs)
(eq_lemmas.mfirst $ λ n, do e ← mk_const n, rewrite_hyp e hyp {symm := r.symm, ..cfg} >>= rw_hyp rs)
(eq_lemmas.empty)
meta def rw_rule_p (ep : parser pexpr) : parser rw_rule :=
rw_rule.mk <$> cur_pos <*> (option.is_some <$> (with_desc "←" (tk "←" <|> tk "<-"))?) <*> ep
@[derive has_reflect]
meta structure rw_rules_t :=
(rules : list rw_rule)
(end_pos : option pos)
-- accepts the same content as `pexpr_list_or_texpr`, but with correct goal info pos annotations
meta def rw_rules : parser rw_rules_t :=
(tk "[" *>
rw_rules_t.mk <$> sep_by (skip_info (tk ",")) (set_goal_info_pos $ rw_rule_p (parser.pexpr 0))
<*> (some <$> cur_pos <* set_goal_info_pos (tk "]")))
<|> rw_rules_t.mk <$> (list.ret <$> rw_rule_p texpr) <*> return none
private meta def rw_core (rs : parse rw_rules) (loca : parse location) (cfg : rewrite_cfg) : tactic unit :=
match loca with
| loc.wildcard := loca.try_apply (rw_hyp cfg rs.rules) (rw_goal cfg rs.rules)
| _ := loca.apply (rw_hyp cfg rs.rules) (rw_goal cfg rs.rules)
end >> try (reflexivity reducible)
>> (returnopt rs.end_pos >>= save_info <|> skip)
/--
`rewrite e` applies identity `e` as a rewrite rule to the target of the main goal. If `e` is preceded by left arrow (`←` or `<-`), the rewrite is applied in the reverse direction. If `e` is a defined constant, then the equational lemmas associated with `e` are used. This provides a convenient way to unfold `e`.
`rewrite [e₁, ..., eₙ]` applies the given rules sequentially.
`rewrite e at l` rewrites `e` at location(s) `l`, where `l` is either `*` or a list of hypotheses in the local context. In the latter case, a turnstile `⊢` or `|-` can also be used, to signify the target of the goal.
-/
meta def rewrite (q : parse rw_rules) (l : parse location) (cfg : rewrite_cfg := {}) : tactic unit :=
propagate_tags (rw_core q l cfg)
/--
An abbreviation for `rewrite`.
-/
meta def rw (q : parse rw_rules) (l : parse location) (cfg : rewrite_cfg := {}) : tactic unit :=
propagate_tags (rw_core q l cfg)
/--
`rewrite` followed by `assumption`.
-/
meta def rwa (q : parse rw_rules) (l : parse location) (cfg : rewrite_cfg := {}) : tactic unit :=
rewrite q l cfg >> try assumption
/--
A variant of `rewrite` that uses the unifier more aggressively, unfolding semireducible definitions.
-/
meta def erewrite (q : parse rw_rules) (l : parse location) (cfg : rewrite_cfg := {md := semireducible}) : tactic unit :=
propagate_tags (rw_core q l cfg)
/--
An abbreviation for `erewrite`.
-/
meta def erw (q : parse rw_rules) (l : parse location) (cfg : rewrite_cfg := {md := semireducible}) : tactic unit :=
propagate_tags (rw_core q l cfg)
/--
Returns the unique names of all hypotheses (local constants) in the context.
-/
private meta def hyp_unique_names : tactic name_set :=
do ctx ← local_context,
pure $ ctx.foldl (λ r h, r.insert h.local_uniq_name) mk_name_set
/--
Returns all hypotheses (local constants) from the context except those whose
unique names are in `hyp_uids`.
-/
private meta def hyps_except (hyp_uids : name_set) : tactic (list expr) :=
do ctx ← local_context,
pure $ ctx.filter (λ (h : expr), ¬ hyp_uids.contains h.local_uniq_name)
/--
Apply `t` to the main goal and revert any new hypothesis in the generated goals.
If `t` is a supported tactic or chain of supported tactics (e.g. `induction`,
`cases`, `apply`, `constructor`), the generated goals are also tagged with case
tags. You can then use `case` to focus such tagged goals.
Two typical uses of `with_cases`:
1. Applying a custom eliminator:
```
lemma my_nat_rec :
∀ n {P : ℕ → Prop} (zero : P 0) (succ : ∀ n, P n → P (n + 1)), P n := ...
example (n : ℕ) : n = n :=
begin
with_cases { apply my_nat_rec n },
case zero { refl },
case succ : m ih { refl }
end
```
2. Enabling the use of `case` after a chain of case-splitting tactics:
```
example (n m : ℕ) : unit :=
begin
with_cases { cases n; induction m },
case nat.zero nat.zero { exact () },
case nat.zero nat.succ : k { exact () },
case nat.succ nat.zero : i { exact () },
case nat.succ nat.succ : k i ih_i { exact () }
end
```
-/
meta def with_cases (t : itactic) : tactic unit :=
with_enable_tags $ focus1 $ do
input_hyp_uids ← hyp_unique_names,
t,
all_goals' $ do
in_tag ← get_main_tag,
new_hyps ← hyps_except input_hyp_uids,
n ← revert_lst new_hyps,
set_main_tag (case_tag.from_tag_pi in_tag n).render
private meta def generalize_arg_p_aux : pexpr → parser (pexpr × name)
| (app (app (macro _ [const `eq _ ]) h) (local_const x _ _ _)) := pure (h, x)
| _ := fail "parse error"
private meta def generalize_arg_p : parser (pexpr × name) :=
with_desc "expr = id" $ parser.pexpr 0 >>= generalize_arg_p_aux
/--
`generalize : e = x` replaces all occurrences of `e` in the target with a new hypothesis `x` of the same type.
`generalize h : e = x` in addition registers the hypothesis `h : e = x`.
-/
meta def generalize (h : parse ident?) (_ : parse $ tk ":") (p : parse generalize_arg_p) : tactic unit :=
propagate_tags $
do let (p, x) := p,
e ← i_to_expr p,
some h ← pure h | tactic.generalize e x >> intro1 >> skip,
tgt ← target,
-- if generalizing fails, fall back to not replacing anything
tgt' ← do {
⟨tgt', _⟩ ← solve_aux tgt (tactic.generalize e x >> target),
to_expr ``(Π x, %%e = x → %%(tgt'.binding_body.lift_vars 0 1))
} <|> to_expr ``(Π x, %%e = x → %%tgt),
t ← assert h tgt',
swap,
exact ``(%%t %%e rfl),
intro x,
intro h
meta def cases_arg_p : parser (option name × pexpr) :=
with_desc "(id :)? expr" $ do
t ← texpr,
match t with
| (local_const x _ _ _) :=
(tk ":" *> do t ← texpr, pure (some x, t)) <|> pure (none, t)
| _ := pure (none, t)
end
/--
Updates the tags of new subgoals produced by `cases` or `induction`. `in_tag`
is the initial tag, i.e. the tag of the goal on which `cases`/`induction` was
applied. `rs` should contain, for each subgoal, the constructor name
associated with that goal and the hypotheses that were introduced.
-/
private meta def set_cases_tags (in_tag : tag) (rs : list (name × list expr)) : tactic unit :=
do gs ← get_goals,
match gs with
-- if only one goal was produced, we should not make the tag longer
| [g] := set_tag g in_tag
| _ :=
let tgs : list (name × list expr × expr) :=
rs.map₂ (λ ⟨n, new_hyps⟩ g, ⟨n, new_hyps, g⟩) gs in
tgs.mmap' $ λ ⟨n, new_hyps, g⟩, with_enable_tags $
set_tag g $
(case_tag.from_tag_hyps (n :: in_tag) (new_hyps.map expr.local_uniq_name)).render
end
precedence `generalizing` : 0
/--
Assuming `x` is a variable in the local context with an inductive type, `induction x` applies induction on `x` to the main goal, producing one goal for each constructor of the inductive type, in which the target is replaced by a general instance of that constructor and an inductive hypothesis is added for each recursive argument to the constructor. If the type of an element in the local context depends on `x`, that element is reverted and reintroduced afterward, so that the inductive hypothesis incorporates that hypothesis as well.
For example, given `n : nat` and a goal with a hypothesis `h : P n` and target `Q n`, `induction n` produces one goal with hypothesis `h : P 0` and target `Q 0`, and one goal with hypotheses `h : P (nat.succ a)` and `ih₁ : P a → Q a` and target `Q (nat.succ a)`. Here the names `a` and `ih₁` ire chosen automatically.
`induction e`, where `e` is an expression instead of a variable, generalizes `e` in the goal, and then performs induction on the resulting variable.
`induction e with y₁ ... yₙ`, where `e` is a variable or an expression, specifies that the sequence of names `y₁ ... yₙ` should be used for the arguments to the constructors and inductive hypotheses, including implicit arguments. If the list does not include enough names for all of the arguments, additional names are generated automatically. If too many names are given, the extra ones are ignored. Underscores can be used in the list, in which case the corresponding names are generated automatically. Note that for long sequences of names, the `case` tactic provides a more convenient naming mechanism.
`induction e using r` allows the user to specify the principle of induction that should be used. Here `r` should be a theorem whose result type must be of the form `C t`, where `C` is a bound variable and `t` is a (possibly empty) sequence of bound variables
`induction e generalizing z₁ ... zₙ`, where `z₁ ... zₙ` are variables in the local context, generalizes over `z₁ ... zₙ` before applying the induction but then introduces them in each goal. In other words, the net effect is that each inductive hypothesis is generalized.
`induction h : t` will introduce an equality of the form `h : t = C x y`, asserting that the input term is equal to the current constructor case, to the context.
-/
meta def induction (hp : parse cases_arg_p) (rec_name : parse using_ident) (ids : parse with_ident_list)
(revert : parse $ (tk "generalizing" *> ident*)?) : tactic unit :=
do in_tag ← get_main_tag,
focus1 $ do {
-- process `h : t` case
e ← match hp with
| (some h, p) := do
x ← get_unused_name,
generalize h () (p, x),
get_local x
| (none, p) := i_to_expr p
end,
-- generalize major premise
e ← if e.is_local_constant then pure e
else tactic.generalize e >> intro1,
-- generalize major premise args
(e, newvars, locals) ← do {
none ← pure rec_name | pure (e, [], []),
t ← infer_type e,
t ← whnf_ginductive t,
const n _ ← pure t.get_app_fn | pure (e, [], []),
env ← get_env,
tt ← pure $ env.is_inductive n | pure (e, [], []),
let (locals, nonlocals) := (t.get_app_args.drop $ env.inductive_num_params n).partition
(λ arg : expr, arg.is_local_constant),
_ :: _ ← pure nonlocals | pure (e, [], []),
n ← tactic.revert e,
newvars ← nonlocals.mmap $ λ arg, do {
n ← revert_kdeps arg,
tactic.generalize arg,
h ← intro1,
intron n,
-- now try to clear hypotheses that may have been abstracted away
let locals := arg.fold [] (λ e _ acc, if e.is_local_constant then e::acc else acc),
locals.mmap' (try ∘ clear),
pure h
},
intron (n-1),
e ← intro1,
pure (e, newvars, locals)
},
-- revert `generalizing` params (and their dependencies, if any)
to_generalize ← (revert.get_or_else []).mmap tactic.get_local,
num_generalized ← revert_lst to_generalize,
-- perform the induction
rs ← tactic.induction e ids rec_name,
-- re-introduce the generalized hypotheses
gen_hyps ← all_goals $ do {
new_hyps ← intron' num_generalized,
clear_lst (newvars.map local_pp_name),
(e::locals).mmap' (try ∘ clear),
pure new_hyps
},
set_cases_tags in_tag $
@list.map₂ (name × list expr × list (name × expr)) _ (name × list expr)
(λ ⟨n, hyps, _⟩ gen_hyps, ⟨n, hyps ++ gen_hyps⟩) rs gen_hyps
}
open case_tag.match_result
private meta def goals_with_matching_tag (ns : list name) :
tactic (list (expr × case_tag) × list (expr × case_tag)) :=
do gs ← get_goals,
(gs : list (expr × tag)) ← gs.mmap (λ g, do t ← get_tag g, pure (g, t)),
pure $ gs.foldr
(λ ⟨g, t⟩ ⟨exact_matches, suffix_matches⟩,
match case_tag.parse t with
| none := ⟨exact_matches, suffix_matches⟩
| some t :=
match case_tag.match_tag ns t with
| exact_match := ⟨⟨g, t⟩ :: exact_matches, suffix_matches⟩
| fuzzy_match := ⟨exact_matches, ⟨g, t⟩ :: suffix_matches⟩
| no_match := ⟨exact_matches, suffix_matches⟩
end
end)
([], [])
private meta def goal_with_matching_tag (ns : list name) : tactic (expr × case_tag) :=
do ⟨exact_matches, suffix_matches⟩ ← goals_with_matching_tag ns,
match exact_matches, suffix_matches with
| [] , [] := fail format!
"Invalid `case`: there is no goal tagged with suffix {ns}."
| [] , [g] := pure g
| [] , _ :=
let tags : list (list name) := suffix_matches.map (λ ⟨_, t⟩, t.case_names.reverse) in
fail format!
"Invalid `case`: there is more than one goal tagged with suffix {ns}.\nMatching tags: {tags}"
| [g], _ := pure g
| _ , _ := fail format!
"Invalid `case`: there is more than one goal tagged with tag {ns}."
end
/--
Focuses on a goal ('case') generated by `induction`, `cases` or `with_cases`.
The goal is selected by giving one or more names which must match exactly one
goal. A goal is matched if the given names are a suffix of its goal tag.
Additionally, each name in the sequence can be abbreviated to a suffix of the
corresponding name in the goal tag. Thus, a goal with tag
```
nat.zero, list.nil
```
can be selected with any of these invocations (among others):
```
case nat.zero list.nil {...}
case nat.zero nil {...}
case zero nil {...}
case nil {...}
```
Additionally, the form
```
case C : N₀ ... Nₙ {...}
```
can be used to rename hypotheses introduced by the preceding
`cases`/`induction`/`with_cases`, using the names `Nᵢ`. For example:
```
example (xs : list ℕ) : xs = xs :=
begin
induction xs,
case nil { reflexivity },
case cons : x xs ih {
-- x : ℕ, xs : list ℕ, ih : xs = xs
reflexivity }
end
```
Note that this renaming functionality only work reliably *directly after* an
`induction`/`cases`/`with_cases`. If you need to perform additional work after
an `induction` or `cases` (e.g. introduce hypotheses in all goals), use
`with_cases`.
-/
/-
TODO `case` could be generalised to work with zero names as well. The form
case : x y z { ... }
would select the first goal (or the first goal with a case tag), renaming
hypotheses to `x, y, z`. The renaming functionality would be available only if
the goal has a case tag.
-/
meta def case (ns : parse ident_*) (ids : parse $ (tk ":" *> ident_*)?) (tac : itactic) : tactic unit :=
do ⟨goal, tag⟩ ← goal_with_matching_tag ns,
let ids := ids.get_or_else [],
let num_ids := ids.length,
goals ← get_goals,
set_goals $ goal :: goals.filter (≠ goal),
match tag with
| (case_tag.pi _ num_args) := do
intro_lst ids,
when (num_ids < num_args) $ intron (num_args - num_ids)
| (case_tag.hyps _ new_hyp_names) := do
let num_new_hyps := new_hyp_names.length,
when (num_ids > num_new_hyps) $ fail format!
"Invalid `case`: You gave {num_ids} names, but the case introduces
{num_new_hyps} new hypotheses.",
let renamings := rb_map.of_list (new_hyp_names.zip ids),
propagate_tags $ tactic.rename_many renamings tt tt
end,
solve1 tac
/--
Assuming `x` is a variable in the local context with an inductive type, `destruct x` splits the main goal, producing one goal for each constructor of the inductive type, in which `x` is assumed to be a general instance of that constructor. In contrast to `cases`, the local context is unchanged, i.e. no elements are reverted or introduced.
For example, given `n : nat` and a goal with a hypothesis `h : P n` and target `Q n`, `destruct n` produces one goal with target `n = 0 → Q n`, and one goal with target `∀ (a : ℕ), (λ (w : ℕ), n = w → Q n) (nat.succ a)`. Here the name `a` is chosen automatically.
-/
meta def destruct (p : parse texpr) : tactic unit :=
i_to_expr p >>= tactic.destruct
meta def cases_core (e : expr) (ids : list name := []) : tactic unit :=
do in_tag ← get_main_tag,
focus1 $ do
rs ← tactic.cases e ids,
set_cases_tags in_tag rs
/--
Assuming `x` is a variable in the local context with an inductive type, `cases x` splits the main goal, producing one goal for each constructor of the inductive type, in which the target is replaced by a general instance of that constructor. If the type of an element in the local context depends on `x`, that element is reverted and reintroduced afterward, so that the case split affects that hypothesis as well.
For example, given `n : nat` and a goal with a hypothesis `h : P n` and target `Q n`, `cases n` produces one goal with hypothesis `h : P 0` and target `Q 0`, and one goal with hypothesis `h : P (nat.succ a)` and target `Q (nat.succ a)`. Here the name `a` is chosen automatically.
`cases e`, where `e` is an expression instead of a variable, generalizes `e` in the goal, and then cases on the resulting variable.
`cases e with y₁ ... yₙ`, where `e` is a variable or an expression, specifies that the sequence of names `y₁ ... yₙ` should be used for the arguments to the constructors, including implicit arguments. If the list does not include enough names for all of the arguments, additional names are generated automatically. If too many names are given, the extra ones are ignored. Underscores can be used in the list, in which case the corresponding names are generated automatically.
`cases h : e`, where `e` is a variable or an expression, performs cases on `e` as above, but also adds a hypothesis `h : e = ...` to each hypothesis, where `...` is the constructor instance for that particular case.
-/
meta def cases : parse cases_arg_p → parse with_ident_list → tactic unit
| (none, p) ids := do
e ← i_to_expr p,
cases_core e ids
| (some h, p) ids := do
x ← get_unused_name,
generalize h () (p, x),
hx ← get_local x,
cases_core hx ids
private meta def find_matching_hyp (ps : list pattern) : tactic expr :=
any_hyp $ λ h, do
type ← infer_type h,
ps.mfirst $ λ p, do
match_pattern p type,
return h
/--
`cases_matching p` applies the `cases` tactic to a hypothesis `h : type` if `type` matches the pattern `p`.
`cases_matching [p_1, ..., p_n]` applies the `cases` tactic to a hypothesis `h : type` if `type` matches one of the given patterns.
`cases_matching* p` more efficient and compact version of `focus1 { repeat { cases_matching p } }`. It is more efficient because the pattern is compiled once.
Example: The following tactic destructs all conjunctions and disjunctions in the current goal.
```
cases_matching* [_ ∨ _, _ ∧ _]
```
-/
meta def cases_matching (rec : parse $ (tk "*")?) (ps : parse pexpr_list_or_texpr) : tactic unit :=
do ps ← ps.mmap pexpr_to_pattern,
if rec.is_none
then find_matching_hyp ps >>= cases_core
else tactic.focus1 $ tactic.repeat $ find_matching_hyp ps >>= cases_core
/-- Shorthand for `cases_matching` -/
meta def casesm (rec : parse $ (tk "*")?) (ps : parse pexpr_list_or_texpr) : tactic unit :=
cases_matching rec ps
private meta def try_cases_for_types (type_names : list name) (at_most_one : bool) : tactic unit :=
any_hyp $ λ h, do
I ← expr.get_app_fn <$> (infer_type h >>= head_beta),
guard I.is_constant,
guard (I.const_name ∈ type_names),
tactic.focus1 (cases_core h >> if at_most_one then do n ← num_goals, guard (n <= 1) else skip)
/--
`cases_type I` applies the `cases` tactic to a hypothesis `h : (I ...)`
`cases_type I_1 ... I_n` applies the `cases` tactic to a hypothesis `h : (I_1 ...)` or ... or `h : (I_n ...)`
`cases_type* I` is shorthand for `focus1 { repeat { cases_type I } }`
`cases_type! I` only applies `cases` if the number of resulting subgoals is <= 1.
Example: The following tactic destructs all conjunctions and disjunctions in the current goal.
```
cases_type* or and
```
-/
meta def cases_type (one : parse $ (tk "!")?) (rec : parse $ (tk "*")?) (type_names : parse ident*) : tactic unit :=
do type_names ← type_names.mmap resolve_constant,
if rec.is_none
then try_cases_for_types type_names (bnot one.is_none)
else tactic.focus1 $ tactic.repeat $ try_cases_for_types type_names (bnot one.is_none)
/--
Tries to solve the current goal using a canonical proof of `true`, or the `reflexivity` tactic, or the `contradiction` tactic.
-/
meta def trivial : tactic unit :=
tactic.triv <|> tactic.reflexivity <|> tactic.contradiction <|> fail "trivial tactic failed"
/--
Closes the main goal using `sorry`.
-/
meta def admit : tactic unit := tactic.admit
/--
Closes the main goal using `sorry`.
-/
meta def «sorry» : tactic unit := tactic.admit
/--
The contradiction tactic attempts to find in the current local context a hypothesis that is equivalent to an empty inductive type (e.g. `false`), a hypothesis of the form `c_1 ... = c_2 ...` where `c_1` and `c_2` are distinct constructors, or two contradictory hypotheses.
-/
meta def contradiction : tactic unit :=
tactic.contradiction
/--
`iterate { t }` repeatedly applies tactic `t` until `t` fails. `iterate { t }` always succeeds.
`iterate n { t }` applies `t` `n` times.
-/
meta def iterate (n : parse small_nat?) (t : itactic) : tactic unit :=
match n with
| none := tactic.iterate' t
| some n := iterate_exactly' n t
end
/--
`repeat { t }` applies `t` to each goal. If the application succeeds,
the tactic is applied recursively to all the generated subgoals until it eventually fails.
The recursion stops in a subgoal when the tactic has failed to make progress.
The tactic `repeat { t }` never fails.
-/
meta def repeat : itactic → tactic unit :=
tactic.repeat
/--
`try { t }` tries to apply tactic `t`, but succeeds whether or not `t` succeeds.
-/
meta def try : itactic → tactic unit :=
tactic.try
/--
A do-nothing tactic that always succeeds.
-/
meta def skip : tactic unit :=
tactic.skip
/--
`solve1 { t }` applies the tactic `t` to the main goal and fails if it is not solved.
-/
meta def solve1 : itactic → tactic unit :=
tactic.solve1
/--
`abstract id { t }` tries to use tactic `t` to solve the main goal. If it succeeds, it abstracts the goal as an independent definition or theorem with name `id`. If `id` is omitted, a name is generated automatically.
-/
meta def abstract (id : parse ident?) (tac : itactic) : tactic unit :=
tactic.abstract tac id
/--
`all_goals { t }` applies the tactic `t` to every goal, and succeeds if each application succeeds.
-/
meta def all_goals : itactic → tactic unit :=
tactic.all_goals'
/--
`any_goals { t }` applies the tactic `t` to every goal, and succeeds if at least one application succeeds.
-/
meta def any_goals : itactic → tactic unit :=
tactic.any_goals'
/--
`focus { t }` temporarily hides all goals other than the first, applies `t`, and then restores the other goals. It fails if there are no goals.
-/
meta def focus (tac : itactic) : tactic unit :=
tactic.focus1 tac
private meta def assume_core (n : name) (ty : pexpr) :=
do t ← target,
when (not $ t.is_pi ∨ t.is_let) whnf_target,
t ← target,
when (not $ t.is_pi ∨ t.is_let) $
fail "assume tactic failed, Pi/let expression expected",
ty ← i_to_expr ty,
unify ty t.binding_domain,
intro_core n >> skip
/--
Assuming the target of the goal is a Pi or a let, `assume h : t` unifies the type of the binder with `t` and introduces it with name `h`, just like `intro h`. If `h` is absent, the tactic uses the name `this`. If `t` is omitted, it will be inferred.
`assume (h₁ : t₁) ... (hₙ : tₙ)` introduces multiple hypotheses. Any of the types may be omitted, but the names must be present.
-/
meta def «assume» : parse (sum.inl <$> (tk ":" *> texpr) <|> sum.inr <$> parse_binders tac_rbp) → tactic unit
| (sum.inl ty) := assume_core `this ty
| (sum.inr binders) :=
binders.mmap' $ λ b, assume_core b.local_pp_name b.local_type
/--
`have h : t := p` adds the hypothesis `h : t` to the current goal if `p` a term of type `t`. If `t` is omitted, it will be inferred.
`have h : t` adds the hypothesis `h : t` to the current goal and opens a new subgoal with target `t`. The new subgoal becomes the main goal. If `t` is omitted, it will be replaced by a fresh metavariable.
If `h` is omitted, the name `this` is used.
-/
meta def «have» (h : parse ident?) (q₁ : parse (tk ":" *> texpr)?) (q₂ : parse $ (tk ":=" *> texpr)?) : tactic unit :=
let h := h.get_or_else `this in
match q₁, q₂ with
| some e, some p := do
t ← i_to_expr e,
v ← i_to_expr ``(%%p : %%t),
tactic.assertv h t v
| none, some p := do
p ← i_to_expr p,
tactic.note h none p
| some e, none := i_to_expr e >>= tactic.assert h
| none, none := do
u ← mk_meta_univ,
e ← mk_meta_var (sort u),
tactic.assert h e
end >> skip
/--
`let h : t := p` adds the hypothesis `h : t := p` to the current goal if `p` a term of type `t`. If `t` is omitted, it will be inferred.
`let h : t` adds the hypothesis `h : t := ?M` to the current goal and opens a new subgoal `?M : t`. The new subgoal becomes the main goal. If `t` is omitted, it will be replaced by a fresh metavariable.
If `h` is omitted, the name `this` is used.
-/
meta def «let» (h : parse ident?) (q₁ : parse (tk ":" *> texpr)?) (q₂ : parse $ (tk ":=" *> texpr)?) : tactic unit :=
let h := h.get_or_else `this in
match q₁, q₂ with
| some e, some p := do
t ← i_to_expr e,
v ← i_to_expr ``(%%p : %%t),
tactic.definev h t v
| none, some p := do
p ← i_to_expr p,
tactic.pose h none p
| some e, none := i_to_expr e >>= tactic.define h
| none, none := do
u ← mk_meta_univ,
e ← mk_meta_var (sort u),
tactic.define h e
end >> skip
/--
`suffices h : t` is the same as `have h : t, tactic.swap`. In other words, it adds the hypothesis `h : t` to the current goal and opens a new subgoal with target `t`.
-/
meta def «suffices» (h : parse ident?) (t : parse (tk ":" *> texpr)?) : tactic unit :=
«have» h t none >> tactic.swap
/--
This tactic displays the current state in the tracing buffer.
-/
meta def trace_state : tactic unit :=
tactic.trace_state
/--
`trace a` displays `a` in the tracing buffer.
-/
meta def trace {α : Type} [has_to_tactic_format α] (a : α) : tactic unit :=
tactic.trace a
/--
`existsi e` will instantiate an existential quantifier in the target with `e` and leave the instantiated body as the new target. More generally, it applies to any inductive type with one constructor and at least two arguments, applying the constructor with `e` as the first argument and leaving the remaining arguments as goals.
`existsi [e₁, ..., eₙ]` iteratively does the same for each expression in the list.
-/
meta def existsi : parse pexpr_list_or_texpr → tactic unit
| [] := return ()
| (p::ps) := i_to_expr p >>= tactic.existsi >> existsi ps
/--
This tactic applies to a goal such that its conclusion is an inductive type (say `I`). It tries to apply each constructor of `I` until it succeeds.
-/
meta def constructor : tactic unit :=
concat_tags tactic.constructor
/--
Similar to `constructor`, but only non-dependent premises are added as new goals.
-/
meta def econstructor : tactic unit :=
concat_tags tactic.econstructor
/--
Applies the first constructor when the type of the target is an inductive data type with two constructors.
-/
meta def left : tactic unit :=
concat_tags tactic.left
/--
Applies the second constructor when the type of the target is an inductive data type with two constructors.
-/
meta def right : tactic unit :=
concat_tags tactic.right
/--
Applies the constructor when the type of the target is an inductive data type with one constructor.
-/
meta def split : tactic unit :=
concat_tags tactic.split
private meta def constructor_matching_aux (ps : list pattern) : tactic unit :=
do t ← target, ps.mfirst (λ p, match_pattern p t), constructor
meta def constructor_matching (rec : parse $ (tk "*")?) (ps : parse pexpr_list_or_texpr) : tactic unit :=
do ps ← ps.mmap pexpr_to_pattern,
if rec.is_none then constructor_matching_aux ps
else tactic.focus1 $ tactic.repeat $ constructor_matching_aux ps
/--
Replaces the target of the main goal by `false`.
-/
meta def exfalso : tactic unit :=
tactic.exfalso
/--
The `injection` tactic is based on the fact that constructors of inductive data types are injections. That means that if `c` is a constructor of an inductive datatype, and if `(c t₁)` and `(c t₂)` are two terms that are equal then `t₁` and `t₂` are equal too.
If `q` is a proof of a statement of conclusion `t₁ = t₂`, then injection applies injectivity to derive the equality of all arguments of `t₁` and `t₂` placed in the same positions. For example, from `(a::b) = (c::d)` we derive `a=c` and `b=d`. To use this tactic `t₁` and `t₂` should be constructor applications of the same constructor.
Given `h : a::b = c::d`, the tactic `injection h` adds two new hypothesis with types `a = c` and `b = d` to the main goal. The tactic `injection h with h₁ h₂` uses the names `h₁` and `h₂` to name the new hypotheses.
-/
meta def injection (q : parse texpr) (hs : parse with_ident_list) : tactic unit :=
do e ← i_to_expr q, tactic.injection_with e hs, try assumption
/--
`injections with h₁ ... hₙ` iteratively applies `injection` to hypotheses using the names `h₁ ... hₙ`.
-/
meta def injections (hs : parse with_ident_list) : tactic unit :=
do tactic.injections_with hs, try assumption
end interactive
meta structure simp_config_ext extends simp_config :=
(discharger : tactic unit := failed)
section mk_simp_set
open expr interactive.types
@[derive has_reflect]
meta inductive simp_arg_type : Type
| all_hyps : simp_arg_type
| except : name → simp_arg_type
| expr : pexpr → simp_arg_type
| symm_expr : pexpr → simp_arg_type
meta instance simp_arg_type_to_tactic_format : has_to_tactic_format simp_arg_type :=
⟨λ a, match a with
| simp_arg_type.all_hyps := pure "*"
| (simp_arg_type.except n) := pure format!"-{n}"
| (simp_arg_type.expr e) := i_to_expr_no_subgoals e >>= pp
| (simp_arg_type.symm_expr e) := ((++) "←") <$> (i_to_expr_no_subgoals e >>= pp)
end⟩
meta def simp_arg : parser simp_arg_type :=
(tk "*" *> return simp_arg_type.all_hyps) <|>
(tk "-" *> simp_arg_type.except <$> ident) <|>
(tk "<-" *> simp_arg_type.symm_expr <$> texpr) <|>
(simp_arg_type.expr <$> texpr)
meta def simp_arg_list : parser (list simp_arg_type) :=
(tk "*" *> return [simp_arg_type.all_hyps]) <|> list_of simp_arg <|> return []
private meta def resolve_exception_ids (all_hyps : bool) : list name → list name → list name → tactic (list name × list name)
| [] gex hex := return (gex.reverse, hex.reverse)
| (id::ids) gex hex := do
p ← resolve_name id,
let e := p.erase_annotations.get_app_fn.erase_annotations,
match e with
| const n _ := resolve_exception_ids ids (n::gex) hex
| local_const n _ _ _ := when (not all_hyps) (fail $ sformat! "invalid local exception {id}, '*' was not used") >>
resolve_exception_ids ids gex (n::hex)
| _ := fail $ sformat! "invalid exception {id}, unknown identifier"
end
/-- Decode a list of `simp_arg_type` into lists for each type.
This is a backwards-compatibility version of `decode_simp_arg_list_with_symm`.
This version fails when an argument of the form `simp_arg_type.symm_expr`
is included, so that `simp`-like tactics that do not (yet) support backwards rewriting
should properly report an error but function normally on other inputs.
-/
meta def decode_simp_arg_list (hs : list simp_arg_type) : tactic $ list pexpr × list name × list name × bool :=
do
(hs, ex, all) ← hs.mfoldl
(λ (r : (list pexpr × list name × bool)) h, do
let (es, ex, all) := r,
match h with
| simp_arg_type.all_hyps := pure (es, ex, tt)
| simp_arg_type.except id := pure (es, id::ex, all)
| simp_arg_type.expr e := pure (e::es, ex, all)
| simp_arg_type.symm_expr _ := fail "arguments of the form '←...' are not supported"
end)
([], [], ff),
(gex, hex) ← resolve_exception_ids all ex [] [],
return (hs.reverse, gex, hex, all)
/-- Decode a list of `simp_arg_type` into lists for each type.
This is the newer version of `decode_simp_arg_list`,
and has a new name for backwards compatibility.
This version indicates the direction of a `simp` lemma by including a `bool` with the `pexpr`.
-/
meta def decode_simp_arg_list_with_symm (hs : list simp_arg_type) : tactic $ list (pexpr × bool) × list name × list name × bool :=
do
let (hs, ex, all) := hs.foldl
(λ r h,
match r, h with
| (es, ex, all), simp_arg_type.all_hyps := (es, ex, tt)
| (es, ex, all), simp_arg_type.except id := (es, id::ex, all)
| (es, ex, all), simp_arg_type.expr e := ((e, ff)::es, ex, all)
| (es, ex, all), simp_arg_type.symm_expr e := ((e, tt)::es, ex, all)
end)
([], [], ff),
(gex, hex) ← resolve_exception_ids all ex [] [],
return (hs.reverse, gex, hex, all)
private meta def add_simps : simp_lemmas → list (name × bool) → tactic simp_lemmas
| s [] := return s
| s (n::ns) := do s' ← s.add_simp n.fst n.snd, add_simps s' ns
private meta def report_invalid_simp_lemma {α : Type} (n : name): tactic α :=
fail format!"invalid simplification lemma '{n}' (use command 'set_option trace.simp_lemmas true' for more details)"
private meta def check_no_overload (p : pexpr) : tactic unit :=
when p.is_choice_macro $
match p with
| macro _ ps :=
fail $ to_fmt "ambiguous overload, possible interpretations" ++
format.join (ps.map (λ p, (to_fmt p).indent 4))
| _ := failed
end
private meta def simp_lemmas.resolve_and_add (s : simp_lemmas) (u : list name) (n : name) (ref : pexpr) (symm : bool) :
tactic (simp_lemmas × list name) :=
do
p ← resolve_name n,
check_no_overload p,
-- unpack local refs
let e := p.erase_annotations.get_app_fn.erase_annotations,
match e with
| const n _ :=
(do b ← is_valid_simp_lemma_cnst n, guard b, save_const_type_info n ref, s ← s.add_simp n symm, return (s, u))
<|>
(do eqns ← get_eqn_lemmas_for tt n,
guard (eqns.length > 0),
save_const_type_info n ref,
s ← add_simps s (eqns.map (λ e, (e, ff))),
return (s, u))
<|>
(do env ← get_env, guard (env.is_projection n).is_some, return (s, n::u))
<|>
report_invalid_simp_lemma n
| _ :=
(do e ← i_to_expr_no_subgoals p, b ← is_valid_simp_lemma e, guard b, try (save_type_info e ref), s ← s.add e symm, return (s, u))
<|>
report_invalid_simp_lemma n
end
private meta def simp_lemmas.add_pexpr (s : simp_lemmas) (u : list name) (p : pexpr) (symm : bool) :
tactic (simp_lemmas × list name) :=
match p with
| (const c []) := simp_lemmas.resolve_and_add s u c p symm
| (local_const c _ _ _) := simp_lemmas.resolve_and_add s u c p symm
| _ := do new_e ← i_to_expr_no_subgoals p,
s ← s.add new_e symm,
return (s, u)
end
private meta def simp_lemmas.append_pexprs :
simp_lemmas → list name → list (pexpr × bool) → tactic (simp_lemmas × list name)
| s u [] := return (s, u)
| s u (l::ls) := do
(s, u) ← simp_lemmas.add_pexpr s u l.fst l.snd,
simp_lemmas.append_pexprs s u ls
meta def mk_simp_set_core (no_dflt : bool) (attr_names : list name) (hs : list simp_arg_type) (at_star : bool)
: tactic (bool × simp_lemmas × list name) :=
do (hs, gex, hex, all_hyps) ← decode_simp_arg_list_with_symm hs,
when (all_hyps ∧ at_star ∧ not hex.empty) $ fail "A tactic of the form `simp [*, -h] at *` is currently not supported",
s ← join_user_simp_lemmas no_dflt attr_names,
-- Erase `h` from the default simp set for calls of the form `simp [←h]`.
let to_erase := hs.foldl (λ l h, match h with
| (const id _, tt) := id :: l
| (local_const id _ _ _, tt) := id :: l
| _ := l
end ) [],
let s := s.erase to_erase,
(s, u) ← simp_lemmas.append_pexprs s [] hs,
s ← if not at_star ∧ all_hyps then do
ctx ← collect_ctx_simps,
let ctx := ctx.filter (λ h, h.local_uniq_name ∉ hex), -- remove local exceptions
s.append ctx
else return s,
-- add equational lemmas, if any
gex ← gex.mmap (λ n, list.cons n <$> get_eqn_lemmas_for tt n),
return (all_hyps, simp_lemmas.erase s $ gex.join, u)
meta def mk_simp_set (no_dflt : bool) (attr_names : list name) (hs : list simp_arg_type) : tactic (simp_lemmas × list name) :=
prod.snd <$> (mk_simp_set_core no_dflt attr_names hs ff)
end mk_simp_set
namespace interactive
open interactive interactive.types expr
meta def simp_core_aux (cfg : simp_config) (discharger : tactic unit) (s : simp_lemmas) (u : list name) (hs : list expr) (tgt : bool) : tactic unit :=
do to_remove ← hs.mfilter $ λ h, do {
h_type ← infer_type h,
(do (new_h_type, pr) ← simplify s u h_type cfg `eq discharger,
assert h.local_pp_name new_h_type,
mk_eq_mp pr h >>= tactic.exact >> return tt)
<|>
(return ff) },
goal_simplified ← if tgt then (simp_target s u cfg discharger >> return tt) <|> (return ff) else return ff,
guard (cfg.fail_if_unchanged = ff ∨ to_remove.length > 0 ∨ goal_simplified) <|> fail "simplify tactic failed to simplify",
to_remove.mmap' (λ h, try (clear h))
meta def simp_core (cfg : simp_config) (discharger : tactic unit)
(no_dflt : bool) (hs : list simp_arg_type) (attr_names : list name)
(locat : loc) : tactic unit :=
match locat with
| loc.wildcard := do (all_hyps, s, u) ← mk_simp_set_core no_dflt attr_names hs tt,
if all_hyps then tactic.simp_all s u cfg discharger
else do hyps ← non_dep_prop_hyps, simp_core_aux cfg discharger s u hyps tt
| _ := do (s, u) ← mk_simp_set no_dflt attr_names hs,
ns ← locat.get_locals,
simp_core_aux cfg discharger s u ns locat.include_goal
end
>> try tactic.triv >> try (tactic.reflexivity reducible)
/--
The `simp` tactic uses lemmas and hypotheses to simplify the main goal target or non-dependent hypotheses. It has many variants.
`simp` simplifies the main goal target using lemmas tagged with the attribute `[simp]`.
`simp [h₁ h₂ ... hₙ]` simplifies the main goal target using the lemmas tagged with the attribute `[simp]` and the given `hᵢ`'s, where the `hᵢ`'s are expressions. If `hᵢ` is preceded by left arrow (`←` or `<-`), the simplification is performed in the reverse direction. If an `hᵢ` is a defined constant `f`, then the equational lemmas associated with `f` are used. This provides a convenient way to unfold `f`.
`simp [*]` simplifies the main goal target using the lemmas tagged with the attribute `[simp]` and all hypotheses.
`simp *` is a shorthand for `simp [*]`.
`simp only [h₁ h₂ ... hₙ]` is like `simp [h₁ h₂ ... hₙ]` but does not use `[simp]` lemmas
`simp [-id_1, ... -id_n]` simplifies the main goal target using the lemmas tagged with the attribute `[simp]`, but removes the ones named `idᵢ`.
`simp at h₁ h₂ ... hₙ` simplifies the non-dependent hypotheses `h₁ : T₁` ... `hₙ : Tₙ`. The tactic fails if the target or another hypothesis depends on one of them. The token `⊢` or `|-` can be added to the list to include the target.
`simp at *` simplifies all the hypotheses and the target.
`simp * at *` simplifies target and all (non-dependent propositional) hypotheses using the other hypotheses.
`simp with attr₁ ... attrₙ` simplifies the main goal target using the lemmas tagged with any of the attributes `[attr₁]`, ..., `[attrₙ]` or `[simp]`.
-/
meta def simp (use_iota_eqn : parse $ (tk "!")?) (no_dflt : parse only_flag) (hs : parse simp_arg_list) (attr_names : parse with_ident_list)
(locat : parse location) (cfg : simp_config_ext := {}) : tactic unit :=
let cfg := if use_iota_eqn.is_none then cfg else {iota_eqn := tt, ..cfg} in
propagate_tags (simp_core cfg.to_simp_config cfg.discharger no_dflt hs attr_names locat)
/--
Just construct the simp set and trace it. Used for debugging.
-/
meta def trace_simp_set (no_dflt : parse only_flag) (hs : parse simp_arg_list) (attr_names : parse with_ident_list) : tactic unit :=
do (s, _) ← mk_simp_set no_dflt attr_names hs,
s.pp >>= trace
/--
`simp_intros h₁ h₂ ... hₙ` is similar to `intros h₁ h₂ ... hₙ` except that each hypothesis is simplified as it is introduced, and each introduced hypothesis is used to simplify later ones and the final target.
As with `simp`, a list of simplification lemmas can be provided. The modifiers `only` and `with` behave as with `simp`.
-/
meta def simp_intros (ids : parse ident_*) (no_dflt : parse only_flag) (hs : parse simp_arg_list) (attr_names : parse with_ident_list)
(cfg : simp_intros_config := {}) : tactic unit :=
do (s, u) ← mk_simp_set no_dflt attr_names hs,
when (¬u.empty) (fail (sformat! "simp_intros tactic does not support {u}")),
tactic.simp_intros s u ids cfg,
try triv >> try (reflexivity reducible)
private meta def to_simp_arg_list (symms : list bool) (es : list pexpr) : list simp_arg_type :=
(symms.zip es).map (λ ⟨s, e⟩, if s then simp_arg_type.symm_expr e else simp_arg_type.expr e)
/--
`dsimp` is similar to `simp`, except that it only uses definitional equalities.
-/
meta def dsimp (no_dflt : parse only_flag) (es : parse simp_arg_list) (attr_names : parse with_ident_list)
(l : parse location) (cfg : dsimp_config := {}) : tactic unit :=
do (s, u) ← mk_simp_set no_dflt attr_names es,
match l with
| loc.wildcard :=
/- Remark: we cannot revert frozen local instances.
We disable zeta expansion because to prevent `intron n` from failing.
Another option is to put a "marker" at the current target, and
implement `intro_upto_marker`. -/
do n ← revert_all,
dsimp_target s u {zeta := ff ..cfg},
intron n
| _ := l.apply (λ h, dsimp_hyp h s u cfg) (dsimp_target s u cfg)
end
/--
This tactic applies to a goal whose target has the form `t ~ u` where `~` is a reflexive relation, that is, a relation which has a reflexivity lemma tagged with the attribute `[refl]`. The tactic checks whether `t` and `u` are definitionally equal and then solves the goal.
-/
meta def reflexivity : tactic unit :=
tactic.reflexivity
/--
Shorter name for the tactic `reflexivity`.
-/
meta def refl : tactic unit :=
tactic.reflexivity
/--
This tactic applies to a goal whose target has the form `t ~ u` where `~` is a symmetric relation, that is, a relation which has a symmetry lemma tagged with the attribute `[symm]`. It replaces the target with `u ~ t`.
-/
meta def symmetry : tactic unit :=
tactic.symmetry
/--
This tactic applies to a goal whose target has the form `t ~ u` where `~` is a transitive relation, that is, a relation which has a transitivity lemma tagged with the attribute `[trans]`.
`transitivity s` replaces the goal with the two subgoals `t ~ s` and `s ~ u`. If `s` is omitted, then a metavariable is used instead.
-/
meta def transitivity (q : parse texpr?) : tactic unit :=
tactic.transitivity >> match q with
| none := skip
| some q :=
do (r, lhs, rhs) ← target_lhs_rhs,
i_to_expr q >>= unify rhs
end
/--
Proves a goal with target `s = t` when `s` and `t` are equal up to the associativity and commutativity of their binary operations.
-/
meta def ac_reflexivity : tactic unit :=
tactic.ac_refl
/--
An abbreviation for `ac_reflexivity`.
-/
meta def ac_refl : tactic unit :=
tactic.ac_refl
/--
Tries to prove the main goal using congruence closure.
-/
meta def cc : tactic unit :=
tactic.cc
/--
Given hypothesis `h : x = t` or `h : t = x`, where `x` is a local constant, `subst h` substitutes `x` by `t` everywhere in the main goal and then clears `h`.
-/
meta def subst (q : parse texpr) : tactic unit :=
i_to_expr q >>= tactic.subst >> try (tactic.reflexivity reducible)
/--
Apply `subst` to all hypotheses of the form `h : x = t` or `h : t = x`.
-/
meta def subst_vars : tactic unit :=
tactic.subst_vars
/--
`clear h₁ ... hₙ` tries to clear each hypothesis `hᵢ` from the local context.
-/
meta def clear : parse ident* → tactic unit :=
tactic.clear_lst
private meta def to_qualified_name_core : name → list name → tactic name
| n [] := fail $ "unknown declaration '" ++ to_string n ++ "'"
| n (ns::nss) := do
curr ← return $ ns ++ n,
env ← get_env,
if env.contains curr then return curr
else to_qualified_name_core n nss
private meta def to_qualified_name (n : name) : tactic name :=
do env ← get_env,
if env.contains n then return n
else do
ns ← open_namespaces,
to_qualified_name_core n ns
private meta def to_qualified_names : list name → tactic (list name)
| [] := return []
| (c::cs) := do new_c ← to_qualified_name c, new_cs ← to_qualified_names cs, return (new_c::new_cs)
/--
Similar to `unfold`, but only uses definitional equalities.
-/
meta def dunfold (cs : parse ident*) (l : parse location) (cfg : dunfold_config := {}) : tactic unit :=
match l with
| (loc.wildcard) := do ls ← tactic.local_context,
n ← revert_lst ls,
new_cs ← to_qualified_names cs,
dunfold_target new_cs cfg,
intron n
| _ := do new_cs ← to_qualified_names cs, l.apply (λ h, dunfold_hyp cs h cfg) (dunfold_target new_cs cfg)
end
private meta def delta_hyps : list name → list name → tactic unit
| cs [] := skip
| cs (h::hs) := get_local h >>= delta_hyp cs >> delta_hyps cs hs
/--
Similar to `dunfold`, but performs a raw delta reduction, rather than using an equation associated with the defined constants.
-/
meta def delta : parse ident* → parse location → tactic unit
| cs (loc.wildcard) := do ls ← tactic.local_context,
n ← revert_lst ls,
new_cs ← to_qualified_names cs,
delta_target new_cs,
intron n
| cs l := do new_cs ← to_qualified_names cs, l.apply (delta_hyp new_cs) (delta_target new_cs)
private meta def unfold_projs_hyps (cfg : unfold_proj_config := {}) (hs : list name) : tactic bool :=
hs.mfoldl (λ r h, do h ← get_local h, (unfold_projs_hyp h cfg >> return tt) <|> return r) ff
/--
This tactic unfolds all structure projections.
-/
meta def unfold_projs (l : parse location) (cfg : unfold_proj_config := {}) : tactic unit :=
match l with
| loc.wildcard := do ls ← local_context,
b₁ ← unfold_projs_hyps cfg (ls.map expr.local_pp_name),
b₂ ← (tactic.unfold_projs_target cfg >> return tt) <|> return ff,
when (not b₁ ∧ not b₂) (fail "unfold_projs failed to simplify")
| _ :=
l.try_apply (λ h, unfold_projs_hyp h cfg)
(tactic.unfold_projs_target cfg) <|> fail "unfold_projs failed to simplify"
end
end interactive
meta def ids_to_simp_arg_list (tac_name : name) (cs : list name) : tactic (list simp_arg_type) :=
cs.mmap $ λ c, do
n ← resolve_name c,
hs ← get_eqn_lemmas_for ff n.const_name,
env ← get_env,
let p := env.is_projection n.const_name,
when (hs.empty ∧ p.is_none) (fail (sformat! "{tac_name} tactic failed, {c} does not have equational lemmas nor is a projection")),
return $ simp_arg_type.expr (expr.const c [])
structure unfold_config extends simp_config :=
(zeta := ff)
(proj := ff)
(eta := ff)
(canonize_instances := ff)
(constructor_eq := ff)
namespace interactive
open interactive interactive.types expr
/--
Given defined constants `e₁ ... eₙ`, `unfold e₁ ... eₙ` iteratively unfolds all occurrences in the target of the main goal, using equational lemmas associated with the definitions.
As with `simp`, the `at` modifier can be used to specify locations for the unfolding.
-/
meta def unfold (cs : parse ident*) (locat : parse location) (cfg : unfold_config := {}) : tactic unit :=
do es ← ids_to_simp_arg_list "unfold" cs,
let no_dflt := tt,
simp_core cfg.to_simp_config failed no_dflt es [] locat
/--
Similar to `unfold`, but does not iterate the unfolding.
-/
meta def unfold1 (cs : parse ident*) (locat : parse location) (cfg : unfold_config := {single_pass := tt}) : tactic unit :=
unfold cs locat cfg
/--
If the target of the main goal is an `opt_param`, assigns the default value.
-/
meta def apply_opt_param : tactic unit :=
tactic.apply_opt_param
/--
If the target of the main goal is an `auto_param`, executes the associated tactic.
-/
meta def apply_auto_param : tactic unit :=
tactic.apply_auto_param
/--
Fails if the given tactic succeeds.
-/
meta def fail_if_success (tac : itactic) : tactic unit :=
tactic.fail_if_success tac
/--
Succeeds if the given tactic fails.
-/
meta def success_if_fail (tac : itactic) : tactic unit :=
tactic.success_if_fail tac
meta def guard_expr_eq (t : expr) (p : parse $ tk ":=" *> texpr) : tactic unit :=
do e ← to_expr p, guard (alpha_eqv t e)
/--
`guard_target t` fails if the target of the main goal is not `t`.
We use this tactic for writing tests.
-/
meta def guard_target (p : parse texpr) : tactic unit :=
do t ← target, guard_expr_eq t p
/--
`guard_hyp h := t` fails if the hypothesis `h` does not have type `t`.
We use this tactic for writing tests.
-/
meta def guard_hyp (n : parse ident) (p : parse $ tk ":=" *> texpr) : tactic unit :=
do h ← get_local n >>= infer_type, guard_expr_eq h p
/--
`match_target t` fails if target does not match pattern `t`.
-/
meta def match_target (t : parse texpr) (m := reducible) : tactic unit :=
tactic.match_target t m >> skip
/--
`by_cases (h :)? p` splits the main goal into two cases, assuming `h : p` in the first branch, and `h : ¬ p` in the second branch.
This tactic requires that `p` is decidable. To ensure that all propositions are decidable via classical reasoning, use `local attribute [instance] classical.prop_decidable`.
-/
meta def by_cases : parse cases_arg_p → tactic unit
| (n, q) := concat_tags $ do
p ← tactic.to_expr_strict q,
tactic.by_cases p (n.get_or_else `h),
pos_g :: neg_g :: rest ← get_goals,
return [(`pos, pos_g), (`neg, neg_g)]
/--
Apply function extensionality and introduce new hypotheses.
The tactic `funext` will keep applying new the `funext` lemma until the goal target is not reducible to
```
|- ((fun x, ...) = (fun x, ...))
```
The variant `funext h₁ ... hₙ` applies `funext` `n` times, and uses the given identifiers to name the new hypotheses.
-/
meta def funext : parse ident_* → tactic unit
| [] := tactic.funext >> skip
| hs := funext_lst hs >> skip
/--
If the target of the main goal is a proposition `p`, `by_contradiction h` reduces the goal to proving `false` using the additional hypothesis `h : ¬ p`. If `h` is omitted, a name is generated automatically.
This tactic requires that `p` is decidable. To ensure that all propositions are decidable via classical reasoning, use `local attribute [instance] classical.prop_decidable`.
-/
meta def by_contradiction (n : parse ident?) : tactic unit :=
tactic.by_contradiction n >> return ()
/--
An abbreviation for `by_contradiction`.
-/
meta def by_contra (n : parse ident?) : tactic unit :=
by_contradiction n
/--
Type check the given expression, and trace its type.
-/
meta def type_check (p : parse texpr) : tactic unit :=
do e ← to_expr p, tactic.type_check e, infer_type e >>= trace
/--
Fail if there are unsolved goals.
-/
meta def done : tactic unit :=
tactic.done
private meta def show_aux (p : pexpr) : list expr → list expr → tactic unit
| [] r := fail "show tactic failed"
| (g::gs) r := do
do {set_goals [g], g_ty ← target, ty ← i_to_expr p, unify g_ty ty, set_goals (g :: r.reverse ++ gs), tactic.change ty}
<|>
show_aux gs (g::r)
/--
`show t` finds the first goal whose target unifies with `t`. It makes that the main goal, performs the unification, and replaces the target with the unified version of `t`.
-/
meta def «show» (q : parse texpr) : tactic unit :=
do gs ← get_goals,
show_aux q gs []
/--
The tactic `specialize h a₁ ... aₙ` works on local hypothesis `h`. The premises of this hypothesis, either universal quantifications or non-dependent implications, are instantiated by concrete terms coming either from arguments `a₁` ... `aₙ`. The tactic adds a new hypothesis with the same name `h := h a₁ ... aₙ` and tries to clear the previous one.
-/
meta def specialize (p : parse texpr) : tactic unit :=
do e ← i_to_expr p,
let h := expr.get_app_fn e,
if h.is_local_constant
then tactic.note h.local_pp_name none e >> try (tactic.clear h)
else tactic.fail "specialize requires a term of the form `h x_1 .. x_n` where `h` appears in the local context"
meta def congr := tactic.congr
end interactive
end tactic
section add_interactive
open tactic
/- See add_interactive -/
private meta def add_interactive_aux (new_namespace : name) : list name → command
| [] := return ()
| (n::ns) := do
env ← get_env,
d_name ← resolve_constant n,
(declaration.defn _ ls ty val hints trusted) ← env.get d_name,
(name.mk_string h _) ← return d_name,
let new_name := new_namespace <.> h,
add_decl (declaration.defn new_name ls ty (expr.const d_name (ls.map level.param)) hints trusted),
do {
doc ← doc_string d_name,
add_doc_string new_name doc
} <|> skip,
add_interactive_aux ns
/--
Copy a list of meta definitions in the current namespace to tactic.interactive.
This command is useful when we want to update tactic.interactive without closing the current namespace.
-/
meta def add_interactive (ns : list name) (p : name := `tactic.interactive) : command :=
add_interactive_aux p ns
meta def has_dup : tactic bool :=
do ctx ← local_context,
let p : name_set × bool :=
ctx.foldl (λ ⟨s, r⟩ h,
if r then (s, r)
else if s.contains h.local_pp_name then (s, tt)
else (s.insert h.local_pp_name, ff))
(mk_name_set, ff),
return p.2
/--
Renames hypotheses with the same name.
-/
meta def dedup : tactic unit :=
mwhen has_dup $ do
ctx ← local_context,
n ← revert_lst ctx,
intron n
end add_interactive
namespace tactic
/- Helper tactic for `mk_inj_eq -/
protected meta def apply_inj_lemma : tactic unit :=
do h ← intro `h,
some (lhs, rhs) ← expr.is_eq <$> infer_type h,
(expr.const C _) ← return lhs.get_app_fn,
-- We disable auto_param and opt_param support to address issue #1943
applyc (name.mk_string "inj" C) {auto_param := ff, opt_param := ff},
assumption
/- Auxiliary tactic for proving `I.C.inj_eq` lemmas.
These lemmas are automatically generated by the equation compiler.
Example:
```
list.cons.inj_eq : forall h1 h2 t1 t2, (h1::t1 = h2::t2) = (h1 = h2 ∧ t1 = t2) :=
by mk_inj_eq
```
-/
meta def mk_inj_eq : tactic unit :=
`[
intros,
/-
We use `_root_.*` in the following tactics because
names are resolved at tactic execution time in interactive mode.
See PR #1913
TODO(Leo): This is probably not the only instance of this problem.
`[ ... ] blocks are convenient to use because they allow us to use the interactive
mode to write non interactive tactics.
One potential fix for this issue is to resolve names in `[ ... ] at tactic
compilation time.
After this issue is fixed, we should remove the `_root_.*` workaround.
-/
apply _root_.propext,
apply _root_.iff.intro,
{ tactic.apply_inj_lemma },
{ intro _, try { cases_matching* _ ∧ _ }, refl <|> { congr; { assumption <|> subst_vars } } }
]
end tactic
/- Define inj_eq lemmas for inductive datatypes that were declared before `mk_inj_eq` -/
universes u v
lemma sum.inl.inj_eq {α : Type u} (β : Type v) (a₁ a₂ : α) : (@sum.inl α β a₁ = sum.inl a₂) = (a₁ = a₂) :=
by tactic.mk_inj_eq
lemma sum.inr.inj_eq (α : Type u) {β : Type v} (b₁ b₂ : β) : (@sum.inr α β b₁ = sum.inr b₂) = (b₁ = b₂) :=
by tactic.mk_inj_eq
lemma psum.inl.inj_eq {α : Sort u} (β : Sort v) (a₁ a₂ : α) : (@psum.inl α β a₁ = psum.inl a₂) = (a₁ = a₂) :=
by tactic.mk_inj_eq
lemma psum.inr.inj_eq (α : Sort u) {β : Sort v} (b₁ b₂ : β) : (@psum.inr α β b₁ = psum.inr b₂) = (b₁ = b₂) :=
by tactic.mk_inj_eq
lemma sigma.mk.inj_eq {α : Type u} {β : α → Type v} (a₁ : α) (b₁ : β a₁) (a₂ : α) (b₂ : β a₂) : (sigma.mk a₁ b₁ = sigma.mk a₂ b₂) = (a₁ = a₂ ∧ b₁ == b₂) :=
by tactic.mk_inj_eq
lemma psigma.mk.inj_eq {α : Sort u} {β : α → Sort v} (a₁ : α) (b₁ : β a₁) (a₂ : α) (b₂ : β a₂) : (psigma.mk a₁ b₁ = psigma.mk a₂ b₂) = (a₁ = a₂ ∧ b₁ == b₂) :=
by tactic.mk_inj_eq
lemma subtype.mk.inj_eq {α : Sort u} {p : α → Prop} (a₁ : α) (h₁ : p a₁) (a₂ : α) (h₂ : p a₂) : (subtype.mk a₁ h₁ = subtype.mk a₂ h₂) = (a₁ = a₂) :=
by tactic.mk_inj_eq
lemma option.some.inj_eq {α : Type u} (a₁ a₂ : α) : (some a₁ = some a₂) = (a₁ = a₂) :=
by tactic.mk_inj_eq
lemma list.cons.inj_eq {α : Type u} (h₁ : α) (t₁ : list α) (h₂ : α) (t₂ : list α) : (list.cons h₁ t₁ = list.cons h₂ t₂) = (h₁ = h₂ ∧ t₁ = t₂) :=
by tactic.mk_inj_eq
lemma nat.succ.inj_eq (n₁ n₂ : nat) : (nat.succ n₁ = nat.succ n₂) = (n₁ = n₂) :=
by tactic.mk_inj_eq
|
579f5eca31ae6e9d697bbe6b5ed732868d7a6867
|
d406927ab5617694ec9ea7001f101b7c9e3d9702
|
/src/set_theory/game/nim.lean
|
64a8e2d3059891eb9f046c4aeecdcbd5d1bcbfb9
|
[
"Apache-2.0"
] |
permissive
|
alreadydone/mathlib
|
dc0be621c6c8208c581f5170a8216c5ba6721927
|
c982179ec21091d3e102d8a5d9f5fe06c8fafb73
|
refs/heads/master
| 1,685,523,275,196
| 1,670,184,141,000
| 1,670,184,141,000
| 287,574,545
| 0
| 0
|
Apache-2.0
| 1,670,290,714,000
| 1,597,421,623,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 15,728
|
lean
|
/-
Copyright (c) 2020 Fox Thomson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Fox Thomson, Markus Himmel
-/
import data.nat.bitwise
import set_theory.game.birthday
import set_theory.game.impartial
/-!
# Nim and the Sprague-Grundy theorem
This file contains the definition for nim for any ordinal `o`. In the game of `nim o₁` both players
may move to `nim o₂` for any `o₂ < o₁`.
We also define a Grundy value for an impartial game `G` and prove the Sprague-Grundy theorem, that
`G` is equivalent to `nim (grundy_value G)`.
Finally, we compute the sum of finite Grundy numbers: if `G` and `H` have Grundy values `n` and `m`,
where `n` and `m` are natural numbers, then `G + H` has the Grundy value `n xor m`.
## Implementation details
The pen-and-paper definition of nim defines the possible moves of `nim o` to be `set.Iio o`.
However, this definition does not work for us because it would make the type of nim
`ordinal.{u} → pgame.{u + 1}`, which would make it impossible for us to state the Sprague-Grundy
theorem, since that requires the type of `nim` to be `ordinal.{u} → pgame.{u}`. For this reason, we
instead use `o.out.α` for the possible moves. You can use `to_left_moves_nim` and
`to_right_moves_nim` to convert an ordinal less than `o` into a left or right move of `nim o`, and
vice versa.
-/
noncomputable theory
universe u
open_locale pgame
namespace pgame
/-- The definition of single-heap nim, which can be viewed as a pile of stones where each player can
take a positive number of stones from it on their turn. -/
-- Uses `noncomputable!` to avoid `rec_fn_macro only allowed in meta definitions` VM error
noncomputable! def nim : ordinal.{u} → pgame.{u}
| o₁ :=
let f := λ o₂,
have ordinal.typein o₁.out.r o₂ < o₁ := ordinal.typein_lt_self o₂,
nim (ordinal.typein o₁.out.r o₂)
in ⟨o₁.out.α, o₁.out.α, f, f⟩
using_well_founded { dec_tac := tactic.assumption }
open ordinal
lemma nim_def (o : ordinal) : nim o = pgame.mk o.out.α o.out.α
(λ o₂, nim (ordinal.typein (<) o₂))
(λ o₂, nim (ordinal.typein (<) o₂)) :=
by { rw nim, refl }
lemma left_moves_nim (o : ordinal) : (nim o).left_moves = o.out.α :=
by { rw nim_def, refl }
lemma right_moves_nim (o : ordinal) : (nim o).right_moves = o.out.α :=
by { rw nim_def, refl }
lemma move_left_nim_heq (o : ordinal) : (nim o).move_left == λ i : o.out.α, nim (typein (<) i) :=
by { rw nim_def, refl }
lemma move_right_nim_heq (o : ordinal) : (nim o).move_right == λ i : o.out.α, nim (typein (<) i) :=
by { rw nim_def, refl }
/-- Turns an ordinal less than `o` into a left move for `nim o` and viceversa. -/
noncomputable def to_left_moves_nim {o : ordinal} : set.Iio o ≃ (nim o).left_moves :=
(enum_iso_out o).to_equiv.trans (equiv.cast (left_moves_nim o).symm)
/-- Turns an ordinal less than `o` into a right move for `nim o` and viceversa. -/
noncomputable def to_right_moves_nim {o : ordinal} : set.Iio o ≃ (nim o).right_moves :=
(enum_iso_out o).to_equiv.trans (equiv.cast (right_moves_nim o).symm)
@[simp] theorem to_left_moves_nim_symm_lt {o : ordinal} (i : (nim o).left_moves) :
↑(to_left_moves_nim.symm i) < o :=
(to_left_moves_nim.symm i).prop
@[simp] theorem to_right_moves_nim_symm_lt {o : ordinal} (i : (nim o).right_moves) :
↑(to_right_moves_nim.symm i) < o :=
(to_right_moves_nim.symm i).prop
@[simp] lemma move_left_nim' {o : ordinal.{u}} (i) :
(nim o).move_left i = nim (to_left_moves_nim.symm i).val :=
(congr_heq (move_left_nim_heq o).symm (cast_heq _ i)).symm
lemma move_left_nim {o : ordinal} (i) :
(nim o).move_left (to_left_moves_nim i) = nim i :=
by simp
@[simp] lemma move_right_nim' {o : ordinal} (i) :
(nim o).move_right i = nim (to_right_moves_nim.symm i).val :=
(congr_heq (move_right_nim_heq o).symm (cast_heq _ i)).symm
lemma move_right_nim {o : ordinal} (i) :
(nim o).move_right (to_right_moves_nim i) = nim i :=
by simp
/-- A recursion principle for left moves of a nim game. -/
@[elab_as_eliminator] def left_moves_nim_rec_on {o : ordinal} {P : (nim o).left_moves → Sort*}
(i : (nim o).left_moves) (H : ∀ a < o, P $ to_left_moves_nim ⟨a, H⟩) : P i :=
by { rw ←to_left_moves_nim.apply_symm_apply i, apply H }
/-- A recursion principle for right moves of a nim game. -/
@[elab_as_eliminator] def right_moves_nim_rec_on {o : ordinal} {P : (nim o).right_moves → Sort*}
(i : (nim o).right_moves) (H : ∀ a < o, P $ to_right_moves_nim ⟨a, H⟩) : P i :=
by { rw ←to_right_moves_nim.apply_symm_apply i, apply H }
instance is_empty_nim_zero_left_moves : is_empty (nim 0).left_moves :=
by { rw nim_def, exact ordinal.is_empty_out_zero }
instance is_empty_nim_zero_right_moves : is_empty (nim 0).right_moves :=
by { rw nim_def, exact ordinal.is_empty_out_zero }
/-- `nim 0` has exactly the same moves as `0`. -/
def nim_zero_relabelling : nim 0 ≡r 0 := relabelling.is_empty _
theorem nim_zero_equiv : nim 0 ≈ 0 := equiv.is_empty _
noncomputable instance unique_nim_one_left_moves : unique (nim 1).left_moves :=
(equiv.cast $ left_moves_nim 1).unique
noncomputable instance unique_nim_one_right_moves : unique (nim 1).right_moves :=
(equiv.cast $ right_moves_nim 1).unique
@[simp] theorem default_nim_one_left_moves_eq :
(default : (nim 1).left_moves) = @to_left_moves_nim 1 ⟨0, zero_lt_one⟩ :=
rfl
@[simp] theorem default_nim_one_right_moves_eq :
(default : (nim 1).right_moves) = @to_right_moves_nim 1 ⟨0, zero_lt_one⟩ :=
rfl
@[simp] theorem to_left_moves_nim_one_symm (i) :
(@to_left_moves_nim 1).symm i = ⟨0, zero_lt_one⟩ :=
by simp
@[simp] theorem to_right_moves_nim_one_symm (i) :
(@to_right_moves_nim 1).symm i = ⟨0, zero_lt_one⟩ :=
by simp
theorem nim_one_move_left (x) : (nim 1).move_left x = nim 0 :=
by simp
theorem nim_one_move_right (x) : (nim 1).move_right x = nim 0 :=
by simp
/-- `nim 1` has exactly the same moves as `star`. -/
def nim_one_relabelling : nim 1 ≡r star :=
begin
rw nim_def,
refine ⟨_, _, λ i, _, λ j, _⟩,
any_goals { dsimp, apply equiv.equiv_of_unique },
all_goals { simp, exact nim_zero_relabelling }
end
theorem nim_one_equiv : nim 1 ≈ star := nim_one_relabelling.equiv
@[simp] lemma nim_birthday (o : ordinal) : (nim o).birthday = o :=
begin
induction o using ordinal.induction with o IH,
rw [nim_def, birthday_def],
dsimp,
rw max_eq_right le_rfl,
convert lsub_typein o,
exact funext (λ i, IH _ (typein_lt_self i))
end
@[simp] lemma neg_nim (o : ordinal) : -nim o = nim o :=
begin
induction o using ordinal.induction with o IH,
rw nim_def, dsimp; congr;
funext i;
exact IH _ (ordinal.typein_lt_self i)
end
instance nim_impartial (o : ordinal) : impartial (nim o) :=
begin
induction o using ordinal.induction with o IH,
rw [impartial_def, neg_nim],
refine ⟨equiv_rfl, λ i, _, λ i, _⟩;
simpa using IH _ (typein_lt_self _)
end
lemma exists_ordinal_move_left_eq {o : ordinal} (i) : ∃ o' < o, (nim o).move_left i = nim o' :=
⟨_, typein_lt_self _, move_left_nim' i⟩
lemma exists_move_left_eq {o o' : ordinal} (h : o' < o) : ∃ i, (nim o).move_left i = nim o' :=
⟨to_left_moves_nim ⟨o', h⟩, by simp⟩
lemma nim_fuzzy_zero_of_ne_zero {o : ordinal} (ho : o ≠ 0) : nim o ‖ 0 :=
begin
rw [impartial.fuzzy_zero_iff_lf, nim_def, lf_zero_le],
rw ←ordinal.pos_iff_ne_zero at ho,
exact ⟨(ordinal.principal_seg_out ho).top, by simp⟩
end
@[simp] lemma nim_add_equiv_zero_iff (o₁ o₂ : ordinal) : nim o₁ + nim o₂ ≈ 0 ↔ o₁ = o₂ :=
begin
split,
{ refine not_imp_not.1 (λ (h : _ ≠ _), (impartial.not_equiv_zero_iff _).2 _),
obtain h | h := h.lt_or_lt,
{ rw [impartial.fuzzy_zero_iff_gf, zero_lf_le, nim_def o₂],
refine ⟨to_left_moves_add (sum.inr _), _⟩,
{ exact (ordinal.principal_seg_out h).top },
{ simpa using (impartial.add_self (nim o₁)).2 } },
{ rw [impartial.fuzzy_zero_iff_gf, zero_lf_le, nim_def o₁],
refine ⟨to_left_moves_add (sum.inl _), _⟩,
{ exact (ordinal.principal_seg_out h).top },
{ simpa using (impartial.add_self (nim o₂)).2 } } },
{ rintro rfl,
exact impartial.add_self (nim o₁) }
end
@[simp] lemma nim_add_fuzzy_zero_iff {o₁ o₂ : ordinal} : nim o₁ + nim o₂ ‖ 0 ↔ o₁ ≠ o₂ :=
by rw [iff_not_comm, impartial.not_fuzzy_zero_iff, nim_add_equiv_zero_iff]
@[simp] lemma nim_equiv_iff_eq {o₁ o₂ : ordinal} : nim o₁ ≈ nim o₂ ↔ o₁ = o₂ :=
by rw [impartial.equiv_iff_add_equiv_zero, nim_add_equiv_zero_iff]
/-- The Grundy value of an impartial game, the ordinal which corresponds to the game of nim that the
game is equivalent to -/
noncomputable def grundy_value : Π (G : pgame.{u}), ordinal.{u}
| G := ordinal.mex.{u u} (λ i, grundy_value (G.move_left i))
using_well_founded { dec_tac := pgame_wf_tac }
lemma grundy_value_eq_mex_left (G : pgame) :
grundy_value G = ordinal.mex.{u u} (λ i, grundy_value (G.move_left i)) :=
by rw grundy_value
/-- The Sprague-Grundy theorem which states that every impartial game is equivalent to a game of
nim, namely the game of nim corresponding to the games Grundy value -/
theorem equiv_nim_grundy_value : ∀ (G : pgame.{u}) [G.impartial], G ≈ nim (grundy_value G)
| G :=
begin
introI hG,
rw [impartial.equiv_iff_add_equiv_zero, ←impartial.forall_left_moves_fuzzy_iff_equiv_zero],
intro i,
apply left_moves_add_cases i,
{ intro i₁,
rw add_move_left_inl,
apply (fuzzy_congr_left (add_congr_left (equiv_nim_grundy_value (G.move_left i₁)).symm)).1,
rw nim_add_fuzzy_zero_iff,
intro heq,
rw [eq_comm, grundy_value_eq_mex_left G] at heq,
have h := ordinal.ne_mex _,
rw heq at h,
exact (h i₁).irrefl },
{ intro i₂,
rw [add_move_left_inr, ←impartial.exists_left_move_equiv_iff_fuzzy_zero],
revert i₂,
rw nim_def,
intro i₂,
have h' : ∃ i : G.left_moves, (grundy_value (G.move_left i)) =
ordinal.typein (quotient.out (grundy_value G)).r i₂,
{ revert i₂,
rw grundy_value_eq_mex_left,
intros i₂,
have hnotin : _ ∉ _ := λ hin, (le_not_le_of_lt (ordinal.typein_lt_self i₂)).2 (cInf_le' hin),
simpa using hnotin},
cases h' with i hi,
use to_left_moves_add (sum.inl i),
rw [add_move_left_inl, move_left_mk],
apply (add_congr_left (equiv_nim_grundy_value (G.move_left i))).trans,
simpa only [hi] using impartial.add_self (nim (grundy_value (G.move_left i))) }
end
using_well_founded { dec_tac := pgame_wf_tac }
lemma grundy_value_eq_iff_equiv_nim {G : pgame} [G.impartial] {o : ordinal} :
grundy_value G = o ↔ G ≈ nim o :=
⟨by { rintro rfl, exact equiv_nim_grundy_value G },
by { intro h, rw ←nim_equiv_iff_eq, exact (equiv_nim_grundy_value G).symm.trans h }⟩
@[simp] lemma nim_grundy_value (o : ordinal.{u}) : grundy_value (nim o) = o :=
grundy_value_eq_iff_equiv_nim.2 pgame.equiv_rfl
lemma grundy_value_eq_iff_equiv (G H : pgame) [G.impartial] [H.impartial] :
grundy_value G = grundy_value H ↔ G ≈ H :=
grundy_value_eq_iff_equiv_nim.trans (equiv_congr_left.1 (equiv_nim_grundy_value H) _).symm
@[simp] lemma grundy_value_zero : grundy_value 0 = 0 :=
grundy_value_eq_iff_equiv_nim.2 nim_zero_equiv.symm
lemma grundy_value_iff_equiv_zero (G : pgame) [G.impartial] : grundy_value G = 0 ↔ G ≈ 0 :=
by rw [←grundy_value_eq_iff_equiv, grundy_value_zero]
@[simp] lemma grundy_value_star : grundy_value star = 1 :=
grundy_value_eq_iff_equiv_nim.2 nim_one_equiv.symm
@[simp] lemma grundy_value_neg (G : pgame) [G.impartial] : grundy_value (-G) = grundy_value G :=
by rw [grundy_value_eq_iff_equiv_nim, neg_equiv_iff, neg_nim, ←grundy_value_eq_iff_equiv_nim]
lemma grundy_value_eq_mex_right : ∀ (G : pgame) [G.impartial],
grundy_value G = ordinal.mex.{u u} (λ i, grundy_value (G.move_right i))
| ⟨l, r, L, R⟩ := begin
introI H,
rw [←grundy_value_neg, grundy_value_eq_mex_left],
congr,
ext i,
haveI : (R i).impartial := @impartial.move_right_impartial ⟨l, r, L, R⟩ _ i,
apply grundy_value_neg
end
@[simp] lemma grundy_value_nim_add_nim (n m : ℕ) :
grundy_value (nim.{u} n + nim.{u} m) = nat.lxor n m :=
begin
induction n using nat.strong_induction_on with n hn generalizing m,
induction m using nat.strong_induction_on with m hm,
rw [grundy_value_eq_mex_left],
-- We want to show that `n xor m` is the smallest unreachable Grundy value. We will do this in two
-- steps:
-- h₀: `n xor m` is not a reachable grundy number.
-- h₁: every Grundy number strictly smaller than `n xor m` is reachable.
have h₀ : ∀ i, grundy_value ((nim n + nim m).move_left i) ≠ (nat.lxor n m : ordinal),
{ -- To show that `n xor m` is unreachable, we show that every move produces a Grundy number
-- different from `n xor m`.
intro i,
-- The move operates either on the left pile or on the right pile.
apply left_moves_add_cases i,
all_goals
{ -- One of the piles is reduced to `k` stones, with `k < n` or `k < m`.
intro a,
obtain ⟨ok, hk, hk'⟩ := exists_ordinal_move_left_eq a,
obtain ⟨k, rfl⟩ := ordinal.lt_omega.1 (lt_trans hk (ordinal.nat_lt_omega _)),
replace hk := ordinal.nat_cast_lt.1 hk,
-- Thus, the problem is reduced to computing the Grundy value of `nim n + nim k` or
-- `nim k + nim m`, both of which can be dealt with using an inductive hypothesis.
simp only [hk', add_move_left_inl, add_move_left_inr, id],
rw hn _ hk <|> rw hm _ hk,
-- But of course xor is injective, so if we change one of the arguments, we will not get the
-- same value again.
intro h,
rw ordinal.nat_cast_inj at h,
try { rw [nat.lxor_comm n k, nat.lxor_comm n m] at h },
exact hk.ne (nat.lxor_left_injective h) } },
have h₁ : ∀ (u : ordinal), u < nat.lxor n m →
u ∈ set.range (λ i, grundy_value ((nim n + nim m).move_left i)),
{ -- Take any natural number `u` less than `n xor m`.
intros ou hu,
obtain ⟨u, rfl⟩ := ordinal.lt_omega.1 (lt_trans hu (ordinal.nat_lt_omega _)),
replace hu := ordinal.nat_cast_lt.1 hu,
-- Our goal is to produce a move that gives the Grundy value `u`.
rw set.mem_range,
-- By a lemma about xor, either `u xor m < n` or `u xor n < m`.
cases nat.lt_lxor_cases hu with h h,
-- Therefore, we can play the corresponding move, and by the inductive hypothesis the new state
-- is `(u xor m) xor m = u` or `n xor (u xor n) = u` as required.
{ obtain ⟨i, hi⟩ := exists_move_left_eq (ordinal.nat_cast_lt.2 h),
refine ⟨to_left_moves_add (sum.inl i), _⟩,
simp only [hi, add_move_left_inl],
rw [hn _ h, nat.lxor_assoc, nat.lxor_self, nat.lxor_zero] },
{ obtain ⟨i, hi⟩ := exists_move_left_eq (ordinal.nat_cast_lt.2 h),
refine ⟨to_left_moves_add (sum.inr i), _⟩,
simp only [hi, add_move_left_inr],
rw [hm _ h, nat.lxor_comm, nat.lxor_assoc, nat.lxor_self, nat.lxor_zero] } },
-- We are done!
apply (ordinal.mex_le_of_ne.{u u} h₀).antisymm,
contrapose! h₁,
exact ⟨_, ⟨h₁, ordinal.mex_not_mem_range _⟩⟩,
end
lemma nim_add_nim_equiv {n m : ℕ} : nim n + nim m ≈ nim (nat.lxor n m) :=
by rw [←grundy_value_eq_iff_equiv_nim, grundy_value_nim_add_nim]
lemma grundy_value_add (G H : pgame) [G.impartial] [H.impartial] {n m : ℕ} (hG : grundy_value G = n)
(hH : grundy_value H = m) : grundy_value (G + H) = nat.lxor n m :=
begin
rw [←nim_grundy_value (nat.lxor n m), grundy_value_eq_iff_equiv],
refine equiv.trans _ nim_add_nim_equiv,
convert add_congr (equiv_nim_grundy_value G) (equiv_nim_grundy_value H);
simp only [hG, hH]
end
end pgame
|
17284f4d016182508d7c88c956d43c5b974bd023
|
8cae430f0a71442d02dbb1cbb14073b31048e4b0
|
/src/data/finset/preimage.lean
|
ba9639d06700d1d2a019b12f43d8af1d4103ee6d
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/mathlib
|
56a2cadd17ac88caf4ece0a775932fa26327ba0e
|
442a83d738cb208d3600056c489be16900ba701d
|
refs/heads/master
| 1,693,584,102,358
| 1,693,471,902,000
| 1,693,471,902,000
| 97,922,418
| 1,595
| 352
|
Apache-2.0
| 1,694,693,445,000
| 1,500,624,130,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 6,193
|
lean
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import data.set.finite
import algebra.big_operators.basic
/-!
# Preimage of a `finset` under an injective map.
> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
> Any changes to this file require a corresponding PR to mathlib4.
-/
open set function
open_locale big_operators
universes u v w x
variables {α : Type u} {β : Type v} {ι : Sort w} {γ : Type x}
namespace finset
section preimage
/-- Preimage of `s : finset β` under a map `f` injective of `f ⁻¹' s` as a `finset`. -/
noncomputable def preimage (s : finset β) (f : α → β)
(hf : set.inj_on f (f ⁻¹' ↑s)) : finset α :=
(s.finite_to_set.preimage hf).to_finset
@[simp] lemma mem_preimage {f : α → β} {s : finset β} {hf : set.inj_on f (f ⁻¹' ↑s)} {x : α} :
x ∈ preimage s f hf ↔ f x ∈ s :=
set.finite.mem_to_finset _
@[simp, norm_cast] lemma coe_preimage {f : α → β} (s : finset β)
(hf : set.inj_on f (f ⁻¹' ↑s)) : (↑(preimage s f hf) : set α) = f ⁻¹' ↑s :=
set.finite.coe_to_finset _
@[simp] lemma preimage_empty {f : α → β} : preimage ∅ f (by simp [inj_on]) = ∅ :=
finset.coe_injective (by simp)
@[simp] lemma preimage_univ {f : α → β} [fintype α] [fintype β] (hf) :
preimage univ f hf = univ :=
finset.coe_injective (by simp)
@[simp] lemma preimage_inter [decidable_eq α] [decidable_eq β] {f : α → β} {s t : finset β}
(hs : set.inj_on f (f ⁻¹' ↑s)) (ht : set.inj_on f (f ⁻¹' ↑t)) :
preimage (s ∩ t) f (λ x₁ hx₁ x₂ hx₂, hs (mem_of_mem_inter_left hx₁) (mem_of_mem_inter_left hx₂))
= preimage s f hs ∩ preimage t f ht :=
finset.coe_injective (by simp)
@[simp] lemma preimage_union [decidable_eq α] [decidable_eq β] {f : α → β} {s t : finset β} (hst) :
preimage (s ∪ t) f hst
= preimage s f (λ x₁ hx₁ x₂ hx₂, hst (mem_union_left _ hx₁) (mem_union_left _ hx₂))
∪ preimage t f (λ x₁ hx₁ x₂ hx₂, hst (mem_union_right _ hx₁) (mem_union_right _ hx₂)) :=
finset.coe_injective (by simp)
@[simp] lemma preimage_compl [decidable_eq α] [decidable_eq β] [fintype α] [fintype β]
{f : α → β} (s : finset β) (hf : function.injective f) :
preimage sᶜ f (hf.inj_on _) = (preimage s f (hf.inj_on _))ᶜ :=
finset.coe_injective (by simp)
lemma monotone_preimage {f : α → β} (h : injective f) :
monotone (λ s, preimage s f (h.inj_on _)) :=
λ s t hst x hx, mem_preimage.2 (hst $ mem_preimage.1 hx)
lemma image_subset_iff_subset_preimage [decidable_eq β] {f : α → β} {s : finset α} {t : finset β}
(hf : set.inj_on f (f ⁻¹' ↑t)) :
s.image f ⊆ t ↔ s ⊆ t.preimage f hf :=
image_subset_iff.trans $ by simp only [subset_iff, mem_preimage]
lemma map_subset_iff_subset_preimage {f : α ↪ β} {s : finset α} {t : finset β} :
s.map f ⊆ t ↔ s ⊆ t.preimage f (f.injective.inj_on _) :=
by classical; rw [map_eq_image, image_subset_iff_subset_preimage]
lemma image_preimage [decidable_eq β] (f : α → β) (s : finset β) [Π x, decidable (x ∈ set.range f)]
(hf : set.inj_on f (f ⁻¹' ↑s)) :
image f (preimage s f hf) = s.filter (λ x, x ∈ set.range f) :=
finset.coe_inj.1 $ by simp only [coe_image, coe_preimage, coe_filter,
set.image_preimage_eq_inter_range, set.sep_mem_eq]
lemma image_preimage_of_bij [decidable_eq β] (f : α → β) (s : finset β)
(hf : set.bij_on f (f ⁻¹' ↑s) ↑s) :
image f (preimage s f hf.inj_on) = s :=
finset.coe_inj.1 $ by simpa using hf.image_eq
lemma preimage_subset {f : α ↪ β} {s : finset β} {t : finset α} (hs : s ⊆ t.map f) :
s.preimage f (f.injective.inj_on _) ⊆ t :=
λ x hx, (mem_map' f).1 (hs (mem_preimage.1 hx))
lemma subset_map_iff {f : α ↪ β} {s : finset β} {t : finset α} :
s ⊆ t.map f ↔ ∃ u ⊆ t, s = u.map f :=
begin
classical,
refine ⟨λ h, ⟨_, preimage_subset h, _⟩, _⟩,
{ rw [map_eq_image, image_preimage, filter_true_of_mem (λ x hx, _)],
exact coe_map_subset_range _ _ (h hx) },
{ rintro ⟨u, hut, rfl⟩,
exact map_subset_map.2 hut }
end
lemma sigma_preimage_mk {β : α → Type*} [decidable_eq α] (s : finset (Σ a, β a)) (t : finset α) :
t.sigma (λ a, s.preimage (sigma.mk a) $ sigma_mk_injective.inj_on _) = s.filter (λ a, a.1 ∈ t) :=
by { ext x, simp [and_comm] }
lemma sigma_preimage_mk_of_subset {β : α → Type*} [decidable_eq α] (s : finset (Σ a, β a))
{t : finset α} (ht : s.image sigma.fst ⊆ t) :
t.sigma (λ a, s.preimage (sigma.mk a) $ sigma_mk_injective.inj_on _) = s :=
by rw [sigma_preimage_mk, filter_true_of_mem $ image_subset_iff.1 ht]
lemma sigma_image_fst_preimage_mk {β : α → Type*} [decidable_eq α] (s : finset (Σ a, β a)) :
(s.image sigma.fst).sigma (λ a, s.preimage (sigma.mk a) $ sigma_mk_injective.inj_on _) = s :=
s.sigma_preimage_mk_of_subset (subset.refl _)
end preimage
@[to_additive]
lemma prod_preimage' [comm_monoid β] (f : α → γ) [decidable_pred $ λ x, x ∈ set.range f]
(s : finset γ) (hf : set.inj_on f (f ⁻¹' ↑s)) (g : γ → β) :
∏ x in s.preimage f hf, g (f x) = ∏ x in s.filter (λ x, x ∈ set.range f), g x :=
by haveI := classical.dec_eq γ;
calc ∏ x in preimage s f hf, g (f x) = ∏ x in image f (preimage s f hf), g x :
eq.symm $ prod_image $ by simpa only [mem_preimage, inj_on] using hf
... = ∏ x in s.filter (λ x, x ∈ set.range f), g x : by rw [image_preimage]
@[to_additive]
lemma prod_preimage [comm_monoid β] (f : α → γ) (s : finset γ)
(hf : set.inj_on f (f ⁻¹' ↑s)) (g : γ → β) (hg : ∀ x ∈ s, x ∉ set.range f → g x = 1) :
∏ x in s.preimage f hf, g (f x) = ∏ x in s, g x :=
by { classical, rw [prod_preimage', prod_filter_of_ne], exact λ x hx, not.imp_symm (hg x hx) }
@[to_additive]
lemma prod_preimage_of_bij [comm_monoid β] (f : α → γ) (s : finset γ)
(hf : set.bij_on f (f ⁻¹' ↑s) ↑s) (g : γ → β) :
∏ x in s.preimage f hf.inj_on, g (f x) = ∏ x in s, g x :=
prod_preimage _ _ hf.inj_on g $ λ x hxs hxf, (hxf $ hf.subset_range hxs).elim
end finset
|
3c0ef3dab26afa3aa28fcdb75ee6a08f7c9af710
|
4727251e0cd73359b15b664c3170e5d754078599
|
/src/order/ideal.lean
|
de3958a8d8b57bd93e426770d8fd07516aff0ef2
|
[
"Apache-2.0"
] |
permissive
|
Vierkantor/mathlib
|
0ea59ac32a3a43c93c44d70f441c4ee810ccceca
|
83bc3b9ce9b13910b57bda6b56222495ebd31c2f
|
refs/heads/master
| 1,658,323,012,449
| 1,652,256,003,000
| 1,652,256,003,000
| 209,296,341
| 0
| 1
|
Apache-2.0
| 1,568,807,655,000
| 1,568,807,655,000
| null |
UTF-8
|
Lean
| false
| false
| 16,297
|
lean
|
/-
Copyright (c) 2020 David Wärn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: David Wärn
-/
import logic.encodable.basic
import order.atoms
import order.upper_lower
/-!
# Order ideals, cofinal sets, and the Rasiowa–Sikorski lemma
## Main definitions
Throughout this file, `P` is at least a preorder, but some sections require more
structure, such as a bottom element, a top element, or a join-semilattice structure.
- `order.ideal P`: the type of nonempty, upward directed, and downward closed subsets of `P`.
Dual to the notion of a filter on a preorder.
- `order.is_ideal P`: a predicate for when a `set P` is an ideal.
- `order.ideal.principal p`: the principal ideal generated by `p : P`.
- `order.ideal.is_proper P`: a predicate for proper ideals.
Dual to the notion of a proper filter.
- `order.ideal.is_maximal`: a predicate for maximal ideals.
Dual to the notion of an ultrafilter.
- `order.cofinal P`: the type of subsets of `P` containing arbitrarily large elements.
Dual to the notion of 'dense set' used in forcing.
- `order.ideal_of_cofinals p 𝒟`, where `p : P`, and `𝒟` is a countable family of cofinal
subsets of P: an ideal in `P` which contains `p` and intersects every set in `𝒟`. (This a form
of the Rasiowa–Sikorski lemma.)
## References
- <https://en.wikipedia.org/wiki/Ideal_(order_theory)>
- <https://en.wikipedia.org/wiki/Cofinal_(mathematics)>
- <https://en.wikipedia.org/wiki/Rasiowa%E2%80%93Sikorski_lemma>
Note that for the Rasiowa–Sikorski lemma, Wikipedia uses the opposite ordering on `P`,
in line with most presentations of forcing.
## Tags
ideal, cofinal, dense, countable, generic
-/
open function set
namespace order
variables {P : Type*}
/-- An ideal on an order `P` is a subset of `P` that is
- nonempty
- upward directed (any pair of elements in the ideal has an upper bound in the ideal)
- downward closed (any element less than an element of the ideal is in the ideal). -/
structure ideal (P) [has_le P] extends lower_set P :=
(nonempty' : carrier.nonempty)
(directed' : directed_on (≤) carrier)
/-- A subset of a preorder `P` is an ideal if it is
- nonempty
- upward directed (any pair of elements in the ideal has an upper bound in the ideal)
- downward closed (any element less than an element of the ideal is in the ideal). -/
@[mk_iff] structure is_ideal {P} [has_le P] (I : set P) : Prop :=
(is_lower_set : is_lower_set I)
(nonempty : I.nonempty)
(directed : directed_on (≤) I)
/-- Create an element of type `order.ideal` from a set satisfying the predicate
`order.is_ideal`. -/
def is_ideal.to_ideal [has_le P] {I : set P} (h : is_ideal I) : ideal P :=
⟨⟨I, h.is_lower_set⟩, h.nonempty, h.directed⟩
namespace ideal
section has_le
variables [has_le P]
section
variables {I J s t : ideal P} {x y : P}
lemma to_lower_set_injective : injective (to_lower_set : ideal P → lower_set P) :=
λ s t h, by { cases s, cases t, congr' }
instance : set_like (ideal P) P :=
{ coe := λ s, s.carrier,
coe_injective' := λ s t h, to_lower_set_injective $ set_like.coe_injective h }
@[ext] lemma ext {s t : ideal P} : (s : set P) = t → s = t := set_like.ext'
@[simp] lemma carrier_eq_coe (s : ideal P) : s.carrier = s := rfl
@[simp] lemma coe_to_lower_set (s : ideal P) : (s.to_lower_set : set P) = s := rfl
protected lemma lower (s : ideal P) : is_lower_set (s : set P) := s.lower'
protected lemma nonempty (s : ideal P) : (s : set P).nonempty := s.nonempty'
protected lemma directed (s : ideal P) : directed_on (≤) (s : set P) := s.directed'
protected lemma is_ideal (s : ideal P) : is_ideal (s : set P) := ⟨s.lower, s.nonempty, s.directed⟩
lemma mem_compl_of_ge {x y : P} : x ≤ y → x ∈ (I : set P)ᶜ → y ∈ (I : set P)ᶜ := λ h, mt $ I.lower h
/-- The partial ordering by subset inclusion, inherited from `set P`. -/
instance : partial_order (ideal P) := partial_order.lift coe set_like.coe_injective
@[simp] lemma coe_subset_coe : (s : set P) ⊆ t ↔ s ≤ t := iff.rfl
@[simp] lemma coe_ssubset_coe : (s : set P) ⊂ t ↔ s < t := iff.rfl
@[trans] lemma mem_of_mem_of_le {x : P} {I J : ideal P} : x ∈ I → I ≤ J → x ∈ J :=
@set.mem_of_mem_of_subset P x I J
/-- A proper ideal is one that is not the whole set.
Note that the whole set might not be an ideal. -/
@[mk_iff] class is_proper (I : ideal P) : Prop := (ne_univ : (I : set P) ≠ univ)
lemma is_proper_of_not_mem {I : ideal P} {p : P} (nmem : p ∉ I) : is_proper I :=
⟨λ hp, begin
change p ∉ ↑I at nmem,
rw hp at nmem,
exact nmem (mem_univ p),
end⟩
/-- An ideal is maximal if it is maximal in the collection of proper ideals.
Note that `is_coatom` is less general because ideals only have a top element when `P` is directed
and nonempty. -/
@[mk_iff] class is_maximal (I : ideal P) extends is_proper I : Prop :=
(maximal_proper : ∀ ⦃J : ideal P⦄, I < J → (J : set P) = univ)
lemma inter_nonempty [is_directed P (swap (≤))] (I J : ideal P) : (I ∩ J : set P).nonempty :=
begin
obtain ⟨a, ha⟩ := I.nonempty,
obtain ⟨b, hb⟩ := J.nonempty,
obtain ⟨c, hac, hbc⟩ := directed_of (swap (≤)) a b,
exact ⟨c, I.lower hac ha, J.lower hbc hb⟩,
end
end
section directed
variables [is_directed P (≤)] [nonempty P] {I : ideal P}
/-- In a directed and nonempty order, the top ideal of a is `univ`. -/
instance : order_top (ideal P) :=
{ top := ⟨⊤, univ_nonempty, directed_on_univ⟩,
le_top := λ I, le_top }
@[simp] lemma top_to_lower_set : (⊤ : ideal P).to_lower_set = ⊤ := rfl
@[simp] lemma coe_top : ((⊤ : ideal P) : set P) = univ := rfl
lemma is_proper_of_ne_top (ne_top : I ≠ ⊤) : is_proper I := ⟨λ h, ne_top $ ext h⟩
lemma is_proper.ne_top (hI : is_proper I) : I ≠ ⊤ := λ h, is_proper.ne_univ $ congr_arg coe h
lemma _root_.is_coatom.is_proper (hI : is_coatom I) : is_proper I := is_proper_of_ne_top hI.1
lemma is_proper_iff_ne_top : is_proper I ↔ I ≠ ⊤ := ⟨λ h, h.ne_top, λ h, is_proper_of_ne_top h⟩
lemma is_maximal.is_coatom (h : is_maximal I) : is_coatom I :=
⟨is_maximal.to_is_proper.ne_top, λ J h, ext $ is_maximal.maximal_proper h⟩
lemma is_maximal.is_coatom' [is_maximal I] : is_coatom I := is_maximal.is_coatom ‹_›
lemma _root_.is_coatom.is_maximal (hI : is_coatom I) : is_maximal I :=
{ maximal_proper := λ _ _, by simp [hI.2 _ ‹_›],
..is_coatom.is_proper ‹_› }
lemma is_maximal_iff_is_coatom : is_maximal I ↔ is_coatom I := ⟨λ h, h.is_coatom, λ h, h.is_maximal⟩
end directed
section order_bot
variables [order_bot P]
@[simp] lemma bot_mem (s : ideal P) : ⊥ ∈ s := s.lower bot_le s.nonempty.some_mem
end order_bot
section order_top
variables [order_top P] {I : ideal P}
lemma top_of_top_mem (h : ⊤ ∈ I) : I = ⊤ := by { ext, exact iff_of_true (I.lower le_top h) trivial }
lemma is_proper.top_not_mem (hI : is_proper I) : ⊤ ∉ I := λ h, hI.ne_top $ top_of_top_mem h
end order_top
end has_le
section preorder
variables [preorder P]
section
variables {I J : ideal P} {x y : P}
/-- The smallest ideal containing a given element. -/
@[simps] def principal (p : P) : ideal P :=
{ to_lower_set := lower_set.Iic p,
nonempty' := nonempty_Iic,
directed' := λ x hx y hy, ⟨p, le_rfl, hx, hy⟩ }
instance [inhabited P] : inhabited (ideal P) := ⟨ideal.principal default⟩
@[simp] lemma principal_le_iff : principal x ≤ I ↔ x ∈ I :=
⟨λ h, h le_rfl, λ hx y hy, I.lower hy hx⟩
@[simp] lemma mem_principal : x ∈ principal y ↔ x ≤ y := iff.rfl
end
section order_bot
variables [order_bot P]
/-- There is a bottom ideal when `P` has a bottom element. -/
instance : order_bot (ideal P) :=
{ bot := principal ⊥,
bot_le := by simp }
@[simp] lemma principal_bot : principal (⊥ : P) = ⊥ := rfl
end order_bot
section order_top
variables [order_top P]
@[simp] lemma principal_top : principal (⊤ : P) = ⊤ := to_lower_set_injective $ lower_set.Iic_top
end order_top
end preorder
section semilattice_sup
variables [semilattice_sup P] {x y : P} {I s : ideal P}
/-- A specific witness of `I.directed` when `P` has joins. -/
lemma sup_mem (hx : x ∈ s) (hy : y ∈ s) : x ⊔ y ∈ s :=
let ⟨z, hz, hx, hy⟩ := s.directed x hx y hy in s.lower (sup_le hx hy) hz
@[simp] lemma sup_mem_iff : x ⊔ y ∈ I ↔ x ∈ I ∧ y ∈ I :=
⟨λ h, ⟨I.lower le_sup_left h, I.lower le_sup_right h⟩, λ h, sup_mem h.1 h.2⟩
end semilattice_sup
section semilattice_sup_directed
variables [semilattice_sup P] [is_directed P (swap (≤))] {x : P} {I J K s t : ideal P}
/-- The infimum of two ideals of a co-directed order is their intersection. -/
instance : has_inf (ideal P) :=
⟨λ I J, { to_lower_set := I.to_lower_set ⊓ J.to_lower_set,
nonempty' := inter_nonempty I J,
directed' := λ x hx y hy, ⟨x ⊔ y, ⟨sup_mem hx.1 hy.1, sup_mem hx.2 hy.2⟩, by simp⟩ }⟩
/-- The supremum of two ideals of a co-directed order is the union of the down sets of the pointwise
supremum of `I` and `J`. -/
instance : has_sup (ideal P) :=
⟨λ I J, { carrier := {x | ∃ (i ∈ I) (j ∈ J), x ≤ i ⊔ j},
nonempty' := by { cases inter_nonempty I J, exact ⟨w, w, h.1, w, h.2, le_sup_left⟩ },
directed' := λ x ⟨xi, _, xj, _, _⟩ y ⟨yi, _, yj, _, _⟩,
⟨x ⊔ y,
⟨xi ⊔ yi, sup_mem ‹_› ‹_›,
xj ⊔ yj, sup_mem ‹_› ‹_›,
sup_le
(calc x ≤ xi ⊔ xj : ‹_›
... ≤ (xi ⊔ yi) ⊔ (xj ⊔ yj) : sup_le_sup le_sup_left le_sup_left)
(calc y ≤ yi ⊔ yj : ‹_›
... ≤ (xi ⊔ yi) ⊔ (xj ⊔ yj) : sup_le_sup le_sup_right le_sup_right)⟩,
le_sup_left, le_sup_right⟩,
lower' := λ x y h ⟨yi, _, yj, _, _⟩, ⟨yi, ‹_›, yj, ‹_›, h.trans ‹_›⟩ }⟩
instance : lattice (ideal P) :=
{ sup := (⊔),
le_sup_left := λ I J (i ∈ I), by { cases J.nonempty, exact ⟨i, ‹_›, w, ‹_›, le_sup_left⟩ },
le_sup_right := λ I J (j ∈ J), by { cases I.nonempty, exact ⟨w, ‹_›, j, ‹_›, le_sup_right⟩ },
sup_le := λ I J K hIK hJK a ⟨i, hi, j, hj, ha⟩,
K.lower ha $ sup_mem (mem_of_mem_of_le hi hIK) (mem_of_mem_of_le hj hJK),
inf := (⊓),
inf_le_left := λ I J, inter_subset_left I J,
inf_le_right := λ I J, inter_subset_right I J,
le_inf := λ I J K, subset_inter,
.. ideal.partial_order }
@[simp] lemma coe_sup : ↑(s ⊔ t) = {x | ∃ (a ∈ s) (b ∈ t), x ≤ a ⊔ b} := rfl
@[simp] lemma coe_inf : (↑(s ⊓ t) : set P) = s ∩ t := rfl
@[simp] lemma mem_inf : x ∈ I ⊓ J ↔ x ∈ I ∧ x ∈ J := iff.rfl
@[simp] lemma mem_sup : x ∈ I ⊔ J ↔ ∃ (i ∈ I) (j ∈ J), x ≤ i ⊔ j := iff.rfl
lemma lt_sup_principal_of_not_mem (hx : x ∉ I) : I < I ⊔ principal x :=
le_sup_left.lt_of_ne $ λ h, hx $ by simpa only [left_eq_sup, principal_le_iff] using h
end semilattice_sup_directed
section semilattice_sup_order_bot
variables [semilattice_sup P] [order_bot P] {x : P} {I J K : ideal P}
instance : has_Inf (ideal P) :=
⟨λ S, { to_lower_set := ⨅ s ∈ S, to_lower_set s,
nonempty' := ⟨⊥, begin
rw [lower_set.carrier_eq_coe, lower_set.coe_infi₂, set.mem_Inter₂],
exact λ s _, s.bot_mem,
end⟩,
directed' := λ a ha b hb, ⟨a ⊔ b, ⟨
begin
rw [lower_set.carrier_eq_coe, lower_set.coe_infi₂, set.mem_Inter₂] at ⊢ ha hb,
exact λ s hs, sup_mem (ha _ hs) (hb _ hs),
end,
le_sup_left, le_sup_right⟩⟩ }⟩
variables {S : set (ideal P)}
@[simp] lemma coe_Inf : (↑(Inf S) : set P) = ⋂ s ∈ S, ↑s := lower_set.coe_infi₂ _
@[simp] lemma mem_Inf : x ∈ Inf S ↔ ∀ s ∈ S, x ∈ s :=
by simp_rw [←set_like.mem_coe, coe_Inf, mem_Inter₂]
instance : complete_lattice (ideal P) :=
{ ..ideal.lattice,
..complete_lattice_of_Inf (ideal P) (λ S, begin
refine ⟨λ s hs, _, λ s hs, by rwa [←coe_subset_coe, coe_Inf, subset_Inter₂_iff]⟩,
rw [←coe_subset_coe, coe_Inf],
exact bInter_subset_of_mem hs,
end) }
end semilattice_sup_order_bot
section distrib_lattice
variables [distrib_lattice P]
variables {I J : ideal P}
lemma eq_sup_of_le_sup {x i j: P} (hi : i ∈ I) (hj : j ∈ J) (hx : x ≤ i ⊔ j) :
∃ (i' ∈ I) (j' ∈ J), x = i' ⊔ j' :=
begin
refine ⟨x ⊓ i, I.lower inf_le_right hi, x ⊓ j, J.lower inf_le_right hj, _⟩,
calc
x = x ⊓ (i ⊔ j) : left_eq_inf.mpr hx
... = (x ⊓ i) ⊔ (x ⊓ j) : inf_sup_left,
end
lemma coe_sup_eq : ↑(I ⊔ J) = {x | ∃ i ∈ I, ∃ j ∈ J, x = i ⊔ j} :=
set.ext $ λ _, ⟨λ ⟨_, _, _, _, _⟩, eq_sup_of_le_sup ‹_› ‹_› ‹_›,
λ ⟨i, _, j, _, _⟩, ⟨i, ‹_›, j, ‹_›, le_of_eq ‹_›⟩⟩
end distrib_lattice
section boolean_algebra
variables [boolean_algebra P] {x : P} {I : ideal P}
lemma is_proper.not_mem_of_compl_mem (hI : is_proper I) (hxc : xᶜ ∈ I) : x ∉ I :=
begin
intro hx,
apply hI.top_not_mem,
have ht : x ⊔ xᶜ ∈ I := sup_mem ‹_› ‹_›,
rwa sup_compl_eq_top at ht,
end
lemma is_proper.not_mem_or_compl_not_mem (hI : is_proper I) : x ∉ I ∨ xᶜ ∉ I :=
have h : xᶜ ∈ I → x ∉ I := hI.not_mem_of_compl_mem, by tauto
end boolean_algebra
end ideal
/-- For a preorder `P`, `cofinal P` is the type of subsets of `P`
containing arbitrarily large elements. They are the dense sets in
the topology whose open sets are terminal segments. -/
structure cofinal (P) [preorder P] :=
(carrier : set P)
(mem_gt : ∀ x : P, ∃ y ∈ carrier, x ≤ y)
namespace cofinal
variables [preorder P]
instance : inhabited (cofinal P) :=
⟨{ carrier := univ, mem_gt := λ x, ⟨x, trivial, le_rfl⟩ }⟩
instance : has_mem P (cofinal P) := ⟨λ x D, x ∈ D.carrier⟩
variables (D : cofinal P) (x : P)
/-- A (noncomputable) element of a cofinal set lying above a given element. -/
noncomputable def above : P := classical.some $ D.mem_gt x
lemma above_mem : D.above x ∈ D :=
exists.elim (classical.some_spec $ D.mem_gt x) $ λ a _, a
lemma le_above : x ≤ D.above x :=
exists.elim (classical.some_spec $ D.mem_gt x) $ λ _ b, b
end cofinal
section ideal_of_cofinals
variables [preorder P] (p : P) {ι : Type*} [encodable ι] (𝒟 : ι → cofinal P)
/-- Given a starting point, and a countable family of cofinal sets,
this is an increasing sequence that intersects each cofinal set. -/
noncomputable def sequence_of_cofinals : ℕ → P
| 0 := p
| (n+1) := match encodable.decode ι n with
| none := sequence_of_cofinals n
| some i := (𝒟 i).above (sequence_of_cofinals n)
end
lemma sequence_of_cofinals.monotone : monotone (sequence_of_cofinals p 𝒟) :=
by { apply monotone_nat_of_le_succ, intros n, dunfold sequence_of_cofinals,
cases encodable.decode ι n, { refl }, { apply cofinal.le_above }, }
lemma sequence_of_cofinals.encode_mem (i : ι) :
sequence_of_cofinals p 𝒟 (encodable.encode i + 1) ∈ 𝒟 i :=
by { dunfold sequence_of_cofinals, rw encodable.encodek, apply cofinal.above_mem, }
/-- Given an element `p : P` and a family `𝒟` of cofinal subsets of a preorder `P`,
indexed by a countable type, `ideal_of_cofinals p 𝒟` is an ideal in `P` which
- contains `p`, according to `mem_ideal_of_cofinals p 𝒟`, and
- intersects every set in `𝒟`, according to `cofinal_meets_ideal_of_cofinals p 𝒟`.
This proves the Rasiowa–Sikorski lemma. -/
def ideal_of_cofinals : ideal P :=
{ carrier := { x : P | ∃ n, x ≤ sequence_of_cofinals p 𝒟 n },
lower' := λ x y hxy ⟨n, hn⟩, ⟨n, le_trans hxy hn⟩,
nonempty' := ⟨p, 0, le_rfl⟩,
directed' := λ x ⟨n, hn⟩ y ⟨m, hm⟩,
⟨_, ⟨max n m, le_rfl⟩,
le_trans hn $ sequence_of_cofinals.monotone p 𝒟 (le_max_left _ _),
le_trans hm $ sequence_of_cofinals.monotone p 𝒟 (le_max_right _ _) ⟩ }
lemma mem_ideal_of_cofinals : p ∈ ideal_of_cofinals p 𝒟 := ⟨0, le_rfl⟩
/-- `ideal_of_cofinals p 𝒟` is `𝒟`-generic. -/
lemma cofinal_meets_ideal_of_cofinals (i : ι) : ∃ x : P, x ∈ 𝒟 i ∧ x ∈ ideal_of_cofinals p 𝒟 :=
⟨_, sequence_of_cofinals.encode_mem p 𝒟 i, _, le_rfl⟩
end ideal_of_cofinals
end order
|
af2f9cb7b2281193a4faf9b0c910e59f795d3940
|
bbecf0f1968d1fba4124103e4f6b55251d08e9c4
|
/src/geometry/manifold/bump_function.lean
|
ce7319a03ac66f0241604d286f4085dfea3b3df1
|
[
"Apache-2.0"
] |
permissive
|
waynemunro/mathlib
|
e3fd4ff49f4cb43d4a8ded59d17be407bc5ee552
|
065a70810b5480d584033f7bbf8e0409480c2118
|
refs/heads/master
| 1,693,417,182,397
| 1,634,644,781,000
| 1,634,644,781,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 14,458
|
lean
|
/-
Copyright (c) 2021 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov
-/
import analysis.calculus.specific_functions
import geometry.manifold.diffeomorph
import geometry.manifold.instances.real
/-!
# Smooth bump functions on a smooth manifold
In this file we define `smooth_bump_function I c` to be a bundled smooth "bump" function centered at
`c`. It is a structure that consists of two real numbers `0 < r < R` with small enough `R`. We
define a coercion to function for this type, and for `f : smooth_bump_function I c`, the function
`⇑f` written in the extended chart at `c` has the following properties:
* `f x = 1` in the closed euclidean ball of radius `f.r` centered at `c`;
* `f x = 0` outside of the euclidean ball of radius `f.R` centered at `c`;
* `0 ≤ f x ≤ 1` for all `x`.
The actual statements involve (pre)images under `ext_chart_at I f` and are given as lemmas in the
`smooth_bump_function` namespace.
## Tags
manifold, smooth bump function
-/
universes uE uF uH uM
variables
{E : Type uE} [normed_group E] [normed_space ℝ E] [finite_dimensional ℝ E]
{H : Type uH} [topological_space H] (I : model_with_corners ℝ E H)
{M : Type uM} [topological_space M] [charted_space H M] [smooth_manifold_with_corners I M]
open function filter finite_dimensional set
open_locale topological_space manifold classical filter big_operators
noncomputable theory
/-!
### Smooth bump function
In this section we define a structure for a bundled smooth bump function and prove its properties.
-/
/-- Given a smooth manifold modelled on a finite dimensional space `E`,
`f : smooth_bump_function I M` is a smooth function on `M` such that in the extended chart `e` at
`f.c`:
* `f x = 1` in the closed euclidean ball of radius `f.r` centered at `f.c`;
* `f x = 0` outside of the euclidean ball of radius `f.R` centered at `f.c`;
* `0 ≤ f x ≤ 1` for all `x`.
The structure contains data required to construct a function with these properties. The function is
available as `⇑f` or `f x`. Formal statements of the properties listed above involve some
(pre)images under `ext_chart_at I f.c` and are given as lemmas in the `smooth_bump_function`
namespace. -/
structure smooth_bump_function (c : M) extends times_cont_diff_bump (ext_chart_at I c c) :=
(closed_ball_subset :
(euclidean.closed_ball (ext_chart_at I c c) R) ∩ range I ⊆ (ext_chart_at I c).target)
variable {M}
namespace smooth_bump_function
open euclidean (renaming dist -> eudist)
variables {c : M} (f : smooth_bump_function I c) {x : M} {I}
/-- The function defined by `f : smooth_bump_function c`. Use automatic coercion to function
instead. -/
def to_fun : M → ℝ :=
indicator (chart_at H c).source (f.to_times_cont_diff_bump ∘ ext_chart_at I c)
instance : has_coe_to_fun (smooth_bump_function I c) := ⟨_, to_fun⟩
lemma coe_def :
⇑f = indicator (chart_at H c).source (f.to_times_cont_diff_bump ∘ ext_chart_at I c) :=
rfl
lemma R_pos : 0 < f.R := f.to_times_cont_diff_bump.R_pos
lemma ball_subset :
ball (ext_chart_at I c c) f.R ∩ range I ⊆ (ext_chart_at I c).target :=
subset.trans (inter_subset_inter_left _ ball_subset_closed_ball) f.closed_ball_subset
lemma eq_on_source :
eq_on f (f.to_times_cont_diff_bump ∘ ext_chart_at I c) (chart_at H c).source :=
eq_on_indicator
lemma eventually_eq_of_mem_source (hx : x ∈ (chart_at H c).source) :
f =ᶠ[𝓝 x] f.to_times_cont_diff_bump ∘ ext_chart_at I c :=
f.eq_on_source.eventually_eq_of_mem $ is_open.mem_nhds (chart_at H c).open_source hx
lemma one_of_dist_le (hs : x ∈ (chart_at H c).source)
(hd : eudist (ext_chart_at I c x) (ext_chart_at I c c) ≤ f.r) :
f x = 1 :=
by simp only [f.eq_on_source hs, (∘), f.to_times_cont_diff_bump.one_of_mem_closed_ball hd]
lemma support_eq_inter_preimage :
support f =
(chart_at H c).source ∩ (ext_chart_at I c ⁻¹' ball (ext_chart_at I c c) f.R) :=
by rw [coe_def, support_indicator, (∘), support_comp_eq_preimage, ← ext_chart_at_source I,
← (ext_chart_at I c).symm_image_target_inter_eq',
← (ext_chart_at I c).symm_image_target_inter_eq', f.to_times_cont_diff_bump.support_eq]
lemma open_support : is_open (support f) :=
by { rw support_eq_inter_preimage, exact ext_chart_preimage_open_of_open I c is_open_ball }
lemma support_eq_symm_image :
support f = (ext_chart_at I c).symm '' (ball (ext_chart_at I c c) f.R ∩ range I) :=
begin
rw [f.support_eq_inter_preimage, ← ext_chart_at_source I,
← (ext_chart_at I c).symm_image_target_inter_eq', inter_comm],
congr' 1 with y,
exact and.congr_right_iff.2
(λ hy, ⟨λ h, ext_chart_at_target_subset_range _ _ h, λ h, f.ball_subset ⟨hy, h⟩⟩)
end
lemma support_subset_source : support f ⊆ (chart_at H c).source :=
by { rw [f.support_eq_inter_preimage, ← ext_chart_at_source I], exact inter_subset_left _ _ }
lemma image_eq_inter_preimage_of_subset_support {s : set M} (hs : s ⊆ support f) :
ext_chart_at I c '' s =
closed_ball (ext_chart_at I c c) f.R ∩ range I ∩ (ext_chart_at I c).symm ⁻¹' s :=
begin
rw [support_eq_inter_preimage, subset_inter_iff, ← ext_chart_at_source I,
← image_subset_iff] at hs,
cases hs with hse hsf,
apply subset.antisymm,
{ refine subset_inter (subset_inter (subset.trans hsf ball_subset_closed_ball) _) _,
{ rintro _ ⟨x, -, rfl⟩, exact mem_range_self _ },
{ rw [(ext_chart_at I c).image_eq_target_inter_inv_preimage hse],
exact inter_subset_right _ _ } },
{ refine subset.trans (inter_subset_inter_left _ f.closed_ball_subset) _,
rw [(ext_chart_at I c).image_eq_target_inter_inv_preimage hse] }
end
lemma mem_Icc : f x ∈ Icc (0 : ℝ) 1 :=
begin
have : f x = 0 ∨ f x = _, from indicator_eq_zero_or_self _ _ _,
cases this; rw this,
exacts [left_mem_Icc.2 zero_le_one,
⟨f.to_times_cont_diff_bump.nonneg, f.to_times_cont_diff_bump.le_one⟩]
end
lemma nonneg : 0 ≤ f x := f.mem_Icc.1
lemma le_one : f x ≤ 1 := f.mem_Icc.2
lemma eventually_eq_one_of_dist_lt (hs : x ∈ (chart_at H c).source)
(hd : eudist (ext_chart_at I c x) (ext_chart_at I c c) < f.r) :
f =ᶠ[𝓝 x] 1 :=
begin
filter_upwards [is_open.mem_nhds (ext_chart_preimage_open_of_open I c is_open_ball) ⟨hs, hd⟩],
rintro z ⟨hzs, hzd : _ < _⟩,
exact f.one_of_dist_le hzs hzd.le
end
lemma eventually_eq_one : f =ᶠ[𝓝 c] 1 :=
f.eventually_eq_one_of_dist_lt (mem_chart_source _ _) $
by { rw [euclidean.dist, dist_self], exact f.r_pos }
@[simp] lemma eq_one : f c = 1 := f.eventually_eq_one.eq_of_nhds
lemma support_mem_nhds : support f ∈ 𝓝 c :=
f.eventually_eq_one.mono $ λ x hx, by { rw hx, exact one_ne_zero }
lemma closure_support_mem_nhds : closure (support f) ∈ 𝓝 c :=
mem_of_superset f.support_mem_nhds subset_closure
lemma c_mem_support : c ∈ support f := mem_of_mem_nhds f.support_mem_nhds
lemma nonempty_support : (support f).nonempty := ⟨c, f.c_mem_support⟩
lemma compact_symm_image_closed_ball :
is_compact ((ext_chart_at I c).symm '' (closed_ball (ext_chart_at I c c) f.R ∩ range I)) :=
(is_compact_closed_ball.inter_right I.closed_range).image_of_continuous_on $
(ext_chart_at_continuous_on_symm _ _).mono f.closed_ball_subset
/-- Given a smooth bump function `f : smooth_bump_function I c`, the closed ball of radius `f.R` is
known to include the support of `f`. These closed balls (in the model normed space `E`) intersected
with `set.range I` form a basis of `𝓝[range I] (ext_chart_at I c c)`. -/
lemma nhds_within_range_basis :
(𝓝[range I] (ext_chart_at I c c)).has_basis (λ f : smooth_bump_function I c, true)
(λ f, closed_ball (ext_chart_at I c c) f.R ∩ range I) :=
begin
refine ((nhds_within_has_basis euclidean.nhds_basis_closed_ball _).restrict_subset
(ext_chart_at_target_mem_nhds_within _ _)).to_has_basis' _ _,
{ rintro R ⟨hR0, hsub⟩,
exact ⟨⟨⟨⟨R / 2, R, half_pos hR0, half_lt_self hR0⟩⟩, hsub⟩, trivial, subset.rfl⟩ },
{ exact λ f _, inter_mem (mem_nhds_within_of_mem_nhds $ closed_ball_mem_nhds f.R_pos)
self_mem_nhds_within }
end
lemma closed_image_of_closed {s : set M} (hsc : is_closed s) (hs : s ⊆ support f) :
is_closed (ext_chart_at I c '' s) :=
begin
rw f.image_eq_inter_preimage_of_subset_support hs,
refine continuous_on.preimage_closed_of_closed
((ext_chart_continuous_on_symm _ _).mono f.closed_ball_subset) _ hsc,
exact is_closed.inter is_closed_closed_ball I.closed_range
end
/-- If `f` is a smooth bump function and `s` closed subset of the support of `f` (i.e., of the open
ball of radius `f.R`), then there exists `0 < r < f.R` such that `s` is a subset of the open ball of
radius `r`. Formally, `s ⊆ e.source ∩ e ⁻¹' (ball (e c) r)`, where `e = ext_chart_at I c`. -/
lemma exists_r_pos_lt_subset_ball {s : set M} (hsc : is_closed s) (hs : s ⊆ support f) :
∃ r (hr : r ∈ Ioo 0 f.R), s ⊆
(chart_at H c).source ∩ ext_chart_at I c ⁻¹' (ball (ext_chart_at I c c) r) :=
begin
set e := ext_chart_at I c,
have : is_closed (e '' s) := f.closed_image_of_closed hsc hs,
rw [support_eq_inter_preimage, subset_inter_iff, ← image_subset_iff] at hs,
rcases euclidean.exists_pos_lt_subset_ball f.R_pos this hs.2 with ⟨r, hrR, hr⟩,
exact ⟨r, hrR, subset_inter hs.1 (image_subset_iff.1 hr)⟩
end
/-- Replace `r` with another value in the interval `(0, f.R)`. -/
def update_r (r : ℝ) (hr : r ∈ Ioo 0 f.R) : smooth_bump_function I c :=
⟨⟨⟨r, f.R, hr.1, hr.2⟩⟩, f.closed_ball_subset⟩
@[simp] lemma update_r_R {r : ℝ} (hr : r ∈ Ioo 0 f.R) : (f.update_r r hr).R = f.R := rfl
@[simp] lemma update_r_r {r : ℝ} (hr : r ∈ Ioo 0 f.R) : (f.update_r r hr).r = r := rfl
@[simp] lemma support_update_r {r : ℝ} (hr : r ∈ Ioo 0 f.R) :
support (f.update_r r hr) = support f :=
by simp only [support_eq_inter_preimage, update_r_R]
instance : inhabited (smooth_bump_function I c) :=
classical.inhabited_of_nonempty nhds_within_range_basis.nonempty
variables [t2_space M]
lemma closed_symm_image_closed_ball :
is_closed ((ext_chart_at I c).symm '' (closed_ball (ext_chart_at I c c) f.R ∩ range I)) :=
f.compact_symm_image_closed_ball.is_closed
lemma closure_support_subset_symm_image_closed_ball :
closure (support f) ⊆
(ext_chart_at I c).symm '' (closed_ball (ext_chart_at I c c) f.R ∩ range I) :=
begin
rw support_eq_symm_image,
exact closure_minimal (image_subset _ $ inter_subset_inter_left _ ball_subset_closed_ball)
f.closed_symm_image_closed_ball
end
lemma closure_support_subset_ext_chart_at_source :
closure (support f) ⊆ (ext_chart_at I c).source :=
calc closure (support f)
⊆ (ext_chart_at I c).symm '' (closed_ball (ext_chart_at I c c) f.R ∩ range I) :
f.closure_support_subset_symm_image_closed_ball
... ⊆ (ext_chart_at I c).symm '' (ext_chart_at I c).target :
image_subset _ f.closed_ball_subset
... = (ext_chart_at I c).source :
(ext_chart_at I c).symm_image_target_eq_source
lemma closure_support_subset_chart_at_source :
closure (support f) ⊆ (chart_at H c).source :=
by simpa only [ext_chart_at_source] using f.closure_support_subset_ext_chart_at_source
lemma compact_closure_support : is_compact (closure $ support f) :=
compact_of_is_closed_subset f.compact_symm_image_closed_ball is_closed_closure
f.closure_support_subset_symm_image_closed_ball
variables (I c)
/-- The closures of supports of smooth bump functions centered at `c` form a basis of `𝓝 c`.
In other words, each of these closures is a neighborhood of `c` and each neighborhood of `c`
includes `closure (support f)` for some `f : smooth_bump_function I c`. -/
lemma nhds_basis_closure_support :
(𝓝 c).has_basis (λ f : smooth_bump_function I c, true) (λ f, closure $ support f) :=
begin
have : (𝓝 c).has_basis (λ f : smooth_bump_function I c, true)
(λ f, (ext_chart_at I c).symm '' (closed_ball (ext_chart_at I c c) f.R ∩ range I)),
{ rw [← ext_chart_at_symm_map_nhds_within_range I c],
exact nhds_within_range_basis.map _ },
refine this.to_has_basis' (λ f hf, ⟨f, trivial, f.closure_support_subset_symm_image_closed_ball⟩)
(λ f _, f.closure_support_mem_nhds),
end
variable {c}
/-- Given `s ∈ 𝓝 c`, the supports of smooth bump functions `f : smooth_bump_function I c` such that
`closure (support f) ⊆ s` form a basis of `𝓝 c`. In other words, each of these supports is a
neighborhood of `c` and each neighborhood of `c` includes `support f` for some `f :
smooth_bump_function I c` such that `closure (support f) ⊆ s`. -/
lemma nhds_basis_support {s : set M} (hs : s ∈ 𝓝 c) :
(𝓝 c).has_basis (λ f : smooth_bump_function I c, closure (support f) ⊆ s) (λ f, support f) :=
((nhds_basis_closure_support I c).restrict_subset hs).to_has_basis'
(λ f hf, ⟨f, hf.2, subset_closure⟩) (λ f hf, f.support_mem_nhds)
variables [smooth_manifold_with_corners I M] {I}
/-- A smooth bump function is infinitely smooth. -/
protected lemma smooth : smooth I 𝓘(ℝ) f :=
begin
refine times_cont_mdiff_of_support (λ x hx, _),
have : x ∈ (chart_at H c).source := f.closure_support_subset_chart_at_source hx,
refine times_cont_mdiff_at.congr_of_eventually_eq _
(f.eq_on_source.eventually_eq_of_mem $ is_open.mem_nhds (chart_at _ _).open_source this),
exact f.to_times_cont_diff_bump.times_cont_diff_at.times_cont_mdiff_at.comp _
(times_cont_mdiff_at_ext_chart_at' this)
end
protected lemma smooth_at {x} : smooth_at I 𝓘(ℝ) f x := f.smooth.smooth_at
protected lemma continuous : continuous f := f.smooth.continuous
/-- If `f : smooth_bump_function I c` is a smooth bump function and `g : M → G` is a function smooth
on the source of the chart at `c`, then `f • g` is smooth on the whole manifold. -/
lemma smooth_smul {G} [normed_group G] [normed_space ℝ G]
{g : M → G} (hg : smooth_on I 𝓘(ℝ, G) g (chart_at H c).source) :
smooth I 𝓘(ℝ, G) (λ x, f x • g x) :=
begin
apply times_cont_mdiff_of_support (λ x hx, _),
have : x ∈ (chart_at H c).source,
calc x ∈ closure (support (λ x, f x • g x)) : hx
... ⊆ closure (support f) : closure_mono (support_smul_subset_left _ _)
... ⊆ (chart_at _ c).source : f.closure_support_subset_chart_at_source,
exact f.smooth_at.smul ((hg _ this).times_cont_mdiff_at $
is_open.mem_nhds (chart_at _ _).open_source this)
end
end smooth_bump_function
|
80769b50d21b69c0f4f7d941f13e0742431672d1
|
88fb7558b0636ec6b181f2a548ac11ad3919f8a5
|
/tests/lean/run/eval_expr_partial.lean
|
bbdb4ea7b406f88d8df9b3dc0113f04907d6d6d0
|
[
"Apache-2.0"
] |
permissive
|
moritayasuaki/lean
|
9f666c323cb6fa1f31ac597d777914aed41e3b7a
|
ae96ebf6ee953088c235ff7ae0e8c95066ba8001
|
refs/heads/master
| 1,611,135,440,814
| 1,493,852,869,000
| 1,493,852,869,000
| 90,269,903
| 0
| 0
| null | 1,493,906,291,000
| 1,493,906,291,000
| null |
UTF-8
|
Lean
| false
| false
| 74
|
lean
|
open tactic
run_cmd to_expr `(bit0 1) >>= eval_expr nat >>= tactic.trace
|
dd6af782614da4c1c7234e68838ca6490f1af61b
|
74addaa0e41490cbaf2abd313a764c96df57b05d
|
/Mathlib/category_theory/adjunction/basic_auto.lean
|
0f43de2928d20f68518436f4e3cb6c7a5bb72f7f
|
[] |
no_license
|
AurelienSaue/Mathlib4_auto
|
f538cfd0980f65a6361eadea39e6fc639e9dae14
|
590df64109b08190abe22358fabc3eae000943f2
|
refs/heads/master
| 1,683,906,849,776
| 1,622,564,669,000
| 1,622,564,669,000
| 371,723,747
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 23,669
|
lean
|
/-
Copyright (c) 2019 Reid Barton. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Reid Barton, Johan Commelin, Bhavik Mehta
-/
import Mathlib.PrePort
import Mathlib.Lean3Lib.init.default
import Mathlib.category_theory.equivalence
import Mathlib.data.equiv.basic
import Mathlib.PostPort
universes v₁ v₂ u₁ u₂ l u₃ v₃
namespace Mathlib
namespace category_theory
-- declare the `v`'s first; see `category_theory.category` for an explanation
/--
`F ⊣ G` represents the data of an adjunction between two functors
`F : C ⥤ D` and `G : D ⥤ C`. `F` is the left adjoint and `G` is the right adjoint.
To construct an `adjunction` between two functors, it's often easier to instead use the
constructors `mk_of_hom_equiv` or `mk_of_unit_counit`. To construct a left adjoint,
there are also constructors `left_adjoint_of_equiv` and `adjunction_of_equiv_left` (as
well as their duals) which can be simpler in practice.
Uniqueness of adjoints is shown in `category_theory.adjunction.opposites`.
See https://stacks.math.columbia.edu/tag/0037.
-/
structure adjunction {C : Type u₁} [category C] {D : Type u₂} [category D] (F : C ⥤ D) (G : D ⥤ C)
where
hom_equiv : (X : C) → (Y : D) → (functor.obj F X ⟶ Y) ≃ (X ⟶ functor.obj G Y)
unit : 𝟭 ⟶ F ⋙ G
counit : G ⋙ F ⟶ 𝟭
hom_equiv_unit' :
autoParam
(∀ {X : C} {Y : D} {f : functor.obj F X ⟶ Y},
coe_fn (hom_equiv X Y) f = nat_trans.app unit X ≫ functor.map G f)
(Lean.Syntax.ident Lean.SourceInfo.none (String.toSubstring "Mathlib.obviously")
(Lean.Name.mkStr (Lean.Name.mkStr Lean.Name.anonymous "Mathlib") "obviously") [])
hom_equiv_counit' :
autoParam
(∀ {X : C} {Y : D} {g : X ⟶ functor.obj G Y},
coe_fn (equiv.symm (hom_equiv X Y)) g = functor.map F g ≫ nat_trans.app counit Y)
(Lean.Syntax.ident Lean.SourceInfo.none (String.toSubstring "Mathlib.obviously")
(Lean.Name.mkStr (Lean.Name.mkStr Lean.Name.anonymous "Mathlib") "obviously") [])
infixl:15 " ⊣ " => Mathlib.category_theory.adjunction
/-- A class giving a chosen right adjoint to the functor `left`. -/
class is_left_adjoint {C : Type u₁} [category C] {D : Type u₂} [category D] (left : C ⥤ D) where
right : D ⥤ C
adj : left ⊣ right
/-- A class giving a chosen left adjoint to the functor `right`. -/
class is_right_adjoint {C : Type u₁} [category C] {D : Type u₂} [category D] (right : D ⥤ C) where
left : C ⥤ D
adj : left ⊣ right
/-- Extract the left adjoint from the instance giving the chosen adjoint. -/
def left_adjoint {C : Type u₁} [category C] {D : Type u₂} [category D] (R : D ⥤ C)
[is_right_adjoint R] : C ⥤ D :=
is_right_adjoint.left R
/-- Extract the right adjoint from the instance giving the chosen adjoint. -/
def right_adjoint {C : Type u₁} [category C] {D : Type u₂} [category D] (L : C ⥤ D)
[is_left_adjoint L] : D ⥤ C :=
is_left_adjoint.right L
/-- The adjunction associated to a functor known to be a left adjoint. -/
def adjunction.of_left_adjoint {C : Type u₁} [category C] {D : Type u₂} [category D] (left : C ⥤ D)
[is_left_adjoint left] : left ⊣ right_adjoint left :=
is_left_adjoint.adj
/-- The adjunction associated to a functor known to be a right adjoint. -/
def adjunction.of_right_adjoint {C : Type u₁} [category C] {D : Type u₂} [category D]
(right : C ⥤ D) [is_right_adjoint right] : left_adjoint right ⊣ right :=
is_right_adjoint.adj
namespace adjunction
@[simp] theorem hom_equiv_unit {C : Type u₁} [category C] {D : Type u₂} [category D] {F : C ⥤ D}
{G : D ⥤ C} (c : F ⊣ G) {X : C} {Y : D} {f : functor.obj F X ⟶ Y} :
coe_fn (hom_equiv c X Y) f = nat_trans.app (unit c) X ≫ functor.map G f :=
sorry
@[simp] theorem hom_equiv_counit {C : Type u₁} [category C] {D : Type u₂} [category D] {F : C ⥤ D}
{G : D ⥤ C} (c : F ⊣ G) {X : C} {Y : D} {g : X ⟶ functor.obj G Y} :
coe_fn (equiv.symm (hom_equiv c X Y)) g = functor.map F g ≫ nat_trans.app (counit c) Y :=
sorry
@[simp] theorem hom_equiv_naturality_left_symm {C : Type u₁} [category C] {D : Type u₂} [category D]
{F : C ⥤ D} {G : D ⥤ C} (adj : F ⊣ G) {X' : C} {X : C} {Y : D} (f : X' ⟶ X)
(g : X ⟶ functor.obj G Y) :
coe_fn (equiv.symm (hom_equiv adj X' Y)) (f ≫ g) =
functor.map F f ≫ coe_fn (equiv.symm (hom_equiv adj X Y)) g :=
sorry
@[simp] theorem hom_equiv_naturality_left {C : Type u₁} [category C] {D : Type u₂} [category D]
{F : C ⥤ D} {G : D ⥤ C} (adj : F ⊣ G) {X' : C} {X : C} {Y : D} (f : X' ⟶ X)
(g : functor.obj F X ⟶ Y) :
coe_fn (hom_equiv adj X' Y) (functor.map F f ≫ g) = f ≫ coe_fn (hom_equiv adj X Y) g :=
sorry
@[simp] theorem hom_equiv_naturality_right {C : Type u₁} [category C] {D : Type u₂} [category D]
{F : C ⥤ D} {G : D ⥤ C} (adj : F ⊣ G) {X : C} {Y : D} {Y' : D} (f : functor.obj F X ⟶ Y)
(g : Y ⟶ Y') :
coe_fn (hom_equiv adj X Y') (f ≫ g) = coe_fn (hom_equiv adj X Y) f ≫ functor.map G g :=
sorry
@[simp] theorem hom_equiv_naturality_right_symm {C : Type u₁} [category C] {D : Type u₂}
[category D] {F : C ⥤ D} {G : D ⥤ C} (adj : F ⊣ G) {X : C} {Y : D} {Y' : D}
(f : X ⟶ functor.obj G Y) (g : Y ⟶ Y') :
coe_fn (equiv.symm (hom_equiv adj X Y')) (f ≫ functor.map G g) =
coe_fn (equiv.symm (hom_equiv adj X Y)) f ≫ g :=
sorry
@[simp] theorem left_triangle {C : Type u₁} [category C] {D : Type u₂} [category D] {F : C ⥤ D}
{G : D ⥤ C} (adj : F ⊣ G) :
whisker_right (unit adj) F ≫ whisker_left F (counit adj) = nat_trans.id (𝟭 ⋙ F) :=
sorry
@[simp] theorem right_triangle {C : Type u₁} [category C] {D : Type u₂} [category D] {F : C ⥤ D}
{G : D ⥤ C} (adj : F ⊣ G) :
whisker_left G (unit adj) ≫ whisker_right (counit adj) G = nat_trans.id (G ⋙ 𝟭) :=
sorry
@[simp] theorem left_triangle_components_assoc {C : Type u₁} [category C] {D : Type u₂} [category D]
{F : C ⥤ D} {G : D ⥤ C} (adj : F ⊣ G) {X : C} {X' : D}
(f' : functor.obj 𝟭 (functor.obj F X) ⟶ X') :
functor.map F (nat_trans.app (unit adj) X) ≫ nat_trans.app (counit adj) (functor.obj F X) ≫ f' =
f' :=
sorry
@[simp] theorem right_triangle_components {C : Type u₁} [category C] {D : Type u₂} [category D]
{F : C ⥤ D} {G : D ⥤ C} (adj : F ⊣ G) {Y : D} :
nat_trans.app (unit adj) (functor.obj G Y) ≫ functor.map G (nat_trans.app (counit adj) Y) = 𝟙 :=
congr_arg (fun (t : nat_trans (G ⋙ 𝟭) (G ⋙ 𝟭)) => nat_trans.app t Y) (right_triangle adj)
@[simp] theorem counit_naturality {C : Type u₁} [category C] {D : Type u₂} [category D] {F : C ⥤ D}
{G : D ⥤ C} (adj : F ⊣ G) {X : D} {Y : D} (f : X ⟶ Y) :
functor.map F (functor.map G f) ≫ nat_trans.app (counit adj) Y =
nat_trans.app (counit adj) X ≫ f :=
nat_trans.naturality (counit adj) f
@[simp] theorem unit_naturality {C : Type u₁} [category C] {D : Type u₂} [category D] {F : C ⥤ D}
{G : D ⥤ C} (adj : F ⊣ G) {X : C} {Y : C} (f : X ⟶ Y) :
nat_trans.app (unit adj) X ≫ functor.map G (functor.map F f) = f ≫ nat_trans.app (unit adj) Y :=
Eq.symm (nat_trans.naturality (unit adj) f)
theorem hom_equiv_apply_eq {C : Type u₁} [category C] {D : Type u₂} [category D] {F : C ⥤ D}
{G : D ⥤ C} (adj : F ⊣ G) {A : C} {B : D} (f : functor.obj F A ⟶ B) (g : A ⟶ functor.obj G B) :
coe_fn (hom_equiv adj A B) f = g ↔ f = coe_fn (equiv.symm (hom_equiv adj A B)) g :=
sorry
theorem eq_hom_equiv_apply {C : Type u₁} [category C] {D : Type u₂} [category D] {F : C ⥤ D}
{G : D ⥤ C} (adj : F ⊣ G) {A : C} {B : D} (f : functor.obj F A ⟶ B) (g : A ⟶ functor.obj G B) :
g = coe_fn (hom_equiv adj A B) f ↔ coe_fn (equiv.symm (hom_equiv adj A B)) g = f :=
sorry
end adjunction
namespace adjunction
/--
This is an auxiliary data structure useful for constructing adjunctions.
See `adjunction.mk_of_hom_equiv`.
This structure won't typically be used anywhere else.
-/
structure core_hom_equiv {C : Type u₁} [category C] {D : Type u₂} [category D] (F : C ⥤ D)
(G : D ⥤ C)
where
hom_equiv : (X : C) → (Y : D) → (functor.obj F X ⟶ Y) ≃ (X ⟶ functor.obj G Y)
hom_equiv_naturality_left_symm' :
autoParam
(∀ {X' X : C} {Y : D} (f : X' ⟶ X) (g : X ⟶ functor.obj G Y),
coe_fn (equiv.symm (hom_equiv X' Y)) (f ≫ g) =
functor.map F f ≫ coe_fn (equiv.symm (hom_equiv X Y)) g)
(Lean.Syntax.ident Lean.SourceInfo.none (String.toSubstring "Mathlib.obviously")
(Lean.Name.mkStr (Lean.Name.mkStr Lean.Name.anonymous "Mathlib") "obviously") [])
hom_equiv_naturality_right' :
autoParam
(∀ {X : C} {Y Y' : D} (f : functor.obj F X ⟶ Y) (g : Y ⟶ Y'),
coe_fn (hom_equiv X Y') (f ≫ g) = coe_fn (hom_equiv X Y) f ≫ functor.map G g)
(Lean.Syntax.ident Lean.SourceInfo.none (String.toSubstring "Mathlib.obviously")
(Lean.Name.mkStr (Lean.Name.mkStr Lean.Name.anonymous "Mathlib") "obviously") [])
namespace core_hom_equiv
@[simp] theorem hom_equiv_naturality_left_symm {C : Type u₁} [category C] {D : Type u₂} [category D]
{F : C ⥤ D} {G : D ⥤ C} (c : core_hom_equiv F G) {X' : C} {X : C} {Y : D} (f : X' ⟶ X)
(g : X ⟶ functor.obj G Y) :
coe_fn (equiv.symm (hom_equiv c X' Y)) (f ≫ g) =
functor.map F f ≫ coe_fn (equiv.symm (hom_equiv c X Y)) g :=
sorry
@[simp] theorem hom_equiv_naturality_right {C : Type u₁} [category C] {D : Type u₂} [category D]
{F : C ⥤ D} {G : D ⥤ C} (c : core_hom_equiv F G) {X : C} {Y : D} {Y' : D}
(f : functor.obj F X ⟶ Y) (g : Y ⟶ Y') :
coe_fn (hom_equiv c X Y') (f ≫ g) = coe_fn (hom_equiv c X Y) f ≫ functor.map G g :=
sorry
@[simp] theorem hom_equiv_naturality_left {C : Type u₁} [category C] {D : Type u₂} [category D]
{F : C ⥤ D} {G : D ⥤ C} (adj : core_hom_equiv F G) {X' : C} {X : C} {Y : D} (f : X' ⟶ X)
(g : functor.obj F X ⟶ Y) :
coe_fn (hom_equiv adj X' Y) (functor.map F f ≫ g) = f ≫ coe_fn (hom_equiv adj X Y) g :=
sorry
@[simp] theorem hom_equiv_naturality_right_symm {C : Type u₁} [category C] {D : Type u₂}
[category D] {F : C ⥤ D} {G : D ⥤ C} (adj : core_hom_equiv F G) {X : C} {Y : D} {Y' : D}
(f : X ⟶ functor.obj G Y) (g : Y ⟶ Y') :
coe_fn (equiv.symm (hom_equiv adj X Y')) (f ≫ functor.map G g) =
coe_fn (equiv.symm (hom_equiv adj X Y)) f ≫ g :=
sorry
end core_hom_equiv
/--
This is an auxiliary data structure useful for constructing adjunctions.
See `adjunction.mk_of_hom_equiv`.
This structure won't typically be used anywhere else.
-/
structure core_unit_counit {C : Type u₁} [category C] {D : Type u₂} [category D] (F : C ⥤ D)
(G : D ⥤ C)
where
unit : 𝟭 ⟶ F ⋙ G
counit : G ⋙ F ⟶ 𝟭
left_triangle' :
autoParam
(whisker_right unit F ≫ iso.hom (functor.associator F G F) ≫ whisker_left F counit =
nat_trans.id (𝟭 ⋙ F))
(Lean.Syntax.ident Lean.SourceInfo.none (String.toSubstring "Mathlib.obviously")
(Lean.Name.mkStr (Lean.Name.mkStr Lean.Name.anonymous "Mathlib") "obviously") [])
right_triangle' :
autoParam
(whisker_left G unit ≫ iso.inv (functor.associator G F G) ≫ whisker_right counit G =
nat_trans.id (G ⋙ 𝟭))
(Lean.Syntax.ident Lean.SourceInfo.none (String.toSubstring "Mathlib.obviously")
(Lean.Name.mkStr (Lean.Name.mkStr Lean.Name.anonymous "Mathlib") "obviously") [])
namespace core_unit_counit
@[simp] theorem left_triangle {C : Type u₁} [category C] {D : Type u₂} [category D] {F : C ⥤ D}
{G : D ⥤ C} (c : core_unit_counit F G) :
whisker_right (unit c) F ≫ iso.hom (functor.associator F G F) ≫ whisker_left F (counit c) =
nat_trans.id (𝟭 ⋙ F) :=
sorry
@[simp] theorem right_triangle {C : Type u₁} [category C] {D : Type u₂} [category D] {F : C ⥤ D}
{G : D ⥤ C} (c : core_unit_counit F G) :
whisker_left G (unit c) ≫ iso.inv (functor.associator G F G) ≫ whisker_right (counit c) G =
nat_trans.id (G ⋙ 𝟭) :=
sorry
end core_unit_counit
/-- Construct an adjunction between `F` and `G` out of a natural bijection between each
`F.obj X ⟶ Y` and `X ⟶ G.obj Y`. -/
@[simp] theorem mk_of_hom_equiv_counit_app {C : Type u₁} [category C] {D : Type u₂} [category D]
{F : C ⥤ D} {G : D ⥤ C} (adj : core_hom_equiv F G) (Y : D) :
nat_trans.app (counit (mk_of_hom_equiv adj)) Y =
equiv.inv_fun (core_hom_equiv.hom_equiv adj (functor.obj G Y) (functor.obj 𝟭 Y)) 𝟙 :=
Eq.refl (nat_trans.app (counit (mk_of_hom_equiv adj)) Y)
/-- Construct an adjunction between functors `F` and `G` given a unit and counit for the adjunction
satisfying the triangle identities. -/
@[simp] theorem mk_of_unit_counit_counit {C : Type u₁} [category C] {D : Type u₂} [category D]
{F : C ⥤ D} {G : D ⥤ C} (adj : core_unit_counit F G) :
counit (mk_of_unit_counit adj) = core_unit_counit.counit adj :=
Eq.refl (counit (mk_of_unit_counit adj))
/-- The adjunction between the identity functor on a category and itself. -/
def id {C : Type u₁} [category C] : 𝟭 ⊣ 𝟭 :=
mk (fun (X Y : C) => equiv.refl (functor.obj 𝟭 X ⟶ Y)) 𝟙 𝟙
-- Satisfy the inhabited linter.
protected instance inhabited {C : Type u₁} [category C] : Inhabited (𝟭 ⊣ 𝟭) := { default := id }
/-- If F and G are naturally isomorphic functors, establish an equivalence of hom-sets. -/
@[simp] theorem equiv_homset_left_of_nat_iso_symm_apply {C : Type u₁} [category C] {D : Type u₂}
[category D] {F : C ⥤ D} {F' : C ⥤ D} (iso : F ≅ F') {X : C} {Y : D}
(g : functor.obj F' X ⟶ Y) :
coe_fn (equiv.symm (equiv_homset_left_of_nat_iso iso)) g = nat_trans.app (iso.hom iso) X ≫ g :=
Eq.refl (coe_fn (equiv.symm (equiv_homset_left_of_nat_iso iso)) g)
/-- If G and H are naturally isomorphic functors, establish an equivalence of hom-sets. -/
@[simp] theorem equiv_homset_right_of_nat_iso_apply {C : Type u₁} [category C] {D : Type u₂}
[category D] {G : D ⥤ C} {G' : D ⥤ C} (iso : G ≅ G') {X : C} {Y : D} (f : X ⟶ functor.obj G Y) :
coe_fn (equiv_homset_right_of_nat_iso iso) f = f ≫ nat_trans.app (iso.hom iso) Y :=
Eq.refl (coe_fn (equiv_homset_right_of_nat_iso iso) f)
/-- Transport an adjunction along an natural isomorphism on the left. -/
def of_nat_iso_left {C : Type u₁} [category C] {D : Type u₂} [category D] {F : C ⥤ D} {G : C ⥤ D}
{H : D ⥤ C} (adj : F ⊣ H) (iso : F ≅ G) : G ⊣ H :=
mk_of_hom_equiv
(core_hom_equiv.mk
fun (X : C) (Y : D) =>
equiv.trans (equiv_homset_left_of_nat_iso (iso.symm iso)) (hom_equiv adj X Y))
/-- Transport an adjunction along an natural isomorphism on the right. -/
def of_nat_iso_right {C : Type u₁} [category C] {D : Type u₂} [category D] {F : C ⥤ D} {G : D ⥤ C}
{H : D ⥤ C} (adj : F ⊣ G) (iso : G ≅ H) : F ⊣ H :=
mk_of_hom_equiv
(core_hom_equiv.mk
fun (X : C) (Y : D) => equiv.trans (hom_equiv adj X Y) (equiv_homset_right_of_nat_iso iso))
/-- Transport being a right adjoint along a natural isomorphism. -/
def right_adjoint_of_nat_iso {C : Type u₁} [category C] {D : Type u₂} [category D] {F : C ⥤ D}
{G : C ⥤ D} (h : F ≅ G) [r : is_right_adjoint F] : is_right_adjoint G :=
is_right_adjoint.mk (is_right_adjoint.left F) (of_nat_iso_right is_right_adjoint.adj h)
/-- Transport being a left adjoint along a natural isomorphism. -/
def left_adjoint_of_nat_iso {C : Type u₁} [category C] {D : Type u₂} [category D] {F : C ⥤ D}
{G : C ⥤ D} (h : F ≅ G) [r : is_left_adjoint F] : is_left_adjoint G :=
is_left_adjoint.mk (is_left_adjoint.right F) (of_nat_iso_left is_left_adjoint.adj h)
/--
Composition of adjunctions.
See https://stacks.math.columbia.edu/tag/0DV0.
-/
def comp {C : Type u₁} [category C] {D : Type u₂} [category D] {F : C ⥤ D} {G : D ⥤ C} {E : Type u₃}
[ℰ : category E] (H : D ⥤ E) (I : E ⥤ D) (adj₁ : F ⊣ G) (adj₂ : H ⊣ I) : F ⋙ H ⊣ I ⋙ G :=
mk
(fun (X : C) (Z : E) =>
equiv.trans (hom_equiv adj₂ (functor.obj F X) Z) (hom_equiv adj₁ X (functor.obj I Z)))
(unit adj₁ ≫
whisker_left F (whisker_right (unit adj₂) G) ≫ iso.inv (functor.associator F (H ⋙ I) G))
(iso.hom (functor.associator I G (F ⋙ H)) ≫
whisker_left I (whisker_right (counit adj₁) H) ≫ counit adj₂)
/-- If `F` and `G` are left adjoints then `F ⋙ G` is a left adjoint too. -/
protected instance left_adjoint_of_comp {C : Type u₁} [category C] {D : Type u₂} [category D]
{E : Type u₃} [ℰ : category E] (F : C ⥤ D) (G : D ⥤ E) [Fl : is_left_adjoint F]
[Gl : is_left_adjoint G] : is_left_adjoint (F ⋙ G) :=
is_left_adjoint.mk (is_left_adjoint.right G ⋙ is_left_adjoint.right F)
(comp G (is_left_adjoint.right G) is_left_adjoint.adj is_left_adjoint.adj)
/-- If `F` and `G` are right adjoints then `F ⋙ G` is a right adjoint too. -/
protected instance right_adjoint_of_comp {C : Type u₁} [category C] {D : Type u₂} [category D]
{E : Type u₃} [ℰ : category E] {F : C ⥤ D} {G : D ⥤ E} [Fr : is_right_adjoint F]
[Gr : is_right_adjoint G] : is_right_adjoint (F ⋙ G) :=
is_right_adjoint.mk (is_right_adjoint.left G ⋙ is_right_adjoint.left F)
(comp (is_right_adjoint.left F) F is_right_adjoint.adj is_right_adjoint.adj)
-- Construction of a left adjoint. In order to construct a left
-- adjoint to a functor G : D → C, it suffices to give the object part
-- of a functor F : C → D together with isomorphisms Hom(FX, Y) ≃
-- Hom(X, GY) natural in Y. The action of F on morphisms can be
-- constructed from this data.
/-- Construct a left adjoint functor to `G`, given the functor's value on objects `F_obj` and
a bijection `e` between `F_obj X ⟶ Y` and `X ⟶ G.obj Y` satisfying a naturality law
`he : ∀ X Y Y' g h, e X Y' (h ≫ g) = e X Y h ≫ G.map g`.
Dual to `right_adjoint_of_equiv`. -/
@[simp] theorem left_adjoint_of_equiv_obj {C : Type u₁} [category C] {D : Type u₂} [category D]
{G : D ⥤ C} {F_obj : C → D} (e : (X : C) → (Y : D) → (F_obj X ⟶ Y) ≃ (X ⟶ functor.obj G Y))
(he :
∀ (X : C) (Y Y' : D) (g : Y ⟶ Y') (h : F_obj X ⟶ Y),
coe_fn (e X Y') (h ≫ g) = coe_fn (e X Y) h ≫ functor.map G g) :
∀ (ᾰ : C), functor.obj (left_adjoint_of_equiv e he) ᾰ = F_obj ᾰ :=
fun (ᾰ : C) => Eq.refl (functor.obj (left_adjoint_of_equiv e he) ᾰ)
/-- Show that the functor given by `left_adjoint_of_equiv` is indeed left adjoint to `G`. Dual
to `adjunction_of_equiv_right`. -/
@[simp] theorem adjunction_of_equiv_left_hom_equiv {C : Type u₁} [category C] {D : Type u₂}
[category D] {G : D ⥤ C} {F_obj : C → D}
(e : (X : C) → (Y : D) → (F_obj X ⟶ Y) ≃ (X ⟶ functor.obj G Y))
(he :
∀ (X : C) (Y Y' : D) (g : Y ⟶ Y') (h : F_obj X ⟶ Y),
coe_fn (e X Y') (h ≫ g) = coe_fn (e X Y) h ≫ functor.map G g)
(X : C) (Y : D) : hom_equiv (adjunction_of_equiv_left e he) X Y = e X Y :=
Eq.refl (e X Y)
-- Construction of a right adjoint, analogous to the above.
/-- Construct a right adjoint functor to `F`, given the functor's value on objects `G_obj` and
a bijection `e` between `F.obj X ⟶ Y` and `X ⟶ G_obj Y` satisfying a naturality law
`he : ∀ X Y Y' g h, e X' Y (F.map f ≫ g) = f ≫ e X Y g`.
Dual to `left_adjoint_of_equiv`. -/
@[simp] theorem right_adjoint_of_equiv_obj {C : Type u₁} [category C] {D : Type u₂} [category D]
{F : C ⥤ D} {G_obj : D → C} (e : (X : C) → (Y : D) → (functor.obj F X ⟶ Y) ≃ (X ⟶ G_obj Y))
(he :
∀ (X' X : C) (Y : D) (f : X' ⟶ X) (g : functor.obj F X ⟶ Y),
coe_fn (e X' Y) (functor.map F f ≫ g) = f ≫ coe_fn (e X Y) g) :
∀ (ᾰ : D), functor.obj (right_adjoint_of_equiv e he) ᾰ = G_obj ᾰ :=
fun (ᾰ : D) => Eq.refl (functor.obj (right_adjoint_of_equiv e he) ᾰ)
/-- Show that the functor given by `right_adjoint_of_equiv` is indeed right adjoint to `F`. Dual
to `adjunction_of_equiv_left`. -/
@[simp] theorem adjunction_of_equiv_right_counit_app {C : Type u₁} [category C] {D : Type u₂}
[category D] {F : C ⥤ D} {G_obj : D → C}
(e : (X : C) → (Y : D) → (functor.obj F X ⟶ Y) ≃ (X ⟶ G_obj Y))
(he :
∀ (X' X : C) (Y : D) (f : X' ⟶ X) (g : functor.obj F X ⟶ Y),
coe_fn (e X' Y) (functor.map F f ≫ g) = f ≫ coe_fn (e X Y) g)
(Y : D) :
nat_trans.app (counit (adjunction_of_equiv_right e he)) Y =
coe_fn (equiv.symm (e (G_obj Y) Y)) 𝟙 :=
Eq.refl (coe_fn (equiv.symm (e (G_obj Y) Y)) 𝟙)
/--
If the unit and counit of a given adjunction are (pointwise) isomorphisms, then we can upgrade the
adjunction to an equivalence.
-/
@[simp] theorem to_equivalence_functor {C : Type u₁} [category C] {D : Type u₂} [category D]
{F : C ⥤ D} {G : D ⥤ C} (adj : F ⊣ G) [(X : C) → is_iso (nat_trans.app (unit adj) X)]
[(Y : D) → is_iso (nat_trans.app (counit adj) Y)] :
equivalence.functor (to_equivalence adj) = F :=
Eq.refl (equivalence.functor (to_equivalence adj))
/--
If the unit and counit for the adjunction corresponding to a right adjoint functor are (pointwise)
isomorphisms, then the functor is an equivalence of categories.
-/
@[simp] theorem is_right_adjoint_to_is_equivalence_unit_iso_inv_app {C : Type u₁} [category C]
{D : Type u₂} [category D] {G : D ⥤ C} [is_right_adjoint G]
[(X : C) → is_iso (nat_trans.app (unit (of_right_adjoint G)) X)]
[(Y : D) → is_iso (nat_trans.app (counit (of_right_adjoint G)) Y)] (X : D) :
nat_trans.app (iso.inv is_equivalence.unit_iso) X =
nat_trans.app (counit (of_right_adjoint G)) X :=
Eq.refl (nat_trans.app (counit (of_right_adjoint G)) X)
end adjunction
namespace equivalence
/-- The adjunction given by an equivalence of categories. (To obtain the opposite adjunction,
simply use `e.symm.to_adjunction`. -/
def to_adjunction {C : Type u₁} [category C] {D : Type u₂} [category D] (e : C ≌ D) :
functor e ⊣ inverse e :=
adjunction.mk_of_unit_counit (adjunction.core_unit_counit.mk (unit e) (counit e))
end equivalence
namespace functor
/-- An equivalence `E` is left adjoint to its inverse. -/
def adjunction {C : Type u₁} [category C] {D : Type u₂} [category D] (E : C ⥤ D)
[is_equivalence E] : E ⊣ inv E :=
equivalence.to_adjunction (as_equivalence E)
/-- If `F` is an equivalence, it's a left adjoint. -/
protected instance left_adjoint_of_equivalence {C : Type u₁} [category C] {D : Type u₂} [category D]
{F : C ⥤ D} [is_equivalence F] : is_left_adjoint F :=
is_left_adjoint.mk (inv F) (adjunction F)
@[simp] theorem right_adjoint_of_is_equivalence {C : Type u₁} [category C] {D : Type u₂}
[category D] {F : C ⥤ D} [is_equivalence F] : right_adjoint F = inv F :=
rfl
/-- If `F` is an equivalence, it's a right adjoint. -/
protected instance right_adjoint_of_equivalence {C : Type u₁} [category C] {D : Type u₂}
[category D] {F : C ⥤ D} [is_equivalence F] : is_right_adjoint F :=
is_right_adjoint.mk (inv F) (adjunction (inv F))
@[simp] theorem left_adjoint_of_is_equivalence {C : Type u₁} [category C] {D : Type u₂} [category D]
{F : C ⥤ D} [is_equivalence F] : left_adjoint F = inv F :=
rfl
end Mathlib
|
2ef967e107ba3f88ab29845d2d17d3cbfe4c02dc
|
947b78d97130d56365ae2ec264df196ce769371a
|
/tests/lean/run/def11.lean
|
1b9edc43e500a157f2d092ecfaaa3c9a39e2153d
|
[
"Apache-2.0"
] |
permissive
|
shyamalschandra/lean4
|
27044812be8698f0c79147615b1d5090b9f4b037
|
6e7a883b21eaf62831e8111b251dc9b18f40e604
|
refs/heads/master
| 1,671,417,126,371
| 1,601,859,995,000
| 1,601,860,020,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 1,271
|
lean
|
new_frontend
inductive Formula
| eqf : Nat → Nat → Formula
| andf : Formula → Formula → Formula
| impf : Formula → Formula → Formula
| notf : Formula → Formula
| orf : Formula → Formula → Formula
| allf : (Nat → Formula) → Formula
namespace Formula
def implies (a b : Prop) : Prop := a → b
def denote : Formula → Prop
| eqf n1 n2 => n1 = n2
| andf f1 f2 => denote f1 ∧ denote f2
| impf f1 f2 => implies (denote f1) (denote f2)
| orf f1 f2 => denote f1 ∨ denote f2
| notf f => ¬ denote f
| allf f => (n : Nat) → denote (f n)
theorem denote_eqf (n1 n2 : Nat) : denote (eqf n1 n2) = (n1 = n2) :=
rfl
theorem denote_andf (f1 f2 : Formula) : denote (andf f1 f2) = (denote f1 ∧ denote f2) :=
rfl
theorem denote_impf (f1 f2 : Formula) : denote (impf f1 f2) = (denote f1 → denote f2) :=
rfl
theorem denote_orf (f1 f2 : Formula) : denote (orf f1 f2) = (denote f1 ∨ denote f2) :=
rfl
theorem denote_notf (f : Formula) : denote (notf f) = ¬ denote f :=
rfl
theorem denote_allf (f : Nat → Formula) : denote (allf f) = (∀ n, denote (f n)) :=
rfl
theorem ex : denote (allf (fun n₁ => allf (fun n₂ => impf (eqf n₁ n₂) (eqf n₂ n₁)))) = (∀ (n₁ n₂ : Nat), n₁ = n₂ → n₂ = n₁) :=
rfl
end Formula
|
4d0ec7e56291e1f7cd002569a3d472d2f8f60cbb
|
4fa161becb8ce7378a709f5992a594764699e268
|
/src/data/complex/exponential.lean
|
5c4c099d53046f0bbec26ce880893ff822c489c8
|
[
"Apache-2.0"
] |
permissive
|
laughinggas/mathlib
|
e4aa4565ae34e46e834434284cb26bd9d67bc373
|
86dcd5cda7a5017c8b3c8876c89a510a19d49aad
|
refs/heads/master
| 1,669,496,232,688
| 1,592,831,995,000
| 1,592,831,995,000
| 274,155,979
| 0
| 0
|
Apache-2.0
| 1,592,835,190,000
| 1,592,835,189,000
| null |
UTF-8
|
Lean
| false
| false
| 49,784
|
lean
|
/-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir
-/
import algebra.geom_sum
import data.nat.choose
import data.complex.basic
/-!
# Exponential, trigonometric and hyperbolic trigonometric functions
This file containss the definitions of the real and complex exponential, sine, cosine, tangent,
hyperbolic sine, hypebolic cosine, and hyperbolic tangent functions.
