blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 7
139
| content_id
stringlengths 40
40
| detected_licenses
listlengths 0
16
| license_type
stringclasses 2
values | repo_name
stringlengths 7
55
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringclasses 6
values | visit_date
int64 1,471B
1,694B
| revision_date
int64 1,378B
1,694B
| committer_date
int64 1,378B
1,694B
| github_id
float64 1.33M
604M
⌀ | star_events_count
int64 0
43.5k
| fork_events_count
int64 0
1.5k
| gha_license_id
stringclasses 6
values | gha_event_created_at
int64 1,402B
1,695B
⌀ | gha_created_at
int64 1,359B
1,637B
⌀ | gha_language
stringclasses 19
values | src_encoding
stringclasses 2
values | language
stringclasses 1
value | is_vendor
bool 1
class | is_generated
bool 1
class | length_bytes
int64 3
6.4M
| extension
stringclasses 4
values | content
stringlengths 3
6.12M
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
d2961627bd2a5c54232a0cc01dd7fcd350dfe52f
|
cf39355caa609c0f33405126beee2739aa3cb77e
|
/tests/lean/run/ind8.lean
|
fedeb032faa40d028e02ad9313c8c0596cafeaf9
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/lean
|
12b87f69d92e614daea8bcc9d4de9a9ace089d0e
|
cce7990ea86a78bdb383e38ed7f9b5ba93c60ce0
|
refs/heads/master
| 1,687,508,156,644
| 1,684,951,104,000
| 1,684,951,104,000
| 169,960,991
| 457
| 107
|
Apache-2.0
| 1,686,744,372,000
| 1,549,790,268,000
|
C++
|
UTF-8
|
Lean
| false
| false
| 336
|
lean
|
inductive Pair1 (A B : Type)
| mk ( ) : A → B → Pair1
#check Pair1.mk
#check Pair1.mk Prop Prop true false
inductive Pair2 {A : Type} (B : A → Type)
| mk ( ) : Π (a : A), B a → Pair2
#check @Pair2.mk
#check Pair2.mk (λx, Prop) true false
inductive Pair3 (A B : Type)
| mk : A → B → Pair3
#check Pair3.mk true false
|
507b5bdacaf8983ac7c37d6f15dac4711e17bca6
|
a76f677b87d42a9470ba3a0a78cfddd3063118e6
|
/src/congruence/parallel.lean
|
baa9641428f58e308eee98dc86b5acc0fecf2776
|
[] |
no_license
|
Ja1941/hilberts-axioms
|
50219c732ad5fa167408432e8c8baae259777a40
|
5b653a92e448b77da41c9893066b641bc4e6b316
|
refs/heads/master
| 1,693,238,884,856
| 1,635,702,120,000
| 1,635,702,120,000
| 385,546,384
| 9
| 1
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 6,748
|
lean
|
/-
Copyright (c) 2021 Tianchen Zhao. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Tianchen Zhao
-/
import congruence.Elements
/-!
# Parallelism
This file defines how two lines are parallel and proves properties
of parallel lines such as alternative angles.
## Main definitions
* `is_parallel` means the two lines have no intersections
* `hilbert_plane_playfair` is a class extended `hilbert_plane` with
Playfair axiom that deals with parallelism
## References
* See [Geometry: Euclid and Beyond]
-/
/--We can add Playfair axiom to Hilbert plane so that given a line and a point,
we can find a unique parallel line containing this point. -/
class hilbert_plane_playfair extends hilbert_plane :=
(P : ∀ (a : pts) (l ∈ lines), (a ∉ l → ∃ l' ∈ lines, a ∈ l' ∧ (l ∥ₗ l'))
∧ (∀ m n ∈ lines, a ∈ m → (l ∥ₗ m) → a ∈ n → (l ∥ₗ n) → m = n))
open incidence_geometry incidence_order_geometry hilbert_plane hilbert_plane_playfair
variables [CP : hilbert_plane_playfair]
include CP
lemma parallel_exist {l : set pts} (a : pts) (hl : l ∈ lines) (hal : a ∉ l) :
∃ l' ∈ lines, a ∈ l' ∧ (l ∥ₗ l') :=
by {rcases (P a l hl).1 hal with ⟨l', hl', hal', hll'⟩, exact ⟨l', hl', hal', hll'⟩}
lemma parallel_unique {a : pts} {l m n : set pts} (hl : l ∈ lines) :
m ∈ lines → n ∈ lines → a ∈ m → (l ∥ₗ m) → a ∈ n → (l ∥ₗ n) → m = n :=
(P a l hl).2 m n
private lemma correspond_eq_iff_parallel_prep {a b c d e : pts}
(hab : a ≠ b) (hcd : c ≠ d) (hcae : between c a e) (hbd : same_side_line (a-ₗc) b d) :
((∠ e a b) <ₐ (∠ a c d)) → ¬((a-ₗb) ∥ₗ (c-ₗd)) :=
begin
have hac := (between_neq hcae).1.symm,
intros h hf,
rcases (three_pt_ang_lt.1 h) with ⟨p, hp, key⟩,