-/
local notation `abs'` := _root_.abs
open is_absolute_value
open_locale classical big_operators
section
open real is_absolute_value finset
lemma forall_ge_le_of_forall_le_succ {α : Type*} [preorder α] (f : ℕ → α) {m : ℕ}
(h : ∀ n ≥ m, f n.succ ≤ f n) : ∀ {l}, ∀ k ≥ m, k ≤ l → f l ≤ f k :=
begin
assume l k hkm hkl,
generalize hp : l - k = p,
have : l = k + p := add_comm p k ▸ (nat.sub_eq_iff_eq_add hkl).1 hp,
subst this,
clear hkl hp,
induction p with p ih,
{ simp },
{ exact le_trans (h _ (le_trans hkm (nat.le_add_right _ _))) ih }
end
section
variables {α : Type*} {β : Type*} [ring β]
[discrete_linear_ordered_field α] [archimedean α] {abv : β → α} [is_absolute_value abv]
lemma is_cau_of_decreasing_bounded (f : ℕ → α) {a : α} {m : ℕ} (ham : ∀ n ≥ m, abs (f n) ≤ a)
(hnm : ∀ n ≥ m, f n.succ ≤ f n) : is_cau_seq abs f :=
λ ε ε0,
let ⟨k, hk⟩ := archimedean.arch a ε0 in
have h : ∃ l, ∀ n ≥ m, a - l •ℕ ε < f n :=
⟨k + k + 1, λ n hnm, lt_of_lt_of_le
(show a - (k + (k + 1)) •ℕ ε < -abs (f n),
from lt_neg.1 $ lt_of_le_of_lt (ham n hnm) (begin
rw [neg_sub, lt_sub_iff_add_lt, add_nsmul],
exact add_lt_add_of_le_of_lt hk (lt_of_le_of_lt hk
(lt_add_of_pos_left _ ε0)),
end))
(neg_le.2 $ (abs_neg (f n)) ▸ le_abs_self _)⟩,
let l := nat.find h in
have hl : ∀ (n : ℕ), n ≥ m → f n > a - l •ℕ ε := nat.find_spec h,
have hl0 : l ≠ 0 := λ hl0, not_lt_of_ge (ham m (le_refl _))
(lt_of_lt_of_le (by have := hl m (le_refl m); simpa [hl0] using this) (le_abs_self (f m))),
begin
cases classical.not_forall.1
(nat.find_min h (nat.pred_lt hl0)) with i hi,
rw [not_imp, not_lt] at hi,
existsi i,
assume j hj,
have hfij : f j ≤ f i := forall_ge_le_of_forall_le_succ f hnm _ hi.1 hj,
rw [abs_of_nonpos (sub_nonpos.2 hfij), neg_sub, sub_lt_iff_lt_add'],
exact calc f i ≤ a - (nat.pred l) •ℕ ε : hi.2
... = a - l •ℕ ε + ε :
by conv {to_rhs, rw [← nat.succ_pred_eq_of_pos (nat.pos_of_ne_zero hl0), succ_nsmul',
sub_add, add_sub_cancel] }
... < f j + ε : add_lt_add_right (hl j (le_trans hi.1 hj)) _
end
lemma is_cau_of_mono_bounded (f : ℕ → α) {a : α} {m : ℕ} (ham : ∀ n ≥ m, abs (f n) ≤ a)
(hnm : ∀ n ≥ m, f n ≤ f n.succ) : is_cau_seq abs f :=
begin
refine @eq.rec_on (ℕ → α) _ (is_cau_seq abs) _ _
(-⟨_, @is_cau_of_decreasing_bounded _ _ _ (λ n, -f n) a m (by simpa) (by simpa)⟩ :
cau_seq α abs).2,
ext,
exact neg_neg _
end
end
section no_archimedean
variables {α : Type*} {β : Type*} [ring β]
[discrete_linear_ordered_field α] {abv : β → α} [is_absolute_value abv]
lemma is_cau_series_of_abv_le_cau {f : ℕ → β} {g : ℕ → α} (n : ℕ) :
(∀ m, n ≤ m → abv (f m) ≤ g m) →
is_cau_seq abs (λ n, ∑ i in range n, g i) →
is_cau_seq abv (λ n, ∑ i in range n, f i) :=
begin
assume hm hg ε ε0,
cases hg (ε / 2) (div_pos ε0 (by norm_num)) with i hi,
existsi max n i,
assume j ji,
have hi₁ := hi j (le_trans (le_max_right n i) ji),
have hi₂ := hi (max n i) (le_max_right n i),
have sub_le := abs_sub_le (∑ k in range j, g k) (∑ k in range i, g k)
(∑ k in range (max n i), g k),
have := add_lt_add hi₁ hi₂,
rw [abs_sub (∑ k in range (max n i), g k), add_halves ε] at this,
refine lt_of_le_of_lt (le_trans (le_trans _ (le_abs_self _)) sub_le) this,
generalize hk : j - max n i = k,
clear this hi₂ hi₁ hi ε0 ε hg sub_le,
rw nat.sub_eq_iff_eq_add ji at hk,
rw hk,
clear hk ji j,
induction k with k' hi,
{ simp [abv_zero abv] },
{ dsimp at *,
simp only [nat.succ_add, sum_range_succ, sub_eq_add_neg, add_assoc],
refine le_trans (abv_add _ _ _) _,
exact add_le_add (hm _ (le_add_of_nonneg_of_le (nat.zero_le _) (le_max_left _ _))) hi },
end
lemma is_cau_series_of_abv_cau {f : ℕ → β} : is_cau_seq abs (λ m, ∑ n in range m, abv (f n)) →
is_cau_seq abv (λ m, ∑ n in range m, f n) :=
is_cau_series_of_abv_le_cau 0 (λ n h, le_refl _)
end no_archimedean
section
variables {α : Type*} {β : Type*} [ring β]
[discrete_linear_ordered_field α] [archimedean α] {abv : β → α} [is_absolute_value abv]
lemma is_cau_geo_series {β : Type*} [field β] {abv : β → α} [is_absolute_value abv]
(x : β) (hx1 : abv x < 1) : is_cau_seq abv (λ n, ∑ m in range n, x ^ m) :=
have hx1' : abv x ≠ 1 := λ h, by simpa [h, lt_irrefl] using hx1,
is_cau_series_of_abv_cau
begin
simp only [abv_pow abv] {eta := ff},
have : (λ (m : ℕ), ∑ n in range m, (abv x) ^ n) =
λ m, geom_series (abv x) m := rfl,
simp only [this, geom_sum hx1'] {eta := ff},
conv in (_ / _) { rw [← neg_div_neg_eq, neg_sub, neg_sub] },
refine @is_cau_of_mono_bounded _ _ _ _ ((1 : α) / (1 - abv x)) 0 _ _,
{ assume n hn,
rw abs_of_nonneg,
refine div_le_div_of_le_of_pos (sub_le_self _ (abv_pow abv x n ▸ abv_nonneg _ _))
(sub_pos.2 hx1),
refine div_nonneg (sub_nonneg.2 _) (sub_pos.2 hx1),
clear hn,
induction n with n ih,
{ simp },
{ rw [pow_succ, ← one_mul (1 : α)],
refine mul_le_mul (le_of_lt hx1) ih (abv_pow abv x n ▸ abv_nonneg _ _) (by norm_num) } },
{ assume n hn,
refine div_le_div_of_le_of_pos (sub_le_sub_left _ _) (sub_pos.2 hx1),
rw [← one_mul (_ ^ n), pow_succ],
exact mul_le_mul_of_nonneg_right (le_of_lt hx1) (pow_nonneg (abv_nonneg _ _) _) }
end
lemma is_cau_geo_series_const (a : α) {x : α} (hx1 : abs x < 1) :
is_cau_seq abs (λ m, ∑ n in range m, a * x ^ n) :=
have is_cau_seq abs (λ m, a * ∑ n in range m, x ^ n) :=
(cau_seq.const abs a * ⟨_, is_cau_geo_series x hx1⟩).2,
by simpa only [mul_sum]
lemma series_ratio_test {f : ℕ → β} (n : ℕ) (r : α)
(hr0 : 0 ≤ r) (hr1 : r < 1) (h : ∀ m, n ≤ m → abv (f m.succ) ≤ r * abv (f m)) :
is_cau_seq abv (λ m, ∑ n in range m, f n) :=
have har1 : abs r < 1, by rwa abs_of_nonneg hr0,
begin
refine is_cau_series_of_abv_le_cau n.succ _ (is_cau_geo_series_const (abv (f n.succ) * r⁻¹ ^ n.succ) har1),
assume m hmn,
cases classical.em (r = 0) with r_zero r_ne_zero,
{ have m_pos := lt_of_lt_of_le (nat.succ_pos n) hmn,
have := h m.pred (nat.le_of_succ_le_succ (by rwa [nat.succ_pred_eq_of_pos m_pos])),
simpa [r_zero, nat.succ_pred_eq_of_pos m_pos, pow_succ] },
generalize hk : m - n.succ = k,
have r_pos : 0 < r := lt_of_le_of_ne hr0 (ne.symm r_ne_zero),
replace hk : m = k + n.succ := (nat.sub_eq_iff_eq_add hmn).1 hk,
induction k with k ih generalizing m n,
{ rw [hk, zero_add, mul_right_comm, inv_pow' _ _, ← div_eq_mul_inv, mul_div_cancel],
exact (ne_of_lt (pow_pos r_pos _)).symm },
{ have kn : k + n.succ ≥ n.succ, by rw ← zero_add n.succ; exact add_le_add (zero_le _) (by simp),
rw [hk, nat.succ_add, pow_succ' r, ← mul_assoc],
exact le_trans (by rw mul_comm; exact h _ (nat.le_of_succ_le kn))
(mul_le_mul_of_nonneg_right (ih (k + n.succ) n h kn rfl) hr0) }
end
lemma sum_range_diag_flip {α : Type*} [add_comm_monoid α] (n : ℕ) (f : ℕ → ℕ → α) :
∑ m in range n, ∑ k in range (m + 1), f k (m - k) =
∑ m in range n, ∑ k in range (n - m), f m k :=
have h₁ : ∑ a in (range n).sigma (range ∘ nat.succ), f (a.2) (a.1 - a.2) =
∑ m in range n, ∑ k in range (m + 1), f k (m - k) := sum_sigma,
have h₂ : ∑ a in (range n).sigma (λ m, range (n - m)), f (a.1) (a.2) =
∑ m in range n, ∑ k in range (n - m), f m k := sum_sigma,
h₁ ▸ h₂ ▸ sum_bij
(λ a _, ⟨a.2, a.1 - a.2⟩)
(λ a ha, have h₁ : a.1 < n := mem_range.1 (mem_sigma.1 ha).1,
have h₂ : a.2 < nat.succ a.1 := mem_range.1 (mem_sigma.1 ha).2,
mem_sigma.2 ⟨mem_range.2 (lt_of_lt_of_le h₂ h₁),
mem_range.2 ((nat.sub_lt_sub_right_iff (nat.le_of_lt_succ h₂)).2 h₁)⟩)
(λ _ _, rfl)
(λ ⟨a₁, a₂⟩ ⟨b₁, b₂⟩ ha hb h,
have ha : a₁ < n ∧ a₂ ≤ a₁ :=
⟨mem_range.1 (mem_sigma.1 ha).1, nat.le_of_lt_succ (mem_range.1 (mem_sigma.1 ha).2)⟩,
have hb : b₁ < n ∧ b₂ ≤ b₁ :=
⟨mem_range.1 (mem_sigma.1 hb).1, nat.le_of_lt_succ (mem_range.1 (mem_sigma.1 hb).2)⟩,
have h : a₂ = b₂ ∧ _ := sigma.mk.inj h,
have h' : a₁ = b₁ - b₂ + a₂ := (nat.sub_eq_iff_eq_add ha.2).1 (eq_of_heq h.2),
sigma.mk.inj_iff.2
⟨nat.sub_add_cancel hb.2 ▸ h'.symm ▸ h.1 ▸ rfl,
(heq_of_eq h.1)⟩)
(λ ⟨a₁, a₂⟩ ha,
have ha : a₁ < n ∧ a₂ < n - a₁ :=
⟨mem_range.1 (mem_sigma.1 ha).1, (mem_range.1 (mem_sigma.1 ha).2)⟩,
⟨⟨a₂ + a₁, a₁⟩, ⟨mem_sigma.2 ⟨mem_range.2 (nat.lt_sub_right_iff_add_lt.1 ha.2),
mem_range.2 (nat.lt_succ_of_le (nat.le_add_left _ _))⟩,
sigma.mk.inj_iff.2 ⟨rfl, heq_of_eq (nat.add_sub_cancel _ _).symm⟩⟩⟩)
lemma sum_range_sub_sum_range {α : Type*} [add_comm_group α] {f : ℕ → α}
{n m : ℕ} (hnm : n ≤ m) : ∑ k in range m, f k - ∑ k in range n, f k =
∑ k in (range m).filter (λ k, n ≤ k), f k :=
begin
rw [← sum_sdiff (@filter_subset _ (λ k, n ≤ k) _ (range m)),
sub_eq_iff_eq_add, ← eq_sub_iff_add_eq, add_sub_cancel'],
refine finset.sum_congr
(finset.ext $ λ a, ⟨λ h, by simp at *; finish,
λ h, have ham : a < m := lt_of_lt_of_le (mem_range.1 h) hnm,
by simp * at *⟩)
(λ _ _, rfl),
end
end
section no_archimedean
variables {α : Type*} {β : Type*} [ring β]
[discrete_linear_ordered_field α] {abv : β → α} [is_absolute_value abv]
lemma abv_sum_le_sum_abv {γ : Type*} (f : γ → β) (s : finset γ) :
abv (∑ k in s, f k) ≤ ∑ k in s, abv (f k) :=
by haveI := classical.dec_eq γ; exact
finset.induction_on s (by simp [abv_zero abv])
(λ a s has ih, by rw [sum_insert has, sum_insert has];
exact le_trans (abv_add abv _ _) (add_le_add_left ih _))
@[nolint ge_or_gt] -- see Note [nolint_ge]
lemma cauchy_product {a b : ℕ → β}
(ha : is_cau_seq abs (λ m, ∑ n in range m, abv (a n)))
(hb : is_cau_seq abv (λ m, ∑ n in range m, b n)) (ε : α) (ε0 : 0 < ε) :
∃ i : ℕ, ∀ j ≥ i, abv ((∑ k in range j, a k) * (∑ k in range j, b k) -
∑ n in range j, ∑ m in range (n + 1), a m * b (n - m)) < ε :=
let ⟨Q, hQ⟩ := cau_seq.bounded ⟨_, hb⟩ in
let ⟨P, hP⟩ := cau_seq.bounded ⟨_, ha⟩ in
have hP0 : 0 < P, from lt_of_le_of_lt (abs_nonneg _) (hP 0),
have hPε0 : 0 < ε / (2 * P),
from div_pos ε0 (mul_pos (show (2 : α) > 0, from by norm_num) hP0),
let ⟨N, hN⟩ := cau_seq.cauchy₂ ⟨_, hb⟩ hPε0 in
have hQε0 : 0 < ε / (4 * Q),
from div_pos ε0 (mul_pos (show (0 : α) < 4, by norm_num)
(lt_of_le_of_lt (abv_nonneg _ _) (hQ 0))),
let ⟨M, hM⟩ := cau_seq.cauchy₂ ⟨_, ha⟩ hQε0 in
⟨2 * (max N M + 1), λ K hK,
have h₁ : ∑ m in range K, ∑ k in range (m + 1), a k * b (m - k) =
∑ m in range K, ∑ n in range (K - m), a m * b n,
by simpa using sum_range_diag_flip K (λ m n, a m * b n),
have h₂ : (λ i, ∑ k in range (K - i), a i * b k) = (λ i, a i * ∑ k in range (K - i), b k),
by simp [finset.mul_sum],
have h₃ : ∑ i in range K, a i * ∑ k in range (K - i), b k =
∑ i in range K, a i * (∑ k in range (K - i), b k - ∑ k in range K, b k)
+ ∑ i in range K, a i * ∑ k in range K, b k,
by rw ← sum_add_distrib; simp [(mul_add _ _ _).symm],
have two_mul_two : (4 : α) = 2 * 2, by norm_num,
have hQ0 : Q ≠ 0, from λ h, by simpa [h, lt_irrefl] using hQε0,
have h2Q0 : 2 * Q ≠ 0, from mul_ne_zero two_ne_zero hQ0,
have hε : ε / (2 * P) * P + ε / (4 * Q) * (2 * Q) = ε,
by rw [← div_div_eq_div_mul, div_mul_cancel _ (ne.symm (ne_of_lt hP0)),
two_mul_two, mul_assoc, ← div_div_eq_div_mul, div_mul_cancel _ h2Q0, add_halves],
have hNMK : max N M + 1 < K,
from lt_of_lt_of_le (by rw two_mul; exact lt_add_of_pos_left _ (nat.succ_pos _)) hK,
have hKN : N < K,
from calc N ≤ max N M : le_max_left _ _
... < max N M + 1 : nat.lt_succ_self _
... < K : hNMK,
have hsumlesum : ∑ i in range (max N M + 1), abv (a i) *
abv (∑ k in range (K - i), b k - ∑ k in range K, b k) ≤
∑ i in range (max N M + 1), abv (a i) * (ε / (2 * P)),
from sum_le_sum (λ m hmJ, mul_le_mul_of_nonneg_left
(le_of_lt (hN (K - m) K
(nat.le_sub_left_of_add_le (le_trans
(by rw two_mul; exact add_le_add (le_of_lt (mem_range.1 hmJ))
(le_trans (le_max_left _ _) (le_of_lt (lt_add_one _)))) hK))
(le_of_lt hKN))) (abv_nonneg abv _)),
have hsumltP : ∑ n in range (max N M + 1), abv (a n) < P :=
calc ∑ n in range (max N M + 1), abv (a n)
= abs (∑ n in range (max N M + 1), abv (a n)) :
eq.symm (abs_of_nonneg (sum_nonneg (λ x h, abv_nonneg abv (a x))))
... < P : hP (max N M + 1),
begin
rw [h₁, h₂, h₃, sum_mul, ← sub_sub, sub_right_comm, sub_self, zero_sub, abv_neg abv],
refine lt_of_le_of_lt (abv_sum_le_sum_abv _ _) _,
suffices : ∑ i in range (max N M + 1),
abv (a i) * abv (∑ k in range (K - i), b k - ∑ k in range K, b k) +
(∑ i in range K, abv (a i) * abv (∑ k in range (K - i), b k - ∑ k in range K, b k) -
∑ i in range (max N M + 1), abv (a i) * abv (∑ k in range (K - i), b k - ∑ k in range K, b k)) <
ε / (2 * P) * P + ε / (4 * Q) * (2 * Q),
{ rw hε at this, simpa [abv_mul abv] },
refine add_lt_add (lt_of_le_of_lt hsumlesum
(by rw [← sum_mul, mul_comm]; exact (mul_lt_mul_left hPε0).mpr hsumltP)) _,
rw sum_range_sub_sum_range (le_of_lt hNMK),
exact calc ∑ i in (range K).filter (λ k, max N M + 1 ≤ k),
abv (a i) * abv (∑ k in range (K - i), b k - ∑ k in range K, b k)
≤ ∑ i in (range K).filter (λ k, max N M + 1 ≤ k), abv (a i) * (2 * Q) :
sum_le_sum (λ n hn, begin
refine mul_le_mul_of_nonneg_left _ (abv_nonneg _ _),
rw sub_eq_add_neg,
refine le_trans (abv_add _ _ _) _,
rw [two_mul, abv_neg abv],
exact add_le_add (le_of_lt (hQ _)) (le_of_lt (hQ _)),
end)
... < ε / (4 * Q) * (2 * Q) :
by rw [← sum_mul, ← sum_range_sub_sum_range (le_of_lt hNMK)];
refine (mul_lt_mul_right $ by rw two_mul;
exact add_pos (lt_of_le_of_lt (abv_nonneg _ _) (hQ 0))
(lt_of_le_of_lt (abv_nonneg _ _) (hQ 0))).2
(lt_of_le_of_lt (le_abs_self _)
(hM _ _ (le_trans (nat.le_succ_of_le (le_max_right _ _)) (le_of_lt hNMK))
(nat.le_succ_of_le (le_max_right _ _))))
end⟩
end no_archimedean
end
open finset
open cau_seq
namespace complex
lemma is_cau_abs_exp (z : ℂ) : is_cau_seq _root_.abs
(λ n, ∑ m in range n, abs (z ^ m / nat.fact m)) :=
let ⟨n, hn⟩ := exists_nat_gt (abs z) in
have hn0 : (0 : ℝ) < n, from lt_of_le_of_lt (abs_nonneg _) hn,
series_ratio_test n (complex.abs z / n) (div_nonneg_of_nonneg_of_pos (complex.abs_nonneg _) hn0)
(by rwa [div_lt_iff hn0, one_mul])
(λ m hm,
by rw [abs_abs, abs_abs, nat.fact_succ, pow_succ,
mul_comm m.succ, nat.cast_mul, ← div_div_eq_div_mul, mul_div_assoc,
mul_div_right_comm, abs_mul, abs_div, abs_cast_nat];
exact mul_le_mul_of_nonneg_right
(div_le_div_of_le_left (abs_nonneg _) hn0
(nat.cast_le.2 (le_trans hm (nat.le_succ _)))) (abs_nonneg _))
noncomputable theory
lemma is_cau_exp (z : ℂ) :
is_cau_seq abs (λ n, ∑ m in range n, z ^ m / nat.fact m) :=
is_cau_series_of_abv_cau (is_cau_abs_exp z)
/-- The Cauchy sequence consisting of partial sums of the Taylor series of
the complex exponential function -/
@[pp_nodot] def exp' (z : ℂ) :
cau_seq ℂ complex.abs :=
⟨λ n, ∑ m in range n, z ^ m / nat.fact m, is_cau_exp z⟩
/-- The complex exponential function, defined via its Taylor series -/
@[pp_nodot] def exp (z : ℂ) : ℂ := lim (exp' z)
/-- The complex sine function, defined via `exp` -/
@[pp_nodot] def sin (z : ℂ) : ℂ := ((exp (-z * I) - exp (z * I)) * I) / 2
/-- The complex cosine function, defined via `exp` -/
@[pp_nodot] def cos (z : ℂ) : ℂ := (exp (z * I) + exp (-z * I)) / 2
/-- The complex tangent function, defined as `sin z / cos z` -/
@[pp_nodot] def tan (z : ℂ) : ℂ := sin z / cos z
/-- The complex hyperbolic sine function, defined via `exp` -/
@[pp_nodot] def sinh (z : ℂ) : ℂ := (exp z - exp (-z)) / 2
/-- The complex hyperbolic cosine function, defined via `exp` -/
@[pp_nodot] def cosh (z : ℂ) : ℂ := (exp z + exp (-z)) / 2
/-- The complex hyperbolic tangent function, defined as `sinh z / cosh z` -/
@[pp_nodot] def tanh (z : ℂ) : ℂ := sinh z / cosh z
end complex
namespace real
open complex
/-- The real exponential function, defined as the real part of the complex exponential -/
@[pp_nodot] def exp (x : ℝ) : ℝ := (exp x).re
/-- The real sine function, defined as the real part of the complex sine -/
@[pp_nodot] def sin (x : ℝ) : ℝ := (sin x).re
/-- The real cosine function, defined as the real part of the complex cosine -/
@[pp_nodot] def cos (x : ℝ) : ℝ := (cos x).re
/-- The real tangent function, defined as the real part of the complex tangent -/
@[pp_nodot] def tan (x : ℝ) : ℝ := (tan x).re
/-- The real hypebolic sine function, defined as the real part of the complex hyperbolic sine -/
@[pp_nodot] def sinh (x : ℝ) : ℝ := (sinh x).re
/-- The real hypebolic cosine function, defined as the real part of the complex hyperbolic cosine -/
@[pp_nodot] def cosh (x : ℝ) : ℝ := (cosh x).re
/-- The real hypebolic tangent function, defined as the real part of
the complex hyperbolic tangent -/
@[pp_nodot] def tanh (x : ℝ) : ℝ := (tanh x).re
end real
namespace complex
variables (x y : ℂ)
@[simp] lemma exp_zero : exp 0 = 1 :=
lim_eq_of_equiv_const $
λ ε ε0, ⟨1, λ j hj, begin
convert ε0,
cases j,
{ exact absurd hj (not_le_of_gt zero_lt_one) },
{ dsimp [exp'],
induction j with j ih,
{ dsimp [exp']; simp },
{ rw ← ih dec_trivial,
simp only [sum_range_succ, pow_succ],
simp } }
end⟩
lemma exp_add : exp (x + y) = exp x * exp y :=
show lim (⟨_, is_cau_exp (x + y)⟩ : cau_seq ℂ abs) =
lim (show cau_seq ℂ abs, from ⟨_, is_cau_exp x⟩)
* lim (show cau_seq ℂ abs, from ⟨_, is_cau_exp y⟩),
from
have hj : ∀ j : ℕ, ∑ m in range j, (x + y) ^ m / m.fact =
∑ i in range j, ∑ k in range (i + 1), x ^ k / k.fact * (y ^ (i - k) / (i - k).fact),
from assume j,
finset.sum_congr rfl (λ m hm, begin
rw [add_pow, div_eq_mul_inv, sum_mul],
refine finset.sum_congr rfl (λ i hi, _),
have h₁ : (m.choose i : ℂ) ≠ 0 := nat.cast_ne_zero.2
(nat.pos_iff_ne_zero.1 (nat.choose_pos (nat.le_of_lt_succ (mem_range.1 hi)))),
have h₂ := nat.choose_mul_fact_mul_fact (nat.le_of_lt_succ $ finset.mem_range.1 hi),
rw [← h₂, nat.cast_mul, nat.cast_mul, mul_inv', mul_inv'],
simp only [mul_left_comm (m.choose i : ℂ), mul_assoc, mul_left_comm (m.choose i : ℂ)⁻¹,
mul_comm (m.choose i : ℂ)],
rw inv_mul_cancel h₁,
simp [div_eq_mul_inv, mul_comm, mul_assoc, mul_left_comm]
end),
by rw lim_mul_lim;
exact eq.symm (lim_eq_lim_of_equiv (by dsimp; simp only [hj];
exact cauchy_product (is_cau_abs_exp x) (is_cau_exp y)))
attribute [irreducible] complex.exp
lemma exp_list_sum (l : list ℂ) : exp l.sum = (l.map exp).prod :=
@monoid_hom.map_list_prod (multiplicative ℂ) ℂ _ _ ⟨exp, exp_zero, exp_add⟩ l
lemma exp_multiset_sum (s : multiset ℂ) : exp s.sum = (s.map exp).prod :=
@monoid_hom.map_multiset_prod (multiplicative ℂ) ℂ _ _ ⟨exp, exp_zero, exp_add⟩ s
lemma exp_sum {α : Type*} (s : finset α) (f : α → ℂ) : exp (∑ x in s, f x) = ∏ x in s, exp (f x) :=
@monoid_hom.map_prod α (multiplicative ℂ) ℂ _ _ ⟨exp, exp_zero, exp_add⟩ f s
lemma exp_nat_mul (x : ℂ) : ∀ n : ℕ, exp(n*x) = (exp x)^n
| 0 := by rw [nat.cast_zero, zero_mul, exp_zero, pow_zero]
| (nat.succ n) := by rw [pow_succ', nat.cast_add_one, add_mul, exp_add, ←exp_nat_mul, one_mul]
lemma exp_ne_zero : exp x ≠ 0 :=
λ h, zero_ne_one $ by rw [← exp_zero, ← add_neg_self x, exp_add, h]; simp
lemma exp_neg : exp (-x) = (exp x)⁻¹ :=
by rw [← domain.mul_right_inj (exp_ne_zero x), ← exp_add];
simp [mul_inv_cancel (exp_ne_zero x)]
lemma exp_sub : exp (x - y) = exp x / exp y :=
by simp [sub_eq_add_neg, exp_add, exp_neg, div_eq_mul_inv]
@[simp] lemma exp_conj : exp (conj x) = conj (exp x) :=
begin
dsimp [exp],
rw [← lim_conj],
refine congr_arg lim (cau_seq.ext (λ _, _)),
dsimp [exp', function.comp, cau_seq_conj],
rw ← sum_hom _ conj,
refine sum_congr rfl (λ n hn, _),
rw [conj_div, conj_pow, ← of_real_nat_cast, conj_of_real]
end
@[simp] lemma of_real_exp_of_real_re (x : ℝ) : ((exp x).re : ℂ) = exp x :=
eq_conj_iff_re.1 $ by rw [← exp_conj, conj_of_real]
@[simp] lemma of_real_exp (x : ℝ) : (real.exp x : ℂ) = exp x :=
of_real_exp_of_real_re _
@[simp] lemma exp_of_real_im (x : ℝ) : (exp x).im = 0 :=
by rw [← of_real_exp_of_real_re, of_real_im]
lemma exp_of_real_re (x : ℝ) : (exp x).re = real.exp x := rfl
lemma two_sinh : 2 * sinh x = exp x - exp (-x) :=
mul_div_cancel' _ two_ne_zero'
lemma two_cosh : 2 * cosh x = exp x + exp (-x) :=
mul_div_cancel' _ two_ne_zero'
@[simp] lemma sinh_zero : sinh 0 = 0 := by simp [sinh]
@[simp] lemma sinh_neg : sinh (-x) = -sinh x :=
by simp [sinh, exp_neg, (neg_div _ _).symm, add_mul]
private lemma sinh_add_aux {a b c d : ℂ} :
(a - b) * (c + d) + (a + b) * (c - d) = 2 * (a * c - b * d) := by ring
lemma sinh_add : sinh (x + y) = sinh x * cosh y + cosh x * sinh y :=
begin
rw [← domain.mul_right_inj (@two_ne_zero' ℂ _ _ _), two_sinh,
exp_add, neg_add, exp_add, eq_comm,
mul_add, ← mul_assoc, two_sinh, mul_left_comm, two_sinh,
← domain.mul_right_inj (@two_ne_zero' ℂ _ _ _), mul_add,
mul_left_comm, two_cosh, ← mul_assoc, two_cosh],
exact sinh_add_aux
end
@[simp] lemma cosh_zero : cosh 0 = 1 := by simp [cosh]
@[simp] lemma cosh_neg : cosh (-x) = cosh x :=
by simp [add_comm, cosh, exp_neg]
private lemma cosh_add_aux {a b c d : ℂ} :
(a + b) * (c + d) + (a - b) * (c - d) = 2 * (a * c + b * d) := by ring
lemma cosh_add : cosh (x + y) = cosh x * cosh y + sinh x * sinh y :=
begin
rw [← domain.mul_right_inj (@two_ne_zero' ℂ _ _ _), two_cosh,
exp_add, neg_add, exp_add, eq_comm,
mul_add, ← mul_assoc, two_cosh, ← mul_assoc, two_sinh,
← domain.mul_right_inj (@two_ne_zero' ℂ _ _ _), mul_add,
mul_left_comm, two_cosh, mul_left_comm, two_sinh],
exact cosh_add_aux
end
lemma sinh_sub : sinh (x - y) = sinh x * cosh y - cosh x * sinh y :=
by simp [sub_eq_add_neg, sinh_add, sinh_neg, cosh_neg]
lemma cosh_sub : cosh (x - y) = cosh x * cosh y - sinh x * sinh y :=
by simp [sub_eq_add_neg, cosh_add, sinh_neg, cosh_neg]
lemma sinh_conj : sinh (conj x) = conj (sinh x) :=
by rw [sinh, ← conj_neg, exp_conj, exp_conj, ← conj_sub, sinh, conj_div, conj_bit0, conj_one]
@[simp] lemma of_real_sinh_of_real_re (x : ℝ) : ((sinh x).re : ℂ) = sinh x :=
eq_conj_iff_re.1 $ by rw [← sinh_conj, conj_of_real]
@[simp] lemma of_real_sinh (x : ℝ) : (real.sinh x : ℂ) = sinh x :=
of_real_sinh_of_real_re _
@[simp] lemma sinh_of_real_im (x : ℝ) : (sinh x).im = 0 :=
by rw [← of_real_sinh_of_real_re, of_real_im]
lemma sinh_of_real_re (x : ℝ) : (sinh x).re = real.sinh x := rfl
lemma cosh_conj : cosh (conj x) = conj (cosh x) :=
by rw [cosh, ← conj_neg, exp_conj, exp_conj, ← conj_add, cosh, conj_div, conj_bit0, conj_one]
@[simp] lemma of_real_cosh_of_real_re (x : ℝ) : ((cosh x).re : ℂ) = cosh x :=
eq_conj_iff_re.1 $ by rw [← cosh_conj, conj_of_real]
@[simp] lemma of_real_cosh (x : ℝ) : (real.cosh x : ℂ) = cosh x :=
of_real_cosh_of_real_re _
@[simp] lemma cosh_of_real_im (x : ℝ) : (cosh x).im = 0 :=
by rw [← of_real_cosh_of_real_re, of_real_im]
lemma cosh_of_real_re (x : ℝ) : (cosh x).re = real.cosh x := rfl
lemma tanh_eq_sinh_div_cosh : tanh x = sinh x / cosh x := rfl
@[simp] lemma tanh_zero : tanh 0 = 0 := by simp [tanh]
@[simp] lemma tanh_neg : tanh (-x) = -tanh x := by simp [tanh, neg_div]
lemma tanh_conj : tanh (conj x) = conj (tanh x) :=
by rw [tanh, sinh_conj, cosh_conj, ← conj_div, tanh]
@[simp] lemma of_real_tanh_of_real_re (x : ℝ) : ((tanh x).re : ℂ) = tanh x :=
eq_conj_iff_re.1 $ by rw [← tanh_conj, conj_of_real]
@[simp] lemma of_real_tanh (x : ℝ) : (real.tanh x : ℂ) = tanh x :=
of_real_tanh_of_real_re _
@[simp] lemma tanh_of_real_im (x : ℝ) : (tanh x).im = 0 :=
by rw [← of_real_tanh_of_real_re, of_real_im]
lemma tanh_of_real_re (x : ℝ) : (tanh x).re = real.tanh x := rfl
lemma cosh_add_sinh : cosh x + sinh x = exp x :=
by rw [← domain.mul_right_inj (@two_ne_zero' ℂ _ _ _), mul_add,
two_cosh, two_sinh, add_add_sub_cancel, two_mul]
lemma sinh_add_cosh : sinh x + cosh x = exp x :=
by rw [add_comm, cosh_add_sinh]
lemma cosh_sub_sinh : cosh x - sinh x = exp (-x) :=
by rw [← domain.mul_right_inj (@two_ne_zero' ℂ _ _ _), mul_sub,
two_cosh, two_sinh, add_sub_sub_cancel, two_mul]
lemma cosh_sq_sub_sinh_sq : cosh x ^ 2 - sinh x ^ 2 = 1 :=
by rw [sq_sub_sq, cosh_add_sinh, cosh_sub_sinh, ← exp_add, add_neg_self, exp_zero]
@[simp] lemma sin_zero : sin 0 = 0 := by simp [sin]
@[simp] lemma sin_neg : sin (-x) = -sin x :=
by simp [sin, sub_eq_add_neg, exp_neg, (neg_div _ _).symm, add_mul]
lemma two_sin : 2 * sin x = (exp (-x * I) - exp (x * I)) * I :=
mul_div_cancel' _ two_ne_zero'
lemma two_cos : 2 * cos x = exp (x * I) + exp (-x * I) :=
mul_div_cancel' _ two_ne_zero'
lemma sinh_mul_I : sinh (x * I) = sin x * I :=
by rw [← domain.mul_right_inj (@two_ne_zero' ℂ _ _ _), two_sinh,
← mul_assoc, two_sin, mul_assoc, I_mul_I, mul_neg_one,
neg_sub, neg_mul_eq_neg_mul]
lemma cosh_mul_I : cosh (x * I) = cos x :=
by rw [← domain.mul_right_inj (@two_ne_zero' ℂ _ _ _), two_cosh,
two_cos, neg_mul_eq_neg_mul]
lemma sin_add : sin (x + y) = sin x * cos y + cos x * sin y :=
by rw [← domain.mul_left_inj I_ne_zero, ← sinh_mul_I,
add_mul, add_mul, mul_right_comm, ← sinh_mul_I,
mul_assoc, ← sinh_mul_I, ← cosh_mul_I, ← cosh_mul_I, sinh_add]
@[simp] lemma cos_zero : cos 0 = 1 := by simp [cos]
@[simp] lemma cos_neg : cos (-x) = cos x :=
by simp [cos, sub_eq_add_neg, exp_neg, add_comm]
private lemma cos_add_aux {a b c d : ℂ} :
(a + b) * (c + d) - (b - a) * (d - c) * (-1) =
2 * (a * c + b * d) := by ring
lemma cos_add : cos (x + y) = cos x * cos y - sin x * sin y :=
by rw [← cosh_mul_I, add_mul, cosh_add, cosh_mul_I, cosh_mul_I,
sinh_mul_I, sinh_mul_I, mul_mul_mul_comm, I_mul_I,
mul_neg_one, sub_eq_add_neg]
lemma sin_sub : sin (x - y) = sin x * cos y - cos x * sin y :=
by simp [sub_eq_add_neg, sin_add, sin_neg, cos_neg]
lemma cos_sub : cos (x - y) = cos x * cos y + sin x * sin y :=
by simp [sub_eq_add_neg, cos_add, sin_neg, cos_neg]
lemma sin_conj : sin (conj x) = conj (sin x) :=
by rw [← domain.mul_left_inj I_ne_zero, ← sinh_mul_I,
← conj_neg_I, ← conj_mul, ← conj_mul, sinh_conj,
mul_neg_eq_neg_mul_symm, sinh_neg, sinh_mul_I, mul_neg_eq_neg_mul_symm]
@[simp] lemma of_real_sin_of_real_re (x : ℝ) : ((sin x).re : ℂ) = sin x :=
eq_conj_iff_re.1 $ by rw [← sin_conj, conj_of_real]
@[simp] lemma of_real_sin (x : ℝ) : (real.sin x : ℂ) = sin x :=
of_real_sin_of_real_re _
@[simp] lemma sin_of_real_im (x : ℝ) : (sin x).im = 0 :=
by rw [← of_real_sin_of_real_re, of_real_im]
lemma sin_of_real_re (x : ℝ) : (sin x).re = real.sin x := rfl
lemma cos_conj : cos (conj x) = conj (cos x) :=
by rw [← cosh_mul_I, ← conj_neg_I, ← conj_mul, ← cosh_mul_I,
cosh_conj, mul_neg_eq_neg_mul_symm, cosh_neg]
@[simp] lemma of_real_cos_of_real_re (x : ℝ) : ((cos x).re : ℂ) = cos x :=
eq_conj_iff_re.1 $ by rw [← cos_conj, conj_of_real]
@[simp] lemma of_real_cos (x : ℝ) : (real.cos x : ℂ) = cos x :=
of_real_cos_of_real_re _
@[simp] lemma cos_of_real_im (x : ℝ) : (cos x).im = 0 :=
by rw [← of_real_cos_of_real_re, of_real_im]
lemma cos_of_real_re (x : ℝ) : (cos x).re = real.cos x := rfl
@[simp] lemma tan_zero : tan 0 = 0 := by simp [tan]
lemma tan_eq_sin_div_cos : tan x = sin x / cos x := rfl
@[simp] lemma tan_neg : tan (-x) = -tan x := by simp [tan, neg_div]
lemma tan_conj : tan (conj x) = conj (tan x) :=
by rw [tan, sin_conj, cos_conj, ← conj_div, tan]
@[simp] lemma of_real_tan_of_real_re (x : ℝ) : ((tan x).re : ℂ) = tan x :=
eq_conj_iff_re.1 $ by rw [← tan_conj, conj_of_real]
@[simp] lemma of_real_tan (x : ℝ) : (real.tan x : ℂ) = tan x :=
of_real_tan_of_real_re _
@[simp] lemma tan_of_real_im (x : ℝ) : (tan x).im = 0 :=
by rw [← of_real_tan_of_real_re, of_real_im]
lemma tan_of_real_re (x : ℝ) : (tan x).re = real.tan x := rfl
lemma cos_add_sin_I : cos x + sin x * I = exp (x * I) :=
by rw [← cosh_add_sinh, sinh_mul_I, cosh_mul_I]
lemma cos_sub_sin_I : cos x - sin x * I = exp (-x * I) :=
by rw [← neg_mul_eq_neg_mul, ← cosh_sub_sinh, sinh_mul_I, cosh_mul_I]
lemma sin_sq_add_cos_sq : sin x ^ 2 + cos x ^ 2 = 1 :=
eq.trans
(by rw [cosh_mul_I, sinh_mul_I, mul_pow, I_sq, mul_neg_one, sub_neg_eq_add, add_comm])
(cosh_sq_sub_sinh_sq (x * I))
lemma cos_two_mul' : cos (2 * x) = cos x ^ 2 - sin x ^ 2 :=
by rw [two_mul, cos_add, ← pow_two, ← pow_two]
lemma cos_two_mul : cos (2 * x) = 2 * cos x ^ 2 - 1 :=
by rw [cos_two_mul', eq_sub_iff_add_eq.2 (sin_sq_add_cos_sq x),
← sub_add, sub_add_eq_add_sub, two_mul]
lemma sin_two_mul : sin (2 * x) = 2 * sin x * cos x :=
by rw [two_mul, sin_add, two_mul, add_mul, mul_comm]
lemma cos_square : cos x ^ 2 = 1 / 2 + cos (2 * x) / 2 :=
by simp [cos_two_mul, div_add_div_same, mul_div_cancel_left, two_ne_zero', -one_div_eq_inv]
lemma sin_square : sin x ^ 2 = 1 - cos x ^ 2 :=
by { rw [←sin_sq_add_cos_sq x], simp }
lemma exp_mul_I : exp (x * I) = cos x + sin x * I :=
(cos_add_sin_I _).symm
lemma exp_add_mul_I : exp (x + y * I) = exp x * (cos y + sin y * I) :=
by rw [exp_add, exp_mul_I]
lemma exp_eq_exp_re_mul_sin_add_cos : exp x = exp x.re * (cos x.im + sin x.im * I) :=
by rw [← exp_add_mul_I, re_add_im]
theorem cos_add_sin_mul_I_pow (n : ℕ) (z : ℂ) : (cos z + sin z * I) ^ n = cos (↑n * z) + sin (↑n * z) * I :=
begin
rw [← exp_mul_I, ← exp_mul_I],
induction n with n ih,
{ rw [pow_zero, nat.cast_zero, zero_mul, zero_mul, exp_zero] },
{ rw [pow_succ', ih, nat.cast_succ, add_mul, add_mul, one_mul, exp_add] }
end
end complex
namespace real
open complex
variables (x y : ℝ)
@[simp] lemma exp_zero : exp 0 = 1 :=
by simp [real.exp]
lemma exp_add : exp (x + y) = exp x * exp y :=
by simp [exp_add, exp]
lemma exp_list_sum (l : list ℝ) : exp l.sum = (l.map exp).prod :=
@monoid_hom.map_list_prod (multiplicative ℝ) ℝ _ _ ⟨exp, exp_zero, exp_add⟩ l
lemma exp_multiset_sum (s : multiset ℝ) : exp s.sum = (s.map exp).prod :=
@monoid_hom.map_multiset_prod (multiplicative ℝ) ℝ _ _ ⟨exp, exp_zero, exp_add⟩ s
lemma exp_sum {α : Type*} (s : finset α) (f : α → ℝ) : exp (∑ x in s, f x) = ∏ x in s, exp (f x) :=
@monoid_hom.map_prod α (multiplicative ℝ) ℝ _ _ ⟨exp, exp_zero, exp_add⟩ f s
lemma exp_nat_mul (x : ℝ) : ∀ n : ℕ, exp(n*x) = (exp x)^n
| 0 := by rw [nat.cast_zero, zero_mul, exp_zero, pow_zero]
| (nat.succ n) := by rw [pow_succ', nat.cast_add_one, add_mul, exp_add, ←exp_nat_mul, one_mul]
lemma exp_ne_zero : exp x ≠ 0 :=
λ h, exp_ne_zero x $ by rw [exp, ← of_real_inj] at h; simp * at *
lemma exp_neg : exp (-x) = (exp x)⁻¹ :=
by rw [← of_real_inj, exp, of_real_exp_of_real_re, of_real_neg, exp_neg,
of_real_inv, of_real_exp]
lemma exp_sub : exp (x - y) = exp x / exp y :=
by simp [sub_eq_add_neg, exp_add, exp_neg, div_eq_mul_inv]
@[simp] lemma sin_zero : sin 0 = 0 := by simp [sin]
@[simp] lemma sin_neg : sin (-x) = -sin x :=
by simp [sin, exp_neg, (neg_div _ _).symm, add_mul]
lemma sin_add : sin (x + y) = sin x * cos y + cos x * sin y :=
by rw [← of_real_inj]; simp [sin, sin_add]
@[simp] lemma cos_zero : cos 0 = 1 := by simp [cos]
@[simp] lemma cos_neg : cos (-x) = cos x :=
by simp [cos, exp_neg]
lemma cos_add : cos (x + y) = cos x * cos y - sin x * sin y :=
by rw ← of_real_inj; simp [cos, cos_add]
lemma sin_sub : sin (x - y) = sin x * cos y - cos x * sin y :=
by simp [sub_eq_add_neg, sin_add, sin_neg, cos_neg]
lemma cos_sub : cos (x - y) = cos x * cos y + sin x * sin y :=
by simp [sub_eq_add_neg, cos_add, sin_neg, cos_neg]
lemma tan_eq_sin_div_cos : tan x = sin x / cos x :=
if h : complex.cos x = 0 then by simp [sin, cos, tan, *, complex.tan, div_eq_mul_inv] at *
else
by rw [sin, cos, tan, complex.tan, ← of_real_inj, div_eq_mul_inv, mul_re];
simp [norm_sq, (div_div_eq_div_mul _ _ _).symm, div_self h]; refl
@[simp] lemma tan_zero : tan 0 = 0 := by simp [tan]
@[simp] lemma tan_neg : tan (-x) = -tan x := by simp [tan, neg_div]
lemma sin_sq_add_cos_sq : sin x ^ 2 + cos x ^ 2 = 1 :=
of_real_inj.1 $ by simpa using sin_sq_add_cos_sq x
lemma sin_sq_le_one : sin x ^ 2 ≤ 1 :=
by rw ← sin_sq_add_cos_sq x; exact le_add_of_nonneg_right' (pow_two_nonneg _)
lemma cos_sq_le_one : cos x ^ 2 ≤ 1 :=
by rw ← sin_sq_add_cos_sq x; exact le_add_of_nonneg_left' (pow_two_nonneg _)
lemma abs_sin_le_one : abs' (sin x) ≤ 1 :=
(mul_self_le_mul_self_iff (_root_.abs_nonneg (sin x)) (by exact zero_le_one)).2 $
by rw [← _root_.abs_mul, abs_mul_self, mul_one, ← pow_two];
apply sin_sq_le_one
lemma abs_cos_le_one : abs' (cos x) ≤ 1 :=
(mul_self_le_mul_self_iff (_root_.abs_nonneg (cos x)) (by exact zero_le_one)).2 $
by rw [← _root_.abs_mul, abs_mul_self, mul_one, ← pow_two];
apply cos_sq_le_one
lemma sin_le_one : sin x ≤ 1 :=
(abs_le.1 (abs_sin_le_one _)).2
lemma cos_le_one : cos x ≤ 1 :=
(abs_le.1 (abs_cos_le_one _)).2
lemma neg_one_le_sin : -1 ≤ sin x :=
(abs_le.1 (abs_sin_le_one _)).1
lemma neg_one_le_cos : -1 ≤ cos x :=
(abs_le.1 (abs_cos_le_one _)).1
lemma cos_two_mul : cos (2 * x) = 2 * cos x ^ 2 - 1 :=
by rw ← of_real_inj; simp [cos_two_mul]
lemma sin_two_mul : sin (2 * x) = 2 * sin x * cos x :=
by rw ← of_real_inj; simp [sin_two_mul]
lemma cos_square : cos x ^ 2 = 1 / 2 + cos (2 * x) / 2 :=
of_real_inj.1 $ by simpa using cos_square x
lemma sin_square : sin x ^ 2 = 1 - cos x ^ 2 :=
eq_sub_iff_add_eq.2 $ sin_sq_add_cos_sq _
@[simp] lemma sinh_zero : sinh 0 = 0 := by simp [sinh]
@[simp] lemma sinh_neg : sinh (-x) = -sinh x :=
by simp [sinh, exp_neg, (neg_div _ _).symm, add_mul]
lemma sinh_add : sinh (x + y) = sinh x * cosh y + cosh x * sinh y :=
by rw ← of_real_inj; simp [sinh_add]
@[simp] lemma cosh_zero : cosh 0 = 1 := by simp [cosh]
@[simp] lemma cosh_neg : cosh (-x) = cosh x :=
by simp [cosh, exp_neg]
lemma cosh_add : cosh (x + y) = cosh x * cosh y + sinh x * sinh y :=
by rw ← of_real_inj; simp [cosh, cosh_add]
lemma sinh_sub : sinh (x - y) = sinh x * cosh y - cosh x * sinh y :=
by simp [sub_eq_add_neg, sinh_add, sinh_neg, cosh_neg]
lemma cosh_sub : cosh (x - y) = cosh x * cosh y - sinh x * sinh y :=
by simp [sub_eq_add_neg, cosh_add, sinh_neg, cosh_neg]
lemma tanh_eq_sinh_div_cosh : tanh x = sinh x / cosh x :=
of_real_inj.1 $ by simp [tanh_eq_sinh_div_cosh]
@[simp] lemma tanh_zero : tanh 0 = 0 := by simp [tanh]
@[simp] lemma tanh_neg : tanh (-x) = -tanh x := by simp [tanh, neg_div]
open is_absolute_value
/- TODO make this private and prove ∀ x -/
lemma add_one_le_exp_of_nonneg {x : ℝ} (hx : 0 ≤ x) : x + 1 ≤ exp x :=
calc x + 1 ≤ lim (⟨(λ n : ℕ, ((exp' x) n).re), is_cau_seq_re (exp' x)⟩ : cau_seq ℝ abs') :
le_lim (cau_seq.le_of_exists ⟨2,
λ j hj, show x + (1 : ℝ) ≤ (∑ m in range j, (x ^ m / m.fact : ℂ)).re,
from have h₁ : (((λ m : ℕ, (x ^ m / m.fact : ℂ)) ∘ nat.succ) 0).re = x, by simp,
have h₂ : ((x : ℂ) ^ 0 / nat.fact 0).re = 1, by simp,
begin
rw [← nat.sub_add_cancel hj, sum_range_succ', sum_range_succ',
add_re, add_re, h₁, h₂, add_assoc,
← @sum_hom _ _ _ _ _ _ _ complex.re
(is_add_group_hom.to_is_add_monoid_hom _)],
refine le_add_of_nonneg_of_le (sum_nonneg (λ m hm, _)) (le_refl _),
rw [← of_real_pow, ← of_real_nat_cast, ← of_real_div, of_real_re],
exact div_nonneg (pow_nonneg hx _) (nat.cast_pos.2 (nat.fact_pos _)),
end⟩)
... = exp x : by rw [exp, complex.exp, ← cau_seq_re, lim_re]
lemma one_le_exp {x : ℝ} (hx : 0 ≤ x) : 1 ≤ exp x :=
by linarith [add_one_le_exp_of_nonneg hx]
lemma exp_pos (x : ℝ) : 0 < exp x :=
(le_total 0 x).elim (lt_of_lt_of_le zero_lt_one ∘ one_le_exp)
(λ h, by rw [← neg_neg x, real.exp_neg];
exact inv_pos.2 (lt_of_lt_of_le zero_lt_one (one_le_exp (neg_nonneg.2 h))))
@[simp] lemma abs_exp (x : ℝ) : abs' (exp x) = exp x :=
abs_of_pos (exp_pos _)
lemma exp_strict_mono : strict_mono exp :=
λ x y h, by rw [← sub_add_cancel y x, real.exp_add];
exact (lt_mul_iff_one_lt_left (exp_pos _)).2
(lt_of_lt_of_le (by linarith) (add_one_le_exp_of_nonneg (by linarith)))
lemma exp_lt_exp {x y : ℝ} : exp x < exp y ↔ x < y := exp_strict_mono.lt_iff_lt
lemma exp_le_exp {x y : ℝ} : exp x ≤ exp y ↔ x ≤ y := exp_strict_mono.le_iff_le
lemma exp_injective : function.injective exp := exp_strict_mono.injective
@[simp] lemma exp_eq_one_iff : exp x = 1 ↔ x = 0 :=
by rw [← exp_zero, exp_injective.eq_iff]
lemma one_lt_exp_iff {x : ℝ} : 1 < exp x ↔ 0 < x :=
by rw [← exp_zero, exp_lt_exp]
lemma exp_lt_one_iff {x : ℝ} : exp x < 1 ↔ x < 0 :=
by rw [← exp_zero, exp_lt_exp]
end real
namespace complex
lemma sum_div_fact_le {α : Type*} [discrete_linear_ordered_field α] (n j : ℕ) (hn : 0 < n) :
∑ m in filter (λ k, n ≤ k) (range j), (1 / m.fact : α) ≤ n.succ * (n.fact * n)⁻¹ :=
calc ∑ m in filter (λ k, n ≤ k) (range j), (1 / m.fact : α)
= ∑ m in range (j - n), 1 / (m + n).fact :
sum_bij (λ m _, m - n)
(λ m hm, mem_range.2 $ (nat.sub_lt_sub_right_iff (by simp at hm; tauto)).2
(by simp at hm; tauto))
(λ m hm, by rw nat.sub_add_cancel; simp at *; tauto)
(λ a₁ a₂ ha₁ ha₂ h,
by rwa [nat.sub_eq_iff_eq_add, ← nat.sub_add_comm, eq_comm, nat.sub_eq_iff_eq_add, add_left_inj, eq_comm] at h;
simp at *; tauto)
(λ b hb, ⟨b + n, mem_filter.2 ⟨mem_range.2 $ nat.add_lt_of_lt_sub_right (mem_range.1 hb), nat.le_add_left _ _⟩,
by rw nat.add_sub_cancel⟩)
... ≤ ∑ m in range (j - n), (nat.fact n * n.succ ^ m)⁻¹ :
begin
refine sum_le_sum (assume m n, _),
rw [one_div_eq_inv, inv_le_inv],
{ rw [← nat.cast_pow, ← nat.cast_mul, nat.cast_le, add_comm],
exact nat.fact_mul_pow_le_fact },
{ exact nat.cast_pos.2 (nat.fact_pos _) },
{ exact mul_pos (nat.cast_pos.2 (nat.fact_pos _))
(pow_pos (nat.cast_pos.2 (nat.succ_pos _)) _) },
end
... = (nat.fact n)⁻¹ * ∑ m in range (j - n), n.succ⁻¹ ^ m :
by simp [mul_inv', mul_sum.symm, sum_mul.symm, -nat.fact_succ, mul_comm, inv_pow']
... = (n.succ - n.succ * n.succ⁻¹ ^ (j - n)) / (n.fact * n) :
have h₁ : (n.succ : α) ≠ 1, from @nat.cast_one α _ _ ▸ mt nat.cast_inj.1
(mt nat.succ.inj (nat.pos_iff_ne_zero.1 hn)),
have h₂ : (n.succ : α) ≠ 0, from nat.cast_ne_zero.2 (nat.succ_ne_zero _),
have h₃ : (n.fact * n : α) ≠ 0,
from mul_ne_zero (nat.cast_ne_zero.2 (nat.pos_iff_ne_zero.1 (nat.fact_pos _)))
(nat.cast_ne_zero.2 (nat.pos_iff_ne_zero.1 hn)),
have h₄ : (n.succ - 1 : α) = n, by simp,
by rw [← geom_series_def, geom_sum_inv h₁ h₂, eq_div_iff_mul_eq _ _ h₃,
mul_comm _ (n.fact * n : α), ← mul_assoc (n.fact⁻¹ : α), ← mul_inv', h₄,
← mul_assoc (n.fact * n : α), mul_comm (n : α) n.fact, mul_inv_cancel h₃];
simp [mul_add, add_mul, mul_assoc, mul_comm]
... ≤ n.succ / (n.fact * n) :
begin
refine iff.mpr (div_le_div_right (mul_pos _ _)) _,
exact nat.cast_pos.2 (nat.fact_pos _),
exact nat.cast_pos.2 hn,
exact sub_le_self _
(mul_nonneg (nat.cast_nonneg _) (pow_nonneg (inv_nonneg.2 (nat.cast_nonneg _)) _))
end
lemma exp_bound {x : ℂ} (hx : abs x ≤ 1) {n : ℕ} (hn : 0 < n) :
abs (exp x - ∑ m in range n, x ^ m / m.fact) ≤ abs x ^ n * (n.succ * (n.fact * n)⁻¹) :=
begin
rw [← lim_const (∑ m in range n, _), exp, sub_eq_add_neg, ← lim_neg, lim_add, ← lim_abs],
refine lim_le (cau_seq.le_of_exists ⟨n, λ j hj, _⟩),
show abs (∑ m in range j, x ^ m / m.fact - ∑ m in range n, x ^ m / m.fact)
≤ abs x ^ n * (n.succ * (n.fact * n)⁻¹),
rw sum_range_sub_sum_range hj,
exact calc abs (∑ m in (range j).filter (λ k, n ≤ k), (x ^ m / m.fact : ℂ))
= abs (∑ m in (range j).filter (λ k, n ≤ k), (x ^ n * (x ^ (m - n) / m.fact) : ℂ)) :
congr_arg abs (sum_congr rfl (λ m hm, by rw [← mul_div_assoc, ← pow_add, nat.add_sub_cancel']; simp at hm; tauto))
... ≤ ∑ m in filter (λ k, n ≤ k) (range j), abs (x ^ n * (_ / m.fact)) : abv_sum_le_sum_abv _ _
... ≤ ∑ m in filter (λ k, n ≤ k) (range j), abs x ^ n * (1 / m.fact) :
begin
refine sum_le_sum (λ m hm, _),
rw [abs_mul, abv_pow abs, abs_div, abs_cast_nat],
refine mul_le_mul_of_nonneg_left ((div_le_div_right _).2 _) _,
exact nat.cast_pos.2 (nat.fact_pos _),
rw abv_pow abs,
exact (pow_le_one _ (abs_nonneg _) hx),
exact pow_nonneg (abs_nonneg _) _
end
... = abs x ^ n * (∑ m in (range j).filter (λ k, n ≤ k), (1 / m.fact : ℝ)) :
by simp [abs_mul, abv_pow abs, abs_div, mul_sum.symm]
... ≤ abs x ^ n * (n.succ * (n.fact * n)⁻¹) :
mul_le_mul_of_nonneg_left (sum_div_fact_le _ _ hn) (pow_nonneg (abs_nonneg _) _)
end
lemma abs_exp_sub_one_le {x : ℂ} (hx : abs x ≤ 1) :
abs (exp x - 1) ≤ 2 * abs x :=
calc abs (exp x - 1) = abs (exp x - ∑ m in range 1, x ^ m / m.fact) :
by simp [sum_range_succ]
... ≤ abs x ^ 1 * ((nat.succ 1) * (nat.fact 1 * (1 : ℕ))⁻¹) :
exp_bound hx dec_trivial
... = 2 * abs x : by simp [two_mul, mul_two, mul_add, mul_comm]
lemma abs_exp_sub_one_sub_id_le {x : ℂ} (hx : abs x ≤ 1) :
abs (exp x - 1 - x) ≤ (abs x)^2 :=
calc abs (exp x - 1 - x) = abs (exp x - ∑ m in range 2, x ^ m / m.fact) :
by simp [sub_eq_add_neg, sum_range_succ, add_assoc]
... ≤ (abs x)^2 * (nat.succ 2 * (nat.fact 2 * (2 : ℕ))⁻¹) :
exp_bound hx dec_trivial
... ≤ (abs x)^2 * 1 :
mul_le_mul_of_nonneg_left (by norm_num) (pow_two_nonneg (abs x))
... = (abs x)^2 :
by rw [mul_one]
end complex
namespace real
open complex finset
lemma cos_bound {x : ℝ} (hx : abs' x ≤ 1) :
abs' (cos x - (1 - x ^ 2 / 2)) ≤ abs' x ^ 4 * (5 / 96) :=
calc abs' (cos x - (1 - x ^ 2 / 2)) = abs (complex.cos x - (1 - x ^ 2 / 2)) :
by rw ← abs_of_real; simp [of_real_bit0, of_real_one, of_real_inv]
... = abs ((complex.exp (x * I) + complex.exp (-x * I) - (2 - x ^ 2)) / 2) :
by simp [complex.cos, sub_div, add_div, neg_div, div_self (@two_ne_zero' ℂ _ _ _)]
... = abs (((complex.exp (x * I) - ∑ m in range 4, (x * I) ^ m / m.fact) +
((complex.exp (-x * I) - ∑ m in range 4, (-x * I) ^ m / m.fact))) / 2) :
congr_arg abs (congr_arg (λ x : ℂ, x / 2) begin
simp only [sum_range_succ],
simp [pow_succ],
apply complex.ext; simp [div_eq_mul_inv, norm_sq]; ring
end)
... ≤ abs ((complex.exp (x * I) - ∑ m in range 4, (x * I) ^ m / m.fact) / 2) +
abs ((complex.exp (-x * I) - ∑ m in range 4, (-x * I) ^ m / m.fact) / 2) :
by rw add_div; exact abs_add _ _
... = (abs ((complex.exp (x * I) - ∑ m in range 4, (x * I) ^ m / m.fact)) / 2 +
abs ((complex.exp (-x * I) - ∑ m in range 4, (-x * I) ^ m / m.fact)) / 2) :
by simp [complex.abs_div]
... ≤ ((complex.abs (x * I) ^ 4 * (nat.succ 4 * (nat.fact 4 * (4 : ℕ))⁻¹)) / 2 +
(complex.abs (-x * I) ^ 4 * (nat.succ 4 * (nat.fact 4 * (4 : ℕ))⁻¹)) / 2) :
add_le_add ((div_le_div_right (by norm_num)).2 (exp_bound (by simpa) dec_trivial))
((div_le_div_right (by norm_num)).2 (exp_bound (by simpa) dec_trivial))
... ≤ abs' x ^ 4 * (5 / 96) : by norm_num; simp [mul_assoc, mul_comm, mul_left_comm, mul_div_assoc]
lemma sin_bound {x : ℝ} (hx : abs' x ≤ 1) :
abs' (sin x - (x - x ^ 3 / 6)) ≤ abs' x ^ 4 * (5 / 96) :=
calc abs' (sin x - (x - x ^ 3 / 6)) = abs (complex.sin x - (x - x ^ 3 / 6)) :
by rw ← abs_of_real; simp [of_real_bit0, of_real_one, of_real_inv]
... = abs (((complex.exp (-x * I) - complex.exp (x * I)) * I - (2 * x - x ^ 3 / 3)) / 2) :
by simp [complex.sin, sub_div, add_div, neg_div, mul_div_cancel_left _ (@two_ne_zero' ℂ _ _ _),
div_div_eq_div_mul, show (3 : ℂ) * 2 = 6, by norm_num]
... = abs ((((complex.exp (-x * I) - ∑ m in range 4, (-x * I) ^ m / m.fact) -
(complex.exp (x * I) - ∑ m in range 4, (x * I) ^ m / m.fact)) * I) / 2) :
congr_arg abs (congr_arg (λ x : ℂ, x / 2) begin
simp only [sum_range_succ],
simp [pow_succ],
apply complex.ext; simp [div_eq_mul_inv, norm_sq]; ring
end)
... ≤ abs ((complex.exp (-x * I) - ∑ m in range 4, (-x * I) ^ m / m.fact) * I / 2) +
abs (-((complex.exp (x * I) - ∑ m in range 4, (x * I) ^ m / m.fact) * I) / 2) :
by rw [sub_mul, sub_eq_add_neg, add_div]; exact abs_add _ _
... = (abs ((complex.exp (x * I) - ∑ m in range 4, (x * I) ^ m / m.fact)) / 2 +
abs ((complex.exp (-x * I) - ∑ m in range 4, (-x * I) ^ m / m.fact)) / 2) :
by simp [add_comm, complex.abs_div, complex.abs_mul]
... ≤ ((complex.abs (x * I) ^ 4 * (nat.succ 4 * (nat.fact 4 * (4 : ℕ))⁻¹)) / 2 +
(complex.abs (-x * I) ^ 4 * (nat.succ 4 * (nat.fact 4 * (4 : ℕ))⁻¹)) / 2) :
add_le_add ((div_le_div_right (by norm_num)).2 (exp_bound (by simpa) dec_trivial))
((div_le_div_right (by norm_num)).2 (exp_bound (by simpa) dec_trivial))
... ≤ abs' x ^ 4 * (5 / 96) : by norm_num; simp [mul_assoc, mul_comm, mul_left_comm, mul_div_assoc]
lemma cos_pos_of_le_one {x : ℝ} (hx : abs' x ≤ 1) : 0 < cos x :=
calc 0 < (1 - x ^ 2 / 2) - abs' x ^ 4 * (5 / 96) :
sub_pos.2 $ lt_sub_iff_add_lt.2
(calc abs' x ^ 4 * (5 / 96) + x ^ 2 / 2
≤ 1 * (5 / 96) + 1 / 2 :
add_le_add
(mul_le_mul_of_nonneg_right (pow_le_one _ (abs_nonneg _) hx) (by norm_num))
((div_le_div_right (by norm_num)).2 (by rw [pow_two, ← abs_mul_self, _root_.abs_mul];
exact mul_le_one hx (abs_nonneg _) hx))
... < 1 : by norm_num)
... ≤ cos x : sub_le.1 (abs_sub_le_iff.1 (cos_bound hx)).2
lemma sin_pos_of_pos_of_le_one {x : ℝ} (hx0 : 0 < x) (hx : x ≤ 1) : 0 < sin x :=
calc 0 < x - x ^ 3 / 6 - abs' x ^ 4 * (5 / 96) :
sub_pos.2 $ lt_sub_iff_add_lt.2
(calc abs' x ^ 4 * (5 / 96) + x ^ 3 / 6
≤ x * (5 / 96) + x / 6 :
add_le_add
(mul_le_mul_of_nonneg_right
(calc abs' x ^ 4 ≤ abs' x ^ 1 : pow_le_pow_of_le_one (abs_nonneg _)
(by rwa _root_.abs_of_nonneg (le_of_lt hx0))
dec_trivial
... = x : by simp [_root_.abs_of_nonneg (le_of_lt (hx0))]) (by norm_num))
((div_le_div_right (by norm_num)).2
(calc x ^ 3 ≤ x ^ 1 : pow_le_pow_of_le_one (le_of_lt hx0) hx dec_trivial
... = x : pow_one _))
... < x : by linarith)
... ≤ sin x : sub_le.1 (abs_sub_le_iff.1 (sin_bound
(by rwa [_root_.abs_of_nonneg (le_of_lt hx0)]))).2
lemma sin_pos_of_pos_of_le_two {x : ℝ} (hx0 : 0 < x) (hx : x ≤ 2) : 0 < sin x :=
have x / 2 ≤ 1, from div_le_of_le_mul (by norm_num) (by simpa),
calc 0 < 2 * sin (x / 2) * cos (x / 2) :
mul_pos (mul_pos (by norm_num) (sin_pos_of_pos_of_le_one (half_pos hx0) this))
(cos_pos_of_le_one (by rwa [_root_.abs_of_nonneg (le_of_lt (half_pos hx0))]))
... = sin x : by rw [← sin_two_mul, two_mul, add_halves]
lemma cos_one_le : cos 1 ≤ 2 / 3 :=
calc cos 1 ≤ abs' (1 : ℝ) ^ 4 * (5 / 96) + (1 - 1 ^ 2 / 2) :
sub_le_iff_le_add.1 (abs_sub_le_iff.1 (cos_bound (by simp))).1
... ≤ 2 / 3 : by norm_num
lemma cos_one_pos : 0 < cos 1 := cos_pos_of_le_one (by simp)
lemma cos_two_neg : cos 2 < 0 :=
calc cos 2 = cos (2 * 1) : congr_arg cos (mul_one _).symm
... = _ : real.cos_two_mul 1
... ≤ 2 * (2 / 3) ^ 2 - 1 :
sub_le_sub_right (mul_le_mul_of_nonneg_left
(by rw [pow_two, pow_two]; exact
mul_self_le_mul_self (le_of_lt cos_one_pos)
cos_one_le)
(by norm_num)) _
... < 0 : by norm_num
end real
namespace complex
lemma abs_cos_add_sin_mul_I (x : ℝ) : abs (cos x + sin x * I) = 1 :=
have _ := real.sin_sq_add_cos_sq x,
by simp [add_comm, abs, norm_sq, pow_two, *, sin_of_real_re, cos_of_real_re, mul_re] at *
lemma abs_exp_eq_iff_re_eq {x y : ℂ} : abs (exp x) = abs (exp y) ↔ x.re = y.re :=
by rw [exp_eq_exp_re_mul_sin_add_cos, exp_eq_exp_re_mul_sin_add_cos y,
abs_mul, abs_mul, abs_cos_add_sin_mul_I, abs_cos_add_sin_mul_I,
← of_real_exp, ← of_real_exp, abs_of_nonneg (le_of_lt (real.exp_pos _)),
abs_of_nonneg (le_of_lt (real.exp_pos _)), mul_one, mul_one];
exact ⟨λ h, real.exp_injective h, congr_arg _⟩
@[simp] lemma abs_exp_of_real (x : ℝ) : abs (exp x) = real.exp x :=
by rw [← of_real_exp]; exact abs_of_nonneg (le_of_lt (real.exp_pos _))
end complex
|
22ade8ff3c7ef988a55658d59e8998f5cd883782
|
cf39355caa609c0f33405126beee2739aa3cb77e
|
/tests/lean/t10.lean
|
10803b328a37772c9b03d41bb86f6bae862fe5b1
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/lean
|
12b87f69d92e614daea8bcc9d4de9a9ace089d0e
|
cce7990ea86a78bdb383e38ed7f9b5ba93c60ce0
|
refs/heads/master
| 1,687,508,156,644
| 1,684,951,104,000
| 1,684,951,104,000
| 169,960,991
| 457
| 107
|
Apache-2.0
| 1,686,744,372,000
| 1,549,790,268,000
|
C++
|
UTF-8
|
Lean
| false
| false
| 603
|
lean
|
prelude constant N : Type.{1}
definition B : Type.{1} := Type.{0}
constant ite : B → N → N → N
constant and : B → B → B
constant f : N → N
constant p : B
constant q : B
constant x : N
constant y : N
constant z : N
infixr ` ∧ `:25 := and
notation `if ` c ` then ` t:45 ` else ` e:45 := ite c t e
#check if p ∧ q then f x else y
#check if p ∧ q then q else y
constant list : Type.{1}
constant nil : list
constant cons : N → list → list
-- Non empty lists
notation `[` l:(foldr `, ` (h t, cons h t) nil) `]` := l
#check [x, y, z, x, y, y]
#check [x]
notation `[` `]` := nil
#check []
|
8aff9641280e1501e8a5ab49bae509157dc7eda5
|
57c233acf9386e610d99ed20ef139c5f97504ba3
|
/src/order/category/NonemptyFinLinOrd.lean
|
32042b5820beab9d174e4667b3bb31dc6b56c8e6
|
[
"Apache-2.0"
] |
permissive
|
robertylewis/mathlib
|
3d16e3e6daf5ddde182473e03a1b601d2810952c
|
1d13f5b932f5e40a8308e3840f96fc882fae01f0
|
refs/heads/master
| 1,651,379,945,369
| 1,644,276,960,000
| 1,644,276,960,000
| 98,875,504
| 0
| 0
|
Apache-2.0
| 1,644,253,514,000
| 1,501,495,700,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 3,382
|
lean
|
/-
Copyright (c) 2020 Johan Commelin. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin
-/
import data.fintype.order
import order.category.LinearOrder
/-!
# Nonempty finite linear orders
This defines `NonemptyFinLinOrd`, the category of nonempty finite linear orders with monotone maps.
This is the index category for simplicial objects.
-/
universes u v
open category_theory
/-- A typeclass for nonempty finite linear orders. -/
class nonempty_fin_lin_ord (α : Type*) extends fintype α, linear_order α :=
(nonempty : nonempty α . tactic.apply_instance)
attribute [instance] nonempty_fin_lin_ord.nonempty
@[priority 100]
instance nonempty_fin_lin_ord.to_bounded_order (α : Type*) [nonempty_fin_lin_ord α] :
bounded_order α :=
fintype.to_bounded_order α
instance punit.nonempty_fin_lin_ord : nonempty_fin_lin_ord punit :=
{ .. punit.linear_ordered_cancel_add_comm_monoid,
.. punit.fintype }
instance fin.nonempty_fin_lin_ord (n : ℕ) : nonempty_fin_lin_ord (fin (n+1)) :=
{ .. fin.fintype _,
.. fin.linear_order }
instance ulift.nonempty_fin_lin_ord (α : Type u) [nonempty_fin_lin_ord α] :
nonempty_fin_lin_ord (ulift.{v} α) :=
{ nonempty := ⟨ulift.up ⊥⟩,
.. linear_order.lift equiv.ulift (equiv.injective _),
.. ulift.fintype _ }
instance (α : Type*) [nonempty_fin_lin_ord α] : nonempty_fin_lin_ord (order_dual α) :=
{ ..order_dual.fintype α }
/-- The category of nonempty finite linear orders. -/
def NonemptyFinLinOrd := bundled nonempty_fin_lin_ord
namespace NonemptyFinLinOrd
instance : bundled_hom.parent_projection @nonempty_fin_lin_ord.to_linear_order := ⟨⟩
attribute [derive [large_category, concrete_category]] NonemptyFinLinOrd
instance : has_coe_to_sort NonemptyFinLinOrd Type* := bundled.has_coe_to_sort
/-- Construct a bundled `NonemptyFinLinOrd` from the underlying type and typeclass. -/
def of (α : Type*) [nonempty_fin_lin_ord α] : NonemptyFinLinOrd := bundled.of α
instance : inhabited NonemptyFinLinOrd := ⟨of punit⟩
instance (α : NonemptyFinLinOrd) : nonempty_fin_lin_ord α := α.str
instance has_forget_to_LinearOrder : has_forget₂ NonemptyFinLinOrd LinearOrder :=
bundled_hom.forget₂ _ _
/-- Constructs an equivalence between nonempty finite linear orders from an order isomorphism
between them. -/
@[simps] def iso.mk {α β : NonemptyFinLinOrd.{u}} (e : α ≃o β) : α ≅ β :=
{ hom := e,
inv := e.symm,
hom_inv_id' := by { ext, exact e.symm_apply_apply x },
inv_hom_id' := by { ext, exact e.apply_symm_apply x } }
/-- `order_dual` as a functor. -/
@[simps] def to_dual : NonemptyFinLinOrd ⥤ NonemptyFinLinOrd :=
{ obj := λ X, of (order_dual X), map := λ X Y, order_hom.dual }
/-- The equivalence between `FinPartialOrder` and itself induced by `order_dual` both ways. -/
@[simps functor inverse] def dual_equiv : NonemptyFinLinOrd ≌ NonemptyFinLinOrd :=
equivalence.mk to_dual to_dual
(nat_iso.of_components (λ X, iso.mk $ order_iso.dual_dual X) $ λ X Y f, rfl)
(nat_iso.of_components (λ X, iso.mk $ order_iso.dual_dual X) $ λ X Y f, rfl)
end NonemptyFinLinOrd
lemma NonemptyFinLinOrd_dual_equiv_comp_forget_to_LinearOrder :
NonemptyFinLinOrd.dual_equiv.functor ⋙ forget₂ NonemptyFinLinOrd LinearOrder
= forget₂ NonemptyFinLinOrd LinearOrder ⋙ LinearOrder.dual_equiv.functor := rfl
|
cccf0a674e81a1c33e933bd76571766bcff004fa
|
e9078bde91465351e1b354b353c9f9d8b8a9c8c2
|
/groupoid_quotient.hlean
|
e039c50e3f87d7960ad4fd6e7b74cb4fc9e7b159
|
[
"Apache-2.0"
] |
permissive
|
EgbertRijke/leansnippets
|
09fb7a9813477471532fbdd50c99be8d8fe3e6c4
|
1d9a7059784c92c0281fcc7ce66ac7b3619c8661
|
refs/heads/master
| 1,610,743,957,626
| 1,442,532,603,000
| 1,442,532,603,000
| 41,563,379
| 0
| 0
| null | 1,440,787,514,000
| 1,440,787,514,000
| null |
UTF-8
|
Lean
| false
| false
| 7,182
|
hlean
|
/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
Declaration of the groupoid quotient
-/
import hit.two_quotient algebra.category.groupoid hit.trunc
open two_quotient eq bool unit relation category e_closure iso is_trunc trunc
namespace groupoid_quotient
section
parameter (G : Groupoid)
inductive groupoid_quotient_R : G → G → Type :=
| Rmk : Π{a b : G} (f : a ⟶ b), groupoid_quotient_R a b
-- local infix `⬝r`:75 := @e_closure.trans G groupoid_quotient_R
-- local postfix `⁻¹ʳ`:(max+10) := @e_closure.symm G groupoid_quotient_R
-- local notation `[`:max a `]`:0 := @e_closure.of_rel G groupoid_quotient_R _ _ a
open groupoid_quotient_R
local abbreviation R := groupoid_quotient_R
inductive groupoid_quotient_Q : Π⦃x y : G⦄,
e_closure groupoid_quotient_R x y → e_closure groupoid_quotient_R x y → Type :=
| Qrefl : Π(a : G), groupoid_quotient_Q [Rmk (ID a)] rfl
| Qconcat : Π{a b c : G} (g : b ⟶ c) (f : a ⟶ b),
groupoid_quotient_Q [Rmk (g ∘ f)] ([Rmk f] ⬝r [Rmk g])
| Qinv : Π{a b : G} (f : a ⟶ b), groupoid_quotient_Q [Rmk f⁻¹] [Rmk f]⁻¹ʳ
open groupoid_quotient_Q
local abbreviation Q := groupoid_quotient_Q
variables {a b c : G}
definition groupoid_quotient := trunc 1 (two_quotient R Q)
definition elt (a : G) : groupoid_quotient := tr (incl0 _ _ a)
definition pth' (f : a ⟶ b) : incl0 _ _ a = incl0 _ _ b :=
incl1 R Q (Rmk f)
definition pth (f : a ⟶ b) : elt a = elt b := ap tr (pth' f)
definition resp_id (a : G) : pth (ID a) = idp := ap02 tr (incl2 _ _ (Qrefl a))
definition resp_comp (g : b ⟶ c) (f : a ⟶ b) : pth (g ∘ f) = pth f ⬝ pth g :=
ap02 tr (incl2 _ _ (Qconcat g f)) ⬝ ap_con tr (pth' f) (pth' g)
definition resp_inv (f : a ⟶ b) : pth (f⁻¹) = (pth f)⁻¹ :=
ap02 tr (incl2 _ _ (Qinv f)) ⬝ ap_inv tr (pth' f)
theorem is_trunc_groupoid_quotient : is_trunc 1 groupoid_quotient :=
!is_trunc_trunc
-- protected definition rec {P : groupoid_quotient → Type} (Pb : P base) (Pl1 : Pb =[loop1] Pb)
-- (Pl2 : Pb =[loop2] Pb) (Pf : squareover P fill Pl1 Pl1 Pl2 Pl2)
-- (x : groupoid_quotient) : P x :=
-- sorry
-- example {P : groupoid_quotient → Type} (Pb : P base) (Pl1 : Pb =[loop1] Pb) (Pl2 : Pb =[loop2] Pb)
-- (Pf : squareover P fill Pl1 Pl1 Pl2 Pl2) : groupoid_quotient.rec Pb Pl1 Pl2 Pf base = Pb := idp
-- definition rec_loop1 {P : groupoid_quotient → Type} (Pb : P base) (Pl1 : Pb =[loop1] Pb)
-- (Pl2 : Pb =[loop2] Pb) (Pf : squareover P fill Pl1 Pl1 Pl2 Pl2)
-- : apdo (groupoid_quotient.rec Pb Pl1 Pl2 Pf) loop1 = Pl1 :=
-- sorry
-- definition rec_loop2 {P : groupoid_quotient → Type} (Pb : P base) (Pl1 : Pb =[loop1] Pb)
-- (Pl2 : Pb =[loop2] Pb) (Pf : squareover P fill Pl1 Pl1 Pl2 Pl2)
-- : apdo (groupoid_quotient.rec Pb Pl1 Pl2 Pf) loop2 = Pl2 :=
-- sorry
-- definition rec_surf {P : groupoid_quotient → Type} (Pb : P base) (Pl1 : Pb =[loop1] Pb)
-- (Pl2 : Pb =[loop2] Pb) (Pf : squareover P fill Pl1 Pl1 Pl2 Pl2)
-- : cubeover P rfl1 (apds (groupoid_quotient.rec Pb Pl1 Pl2 Pf) fill) Pf
-- (vdeg_squareover !rec_loop2) (vdeg_squareover !rec_loop2)
-- (vdeg_squareover !rec_loop1) (vdeg_squareover !rec_loop1) :=
-- sorry
protected definition elim {P : 1-Type} (Pe : G → P) (Pp : Π⦃a b⦄ (f : a ⟶ b), Pe a = Pe b)
(Pid : Πa, Pp (ID a) = idp) (Pcomp : Π⦃a b c⦄ (g : b ⟶ c) (f : a ⟶ b), Pp (g ∘ f) = Pp f ⬝ Pp g)
(Pinv : Π⦃a b⦄ (f : a ⟶ b), Pp f⁻¹ = (Pp f)⁻¹) (x : groupoid_quotient) : P :=
begin
refine trunc.elim _ x,
{ intro x,
induction x,
{ exact Pe a},
{ induction s with a b f, exact Pp f},
{ induction q, all_goals esimp [e_closure.elim],
{ exact Pid a},
{ exact Pcomp g f},
{ exact Pinv f}}}
end
protected definition elim_on [reducible] {P : 1-Type} (x : groupoid_quotient) (Pe : G → P)
(Pp : Π⦃a b⦄ (f : a ⟶ b), Pe a = Pe b)
(Pid : Πa, Pp (ID a) = idp) (Pcomp : Π⦃a b c⦄ (g : b ⟶ c) (f : a ⟶ b), Pp (g ∘ f) = Pp f ⬝ Pp g)
(Pinv : Π⦃a b⦄ (f : a ⟶ b), Pp f⁻¹ = (Pp f)⁻¹) : P :=
elim Pe @Pp Pid @Pcomp @Pinv x
definition elim_pth {P : 1-Type} (Pe : G → P) (Pp : Π⦃a b⦄ (f : a ⟶ b), Pe a = Pe b)
(Pid : Πa, Pp (ID a) = idp) (Pcomp : Π⦃a b c⦄ (g : b ⟶ c) (f : a ⟶ b), Pp (g ∘ f) = Pp f ⬝ Pp g)
(Pinv : Π⦃a b⦄ (f : a ⟶ b), Pp f⁻¹ = (Pp f)⁻¹) {a b : G} (f : a ⟶ b) :
ap (elim Pe Pp Pid Pcomp Pinv) (pth f) = Pp f :=
!ap_compose⁻¹ ⬝ !elim_incl1
-- set_option pp.notation false
-- set_option pp.implicit true
theorem elim_resp_id {P : 1-Type} (Pe : G → P) (Pp : Π⦃a b⦄ (f : a ⟶ b), Pe a = Pe b)
(Pid : Πa, Pp (ID a) = idp) (Pcomp : Π⦃a b c⦄ (g : b ⟶ c) (f : a ⟶ b), Pp (g ∘ f) = Pp f ⬝ Pp g)
(Pinv : Π⦃a b⦄ (f : a ⟶ b), Pp f⁻¹ = (Pp f)⁻¹) (a : G)
: square (ap02 (elim Pe Pp Pid Pcomp Pinv) (resp_id a))
(Pid a)
!elim_pth
idp :=
begin
rewrite [↑[groupoid_quotient.elim,elim_pth,resp_id,ap02],-ap_compose],
-- let H := eq_top_of_square (natural_square ((ap_compose ((trunc.elim
-- (two_quotient.elim R Q Pe @(groupoid_quotient_R.rec Pp)
-- (groupoid_quotient_Q.rec Pid Pcomp Pinv))))
-- (@tr 1 _))) (incl2 R Q (Qrefl a))),
-- refine tr_rev (λx, square x _ _ _) _ _,
-- rotate 1,
-- exact eq_top_of_square (natural_square (λx, (ap_compose ((trunc.elim
-- (two_quotient.elim R Q Pe @(groupoid_quotient_R.rec Pp)
-- (groupoid_quotient_Q.rec Pid Pcomp Pinv))))
-- (@tr 1 _) x)⁻¹) (incl2 R Q (Qrefl a))),
-- xrewrite [eq_top_of_square (natural_square ((ap_compose ((trunc.elim
-- (two_quotient.elim R Q Pe @(groupoid_quotient_R.rec Pp)
-- (groupoid_quotient_Q.rec Pid Pcomp Pinv))))
-- (@tr 1 _))) (incl2 R Q (Qrefl a)))],
-- let H := eq_top_of_square
-- (elim_incl2 R Q Pe @(groupoid_quotient_R.rec Pp) (groupoid_quotient_Q.rec Pid Pcomp Pinv) (Qrefl a)),
xrewrite [eq_top_of_square (natural_square (homotopy.symm (ap_compose ((trunc.elim
(two_quotient.elim R Q Pe @(groupoid_quotient_R.rec Pp)
(groupoid_quotient_Q.rec Pid Pcomp Pinv))))
(@tr 1 _))) (incl2 R Q (Qrefl a)))],
esimp [inclt,e_closure.elim,function.compose],
xrewrite [eq_top_of_square (elim_incl2 R Q Pe @(groupoid_quotient_R.rec Pp)
(groupoid_quotient_Q.rec Pid Pcomp Pinv) (Qrefl a))],
esimp [elim_inclt], exact sorry
end
end
end groupoid_quotient
attribute groupoid_quotient.elt [constructor]
--attribute /-groupoid_quotient.rec-/ groupoid_quotient.elim [unfold 8] [recursor 8]
--attribute groupoid_quotient.elim_type [unfold 9]
--attribute /-groupoid_quotient.rec_on-/ groupoid_quotient.elim_on [unfold 2]
--attribute groupoid_quotient.elim_type_on [unfold 6]
|
a85e7ba83e94c853315ca79e1ddf5c36399d6ab6
|
6432ea7a083ff6ba21ea17af9ee47b9c371760f7
|
/src/Lean/Elab/Tactic/Conv/Change.lean
|
385cbf0c63b5805bd9a90cec881e3cb7547c34a5
|
[
"Apache-2.0",
"LLVM-exception",
"NCSA",
"LGPL-3.0-only",
"LicenseRef-scancode-inner-net-2.0",
"BSD-3-Clause",
"LGPL-2.0-or-later",
"Spencer-94",
"LGPL-2.1-or-later",
"HPND",
"LicenseRef-scancode-pcre",
"ISC",
"LGPL-2.1-only",
"LicenseRef-scancode-other-permissive",
"SunPro",
"CMU-Mach"
] |
permissive
|
leanprover/lean4
|
4bdf9790294964627eb9be79f5e8f6157780b4cc
|
f1f9dc0f2f531af3312398999d8b8303fa5f096b
|
refs/heads/master
| 1,693,360,665,786
| 1,693,350,868,000
| 1,693,350,868,000
| 129,571,436
| 2,827
| 311
|
Apache-2.0
| 1,694,716,156,000
| 1,523,760,560,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 898
|
lean
|
/-
Copyright (c) 2021 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
-/
import Lean.Elab.Tactic.ElabTerm
import Lean.Elab.Tactic.Conv.Basic
namespace Lean.Elab.Tactic.Conv
open Meta
@[builtin_tactic Lean.Parser.Tactic.Conv.change] def evalChange : Tactic := fun stx => do
match stx with
| `(conv| change $e) => withMainContext do
let lhs ← getLhs
let mvarCounterSaved := (← getMCtx).mvarCounter
let r ← elabTermEnsuringType e (← inferType lhs)
logUnassignedAndAbort (← filterOldMVars (← getMVars r) mvarCounterSaved)
unless (← isDefEqGuarded r lhs) do
throwError "invalid 'change' conv tactic, term{indentExpr r}\nis not definitionally equal to current left-hand-side{indentExpr lhs}"
changeLhs r
| _ => throwUnsupportedSyntax
end Lean.Elab.Tactic.Conv
|
c40d4989ca18c4d0d4e0e2a1c48f659e0fd84e0c
|
69d4931b605e11ca61881fc4f66db50a0a875e39
|
/src/data/complex/exponential_bounds.lean
|
04c64528d33c13abd1f748f20fe80c339d42ef32
|
[
"Apache-2.0"
] |
permissive
|
abentkamp/mathlib
|
d9a75d291ec09f4637b0f30cc3880ffb07549ee5
|
5360e476391508e092b5a1e5210bd0ed22dc0755
|
refs/heads/master
| 1,682,382,954,948
| 1,622,106,077,000
| 1,622,106,077,000
| 149,285,665
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 2,710
|
lean
|
/-
Copyright (c) 2020 Joseph Myers. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Joseph Myers
-/
import data.complex.exponential
import analysis.special_functions.exp_log
import algebra.continued_fractions.computation.approximation_corollaries
/-!
# Bounds on specific values of the exponential
-/
namespace real
local notation `abs'` := _root_.abs
open is_absolute_value finset cau_seq complex
lemma exp_one_near_10 : abs' (exp 1 - 2244083/825552) ≤ 1/10^10 :=
begin
apply exp_approx_start,
iterate 13 { refine exp_1_approx_succ_eq (by norm_num1; refl) (by norm_cast; refl) _ },
norm_num1,
refine exp_approx_end' _ (by norm_num1; refl) _ (by norm_cast; refl) (by simp) _,
rw [_root_.abs_one, abs_of_pos]; norm_num1,
end
lemma exp_one_near_20 : abs' (exp 1 - 363916618873/133877442384) ≤ 1/10^20 :=
begin
apply exp_approx_start,
iterate 21 { refine exp_1_approx_succ_eq (by norm_num1; refl) (by norm_cast; refl) _ },
norm_num1,
refine exp_approx_end' _ (by norm_num1; refl) _ (by norm_cast; refl) (by simp) _,
rw [_root_.abs_one, abs_of_pos]; norm_num1,
end
lemma exp_one_gt_d9 : 2.7182818283 < exp 1 :=
lt_of_lt_of_le (by norm_num) (sub_le.1 (abs_sub_le_iff.1 exp_one_near_10).2)
lemma exp_one_lt_d9 : exp 1 < 2.7182818286 :=
lt_of_le_of_lt (sub_le_iff_le_add.1 (abs_sub_le_iff.1 exp_one_near_10).1) (by norm_num)
lemma exp_neg_one_gt_d9 : 0.36787944116 < exp (-1) :=
begin
rw [exp_neg, lt_inv _ (exp_pos _)],
refine lt_of_le_of_lt (sub_le_iff_le_add.1 (abs_sub_le_iff.1 exp_one_near_10).1) _,
all_goals {norm_num},
end
lemma exp_neg_one_lt_d9 : exp (-1) < 0.36787944120 :=
begin
rw [exp_neg, inv_lt (exp_pos _)],
refine lt_of_lt_of_le _ (sub_le.1 (abs_sub_le_iff.1 exp_one_near_10).2),
all_goals {norm_num},
end
lemma log_two_near_10 : abs' (log 2 - 287209 / 414355) ≤ 1/10^10 :=
begin
suffices : abs' (log 2 - 287209 / 414355) ≤ 1/17179869184 + (1/10^10 - 1/2^34),
{ norm_num1 at *,
assumption },
have t : abs' (2⁻¹ : ℝ) = 2⁻¹,
{ rw abs_of_pos, norm_num },
have z := real.abs_log_sub_add_sum_range_le (show abs' (2⁻¹ : ℝ) < 1, by { rw t, norm_num }) 34,
rw t at z,
norm_num1 at z,
rw [one_div (2:ℝ), log_inv, ←sub_eq_add_neg, _root_.abs_sub] at z,
apply le_trans (_root_.abs_sub_le _ _ _) (add_le_add z _),
simp_rw [sum_range_succ],
norm_num,
rw abs_of_pos;
norm_num
end
lemma log_two_gt_d9 : 0.6931471803 < log 2 :=
lt_of_lt_of_le (by norm_num1) (sub_le.1 (abs_sub_le_iff.1 log_two_near_10).2)
lemma log_two_lt_d9 : log 2 < 0.6931471808 :=
lt_of_le_of_lt (sub_le_iff_le_add.1 (abs_sub_le_iff.1 log_two_near_10).1) (by norm_num)
end real
|
a9912f4c88c50cd1f006bfb0ad965d7d43189a1e
|
fecda8e6b848337561d6467a1e30cf23176d6ad0
|
/src/number_theory/lucas_lehmer.lean
|
0f779b5d9edd5650ca533ceaf8afd2b1733cd487
|
[
"Apache-2.0"
] |
permissive
|
spolu/mathlib
|
bacf18c3d2a561d00ecdc9413187729dd1f705ed
|
480c92cdfe1cf3c2d083abded87e82162e8814f4
|
refs/heads/master
| 1,671,684,094,325
| 1,600,736,045,000
| 1,600,736,045,000
| 297,564,749
| 1
| 0
| null | 1,600,758,368,000
| 1,600,758,367,000
| null |
UTF-8
|
Lean
| false
| false
| 17,113
|
lean
|
/-
Copyright (c) 2020 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Mario Carneiro, Scott Morrison, Ainsley Pahljina
-/
import tactic.ring_exp
import tactic.interval_cases
import data.nat.parity
import data.zmod.basic
import group_theory.order_of_element
import ring_theory.fintype
/-!
# The Lucas-Lehmer test for Mersenne primes.
We define `lucas_lehmer_residue : Π p : ℕ, zmod (2^p - 1)`, and
prove `lucas_lehmer_residue p = 0 → prime (mersenne p)`.
We construct a tactic `lucas_lehmer.run_test`, which iteratively certifies the arithmetic
required to calculate the residue, and enables us to prove
```
example : prime (mersenne 127) :=
lucas_lehmer_sufficiency _ (by norm_num) (by lucas_lehmer.run_test)
```
## TODO
- Show reverse implication.
- Speed up the calculations using `n ≡ (n % 2^p) + (n / 2^p) [MOD 2^p - 1]`.
- Find some bigger primes!
## History
This development began as a student project by Ainsley Pahljina,
and was then cleaned up for mathlib by Scott Morrison.
The tactic for certified computation of Lucas-Lehmer residues was provided by Mario Carneiro.
-/
/-- The Mersenne numbers, 2^p - 1. -/
def mersenne (p : ℕ) : ℕ := 2^p - 1
lemma mersenne_pos {p : ℕ} (h : 0 < p) : 0 < mersenne p :=
begin
dsimp [mersenne],
calc 0 < 2^1 - 1 : by norm_num
... ≤ 2^p - 1 : nat.pred_le_pred (nat.pow_le_pow_of_le_right (nat.succ_pos 1) h)
end
namespace lucas_lehmer
open nat
/-!
We now define three(!) different versions of the recurrence
`s (i+1) = (s i)^2 - 2`.
These versions take values either in `ℤ`, in `zmod (2^p - 1)`, or
in `ℤ` but applying `% (2^p - 1)` at each step.
They are each useful at different points in the proof,
so we take a moment setting up the lemmas relating them.
-/
/-- The recurrence `s (i+1) = (s i)^2 - 2` in `ℤ`. -/
def s : ℕ → ℤ
| 0 := 4
| (i+1) := (s i)^2 - 2
/-- The recurrence `s (i+1) = (s i)^2 - 2` in `zmod (2^p - 1)`. -/
def s_zmod (p : ℕ) : ℕ → zmod (2^p - 1)
| 0 := 4
| (i+1) := (s_zmod i)^2 - 2
/-- The recurrence `s (i+1) = ((s i)^2 - 2) % (2^p - 1)` in `ℤ`. -/
def s_mod (p : ℕ) : ℕ → ℤ
| 0 := 4 % (2^p - 1)
| (i+1) := ((s_mod i)^2 - 2) % (2^p - 1)
lemma mersenne_int_ne_zero (p : ℕ) (w : 0 < p) : (2^p - 1 : ℤ) ≠ 0 :=
begin
apply ne_of_gt, simp only [gt_iff_lt, sub_pos],
exact_mod_cast nat.one_lt_two_pow p w,
end
lemma s_mod_nonneg (p : ℕ) (w : 0 < p) (i : ℕ) : 0 ≤ s_mod p i :=
begin
cases i; dsimp [s_mod],
{ trivial, },
{ apply int.mod_nonneg, exact mersenne_int_ne_zero p w },
end
lemma s_mod_mod (p i : ℕ) : s_mod p i % (2^p - 1) = s_mod p i :=
by cases i; simp [s_mod]
lemma s_mod_lt (p : ℕ) (w : 0 < p) (i : ℕ) : s_mod p i < 2^p - 1 :=
begin
rw ←s_mod_mod,
convert int.mod_lt _ _,
{ refine (abs_of_nonneg _).symm,
simp only [sub_nonneg, ge_iff_le],
exact_mod_cast nat.one_le_two_pow p, },
{ exact mersenne_int_ne_zero p w, },
end
lemma s_zmod_eq_s (p' : ℕ) (i : ℕ) : s_zmod (p'+2) i = (s i : zmod (2^(p'+2) - 1)):=
begin
induction i with i ih,
{ dsimp [s, s_zmod], norm_num, },
{ push_cast [s, s_zmod, ih] },
end
-- These next two don't make good `norm_cast` lemmas.
lemma int.coe_nat_pow_pred (b p : ℕ) (w : 0 < b) : ((b^p - 1 : ℕ) : ℤ) = (b^p - 1 : ℤ) :=
begin
have : 1 ≤ b^p := nat.one_le_pow p b w,
push_cast [this],
end
lemma int.coe_nat_two_pow_pred (p : ℕ) : ((2^p - 1 : ℕ) : ℤ) = (2^p - 1 : ℤ) :=
int.coe_nat_pow_pred 2 p dec_trivial
lemma s_zmod_eq_s_mod (p : ℕ) (i : ℕ) : s_zmod p i = (s_mod p i : zmod (2^p - 1)) :=
by induction i; push_cast [←int.coe_nat_two_pow_pred p, s_mod, s_zmod, *]
/-- The Lucas-Lehmer residue is `s p (p-2)` in `zmod (2^p - 1)`. -/
def lucas_lehmer_residue (p : ℕ) : zmod (2^p - 1) := s_zmod p (p-2)
lemma residue_eq_zero_iff_s_mod_eq_zero (p : ℕ) (w : 1 < p) :
lucas_lehmer_residue p = 0 ↔ s_mod p (p-2) = 0 :=
begin
dsimp [lucas_lehmer_residue],
rw s_zmod_eq_s_mod p,
split,
{ -- We want to use that fact that `0 ≤ s_mod p (p-2) < 2^p - 1`
-- and `lucas_lehmer_residue p = 0 → 2^p - 1 ∣ s_mod p (p-2)`.
intro h,
simp [zmod.int_coe_zmod_eq_zero_iff_dvd] at h,
apply int.eq_zero_of_dvd_of_nonneg_of_lt _ _ h; clear h,
apply s_mod_nonneg _ (nat.lt_of_succ_lt w),
convert s_mod_lt _ (nat.lt_of_succ_lt w) (p-2),
push_cast [nat.one_le_two_pow p],
refl, },
{ intro h, rw h, simp, },
end
/--
A Mersenne number `2^p-1` is prime if and only if
the Lucas-Lehmer residue `s p (p-2) % (2^p - 1)` is zero.
-/
@[derive decidable_pred]
def lucas_lehmer_test (p : ℕ) : Prop := lucas_lehmer_residue p = 0
/-- `q` is defined as the minimum factor of `mersenne p`, bundled as an `ℕ+`. -/
def q (p : ℕ) : ℕ+ := ⟨nat.min_fac (mersenne p), nat.min_fac_pos (mersenne p)⟩
instance fact_pnat_pos (q : ℕ+) : fact (0 < (q : ℕ)) :=
q.2
/-- We construct the ring `X q` as ℤ/qℤ + √3 ℤ/qℤ. -/
-- It would be nice to define this as (ℤ/qℤ)[x] / (x^2 - 3),
-- obtaining the ring structure for free,
-- but that seems to be more trouble than it's worth;
-- if it were easy to make the definition,
-- cardinality calculations would be somewhat more involved, too.
@[derive [add_comm_group, decidable_eq, fintype, inhabited]]
def X (q : ℕ+) : Type := (zmod q) × (zmod q)
namespace X
variable {q : ℕ+}
@[ext]
lemma ext {x y : X q} (h₁ : x.1 = y.1) (h₂ : x.2 = y.2) : x = y :=
begin
cases x, cases y,
congr; assumption
end
@[simp] lemma add_fst (x y : X q) : (x + y).1 = x.1 + y.1 := rfl
@[simp] lemma add_snd (x y : X q) : (x + y).2 = x.2 + y.2 := rfl
@[simp] lemma neg_fst (x : X q) : (-x).1 = -x.1 := rfl
@[simp] lemma neg_snd (x : X q) : (-x).2 = -x.2 := rfl
instance : has_mul (X q) :=
{ mul := λ x y, (x.1*y.1 + 3*x.2*y.2, x.1*y.2 + x.2*y.1) }
@[simp] lemma mul_fst (x y : X q) : (x * y).1 = x.1 * y.1 + 3 * x.2 * y.2 := rfl
@[simp] lemma mul_snd (x y : X q) : (x * y).2 = x.1 * y.2 + x.2 * y.1 := rfl
instance : has_one (X q) :=
{ one := ⟨1,0⟩ }
@[simp] lemma one_fst : (1 : X q).1 = 1 := rfl
@[simp] lemma one_snd : (1 : X q).2 = 0 := rfl
@[simp] lemma bit0_fst (x : X q) : (bit0 x).1 = bit0 x.1 := rfl
@[simp] lemma bit0_snd (x : X q) : (bit0 x).2 = bit0 x.2 := rfl
@[simp] lemma bit1_fst (x : X q) : (bit1 x).1 = bit1 x.1 := rfl
@[simp] lemma bit1_snd (x : X q) : (bit1 x).2 = bit0 x.2 := by { dsimp [bit1], simp, }
instance : monoid (X q) :=
{ mul_assoc := λ x y z, by { ext; { dsimp, ring }, },
one := ⟨1,0⟩,
one_mul := λ x, by { ext; simp, },
mul_one := λ x, by { ext; simp, },
..(infer_instance : has_mul (X q)) }
lemma left_distrib (x y z : X q) : x * (y + z) = x * y + x * z :=
by { ext; { dsimp, ring }, }
lemma right_distrib (x y z : X q) : (x + y) * z = x * z + y * z :=
by { ext; { dsimp, ring }, }
instance : ring (X q) :=
{ left_distrib := left_distrib,
right_distrib := right_distrib,
..(infer_instance : add_comm_group (X q)),
..(infer_instance : monoid (X q)) }
instance : comm_ring (X q) :=
{ mul_comm := λ x y, by { ext; { dsimp, ring }, },
..(infer_instance : ring (X q))}
instance [fact (1 < (q : ℕ))] : nontrivial (X q) :=
⟨⟨0, 1, λ h, by { injection h with h1 _, exact zero_ne_one h1 } ⟩⟩
@[simp]
lemma nat_coe_fst (n : ℕ) : (n : X q).fst = (n : zmod q) :=
begin
induction n,
{ refl, },
{ dsimp, simp only [add_left_inj], exact n_ih, }
end
@[simp]
lemma nat_coe_snd (n : ℕ) : (n : X q).snd = (0 : zmod q) :=
begin
induction n,
{ refl, },
{ dsimp, simp only [add_zero], exact n_ih, }
end
@[simp]
lemma int_coe_fst (n : ℤ) : (n : X q).fst = (n : zmod q) :=
by { induction n; simp, }
@[simp]
lemma int_coe_snd (n : ℤ) : (n : X q).snd = (0 : zmod q) :=
by { induction n; simp, }
@[norm_cast]
lemma coe_mul (n m : ℤ) : ((n * m : ℤ) : X q) = (n : X q) * (m : X q) :=
by { ext; simp; ring }
@[norm_cast]
lemma coe_nat (n : ℕ) : ((n : ℤ) : X q) = (n : X q) :=
by { ext; simp, }
/-- The cardinality of `X` is `q^2`. -/
lemma X_card : fintype.card (X q) = q^2 :=
begin
dsimp [X],
rw [fintype.card_prod, zmod.card q],
ring,
end
/-- There are strictly fewer than `q^2` units, since `0` is not a unit. -/
lemma units_card (w : 1 < q) : fintype.card (units (X q)) < q^2 :=
begin
haveI : fact (1 < (q : ℕ)) := w,
convert card_units_lt (X q),
rw X_card,
end
/-- We define `ω = 2 + √3`. -/
def ω : X q := (2, 1)
/-- We define `ωb = 2 - √3`, which is the inverse of `ω`. -/
def ωb : X q := (2, -1)
lemma ω_mul_ωb (q : ℕ+) : (ω : X q) * ωb = 1 :=
begin
dsimp [ω, ωb],
ext; simp; ring,
end
lemma ωb_mul_ω (q : ℕ+) : (ωb : X q) * ω = 1 :=
begin
dsimp [ω, ωb],
ext; simp; ring,
end
/-- A closed form for the recurrence relation. -/
lemma closed_form (i : ℕ) : (s i : X q) = (ω : X q)^(2^i) + (ωb : X q)^(2^i) :=
begin
induction i with i ih,
{ dsimp [s, ω, ωb],
ext; { simp; refl, }, },
{ calc (s (i + 1) : X q) = ((s i)^2 - 2 : ℤ) : rfl
... = ((s i : X q)^2 - 2) : by push_cast
... = (ω^(2^i) + ωb^(2^i))^2 - 2 : by rw ih
... = (ω^(2^i))^2 + (ωb^(2^i))^2 + 2*(ωb^(2^i)*ω^(2^i)) - 2 : by ring
... = (ω^(2^i))^2 + (ωb^(2^i))^2 :
by rw [←mul_pow ωb ω, ωb_mul_ω, _root_.one_pow, mul_one, add_sub_cancel]
... = ω^(2^(i+1)) + ωb^(2^(i+1)) : by rw [←pow_mul, ←pow_mul, nat.pow_succ] }
end
end X
open X
/-!
Here and below, we introduce `p' = p - 2`, in order to avoid using subtraction in `ℕ`.
-/
/-- If `1 < p`, then `q p`, the smallest prime factor of `mersenne p`, is more than 2. -/
lemma two_lt_q (p' : ℕ) : 2 < q (p'+2) := begin
by_contradiction,
simp at a,
interval_cases q (p'+2); clear a,
{ -- If q = 1, we get a contradiction from 2^p = 2
dsimp [q] at h, injection h with h', clear h,
simp [mersenne] at h',
exact lt_irrefl 2
(calc 2 ≤ p'+2 : nat.le_add_left _ _
... < 2^(p'+2) : nat.lt_two_pow _
... = 2 : nat.pred_inj (nat.one_le_two_pow _) dec_trivial h'), },
{ -- If q = 2, we get a contradiction from 2 ∣ 2^p - 1
dsimp [q] at h, injection h with h', clear h,
rw [mersenne, pnat.one_coe, nat.min_fac_eq_two_iff, nat.pow_succ, nat.mul_comm] at h',
exact nat.two_not_dvd_two_mul_sub_one (nat.one_le_two_pow _) h', }
end
theorem ω_pow_formula (p' : ℕ) (h : lucas_lehmer_residue (p'+2) = 0) :
∃ (k : ℤ), (ω : X (q (p'+2)))^(2^(p'+1)) =
k * (mersenne (p'+2)) * ((ω : X (q (p'+2)))^(2^p')) - 1 :=
begin
dsimp [lucas_lehmer_residue] at h,
rw s_zmod_eq_s p' at h,
simp [zmod.int_coe_zmod_eq_zero_iff_dvd] at h,
cases h with k h,
use k,
replace h := congr_arg (λ (n : ℤ), (n : X (q (p'+2)))) h, -- coercion from ℤ to X q
dsimp at h,
rw closed_form at h,
replace h := congr_arg (λ x, ω^2^p' * x) h,
dsimp at h,
have t : 2^p' + 2^p' = 2^(p'+1) := by ring_exp,
rw [mul_add, ←pow_add ω, t, ←mul_pow ω ωb (2^p'), ω_mul_ωb, _root_.one_pow] at h,
rw [mul_comm, coe_mul] at h,
rw [mul_comm _ (k : X (q (p'+2)))] at h,
replace h := eq_sub_of_add_eq h,
exact_mod_cast h,
end
/-- `q` is the minimum factor of `mersenne p`, so `M p = 0` in `X q`. -/
theorem mersenne_coe_X (p : ℕ) : (mersenne p : X (q p)) = 0 :=
begin
ext; simp [mersenne, q, zmod.nat_coe_zmod_eq_zero_iff_dvd],
apply nat.min_fac_dvd,
end
theorem ω_pow_eq_neg_one (p' : ℕ) (h : lucas_lehmer_residue (p'+2) = 0) :
(ω : X (q (p'+2)))^(2^(p'+1)) = -1 :=
begin
cases ω_pow_formula p' h with k w,
rw [mersenne_coe_X] at w,
simpa using w,
end
theorem ω_pow_eq_one (p' : ℕ) (h : lucas_lehmer_residue (p'+2) = 0) :
(ω : X (q (p'+2)))^(2^(p'+2)) = 1 :=
calc (ω : X (q (p'+2)))^2^(p'+2)
= (ω^(2^(p'+1)))^2 : by rw [←pow_mul, ←nat.pow_succ]
... = (-1)^2 : by rw ω_pow_eq_neg_one p' h
... = 1 : by simp
/-- `ω` as an element of the group of units. -/
def ω_unit (p : ℕ) : units (X (q p)) :=
{ val := ω,
inv := ωb,
val_inv := by simp [ω_mul_ωb],
inv_val := by simp [ωb_mul_ω], }
@[simp] lemma ω_unit_coe (p : ℕ) : (ω_unit p : X (q p)) = ω := rfl
/-- The order of `ω` in the unit group is exactly `2^p`. -/
theorem order_ω (p' : ℕ) (h : lucas_lehmer_residue (p'+2) = 0) :
order_of (ω_unit (p'+2)) = 2^(p'+2) :=
begin
apply nat.eq_prime_pow_of_dvd_least_prime_pow, -- the order of ω divides 2^p
{ norm_num, },
{ intro o,
have ω_pow := order_of_dvd_iff_pow_eq_one.1 o,
replace ω_pow := congr_arg (units.coe_hom (X (q (p'+2))) : units (X (q (p'+2))) → X (q (p'+2))) ω_pow,
simp at ω_pow,
have h : (1 : zmod (q (p'+2))) = -1 :=
congr_arg (prod.fst) ((ω_pow.symm).trans (ω_pow_eq_neg_one p' h)),
haveI : fact (2 < (q (p'+2) : ℕ)) := two_lt_q _,
apply zmod.neg_one_ne_one h.symm, },
{ apply order_of_dvd_iff_pow_eq_one.2,
apply units.ext,
push_cast,
exact ω_pow_eq_one p' h, }
end
lemma order_ineq (p' : ℕ) (h : lucas_lehmer_residue (p'+2) = 0) : 2^(p'+2) < (q (p'+2) : ℕ)^2 :=
calc 2^(p'+2) = order_of (ω_unit (p'+2)) : (order_ω p' h).symm
... ≤ fintype.card (units (X _)) : order_of_le_card_univ
... < (q (p'+2) : ℕ)^2 : units_card (nat.lt_of_succ_lt (two_lt_q _))
end lucas_lehmer
export lucas_lehmer (lucas_lehmer_test lucas_lehmer_residue)
open lucas_lehmer
theorem lucas_lehmer_sufficiency (p : ℕ) (w : 1 < p) : lucas_lehmer_test p → (mersenne p).prime :=
begin
let p' := p - 2,
have z : p = p' + 2 := (nat.sub_eq_iff_eq_add w).mp rfl,
have w : 1 < p' + 2 := (nat.lt_of_sub_eq_succ rfl),
contrapose,
intros a t,
rw z at a,
rw z at t,
have h₁ := order_ineq p' t,
have h₂ := nat.min_fac_sq_le_self (mersenne_pos (nat.lt_of_succ_lt w)) a,
have h := lt_of_lt_of_le h₁ h₂,
exact not_lt_of_ge (nat.sub_le _ _) h,
end
-- Here we calculate the residue, very inefficiently, using `dec_trivial`. We can do much better.
example : (mersenne 5).prime := lucas_lehmer_sufficiency 5 (by norm_num) dec_trivial
-- Next we use `norm_num` to calculate each `s p i`.
namespace lucas_lehmer
open tactic
meta instance nat_pexpr : has_to_pexpr ℕ := ⟨pexpr.of_expr ∘ λ n, reflect n⟩
meta instance int_pexpr : has_to_pexpr ℤ := ⟨pexpr.of_expr ∘ λ n, reflect n⟩
lemma s_mod_succ {p a i b c}
(h1 : (2^p - 1 : ℤ) = a)
(h2 : s_mod p i = b)
(h3 : (b * b - 2) % a = c) :
s_mod p (i+1) = c :=
by { dsimp [s_mod, mersenne], rw [h1, h2, _root_.pow_two, h3] }
/--
Given a goal of the form `lucas_lehmer_test p`,
attempt to do the calculation using `norm_num` to certify each step.
-/
meta def run_test : tactic unit :=
do `(lucas_lehmer_test %%p) ← target,
`[dsimp [lucas_lehmer_test]],
`[rw lucas_lehmer.residue_eq_zero_iff_s_mod_eq_zero, swap, norm_num],
p ← eval_expr ℕ p,
-- Calculate the candidate Mersenne prime
let M : ℤ := 2^p - 1,
t ← to_expr ``(2^%%p - 1 = %%M),
v ← to_expr ``(by norm_num : 2^%%p - 1 = %%M),
w ← assertv `w t v,
-- Unfortunately this creates something like `w : 2^5 - 1 = int.of_nat 31`.
-- We could make a better `has_to_pexpr ℤ` instance, or just:
`[simp only [int.coe_nat_zero, int.coe_nat_succ,
int.of_nat_eq_coe, zero_add, int.coe_nat_bit1] at w],
-- base case
t ← to_expr ``(s_mod %%p 0 = 4),
v ← to_expr ``(by norm_num [lucas_lehmer.s_mod] : s_mod %%p 0 = 4),
h ← assertv `h t v,
-- step case, repeated p-2 times
iterate_exactly (p-2) `[replace h := lucas_lehmer.s_mod_succ w h (by { norm_num, refl })],
-- now close the goal
h ← get_local `h,
exact h
end lucas_lehmer
/-- We verify that the tactic works to prove `127.prime`. -/
example : (mersenne 7).prime := lucas_lehmer_sufficiency _ (by norm_num) (by lucas_lehmer.run_test).
/-!
This implementation works successfully to prove `(2^127 - 1).prime`,
and all the Mersenne primes up to this point appear in [archive/examples/mersenne_primes.lean].
`(2^127 - 1).prime` takes about 5 minutes to run (depending on your CPU!),
and unfortunately the next Mersenne prime `(2^521 - 1)`,
which was the first "computer era" prime,
is out of reach with the current implementation.
There's still low hanging fruit available to do faster computations
based on the formula
n ≡ (n % 2^p) + (n / 2^p) [MOD 2^p - 1]
and the fact that `% 2^p` and `/ 2^p` can be very efficient on the binary representation.
Someone should do this, too!
-/
lemma modeq_mersenne (n k : ℕ) : k ≡ ((k / 2^n) + (k % 2^n)) [MOD 2^n - 1] :=
-- See https://leanprover.zulipchat.com/#narrow/stream/113489-new-members/topic/help.20finding.20a.20lemma/near/177698446
begin
conv in k {rw [← nat.mod_add_div k (2^n), add_comm]},
refine nat.modeq.modeq_add _ (by refl),
conv {congr, skip, skip, rw ← one_mul (k/2^n)},
refine nat.modeq.modeq_mul _ (by refl),
symmetry,
rw [nat.modeq.modeq_iff_dvd, int.coe_nat_sub],
exact nat.pow_pos dec_trivial _
end
-- It's hard to know what the limiting factor for large Mersenne primes would be.
-- In the purely computational world, I think it's the squaring operation in `s`.
|
0164a7340c394d5a057e306beeabb5f9465f0fc4
|
46125763b4dbf50619e8846a1371029346f4c3db
|
/src/analysis/calculus/fderiv.lean
|
7c203d6a6f18849e619c4497d00c58400774a962
|
[
"Apache-2.0"
] |
permissive
|
thjread/mathlib
|
a9d97612cedc2c3101060737233df15abcdb9eb1
|
7cffe2520a5518bba19227a107078d83fa725ddc
|
refs/heads/master
| 1,615,637,696,376
| 1,583,953,063,000
| 1,583,953,063,000
| 246,680,271
| 0
| 0
|
Apache-2.0
| 1,583,960,875,000
| 1,583,960,875,000
| null |
UTF-8
|
Lean
| false
| false
| 80,401
|
lean
|
/-
Copyright (c) 2019 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Sébastien Gouëzel, Yury Kudryashov
-/
import analysis.asymptotics analysis.calculus.tangent_cone
/-!
# The Fréchet derivative
Let `E` and `F` be normed spaces, `f : E → F`, and `f' : E →L[𝕜] F` a
continuous 𝕜-linear map, where `𝕜` is a non-discrete normed field. Then
`has_fderiv_within_at f f' s x`
says that `f` has derivative `f'` at `x`, where the domain of interest
is restricted to `s`. We also have
`has_fderiv_at f f' x := has_fderiv_within_at f f' x univ`
## Main results
In addition to the definition and basic properties of the derivative, this file contains the
usual formulas (and existence assertions) for the derivative of
* constants
* the identity
* bounded linear maps
* bounded bilinear maps
* sum of two functions
* multiplication of a function by a scalar constant
* negative of a function
* subtraction of two functions
* multiplication of a function by a scalar function
* multiplication of two scalar functions
* composition of functions (the chain rule)
For most binary operations we also define `const_op` and `op_const` theorems for the cases when
the first or second argument is a constant. This makes writing chains of `has_deriv_at`'s easier,
and they more frequently lead to the desired result.
One can also interpret the derivative of a function `f : 𝕜 → E` as an element of `E` (by identifying
a linear function from `𝕜` to `E` with its value at `1`). Results on the Fréchet derivative are
translated to this more elementary point of view on the derivative in the file `deriv.lean`. The
derivative of polynomials is handled there, as it is naturally one-dimensional.
## Implementation details
The derivative is defined in terms of the `is_o` relation, but also
characterized in terms of the `tendsto` relation.
We also introduce predicates `differentiable_within_at 𝕜 f s x` (where `𝕜` is the base field,
`f` the function to be differentiated, `x` the point at which the derivative is asserted to exist,
and `s` the set along which the derivative is defined), as well as `differentiable_at 𝕜 f x`,
`differentiable_on 𝕜 f s` and `differentiable 𝕜 f` to express the existence of a derivative.
To be able to compute with derivatives, we write `fderiv_within 𝕜 f s x` and `fderiv 𝕜 f x`
for some choice of a derivative if it exists, and the zero function otherwise. This choice only
behaves well along sets for which the derivative is unique, i.e., those for which the tangent
directions span a dense subset of the whole space. The predicates `unique_diff_within_at s x` and
`unique_diff_on s`, defined in `tangent_cone.lean` express this property. We prove that indeed
they imply the uniqueness of the derivative. This is satisfied for open subsets, and in particular
for `univ`. This uniqueness only holds when the field is non-discrete, which we request at the very
beginning: otherwise, a derivative can be defined, but it has no interesting properties whatsoever.
## Tags
derivative, differentiable, Fréchet, calculus
-/
open filter asymptotics continuous_linear_map set
open_locale topological_space classical
noncomputable theory
set_option class.instance_max_depth 90
section
variables {𝕜 : Type*} [nondiscrete_normed_field 𝕜]
variables {E : Type*} [normed_group E] [normed_space 𝕜 E]
variables {F : Type*} [normed_group F] [normed_space 𝕜 F]
variables {G : Type*} [normed_group G] [normed_space 𝕜 G]
/-- A function `f` has the continuous linear map `f'` as derivative along the filter `L` if
`f x' = f x + f' (x' - x) + o (x' - x)` when `x'` converges along the filter `L`. This definition
is designed to be specialized for `L = 𝓝 x` (in `has_fderiv_at`), giving rise to the usual notion
of Fréchet derivative, and for `L = nhds_within x s` (in `has_fderiv_within_at`), giving rise to
the notion of Fréchet derivative along the set `s`. -/
def has_fderiv_at_filter (f : E → F) (f' : E →L[𝕜] F) (x : E) (L : filter E) :=
is_o (λ x', f x' - f x - f' (x' - x)) (λ x', x' - x) L
/-- A function `f` has the continuous linear map `f'` as derivative at `x` within a set `s` if
`f x' = f x + f' (x' - x) + o (x' - x)` when `x'` tends to `x` inside `s`. -/
def has_fderiv_within_at (f : E → F) (f' : E →L[𝕜] F) (s : set E) (x : E) :=
has_fderiv_at_filter f f' x (nhds_within x s)
/-- A function `f` has the continuous linear map `f'` as derivative at `x` if
`f x' = f x + f' (x' - x) + o (x' - x)` when `x'` tends to `x`. -/
def has_fderiv_at (f : E → F) (f' : E →L[𝕜] F) (x : E) :=
has_fderiv_at_filter f f' x (𝓝 x)
variables (𝕜)
/-- A function `f` is differentiable at a point `x` within a set `s` if it admits a derivative
there (possibly non-unique). -/
def differentiable_within_at (f : E → F) (s : set E) (x : E) :=
∃f' : E →L[𝕜] F, has_fderiv_within_at f f' s x
/-- A function `f` is differentiable at a point `x` if it admits a derivative there (possibly
non-unique). -/
def differentiable_at (f : E → F) (x : E) :=
∃f' : E →L[𝕜] F, has_fderiv_at f f' x
/-- If `f` has a derivative at `x` within `s`, then `fderiv_within 𝕜 f s x` is such a derivative.
Otherwise, it is set to `0`. -/
def fderiv_within (f : E → F) (s : set E) (x : E) : E →L[𝕜] F :=
if h : ∃f', has_fderiv_within_at f f' s x then classical.some h else 0
/-- If `f` has a derivative at `x`, then `fderiv 𝕜 f x` is such a derivative. Otherwise, it is
set to `0`. -/
def fderiv (f : E → F) (x : E) : E →L[𝕜] F :=
if h : ∃f', has_fderiv_at f f' x then classical.some h else 0
/-- `differentiable_on 𝕜 f s` means that `f` is differentiable within `s` at any point of `s`. -/
def differentiable_on (f : E → F) (s : set E) :=
∀x ∈ s, differentiable_within_at 𝕜 f s x
/-- `differentiable 𝕜 f` means that `f` is differentiable at any point. -/
def differentiable (f : E → F) :=
∀x, differentiable_at 𝕜 f x
variables {𝕜}
variables {f f₀ f₁ g : E → F}
variables {f' f₀' f₁' g' : E →L[𝕜] F}
variables (e : E →L[𝕜] F)
variables {x : E}
variables {s t : set E}
variables {L L₁ L₂ : filter E}
lemma fderiv_within_zero_of_not_differentiable_within_at
(h : ¬ differentiable_within_at 𝕜 f s x) : fderiv_within 𝕜 f s x = 0 :=
have ¬ ∃ f', has_fderiv_within_at f f' s x, from h,
by simp [fderiv_within, this]
lemma fderiv_zero_of_not_differentiable_at (h : ¬ differentiable_at 𝕜 f x) : fderiv 𝕜 f x = 0 :=
have ¬ ∃ f', has_fderiv_at f f' x, from h,
by simp [fderiv, this]
section derivative_uniqueness
/- In this section, we discuss the uniqueness of the derivative.
We prove that the definitions `unique_diff_within_at` and `unique_diff_on` indeed imply the
uniqueness of the derivative. -/
/-- If a function f has a derivative f' at x, a rescaled version of f around x converges to f', i.e.,
`n (f (x + (1/n) v) - f x)` converges to `f' v`. More generally, if `c n` tends to infinity and
`c n * d n` tends to `v`, then `c n * (f (x + d n) - f x)` tends to `f' v`. This lemma expresses
this fact, for functions having a derivative within a set. Its specific formulation is useful for
tangent cone related discussions. -/
theorem has_fderiv_within_at.lim (h : has_fderiv_within_at f f' s x) {α : Type*} (l : filter α)
{c : α → 𝕜} {d : α → E} {v : E} (dtop : ∀ᶠ n in l, x + d n ∈ s)
(clim : tendsto (λ n, ∥c n∥) l at_top)
(cdlim : tendsto (λ n, c n • d n) l (𝓝 v)) :
tendsto (λn, c n • (f (x + d n) - f x)) l (𝓝 (f' v)) :=
begin
have tendsto_arg : tendsto (λ n, x + d n) l (nhds_within x s),
{ conv in (nhds_within x s) { rw ← add_zero x },
rw [nhds_within, tendsto_inf],
split,
{ apply tendsto_const_nhds.add (tangent_cone_at.lim_zero l clim cdlim) },
{ rwa tendsto_principal } },
have : is_o (λ y, f y - f x - f' (y - x)) (λ y, y - x) (nhds_within x s) := h,
have : is_o (λ n, f (x + d n) - f x - f' ((x + d n) - x)) (λ n, (x + d n) - x) l :=
this.comp_tendsto tendsto_arg,
have : is_o (λ n, f (x + d n) - f x - f' (d n)) d l := by simpa only [add_sub_cancel'],
have : is_o (λn, c n • (f (x + d n) - f x - f' (d n))) (λn, c n • d n) l :=
(is_O_refl c l).smul_is_o this,
have : is_o (λn, c n • (f (x + d n) - f x - f' (d n))) (λn, (1:ℝ)) l :=
this.trans_is_O (is_O_one_of_tendsto ℝ cdlim),
have L1 : tendsto (λn, c n • (f (x + d n) - f x - f' (d n))) l (𝓝 0) :=
(is_o_one_iff ℝ).1 this,
have L2 : tendsto (λn, f' (c n • d n)) l (𝓝 (f' v)) :=
tendsto.comp f'.cont.continuous_at cdlim,
have L3 : tendsto (λn, (c n • (f (x + d n) - f x - f' (d n)) + f' (c n • d n)))
l (𝓝 (0 + f' v)) :=
L1.add L2,
have : (λn, (c n • (f (x + d n) - f x - f' (d n)) + f' (c n • d n)))
= (λn, c n • (f (x + d n) - f x)),
by { ext n, simp [smul_add, smul_sub] },
rwa [this, zero_add] at L3
end
/-- `unique_diff_within_at` achieves its goal: it implies the uniqueness of the derivative. -/
theorem unique_diff_within_at.eq (H : unique_diff_within_at 𝕜 s x)
(h : has_fderiv_within_at f f' s x) (h₁ : has_fderiv_within_at f f₁' s x) : f' = f₁' :=
begin
have A : ∀y ∈ tangent_cone_at 𝕜 s x, f' y = f₁' y,
{ rintros y ⟨c, d, dtop, clim, cdlim⟩,
exact tendsto_nhds_unique (by simp) (h.lim at_top dtop clim cdlim) (h₁.lim at_top dtop clim cdlim) },
have B : ∀y ∈ submodule.span 𝕜 (tangent_cone_at 𝕜 s x), f' y = f₁' y,
{ assume y hy,
apply submodule.span_induction hy,
{ exact λy hy, A y hy },
{ simp only [continuous_linear_map.map_zero] },
{ simp {contextual := tt} },
{ simp {contextual := tt} } },
have C : ∀y ∈ closure ((submodule.span 𝕜 (tangent_cone_at 𝕜 s x)) : set E), f' y = f₁' y,
{ assume y hy,
let K := {y | f' y = f₁' y},
have : (submodule.span 𝕜 (tangent_cone_at 𝕜 s x) : set E) ⊆ K := B,
have : closure (submodule.span 𝕜 (tangent_cone_at 𝕜 s x) : set E) ⊆ closure K :=
closure_mono this,
have : y ∈ closure K := this hy,
rwa closure_eq_of_is_closed (is_closed_eq f'.continuous f₁'.continuous) at this },
rw H.1 at C,
ext y,
exact C y (mem_univ _)
end
theorem unique_diff_on.eq (H : unique_diff_on 𝕜 s) (hx : x ∈ s)
(h : has_fderiv_within_at f f' s x) (h₁ : has_fderiv_within_at f f₁' s x) : f' = f₁' :=
unique_diff_within_at.eq (H x hx) h h₁
end derivative_uniqueness
section fderiv_properties
/-! ### Basic properties of the derivative -/
theorem has_fderiv_at_filter_iff_tendsto :
has_fderiv_at_filter f f' x L ↔
tendsto (λ x', ∥x' - x∥⁻¹ * ∥f x' - f x - f' (x' - x)∥) L (𝓝 0) :=
have h : ∀ x', ∥x' - x∥ = 0 → ∥f x' - f x - f' (x' - x)∥ = 0, from λ x' hx',
by { rw [sub_eq_zero.1 (norm_eq_zero.1 hx')], simp },
begin
unfold has_fderiv_at_filter,
rw [←is_o_norm_left, ←is_o_norm_right, is_o_iff_tendsto h],
exact tendsto_congr (λ _, div_eq_inv_mul),
end
theorem has_fderiv_within_at_iff_tendsto : has_fderiv_within_at f f' s x ↔
tendsto (λ x', ∥x' - x∥⁻¹ * ∥f x' - f x - f' (x' - x)∥) (nhds_within x s) (𝓝 0) :=
has_fderiv_at_filter_iff_tendsto
theorem has_fderiv_at_iff_tendsto : has_fderiv_at f f' x ↔
tendsto (λ x', ∥x' - x∥⁻¹ * ∥f x' - f x - f' (x' - x)∥) (𝓝 x) (𝓝 0) :=
has_fderiv_at_filter_iff_tendsto
theorem has_fderiv_at_iff_is_o_nhds_zero : has_fderiv_at f f' x ↔
is_o (λh, f (x + h) - f x - f' h) (λh, h) (𝓝 0) :=
begin
split,
{ assume H,
have : tendsto (λ (z : E), z + x) (𝓝 0) (𝓝 (0 + x)),
from tendsto_id.add tendsto_const_nhds,
rw [zero_add] at this,
refine (H.comp_tendsto this).congr _ _;
intro z; simp only [function.comp, add_sub_cancel', add_comm z] },
{ assume H,
have : tendsto (λ (z : E), z - x) (𝓝 x) (𝓝 (x - x)),
from tendsto_id.sub tendsto_const_nhds,
rw [sub_self] at this,
refine (H.comp_tendsto this).congr _ _;
intro z; simp only [function.comp, add_sub_cancel'_right] }
end
theorem has_fderiv_at_filter.mono (h : has_fderiv_at_filter f f' x L₂) (hst : L₁ ≤ L₂) :
has_fderiv_at_filter f f' x L₁ :=
h.mono hst
theorem has_fderiv_within_at.mono (h : has_fderiv_within_at f f' t x) (hst : s ⊆ t) :
has_fderiv_within_at f f' s x :=
h.mono (nhds_within_mono _ hst)
theorem has_fderiv_at.has_fderiv_at_filter (h : has_fderiv_at f f' x) (hL : L ≤ 𝓝 x) :
has_fderiv_at_filter f f' x L :=
h.mono hL
theorem has_fderiv_at.has_fderiv_within_at
(h : has_fderiv_at f f' x) : has_fderiv_within_at f f' s x :=
h.has_fderiv_at_filter lattice.inf_le_left
lemma has_fderiv_within_at.differentiable_within_at (h : has_fderiv_within_at f f' s x) :
differentiable_within_at 𝕜 f s x :=
⟨f', h⟩
lemma has_fderiv_at.differentiable_at (h : has_fderiv_at f f' x) : differentiable_at 𝕜 f x :=
⟨f', h⟩
@[simp] lemma has_fderiv_within_at_univ :
has_fderiv_within_at f f' univ x ↔ has_fderiv_at f f' x :=
by { simp only [has_fderiv_within_at, nhds_within_univ], refl }
/-- Directional derivative agrees with `has_fderiv`. -/
lemma has_fderiv_at.lim (hf : has_fderiv_at f f' x) (v : E) {α : Type*} {c : α → 𝕜}
{l : filter α} (hc : tendsto (λ n, ∥c n∥) l at_top) :
tendsto (λ n, (c n) • (f (x + (c n)⁻¹ • v) - f x)) l (𝓝 (f' v)) :=
begin
refine (has_fderiv_within_at_univ.2 hf).lim _ (univ_mem_sets' (λ _, trivial)) hc _,
assume U hU,
refine (eventually_ne_of_tendsto_norm_at_top hc (0:𝕜)).mono (λ y hy, _),
convert mem_of_nhds hU,
dsimp only [],
rw [← mul_smul, mul_inv_cancel hy, one_smul]
end
theorem has_fderiv_at_unique
(h₀ : has_fderiv_at f f₀' x) (h₁ : has_fderiv_at f f₁' x) : f₀' = f₁' :=
begin
rw ← has_fderiv_within_at_univ at h₀ h₁,
exact unique_diff_within_at_univ.eq h₀ h₁
end
lemma has_fderiv_within_at_inter' (h : t ∈ nhds_within x s) :
has_fderiv_within_at f f' (s ∩ t) x ↔ has_fderiv_within_at f f' s x :=
by simp [has_fderiv_within_at, nhds_within_restrict'' s h]
lemma has_fderiv_within_at_inter (h : t ∈ 𝓝 x) :
has_fderiv_within_at f f' (s ∩ t) x ↔ has_fderiv_within_at f f' s x :=
by simp [has_fderiv_within_at, nhds_within_restrict' s h]
lemma has_fderiv_within_at.union (hs : has_fderiv_within_at f f' s x) (ht : has_fderiv_within_at f f' t x) :
has_fderiv_within_at f f' (s ∪ t) x :=
begin
simp only [has_fderiv_within_at, nhds_within_union],
exact hs.join ht,
end
lemma has_fderiv_within_at.nhds_within (h : has_fderiv_within_at f f' s x)
(ht : s ∈ nhds_within x t) : has_fderiv_within_at f f' t x :=
(has_fderiv_within_at_inter' ht).1 (h.mono (inter_subset_right _ _))
lemma has_fderiv_within_at.has_fderiv_at (h : has_fderiv_within_at f f' s x) (hs : s ∈ 𝓝 x) :
has_fderiv_at f f' x :=
by rwa [← univ_inter s, has_fderiv_within_at_inter hs, has_fderiv_within_at_univ] at h
lemma differentiable_within_at.has_fderiv_within_at (h : differentiable_within_at 𝕜 f s x) :
has_fderiv_within_at f (fderiv_within 𝕜 f s x) s x :=
begin
dunfold fderiv_within,
dunfold differentiable_within_at at h,
rw dif_pos h,
exact classical.some_spec h
end
lemma differentiable_at.has_fderiv_at (h : differentiable_at 𝕜 f x) :
has_fderiv_at f (fderiv 𝕜 f x) x :=
begin
dunfold fderiv,
dunfold differentiable_at at h,
rw dif_pos h,
exact classical.some_spec h
end
lemma has_fderiv_at.fderiv (h : has_fderiv_at f f' x) : fderiv 𝕜 f x = f' :=
by { ext, rw has_fderiv_at_unique h h.differentiable_at.has_fderiv_at }
lemma has_fderiv_within_at.fderiv_within
(h : has_fderiv_within_at f f' s x) (hxs : unique_diff_within_at 𝕜 s x) :
fderiv_within 𝕜 f s x = f' :=
(hxs.eq h h.differentiable_within_at.has_fderiv_within_at).symm
/-- If `x` is not in the closure of `s`, then `f` has any derivative at `x` within `s`,
as this statement is empty. -/
lemma has_fderiv_within_at_of_not_mem_closure (h : x ∉ closure s) :
has_fderiv_within_at f f' s x :=
begin
simp [mem_closure_iff_nhds_within_ne_bot] at h,
simp [has_fderiv_within_at, has_fderiv_at_filter, h, is_o, is_O_with],
end
lemma differentiable_within_at.mono (h : differentiable_within_at 𝕜 f t x) (st : s ⊆ t) :
differentiable_within_at 𝕜 f s x :=
begin
rcases h with ⟨f', hf'⟩,
exact ⟨f', hf'.mono st⟩
end
lemma differentiable_within_at_univ :
differentiable_within_at 𝕜 f univ x ↔ differentiable_at 𝕜 f x :=
by simp only [differentiable_within_at, has_fderiv_within_at_univ, differentiable_at]
lemma differentiable_within_at_inter (ht : t ∈ 𝓝 x) :
differentiable_within_at 𝕜 f (s ∩ t) x ↔ differentiable_within_at 𝕜 f s x :=
by simp only [differentiable_within_at, has_fderiv_within_at, has_fderiv_at_filter,
nhds_within_restrict' s ht]
lemma differentiable_within_at_inter' (ht : t ∈ nhds_within x s) :
differentiable_within_at 𝕜 f (s ∩ t) x ↔ differentiable_within_at 𝕜 f s x :=
by simp only [differentiable_within_at, has_fderiv_within_at, has_fderiv_at_filter,
nhds_within_restrict'' s ht]
lemma differentiable_at.differentiable_within_at
(h : differentiable_at 𝕜 f x) : differentiable_within_at 𝕜 f s x :=
(differentiable_within_at_univ.2 h).mono (subset_univ _)
lemma differentiable.differentiable_at (h : differentiable 𝕜 f) :
differentiable_at 𝕜 f x :=
h x
lemma differentiable_within_at.differentiable_at
(h : differentiable_within_at 𝕜 f s x) (hs : s ∈ 𝓝 x) : differentiable_at 𝕜 f x :=
h.imp (λ f' hf', hf'.has_fderiv_at hs)
lemma differentiable_at.fderiv_within
(h : differentiable_at 𝕜 f x) (hxs : unique_diff_within_at 𝕜 s x) :
fderiv_within 𝕜 f s x = fderiv 𝕜 f x :=
begin
apply has_fderiv_within_at.fderiv_within _ hxs,
exact h.has_fderiv_at.has_fderiv_within_at
end
lemma differentiable_on.mono (h : differentiable_on 𝕜 f t) (st : s ⊆ t) :
differentiable_on 𝕜 f s :=
λx hx, (h x (st hx)).mono st
lemma differentiable_on_univ :
differentiable_on 𝕜 f univ ↔ differentiable 𝕜 f :=
by { simp [differentiable_on, differentiable_within_at_univ], refl }
lemma differentiable.differentiable_on (h : differentiable 𝕜 f) : differentiable_on 𝕜 f s :=
(differentiable_on_univ.2 h).mono (subset_univ _)
lemma differentiable_on_of_locally_differentiable_on
(h : ∀x∈s, ∃u, is_open u ∧ x ∈ u ∧ differentiable_on 𝕜 f (s ∩ u)) : differentiable_on 𝕜 f s :=
begin
assume x xs,
rcases h x xs with ⟨t, t_open, xt, ht⟩,
exact (differentiable_within_at_inter (mem_nhds_sets t_open xt)).1 (ht x ⟨xs, xt⟩)
end
lemma fderiv_within_subset (st : s ⊆ t) (ht : unique_diff_within_at 𝕜 s x)
(h : differentiable_within_at 𝕜 f t x) :
fderiv_within 𝕜 f s x = fderiv_within 𝕜 f t x :=
((differentiable_within_at.has_fderiv_within_at h).mono st).fderiv_within ht
@[simp] lemma fderiv_within_univ : fderiv_within 𝕜 f univ = fderiv 𝕜 f :=
begin
ext x : 1,
by_cases h : differentiable_at 𝕜 f x,
{ apply has_fderiv_within_at.fderiv_within _ unique_diff_within_at_univ,
rw has_fderiv_within_at_univ,
apply h.has_fderiv_at },
{ have : ¬ differentiable_within_at 𝕜 f univ x,
by contrapose! h; rwa ← differentiable_within_at_univ,
rw [fderiv_zero_of_not_differentiable_at h,
fderiv_within_zero_of_not_differentiable_within_at this] }
end
lemma fderiv_within_inter (ht : t ∈ 𝓝 x) (hs : unique_diff_within_at 𝕜 s x) :
fderiv_within 𝕜 f (s ∩ t) x = fderiv_within 𝕜 f s x :=
begin
by_cases h : differentiable_within_at 𝕜 f (s ∩ t) x,
{ apply fderiv_within_subset (inter_subset_left _ _) _ ((differentiable_within_at_inter ht).1 h),
apply hs.inter ht },
{ have : ¬ differentiable_within_at 𝕜 f s x,
by contrapose! h; rw differentiable_within_at_inter; assumption,
rw [fderiv_within_zero_of_not_differentiable_within_at h,
fderiv_within_zero_of_not_differentiable_within_at this] }
end
end fderiv_properties
section congr
/-! ### congr properties of the derivative -/
theorem has_fderiv_at_filter_congr_of_mem_sets
(hx : f₀ x = f₁ x) (h₀ : ∀ᶠ x in L, f₀ x = f₁ x) (h₁ : ∀ x, f₀' x = f₁' x) :
has_fderiv_at_filter f₀ f₀' x L ↔ has_fderiv_at_filter f₁ f₁' x L :=
by { rw (ext h₁), exact is_o_congr
(by filter_upwards [h₀] λ x (h : _ = _), by simp [h, hx])
(univ_mem_sets' $ λ _, rfl) }
lemma has_fderiv_at_filter.congr_of_mem_sets (h : has_fderiv_at_filter f f' x L)
(hL : ∀ᶠ x in L, f₁ x = f x) (hx : f₁ x = f x) : has_fderiv_at_filter f₁ f' x L :=
begin
apply (has_fderiv_at_filter_congr_of_mem_sets hx hL _).2 h,
exact λx, rfl
end
lemma has_fderiv_within_at.congr_mono (h : has_fderiv_within_at f f' s x) (ht : ∀x ∈ t, f₁ x = f x)
(hx : f₁ x = f x) (h₁ : t ⊆ s) : has_fderiv_within_at f₁ f' t x :=
has_fderiv_at_filter.congr_of_mem_sets (h.mono h₁) (filter.mem_inf_sets_of_right ht) hx
lemma has_fderiv_within_at.congr (h : has_fderiv_within_at f f' s x) (hs : ∀x ∈ s, f₁ x = f x)
(hx : f₁ x = f x) : has_fderiv_within_at f₁ f' s x :=
h.congr_mono hs hx (subset.refl _)
lemma has_fderiv_within_at.congr_of_mem_nhds_within (h : has_fderiv_within_at f f' s x)
(h₁ : ∀ᶠ y in nhds_within x s, f₁ y = f y) (hx : f₁ x = f x) : has_fderiv_within_at f₁ f' s x :=
has_fderiv_at_filter.congr_of_mem_sets h h₁ hx
lemma has_fderiv_at.congr_of_mem_nhds (h : has_fderiv_at f f' x)
(h₁ : ∀ᶠ y in 𝓝 x, f₁ y = f y) : has_fderiv_at f₁ f' x :=
has_fderiv_at_filter.congr_of_mem_sets h h₁ (mem_of_nhds h₁ : _)
lemma differentiable_within_at.congr_mono (h : differentiable_within_at 𝕜 f s x)
(ht : ∀x ∈ t, f₁ x = f x) (hx : f₁ x = f x) (h₁ : t ⊆ s) : differentiable_within_at 𝕜 f₁ t x :=
(has_fderiv_within_at.congr_mono h.has_fderiv_within_at ht hx h₁).differentiable_within_at
lemma differentiable_within_at.congr (h : differentiable_within_at 𝕜 f s x)
(ht : ∀x ∈ s, f₁ x = f x) (hx : f₁ x = f x) : differentiable_within_at 𝕜 f₁ s x :=
differentiable_within_at.congr_mono h ht hx (subset.refl _)
lemma differentiable_within_at.congr_of_mem_nhds_within
(h : differentiable_within_at 𝕜 f s x) (h₁ : ∀ᶠ y in nhds_within x s, f₁ y = f y)
(hx : f₁ x = f x) : differentiable_within_at 𝕜 f₁ s x :=
(h.has_fderiv_within_at.congr_of_mem_nhds_within h₁ hx).differentiable_within_at
lemma differentiable_on.congr_mono (h : differentiable_on 𝕜 f s) (h' : ∀x ∈ t, f₁ x = f x)
(h₁ : t ⊆ s) : differentiable_on 𝕜 f₁ t :=
λ x hx, (h x (h₁ hx)).congr_mono h' (h' x hx) h₁
lemma differentiable_on.congr (h : differentiable_on 𝕜 f s) (h' : ∀x ∈ s, f₁ x = f x) :
differentiable_on 𝕜 f₁ s :=
λ x hx, (h x hx).congr h' (h' x hx)
lemma differentiable_on_congr (h' : ∀x ∈ s, f₁ x = f x) :
differentiable_on 𝕜 f₁ s ↔ differentiable_on 𝕜 f s :=
⟨λ h, differentiable_on.congr h (λy hy, (h' y hy).symm),
λ h, differentiable_on.congr h h'⟩
lemma differentiable_at.congr_of_mem_nhds (h : differentiable_at 𝕜 f x)
(hL : ∀ᶠ y in 𝓝 x, f₁ y = f y) : differentiable_at 𝕜 f₁ x :=
has_fderiv_at.differentiable_at (has_fderiv_at_filter.congr_of_mem_sets h.has_fderiv_at hL (mem_of_nhds hL : _))
lemma differentiable_within_at.fderiv_within_congr_mono (h : differentiable_within_at 𝕜 f s x)
(hs : ∀x ∈ t, f₁ x = f x) (hx : f₁ x = f x) (hxt : unique_diff_within_at 𝕜 t x) (h₁ : t ⊆ s) :
fderiv_within 𝕜 f₁ t x = fderiv_within 𝕜 f s x :=
(has_fderiv_within_at.congr_mono h.has_fderiv_within_at hs hx h₁).fderiv_within hxt
lemma fderiv_within_congr_of_mem_nhds_within (hs : unique_diff_within_at 𝕜 s x)
(hL : ∀ᶠ y in nhds_within x s, f₁ y = f y) (hx : f₁ x = f x) :
fderiv_within 𝕜 f₁ s x = fderiv_within 𝕜 f s x :=
begin
by_cases h : differentiable_within_at 𝕜 f s x ∨ differentiable_within_at 𝕜 f₁ s x,
{ cases h,
{ apply has_fderiv_within_at.fderiv_within _ hs,
exact has_fderiv_at_filter.congr_of_mem_sets h.has_fderiv_within_at hL hx },
{ symmetry,
apply has_fderiv_within_at.fderiv_within _ hs,
apply has_fderiv_at_filter.congr_of_mem_sets h.has_fderiv_within_at _ hx.symm,
convert hL,
ext y,
exact eq_comm } },
{ push_neg at h,
have A : fderiv_within 𝕜 f s x = 0,
by { unfold differentiable_within_at at h, simp [fderiv_within, h] },
have A₁ : fderiv_within 𝕜 f₁ s x = 0,
by { unfold differentiable_within_at at h, simp [fderiv_within, h] },
rw [A, A₁] }
end
lemma fderiv_within_congr (hs : unique_diff_within_at 𝕜 s x)
(hL : ∀y∈s, f₁ y = f y) (hx : f₁ x = f x) :
fderiv_within 𝕜 f₁ s x = fderiv_within 𝕜 f s x :=
begin
apply fderiv_within_congr_of_mem_nhds_within hs _ hx,
apply mem_sets_of_superset self_mem_nhds_within,
exact hL
end
lemma fderiv_congr_of_mem_nhds (hL : ∀ᶠ y in 𝓝 x, f₁ y = f y) :
fderiv 𝕜 f₁ x = fderiv 𝕜 f x :=
begin
have A : f₁ x = f x := (mem_of_nhds hL : _),
rw [← fderiv_within_univ, ← fderiv_within_univ],
rw ← nhds_within_univ at hL,
exact fderiv_within_congr_of_mem_nhds_within unique_diff_within_at_univ hL A
end
end congr
section id
/-! ### Derivative of the identity -/
theorem has_fderiv_at_filter_id (x : E) (L : filter E) :
has_fderiv_at_filter id (id : E →L[𝕜] E) x L :=
(is_o_zero _ _).congr_left $ by simp
theorem has_fderiv_within_at_id (x : E) (s : set E) :
has_fderiv_within_at id (id : E →L[𝕜] E) s x :=
has_fderiv_at_filter_id _ _
theorem has_fderiv_at_id (x : E) : has_fderiv_at id (id : E →L[𝕜] E) x :=
has_fderiv_at_filter_id _ _
lemma differentiable_at_id : differentiable_at 𝕜 id x :=
(has_fderiv_at_id x).differentiable_at
lemma differentiable_within_at_id : differentiable_within_at 𝕜 id s x :=
differentiable_at_id.differentiable_within_at
lemma differentiable_id : differentiable 𝕜 (id : E → E) :=
λx, differentiable_at_id
lemma differentiable_on_id : differentiable_on 𝕜 id s :=
differentiable_id.differentiable_on
lemma fderiv_id : fderiv 𝕜 id x = id :=
has_fderiv_at.fderiv (has_fderiv_at_id x)
lemma fderiv_within_id (hxs : unique_diff_within_at 𝕜 s x) :
fderiv_within 𝕜 id s x = id :=
begin
rw differentiable_at.fderiv_within (differentiable_at_id) hxs,
exact fderiv_id
end
end id
section const
/-! ### derivative of a constant function -/
theorem has_fderiv_at_filter_const (c : F) (x : E) (L : filter E) :
has_fderiv_at_filter (λ x, c) (0 : E →L[𝕜] F) x L :=
(is_o_zero _ _).congr_left $ λ _, by simp only [zero_apply, sub_self]
theorem has_fderiv_within_at_const (c : F) (x : E) (s : set E) :
has_fderiv_within_at (λ x, c) (0 : E →L[𝕜] F) s x :=
has_fderiv_at_filter_const _ _ _
theorem has_fderiv_at_const (c : F) (x : E) :
has_fderiv_at (λ x, c) (0 : E →L[𝕜] F) x :=
has_fderiv_at_filter_const _ _ _
lemma differentiable_at_const (c : F) : differentiable_at 𝕜 (λx, c) x :=
⟨0, has_fderiv_at_const c x⟩
lemma differentiable_within_at_const (c : F) : differentiable_within_at 𝕜 (λx, c) s x :=
differentiable_at.differentiable_within_at (differentiable_at_const _)
lemma fderiv_const_apply (c : F) : fderiv 𝕜 (λy, c) x = 0 :=
has_fderiv_at.fderiv (has_fderiv_at_const c x)
lemma fderiv_const (c : F) : fderiv 𝕜 (λ (y : E), c) = 0 :=
by { ext m, rw fderiv_const_apply, refl }
lemma fderiv_within_const_apply (c : F) (hxs : unique_diff_within_at 𝕜 s x) :
fderiv_within 𝕜 (λy, c) s x = 0 :=
begin
rw differentiable_at.fderiv_within (differentiable_at_const _) hxs,
exact fderiv_const_apply _
end
lemma differentiable_const (c : F) : differentiable 𝕜 (λx : E, c) :=
λx, differentiable_at_const _
lemma differentiable_on_const (c : F) : differentiable_on 𝕜 (λx, c) s :=
(differentiable_const _).differentiable_on
end const
section continuous_linear_map
/-! ### Continuous linear maps
There are currently two variants of these in mathlib, the bundled version
(named `continuous_linear_map`, and denoted `E →L[𝕜] F`), and the unbundled version (with a
predicate `is_bounded_linear_map`). We give statements for both versions. -/
lemma is_bounded_linear_map.has_fderiv_at_filter (h : is_bounded_linear_map 𝕜 f) :
has_fderiv_at_filter f h.to_continuous_linear_map x L :=
begin
have : (λ (x' : E), f x' - f x - h.to_continuous_linear_map (x' - x)) = λx', 0,
{ ext,
have : ∀a, h.to_continuous_linear_map a = f a := λa, rfl,
simp,
simp [this] },
rw [has_fderiv_at_filter, this],
exact asymptotics.is_o_zero _ _
end
lemma is_bounded_linear_map.has_fderiv_within_at (h : is_bounded_linear_map 𝕜 f) :
has_fderiv_within_at f h.to_continuous_linear_map s x :=
h.has_fderiv_at_filter
lemma is_bounded_linear_map.has_fderiv_at (h : is_bounded_linear_map 𝕜 f) :
has_fderiv_at f h.to_continuous_linear_map x :=
h.has_fderiv_at_filter
lemma is_bounded_linear_map.differentiable_at (h : is_bounded_linear_map 𝕜 f) :
differentiable_at 𝕜 f x :=
h.has_fderiv_at.differentiable_at
lemma is_bounded_linear_map.differentiable_within_at (h : is_bounded_linear_map 𝕜 f) :
differentiable_within_at 𝕜 f s x :=
h.differentiable_at.differentiable_within_at
lemma is_bounded_linear_map.fderiv (h : is_bounded_linear_map 𝕜 f) :
fderiv 𝕜 f x = h.to_continuous_linear_map :=
has_fderiv_at.fderiv (h.has_fderiv_at)
lemma is_bounded_linear_map.fderiv_within (h : is_bounded_linear_map 𝕜 f)
(hxs : unique_diff_within_at 𝕜 s x) : fderiv_within 𝕜 f s x = h.to_continuous_linear_map :=
begin
rw differentiable_at.fderiv_within h.differentiable_at hxs,
exact h.fderiv
end
lemma is_bounded_linear_map.differentiable (h : is_bounded_linear_map 𝕜 f) :
differentiable 𝕜 f :=
λx, h.differentiable_at
lemma is_bounded_linear_map.differentiable_on (h : is_bounded_linear_map 𝕜 f) :
differentiable_on 𝕜 f s :=
h.differentiable.differentiable_on
lemma continuous_linear_map.has_fderiv_at_filter :
has_fderiv_at_filter e e x L :=
begin
have : (λ (x' : E), e x' - e x - e (x' - x)) = λx', 0, by { ext, simp },
rw [has_fderiv_at_filter, this],
exact asymptotics.is_o_zero _ _
end
protected lemma continuous_linear_map.has_fderiv_within_at : has_fderiv_within_at e e s x :=
e.has_fderiv_at_filter
protected lemma continuous_linear_map.has_fderiv_at : has_fderiv_at e e x :=
e.has_fderiv_at_filter
protected lemma continuous_linear_map.differentiable_at : differentiable_at 𝕜 e x :=
e.has_fderiv_at.differentiable_at
protected lemma continuous_linear_map.differentiable_within_at : differentiable_within_at 𝕜 e s x :=
e.differentiable_at.differentiable_within_at
protected lemma continuous_linear_map.fderiv : fderiv 𝕜 e x = e :=
e.has_fderiv_at.fderiv
protected lemma continuous_linear_map.fderiv_within (hxs : unique_diff_within_at 𝕜 s x) :
fderiv_within 𝕜 e s x = e :=
begin
rw differentiable_at.fderiv_within e.differentiable_at hxs,
exact e.fderiv
end
protected lemma continuous_linear_map.differentiable : differentiable 𝕜 e :=
λx, e.differentiable_at
protected lemma continuous_linear_map.differentiable_on : differentiable_on 𝕜 e s :=
e.differentiable.differentiable_on
end continuous_linear_map
section const_smul
/-! ### Derivative of a function multiplied by a constant -/
theorem has_fderiv_at_filter.const_smul (h : has_fderiv_at_filter f f' x L) (c : 𝕜) :
has_fderiv_at_filter (λ x, c • f x) (c • f') x L :=
(is_o_const_smul_left h c).congr_left $ λ x, by simp [smul_sub]
theorem has_fderiv_within_at.const_smul (h : has_fderiv_within_at f f' s x) (c : 𝕜) :
has_fderiv_within_at (λ x, c • f x) (c • f') s x :=
h.const_smul c
theorem has_fderiv_at.const_smul (h : has_fderiv_at f f' x) (c : 𝕜) :
has_fderiv_at (λ x, c • f x) (c • f') x :=
h.const_smul c
lemma differentiable_within_at.const_smul (h : differentiable_within_at 𝕜 f s x) (c : 𝕜) :
differentiable_within_at 𝕜 (λy, c • f y) s x :=
(h.has_fderiv_within_at.const_smul c).differentiable_within_at
lemma differentiable_at.const_smul (h : differentiable_at 𝕜 f x) (c : 𝕜) :
differentiable_at 𝕜 (λy, c • f y) x :=
(h.has_fderiv_at.const_smul c).differentiable_at
lemma differentiable_on.const_smul (h : differentiable_on 𝕜 f s) (c : 𝕜) :
differentiable_on 𝕜 (λy, c • f y) s :=
λx hx, (h x hx).const_smul c
lemma differentiable.const_smul (h : differentiable 𝕜 f) (c : 𝕜) :
differentiable 𝕜 (λy, c • f y) :=
λx, (h x).const_smul c
lemma fderiv_within_const_smul (hxs : unique_diff_within_at 𝕜 s x)
(h : differentiable_within_at 𝕜 f s x) (c : 𝕜) :
fderiv_within 𝕜 (λy, c • f y) s x = c • fderiv_within 𝕜 f s x :=
(h.has_fderiv_within_at.const_smul c).fderiv_within hxs
lemma fderiv_const_smul (h : differentiable_at 𝕜 f x) (c : 𝕜) :
fderiv 𝕜 (λy, c • f y) x = c • fderiv 𝕜 f x :=
(h.has_fderiv_at.const_smul c).fderiv
end const_smul
section add
/-! ### Derivative of the sum of two functions -/
theorem has_fderiv_at_filter.add
(hf : has_fderiv_at_filter f f' x L) (hg : has_fderiv_at_filter g g' x L) :
has_fderiv_at_filter (λ y, f y + g y) (f' + g') x L :=
(hf.add hg).congr_left $ λ _, by simp [sub_eq_add_neg]; abel
theorem has_fderiv_within_at.add
(hf : has_fderiv_within_at f f' s x) (hg : has_fderiv_within_at g g' s x) :
has_fderiv_within_at (λ y, f y + g y) (f' + g') s x :=
hf.add hg
theorem has_fderiv_at.add
(hf : has_fderiv_at f f' x) (hg : has_fderiv_at g g' x) :
has_fderiv_at (λ x, f x + g x) (f' + g') x :=
hf.add hg
lemma differentiable_within_at.add
(hf : differentiable_within_at 𝕜 f s x) (hg : differentiable_within_at 𝕜 g s x) :
differentiable_within_at 𝕜 (λ y, f y + g y) s x :=
(hf.has_fderiv_within_at.add hg.has_fderiv_within_at).differentiable_within_at
lemma differentiable_at.add
(hf : differentiable_at 𝕜 f x) (hg : differentiable_at 𝕜 g x) :
differentiable_at 𝕜 (λ y, f y + g y) x :=
(hf.has_fderiv_at.add hg.has_fderiv_at).differentiable_at
lemma differentiable_on.add
(hf : differentiable_on 𝕜 f s) (hg : differentiable_on 𝕜 g s) :
differentiable_on 𝕜 (λy, f y + g y) s :=
λx hx, (hf x hx).add (hg x hx)
lemma differentiable.add
(hf : differentiable 𝕜 f) (hg : differentiable 𝕜 g) :
differentiable 𝕜 (λy, f y + g y) :=
λx, (hf x).add (hg x)
lemma fderiv_within_add (hxs : unique_diff_within_at 𝕜 s x)
(hf : differentiable_within_at 𝕜 f s x) (hg : differentiable_within_at 𝕜 g s x) :
fderiv_within 𝕜 (λy, f y + g y) s x = fderiv_within 𝕜 f s x + fderiv_within 𝕜 g s x :=
(hf.has_fderiv_within_at.add hg.has_fderiv_within_at).fderiv_within hxs
lemma fderiv_add
(hf : differentiable_at 𝕜 f x) (hg : differentiable_at 𝕜 g x) :
fderiv 𝕜 (λy, f y + g y) x = fderiv 𝕜 f x + fderiv 𝕜 g x :=
(hf.has_fderiv_at.add hg.has_fderiv_at).fderiv
theorem has_fderiv_at_filter.add_const
(hf : has_fderiv_at_filter f f' x L) (c : F) :
has_fderiv_at_filter (λ y, f y + c) f' x L :=
add_zero f' ▸ hf.add (has_fderiv_at_filter_const _ _ _)
theorem has_fderiv_within_at.add_const
(hf : has_fderiv_within_at f f' s x) (c : F) :
has_fderiv_within_at (λ y, f y + c) f' s x :=
hf.add_const c
theorem has_fderiv_at.add_const
(hf : has_fderiv_at f f' x) (c : F):
has_fderiv_at (λ x, f x + c) f' x :=
hf.add_const c
lemma differentiable_within_at.add_const
(hf : differentiable_within_at 𝕜 f s x) (c : F) :
differentiable_within_at 𝕜 (λ y, f y + c) s x :=
(hf.has_fderiv_within_at.add_const c).differentiable_within_at
lemma differentiable_at.add_const
(hf : differentiable_at 𝕜 f x) (c : F) :
differentiable_at 𝕜 (λ y, f y + c) x :=
(hf.has_fderiv_at.add_const c).differentiable_at
lemma differentiable_on.add_const
(hf : differentiable_on 𝕜 f s) (c : F) :
differentiable_on 𝕜 (λy, f y + c) s :=
λx hx, (hf x hx).add_const c
lemma differentiable.add_const
(hf : differentiable 𝕜 f) (c : F) :
differentiable 𝕜 (λy, f y + c) :=
λx, (hf x).add_const c
lemma fderiv_within_add_const (hxs : unique_diff_within_at 𝕜 s x)
(hf : differentiable_within_at 𝕜 f s x) (c : F) :
fderiv_within 𝕜 (λy, f y + c) s x = fderiv_within 𝕜 f s x :=
(hf.has_fderiv_within_at.add_const c).fderiv_within hxs
lemma fderiv_add_const
(hf : differentiable_at 𝕜 f x) (c : F) :
fderiv 𝕜 (λy, f y + c) x = fderiv 𝕜 f x :=
(hf.has_fderiv_at.add_const c).fderiv
theorem has_fderiv_at_filter.const_add
(hf : has_fderiv_at_filter f f' x L) (c : F) :
has_fderiv_at_filter (λ y, c + f y) f' x L :=
zero_add f' ▸ (has_fderiv_at_filter_const _ _ _).add hf
theorem has_fderiv_within_at.const_add
(hf : has_fderiv_within_at f f' s x) (c : F) :
has_fderiv_within_at (λ y, c + f y) f' s x :=
hf.const_add c
theorem has_fderiv_at.const_add
(hf : has_fderiv_at f f' x) (c : F):
has_fderiv_at (λ x, c + f x) f' x :=
hf.const_add c
lemma differentiable_within_at.const_add
(hf : differentiable_within_at 𝕜 f s x) (c : F) :
differentiable_within_at 𝕜 (λ y, c + f y) s x :=
(hf.has_fderiv_within_at.const_add c).differentiable_within_at
lemma differentiable_at.const_add
(hf : differentiable_at 𝕜 f x) (c : F) :
differentiable_at 𝕜 (λ y, c + f y) x :=
(hf.has_fderiv_at.const_add c).differentiable_at
lemma differentiable_on.const_add
(hf : differentiable_on 𝕜 f s) (c : F) :
differentiable_on 𝕜 (λy, c + f y) s :=
λx hx, (hf x hx).const_add c
lemma differentiable.const_add
(hf : differentiable 𝕜 f) (c : F) :
differentiable 𝕜 (λy, c + f y) :=
λx, (hf x).const_add c
lemma fderiv_within_const_add (hxs : unique_diff_within_at 𝕜 s x)
(hf : differentiable_within_at 𝕜 f s x) (c : F) :
fderiv_within 𝕜 (λy, c + f y) s x = fderiv_within 𝕜 f s x :=
(hf.has_fderiv_within_at.const_add c).fderiv_within hxs
lemma fderiv_const_add
(hf : differentiable_at 𝕜 f x) (c : F) :
fderiv 𝕜 (λy, c + f y) x = fderiv 𝕜 f x :=
(hf.has_fderiv_at.const_add c).fderiv
end add
section neg
/-! ### Derivative of the negative of a function -/
theorem has_fderiv_at_filter.neg (h : has_fderiv_at_filter f f' x L) :
has_fderiv_at_filter (λ x, -f x) (-f') x L :=
(h.const_smul (-1:𝕜)).congr (by simp) (by simp)
theorem has_fderiv_within_at.neg (h : has_fderiv_within_at f f' s x) :
has_fderiv_within_at (λ x, -f x) (-f') s x :=
h.neg
theorem has_fderiv_at.neg (h : has_fderiv_at f f' x) :
has_fderiv_at (λ x, -f x) (-f') x :=
h.neg
lemma differentiable_within_at.neg (h : differentiable_within_at 𝕜 f s x) :
differentiable_within_at 𝕜 (λy, -f y) s x :=
h.has_fderiv_within_at.neg.differentiable_within_at
lemma differentiable_at.neg (h : differentiable_at 𝕜 f x) :
differentiable_at 𝕜 (λy, -f y) x :=
h.has_fderiv_at.neg.differentiable_at
lemma differentiable_on.neg (h : differentiable_on 𝕜 f s) :
differentiable_on 𝕜 (λy, -f y) s :=
λx hx, (h x hx).neg
lemma differentiable.neg (h : differentiable 𝕜 f) :
differentiable 𝕜 (λy, -f y) :=
λx, (h x).neg
lemma fderiv_within_neg (hxs : unique_diff_within_at 𝕜 s x)
(h : differentiable_within_at 𝕜 f s x) :
fderiv_within 𝕜 (λy, -f y) s x = - fderiv_within 𝕜 f s x :=
h.has_fderiv_within_at.neg.fderiv_within hxs
lemma fderiv_neg (h : differentiable_at 𝕜 f x) :
fderiv 𝕜 (λy, -f y) x = - fderiv 𝕜 f x :=
h.has_fderiv_at.neg.fderiv
end neg
section sub
/-! ### Derivative of the difference of two functions -/
theorem has_fderiv_at_filter.sub
(hf : has_fderiv_at_filter f f' x L) (hg : has_fderiv_at_filter g g' x L) :
has_fderiv_at_filter (λ x, f x - g x) (f' - g') x L :=
hf.add hg.neg
theorem has_fderiv_within_at.sub
(hf : has_fderiv_within_at f f' s x) (hg : has_fderiv_within_at g g' s x) :
has_fderiv_within_at (λ x, f x - g x) (f' - g') s x :=
hf.sub hg
theorem has_fderiv_at.sub
(hf : has_fderiv_at f f' x) (hg : has_fderiv_at g g' x) :
has_fderiv_at (λ x, f x - g x) (f' - g') x :=
hf.sub hg
lemma differentiable_within_at.sub
(hf : differentiable_within_at 𝕜 f s x) (hg : differentiable_within_at 𝕜 g s x) :
differentiable_within_at 𝕜 (λ y, f y - g y) s x :=
(hf.has_fderiv_within_at.sub hg.has_fderiv_within_at).differentiable_within_at
lemma differentiable_at.sub
(hf : differentiable_at 𝕜 f x) (hg : differentiable_at 𝕜 g x) :
differentiable_at 𝕜 (λ y, f y - g y) x :=
(hf.has_fderiv_at.sub hg.has_fderiv_at).differentiable_at
lemma differentiable_on.sub
(hf : differentiable_on 𝕜 f s) (hg : differentiable_on 𝕜 g s) :
differentiable_on 𝕜 (λy, f y - g y) s :=
λx hx, (hf x hx).sub (hg x hx)
lemma differentiable.sub
(hf : differentiable 𝕜 f) (hg : differentiable 𝕜 g) :
differentiable 𝕜 (λy, f y - g y) :=
λx, (hf x).sub (hg x)
lemma fderiv_within_sub (hxs : unique_diff_within_at 𝕜 s x)
(hf : differentiable_within_at 𝕜 f s x) (hg : differentiable_within_at 𝕜 g s x) :
fderiv_within 𝕜 (λy, f y - g y) s x = fderiv_within 𝕜 f s x - fderiv_within 𝕜 g s x :=
(hf.has_fderiv_within_at.sub hg.has_fderiv_within_at).fderiv_within hxs
lemma fderiv_sub
(hf : differentiable_at 𝕜 f x) (hg : differentiable_at 𝕜 g x) :
fderiv 𝕜 (λy, f y - g y) x = fderiv 𝕜 f x - fderiv 𝕜 g x :=
(hf.has_fderiv_at.sub hg.has_fderiv_at).fderiv
theorem has_fderiv_at_filter.is_O_sub (h : has_fderiv_at_filter f f' x L) :
is_O (λ x', f x' - f x) (λ x', x' - x) L :=
h.is_O.congr_of_sub.2 (f'.is_O_sub _ _)
theorem has_fderiv_at_filter.sub_const
(hf : has_fderiv_at_filter f f' x L) (c : F) :
has_fderiv_at_filter (λ x, f x - c) f' x L :=
hf.add_const (-c)
theorem has_fderiv_within_at.sub_const
(hf : has_fderiv_within_at f f' s x) (c : F) :
has_fderiv_within_at (λ x, f x - c) f' s x :=
hf.sub_const c
theorem has_fderiv_at.sub_const
(hf : has_fderiv_at f f' x) (c : F) :
has_fderiv_at (λ x, f x - c) f' x :=
hf.sub_const c
lemma differentiable_within_at.sub_const
(hf : differentiable_within_at 𝕜 f s x) (c : F) :
differentiable_within_at 𝕜 (λ y, f y - c) s x :=
(hf.has_fderiv_within_at.sub_const c).differentiable_within_at
lemma differentiable_at.sub_const
(hf : differentiable_at 𝕜 f x) (c : F) :
differentiable_at 𝕜 (λ y, f y - c) x :=
(hf.has_fderiv_at.sub_const c).differentiable_at
lemma differentiable_on.sub_const
(hf : differentiable_on 𝕜 f s) (c : F) :
differentiable_on 𝕜 (λy, f y - c) s :=
λx hx, (hf x hx).sub_const c
lemma differentiable.sub_const
(hf : differentiable 𝕜 f) (c : F) :
differentiable 𝕜 (λy, f y - c) :=
λx, (hf x).sub_const c
lemma fderiv_within_sub_const (hxs : unique_diff_within_at 𝕜 s x)
(hf : differentiable_within_at 𝕜 f s x) (c : F) :
fderiv_within 𝕜 (λy, f y - c) s x = fderiv_within 𝕜 f s x :=
(hf.has_fderiv_within_at.sub_const c).fderiv_within hxs
lemma fderiv_sub_const
(hf : differentiable_at 𝕜 f x) (c : F) :
fderiv 𝕜 (λy, f y - c) x = fderiv 𝕜 f x :=
(hf.has_fderiv_at.sub_const c).fderiv
theorem has_fderiv_at_filter.const_sub
(hf : has_fderiv_at_filter f f' x L) (c : F) :
has_fderiv_at_filter (λ x, c - f x) (-f') x L :=
hf.neg.const_add c
theorem has_fderiv_within_at.const_sub
(hf : has_fderiv_within_at f f' s x) (c : F) :
has_fderiv_within_at (λ x, c - f x) (-f') s x :=
hf.const_sub c
theorem has_fderiv_at.const_sub
(hf : has_fderiv_at f f' x) (c : F) :
has_fderiv_at (λ x, c - f x) (-f') x :=
hf.const_sub c
lemma differentiable_within_at.const_sub
(hf : differentiable_within_at 𝕜 f s x) (c : F) :
differentiable_within_at 𝕜 (λ y, c - f y) s x :=
(hf.has_fderiv_within_at.const_sub c).differentiable_within_at
lemma differentiable_at.const_sub
(hf : differentiable_at 𝕜 f x) (c : F) :
differentiable_at 𝕜 (λ y, c - f y) x :=
(hf.has_fderiv_at.const_sub c).differentiable_at
lemma differentiable_on.const_sub
(hf : differentiable_on 𝕜 f s) (c : F) :
differentiable_on 𝕜 (λy, c - f y) s :=
λx hx, (hf x hx).const_sub c
lemma differentiable.const_sub
(hf : differentiable 𝕜 f) (c : F) :
differentiable 𝕜 (λy, c - f y) :=
λx, (hf x).const_sub c
lemma fderiv_within_const_sub (hxs : unique_diff_within_at 𝕜 s x)
(hf : differentiable_within_at 𝕜 f s x) (c : F) :
fderiv_within 𝕜 (λy, c - f y) s x = -fderiv_within 𝕜 f s x :=
(hf.has_fderiv_within_at.const_sub c).fderiv_within hxs
lemma fderiv_const_sub
(hf : differentiable_at 𝕜 f x) (c : F) :
fderiv 𝕜 (λy, c - f y) x = -fderiv 𝕜 f x :=
(hf.has_fderiv_at.const_sub c).fderiv
end sub
section continuous
/-! ### Deducing continuity from differentiability -/
theorem has_fderiv_at_filter.tendsto_nhds
(hL : L ≤ 𝓝 x) (h : has_fderiv_at_filter f f' x L) :
tendsto f L (𝓝 (f x)) :=
begin
have : tendsto (λ x', f x' - f x) L (𝓝 0),
{ refine h.is_O_sub.trans_tendsto (tendsto_le_left hL _),
rw ← sub_self x, exact tendsto_id.sub tendsto_const_nhds },
have := tendsto.add this tendsto_const_nhds,
rw zero_add (f x) at this,
exact this.congr (by simp)
end
theorem has_fderiv_within_at.continuous_within_at
(h : has_fderiv_within_at f f' s x) : continuous_within_at f s x :=
has_fderiv_at_filter.tendsto_nhds lattice.inf_le_left h
theorem has_fderiv_at.continuous_at (h : has_fderiv_at f f' x) :
continuous_at f x :=
has_fderiv_at_filter.tendsto_nhds (le_refl _) h
lemma differentiable_within_at.continuous_within_at (h : differentiable_within_at 𝕜 f s x) :
continuous_within_at f s x :=
let ⟨f', hf'⟩ := h in hf'.continuous_within_at
lemma differentiable_at.continuous_at (h : differentiable_at 𝕜 f x) : continuous_at f x :=
let ⟨f', hf'⟩ := h in hf'.continuous_at
lemma differentiable_on.continuous_on (h : differentiable_on 𝕜 f s) : continuous_on f s :=
λx hx, (h x hx).continuous_within_at
lemma differentiable.continuous (h : differentiable 𝕜 f) : continuous f :=
continuous_iff_continuous_at.2 $ λx, (h x).continuous_at
end continuous
section bilinear_map
/-! ### Derivative of a bounded bilinear map -/
variables {b : E × F → G} {u : set (E × F) }
open normed_field
lemma is_bounded_bilinear_map.has_fderiv_at (h : is_bounded_bilinear_map 𝕜 b) (p : E × F) :
has_fderiv_at b (h.deriv p) p :=
begin
have : (λ (x : E × F), b x - b p - (h.deriv p) (x - p)) = (λx, b (x.1 - p.1, x.2 - p.2)),
{ ext x,
delta is_bounded_bilinear_map.deriv,
change b x - b p - (b (p.1, x.2-p.2) + b (x.1-p.1, p.2))
= b (x.1 - p.1, x.2 - p.2),
have : b x = b (x.1, x.2), by { cases x, refl },
rw this,
have : b p = b (p.1, p.2), by { cases p, refl },
rw this,
simp only [h.map_sub_left, h.map_sub_right],
abel },
rw [has_fderiv_at, has_fderiv_at_filter, this],
rcases h.bound with ⟨C, Cpos, hC⟩,
have A : asymptotics.is_O (λx : E × F, b (x.1 - p.1, x.2 - p.2))
(λx, ∥x - p∥ * ∥x - p∥) (𝓝 p) :=
⟨C, filter.univ_mem_sets' (λx, begin
simp only [mem_set_of_eq, norm_mul, norm_norm],
calc ∥b (x.1 - p.1, x.2 - p.2)∥ ≤ C * ∥x.1 - p.1∥ * ∥x.2 - p.2∥ : hC _ _
... ≤ C * ∥x-p∥ * ∥x-p∥ : by apply_rules [mul_le_mul, le_max_left, le_max_right, norm_nonneg,
le_of_lt Cpos, le_refl, mul_nonneg, norm_nonneg, norm_nonneg]
... = C * (∥x-p∥ * ∥x-p∥) : mul_assoc _ _ _ end)⟩,
have B : asymptotics.is_o (λ (x : E × F), ∥x - p∥ * ∥x - p∥)
(λx, 1 * ∥x - p∥) (𝓝 p),
{ refine asymptotics.is_o.mul_is_O (asymptotics.is_o.norm_left _) (asymptotics.is_O_refl _ _),
apply (asymptotics.is_o_one_iff ℝ).2,
rw [← sub_self p],
exact tendsto_id.sub tendsto_const_nhds },
simp only [one_mul, asymptotics.is_o_norm_right] at B,
exact A.trans_is_o B
end
lemma is_bounded_bilinear_map.has_fderiv_within_at (h : is_bounded_bilinear_map 𝕜 b) (p : E × F) :
has_fderiv_within_at b (h.deriv p) u p :=
(h.has_fderiv_at p).has_fderiv_within_at
lemma is_bounded_bilinear_map.differentiable_at (h : is_bounded_bilinear_map 𝕜 b) (p : E × F) :
differentiable_at 𝕜 b p :=
(h.has_fderiv_at p).differentiable_at
lemma is_bounded_bilinear_map.differentiable_within_at (h : is_bounded_bilinear_map 𝕜 b) (p : E × F) :
differentiable_within_at 𝕜 b u p :=
(h.differentiable_at p).differentiable_within_at
lemma is_bounded_bilinear_map.fderiv (h : is_bounded_bilinear_map 𝕜 b) (p : E × F) :
fderiv 𝕜 b p = h.deriv p :=
has_fderiv_at.fderiv (h.has_fderiv_at p)
lemma is_bounded_bilinear_map.fderiv_within (h : is_bounded_bilinear_map 𝕜 b) (p : E × F)
(hxs : unique_diff_within_at 𝕜 u p) : fderiv_within 𝕜 b u p = h.deriv p :=
begin
rw differentiable_at.fderiv_within (h.differentiable_at p) hxs,
exact h.fderiv p
end
lemma is_bounded_bilinear_map.differentiable (h : is_bounded_bilinear_map 𝕜 b) :
differentiable 𝕜 b :=
λx, h.differentiable_at x
lemma is_bounded_bilinear_map.differentiable_on (h : is_bounded_bilinear_map 𝕜 b) :
differentiable_on 𝕜 b u :=
h.differentiable.differentiable_on
lemma is_bounded_bilinear_map.continuous (h : is_bounded_bilinear_map 𝕜 b) :
continuous b :=
h.differentiable.continuous
lemma is_bounded_bilinear_map.continuous_left (h : is_bounded_bilinear_map 𝕜 b) {f : F} :
continuous (λe, b (e, f)) :=
h.continuous.comp (continuous_id.prod_mk continuous_const)
lemma is_bounded_bilinear_map.continuous_right (h : is_bounded_bilinear_map 𝕜 b) {e : E} :
continuous (λf, b (e, f)) :=
h.continuous.comp (continuous_const.prod_mk continuous_id)
end bilinear_map
section cartesian_product
/-! ### Derivative of the cartesian product of two functions -/
variables {f₂ : E → G} {f₂' : E →L[𝕜] G}
lemma has_fderiv_at_filter.prod
(hf₁ : has_fderiv_at_filter f₁ f₁' x L) (hf₂ : has_fderiv_at_filter f₂ f₂' x L) :
has_fderiv_at_filter (λx, (f₁ x, f₂ x)) (continuous_linear_map.prod f₁' f₂') x L :=
begin
have : (λ (x' : E), (f₁ x', f₂ x') - (f₁ x, f₂ x) - (continuous_linear_map.prod f₁' f₂') (x' -x)) =
(λ (x' : E), (f₁ x' - f₁ x - f₁' (x' - x), f₂ x' - f₂ x - f₂' (x' - x))) := rfl,
rw [has_fderiv_at_filter, this],
rw [asymptotics.is_o_prod_left],
exact ⟨hf₁, hf₂⟩
end
lemma has_fderiv_within_at.prod
(hf₁ : has_fderiv_within_at f₁ f₁' s x) (hf₂ : has_fderiv_within_at f₂ f₂' s x) :
has_fderiv_within_at (λx, (f₁ x, f₂ x)) (continuous_linear_map.prod f₁' f₂') s x :=
hf₁.prod hf₂
lemma has_fderiv_at.prod (hf₁ : has_fderiv_at f₁ f₁' x) (hf₂ : has_fderiv_at f₂ f₂' x) :
has_fderiv_at (λx, (f₁ x, f₂ x)) (continuous_linear_map.prod f₁' f₂') x :=
hf₁.prod hf₂
lemma differentiable_within_at.prod
(hf₁ : differentiable_within_at 𝕜 f₁ s x) (hf₂ : differentiable_within_at 𝕜 f₂ s x) :
differentiable_within_at 𝕜 (λx:E, (f₁ x, f₂ x)) s x :=
(hf₁.has_fderiv_within_at.prod hf₂.has_fderiv_within_at).differentiable_within_at
lemma differentiable_at.prod (hf₁ : differentiable_at 𝕜 f₁ x) (hf₂ : differentiable_at 𝕜 f₂ x) :
differentiable_at 𝕜 (λx:E, (f₁ x, f₂ x)) x :=
(hf₁.has_fderiv_at.prod hf₂.has_fderiv_at).differentiable_at
lemma differentiable_on.prod (hf₁ : differentiable_on 𝕜 f₁ s) (hf₂ : differentiable_on 𝕜 f₂ s) :
differentiable_on 𝕜 (λx:E, (f₁ x, f₂ x)) s :=
λx hx, differentiable_within_at.prod (hf₁ x hx) (hf₂ x hx)
lemma differentiable.prod (hf₁ : differentiable 𝕜 f₁) (hf₂ : differentiable 𝕜 f₂) :
differentiable 𝕜 (λx:E, (f₁ x, f₂ x)) :=
λ x, differentiable_at.prod (hf₁ x) (hf₂ x)
lemma differentiable_at.fderiv_prod
(hf₁ : differentiable_at 𝕜 f₁ x) (hf₂ : differentiable_at 𝕜 f₂ x) :
fderiv 𝕜 (λx:E, (f₁ x, f₂ x)) x =
continuous_linear_map.prod (fderiv 𝕜 f₁ x) (fderiv 𝕜 f₂ x) :=
has_fderiv_at.fderiv (has_fderiv_at.prod hf₁.has_fderiv_at hf₂.has_fderiv_at)
lemma differentiable_at.fderiv_within_prod
(hf₁ : differentiable_within_at 𝕜 f₁ s x) (hf₂ : differentiable_within_at 𝕜 f₂ s x)
(hxs : unique_diff_within_at 𝕜 s x) :
fderiv_within 𝕜 (λx:E, (f₁ x, f₂ x)) s x =
continuous_linear_map.prod (fderiv_within 𝕜 f₁ s x) (fderiv_within 𝕜 f₂ s x) :=
begin
apply has_fderiv_within_at.fderiv_within _ hxs,
exact has_fderiv_within_at.prod hf₁.has_fderiv_within_at hf₂.has_fderiv_within_at
end
end cartesian_product
section composition
/-! ###
Derivative of the composition of two functions
For composition lemmas, we put x explicit to help the elaborator, as otherwise Lean tends to
get confused since there are too many possibilities for composition -/
variable (x)
theorem has_fderiv_at_filter.comp {g : F → G} {g' : F →L[𝕜] G}
(hg : has_fderiv_at_filter g g' (f x) (L.map f))
(hf : has_fderiv_at_filter f f' x L) :
has_fderiv_at_filter (g ∘ f) (g'.comp f') x L :=
let eq₁ := (g'.is_O_comp _ _).trans_is_o hf in
let eq₂ := (hg.comp_tendsto tendsto_map).trans_is_O hf.is_O_sub in
by { refine eq₂.triangle (eq₁.congr_left (λ x', _)), simp }
/- A readable version of the previous theorem,
a general form of the chain rule. -/
example {g : F → G} {g' : F →L[𝕜] G}
(hg : has_fderiv_at_filter g g' (f x) (L.map f))
(hf : has_fderiv_at_filter f f' x L) :
has_fderiv_at_filter (g ∘ f) (g'.comp f') x L :=
begin
unfold has_fderiv_at_filter at hg,
have : is_o (λ x', g (f x') - g (f x) - g' (f x' - f x)) (λ x', f x' - f x) L,
from hg.comp_tendsto (le_refl _),
have eq₁ : is_o (λ x', g (f x') - g (f x) - g' (f x' - f x)) (λ x', x' - x) L,
from this.trans_is_O hf.is_O_sub,
have eq₂ : is_o (λ x', f x' - f x - f' (x' - x)) (λ x', x' - x) L,
from hf,
have : is_O
(λ x', g' (f x' - f x - f' (x' - x))) (λ x', f x' - f x - f' (x' - x)) L,
from g'.is_O_comp _ _,
have : is_o (λ x', g' (f x' - f x - f' (x' - x))) (λ x', x' - x) L,
from this.trans_is_o eq₂,
have eq₃ : is_o (λ x', g' (f x' - f x) - (g' (f' (x' - x)))) (λ x', x' - x) L,
by { refine this.congr_left _, simp},
exact eq₁.triangle eq₃
end
theorem has_fderiv_within_at.comp {g : F → G} {g' : F →L[𝕜] G} {t : set F}
(hg : has_fderiv_within_at g g' t (f x)) (hf : has_fderiv_within_at f f' s x) (hst : s ⊆ f ⁻¹' t) :
has_fderiv_within_at (g ∘ f) (g'.comp f') s x :=
begin
apply has_fderiv_at_filter.comp _ (has_fderiv_at_filter.mono hg _) hf,
calc map f (nhds_within x s)
≤ nhds_within (f x) (f '' s) : hf.continuous_within_at.tendsto_nhds_within_image
... ≤ nhds_within (f x) t : nhds_within_mono _ (image_subset_iff.mpr hst)
end
/-- The chain rule. -/
theorem has_fderiv_at.comp {g : F → G} {g' : F →L[𝕜] G}
(hg : has_fderiv_at g g' (f x)) (hf : has_fderiv_at f f' x) :
has_fderiv_at (g ∘ f) (g'.comp f') x :=
(hg.mono hf.continuous_at).comp x hf
theorem has_fderiv_at.comp_has_fderiv_within_at {g : F → G} {g' : F →L[𝕜] G}
(hg : has_fderiv_at g g' (f x)) (hf : has_fderiv_within_at f f' s x) :
has_fderiv_within_at (g ∘ f) (g'.comp f') s x :=
begin
rw ← has_fderiv_within_at_univ at hg,
exact has_fderiv_within_at.comp x hg hf subset_preimage_univ
end
lemma differentiable_within_at.comp {g : F → G} {t : set F}
(hg : differentiable_within_at 𝕜 g t (f x)) (hf : differentiable_within_at 𝕜 f s x)
(h : s ⊆ f ⁻¹' t) : differentiable_within_at 𝕜 (g ∘ f) s x :=
begin
rcases hf with ⟨f', hf'⟩,
rcases hg with ⟨g', hg'⟩,
exact ⟨continuous_linear_map.comp g' f', hg'.comp x hf' h⟩
end
lemma differentiable_at.comp {g : F → G}
(hg : differentiable_at 𝕜 g (f x)) (hf : differentiable_at 𝕜 f x) :
differentiable_at 𝕜 (g ∘ f) x :=
(hg.has_fderiv_at.comp x hf.has_fderiv_at).differentiable_at
lemma differentiable_at.comp_differentiable_within_at {g : F → G}
(hg : differentiable_at 𝕜 g (f x)) (hf : differentiable_within_at 𝕜 f s x) :
differentiable_within_at 𝕜 (g ∘ f) s x :=
(differentiable_within_at_univ.2 hg).comp x hf (by simp)
lemma fderiv_within.comp {g : F → G} {t : set F}
(hg : differentiable_within_at 𝕜 g t (f x)) (hf : differentiable_within_at 𝕜 f s x)
(h : s ⊆ f ⁻¹' t) (hxs : unique_diff_within_at 𝕜 s x) :
fderiv_within 𝕜 (g ∘ f) s x = (fderiv_within 𝕜 g t (f x)).comp (fderiv_within 𝕜 f s x) :=
begin
apply has_fderiv_within_at.fderiv_within _ hxs,
exact has_fderiv_within_at.comp x (hg.has_fderiv_within_at) (hf.has_fderiv_within_at) h
end
lemma fderiv.comp {g : F → G}
(hg : differentiable_at 𝕜 g (f x)) (hf : differentiable_at 𝕜 f x) :
fderiv 𝕜 (g ∘ f) x = (fderiv 𝕜 g (f x)).comp (fderiv 𝕜 f x) :=
begin
apply has_fderiv_at.fderiv,
exact has_fderiv_at.comp x hg.has_fderiv_at hf.has_fderiv_at
end
lemma fderiv.comp_fderiv_within {g : F → G}
(hg : differentiable_at 𝕜 g (f x)) (hf : differentiable_within_at 𝕜 f s x)
(hxs : unique_diff_within_at 𝕜 s x) :
fderiv_within 𝕜 (g ∘ f) s x = (fderiv 𝕜 g (f x)).comp (fderiv_within 𝕜 f s x) :=
begin
apply has_fderiv_within_at.fderiv_within _ hxs,
exact has_fderiv_at.comp_has_fderiv_within_at x (hg.has_fderiv_at) (hf.has_fderiv_within_at)
end
lemma differentiable_on.comp {g : F → G} {t : set F}
(hg : differentiable_on 𝕜 g t) (hf : differentiable_on 𝕜 f s) (st : s ⊆ f ⁻¹' t) :
differentiable_on 𝕜 (g ∘ f) s :=
λx hx, differentiable_within_at.comp x (hg (f x) (st hx)) (hf x hx) st
lemma differentiable.comp {g : F → G} (hg : differentiable 𝕜 g) (hf : differentiable 𝕜 f) :
differentiable 𝕜 (g ∘ f) :=
λx, differentiable_at.comp x (hg (f x)) (hf x)
lemma differentiable.comp_differentiable_on {g : F → G} (hg : differentiable 𝕜 g)
(hf : differentiable_on 𝕜 f s) :
differentiable_on 𝕜 (g ∘ f) s :=
(differentiable_on_univ.2 hg).comp hf (by simp)
end composition
section smul
/-! ### Derivative of the product of a scalar-valued function and a vector-valued function -/
variables {c : E → 𝕜} {c' : E →L[𝕜] 𝕜}
theorem has_fderiv_within_at.smul
(hc : has_fderiv_within_at c c' s x) (hf : has_fderiv_within_at f f' s x) :
has_fderiv_within_at (λ y, c y • f y) (c x • f' + c'.smul_right (f x)) s x :=
begin
have : is_bounded_bilinear_map 𝕜 (λ (p : 𝕜 × F), p.1 • p.2) := is_bounded_bilinear_map_smul,
exact has_fderiv_at.comp_has_fderiv_within_at x (this.has_fderiv_at (c x, f x)) (hc.prod hf)
end
theorem has_fderiv_at.smul (hc : has_fderiv_at c c' x) (hf : has_fderiv_at f f' x) :
has_fderiv_at (λ y, c y • f y) (c x • f' + c'.smul_right (f x)) x :=
begin
have : is_bounded_bilinear_map 𝕜 (λ (p : 𝕜 × F), p.1 • p.2) := is_bounded_bilinear_map_smul,
exact has_fderiv_at.comp x (this.has_fderiv_at (c x, f x)) (hc.prod hf)
end
lemma differentiable_within_at.smul
(hc : differentiable_within_at 𝕜 c s x) (hf : differentiable_within_at 𝕜 f s x) :
differentiable_within_at 𝕜 (λ y, c y • f y) s x :=
(hc.has_fderiv_within_at.smul hf.has_fderiv_within_at).differentiable_within_at
lemma differentiable_at.smul (hc : differentiable_at 𝕜 c x) (hf : differentiable_at 𝕜 f x) :
differentiable_at 𝕜 (λ y, c y • f y) x :=
(hc.has_fderiv_at.smul hf.has_fderiv_at).differentiable_at
lemma differentiable_on.smul (hc : differentiable_on 𝕜 c s) (hf : differentiable_on 𝕜 f s) :
differentiable_on 𝕜 (λ y, c y • f y) s :=
λx hx, (hc x hx).smul (hf x hx)
lemma differentiable.smul (hc : differentiable 𝕜 c) (hf : differentiable 𝕜 f) :
differentiable 𝕜 (λ y, c y • f y) :=
λx, (hc x).smul (hf x)
lemma fderiv_within_smul (hxs : unique_diff_within_at 𝕜 s x)
(hc : differentiable_within_at 𝕜 c s x) (hf : differentiable_within_at 𝕜 f s x) :
fderiv_within 𝕜 (λ y, c y • f y) s x =
c x • fderiv_within 𝕜 f s x + (fderiv_within 𝕜 c s x).smul_right (f x) :=
(hc.has_fderiv_within_at.smul hf.has_fderiv_within_at).fderiv_within hxs
lemma fderiv_smul (hc : differentiable_at 𝕜 c x) (hf : differentiable_at 𝕜 f x) :
fderiv 𝕜 (λ y, c y • f y) x =
c x • fderiv 𝕜 f x + (fderiv 𝕜 c x).smul_right (f x) :=
(hc.has_fderiv_at.smul hf.has_fderiv_at).fderiv
theorem has_fderiv_within_at.smul_const (hc : has_fderiv_within_at c c' s x) (f : F) :
has_fderiv_within_at (λ y, c y • f) (c'.smul_right f) s x :=
begin
convert hc.smul (has_fderiv_within_at_const f x s),
-- Help Lean find an instance
letI : distrib_mul_action 𝕜 (E →L[𝕜] F) :=
continuous_linear_map.module.to_distrib_mul_action,
rw [smul_zero, zero_add]
end
theorem has_fderiv_at.smul_const (hc : has_fderiv_at c c' x) (f : F) :
has_fderiv_at (λ y, c y • f) (c'.smul_right f) x :=
begin
rw [← has_fderiv_within_at_univ] at *,
exact hc.smul_const f
end
lemma differentiable_within_at.smul_const
(hc : differentiable_within_at 𝕜 c s x) (f : F) :
differentiable_within_at 𝕜 (λ y, c y • f) s x :=
(hc.has_fderiv_within_at.smul_const f).differentiable_within_at
lemma differentiable_at.smul_const (hc : differentiable_at 𝕜 c x) (f : F) :
differentiable_at 𝕜 (λ y, c y • f) x :=
(hc.has_fderiv_at.smul_const f).differentiable_at
lemma differentiable_on.smul_const (hc : differentiable_on 𝕜 c s) (f : F) :
differentiable_on 𝕜 (λ y, c y • f) s :=
λx hx, (hc x hx).smul_const f
lemma differentiable.smul_const (hc : differentiable 𝕜 c) (f : F) :
differentiable 𝕜 (λ y, c y • f) :=
λx, (hc x).smul_const f
lemma fderiv_within_smul_const (hxs : unique_diff_within_at 𝕜 s x)
(hc : differentiable_within_at 𝕜 c s x) (f : F) :
fderiv_within 𝕜 (λ y, c y • f) s x =
(fderiv_within 𝕜 c s x).smul_right f :=
(hc.has_fderiv_within_at.smul_const f).fderiv_within hxs
lemma fderiv_smul_const (hc : differentiable_at 𝕜 c x) (f : F) :
fderiv 𝕜 (λ y, c y • f) x = (fderiv 𝕜 c x).smul_right f :=
(hc.has_fderiv_at.smul_const f).fderiv
end smul
section mul
/-! ### Derivative of the product of two scalar-valued functions -/
set_option class.instance_max_depth 120
variables {c d : E → 𝕜} {c' d' : E →L[𝕜] 𝕜}
theorem has_fderiv_within_at.mul
(hc : has_fderiv_within_at c c' s x) (hd : has_fderiv_within_at d d' s x) :
has_fderiv_within_at (λ y, c y * d y) (c x • d' + d x • c') s x :=
begin
have : is_bounded_bilinear_map 𝕜 (λ (p : 𝕜 × 𝕜), p.1 * p.2) := is_bounded_bilinear_map_mul,
convert has_fderiv_at.comp_has_fderiv_within_at x (this.has_fderiv_at (c x, d x)) (hc.prod hd),
ext z,
change c x * d' z + d x * c' z = c x * d' z + c' z * d x,
ring
end
theorem has_fderiv_at.mul (hc : has_fderiv_at c c' x) (hd : has_fderiv_at d d' x) :
has_fderiv_at (λ y, c y * d y) (c x • d' + d x • c') x :=
begin
have : is_bounded_bilinear_map 𝕜 (λ (p : 𝕜 × 𝕜), p.1 * p.2) := is_bounded_bilinear_map_mul,
convert has_fderiv_at.comp x (this.has_fderiv_at (c x, d x)) (hc.prod hd),
ext z,
change c x * d' z + d x * c' z = c x * d' z + c' z * d x,
ring
end
lemma differentiable_within_at.mul
(hc : differentiable_within_at 𝕜 c s x) (hd : differentiable_within_at 𝕜 d s x) :
differentiable_within_at 𝕜 (λ y, c y * d y) s x :=
(hc.has_fderiv_within_at.mul hd.has_fderiv_within_at).differentiable_within_at
lemma differentiable_at.mul (hc : differentiable_at 𝕜 c x) (hd : differentiable_at 𝕜 d x) :
differentiable_at 𝕜 (λ y, c y * d y) x :=
(hc.has_fderiv_at.mul hd.has_fderiv_at).differentiable_at
lemma differentiable_on.mul (hc : differentiable_on 𝕜 c s) (hd : differentiable_on 𝕜 d s) :
differentiable_on 𝕜 (λ y, c y * d y) s :=
λx hx, (hc x hx).mul (hd x hx)
lemma differentiable.mul (hc : differentiable 𝕜 c) (hd : differentiable 𝕜 d) :
differentiable 𝕜 (λ y, c y * d y) :=
λx, (hc x).mul (hd x)
lemma fderiv_within_mul (hxs : unique_diff_within_at 𝕜 s x)
(hc : differentiable_within_at 𝕜 c s x) (hd : differentiable_within_at 𝕜 d s x) :
fderiv_within 𝕜 (λ y, c y * d y) s x =
c x • fderiv_within 𝕜 d s x + d x • fderiv_within 𝕜 c s x :=
(hc.has_fderiv_within_at.mul hd.has_fderiv_within_at).fderiv_within hxs
lemma fderiv_mul (hc : differentiable_at 𝕜 c x) (hd : differentiable_at 𝕜 d x) :
fderiv 𝕜 (λ y, c y * d y) x =
c x • fderiv 𝕜 d x + d x • fderiv 𝕜 c x :=
(hc.has_fderiv_at.mul hd.has_fderiv_at).fderiv
theorem has_fderiv_within_at.mul_const
(hc : has_fderiv_within_at c c' s x) (d : 𝕜) :
has_fderiv_within_at (λ y, c y * d) (d • c') s x :=
begin
have := hc.mul (has_fderiv_within_at_const d x s),
letI : distrib_mul_action 𝕜 (E →L[𝕜] 𝕜) := continuous_linear_map.module.to_distrib_mul_action,
rwa [smul_zero, zero_add] at this
end
theorem has_fderiv_at.mul_const (hc : has_fderiv_at c c' x) (d : 𝕜) :
has_fderiv_at (λ y, c y * d) (d • c') x :=
begin
rw [← has_fderiv_within_at_univ] at *,
exact hc.mul_const d
end
lemma differentiable_within_at.mul_const
(hc : differentiable_within_at 𝕜 c s x) (d : 𝕜) :
differentiable_within_at 𝕜 (λ y, c y * d) s x :=
(hc.has_fderiv_within_at.mul_const d).differentiable_within_at
lemma differentiable_at.mul_const (hc : differentiable_at 𝕜 c x) (d : 𝕜) :
differentiable_at 𝕜 (λ y, c y * d) x :=
(hc.has_fderiv_at.mul_const d).differentiable_at
lemma differentiable_on.mul_const (hc : differentiable_on 𝕜 c s) (d : 𝕜) :
differentiable_on 𝕜 (λ y, c y * d) s :=
λx hx, (hc x hx).mul_const d
lemma differentiable.mul_const (hc : differentiable 𝕜 c) (d : 𝕜) :
differentiable 𝕜 (λ y, c y * d) :=
λx, (hc x).mul_const d
lemma fderiv_within_mul_const (hxs : unique_diff_within_at 𝕜 s x)
(hc : differentiable_within_at 𝕜 c s x) (d : 𝕜) :
fderiv_within 𝕜 (λ y, c y * d) s x = d • fderiv_within 𝕜 c s x :=
(hc.has_fderiv_within_at.mul_const d).fderiv_within hxs
lemma fderiv_mul_const (hc : differentiable_at 𝕜 c x) (d : 𝕜) :
fderiv 𝕜 (λ y, c y * d) x = d • fderiv 𝕜 c x :=
(hc.has_fderiv_at.mul_const d).fderiv
theorem has_fderiv_within_at.const_mul
(hc : has_fderiv_within_at c c' s x) (d : 𝕜) :
has_fderiv_within_at (λ y, d * c y) (d • c') s x :=
begin
simp only [mul_comm d],
exact hc.mul_const d,
end
theorem has_fderiv_at.const_mul (hc : has_fderiv_at c c' x) (d : 𝕜) :
has_fderiv_at (λ y, d * c y) (d • c') x :=
begin
simp only [mul_comm d],
exact hc.mul_const d,
end
lemma differentiable_within_at.const_mul
(hc : differentiable_within_at 𝕜 c s x) (d : 𝕜) :
differentiable_within_at 𝕜 (λ y, d * c y) s x :=
(hc.has_fderiv_within_at.const_mul d).differentiable_within_at
lemma differentiable_at.const_mul (hc : differentiable_at 𝕜 c x) (d : 𝕜) :
differentiable_at 𝕜 (λ y, d * c y) x :=
(hc.has_fderiv_at.const_mul d).differentiable_at
lemma differentiable_on.const_mul (hc : differentiable_on 𝕜 c s) (d : 𝕜) :
differentiable_on 𝕜 (λ y, d * c y) s :=
λx hx, (hc x hx).const_mul d
lemma differentiable.const_mul (hc : differentiable 𝕜 c) (d : 𝕜) :
differentiable 𝕜 (λ y, d * c y) :=
λx, (hc x).const_mul d
lemma fderiv_within_const_mul (hxs : unique_diff_within_at 𝕜 s x)
(hc : differentiable_within_at 𝕜 c s x) (d : 𝕜) :
fderiv_within 𝕜 (λ y, d * c y) s x = d • fderiv_within 𝕜 c s x :=
(hc.has_fderiv_within_at.const_mul d).fderiv_within hxs
lemma fderiv_const_mul (hc : differentiable_at 𝕜 c x) (d : 𝕜) :
fderiv 𝕜 (λ y, d * c y) x = d • fderiv 𝕜 c x :=
(hc.has_fderiv_at.const_mul d).fderiv
end mul
section continuous_linear_equiv
/-! ### Differentiability of linear equivs, and invariance of differentiability -/
variable (iso : E ≃L[𝕜] F)
protected lemma continuous_linear_equiv.has_fderiv_within_at :
has_fderiv_within_at iso (iso : E →L[𝕜] F) s x :=
iso.to_continuous_linear_map.has_fderiv_within_at
protected lemma continuous_linear_equiv.has_fderiv_at : has_fderiv_at iso (iso : E →L[𝕜] F) x :=
iso.to_continuous_linear_map.has_fderiv_at_filter
protected lemma continuous_linear_equiv.differentiable_at : differentiable_at 𝕜 iso x :=
iso.has_fderiv_at.differentiable_at
protected lemma continuous_linear_equiv.differentiable_within_at :
differentiable_within_at 𝕜 iso s x :=
iso.differentiable_at.differentiable_within_at
protected lemma continuous_linear_equiv.fderiv : fderiv 𝕜 iso x = iso :=
iso.has_fderiv_at.fderiv
protected lemma continuous_linear_equiv.fderiv_within (hxs : unique_diff_within_at 𝕜 s x) :
fderiv_within 𝕜 iso s x = iso :=
iso.to_continuous_linear_map.fderiv_within hxs
protected lemma continuous_linear_equiv.differentiable : differentiable 𝕜 iso :=
λx, iso.differentiable_at
protected lemma continuous_linear_equiv.differentiable_on : differentiable_on 𝕜 iso s :=
iso.differentiable.differentiable_on
lemma continuous_linear_equiv.comp_differentiable_within_at_iff {f : G → E} {s : set G} {x : G} :
differentiable_within_at 𝕜 (iso ∘ f) s x ↔ differentiable_within_at 𝕜 f s x :=
begin
refine ⟨λ H, _, λ H, iso.differentiable.differentiable_at.comp_differentiable_within_at x H⟩,
have : differentiable_within_at 𝕜 (iso.symm ∘ (iso ∘ f)) s x :=
iso.symm.differentiable.differentiable_at.comp_differentiable_within_at x H,
rwa [← function.comp.assoc iso.symm iso f, iso.symm_comp_self] at this,
end
lemma continuous_linear_equiv.comp_differentiable_at_iff {f : G → E} {x : G} :
differentiable_at 𝕜 (iso ∘ f) x ↔ differentiable_at 𝕜 f x :=
by rw [← differentiable_within_at_univ, ← differentiable_within_at_univ,
iso.comp_differentiable_within_at_iff]
lemma continuous_linear_equiv.comp_differentiable_on_iff {f : G → E} {s : set G} :
differentiable_on 𝕜 (iso ∘ f) s ↔ differentiable_on 𝕜 f s :=
begin
rw [differentiable_on, differentiable_on],
simp only [iso.comp_differentiable_within_at_iff],
end
lemma continuous_linear_equiv.comp_differentiable_iff {f : G → E} :
differentiable 𝕜 (iso ∘ f) ↔ differentiable 𝕜 f :=
begin
rw [← differentiable_on_univ, ← differentiable_on_univ],
exact iso.comp_differentiable_on_iff
end
lemma continuous_linear_equiv.comp_has_fderiv_within_at_iff
{f : G → E} {s : set G} {x : G} {f' : G →L[𝕜] E} :
has_fderiv_within_at (iso ∘ f) ((iso : E →L[𝕜] F).comp f') s x ↔ has_fderiv_within_at f f' s x :=
begin
refine ⟨λ H, _, λ H, iso.has_fderiv_at.comp_has_fderiv_within_at x H⟩,
have A : f = iso.symm ∘ (iso ∘ f), by { rw [← function.comp.assoc, iso.symm_comp_self], refl },
have B : f' = (iso.symm : F →L[𝕜] E).comp ((iso : E →L[𝕜] F).comp f'),
by rw [← continuous_linear_map.comp_assoc, iso.coe_symm_comp_coe, continuous_linear_map.id_comp],
rw [A, B],
exact iso.symm.has_fderiv_at.comp_has_fderiv_within_at x H
end
lemma continuous_linear_equiv.comp_has_fderiv_at_iff {f : G → E} {x : G} {f' : G →L[𝕜] E} :
has_fderiv_at (iso ∘ f) ((iso : E →L[𝕜] F).comp f') x ↔ has_fderiv_at f f' x :=
by rw [← has_fderiv_within_at_univ, ← has_fderiv_within_at_univ, iso.comp_has_fderiv_within_at_iff]
lemma continuous_linear_equiv.comp_has_fderiv_within_at_iff'
{f : G → E} {s : set G} {x : G} {f' : G →L[𝕜] F} :
has_fderiv_within_at (iso ∘ f) f' s x ↔
has_fderiv_within_at f ((iso.symm : F →L[𝕜] E).comp f') s x :=
begin
set g := (iso.symm : F →L[𝕜] E).comp f' with h,
have : f' = (iso : E →L[𝕜] F).comp g,
by rw [h, ← continuous_linear_map.comp_assoc, iso.coe_comp_coe_symm,
continuous_linear_map.id_comp],
rw this,
exact iso.comp_has_fderiv_within_at_iff
end
lemma continuous_linear_equiv.comp_has_fderiv_at_iff' {f : G → E} {x : G} {f' : G →L[𝕜] F} :
has_fderiv_at (iso ∘ f) f' x ↔ has_fderiv_at f ((iso.symm : F →L[𝕜] E).comp f') x :=
by rw [← has_fderiv_within_at_univ, ← has_fderiv_within_at_univ, iso.comp_has_fderiv_within_at_iff']
lemma continuous_linear_equiv.comp_fderiv_within {f : G → E} {s : set G} {x : G}
(hxs : unique_diff_within_at 𝕜 s x) :
fderiv_within 𝕜 (iso ∘ f) s x = (iso : E →L[𝕜] F).comp (fderiv_within 𝕜 f s x) :=
begin
by_cases h : differentiable_within_at 𝕜 f s x,
{ rw [fderiv.comp_fderiv_within x iso.differentiable_at h hxs, iso.fderiv] },
{ have : ¬differentiable_within_at 𝕜 (iso ∘ f) s x,
by simp [-coe_fn_coe_base, iso.comp_differentiable_within_at_iff, h],
rw [fderiv_within_zero_of_not_differentiable_within_at h,
fderiv_within_zero_of_not_differentiable_within_at this],
ext y,
simp [-coe_fn_coe_base] }
end
lemma continuous_linear_equiv.comp_fderiv {f : G → E} {x : G} :
fderiv 𝕜 (iso ∘ f) x = (iso : E →L[𝕜] F).comp (fderiv 𝕜 f x) :=
begin
rw [← fderiv_within_univ, ← fderiv_within_univ],
exact iso.comp_fderiv_within unique_diff_within_at_univ,
end
end continuous_linear_equiv
end
section
/-
In the special case of a normed space over the reals,
we can use scalar multiplication in the `tendsto` characterization
of the Fréchet derivative.