rw [inside_three_pt_ang, line_symm] at hp,
have hbp := same_side_line_trans (line_in_lines hac) hbd hp.1,
have hcp := (same_side_line_neq' hbp).2.symm,
have habcp := correspond_eq_parallel hab hcp hcae hbp (ang_congr_symm key),
have hcdcp := parallel_unique (line_in_lines hab) (line_in_lines hcd) (line_in_lines hcp)
(pt_left_in_line c d) hf (pt_left_in_line c p) habcp,
have hcdp : col c d p,
apply col_in12', rw hcdcp, exact pt_right_in_line c p,
have hacd := (same_side_line_noncol hbd hac).2,
have hacp := (same_side_line_noncol hbp hac).2,
have hcdp := same_side_line_pt hcdp (a-ₗc) (line_in_lines hac) (pt_right_in_line a c)
(noncol_in12 hacd) (noncol_in12 hacp) hp.1,
rw ←ang_eq_same_side_pt a hcdp at key,
have hac := (between_neq hcae).1.symm,
have hacb := (same_side_line_noncol hbd hac).1,
have hae := (between_neq hcae).2.2,
have haeb := col_noncol (col12 (between_col hcae)) hacb hae,
apply (ang_tri (ang_proper_iff_noncol.2 (noncol12 haeb))
(ang_proper_iff_noncol.2 hacd)).2.1,
exact ⟨h, ang_congr_symm key⟩
end
lemma correspond_eq_iff_parallel {a b c d e : pts}
(hab : a ≠ b) (hcd : c ≠ d) (hcae : between c a e) (hbd : same_side_line (a-ₗc) b d) :
((∠ e a b) ≅ₐ (∠ a c d)) ↔ ((a-ₗb) ∥ₗ (c-ₗd)) :=
begin
split; intro h,
exact correspond_eq_parallel hab hcd hcae hbd h,
{ have hac := (between_neq hcae).1.symm,
have hacb := (same_side_line_noncol hbd hac).1,
have hae := (between_neq hcae).2.2,
have haeb := col_noncol (col12 (between_col hcae)) hacb hae,
have hacd := (same_side_line_noncol hbd hac).2,
rcases (ang_tri (ang_proper_iff_noncol.2 (noncol12 haeb))
(ang_proper_iff_noncol.2 hacd)).1 with hf | h | hf,
exfalso, exact correspond_eq_iff_parallel_prep hab hcd hcae hbd hf h,
exact h,
{ rcases between_extend hab.symm with ⟨b', hbab'⟩,
rcases between_extend hcd.symm with ⟨d', hdcd'⟩,
exfalso,
have hab' := (between_neq hbab').2.2,
have hcd' := (between_neq hdcd').2.2,
have hab'c := col_noncol (col12 (between_col hbab')) (noncol23 hacb) hab',
have had'c := col_noncol (col12 (between_col hdcd')) (noncol123 hacd) hcd',
apply correspond_eq_iff_parallel_prep hab' hcd' hcae _ _ _,
{ have hbb' := diff_side_pt_line (between_diff_side_pt.1 hbab') (line_in_lines hac)
(pt_left_in_line a c) (noncol_in12 hacb) (noncol_in13 hab'c),
have hdd' := diff_side_pt_line (between_diff_side_pt.1 hdcd') (line_in_lines hac)
(pt_right_in_line a c) (noncol_in12 hacd) (noncol_in31 had'c),
apply diff_side_line_cancel (line_in_lines hac) (diff_side_line_symm hbb'),
exact same_diff_side_line (line_in_lines hac) hbd hdd', },
{ apply ang_lt_supplementary hf; rw three_pt_ang_supplementary,
exact ⟨hdcd', hacd, noncol132 had'c⟩,
exact ⟨hbab', noncol12 haeb, noncol132
(col_noncol (col12 (between_col hbab')) (noncol23 haeb) hab')⟩ },
{ rw two_pt_one_line (line_in_lines hab') (line_in_lines hab) hab (pt_left_in_line a b')
(col_in23 (between_col hbab') hab') (pt_left_in_line a b) (pt_right_in_line a b),
rw two_pt_one_line (line_in_lines hcd') (line_in_lines hcd) hcd (pt_left_in_line c d')
(col_in23 (between_col hdcd') hcd') (pt_left_in_line c d) (pt_right_in_line c d),
exact h } } }
end
lemma alternative_eq_iff_parallel {a b c d : pts}
(hab : a ≠ b) (hcd : c ≠ d) (hac : a ≠ c) (hbd : diff_side_line (a-ₗc) b d) :
((∠ b a c) ≅ₐ (∠ d c a)) ↔ ((a-ₗb) ∥ₗ (c-ₗd)) :=
begin
cases between_extend hab.symm with b' hbab',
cases between_extend hac.symm with c' hcac',
have hab' := (between_neq hbab').2.2,
have hbac := noncol_in23' hac hbd.2.1,
have hab'c := col_noncol (col12 (between_col hbab')) (noncol12 hbac) hab',
have hbd' : same_side_line (a-ₗc) b' d,
apply diff_side_line_cancel (line_in_lines hac) _ hbd,
apply diff_side_line_symm,
apply diff_side_pt_line (between_diff_side_pt.1 hbab') (line_in_lines hac)
(pt_left_in_line a c) hbd.2.1 (noncol_in13 hab'c),
have := correspond_eq_iff_parallel hab' hcd hcac' hbd',