-/
variables {E : Type*} [normed_group E] [normed_space ℝ E]
variables {F : Type*} [normed_group F] [normed_space ℝ F]
variables {f : E → F} {f' : E →L[ℝ] F} {x : E}
theorem has_fderiv_at_filter_real_equiv {L : filter E} :
tendsto (λ x' : E, ∥x' - x∥⁻¹ * ∥f x' - f x - f' (x' - x)∥) L (𝓝 0) ↔
tendsto (λ x' : E, ∥x' - x∥⁻¹ • (f x' - f x - f' (x' - x))) L (𝓝 0) :=
begin
symmetry,
rw [tendsto_iff_norm_tendsto_zero], refine tendsto_congr (λ x', _),
have : ∥x' - x∥⁻¹ ≥ 0, from inv_nonneg.mpr (norm_nonneg _),
simp [norm_smul, real.norm_eq_abs, abs_of_nonneg this]
end
lemma has_fderiv_at.lim_real (hf : has_fderiv_at f f' x) (v : E) :
tendsto (λ (c:ℝ), c • (f (x + c⁻¹ • v) - f x)) at_top (𝓝 (f' v)) :=
begin
apply hf.lim v,
rw tendsto_at_top_at_top,
exact λ b, ⟨b, λ a ha, le_trans ha (le_abs_self _)⟩
end
end
section tangent_cone
variables {𝕜 : Type*} [nondiscrete_normed_field 𝕜]
{E : Type*} [normed_group E] [normed_space 𝕜 E]
{F : Type*} [normed_group F] [normed_space 𝕜 F]
{f : E → F} {s : set E} {f' : E →L[𝕜] F}
/-- The image of a tangent cone under the differential of a map is included in the tangent cone to
the image. -/
lemma has_fderiv_within_at.image_tangent_cone_subset {x : E} (h : has_fderiv_within_at f f' s x) :
f' '' (tangent_cone_at 𝕜 s x) ⊆ tangent_cone_at 𝕜 (f '' s) (f x) :=
begin
rw image_subset_iff,
rintros v ⟨c, d, dtop, clim, cdlim⟩,
refine ⟨c, (λn, f (x + d n) - f x), mem_sets_of_superset dtop _, clim, h.lim at_top dtop clim cdlim⟩,
simp [-mem_image, mem_image_of_mem] {contextual := tt}
end
/-- If a set has the unique differentiability property at a point x, then the image of this set
under a map with onto derivative has also the unique differentiability property at the image point.
-/
lemma has_fderiv_within_at.unique_diff_within_at {x : E} (h : has_fderiv_within_at f f' s x)
(hs : unique_diff_within_at 𝕜 s x) (h' : closure (range f') = univ) :
unique_diff_within_at 𝕜 (f '' s) (f x) :=
begin
have A : ∀v ∈ tangent_cone_at 𝕜 s x, f' v ∈ tangent_cone_at 𝕜 (f '' s) (f x),
{ assume v hv,
have := h.image_tangent_cone_subset,
rw image_subset_iff at this,
exact this hv },
have B : ∀v ∈ (submodule.span 𝕜 (tangent_cone_at 𝕜 s x) : set E),
f' v ∈ (submodule.span 𝕜 (tangent_cone_at 𝕜 (f '' s) (f x)) : set F),
{ assume v hv,
apply submodule.span_induction hv,
{ exact λ w hw, submodule.subset_span (A w hw) },
{ simp },
{ assume w₁ w₂ hw₁ hw₂,
rw continuous_linear_map.map_add,
exact submodule.add_mem (submodule.span 𝕜 (tangent_cone_at 𝕜 (f '' s) (f x))) hw₁ hw₂ },
{ assume a w hw,
rw continuous_linear_map.map_smul,
exact submodule.smul_mem (submodule.span 𝕜 (tangent_cone_at 𝕜 (f '' s) (f x))) _ hw } },
rw [unique_diff_within_at, ← univ_subset_iff],
split,
show f x ∈ closure (f '' s), from h.continuous_within_at.mem_closure_image hs.2,
show univ ⊆ closure ↑(submodule.span 𝕜 (tangent_cone_at 𝕜 (f '' s) (f x))), from calc
univ ⊆ closure (range f') : univ_subset_iff.2 h'
... = closure (f' '' univ) : by rw image_univ
... = closure (f' '' (closure (submodule.span 𝕜 (tangent_cone_at 𝕜 s x) : set E))) : by rw hs.1
... ⊆ closure (closure (f' '' (submodule.span 𝕜 (tangent_cone_at 𝕜 s x) : set E))) :
closure_mono (image_closure_subset_closure_image f'.cont)
... = closure (f' '' (submodule.span 𝕜 (tangent_cone_at 𝕜 s x) : set E)) : closure_closure
... ⊆ closure (submodule.span 𝕜 (tangent_cone_at 𝕜 (f '' s) (f x)) : set F) :
closure_mono (image_subset_iff.mpr B)
end
lemma has_fderiv_within_at.unique_diff_within_at_of_continuous_linear_equiv
{x : E} (e' : E ≃L[𝕜] F) (h : has_fderiv_within_at f (e' : E →L[𝕜] F) s x)
(hs : unique_diff_within_at 𝕜 s x) :
unique_diff_within_at 𝕜 (f '' s) (f x) :=
begin
apply h.unique_diff_within_at hs,
have : range (e' : E →L[𝕜] F) = univ := e'.to_linear_equiv.to_equiv.range_eq_univ,
rw [this, closure_univ]
end
lemma continuous_linear_equiv.unique_diff_on_preimage_iff (e : F ≃L[𝕜] E) :
unique_diff_on 𝕜 (e ⁻¹' s) ↔ unique_diff_on 𝕜 s :=
begin
split,
{ assume hs x hx,
have A : s = e '' (e.symm '' s) :=
(equiv.symm_image_image (e.symm.to_linear_equiv.to_equiv) s).symm,
have B : e.symm '' s = e⁻¹' s :=
equiv.image_eq_preimage e.symm.to_linear_equiv.to_equiv s,
rw [A, B, (e.apply_symm_apply x).symm],
refine has_fderiv_within_at.unique_diff_within_at_of_continuous_linear_equiv e
e.has_fderiv_within_at (hs _ _),
rwa [mem_preimage, e.apply_symm_apply x] },
{ assume hs x hx,
have : e ⁻¹' s = e.symm '' s :=
(equiv.image_eq_preimage e.symm.to_linear_equiv.to_equiv s).symm,
rw [this, (e.symm_apply_apply x).symm],
exact has_fderiv_within_at.unique_diff_within_at_of_continuous_linear_equiv e.symm
e.symm.has_fderiv_within_at (hs _ hx) },
end
end tangent_cone
section restrict_scalars
/-! ### Restricting from `ℂ` to `ℝ`, or generally from `𝕜'` to `𝕜`
If a function is differentiable over `ℂ`, then it is differentiable over `ℝ`. In this paragraph,
we give variants of this statement, in the general situation where `ℂ` and `ℝ` are replaced
respectively by `𝕜'` and `𝕜` where `𝕜'` is a normed algebra over `𝕜`. -/
variables (𝕜 : Type*) [nondiscrete_normed_field 𝕜]
{𝕜' : Type*} [nondiscrete_normed_field 𝕜'] [normed_algebra 𝕜 𝕜']
{E : Type*} [normed_group E] [normed_space 𝕜' E]
{F : Type*} [normed_group F] [normed_space 𝕜' F]
{f : E → F} {f' : E →L[𝕜'] F} {s : set E} {x : E}
local attribute [instance] normed_space.restrict_scalars
lemma has_fderiv_at.restrict_scalars (h : has_fderiv_at f f' x) :
has_fderiv_at f (f'.restrict_scalars 𝕜) x := h
lemma has_fderiv_within_at.restrict_scalars (h : has_fderiv_within_at f f' s x) :
has_fderiv_within_at f (f'.restrict_scalars 𝕜) s x := h
lemma differentiable_at.restrict_scalars (h : differentiable_at 𝕜' f x) :
differentiable_at 𝕜 f x :=
(h.has_fderiv_at.restrict_scalars 𝕜).differentiable_at
lemma differentiable_within_at.restrict_scalars (h : differentiable_within_at 𝕜' f s x) :
differentiable_within_at 𝕜 f s x :=
(h.has_fderiv_within_at.restrict_scalars 𝕜).differentiable_within_at
lemma differentiable_on.restrict_scalars (h : differentiable_on 𝕜' f s) :
differentiable_on 𝕜 f s :=
λx hx, (h x hx).restrict_scalars 𝕜
lemma differentiable.restrict_scalars (h : differentiable 𝕜' f) :
differentiable 𝕜 f :=
λx, (h x).restrict_scalars 𝕜
end restrict_scalars
|
f172aae10364f4df5daaa78d8f5d17f99d210d95
|
e846540d974f0d04ca0ccd21f55379175fb829a8
|
/syntax.lean
|
085343fa3aec82748bc3c2868a74bb9afb946ea5
|
[] |
no_license
|
minchaowu/proof-theory
|
a16ecdde168561269c3a7e758348b3e4c34a2adc
|
e16141ff21750f957b5604e44e32ac7f6f030015
|
refs/heads/master
| 1,593,035,082,878
| 1,482,281,443,000
| 1,482,281,443,000
| 74,620,325
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 35,625
|
lean
|
/-
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
Modified by Minchao Wu.
Define propositional calculus, valuation, provability, validity, prove soundness, completeness, compactness.
This file is based on Floris van Doorn Coq files.
-/
import data.nat data.set
open nat bool set decidable classical
theorem gnp (S : set ℕ) [finite S] : S ≠ ∅ → ∃₀ n ∈ S, ∀₀ m ∈ S, m ≤ n :=
induction_on_finite S (λ H, absurd rfl H)
(λ a S' finS' notin ih H,
by_cases
(suppose S' = ∅,
have Hl : a ∈ insert a S', from !mem_insert,
have eq : insert a S' = '{a}, by+ simp,
have ∀ y, y ∈ insert a S' → y ≤ a, from
λ y h, have y ∈ '{a}, by+ simp,
have y = a, from eq_of_mem_singleton this, by+ simp,
show _, from exists.intro a (and.intro Hl this))
(assume Hneg, obtain b hb, from ih Hneg,
by_cases
(suppose a < b,
have Hl : b ∈ insert a S', from !subset_insert (and.left hb),
have ∀ y, y ∈ insert a S' → y ≤ b, from
λ y hy, or.elim hy (λ Hl, have y < b, by+ simp, le_of_lt this)
(λ Hr, (and.right hb) y Hr),
show _, from exists.intro b (and.intro Hl this))
(assume nlt,
have le : b ≤ a, from le_of_not_gt nlt,
have Hl : a ∈ insert a S', from !mem_insert,
have ∀ y, y ∈ insert a S' → y ≤ a, from
λy hy, or.elim hy (λ Hl, le_of_eq Hl)
(λ Hr, have y ≤ b, from (and.right hb) y Hr, nat.le_trans this le),
show _, from exists.intro a (and.intro Hl this))))
theorem ne_empty_of_mem {X : Type} {s : set X} {x : X} (H : x ∈ s) : s ≠ ∅ :=
begin intro Hs, rewrite Hs at H, apply not_mem_empty _ H end
theorem image_of_ne_empty {A B : Type} (f : A → B) (s : set A) (H : s ≠ ∅): f ' s ≠ ∅ :=
obtain a ha, from exists_mem_of_ne_empty H,
have f a ∈ f ' s, from !mem_image_of_mem ha,
show _, from ne_empty_of_mem this
definition PropVar [reducible] := nat
inductive PropF :=
| Var : PropVar → PropF
| Bot : PropF
| Conj : PropF → PropF → PropF
| Disj : PropF → PropF → PropF
| Impl : PropF → PropF → PropF
namespace PropF
notation `#`:max P:max := Var P
notation A ∨ B := Disj A B
notation A ∧ B := Conj A B
infixr `⇒`:27 := Impl
notation `⊥` := Bot
definition Neg A := A ⇒ ⊥
notation ~ A := Neg A
definition Top := ~⊥
notation `⊤` := Top
definition BiImpl A B := A ⇒ B ∧ B ⇒ A
infixr `⇔`:27 := BiImpl
definition valuation := PropVar → bool
definition TrueQ (v : valuation) : PropF → bool
| TrueQ (# P) := v P
| TrueQ ⊥ := ff
| TrueQ (A ∨ B) := TrueQ A || TrueQ B
| TrueQ (A ∧ B) := TrueQ A && TrueQ B
| TrueQ (A ⇒ B) := bnot (TrueQ A) || TrueQ B
definition is_true [reducible] (b : bool) := b = tt
-- the valuation v satisfies a list of PropF, if forall (A : PropF) in Γ,
-- (TrueQ v A) is tt (the Boolean true)
definition Satisfies v Γ := ∀ A, A ∈ Γ → is_true (TrueQ v A)
definition Models Γ A := ∀ v, Satisfies v Γ → is_true (TrueQ v A)
infix `⊨`:80 := Models
definition Valid p := ∅ ⊨ p
reserve infix `⊢`:26
/- Provability -/
inductive Nc : set PropF → PropF → Prop :=
infix ⊢ := Nc
| Nax : ∀ Γ A, A ∈ Γ → Γ ⊢ A
| ImpI : ∀ Γ A B, insert A Γ ⊢ B → Γ ⊢ A ⇒ B
| ImpE : ∀ Γ A B, Γ ⊢ A ⇒ B → Γ ⊢ A → Γ ⊢ B
| BotC : ∀ Γ A, insert (~A) Γ ⊢ ⊥ → Γ ⊢ A
| AndI : ∀ Γ A B, Γ ⊢ A → Γ ⊢ B → Γ ⊢ A ∧ B
| AndE₁ : ∀ Γ A B, Γ ⊢ A ∧ B → Γ ⊢ A
| AndE₂ : ∀ Γ A B, Γ ⊢ A ∧ B → Γ ⊢ B
| OrI₁ : ∀ Γ A B, Γ ⊢ A → Γ ⊢ A ∨ B
| OrI₂ : ∀ Γ A B, Γ ⊢ B → Γ ⊢ A ∨ B
| OrE : ∀ Γ A B C, Γ ⊢ A ∨ B → insert A Γ ⊢ C → insert B Γ ⊢ C → Γ ⊢ C
infix ⊢ := Nc
definition Provable A := ∅ ⊢ A
definition Prop_Soundness := ∀ A, Provable A → Valid A
definition Prop_Completeness := ∀ A, Valid A → Provable A
lemma subset_insert_of_not_mem {A : Type} {S s: set A} {a : A} (H1 : s ⊆ insert a S) (H2 : a ∉ s) : s ⊆ S :=
λ x h, or.elim (H1 h)
(λ Hl, have a ∈ s, by+ simp, absurd this H2) (λ Hr, Hr)
lemma subset_insert_of_mem {A : Type} {S s: set A} {a : A} (H1 : s ⊆ insert a S) (H2 : a ∈ s) : s \ '{a} ⊆ S :=
λ x h, have x ∈ insert a S, from H1 (and.left h),
or.elim this
(λ Hl, have x ∈ '{a}, by+ rewrite Hl; apply mem_singleton, absurd this (and.right h))
(λ Hr, Hr)
lemma subset_diff_of_subset {A : Type} {S s: set A} {a : A} (H1 : s ⊆ insert a S) : s \ '{a} ⊆ S :=
have s \ '{a} ⊆ s, from diff_subset _ _,
or.elim (em (a ∈ s))
(λ Hl, subset_insert_of_mem H1 Hl)
(λ Hr, subset.trans this (subset_insert_of_not_mem H1 Hr) )
lemma subset_insert_diff {A : Type} {S: set A} {a : A} : S ⊆ insert a (S \ '{a}) :=
λ x h, or.elim (em (x = a)) (λ Hl, or.inl Hl)
(λ Hr, have x ∉ '{a}, from
λ Hneg, have x = a, from eq_of_mem_singleton Hneg, Hr this,
have x ∈ S \ '{a}, from and.intro h this, or.inr this)
theorem insert_sub_insert {A : Type} {s₁ s₂ : set A} (a : A) (H : s₁ ⊆ s₂) : insert a s₁ ⊆ insert a s₂ := take x, assume H1, or.elim H1 (λ Hl, or.inl Hl) (λ Hr, or.inr (H Hr))
open Nc
lemma weakening : ∀ Γ A, Γ ⊢ A → ∀ Δ, Γ ⊆ Δ → Δ ⊢ A :=
λ Γ A H, Nc.induction_on H
(λ Γ A Hin Δ Hs, !Nax (Hs A Hin))
(λ Γ A B H w Δ Hs, !ImpI (w _ (insert_sub_insert A Hs)))
(λ Γ A B H₁ H₂ w₁ w₂ Δ Hs, !ImpE (w₁ _ Hs) (w₂ _ Hs))
(λ Γ A H w Δ Hs, !BotC (w _ (insert_sub_insert (~A) Hs)))
(λ Γ A B H₁ H₂ w₁ w₂ Δ Hs, !AndI (w₁ _ Hs) (w₂ _ Hs))
(λ Γ A B H w Δ Hs, !AndE₁ (w _ Hs))
(λ Γ A B H w Δ Hs, !AndE₂ (w _ Hs))
(λ Γ A B H w Δ Hs, !OrI₁ (w _ Hs))
(λ Γ A B H w Δ Hs, !OrI₂ (w _ Hs))
(λ Γ A B C H₁ H₂ H₃ w₁ w₂ w₃ Δ Hs, !OrE (w₁ _ Hs) (w₂ _ (insert_sub_insert A Hs)) (w₃ _ (insert_sub_insert B Hs)))
lemma deduction : ∀ Γ A B, Γ ⊢ A ⇒ B → insert A Γ ⊢ B :=
λ Γ A B H, ImpE _ A _ (!weakening H _ (subset_insert A Γ)) (!Nax (mem_insert A Γ))
lemma prov_impl : ∀ A B, Provable (A ⇒ B) → ∀ Γ, Γ ⊢ A → Γ ⊢ B :=
λ A B Hp Γ Ha,
have wHp : Γ ⊢ (A ⇒ B), from !weakening Hp Γ (empty_subset Γ),
!ImpE wHp Ha
lemma Satisfies_cons : ∀ {A Γ v}, Satisfies v Γ → is_true (TrueQ v A) → Satisfies v (insert A Γ) :=
λ A Γ v s t B BinAG,
or.elim BinAG
(λ e : B = A, by rewrite e; exact t)
(λ i : B ∈ Γ, s _ i)
theorem Soundness_general : ∀ A Γ, Γ ⊢ A → Γ ⊨ A :=
λ A Γ H, Nc.induction_on H
(λ Γ A Hin v s, (s _ Hin))
(λ Γ A B H r v s,
by_cases
(λ t : is_true (TrueQ v A),
have aux₁ : Satisfies v (insert A Γ), from Satisfies_cons s t,
have aux₂ : is_true (TrueQ v B), from r v aux₁,
bor_inr aux₂)
(λ f : ¬ is_true (TrueQ v A),
have aux : bnot (TrueQ v A) = tt, by rewrite (eq_ff_of_ne_tt f),
bor_inl aux))
(λ Γ A B H₁ H₂ r₁ r₂ v s,
have aux₁ : bnot (TrueQ v A) || TrueQ v B = tt, from r₁ v s,
have aux₂ : TrueQ v A = tt, from r₂ v s,
by+ rewrite [aux₂ at aux₁, bnot_true at aux₁, ff_bor at aux₁]; exact aux₁)
(λ Γ A H r v s, by_contradiction
(λ n : TrueQ v A ≠ tt,
have aux₁ : TrueQ v A = ff, from eq_ff_of_ne_tt n,
have aux₂ : TrueQ v (~A) = tt, begin+ change (bnot (TrueQ v A) || ff = tt), rewrite aux₁ end,
have aux₃ : Satisfies v (insert (~A) Γ), from Satisfies_cons s aux₂,
have aux₄ : TrueQ v ⊥ = tt, from r v aux₃,
absurd aux₄ ff_ne_tt))
(λ Γ A B H₁ H₂ r₁ r₂ v s,
have aux₁ : TrueQ v A = tt, from r₁ v s,
have aux₂ : TrueQ v B = tt, from r₂ v s,
band_intro aux₁ aux₂)
(λ Γ A B H r v s,
have aux : TrueQ v (A ∧ B) = tt, from r v s,
band_elim_left aux)
(λ Γ A B H r v s,
have aux : TrueQ v (A ∧ B) = tt, from r v s,
band_elim_right aux)
(λ Γ A B H r v s,
have aux : TrueQ v A = tt, from r v s,
bor_inl aux)
(λ Γ A B H r v s,
have aux : TrueQ v B = tt, from r v s,
bor_inr aux)
(λ Γ A B C H₁ H₂ H₃ r₁ r₂ r₃ v s,
have aux : TrueQ v A || TrueQ v B = tt, from r₁ v s,
or.elim (or_of_bor_eq aux)
(λ At : TrueQ v A = tt,
have aux : Satisfies v (insert A Γ), from Satisfies_cons s At,
r₂ v aux)
(λ Bt : TrueQ v B = tt,
have aux : Satisfies v (insert B Γ), from Satisfies_cons s Bt,
r₃ v aux))
theorem Soundness : Prop_Soundness :=
λ A, Soundness_general A ∅
-- By Minchao
theorem finite_proof (Γ : set PropF) (α : PropF) (H : Γ ⊢ α) : ∃ s, finite s ∧ s ⊆ Γ ∧ (s ⊢ α) :=
Nc.rec_on H
(λ Γ a Hin,
have Hl : finite '{a}, from finite_insert _ _,
have rl : '{a} ⊆ Γ, from λ x h,
have x = a, from eq_of_mem_singleton h, by+ simp,
have rr : '{a} ⊢ a, from !Nax !mem_singleton,
have finite '{a} ∧ '{a} ⊆ Γ ∧ ('{a} ⊢ a), from and.intro Hl (and.intro rl rr),
exists.intro '{a} this)
(λ Γ' a b H ih,
obtain s hs, from ih,
have prov : s ⊢ b, from and.right (and.right hs),
have rl : s \ '{a} ⊆ Γ', from subset_diff_of_subset (and.left (and.right hs)),
have Hl : finite (s \ '{a}), from @finite_diff _ _ _ (and.left hs),
have s ⊆ insert a (s \ '{a}), from subset_insert_diff,
have insert a (s \ '{a}) ⊢ b, from !weakening prov _ this,
have s \ '{a} ⊢ a ⇒ b, from !ImpI this,
exists.intro (s \ '{a}) (and.intro Hl (and.intro rl this)))
(λ Γ' a b H ih h1 h2,
obtain s₁ h₁, from h1,
obtain s₂ h₂, from h2,
have fin : finite (s₁ ∪ s₂), from @finite_union _ _ _ (and.left h₁) (and.left h₂),
have H1 : (s₁ ∪ s₂) ⊢ a ⇒ b, from !weakening (and.right (and.right h₁)) _ (subset_union_left _ _),
have (s₁ ∪ s₂) ⊢ a, from !weakening (and.right (and.right h₂)) _ (subset_union_right _ _),
have rr : (s₁ ∪ s₂) ⊢ b, from !ImpE H1 this,
have sub : (s₁ ∪ s₂) ⊆ Γ', from union_subset (and.left (and.right h₁)) (and.left (and.right h₂)),
exists.intro (s₁ ∪ s₂) (and.intro fin (and.intro sub rr)))
(λ Γ' a H ih,
obtain s hs, from ih,
have prov : s ⊢ ⊥, from and.right (and.right hs),
have rl : s \ '{~a} ⊆ Γ', from subset_diff_of_subset (and.left (and.right hs)),
have Hl : finite (s \ '{~a}), from @finite_diff _ _ _ (and.left hs),
have s ⊆ insert (~a) (s \ '{~a}), from subset_insert_diff,
have insert (~a) (s \ '{~a}) ⊢ ⊥, from !weakening prov _ this,
have s \ '{~a} ⊢ a, from !BotC this,
exists.intro (s \ '{~a}) (and.intro Hl (and.intro rl this)))
(λ Γ' a b H1 H2 ih1 ih2,
obtain s₁ h₁, from ih1,
obtain s₂ h₂, from ih2,
have fin : finite (s₁ ∪ s₂), from @finite_union _ _ _ (and.left h₁) (and.left h₂),
have Ha : (s₁ ∪ s₂) ⊢ a, from !weakening (and.right (and.right h₁)) _ (subset_union_left _ _),
have Hb : (s₁ ∪ s₂) ⊢ b, from !weakening (and.right (and.right h₂)) _ (subset_union_right _ _),
have rr : (s₁ ∪ s₂) ⊢ a ∧ b, from !AndI Ha Hb,
have sub : (s₁ ∪ s₂) ⊆ Γ', from union_subset (and.left (and.right h₁)) (and.left (and.right h₂)),
exists.intro (s₁ ∪ s₂) (and.intro fin (and.intro sub rr)))
(λ Γ' a b H ih,
obtain s hs, from ih,
have sub : s ⊆ Γ', from and.left (and.right hs),
have s ⊢ a, from !AndE₁ (and.right (and.right hs)),
exists.intro s (and.intro (and.left hs) (and.intro sub this)))
(λ Γ' a b H ih,
obtain s hs, from ih,
have sub : s ⊆ Γ', from and.left (and.right hs),
have s ⊢ b, from !AndE₂ (and.right (and.right hs)),
exists.intro s (and.intro (and.left hs) (and.intro sub this)))
(λ Γ' a b H ih,
obtain s hs, from ih,
have sub : s ⊆ Γ', from and.left (and.right hs),
have s ⊢ a ∨ b, from !OrI₁ (and.right (and.right hs)),
exists.intro s (and.intro (and.left hs) (and.intro sub this)))
(λ Γ' a b H ih,
obtain s hs, from ih,
have sub : s ⊆ Γ', from and.left (and.right hs),
have s ⊢ a ∨ b, from !OrI₂ (and.right (and.right hs)),
exists.intro s (and.intro (and.left hs) (and.intro sub this)))
(λ Γ' a b c h0 h1 h2 ih1 ih2 ih3,
obtain s₁ hs₁, from ih1,
obtain s₂ hs₂, from ih2,
obtain s₃ hs₃, from ih3,
have prov₁ : s₁ ⊢ a ∨ b, from and.right (and.right hs₁),
have prov₂ : s₂ ⊢ c, from and.right (and.right hs₂),
have prov₃ : s₃ ⊢ c, from and.right (and.right hs₃),
have sub₁ : s₁ ⊆ Γ', from and.left (and.right hs₁),
have fin₁ : finite s₁, from and.left hs₁,
have ua : s₂ \ '{a} ⊆ Γ', from subset_diff_of_subset (and.left (and.right hs₂)),
have fina : finite (s₂ \ '{a}), from @finite_diff _ _ _ (and.left hs₂),
have ub : s₃ \ '{b} ⊆ Γ', from subset_diff_of_subset (and.left (and.right hs₃)),
have finb : finite (s₃ \ '{b}), from @finite_diff _ _ _ (and.left hs₃),
have subu : (s₂ \ '{a}) ∪ (s₃ \ '{b}) ⊆ Γ', from union_subset ua ub,
have sub : s₁ ∪ ((s₂ \ '{a}) ∪ (s₃ \ '{b})) ⊆ Γ', from union_subset sub₁ subu,
have finu : finite ((s₂ \ '{a}) ∪ (s₃ \ '{b})), from @finite_union _ _ _ fina finb,
have s₁ ∪ ((s₂ \ '{a}) ∪ (s₃ \ '{b})) ⊆ Γ', from union_subset sub₁ subu,
have fin : finite (s₁ ∪ ((s₂ \ '{a}) ∪ (s₃ \ '{b}))), from @finite_union _ _ _ fin₁ finu,
have sub₂ : s₂ ⊆ insert a (s₁ ∪ ((s₂ \ '{a}) ∪ (s₃ \ '{b}))), from
λ x h, or.elim (em (x = a)) (λ Hl, or.inl Hl)
(λ Hr, have x ∉ '{a}, from λ Hneg, Hr (eq_of_mem_singleton Hneg),
have x ∈ (s₂ \ '{a}), from and.intro h this,
or.inr (or.inr (or.inl this))),
have sub₃ : s₃ ⊆ insert b (s₁ ∪ ((s₂ \ '{a}) ∪ (s₃ \ '{b}))), from
λ x h, or.elim (em (x = b)) (λ Hl, or.inl Hl)
(λ Hr, have x ∉ '{b}, from λ Hneg, Hr (eq_of_mem_singleton Hneg),
have x ∈ (s₃ \ '{b}), from and.intro h this,
or.inr (or.inr (or.inr this))),
have H1 : insert a (s₁ ∪ ((s₂ \ '{a}) ∪ (s₃ \ '{b}))) ⊢ c, from !weakening prov₂ _ sub₂,
have H2 : insert b (s₁ ∪ ((s₂ \ '{a}) ∪ (s₃ \ '{b}))) ⊢ c, from !weakening prov₃ _ sub₃,
have s₁ ∪ ((s₂ \ '{a}) ∪ (s₃ \ '{b})) ⊢ a ∨ b, from !weakening prov₁ _ (subset_union_left _ _),
have rr : s₁ ∪ ((s₂ \ '{a}) ∪ (s₃ \ '{b})) ⊢ c, from !OrE this H1 H2,
exists.intro (s₁ ∪ ((s₂ \ '{a}) ∪ (s₃ \ '{b}))) (and.intro fin (and.intro sub rr)))
theorem meta_thm0 {Γ : set PropF} {α : PropF} : Γ ⊢ α ⇒ α :=
!ImpI (!Nax !mem_insert)
theorem meta_thm1_left {Γ : set PropF} {α β : PropF} (H : Γ ⊢ ~α) : Γ ⊢ ~(α ∧ β) :=
have insert (α ∧ β) Γ ⊢ α ∧ β, from !Nax !mem_insert,
have H1 : insert (α ∧ β) Γ ⊢ α, from !AndE₁ this,
have insert (α ∧ β) Γ ⊢ ~α, from !weakening H _ (subset_insert _ _),
show _, from !ImpI (!ImpE this H1)
theorem meta_thm1_right {Γ : set PropF} {α β : PropF} (H : Γ ⊢ ~β) : Γ ⊢ ~(α ∧ β) :=
have insert (α ∧ β) Γ ⊢ α ∧ β, from !Nax !mem_insert,
have H1 : insert (α ∧ β) Γ ⊢ β, from !AndE₂ this,
have insert (α ∧ β) Γ ⊢ ~β, from !weakening H _ (subset_insert _ _),
show _, from !ImpI (!ImpE this H1)
-- should be written using tactics.
lemma eq_of_shift_insert {A : Type} {S : set A} (a b : A) : insert a (insert b S) = insert b (insert a S) :=
have H1 : insert a (insert b S) ⊆ insert b (insert a S), from
λ x h, or.elim h
(λ Hl, or.inr (or.inl Hl))
(λ Hr, or.elim Hr (λ Hlb, or.inl Hlb) (λ Hrb, or.inr (or.inr Hrb))),
have insert b (insert a S) ⊆ insert a (insert b S), from
λ x h, or.elim h
(λ Hl, or.inr (or.inl Hl))
(λ Hr, or.elim Hr (λ Hlb, or.inl Hlb) (λ Hrb, or.inr (or.inr Hrb))),
show _, from eq_of_subset_of_subset H1 this
theorem meta_thm2 {Γ : set PropF} {α β : PropF} (H1 : Γ ⊢ ~α) (H2 : Γ ⊢ ~β) : Γ ⊢ ~(α ∨ β) :=
have H3 : insert (α ∨ β) Γ ⊢ α ∨ β, from !Nax !mem_insert,
have (insert α Γ) ⊢ ⊥, from !deduction H1,
have insert (α ∨ β) (insert α Γ) ⊢ ⊥, from !weakening this _ (subset_insert _ _),
have H4 : insert α (insert (α ∨ β) Γ) ⊢ ⊥, by+ rewrite eq_of_shift_insert at this;exact this,
have (insert β Γ) ⊢ ⊥, from !deduction H2,
have insert (α ∨ β) (insert β Γ) ⊢ ⊥, from !weakening this _ (subset_insert _ _),
have insert β (insert (α ∨ β) Γ) ⊢ ⊥, by+ rewrite eq_of_shift_insert at this;exact this,
have (insert (α ∨ β) Γ) ⊢ ⊥, from !OrE H3 H4 this,
show _, from !ImpI this
theorem meta_thm3 {Γ : set PropF} {α β : PropF} (H1 : Γ ⊢ α) (H2 : Γ ⊢ ~β) : Γ ⊢ ~(α ⇒ β) :=
have H3 : insert (α ⇒ β) Γ ⊢ α ⇒ β, from !Nax !mem_insert,
have H4 : insert (α ⇒ β) Γ ⊢ ~β, from !weakening H2 _ (subset_insert _ _),
have insert (α ⇒ β) Γ ⊢ α, from !weakening H1 _ (subset_insert _ _),
have insert (α ⇒ β) Γ ⊢ β, from !ImpE H3 this,
have insert (α ⇒ β) Γ ⊢ ⊥, from !ImpE H4 this,
show _, from !ImpI this
theorem meta_thm4 {Γ : set PropF} {α β : PropF} (H : Γ ⊢ ~α) : Γ ⊢ α ⇒ β :=
have insert α Γ ⊢ ⊥, from !deduction H,
have insert (~β) (insert α Γ) ⊢ ⊥, from !weakening this _ (subset_insert _ _),
have insert α Γ ⊢ β, from !BotC this,
show _, from !ImpI this
theorem meta_thm5 {Γ : set PropF} {α β : PropF} (H : Γ ⊢ β) : Γ ⊢ α ⇒ β :=
have insert α Γ ⊢ β, from !weakening H _ (subset_insert _ _),
show _, from !ImpI this
lemma empty_sat (v : valuation) : Satisfies v ∅ := λ A H, absurd H (!not_mem_empty)
lemma empty_model (α : PropF) (H : ∅ ⊨ α) : ∀ v, is_true (TrueQ v α) :=
λ v, H v (empty_sat v)
lemma invalid_bot : ¬ (∅ ⊨ ⊥) :=
assume H,
let v (a : PropVar) := tt in
have TrueQ v ⊥ = ff, from rfl,
have ¬ ff = tt, from bool.no_confusion,
have ¬ TrueQ v ⊥ = tt, by+ simp,
have H1 : ∃ v, ¬ is_true (TrueQ v ⊥), from exists.intro v this,
have ¬ ∃ v, ¬ is_true (TrueQ v ⊥), from not_exists_not_of_forall (empty_model ⊥ H),
show _, from this H1
theorem unprov_bot : ¬ (∅ ⊢ ⊥) := λ H, invalid_bot (Soundness ⊥ H)
definition incon (Γ : set PropF) : Prop := ∃ α, (Γ ⊢ α) ∧ (Γ ⊢ ~ α)
definition con (Γ : set PropF) : Prop := ¬ incon Γ
theorem omni {Γ : set PropF} {α : PropF} (H : incon Γ) : Γ ⊢ α :=
obtain β Hb, from H,
have H1 : Γ ⊢ ⊥, from !ImpE (and.right Hb) (and.left Hb),
have Γ ⊆ insert (~α) Γ, from subset_insert (~α) Γ,
have insert (~α) Γ ⊢ ⊥, from !weakening H1 (insert (~α) Γ) this,
show _, from !BotC this
theorem reverse_omni {Γ : set PropF} (H : ∀ α, Γ ⊢ α) : incon Γ :=
exists.intro ⊥ (and.intro (H ⊥) (H (~⊥)))
theorem incon_of_prov_bot {Γ : set PropF} (H : Γ ⊢ ⊥) : incon Γ :=
have ∀ α, Γ ⊢ α, from λ α, !BotC (!weakening H _ (subset_insert _ _)),
show _, from reverse_omni this
theorem incon_union_of_prov {Γ : set PropF} {α : PropF} (H : Γ ⊢ α) :
incon (insert (~α ) Γ) :=
have Γ ⊆ insert (~α) Γ, from subset_insert (~α) Γ,
have H1 : insert (~α) Γ ⊢ α, from !weakening H (insert (~α) Γ) this,
have (~α) ∈ insert (~α) Γ, from !mem_insert,
have insert (~α) Γ ⊢ ~α, from !Nax this,
show _, from exists.intro (α) (and.intro H1 this)
theorem prov_of_incon_union {Γ : set PropF} {α : PropF} (H : incon (insert (~α) Γ)) : Γ ⊢ α := !BotC (omni H)
definition Satisfiable (Γ : set PropF) := ∃ v, Satisfies v Γ
-- classical
theorem TFAE1 {Γ : set PropF} {τ : PropF} (H1 : ∀ {Γ}, con Γ → Satisfiable Γ) (H2 : Γ ⊨ τ) : Γ ⊢ τ :=
by_contradiction
(suppose ¬ (Γ ⊢ τ),
have con (insert (~τ) Γ), from not.mto prov_of_incon_union this,
have Satisfiable (insert (~τ) Γ), from H1 this,
obtain v Hv, from this,
have Satisfies v Γ, from
λ x, assume Hx,
have Γ ⊆ insert (~τ) Γ, from subset_insert (~τ) Γ,
have x ∈ insert (~τ) Γ, from this Hx,
Hv x this,
have TrueQ v τ = tt, from H2 v this,
have (~τ) ∈ insert (~τ) Γ, from !mem_insert,
have TrueQ v (~τ) = tt, from Hv (~τ) this,
have bnot (TrueQ v τ) || ff = tt, from this,
have bnot (TrueQ v τ) = tt, by+ simp,
have TrueQ v τ = ff, from eq_ff_of_bnot_eq_tt this,
have TrueQ v τ ≠ tt, by+ simp,
show _, by+ simp)
theorem TFAE2 {Γ : set PropF} (H1 : ∀ {Γ τ}, Γ ⊨ τ → Γ ⊢ τ) (H2 : con Γ): Satisfiable Γ :=
by_contradiction
(suppose ¬ Satisfiable Γ,
have ∀ v, ¬ Satisfies v Γ, from iff.mp forall_iff_not_exists this,
have ∀ τ, Γ ⊢ τ, from
take τ, have Γ ⊨ τ, from λ v, assume Hv, absurd Hv (this v),
H1 this,
have incon Γ, from reverse_omni this,
H2 this)
-- definition max_con (Γ : set PropF) := con Γ ∧ ∀ α, α ∉ Γ → incon (insert α Γ)
noncomputable theory
definition enum (Γ : set PropF) (n : nat) : set PropF :=
nat.rec_on n Γ
(λ pred enum',
if con (insert (# pred) enum') then insert (# pred) enum'
else insert (~(# pred)) enum')
lemma con_insert_neg_of_incon {Γ : set PropF} {α : PropF} (H1 : con Γ) (H2 : incon (insert α Γ)) : con (insert (~α) Γ) :=
assume Hincon,
have H3 : Γ ⊢ α, from prov_of_incon_union Hincon,
have Γ ⊢ ~α, from !ImpI (omni H2),
have Γ ⊢ ⊥, from !ImpE this H3,
have incon Γ, from incon_of_prov_bot this,
show _, from H1 this
theorem con_enum {Γ : set PropF} (H : con Γ) (n : nat) : con (enum Γ n) :=
nat.rec_on n H
(λ a ih, by_cases
(suppose con (insert (# a) (enum Γ a)),
have enum Γ (succ a) = insert (# a) (enum Γ a), from if_pos this,
show _, by+ simp)
(assume Hneg,
have incon : incon (insert (# a) (enum Γ a)), from not_not_elim Hneg,
have enum Γ (succ a) = insert (~(# a)) (enum Γ a), from if_neg Hneg,
have con (insert (~(# a)) (enum Γ a)), from con_insert_neg_of_incon ih incon,
show _, by+ simp))
theorem succ_enum {Γ : set PropF} {n : ℕ} : enum Γ n ⊆ enum Γ (succ n) :=
nat.rec_on n
(by_cases
(suppose con (insert (# 0) (enum Γ 0)),
have enum Γ (succ 0) = insert (# 0) (enum Γ 0), from if_pos this,
have enum Γ 0 ⊆ insert (# 0) (enum Γ 0), from subset_insert _ _,
show _, by+ simp)
(assume Hneg,
have enum Γ (succ 0) = insert (~(# 0)) (enum Γ 0), from if_neg Hneg,
have enum Γ 0 ⊆ insert (~(# 0)) (enum Γ 0), from subset_insert _ _,
show _, by+ simp))
(λ a ih, by_cases
(suppose con (insert (# (succ a)) (enum Γ (succ a))),
have enum Γ (succ (succ a)) = insert (# (succ a)) (enum Γ (succ a)), from if_pos this,
have enum Γ (succ a) ⊆ insert (# (succ a)) (enum Γ (succ a)), from subset_insert _ _,
show _, by+ simp)
(assume Hneg,
have enum Γ (succ (succ a)) = insert (~(# (succ a))) (enum Γ (succ a)), from if_neg Hneg,
have enum Γ (succ a) ⊆ insert (~(# (succ a))) (enum Γ (succ a)), from subset_insert _ _,
show _, by+ simp))
-- Can be strengthened
theorem increasing_enum {Γ : set PropF} {n m : ℕ} : n ≤ m → enum Γ n ⊆ enum Γ m :=
nat.rec_on m
(λ H, have n = 0, from eq_zero_of_le_zero H,
have enum Γ 0 ⊆ enum Γ 0, from subset.refl _,
show _, by+ simp)
(λ a ih H, by_cases
(suppose n = succ a,
have enum Γ (succ a) ⊆ enum Γ (succ a), from subset.refl _,
show _, by+ simp)
(assume Hneg,
have n < succ a, from lt_of_le_of_ne H Hneg,
have n ≤ a, from le_of_lt_succ this,
have H1 : enum Γ n ⊆ enum Γ a, from ih this,
have enum Γ a ⊆ enum Γ (succ a), from succ_enum,
show _, from subset.trans H1 this))
section
parameter Γ : set PropF
parameter Hcon : con Γ
definition con_comp_ext : set PropF := {x : PropF | ∃ i, x ∈ enum Γ i}
private definition index (α : PropF) : ℕ := if cond : α ∈ con_comp_ext then some cond else 0
-- Maybe we should show further that for any finite set S ⊆ con_com_ext, ∀ s ∈ S, s ∈ enum Γ (max (index ' S)).
theorem mem_index (α : PropF) (H : α ∈ con_comp_ext) : α ∈ enum Γ (index α) :=
have index α = some H, from if_pos H,
have α ∈ enum Γ (some H), from some_spec H,
show _, by+ simp
theorem con_con_comp_ext : con con_comp_ext :=
assume H, obtain s hs, from finite_proof _ ⊥ (!omni H),
have fins : finite s, from and.left hs,
let is : set ℕ := index ' s in
have s ≠ ∅, from λ H, have ∅ ⊢ ⊥, by+ simp, unprov_bot this,
have nemp : is ≠ ∅, from !image_of_ne_empty this,
have finite is, from @finite_image _ _ _ _ fins,
obtain n hn, from @gnp is this nemp,
have pb : s ⊢ ⊥, from and.right (and.right hs),
have ∀ a, a ∈ s → a ∈ enum Γ n, from
λ a hin, have index a ∈ is, from mem_image hin rfl,
have index a ≤ n, from and.right hn (index a) this,
have sub : enum Γ (index a) ⊆ enum Γ n, from increasing_enum this,
have a ∈ con_comp_ext, from (and.left (and.right hs)) _ hin,
have a ∈ enum Γ (index a), from mem_index _ this,
sub this,
have enum Γ n ⊢ ⊥, from !weakening pb _ this,
have incon (enum Γ n), from incon_of_prov_bot this,
show _, from (con_enum Hcon n) this
lemma unprov_bot_con_comp : ¬ (con_comp_ext ⊢ ⊥) :=
assume H, con_con_comp_ext (incon_of_prov_bot H)
definition max_con_ext : set PropF := {α : PropF | con_comp_ext ⊢ α}
theorem sub_con_comp_ext : Γ ⊆ con_comp_ext :=
λ x h, have Γ = enum Γ 0, from rfl,
have x ∈ enum Γ 0, by+ rewrite this at h;exact h,
show _, from exists.intro 0 this
theorem sub_max_con_ext : Γ ⊆ max_con_ext :=
λ x h, have x ∈ con_comp_ext, from sub_con_comp_ext h,
show _, from !Nax this
-- Induction is not necessary. Can be proved by cases.
theorem atomic_comp (P : PropVar) : (con_comp_ext ⊢ # P) ∨ (con_comp_ext ⊢ ~(# P)) :=
nat.rec_on P
(or.elim (em (con (insert (# 0) Γ)))
(λ Hl, have (# 0) ∈ insert (# 0) Γ, from mem_insert _ _,
have enum Γ 1 = insert (# 0) Γ, from if_pos Hl,
have (# 0) ∈ enum Γ 1, by+ simp,
have (# 0) ∈ con_comp_ext, from exists.intro 1 this,
show _, from or.inl (!Nax this))
(λ Hr, have (~(# 0)) ∈ insert (~(# 0)) Γ, from mem_insert _ _,
have enum Γ 1 = insert (~(# 0)) Γ, from if_neg Hr,
have (~(# 0)) ∈ enum Γ 1, by+ simp,
have (~(# 0)) ∈ con_comp_ext, from exists.intro 1 this,
show _, from or.inr (!Nax this)))
(λ a ih, or.elim (em (con (insert (# (succ a)) (enum Γ (succ a)))))
(λ Hl, have (# (succ a)) ∈ insert (# (succ a)) (enum Γ (succ a)), from mem_insert _ _,
have enum Γ (succ (succ a)) = insert (# (succ a)) (enum Γ (succ a)), from if_pos Hl,
have (# (succ a)) ∈ enum Γ (succ (succ a)), by+ simp,
have (# (succ a)) ∈ con_comp_ext, from exists.intro (succ (succ a)) this,
show _, from or.inl (!Nax this) )
(λ Hr, have (~(# (succ a))) ∈ insert (~(# (succ a))) (enum Γ (succ a)), from mem_insert _ _,
have enum Γ (succ (succ a)) = insert (~(# (succ a))) (enum Γ (succ a)), from if_neg Hr,
have (~(# (succ a))) ∈ enum Γ (succ (succ a)), by+ simp,
have (~(# (succ a))) ∈ con_comp_ext, from exists.intro (succ (succ a)) this,
show _, from or.inr (!Nax this)))
theorem comp_con_comp_ext (α : PropF) : (con_comp_ext ⊢ α) ∨ (con_comp_ext ⊢ ~α) :=
PropF.rec_on α
(λ a, atomic_comp a)
(or.inr (!meta_thm0))
(λ a b iha ihb, or.elim iha
(λ Hl, or.elim ihb (λ Hlb, or.inl (!AndI Hl Hlb)) (λ Hrb, or.inr (meta_thm1_right Hrb)))
(λ Hr, or.inr (meta_thm1_left Hr)))
(λ a b iha ihb, or.elim iha (λ Hl, or.inl (!OrI₁ Hl)) (λ Hr, or.elim ihb (λ Hlb, or.inl (!OrI₂ Hlb)) (λ Hrb, or.inr (meta_thm2 Hr Hrb))))
(λ a b iha ihb, or.elim iha (λ Hl, or.elim ihb (λ Hlb, or.inl (meta_thm5 Hlb)) (λ Hrb, or.inr (meta_thm3 Hl Hrb))) (λ Hr, or.inl (meta_thm4 Hr)))
lemma mutual_exclusion (α : PropF) (H : con_comp_ext ⊢ ~α) : ¬ (con_comp_ext ⊢ α) :=
assume Hneg, have con_comp_ext ⊢ ⊥, from !ImpE H Hneg,
have incon con_comp_ext, from incon_of_prov_bot this,
show _, from con_con_comp_ext this
lemma mutual_exclusion' (α : PropF) (H : ¬ (con_comp_ext ⊢ α)) : con_comp_ext ⊢ (~α) :=
or.elim (comp_con_comp_ext α)
(λ Hl, absurd Hl H) (λ Hr, Hr)
private definition v (P : PropVar) : bool := if # P ∈ max_con_ext then tt else ff
theorem ne_ff_of_eq_tt {a : bool} (H : a = tt) : a ≠ ff :=
by+ rewrite H;apply bool.no_confusion
theorem ne_tt_of_eq_ff {a : bool} (H : a = ff) : a ≠ tt :=
by+ rewrite H;apply bool.no_confusion
theorem sat_v {α : PropF} : α ∈ max_con_ext ↔ is_true (TrueQ v α) :=
PropF.rec_on α
(λ a,
have Hl : # a ∈ max_con_ext → is_true (TrueQ v (# a)), from
λ h, have TrueQ v (# a) = v a, from rfl,
have v a = tt, from if_pos h,
show _, by+ simp,
have is_true (TrueQ v (# a)) → # a ∈ max_con_ext, from
λ h, by_contradiction
(assume Hneg, have v a = ff, from if_neg Hneg,
have v a ≠ tt, from ne_tt_of_eq_ff this,
this h),
show _, from iff.intro Hl this)
(have Hl : ⊥ ∈ max_con_ext → is_true (TrueQ v ⊥), from
λ h, absurd h unprov_bot_con_comp,
have is_true (TrueQ v ⊥) → ⊥ ∈ max_con_ext, from
λ h, have TrueQ v ⊥ = ff, from rfl,
have TrueQ v ⊥ ≠ tt, from ne_tt_of_eq_ff this,
show _, from absurd h this,
show _, from iff.intro Hl this)
(λ a b iha ihb,
have Hl : (a ∧ b) ∈ max_con_ext → is_true (TrueQ v (a ∧ b)), from
λ h,
have con_comp_ext ⊢ a, from !AndE₁ h,
have t1 : TrueQ v a = tt, from iff.elim_left iha this,
have con_comp_ext ⊢ b, from !AndE₂ h,
have t2 : TrueQ v b = tt, from iff.elim_left ihb this,
have TrueQ v (a ∧ b) = TrueQ v a && TrueQ v b, from rfl,
show _, by+ simp,
have is_true (TrueQ v (a ∧ b)) → (a ∧ b) ∈ max_con_ext, from
λ h, have TrueQ v (a ∧ b) = TrueQ v a && TrueQ v b, from rfl,
have eq : tt = TrueQ v a && TrueQ v b, by+ simp,
have is_true (TrueQ v a), from band_elim_left (eq.symm eq),
have Ha : a ∈ max_con_ext, from iff.elim_right iha this,
have is_true (TrueQ v b), from band_elim_right (eq.symm eq),
have Hb : b ∈ max_con_ext, from iff.elim_right ihb this,
show _, from !AndI Ha Hb,
show _, from iff.intro Hl this)
(λ a b iha ihb,
have Hl : (a ∨ b) ∈ max_con_ext → is_true (TrueQ v (a ∨ b)), from
λ h, or.elim (comp_con_comp_ext a)
(λ Hl, have TrueQ v a = tt, from iff.elim_left iha Hl,
have TrueQ v (a ∨ b) = TrueQ v a || TrueQ v b, from rfl,
show _, by+ simp)
(λ Hr, or.elim (comp_con_comp_ext b)
(λ Hlb, have TrueQ v b = tt, from iff.elim_left ihb Hlb,
have TrueQ v (a ∨ b) = TrueQ v a || TrueQ v b, from rfl,
show _, by+ simp)
(λ Hrb, have con_comp_ext ⊢ ~(a ∨ b), from meta_thm2 Hr Hrb,
have incon con_comp_ext, from incon_of_prov_bot (!ImpE this h),
show _, from absurd this con_con_comp_ext)),
have is_true (TrueQ v (a ∨ b)) → (a ∨ b) ∈ max_con_ext, from
λ h, have TrueQ v a = tt ∨ TrueQ v b = tt, from or_of_bor_eq h,
or.elim this
(λ Hl, have a ∈ max_con_ext, from iff.elim_right iha Hl, !OrI₁ this)
(λ Hr, have b ∈ max_con_ext, from iff.elim_right ihb Hr, !OrI₂ this),
show _, from iff.intro Hl this)
(λ a b iha ihb,
have Hl : (a ⇒ b) ∈ max_con_ext → is_true (TrueQ v (a ⇒ b)), from
λ h, or.elim (comp_con_comp_ext a)
(λ Hl, have b ∈ max_con_ext, from !ImpE h Hl,
have TrueQ v b = tt, from iff.elim_left ihb this,
have TrueQ v (a ⇒ b) = bnot (TrueQ v a) || TrueQ v b, from rfl,
have TrueQ v (a ⇒ b) = bnot (TrueQ v a) || tt, by+ simp,
show _, by+ simp)
(λ Hr, have Hneg : ¬ (con_comp_ext ⊢ a), from !mutual_exclusion Hr,
have ¬ (con_comp_ext ⊢ a) ↔ TrueQ v a ≠ tt, from not_iff_not iha,
have TrueQ v a ≠ tt, from iff.elim_left this Hneg,
have TrueQ v a = ff, from eq_ff_of_ne_tt this,
have bnot (TrueQ v a) = tt, by+ simp,
have TrueQ v (a ⇒ b) = bnot (TrueQ v a) || TrueQ v b, from rfl,
have TrueQ v (a ⇒ b) = tt || TrueQ v b, by+ simp,
show _, by+ simp),
have is_true (TrueQ v (a ⇒ b)) → (a ⇒ b) ∈ max_con_ext, from
λ h, have bnot (TrueQ v a) = tt ∨ TrueQ v b = tt, from or_of_bor_eq h,
or.elim this
(λ Hl, have TrueQ v a = ff, from eq_ff_of_bnot_eq_tt Hl,
have neq : TrueQ v a ≠ tt, from ne_tt_of_eq_ff this,
have ¬ (con_comp_ext ⊢ a) ↔ TrueQ v a ≠ tt, from not_iff_not iha,
have ¬ (con_comp_ext ⊢ a), from iff.elim_right this neq,
have con_comp_ext ⊢ ~a, from !mutual_exclusion' this,
show _, from meta_thm4 this)
(λ Hr, have con_comp_ext ⊢ b, from iff.elim_right ihb Hr,
show _, from meta_thm5 this),
show _, from iff.intro Hl this)
theorem sat_Gamma : Satisfiable Γ:=
have ∀ α, α ∈ Γ → is_true (TrueQ v α), from
λ α h, have α ∈ max_con_ext, from sub_max_con_ext h,
show _, from iff.elim_left sat_v this,
show _, from exists.intro v this
end
theorem PL_completeness {Γ : set PropF} {τ : PropF} (H : Γ ⊨ τ) : Γ ⊢ τ :=
show _, from TFAE1 sat_Gamma H
theorem PL_soundness {Γ : set PropF} {τ : PropF} (H : Γ ⊢ τ) : Γ ⊨ τ :=
show _, from Soundness_general τ Γ H
theorem con_of_sat {Γ : set PropF} (H : Satisfiable Γ) : con Γ :=
obtain v hv, from H,
have unprov : ¬ (Γ ⊢ ⊥), from
assume Hneg,
have Γ ⊨ ⊥, from PL_soundness Hneg,
have eq : is_true (TrueQ v ⊥), from this v hv,
have TrueQ v ⊥ = ff, from rfl,
have ¬ TrueQ v ⊥ = tt, from ne_tt_of_eq_ff this,
show _, from this eq,
assume Hneg, have Γ ⊢ ⊥, from omni Hneg,
show _, from unprov this
theorem PL_compactness {Γ : set PropF} (H : ∀ s, finite s → s ⊆ Γ → Satisfiable s) : Satisfiable Γ :=
have con_fin : ∀ s, finite s → s ⊆ Γ → con s, from
λ s fin sub,
show _, from con_of_sat (H s fin sub),
have con Γ, from
assume Hneg, have Γ ⊢ ⊥, from omni Hneg,
have ∃ s, finite s ∧ s ⊆ Γ ∧ (s ⊢ ⊥),from !finite_proof this,
obtain s h, from this,
have Hcon : con s, from con_fin s (and.left h) (and.left (and.right h)),
have incon s, from incon_of_prov_bot (and.right (and.right h)),
show _, from Hcon this,
show _, from sat_Gamma Γ this
end PropF
|
cad5e2b434f7ac7410249f526678e87f47899db7
|
b7f22e51856f4989b970961f794f1c435f9b8f78
|
/tests/lean/run/ppbeta.lean
|
f1ee151890f3fd4c11ed97faff7ed235551648e0
|
[
"Apache-2.0"
] |
permissive
|
soonhokong/lean
|
cb8aa01055ffe2af0fb99a16b4cda8463b882cd1
|
38607e3eb57f57f77c0ac114ad169e9e4262e24f
|
refs/heads/master
| 1,611,187,284,081
| 1,450,766,737,000
| 1,476,122,547,000
| 11,513,992
| 2
| 0
| null | 1,401,763,102,000
| 1,374,182,235,000
|
C++
|
UTF-8
|
Lean
| false
| false
| 286
|
lean
|
import data.int
open [coercion] [class] int
open [coercion] nat
definition lt1 (a b : int) := int.le (int.add a 1) b
infix `<` := lt1
infixl `+` := int.add
theorem lt_add_succ2 (a : int) (n : nat) : a < a + nat.succ n :=
int.le.intro (show a + 1 + n = a + nat.succ n, from sorry)
|
d9c3888026d2897fc2236bb908567fb2a16dd6b8
|
4727251e0cd73359b15b664c3170e5d754078599
|
/src/category_theory/limits/creates.lean
|
f2a49827b2e43cab2e7d939ab900d676647010c1
|
[
"Apache-2.0"
] |
permissive
|
Vierkantor/mathlib
|
0ea59ac32a3a43c93c44d70f441c4ee810ccceca
|
83bc3b9ce9b13910b57bda6b56222495ebd31c2f
|
refs/heads/master
| 1,658,323,012,449
| 1,652,256,003,000
| 1,652,256,003,000
| 209,296,341
| 0
| 1
|
Apache-2.0
| 1,568,807,655,000
| 1,568,807,655,000
| null |
UTF-8
|
Lean
| false
| false
| 25,972
|
lean
|
/-
Copyright (c) 2020 Bhavik Mehta. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Bhavik Mehta
-/
import category_theory.limits.preserves.basic
open category_theory category_theory.limits
noncomputable theory
namespace category_theory
universes w' w v₁ v₂ v₃ u₁ u₂ u₃
variables {C : Type u₁} [category.{v₁} C]
section creates
variables {D : Type u₂} [category.{v₂} D]
variables {J : Type w} [category.{w'} J] {K : J ⥤ C}
/--
Define the lift of a cone: For a cone `c` for `K ⋙ F`, give a cone for `K`
which is a lift of `c`, i.e. the image of it under `F` is (iso) to `c`.
We will then use this as part of the definition of creation of limits:
every limit cone has a lift.
Note this definition is really only useful when `c` is a limit already.
-/
structure liftable_cone (K : J ⥤ C) (F : C ⥤ D) (c : cone (K ⋙ F)) :=
(lifted_cone : cone K)
(valid_lift : F.map_cone lifted_cone ≅ c)
/--
Define the lift of a cocone: For a cocone `c` for `K ⋙ F`, give a cocone for
`K` which is a lift of `c`, i.e. the image of it under `F` is (iso) to `c`.
We will then use this as part of the definition of creation of colimits:
every limit cocone has a lift.
Note this definition is really only useful when `c` is a colimit already.
-/
structure liftable_cocone (K : J ⥤ C) (F : C ⥤ D) (c : cocone (K ⋙ F)) :=
(lifted_cocone : cocone K)
(valid_lift : F.map_cocone lifted_cocone ≅ c)
/--
Definition 3.3.1 of [Riehl].
We say that `F` creates limits of `K` if, given any limit cone `c` for `K ⋙ F`
(i.e. below) we can lift it to a cone "above", and further that `F` reflects
limits for `K`.
If `F` reflects isomorphisms, it suffices to show only that the lifted cone is
a limit - see `creates_limit_of_reflects_iso`.
-/
class creates_limit (K : J ⥤ C) (F : C ⥤ D) extends reflects_limit K F :=
(lifts : Π c, is_limit c → liftable_cone K F c)
/--
`F` creates limits of shape `J` if `F` creates the limit of any diagram
`K : J ⥤ C`.
-/
class creates_limits_of_shape (J : Type w) [category.{w'} J] (F : C ⥤ D) :=
(creates_limit : Π {K : J ⥤ C}, creates_limit K F . tactic.apply_instance)
/-- `F` creates limits if it creates limits of shape `J` for any `J`. -/
@[nolint check_univs] -- This should be used with explicit universe variables.
class creates_limits_of_size (F : C ⥤ D) :=
(creates_limits_of_shape : Π {J : Type w} [category.{w'} J],
creates_limits_of_shape J F . tactic.apply_instance)
/-- `F` creates small limits if it creates limits of shape `J` for any small `J`. -/
abbreviation creates_limits (F : C ⥤ D) := creates_limits_of_size.{v₂ v₂} F
/--
Dual of definition 3.3.1 of [Riehl].
We say that `F` creates colimits of `K` if, given any limit cocone `c` for
`K ⋙ F` (i.e. below) we can lift it to a cocone "above", and further that `F`
reflects limits for `K`.
If `F` reflects isomorphisms, it suffices to show only that the lifted cocone is
a limit - see `creates_limit_of_reflects_iso`.
-/
class creates_colimit (K : J ⥤ C) (F : C ⥤ D) extends reflects_colimit K F :=
(lifts : Π c, is_colimit c → liftable_cocone K F c)
/--
`F` creates colimits of shape `J` if `F` creates the colimit of any diagram
`K : J ⥤ C`.
-/
class creates_colimits_of_shape (J : Type w) [category.{w'} J] (F : C ⥤ D) :=
(creates_colimit : Π {K : J ⥤ C}, creates_colimit K F . tactic.apply_instance)
/-- `F` creates colimits if it creates colimits of shape `J` for any small `J`. -/
@[nolint check_univs] -- This should be used with explicit universe variables.
class creates_colimits_of_size (F : C ⥤ D) :=
(creates_colimits_of_shape : Π {J : Type w} [category.{w'} J],
creates_colimits_of_shape J F . tactic.apply_instance)
/-- `F` creates small colimits if it creates colimits of shape `J` for any small `J`. -/
abbreviation creates_colimits (F : C ⥤ D) := creates_colimits_of_size.{v₂ v₂} F
attribute [instance, priority 100] -- see Note [lower instance priority]
creates_limits_of_shape.creates_limit creates_limits_of_size.creates_limits_of_shape
creates_colimits_of_shape.creates_colimit creates_colimits_of_size.creates_colimits_of_shape
/- Interface to the `creates_limit` class. -/
/-- `lift_limit t` is the cone for `K` given by lifting the limit `t` for `K ⋙ F`. -/
def lift_limit {K : J ⥤ C} {F : C ⥤ D} [creates_limit K F] {c : cone (K ⋙ F)} (t : is_limit c) :
cone K :=
(creates_limit.lifts c t).lifted_cone
/-- The lifted cone has an image isomorphic to the original cone. -/
def lifted_limit_maps_to_original {K : J ⥤ C} {F : C ⥤ D}
[creates_limit K F] {c : cone (K ⋙ F)} (t : is_limit c) :
F.map_cone (lift_limit t) ≅ c :=
(creates_limit.lifts c t).valid_lift
/-- The lifted cone is a limit. -/
def lifted_limit_is_limit {K : J ⥤ C} {F : C ⥤ D}
[creates_limit K F] {c : cone (K ⋙ F)} (t : is_limit c) :
is_limit (lift_limit t) :=
reflects_limit.reflects (is_limit.of_iso_limit t (lifted_limit_maps_to_original t).symm)
/-- If `F` creates the limit of `K` and `K ⋙ F` has a limit, then `K` has a limit. -/
lemma has_limit_of_created (K : J ⥤ C) (F : C ⥤ D)
[has_limit (K ⋙ F)] [creates_limit K F] : has_limit K :=
has_limit.mk { cone := lift_limit (limit.is_limit (K ⋙ F)),
is_limit := lifted_limit_is_limit _ }
/--
If `F` creates limits of shape `J`, and `D` has limits of shape `J`, then
`C` has limits of shape `J`.
-/
lemma has_limits_of_shape_of_has_limits_of_shape_creates_limits_of_shape (F : C ⥤ D)
[has_limits_of_shape J D] [creates_limits_of_shape J F] : has_limits_of_shape J C :=
⟨λ G, has_limit_of_created G F⟩
/-- If `F` creates limits, and `D` has all limits, then `C` has all limits. -/
lemma has_limits_of_has_limits_creates_limits (F : C ⥤ D) [has_limits_of_size.{w w'} D]
[creates_limits_of_size.{w w'} F] : has_limits_of_size.{w w'} C :=
⟨λ J I, by exactI has_limits_of_shape_of_has_limits_of_shape_creates_limits_of_shape F⟩
/- Interface to the `creates_colimit` class. -/
/-- `lift_colimit t` is the cocone for `K` given by lifting the colimit `t` for `K ⋙ F`. -/
def lift_colimit {K : J ⥤ C} {F : C ⥤ D} [creates_colimit K F] {c : cocone (K ⋙ F)}
(t : is_colimit c) :
cocone K :=
(creates_colimit.lifts c t).lifted_cocone
/-- The lifted cocone has an image isomorphic to the original cocone. -/
def lifted_colimit_maps_to_original {K : J ⥤ C} {F : C ⥤ D}
[creates_colimit K F] {c : cocone (K ⋙ F)} (t : is_colimit c) :
F.map_cocone (lift_colimit t) ≅ c :=
(creates_colimit.lifts c t).valid_lift
/-- The lifted cocone is a colimit. -/
def lifted_colimit_is_colimit {K : J ⥤ C} {F : C ⥤ D}
[creates_colimit K F] {c : cocone (K ⋙ F)} (t : is_colimit c) :
is_colimit (lift_colimit t) :=
reflects_colimit.reflects (is_colimit.of_iso_colimit t (lifted_colimit_maps_to_original t).symm)
/-- If `F` creates the limit of `K` and `K ⋙ F` has a limit, then `K` has a limit. -/
lemma has_colimit_of_created (K : J ⥤ C) (F : C ⥤ D)
[has_colimit (K ⋙ F)] [creates_colimit K F] : has_colimit K :=
has_colimit.mk { cocone := lift_colimit (colimit.is_colimit (K ⋙ F)),
is_colimit := lifted_colimit_is_colimit _ }
/--
If `F` creates colimits of shape `J`, and `D` has colimits of shape `J`, then
`C` has colimits of shape `J`.
-/
lemma has_colimits_of_shape_of_has_colimits_of_shape_creates_colimits_of_shape (F : C ⥤ D)
[has_colimits_of_shape J D] [creates_colimits_of_shape J F] : has_colimits_of_shape J C :=
⟨λ G, has_colimit_of_created G F⟩
/-- If `F` creates colimits, and `D` has all colimits, then `C` has all colimits. -/
lemma has_colimits_of_has_colimits_creates_colimits (F : C ⥤ D) [has_colimits_of_size.{w w'} D]
[creates_colimits_of_size.{w w'} F] : has_colimits_of_size.{w w'} C :=
⟨λ J I, by exactI has_colimits_of_shape_of_has_colimits_of_shape_creates_colimits_of_shape F⟩
@[priority 10] instance reflects_limits_of_shape_of_creates_limits_of_shape (F : C ⥤ D)
[creates_limits_of_shape J F] : reflects_limits_of_shape J F := {}
@[priority 10] instance reflects_limits_of_creates_limits (F : C ⥤ D)
[creates_limits_of_size.{w w'} F] : reflects_limits_of_size.{w w'} F := {}
@[priority 10] instance reflects_colimits_of_shape_of_creates_colimits_of_shape (F : C ⥤ D)
[creates_colimits_of_shape J F] : reflects_colimits_of_shape J F := {}
@[priority 10] instance reflects_colimits_of_creates_colimits (F : C ⥤ D)
[creates_colimits_of_size.{w w'} F] : reflects_colimits_of_size.{w w'} F := {}
/--
A helper to show a functor creates limits. In particular, if we can show
that for any limit cone `c` for `K ⋙ F`, there is a lift of it which is
a limit and `F` reflects isomorphisms, then `F` creates limits.
Usually, `F` creating limits says that _any_ lift of `c` is a limit, but
here we only need to show that our particular lift of `c` is a limit.
-/
structure lifts_to_limit (K : J ⥤ C) (F : C ⥤ D) (c : cone (K ⋙ F)) (t : is_limit c)
extends liftable_cone K F c :=
(makes_limit : is_limit lifted_cone)
/--
A helper to show a functor creates colimits. In particular, if we can show
that for any limit cocone `c` for `K ⋙ F`, there is a lift of it which is
a limit and `F` reflects isomorphisms, then `F` creates colimits.
Usually, `F` creating colimits says that _any_ lift of `c` is a colimit, but
here we only need to show that our particular lift of `c` is a colimit.
-/
structure lifts_to_colimit (K : J ⥤ C) (F : C ⥤ D) (c : cocone (K ⋙ F)) (t : is_colimit c)
extends liftable_cocone K F c :=
(makes_colimit : is_colimit lifted_cocone)
/--
If `F` reflects isomorphisms and we can lift any limit cone to a limit cone,
then `F` creates limits.
In particular here we don't need to assume that F reflects limits.
-/
def creates_limit_of_reflects_iso {K : J ⥤ C} {F : C ⥤ D} [reflects_isomorphisms F]
(h : Π c t, lifts_to_limit K F c t) :
creates_limit K F :=
{ lifts := λ c t, (h c t).to_liftable_cone,
to_reflects_limit :=
{ reflects := λ (d : cone K) (hd : is_limit (F.map_cone d)),
begin
let d' : cone K := (h (F.map_cone d) hd).to_liftable_cone.lifted_cone,
let i : F.map_cone d' ≅ F.map_cone d := (h (F.map_cone d) hd).to_liftable_cone.valid_lift,
let hd' : is_limit d' := (h (F.map_cone d) hd).makes_limit,
let f : d ⟶ d' := hd'.lift_cone_morphism d,
have : (cones.functoriality K F).map f = i.inv := (hd.of_iso_limit i.symm).uniq_cone_morphism,
haveI : is_iso ((cones.functoriality K F).map f) := (by { rw this, apply_instance }),
haveI : is_iso f := is_iso_of_reflects_iso f (cones.functoriality K F),
exact is_limit.of_iso_limit hd' (as_iso f).symm,
end } }
/--
When `F` is fully faithful, and `has_limit (K ⋙ F)`, to show that `F` creates the limit for `K`
it suffices to exhibit a lift of the chosen limit cone for `K ⋙ F`.
-/
-- Notice however that even if the isomorphism is `iso.refl _`,
-- this construction will insert additional identity morphisms in the cone maps,
-- so the constructed limits may not be ideal, definitionally.
def creates_limit_of_fully_faithful_of_lift {K : J ⥤ C} {F : C ⥤ D}
[full F] [faithful F] [has_limit (K ⋙ F)]
(c : cone K) (i : F.map_cone c ≅ limit.cone (K ⋙ F)) : creates_limit K F :=
creates_limit_of_reflects_iso (λ c' t,
{ lifted_cone := c,
valid_lift := i.trans (is_limit.unique_up_to_iso (limit.is_limit _) t),
makes_limit := is_limit.of_faithful F (is_limit.of_iso_limit (limit.is_limit _) i.symm)
(λ s, F.preimage _) (λ s, F.image_preimage _) })
/--
When `F` is fully faithful, and `has_limit (K ⋙ F)`, to show that `F` creates the limit for `K`
it suffices to show that the chosen limit point is in the essential image of `F`.
-/
-- Notice however that even if the isomorphism is `iso.refl _`,
-- this construction will insert additional identity morphisms in the cone maps,
-- so the constructed limits may not be ideal, definitionally.
def creates_limit_of_fully_faithful_of_iso {K : J ⥤ C} {F : C ⥤ D}
[full F] [faithful F] [has_limit (K ⋙ F)]
(X : C) (i : F.obj X ≅ limit (K ⋙ F)) : creates_limit K F :=
creates_limit_of_fully_faithful_of_lift
({ X := X,
π :=
{ app := λ j, F.preimage (i.hom ≫ limit.π (K ⋙ F) j),
naturality' := λ Y Z f, F.map_injective (by { dsimp, simp, erw limit.w (K ⋙ F), }) }} : cone K)
(by { fapply cones.ext, exact i, tidy, })
/-- `F` preserves the limit of `K` if it creates the limit and `K ⋙ F` has the limit. -/
@[priority 100] -- see Note [lower instance priority]
instance preserves_limit_of_creates_limit_and_has_limit (K : J ⥤ C) (F : C ⥤ D)
[creates_limit K F] [has_limit (K ⋙ F)] :
preserves_limit K F :=
{ preserves := λ c t, is_limit.of_iso_limit (limit.is_limit _)
((lifted_limit_maps_to_original (limit.is_limit _)).symm ≪≫
((cones.functoriality K F).map_iso
((lifted_limit_is_limit (limit.is_limit _)).unique_up_to_iso t))) }
/-- `F` preserves the limit of shape `J` if it creates these limits and `D` has them. -/
@[priority 100] -- see Note [lower instance priority]
instance preserves_limit_of_shape_of_creates_limits_of_shape_and_has_limits_of_shape (F : C ⥤ D)
[creates_limits_of_shape J F] [has_limits_of_shape J D] :
preserves_limits_of_shape J F := {}
/-- `F` preserves limits if it creates limits and `D` has limits. -/
@[priority 100] -- see Note [lower instance priority]
instance preserves_limits_of_creates_limits_and_has_limits (F : C ⥤ D)
[creates_limits_of_size.{w w'} F]
[has_limits_of_size.{w w'} D] :
preserves_limits_of_size.{w w'} F := {}
/--
If `F` reflects isomorphisms and we can lift any colimit cocone to a colimit cocone,
then `F` creates colimits.
In particular here we don't need to assume that F reflects colimits.
-/
def creates_colimit_of_reflects_iso {K : J ⥤ C} {F : C ⥤ D} [reflects_isomorphisms F]
(h : Π c t, lifts_to_colimit K F c t) :
creates_colimit K F :=
{ lifts := λ c t, (h c t).to_liftable_cocone,
to_reflects_colimit :=
{ reflects := λ (d : cocone K) (hd : is_colimit (F.map_cocone d)),
begin
let d' : cocone K := (h (F.map_cocone d) hd).to_liftable_cocone.lifted_cocone,
let i : F.map_cocone d' ≅ F.map_cocone d :=
(h (F.map_cocone d) hd).to_liftable_cocone.valid_lift,
let hd' : is_colimit d' := (h (F.map_cocone d) hd).makes_colimit,
let f : d' ⟶ d := hd'.desc_cocone_morphism d,
have : (cocones.functoriality K F).map f = i.hom :=
(hd.of_iso_colimit i.symm).uniq_cocone_morphism,
haveI : is_iso ((cocones.functoriality K F).map f) := (by { rw this, apply_instance }),
haveI := is_iso_of_reflects_iso f (cocones.functoriality K F),
exact is_colimit.of_iso_colimit hd' (as_iso f),
end } }
/--
When `F` is fully faithful, and `has_colimit (K ⋙ F)`, to show that `F` creates the colimit for `K`
it suffices to exhibit a lift of the chosen colimit cocone for `K ⋙ F`.
-/
-- Notice however that even if the isomorphism is `iso.refl _`,
-- this construction will insert additional identity morphisms in the cocone maps,
-- so the constructed colimits may not be ideal, definitionally.
def creates_colimit_of_fully_faithful_of_lift {K : J ⥤ C} {F : C ⥤ D}
[full F] [faithful F] [has_colimit (K ⋙ F)]
(c : cocone K) (i : F.map_cocone c ≅ colimit.cocone (K ⋙ F)) : creates_colimit K F :=
creates_colimit_of_reflects_iso (λ c' t,
{ lifted_cocone := c,
valid_lift := i.trans (is_colimit.unique_up_to_iso (colimit.is_colimit _) t),
makes_colimit := is_colimit.of_faithful F
(is_colimit.of_iso_colimit (colimit.is_colimit _) i.symm)
(λ s, F.preimage _) (λ s, F.image_preimage _) })
/--
When `F` is fully faithful, and `has_colimit (K ⋙ F)`, to show that `F` creates the colimit for `K`
it suffices to show that the chosen colimit point is in the essential image of `F`.
-/
-- Notice however that even if the isomorphism is `iso.refl _`,
-- this construction will insert additional identity morphisms in the cocone maps,
-- so the constructed colimits may not be ideal, definitionally.
def creates_colimit_of_fully_faithful_of_iso {K : J ⥤ C} {F : C ⥤ D}
[full F] [faithful F] [has_colimit (K ⋙ F)]
(X : C) (i : F.obj X ≅ colimit (K ⋙ F)) : creates_colimit K F :=
creates_colimit_of_fully_faithful_of_lift
({ X := X,
ι :=
{ app := λ j, F.preimage (colimit.ι (K ⋙ F) j ≫ i.inv : _),
naturality' := λ Y Z f, F.map_injective
(by { erw category.comp_id, simp only [functor.map_comp, functor.image_preimage],
erw colimit.w_assoc (K ⋙ F) }) }} : cocone K)
(by { fapply cocones.ext, exact i, tidy, })
/-- `F` preserves the colimit of `K` if it creates the colimit and `K ⋙ F` has the colimit. -/
@[priority 100] -- see Note [lower instance priority]
instance preserves_colimit_of_creates_colimit_and_has_colimit (K : J ⥤ C) (F : C ⥤ D)
[creates_colimit K F] [has_colimit (K ⋙ F)] :
preserves_colimit K F :=
{ preserves := λ c t, is_colimit.of_iso_colimit (colimit.is_colimit _)
((lifted_colimit_maps_to_original (colimit.is_colimit _)).symm ≪≫
((cocones.functoriality K F).map_iso
((lifted_colimit_is_colimit (colimit.is_colimit _)).unique_up_to_iso t))) }
/-- `F` preserves the colimit of shape `J` if it creates these colimits and `D` has them. -/
@[priority 100] -- see Note [lower instance priority]
instance preserves_colimit_of_shape_of_creates_colimits_of_shape_and_has_colimits_of_shape
(F : C ⥤ D) [creates_colimits_of_shape J F] [has_colimits_of_shape J D] :
preserves_colimits_of_shape J F := {}
/-- `F` preserves limits if it creates limits and `D` has limits. -/
@[priority 100] -- see Note [lower instance priority]
instance preserves_colimits_of_creates_colimits_and_has_colimits (F : C ⥤ D)
[creates_colimits_of_size.{w w'} F] [has_colimits_of_size.{w w'} D] :
preserves_colimits_of_size.{w w'} F := {}
/-- Transfer creation of limits along a natural isomorphism in the diagram. -/
def creates_limit_of_iso_diagram {K₁ K₂ : J ⥤ C} (F : C ⥤ D) (h : K₁ ≅ K₂)
[creates_limit K₁ F] : creates_limit K₂ F :=
{ lifts := λ c t,
let t' := (is_limit.postcompose_inv_equiv (iso_whisker_right h F : _) c).symm t in
{ lifted_cone := (cones.postcompose h.hom).obj (lift_limit t'),
valid_lift :=
F.map_cone_postcompose ≪≫
(cones.postcompose (iso_whisker_right h F).hom).map_iso
(lifted_limit_maps_to_original t') ≪≫
cones.ext (iso.refl _) (λ j, by { dsimp, rw [category.assoc, ←F.map_comp], simp }) }
..reflects_limit_of_iso_diagram F h }
/-- If `F` creates the limit of `K` and `F ≅ G`, then `G` creates the limit of `K`. -/
def creates_limit_of_nat_iso {F G : C ⥤ D} (h : F ≅ G) [creates_limit K F] :
creates_limit K G :=
{ lifts := λ c t,
{ lifted_cone :=
lift_limit ((is_limit.postcompose_inv_equiv (iso_whisker_left K h : _) c).symm t),
valid_lift :=
begin
refine (is_limit.map_cone_equiv h _).unique_up_to_iso t,
apply is_limit.of_iso_limit _ ((lifted_limit_maps_to_original _).symm),
apply (is_limit.postcompose_inv_equiv _ _).symm t,
end },
to_reflects_limit := reflects_limit_of_nat_iso _ h }
/-- If `F` creates limits of shape `J` and `F ≅ G`, then `G` creates limits of shape `J`. -/
def creates_limits_of_shape_of_nat_iso {F G : C ⥤ D} (h : F ≅ G) [creates_limits_of_shape J F] :
creates_limits_of_shape J G :=
{ creates_limit := λ K, creates_limit_of_nat_iso h }
/-- If `F` creates limits and `F ≅ G`, then `G` creates limits. -/
def creates_limits_of_nat_iso {F G : C ⥤ D} (h : F ≅ G) [creates_limits_of_size.{w w'} F] :
creates_limits_of_size.{w w'} G :=
{ creates_limits_of_shape := λ J 𝒥₁, by exactI creates_limits_of_shape_of_nat_iso h }
/-- Transfer creation of colimits along a natural isomorphism in the diagram. -/
def creates_colimit_of_iso_diagram {K₁ K₂ : J ⥤ C} (F : C ⥤ D) (h : K₁ ≅ K₂)
[creates_colimit K₁ F] : creates_colimit K₂ F :=
{ lifts := λ c t,
let t' := (is_colimit.precompose_hom_equiv (iso_whisker_right h F : _) c).symm t in
{ lifted_cocone := (cocones.precompose h.inv).obj (lift_colimit t'),
valid_lift :=
F.map_cocone_precompose ≪≫
(cocones.precompose (iso_whisker_right h F).inv).map_iso
(lifted_colimit_maps_to_original t') ≪≫
cocones.ext (iso.refl _) (λ j, by { dsimp, rw ←F.map_comp_assoc, simp }) },
..reflects_colimit_of_iso_diagram F h }
/-- If `F` creates the colimit of `K` and `F ≅ G`, then `G` creates the colimit of `K`. -/
def creates_colimit_of_nat_iso {F G : C ⥤ D} (h : F ≅ G) [creates_colimit K F] :
creates_colimit K G :=
{ lifts := λ c t,
{ lifted_cocone :=
lift_colimit ((is_colimit.precompose_hom_equiv (iso_whisker_left K h : _) c).symm t),
valid_lift :=
begin
refine (is_colimit.map_cocone_equiv h _).unique_up_to_iso t,
apply is_colimit.of_iso_colimit _ ((lifted_colimit_maps_to_original _).symm),
apply (is_colimit.precompose_hom_equiv _ _).symm t,
end },
to_reflects_colimit := reflects_colimit_of_nat_iso _ h }
/-- If `F` creates colimits of shape `J` and `F ≅ G`, then `G` creates colimits of shape `J`. -/
def creates_colimits_of_shape_of_nat_iso {F G : C ⥤ D} (h : F ≅ G)
[creates_colimits_of_shape J F] : creates_colimits_of_shape J G :=
{ creates_colimit := λ K, creates_colimit_of_nat_iso h }
/-- If `F` creates colimits and `F ≅ G`, then `G` creates colimits. -/
def creates_colimits_of_nat_iso {F G : C ⥤ D} (h : F ≅ G) [creates_colimits_of_size.{w w'} F] :
creates_colimits_of_size.{w w'} G :=
{ creates_colimits_of_shape := λ J 𝒥₁, by exactI creates_colimits_of_shape_of_nat_iso h }
-- For the inhabited linter later.
/-- If F creates the limit of K, any cone lifts to a limit. -/
def lifts_to_limit_of_creates (K : J ⥤ C) (F : C ⥤ D)
[creates_limit K F] (c : cone (K ⋙ F)) (t : is_limit c) :
lifts_to_limit K F c t :=
{ lifted_cone := lift_limit t,
valid_lift := lifted_limit_maps_to_original t,
makes_limit := lifted_limit_is_limit t }
-- For the inhabited linter later.
/-- If F creates the colimit of K, any cocone lifts to a colimit. -/
def lifts_to_colimit_of_creates (K : J ⥤ C) (F : C ⥤ D)
[creates_colimit K F] (c : cocone (K ⋙ F)) (t : is_colimit c) :
lifts_to_colimit K F c t :=
{ lifted_cocone := lift_colimit t,
valid_lift := lifted_colimit_maps_to_original t,
makes_colimit := lifted_colimit_is_colimit t }
/-- Any cone lifts through the identity functor. -/
def id_lifts_cone (c : cone (K ⋙ 𝟭 C)) : liftable_cone K (𝟭 C) c :=
{ lifted_cone :=
{ X := c.X,
π := c.π ≫ K.right_unitor.hom },
valid_lift := cones.ext (iso.refl _) (by tidy) }
/-- The identity functor creates all limits. -/
instance id_creates_limits : creates_limits_of_size.{w w'} (𝟭 C) :=
{ creates_limits_of_shape := λ J 𝒥, by exactI
{ creates_limit := λ F, { lifts := λ c t, id_lifts_cone c } } }
/-- Any cocone lifts through the identity functor. -/
def id_lifts_cocone (c : cocone (K ⋙ 𝟭 C)) : liftable_cocone K (𝟭 C) c :=
{ lifted_cocone :=
{ X := c.X,
ι := K.right_unitor.inv ≫ c.ι },
valid_lift := cocones.ext (iso.refl _) (by tidy) }
/-- The identity functor creates all colimits. -/
instance id_creates_colimits : creates_colimits_of_size.{w w'} (𝟭 C) :=
{ creates_colimits_of_shape := λ J 𝒥, by exactI
{ creates_colimit := λ F, { lifts := λ c t, id_lifts_cocone c } } }
/-- Satisfy the inhabited linter -/
instance inhabited_liftable_cone (c : cone (K ⋙ 𝟭 C)) :
inhabited (liftable_cone K (𝟭 C) c) :=
⟨id_lifts_cone c⟩
instance inhabited_liftable_cocone (c : cocone (K ⋙ 𝟭 C)) :
inhabited (liftable_cocone K (𝟭 C) c) :=
⟨id_lifts_cocone c⟩
/-- Satisfy the inhabited linter -/
instance inhabited_lifts_to_limit (K : J ⥤ C) (F : C ⥤ D)
[creates_limit K F] (c : cone (K ⋙ F)) (t : is_limit c) :
inhabited (lifts_to_limit _ _ _ t) :=
⟨lifts_to_limit_of_creates K F c t⟩
instance inhabited_lifts_to_colimit (K : J ⥤ C) (F : C ⥤ D)
[creates_colimit K F] (c : cocone (K ⋙ F)) (t : is_colimit c) :
inhabited (lifts_to_colimit _ _ _ t) :=
⟨lifts_to_colimit_of_creates K F c t⟩
section comp
variables {E : Type u₃} [ℰ : category.{v₃} E]
variables (F : C ⥤ D) (G : D ⥤ E)
instance comp_creates_limit [creates_limit K F] [creates_limit (K ⋙ F) G] :
creates_limit K (F ⋙ G) :=
{ lifts := λ c t,
{ lifted_cone := lift_limit (lifted_limit_is_limit t),
valid_lift := (cones.functoriality (K ⋙ F) G).map_iso
(lifted_limit_maps_to_original (lifted_limit_is_limit t)) ≪≫
(lifted_limit_maps_to_original t) } }
instance comp_creates_limits_of_shape [creates_limits_of_shape J F] [creates_limits_of_shape J G] :
creates_limits_of_shape J (F ⋙ G) :=
{ creates_limit := infer_instance }
instance comp_creates_limits [creates_limits_of_size.{w w'} F] [creates_limits_of_size.{w w'} G] :
creates_limits_of_size.{w w'} (F ⋙ G) :=
{ creates_limits_of_shape := infer_instance }
instance comp_creates_colimit [creates_colimit K F] [creates_colimit (K ⋙ F) G] :
creates_colimit K (F ⋙ G) :=
{ lifts := λ c t,
{ lifted_cocone := lift_colimit (lifted_colimit_is_colimit t),
valid_lift := (cocones.functoriality (K ⋙ F) G).map_iso
(lifted_colimit_maps_to_original (lifted_colimit_is_colimit t)) ≪≫
(lifted_colimit_maps_to_original t) } }
instance comp_creates_colimits_of_shape
[creates_colimits_of_shape J F] [creates_colimits_of_shape J G] :
creates_colimits_of_shape J (F ⋙ G) :=
{ creates_colimit := infer_instance }
instance comp_creates_colimits [creates_colimits_of_size.{w w'} F]
[creates_colimits_of_size.{w w'} G] : creates_colimits_of_size.{w w'} (F ⋙ G) :=
{ creates_colimits_of_shape := infer_instance }
end comp
end creates
end category_theory
|
af956ac400d756a7871174b6780445818f088650
|
6dc0c8ce7a76229dd81e73ed4474f15f88a9e294
|
/stage0/src/Lean/Exception.lean
|
c1c502420af41d0d03f88df0b7e5b0c7c5c0eedc
|
[
"Apache-2.0"
] |
permissive
|
williamdemeo/lean4
|
72161c58fe65c3ad955d6a3050bb7d37c04c0d54
|
6d00fcf1d6d873e195f9220c668ef9c58e9c4a35
|
refs/heads/master
| 1,678,305,356,877
| 1,614,708,995,000
| 1,614,708,995,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 3,713
|
lean
|
/-
Copyright (c) 2020 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
-/
import Lean.Message
import Lean.InternalExceptionId
import Lean.Data.Options
import Lean.Util.MonadCache
namespace Lean
/- Exception type used in most Lean monads -/
inductive Exception where
| error (ref : Syntax) (msg : MessageData)
| internal (id : InternalExceptionId) (extra : KVMap := {})
def Exception.toMessageData : Exception → MessageData
| Exception.error _ msg => msg
| Exception.internal id _ => id.toString
def Exception.getRef : Exception → Syntax
| Exception.error ref _ => ref
| Exception.internal _ _ => Syntax.missing
instance : Inhabited Exception := ⟨Exception.error arbitrary arbitrary⟩
/- Similar to `AddMessageContext`, but for error messages.
The default instance just uses `AddMessageContext`.
In error messages, we may want to provide additional information (e.g., macro expansion stack),
and refine the `(ref : Syntax)`. -/
class AddErrorMessageContext (m : Type → Type) where
add : Syntax → MessageData → m (Syntax × MessageData)
instance (m : Type → Type) [AddMessageContext m] [Monad m] : AddErrorMessageContext m where
add ref msg := do
let msg ← addMessageContext msg
pure (ref, msg)
class abbrev MonadError (m : Type → Type) :=
MonadExceptOf Exception m
MonadRef m
AddErrorMessageContext m
section Methods
def throwError [Monad m] [MonadError m] (msg : MessageData) : m α := do
let ref ← getRef
let (ref, msg) ← AddErrorMessageContext.add ref msg
throw $ Exception.error ref msg
def throwUnknownConstant [Monad m] [MonadError m] (constName : Name) : m α :=
throwError m!"unknown constant '{mkConst constName}'"
def throwErrorAt [Monad m] [MonadError m] (ref : Syntax) (msg : MessageData) : m α := do
withRef ref <| throwError msg
def ofExcept [Monad m] [MonadError m] [ToString ε] (x : Except ε α) : m α :=
match x with
| Except.ok a => pure a
| Except.error e => throwError $ toString e
def throwKernelException [Monad m] [MonadError m] [MonadOptions m] (ex : KernelException) : m α := do
throwError <| ex.toMessageData (← getOptions)
end Methods
class MonadRecDepth (m : Type → Type) where
withRecDepth {α} : Nat → m α → m α
getRecDepth : m Nat
getMaxRecDepth : m Nat
instance [Monad m] [MonadRecDepth m] : MonadRecDepth (ReaderT ρ m) where
withRecDepth d x := fun ctx => MonadRecDepth.withRecDepth d (x ctx)
getRecDepth := fun _ => MonadRecDepth.getRecDepth
getMaxRecDepth := fun _ => MonadRecDepth.getMaxRecDepth
instance [Monad m] [MonadRecDepth m] : MonadRecDepth (StateRefT' ω σ m) :=
inferInstanceAs (MonadRecDepth (ReaderT _ _))
instance [BEq α] [Hashable α] [Monad m] [STWorld ω m] [MonadRecDepth m] : MonadRecDepth (MonadCacheT α β m) :=
inferInstanceAs (MonadRecDepth (StateRefT' _ _ _))
@[inline] def withIncRecDepth [Monad m] [MonadError m] [MonadRecDepth m] (x : m α) : m α := do
let curr ← MonadRecDepth.getRecDepth
let max ← MonadRecDepth.getMaxRecDepth
if curr == max then throwError maxRecDepthErrorMessage
MonadRecDepth.withRecDepth (curr+1) x
syntax "throwError! " (interpolatedStr(term) <|> term) : term
syntax "throwErrorAt! " term:max (interpolatedStr(term) <|> term) : term
macro_rules
| `(throwError! $msg) =>
if msg.getKind == interpolatedStrKind then
`(throwError (m! $msg))
else
`(throwError $msg)
macro_rules
| `(throwErrorAt! $ref $msg) =>
if msg.getKind == interpolatedStrKind then
`(throwErrorAt $ref (m! $msg))
else
`(throwErrorAt $ref $msg)
end Lean
|
20b30198c0e35b7ae8fdfec182548d559547ab9b
|
80cc5bf14c8ea85ff340d1d747a127dcadeb966f
|
/src/data/padics/padic_numbers.lean
|
9d1bcd2c337784bdc0a9502a020b04c288c98830
|
[
"Apache-2.0"
] |
permissive
|
lacker/mathlib
|
f2439c743c4f8eb413ec589430c82d0f73b2d539
|
ddf7563ac69d42cfa4a1bfe41db1fed521bd795f
|
refs/heads/master
| 1,671,948,326,773
| 1,601,479,268,000
| 1,601,479,268,000
| 298,686,743
| 0
| 0
|
Apache-2.0
| 1,601,070,794,000
| 1,601,070,794,000
| null |
UTF-8
|
Lean
| false
| false
| 37,645
|
lean
|
/-
Copyright (c) 2018 Robert Y. Lewis. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Robert Y. Lewis
-/
import data.padics.padic_norm
import analysis.normed_space.basic
/-!
# p-adic numbers
This file defines the p-adic numbers (rationals) `ℚ_p` as the completion of `ℚ` with respect to the
p-adic norm. We show that the p-adic norm on ℚ extends to `ℚ_p`, that `ℚ` is embedded in `ℚ_p`, and that
`ℚ_p` is Cauchy complete.
## Important definitions
* `padic` : the type of p-adic numbers
* `padic_norm_e` : the rational valued p-adic norm on `ℚ_p`
## Notation
We introduce the notation `ℚ_[p]` for the p-adic numbers.
## Implementation notes
Much, but not all, of this file assumes that `p` is prime. This assumption is inferred automatically
by taking `[fact (prime p)]` as a type class argument.
We use the same concrete Cauchy sequence construction that is used to construct ℝ. `ℚ_p` inherits a
field structure from this construction. The extension of the norm on ℚ to `ℚ_p` is *not* analogous to
extending the absolute value to ℝ, and hence the proof that `ℚ_p` is complete is different from the
proof that ℝ is complete.
A small special-purpose simplification tactic, `padic_index_simp`, is used to manipulate sequence
indices in the proof that the norm extends.
`padic_norm_e` is the rational-valued p-adic norm on `ℚ_p`. To instantiate `ℚ_p` as a normed field,
we must cast this into a ℝ-valued norm. The `ℝ`-valued norm, using notation `∥ ∥` from normed spaces,
is the canonical representation of this norm.
`simp` prefers `padic_norm` to `padic_norm_e` when possible.
Since `padic_norm_e` and `∥ ∥` have different types, `simp` does not rewrite one to the other.
Coercions from `ℚ` to `ℚ_p` are set up to work with the `norm_cast` tactic.
## References
* [F. Q. Gouêva, *p-adic numbers*][gouvea1997]
* [R. Y. Lewis, *A formal proof of Hensel's lemma over the p-adic integers*][lewis2019]
* <https://en.wikipedia.org/wiki/P-adic_number>
## Tags
p-adic, p adic, padic, norm, valuation, cauchy, completion, p-adic completion
-/
noncomputable theory
open_locale classical
open nat multiplicity padic_norm cau_seq cau_seq.completion metric
/-- The type of Cauchy sequences of rationals with respect to the p-adic norm. -/
@[reducible] def padic_seq (p : ℕ) [fact p.prime] := cau_seq _ (padic_norm p)
namespace padic_seq
section
variables {p : ℕ} [fact p.prime]
/-- The p-adic norm of the entries of a nonzero Cauchy sequence of rationals is eventually
constant. -/
lemma stationary {f : cau_seq ℚ (padic_norm p)} (hf : ¬ f ≈ 0) :
∃ N, ∀ m n, N ≤ m → N ≤ n → padic_norm p (f n) = padic_norm p (f m) :=
have ∃ ε > 0, ∃ N1, ∀ j ≥ N1, ε ≤ padic_norm p (f j),
from cau_seq.abv_pos_of_not_lim_zero $ not_lim_zero_of_not_congr_zero hf,
let ⟨ε, hε, N1, hN1⟩ := this,
⟨N2, hN2⟩ := cau_seq.cauchy₂ f hε in
⟨ max N1 N2,
λ n m hn hm,
have padic_norm p (f n - f m) < ε, from hN2 _ _ (max_le_iff.1 hn).2 (max_le_iff.1 hm).2,
have padic_norm p (f n - f m) < padic_norm p (f n),
from lt_of_lt_of_le this $ hN1 _ (max_le_iff.1 hn).1,
have padic_norm p (f n - f m) < max (padic_norm p (f n)) (padic_norm p (f m)),
from lt_max_iff.2 (or.inl this),
begin
by_contradiction hne,
rw ←padic_norm.neg p (f m) at hne,
have hnam := add_eq_max_of_ne p hne,
rw [padic_norm.neg, max_comm] at hnam,
rw [←hnam, sub_eq_add_neg, add_comm] at this,
apply _root_.lt_irrefl _ this
end ⟩
/-- For all n ≥ stationary_point f hf, the p-adic norm of f n is the same. -/
def stationary_point {f : padic_seq p} (hf : ¬ f ≈ 0) : ℕ :=
classical.some $ stationary hf
lemma stationary_point_spec {f : padic_seq p} (hf : ¬ f ≈ 0) :
∀ {m n}, stationary_point hf ≤ m → stationary_point hf ≤ n →
padic_norm p (f n) = padic_norm p (f m) :=
classical.some_spec $ stationary hf
/-- Since the norm of the entries of a Cauchy sequence is eventually stationary, we can lift the norm
to sequences. -/
def norm (f : padic_seq p) : ℚ :=
if hf : f ≈ 0 then 0 else padic_norm p (f (stationary_point hf))
lemma norm_zero_iff (f : padic_seq p) : f.norm = 0 ↔ f ≈ 0 :=
begin
constructor,
{ intro h,
by_contradiction hf,
unfold norm at h, split_ifs at h,
apply hf,
intros ε hε,
existsi stationary_point hf,
intros j hj,
have heq := stationary_point_spec hf (le_refl _) hj,
simpa [h, heq] },
{ intro h,
simp [norm, h] }
end
end
section embedding
open cau_seq
variables {p : ℕ} [fact p.prime]
lemma equiv_zero_of_val_eq_of_equiv_zero {f g : padic_seq p}
(h : ∀ k, padic_norm p (f k) = padic_norm p (g k)) (hf : f ≈ 0) : g ≈ 0 :=
λ ε hε, let ⟨i, hi⟩ := hf _ hε in
⟨i, λ j hj, by simpa [h] using hi _ hj⟩
lemma norm_nonzero_of_not_equiv_zero {f : padic_seq p} (hf : ¬ f ≈ 0) :
f.norm ≠ 0 :=
hf ∘ f.norm_zero_iff.1
lemma norm_eq_norm_app_of_nonzero {f : padic_seq p} (hf : ¬ f ≈ 0) :
∃ k, f.norm = padic_norm p k ∧ k ≠ 0 :=
have heq : f.norm = padic_norm p (f $ stationary_point hf), by simp [norm, hf],
⟨f $ stationary_point hf, heq,
λ h, norm_nonzero_of_not_equiv_zero hf (by simpa [h] using heq)⟩
lemma not_lim_zero_const_of_nonzero {q : ℚ} (hq : q ≠ 0) : ¬ lim_zero (const (padic_norm p) q) :=
λ h', hq $ const_lim_zero.1 h'
lemma not_equiv_zero_const_of_nonzero {q : ℚ} (hq : q ≠ 0) : ¬ (const (padic_norm p) q) ≈ 0 :=
λ h : lim_zero (const (padic_norm p) q - 0), not_lim_zero_const_of_nonzero hq $ by simpa using h
lemma norm_nonneg (f : padic_seq p) : 0 ≤ f.norm :=
if hf : f ≈ 0 then by simp [hf, norm]
else by simp [norm, hf, padic_norm.nonneg]
/-- An auxiliary lemma for manipulating sequence indices. -/
lemma lift_index_left_left {f : padic_seq p} (hf : ¬ f ≈ 0) (v2 v3 : ℕ) :
padic_norm p (f (stationary_point hf)) =
padic_norm p (f (max (stationary_point hf) (max v2 v3))) :=
let i := max (stationary_point hf) (max v2 v3) in
begin
apply stationary_point_spec hf,
{ apply le_max_left },
{ apply le_refl }
end
/-- An auxiliary lemma for manipulating sequence indices. -/
lemma lift_index_left {f : padic_seq p} (hf : ¬ f ≈ 0) (v1 v3 : ℕ) :
padic_norm p (f (stationary_point hf)) =
padic_norm p (f (max v1 (max (stationary_point hf) v3))) :=
let i := max v1 (max (stationary_point hf) v3) in
begin
apply stationary_point_spec hf,
{ apply le_trans,
{ apply le_max_left _ v3 },
{ apply le_max_right } },
{ apply le_refl }
end
/-- An auxiliary lemma for manipulating sequence indices. -/
lemma lift_index_right {f : padic_seq p} (hf : ¬ f ≈ 0) (v1 v2 : ℕ) :
padic_norm p (f (stationary_point hf)) =
padic_norm p (f (max v1 (max v2 (stationary_point hf)))) :=
let i := max v1 (max v2 (stationary_point hf)) in
begin
apply stationary_point_spec hf,
{ apply le_trans,
{ apply le_max_right v2 },
{ apply le_max_right } },
{ apply le_refl }
end
end embedding
section valuation
open cau_seq
variables {p : ℕ} [fact p.prime]
/-! ### Valuation on `padic_seq` -/
/--
The `p`-adic valuation on `ℚ` lifts to `padic_seq p`.
`valuation f` is defined to be the valuation of the (`ℚ`-valued) stationary point of `f`.
-/
def valuation (f : padic_seq p) : ℤ :=
if hf : f ≈ 0 then 0 else padic_val_rat p (f (stationary_point hf))
lemma norm_eq_pow_val {f : padic_seq p} (hf : ¬ f ≈ 0) :
f.norm = p^(-f.valuation : ℤ) :=
begin
rw [norm, valuation, dif_neg hf, dif_neg hf, padic_norm, if_neg],
intro H,
apply cau_seq.not_lim_zero_of_not_congr_zero hf,
intros ε hε,
use (stationary_point hf),
intros n hn,
rw stationary_point_spec hf (le_refl _) hn,
simpa [H] using hε,
end
lemma val_eq_iff_norm_eq {f g : padic_seq p} (hf : ¬ f ≈ 0) (hg : ¬ g ≈ 0) :
f.valuation = g.valuation ↔ f.norm = g.norm :=
begin
rw [norm_eq_pow_val hf, norm_eq_pow_val hg, ← neg_inj, fpow_inj],
{ exact_mod_cast nat.prime.pos ‹_› },
{ exact_mod_cast nat.prime.ne_one ‹_› },
end
end valuation
end padic_seq
section
open padic_seq
private meta def index_simp_core (hh hf hg : expr)
(at_ : interactive.loc := interactive.loc.ns [none]) : tactic unit :=
do [v1, v2, v3] ← [hh, hf, hg].mmap
(λ n, tactic.mk_app ``stationary_point [n] <|> return n),
e1 ← tactic.mk_app ``lift_index_left_left [hh, v2, v3] <|> return `(true),
e2 ← tactic.mk_app ``lift_index_left [hf, v1, v3] <|> return `(true),
e3 ← tactic.mk_app ``lift_index_right [hg, v1, v2] <|> return `(true),
sl ← [e1, e2, e3].mfoldl (λ s e, simp_lemmas.add s e) simp_lemmas.mk,
when at_.include_goal (tactic.simp_target sl),
hs ← at_.get_locals, hs.mmap' (tactic.simp_hyp sl [])
/--
This is a special-purpose tactic that lifts padic_norm (f (stationary_point f)) to
padic_norm (f (max _ _ _)).
-/
meta def tactic.interactive.padic_index_simp (l : interactive.parse interactive.types.pexpr_list)
(at_ : interactive.parse interactive.types.location) : tactic unit :=
do [h, f, g] ← l.mmap tactic.i_to_expr,
index_simp_core h f g at_
end
namespace padic_seq
section embedding
open cau_seq
variables {p : ℕ} [hp : fact p.prime]
include hp
lemma norm_mul (f g : padic_seq p) : (f * g).norm = f.norm * g.norm :=
if hf : f ≈ 0 then
have hg : f * g ≈ 0, from mul_equiv_zero' _ hf,
by simp [hf, hg, norm]
else if hg : g ≈ 0 then
have hf : f * g ≈ 0, from mul_equiv_zero _ hg,
by simp [hf, hg, norm]
else
have hfg : ¬ f * g ≈ 0, by apply mul_not_equiv_zero; assumption,
begin
unfold norm,
split_ifs,
padic_index_simp [hfg, hf, hg],
apply padic_norm.mul
end
lemma eq_zero_iff_equiv_zero (f : padic_seq p) : mk f = 0 ↔ f ≈ 0 :=
mk_eq
lemma ne_zero_iff_nequiv_zero (f : padic_seq p) : mk f ≠ 0 ↔ ¬ f ≈ 0 :=
not_iff_not.2 (eq_zero_iff_equiv_zero _)
lemma norm_const (q : ℚ) : norm (const (padic_norm p) q) = padic_norm p q :=
if hq : q = 0 then
have (const (padic_norm p) q) ≈ 0,
by simp [hq]; apply setoid.refl (const (padic_norm p) 0),
by subst hq; simp [norm, this]
else
have ¬ (const (padic_norm p) q) ≈ 0, from not_equiv_zero_const_of_nonzero hq,
by simp [norm, this]
lemma norm_values_discrete (a : padic_seq p) (ha : ¬ a ≈ 0) :
(∃ (z : ℤ), a.norm = ↑p ^ (-z)) :=
let ⟨k, hk, hk'⟩ := norm_eq_norm_app_of_nonzero ha in
by simpa [hk] using padic_norm.values_discrete p hk'
lemma norm_one : norm (1 : padic_seq p) = 1 :=
have h1 : ¬ (1 : padic_seq p) ≈ 0, from one_not_equiv_zero _,
by simp [h1, norm, hp.one_lt]
private lemma norm_eq_of_equiv_aux {f g : padic_seq p} (hf : ¬ f ≈ 0) (hg : ¬ g ≈ 0) (hfg : f ≈ g)
(h : padic_norm p (f (stationary_point hf)) ≠ padic_norm p (g (stationary_point hg)))
(hlt : padic_norm p (g (stationary_point hg)) < padic_norm p (f (stationary_point hf))) :
false :=
begin
have hpn : 0 < padic_norm p (f (stationary_point hf)) - padic_norm p (g (stationary_point hg)),
from sub_pos_of_lt hlt,
cases hfg _ hpn with N hN,
let i := max N (max (stationary_point hf) (stationary_point hg)),
have hi : N ≤ i, from le_max_left _ _,
have hN' := hN _ hi,
padic_index_simp [N, hf, hg] at hN' h hlt,
have hpne : padic_norm p (f i) ≠ padic_norm p (-(g i)),
by rwa [ ←padic_norm.neg p (g i)] at h,
let hpnem := add_eq_max_of_ne p hpne,
have hpeq : padic_norm p ((f - g) i) = max (padic_norm p (f i)) (padic_norm p (g i)),
{ rwa padic_norm.neg at hpnem },
rw [hpeq, max_eq_left_of_lt hlt] at hN',
have : padic_norm p (f i) < padic_norm p (f i),
{ apply lt_of_lt_of_le hN', apply sub_le_self, apply padic_norm.nonneg },
exact lt_irrefl _ this
end
private lemma norm_eq_of_equiv {f g : padic_seq p} (hf : ¬ f ≈ 0) (hg : ¬ g ≈ 0) (hfg : f ≈ g) :
padic_norm p (f (stationary_point hf)) = padic_norm p (g (stationary_point hg)) :=
begin
by_contradiction h,
cases (decidable.em (padic_norm p (g (stationary_point hg)) <
padic_norm p (f (stationary_point hf))))
with hlt hnlt,
{ exact norm_eq_of_equiv_aux hf hg hfg h hlt },
{ apply norm_eq_of_equiv_aux hg hf (setoid.symm hfg) (ne.symm h),
apply lt_of_le_of_ne,
apply le_of_not_gt hnlt,
apply h }
end
theorem norm_equiv {f g : padic_seq p} (hfg : f ≈ g) : f.norm = g.norm :=
if hf : f ≈ 0 then
have hg : g ≈ 0, from setoid.trans (setoid.symm hfg) hf,
by simp [norm, hf, hg]
else have hg : ¬ g ≈ 0, from hf ∘ setoid.trans hfg,
by unfold norm; split_ifs; exact norm_eq_of_equiv hf hg hfg
private lemma norm_nonarchimedean_aux {f g : padic_seq p}
(hfg : ¬ f + g ≈ 0) (hf : ¬ f ≈ 0) (hg : ¬ g ≈ 0) : (f + g).norm ≤ max (f.norm) (g.norm) :=
begin
unfold norm, split_ifs,
padic_index_simp [hfg, hf, hg],
apply padic_norm.nonarchimedean
end
theorem norm_nonarchimedean (f g : padic_seq p) : (f + g).norm ≤ max (f.norm) (g.norm) :=
if hfg : f + g ≈ 0 then
have 0 ≤ max (f.norm) (g.norm), from le_max_left_of_le (norm_nonneg _),
by simpa [hfg, norm]
else if hf : f ≈ 0 then
have hfg' : f + g ≈ g,
{ change lim_zero (f - 0) at hf,
show lim_zero (f + g - g), by simpa using hf },
have hcfg : (f + g).norm = g.norm, from norm_equiv hfg',
have hcl : f.norm = 0, from (norm_zero_iff f).2 hf,
have max (f.norm) (g.norm) = g.norm,
by rw hcl; exact max_eq_right (norm_nonneg _),
by rw [this, hcfg]
else if hg : g ≈ 0 then
have hfg' : f + g ≈ f,
{ change lim_zero (g - 0) at hg,
show lim_zero (f + g - f), by simpa [add_sub_cancel'] using hg },
have hcfg : (f + g).norm = f.norm, from norm_equiv hfg',
have hcl : g.norm = 0, from (norm_zero_iff g).2 hg,
have max (f.norm) (g.norm) = f.norm,
by rw hcl; exact max_eq_left (norm_nonneg _),
by rw [this, hcfg]
else norm_nonarchimedean_aux hfg hf hg
lemma norm_eq {f g : padic_seq p} (h : ∀ k, padic_norm p (f k) = padic_norm p (g k)) :
f.norm = g.norm :=
if hf : f ≈ 0 then
have hg : g ≈ 0, from equiv_zero_of_val_eq_of_equiv_zero h hf,
by simp [hf, hg, norm]
else
have hg : ¬ g ≈ 0, from λ hg, hf $ equiv_zero_of_val_eq_of_equiv_zero (by simp [h]) hg,
begin
simp [hg, hf, norm],
let i := max (stationary_point hf) (stationary_point hg),
have hpf : padic_norm p (f (stationary_point hf)) = padic_norm p (f i),
{ apply stationary_point_spec, apply le_max_left, apply le_refl },
have hpg : padic_norm p (g (stationary_point hg)) = padic_norm p (g i),
{ apply stationary_point_spec, apply le_max_right, apply le_refl },
rw [hpf, hpg, h]
end
lemma norm_neg (a : padic_seq p) : (-a).norm = a.norm :=
norm_eq $ by simp
lemma norm_eq_of_add_equiv_zero {f g : padic_seq p} (h : f + g ≈ 0) : f.norm = g.norm :=
have lim_zero (f + g - 0), from h,
have f ≈ -g, from show lim_zero (f - (-g)), by simpa,
have f.norm = (-g).norm, from norm_equiv this,
by simpa [norm_neg] using this
lemma add_eq_max_of_ne {f g : padic_seq p} (hfgne : f.norm ≠ g.norm) :
(f + g).norm = max f.norm g.norm :=
have hfg : ¬f + g ≈ 0, from mt norm_eq_of_add_equiv_zero hfgne,
if hf : f ≈ 0 then
have lim_zero (f - 0), from hf,
have f + g ≈ g, from show lim_zero ((f + g) - g), by simpa,
have h1 : (f+g).norm = g.norm, from norm_equiv this,
have h2 : f.norm = 0, from (norm_zero_iff _).2 hf,
by rw [h1, h2]; rw max_eq_right (norm_nonneg _)
else if hg : g ≈ 0 then
have lim_zero (g - 0), from hg,
have f + g ≈ f, from show lim_zero ((f + g) - f), by rw [add_sub_cancel']; simpa,
have h1 : (f+g).norm = f.norm, from norm_equiv this,
have h2 : g.norm = 0, from (norm_zero_iff _).2 hg,
by rw [h1, h2]; rw max_eq_left (norm_nonneg _)
else
begin
unfold norm at ⊢ hfgne, split_ifs at ⊢ hfgne,
padic_index_simp [hfg, hf, hg] at ⊢ hfgne,
apply padic_norm.add_eq_max_of_ne,
simpa [hf, hg, norm] using hfgne
end
end embedding
end padic_seq
/-- The p-adic numbers `Q_[p]` are the Cauchy completion of `ℚ` with respect to the p-adic norm. -/
def padic (p : ℕ) [fact p.prime] := @cau_seq.completion.Cauchy _ _ _ _ (padic_norm p) _
notation `ℚ_[` p `]` := padic p
namespace padic
section completion
variables {p : ℕ} [fact p.prime]
/-- The discrete field structure on `ℚ_p` is inherited from the Cauchy completion construction. -/
instance field : field (ℚ_[p]) :=
cau_seq.completion.field
instance : inhabited ℚ_[p] := ⟨0⟩
-- short circuits
instance : has_zero ℚ_[p] := by apply_instance
instance : has_one ℚ_[p] := by apply_instance
instance : has_add ℚ_[p] := by apply_instance
instance : has_mul ℚ_[p] := by apply_instance
instance : has_sub ℚ_[p] := by apply_instance
instance : has_neg ℚ_[p] := by apply_instance
instance : has_div ℚ_[p] := by apply_instance
instance : add_comm_group ℚ_[p] := by apply_instance
instance : comm_ring ℚ_[p] := by apply_instance
/-- Builds the equivalence class of a Cauchy sequence of rationals. -/
def mk : padic_seq p → ℚ_[p] := quotient.mk
end completion
section completion
variables (p : ℕ) [fact p.prime]
lemma mk_eq {f g : padic_seq p} : mk f = mk g ↔ f ≈ g := quotient.eq
/-- Embeds the rational numbers in the p-adic numbers. -/
def of_rat : ℚ → ℚ_[p] := cau_seq.completion.of_rat
@[simp] lemma of_rat_add : ∀ (x y : ℚ), of_rat p (x + y) = of_rat p x + of_rat p y :=
cau_seq.completion.of_rat_add
@[simp] lemma of_rat_neg : ∀ (x : ℚ), of_rat p (-x) = -of_rat p x :=
cau_seq.completion.of_rat_neg
@[simp] lemma of_rat_mul : ∀ (x y : ℚ), of_rat p (x * y) = of_rat p x * of_rat p y :=
cau_seq.completion.of_rat_mul
@[simp] lemma of_rat_sub : ∀ (x y : ℚ), of_rat p (x - y) = of_rat p x - of_rat p y :=
cau_seq.completion.of_rat_sub
@[simp] lemma of_rat_div : ∀ (x y : ℚ), of_rat p (x / y) = of_rat p x / of_rat p y :=
cau_seq.completion.of_rat_div
@[simp] lemma of_rat_one : of_rat p 1 = 1 := rfl
@[simp] lemma of_rat_zero : of_rat p 0 = 0 := rfl
lemma cast_eq_of_rat_of_nat (n : ℕ) : (↑n : ℚ_[p]) = of_rat p n :=
begin
induction n with n ih,
{ refl },
{ simpa using ih }
end
lemma cast_eq_of_rat_of_int (n : ℤ) : ↑n = of_rat p n :=
by induction n; simp [cast_eq_of_rat_of_nat]
lemma cast_eq_of_rat : ∀ (q : ℚ), (↑q : ℚ_[p]) = of_rat p q
| ⟨n, d, h1, h2⟩ :=
show ↑n / ↑d = _, from
have (⟨n, d, h1, h2⟩ : ℚ) = rat.mk n d, from rat.num_denom',
by simp [this, rat.mk_eq_div, of_rat_div, cast_eq_of_rat_of_int, cast_eq_of_rat_of_nat]
@[norm_cast] lemma coe_add : ∀ {x y : ℚ}, (↑(x + y) : ℚ_[p]) = ↑x + ↑y := by simp [cast_eq_of_rat]
@[norm_cast] lemma coe_neg : ∀ {x : ℚ}, (↑(-x) : ℚ_[p]) = -↑x := by simp [cast_eq_of_rat]
@[norm_cast] lemma coe_mul : ∀ {x y : ℚ}, (↑(x * y) : ℚ_[p]) = ↑x * ↑y := by simp [cast_eq_of_rat]
@[norm_cast] lemma coe_sub : ∀ {x y : ℚ}, (↑(x - y) : ℚ_[p]) = ↑x - ↑y := by simp [cast_eq_of_rat]
@[norm_cast] lemma coe_div : ∀ {x y : ℚ}, (↑(x / y) : ℚ_[p]) = ↑x / ↑y := by simp [cast_eq_of_rat]
@[norm_cast] lemma coe_one : (↑1 : ℚ_[p]) = 1 := rfl
@[norm_cast] lemma coe_zero : (↑0 : ℚ_[p]) = 0 := rfl
lemma const_equiv {q r : ℚ} : const (padic_norm p) q ≈ const (padic_norm p) r ↔ q = r :=
⟨ λ heq : lim_zero (const (padic_norm p) (q - r)),
eq_of_sub_eq_zero $ const_lim_zero.1 heq,
λ heq, by rw heq; apply setoid.refl _ ⟩
lemma of_rat_eq {q r : ℚ} : of_rat p q = of_rat p r ↔ q = r :=
⟨(const_equiv p).1 ∘ quotient.eq.1, λ h, by rw h⟩
@[norm_cast] lemma coe_inj {q r : ℚ} : (↑q : ℚ_[p]) = ↑r ↔ q = r :=
by simp [cast_eq_of_rat, of_rat_eq]
instance : char_zero ℚ_[p] :=
⟨λ m n, by { rw ← rat.cast_coe_nat, norm_cast, exact id }⟩
end completion
end padic
/-- The rational-valued p-adic norm on `ℚ_p` is lifted from the norm on Cauchy sequences. The
canonical form of this function is the normed space instance, with notation `∥ ∥`. -/
def padic_norm_e {p : ℕ} [hp : fact p.prime] : ℚ_[p] → ℚ :=
quotient.lift padic_seq.norm $ @padic_seq.norm_equiv _ _
namespace padic_norm_e
section embedding
open padic_seq
variables {p : ℕ} [fact p.prime]
lemma defn (f : padic_seq p) {ε : ℚ} (hε : 0 < ε) : ∃ N, ∀ i ≥ N, padic_norm_e (⟦f⟧ - f i) < ε :=
begin
simp only [padic.cast_eq_of_rat],
change ∃ N, ∀ i ≥ N, (f - const _ (f i)).norm < ε,
by_contradiction h,
cases cauchy₂ f hε with N hN,
have : ∀ N, ∃ i ≥ N, ε ≤ (f - const _ (f i)).norm,
by simpa [not_forall] using h,
rcases this N with ⟨i, hi, hge⟩,
have hne : ¬ (f - const (padic_norm p) (f i)) ≈ 0,
{ intro h, unfold padic_seq.norm at hge; split_ifs at hge, exact not_lt_of_ge hge hε },
unfold padic_seq.norm at hge; split_ifs at hge,
apply not_le_of_gt _ hge,
cases decidable.em (N ≤ stationary_point hne) with hgen hngen,
{ apply hN; assumption },
{ have := stationary_point_spec hne (le_refl _) (le_of_not_le hngen),
rw ←this,
apply hN,
apply le_refl, assumption }
end
protected lemma nonneg (q : ℚ_[p]) : 0 ≤ padic_norm_e q :=
quotient.induction_on q $ norm_nonneg
lemma zero_def : (0 : ℚ_[p]) = ⟦0⟧ := rfl
lemma zero_iff (q : ℚ_[p]) : padic_norm_e q = 0 ↔ q = 0 :=
quotient.induction_on q $
by simpa only [zero_def, quotient.eq] using norm_zero_iff
@[simp] protected lemma zero : padic_norm_e (0 : ℚ_[p]) = 0 :=
(zero_iff _).2 rfl
/-- Theorems about `padic_norm_e` are named with a `'` so the names do not conflict with the
equivalent theorems about `norm` (`∥ ∥`). -/
@[simp] protected lemma one' : padic_norm_e (1 : ℚ_[p]) = 1 :=
norm_one
@[simp] protected lemma neg (q : ℚ_[p]) : padic_norm_e (-q) = padic_norm_e q :=
quotient.induction_on q $ norm_neg
/-- Theorems about `padic_norm_e` are named with a `'` so the names do not conflict with the
equivalent theorems about `norm` (`∥ ∥`). -/
theorem nonarchimedean' (q r : ℚ_[p]) :
padic_norm_e (q + r) ≤ max (padic_norm_e q) (padic_norm_e r) :=
quotient.induction_on₂ q r $ norm_nonarchimedean
/-- Theorems about `padic_norm_e` are named with a `'` so the names do not conflict with the
equivalent theorems about `norm` (`∥ ∥`). -/
theorem add_eq_max_of_ne' {q r : ℚ_[p]} :
padic_norm_e q ≠ padic_norm_e r → padic_norm_e (q + r) = max (padic_norm_e q) (padic_norm_e r) :=
quotient.induction_on₂ q r $ λ _ _, padic_seq.add_eq_max_of_ne
lemma triangle_ineq (x y z : ℚ_[p]) :
padic_norm_e (x - z) ≤ padic_norm_e (x - y) + padic_norm_e (y - z) :=
calc padic_norm_e (x - z) = padic_norm_e ((x - y) + (y - z)) : by rw sub_add_sub_cancel
... ≤ max (padic_norm_e (x - y)) (padic_norm_e (y - z)) : padic_norm_e.nonarchimedean' _ _
... ≤ padic_norm_e (x - y) + padic_norm_e (y - z) :
max_le_add_of_nonneg (padic_norm_e.nonneg _) (padic_norm_e.nonneg _)
protected lemma add (q r : ℚ_[p]) : padic_norm_e (q + r) ≤ (padic_norm_e q) + (padic_norm_e r) :=
calc
padic_norm_e (q + r) ≤ max (padic_norm_e q) (padic_norm_e r) : nonarchimedean' _ _
... ≤ (padic_norm_e q) + (padic_norm_e r) :
max_le_add_of_nonneg (padic_norm_e.nonneg _) (padic_norm_e.nonneg _)
protected lemma mul' (q r : ℚ_[p]) : padic_norm_e (q * r) = (padic_norm_e q) * (padic_norm_e r) :=
quotient.induction_on₂ q r $ norm_mul
instance : is_absolute_value (@padic_norm_e p _) :=
{ abv_nonneg := padic_norm_e.nonneg,
abv_eq_zero := zero_iff,
abv_add := padic_norm_e.add,
abv_mul := padic_norm_e.mul' }
@[simp] lemma eq_padic_norm' (q : ℚ) : padic_norm_e (padic.of_rat p q) = padic_norm p q :=
norm_const _
protected theorem image' {q : ℚ_[p]} : q ≠ 0 → ∃ n : ℤ, padic_norm_e q = p ^ (-n) :=
quotient.induction_on q $ λ f hf,
have ¬ f ≈ 0, from (ne_zero_iff_nequiv_zero f).1 hf,
norm_values_discrete f this
lemma sub_rev (q r : ℚ_[p]) : padic_norm_e (q - r) = padic_norm_e (r - q) :=
by rw ←(padic_norm_e.neg); simp
end embedding
end padic_norm_e
namespace padic
section complete
open padic_seq padic
theorem rat_dense' {p : ℕ} [fact p.prime] (q : ℚ_[p]) {ε : ℚ} (hε : 0 < ε) :
∃ r : ℚ, padic_norm_e (q - r) < ε :=
quotient.induction_on q $ λ q',
have ∃ N, ∀ m n ≥ N, padic_norm p (q' m - q' n) < ε, from cauchy₂ _ hε,
let ⟨N, hN⟩ := this in
⟨q' N,
begin
simp only [padic.cast_eq_of_rat],
change padic_seq.norm (q' - const _ (q' N)) < ε,
cases decidable.em ((q' - const (padic_norm p) (q' N)) ≈ 0) with heq hne',
{ simpa only [heq, padic_seq.norm, dif_pos] },
{ simp only [padic_seq.norm, dif_neg hne'],
change padic_norm p (q' _ - q' _) < ε,
have := stationary_point_spec hne',
cases decidable.em (stationary_point hne' ≤ N) with hle hle,
{ have := eq.symm (this (le_refl _) hle),
simp at this, simpa [this] },
{ apply hN,
apply le_of_lt, apply lt_of_not_ge, apply hle, apply le_refl }}
end⟩
variables {p : ℕ} [fact p.prime] (f : cau_seq _ (@padic_norm_e p _))
open classical
private lemma div_nat_pos (n : ℕ) : 0 < (1 / ((n + 1): ℚ)) :=
div_pos zero_lt_one (by exact_mod_cast succ_pos _)
def lim_seq : ℕ → ℚ := λ n, classical.some (rat_dense' (f n) (div_nat_pos n))
lemma exi_rat_seq_conv {ε : ℚ} (hε : 0 < ε) :
∃ N, ∀ i ≥ N, padic_norm_e (f i - ((lim_seq f) i : ℚ_[p])) < ε :=
begin
refine (exists_nat_gt (1/ε)).imp (λ N hN i hi, _),
have h := classical.some_spec (rat_dense' (f i) (div_nat_pos i)),
refine lt_of_lt_of_le h ((div_le_iff' $ by exact_mod_cast succ_pos _).mpr _),
rw right_distrib,
apply le_add_of_le_of_nonneg,
{ exact (div_le_iff hε).mp (le_trans (le_of_lt hN) (by exact_mod_cast hi)) },
{ apply le_of_lt, simpa }
end
lemma exi_rat_seq_conv_cauchy : is_cau_seq (padic_norm p) (lim_seq f) :=
assume ε hε,
have hε3 : 0 < ε / 3, from div_pos hε (by norm_num),
let ⟨N, hN⟩ := exi_rat_seq_conv f hε3,
⟨N2, hN2⟩ := f.cauchy₂ hε3 in
begin
existsi max N N2,
intros j hj,
suffices : padic_norm_e ((↑(lim_seq f j) - f (max N N2)) + (f (max N N2) - lim_seq f (max N N2))) < ε,
{ ring at this ⊢,
rw [← padic_norm_e.eq_padic_norm', ← padic.cast_eq_of_rat],
exact_mod_cast this },
{ apply lt_of_le_of_lt,
{ apply padic_norm_e.add },
{ have : (3 : ℚ) ≠ 0, by norm_num,
have : ε = ε / 3 + ε / 3 + ε / 3,
{ field_simp [this], simp [bit0, bit1, mul_add] },
rw this,
apply add_lt_add,
{ suffices : padic_norm_e ((↑(lim_seq f j) - f j) + (f j - f (max N N2))) < ε / 3 + ε / 3,
by simpa [sub_add_sub_cancel],
apply lt_of_le_of_lt,
{ apply padic_norm_e.add },
{ apply add_lt_add,
{ rw [padic_norm_e.sub_rev],
apply_mod_cast hN,
exact le_of_max_le_left hj },
{ apply hN2,
exact le_of_max_le_right hj,
apply le_max_right }}},
{ apply_mod_cast hN,
apply le_max_left }}}
end
private def lim' : padic_seq p := ⟨_, exi_rat_seq_conv_cauchy f⟩
private def lim : ℚ_[p] := ⟦lim' f⟧
theorem complete' : ∃ q : ℚ_[p], ∀ ε > 0, ∃ N, ∀ i ≥ N, padic_norm_e (q - f i) < ε :=
⟨ lim f,
λ ε hε,
let ⟨N, hN⟩ := exi_rat_seq_conv f (show 0 < ε / 2, from div_pos hε (by norm_num)),
⟨N2, hN2⟩ := padic_norm_e.defn (lim' f) (show 0 < ε / 2, from div_pos hε (by norm_num)) in
begin
existsi max N N2,
intros i hi,
suffices : padic_norm_e ((lim f - lim' f i) + (lim' f i - f i)) < ε,
{ ring at this; exact this },
{ apply lt_of_le_of_lt,
{ apply padic_norm_e.add },
{ have : ε = ε / 2 + ε / 2, by rw ←(add_self_div_two ε); simp,
rw this,
apply add_lt_add,
{ apply hN2, exact le_of_max_le_right hi },
{ rw_mod_cast [padic_norm_e.sub_rev],
apply hN,
exact le_of_max_le_left hi }}}
end ⟩
end complete
section normed_space
variables (p : ℕ) [fact p.prime]
instance : has_dist ℚ_[p] := ⟨λ x y, padic_norm_e (x - y)⟩
instance : metric_space ℚ_[p] :=
{ dist_self := by simp [dist],
dist_comm := λ x y, by unfold dist; rw ←padic_norm_e.neg (x - y); simp,
dist_triangle :=
begin
intros, unfold dist,
exact_mod_cast padic_norm_e.triangle_ineq _ _ _,
end,
eq_of_dist_eq_zero :=
begin
unfold dist, intros _ _ h,
apply eq_of_sub_eq_zero,
apply (padic_norm_e.zero_iff _).1,
exact_mod_cast h
end }
instance : has_norm ℚ_[p] := ⟨λ x, padic_norm_e x⟩
instance : normed_field ℚ_[p] :=
{ dist_eq := λ _ _, rfl,
norm_mul' := by simp [has_norm.norm, padic_norm_e.mul'] }
instance : is_absolute_value (λ a : ℚ_[p], ∥a∥) :=
{ abv_nonneg := norm_nonneg,
abv_eq_zero := λ _, norm_eq_zero,
abv_add := norm_add_le,
abv_mul := by simp [has_norm.norm, padic_norm_e.mul'] }
theorem rat_dense {p : ℕ} {hp : fact p.prime} (q : ℚ_[p]) {ε : ℝ} (hε : 0 < ε) :
∃ r : ℚ, ∥q - r∥ < ε :=
let ⟨ε', hε'l, hε'r⟩ := exists_rat_btwn hε,
⟨r, hr⟩ := rat_dense' q (by simpa using hε'l) in
⟨r, lt.trans (by simpa [has_norm.norm] using hr) hε'r⟩
end normed_space
end padic
namespace padic_norm_e
section normed_space
variables {p : ℕ} [hp : fact p.prime]
include hp
@[simp] protected lemma mul (q r : ℚ_[p]) : ∥q * r∥ = ∥q∥ * ∥r∥ :=
by simp [has_norm.norm, padic_norm_e.mul']
protected lemma is_norm (q : ℚ_[p]) : ↑(padic_norm_e q) = ∥q∥ := rfl
theorem nonarchimedean (q r : ℚ_[p]) : ∥q + r∥ ≤ max (∥q∥) (∥r∥) :=
begin
unfold has_norm.norm,
exact_mod_cast nonarchimedean' _ _
end
theorem add_eq_max_of_ne {q r : ℚ_[p]} (h : ∥q∥ ≠ ∥r∥) : ∥q+r∥ = max (∥q∥) (∥r∥) :=
begin
unfold has_norm.norm,
apply_mod_cast add_eq_max_of_ne',
intro h',
apply h,
unfold has_norm.norm,
exact_mod_cast h'
end
@[simp] lemma eq_padic_norm (q : ℚ) : ∥(↑q : ℚ_[p])∥ = padic_norm p q :=
begin
unfold has_norm.norm,
rw [← padic_norm_e.eq_padic_norm', ← padic.cast_eq_of_rat]
end
instance : nondiscrete_normed_field ℚ_[p] :=
{ non_trivial := ⟨padic.of_rat p (p⁻¹), begin
have h0 : p ≠ 0 := ne_of_gt (hp.pos),
have h1 : 1 < p := hp.one_lt,
rw [← padic.cast_eq_of_rat, eq_padic_norm],
simp only [padic_norm, inv_eq_zero],
simp only [if_neg] {discharger := `[exact_mod_cast h0]},
norm_cast,
simp only [padic_val_rat.inv] {discharger := `[exact_mod_cast h0]},
rw [neg_neg, padic_val_rat.padic_val_rat_self h1],
erw _root_.pow_one,
exact_mod_cast h1,
end⟩ }
@[simp] lemma norm_p : ∥(p : ℚ_[p])∥ = p⁻¹ :=
begin
have p₀ : p ≠ 0 := nat.prime.ne_zero ‹_›,
have p₁ : p ≠ 1 := nat.prime.ne_one ‹_›,
simp [p₀, p₁, norm, padic_norm, padic_val_rat, fpow_neg, padic.cast_eq_of_rat_of_nat],
end
lemma norm_p_lt_one : ∥(p : ℚ_[p])∥ < 1 :=
begin
rw [norm_p, inv_eq_one_div, div_lt_iff, one_mul],
{ exact_mod_cast nat.prime.one_lt ‹_› },
{ exact_mod_cast nat.prime.pos ‹_› }
end
@[simp] lemma norm_p_pow (n : ℤ) : ∥(p^n : ℚ_[p])∥ = p^-n :=
by rw [normed_field.norm_fpow, norm_p]; field_simp
protected theorem image {q : ℚ_[p]} : q ≠ 0 → ∃ n : ℤ, ∥q∥ = ↑((↑p : ℚ) ^ (-n)) :=
quotient.induction_on q $ λ f hf,
have ¬ f ≈ 0, from (padic_seq.ne_zero_iff_nequiv_zero f).1 hf,
let ⟨n, hn⟩ := padic_seq.norm_values_discrete f this in
⟨n, congr_arg coe hn⟩
protected lemma is_rat (q : ℚ_[p]) : ∃ q' : ℚ, ∥q∥ = ↑q' :=
if h : q = 0 then ⟨0, by simp [h]⟩
else let ⟨n, hn⟩ := padic_norm_e.image h in ⟨_, hn⟩
def rat_norm (q : ℚ_[p]) : ℚ := classical.some (padic_norm_e.is_rat q)
lemma eq_rat_norm (q : ℚ_[p]) : ∥q∥ = rat_norm q := classical.some_spec (padic_norm_e.is_rat q)
theorem norm_rat_le_one : ∀ {q : ℚ} (hq : ¬ p ∣ q.denom), ∥(q : ℚ_[p])∥ ≤ 1
| ⟨n, d, hn, hd⟩ := λ hq : ¬ p ∣ d,
if hnz : n = 0 then
have (⟨n, d, hn, hd⟩ : ℚ) = 0,
from rat.zero_iff_num_zero.mpr hnz,
by norm_num [this]
else
begin
have hnz' : {rat . num := n, denom := d, pos := hn, cop := hd} ≠ 0, from mt rat.zero_iff_num_zero.1 hnz,
rw [padic_norm_e.eq_padic_norm],
norm_cast,
rw [padic_norm.eq_fpow_of_nonzero p hnz', padic_val_rat_def p hnz'],
have h : (multiplicity p d).get _ = 0, by simp [multiplicity_eq_zero_of_not_dvd, hq],
simp only, norm_cast,
rw_mod_cast [h, sub_zero],
apply fpow_le_one_of_nonpos,
{ exact_mod_cast le_of_lt hp.one_lt, },
{ apply neg_nonpos_of_nonneg, norm_cast, simp, }
end
theorem norm_int_le_one (z : ℤ) : ∥(z : ℚ_[p])∥ ≤ 1 :=
suffices ∥((z : ℚ) : ℚ_[p])∥ ≤ 1, by simpa,
norm_rat_le_one $ by simp [nat.prime.ne_one ‹_›]
lemma norm_int_lt_one_iff_dvd (k : ℤ) : ∥(k : ℚ_[p])∥ < 1 ↔ ↑p ∣ k :=
begin
split,
{ intro h,
contrapose! h,
apply le_of_eq,
rw eq_comm,
calc ∥(k : ℚ_[p])∥ = ∥((k : ℚ) : ℚ_[p])∥ : by { norm_cast }
... = padic_norm p k : padic_norm_e.eq_padic_norm _
... = 1 : _,
rw padic_norm,
split_ifs with H,
{ exfalso,
apply h,
norm_cast at H,
rw H,
apply dvd_zero },
{ norm_cast at H ⊢,
convert fpow_zero _,
simp only [neg_eq_zero],
rw padic_val_rat.padic_val_rat_of_int _ (nat.prime.ne_one ‹_›) H,
norm_cast,
rw [← enat.coe_inj, enat.coe_get, enat.coe_zero],
apply multiplicity.multiplicity_eq_zero_of_not_dvd h } },
{ rintro ⟨x, rfl⟩,
push_cast,
rw padic_norm_e.mul,
calc _ ≤ ∥(p : ℚ_[p])∥ * 1 : mul_le_mul (le_refl _) (by simpa using norm_int_le_one _)
(norm_nonneg _) (norm_nonneg _)
... < 1 : _,
{ rw [mul_one, padic_norm_e.norm_p],
apply inv_lt_one,
exact_mod_cast nat.prime.one_lt ‹_› }, },
end
lemma norm_int_le_pow_iff_dvd (k : ℤ) (n : ℕ) : ∥(k : ℚ_[p])∥ ≤ ((↑p)^(-n : ℤ)) ↔ ↑(p^n) ∣ k :=
begin
have : (p : ℝ) ^ (-n : ℤ) = ↑((p ^ (-n : ℤ) : ℚ)), {simp},
rw [show (k : ℚ_[p]) = ((k : ℚ) : ℚ_[p]), by norm_cast, eq_padic_norm, this],
norm_cast,
rw padic_norm.dvd_iff_norm_le,
end
lemma eq_of_norm_add_lt_right {p : ℕ} {hp : fact p.prime} {z1 z2 : ℚ_[p]}
(h : ∥z1 + z2∥ < ∥z2∥) : ∥z1∥ = ∥z2∥ :=
by_contradiction $ λ hne,
not_lt_of_ge (by rw padic_norm_e.add_eq_max_of_ne hne; apply le_max_right) h
lemma eq_of_norm_add_lt_left {p : ℕ} {hp : fact p.prime} {z1 z2 : ℚ_[p]}
(h : ∥z1 + z2∥ < ∥z1∥) : ∥z1∥ = ∥z2∥ :=
by_contradiction $ λ hne,
not_lt_of_ge (by rw padic_norm_e.add_eq_max_of_ne hne; apply le_max_left) h
end normed_space
end padic_norm_e
namespace padic
variables {p : ℕ} [fact p.prime]
set_option eqn_compiler.zeta true
instance complete : cau_seq.is_complete ℚ_[p] norm :=
begin
split, intro f,
have cau_seq_norm_e : is_cau_seq padic_norm_e f,
{ intros ε hε,
let h := is_cau f ε (by exact_mod_cast hε),
unfold norm at h,
apply_mod_cast h },
cases padic.complete' ⟨f, cau_seq_norm_e⟩ with q hq,
existsi q,
intros ε hε,
cases exists_rat_btwn hε with ε' hε',
norm_cast at hε',
cases hq ε' hε'.1 with N hN, existsi N,
intros i hi, let h := hN i hi,
unfold norm,
rw_mod_cast [cau_seq.sub_apply, padic_norm_e.sub_rev],
refine lt.trans _ hε'.2,
exact_mod_cast hN i hi
end
lemma padic_norm_e_lim_le {f : cau_seq ℚ_[p] norm} {a : ℝ} (ha : 0 < a)
(hf : ∀ i, ∥f i∥ ≤ a) : ∥f.lim∥ ≤ a :=
let ⟨N, hN⟩ := setoid.symm (cau_seq.equiv_lim f) _ ha in
calc ∥f.lim∥ = ∥f.lim - f N + f N∥ : by simp
... ≤ max (∥f.lim - f N∥) (∥f N∥) : padic_norm_e.nonarchimedean _ _
... ≤ a : max_le (le_of_lt (hN _ (le_refl _))) (hf _)
/-!
### Valuation on `ℚ_[p]`
-/
/--
`padic.valuation` lifts the p-adic valuation on rationals to `ℚ_[p]`.
-/
def valuation : ℚ_[p] → ℤ :=
quotient.lift (@padic_seq.valuation p _) (λ f g h,
begin
by_cases hf : f ≈ 0,
{ have hg : g ≈ 0, from setoid.trans (setoid.symm h) hf,
simp [hf, hg, padic_seq.valuation] },
{ have hg : ¬ g ≈ 0, from (λ hg, hf (setoid.trans h hg)),
rw padic_seq.val_eq_iff_norm_eq hf hg,
exact padic_seq.norm_equiv h },
end)
@[simp] lemma valuation_zero : valuation (0 : ℚ_[p]) = 0 :=
dif_pos ((const_equiv p).2 rfl)
@[simp] lemma valuation_one : valuation (1 : ℚ_[p]) = 0 :=
begin
change dite (cau_seq.const (padic_norm p) 1 ≈ _) _ _ = _,
have h : ¬ cau_seq.const (padic_norm p) 1 ≈ 0,
{ assume H, erw const_equiv p at H, exact one_ne_zero H },
rw dif_neg h,
simp,
end
lemma norm_eq_pow_val {x : ℚ_[p]} : x ≠ 0 → ∥x∥ = p^(-x.valuation) :=
begin
apply quotient.induction_on' x, clear x,
intros f hf,
change (padic_seq.norm _ : ℝ) = (p : ℝ) ^ -padic_seq.valuation _,
rw padic_seq.norm_eq_pow_val,
change ↑((p : ℚ) ^ -padic_seq.valuation f) = (p : ℝ) ^ -padic_seq.valuation f,
{ rw rat.cast_fpow,
congr' 1,
norm_cast },
{ apply cau_seq.not_lim_zero_of_not_congr_zero,
contrapose! hf,
apply quotient.sound,
simpa using hf, }
end
@[simp] lemma valuation_p : valuation (p : ℚ_[p]) = 1 :=
begin
have h : (1 : ℝ) < p := by exact_mod_cast nat.prime.one_lt ‹_›,
rw ← neg_inj,
apply (fpow_strict_mono h).injective,
dsimp only,
rw ← norm_eq_pow_val,
{ simp },
{ exact_mod_cast nat.prime.ne_zero ‹_›, }
end
end padic
|
60c6e8feb2e924d3959eb5fcd6aed7e465decd82
|
a7eef317ddec01b9fc6cfbb876fe7ac00f205ac7
|
/src/group_theory/submonoid/operations.lean
|
8721d3289eb279a7799fe8759a856c142ea56d4e
|
[
"Apache-2.0"
] |
permissive
|
kmill/mathlib
|
ea5a007b67ae4e9e18dd50d31d8aa60f650425ee
|
1a419a9fea7b959317eddd556e1bb9639f4dcc05
|
refs/heads/master
| 1,668,578,197,719
| 1,593,629,163,000
| 1,593,629,163,000
| 276,482,939
| 0
| 0
| null | 1,593,637,960,000
| 1,593,637,959,000
| null |
UTF-8
|
Lean
| false
| false
| 15,756
|
lean
|
import group_theory.submonoid.basic
import data.equiv.mul_add
import algebra.group.prod
/-!
# Operations on `submonoid`s
In this file we define various operations on `submonoid`s and `monoid_hom`s.
## Main definitions
### Conversion between multiplicative and additive definitions
* `submonoid.to_add_submonoid`, `submonoid.of_add_submonoid`, `add_submonoid.to_submonoid`,
`add_submonoid.of_submonoid`: convert between multiplicative and additive submonoids of `M`,
`multiplicative M`, and `additive M`.
* `submonoid.add_submonoid_equiv`: equivalence between `submonoid M`
and `add_submonoid (additive M)`.
### (Commutative) monoid structure on a submonoid
* `submonoid.to_monoid`, `submonoid.to_comm_monoid`: a submonoid inherits a (commutative) monoid
structure.
### Operations on submonoids
* `submonoid.comap`: preimage of a submonoid under a monoid homomorphism as a submonoid of the
domain;
* `submonoid.map`: image of a submonoid under a monoid homomorphism as a submonoid of the codomain;
* `submonoid.prod`: product of two submonoids `s : submonoid M` and `t : submonoid N` as a submonoid
of `M × N`;
### Monoid homomorphisms between submonoid
* `submonoid.subtype`: embedding of a submonoid into the ambient monoid.
* `submonoid.inclusion`: given two submonoids `S`, `T` such that `S ≤ T`, `S.inclusion T` is the
inclusion of `S` into `T` as a monoid homomorphism;
* `mul_equiv.submonoid_congr`: converts a proof of `S = T` into a monoid isomorphism between `S`
and `T`.
* `submonoid.prod_equiv`: monoid isomorphism between `s.prod t` and `s × t`;
### Operations on `monoid_hom`s
* `monoid_hom.mrange`: range of a monoid homomorphism as a submonoid of the codomain;
* `monoid_hom.mrestrict`: restrict a monoid homomorphism to a submonoid;
* `monoid_hom.cod_mrestrict`: restrict the codomain of a monoid homomorphism to a submonoid;
* `monoid_hom.mrange_restrict`: restrict a monoid homomorphism to its range;
## Tags
submonoid, range, product, map, comap
-/
variables {M N P : Type*} [monoid M] [monoid N] [monoid P] (S : submonoid M)
/-!
### Conversion to/from `additive`/`multiplicative`
-/
/-- Map from submonoids of monoid `M` to `add_submonoid`s of `additive M`. -/
def submonoid.to_add_submonoid {M : Type*} [monoid M] (S : submonoid M) :
add_submonoid (additive M) :=
{ carrier := S.carrier,
zero_mem' := S.one_mem',
add_mem' := S.mul_mem' }
/-- Map from `add_submonoid`s of `additive M` to submonoids of `M`. -/
def submonoid.of_add_submonoid {M : Type*} [monoid M] (S : add_submonoid (additive M)) :
submonoid M :=
{ carrier := S.carrier,
one_mem' := S.zero_mem',
mul_mem' := S.add_mem' }
/-- Map from `add_submonoid`s of `add_monoid M` to submonoids of `multiplicative M`. -/
def add_submonoid.to_submonoid {M : Type*} [add_monoid M] (S : add_submonoid M) :
submonoid (multiplicative M) :=
{ carrier := S.carrier,
one_mem' := S.zero_mem',
mul_mem' := S.add_mem' }
/-- Map from submonoids of `multiplicative M` to `add_submonoid`s of `add_monoid M`. -/
def add_submonoid.of_submonoid {M : Type*} [add_monoid M] (S : submonoid (multiplicative M)) :
add_submonoid M :=
{ carrier := S.carrier,
zero_mem' := S.one_mem',
add_mem' := S.mul_mem' }
/-- Submonoids of monoid `M` are isomorphic to additive submonoids of `additive M`. -/
def submonoid.add_submonoid_equiv (M : Type*) [monoid M] :
submonoid M ≃ add_submonoid (additive M) :=
{ to_fun := submonoid.to_add_submonoid,
inv_fun := submonoid.of_add_submonoid,
left_inv := λ x, by cases x; refl,
right_inv := λ x, by cases x; refl }
namespace submonoid
open set
/-!
### `comap` and `map`
-/
/-- The preimage of a submonoid along a monoid homomorphism is a submonoid. -/
@[to_additive "The preimage of an `add_submonoid` along an `add_monoid` homomorphism is an
`add_submonoid`."]
def comap (f : M →* N) (S : submonoid N) : submonoid M :=
{ carrier := (f ⁻¹' S),
one_mem' := show f 1 ∈ S, by rw f.map_one; exact S.one_mem,
mul_mem' := λ a b ha hb,
show f (a * b) ∈ S, by rw f.map_mul; exact S.mul_mem ha hb }
@[simp, to_additive]
lemma coe_comap (S : submonoid N) (f : M →* N) : (S.comap f : set M) = f ⁻¹' S := rfl
@[simp, to_additive]
lemma mem_comap {S : submonoid N} {f : M →* N} {x : M} : x ∈ S.comap f ↔ f x ∈ S := iff.rfl
@[to_additive]
lemma comap_comap (S : submonoid P) (g : N →* P) (f : M →* N) :
(S.comap g).comap f = S.comap (g.comp f) :=
rfl
/-- The image of a submonoid along a monoid homomorphism is a submonoid. -/
@[to_additive "The image of an `add_submonoid` along an `add_monoid` homomorphism is
an `add_submonoid`."]
def map (f : M →* N) (S : submonoid M) : submonoid N :=
{ carrier := (f '' S),
one_mem' := ⟨1, S.one_mem, f.map_one⟩,
mul_mem' := begin rintros _ _ ⟨x, hx, rfl⟩ ⟨y, hy, rfl⟩, exact ⟨x * y, S.mul_mem hx hy,
by rw f.map_mul; refl⟩ end }
@[simp, to_additive]
lemma coe_map (f : M →* N) (S : submonoid M) :
(S.map f : set N) = f '' S := rfl
@[simp, to_additive]
lemma mem_map {f : M →* N} {S : submonoid M} {y : N} :
y ∈ S.map f ↔ ∃ x ∈ S, f x = y :=
mem_image_iff_bex
@[to_additive]
lemma map_map (g : N →* P) (f : M →* N) : (S.map f).map g = S.map (g.comp f) :=
ext' $ image_image _ _ _
@[to_additive]
lemma map_le_iff_le_comap {f : M →* N} {S : submonoid M} {T : submonoid N} :
S.map f ≤ T ↔ S ≤ T.comap f :=
image_subset_iff
@[to_additive]
lemma gc_map_comap (f : M →* N) : galois_connection (map f) (comap f) :=
λ S T, map_le_iff_le_comap
@[to_additive]
lemma map_sup (S T : submonoid M) (f : M →* N) : (S ⊔ T).map f = S.map f ⊔ T.map f :=
(gc_map_comap f).l_sup
@[to_additive]
lemma map_supr {ι : Sort*} (f : M →* N) (s : ι → submonoid M) :
(supr s).map f = ⨆ i, (s i).map f :=
(gc_map_comap f).l_supr
@[to_additive]
lemma comap_inf (S T : submonoid N) (f : M →* N) : (S ⊓ T).comap f = S.comap f ⊓ T.comap f :=
(gc_map_comap f).u_inf
@[to_additive]
lemma comap_infi {ι : Sort*} (f : M →* N) (s : ι → submonoid N) :
(infi s).comap f = ⨅ i, (s i).comap f :=
(gc_map_comap f).u_infi
@[simp, to_additive] lemma map_bot (f : M →* N) : (⊥ : submonoid M).map f = ⊥ :=
(gc_map_comap f).l_bot
@[simp, to_additive] lemma comap_top (f : M →* N) : (⊤ : submonoid N).comap f = ⊤ :=
(gc_map_comap f).u_top
@[simp, to_additive] lemma map_id (S : submonoid M) : S.map (monoid_hom.id M) = S :=
ext (λ x, ⟨λ ⟨_, h, rfl⟩, h, λ h, ⟨_, h, rfl⟩⟩)
/-- A submonoid of a monoid inherits a multiplication. -/
@[to_additive "An `add_submonoid` of an `add_monoid` inherits an addition."]
instance has_mul : has_mul S := ⟨λ a b, ⟨a.1 * b.1, S.mul_mem a.2 b.2⟩⟩
/-- A submonoid of a monoid inherits a 1. -/
@[to_additive "An `add_submonoid` of an `add_monoid` inherits a zero."]
instance has_one : has_one S := ⟨⟨_, S.one_mem⟩⟩
@[simp, to_additive] lemma coe_mul (x y : S) : (↑(x * y) : M) = ↑x * ↑y := rfl
@[simp, to_additive] lemma coe_one : ((1 : S) : M) = 1 := rfl
attribute [norm_cast] coe_mul coe_one
attribute [norm_cast] add_submonoid.coe_add add_submonoid.coe_zero
/-- A submonoid of a monoid inherits a monoid structure. -/
@[to_additive to_add_monoid "An `add_submonoid` of an `add_monoid` inherits an `add_monoid`
structure."]
instance to_monoid {M : Type*} [monoid M] (S : submonoid M) : monoid S :=
by refine { mul := (*), one := 1, .. }; simp [mul_assoc, ← submonoid.coe_eq_coe]
/-- A submonoid of a `comm_monoid` is a `comm_monoid`. -/
@[to_additive to_add_comm_monoid "An `add_submonoid` of an `add_comm_monoid` is
an `add_comm_monoid`."]
instance to_comm_monoid {M} [comm_monoid M] (S : submonoid M) : comm_monoid S :=
{ mul_comm := λ _ _, subtype.eq $ mul_comm _ _, ..S.to_monoid}
/-- The natural monoid hom from a submonoid of monoid `M` to `M`. -/
@[to_additive "The natural monoid hom from an `add_submonoid` of `add_monoid` `M` to `M`."]
def subtype : S →* M := ⟨coe, rfl, λ _ _, rfl⟩
@[simp, to_additive] theorem coe_subtype : ⇑S.subtype = coe := rfl
/-- Given `submonoid`s `s`, `t` of monoids `M`, `N` respectively, `s × t` as a submonoid
of `M × N`. -/
@[to_additive prod "Given `add_submonoid`s `s`, `t` of `add_monoid`s `A`, `B` respectively, `s × t`
as an `add_submonoid` of `A × B`."]
def prod (s : submonoid M) (t : submonoid N) : submonoid (M × N) :=
{ carrier := (s : set M).prod t,
one_mem' := ⟨s.one_mem, t.one_mem⟩,
mul_mem' := λ p q hp hq, ⟨s.mul_mem hp.1 hq.1, t.mul_mem hp.2 hq.2⟩ }
@[to_additive coe_prod]
lemma coe_prod (s : submonoid M) (t : submonoid N) :
(s.prod t : set (M × N)) = (s : set M).prod (t : set N) :=
rfl
@[to_additive mem_prod]
lemma mem_prod {s : submonoid M} {t : submonoid N} {p : M × N} :
p ∈ s.prod t ↔ p.1 ∈ s ∧ p.2 ∈ t := iff.rfl
@[to_additive prod_mono]
lemma prod_mono {s₁ s₂ : submonoid M} {t₁ t₂ : submonoid N} (hs : s₁ ≤ s₂) (ht : t₁ ≤ t₂) :
s₁.prod t₁ ≤ s₂.prod t₂ :=
set.prod_mono hs ht
@[to_additive prod_top]
lemma prod_top (s : submonoid M) :
s.prod (⊤ : submonoid N) = s.comap (monoid_hom.fst M N) :=
ext $ λ x, by simp [mem_prod, monoid_hom.coe_fst]
@[to_additive top_prod]
lemma top_prod (s : submonoid N) :
(⊤ : submonoid M).prod s = s.comap (monoid_hom.snd M N) :=
ext $ λ x, by simp [mem_prod, monoid_hom.coe_snd]
@[simp, to_additive top_prod_top]
lemma top_prod_top : (⊤ : submonoid M).prod (⊤ : submonoid N) = ⊤ :=
(top_prod _).trans $ comap_top _
@[to_additive] lemma bot_prod_bot : (⊥ : submonoid M).prod (⊥ : submonoid N) = ⊥ :=
ext' $ by simp [coe_prod, prod.one_eq_mk]
/-- The product of submonoids is isomorphic to their product as monoids. -/
@[to_additive prod_equiv "The product of additive submonoids is isomorphic to their product
as additive monoids"]
def prod_equiv (s : submonoid M) (t : submonoid N) : s.prod t ≃* s × t :=
{ map_mul' := λ x y, rfl, .. equiv.set.prod ↑s ↑t }
open monoid_hom
@[to_additive]
lemma map_inl (s : submonoid M) : s.map (inl M N) = s.prod ⊥ :=
ext $ λ p, ⟨λ ⟨x, hx, hp⟩, hp ▸ ⟨hx, set.mem_singleton 1⟩,
λ ⟨hps, hp1⟩, ⟨p.1, hps, prod.ext rfl $ (set.eq_of_mem_singleton hp1).symm⟩⟩
@[to_additive]
lemma map_inr (s : submonoid N) : s.map (inr M N) = prod ⊥ s :=
ext $ λ p, ⟨λ ⟨x, hx, hp⟩, hp ▸ ⟨set.mem_singleton 1, hx⟩,
λ ⟨hp1, hps⟩, ⟨p.2, hps, prod.ext (set.eq_of_mem_singleton hp1).symm rfl⟩⟩
@[simp, to_additive prod_bot_sup_bot_prod]
lemma prod_bot_sup_bot_prod (s : submonoid M) (t : submonoid N) :
(s.prod ⊥) ⊔ (prod ⊥ t) = s.prod t :=
le_antisymm (sup_le (prod_mono (le_refl s) bot_le) (prod_mono bot_le (le_refl t))) $
assume p hp, prod.fst_mul_snd p ▸ mul_mem _
((le_sup_left : s.prod ⊥ ≤ s.prod ⊥ ⊔ prod ⊥ t) ⟨hp.1, set.mem_singleton 1⟩)
((le_sup_right : prod ⊥ t ≤ s.prod ⊥ ⊔ prod ⊥ t) ⟨set.mem_singleton 1, hp.2⟩)
end submonoid
namespace monoid_hom
open submonoid
/-- The range of a monoid homomorphism is a submonoid. -/
@[to_additive "The range of an `add_monoid_hom` is an `add_submonoid`."]
def mrange (f : M →* N) : submonoid N := (⊤ : submonoid M).map f
@[simp, to_additive] lemma coe_mrange (f : M →* N) :
(f.mrange : set N) = set.range f :=
set.image_univ
@[simp, to_additive] lemma mem_mrange {f : M →* N} {y : N} :
y ∈ f.mrange ↔ ∃ x, f x = y :=
by simp [mrange]
@[to_additive]
lemma map_mrange (g : N →* P) (f : M →* N) : f.mrange.map g = (g.comp f).mrange :=
(⊤ : submonoid M).map_map g f
@[to_additive]
lemma mrange_top_iff_surjective {N} [monoid N] {f : M →* N} :
f.mrange = (⊤ : submonoid N) ↔ function.surjective f :=
submonoid.ext'_iff.trans $ iff.trans (by rw [coe_mrange, coe_top]) set.range_iff_surjective
/-- The range of a surjective monoid hom is the whole of the codomain. -/
@[to_additive "The range of a surjective `add_monoid` hom is the whole of the codomain."]
lemma mrange_top_of_surjective {N} [monoid N] (f : M →* N) (hf : function.surjective f) :
f.mrange = (⊤ : submonoid N) :=
mrange_top_iff_surjective.2 hf
@[to_additive]
lemma mclosure_preimage_le (f : M →* N) (s : set N) :
closure (f ⁻¹' s) ≤ (closure s).comap f :=
closure_le.2 $ λ x hx, mem_coe.2 $ mem_comap.2 $ subset_closure hx
/-- The image under a monoid hom of the submonoid generated by a set equals the submonoid generated
by the image of the set. -/
@[to_additive "The image under an `add_monoid` hom of the `add_submonoid` generated by a set equals
the `add_submonoid` generated by the image of the set."]
lemma map_mclosure (f : M →* N) (s : set M) :
(closure s).map f = closure (f '' s) :=
le_antisymm
(map_le_iff_le_comap.2 $ le_trans (closure_mono $ set.subset_preimage_image _ _)
(mclosure_preimage_le _ _))
(closure_le.2 $ set.image_subset _ subset_closure)
/-- Restriction of a monoid hom to a submonoid of the domain. -/
@[to_additive "Restriction of an add_monoid hom to an `add_submonoid` of the domain."]
def mrestrict {N : Type*} [monoid N] (f : M →* N) (S : submonoid M) : S →* N := f.comp S.subtype
@[simp, to_additive]
lemma mrestrict_apply {N : Type*} [monoid N] (f : M →* N) (x : S) : f.mrestrict S x = f x := rfl
/-- Restriction of a monoid hom to a submonoid of the codomain. -/
@[to_additive "Restriction of an `add_monoid` hom to an `add_submonoid` of the codomain."]
def cod_mrestrict (f : M →* N) (S : submonoid N) (h : ∀ x, f x ∈ S) : M →* S :=
{ to_fun := λ n, ⟨f n, h n⟩,
map_one' := subtype.eq f.map_one,
map_mul' := λ x y, subtype.eq (f.map_mul x y) }
/-- Restriction of a monoid hom to its range interpreted as a submonoid. -/
@[to_additive "Restriction of an `add_monoid` hom to its range interpreted as a submonoid."]
def mrange_restrict {N} [monoid N] (f : M →* N) : M →* f.mrange :=
f.cod_mrestrict f.mrange $ λ x, ⟨x, submonoid.mem_top x, rfl⟩
@[simp, to_additive]
lemma coe_mrange_restrict {N} [monoid N] (f : M →* N) (x : M) :
(f.mrange_restrict x : N) = f x :=
rfl
end monoid_hom
namespace submonoid
open monoid_hom
@[to_additive]
lemma mrange_inl : (inl M N).mrange = prod ⊤ ⊥ := map_inl ⊤
@[to_additive]
lemma mrange_inr : (inr M N).mrange = prod ⊥ ⊤ := map_inr ⊤
@[to_additive]
lemma mrange_inl' : (inl M N).mrange = comap (snd M N) ⊥ := mrange_inl.trans (top_prod _)
@[to_additive]
lemma mrange_inr' : (inr M N).mrange = comap (fst M N) ⊥ := mrange_inr.trans (prod_top _)
@[simp, to_additive]
lemma mrange_fst : (fst M N).mrange = ⊤ :=
(fst M N).mrange_top_of_surjective $ @prod.fst_surjective _ _ ⟨1⟩
@[simp, to_additive]
lemma mrange_snd : (snd M N).mrange = ⊤ :=
(snd M N).mrange_top_of_surjective $ @prod.snd_surjective _ _ ⟨1⟩
@[simp, to_additive]
lemma mrange_inl_sup_mrange_inr : (inl M N).mrange ⊔ (inr M N).mrange = ⊤ :=
by simp only [mrange_inl, mrange_inr, prod_bot_sup_bot_prod, top_prod_top]
/-- The monoid hom associated to an inclusion of submonoids. -/
@[to_additive "The `add_monoid` hom associated to an inclusion of submonoids."]
def inclusion {S T : submonoid M} (h : S ≤ T) : S →* T :=
S.subtype.cod_mrestrict _ (λ x, h x.2)
@[simp, to_additive]
lemma range_subtype (s : submonoid M) : s.subtype.mrange = s :=
ext' $ (coe_mrange _).trans $ subtype.range_coe
end submonoid
namespace mul_equiv
variables {S} {T : submonoid M}
/-- Makes the identity isomorphism from a proof that two submonoids of a multiplicative
monoid are equal. -/
@[to_additive add_submonoid_congr "Makes the identity additive isomorphism from a proof two
submonoids of an additive monoid are equal."]
def submonoid_congr (h : S = T) : S ≃* T :=
{ map_mul' := λ _ _, rfl, ..equiv.set_congr $ submonoid.ext'_iff.1 h }
end mul_equiv
|
a8b7d946a13874d8eaae63a9060c15148c13755a
|
74addaa0e41490cbaf2abd313a764c96df57b05d
|
/Mathlib/data/set/intervals/infinite_auto.lean
|
eb1f792b4e2543b1a1dc6157c4e14c3cf995c3f2
|
[] |
no_license
|
AurelienSaue/Mathlib4_auto
|
f538cfd0980f65a6361eadea39e6fc639e9dae14
|
590df64109b08190abe22358fabc3eae000943f2
|
refs/heads/master
| 1,683,906,849,776
| 1,622,564,669,000
| 1,622,564,669,000
| 371,723,747
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 1,706
|
lean
|
/-
Copyright (c) 2020 Reid Barton. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Reid Barton
-/
import Mathlib.PrePort
import Mathlib.Lean3Lib.init.default
import Mathlib.data.set.finite
import Mathlib.PostPort
universes u_1
namespace Mathlib
/-!