rw two_pt_one_line (line_in_lines hab') (line_in_lines hab) hab (pt_left_in_line a b')
(col_in23 (between_col hbab') hab') (pt_left_in_line a b) (pt_right_in_line a b) at this,
rw ←this,
have := vertical_ang_congr hbac hbab' hcac',
split; intro h,
rw [ang_symm, ang_symm a c d], exact ang_congr_trans (ang_congr_symm this) h,
rw ang_symm d c a, rw ang_symm at h, exact ang_congr_trans this h
end
/--Some hints for Tchsurvives:
1. extend_congr_seg'
2. SAS
3. alternative_eq_iff_parallel
4. ASA -/
lemma midpoint {a b c d e : pts} (habc : noncol a b c) (hadb : between a d b)
(haec : between a e c) (hd : midpt d (a-ₛb)) : (midpt e (a-ₛc)) ↔ ((d-ₗe) ∥ₗ (b-ₗc)) :=
begin
sorry
end
|
99524be13ff2b5a7f3a6a132de0b753c27aa9e91
|
9028d228ac200bbefe3a711342514dd4e4458bff
|
/src/linear_algebra/dual.lean
|
72ee1a8423fd98600052aea97482b834c98436d8
|
[
"Apache-2.0"
] |
permissive
|
mcncm/mathlib
|
8d25099344d9d2bee62822cb9ed43aa3e09fa05e
|
fde3d78cadeec5ef827b16ae55664ef115e66f57
|
refs/heads/master
| 1,672,743,316,277
| 1,602,618,514,000
| 1,602,618,514,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 12,791
|
lean
|
/-
Copyright (c) 2019 Johan Commelin. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin, Fabian Glöckle
-/
import linear_algebra.finite_dimensional
import tactic.apply_fun
noncomputable theory
/-!
# Dual vector spaces
The dual space of an R-module M is the R-module of linear maps `M → R`.
## Main definitions
* `dual R M` defines the dual space of M over R.
* Given a basis for a K-vector space `V`, `is_basis.to_dual` produces a map from `V` to `dual K V`.
* Given families of vectors `e` and `ε`, `dual_pair e ε` states that these families have the
characteristic properties of a basis and a dual.
## Main results
* `to_dual_equiv` : the dual space is linearly equivalent to the primal space.
* `dual_pair.is_basis` and `dual_pair.eq_dual`: if `e` and `ε` form a dual pair, `e` is a basis and
`ε` is its dual basis.
## Notation
We sometimes use `V'` as local notation for `dual K V`.
-/
namespace module
variables (R : Type*) (M : Type*)
variables [comm_ring R] [add_comm_group M] [module R M]
/-- The dual space of an R-module M is the R-module of linear maps `M → R`. -/
@[derive [add_comm_group, module R]] def dual := M →ₗ[R] R
namespace dual
instance : inhabited (dual R M) := by dunfold dual; apply_instance
instance : has_coe_to_fun (dual R M) := ⟨_, linear_map.to_fun⟩
/-- Maps a module M to the dual of the dual of M. See `vector_space.erange_coe` and
`vector_space.eval_equiv`. -/
def eval : M →ₗ[R] (dual R (dual R M)) := linear_map.flip linear_map.id
lemma eval_apply (v : M) (a : dual R M) : (eval R M v) a = a v :=
begin
dunfold eval,
rw [linear_map.flip_apply, linear_map.id_apply]
end
variables {R M} {M' : Type*} [add_comm_group M'] [module R M']
/-- The transposition of linear maps, as a linear map from `M →ₗ[R] M'` to
`dual R M' →ₗ[R] dual R M`. -/
def transpose : (M →ₗ[R] M') →ₗ[R] (dual R M' →ₗ[R] dual R M) :=
(linear_map.llcomp R M M' R).flip
lemma transpose_apply (u : M →ₗ[R] M') (l : dual R M') : transpose u l = l.comp u := rfl
variables {M'' : Type*} [add_comm_group M''] [module R M'']
lemma transpose_comp (u : M' →ₗ[R] M'') (v : M →ₗ[R] M') :
transpose (u.comp v) = (transpose v).comp (transpose u) := rfl
end dual
end module
namespace is_basis
universes u v w
variables {K : Type u} {V : Type v} {ι : Type w}
variables [field K] [add_comm_group V] [vector_space K V]
open vector_space module module.dual submodule linear_map cardinal function
variables [de : decidable_eq ι]
variables {B : ι → V} (h : is_basis K B)
include de h
/-- The linear map from a vector space equipped with basis to its dual vector space,
taking basis elements to corresponding dual basis elements. -/
def to_dual : V →ₗ[K] module.dual K V :=