# Infinitude of intervals
Bounded intervals in dense orders are infinite, as are unbounded intervals
in orders that are unbounded on the appropriate side.
-/
namespace set
theorem Ioo.infinite {α : Type u_1} [preorder α] [densely_ordered α] {a : α} {b : α} (h : a < b) :
infinite (Ioo a b) :=
sorry
theorem Ico.infinite {α : Type u_1} [preorder α] [densely_ordered α] {a : α} {b : α} (h : a < b) :
infinite (Ico a b) :=
infinite_mono Ioo_subset_Ico_self (Ioo.infinite h)
theorem Ioc.infinite {α : Type u_1} [preorder α] [densely_ordered α] {a : α} {b : α} (h : a < b) :
infinite (Ioc a b) :=
infinite_mono Ioo_subset_Ioc_self (Ioo.infinite h)
theorem Icc.infinite {α : Type u_1} [preorder α] [densely_ordered α] {a : α} {b : α} (h : a < b) :
infinite (Icc a b) :=
infinite_mono Ioo_subset_Icc_self (Ioo.infinite h)
theorem Iio.infinite {α : Type u_1} [preorder α] [no_bot_order α] {b : α} : infinite (Iio b) :=
sorry
theorem Iic.infinite {α : Type u_1} [preorder α] [no_bot_order α] {b : α} : infinite (Iic b) :=
infinite_mono Iio_subset_Iic_self Iio.infinite
theorem Ioi.infinite {α : Type u_1} [preorder α] [no_top_order α] {a : α} : infinite (Ioi a) :=
Iio.infinite
theorem Ici.infinite {α : Type u_1} [preorder α] [no_top_order α] {a : α} : infinite (Ici a) :=
infinite_mono Ioi_subset_Ici_self Ioi.infinite
end Mathlib
|
00979c53a13288dfbcf589ff9c3e76f979498b66
|
e0038484ecdd1beda33e5d88605201533d5f4297
|
/Lean/LEAN01.lean
|
9f6ac00e5651fa956bc58f9895959ad23fe992a6
|
[
"MIT"
] |
permissive
|
Brethland/LEARNING-STUFF
|
aa2899800117a90ad5b50b5109ee7aa138a51940
|
eb2cef0556efb9a4ce11783f8516789ea48cc344
|
refs/heads/master
| 1,633,628,909,614
| 1,632,827,784,000
| 1,632,827,784,000
| 206,292,930
| 2
| 1
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 1,107
|
lean
|
example (A B : Prop) : A ∧ ¬ B → ¬ B ∧ A :=
assume h, and.intro (and.right h) (and.left h)
lemma em (A : Prop) : A ∨ ¬ A :=
show A ∨ ¬ A, from sorry
example : true := trivial
example (A B : Prop) (a : A) (b : B) : A ∧ B :=
show A ∧ B, from and.intro a b
section exercises
variables A B C D : Prop
example : A ∧ (A → B) → B :=
assume ⟨h₁ , h₂⟩, h₂ h₁
example : A → ¬ (¬ A ∧ B) :=
assume : A, assume ⟨ h₁ , h₂ ⟩,
show false, from h₁ this
example : ¬ (A ∧ B) → (A → ¬ B) :=
assume h, assume a, assume b,
h ⟨ a , b ⟩
example (h₁ : A ∨ B) (h₂ : A → C) (h₃ : B → D) : C ∨ D :=
or.elim h₁
(assume a, or.inl (h₂ a))
(assume b, or.inr (h₃ b))
example (h : ¬ A ∧ ¬ B) : ¬ (A ∨ B) :=
assume : A ∨ B,
or.elim this
(assume a, have ¬ A, from h.left,
show false, from this a)
(assume b, have ¬ B, from h.right,
show false, from this b)
example : ¬ (A ↔ ¬ A) :=
assume m : A ↔ ¬ A,
or.elim (em A)
(assume c, (m.mp c) c)
(assume c, c (m.mpr c))
end exercises
|
186c219b573288cccbe0cefd0e643a9b951b0e98
|
947fa6c38e48771ae886239b4edce6db6e18d0fb
|
/src/algebra/monoid_algebra/basic.lean
|
be59f29d52cd23ddc2630194da08548b3cc05206
|
[
"Apache-2.0"
] |
permissive
|
ramonfmir/mathlib
|
c5dc8b33155473fab97c38bd3aa6723dc289beaa
|
14c52e990c17f5a00c0cc9e09847af16fabbed25
|
refs/heads/master
| 1,661,979,343,526
| 1,660,830,384,000
| 1,660,830,384,000
| 182,072,989
| 0
| 0
| null | 1,555,585,876,000
| 1,555,585,876,000
| null |
UTF-8
|
Lean
| false
| false
| 67,680
|
lean
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Yury G. Kudryashov, Scott Morrison
-/
import algebra.big_operators.finsupp
import algebra.hom.non_unital_alg
import linear_algebra.finsupp
/-!
# Monoid algebras
When the domain of a `finsupp` has a multiplicative or additive structure, we can define
a convolution product. To mathematicians this structure is known as the "monoid algebra",
i.e. the finite formal linear combinations over a given semiring of elements of the monoid.
The "group ring" ℤ[G] or the "group algebra" k[G] are typical uses.
In fact the construction of the "monoid algebra" makes sense when `G` is not even a monoid, but
merely a magma, i.e., when `G` carries a multiplication which is not required to satisfy any
conditions at all. In this case the construction yields a not-necessarily-unital,
not-necessarily-associative algebra but it is still adjoint to the forgetful functor from such
algebras to magmas, and we prove this as `monoid_algebra.lift_magma`.
In this file we define `monoid_algebra k G := G →₀ k`, and `add_monoid_algebra k G`
in the same way, and then define the convolution product on these.
When the domain is additive, this is used to define polynomials:
```
polynomial α := add_monoid_algebra ℕ α
mv_polynomial σ α := add_monoid_algebra (σ →₀ ℕ) α
```
When the domain is multiplicative, e.g. a group, this will be used to define the group ring.
## Implementation note
Unfortunately because additive and multiplicative structures both appear in both cases,
it doesn't appear to be possible to make much use of `to_additive`, and we just settle for
saying everything twice.
Similarly, I attempted to just define
`add_monoid_algebra k G := monoid_algebra k (multiplicative G)`, but the definitional equality
`multiplicative G = G` leaks through everywhere, and seems impossible to use.
-/
noncomputable theory
open_locale big_operators
open finset finsupp
universes u₁ u₂ u₃
variables (k : Type u₁) (G : Type u₂) {R : Type*}
/-! ### Multiplicative monoids -/
section
variables [semiring k]
/--
The monoid algebra over a semiring `k` generated by the monoid `G`.
It is the type of finite formal `k`-linear combinations of terms of `G`,
endowed with the convolution product.
-/
@[derive [inhabited, add_comm_monoid]]
def monoid_algebra : Type (max u₁ u₂) := G →₀ k
instance : has_coe_to_fun (monoid_algebra k G) (λ _, G → k) :=
finsupp.has_coe_to_fun
end
namespace monoid_algebra
variables {k G}
section
variables [semiring k] [non_unital_non_assoc_semiring R]
/-- A non-commutative version of `monoid_algebra.lift`: given a additive homomorphism `f : k →+ R`
and a homomorphism `g : G → R`, returns the additive homomorphism from
`monoid_algebra k G` such that `lift_nc f g (single a b) = f b * g a`. If `f` is a ring homomorphism
and the range of either `f` or `g` is in center of `R`, then the result is a ring homomorphism. If
`R` is a `k`-algebra and `f = algebra_map k R`, then the result is an algebra homomorphism called
`monoid_algebra.lift`. -/
def lift_nc (f : k →+ R) (g : G → R) : monoid_algebra k G →+ R :=
lift_add_hom (λ x : G, (add_monoid_hom.mul_right (g x)).comp f)
@[simp] lemma lift_nc_single (f : k →+ R) (g : G → R) (a : G) (b : k) :
lift_nc f g (single a b) = f b * g a :=
lift_add_hom_apply_single _ _ _
end
section has_mul
variables [semiring k] [has_mul G]
/-- The product of `f g : monoid_algebra k G` is the finitely supported function
whose value at `a` is the sum of `f x * g y` over all pairs `x, y`
such that `x * y = a`. (Think of the group ring of a group.) -/
instance : has_mul (monoid_algebra k G) :=
⟨λf g, f.sum $ λa₁ b₁, g.sum $ λa₂ b₂, single (a₁ * a₂) (b₁ * b₂)⟩
lemma mul_def {f g : monoid_algebra k G} :
f * g = (f.sum $ λa₁ b₁, g.sum $ λa₂ b₂, single (a₁ * a₂) (b₁ * b₂)) :=
rfl
instance : non_unital_non_assoc_semiring (monoid_algebra k G) :=
{ zero := 0,
mul := (*),
add := (+),
left_distrib := assume f g h, by simp only [mul_def, sum_add_index, mul_add, mul_zero,
single_zero, single_add, eq_self_iff_true, forall_true_iff, forall_3_true_iff, sum_add],
right_distrib := assume f g h, by simp only [mul_def, sum_add_index, add_mul, zero_mul,
single_zero, single_add, eq_self_iff_true, forall_true_iff, forall_3_true_iff, sum_zero,
sum_add],
zero_mul := assume f, by simp only [mul_def, sum_zero_index],
mul_zero := assume f, by simp only [mul_def, sum_zero_index, sum_zero],
.. finsupp.add_comm_monoid }
variables [semiring R]
lemma lift_nc_mul {g_hom : Type*} [mul_hom_class g_hom G R] (f : k →+* R) (g : g_hom)
(a b : monoid_algebra k G) (h_comm : ∀ {x y}, y ∈ a.support → commute (f (b x)) (g y)) :
lift_nc (f : k →+ R) g (a * b) = lift_nc (f : k →+ R) g a * lift_nc (f : k →+ R) g b :=
begin
conv_rhs { rw [← sum_single a, ← sum_single b] },
simp_rw [mul_def, (lift_nc _ g).map_finsupp_sum, lift_nc_single, finsupp.sum_mul,
finsupp.mul_sum],
refine finset.sum_congr rfl (λ y hy, finset.sum_congr rfl (λ x hx, _)),
simp [mul_assoc, (h_comm hy).left_comm]
end
end has_mul
section semigroup
variables [semiring k] [semigroup G] [semiring R]
instance : non_unital_semiring (monoid_algebra k G) :=
{ zero := 0,
mul := (*),
add := (+),
mul_assoc := assume f g h, by simp only [mul_def, sum_sum_index, sum_zero_index, sum_add_index,
sum_single_index, single_zero, single_add, eq_self_iff_true, forall_true_iff, forall_3_true_iff,
add_mul, mul_add, add_assoc, mul_assoc, zero_mul, mul_zero, sum_zero, sum_add],
.. monoid_algebra.non_unital_non_assoc_semiring}
end semigroup
section has_one
variables [non_assoc_semiring R] [semiring k] [has_one G]
/-- The unit of the multiplication is `single 1 1`, i.e. the function
that is `1` at `1` and zero elsewhere. -/
instance : has_one (monoid_algebra k G) :=
⟨single 1 1⟩
lemma one_def : (1 : monoid_algebra k G) = single 1 1 :=
rfl
@[simp] lemma lift_nc_one {g_hom : Type*} [one_hom_class g_hom G R] (f : k →+* R) (g : g_hom) :
lift_nc (f : k →+ R) g 1 = 1 :=
by simp [one_def]
end has_one
section mul_one_class
variables [semiring k] [mul_one_class G]
instance : non_assoc_semiring (monoid_algebra k G) :=
{ one := 1,
mul := (*),
zero := 0,
add := (+),
nat_cast := λ n, single 1 n,
nat_cast_zero := by simp [nat.cast],
nat_cast_succ := λ _, by simp [nat.cast]; refl,
one_mul := assume f, by simp only [mul_def, one_def, sum_single_index, zero_mul,
single_zero, sum_zero, zero_add, one_mul, sum_single],
mul_one := assume f, by simp only [mul_def, one_def, sum_single_index, mul_zero,
single_zero, sum_zero, add_zero, mul_one, sum_single],
..monoid_algebra.non_unital_non_assoc_semiring }
lemma nat_cast_def (n : ℕ) : (n : monoid_algebra k G) = single 1 n := rfl
end mul_one_class
/-! #### Semiring structure -/
section semiring
variables [semiring k] [monoid G]
instance : semiring (monoid_algebra k G) :=
{ one := 1,
mul := (*),
zero := 0,
add := (+),
.. monoid_algebra.non_unital_semiring,
.. monoid_algebra.non_assoc_semiring }
variables [semiring R]
/-- `lift_nc` as a `ring_hom`, for when `f x` and `g y` commute -/
def lift_nc_ring_hom (f : k →+* R) (g : G →* R) (h_comm : ∀ x y, commute (f x) (g y)) :
monoid_algebra k G →+* R :=
{ to_fun := lift_nc (f : k →+ R) g,
map_one' := lift_nc_one _ _,
map_mul' := λ a b, lift_nc_mul _ _ _ _ $ λ _ _ _, h_comm _ _,
..(lift_nc (f : k →+ R) g)}
end semiring
instance [comm_semiring k] [comm_semigroup G] : non_unital_comm_semiring (monoid_algebra k G) :=
{ mul_comm := assume f g,
begin
simp only [mul_def, finsupp.sum, mul_comm],
rw [finset.sum_comm],
simp only [mul_comm]
end,
.. monoid_algebra.non_unital_semiring }
instance [semiring k] [nontrivial k] [nonempty G]: nontrivial (monoid_algebra k G) :=
finsupp.nontrivial
/-! #### Derived instances -/
section derived_instances
instance [comm_semiring k] [comm_monoid G] : comm_semiring (monoid_algebra k G) :=
{ .. monoid_algebra.non_unital_comm_semiring,
.. monoid_algebra.semiring }
instance [semiring k] [subsingleton k] : unique (monoid_algebra k G) :=
finsupp.unique_of_right
instance [ring k] : add_comm_group (monoid_algebra k G) :=
finsupp.add_comm_group
instance [ring k] [has_mul G] : non_unital_non_assoc_ring (monoid_algebra k G) :=
{ .. monoid_algebra.add_comm_group,
.. monoid_algebra.non_unital_non_assoc_semiring }
instance [ring k] [semigroup G] : non_unital_ring (monoid_algebra k G) :=
{ .. monoid_algebra.add_comm_group,
.. monoid_algebra.non_unital_semiring }
instance [ring k] [mul_one_class G] : non_assoc_ring (monoid_algebra k G) :=
{ int_cast := λ z, single 1 (z : k),
int_cast_of_nat := λ n, by simpa,
int_cast_neg_succ_of_nat := λ n, by simpa,
.. monoid_algebra.add_comm_group,
.. monoid_algebra.non_assoc_semiring }
lemma int_cast_def [ring k] [mul_one_class G] (z : ℤ) : (z : monoid_algebra k G) = single 1 z := rfl
instance [ring k] [monoid G] : ring (monoid_algebra k G) :=
{ .. monoid_algebra.non_assoc_ring,
.. monoid_algebra.semiring }
instance [comm_ring k] [comm_semigroup G] : non_unital_comm_ring (monoid_algebra k G) :=
{ .. monoid_algebra.non_unital_comm_semiring,
.. monoid_algebra.non_unital_ring }
instance [comm_ring k] [comm_monoid G] : comm_ring (monoid_algebra k G) :=
{ .. monoid_algebra.non_unital_comm_ring,
.. monoid_algebra.ring }
variables {S : Type*}
instance [monoid R] [semiring k] [distrib_mul_action R k] :
has_smul R (monoid_algebra k G) :=
finsupp.has_smul
instance [monoid R] [semiring k] [distrib_mul_action R k] :
distrib_mul_action R (monoid_algebra k G) :=
finsupp.distrib_mul_action G k
instance [semiring R] [semiring k] [module R k] :
module R (monoid_algebra k G) :=
finsupp.module G k
instance [monoid R] [semiring k] [distrib_mul_action R k] [has_faithful_smul R k] [nonempty G] :
has_faithful_smul R (monoid_algebra k G) :=
finsupp.has_faithful_smul
instance [monoid R] [monoid S] [semiring k] [distrib_mul_action R k] [distrib_mul_action S k]
[has_smul R S] [is_scalar_tower R S k] :
is_scalar_tower R S (monoid_algebra k G) :=
finsupp.is_scalar_tower G k
instance [monoid R] [monoid S] [semiring k] [distrib_mul_action R k] [distrib_mul_action S k]
[smul_comm_class R S k] :
smul_comm_class R S (monoid_algebra k G) :=
finsupp.smul_comm_class G k
instance [monoid R] [semiring k] [distrib_mul_action R k] [distrib_mul_action Rᵐᵒᵖ k]
[is_central_scalar R k] :
is_central_scalar R (monoid_algebra k G) :=
finsupp.is_central_scalar G k
/-- This is not an instance as it conflicts with `monoid_algebra.distrib_mul_action` when `G = kˣ`.
-/
def comap_distrib_mul_action_self [group G] [semiring k] :
distrib_mul_action G (monoid_algebra k G) :=
finsupp.comap_distrib_mul_action
end derived_instances
section misc_theorems
variables [semiring k]
local attribute [reducible] monoid_algebra
lemma mul_apply [decidable_eq G] [has_mul G] (f g : monoid_algebra k G) (x : G) :
(f * g) x = (f.sum $ λa₁ b₁, g.sum $ λa₂ b₂, if a₁ * a₂ = x then b₁ * b₂ else 0) :=
begin
rw [mul_def],
simp only [finsupp.sum_apply, single_apply],
end
lemma mul_apply_antidiagonal [has_mul G] (f g : monoid_algebra k G) (x : G) (s : finset (G × G))
(hs : ∀ {p : G × G}, p ∈ s ↔ p.1 * p.2 = x) :
(f * g) x = ∑ p in s, (f p.1 * g p.2) :=
let F : G × G → k := λ p, by classical; exact if p.1 * p.2 = x then f p.1 * g p.2 else 0 in
calc (f * g) x = (∑ a₁ in f.support, ∑ a₂ in g.support, F (a₁, a₂)) :
mul_apply f g x
... = ∑ p in f.support ×ˢ g.support, F p : finset.sum_product.symm
... = ∑ p in (f.support ×ˢ g.support).filter (λ p : G × G, p.1 * p.2 = x), f p.1 * g p.2 :
(finset.sum_filter _ _).symm
... = ∑ p in s.filter (λ p : G × G, p.1 ∈ f.support ∧ p.2 ∈ g.support), f p.1 * g p.2 :
sum_congr (by { ext, simp only [mem_filter, mem_product, hs, and_comm] }) (λ _ _, rfl)
... = ∑ p in s, f p.1 * g p.2 : sum_subset (filter_subset _ _) $ λ p hps hp,
begin
simp only [mem_filter, mem_support_iff, not_and, not_not] at hp ⊢,
by_cases h1 : f p.1 = 0,
{ rw [h1, zero_mul] },
{ rw [hp hps h1, mul_zero] }
end
lemma support_mul [has_mul G] [decidable_eq G] (a b : monoid_algebra k G) :
(a * b).support ⊆ a.support.bUnion (λa₁, b.support.bUnion $ λa₂, {a₁ * a₂}) :=
subset.trans support_sum $ bUnion_mono $ assume a₁ _,
subset.trans support_sum $ bUnion_mono $ assume a₂ _, support_single_subset
@[simp] lemma single_mul_single [has_mul G] {a₁ a₂ : G} {b₁ b₂ : k} :
(single a₁ b₁ : monoid_algebra k G) * single a₂ b₂ = single (a₁ * a₂) (b₁ * b₂) :=
(sum_single_index (by simp only [zero_mul, single_zero, sum_zero])).trans
(sum_single_index (by rw [mul_zero, single_zero]))
@[simp] lemma single_pow [monoid G] {a : G} {b : k} :
∀ n : ℕ, (single a b : monoid_algebra k G)^n = single (a^n) (b ^ n)
| 0 := by { simp only [pow_zero], refl }
| (n+1) := by simp only [pow_succ, single_pow n, single_mul_single]
section
/-- Like `finsupp.map_domain_zero`, but for the `1` we define in this file -/
@[simp] lemma map_domain_one {α : Type*} {β : Type*} {α₂ : Type*}
[semiring β] [has_one α] [has_one α₂] {F : Type*} [one_hom_class F α α₂] (f : F) :
(map_domain f (1 : monoid_algebra β α) : monoid_algebra β α₂) = (1 : monoid_algebra β α₂) :=
by simp_rw [one_def, map_domain_single, map_one]
/-- Like `finsupp.map_domain_add`, but for the convolutive multiplication we define in this file -/
lemma map_domain_mul {α : Type*} {β : Type*} {α₂ : Type*} [semiring β] [has_mul α] [has_mul α₂]
{F : Type*} [mul_hom_class F α α₂] (f : F) (x y : monoid_algebra β α) :
(map_domain f (x * y : monoid_algebra β α) : monoid_algebra β α₂) =
(map_domain f x * map_domain f y : monoid_algebra β α₂) :=
begin
simp_rw [mul_def, map_domain_sum, map_domain_single, map_mul],
rw finsupp.sum_map_domain_index,
{ congr,
ext a b,
rw finsupp.sum_map_domain_index,
{ simp },
{ simp [mul_add] } },
{ simp },
{ simp [add_mul] }
end
variables (k G)
/-- The embedding of a magma into its magma algebra. -/
@[simps] def of_magma [has_mul G] : G →ₙ* (monoid_algebra k G) :=
{ to_fun := λ a, single a 1,
map_mul' := λ a b, by simp only [mul_def, mul_one, sum_single_index, single_eq_zero, mul_zero], }
/-- The embedding of a unital magma into its magma algebra. -/
@[simps] def of [mul_one_class G] : G →* monoid_algebra k G :=
{ to_fun := λ a, single a 1,
map_one' := rfl,
.. of_magma k G }
end
lemma smul_of [mul_one_class G] (g : G) (r : k) :
r • (of k G g) = single g r := by simp
lemma of_injective [mul_one_class G] [nontrivial k] : function.injective (of k G) :=
λ a b h, by simpa using (single_eq_single_iff _ _ _ _).mp h
/--
`finsupp.single` as a `monoid_hom` from the product type into the monoid algebra.
Note the order of the elements of the product are reversed compared to the arguments of
`finsupp.single`.
-/
@[simps] def single_hom [mul_one_class G] : k × G →* monoid_algebra k G :=
{ to_fun := λ a, single a.2 a.1,
map_one' := rfl,
map_mul' := λ a b, single_mul_single.symm }
lemma mul_single_apply_aux [has_mul G] (f : monoid_algebra k G) {r : k}
{x y z : G} (H : ∀ a, a * x = z ↔ a = y) :
(f * single x r) z = f y * r :=
by classical; exact
have A : ∀ a₁ b₁, (single x r).sum (λ a₂ b₂, ite (a₁ * a₂ = z) (b₁ * b₂) 0) =
ite (a₁ * x = z) (b₁ * r) 0,
from λ a₁ b₁, sum_single_index $ by simp,
calc (f * single x r) z = sum f (λ a b, if (a = y) then (b * r) else 0) :
by simp only [mul_apply, A, H]
... = if y ∈ f.support then f y * r else 0 : f.support.sum_ite_eq' _ _
... = f y * r : by split_ifs with h; simp at h; simp [h]
lemma mul_single_one_apply [mul_one_class G] (f : monoid_algebra k G) (r : k) (x : G) :
(f * single 1 r) x = f x * r :=
f.mul_single_apply_aux $ λ a, by rw [mul_one]
lemma support_mul_single [right_cancel_semigroup G]
(f : monoid_algebra k G) (r : k) (hr : ∀ y, y * r = 0 ↔ y = 0) (x : G) :
(f * single x r).support = f.support.map (mul_right_embedding x) :=
begin
ext y, simp only [mem_support_iff, mem_map, exists_prop, mul_right_embedding_apply],
by_cases H : ∃ a, a * x = y,
{ rcases H with ⟨a, rfl⟩,
rw [mul_single_apply_aux f (λ _, mul_left_inj x)],
simp [hr] },
{ push_neg at H,
classical,
simp [mul_apply, H] }
end
lemma single_mul_apply_aux [has_mul G] (f : monoid_algebra k G) {r : k} {x y z : G}
(H : ∀ a, x * a = y ↔ a = z) :
(single x r * f) y = r * f z :=
by classical; exact (
have f.sum (λ a b, ite (x * a = y) (0 * b) 0) = 0, by simp,
calc (single x r * f) y = sum f (λ a b, ite (x * a = y) (r * b) 0) :
(mul_apply _ _ _).trans $ sum_single_index (by exact this)
... = f.sum (λ a b, ite (a = z) (r * b) 0) : by simp only [H]
... = if z ∈ f.support then (r * f z) else 0 : f.support.sum_ite_eq' _ _
... = _ : by split_ifs with h; simp at h; simp [h])
lemma single_one_mul_apply [mul_one_class G] (f : monoid_algebra k G) (r : k) (x : G) :
(single 1 r * f) x = r * f x :=
f.single_mul_apply_aux $ λ a, by rw [one_mul]
lemma support_single_mul [left_cancel_semigroup G]
(f : monoid_algebra k G) (r : k) (hr : ∀ y, r * y = 0 ↔ y = 0) (x : G) :
(single x r * f).support = f.support.map (mul_left_embedding x) :=
begin
ext y, simp only [mem_support_iff, mem_map, exists_prop, mul_left_embedding_apply],
by_cases H : ∃ a, x * a = y,
{ rcases H with ⟨a, rfl⟩,
rw [single_mul_apply_aux f (λ _, mul_right_inj x)],
simp [hr] },
{ push_neg at H,
classical,
simp [mul_apply, H] }
end
lemma lift_nc_smul [mul_one_class G] {R : Type*} [semiring R] (f : k →+* R) (g : G →* R) (c : k)
(φ : monoid_algebra k G) :
lift_nc (f : k →+ R) g (c • φ) = f c * lift_nc (f : k →+ R) g φ :=
begin
suffices : (lift_nc ↑f g).comp (smul_add_hom k (monoid_algebra k G) c) =
(add_monoid_hom.mul_left (f c)).comp (lift_nc ↑f g),
from add_monoid_hom.congr_fun this φ,
ext a b, simp [mul_assoc]
end
end misc_theorems
/-! #### Non-unital, non-associative algebra structure -/
section non_unital_non_assoc_algebra
variables (k) [monoid R] [semiring k] [distrib_mul_action R k] [has_mul G]
instance is_scalar_tower_self [is_scalar_tower R k k] :
is_scalar_tower R (monoid_algebra k G) (monoid_algebra k G) :=
⟨λ t a b,
begin
ext m,
classical,
simp only [mul_apply, finsupp.smul_sum, smul_ite, smul_mul_assoc, sum_smul_index', zero_mul,
if_t_t, implies_true_iff, eq_self_iff_true, sum_zero, coe_smul, smul_eq_mul, pi.smul_apply,
smul_zero],
end⟩
/-- Note that if `k` is a `comm_semiring` then we have `smul_comm_class k k k` and so we can take
`R = k` in the below. In other words, if the coefficients are commutative amongst themselves, they
also commute with the algebra multiplication. -/
instance smul_comm_class_self [smul_comm_class R k k] :
smul_comm_class R (monoid_algebra k G) (monoid_algebra k G) :=
⟨λ t a b,
begin
ext m,
simp only [mul_apply, finsupp.sum, finset.smul_sum, smul_ite, mul_smul_comm, sum_smul_index',
implies_true_iff, eq_self_iff_true, coe_smul, ite_eq_right_iff, smul_eq_mul, pi.smul_apply,
mul_zero, smul_zero],
end⟩
instance smul_comm_class_symm_self [smul_comm_class k R k] :
smul_comm_class (monoid_algebra k G) R (monoid_algebra k G) :=
⟨λ t a b, by { haveI := smul_comm_class.symm k R k, rw ← smul_comm, } ⟩
variables {A : Type u₃} [non_unital_non_assoc_semiring A]
/-- A non_unital `k`-algebra homomorphism from `monoid_algebra k G` is uniquely defined by its
values on the functions `single a 1`. -/
lemma non_unital_alg_hom_ext [distrib_mul_action k A]
{φ₁ φ₂ : monoid_algebra k G →ₙₐ[k] A}
(h : ∀ x, φ₁ (single x 1) = φ₂ (single x 1)) : φ₁ = φ₂ :=
non_unital_alg_hom.to_distrib_mul_action_hom_injective $
finsupp.distrib_mul_action_hom_ext' $
λ a, distrib_mul_action_hom.ext_ring (h a)
/-- See note [partially-applied ext lemmas]. -/
@[ext] lemma non_unital_alg_hom_ext' [distrib_mul_action k A]
{φ₁ φ₂ : monoid_algebra k G →ₙₐ[k] A}
(h : φ₁.to_mul_hom.comp (of_magma k G) = φ₂.to_mul_hom.comp (of_magma k G)) : φ₁ = φ₂ :=
non_unital_alg_hom_ext k $ mul_hom.congr_fun h
/-- The functor `G ↦ monoid_algebra k G`, from the category of magmas to the category of non-unital,
non-associative algebras over `k` is adjoint to the forgetful functor in the other direction. -/
@[simps] def lift_magma [module k A] [is_scalar_tower k A A] [smul_comm_class k A A] :
(G →ₙ* A) ≃ (monoid_algebra k G →ₙₐ[k] A) :=
{ to_fun := λ f,
{ to_fun := λ a, a.sum (λ m t, t • f m),
map_smul' := λ t' a,
begin
rw [finsupp.smul_sum, sum_smul_index'],
{ simp_rw smul_assoc, },
{ intros m, exact zero_smul k (f m), },
end,
map_mul' := λ a₁ a₂,
begin
let g : G → k → A := λ m t, t • f m,
have h₁ : ∀ m, g m 0 = 0, { intros, exact zero_smul k (f m), },
have h₂ : ∀ m (t₁ t₂ : k), g m (t₁ + t₂) = g m t₁ + g m t₂, { intros, rw ← add_smul, },
simp_rw [finsupp.mul_sum, finsupp.sum_mul, smul_mul_smul, ← f.map_mul, mul_def,
sum_comm a₂ a₁, sum_sum_index h₁ h₂, sum_single_index (h₁ _)],
end,
.. lift_add_hom (λ x, (smul_add_hom k A).flip (f x)) },
inv_fun := λ F, F.to_mul_hom.comp (of_magma k G),
left_inv := λ f, by { ext m, simp only [non_unital_alg_hom.coe_mk, of_magma_apply,
non_unital_alg_hom.to_mul_hom_eq_coe, sum_single_index, function.comp_app, one_smul, zero_smul,
mul_hom.coe_comp, non_unital_alg_hom.coe_to_mul_hom], },
right_inv := λ F, by { ext m, simp only [non_unital_alg_hom.coe_mk, of_magma_apply,
non_unital_alg_hom.to_mul_hom_eq_coe, sum_single_index, function.comp_app, one_smul, zero_smul,
mul_hom.coe_comp, non_unital_alg_hom.coe_to_mul_hom], }, }
end non_unital_non_assoc_algebra
/-! #### Algebra structure -/
section algebra
local attribute [reducible] monoid_algebra
lemma single_one_comm [comm_semiring k] [mul_one_class G] (r : k) (f : monoid_algebra k G) :
single 1 r * f = f * single 1 r :=
by { ext, rw [single_one_mul_apply, mul_single_one_apply, mul_comm] }
/-- `finsupp.single 1` as a `ring_hom` -/
@[simps] def single_one_ring_hom [semiring k] [mul_one_class G] : k →+* monoid_algebra k G :=
{ map_one' := rfl,
map_mul' := λ x y, by rw [single_add_hom, single_mul_single, one_mul],
..finsupp.single_add_hom 1}
/-- If `f : G → H` is a multiplicative homomorphism between two monoids, then
`finsupp.map_domain f` is a ring homomorphism between their monoid algebras. -/
@[simps]
def map_domain_ring_hom (k : Type*) {H F : Type*} [semiring k] [monoid G] [monoid H]
[monoid_hom_class F G H] (f : F) :
monoid_algebra k G →+* monoid_algebra k H :=
{ map_one' := map_domain_one f,
map_mul' := λ x y, map_domain_mul f x y,
..(finsupp.map_domain.add_monoid_hom f : monoid_algebra k G →+ monoid_algebra k H) }
/-- If two ring homomorphisms from `monoid_algebra k G` are equal on all `single a 1`
and `single 1 b`, then they are equal. -/
lemma ring_hom_ext {R} [semiring k] [mul_one_class G] [semiring R]
{f g : monoid_algebra k G →+* R} (h₁ : ∀ b, f (single 1 b) = g (single 1 b))
(h_of : ∀ a, f (single a 1) = g (single a 1)) : f = g :=
ring_hom.coe_add_monoid_hom_injective $ add_hom_ext $ λ a b,
by rw [← one_mul a, ← mul_one b, ← single_mul_single, f.coe_add_monoid_hom,
g.coe_add_monoid_hom, f.map_mul, g.map_mul, h₁, h_of]
/-- If two ring homomorphisms from `monoid_algebra k G` are equal on all `single a 1`
and `single 1 b`, then they are equal.
See note [partially-applied ext lemmas]. -/
@[ext] lemma ring_hom_ext' {R} [semiring k] [mul_one_class G] [semiring R]
{f g : monoid_algebra k G →+* R} (h₁ : f.comp single_one_ring_hom = g.comp single_one_ring_hom)
(h_of : (f : monoid_algebra k G →* R).comp (of k G) =
(g : monoid_algebra k G →* R).comp (of k G)) :
f = g :=
ring_hom_ext (ring_hom.congr_fun h₁) (monoid_hom.congr_fun h_of)
/--
The instance `algebra k (monoid_algebra A G)` whenever we have `algebra k A`.
In particular this provides the instance `algebra k (monoid_algebra k G)`.
-/
instance {A : Type*} [comm_semiring k] [semiring A] [algebra k A] [monoid G] :
algebra k (monoid_algebra A G) :=
{ smul_def' := λ r a, by { ext, simp [single_one_mul_apply, algebra.smul_def, pi.smul_apply], },
commutes' := λ r f, by { ext, simp [single_one_mul_apply, mul_single_one_apply,
algebra.commutes], },
..single_one_ring_hom.comp (algebra_map k A) }
/-- `finsupp.single 1` as a `alg_hom` -/
@[simps]
def single_one_alg_hom {A : Type*} [comm_semiring k] [semiring A] [algebra k A] [monoid G] :
A →ₐ[k] monoid_algebra A G :=
{ commutes' := λ r, by { ext, simp, refl, }, ..single_one_ring_hom}
@[simp] lemma coe_algebra_map {A : Type*} [comm_semiring k] [semiring A] [algebra k A] [monoid G] :
⇑(algebra_map k (monoid_algebra A G)) = single 1 ∘ (algebra_map k A) :=
rfl
lemma single_eq_algebra_map_mul_of [comm_semiring k] [monoid G] (a : G) (b : k) :
single a b = algebra_map k (monoid_algebra k G) b * of k G a :=
by simp
lemma single_algebra_map_eq_algebra_map_mul_of {A : Type*} [comm_semiring k] [semiring A]
[algebra k A] [monoid G] (a : G) (b : k) :
single a (algebra_map k A b) = algebra_map k (monoid_algebra A G) b * of A G a :=
by simp
lemma induction_on [semiring k] [monoid G] {p : monoid_algebra k G → Prop} (f : monoid_algebra k G)
(hM : ∀ g, p (of k G g)) (hadd : ∀ f g : monoid_algebra k G, p f → p g → p (f + g))
(hsmul : ∀ (r : k) f, p f → p (r • f)) : p f :=
begin
refine finsupp.induction_linear f _ (λ f g hf hg, hadd f g hf hg) (λ g r, _),
{ simpa using hsmul 0 (of k G 1) (hM 1) },
{ convert hsmul r (of k G g) (hM g),
simp only [mul_one, smul_single', of_apply] },
end
end algebra
section lift
variables {k G} [comm_semiring k] [monoid G]
variables {A : Type u₃} [semiring A] [algebra k A] {B : Type*} [semiring B] [algebra k B]
/-- `lift_nc_ring_hom` as a `alg_hom`, for when `f` is an `alg_hom` -/
def lift_nc_alg_hom (f : A →ₐ[k] B) (g : G →* B) (h_comm : ∀ x y, commute (f x) (g y)) :
monoid_algebra A G →ₐ[k] B :=
{ to_fun := lift_nc_ring_hom (f : A →+* B) g h_comm,
commutes' := by simp [lift_nc_ring_hom],
..(lift_nc_ring_hom (f : A →+* B) g h_comm)}
/-- A `k`-algebra homomorphism from `monoid_algebra k G` is uniquely defined by its
values on the functions `single a 1`. -/
lemma alg_hom_ext ⦃φ₁ φ₂ : monoid_algebra k G →ₐ[k] A⦄
(h : ∀ x, φ₁ (single x 1) = φ₂ (single x 1)) : φ₁ = φ₂ :=
alg_hom.to_linear_map_injective $ finsupp.lhom_ext' $ λ a, linear_map.ext_ring (h a)
/-- See note [partially-applied ext lemmas]. -/
@[ext] lemma alg_hom_ext' ⦃φ₁ φ₂ : monoid_algebra k G →ₐ[k] A⦄
(h : (φ₁ : monoid_algebra k G →* A).comp (of k G) =
(φ₂ : monoid_algebra k G →* A).comp (of k G)) : φ₁ = φ₂ :=
alg_hom_ext $ monoid_hom.congr_fun h
variables (k G A)
/-- Any monoid homomorphism `G →* A` can be lifted to an algebra homomorphism
`monoid_algebra k G →ₐ[k] A`. -/
def lift : (G →* A) ≃ (monoid_algebra k G →ₐ[k] A) :=
{ inv_fun := λ f, (f : monoid_algebra k G →* A).comp (of k G),
to_fun := λ F, lift_nc_alg_hom (algebra.of_id k A) F $ λ _ _, algebra.commutes _ _,
left_inv := λ f, by { ext, simp [lift_nc_alg_hom, lift_nc_ring_hom] },
right_inv := λ F, by { ext, simp [lift_nc_alg_hom, lift_nc_ring_hom] } }
variables {k G A}
lemma lift_apply' (F : G →* A) (f : monoid_algebra k G) :
lift k G A F f = f.sum (λ a b, (algebra_map k A b) * F a) := rfl
lemma lift_apply (F : G →* A) (f : monoid_algebra k G) :
lift k G A F f = f.sum (λ a b, b • F a) :=
by simp only [lift_apply', algebra.smul_def]
lemma lift_def (F : G →* A) :
⇑(lift k G A F) = lift_nc ((algebra_map k A : k →+* A) : k →+ A) F :=
rfl
@[simp] lemma lift_symm_apply (F : monoid_algebra k G →ₐ[k] A) (x : G) :
(lift k G A).symm F x = F (single x 1) := rfl
lemma lift_of (F : G →* A) (x) :
lift k G A F (of k G x) = F x :=
by rw [of_apply, ← lift_symm_apply, equiv.symm_apply_apply]
@[simp] lemma lift_single (F : G →* A) (a b) :
lift k G A F (single a b) = b • F a :=
by rw [lift_def, lift_nc_single, algebra.smul_def, ring_hom.coe_add_monoid_hom]
lemma lift_unique' (F : monoid_algebra k G →ₐ[k] A) :
F = lift k G A ((F : monoid_algebra k G →* A).comp (of k G)) :=
((lift k G A).apply_symm_apply F).symm
/-- Decomposition of a `k`-algebra homomorphism from `monoid_algebra k G` by
its values on `F (single a 1)`. -/
lemma lift_unique (F : monoid_algebra k G →ₐ[k] A) (f : monoid_algebra k G) :
F f = f.sum (λ a b, b • F (single a 1)) :=
by conv_lhs { rw lift_unique' F, simp [lift_apply] }
/-- If `f : G → H` is a homomorphism between two magmas, then
`finsupp.map_domain f` is a non-unital algebra homomorphism between their magma algebras. -/
@[simps]
def map_domain_non_unital_alg_hom (k A : Type*) [comm_semiring k] [semiring A] [algebra k A]
{G H F : Type*} [has_mul G] [has_mul H] [mul_hom_class F G H] (f : F) :
monoid_algebra A G →ₙₐ[k] monoid_algebra A H :=
{ map_mul' := λ x y, map_domain_mul f x y,
map_smul' := λ r x, map_domain_smul r x,
..(finsupp.map_domain.add_monoid_hom f : monoid_algebra A G →+ monoid_algebra A H) }
lemma map_domain_algebra_map (k A : Type*) {H F : Type*} [comm_semiring k] [semiring A]
[algebra k A] [monoid H] [monoid_hom_class F G H] (f : F) (r : k) :
map_domain f (algebra_map k (monoid_algebra A G) r) =
algebra_map k (monoid_algebra A H) r :=
by simp only [coe_algebra_map, map_domain_single, map_one]
/-- If `f : G → H` is a multiplicative homomorphism between two monoids, then
`finsupp.map_domain f` is an algebra homomorphism between their monoid algebras. -/
@[simps]
def map_domain_alg_hom (k A : Type*) [comm_semiring k] [semiring A] [algebra k A] {H F : Type*}
[monoid H] [monoid_hom_class F G H] (f : F) :
monoid_algebra A G →ₐ[k] monoid_algebra A H :=
{ commutes' := map_domain_algebra_map k A f,
..map_domain_ring_hom A f}
end lift
section
local attribute [reducible] monoid_algebra
variables (k)
/-- When `V` is a `k[G]`-module, multiplication by a group element `g` is a `k`-linear map. -/
def group_smul.linear_map [monoid G] [comm_semiring k]
(V : Type u₃) [add_comm_monoid V] [module k V] [module (monoid_algebra k G) V]
[is_scalar_tower k (monoid_algebra k G) V] (g : G) :
V →ₗ[k] V :=
{ to_fun := λ v, (single g (1 : k) • v : V),
map_add' := λ x y, smul_add (single g (1 : k)) x y,
map_smul' := λ c x, smul_algebra_smul_comm _ _ _ }
@[simp]
lemma group_smul.linear_map_apply [monoid G] [comm_semiring k]
(V : Type u₃) [add_comm_monoid V] [module k V] [module (monoid_algebra k G) V]
[is_scalar_tower k (monoid_algebra k G) V] (g : G) (v : V) :
(group_smul.linear_map k V g) v = (single g (1 : k) • v : V) :=
rfl
section
variables {k}
variables [monoid G] [comm_semiring k] {V W : Type u₃}
[add_comm_monoid V] [module k V] [module (monoid_algebra k G) V]
[is_scalar_tower k (monoid_algebra k G) V]
[add_comm_monoid W] [module k W] [module (monoid_algebra k G) W]
[is_scalar_tower k (monoid_algebra k G) W]
(f : V →ₗ[k] W)
(h : ∀ (g : G) (v : V), f (single g (1 : k) • v : V) = (single g (1 : k) • (f v) : W))
include h
/-- Build a `k[G]`-linear map from a `k`-linear map and evidence that it is `G`-equivariant. -/
def equivariant_of_linear_of_comm : V →ₗ[monoid_algebra k G] W :=
{ to_fun := f,
map_add' := λ v v', by simp,
map_smul' := λ c v,
begin
apply finsupp.induction c,
{ simp, },
{ intros g r c' nm nz w,
dsimp at *,
simp only [add_smul, f.map_add, w, add_left_inj, single_eq_algebra_map_mul_of, ← smul_smul],
erw [algebra_map_smul (monoid_algebra k G) r, algebra_map_smul (monoid_algebra k G) r,
f.map_smul, h g v, of_apply],
all_goals { apply_instance } }
end, }
@[simp]
lemma equivariant_of_linear_of_comm_apply (v : V) : (equivariant_of_linear_of_comm f h) v = f v :=
rfl
end
end
section
universe ui
variable {ι : Type ui}
local attribute [reducible] monoid_algebra
lemma prod_single [comm_semiring k] [comm_monoid G]
{s : finset ι} {a : ι → G} {b : ι → k} :
(∏ i in s, single (a i) (b i)) = single (∏ i in s, a i) (∏ i in s, b i) :=
finset.cons_induction_on s rfl $ λ a s has ih, by rw [prod_cons has, ih,
single_mul_single, prod_cons has, prod_cons has]
end
section -- We now prove some additional statements that hold for group algebras.
variables [semiring k] [group G]
local attribute [reducible] monoid_algebra
@[simp]
lemma mul_single_apply (f : monoid_algebra k G) (r : k) (x y : G) :
(f * single x r) y = f (y * x⁻¹) * r :=
f.mul_single_apply_aux $ λ a, eq_mul_inv_iff_mul_eq.symm
@[simp]
lemma single_mul_apply (r : k) (x : G) (f : monoid_algebra k G) (y : G) :
(single x r * f) y = r * f (x⁻¹ * y) :=
f.single_mul_apply_aux $ λ z, eq_inv_mul_iff_mul_eq.symm
lemma mul_apply_left (f g : monoid_algebra k G) (x : G) :
(f * g) x = (f.sum $ λ a b, b * (g (a⁻¹ * x))) :=
calc (f * g) x = sum f (λ a b, (single a b * g) x) :
by rw [← finsupp.sum_apply, ← finsupp.sum_mul, f.sum_single]
... = _ : by simp only [single_mul_apply, finsupp.sum]
-- If we'd assumed `comm_semiring`, we could deduce this from `mul_apply_left`.
lemma mul_apply_right (f g : monoid_algebra k G) (x : G) :
(f * g) x = (g.sum $ λa b, (f (x * a⁻¹)) * b) :=
calc (f * g) x = sum g (λ a b, (f * single a b) x) :
by rw [← finsupp.sum_apply, ← finsupp.mul_sum, g.sum_single]
... = _ : by simp only [mul_single_apply, finsupp.sum]
end
section span
variables [semiring k] [mul_one_class G]
/-- An element of `monoid_algebra R M` is in the subalgebra generated by its support. -/
lemma mem_span_support (f : monoid_algebra k G) :
f ∈ submodule.span k (of k G '' (f.support : set G)) :=
by rw [of, monoid_hom.coe_mk, ← finsupp.supported_eq_span_single, finsupp.mem_supported]
end span
section opposite
open finsupp mul_opposite
variables [semiring k]
/-- The opposite of an `monoid_algebra R I` equivalent as a ring to
the `monoid_algebra Rᵐᵒᵖ Iᵐᵒᵖ` over the opposite ring, taking elements to their opposite. -/
@[simps {simp_rhs := tt}] protected noncomputable def op_ring_equiv [monoid G] :
(monoid_algebra k G)ᵐᵒᵖ ≃+* monoid_algebra kᵐᵒᵖ Gᵐᵒᵖ :=
{ map_mul' := begin
dsimp only [add_equiv.to_fun_eq_coe, ←add_equiv.coe_to_add_monoid_hom],
rw add_monoid_hom.map_mul_iff,
ext i₁ r₁ i₂ r₂ : 6,
simp
end,
..op_add_equiv.symm.trans $ (finsupp.map_range.add_equiv (op_add_equiv : k ≃+ kᵐᵒᵖ)).trans $
finsupp.dom_congr op_equiv }
@[simp] lemma op_ring_equiv_single [monoid G] (r : k) (x : G) :
monoid_algebra.op_ring_equiv (op (single x r)) = single (op x) (op r) :=
by simp
@[simp] lemma op_ring_equiv_symm_single [monoid G] (r : kᵐᵒᵖ) (x : Gᵐᵒᵖ) :
monoid_algebra.op_ring_equiv.symm (single x r) = op (single x.unop r.unop) :=
by simp
end opposite
section submodule
variables {k G} [comm_semiring k] [monoid G]
variables {V : Type*} [add_comm_monoid V]
variables [module k V] [module (monoid_algebra k G) V] [is_scalar_tower k (monoid_algebra k G) V]
/-- A submodule over `k` which is stable under scalar multiplication by elements of `G` is a
submodule over `monoid_algebra k G` -/
def submodule_of_smul_mem (W : submodule k V) (h : ∀ (g : G) (v : V), v ∈ W → (of k G g) • v ∈ W) :
submodule (monoid_algebra k G) V :=
{ carrier := W,
zero_mem' := W.zero_mem',
add_mem' := W.add_mem',
smul_mem' := begin
intros f v hv,
rw [←finsupp.sum_single f, finsupp.sum, finset.sum_smul],
simp_rw [←smul_of, smul_assoc],
exact submodule.sum_smul_mem W _ (λ g _, h g v hv)
end }
end submodule
end monoid_algebra
/-! ### Additive monoids -/
section
variables [semiring k]
/--
The monoid algebra over a semiring `k` generated by the additive monoid `G`.
It is the type of finite formal `k`-linear combinations of terms of `G`,
endowed with the convolution product.
-/
@[derive [inhabited, add_comm_monoid]]
def add_monoid_algebra := G →₀ k
instance : has_coe_to_fun (add_monoid_algebra k G) (λ _, G → k) :=
finsupp.has_coe_to_fun
end
namespace add_monoid_algebra
variables {k G}
section
variables [semiring k] [non_unital_non_assoc_semiring R]
/-- A non-commutative version of `add_monoid_algebra.lift`: given a additive homomorphism `f : k →+
R` and a map `g : multiplicative G → R`, returns the additive
homomorphism from `add_monoid_algebra k G` such that `lift_nc f g (single a b) = f b * g a`. If `f`
is a ring homomorphism and the range of either `f` or `g` is in center of `R`, then the result is a
ring homomorphism. If `R` is a `k`-algebra and `f = algebra_map k R`, then the result is an algebra
homomorphism called `add_monoid_algebra.lift`. -/
def lift_nc (f : k →+ R) (g : multiplicative G → R) : add_monoid_algebra k G →+ R :=
lift_add_hom (λ x : G, (add_monoid_hom.mul_right (g $ multiplicative.of_add x)).comp f)
@[simp] lemma lift_nc_single (f : k →+ R) (g : multiplicative G → R) (a : G) (b : k) :
lift_nc f g (single a b) = f b * g (multiplicative.of_add a) :=
lift_add_hom_apply_single _ _ _
end
section has_mul
variables [semiring k] [has_add G]
/-- The product of `f g : add_monoid_algebra k G` is the finitely supported function
whose value at `a` is the sum of `f x * g y` over all pairs `x, y`
such that `x + y = a`. (Think of the product of multivariate
polynomials where `α` is the additive monoid of monomial exponents.) -/
instance : has_mul (add_monoid_algebra k G) :=
⟨λf g, f.sum $ λa₁ b₁, g.sum $ λa₂ b₂, single (a₁ + a₂) (b₁ * b₂)⟩
lemma mul_def {f g : add_monoid_algebra k G} :
f * g = (f.sum $ λa₁ b₁, g.sum $ λa₂ b₂, single (a₁ + a₂) (b₁ * b₂)) :=
rfl
instance : non_unital_non_assoc_semiring (add_monoid_algebra k G) :=
{ zero := 0,
mul := (*),
add := (+),
left_distrib := assume f g h, by simp only [mul_def, sum_add_index, mul_add, mul_zero,
single_zero, single_add, eq_self_iff_true, forall_true_iff, forall_3_true_iff, sum_add],
right_distrib := assume f g h, by simp only [mul_def, sum_add_index, add_mul, mul_zero, zero_mul,
single_zero, single_add, eq_self_iff_true, forall_true_iff, forall_3_true_iff, sum_zero,
sum_add],
zero_mul := assume f, by simp only [mul_def, sum_zero_index],
mul_zero := assume f, by simp only [mul_def, sum_zero_index, sum_zero],
nsmul := λ n f, n • f,
nsmul_zero' := by { intros, ext, simp [-nsmul_eq_mul, add_smul] },
nsmul_succ' := by { intros, ext, simp [-nsmul_eq_mul, nat.succ_eq_one_add, add_smul] },
.. finsupp.add_comm_monoid }
variables [semiring R]
lemma lift_nc_mul {g_hom : Type*} [mul_hom_class g_hom (multiplicative G) R] (f : k →+* R)
(g : g_hom) (a b : add_monoid_algebra k G)
(h_comm : ∀ {x y}, y ∈ a.support → commute (f (b x)) (g $ multiplicative.of_add y)) :
lift_nc (f : k →+ R) g (a * b) = lift_nc (f : k →+ R) g a * lift_nc (f : k →+ R) g b :=
(monoid_algebra.lift_nc_mul f g _ _ @h_comm : _)
end has_mul
section has_one
variables [semiring k] [has_zero G] [non_assoc_semiring R]
/-- The unit of the multiplication is `single 1 1`, i.e. the function
that is `1` at `0` and zero elsewhere. -/
instance : has_one (add_monoid_algebra k G) :=
⟨single 0 1⟩
lemma one_def : (1 : add_monoid_algebra k G) = single 0 1 :=
rfl
@[simp] lemma lift_nc_one {g_hom : Type*} [one_hom_class g_hom (multiplicative G) R]
(f : k →+* R) (g : g_hom) :
lift_nc (f : k →+ R) g 1 = 1 :=
(monoid_algebra.lift_nc_one f g : _)
end has_one
section semigroup
variables [semiring k] [add_semigroup G]
instance : non_unital_semiring (add_monoid_algebra k G) :=
{ zero := 0,
mul := (*),
add := (+),
mul_assoc := assume f g h, by simp only [mul_def, sum_sum_index, sum_zero_index, sum_add_index,
sum_single_index, single_zero, single_add, eq_self_iff_true, forall_true_iff, forall_3_true_iff,
add_mul, mul_add, add_assoc, mul_assoc, zero_mul, mul_zero, sum_zero, sum_add],
.. add_monoid_algebra.non_unital_non_assoc_semiring }
end semigroup
section mul_one_class
variables [semiring k] [add_zero_class G]
instance : non_assoc_semiring (add_monoid_algebra k G) :=
{ one := 1,
mul := (*),
zero := 0,
add := (+),
nat_cast := λ n, single 0 n,
nat_cast_zero := by simp [nat.cast],
nat_cast_succ := λ _, by simp [nat.cast]; refl,
one_mul := assume f, by simp only [mul_def, one_def, sum_single_index, zero_mul,
single_zero, sum_zero, zero_add, one_mul, sum_single],
mul_one := assume f, by simp only [mul_def, one_def, sum_single_index, mul_zero,
single_zero, sum_zero, add_zero, mul_one, sum_single],
.. add_monoid_algebra.non_unital_non_assoc_semiring }
lemma nat_cast_def (n : ℕ) : (n : add_monoid_algebra k G) = single 0 n := rfl
end mul_one_class
/-! #### Semiring structure -/
section semiring
instance {R : Type*} [monoid R] [semiring k] [distrib_mul_action R k] :
has_smul R (add_monoid_algebra k G) :=
finsupp.has_smul
variables [semiring k] [add_monoid G]
instance : semiring (add_monoid_algebra k G) :=
{ one := 1,
mul := (*),
zero := 0,
add := (+),
.. add_monoid_algebra.non_unital_semiring,
.. add_monoid_algebra.non_assoc_semiring, }
variables [semiring R]
/-- `lift_nc` as a `ring_hom`, for when `f` and `g` commute -/
def lift_nc_ring_hom (f : k →+* R) (g : multiplicative G →* R)
(h_comm : ∀ x y, commute (f x) (g y)) :
add_monoid_algebra k G →+* R :=
{ to_fun := lift_nc (f : k →+ R) g,
map_one' := lift_nc_one _ _,
map_mul' := λ a b, lift_nc_mul _ _ _ _ $ λ _ _ _, h_comm _ _,
..(lift_nc (f : k →+ R) g)}
end semiring
instance [comm_semiring k] [add_comm_semigroup G] :
non_unital_comm_semiring (add_monoid_algebra k G) :=
{ mul_comm := @mul_comm (monoid_algebra k $ multiplicative G) _,
.. add_monoid_algebra.non_unital_semiring }
instance [semiring k] [nontrivial k] [nonempty G] : nontrivial (add_monoid_algebra k G) :=
finsupp.nontrivial
/-! #### Derived instances -/
section derived_instances
instance [comm_semiring k] [add_comm_monoid G] : comm_semiring (add_monoid_algebra k G) :=
{ .. add_monoid_algebra.non_unital_comm_semiring,
.. add_monoid_algebra.semiring }
instance [semiring k] [subsingleton k] : unique (add_monoid_algebra k G) :=
finsupp.unique_of_right
instance [ring k] : add_comm_group (add_monoid_algebra k G) :=
finsupp.add_comm_group
instance [ring k] [has_add G] : non_unital_non_assoc_ring (add_monoid_algebra k G) :=
{ .. add_monoid_algebra.add_comm_group,
.. add_monoid_algebra.non_unital_non_assoc_semiring }
instance [ring k] [add_semigroup G] : non_unital_ring (add_monoid_algebra k G) :=
{ .. add_monoid_algebra.add_comm_group,
.. add_monoid_algebra.non_unital_semiring }
instance [ring k] [add_zero_class G] : non_assoc_ring (add_monoid_algebra k G) :=
{ int_cast := λ z, single 0 (z : k),
int_cast_of_nat := λ n, by simpa,
int_cast_neg_succ_of_nat := λ n, by simpa,
.. add_monoid_algebra.add_comm_group,
.. add_monoid_algebra.non_assoc_semiring }
lemma int_cast_def [ring k] [add_zero_class G] (z : ℤ) :
(z : add_monoid_algebra k G) = single 0 z := rfl
instance [ring k] [add_monoid G] : ring (add_monoid_algebra k G) :=
{ .. add_monoid_algebra.non_assoc_ring,
.. add_monoid_algebra.semiring }
instance [comm_ring k] [add_comm_semigroup G] : non_unital_comm_ring (add_monoid_algebra k G) :=
{ .. add_monoid_algebra.non_unital_comm_semiring,
.. add_monoid_algebra.non_unital_ring }
instance [comm_ring k] [add_comm_monoid G] : comm_ring (add_monoid_algebra k G) :=
{ .. add_monoid_algebra.non_unital_comm_ring,
.. add_monoid_algebra.ring }
variables {S : Type*}
instance [monoid R] [semiring k] [distrib_mul_action R k] :
distrib_mul_action R (add_monoid_algebra k G) :=
finsupp.distrib_mul_action G k
instance [monoid R] [semiring k] [distrib_mul_action R k] [has_faithful_smul R k] [nonempty G] :
has_faithful_smul R (add_monoid_algebra k G) :=
finsupp.has_faithful_smul
instance [semiring R] [semiring k] [module R k] : module R (add_monoid_algebra k G) :=
finsupp.module G k
instance [monoid R] [monoid S] [semiring k] [distrib_mul_action R k] [distrib_mul_action S k]
[has_smul R S] [is_scalar_tower R S k] :
is_scalar_tower R S (add_monoid_algebra k G) :=
finsupp.is_scalar_tower G k
instance [monoid R] [monoid S] [semiring k] [distrib_mul_action R k] [distrib_mul_action S k]
[smul_comm_class R S k] :
smul_comm_class R S (add_monoid_algebra k G) :=
finsupp.smul_comm_class G k
instance [monoid R] [semiring k] [distrib_mul_action R k] [distrib_mul_action Rᵐᵒᵖ k]
[is_central_scalar R k] :
is_central_scalar R (add_monoid_algebra k G) :=
finsupp.is_central_scalar G k
/-! It is hard to state the equivalent of `distrib_mul_action G (add_monoid_algebra k G)`
because we've never discussed actions of additive groups. -/
end derived_instances
section misc_theorems
variables [semiring k]
lemma mul_apply [decidable_eq G] [has_add G] (f g : add_monoid_algebra k G) (x : G) :
(f * g) x = (f.sum $ λa₁ b₁, g.sum $ λa₂ b₂, if a₁ + a₂ = x then b₁ * b₂ else 0) :=
@monoid_algebra.mul_apply k (multiplicative G) _ _ _ _ _ _
lemma mul_apply_antidiagonal [has_add G] (f g : add_monoid_algebra k G) (x : G) (s : finset (G × G))
(hs : ∀ {p : G × G}, p ∈ s ↔ p.1 + p.2 = x) :
(f * g) x = ∑ p in s, (f p.1 * g p.2) :=
@monoid_algebra.mul_apply_antidiagonal k (multiplicative G) _ _ _ _ _ s @hs
lemma support_mul [decidable_eq G] [has_add G] (a b : add_monoid_algebra k G) :
(a * b).support ⊆ a.support.bUnion (λa₁, b.support.bUnion $ λa₂, {a₁ + a₂}) :=
@monoid_algebra.support_mul k (multiplicative G) _ _ _ _ _
lemma single_mul_single [has_add G] {a₁ a₂ : G} {b₁ b₂ : k} :
(single a₁ b₁ * single a₂ b₂ : add_monoid_algebra k G) = single (a₁ + a₂) (b₁ * b₂) :=
@monoid_algebra.single_mul_single k (multiplicative G) _ _ _ _ _ _
-- This should be a `@[simp]` lemma, but the simp_nf linter times out if we add this.
-- Probably the correct fix is to make a `[add_]monoid_algebra.single` with the correct type,
-- instead of relying on `finsupp.single`.
lemma single_pow [add_monoid G] {a : G} {b : k} :
∀ n : ℕ, ((single a b)^n : add_monoid_algebra k G) = single (n • a) (b ^ n)
| 0 := by { simp only [pow_zero, zero_nsmul], refl }
| (n+1) :=
by rw [pow_succ, pow_succ, single_pow n, single_mul_single, add_comm, add_nsmul, one_nsmul]
/-- Like `finsupp.map_domain_zero`, but for the `1` we define in this file -/
@[simp] lemma map_domain_one {α : Type*} {β : Type*} {α₂ : Type*}
[semiring β] [has_zero α] [has_zero α₂] {F : Type*} [zero_hom_class F α α₂] (f : F) :
(map_domain f (1 : add_monoid_algebra β α) : add_monoid_algebra β α₂) =
(1 : add_monoid_algebra β α₂) :=
by simp_rw [one_def, map_domain_single, map_zero]
/-- Like `finsupp.map_domain_add`, but for the convolutive multiplication we define in this file -/
lemma map_domain_mul {α : Type*} {β : Type*} {α₂ : Type*} [semiring β] [has_add α] [has_add α₂]
{F : Type*} [add_hom_class F α α₂] (f : F) (x y : add_monoid_algebra β α) :
(map_domain f (x * y : add_monoid_algebra β α) : add_monoid_algebra β α₂) =
(map_domain f x * map_domain f y : add_monoid_algebra β α₂) :=
begin
simp_rw [mul_def, map_domain_sum, map_domain_single, map_add],
rw finsupp.sum_map_domain_index,
{ congr,
ext a b,
rw finsupp.sum_map_domain_index,
{ simp },
{ simp [mul_add] } },
{ simp },
{ simp [add_mul] }
end
section
variables (k G)
/-- The embedding of an additive magma into its additive magma algebra. -/
@[simps] def of_magma [has_add G] : multiplicative G →ₙ* add_monoid_algebra k G :=
{ to_fun := λ a, single a 1,
map_mul' := λ a b, by simpa only [mul_def, mul_one, sum_single_index, single_eq_zero, mul_zero], }
/-- Embedding of a magma with zero into its magma algebra. -/
def of [add_zero_class G] : multiplicative G →* add_monoid_algebra k G :=
{ to_fun := λ a, single a 1,
map_one' := rfl,
.. of_magma k G }
/-- Embedding of a magma with zero `G`, into its magma algebra, having `G` as source. -/
def of' : G → add_monoid_algebra k G := λ a, single a 1
end
@[simp] lemma of_apply [add_zero_class G] (a : multiplicative G) : of k G a = single a.to_add 1 :=
rfl
@[simp] lemma of'_apply (a : G) : of' k G a = single a 1 := rfl
lemma of'_eq_of [add_zero_class G] (a : G) : of' k G a = of k G a := rfl
lemma of_injective [nontrivial k] [add_zero_class G] : function.injective (of k G) :=
λ a b h, by simpa using (single_eq_single_iff _ _ _ _).mp h
/--
`finsupp.single` as a `monoid_hom` from the product type into the additive monoid algebra.
Note the order of the elements of the product are reversed compared to the arguments of
`finsupp.single`.
-/
@[simps] def single_hom [add_zero_class G] : k × multiplicative G →* add_monoid_algebra k G :=
{ to_fun := λ a, single a.2.to_add a.1,
map_one' := rfl,
map_mul' := λ a b, single_mul_single.symm }
lemma mul_single_apply_aux [has_add G] (f : add_monoid_algebra k G) (r : k)
(x y z : G) (H : ∀ a, a + x = z ↔ a = y) :
(f * single x r) z = f y * r :=
@monoid_algebra.mul_single_apply_aux k (multiplicative G) _ _ _ _ _ _ _ H
lemma mul_single_zero_apply [add_zero_class G] (f : add_monoid_algebra k G) (r : k) (x : G) :
(f * single 0 r) x = f x * r :=
f.mul_single_apply_aux r _ _ _ $ λ a, by rw [add_zero]
lemma single_mul_apply_aux [has_add G] (f : add_monoid_algebra k G) (r : k) (x y z : G)
(H : ∀ a, x + a = y ↔ a = z) :
(single x r * f : add_monoid_algebra k G) y = r * f z :=
@monoid_algebra.single_mul_apply_aux k (multiplicative G) _ _ _ _ _ _ _ H
lemma single_zero_mul_apply [add_zero_class G] (f : add_monoid_algebra k G) (r : k) (x : G) :
(single 0 r * f : add_monoid_algebra k G) x = r * f x :=
f.single_mul_apply_aux r _ _ _ $ λ a, by rw [zero_add]
lemma mul_single_apply [add_group G] (f : add_monoid_algebra k G) (r : k) (x y : G) :
(f * single x r) y = f (y - x) * r :=
(sub_eq_add_neg y x).symm ▸
@monoid_algebra.mul_single_apply k (multiplicative G) _ _ _ _ _ _
lemma single_mul_apply [add_group G] (r : k) (x : G) (f : add_monoid_algebra k G) (y : G) :
(single x r * f : add_monoid_algebra k G) y = r * f (- x + y) :=
@monoid_algebra.single_mul_apply k (multiplicative G) _ _ _ _ _ _
lemma support_mul_single [add_right_cancel_semigroup G]
(f : add_monoid_algebra k G) (r : k) (hr : ∀ y, y * r = 0 ↔ y = 0) (x : G) :
(f * single x r : add_monoid_algebra k G).support = f.support.map (add_right_embedding x) :=
@monoid_algebra.support_mul_single k (multiplicative G) _ _ _ _ hr _
lemma support_single_mul [add_left_cancel_semigroup G]
(f : add_monoid_algebra k G) (r : k) (hr : ∀ y, r * y = 0 ↔ y = 0) (x : G) :
(single x r * f : add_monoid_algebra k G).support = f.support.map (add_left_embedding x) :=
@monoid_algebra.support_single_mul k (multiplicative G) _ _ _ _ hr _
lemma lift_nc_smul {R : Type*} [add_zero_class G] [semiring R] (f : k →+* R)
(g : multiplicative G →* R) (c : k) (φ : monoid_algebra k G) :
lift_nc (f : k →+ R) g (c • φ) = f c * lift_nc (f : k →+ R) g φ :=
@monoid_algebra.lift_nc_smul k (multiplicative G) _ _ _ _ f g c φ
lemma induction_on [add_monoid G] {p : add_monoid_algebra k G → Prop} (f : add_monoid_algebra k G)
(hM : ∀ g, p (of k G (multiplicative.of_add g)))
(hadd : ∀ f g : add_monoid_algebra k G, p f → p g → p (f + g))
(hsmul : ∀ (r : k) f, p f → p (r • f)) : p f :=
begin
refine finsupp.induction_linear f _ (λ f g hf hg, hadd f g hf hg) (λ g r, _),
{ simpa using hsmul 0 (of k G (multiplicative.of_add 0)) (hM 0) },
{ convert hsmul r (of k G (multiplicative.of_add g)) (hM g),
simp only [mul_one, to_add_of_add, smul_single', of_apply] },
end
/-- If `f : G → H` is an additive homomorphism between two additive monoids, then
`finsupp.map_domain f` is a ring homomorphism between their add monoid algebras. -/
@[simps]
def map_domain_ring_hom (k : Type*) [semiring k] {H F : Type*} [add_monoid G] [add_monoid H]
[add_monoid_hom_class F G H] (f : F) :
add_monoid_algebra k G →+* add_monoid_algebra k H :=
{ map_one' := map_domain_one f,
map_mul' := λ x y, map_domain_mul f x y,
..(finsupp.map_domain.add_monoid_hom f : monoid_algebra k G →+ monoid_algebra k H) }
end misc_theorems
section span
variables [semiring k]
/-- An element of `add_monoid_algebra R M` is in the submodule generated by its support. -/
lemma mem_span_support [add_zero_class G] (f : add_monoid_algebra k G) :
f ∈ submodule.span k (of k G '' (f.support : set G)) :=
by rw [of, monoid_hom.coe_mk, ← finsupp.supported_eq_span_single, finsupp.mem_supported]
/-- An element of `add_monoid_algebra R M` is in the subalgebra generated by its support, using
unbundled inclusion. -/
lemma mem_span_support' (f : add_monoid_algebra k G) :
f ∈ submodule.span k (of' k G '' (f.support : set G)) :=
by rw [of', ← finsupp.supported_eq_span_single, finsupp.mem_supported]
end span
end add_monoid_algebra
/-!
#### Conversions between `add_monoid_algebra` and `monoid_algebra`
We have not defined `add_monoid_algebra k G = monoid_algebra k (multiplicative G)`
because historically this caused problems;
since the changes that have made `nsmul` definitional, this would be possible,
but for now we just contruct the ring isomorphisms using `ring_equiv.refl _`.
-/
/-- The equivalence between `add_monoid_algebra` and `monoid_algebra` in terms of
`multiplicative` -/
protected def add_monoid_algebra.to_multiplicative [semiring k] [has_add G] :
add_monoid_algebra k G ≃+* monoid_algebra k (multiplicative G) :=
{ to_fun := equiv_map_domain multiplicative.of_add,
map_mul' := λ x y, begin
repeat {rw equiv_map_domain_eq_map_domain},
dsimp [multiplicative.of_add],
convert monoid_algebra.map_domain_mul (mul_hom.id (multiplicative G)) _ _,
end,
..finsupp.dom_congr multiplicative.of_add }
/-- The equivalence between `monoid_algebra` and `add_monoid_algebra` in terms of `additive` -/
protected def monoid_algebra.to_additive [semiring k] [has_mul G] :
monoid_algebra k G ≃+* add_monoid_algebra k (additive G) :=
{ to_fun := equiv_map_domain additive.of_mul,
map_mul' := λ x y, begin
repeat {rw equiv_map_domain_eq_map_domain},
dsimp [additive.of_mul],
convert monoid_algebra.map_domain_mul (mul_hom.id G) _ _,
end,
..finsupp.dom_congr additive.of_mul }
namespace add_monoid_algebra
variables {k G}
/-! #### Non-unital, non-associative algebra structure -/
section non_unital_non_assoc_algebra
variables (k) [monoid R] [semiring k] [distrib_mul_action R k] [has_add G]
instance is_scalar_tower_self [is_scalar_tower R k k] :
is_scalar_tower R (add_monoid_algebra k G) (add_monoid_algebra k G) :=
@monoid_algebra.is_scalar_tower_self k (multiplicative G) R _ _ _ _ _
/-- Note that if `k` is a `comm_semiring` then we have `smul_comm_class k k k` and so we can take
`R = k` in the below. In other words, if the coefficients are commutative amongst themselves, they
also commute with the algebra multiplication. -/
instance smul_comm_class_self [smul_comm_class R k k] :
smul_comm_class R (add_monoid_algebra k G) (add_monoid_algebra k G) :=
@monoid_algebra.smul_comm_class_self k (multiplicative G) R _ _ _ _ _
instance smul_comm_class_symm_self [smul_comm_class k R k] :
smul_comm_class (add_monoid_algebra k G) R (add_monoid_algebra k G) :=
@monoid_algebra.smul_comm_class_symm_self k (multiplicative G) R _ _ _ _ _
variables {A : Type u₃} [non_unital_non_assoc_semiring A]
/-- A non_unital `k`-algebra homomorphism from `add_monoid_algebra k G` is uniquely defined by its
values on the functions `single a 1`. -/
lemma non_unital_alg_hom_ext [distrib_mul_action k A]
{φ₁ φ₂ : add_monoid_algebra k G →ₙₐ[k] A}
(h : ∀ x, φ₁ (single x 1) = φ₂ (single x 1)) : φ₁ = φ₂ :=
@monoid_algebra.non_unital_alg_hom_ext k (multiplicative G) _ _ _ _ _ φ₁ φ₂ h
/-- See note [partially-applied ext lemmas]. -/
@[ext] lemma non_unital_alg_hom_ext' [distrib_mul_action k A]
{φ₁ φ₂ : add_monoid_algebra k G →ₙₐ[k] A}
(h : φ₁.to_mul_hom.comp (of_magma k G) = φ₂.to_mul_hom.comp (of_magma k G)) : φ₁ = φ₂ :=
@monoid_algebra.non_unital_alg_hom_ext' k (multiplicative G) _ _ _ _ _ φ₁ φ₂ h
/-- The functor `G ↦ add_monoid_algebra k G`, from the category of magmas to the category of
non-unital, non-associative algebras over `k` is adjoint to the forgetful functor in the other
direction. -/
@[simps] def lift_magma [module k A] [is_scalar_tower k A A] [smul_comm_class k A A] :
(multiplicative G →ₙ* A) ≃ (add_monoid_algebra k G →ₙₐ[k] A) :=
{ to_fun := λ f, { to_fun := λ a, sum a (λ m t, t • f (multiplicative.of_add m)),
.. (monoid_algebra.lift_magma k f : _)},
inv_fun := λ F, F.to_mul_hom.comp (of_magma k G),
.. (monoid_algebra.lift_magma k : (multiplicative G →ₙ* A) ≃ (_ →ₙₐ[k] A)) }
end non_unital_non_assoc_algebra
/-! #### Algebra structure -/
section algebra
local attribute [reducible] add_monoid_algebra
/-- `finsupp.single 0` as a `ring_hom` -/
@[simps] def single_zero_ring_hom [semiring k] [add_monoid G] : k →+* add_monoid_algebra k G :=
{ map_one' := rfl,
map_mul' := λ x y, by rw [single_add_hom, single_mul_single, zero_add],
..finsupp.single_add_hom 0}
/-- If two ring homomorphisms from `add_monoid_algebra k G` are equal on all `single a 1`
and `single 0 b`, then they are equal. -/
lemma ring_hom_ext {R} [semiring k] [add_monoid G] [semiring R]
{f g : add_monoid_algebra k G →+* R} (h₀ : ∀ b, f (single 0 b) = g (single 0 b))
(h_of : ∀ a, f (single a 1) = g (single a 1)) : f = g :=
@monoid_algebra.ring_hom_ext k (multiplicative G) R _ _ _ _ _ h₀ h_of
/-- If two ring homomorphisms from `add_monoid_algebra k G` are equal on all `single a 1`
and `single 0 b`, then they are equal.
See note [partially-applied ext lemmas]. -/
@[ext] lemma ring_hom_ext' {R} [semiring k] [add_monoid G] [semiring R]
{f g : add_monoid_algebra k G →+* R}
(h₁ : f.comp single_zero_ring_hom = g.comp single_zero_ring_hom)
(h_of : (f : add_monoid_algebra k G →* R).comp (of k G) =
(g : add_monoid_algebra k G →* R).comp (of k G)) :
f = g :=
ring_hom_ext (ring_hom.congr_fun h₁) (monoid_hom.congr_fun h_of)
section opposite
open finsupp mul_opposite
variables [semiring k]
/-- The opposite of an `add_monoid_algebra R I` is ring equivalent to
the `add_monoid_algebra Rᵐᵒᵖ I` over the opposite ring, taking elements to their opposite. -/
@[simps {simp_rhs := tt}] protected noncomputable def op_ring_equiv [add_comm_monoid G] :
(add_monoid_algebra k G)ᵐᵒᵖ ≃+* add_monoid_algebra kᵐᵒᵖ G :=
{ map_mul' := begin
dsimp only [add_equiv.to_fun_eq_coe, ←add_equiv.coe_to_add_monoid_hom],
rw add_monoid_hom.map_mul_iff,
ext i r i' r' : 6,
dsimp,
simp only [map_range_single, single_mul_single, ←op_mul, add_comm]
end,
..mul_opposite.op_add_equiv.symm.trans
(finsupp.map_range.add_equiv (mul_opposite.op_add_equiv : k ≃+ kᵐᵒᵖ))}
@[simp] lemma op_ring_equiv_single [add_comm_monoid G] (r : k) (x : G) :
add_monoid_algebra.op_ring_equiv (op (single x r)) = single x (op r) :=
by simp
@[simp] lemma op_ring_equiv_symm_single [add_comm_monoid G] (r : kᵐᵒᵖ) (x : Gᵐᵒᵖ) :
add_monoid_algebra.op_ring_equiv.symm (single x r) = op (single x r.unop) :=
by simp
end opposite
/--
The instance `algebra R (add_monoid_algebra k G)` whenever we have `algebra R k`.
In particular this provides the instance `algebra k (add_monoid_algebra k G)`.
-/
instance [comm_semiring R] [semiring k] [algebra R k] [add_monoid G] :
algebra R (add_monoid_algebra k G) :=
{ smul_def' := λ r a, by { ext, simp [single_zero_mul_apply, algebra.smul_def, pi.smul_apply], },
commutes' := λ r f, by { ext, simp [single_zero_mul_apply, mul_single_zero_apply,
algebra.commutes], },
..single_zero_ring_hom.comp (algebra_map R k) }
/-- `finsupp.single 0` as a `alg_hom` -/
@[simps] def single_zero_alg_hom [comm_semiring R] [semiring k] [algebra R k] [add_monoid G] :
k →ₐ[R] add_monoid_algebra k G :=
{ commutes' := λ r, by { ext, simp, refl, }, ..single_zero_ring_hom}
@[simp] lemma coe_algebra_map [comm_semiring R] [semiring k] [algebra R k] [add_monoid G] :
(algebra_map R (add_monoid_algebra k G) : R → add_monoid_algebra k G) =
single 0 ∘ (algebra_map R k) :=
rfl
end algebra
section lift
variables {k G} [comm_semiring k] [add_monoid G]
variables {A : Type u₃} [semiring A] [algebra k A] {B : Type*} [semiring B] [algebra k B]
/-- `lift_nc_ring_hom` as a `alg_hom`, for when `f` is an `alg_hom` -/
def lift_nc_alg_hom (f : A →ₐ[k] B) (g : multiplicative G →* B)
(h_comm : ∀ x y, commute (f x) (g y)) :
add_monoid_algebra A G →ₐ[k] B :=
{ to_fun := lift_nc_ring_hom (f : A →+* B) g h_comm,
commutes' := by simp [lift_nc_ring_hom],
..(lift_nc_ring_hom (f : A →+* B) g h_comm)}
/-- A `k`-algebra homomorphism from `monoid_algebra k G` is uniquely defined by its
values on the functions `single a 1`. -/
lemma alg_hom_ext ⦃φ₁ φ₂ : add_monoid_algebra k G →ₐ[k] A⦄
(h : ∀ x, φ₁ (single x 1) = φ₂ (single x 1)) : φ₁ = φ₂ :=
@monoid_algebra.alg_hom_ext k (multiplicative G) _ _ _ _ _ _ _ h
/-- See note [partially-applied ext lemmas]. -/
@[ext] lemma alg_hom_ext' ⦃φ₁ φ₂ : add_monoid_algebra k G →ₐ[k] A⦄
(h : (φ₁ : add_monoid_algebra k G →* A).comp (of k G) =
(φ₂ : add_monoid_algebra k G →* A).comp (of k G)) : φ₁ = φ₂ :=
alg_hom_ext $ monoid_hom.congr_fun h
variables (k G A)
/-- Any monoid homomorphism `G →* A` can be lifted to an algebra homomorphism
`monoid_algebra k G →ₐ[k] A`. -/
def lift : (multiplicative G →* A) ≃ (add_monoid_algebra k G →ₐ[k] A) :=
{ inv_fun := λ f, (f : add_monoid_algebra k G →* A).comp (of k G),
to_fun := λ F,
{ to_fun := lift_nc_alg_hom (algebra.of_id k A) F $ λ _ _, algebra.commutes _ _,
.. @monoid_algebra.lift k (multiplicative G) _ _ A _ _ F},
.. @monoid_algebra.lift k (multiplicative G) _ _ A _ _ }
variables {k G A}
lemma lift_apply' (F : multiplicative G →* A) (f : monoid_algebra k G) :
lift k G A F f = f.sum (λ a b, (algebra_map k A b) * F (multiplicative.of_add a)) := rfl
lemma lift_apply (F : multiplicative G →* A) (f : monoid_algebra k G) :
lift k G A F f = f.sum (λ a b, b • F (multiplicative.of_add a)) :=
by simp only [lift_apply', algebra.smul_def]
lemma lift_def (F : multiplicative G →* A) :
⇑(lift k G A F) = lift_nc ((algebra_map k A : k →+* A) : k →+ A) F :=
rfl
@[simp] lemma lift_symm_apply (F : add_monoid_algebra k G →ₐ[k] A) (x : multiplicative G) :
(lift k G A).symm F x = F (single x.to_add 1) := rfl
lemma lift_of (F : multiplicative G →* A) (x : multiplicative G) :
lift k G A F (of k G x) = F x :=
by rw [of_apply, ← lift_symm_apply, equiv.symm_apply_apply]
@[simp] lemma lift_single (F : multiplicative G →* A) (a b) :
lift k G A F (single a b) = b • F (multiplicative.of_add a) :=
by rw [lift_def, lift_nc_single, algebra.smul_def, ring_hom.coe_add_monoid_hom]
lemma lift_unique' (F : add_monoid_algebra k G →ₐ[k] A) :
F = lift k G A ((F : add_monoid_algebra k G →* A).comp (of k G)) :=
((lift k G A).apply_symm_apply F).symm
/-- Decomposition of a `k`-algebra homomorphism from `monoid_algebra k G` by
its values on `F (single a 1)`. -/
lemma lift_unique (F : add_monoid_algebra k G →ₐ[k] A) (f : monoid_algebra k G) :
F f = f.sum (λ a b, b • F (single a 1)) :=
by conv_lhs { rw lift_unique' F, simp [lift_apply] }
lemma alg_hom_ext_iff {φ₁ φ₂ : add_monoid_algebra k G →ₐ[k] A} :
(∀ x, φ₁ (finsupp.single x 1) = φ₂ (finsupp.single x 1)) ↔ φ₁ = φ₂ :=
⟨λ h, alg_hom_ext h, by rintro rfl _; refl⟩
end lift
section
local attribute [reducible] add_monoid_algebra
universe ui
variable {ι : Type ui}
lemma prod_single [comm_semiring k] [add_comm_monoid G]
{s : finset ι} {a : ι → G} {b : ι → k} :
(∏ i in s, single (a i) (b i)) = single (∑ i in s, a i) (∏ i in s, b i) :=
finset.cons_induction_on s rfl $ λ a s has ih, by rw [prod_cons has, ih,
single_mul_single, sum_cons has, prod_cons has]
end
lemma map_domain_algebra_map {A H F : Type*} [comm_semiring k] [semiring A]
[algebra k A] [add_monoid G] [add_monoid H] [add_monoid_hom_class F G H] (f : F) (r : k) :
map_domain f (algebra_map k (add_monoid_algebra A G) r) =
algebra_map k (add_monoid_algebra A H) r :=
by simp only [function.comp_app, map_domain_single, add_monoid_algebra.coe_algebra_map, map_zero]
/-- If `f : G → H` is a homomorphism between two additive magmas, then `finsupp.map_domain f` is a
non-unital algebra homomorphism between their additive magma algebras. -/
@[simps]
def map_domain_non_unital_alg_hom (k A : Type*) [comm_semiring k] [semiring A] [algebra k A]
{G H F : Type*} [has_add G] [has_add H] [add_hom_class F G H] (f : F) :
add_monoid_algebra A G →ₙₐ[k] add_monoid_algebra A H :=
{ map_mul' := λ x y, map_domain_mul f x y,
map_smul' := λ r x, map_domain_smul r x,
..(finsupp.map_domain.add_monoid_hom f : monoid_algebra A G →+ monoid_algebra A H) }
/-- If `f : G → H` is an additive homomorphism between two additive monoids, then
`finsupp.map_domain f` is an algebra homomorphism between their add monoid algebras. -/
@[simps] def map_domain_alg_hom (k A : Type*) [comm_semiring k] [semiring A] [algebra k A]
[add_monoid G] {H F : Type*} [add_monoid H] [add_monoid_hom_class F G H] (f : F) :
add_monoid_algebra A G →ₐ[k] add_monoid_algebra A H :=
{ commutes' := map_domain_algebra_map f,
..map_domain_ring_hom A f}
end add_monoid_algebra
variables [comm_semiring R] (k G)
/-- The algebra equivalence between `add_monoid_algebra` and `monoid_algebra` in terms of
`multiplicative`. -/
def add_monoid_algebra.to_multiplicative_alg_equiv [semiring k] [algebra R k] [add_monoid G] :
add_monoid_algebra k G ≃ₐ[R] monoid_algebra k (multiplicative G) :=
{ commutes' := λ r, by simp [add_monoid_algebra.to_multiplicative],
..add_monoid_algebra.to_multiplicative k G }
/-- The algebra equivalence between `monoid_algebra` and `add_monoid_algebra` in terms of
`additive`. -/
def monoid_algebra.to_additive_alg_equiv [semiring k] [algebra R k] [monoid G] :
monoid_algebra k G ≃ₐ[R] add_monoid_algebra k (additive G) :=
{ commutes' := λ r, by simp [monoid_algebra.to_additive],
..monoid_algebra.to_additive k G }
|
8b0a5d5ee9a8216526d223aae8ec3a5b61cedcdd
|
271e26e338b0c14544a889c31c30b39c989f2e0f
|
/tests/lean/run/frontend1.lean
|
ef0785b4732853dad5f9cb005ca50338991a3215
|
[
"Apache-2.0"
] |
permissive
|
dgorokho/lean4
|
805f99b0b60c545b64ac34ab8237a8504f89d7d4
|
e949a052bad59b1c7b54a82d24d516a656487d8a
|
refs/heads/master
| 1,607,061,363,851
| 1,578,006,086,000
| 1,578,006,086,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 5,846
|
lean
|
import Init.Lean.Elab
open Lean
open Lean.Elab
def run (input : String) (failIff : Bool := true) : MetaIO Unit :=
do env ← MetaIO.getEnv;
opts ← MetaIO.getOptions;
let (env, messages) := process input env opts;
messages.forM $ fun msg => IO.println msg;
when (failIff && messages.hasErrors) $ throw (IO.userError "errors have been found");
when (!failIff && !messages.hasErrors) $ throw (IO.userError "there are no errors");
pure ()
def fail (input : String) : MetaIO Unit :=
run input false
def M := IO Unit
def zero := 0
def one := 1
def two := 2
def hello : String := "hello"
def act1 : IO String :=
pure "hello"
#eval run "#check @HasAdd.add"
#eval run "#check [zero, one, two]"
#eval run "#check id $ Nat.succ one"
#eval run "#check HasAdd.add one two"
#eval run "#check one + two > one ∧ True"
#eval run "#check act1 >>= IO.println"
#eval run "#check one + two == one"
#eval fail "#check one + one + hello == hello ++ one"
#eval run "#check Nat.add one $ Nat.add one two"
#eval run
"universe u universe v
export HasToString (toString)
section namespace foo.bla end bla end foo
variable (p q : Prop)
variable (_ b : _)
variable {α : Type}
variable {m : Type → Type}
variable [Monad m]
#check m
#check Type
#check Prop
#check toString zero
#check id Nat.zero (α := Nat)
#check id _ (α := Nat)
#check id Nat.zero
#check id (α := Nat)
#check @id Nat
#check p
#check α
#check Nat.succ
#check Nat.add
#check id
#check forall (α : Type), α → α
#check (α : Type) → α → α
#check {α : Type} → {β : Type} → M → (α → β) → α → β
#check ()
#check run
end"
structure S1 :=
(x y : Nat := 0)
structure S2 extends S1 :=
(z : Nat := 0)
def fD {α} [HasToString α] (a b : α) : String :=
toString a ++ toString b
structure S3 :=
(w : Nat := 0)
(f : forall {α : Type} [HasToString α], α → α → String := @fD)
structure S4 extends S2, S3 :=
(s : Nat := 0)
def s4 : S4 := {}
structure S (α : Type) :=
(field1 : S4 := {})
(field2 : S4 × S4 := ({}, {}))
(field3 : α)
(field4 : List α × Nat := ([], 0))
(vec : Array (α × α) := #[])
(map : HashMap String α := {})
inductive D (α : Type)
| mk (a : α) (s : S4) : D
def s : S Nat := { field3 := 0 }
def d : D Nat := D.mk 10 {}
def i : Nat := 10
def k : String := "hello"
universes u
class Monoid (α : Type u) :=
(one {} : α)
(mul : α → α → α)
def m : Monoid Nat :=
{ one := 1, mul := Nat.mul }
def f (x y z : Nat) : Nat :=
x + y + z
#eval run "#check s4.x"
#eval run "#check s.field1.x"
#eval run "#check s.field2.fst"
#eval run "#check s.field2.fst.w"
#eval run "#check s.1.x"
#eval run "#check s.2.1.x"
#eval run "#check d.1"
#eval run "#check d.2.x"
#eval run "#check s4.f s4.x"
#eval run "#check m.mul m.one"
#eval run "#check s.field4.1.length.succ"
#eval run "#check s.field4.1.map Nat.succ"
#eval run "#check s.vec[i].1"
#eval run "#check \"hello\""
#eval run "#check 1"
#eval run "#check Nat.succ 1"
#eval run "#check fun _ a (x y : Int) => x + y + a"
#eval run "#check (one)"
#eval run "#check ()"
#eval run "#check (one, two, zero)"
#eval run "#check (one, two, zero)"
#eval run "#check (1 : Int)"
#eval run "#check ((1, 2) : Nat × Int)"
#eval run "#check (· + one)"
#eval run "#check (· + · : Nat → Nat → Nat)"
#eval run "#check (f one · zero)"
#eval run "#check (f · · zero)"
#eval run "#check fun (_ b : Nat) => b + 1"
def foo {α β} (a : α) (b : β) (a' : α) : α :=
a
def bla {α β} (f : α → β) (a : α) : β :=
f a
-- #check fun x => foo x x.w s4 -- fails in old elaborator
-- #check bla (fun x => x.w) s4 -- fails in the old elaborator
-- #check #[1, 2, 3].foldl (fun r a => r.push a) #[] -- fails in the old elaborator
#eval run "#check fun x => foo x x.w s4"
#eval run "#check bla (fun x => x.w) s4"
#eval run "#check #[1, 2, 3].foldl (fun r a => r.push a) #[]"
#eval run "#check #[1, 2, 3].foldl (fun r a => (r.push a).push a) #[]"
#eval run "#check #[1, 2, 3].foldl (fun r a => ((r.push a).push a).push a) #[]"
#eval run "#check #[].push one $.push two $.push zero $.size.succ"
#eval run "#check #[1, 2].foldl (fun r a => r.push a $.push a $.push a) #[]"
#eval run "#check #[1, 2].foldl (init := #[]) $ fun r a => r.push a $.push a"
#eval run "#check let x := one + zero; x + x"
-- set_option trace.Elab true
#eval run "#check (fun x => let v := x.w; v + v) s4"
#eval run "#check fun x => foo x (let v := x.w; v + one) s4"
#eval run "#check fun x => foo x (let v := x.w; let w := x.x; v + w + one) s4"
#eval fail "#check id.{1,1}"
#eval fail "#check @id.{0} Nat"
#eval run "#check @id.{1} Nat"
#eval run "universes u #check id.{u}"
#eval fail "universes u #check id.{v}"
#eval run "universes u #check Type u"
#eval run "universes u #check Sort u"
#eval run "#check Type 1"
#eval run "#check Type 0"
#eval run "universes u v #check Sort (max u v)"
#eval run "universes u v #check Type (max u v)"
#eval run "#check 'a'"
#eval fail "#check #['a', \"hello\"]"
#eval run "#check fun (a : Array Nat) => a.size"
#eval run "#check if 0 = 1 then 'a' else 'b'"
#eval run "#check fun (i : Nat) (a : Array Nat) => if h : i < a.size then a.get (Fin.mk i h) else i"
#eval run "#check { x : Nat // x > 0 }"
#eval run "#check { x // x > 0 }"
#eval run "#check fun (i : Nat) (a : Array Nat) => if h : i < a.size then a.get ⟨i, h⟩ else i"
#eval run "#check Prod.fst ⟨1, 2⟩"
#eval run "#check let x := ⟨1, 2⟩; Prod.fst x"
#eval run "#check show Nat from 1"
#eval run "#check show Int from 1"
#eval run "#check have Nat from one + zero; this + this"
#eval run "#check have x : Nat from one + zero; x + x"
#eval run "#check have Nat := one + zero; this + this"
#eval run "#check have x : Nat := one + zero; x + x"
#eval run "#check x + y where x := 1; where y := x + x"
#eval run "#check let z := 2; x + y where x := z + 1; where y := x + x"
|
d017d08ecb48a797fa78ced6446e1de008f4f2bb
|
82b86ba2ae0d5aed0f01f49c46db5afec0eb2bd7
|
/stage0/src/Lean/Class.lean
|
d02d7dc640c2137633d5456b20d33c4f3d42813b
|
[
"Apache-2.0"
] |
permissive
|
banksonian/lean4
|
3a2e6b0f1eb63aa56ff95b8d07b2f851072d54dc
|
78da6b3aa2840693eea354a41e89fc5b212a5011
|
refs/heads/master
| 1,673,703,624,165
| 1,605,123,551,000
| 1,605,123,551,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 6,155
|
lean
|
/-
Copyright (c) 2019 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
-/
import Lean.Attributes
namespace Lean
inductive ClassEntry
| «class» (name : Name) (hasOutParam : Bool)
| «instance» (name : Name) (ofClass : Name) -- TODO: remove after we remove old type class resolution
namespace ClassEntry
@[inline] def getName : ClassEntry → Name
| «class» n _ => n
| «instance» n _ => n
def lt (a b : ClassEntry) : Bool :=
Name.quickLt a.getName b.getName
end ClassEntry
structure ClassState :=
(classToInstances : SMap Name (List Name) := SMap.empty) -- TODO: delete
(hasOutParam : SMap Name Bool := SMap.empty) -- We should keep only this one
(instances : SMap Name Unit := SMap.empty) -- TODO: delete
namespace ClassState
instance : Inhabited ClassState := ⟨{}⟩
def addEntry (s : ClassState) (entry : ClassEntry) : ClassState :=
match entry with
| ClassEntry.«class» clsName hasOutParam =>
{ s with hasOutParam := s.hasOutParam.insert clsName hasOutParam }
| ClassEntry.«instance» instName clsName =>
{ s with
instances := s.instances.insert instName (),
classToInstances := match s.classToInstances.find? clsName with
| some insts => s.classToInstances.insert clsName (instName :: insts)
| none => s.classToInstances.insert clsName [instName] }
def switch : ClassState → ClassState
| ⟨m₁, m₂, m₃⟩ => ⟨m₁.switch, m₂.switch, m₃.switch⟩
end ClassState
/- TODO: add support for scoped instances -/
builtin_initialize classExtension : SimplePersistentEnvExtension ClassEntry ClassState ←
registerSimplePersistentEnvExtension {
name := `classExt,
addEntryFn := ClassState.addEntry,
addImportedFn := fun es => (mkStateFromImportedEntries ClassState.addEntry {} es).switch
}
@[export lean_is_class]
def isClass (env : Environment) (n : Name) : Bool :=
(classExtension.getState env).hasOutParam.contains n
@[export lean_is_instance]
def isInstance (env : Environment) (n : Name) : Bool :=
(classExtension.getState env).instances.contains n
@[export lean_get_class_instances]
def getClassInstances (env : Environment) (n : Name) : List Name :=
match (classExtension.getState env).classToInstances.find? n with
| some insts => insts
| none => []
@[export lean_has_out_params]
def hasOutParams (env : Environment) (n : Name) : Bool :=
match (classExtension.getState env).hasOutParam.find? n with
| some b => b
| none => false
@[export lean_is_out_param]
def isOutParam (e : Expr) : Bool :=
e.isAppOfArity `outParam 1
/--
Auxiliary function for checking whether a class has `outParam`, and
whether they are being correctly used.
A regular (i.e., non `outParam`) must not depend on an `outParam`.
Reason for this restriction:
When performing type class resolution, we replace arguments that
are `outParam`s with fresh metavariables. If regular parameters could
depend on `outParam`s, then we would also have to replace them with
fresh metavariables. Otherwise, the resulting expression could be type
incorrect. This transformation would be counterintuitive to users since
we would implicitly treat these regular parameters as `outParam`s.
-/
private partial def checkOutParam : Nat → Array FVarId → Expr → Except String Bool
| i, outParams, Expr.forallE _ d b _ =>
if isOutParam d then
let fvarId := Name.mkNum `_fvar outParams.size
let outParams := outParams.push fvarId
let fvar := mkFVar fvarId
let b := b.instantiate1 fvar
checkOutParam (i+1) outParams b
else if d.hasAnyFVar fun fvarId => outParams.contains fvarId then
Except.error s!"invalid class, parameter #{i} depends on `outParam`, but it is not an `outParam`"
else
checkOutParam (i+1) outParams b
| i, outParams, e => pure (outParams.size > 0)
def addClass (env : Environment) (clsName : Name) : Except String Environment :=
if isClass env clsName then
Except.error s!"class has already been declared '{clsName}'"
else match env.find? clsName with
| none => Except.error ("unknown declaration '" ++ toString clsName ++ "'")
| some decl@(ConstantInfo.inductInfo _) => do
let b ← checkOutParam 1 #[] decl.type
Except.ok (classExtension.addEntry env (ClassEntry.«class» clsName b))
| some _ => Except.error ("invalid 'class', declaration '" ++ toString clsName ++ "' must be inductive datatype or structure")
private def consumeNLambdas : Nat → Expr → Option Expr
| 0, e => some e
| i+1, Expr.lam _ _ b _ => consumeNLambdas i b
| _, _ => none
partial def getClassName (env : Environment) : Expr → Option Name
| Expr.forallE _ _ b _ => getClassName env b
| e => do
let Expr.const c _ _ ← pure e.getAppFn | none
let info ← env.find? c
match info.value? with
| some val => do
let body ← consumeNLambdas e.getAppNumArgs val
getClassName env body
| none =>
if isClass env c then some c
else none
builtin_initialize
registerBuiltinAttribute {
name := `class,
descr := "type class",
add := fun decl args persistent => do
let env ← getEnv
if args.hasArgs then throwError "invalid attribute 'class', unexpected argument"
unless persistent do throwError "invalid attribute 'class', must be persistent"
let env ← ofExcept (addClass env decl)
setEnv env
}
-- TODO: delete
@[export lean_add_instance_old]
def addGlobalInstanceOld (env : Environment) (instName : Name) : Except String Environment :=
match env.find? instName with
| none => Except.error ("unknown declaration '" ++ toString instName ++ "'")
| some decl =>
match getClassName env decl.type with
| none => Except.error ("invalid instance '" ++ toString instName ++ "', failed to retrieve class")
| some clsName => Except.ok (classExtension.addEntry env (ClassEntry.«instance» instName clsName))
end Lean
|
84252fd79f09238c6575f3b5f3d23354e5935d85
|
6b10c15e653d49d146378acda9f3692e9b5b1950
|
/examples/logic/unnamed_156.lean
|
09fd79c9cfa0c407d73719da77a44903390723cd
|
[] |
no_license
|
gebner/mathematics_in_lean
|
3cf7f18767208ea6c3307ec3a67c7ac266d8514d
|
6d1462bba46d66a9b948fc1aef2714fd265cde0b
|
refs/heads/master
| 1,655,301,945,565
| 1,588,697,505,000
| 1,588,697,505,000
| 261,523,603
| 0
| 0
| null | 1,588,695,611,000
| 1,588,695,610,000
| null |
UTF-8
|
Lean
| false
| false
| 159
|
lean
|
variables A B C : Prop
-- BEGIN
example (h₁ : A → B) (h₂ : B → C) : A → C :=
begin
intro h₃,
apply h₂,
apply h₁,
apply h₃
end
-- END
|
e0879b372867d6e0c76063a2138839ae1794a352
|
dfbb669f3f58ceb57cb207dcfab5726a07425b03
|
/vscode-lean4/test/test-fixtures/simple/lakefile.lean
|
1bbccbd9ac562e5f0a14f4c149a8915c003b613c
|
[
"Apache-2.0"
] |
permissive
|
leanprover/vscode-lean4
|
8bcf7f06867b3c1d42007fe6da863a7a17444dbb
|
6ef0bfa668bdeaad0979e6df10551d42fcc01094
|
refs/heads/master
| 1,692,247,771,767
| 1,691,608,804,000
| 1,691,608,804,000
| 325,845,305
| 64
| 24
|
Apache-2.0
| 1,694,176,429,000
| 1,609,435,614,000
|
TypeScript
|
UTF-8
|
Lean
| false
| false
| 197
|
lean
|
import Lake
open Lake DSL
package test {
-- add configuration options here
}
lean_lib Test {
-- add library configuration options here
}
@[default_target]
lean_exe test {
root := `Main
}
|
40e1bfee09849fe39ea771892c36c2c4c0cd9c04
|
6dc0c8ce7a76229dd81e73ed4474f15f88a9e294
|
/src/Lean/Meta/Match/MatcherInfo.lean
|
bd99527581dde20d38bf108b675f8d9f6c8ad1ad
|
[
"Apache-2.0"
] |
permissive
|
williamdemeo/lean4
|
72161c58fe65c3ad955d6a3050bb7d37c04c0d54
|
6d00fcf1d6d873e195f9220c668ef9c58e9c4a35
|
refs/heads/master
| 1,678,305,356,877
| 1,614,708,995,000
| 1,614,708,995,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 3,942
|
lean
|
/-
Copyright (c) 2020 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
-/
import Lean.Meta.Basic
namespace Lean.Meta
namespace Match
/--
A "matcher" auxiliary declaration has the following structure:
- `numParams` parameters
- motive
- `numDiscrs` discriminators (aka major premises)
- `altNumParams.size` alternatives (aka minor premises) where alternative `i` has `altNumParams[i]` parameters
- `uElimPos?` is `some pos` when the matcher can eliminate in different universe levels, and
`pos` is the position of the universe level parameter that specifies the elimination universe.
It is `none` if the matcher only eliminates into `Prop`. -/
structure MatcherInfo where
numParams : Nat
numDiscrs : Nat
altNumParams : Array Nat
uElimPos? : Option Nat
def MatcherInfo.numAlts (matcherInfo : MatcherInfo) : Nat :=
matcherInfo.altNumParams.size
namespace Extension
structure Entry where
name : Name
info : MatcherInfo
structure State where
map : SMap Name MatcherInfo := {}
instance : Inhabited State := ⟨{}⟩
def State.addEntry (s : State) (e : Entry) : State := { s with map := s.map.insert e.name e.info }
def State.switch (s : State) : State := { s with map := s.map.switch }
builtin_initialize extension : SimplePersistentEnvExtension Entry State ←
registerSimplePersistentEnvExtension {
name := `matcher,
addEntryFn := State.addEntry,
addImportedFn := fun es => (mkStateFromImportedEntries State.addEntry {} es).switch
}
def addMatcherInfo (env : Environment) (matcherName : Name) (info : MatcherInfo) : Environment :=
extension.addEntry env { name := matcherName, info := info }
def getMatcherInfo? (env : Environment) (declName : Name) : Option MatcherInfo :=
(extension.getState env).map.find? declName
end Extension
def addMatcherInfo (matcherName : Name) (info : MatcherInfo) : MetaM Unit :=
modifyEnv fun env => Extension.addMatcherInfo env matcherName info
end Match
export Match (MatcherInfo)
def getMatcherInfo? (declName : Name) : MetaM (Option MatcherInfo) := do
let env ← getEnv
return Match.Extension.getMatcherInfo? env declName
def isMatcher (declName : Name) : MetaM Bool := do
let info? ← getMatcherInfo? declName
return info?.isSome
structure MatcherApp where
matcherName : Name
matcherLevels : Array Level
uElimPos? : Option Nat
params : Array Expr
motive : Expr
discrs : Array Expr
altNumParams : Array Nat
alts : Array Expr
remaining : Array Expr
def matchMatcherApp? (e : Expr) : MetaM (Option MatcherApp) :=
match e.getAppFn with
| Expr.const declName declLevels _ => do
let some info ← getMatcherInfo? declName | pure none
let args := e.getAppArgs
if args.size < info.numParams + 1 + info.numDiscrs + info.numAlts then
return none
else
return some {
matcherName := declName,
matcherLevels := declLevels.toArray,
uElimPos? := info.uElimPos?,
params := args.extract 0 info.numParams,
motive := args.get! info.numParams,
discrs := args.extract (info.numParams + 1) (info.numParams + 1 + info.numDiscrs),
altNumParams := info.altNumParams,
alts := args.extract (info.numParams + 1 + info.numDiscrs) (info.numParams + 1 + info.numDiscrs + info.numAlts),
remaining := args.extract (info.numParams + 1 + info.numDiscrs + info.numAlts) args.size
}
| _ => return none
def MatcherApp.toExpr (matcherApp : MatcherApp) : Expr :=
let result := mkAppN (mkConst matcherApp.matcherName matcherApp.matcherLevels.toList) matcherApp.params
let result := mkApp result matcherApp.motive
let result := mkAppN result matcherApp.discrs
let result := mkAppN result matcherApp.alts
mkAppN result matcherApp.remaining
end Lean.Meta
|
7920d3d85e05861ac0cbaf61516b6779ceb3d852
|
690889011852559ee5ac4dfea77092de8c832e7e
|
/src/algebra/big_operators.lean
|
0f5f2b2707d9e4634471fd5792a0286320078a5c
|
[
"Apache-2.0"
] |
permissive
|
williamdemeo/mathlib
|
f6df180148f8acc91de9ba5e558976ab40a872c7
|
1fa03c29f9f273203bbffb79d10d31f696b3d317
|
refs/heads/master
| 1,584,785,260,929
| 1,572,195,914,000
| 1,572,195,913,000
| 138,435,193
| 0
| 0
|
Apache-2.0
| 1,529,789,739,000
| 1,529,789,739,000
| null |
UTF-8
|
Lean
| false
| false
| 33,946
|
lean
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl
Some big operators for lists and finite sets.
-/
import tactic.tauto data.list.basic data.finset data.nat.enat
import algebra.group algebra.ordered_group algebra.group_power
universes u v w
variables {α : Type u} {β : Type v} {γ : Type w}
theorem directed.finset_le {r : α → α → Prop} [is_trans α r]
{ι} (hι : nonempty ι) {f : ι → α} (D : directed r f) (s : finset ι) :
∃ z, ∀ i ∈ s, r (f i) (f z) :=
show ∃ z, ∀ i ∈ s.1, r (f i) (f z), from
multiset.induction_on s.1 (let ⟨z⟩ := hι in ⟨z, λ _, false.elim⟩) $
λ i s ⟨j, H⟩, let ⟨k, h₁, h₂⟩ := D i j in
⟨k, λ a h, or.cases_on (multiset.mem_cons.1 h)
(λ h, h.symm ▸ h₁)
(λ h, trans (H _ h) h₂)⟩
theorem finset.exists_le {α : Type u} [nonempty α] [directed_order α] (s : finset α) :
∃ M, ∀ i ∈ s, i ≤ M :=
directed.finset_le (by apply_instance) directed_order.directed s
namespace finset
variables {s s₁ s₂ : finset α} {a : α} {f g : α → β}
/-- `prod s f` is the product of `f x` as `x` ranges over the elements of the finite set `s`. -/
@[to_additive]
protected def prod [comm_monoid β] (s : finset α) (f : α → β) : β := (s.1.map f).prod
@[to_additive]
theorem prod_eq_fold [comm_monoid β] (s : finset α) (f : α → β) : s.prod f = s.fold (*) 1 f := rfl
section comm_monoid
variables [comm_monoid β]
@[simp, to_additive]
lemma prod_empty {α : Type u} {f : α → β} : (∅:finset α).prod f = 1 := rfl
@[simp, to_additive]
lemma prod_insert [decidable_eq α] : a ∉ s → (insert a s).prod f = f a * s.prod f := fold_insert
@[simp, to_additive]
lemma prod_singleton : (singleton a).prod f = f a :=
eq.trans fold_singleton $ mul_one _
@[simp] lemma prod_const_one : s.prod (λx, (1 : β)) = 1 :=
by simp only [finset.prod, multiset.map_const, multiset.prod_repeat, one_pow]
@[simp] lemma sum_const_zero {β} {s : finset α} [add_comm_monoid β] : s.sum (λx, (0 : β)) = 0 :=
@prod_const_one _ (multiplicative β) _ _
attribute [to_additive] prod_const_one
@[simp, to_additive]
lemma prod_image [decidable_eq α] {s : finset γ} {g : γ → α} :
(∀x∈s, ∀y∈s, g x = g y → x = y) → (s.image g).prod f = s.prod (λx, f (g x)) :=
fold_image
@[simp, to_additive]
lemma prod_map (s : finset α) (e : α ↪ γ) (f : γ → β) :
(s.map e).prod f = s.prod (λa, f (e a)) :=
by rw [finset.prod, finset.map_val, multiset.map_map]; refl
@[congr, to_additive]
lemma prod_congr (h : s₁ = s₂) : (∀x∈s₂, f x = g x) → s₁.prod f = s₂.prod g :=
by rw [h]; exact fold_congr
attribute [congr] finset.sum_congr
@[to_additive]
lemma prod_union_inter [decidable_eq α] : (s₁ ∪ s₂).prod f * (s₁ ∩ s₂).prod f = s₁.prod f * s₂.prod f :=
fold_union_inter
@[to_additive]
lemma prod_union [decidable_eq α] (h : disjoint s₁ s₂) : (s₁ ∪ s₂).prod f = s₁.prod f * s₂.prod f :=
by rw [←prod_union_inter, (disjoint_iff_inter_eq_empty.mp h)]; exact (mul_one _).symm
@[to_additive]
lemma prod_sdiff [decidable_eq α] (h : s₁ ⊆ s₂) : (s₂ \ s₁).prod f * s₁.prod f = s₂.prod f :=
by rw [←prod_union sdiff_disjoint, sdiff_union_of_subset h]
@[to_additive]
lemma prod_bind [decidable_eq α] {s : finset γ} {t : γ → finset α} :
(∀x∈s, ∀y∈s, x ≠ y → disjoint (t x) (t y)) → (s.bind t).prod f = s.prod (λx, (t x).prod f) :=
by haveI := classical.dec_eq γ; exact
finset.induction_on s (λ _, by simp only [bind_empty, prod_empty])
(assume x s hxs ih hd,
have hd' : ∀x∈s, ∀y∈s, x ≠ y → disjoint (t x) (t y),
from assume _ hx _ hy, hd _ (mem_insert_of_mem hx) _ (mem_insert_of_mem hy),
have ∀y∈s, x ≠ y,
from assume _ hy h, by rw [←h] at hy; contradiction,
have ∀y∈s, disjoint (t x) (t y),
from assume _ hy, hd _ (mem_insert_self _ _) _ (mem_insert_of_mem hy) (this _ hy),
have disjoint (t x) (finset.bind s t),
from (disjoint_bind_right _ _ _).mpr this,
by simp only [bind_insert, prod_insert hxs, prod_union this, ih hd'])
@[to_additive]
lemma prod_product {s : finset γ} {t : finset α} {f : γ×α → β} :
(s.product t).prod f = s.prod (λx, t.prod $ λy, f (x, y)) :=
begin
haveI := classical.dec_eq α, haveI := classical.dec_eq γ,
rw [product_eq_bind, prod_bind],
{ congr, funext, exact prod_image (λ _ _ _ _ H, (prod.mk.inj H).2) },
simp only [disjoint_iff_ne, mem_image],
rintros _ _ _ _ h ⟨_, _⟩ ⟨_, _, ⟨_, _⟩⟩ ⟨_, _⟩ ⟨_, _, ⟨_, _⟩⟩ _,
apply h, cc
end
@[to_additive]
lemma prod_sigma {σ : α → Type*}
{s : finset α} {t : Πa, finset (σ a)} {f : sigma σ → β} :
(s.sigma t).prod f = s.prod (λa, (t a).prod $ λs, f ⟨a, s⟩) :=
by haveI := classical.dec_eq α; haveI := (λ a, classical.dec_eq (σ a)); exact
calc (s.sigma t).prod f =
(s.bind (λa, (t a).image (λs, sigma.mk a s))).prod f : by rw sigma_eq_bind
... = s.prod (λa, ((t a).image (λs, sigma.mk a s)).prod f) :
prod_bind $ assume a₁ ha a₂ ha₂ h,
by simp only [disjoint_iff_ne, mem_image];
rintro ⟨_, _⟩ ⟨_, _, _⟩ ⟨_, _⟩ ⟨_, _, _⟩ ⟨_, _⟩; apply h; cc
... = (s.prod $ λa, (t a).prod $ λs, f ⟨a, s⟩) :
prod_congr rfl $ λ _ _, prod_image $ λ _ _ _ _ _, by cc
@[to_additive]
lemma prod_image' [decidable_eq α] {s : finset γ} {g : γ → α} (h : γ → β)
(eq : ∀c∈s, f (g c) = (s.filter (λc', g c' = g c)).prod h) :
(s.image g).prod f = s.prod h :=
begin
letI := classical.dec_eq γ,
rw [← image_bind_filter_eq s g] {occs := occurrences.pos [2]},
rw [finset.prod_bind],
{ refine finset.prod_congr rfl (assume a ha, _),
rcases finset.mem_image.1 ha with ⟨b, hb, rfl⟩,
exact eq b hb },
assume a₀ _ a₁ _ ne,
refine (disjoint_iff_ne.2 _),
assume c₀ h₀ c₁ h₁,
rcases mem_filter.1 h₀ with ⟨h₀, rfl⟩,
rcases mem_filter.1 h₁ with ⟨h₁, rfl⟩,
exact mt (congr_arg g) ne
end
@[to_additive]
lemma prod_mul_distrib : s.prod (λx, f x * g x) = s.prod f * s.prod g :=
eq.trans (by rw one_mul; refl) fold_op_distrib
@[to_additive]
lemma prod_comm [decidable_eq γ] {s : finset γ} {t : finset α} {f : γ → α → β} :
s.prod (λx, t.prod $ f x) = t.prod (λy, s.prod $ λx, f x y) :=
finset.induction_on s (by simp only [prod_empty, prod_const_one]) $
λ _ _ H ih, by simp only [prod_insert H, prod_mul_distrib, ih]
lemma prod_hom [comm_monoid γ] (g : β → γ) [is_monoid_hom g] : s.prod (λx, g (f x)) = g (s.prod f) :=
eq.trans (by rw is_monoid_hom.map_one g; refl) (fold_hom $ is_monoid_hom.map_mul g)
@[to_additive]
lemma prod_hom_rel [comm_monoid γ] {r : β → γ → Prop} {f : α → β} {g : α → γ} {s : finset α}
(h₁ : r 1 1) (h₂ : ∀a b c, r b c → r (f a * b) (g a * c)) : r (s.prod f) (s.prod g) :=
begin
letI := classical.dec_eq α,
refine finset.induction_on s h₁ (assume a s has ih, _),
rw [prod_insert has, prod_insert has],
exact h₂ a (s.prod f) (s.prod g) ih,
end
@[to_additive]
lemma prod_subset (h : s₁ ⊆ s₂) (hf : ∀x∈s₂, x ∉ s₁ → f x = 1) : s₁.prod f = s₂.prod f :=
by haveI := classical.dec_eq α; exact
have (s₂ \ s₁).prod f = (s₂ \ s₁).prod (λx, 1),
from prod_congr rfl $ by simpa only [mem_sdiff, and_imp],
by rw [←prod_sdiff h]; simp only [this, prod_const_one, one_mul]
@[to_additive]
lemma prod_filter (p : α → Prop) [decidable_pred p] (f : α → β) :
(s.filter p).prod f = s.prod (λa, if p a then f a else 1) :=
calc (s.filter p).prod f = (s.filter p).prod (λa, if p a then f a else 1) :
prod_congr rfl (assume a h, by rw [if_pos (mem_filter.1 h).2])
... = s.prod (λa, if p a then f a else 1) :
begin
refine prod_subset (filter_subset s) (assume x hs h, _),
rw [mem_filter, not_and] at h,
exact if_neg (h hs)
end
@[to_additive]
lemma prod_eq_single {s : finset α} {f : α → β} (a : α)
(h₀ : ∀b∈s, b ≠ a → f b = 1) (h₁ : a ∉ s → f a = 1) : s.prod f = f a :=
by haveI := classical.dec_eq α;
from classical.by_cases
(assume : a ∈ s,
calc s.prod f = ({a} : finset α).prod f :
begin
refine (prod_subset _ _).symm,
{ intros _ H, rwa mem_singleton.1 H },
{ simpa only [mem_singleton] }
end
... = f a : prod_singleton)
(assume : a ∉ s,
(prod_congr rfl $ λ b hb, h₀ b hb $ by rintro rfl; cc).trans $
prod_const_one.trans (h₁ this).symm)
@[to_additive] lemma prod_ite [comm_monoid γ] {s : finset α}
{p : α → Prop} {hp : decidable_pred p} (f g : α → γ) (h : γ → β) :
s.prod (λ x, h (if p x then f x else g x)) =
(s.filter p).prod (λ x, h (f x)) * (s.filter (λ x, ¬ p x)).prod (λ x, h (g x)) :=
by letI := classical.dec_eq α; exact
calc s.prod (λ x, h (if p x then f x else g x))
= (s.filter p ∪ s.filter (λ x, ¬ p x)).prod (λ x, h (if p x then f x else g x)) :
by rw [filter_union_filter_neg_eq]
... = (s.filter p).prod (λ x, h (if p x then f x else g x)) *
(s.filter (λ x, ¬ p x)).prod (λ x, h (if p x then f x else g x)) :
prod_union (by simp [disjoint_right] {contextual := tt})
... = (s.filter p).prod (λ x, h (f x)) * (s.filter (λ x, ¬ p x)).prod (λ x, h (g x)) :
congr_arg2 _
(prod_congr rfl (by simp {contextual := tt}))
(prod_congr rfl (by simp {contextual := tt}))
@[simp, to_additive] lemma prod_ite_eq [decidable_eq α] (s : finset α) (a : α) (b : β) :
s.prod (λ x, (ite (a = x) b 1)) = ite (a ∈ s) b 1 :=
begin
rw ←finset.prod_filter,
split_ifs;
simp only [filter_eq, if_true, if_false, h, prod_empty, prod_singleton, insert_empty_eq_singleton],
end
@[to_additive]
lemma prod_attach {f : α → β} : s.attach.prod (λx, f x.val) = s.prod f :=
by haveI := classical.dec_eq α; exact
calc s.attach.prod (λx, f x.val) = ((s.attach).image subtype.val).prod f :
by rw [prod_image]; exact assume x _ y _, subtype.eq
... = _ : by rw [attach_image_val]
@[to_additive]
lemma prod_bij {s : finset α} {t : finset γ} {f : α → β} {g : γ → β}
(i : Πa∈s, γ) (hi : ∀a ha, i a ha ∈ t) (h : ∀a ha, f a = g (i a ha))
(i_inj : ∀a₁ a₂ ha₁ ha₂, i a₁ ha₁ = i a₂ ha₂ → a₁ = a₂) (i_surj : ∀b∈t, ∃a ha, b = i a ha) :
s.prod f = t.prod g :=
congr_arg multiset.prod
(multiset.map_eq_map_of_bij_of_nodup f g s.2 t.2 i hi h i_inj i_surj)
@[to_additive]
lemma prod_bij_ne_one {s : finset α} {t : finset γ} {f : α → β} {g : γ → β}
(i : Πa∈s, f a ≠ 1 → γ) (hi₁ : ∀a h₁ h₂, i a h₁ h₂ ∈ t)
(hi₂ : ∀a₁ a₂ h₁₁ h₁₂ h₂₁ h₂₂, i a₁ h₁₁ h₁₂ = i a₂ h₂₁ h₂₂ → a₁ = a₂)
(hi₃ : ∀b∈t, g b ≠ 1 → ∃a h₁ h₂, b = i a h₁ h₂)
(h : ∀a h₁ h₂, f a = g (i a h₁ h₂)) :
s.prod f = t.prod g :=
by haveI := classical.prop_decidable; exact
calc s.prod f = (s.filter $ λx, f x ≠ 1).prod f :
(prod_subset (filter_subset _) $ by simp only [not_imp_comm, mem_filter]; exact λ _, and.intro).symm
... = (t.filter $ λx, g x ≠ 1).prod g :
prod_bij (assume a ha, i a (mem_filter.mp ha).1 (mem_filter.mp ha).2)
(assume a ha, (mem_filter.mp ha).elim $ λh₁ h₂, mem_filter.mpr
⟨hi₁ a h₁ h₂, λ hg, h₂ (hg ▸ h a h₁ h₂)⟩)
(assume a ha, (mem_filter.mp ha).elim $ h a)
(assume a₁ a₂ ha₁ ha₂,
(mem_filter.mp ha₁).elim $ λha₁₁ ha₁₂, (mem_filter.mp ha₂).elim $ λha₂₁ ha₂₂, hi₂ a₁ a₂ _ _ _ _)
(assume b hb, (mem_filter.mp hb).elim $ λh₁ h₂,
let ⟨a, ha₁, ha₂, eq⟩ := hi₃ b h₁ h₂ in ⟨a, mem_filter.mpr ⟨ha₁, ha₂⟩, eq⟩)
... = t.prod g :
(prod_subset (filter_subset _) $ by simp only [not_imp_comm, mem_filter]; exact λ _, and.intro)
@[to_additive]
lemma exists_ne_one_of_prod_ne_one : s.prod f ≠ 1 → ∃a∈s, f a ≠ 1 :=
by haveI := classical.dec_eq α; exact
finset.induction_on s (λ H, (H rfl).elim) (assume a s has ih h,
classical.by_cases
(assume ha : f a = 1,
let ⟨a, ha, hfa⟩ := ih (by rwa [prod_insert has, ha, one_mul] at h) in
⟨a, mem_insert_of_mem ha, hfa⟩)
(assume hna : f a ≠ 1,
⟨a, mem_insert_self _ _, hna⟩))
@[to_additive]
lemma prod_range_succ (f : ℕ → β) (n : ℕ) :
(range (nat.succ n)).prod f = f n * (range n).prod f :=
by rw [range_succ, prod_insert not_mem_range_self]
lemma prod_range_succ' (f : ℕ → β) :
∀ n : ℕ, (range (nat.succ n)).prod f = (range n).prod (f ∘ nat.succ) * f 0
| 0 := (prod_range_succ _ _).trans $ mul_comm _ _
| (n + 1) := by rw [prod_range_succ (λ m, f (nat.succ m)), mul_assoc, ← prod_range_succ'];
exact prod_range_succ _ _
lemma sum_Ico_add {δ : Type*} [add_comm_monoid δ] (f : ℕ → δ) (m n k : ℕ) :
(Ico m n).sum (λ l, f (k + l)) = (Ico (m + k) (n + k)).sum f :=
Ico.image_add m n k ▸ eq.symm $ sum_image $ λ x hx y hy h, nat.add_left_cancel h
@[to_additive]
lemma prod_Ico_add (f : ℕ → β) (m n k : ℕ) :
(Ico m n).prod (λ l, f (k + l)) = (Ico (m + k) (n + k)).prod f :=
Ico.image_add m n k ▸ eq.symm $ prod_image $ λ x hx y hy h, nat.add_left_cancel h
@[to_additive]
lemma prod_Ico_consecutive (f : ℕ → β) {m n k : ℕ} (hmn : m ≤ n) (hnk : n ≤ k) :
(Ico m n).prod f * (Ico n k).prod f = (Ico m k).prod f :=
Ico.union_consecutive hmn hnk ▸ eq.symm $ prod_union $ Ico.disjoint_consecutive m n k
@[to_additive]
lemma prod_range_mul_prod_Ico (f : ℕ → β) {m n : ℕ} (h : m ≤ n) :
(range m).prod f * (Ico m n).prod f = (range n).prod f :=
Ico.zero_bot m ▸ Ico.zero_bot n ▸ prod_Ico_consecutive f (nat.zero_le m) h
@[to_additive sum_Ico_eq_add_neg]
lemma prod_Ico_eq_div {δ : Type*} [comm_group δ] (f : ℕ → δ) {m n : ℕ} (h : m ≤ n) :
(Ico m n).prod f = (range n).prod f * ((range m).prod f)⁻¹ :=
eq_mul_inv_iff_mul_eq.2 $ by rw [mul_comm]; exact prod_range_mul_prod_Ico f h
lemma sum_Ico_eq_sub {δ : Type*} [add_comm_group δ] (f : ℕ → δ) {m n : ℕ} (h : m ≤ n) :
(Ico m n).sum f = (range n).sum f - (range m).sum f :=
sum_Ico_eq_add_neg f h
@[to_additive]
lemma prod_Ico_eq_prod_range (f : ℕ → β) (m n : ℕ) :
(Ico m n).prod f = (range (n - m)).prod (λ l, f (m + l)) :=
begin
by_cases h : m ≤ n,
{ rw [← Ico.zero_bot, prod_Ico_add, zero_add, nat.sub_add_cancel h] },
{ replace h : n ≤ m := le_of_not_ge h,
rw [Ico.eq_empty_of_le h, nat.sub_eq_zero_of_le h, range_zero, prod_empty, prod_empty] }
end
@[to_additive]
lemma prod_range_zero (f : ℕ → β) :
(range 0).prod f = 1 :=
by rw [range_zero, prod_empty]
lemma prod_range_one (f : ℕ → β) :
(range 1).prod f = f 0 :=
by { rw [range_one], apply @prod_singleton ℕ β 0 f }
lemma sum_range_one {δ : Type*} [add_comm_monoid δ] (f : ℕ → δ) :
(range 1).sum f = f 0 :=
by { rw [range_one], apply @sum_singleton ℕ δ 0 f }
attribute [to_additive finset.sum_range_one] prod_range_one
@[simp] lemma prod_const (b : β) : s.prod (λ a, b) = b ^ s.card :=
by haveI := classical.dec_eq α; exact
finset.induction_on s rfl (λ a s has ih,
by rw [prod_insert has, card_insert_of_not_mem has, pow_succ, ih])
lemma prod_pow (s : finset α) (n : ℕ) (f : α → β) :
s.prod (λ x, f x ^ n) = s.prod f ^ n :=
by haveI := classical.dec_eq α; exact
finset.induction_on s (by simp) (by simp [_root_.mul_pow] {contextual := tt})
lemma prod_nat_pow (s : finset α) (n : ℕ) (f : α → ℕ) :
s.prod (λ x, f x ^ n) = s.prod f ^ n :=
by haveI := classical.dec_eq α; exact
finset.induction_on s (by simp) (by simp [nat.mul_pow] {contextual := tt})
@[to_additive]
lemma prod_involution {s : finset α} {f : α → β} :
∀ (g : Π a ∈ s, α)
(h₁ : ∀ a ha, f a * f (g a ha) = 1)
(h₂ : ∀ a ha, f a ≠ 1 → g a ha ≠ a)
(h₃ : ∀ a ha, g a ha ∈ s)
(h₄ : ∀ a ha, g (g a ha) (h₃ a ha) = a),
s.prod f = 1 :=
by haveI := classical.dec_eq α;
haveI := classical.dec_eq β; exact
finset.strong_induction_on s
(λ s ih g h₁ h₂ h₃ h₄,
if hs : s = ∅ then hs.symm ▸ rfl
else let ⟨x, hx⟩ := exists_mem_of_ne_empty hs in
have hmem : ∀ y ∈ (s.erase x).erase (g x hx), y ∈ s,
from λ y hy, (mem_of_mem_erase (mem_of_mem_erase hy)),
have g_inj : ∀ {x hx y hy}, g x hx = g y hy → x = y,
from λ x hx y hy h, by rw [← h₄ x hx, ← h₄ y hy]; simp [h],
have ih': (erase (erase s x) (g x hx)).prod f = (1 : β) :=
ih ((s.erase x).erase (g x hx))
⟨subset.trans (erase_subset _ _) (erase_subset _ _),
λ h, not_mem_erase (g x hx) (s.erase x) (h (h₃ x hx))⟩
(λ y hy, g y (hmem y hy))
(λ y hy, h₁ y (hmem y hy))
(λ y hy, h₂ y (hmem y hy))
(λ y hy, mem_erase.2 ⟨λ (h : g y _ = g x hx), by simpa [g_inj h] using hy,
mem_erase.2 ⟨λ (h : g y _ = x),
have y = g x hx, from h₄ y (hmem y hy) ▸ by simp [h],
by simpa [this] using hy, h₃ y (hmem y hy)⟩⟩)
(λ y hy, h₄ y (hmem y hy)),
if hx1 : f x = 1
then ih' ▸ eq.symm (prod_subset hmem
(λ y hy hy₁,
have y = x ∨ y = g x hx, by simp [hy] at hy₁; tauto,
this.elim (λ h, h.symm ▸ hx1)
(λ h, h₁ x hx ▸ h ▸ hx1.symm ▸ (one_mul _).symm)))
else by rw [← insert_erase hx, prod_insert (not_mem_erase _ _),
← insert_erase (mem_erase.2 ⟨h₂ x hx hx1, h₃ x hx⟩),
prod_insert (not_mem_erase _ _), ih', mul_one, h₁ x hx])
@[to_additive]
lemma prod_eq_one {f : α → β} {s : finset α} (h : ∀x∈s, f x = 1) : s.prod f = 1 :=
calc s.prod f = s.prod (λx, 1) : finset.prod_congr rfl h
... = 1 : finset.prod_const_one
end comm_monoid
attribute [to_additive] prod_hom
lemma sum_smul [add_comm_monoid β] (s : finset α) (n : ℕ) (f : α → β) :
s.sum (λ x, add_monoid.smul n (f x)) = add_monoid.smul n (s.sum f) :=
@prod_pow _ (multiplicative β) _ _ _ _
attribute [to_additive sum_smul] prod_pow
@[simp] lemma sum_const [add_comm_monoid β] (b : β) :
s.sum (λ a, b) = add_monoid.smul s.card b :=
@prod_const _ (multiplicative β) _ _ _
attribute [to_additive] prod_const
lemma sum_range_succ' [add_comm_monoid β] (f : ℕ → β) :
∀ n : ℕ, (range (nat.succ n)).sum f = (range n).sum (f ∘ nat.succ) + f 0 :=
@prod_range_succ' (multiplicative β) _ _
attribute [to_additive] prod_range_succ'
lemma sum_nat_cast [add_comm_monoid β] [has_one β] (s : finset α) (f : α → ℕ) :
↑(s.sum f) = s.sum (λa, f a : α → β) :=
(sum_hom _).symm
lemma prod_nat_cast [comm_semiring β] (s : finset α) (f : α → ℕ) :
↑(s.prod f) = s.prod (λa, f a : α → β) :=
(prod_hom _).symm
protected lemma sum_nat_coe_enat [decidable_eq α] (s : finset α) (f : α → ℕ) :
s.sum (λ x, (f x : enat)) = (s.sum f : ℕ) :=
begin
induction s using finset.induction with a s has ih h,
{ simp },
{ simp [has, ih] }
end
lemma le_sum_of_subadditive [add_comm_monoid α] [ordered_comm_monoid β]
(f : α → β) (h_zero : f 0 = 0) (h_add : ∀x y, f (x + y) ≤ f x + f y) (s : finset γ) (g : γ → α) :
f (s.sum g) ≤ s.sum (λc, f (g c)) :=
begin
refine le_trans (multiset.le_sum_of_subadditive f h_zero h_add _) _,
rw [multiset.map_map],
refl
end
lemma abs_sum_le_sum_abs [discrete_linear_ordered_field α] {f : β → α} {s : finset β} :
abs (s.sum f) ≤ s.sum (λa, abs (f a)) :=
le_sum_of_subadditive _ abs_zero abs_add s f
section comm_group
variables [comm_group β]
@[simp, to_additive]
lemma prod_inv_distrib : s.prod (λx, (f x)⁻¹) = (s.prod f)⁻¹ :=
prod_hom has_inv.inv
end comm_group
@[simp] theorem card_sigma {σ : α → Type*} (s : finset α) (t : Π a, finset (σ a)) :
card (s.sigma t) = s.sum (λ a, card (t a)) :=
multiset.card_sigma _ _
lemma card_bind [decidable_eq β] {s : finset α} {t : α → finset β}
(h : ∀ x ∈ s, ∀ y ∈ s, x ≠ y → disjoint (t x) (t y)) :
(s.bind t).card = s.sum (λ u, card (t u)) :=
calc (s.bind t).card = (s.bind t).sum (λ _, 1) : by simp
... = s.sum (λ a, (t a).sum (λ _, 1)) : finset.sum_bind h
... = s.sum (λ u, card (t u)) : by simp
lemma card_bind_le [decidable_eq β] {s : finset α} {t : α → finset β} :
(s.bind t).card ≤ s.sum (λ a, (t a).card) :=
by haveI := classical.dec_eq α; exact
finset.induction_on s (by simp)
(λ a s has ih,
calc ((insert a s).bind t).card ≤ (t a).card + (s.bind t).card :
by rw bind_insert; exact finset.card_union_le _ _
... ≤ (insert a s).sum (λ a, card (t a)) :
by rw sum_insert has; exact add_le_add_left ih _)
theorem card_eq_sum_card_image [decidable_eq β] (f : α → β) (s : finset α) :
s.card = (s.image f).sum (λ a, (s.filter (λ x, f x = a)).card) :=
by letI := classical.dec_eq α; exact
calc s.card = ((s.image f).bind (λ a, s.filter (λ x, f x = a))).card :
congr_arg _ (finset.ext.2 $ λ x,
⟨λ hs, mem_bind.2 ⟨f x, mem_image_of_mem _ hs,
mem_filter.2 ⟨hs, rfl⟩⟩,
λ h, let ⟨a, ha₁, ha₂⟩ := mem_bind.1 h in by convert filter_subset s ha₂⟩)
... = (s.image f).sum (λ a, (s.filter (λ x, f x = a)).card) :
card_bind (by simp [disjoint_left, finset.ext] {contextual := tt})
lemma gsmul_sum [add_comm_group β] {f : α → β} {s : finset α} (z : ℤ) :
gsmul z (s.sum f) = s.sum (λa, gsmul z (f a)) :=
(finset.sum_hom (gsmul z)).symm
end finset
namespace finset
variables {s s₁ s₂ : finset α} {f g : α → β} {b : β} {a : α}
@[simp] lemma sum_sub_distrib [add_comm_group β] : s.sum (λx, f x - g x) = s.sum f - s.sum g :=
sum_add_distrib.trans $ congr_arg _ sum_neg_distrib
section semiring
variables [semiring β]
lemma sum_mul : s.sum f * b = s.sum (λx, f x * b) :=
(sum_hom (λx, x * b)).symm
lemma mul_sum : b * s.sum f = s.sum (λx, b * f x) :=
(sum_hom (λx, b * x)).symm
@[simp] lemma sum_mul_boole [decidable_eq α] (s : finset α) (f : α → β) (a : α) :
s.sum (λ x, (f x * ite (a = x) 1 0)) = ite (a ∈ s) (f a) 0 :=
begin
convert sum_ite_eq s a (f a),
funext,
split_ifs with h; simp [h],
end
@[simp] lemma sum_boole_mul [decidable_eq α] (s : finset α) (f : α → β) (a : α) :
s.sum (λ x, (ite (a = x) 1 0) * f x) = ite (a ∈ s) (f a) 0 :=
begin
convert sum_ite_eq s a (f a),
funext,
split_ifs with h; simp [h],
end
end semiring
section comm_semiring
variables [decidable_eq α] [comm_semiring β]
lemma prod_eq_zero (ha : a ∈ s) (h : f a = 0) : s.prod f = 0 :=
calc s.prod f = (insert a (erase s a)).prod f : by rw insert_erase ha
... = 0 : by rw [prod_insert (not_mem_erase _ _), h, zero_mul]
lemma prod_sum {δ : α → Type*} [∀a, decidable_eq (δ a)]
{s : finset α} {t : Πa, finset (δ a)} {f : Πa, δ a → β} :
s.prod (λa, (t a).sum (λb, f a b)) =
(s.pi t).sum (λp, s.attach.prod (λx, f x.1 (p x.1 x.2))) :=
begin
induction s using finset.induction with a s ha ih,
{ rw [pi_empty, sum_singleton], refl },
{ have h₁ : ∀x ∈ t a, ∀y ∈ t a, ∀h : x ≠ y,
disjoint (image (pi.cons s a x) (pi s t)) (image (pi.cons s a y) (pi s t)),
{ assume x hx y hy h,
simp only [disjoint_iff_ne, mem_image],
rintros _ ⟨p₂, hp, eq₂⟩ _ ⟨p₃, hp₃, eq₃⟩ eq,
have : pi.cons s a x p₂ a (mem_insert_self _ _) = pi.cons s a y p₃ a (mem_insert_self _ _),
{ rw [eq₂, eq₃, eq] },
rw [pi.cons_same, pi.cons_same] at this,
exact h this },
rw [prod_insert ha, pi_insert ha, ih, sum_mul, sum_bind h₁],
refine sum_congr rfl (λ b _, _),
have h₂ : ∀p₁∈pi s t, ∀p₂∈pi s t, pi.cons s a b p₁ = pi.cons s a b p₂ → p₁ = p₂, from
assume p₁ h₁ p₂ h₂ eq, injective_pi_cons ha eq,
rw [sum_image h₂, mul_sum],
refine sum_congr rfl (λ g _, _),
rw [attach_insert, prod_insert, prod_image],
{ simp only [pi.cons_same],
congr', ext ⟨v, hv⟩, congr',
exact (pi.cons_ne (by rintro rfl; exact ha hv)).symm },
{ exact λ _ _ _ _, subtype.eq ∘ subtype.mk.inj },
{ simp only [mem_image], rintro ⟨⟨_, hm⟩, _, rfl⟩, exact ha hm } }
end
end comm_semiring
section integral_domain /- add integral_semi_domain to support nat and ennreal -/
variables [decidable_eq α] [integral_domain β]
lemma prod_eq_zero_iff : s.prod f = 0 ↔ (∃a∈s, f a = 0) :=
finset.induction_on s ⟨not.elim one_ne_zero, λ ⟨_, H, _⟩, H.elim⟩ $ λ a s ha ih,
by rw [prod_insert ha, mul_eq_zero_iff_eq_zero_or_eq_zero,
bex_def, exists_mem_insert, ih, ← bex_def]
end integral_domain
section ordered_comm_monoid
variables [decidable_eq α] [ordered_comm_monoid β]
lemma sum_le_sum : (∀x∈s, f x ≤ g x) → s.sum f ≤ s.sum g :=
finset.induction_on s (λ _, le_refl _) $ assume a s ha ih h,
have f a + s.sum f ≤ g a + s.sum g,
from add_le_add' (h _ (mem_insert_self _ _)) (ih $ assume x hx, h _ $ mem_insert_of_mem hx),
by simpa only [sum_insert ha]
lemma sum_nonneg (h : ∀x∈s, 0 ≤ f x) : 0 ≤ s.sum f := le_trans (by rw [sum_const_zero]) (sum_le_sum h)
lemma sum_nonpos (h : ∀x∈s, f x ≤ 0) : s.sum f ≤ 0 := le_trans (sum_le_sum h) (by rw [sum_const_zero])
lemma sum_le_sum_of_subset_of_nonneg
(h : s₁ ⊆ s₂) (hf : ∀x∈s₂, x ∉ s₁ → 0 ≤ f x) : s₁.sum f ≤ s₂.sum f :=
calc s₁.sum f ≤ (s₂ \ s₁).sum f + s₁.sum f :
le_add_of_nonneg_left' $ sum_nonneg $ by simpa only [mem_sdiff, and_imp]
... = (s₂ \ s₁ ∪ s₁).sum f : (sum_union sdiff_disjoint).symm
... = s₂.sum f : by rw [sdiff_union_of_subset h]
lemma sum_eq_zero_iff_of_nonneg : (∀x∈s, 0 ≤ f x) → (s.sum f = 0 ↔ ∀x∈s, f x = 0) :=
finset.induction_on s (λ _, ⟨λ _ _, false.elim, λ _, rfl⟩) $ λ a s ha ih H,
have ∀ x ∈ s, 0 ≤ f x, from λ _, H _ ∘ mem_insert_of_mem,
by rw [sum_insert ha,
add_eq_zero_iff' (H _ $ mem_insert_self _ _) (sum_nonneg this),
forall_mem_insert, ih this]
lemma sum_eq_zero_iff_of_nonpos : (∀x∈s, f x ≤ 0) → (s.sum f = 0 ↔ ∀x∈s, f x = 0) :=
@sum_eq_zero_iff_of_nonneg _ (order_dual β) _ _ _ _
lemma single_le_sum (hf : ∀x∈s, 0 ≤ f x) {a} (h : a ∈ s) : f a ≤ s.sum f :=
have (singleton a).sum f ≤ s.sum f,
from sum_le_sum_of_subset_of_nonneg
(λ x e, (mem_singleton.1 e).symm ▸ h) (λ x h _, hf x h),
by rwa sum_singleton at this
end ordered_comm_monoid
section canonically_ordered_monoid
variables [decidable_eq α] [canonically_ordered_monoid β]
lemma sum_le_sum_of_subset (h : s₁ ⊆ s₂) : s₁.sum f ≤ s₂.sum f :=
sum_le_sum_of_subset_of_nonneg h $ assume x h₁ h₂, zero_le _
lemma sum_le_sum_of_ne_zero [@decidable_rel β (≤)] (h : ∀x∈s₁, f x ≠ 0 → x ∈ s₂) :
s₁.sum f ≤ s₂.sum f :=
calc s₁.sum f = (s₁.filter (λx, f x = 0)).sum f + (s₁.filter (λx, f x ≠ 0)).sum f :
by rw [←sum_union, filter_union_filter_neg_eq];
exact disjoint_filter.2 (assume _ _ h n_h, n_h h)
... ≤ s₂.sum f : add_le_of_nonpos_of_le'
(sum_nonpos $ by simp only [mem_filter, and_imp]; exact λ _ _, le_of_eq)
(sum_le_sum_of_subset $ by simpa only [subset_iff, mem_filter, and_imp])
end canonically_ordered_monoid
section linear_ordered_comm_ring
variables [decidable_eq α] [linear_ordered_comm_ring β]
/- this is also true for a ordered commutative multiplicative monoid -/
lemma prod_nonneg {s : finset α} {f : α → β}
(h0 : ∀(x ∈ s), 0 ≤ f x) : 0 ≤ s.prod f :=
begin
induction s using finset.induction with a s has ih h,
{ simp [zero_le_one] },
{ simp [has], apply mul_nonneg, apply h0 a (mem_insert_self a s),
exact ih (λ x H, h0 x (mem_insert_of_mem H)) }
end
/- this is also true for a ordered commutative multiplicative monoid -/
lemma prod_pos {s : finset α} {f : α → β} (h0 : ∀(x ∈ s), 0 < f x) : 0 < s.prod f :=
begin
induction s using finset.induction with a s has ih h,
{ simp [zero_lt_one] },
{ simp [has], apply mul_pos, apply h0 a (mem_insert_self a s),
exact ih (λ x H, h0 x (mem_insert_of_mem H)) }
end
/- this is also true for a ordered commutative multiplicative monoid -/
lemma prod_le_prod {s : finset α} {f g : α → β} (h0 : ∀(x ∈ s), 0 ≤ f x)
(h1 : ∀(x ∈ s), f x ≤ g x) : s.prod f ≤ s.prod g :=
begin
induction s using finset.induction with a s has ih h,
{ simp },
{ simp [has], apply mul_le_mul,
exact h1 a (mem_insert_self a s),
apply ih (λ x H, h0 _ _) (λ x H, h1 _ _); exact (mem_insert_of_mem H),
apply prod_nonneg (λ x H, h0 x (mem_insert_of_mem H)),
apply le_trans (h0 a (mem_insert_self a s)) (h1 a (mem_insert_self a s)) }
end
end linear_ordered_comm_ring
@[simp] lemma card_pi [decidable_eq α] {δ : α → Type*}
(s : finset α) (t : Π a, finset (δ a)) :
(s.pi t).card = s.prod (λ a, card (t a)) :=
multiset.card_pi _ _
theorem card_le_mul_card_image [decidable_eq β] {f : α → β} (s : finset α)
(n : ℕ) (hn : ∀ a ∈ s.image f, (s.filter (λ x, f x = a)).card ≤ n) :
s.card ≤ n * (s.image f).card :=
calc s.card = (s.image f).sum (λ a, (s.filter (λ x, f x = a)).card) :
card_eq_sum_card_image _ _
... ≤ (s.image f).sum (λ _, n) : sum_le_sum hn
... = _ : by simp [mul_comm]
@[simp] lemma prod_range_id_eq_fact (n : ℕ) : ((range n.succ).erase 0).prod (λ x, x) = nat.fact n :=
calc ((range n.succ).erase 0).prod (λ x, x) = (range n).prod nat.succ :
eq.symm (prod_bij (λ x _, nat.succ x)
(λ a h₁, mem_erase.2 ⟨nat.succ_ne_zero _, mem_range.2 $ nat.succ_lt_succ $ by simpa using h₁⟩)
(by simp) (λ _ _ _ _, nat.succ_inj)
(λ b h,
have b.pred.succ = b, from nat.succ_pred_eq_of_pos $
by simp [nat.pos_iff_ne_zero] at *; tauto,
⟨nat.pred b, mem_range.2 $ nat.lt_of_succ_lt_succ (by simp [*] at *), this.symm⟩))
... = nat.fact n : by induction n; simp [*, range_succ]
end finset
namespace finset
section gauss_sum
/-- Gauss' summation formula -/
lemma sum_range_id_mul_two :
∀(n : ℕ), (finset.range n).sum (λi, i) * 2 = n * (n - 1)
| 0 := rfl
| 1 := rfl
| ((n + 1) + 1) :=
begin
rw [sum_range_succ, add_mul, sum_range_id_mul_two (n + 1), mul_comm, two_mul,
nat.add_sub_cancel, nat.add_sub_cancel, mul_comm _ n],
simp only [add_mul, one_mul, add_comm, add_assoc, add_left_comm]
end
/-- Gauss' summation formula -/
lemma sum_range_id (n : ℕ) : (finset.range n).sum (λi, i) = (n * (n - 1)) / 2 :=
by rw [← sum_range_id_mul_two n, nat.mul_div_cancel]; exact dec_trivial
end gauss_sum
lemma card_eq_sum_ones (s : finset α) : s.card = s.sum (λ _, 1) :=
by simp
end finset
section group
open list
variables [group α] [group β]
@[to_additive]
theorem is_group_hom.map_prod (f : α → β) [is_group_hom f] (l : list α) :
f (prod l) = prod (map f l) :=
by induction l; simp only [*, is_mul_hom.map_mul f, is_group_hom.map_one f, prod_nil, prod_cons, map]
theorem is_group_anti_hom.map_prod (f : α → β) [is_group_anti_hom f] (l : list α) :
f (prod l) = prod (map f (reverse l)) :=
by induction l with hd tl ih; [exact is_group_anti_hom.map_one f,
simp only [prod_cons, is_group_anti_hom.map_mul f, ih, reverse_cons, map_append, prod_append, map_singleton, prod_cons, prod_nil, mul_one]]
theorem inv_prod : ∀ l : list α, (prod l)⁻¹ = prod (map (λ x, x⁻¹) (reverse l)) :=
λ l, @is_group_anti_hom.map_prod _ _ _ _ _ inv_is_group_anti_hom l -- TODO there is probably a cleaner proof of this
end group
section comm_group
variables [comm_group α] [comm_group β] (f : α → β) [is_group_hom f]
@[to_additive]
lemma is_group_hom.map_multiset_prod (m : multiset α) : f m.prod = (m.map f).prod :=
quotient.induction_on m $ assume l, by simp [is_group_hom.map_prod f l]
@[to_additive]
lemma is_group_hom.map_finset_prod (g : γ → α) (s : finset γ) : f (s.prod g) = s.prod (f ∘ g) :=
show f (s.val.map g).prod = (s.val.map (f ∘ g)).prod, by rw [is_group_hom.map_multiset_prod f]; simp
end comm_group
@[to_additive is_add_group_hom_finset_sum]
lemma is_group_hom_finset_prod {α β γ} [group α] [comm_group β] (s : finset γ)
(f : γ → α → β) [∀c, is_group_hom (f c)] : is_group_hom (λa, s.prod (λc, f c a)) :=
{ map_mul := assume a b, by simp only [λc, is_mul_hom.map_mul (f c), finset.prod_mul_distrib] }
attribute [instance] is_group_hom_finset_prod is_add_group_hom_finset_sum
namespace multiset
variables [decidable_eq α]
@[simp] lemma to_finset_sum_count_eq (s : multiset α) :
s.to_finset.sum (λa, s.count a) = s.card :=
multiset.induction_on s rfl
(assume a s ih,
calc (to_finset (a :: s)).sum (λx, count x (a :: s)) =
(to_finset (a :: s)).sum (λx, (if x = a then 1 else 0) + count x s) :
finset.sum_congr rfl $ λ _ _, by split_ifs;
[simp only [h, count_cons_self, nat.one_add], simp only [count_cons_of_ne h, zero_add]]
... = card (a :: s) :
begin
by_cases a ∈ s.to_finset,
{ have : (to_finset s).sum (λx, ite (x = a) 1 0) = (finset.singleton a).sum (λx, ite (x = a) 1 0),
{ apply (finset.sum_subset _ _).symm,
{ intros _ H, rwa mem_singleton.1 H },
{ exact λ _ _ H, if_neg (mt finset.mem_singleton.2 H) } },
rw [to_finset_cons, finset.insert_eq_of_mem h, finset.sum_add_distrib, ih, this, finset.sum_singleton, if_pos rfl, add_comm, card_cons] },
{ have ha : a ∉ s, by rwa mem_to_finset at h,
have : (to_finset s).sum (λx, ite (x = a) 1 0) = (to_finset s).sum (λx, 0), from
finset.sum_congr rfl (λ x hx, if_neg $ by rintro rfl; cc),
rw [to_finset_cons, finset.sum_insert h, if_pos rfl, finset.sum_add_distrib, this, finset.sum_const_zero, ih, count_eq_zero_of_not_mem ha, zero_add, add_comm, card_cons] }
end)
end multiset
|
dd441bbf453ee4741e6b232f1877c7ac368a2c23
|
d406927ab5617694ec9ea7001f101b7c9e3d9702
|
/src/group_theory/commutator.lean
|
a70850a6c160412329c782c6481448d43287ec10
|
[
"Apache-2.0"
] |
permissive
|
alreadydone/mathlib
|
dc0be621c6c8208c581f5170a8216c5ba6721927
|
c982179ec21091d3e102d8a5d9f5fe06c8fafb73
|
refs/heads/master
| 1,685,523,275,196
| 1,670,184,141,000
| 1,670,184,141,000
| 287,574,545
| 0
| 0
|
Apache-2.0
| 1,670,290,714,000
| 1,597,421,623,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 9,654
|
lean
|
/-
Copyright (c) 2021 Jordan Brown, Thomas Browning, Patrick Lutz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jordan Brown, Thomas Browning, Patrick Lutz
-/
import data.bracket
import group_theory.subgroup.basic
import tactic.group
/-!
# Commutators of Subgroups
If `G` is a group and `H₁ H₂ : subgroup G` then the commutator `⁅H₁, H₂⁆ : subgroup G`
is the subgroup of `G` generated by the commutators `h₁ * h₂ * h₁⁻¹ * h₂⁻¹`.
## Main definitions
* `⁅g₁, g₂⁆` : the commutator of the elements `g₁` and `g₂`
(defined by `commutator_element` elsewhere).
* `⁅H₁, H₂⁆` : the commutator of the subgroups `H₁` and `H₂`.
-/
variables {G G' F : Type*} [group G] [group G'] [monoid_hom_class F G G'] (f : F) {g₁ g₂ g₃ g : G}
lemma commutator_element_eq_one_iff_mul_comm : ⁅g₁, g₂⁆ = 1 ↔ g₁ * g₂ = g₂ * g₁ :=
by rw [commutator_element_def, mul_inv_eq_one, mul_inv_eq_iff_eq_mul]
lemma commutator_element_eq_one_iff_commute : ⁅g₁, g₂⁆ = 1 ↔ commute g₁ g₂ :=
commutator_element_eq_one_iff_mul_comm
lemma commute.commutator_eq (h : commute g₁ g₂) : ⁅g₁, g₂⁆ = 1 :=
commutator_element_eq_one_iff_commute.mpr h
variables (g₁ g₂ g₃ g)
@[simp] lemma commutator_element_one_right : ⁅g, (1 : G)⁆ = 1 :=
(commute.one_right g).commutator_eq
@[simp] lemma commutator_element_one_left : ⁅(1 : G), g⁆ = 1 :=
(commute.one_left g).commutator_eq
@[simp] lemma commutator_element_self : ⁅g, g⁆ = 1 :=
(commute.refl g).commutator_eq
@[simp] lemma commutator_element_inv : ⁅g₁, g₂⁆⁻¹ = ⁅g₂, g₁⁆ :=
by simp_rw [commutator_element_def, mul_inv_rev, inv_inv, mul_assoc]
lemma map_commutator_element : (f ⁅g₁, g₂⁆ : G') = ⁅f g₁, f g₂⁆ :=
by simp_rw [commutator_element_def, map_mul f, map_inv f]
lemma conjugate_commutator_element : g₃ * ⁅g₁, g₂⁆ * g₃⁻¹ = ⁅g₃ * g₁ * g₃⁻¹, g₃ * g₂ * g₃⁻¹⁆ :=
map_commutator_element (mul_aut.conj g₃).to_monoid_hom g₁ g₂
namespace subgroup
/-- The commutator of two subgroups `H₁` and `H₂`. -/
instance commutator : has_bracket (subgroup G) (subgroup G) :=
⟨λ H₁ H₂, closure {g | ∃ (g₁ ∈ H₁) (g₂ ∈ H₂), ⁅g₁, g₂⁆ = g}⟩
lemma commutator_def (H₁ H₂ : subgroup G) :
⁅H₁, H₂⁆ = closure {g | ∃ (g₁ ∈ H₁) (g₂ ∈ H₂), ⁅g₁, g₂⁆ = g} := rfl
variables {g₁ g₂ g₃} {H₁ H₂ H₃ K₁ K₂ : subgroup G}
lemma commutator_mem_commutator (h₁ : g₁ ∈ H₁) (h₂ : g₂ ∈ H₂) : ⁅g₁, g₂⁆ ∈ ⁅H₁, H₂⁆ :=
subset_closure ⟨g₁, h₁, g₂, h₂, rfl⟩
lemma commutator_le : ⁅H₁, H₂⁆ ≤ H₃ ↔ ∀ (g₁ ∈ H₁) (g₂ ∈ H₂), ⁅g₁, g₂⁆ ∈ H₃ :=
H₃.closure_le.trans ⟨λ h a b c d, h ⟨a, b, c, d, rfl⟩, λ h g ⟨a, b, c, d, h_eq⟩, h_eq ▸ h a b c d⟩
lemma commutator_mono (h₁ : H₁ ≤ K₁) (h₂ : H₂ ≤ K₂) : ⁅H₁, H₂⁆ ≤ ⁅K₁, K₂⁆ :=
commutator_le.mpr (λ g₁ hg₁ g₂ hg₂, commutator_mem_commutator (h₁ hg₁) (h₂ hg₂))
lemma commutator_eq_bot_iff_le_centralizer : ⁅H₁, H₂⁆ = ⊥ ↔ H₁ ≤ H₂.centralizer :=
begin
rw [eq_bot_iff, commutator_le],
refine forall_congr (λ p, forall_congr (λ hp, forall_congr (λ q, forall_congr (λ hq, _)))),
rw [mem_bot, commutator_element_eq_one_iff_mul_comm, eq_comm],
end
/-- **The Three Subgroups Lemma** (via the Hall-Witt identity) -/
lemma commutator_commutator_eq_bot_of_rotate
(h1 : ⁅⁅H₂, H₃⁆, H₁⁆ = ⊥) (h2 : ⁅⁅H₃, H₁⁆, H₂⁆ = ⊥) : ⁅⁅H₁, H₂⁆, H₃⁆ = ⊥ :=
begin
simp_rw [commutator_eq_bot_iff_le_centralizer, commutator_le,
mem_centralizer_iff_commutator_eq_one, ←commutator_element_def] at h1 h2 ⊢,
intros x hx y hy z hz,
transitivity x * z * ⁅y, ⁅z⁻¹, x⁻¹⁆⁆⁻¹ * z⁻¹ * y * ⁅x⁻¹, ⁅y⁻¹, z⁆⁆⁻¹ * y⁻¹ * x⁻¹,
{ group },
{ rw [h1 _ (H₂.inv_mem hy) _ hz _ (H₁.inv_mem hx), h2 _ (H₃.inv_mem hz) _ (H₁.inv_mem hx) _ hy],
group },
end
variables (H₁ H₂)
lemma commutator_comm_le : ⁅H₁, H₂⁆ ≤ ⁅H₂, H₁⁆ :=
commutator_le.mpr (λ g₁ h₁ g₂ h₂,
commutator_element_inv g₂ g₁ ▸ ⁅H₂, H₁⁆.inv_mem_iff.mpr (commutator_mem_commutator h₂ h₁))
lemma commutator_comm : ⁅H₁, H₂⁆ = ⁅H₂, H₁⁆ :=
le_antisymm (commutator_comm_le H₁ H₂) (commutator_comm_le H₂ H₁)
section normal
instance commutator_normal [h₁ : H₁.normal] [h₂ : H₂.normal] : normal ⁅H₁, H₂⁆ :=
begin
let base : set G := {x | ∃ (g₁ ∈ H₁) (g₂ ∈ H₂), ⁅g₁, g₂⁆ = x},
change (closure base).normal,
suffices h_base : base = group.conjugates_of_set base,
{ rw h_base,
exact subgroup.normal_closure_normal },
refine set.subset.antisymm group.subset_conjugates_of_set (λ a h, _),
simp_rw [group.mem_conjugates_of_set_iff, is_conj_iff] at h,
rcases h with ⟨b, ⟨c, hc, e, he, rfl⟩, d, rfl⟩,
exact ⟨_, h₁.conj_mem c hc d, _, h₂.conj_mem e he d, (conjugate_commutator_element c e d).symm⟩,
end
lemma commutator_def' [H₁.normal] [H₂.normal] :
⁅H₁, H₂⁆ = normal_closure {g | ∃ (g₁ ∈ H₁) (g₂ ∈ H₂), ⁅g₁, g₂⁆ = g} :=
le_antisymm closure_le_normal_closure (normal_closure_le_normal subset_closure)
lemma commutator_le_right [h : H₂.normal] : ⁅H₁, H₂⁆ ≤ H₂ :=
commutator_le.mpr (λ g₁ h₁ g₂ h₂, H₂.mul_mem (h.conj_mem g₂ h₂ g₁) (H₂.inv_mem h₂))
lemma commutator_le_left [H₁.normal] : ⁅H₁, H₂⁆ ≤ H₁ :=
commutator_comm H₂ H₁ ▸ commutator_le_right H₂ H₁
@[simp] lemma commutator_bot_left : ⁅(⊥ : subgroup G), H₁⁆ = ⊥ :=
le_bot_iff.mp (commutator_le_left ⊥ H₁)
@[simp] lemma commutator_bot_right : ⁅H₁, ⊥⁆ = (⊥ : subgroup G) :=
le_bot_iff.mp (commutator_le_right H₁ ⊥)
lemma commutator_le_inf [normal H₁] [normal H₂] : ⁅H₁, H₂⁆ ≤ H₁ ⊓ H₂ :=
le_inf (commutator_le_left H₁ H₂) (commutator_le_right H₁ H₂)
end normal
lemma map_commutator (f : G →* G') : map f ⁅H₁, H₂⁆ = ⁅map f H₁, map f H₂⁆ :=
begin
simp_rw [le_antisymm_iff, map_le_iff_le_comap, commutator_le, mem_comap, map_commutator_element],
split,
{ intros p hp q hq,
exact commutator_mem_commutator (mem_map_of_mem _ hp) (mem_map_of_mem _ hq), },
{ rintros _ ⟨p, hp, rfl⟩ _ ⟨q, hq, rfl⟩,
rw ← map_commutator_element,
exact mem_map_of_mem _ (commutator_mem_commutator hp hq) }
end
variables {H₁ H₂}
lemma commutator_le_map_commutator {f : G →* G'} {K₁ K₂ : subgroup G'}
(h₁ : K₁ ≤ H₁.map f) (h₂ : K₂ ≤ H₂.map f) : ⁅K₁, K₂⁆ ≤ ⁅H₁, H₂⁆.map f :=
(commutator_mono h₁ h₂).trans (ge_of_eq (map_commutator H₁ H₂ f))
variables (H₁ H₂)
instance commutator_characteristic [h₁ : characteristic H₁] [h₂ : characteristic H₂] :
characteristic ⁅H₁, H₂⁆ :=
characteristic_iff_le_map.mpr (λ ϕ, commutator_le_map_commutator
(characteristic_iff_le_map.mp h₁ ϕ) (characteristic_iff_le_map.mp h₂ ϕ))
lemma commutator_prod_prod (K₁ K₂ : subgroup G') :
⁅H₁.prod K₁, H₂.prod K₂⁆ = ⁅H₁, H₂⁆.prod ⁅K₁, K₂⁆ :=
begin
apply le_antisymm,
{ rw commutator_le,
rintros ⟨p₁, p₂⟩ ⟨hp₁, hp₂⟩ ⟨q₁, q₂⟩ ⟨hq₁, hq₂⟩,
exact ⟨commutator_mem_commutator hp₁ hq₁, commutator_mem_commutator hp₂ hq₂⟩ },
{ rw prod_le_iff, split;
{ rw map_commutator,
apply commutator_mono;
simp [le_prod_iff, map_map, monoid_hom.fst_comp_inl, monoid_hom.snd_comp_inl,
monoid_hom.fst_comp_inr, monoid_hom.snd_comp_inr ], }, }
end
/-- The commutator of direct product is contained in the direct product of the commutators.
See `commutator_pi_pi_of_finite` for equality given `fintype η`.
-/
lemma commutator_pi_pi_le {η : Type*} {Gs : η → Type*} [∀ i, group (Gs i)]
(H K : Π i, subgroup (Gs i)) :
⁅subgroup.pi set.univ H, subgroup.pi set.univ K⁆ ≤ subgroup.pi set.univ (λ i, ⁅H i, K i⁆) :=
commutator_le.mpr $ λ p hp q hq i hi, commutator_mem_commutator (hp i hi) (hq i hi)
/-- The commutator of a finite direct product is contained in the direct product of the commutators.
-/
lemma commutator_pi_pi_of_finite {η : Type*} [finite η] {Gs : η → Type*}
[∀ i, group (Gs i)] (H K : Π i, subgroup (Gs i)) :
⁅subgroup.pi set.univ H, subgroup.pi set.univ K⁆ = subgroup.pi set.univ (λ i, ⁅H i, K i⁆) :=
begin
classical,
apply le_antisymm (commutator_pi_pi_le H K),
{ rw pi_le_iff, intros i hi,
rw map_commutator,
apply commutator_mono;
{ rw le_pi_iff,
intros j hj,
rintros _ ⟨_, ⟨x, hx, rfl⟩, rfl⟩,
by_cases h : j = i,
{ subst h, simpa using hx, },
{ simp [h, one_mem] }, }, },
end
end subgroup
variables (G)
/-- The set of commutator elements `⁅g₁, g₂⁆` in `G`. -/
def commutator_set : set G :=
{g | ∃ g₁ g₂ : G, ⁅g₁, g₂⁆ = g}
lemma commutator_set_def : commutator_set G = {g | ∃ g₁ g₂ : G, ⁅g₁, g₂⁆ = g} := rfl
lemma one_mem_commutator_set : (1 : G) ∈ commutator_set G :=
⟨1, 1, commutator_element_self 1⟩
instance : nonempty (commutator_set G) :=
⟨⟨1, one_mem_commutator_set G⟩⟩
variables {G g}
lemma mem_commutator_set_iff : g ∈ commutator_set G ↔ ∃ g₁ g₂ : G, ⁅g₁, g₂⁆ = g :=
iff.rfl
lemma commutator_mem_commutator_set : ⁅g₁, g₂⁆ ∈ commutator_set G :=
⟨g₁, g₂, rfl⟩
|
d2e118c264fb43c0096000b6b4d5fc36949668e3
|
d642a6b1261b2cbe691e53561ac777b924751b63
|
/src/topology/uniform_space/completion.lean
|
5e40874f04a24d14bcfbe423dc9f0a85c57d8299
|
[
"Apache-2.0"
] |
permissive
|
cipher1024/mathlib
|
fee56b9954e969721715e45fea8bcb95f9dc03fe
|
d077887141000fefa5a264e30fa57520e9f03522
|
refs/heads/master
| 1,651,806,490,504
| 1,573,508,694,000
| 1,573,508,694,000
| 107,216,176
| 0
| 0
|
Apache-2.0
| 1,647,363,136,000
| 1,508,213,014,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 24,917
|
lean
|
/-
Copyright (c) 2018 Patrick Massot. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot, Johannes Hölzl
Hausdorff completions of uniform spaces.
The goal is to construct a left-adjoint to the inclusion of complete Hausdorff uniform spaces
into all uniform spaces. Any uniform space `α` gets a completion `completion α` and a morphism
(ie. uniformly continuous map) `completion : α → completion α` which solves the universal
mapping problem of factorizing morphisms from `α` to any complete Hausdorff uniform space `β`.
It means any uniformly continuous `f : α → β` gives rise to a unique morphism
`completion.extension f : completion α → β` such that `f = completion.extension f ∘ completion α`.
Actually `completion.extension f` is defined for all maps from `α` to `β` but it has the desired
properties only if `f` is uniformly continuous.
Beware that `completion α` is not injective if `α` is not Hausdorff. But its image is always
dense. The adjoint functor acting on morphisms is then constructed by the usual abstract nonsense.
For every uniform spaces `α` and `β`, it turns `f : α → β` into a morphism
`completion.map f : completion α → completion β`
such that
`coe ∘ f = (completion.map f) ∘ coe`
provided `f` is uniformly continuous. This construction is compatible with composition.
In this file we introduce the following concepts:
* `Cauchy α` the uniform completion of the uniform space `α` (using Cauchy filters). These are not
minimal filters.
* `completion α := quotient (separation_setoid (Cauchy α))` the Hausdorff completion.
This formalization is mostly based on
N. Bourbaki: General Topology
I. M. James: Topologies and Uniformities
From a slightly different perspective in order to reuse material in topology.uniform_space.basic.
-/
import data.set.basic
import topology.uniform_space.abstract_completion topology.uniform_space.separation
noncomputable theory
open filter set
universes u v w x
open_locale uniformity classical
/-- Space of Cauchy filters
This is essentially the completion of a uniform space. The embeddings are the neighbourhood filters.
This space is not minimal, the separated uniform space (i.e. quotiented on the intersection of all
entourages) is necessary for this.