h.constr $ λ v, h.constr $ λ w, if w = v then 1 else 0
lemma to_dual_apply (i j : ι) :
h.to_dual (B i) (B j) = if i = j then 1 else 0 :=
by { erw [constr_basis h, constr_basis h], ac_refl }
@[simp] lemma to_dual_total_left (f : ι →₀ K) (i : ι) :
h.to_dual (finsupp.total ι V K B f) (B i) = f i :=
begin
rw [finsupp.total_apply, finsupp.sum, linear_map.map_sum, linear_map.sum_apply],
simp_rw [linear_map.map_smul, linear_map.smul_apply, to_dual_apply, smul_eq_mul,
mul_boole, finset.sum_ite_eq'],
split_ifs with h,
{ refl },
{ rw finsupp.not_mem_support_iff.mp h }
end
@[simp] lemma to_dual_total_right (f : ι →₀ K) (i : ι) :
h.to_dual (B i) (finsupp.total ι V K B f) = f i :=
begin
rw [finsupp.total_apply, finsupp.sum, linear_map.map_sum],
simp_rw [linear_map.map_smul, to_dual_apply, smul_eq_mul, mul_boole, finset.sum_ite_eq],
split_ifs with h,
{ refl },
{ rw finsupp.not_mem_support_iff.mp h }
end
lemma to_dual_apply_left (v : V) (i : ι) : h.to_dual v (B i) = h.repr v i :=
by rw [← h.to_dual_total_left, h.total_repr]
lemma to_dual_apply_right (i : ι) (v : V) : h.to_dual (B i) v = h.repr v i :=
by rw [← h.to_dual_total_right, h.total_repr]
/-- `h.to_dual_flip v` is the linear map sending `w` to `h.to_dual w v`. -/
def to_dual_flip (v : V) : (V →ₗ[K] K) := (linear_map.flip h.to_dual).to_fun v
omit de h
-- TODO: unify this with `finsupp.lapply`.
/-- Evaluation of finitely supported functions at a fixed point `i`, as a `K`-linear map. -/
def eval_finsupp_at (i : ι) : (ι →₀ K) →ₗ[K] K :=
{ to_fun := λ f, f i,
map_add' := by intros; rw finsupp.add_apply,
map_smul' := by intros; rw finsupp.smul_apply }
include h
/-- `h.coord_fun i` sends vectors to their `i`'th coordinate with respect to the basis `h`. -/
def coord_fun (i : ι) : (V →ₗ[K] K) := linear_map.comp (eval_finsupp_at i) h.repr
lemma coord_fun_eq_repr (v : V) (i : ι) : h.coord_fun i v = h.repr v i := rfl
include de
-- TODO: this lemma should be called something like `to_dual_flip_apply`
lemma to_dual_swap_eq_to_dual (v w : V) : h.to_dual_flip v w = h.to_dual w v := rfl
lemma to_dual_eq_repr (v : V) (i : ι) : (h.to_dual v) (B i) = h.repr v i :=
h.to_dual_apply_left v i
lemma to_dual_eq_equiv_fun [fintype ι] (v : V) (i : ι) : (h.to_dual v) (B i) = h.equiv_fun v i :=
by rw [h.equiv_fun_apply, to_dual_eq_repr]
lemma to_dual_inj (v : V) (a : h.to_dual v = 0) : v = 0 :=
begin
rw [← mem_bot K, ← h.repr_ker, mem_ker],
apply finsupp.ext,
intro b,
rw [←to_dual_eq_repr _ _ _, a],
refl
end
theorem to_dual_ker : h.to_dual.ker = ⊥ :=
ker_eq_bot'.mpr h.to_dual_inj
theorem to_dual_range [fin : fintype ι] : h.to_dual.range = ⊤ :=
begin
rw eq_top_iff',
intro f,
rw linear_map.mem_range,
let lin_comb : ι →₀ K := finsupp.on_finset fin.elems (λ i, f.to_fun (B i)) _,
{ use finsupp.total ι V K B lin_comb,
apply h.ext,
{ intros i,
rw [h.to_dual_eq_repr _ i, repr_total h],
{ refl },
{ rw [finsupp.mem_supported],
exact λ _ _, set.mem_univ _ } } },
{ intros a _,
apply fin.complete }
end
/-- Maps a basis for `V` to a basis for the dual space. -/
def dual_basis : ι → dual K V := λ i, h.to_dual (B i)
theorem dual_lin_independent : linear_independent K h.dual_basis :=
begin
apply linear_independent.image h.1,
rw to_dual_ker,
exact disjoint_bot_right
end
@[simp] lemma dual_basis_apply_self (i j : ι) :
h.dual_basis i (B j) = if i = j then 1 else 0 :=
h.to_dual_apply i j
/-- A vector space is linearly equivalent to its dual space. -/
def to_dual_equiv [fintype ι] : V ≃ₗ[K] (dual K V) :=
linear_equiv.of_bijective h.to_dual h.to_dual_ker h.to_dual_range
theorem dual_basis_is_basis [fintype ι] : is_basis K h.dual_basis :=
h.to_dual_equiv.is_basis h
@[simp] lemma total_dual_basis [fintype ι] (f : ι →₀ K) (i : ι) :
finsupp.total ι (dual K V) K h.dual_basis f (B i) = f i :=
begin
rw [finsupp.total_apply, finsupp.sum_fintype, linear_map.sum_apply],