-/
def Cauchy (α : Type u) [uniform_space α] : Type u := { f : filter α // cauchy f }
namespace Cauchy
section
parameters {α : Type u} [uniform_space α]
variables {β : Type v} {γ : Type w}
variables [uniform_space β] [uniform_space γ]
def gen (s : set (α × α)) : set (Cauchy α × Cauchy α) :=
{p | s ∈ filter.prod (p.1.val) (p.2.val) }
lemma monotone_gen : monotone gen :=
monotone_set_of $ assume p, @monotone_mem_sets (α×α) (filter.prod (p.1.val) (p.2.val))
private lemma symm_gen : map prod.swap ((𝓤 α).lift' gen) ≤ (𝓤 α).lift' gen :=
calc map prod.swap ((𝓤 α).lift' gen) =
(𝓤 α).lift' (λs:set (α×α), {p | s ∈ filter.prod (p.2.val) (p.1.val) }) :
begin
delta gen,
simp [map_lift'_eq, monotone_set_of, monotone_mem_sets,
function.comp, image_swap_eq_preimage_swap]
end
... ≤ (𝓤 α).lift' gen :
uniformity_lift_le_swap
(monotone_principal.comp (monotone_set_of $ assume p,
@monotone_mem_sets (α×α) ((filter.prod ((p.2).val) ((p.1).val)))))
begin
have h := λ(p:Cauchy α×Cauchy α), @filter.prod_comm _ _ (p.2.val) (p.1.val),
simp [function.comp, h],
exact le_refl _
end
private lemma comp_rel_gen_gen_subset_gen_comp_rel {s t : set (α×α)} : comp_rel (gen s) (gen t) ⊆
(gen (comp_rel s t) : set (Cauchy α × Cauchy α)) :=
assume ⟨f, g⟩ ⟨h, h₁, h₂⟩,
let ⟨t₁, (ht₁ : t₁ ∈ f.val), t₂, (ht₂ : t₂ ∈ h.val), (h₁ : set.prod t₁ t₂ ⊆ s)⟩ :=
mem_prod_iff.mp h₁ in
let ⟨t₃, (ht₃ : t₃ ∈ h.val), t₄, (ht₄ : t₄ ∈ g.val), (h₂ : set.prod t₃ t₄ ⊆ t)⟩ :=
mem_prod_iff.mp h₂ in
have t₂ ∩ t₃ ∈ h.val,
from inter_mem_sets ht₂ ht₃,
let ⟨x, xt₂, xt₃⟩ :=
inhabited_of_mem_sets (h.property.left) this in
(filter.prod f.val g.val).sets_of_superset
(prod_mem_prod ht₁ ht₄)
(assume ⟨a, b⟩ ⟨(ha : a ∈ t₁), (hb : b ∈ t₄)⟩,
⟨x,
h₁ (show (a, x) ∈ set.prod t₁ t₂, from ⟨ha, xt₂⟩),
h₂ (show (x, b) ∈ set.prod t₃ t₄, from ⟨xt₃, hb⟩)⟩)
private lemma comp_gen :
((𝓤 α).lift' gen).lift' (λs, comp_rel s s) ≤ (𝓤 α).lift' gen :=
calc ((𝓤 α).lift' gen).lift' (λs, comp_rel s s) =
(𝓤 α).lift' (λs, comp_rel (gen s) (gen s)) :
begin
rw [lift'_lift'_assoc],
exact monotone_gen,
exact (monotone_comp_rel monotone_id monotone_id)
end
... ≤ (𝓤 α).lift' (λs, gen $ comp_rel s s) :
lift'_mono' $ assume s hs, comp_rel_gen_gen_subset_gen_comp_rel
... = ((𝓤 α).lift' $ λs:set(α×α), comp_rel s s).lift' gen :
begin
rw [lift'_lift'_assoc],
exact (monotone_comp_rel monotone_id monotone_id),
exact monotone_gen
end
... ≤ (𝓤 α).lift' gen : lift'_mono comp_le_uniformity (le_refl _)
instance : uniform_space (Cauchy α) :=
uniform_space.of_core
{ uniformity := (𝓤 α).lift' gen,
refl := principal_le_lift' $ assume s hs ⟨a, b⟩ (a_eq_b : a = b),
a_eq_b ▸ a.property.right hs,
symm := symm_gen,
comp := comp_gen }
theorem mem_uniformity {s : set (Cauchy α × Cauchy α)} :
s ∈ 𝓤 (Cauchy α) ↔ ∃ t ∈ 𝓤 α, gen t ⊆ s :=
mem_lift'_sets monotone_gen
theorem mem_uniformity' {s : set (Cauchy α × Cauchy α)} :
s ∈ 𝓤 (Cauchy α) ↔ ∃ t ∈ 𝓤 α,
∀ f g : Cauchy α, t ∈ filter.prod f.1 g.1 → (f, g) ∈ s :=
mem_uniformity.trans $ bex_congr $ λ t h, prod.forall
/-- Embedding of `α` into its completion -/
def pure_cauchy (a : α) : Cauchy α :=
⟨pure a, cauchy_pure⟩
lemma uniform_inducing_pure_cauchy : uniform_inducing (pure_cauchy : α → Cauchy α) :=
⟨have (preimage (λ (x : α × α), (pure_cauchy (x.fst), pure_cauchy (x.snd))) ∘ gen) = id,
from funext $ assume s, set.ext $ assume ⟨a₁, a₂⟩,
by simp [preimage, gen, pure_cauchy, prod_principal_principal],
calc comap (λ (x : α × α), (pure_cauchy (x.fst), pure_cauchy (x.snd))) ((𝓤 α).lift' gen)
= (𝓤 α).lift' (preimage (λ (x : α × α), (pure_cauchy (x.fst), pure_cauchy (x.snd))) ∘ gen) :
comap_lift'_eq monotone_gen
... = 𝓤 α : by simp [this]⟩
lemma uniform_embedding_pure_cauchy : uniform_embedding (pure_cauchy : α → Cauchy α) :=
{ inj :=
assume a₁ a₂ h,
have (pure_cauchy a₁).val = (pure_cauchy a₂).val, from congr_arg _ h,
have {a₁} = ({a₂} : set α),
from principal_eq_iff_eq.mp this,
by simp at this; assumption,
..uniform_inducing_pure_cauchy }
lemma pure_cauchy_dense : ∀x, x ∈ closure (range pure_cauchy) :=
assume f,
have h_ex : ∀ s ∈ 𝓤 (Cauchy α), ∃y:α, (f, pure_cauchy y) ∈ s, from
assume s hs,
let ⟨t'', ht''₁, (ht''₂ : gen t'' ⊆ s)⟩ := (mem_lift'_sets monotone_gen).mp hs in
let ⟨t', ht'₁, ht'₂⟩ := comp_mem_uniformity_sets ht''₁ in
have t' ∈ filter.prod (f.val) (f.val),
from f.property.right ht'₁,
let ⟨t, ht, (h : set.prod t t ⊆ t')⟩ := mem_prod_same_iff.mp this in
let ⟨x, (hx : x ∈ t)⟩ := inhabited_of_mem_sets f.property.left ht in
have t'' ∈ filter.prod f.val (pure x),
from mem_prod_iff.mpr ⟨t, ht, {y:α | (x, y) ∈ t'},
assume y, begin simp, intro h, simp [h], exact refl_mem_uniformity ht'₁ end,
assume ⟨a, b⟩ ⟨(h₁ : a ∈ t), (h₂ : (x, b) ∈ t')⟩,
ht'₂ $ prod_mk_mem_comp_rel (@h (a, x) ⟨h₁, hx⟩) h₂⟩,
⟨x, ht''₂ $ by dsimp [gen]; exact this⟩,
begin
simp [closure_eq_nhds, nhds_eq_uniformity, lift'_inf_principal_eq, set.inter_comm],
exact (lift'_neq_bot_iff $ monotone_inter monotone_const monotone_preimage).mpr
(assume s hs,
let ⟨y, hy⟩ := h_ex s hs in
have pure_cauchy y ∈ range pure_cauchy ∩ {y : Cauchy α | (f, y) ∈ s},
from ⟨mem_range_self y, hy⟩,
ne_empty_of_mem this)
end
lemma dense_inducing_pure_cauchy : dense_inducing pure_cauchy :=
uniform_inducing_pure_cauchy.dense_inducing pure_cauchy_dense
lemma dense_embedding_pure_cauchy : dense_embedding pure_cauchy :=
uniform_embedding_pure_cauchy.dense_embedding pure_cauchy_dense
lemma nonempty_Cauchy_iff : nonempty (Cauchy α) ↔ nonempty α :=
begin
split ; rintro ⟨c⟩,
{ have := eq_univ_iff_forall.1 dense_embedding_pure_cauchy.to_dense_inducing.closure_range c,
have := mem_closure_iff.1 this _ is_open_univ trivial,
rcases exists_mem_of_ne_empty this with ⟨_, ⟨_, a, _⟩⟩,
exact ⟨a⟩ },
{ exact ⟨pure_cauchy c⟩ }
end
section
set_option eqn_compiler.zeta true
instance : complete_space (Cauchy α) :=
complete_space_extension
uniform_inducing_pure_cauchy
pure_cauchy_dense $
assume f hf,
let f' : Cauchy α := ⟨f, hf⟩ in
have map pure_cauchy f ≤ (𝓤 $ Cauchy α).lift' (preimage (prod.mk f')),
from le_lift' $ assume s hs,
let ⟨t, ht₁, (ht₂ : gen t ⊆ s)⟩ := (mem_lift'_sets monotone_gen).mp hs in
let ⟨t', ht', (h : set.prod t' t' ⊆ t)⟩ := mem_prod_same_iff.mp (hf.right ht₁) in
have t' ⊆ { y : α | (f', pure_cauchy y) ∈ gen t },
from assume x hx, (filter.prod f (pure x)).sets_of_superset (prod_mem_prod ht' $ mem_pure hx) h,
f.sets_of_superset ht' $ subset.trans this (preimage_mono ht₂),
⟨f', by simp [nhds_eq_uniformity]; assumption⟩
end
instance [inhabited α] : inhabited (Cauchy α) :=
⟨pure_cauchy $ default α⟩
instance [h : nonempty α] : nonempty (Cauchy α) :=
h.rec_on $ assume a, nonempty.intro $ Cauchy.pure_cauchy a
section extend
def extend (f : α → β) : (Cauchy α → β) :=
if uniform_continuous f then
dense_inducing_pure_cauchy.extend f
else
λ x, f (classical.inhabited_of_nonempty $ nonempty_Cauchy_iff.1 ⟨x⟩).default
variables [separated β]
lemma extend_pure_cauchy {f : α → β} (hf : uniform_continuous f) (a : α) :
extend f (pure_cauchy a) = f a :=
begin
rw [extend, if_pos hf],
exact uniformly_extend_of_ind uniform_inducing_pure_cauchy pure_cauchy_dense hf _
end
variables [_root_.complete_space β]
lemma uniform_continuous_extend {f : α → β} : uniform_continuous (extend f) :=
begin
by_cases hf : uniform_continuous f,
{ rw [extend, if_pos hf],
exact uniform_continuous_uniformly_extend uniform_inducing_pure_cauchy pure_cauchy_dense hf },
{ rw [extend, if_neg hf],
exact uniform_continuous_of_const (assume a b, by congr) }
end
end extend
end
theorem Cauchy_eq
{α : Type*} [inhabited α] [uniform_space α] [complete_space α] [separated α] {f g : Cauchy α} :
lim f.1 = lim g.1 ↔ (f, g) ∈ separation_rel (Cauchy α) :=
begin
split,
{ intros e s hs,
rcases Cauchy.mem_uniformity'.1 hs with ⟨t, tu, ts⟩,
apply ts,
rcases comp_mem_uniformity_sets tu with ⟨d, du, dt⟩,
refine mem_prod_iff.2
⟨_, le_nhds_lim_of_cauchy f.2 (mem_nhds_right (lim f.1) du),
_, le_nhds_lim_of_cauchy g.2 (mem_nhds_left (lim g.1) du), λ x h, _⟩,
cases x with a b, cases h with h₁ h₂,
rw ← e at h₂,
exact dt ⟨_, h₁, h₂⟩ },
{ intros H,
refine separated_def.1 (by apply_instance) _ _ (λ t tu, _),
rcases mem_uniformity_is_closed tu with ⟨d, du, dc, dt⟩,
refine H {p | (lim p.1.1, lim p.2.1) ∈ t}
(Cauchy.mem_uniformity'.2 ⟨d, du, λ f g h, _⟩),
rcases mem_prod_iff.1 h with ⟨x, xf, y, yg, h⟩,
have limc : ∀ (f : Cauchy α) (x ∈ f.1), lim f.1 ∈ closure x,
{ intros f x xf,
rw closure_eq_nhds,
exact lattice.neq_bot_of_le_neq_bot f.2.1
(lattice.le_inf (le_nhds_lim_of_cauchy f.2) (le_principal_iff.2 xf)) },
have := (closure_subset_iff_subset_of_is_closed dc).2 h,
rw closure_prod_eq at this,
refine dt (this ⟨_, _⟩); dsimp; apply limc; assumption }
end
section
local attribute [instance] uniform_space.separation_setoid
lemma injective_separated_pure_cauchy {α : Type*} [uniform_space α] [s : separated α] :
function.injective (λa:α, ⟦pure_cauchy a⟧) | a b h :=
separated_def.1 s _ _ $ assume s hs,
let ⟨t, ht, hts⟩ :=
by rw [← (@uniform_embedding_pure_cauchy α _).comap_uniformity, filter.mem_comap_sets] at hs; exact hs in
have (pure_cauchy a, pure_cauchy b) ∈ t, from quotient.exact h t ht,
@hts (a, b) this
end
end Cauchy
local attribute [instance] uniform_space.separation_setoid
open Cauchy set
namespace uniform_space
variables (α : Type*) [uniform_space α]
variables {β : Type*} [uniform_space β]
variables {γ : Type*} [uniform_space γ]
instance complete_space_separation [h : complete_space α] :
complete_space (quotient (separation_setoid α)) :=
⟨assume f, assume hf : cauchy f,
have cauchy (f.comap (λx, ⟦x⟧)), from
cauchy_comap comap_quotient_le_uniformity hf $
comap_neq_bot_of_surj hf.left $ assume b, quotient.exists_rep _,
let ⟨x, (hx : f.comap (λx, ⟦x⟧) ≤ nhds x)⟩ := complete_space.complete this in
⟨⟦x⟧, calc f = map (λx, ⟦x⟧) (f.comap (λx, ⟦x⟧)) :
(map_comap $ univ_mem_sets' $ assume b, quotient.exists_rep _).symm
... ≤ map (λx, ⟦x⟧) (nhds x) : map_mono hx
... ≤ _ : continuous_iff_continuous_at.mp uniform_continuous_quotient_mk.continuous _⟩⟩
/-- Hausdorff completion of `α` -/
def completion := quotient (separation_setoid $ Cauchy α)
namespace completion
@[priority 50]
instance : uniform_space (completion α) := by dunfold completion ; apply_instance
instance : complete_space (completion α) := by dunfold completion ; apply_instance
instance : separated (completion α) := by dunfold completion ; apply_instance
instance : t2_space (completion α) := separated_t2
instance : regular_space (completion α) := separated_regular
/-- Automatic coercion from `α` to its completion. Not always injective. -/
instance : has_coe_t α (completion α) := ⟨quotient.mk ∘ pure_cauchy⟩ -- note [use has_coe_t]
protected lemma coe_eq : (coe : α → completion α) = quotient.mk ∘ pure_cauchy := rfl
lemma comap_coe_eq_uniformity :
(𝓤 _).comap (λ(p:α×α), ((p.1 : completion α), (p.2 : completion α))) = 𝓤 α :=
begin
have : (λx:α×α, ((x.1 : completion α), (x.2 : completion α))) =
(λx:(Cauchy α)×(Cauchy α), (⟦x.1⟧, ⟦x.2⟧)) ∘ (λx:α×α, (pure_cauchy x.1, pure_cauchy x.2)),
{ ext ⟨a, b⟩; simp; refl },
rw [this, ← filter.comap_comap_comp],
change filter.comap _ (filter.comap _ (𝓤 $ quotient $ separation_setoid $ Cauchy α)) = 𝓤 α,
rw [comap_quotient_eq_uniformity, uniform_embedding_pure_cauchy.comap_uniformity]
end
lemma uniform_inducing_coe : uniform_inducing (coe : α → completion α) :=
⟨comap_coe_eq_uniformity α⟩
variables {α}
lemma dense : closure (range (coe : α → completion α)) = univ :=
by rw [completion.coe_eq, range_comp]; exact quotient_dense_of_dense pure_cauchy_dense
variables (α)
def cpkg {α : Type*} [uniform_space α] : abstract_completion α :=
{ space := completion α,
coe := coe,
uniform_struct := by apply_instance,
complete := by apply_instance,
separation := by apply_instance,
uniform_inducing := completion.uniform_inducing_coe α,
dense := (dense_range_iff_closure_eq _).2 completion.dense }
local attribute [instance]
abstract_completion.uniform_struct abstract_completion.complete abstract_completion.separation
lemma nonempty_completion_iff : nonempty (completion α) ↔ nonempty α :=
(dense_range.nonempty (cpkg.dense)).symm
lemma uniform_continuous_coe : uniform_continuous (coe : α → completion α) :=
cpkg.uniform_continuous_coe
lemma continuous_coe : continuous (coe : α → completion α) :=
cpkg.continuous_coe
lemma uniform_embedding_coe [separated α] : uniform_embedding (coe : α → completion α) :=
{ comap_uniformity := comap_coe_eq_uniformity α,
inj := injective_separated_pure_cauchy }
variable {α}
lemma dense_inducing_coe : dense_inducing (coe : α → completion α) :=
{ dense := (dense_range_iff_closure_eq _).2 dense,
..(uniform_inducing_coe α).inducing }
lemma dense_embedding_coe [separated α]: dense_embedding (coe : α → completion α) :=
{ inj := injective_separated_pure_cauchy,
..dense_inducing_coe }
lemma dense₂ : closure (range (λx:α × β, ((x.1 : completion α), (x.2 : completion β)))) = univ :=
by rw [← set.prod_range_range_eq, closure_prod_eq, dense, dense, univ_prod_univ]
lemma dense₃ :
closure (range (λx:α × (β × γ), ((x.1 : completion α), ((x.2.1 : completion β), (x.2.2 : completion γ))))) = univ :=
let a : α → completion α := coe, bc := λp:β × γ, ((p.1 : completion β), (p.2 : completion γ)) in
show closure (range (λx:α × (β × γ), (a x.1, bc x.2))) = univ,
begin
rw [← set.prod_range_range_eq, @closure_prod_eq _ _ _ _ (range a) (range bc), ← univ_prod_univ],
congr,
exact dense,
exact dense₂
end
@[elab_as_eliminator]
lemma induction_on {p : completion α → Prop}
(a : completion α) (hp : is_closed {a | p a}) (ih : ∀a:α, p a) : p a :=
is_closed_property dense hp ih a
@[elab_as_eliminator]
lemma induction_on₂ {p : completion α → completion β → Prop}
(a : completion α) (b : completion β)
(hp : is_closed {x : completion α × completion β | p x.1 x.2})
(ih : ∀(a:α) (b:β), p a b) : p a b :=
have ∀x : completion α × completion β, p x.1 x.2, from
is_closed_property dense₂ hp $ assume ⟨a, b⟩, ih a b,
this (a, b)
@[elab_as_eliminator]
lemma induction_on₃ {p : completion α → completion β → completion γ → Prop}
(a : completion α) (b : completion β) (c : completion γ)
(hp : is_closed {x : completion α × completion β × completion γ | p x.1 x.2.1 x.2.2})
(ih : ∀(a:α) (b:β) (c:γ), p a b c) : p a b c :=
have ∀x : completion α × completion β × completion γ, p x.1 x.2.1 x.2.2, from
is_closed_property dense₃ hp $ assume ⟨a, b, c⟩, ih a b c,
this (a, b, c)
@[elab_as_eliminator]
lemma induction_on₄ {δ : Type*} [uniform_space δ]
{p : completion α → completion β → completion γ → completion δ → Prop}
(a : completion α) (b : completion β) (c : completion γ) (d : completion δ)
(hp : is_closed {x : (completion α × completion β) × (completion γ × completion δ) | p x.1.1 x.1.2 x.2.1 x.2.2})
(ih : ∀(a:α) (b:β) (c:γ) (d : δ), p ↑a ↑b ↑c ↑d) : p a b c d :=
let
ab := λp:α × β, ((p.1 : completion α), (p.2 : completion β)),
cd := λp:γ × δ, ((p.1 : completion γ), (p.2 : completion δ))
in
have dense₄ : closure (range (λx:(α × β) × (γ × δ), (ab x.1, cd x.2))) = univ,
begin
rw [← set.prod_range_range_eq, @closure_prod_eq _ _ _ _ (range ab) (range cd), ← univ_prod_univ],
congr,
exact dense₂,
exact dense₂
end,
have ∀x:(completion α × completion β) × (completion γ × completion δ), p x.1.1 x.1.2 x.2.1 x.2.2, from
is_closed_property dense₄ hp (assume p:(α×β)×(γ×δ), ih p.1.1 p.1.2 p.2.1 p.2.2),
this ((a, b), (c, d))
lemma ext [t2_space β] {f g : completion α → β} (hf : continuous f) (hg : continuous g)
(h : ∀a:α, f a = g a) : f = g :=
cpkg.funext hf hg h
section extension
variables {f : α → β}
/-- "Extension" to the completion. It is defined for any map `f` but
returns an arbitrary constant value if `f` is not uniformly continuous -/
protected def extension (f : α → β) : completion α → β :=
cpkg.extend f
variables [separated β]
@[simp] lemma extension_coe (hf : uniform_continuous f) (a : α) : (completion.extension f) a = f a :=
cpkg.extend_coe hf a
variables [complete_space β]
lemma uniform_continuous_extension : uniform_continuous (completion.extension f) :=
cpkg.uniform_continuous_extend
lemma continuous_extension : continuous (completion.extension f) :=
cpkg.continuous_extend
lemma extension_unique (hf : uniform_continuous f) {g : completion α → β} (hg : uniform_continuous g)
(h : ∀ a : α, f a = g (a : completion α)) : completion.extension f = g :=
cpkg.extend_unique hf hg h
@[simp] lemma extension_comp_coe {f : completion α → β} (hf : uniform_continuous f) :
completion.extension (f ∘ coe) = f :=
cpkg.extend_comp_coe hf
end extension
section map
variables {f : α → β}
/-- Completion functor acting on morphisms -/
protected def map (f : α → β) : completion α → completion β :=
cpkg.map cpkg f
lemma uniform_continuous_map : uniform_continuous (completion.map f) :=
cpkg.uniform_continuous_map cpkg f
lemma continuous_map : continuous (completion.map f) :=
cpkg.continuous_map cpkg f
@[simp] lemma map_coe (hf : uniform_continuous f) (a : α) : (completion.map f) a = f a :=
cpkg.map_coe cpkg hf a
lemma map_unique {f : α → β} {g : completion α → completion β}
(hg : uniform_continuous g) (h : ∀a:α, ↑(f a) = g a) : completion.map f = g :=
cpkg.map_unique cpkg hg h
@[simp] lemma map_id : completion.map (@id α) = id :=
cpkg.map_id
lemma extension_map [complete_space γ] [separated γ] {f : β → γ} {g : α → β}
(hf : uniform_continuous f) (hg : uniform_continuous g) :
completion.extension f ∘ completion.map g = completion.extension (f ∘ g) :=
completion.ext (continuous_extension.comp continuous_map) continuous_extension $
by intro a; simp only [hg, hf, hf.comp hg, (∘), map_coe, extension_coe]
lemma map_comp {g : β → γ} {f : α → β} (hg : uniform_continuous g) (hf : uniform_continuous f) :
completion.map g ∘ completion.map f = completion.map (g ∘ f) :=
extension_map ((uniform_continuous_coe _).comp hg) hf
end map
/- In this section we construct isomorphisms between the completion of a uniform space and the
completion of its separation quotient -/
section separation_quotient_completion
def completion_separation_quotient_equiv (α : Type u) [uniform_space α] :
completion (separation_quotient α) ≃ completion α :=
begin
refine ⟨completion.extension (separation_quotient.lift (coe : α → completion α)),
completion.map quotient.mk, _, _⟩,
{ assume a,
refine completion.induction_on a (is_closed_eq (continuous_map.comp continuous_extension) continuous_id) _,
rintros ⟨a⟩,
show completion.map quotient.mk (completion.extension (separation_quotient.lift coe) ↑⟦a⟧) = ↑⟦a⟧,
rw [extension_coe (separation_quotient.uniform_continuous_lift _),
separation_quotient.lift_mk (uniform_continuous_coe α),
completion.map_coe uniform_continuous_quotient_mk] ; apply_instance },
{ assume a,
refine completion.induction_on a (is_closed_eq (continuous_extension.comp continuous_map) continuous_id) _,
assume a,
rw [map_coe uniform_continuous_quotient_mk,
extension_coe (separation_quotient.uniform_continuous_lift _),
separation_quotient.lift_mk (uniform_continuous_coe α) _] ; apply_instance }
end
lemma uniform_continuous_completion_separation_quotient_equiv :
uniform_continuous ⇑(completion_separation_quotient_equiv α) :=
uniform_continuous_extension
lemma uniform_continuous_completion_separation_quotient_equiv_symm :
uniform_continuous ⇑(completion_separation_quotient_equiv α).symm :=
uniform_continuous_map
end separation_quotient_completion
section extension₂
variables (f : α → β → γ)
open function
protected def extension₂ (f : α → β → γ) : completion α → completion β → γ :=
cpkg.extend₂ cpkg f
variables [separated γ] {f}
@[simp] lemma extension₂_coe_coe (hf : uniform_continuous $ uncurry' f) (a : α) (b : β) :
completion.extension₂ f a b = f a b :=
cpkg.extension₂_coe_coe cpkg hf a b
variables [complete_space γ] (f)
lemma uniform_continuous_extension₂ : uniform_continuous₂ (completion.extension₂ f) :=
cpkg.uniform_continuous_extension₂ cpkg f
end extension₂
section map₂
open function
protected def map₂ (f : α → β → γ) : completion α → completion β → completion γ :=
cpkg.map₂ cpkg cpkg f
lemma uniform_continuous_map₂ (f : α → β → γ) : uniform_continuous (uncurry' $ completion.map₂ f) :=
cpkg.uniform_continuous_map₂ cpkg cpkg f
lemma continuous_map₂ {δ} [topological_space δ] {f : α → β → γ}
{a : δ → completion α} {b : δ → completion β} (ha : continuous a) (hb : continuous b) :
continuous (λd:δ, completion.map₂ f (a d) (b d)) :=
cpkg.continuous_map₂ cpkg cpkg ha hb
lemma map₂_coe_coe (a : α) (b : β) (f : α → β → γ) (hf : uniform_continuous $ uncurry' f) :
completion.map₂ f (a : completion α) (b : completion β) = f a b :=
cpkg.map₂_coe_coe cpkg cpkg a b f hf
end map₂
end completion
end uniform_space
|
92a80fda05854bf8667c7aee6d729c6c979cb59f
|
0c1546a496eccfb56620165cad015f88d56190c5
|
/library/init/meta/injection_tactic.lean
|
03103a8cf87c8c245a863a93e6926356a528bf27
|
[
"Apache-2.0"
] |
permissive
|
Solertis/lean
|
491e0939957486f664498fbfb02546e042699958
|
84188c5aa1673fdf37a082b2de8562dddf53df3f
|
refs/heads/master
| 1,610,174,257,606
| 1,486,263,620,000
| 1,486,263,620,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 2,000
|
lean
|
/-
Copyright (c) 2016 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
-/
prelude
import init.meta.tactic init.function
namespace tactic
open nat tactic environment expr list
private meta def mk_intro_name : name → list name → name
| n₁ (n₂ :: ns) := n₂
| n [] := if n = `a then `h else n
-- Auxiliary function for introducing the new equalities produced by the
-- injection tactic
private meta def injection_intro : expr → list name → tactic unit
| (pi n bi b d) ns := do
hname ← return $ mk_intro_name n ns,
h ← intro hname,
ht ← infer_type h,
-- Clear new hypothesis if it is of the form (a = a)
@try unit $ do {
(lhs, rhs) ← match_eq ht,
unify lhs rhs,
clear h },
-- If new hypothesis is of the form (@heq A a B b) where
-- A and B can be unified then convert it into (a = b) using
-- the eq_of_heq lemma
@try unit $ do {
(A, lhs, B, rhs) ← match_heq ht,
unify A B,
heq ← mk_app `eq [lhs, rhs],
pr ← mk_app `eq_of_heq [h],
assertv hname heq pr,
clear h },
injection_intro d (tail ns)
| e ns := skip
meta def injection_with (h : expr) (ns : list name) : tactic unit :=
do
ht ← infer_type h,
(lhs, rhs) ← match_eq ht,
env ← get_env,
if is_constructor_app env lhs ∧
is_constructor_app env rhs ∧
const_name (get_app_fn lhs) = const_name (get_app_fn rhs)
then do
tgt ← target,
I_name ← return $ name.get_prefix (const_name (get_app_fn lhs)),
pr ← mk_app (I_name <.> "no_confusion") [tgt, lhs, rhs, h],
pr_type ← infer_type pr,
pr_type ← whnf pr_type,
apply pr,
injection_intro (binding_domain pr_type) ns
else fail "injection tactic failed, argument must be an equality proof where lhs and rhs are of the form (c ...), where c is a constructor"
meta def injection (h : expr) : tactic unit :=
injection_with h []
end tactic
|
e66727f78a1d219439629608ca05daa96866ec38
|
fe84e287c662151bb313504482b218a503b972f3
|
/src/data/function_transfer.lean
|
be2f32465029625e74e6e2c7461b76d6e98b38bd
|
[] |
no_license
|
NeilStrickland/lean_lib
|
91e163f514b829c42fe75636407138b5c75cba83
|
6a9563de93748ace509d9db4302db6cd77d8f92c
|
refs/heads/master
| 1,653,408,198,261
| 1,652,996,419,000
| 1,652,996,419,000
| 181,006,067
| 4
| 1
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 1,120
|
lean
|
/-
Copyright (c) 2019 Neil Strickland. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Neil Strickland
The formation of function types `α → β` is functorial with respect
to equivalences of `α` and `β`. This should be placed in some
more general context.
-/
import logic.equiv.basic
open equiv
universes u v w x
def function_equiv_of_equiv {α : Type u} {β : Type v} {γ : Type w} {δ : Type x}
(f : α ≃ γ) (g : β ≃ δ) : (α → β) ≃ (γ → δ) :=
{
to_fun := λ (u : α → β), g ∘ u ∘ f.inv_fun,
inv_fun := λ (v : γ → δ), g.inv_fun ∘ v ∘ f,
left_inv := begin
unfold function.left_inverse,
intro u, ext a,
by calc
g.inv_fun (g.to_fun (u (f.inv_fun (f.to_fun a)))) =
u (f.inv_fun (f.to_fun a)) : g.left_inv _
... = u a : congr_arg u (f.left_inv a),
end,
right_inv := begin
unfold function.right_inverse,
intro v, ext c,
by calc
g.to_fun (g.inv_fun (v (f.to_fun (f.inv_fun c)))) = v (f.to_fun (f.inv_fun c)) : g.right_inv _
... = v c : congr_arg v (f.right_inv c)
end
}
|
502a7ca8c673d642bc4c7f0666edcee66b7f2d4e
|
2c096fdfecf64e46ea7bc6ce5521f142b5926864
|
/src/Lean/Parser/Term.lean
|
1385f91e89676e1ac243b0f75119237b92e03124
|
[
"Apache-2.0",
"LLVM-exception",
"NCSA",
"LGPL-3.0-only",
"LicenseRef-scancode-inner-net-2.0",
"BSD-3-Clause",
"LGPL-2.0-or-later",
"Spencer-94",
"LGPL-2.1-or-later",
"HPND",
"LicenseRef-scancode-pcre",
"ISC",
"LGPL-2.1-only",
"LicenseRef-scancode-other-permissive",
"SunPro",
"CMU-Mach"
] |
permissive
|
Kha/lean4
|
1005785d2c8797ae266a303968848e5f6ce2fe87
|
b99e11346948023cd6c29d248cd8f3e3fb3474cf
|
refs/heads/master
| 1,693,355,498,027
| 1,669,080,461,000
| 1,669,113,138,000
| 184,748,176
| 0
| 0
|
Apache-2.0
| 1,665,995,520,000
| 1,556,884,930,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 31,396
|
lean
|
/-
Copyright (c) 2019 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura, Sebastian Ullrich
-/
import Lean.Parser.Attr
import Lean.Parser.Level
namespace Lean
namespace Parser
namespace Command
def commentBody : Parser :=
{ fn := rawFn (finishCommentBlock (pushMissingOnError := true) 1) (trailingWs := true) }
@[combinator_parenthesizer commentBody]
def commentBody.parenthesizer := PrettyPrinter.Parenthesizer.visitToken
@[combinator_formatter commentBody]
def commentBody.formatter := PrettyPrinter.Formatter.visitAtom Name.anonymous
def docComment := leading_parser
ppDedent $ "/--" >> ppSpace >> commentBody >> ppLine
end Command
builtin_initialize
registerBuiltinParserAttribute `builtin_tactic_parser ``Category.tactic .both
registerBuiltinDynamicParserAttribute `tactic_parser `tactic
@[inline] def tacticParser (rbp : Nat := 0) : Parser :=
categoryParser `tactic rbp
@[inline] def convParser (rbp : Nat := 0) : Parser :=
categoryParser `conv rbp
namespace Tactic
@[run_builtin_parser_attribute_hooks]
def sepByIndentSemicolon (p : Parser) : Parser :=
sepByIndent p "; " (allowTrailingSep := true)
@[run_builtin_parser_attribute_hooks]
def sepBy1IndentSemicolon (p : Parser) : Parser :=
sepBy1Indent p "; " (allowTrailingSep := true)
builtin_initialize
register_parser_alias sepByIndentSemicolon
register_parser_alias sepBy1IndentSemicolon
def tacticSeq1Indented : Parser := leading_parser
sepBy1IndentSemicolon tacticParser
/-- The syntax `{ tacs }` is an alternative syntax for `· tacs`.
It runs the tactics in sequence, and fails if the goal is not solved. -/
def tacticSeqBracketed : Parser := leading_parser
"{" >> sepByIndentSemicolon tacticParser >> ppDedent (ppLine >> "}")
/-- A sequence of tactics in brackets, or a delimiter-free indented sequence of tactics.
Delimiter-free indentation is determined by the *first* tactic of the sequence. -/
def tacticSeq := leading_parser
tacticSeqBracketed <|> tacticSeq1Indented
/-- Same as [`tacticSeq`] but requires delimiter-free tactic sequence to have strict indentation.
The strict indentation requirement only apply to *nested* `by`s, as top-level `by`s do not have a
position set. -/
def tacticSeqIndentGt := withAntiquot (mkAntiquot "tacticSeq" ``tacticSeq) <| node ``tacticSeq <|
tacticSeqBracketed <|> (checkColGt "strict indentation" >> tacticSeq1Indented)
/- Raw sequence for quotation and grouping -/
def seq1 :=
node `Lean.Parser.Tactic.seq1 $ sepBy1 tacticParser ";\n" (allowTrailingSep := true)
end Tactic
def darrow : Parser := " => "
def semicolonOrLinebreak := ";" <|> checkLinebreakBefore >> pushNone
namespace Term
/-! # Built-in parsers -/
/-- `by tac` constructs a term of the expected type by running the tactic(s) `tac`. -/
@[builtin_term_parser] def byTactic := leading_parser:leadPrec
ppAllowUngrouped >> "by " >> Tactic.tacticSeqIndentGt
/-
This is the same as `byTactic`, but it uses a different syntax kind. This is
used by `show` and `suffices` instead of `byTactic` because these syntaxes don't
support arbitrary terms where `byTactic` is accepted. Mathport uses this to e.g.
safely find-replace `by exact $e` by `$e` in any context without causing
incorrect syntax when the full expression is `show $T by exact $e`. -/
def byTactic' := leading_parser
"by " >> Tactic.tacticSeqIndentGt
-- TODO: rename to e.g. `afterSemicolonOrLinebreak`
def optSemicolon (p : Parser) : Parser :=
ppDedent $ semicolonOrLinebreak >> ppLine >> p
-- `checkPrec` necessary for the pretty printer
@[builtin_term_parser] def ident :=
checkPrec maxPrec >> Parser.ident
@[builtin_term_parser] def num : Parser :=
checkPrec maxPrec >> numLit
@[builtin_term_parser] def scientific : Parser :=
checkPrec maxPrec >> scientificLit
@[builtin_term_parser] def str : Parser :=
checkPrec maxPrec >> strLit
@[builtin_term_parser] def char : Parser :=
checkPrec maxPrec >> charLit
/-- A type universe. `Type ≡ Type 0`, `Type u ≡ Sort (u + 1)`. -/
@[builtin_term_parser] def type := leading_parser
"Type" >> optional (checkWsBefore "" >> checkPrec leadPrec >> checkColGt >> levelParser maxPrec)
/-- A specific universe in Lean's infinite hierarchy of universes. -/
@[builtin_term_parser] def sort := leading_parser
"Sort" >> optional (checkWsBefore "" >> checkPrec leadPrec >> checkColGt >> levelParser maxPrec)
/-- The universe of propositions. `Prop ≡ Sort 0`. -/
@[builtin_term_parser] def prop := leading_parser
"Prop"
/-- A placeholder term, to be synthesized by unification. -/
@[builtin_term_parser] def hole := leading_parser
"_"
@[builtin_term_parser] def syntheticHole := leading_parser
"?" >> (ident <|> hole)
/-- A temporary placeholder for a missing proof or value. -/
@[builtin_term_parser] def «sorry» := leading_parser
"sorry"
/--
A placeholder for an implicit lambda abstraction's variable. The lambda abstraction is scoped to the surrounding parentheses.
For example, `(· + ·)` is equivalent to `fun x y => x + y`.
-/
@[builtin_term_parser] def cdot := leading_parser
symbol "·" <|> "."
/--
Type ascription notation: `(0 : Int)` instructs Lean to process `0` as a value of type `Int`.
An empty type ascription `(e :)` elaborates `e` without the expected type.
This is occasionally useful when Lean's heuristics for filling arguments from the expected type
do not yield the right result.
-/
@[builtin_term_parser] def typeAscription := leading_parser
"(" >> (withoutPosition (withoutForbidden (termParser >> " : " >> optional termParser))) >> ")"
/-- Tuple notation; `()` is short for `Unit.unit`, `(a, b, c)` for `Prod.mk a (Prod.mk b c)`, etc. -/
@[builtin_term_parser] def tuple := leading_parser
"(" >> optional (withoutPosition (withoutForbidden (termParser >> ", " >> sepBy1 termParser ", "))) >> ")"
/--
Parentheses, used for grouping expressions (e.g., `a * (b + c)`).
Can also be used for creating simple functions when combined with `·`. Here are some examples:
- `(· + 1)` is shorthand for `fun x => x + 1`
- `(· + ·)` is shorthand for `fun x y => x + y`
- `(f · a b)` is shorthand for `fun x => f x a b`
- `(h (· + 1) ·)` is shorthand for `fun x => h (fun y => y + 1) x`
- also applies to other parentheses-like notations such as `(·, 1)`
-/
@[builtin_term_parser] def paren := leading_parser
"(" >> withoutPosition (withoutForbidden (ppDedentIfGrouped termParser)) >> ")"
/--
The *anonymous constructor* `⟨e, ...⟩` is equivalent to `c e ...` if the
expected type is an inductive type with a single constructor `c`.
If more terms are given than `c` has parameters, the remaining arguments
are turned into a new anonymous constructor application. For example,
`⟨a, b, c⟩ : α × (β × γ)` is equivalent to `⟨a, ⟨b, c⟩⟩`.
-/
@[builtin_term_parser] def anonymousCtor := leading_parser
"⟨" >> sepBy termParser ", " >> "⟩"
def optIdent : Parser :=
optional (atomic (ident >> " : "))
def fromTerm := leading_parser
"from " >> termParser
def showRhs := fromTerm <|> byTactic'
def sufficesDecl := leading_parser
optIdent >> termParser >> ppSpace >> showRhs
@[builtin_term_parser] def «suffices» := leading_parser:leadPrec
withPosition ("suffices " >> sufficesDecl) >> optSemicolon termParser
@[builtin_term_parser] def «show» := leading_parser:leadPrec "show " >> termParser >> ppSpace >> showRhs
def structInstArrayRef := leading_parser
"[" >> withoutPosition termParser >>"]"
def structInstLVal := leading_parser
(ident <|> fieldIdx <|> structInstArrayRef) >>
many (group ("." >> (ident <|> fieldIdx)) <|> structInstArrayRef)
def structInstField := ppGroup $ leading_parser
structInstLVal >> " := " >> termParser
def structInstFieldAbbrev := leading_parser
-- `x` is an abbreviation for `x := x`
atomic (ident >> notFollowedBy ("." <|> ":=" <|> symbol "[") "invalid field abbreviation")
def optEllipsis := leading_parser
optional ".."
/--
Structure instance. `{ x := e, ... }` assigns `e` to field `x`, which may be
inherited. If `e` is itself a variable called `x`, it can be elided:
`fun y => { x := 1, y }`.
A *structure update* of an existing value can be given via `with`:
`{ point with x := 1 }`.
The structure type can be specified if not inferable:
`{ x := 1, y := 2 : Point }`.
-/
@[builtin_term_parser] def structInst := leading_parser
"{" >> withoutPosition (ppHardSpace >> optional (atomic (sepBy1 termParser ", " >> " with "))
>> sepByIndent (structInstFieldAbbrev <|> structInstField) ", " (allowTrailingSep := true)
>> optEllipsis
>> optional (" : " >> termParser)) >> " }"
def typeSpec := leading_parser " : " >> termParser
def optType : Parser := optional typeSpec
/--
`@x` disables automatic insertion of implicit parameters of the constant `x`.
`@e` for any term `e` also disables the insertion of implicit lambdas at this position.
-/
@[builtin_term_parser] def explicit := leading_parser
"@" >> termParser maxPrec
/--
`.(e)` marks an "inaccessible pattern", which does not influence evaluation of the pattern match, but may be necessary for type-checking.
In contrast to regular patterns, `e` may be an arbitrary term of the appropriate type.
-/
@[builtin_term_parser] def inaccessible := leading_parser
".(" >> withoutPosition termParser >> ")"
def binderIdent : Parser := ident <|> hole
def binderType (requireType := false) : Parser :=
if requireType then node nullKind (" : " >> termParser) else optional (" : " >> termParser)
def binderTactic := leading_parser
atomic (symbol " := " >> " by ") >> Tactic.tacticSeq
def binderDefault := leading_parser
" := " >> termParser
def explicitBinder (requireType := false) := ppGroup $ leading_parser
"(" >> withoutPosition (many1 binderIdent >> binderType requireType >> optional (binderTactic <|> binderDefault)) >> ")"
/--
Implicit binder. In regular applications without `@`, it is automatically inserted
and solved by unification whenever all explicit parameters before it are specified.
-/
def implicitBinder (requireType := false) := ppGroup $ leading_parser
"{" >> withoutPosition (many1 binderIdent >> binderType requireType) >> "}"
def strictImplicitLeftBracket := atomic (group (symbol "{" >> "{")) <|> "⦃"
def strictImplicitRightBracket := atomic (group (symbol "}" >> "}")) <|> "⦄"
/--
Strict-implicit binder. In contrast to `{ ... }` regular implicit binders,
a strict-implicit binder is inserted automatically only when at least one subsequent
explicit parameter is specified.
-/
def strictImplicitBinder (requireType := false) := ppGroup <| leading_parser
strictImplicitLeftBracket >> many1 binderIdent >>
binderType requireType >> strictImplicitRightBracket
/--
Instance-implicit binder. In regular applications without `@`, it is automatically inserted
and solved by typeclass inference of the specified class.
-/
def instBinder := ppGroup <| leading_parser
"[" >> withoutPosition (optIdent >> termParser) >> "]"
def bracketedBinder (requireType := false) :=
withAntiquot (mkAntiquot "bracketedBinder" decl_name% (isPseudoKind := true)) <|
explicitBinder requireType <|> strictImplicitBinder requireType <|>
implicitBinder requireType <|> instBinder
/-
It is feasible to support dependent arrows such as `{α} → α → α` without sacrificing the quality of the error messages for the longer case.
`{α} → α → α` would be short for `{α : Type} → α → α`
Here is the encoding:
```
def implicitShortBinder := node `Lean.Parser.Term.implicitBinder $ "{" >> many1 binderIdent >> pushNone >> "}"
def depArrowShortPrefix := try (implicitShortBinder >> unicodeSymbol " → " " -> ")
def depArrowLongPrefix := bracketedBinder true >> unicodeSymbol " → " " -> "
def depArrowPrefix := depArrowShortPrefix <|> depArrowLongPrefix
@[builtin_term_parser] def depArrow := leading_parser depArrowPrefix >> termParser
```
Note that no changes in the elaborator are needed.
We decided to not use it because terms such as `{α} → α → α` may look too cryptic.
Note that we did not add a `explicitShortBinder` parser since `(α) → α → α` is really cryptic as a short for `(α : Type) → α → α`.
-/
@[builtin_term_parser] def depArrow := leading_parser:25
bracketedBinder true >> unicodeSymbol " → " " -> " >> termParser
@[builtin_term_parser]
def «forall» := leading_parser:leadPrec
unicodeSymbol "∀" "forall" >>
many1 (ppSpace >> (binderIdent <|> bracketedBinder)) >>
optType >> ", " >> termParser
def matchAlt (rhsParser : Parser := termParser) : Parser :=
leading_parser (withAnonymousAntiquot := false)
"| " >> ppIndent (
sepBy1 (sepBy1 termParser ", ") "|" >> darrow >>
checkColGe "alternative right-hand-side to start in a column greater than or equal to the corresponding '|'" >>
rhsParser)
/--
Useful for syntax quotations. Note that generic patterns such as `` `(matchAltExpr| | ... => $rhs) `` should also
work with other `rhsParser`s (of arity 1). -/
def matchAltExpr := matchAlt
instance : Coe (TSyntax ``matchAltExpr) (TSyntax ``matchAlt) where
coe stx := ⟨stx.raw⟩
def matchAlts (rhsParser : Parser := termParser) : Parser :=
leading_parser withPosition $ many1Indent (ppLine >> matchAlt rhsParser)
def matchDiscr := leading_parser
optional (atomic (ident >> " : ")) >> termParser
def trueVal := leading_parser nonReservedSymbol "true"
def falseVal := leading_parser nonReservedSymbol "false"
def generalizingParam := leading_parser
atomic ("(" >> nonReservedSymbol "generalizing") >> " := " >>
(trueVal <|> falseVal) >> ")" >> ppSpace
def motive := leading_parser
atomic ("(" >> nonReservedSymbol "motive" >> " := ") >>
withoutPosition termParser >> ")" >> ppSpace
/--
Pattern matching. `match e, ... with | p, ... => f | ...` matches each given
term `e` against each pattern `p` of a match alternative. When all patterns
of an alternative match, the `match` term evaluates to the value of the
corresponding right-hand side `f` with the pattern variables bound to the
respective matched values.
When not constructing a proof, `match` does not automatically substitute variables
matched on in dependent variables' types. Use `match (generalizing := true) ...` to
enforce this.
Syntax quotations can also be used in a pattern match.
This matches a `Syntax` value against quotations, pattern variables, or `_`.
Quoted identifiers only match identical identifiers - custom matching such as by the preresolved
names only should be done explicitly.
`Syntax.atom`s are ignored during matching by default except when part of a built-in literal.
For users introducing new atoms, we recommend wrapping them in dedicated syntax kinds if they
should participate in matching.
For example, in
```lean
syntax "c" ("foo" <|> "bar") ...
```
`foo` and `bar` are indistinguishable during matching, but in
```lean
syntax foo := "foo"
syntax "c" (foo <|> "bar") ...
```
they are not.
-/
@[builtin_term_parser] def «match» := leading_parser:leadPrec
"match " >> optional generalizingParam >> optional motive >> sepBy1 matchDiscr ", " >>
" with " >> ppDedent matchAlts
/--
Empty match/ex falso. `nomatch e` is of arbitrary type `α : Sort u` if
Lean can show that an empty set of patterns is exhaustive given `e`'s type,
e.g. because it has no constructors.
-/
@[builtin_term_parser] def «nomatch» := leading_parser:leadPrec "nomatch " >> termParser
def funImplicitBinder := withAntiquot (mkAntiquot "implicitBinder" ``implicitBinder) <|
atomic (lookahead ("{" >> many1 binderIdent >> (symbol " : " <|> "}"))) >> implicitBinder
def funStrictImplicitBinder :=
atomic (lookahead (
strictImplicitLeftBracket >> many1 binderIdent >>
(symbol " : " <|> strictImplicitRightBracket))) >>
strictImplicitBinder
def funBinder : Parser :=
withAntiquot (mkAntiquot "funBinder" decl_name% (isPseudoKind := true)) <|
funStrictImplicitBinder <|> funImplicitBinder <|> instBinder <|> termParser maxPrec
-- NOTE: we disable anonymous antiquotations to ensure that `fun $b => ...`
-- remains a `term` antiquotation
def basicFun : Parser := leading_parser (withAnonymousAntiquot := false)
ppGroup (many1 (ppSpace >> funBinder) >> optType >> " =>") >> ppSpace >> termParser
@[builtin_term_parser] def «fun» := leading_parser:maxPrec
ppAllowUngrouped >> unicodeSymbol "λ" "fun" >> (basicFun <|> matchAlts)
def optExprPrecedence := optional (atomic ":" >> termParser maxPrec)
def withAnonymousAntiquot := leading_parser
atomic ("(" >> nonReservedSymbol "withAnonymousAntiquot" >> " := ") >>
(trueVal <|> falseVal) >> ")" >> ppSpace
@[builtin_term_parser] def «leading_parser» := leading_parser:leadPrec
"leading_parser " >> optExprPrecedence >> optional withAnonymousAntiquot >> termParser
@[builtin_term_parser] def «trailing_parser» := leading_parser:leadPrec
"trailing_parser " >> optExprPrecedence >> optExprPrecedence >> termParser
@[builtin_term_parser] def borrowed := leading_parser
"@& " >> termParser leadPrec
/-- A literal of type `Name`. -/
@[builtin_term_parser] def quotedName := leading_parser nameLit
/--
A resolved name literal. Evaluates to the full name of the given constant if
existent in the current context, or else fails.
-/
-- use `rawCh` because ``"`" >> ident`` overlaps with `nameLit`, with the latter being preferred by the tokenizer
-- note that we cannot use ```"``"``` as a new token either because it would break `precheckedQuot`
@[builtin_term_parser] def doubleQuotedName := leading_parser
"`" >> checkNoWsBefore >> rawCh '`' (trailingWs := false) >> ident
def letIdBinder :=
withAntiquot (mkAntiquot "letIdBinder" decl_name% (isPseudoKind := true)) <|
binderIdent <|> bracketedBinder
/- Remark: we use `checkWsBefore` to ensure `let x[i] := e; b` is not parsed as `let x [i] := e; b` where `[i]` is an `instBinder`. -/
def letIdLhs : Parser :=
ident >> notFollowedBy (checkNoWsBefore "" >> "[")
"space is required before instance '[...]' binders to distinguish them from array updates `let x[i] := e; ...`" >>
many (ppSpace >> letIdBinder) >> optType
def letIdDecl := leading_parser (withAnonymousAntiquot := false)
atomic (letIdLhs >> " := ") >> termParser
def letPatDecl := leading_parser (withAnonymousAntiquot := false)
atomic (termParser >> pushNone >> optType >> " := ") >> termParser
/-
Remark: the following `(" := " <|> matchAlts)` is a hack we use
to produce a better error message at `letDecl`.
Consider this following example
```
def myFun (n : Nat) : IO Nat :=
let q ← (10 : Nat)
n + q
```
Without the hack, we get the error `expected '|'` at `←`. Reason: at `letDecl`,
we use the parser `(letIdDecl <|> letPatDecl <|> letEqnsDecl)`,
`letIdDecl` and `letEqnsDecl` have the same prefix `letIdLhs`, but `letIdDecl` uses `atomic`.
Note that the hack relies on the fact that the parser `":="` never succeeds
at `(" := " <|> matchAlts)`.
It is there just to make sure we produce the error `expected ':=' or '|'`
-/
def letEqnsDecl := leading_parser (withAnonymousAntiquot := false)
letIdLhs >> (" := " <|> matchAlts)
-- Remark: we disable anonymous antiquotations here to make sure
-- anonymous antiquotations (e.g., `$x`) are not `letDecl`
def letDecl := leading_parser (withAnonymousAntiquot := false)
notFollowedBy (nonReservedSymbol "rec") "rec" >>
(letIdDecl <|> letPatDecl <|> letEqnsDecl)
/--
`let` is used to declare a local definition. Example:
```
let x := 1
let y := x + 1
x + y
```
Since functions are first class citizens in Lean, you can use `let` to declare
local functions too.
```
let double := fun x => 2*x
double (double 3)
```
For recursive definitions, you should use `let rec`.
You can also perform pattern matching using `let`. For example,
assume `p` has type `Nat × Nat`, then you can write
```
let (x, y) := p
x + y
```
-/
@[builtin_term_parser] def «let» := leading_parser:leadPrec
withPosition ("let " >> letDecl) >> optSemicolon termParser
/--
`let_fun x := v; b` is syntax sugar for `(fun x => b) v`.
It is very similar to `let x := v; b`, but they are not equivalent.
In `let_fun`, the value `v` has been abstracted away and cannot be accessed in `b`.
-/
@[builtin_term_parser] def «let_fun» := leading_parser:leadPrec
withPosition ((symbol "let_fun " <|> "let_λ") >> letDecl) >> optSemicolon termParser
/--
`let_delayed x := v; b` is similar to `let x := v; b`, but `b` is elaborated before `v`.
-/
@[builtin_term_parser] def «let_delayed» := leading_parser:leadPrec
withPosition ("let_delayed " >> letDecl) >> optSemicolon termParser
/--
`let`-declaration that is only included in the elaborated term if variable is still there.
It is often used when building macros.
-/
@[builtin_term_parser] def «let_tmp» := leading_parser:leadPrec
withPosition ("let_tmp " >> letDecl) >> optSemicolon termParser
/- like `let_fun` but with optional name -/
def haveIdLhs := optional (ident >> many (ppSpace >> letIdBinder)) >> optType
def haveIdDecl := leading_parser (withAnonymousAntiquot := false)
atomic (haveIdLhs >> " := ") >> termParser
def haveEqnsDecl := leading_parser (withAnonymousAntiquot := false)
haveIdLhs >> matchAlts
def haveDecl := leading_parser (withAnonymousAntiquot := false)
haveIdDecl <|> letPatDecl <|> haveEqnsDecl
@[builtin_term_parser] def «have» := leading_parser:leadPrec
withPosition ("have " >> haveDecl) >> optSemicolon termParser
def «scoped» := leading_parser "scoped "
def «local» := leading_parser "local "
def attrKind := leading_parser optional («scoped» <|> «local»)
def attrInstance := ppGroup $ leading_parser attrKind >> attrParser
def attributes := leading_parser
"@[" >> withoutPosition (sepBy1 attrInstance ", ") >> "]"
def letRecDecl := leading_parser
optional Command.docComment >> optional «attributes» >> letDecl
def letRecDecls := leading_parser
sepBy1 letRecDecl ", "
@[builtin_term_parser]
def «letrec» := leading_parser:leadPrec
withPosition (group ("let " >> nonReservedSymbol "rec ") >> letRecDecls) >>
optSemicolon termParser
@[run_builtin_parser_attribute_hooks]
def whereDecls := leading_parser
" where" >> sepBy1Indent (ppGroup letRecDecl) "; " (allowTrailingSep := true)
@[run_builtin_parser_attribute_hooks]
def matchAltsWhereDecls := leading_parser
matchAlts >> optional whereDecls
@[builtin_term_parser] def noindex := leading_parser
"no_index " >> termParser maxPrec
@[builtin_term_parser] def binrel := leading_parser
"binrel% " >> ident >> ppSpace >> termParser maxPrec >> termParser maxPrec
/-- Similar to `binrel`, but coerce `Prop` arguments into `Bool`. -/
@[builtin_term_parser] def binrel_no_prop := leading_parser
"binrel_no_prop% " >> ident >> ppSpace >> termParser maxPrec >> termParser maxPrec
@[builtin_term_parser] def binop := leading_parser
"binop% " >> ident >> ppSpace >> termParser maxPrec >> termParser maxPrec
@[builtin_term_parser] def binop_lazy := leading_parser
"binop_lazy% " >> ident >> ppSpace >> termParser maxPrec >> termParser maxPrec
@[builtin_term_parser] def unop := leading_parser
"unop% " >> ident >> ppSpace >> termParser maxPrec
@[builtin_term_parser] def forInMacro := leading_parser
"for_in% " >> termParser maxPrec >> termParser maxPrec >> termParser maxPrec
@[builtin_term_parser] def forInMacro' := leading_parser
"for_in'% " >> termParser maxPrec >> termParser maxPrec >> termParser maxPrec
/-- A macro which evaluates to the name of the currently elaborating declaration. -/
@[builtin_term_parser] def declName := leading_parser "decl_name%"
/--
* `with_decl_name% id e` elaborates `e` in a context while changing the effective
declaration name to `id`.
* `with_decl_name% ?id e` does the same, but resolves `id` as a new definition name
(appending the current namespaces).
-/
@[builtin_term_parser] def withDeclName := leading_parser
"with_decl_name% " >> optional "?" >> ident >> termParser
@[builtin_term_parser] def typeOf := leading_parser
"type_of% " >> termParser maxPrec
@[builtin_term_parser] def ensureTypeOf := leading_parser
"ensure_type_of% " >> termParser maxPrec >> strLit >> termParser
@[builtin_term_parser] def ensureExpectedType := leading_parser
"ensure_expected_type% " >> strLit >> termParser maxPrec
@[builtin_term_parser] def noImplicitLambda := leading_parser
"no_implicit_lambda% " >> termParser maxPrec
/--
`clear% x; e` elaborates `x` after clearing the free variable `x` from the local context.
If `x` cannot be cleared (due to dependencies), it will keep `x` without failing.
-/
@[builtin_term_parser] def clear := leading_parser
"clear% " >> ident >> semicolonOrLinebreak >> termParser
@[builtin_term_parser] def letMVar := leading_parser
"let_mvar% " >> "?" >> ident >> " := " >> termParser >> "; " >> termParser
@[builtin_term_parser] def waitIfTypeMVar := leading_parser
"wait_if_type_mvar% " >> "?" >> ident >> "; " >> termParser
@[builtin_term_parser] def waitIfTypeContainsMVar := leading_parser
"wait_if_type_contains_mvar% " >> "?" >> ident >> "; " >> termParser
@[builtin_term_parser] def waitIfContainsMVar := leading_parser
"wait_if_contains_mvar% " >> "?" >> ident >> "; " >> termParser
@[builtin_term_parser] def defaultOrOfNonempty := leading_parser
"default_or_ofNonempty% " >> optional "unsafe"
/--
Helper parser for marking `match`-alternatives that should not trigger errors if unused.
We use them to implement `macro_rules` and `elab_rules`
-/
@[builtin_term_parser] def noErrorIfUnused := leading_parser
"no_error_if_unused%" >> termParser
def namedArgument := leading_parser (withAnonymousAntiquot := false)
atomic ("(" >> ident >> " := ") >> withoutPosition termParser >> ")"
def ellipsis := leading_parser (withAnonymousAntiquot := false)
".." >> notFollowedBy "." "`.` immediately after `..`"
def argument :=
checkWsBefore "expected space" >>
checkColGt "expected to be indented" >>
(namedArgument <|> ellipsis <|> termParser argPrec)
-- `app` precedence is `lead` (cannot be used as argument)
-- `lhs` precedence is `max` (i.e. does not accept `arg` precedence)
-- argument precedence is `arg` (i.e. does not accept `lead` precedence)
@[builtin_term_parser] def app := trailing_parser:leadPrec:maxPrec many1 argument
/--
The *extended field notation* `e.f` is roughly short for `T.f e` where `T` is the type of `e`.
More precisely,
* if `e` is of a function type, `e.f` is translated to `Function.f (p := e)`
where `p` is the first explicit parameter of function type
* if `e` is of a named type `T ...` and there is a declaration `T.f` (possibly from `export`),
`e.f` is translated to `T.f (p := e)` where `p` is the first explicit parameter of type `T ...`
* otherwise, if `e` is of a structure type,
the above is repeated for every base type of the structure.
The field index notation `e.i`, where `i` is a positive number,
is short for accessing the `i`-th field (1-indexed) of `e` if it is of a structure type. -/
@[builtin_term_parser] def proj := trailing_parser
checkNoWsBefore >> "." >> checkNoWsBefore >> (fieldIdx <|> rawIdent)
@[builtin_term_parser] def completion := trailing_parser
checkNoWsBefore >> "."
@[builtin_term_parser] def arrow := trailing_parser
checkPrec 25 >> unicodeSymbol " → " " -> " >> termParser 25
def isIdent (stx : Syntax) : Bool :=
-- antiquotations should also be allowed where an identifier is expected
stx.isAntiquot || stx.isIdent
/-- `x.{u, ...}` explicitly specifies the universes `u, ...` of the constant `x`. -/
@[builtin_term_parser] def explicitUniv : TrailingParser := trailing_parser
checkStackTop isIdent "expected preceding identifier" >>
checkNoWsBefore "no space before '.{'" >> ".{" >>
sepBy1 levelParser ", " >> "}"
/-- `x@e` matches the pattern `e` and binds its value to the identifier `x`. -/
@[builtin_term_parser] def namedPattern : TrailingParser := trailing_parser
checkStackTop isIdent "expected preceding identifier" >>
checkNoWsBefore "no space before '@'" >> "@" >>
optional (atomic (ident >> ":")) >> termParser maxPrec
/--
`e |>.x` is a shorthand for `(e).x`.
It is especially useful for avoiding parentheses with repeated applications.
-/
@[builtin_term_parser] def pipeProj := trailing_parser:minPrec
" |>." >> checkNoWsBefore >> (fieldIdx <|> rawIdent) >> many argument
@[builtin_term_parser] def pipeCompletion := trailing_parser:minPrec
" |>."
/--
`h ▸ e` is a macro built on top of `Eq.rec` and `Eq.symm` definitions.
Given `h : a = b` and `e : p a`, the term `h ▸ e` has type `p b`.
You can also view `h ▸ e` as a "type casting" operation
where you change the type of `e` by using `h`.
See the Chapter "Quantifiers and Equality" in the manual
"Theorem Proving in Lean" for additional information.
-/
@[builtin_term_parser] def subst := trailing_parser:75
" ▸ " >> sepBy1 (termParser 75) " ▸ "
def bracketedBinderF := bracketedBinder -- no default arg
instance : Coe (TSyntax ``bracketedBinderF) (TSyntax ``bracketedBinder) where coe s := ⟨s⟩
/--
`panic! msg` formally evaluates to `@Inhabited.default α` if the expected type
`α` implements `Inhabited`.
At runtime, `msg` and the file position are printed to stderr unless the C
function `lean_set_panic_messages(false)` has been executed before. If the C
function `lean_set_exit_on_panic(true)` has been executed before, the process is
then aborted.
-/
@[builtin_term_parser] def panic := leading_parser:leadPrec
"panic! " >> termParser
/-- A shorthand for `panic! "unreachable code has been reached"`. -/
@[builtin_term_parser] def unreachable := leading_parser:leadPrec
"unreachable!"
/--
`dbg_trace e; body` evaluates to `body` and prints `e` (which can be an
interpolated string literal) to stderr. It should only be used for debugging.
-/
@[builtin_term_parser] def dbgTrace := leading_parser:leadPrec
withPosition ("dbg_trace" >> (interpolatedStr termParser <|> termParser)) >>
optSemicolon termParser
/-- `assert! cond` panics if `cond` evaluates to `false`. -/
@[builtin_term_parser] def assert := leading_parser:leadPrec
withPosition ("assert! " >> termParser) >> optSemicolon termParser
def macroArg := termParser maxPrec
def macroDollarArg := leading_parser "$" >> termParser 10
def macroLastArg := macroDollarArg <|> macroArg
-- Macro for avoiding exponentially big terms when using `STWorld`
@[builtin_term_parser] def stateRefT := leading_parser
"StateRefT" >> macroArg >> macroLastArg
@[builtin_term_parser] def dynamicQuot := withoutPosition <| leading_parser
"`(" >> ident >> "|" >> incQuotDepth (parserOfStack 1) >> ")"
@[builtin_term_parser] def dotIdent := leading_parser
"." >> checkNoWsBefore >> rawIdent
end Term
@[builtin_term_parser default+1] def Tactic.quot : Parser := leading_parser
"`(tactic|" >> withoutPosition (incQuotDepth tacticParser) >> ")"
@[builtin_term_parser] def Tactic.quotSeq : Parser := leading_parser
"`(tactic|" >> withoutPosition (incQuotDepth Tactic.seq1) >> ")"
open Term in
builtin_initialize
register_parser_alias letDecl
register_parser_alias haveDecl
register_parser_alias sufficesDecl
register_parser_alias letRecDecls
register_parser_alias hole
register_parser_alias syntheticHole
register_parser_alias matchDiscr
register_parser_alias bracketedBinder
register_parser_alias attrKind
end Parser
end Lean
|
22e7d674ebb29d249946442b42d11cc832ce5625
|
e0b0b1648286e442507eb62344760d5cd8d13f2d
|
/stage0/src/Init/Meta.lean
|
33939a1e12dd9a5cedbf32eeb6fc0895fb67fd15
|
[
"Apache-2.0"
] |
permissive
|
MULXCODE/lean4
|
743ed389e05e26e09c6a11d24607ad5a697db39b
|
4675817a9e89824eca37192364cd47a4027c6437
|
refs/heads/master
| 1,682,231,879,857
| 1,620,423,501,000
| 1,620,423,501,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 29,953
|
lean
|
/-
Copyright (c) 2019 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura and Sebastian Ullrich
Additional goodies for writing macros
-/
prelude
import Init.Data.Array.Basic
namespace Lean
@[extern c inline "lean_box(LEAN_VERSION_MAJOR)"]
private constant version.getMajor (u : Unit) : Nat
def version.major : Nat := version.getMajor ()
@[extern c inline "lean_box(LEAN_VERSION_MINOR)"]
private constant version.getMinor (u : Unit) : Nat
def version.minor : Nat := version.getMinor ()
@[extern c inline "lean_box(LEAN_VERSION_PATCH)"]
private constant version.getPatch (u : Unit) : Nat
def version.patch : Nat := version.getPatch ()
-- @[extern c inline "lean_mk_string(LEAN_GITHASH)"]
-- constant getGithash (u : Unit) : String
-- def githash : String := getGithash ()
@[extern c inline "LEAN_VERSION_IS_RELEASE"]
constant version.getIsRelease (u : Unit) : Bool
def version.isRelease : Bool := version.getIsRelease ()
/-- Additional version description like "nightly-2018-03-11" -/
@[extern c inline "lean_mk_string(LEAN_SPECIAL_VERSION_DESC)"]
constant version.getSpecialDesc (u : Unit) : String
def version.specialDesc : String := version.getSpecialDesc ()
/- Valid identifier names -/
def isGreek (c : Char) : Bool :=
0x391 ≤ c.val && c.val ≤ 0x3dd
def isLetterLike (c : Char) : Bool :=
(0x3b1 ≤ c.val && c.val ≤ 0x3c9 && c.val ≠ 0x3bb) || -- Lower greek, but lambda
(0x391 ≤ c.val && c.val ≤ 0x3A9 && c.val ≠ 0x3A0 && c.val ≠ 0x3A3) || -- Upper greek, but Pi and Sigma
(0x3ca ≤ c.val && c.val ≤ 0x3fb) || -- Coptic letters
(0x1f00 ≤ c.val && c.val ≤ 0x1ffe) || -- Polytonic Greek Extended Character Set
(0x2100 ≤ c.val && c.val ≤ 0x214f) || -- Letter like block
(0x1d49c ≤ c.val && c.val ≤ 0x1d59f) -- Latin letters, Script, Double-struck, Fractur
def isNumericSubscript (c : Char) : Bool :=
0x2080 ≤ c.val && c.val ≤ 0x2089
def isSubScriptAlnum (c : Char) : Bool :=
isNumericSubscript c ||
(0x2090 ≤ c.val && c.val ≤ 0x209c) ||
(0x1d62 ≤ c.val && c.val ≤ 0x1d6a)
def isIdFirst (c : Char) : Bool :=
c.isAlpha || c = '_' || isLetterLike c
def isIdRest (c : Char) : Bool :=
c.isAlphanum || c = '_' || c = '\'' || c == '!' || c == '?' || isLetterLike c || isSubScriptAlnum c
def idBeginEscape := '«'
def idEndEscape := '»'
def isIdBeginEscape (c : Char) : Bool := c = idBeginEscape
def isIdEndEscape (c : Char) : Bool := c = idEndEscape
namespace Name
def toStringWithSep (sep : String) : Name → String
| anonymous => "[anonymous]"
| str anonymous s _ => s
| num anonymous v _ => toString v
| str n s _ => toStringWithSep sep n ++ sep ++ s
| num n v _ => toStringWithSep sep n ++ sep ++ Nat.repr v
protected def toString : Name → String :=
toStringWithSep "."
instance : ToString Name where
toString n := n.toString
instance : Repr Name where
reprPrec n _ := Std.Format.text "`" ++ n.toString
def capitalize : Name → Name
| Name.str p s _ => Name.mkStr p s.capitalize
| n => n
def replacePrefix : Name → Name → Name → Name
| anonymous, anonymous, newP => newP
| anonymous, _, _ => anonymous
| n@(str p s _), queryP, newP => if n == queryP then newP else Name.mkStr (p.replacePrefix queryP newP) s
| n@(num p s _), queryP, newP => if n == queryP then newP else Name.mkNum (p.replacePrefix queryP newP) s
/-- Remove macros scopes, apply `f`, and put them back -/
@[inline] def modifyBase (n : Name) (f : Name → Name) : Name :=
if n.hasMacroScopes then
let view := extractMacroScopes n
{ view with name := f view.name }.review
else
f n
@[export lean_name_append_after]
def appendAfter (n : Name) (suffix : String) : Name :=
n.modifyBase fun
| str p s _ => Name.mkStr p (s ++ suffix)
| n => Name.mkStr n suffix
@[export lean_name_append_index_after]
def appendIndexAfter (n : Name) (idx : Nat) : Name :=
n.modifyBase fun
| str p s _ => Name.mkStr p (s ++ "_" ++ toString idx)
| n => Name.mkStr n ("_" ++ toString idx)
@[export lean_name_append_before]
def appendBefore (n : Name) (pre : String) : Name :=
n.modifyBase fun
| anonymous => Name.mkStr anonymous pre
| str p s _ => Name.mkStr p (pre ++ s)
| num p n _ => Name.mkNum (Name.mkStr p pre) n
end Name
structure NameGenerator where
namePrefix : Name := `_uniq
idx : Nat := 1
deriving Inhabited
namespace NameGenerator
@[inline] def curr (g : NameGenerator) : Name :=
Name.mkNum g.namePrefix g.idx
@[inline] def next (g : NameGenerator) : NameGenerator :=
{ g with idx := g.idx + 1 }
@[inline] def mkChild (g : NameGenerator) : NameGenerator × NameGenerator :=
({ namePrefix := Name.mkNum g.namePrefix g.idx, idx := 1 },
{ g with idx := g.idx + 1 })
end NameGenerator
class MonadNameGenerator (m : Type → Type) where
getNGen : m NameGenerator
setNGen : NameGenerator → m Unit
export MonadNameGenerator (getNGen setNGen)
def mkFreshId {m : Type → Type} [Monad m] [MonadNameGenerator m] : m Name := do
let ngen ← getNGen
let r := ngen.curr
setNGen ngen.next
pure r
instance monadNameGeneratorLift (m n : Type → Type) [MonadLift m n] [MonadNameGenerator m] : MonadNameGenerator n := {
getNGen := liftM (getNGen : m _),
setNGen := fun ngen => liftM (setNGen ngen : m _)
}
namespace Syntax
partial def structEq : Syntax → Syntax → Bool
| Syntax.missing, Syntax.missing => true
| Syntax.node k args, Syntax.node k' args' => k == k' && args.isEqv args' structEq
| Syntax.atom _ val, Syntax.atom _ val' => val == val'
| Syntax.ident _ rawVal val preresolved, Syntax.ident _ rawVal' val' preresolved' => rawVal == rawVal' && val == val' && preresolved == preresolved'
| _, _ => false
instance : BEq Lean.Syntax := ⟨structEq⟩
partial def getTailInfo? : Syntax → Option SourceInfo
| atom info _ => info
| ident info .. => info
| node _ args => args.findSomeRev? getTailInfo?
| _ => none
def getTailInfo (stx : Syntax) : SourceInfo :=
stx.getTailInfo?.getD SourceInfo.none
def getTrailingSize (stx : Syntax) : Nat :=
match stx.getTailInfo? with
| some (SourceInfo.original (trailing := trailing) ..) => trailing.bsize
| _ => 0
@[specialize] private partial def updateLast {α} [Inhabited α] (a : Array α) (f : α → Option α) (i : Nat) : Option (Array α) :=
if i == 0 then
none
else
let i := i - 1
let v := a[i]
match f v with
| some v => some <| a.set! i v
| none => updateLast a f i
partial def setTailInfoAux (info : SourceInfo) : Syntax → Option Syntax
| atom _ val => some <| atom info val
| ident _ rawVal val pre => some <| ident info rawVal val pre
| node k args =>
match updateLast args (setTailInfoAux info) args.size with
| some args => some <| node k args
| none => none
| stx => none
def setTailInfo (stx : Syntax) (info : SourceInfo) : Syntax :=
match setTailInfoAux info stx with
| some stx => stx
| none => stx
def unsetTrailing (stx : Syntax) : Syntax :=
match stx.getTailInfo with
| SourceInfo.original lead pos trail => stx.setTailInfo (SourceInfo.original lead pos "".toSubstring)
| _ => stx
@[specialize] private partial def updateFirst {α} [Inhabited α] (a : Array α) (f : α → Option α) (i : Nat) : Option (Array α) :=
if h : i < a.size then
let v := a.get ⟨i, h⟩;
match f v with
| some v => some <| a.set ⟨i, h⟩ v
| none => updateFirst a f (i+1)
else
none
partial def setHeadInfoAux (info : SourceInfo) : Syntax → Option Syntax
| atom _ val => some <| atom info val
| ident _ rawVal val pre => some <| ident info rawVal val pre
| node k args =>
match updateFirst args (setHeadInfoAux info) 0 with
| some args => some <| node k args
| noxne => none
| stx => none
def setHeadInfo (stx : Syntax) (info : SourceInfo) : Syntax :=
match setHeadInfoAux info stx with
| some stx => stx
| none => stx
def setInfo (info : SourceInfo) : Syntax → Syntax
| atom _ val => atom info val
| ident _ rawVal val pre => ident info rawVal val pre
| stx => stx
/-- Return the first atom/identifier that has position information -/
partial def getHead? : Syntax → Option Syntax
| stx@(atom info ..) => info.getPos?.map fun _ => stx
| stx@(ident info ..) => info.getPos?.map fun _ => stx
| node _ args => args.findSome? getHead?
| _ => none
def copyHeadTailInfoFrom (target source : Syntax) : Syntax :=
target.setHeadInfo source.getHeadInfo |>.setTailInfo source.getTailInfo
end Syntax
/-- Use the head atom/identifier of the current `ref` as the `ref` -/
@[inline] def withHeadRefOnly {m : Type → Type} [Monad m] [MonadRef m] {α} (x : m α) : m α := do
match (← getRef).getHead? with
| none => x
| some ref => withRef ref x
@[inline] def mkNode (k : SyntaxNodeKind) (args : Array Syntax) : Syntax :=
Syntax.node k args
/- Syntax objects for a Lean module. -/
structure Module where
header : Syntax
commands : Array Syntax
/-- Expand all macros in the given syntax -/
partial def expandMacros : Syntax → MacroM Syntax
| stx@(Syntax.node k args) => do
match (← expandMacro? stx) with
| some stxNew => expandMacros stxNew
| none => do
let args ← Macro.withIncRecDepth stx <| args.mapM expandMacros
pure <| Syntax.node k args
| stx => pure stx
/- Helper functions for processing Syntax programmatically -/
/--
Create an identifier copying the position from `src`.
To refer to a specific constant, use `mkCIdentFrom` instead. -/
def mkIdentFrom (src : Syntax) (val : Name) : Syntax :=
Syntax.ident (SourceInfo.fromRef src) (toString val).toSubstring val []
def mkIdentFromRef [Monad m] [MonadRef m] (val : Name) : m Syntax := do
return mkIdentFrom (← getRef) val
/--
Create an identifier referring to a constant `c` copying the position from `src`.
This variant of `mkIdentFrom` makes sure that the identifier cannot accidentally
be captured. -/
def mkCIdentFrom (src : Syntax) (c : Name) : Syntax :=
-- Remark: We use the reserved macro scope to make sure there are no accidental collision with our frontend
let id := addMacroScope `_internal c reservedMacroScope
Syntax.ident (SourceInfo.fromRef src) (toString id).toSubstring id [(c, [])]
def mkCIdentFromRef [Monad m] [MonadRef m] (c : Name) : m Syntax := do
return mkCIdentFrom (← getRef) c
def mkCIdent (c : Name) : Syntax :=
mkCIdentFrom Syntax.missing c
@[export lean_mk_syntax_ident]
def mkIdent (val : Name) : Syntax :=
Syntax.ident SourceInfo.none (toString val).toSubstring val []
@[inline] def mkNullNode (args : Array Syntax := #[]) : Syntax :=
Syntax.node nullKind args
@[inline] def mkGroupNode (args : Array Syntax := #[]) : Syntax :=
Syntax.node groupKind args
def mkSepArray (as : Array Syntax) (sep : Syntax) : Array Syntax := do
let mut i := 0
let mut r := #[]
for a in as do
if i > 0 then
r := r.push sep |>.push a
else
r := r.push a
i := i + 1
return r
def mkOptionalNode (arg : Option Syntax) : Syntax :=
match arg with
| some arg => Syntax.node nullKind #[arg]
| none => Syntax.node nullKind #[]
def mkHole (ref : Syntax) : Syntax :=
Syntax.node `Lean.Parser.Term.hole #[mkAtomFrom ref "_"]
namespace Syntax
def mkSep (a : Array Syntax) (sep : Syntax) : Syntax :=
mkNullNode <| mkSepArray a sep
def SepArray.ofElems {sep} (elems : Array Syntax) : SepArray sep :=
⟨mkSepArray elems (mkAtom sep)⟩
def SepArray.ofElemsUsingRef [Monad m] [MonadRef m] {sep} (elems : Array Syntax) : m (SepArray sep) := do
let ref ← getRef;
return ⟨mkSepArray elems (mkAtomFrom ref sep)⟩
instance (sep) : Coe (Array Syntax) (SepArray sep) where
coe := SepArray.ofElems
/-- Create syntax representing a Lean term application, but avoid degenerate empty applications. -/
def mkApp (fn : Syntax) : (args : Array Syntax) → Syntax
| #[] => fn
| args => Syntax.node `Lean.Parser.Term.app #[fn, mkNullNode args]
def mkCApp (fn : Name) (args : Array Syntax) : Syntax :=
mkApp (mkCIdent fn) args
def mkLit (kind : SyntaxNodeKind) (val : String) (info := SourceInfo.none) : Syntax :=
let atom : Syntax := Syntax.atom info val
Syntax.node kind #[atom]
def mkStrLit (val : String) (info := SourceInfo.none) : Syntax :=
mkLit strLitKind (String.quote val) info
def mkNumLit (val : String) (info := SourceInfo.none) : Syntax :=
mkLit numLitKind val info
def mkScientificLit (val : String) (info := SourceInfo.none) : Syntax :=
mkLit scientificLitKind val info
/- Recall that we don't have special Syntax constructors for storing numeric and string atoms.
The idea is to have an extensible approach where embedded DSLs may have new kind of atoms and/or
different ways of representing them. So, our atoms contain just the parsed string.
The main Lean parser uses the kind `numLitKind` for storing natural numbers that can be encoded
in binary, octal, decimal and hexadecimal format. `isNatLit` implements a "decoder"
for Syntax objects representing these numerals. -/
private partial def decodeBinLitAux (s : String) (i : String.Pos) (val : Nat) : Option Nat :=
if s.atEnd i then some val
else
let c := s.get i
if c == '0' then decodeBinLitAux s (s.next i) (2*val)
else if c == '1' then decodeBinLitAux s (s.next i) (2*val + 1)
else none
private partial def decodeOctalLitAux (s : String) (i : String.Pos) (val : Nat) : Option Nat :=
if s.atEnd i then some val
else
let c := s.get i
if '0' ≤ c && c ≤ '7' then decodeOctalLitAux s (s.next i) (8*val + c.toNat - '0'.toNat)
else none
private def decodeHexDigit (s : String) (i : String.Pos) : Option (Nat × String.Pos) :=
let c := s.get i
let i := s.next i
if '0' ≤ c && c ≤ '9' then some (c.toNat - '0'.toNat, i)
else if 'a' ≤ c && c ≤ 'f' then some (10 + c.toNat - 'a'.toNat, i)
else if 'A' ≤ c && c ≤ 'F' then some (10 + c.toNat - 'A'.toNat, i)
else none
private partial def decodeHexLitAux (s : String) (i : String.Pos) (val : Nat) : Option Nat :=
if s.atEnd i then some val
else match decodeHexDigit s i with
| some (d, i) => decodeHexLitAux s i (16*val + d)
| none => none
private partial def decodeDecimalLitAux (s : String) (i : String.Pos) (val : Nat) : Option Nat :=
if s.atEnd i then some val
else
let c := s.get i
if '0' ≤ c && c ≤ '9' then decodeDecimalLitAux s (s.next i) (10*val + c.toNat - '0'.toNat)
else none
def decodeNatLitVal? (s : String) : Option Nat :=
let len := s.length
if len == 0 then none
else
let c := s.get 0
if c == '0' then
if len == 1 then some 0
else
let c := s.get 1
if c == 'x' || c == 'X' then decodeHexLitAux s 2 0
else if c == 'b' || c == 'B' then decodeBinLitAux s 2 0
else if c == 'o' || c == 'O' then decodeOctalLitAux s 2 0
else if c.isDigit then decodeDecimalLitAux s 0 0
else none
else if c.isDigit then decodeDecimalLitAux s 0 0
else none
def isLit? (litKind : SyntaxNodeKind) (stx : Syntax) : Option String :=
match stx with
| Syntax.node k args =>
if k == litKind && args.size == 1 then
match args.get! 0 with
| (Syntax.atom _ val) => some val
| _ => none
else
none
| _ => none
private def isNatLitAux (litKind : SyntaxNodeKind) (stx : Syntax) : Option Nat :=
match isLit? litKind stx with
| some val => decodeNatLitVal? val
| _ => none
def isNatLit? (s : Syntax) : Option Nat :=
isNatLitAux numLitKind s
def isFieldIdx? (s : Syntax) : Option Nat :=
isNatLitAux fieldIdxKind s
partial def decodeScientificLitVal? (s : String) : Option (Nat × Bool × Nat) :=
let len := s.length
if len == 0 then none
else
let c := s.get 0
if c.isDigit then
decode 0 0
else none
where
decodeAfterExp (i : String.Pos) (val : Nat) (e : Nat) (sign : Bool) (exp : Nat) : Option (Nat × Bool × Nat) :=
if s.atEnd i then
if sign then
some (val, sign, exp + e)
else if exp >= e then
some (val, sign, exp - e)
else
some (val, true, e - exp)
else
let c := s.get i
if '0' ≤ c && c ≤ '9' then
decodeAfterExp (s.next i) val e sign (10*exp + c.toNat - '0'.toNat)
else
none
decodeExp (i : String.Pos) (val : Nat) (e : Nat) : Option (Nat × Bool × Nat) :=
let c := s.get i
if c == '-' then
decodeAfterExp (s.next i) val e true 0
else
decodeAfterExp i val e false 0
decodeAfterDot (i : String.Pos) (val : Nat) (e : Nat) : Option (Nat × Bool × Nat) :=
if s.atEnd i then
some (val, true, e)
else
let c := s.get i
if '0' ≤ c && c ≤ '9' then
decodeAfterDot (s.next i) (10*val + c.toNat - '0'.toNat) (e+1)
else if c == 'e' || c == 'E' then
decodeExp (s.next i) val e
else
none
decode (i : String.Pos) (val : Nat) : Option (Nat × Bool × Nat) :=
if s.atEnd i then
none
else
let c := s.get i
if '0' ≤ c && c ≤ '9' then
decode (s.next i) (10*val + c.toNat - '0'.toNat)
else if c == '.' then
decodeAfterDot (s.next i) val 0
else if c == 'e' || c == 'E' then
decodeExp (s.next i) val 0
else
none
def isScientificLit? (stx : Syntax) : Option (Nat × Bool × Nat) :=
match isLit? scientificLitKind stx with
| some val => decodeScientificLitVal? val
| _ => none
def isIdOrAtom? : Syntax → Option String
| Syntax.atom _ val => some val
| Syntax.ident _ rawVal _ _ => some rawVal.toString
| _ => none
def toNat (stx : Syntax) : Nat :=
match stx.isNatLit? with
| some val => val
| none => 0
def decodeQuotedChar (s : String) (i : String.Pos) : Option (Char × String.Pos) :=
OptionM.run do
let c := s.get i
let i := s.next i
if c == '\\' then pure ('\\', i)
else if c = '\"' then pure ('\"', i)
else if c = '\'' then pure ('\'', i)
else if c = 'r' then pure ('\r', i)
else if c = 'n' then pure ('\n', i)
else if c = 't' then pure ('\t', i)
else if c = 'x' then
let (d₁, i) ← decodeHexDigit s i
let (d₂, i) ← decodeHexDigit s i
pure (Char.ofNat (16*d₁ + d₂), i)
else if c = 'u' then do
let (d₁, i) ← decodeHexDigit s i
let (d₂, i) ← decodeHexDigit s i
let (d₃, i) ← decodeHexDigit s i
let (d₄, i) ← decodeHexDigit s i
pure (Char.ofNat (16*(16*(16*d₁ + d₂) + d₃) + d₄), i)
else
none
partial def decodeStrLitAux (s : String) (i : String.Pos) (acc : String) : Option String :=
OptionM.run do
let c := s.get i
let i := s.next i
if c == '\"' then
pure acc
else if s.atEnd i then
none
else if c == '\\' then do
let (c, i) ← decodeQuotedChar s i
decodeStrLitAux s i (acc.push c)
else
decodeStrLitAux s i (acc.push c)
def decodeStrLit (s : String) : Option String :=
decodeStrLitAux s 1 ""
def isStrLit? (stx : Syntax) : Option String :=
match isLit? strLitKind stx with
| some val => decodeStrLit val
| _ => none
def decodeCharLit (s : String) : Option Char :=
OptionM.run do
let c := s.get 1
if c == '\\' then do
let (c, _) ← decodeQuotedChar s 2
pure c
else
pure c
def isCharLit? (stx : Syntax) : Option Char :=
match isLit? charLitKind stx with
| some val => decodeCharLit val
| _ => none
private partial def decodeNameLitAux (s : String) (i : Nat) (r : Name) : Option Name :=
OptionM.run do
let continue? (i : Nat) (r : Name) : OptionM Name :=
if s.get i == '.' then
decodeNameLitAux s (s.next i) r
else if s.atEnd i then
pure r
else
none
let curr := s.get i
if isIdBeginEscape curr then
let startPart := s.next i
let stopPart := s.nextUntil isIdEndEscape startPart
if !isIdEndEscape (s.get stopPart) then none
else continue? (s.next stopPart) (Name.mkStr r (s.extract startPart stopPart))
else if isIdFirst curr then
let startPart := i
let stopPart := s.nextWhile isIdRest startPart
continue? stopPart (Name.mkStr r (s.extract startPart stopPart))
else
none
def decodeNameLit (s : String) : Option Name :=
if s.get 0 == '`' then
decodeNameLitAux s 1 Name.anonymous
else
none
def isNameLit? (stx : Syntax) : Option Name :=
match isLit? nameLitKind stx with
| some val => decodeNameLit val
| _ => none
def hasArgs : Syntax → Bool
| Syntax.node _ args => args.size > 0
| _ => false
def isAtom : Syntax → Bool
| atom _ _ => true
| _ => false
def isToken (token : String) : Syntax → Bool
| atom _ val => val.trim == token.trim
| _ => false
def isNone (stx : Syntax) : Bool :=
match stx with
| Syntax.node k args => k == nullKind && args.size == 0
-- when elaborating partial syntax trees, it's reasonable to interpret missing parts as `none`
| Syntax.missing => true
| _ => false
def getOptional? (stx : Syntax) : Option Syntax :=
match stx with
| Syntax.node k args => if k == nullKind && args.size == 1 then some (args.get! 0) else none
| _ => none
def getOptionalIdent? (stx : Syntax) : Option Name :=
match stx.getOptional? with
| some stx => some stx.getId
| none => none
partial def findAux (p : Syntax → Bool) : Syntax → Option Syntax
| stx@(Syntax.node _ args) => if p stx then some stx else args.findSome? (findAux p)
| stx => if p stx then some stx else none
def find? (stx : Syntax) (p : Syntax → Bool) : Option Syntax :=
findAux p stx
end Syntax
/-- Reflect a runtime datum back to surface syntax (best-effort). -/
class Quote (α : Type) where
quote : α → Syntax
export Quote (quote)
instance : Quote Syntax := ⟨id⟩
instance : Quote Bool := ⟨fun | true => mkCIdent `Bool.true | false => mkCIdent `Bool.false⟩
instance : Quote String := ⟨Syntax.mkStrLit⟩
instance : Quote Nat := ⟨fun n => Syntax.mkNumLit <| toString n⟩
instance : Quote Substring := ⟨fun s => Syntax.mkCApp `String.toSubstring #[quote s.toString]⟩
private def quoteName : Name → Syntax
| Name.anonymous => mkCIdent ``Name.anonymous
| Name.str n s _ => Syntax.mkCApp ``Name.mkStr #[quoteName n, quote s]
| Name.num n i _ => Syntax.mkCApp ``Name.mkNum #[quoteName n, quote i]
instance : Quote Name := ⟨quoteName⟩
instance {α β : Type} [Quote α] [Quote β] : Quote (α × β) where
quote
| ⟨a, b⟩ => Syntax.mkCApp ``Prod.mk #[quote a, quote b]
private def quoteList {α : Type} [Quote α] : List α → Syntax
| [] => mkCIdent ``List.nil
| (x::xs) => Syntax.mkCApp ``List.cons #[quote x, quoteList xs]
instance {α : Type} [Quote α] : Quote (List α) where
quote := quoteList
instance {α : Type} [Quote α] : Quote (Array α) where
quote xs := Syntax.mkCApp ``List.toArray #[quote xs.toList]
private def quoteOption {α : Type} [Quote α] : Option α → Syntax
| none => mkIdent ``none
| (some x) => Syntax.mkCApp ``some #[quote x]
instance Option.hasQuote {α : Type} [Quote α] : Quote (Option α) where
quote := quoteOption
/- Evaluator for `prec` DSL -/
def evalPrec (stx : Syntax) : MacroM Nat :=
Macro.withIncRecDepth stx do
let stx ← expandMacros stx
match stx with
| `(prec| $num:numLit) => return num.isNatLit?.getD 0
| _ => Macro.throwErrorAt stx "unexpected precedence"
macro_rules
| `(prec| $a + $b) => do `(prec| $(quote <| (← evalPrec a) + (← evalPrec b)):numLit)
macro_rules
| `(prec| $a - $b) => do `(prec| $(quote <| (← evalPrec a) - (← evalPrec b)):numLit)
macro "eval_prec " p:prec:max : term => return quote (← evalPrec p)
def evalOptPrec : Option Syntax → MacroM Nat
| some prec => evalPrec prec
| none => return 0
/- Evaluator for `prio` DSL -/
def evalPrio (stx : Syntax) : MacroM Nat :=
Macro.withIncRecDepth stx do
let stx ← expandMacros stx
match stx with
| `(prio| $num:numLit) => return num.isNatLit?.getD 0
| _ => Macro.throwErrorAt stx "unexpected priority"
macro_rules
| `(prio| $a + $b) => do `(prio| $(quote <| (← evalPrio a) + (← evalPrio b)):numLit)
macro_rules
| `(prio| $a - $b) => do `(prio| $(quote <| (← evalPrio a) - (← evalPrio b)):numLit)
macro "eval_prio " p:prio:max : term => return quote (← evalPrio p)
def evalOptPrio : Option Syntax → MacroM Nat
| some prio => evalPrio prio
| none => return eval_prio default
end Lean
namespace Array
abbrev getSepElems := @getEvenElems
open Lean
private partial def filterSepElemsMAux {m : Type → Type} [Monad m] (a : Array Syntax) (p : Syntax → m Bool) (i : Nat) (acc : Array Syntax) : m (Array Syntax) := do
if h : i < a.size then
let stx := a.get ⟨i, h⟩
if (← p stx) then
if acc.isEmpty then
filterSepElemsMAux a p (i+2) (acc.push stx)
else if hz : i ≠ 0 then
have i.pred < i from Nat.predLt hz
let sepStx := a.get ⟨i.pred, Nat.ltTrans this h⟩
filterSepElemsMAux a p (i+2) ((acc.push sepStx).push stx)
else
filterSepElemsMAux a p (i+2) (acc.push stx)
else
filterSepElemsMAux a p (i+2) acc
else
pure acc
def filterSepElemsM {m : Type → Type} [Monad m] (a : Array Syntax) (p : Syntax → m Bool) : m (Array Syntax) :=
filterSepElemsMAux a p 0 #[]
def filterSepElems (a : Array Syntax) (p : Syntax → Bool) : Array Syntax :=
Id.run <| a.filterSepElemsM p
private partial def mapSepElemsMAux {m : Type → Type} [Monad m] (a : Array Syntax) (f : Syntax → m Syntax) (i : Nat) (acc : Array Syntax) : m (Array Syntax) := do
if h : i < a.size then
let stx := a.get ⟨i, h⟩
if i % 2 == 0 then do
let stx ← f stx
mapSepElemsMAux a f (i+1) (acc.push stx)
else
mapSepElemsMAux a f (i+1) (acc.push stx)
else
pure acc
def mapSepElemsM {m : Type → Type} [Monad m] (a : Array Syntax) (f : Syntax → m Syntax) : m (Array Syntax) :=
mapSepElemsMAux a f 0 #[]
def mapSepElems (a : Array Syntax) (f : Syntax → Syntax) : Array Syntax :=
Id.run <| a.mapSepElemsM f
end Array
namespace Lean.Syntax.SepArray
def getElems {sep} (sa : SepArray sep) : Array Syntax :=
sa.elemsAndSeps.getSepElems
/-
We use `CoeTail` here instead of `Coe` to avoid a "loop" when computing `CoeTC`.
The "loop" is interrupted using the maximum instance size threshold, but it is a performance bottleneck.
The loop occurs because the predicate `isNewAnswer` is too imprecise.
-/
instance (sep) : CoeTail (SepArray sep) (Array Syntax) where
coe := getElems
end Lean.Syntax.SepArray
/--
Gadget for automatic parameter support. This is similar to the `optParam` gadget, but it uses
the given tactic.
Like `optParam`, this gadget only affects elaboration.
For example, the tactic will *not* be invoked during type class resolution. -/
abbrev autoParam.{u} (α : Sort u) (tactic : Lean.Syntax) : Sort u := α
/- Helper functions for manipulating interpolated strings -/
namespace Lean.Syntax
private def decodeInterpStrQuotedChar (s : String) (i : String.Pos) : Option (Char × String.Pos) :=
OptionM.run do
match decodeQuotedChar s i with
| some r => some r
| none =>
let c := s.get i
let i := s.next i
if c == '{' then pure ('{', i)
else none
private partial def decodeInterpStrLit (s : String) : Option String :=
let rec loop (i : String.Pos) (acc : String) : OptionM String :=
let c := s.get i
let i := s.next i
if c == '\"' || c == '{' then
pure acc
else if s.atEnd i then
none
else if c == '\\' then do
let (c, i) ← decodeInterpStrQuotedChar s i
loop i (acc.push c)
else
loop i (acc.push c)
loop 1 ""
partial def isInterpolatedStrLit? (stx : Syntax) : Option String :=
match isLit? interpolatedStrLitKind stx with
| none => none
| some val => decodeInterpStrLit val
def expandInterpolatedStrChunks (chunks : Array Syntax) (mkAppend : Syntax → Syntax → MacroM Syntax) (mkElem : Syntax → MacroM Syntax) : MacroM Syntax := do
let mut i := 0
let mut result := Syntax.missing
for elem in chunks do
let elem ← match elem.isInterpolatedStrLit? with
| none => mkElem elem
| some str => mkElem (Syntax.mkStrLit str)
if i == 0 then
result := elem
else
result ← mkAppend result elem
i := i+1
return result
def expandInterpolatedStr (interpStr : Syntax) (type : Syntax) (toTypeFn : Syntax) : MacroM Syntax := do
let ref := interpStr
let r ← expandInterpolatedStrChunks interpStr.getArgs (fun a b => `($a ++ $b)) (fun a => `($toTypeFn $a))
`(($r : $type))
def getSepArgs (stx : Syntax) : Array Syntax :=
stx.getArgs.getSepElems
end Syntax
namespace Meta.Simp
def defaultMaxSteps := 100000
structure Config where
maxSteps : Nat := defaultMaxSteps
contextual : Bool := false
memoize : Bool := true
singlePass : Bool := false
zeta : Bool := true
beta : Bool := true
eta : Bool := true
iota : Bool := true
proj : Bool := true
ctorEq : Bool := true
decide : Bool := true
deriving Inhabited, BEq, Repr
-- Configuration object for `simp_all`
structure ConfigCtx extends Config where
contextual := true
end Meta.Simp
end Lean
|
8148c8cd0bd4853ca047ce4765e391787add43df
|
9dd3f3912f7321eb58ee9aa8f21778ad6221f87c
|
/tests/lean/1369.lean
|
a9321855442852aca96ef5b14df64e98eb58df49
|
[
"Apache-2.0"
] |
permissive
|
bre7k30/lean
|
de893411bcfa7b3c5572e61b9e1c52951b310aa4
|
5a924699d076dab1bd5af23a8f910b433e598d7a
|
refs/heads/master
| 1,610,900,145,817
| 1,488,006,845,000
| 1,488,006,845,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 715
|
lean
|
open nat
open tactic
meta def match_le (e : expr) : tactic (expr × expr) :=
match expr.is_le e with
| (some r) := return r
| none := tactic.fail "expression is not a leq"
end
meta def nat_lit_le : tactic unit := do
(base_e, bound_e) ← tactic.target >>= match_le,
base ← tactic.eval_expr ℕ base_e,
skip
example : 17 ≤ 555555 :=
begin
nat_lit_le,
admit
end
example : { k : ℕ // k ≤ 555555 } :=
begin
refine subtype.tag _ _,
exact 17,
target >>= trace,
trace_state,
nat_lit_le,
admit
end
set_option pp.instantiate_mvars false
example : { k : ℕ // k ≤ 555555 } :=
begin
refine subtype.tag _ _,
exact 17,
target >>= trace,
trace_state,
nat_lit_le,
admit
end
|
5d1cb76f9b5b66f13b11d33fc85bd540e405b862
|
dc253be9829b840f15d96d986e0c13520b085033
|
/colimit/pushout.hlean
|
2c390ce88132de6d896f53873eb621378f0c9f68
|
[
"Apache-2.0"
] |
permissive
|
cmu-phil/Spectral
|
4ce68e5c1ef2a812ffda5260e9f09f41b85ae0ea
|
3b078f5f1de251637decf04bd3fc8aa01930a6b3
|
refs/heads/master
| 1,685,119,195,535
| 1,684,169,772,000
| 1,684,169,772,000
| 46,450,197
| 42
| 13
| null | 1,505,516,767,000
| 1,447,883,921,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 9,666
|
hlean
|
/-
Suppose we have three sequences A = (Aₙ, fₙ)ₙ, B = (Bₙ, gₙ)ₙ, C = (Cₙ, hₙ)ₙ with natural
transformations like this: B ← A → C. We can take pushouts pointwise and then take the colimit,
or we can take the colimit of each and then pushout. By the 3x3 lemma these are equivalent.
Authors: Floris van Doorn
-/
import .seq_colim ..homotopy.pushout ..homotopy.three_by_three
open eq nat seq_colim is_trunc equiv is_equiv trunc sigma sum pi function algebra sigma.ops
section
variables {A B : ℕ → Type} {f : seq_diagram A} {g : seq_diagram B} (i : Π⦃n⦄, A n → B n)
(p : Π⦃n⦄ (a : A n), i (f a) = g (i a)) (a a' : Σn, A n)
definition total_seq_rel [constructor] (f : seq_diagram A) :
(Σ(a a' : Σn, A n), seq_rel f a a') ≃ Σn, A n :=
begin
fapply equiv.MK,
{ intro x, exact x.2.1 },
{ intro x, induction x with n a, exact ⟨⟨n+1, f a⟩, ⟨n, a⟩, seq_rel.Rmk f a⟩ },
{ intro x, induction x with n a, reflexivity },
{ intro x, induction x with a x, induction x with a' r, induction r with n a, reflexivity }
end
definition pr1_total_seq_rel_inv (x : Σn, A n) :
((total_seq_rel f)⁻¹ᵉ x).1 = sigma_functor succ f x :=
begin induction x with n a, reflexivity end
definition pr2_total_seq_rel_inv (x : Σn, A n) : ((total_seq_rel f)⁻¹ᵉ x).2.1 = x :=
to_right_inv (total_seq_rel f) x
include p
definition seq_rel_functor [unfold 9] : seq_rel f a a' → seq_rel g (total i a) (total i a') :=
begin
intro r, induction r with n a,
exact transport (λx, seq_rel g ⟨_, x⟩ _) (p a)⁻¹ (seq_rel.Rmk g (i a))
end
open pushout
definition total_seq_rel_natural [unfold 7] :
hsquare (sigma_functor2 (total i) (seq_rel_functor i p)) (total i)
(total_seq_rel f) (total_seq_rel g) :=
homotopy.rfl
end
section
open pushout sigma.ops quotient
parameters {A B C : ℕ → Type} {f : seq_diagram A} {g : seq_diagram B} {h : seq_diagram C}
(i : Π⦃n⦄, A n → B n) (j : Π⦃n⦄, A n → C n)
(p : Π⦃n⦄ (a : A n), i (f a) = g (i a)) (q : Π⦃n⦄ (a : A n), j (f a) = h (j a))
definition seq_diagram_pushout : seq_diagram (λn, pushout (@i n) (@j n)) :=
λn, pushout.functor (@f n) (@g n) (@h n) (@p n)⁻¹ʰᵗʸ (@q n)⁻¹ʰᵗʸ
local abbreviation sA := Σn, A n
local abbreviation sB := Σn, B n
local abbreviation sC := Σn, C n
local abbreviation si : sA → sB := total i
local abbreviation sj : sA → sC := total j
local abbreviation rA := Σ(x y : sA), seq_rel f x y
local abbreviation rB := Σ(x y : sB), seq_rel g x y
local abbreviation rC := Σ(x y : sC), seq_rel h x y
set_option pp.abbreviations false
local abbreviation ri : rA → rB := sigma_functor2 (total i) (seq_rel_functor i p)
local abbreviation rj : rA → rC := sigma_functor2 (total j) (seq_rel_functor j q)
definition pushout_seq_colim_span [constructor] : three_by_three_span :=
@three_by_three_span.mk
sB (rB ⊎ rB) rB sA (rA ⊎ rA) rA sC (rC ⊎ rC) rC
(sum.rec pr1 (λx, x.2.1)) (sum.rec id id)
(sum.rec pr1 (λx, x.2.1)) (sum.rec id id)
(sum.rec pr1 (λx, x.2.1)) (sum.rec id id)
(total i) (total j) (ri +→ ri) (rj +→ rj) ri rj
begin intro x, induction x: reflexivity end
begin intro x, induction x: reflexivity end
begin intro x, induction x: reflexivity end
begin intro x, induction x: reflexivity end
definition ua_equiv_ap {A : Type} (P : A → Type) {a b : A} (p : a = b) :
ua (equiv_ap P p) = ap P p :=
begin induction p, apply ua_refl end
definition pushout_elim_type_eta {TL BL TR : Type} {f : TL → BL} {g : TL → TR}
(P : pushout f g → Type) (x : pushout f g) :
P x ≃ pushout.elim_type (P ∘ inl) (P ∘ inr) (λa, equiv_ap P (glue a)) x :=
begin
induction x,
{ reflexivity },
{ reflexivity },
{ apply equiv_pathover_inv, apply arrow_pathover_left, intro y,
apply pathover_of_tr_eq, symmetry, exact ap10 !elim_type_glue y }
end
definition pushout_flattening' {TL BL TR : Type} {f : TL → BL} {g : TL → TR}
(P : pushout f g → Type) : sigma P ≃
@pushout (sigma (P ∘ inl ∘ f)) (sigma (P ∘ inl)) (sigma (P ∘ inr))
(sigma_functor f (λa, id)) (sigma_functor g (λa, transport P (glue a))) :=
sigma_equiv_sigma_right (pushout_elim_type_eta P) ⬝e
pushout.flattening _ _ (P ∘ inl) (P ∘ inr) (λa, equiv_ap P (glue a))
definition equiv_ap011 {A B : Type} (P : A → B → Type) {a a' : A} {b b' : B}
(p : a = a') (q : b = b') : P a b ≃ P a' b' :=
equiv_ap (P a) q ⬝e equiv_ap (λa, P a b') p
definition tr_tr_eq_tr_tr [unfold 8 9] {A B : Type} (P : A → B → Type) {a a' : A} {b b' : B}
(p : a = a') (q : b = b') (x : P a b) :
transport (P a') q (transport (λa, P a b) p x) = transport (λa, P a b') p (transport (P a) q x) :=
by induction p; induction q; reflexivity
definition pushout_total_seq_rel :
pushout (sigma_functor2 (total i) (seq_rel_functor i p))
(sigma_functor2 (total j) (seq_rel_functor j q)) ≃
Σ(x : Σ ⦃n : ℕ⦄, pushout (@i n) (@j n)), sigma (seq_rel seq_diagram_pushout x) :=
pushout.equiv _ _ _ _ (total_seq_rel f) (total_seq_rel g) (total_seq_rel h)
homotopy.rfl homotopy.rfl ⬝e
pushout_sigma_equiv_sigma_pushout i j ⬝e
(total_seq_rel seq_diagram_pushout)⁻¹ᵉ
definition pr1_pushout_total_seq_rel :
hsquare pushout_total_seq_rel (pushout_sigma_equiv_sigma_pushout i j)
(pushout.functor pr1 pr1 pr1 homotopy.rfl homotopy.rfl) pr1 :=
begin
intro x, refine !pr1_total_seq_rel_inv ⬝ _, esimp,
refine !pushout_sigma_equiv_sigma_pushout_natural⁻¹ ⬝ _,
apply ap sigma_pushout_of_pushout_sigma,
refine !pushout_functor_compose⁻¹ ⬝ _,
fapply pushout_functor_homotopy,
{ intro v, induction v with a v, induction v with a' r, induction r, reflexivity },
{ intro v, induction v with a v, induction v with a' r, induction r, reflexivity },
{ intro v, induction v with a v, induction v with a' r, induction r, reflexivity },
{ intro v, induction v with a v, induction v with a' r, induction r, esimp, generalize p a,
generalize i (f a), intro x r, cases r, reflexivity },
{ intro v, induction v with a v, induction v with a' r, induction r, esimp, generalize q a,
generalize j (f a), intro x r, cases r, reflexivity },
end
definition pr2_pushout_total_seq_rel :
hsquare pushout_total_seq_rel (pushout_sigma_equiv_sigma_pushout i j)
(pushout.functor (λx, x.2.1) (λx, x.2.1) (λx, x.2.1) homotopy.rfl homotopy.rfl)
(λx, x.2.1) :=
begin
intro x, apply pr2_total_seq_rel_inv,
end
/- this result depends on the 3x3 lemma, which is currently not formalized in Lean -/
definition pushout_seq_colim_equiv [constructor] :
pushout (seq_colim_functor i p) (seq_colim_functor j q) ≃ seq_colim seq_diagram_pushout :=
have e1 :
pushout (seq_colim_functor i p) (seq_colim_functor j q) ≃ pushout2hv pushout_seq_colim_span, from
pushout.equiv _ _ _ _ !quotient_equiv_pushout !quotient_equiv_pushout !quotient_equiv_pushout
begin
refine _ ⬝hty quotient_equiv_pushout_natural (total i) (seq_rel_functor i p),
intro x, apply ap pushout_quotient_of_quotient,
induction x,
{ induction a with n a, reflexivity },
{ induction H, apply eq_pathover, apply hdeg_square,
refine !elim_glue ⬝ _ ⬝ !elim_eq_of_rel⁻¹,
unfold [seq_colim.glue, seq_rel_functor],
symmetry,
refine fn_tr_eq_tr_fn (p a)⁻¹ _ _ ⬝ eq_transport_Fl (p a)⁻¹ _ ⬝ _,
apply whisker_right, exact !ap_inv⁻² ⬝ !inv_inv }
end
begin
refine _ ⬝hty quotient_equiv_pushout_natural (total j) (seq_rel_functor j q),
intro x, apply ap pushout_quotient_of_quotient,
induction x,
{ induction a with n a, reflexivity },
{ induction H, apply eq_pathover, apply hdeg_square,
refine !elim_glue ⬝ _ ⬝ !elim_eq_of_rel⁻¹,
unfold [seq_colim.glue, seq_rel_functor],
symmetry,
refine fn_tr_eq_tr_fn (q a)⁻¹ _ _ ⬝ eq_transport_Fl (q a)⁻¹ _ ⬝ _,
apply whisker_right, exact !ap_inv⁻² ⬝ !inv_inv }
end,
have e2 : pushout2vh pushout_seq_colim_span ≃ pushout_quotient (seq_rel seq_diagram_pushout), from
pushout.equiv _ _ _ _
(!pushout_sum_equiv_sum_pushout ⬝e sum_equiv_sum pushout_total_seq_rel pushout_total_seq_rel)
(pushout_sigma_equiv_sigma_pushout i j)
pushout_total_seq_rel
begin
intro x, symmetry,
refine sum_rec_hsquare pr1_pushout_total_seq_rel pr2_pushout_total_seq_rel
(!pushout_sum_equiv_sum_pushout x) ⬝ ap (pushout_sigma_equiv_sigma_pushout i j) _,
refine sum_rec_pushout_sum_equiv_sum_pushout _ _ _ _ x ⬝ _,
apply pushout_functor_homotopy_constant: intro x; induction x: reflexivity
end
begin
intro x, symmetry,
refine !sum_rec_sum_functor ⬝ _,
refine sum_rec_same_compose
((total_seq_rel seq_diagram_pushout)⁻¹ᵉ ∘ pushout_sigma_equiv_sigma_pushout i j) _ _ ⬝ _,
apply ap (to_fun (total_seq_rel seq_diagram_pushout)⁻¹ᵉ ∘ to_fun
(pushout_sigma_equiv_sigma_pushout i j)),
refine !sum_rec_pushout_sum_equiv_sum_pushout ⬝ _,
refine _ ⬝ !pushout_functor_compose,
fapply pushout_functor_homotopy,
{ intro x, induction x: reflexivity },
{ intro x, induction x: reflexivity },
{ intro x, induction x: reflexivity },
{ intro x, induction x: exact (!idp_con ⬝ !ap_id ⬝ !inv_inv)⁻¹ },
{ intro x, induction x: exact (!idp_con ⬝ !ap_id ⬝ !inv_inv)⁻¹ }
end,
e1 ⬝e three_by_three pushout_seq_colim_span ⬝e e2 ⬝e (quotient_equiv_pushout _)⁻¹ᵉ
definition seq_colim_pushout_equiv [constructor] : seq_colim seq_diagram_pushout ≃
pushout (seq_colim_functor i p) (seq_colim_functor j q) :=
pushout_seq_colim_equiv⁻¹ᵉ
end
|
05b59e13b1397f14f44554a803b4133f4c54c0b5
|
b7f22e51856f4989b970961f794f1c435f9b8f78
|
/tests/lean/run/tactic6.lean
|
8a12e820f0f2fb289b8fcb4134a59cebf5e910a0
|
[
"Apache-2.0"
] |
permissive
|
soonhokong/lean
|
cb8aa01055ffe2af0fb99a16b4cda8463b882cd1
|
38607e3eb57f57f77c0ac114ad169e9e4262e24f
|
refs/heads/master
| 1,611,187,284,081
| 1,450,766,737,000
| 1,476,122,547,000
| 11,513,992
| 2
| 0
| null | 1,401,763,102,000
| 1,374,182,235,000
|
C++
|
UTF-8
|
Lean
| false
| false
| 137
|
lean
|
import logic
open tactic (renaming id->id_tac)
theorem tst {A B : Prop} (H1 : A) (H2 : B) : id A
:= by unfold id; assumption
check tst
|
f69b68d69aae06e390942fa60e194b1f49129f09
|
64874bd1010548c7f5a6e3e8902efa63baaff785
|
/tests/lean/run/nested_begin.lean
|
0e352e569f0fdd9e6954007e9ea119b87019d047
|
[
"Apache-2.0"
] |
permissive
|
tjiaqi/lean
|
4634d729795c164664d10d093f3545287c76628f
|
d0ce4cf62f4246b0600c07e074d86e51f2195e30
|
refs/heads/master
| 1,622,323,796,480
| 1,422,643,069,000
| 1,422,643,069,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 1,227
|
lean
|
import logic data.nat.basic
open nat
inductive vector (A : Type) : nat → Type :=
vnil : vector A zero,
vcons : Π {n : nat}, A → vector A n → vector A (succ n)
namespace vector
definition no_confusion2 {A : Type} {n : nat} {P : Type} {v₁ v₂ : vector A n} : v₁ = v₂ → no_confusion_type P v₁ v₂ :=
assume H₁₂ : v₁ = v₂,
begin
show no_confusion_type P v₁ v₂, from
have aux : v₁ = v₁ → no_confusion_type P v₁ v₁, from
take H₁₁,
begin
apply (cases_on v₁),
exact (assume h : P, h),
intros (n, a, v, h),
apply (h rfl),
repeat (apply rfl),
repeat (apply heq.refl)
end,
eq.rec_on H₁₂ aux H₁₂
end
theorem vcons.inj₁ {A : Type} {n : nat} (a₁ a₂ : A) (v₁ v₂ : vector A n) : vcons a₁ v₁ = vcons a₂ v₂ → a₁ = a₂ :=
begin
intro h, apply (no_confusion h), intros, assumption
end
theorem vcons.inj₂ {A : Type} {n : nat} (a₁ a₂ : A) (v₁ v₂ : vector A n) : vcons a₁ v₁ = vcons a₂ v₂ → v₁ == v₂ :=
begin
intro h, apply (no_confusion h), intros, eassumption
end
end vector
|
4da2f8005d17375a9f641887047585cf3efdaa8d
|
8cae430f0a71442d02dbb1cbb14073b31048e4b0
|
/src/analysis/inner_product_space/basic.lean
|
173e0f028210449d9d41effbf713e5864281837f
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/mathlib
|
56a2cadd17ac88caf4ece0a775932fa26327ba0e
|
442a83d738cb208d3600056c489be16900ba701d
|
refs/heads/master
| 1,693,584,102,358
| 1,693,471,902,000
| 1,693,471,902,000
| 97,922,418
| 1,595
| 352
|
Apache-2.0
| 1,694,693,445,000
| 1,500,624,130,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 96,952
|
lean
|
/-
Copyright (c) 2019 Zhouhang Zhou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Zhouhang Zhou, Sébastien Gouëzel, Frédéric Dupuis
-/
import algebra.direct_sum.module
import analysis.complex.basic
import analysis.convex.uniform
import analysis.normed_space.completion
import analysis.normed_space.bounded_linear_maps
import linear_algebra.bilinear_form
/-!
# Inner product space
> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
> Any changes to this file require a corresponding PR to mathlib4.
This file defines inner product spaces and proves the basic properties. We do not formally
define Hilbert spaces, but they can be obtained using the set of assumptions
`[normed_add_comm_group E] [inner_product_space 𝕜 E] [complete_space E]`.
An inner product space is a vector space endowed with an inner product. It generalizes the notion of
dot product in `ℝ^n` and provides the means of defining the length of a vector and the angle between
two vectors. In particular vectors `x` and `y` are orthogonal if their inner product equals zero.
We define both the real and complex cases at the same time using the `is_R_or_C` typeclass.
This file proves general results on inner product spaces. For the specific construction of an inner
product structure on `n → 𝕜` for `𝕜 = ℝ` or `ℂ`, see `euclidean_space` in
`analysis.inner_product_space.pi_L2`.
## Main results
- We define the class `inner_product_space 𝕜 E` extending `normed_space 𝕜 E` with a number of basic
properties, most notably the Cauchy-Schwarz inequality. Here `𝕜` is understood to be either `ℝ`
or `ℂ`, through the `is_R_or_C` typeclass.
- We show that the inner product is continuous, `continuous_inner`, and bundle it as the
the continuous sesquilinear map `innerSL` (see also `innerₛₗ` for the non-continuous version).
- We define `orthonormal`, a predicate on a function `v : ι → E`, and prove the existence of a
maximal orthonormal set, `exists_maximal_orthonormal`. Bessel's inequality,
`orthonormal.tsum_inner_products_le`, states that given an orthonormal set `v` and a vector `x`,
the sum of the norm-squares of the inner products `⟪v i, x⟫` is no more than the norm-square of
`x`. For the existence of orthonormal bases, Hilbert bases, etc., see the file
`analysis.inner_product_space.projection`.
## Notation
We globally denote the real and complex inner products by `⟪·, ·⟫_ℝ` and `⟪·, ·⟫_ℂ` respectively.
We also provide two notation namespaces: `real_inner_product_space`, `complex_inner_product_space`,
which respectively introduce the plain notation `⟪·, ·⟫` for the real and complex inner product.
## Implementation notes
We choose the convention that inner products are conjugate linear in the first argument and linear
in the second.
## Tags
inner product space, Hilbert space, norm
## References
* [Clément & Martin, *The Lax-Milgram Theorem. A detailed proof to be formalized in Coq*]
* [Clément & Martin, *A Coq formal proof of the Lax–Milgram theorem*]
The Coq code is available at the following address: <http://www.lri.fr/~sboldo/elfic/index.html>
-/
noncomputable theory
open is_R_or_C real filter
open_locale big_operators topology complex_conjugate
variables {𝕜 E F : Type*} [is_R_or_C 𝕜]
/-- Syntactic typeclass for types endowed with an inner product -/
class has_inner (𝕜 E : Type*) := (inner : E → E → 𝕜)
export has_inner (inner)
notation `⟪`x`, `y`⟫_ℝ` := @inner ℝ _ _ x y
notation `⟪`x`, `y`⟫_ℂ` := @inner ℂ _ _ x y
section notations
localized "notation (name := inner.real)
`⟪`x`, `y`⟫` := @inner ℝ _ _ x y" in real_inner_product_space
localized "notation (name := inner.complex)
`⟪`x`, `y`⟫` := @inner ℂ _ _ x y" in complex_inner_product_space
end notations
/--
An inner product space is a vector space with an additional operation called inner product.
The norm could be derived from the inner product, instead we require the existence of a norm and
the fact that `‖x‖^2 = re ⟪x, x⟫` to be able to put instances on `𝕂` or product
spaces.
To construct a norm from an inner product, see `inner_product_space.of_core`.
-/
class inner_product_space (𝕜 : Type*) (E : Type*) [is_R_or_C 𝕜] [normed_add_comm_group E]
extends normed_space 𝕜 E, has_inner 𝕜 E :=
(norm_sq_eq_inner : ∀ (x : E), ‖x‖^2 = re (inner x x))
(conj_symm : ∀ x y, conj (inner y x) = inner x y)
(add_left : ∀ x y z, inner (x + y) z = inner x z + inner y z)
(smul_left : ∀ x y r, inner (r • x) y = (conj r) * inner x y)
/-!
### Constructing a normed space structure from an inner product
In the definition of an inner product space, we require the existence of a norm, which is equal
(but maybe not defeq) to the square root of the scalar product. This makes it possible to put
an inner product space structure on spaces with a preexisting norm (for instance `ℝ`), with good
properties. However, sometimes, one would like to define the norm starting only from a well-behaved
scalar product. This is what we implement in this paragraph, starting from a structure
`inner_product_space.core` stating that we have a nice scalar product.
Our goal here is not to develop a whole theory with all the supporting API, as this will be done
below for `inner_product_space`. Instead, we implement the bare minimum to go as directly as
possible to the construction of the norm and the proof of the triangular inequality.
Warning: Do not use this `core` structure if the space you are interested in already has a norm
instance defined on it, otherwise this will create a second non-defeq norm instance!
-/
/-- A structure requiring that a scalar product is positive definite and symmetric, from which one
can construct an `inner_product_space` instance in `inner_product_space.of_core`. -/
@[nolint has_nonempty_instance]
structure inner_product_space.core (𝕜 : Type*) (F : Type*)
[is_R_or_C 𝕜] [add_comm_group F] [module 𝕜 F] extends has_inner 𝕜 F :=
(conj_symm : ∀ x y, conj (inner y x) = inner x y)
(nonneg_re : ∀ x, 0 ≤ re (inner x x))
(definite : ∀ x, inner x x = 0 → x = 0)
(add_left : ∀ x y z, inner (x + y) z = inner x z + inner y z)
(smul_left : ∀ x y r, inner (r • x) y = (conj r) * inner x y)
/- We set `inner_product_space.core` to be a class as we will use it as such in the construction
of the normed space structure that it produces. However, all the instances we will use will be
local to this proof. -/
attribute [class] inner_product_space.core
/-- Define `inner_product_space.core` from `inner_product_space`. Defined to reuse lemmas about
`inner_product_space.core` for `inner_product_space`s. Note that the `has_norm` instance provided by
`inner_product_space.core.has_norm` is propositionally but not definitionally equal to the original
norm. -/
def inner_product_space.to_core [normed_add_comm_group E] [c : inner_product_space 𝕜 E] :
inner_product_space.core 𝕜 E :=
{ nonneg_re := λ x, by { rw [← inner_product_space.norm_sq_eq_inner], apply sq_nonneg },
definite := λ x hx, norm_eq_zero.1 $ pow_eq_zero $
by rw [inner_product_space.norm_sq_eq_inner x, hx, map_zero],
.. c }
namespace inner_product_space.core
variables [add_comm_group F] [module 𝕜 F] [c : inner_product_space.core 𝕜 F]
include c
local notation `⟪`x`, `y`⟫` := @inner 𝕜 F _ x y
local notation `norm_sqK` := @is_R_or_C.norm_sq 𝕜 _
local notation `reK` := @is_R_or_C.re 𝕜 _
local notation `ext_iff` := @is_R_or_C.ext_iff 𝕜 _
local postfix `†`:90 := star_ring_end _
/-- Inner product defined by the `inner_product_space.core` structure. We can't reuse
`inner_product_space.core.to_has_inner` because it takes `inner_product_space.core` as an explicit
argument. -/
def to_has_inner' : has_inner 𝕜 F := c.to_has_inner
local attribute [instance] to_has_inner'
/-- The norm squared function for `inner_product_space.core` structure. -/
def norm_sq (x : F) := reK ⟪x, x⟫
local notation `norm_sqF` := @norm_sq 𝕜 F _ _ _ _
lemma inner_conj_symm (x y : F) : ⟪y, x⟫† = ⟪x, y⟫ := c.conj_symm x y
lemma inner_self_nonneg {x : F} : 0 ≤ re ⟪x, x⟫ := c.nonneg_re _
lemma inner_self_im (x : F) : im ⟪x, x⟫ = 0 :=
by rw [← @of_real_inj 𝕜, im_eq_conj_sub]; simp [inner_conj_symm]
lemma inner_add_left (x y z : F) : ⟪x + y, z⟫ = ⟪x, z⟫ + ⟪y, z⟫ :=
c.add_left _ _ _
lemma inner_add_right (x y z : F) : ⟪x, y + z⟫ = ⟪x, y⟫ + ⟪x, z⟫ :=
by rw [←inner_conj_symm, inner_add_left, ring_hom.map_add]; simp only [inner_conj_symm]
lemma coe_norm_sq_eq_inner_self (x : F) : (norm_sqF x : 𝕜) = ⟪x, x⟫ :=
begin
rw ext_iff,
exact ⟨by simp only [of_real_re]; refl, by simp only [inner_self_im, of_real_im]⟩
end
lemma inner_re_symm (x y : F) : re ⟪x, y⟫ = re ⟪y, x⟫ :=
by rw [←inner_conj_symm, conj_re]
lemma inner_im_symm (x y : F) : im ⟪x, y⟫ = -im ⟪y, x⟫ :=
by rw [←inner_conj_symm, conj_im]
lemma inner_smul_left (x y : F) {r : 𝕜} : ⟪r • x, y⟫ = r† * ⟪x, y⟫ :=
c.smul_left _ _ _
lemma inner_smul_right (x y : F) {r : 𝕜} : ⟪x, r • y⟫ = r * ⟪x, y⟫ :=
by rw [←inner_conj_symm, inner_smul_left]; simp only [conj_conj, inner_conj_symm, ring_hom.map_mul]
lemma inner_zero_left (x : F) : ⟪0, x⟫ = 0 :=
by rw [←zero_smul 𝕜 (0 : F), inner_smul_left]; simp only [zero_mul, ring_hom.map_zero]
lemma inner_zero_right (x : F) : ⟪x, 0⟫ = 0 :=
by rw [←inner_conj_symm, inner_zero_left]; simp only [ring_hom.map_zero]
lemma inner_self_eq_zero {x : F} : ⟪x, x⟫ = 0 ↔ x = 0 :=
⟨c.definite _, by { rintro rfl, exact inner_zero_left _ }⟩
lemma norm_sq_eq_zero {x : F} : norm_sqF x = 0 ↔ x = 0 :=
iff.trans (by simp only [norm_sq, ext_iff, map_zero, inner_self_im, eq_self_iff_true, and_true])
(@inner_self_eq_zero 𝕜 _ _ _ _ _ x)
lemma inner_self_ne_zero {x : F} : ⟪x, x⟫ ≠ 0 ↔ x ≠ 0 :=
inner_self_eq_zero.not
lemma inner_self_re_to_K (x : F) : (re ⟪x, x⟫ : 𝕜) = ⟪x, x⟫ :=
by norm_num [ext_iff, inner_self_im]
lemma norm_inner_symm (x y : F) : ‖⟪x, y⟫‖ = ‖⟪y, x⟫‖ :=
by rw [←inner_conj_symm, norm_conj]
lemma inner_neg_left (x y : F) : ⟪-x, y⟫ = -⟪x, y⟫ :=
by { rw [← neg_one_smul 𝕜 x, inner_smul_left], simp }
lemma inner_neg_right (x y : F) : ⟪x, -y⟫ = -⟪x, y⟫ :=
by rw [←inner_conj_symm, inner_neg_left]; simp only [ring_hom.map_neg, inner_conj_symm]
lemma inner_sub_left (x y z : F) : ⟪x - y, z⟫ = ⟪x, z⟫ - ⟪y, z⟫ :=
by { simp [sub_eq_add_neg, inner_add_left, inner_neg_left] }
lemma inner_sub_right (x y z : F) : ⟪x, y - z⟫ = ⟪x, y⟫ - ⟪x, z⟫ :=
by { simp [sub_eq_add_neg, inner_add_right, inner_neg_right] }
lemma inner_mul_symm_re_eq_norm (x y : F) : re (⟪x, y⟫ * ⟪y, x⟫) = ‖⟪x, y⟫ * ⟪y, x⟫‖ :=
by { rw [←inner_conj_symm, mul_comm], exact re_eq_norm_of_mul_conj (inner y x), }
/-- Expand `inner (x + y) (x + y)` -/
lemma inner_add_add_self (x y : F) : ⟪x + y, x + y⟫ = ⟪x, x⟫ + ⟪x, y⟫ + ⟪y, x⟫ + ⟪y, y⟫ :=
by simp only [inner_add_left, inner_add_right]; ring
/- Expand `inner (x - y) (x - y)` -/
lemma inner_sub_sub_self (x y : F) : ⟪x - y, x - y⟫ = ⟪x, x⟫ - ⟪x, y⟫ - ⟪y, x⟫ + ⟪y, y⟫ :=
by simp only [inner_sub_left, inner_sub_right]; ring
/-- An auxiliary equality useful to prove the **Cauchy–Schwarz inequality**: the square of the norm
of `⟪x, y⟫ • x - ⟪x, x⟫ • y` is equal to `‖x‖ ^ 2 * (‖x‖ ^ 2 * ‖y‖ ^ 2 - ‖⟪x, y⟫‖ ^ 2)`. We use
`inner_product_space.of_core.norm_sq x` etc (defeq to `is_R_or_C.re ⟪x, x⟫`) instead of `‖x‖ ^ 2`
etc to avoid extra rewrites when applying it to an `inner_product_space`. -/
theorem cauchy_schwarz_aux (x y : F) :
norm_sqF (⟪x, y⟫ • x - ⟪x, x⟫ • y) =
norm_sqF x * (norm_sqF x * norm_sqF y - ‖⟪x, y⟫‖ ^ 2) :=
begin
rw [← @of_real_inj 𝕜, coe_norm_sq_eq_inner_self],
simp only [inner_sub_sub_self, inner_smul_left, inner_smul_right, conj_of_real, mul_sub,
← coe_norm_sq_eq_inner_self x, ← coe_norm_sq_eq_inner_self y],
rw [← mul_assoc, mul_conj, is_R_or_C.conj_mul, norm_sq_eq_def',
mul_left_comm, ← inner_conj_symm y, mul_conj, norm_sq_eq_def'],
push_cast,
ring
end
/--
**Cauchy–Schwarz inequality**.
We need this for the `core` structure to prove the triangle inequality below when
showing the core is a normed group.
-/
lemma inner_mul_inner_self_le (x y : F) : ‖⟪x, y⟫‖ * ‖⟪y, x⟫‖ ≤ re ⟪x, x⟫ * re ⟪y, y⟫ :=
begin
rcases eq_or_ne x 0 with (rfl | hx),
{ simp only [inner_zero_left, map_zero, zero_mul, norm_zero] },
{ have hx' : 0 < norm_sqF x := inner_self_nonneg.lt_of_ne' (mt norm_sq_eq_zero.1 hx),
rw [← sub_nonneg, ← mul_nonneg_iff_right_nonneg_of_pos hx', ← norm_sq, ← norm_sq,
norm_inner_symm y, ← sq, ← cauchy_schwarz_aux],
exact inner_self_nonneg }
end
/-- Norm constructed from a `inner_product_space.core` structure, defined to be the square root
of the scalar product. -/
def to_has_norm : has_norm F :=
{ norm := λ x, sqrt (re ⟪x, x⟫) }
local attribute [instance] to_has_norm
lemma norm_eq_sqrt_inner (x : F) : ‖x‖ = sqrt (re ⟪x, x⟫) := rfl
lemma inner_self_eq_norm_mul_norm (x : F) : re ⟪x, x⟫ = ‖x‖ * ‖x‖ :=
by rw [norm_eq_sqrt_inner, ←sqrt_mul inner_self_nonneg (re ⟪x, x⟫),
sqrt_mul_self inner_self_nonneg]
lemma sqrt_norm_sq_eq_norm (x : F) : sqrt (norm_sqF x) = ‖x‖ := rfl
/-- Cauchy–Schwarz inequality with norm -/
lemma norm_inner_le_norm (x y : F) : ‖⟪x, y⟫‖ ≤ ‖x‖ * ‖y‖ :=
nonneg_le_nonneg_of_sq_le_sq (mul_nonneg (sqrt_nonneg _) (sqrt_nonneg _)) $
calc ‖⟪x, y⟫‖ * ‖⟪x, y⟫‖ = ‖⟪x, y⟫‖ * ‖⟪y, x⟫‖ : by rw [norm_inner_symm]
... ≤ re ⟪x, x⟫ * re ⟪y, y⟫ : inner_mul_inner_self_le x y
... = ‖x‖ * ‖y‖ * (‖x‖ * ‖y‖) : by simp only [inner_self_eq_norm_mul_norm]; ring
/-- Normed group structure constructed from an `inner_product_space.core` structure -/
def to_normed_add_comm_group : normed_add_comm_group F :=
add_group_norm.to_normed_add_comm_group
{ to_fun := λ x, sqrt (re ⟪x, x⟫),
map_zero' := by simp only [sqrt_zero, inner_zero_right, map_zero],
neg' := λ x, by simp only [inner_neg_left, neg_neg, inner_neg_right],
add_le' := λ x y, begin
have h₁ : ‖⟪x, y⟫‖ ≤ ‖x‖ * ‖y‖ := norm_inner_le_norm _ _,
have h₂ : re ⟪x, y⟫ ≤ ‖⟪x, y⟫‖ := re_le_norm _,
have h₃ : re ⟪x, y⟫ ≤ ‖x‖ * ‖y‖ := h₂.trans h₁,
have h₄ : re ⟪y, x⟫ ≤ ‖x‖ * ‖y‖ := by rwa [←inner_conj_symm, conj_re],
have : ‖x + y‖ * ‖x + y‖ ≤ (‖x‖ + ‖y‖) * (‖x‖ + ‖y‖),
{ simp only [←inner_self_eq_norm_mul_norm, inner_add_add_self, mul_add, mul_comm, map_add],
linarith },
exact nonneg_le_nonneg_of_sq_le_sq (add_nonneg (sqrt_nonneg _) (sqrt_nonneg _)) this,
end,
eq_zero_of_map_eq_zero' := λ x hx, norm_sq_eq_zero.1 $ (sqrt_eq_zero inner_self_nonneg).1 hx }
local attribute [instance] to_normed_add_comm_group
/-- Normed space structure constructed from a `inner_product_space.core` structure -/
def to_normed_space : normed_space 𝕜 F :=
{ norm_smul_le := assume r x,
begin
rw [norm_eq_sqrt_inner, inner_smul_left, inner_smul_right, ←mul_assoc],
rw [is_R_or_C.conj_mul, of_real_mul_re, sqrt_mul, ← coe_norm_sq_eq_inner_self, of_real_re],
{ simp [sqrt_norm_sq_eq_norm, is_R_or_C.sqrt_norm_sq_eq_norm] },
{ exact norm_sq_nonneg r }
end }
end inner_product_space.core
section
local attribute [instance] inner_product_space.core.to_normed_add_comm_group
/-- Given a `inner_product_space.core` structure on a space, one can use it to turn
the space into an inner product space. The `normed_add_comm_group` structure is expected
to already be defined with `inner_product_space.of_core.to_normed_add_comm_group`. -/
def inner_product_space.of_core [add_comm_group F] [module 𝕜 F]
(c : inner_product_space.core 𝕜 F) : inner_product_space 𝕜 F :=
begin
letI : normed_space 𝕜 F := @inner_product_space.core.to_normed_space 𝕜 F _ _ _ c,
exact { norm_sq_eq_inner := λ x,
begin
have h₁ : ‖x‖^2 = (sqrt (re (c.inner x x))) ^ 2 := rfl,
have h₂ : 0 ≤ re (c.inner x x) := inner_product_space.core.inner_self_nonneg,
simp [h₁, sq_sqrt, h₂],
end,
..c }
end
end
/-! ### Properties of inner product spaces -/
variables [normed_add_comm_group E] [inner_product_space 𝕜 E]
variables [normed_add_comm_group F] [inner_product_space ℝ F]
variables [dec_E : decidable_eq E]
local notation `⟪`x`, `y`⟫` := @inner 𝕜 _ _ x y
local notation `IK` := @is_R_or_C.I 𝕜 _
local postfix `†`:90 := star_ring_end _
export inner_product_space (norm_sq_eq_inner)
section basic_properties
@[simp] lemma inner_conj_symm (x y : E) : ⟪y, x⟫† = ⟪x, y⟫ := inner_product_space.conj_symm _ _
lemma real_inner_comm (x y : F) : ⟪y, x⟫_ℝ = ⟪x, y⟫_ℝ := @inner_conj_symm ℝ _ _ _ _ x y
lemma inner_eq_zero_symm {x y : E} : ⟪x, y⟫ = 0 ↔ ⟪y, x⟫ = 0 :=
by { rw [← inner_conj_symm], exact star_eq_zero }
@[simp] lemma inner_self_im (x : E) : im ⟪x, x⟫ = 0 :=
by rw [← @of_real_inj 𝕜, im_eq_conj_sub]; simp
lemma inner_add_left (x y z : E) : ⟪x + y, z⟫ = ⟪x, z⟫ + ⟪y, z⟫ :=
inner_product_space.add_left _ _ _
lemma inner_add_right (x y z : E) : ⟪x, y + z⟫ = ⟪x, y⟫ + ⟪x, z⟫ :=
by { rw [←inner_conj_symm, inner_add_left, ring_hom.map_add], simp only [inner_conj_symm] }
lemma inner_re_symm (x y : E) : re ⟪x, y⟫ = re ⟪y, x⟫ :=
by rw [←inner_conj_symm, conj_re]
lemma inner_im_symm (x y : E) : im ⟪x, y⟫ = -im ⟪y, x⟫ :=
by rw [←inner_conj_symm, conj_im]
lemma inner_smul_left (x y : E) (r : 𝕜) : ⟪r • x, y⟫ = r† * ⟪x, y⟫ :=
inner_product_space.smul_left _ _ _
lemma real_inner_smul_left (x y : F) (r : ℝ) : ⟪r • x, y⟫_ℝ = r * ⟪x, y⟫_ℝ := inner_smul_left _ _ _
lemma inner_smul_real_left (x y : E) (r : ℝ) : ⟪(r : 𝕜) • x, y⟫ = r • ⟪x, y⟫ :=
by { rw [inner_smul_left, conj_of_real, algebra.smul_def], refl }
lemma inner_smul_right (x y : E) (r : 𝕜) : ⟪x, r • y⟫ = r * ⟪x, y⟫ :=
by rw [←inner_conj_symm, inner_smul_left, ring_hom.map_mul, conj_conj, inner_conj_symm]
lemma real_inner_smul_right (x y : F) (r : ℝ) : ⟪x, r • y⟫_ℝ = r * ⟪x, y⟫_ℝ :=
inner_smul_right _ _ _
lemma inner_smul_real_right (x y : E) (r : ℝ) : ⟪x, (r : 𝕜) • y⟫ = r • ⟪x, y⟫ :=
by { rw [inner_smul_right, algebra.smul_def], refl }
/-- The inner product as a sesquilinear form.
Note that in the case `𝕜 = ℝ` this is a bilinear form. -/
@[simps]
def sesq_form_of_inner : E →ₗ[𝕜] E →ₗ⋆[𝕜] 𝕜 :=
linear_map.mk₂'ₛₗ (ring_hom.id 𝕜) (star_ring_end _)
(λ x y, ⟪y, x⟫)
(λ x y z, inner_add_right _ _ _)
(λ r x y, inner_smul_right _ _ _)
(λ x y z, inner_add_left _ _ _)
(λ r x y, inner_smul_left _ _ _)
/-- The real inner product as a bilinear form. -/
@[simps]
def bilin_form_of_real_inner : bilin_form ℝ F :=
{ bilin := inner,
bilin_add_left := inner_add_left,
bilin_smul_left := λ a x y, inner_smul_left _ _ _,
bilin_add_right := inner_add_right,
bilin_smul_right := λ a x y, inner_smul_right _ _ _ }
/-- An inner product with a sum on the left. -/
lemma sum_inner {ι : Type*} (s : finset ι) (f : ι → E) (x : E) :
⟪∑ i in s, f i, x⟫ = ∑ i in s, ⟪f i, x⟫ := (sesq_form_of_inner x).map_sum
/-- An inner product with a sum on the right. -/
lemma inner_sum {ι : Type*} (s : finset ι) (f : ι → E) (x : E) :
⟪x, ∑ i in s, f i⟫ = ∑ i in s, ⟪x, f i⟫ := (linear_map.flip sesq_form_of_inner x).map_sum
/-- An inner product with a sum on the left, `finsupp` version. -/
lemma finsupp.sum_inner {ι : Type*} (l : ι →₀ 𝕜) (v : ι → E) (x : E) :
⟪l.sum (λ (i : ι) (a : 𝕜), a • v i), x⟫
= l.sum (λ (i : ι) (a : 𝕜), (conj a) • ⟪v i, x⟫) :=
by { convert sum_inner l.support (λ a, l a • v a) x,
simp only [inner_smul_left, finsupp.sum, smul_eq_mul] }
/-- An inner product with a sum on the right, `finsupp` version. -/
lemma finsupp.inner_sum {ι : Type*} (l : ι →₀ 𝕜) (v : ι → E) (x : E) :
⟪x, l.sum (λ (i : ι) (a : 𝕜), a • v i)⟫ = l.sum (λ (i : ι) (a : 𝕜), a • ⟪x, v i⟫) :=
by { convert inner_sum l.support (λ a, l a • v a) x,
simp only [inner_smul_right, finsupp.sum, smul_eq_mul] }
lemma dfinsupp.sum_inner {ι : Type*} [dec : decidable_eq ι] {α : ι → Type*}
[Π i, add_zero_class (α i)] [Π i (x : α i), decidable (x ≠ 0)]
(f : Π i, α i → E) (l : Π₀ i, α i) (x : E) :
⟪l.sum f, x⟫ = l.sum (λ i a, ⟪f i a, x⟫) :=
by simp only [dfinsupp.sum, sum_inner, smul_eq_mul] {contextual := tt}
lemma dfinsupp.inner_sum {ι : Type*} [dec : decidable_eq ι] {α : ι → Type*}
[Π i, add_zero_class (α i)] [Π i (x : α i), decidable (x ≠ 0)]
(f : Π i, α i → E) (l : Π₀ i, α i) (x : E) :
⟪x, l.sum f⟫ = l.sum (λ i a, ⟪x, f i a⟫) :=
by simp only [dfinsupp.sum, inner_sum, smul_eq_mul] {contextual := tt}
@[simp] lemma inner_zero_left (x : E) : ⟪0, x⟫ = 0 :=
by rw [← zero_smul 𝕜 (0:E), inner_smul_left, ring_hom.map_zero, zero_mul]
lemma inner_re_zero_left (x : E) : re ⟪0, x⟫ = 0 :=
by simp only [inner_zero_left, add_monoid_hom.map_zero]
@[simp] lemma inner_zero_right (x : E) : ⟪x, 0⟫ = 0 :=
by rw [←inner_conj_symm, inner_zero_left, ring_hom.map_zero]
lemma inner_re_zero_right (x : E) : re ⟪x, 0⟫ = 0 :=
by simp only [inner_zero_right, add_monoid_hom.map_zero]
lemma inner_self_nonneg {x : E} : 0 ≤ re ⟪x, x⟫ :=
inner_product_space.to_core.nonneg_re x
lemma real_inner_self_nonneg {x : F} : 0 ≤ ⟪x, x⟫_ℝ := @inner_self_nonneg ℝ F _ _ _ x
@[simp] lemma inner_self_re_to_K (x : E) : (re ⟪x, x⟫ : 𝕜) = ⟪x, x⟫ :=
((is_R_or_C.is_real_tfae (⟪x, x⟫ : 𝕜)).out 2 3).2 (inner_self_im _)
lemma inner_self_eq_norm_sq_to_K (x : E) : ⟪x, x⟫ = (‖x‖ ^ 2 : 𝕜) :=
by rw [← inner_self_re_to_K, ← norm_sq_eq_inner, of_real_pow]
lemma inner_self_re_eq_norm (x : E) : re ⟪x, x⟫ = ‖⟪x, x⟫‖ :=
begin
conv_rhs { rw [←inner_self_re_to_K] },
symmetry,
exact norm_of_nonneg inner_self_nonneg,
end
lemma inner_self_norm_to_K (x : E) : (‖⟪x, x⟫‖ : 𝕜) = ⟪x, x⟫ :=
by { rw [←inner_self_re_eq_norm], exact inner_self_re_to_K _ }
lemma real_inner_self_abs (x : F) : |⟪x, x⟫_ℝ| = ⟪x, x⟫_ℝ :=
@inner_self_norm_to_K ℝ F _ _ _ x
@[simp] lemma inner_self_eq_zero {x : E} : ⟪x, x⟫ = 0 ↔ x = 0 :=
by rw [inner_self_eq_norm_sq_to_K, sq_eq_zero_iff, of_real_eq_zero, norm_eq_zero]
lemma inner_self_ne_zero {x : E} : ⟪x, x⟫ ≠ 0 ↔ x ≠ 0 :=
inner_self_eq_zero.not
@[simp] lemma inner_self_nonpos {x : E} : re ⟪x, x⟫ ≤ 0 ↔ x = 0 :=
by rw [← norm_sq_eq_inner, (sq_nonneg _).le_iff_eq, sq_eq_zero_iff, norm_eq_zero]
lemma real_inner_self_nonpos {x : F} : ⟪x, x⟫_ℝ ≤ 0 ↔ x = 0 :=
@inner_self_nonpos ℝ F _ _ _ x
lemma norm_inner_symm (x y : E) : ‖⟪x, y⟫‖ = ‖⟪y, x⟫‖ :=
by rw [←inner_conj_symm, norm_conj]
@[simp] lemma inner_neg_left (x y : E) : ⟪-x, y⟫ = -⟪x, y⟫ :=
by { rw [← neg_one_smul 𝕜 x, inner_smul_left], simp }
@[simp] lemma inner_neg_right (x y : E) : ⟪x, -y⟫ = -⟪x, y⟫ :=
by rw [←inner_conj_symm, inner_neg_left]; simp only [ring_hom.map_neg, inner_conj_symm]
lemma inner_neg_neg (x y : E) : ⟪-x, -y⟫ = ⟪x, y⟫ := by simp
@[simp] lemma inner_self_conj (x : E) : ⟪x, x⟫† = ⟪x, x⟫ :=
by rw [is_R_or_C.ext_iff]; exact ⟨by rw [conj_re], by rw [conj_im, inner_self_im, neg_zero]⟩
lemma inner_sub_left (x y z : E) : ⟪x - y, z⟫ = ⟪x, z⟫ - ⟪y, z⟫ :=
by { simp [sub_eq_add_neg, inner_add_left] }
lemma inner_sub_right (x y z : E) : ⟪x, y - z⟫ = ⟪x, y⟫ - ⟪x, z⟫ :=
by { simp [sub_eq_add_neg, inner_add_right] }
lemma inner_mul_symm_re_eq_norm (x y : E) : re (⟪x, y⟫ * ⟪y, x⟫) = ‖⟪x, y⟫ * ⟪y, x⟫‖ :=
by { rw [←inner_conj_symm, mul_comm], exact re_eq_norm_of_mul_conj (inner y x), }
/-- Expand `⟪x + y, x + y⟫` -/
lemma inner_add_add_self (x y : E) : ⟪x + y, x + y⟫ = ⟪x, x⟫ + ⟪x, y⟫ + ⟪y, x⟫ + ⟪y, y⟫ :=
by simp only [inner_add_left, inner_add_right]; ring
/-- Expand `⟪x + y, x + y⟫_ℝ` -/
lemma real_inner_add_add_self (x y : F) : ⟪x + y, x + y⟫_ℝ = ⟪x, x⟫_ℝ + 2 * ⟪x, y⟫_ℝ + ⟪y, y⟫_ℝ :=
begin
have : ⟪y, x⟫_ℝ = ⟪x, y⟫_ℝ := by rw [←inner_conj_symm]; refl,
simp only [inner_add_add_self, this, add_left_inj],
ring,
end
/- Expand `⟪x - y, x - y⟫` -/
lemma inner_sub_sub_self (x y : E) : ⟪x - y, x - y⟫ = ⟪x, x⟫ - ⟪x, y⟫ - ⟪y, x⟫ + ⟪y, y⟫ :=
by simp only [inner_sub_left, inner_sub_right]; ring
/-- Expand `⟪x - y, x - y⟫_ℝ` -/
lemma real_inner_sub_sub_self (x y : F) : ⟪x - y, x - y⟫_ℝ = ⟪x, x⟫_ℝ - 2 * ⟪x, y⟫_ℝ + ⟪y, y⟫_ℝ :=
begin
have : ⟪y, x⟫_ℝ = ⟪x, y⟫_ℝ := by rw [←inner_conj_symm]; refl,
simp only [inner_sub_sub_self, this, add_left_inj],
ring,
end
variable (𝕜)
include 𝕜
lemma ext_inner_left {x y : E} (h : ∀ v, ⟪v, x⟫ = ⟪v, y⟫) : x = y :=
by rw [←sub_eq_zero, ←@inner_self_eq_zero 𝕜, inner_sub_right, sub_eq_zero, h (x - y)]
lemma ext_inner_right {x y : E} (h : ∀ v, ⟪x, v⟫ = ⟪y, v⟫) : x = y :=
by rw [←sub_eq_zero, ←@inner_self_eq_zero 𝕜, inner_sub_left, sub_eq_zero, h (x - y)]
omit 𝕜
variable {𝕜}
/-- Parallelogram law -/
lemma parallelogram_law {x y : E} :
⟪x + y, x + y⟫ + ⟪x - y, x - y⟫ = 2 * (⟪x, x⟫ + ⟪y, y⟫) :=
by simp [inner_add_add_self, inner_sub_sub_self, two_mul, sub_eq_add_neg, add_comm, add_left_comm]
/-- **Cauchy–Schwarz inequality**. -/
lemma inner_mul_inner_self_le (x y : E) : ‖⟪x, y⟫‖ * ‖⟪y, x⟫‖ ≤ re ⟪x, x⟫ * re ⟪y, y⟫ :=
begin
letI c : inner_product_space.core 𝕜 E := inner_product_space.to_core,
exact inner_product_space.core.inner_mul_inner_self_le x y
end
/-- Cauchy–Schwarz inequality for real inner products. -/
lemma real_inner_mul_inner_self_le (x y : F) : ⟪x, y⟫_ℝ * ⟪x, y⟫_ℝ ≤ ⟪x, x⟫_ℝ * ⟪y, y⟫_ℝ :=
calc ⟪x, y⟫_ℝ * ⟪x, y⟫_ℝ ≤ ‖⟪x, y⟫_ℝ‖ * ‖⟪y, x⟫_ℝ‖ :
by { rw [real_inner_comm y, ← norm_mul], exact le_abs_self _ }
... ≤ ⟪x, x⟫_ℝ * ⟪y, y⟫_ℝ : @inner_mul_inner_self_le ℝ _ _ _ _ x y
/-- A family of vectors is linearly independent if they are nonzero
and orthogonal. -/
lemma linear_independent_of_ne_zero_of_inner_eq_zero {ι : Type*} {v : ι → E}
(hz : ∀ i, v i ≠ 0) (ho : ∀ i j, i ≠ j → ⟪v i, v j⟫ = 0) : linear_independent 𝕜 v :=
begin
rw linear_independent_iff',
intros s g hg i hi,
have h' : g i * inner (v i) (v i) = inner (v i) (∑ j in s, g j • v j),
{ rw inner_sum,
symmetry,
convert finset.sum_eq_single i _ _,
{ rw inner_smul_right },
{ intros j hj hji,
rw [inner_smul_right, ho i j hji.symm, mul_zero] },
{ exact λ h, false.elim (h hi) } },
simpa [hg, hz] using h'
end
end basic_properties
section orthonormal_sets
variables {ι : Type*} [dec_ι : decidable_eq ι] (𝕜)
include 𝕜
/-- An orthonormal set of vectors in an `inner_product_space` -/
def orthonormal (v : ι → E) : Prop :=
(∀ i, ‖v i‖ = 1) ∧ (∀ {i j}, i ≠ j → ⟪v i, v j⟫ = 0)
omit 𝕜
variables {𝕜}
include dec_ι
/-- `if ... then ... else` characterization of an indexed set of vectors being orthonormal. (Inner
product equals Kronecker delta.) -/
lemma orthonormal_iff_ite {v : ι → E} :
orthonormal 𝕜 v ↔ ∀ i j, ⟪v i, v j⟫ = if i = j then (1:𝕜) else (0:𝕜) :=
begin
split,
{ intros hv i j,
split_ifs,
{ simp [h, inner_self_eq_norm_sq_to_K, hv.1] },
{ exact hv.2 h } },
{ intros h,
split,
{ intros i,
have h' : ‖v i‖ ^ 2 = 1 ^ 2 := by simp [@norm_sq_eq_inner 𝕜, h i i],
have h₁ : 0 ≤ ‖v i‖ := norm_nonneg _,
have h₂ : (0:ℝ) ≤ 1 := zero_le_one,
rwa sq_eq_sq h₁ h₂ at h' },
{ intros i j hij,
simpa [hij] using h i j } }
end
omit dec_ι
include dec_E
/-- `if ... then ... else` characterization of a set of vectors being orthonormal. (Inner product
equals Kronecker delta.) -/
theorem orthonormal_subtype_iff_ite {s : set E} :
orthonormal 𝕜 (coe : s → E) ↔
(∀ v ∈ s, ∀ w ∈ s, ⟪v, w⟫ = if v = w then 1 else 0) :=
begin
rw orthonormal_iff_ite,
split,
{ intros h v hv w hw,
convert h ⟨v, hv⟩ ⟨w, hw⟩ using 1,
simp },
{ rintros h ⟨v, hv⟩ ⟨w, hw⟩,
convert h v hv w hw using 1,
simp }
end
omit dec_E
/-- The inner product of a linear combination of a set of orthonormal vectors with one of those
vectors picks out the coefficient of that vector. -/
lemma orthonormal.inner_right_finsupp {v : ι → E} (hv : orthonormal 𝕜 v) (l : ι →₀ 𝕜) (i : ι) :
⟪v i, finsupp.total ι E 𝕜 v l⟫ = l i :=
by classical; simp [finsupp.total_apply, finsupp.inner_sum, orthonormal_iff_ite.mp hv]
/-- The inner product of a linear combination of a set of orthonormal vectors with one of those
vectors picks out the coefficient of that vector. -/
lemma orthonormal.inner_right_sum
{v : ι → E} (hv : orthonormal 𝕜 v) (l : ι → 𝕜) {s : finset ι} {i : ι} (hi : i ∈ s) :
⟪v i, ∑ i in s, (l i) • (v i)⟫ = l i :=
by classical; simp [inner_sum, inner_smul_right, orthonormal_iff_ite.mp hv, hi]
/-- The inner product of a linear combination of a set of orthonormal vectors with one of those
vectors picks out the coefficient of that vector. -/
lemma orthonormal.inner_right_fintype [fintype ι]
{v : ι → E} (hv : orthonormal 𝕜 v) (l : ι → 𝕜) (i : ι) :
⟪v i, ∑ i : ι, (l i) • (v i)⟫ = l i :=
hv.inner_right_sum l (finset.mem_univ _)
/-- The inner product of a linear combination of a set of orthonormal vectors with one of those
vectors picks out the coefficient of that vector. -/
lemma orthonormal.inner_left_finsupp {v : ι → E} (hv : orthonormal 𝕜 v) (l : ι →₀ 𝕜) (i : ι) :
⟪finsupp.total ι E 𝕜 v l, v i⟫ = conj (l i) :=
by rw [← inner_conj_symm, hv.inner_right_finsupp]
/-- The inner product of a linear combination of a set of orthonormal vectors with one of those
vectors picks out the coefficient of that vector. -/
lemma orthonormal.inner_left_sum
{v : ι → E} (hv : orthonormal 𝕜 v) (l : ι → 𝕜) {s : finset ι} {i : ι} (hi : i ∈ s) :
⟪∑ i in s, (l i) • (v i), v i⟫ = conj (l i) :=
by classical; simp only
[sum_inner, inner_smul_left, orthonormal_iff_ite.mp hv, hi, mul_boole, finset.sum_ite_eq', if_true]
/-- The inner product of a linear combination of a set of orthonormal vectors with one of those
vectors picks out the coefficient of that vector. -/
lemma orthonormal.inner_left_fintype [fintype ι]
{v : ι → E} (hv : orthonormal 𝕜 v) (l : ι → 𝕜) (i : ι) :
⟪∑ i : ι, (l i) • (v i), v i⟫ = conj (l i) :=
hv.inner_left_sum l (finset.mem_univ _)
/-- The inner product of two linear combinations of a set of orthonormal vectors, expressed as
a sum over the first `finsupp`. -/
lemma orthonormal.inner_finsupp_eq_sum_left
{v : ι → E} (hv : orthonormal 𝕜 v) (l₁ l₂ : ι →₀ 𝕜) :
⟪finsupp.total ι E 𝕜 v l₁, finsupp.total ι E 𝕜 v l₂⟫ = l₁.sum (λ i y, conj y * l₂ i) :=
by simp only [l₁.total_apply _, finsupp.sum_inner, hv.inner_right_finsupp, smul_eq_mul]
/-- The inner product of two linear combinations of a set of orthonormal vectors, expressed as
a sum over the second `finsupp`. -/
lemma orthonormal.inner_finsupp_eq_sum_right
{v : ι → E} (hv : orthonormal 𝕜 v) (l₁ l₂ : ι →₀ 𝕜) :
⟪finsupp.total ι E 𝕜 v l₁, finsupp.total ι E 𝕜 v l₂⟫ = l₂.sum (λ i y, conj (l₁ i) * y) :=
by simp only [l₂.total_apply _, finsupp.inner_sum, hv.inner_left_finsupp, mul_comm, smul_eq_mul]
/-- The inner product of two linear combinations of a set of orthonormal vectors, expressed as
a sum. -/
lemma orthonormal.inner_sum
{v : ι → E} (hv : orthonormal 𝕜 v) (l₁ l₂ : ι → 𝕜) (s : finset ι) :
⟪∑ i in s, l₁ i • v i, ∑ i in s, l₂ i • v i⟫ = ∑ i in s, conj (l₁ i) * l₂ i :=
begin
simp_rw [sum_inner, inner_smul_left],
refine finset.sum_congr rfl (λ i hi, _),
rw hv.inner_right_sum l₂ hi
end
/--
The double sum of weighted inner products of pairs of vectors from an orthonormal sequence is the
sum of the weights.
-/
lemma orthonormal.inner_left_right_finset {s : finset ι} {v : ι → E} (hv : orthonormal 𝕜 v)
{a : ι → ι → 𝕜} : ∑ i in s, ∑ j in s, (a i j) • ⟪v j, v i⟫ = ∑ k in s, a k k :=
by classical; simp [orthonormal_iff_ite.mp hv, finset.sum_ite_of_true]
/-- An orthonormal set is linearly independent. -/
lemma orthonormal.linear_independent {v : ι → E} (hv : orthonormal 𝕜 v) :
linear_independent 𝕜 v :=
begin
rw linear_independent_iff,
intros l hl,
ext i,
have key : ⟪v i, finsupp.total ι E 𝕜 v l⟫ = ⟪v i, 0⟫ := by rw hl,
simpa only [hv.inner_right_finsupp, inner_zero_right] using key
end
/-- A subfamily of an orthonormal family (i.e., a composition with an injective map) is an
orthonormal family. -/
lemma orthonormal.comp
{ι' : Type*} {v : ι → E} (hv : orthonormal 𝕜 v) (f : ι' → ι) (hf : function.injective f) :
orthonormal 𝕜 (v ∘ f) :=
begin
classical,
rw orthonormal_iff_ite at ⊢ hv,
intros i j,
convert hv (f i) (f j) using 1,
simp [hf.eq_iff]
end
/-- An injective family `v : ι → E` is orthonormal if and only if `coe : (range v) → E` is
orthonormal. -/
lemma orthonormal_subtype_range {v : ι → E} (hv : function.injective v) :
orthonormal 𝕜 (coe : set.range v → E) ↔ orthonormal 𝕜 v :=
begin
let f : ι ≃ set.range v := equiv.of_injective v hv,
refine ⟨λ h, h.comp f f.injective, λ h, _⟩,
rw ← equiv.self_comp_of_injective_symm hv,
exact h.comp f.symm f.symm.injective,
end
/-- If `v : ι → E` is an orthonormal family, then `coe : (range v) → E` is an orthonormal
family. -/
lemma orthonormal.to_subtype_range {v : ι → E} (hv : orthonormal 𝕜 v) :
orthonormal 𝕜 (coe : set.range v → E) :=
(orthonormal_subtype_range hv.linear_independent.injective).2 hv
/-- A linear combination of some subset of an orthonormal set is orthogonal to other members of the
set. -/
lemma orthonormal.inner_finsupp_eq_zero
{v : ι → E} (hv : orthonormal 𝕜 v) {s : set ι} {i : ι} (hi : i ∉ s) {l : ι →₀ 𝕜}
(hl : l ∈ finsupp.supported 𝕜 𝕜 s) :
⟪finsupp.total ι E 𝕜 v l, v i⟫ = 0 :=
begin
rw finsupp.mem_supported' at hl,
simp only [hv.inner_left_finsupp, hl i hi, map_zero],
end
/-- Given an orthonormal family, a second family of vectors is orthonormal if every vector equals
the corresponding vector in the original family or its negation. -/
lemma orthonormal.orthonormal_of_forall_eq_or_eq_neg {v w : ι → E} (hv : orthonormal 𝕜 v)
(hw : ∀ i, w i = v i ∨ w i = -(v i)) : orthonormal 𝕜 w :=
begin
classical,
rw orthonormal_iff_ite at *,
intros i j,
cases hw i with hi hi; cases hw j with hj hj; split_ifs with h;
simpa only [hi, hj, h, inner_neg_right, inner_neg_left,
neg_neg, eq_self_iff_true, neg_eq_zero] using hv i j
end
/- The material that follows, culminating in the existence of a maximal orthonormal subset, is
adapted from the corresponding development of the theory of linearly independents sets. See
`exists_linear_independent` in particular. -/
variables (𝕜 E)
lemma orthonormal_empty : orthonormal 𝕜 (λ x, x : (∅ : set E) → E) :=
by classical; simp [orthonormal_subtype_iff_ite]
variables {𝕜 E}
lemma orthonormal_Union_of_directed
{η : Type*} {s : η → set E} (hs : directed (⊆) s) (h : ∀ i, orthonormal 𝕜 (λ x, x : s i → E)) :
orthonormal 𝕜 (λ x, x : (⋃ i, s i) → E) :=
begin
classical,
rw orthonormal_subtype_iff_ite,
rintros x ⟨_, ⟨i, rfl⟩, hxi⟩ y ⟨_, ⟨j, rfl⟩, hyj⟩,
obtain ⟨k, hik, hjk⟩ := hs i j,
have h_orth : orthonormal 𝕜 (λ x, x : (s k) → E) := h k,
rw orthonormal_subtype_iff_ite at h_orth,
exact h_orth x (hik hxi) y (hjk hyj)
end
lemma orthonormal_sUnion_of_directed
{s : set (set E)} (hs : directed_on (⊆) s)
(h : ∀ a ∈ s, orthonormal 𝕜 (λ x, x : (a : set E) → E)) :
orthonormal 𝕜 (λ x, x : (⋃₀ s) → E) :=
by rw set.sUnion_eq_Union; exact orthonormal_Union_of_directed hs.directed_coe (by simpa using h)
/-- Given an orthonormal set `v` of vectors in `E`, there exists a maximal orthonormal set
containing it. -/
lemma exists_maximal_orthonormal {s : set E} (hs : orthonormal 𝕜 (coe : s → E)) :
∃ w ⊇ s, orthonormal 𝕜 (coe : w → E) ∧ ∀ u ⊇ w, orthonormal 𝕜 (coe : u → E) → u = w :=
begin
obtain ⟨b, bi, sb, h⟩ := zorn_subset_nonempty {b | orthonormal 𝕜 (coe : b → E)} _ _ hs,
{ refine ⟨b, sb, bi, _⟩,
exact λ u hus hu, h u hu hus },
{ refine λ c hc cc c0, ⟨⋃₀ c, _, _⟩,
{ exact orthonormal_sUnion_of_directed cc.directed_on (λ x xc, hc xc) },
{ exact λ _, set.subset_sUnion_of_mem } }
end
lemma orthonormal.ne_zero {v : ι → E} (hv : orthonormal 𝕜 v) (i : ι) : v i ≠ 0 :=
begin
have : ‖v i‖ ≠ 0,
{ rw hv.1 i,
norm_num },
simpa using this
end
open finite_dimensional
/-- A family of orthonormal vectors with the correct cardinality forms a basis. -/
def basis_of_orthonormal_of_card_eq_finrank [fintype ι] [nonempty ι] {v : ι → E}
(hv : orthonormal 𝕜 v) (card_eq : fintype.card ι = finrank 𝕜 E) :
basis ι 𝕜 E :=
basis_of_linear_independent_of_card_eq_finrank hv.linear_independent card_eq
@[simp] lemma coe_basis_of_orthonormal_of_card_eq_finrank [fintype ι] [nonempty ι] {v : ι → E}
(hv : orthonormal 𝕜 v) (card_eq : fintype.card ι = finrank 𝕜 E) :
(basis_of_orthonormal_of_card_eq_finrank hv card_eq : ι → E) = v :=
coe_basis_of_linear_independent_of_card_eq_finrank _ _
end orthonormal_sets
section norm
lemma norm_eq_sqrt_inner (x : E) : ‖x‖ = sqrt (re ⟪x, x⟫) :=
calc ‖x‖ = sqrt (‖x‖ ^ 2) : (sqrt_sq (norm_nonneg _)).symm
... = sqrt (re ⟪x, x⟫) : congr_arg _ (norm_sq_eq_inner _)
lemma norm_eq_sqrt_real_inner (x : F) : ‖x‖ = sqrt ⟪x, x⟫_ℝ :=
@norm_eq_sqrt_inner ℝ _ _ _ _ x
lemma inner_self_eq_norm_mul_norm (x : E) : re ⟪x, x⟫ = ‖x‖ * ‖x‖ :=
by rw [@norm_eq_sqrt_inner 𝕜, ←sqrt_mul inner_self_nonneg (re ⟪x, x⟫),
sqrt_mul_self inner_self_nonneg]
lemma inner_self_eq_norm_sq (x : E) : re ⟪x, x⟫ = ‖x‖^2 :=
by rw [pow_two, inner_self_eq_norm_mul_norm]
lemma real_inner_self_eq_norm_mul_norm (x : F) : ⟪x, x⟫_ℝ = ‖x‖ * ‖x‖ :=
by { have h := @inner_self_eq_norm_mul_norm ℝ F _ _ _ x, simpa using h }
lemma real_inner_self_eq_norm_sq (x : F) : ⟪x, x⟫_ℝ = ‖x‖^2 :=
by rw [pow_two, real_inner_self_eq_norm_mul_norm]
variables (𝕜)
/-- Expand the square -/
lemma norm_add_sq (x y : E) : ‖x + y‖^2 = ‖x‖^2 + 2 * (re ⟪x, y⟫) + ‖y‖^2 :=
begin
repeat {rw [sq, ←@inner_self_eq_norm_mul_norm 𝕜]},
rw [inner_add_add_self, two_mul],
simp only [add_assoc, add_left_inj, add_right_inj, add_monoid_hom.map_add],
rw [←inner_conj_symm, conj_re],
end
alias norm_add_sq ← norm_add_pow_two
/-- Expand the square -/
lemma norm_add_sq_real (x y : F) : ‖x + y‖^2 = ‖x‖^2 + 2 * ⟪x, y⟫_ℝ + ‖y‖^2 :=
by { have h := @norm_add_sq ℝ _ _ _ _ x y, simpa using h }
alias norm_add_sq_real ← norm_add_pow_two_real
/-- Expand the square -/
lemma norm_add_mul_self (x y : E) : ‖x + y‖ * ‖x + y‖ = ‖x‖ * ‖x‖ + 2 * (re ⟪x, y⟫) + ‖y‖ * ‖y‖ :=
by { repeat {rw [← sq]}, exact norm_add_sq _ _ }
/-- Expand the square -/
lemma norm_add_mul_self_real (x y : F) : ‖x + y‖ * ‖x + y‖ = ‖x‖ * ‖x‖ + 2 * ⟪x, y⟫_ℝ + ‖y‖ * ‖y‖ :=
by { have h := @norm_add_mul_self ℝ _ _ _ _ x y, simpa using h }
/-- Expand the square -/
lemma norm_sub_sq (x y : E) : ‖x - y‖^2 = ‖x‖^2 - 2 * (re ⟪x, y⟫) + ‖y‖^2 :=
by rw [sub_eq_add_neg, @norm_add_sq 𝕜 _ _ _ _ x (-y), norm_neg, inner_neg_right, map_neg, mul_neg,
sub_eq_add_neg]
alias norm_sub_sq ← norm_sub_pow_two
/-- Expand the square -/
lemma norm_sub_sq_real (x y : F) : ‖x - y‖^2 = ‖x‖^2 - 2 * ⟪x, y⟫_ℝ + ‖y‖^2 :=
@norm_sub_sq ℝ _ _ _ _ _ _
alias norm_sub_sq_real ← norm_sub_pow_two_real
/-- Expand the square -/
lemma norm_sub_mul_self (x y : E) : ‖x - y‖ * ‖x - y‖ = ‖x‖ * ‖x‖ - 2 * re ⟪x, y⟫ + ‖y‖ * ‖y‖ :=
by { repeat {rw [← sq]}, exact norm_sub_sq _ _ }
/-- Expand the square -/
lemma norm_sub_mul_self_real (x y : F) : ‖x - y‖ * ‖x - y‖ = ‖x‖ * ‖x‖ - 2 * ⟪x, y⟫_ℝ + ‖y‖ * ‖y‖ :=
by { have h := @norm_sub_mul_self ℝ _ _ _ _ x y, simpa using h }
/-- Cauchy–Schwarz inequality with norm -/
lemma norm_inner_le_norm (x y : E) : ‖⟪x, y⟫‖ ≤ ‖x‖ * ‖y‖ :=
begin
rw [norm_eq_sqrt_inner x, norm_eq_sqrt_inner y],
letI : inner_product_space.core 𝕜 E := inner_product_space.to_core,
exact inner_product_space.core.norm_inner_le_norm x y
end
lemma nnnorm_inner_le_nnnorm (x y : E) : ‖⟪x, y⟫‖₊ ≤ ‖x‖₊ * ‖y‖₊ :=
norm_inner_le_norm x y
lemma re_inner_le_norm (x y : E) : re ⟪x, y⟫ ≤ ‖x‖ * ‖y‖ :=
le_trans (re_le_norm (inner x y)) (norm_inner_le_norm x y)
/-- Cauchy–Schwarz inequality with norm -/
lemma abs_real_inner_le_norm (x y : F) : |⟪x, y⟫_ℝ| ≤ ‖x‖ * ‖y‖ :=
(real.norm_eq_abs _).ge.trans (norm_inner_le_norm x y)
/-- Cauchy–Schwarz inequality with norm -/
lemma real_inner_le_norm (x y : F) : ⟪x, y⟫_ℝ ≤ ‖x‖ * ‖y‖ :=
le_trans (le_abs_self _) (abs_real_inner_le_norm _ _)
include 𝕜
variables (𝕜)
lemma parallelogram_law_with_norm (x y : E) :
‖x + y‖ * ‖x + y‖ + ‖x - y‖ * ‖x - y‖ = 2 * (‖x‖ * ‖x‖ + ‖y‖ * ‖y‖) :=
begin
simp only [← @inner_self_eq_norm_mul_norm 𝕜],
rw [← re.map_add, parallelogram_law, two_mul, two_mul],
simp only [re.map_add],
end
lemma parallelogram_law_with_nnnorm (x y : E) :
‖x + y‖₊ * ‖x + y‖₊ + ‖x - y‖₊ * ‖x - y‖₊ = 2 * (‖x‖₊ * ‖x‖₊ + ‖y‖₊ * ‖y‖₊) :=
subtype.ext $ parallelogram_law_with_norm 𝕜 x y
variables {𝕜}
omit 𝕜
/-- Polarization identity: The real part of the inner product, in terms of the norm. -/
lemma re_inner_eq_norm_add_mul_self_sub_norm_mul_self_sub_norm_mul_self_div_two (x y : E) :
re ⟪x, y⟫ = (‖x + y‖ * ‖x + y‖ - ‖x‖ * ‖x‖ - ‖y‖ * ‖y‖) / 2 :=
by { rw @norm_add_mul_self 𝕜, ring }
/-- Polarization identity: The real part of the inner product, in terms of the norm. -/
lemma re_inner_eq_norm_mul_self_add_norm_mul_self_sub_norm_sub_mul_self_div_two (x y : E) :
re ⟪x, y⟫ = (‖x‖ * ‖x‖ + ‖y‖ * ‖y‖ - ‖x - y‖ * ‖x - y‖) / 2 :=
by { rw [@norm_sub_mul_self 𝕜], ring }
/-- Polarization identity: The real part of the inner product, in terms of the norm. -/
lemma re_inner_eq_norm_add_mul_self_sub_norm_sub_mul_self_div_four (x y : E) :
re ⟪x, y⟫ = (‖x + y‖ * ‖x + y‖ - ‖x - y‖ * ‖x - y‖) / 4 :=
by { rw [@norm_add_mul_self 𝕜, @norm_sub_mul_self 𝕜], ring }
/-- Polarization identity: The imaginary part of the inner product, in terms of the norm. -/
lemma im_inner_eq_norm_sub_I_smul_mul_self_sub_norm_add_I_smul_mul_self_div_four (x y : E) :
im ⟪x, y⟫ = (‖x - IK • y‖ * ‖x - IK • y‖ - ‖x + IK • y‖ * ‖x + IK • y‖) / 4 :=
by { simp only [@norm_add_mul_self 𝕜, @norm_sub_mul_self 𝕜, inner_smul_right, I_mul_re], ring }
/-- Polarization identity: The inner product, in terms of the norm. -/
lemma inner_eq_sum_norm_sq_div_four (x y : E) :
⟪x, y⟫ = (‖x + y‖ ^ 2 - ‖x - y‖ ^ 2 + (‖x - IK • y‖ ^ 2 - ‖x + IK • y‖ ^ 2) * IK) / 4 :=
begin
rw [← re_add_im ⟪x, y⟫, re_inner_eq_norm_add_mul_self_sub_norm_sub_mul_self_div_four,
im_inner_eq_norm_sub_I_smul_mul_self_sub_norm_add_I_smul_mul_self_div_four],
push_cast,
simp only [sq, ← mul_div_right_comm, ← add_div]
end
/-- Formula for the distance between the images of two nonzero points under an inversion with center
zero. See also `euclidean_geometry.dist_inversion_inversion` for inversions around a general
point. -/
lemma dist_div_norm_sq_smul {x y : F} (hx : x ≠ 0) (hy : y ≠ 0) (R : ℝ) :
dist ((R / ‖x‖) ^ 2 • x) ((R / ‖y‖) ^ 2 • y) = (R ^ 2 / (‖x‖ * ‖y‖)) * dist x y :=
have hx' : ‖x‖ ≠ 0, from norm_ne_zero_iff.2 hx,
have hy' : ‖y‖ ≠ 0, from norm_ne_zero_iff.2 hy,
calc dist ((R / ‖x‖) ^ 2 • x) ((R / ‖y‖) ^ 2 • y)
= sqrt (‖(R / ‖x‖) ^ 2 • x - (R / ‖y‖) ^ 2 • y‖^2) :
by rw [dist_eq_norm, sqrt_sq (norm_nonneg _)]
... = sqrt ((R ^ 2 / (‖x‖ * ‖y‖)) ^ 2 * ‖x - y‖ ^ 2) :
congr_arg sqrt $ by { field_simp [sq, norm_sub_mul_self_real, norm_smul, real_inner_smul_left,
inner_smul_right, real.norm_of_nonneg (mul_self_nonneg _)], ring }
... = (R ^ 2 / (‖x‖ * ‖y‖)) * dist x y :
by rw [sqrt_mul (sq_nonneg _), sqrt_sq (norm_nonneg _),
sqrt_sq (div_nonneg (sq_nonneg _) (mul_nonneg (norm_nonneg _) (norm_nonneg _))), dist_eq_norm]
@[priority 100] -- See note [lower instance priority]
instance inner_product_space.to_uniform_convex_space : uniform_convex_space F :=
⟨λ ε hε, begin
refine ⟨2 - sqrt (4 - ε^2), sub_pos_of_lt $ (sqrt_lt' zero_lt_two).2 _, λ x hx y hy hxy, _⟩,
{ norm_num,
exact pow_pos hε _ },
rw sub_sub_cancel,
refine le_sqrt_of_sq_le _,
rw [sq, eq_sub_iff_add_eq.2 (parallelogram_law_with_norm ℝ x y), ←sq (‖x - y‖), hx, hy],
norm_num,
exact pow_le_pow_of_le_left hε.le hxy _,
end⟩
section complex
variables {V : Type*} [normed_add_comm_group V] [inner_product_space ℂ V]
/--
A complex polarization identity, with a linear map
-/
lemma inner_map_polarization (T : V →ₗ[ℂ] V) (x y : V):
⟪ T y, x ⟫_ℂ = (⟪T (x + y) , x + y⟫_ℂ - ⟪T (x - y) , x - y⟫_ℂ +
complex.I * ⟪T (x + complex.I • y) , x + complex.I • y⟫_ℂ -
complex.I * ⟪T (x - complex.I • y), x - complex.I • y ⟫_ℂ) / 4 :=
begin
simp only [map_add, map_sub, inner_add_left, inner_add_right, linear_map.map_smul,
inner_smul_left, inner_smul_right, complex.conj_I, ←pow_two, complex.I_sq,
inner_sub_left, inner_sub_right, mul_add, ←mul_assoc, mul_neg, neg_neg,
sub_neg_eq_add, one_mul, neg_one_mul, mul_sub, sub_sub],
ring,
end
lemma inner_map_polarization' (T : V →ₗ[ℂ] V) (x y : V):
⟪ T x, y ⟫_ℂ = (⟪T (x + y) , x + y⟫_ℂ - ⟪T (x - y) , x - y⟫_ℂ -
complex.I * ⟪T (x + complex.I • y) , x + complex.I • y⟫_ℂ +
complex.I * ⟪T (x - complex.I • y), x - complex.I • y ⟫_ℂ) / 4 :=
begin
simp only [map_add, map_sub, inner_add_left, inner_add_right, linear_map.map_smul,
inner_smul_left, inner_smul_right, complex.conj_I, ←pow_two, complex.I_sq,
inner_sub_left, inner_sub_right, mul_add, ←mul_assoc, mul_neg, neg_neg,
sub_neg_eq_add, one_mul, neg_one_mul, mul_sub, sub_sub],
ring,
end
/--
A linear map `T` is zero, if and only if the identity `⟪T x, x⟫_ℂ = 0` holds for all `x`.
-/
lemma inner_map_self_eq_zero (T : V →ₗ[ℂ] V) :
(∀ (x : V), ⟪T x, x⟫_ℂ = 0) ↔ T = 0 :=
begin
split,
{ intro hT,
ext x,
simp only [linear_map.zero_apply, ← @inner_self_eq_zero ℂ, inner_map_polarization, hT],
norm_num },
{ rintro rfl x,
simp only [linear_map.zero_apply, inner_zero_left] }
end
/--
Two linear maps `S` and `T` are equal, if and only if the identity `⟪S x, x⟫_ℂ = ⟪T x, x⟫_ℂ` holds
for all `x`.