{ simp_rw [smul_apply, smul_eq_mul, dual_basis_apply_self, mul_boole,
finset.sum_ite_eq', if_pos (finset.mem_univ i)] },
{ intro, rw zero_smul },
end
lemma dual_basis_repr [fintype ι] (l : dual K V) (i : ι) :
h.dual_basis_is_basis.repr l i = l (B i) :=
by rw [← total_dual_basis h, is_basis.total_repr h.dual_basis_is_basis l ]
lemma dual_basis_equiv_fun [fintype ι] (l : dual K V) (i : ι) :
h.dual_basis_is_basis.equiv_fun l i = l (B i) :=
by rw [is_basis.equiv_fun_apply, dual_basis_repr]
lemma dual_basis_apply [fintype ι] (i : ι) (v : V) : h.dual_basis i v = h.equiv_fun v i :=
h.to_dual_apply_right i v
@[simp] lemma to_dual_to_dual [fintype ι] :
(h.dual_basis_is_basis.to_dual).comp h.to_dual = eval K V :=
begin
refine h.ext (λ i, h.dual_basis_is_basis.ext (λ j, _)),
dunfold eval,
rw [linear_map.flip_apply, linear_map.id_apply, linear_map.comp_apply],
apply eq.trans (to_dual_apply h.dual_basis_is_basis i j),
{ dunfold dual_basis,
rw to_dual_apply,
by_cases h : i = j,
{ rw [if_pos h, if_pos h.symm] },
{ rw [if_neg h, if_neg (ne.symm h)] } }
end
omit de
theorem dual_dim_eq [fintype ι] :
cardinal.lift.{v u} (dim K V) = dim K (dual K V) :=
begin
classical,
have := linear_equiv.dim_eq_lift h.to_dual_equiv,
simp only [cardinal.lift_umax] at this,
rw [this, ← cardinal.lift_umax],
apply cardinal.lift_id,
end
end is_basis
namespace vector_space
universes u v
variables {K : Type u} {V : Type v}
variables [field K] [add_comm_group V] [vector_space K V]
open module module.dual submodule linear_map cardinal is_basis
theorem eval_ker : (eval K V).ker = ⊥ :=
begin
classical,
rw ker_eq_bot',
intros v h,
rw linear_map.ext_iff at h,
by_contradiction H,
rcases exists_subset_is_basis (linear_independent_singleton H) with ⟨b, hv, hb⟩,
swap 4, assumption,
have hv' : v = (coe : b → V) ⟨v, hv (set.mem_singleton v)⟩ := rfl,
let hx := h (hb.to_dual v),
rw [eval_apply, hv', to_dual_apply, if_pos rfl, zero_apply] at hx,
exact one_ne_zero hx
end
theorem dual_dim_eq (h : dim K V < omega) :
cardinal.lift.{v u} (dim K V) = dim K (dual K V) :=
begin
classical,
rcases exists_is_basis_fintype h with ⟨b, hb, ⟨hf⟩⟩,
resetI,
exact hb.dual_dim_eq
end
lemma erange_coe (h : dim K V < omega) : (eval K V).range = ⊤ :=
begin
classical,
rcases exists_is_basis_fintype h with ⟨b, hb, ⟨hf⟩⟩,
unfreezingI { rw [← hb.to_dual_to_dual, range_comp, hb.to_dual_range, map_top, to_dual_range _] },
apply_instance
end
/-- A vector space is linearly equivalent to the dual of its dual space. -/
def eval_equiv (h : dim K V < omega) : V ≃ₗ[K] dual K (dual K V) :=
linear_equiv.of_bijective (eval K V) eval_ker (erange_coe h)
end vector_space
section dual_pair
open vector_space module module.dual linear_map function
universes u v w
variables {K : Type u} {V : Type v} {ι : Type w} [decidable_eq ι]
variables [field K] [add_comm_group V] [vector_space K V]
local notation `V'` := dual K V
/-- `e` and `ε` have characteristic properties of a basis and its dual -/
@[nolint has_inhabited_instance]
structure dual_pair (e : ι → V) (ε : ι → V') :=
(eval : ∀ i j : ι, ε i (e j) = if i = j then 1 else 0)
(total : ∀ {v : V}, (∀ i, ε i v = 0) → v = 0)
[finite : ∀ v : V, fintype {i | ε i v ≠ 0}]
end dual_pair
namespace dual_pair
open vector_space module module.dual linear_map function
universes u v w
variables {K : Type u} {V : Type v} {ι : Type w} [dι : decidable_eq ι]
variables [field K] [add_comm_group V] [vector_space K V]
variables {e : ι → V} {ε : ι → dual K V} (h : dual_pair e ε)
include h
/-- The coefficients of `v` on the basis `e` -/
def coeffs (v : V) : ι →₀ K :=
{ to_fun := λ i, ε i v,
support := by { haveI := h.finite v, exact {i : ι | ε i v ≠ 0}.to_finset },
mem_support_to_fun := by {intro i, rw set.mem_to_finset, exact iff.rfl } }
@[simp] lemma coeffs_apply (v : V) (i : ι) : h.coeffs v i = ε i v := rfl
omit h
/-- linear combinations of elements of `e`.
This is a convenient abbreviation for `finsupp.total _ V K e l` -/
def lc (e : ι → V) (l : ι →₀ K) : V := l.sum (λ (i : ι) (a : K), a • (e i))
include h
lemma dual_lc (l : ι →₀ K) (i : ι) : ε i (dual_pair.lc e l) = l i :=
begin
erw linear_map.map_sum,
simp only [h.eval, map_smul, smul_eq_mul],
rw finset.sum_eq_single i,
{ simp },
{ intros q q_in q_ne,
simp [q_ne.symm] },
{ intro p_not_in,
simp [finsupp.not_mem_support_iff.1 p_not_in] },
end
@[simp]
lemma coeffs_lc (l : ι →₀ K) : h.coeffs (dual_pair.lc e l) = l :=
by { ext i, rw [h.coeffs_apply, h.dual_lc] }
/-- For any v : V n, \sum_{p ∈ Q n} (ε p v) • e p = v -/
lemma decomposition (v : V) : dual_pair.lc e (h.coeffs v) = v :=
begin
refine eq_of_sub_eq_zero (h.total _),
intros i,
simp [-sub_eq_add_neg, linear_map.map_sub, h.dual_lc, sub_eq_zero_iff_eq]
end
lemma mem_of_mem_span {H : set ι} {x : V} (hmem : x ∈ submodule.span K (e '' H)) :
∀ i : ι, ε i x ≠ 0 → i ∈ H :=
begin
intros i hi,
rcases (finsupp.mem_span_iff_total _).mp hmem with ⟨l, supp_l, sum_l⟩,
change dual_pair.lc e l = x at sum_l,
rw finsupp.mem_supported' at supp_l,
apply classical.by_contradiction,
intro i_not,
apply hi,
rw ← sum_l,
simpa [h.dual_lc] using supp_l i i_not
end
lemma is_basis : is_basis K e :=
begin
split,
{ rw linear_independent_iff,
intros l H,
change dual_pair.lc e l = 0 at H,
ext i,
apply_fun ε i at H,
simpa [h.dual_lc] using H },
{ rw submodule.eq_top_iff',
intro v,
rw [← set.image_univ, finsupp.mem_span_iff_total],
exact ⟨h.coeffs v, by simp, h.decomposition v⟩ },
end
lemma eq_dual : ε = is_basis.dual_basis h.is_basis :=
begin
funext i,
refine h.is_basis.ext (λ _, _),
erw [is_basis.to_dual_apply, h.eval]
end
end dual_pair
|
bc68bb6573e2efb798e1afff2cbeb1b7a8d045ea
|
6432ea7a083ff6ba21ea17af9ee47b9c371760f7
|
/src/Lean/Meta/Tactic/LinearArith.lean
|
cadcc6067f3804c211b3f738caf40b021d9898a7
|
[
"Apache-2.0",
"LLVM-exception",
"NCSA",
"LGPL-3.0-only",
"LicenseRef-scancode-inner-net-2.0",
"BSD-3-Clause",
"LGPL-2.0-or-later",
"Spencer-94",
"LGPL-2.1-or-later",
"HPND",
"LicenseRef-scancode-pcre",
"ISC",
"LGPL-2.1-only",
"LicenseRef-scancode-other-permissive",
"SunPro",
"CMU-Mach"
] |
permissive
|
leanprover/lean4
|
4bdf9790294964627eb9be79f5e8f6157780b4cc
|
f1f9dc0f2f531af3312398999d8b8303fa5f096b
|
refs/heads/master
| 1,693,360,665,786
| 1,693,350,868,000
| 1,693,350,868,000
| 129,571,436
| 2,827
| 311
|
Apache-2.0
| 1,694,716,156,000
| 1,523,760,560,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 325
|
lean
|
/-
Copyright (c) 2022 Sebastian Ullrich. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sebastian Ullrich
-/
import Lean.Meta.Tactic.LinearArith.Solver
import Lean.Meta.Tactic.LinearArith.Nat
import Lean.Meta.Tactic.LinearArith.Main
import Lean.Meta.Tactic.LinearArith.Simp
|
be1bf382d8a51cbfba34dae2c768d96e919aaa8f
|
0851884047bb567d19e188e8f1ad959c5ae9c5ce
|
/src/M1P2/Sheet-7.lean
|
f0d7d2f00790d2fe4f30d7e1dcb641ef3fb28e55
|
[
"Apache-2.0"
] |
permissive
|
yz5216/xena-UROP-2018
|
00d3f71a831324966d40d302544ed2cbbec3fd0f
|
5e9da9dc64dc51897677f8b73ab9f94061a8d977
|
refs/heads/master
| 1,584,922,436,989
| 1,531,487,250,000
| 1,531,487,250,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 1,996
|
lean
|
import data.nat.prime data.nat.basic data.int.modeq
open nat
--sheet 7
-- *1. Suppose that G is a finite group which contains elements of each of the orders 1, 2, . . . , 10. What is the smallest possible value of |G|? Find a group of this size which does have elements of each of these orders.
theorem sheet07_q1:
-- 2. What is the largest order of an element of S8?
theorem sheet07_q2:
-- 3. Let G be a cyclic group of order n, and g a generator. Show that gk is a
-- generator for G if and only if hcf(k, n) = 1.
theorem sheet07_q3:
-- 4. LetG and H be finite groups. Let G×H be the set {(g,h)|g∈G,h∈H} with the binary operation (g1, h1) ∗ (g2, h2) = (g1g2, h1h2).