-/
lemma ext_inner_map (S T : V →ₗ[ℂ] V) :
(∀ (x : V), ⟪S x, x⟫_ℂ = ⟪T x, x⟫_ℂ) ↔ S = T :=
begin
rw [←sub_eq_zero, ←inner_map_self_eq_zero],
refine forall_congr (λ x, _),
rw [linear_map.sub_apply, inner_sub_left, sub_eq_zero],
end
end complex
section
variables {ι : Type*} {ι' : Type*} {ι'' : Type*}
variables {E' : Type*} [normed_add_comm_group E'] [inner_product_space 𝕜 E']
variables {E'' : Type*} [normed_add_comm_group E''] [inner_product_space 𝕜 E'']
/-- A linear isometry preserves the inner product. -/
@[simp] lemma linear_isometry.inner_map_map (f : E →ₗᵢ[𝕜] E') (x y : E) : ⟪f x, f y⟫ = ⟪x, y⟫ :=
by simp [inner_eq_sum_norm_sq_div_four, ← f.norm_map]
/-- A linear isometric equivalence preserves the inner product. -/
@[simp] lemma linear_isometry_equiv.inner_map_map (f : E ≃ₗᵢ[𝕜] E') (x y : E) :
⟪f x, f y⟫ = ⟪x, y⟫ :=
f.to_linear_isometry.inner_map_map x y
/-- A linear map that preserves the inner product is a linear isometry. -/
def linear_map.isometry_of_inner (f : E →ₗ[𝕜] E') (h : ∀ x y, ⟪f x, f y⟫ = ⟪x, y⟫) : E →ₗᵢ[𝕜] E' :=
⟨f, λ x, by simp only [@norm_eq_sqrt_inner 𝕜, h]⟩
@[simp] lemma linear_map.coe_isometry_of_inner (f : E →ₗ[𝕜] E') (h) :
⇑(f.isometry_of_inner h) = f := rfl
@[simp] lemma linear_map.isometry_of_inner_to_linear_map (f : E →ₗ[𝕜] E') (h) :
(f.isometry_of_inner h).to_linear_map = f := rfl
/-- A linear equivalence that preserves the inner product is a linear isometric equivalence. -/
def linear_equiv.isometry_of_inner (f : E ≃ₗ[𝕜] E') (h : ∀ x y, ⟪f x, f y⟫ = ⟪x, y⟫) :
E ≃ₗᵢ[𝕜] E' :=
⟨f, ((f : E →ₗ[𝕜] E').isometry_of_inner h).norm_map⟩
@[simp] lemma linear_equiv.coe_isometry_of_inner (f : E ≃ₗ[𝕜] E') (h) :
⇑(f.isometry_of_inner h) = f := rfl
@[simp] lemma linear_equiv.isometry_of_inner_to_linear_equiv (f : E ≃ₗ[𝕜] E') (h) :
(f.isometry_of_inner h).to_linear_equiv = f := rfl
/-- A linear isometry preserves the property of being orthonormal. -/
lemma linear_isometry.orthonormal_comp_iff {v : ι → E} (f : E →ₗᵢ[𝕜] E') :
orthonormal 𝕜 (f ∘ v) ↔ orthonormal 𝕜 v :=
begin
classical,
simp_rw [orthonormal_iff_ite, linear_isometry.inner_map_map]
end
/-- A linear isometry preserves the property of being orthonormal. -/
lemma orthonormal.comp_linear_isometry {v : ι → E} (hv : orthonormal 𝕜 v) (f : E →ₗᵢ[𝕜] E') :
orthonormal 𝕜 (f ∘ v) :=
by rwa f.orthonormal_comp_iff
/-- A linear isometric equivalence preserves the property of being orthonormal. -/
lemma orthonormal.comp_linear_isometry_equiv {v : ι → E} (hv : orthonormal 𝕜 v) (f : E ≃ₗᵢ[𝕜] E') :
orthonormal 𝕜 (f ∘ v) :=
hv.comp_linear_isometry f.to_linear_isometry
/-- A linear isometric equivalence, applied with `basis.map`, preserves the property of being
orthonormal. -/
lemma orthonormal.map_linear_isometry_equiv {v : basis ι 𝕜 E} (hv : orthonormal 𝕜 v)
(f : E ≃ₗᵢ[𝕜] E') : orthonormal 𝕜 (v.map f.to_linear_equiv) :=
hv.comp_linear_isometry_equiv f
/-- A linear map that sends an orthonormal basis to orthonormal vectors is a linear isometry. -/
def linear_map.isometry_of_orthonormal (f : E →ₗ[𝕜] E') {v : basis ι 𝕜 E} (hv : orthonormal 𝕜 v)
(hf : orthonormal 𝕜 (f ∘ v)) : E →ₗᵢ[𝕜] E' :=
f.isometry_of_inner $ λ x y, by rw [←v.total_repr x, ←v.total_repr y, finsupp.apply_total,
finsupp.apply_total, hv.inner_finsupp_eq_sum_left,
hf.inner_finsupp_eq_sum_left]
@[simp] lemma linear_map.coe_isometry_of_orthonormal (f : E →ₗ[𝕜] E') {v : basis ι 𝕜 E}
(hv : orthonormal 𝕜 v) (hf : orthonormal 𝕜 (f ∘ v)) :
⇑(f.isometry_of_orthonormal hv hf) = f :=
rfl
@[simp] lemma linear_map.isometry_of_orthonormal_to_linear_map (f : E →ₗ[𝕜] E') {v : basis ι 𝕜 E}
(hv : orthonormal 𝕜 v) (hf : orthonormal 𝕜 (f ∘ v)) :
(f.isometry_of_orthonormal hv hf).to_linear_map = f :=
rfl
/-- A linear equivalence that sends an orthonormal basis to orthonormal vectors is a linear
isometric equivalence. -/
def linear_equiv.isometry_of_orthonormal (f : E ≃ₗ[𝕜] E') {v : basis ι 𝕜 E} (hv : orthonormal 𝕜 v)
(hf : orthonormal 𝕜 (f ∘ v)) : E ≃ₗᵢ[𝕜] E' :=
f.isometry_of_inner $ λ x y, begin
rw ←linear_equiv.coe_coe at hf,
rw [←v.total_repr x, ←v.total_repr y, ←linear_equiv.coe_coe, finsupp.apply_total,
finsupp.apply_total, hv.inner_finsupp_eq_sum_left, hf.inner_finsupp_eq_sum_left]
end
@[simp] lemma linear_equiv.coe_isometry_of_orthonormal (f : E ≃ₗ[𝕜] E') {v : basis ι 𝕜 E}
(hv : orthonormal 𝕜 v) (hf : orthonormal 𝕜 (f ∘ v)) :
⇑(f.isometry_of_orthonormal hv hf) = f :=
rfl
@[simp] lemma linear_equiv.isometry_of_orthonormal_to_linear_equiv (f : E ≃ₗ[𝕜] E')
{v : basis ι 𝕜 E} (hv : orthonormal 𝕜 v) (hf : orthonormal 𝕜 (f ∘ v)) :
(f.isometry_of_orthonormal hv hf).to_linear_equiv = f :=
rfl
/-- A linear isometric equivalence that sends an orthonormal basis to a given orthonormal basis. -/
def orthonormal.equiv {v : basis ι 𝕜 E} (hv : orthonormal 𝕜 v) {v' : basis ι' 𝕜 E'}
(hv' : orthonormal 𝕜 v') (e : ι ≃ ι') : E ≃ₗᵢ[𝕜] E' :=
(v.equiv v' e).isometry_of_orthonormal hv begin
have h : (v.equiv v' e) ∘ v = v' ∘ e,
{ ext i,
simp },
rw h,
exact hv'.comp _ e.injective
end
@[simp] lemma orthonormal.equiv_to_linear_equiv {v : basis ι 𝕜 E} (hv : orthonormal 𝕜 v)
{v' : basis ι' 𝕜 E'} (hv' : orthonormal 𝕜 v') (e : ι ≃ ι') :
(hv.equiv hv' e).to_linear_equiv = v.equiv v' e :=
rfl
@[simp] lemma orthonormal.equiv_apply {ι' : Type*} {v : basis ι 𝕜 E} (hv : orthonormal 𝕜 v)
{v' : basis ι' 𝕜 E'} (hv' : orthonormal 𝕜 v') (e : ι ≃ ι') (i : ι) :
hv.equiv hv' e (v i) = v' (e i) :=
basis.equiv_apply _ _ _ _
@[simp] lemma orthonormal.equiv_refl {v : basis ι 𝕜 E} (hv : orthonormal 𝕜 v) :
hv.equiv hv (equiv.refl ι) = linear_isometry_equiv.refl 𝕜 E :=
v.ext_linear_isometry_equiv $ λ i,
by simp only [orthonormal.equiv_apply, equiv.coe_refl, id.def, linear_isometry_equiv.coe_refl]
@[simp] lemma orthonormal.equiv_symm {v : basis ι 𝕜 E} (hv : orthonormal 𝕜 v) {v' : basis ι' 𝕜 E'}
(hv' : orthonormal 𝕜 v') (e : ι ≃ ι') : (hv.equiv hv' e).symm = hv'.equiv hv e.symm :=
v'.ext_linear_isometry_equiv $ λ i, (hv.equiv hv' e).injective $
by simp only [linear_isometry_equiv.apply_symm_apply, orthonormal.equiv_apply, e.apply_symm_apply]
@[simp] lemma orthonormal.equiv_trans {v : basis ι 𝕜 E} (hv : orthonormal 𝕜 v) {v' : basis ι' 𝕜 E'}
(hv' : orthonormal 𝕜 v') (e : ι ≃ ι') {v'' : basis ι'' 𝕜 E''} (hv'' : orthonormal 𝕜 v'')
(e' : ι' ≃ ι'') : (hv.equiv hv' e).trans (hv'.equiv hv'' e') = hv.equiv hv'' (e.trans e') :=
v.ext_linear_isometry_equiv $ λ i,
by simp only [linear_isometry_equiv.trans_apply, orthonormal.equiv_apply, e.coe_trans]
lemma orthonormal.map_equiv {v : basis ι 𝕜 E} (hv : orthonormal 𝕜 v) {v' : basis ι' 𝕜 E'}
(hv' : orthonormal 𝕜 v') (e : ι ≃ ι') :
v.map ((hv.equiv hv' e).to_linear_equiv) = v'.reindex e.symm :=
v.map_equiv _ _
end
/-- Polarization identity: The real inner product, in terms of the norm. -/
lemma real_inner_eq_norm_add_mul_self_sub_norm_mul_self_sub_norm_mul_self_div_two (x y : F) :
⟪x, y⟫_ℝ = (‖x + y‖ * ‖x + y‖ - ‖x‖ * ‖x‖ - ‖y‖ * ‖y‖) / 2 :=
re_to_real.symm.trans $
re_inner_eq_norm_add_mul_self_sub_norm_mul_self_sub_norm_mul_self_div_two x y
/-- Polarization identity: The real inner product, in terms of the norm. -/
lemma real_inner_eq_norm_mul_self_add_norm_mul_self_sub_norm_sub_mul_self_div_two (x y : F) :
⟪x, y⟫_ℝ = (‖x‖ * ‖x‖ + ‖y‖ * ‖y‖ - ‖x - y‖ * ‖x - y‖) / 2 :=
re_to_real.symm.trans $
re_inner_eq_norm_mul_self_add_norm_mul_self_sub_norm_sub_mul_self_div_two x y
/-- Pythagorean theorem, if-and-only-if vector inner product form. -/
lemma norm_add_sq_eq_norm_sq_add_norm_sq_iff_real_inner_eq_zero (x y : F) :
‖x + y‖ * ‖x + y‖ = ‖x‖ * ‖x‖ + ‖y‖ * ‖y‖ ↔ ⟪x, y⟫_ℝ = 0 :=
begin
rw [@norm_add_mul_self ℝ, add_right_cancel_iff, add_right_eq_self, mul_eq_zero],
norm_num
end
/-- Pythagorean theorem, if-and-if vector inner product form using square roots. -/
lemma norm_add_eq_sqrt_iff_real_inner_eq_zero {x y : F} :
‖x + y‖ = sqrt (‖x‖ * ‖x‖ + ‖y‖ * ‖y‖) ↔ ⟪x, y⟫_ℝ = 0 :=
by rw [←norm_add_sq_eq_norm_sq_add_norm_sq_iff_real_inner_eq_zero, eq_comm,
sqrt_eq_iff_mul_self_eq (add_nonneg (mul_self_nonneg _) (mul_self_nonneg _)) (norm_nonneg _)]
/-- Pythagorean theorem, vector inner product form. -/
lemma norm_add_sq_eq_norm_sq_add_norm_sq_of_inner_eq_zero (x y : E) (h : ⟪x, y⟫ = 0) :
‖x + y‖ * ‖x + y‖ = ‖x‖ * ‖x‖ + ‖y‖ * ‖y‖ :=
begin
rw [@norm_add_mul_self 𝕜, add_right_cancel_iff, add_right_eq_self, mul_eq_zero],
apply or.inr,
simp only [h, zero_re'],
end
/-- Pythagorean theorem, vector inner product form. -/
lemma norm_add_sq_eq_norm_sq_add_norm_sq_real {x y : F} (h : ⟪x, y⟫_ℝ = 0) :
‖x + y‖ * ‖x + y‖ = ‖x‖ * ‖x‖ + ‖y‖ * ‖y‖ :=
(norm_add_sq_eq_norm_sq_add_norm_sq_iff_real_inner_eq_zero x y).2 h
/-- Pythagorean theorem, subtracting vectors, if-and-only-if vector
inner product form. -/
lemma norm_sub_sq_eq_norm_sq_add_norm_sq_iff_real_inner_eq_zero (x y : F) :
‖x - y‖ * ‖x - y‖ = ‖x‖ * ‖x‖ + ‖y‖ * ‖y‖ ↔ ⟪x, y⟫_ℝ = 0 :=
begin
rw [@norm_sub_mul_self ℝ, add_right_cancel_iff, sub_eq_add_neg, add_right_eq_self, neg_eq_zero,
mul_eq_zero],
norm_num
end
/-- Pythagorean theorem, subtracting vectors, if-and-if vector inner product form using square
roots. -/
lemma norm_sub_eq_sqrt_iff_real_inner_eq_zero {x y : F} :
‖x - y‖ = sqrt (‖x‖ * ‖x‖ + ‖y‖ * ‖y‖) ↔ ⟪x, y⟫_ℝ = 0 :=
by rw [←norm_sub_sq_eq_norm_sq_add_norm_sq_iff_real_inner_eq_zero, eq_comm,
sqrt_eq_iff_mul_self_eq (add_nonneg (mul_self_nonneg _) (mul_self_nonneg _)) (norm_nonneg _)]
/-- Pythagorean theorem, subtracting vectors, vector inner product
form. -/
lemma norm_sub_sq_eq_norm_sq_add_norm_sq_real {x y : F} (h : ⟪x, y⟫_ℝ = 0) :
‖x - y‖ * ‖x - y‖ = ‖x‖ * ‖x‖ + ‖y‖ * ‖y‖ :=
(norm_sub_sq_eq_norm_sq_add_norm_sq_iff_real_inner_eq_zero x y).2 h
/-- The sum and difference of two vectors are orthogonal if and only
if they have the same norm. -/
lemma real_inner_add_sub_eq_zero_iff (x y : F) : ⟪x + y, x - y⟫_ℝ = 0 ↔ ‖x‖ = ‖y‖ :=
begin
conv_rhs { rw ←mul_self_inj_of_nonneg (norm_nonneg _) (norm_nonneg _) },
simp only [←@inner_self_eq_norm_mul_norm ℝ, inner_add_left, inner_sub_right,
real_inner_comm y x, sub_eq_zero, re_to_real],
split,
{ intro h,
rw [add_comm] at h,
linarith },
{ intro h,
linarith }
end
/-- Given two orthogonal vectors, their sum and difference have equal norms. -/
lemma norm_sub_eq_norm_add {v w : E} (h : ⟪v, w⟫ = 0) : ‖w - v‖ = ‖w + v‖ :=
begin
rw ←mul_self_inj_of_nonneg (norm_nonneg _) (norm_nonneg _),
simp only [h, ←@inner_self_eq_norm_mul_norm 𝕜, sub_neg_eq_add, sub_zero, map_sub, zero_re',
zero_sub,
add_zero, map_add, inner_add_right, inner_sub_left, inner_sub_right, inner_re_symm, zero_add]
end
/-- The real inner product of two vectors, divided by the product of their
norms, has absolute value at most 1. -/
lemma abs_real_inner_div_norm_mul_norm_le_one (x y : F) : |⟪x, y⟫_ℝ / (‖x‖ * ‖y‖)| ≤ 1 :=
begin
rw [abs_div, abs_mul, abs_norm, abs_norm],
exact div_le_one_of_le (abs_real_inner_le_norm x y) (by positivity)
end
/-- The inner product of a vector with a multiple of itself. -/
lemma real_inner_smul_self_left (x : F) (r : ℝ) : ⟪r • x, x⟫_ℝ = r * (‖x‖ * ‖x‖) :=
by rw [real_inner_smul_left, ←real_inner_self_eq_norm_mul_norm]
/-- The inner product of a vector with a multiple of itself. -/
lemma real_inner_smul_self_right (x : F) (r : ℝ) : ⟪x, r • x⟫_ℝ = r * (‖x‖ * ‖x‖) :=
by rw [inner_smul_right, ←real_inner_self_eq_norm_mul_norm]
/-- The inner product of a nonzero vector with a nonzero multiple of
itself, divided by the product of their norms, has absolute value
1. -/
lemma norm_inner_div_norm_mul_norm_eq_one_of_ne_zero_of_ne_zero_mul
{x : E} {r : 𝕜} (hx : x ≠ 0) (hr : r ≠ 0) : ‖⟪x, r • x⟫‖ / (‖x‖ * ‖r • x‖) = 1 :=
begin
have hx' : ‖x‖ ≠ 0 := by simp [hx],
have hr' : ‖r‖ ≠ 0 := by simp [hr],
rw [inner_smul_right, norm_mul, ← inner_self_re_eq_norm, inner_self_eq_norm_mul_norm, norm_smul],
rw [← mul_assoc, ← div_div, mul_div_cancel _ hx',
← div_div, mul_comm, mul_div_cancel _ hr', div_self hx'],
end
/-- The inner product of a nonzero vector with a nonzero multiple of
itself, divided by the product of their norms, has absolute value
1. -/
lemma abs_real_inner_div_norm_mul_norm_eq_one_of_ne_zero_of_ne_zero_mul
{x : F} {r : ℝ} (hx : x ≠ 0) (hr : r ≠ 0) : |⟪x, r • x⟫_ℝ| / (‖x‖ * ‖r • x‖) = 1 :=
norm_inner_div_norm_mul_norm_eq_one_of_ne_zero_of_ne_zero_mul hx hr
/-- The inner product of a nonzero vector with a positive multiple of
itself, divided by the product of their norms, has value 1. -/
lemma real_inner_div_norm_mul_norm_eq_one_of_ne_zero_of_pos_mul
{x : F} {r : ℝ} (hx : x ≠ 0) (hr : 0 < r) : ⟪x, r • x⟫_ℝ / (‖x‖ * ‖r • x‖) = 1 :=
begin
rw [real_inner_smul_self_right, norm_smul, real.norm_eq_abs, ←mul_assoc ‖x‖, mul_comm _ (|r|),
mul_assoc, abs_of_nonneg hr.le, div_self],
exact mul_ne_zero hr.ne' (mul_self_ne_zero.2 (norm_ne_zero_iff.2 hx))
end
/-- The inner product of a nonzero vector with a negative multiple of
itself, divided by the product of their norms, has value -1. -/
lemma real_inner_div_norm_mul_norm_eq_neg_one_of_ne_zero_of_neg_mul
{x : F} {r : ℝ} (hx : x ≠ 0) (hr : r < 0) : ⟪x, r • x⟫_ℝ / (‖x‖ * ‖r • x‖) = -1 :=
begin
rw [real_inner_smul_self_right, norm_smul, real.norm_eq_abs, ←mul_assoc ‖x‖, mul_comm _ (|r|),
mul_assoc, abs_of_neg hr, neg_mul, div_neg_eq_neg_div, div_self],
exact mul_ne_zero hr.ne (mul_self_ne_zero.2 (norm_ne_zero_iff.2 hx))
end
lemma norm_inner_eq_norm_tfae (x y : E) :
tfae [‖⟪x, y⟫‖ = ‖x‖ * ‖y‖,
x = 0 ∨ y = (⟪x, y⟫ / ⟪x, x⟫) • x,
x = 0 ∨ ∃ r : 𝕜, y = r • x,
x = 0 ∨ y ∈ 𝕜 ∙ x] :=
begin
tfae_have : 1 → 2,
{ refine λ h, or_iff_not_imp_left.2 (λ hx₀, _),
have : ‖x‖ ^ 2 ≠ 0 := pow_ne_zero _ (norm_ne_zero_iff.2 hx₀),
rw [← sq_eq_sq (norm_nonneg _) (mul_nonneg (norm_nonneg _) (norm_nonneg _)),
mul_pow, ← mul_right_inj' this, eq_comm, ← sub_eq_zero, ← mul_sub] at h,
simp only [@norm_sq_eq_inner 𝕜] at h,
letI : inner_product_space.core 𝕜 E := inner_product_space.to_core,
erw [← inner_product_space.core.cauchy_schwarz_aux,
inner_product_space.core.norm_sq_eq_zero, sub_eq_zero] at h,
rw [div_eq_inv_mul, mul_smul, h, inv_smul_smul₀],
rwa [inner_self_ne_zero] },
tfae_have : 2 → 3, from λ h, h.imp_right (λ h', ⟨_, h'⟩),
tfae_have : 3 → 1,
{ rintro (rfl | ⟨r, rfl⟩); simp [inner_smul_right, norm_smul, inner_self_eq_norm_sq_to_K,
inner_self_eq_norm_mul_norm, sq, mul_left_comm] },
tfae_have : 3 ↔ 4, by simp only [submodule.mem_span_singleton, eq_comm],
tfae_finish
end
/--
If the inner product of two vectors is equal to the product of their norms, then the two vectors
are multiples of each other. One form of the equality case for Cauchy-Schwarz.
Compare `inner_eq_norm_mul_iff`, which takes the stronger hypothesis `⟪x, y⟫ = ‖x‖ * ‖y‖`. -/
lemma norm_inner_eq_norm_iff {x y : E} (hx₀ : x ≠ 0) (hy₀ : y ≠ 0) :
‖⟪x, y⟫‖ = ‖x‖ * ‖y‖ ↔ ∃ (r : 𝕜), r ≠ 0 ∧ y = r • x :=
calc ‖⟪x, y⟫‖ = ‖x‖ * ‖y‖ ↔ x = 0 ∨ ∃ r : 𝕜, y = r • x :
(@norm_inner_eq_norm_tfae 𝕜 _ _ _ _ x y).out 0 2
... ↔ ∃ r : 𝕜, y = r • x : or_iff_right hx₀
... ↔ ∃ r : 𝕜, r ≠ 0 ∧ y = r • x :
⟨λ ⟨r, h⟩, ⟨r, λ hr₀, hy₀ $ h.symm ▸ smul_eq_zero.2 $ or.inl hr₀, h⟩, λ ⟨r, hr₀, h⟩, ⟨r, h⟩⟩
/-- The inner product of two vectors, divided by the product of their
norms, has absolute value 1 if and only if they are nonzero and one is
a multiple of the other. One form of equality case for Cauchy-Schwarz. -/
lemma norm_inner_div_norm_mul_norm_eq_one_iff (x y : E) :
‖(⟪x, y⟫ / (‖x‖ * ‖y‖))‖ = 1 ↔ (x ≠ 0 ∧ ∃ (r : 𝕜), r ≠ 0 ∧ y = r • x) :=
begin
split,
{ intro h,
have hx₀ : x ≠ 0 := λ h₀, by simpa [h₀] using h,
have hy₀ : y ≠ 0 := λ h₀, by simpa [h₀] using h,
refine ⟨hx₀, (norm_inner_eq_norm_iff hx₀ hy₀).1 $ eq_of_div_eq_one _⟩,
simpa using h },
{ rintro ⟨hx, ⟨r, ⟨hr, rfl⟩⟩⟩,
simp only [norm_div, norm_mul, norm_of_real, abs_norm],
exact norm_inner_div_norm_mul_norm_eq_one_of_ne_zero_of_ne_zero_mul hx hr }
end
/-- The inner product of two vectors, divided by the product of their
norms, has absolute value 1 if and only if they are nonzero and one is
a multiple of the other. One form of equality case for Cauchy-Schwarz. -/
lemma abs_real_inner_div_norm_mul_norm_eq_one_iff (x y : F) :
|⟪x, y⟫_ℝ / (‖x‖ * ‖y‖)| = 1 ↔ (x ≠ 0 ∧ ∃ (r : ℝ), r ≠ 0 ∧ y = r • x) :=
@norm_inner_div_norm_mul_norm_eq_one_iff ℝ F _ _ _ x y
lemma inner_eq_norm_mul_iff_div {x y : E} (h₀ : x ≠ 0) :
⟪x, y⟫ = (‖x‖ : 𝕜) * ‖y‖ ↔ (‖y‖ / ‖x‖ : 𝕜) • x = y :=
begin
have h₀' := h₀,
rw [← norm_ne_zero_iff, ne.def, ← @of_real_eq_zero 𝕜] at h₀',
split; intro h,
{ have : x = 0 ∨ y = (⟪x, y⟫ / ⟪x, x⟫ : 𝕜) • x :=
((@norm_inner_eq_norm_tfae 𝕜 _ _ _ _ x y).out 0 1).1 (by simp [h]),
rw [this.resolve_left h₀, h],
simp [norm_smul, inner_self_norm_to_K, h₀'] },
{ conv_lhs { rw [← h, inner_smul_right, inner_self_eq_norm_sq_to_K] },
field_simp [sq, mul_left_comm] }
end
/-- If the inner product of two vectors is equal to the product of their norms (i.e.,
`⟪x, y⟫ = ‖x‖ * ‖y‖`), then the two vectors are nonnegative real multiples of each other. One form
of the equality case for Cauchy-Schwarz.
Compare `norm_inner_eq_norm_iff`, which takes the weaker hypothesis `abs ⟪x, y⟫ = ‖x‖ * ‖y‖`. -/
lemma inner_eq_norm_mul_iff {x y : E} :
⟪x, y⟫ = (‖x‖ : 𝕜) * ‖y‖ ↔ (‖y‖ : 𝕜) • x = (‖x‖ : 𝕜) • y :=
begin
rcases eq_or_ne x 0 with (rfl | h₀),
{ simp },
{ rw [inner_eq_norm_mul_iff_div h₀, div_eq_inv_mul, mul_smul, inv_smul_eq_iff₀],
rwa [ne.def, of_real_eq_zero, norm_eq_zero] },
end
/-- If the inner product of two vectors is equal to the product of their norms (i.e.,
`⟪x, y⟫ = ‖x‖ * ‖y‖`), then the two vectors are nonnegative real multiples of each other. One form
of the equality case for Cauchy-Schwarz.
Compare `norm_inner_eq_norm_iff`, which takes the weaker hypothesis `abs ⟪x, y⟫ = ‖x‖ * ‖y‖`. -/
lemma inner_eq_norm_mul_iff_real {x y : F} : ⟪x, y⟫_ℝ = ‖x‖ * ‖y‖ ↔ ‖y‖ • x = ‖x‖ • y :=
inner_eq_norm_mul_iff
/-- The inner product of two vectors, divided by the product of their
norms, has value 1 if and only if they are nonzero and one is
a positive multiple of the other. -/
lemma real_inner_div_norm_mul_norm_eq_one_iff (x y : F) :
⟪x, y⟫_ℝ / (‖x‖ * ‖y‖) = 1 ↔ (x ≠ 0 ∧ ∃ (r : ℝ), 0 < r ∧ y = r • x) :=
begin
split,
{ intro h,
have hx₀ : x ≠ 0 := λ h₀, by simpa [h₀] using h,
have hy₀ : y ≠ 0 := λ h₀, by simpa [h₀] using h,
refine ⟨hx₀, ‖y‖ / ‖x‖, div_pos (norm_pos_iff.2 hy₀) (norm_pos_iff.2 hx₀), _⟩,
exact ((inner_eq_norm_mul_iff_div hx₀).1 (eq_of_div_eq_one h)).symm },
{ rintro ⟨hx, ⟨r, ⟨hr, rfl⟩⟩⟩,
exact real_inner_div_norm_mul_norm_eq_one_of_ne_zero_of_pos_mul hx hr }
end
/-- The inner product of two vectors, divided by the product of their
norms, has value -1 if and only if they are nonzero and one is
a negative multiple of the other. -/
lemma real_inner_div_norm_mul_norm_eq_neg_one_iff (x y : F) :
⟪x, y⟫_ℝ / (‖x‖ * ‖y‖) = -1 ↔ (x ≠ 0 ∧ ∃ (r : ℝ), r < 0 ∧ y = r • x) :=
begin
rw [← neg_eq_iff_eq_neg, ← neg_div, ← inner_neg_right, ← norm_neg y,
real_inner_div_norm_mul_norm_eq_one_iff, (@neg_surjective ℝ _).exists],
refine iff.rfl.and (exists_congr $ λ r, _),
rw [neg_pos, neg_smul, neg_inj]
end
/-- If the inner product of two unit vectors is `1`, then the two vectors are equal. One form of
the equality case for Cauchy-Schwarz. -/
lemma inner_eq_one_iff_of_norm_one {x y : E} (hx : ‖x‖ = 1) (hy : ‖y‖ = 1) :
⟪x, y⟫ = 1 ↔ x = y :=
by { convert inner_eq_norm_mul_iff using 2; simp [hx, hy] }
lemma inner_lt_norm_mul_iff_real {x y : F} :
⟪x, y⟫_ℝ < ‖x‖ * ‖y‖ ↔ ‖y‖ • x ≠ ‖x‖ • y :=
calc ⟪x, y⟫_ℝ < ‖x‖ * ‖y‖
↔ ⟪x, y⟫_ℝ ≠ ‖x‖ * ‖y‖ : ⟨ne_of_lt, lt_of_le_of_ne (real_inner_le_norm _ _)⟩
... ↔ ‖y‖ • x ≠ ‖x‖ • y : not_congr inner_eq_norm_mul_iff_real
/-- If the inner product of two unit vectors is strictly less than `1`, then the two vectors are
distinct. One form of the equality case for Cauchy-Schwarz. -/
lemma inner_lt_one_iff_real_of_norm_one {x y : F} (hx : ‖x‖ = 1) (hy : ‖y‖ = 1) :
⟪x, y⟫_ℝ < 1 ↔ x ≠ y :=
by { convert inner_lt_norm_mul_iff_real; simp [hx, hy] }
/-- The inner product of two weighted sums, where the weights in each
sum add to 0, in terms of the norms of pairwise differences. -/
lemma inner_sum_smul_sum_smul_of_sum_eq_zero {ι₁ : Type*} {s₁ : finset ι₁} {w₁ : ι₁ → ℝ}
(v₁ : ι₁ → F) (h₁ : ∑ i in s₁, w₁ i = 0) {ι₂ : Type*} {s₂ : finset ι₂} {w₂ : ι₂ → ℝ}
(v₂ : ι₂ → F) (h₂ : ∑ i in s₂, w₂ i = 0) :
⟪(∑ i₁ in s₁, w₁ i₁ • v₁ i₁), (∑ i₂ in s₂, w₂ i₂ • v₂ i₂)⟫_ℝ =
(-∑ i₁ in s₁, ∑ i₂ in s₂, w₁ i₁ * w₂ i₂ * (‖v₁ i₁ - v₂ i₂‖ * ‖v₁ i₁ - v₂ i₂‖)) / 2 :=
by simp_rw [sum_inner, inner_sum, real_inner_smul_left, real_inner_smul_right,
real_inner_eq_norm_mul_self_add_norm_mul_self_sub_norm_sub_mul_self_div_two,
←div_sub_div_same, ←div_add_div_same, mul_sub_left_distrib, left_distrib,
finset.sum_sub_distrib, finset.sum_add_distrib, ←finset.mul_sum, ←finset.sum_mul,
h₁, h₂, zero_mul, mul_zero, finset.sum_const_zero, zero_add, zero_sub, finset.mul_sum,
neg_div, finset.sum_div, mul_div_assoc, mul_assoc]
variables (𝕜)
/-- The inner product as a sesquilinear map. -/
def innerₛₗ : E →ₗ⋆[𝕜] E →ₗ[𝕜] 𝕜 :=
linear_map.mk₂'ₛₗ _ _ (λ v w, ⟪v, w⟫) inner_add_left (λ _ _ _, inner_smul_left _ _ _)
inner_add_right (λ _ _ _, inner_smul_right _ _ _)
@[simp] lemma innerₛₗ_apply_coe (v : E) : ⇑(innerₛₗ 𝕜 v) = λ w, ⟪v, w⟫ := rfl
@[simp] lemma innerₛₗ_apply (v w : E) : innerₛₗ 𝕜 v w = ⟪v, w⟫ := rfl
/-- The inner product as a continuous sesquilinear map. Note that `to_dual_map` (resp. `to_dual`)
in `inner_product_space.dual` is a version of this given as a linear isometry (resp. linear
isometric equivalence). -/
def innerSL : E →L⋆[𝕜] E →L[𝕜] 𝕜 :=
linear_map.mk_continuous₂ (innerₛₗ 𝕜) 1
(λ x y, by simp only [norm_inner_le_norm, one_mul, innerₛₗ_apply])
@[simp] lemma innerSL_apply_coe (v : E) : ⇑(innerSL 𝕜 v) = λ w, ⟪v, w⟫ := rfl
@[simp] lemma innerSL_apply (v w : E) : innerSL 𝕜 v w = ⟪v, w⟫ := rfl
/-- `innerSL` is an isometry. Note that the associated `linear_isometry` is defined in
`inner_product_space.dual` as `to_dual_map`. -/
@[simp] lemma innerSL_apply_norm (x : E) : ‖innerSL 𝕜 x‖ = ‖x‖ :=
begin
refine le_antisymm ((innerSL 𝕜 x).op_norm_le_bound (norm_nonneg _)
(λ y, norm_inner_le_norm _ _)) _,
rcases eq_or_ne x 0 with (rfl | h),
{ simp },
{ refine (mul_le_mul_right (norm_pos_iff.2 h)).mp _,
calc ‖x‖ * ‖x‖ = ‖(⟪x, x⟫ : 𝕜)‖ : by rw [← sq, inner_self_eq_norm_sq_to_K, norm_pow,
norm_of_real, abs_norm]
... ≤ ‖innerSL 𝕜 x‖ * ‖x‖ : (innerSL 𝕜 x).le_op_norm _ }
end
/-- The inner product as a continuous sesquilinear map, with the two arguments flipped. -/
def innerSL_flip : E →L[𝕜] E →L⋆[𝕜] 𝕜 :=
@continuous_linear_map.flipₗᵢ' 𝕜 𝕜 𝕜 E E 𝕜 _ _ _ _ _ _ _ _ _ (ring_hom.id 𝕜) (star_ring_end 𝕜) _ _
(innerSL 𝕜)
@[simp] lemma innerSL_flip_apply (x y : E) : innerSL_flip 𝕜 x y = ⟪y, x⟫ := rfl
variables {𝕜}
namespace continuous_linear_map
variables {E' : Type*} [normed_add_comm_group E'] [inner_product_space 𝕜 E']
/-- Given `f : E →L[𝕜] E'`, construct the continuous sesquilinear form `λ x y, ⟪x, A y⟫`, given
as a continuous linear map. -/
def to_sesq_form : (E →L[𝕜] E') →L[𝕜] E' →L⋆[𝕜] E →L[𝕜] 𝕜 :=
↑((continuous_linear_map.flipₗᵢ' E E' 𝕜
(star_ring_end 𝕜) (ring_hom.id 𝕜)).to_continuous_linear_equiv) ∘L
(continuous_linear_map.compSL E E' (E' →L⋆[𝕜] 𝕜) (ring_hom.id 𝕜) (ring_hom.id 𝕜) (innerSL_flip 𝕜))
@[simp] lemma to_sesq_form_apply_coe (f : E →L[𝕜] E') (x : E') :
to_sesq_form f x = (innerSL 𝕜 x).comp f := rfl
lemma to_sesq_form_apply_norm_le {f : E →L[𝕜] E'} {v : E'} : ‖to_sesq_form f v‖ ≤ ‖f‖ * ‖v‖ :=
begin
refine op_norm_le_bound _ (mul_nonneg (norm_nonneg _) (norm_nonneg _)) _,
intro x,
have h₁ : ‖f x‖ ≤ ‖f‖ * ‖x‖ := le_op_norm _ _,
have h₂ := @norm_inner_le_norm 𝕜 E' _ _ _ v (f x),
calc ‖⟪v, f x⟫‖ ≤ ‖v‖ * ‖f x‖ : h₂
... ≤ ‖v‖ * (‖f‖ * ‖x‖) : mul_le_mul_of_nonneg_left h₁ (norm_nonneg v)
... = ‖f‖ * ‖v‖ * ‖x‖ : by ring,
end
end continuous_linear_map
/-- When an inner product space `E` over `𝕜` is considered as a real normed space, its inner
product satisfies `is_bounded_bilinear_map`.
In order to state these results, we need a `normed_space ℝ E` instance. We will later establish
such an instance by restriction-of-scalars, `inner_product_space.is_R_or_C_to_real 𝕜 E`, but this
instance may be not definitionally equal to some other “natural” instance. So, we assume
`[normed_space ℝ E]`.
-/
lemma is_bounded_bilinear_map_inner [normed_space ℝ E] :
is_bounded_bilinear_map ℝ (λ p : E × E, ⟪p.1, p.2⟫) :=
{ add_left := inner_add_left,
smul_left := λ r x y,
by simp only [← algebra_map_smul 𝕜 r x, algebra_map_eq_of_real, inner_smul_real_left],
add_right := inner_add_right,
smul_right := λ r x y,
by simp only [← algebra_map_smul 𝕜 r y, algebra_map_eq_of_real, inner_smul_real_right],
bound := ⟨1, zero_lt_one, λ x y,
by { rw [one_mul], exact norm_inner_le_norm x y, }⟩ }
end norm
section bessels_inequality
variables {ι: Type*} (x : E) {v : ι → E}
/-- Bessel's inequality for finite sums. -/
lemma orthonormal.sum_inner_products_le {s : finset ι} (hv : orthonormal 𝕜 v) :
∑ i in s, ‖⟪v i, x⟫‖ ^ 2 ≤ ‖x‖ ^ 2 :=
begin
have h₂ : ∑ i in s, ∑ j in s, ⟪v i, x⟫ * ⟪x, v j⟫ * ⟪v j, v i⟫
= (∑ k in s, (⟪v k, x⟫ * ⟪x, v k⟫) : 𝕜),
{ exact hv.inner_left_right_finset },
have h₃ : ∀ z : 𝕜, re (z * conj (z)) = ‖z‖ ^ 2,
{ intro z,
simp only [mul_conj, norm_sq_eq_def'],
norm_cast, },
suffices hbf: ‖x - ∑ i in s, ⟪v i, x⟫ • (v i)‖ ^ 2 = ‖x‖ ^ 2 - ∑ i in s, ‖⟪v i, x⟫‖ ^ 2,
{ rw [←sub_nonneg, ←hbf],
simp only [norm_nonneg, pow_nonneg], },
rw [@norm_sub_sq 𝕜, sub_add],
simp only [@inner_product_space.norm_sq_eq_inner 𝕜, inner_sum],
simp only [sum_inner, two_mul, inner_smul_right, inner_conj_symm, ←mul_assoc, h₂, ←h₃,
inner_conj_symm, add_monoid_hom.map_sum, finset.mul_sum, ←finset.sum_sub_distrib, inner_smul_left,
add_sub_cancel'],
end
/-- Bessel's inequality. -/
lemma orthonormal.tsum_inner_products_le (hv : orthonormal 𝕜 v) :
∑' i, ‖⟪v i, x⟫‖ ^ 2 ≤ ‖x‖ ^ 2 :=
begin
refine tsum_le_of_sum_le' _ (λ s, hv.sum_inner_products_le x),
simp only [norm_nonneg, pow_nonneg]
end
/-- The sum defined in Bessel's inequality is summable. -/
lemma orthonormal.inner_products_summable (hv : orthonormal 𝕜 v) : summable (λ i, ‖⟪v i, x⟫‖ ^ 2) :=
begin
use ⨆ s : finset ι, ∑ i in s, ‖⟪v i, x⟫‖ ^ 2,
apply has_sum_of_is_lub_of_nonneg,
{ intro b,
simp only [norm_nonneg, pow_nonneg], },
{ refine is_lub_csupr _,
use ‖x‖ ^ 2,
rintro y ⟨s, rfl⟩,
exact hv.sum_inner_products_le x }
end
end bessels_inequality
/-- A field `𝕜` satisfying `is_R_or_C` is itself a `𝕜`-inner product space. -/
instance is_R_or_C.inner_product_space : inner_product_space 𝕜 𝕜 :=
{ inner := λ x y, conj x * y,
norm_sq_eq_inner := λ x,
by { unfold inner, rw [mul_comm, mul_conj, of_real_re, norm_sq_eq_def'] },
conj_symm := λ x y, by simp only [mul_comm, map_mul, star_ring_end_self_apply],
add_left := λ x y z, by simp only [add_mul, map_add],
smul_left := λ x y z, by simp only [mul_assoc, smul_eq_mul, map_mul] }
@[simp] lemma is_R_or_C.inner_apply (x y : 𝕜) : ⟪x, y⟫ = (conj x) * y := rfl
/-! ### Inner product space structure on subspaces -/
/-- Induced inner product on a submodule. -/
instance submodule.inner_product_space (W : submodule 𝕜 E) : inner_product_space 𝕜 W :=
{ inner := λ x y, ⟪(x:E), (y:E)⟫,
conj_symm := λ _ _, inner_conj_symm _ _,
norm_sq_eq_inner := λ x, norm_sq_eq_inner (x : E),
add_left := λ _ _ _, inner_add_left _ _ _,
smul_left := λ _ _ _, inner_smul_left _ _ _,
..submodule.normed_space W }
/-- The inner product on submodules is the same as on the ambient space. -/
@[simp] lemma submodule.coe_inner (W : submodule 𝕜 E) (x y : W) : ⟪x, y⟫ = ⟪(x:E), ↑y⟫ := rfl
lemma orthonormal.cod_restrict {ι : Type*} {v : ι → E} (hv : orthonormal 𝕜 v)
(s : submodule 𝕜 E) (hvs : ∀ i, v i ∈ s) :
@orthonormal 𝕜 s _ _ _ ι (set.cod_restrict v s hvs) :=
s.subtypeₗᵢ.orthonormal_comp_iff.mp hv
lemma orthonormal_span {ι : Type*} {v : ι → E} (hv : orthonormal 𝕜 v) :
@orthonormal 𝕜 (submodule.span 𝕜 (set.range v)) _ _ _ ι
(λ i : ι, ⟨v i, submodule.subset_span (set.mem_range_self i)⟩) :=
hv.cod_restrict (submodule.span 𝕜 (set.range v))
(λ i, submodule.subset_span (set.mem_range_self i))
/-! ### Families of mutually-orthogonal subspaces of an inner product space -/
section orthogonal_family
variables {ι : Type*} [dec_ι : decidable_eq ι] (𝕜)
open_locale direct_sum
/-- An indexed family of mutually-orthogonal subspaces of an inner product space `E`.
The simple way to express this concept would be as a condition on `V : ι → submodule 𝕜 E`. We
We instead implement it as a condition on a family of inner product spaces each equipped with an
isometric embedding into `E`, thus making it a property of morphisms rather than subobjects.
The connection to the subobject spelling is shown in `orthogonal_family_iff_pairwise`.
This definition is less lightweight, but allows for better definitional properties when the inner
product space structure on each of the submodules is important -- for example, when considering
their Hilbert sum (`pi_lp V 2`). For example, given an orthonormal set of vectors `v : ι → E`,
we have an associated orthogonal family of one-dimensional subspaces of `E`, which it is convenient
to be able to discuss using `ι → 𝕜` rather than `Π i : ι, span 𝕜 (v i)`. -/
def orthogonal_family (G : ι → Type*)
[Π i, normed_add_comm_group (G i)] [Π i, inner_product_space 𝕜 (G i)] (V : Π i, G i →ₗᵢ[𝕜] E) :
Prop :=
∀ ⦃i j⦄, i ≠ j → ∀ v : G i, ∀ w : G j, ⟪V i v, V j w⟫ = 0
variables {𝕜} {G : ι → Type*}
[Π i, normed_add_comm_group (G i)] [Π i, inner_product_space 𝕜 (G i)] {V : Π i, G i →ₗᵢ[𝕜] E}
(hV : orthogonal_family 𝕜 G V) [dec_V : Π i (x : G i), decidable (x ≠ 0)]
lemma orthonormal.orthogonal_family {v : ι → E} (hv : orthonormal 𝕜 v) :
orthogonal_family 𝕜 (λ i : ι, 𝕜)
(λ i, linear_isometry.to_span_singleton 𝕜 E (hv.1 i)) :=
λ i j hij a b, by simp [inner_smul_left, inner_smul_right, hv.2 hij]
include hV dec_ι
lemma orthogonal_family.eq_ite {i j : ι} (v : G i) (w : G j) :
⟪V i v, V j w⟫ = ite (i = j) ⟪V i v, V j w⟫ 0 :=
begin
split_ifs,
{ refl },
{ exact hV h v w }
end
include dec_V
lemma orthogonal_family.inner_right_dfinsupp (l : ⨁ i, G i) (i : ι) (v : G i) :
⟪V i v, l.sum (λ j, V j)⟫ = ⟪v, l i⟫ :=
calc ⟪V i v, l.sum (λ j, V j)⟫
= l.sum (λ j, λ w, ⟪V i v, V j w⟫) : dfinsupp.inner_sum (λ j, V j) l (V i v)
... = l.sum (λ j, λ w, ite (i=j) ⟪V i v, V j w⟫ 0) :
congr_arg l.sum $ funext $ λ j, funext $ hV.eq_ite v
... = ⟪v, l i⟫ :
begin
simp only [dfinsupp.sum, submodule.coe_inner, finset.sum_ite_eq, ite_eq_left_iff,
dfinsupp.mem_support_to_fun],
split_ifs with h h,
{ simp only [linear_isometry.inner_map_map] },
{ simp only [of_not_not h, inner_zero_right] },
end
omit dec_ι dec_V
lemma orthogonal_family.inner_right_fintype [fintype ι] (l : Π i, G i) (i : ι) (v : G i) :
⟪V i v, ∑ j : ι, V j (l j)⟫ = ⟪v, l i⟫ :=
by classical;
calc ⟪V i v, ∑ j : ι, V j (l j)⟫
= ∑ j : ι, ⟪V i v, V j (l j)⟫: by rw inner_sum
... = ∑ j, ite (i = j) ⟪V i v, V j (l j)⟫ 0 :
congr_arg (finset.sum finset.univ) $ funext $ λ j, (hV.eq_ite v (l j))
... = ⟪v, l i⟫ : by simp only [finset.sum_ite_eq, finset.mem_univ, (V i).inner_map_map, if_true]
lemma orthogonal_family.inner_sum (l₁ l₂ : Π i, G i) (s : finset ι) :
⟪∑ i in s, V i (l₁ i), ∑ j in s, V j (l₂ j)⟫ = ∑ i in s, ⟪l₁ i, l₂ i⟫ :=
by classical;
calc ⟪∑ i in s, V i (l₁ i), ∑ j in s, V j (l₂ j)⟫
= ∑ j in s, ∑ i in s, ⟪V i (l₁ i), V j (l₂ j)⟫ : by simp only [sum_inner, inner_sum]
... = ∑ j in s, ∑ i in s, ite (i = j) ⟪V i (l₁ i), V j (l₂ j)⟫ 0 :
begin
congr' with i,
congr' with j,
apply hV.eq_ite,
end
... = ∑ i in s, ⟪l₁ i, l₂ i⟫ : by simp only [finset.sum_ite_of_true,
finset.sum_ite_eq', linear_isometry.inner_map_map, imp_self, implies_true_iff]
lemma orthogonal_family.norm_sum (l : Π i, G i) (s : finset ι) :
‖∑ i in s, V i (l i)‖ ^ 2 = ∑ i in s, ‖l i‖ ^ 2 :=
begin
have : (‖∑ i in s, V i (l i)‖ ^ 2 : 𝕜) = ∑ i in s, ‖l i‖ ^ 2,
{ simp only [← inner_self_eq_norm_sq_to_K, hV.inner_sum] },
exact_mod_cast this,
end
/-- The composition of an orthogonal family of subspaces with an injective function is also an
orthogonal family. -/
lemma orthogonal_family.comp {γ : Type*} {f : γ → ι} (hf : function.injective f) :
orthogonal_family 𝕜 (λ g, G (f g)) (λ g, V (f g)) :=
λ i j hij v w, hV (hf.ne hij) v w
lemma orthogonal_family.orthonormal_sigma_orthonormal {α : ι → Type*} {v_family : Π i, (α i) → G i}
(hv_family : ∀ i, orthonormal 𝕜 (v_family i)) :
orthonormal 𝕜 (λ a : Σ i, α i, V a.1 (v_family a.1 a.2)) :=
begin
split,
{ rintros ⟨i, v⟩,
simpa only [linear_isometry.norm_map] using (hv_family i).left v },
rintros ⟨i, v⟩ ⟨j, w⟩ hvw,
by_cases hij : i = j,
{ subst hij,
have : v ≠ w := λ h, by { subst h, exact hvw rfl },
simpa only [linear_isometry.inner_map_map] using (hv_family i).2 this },
{ exact hV hij (v_family i v) (v_family j w) }
end
include dec_ι
lemma orthogonal_family.norm_sq_diff_sum (f : Π i, G i) (s₁ s₂ : finset ι) :
‖∑ i in s₁, V i (f i) - ∑ i in s₂, V i (f i)‖ ^ 2
= ∑ i in s₁ \ s₂, ‖f i‖ ^ 2 + ∑ i in s₂ \ s₁, ‖f i‖ ^ 2 :=
begin
rw [← finset.sum_sdiff_sub_sum_sdiff, sub_eq_add_neg, ← finset.sum_neg_distrib],
let F : Π i, G i := λ i, if i ∈ s₁ then f i else - (f i),
have hF₁ : ∀ i ∈ s₁ \ s₂, F i = f i := λ i hi, if_pos (finset.sdiff_subset _ _ hi),
have hF₂ : ∀ i ∈ s₂ \ s₁, F i = - f i := λ i hi, if_neg (finset.mem_sdiff.mp hi).2,
have hF : ∀ i, ‖F i‖ = ‖f i‖,
{ intros i,
dsimp only [F],
split_ifs;
simp only [eq_self_iff_true, norm_neg], },
have : ‖∑ i in s₁ \ s₂, V i (F i) + ∑ i in s₂ \ s₁, V i (F i)‖ ^ 2 =
∑ i in s₁ \ s₂, ‖F i‖ ^ 2 + ∑ i in s₂ \ s₁, ‖F i‖ ^ 2,
{ have hs : disjoint (s₁ \ s₂) (s₂ \ s₁) := disjoint_sdiff_sdiff,
simpa only [finset.sum_union hs] using hV.norm_sum F (s₁ \ s₂ ∪ s₂ \ s₁) },
convert this using 4,
{ refine finset.sum_congr rfl (λ i hi, _),
simp only [hF₁ i hi] },
{ refine finset.sum_congr rfl (λ i hi, _),
simp only [hF₂ i hi, linear_isometry.map_neg] },
{ simp only [hF] },
{ simp only [hF] },
end
omit dec_ι
/-- A family `f` of mutually-orthogonal elements of `E` is summable, if and only if
`(λ i, ‖f i‖ ^ 2)` is summable. -/
lemma orthogonal_family.summable_iff_norm_sq_summable [complete_space E] (f : Π i, G i) :
summable (λ i, V i (f i)) ↔ summable (λ i, ‖f i‖ ^ 2) :=
begin
classical,
simp only [summable_iff_cauchy_seq_finset, normed_add_comm_group.cauchy_seq_iff,
real.norm_eq_abs],
split,
{ intros hf ε hε,
obtain ⟨a, H⟩ := hf _ (sqrt_pos.mpr hε),
use a,
intros s₁ hs₁ s₂ hs₂,
rw ← finset.sum_sdiff_sub_sum_sdiff,
refine (abs_sub _ _).trans_lt _,
have : ∀ i, 0 ≤ ‖f i‖ ^ 2 := λ i : ι, sq_nonneg _,
simp only [finset.abs_sum_of_nonneg' this],
have : ∑ i in s₁ \ s₂, ‖f i‖ ^ 2 + ∑ i in s₂ \ s₁, ‖f i‖ ^ 2 < (sqrt ε) ^ 2,
{ rw [← hV.norm_sq_diff_sum, sq_lt_sq, abs_of_nonneg (sqrt_nonneg _),
abs_of_nonneg (norm_nonneg _)],
exact H s₁ hs₁ s₂ hs₂ },
have hη := sq_sqrt (le_of_lt hε),
linarith },
{ intros hf ε hε,
have hε' : 0 < ε ^ 2 / 2 := half_pos (sq_pos_of_pos hε),
obtain ⟨a, H⟩ := hf _ hε',
use a,
intros s₁ hs₁ s₂ hs₂,
refine (abs_lt_of_sq_lt_sq' _ (le_of_lt hε)).2,
have has : a ≤ s₁ ⊓ s₂ := le_inf hs₁ hs₂,
rw hV.norm_sq_diff_sum,
have Hs₁ : ∑ (x : ι) in s₁ \ s₂, ‖f x‖ ^ 2 < ε ^ 2 / 2,
{ convert H _ hs₁ _ has,
have : s₁ ⊓ s₂ ⊆ s₁ := finset.inter_subset_left _ _,
rw [← finset.sum_sdiff this, add_tsub_cancel_right, finset.abs_sum_of_nonneg'],
{ simp },
{ exact λ i, sq_nonneg _ } },
have Hs₂ : ∑ (x : ι) in s₂ \ s₁, ‖f x‖ ^ 2 < ε ^ 2 /2,
{ convert H _ hs₂ _ has,
have : s₁ ⊓ s₂ ⊆ s₂ := finset.inter_subset_right _ _,
rw [← finset.sum_sdiff this, add_tsub_cancel_right, finset.abs_sum_of_nonneg'],
{ simp },
{ exact λ i, sq_nonneg _ } },
linarith },
end
omit hV
/-- An orthogonal family forms an independent family of subspaces; that is, any collection of
elements each from a different subspace in the family is linearly independent. In particular, the
pairwise intersections of elements of the family are 0. -/
lemma orthogonal_family.independent {V : ι → submodule 𝕜 E}
(hV : orthogonal_family 𝕜 (λ i, V i) (λ i, (V i).subtypeₗᵢ)) :
complete_lattice.independent V :=
begin
classical,
apply complete_lattice.independent_of_dfinsupp_lsum_injective,
rw [← @linear_map.ker_eq_bot _ _ _ _ _ _ (direct_sum.add_comm_group (λ i, V i)),
submodule.eq_bot_iff],
intros v hv,
rw linear_map.mem_ker at hv,
ext i,
suffices : ⟪(v i : E), v i⟫ = 0,
{ simpa only [inner_self_eq_zero] using this },
calc ⟪(v i : E), v i⟫ = ⟪(v i : E), dfinsupp.lsum ℕ (λ i, (V i).subtype) v⟫ :
by simpa only [dfinsupp.sum_add_hom_apply, dfinsupp.lsum_apply_apply]
using (hV.inner_right_dfinsupp v i (v i)).symm
... = 0 : by simp only [hv, inner_zero_right],
end
include dec_ι
lemma direct_sum.is_internal.collected_basis_orthonormal {V : ι → submodule 𝕜 E}
(hV : orthogonal_family 𝕜 (λ i, V i) (λ i, (V i).subtypeₗᵢ))
(hV_sum : direct_sum.is_internal (λ i, V i))
{α : ι → Type*}
{v_family : Π i, basis (α i) 𝕜 (V i)} (hv_family : ∀ i, orthonormal 𝕜 (v_family i)) :
orthonormal 𝕜 (hV_sum.collected_basis v_family) :=
by simpa only [hV_sum.collected_basis_coe] using hV.orthonormal_sigma_orthonormal hv_family
end orthogonal_family
section is_R_or_C_to_real
variables {G : Type*}
variables (𝕜 E)
include 𝕜
/-- A general inner product implies a real inner product. This is not registered as an instance
since it creates problems with the case `𝕜 = ℝ`. -/
def has_inner.is_R_or_C_to_real : has_inner ℝ E :=
{ inner := λ x y, re ⟪x, y⟫ }
/-- A general inner product space structure implies a real inner product structure. This is not
registered as an instance since it creates problems with the case `𝕜 = ℝ`, but in can be used in a
proof to obtain a real inner product space structure from a given `𝕜`-inner product space
structure. -/
def inner_product_space.is_R_or_C_to_real : inner_product_space ℝ E :=
{ norm_sq_eq_inner := norm_sq_eq_inner,
conj_symm := λ x y, inner_re_symm _ _,
add_left := λ x y z, by
{ change re ⟪x + y, z⟫ = re ⟪x, z⟫ + re ⟪y, z⟫,
simp only [inner_add_left, map_add] },
smul_left := λ x y r, by
{ change re ⟪(r : 𝕜) • x, y⟫ = r * re ⟪x, y⟫,
simp only [inner_smul_left, conj_of_real, of_real_mul_re] },
..has_inner.is_R_or_C_to_real 𝕜 E,
..normed_space.restrict_scalars ℝ 𝕜 E }
variable {E}
lemma real_inner_eq_re_inner (x y : E) :
@has_inner.inner ℝ E (has_inner.is_R_or_C_to_real 𝕜 E) x y = re ⟪x, y⟫ := rfl
lemma real_inner_I_smul_self (x : E) :
@has_inner.inner ℝ E (has_inner.is_R_or_C_to_real 𝕜 E) x ((I : 𝕜) • x) = 0 :=
by simp [real_inner_eq_re_inner, inner_smul_right]
omit 𝕜
/-- A complex inner product implies a real inner product -/
instance inner_product_space.complex_to_real
[normed_add_comm_group G] [inner_product_space ℂ G] : inner_product_space ℝ G :=
inner_product_space.is_R_or_C_to_real ℂ G
@[simp] protected lemma complex.inner (w z : ℂ) : ⟪w, z⟫_ℝ = (conj w * z).re := rfl
/-- The inner product on an inner product space of dimension 2 can be evaluated in terms
of a complex-number representation of the space. -/
lemma inner_map_complex [normed_add_comm_group G] [inner_product_space ℝ G]
(f : G ≃ₗᵢ[ℝ] ℂ) (x y : G) :
⟪x, y⟫_ℝ = (conj (f x) * f y).re :=
by rw [← complex.inner, f.inner_map_map]
end is_R_or_C_to_real
section continuous
/-!
### Continuity of the inner product
-/
lemma continuous_inner : continuous (λ p : E × E, ⟪p.1, p.2⟫) :=
begin
letI : inner_product_space ℝ E := inner_product_space.is_R_or_C_to_real 𝕜 E,
exact is_bounded_bilinear_map_inner.continuous
end
variables {α : Type*}
lemma filter.tendsto.inner {f g : α → E} {l : filter α} {x y : E} (hf : tendsto f l (𝓝 x))
(hg : tendsto g l (𝓝 y)) :
tendsto (λ t, ⟪f t, g t⟫) l (𝓝 ⟪x, y⟫) :=
(continuous_inner.tendsto _).comp (hf.prod_mk_nhds hg)
variables [topological_space α] {f g : α → E} {x : α} {s : set α}
include 𝕜
lemma continuous_within_at.inner (hf : continuous_within_at f s x)
(hg : continuous_within_at g s x) :
continuous_within_at (λ t, ⟪f t, g t⟫) s x :=
hf.inner hg
lemma continuous_at.inner (hf : continuous_at f x) (hg : continuous_at g x) :
continuous_at (λ t, ⟪f t, g t⟫) x :=
hf.inner hg
lemma continuous_on.inner (hf : continuous_on f s) (hg : continuous_on g s) :
continuous_on (λ t, ⟪f t, g t⟫) s :=
λ x hx, (hf x hx).inner (hg x hx)
@[continuity]
lemma continuous.inner (hf : continuous f) (hg : continuous g) : continuous (λ t, ⟪f t, g t⟫) :=
continuous_iff_continuous_at.2 $ λ x, hf.continuous_at.inner hg.continuous_at
end continuous
section re_apply_inner_self
/-- Extract a real bilinear form from an operator `T`, by taking the pairing `λ x, re ⟪T x, x⟫`. -/
def continuous_linear_map.re_apply_inner_self (T : E →L[𝕜] E) (x : E) : ℝ := re ⟪T x, x⟫
lemma continuous_linear_map.re_apply_inner_self_apply (T : E →L[𝕜] E) (x : E) :
T.re_apply_inner_self x = re ⟪T x, x⟫ :=
rfl
lemma continuous_linear_map.re_apply_inner_self_continuous (T : E →L[𝕜] E) :
continuous T.re_apply_inner_self :=
re_clm.continuous.comp $ T.continuous.inner continuous_id
lemma continuous_linear_map.re_apply_inner_self_smul (T : E →L[𝕜] E) (x : E) {c : 𝕜} :
T.re_apply_inner_self (c • x) = ‖c‖ ^ 2 * T.re_apply_inner_self x :=
by simp only [continuous_linear_map.map_smul, continuous_linear_map.re_apply_inner_self_apply,
inner_smul_left, inner_smul_right, ← mul_assoc, mul_conj, norm_sq_eq_def', ← smul_re,
algebra.smul_def (‖c‖ ^ 2) ⟪T x, x⟫, algebra_map_eq_of_real]
end re_apply_inner_self
namespace uniform_space.completion
open uniform_space function
instance {𝕜' E' : Type*} [topological_space 𝕜'] [uniform_space E'] [has_inner 𝕜' E'] :
has_inner 𝕜' (completion E') :=
{ inner := curry $ (dense_inducing_coe.prod dense_inducing_coe).extend (uncurry inner) }
@[simp] lemma inner_coe (a b : E) :
inner (a : completion E) (b : completion E) = (inner a b : 𝕜) :=
(dense_inducing_coe.prod dense_inducing_coe).extend_eq
(continuous_inner : continuous (uncurry inner : E × E → 𝕜)) (a, b)
protected lemma continuous_inner :
continuous (uncurry inner : completion E × completion E → 𝕜) :=
begin
let inner' : E →+ E →+ 𝕜 :=
{ to_fun := λ x, (innerₛₗ 𝕜 x).to_add_monoid_hom,
map_zero' := by ext x; exact inner_zero_left _,
map_add' := λ x y, by ext z; exact inner_add_left _ _ _ },
have : continuous (λ p : E × E, inner' p.1 p.2) := continuous_inner,
rw [completion.has_inner, uncurry_curry _],
change continuous (((dense_inducing_to_compl E).prod (dense_inducing_to_compl E)).extend
(λ p : E × E, inner' p.1 p.2)),
exact (dense_inducing_to_compl E).extend_Z_bilin (dense_inducing_to_compl E) this,
end
protected lemma continuous.inner {α : Type*} [topological_space α]
{f g : α → completion E} (hf : continuous f) (hg : continuous g) :
continuous (λ x : α, inner (f x) (g x) : α → 𝕜) :=
uniform_space.completion.continuous_inner.comp (hf.prod_mk hg : _)
instance : inner_product_space 𝕜 (completion E) :=
{ norm_sq_eq_inner := λ x, completion.induction_on x
(is_closed_eq
(continuous_norm.pow 2)
(continuous_re.comp (continuous.inner continuous_id' continuous_id')))
(λ a, by simp only [norm_coe, inner_coe, inner_self_eq_norm_sq]),
conj_symm := λ x y, completion.induction_on₂ x y
(is_closed_eq
(continuous_conj.comp (continuous.inner continuous_snd continuous_fst))
(continuous.inner continuous_fst continuous_snd))
(λ a b, by simp only [inner_coe, inner_conj_symm]),
add_left := λ x y z, completion.induction_on₃ x y z
(is_closed_eq
(continuous.inner (continuous_fst.add (continuous_fst.comp continuous_snd))
(continuous_snd.comp continuous_snd))
((continuous.inner continuous_fst (continuous_snd.comp continuous_snd)).add
(continuous.inner (continuous_fst.comp continuous_snd)
(continuous_snd.comp continuous_snd))))
(λ a b c, by simp only [← coe_add, inner_coe, inner_add_left]),
smul_left := λ x y c, completion.induction_on₂ x y
(is_closed_eq
(continuous.inner (continuous_fst.const_smul c) continuous_snd)
((continuous_mul_left _).comp (continuous.inner continuous_fst continuous_snd)))
(λ a b, by simp only [← coe_smul c a, inner_coe, inner_smul_left]) }
end uniform_space.completion
|
44234b1d8c45b54953fb5a9266a6ad2fe4b7d444
|
17d3c61bf162bf88be633867ed4cb201378a8769
|
/tests/lean/run/simp_partial_app.lean
|
20aba2bc57346a25d8a58d22f13d38640fc2af34
|
[
"Apache-2.0"
] |
permissive
|
u20024804/lean
|
11def01468fb4796fb0da76015855adceac7e311
|
d315e424ff17faf6fe096a0a1407b70193009726
|
refs/heads/master
| 1,611,388,567,561
| 1,485,836,506,000
| 1,485,836,625,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 684
|
lean
|
open tactic
meta def check_expr (p : pexpr) (t : expr) : tactic unit :=
do e ← to_expr p, guard (expr.alpha_eqv t e)
meta def check_target (p : pexpr) : tactic unit :=
do t ← target, check_expr p t
example (a : list nat) : a = [1, 2] → a^.for nat.succ = [2, 3] :=
begin
intros,
simp [list.for, flip],
check_target `(list.map nat.succ a = [2, 3]),
subst a,
simp [list.map],
check_target `([nat.succ 1, nat.succ 2] = [2, 3]),
reflexivity
end
constant f {α : Type} [has_zero α] (a b : α) : a ≠ 0 → b ≠ 0 → α
axiom fax {α : Type} [has_zero α] (a : α) : f a = λ b h₁ h₂, a
lemma ex : f 1 2 dec_trivial dec_trivial = 1 :=
begin
simp [fax]
end
|
44255f533710909c63d05f9cee9d2d902dcd403c
|
aa3f8992ef7806974bc1ffd468baa0c79f4d6643
|
/tests/lean/notation.lean
|
e8789e886530372bc99ff9faa2f3e3c60d6713c4
|
[
"Apache-2.0"
] |
permissive
|
codyroux/lean
|
7f8dff750722c5382bdd0a9a9275dc4bb2c58dd3
|
0cca265db19f7296531e339192e9b9bae4a31f8b
|
refs/heads/master
| 1,610,909,964,159
| 1,407,084,399,000
| 1,416,857,075,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 395
|
lean
|
import logic data.num data.nat.basic
open num
constant b : num
check b + b + b
check true ∧ false ∧ true
check (true ∧ false) ∧ true
check 2 + (2 + 2)
check (2 + 2) + 2
check 1 = (2 + 3)*2
check 2 + 3 * 2 = 3 * 2 + 2
check (true ∨ false) = (true ∨ false) ∧ true
check true ∧ (false ∨ true)
constant A : Type₁
constant a : A
notation 1 := a
check a
open nat
check ℕ → ℕ
|
2d4791d7d2ce76fde214a6eb04c364c862589a18
|
8cae430f0a71442d02dbb1cbb14073b31048e4b0
|
/src/topology/instances/int.lean
|
7805d4cb8029c02f928b01bdab806583180653f2
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/mathlib
|
56a2cadd17ac88caf4ece0a775932fa26327ba0e
|
442a83d738cb208d3600056c489be16900ba701d
|
refs/heads/master
| 1,693,584,102,358
| 1,693,471,902,000
| 1,693,471,902,000
| 97,922,418
| 1,595
| 352
|
Apache-2.0
| 1,694,693,445,000
| 1,500,624,130,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 2,399
|
lean
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import data.int.interval
import topology.metric_space.basic
import order.filter.archimedean
/-!
# Topology on the integers
> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
> Any changes to this file require a corresponding PR to mathlib4.
The structure of a metric space on `ℤ` is introduced in this file, induced from `ℝ`.
-/
noncomputable theory
open metric set filter
namespace int
instance : has_dist ℤ := ⟨λ x y, dist (x : ℝ) y⟩
theorem dist_eq (x y : ℤ) : dist x y = |x - y| := rfl
@[norm_cast, simp] theorem dist_cast_real (x y : ℤ) : dist (x : ℝ) y = dist x y := rfl
lemma pairwise_one_le_dist : pairwise (λ m n : ℤ, 1 ≤ dist m n) :=
begin
intros m n hne,
rw dist_eq, norm_cast, rwa [← zero_add (1 : ℤ), int.add_one_le_iff, abs_pos, sub_ne_zero]
end
lemma uniform_embedding_coe_real : uniform_embedding (coe : ℤ → ℝ) :=
uniform_embedding_bot_of_pairwise_le_dist zero_lt_one pairwise_one_le_dist
lemma closed_embedding_coe_real : closed_embedding (coe : ℤ → ℝ) :=
closed_embedding_of_pairwise_le_dist zero_lt_one pairwise_one_le_dist
instance : metric_space ℤ := int.uniform_embedding_coe_real.comap_metric_space _
theorem preimage_ball (x : ℤ) (r : ℝ) : coe ⁻¹' (ball (x : ℝ) r) = ball x r := rfl
theorem preimage_closed_ball (x : ℤ) (r : ℝ) :
coe ⁻¹' (closed_ball (x : ℝ) r) = closed_ball x r := rfl
theorem ball_eq_Ioo (x : ℤ) (r : ℝ) : ball x r = Ioo ⌊↑x - r⌋ ⌈↑x + r⌉ :=
by rw [← preimage_ball, real.ball_eq_Ioo, preimage_Ioo]
theorem closed_ball_eq_Icc (x : ℤ) (r : ℝ) : closed_ball x r = Icc ⌈↑x - r⌉ ⌊↑x + r⌋ :=
by rw [← preimage_closed_ball, real.closed_ball_eq_Icc, preimage_Icc]
instance : proper_space ℤ :=
⟨ begin
intros x r,
rw closed_ball_eq_Icc,
exact (set.finite_Icc _ _).is_compact,
end ⟩
@[simp] lemma cocompact_eq : cocompact ℤ = at_bot ⊔ at_top :=
by simp only [← comap_dist_right_at_top_eq_cocompact (0 : ℤ), dist_eq, sub_zero, cast_zero,
← cast_abs, ← @comap_comap _ _ _ _ abs, int.comap_coe_at_top, comap_abs_at_top]
@[simp] lemma cofinite_eq : (cofinite : filter ℤ) = at_bot ⊔ at_top :=
by rw [← cocompact_eq_cofinite, cocompact_eq]
end int
|
31114f0f8a69302176f95adbc5fa69e4cf03d81d
|
fa02ed5a3c9c0adee3c26887a16855e7841c668b
|
/src/group_theory/perm/support.lean
|
a3b7f2979a7322a92478053cb207a4bd5ccfb6e6
|
[
"Apache-2.0"
] |
permissive
|
jjgarzella/mathlib
|
96a345378c4e0bf26cf604aed84f90329e4896a2
|
395d8716c3ad03747059d482090e2bb97db612c8
|
refs/heads/master
| 1,686,480,124,379
| 1,625,163,323,000
| 1,625,163,323,000
| 281,190,421
| 2
| 0
|
Apache-2.0
| 1,595,268,170,000
| 1,595,268,169,000
| null |
UTF-8
|
Lean
| false
| false
| 18,957
|
lean
|
/-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Aaron Anderson, Yakov Pechersky
-/
import data.finset.sort
import data.fintype.basic
import group_theory.perm.basic
/-!
# Support of a permutation
## Main definitions
In the following, `f g : equiv.perm α`.
* `equiv.perm.disjoint`: two permutations `f` and `g` are `disjoint` if every element is fixed
either by `f`, or by `g`.
Equivalently, `f` and `g` are `disjoint` iff their `support` are disjoint.
* `equiv.perm.is_swap`: `f = swap x y` for `x ≠ y`.
* `equiv.perm.support`: the elements `x : α` that are not fixed by `f`.
-/
open equiv finset
namespace equiv.perm
variables {α : Type*}
section disjoint
/-- Two permutations `f` and `g` are `disjoint` if their supports are disjoint, i.e.,
every element is fixed either by `f`, or by `g`. -/
def disjoint (f g : perm α) := ∀ x, f x = x ∨ g x = x
variables {f g h : perm α}
@[symm] lemma disjoint.symm : disjoint f g → disjoint g f :=
by simp only [disjoint, or.comm, imp_self]
lemma disjoint.symmetric : symmetric (@disjoint α) :=
λ _ _, disjoint.symm
lemma disjoint_comm : disjoint f g ↔ disjoint g f :=
⟨disjoint.symm, disjoint.symm⟩
lemma disjoint.commute (h : disjoint f g) : commute f g :=
equiv.ext $ λ x, (h x).elim
(λ hf, (h (g x)).elim (λ hg, by simp [mul_apply, hf, hg])
(λ hg, by simp [mul_apply, hf, g.injective hg]))
(λ hg, (h (f x)).elim (λ hf, by simp [mul_apply, f.injective hf, hg])
(λ hf, by simp [mul_apply, hf, hg]))
@[simp] lemma disjoint_one_left (f : perm α) : disjoint 1 f := λ _, or.inl rfl
@[simp] lemma disjoint_one_right (f : perm α) : disjoint f 1 := λ _, or.inr rfl
lemma disjoint_iff_eq_or_eq : disjoint f g ↔ ∀ (x : α), f x = x ∨ g x = x := iff.rfl
@[simp] lemma disjoint_refl_iff : disjoint f f ↔ f = 1 :=
begin
refine ⟨λ h, _, λ h, h.symm ▸ disjoint_one_left 1⟩,
ext x,
cases h x with hx hx;
simp [hx]
end
lemma disjoint.inv_left (h : disjoint f g) : disjoint f⁻¹ g :=
begin
intro x,
rw [inv_eq_iff_eq, eq_comm],
exact h x
end
lemma disjoint.inv_right (h : disjoint f g) : disjoint f g⁻¹ :=
h.symm.inv_left.symm
@[simp] lemma disjoint_inv_left_iff : disjoint f⁻¹ g ↔ disjoint f g :=
begin
refine ⟨λ h, _, disjoint.inv_left⟩,
convert h.inv_left,
exact (inv_inv _).symm
end
@[simp] lemma disjoint_inv_right_iff : disjoint f g⁻¹ ↔ disjoint f g :=
by rw [disjoint_comm, disjoint_inv_left_iff, disjoint_comm]
lemma disjoint.mul_left (H1 : disjoint f h) (H2 : disjoint g h) :
disjoint (f * g) h :=
λ x, by cases H1 x; cases H2 x; simp *
lemma disjoint.mul_right (H1 : disjoint f g) (H2 : disjoint f h) :
disjoint f (g * h) :=
by { rw disjoint_comm, exact H1.symm.mul_left H2.symm }
lemma disjoint_prod_right (l : list (perm α))
(h : ∀ g ∈ l, disjoint f g) : disjoint f l.prod :=
begin
induction l with g l ih,
{ exact disjoint_one_right _ },
{ rw list.prod_cons,
exact (h _ (list.mem_cons_self _ _)).mul_right (ih (λ g hg, h g (list.mem_cons_of_mem _ hg))) }
end
lemma disjoint_prod_perm {l₁ l₂ : list (perm α)} (hl : l₁.pairwise disjoint)
(hp : l₁ ~ l₂) : l₁.prod = l₂.prod :=
hp.prod_eq' $ hl.imp $ λ f g, disjoint.commute
lemma nodup_of_pairwise_disjoint {l : list (perm α)} (h1 : (1 : perm α) ∉ l)
(h2 : l.pairwise disjoint) : l.nodup :=
begin
refine list.pairwise.imp_of_mem _ h2,
rintros σ - h_mem - h_disjoint rfl,
suffices : σ = 1,
{ rw this at h_mem,
exact h1 h_mem },
exact ext (λ a, (or_self _).mp (h_disjoint a)),
end
lemma pow_apply_eq_self_of_apply_eq_self {x : α} (hfx : f x = x) :
∀ n : ℕ, (f ^ n) x = x
| 0 := rfl
| (n+1) := by rw [pow_succ', mul_apply, hfx, pow_apply_eq_self_of_apply_eq_self]
lemma gpow_apply_eq_self_of_apply_eq_self {x : α} (hfx : f x = x) :
∀ n : ℤ, (f ^ n) x = x
| (n : ℕ) := pow_apply_eq_self_of_apply_eq_self hfx n
| -[1+ n] := by rw [gpow_neg_succ_of_nat, inv_eq_iff_eq, pow_apply_eq_self_of_apply_eq_self hfx]
lemma pow_apply_eq_of_apply_apply_eq_self {x : α} (hffx : f (f x) = x) :
∀ n : ℕ, (f ^ n) x = x ∨ (f ^ n) x = f x
| 0 := or.inl rfl
| (n+1) := (pow_apply_eq_of_apply_apply_eq_self n).elim
(λ h, or.inr (by rw [pow_succ, mul_apply, h]))
(λ h, or.inl (by rw [pow_succ, mul_apply, h, hffx]))
lemma gpow_apply_eq_of_apply_apply_eq_self {x : α} (hffx : f (f x) = x) :
∀ i : ℤ, (f ^ i) x = x ∨ (f ^ i) x = f x
| (n : ℕ) := pow_apply_eq_of_apply_apply_eq_self hffx n
| -[1+ n] := by { rw [gpow_neg_succ_of_nat, inv_eq_iff_eq, ← f.injective.eq_iff, ← mul_apply,
← pow_succ, eq_comm, inv_eq_iff_eq, ← mul_apply, ← pow_succ', @eq_comm _ x, or.comm],
exact pow_apply_eq_of_apply_apply_eq_self hffx _ }
lemma disjoint.mul_apply_eq_iff {σ τ : perm α} (hστ : disjoint σ τ) {a : α} :
(σ * τ) a = a ↔ σ a = a ∧ τ a = a :=
begin
refine ⟨λ h, _, λ h, by rw [mul_apply, h.2, h.1]⟩,
cases hστ a with hσ hτ,
{ exact ⟨hσ, σ.injective (h.trans hσ.symm)⟩ },
{ exact ⟨(congr_arg σ hτ).symm.trans h, hτ⟩ },
end
lemma disjoint.mul_eq_one_iff {σ τ : perm α} (hστ : disjoint σ τ) :
σ * τ = 1 ↔ σ = 1 ∧ τ = 1 :=
by simp_rw [ext_iff, one_apply, hστ.mul_apply_eq_iff, forall_and_distrib]
lemma disjoint.gpow_disjoint_gpow {σ τ : perm α} (hστ : disjoint σ τ) (m n : ℤ) :
disjoint (σ ^ m) (τ ^ n) :=
λ x, or.imp (λ h, gpow_apply_eq_self_of_apply_eq_self h m)
(λ h, gpow_apply_eq_self_of_apply_eq_self h n) (hστ x)
lemma disjoint.pow_disjoint_pow {σ τ : perm α} (hστ : disjoint σ τ) (m n : ℕ) :
disjoint (σ ^ m) (τ ^ n) :=
hστ.gpow_disjoint_gpow m n
end disjoint
section is_swap
variable [decidable_eq α]
/-- `f.is_swap` indicates that the permutation `f` is a transposition of two elements. -/
def is_swap (f : perm α) : Prop := ∃ x y, x ≠ y ∧ f = swap x y
lemma is_swap.of_subtype_is_swap {p : α → Prop} [decidable_pred p]
{f : perm (subtype p)} (h : f.is_swap) : (of_subtype f).is_swap :=
let ⟨⟨x, hx⟩, ⟨y, hy⟩, hxy⟩ := h in
⟨x, y, by { simp only [ne.def] at hxy, exact hxy.1 },
equiv.ext $ λ z, begin
rw [hxy.2, of_subtype],
simp only [swap_apply_def, coe_fn_mk, swap_inv, subtype.mk_eq_mk, monoid_hom.coe_mk],
split_ifs;
rw subtype.coe_mk <|> cc,
end⟩
lemma ne_and_ne_of_swap_mul_apply_ne_self {f : perm α} {x y : α}
(hy : (swap x (f x) * f) y ≠ y) : f y ≠ y ∧ y ≠ x :=
begin
simp only [swap_apply_def, mul_apply, f.injective.eq_iff] at *,
by_cases h : f y = x,
{ split; intro; simp only [*, if_true, eq_self_iff_true, not_true, ne.def] at * },
{ split_ifs at hy; cc }
end
end is_swap
section support
variables [decidable_eq α] [fintype α] {f g : perm α}
/-- The `finset` of nonfixed points of a permutation. -/
def support (f : perm α) : finset α := univ.filter (λ x, f x ≠ x)
@[simp] lemma mem_support {x : α} : x ∈ f.support ↔ f x ≠ x :=
by rw [support, mem_filter, and_iff_right (mem_univ x)]
lemma not_mem_support {x : α} : x ∉ f.support ↔ f x = x := by simp
@[simp] lemma support_eq_empty_iff {σ : perm α} : σ.support = ∅ ↔ σ = 1 :=
by simp_rw [finset.ext_iff, mem_support, finset.not_mem_empty, iff_false, not_not,
equiv.perm.ext_iff, one_apply]
@[simp] lemma support_one : (1 : perm α).support = ∅ :=
by rw support_eq_empty_iff
@[simp] lemma support_refl : support (equiv.refl α) = ∅ := support_one
lemma support_congr (h : f.support ⊆ g.support)
(h' : ∀ x ∈ g.support, f x = g x) : f = g :=
begin
ext x,
by_cases hx : x ∈ g.support,
{ exact h' x hx },
{ rw [not_mem_support.mp hx, ←not_mem_support],
exact λ H, hx (h H) }
end
lemma support_mul_le (f g : perm α) :
(f * g).support ≤ f.support ⊔ g.support :=
λ x, begin
rw [sup_eq_union, mem_union, mem_support, mem_support,
mem_support, mul_apply, ←not_and_distrib, not_imp_not],
rintro ⟨hf, hg⟩,
rw [hg, hf]
end
lemma exists_mem_support_of_mem_support_prod {l : list (perm α)} {x : α}
(hx : x ∈ l.prod.support) :
∃ f : perm α, f ∈ l ∧ x ∈ f.support :=
begin
contrapose! hx,
simp_rw [mem_support, not_not] at hx ⊢,
induction l with f l ih generalizing hx,
{ refl },
{ rw [list.prod_cons, mul_apply, ih (λ g hg, hx g (or.inr hg)), hx f (or.inl rfl)] },
end
lemma support_pow_le (σ : perm α) (n : ℤ) :
(σ ^ n).support ≤ σ.support :=
λ x h1, mem_support.mpr (λ h2, mem_support.mp h1 (gpow_apply_eq_self_of_apply_eq_self h2 n))
@[simp] lemma support_inv (σ : perm α) : support (σ⁻¹) = σ.support :=
by simp_rw [finset.ext_iff, mem_support, not_iff_not,
(inv_eq_iff_eq).trans eq_comm, iff_self, imp_true_iff]
@[simp]
lemma apply_mem_support {x : α} :
f x ∈ f.support ↔ x ∈ f.support :=
by rw [mem_support, mem_support, ne.def, ne.def, not_iff_not, apply_eq_iff_eq]
@[simp]
lemma pow_apply_mem_support {n : ℕ} {x : α} :
(f ^ n) x ∈ f.support ↔ x ∈ f.support :=
begin
induction n with n ih,
{ refl },
rw [pow_succ, perm.mul_apply, apply_mem_support, ih]
end
@[simp]
lemma gpow_apply_mem_support {n : ℤ} {x : α} :
(f ^ n) x ∈ f.support ↔ x ∈ f.support :=
begin
cases n,
{ rw [int.of_nat_eq_coe, gpow_coe_nat, pow_apply_mem_support] },
{ rw [gpow_neg_succ_of_nat, ← support_inv, ← inv_pow, pow_apply_mem_support] }
end
lemma pow_eq_on_of_mem_support (h : ∀ (x ∈ f.support ∩ g.support), f x = g x)
(k : ℕ) : ∀ (x ∈ f.support ∩ g.support), (f ^ k) x = (g ^ k) x :=
begin
induction k with k hk,
{ simp },
{ intros x hx,
rw [pow_succ', mul_apply, pow_succ', mul_apply, h _ hx, hk],
rwa [mem_inter, apply_mem_support, ←h _ hx, apply_mem_support, ←mem_inter] }
end
lemma disjoint_iff_disjoint_support :
disjoint f g ↔ _root_.disjoint f.support g.support :=
by simp [disjoint_iff_eq_or_eq, disjoint_iff, finset.ext_iff, not_and_distrib]
lemma disjoint.disjoint_support (h : disjoint f g) :
_root_.disjoint f.support g.support :=
disjoint_iff_disjoint_support.1 h
lemma disjoint.support_mul (h : disjoint f g) :
(f * g).support = f.support ∪ g.support :=
begin
refine le_antisymm (support_mul_le _ _) (λ a, _),
rw [mem_union, mem_support, mem_support, mem_support, mul_apply, ←not_and_distrib, not_imp_not],
exact (h a).elim (λ hf h, ⟨hf, f.apply_eq_iff_eq.mp (h.trans hf.symm)⟩)
(λ hg h, ⟨(congr_arg f hg).symm.trans h, hg⟩),
end
lemma support_prod_of_pairwise_disjoint (l : list (perm α)) (h : l.pairwise disjoint) :
l.prod.support = (l.map support).foldr (⊔) ⊥ :=
begin
induction l with hd tl hl,
{ simp },
{ rw [list.pairwise_cons] at h,
have : disjoint hd tl.prod := disjoint_prod_right _ h.left,
simp [this.support_mul, hl h.right] }
end
lemma support_prod_le (l : list (perm α)) :
l.prod.support ≤ (l.map support).foldr (⊔) ⊥ :=
begin
induction l with hd tl hl,
{ simp },
{ rw [list.prod_cons, list.map_cons, list.foldr_cons],
refine (support_mul_le hd tl.prod).trans _,
exact sup_le_sup (le_refl _) hl }
end
lemma support_gpow_le (σ : perm α) (n : ℤ) :
(σ ^ n).support ≤ σ.support :=
by { cases n; exact support_pow_le σ _ }
@[simp] lemma support_swap {x y : α} (h : x ≠ y) : support (swap x y) = {x, y} :=
begin
ext z,
by_cases hx : z = x;
by_cases hy : z = y,
any_goals { simpa [hx, hy] using h.symm },
{ simp [swap_apply_of_ne_of_ne, hx, hy] }
end
lemma support_swap_iff (x y : α) :
support (swap x y) = {x, y} ↔ x ≠ y :=
begin
refine ⟨λ h H, _, support_swap⟩,
subst H,
simp only [swap_self, support_refl, insert_singleton_self_eq] at h,
have : x ∈ ∅,
{ rw h,
exact mem_singleton.mpr rfl },
simpa
end
lemma support_swap_mul_swap {x y z : α} (h : list.nodup [x, y, z]) :
support (swap x y * swap y z) = {x, y, z} :=
begin
simp only [list.not_mem_nil, and_true, list.mem_cons_iff, not_false_iff, list.nodup_cons,
list.mem_singleton, and_self, list.nodup_nil] at h,
push_neg at h,
apply le_antisymm,
{ convert support_mul_le _ _,
rw [support_swap h.left.left, support_swap h.right],
ext,
simp [or.comm, or.left_comm] },
{ intro,
simp only [mem_insert, mem_singleton],
rintro (rfl | rfl | rfl | _);
simp [swap_apply_of_ne_of_ne, h.left.left, h.left.left.symm, h.left.right, h.left.right.symm,
h.right.symm] }
end
lemma support_swap_mul_ge_support_diff (f : perm α) (x y : α) :
f.support \ {x, y} ≤ (swap x y * f).support :=
begin
intro,
simp only [and_imp, perm.coe_mul, function.comp_app, ne.def, mem_support, mem_insert, mem_sdiff,
mem_singleton],
push_neg,
rintro ha ⟨hx, hy⟩ H,
rw [swap_apply_eq_iff, swap_apply_of_ne_of_ne hx hy] at H,
exact ha H
end
lemma support_swap_mul_eq (f : perm α) (x : α) (h : f (f x) ≠ x) :
(swap x (f x) * f).support = f.support \ {x} :=
begin
by_cases hx : f x = x,
{ simp [hx, sdiff_singleton_eq_erase, not_mem_support.mpr hx, erase_eq_of_not_mem] },
ext z,
by_cases hzx : z = x,
{ simp [hzx] },
by_cases hzf : z = f x,
{ simp [hzf, hx, h, swap_apply_of_ne_of_ne], },
by_cases hzfx : f z = x,
{ simp [ne.symm hzx, hzx, ne.symm hzf, hzfx] },
{ simp [ne.symm hzx, hzx, ne.symm hzf, hzfx, f.injective.ne hzx, swap_apply_of_ne_of_ne] }
end
lemma mem_support_swap_mul_imp_mem_support_ne {x y : α}
(hy : y ∈ support (swap x (f x) * f)) : y ∈ support f ∧ y ≠ x :=
begin
simp only [mem_support, swap_apply_def, mul_apply, f.injective.eq_iff] at *,
by_cases h : f y = x,
{ split; intro; simp only [*, if_true, eq_self_iff_true, not_true, ne.def] at * },
{ split_ifs at hy; cc }
end
lemma disjoint.mem_imp (h : disjoint f g) {x : α} (hx : x ∈ f.support) :
x ∉ g.support :=
λ H, h.disjoint_support (mem_inter_of_mem hx H)
lemma eq_on_support_mem_disjoint {l : list (perm α)} (h : f ∈ l) (hl : l.pairwise disjoint) :
∀ (x ∈ f.support), f x = l.prod x :=
begin
induction l with hd tl IH,
{ simpa using h },
{ intros x hx,
rw list.pairwise_cons at hl,
rw list.mem_cons_iff at h,
rcases h with rfl|h,
{ rw [list.prod_cons, mul_apply, not_mem_support.mp
((disjoint_prod_right tl hl.left).mem_imp hx)] },
{ rw [list.prod_cons, mul_apply, ←IH h hl.right _ hx, eq_comm, ←not_mem_support],
refine (hl.left _ h).symm.mem_imp _,
simpa using hx } }
end
lemma support_le_prod_of_mem {l : list (perm α)} (h : f ∈ l) (hl : l.pairwise disjoint) :
f.support ≤ l.prod.support :=
begin
intros x hx,
rwa [mem_support, ←eq_on_support_mem_disjoint h hl _ hx, ←mem_support],
end
section extend_domain
variables {β : Type*} [decidable_eq β] [fintype β] {p : β → Prop} [decidable_pred p]
@[simp]
lemma support_extend_domain (f : α ≃ subtype p) {g : perm α} :
support (g.extend_domain f) = g.support.map f.as_embedding :=
begin
ext b,
simp only [exists_prop, function.embedding.coe_fn_mk, to_embedding_apply, mem_map, ne.def,
function.embedding.trans_apply, mem_support],
by_cases pb : p b,
{ rw [extend_domain_apply_subtype _ _ pb],
split,
{ rintro h,
refine ⟨f.symm ⟨b, pb⟩, _, by simp⟩,
contrapose! h,
simp [h] },
{ rintro ⟨a, ha, hb⟩,
contrapose! ha,
obtain rfl : a = f.symm ⟨b, pb⟩,
{ rw eq_symm_apply,
exact subtype.coe_injective hb },
rw eq_symm_apply,
exact subtype.coe_injective ha } },
{ rw [extend_domain_apply_not_subtype _ _ pb],
simp only [not_exists, false_iff, not_and, eq_self_iff_true, not_true],
rintros a ha rfl,
exact pb (subtype.prop _) }
end
lemma card_support_extend_domain (f : α ≃ subtype p) {g : perm α} :
(g.extend_domain f).support.card = g.support.card :=
by simp
end extend_domain
section card
@[simp]
lemma card_support_eq_zero {f : perm α} :
f.support.card = 0 ↔ f = 1 :=
by rw [finset.card_eq_zero, support_eq_empty_iff]
lemma one_lt_card_support_of_ne_one {f : perm α} (h : f ≠ 1) :
1 < f.support.card :=
begin
simp_rw [one_lt_card_iff, mem_support, ←not_or_distrib],
contrapose! h,
ext a,
specialize h (f a) a,
rwa [apply_eq_iff_eq, or_self, or_self] at h,
end
lemma card_support_ne_one (f : perm α) : f.support.card ≠ 1 :=
begin
by_cases h : f = 1,
{ exact ne_of_eq_of_ne (card_support_eq_zero.mpr h) zero_ne_one },
{ exact ne_of_gt (one_lt_card_support_of_ne_one h) },
end
@[simp] lemma card_support_le_one {f : perm α} : f.support.card ≤ 1 ↔ f = 1 :=
by rw [le_iff_lt_or_eq, nat.lt_succ_iff, nat.le_zero_iff, card_support_eq_zero,
or_iff_not_imp_right, imp_iff_right f.card_support_ne_one]
lemma two_le_card_support_of_ne_one {f : perm α} (h : f ≠ 1) :
2 ≤ f.support.card :=
one_lt_card_support_of_ne_one h
lemma card_support_swap_mul {f : perm α} {x : α}
(hx : f x ≠ x) : (swap x (f x) * f).support.card < f.support.card :=
finset.card_lt_card
⟨λ z hz, (mem_support_swap_mul_imp_mem_support_ne hz).left,
λ h, absurd (h (mem_support.2 hx)) (mt mem_support.1 (by simp))⟩
lemma card_support_swap {x y : α} (hxy : x ≠ y) : (swap x y).support.card = 2 :=
show (swap x y).support.card = finset.card ⟨x ::ₘ y ::ₘ 0, by simp [hxy]⟩,
from congr_arg card $ by simp [support_swap hxy, *, finset.ext_iff]
@[simp]
lemma card_support_eq_two {f : perm α} : f.support.card = 2 ↔ is_swap f :=
begin
split; intro h,
{ obtain ⟨x, t, hmem, hins, ht⟩ := card_eq_succ.1 h,
obtain ⟨y, rfl⟩ := card_eq_one.1 ht,
rw mem_singleton at hmem,
refine ⟨x, y, hmem, _⟩,
ext a,
have key : ∀ b, f b ≠ b ↔ _ := λ b, by rw [←mem_support, ←hins, mem_insert, mem_singleton],
by_cases ha : f a = a,
{ have ha' := not_or_distrib.mp (mt (key a).mpr (not_not.mpr ha)),
rw [ha, swap_apply_of_ne_of_ne ha'.1 ha'.2] },
{ have ha' := (key (f a)).mp (mt f.apply_eq_iff_eq.mp ha),
obtain rfl | rfl := ((key a).mp ha),
{ rw [or.resolve_left ha' ha, swap_apply_left] },
{ rw [or.resolve_right ha' ha, swap_apply_right] } } },
{ obtain ⟨x, y, hxy, rfl⟩ := h,
exact card_support_swap hxy }
end
lemma disjoint.card_support_mul (h : disjoint f g) :
(f * g).support.card = f.support.card + g.support.card :=
begin
rw ←finset.card_disjoint_union,
{ congr,
ext,
simp [h.support_mul] },
{ simpa using h.disjoint_support }
end
lemma card_support_prod_list_of_pairwise_disjoint {l : list (perm α)}
(h : l.pairwise disjoint) :
l.prod.support.card = (l.map (finset.card ∘ support)).sum :=
begin
induction l with a t ih,
{ exact card_support_eq_zero.mpr rfl, },
{ obtain ⟨ha, ht⟩ := list.pairwise_cons.1 h,
rw [list.prod_cons, list.map_cons, list.sum_cons, ←ih ht],
exact (disjoint_prod_right _ ha).card_support_mul }
end
end card
end support
end equiv.perm
|
c31ce493db4c340ecdcc1b0fd0060a86c1cb1cd3
|
a9d0fb7b0e4f802bd3857b803e6c5c23d87fef91
|
/tests/lean/run/stateT1.lean
|
f33b046f6c4cfd57a2c3a9610daac59f9cae8735
|
[
"Apache-2.0"
] |
permissive
|
soonhokong/lean-osx
|
4a954262c780e404c1369d6c06516161d07fcb40
|
3670278342d2f4faa49d95b46d86642d7875b47c
|
refs/heads/master
| 1,611,410,334,552
| 1,474,425,686,000
| 1,474,425,686,000
| 12,043,103
| 5
| 1
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 867
|
lean
|
meta_definition mytactic (A : Type) := stateT (list nat) tactic A
attribute [instance]
meta_definition mytactic_is_monad : monad mytactic :=
@stateT_is_monad _ _ _
meta_definition read_lst : mytactic (list nat) :=
stateT.read
meta_definition write_lst : list nat → mytactic unit :=
stateT.write
meta_definition foo : mytactic unit :=
write_lst [10, 20]
meta_definition ins (a : nat) : mytactic unit :=
do l : list nat ← read_lst,
write_lst (a :: l)
meta_definition invoke (s : list nat) (m : mytactic unit) : tactic (list nat) :=
do (u, s') ← m s, return s'
meta_definition tactic_to_mytactic {A : Type} (t : tactic A) : mytactic A :=
λ s, do a : A ← t, return (a, s)
open tactic
example : list nat :=
by do
l : list nat ← invoke [] (foo >> ins 30 >> tactic_to_mytactic (trace "foo") >> ins 40),
trace l,
mk_const `list.nil >>= apply
|
ebc2eb6ac50e455765b7633aa7e17109002a1f02
|
17d3c61bf162bf88be633867ed4cb201378a8769
|
/tests/lean/run/opt_param_cc.lean
|
82742a52316a3b43e1b78af93379b4fa8af48f25
|
[
"Apache-2.0"
] |
permissive
|
u20024804/lean
|
11def01468fb4796fb0da76015855adceac7e311
|
d315e424ff17faf6fe096a0a1407b70193009726
|
refs/heads/master
| 1,611,388,567,561
| 1,485,836,506,000
| 1,485,836,625,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 706
|
lean
|
def f (a : nat) (b : nat := a) (c : nat := a) :=
a + b + c
lemma ex1 (a a' b c d : nat) (h : b = c) (h2 : a = a') : f a b d = f a' c d :=
by cc
lemma ex2 (a a' b c d : nat) (h : b = c) (h2 : a = a') : f a b d = f a' c d :=
by rw [h, h2]
set_option pp.beta true
set_option pp.all true
lemma ex3 (a a' b c d : nat) (h : b = c) (h2 : a = a') : f a b d = f a' c d :=
begin
simp [h, h2],
end
open tactic
run_command mk_const `f >>= get_fun_info >>= trace
run_command mk_const `eq >>= get_fun_info >>= trace
run_command mk_const `id >>= get_fun_info >>= trace
set_option trace.congr_lemma true
set_option trace.app_builder true
run_command mk_const `f >>= mk_congr_lemma_simp >>= (λ l, trace l^.type)
|
90ccdfbb713d9e07276ef9233ea0c72c6f5818b3
|
9dc8cecdf3c4634764a18254e94d43da07142918
|
/src/data/list/nodup.lean
|
1a77d853637ca5aa08e27a0e87ddba533e92932f
|
[
"Apache-2.0"
] |
permissive
|
jcommelin/mathlib
|
d8456447c36c176e14d96d9e76f39841f69d2d9b
|
ee8279351a2e434c2852345c51b728d22af5a156
|
refs/heads/master
| 1,664,782,136,488
| 1,663,638,983,000
| 1,663,638,983,000
| 132,563,656
| 0
| 0
|
Apache-2.0
| 1,663,599,929,000
| 1,525,760,539,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 14,632
|
lean
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kenny Lau
-/
import data.list.lattice
import data.list.pairwise
import data.list.forall2
/-!
# Lists with no duplicates
`list.nodup` is defined in `data/list/defs`. In this file we prove various properties of this
predicate.
-/
universes u v
open nat function
variables {α : Type u} {β : Type v} {l l₁ l₂ : list α} {a b : α}
namespace list
@[simp] theorem forall_mem_ne {a : α} {l : list α} : (∀ (a' : α), a' ∈ l → ¬a = a') ↔ a ∉ l :=
⟨λ h m, h _ m rfl, λ h a' m e, h (e.symm ▸ m)⟩
@[simp] theorem nodup_nil : @nodup α [] := pairwise.nil
@[simp] theorem nodup_cons {a : α} {l : list α} : nodup (a::l) ↔ a ∉ l ∧ nodup l :=
by simp only [nodup, pairwise_cons, forall_mem_ne]
protected lemma pairwise.nodup {l : list α} {r : α → α → Prop} [is_irrefl α r] (h : pairwise r l) :
nodup l :=
h.imp $ λ a b, ne_of_irrefl
lemma rel_nodup {r : α → β → Prop} (hr : relator.bi_unique r) : (forall₂ r ⇒ (↔)) nodup nodup
| _ _ forall₂.nil := by simp only [nodup_nil]
| _ _ (forall₂.cons hab h) :=
by simpa only [nodup_cons] using relator.rel_and (relator.rel_not (rel_mem hr hab h))
(rel_nodup h)
protected lemma nodup.cons (ha : a ∉ l) (hl : nodup l) : nodup (a :: l) := nodup_cons.2 ⟨ha, hl⟩
lemma nodup_singleton (a : α) : nodup [a] := pairwise_singleton _ _
lemma nodup.of_cons (h : nodup (a :: l)) : nodup l := (nodup_cons.1 h).2
lemma nodup.not_mem (h : (a :: l).nodup) : a ∉ l := (nodup_cons.1 h).1
lemma not_nodup_cons_of_mem : a ∈ l → ¬ nodup (a :: l) := imp_not_comm.1 nodup.not_mem
protected lemma nodup.sublist : l₁ <+ l₂ → nodup l₂ → nodup l₁ := pairwise.sublist
theorem not_nodup_pair (a : α) : ¬ nodup [a, a] :=
not_nodup_cons_of_mem $ mem_singleton_self _
theorem nodup_iff_sublist {l : list α} : nodup l ↔ ∀ a, ¬ [a, a] <+ l :=
⟨λ d a h, not_nodup_pair a (d.sublist h), begin
induction l with a l IH; intro h, {exact nodup_nil},
exact (IH $ λ a s, h a $ sublist_cons_of_sublist _ s).cons
(λ al, h a $ (singleton_sublist.2 al).cons_cons _)
end⟩
theorem nodup_iff_nth_le_inj {l : list α} :
nodup l ↔ ∀ i j h₁ h₂, nth_le l i h₁ = nth_le l j h₂ → i = j :=
pairwise_iff_nth_le.trans
⟨λ H i j h₁ h₂ h, ((lt_trichotomy _ _)
.resolve_left (λ h', H _ _ h₂ h' h))
.resolve_right (λ h', H _ _ h₁ h' h.symm),
λ H i j h₁ h₂ h, ne_of_lt h₂ (H _ _ _ _ h)⟩
theorem nodup.nth_le_inj_iff {l : list α} (h : nodup l)
{i j : ℕ} (hi : i < l.length) (hj : j < l.length) :
l.nth_le i hi = l.nth_le j hj ↔ i = j :=
⟨nodup_iff_nth_le_inj.mp h _ _ _ _, by simp {contextual := tt}⟩
lemma nodup_iff_nth_ne_nth {l : list α} :
l.nodup ↔ ∀ (i j : ℕ), i < j → j < l.length → l.nth i ≠ l.nth j :=
begin
rw nodup_iff_nth_le_inj,
simp only [nth_le_eq_iff, some_nth_le_eq],
split; rintro h i j h₁ h₂,
{ exact mt (h i j (h₁.trans h₂) h₂) (ne_of_lt h₁) },
{ intro h₃,
by_contra h₄,
cases lt_or_gt_of_ne h₄ with h₅ h₅,
{ exact h i j h₅ h₂ h₃ },
{ exact h j i h₅ h₁ h₃.symm }},
end
lemma nodup.ne_singleton_iff {l : list α} (h : nodup l) (x : α) :
l ≠ [x] ↔ l = [] ∨ ∃ y ∈ l, y ≠ x :=
begin
induction l with hd tl hl,
{ simp },
{ specialize hl h.of_cons,
by_cases hx : tl = [x],
{ simpa [hx, and.comm, and_or_distrib_left] using h },
{ rw [←ne.def, hl] at hx,
rcases hx with rfl | ⟨y, hy, hx⟩,
{ simp },
{ have : tl ≠ [] := ne_nil_of_mem hy,
suffices : ∃ (y : α) (H : y ∈ hd :: tl), y ≠ x,
{ simpa [ne_nil_of_mem hy] },
exact ⟨y, mem_cons_of_mem _ hy, hx⟩ } } }
end
lemma nth_le_eq_of_ne_imp_not_nodup (xs : list α) (n m : ℕ) (hn : n < xs.length)
(hm : m < xs.length) (h : xs.nth_le n hn = xs.nth_le m hm) (hne : n ≠ m) :
¬ nodup xs :=
begin
rw nodup_iff_nth_le_inj,
simp only [exists_prop, exists_and_distrib_right, not_forall],
exact ⟨n, m, ⟨hn, hm, h⟩, hne⟩
end
@[simp] theorem nth_le_index_of [decidable_eq α] {l : list α} (H : nodup l) (n h) :
index_of (nth_le l n h) l = n :=
nodup_iff_nth_le_inj.1 H _ _ _ h $
index_of_nth_le $ index_of_lt_length.2 $ nth_le_mem _ _ _
theorem nodup_iff_count_le_one [decidable_eq α] {l : list α} : nodup l ↔ ∀ a, count a l ≤ 1 :=
nodup_iff_sublist.trans $ forall_congr $ λ a,
have [a, a] <+ l ↔ 1 < count a l, from (@le_count_iff_repeat_sublist _ _ a l 2).symm,
(not_congr this).trans not_lt
theorem nodup_repeat (a : α) : ∀ {n : ℕ}, nodup (repeat a n) ↔ n ≤ 1
| 0 := by simp [nat.zero_le]
| 1 := by simp
| (n+2) := iff_of_false
(λ H, nodup_iff_sublist.1 H a ((repeat_sublist_repeat _).2 (nat.le_add_left 2 n)))
(not_le_of_lt $ nat.le_add_left 2 n)
@[simp] theorem count_eq_one_of_mem [decidable_eq α] {a : α} {l : list α}
(d : nodup l) (h : a ∈ l) : count a l = 1 :=
le_antisymm (nodup_iff_count_le_one.1 d a) (count_pos.2 h)
lemma count_eq_of_nodup [decidable_eq α] {a : α} {l : list α}
(d : nodup l) : count a l = if a ∈ l then 1 else 0 :=
begin
split_ifs with h,
{ exact count_eq_one_of_mem d h },
{ exact count_eq_zero_of_not_mem h },
end
lemma nodup.of_append_left : nodup (l₁ ++ l₂) → nodup l₁ :=
nodup.sublist (sublist_append_left l₁ l₂)
lemma nodup.of_append_right : nodup (l₁ ++ l₂) → nodup l₂ :=
nodup.sublist (sublist_append_right l₁ l₂)
theorem nodup_append {l₁ l₂ : list α} : nodup (l₁++l₂) ↔ nodup l₁ ∧ nodup l₂ ∧ disjoint l₁ l₂ :=
by simp only [nodup, pairwise_append, disjoint_iff_ne]
theorem disjoint_of_nodup_append {l₁ l₂ : list α} (d : nodup (l₁++l₂)) : disjoint l₁ l₂ :=
(nodup_append.1 d).2.2
lemma nodup.append (d₁ : nodup l₁) (d₂ : nodup l₂) (dj : disjoint l₁ l₂) : nodup (l₁ ++ l₂) :=
nodup_append.2 ⟨d₁, d₂, dj⟩
theorem nodup_append_comm {l₁ l₂ : list α} : nodup (l₁++l₂) ↔ nodup (l₂++l₁) :=
by simp only [nodup_append, and.left_comm, disjoint_comm]
theorem nodup_middle {a : α} {l₁ l₂ : list α} : nodup (l₁ ++ a::l₂) ↔ nodup (a::(l₁++l₂)) :=
by simp only [nodup_append, not_or_distrib, and.left_comm, and_assoc, nodup_cons, mem_append,
disjoint_cons_right]
lemma nodup.of_map (f : α → β) {l : list α} : nodup (map f l) → nodup l :=
pairwise.of_map f $ λ a b, mt $ congr_arg f
lemma nodup.map_on {f : α → β} (H : ∀ x ∈ l, ∀ y ∈ l, f x = f y → x = y) (d : nodup l) :
(map f l).nodup :=
pairwise.map _ (by exact λ a b ⟨ma, mb, n⟩ e, n (H a ma b mb e)) (pairwise.and_mem.1 d)
theorem inj_on_of_nodup_map {f : α → β} {l : list α} (d : nodup (map f l)) :
∀ ⦃x⦄, x ∈ l → ∀ ⦃y⦄, y ∈ l → f x = f y → x = y :=
begin
induction l with hd tl ih,
{ simp },
{ simp only [map, nodup_cons, mem_map, not_exists, not_and, ←ne.def] at d,
rintro _ (rfl | h₁) _ (rfl | h₂) h₃,
{ refl },
{ apply (d.1 _ h₂ h₃.symm).elim },
{ apply (d.1 _ h₁ h₃).elim },
{ apply ih d.2 h₁ h₂ h₃ } }
end
theorem nodup_map_iff_inj_on {f : α → β} {l : list α} (d : nodup l) :
nodup (map f l) ↔ (∀ (x ∈ l) (y ∈ l), f x = f y → x = y) :=
⟨inj_on_of_nodup_map, λ h, d.map_on h⟩
protected lemma nodup.map {f : α → β} (hf : injective f) : nodup l → nodup (map f l) :=
nodup.map_on (assume x _ y _ h, hf h)
theorem nodup_map_iff {f : α → β} {l : list α} (hf : injective f) : nodup (map f l) ↔ nodup l :=
⟨nodup.of_map _, nodup.map hf⟩
@[simp] theorem nodup_attach {l : list α} : nodup (attach l) ↔ nodup l :=
⟨λ h, attach_map_val l ▸ h.map (λ a b, subtype.eq),
λ h, nodup.of_map subtype.val ((attach_map_val l).symm ▸ h)⟩
alias nodup_attach ↔ nodup.of_attach nodup.attach
attribute [protected] nodup.attach
lemma nodup.pmap {p : α → Prop} {f : Π a, p a → β} {l : list α} {H}
(hf : ∀ a ha b hb, f a ha = f b hb → a = b) (h : nodup l) : nodup (pmap f l H) :=
by rw [pmap_eq_map_attach]; exact h.attach.map
(λ ⟨a, ha⟩ ⟨b, hb⟩ h, by congr; exact hf a (H _ ha) b (H _ hb) h)
lemma nodup.filter (p : α → Prop) [decidable_pred p] {l} : nodup l → nodup (filter p l) :=
pairwise.filter p
@[simp] theorem nodup_reverse {l : list α} : nodup (reverse l) ↔ nodup l :=
pairwise_reverse.trans $ by simp only [nodup, ne.def, eq_comm]
lemma nodup.erase_eq_filter [decidable_eq α] {l} (d : nodup l) (a : α) :
l.erase a = filter (≠ a) l :=
begin
induction d with b l m d IH, {refl},
by_cases b = a,
{ subst h, rw [erase_cons_head, filter_cons_of_neg],
symmetry, rw filter_eq_self, simpa only [ne.def, eq_comm] using m, exact not_not_intro rfl },
{ rw [erase_cons_tail _ h, filter_cons_of_pos, IH], exact h }
end
lemma nodup.erase [decidable_eq α] (a : α) : nodup l → nodup (l.erase a) :=
nodup.sublist $ erase_sublist _ _
lemma nodup.diff [decidable_eq α] : l₁.nodup → (l₁.diff l₂).nodup :=
nodup.sublist $ diff_sublist _ _
lemma nodup.mem_erase_iff [decidable_eq α] (d : nodup l) : a ∈ l.erase b ↔ a ≠ b ∧ a ∈ l :=
by rw [d.erase_eq_filter, mem_filter, and_comm]
lemma nodup.not_mem_erase [decidable_eq α] (h : nodup l) : a ∉ l.erase a :=
λ H, (h.mem_erase_iff.1 H).1 rfl
theorem nodup_join {L : list (list α)} :
nodup (join L) ↔ (∀ l ∈ L, nodup l) ∧ pairwise disjoint L :=
by simp only [nodup, pairwise_join, disjoint_left.symm, forall_mem_ne]
theorem nodup_bind {l₁ : list α} {f : α → list β} : nodup (l₁.bind f) ↔
(∀ x ∈ l₁, nodup (f x)) ∧ pairwise (λ (a b : α), disjoint (f a) (f b)) l₁ :=
by simp only [list.bind, nodup_join, pairwise_map, and_comm, and.left_comm, mem_map,
exists_imp_distrib, and_imp];
rw [show (∀ (l : list β) (x : α), f x = l → x ∈ l₁ → nodup l) ↔
(∀ (x : α), x ∈ l₁ → nodup (f x)),
from forall_swap.trans $ forall_congr $ λ_, forall_eq']
protected lemma nodup.product {l₂ : list β} (d₁ : l₁.nodup) (d₂ : l₂.nodup) :
(l₁.product l₂).nodup :=
nodup_bind.2
⟨λ a ma, d₂.map $ left_inverse.injective $ λ b, (rfl : (a,b).2 = b),
d₁.imp $ λ a₁ a₂ n x h₁ h₂, begin
rcases mem_map.1 h₁ with ⟨b₁, mb₁, rfl⟩,
rcases mem_map.1 h₂ with ⟨b₂, mb₂, ⟨⟩⟩,
exact n rfl
end⟩
lemma nodup.sigma {σ : α → Type*} {l₂ : Π a, list (σ a)} (d₁ : nodup l₁) (d₂ : ∀ a, nodup (l₂ a)) :
(l₁.sigma l₂).nodup :=
nodup_bind.2
⟨λ a ma, (d₂ a).map (λ b b' h, by injection h with _ h; exact eq_of_heq h),
d₁.imp $ λ a₁ a₂ n x h₁ h₂, begin
rcases mem_map.1 h₁ with ⟨b₁, mb₁, rfl⟩,
rcases mem_map.1 h₂ with ⟨b₂, mb₂, ⟨⟩⟩,
exact n rfl
end⟩
protected lemma nodup.filter_map {f : α → option β} (h : ∀ a a' b, b ∈ f a → b ∈ f a' → a = a') :
nodup l → nodup (filter_map f l) :=
pairwise.filter_map f $ λ a a' n b bm b' bm' e, n $ h a a' b' (e ▸ bm) bm'
protected lemma nodup.concat (h : a ∉ l) (h' : l.nodup) : (l.concat a).nodup :=
by rw concat_eq_append; exact h'.append (nodup_singleton _) (disjoint_singleton.2 h)
lemma nodup.insert [decidable_eq α] (h : l.nodup) : (insert a l).nodup :=
if h' : a ∈ l then by rw [insert_of_mem h']; exact h
else by rw [insert_of_not_mem h', nodup_cons]; split; assumption
lemma nodup.union [decidable_eq α] (l₁ : list α) (h : nodup l₂) : (l₁ ∪ l₂).nodup :=
begin
induction l₁ with a l₁ ih generalizing l₂,
{ exact h },
{ exact (ih h).insert }
end
lemma nodup.inter [decidable_eq α] (l₂ : list α) : nodup l₁ → nodup (l₁ ∩ l₂) := nodup.filter _
@[simp] theorem nodup_sublists {l : list α} : nodup (sublists l) ↔ nodup l :=
⟨λ h, (h.sublist (map_ret_sublist_sublists _)).of_map _,
λ h, (pairwise_sublists h).imp (λ _ _ h, mt reverse_inj.2 h.to_ne)⟩
@[simp] theorem nodup_sublists' {l : list α} : nodup (sublists' l) ↔ nodup l :=
by rw [sublists'_eq_sublists, nodup_map_iff reverse_injective,
nodup_sublists, nodup_reverse]
alias nodup_sublists ↔ nodup.of_sublists nodup.sublists
alias nodup_sublists' ↔ nodup.of_sublists' nodup.sublists'
attribute [protected] nodup.sublists nodup.sublists'
lemma nodup_sublists_len (n : ℕ) (h : nodup l) : (sublists_len n l).nodup :=
h.sublists'.sublist $ sublists_len_sublist_sublists' _ _
lemma nodup.diff_eq_filter [decidable_eq α] :
∀ {l₁ l₂ : list α} (hl₁ : l₁.nodup), l₁.diff l₂ = l₁.filter (∉ l₂)
| l₁ [] hl₁ := by simp
| l₁ (a::l₂) hl₁ :=
begin
rw [diff_cons, (hl₁.erase _).diff_eq_filter, hl₁.erase_eq_filter, filter_filter],
simp only [mem_cons_iff, not_or_distrib, and.comm]
end
lemma nodup.mem_diff_iff [decidable_eq α] (hl₁ : l₁.nodup) : a ∈ l₁.diff l₂ ↔ a ∈ l₁ ∧ a ∉ l₂ :=
by rw [hl₁.diff_eq_filter, mem_filter]
protected lemma nodup.update_nth : ∀ {l : list α} {n : ℕ} {a : α} (hl : l.nodup) (ha : a ∉ l),
(l.update_nth n a).nodup
| [] n a hl ha := nodup_nil
| (b::l) 0 a hl ha := nodup_cons.2 ⟨mt (mem_cons_of_mem _) ha, (nodup_cons.1 hl).2⟩
| (b::l) (n+1) a hl ha := nodup_cons.2
⟨λ h, (mem_or_eq_of_mem_update_nth h).elim
(nodup_cons.1 hl).1
(λ hba, ha (hba ▸ mem_cons_self _ _)), hl.of_cons.update_nth (mt (mem_cons_of_mem _) ha)⟩
lemma nodup.map_update [decidable_eq α] {l : list α} (hl : l.nodup) (f : α → β) (x : α) (y : β) :
l.map (function.update f x y) =
if x ∈ l then (l.map f).update_nth (l.index_of x) y else l.map f :=
begin
induction l with hd tl ihl, { simp },
rw [nodup_cons] at hl,
simp only [mem_cons_iff, map, ihl hl.2],
by_cases H : hd = x,
{ subst hd,
simp [update_nth, hl.1] },
{ simp [ne.symm H, H, update_nth, ← apply_ite (cons (f hd))] }
end
lemma nodup.pairwise_of_forall_ne {l : list α} {r : α → α → Prop}
(hl : l.nodup) (h : ∀ (a ∈ l) (b ∈ l), a ≠ b → r a b) : l.pairwise r :=
begin
classical,
refine pairwise_of_reflexive_on_dupl_of_forall_ne _ h,
intros x hx,
rw nodup_iff_count_le_one at hl,
exact absurd (hl x) hx.not_le
end
lemma nodup.pairwise_of_set_pairwise {l : list α} {r : α → α → Prop}
(hl : l.nodup) (h : {x | x ∈ l}.pairwise r) : l.pairwise r :=
hl.pairwise_of_forall_ne h
end list
theorem option.to_list_nodup {α} : ∀ o : option α, o.to_list.nodup
| none := list.nodup_nil
| (some x) := list.nodup_singleton x
|
c416925e7f91dd4aff7d13d3b1f0a3ef412b586e
|
e030b0259b777fedcdf73dd966f3f1556d392178
|
/tests/lean/run/mem_nil.lean
|
9a4f50996ae4771728a5ff6e2731c97a8658db19
|
[
"Apache-2.0"
] |
permissive
|
fgdorais/lean
|
17b46a095b70b21fa0790ce74876658dc5faca06
|
c3b7c54d7cca7aaa25328f0a5660b6b75fe26055
|
refs/heads/master
| 1,611,523,590,686
| 1,484,412,902,000
| 1,484,412,902,000
| 38,489,734
| 0
| 0
| null | 1,435,923,380,000
| 1,435,923,379,000
| null |
UTF-8
|
Lean
| false
| false
| 73
|
lean
|
universe variables u
example {α : Type u} (a : α) : a ∉ [] :=
sorry
|
e3f89fe8a2a37c4a1df69b88e48ca1ba9604b94e
|
6432ea7a083ff6ba21ea17af9ee47b9c371760f7
|
/tests/lean/run/815.lean
|
0105228f4a579046ccce3f185ed4a9aec6e502b1
|
[
"Apache-2.0",
"LLVM-exception",
"NCSA",
"LGPL-3.0-only",
"LicenseRef-scancode-inner-net-2.0",
"BSD-3-Clause",
"LGPL-2.0-or-later",
"Spencer-94",
"LGPL-2.1-or-later",
"HPND",
"LicenseRef-scancode-pcre",
"ISC",
"LGPL-2.1-only",
"LicenseRef-scancode-other-permissive",
"SunPro",
"CMU-Mach"
] |
permissive
|
leanprover/lean4
|
4bdf9790294964627eb9be79f5e8f6157780b4cc
|
f1f9dc0f2f531af3312398999d8b8303fa5f096b
|
refs/heads/master
| 1,693,360,665,786
| 1,693,350,868,000
| 1,693,350,868,000
| 129,571,436
| 2,827
| 311
|
Apache-2.0
| 1,694,716,156,000
| 1,523,760,560,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 4,137
|
lean
|
def is_smooth {α β} (f : α → β) : Prop := sorry
class IsSmooth {α β} (f : α → β) : Prop where
(proof : is_smooth f)
instance identity : IsSmooth fun a : α => a := sorry
instance const (b : β) : IsSmooth fun a : α => b := sorry
instance swap (f : α → β → γ) [∀ a, IsSmooth (f a)] : IsSmooth (λ b a => f a b) := sorry
instance parm (f : α → β → γ) [IsSmooth f] (b : β) : IsSmooth (λ a => f a b) := sorry
instance comp (f : β → γ) (g : α → β) [IsSmooth f] [IsSmooth g] : IsSmooth (fun a => f (g a)) := sorry
instance diag (f : β → δ → γ) (g : α → β) (h : α → δ) [IsSmooth f] [∀ b, IsSmooth (f b)] [IsSmooth g] [IsSmooth h] : IsSmooth (λ a => f (g a) (h a)) := sorry
example (f : β → δ → γ) [IsSmooth f] (g : α → β) [IsSmooth g] (d : δ) : IsSmooth (λ a => f (g a) d) := by infer_instance
example (f : β → δ → γ) [IsSmooth f] (g : α → β) [IsSmooth g] : IsSmooth (λ a d => f (g a) d) := by infer_instance
example (f : β → δ → γ) [IsSmooth f] (g : α → β) [IsSmooth g] (h : α → α) [IsSmooth h] (d : δ) : IsSmooth (λ a => f (g (h a)) d) := by infer_instance
example (f : α → β → γ) [∀ a, IsSmooth (f a)] : IsSmooth (λ b a => f a b) := by infer_instance
example (f : α → β → γ → δ) [∀ a b, IsSmooth (f a b)] : IsSmooth (λ c b a => f a b c) := by infer_instance
example (f : α → β → γ → δ) [∀ a b, IsSmooth (f a b)] : IsSmooth (λ c a b => f a b c) := by infer_instance
example (f : α → β → γ → δ → ε) [∀ a b c, IsSmooth (f a b c)] : IsSmooth (λ d a b c => f a b c d) := by infer_instance
example (f : α → β → γ) [IsSmooth f] (b : β) : IsSmooth (λ a => f a b) := by infer_instance
example (f : α → β → γ → δ) [IsSmooth f] (b : β) (c : γ) : IsSmooth (λ a => f a b c) := by infer_instance
example (f : α → β → γ → δ) [IsSmooth f] (b : β) : IsSmooth (λ a c => f a b c) := by infer_instance
example (f : α → β → γ → δ) [IsSmooth f] (c : γ) : IsSmooth (λ a b => f a b c) := by infer_instance
example (f : α → β → γ → δ) (b : β) [IsSmooth (λ a => f a b)] : IsSmooth (λ a c => f a b c) := by infer_instance
example (f : α → β → γ) (g : δ → ε → α) (h : δ → ε → β) [IsSmooth f] [∀ a, IsSmooth (f a)] [IsSmooth g] [IsSmooth h] : IsSmooth (λ x y => f (g x y) (h x y)) := by infer_instance
example (f : β → δ → γ) (g : α → β) [IsSmooth f] [∀ b, IsSmooth (f b)] [IsSmooth g] (a : α): IsSmooth (λ (h : α → δ) => f (g a) (h a)) := by infer_instance
example (f : β → δ → γ) (h : α → δ) [IsSmooth f] : IsSmooth (λ (g : α → β) a => f (g a) (h a)) := by infer_instance
example (f : β → δ → γ) [IsSmooth f] (d : δ) : IsSmooth (λ (g : α → β) a => f (g a) d) := by infer_instance
example (f : β → γ) (g : β → β) [IsSmooth f] [IsSmooth g] : IsSmooth (fun x => f (g (g x))) := by infer_instance
example (f : α → β → γ) [∀ a, IsSmooth (f a)] : IsSmooth (λ b a => f a b) := by infer_instance
example (f : α → β → γ → δ) [∀ a b, IsSmooth (f a b)] : IsSmooth (λ c a b => f a b c) := by infer_instance
example (f : α → β → γ → δ → ε) [∀ a b c, IsSmooth (f a b c)] : IsSmooth (λ d a b c => f a b c d) := by infer_instance
example (f : β → δ → γ) [IsSmooth f] (g : α → β) [IsSmooth g] (d : δ) : IsSmooth (λ a => f (g a) d) := by infer_instance
example (f : β → δ → γ) [IsSmooth f] (g : α → β) [IsSmooth g] : IsSmooth (λ a d => f (g a) d) := by infer_instance
example (f : δ → β → γ) [∀ d, IsSmooth (f d)] (g : α → β) [IsSmooth g] : IsSmooth (λ a d => (f d (g a))) := by infer_instance
-- Recall Function.comp is not reducible anymore
instance (f : β → γ) (g : α → β) [IsSmooth f] [IsSmooth g] : IsSmooth (f ∘ g) := by
delta Function.comp
infer_instance
example (f : β → γ) (g : α → β) [IsSmooth f] [IsSmooth g] : IsSmooth (f ∘ g) := by infer_instance
example (f : β → γ) [IsSmooth f] : IsSmooth λ (g : α → β) => (f ∘ g) := by
delta Function.comp
infer_instance
|
4e8d08f3fe034165299cb87e963d4962106bc1ef
|
35677d2df3f081738fa6b08138e03ee36bc33cad
|
/src/order/filter/pointwise.lean
|
082b69d85a8952056a335239fdd0c643eeab9541
|
[
"Apache-2.0"
] |
permissive
|
gebner/mathlib
|
eab0150cc4f79ec45d2016a8c21750244a2e7ff0
|
cc6a6edc397c55118df62831e23bfbd6e6c6b4ab
|
refs/heads/master
| 1,625,574,853,976
| 1,586,712,827,000
| 1,586,712,827,000
| 99,101,412
| 1
| 0
|
Apache-2.0
| 1,586,716,389,000
| 1,501,667,958,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 7,567
|
lean
|
/-
Copyright (c) 2019 Zhouhang Zhou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Zhouhang Zhou
The pointwise operations on filters have nice properties, such as
• map m (f₁ * f₂) = map m f₁ * map m f₂
• 𝓝 x * 𝓝 y = 𝓝 (x * y)
-/
import algebra.pointwise
import order.filter.basic
open classical set
universes u v w
variables {α : Type u} {β : Type v} {γ : Type w}
open_locale classical
local attribute [instance] pointwise_one pointwise_mul pointwise_add
namespace filter
open set
@[to_additive]
def pointwise_one [has_one α] : has_one (filter α) := ⟨principal {1}⟩
local attribute [instance] pointwise_one
@[simp, to_additive]
lemma mem_pointwise_one [has_one α] (s : set α) :
s ∈ (1 : filter α) ↔ (1:α) ∈ s :=
calc
s ∈ (1:filter α) ↔ {(1:α)} ⊆ s : iff.rfl
... ↔ (1:α) ∈ s : by simp
@[to_additive]
def pointwise_mul [monoid α] : has_mul (filter α) := ⟨λf g,
{ sets := { s | ∃t₁∈f, ∃t₂∈g, t₁ * t₂ ⊆ s },
univ_sets :=
begin
have h₁ : (∃x, x ∈ f) := ⟨univ, univ_sets f⟩,
have h₂ : (∃x, x ∈ g) := ⟨univ, univ_sets g⟩,
simpa using and.intro h₁ h₂
end,
sets_of_superset := λx y hx hxy,
begin
rcases hx with ⟨t₁, ht₁, t₂, ht₂, t₁t₂⟩,
exact ⟨t₁, ht₁, t₂, ht₂, subset.trans t₁t₂ hxy⟩
end,
inter_sets := λx y,
begin
simp only [exists_prop, mem_set_of_eq, subset_inter_iff],
rintros ⟨s₁, hs₁, s₂, hs₂, s₁s₂⟩ ⟨t₁, ht₁, t₂, ht₂, t₁t₂⟩,
exact ⟨s₁ ∩ t₁, inter_sets f hs₁ ht₁, s₂ ∩ t₂, inter_sets g hs₂ ht₂,
subset.trans (pointwise_mul_subset_mul (inter_subset_left _ _) (inter_subset_left _ _)) s₁s₂,
subset.trans (pointwise_mul_subset_mul (inter_subset_right _ _) (inter_subset_right _ _)) t₁t₂⟩,
end }⟩
local attribute [instance] pointwise_mul pointwise_add
@[to_additive]
lemma mem_pointwise_mul [monoid α] {f g : filter α} {s : set α} :
s ∈ f * g ↔ ∃ t₁ ∈ f, ∃ t₂ ∈ g, t₁ * t₂ ⊆ s := iff.rfl
@[to_additive]
lemma mul_mem_pointwise_mul [monoid α] {f g : filter α} {s t : set α} (hs : s ∈ f) (ht : t ∈ g) :
s * t ∈ f * g := ⟨_, hs, _, ht, subset.refl _⟩
@[to_additive]
lemma pointwise_mul_le_mul [monoid α] {f₁ f₂ g₁ g₂ : filter α} (hf : f₁ ≤ f₂) (hg : g₁ ≤ g₂) :
f₁ * g₁ ≤ f₂ * g₂ := assume _ ⟨s, hs, t, ht, hst⟩, ⟨s, hf hs, t, hg ht, hst⟩
@[to_additive]
lemma pointwise_mul_ne_bot [monoid α] {f g : filter α} : f ≠ ⊥ → g ≠ ⊥ → f * g ≠ ⊥ :=
begin
simp only [forall_sets_nonempty_iff_ne_bot.symm],
rintros hf hg s ⟨a, ha, b, hb, ab⟩,
exact ((hf a ha).pointwise_mul (hg b hb)).mono ab
end
@[to_additive]
lemma pointwise_mul_assoc [monoid α] (f g h : filter α) : f * g * h = f * (g * h) :=
begin
ext s, split,
{ rintros ⟨a, ⟨a₁, ha₁, a₂, ha₂, a₁a₂⟩, b, hb, ab⟩,
refine ⟨a₁, ha₁, a₂ * b, mul_mem_pointwise_mul ha₂ hb, _⟩,
rw [← pointwise_mul_semigroup.mul_assoc],
exact calc
a₁ * a₂ * b ⊆ a * b : pointwise_mul_subset_mul a₁a₂ (subset.refl _)
... ⊆ s : ab },
{ rintros ⟨a, ha, b, ⟨b₁, hb₁, b₂, hb₂, b₁b₂⟩, ab⟩,
refine ⟨a * b₁, mul_mem_pointwise_mul ha hb₁, b₂, hb₂, _⟩,
rw [pointwise_mul_semigroup.mul_assoc],
exact calc
a * (b₁ * b₂) ⊆ a * b : pointwise_mul_subset_mul (subset.refl _) b₁b₂
... ⊆ s : ab }
end
local attribute [instance] pointwise_mul_monoid
@[to_additive]
lemma pointwise_one_mul [monoid α] (f : filter α) : 1 * f = f :=
begin
ext s, split,
{ rintros ⟨t₁, ht₁, t₂, ht₂, t₁t₂⟩,
refine mem_sets_of_superset (mem_sets_of_superset ht₂ _) t₁t₂,
assume x hx,
exact ⟨1, by rwa [← mem_pointwise_one], x, hx, (one_mul _).symm⟩ },
{ assume hs,
refine ⟨(1:set α), mem_principal_self _, s, hs, by simp only [one_mul]⟩ }
end
@[to_additive]
lemma pointwise_mul_one [monoid α] (f : filter α) : f * 1 = f :=
begin
ext s, split,
{ rintros ⟨t₁, ht₁, t₂, ht₂, t₁t₂⟩,
refine mem_sets_of_superset (mem_sets_of_superset ht₁ _) t₁t₂,
assume x hx,
exact ⟨x, hx, 1, by rwa [← mem_pointwise_one], (mul_one _).symm⟩ },
{ assume hs,
refine ⟨s, hs, (1:set α), mem_principal_self _, by simp only [mul_one]⟩ }
end
@[to_additive pointwise_add_add_monoid]
def pointwise_mul_monoid [monoid α] : monoid (filter α) :=
{ mul_assoc := pointwise_mul_assoc,
one_mul := pointwise_one_mul,
mul_one := pointwise_mul_one,
.. pointwise_mul,
.. pointwise_one }
local attribute [instance] filter.pointwise_mul_monoid filter.pointwise_add_add_monoid
section map
open is_mul_hom
variables [monoid α] [monoid β] {f : filter α} (m : α → β)
@[to_additive]
lemma map_pointwise_mul [is_mul_hom m] {f₁ f₂ : filter α} : map m (f₁ * f₂) = map m f₁ * map m f₂ :=
filter_eq $ set.ext $ assume s,
begin
simp only [mem_pointwise_mul], split,
{ rintro ⟨t₁, ht₁, t₂, ht₂, t₁t₂⟩,
have : m '' (t₁ * t₂) ⊆ s := subset.trans (image_subset m t₁t₂) (image_preimage_subset _ _),
refine ⟨m '' t₁, image_mem_map ht₁, m '' t₂, image_mem_map ht₂, _⟩,
rwa ← image_pointwise_mul m t₁ t₂ },
{ rintro ⟨t₁, ht₁, t₂, ht₂, t₁t₂⟩,
refine ⟨m ⁻¹' t₁, ht₁, m ⁻¹' t₂, ht₂, image_subset_iff.1 _⟩,
rw image_pointwise_mul m,
exact subset.trans
(pointwise_mul_subset_mul (image_preimage_subset _ _) (image_preimage_subset _ _)) t₁t₂ },
end
@[to_additive]
lemma map_pointwise_one [is_monoid_hom m] : map m (1:filter α) = 1 :=
le_antisymm
(le_principal_iff.2 $ mem_map_sets_iff.2 ⟨(1:set α), by simp,
by { assume x, simp [is_monoid_hom.map_one m], rintros rfl, refl }⟩)
(le_map $ assume s hs,
begin
simp only [mem_pointwise_one],
exact ⟨(1:α), (mem_pointwise_one s).1 hs, is_monoid_hom.map_one _⟩
end)
-- TODO: prove similar statements when `m` is group homomorphism etc.
lemma pointwise_mul_map_is_monoid_hom [is_monoid_hom m] : is_monoid_hom (map m) :=
{ map_one := map_pointwise_one m,
map_mul := λ _ _, map_pointwise_mul m }
lemma pointwise_add_map_is_add_monoid_hom {α : Type*} {β : Type*} [add_monoid α] [add_monoid β]
(m : α → β) [is_add_monoid_hom m] : is_add_monoid_hom (map m) :=
{ map_zero := map_pointwise_zero m,
map_add := λ _ _, map_pointwise_add m }
attribute [to_additive pointwise_add_map_is_add_monoid_hom] pointwise_mul_map_is_monoid_hom
-- The other direction does not hold in general.
@[to_additive]
lemma comap_mul_comap_le [is_mul_hom m] {f₁ f₂ : filter β} :
comap m f₁ * comap m f₂ ≤ comap m (f₁ * f₂) :=
begin
rintros s ⟨t, ⟨t₁, ht₁, t₂, ht₂, t₁t₂⟩, mt⟩,
refine ⟨m ⁻¹' t₁, ⟨t₁, ht₁, subset.refl _⟩, m ⁻¹' t₂, ⟨t₂, ht₂, subset.refl _⟩, _⟩,
have := subset.trans (preimage_mono t₁t₂) mt,
exact subset.trans (preimage_pointwise_mul_preimage_subset m _ _) this
end
variables {m}
@[to_additive]
lemma tendsto.mul_mul [is_mul_hom m] {f₁ g₁ : filter α} {f₂ g₂ : filter β} :
tendsto m f₁ f₂ → tendsto m g₁ g₂ → tendsto m (f₁ * g₁) (f₂ * g₂) :=
assume hf hg, by { rw [tendsto, map_pointwise_mul m], exact pointwise_mul_le_mul hf hg }
end map
end filter
|
e7c79b4898578b9c7ec37f84b4b51e76fa1b29d8
|
9dc8cecdf3c4634764a18254e94d43da07142918
|
/src/topology/sheaves/sheaf_condition/pairwise_intersections.lean
|
75a18fd7b8c1f3ac2e4900fb865922f59ed69b1d
|
[
"Apache-2.0"
] |
permissive
|
jcommelin/mathlib
|
d8456447c36c176e14d96d9e76f39841f69d2d9b
|
ee8279351a2e434c2852345c51b728d22af5a156
|
refs/heads/master
| 1,664,782,136,488
| 1,663,638,983,000
| 1,663,638,983,000
| 132,563,656
| 0
| 0
|
Apache-2.0
| 1,663,599,929,000
| 1,525,760,539,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 21,323
|
lean
|
/-
Copyright (c) 2020 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison
-/
import topology.sheaves.sheaf_condition.sites
import category_theory.limits.preserves.basic
import category_theory.category.pairwise
import category_theory.limits.constructions.binary_products
import algebra.category.Ring.constructions
/-!
# Equivalent formulations of the sheaf condition
We give an equivalent formulation of the sheaf condition.
Given any indexed type `ι`, we define `overlap ι`,
a category with objects corresponding to
* individual open sets, `single i`, and
* intersections of pairs of open sets, `pair i j`,
with morphisms from `pair i j` to both `single i` and `single j`.
Any open cover `U : ι → opens X` provides a functor `diagram U : overlap ι ⥤ (opens X)ᵒᵖ`.
There is a canonical cone over this functor, `cone U`, whose cone point is `supr U`,
and in fact this is a limit cone.
A presheaf `F : presheaf C X` is a sheaf precisely if it preserves this limit.
We express this in two equivalent ways, as
* `is_limit (F.map_cone (cone U))`, or
* `preserves_limit (diagram U) F`
-/
noncomputable theory
universes w v u
open topological_space
open Top
open opposite
open category_theory
open category_theory.limits
namespace Top.presheaf
variables {C : Type u} [category.{v} C]
section
variables {X : Top.{w}}
/--
An alternative formulation of the sheaf condition
(which we prove equivalent to the usual one below as
`is_sheaf_iff_is_sheaf_pairwise_intersections`).
A presheaf is a sheaf if `F` sends the cone `(pairwise.cocone U).op` to a limit cone.
(Recall `pairwise.cocone U` has cone point `supr U`, mapping down to the `U i` and the `U i ⊓ U j`.)
-/
def is_sheaf_pairwise_intersections (F : presheaf C X) : Prop :=
∀ ⦃ι : Type w⦄ (U : ι → opens X), nonempty (is_limit (F.map_cone (pairwise.cocone U).op))
/--
An alternative formulation of the sheaf condition
(which we prove equivalent to the usual one below as
`is_sheaf_iff_is_sheaf_preserves_limit_pairwise_intersections`).
A presheaf is a sheaf if `F` preserves the limit of `pairwise.diagram U`.
(Recall `pairwise.diagram U` is the diagram consisting of the pairwise intersections
`U i ⊓ U j` mapping into the open sets `U i`. This diagram has limit `supr U`.)
-/
def is_sheaf_preserves_limit_pairwise_intersections (F : presheaf C X) : Prop :=
∀ ⦃ι : Type w⦄ (U : ι → opens X), nonempty (preserves_limit (pairwise.diagram U).op F)
end
/-!
The remainder of this file shows that these conditions are equivalent
to the usual sheaf condition.
-/
variables {X : Top.{v}} [has_products.{v} C]
namespace sheaf_condition_pairwise_intersections
open category_theory.pairwise category_theory.pairwise.hom
open sheaf_condition_equalizer_products
/-- Implementation of `sheaf_condition_pairwise_intersections.cone_equiv`. -/
@[simps]
def cone_equiv_functor_obj (F : presheaf C X)
⦃ι : Type v⦄ (U : ι → opens ↥X) (c : limits.cone ((diagram U).op ⋙ F)) :
limits.cone (sheaf_condition_equalizer_products.diagram F U) :=
{ X := c.X,
π :=
{ app := λ Z,
walking_parallel_pair.cases_on Z
(pi.lift (λ (i : ι), c.π.app (op (single i))))
(pi.lift (λ (b : ι × ι), c.π.app (op (pair b.1 b.2)))),
naturality' := λ Y Z f,
begin
cases Y; cases Z; cases f,
{ ext i, dsimp,
simp only [limit.lift_π, category.id_comp, fan.mk_π_app, category_theory.functor.map_id,
category.assoc],
dsimp,
simp only [limit.lift_π, category.id_comp, fan.mk_π_app], },
{ ext ⟨i, j⟩, dsimp [sheaf_condition_equalizer_products.left_res],
simp only [limit.lift_π, limit.lift_π_assoc, category.id_comp, fan.mk_π_app,
category.assoc],
have h := c.π.naturality (quiver.hom.op (hom.left i j)),
dsimp at h,
simpa using h, },
{ ext ⟨i, j⟩, dsimp [sheaf_condition_equalizer_products.right_res],
simp only [limit.lift_π, limit.lift_π_assoc, category.id_comp, fan.mk_π_app,
category.assoc],
have h := c.π.naturality (quiver.hom.op (hom.right i j)),
dsimp at h,
simpa using h, },
{ ext i, dsimp,
simp only [limit.lift_π, category.id_comp, fan.mk_π_app, category_theory.functor.map_id,
category.assoc],
dsimp,
simp only [limit.lift_π, category.id_comp, fan.mk_π_app], },
end, }, }
section
local attribute [tidy] tactic.case_bash
/-- Implementation of `sheaf_condition_pairwise_intersections.cone_equiv`. -/
@[simps]
def cone_equiv_functor (F : presheaf C X)
⦃ι : Type v⦄ (U : ι → opens ↥X) :
limits.cone ((diagram U).op ⋙ F) ⥤
limits.cone (sheaf_condition_equalizer_products.diagram F U) :=
{ obj := λ c, cone_equiv_functor_obj F U c,
map := λ c c' f,
{ hom := f.hom,
w' := λ j, begin
cases j;
{ ext, simp only [limits.fan.mk_π_app, limits.cone_morphism.w,
limits.limit.lift_π, category.assoc, cone_equiv_functor_obj_π_app], },
end }, }.
end
/-- Implementation of `sheaf_condition_pairwise_intersections.cone_equiv`. -/
@[simps]
def cone_equiv_inverse_obj (F : presheaf C X)
⦃ι : Type v⦄ (U : ι → opens ↥X)
(c : limits.cone (sheaf_condition_equalizer_products.diagram F U)) :
limits.cone ((diagram U).op ⋙ F) :=
{ X := c.X,
π :=
{ app :=
begin
intro x,
induction x using opposite.rec,
rcases x with (⟨i⟩|⟨i,j⟩),
{ exact c.π.app (walking_parallel_pair.zero) ≫ pi.π _ i, },
{ exact c.π.app (walking_parallel_pair.one) ≫ pi.π _ (i, j), }
end,
naturality' :=
begin
intros x y f,
induction x using opposite.rec,
induction y using opposite.rec,
have ef : f = f.unop.op := rfl,
revert ef,
generalize : f.unop = f',
rintro rfl,
rcases x with ⟨i⟩|⟨⟩; rcases y with ⟨⟩|⟨j,j⟩; rcases f' with ⟨⟩,
{ dsimp, erw [F.map_id], simp, },
{ dsimp, simp only [category.id_comp, category.assoc],
have h := c.π.naturality (walking_parallel_pair_hom.left),
dsimp [sheaf_condition_equalizer_products.left_res] at h,
simp only [category.id_comp] at h,
have h' := h =≫ pi.π _ (i, j),
rw h',
simp only [category.assoc, limit.lift_π, fan.mk_π_app],
refl, },
{ dsimp, simp only [category.id_comp, category.assoc],
have h := c.π.naturality (walking_parallel_pair_hom.right),
dsimp [sheaf_condition_equalizer_products.right_res] at h,
simp only [category.id_comp] at h,
have h' := h =≫ pi.π _ (j, i),
rw h',
simp,
refl, },
{ dsimp, erw [F.map_id], simp, },
end, }, }
/-- Implementation of `sheaf_condition_pairwise_intersections.cone_equiv`. -/
@[simps]
def cone_equiv_inverse (F : presheaf C X)
⦃ι : Type v⦄ (U : ι → opens ↥X) :
limits.cone (sheaf_condition_equalizer_products.diagram F U) ⥤
limits.cone ((diagram U).op ⋙ F) :=
{ obj := λ c, cone_equiv_inverse_obj F U c,
map := λ c c' f,
{ hom := f.hom,
w' :=
begin
intro x,
induction x using opposite.rec,
rcases x with (⟨i⟩|⟨i,j⟩),
{ dsimp,
dunfold fork.ι,
rw [←(f.w walking_parallel_pair.zero), category.assoc], },
{ dsimp,
rw [←(f.w walking_parallel_pair.one), category.assoc], },
end }, }.
/-- Implementation of `sheaf_condition_pairwise_intersections.cone_equiv`. -/
@[simps]
def cone_equiv_unit_iso_app (F : presheaf C X) ⦃ι : Type v⦄ (U : ι → opens ↥X)
(c : cone ((diagram U).op ⋙ F)) :
(𝟭 (cone ((diagram U).op ⋙ F))).obj c ≅
(cone_equiv_functor F U ⋙ cone_equiv_inverse F U).obj c :=
{ hom :=
{ hom := 𝟙 _,
w' := λ j, begin
induction j using opposite.rec, rcases j;
{ dsimp, simp only [limits.fan.mk_π_app, category.id_comp, limits.limit.lift_π], }
end, },
inv :=
{ hom := 𝟙 _,
w' := λ j, begin
induction j using opposite.rec, rcases j;
{ dsimp, simp only [limits.fan.mk_π_app, category.id_comp, limits.limit.lift_π], }
end },
hom_inv_id' := begin
ext,
simp only [category.comp_id, limits.cone.category_comp_hom, limits.cone.category_id_hom],
end,
inv_hom_id' := begin
ext,
simp only [category.comp_id, limits.cone.category_comp_hom, limits.cone.category_id_hom],
end, }
/-- Implementation of `sheaf_condition_pairwise_intersections.cone_equiv`. -/
@[simps]
def cone_equiv_unit_iso (F : presheaf C X) ⦃ι : Type v⦄ (U : ι → opens X) :
𝟭 (limits.cone ((diagram U).op ⋙ F)) ≅
cone_equiv_functor F U ⋙ cone_equiv_inverse F U :=
nat_iso.of_components (cone_equiv_unit_iso_app F U) (by tidy)
/-- Implementation of `sheaf_condition_pairwise_intersections.cone_equiv`. -/
@[simps]
def cone_equiv_counit_iso (F : presheaf C X) ⦃ι : Type v⦄ (U : ι → opens X) :
cone_equiv_inverse F U ⋙ cone_equiv_functor F U ≅
𝟭 (limits.cone (sheaf_condition_equalizer_products.diagram F U)) :=
nat_iso.of_components (λ c,
{ hom :=
{ hom := 𝟙 _,
w' :=
begin
rintro ⟨_|_⟩,
{ ext ⟨j⟩, dsimp, simp only [category.id_comp, limits.fan.mk_π_app, limits.limit.lift_π], },
{ ext ⟨i,j⟩, dsimp, simp only [category.id_comp, limits.fan.mk_π_app, limits.limit.lift_π], },
end },
inv :=
{ hom := 𝟙 _,
w' :=
begin
rintro ⟨_|_⟩,
{ ext ⟨j⟩, dsimp, simp only [category.id_comp, limits.fan.mk_π_app, limits.limit.lift_π], },
{ ext ⟨i,j⟩, dsimp, simp only [category.id_comp, limits.fan.mk_π_app, limits.limit.lift_π], },
end, },
hom_inv_id' := by { ext, dsimp, simp only [category.comp_id], },
inv_hom_id' := by { ext, dsimp, simp only [category.comp_id], }, })
(λ c d f, by { ext, dsimp, simp only [category.comp_id, category.id_comp], })
/--
Cones over `diagram U ⋙ F` are the same as a cones over the usual sheaf condition equalizer diagram.
-/
@[simps]
def cone_equiv (F : presheaf C X) ⦃ι : Type v⦄ (U : ι → opens X) :
limits.cone ((diagram U).op ⋙ F) ≌ limits.cone (sheaf_condition_equalizer_products.diagram F U) :=
{ functor := cone_equiv_functor F U,
inverse := cone_equiv_inverse F U,
unit_iso := cone_equiv_unit_iso F U,
counit_iso := cone_equiv_counit_iso F U, }
local attribute [reducible]
sheaf_condition_equalizer_products.res
sheaf_condition_equalizer_products.left_res
/--
If `sheaf_condition_equalizer_products.fork` is an equalizer,
then `F.map_cone (cone U)` is a limit cone.
-/
def is_limit_map_cone_of_is_limit_sheaf_condition_fork
(F : presheaf C X) ⦃ι : Type v⦄ (U : ι → opens X)
(P : is_limit (sheaf_condition_equalizer_products.fork F U)) :
is_limit (F.map_cone (cocone U).op) :=
is_limit.of_iso_limit ((is_limit.of_cone_equiv (cone_equiv F U).symm).symm P)
{ hom :=
{ hom := 𝟙 _,
w' :=
begin
intro x,
induction x using opposite.rec,
rcases x with ⟨⟩,
{ dsimp, simp, refl, },
{ dsimp,
simp only [limit.lift_π, limit.lift_π_assoc, category.id_comp, fan.mk_π_app,
category.assoc],
rw ←F.map_comp,
refl, }
end },
inv :=
{ hom := 𝟙 _,
w' :=
begin
intro x,
induction x using opposite.rec,
rcases x with ⟨⟩,
{ dsimp, simp, refl, },
{ dsimp,
simp only [limit.lift_π, limit.lift_π_assoc, category.id_comp, fan.mk_π_app,
category.assoc],
rw ←F.map_comp,
refl, }
end },
hom_inv_id' := by { ext, dsimp, simp only [category.comp_id], },
inv_hom_id' := by { ext, dsimp, simp only [category.comp_id], }, }
/--
If `F.map_cone (cone U)` is a limit cone,
then `sheaf_condition_equalizer_products.fork` is an equalizer.
-/
def is_limit_sheaf_condition_fork_of_is_limit_map_cone
(F : presheaf C X) ⦃ι : Type v⦄ (U : ι → opens X)
(Q : is_limit (F.map_cone (cocone U).op)) :
is_limit (sheaf_condition_equalizer_products.fork F U) :=
is_limit.of_iso_limit ((is_limit.of_cone_equiv (cone_equiv F U)).symm Q)
{ hom :=
{ hom := 𝟙 _,
w' :=
begin
rintro ⟨⟩,
{ dsimp, simp, refl, },
{ dsimp, ext ⟨i, j⟩,
simp only [limit.lift_π, limit.lift_π_assoc, category.id_comp, fan.mk_π_app,
category.assoc],
rw ←F.map_comp,
refl, }
end },
inv :=
{ hom := 𝟙 _,
w' :=
begin
rintro ⟨⟩,
{ dsimp, simp, refl, },
{ dsimp, ext ⟨i, j⟩,
simp only [limit.lift_π, limit.lift_π_assoc, category.id_comp, fan.mk_π_app,
category.assoc],
rw ←F.map_comp,
refl, }
end },
hom_inv_id' := by { ext, dsimp, simp only [category.comp_id], },
inv_hom_id' := by { ext, dsimp, simp only [category.comp_id], }, }
end sheaf_condition_pairwise_intersections
open sheaf_condition_pairwise_intersections
/--
The sheaf condition in terms of an equalizer diagram is equivalent
to the reformulation in terms of a limit diagram over `U i` and `U i ⊓ U j`.
-/
lemma is_sheaf_iff_is_sheaf_pairwise_intersections (F : presheaf C X) :
F.is_sheaf ↔ F.is_sheaf_pairwise_intersections :=
(is_sheaf_iff_is_sheaf_equalizer_products F).trans $
iff.intro (λ h ι U, ⟨is_limit_map_cone_of_is_limit_sheaf_condition_fork F U (h U).some⟩)
(λ h ι U, ⟨is_limit_sheaf_condition_fork_of_is_limit_map_cone F U (h U).some⟩)
/--
The sheaf condition in terms of an equalizer diagram is equivalent
to the reformulation in terms of the presheaf preserving the limit of the diagram
consisting of the `U i` and `U i ⊓ U j`.
-/
lemma is_sheaf_iff_is_sheaf_preserves_limit_pairwise_intersections (F : presheaf C X) :
F.is_sheaf ↔ F.is_sheaf_preserves_limit_pairwise_intersections :=
begin
rw is_sheaf_iff_is_sheaf_pairwise_intersections,
split,
{ intros h ι U,
exact ⟨preserves_limit_of_preserves_limit_cone (pairwise.cocone_is_colimit U).op (h U).some⟩ },
{ intros h ι U,
haveI := (h U).some,
exact ⟨preserves_limit.preserves (pairwise.cocone_is_colimit U).op⟩ }
end
end Top.presheaf
namespace Top.sheaf
variables {X : Top.{v}} {C : Type u} [category.{v} C]
variables (F : X.sheaf C) (U V : opens X)
open category_theory.limits
/-- For a sheaf `F`, `F(U ⊔ V)` is the pullback of `F(U) ⟶ F(U ⊓ V)` and `F(V) ⟶ F(U ⊓ V)`.
This is the pullback cone. -/
def inter_union_pullback_cone : pullback_cone
(F.1.map (hom_of_le inf_le_left : U ⊓ V ⟶ _).op) (F.1.map (hom_of_le inf_le_right).op) :=
pullback_cone.mk (F.1.map (hom_of_le le_sup_left).op) (F.1.map (hom_of_le le_sup_right).op)
(by { rw [← F.1.map_comp, ← F.1.map_comp], congr })
@[simp] lemma inter_union_pullback_cone_X :
(inter_union_pullback_cone F U V).X = F.1.obj (op $ U ⊔ V) := rfl
@[simp] lemma inter_union_pullback_cone_fst :
(inter_union_pullback_cone F U V).fst = F.1.map (hom_of_le le_sup_left).op := rfl
@[simp] lemma inter_union_pullback_cone_snd :
(inter_union_pullback_cone F U V).snd = F.1.map (hom_of_le le_sup_right).op := rfl
variable (s : pullback_cone
(F.1.map (hom_of_le inf_le_left : U ⊓ V ⟶ _).op) (F.1.map (hom_of_le inf_le_right).op))
variable [has_products.{v} C]
/-- (Implementation).
Every cone over `F(U) ⟶ F(U ⊓ V)` and `F(V) ⟶ F(U ⊓ V)` factors through `F(U ⊔ V)`.
TODO: generalize to `C` without products.
-/
def inter_union_pullback_cone_lift : s.X ⟶ F.1.obj (op (U ⊔ V)) :=
begin
let ι : ulift.{v} walking_pair → opens X := λ j, walking_pair.cases_on j.down U V,
have hι : U ⊔ V = supr ι,
{ ext,
rw [opens.coe_supr, set.mem_Union],
split,
{ rintros (h|h),
exacts [⟨⟨walking_pair.left⟩, h⟩, ⟨⟨walking_pair.right⟩, h⟩] },
{ rintro ⟨⟨_ | _⟩, h⟩,
exacts [or.inl h, or.inr h] } },
refine (F.presheaf.is_sheaf_iff_is_sheaf_pairwise_intersections.mp F.2 ι).some.lift
⟨s.X, { app := _, naturality' := _ }⟩ ≫ F.1.map (eq_to_hom hι).op,
{ apply opposite.rec,
rintro ((_|_)|(_|_)),
exacts [s.fst, s.snd, s.fst ≫ F.1.map (hom_of_le inf_le_left).op,
s.snd ≫ F.1.map (hom_of_le inf_le_left).op] },
rintros i j f,
induction i using opposite.rec,
induction j using opposite.rec,
let g : j ⟶ i := f.unop, have : f = g.op := rfl, clear_value g, subst this,
rcases i with (⟨⟨(_|_)⟩⟩|⟨⟨(_|_)⟩,⟨_⟩⟩); rcases j with (⟨⟨(_|_)⟩⟩|⟨⟨(_|_)⟩,⟨_⟩⟩); rcases g; dsimp;
simp only [category.id_comp, s.condition, category_theory.functor.map_id, category.comp_id],
{ rw [← cancel_mono (F.1.map (eq_to_hom $ inf_comm : U ⊓ V ⟶ _).op), category.assoc,
category.assoc],
erw [← F.1.map_comp, ← F.1.map_comp],
convert s.condition.symm },
end
lemma inter_union_pullback_cone_lift_left :
inter_union_pullback_cone_lift F U V s ≫ F.1.map (hom_of_le le_sup_left).op = s.fst :=
begin
dsimp,
erw [category.assoc, ←F.1.map_comp],
exact (F.presheaf.is_sheaf_iff_is_sheaf_pairwise_intersections.mp F.2 _).some.fac _
(op $ pairwise.single (ulift.up walking_pair.left))
end
lemma inter_union_pullback_cone_lift_right :
inter_union_pullback_cone_lift F U V s ≫ F.1.map (hom_of_le le_sup_right).op = s.snd :=
begin
erw [category.assoc, ←F.1.map_comp],
exact (F.presheaf.is_sheaf_iff_is_sheaf_pairwise_intersections.mp F.2 _).some.fac _
(op $ pairwise.single (ulift.up walking_pair.right))
end
/-- For a sheaf `F`, `F(U ⊔ V)` is the pullback of `F(U) ⟶ F(U ⊓ V)` and `F(V) ⟶ F(U ⊓ V)`. -/
def is_limit_pullback_cone : is_limit (inter_union_pullback_cone F U V) :=
begin
let ι : ulift.{v} walking_pair → opens X := λ ⟨j⟩, walking_pair.cases_on j U V,
have hι : U ⊔ V = supr ι,
{ ext,
rw [opens.coe_supr, set.mem_Union],
split,
{ rintros (h|h),
exacts [⟨⟨walking_pair.left⟩, h⟩, ⟨⟨walking_pair.right⟩, h⟩] },
{ rintro ⟨⟨_ | _⟩, h⟩,
exacts [or.inl h, or.inr h] } },
apply pullback_cone.is_limit_aux',
intro s,
use inter_union_pullback_cone_lift F U V s,
refine ⟨_,_,_⟩,
{ apply inter_union_pullback_cone_lift_left },
{ apply inter_union_pullback_cone_lift_right },
{ intros m h₁ h₂,
rw ← cancel_mono (F.1.map (eq_to_hom hι.symm).op),
apply (F.presheaf.is_sheaf_iff_is_sheaf_pairwise_intersections.mp F.2 ι).some.hom_ext,
apply opposite.rec,
rintro ((_|_)|(_|_)); rw [category.assoc, category.assoc],
{ erw ← F.1.map_comp,
convert h₁,
apply inter_union_pullback_cone_lift_left },
{ erw ← F.1.map_comp,
convert h₂,
apply inter_union_pullback_cone_lift_right },
all_goals
{ dsimp only [functor.op, pairwise.cocone_ι_app, functor.map_cone_π_app,
cocone.op, pairwise.cocone_ι_app_2, unop_op, op_comp, nat_trans.op],
simp_rw [F.1.map_comp, ← category.assoc],
congr' 1,
simp_rw [category.assoc, ← F.1.map_comp] },
{ convert h₁,
apply inter_union_pullback_cone_lift_left },
{ convert h₂,
apply inter_union_pullback_cone_lift_right } }
end
/-- If `U, V` are disjoint, then `F(U ⊔ V) = F(U) × F(V)`. -/
def is_product_of_disjoint (h : U ⊓ V = ⊥) : is_limit
(binary_fan.mk (F.1.map (hom_of_le le_sup_left : _ ⟶ U ⊔ V).op)
(F.1.map (hom_of_le le_sup_right : _ ⟶ U ⊔ V).op)) :=
is_product_of_is_terminal_is_pullback _ _ _ _
(F.is_terminal_of_eq_empty h) (is_limit_pullback_cone F U V)
/-- `F(U ⊔ V)` is isomorphic to the `eq_locus` of the two maps `F(U) × F(V) ⟶ F(U ⊓ V)`. -/
def obj_sup_iso_prod_eq_locus {X : Top} (F : X.sheaf CommRing)
(U V : opens X) :
F.1.obj (op $ U ⊔ V) ≅ CommRing.of (ring_hom.eq_locus _ _) :=
(F.is_limit_pullback_cone U V).cone_point_unique_up_to_iso (CommRing.pullback_cone_is_limit _ _)
lemma obj_sup_iso_prod_eq_locus_hom_fst {X : Top} (F : X.sheaf CommRing)
(U V : opens X) (x) :
((F.obj_sup_iso_prod_eq_locus U V).hom x).1.fst = F.1.map (hom_of_le le_sup_left).op x :=
concrete_category.congr_hom ((F.is_limit_pullback_cone U V).cone_point_unique_up_to_iso_hom_comp
(CommRing.pullback_cone_is_limit _ _) walking_cospan.left) x
lemma obj_sup_iso_prod_eq_locus_hom_snd {X : Top} (F : X.sheaf CommRing)
(U V : opens X) (x) :
((F.obj_sup_iso_prod_eq_locus U V).hom x).1.snd = F.1.map (hom_of_le le_sup_right).op x :=
concrete_category.congr_hom ((F.is_limit_pullback_cone U V).cone_point_unique_up_to_iso_hom_comp
(CommRing.pullback_cone_is_limit _ _) walking_cospan.right) x
lemma obj_sup_iso_prod_eq_locus_inv_fst {X : Top} (F : X.sheaf CommRing)
(U V : opens X) (x) :
F.1.map (hom_of_le le_sup_left).op ((F.obj_sup_iso_prod_eq_locus U V).inv x) = x.1.1 :=
concrete_category.congr_hom ((F.is_limit_pullback_cone U V).cone_point_unique_up_to_iso_inv_comp
(CommRing.pullback_cone_is_limit _ _) walking_cospan.left) x
lemma obj_sup_iso_prod_eq_locus_inv_snd {X : Top} (F : X.sheaf CommRing)
(U V : opens X) (x) :
F.1.map (hom_of_le le_sup_right).op ((F.obj_sup_iso_prod_eq_locus U V).inv x) = x.1.2 :=
concrete_category.congr_hom ((F.is_limit_pullback_cone U V).cone_point_unique_up_to_iso_inv_comp
(CommRing.pullback_cone_is_limit _ _) walking_cospan.right) x
end Top.sheaf
|
a16932d71aebc8584ddf1a292a3644eacac9d036
|
6432ea7a083ff6ba21ea17af9ee47b9c371760f7
|
/src/Lean/Widget/UserWidget.lean
|
f4e3354a71394eff6648a0325359a510703ab6cd
|
[
"Apache-2.0",
"LLVM-exception",
"NCSA",
"LGPL-3.0-only",
"LicenseRef-scancode-inner-net-2.0",
"BSD-3-Clause",
"LGPL-2.0-or-later",
"Spencer-94",
"LGPL-2.1-or-later",
"HPND",
"LicenseRef-scancode-pcre",
"ISC",
"LGPL-2.1-only",
"LicenseRef-scancode-other-permissive",
"SunPro",
"CMU-Mach"
] |
permissive
|
leanprover/lean4
|
4bdf9790294964627eb9be79f5e8f6157780b4cc
|
f1f9dc0f2f531af3312398999d8b8303fa5f096b
|
refs/heads/master
| 1,693,360,665,786
| 1,693,350,868,000
| 1,693,350,868,000
| 129,571,436
| 2,827
| 311
|
Apache-2.0
| 1,694,716,156,000
| 1,523,760,560,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 6,755
|
lean
|
/-
Copyright (c) 2022 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: E.W.Ayers
-/
import Lean.Elab.Eval
import Lean.Server.Rpc.RequestHandling
open Lean
namespace Lean.Widget
/-- A custom piece of code that is run on the editor client.
The editor can use the `Lean.Widget.getWidgetSource` RPC method to
get this object.
See the [manual entry](doc/widgets.md) above this declaration for more information on
how to use the widgets system.
-/
structure WidgetSource where
/-- Sourcetext of the code to run.-/
sourcetext : String
deriving Inhabited, ToJson, FromJson
/-- Use this structure and the `@[widget]` attribute to define your own widgets.
```lean
@[widget]
def rubiks : UserWidgetDefinition :=
{ name := "Rubiks cube app"
javascript := include_str ...
}
```
-/
structure UserWidgetDefinition where
/-- Pretty name of user widget to display to the user. -/
name : String
/-- An ESmodule that exports a react component to render. -/
javascript: String
deriving Inhabited, ToJson, FromJson
structure UserWidget where
id : Name
/-- Pretty name of widget to display to the user.-/
name : String
javascriptHash: UInt64
deriving Inhabited, ToJson, FromJson
private abbrev WidgetSourceRegistry := SimplePersistentEnvExtension
(UInt64 × Name)
(RBMap UInt64 Name compare)
-- Mapping widgetSourceId to hash of sourcetext
builtin_initialize userWidgetRegistry : MapDeclarationExtension UserWidget ← mkMapDeclarationExtension
builtin_initialize widgetSourceRegistry : WidgetSourceRegistry ←
registerSimplePersistentEnvExtension {
addImportedFn := fun xss => xss.foldl (Array.foldl (fun s n => s.insert n.1 n.2)) ∅
addEntryFn := fun s n => s.insert n.1 n.2
toArrayFn := fun es => es.toArray
}
private unsafe def getUserWidgetDefinitionUnsafe
(decl : Name) : CoreM UserWidgetDefinition :=
evalConstCheck UserWidgetDefinition ``UserWidgetDefinition decl
@[implemented_by getUserWidgetDefinitionUnsafe]
private opaque getUserWidgetDefinition
(decl : Name) : CoreM UserWidgetDefinition
private def attributeImpl : AttributeImpl where
name := `widget
descr := "Mark a string as static code that can be loaded by a widget handler."
applicationTime := AttributeApplicationTime.afterCompilation
add decl _stx _kind := do
let env ← getEnv
let defn ← getUserWidgetDefinition decl
let javascriptHash := hash defn.javascript
let env := userWidgetRegistry.insert env decl {id := decl, name := defn.name, javascriptHash}
let env := widgetSourceRegistry.addEntry env (javascriptHash, decl)
setEnv <| env
builtin_initialize registerBuiltinAttribute attributeImpl
/-- Input for `getWidgetSource` RPC. -/
structure GetWidgetSourceParams where
/-- The hash of the sourcetext to retrieve. -/
hash: UInt64
pos : Lean.Lsp.Position
deriving ToJson, FromJson
open Server RequestM in
@[server_rpc_method]
def getWidgetSource (args : GetWidgetSourceParams) : RequestM (RequestTask WidgetSource) := do
let doc ← readDoc
let pos := doc.meta.text.lspPosToUtf8Pos args.pos
let notFound := throwThe RequestError ⟨.invalidParams, s!"No registered user-widget with hash {args.hash}"⟩
withWaitFindSnap doc (notFoundX := notFound)
(fun s => s.endPos >= pos || (widgetSourceRegistry.getState s.env).contains args.hash)
fun snap => do
if let some id := widgetSourceRegistry.getState snap.env |>.find? args.hash then
runCoreM snap do
return {sourcetext := (← getUserWidgetDefinition id).javascript}
else
notFound
open Lean Elab
/--
Try to retrieve the `UserWidgetInfo` at a particular position.
-/
def widgetInfosAt? (text : FileMap) (t : InfoTree) (hoverPos : String.Pos) : List UserWidgetInfo :=
t.deepestNodes fun
| _ctx, i@(Info.ofUserWidgetInfo wi), _cs => do
if let (some pos, some tailPos) := (i.pos?, i.tailPos?) then
let trailSize := i.stx.getTrailingSize
-- show info at EOF even if strictly outside token + trail
let atEOF := tailPos.byteIdx + trailSize == text.source.endPos.byteIdx
guard <| pos ≤ hoverPos ∧ (hoverPos.byteIdx < tailPos.byteIdx + trailSize || atEOF)
return wi
else
failure
| _, _, _ => none
/-- UserWidget accompanied by component props. -/
structure UserWidgetInstance extends UserWidget where
/-- Arguments to be fed to the widget's main component. -/
props : Json
/-- The location of the widget instance in the Lean file. -/
range? : Option Lsp.Range
deriving ToJson, FromJson
/-- Output of `getWidgets` RPC.-/
structure GetWidgetsResponse where
widgets : Array UserWidgetInstance
deriving ToJson, FromJson
open Lean Server RequestM in
/-- Get the `UserWidget`s present at a particular position. -/
@[server_rpc_method]
def getWidgets (args : Lean.Lsp.Position) : RequestM (RequestTask (GetWidgetsResponse)) := do
let doc ← readDoc
let filemap := doc.meta.text
let pos := filemap.lspPosToUtf8Pos args
withWaitFindSnap doc (·.endPos >= pos) (notFoundX := return ⟨∅⟩) fun snap => do
let env := snap.env
let ws := widgetInfosAt? filemap snap.infoTree pos
let ws ← ws.toArray.mapM (fun (w : UserWidgetInfo) => do
let some widget := userWidgetRegistry.find? env w.widgetId
| throw <| RequestError.mk .invalidParams s!"No registered user-widget with id {w.widgetId}"
return {
widget with
props := w.props
range? := String.Range.toLspRange filemap <$> Syntax.getRange? w.stx
})
return {widgets := ws}
/-- Save a user-widget instance to the infotree.
The given `widgetId` should be the declaration name of the widget definition. -/
def saveWidgetInfo [Monad m] [MonadEnv m] [MonadError m] [MonadInfoTree m] (widgetId : Name) (props : Json) (stx : Syntax): m Unit := do
let info := Info.ofUserWidgetInfo {
widgetId := widgetId
props := props
stx := stx
}
pushInfoLeaf info
/-! # Widget command -/
/-- Use `#widget <widgetname> <props>` to display a widget. Useful for debugging widgets. -/
syntax (name := widgetCmd) "#widget " ident ppSpace term : command
open Lean Lean.Meta Lean.Elab Lean.Elab.Term in
private unsafe def evalJsonUnsafe (stx : Syntax) : TermElabM Json :=
Lean.Elab.Term.evalTerm Json (mkConst ``Json) stx
@[implemented_by evalJsonUnsafe]
private opaque evalJson (stx : Syntax) : TermElabM Json
open Elab Command in
@[command_elab widgetCmd] def elabWidgetCmd : CommandElab := fun
| stx@`(#widget $id:ident $props) => do
let props : Json ← runTermElabM fun _ => evalJson props
saveWidgetInfo id.getId props stx
| _ => throwUnsupportedSyntax
end Lean.Widget
|
ff9ce73ce467d7b95e676f097e3258ac5f9daebb
|
8cae430f0a71442d02dbb1cbb14073b31048e4b0
|
/src/linear_algebra/free_module/pid.lean
|
a54dbec23e0bbb64a1c62097903756bdbc65e8b8
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/mathlib
|
56a2cadd17ac88caf4ece0a775932fa26327ba0e
|
442a83d738cb208d3600056c489be16900ba701d
|
refs/heads/master
| 1,693,584,102,358
| 1,693,471,902,000
| 1,693,471,902,000
| 97,922,418
| 1,595
| 352
|
Apache-2.0
| 1,694,693,445,000
| 1,500,624,130,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 29,317
|
lean
|
/-
Copyright (c) 2020 Anne Baanen. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Anne Baanen
-/
import linear_algebra.dimension
import linear_algebra.free_module.basic
import ring_theory.principal_ideal_domain
import ring_theory.finiteness
/-! # Free modules over PID
> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
> Any changes to this file require a corresponding PR to mathlib4.
A free `R`-module `M` is a module with a basis over `R`,
equivalently it is an `R`-module linearly equivalent to `ι →₀ R` for some `ι`.
This file proves a submodule of a free `R`-module of finite rank is also
a free `R`-module of finite rank, if `R` is a principal ideal domain (PID),
i.e. we have instances `[is_domain R] [is_principal_ideal_ring R]`.
We express "free `R`-module of finite rank" as a module `M` which has a basis
`b : ι → R`, where `ι` is a `fintype`.
We call the cardinality of `ι` the rank of `M` in this file;
it would be equal to `finrank R M` if `R` is a field and `M` is a vector space.
## Main results
In this section, `M` is a free and finitely generated `R`-module, and
`N` is a submodule of `M`.
- `submodule.induction_on_rank`: if `P` holds for `⊥ : submodule R M` and if
`P N` follows from `P N'` for all `N'` that are of lower rank, then `P` holds
on all submodules
- `submodule.exists_basis_of_pid`: if `R` is a PID, then `N : submodule R M` is
free and finitely generated. This is the first part of the structure theorem
for modules.
- `submodule.smith_normal_form`: if `R` is a PID, then `M` has a basis
`bM` and `N` has a basis `bN` such that `bN i = a i • bM i`.
Equivalently, a linear map `f : M →ₗ M` with `range f = N` can be written as
a matrix in Smith normal form, a diagonal matrix with the coefficients `a i`
along the diagonal.
## Tags
free module, finitely generated module, rank, structure theorem
-/
open_locale big_operators
universes u v
section ring
variables {R : Type u} {M : Type v} [ring R] [add_comm_group M] [module R M]
variables {ι : Type*} (b : basis ι R M)
open submodule.is_principal submodule
lemma eq_bot_of_generator_maximal_map_eq_zero (b : basis ι R M) {N : submodule R M}
{ϕ : M →ₗ[R] R} (hϕ : ∀ (ψ : M →ₗ[R] R), ¬ N.map ϕ < N.map ψ)
[(N.map ϕ).is_principal] (hgen : generator (N.map ϕ) = (0 : R)) : N = ⊥ :=
begin
rw submodule.eq_bot_iff,
intros x hx,
refine b.ext_elem (λ i, _),
rw (eq_bot_iff_generator_eq_zero _).mpr hgen at hϕ,
rw [linear_equiv.map_zero, finsupp.zero_apply],
exact (submodule.eq_bot_iff _).mp (not_bot_lt_iff.1 $ hϕ ((finsupp.lapply i) ∘ₗ ↑b.repr)) _
⟨x, hx, rfl⟩
end
lemma eq_bot_of_generator_maximal_submodule_image_eq_zero {N O : submodule R M} (b : basis ι R O)
(hNO : N ≤ O)
{ϕ : O →ₗ[R] R} (hϕ : ∀ (ψ : O →ₗ[R] R), ¬ ϕ.submodule_image N < ψ.submodule_image N)
[(ϕ.submodule_image N).is_principal] (hgen : generator (ϕ.submodule_image N) = 0) :
N = ⊥ :=
begin
rw submodule.eq_bot_iff,
intros x hx,
refine congr_arg coe (show (⟨x, hNO hx⟩ : O) = 0, from b.ext_elem (λ i, _)),
rw (eq_bot_iff_generator_eq_zero _).mpr hgen at hϕ,
rw [linear_equiv.map_zero, finsupp.zero_apply],
refine (submodule.eq_bot_iff _).mp (not_bot_lt_iff.1 $ hϕ ((finsupp.lapply i) ∘ₗ ↑b.repr)) _ _,
exact (linear_map.mem_submodule_image_of_le hNO).mpr ⟨x, hx, rfl⟩
end
end ring
section is_domain
variables {ι : Type*} {R : Type*} [comm_ring R] [is_domain R]
variables {M : Type*} [add_comm_group M] [module R M] {b : ι → M}
open submodule.is_principal set submodule
lemma dvd_generator_iff {I : ideal R} [I.is_principal] {x : R} (hx : x ∈ I) :
x ∣ generator I ↔ I = ideal.span {x} :=
begin
conv_rhs { rw [← span_singleton_generator I] },
erw [ideal.span_singleton_eq_span_singleton, ← dvd_dvd_iff_associated, ← mem_iff_generator_dvd],
exact ⟨λ h, ⟨hx, h⟩, λ h, h.2⟩
end
end is_domain
section principal_ideal_domain
open submodule.is_principal set submodule
variables {ι : Type*} {R : Type*} [comm_ring R] [is_domain R] [is_principal_ideal_ring R]
variables {M : Type*} [add_comm_group M] [module R M] {b : ι → M}
open submodule.is_principal
lemma generator_maximal_submodule_image_dvd {N O : submodule R M} (hNO : N ≤ O)
{ϕ : O →ₗ[R] R} (hϕ : ∀ (ψ : O →ₗ[R] R), ¬ ϕ.submodule_image N < ψ.submodule_image N)
[(ϕ.submodule_image N).is_principal]
(y : M) (yN : y ∈ N) (ϕy_eq : ϕ ⟨y, hNO yN⟩ = generator (ϕ.submodule_image N))
(ψ : O →ₗ[R] R) : generator (ϕ.submodule_image N) ∣ ψ ⟨y, hNO yN⟩ :=
begin
let a : R := generator (ϕ.submodule_image N),
let d : R := is_principal.generator (submodule.span R {a, ψ ⟨y, hNO yN⟩}),
have d_dvd_left : d ∣ a := (mem_iff_generator_dvd _).mp
(subset_span (mem_insert _ _)),
have d_dvd_right : d ∣ ψ ⟨y, hNO yN⟩ := (mem_iff_generator_dvd _).mp
(subset_span (mem_insert_of_mem _ (mem_singleton _))),
refine dvd_trans _ d_dvd_right,
rw [dvd_generator_iff, ideal.span,
← span_singleton_generator (submodule.span R {a, ψ ⟨y, hNO yN⟩})],
obtain ⟨r₁, r₂, d_eq⟩ : ∃ r₁ r₂ : R, d = r₁ * a + r₂ * ψ ⟨y, hNO yN⟩,
{ obtain ⟨r₁, r₂', hr₂', hr₁⟩ := mem_span_insert.mp (is_principal.generator_mem
(submodule.span R {a, ψ ⟨y, hNO yN⟩})),
obtain ⟨r₂, rfl⟩ := mem_span_singleton.mp hr₂',
exact ⟨r₁, r₂, hr₁⟩ },
let ψ' : O →ₗ[R] R := r₁ • ϕ + r₂ • ψ,
have : span R {d} ≤ ψ'.submodule_image N,
{ rw [span_le, singleton_subset_iff, set_like.mem_coe, linear_map.mem_submodule_image_of_le hNO],
refine ⟨y, yN, _⟩,
change r₁ * ϕ ⟨y, hNO yN⟩ + r₂ * ψ ⟨y, hNO yN⟩ = d,
rw [d_eq, ϕy_eq] },
refine le_antisymm (this.trans (le_of_eq _))
(ideal.span_singleton_le_span_singleton.mpr d_dvd_left),
rw span_singleton_generator,
apply (le_trans _ this).eq_of_not_gt (hϕ ψ'),
rw [← span_singleton_generator (ϕ.submodule_image N)],
exact ideal.span_singleton_le_span_singleton.mpr d_dvd_left,
{ exact subset_span (mem_insert _ _) }
end
/-- The induction hypothesis of `submodule.basis_of_pid` and `submodule.smith_normal_form`.
Basically, it says: let `N ≤ M` be a pair of submodules, then we can find a pair of
submodules `N' ≤ M'` of strictly smaller rank, whose basis we can extend to get a basis
of `N` and `M`. Moreover, if the basis for `M'` is up to scalars a basis for `N'`,
then the basis we find for `M` is up to scalars a basis for `N`.
For `basis_of_pid` we only need the first half and can fix `M = ⊤`,
for `smith_normal_form` we need the full statement,
but must also feed in a basis for `M` using `basis_of_pid` to keep the induction going.
-/
lemma submodule.basis_of_pid_aux [finite ι] {O : Type*} [add_comm_group O] [module R O]
(M N : submodule R O) (b'M : basis ι R M) (N_bot : N ≠ ⊥) (N_le_M : N ≤ M) :
∃ (y ∈ M) (a : R) (hay : a • y ∈ N) (M' ≤ M) (N' ≤ N) (N'_le_M' : N' ≤ M')
(y_ortho_M' : ∀ (c : R) (z : O), z ∈ M' → c • y + z = 0 → c = 0)
(ay_ortho_N' : ∀ (c : R) (z : O), z ∈ N' → c • a • y + z = 0 → c = 0),
∀ (n') (bN' : basis (fin n') R N'), ∃ (bN : basis (fin (n' + 1)) R N),
∀ (m') (hn'm' : n' ≤ m') (bM' : basis (fin m') R M'),
∃ (hnm : (n' + 1) ≤ (m' + 1)) (bM : basis (fin (m' + 1)) R M),
∀ (as : fin n' → R) (h : ∀ (i : fin n'), (bN' i : O) = as i • (bM' (fin.cast_le hn'm' i) : O)),
∃ (as' : fin (n' + 1) → R),
∀ (i : fin (n' + 1)), (bN i : O) = as' i • (bM (fin.cast_le hnm i) : O) :=
begin
-- Let `ϕ` be a maximal projection of `M` onto `R`, in the sense that there is
-- no `ψ` whose image of `N` is larger than `ϕ`'s image of `N`.
have : ∃ ϕ : M →ₗ[R] R, ∀ (ψ : M →ₗ[R] R), ¬ ϕ.submodule_image N < ψ.submodule_image N,
{ obtain ⟨P, P_eq, P_max⟩ := set_has_maximal_iff_noetherian.mpr
(infer_instance : is_noetherian R R) _
(show (set.range (λ ψ : M →ₗ[R] R, ψ.submodule_image N)).nonempty,
from ⟨_, set.mem_range.mpr ⟨0, rfl⟩⟩),
obtain ⟨ϕ, rfl⟩ := set.mem_range.mp P_eq,
exact ⟨ϕ, λ ψ hψ, P_max _ ⟨_, rfl⟩ hψ⟩ },
let ϕ := this.some,
have ϕ_max := this.some_spec,
-- Since `ϕ(N)` is a `R`-submodule of the PID `R`,
-- it is principal and generated by some `a`.
let a := generator (ϕ.submodule_image N),
have a_mem : a ∈ ϕ.submodule_image N := generator_mem _,
-- If `a` is zero, then the submodule is trivial. So let's assume `a ≠ 0`, `N ≠ ⊥`.
by_cases a_zero : a = 0,
{ have := eq_bot_of_generator_maximal_submodule_image_eq_zero b'M N_le_M ϕ_max a_zero,
contradiction },
-- We claim that `ϕ⁻¹ a = y` can be taken as basis element of `N`.
obtain ⟨y, yN, ϕy_eq⟩ := (linear_map.mem_submodule_image_of_le N_le_M).mp a_mem,
have ϕy_ne_zero : ϕ ⟨y, N_le_M yN⟩ ≠ 0 := λ h, a_zero (ϕy_eq.symm.trans h),
-- Write `y` as `a • y'` for some `y'`.
have hdvd : ∀ i, a ∣ b'M.coord i ⟨y, N_le_M yN⟩ :=
λ i, generator_maximal_submodule_image_dvd N_le_M ϕ_max y yN ϕy_eq (b'M.coord i),
choose c hc using hdvd,
casesI nonempty_fintype ι,
let y' : O := ∑ i, c i • b'M i,
have y'M : y' ∈ M := M.sum_mem (λ i _, M.smul_mem (c i) (b'M i).2),
have mk_y' : (⟨y', y'M⟩ : M) = ∑ i, c i • b'M i :=
subtype.ext (show y' = M.subtype _,
by { simp only [linear_map.map_sum, linear_map.map_smul], refl }),
have a_smul_y' : a • y' = y,
{ refine congr_arg coe (show (a • ⟨y', y'M⟩ : M) = ⟨y, N_le_M yN⟩, from _),
rw [← b'M.sum_repr ⟨y, N_le_M yN⟩, mk_y', finset.smul_sum],
refine finset.sum_congr rfl (λ i _, _),
rw [← mul_smul, ← hc], refl },
-- We found an `y` and an `a`!
refine ⟨y', y'M, a, a_smul_y'.symm ▸ yN, _⟩,
have ϕy'_eq : ϕ ⟨y', y'M⟩ = 1 := mul_left_cancel₀ a_zero
(calc a • ϕ ⟨y', y'M⟩ = ϕ ⟨a • y', _⟩ : (ϕ.map_smul a ⟨y', y'M⟩).symm
... = ϕ ⟨y, N_le_M yN⟩ : by simp only [a_smul_y']
... = a : ϕy_eq
... = a * 1 : (mul_one a).symm),
have ϕy'_ne_zero : ϕ ⟨y', y'M⟩ ≠ 0 := by simpa only [ϕy'_eq] using one_ne_zero,
-- `M' := ker (ϕ : M → R)` is smaller than `M` and `N' := ker (ϕ : N → R)` is smaller than `N`.
let M' : submodule R O := ϕ.ker.map M.subtype,
let N' : submodule R O := (ϕ.comp (of_le N_le_M)).ker.map N.subtype,
have M'_le_M : M' ≤ M := M.map_subtype_le ϕ.ker,
have N'_le_M' : N' ≤ M',
{ intros x hx,
simp only [mem_map, linear_map.mem_ker] at hx ⊢,
obtain ⟨⟨x, xN⟩, hx, rfl⟩ := hx,
exact ⟨⟨x, N_le_M xN⟩, hx, rfl⟩ },
have N'_le_N : N' ≤ N := N.map_subtype_le (ϕ.comp (of_le N_le_M)).ker,
-- So fill in those results as well.
refine ⟨M', M'_le_M, N', N'_le_N, N'_le_M', _⟩,
-- Note that `y'` is orthogonal to `M'`.
have y'_ortho_M' : ∀ (c : R) z ∈ M', c • y' + z = 0 → c = 0,
{ intros c x xM' hc,
obtain ⟨⟨x, xM⟩, hx', rfl⟩ := submodule.mem_map.mp xM',
rw linear_map.mem_ker at hx',
have hc' : (c • ⟨y', y'M⟩ + ⟨x, xM⟩ : M) = 0 := subtype.coe_injective hc,
simpa only [linear_map.map_add, linear_map.map_zero, linear_map.map_smul, smul_eq_mul, add_zero,
mul_eq_zero, ϕy'_ne_zero, hx', or_false] using congr_arg ϕ hc' },
-- And `a • y'` is orthogonal to `N'`.
have ay'_ortho_N' : ∀ (c : R) z ∈ N', c • a • y' + z = 0 → c = 0,
{ intros c z zN' hc,
refine (mul_eq_zero.mp (y'_ortho_M' (a * c) z (N'_le_M' zN') _)).resolve_left a_zero,
rw [mul_comm, mul_smul, hc] },
-- So we can extend a basis for `N'` with `y`
refine ⟨y'_ortho_M', ay'_ortho_N', λ n' bN', ⟨_, _⟩⟩,
{ refine basis.mk_fin_cons_of_le y yN bN' N'_le_N _ _,
{ intros c z zN' hc,
refine ay'_ortho_N' c z zN' _,
rwa ← a_smul_y' at hc },
{ intros z zN,
obtain ⟨b, hb⟩ : _ ∣ ϕ ⟨z, N_le_M zN⟩ := generator_submodule_image_dvd_of_mem N_le_M ϕ zN,
refine ⟨-b, submodule.mem_map.mpr ⟨⟨_, N.sub_mem zN (N.smul_mem b yN)⟩, _, _⟩⟩,
{ refine linear_map.mem_ker.mpr (show ϕ (⟨z, N_le_M zN⟩ - b • ⟨y, N_le_M yN⟩) = 0, from _),
rw [linear_map.map_sub, linear_map.map_smul, hb, ϕy_eq, smul_eq_mul,
mul_comm, sub_self] },
{ simp only [sub_eq_add_neg, neg_smul], refl } } },
-- And extend a basis for `M'` with `y'`
intros m' hn'm' bM',
refine ⟨nat.succ_le_succ hn'm', _, _⟩,
{ refine basis.mk_fin_cons_of_le y' y'M bM' M'_le_M y'_ortho_M' _,
intros z zM,
refine ⟨-ϕ ⟨z, zM⟩, ⟨⟨z, zM⟩ - (ϕ ⟨z, zM⟩) • ⟨y', y'M⟩, linear_map.mem_ker.mpr _, _⟩⟩,
{ rw [linear_map.map_sub, linear_map.map_smul, ϕy'_eq, smul_eq_mul, mul_one, sub_self] },
{ rw [linear_map.map_sub, linear_map.map_smul, sub_eq_add_neg, neg_smul], refl } },
-- It remains to show the extended bases are compatible with each other.
intros as h,
refine ⟨fin.cons a as, _⟩,
intro i,
rw [basis.coe_mk_fin_cons_of_le, basis.coe_mk_fin_cons_of_le],
refine fin.cases _ (λ i, _) i,
{ simp only [fin.cons_zero, fin.cast_le_zero],
exact a_smul_y'.symm },
{ rw fin.cast_le_succ, simp only [fin.cons_succ, coe_of_le, h i] }
end
/-- A submodule of a free `R`-module of finite rank is also a free `R`-module of finite rank,
if `R` is a principal ideal domain.
This is a `lemma` to make the induction a bit easier. To actually access the basis,
see `submodule.basis_of_pid`.
See also the stronger version `submodule.smith_normal_form`.
-/
lemma submodule.nonempty_basis_of_pid {ι : Type*} [finite ι]
(b : basis ι R M) (N : submodule R M) :
∃ (n : ℕ), nonempty (basis (fin n) R N) :=
begin
haveI := classical.dec_eq M,
casesI nonempty_fintype ι,
refine N.induction_on_rank b _ _,
intros N ih,
let b' := (b.reindex (fintype.equiv_fin ι)).map (linear_equiv.of_top _ rfl).symm,
by_cases N_bot : N = ⊥,
{ subst N_bot, exact ⟨0, ⟨basis.empty _⟩⟩ },
obtain ⟨y, -, a, hay, M', -, N', N'_le_N, -, -, ay_ortho, h'⟩ :=
submodule.basis_of_pid_aux ⊤ N b' N_bot le_top,
obtain ⟨n', ⟨bN'⟩⟩ := ih N' N'_le_N _ hay ay_ortho,
obtain ⟨bN, hbN⟩ := h' n' bN',
exact ⟨n' + 1, ⟨bN⟩⟩
end
/-- A submodule of a free `R`-module of finite rank is also a free `R`-module of finite rank,
if `R` is a principal ideal domain.
See also the stronger version `submodule.smith_normal_form`.
-/
noncomputable def submodule.basis_of_pid {ι : Type*} [finite ι]
(b : basis ι R M) (N : submodule R M) :
Σ (n : ℕ), (basis (fin n) R N) :=
⟨_, (N.nonempty_basis_of_pid b).some_spec.some⟩
lemma submodule.basis_of_pid_bot {ι : Type*} [finite ι] (b : basis ι R M) :
submodule.basis_of_pid b ⊥ = ⟨0, basis.empty _⟩ :=
begin
obtain ⟨n, b'⟩ := submodule.basis_of_pid b ⊥,
let e : fin n ≃ fin 0 := b'.index_equiv (basis.empty _ : basis (fin 0) R (⊥ : submodule R M)),
obtain rfl : n = 0 := by simpa using fintype.card_eq.mpr ⟨e⟩,
exact sigma.eq rfl (basis.eq_of_apply_eq $ fin_zero_elim)
end
/-- A submodule inside a free `R`-submodule of finite rank is also a free `R`-module of finite rank,
if `R` is a principal ideal domain.
See also the stronger version `submodule.smith_normal_form_of_le`.
-/
noncomputable def submodule.basis_of_pid_of_le {ι : Type*} [finite ι]
{N O : submodule R M} (hNO : N ≤ O) (b : basis ι R O) :
Σ (n : ℕ), basis (fin n) R N :=
let ⟨n, bN'⟩ := submodule.basis_of_pid b (N.comap O.subtype)
in ⟨n, bN'.map (submodule.comap_subtype_equiv_of_le hNO)⟩
/-- A submodule inside the span of a linear independent family is a free `R`-module of finite rank,
if `R` is a principal ideal domain. -/
noncomputable def submodule.basis_of_pid_of_le_span
{ι : Type*} [finite ι] {b : ι → M} (hb : linear_independent R b)
{N : submodule R M} (le : N ≤ submodule.span R (set.range b)) :
Σ (n : ℕ), basis (fin n) R N :=
submodule.basis_of_pid_of_le le (basis.span hb)
variable {M}
/-- A finite type torsion free module over a PID admits a basis. -/
noncomputable def module.basis_of_finite_type_torsion_free [fintype ι] {s : ι → M}
(hs : span R (range s) = ⊤) [no_zero_smul_divisors R M] :
Σ (n : ℕ), basis (fin n) R M :=
begin
classical,
-- We define `N` as the submodule spanned by a maximal linear independent subfamily of `s`
have := exists_maximal_independent R s,
let I : set ι := this.some,
obtain ⟨indepI : linear_independent R (s ∘ coe : I → M),
hI : ∀ i ∉ I, ∃ a : R, a ≠ 0 ∧ a • s i ∈ span R (s '' I)⟩ := this.some_spec,
let N := span R (range $ (s ∘ coe : I → M)), -- same as `span R (s '' I)` but more convenient
let sI : I → N := λ i, ⟨s i.1, subset_span (mem_range_self i)⟩, -- `s` restricted to `I`
let sI_basis : basis I R N, -- `s` restricted to `I` is a basis of `N`
from basis.span indepI,
-- Our first goal is to build `A ≠ 0` such that `A • M ⊆ N`
have exists_a : ∀ i : ι, ∃ a : R, a ≠ 0 ∧ a • s i ∈ N,
{ intro i,
by_cases hi : i ∈ I,
{ use [1, zero_ne_one.symm],
rw one_smul,
exact subset_span (mem_range_self (⟨i, hi⟩ : I)) },
{ simpa [image_eq_range s I] using hI i hi } },
choose a ha ha' using exists_a,
let A := ∏ i, a i,
have hA : A ≠ 0,
{ rw finset.prod_ne_zero_iff,
simpa using ha },
-- `M ≃ A • M` because `M` is torsion free and `A ≠ 0`
let φ : M →ₗ[R] M := linear_map.lsmul R M A,
have : φ.ker = ⊥,
from linear_map.ker_lsmul hA,
let ψ : M ≃ₗ[R] φ.range := linear_equiv.of_injective φ (linear_map.ker_eq_bot.mp this),
have : φ.range ≤ N, -- as announced, `A • M ⊆ N`
{ suffices : ∀ i, φ (s i) ∈ N,
{ rw [linear_map.range_eq_map, ← hs, φ.map_span_le],
rintros _ ⟨i, rfl⟩, apply this },
intro i,
calc (∏ j, a j) • s i = (∏ j in {i}ᶜ, a j) • a i • s i :
by rw [fintype.prod_eq_prod_compl_mul i, mul_smul]
... ∈ N : N.smul_mem _ (ha' i) },
-- Since a submodule of a free `R`-module is free, we get that `A • M` is free
obtain ⟨n, b : basis (fin n) R φ.range⟩ := submodule.basis_of_pid_of_le this sI_basis,
-- hence `M` is free.
exact ⟨n, b.map ψ.symm⟩
end
lemma module.free_of_finite_type_torsion_free [finite ι] {s : ι → M}
(hs : span R (range s) = ⊤) [no_zero_smul_divisors R M] :
module.free R M :=
begin
casesI nonempty_fintype ι,
obtain ⟨n, b⟩ : Σ n, basis (fin n) R M := module.basis_of_finite_type_torsion_free hs,
exact module.free.of_basis b,
end
/-- A finite type torsion free module over a PID admits a basis. -/
noncomputable def module.basis_of_finite_type_torsion_free' [module.finite R M]
[no_zero_smul_divisors R M] :
Σ (n : ℕ), basis (fin n) R M :=
module.basis_of_finite_type_torsion_free module.finite.exists_fin.some_spec.some_spec
lemma module.free_of_finite_type_torsion_free' [module.finite R M]
[no_zero_smul_divisors R M] :
module.free R M :=
begin
obtain ⟨n, b⟩ : Σ n, basis (fin n) R M := module.basis_of_finite_type_torsion_free',
exact module.free.of_basis b,
end
section smith_normal
/-- A Smith normal form basis for a submodule `N` of a module `M` consists of
bases for `M` and `N` such that the inclusion map `N → M` can be written as a
(rectangular) matrix with `a` along the diagonal: in Smith normal form. -/
@[nolint has_nonempty_instance]
structure basis.smith_normal_form (N : submodule R M) (ι : Type*) (n : ℕ) :=
(bM : basis ι R M)
(bN : basis (fin n) R N)
(f : fin n ↪ ι)
(a : fin n → R)
(snf : ∀ i, (bN i : M) = a i • bM (f i))
/-- If `M` is finite free over a PID `R`, then any submodule `N` is free
and we can find a basis for `M` and `N` such that the inclusion map is a diagonal matrix
in Smith normal form.
See `submodule.smith_normal_form_of_le` for a version of this theorem that returns
a `basis.smith_normal_form`.
This is a strengthening of `submodule.basis_of_pid_of_le`.
-/
theorem submodule.exists_smith_normal_form_of_le [finite ι]
(b : basis ι R M) (N O : submodule R M) (N_le_O : N ≤ O) :
∃ (n o : ℕ) (hno : n ≤ o) (bO : basis (fin o) R O) (bN : basis (fin n) R N) (a : fin n → R),
∀ i, (bN i : M) = a i • bO (fin.cast_le hno i) :=
begin
casesI nonempty_fintype ι,
revert N,
refine induction_on_rank b _ _ O,
intros M ih N N_le_M,
obtain ⟨m, b'M⟩ := M.basis_of_pid b,
by_cases N_bot : N = ⊥,
{ subst N_bot,
exact ⟨0, m, nat.zero_le _, b'M, basis.empty _, fin_zero_elim, fin_zero_elim⟩ },
obtain ⟨y, hy, a, hay, M', M'_le_M, N', N'_le_N, N'_le_M', y_ortho, ay_ortho, h⟩ :=
submodule.basis_of_pid_aux M N b'M N_bot N_le_M,
obtain ⟨n', m', hn'm', bM', bN', as', has'⟩ := ih M' M'_le_M y hy y_ortho N' N'_le_M',
obtain ⟨bN, h'⟩ := h n' bN',
obtain ⟨hmn, bM, h''⟩ := h' m' hn'm' bM',
obtain ⟨as, has⟩ := h'' as' has',
exact ⟨_, _, hmn, bM, bN, as, has⟩
end
/-- If `M` is finite free over a PID `R`, then any submodule `N` is free
and we can find a basis for `M` and `N` such that the inclusion map is a diagonal matrix
in Smith normal form.
See `submodule.exists_smith_normal_form_of_le` for a version of this theorem that doesn't
need to map `N` into a submodule of `O`.
This is a strengthening of `submodule.basis_of_pid_of_le`.
-/
noncomputable def submodule.smith_normal_form_of_le [finite ι]
(b : basis ι R M) (N O : submodule R M) (N_le_O : N ≤ O) :
Σ (o n : ℕ), basis.smith_normal_form (N.comap O.subtype) (fin o) n :=
begin
choose n o hno bO bN a snf using N.exists_smith_normal_form_of_le b O N_le_O,
refine ⟨o, n, bO, bN.map (comap_subtype_equiv_of_le N_le_O).symm, (fin.cast_le hno).to_embedding,
a, λ i, _⟩,
ext,
simp only [snf, basis.map_apply, submodule.comap_subtype_equiv_of_le_symm_apply_coe_coe,
submodule.coe_smul_of_tower, rel_embedding.coe_fn_to_embedding]
end
/-- If `M` is finite free over a PID `R`, then any submodule `N` is free
and we can find a basis for `M` and `N` such that the inclusion map is a diagonal matrix
in Smith normal form.
This is a strengthening of `submodule.basis_of_pid`.
See also `ideal.smith_normal_form`, which moreover proves that the dimension of
an ideal is the same as the dimension of the whole ring.
-/
noncomputable def submodule.smith_normal_form [finite ι] (b : basis ι R M) (N : submodule R M) :
Σ (n : ℕ), basis.smith_normal_form N ι n :=
let ⟨m, n, bM, bN, f, a, snf⟩ := N.smith_normal_form_of_le b ⊤ le_top,
bM' := bM.map (linear_equiv.of_top _ rfl),
e := bM'.index_equiv b in
⟨n, bM'.reindex e, bN.map (comap_subtype_equiv_of_le le_top), f.trans e.to_embedding, a,
λ i, by simp only [snf, basis.map_apply, linear_equiv.of_top_apply, submodule.coe_smul_of_tower,
submodule.comap_subtype_equiv_of_le_apply_coe, coe_coe, basis.reindex_apply,
equiv.to_embedding_apply, function.embedding.trans_apply,
equiv.symm_apply_apply]⟩
section ideal
variables {S : Type*} [comm_ring S] [is_domain S] [algebra R S]
/-- If `S` a finite-dimensional ring extension of a PID `R` which is free as an `R`-module,
then any nonzero `S`-ideal `I` is free as an `R`-submodule of `S`, and we can
find a basis for `S` and `I` such that the inclusion map is a square diagonal
matrix.
See `ideal.exists_smith_normal_form` for a version of this theorem that doesn't
need to map `I` into a submodule of `R`.
This is a strengthening of `submodule.basis_of_pid`.
-/
noncomputable def ideal.smith_normal_form
[fintype ι] (b : basis ι R S) (I : ideal S) (hI : I ≠ ⊥) :
basis.smith_normal_form (I.restrict_scalars R) ι (fintype.card ι) :=
let ⟨n, bS, bI, f, a, snf⟩ := (I.restrict_scalars R).smith_normal_form b in
have eq : _ := ideal.rank_eq bS hI (bI.map ((restrict_scalars_equiv R S S I).restrict_scalars _)),
let e : fin n ≃ fin (fintype.card ι) := fintype.equiv_of_card_eq (by rw [eq, fintype.card_fin]) in
⟨bS, bI.reindex e, e.symm.to_embedding.trans f, a ∘ e.symm, λ i,
by simp only [snf, basis.coe_reindex, function.embedding.trans_apply, equiv.to_embedding_apply]⟩
variables [finite ι]
/-- If `S` a finite-dimensional ring extension of a PID `R` which is free as an `R`-module,
then any nonzero `S`-ideal `I` is free as an `R`-submodule of `S`, and we can
find a basis for `S` and `I` such that the inclusion map is a square diagonal
matrix.
See also `ideal.smith_normal_form` for a version of this theorem that returns
a `basis.smith_normal_form`.
The definitions `ideal.ring_basis`, `ideal.self_basis`, `ideal.smith_coeffs` are (noncomputable)
choices of values for this existential quantifier.
-/
theorem ideal.exists_smith_normal_form
(b : basis ι R S) (I : ideal S) (hI : I ≠ ⊥) :
∃ (b' : basis ι R S) (a : ι → R) (ab' : basis ι R I),
∀ i, (ab' i : S) = a i • b' i :=
by casesI nonempty_fintype ι; exact let ⟨bS, bI, f, a, snf⟩ := I.smith_normal_form b hI,
e : fin (fintype.card ι) ≃ ι := equiv.of_bijective f
((fintype.bijective_iff_injective_and_card f).mpr ⟨f.injective, fintype.card_fin _⟩) in
have fe : ∀ i, f (e.symm i) = i := e.apply_symm_apply,
⟨bS, a ∘ e.symm, (bI.reindex e).map ((restrict_scalars_equiv _ _ _ _).restrict_scalars R), λ i,
by simp only [snf, fe, basis.map_apply, linear_equiv.restrict_scalars_apply,
submodule.restrict_scalars_equiv_apply, basis.coe_reindex]⟩
/-- If `S` a finite-dimensional ring extension of a PID `R` which is free as an `R`-module,
then any nonzero `S`-ideal `I` is free as an `R`-submodule of `S`, and we can
find a basis for `S` and `I` such that the inclusion map is a square diagonal
matrix; this is the basis for `S`.
See `ideal.self_basis` for the basis on `I`,
see `ideal.smith_coeffs` for the entries of the diagonal matrix
and `ideal.self_basis_def` for the proof that the inclusion map forms a square diagonal matrix.
-/
noncomputable def ideal.ring_basis (b : basis ι R S) (I : ideal S) (hI : I ≠ ⊥) : basis ι R S :=
(ideal.exists_smith_normal_form b I hI).some
/-- If `S` a finite-dimensional ring extension of a PID `R` which is free as an `R`-module,
then any nonzero `S`-ideal `I` is free as an `R`-submodule of `S`, and we can
find a basis for `S` and `I` such that the inclusion map is a square diagonal
matrix; this is the basis for `I`.
See `ideal.ring_basis` for the basis on `S`,
see `ideal.smith_coeffs` for the entries of the diagonal matrix
and `ideal.self_basis_def` for the proof that the inclusion map forms a square diagonal matrix.
-/
noncomputable def ideal.self_basis (b : basis ι R S) (I : ideal S) (hI : I ≠ ⊥) : basis ι R I :=
(ideal.exists_smith_normal_form b I hI).some_spec.some_spec.some
/-- If `S` a finite-dimensional ring extension of a PID `R` which is free as an `R`-module,
then any nonzero `S`-ideal `I` is free as an `R`-submodule of `S`, and we can
find a basis for `S` and `I` such that the inclusion map is a square diagonal
matrix; these are the entries of the diagonal matrix.
See `ideal.ring_basis` for the basis on `S`,
see `ideal.self_basis` for the basis on `I`,
and `ideal.self_basis_def` for the proof that the inclusion map forms a square diagonal matrix.
-/
noncomputable def ideal.smith_coeffs (b : basis ι R S) (I : ideal S) (hI : I ≠ ⊥) : ι → R :=
(ideal.exists_smith_normal_form b I hI).some_spec.some
/-- If `S` a finite-dimensional ring extension of a PID `R` which is free as an `R`-module,
then any nonzero `S`-ideal `I` is free as an `R`-submodule of `S`, and we can
find a basis for `S` and `I` such that the inclusion map is a square diagonal
matrix.
-/
@[simp]
lemma ideal.self_basis_def (b : basis ι R S) (I : ideal S) (hI : I ≠ ⊥) :
∀ i, (ideal.self_basis b I hI i : S) = ideal.smith_coeffs b I hI i • ideal.ring_basis b I hI i :=
(ideal.exists_smith_normal_form b I hI).some_spec.some_spec.some_spec
@[simp]
lemma ideal.smith_coeffs_ne_zero (b : basis ι R S) (I : ideal S) (hI : I ≠ ⊥) (i) :
ideal.smith_coeffs b I hI i ≠ 0 :=
begin
intro hi,
apply basis.ne_zero (ideal.self_basis b I hI) i,
refine subtype.coe_injective _,
simp [hi]
end
instance (F : Type u) [comm_ring F] [algebra F R] (b : basis ι R S) {I : ideal S} (hI : I ≠ ⊥) (i) :
module F (R ⧸ ideal.span ({I.smith_coeffs b hI i} : set R)) :=
by apply_instance -- quotient.module' _
end ideal
end smith_normal
end principal_ideal_domain
/-- A set of linearly independent vectors in a module `M` over a semiring `S` is also linearly
independent over a subring `R` of `K`. -/
lemma linear_independent.restrict_scalars_algebras {R S M ι : Type*} [comm_semiring R] [semiring S]
[add_comm_monoid M] [algebra R S] [module R M] [module S M] [is_scalar_tower R S M]
(hinj : function.injective (algebra_map R S)) {v : ι → M} (li : linear_independent S v) :
linear_independent R v :=
linear_independent.restrict_scalars (by rwa algebra.algebra_map_eq_smul_one' at hinj) li
|
e41f529751b51a92c0e30f8e073ca33ea26f1af9
|
4727251e0cd73359b15b664c3170e5d754078599
|
/src/topology/continuous_function/polynomial.lean
|
56cfe2d42254814be280ed9e6d091dbf7db08e3c
|
[
"Apache-2.0"
] |
permissive
|
Vierkantor/mathlib
|
0ea59ac32a3a43c93c44d70f441c4ee810ccceca
|
83bc3b9ce9b13910b57bda6b56222495ebd31c2f
|
refs/heads/master
| 1,658,323,012,449
| 1,652,256,003,000
| 1,652,256,003,000
| 209,296,341
| 0
| 1
|
Apache-2.0
| 1,568,807,655,000
| 1,568,807,655,000
| null |
UTF-8
|
Lean
| false
| false
| 6,247
|
lean
|
/-
Copyright (c) 2021 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison
-/
import topology.algebra.polynomial
import topology.continuous_function.algebra
import topology.continuous_function.compact
import topology.unit_interval
/-!
# Constructions relating polynomial functions and continuous functions.
## Main definitions
* `polynomial.to_continuous_map_on p X`: for `X : set R`, interprets a polynomial `p`
as a bundled continuous function in `C(X, R)`.
* `polynomial.to_continuous_map_on_alg_hom`: the same, as an `R`-algebra homomorphism.
* `polynomial_functions (X : set R) : subalgebra R C(X, R)`: polynomial functions as a subalgebra.
* `polynomial_functions_separates_points (X : set R) : (polynomial_functions X).separates_points`:
the polynomial functions separate points.
-/
variables {R : Type*}
open_locale polynomial
namespace polynomial
section
variables [semiring R] [topological_space R] [topological_semiring R]
/--
Every polynomial with coefficients in a topological semiring gives a (bundled) continuous function.
-/
@[simps]
def to_continuous_map (p : R[X]) : C(R, R) :=
⟨λ x : R, p.eval x, by continuity⟩
/--
A polynomial as a continuous function,
with domain restricted to some subset of the semiring of coefficients.
(This is particularly useful when restricting to compact sets, e.g. `[0,1]`.)
-/
@[simps]
def to_continuous_map_on (p : R[X]) (X : set R) : C(X, R) :=
⟨λ x : X, p.to_continuous_map x, by continuity⟩
-- TODO some lemmas about when `to_continuous_map_on` is injective?
end
section
variables {α : Type*} [topological_space α]
[comm_semiring R] [topological_space R] [topological_semiring R]
@[simp] lemma aeval_continuous_map_apply (g : R[X]) (f : C(α, R)) (x : α) :
((polynomial.aeval f) g) x = g.eval (f x) :=
begin
apply polynomial.induction_on' g,
{ intros p q hp hq, simp [hp, hq], },
{ intros n a, simp [pi.pow_apply f x n], },
end
end
section
noncomputable theory
variables [comm_semiring R] [topological_space R] [topological_semiring R]
/--
The algebra map from `polynomial R` to continuous functions `C(R, R)`.
-/
@[simps]
def to_continuous_map_alg_hom : R[X] →ₐ[R] C(R, R) :=
{ to_fun := λ p, p.to_continuous_map,
map_zero' := by { ext, simp, },
map_add' := by { intros, ext, simp, },
map_one' := by { ext, simp, },
map_mul' := by { intros, ext, simp, },
commutes' := by { intros, ext, simp [algebra.algebra_map_eq_smul_one], }, }
/--
The algebra map from `polynomial R` to continuous functions `C(X, R)`, for any subset `X` of `R`.
-/
@[simps]
def to_continuous_map_on_alg_hom (X : set R) : R[X] →ₐ[R] C(X, R) :=
{ to_fun := λ p, p.to_continuous_map_on X,
map_zero' := by { ext, simp, },
map_add' := by { intros, ext, simp, },
map_one' := by { ext, simp, },
map_mul' := by { intros, ext, simp, },
commutes' := by { intros, ext, simp [algebra.algebra_map_eq_smul_one], }, }
end
end polynomial
section
variables [comm_semiring R] [topological_space R] [topological_semiring R]
/--
The subalgebra of polynomial functions in `C(X, R)`, for `X` a subset of some topological semiring
`R`.
-/
def polynomial_functions (X : set R) : subalgebra R C(X, R) :=
(⊤ : subalgebra R R[X]).map (polynomial.to_continuous_map_on_alg_hom X)
@[simp]
lemma polynomial_functions_coe (X : set R) :
(polynomial_functions X : set C(X, R)) = set.range (polynomial.to_continuous_map_on_alg_hom X) :=
by { ext, simp [polynomial_functions], }
-- TODO:
-- if `f : R → R` is an affine equivalence, then pulling back along `f`
-- induces a normed algebra isomorphism between `polynomial_functions X` and
-- `polynomial_functions (f ⁻¹' X)`, intertwining the pullback along `f` of `C(R, R)` to itself.
lemma polynomial_functions_separates_points (X : set R) :
(polynomial_functions X).separates_points :=
λ x y h,
begin
-- We use `polynomial.X`, then clean up.
refine ⟨_, ⟨⟨_, ⟨⟨polynomial.X, ⟨algebra.mem_top, rfl⟩⟩, rfl⟩⟩, _⟩⟩,
dsimp, simp only [polynomial.eval_X],
exact (λ h', h (subtype.ext h')),
end
open_locale unit_interval
open continuous_map
/-- The preimage of polynomials on `[0,1]` under the pullback map by `x ↦ (b-a) * x + a`
is the polynomials on `[a,b]`. -/
lemma polynomial_functions.comap'_comp_right_alg_hom_Icc_homeo_I (a b : ℝ) (h : a < b) :
(polynomial_functions I).comap'
(comp_right_alg_hom ℝ (Icc_homeo_I a b h).symm.to_continuous_map) =
polynomial_functions (set.Icc a b) :=
begin
ext f,
fsplit,
{ rintro ⟨p, ⟨-,w⟩⟩,
rw fun_like.ext_iff at w,
dsimp at w,
let q := p.comp ((b - a)⁻¹ • polynomial.X + polynomial.C (-a * (b-a)⁻¹)),
refine ⟨q, ⟨_, _⟩⟩,
{ simp, },
{ ext x,
simp only [neg_mul,
ring_hom.map_neg, ring_hom.map_mul, alg_hom.coe_to_ring_hom,
polynomial.eval_X, polynomial.eval_neg, polynomial.eval_C, polynomial.eval_smul,
smul_eq_mul, polynomial.eval_mul, polynomial.eval_add, polynomial.coe_aeval_eq_eval,
polynomial.eval_comp, polynomial.to_continuous_map_on_alg_hom_apply,
polynomial.to_continuous_map_on_to_fun, polynomial.to_continuous_map_to_fun],
convert w ⟨_, _⟩; clear w,
{ -- why does `comm_ring.add` appear here!?
change x = (Icc_homeo_I a b h).symm ⟨_ + _, _⟩,
ext,
simp only [Icc_homeo_I_symm_apply_coe, subtype.coe_mk],
replace h : b - a ≠ 0 := sub_ne_zero_of_ne h.ne.symm,
simp only [mul_add],
field_simp, ring, },
{ change _ + _ ∈ I,
rw [mul_comm (b-a)⁻¹, ←neg_mul, ←add_mul, ←sub_eq_add_neg],
have w₁ : 0 < (b-a)⁻¹ := inv_pos.mpr (sub_pos.mpr h),
have w₂ : 0 ≤ (x : ℝ) - a := sub_nonneg.mpr x.2.1,
have w₃ : (x : ℝ) - a ≤ b - a := sub_le_sub_right x.2.2 a,
fsplit,
{ exact mul_nonneg w₂ (le_of_lt w₁), },
{ rw [←div_eq_mul_inv, div_le_one (sub_pos.mpr h)],
exact w₃, }, }, }, },
{ rintro ⟨p, ⟨-,rfl⟩⟩,
let q := p.comp ((b - a) • polynomial.X + polynomial.C a),
refine ⟨q, ⟨_, _⟩⟩,
{ simp, },
{ ext x, simp [mul_comm], }, },
end
end
|
ea1bf9cafc331af99a1d3a7828572adee4b5abf0
|
4d2583807a5ac6caaffd3d7a5f646d61ca85d532
|
/src/ring_theory/finiteness.lean
|
68dfb94f4e6d47c11d089161fb5b14fd732dbd32
|
[
"Apache-2.0"
] |
permissive
|
AntoineChambert-Loir/mathlib
|
64aabb896129885f12296a799818061bc90da1ff
|
07be904260ab6e36a5769680b6012f03a4727134
|
refs/heads/master
| 1,693,187,631,771
| 1,636,719,886,000
| 1,636,719,886,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 35,152
|
lean
|
/-
Copyright (c) 2020 Johan Commelin. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin
-/
import group_theory.finiteness
import ring_theory.algebra_tower
import ring_theory.ideal.quotient
import ring_theory.noetherian
/-!
# Finiteness conditions in commutative algebra
In this file we define several notions of finiteness that are common in commutative algebra.
## Main declarations
- `module.finite`, `algebra.finite`, `ring_hom.finite`, `alg_hom.finite`
all of these express that some object is finitely generated *as module* over some base ring.
- `algebra.finite_type`, `ring_hom.finite_type`, `alg_hom.finite_type`
all of these express that some object is finitely generated *as algebra* over some base ring.
- `algebra.finite_presentation`, `ring_hom.finite_presentation`, `alg_hom.finite_presentation`
all of these express that some object is finitely presented *as algebra* over some base ring.
-/
open function (surjective)
open_locale big_operators
section module_and_algebra
variables (R A B M N : Type*)
/-- A module over a semiring is `finite` if it is finitely generated as a module. -/
class module.finite [semiring R] [add_comm_monoid M] [module R M] :
Prop := (out : (⊤ : submodule R M).fg)
/-- An algebra over a commutative semiring is of `finite_type` if it is finitely generated
over the base ring as algebra. -/
class algebra.finite_type [comm_semiring R] [semiring A] [algebra R A] : Prop :=
(out : (⊤ : subalgebra R A).fg)
/-- An algebra over a commutative semiring is `finite_presentation` if it is the quotient of a
polynomial ring in `n` variables by a finitely generated ideal. -/
def algebra.finite_presentation [comm_semiring R] [semiring A] [algebra R A] : Prop :=
∃ (n : ℕ) (f : mv_polynomial (fin n) R →ₐ[R] A),
surjective f ∧ f.to_ring_hom.ker.fg
namespace module
variables [semiring R] [add_comm_monoid M] [module R M] [add_comm_monoid N] [module R N]
lemma finite_def {R M} [semiring R] [add_comm_monoid M] [module R M] :
finite R M ↔ (⊤ : submodule R M).fg := ⟨λ h, h.1, λ h, ⟨h⟩⟩
@[priority 100] -- see Note [lower instance priority]
instance is_noetherian.finite [is_noetherian R M] : finite R M :=
⟨is_noetherian.noetherian ⊤⟩
namespace finite
open _root_.submodule set
lemma iff_add_monoid_fg {M : Type*} [add_comm_monoid M] : module.finite ℕ M ↔ add_monoid.fg M :=
⟨λ h, add_monoid.fg_def.2 $ (fg_iff_add_submonoid_fg ⊤).1 (finite_def.1 h),
λ h, finite_def.2 $ (fg_iff_add_submonoid_fg ⊤).2 (add_monoid.fg_def.1 h)⟩
lemma iff_add_group_fg {G : Type*} [add_comm_group G] : module.finite ℤ G ↔ add_group.fg G :=
⟨λ h, add_group.fg_def.2 $ (fg_iff_add_subgroup_fg ⊤).1 (finite_def.1 h),
λ h, finite_def.2 $ (fg_iff_add_subgroup_fg ⊤).2 (add_group.fg_def.1 h)⟩
variables {R M N}
lemma exists_fin [finite R M] : ∃ (n : ℕ) (s : fin n → M), span R (range s) = ⊤ :=
submodule.fg_iff_exists_fin_generating_family.mp out
lemma of_surjective [hM : finite R M] (f : M →ₗ[R] N) (hf : surjective f) :
finite R N :=
⟨begin
rw [← linear_map.range_eq_top.2 hf, ← submodule.map_top],
exact submodule.fg_map hM.1
end⟩
lemma of_injective [is_noetherian R N] (f : M →ₗ[R] N)
(hf : function.injective f) : finite R M :=
⟨fg_of_injective f hf⟩
variables (R)
instance self : finite R R :=
⟨⟨{1}, by simpa only [finset.coe_singleton] using ideal.span_singleton_one⟩⟩
variable (M)
lemma of_restrict_scalars_finite (R A M : Type*) [comm_semiring R] [semiring A] [add_comm_monoid M]
[module R M] [module A M] [algebra R A] [is_scalar_tower R A M] [hM : finite R M] :
finite A M :=
begin
rw [finite_def, fg_def] at hM ⊢,
obtain ⟨S, hSfin, hSgen⟩ := hM,
refine ⟨S, hSfin, eq_top_iff.2 _⟩,
have := submodule.span_le_restrict_scalars R A S,
rw hSgen at this,
exact this
end
variables {R M}
instance prod [hM : finite R M] [hN : finite R N] : finite R (M × N) :=
⟨begin
rw ← submodule.prod_top,
exact submodule.fg_prod hM.1 hN.1
end⟩
lemma equiv [hM : finite R M] (e : M ≃ₗ[R] N) : finite R N :=
of_surjective (e : M →ₗ[R] N) e.surjective
section algebra
lemma trans {R : Type*} (A B : Type*) [comm_semiring R] [comm_semiring A] [algebra R A]
[semiring B] [algebra R B] [algebra A B] [is_scalar_tower R A B] :
∀ [finite R A] [finite A B], finite R B
| ⟨⟨s, hs⟩⟩ ⟨⟨t, ht⟩⟩ := ⟨submodule.fg_def.2
⟨set.image2 (•) (↑s : set A) (↑t : set B),
set.finite.image2 _ s.finite_to_set t.finite_to_set,
by rw [set.image2_smul, submodule.span_smul hs (↑t : set B),
ht, submodule.restrict_scalars_top]⟩⟩
@[priority 100] -- see Note [lower instance priority]
instance finite_type {R : Type*} (A : Type*) [comm_semiring R] [comm_semiring A]
[algebra R A] [hRA : finite R A] : algebra.finite_type R A :=
⟨subalgebra.fg_of_submodule_fg hRA.1⟩
end algebra
end finite
end module
namespace algebra
variables [comm_ring R] [comm_ring A] [algebra R A] [comm_ring B] [algebra R B]
variables [add_comm_group M] [module R M]
variables [add_comm_group N] [module R N]
namespace finite_type
lemma self : finite_type R R := ⟨⟨{1}, subsingleton.elim _ _⟩⟩
section
open_locale classical
protected lemma mv_polynomial (ι : Type*) [fintype ι] : finite_type R (mv_polynomial ι R) :=
⟨⟨finset.univ.image mv_polynomial.X, begin
rw eq_top_iff, refine λ p, mv_polynomial.induction_on' p
(λ u x, finsupp.induction u (subalgebra.algebra_map_mem _ x)
(λ i n f hif hn ih, _))
(λ p q ihp ihq, subalgebra.add_mem _ ihp ihq),
rw [add_comm, mv_polynomial.monomial_add_single],
exact subalgebra.mul_mem _ ih
(subalgebra.pow_mem _ (subset_adjoin $ finset.mem_image_of_mem _ $ finset.mem_univ _) _)
end⟩⟩
end
lemma of_restrict_scalars_finite_type [algebra A B] [is_scalar_tower R A B] [hB : finite_type R B] :
finite_type A B :=
begin
obtain ⟨S, hS⟩ := hB.out,
refine ⟨⟨S, eq_top_iff.2 (λ b, _)⟩⟩,
have le : adjoin R (S : set B) ≤ subalgebra.restrict_scalars R (adjoin A S),
{ apply (algebra.adjoin_le _ : _ ≤ (subalgebra.restrict_scalars R (adjoin A ↑S))),
simp only [subalgebra.coe_restrict_scalars],
exact algebra.subset_adjoin, },
exact le (eq_top_iff.1 hS b),
end
variables {R A B}
lemma of_surjective (hRA : finite_type R A) (f : A →ₐ[R] B) (hf : surjective f) :
finite_type R B :=
⟨begin
convert subalgebra.fg_map _ f hRA.1,
simpa only [map_top f, @eq_comm _ ⊤, eq_top_iff, alg_hom.mem_range] using hf
end⟩
lemma equiv (hRA : finite_type R A) (e : A ≃ₐ[R] B) : finite_type R B :=
hRA.of_surjective e e.surjective
lemma trans [algebra A B] [is_scalar_tower R A B] (hRA : finite_type R A) (hAB : finite_type A B) :
finite_type R B :=
⟨fg_trans' hRA.1 hAB.1⟩
/-- An algebra is finitely generated if and only if it is a quotient
of a polynomial ring whose variables are indexed by a finset. -/
lemma iff_quotient_mv_polynomial : (finite_type R A) ↔ ∃ (s : finset A)
(f : (mv_polynomial {x // x ∈ s} R) →ₐ[R] A), (surjective f) :=
begin
split,
{ rintro ⟨s, hs⟩,
use [s, mv_polynomial.aeval coe],
intro x,
have hrw : (↑s : set A) = (λ (x : A), x ∈ s.val) := rfl,
rw [← set.mem_range, ← alg_hom.coe_range, ← adjoin_eq_range, ← hrw, hs],
exact set.mem_univ x },
{ rintro ⟨s, ⟨f, hsur⟩⟩,
exact finite_type.of_surjective (finite_type.mv_polynomial R {x // x ∈ s}) f hsur }
end
/-- An algebra is finitely generated if and only if it is a quotient
of a polynomial ring whose variables are indexed by a fintype. -/
lemma iff_quotient_mv_polynomial' : (finite_type R A) ↔ ∃ (ι : Type u_2) (_ : fintype ι)
(f : (mv_polynomial ι R) →ₐ[R] A), (surjective f) :=
begin
split,
{ rw iff_quotient_mv_polynomial,
rintro ⟨s, ⟨f, hsur⟩⟩,
use [{x // x ∈ s}, by apply_instance, f, hsur] },
{ rintro ⟨ι, ⟨hfintype, ⟨f, hsur⟩⟩⟩,
letI : fintype ι := hfintype,
exact finite_type.of_surjective (finite_type.mv_polynomial R ι) f hsur }
end
/-- An algebra is finitely generated if and only if it is a quotient of a polynomial ring in `n`
variables. -/
lemma iff_quotient_mv_polynomial'' : (finite_type R A) ↔ ∃ (n : ℕ)
(f : (mv_polynomial (fin n) R) →ₐ[R] A), (surjective f) :=
begin
split,
{ rw iff_quotient_mv_polynomial',
rintro ⟨ι, hfintype, ⟨f, hsur⟩⟩,
letI := hfintype,
obtain ⟨equiv⟩ := @fintype.trunc_equiv_fin ι (classical.dec_eq ι) hfintype,
replace equiv := mv_polynomial.rename_equiv R equiv,
exact ⟨fintype.card ι, alg_hom.comp f equiv.symm, function.surjective.comp hsur
(alg_equiv.symm equiv).surjective⟩ },
{ rintro ⟨n, ⟨f, hsur⟩⟩,
exact finite_type.of_surjective (finite_type.mv_polynomial R (fin n)) f hsur }
end
/-- A finitely presented algebra is of finite type. -/
lemma of_finite_presentation : finite_presentation R A → finite_type R A :=
begin
rintro ⟨n, f, hf⟩,
apply (finite_type.iff_quotient_mv_polynomial'').2,
exact ⟨n, f, hf.1⟩
end
instance prod [hA : finite_type R A] [hB : finite_type R B] : finite_type R (A × B) :=
⟨begin
rw ← subalgebra.prod_top,
exact subalgebra.fg_prod hA.1 hB.1
end⟩
end finite_type
namespace finite_presentation
variables {R A B}
/-- An algebra over a Noetherian ring is finitely generated if and only if it is finitely
presented. -/
lemma of_finite_type [is_noetherian_ring R] : finite_type R A ↔ finite_presentation R A :=
begin
refine ⟨λ h, _, algebra.finite_type.of_finite_presentation⟩,
obtain ⟨n, f, hf⟩ := algebra.finite_type.iff_quotient_mv_polynomial''.1 h,
refine ⟨n, f, hf, _⟩,
have hnoet : is_noetherian_ring (mv_polynomial (fin n) R) := by apply_instance,
replace hnoet := (is_noetherian_ring_iff.1 hnoet).noetherian,
exact hnoet f.to_ring_hom.ker,
end
/-- If `e : A ≃ₐ[R] B` and `A` is finitely presented, then so is `B`. -/
lemma equiv (hfp : finite_presentation R A) (e : A ≃ₐ[R] B) : finite_presentation R B :=
begin
obtain ⟨n, f, hf⟩ := hfp,
use [n, alg_hom.comp ↑e f],
split,
{ exact function.surjective.comp e.surjective hf.1 },
suffices hker : (alg_hom.comp ↑e f).to_ring_hom.ker = f.to_ring_hom.ker,
{ rw hker, exact hf.2 },
{ have hco : (alg_hom.comp ↑e f).to_ring_hom = ring_hom.comp ↑e.to_ring_equiv f.to_ring_hom,
{ have h : (alg_hom.comp ↑e f).to_ring_hom = e.to_alg_hom.to_ring_hom.comp f.to_ring_hom := rfl,
have h1 : ↑(e.to_ring_equiv) = (e.to_alg_hom).to_ring_hom := rfl,
rw [h, h1] },
rw [ring_hom.ker_eq_comap_bot, hco, ← ideal.comap_comap, ← ring_hom.ker_eq_comap_bot,
ring_hom.ker_coe_equiv (alg_equiv.to_ring_equiv e), ring_hom.ker_eq_comap_bot] }
end
variable (R)
/-- The ring of polynomials in finitely many variables is finitely presented. -/
protected lemma mv_polynomial (ι : Type u_2) [fintype ι] :
finite_presentation R (mv_polynomial ι R) :=
begin
obtain ⟨equiv⟩ := @fintype.trunc_equiv_fin ι (classical.dec_eq ι) _,
replace equiv := mv_polynomial.rename_equiv R equiv,
refine ⟨_, alg_equiv.to_alg_hom equiv.symm, _⟩,
split,
{ exact (alg_equiv.symm equiv).surjective },
suffices hinj : function.injective equiv.symm.to_alg_hom.to_ring_hom,
{ rw [(ring_hom.injective_iff_ker_eq_bot _).1 hinj],
exact submodule.fg_bot },
exact (alg_equiv.symm equiv).injective
end
/-- `R` is finitely presented as `R`-algebra. -/
lemma self : finite_presentation R R :=
equiv (finite_presentation.mv_polynomial R pempty) (mv_polynomial.is_empty_alg_equiv R pempty)
variable {R}
/-- The quotient of a finitely presented algebra by a finitely generated ideal is finitely
presented. -/
protected lemma quotient {I : ideal A} (h : submodule.fg I) (hfp : finite_presentation R A) :
finite_presentation R I.quotient :=
begin
obtain ⟨n, f, hf⟩ := hfp,
refine ⟨n, (ideal.quotient.mkₐ R I).comp f, _, _⟩,
{ exact (ideal.quotient.mkₐ_surjective R I).comp hf.1 },
{ refine submodule.fg_ker_ring_hom_comp _ _ hf.2 _ hf.1,
simp [h] }
end
/-- If `f : A →ₐ[R] B` is surjective with finitely generated kernel and `A` is finitely presented,
then so is `B`. -/
lemma of_surjective {f : A →ₐ[R] B} (hf : function.surjective f) (hker : f.to_ring_hom.ker.fg)
(hfp : finite_presentation R A) : finite_presentation R B :=
equiv (hfp.quotient hker) (ideal.quotient_ker_alg_equiv_of_surjective hf)
lemma iff : finite_presentation R A ↔
∃ n (I : ideal (mv_polynomial (fin n) R)) (e : I.quotient ≃ₐ[R] A), I.fg :=
begin
split,
{ rintros ⟨n, f, hf⟩,
exact ⟨n, f.to_ring_hom.ker, ideal.quotient_ker_alg_equiv_of_surjective hf.1, hf.2⟩ },
{ rintros ⟨n, I, e, hfg⟩,
exact equiv ((finite_presentation.mv_polynomial R _).quotient hfg) e }
end
/-- An algebra is finitely presented if and only if it is a quotient of a polynomial ring whose
variables are indexed by a fintype by a finitely generated ideal. -/
lemma iff_quotient_mv_polynomial' : finite_presentation R A ↔ ∃ (ι : Type u_2) (_ : fintype ι)
(f : mv_polynomial ι R →ₐ[R] A), surjective f ∧ f.to_ring_hom.ker.fg :=
begin
split,
{ rintro ⟨n, f, hfs, hfk⟩,
set ulift_var := mv_polynomial.rename_equiv R equiv.ulift,
refine ⟨ulift (fin n), infer_instance, f.comp ulift_var.to_alg_hom,
hfs.comp ulift_var.surjective,
submodule.fg_ker_ring_hom_comp _ _ _ hfk ulift_var.surjective⟩,
convert submodule.fg_bot,
exact ring_hom.ker_coe_equiv ulift_var.to_ring_equiv, },
{ rintro ⟨ι, hfintype, f, hf⟩,
haveI : fintype ι := hfintype,
obtain ⟨equiv⟩ := @fintype.trunc_equiv_fin ι (classical.dec_eq ι) _,
replace equiv := mv_polynomial.rename_equiv R equiv,
refine ⟨fintype.card ι, f.comp equiv.symm,
hf.1.comp (alg_equiv.symm equiv).surjective,
submodule.fg_ker_ring_hom_comp _ f _ hf.2 equiv.symm.surjective⟩,
convert submodule.fg_bot,
exact ring_hom.ker_coe_equiv (equiv.symm.to_ring_equiv), }
end
/-- If `A` is a finitely presented `R`-algebra, then `mv_polynomial (fin n) A` is finitely presented
as `R`-algebra. -/
lemma mv_polynomial_of_finite_presentation (hfp : finite_presentation R A) (ι : Type*)
[fintype ι] : finite_presentation R (mv_polynomial ι A) :=
begin
rw iff_quotient_mv_polynomial' at hfp ⊢,
classical,
obtain ⟨ι', _, f, hf_surj, hf_ker⟩ := hfp,
resetI,
let g := (mv_polynomial.map_alg_hom f).comp (mv_polynomial.sum_alg_equiv R ι ι').to_alg_hom,
refine ⟨ι ⊕ ι', by apply_instance, g,
(mv_polynomial.map_surjective f.to_ring_hom hf_surj).comp (alg_equiv.surjective _),
submodule.fg_ker_ring_hom_comp _ _ _ _ (alg_equiv.surjective _)⟩,
{ convert submodule.fg_bot,
exact ring_hom.ker_coe_equiv _, },
{ rw [alg_hom.to_ring_hom_eq_coe, mv_polynomial.map_alg_hom_coe_ring_hom, mv_polynomial.ker_map],
exact submodule.map_fg_of_fg _ hf_ker mv_polynomial.C, }
end
/-- If `A` is an `R`-algebra and `S` is an `A`-algebra, both finitely presented, then `S` is
finitely presented as `R`-algebra. -/
lemma trans [algebra A B] [is_scalar_tower R A B] (hfpA : finite_presentation R A)
(hfpB : finite_presentation A B) : finite_presentation R B :=
begin
obtain ⟨n, I, e, hfg⟩ := iff.1 hfpB,
exact equiv ((mv_polynomial_of_finite_presentation hfpA _).quotient hfg) (e.restrict_scalars R)
end
end finite_presentation
end algebra
end module_and_algebra
namespace ring_hom
variables {A B C : Type*} [comm_ring A] [comm_ring B] [comm_ring C]
/-- A ring morphism `A →+* B` is `finite` if `B` is finitely generated as `A`-module. -/
def finite (f : A →+* B) : Prop :=
by letI : algebra A B := f.to_algebra; exact module.finite A B
/-- A ring morphism `A →+* B` is of `finite_type` if `B` is finitely generated as `A`-algebra. -/
def finite_type (f : A →+* B) : Prop := @algebra.finite_type A B _ _ f.to_algebra
/-- A ring morphism `A →+* B` is of `finite_presentation` if `B` is finitely presented as
`A`-algebra. -/
def finite_presentation (f : A →+* B) : Prop := @algebra.finite_presentation A B _ _ f.to_algebra
namespace finite
variables (A)
lemma id : finite (ring_hom.id A) := module.finite.self A
variables {A}
lemma of_surjective (f : A →+* B) (hf : surjective f) : f.finite :=
begin
letI := f.to_algebra,
exact module.finite.of_surjective (algebra.of_id A B).to_linear_map hf
end
lemma comp {g : B →+* C} {f : A →+* B} (hg : g.finite) (hf : f.finite) : (g.comp f).finite :=
@module.finite.trans A B C _ _ f.to_algebra _ (g.comp f).to_algebra g.to_algebra
begin
fconstructor,
intros a b c,
simp only [algebra.smul_def, ring_hom.map_mul, mul_assoc],
refl
end
hf hg
lemma finite_type {f : A →+* B} (hf : f.finite) : finite_type f :=
@module.finite.finite_type _ _ _ _ f.to_algebra hf
lemma of_comp_finite {f : A →+* B} {g : B →+* C} (h : (g.comp f).finite) : g.finite :=
begin
letI := f.to_algebra,
letI := g.to_algebra,
letI := (g.comp f).to_algebra,
letI : is_scalar_tower A B C := restrict_scalars.is_scalar_tower A B C,
letI : module.finite A C := h,
exact module.finite.of_restrict_scalars_finite A B C
end
end finite
namespace finite_type
variables (A)
lemma id : finite_type (ring_hom.id A) := algebra.finite_type.self A
variables {A}
lemma comp_surjective {f : A →+* B} {g : B →+* C} (hf : f.finite_type) (hg : surjective g) :
(g.comp f).finite_type :=
@algebra.finite_type.of_surjective A B C _ _ f.to_algebra _ (g.comp f).to_algebra hf
{ to_fun := g, commutes' := λ a, rfl, .. g } hg
lemma of_surjective (f : A →+* B) (hf : surjective f) : f.finite_type :=
by { rw ← f.comp_id, exact (id A).comp_surjective hf }
lemma comp {g : B →+* C} {f : A →+* B} (hg : g.finite_type) (hf : f.finite_type) :
(g.comp f).finite_type :=
@algebra.finite_type.trans A B C _ _ f.to_algebra _ (g.comp f).to_algebra g.to_algebra
begin
fconstructor,
intros a b c,
simp only [algebra.smul_def, ring_hom.map_mul, mul_assoc],
refl
end
hf hg
lemma of_finite_presentation {f : A →+* B} (hf : f.finite_presentation) : f.finite_type :=
@algebra.finite_type.of_finite_presentation A B _ _ f.to_algebra hf
lemma of_comp_finite_type {f : A →+* B} {g : B →+* C} (h : (g.comp f).finite_type) :
g.finite_type :=
begin
letI := f.to_algebra,
letI := g.to_algebra,
letI := (g.comp f).to_algebra,
letI : is_scalar_tower A B C := restrict_scalars.is_scalar_tower A B C,
letI : algebra.finite_type A C := h,
exact algebra.finite_type.of_restrict_scalars_finite_type A B C
end
end finite_type
namespace finite_presentation
variables (A)
lemma id : finite_presentation (ring_hom.id A) := algebra.finite_presentation.self A
variables {A}
lemma comp_surjective {f : A →+* B} {g : B →+* C} (hf : f.finite_presentation) (hg : surjective g)
(hker : g.ker.fg) : (g.comp f).finite_presentation :=
@algebra.finite_presentation.of_surjective A B C _ _ f.to_algebra _ (g.comp f).to_algebra
{ to_fun := g, commutes' := λ a, rfl, .. g } hg hker hf
lemma of_surjective (f : A →+* B) (hf : surjective f) (hker : f.ker.fg) : f.finite_presentation :=
by { rw ← f.comp_id, exact (id A).comp_surjective hf hker}
lemma of_finite_type [is_noetherian_ring A] {f : A →+* B} : f.finite_type ↔ f.finite_presentation :=
@algebra.finite_presentation.of_finite_type A B _ _ f.to_algebra _
lemma comp {g : B →+* C} {f : A →+* B} (hg : g.finite_presentation) (hf : f.finite_presentation) :
(g.comp f).finite_presentation :=
@algebra.finite_presentation.trans A B C _ _ f.to_algebra _ (g.comp f).to_algebra g.to_algebra
{ smul_assoc := λ a b c, begin
simp only [algebra.smul_def, ring_hom.map_mul, mul_assoc],
refl
end }
hf hg
end finite_presentation
end ring_hom
namespace alg_hom
variables {R A B C : Type*} [comm_ring R]
variables [comm_ring A] [comm_ring B] [comm_ring C]
variables [algebra R A] [algebra R B] [algebra R C]
/-- An algebra morphism `A →ₐ[R] B` is finite if it is finite as ring morphism.
In other words, if `B` is finitely generated as `A`-module. -/
def finite (f : A →ₐ[R] B) : Prop := f.to_ring_hom.finite
/-- An algebra morphism `A →ₐ[R] B` is of `finite_type` if it is of finite type as ring morphism.
In other words, if `B` is finitely generated as `A`-algebra. -/
def finite_type (f : A →ₐ[R] B) : Prop := f.to_ring_hom.finite_type
/-- An algebra morphism `A →ₐ[R] B` is of `finite_presentation` if it is of finite presentation as
ring morphism. In other words, if `B` is finitely presented as `A`-algebra. -/
def finite_presentation (f : A →ₐ[R] B) : Prop := f.to_ring_hom.finite_presentation
namespace finite
variables (R A)
lemma id : finite (alg_hom.id R A) := ring_hom.finite.id A
variables {R A}
lemma comp {g : B →ₐ[R] C} {f : A →ₐ[R] B} (hg : g.finite) (hf : f.finite) : (g.comp f).finite :=
ring_hom.finite.comp hg hf
lemma of_surjective (f : A →ₐ[R] B) (hf : surjective f) : f.finite :=
ring_hom.finite.of_surjective f hf
lemma finite_type {f : A →ₐ[R] B} (hf : f.finite) : finite_type f :=
ring_hom.finite.finite_type hf
lemma of_comp_finite {f : A →ₐ[R] B} {g : B →ₐ[R] C} (h : (g.comp f).finite) : g.finite :=
ring_hom.finite.of_comp_finite h
end finite
namespace finite_type
variables (R A)
lemma id : finite_type (alg_hom.id R A) := ring_hom.finite_type.id A
variables {R A}
lemma comp {g : B →ₐ[R] C} {f : A →ₐ[R] B} (hg : g.finite_type) (hf : f.finite_type) :
(g.comp f).finite_type :=
ring_hom.finite_type.comp hg hf
lemma comp_surjective {f : A →ₐ[R] B} {g : B →ₐ[R] C} (hf : f.finite_type) (hg : surjective g) :
(g.comp f).finite_type :=
ring_hom.finite_type.comp_surjective hf hg
lemma of_surjective (f : A →ₐ[R] B) (hf : surjective f) : f.finite_type :=
ring_hom.finite_type.of_surjective f hf
lemma of_finite_presentation {f : A →ₐ[R] B} (hf : f.finite_presentation) : f.finite_type :=
ring_hom.finite_type.of_finite_presentation hf
lemma of_comp_finite_type {f : A →ₐ[R] B} {g : B →ₐ[R] C} (h : (g.comp f).finite_type) :
g.finite_type :=
ring_hom.finite_type.of_comp_finite_type h
end finite_type
namespace finite_presentation
variables (R A)
lemma id : finite_presentation (alg_hom.id R A) := ring_hom.finite_presentation.id A
variables {R A}
lemma comp {g : B →ₐ[R] C} {f : A →ₐ[R] B} (hg : g.finite_presentation)
(hf : f.finite_presentation) : (g.comp f).finite_presentation :=
ring_hom.finite_presentation.comp hg hf
lemma comp_surjective {f : A →ₐ[R] B} {g : B →ₐ[R] C} (hf : f.finite_presentation)
(hg : surjective g) (hker : g.to_ring_hom.ker.fg) : (g.comp f).finite_presentation :=
ring_hom.finite_presentation.comp_surjective hf hg hker
lemma of_surjective (f : A →ₐ[R] B) (hf : surjective f) (hker : f.to_ring_hom.ker.fg) :
f.finite_presentation :=
ring_hom.finite_presentation.of_surjective f hf hker
lemma of_finite_type [is_noetherian_ring A] {f : A →ₐ[R] B} :
f.finite_type ↔ f.finite_presentation :=
ring_hom.finite_presentation.of_finite_type
end finite_presentation
end alg_hom
section monoid_algebra
variables {R : Type*} {M : Type*}
namespace add_monoid_algebra
open algebra add_submonoid submodule
section span
section semiring
variables [comm_semiring R] [add_monoid M]
/-- An element of `add_monoid_algebra R M` is in the subalgebra generated by its support. -/
lemma mem_adjoin_support (f : add_monoid_algebra R M) : f ∈ adjoin R (of' R M '' f.support) :=
begin
suffices : span R (of' R M '' f.support) ≤ (adjoin R (of' R M '' f.support)).to_submodule,
{ exact this (mem_span_support f) },
rw submodule.span_le,
exact subset_adjoin
end
/-- If a set `S` generates, as algebra, `add_monoid_algebra R M`, then the set of supports of
elements of `S` generates `add_monoid_algebra R M`. -/
lemma support_gen_of_gen {S : set (add_monoid_algebra R M)} (hS : algebra.adjoin R S = ⊤) :
algebra.adjoin R (⋃ f ∈ S, (of' R M '' (f.support : set M))) = ⊤ :=
begin
refine le_antisymm le_top _,
rw [← hS, adjoin_le_iff],
intros f hf,
have hincl : of' R M '' f.support ⊆
⋃ (g : add_monoid_algebra R M) (H : g ∈ S), of' R M '' g.support,
{ intros s hs,
exact set.mem_bUnion_iff.2 ⟨f, ⟨hf, hs⟩⟩ },
exact adjoin_mono hincl (mem_adjoin_support f)
end
/-- If a set `S` generates, as algebra, `add_monoid_algebra R M`, then the image of the union of
the supports of elements of `S` generates `add_monoid_algebra R M`. -/
lemma support_gen_of_gen' {S : set (add_monoid_algebra R M)} (hS : algebra.adjoin R S = ⊤) :
algebra.adjoin R (of' R M '' (⋃ f ∈ S, (f.support : set M))) = ⊤ :=
begin
suffices : of' R M '' (⋃ f ∈ S, (f.support : set M)) = ⋃ f ∈ S, (of' R M '' (f.support : set M)),
{ rw this,
exact support_gen_of_gen hS },
simp only [set.image_Union]
end
end semiring
section ring
variables [comm_ring R] [add_comm_monoid M]
/-- If `add_monoid_algebra R M` is of finite type, there there is a `G : finset M` such that its
image generates, as algera, `add_monoid_algebra R M`. -/
lemma exists_finset_adjoin_eq_top [h : finite_type R (add_monoid_algebra R M)] :
∃ G : finset M, algebra.adjoin R (of' R M '' G) = ⊤ :=
begin
unfreezingI { obtain ⟨S, hS⟩ := h },
letI : decidable_eq M := classical.dec_eq M,
use finset.bUnion S (λ f, f.support),
have : (finset.bUnion S (λ f, f.support) : set M) = ⋃ f ∈ S, (f.support : set M),
{ simp only [finset.set_bUnion_coe, finset.coe_bUnion] },
rw [this],
exact support_gen_of_gen' hS
end
/-- The image of an element `m : M` in `add_monoid_algebra R M` belongs the submodule generated by
`S : set M` if and only if `m ∈ S`. -/
lemma of'_mem_span [nontrivial R] {m : M} {S : set M} :
of' R M m ∈ span R (of' R M '' S) ↔ m ∈ S :=
begin
refine ⟨λ h, _, λ h, submodule.subset_span $ set.mem_image_of_mem (of R M) h⟩,
rw [of', ← finsupp.supported_eq_span_single, finsupp.mem_supported,
finsupp.support_single_ne_zero (@one_ne_zero R _ (by apply_instance))] at h,
simpa using h
end
/--If the image of an element `m : M` in `add_monoid_algebra R M` belongs the submodule generated by
the closure of some `S : set M` then `m ∈ closure S`. -/
lemma mem_closure_of_mem_span_closure [nontrivial R] {m : M} {S : set M}
(h : of' R M m ∈ span R (submonoid.closure (of' R M '' S) : set (add_monoid_algebra R M))) :
m ∈ closure S :=
begin
suffices : multiplicative.of_add m ∈ submonoid.closure (multiplicative.to_add ⁻¹' S),
{ simpa [← to_submonoid_closure] },
rw [set.image_congr' (show ∀ x, of' R M x = of R M x, from λ x, of'_eq_of x),
← monoid_hom.map_mclosure] at h,
simpa using of'_mem_span.1 h
end
end ring
end span
variables [add_comm_monoid M]
/-- If a set `S` generates an additive monoid `M`, then the image of `M` generates, as algebra,
`add_monoid_algebra R M`. -/
lemma mv_polynomial_aeval_of_surjective_of_closure [comm_semiring R] {S : set M}
(hS : closure S = ⊤) : function.surjective (mv_polynomial.aeval
(λ (s : S), of' R M ↑s) : mv_polynomial S R → add_monoid_algebra R M) :=
begin
refine λ f, induction_on f (λ m, _) _ _,
{ have : m ∈ closure S := hS.symm ▸ mem_top _,
refine closure_induction this (λ m hm, _) _ _,
{ exact ⟨mv_polynomial.X ⟨m, hm⟩, mv_polynomial.aeval_X _ _⟩ },
{ exact ⟨1, alg_hom.map_one _⟩ },
{ rintro m₁ m₂ ⟨P₁, hP₁⟩ ⟨P₂, hP₂⟩,
exact ⟨P₁ * P₂, by rw [alg_hom.map_mul, hP₁, hP₂, of_apply, of_apply, of_apply,
single_mul_single, one_mul]; refl⟩ } },
{ rintro f g ⟨P, rfl⟩ ⟨Q, rfl⟩,
exact ⟨P + Q, alg_hom.map_add _ _ _⟩ },
{ rintro r f ⟨P, rfl⟩,
exact ⟨r • P, alg_hom.map_smul _ _ _⟩ }
end
variables (R M)
/-- If an additive monoid `M` is finitely generated then `add_monoid_algebra R M` is of finite
type. -/
instance finite_type_of_fg [comm_ring R] [h : add_monoid.fg M] :
finite_type R (add_monoid_algebra R M) :=
begin
obtain ⟨S, hS⟩ := h.out,
exact (finite_type.mv_polynomial R (S : set M)).of_surjective (mv_polynomial.aeval
(λ (s : (S : set M)), of' R M ↑s)) (mv_polynomial_aeval_of_surjective_of_closure hS)
end
variables {R M}
/-- An additive monoid `M` is finitely generated if and only if `add_monoid_algebra R M` is of
finite type. -/
lemma finite_type_iff_fg [comm_ring R] [nontrivial R] :
finite_type R (add_monoid_algebra R M) ↔ add_monoid.fg M :=
begin
refine ⟨λ h, _, λ h, @add_monoid_algebra.finite_type_of_fg _ _ _ _ h⟩,
obtain ⟨S, hS⟩ := @exists_finset_adjoin_eq_top R M _ _ h,
refine add_monoid.fg_def.2 ⟨S, (eq_top_iff' _).2 (λ m, _)⟩,
have hm : of' R M m ∈ (adjoin R (of' R M '' ↑S)).to_submodule,
{ simp only [hS, top_to_submodule, submodule.mem_top], },
rw [adjoin_eq_span] at hm,
exact mem_closure_of_mem_span_closure hm
end
/-- If `add_monoid_algebra R M` is of finite type then `M` is finitely generated. -/
lemma fg_of_finite_type [comm_ring R] [nontrivial R] [h : finite_type R (add_monoid_algebra R M)] :
add_monoid.fg M :=
finite_type_iff_fg.1 h
/-- An additive group `G` is finitely generated if and only if `add_monoid_algebra R G` is of
finite type. -/
lemma finite_type_iff_group_fg {G : Type*} [add_comm_group G] [comm_ring R] [nontrivial R] :
finite_type R (add_monoid_algebra R G) ↔ add_group.fg G :=
by simpa [add_group.fg_iff_add_monoid.fg] using finite_type_iff_fg
end add_monoid_algebra
namespace monoid_algebra
open algebra submonoid submodule
section span
section semiring
variables [comm_semiring R] [monoid M]
/-- An element of `monoid_algebra R M` is in the subalgebra generated by its support. -/
lemma mem_adjoint_support (f : monoid_algebra R M) : f ∈ adjoin R (of R M '' f.support) :=
begin
suffices : span R (of R M '' f.support) ≤ (adjoin R (of R M '' f.support)).to_submodule,
{ exact this (mem_span_support f) },
rw submodule.span_le,
exact subset_adjoin
end
/-- If a set `S` generates, as algebra, `monoid_algebra R M`, then the set of supports of elements
of `S` generates `monoid_algebra R M`. -/
lemma support_gen_of_gen {S : set (monoid_algebra R M)} (hS : algebra.adjoin R S = ⊤) :
algebra.adjoin R (⋃ f ∈ S, (of R M '' (f.support : set M))) = ⊤ :=
begin
refine le_antisymm le_top _,
rw [← hS, adjoin_le_iff],
intros f hf,
have hincl : (of R M) '' f.support ⊆
⋃ (g : monoid_algebra R M) (H : g ∈ S), of R M '' g.support,
{ intros s hs,
exact set.mem_bUnion_iff.2 ⟨f, ⟨hf, hs⟩⟩ },
exact adjoin_mono hincl (mem_adjoint_support f)
end
/-- If a set `S` generates, as algebra, `monoid_algebra R M`, then the image of the union of the
supports of elements of `S` generates `monoid_algebra R M`. -/
lemma support_gen_of_gen' {S : set (monoid_algebra R M)} (hS : algebra.adjoin R S = ⊤) :
algebra.adjoin R (of R M '' (⋃ f ∈ S, (f.support : set M))) = ⊤ :=
begin
suffices : of R M '' (⋃ f ∈ S, (f.support : set M)) = ⋃ f ∈ S, (of R M '' (f.support : set M)),
{ rw this,
exact support_gen_of_gen hS },
simp only [set.image_Union]
end
end semiring
section ring
variables [comm_ring R] [comm_monoid M]
/-- If `monoid_algebra R M` is of finite type, there there is a `G : finset M` such that its image
generates, as algera, `monoid_algebra R M`. -/
lemma exists_finset_adjoin_eq_top [h :finite_type R (monoid_algebra R M)] :
∃ G : finset M, algebra.adjoin R (of R M '' G) = ⊤ :=
begin
unfreezingI { obtain ⟨S, hS⟩ := h },
letI : decidable_eq M := classical.dec_eq M,
use finset.bUnion S (λ f, f.support),
have : (finset.bUnion S (λ f, f.support) : set M) = ⋃ f ∈ S, (f.support : set M),
{ simp only [finset.set_bUnion_coe, finset.coe_bUnion] },
rw [this],
exact support_gen_of_gen' hS
end
/-- The image of an element `m : M` in `monoid_algebra R M` belongs the submodule generated by
`S : set M` if and only if `m ∈ S`. -/
lemma of_mem_span_of_iff [nontrivial R] {m : M} {S : set M} :
of R M m ∈ span R (of R M '' S) ↔ m ∈ S :=
begin
refine ⟨λ h, _, λ h, submodule.subset_span $ set.mem_image_of_mem (of R M) h⟩,
rw [of, monoid_hom.coe_mk, ← finsupp.supported_eq_span_single, finsupp.mem_supported,
finsupp.support_single_ne_zero (@one_ne_zero R _ (by apply_instance))] at h,
simpa using h
end
/--If the image of an element `m : M` in `monoid_algebra R M` belongs the submodule generated by the
closure of some `S : set M` then `m ∈ closure S`. -/
lemma mem_closure_of_mem_span_closure [nontrivial R] {m : M} {S : set M}
(h : of R M m ∈ span R (submonoid.closure (of R M '' S) : set (monoid_algebra R M))) :
m ∈ closure S :=
begin
rw ← monoid_hom.map_mclosure at h,
simpa using of_mem_span_of_iff.1 h
end
end ring
end span
variables [comm_monoid M]
/-- If a set `S` generates a monoid `M`, then the image of `M` generates, as algebra,
`monoid_algebra R M`. -/
lemma mv_polynomial_aeval_of_surjective_of_closure [comm_semiring R] {S : set M}
(hS : closure S = ⊤) : function.surjective (mv_polynomial.aeval
(λ (s : S), of R M ↑s) : mv_polynomial S R → monoid_algebra R M) :=
begin
refine λ f, induction_on f (λ m, _) _ _,
{ have : m ∈ closure S := hS.symm ▸ mem_top _,
refine closure_induction this (λ m hm, _) _ _,
{ exact ⟨mv_polynomial.X ⟨m, hm⟩, mv_polynomial.aeval_X _ _⟩ },
{ exact ⟨1, alg_hom.map_one _⟩ },
{ rintro m₁ m₂ ⟨P₁, hP₁⟩ ⟨P₂, hP₂⟩,
exact ⟨P₁ * P₂, by rw [alg_hom.map_mul, hP₁, hP₂, of_apply, of_apply, of_apply,
single_mul_single, one_mul]⟩ } },
{ rintro f g ⟨P, rfl⟩ ⟨Q, rfl⟩,
exact ⟨P + Q, alg_hom.map_add _ _ _⟩ },
{ rintro r f ⟨P, rfl⟩,
exact ⟨r • P, alg_hom.map_smul _ _ _⟩ }
end
/-- If a monoid `M` is finitely generated then `monoid_algebra R M` is of finite type. -/
instance finite_type_of_fg [comm_ring R] [monoid.fg M] : finite_type R (monoid_algebra R M) :=
(add_monoid_algebra.finite_type_of_fg R (additive M)).equiv (to_additive_alg_equiv R M).symm
/-- A monoid `M` is finitely generated if and only if `monoid_algebra R M` is of finite type. -/
lemma finite_type_iff_fg [comm_ring R] [nontrivial R] :
finite_type R (monoid_algebra R M) ↔ monoid.fg M :=
⟨λ h, monoid.fg_iff_add_fg.2 $ add_monoid_algebra.finite_type_iff_fg.1 $ h.equiv $
to_additive_alg_equiv R M, λ h, @monoid_algebra.finite_type_of_fg _ _ _ _ h⟩
/-- If `monoid_algebra R M` is of finite type then `M` is finitely generated. -/
lemma fg_of_finite_type [comm_ring R] [nontrivial R] [h : finite_type R (monoid_algebra R M)] :
monoid.fg M :=
finite_type_iff_fg.1 h
/-- A group `G` is finitely generated if and only if `add_monoid_algebra R G` is of finite type. -/
lemma finite_type_iff_group_fg {G : Type*} [comm_group G] [comm_ring R] [nontrivial R] :
finite_type R (monoid_algebra R G) ↔ group.fg G :=
by simpa [group.fg_iff_monoid.fg] using finite_type_iff_fg
end monoid_algebra
end monoid_algebra
|
4d6baeabf097940438fe999173954516a4074bbb
|
78630e908e9624a892e24ebdd21260720d29cf55
|
/src/logic_propositional/prop_20.lean
|
fe2efc52720b4ecf766605dee243d7c236a74504
|
[
"CC0-1.0"
] |
permissive
|
tomasz-lisowski/lean-logic-examples
|
84e612466776be0a16c23a0439ff8ef6114ddbe1
|
2b2ccd467b49c3989bf6c92ec0358a8d6ee68c5d
|
refs/heads/master
| 1,683,334,199,431
| 1,621,938,305,000
| 1,621,938,305,000
| 365,041,573
| 1
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 309
|
lean
|
namespace prop_20
variables P Q : Prop
theorem prop_20 : ¬ ¬ (P ∧ Q) → ¬ ¬ Q :=
assume h1: ¬ ¬ (P ∧ Q),
have h2: P ∧ Q, from (classical.by_contradiction
(assume h2: ¬ (P ∧ Q),
h1 h2)),
assume h3: ¬ Q,
have h4: Q, from and.right h2,
show false, from h3 h4
-- end namespace
end prop_20
|
72edef23cd6006ec9a7b7ebaafa86fe9f6328aa9
|
35677d2df3f081738fa6b08138e03ee36bc33cad
|
/src/tactic/doc_commands.lean
|
93c6a8b3f3ba1348d14e04ce33517ba3bb280149
|
[
"Apache-2.0"
] |
permissive
|
gebner/mathlib
|
eab0150cc4f79ec45d2016a8c21750244a2e7ff0
|
cc6a6edc397c55118df62831e23bfbd6e6c6b4ab
|
refs/heads/master
| 1,625,574,853,976
| 1,586,712,827,000
| 1,586,712,827,000
| 99,101,412
| 1
| 0
|
Apache-2.0
| 1,586,716,389,000
| 1,501,667,958,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 15,880
|
lean
|
/-
Copyright (c) 2020 Robert Y. Lewis. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Robert Y. Lewis
-/
import tactic.fix_reflect_string
/-!
# Documentation commands
We generate html documentation from mathlib. It is convenient to collect lists of tactics, commands,
notes, etc. To facilitate this, we declare these documentation entries in the library
using special commands.
* `library_note` adds a note describing a certain feature or design decision. These can be
referenced in doc strings with the text `note [name of note]`.
* `add_tactic_doc` adds an entry documenting an interactive tactic, command, hole command, or
attribute.
Since these commands are used in files imported by `tactic.core`, this file has no imports.
## Implementation details
`library_note note_id note_msg` creates a declaration `` `library_note.i `` for some `i`.
This declaration is a pair of strings `note_id` and `note_msg`, and it gets tagged with the
`library_note` attribute.
Similarly, `add_tactic_doc` creates a declaration `` `tactic_doc.i `` that stores the provided
information.
-/
/-- A rudimentary hash function on strings. -/
def string.hash (s : string) : ℕ :=
s.fold 1 (λ h c, (33*h + c.val) % unsigned_sz)
/-- `mk_hashed_name nspace id` hashes the string `id` to a value `i` and returns the name
`nspace._i` -/
meta def string.mk_hashed_name (nspace : name) (id : string) : name :=
nspace <.> ("_" ++ to_string id.hash)
/-! ### The `library_note` command -/
/-- A user attribute `library_note` for tagging decls of type `string × string` for use in note
output. -/
@[user_attribute] meta def library_note_attr : user_attribute :=
{ name := `library_note,
descr := "Notes about library features to be included in documentation" }
open tactic
/--
`mk_reflected_definition name val` constructs a definition declaration by reflection.
Example: ``mk_reflected_definition `foo 17`` constructs the definition
declaration corresponding to `def foo : ℕ := 17`
-/
meta def mk_reflected_definition (decl_name : name) {type} [reflected type]
(body : type) [reflected body] : declaration :=
mk_definition decl_name (reflect type).collect_univ_params (reflect type) (reflect body)
/-- If `note_name` and `note` are `pexpr`s representing strings,
`add_library_note note_name note` adds a declaration of type `string × string` and tags it with
the `library_note` attribute. -/
meta def tactic.add_library_note (note_name note : string) : tactic unit :=
do let decl_name := note_name.mk_hashed_name `library_note,
add_decl $ mk_reflected_definition decl_name (note_name, note),
library_note_attr.set decl_name () tt none
/-- `tactic.eval_pexpr e α` evaluates the pre-expression `e` to a VM object of type `α`. -/
meta def tactic.eval_pexpr (α) [reflected α] (e : pexpr) : tactic α :=
to_expr ``(%%e : %%(reflect α)) ff ff >>= eval_expr α
open tactic lean lean.parser interactive
/--
A command to add library notes. Syntax:
```
/--
note message
-/
library_note "note id"
```
-/
@[user_command] meta def library_note (mi : interactive.decl_meta_info)
(_ : parse (tk "library_note")) : parser unit := do
note_name ← parser.pexpr,
note_name ← eval_pexpr string note_name,
some doc_string ← pure mi.doc_string | fail "library_note requires a doc string",
add_library_note note_name doc_string
/-- Collects all notes in the current environment.
Returns a list of pairs `(note_id, note_content)` -/
meta def tactic.get_library_notes : tactic (list (string × string)) :=
attribute.get_instances `library_note >>=
list.mmap (λ dcl, mk_const dcl >>= eval_expr (string × string))
/-! ### The `add_tactic_doc_entry` command -/
/-- The categories of tactic doc entry. -/
@[derive [decidable_eq, has_reflect]]
inductive doc_category
| tactic | cmd | hole_cmd | attr
/-- Format a `doc_category` -/
meta def doc_category.to_string : doc_category → string
| doc_category.tactic := "tactic"
| doc_category.cmd := "command"
| doc_category.hole_cmd := "hole_command"
| doc_category.attr := "attribute"
meta instance : has_to_format doc_category := ⟨↑doc_category.to_string⟩
/-- The information used to generate a tactic doc entry -/
@[derive has_reflect]
structure tactic_doc_entry :=
(name : string)
(category : doc_category)
(decl_names : list _root_.name)
(tags : list string := [])
(description : string := "")
(inherit_description_from : option _root_.name := none)
/-- format a `tactic_doc_entry` -/
meta def tactic_doc_entry.to_string : tactic_doc_entry → string
| ⟨name, category, decl_names, tags, description, _⟩ :=
let decl_names := decl_names.map (repr ∘ to_string),
tags := tags.map repr in
"{" ++ to_string (format!"\"name\": {repr name}, \"category\": \"{category}\", \"decl_names\":{decl_names}, \"tags\": {tags}, \"description\": {repr description}") ++ "}"
meta instance : has_to_string tactic_doc_entry :=
⟨tactic_doc_entry.to_string⟩
/-- `update_description_from tde inh_id` replaces the `description` field of `tde` with the
doc string of the declaration named `inh_id`. -/
meta def tactic_doc_entry.update_description_from (tde : tactic_doc_entry) (inh_id : name) :
tactic tactic_doc_entry :=
do ds ← doc_string inh_id <|> fail (to_string inh_id ++ " has no doc string"),
return { description := ds .. tde }
/--
`update_description tde` replaces the `description` field of `tde` with:
* the doc string of `tde.inherit_description_from`, if this field has a value
* the doc string of the entry in `tde.decl_names`, if this field has length 1
If neither of these conditions are met, it returns `tde`. -/
meta def tactic_doc_entry.update_description (tde : tactic_doc_entry) : tactic tactic_doc_entry :=
match tde.inherit_description_from, tde.decl_names with
| some inh_id, _ := tde.update_description_from inh_id
| none, [inh_id] := tde.update_description_from inh_id
| none, _ := return tde
end
/-- A user attribute `tactic_doc` for tagging decls of type `tactic_doc_entry`
for use in doc output -/
@[user_attribute] meta def tactic_doc_entry_attr : user_attribute :=
{ name := `tactic_doc,
descr := "Information about a tactic to be included in documentation" }
/-- Collects everything in the environment tagged with the attribute `tactic_doc`. -/
meta def tactic.get_tactic_doc_entries : tactic (list tactic_doc_entry) :=
attribute.get_instances `tactic_doc >>=
list.mmap (λ dcl, mk_const dcl >>= eval_expr tactic_doc_entry)
/-- `add_tactic_doc tde` adds a declaration to the environment
with `tde` as its body and tags it with the `tactic_doc`
attribute. If `tde.decl_names` has exactly one entry `` `decl`` and
if `tde.description` is the empty string, `add_tactic_doc` uses the doc
string of `decl` as the description. -/
meta def tactic.add_tactic_doc (tde : tactic_doc_entry) : tactic unit :=
do when (tde.description = "" ∧ tde.inherit_description_from.is_none ∧ tde.decl_names.length ≠ 1) $
fail
("A tactic doc entry must either:\n" ++
" 1. have a description written as a doc-string for the `add_tactic_doc` invocation, or\n" ++
" 2. have a single declaration in the `decl_names` field, to inherit a description from, or\n" ++
" 3. explicitly indicate the declaration to inherit the description from using `inherit_description_from`."),
tde ← if tde.description = "" then tde.update_description else return tde,
let decl_name := (tde.name ++ tde.category.to_string).mk_hashed_name `tactic_doc,
add_decl $ mk_definition decl_name [] `(tactic_doc_entry) (reflect tde),
tactic_doc_entry_attr.set decl_name () tt none
/--
A command used to add documentation for a tactic, command, hole command, or attribute.
Usage: after defining an interactive tactic, command, or attribute,
add its documentation as follows.
```lean
/--
describe what the command does here
-/
add_tactic_doc
{ name := "display name of the tactic",
category := cat,
decl_names := [`dcl_1, `dcl_2],
tags := ["tag_1", "tag_2"]
}
```
The argument to `add_tactic_doc` is a structure of type `tactic_doc_entry`.
* `name` refers to the display name of the tactic; it is used as the header of the doc entry.
* `cat` refers to the category of doc entry.
Options: `doc_category.tactic`, `doc_category.cmd`, `doc_category.hole_cmd`, `doc_category.attr`
* `decl_names` is a list of the declarations associated with this doc. For instance,
the entry for `linarith` would set ``decl_names := [`tactic.interactive.linarith]``.
Some entries may cover multiple declarations.
It is only necessary to list the interactive versions of tactics.
* `tags` is an optional list of strings used to categorize entries.
* The doc string is the body of the entry. It can be formatted with markdown.
What you are reading now is the description of `add_tactic_doc`.
If only one related declaration is listed in `decl_names` and if this
invocation of `add_tactic_doc` does not have a doc string, the doc string of
that declaration will become the body of the tactic doc entry. If there are
multiple declarations, you can select the one to be used by passing a name to
the `inherit_description_from` field.
If you prefer a tactic to have a doc string that is different then the doc entry,
you should write the doc entry as a doc string for the `add_tactic_doc` invocation.
Note that providing a badly formed `tactic_doc_entry` to the command can result in strange error
messages.
-/
@[user_command] meta def add_tactic_doc_command (mi : interactive.decl_meta_info)
(_ : parse $ tk "add_tactic_doc") : parser unit := do
pe ← parser.pexpr,
e ← eval_pexpr tactic_doc_entry pe,
let e : tactic_doc_entry := match mi.doc_string with
| some desc := { description := desc, ..e }
| none := e
end,
tactic.add_tactic_doc e .
/--
At various places in mathlib, we leave implementation notes that are referenced from many other
files. To keep track of these notes, we use the command `library_note`. This makes it easy to
retrieve a list of all notes, e.g. for documentation output.
These notes can be referenced in mathlib with the syntax `Note [note id]`.
Often, these references will be made in code comments (`--`) that won't be displayed in docs.
If such a reference is made in a doc string or module doc, it will be linked to the corresponding
note in the doc display.
Syntax:
```
/--
note message
-/
library_note "note id"
```
An example from `meta.expr`:
```
/--
Some declarations work with open expressions, i.e. an expr that has free variables.
Terms will free variables are not well-typed, and one should not use them in tactics like
`infer_type` or `unify`. You can still do syntactic analysis/manipulation on them.
The reason for working with open types is for performance: instantiating variables requires
iterating through the expression. In one performance test `pi_binders` was more than 6x
quicker than `mk_local_pis` (when applied to the type of all imported declarations 100x).
-/
library_note "open expressions"
```
This note can be referenced near a usage of `pi_binders`:
```
-- See Note [open expressions]
/-- behavior of f -/
def f := pi_binders ...
```
-/
add_tactic_doc
{ name := "library_note",
category := doc_category.cmd,
decl_names := [`library_note, `tactic.add_library_note],
tags := ["documentation"],
inherit_description_from := `library_note }
add_tactic_doc
{ name := "add_tactic_doc",
category := doc_category.cmd,
decl_names := [`add_tactic_doc_command, `tactic.add_tactic_doc],
tags := ["documentation"],
inherit_description_from := `add_tactic_doc_command }
-- add docs to core tactics
/--
The congruence closure tactic `cc` tries to solve the goal by chaining
equalities from context and applying congruence (i.e. if `a = b`, then `f a = f b`).
It is a finishing tactic, i.e. it is meant to close
the current goal, not to make some inconclusive progress.
A mostly trivial example would be:
```lean
example (a b c : ℕ) (f : ℕ → ℕ) (h: a = b) (h' : b = c) : f a = f c := by cc
```
As an example requiring some thinking to do by hand, consider:
```lean
example (f : ℕ → ℕ) (x : ℕ)
(H1 : f (f (f x)) = x) (H2 : f (f (f (f (f x)))) = x) :
f x = x :=
by cc
```
The tactic works by building an equality matching graph. It's a graph where
the vertices are terms and they are linked by edges if they are known to
be equal. Once you've added all the equalities in your context, you take
the transitive closure of the graph and, for each connected component
(i.e. equivalence class) you can elect a term that will represent the
whole class and store proofs that the other elements are equal to it.
You then take the transitive closure of these equalities under the
congruence lemmas.
The `cc` implementation in Lean does a few more tricks: for example it
derives `a=b` from `nat.succ a = nat.succ b`, and `nat.succ a !=
nat.zero` for any `a`.
* The starting reference point is Nelson, Oppen, [Fast decision procedures based on congruence
closure](http://www.cs.colorado.edu/~bec/courses/csci5535-s09/reading/nelson-oppen-congruence.pdf),
Journal of the ACM (1980)
* The congruence lemmas for dependent type theory as used in Lean are described in
[Congruence closure in intensional type theory](https://leanprover.github.io/papers/congr.pdf)
(de Moura, Selsam IJCAR 2016).
-/
add_tactic_doc
{ name := "cc (congruence closure)",
category := doc_category.tactic,
decl_names := [`tactic.interactive.cc],
tags := ["core", "finishing"] }
/--
`conv {...}` allows the user to perform targeted rewriting on a goal or hypothesis,
by focusing on particular subexpressions.
See <https://leanprover-community.github.io/mathlib_docs/conv.html> for more details.
Inside `conv` blocks, mathlib currently additionally provides
* `erw`,
* `ring`, `ring2` and `ring_exp`,
* `norm_num`,
* `norm_cast`,
* `apply_congr`, and
* `conv` (within another `conv`).
`apply_congr` applies congruence lemmas to step further inside expressions,
and sometimes gives between results than the automatically generated
congruence lemmas used by `congr`.
Using `conv` inside a `conv` block allows the user to return to the previous
state of the outer `conv` block after it is finished. Thus you can continue
editing an expression without having to start a new `conv` block and re-scoping
everything. For example:
```lean
example (a b c d : ℕ) (h₁ : b = c) (h₂ : a + c = a + d) : a + b = a + d :=
by conv {
to_lhs,
conv {
congr, skip,
rw h₁,
},
rw h₂,
}
```
Without `conv`, the above example would need to be proved using two successive
`conv` blocks, each beginning with `to_lhs`.
Also, as a shorthand, `conv_lhs` and `conv_rhs` are provided, so that
```lean
example : 0 + 0 = 0 :=
begin
conv_lhs { simp }
end
```
just means
```lean
example : 0 + 0 = 0 :=
begin
conv { to_lhs, simp }
end
```
and likewise for `to_rhs`.
-/
add_tactic_doc
{ name := "conv",
category := doc_category.tactic,
decl_names := [`tactic.interactive.conv],
tags := ["core"] }
add_tactic_doc
{ name := "simp",
category := doc_category.tactic,
decl_names := [`tactic.interactive.simp],
tags := ["core", "simplification"] }
/--
The `add_decl_doc` command is used to add a doc string to an existing declaration.
```lean
def foo := 5
/--
Doc string for foo.
-/
add_decl_doc foo
```
-/
@[user_command] meta def add_decl_doc_command (mi : interactive.decl_meta_info)
(_ : parse $ tk "add_decl_doc") : parser unit := do
n ← parser.ident,
n ← resolve_constant n,
some doc ← pure mi.doc_string | fail "add_decl_doc requires a doc string",
add_doc_string n doc
add_tactic_doc
{ name := "add_decl_doc",
category := doc_category.cmd,
decl_names := [``add_decl_doc_command],
tags := ["documentation"] }
|
33a1afd515001f0eb3a2845613be091b98638fec
|
d1a52c3f208fa42c41df8278c3d280f075eb020c
|
/src/Lean/Meta/Tactic/Simp/Rewrite.lean
|
34aae00e9cefe6e0458499d1c966e326e9f9d3db
|
[
"Apache-2.0",
"LLVM-exception",
"NCSA",
"LGPL-3.0-only",
"LicenseRef-scancode-inner-net-2.0",
"BSD-3-Clause",
"LGPL-2.0-or-later",
"Spencer-94",
"LGPL-2.1-or-later",
"HPND",
"LicenseRef-scancode-pcre",
"ISC",
"LGPL-2.1-only",
"LicenseRef-scancode-other-permissive",
"SunPro",
"CMU-Mach"
] |
permissive
|
cipher1024/lean4
|
6e1f98bb58e7a92b28f5364eb38a14c8d0aae393
|
69114d3b50806264ef35b57394391c3e738a9822
|
refs/heads/master
| 1,642,227,983,603
| 1,642,011,696,000
| 1,642,011,696,000
| 228,607,691
| 0
| 0
|
Apache-2.0
| 1,576,584,269,000
| 1,576,584,268,000
| null |
UTF-8
|
Lean
| false
| false
| 8,243
|
lean
|
/-
Copyright (c) 2020 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
-/
import Lean.Meta.AppBuilder
import Lean.Meta.SynthInstance
import Lean.Meta.Tactic.Simp.Types
namespace Lean.Meta.Simp
def synthesizeArgs (lemmaName : Name) (xs : Array Expr) (bis : Array BinderInfo) (discharge? : Expr → SimpM (Option Expr)) : SimpM Bool := do
for x in xs, bi in bis do
let type ← inferType x
if bi.isInstImplicit then
unless (← synthesizeInstance x type) do
return false
else if (← instantiateMVars x).isMVar then
if (← isProp type) then
match (← discharge? type) with
| some proof =>
unless (← isDefEq x proof) do
trace[Meta.Tactic.simp.discharge] "{lemmaName}, failed to assign proof{indentExpr type}"
return false
| none =>
trace[Meta.Tactic.simp.discharge] "{lemmaName}, failed to discharge hypotheses{indentExpr type}"
return false
else if (← isClass? type).isSome then
unless (← synthesizeInstance x type) do
return false
return true
where
synthesizeInstance (x type : Expr) : SimpM Bool := do
match (← trySynthInstance type) with
| LOption.some val =>
if (← withReducibleAndInstances <| isDefEq x val) then
return true
else
trace[Meta.Tactic.simp.discharge] "{lemmaName}, failed to assign instance{indentExpr type}\nsythesized value{indentExpr val}\nis not definitionally equal to{indentExpr x}"
return false
| _ =>
trace[Meta.Tactic.simp.discharge] "{lemmaName}, failed to synthesize instance{indentExpr type}"
return false
private def tryLemmaCore (lhs : Expr) (xs : Array Expr) (bis : Array BinderInfo) (val : Expr) (type : Expr) (e : Expr) (lemma : SimpLemma) (numExtraArgs : Nat) (discharge? : Expr → SimpM (Option Expr)) : SimpM (Option Result) := do
let rec go (e : Expr) : SimpM (Option Result) := do
if (← isDefEq lhs e) then
unless (← synthesizeArgs lemma.getName xs bis discharge?) do
return none
let proof ← instantiateMVars (mkAppN val xs)
if ← hasAssignableMVar proof then
trace[Meta.Tactic.simp.rewrite] "{lemma}, has unassigned metavariables after unification"
return none
let rhs ← instantiateMVars type.appArg!
if e == rhs then
return none
if lemma.perm && !Expr.lt rhs e then
trace[Meta.Tactic.simp.rewrite] "{lemma}, perm rejected {e} ==> {rhs}"
return none
trace[Meta.Tactic.simp.rewrite] "{lemma}, {e} ==> {rhs}"
return some { expr := rhs, proof? := proof }
else
unless lhs.isMVar do
-- We do not report unification failures when `lhs` is a metavariable
-- Example: `x = ()`
-- TODO: reconsider if we want lemmas such as `(x : Unit) → x = ()`
trace[Meta.Tactic.simp.unify] "{lemma}, failed to unify {lhs} with {e}"
return none
/- Check whether we need something more sophisticated here.
This simple approach was good enough for Mathlib 3 -/
let mut extraArgs := #[]
let mut e := e
for i in [:numExtraArgs] do
extraArgs := extraArgs.push e.appArg!
e := e.appFn!
extraArgs := extraArgs.reverse
match (← go e) with
| none => return none
| some { expr := eNew, proof? := none } => return some { expr := mkAppN eNew extraArgs }
| some { expr := eNew, proof? := some proof } =>
let mut proof := proof
for extraArg in extraArgs do
proof ← mkCongrFun proof extraArg
return some { expr := mkAppN eNew extraArgs, proof? := some proof }
def tryLemmaWithExtraArgs? (e : Expr) (lemma : SimpLemma) (numExtraArgs : Nat) (discharge? : Expr → SimpM (Option Expr)) : SimpM (Option Result) :=
withNewMCtxDepth do
let val ← lemma.getValue
let type ← inferType val
let (xs, bis, type) ← forallMetaTelescopeReducing type
let type ← whnf (← instantiateMVars type)
let lhs := type.appFn!.appArg!
tryLemmaCore lhs xs bis val type e lemma numExtraArgs discharge?
def tryLemma? (e : Expr) (lemma : SimpLemma) (discharge? : Expr → SimpM (Option Expr)) : SimpM (Option Result) := do
withNewMCtxDepth do
let val ← lemma.getValue
let type ← inferType val
let (xs, bis, type) ← forallMetaTelescopeReducing type
let type ← whnf (← instantiateMVars type)
let lhs := type.appFn!.appArg!
match (← tryLemmaCore lhs xs bis val type e lemma 0 discharge?) with
| some result => return some result
| none =>
let lhsNumArgs := lhs.getAppNumArgs
let eNumArgs := e.getAppNumArgs
if eNumArgs > lhsNumArgs then
tryLemmaCore lhs xs bis val type e lemma (eNumArgs - lhsNumArgs) discharge?
else
return none
/-
Remark: the parameter tag is used for creating trace messages. It is irrelevant otherwise.
-/
def rewrite (e : Expr) (s : DiscrTree SimpLemma) (erased : Std.PHashSet Name) (discharge? : Expr → SimpM (Option Expr)) (tag : String) : SimpM Result := do
let candidates ← s.getMatchWithExtra e
if candidates.isEmpty then
trace[Debug.Meta.Tactic.simp] "no theorems found for {tag}-rewriting {e}"
return { expr := e }
else
let candidates := candidates.insertionSort fun e₁ e₂ => e₁.1.priority > e₂.1.priority
for (lemma, numExtraArgs) in candidates do
unless inErasedSet lemma do
if let some result ← tryLemmaWithExtraArgs? e lemma numExtraArgs discharge? then
return result
return { expr := e }
where
inErasedSet (lemma : SimpLemma) : Bool :=
match lemma.name? with
| none => false
| some name => erased.contains name
def rewriteCtorEq? (e : Expr) : MetaM (Option Result) := withReducibleAndInstances do
match e.eq? with
| none => return none
| some (_, lhs, rhs) =>
let lhs ← whnf lhs
let rhs ← whnf rhs
let env ← getEnv
match lhs.constructorApp? env, rhs.constructorApp? env with
| some (c₁, _), some (c₂, _) =>
if c₁.name != c₂.name then
withLocalDeclD `h e fun h =>
return some { expr := mkConst ``False, proof? := (← mkEqFalse' (← mkLambdaFVars #[h] (← mkNoConfusion (mkConst ``False) h))) }
else
return none
| _, _ => return none
@[inline] def tryRewriteCtorEq (e : Expr) (x : SimpM Step) : SimpM Step := do
match (← rewriteCtorEq? e) with
| some r => return Step.done r
| none => x
def rewriteUsingDecide? (e : Expr) : MetaM (Option Result) := withReducibleAndInstances do
if e.hasFVar || e.hasMVar || e.isConstOf ``True || e.isConstOf ``False then
return none
else
try
let d ← mkDecide e
let r ← withDefault <| whnf d
if r.isConstOf ``true then
return some { expr := mkConst ``True, proof? := mkAppN (mkConst ``eq_true_of_decide) #[e, d.appArg!, (← mkEqRefl (mkConst ``true))] }
else if r.isConstOf ``false then
let h ← mkEqRefl d
return some { expr := mkConst ``False, proof? := mkAppN (mkConst ``eq_false_of_decide) #[e, d.appArg!, (← mkEqRefl (mkConst ``false))] }
else
return none
catch _ =>
return none
@[inline] def tryRewriteUsingDecide (e : Expr) (x : SimpM Step) : SimpM Step := do
if (← read).config.decide then
match (← rewriteUsingDecide? e) with
| some r => return Step.done r
| none => x
else
x
def rewritePre (e : Expr) (discharge? : Expr → SimpM (Option Expr)) : SimpM Step := do
let lemmas ← (← read).simpLemmas
return Step.visit (← rewrite e lemmas.pre lemmas.erased discharge? (tag := "pre"))
def rewritePost (e : Expr) (discharge? : Expr → SimpM (Option Expr)) : SimpM Step := do
let lemmas ← (← read).simpLemmas
return Step.visit (← rewrite e lemmas.post lemmas.erased discharge? (tag := "post"))
def preDefault (e : Expr) (discharge? : Expr → SimpM (Option Expr)) : SimpM Step :=
tryRewriteCtorEq e <| rewritePre e discharge?
def postDefault (e : Expr) (discharge? : Expr → SimpM (Option Expr)) : SimpM Step := do
-- TODO: try equation lemmas
tryRewriteCtorEq e <| tryRewriteUsingDecide e <| rewritePost e discharge?
end Lean.Meta.Simp
|
b265f869bf9daf26f5b90a0fd71354bcf8621889
|
3b1abba731363bfec018d9d2cfee7fd90e1dc93c
|
/definitions.lean
|
e734c2ba0f7977f131a5e573158d1705e550ae7f
|
[] |
no_license
|
minchaowu/Ramsey.lean
|
dcf4e0845cca6dc02ef898f3fd9123c079c5a1a9
|
8ebbead4869bdf3f4788137411c5f36f2e72943a
|
refs/heads/master
| 1,610,462,544,433
| 1,488,596,497,000
| 1,488,596,497,000
| 72,063,527
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 1,075
|
lean
|
import data.set data.nat standard
open classical set nat decidable
-------- Definitions and Axioms --------
noncomputable theory
definition tuples {A : Type} (S : set A) (n : ℕ) : set (set A) :=
{ T : set A | T ⊆ S ∧ card T = n ∧ finite T}
lemma sub_tuples {A : Type} (S1 S2 : set A) (H : S1 ⊆ S2) (n : ℕ) : tuples S1 n ⊆ tuples S2 n :=
take x, assume H1,
have x ⊆ S2, from subset.trans (and.left H1) H,
and.intro this (and.right H1)
theorem dne {p : Prop} (H : ¬¬p) : p := or.elim (em p) (assume Hp : p, Hp) (assume Hnp : ¬p, absurd Hnp H)
section
variable {A : Type}
abbreviation infinite (X : set A) : Prop := ¬ finite X
end
constant ω : set ℕ
axiom natω : ∀ x : ℕ, x ∈ ω
axiom infω : infinite ω
abbreviation is_coloring (X : set ℕ) (n : ℕ) (μ : ℕ) (c : set ℕ → ℕ) : Prop := ∀₀ a ∈ tuples X n, c a < μ
abbreviation is_homogeneous (X : set ℕ) (c : set ℕ → ℕ) (n μ : ℕ) (H : set ℕ) : Prop := is_coloring X n μ c ∧ H ⊆ X ∧ ∀₀ a ∈ tuples H n, ∀₀ b ∈ tuples H n, c a = c b
|
c8dcde8abaee28a5b837a159ec54e77f3dad9be2
|
f4e8ebc2be0df6ce96aeff2aea4781e55522cb21
|
/src/solutions/00_first_proofs.lean
|
35016ccbe09048b8d8e341709e6500fa29b18338
|
[
"Apache-2.0"
] |
permissive
|
robertylewis/tutorials
|
fb8a78d1352405077d4c82c6a04deabb32c1e37b
|
d3e1ac9ce73b9ed93a20036ce2a354ee923c783e
|
refs/heads/master
| 1,666,261,949,784
| 1,591,464,085,000
| 1,591,464,607,000
| 270,056,466
| 0
| 0
|
Apache-2.0
| 1,591,465,315,000
| 1,591,465,314,000
| null |
UTF-8
|
Lean
| false
| false
| 18,033
|
lean
|
/-
This file is intended for Lean beginners. The goal is to demonstrate what it feels like to prove
things using Lean and mathlib. Complicated definitions and theory building are not covered.
Everything is covered again more slowly and with exercises in the next files.
-/
-- We want real numbers and their basic properties
import data.real.basic
-- We want to be able to define functions using the law of excluded middle
noncomputable theory
open_locale classical
/-
Our first goal is to define the set of upper bounds of a set of real numbers.
This is already defined in mathlib (in a more general context), but we repeat
it for the sake of exposition. Right-click "upper_bounds" below to get offered
to jump to mathlib's version
-/
#check upper_bounds
/-- The set of upper bounds of a set of real numbers ℝ -/
def up_bounds (A : set ℝ) := { x : ℝ | ∀ a ∈ A, a ≤ x}
/-- Predicate `is_max a A` means `a` is a maximum of `A` -/
def is_max (a : ℝ) (A : set ℝ) := a ∈ A ∧ a ∈ up_bounds A
/-
In the above definition, the symbol `∧` means "and". We also see the most
visible difference between set theoretic foundations and type theoretic ones
(used by almost all proof assistants). In set theory, everything is a set, and the
only relation you get from foundations are `=` and `∈`. In type theory, there is
a meta-theoretic relation of "typing": `a : ℝ` reads "`a` is a real number" or,
more precisely, "the type of `a` is `ℝ`". Here "meta-theoretic" means this is not a
statement you can prove or disprove inside the theory, it's a fact that is true or
not. Here we impose this fact, in other circumstances, it would be checked by the
Lean kernel.
By contrast, `a ∈ A` is a statement inside the theory. Here it's part of the
definition, in other circumstances it could be something proven inside Lean.
-/
/- For illustrative purposes, we now define an infix version of the above predicate.
It will allow us to write `a is_a_max_of A`, which is closer to a sentence.
-/
infix `is_a_max_of`:55 := is_max
/-
Let's prove something now! A set of real numbers has at most one maximum. Here
everything left of the final `:` is introducing the objects and assumption. The equality
`x = y` right of the colon is the conclusion.
-/
lemma unique_max (A : set ℝ) (x y : ℝ) (hx : x is_a_max_of A) (hy : y is_a_max_of A) : x = y :=
begin
-- We first break our assumptions in their two constituent pieces.
-- We are free to choose the name following `with`
cases hx with x_in x_up,
cases hy with y_in y_up,
-- Assumption `x_up` means x isn't less than elements of A, let's apply this to y
specialize x_up y,
-- Assumption `x_up` now needs the information that `y` is indeed in `A`.
specialize x_up y_in,
-- Let's do this quicker with roles swapped
specialize y_up x x_in,
-- We explained to Lean the idea of this proof.
-- Now we know `x ≤ y` and `y ≤ x`, and Lean shouldn't need more help.
-- `linarith` proves equalities and inequalities that follow linearly from
-- the assumption we have.
linarith,
end
/-
The above proof is too long, even if you remove comments. We don't really need the
unpacking steps at the beginning; we can access both parts of the assumption
`hx : x is_a_max_of A` using shortcuts `h.1` and `h.2`. We can also improve
readability without assistance from the tactic state display, clearly announcing
intermediate goals using `have`. This way we get to the following version of the
same proof.
-/
example (A : set ℝ) (x y : ℝ) (hx : x is_a_max_of A) (hy : y is_a_max_of A) : x = y :=
begin
have : x ≤ y, from hy.2 x hx.1,
have : y ≤ x, from hx.2 y hy.1,
linarith,
end
/-
Notice how mathematics based on type theory treats the assumption
`∀ a ∈ A, a ≤ y` as a function turning an element `a` of `A` into the statement
`a ≤ y`. More precisely, this assumption is the abbreviation of
`∀ a : ℝ, a ∈ A → a ≤ y`. The expression `hy.2 x` appearing in the above proof
is then the statement `x ∈ A → x ≤ y`, which itself is a function turning a
statement `x ∈ A` into `x ≤ y` so that the full expression `hy.2 x hx.1` is
indeed a proof of `x ≤ y`.
One could argue a three-line-long proof of this lemma is still two lines too long.
This is debatable, but mathlib's style is to write very short proofs for trivial
lemmas. Those proofs are not easy to read but they are meant to indicate that the
proof is probably not worth reading.
In order to reach this stage, we need to know what `linarith` did for us. It invoked
the lemma `le_antisymm` which says: `x ≤ y → y ≤ x → x = y`. This arrow, which
is used both for function and implication, is right associative. So the statement is
`x ≤ y → (y ≤ x → x = y)` which reads: I will send a proof `p` of `x ≤ y` to a function
sending a proof `q'` of `y ≤ x` to a proof of `x = y`. Hence `le_antisymm p q'` is a
proof of `x = y`.
Using this we can get our one-line proof:
-/
example (A : set ℝ) (x y : ℝ) (hx : x is_a_max_of A) (hy : y is_a_max_of A) : x = y :=
le_antisymm (hy.2 x hx.1) (hx.2 y hy.1)
/-
Such a proof is called a proof term (or a "term mode" proof). Notice it has no `begin`
and `end`. It is directly the kind of low level proof that the Lean kernel is
consuming. Commands like `cases`, `specialize` or `linarith` are called tactics, they
help users constructing proof terms that could be very tedious to write directly.
The most efficient proof style combines tactics with proof terms like our previous
`have : x ≤ y, from hy.2 x hx.1` where `hy.2 x hx.1` is a proof term embeded inside
a tactic mode proof.
In the remaining of this file, we'll be characterizing infima of sets of real numbers
in term of sequences.
-/
/-- The set of lower bounds of a set of real numbers ℝ -/
def low_bounds (A : set ℝ) := { x : ℝ | ∀ a ∈ A, x ≤ a}
/-
We now define `a` is an infimum of `A`. Again there is already a more general version
in mathlib.
-/
def is_inf (x : ℝ) (A : set ℝ) := x is_a_max_of (low_bounds A)
infix `is_an_inf_of`:55 := is_inf
/-
We need to prove that any number which is greater than the infimum of A is greater
than some element of A.
-/
lemma inf_lt {A : set ℝ} {x : ℝ} (hx : x is_an_inf_of A) :
∀ y, x < y → ∃ a ∈ A, a < y :=
begin
-- Let `y` be any real number.
intro y,
-- Let's prove the contrapositive
contrapose,
-- The symbol `¬` means negation. Let's ask Lean to rewrite the goal without negation,
-- pushing negation through quantifiers and inequalities
push_neg,
-- Let's assume the premise, calling the assumption `h`
intro h,
-- `h` is exactly saying `y` is a lower bound of `A` so the second part of
-- the infimum assumption `hx` applied to `y` and `h` is exactly what we want.
exact hx.2 y h
end
/-
In the above proof, the sequence `contrapose, push_neg` is so common that it can be
abbreviated to `contrapose!`. With these commands, we enter the gray zone between
proof checking and proof finding. Practical computer proof checking crucially needs
the computer to handle tedious proof steps. In the next proof, we'll start using
`linarith` a bit more seriously, going one step further into automation.
Our next real goal is to prove inequalities for limits of sequences. We extract the
following lemma: if `y ≤ x + ε` for all positive `ε` then `y ≤ x`.
-/
lemma le_of_le_add_eps {x y : ℝ} : (∀ ε > 0, y ≤ x + ε) → y ≤ x :=
begin
-- Let's prove the contrapositive, asking Lean to push negations right away.
contrapose!,
-- Assume `h : x < y`.
intro h,
-- We need to find `ε` such that `ε` is positive and `x + ε < y`.
-- Let's use `(y-x)/2`
use ((y-x)/2),
-- we now have two properties to prove. Let's do both in turn, using `linarith`
split,
linarith,
linarith,
end
/-
Note how `linarith` was used for both sub-goals at the end of the above proof.
We could have shortened that using the semi-colon combinator instead of comma,
writing `split ; linarith`.
Next we will study a compressed version of that proof:
-/
example {x y : ℝ} : (∀ ε > 0, y ≤ x + ε) → y ≤ x :=
begin
contrapose!,
exact assume h, ⟨(y-x)/2, by linarith, by linarith⟩,
end
/-
The angle brackets `⟨` and `⟩` introduce compound data or proofs. A proof
of a `∃ z, P z` statemement is composed of a witness `z₀` and a proof `h` of
`P z₀`. The compound is denoted by `⟨z₀, h⟩`. In the example above, the predicate is
itself compound, it is a conjunction `P z ∧ Q z`. So the proof term should read
`⟨z₀, ⟨h₁, h₂⟩⟩` where `h₁` (resp. `h₂`) is a proof of `P z₀` (resp. `Q z₀`).
But these so-called "anonymous constructor" brackets are right-associative, so we can
get rid of the nested brackets.
The keyword `by` introduces tactic mode inside term mode, it is a shorter version
of the `begin`/`end` pair, which is more convenient for single tactic blocks.
In this example, `begin` enters tactic mode, `exact` leaves it, `by` re-enters it.
Going all the way to a proof term would make the proof much longer, because we
crucially use automation with `contrapose!` and `linarith`. We can still get a one-line
proof using curly braces to gather several tactic invocations, and the `by` abbreviation
instead of `begin`/`end`:
-/
example {x y : ℝ} : (∀ ε > 0, y ≤ x + ε) → y ≤ x :=
by { contrapose!, exact assume h, ⟨(y-x)/2, by linarith, by linarith⟩ }
/-
One could argue that the above proof is a bit too terse, and we are relying too much
on linarith. Let's have more `linarith` calls for smaller steps. For the sake
of (tiny) variation, we will also assume the premise and argue by contradiction
instead of contraposing.
-/
example {x y : ℝ} : (∀ ε > 0, y ≤ x + ε) → y ≤ x :=
begin
intro h,
-- Assume the conclusion is false, and call this assumption H.
by_contradiction H,
push_neg at H,
-- Now let's compute.
have key := calc
-- Each line must end with a colon followed by a proof term
-- We want to specialize our assumption `h` to `ε = (y-x)/2` but this is long to
-- type, so let's put a hole `_` that Lean will fill in by comparing the
-- statement we want to prove and our proof term with a hole. As usual,
-- positivity of `(y-x)/2` is proved by `linarith`
y ≤ x + (y-x)/2 : h _ (by linarith)
... = x/2 + y/2 : by ring
... < y : by linarith,
-- our key now says `y < y` (notice how the sequence `≤`, `=`, `<` was correctly
-- merged into a `<`). Let `linarith` find the desired contradiction now.
linarith,
-- alternatively, we could have provided the proof term
-- `exact lt_irrefl y key`
end
/-
Now we are ready for some analysis. Let's set up notation for absolute value
-/
local notation `|`x`|` := abs x
/-
And let's define convergence of sequences of real numbers (of course there is
a much more general definition in mathlib).
-/
/-- The sequence `u` tends to `l` -/
def limit (u : ℕ → ℝ) (l : ℝ) := ∀ ε > 0, ∃ N, ∀ n ≥ N, |u n - l| ≤ ε
/-
In the above definition, `u n` denotes the n-th term of the sequence. We can
add parentheses to get `u(n)` but we try to avoid parentheses because they pile up
very quickly
-/
-- If y ≤ u n for all n and u n goes to x then y ≤ x
lemma le_lim {x y : ℝ} {u : ℕ → ℝ} (hu : limit u x) (ineq : ∀ n, y ≤ u n) : y ≤ x :=
begin
-- Let's apply our previous lemma
apply le_of_le_add_eps,
-- We need to prove y ≤ x + ε for all positive ε.
-- Let ε be any positive real
intros ε ε_pos,
-- we now specialize our limit assumption to this `ε`, and immediately
-- fix a `N` as promised by the definition.
cases hu ε ε_pos with N HN,
-- Now we only need to compute until reaching the conclusion
calc
y ≤ u N : ineq N
... = x + (u N - x) : by linarith
-- We'll need `add_le_add` which says `a ≤ b` and `c ≤ d` implies `a + c ≤ b + d`
-- We need a lemma saying `z ≤ |z|`. Because we don't know the name of this lemma,
-- let's use `library_search`. Because searching thourgh the library is slow,
-- Lean will write what it found in the Lean message window when cursor is on
-- that line, so that we can replace it by the lemma. We see `le_max_left` which
-- says `a ≤ max a b`. Actually there is a more specific lemma `le_abs_self`
... ≤ x + |u N - x| : add_le_add (by linarith) (by library_search)
... ≤ x + ε : add_le_add (by linarith) (HN N (by linarith)),
end
/-
The next lemma has been extracted from the main proof in order to discuss numbers.
In ordinary maths, we know that ℕ is *not* contained in `ℝ`, whatever the
construction of real numbers that we use. For instance a natural number is not
an equivalence class of Cauchy sequences. But it's very easy to
pretend otherwise. Formal maths requires slightly more care. In the statement below,
the "type ascription" `(n + 1 : ℝ)` forces Lean to convert the natural number
`n+1` into a real number. The "inclusion" map will be displayed in tactic state
as `↑`. There are various lemmas asserting this map is compatible with addition and
monotone, but we don't want to bother writing their names. The `norm_cast`
tactic is designed to wisely apply those lemmas for us.
-/
lemma inv_succ_pos : ∀ n : ℕ, 1/(n+1 : ℝ) > 0 :=
begin
-- Let `n` be any integer
intro n,
-- Since we don't know the name of the relevant lemma, asserting that the inverse of
-- a positive number is positive, let's state that is suffices
-- to prove that `n+1`, seen as a real number, is positive, and ask `library_search`
suffices : (n + 1 : ℝ) > 0,
{ library_search },
-- Now we want to reduce to a statement about natural numbers, not real numbers
-- coming from natural numbers.
norm_cast,
-- and then get the usual help from `linarith`
linarith,
end
/-
That was a pretty long proof for an obvious fact. And stating it as a lemma feels
stupid, so let's find a way to write it on one line in case we want to include it
in some other proof without stating a lemma. First the `library_search` call
above displays the name of the relevant lemma: `one_div_pos_of_pos`. We can also
replace the `linarith` call on the last line by `library_search` to learn the name
of the lemma `nat.succ_pos` asserting that the successor of a natural number is
positive. There is also a variant on `norm_cast` that combines it with `exact`.
The term mode analogue of `intro` is `λ`. We get down to:
-/
example : ∀ n : ℕ, 1/(n+1 : ℝ) > 0 :=
λ n, one_div_pos_of_pos (by exact_mod_cast nat.succ_pos n)
/-
The next proof uses mostly known things, so we will commment only new aspects.
-/
lemma limit_inv_succ : ∀ ε > 0, ∃ N : ℕ, ∀ n ≥ N, 1/(n + 1 : ℝ) ≤ ε :=
begin
intros ε ε_pos,
suffices : ∃ N : ℕ, 1/ε ≤ N,
{ -- Because we didn't provide a name for the above statement, Lean called it `this`.
-- Let's fix an `N` that works.
cases this with N HN,
use N,
intros n Hn,
-- Now we want to rewrite the goal using lemmas
-- `div_le_iff' : 0 < b → (a / b ≤ c ↔ a ≤ b * c)`
-- `div_le_iff : 0 < b → (a / b ≤ c ↔ a ≤ c * b)`
-- the second one will be rewritten from right to left, as indicated by `←`.
-- Lean will create a side goal for the required positivity assumption that
-- we don't provide for `div_le_iff'`.
rw [div_le_iff', ← div_le_iff ε_pos],
-- We want to replace assumption `Hn` by its real counter-part so that
-- linarith can find what it needs.
replace Hn : (N : ℝ) ≤ n, exact_mod_cast Hn,
linarith,
-- we are still left with the positivity assumption, but already discussed
-- how to prove it in the preceding lemma
exact_mod_cast nat.succ_pos n },
-- Now we need to prove that sufficient statement.
-- We want to use that `ℝ` is archimedean. So we start typing
-- `exact archimedean_` and hit Ctrl-space to see what completion Lean proposes
-- the lemma `archimedean_iff_nat_le` sounds promising. We select the left to
-- right implication using `.1`. This a generic lemma for fields equiped with
-- a linear (ie total) order. We need to provide a proof that `ℝ` is indeed
-- archimedean. This is done using the `apply_instance` tactic that will be
-- covered elsewhere.
exact archimedean_iff_nat_le.1 (by apply_instance) (1/ε),
end
/-
We can now put all pieces together, with almost no new things to explain.
-/
lemma inf_seq (A : set ℝ) (x : ℝ) :
(x is_an_inf_of A) ↔ (x ∈ low_bounds A ∧ ∃ u : ℕ → ℝ, limit u x ∧ ∀ n, u n ∈ A ) :=
begin
split,
{ intro h,
split,
{ exact h.1 },
-- On the next line, we don't need to tell Lean to treat `n+1` as a real number because
-- we add `x` to it, so Lean knows there is only one way to make sense of this expression.
have key : ∀ n : ℕ, ∃ a ∈ A, a < x + 1/(n+1),
{ intro n,
-- we can use the lemma we proved above
apply inf_lt h,
-- and another one we proved!
have : 0 < 1/(n+1 : ℝ), from inv_succ_pos n,
linarith },
-- Now we need to use axiom of (countable) choice
choose u hu using key,
use u,
split,
{ intros ε ε_pos,
-- again we use a lemma we proved, specializing it to our fixed `ε`, and fixing a `N`
cases limit_inv_succ ε ε_pos with N H,
use N,
intros n hn,
have : x ≤ u n, from h.1 _ (hu n).1,
have := calc
u n < x + 1/(n + 1) : (hu n).2
... ≤ x + ε : add_le_add (le_refl x) (H n hn),
rw abs_of_nonneg ; linarith },
{ intro n,
exact (hu n).1 } },
{ intro h,
-- Assumption `h` is made of nested compound statements. We can use the
-- recursive version of `cases` to unpack it in one go.
rcases h with ⟨x_min, u, lim, huA⟩,
split,
exact x_min,
intros y y_mino,
apply le_lim lim,
intro n,
exact y_mino (u n) (huA n) },
end
|
a5b1f07df63738c12fbb36a10022b5b3e8b295f1
|
d406927ab5617694ec9ea7001f101b7c9e3d9702
|
/src/data/sym/card.lean
|
ce49ebe29e323dad399bc83eaf461c2167083fbf
|
[
"Apache-2.0"
] |
permissive
|
alreadydone/mathlib
|
dc0be621c6c8208c581f5170a8216c5ba6721927
|
c982179ec21091d3e102d8a5d9f5fe06c8fafb73
|
refs/heads/master
| 1,685,523,275,196
| 1,670,184,141,000
| 1,670,184,141,000
| 287,574,545
| 0
| 0
|
Apache-2.0
| 1,670,290,714,000
| 1,597,421,623,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 8,795
|
lean
|
/-
Copyright (c) 2021 Yaël Dillies, Bhavik Mehta. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies, Bhavik Mehta, Huỳnh Trần Khanh, Stuart Presnell
-/
import algebra.big_operators.basic
import data.finset.sym
import data.fintype.sum
/-!
# Stars and bars
In this file, we prove (in `sym.card_sym_eq_multichoose`) that the function `multichoose n k`
defined in `data/nat/choose/basic` counts the number of multisets of cardinality `k` over an
alphabet of cardinality `n`. In conjunction with `nat.multichoose_eq` proved in
`data/nat/choose/basic`, which shows that `multichoose n k = choose (n + k - 1) k`,
this is central to the "stars and bars" technique in combinatorics, where we switch between
counting multisets of size `k` over an alphabet of size `n` to counting strings of `k` elements
("stars") separated by `n-1` dividers ("bars").
## Informal statement
Many problems in mathematics are of the form of (or can be reduced to) putting `k` indistinguishable
objects into `n` distinguishable boxes; for example, the problem of finding natural numbers
`x1, ..., xn` whose sum is `k`. This is equivalent to forming a multiset of cardinality `k` from
an alphabet of cardinality `n` -- for each box `i ∈ [1, n]` the multiset contains as many copies
of `i` as there are items in the `i`th box.
The "stars and bars" technique arises from another way of presenting the same problem. Instead of
putting `k` items into `n` boxes, we take a row of `k` items (the "stars") and separate them by
inserting `n-1` dividers (the "bars"). For example, the pattern `*|||**|*|` exhibits 4 items
distributed into 6 boxes -- note that any box, including the first and last, may be empty.
Such arrangements of `k` stars and `n-1` bars are in 1-1 correspondence with multisets of size `k`
over an alphabet of size `n`, and are counted by `choose (n + k - 1) k`.
Note that this problem is one component of Gian-Carlo Rota's "Twelvefold Way"
https://en.wikipedia.org/wiki/Twelvefold_way
## Formal statement
Here we generalise the alphabet to an arbitrary fintype `α`, and we use `sym α k` as the type of
multisets of size `k` over `α`. Thus the statement that these are counted by `multichoose` is:
`sym.card_sym_eq_multichoose : card (sym α k) = multichoose (card α) k`
while the "stars and bars" technique gives
`sym.card_sym_eq_choose : card (sym α k) = choose (card α + k - 1) k`
## Tags
stars and bars, multichoose
-/
open finset fintype function sum nat
variables {α β : Type*}
namespace sym
section sym
variables (α) (n : ℕ)
/--
Over `fin n+1`, the multisets of size `k+1` containing `0` are equivalent to those of size `k`,
as demonstrated by respectively erasing or appending `0`.
-/
protected def E1 {n k : ℕ} :
{s : sym (fin n.succ) k.succ // ↑0 ∈ s} ≃ sym (fin n.succ) k :=
{ to_fun := λ s, s.1.erase 0 s.2,
inv_fun := λ s, ⟨cons 0 s, mem_cons_self 0 s⟩,
left_inv := λ s, by simp,
right_inv := λ s, by simp }
/--
The multisets of size `k` over `fin n+2` not containing `0`
are equivalent to those of size `k` over `fin n+1`,
as demonstrated by respectively decrementing or incrementing every element of the multiset.
-/
protected def E2 {n k : ℕ} :
{s : sym (fin n.succ.succ) k // ↑0 ∉ s} ≃ sym (fin n.succ) k :=
{ to_fun := λ s, map (fin.pred_above 0) s.1,
inv_fun := λ s, ⟨map (fin.succ_above 0) s,
(mt mem_map.1) (not_exists.2 (λ t, (not_and.2 (λ _, (fin.succ_above_ne _ t)))))⟩,
left_inv := λ s, by
{ obtain ⟨s, hs⟩ := s,
simp only [map_map, comp_app],
nth_rewrite_rhs 0 ←(map_id' s),
refine sym.map_congr (λ v hv, _),
simp [fin.pred_above_zero (ne_of_mem_of_not_mem hv hs)] },
right_inv := λ s, by
{ simp only [fin.zero_succ_above, map_map, comp_app],
nth_rewrite_rhs 0 ←(map_id' s),
refine sym.map_congr (λ v hv, _),
rw [←fin.zero_succ_above v, ←fin.cast_succ_zero, fin.pred_above_succ_above 0 v] } }
lemma card_sym_fin_eq_multichoose (n k : ℕ) : card (sym (fin n) k) = multichoose n k :=
begin
apply @pincer_recursion (λ n k, card (sym (fin n) k) = multichoose n k),
{ simp },
{ intros b,
induction b with b IHb, { simp },
rw [multichoose_zero_succ, card_eq_zero_iff],
apply_instance },
{ intros x y h1 h2,
rw [multichoose_succ_succ, ←h1, ←h2, add_comm],
cases x,
{ simp only [card_eq_zero_iff, card_unique, self_eq_add_right],
apply_instance },
rw ←card_sum,
refine fintype.card_congr (equiv.symm _),
apply (equiv.sum_congr sym.E1.symm sym.E2.symm).trans,
apply equiv.sum_compl },
end
/-- For any fintype `α` of cardinality `n`, `card (sym α k) = multichoose (card α) k` -/
lemma card_sym_eq_multichoose (α : Type*) (k : ℕ) [fintype α] [fintype (sym α k)] :
card (sym α k) = multichoose (card α) k :=
by { rw ←card_sym_fin_eq_multichoose, exact card_congr (equiv_congr (equiv_fin α)) }
/-- The *stars and bars* lemma: the cardinality of `sym α k` is equal to
`nat.choose (card α + k - 1) k`. -/
lemma card_sym_eq_choose {α : Type*} [fintype α] (k : ℕ) [fintype (sym α k)] :
card (sym α k) = (card α + k - 1).choose k :=
by rw [card_sym_eq_multichoose, nat.multichoose_eq]
end sym
end sym
namespace sym2
variables [decidable_eq α]
/-- The `diag` of `s : finset α` is sent on a finset of `sym2 α` of card `s.card`. -/
lemma card_image_diag (s : finset α) : (s.diag.image quotient.mk).card = s.card :=
begin
rw [card_image_of_inj_on, diag_card],
rintro ⟨x₀, x₁⟩ hx _ _ h,
cases quotient.eq.1 h,
{ refl },
{ simp only [mem_coe, mem_diag] at hx,
rw hx.2 }
end
lemma two_mul_card_image_off_diag (s : finset α) :
2 * (s.off_diag.image quotient.mk).card = s.off_diag.card :=
begin
rw [card_eq_sum_card_fiberwise
(λ x, mem_image_of_mem _ : ∀ x ∈ s.off_diag, quotient.mk x ∈ s.off_diag.image quotient.mk),
sum_const_nat (quotient.ind _), mul_comm],
rintro ⟨x, y⟩ hxy,
simp_rw [mem_image, exists_prop, mem_off_diag, quotient.eq] at hxy,
obtain ⟨a, ⟨ha₁, ha₂, ha⟩, h⟩ := hxy,
obtain ⟨hx, hy, hxy⟩ : x ∈ s ∧ y ∈ s ∧ x ≠ y,
{ cases h; have := ha.symm; exact ⟨‹_›, ‹_›, ‹_›⟩ },
have hxy' : y ≠ x := hxy.symm,
have : s.off_diag.filter (λ z, ⟦z⟧ = ⟦(x, y)⟧) = ({(x, y), (y, x)} : finset _),
{ ext ⟨x₁, y₁⟩,
rw [mem_filter, mem_insert, mem_singleton, sym2.eq_iff, prod.mk.inj_iff, prod.mk.inj_iff,
and_iff_right_iff_imp],
rintro (⟨rfl, rfl⟩ | ⟨rfl, rfl⟩); rw mem_off_diag; exact ⟨‹_›, ‹_›, ‹_›⟩ }, -- hxy' is used here
rw [this, card_insert_of_not_mem, card_singleton],
simp only [not_and, prod.mk.inj_iff, mem_singleton],
exact λ _, hxy',
end
/-- The `off_diag` of `s : finset α` is sent on a finset of `sym2 α` of card `s.off_diag.card / 2`.
This is because every element `⟦(x, y)⟧` of `sym2 α` not on the diagonal comes from exactly two
pairs: `(x, y)` and `(y, x)`. -/
lemma card_image_off_diag (s : finset α) :
(s.off_diag.image quotient.mk).card = s.card.choose 2 :=
by rw [nat.choose_two_right, mul_tsub, mul_one, ←off_diag_card,
nat.div_eq_of_eq_mul_right zero_lt_two (two_mul_card_image_off_diag s).symm]
lemma card_subtype_diag [fintype α] :
card {a : sym2 α // a.is_diag} = card α :=
begin
convert card_image_diag (univ : finset α),
rw [fintype.card_of_subtype, ←filter_image_quotient_mk_is_diag],
rintro x,
rw [mem_filter, univ_product_univ, mem_image],
obtain ⟨a, ha⟩ := quotient.exists_rep x,
exact and_iff_right ⟨a, mem_univ _, ha⟩,
end
lemma card_subtype_not_diag [fintype α] :
card {a : sym2 α // ¬a.is_diag} = (card α).choose 2 :=
begin
convert card_image_off_diag (univ : finset α),
rw [fintype.card_of_subtype, ←filter_image_quotient_mk_not_is_diag],
rintro x,
rw [mem_filter, univ_product_univ, mem_image],
obtain ⟨a, ha⟩ := quotient.exists_rep x,
exact and_iff_right ⟨a, mem_univ _, ha⟩,
end
/-- Finset **stars and bars** for the case `n = 2`. -/
lemma _root_.finset.card_sym2 (s : finset α) : s.sym2.card = s.card * (s.card + 1) / 2 :=
begin
rw [←image_diag_union_image_off_diag, card_union_eq, sym2.card_image_diag,
sym2.card_image_off_diag, nat.choose_two_right, add_comm, ←nat.triangle_succ, nat.succ_sub_one,
mul_comm],
rw disjoint_left,
rintro m ha hb,
rw [mem_image] at ha hb,
obtain ⟨⟨a, ha, rfl⟩, ⟨b, hb, hab⟩⟩ := ⟨ha, hb⟩,
refine not_is_diag_mk_of_mem_off_diag hb _,
rw hab,
exact is_diag_mk_of_mem_diag ha,
end
/-- Type **stars and bars** for the case `n = 2`. -/
protected lemma card [fintype α] : card (sym2 α) = card α * (card α + 1) / 2 := finset.card_sym2 _
end sym2
|
23d9249a8b90998a7736fc8c6dcb26260252b18b
|
b04a2b9331022307985cb4dee8a75dd804625569
|
/hockeystick.lean
|
9585c6d3037f27050a6ba87d6c42855dad481456
|
[] |
no_license
|
tjhance/lean-project
|
558de3b6f88b5b12241ec8d0803027a32eaea13f
|
c00a01e02ae2fee4e90d48bfd8504d2d45fdb43c
|
refs/heads/master
| 1,588,096,917,016
| 1,556,580,095,000
| 1,556,580,106,000
| 175,465,730
| 3
| 1
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 5,200
|
lean
|
import data.nat.choose
import data.set
import data.set.finite
import data.multiset
import data.finset
import data.list
import data.finset algebra.big_operators
import algebra.big_operators
import init.algebra.functions
import algebra.group_power
#eval choose 5 4
#check nat.rec_on
/- Collaboration between
Travis Hance (thance)
Katherine Cordwell (kcordwell)
-/
/- Following the proof at https://artofproblemsolving.com/wiki/index.php/Combinatorial_identity -/
/- sum_for_hockey_stick takes r and k and computes the sum from i = r
to i = r + k of (i choose r) -/
def sum_for_hockey_stick (r k : ℕ) : ℕ :=
nat.rec_on k 1 (λ k ih, ih + (choose (r + k + 1) r))
#eval sum_for_hockey_stick 5 0 /- this is really saying 5 choose 5 is 1 -/
#eval sum_for_hockey_stick 5 1 /- this is saying 5 choose 5 + 6 choose 5 is 7 -/
#eval choose 7 6
#eval sum_for_hockey_stick 5 2 /- calculates 5 choose 5 + 6 choose 5 + 7 choose 5-/
#eval choose 8 6
#eval sum_for_hockey_stick 5 3 /- calculates 5 choose 5 + 6 choose 5 + 7 choose 5 + 8 choose 5-/
#eval choose 9 6
/- Says that for natural numbers r and n, if n >= r, then the sum from i = r to n
of i choose r equals n + 1 choose r + 1 -/
theorem hockey_stick_identity (k r : ℕ) :
sum_for_hockey_stick r k = (choose (r + k + 1) (r + 1)) :=
begin
induction k with k ih,
{have h: sum_for_hockey_stick r 0 = 1, by refl,
simp[*, refl]},
{
calc sum_for_hockey_stick r (nat.succ k)
= (sum_for_hockey_stick r k) + (choose (r + k + 1) r): by simp[sum_for_hockey_stick]
... = (choose (r + k + 1) (r + 1)) + (choose (r + k + 1) r) : by rw[ih]
... = (choose (r + k + 1) r) + (choose (r + k + 1) (r + 1)): by simp
... = choose (r + k + 1) r + choose (r + k + 1) (nat.succ r) : by refl
... = choose (r + k + 1 + 1) (r + 1) : by rw[←choose]
}
end
/- Here is my first attempt at stating Vandermonde's identity.
Vandermonde's identity says that m + n choose r equals the
sum from k = 0 to r of (m choose k)*(n choose r - k). I tried to do
an inductive proof as at https://math.stackexchange.com/questions/219928/inductive-proof-for-vandermondes-identity/219938,
but this was not so good because the induction was on both n and r, and it got fairly messy.
So I decided to try a different approach (see below).
-/
def sum_for_vandermonde (m n r i: ℕ) : ℕ :=
nat.rec_on i ((choose m 0)*(choose n r))
(λ i ih, ih + (choose m (i + 1))*(choose n (r - (i + 1))))
#eval sum_for_vandermonde 3 4 6 6
#eval choose (3 + 4) 6
#eval sum_for_vandermonde 12 5 8 8
#eval choose (12 + 5) 8
/- double-checked with Mathematica -/
#eval sum_for_vandermonde 12 5 8 3
#eval sum_for_vandermonde 3 4 6 5
lemma sum_for_vandermonde_with_n_is_zero (m r: ℕ) : sum_for_vandermonde m 0 r r = choose m r :=
begin
induction r with r ih,
{
calc
sum_for_vandermonde m 0 0 0 = (choose m 0)*(choose 0 0) : by refl
... = choose m 0 : by simp
},
calc
sum_for_vandermonde m 0 (nat.succ r) (nat.succ r) = sorry : sorry
... = choose m (nat.succ r): sorry
end
theorem vandermonde_identity (m n : ℕ) :
∀ r : ℕ, sum_for_vandermonde m n r r = choose (m + n) r :=
begin
induction n with n ih1,
{simp[choose, sum_for_vandermonde_with_n_is_zero]},
intro r, simp[sum_for_vandermonde, choose], sorry
end
/- Next I decided to restate Vandermonde's theorem using big_ops and started on
the algebraic proof of Vandermonde's as found on Wikipedia:
https://en.wikipedia.org/wiki/Vandermonde%27s_identity. I proved the first few
steps but ended up spending time on some other parts of the project and didn't finish. -/
/- Lemma for a case of using the binomial theorem -/
variables x y : ℕ
lemma binomial_theorem_with_1 (x n : ℕ) :
∀ n : ℕ, (x + 1)^n = (finset.range (nat.succ n)).sum (λ m, x ^ m * choose n m) :=
begin
intro n,
have h3 := add_pow x 1 n,
simp at h3, apply h3
end
/-show sum from r = 0 to m + n (m + n choose r) x^r = (1 + x)^(m + n) = (
1 + x)^m = (1 + x)^n = (scary) * (scary) -/
#check pow_add
lemma binomial_theorem_for_vandermonde (x m n : ℕ) :
∀ n m: ℕ, (finset.range (m + nat.succ n)).sum(λ r, x^r * (choose (m + n) r))
= (finset.range (nat.succ m)).sum(λ r, x^r *
choose m r)*(finset.range (nat.succ n)).sum(λ r, x^r * choose n r) :=
begin
intros n m,
have h := pow_add (x + 1) m n,
have h1 : n + m = m + n, by simp[add_comm],
simp at h,
rw h1 at h,
calc
(finset.range (m + nat.succ n)).sum(λ r, x^r * (choose (m + n) r)) =
(x + 1)^(m + n): by rw ← binomial_theorem_with_1 x (m + nat.succ n)
... = (x + 1)^m * (x + 1)^n: h
... = (finset.range (nat.succ m)).sum(λ r, x^r * choose m r) * (x + 1)^n: by rw binomial_theorem_with_1 x (nat.succ m)
... = (finset.range (nat.succ m)).sum(λ r, x^r *
choose m r)*(finset.range (nat.succ n)).sum(λ r, x^r * choose n r) : by rw binomial_theorem_with_1 x (nat.succ n)
end
/- Vandermonde's identity (restated) -/
theorem vandermonde_thm (m n r : ℕ) :
∀ r : ℕ, (finset.range (nat.succ r)).sum(λ k, (choose m k)*(choose n (r-k)))= choose (m + n) r :=
begin
sorry
end
|
855e1ea6811c7b89a462de47312362546653acd6
|
6432ea7a083ff6ba21ea17af9ee47b9c371760f7
|
/tests/lean/interactive/lean3HoverIssue.lean
|
885a59e73ceba9ad0d8a269526c9189e8c7d0999
|
[
"Apache-2.0",
"LLVM-exception",
"NCSA",
"LGPL-3.0-only",
"LicenseRef-scancode-inner-net-2.0",
"BSD-3-Clause",
"LGPL-2.0-or-later",
"Spencer-94",
"LGPL-2.1-or-later",
"HPND",
"LicenseRef-scancode-pcre",
"ISC",
"LGPL-2.1-only",
"LicenseRef-scancode-other-permissive",
"SunPro",
"CMU-Mach"
] |
permissive
|
leanprover/lean4
|
4bdf9790294964627eb9be79f5e8f6157780b4cc
|
f1f9dc0f2f531af3312398999d8b8303fa5f096b
|
refs/heads/master
| 1,693,360,665,786
| 1,693,350,868,000
| 1,693,350,868,000
| 129,571,436
| 2,827
| 311
|
Apache-2.0
| 1,694,716,156,000
| 1,523,760,560,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 751
|
lean
|
example (x y : Nat) (h : x = y) : y = x := by exact h.symm
--^ textDocument/hover
--^ textDocument/hover
example (x y : Nat) (h : x = y) : y = x := h.symm
--^ textDocument/hover
example (x y : Nat) (h : x = y) : y = x := by exact (Eq.symm (Eq.symm h.symm))
--^ textDocument/hover
--^ textDocument/hover
--^ textDocument/hover
--^ textDocument/hover
|
702c197ca645d24187ce70507578e5790a67cf10
|
d406927ab5617694ec9ea7001f101b7c9e3d9702
|
/src/data/num/basic.lean
|
3a95ab7f0b8e91c01710894bed1de270189f309b
|
[
"Apache-2.0"
] |
permissive
|
alreadydone/mathlib
|
dc0be621c6c8208c581f5170a8216c5ba6721927
|
c982179ec21091d3e102d8a5d9f5fe06c8fafb73
|
refs/heads/master
| 1,685,523,275,196
| 1,670,184,141,000
| 1,670,184,141,000
| 287,574,545
| 0
| 0
|
Apache-2.0
| 1,670,290,714,000
| 1,597,421,623,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 16,916
|
lean
|
/-
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura, Mario Carneiro
-/
/-!
# Binary representation of integers using inductive types
> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
> https://github.com/leanprover-community/mathlib4/pull/607
> Any changes to this file require a corresponding PR to mathlib4.
Note: Unlike in Coq, where this representation is preferred because of
the reliance on kernel reduction, in Lean this representation is discouraged
in favor of the "Peano" natural numbers `nat`, and the purpose of this
collection of theorems is to show the equivalence of the different approaches.
-/
/-- The type of positive binary numbers.
13 = 1101(base 2) = bit1 (bit0 (bit1 one)) -/
@[derive has_reflect, derive decidable_eq]
inductive pos_num : Type
| one : pos_num
| bit1 : pos_num → pos_num
| bit0 : pos_num → pos_num
instance : has_one pos_num := ⟨pos_num.one⟩
instance : inhabited pos_num := ⟨1⟩
/-- The type of nonnegative binary numbers, using `pos_num`.
13 = 1101(base 2) = pos (bit1 (bit0 (bit1 one))) -/
@[derive has_reflect, derive decidable_eq]
inductive num : Type
| zero : num
| pos : pos_num → num
instance : has_zero num := ⟨num.zero⟩
instance : has_one num := ⟨num.pos 1⟩
instance : inhabited num := ⟨0⟩
/-- Representation of integers using trichotomy around zero.
13 = 1101(base 2) = pos (bit1 (bit0 (bit1 one)))
-13 = -1101(base 2) = neg (bit1 (bit0 (bit1 one))) -/
@[derive has_reflect, derive decidable_eq]
inductive znum : Type
| zero : znum
| pos : pos_num → znum
| neg : pos_num → znum
instance : has_zero znum := ⟨znum.zero⟩
instance : has_one znum := ⟨znum.pos 1⟩
instance : inhabited znum := ⟨0⟩
namespace pos_num
/--
`bit b n` appends the bit `b` to the end of `n`, where `bit tt x = x1` and `bit ff x = x0`.
-/
def bit (b : bool) : pos_num → pos_num := cond b bit1 bit0
/--
The successor of a `pos_num`.
-/
def succ : pos_num → pos_num
| 1 := bit0 one
| (bit1 n) := bit0 (succ n)
| (bit0 n) := bit1 n
/--
Returns a boolean for whether the `pos_num` is `one`.
-/
def is_one : pos_num → bool
| 1 := tt
| _ := ff
/--
Addition of two `pos_num`s.
-/
protected def add : pos_num → pos_num → pos_num
| 1 b := succ b
| a 1 := succ a
| (bit0 a) (bit0 b) := bit0 (add a b)
| (bit1 a) (bit1 b) := bit0 (succ (add a b))
| (bit0 a) (bit1 b) := bit1 (add a b)
| (bit1 a) (bit0 b) := bit1 (add a b)
instance : has_add pos_num := ⟨pos_num.add⟩
/--
The predecessor of a `pos_num` as a `num`.
-/
def pred' : pos_num → num
| 1 := 0
| (bit0 n) := num.pos (num.cases_on (pred' n) 1 bit1)
| (bit1 n) := num.pos (bit0 n)
/--
The predecessor of a `pos_num` as a `pos_num`. This means that `pred 1 = 1`.
-/
def pred (a : pos_num) : pos_num :=
num.cases_on (pred' a) 1 id
/--
The number of bits of a `pos_num`, as a `pos_num`.
-/
def size : pos_num → pos_num
| 1 := 1
| (bit0 n) := succ (size n)
| (bit1 n) := succ (size n)
/--
The number of bits of a `pos_num`, as a `nat`.
-/
def nat_size : pos_num → nat
| 1 := 1
| (bit0 n) := nat.succ (nat_size n)
| (bit1 n) := nat.succ (nat_size n)
/--
Multiplication of two `pos_num`s.
-/
protected def mul (a : pos_num) : pos_num → pos_num
| 1 := a
| (bit0 b) := bit0 (mul b)
| (bit1 b) := bit0 (mul b) + a
instance : has_mul pos_num := ⟨pos_num.mul⟩
/--
`of_nat_succ n` is the `pos_num` corresponding to `n + 1`.
-/
def of_nat_succ : ℕ → pos_num
| 0 := 1
| (nat.succ n) := succ (of_nat_succ n)
/--
`of_nat n` is the `pos_num` corresponding to `n`, except for `of_nat 0 = 1`.
-/
def of_nat (n : ℕ) : pos_num := of_nat_succ (nat.pred n)
open ordering
/--
Ordering of `pos_num`s.
-/
def cmp : pos_num → pos_num → ordering
| 1 1 := eq
| _ 1 := gt
| 1 _ := lt
| (bit0 a) (bit0 b) := cmp a b
| (bit0 a) (bit1 b) := ordering.cases_on (cmp a b) lt lt gt
| (bit1 a) (bit0 b) := ordering.cases_on (cmp a b) lt gt gt
| (bit1 a) (bit1 b) := cmp a b
instance : has_lt pos_num := ⟨λa b, cmp a b = ordering.lt⟩
instance : has_le pos_num := ⟨λa b, ¬ b < a⟩
instance decidable_lt : @decidable_rel pos_num (<)
| a b := by dsimp [(<)]; apply_instance
instance decidable_le : @decidable_rel pos_num (≤)
| a b := by dsimp [(≤)]; apply_instance
end pos_num
section
variables {α : Type*} [has_one α] [has_add α]
/--
`cast_pos_num` casts a `pos_num` into any type which has `1` and `+`.
-/
def cast_pos_num : pos_num → α
| 1 := 1
| (pos_num.bit0 a) := bit0 (cast_pos_num a)
| (pos_num.bit1 a) := bit1 (cast_pos_num a)
/--
`cast_num` casts a `num` into any type which has `0`, `1` and `+`.
-/
def cast_num [z : has_zero α] : num → α
| 0 := 0
| (num.pos p) := cast_pos_num p
-- see Note [coercion into rings]
@[priority 900] instance pos_num_coe : has_coe_t pos_num α := ⟨cast_pos_num⟩
-- see Note [coercion into rings]
@[priority 900] instance num_nat_coe [z : has_zero α] : has_coe_t num α := ⟨cast_num⟩
instance : has_repr pos_num := ⟨λ n, repr (n : ℕ)⟩
instance : has_repr num := ⟨λ n, repr (n : ℕ)⟩
end
namespace num
open pos_num
/--
The successor of a `num` as a `pos_num`.
-/
def succ' : num → pos_num
| 0 := 1
| (pos p) := succ p
/--
The successor of a `num` as a `num`.
-/
def succ (n : num) : num := pos (succ' n)
/--
Addition of two `num`s.
-/
protected def add : num → num → num
| 0 a := a
| b 0 := b
| (pos a) (pos b) := pos (a + b)
instance : has_add num := ⟨num.add⟩
/--
`bit0 n` appends a `0` to the end of `n`, where `bit0 n = n0`.
-/
protected def bit0 : num → num
| 0 := 0
| (pos n) := pos (pos_num.bit0 n)
/--
`bit1 n` appends a `1` to the end of `n`, where `bit1 n = n1`.
-/
protected def bit1 : num → num
| 0 := 1
| (pos n) := pos (pos_num.bit1 n)
/--
`bit b n` appends the bit `b` to the end of `n`, where `bit tt x = x1` and `bit ff x = x0`.
-/
def bit (b : bool) : num → num := cond b num.bit1 num.bit0
/--
The number of bits required to represent a `num`, as a `num`. `size 0` is defined to be `0`.
-/
def size : num → num
| 0 := 0
| (pos n) := pos (pos_num.size n)
/--
The number of bits required to represent a `num`, as a `nat`. `size 0` is defined to be `0`.
-/
def nat_size : num → nat
| 0 := 0
| (pos n) := pos_num.nat_size n
/--
Multiplication of two `num`s.
-/
protected def mul : num → num → num
| 0 _ := 0
| _ 0 := 0
| (pos a) (pos b) := pos (a * b)
instance : has_mul num := ⟨num.mul⟩
open ordering
/--
Ordering of `num`s.
-/
def cmp : num → num → ordering
| 0 0 := eq
| _ 0 := gt
| 0 _ := lt
| (pos a) (pos b) := pos_num.cmp a b
instance : has_lt num := ⟨λa b, cmp a b = ordering.lt⟩
instance : has_le num := ⟨λa b, ¬ b < a⟩
instance decidable_lt : @decidable_rel num (<)
| a b := by dsimp [(<)]; apply_instance
instance decidable_le : @decidable_rel num (≤)
| a b := by dsimp [(≤)]; apply_instance
/--
Converts a `num` to a `znum`.
-/
def to_znum : num → znum
| 0 := 0
| (pos a) := znum.pos a
/--
Converts `x : num` to `-x : znum`.
-/
def to_znum_neg : num → znum
| 0 := 0
| (pos a) := znum.neg a
/--
Converts a `nat` to a `num`.
-/
def of_nat' : ℕ → num :=
nat.binary_rec 0 (λ b n, cond b num.bit1 num.bit0)
end num
namespace znum
open pos_num
/--
The negation of a `znum`.
-/
def zneg : znum → znum
| 0 := 0
| (pos a) := neg a
| (neg a) := pos a
instance : has_neg znum := ⟨zneg⟩
/--
The absolute value of a `znum` as a `num`.
-/
def abs : znum → num
| 0 := 0
| (pos a) := num.pos a
| (neg a) := num.pos a
/--
The successor of a `znum`.
-/
def succ : znum → znum
| 0 := 1
| (pos a) := pos (pos_num.succ a)
| (neg a) := (pos_num.pred' a).to_znum_neg
/--
The predecessor of a `znum`.
-/
def pred : znum → znum
| 0 := neg 1
| (pos a) := (pos_num.pred' a).to_znum
| (neg a) := neg (pos_num.succ a)
/--
`bit0 n` appends a `0` to the end of `n`, where `bit0 n = n0`.
-/
protected def bit0 : znum → znum
| 0 := 0
| (pos n) := pos (pos_num.bit0 n)
| (neg n) := neg (pos_num.bit0 n)
/--
`bit1 x` appends a `1` to the end of `x`, mapping `x` to `2 * x + 1`.
-/
protected def bit1 : znum → znum
| 0 := 1
| (pos n) := pos (pos_num.bit1 n)
| (neg n) := neg (num.cases_on (pred' n) 1 pos_num.bit1)
/--
`bitm1 x` appends a `1` to the end of `x`, mapping `x` to `2 * x - 1`.
-/
protected def bitm1 : znum → znum
| 0 := neg 1
| (pos n) := pos (num.cases_on (pred' n) 1 pos_num.bit1)
| (neg n) := neg (pos_num.bit1 n)
/--
Converts an `int` to a `znum`.
-/
def of_int' : ℤ → znum
| (n : ℕ) := num.to_znum (num.of_nat' n)
| -[1+ n] := num.to_znum_neg (num.of_nat' (n+1))
end znum
namespace pos_num
open znum
/--
Subtraction of two `pos_num`s, producing a `znum`.
-/
def sub' : pos_num → pos_num → znum
| a 1 := (pred' a).to_znum
| 1 b := (pred' b).to_znum_neg
| (bit0 a) (bit0 b) := (sub' a b).bit0
| (bit0 a) (bit1 b) := (sub' a b).bitm1
| (bit1 a) (bit0 b) := (sub' a b).bit1
| (bit1 a) (bit1 b) := (sub' a b).bit0
/--
Converts a `znum` to `option pos_num`, where it is `some` if the `znum` was positive and `none`
otherwise.
-/
def of_znum' : znum → option pos_num
| (znum.pos p) := some p
| _ := none
/--
Converts a `znum` to a `pos_num`, mapping all out of range values to `1`.
-/
def of_znum : znum → pos_num
| (znum.pos p) := p
| _ := 1
/--
Subtraction of `pos_num`s, where if `a < b`, then `a - b = 1`.
-/
protected def sub (a b : pos_num) : pos_num :=
match sub' a b with
| (znum.pos p) := p
| _ := 1
end
instance : has_sub pos_num := ⟨pos_num.sub⟩
end pos_num
namespace num
/--
The predecessor of a `num` as an `option num`, where `ppred 0 = none`
-/
def ppred : num → option num
| 0 := none
| (pos p) := some p.pred'
/--
The predecessor of a `num` as a `num`, where `pred 0 = 0`.
-/
def pred : num → num
| 0 := 0
| (pos p) := p.pred'
/--
Divides a `num` by `2`
-/
def div2 : num → num
| 0 := 0
| 1 := 0
| (pos (pos_num.bit0 p)) := pos p
| (pos (pos_num.bit1 p)) := pos p
/--
Converts a `znum` to an `option num`, where `of_znum' p = none` if `p < 0`.
-/
def of_znum' : znum → option num
| 0 := some 0
| (znum.pos p) := some (pos p)
| (znum.neg p) := none
/--
Converts a `znum` to an `option num`, where `of_znum p = 0` if `p < 0`.
-/
def of_znum : znum → num
| (znum.pos p) := pos p
| _ := 0
/--
Subtraction of two `num`s, producing a `znum`.
-/
def sub' : num → num → znum
| 0 0 := 0
| (pos a) 0 := znum.pos a
| 0 (pos b) := znum.neg b
| (pos a) (pos b) := a.sub' b
/--
Subtraction of two `num`s, producing an `option num`.
-/
def psub (a b : num) : option num :=
of_znum' (sub' a b)
/--
Subtraction of two `num`s, where if `a < b`, `a - b = 0`.
-/
protected def sub (a b : num) : num :=
of_znum (sub' a b)
instance : has_sub num := ⟨num.sub⟩
end num
namespace znum
open pos_num
/--
Addition of `znum`s.
-/
protected def add : znum → znum → znum
| 0 a := a
| b 0 := b
| (pos a) (pos b) := pos (a + b)
| (pos a) (neg b) := sub' a b
| (neg a) (pos b) := sub' b a
| (neg a) (neg b) := neg (a + b)
instance : has_add znum := ⟨znum.add⟩
/--
Multiplication of `znum`s.
-/
protected def mul : znum → znum → znum
| 0 a := 0
| b 0 := 0
| (pos a) (pos b) := pos (a * b)
| (pos a) (neg b) := neg (a * b)
| (neg a) (pos b) := neg (a * b)
| (neg a) (neg b) := pos (a * b)
instance : has_mul znum := ⟨znum.mul⟩
open ordering
/--
Ordering on `znum`s.
-/
def cmp : znum → znum → ordering
| 0 0 := eq
| (pos a) (pos b) := pos_num.cmp a b
| (neg a) (neg b) := pos_num.cmp b a
| (pos _) _ := gt
| (neg _) _ := lt
| _ (pos _) := lt
| _ (neg _) := gt
instance : has_lt znum := ⟨λa b, cmp a b = ordering.lt⟩
instance : has_le znum := ⟨λa b, ¬ b < a⟩
instance decidable_lt : @decidable_rel znum (<)
| a b := by dsimp [(<)]; apply_instance
instance decidable_le : @decidable_rel znum (≤)
| a b := by dsimp [(≤)]; apply_instance
end znum
namespace pos_num
/-- Auxiliary definition for `pos_num.divmod`. -/
def divmod_aux (d : pos_num) (q r : num) : num × num :=
match num.of_znum' (num.sub' r (num.pos d)) with
| some r' := (num.bit1 q, r')
| none := (num.bit0 q, r)
end
/--
`divmod x y = (y / x, y % x)`.
-/
def divmod (d : pos_num) : pos_num → num × num
| (bit0 n) := let (q, r₁) := divmod n in
divmod_aux d q (num.bit0 r₁)
| (bit1 n) := let (q, r₁) := divmod n in
divmod_aux d q (num.bit1 r₁)
| 1 := divmod_aux d 0 1
/--
Division of `pos_num`,
-/
def div' (n d : pos_num) : num := (divmod d n).1
/--
Modulus of `pos_num`s.
-/
def mod' (n d : pos_num) : num := (divmod d n).2
/-
private def sqrt_aux1 (b : pos_num) (r n : num) : num × num :=
match num.of_znum' (n.sub' (r + num.pos b)) with
| some n' := (r.div2 + num.pos b, n')
| none := (r.div2, n)
end
private def sqrt_aux : pos_num → num → num → num
| b@(bit0 b') r n := let (r', n') := sqrt_aux1 b r n in sqrt_aux b' r' n'
| b@(bit1 b') r n := let (r', n') := sqrt_aux1 b r n in sqrt_aux b' r' n'
| 1 r n := (sqrt_aux1 1 r n).1
-/
/-
def sqrt_aux : ℕ → ℕ → ℕ → ℕ
| b r n := if b0 : b = 0 then r else
let b' := shiftr b 2 in
have b' < b, from sqrt_aux_dec b0,
match (n - (r + b : ℕ) : ℤ) with
| (n' : ℕ) := sqrt_aux b' (div2 r + b) n'
| _ := sqrt_aux b' (div2 r) n
end
/-- `sqrt n` is the square root of a natural number `n`. If `n` is not a
perfect square, it returns the largest `k:ℕ` such that `k*k ≤ n`. -/
def sqrt (n : ℕ) : ℕ :=
match size n with
| 0 := 0
| succ s := sqrt_aux (shiftl 1 (bit0 (div2 s))) 0 n
end
-/
end pos_num
namespace num
/--
Division of `num`s, where `x / 0 = 0`.
-/
def div : num → num → num
| 0 _ := 0
| _ 0 := 0
| (pos n) (pos d) := pos_num.div' n d
/--
Modulus of `num`s.
-/
def mod : num → num → num
| 0 _ := 0
| n 0 := n
| (pos n) (pos d) := pos_num.mod' n d
instance : has_div num := ⟨num.div⟩
instance : has_mod num := ⟨num.mod⟩
/-- Auxiliary definition for `num.gcd`. -/
def gcd_aux : nat → num → num → num
| 0 a b := b
| (nat.succ n) 0 b := b
| (nat.succ n) a b := gcd_aux n (b % a) a
/--
Greatest Common Divisor (GCD) of two `num`s.
-/
def gcd (a b : num) : num :=
if a ≤ b then
gcd_aux (a.nat_size + b.nat_size) a b
else
gcd_aux (b.nat_size + a.nat_size) b a
end num
namespace znum
/--
Division of `znum`, where `x / 0 = 0`.
-/
def div : znum → znum → znum
| 0 _ := 0
| _ 0 := 0
| (pos n) (pos d) := num.to_znum (pos_num.div' n d)
| (pos n) (neg d) := num.to_znum_neg (pos_num.div' n d)
| (neg n) (pos d) := neg (pos_num.pred' n / num.pos d).succ'
| (neg n) (neg d) := pos (pos_num.pred' n / num.pos d).succ'
/--
Modulus of `znum`s.
-/
def mod : znum → znum → znum
| 0 d := 0
| (pos n) d := num.to_znum (num.pos n % d.abs)
| (neg n) d := d.abs.sub' (pos_num.pred' n % d.abs).succ
instance : has_div znum := ⟨znum.div⟩
instance : has_mod znum := ⟨znum.mod⟩
/--
Greatest Common Divisor (GCD) of two `znum`s.
-/
def gcd (a b : znum) : num := a.abs.gcd b.abs
end znum
section
variables {α : Type*} [has_zero α] [has_one α] [has_add α] [has_neg α]
/--
`cast_znum` casts a `znum` into any type which has `0`, `1`, `+` and `neg`
-/
def cast_znum : znum → α
| 0 := 0
| (znum.pos p) := p
| (znum.neg p) := -p
-- see Note [coercion into rings]
@[priority 900] instance znum_coe : has_coe_t znum α := ⟨cast_znum⟩
instance : has_repr znum := ⟨λ n, repr (n : ℤ)⟩
end
|
3324981624928831fbc21045bcd0ede958ccdf0a
|
88fb7558b0636ec6b181f2a548ac11ad3919f8a5
|
/tests/lean/run/quote1.lean
|
655606efbb8a33bfde2a4d9158ea8718fe9bea8e
|
[
"Apache-2.0"
] |
permissive
|
moritayasuaki/lean
|
9f666c323cb6fa1f31ac597d777914aed41e3b7a
|
ae96ebf6ee953088c235ff7ae0e8c95066ba8001
|
refs/heads/master
| 1,611,135,440,814
| 1,493,852,869,000
| 1,493,852,869,000
| 90,269,903
| 0
| 0
| null | 1,493,906,291,000
| 1,493,906,291,000
| null |
UTF-8
|
Lean
| false
| false
| 313
|
lean
|
open tactic list
meta definition foo (a : pexpr) : pexpr :=
`(%%a + %%a + %%a + b)
example (a b : nat) : a = a :=
by do
a ← get_local `a,
t1 ← mk_app ``has_add.add [a, a],
t2 ← to_expr (foo (to_pexpr t1)),
trace t2,
r ← mk_app (`eq.refl) [a],
exact r
private def f := unit
#check ``f
|
9d9dda621c48686d7705aad8f859dc53e0562ac9
|
ebb7367fa8ab324601b5abf705720fd4cc0e8598
|
/algebra/free_commutative_group.hlean
|
a4599682dcfae7513aa0988f844cb550fbf4a274
|
[
"Apache-2.0"
] |
permissive
|
radams78/Spectral
|
3e34916d9bbd0939ee6a629e36744827ff27bfc2
|
c8145341046cfa2b4960ef3cc5a1117d12c43f63
|
refs/heads/master
| 1,610,421,583,830
| 1,481,232,014,000
| 1,481,232,014,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 7,446
|
hlean
|
/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn, Egbert Rijke
Constructions with groups
-/
import algebra.group_theory hit.set_quotient types.list types.sum .free_group
open eq algebra is_trunc set_quotient relation sigma sigma.ops prod sum list trunc function equiv
namespace group
variables {G G' : Group} {g g' h h' k : G} {A B : AbGroup}
variables (X : Set) {l l' : list (X ⊎ X)}
/- Free Abelian Group of a set -/
namespace free_ab_group
inductive fcg_rel : list (X ⊎ X) → list (X ⊎ X) → Type :=
| rrefl : Πl, fcg_rel l l
| cancel1 : Πx, fcg_rel [inl x, inr x] []
| cancel2 : Πx, fcg_rel [inr x, inl x] []
| rflip : Πx y, fcg_rel [x, y] [y, x]
| resp_append : Π{l₁ l₂ l₃ l₄}, fcg_rel l₁ l₂ → fcg_rel l₃ l₄ →
fcg_rel (l₁ ++ l₃) (l₂ ++ l₄)
| rtrans : Π{l₁ l₂ l₃}, fcg_rel l₁ l₂ → fcg_rel l₂ l₃ →
fcg_rel l₁ l₃
open fcg_rel
local abbreviation R [reducible] := fcg_rel
attribute fcg_rel.rrefl [refl]
attribute fcg_rel.rtrans [trans]
definition fcg_carrier [reducible] : Type := set_quotient (λx y, ∥R X x y∥)
local abbreviation FG := fcg_carrier
definition is_reflexive_R : is_reflexive (λx y, ∥R X x y∥) :=
begin constructor, intro s, apply tr, unfold R end
local attribute is_reflexive_R [instance]
variable {X}
theorem rel_respect_flip (r : R X l l') : R X (map sum.flip l) (map sum.flip l') :=
begin
induction r with l x x x y l₁ l₂ l₃ l₄ r₁ r₂ IH₁ IH₂ l₁ l₂ l₃ r₁ r₂ IH₁ IH₂,
{ reflexivity},
{ repeat esimp [map], exact cancel2 x},
{ repeat esimp [map], exact cancel1 x},
{ repeat esimp [map], apply rflip},
{ rewrite [+map_append], exact resp_append IH₁ IH₂},
{ exact rtrans IH₁ IH₂}
end
theorem rel_respect_reverse (r : R X l l') : R X (reverse l) (reverse l') :=
begin
induction r with l x x x y l₁ l₂ l₃ l₄ r₁ r₂ IH₁ IH₂ l₁ l₂ l₃ r₁ r₂ IH₁ IH₂,
{ reflexivity},
{ repeat esimp [map], exact cancel2 x},
{ repeat esimp [map], exact cancel1 x},
{ repeat esimp [map], apply rflip},
{ rewrite [+reverse_append], exact resp_append IH₂ IH₁},
{ exact rtrans IH₁ IH₂}
end
theorem rel_cons_concat (l s) : R X (s :: l) (concat s l) :=
begin
induction l with t l IH,
{ reflexivity},
{ rewrite [concat_cons], transitivity (t :: s :: l),
{ exact resp_append !rflip !rrefl},
{ exact resp_append (rrefl [t]) IH}}
end
definition fcg_one [constructor] : FG X := class_of []
definition fcg_inv [unfold 3] : FG X → FG X :=
quotient_unary_map (reverse ∘ map sum.flip)
(λl l', trunc_functor -1 (rel_respect_reverse ∘ rel_respect_flip))
definition fcg_mul [unfold 3 4] : FG X → FG X → FG X :=
quotient_binary_map append (λl l', trunc.elim (λr m m', trunc.elim (λs, tr (resp_append r s))))
section
local notation 1 := fcg_one
local postfix ⁻¹ := fcg_inv
local infix * := fcg_mul
theorem fcg_mul_assoc (g₁ g₂ g₃ : FG X) : g₁ * g₂ * g₃ = g₁ * (g₂ * g₃) :=
begin
refine set_quotient.rec_prop _ g₁,
refine set_quotient.rec_prop _ g₂,
refine set_quotient.rec_prop _ g₃,
clear g₁ g₂ g₃, intro g₁ g₂ g₃,
exact ap class_of !append.assoc
end
theorem fcg_one_mul (g : FG X) : 1 * g = g :=
begin
refine set_quotient.rec_prop _ g, clear g, intro g,
exact ap class_of !append_nil_left
end
theorem fcg_mul_one (g : FG X) : g * 1 = g :=
begin
refine set_quotient.rec_prop _ g, clear g, intro g,
exact ap class_of !append_nil_right
end
theorem fcg_mul_left_inv (g : FG X) : g⁻¹ * g = 1 :=
begin
refine set_quotient.rec_prop _ g, clear g, intro g,
apply eq_of_rel, apply tr,
induction g with s l IH,
{ reflexivity},
{ rewrite [▸*, map_cons, reverse_cons, concat_append],
refine rtrans _ IH,
apply resp_append, reflexivity,
change R X ([flip s, s] ++ l) ([] ++ l),
apply resp_append,
induction s, apply cancel2, apply cancel1,
reflexivity}
end
theorem fcg_mul_comm (g h : FG X) : g * h = h * g :=
begin
refine set_quotient.rec_prop _ g, clear g, intro g,
refine set_quotient.rec_prop _ h, clear h, intro h,
apply eq_of_rel, apply tr,
revert h, induction g with s l IH: intro h,
{ rewrite [append_nil_left, append_nil_right]},
{ rewrite [append_cons,-concat_append],
transitivity concat s (l ++ h), apply rel_cons_concat,
rewrite [-append_concat], apply IH}
end
end
end free_ab_group open free_ab_group
variables (X)
definition group_free_ab_group [constructor] : ab_group (fcg_carrier X) :=
ab_group.mk fcg_mul _ fcg_mul_assoc fcg_one fcg_one_mul fcg_mul_one
fcg_inv fcg_mul_left_inv fcg_mul_comm
definition free_ab_group [constructor] : AbGroup :=
AbGroup.mk _ (group_free_ab_group X)
/- The universal property of the free commutative group -/
variables {X A}
definition free_ab_group_inclusion [constructor] (x : X) : free_ab_group X :=
class_of [inl x]
theorem fgh_helper_respect_fcg_rel (f : X → A) (r : fcg_rel X l l')
: Π(g : A), foldl (fgh_helper f) g l = foldl (fgh_helper f) g l' :=
begin
induction r with l x x x y l₁ l₂ l₃ l₄ r₁ r₂ IH₁ IH₂ l₁ l₂ l₃ r₁ r₂ IH₁ IH₂: intro g,
{ reflexivity},
{ unfold [foldl], apply mul_inv_cancel_right},
{ unfold [foldl], apply inv_mul_cancel_right},
{ unfold [foldl, fgh_helper], apply mul.right_comm},
{ rewrite [+foldl_append, IH₁, IH₂]},
{ exact !IH₁ ⬝ !IH₂}
end
definition free_ab_group_elim [constructor] (f : X → A) : free_ab_group X →g A :=
begin
fapply homomorphism.mk,
{ intro g, refine set_quotient.elim _ _ g,
{ intro l, exact foldl (fgh_helper f) 1 l},
{ intro l l' r, esimp at *, refine trunc.rec _ r, clear r, intro r,
exact fgh_helper_respect_fcg_rel f r 1}},
{ refine set_quotient.rec_prop _, intro l, refine set_quotient.rec_prop _, intro l',
esimp, refine !foldl_append ⬝ _, esimp, apply fgh_helper_mul}
end
definition fn_of_free_ab_group_elim [unfold_full] (φ : free_ab_group X →g A) : X → A :=
φ ∘ free_ab_group_inclusion
definition free_ab_group_elim_unique [constructor] (f : X → A) (k : free_ab_group X →g A)
(H : k ∘ free_ab_group_inclusion ~ f) : k ~ free_ab_group_elim f :=
begin
refine set_quotient.rec_prop _, intro l, esimp,
induction l with s l IH,
{ esimp [foldl], exact to_respect_one k},
{ rewrite [foldl_cons, fgh_helper_mul],
refine to_respect_mul k (class_of [s]) (class_of l) ⬝ _,
rewrite [IH], apply ap (λx, x * _), induction s: rewrite [▸*, one_mul, -H a],
apply to_respect_inv }
end
variables (X A)
definition free_ab_group_elim_equiv_fn [constructor] : (free_ab_group X →g A) ≃ (X → A) :=
begin
fapply equiv.MK,
{ exact fn_of_free_ab_group_elim},
{ exact free_ab_group_elim},
{ intro f, apply eq_of_homotopy, intro x, esimp, unfold [foldl], apply one_mul},
{ intro k, symmetry, apply homomorphism_eq, apply free_ab_group_elim_unique,
reflexivity }
end
end group
|
1fcbf4b83e8edb00aeb993ea33f486c02993c93d
|
4727251e0cd73359b15b664c3170e5d754078599
|
/src/analysis/normed_space/units.lean
|
2115426c1fa3c9cb2222f7b97577ed6c9de8f921
|
[
"Apache-2.0"
] |
permissive
|
Vierkantor/mathlib
|
0ea59ac32a3a43c93c44d70f441c4ee810ccceca
|
83bc3b9ce9b13910b57bda6b56222495ebd31c2f
|
refs/heads/master
| 1,658,323,012,449
| 1,652,256,003,000
| 1,652,256,003,000
| 209,296,341
| 0
| 1
|
Apache-2.0
| 1,568,807,655,000
| 1,568,807,655,000
| null |
UTF-8
|
Lean
| false
| false
| 12,010
|
lean
|
/-
Copyright (c) 2020 Heather Macbeth. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Heather Macbeth
-/
import analysis.specific_limits.normed
/-!
# The group of units of a complete normed ring
This file contains the basic theory for the group of units (invertible elements) of a complete
normed ring (Banach algebras being a notable special case).
## Main results
The constructions `one_sub`, `add` and `unit_of_nearby` state, in varying forms, that perturbations
of a unit are units. The latter two are not stated in their optimal form; more precise versions
would use the spectral radius.
The first main result is `is_open`: the group of units of a complete normed ring is an open subset
of the ring.
The function `inverse` (defined in `algebra.ring`), for a ring `R`, sends `a : R` to `a⁻¹` if `a` is
a unit and 0 if not. The other major results of this file (notably `inverse_add`,
`inverse_add_norm` and `inverse_add_norm_diff_nth_order`) cover the asymptotic properties of
`inverse (x + t)` as `t → 0`.
-/
noncomputable theory
open_locale topological_space
variables {R : Type*} [normed_ring R] [complete_space R]
namespace units
/-- In a complete normed ring, a perturbation of `1` by an element `t` of distance less than `1`
from `1` is a unit. Here we construct its `units` structure. -/
@[simps coe]
def one_sub (t : R) (h : ∥t∥ < 1) : Rˣ :=
{ val := 1 - t,
inv := ∑' n : ℕ, t ^ n,
val_inv := mul_neg_geom_series t h,
inv_val := geom_series_mul_neg t h }
/-- In a complete normed ring, a perturbation of a unit `x` by an element `t` of distance less than
`∥x⁻¹∥⁻¹` from `x` is a unit. Here we construct its `units` structure. -/
@[simps coe]
def add (x : Rˣ) (t : R) (h : ∥t∥ < ∥(↑x⁻¹ : R)∥⁻¹) : Rˣ :=
units.copy -- to make `coe_add` true definitionally, for convenience
(x * (units.one_sub (-(↑x⁻¹ * t)) begin
nontriviality R using [zero_lt_one],
have hpos : 0 < ∥(↑x⁻¹ : R)∥ := units.norm_pos x⁻¹,
calc ∥-(↑x⁻¹ * t)∥
= ∥↑x⁻¹ * t∥ : by { rw norm_neg }
... ≤ ∥(↑x⁻¹ : R)∥ * ∥t∥ : norm_mul_le ↑x⁻¹ _
... < ∥(↑x⁻¹ : R)∥ * ∥(↑x⁻¹ : R)∥⁻¹ : by nlinarith only [h, hpos]
... = 1 : mul_inv_cancel (ne_of_gt hpos)
end))
(x + t) (by simp [mul_add]) _ rfl
/-- In a complete normed ring, an element `y` of distance less than `∥x⁻¹∥⁻¹` from `x` is a unit.
Here we construct its `units` structure. -/
@[simps coe]
def unit_of_nearby (x : Rˣ) (y : R) (h : ∥y - x∥ < ∥(↑x⁻¹ : R)∥⁻¹) : Rˣ :=
units.copy (x.add (y - x : R) h) y (by simp) _ rfl
/-- The group of units of a complete normed ring is an open subset of the ring. -/
protected lemma is_open : is_open {x : R | is_unit x} :=
begin
nontriviality R,
apply metric.is_open_iff.mpr,
rintros x' ⟨x, rfl⟩,
refine ⟨∥(↑x⁻¹ : R)∥⁻¹, _root_.inv_pos.mpr (units.norm_pos x⁻¹), _⟩,
intros y hy,
rw [metric.mem_ball, dist_eq_norm] at hy,
exact (x.unit_of_nearby y hy).is_unit
end
protected lemma nhds (x : Rˣ) : {x : R | is_unit x} ∈ 𝓝 (x : R) :=
is_open.mem_nhds units.is_open x.is_unit
end units
namespace normed_ring
open_locale classical big_operators
open asymptotics filter metric finset ring
lemma inverse_one_sub (t : R) (h : ∥t∥ < 1) : inverse (1 - t) = ↑(units.one_sub t h)⁻¹ :=
by rw [← inverse_unit (units.one_sub t h), units.coe_one_sub]
/-- The formula `inverse (x + t) = inverse (1 + x⁻¹ * t) * x⁻¹` holds for `t` sufficiently small. -/
lemma inverse_add (x : Rˣ) :
∀ᶠ t in (𝓝 0), inverse ((x : R) + t) = inverse (1 + ↑x⁻¹ * t) * ↑x⁻¹ :=
begin
nontriviality R,
rw [eventually_iff, metric.mem_nhds_iff],
have hinv : 0 < ∥(↑x⁻¹ : R)∥⁻¹, by cancel_denoms,
use [∥(↑x⁻¹ : R)∥⁻¹, hinv],
intros t ht,
simp only [mem_ball, dist_zero_right] at ht,
have ht' : ∥-↑x⁻¹ * t∥ < 1,
{ refine lt_of_le_of_lt (norm_mul_le _ _) _,
rw norm_neg,
refine lt_of_lt_of_le (mul_lt_mul_of_pos_left ht x⁻¹.norm_pos) _,
cancel_denoms },
have hright := inverse_one_sub (-↑x⁻¹ * t) ht',
have hleft := inverse_unit (x.add t ht),
simp only [neg_mul, sub_neg_eq_add] at hright,
simp only [units.coe_add] at hleft,
simp [hleft, hright, units.add]
end
lemma inverse_one_sub_nth_order (n : ℕ) :
∀ᶠ t in (𝓝 0), inverse ((1:R) - t) = (∑ i in range n, t ^ i) + (t ^ n) * inverse (1 - t) :=
begin
simp only [eventually_iff, metric.mem_nhds_iff],
use [1, by norm_num],
intros t ht,
simp only [mem_ball, dist_zero_right] at ht,
simp only [inverse_one_sub t ht, set.mem_set_of_eq],
have h : 1 = ((range n).sum (λ i, t ^ i)) * (units.one_sub t ht) + t ^ n,
{ simp only [units.coe_one_sub],
rw [← geom_sum, geom_sum_mul_neg],
simp },
rw [← one_mul ↑(units.one_sub t ht)⁻¹, h, add_mul],
congr,
{ rw [mul_assoc, (units.one_sub t ht).mul_inv],
simp },
{ simp only [units.coe_one_sub],
rw [← add_mul, ← geom_sum, geom_sum_mul_neg],
simp }
end
/-- The formula
`inverse (x + t) = (∑ i in range n, (- x⁻¹ * t) ^ i) * x⁻¹ + (- x⁻¹ * t) ^ n * inverse (x + t)`
holds for `t` sufficiently small. -/
lemma inverse_add_nth_order (x : Rˣ) (n : ℕ) :
∀ᶠ t in (𝓝 0), inverse ((x : R) + t)
= (∑ i in range n, (- ↑x⁻¹ * t) ^ i) * ↑x⁻¹ + (- ↑x⁻¹ * t) ^ n * inverse (x + t) :=
begin
refine (inverse_add x).mp _,
have hzero : tendsto (λ (t : R), - ↑x⁻¹ * t) (𝓝 0) (𝓝 0),
{ convert ((mul_left_continuous (- (↑x⁻¹ : R))).tendsto 0).comp tendsto_id,
simp },
refine (hzero.eventually (inverse_one_sub_nth_order n)).mp (eventually_of_forall _),
simp only [neg_mul, sub_neg_eq_add],
intros t h1 h2,
have h := congr_arg (λ (a : R), a * ↑x⁻¹) h1,
dsimp at h,
convert h,
rw [add_mul, mul_assoc],
simp [h2.symm]
end
lemma inverse_one_sub_norm : is_O (λ t, inverse ((1:R) - t)) (λ t, (1:ℝ)) (𝓝 (0:R)) :=
begin
simp only [is_O, is_O_with, eventually_iff, metric.mem_nhds_iff],
refine ⟨∥(1:R)∥ + 1, (2:ℝ)⁻¹, by norm_num, _⟩,
intros t ht,
simp only [ball, dist_zero_right, set.mem_set_of_eq] at ht,
have ht' : ∥t∥ < 1,
{ have : (2:ℝ)⁻¹ < 1 := by cancel_denoms,
linarith },
simp only [inverse_one_sub t ht', norm_one, mul_one, set.mem_set_of_eq],
change ∥∑' n : ℕ, t ^ n∥ ≤ _,
have := normed_ring.tsum_geometric_of_norm_lt_1 t ht',
have : (1 - ∥t∥)⁻¹ ≤ 2,
{ rw ← inv_inv (2:ℝ),
refine inv_le_inv_of_le (by norm_num) _,
have : (2:ℝ)⁻¹ + (2:ℝ)⁻¹ = 1 := by ring,
linarith },
linarith
end
/-- The function `λ t, inverse (x + t)` is O(1) as `t → 0`. -/
lemma inverse_add_norm (x : Rˣ) : is_O (λ t, inverse (↑x + t)) (λ t, (1:ℝ)) (𝓝 (0:R)) :=
begin
simp only [is_O_iff, norm_one, mul_one],
cases is_O_iff.mp (@inverse_one_sub_norm R _ _) with C hC,
use C * ∥((x⁻¹:Rˣ):R)∥,
have hzero : tendsto (λ t, - (↑x⁻¹ : R) * t) (𝓝 0) (𝓝 0),
{ convert ((mul_left_continuous (-↑x⁻¹ : R)).tendsto 0).comp tendsto_id,
simp },
refine (inverse_add x).mp ((hzero.eventually hC).mp (eventually_of_forall _)),
intros t bound iden,
rw iden,
simp at bound,
have hmul := norm_mul_le (inverse (1 + ↑x⁻¹ * t)) ↑x⁻¹,
nlinarith [norm_nonneg (↑x⁻¹ : R)]
end
/-- The function
`λ t, inverse (x + t) - (∑ i in range n, (- x⁻¹ * t) ^ i) * x⁻¹`
is `O(t ^ n)` as `t → 0`. -/
lemma inverse_add_norm_diff_nth_order (x : Rˣ) (n : ℕ) :
is_O (λ (t : R), inverse (↑x + t) - (∑ i in range n, (- ↑x⁻¹ * t) ^ i) * ↑x⁻¹)
(λ t, ∥t∥ ^ n) (𝓝 (0:R)) :=
begin
by_cases h : n = 0,
{ simpa [h] using inverse_add_norm x },
have hn : 0 < n := nat.pos_of_ne_zero h,
simp [is_O_iff],
cases (is_O_iff.mp (inverse_add_norm x)) with C hC,
use C * ∥(1:ℝ)∥ * ∥(↑x⁻¹ : R)∥ ^ n,
have h : eventually_eq (𝓝 (0:R))
(λ t, inverse (↑x + t) - (∑ i in range n, (- ↑x⁻¹ * t) ^ i) * ↑x⁻¹)
(λ t, ((- ↑x⁻¹ * t) ^ n) * inverse (x + t)),
{ refine (inverse_add_nth_order x n).mp (eventually_of_forall _),
intros t ht,
convert congr_arg (λ a, a - (range n).sum (pow (-↑x⁻¹ * t)) * ↑x⁻¹) ht,
simp },
refine h.mp (hC.mp (eventually_of_forall _)),
intros t _ hLHS,
simp only [neg_mul] at hLHS,
rw hLHS,
refine le_trans (norm_mul_le _ _ ) _,
have h' : ∥(-(↑x⁻¹ * t)) ^ n∥ ≤ ∥(↑x⁻¹ : R)∥ ^ n * ∥t∥ ^ n,
{ calc ∥(-(↑x⁻¹ * t)) ^ n∥ ≤ ∥(-(↑x⁻¹ * t))∥ ^ n : norm_pow_le' _ hn
... = ∥↑x⁻¹ * t∥ ^ n : by rw norm_neg
... ≤ (∥(↑x⁻¹ : R)∥ * ∥t∥) ^ n : _
... = ∥(↑x⁻¹ : R)∥ ^ n * ∥t∥ ^ n : mul_pow _ _ n,
exact pow_le_pow_of_le_left (norm_nonneg _) (norm_mul_le ↑x⁻¹ t) n },
have h'' : 0 ≤ ∥(↑x⁻¹ : R)∥ ^ n * ∥t∥ ^ n,
{ refine mul_nonneg _ _;
exact pow_nonneg (norm_nonneg _) n },
nlinarith [norm_nonneg (inverse (↑x + t))],
end
/-- The function `λ t, inverse (x + t) - x⁻¹` is `O(t)` as `t → 0`. -/
lemma inverse_add_norm_diff_first_order (x : Rˣ) :
is_O (λ t, inverse (↑x + t) - ↑x⁻¹) (λ t, ∥t∥) (𝓝 (0:R)) :=
by simpa using inverse_add_norm_diff_nth_order x 1
/-- The function
`λ t, inverse (x + t) - x⁻¹ + x⁻¹ * t * x⁻¹`
is `O(t ^ 2)` as `t → 0`. -/
lemma inverse_add_norm_diff_second_order (x : Rˣ) :
is_O (λ t, inverse (↑x + t) - ↑x⁻¹ + ↑x⁻¹ * t * ↑x⁻¹) (λ t, ∥t∥ ^ 2) (𝓝 (0:R)) :=
begin
convert inverse_add_norm_diff_nth_order x 2,
ext t,
simp only [range_succ, range_one, sum_insert, mem_singleton, sum_singleton, not_false_iff,
one_ne_zero, pow_zero, add_mul, pow_one, one_mul, neg_mul,
sub_add_eq_sub_sub_swap, sub_neg_eq_add],
end
/-- The function `inverse` is continuous at each unit of `R`. -/
lemma inverse_continuous_at (x : Rˣ) : continuous_at inverse (x : R) :=
begin
have h_is_o : is_o (λ (t : R), inverse (↑x + t) - ↑x⁻¹) (λ _, 1 : R → ℝ) (𝓝 0) :=
(inverse_add_norm_diff_first_order x).trans_is_o (is_o.norm_left $ is_o_id_const one_ne_zero),
have h_lim : tendsto (λ (y:R), y - x) (𝓝 x) (𝓝 0),
{ refine tendsto_zero_iff_norm_tendsto_zero.mpr _,
exact tendsto_iff_norm_tendsto_zero.mp tendsto_id },
rw [continuous_at, tendsto_iff_norm_tendsto_zero, inverse_unit],
simpa [(∘)] using h_is_o.norm_left.tendsto_div_nhds_zero.comp h_lim
end
end normed_ring
namespace units
open mul_opposite filter normed_ring
/-- In a normed ring, the coercion from `Rˣ` (equipped with the induced topology from the
embedding in `R × R`) to `R` is an open map. -/
lemma is_open_map_coe : is_open_map (coe : Rˣ → R) :=
begin
rw is_open_map_iff_nhds_le,
intros x s,
rw [mem_map, mem_nhds_induced],
rintros ⟨t, ht, hts⟩,
obtain ⟨u, hu, v, hv, huvt⟩ :
∃ (u : set R), u ∈ 𝓝 ↑x ∧ ∃ (v : set Rᵐᵒᵖ), v ∈ 𝓝 (op ↑x⁻¹) ∧ u ×ˢ v ⊆ t,
{ simpa [embed_product, mem_nhds_prod_iff] using ht },
have : u ∩ (op ∘ ring.inverse) ⁻¹' v ∩ (set.range (coe : Rˣ → R)) ∈ 𝓝 ↑x,
{ refine inter_mem (inter_mem hu _) (units.nhds x),
refine (continuous_op.continuous_at.comp (inverse_continuous_at x)).preimage_mem_nhds _,
simpa using hv },
refine mem_of_superset this _,
rintros _ ⟨⟨huy, hvy⟩, ⟨y, rfl⟩⟩,
have : embed_product R y ∈ u ×ˢ v := ⟨huy, by simpa using hvy⟩,
simpa using hts (huvt this)
end
/-- In a normed ring, the coercion from `Rˣ` (equipped with the induced topology from the
embedding in `R × R`) to `R` is an open embedding. -/
lemma open_embedding_coe : open_embedding (coe : Rˣ → R) :=
open_embedding_of_continuous_injective_open continuous_coe ext is_open_map_coe
end units
|
3fb8dfdddd4f40288b3ec4cc51df8ca351fe2473
|
d9d511f37a523cd7659d6f573f990e2a0af93c6f
|
/src/set_theory/surreal/dyadic.lean
|
220a7b15e8a91710337e3fbe514bc000b6d6c61e
|
[
"Apache-2.0"
] |
permissive
|
hikari0108/mathlib
|
b7ea2b7350497ab1a0b87a09d093ecc025a50dfa
|
a9e7d333b0cfd45f13a20f7b96b7d52e19fa2901
|
refs/heads/master
| 1,690,483,608,260
| 1,631,541,580,000
| 1,631,541,580,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 8,467
|
lean
|
/-
Copyright (c) 2021 Apurva Nakade. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Apurva Nakade
-/
import set_theory.surreal.basic
import ring_theory.localization
/-!