-- (a) Show that (G×H,∗) is a group.
theorem sheet07_q4a:
-- (b) Show that if g ∈ G and h ∈ H have orders a, b respectively, then the order of (g,h) in G×H is the lowest common multiple of a and b.
theorem sheet07_q4b:
-- (c) Show that G × H is cyclic if and only if G and H are both cyclic, and hcf(|G|,|H|) = 1.
theorem sheet07_q4c:
-- 6. (a) Find the remainder when 5110 is divided by 13.
theorem sheet07_q6a:
-- (b) Find the inverses of [2] and of [120] in Z×9871. (The number 9871 is prime.)
theorem sheet07_q6b:
-- (c) Use Fermat’s Little Theorem to show that n17 ≡ n mod 255 for all n ∈ Z. (d) Prove that if p and q are distinct prime numbers then
-- pq−1 + qp−1 ≡ 1 mod pq.
theorem sheet07_q6c:
-- 7. Let p be an odd prime.
-- (a) Prove that (p − 1)! ≡ −1 mod p (Wilson’s Theorem).
theorem sheet07_q7a (p : ℕ) (hp : prime p) : fact (p-1) ≡ -1 [ZMOD p] := sorry
--- (b) Show that if p≡1 mod 4,then there is x∈Z with x^2 ≡−1 modp.
theorem sheet07_q7b (p : ℕ) (hp : prime p) : p ≡ 1 [ZMOD 4] → ∃ x ∈ ℤ ∧ x^2 ≡ -1 [ZMOD p] := sorry
-- (c) Show that if p ≠ 2 and there is x∈Z with x^2 ≡−1 modp,then p ≡ 1 mod 4.
theorem sheet07_q7c (p : ℕ) (hp : prime p) : p ≠ 2 ∧ ∃ x ∈ ℤ ∧ x^2 ≡ -1 [ZMOD p] → p ≡ 1 [ZMOD 4] := sorry
|
d50653bff88a4456a1c131d5a7ef2fe87b89db33
|
4d2583807a5ac6caaffd3d7a5f646d61ca85d532
|
/src/logic/is_empty.lean
|
de2594018ec81641600cb6e91e2b367a1060de66
|
[
"Apache-2.0"
] |
permissive
|
AntoineChambert-Loir/mathlib
|
64aabb896129885f12296a799818061bc90da1ff
|
07be904260ab6e36a5769680b6012f03a4727134
|
refs/heads/master
| 1,693,187,631,771
| 1,636,719,886,000
| 1,636,719,886,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 4,674
|
lean
|
/-
Copyright (c) 2021 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
-/
import logic.basic
import tactic.protected
/-!
# Types that are empty
In this file we define a typeclass `is_empty`, which expresses that a type has no elements.
## Main declaration
* `is_empty`: a typeclass that expresses that a type is empty.
-/
variables {α β γ : Sort*}
/-- `is_empty α` expresses that `α` is empty. -/
@[protect_proj]
class is_empty (α : Sort*) : Prop :=
(false : α → false)
instance : is_empty empty := ⟨empty.elim⟩
instance : is_empty pempty := ⟨pempty.elim⟩
instance : is_empty false := ⟨id⟩
instance : is_empty (fin 0) := ⟨λ n, nat.not_lt_zero n.1 n.2⟩
protected lemma function.is_empty [is_empty β] (f : α → β) : is_empty α :=
⟨λ x, is_empty.false (f x)⟩
instance {p : α → Sort*} [h : nonempty α] [∀ x, is_empty (p x)] : is_empty (Π x, p x) :=
h.elim $ λ x, function.is_empty $ function.eval x
instance pprod.is_empty_left [is_empty α] : is_empty (pprod α β) :=
function.is_empty pprod.fst
instance pprod.is_empty_right [is_empty β] : is_empty (pprod α β) :=
function.is_empty pprod.snd
instance prod.is_empty_left {α β} [is_empty α] : is_empty (α × β) :=
function.is_empty prod.fst
instance prod.is_empty_right {α β} [is_empty β] : is_empty (α × β) :=
function.is_empty prod.snd
instance [is_empty α] [is_empty β] : is_empty (psum α β) :=
⟨λ x, psum.rec is_empty.false is_empty.false x⟩
instance {α β} [is_empty α] [is_empty β] : is_empty (α ⊕ β) :=
⟨λ x, sum.rec is_empty.false is_empty.false x⟩
/-- subtypes of an empty type are empty -/
instance [is_empty α] (p : α → Prop) : is_empty (subtype p) :=
⟨λ x, is_empty.false x.1⟩
/-- subtypes by an all-false predicate are false. -/
lemma subtype.is_empty_of_false {p : α → Prop} (hp : ∀ a, ¬(p a)) : is_empty (subtype p) :=
⟨λ x, hp _ x.2⟩
/-- subtypes by false are false. -/
instance subtype.is_empty_false : is_empty {a : α // false} :=
subtype.is_empty_of_false (λ a, id)
/- Test that `pi.is_empty` finds this instance. -/
example [h : nonempty α] [is_empty β] : is_empty (α → β) := by apply_instance