# Dyadic numbers
Dyadic numbers are obtained by localizing ℤ away from 2. They are the initial object in the category
of rings with no 2-torsion.
## Dyadic surreal numbers
We construct dyadic surreal numbers using the canonical map from ℤ[2 ^ {-1}] to surreals.
As we currently do not have a ring structure on `surreal` we construct this map explicitly. Once we
have the ring structure, this map can be constructed directly by sending `2 ^ {-1}` to `half`.
## Embeddings
The above construction gives us an abelian group embedding of ℤ into `surreal`. The goal is to
extend this to an embedding of dyadic rationals into `surreal` and use Cauchy sequences of dyadic
rational numbers to construct an ordered field embedding of ℝ into `surreal`.
-/
universes u
local infix ` ≈ ` := pgame.equiv
namespace pgame
/-- For a natural number `n`, the pre-game `pow_half (n + 1)` is recursively defined as
`{ 0 | pow_half n }`. These are the explicit expressions of powers of `half`. By definition, we have
`pow_half 0 = 0` and `pow_half 1 = half` and we prove later on that
`pow_half (n + 1) + pow_half (n + 1) ≈ pow_half n`.-/
def pow_half : ℕ → pgame
| 0 := mk punit pempty 0 pempty.elim
| (n + 1) := mk punit punit 0 (λ _, pow_half n)
@[simp] lemma pow_half_left_moves {n} : (pow_half n).left_moves = punit :=
by cases n; refl
@[simp] lemma pow_half_right_moves {n} : (pow_half (n + 1)).right_moves = punit :=
by cases n; refl
@[simp] lemma pow_half_move_left {n i} : (pow_half n).move_left i = 0 :=
by cases n; cases i; refl
@[simp] lemma pow_half_move_right {n i} : (pow_half (n + 1)).move_right i = pow_half n :=
by cases n; cases i; refl
lemma pow_half_move_left' (n) :
(pow_half n).move_left (equiv.cast (pow_half_left_moves.symm) punit.star) = 0 :=
by simp only [eq_self_iff_true, pow_half_move_left]
lemma pow_half_move_right' (n) :
(pow_half (n + 1)).move_right (equiv.cast (pow_half_right_moves.symm) punit.star) = pow_half n :=
by simp only [pow_half_move_right, eq_self_iff_true]
/-- For all natural numbers `n`, the pre-games `pow_half n` are numeric. -/
theorem numeric_pow_half {n} : (pow_half n).numeric :=
begin
induction n with n hn,
{ exact numeric_one },
{ split,
{ rintro ⟨ ⟩ ⟨ ⟩,
dsimp only [pi.zero_apply],
rw ← pow_half_move_left' n,
apply hn.move_left_lt },
{ exact ⟨λ _, numeric_zero, λ _, hn⟩ } }
end
theorem pow_half_succ_lt_pow_half {n : ℕ} : pow_half (n + 1) < pow_half n :=
(@numeric_pow_half (n + 1)).lt_move_right punit.star
theorem pow_half_succ_le_pow_half {n : ℕ} : pow_half (n + 1) ≤ pow_half n :=
le_of_lt numeric_pow_half numeric_pow_half pow_half_succ_lt_pow_half
theorem zero_lt_pow_half {n : ℕ} : 0 < pow_half n :=
by cases n; rw lt_def_le; use ⟨punit.star, pgame.le_refl 0⟩
theorem zero_le_pow_half {n : ℕ} : 0 ≤ pow_half n :=
le_of_lt numeric_zero numeric_pow_half zero_lt_pow_half
theorem add_pow_half_succ_self_eq_pow_half {n} : pow_half (n + 1) + pow_half (n + 1) ≈ pow_half n :=
begin
induction n with n hn,
{ exact half_add_half_equiv_one },
{ split; rw le_def_lt; split,
{ rintro (⟨⟨ ⟩⟩ | ⟨⟨ ⟩⟩),
{ calc 0 + pow_half (n.succ + 1) ≈ pow_half (n.succ + 1) : zero_add_equiv _
... < pow_half n.succ : pow_half_succ_lt_pow_half },
{ calc pow_half (n.succ + 1) + 0 ≈ pow_half (n.succ + 1) : add_zero_equiv _
... < pow_half n.succ : pow_half_succ_lt_pow_half } },
{ rintro ⟨ ⟩,
rw lt_def_le,
right,
use sum.inl punit.star,
calc pow_half (n.succ) + pow_half (n.succ + 1)
≤ pow_half (n.succ) + pow_half (n.succ) : add_le_add_left pow_half_succ_le_pow_half
... ≈ pow_half n : hn },
{ rintro ⟨ ⟩,
calc 0 ≈ 0 + 0 : (add_zero_equiv _).symm
... ≤ pow_half (n.succ + 1) + 0 : add_le_add_right zero_le_pow_half
... < pow_half (n.succ + 1) + pow_half (n.succ + 1) : add_lt_add_left zero_lt_pow_half },
{ rintro (⟨⟨ ⟩⟩ | ⟨⟨ ⟩⟩),
{ calc pow_half n.succ
≈ pow_half n.succ + 0 : (add_zero_equiv _).symm
... < pow_half (n.succ) + pow_half (n.succ + 1) : add_lt_add_left zero_lt_pow_half },
{ calc pow_half n.succ
≈ 0 + pow_half n.succ : (zero_add_equiv _).symm
... < pow_half (n.succ + 1) + pow_half (n.succ) : add_lt_add_right zero_lt_pow_half }}}
end
end pgame
namespace surreal
open pgame
/-- The surreal number `half`. -/
def half : surreal := ⟦⟨pgame.half, pgame.numeric_half⟩⟧
/-- Powers of the surreal number `half`. -/
def pow_half (n : ℕ) : surreal := ⟦⟨pgame.pow_half n, pgame.numeric_pow_half⟩⟧
@[simp] lemma pow_half_zero : pow_half 0 = 1 := rfl
@[simp] lemma pow_half_one : pow_half 1 = half := rfl
@[simp] theorem add_half_self_eq_one : half + half = 1 :=
quotient.sound pgame.half_add_half_equiv_one
lemma double_pow_half_succ_eq_pow_half (n : ℕ) : 2 • pow_half n.succ = pow_half n :=
begin
rw two_nsmul,
apply quotient.sound,
exact pgame.add_pow_half_succ_self_eq_pow_half,
end
lemma nsmul_pow_two_pow_half (n : ℕ) : 2 ^ n • pow_half n = 1 :=
begin
induction n with n hn,
{ simp only [nsmul_one, pow_half_zero, nat.cast_one, pow_zero] },
{ rw [← hn, ← double_pow_half_succ_eq_pow_half n, smul_smul (2^n) 2 (pow_half n.succ),
mul_comm, pow_succ] }
end
lemma nsmul_pow_two_pow_half' (n k : ℕ) : 2 ^ n • pow_half (n + k) = pow_half k :=
begin
induction k with k hk,
{ simp only [add_zero, surreal.nsmul_pow_two_pow_half, nat.nat_zero_eq_zero, eq_self_iff_true,
surreal.pow_half_zero] },
{ rw [← double_pow_half_succ_eq_pow_half (n + k), ← double_pow_half_succ_eq_pow_half k,
smul_algebra_smul_comm] at hk,
rwa ← (gsmul_eq_gsmul_iff' two_ne_zero) }
end
lemma nsmul_int_pow_two_pow_half (m : ℤ) (n k : ℕ) :
(m * 2 ^ n) • pow_half (n + k) = m • pow_half k :=
begin
rw mul_gsmul,
congr,
norm_cast,
exact nsmul_pow_two_pow_half' n k,
end
lemma dyadic_aux {m₁ m₂ : ℤ} {y₁ y₂ : ℕ} (h₂ : m₁ * (2 ^ y₁) = m₂ * (2 ^ y₂)) :
m₁ • pow_half y₂ = m₂ • pow_half y₁ :=
begin
revert m₁ m₂,
wlog h : y₁ ≤ y₂,
intros m₁ m₂ h₂,
obtain ⟨c, rfl⟩ := le_iff_exists_add.mp h,
rw [add_comm, pow_add, ← mul_assoc, mul_eq_mul_right_iff] at h₂,
cases h₂,
{ rw [h₂, add_comm, nsmul_int_pow_two_pow_half m₂ c y₁] },
{ have := nat.one_le_pow y₁ 2 nat.succ_pos',
linarith },
end
/-- The map `dyadic_map` sends ⟦⟨m, 2^n⟩⟧ to m • half ^ n. -/
def dyadic_map (x : localization (submonoid.powers (2 : ℤ))) : surreal :=
quotient.lift_on' x (λ x : _ × _, x.1 • pow_half (submonoid.log x.2)) $
begin
rintros ⟨m₁, n₁⟩ ⟨m₂, n₂⟩ h₁,
obtain ⟨⟨n₃, y₃, hn₃⟩, h₂⟩ := localization.r_iff_exists.mp h₁,
simp only [subtype.coe_mk, mul_eq_mul_right_iff] at h₂,
cases h₂,
{ simp only,
obtain ⟨a₁, ha₁⟩ := n₁.prop,
obtain ⟨a₂, ha₂⟩ := n₂.prop,
have hn₁ : n₁ = submonoid.pow 2 a₁ := subtype.ext ha₁.symm,
have hn₂ : n₂ = submonoid.pow 2 a₂ := subtype.ext ha₂.symm,
have h₂ : 1 < (2 : ℤ).nat_abs, from dec_trivial,
rw [hn₁, hn₂, submonoid.log_pow_int_eq_self h₂, submonoid.log_pow_int_eq_self h₂],
apply dyadic_aux,
rwa [ha₁, ha₂] },
{ have := nat.one_le_pow y₃ 2 nat.succ_pos',
linarith }
end
/-- We define dyadic surreals as the range of the map `dyadic_map`. -/
def dyadic : set surreal := set.range dyadic_map
-- We conclude with some ideas for further work on surreals; these would make fun projects.
-- TODO show that the map from dyadic rationals to surreals is a group homomorphism, and injective
-- TODO map the reals into the surreals, using dyadic Dedekind cuts
-- TODO show this is a group homomorphism, and injective
-- TODO show the maps from the dyadic rationals and from the reals
-- into the surreals are multiplicative
end surreal
|
73a7348a3d74ab90c9d26791cc891a0b142b3ac2
|
05f637fa14ac28031cb1ea92086a0f4eb23ff2b1
|
/tests/lean/leak3.lean
|
e67141864c9ed1b8644787a72f78d66f7f9991e0
|
[
"Apache-2.0"
] |
permissive
|
codyroux/lean0.1
|
1ce92751d664aacff0529e139083304a7bbc8a71
|
0dc6fb974aa85ed6f305a2f4b10a53a44ee5f0ef
|
refs/heads/master
| 1,610,830,535,062
| 1,402,150,480,000
| 1,402,150,480,000
| 19,588,851
| 2
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 14
|
lean
|
print true = a
|
b5fe750b5719fbfb7e20bcdd12b8d9483eec8751
|
86f6f4f8d827a196a32bfc646234b73328aeb306
|
/examples/logic/unnamed_2051.lean
|
b3d0c3ad9baf8781517b783c6030867f479d970c
|
[] |
no_license
|
jamescheuk91/mathematics_in_lean
|
09f1f87d2b0dce53464ff0cbe592c568ff59cf5e
|
4452499264e2975bca2f42565c0925506ba5dda3
|
refs/heads/master
| 1,679,716,410,967
| 1,613,957,947,000
| 1,613,957,947,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 165
|
lean
|
import data.real.basic
variables (x y : ℝ)
-- BEGIN
example (h : x^2 = 1) : x = 1 ∨ x = -1 :=
sorry
example (h : x^2 = y^2) : x = y ∨ x = -y :=
sorry
-- END
|
d2b3095cc5faaf370436cb27000d5ada6aacc270
|
f5f7e6fae601a5fe3cac7cc3ed353ed781d62419
|
/src/data/subtype.lean
|
3181ec9737b3714d85f4012e70226f14be00be6b
|
[
"Apache-2.0"
] |
permissive
|
EdAyers/mathlib
|
9ecfb2f14bd6caad748b64c9c131befbff0fb4e0
|
ca5d4c1f16f9c451cf7170b10105d0051db79e1b
|
refs/heads/master
| 1,626,189,395,845
| 1,555,284,396,000
| 1,555,284,396,000
| 144,004,030
| 0
| 0
|
Apache-2.0
| 1,533,727,664,000
| 1,533,727,663,000
| null |
UTF-8
|
Lean
| false
| false
| 3,102
|
lean
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Johannes Hölzl
-/
-- Lean complains if this section is turned into a namespace
section subtype
variables {α : Sort*} {p : α → Prop}
@[simp] theorem subtype.forall {q : {a // p a} → Prop} :
(∀ x, q x) ↔ (∀ a b, q ⟨a, b⟩) :=
⟨assume h a b, h ⟨a, b⟩, assume h ⟨a, b⟩, h a b⟩
@[simp] theorem subtype.exists {q : {a // p a} → Prop} :
(∃ x, q x) ↔ (∃ a b, q ⟨a, b⟩) :=
⟨assume ⟨⟨a, b⟩, h⟩, ⟨a, b, h⟩, assume ⟨a, b, h⟩, ⟨⟨a, b⟩, h⟩⟩
end subtype
namespace subtype
variables {α : Sort*} {β : Sort*} {γ : Sort*} {p : α → Prop}
protected lemma eq' : ∀ {a1 a2 : {x // p x}}, a1.val = a2.val → a1 = a2
| ⟨x, h1⟩ ⟨.(x), h2⟩ rfl := rfl
lemma ext {a1 a2 : {x // p x}} : a1 = a2 ↔ a1.val = a2.val :=
⟨congr_arg _, subtype.eq'⟩
lemma coe_ext {a1 a2 : {x // p x}} : a1 = a2 ↔ (a1 : α) = a2 :=
ext
theorem val_injective : function.injective (@val _ p) :=
λ a b, subtype.eq'
/-- Restriction of a function to a function on subtypes. -/
def map {p : α → Prop} {q : β → Prop} (f : α → β) (h : ∀a, p a → q (f a)) :
subtype p → subtype q :=
λ x, ⟨f x.1, h x.1 x.2⟩
theorem map_comp {p : α → Prop} {q : β → Prop} {r : γ → Prop} {x : subtype p}
(f : α → β) (h : ∀a, p a → q (f a)) (g : β → γ) (l : ∀a, q a → r (g a)) :
map g l (map f h x) = map (g ∘ f) (assume a ha, l (f a) $ h a ha) x :=
rfl
theorem map_id {p : α → Prop} {h : ∀a, p a → p (id a)} : map (@id α) h = id :=
funext $ assume ⟨v, h⟩, rfl
instance [has_equiv α] (p : α → Prop) : has_equiv (subtype p) :=
⟨λ s t, s.val ≈ t.val⟩
theorem equiv_iff [has_equiv α] {p : α → Prop} {s t : subtype p} :
s ≈ t ↔ s.val ≈ t.val :=
iff.rfl
variables [setoid α]
protected theorem refl (s : subtype p) : s ≈ s :=
setoid.refl s.val
protected theorem symm {s t : subtype p} (h : s ≈ t) : t ≈ s :=
setoid.symm h
protected theorem trans {s t u : subtype p} (h₁ : s ≈ t) (h₂ : t ≈ u) : s ≈ u :=
setoid.trans h₁ h₂
theorem equivalence (p : α → Prop) : equivalence (@has_equiv.equiv (subtype p) _) :=
mk_equivalence _ subtype.refl (@subtype.symm _ p _) (@subtype.trans _ p _)
instance (p : α → Prop) : setoid (subtype p) :=
setoid.mk (≈) (equivalence p)
end subtype
namespace subtype
variables {α : Type*} {β : Type*} {γ : Type*} {p : α → Prop}
@[simp] theorem coe_eta {α : Type*} {p : α → Prop}
(a : {a // p a}) (h : p a) : mk ↑a h = a := eta _ _
@[simp] theorem coe_mk {α : Type*} {p : α → Prop}
(a h) : (@mk α p a h : α) = a := rfl
@[simp] theorem mk_eq_mk {α : Type*} {p : α → Prop}
{a h a' h'} : @mk α p a h = @mk α p a' h' ↔ a = a' :=
⟨λ H, by injection H, λ H, by congr; assumption⟩
@[simp] lemma val_prop {S : set α} (a : {a // a ∈ S}) : a.val ∈ S := a.property
@[simp] lemma val_prop' {S : set α} (a : {a // a ∈ S}) : ↑a ∈ S := a.property
end subtype
|
83d8149df435222ce56acacb6b284502f028171e
|
98beff2e97d91a54bdcee52f922c4e1866a6c9b9
|
/src/category/element.lean
|
8555aa8c3e30dca087258a52817055b016b6cba3
|
[] |
no_license
|
b-mehta/topos
|
c3fc43fb04ba16bae1965ce5c26c6461172e5bc6
|
c9032b11789e36038bc841a1e2b486972421b983
|
refs/heads/master
| 1,629,609,492,867
| 1,609,907,263,000
| 1,609,907,263,000
| 240,943,034
| 43
| 3
| null | 1,598,210,062,000
| 1,581,877,668,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 1,389
|
lean
|
import category_theory.limits.shapes.binary_products
import category_theory.limits.shapes.terminal
import category_theory.limits.limits
import category_theory.limits.types
namespace category_theory
open limits
noncomputable theory
universes v u
variables {C : Type u} [category.{v} C]
variable {Q : C}
section prods
variables [has_binary_products C] {X Y : C}
def pair (x : Q ⟶ X) (y : Q ⟶ Y) : Q ⟶ X ⨯ Y :=
prod.lift x y
def fst (xy : Q ⟶ X ⨯ Y) : Q ⟶ X :=
xy ≫ limits.prod.fst
def snd (xy : Q ⟶ X ⨯ Y) : Q ⟶ Y :=
xy ≫ limits.prod.snd
def prod.equiv (Q X Y : C) : (Q ⟶ X ⨯ Y) ≃ (Q ⟶ X) × (Q ⟶ Y) :=
{ to_fun := λ f, (fst f, snd f),
inv_fun := λ gh, pair gh.1 gh.2,
left_inv := λ f, prod.hom_ext (by simp [pair, fst]) (by simp [pair, snd]),
right_inv := λ gh, prod.ext (by simp [pair, fst]) (by simp [pair, snd]) }
end prods
-- section type
-- local attribute [instance] has_terminal.has_limits_of_shape
-- instance : has_terminal (Type u) :=
-- { has_limits_of_shape := infer_instance }
-- def element_iso_type {X : Type u} : (terminal.{u} (Type u) ⟶ X) ≃ X :=
-- { to_fun := λ f, f ⟨λ k, k.elim, by rintro ⟨⟩⟩,
-- inv_fun := λ x _, x,
-- left_inv := λ f,
-- begin
-- ext1 ⟨⟩,
-- dsimp,
-- congr' 2,
-- ext1 ⟨⟩,
-- end,
-- right_inv := λ x, rfl }
-- end type
end category_theory
|
eda4da582aad3cdf46750f9a992868175cb0e2d4
|
57c233acf9386e610d99ed20ef139c5f97504ba3
|
/src/data/equiv/list.lean
|
1f3b94714553e8f50d60a6df34fc2ed672a6e4d3
|
[
"Apache-2.0"
] |
permissive
|
robertylewis/mathlib
|
3d16e3e6daf5ddde182473e03a1b601d2810952c
|
1d13f5b932f5e40a8308e3840f96fc882fae01f0
|
refs/heads/master
| 1,651,379,945,369
| 1,644,276,960,000
| 1,644,276,960,000
| 98,875,504
| 0
| 0
|
Apache-2.0
| 1,644,253,514,000
| 1,501,495,700,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 13,094
|
lean
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import data.equiv.denumerable
import data.finset.sort
/-!
# Equivalences involving `list`-like types
This file defines some additional constructive equivalences using `encodable` and the pairing
function on `ℕ`.
-/
open nat list
namespace encodable
variables {α : Type*}
section list
variable [encodable α]
/-- Explicit encoding function for `list α` -/
def encode_list : list α → ℕ
| [] := 0
| (a::l) := succ (mkpair (encode a) (encode_list l))
/-- Explicit decoding function for `list α` -/
def decode_list : ℕ → option (list α)
| 0 := some []
| (succ v) := match unpair v, unpair_right_le v with
| (v₁, v₂), h :=
have v₂ < succ v, from lt_succ_of_le h,
(::) <$> decode α v₁ <*> decode_list v₂
end
/-- If `α` is encodable, then so is `list α`. This uses the `mkpair` and `unpair` functions from
`data.nat.pairing`. -/
instance list : encodable (list α) :=
⟨encode_list, decode_list, λ l,
by induction l with a l IH; simp [encode_list, decode_list, unpair_mkpair, encodek, *]⟩
@[simp] theorem encode_list_nil : encode (@nil α) = 0 := rfl
@[simp] theorem encode_list_cons (a : α) (l : list α) :
encode (a :: l) = succ (mkpair (encode a) (encode l)) := rfl
@[simp] theorem decode_list_zero : decode (list α) 0 = some [] :=
show decode_list 0 = some [], by rw decode_list
@[simp] theorem decode_list_succ (v : ℕ) :
decode (list α) (succ v) =
(::) <$> decode α v.unpair.1 <*> decode (list α) v.unpair.2 :=
show decode_list (succ v) = _, begin
cases e : unpair v with v₁ v₂,
simp [decode_list, e], refl
end
theorem length_le_encode : ∀ (l : list α), length l ≤ encode l
| [] := _root_.zero_le _
| (a :: l) := succ_le_succ $ (length_le_encode l).trans (right_le_mkpair _ _)
end list
section finset
variables [encodable α]
private def enle : α → α → Prop := encode ⁻¹'o (≤)
private lemma enle.is_linear_order : is_linear_order α enle :=
(rel_embedding.preimage ⟨encode, encode_injective⟩ (≤)).is_linear_order
private def decidable_enle (a b : α) : decidable (enle a b) :=
by unfold enle order.preimage; apply_instance
local attribute [instance] enle.is_linear_order decidable_enle
/-- Explicit encoding function for `multiset α` -/
def encode_multiset (s : multiset α) : ℕ :=
encode (s.sort enle)
/-- Explicit decoding function for `multiset α` -/
def decode_multiset (n : ℕ) : option (multiset α) :=
coe <$> decode (list α) n
/-- If `α` is encodable, then so is `multiset α`. -/
instance multiset : encodable (multiset α) :=
⟨encode_multiset, decode_multiset,
λ s, by simp [encode_multiset, decode_multiset, encodek]⟩
end finset
/-- A listable type with decidable equality is encodable. -/
def encodable_of_list [decidable_eq α] (l : list α) (H : ∀ x, x ∈ l) : encodable α :=
⟨λ a, index_of a l, l.nth, λ a, index_of_nth (H _)⟩
def trunc_encodable_of_fintype (α : Type*) [decidable_eq α] [fintype α] : trunc (encodable α) :=
@@quot.rec_on_subsingleton _
(λ s : multiset α, (∀ x:α, x ∈ s) → trunc (encodable α)) _
finset.univ.1
(λ l H, trunc.mk $ encodable_of_list l H)
finset.mem_univ
/-- A noncomputable way to arbitrarily choose an ordering on a finite type.
It is not made into a global instance, since it involves an arbitrary choice.
This can be locally made into an instance with `local attribute [instance] fintype.encodable`. -/
noncomputable def _root_.fintype.encodable (α : Type*) [fintype α] : encodable α :=
by { classical, exact (encodable.trunc_encodable_of_fintype α).out }
/-- If `α` is encodable, then so is `vector α n`. -/
instance vector [encodable α] {n} : encodable (vector α n) :=
encodable.subtype
/-- If `α` is encodable, then so is `fin n → α`. -/
instance fin_arrow [encodable α] {n} : encodable (fin n → α) :=
of_equiv _ (equiv.vector_equiv_fin _ _).symm
instance fin_pi (n) (π : fin n → Type*) [∀ i, encodable (π i)] : encodable (Π i, π i) :=
of_equiv _ (equiv.pi_equiv_subtype_sigma (fin n) π)
/-- If `α` is encodable, then so is `array n α`. -/
instance array [encodable α] {n} : encodable (array n α) :=
of_equiv _ (equiv.array_equiv_fin _ _)
/-- If `α` is encodable, then so is `finset α`. -/
instance finset [encodable α] : encodable (finset α) :=
by haveI := decidable_eq_of_encodable α; exact
of_equiv {s : multiset α // s.nodup}
⟨λ ⟨a, b⟩, ⟨a, b⟩, λ ⟨a, b⟩, ⟨a, b⟩, λ ⟨a, b⟩, rfl, λ ⟨a, b⟩, rfl⟩
def fintype_arrow (α : Type*) (β : Type*) [decidable_eq α] [fintype α] [encodable β] :
trunc (encodable (α → β)) :=
(fintype.trunc_equiv_fin α).map $
λ f, encodable.of_equiv (fin (fintype.card α) → β) $
equiv.arrow_congr f (equiv.refl _)
def fintype_pi (α : Type*) (π : α → Type*) [decidable_eq α] [fintype α] [∀ a, encodable (π a)] :
trunc (encodable (Π a, π a)) :=
(encodable.trunc_encodable_of_fintype α).bind $ λ a,
(@fintype_arrow α (Σa, π a) _ _ (@encodable.sigma _ _ a _)).bind $ λ f,
trunc.mk $ @encodable.of_equiv _ _ (@encodable.subtype _ _ f _) (equiv.pi_equiv_subtype_sigma α π)
/-- The elements of a `fintype` as a sorted list. -/
def sorted_univ (α) [fintype α] [encodable α] : list α :=
finset.univ.sort (encodable.encode' α ⁻¹'o (≤))
@[simp] theorem mem_sorted_univ {α} [fintype α] [encodable α] (x : α) : x ∈ sorted_univ α :=
(finset.mem_sort _).2 (finset.mem_univ _)
@[simp] theorem length_sorted_univ (α) [fintype α] [encodable α] :
(sorted_univ α).length = fintype.card α :=
finset.length_sort _
@[simp] theorem sorted_univ_nodup (α) [fintype α] [encodable α] : (sorted_univ α).nodup :=
finset.sort_nodup _ _
@[simp] theorem sorted_univ_to_finset (α) [fintype α] [encodable α] [decidable_eq α] :
(sorted_univ α).to_finset = finset.univ :=
finset.sort_to_finset _ _
/-- An encodable `fintype` is equivalent to the same size `fin`. -/
def fintype_equiv_fin {α} [fintype α] [encodable α] :
α ≃ fin (fintype.card α) :=
begin
haveI : decidable_eq α := encodable.decidable_eq_of_encodable _,
transitivity,
{ exact ((sorted_univ_nodup α).nth_le_equiv_of_forall_mem_list _ mem_sorted_univ).symm },
exact equiv.cast (congr_arg _ (length_sorted_univ α))
end
/-- If `α` and `β` are encodable and `α` is a fintype, then `α → β` is encodable as well. -/
instance fintype_arrow_of_encodable {α β : Type*} [encodable α] [fintype α] [encodable β] :
encodable (α → β) :=
of_equiv (fin (fintype.card α) → β) $ equiv.arrow_congr fintype_equiv_fin (equiv.refl _)
end encodable
namespace denumerable
variables {α : Type*} {β : Type*} [denumerable α] [denumerable β]
open encodable
section list
theorem denumerable_list_aux : ∀ n : ℕ,
∃ a ∈ @decode_list α _ n, encode_list a = n
| 0 := by rw decode_list; exact ⟨_, rfl, rfl⟩
| (succ v) := begin
cases e : unpair v with v₁ v₂,
have h := unpair_right_le v,
rw e at h,
rcases have v₂ < succ v, from lt_succ_of_le h,
denumerable_list_aux v₂ with ⟨a, h₁, h₂⟩,
rw option.mem_def at h₁,
use of_nat α v₁ :: a,
simp [decode_list, e, h₂, h₁, encode_list, mkpair_unpair' e],
end
/-- If `α` is denumerable, then so is `list α`. -/
instance denumerable_list : denumerable (list α) := ⟨denumerable_list_aux⟩
@[simp] theorem list_of_nat_zero : of_nat (list α) 0 = [] :=
by rw [← @encode_list_nil α, of_nat_encode]
@[simp] theorem list_of_nat_succ (v : ℕ) :
of_nat (list α) (succ v) =
of_nat α v.unpair.1 :: of_nat (list α) v.unpair.2 :=
of_nat_of_decode $ show decode_list (succ v) = _,
begin
cases e : unpair v with v₁ v₂,
simp [decode_list, e],
rw [show decode_list v₂ = decode (list α) v₂,
from rfl, decode_eq_of_nat]; refl
end
end list
section multiset
/-- Outputs the list of differences of the input list, that is
`lower [a₁, a₂, ...] n = [a₁ - n, a₂ - a₁, ...]` -/
def lower : list ℕ → ℕ → list ℕ
| [] n := []
| (m :: l) n := (m - n) :: lower l m
/-- Outputs the list of partial sums of the input list, that is
`raise [a₁, a₂, ...] n = [n + a₁, n + a₁ + a₂, ...]` -/
def raise : list ℕ → ℕ → list ℕ
| [] n := []
| (m :: l) n := (m + n) :: raise l (m + n)
lemma lower_raise : ∀ l n, lower (raise l n) n = l
| [] n := rfl
| (m :: l) n := by rw [raise, lower, add_tsub_cancel_right, lower_raise]
lemma raise_lower : ∀ {l n}, list.sorted (≤) (n :: l) → raise (lower l n) n = l
| [] n h := rfl
| (m :: l) n h :=
have n ≤ m, from list.rel_of_sorted_cons h _ (l.mem_cons_self _),
by simp [raise, lower, tsub_add_cancel_of_le this,
raise_lower (list.sorted_of_sorted_cons h)]
lemma raise_chain : ∀ l n, list.chain (≤) n (raise l n)
| [] n := list.chain.nil
| (m :: l) n := list.chain.cons (nat.le_add_left _ _) (raise_chain _ _)
/-- `raise l n` is an non-decreasing sequence. -/
lemma raise_sorted : ∀ l n, list.sorted (≤) (raise l n)
| [] n := list.sorted_nil
| (m :: l) n := (list.chain_iff_pairwise (@le_trans _ _)).1 (raise_chain _ _)
/-- If `α` is denumerable, then so is `multiset α`. Warning: this is *not* the same encoding as used
in `encodable.multiset`. -/
instance multiset : denumerable (multiset α) := mk' ⟨
λ s : multiset α, encode $ lower ((s.map encode).sort (≤)) 0,
λ n, multiset.map (of_nat α) (raise (of_nat (list ℕ) n) 0),
λ s, by have := raise_lower
(list.sorted_cons.2 ⟨λ n _, zero_le n, (s.map encode).sort_sorted _⟩);
simp [-multiset.coe_map, this],
λ n, by simp [-multiset.coe_map, list.merge_sort_eq_self _ (raise_sorted _ _), lower_raise]⟩
end multiset
section finset
/-- Outputs the list of differences minus one of the input list, that is
`lower' [a₁, a₂, a₃, ...] n = [a₁ - n, a₂ - a₁ - 1, a₃ - a₂ - 1, ...]`. -/
def lower' : list ℕ → ℕ → list ℕ
| [] n := []
| (m :: l) n := (m - n) :: lower' l (m + 1)
/-- Outputs the list of partial sums plus one of the input list, that is
`raise [a₁, a₂, a₃, ...] n = [n + a₁, n + a₁ + a₂ + 1, n + a₁ + a₂ + a₃ + 2, ...]`. Adding one each
time ensures the elements are distinct. -/
def raise' : list ℕ → ℕ → list ℕ
| [] n := []
| (m :: l) n := (m + n) :: raise' l (m + n + 1)
lemma lower_raise' : ∀ l n, lower' (raise' l n) n = l
| [] n := rfl
| (m :: l) n := by simp [raise', lower', add_tsub_cancel_right, lower_raise']
lemma raise_lower' : ∀ {l n}, (∀ m ∈ l, n ≤ m) → list.sorted (<) l → raise' (lower' l n) n = l
| [] n h₁ h₂ := rfl
| (m :: l) n h₁ h₂ :=
have n ≤ m, from h₁ _ (l.mem_cons_self _),
by simp [raise', lower', tsub_add_cancel_of_le this, raise_lower'
(list.rel_of_sorted_cons h₂ : ∀ a ∈ l, m < a) (list.sorted_of_sorted_cons h₂)]
lemma raise'_chain : ∀ l {m n}, m < n → list.chain (<) m (raise' l n)
| [] m n h := list.chain.nil
| (a :: l) m n h := list.chain.cons
(lt_of_lt_of_le h (nat.le_add_left _ _)) (raise'_chain _ (lt_succ_self _))
/-- `raise' l n` is a strictly increasing sequence. -/
lemma raise'_sorted : ∀ l n, list.sorted (<) (raise' l n)
| [] n := list.sorted_nil
| (m :: l) n := (list.chain_iff_pairwise (@lt_trans _ _)).1
(raise'_chain _ (lt_succ_self _))
/-- Makes `raise' l n` into a finset. Elements are distinct thanks to `raise'_sorted`. -/
def raise'_finset (l : list ℕ) (n : ℕ) : finset ℕ :=
⟨raise' l n, (raise'_sorted _ _).imp (@ne_of_lt _ _)⟩
/-- If `α` is denumerable, then so is `finset α`. Warning: this is *not* the same encoding as used
in `encodable.finset`. -/
instance finset : denumerable (finset α) := mk' ⟨
λ s : finset α, encode $ lower' ((s.map (eqv α).to_embedding).sort (≤)) 0,
λ n, finset.map (eqv α).symm.to_embedding (raise'_finset (of_nat (list ℕ) n) 0),
λ s, finset.eq_of_veq $ by simp [-multiset.coe_map, raise'_finset,
raise_lower' (λ n _, zero_le n) (finset.sort_sorted_lt _)],
λ n, by simp [-multiset.coe_map, finset.map, raise'_finset, finset.sort,
list.merge_sort_eq_self (≤) ((raise'_sorted _ _).imp (@le_of_lt _ _)),
lower_raise']⟩
end finset
end denumerable
namespace equiv
/-- The type lists on unit is canonically equivalent to the natural numbers. -/
def list_unit_equiv : list unit ≃ ℕ :=
{ to_fun := list.length,
inv_fun := list.repeat (),
left_inv := λ u, list.length_injective (by simp),
right_inv := λ n, list.length_repeat () n }
/-- `list ℕ` is equivalent to `ℕ`. -/
def list_nat_equiv_nat : list ℕ ≃ ℕ := denumerable.eqv _
/-- If `α` is equivalent to `ℕ`, then `list α` is equivalent to `α`. -/
def list_equiv_self_of_equiv_nat {α : Type} (e : α ≃ ℕ) : list α ≃ α :=
calc list α ≃ list ℕ : list_equiv_of_equiv e
... ≃ ℕ : list_nat_equiv_nat
... ≃ α : e.symm
end equiv
|
f394005bded70e3e90eacd0b44e5fdd546f3e0b7
|
efa51dd2edbbbbd6c34bd0ce436415eb405832e7
|
/20161026_ICTAC_Tutorial/ex13.lean
|
aa25140bceaf8cb5e78163f3fadc0007e6b5b3a7
|
[
"Apache-2.0"
] |
permissive
|
leanprover/presentations
|
dd031a05bcb12c8855676c77e52ed84246bd889a
|
3ce2d132d299409f1de269fa8e95afa1333d644e
|
refs/heads/master
| 1,688,703,388,796
| 1,686,838,383,000
| 1,687,465,742,000
| 29,750,158
| 12
| 9
|
Apache-2.0
| 1,540,211,670,000
| 1,422,042,683,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 482
|
lean
|
/- Beta reduction -/
constants A B C : Type
constant f : A → B
constant g : B → C
constant h : A → A
constants (a : A) (b : B)
eval (λ x : A, x) a -- a
eval (λ x : A, b) a -- b
eval (λ x : A, b) (h a) -- b
eval (λ x : A, g (f x)) a -- g (f a)
eval (λ (v : B → C) (u : A → B) x, v (u x)) g f a -- g (f a)
eval (λ (Q R S : Type) (v : R → S) (u : Q → R) (x : Q),
v (u x)) A B C g f a -- g (f a)
|
9e14cee5dbdf44eb3d449e8647b0eb11a9515a0b
|
b7f22e51856f4989b970961f794f1c435f9b8f78
|
/library/algebra/category/functor.lean
|
d4488cef4bc8cab846bf8f78d443a79ea245db09
|
[
"Apache-2.0"
] |
permissive
|
soonhokong/lean
|
cb8aa01055ffe2af0fb99a16b4cda8463b882cd1
|
38607e3eb57f57f77c0ac114ad169e9e4262e24f
|
refs/heads/master
| 1,611,187,284,081
| 1,450,766,737,000
| 1,476,122,547,000
| 11,513,992
| 2
| 0
| null | 1,401,763,102,000
| 1,374,182,235,000
|
C++
|
UTF-8
|
Lean
| false
| false
| 4,205
|
lean
|
/-
Copyright (c) 2014 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Floris van Doorn
-/
import .basic
import logic.cast
open function
open category eq eq.ops heq
structure functor (C D : Category) : Type :=
(object : C → D)
(morphism : Π⦃a b : C⦄, hom a b → hom (object a) (object b))
(respect_id : Π (a : C), morphism (ID a) = ID (object a))
(respect_comp : Π ⦃a b c : C⦄ (g : hom b c) (f : hom a b),
morphism (g ∘ f) = morphism g ∘ morphism f)
infixl `⇒`:25 := functor
namespace functor
attribute object [coercion]
attribute morphism [coercion]
attribute respect_id [irreducible]
attribute respect_comp [irreducible]
variables {A B C D : Category}
protected definition compose [reducible] (G : functor B C) (F : functor A B) : functor A C :=
functor.mk
(λx, G (F x))
(λ a b f, G (F f))
(λ a, proof calc
G (F (ID a)) = G id : {respect_id F a}
--not giving the braces explicitly makes the elaborator compute a couple more seconds
... = id : respect_id G (F a) qed)
(λ a b c g f, proof calc
G (F (g ∘ f)) = G (F g ∘ F f) : respect_comp F g f
... = G (F g) ∘ G (F f) : respect_comp G (F g) (F f) qed)
infixr `∘f`:60 := functor.compose
protected theorem assoc (H : functor C D) (G : functor B C) (F : functor A B) :
H ∘f (G ∘f F) = (H ∘f G) ∘f F :=
rfl
protected definition id [reducible] {C : Category} : functor C C :=
mk (λa, a) (λ a b f, f) (λ a, rfl) (λ a b c f g, rfl)
protected definition ID [reducible] (C : Category) : functor C C := @functor.id C
protected theorem id_left (F : functor C D) : (@functor.id D) ∘f F = F :=
functor.rec (λ obF homF idF compF, dcongr_arg4 mk rfl rfl !proof_irrel !proof_irrel) F
protected theorem id_right (F : functor C D) : F ∘f (@functor.id C) = F :=
functor.rec (λ obF homF idF compF, dcongr_arg4 mk rfl rfl !proof_irrel !proof_irrel) F
end functor
namespace category
open functor
definition category_of_categories [reducible] : category Category :=
mk (λ a b, functor a b)
(λ a b c g f, functor.compose g f)
(λ a, functor.id)
(λ a b c d h g f, !functor.assoc)
(λ a b f, !functor.id_left)
(λ a b f, !functor.id_right)
definition Category_of_categories [reducible] := Mk category_of_categories
namespace ops
notation `Cat`:max := Category_of_categories
attribute category_of_categories [instance]
end ops
end category
namespace functor
variables {C D : Category}
theorem mk_heq {obF obG : C → D} {homF homG idF idG compF compG} (Hob : ∀x, obF x = obG x)
(Hmor : ∀(a b : C) (f : a ⟶ b), homF a b f == homG a b f)
: mk obF homF idF compF = mk obG homG idG compG :=
hddcongr_arg4 mk
(funext Hob)
(hfunext (λ a, hfunext (λ b, hfunext (λ f, !Hmor))))
!proof_irrel
!proof_irrel
protected theorem hequal {F G : C ⇒ D} : Π (Hob : ∀x, F x = G x)
(Hmor : ∀a b (f : a ⟶ b), F f == G f), F = G :=
functor.rec
(λ obF homF idF compF,
functor.rec
(λ obG homG idG compG Hob Hmor, mk_heq Hob Hmor)
G)
F
-- theorem mk_eq {obF obG : C → D} {homF homG idF idG compF compG} (Hob : ∀x, obF x = obG x)
-- (Hmor : ∀(a b : C) (f : a ⟶ b), cast (congr_arg (λ x, x a ⟶ x b) (funext Hob)) (homF a b f)
-- = homG a b f)
-- : mk obF homF idF compF = mk obG homG idG compG :=
-- dcongr_arg4 mk
-- (funext Hob)
-- (funext (λ a, funext (λ b, funext (λ f, sorry ⬝ Hmor a b f))))
-- -- to fill this sorry use (a generalization of) cast_pull
-- !proof_irrel
-- !proof_irrel
-- protected theorem equal {F G : C ⇒ D} : Π (Hob : ∀x, F x = G x)
-- (Hmor : ∀a b (f : a ⟶ b), cast (congr_arg (λ x, x a ⟶ x b) (funext Hob)) (F f) = G f), F = G :=
-- functor.rec
-- (λ obF homF idF compF,
-- functor.rec
-- (λ obG homG idG compG Hob Hmor, mk_eq Hob Hmor)
-- G)
-- F
end functor
|
aa865691b709b2985e165c7473c720a8505ea114
|
4d2583807a5ac6caaffd3d7a5f646d61ca85d532
|
/src/topology/order/lattice.lean
|
29460e9a48f3d3b77700d8d729539da005f67fce
|
[
"Apache-2.0"
] |
permissive
|
AntoineChambert-Loir/mathlib
|
64aabb896129885f12296a799818061bc90da1ff
|
07be904260ab6e36a5769680b6012f03a4727134
|
refs/heads/master
| 1,693,187,631,771
| 1,636,719,886,000
| 1,636,719,886,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 2,873
|
lean
|
/-
Copyright (c) 2021 Christopher Hoskin. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Christopher Hoskin
-/
import topology.basic
import topology.constructions
import topology.algebra.ordered.basic
/-!
# Topological lattices
In this file we define mixin classes `has_continuous_inf` and `has_continuous_sup`. We define the
class `topological_lattice` as a topological space and lattice `L` extending `has_continuous_inf`
and `has_continuous_sup`.
## References
* [Gierz et al, A Compendium of Continuous Lattices][GierzEtAl1980]
## Tags
topological, lattice
-/
/--
Let `L` be a topological space and let `L×L` be equipped with the product topology and let
`⊓:L×L → L` be an infimum. Then `L` is said to have *(jointly) continuous infimum* if the map
`⊓:L×L → L` is continuous.
-/
class has_continuous_inf (L : Type*) [topological_space L] [has_inf L] : Prop :=
(continuous_inf : continuous (λ p : L × L, p.1 ⊓ p.2))
/--
Let `L` be a topological space and let `L×L` be equipped with the product topology and let
`⊓:L×L → L` be a supremum. Then `L` is said to have *(jointly) continuous supremum* if the map
`⊓:L×L → L` is continuous.
-/
class has_continuous_sup (L : Type*) [topological_space L] [has_sup L] : Prop :=
(continuous_sup : continuous (λ p : L × L, p.1 ⊔ p.2))
/--
Let `L` be a topological space with a supremum. If the order dual has a continuous infimum then the
supremum is continuous.
-/
@[priority 100] -- see Note [lower instance priority]
instance has_continuous_inf_dual_has_continuous_sup
(L : Type*) [topological_space L] [has_sup L] [h: has_continuous_inf (order_dual L)] :
has_continuous_sup L :=
{ continuous_sup :=
@has_continuous_inf.continuous_inf (order_dual L) _ _ h }
/--
Let `L` be a lattice equipped with a topology such that `L` has continuous infimum and supremum.
Then `L` is said to be a *topological lattice*.
-/
class topological_lattice (L : Type*) [topological_space L] [lattice L]
extends has_continuous_inf L, has_continuous_sup L
variables {L : Type*} [topological_space L]
variables {X : Type*} [topological_space X]
@[continuity] lemma continuous_inf [has_inf L] [has_continuous_inf L] :
continuous (λp:L×L, p.1 ⊓ p.2) :=
has_continuous_inf.continuous_inf
@[continuity] lemma continuous.inf [has_inf L] [has_continuous_inf L]
{f g : X → L} (hf : continuous f) (hg : continuous g) :
continuous (λx, f x ⊓ g x) :=
continuous_inf.comp (hf.prod_mk hg : _)
@[continuity] lemma continuous_sup [has_sup L] [has_continuous_sup L] :
continuous (λp:L×L, p.1 ⊔ p.2) :=
has_continuous_sup.continuous_sup
@[continuity] lemma continuous.sup [has_sup L] [has_continuous_sup L]
{f g : X → L} (hf : continuous f) (hg : continuous g) :
continuous (λx, f x ⊔ g x) :=
continuous_sup.comp (hf.prod_mk hg : _)
|
3a7394e970cd3b4ae4db01a2bc1f78c52a9985bb
|
cf39355caa609c0f33405126beee2739aa3cb77e
|
/tests/lean/run/section4.lean
|
888ab5d0743208a3f2a193d24805ea0fc9c0b134
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/lean
|
12b87f69d92e614daea8bcc9d4de9a9ace089d0e
|
cce7990ea86a78bdb383e38ed7f9b5ba93c60ce0
|
refs/heads/master
| 1,687,508,156,644
| 1,684,951,104,000
| 1,684,951,104,000
| 169,960,991
| 457
| 107
|
Apache-2.0
| 1,686,744,372,000
| 1,549,790,268,000
|
C++
|
UTF-8
|
Lean
| false
| false
| 639
|
lean
|
set_option pp.universes true
set_option pp.implicit true
section
universe k
parameter A : Type
section
universe variable l
universe variable u
parameter B : Type
definition foo (a : A) (b : B) := b
inductive mypair
| mk : A → B → mypair
#print mypair.rec
#check mypair.mk
definition pr1' : mypair → A
| (mypair.mk a b) := a
definition pr2' : mypair → B
| (mypair.mk a b) := b
end
#check mypair.rec
variable a : A
#check foo nat a 0
definition pr1 : mypair nat → A
| (mypair.mk a b) := a
definition pr2 : mypair nat → nat
| (mypair.mk a b) := b
end
|
819d3c56b84bc31e9e53f0e0edb236e5292f3f90
|
2c41ae31b2b771ad5646ad880201393f5269a7f0
|
/Lean/Examples/Parnas/Functional_Decomposition.lean
|
122568f9301febdbd95f49caf7a0749ec4a3691e
|
[] |
no_license
|
kevinsullivan/Boehm
|
926f25bc6f1a8b6bd47d333d936fdfc278228312
|
55208395bff20d48a598b7fa33a4d55a2447a9cf
|
refs/heads/master
| 1,586,127,134,302
| 1,488,252,326,000
| 1,488,252,326,000
| 32,836,930
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 6,146
|
lean
|
import Examples.Parnas.DesignStructure
import SystemModel.System
import Qualities.Changeable
import Examples.Parnas.Shared_Info
set_option eqn_compiler.max_steps 256
inductive kwicParameter | computer | corpus | user
| alph_abs | alph_alg | alph_data
| circ_abs | circ_alg | circ_data
| input_abs | input_alg | input_data
| output_abs | output_alg | output_data
| master
open kwicParameter
definition uses : kwicParameter -> kwicParameter -> Prop
| kwicParameter.master kwicParameter.input_abs := true
| kwicParameter.master kwicParameter.circ_abs := true
| kwicParameter.master kwicParameter.alph_abs := true
| kwicParameter.master kwicParameter.output_abs := true
| kwicParameter.input_alg kwicParameter.input_data := true
| kwicParameter.input_data kwicParameter.circ_data := true
| kwicParameter.input_data kwicParameter.alph_data := true
| kwicParameter.circ_alg kwicParameter.circ_data := true
| kwicParameter.circ_alg kwicParameter.input_data := true
| kwicParameter.circ_data kwicParameter.input_data := true
| kwicParameter.circ_data kwicParameter.alph_data := true
| kwicParameter.alph_alg kwicParameter.input_data := true
| kwicParameter.alph_alg kwicParameter.circ_data := true
| kwicParameter.alph_alg kwicParameter.alph_data := true
| kwicParameter.alph_data kwicParameter.input_data := true
| kwicParameter.alph_data kwicParameter.circ_data := true
| kwicParameter.output_alg kwicParameter.input_data := true
| kwicParameter.output_alg kwicParameter.alph_data := true
| kwicParameter.output_alg kwicParameter.output_data := true
| _ _ := false
definition satisfies : kwicParameter -> kwicParameter -> Prop
| computer input_data := true
| computer circ_data := true
| computer alph_data := true
| computer output_data := true
| computer input_alg := true
| computer alph_alg := true
| computer output_alg := true
| corpus input_data := true
| corpus input_alg := true
| corpus circ_data := true
| corpus circ_alg := true
| corpus alph_data := true
| corpus alph_alg := true
| corpus output_data := true
| corpus output_alg := true
| user circ_alg := true
| user alph_alg := true
| user master := true
| input_abs input_alg := true
| circ_abs circ_alg := true
| alph_abs alph_alg := true
| output_abs output_alg := true
| _ _ := false
definition input_mod : (@Module kwicParameter) :=
{ name := "Input", elements := []}
definition circ_mod : (@Module kwicParameter) :=
{ name := "Circular", elements := []}
definition alph_mod : (@Module kwicParameter) :=
{ name := "Alphabetizer", elements := []}
definition out_mod : (@Module kwicParameter) :=
{ name := "Output", elements := []}
definition master_mod : (@Module kwicParameter) :=
{ name := "Master", elements := []}
definition kwic_modules : list Module :=
[input_mod, circ_mod, alph_mod, out_mod, master_mod]
definition kwic_volatile : kwicParameter -> Prop
| corpus := true
| computer := true
| user := true
| _ := false
definition kwic_ds: DesignStructure :=
{ Modules := kwic_modules, Volatile := kwic_volatile, Uses:= uses, Satisfies:= satisfies }
inductive kwic_ds_type
| mk_kwic_ds : (@DesignStructure kwicParameter) -> Prop -> kwic_ds_type
definition extract_kwic_ds : kwic_ds_type -> (@DesignStructure kwicParameter)
| (kwic_ds_type.mk_kwic_ds ds _) := ds
record kwic :=
mk :: (kwic_volatile_state: kwicVolatileState) (kwic_design: kwic_ds_type)
definition kwicSystemType : SystemType := { Contexts:=kwicContexts, Stakeholders:= kwicStakeholders, Phases:= kwicPhases, ArtifactType:= kwic, ValueType:= kwicValue }
/-
Abbreviations for writing propositions, assertions, actions.
-/
definition kwicSystemState := @SystemInstance kwicSystemType
definition kwicAssertion := @Assertion kwicSystemType
definition kwicAction := @Action kwicSystemType
/- test more specifically whether a system is modular with respect to a single parameter-/
definition isModular (ks: kwicSystemState): Prop := modular (extract_kwic_ds ks^.artifact^.kwic_design)
definition isModular_wrt (kp: kwicParameter) (ks: kwicSystemState): Prop := modular_wrt kp (extract_kwic_ds ks^.artifact^.kwic_design)
definition computerPre (ks: kwicSystemState): Prop := ks^.artifact^.kwic_volatile_state^.computer_state = computerState.computer_pre
definition computerPost (ks: kwicSystemState): Prop := ks^.artifact^.kwic_volatile_state^.computer_state = computerState.computer_post
definition corpusPre (ks: kwicSystemState): Prop := ks^.artifact^.kwic_volatile_state^.corpus_state = corpusState.corpus_pre
definition corpusPost (ks: kwicSystemState): Prop := ks^.artifact^.kwic_volatile_state^.corpus_state = corpusState.corpus_post
definition userPre (ks: kwicSystemState): Prop := ks^.artifact^.kwic_volatile_state^.user_state = userState.user_pre
definition userPost (ks: kwicSystemState): Prop := ks^.artifact^.kwic_volatile_state^.user_state = userState.user_post
definition inMaintenancePhase (ks: kwicSystemState): Prop := ks^.phase = kwicPhases.maintenance
definition computerPreState : kwicAssertion := fun ks: kwicSystemState, computerPre ks
definition computerPostState : kwicAssertion := fun ks: kwicSystemState, computerPost ks
definition corpusPreState : kwicAssertion := fun ks: kwicSystemState, corpusPre ks
definition corpusPostState : kwicAssertion := fun ks: kwicSystemState,corpusPost ks
definition userPreState : kwicAssertion := fun ks: kwicSystemState, userPre ks
definition userPostState : kwicAssertion := fun ks: kwicSystemState, userPost ks
definition costomerChangeCorpus: kwicAction :=
fun ks: kwicSystemState,
{ context:=kwicContexts.nominal,
phase:=kwicPhases.maintenance,
artifact:=
{ kwic_volatile_state :=
{ computer_state := ks^.artifact^.kwic_volatile_state^.computer_state,
corpus_state:= corpusState.corpus_post,
user_state:= ks^.artifact^.kwic_volatile_state^.user_state },
kwic_design := (kwic_ds_type.mk_kwic_ds kwic_ds (kwic_ds=kwic_ds))},
value := ks^.value }
|
27ab9cd99afd71d072a2ce64991af35bc3f46f20
|
aa5a655c05e5359a70646b7154e7cac59f0b4132
|
/src/Init/Classical.lean
|
5000a451cb2567d1653d2070113aa02307a237fe
|
[
"Apache-2.0"
] |
permissive
|
lambdaxymox/lean4
|
ae943c960a42247e06eff25c35338268d07454cb
|
278d47c77270664ef29715faab467feac8a0f446
|
refs/heads/master
| 1,677,891,867,340
| 1,612,500,005,000
| 1,612,500,005,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 5,263
|
lean
|
/-
Copyright (c) 2020 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
-/
prelude
import Init.Core
import Init.NotationExtra
universes u v
/- Classical reasoning support -/
namespace Classical
axiom choice {α : Sort u} : Nonempty α → α
noncomputable def indefiniteDescription {α : Sort u} (p : α → Prop) (h : ∃ x, p x) : {x // p x} :=
choice <| let ⟨x, px⟩ := h; ⟨⟨x, px⟩⟩
noncomputable def choose {α : Sort u} {p : α → Prop} (h : ∃ x, p x) : α :=
(indefiniteDescription p h).val
theorem chooseSpec {α : Sort u} {p : α → Prop} (h : ∃ x, p x) : p (choose h) :=
(indefiniteDescription p h).property
/- Diaconescu's theorem: excluded middle from choice, Function extensionality and propositional extensionality. -/
theorem em (p : Prop) : p ∨ ¬p :=
let U (x : Prop) : Prop := x = True ∨ p;
let V (x : Prop) : Prop := x = False ∨ p;
have exU : ∃ x, U x from ⟨True, Or.inl rfl⟩;
have exV : ∃ x, V x from ⟨False, Or.inl rfl⟩;
let u : Prop := choose exU;
let v : Prop := choose exV;
have uDef : U u from chooseSpec exU;
have vDef : V v from chooseSpec exV;
have notUvOrP : u ≠ v ∨ p from
match uDef, vDef with
| Or.inr h, _ => Or.inr h
| _, Or.inr h => Or.inr h
| Or.inl hut, Or.inl hvf =>
have hne : u ≠ v from hvf.symm ▸ hut.symm ▸ trueNeFalse
Or.inl hne
have pImpliesUv : p → u = v from
fun hp =>
have hpred : U = V from
funext fun x =>
have hl : (x = True ∨ p) → (x = False ∨ p) from
fun a => Or.inr hp;
have hr : (x = False ∨ p) → (x = True ∨ p) from
fun a => Or.inr hp;
show (x = True ∨ p) = (x = False ∨ p) from
propext (Iff.intro hl hr);
have h₀ : ∀ exU exV, @choose _ U exU = @choose _ V exV from
hpred ▸ fun exU exV => rfl;
show u = v from h₀ ..;
match notUvOrP with
| Or.inl hne => Or.inr (mt pImpliesUv hne)
| Or.inr h => Or.inl h
theorem existsTrueOfNonempty {α : Sort u} : Nonempty α → ∃ x : α, True
| ⟨x⟩ => ⟨x, trivial⟩
noncomputable def inhabitedOfNonempty {α : Sort u} (h : Nonempty α) : Inhabited α :=
⟨choice h⟩
noncomputable def inhabitedOfExists {α : Sort u} {p : α → Prop} (h : ∃ x, p x) : Inhabited α :=
inhabitedOfNonempty (Exists.elim h (fun w hw => ⟨w⟩))
/- all propositions are Decidable -/
noncomputable scoped instance (priority := low) propDecidable (a : Prop) : Decidable a :=
choice <| match em a with
| Or.inl h => ⟨isTrue h⟩
| Or.inr h => ⟨isFalse h⟩
noncomputable def decidableInhabited (a : Prop) : Inhabited (Decidable a) where
default := inferInstance
noncomputable def typeDecidableEq (α : Sort u) : DecidableEq α :=
fun x y => inferInstance
noncomputable def typeDecidable (α : Sort u) : PSum α (α → False) :=
match (propDecidable (Nonempty α)) with
| (isTrue hp) => PSum.inl (@arbitrary _ (inhabitedOfNonempty hp))
| (isFalse hn) => PSum.inr (fun a => absurd (Nonempty.intro a) hn)
noncomputable def strongIndefiniteDescription {α : Sort u} (p : α → Prop) (h : Nonempty α) : {x : α // (∃ y : α, p y) → p x} :=
@dite _ (∃ x : α, p x) (propDecidable _)
(fun (hp : ∃ x : α, p x) =>
show {x : α // (∃ y : α, p y) → p x} from
let xp := indefiniteDescription _ hp;
⟨xp.val, fun h' => xp.property⟩)
(fun hp => ⟨choice h, fun h => absurd h hp⟩)
/- the Hilbert epsilon Function -/
noncomputable def epsilon {α : Sort u} [h : Nonempty α] (p : α → Prop) : α :=
(strongIndefiniteDescription p h).val
theorem epsilonSpecAux {α : Sort u} (h : Nonempty α) (p : α → Prop) : (∃ y, p y) → p (@epsilon α h p) :=
(strongIndefiniteDescription p h).property
theorem epsilonSpec {α : Sort u} {p : α → Prop} (hex : ∃ y, p y) : p (@epsilon α (nonemptyOfExists hex) p) :=
epsilonSpecAux (nonemptyOfExists hex) p hex
theorem epsilonSingleton {α : Sort u} (x : α) : @epsilon α ⟨x⟩ (fun y => y = x) = x :=
@epsilonSpec α (fun y => y = x) ⟨x, rfl⟩
/- the axiom of choice -/
theorem axiomOfChoice {α : Sort u} {β : α → Sort v} {r : ∀ x, β x → Prop} (h : ∀ x, ∃ y, r x y) : ∃ (f : ∀ x, β x), ∀ x, r x (f x) :=
⟨_, fun x => chooseSpec (h x)⟩
theorem skolem {α : Sort u} {b : α → Sort v} {p : ∀ x, b x → Prop} : (∀ x, ∃ y, p x y) ↔ ∃ (f : ∀ x, b x), ∀ x, p x (f x) :=
⟨axiomOfChoice, fun ⟨f, hw⟩ (x) => ⟨f x, hw x⟩⟩
theorem propComplete (a : Prop) : a = True ∨ a = False := by
cases em a with
| inl _ => apply Or.inl; apply propext; apply Iff.intro; { intros; apply True.intro }; { intro; assumption }
| inr hn => apply Or.inr; apply propext; apply Iff.intro; { intro h; exact hn h }; { intro h; apply False.elim h }
-- this supercedes byCases in Decidable
theorem byCases {p q : Prop} (hpq : p → q) (hnpq : ¬p → q) : q :=
Decidable.byCases (dec := propDecidable _) hpq hnpq
-- this supercedes byContradiction in Decidable
theorem byContradiction {p : Prop} (h : ¬p → False) : p :=
Decidable.byContradiction (dec := propDecidable _) h
end Classical
|
56b3b82569ec93da4eedf034dd1978e831dd34ac
|
8cae430f0a71442d02dbb1cbb14073b31048e4b0
|
/src/measure_theory/function/jacobian.lean
|
c7469efe8f991e63206a8806c8922c5b104804c5
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/mathlib
|
56a2cadd17ac88caf4ece0a775932fa26327ba0e
|
442a83d738cb208d3600056c489be16900ba701d
|
refs/heads/master
| 1,693,584,102,358
| 1,693,471,902,000
| 1,693,471,902,000
| 97,922,418
| 1,595
| 352
|
Apache-2.0
| 1,694,693,445,000
| 1,500,624,130,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 70,967
|
lean
|
/-
Copyright (c) 2022 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import analysis.calculus.inverse
import measure_theory.constructions.borel_space.continuous_linear_map
import measure_theory.covering.besicovitch_vector_space
import measure_theory.measure.lebesgue.eq_haar
import analysis.normed_space.pointwise
import measure_theory.constructions.polish
/-!
# Change of variables in higher-dimensional integrals
> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
> Any changes to this file require a corresponding PR to mathlib4.
Let `μ` be a Lebesgue measure on a finite-dimensional real vector space `E`.
Let `f : E → E` be a function which is injective and differentiable on a measurable set `s`,
with derivative `f'`. Then we prove that `f '' s` is measurable, and
its measure is given by the formula `μ (f '' s) = ∫⁻ x in s, |(f' x).det| ∂μ` (where `(f' x).det`
is almost everywhere measurable, but not Borel-measurable in general). This formula is proved in
`lintegral_abs_det_fderiv_eq_add_haar_image`. We deduce the change of variables
formula for the Lebesgue and Bochner integrals, in `lintegral_image_eq_lintegral_abs_det_fderiv_mul`
and `integral_image_eq_integral_abs_det_fderiv_smul` respectively.
## Main results
* `add_haar_image_eq_zero_of_differentiable_on_of_add_haar_eq_zero`: if `f` is differentiable on a
set `s` with zero measure, then `f '' s` also has zero measure.
* `add_haar_image_eq_zero_of_det_fderiv_within_eq_zero`: if `f` is differentiable on a set `s`, and
its derivative is never invertible, then `f '' s` has zero measure (a version of Sard's lemma).
* `ae_measurable_fderiv_within`: if `f` is differentiable on a measurable set `s`, then `f'`
is almost everywhere measurable on `s`.
For the next statements, `s` is a measurable set and `f` is differentiable on `s`
(with a derivative `f'`) and injective on `s`.
* `measurable_image_of_fderiv_within`: the image `f '' s` is measurable.
* `measurable_embedding_of_fderiv_within`: the function `s.restrict f` is a measurable embedding.
* `lintegral_abs_det_fderiv_eq_add_haar_image`: the image measure is given by
`μ (f '' s) = ∫⁻ x in s, |(f' x).det| ∂μ`.
* `lintegral_image_eq_lintegral_abs_det_fderiv_mul`: for `g : E → ℝ≥0∞`, one has
`∫⁻ x in f '' s, g x ∂μ = ∫⁻ x in s, ennreal.of_real (|(f' x).det|) * g (f x) ∂μ`.
* `integral_image_eq_integral_abs_det_fderiv_smul`: for `g : E → F`, one has
`∫ x in f '' s, g x ∂μ = ∫ x in s, |(f' x).det| • g (f x) ∂μ`.
* `integrable_on_image_iff_integrable_on_abs_det_fderiv_smul`: for `g : E → F`, the function `g` is
integrable on `f '' s` if and only if `|(f' x).det| • g (f x))` is integrable on `s`.
## Implementation
Typical versions of these results in the literature have much stronger assumptions: `s` would
typically be open, and the derivative `f' x` would depend continuously on `x` and be invertible
everywhere, to have the local inverse theorem at our disposal. The proof strategy under our weaker
assumptions is more involved. We follow [Fremlin, *Measure Theory* (volume 2)][fremlin_vol2].
The first remark is that, if `f` is sufficiently well approximated by a linear map `A` on a set
`s`, then `f` expands the volume of `s` by at least `A.det - ε` and at most `A.det + ε`, where
the closeness condition depends on `A` in a non-explicit way (see `add_haar_image_le_mul_of_det_lt`
and `mul_le_add_haar_image_of_lt_det`). This fact holds for balls by a simple inclusion argument,
and follows for general sets using the Besicovitch covering theorem to cover the set by balls with
measures adding up essentially to `μ s`.
When `f` is differentiable on `s`, one may partition `s` into countably many subsets `s ∩ t n`
(where `t n` is measurable), on each of which `f` is well approximated by a linear map, so that the
above results apply. See `exists_partition_approximates_linear_on_of_has_fderiv_within_at`, which
follows from the pointwise differentiability (in a non-completely trivial way, as one should ensure
a form of uniformity on the sets of the partition).
Combining the above two results would give the conclusion, except for two difficulties: it is not
obvious why `f '' s` and `f'` should be measurable, which prevents us from using countable
additivity for the measure and the integral. It turns out that `f '' s` is indeed measurable,
and that `f'` is almost everywhere measurable, which is enough to recover countable additivity.
The measurability of `f '' s` follows from the deep Lusin-Souslin theorem ensuring that, in a
Polish space, a continuous injective image of a measurable set is measurable.
The key point to check the almost everywhere measurability of `f'` is that, if `f` is approximated
up to `δ` by a linear map on a set `s`, then `f'` is within `δ` of `A` on a full measure subset
of `s` (namely, its density points). With the above approximation argument, it follows that `f'`
is the almost everywhere limit of a sequence of measurable functions (which are constant on the
pieces of the good discretization), and is therefore almost everywhere measurable.
## Tags
Change of variables in integrals
## References
[Fremlin, *Measure Theory* (volume 2)][fremlin_vol2]
-/
open measure_theory measure_theory.measure metric filter set finite_dimensional asymptotics
topological_space
open_locale nnreal ennreal topology pointwise
variables {E F : Type*} [normed_add_comm_group E] [normed_space ℝ E] [finite_dimensional ℝ E]
[normed_add_comm_group F] [normed_space ℝ F] {s : set E} {f : E → E} {f' : E → E →L[ℝ] E}
/-!
### Decomposition lemmas
We state lemmas ensuring that a differentiable function can be approximated, on countably many
measurable pieces, by linear maps (with a prescribed precision depending on the linear map).
-/
/-- Assume that a function `f` has a derivative at every point of a set `s`. Then one may cover `s`
with countably many closed sets `t n` on which `f` is well approximated by linear maps `A n`. -/
lemma exists_closed_cover_approximates_linear_on_of_has_fderiv_within_at
[second_countable_topology F]
(f : E → F) (s : set E) (f' : E → E →L[ℝ] F) (hf' : ∀ x ∈ s, has_fderiv_within_at f (f' x) s x)
(r : (E →L[ℝ] F) → ℝ≥0) (rpos : ∀ A, r A ≠ 0) :
∃ (t : ℕ → set E) (A : ℕ → (E →L[ℝ] F)), (∀ n, is_closed (t n)) ∧ (s ⊆ ⋃ n, t n)
∧ (∀ n, approximates_linear_on f (A n) (s ∩ t n) (r (A n)))
∧ (s.nonempty → ∀ n, ∃ y ∈ s, A n = f' y) :=
begin
/- Choose countably many linear maps `f' z`. For every such map, if `f` has a derivative at `x`
close enough to `f' z`, then `f y - f x` is well approximated by `f' z (y - x)` for `y` close
enough to `x`, say on a ball of radius `r` (or even `u n` for some `n`, where `u` is a fixed
sequence tending to `0`).
Let `M n z` be the points where this happens. Then this set is relatively closed inside `s`,
and moreover in every closed ball of radius `u n / 3` inside it the map is well approximated by
`f' z`. Using countably many closed balls to split `M n z` into small diameter subsets `K n z p`,
one obtains the desired sets `t q` after reindexing.
-/
-- exclude the trivial case where `s` is empty
rcases eq_empty_or_nonempty s with rfl|hs,
{ refine ⟨λ n, ∅, λ n, 0, _, _, _, _⟩;
simp },
-- we will use countably many linear maps. Select these from all the derivatives since the
-- space of linear maps is second-countable
obtain ⟨T, T_count, hT⟩ : ∃ T : set s, T.countable ∧
(⋃ x ∈ T, ball (f' (x : E)) (r (f' x))) = ⋃ (x : s), ball (f' x) (r (f' x)) :=
topological_space.is_open_Union_countable _ (λ x, is_open_ball),
-- fix a sequence `u` of positive reals tending to zero.
obtain ⟨u, u_anti, u_pos, u_lim⟩ :
∃ (u : ℕ → ℝ), strict_anti u ∧ (∀ (n : ℕ), 0 < u n) ∧ tendsto u at_top (𝓝 0) :=
exists_seq_strict_anti_tendsto (0 : ℝ),
-- `M n z` is the set of points `x` such that `f y - f x` is close to `f' z (y - x)` for `y`
-- in the ball of radius `u n` around `x`.
let M : ℕ → T → set E := λ n z, {x | x ∈ s ∧
∀ y ∈ s ∩ ball x (u n), ‖f y - f x - f' z (y - x)‖ ≤ r (f' z) * ‖y - x‖},
-- As `f` is differentiable everywhere on `s`, the sets `M n z` cover `s` by design.
have s_subset : ∀ x ∈ s, ∃ (n : ℕ) (z : T), x ∈ M n z,
{ assume x xs,
obtain ⟨z, zT, hz⟩ : ∃ z ∈ T, f' x ∈ ball (f' (z : E)) (r (f' z)),
{ have : f' x ∈ ⋃ (z ∈ T), ball (f' (z : E)) (r (f' z)),
{ rw hT,
refine mem_Union.2 ⟨⟨x, xs⟩, _⟩,
simpa only [mem_ball, subtype.coe_mk, dist_self] using (rpos (f' x)).bot_lt },
rwa mem_Union₂ at this },
obtain ⟨ε, εpos, hε⟩ : ∃ (ε : ℝ), 0 < ε ∧ ‖f' x - f' z‖ + ε ≤ r (f' z),
{ refine ⟨r (f' z) - ‖f' x - f' z‖, _, le_of_eq (by abel)⟩,
simpa only [sub_pos] using mem_ball_iff_norm.mp hz },
obtain ⟨δ, δpos, hδ⟩ : ∃ (δ : ℝ) (H : 0 < δ),
ball x δ ∩ s ⊆ {y | ‖f y - f x - (f' x) (y - x)‖ ≤ ε * ‖y - x‖} :=
metric.mem_nhds_within_iff.1 (is_o.def (hf' x xs) εpos),
obtain ⟨n, hn⟩ : ∃ n, u n < δ := ((tendsto_order.1 u_lim).2 _ δpos).exists,
refine ⟨n, ⟨z, zT⟩, ⟨xs, _⟩⟩,
assume y hy,
calc ‖f y - f x - (f' z) (y - x)‖
= ‖(f y - f x - (f' x) (y - x)) + (f' x - f' z) (y - x)‖ :
begin
congr' 1,
simp only [continuous_linear_map.coe_sub', map_sub, pi.sub_apply],
abel,
end
... ≤ ‖f y - f x - (f' x) (y - x)‖ + ‖(f' x - f' z) (y - x)‖ : norm_add_le _ _
... ≤ ε * ‖y - x‖ + ‖f' x - f' z‖ * ‖y - x‖ :
begin
refine add_le_add (hδ _) (continuous_linear_map.le_op_norm _ _),
rw inter_comm,
exact inter_subset_inter_right _ (ball_subset_ball hn.le) hy,
end
... ≤ r (f' z) * ‖y - x‖ :
begin
rw [← add_mul, add_comm],
exact mul_le_mul_of_nonneg_right hε (norm_nonneg _),
end },
-- the sets `M n z` are relatively closed in `s`, as all the conditions defining it are clearly
-- closed
have closure_M_subset : ∀ n z, s ∩ closure (M n z) ⊆ M n z,
{ rintros n z x ⟨xs, hx⟩,
refine ⟨xs, λ y hy, _⟩,
obtain ⟨a, aM, a_lim⟩ : ∃ (a : ℕ → E), (∀ k, a k ∈ M n z) ∧ tendsto a at_top (𝓝 x) :=
mem_closure_iff_seq_limit.1 hx,
have L1 : tendsto (λ (k : ℕ), ‖f y - f (a k) - (f' z) (y - a k)‖) at_top
(𝓝 ‖f y - f x - (f' z) (y - x)‖),
{ apply tendsto.norm,
have L : tendsto (λ k, f (a k)) at_top (𝓝 (f x)),
{ apply (hf' x xs).continuous_within_at.tendsto.comp,
apply tendsto_nhds_within_of_tendsto_nhds_of_eventually_within _ a_lim,
exact eventually_of_forall (λ k, (aM k).1) },
apply tendsto.sub (tendsto_const_nhds.sub L),
exact ((f' z).continuous.tendsto _).comp (tendsto_const_nhds.sub a_lim) },
have L2 : tendsto (λ (k : ℕ), (r (f' z) : ℝ) * ‖y - a k‖) at_top (𝓝 (r (f' z) * ‖y - x‖)) :=
(tendsto_const_nhds.sub a_lim).norm.const_mul _,
have I : ∀ᶠ k in at_top, ‖f y - f (a k) - (f' z) (y - a k)‖ ≤ r (f' z) * ‖y - a k‖,
{ have L : tendsto (λ k, dist y (a k)) at_top (𝓝 (dist y x)) := tendsto_const_nhds.dist a_lim,
filter_upwards [(tendsto_order.1 L).2 _ hy.2],
assume k hk,
exact (aM k).2 y ⟨hy.1, hk⟩ },
exact le_of_tendsto_of_tendsto L1 L2 I },
-- choose a dense sequence `d p`
rcases topological_space.exists_dense_seq E with ⟨d, hd⟩,
-- split `M n z` into subsets `K n z p` of small diameters by intersecting with the ball
-- `closed_ball (d p) (u n / 3)`.
let K : ℕ → T → ℕ → set E := λ n z p, closure (M n z) ∩ closed_ball (d p) (u n / 3),
-- on the sets `K n z p`, the map `f` is well approximated by `f' z` by design.
have K_approx : ∀ n (z : T) p, approximates_linear_on f (f' z) (s ∩ K n z p) (r (f' z)),
{ assume n z p x hx y hy,
have yM : y ∈ M n z := closure_M_subset _ _ ⟨hy.1, hy.2.1⟩,
refine yM.2 _ ⟨hx.1, _⟩,
calc dist x y ≤ dist x (d p) + dist y (d p) : dist_triangle_right _ _ _
... ≤ u n / 3 + u n / 3 : add_le_add hx.2.2 hy.2.2
... < u n : by linarith [u_pos n] },
-- the sets `K n z p` are also closed, again by design.
have K_closed : ∀ n (z : T) p, is_closed (K n z p) :=
λ n z p, is_closed_closure.inter is_closed_ball,
-- reindex the sets `K n z p`, to let them only depend on an integer parameter `q`.
obtain ⟨F, hF⟩ : ∃ F : ℕ → ℕ × T × ℕ, function.surjective F,
{ haveI : encodable T := T_count.to_encodable,
haveI : nonempty T,
{ unfreezingI { rcases eq_empty_or_nonempty T with rfl|hT },
{ rcases hs with ⟨x, xs⟩,
rcases s_subset x xs with ⟨n, z, hnz⟩,
exact false.elim z.2 },
{ exact hT.coe_sort } },
inhabit (ℕ × T × ℕ),
exact ⟨_, encodable.surjective_decode_iget _⟩ },
-- these sets `t q = K n z p` will do
refine ⟨λ q, K (F q).1 (F q).2.1 (F q).2.2, λ q, f' (F q).2.1, λ n, K_closed _ _ _, λ x xs, _,
λ q, K_approx _ _ _, λ h's q, ⟨(F q).2.1, (F q).2.1.1.2, rfl⟩⟩,
-- the only fact that needs further checking is that they cover `s`.
-- we already know that any point `x ∈ s` belongs to a set `M n z`.
obtain ⟨n, z, hnz⟩ : ∃ (n : ℕ) (z : T), x ∈ M n z := s_subset x xs,
-- by density, it also belongs to a ball `closed_ball (d p) (u n / 3)`.
obtain ⟨p, hp⟩ : ∃ (p : ℕ), x ∈ closed_ball (d p) (u n / 3),
{ have : set.nonempty (ball x (u n / 3)),
{ simp only [nonempty_ball], linarith [u_pos n] },
obtain ⟨p, hp⟩ : ∃ (p : ℕ), d p ∈ ball x (u n / 3) := hd.exists_mem_open is_open_ball this,
exact ⟨p, (mem_ball'.1 hp).le⟩ },
-- choose `q` for which `t q = K n z p`.
obtain ⟨q, hq⟩ : ∃ q, F q = (n, z, p) := hF _,
-- then `x` belongs to `t q`.
apply mem_Union.2 ⟨q, _⟩,
simp only [hq, subset_closure hnz, hp, mem_inter_iff, and_self],
end
variables [measurable_space E] [borel_space E] (μ : measure E) [is_add_haar_measure μ]
/-- Assume that a function `f` has a derivative at every point of a set `s`. Then one may
partition `s` into countably many disjoint relatively measurable sets (i.e., intersections
of `s` with measurable sets `t n`) on which `f` is well approximated by linear maps `A n`. -/
lemma exists_partition_approximates_linear_on_of_has_fderiv_within_at
[second_countable_topology F]
(f : E → F) (s : set E) (f' : E → E →L[ℝ] F) (hf' : ∀ x ∈ s, has_fderiv_within_at f (f' x) s x)
(r : (E →L[ℝ] F) → ℝ≥0) (rpos : ∀ A, r A ≠ 0) :
∃ (t : ℕ → set E) (A : ℕ → (E →L[ℝ] F)), pairwise (disjoint on t)
∧ (∀ n, measurable_set (t n)) ∧ (s ⊆ ⋃ n, t n)
∧ (∀ n, approximates_linear_on f (A n) (s ∩ t n) (r (A n)))
∧ (s.nonempty → ∀ n, ∃ y ∈ s, A n = f' y) :=
begin
rcases exists_closed_cover_approximates_linear_on_of_has_fderiv_within_at f s f' hf' r rpos
with ⟨t, A, t_closed, st, t_approx, ht⟩,
refine ⟨disjointed t, A, disjoint_disjointed _,
measurable_set.disjointed (λ n, (t_closed n).measurable_set), _, _, ht⟩,
{ rw Union_disjointed, exact st },
{ assume n, exact (t_approx n).mono_set (inter_subset_inter_right _ (disjointed_subset _ _)) },
end
namespace measure_theory
/-!
### Local lemmas
We check that a function which is well enough approximated by a linear map expands the volume
essentially like this linear map, and that its derivative (if it exists) is almost everywhere close
to the approximating linear map.
-/
/-- Let `f` be a function which is sufficiently close (in the Lipschitz sense) to a given linear
map `A`. Then it expands the volume of any set by at most `m` for any `m > det A`. -/
lemma add_haar_image_le_mul_of_det_lt
(A : E →L[ℝ] E) {m : ℝ≥0} (hm : ennreal.of_real (|A.det|) < m) :
∀ᶠ δ in 𝓝[>] (0 : ℝ≥0), ∀ (s : set E) (f : E → E) (hf : approximates_linear_on f A s δ),
μ (f '' s) ≤ m * μ s :=
begin
apply nhds_within_le_nhds,
let d := ennreal.of_real (|A.det|),
-- construct a small neighborhood of `A '' (closed_ball 0 1)` with measure comparable to
-- the determinant of `A`.
obtain ⟨ε, hε, εpos⟩ : ∃ (ε : ℝ),
μ (closed_ball 0 ε + A '' (closed_ball 0 1)) < m * μ (closed_ball 0 1) ∧ 0 < ε,
{ have HC : is_compact (A '' closed_ball 0 1) :=
(proper_space.is_compact_closed_ball _ _).image A.continuous,
have L0 : tendsto (λ ε, μ (cthickening ε (A '' (closed_ball 0 1))))
(𝓝[>] 0) (𝓝 (μ (A '' (closed_ball 0 1)))),
{ apply tendsto.mono_left _ nhds_within_le_nhds,
exact tendsto_measure_cthickening_of_is_compact HC },
have L1 : tendsto (λ ε, μ (closed_ball 0 ε + A '' (closed_ball 0 1)))
(𝓝[>] 0) (𝓝 (μ (A '' (closed_ball 0 1)))),
{ apply L0.congr' _,
filter_upwards [self_mem_nhds_within] with r hr,
rw [←HC.add_closed_ball_zero (le_of_lt hr), add_comm] },
have L2 : tendsto (λ ε, μ (closed_ball 0 ε + A '' (closed_ball 0 1)))
(𝓝[>] 0) (𝓝 (d * μ (closed_ball 0 1))),
{ convert L1,
exact (add_haar_image_continuous_linear_map _ _ _).symm },
have I : d * μ (closed_ball 0 1) < m * μ (closed_ball 0 1) :=
(ennreal.mul_lt_mul_right ((measure_closed_ball_pos μ _ zero_lt_one).ne')
measure_closed_ball_lt_top.ne).2 hm,
have H : ∀ᶠ (b : ℝ) in 𝓝[>] 0,
μ (closed_ball 0 b + A '' closed_ball 0 1) < m * μ (closed_ball 0 1) :=
(tendsto_order.1 L2).2 _ I,
exact (H.and self_mem_nhds_within).exists },
have : Iio (⟨ε, εpos.le⟩ : ℝ≥0) ∈ 𝓝 (0 : ℝ≥0), { apply Iio_mem_nhds, exact εpos },
filter_upwards [this],
-- fix a function `f` which is close enough to `A`.
assume δ hδ s f hf,
-- This function expands the volume of any ball by at most `m`
have I : ∀ x r, x ∈ s → 0 ≤ r → μ (f '' (s ∩ closed_ball x r)) ≤ m * μ (closed_ball x r),
{ assume x r xs r0,
have K : f '' (s ∩ closed_ball x r) ⊆ A '' (closed_ball 0 r) + closed_ball (f x) (ε * r),
{ rintros y ⟨z, ⟨zs, zr⟩, rfl⟩,
apply set.mem_add.2 ⟨A (z - x), f z - f x - A (z - x) + f x, _, _, _⟩,
{ apply mem_image_of_mem,
simpa only [dist_eq_norm, mem_closed_ball, mem_closed_ball_zero_iff] using zr },
{ rw [mem_closed_ball_iff_norm, add_sub_cancel],
calc ‖f z - f x - A (z - x)‖
≤ δ * ‖z - x‖ : hf _ zs _ xs
... ≤ ε * r :
mul_le_mul (le_of_lt hδ) (mem_closed_ball_iff_norm.1 zr) (norm_nonneg _) εpos.le },
{ simp only [map_sub, pi.sub_apply],
abel } },
have : A '' (closed_ball 0 r) + closed_ball (f x) (ε * r)
= {f x} + r • (A '' (closed_ball 0 1) + closed_ball 0 ε),
by rw [smul_add, ← add_assoc, add_comm ({f x}), add_assoc, smul_closed_ball _ _ εpos.le,
smul_zero, singleton_add_closed_ball_zero, ← image_smul_set ℝ E E A,
smul_closed_ball _ _ zero_le_one, smul_zero, real.norm_eq_abs, abs_of_nonneg r0, mul_one,
mul_comm],
rw this at K,
calc μ (f '' (s ∩ closed_ball x r))
≤ μ ({f x} + r • (A '' (closed_ball 0 1) + closed_ball 0 ε)) : measure_mono K
... = ennreal.of_real (r ^ finrank ℝ E) * μ (A '' closed_ball 0 1 + closed_ball 0 ε) :
by simp only [abs_of_nonneg r0, add_haar_smul, image_add_left, abs_pow, singleton_add,
measure_preimage_add]
... ≤ ennreal.of_real (r ^ finrank ℝ E) * (m * μ (closed_ball 0 1)) :
by { rw add_comm, exact mul_le_mul_left' hε.le _ }
... = m * μ (closed_ball x r) :
by { simp only [add_haar_closed_ball' _ _ r0], ring } },
-- covering `s` by closed balls with total measure very close to `μ s`, one deduces that the
-- measure of `f '' s` is at most `m * (μ s + a)` for any positive `a`.
have J : ∀ᶠ a in 𝓝[>] (0 : ℝ≥0∞), μ (f '' s) ≤ m * (μ s + a),
{ filter_upwards [self_mem_nhds_within] with a ha,
change 0 < a at ha,
obtain ⟨t, r, t_count, ts, rpos, st, μt⟩ : ∃ (t : set E) (r : E → ℝ), t.countable ∧ t ⊆ s
∧ (∀ (x : E), x ∈ t → 0 < r x) ∧ (s ⊆ ⋃ (x ∈ t), closed_ball x (r x))
∧ ∑' (x : ↥t), μ (closed_ball ↑x (r ↑x)) ≤ μ s + a :=
besicovitch.exists_closed_ball_covering_tsum_measure_le μ ha.ne' (λ x, Ioi 0) s
(λ x xs δ δpos, ⟨δ/2, by simp [half_pos δpos, half_lt_self δpos]⟩),
haveI : encodable t := t_count.to_encodable,
calc μ (f '' s)
≤ μ (⋃ (x : t), f '' (s ∩ closed_ball x (r x))) :
begin
rw bUnion_eq_Union at st,
apply measure_mono,
rw [← image_Union, ← inter_Union],
exact image_subset _ (subset_inter (subset.refl _) st)
end
... ≤ ∑' (x : t), μ (f '' (s ∩ closed_ball x (r x))) : measure_Union_le _
... ≤ ∑' (x : t), m * μ (closed_ball x (r x)) :
ennreal.tsum_le_tsum (λ x, I x (r x) (ts x.2) (rpos x x.2).le)
... ≤ m * (μ s + a) :
by { rw ennreal.tsum_mul_left, exact mul_le_mul_left' μt _ } },
-- taking the limit in `a`, one obtains the conclusion
have L : tendsto (λ a, (m : ℝ≥0∞) * (μ s + a)) (𝓝[>] 0) (𝓝 (m * (μ s + 0))),
{ apply tendsto.mono_left _ nhds_within_le_nhds,
apply ennreal.tendsto.const_mul (tendsto_const_nhds.add tendsto_id),
simp only [ennreal.coe_ne_top, ne.def, or_true, not_false_iff] },
rw add_zero at L,
exact ge_of_tendsto L J,
end
/-- Let `f` be a function which is sufficiently close (in the Lipschitz sense) to a given linear
map `A`. Then it expands the volume of any set by at least `m` for any `m < det A`. -/
lemma mul_le_add_haar_image_of_lt_det
(A : E →L[ℝ] E) {m : ℝ≥0} (hm : (m : ℝ≥0∞) < ennreal.of_real (|A.det|)) :
∀ᶠ δ in 𝓝[>] (0 : ℝ≥0), ∀ (s : set E) (f : E → E) (hf : approximates_linear_on f A s δ),
(m : ℝ≥0∞) * μ s ≤ μ (f '' s) :=
begin
apply nhds_within_le_nhds,
-- The assumption `hm` implies that `A` is invertible. If `f` is close enough to `A`, it is also
-- invertible. One can then pass to the inverses, and deduce the estimate from
-- `add_haar_image_le_mul_of_det_lt` applied to `f⁻¹` and `A⁻¹`.
-- exclude first the trivial case where `m = 0`.
rcases eq_or_lt_of_le (zero_le m) with rfl|mpos,
{ apply eventually_of_forall,
simp only [forall_const, zero_mul, implies_true_iff, zero_le, ennreal.coe_zero] },
have hA : A.det ≠ 0,
{ assume h, simpa only [h, ennreal.not_lt_zero, ennreal.of_real_zero, abs_zero] using hm },
-- let `B` be the continuous linear equiv version of `A`.
let B := A.to_continuous_linear_equiv_of_det_ne_zero hA,
-- the determinant of `B.symm` is bounded by `m⁻¹`
have I : ennreal.of_real (|(B.symm : E →L[ℝ] E).det|) < (m⁻¹ : ℝ≥0),
{ simp only [ennreal.of_real, abs_inv, real.to_nnreal_inv, continuous_linear_equiv.det_coe_symm,
continuous_linear_map.coe_to_continuous_linear_equiv_of_det_ne_zero, ennreal.coe_lt_coe]
at ⊢ hm,
exact nnreal.inv_lt_inv mpos.ne' hm },
-- therefore, we may apply `add_haar_image_le_mul_of_det_lt` to `B.symm` and `m⁻¹`.
obtain ⟨δ₀, δ₀pos, hδ₀⟩ : ∃ (δ : ℝ≥0), 0 < δ ∧ ∀ (t : set E) (g : E → E),
approximates_linear_on g (B.symm : E →L[ℝ] E) t δ → μ (g '' t) ≤ ↑m⁻¹ * μ t,
{ have : ∀ᶠ (δ : ℝ≥0) in 𝓝[>] 0, ∀ (t : set E) (g : E → E),
approximates_linear_on g (B.symm : E →L[ℝ] E) t δ → μ (g '' t) ≤ ↑m⁻¹ * μ t :=
add_haar_image_le_mul_of_det_lt μ B.symm I,
rcases (this.and self_mem_nhds_within).exists with ⟨δ₀, h, h'⟩,
exact ⟨δ₀, h', h⟩, },
-- record smallness conditions for `δ` that will be needed to apply `hδ₀` below.
have L1 : ∀ᶠ δ in 𝓝 (0 : ℝ≥0), subsingleton E ∨ δ < ‖(B.symm : E →L[ℝ] E)‖₊⁻¹,
{ by_cases (subsingleton E),
{ simp only [h, true_or, eventually_const] },
simp only [h, false_or],
apply Iio_mem_nhds,
simpa only [h, false_or, inv_pos] using B.subsingleton_or_nnnorm_symm_pos },
have L2 : ∀ᶠ δ in 𝓝 (0 : ℝ≥0),
‖(B.symm : E →L[ℝ] E)‖₊ * (‖(B.symm : E →L[ℝ] E)‖₊⁻¹ - δ)⁻¹ * δ < δ₀,
{ have : tendsto (λ δ, ‖(B.symm : E →L[ℝ] E)‖₊ * (‖(B.symm : E →L[ℝ] E)‖₊⁻¹ - δ)⁻¹ * δ)
(𝓝 0) (𝓝 (‖(B.symm : E →L[ℝ] E)‖₊ * (‖(B.symm : E →L[ℝ] E)‖₊⁻¹ - 0)⁻¹ * 0)),
{ rcases eq_or_ne (‖(B.symm : E →L[ℝ] E)‖₊) 0 with H|H,
{ simpa only [H, zero_mul] using tendsto_const_nhds },
refine tendsto.mul (tendsto_const_nhds.mul _) tendsto_id,
refine (tendsto.sub tendsto_const_nhds tendsto_id).inv₀ _,
simpa only [tsub_zero, inv_eq_zero, ne.def] using H },
simp only [mul_zero] at this,
exact (tendsto_order.1 this).2 δ₀ δ₀pos },
-- let `δ` be small enough, and `f` approximated by `B` up to `δ`.
filter_upwards [L1, L2],
assume δ h1δ h2δ s f hf,
have hf' : approximates_linear_on f (B : E →L[ℝ] E) s δ,
by { convert hf, exact A.coe_to_continuous_linear_equiv_of_det_ne_zero _ },
let F := hf'.to_local_equiv h1δ,
-- the condition to be checked can be reformulated in terms of the inverse maps
suffices H : μ ((F.symm) '' F.target) ≤ (m⁻¹ : ℝ≥0) * μ F.target,
{ change (m : ℝ≥0∞) * μ (F.source) ≤ μ (F.target),
rwa [← F.symm_image_target_eq_source, mul_comm, ← ennreal.le_div_iff_mul_le, div_eq_mul_inv,
mul_comm, ← ennreal.coe_inv (mpos.ne')],
{ apply or.inl,
simpa only [ennreal.coe_eq_zero, ne.def] using mpos.ne'},
{ simp only [ennreal.coe_ne_top, true_or, ne.def, not_false_iff] } },
-- as `f⁻¹` is well approximated by `B⁻¹`, the conclusion follows from `hδ₀`
-- and our choice of `δ`.
exact hδ₀ _ _ ((hf'.to_inv h1δ).mono_num h2δ.le),
end
/-- If a differentiable function `f` is approximated by a linear map `A` on a set `s`, up to `δ`,
then at almost every `x` in `s` one has `‖f' x - A‖ ≤ δ`. -/
lemma _root_.approximates_linear_on.norm_fderiv_sub_le
{A : E →L[ℝ] E} {δ : ℝ≥0}
(hf : approximates_linear_on f A s δ) (hs : measurable_set s)
(f' : E → E →L[ℝ] E) (hf' : ∀ x ∈ s, has_fderiv_within_at f (f' x) s x) :
∀ᵐ x ∂(μ.restrict s), ‖f' x - A‖₊ ≤ δ :=
begin
/- The conclusion will hold at the Lebesgue density points of `s` (which have full measure).
At such a point `x`, for any `z` and any `ε > 0` one has for small `r`
that `{x} + r • closed_ball z ε` intersects `s`. At a point `y` in the intersection,
`f y - f x` is close both to `f' x (r z)` (by differentiability) and to `A (r z)`
(by linear approximation), so these two quantities are close, i.e., `(f' x - A) z` is small. -/
filter_upwards [besicovitch.ae_tendsto_measure_inter_div μ s, ae_restrict_mem hs],
-- start from a Lebesgue density point `x`, belonging to `s`.
assume x hx xs,
-- consider an arbitrary vector `z`.
apply continuous_linear_map.op_norm_le_bound _ δ.2 (λ z, _),
-- to show that `‖(f' x - A) z‖ ≤ δ ‖z‖`, it suffices to do it up to some error that vanishes
-- asymptotically in terms of `ε > 0`.
suffices H : ∀ ε, 0 < ε → ‖(f' x - A) z‖ ≤ (δ + ε) * (‖z‖ + ε) + ‖(f' x - A)‖ * ε,
{ have : tendsto (λ (ε : ℝ), ((δ : ℝ) + ε) * (‖z‖ + ε) + ‖(f' x - A)‖ * ε) (𝓝[>] 0)
(𝓝 ((δ + 0) * (‖z‖ + 0) + ‖(f' x - A)‖ * 0)) :=
tendsto.mono_left (continuous.tendsto (by continuity) 0) nhds_within_le_nhds,
simp only [add_zero, mul_zero] at this,
apply le_of_tendsto_of_tendsto tendsto_const_nhds this,
filter_upwards [self_mem_nhds_within],
exact H },
-- fix a positive `ε`.
assume ε εpos,
-- for small enough `r`, the rescaled ball `r • closed_ball z ε` intersects `s`, as `x` is a
-- density point
have B₁ : ∀ᶠ r in 𝓝[>] (0 : ℝ), (s ∩ ({x} + r • closed_ball z ε)).nonempty :=
eventually_nonempty_inter_smul_of_density_one μ s x hx
_ measurable_set_closed_ball (measure_closed_ball_pos μ z εpos).ne',
obtain ⟨ρ, ρpos, hρ⟩ :
∃ ρ > 0, ball x ρ ∩ s ⊆ {y : E | ‖f y - f x - (f' x) (y - x)‖ ≤ ε * ‖y - x‖} :=
mem_nhds_within_iff.1 (is_o.def (hf' x xs) εpos),
-- for small enough `r`, the rescaled ball `r • closed_ball z ε` is included in the set where
-- `f y - f x` is well approximated by `f' x (y - x)`.
have B₂ : ∀ᶠ r in 𝓝[>] (0 : ℝ), {x} + r • closed_ball z ε ⊆ ball x ρ := nhds_within_le_nhds
(eventually_singleton_add_smul_subset bounded_closed_ball (ball_mem_nhds x ρpos)),
-- fix a small positive `r` satisfying the above properties, as well as a corresponding `y`.
obtain ⟨r, ⟨y, ⟨ys, hy⟩⟩, rρ, rpos⟩ : ∃ (r : ℝ), (s ∩ ({x} + r • closed_ball z ε)).nonempty ∧
{x} + r • closed_ball z ε ⊆ ball x ρ ∧ 0 < r := (B₁.and (B₂.and self_mem_nhds_within)).exists,
-- write `y = x + r a` with `a ∈ closed_ball z ε`.
obtain ⟨a, az, ya⟩ : ∃ a, a ∈ closed_ball z ε ∧ y = x + r • a,
{ simp only [mem_smul_set, image_add_left, mem_preimage, singleton_add] at hy,
rcases hy with ⟨a, az, ha⟩,
exact ⟨a, az, by simp only [ha, add_neg_cancel_left]⟩ },
have norm_a : ‖a‖ ≤ ‖z‖ + ε := calc
‖a‖ = ‖z + (a - z)‖ : by simp only [add_sub_cancel'_right]
... ≤ ‖z‖ + ‖a - z‖ : norm_add_le _ _
... ≤ ‖z‖ + ε : add_le_add_left (mem_closed_ball_iff_norm.1 az) _,
-- use the approximation properties to control `(f' x - A) a`, and then `(f' x - A) z` as `z` is
-- close to `a`.
have I : r * ‖(f' x - A) a‖ ≤ r * (δ + ε) * (‖z‖ + ε) := calc
r * ‖(f' x - A) a‖ = ‖(f' x - A) (r • a)‖ :
by simp only [continuous_linear_map.map_smul, norm_smul, real.norm_eq_abs,
abs_of_nonneg rpos.le]
... = ‖(f y - f x - A (y - x)) -
(f y - f x - (f' x) (y - x))‖ :
begin
congr' 1,
simp only [ya, add_sub_cancel', sub_sub_sub_cancel_left, continuous_linear_map.coe_sub',
eq_self_iff_true, sub_left_inj, pi.sub_apply, continuous_linear_map.map_smul, smul_sub],
end
... ≤ ‖f y - f x - A (y - x)‖ +
‖f y - f x - (f' x) (y - x)‖ : norm_sub_le _ _
... ≤ δ * ‖y - x‖ + ε * ‖y - x‖ :
add_le_add (hf _ ys _ xs) (hρ ⟨rρ hy, ys⟩)
... = r * (δ + ε) * ‖a‖ :
by { simp only [ya, add_sub_cancel', norm_smul, real.norm_eq_abs, abs_of_nonneg rpos.le],
ring }
... ≤ r * (δ + ε) * (‖z‖ + ε) :
mul_le_mul_of_nonneg_left norm_a (mul_nonneg rpos.le (add_nonneg δ.2 εpos.le)),
show ‖(f' x - A) z‖ ≤ (δ + ε) * (‖z‖ + ε) + ‖(f' x - A)‖ * ε, from calc
‖(f' x - A) z‖ = ‖(f' x - A) a + (f' x - A) (z - a)‖ :
begin
congr' 1,
simp only [continuous_linear_map.coe_sub', map_sub, pi.sub_apply],
abel
end
... ≤ ‖(f' x - A) a‖ + ‖(f' x - A) (z - a)‖ : norm_add_le _ _
... ≤ (δ + ε) * (‖z‖ + ε) + ‖f' x - A‖ * ‖z - a‖ :
begin
apply add_le_add,
{ rw mul_assoc at I, exact (mul_le_mul_left rpos).1 I },
{ apply continuous_linear_map.le_op_norm }
end
... ≤ (δ + ε) * (‖z‖ + ε) + ‖f' x - A‖ * ε : add_le_add le_rfl
(mul_le_mul_of_nonneg_left (mem_closed_ball_iff_norm'.1 az) (norm_nonneg _)),
end
/-!
### Measure zero of the image, over non-measurable sets
If a set has measure `0`, then its image under a differentiable map has measure zero. This doesn't
require the set to be measurable. In the same way, if `f` is differentiable on a set `s` with
non-invertible derivative everywhere, then `f '' s` has measure `0`, again without measurability
assumptions.
-/
/-- A differentiable function maps sets of measure zero to sets of measure zero. -/
lemma add_haar_image_eq_zero_of_differentiable_on_of_add_haar_eq_zero
(hf : differentiable_on ℝ f s) (hs : μ s = 0) :
μ (f '' s) = 0 :=
begin
refine le_antisymm _ (zero_le _),
have : ∀ (A : E →L[ℝ] E), ∃ (δ : ℝ≥0), 0 < δ ∧ ∀ (t : set E)
(hf : approximates_linear_on f A t δ), μ (f '' t) ≤ (real.to_nnreal (|A.det|) + 1 : ℝ≥0) * μ t,
{ assume A,
let m : ℝ≥0 := real.to_nnreal ((|A.det|)) + 1,
have I : ennreal.of_real (|A.det|) < m,
by simp only [ennreal.of_real, m, lt_add_iff_pos_right, zero_lt_one, ennreal.coe_lt_coe],
rcases ((add_haar_image_le_mul_of_det_lt μ A I).and self_mem_nhds_within).exists
with ⟨δ, h, h'⟩,
exact ⟨δ, h', λ t ht, h t f ht⟩ },
choose δ hδ using this,
obtain ⟨t, A, t_disj, t_meas, t_cover, ht, -⟩ : ∃ (t : ℕ → set E) (A : ℕ → (E →L[ℝ] E)),
pairwise (disjoint on t) ∧ (∀ (n : ℕ), measurable_set (t n)) ∧ (s ⊆ ⋃ (n : ℕ), t n)
∧ (∀ (n : ℕ), approximates_linear_on f (A n) (s ∩ t n) (δ (A n)))
∧ (s.nonempty → ∀ n, ∃ y ∈ s, A n = fderiv_within ℝ f s y) :=
exists_partition_approximates_linear_on_of_has_fderiv_within_at f s
(fderiv_within ℝ f s) (λ x xs, (hf x xs).has_fderiv_within_at) δ (λ A, (hδ A).1.ne'),
calc μ (f '' s)
≤ μ (⋃ n, f '' (s ∩ t n)) :
begin
apply measure_mono,
rw [← image_Union, ← inter_Union],
exact image_subset f (subset_inter subset.rfl t_cover)
end
... ≤ ∑' n, μ (f '' (s ∩ t n)) : measure_Union_le _
... ≤ ∑' n, (real.to_nnreal (|(A n).det|) + 1 : ℝ≥0) * μ (s ∩ t n) :
begin
apply ennreal.tsum_le_tsum (λ n, _),
apply (hδ (A n)).2,
exact ht n,
end
... ≤ ∑' n, (real.to_nnreal (|(A n).det|) + 1 : ℝ≥0) * 0 :
begin
refine ennreal.tsum_le_tsum (λ n, mul_le_mul_left' _ _),
exact le_trans (measure_mono (inter_subset_left _ _)) (le_of_eq hs),
end
... = 0 : by simp only [tsum_zero, mul_zero]
end
/-- A version of Sard lemma in fixed dimension: given a differentiable function from `E` to `E` and
a set where the differential is not invertible, then the image of this set has zero measure.
Here, we give an auxiliary statement towards this result. -/
lemma add_haar_image_eq_zero_of_det_fderiv_within_eq_zero_aux
(hf' : ∀ x ∈ s, has_fderiv_within_at f (f' x) s x)
(R : ℝ) (hs : s ⊆ closed_ball 0 R) (ε : ℝ≥0) (εpos : 0 < ε)
(h'f' : ∀ x ∈ s, (f' x).det = 0) :
μ (f '' s) ≤ ε * μ (closed_ball 0 R) :=
begin
rcases eq_empty_or_nonempty s with rfl|h's, { simp only [measure_empty, zero_le, image_empty] },
have : ∀ (A : E →L[ℝ] E), ∃ (δ : ℝ≥0), 0 < δ ∧ ∀ (t : set E)
(hf : approximates_linear_on f A t δ), μ (f '' t) ≤ (real.to_nnreal (|A.det|) + ε : ℝ≥0) * μ t,
{ assume A,
let m : ℝ≥0 := real.to_nnreal (|A.det|) + ε,
have I : ennreal.of_real (|A.det|) < m,
by simp only [ennreal.of_real, m, lt_add_iff_pos_right, εpos, ennreal.coe_lt_coe],
rcases ((add_haar_image_le_mul_of_det_lt μ A I).and self_mem_nhds_within).exists
with ⟨δ, h, h'⟩,
exact ⟨δ, h', λ t ht, h t f ht⟩ },
choose δ hδ using this,
obtain ⟨t, A, t_disj, t_meas, t_cover, ht, Af'⟩ : ∃ (t : ℕ → set E) (A : ℕ → (E →L[ℝ] E)),
pairwise (disjoint on t) ∧ (∀ (n : ℕ), measurable_set (t n)) ∧ (s ⊆ ⋃ (n : ℕ), t n)
∧ (∀ (n : ℕ), approximates_linear_on f (A n) (s ∩ t n) (δ (A n)))
∧ (s.nonempty → ∀ n, ∃ y ∈ s, A n = f' y) :=
exists_partition_approximates_linear_on_of_has_fderiv_within_at f s
f' hf' δ (λ A, (hδ A).1.ne'),
calc μ (f '' s)
≤ μ (⋃ n, f '' (s ∩ t n)) :
begin
apply measure_mono,
rw [← image_Union, ← inter_Union],
exact image_subset f (subset_inter subset.rfl t_cover)
end
... ≤ ∑' n, μ (f '' (s ∩ t n)) : measure_Union_le _
... ≤ ∑' n, (real.to_nnreal (|(A n).det|) + ε : ℝ≥0) * μ (s ∩ t n) :
begin
apply ennreal.tsum_le_tsum (λ n, _),
apply (hδ (A n)).2,
exact ht n,
end
... = ∑' n, ε * μ (s ∩ t n) :
begin
congr' with n,
rcases Af' h's n with ⟨y, ys, hy⟩,
simp only [hy, h'f' y ys, real.to_nnreal_zero, abs_zero, zero_add]
end
... ≤ ε * ∑' n, μ (closed_ball 0 R ∩ t n) :
begin
rw ennreal.tsum_mul_left,
refine mul_le_mul_left' (ennreal.tsum_le_tsum (λ n, measure_mono _)) _,
exact inter_subset_inter_left _ hs,
end
... = ε * μ (⋃ n, closed_ball 0 R ∩ t n) :
begin
rw measure_Union,
{ exact pairwise_disjoint.mono t_disj (λ n, inter_subset_right _ _) },
{ assume n,
exact measurable_set_closed_ball.inter (t_meas n) }
end
... ≤ ε * μ (closed_ball 0 R) :
begin
rw ← inter_Union,
exact mul_le_mul_left' (measure_mono (inter_subset_left _ _)) _,
end
end
/-- A version of Sard lemma in fixed dimension: given a differentiable function from `E` to `E` and
a set where the differential is not invertible, then the image of this set has zero measure. -/
lemma add_haar_image_eq_zero_of_det_fderiv_within_eq_zero
(hf' : ∀ x ∈ s, has_fderiv_within_at f (f' x) s x)
(h'f' : ∀ x ∈ s, (f' x).det = 0) :
μ (f '' s) = 0 :=
begin
suffices H : ∀ R, μ (f '' (s ∩ closed_ball 0 R)) = 0,
{ apply le_antisymm _ (zero_le _),
rw ← Union_inter_closed_ball_nat s 0,
calc μ (f '' ⋃ (n : ℕ), s ∩ closed_ball 0 n) ≤ ∑' (n : ℕ), μ (f '' (s ∩ closed_ball 0 n)) :
by { rw image_Union, exact measure_Union_le _ }
... ≤ 0 : by simp only [H, tsum_zero, nonpos_iff_eq_zero] },
assume R,
have A : ∀ (ε : ℝ≥0) (εpos : 0 < ε), μ (f '' (s ∩ closed_ball 0 R)) ≤ ε * μ (closed_ball 0 R) :=
λ ε εpos, add_haar_image_eq_zero_of_det_fderiv_within_eq_zero_aux μ
(λ x hx, (hf' x hx.1).mono (inter_subset_left _ _)) R (inter_subset_right _ _) ε εpos
(λ x hx, h'f' x hx.1),
have B : tendsto (λ (ε : ℝ≥0), (ε : ℝ≥0∞) * μ (closed_ball 0 R)) (𝓝[>] 0) (𝓝 0),
{ have : tendsto (λ (ε : ℝ≥0), (ε : ℝ≥0∞) * μ (closed_ball 0 R))
(𝓝 0) (𝓝 (((0 : ℝ≥0) : ℝ≥0∞) * μ (closed_ball 0 R))) :=
ennreal.tendsto.mul_const (ennreal.tendsto_coe.2 tendsto_id)
(or.inr ((measure_closed_ball_lt_top).ne)),
simp only [zero_mul, ennreal.coe_zero] at this,
exact tendsto.mono_left this nhds_within_le_nhds },
apply le_antisymm _ (zero_le _),
apply ge_of_tendsto B,
filter_upwards [self_mem_nhds_within],
exact A,
end
/-!
### Weak measurability statements
We show that the derivative of a function on a set is almost everywhere measurable, and that the
image `f '' s` is measurable if `f` is injective on `s`. The latter statement follows from the
Lusin-Souslin theorem.
-/
/-- The derivative of a function on a measurable set is almost everywhere measurable on this set
with respect to Lebesgue measure. Note that, in general, it is not genuinely measurable there,
as `f'` is not unique (but only on a set of measure `0`, as the argument shows). -/
lemma ae_measurable_fderiv_within (hs : measurable_set s)
(hf' : ∀ x ∈ s, has_fderiv_within_at f (f' x) s x) :
ae_measurable f' (μ.restrict s) :=
begin
/- It suffices to show that `f'` can be uniformly approximated by a measurable function.
Fix `ε > 0`. Thanks to `exists_partition_approximates_linear_on_of_has_fderiv_within_at`, one
can find a countable measurable partition of `s` into sets `s ∩ t n` on which `f` is well
approximated by linear maps `A n`. On almost all of `s ∩ t n`, it follows from
`approximates_linear_on.norm_fderiv_sub_le` that `f'` is uniformly approximated by `A n`, which
gives the conclusion. -/
-- fix a precision `ε`
refine ae_measurable_of_unif_approx (λ ε εpos, _),
let δ : ℝ≥0 := ⟨ε, le_of_lt εpos⟩,
have δpos : 0 < δ := εpos,
-- partition `s` into sets `s ∩ t n` on which `f` is approximated by linear maps `A n`.
obtain ⟨t, A, t_disj, t_meas, t_cover, ht, Af'⟩ : ∃ (t : ℕ → set E) (A : ℕ → (E →L[ℝ] E)),
pairwise (disjoint on t) ∧ (∀ (n : ℕ), measurable_set (t n)) ∧ (s ⊆ ⋃ (n : ℕ), t n)
∧ (∀ (n : ℕ), approximates_linear_on f (A n) (s ∩ t n) δ)
∧ (s.nonempty → ∀ n, ∃ y ∈ s, A n = f' y) :=
exists_partition_approximates_linear_on_of_has_fderiv_within_at f s
f' hf' (λ A, δ) (λ A, δpos.ne'),
-- define a measurable function `g` which coincides with `A n` on `t n`.
obtain ⟨g, g_meas, hg⟩ : ∃ g : E → (E →L[ℝ] E), measurable g ∧
∀ (n : ℕ) (x : E), x ∈ t n → g x = A n :=
exists_measurable_piecewise_nat t t_meas t_disj (λ n x, A n) (λ n, measurable_const),
refine ⟨g, g_meas.ae_measurable, _⟩,
-- reduce to checking that `f'` and `g` are close on almost all of `s ∩ t n`, for all `n`.
suffices H : ∀ᵐ (x : E) ∂(sum (λ n, μ.restrict (s ∩ t n))), dist (g x) (f' x) ≤ ε,
{ have : μ.restrict s ≤ sum (λ n, μ.restrict (s ∩ t n)),
{ have : s = ⋃ n, s ∩ t n,
{ rw ← inter_Union,
exact subset.antisymm (subset_inter subset.rfl t_cover) (inter_subset_left _ _) },
conv_lhs { rw this },
exact restrict_Union_le },
exact ae_mono this H },
-- fix such an `n`.
refine ae_sum_iff.2 (λ n, _),
-- on almost all `s ∩ t n`, `f' x` is close to `A n` thanks to
-- `approximates_linear_on.norm_fderiv_sub_le`.
have E₁ : ∀ᵐ (x : E) ∂μ.restrict (s ∩ t n), ‖f' x - A n‖₊ ≤ δ :=
(ht n).norm_fderiv_sub_le μ (hs.inter (t_meas n)) f'
(λ x hx, (hf' x hx.1).mono (inter_subset_left _ _)),
-- moreover, `g x` is equal to `A n` there.
have E₂ : ∀ᵐ (x : E) ∂μ.restrict (s ∩ t n), g x = A n,
{ suffices H : ∀ᵐ (x : E) ∂μ.restrict (t n), g x = A n,
from ae_mono (restrict_mono (inter_subset_right _ _) le_rfl) H,
filter_upwards [ae_restrict_mem (t_meas n)],
exact hg n },
-- putting these two properties together gives the conclusion.
filter_upwards [E₁, E₂] with x hx1 hx2,
rw ← nndist_eq_nnnorm at hx1,
rw [hx2, dist_comm],
exact hx1,
end
lemma ae_measurable_of_real_abs_det_fderiv_within (hs : measurable_set s)
(hf' : ∀ x ∈ s, has_fderiv_within_at f (f' x) s x) :
ae_measurable (λ x, ennreal.of_real (|(f' x).det|)) (μ.restrict s) :=
begin
apply ennreal.measurable_of_real.comp_ae_measurable,
refine continuous_abs.measurable.comp_ae_measurable _,
refine continuous_linear_map.continuous_det.measurable.comp_ae_measurable _,
exact ae_measurable_fderiv_within μ hs hf'
end
lemma ae_measurable_to_nnreal_abs_det_fderiv_within (hs : measurable_set s)
(hf' : ∀ x ∈ s, has_fderiv_within_at f (f' x) s x) :
ae_measurable (λ x, |(f' x).det|.to_nnreal) (μ.restrict s) :=
begin
apply measurable_real_to_nnreal.comp_ae_measurable,
refine continuous_abs.measurable.comp_ae_measurable _,
refine continuous_linear_map.continuous_det.measurable.comp_ae_measurable _,
exact ae_measurable_fderiv_within μ hs hf'
end
/-- If a function is differentiable and injective on a measurable set,
then the image is measurable.-/
lemma measurable_image_of_fderiv_within (hs : measurable_set s)
(hf' : ∀ x ∈ s, has_fderiv_within_at f (f' x) s x) (hf : inj_on f s) :
measurable_set (f '' s) :=
begin
have : differentiable_on ℝ f s := λ x hx, (hf' x hx).differentiable_within_at,
exact hs.image_of_continuous_on_inj_on (differentiable_on.continuous_on this) hf,
end
/-- If a function is differentiable and injective on a measurable set `s`, then its restriction
to `s` is a measurable embedding. -/
lemma measurable_embedding_of_fderiv_within (hs : measurable_set s)
(hf' : ∀ x ∈ s, has_fderiv_within_at f (f' x) s x) (hf : inj_on f s) :
measurable_embedding (s.restrict f) :=
begin
have : differentiable_on ℝ f s := λ x hx, (hf' x hx).differentiable_within_at,
exact this.continuous_on.measurable_embedding hs hf
end
/-!
### Proving the estimate for the measure of the image
We show the formula `∫⁻ x in s, ennreal.of_real (|(f' x).det|) ∂μ = μ (f '' s)`,
in `lintegral_abs_det_fderiv_eq_add_haar_image`. For this, we show both inequalities in both
directions, first up to controlled errors and then letting these errors tend to `0`.
-/
lemma add_haar_image_le_lintegral_abs_det_fderiv_aux1 (hs : measurable_set s)
(hf' : ∀ x ∈ s, has_fderiv_within_at f (f' x) s x) {ε : ℝ≥0} (εpos : 0 < ε) :
μ (f '' s) ≤ ∫⁻ x in s, ennreal.of_real (|(f' x).det|) ∂μ + 2 * ε * μ s :=
begin
/- To bound `μ (f '' s)`, we cover `s` by sets where `f` is well-approximated by linear maps
`A n` (and where `f'` is almost everywhere close to `A n`), and then use that `f` expands the
measure of such a set by at most `(A n).det + ε`. -/
have : ∀ (A : E →L[ℝ] E), ∃ (δ : ℝ≥0), 0 < δ ∧
(∀ (B : E →L[ℝ] E), ‖B - A‖ ≤ δ → |B.det - A.det| ≤ ε) ∧
∀ (t : set E) (g : E → E) (hf : approximates_linear_on g A t δ),
μ (g '' t) ≤ (ennreal.of_real (|A.det|) + ε) * μ t,
{ assume A,
let m : ℝ≥0 := real.to_nnreal (|A.det|) + ε,
have I : ennreal.of_real (|A.det|) < m,
by simp only [ennreal.of_real, m, lt_add_iff_pos_right, εpos, ennreal.coe_lt_coe],
rcases ((add_haar_image_le_mul_of_det_lt μ A I).and self_mem_nhds_within).exists
with ⟨δ, h, δpos⟩,
obtain ⟨δ', δ'pos, hδ'⟩ :
∃ (δ' : ℝ) (H : 0 < δ'), ∀ B, dist B A < δ' → dist B.det A.det < ↑ε :=
continuous_at_iff.1 continuous_linear_map.continuous_det.continuous_at ε εpos,
let δ'' : ℝ≥0 := ⟨δ' / 2, (half_pos δ'pos).le⟩,
refine ⟨min δ δ'', lt_min δpos (half_pos δ'pos), _, _⟩,
{ assume B hB,
rw ← real.dist_eq,
apply (hδ' B _).le,
rw dist_eq_norm,
calc ‖B - A‖ ≤ (min δ δ'' : ℝ≥0) : hB
... ≤ δ'' : by simp only [le_refl, nnreal.coe_min, min_le_iff, or_true]
... < δ' : half_lt_self δ'pos },
{ assume t g htg,
exact h t g (htg.mono_num (min_le_left _ _)) } },
choose δ hδ using this,
obtain ⟨t, A, t_disj, t_meas, t_cover, ht, -⟩ : ∃ (t : ℕ → set E) (A : ℕ → (E →L[ℝ] E)),
pairwise (disjoint on t) ∧ (∀ (n : ℕ), measurable_set (t n)) ∧ (s ⊆ ⋃ (n : ℕ), t n)
∧ (∀ (n : ℕ), approximates_linear_on f (A n) (s ∩ t n) (δ (A n)))
∧ (s.nonempty → ∀ n, ∃ y ∈ s, A n = f' y) :=
exists_partition_approximates_linear_on_of_has_fderiv_within_at f s
f' hf' δ (λ A, (hδ A).1.ne'),
calc μ (f '' s)
≤ μ (⋃ n, f '' (s ∩ t n)) :
begin
apply measure_mono,
rw [← image_Union, ← inter_Union],
exact image_subset f (subset_inter subset.rfl t_cover)
end
... ≤ ∑' n, μ (f '' (s ∩ t n)) : measure_Union_le _
... ≤ ∑' n, (ennreal.of_real (|(A n).det|) + ε) * μ (s ∩ t n) :
begin
apply ennreal.tsum_le_tsum (λ n, _),
apply (hδ (A n)).2.2,
exact ht n,
end
... = ∑' n, ∫⁻ x in s ∩ t n, ennreal.of_real (|(A n).det|) + ε ∂μ :
by simp only [lintegral_const, measurable_set.univ, measure.restrict_apply, univ_inter]
... ≤ ∑' n, ∫⁻ x in s ∩ t n, ennreal.of_real (|(f' x).det|) + 2 * ε ∂μ :
begin
apply ennreal.tsum_le_tsum (λ n, _),
apply lintegral_mono_ae,
filter_upwards [(ht n).norm_fderiv_sub_le μ (hs.inter (t_meas n)) f'
(λ x hx, (hf' x hx.1).mono (inter_subset_left _ _))],
assume x hx,
have I : |(A n).det| ≤ |(f' x).det| + ε := calc
|(A n).det| = |(f' x).det - ((f' x).det - (A n).det)| : by { congr' 1, abel }
... ≤ |(f' x).det| + |(f' x).det - (A n).det| : abs_sub _ _
... ≤ |(f' x).det| + ε : add_le_add le_rfl ((hδ (A n)).2.1 _ hx),
calc ennreal.of_real (|(A n).det|) + ε
≤ ennreal.of_real (|(f' x).det| + ε) + ε :
add_le_add (ennreal.of_real_le_of_real I) le_rfl
... = ennreal.of_real (|(f' x).det|) + 2 * ε :
by simp only [ennreal.of_real_add, abs_nonneg, two_mul, add_assoc, nnreal.zero_le_coe,
ennreal.of_real_coe_nnreal],
end
... = ∫⁻ x in ⋃ n, s ∩ t n, ennreal.of_real (|(f' x).det|) + 2 * ε ∂μ :
begin
have M : ∀ (n : ℕ), measurable_set (s ∩ t n) := λ n, hs.inter (t_meas n),
rw lintegral_Union M,
exact pairwise_disjoint.mono t_disj (λ n, inter_subset_right _ _),
end
... = ∫⁻ x in s, ennreal.of_real (|(f' x).det|) + 2 * ε ∂μ :
begin
have : s = ⋃ n, s ∩ t n,
{ rw ← inter_Union,
exact subset.antisymm (subset_inter subset.rfl t_cover) (inter_subset_left _ _) },
rw ← this,
end
... = ∫⁻ x in s, ennreal.of_real (|(f' x).det|) ∂μ + 2 * ε * μ s :
by simp only [lintegral_add_right' _ ae_measurable_const, set_lintegral_const]
end
lemma add_haar_image_le_lintegral_abs_det_fderiv_aux2 (hs : measurable_set s) (h's : μ s ≠ ∞)
(hf' : ∀ x ∈ s, has_fderiv_within_at f (f' x) s x) :
μ (f '' s) ≤ ∫⁻ x in s, ennreal.of_real (|(f' x).det|) ∂μ :=
begin
/- We just need to let the error tend to `0` in the previous lemma. -/
have : tendsto (λ (ε : ℝ≥0), ∫⁻ x in s, ennreal.of_real (|(f' x).det|) ∂μ + 2 * ε * μ s)
(𝓝[>] 0) (𝓝 (∫⁻ x in s, ennreal.of_real (|(f' x).det|) ∂μ + 2 * (0 : ℝ≥0) * μ s)),
{ apply tendsto.mono_left _ nhds_within_le_nhds,
refine tendsto_const_nhds.add _,
refine ennreal.tendsto.mul_const _ (or.inr h's),
exact ennreal.tendsto.const_mul (ennreal.tendsto_coe.2 tendsto_id)
(or.inr ennreal.coe_ne_top) },
simp only [add_zero, zero_mul, mul_zero, ennreal.coe_zero] at this,
apply ge_of_tendsto this,
filter_upwards [self_mem_nhds_within],
rintros ε (εpos : 0 < ε),
exact add_haar_image_le_lintegral_abs_det_fderiv_aux1 μ hs hf' εpos,
end
lemma add_haar_image_le_lintegral_abs_det_fderiv (hs : measurable_set s)
(hf' : ∀ x ∈ s, has_fderiv_within_at f (f' x) s x) :
μ (f '' s) ≤ ∫⁻ x in s, ennreal.of_real (|(f' x).det|) ∂μ :=
begin
/- We already know the result for finite-measure sets. We cover `s` by finite-measure sets using
`spanning_sets μ`, and apply the previous result to each of these parts. -/
let u := λ n, disjointed (spanning_sets μ) n,
have u_meas : ∀ n, measurable_set (u n),
{ assume n,
apply measurable_set.disjointed (λ i, _),
exact measurable_spanning_sets μ i },
have A : s = ⋃ n, s ∩ u n,
by rw [← inter_Union, Union_disjointed, Union_spanning_sets, inter_univ],
calc μ (f '' s) ≤ ∑' n, μ (f '' (s ∩ u n)) :
begin
conv_lhs { rw [A, image_Union] },
exact measure_Union_le _,
end
... ≤ ∑' n, ∫⁻ x in s ∩ u n, ennreal.of_real (|(f' x).det|) ∂μ :
begin
apply ennreal.tsum_le_tsum (λ n, _),
apply add_haar_image_le_lintegral_abs_det_fderiv_aux2 μ (hs.inter (u_meas n)) _
(λ x hx, (hf' x hx.1).mono (inter_subset_left _ _)),
have : μ (u n) < ∞ :=
lt_of_le_of_lt (measure_mono (disjointed_subset _ _)) (measure_spanning_sets_lt_top μ n),
exact ne_of_lt (lt_of_le_of_lt (measure_mono (inter_subset_right _ _)) this),
end
... = ∫⁻ x in s, ennreal.of_real (|(f' x).det|) ∂μ :
begin
conv_rhs { rw A },
rw lintegral_Union,
{ assume n, exact hs.inter (u_meas n) },
{ exact pairwise_disjoint.mono (disjoint_disjointed _) (λ n, inter_subset_right _ _) }
end
end
lemma lintegral_abs_det_fderiv_le_add_haar_image_aux1 (hs : measurable_set s)
(hf' : ∀ x ∈ s, has_fderiv_within_at f (f' x) s x) (hf : inj_on f s)
{ε : ℝ≥0} (εpos : 0 < ε) :
∫⁻ x in s, ennreal.of_real (|(f' x).det|) ∂μ ≤ μ (f '' s) + 2 * ε * μ s :=
begin
/- To bound `∫⁻ x in s, ennreal.of_real (|(f' x).det|) ∂μ`, we cover `s` by sets where `f` is
well-approximated by linear maps `A n` (and where `f'` is almost everywhere close to `A n`),
and then use that `f` expands the measure of such a set by at least `(A n).det - ε`. -/
have : ∀ (A : E →L[ℝ] E), ∃ (δ : ℝ≥0), 0 < δ ∧
(∀ (B : E →L[ℝ] E), ‖B - A‖ ≤ δ → |B.det - A.det| ≤ ε) ∧
∀ (t : set E) (g : E → E) (hf : approximates_linear_on g A t δ),
ennreal.of_real (|A.det|) * μ t ≤ μ (g '' t) + ε * μ t,
{ assume A,
obtain ⟨δ', δ'pos, hδ'⟩ :
∃ (δ' : ℝ) (H : 0 < δ'), ∀ B, dist B A < δ' → dist B.det A.det < ↑ε :=
continuous_at_iff.1 continuous_linear_map.continuous_det.continuous_at ε εpos,
let δ'' : ℝ≥0 := ⟨δ' / 2, (half_pos δ'pos).le⟩,
have I'' : ∀ (B : E →L[ℝ] E), ‖B - A‖ ≤ ↑δ'' → |B.det - A.det| ≤ ↑ε,
{ assume B hB,
rw ← real.dist_eq,
apply (hδ' B _).le,
rw dist_eq_norm,
exact hB.trans_lt (half_lt_self δ'pos) },
rcases eq_or_ne A.det 0 with hA|hA,
{ refine ⟨δ'', half_pos δ'pos, I'', _⟩,
simp only [hA, forall_const, zero_mul, ennreal.of_real_zero, implies_true_iff, zero_le,
abs_zero] },
let m : ℝ≥0 := real.to_nnreal (|A.det|) - ε,
have I : (m : ℝ≥0∞) < ennreal.of_real (|A.det|),
{ simp only [ennreal.of_real, with_top.coe_sub],
apply ennreal.sub_lt_self ennreal.coe_ne_top,
{ simpa only [abs_nonpos_iff, real.to_nnreal_eq_zero, ennreal.coe_eq_zero, ne.def] using hA },
{ simp only [εpos.ne', ennreal.coe_eq_zero, ne.def, not_false_iff] } },
rcases ((mul_le_add_haar_image_of_lt_det μ A I).and self_mem_nhds_within).exists
with ⟨δ, h, δpos⟩,
refine ⟨min δ δ'', lt_min δpos (half_pos δ'pos), _, _⟩,
{ assume B hB,
apply I'' _ (hB.trans _),
simp only [le_refl, nnreal.coe_min, min_le_iff, or_true] },
{ assume t g htg,
rcases eq_or_ne (μ t) ∞ with ht|ht,
{ simp only [ht, εpos.ne', with_top.mul_top, ennreal.coe_eq_zero, le_top, ne.def,
not_false_iff, _root_.add_top] },
have := h t g (htg.mono_num (min_le_left _ _)),
rwa [with_top.coe_sub, ennreal.sub_mul, tsub_le_iff_right] at this,
simp only [ht, implies_true_iff, ne.def, not_false_iff] } },
choose δ hδ using this,
obtain ⟨t, A, t_disj, t_meas, t_cover, ht, -⟩ : ∃ (t : ℕ → set E) (A : ℕ → (E →L[ℝ] E)),
pairwise (disjoint on t) ∧ (∀ (n : ℕ), measurable_set (t n)) ∧ (s ⊆ ⋃ (n : ℕ), t n)
∧ (∀ (n : ℕ), approximates_linear_on f (A n) (s ∩ t n) (δ (A n)))
∧ (s.nonempty → ∀ n, ∃ y ∈ s, A n = f' y) :=
exists_partition_approximates_linear_on_of_has_fderiv_within_at f s
f' hf' δ (λ A, (hδ A).1.ne'),
have s_eq : s = ⋃ n, s ∩ t n,
{ rw ← inter_Union,
exact subset.antisymm (subset_inter subset.rfl t_cover) (inter_subset_left _ _) },
calc ∫⁻ x in s, ennreal.of_real (|(f' x).det|) ∂μ
= ∑' n, ∫⁻ x in s ∩ t n, ennreal.of_real (|(f' x).det|) ∂μ :
begin
conv_lhs { rw s_eq },
rw lintegral_Union,
{ exact λ n, hs.inter (t_meas n) },
{ exact pairwise_disjoint.mono t_disj (λ n, inter_subset_right _ _) }
end
... ≤ ∑' n, ∫⁻ x in s ∩ t n, ennreal.of_real (|(A n).det|) + ε ∂μ :
begin
apply ennreal.tsum_le_tsum (λ n, _),
apply lintegral_mono_ae,
filter_upwards [(ht n).norm_fderiv_sub_le μ (hs.inter (t_meas n)) f'
(λ x hx, (hf' x hx.1).mono (inter_subset_left _ _))],
assume x hx,
have I : |(f' x).det| ≤ |(A n).det| + ε := calc
|(f' x).det| = |(A n).det + ((f' x).det - (A n).det)| : by { congr' 1, abel }
... ≤ |(A n).det| + |(f' x).det - (A n).det| : abs_add _ _
... ≤ |(A n).det| + ε : add_le_add le_rfl ((hδ (A n)).2.1 _ hx),
calc ennreal.of_real (|(f' x).det|) ≤ ennreal.of_real (|(A n).det| + ε) :
ennreal.of_real_le_of_real I
... = ennreal.of_real (|(A n).det|) + ε :
by simp only [ennreal.of_real_add, abs_nonneg, nnreal.zero_le_coe,
ennreal.of_real_coe_nnreal]
end
... = ∑' n, (ennreal.of_real (|(A n).det|) * μ (s ∩ t n) + ε * μ (s ∩ t n)) :
by simp only [set_lintegral_const, lintegral_add_right _ measurable_const]
... ≤ ∑' n, ((μ (f '' (s ∩ t n)) + ε * μ (s ∩ t n)) + ε * μ (s ∩ t n)) :
begin
refine ennreal.tsum_le_tsum (λ n, add_le_add_right _ _),
exact (hδ (A n)).2.2 _ _ (ht n),
end
... = μ (f '' s) + 2 * ε * μ s :
begin
conv_rhs { rw s_eq },
rw [image_Union, measure_Union], rotate,
{ assume i j hij,
apply (disjoint.image _ hf (inter_subset_left _ _) (inter_subset_left _ _)),
exact disjoint.mono (inter_subset_right _ _) (inter_subset_right _ _) (t_disj hij) },
{ assume i,
exact measurable_image_of_fderiv_within (hs.inter (t_meas i)) (λ x hx,
(hf' x hx.1).mono (inter_subset_left _ _)) (hf.mono (inter_subset_left _ _)) },
rw measure_Union, rotate,
{ exact pairwise_disjoint.mono t_disj (λ i, inter_subset_right _ _) },
{ exact λ i, hs.inter (t_meas i) },
rw [← ennreal.tsum_mul_left, ← ennreal.tsum_add],
congr' 1,
ext1 i,
rw [mul_assoc, two_mul, add_assoc],
end
end
lemma lintegral_abs_det_fderiv_le_add_haar_image_aux2 (hs : measurable_set s) (h's : μ s ≠ ∞)
(hf' : ∀ x ∈ s, has_fderiv_within_at f (f' x) s x) (hf : inj_on f s) :
∫⁻ x in s, ennreal.of_real (|(f' x).det|) ∂μ ≤ μ (f '' s) :=
begin
/- We just need to let the error tend to `0` in the previous lemma. -/
have : tendsto (λ (ε : ℝ≥0), μ (f '' s) + 2 * ε * μ s)
(𝓝[>] 0) (𝓝 (μ (f '' s) + 2 * (0 : ℝ≥0) * μ s)),
{ apply tendsto.mono_left _ nhds_within_le_nhds,
refine tendsto_const_nhds.add _,
refine ennreal.tendsto.mul_const _ (or.inr h's),
exact ennreal.tendsto.const_mul (ennreal.tendsto_coe.2 tendsto_id)
(or.inr ennreal.coe_ne_top) },
simp only [add_zero, zero_mul, mul_zero, ennreal.coe_zero] at this,
apply ge_of_tendsto this,
filter_upwards [self_mem_nhds_within],
rintros ε (εpos : 0 < ε),
exact lintegral_abs_det_fderiv_le_add_haar_image_aux1 μ hs hf' hf εpos
end
lemma lintegral_abs_det_fderiv_le_add_haar_image (hs : measurable_set s)
(hf' : ∀ x ∈ s, has_fderiv_within_at f (f' x) s x) (hf : inj_on f s) :
∫⁻ x in s, ennreal.of_real (|(f' x).det|) ∂μ ≤ μ (f '' s) :=
begin
/- We already know the result for finite-measure sets. We cover `s` by finite-measure sets using
`spanning_sets μ`, and apply the previous result to each of these parts. -/
let u := λ n, disjointed (spanning_sets μ) n,
have u_meas : ∀ n, measurable_set (u n),
{ assume n,
apply measurable_set.disjointed (λ i, _),
exact measurable_spanning_sets μ i },
have A : s = ⋃ n, s ∩ u n,
by rw [← inter_Union, Union_disjointed, Union_spanning_sets, inter_univ],
calc ∫⁻ x in s, ennreal.of_real (|(f' x).det|) ∂μ
= ∑' n, ∫⁻ x in s ∩ u n, ennreal.of_real (|(f' x).det|) ∂μ :
begin
conv_lhs { rw A },
rw lintegral_Union,
{ assume n, exact hs.inter (u_meas n) },
{ exact pairwise_disjoint.mono (disjoint_disjointed _) (λ n, inter_subset_right _ _) }
end
... ≤ ∑' n, μ (f '' (s ∩ u n)) :
begin
apply ennreal.tsum_le_tsum (λ n, _),
apply lintegral_abs_det_fderiv_le_add_haar_image_aux2 μ (hs.inter (u_meas n)) _
(λ x hx, (hf' x hx.1).mono (inter_subset_left _ _)) (hf.mono (inter_subset_left _ _)),
have : μ (u n) < ∞ :=
lt_of_le_of_lt (measure_mono (disjointed_subset _ _)) (measure_spanning_sets_lt_top μ n),
exact ne_of_lt (lt_of_le_of_lt (measure_mono (inter_subset_right _ _)) this),
end
... = μ (f '' s) :
begin
conv_rhs { rw [A, image_Union] },
rw measure_Union,
{ assume i j hij,
apply disjoint.image _ hf (inter_subset_left _ _) (inter_subset_left _ _),
exact disjoint.mono (inter_subset_right _ _) (inter_subset_right _ _)
(disjoint_disjointed _ hij) },
{ assume i,
exact measurable_image_of_fderiv_within (hs.inter (u_meas i)) (λ x hx,
(hf' x hx.1).mono (inter_subset_left _ _)) (hf.mono (inter_subset_left _ _)) },
end
end
/-- Change of variable formula for differentiable functions, set version: if a function `f` is
injective and differentiable on a measurable set `s`, then the measure of `f '' s` is given by the
integral of `|(f' x).det|` on `s`.
Note that the measurability of `f '' s` is given by `measurable_image_of_fderiv_within`. -/
theorem lintegral_abs_det_fderiv_eq_add_haar_image (hs : measurable_set s)
(hf' : ∀ x ∈ s, has_fderiv_within_at f (f' x) s x) (hf : inj_on f s) :
∫⁻ x in s, ennreal.of_real (|(f' x).det|) ∂μ = μ (f '' s) :=
le_antisymm (lintegral_abs_det_fderiv_le_add_haar_image μ hs hf' hf)
(add_haar_image_le_lintegral_abs_det_fderiv μ hs hf')
/-- Change of variable formula for differentiable functions, set version: if a function `f` is
injective and differentiable on a measurable set `s`, then the pushforward of the measure with
density `|(f' x).det|` on `s` is the Lebesgue measure on the image set. This version requires
that `f` is measurable, as otherwise `measure.map f` is zero per our definitions.
For a version without measurability assumption but dealing with the restricted
function `s.restrict f`, see `restrict_map_with_density_abs_det_fderiv_eq_add_haar`.
-/
theorem map_with_density_abs_det_fderiv_eq_add_haar (hs : measurable_set s)
(hf' : ∀ x ∈ s, has_fderiv_within_at f (f' x) s x) (hf : inj_on f s)
(h'f : measurable f) :
measure.map f ((μ.restrict s).with_density (λ x, ennreal.of_real (|(f' x).det|)))
= μ.restrict (f '' s) :=
begin
apply measure.ext (λ t ht, _),
rw [map_apply h'f ht, with_density_apply _ (h'f ht), measure.restrict_apply ht,
restrict_restrict (h'f ht),
lintegral_abs_det_fderiv_eq_add_haar_image μ ((h'f ht).inter hs)
(λ x hx, (hf' x hx.2).mono (inter_subset_right _ _)) (hf.mono (inter_subset_right _ _)),
image_preimage_inter]
end
/-- Change of variable formula for differentiable functions, set version: if a function `f` is
injective and differentiable on a measurable set `s`, then the pushforward of the measure with
density `|(f' x).det|` on `s` is the Lebesgue measure on the image set. This version is expressed
in terms of the restricted function `s.restrict f`.
For a version for the original function, but with a measurability assumption,
see `map_with_density_abs_det_fderiv_eq_add_haar`.
-/
theorem restrict_map_with_density_abs_det_fderiv_eq_add_haar (hs : measurable_set s)
(hf' : ∀ x ∈ s, has_fderiv_within_at f (f' x) s x) (hf : inj_on f s) :
measure.map (s.restrict f)
(comap coe (μ.with_density (λ x, ennreal.of_real (|(f' x).det|)))) = μ.restrict (f '' s) :=
begin
obtain ⟨u, u_meas, uf⟩ : ∃ u, measurable u ∧ eq_on u f s,
{ classical,
refine ⟨piecewise s f 0, _, piecewise_eq_on _ _ _⟩,
refine continuous_on.measurable_piecewise _ continuous_zero.continuous_on hs,
have : differentiable_on ℝ f s := λ x hx, (hf' x hx).differentiable_within_at,
exact this.continuous_on },
have u' : ∀ x ∈ s, has_fderiv_within_at u (f' x) s x :=
λ x hx, (hf' x hx).congr (λ y hy, uf hy) (uf hx),
set F : s → E := u ∘ coe with hF,
have A : measure.map F
(comap coe (μ.with_density (λ x, ennreal.of_real (|(f' x).det|)))) = μ.restrict (u '' s),
{ rw [hF, ← measure.map_map u_meas measurable_subtype_coe, map_comap_subtype_coe hs,
restrict_with_density hs],
exact map_with_density_abs_det_fderiv_eq_add_haar μ hs u' (hf.congr uf.symm) u_meas },
rw uf.image_eq at A,
have : F = s.restrict f,
{ ext x,
exact uf x.2 },
rwa this at A,
end
/-! ### Change of variable formulas in integrals -/
/- Change of variable formula for differentiable functions: if a function `f` is
injective and differentiable on a measurable set `s`, then the Lebesgue integral of a function
`g : E → ℝ≥0∞` on `f '' s` coincides with the integral of `|(f' x).det| * g ∘ f` on `s`.
Note that the measurability of `f '' s` is given by `measurable_image_of_fderiv_within`. -/
theorem lintegral_image_eq_lintegral_abs_det_fderiv_mul (hs : measurable_set s)
(hf' : ∀ x ∈ s, has_fderiv_within_at f (f' x) s x) (hf : inj_on f s) (g : E → ℝ≥0∞) :
∫⁻ x in f '' s, g x ∂μ = ∫⁻ x in s, ennreal.of_real (|(f' x).det|) * g (f x) ∂μ :=
begin
rw [← restrict_map_with_density_abs_det_fderiv_eq_add_haar μ hs hf' hf,
(measurable_embedding_of_fderiv_within hs hf' hf).lintegral_map],
have : ∀ (x : s), g (s.restrict f x) = (g ∘ f) x := λ x, rfl,
simp only [this],
rw [← (measurable_embedding.subtype_coe hs).lintegral_map, map_comap_subtype_coe hs,
set_lintegral_with_density_eq_set_lintegral_mul_non_measurable₀ _ _ _ hs],
{ refl },
{ simp only [eventually_true, ennreal.of_real_lt_top] },
{ exact ae_measurable_of_real_abs_det_fderiv_within μ hs hf' }
end
/-- Integrability in the change of variable formula for differentiable functions: if a
function `f` is injective and differentiable on a measurable set `s`, then a function
`g : E → F` is integrable on `f '' s` if and only if `|(f' x).det| • g ∘ f` is
integrable on `s`. -/
theorem integrable_on_image_iff_integrable_on_abs_det_fderiv_smul (hs : measurable_set s)
(hf' : ∀ x ∈ s, has_fderiv_within_at f (f' x) s x) (hf : inj_on f s) (g : E → F) :
integrable_on g (f '' s) μ ↔ integrable_on (λ x, |(f' x).det| • g (f x)) s μ :=
begin
rw [integrable_on, ← restrict_map_with_density_abs_det_fderiv_eq_add_haar μ hs hf' hf,
(measurable_embedding_of_fderiv_within hs hf' hf).integrable_map_iff],
change (integrable ((g ∘ f) ∘ (coe : s → E)) _) ↔ _,
rw [← (measurable_embedding.subtype_coe hs).integrable_map_iff, map_comap_subtype_coe hs],
simp only [ennreal.of_real],
rw [restrict_with_density hs, integrable_with_density_iff_integrable_coe_smul₀, integrable_on],
{ congr' 2 with x,
rw real.coe_to_nnreal,
exact abs_nonneg _ },
{ exact ae_measurable_to_nnreal_abs_det_fderiv_within μ hs hf' }
end
/-- Change of variable formula for differentiable functions: if a function `f` is
injective and differentiable on a measurable set `s`, then the Bochner integral of a function
`g : E → F` on `f '' s` coincides with the integral of `|(f' x).det| • g ∘ f` on `s`. -/
theorem integral_image_eq_integral_abs_det_fderiv_smul [complete_space F] (hs : measurable_set s)
(hf' : ∀ x ∈ s, has_fderiv_within_at f (f' x) s x) (hf : inj_on f s) (g : E → F) :
∫ x in f '' s, g x ∂μ = ∫ x in s, |(f' x).det| • g (f x) ∂μ :=
begin
rw [← restrict_map_with_density_abs_det_fderiv_eq_add_haar μ hs hf' hf,
(measurable_embedding_of_fderiv_within hs hf' hf).integral_map],
have : ∀ (x : s), g (s.restrict f x) = (g ∘ f) x := λ x, rfl,
simp only [this, ennreal.of_real],
rw [← (measurable_embedding.subtype_coe hs).integral_map, map_comap_subtype_coe hs,
set_integral_with_density_eq_set_integral_smul₀
(ae_measurable_to_nnreal_abs_det_fderiv_within μ hs hf') _ hs],
congr' with x,
conv_rhs { rw ← real.coe_to_nnreal _ (abs_nonneg (f' x).det) },
refl
end
/- Porting note: move this to `topology.algebra.module.basic` when port is over -/
lemma det_one_smul_right {𝕜 : Type*} [normed_field 𝕜] (v : 𝕜) :
((1 : 𝕜 →L[𝕜] 𝕜).smul_right v).det = v :=
begin
have : (1 : 𝕜 →L[𝕜] 𝕜).smul_right v = v • (1 : 𝕜 →L[𝕜] 𝕜),
{ ext1 w,
simp only [continuous_linear_map.smul_right_apply, continuous_linear_map.one_apply,
algebra.id.smul_eq_mul, one_mul, continuous_linear_map.coe_smul', pi.smul_apply, mul_one] },
rw [this, continuous_linear_map.det, continuous_linear_map.coe_smul],
change ((1 : 𝕜 →L[𝕜] 𝕜) : 𝕜 →ₗ[𝕜] 𝕜) with linear_map.id,
rw [linear_map.det_smul, finite_dimensional.finrank_self, linear_map.det_id, pow_one, mul_one],
end
/-- Integrability in the change of variable formula for differentiable functions (one-variable
version): if a function `f` is injective and differentiable on a measurable set ``s ⊆ ℝ`, then a
function `g : ℝ → F` is integrable on `f '' s` if and only if `|(f' x)| • g ∘ f` is integrable on
`s`. -/
theorem integrable_on_image_iff_integrable_on_abs_deriv_smul
{s : set ℝ} {f : ℝ → ℝ} {f' : ℝ → ℝ} (hs : measurable_set s)
(hf' : ∀ x ∈ s, has_deriv_within_at f (f' x) s x) (hf : inj_on f s) (g : ℝ → F) :
integrable_on g (f '' s) ↔ integrable_on (λ x, |(f' x)| • g (f x)) s :=
by simpa only [det_one_smul_right] using integrable_on_image_iff_integrable_on_abs_det_fderiv_smul
volume hs (λ x hx, (hf' x hx).has_fderiv_within_at) hf g
/-- Change of variable formula for differentiable functions (one-variable version): if a function
`f` is injective and differentiable on a measurable set `s ⊆ ℝ`, then the Bochner integral of a
function `g : ℝ → F` on `f '' s` coincides with the integral of `|(f' x)| • g ∘ f` on `s`. -/
theorem integral_image_eq_integral_abs_deriv_smul {s : set ℝ} {f : ℝ → ℝ} {f' : ℝ → ℝ}
[complete_space F] (hs : measurable_set s) (hf' : ∀ x ∈ s, has_deriv_within_at f (f' x) s x)
(hf : inj_on f s) (g : ℝ → F) :
∫ x in f '' s, g x = ∫ x in s, |(f' x)| • g (f x) :=
by simpa only [det_one_smul_right] using integral_image_eq_integral_abs_det_fderiv_smul
volume hs (λ x hx, (hf' x hx).has_fderiv_within_at) hf g
theorem integral_target_eq_integral_abs_det_fderiv_smul [complete_space F]
{f : local_homeomorph E E} (hf' : ∀ x ∈ f.source, has_fderiv_at f (f' x) x) (g : E → F) :
∫ x in f.target, g x ∂μ = ∫ x in f.source, |(f' x).det| • g (f x) ∂μ :=
begin
have : f '' f.source = f.target := local_equiv.image_source_eq_target f.to_local_equiv,
rw ← this,
apply integral_image_eq_integral_abs_det_fderiv_smul μ f.open_source.measurable_set _ f.inj_on,
assume x hx,
exact (hf' x hx).has_fderiv_within_at
end
end measure_theory
|
ae5fa87ffef748e30f44a578fa88477d5b7be2e8
|
02fbe05a45fda5abde7583464416db4366eedfbf
|
/library/data/buffer.lean
|
d72e7b72ccd9b20cfb93130d79af39beac7f7360
|
[
"Apache-2.0"
] |
permissive
|
jasonrute/lean
|
cc12807e11f9ac6b01b8951a8bfb9c2eb35a0154
|
4be962c167ca442a0ec5e84472d7ff9f5302788f
|
refs/heads/master
| 1,672,036,664,637
| 1,601,642,826,000
| 1,601,642,826,000
| 260,777,966
| 0
| 0
|
Apache-2.0
| 1,588,454,819,000
| 1,588,454,818,000
| null |
UTF-8
|
Lean
| false
| false
| 4,838
|
lean
|
/-
Copyright (c) 2017 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
-/
universes u w
def buffer (α : Type u) := Σ n, array n α
def mk_buffer {α : Type u} : buffer α :=
⟨0, {data := λ i, fin.elim0 i}⟩
def array.to_buffer {α : Type u} {n : nat} (a : array n α) : buffer α :=
⟨n, a⟩
namespace buffer
variables {α : Type u} {β : Type w}
def nil : buffer α :=
mk_buffer
def size (b : buffer α) : nat :=
b.1
def to_array (b : buffer α) : array (b.size) α :=
b.2
def push_back : buffer α → α → buffer α
| ⟨n, a⟩ v := ⟨n+1, a.push_back v⟩
def pop_back : buffer α → buffer α
| ⟨0, a⟩ := ⟨0, a⟩
| ⟨n+1, a⟩ := ⟨n, a.pop_back⟩
def read : Π (b : buffer α), fin b.size → α
| ⟨n, a⟩ i := a.read i
def write : Π (b : buffer α), fin b.size → α → buffer α
| ⟨n, a⟩ i v := ⟨n, a.write i v⟩
def read' [inhabited α] : buffer α → nat → α
| ⟨n, a⟩ i := a.read' i
def write' : buffer α → nat → α → buffer α
| ⟨n, a⟩ i v := ⟨n, a.write' i v⟩
lemma read_eq_read' [inhabited α] (b : buffer α) (i : nat) (h : i < b.size) : read b ⟨i, h⟩ = read' b i :=
by cases b; unfold read read'; simp [array.read_eq_read']
lemma write_eq_write' (b : buffer α) (i : nat) (h : i < b.size) (v : α) : write b ⟨i, h⟩ v = write' b i v :=
by cases b; unfold write write'; simp [array.write_eq_write']
def to_list (b : buffer α) : list α :=
b.to_array.to_list
protected def to_string (b : buffer char) : string :=
b.to_array.to_list.as_string
def append_list {α : Type u} : buffer α → list α → buffer α
| b [] := b
| b (v::vs) := append_list (b.push_back v) vs
def append_string (b : buffer char) (s : string) : buffer char :=
b.append_list s.to_list
lemma lt_aux_1 {a b c : nat} (h : a + c < b) : a < b :=
lt_of_le_of_lt (nat.le_add_right a c) h
lemma lt_aux_2 {n} (h : n > 0) : n - 1 < n :=
have h₁ : 1 > 0, from dec_trivial,
nat.sub_lt h h₁
lemma lt_aux_3 {n i} (h : i + 1 < n) : n - 2 - i < n :=
have n > 0, from lt.trans (nat.zero_lt_succ i) h,
have n - 2 < n, from nat.sub_lt this (dec_trivial),
lt_of_le_of_lt (nat.sub_le _ _) this
def append_array {α : Type u} {n : nat} (nz : n > 0) : buffer α → array n α → ∀ i : nat, i < n → buffer α
| ⟨m, b⟩ a 0 _ :=
let i : fin n := ⟨n - 1, lt_aux_2 nz⟩ in
⟨m+1, b.push_back (a.read i)⟩
| ⟨m, b⟩ a (j+1) h :=
let i : fin n := ⟨n - 2 - j, lt_aux_3 h⟩ in
append_array ⟨m+1, b.push_back (a.read i)⟩ a j (lt_aux_1 h)
protected def append {α : Type u} : buffer α → buffer α → buffer α
| b ⟨0, a⟩ := b
| b ⟨n+1, a⟩ := append_array (nat.zero_lt_succ _) b a n (nat.lt_succ_self _)
def iterate : Π b : buffer α, β → (fin b.size → α → β → β) → β
| ⟨_, a⟩ b f := a.iterate b f
def foreach : Π b : buffer α, (fin b.size → α → α) → buffer α
| ⟨n, a⟩ f := ⟨n, a.foreach f⟩
/-- Monadically map a function over the buffer. -/
@[inline]
def mmap {m} [monad m] (b : buffer α) (f : α → m β) : m (buffer β) :=
do b' ← b.2.mmap f, return b'.to_buffer
/-- Map a function over the buffer. -/
@[inline]
def map : buffer α → (α → β) → buffer β
| ⟨n, a⟩ f := ⟨n, a.map f⟩
def foldl : buffer α → β → (α → β → β) → β
| ⟨_, a⟩ b f := a.foldl b f
def rev_iterate : Π (b : buffer α), β → (fin b.size → α → β → β) → β
| ⟨_, a⟩ b f := a.rev_iterate b f
def take (b : buffer α) (n : nat) : buffer α :=
if h : n ≤ b.size then ⟨n, b.to_array.take n h⟩ else b
def take_right (b : buffer α) (n : nat) : buffer α :=
if h : n ≤ b.size then ⟨n, b.to_array.take_right n h⟩ else b
def drop (b : buffer α) (n : nat) : buffer α :=
if h : n ≤ b.size then ⟨_, b.to_array.drop n h⟩ else b
def reverse (b : buffer α) : buffer α :=
⟨b.size, b.to_array.reverse⟩
protected def mem (v : α) (a : buffer α) : Prop := ∃i, read a i = v
instance : has_mem α (buffer α) := ⟨buffer.mem⟩
instance : has_append (buffer α) :=
⟨buffer.append⟩
instance [has_repr α] : has_repr (buffer α) :=
⟨repr ∘ to_list⟩
meta instance [has_to_format α] : has_to_format (buffer α) :=
⟨to_fmt ∘ to_list⟩
meta instance [has_to_tactic_format α] : has_to_tactic_format (buffer α) :=
⟨tactic.pp ∘ to_list⟩
end buffer
def list.to_buffer {α : Type u} (l : list α) : buffer α :=
mk_buffer.append_list l
@[reducible] def char_buffer := buffer char
/-- Convert a format object into a character buffer with the provided
formatting options. -/
meta constant format.to_buffer : format → options → buffer char
def string.to_char_buffer (s : string) : char_buffer :=
buffer.nil.append_string s
|
12f8014f1e37866160f7679d29b29ddc4639b8fd
|
59aed81a2ce7741e690907fc374be338f4f88b6f
|
/src/math-688/lectures/lec-4.lean
|
7549697e965fb8c3b2b19299fbe272c63b830942
|
[] |
no_license
|
agusakov/math-688-lean
|
c84d5e1423eb208a0281135f0214b91b30d0ef48
|
67dc27ebff55a74c6b5a1c469ba04e7981d2e550
|
refs/heads/main
| 1,679,699,340,788
| 1,616,602,782,000
| 1,616,602,782,000
| 332,894,454
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 55
|
lean
|
/- 6 Sep 2019 -/
-- bipartite graphs, hamiltonian cycle
|
3763335c85744c5e4f9bc06c9874e7bc21cc9294
|
d406927ab5617694ec9ea7001f101b7c9e3d9702
|
/src/algebra/group/with_one/units.lean
|
41aff905b5f1f79fe9c87209ca184dfc73995ad4
|
[
"Apache-2.0"
] |
permissive
|
alreadydone/mathlib
|
dc0be621c6c8208c581f5170a8216c5ba6721927
|
c982179ec21091d3e102d8a5d9f5fe06c8fafb73
|
refs/heads/master
| 1,685,523,275,196
| 1,670,184,141,000
| 1,670,184,141,000
| 287,574,545
| 0
| 0
|
Apache-2.0
| 1,670,290,714,000
| 1,597,421,623,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 896
|
lean
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Johan Commelin
-/
import algebra.group.with_one.basic
import algebra.group_with_zero.units.basic
/-!
# Isomorphism between a group and the units of itself adjoined with `0`
## Notes
This is here to keep `algebra.group_with_zero.units.basic` out of the import requirements of
`algebra.order.field.defs`.
-/
namespace with_zero
/-- Any group is isomorphic to the units of itself adjoined with `0`. -/
def units_with_zero_equiv {α : Type*} [group α] : (with_zero α)ˣ ≃* α :=
{ to_fun := λ a, unzero a.ne_zero,
inv_fun := λ a, units.mk0 a coe_ne_zero,
left_inv := λ _, units.ext $ by simpa only [coe_unzero],
right_inv := λ _, rfl,
map_mul' := λ _ _, coe_inj.mp $ by simpa only [coe_unzero, coe_mul] }
end with_zero
|
02693167e5946427b5a8cb71a5531537f05316e7
|
367134ba5a65885e863bdc4507601606690974c1
|
/src/data/polynomial/basic.lean
|
af0b3cd2baeb21264202756bc8edeedb58c81ab7
|
[
"Apache-2.0"
] |
permissive
|
kodyvajjha/mathlib
|
9bead00e90f68269a313f45f5561766cfd8d5cad
|
b98af5dd79e13a38d84438b850a2e8858ec21284
|
refs/heads/master
| 1,624,350,366,310
| 1,615,563,062,000
| 1,615,563,062,000
| 162,666,963
| 0
| 0
|
Apache-2.0
| 1,545,367,651,000
| 1,545,367,651,000
| null |
UTF-8
|
Lean
| false
| false
| 9,379
|
lean
|
/-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Johannes Hölzl, Scott Morrison, Jens Wagemaker
-/
import tactic.ring_exp
import tactic.chain
import algebra.monoid_algebra
import data.finset.sort
/-!
# Theory of univariate polynomials
Polynomials are represented as `add_monoid_algebra R ℕ`, where `R` is a commutative semiring.
In this file, we define `polynomial`, provide basic instances, and prove an `ext` lemma.
-/
noncomputable theory
/-- `polynomial R` is the type of univariate polynomials over `R`.
Polynomials should be seen as (semi-)rings with the additional constructor `X`.
The embedding from `R` is called `C`. -/
def polynomial (R : Type*) [semiring R] := add_monoid_algebra R ℕ
open finsupp add_monoid_algebra
open_locale big_operators
namespace polynomial
universes u
variables {R : Type u} {a : R} {m n : ℕ}
section semiring
variables [semiring R] {p q : polynomial R}
instance : inhabited (polynomial R) := add_monoid_algebra.inhabited _ _
instance : semiring (polynomial R) := add_monoid_algebra.semiring
instance {S} [semiring S] [semimodule S R] : semimodule S (polynomial R) :=
add_monoid_algebra.semimodule
instance {S₁ S₂} [semiring S₁] [semiring S₂] [semimodule S₁ R] [semimodule S₂ R]
[smul_comm_class S₁ S₂ R] : smul_comm_class S₁ S₂ (polynomial R) :=
add_monoid_algebra.smul_comm_class
instance {S₁ S₂} [has_scalar S₁ S₂] [semiring S₁] [semiring S₂] [semimodule S₁ R] [semimodule S₂ R]
[is_scalar_tower S₁ S₂ R] : is_scalar_tower S₁ S₂ (polynomial R) :=
add_monoid_algebra.is_scalar_tower
instance [subsingleton R] : unique (polynomial R) := add_monoid_algebra.unique
/--
The set of all `n` such that `X^n` has a non-zero coefficient.
-/
def support (p : polynomial R) : finset ℕ :=
p.support
@[simp] lemma support_zero : (0 : polynomial R).support = ∅ := rfl
@[simp] lemma support_eq_empty : p.support = ∅ ↔ p = 0 :=
by simp [support]
lemma card_support_eq_zero : p.support.card = 0 ↔ p = 0 :=
by simp
/-- `monomial s a` is the monomial `a * X^s` -/
def monomial (n : ℕ) : R →ₗ[R] polynomial R := finsupp.lsingle n
@[simp]
lemma monomial_zero_right (n : ℕ) :
monomial n (0 : R) = 0 :=
finsupp.single_zero
-- This is not a `simp` lemma as `monomial_zero_left` is more general.
lemma monomial_zero_one : monomial 0 (1 : R) = 1 := rfl
lemma monomial_def (n : ℕ) (a : R) : monomial n a = finsupp.single n a := rfl
lemma monomial_add (n : ℕ) (r s : R) :
monomial n (r + s) = monomial n r + monomial n s :=
finsupp.single_add
lemma monomial_mul_monomial (n m : ℕ) (r s : R) :
monomial n r * monomial m s = monomial (n + m) (r * s) :=
add_monoid_algebra.single_mul_single
@[simp]
lemma monomial_pow (n : ℕ) (r : R) (k : ℕ) :
(monomial n r)^k = monomial (n*k) (r^k) :=
begin
rw mul_comm,
convert add_monoid_algebra.single_pow k,
simp only [nat.cast_id, nsmul_eq_mul],
refl,
end
lemma smul_monomial {S} [semiring S] [semimodule S R] (a : S) (n : ℕ) (b : R) :
a • monomial n b = monomial n (a • b) :=
finsupp.smul_single _ _ _
lemma support_add : (p + q).support ⊆ p.support ∪ q.support :=
by convert @support_add _ _ _ p q
/-- `X` is the polynomial variable (aka indeterminant). -/
def X : polynomial R := monomial 1 1
lemma monomial_one_one_eq_X : monomial 1 (1 : R) = X := rfl
lemma monomial_one_right_eq_X_pow (n : ℕ) : monomial n 1 = X^n :=
begin
induction n with n ih,
{ simp [monomial_zero_one], },
{ rw [pow_succ, ←ih, ←monomial_one_one_eq_X, monomial_mul_monomial, add_comm, one_mul], }
end
/-- `X` commutes with everything, even when the coefficients are noncommutative. -/
lemma X_mul : X * p = p * X :=
by { ext, simp [X, monomial, add_monoid_algebra.mul_apply, sum_single_index, add_comm] }
lemma X_pow_mul {n : ℕ} : X^n * p = p * X^n :=
begin
induction n with n ih,
{ simp, },
{ conv_lhs { rw pow_succ', },
rw [mul_assoc, X_mul, ←mul_assoc, ih, mul_assoc, ←pow_succ'], }
end
lemma X_pow_mul_assoc {n : ℕ} : (p * X^n) * q = (p * q) * X^n :=
by rw [mul_assoc, X_pow_mul, ←mul_assoc]
lemma commute_X (p : polynomial R) : commute X p := X_mul
@[simp]
lemma monomial_mul_X (n : ℕ) (r : R) : monomial n r * X = monomial (n+1) r :=
by erw [monomial_mul_monomial, mul_one]
@[simp]
lemma monomial_mul_X_pow (n : ℕ) (r : R) (k : ℕ) : monomial n r * X^k = monomial (n+k) r :=
begin
induction k with k ih,
{ simp, },
{ simp [ih, pow_succ', ←mul_assoc, add_assoc], },
end
@[simp]
lemma X_mul_monomial (n : ℕ) (r : R) : X * monomial n r = monomial (n+1) r :=
by rw [X_mul, monomial_mul_X]
@[simp]
lemma X_pow_mul_monomial (k n : ℕ) (r : R) : X^k * monomial n r = monomial (n+k) r :=
by rw [X_pow_mul, monomial_mul_X_pow]
/-- coeff p n is the coefficient of X^n in p -/
def coeff (p : polynomial R) : ℕ → R := @coe_fn (ℕ →₀ R) _ p
@[simp] lemma coeff_mk (s) (f) (h) : coeff (finsupp.mk s f h : polynomial R) = f := rfl
lemma coeff_monomial : coeff (monomial n a) m = if n = m then a else 0 :=
by { dsimp [monomial, coeff], rw finsupp.single_apply, congr }
@[simp] lemma coeff_zero (n : ℕ) : coeff (0 : polynomial R) n = 0 := rfl
@[simp] lemma coeff_one_zero : coeff (1 : polynomial R) 0 = 1 := coeff_monomial
@[simp] lemma coeff_X_one : coeff (X : polynomial R) 1 = 1 := coeff_monomial
@[simp] lemma coeff_X_zero : coeff (X : polynomial R) 0 = 0 := coeff_monomial
@[simp] lemma coeff_monomial_succ : coeff (monomial (n+1) a) 0 = 0 :=
by simp [coeff_monomial]
lemma coeff_X : coeff (X : polynomial R) n = if 1 = n then 1 else 0 := coeff_monomial
lemma coeff_X_of_ne_one {n : ℕ} (hn : n ≠ 1) : coeff (X : polynomial R) n = 0 :=
by rw [coeff_X, if_neg hn.symm]
theorem ext_iff {p q : polynomial R} : p = q ↔ ∀ n, coeff p n = coeff q n :=
finsupp.ext_iff
@[ext] lemma ext {p q : polynomial R} : (∀ n, coeff p n = coeff q n) → p = q :=
finsupp.ext
@[ext] lemma add_hom_ext' {M : Type*} [add_monoid M] {f g : polynomial R →+ M}
(h : ∀ n, f.comp (monomial n).to_add_monoid_hom = g.comp (monomial n).to_add_monoid_hom) :
f = g :=
finsupp.add_hom_ext' h
lemma add_hom_ext {M : Type*} [add_monoid M] {f g : polynomial R →+ M}
(h : ∀ n a, f (monomial n a) = g (monomial n a)) :
f = g :=
finsupp.add_hom_ext h
@[ext] lemma lhom_ext' {M : Type*} [add_comm_monoid M] [semimodule R M] {f g : polynomial R →ₗ[R] M}
(h : ∀ n, f.comp (monomial n) = g.comp (monomial n)) :
f = g :=
finsupp.lhom_ext' h
-- this has the same content as the subsingleton
lemma eq_zero_of_eq_zero (h : (0 : R) = (1 : R)) (p : polynomial R) : p = 0 :=
by rw [←one_smul R p, ←h, zero_smul]
lemma support_monomial (n) (a : R) (H : a ≠ 0) : (monomial n a).support = singleton n :=
finsupp.support_single_ne_zero H
lemma support_monomial' (n) (a : R) : (monomial n a).support ⊆ singleton n :=
finsupp.support_single_subset
lemma X_pow_eq_monomial (n) : X ^ n = monomial n (1:R) :=
begin
induction n with n hn,
{ refl, },
{ rw [pow_succ', hn, X, monomial_mul_monomial, one_mul] },
end
lemma support_X_pow (H : ¬ (1:R) = 0) (n : ℕ) : (X^n : polynomial R).support = singleton n :=
begin
convert support_monomial n 1 H,
exact X_pow_eq_monomial n,
end
lemma support_X_empty (H : (1:R)=0) : (X : polynomial R).support = ∅ :=
begin
rw [X, H, monomial_zero_right, support_zero],
end
lemma support_X (H : ¬ (1 : R) = 0) : (X : polynomial R).support = singleton 1 :=
begin
rw [← pow_one X, support_X_pow H 1],
end
lemma monomial_left_inj {R : Type*} [semiring R] {a : R} (ha : a ≠ 0) {i j : ℕ} :
(monomial i a) = (monomial j a) ↔ i = j :=
finsupp.single_left_inj ha
end semiring
section comm_semiring
variables [comm_semiring R]
instance : comm_semiring (polynomial R) := add_monoid_algebra.comm_semiring
end comm_semiring
section ring
variables [ring R]
instance : ring (polynomial R) := add_monoid_algebra.ring
@[simp] lemma coeff_neg (p : polynomial R) (n : ℕ) : coeff (-p) n = -coeff p n := rfl
@[simp]
lemma coeff_sub (p q : polynomial R) (n : ℕ) : coeff (p - q) n = coeff p n - coeff q n := rfl
@[simp] lemma monomial_neg (n : ℕ) (a : R) : monomial n (-a) = -(monomial n a) :=
by rw [eq_neg_iff_add_eq_zero, ←monomial_add, neg_add_self, monomial_zero_right]
@[simp] lemma support_neg {p : polynomial R} : (-p).support = p.support :=
by simp [support]
end ring
instance [comm_ring R] : comm_ring (polynomial R) := add_monoid_algebra.comm_ring
section nonzero_semiring
variables [semiring R] [nontrivial R]
instance : nontrivial (polynomial R) := add_monoid_algebra.nontrivial
lemma X_ne_zero : (X : polynomial R) ≠ 0 :=
mt (congr_arg (λ p, coeff p 1)) (by simp)
end nonzero_semiring
section repr
variables [semiring R]
local attribute [instance, priority 100] classical.prop_decidable
instance [has_repr R] : has_repr (polynomial R) :=
⟨λ p, if p = 0 then "0"
else (p.support.sort (≤)).foldr
(λ n a, a ++ (if a = "" then "" else " + ") ++
if n = 0
then "C (" ++ repr (coeff p n) ++ ")"
else if n = 1
then if (coeff p n) = 1 then "X" else "C (" ++ repr (coeff p n) ++ ") * X"
else if (coeff p n) = 1 then "X ^ " ++ repr n
else "C (" ++ repr (coeff p n) ++ ") * X ^ " ++ repr n) ""⟩
end repr
end polynomial
|
26e29725e83695e3df64b97f81245534167472a2
|
aa5a655c05e5359a70646b7154e7cac59f0b4132
|
/src/Lean/Util/ReplaceExpr.lean
|
2b708ba758f5ab0b4b484ad56c952fcf01e05792
|
[
"Apache-2.0"
] |
permissive
|
lambdaxymox/lean4
|
ae943c960a42247e06eff25c35338268d07454cb
|
278d47c77270664ef29715faab467feac8a0f446
|
refs/heads/master
| 1,677,891,867,340
| 1,612,500,005,000
| 1,612,500,005,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 3,004
|
lean
|
/-
Copyright (c) 2020 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
-/
import Lean.Expr
namespace Lean
namespace Expr
namespace ReplaceImpl
abbrev cacheSize : USize := 8192
structure State where
keys : Array Expr -- Remark: our "unsafe" implementation relies on the fact that `()` is not a valid Expr
results : Array Expr
abbrev ReplaceM := StateM State
@[inline] unsafe def cache (i : USize) (key : Expr) (result : Expr) : ReplaceM Expr := do
modify fun s => { keys := s.keys.uset i key lcProof, results := s.results.uset i result lcProof };
pure result
@[inline] unsafe def replaceUnsafeM (f? : Expr → Option Expr) (size : USize) (e : Expr) : ReplaceM Expr := do
let rec @[specialize] visit (e : Expr) := do
let c ← get
let h := ptrAddrUnsafe e
let i := h % size
if ptrAddrUnsafe (c.keys.uget i lcProof) == h then
pure <| c.results.uget i lcProof
else match f? e with
| some eNew => cache i e eNew
| none => match e with
| Expr.forallE _ d b _ => cache i e <| e.updateForallE! (← visit d) (← visit b)
| Expr.lam _ d b _ => cache i e <| e.updateLambdaE! (← visit d) (← visit b)
| Expr.mdata _ b _ => cache i e <| e.updateMData! (← visit b)
| Expr.letE _ t v b _ => cache i e <| e.updateLet! (← visit t) (← visit v) (← visit b)
| Expr.app f a _ => cache i e <| e.updateApp! (← visit f) (← visit a)
| Expr.proj _ _ b _ => cache i e <| e.updateProj! (← visit b)
| e => pure e
visit e
unsafe def initCache : State :=
{ keys := mkArray cacheSize.toNat (cast lcProof ()), -- `()` is not a valid `Expr`
results := mkArray cacheSize.toNat arbitrary }
@[inline] unsafe def replaceUnsafe (f? : Expr → Option Expr) (e : Expr) : Expr :=
(replaceUnsafeM f? cacheSize e).run' initCache
end ReplaceImpl
/- TODO: use withPtrAddr, withPtrEq to avoid unsafe tricks above.
We also need an invariant at `State` and proofs for the `uget` operations. -/
@[implementedBy ReplaceImpl.replaceUnsafe]
partial def replace (f? : Expr → Option Expr) (e : Expr) : Expr :=
/- This is a reference implementation for the unsafe one above -/
match f? e with
| some eNew => eNew
| none => match e with
| Expr.forallE _ d b _ => let d := replace f? d; let b := replace f? b; e.updateForallE! d b
| Expr.lam _ d b _ => let d := replace f? d; let b := replace f? b; e.updateLambdaE! d b
| Expr.mdata _ b _ => let b := replace f? b; e.updateMData! b
| Expr.letE _ t v b _ => let t := replace f? t; let v := replace f? v; let b := replace f? b; e.updateLet! t v b
| Expr.app f a _ => let f := replace f? f; let a := replace f? a; e.updateApp! f a
| Expr.proj _ _ b _ => let b := replace f? b; e.updateProj! b
| e => e
end Expr
end Lean
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.