/-- Eliminate out of a type that `is_empty` (without using projection notation). -/
@[elab_as_eliminator]
def is_empty_elim [is_empty α] {p : α → Sort*} (a : α) : p a :=
(is_empty.false a).elim
lemma is_empty_iff : is_empty α ↔ α → false :=
⟨@is_empty.false α, is_empty.mk⟩
namespace is_empty
open function
/-- Eliminate out of a type that `is_empty` (using projection notation). -/
protected def elim (h : is_empty α) {p : α → Sort*} (a : α) : p a :=
is_empty_elim a
/-- Non-dependent version of `is_empty.elim`. Helpful if the elaborator cannot elaborate `h.elim a`
correctly. -/
protected def elim' {β : Sort*} (h : is_empty α) (a : α) : β :=
h.elim a
protected lemma prop_iff {p : Prop} : is_empty p ↔ ¬ p :=
is_empty_iff
variables [is_empty α]
lemma forall_iff {p : α → Prop} : (∀ a, p a) ↔ true :=
iff_true_intro is_empty_elim
lemma exists_iff {p : α → Prop} : (∃ a, p a) ↔ false :=
iff_false_intro $ λ ⟨x, hx⟩, is_empty.false x
@[priority 100] -- see Note [lower instance priority]
instance : subsingleton α := ⟨is_empty_elim⟩
end is_empty
@[simp] lemma not_nonempty_iff : ¬ nonempty α ↔ is_empty α :=
⟨λ h, ⟨λ x, h ⟨x⟩⟩, λ h1 h2, h2.elim h1.elim⟩
@[simp] lemma not_is_empty_iff : ¬ is_empty α ↔ nonempty α :=
not_iff_comm.mp not_nonempty_iff
@[simp] lemma is_empty_pi {π : α → Sort*} : is_empty (Π a, π a) ↔ ∃ a, is_empty (π a) :=
by simp only [← not_nonempty_iff, classical.nonempty_pi, not_forall]
@[simp] lemma is_empty_prod {α β : Type*} : is_empty (α × β) ↔ is_empty α ∨ is_empty β :=
by simp only [← not_nonempty_iff, nonempty_prod, not_and_distrib]
@[simp] lemma is_empty_pprod : is_empty (pprod α β) ↔ is_empty α ∨ is_empty β :=
by simp only [← not_nonempty_iff, nonempty_pprod, not_and_distrib]
@[simp] lemma is_empty_sum {α β} : is_empty (α ⊕ β) ↔ is_empty α ∧ is_empty β :=
by simp only [← not_nonempty_iff, nonempty_sum, not_or_distrib]
@[simp] lemma is_empty_psum {α β} : is_empty (psum α β) ↔ is_empty α ∧ is_empty β :=
by simp only [← not_nonempty_iff, nonempty_psum, not_or_distrib]
variables (α)
lemma is_empty_or_nonempty : is_empty α ∨ nonempty α :=
(em $ is_empty α).elim or.inl $ or.inr ∘ not_is_empty_iff.mp
@[simp] lemma not_is_empty_of_nonempty [h : nonempty α] : ¬ is_empty α :=
not_is_empty_iff.mpr h
|
2ee377cd043b93a0249c45d83b7c7d47dcb3ca4d
|
74addaa0e41490cbaf2abd313a764c96df57b05d
|
/Mathlib/Lean3Lib/init/meta/smt/rsimp_auto.lean
|
a167eea7ede40587ae6c664e42625c1628a774f5
|
[] |
no_license
|
AurelienSaue/Mathlib4_auto
|
f538cfd0980f65a6361eadea39e6fc639e9dae14
|
590df64109b08190abe22358fabc3eae000943f2
|
refs/heads/master
| 1,683,906,849,776
| 1,622,564,669,000
| 1,622,564,669,000
| 371,723,747
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 1,148
|
lean
|
/-
Copyright (c) 2017 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
-/
import Mathlib.PrePort
import Mathlib.Lean3Lib.init.meta.smt.smt_tactic
import Mathlib.Lean3Lib.init.meta.fun_info
import Mathlib.Lean3Lib.init.meta.rb_map
universes l
namespace Mathlib
/-- Create a rsimp attribute named `attr_name`, the attribute declaration is named `attr_decl_name`.
The cached hinst_lemmas structure is built using the lemmas marked with simp attribute `simp_attr_name`,
but *not* marked with `ex_attr_name`.
We say `ex_attr_name` is the "exception set". It is useful for excluding lemmas in `simp_attr_name`
which are not good or redundant for ematching. -/
/- The following lemmas are not needed by rsimp, and they actually hurt performance since they generate a lot of
instances. -/
namespace rsimp
/-- Return the size of term by considering only explicit arguments. -/
/-- Choose smallest element (with respect to explicit_size) in `e`s equivalence class. -/
structure config where
attr_name : name
max_rounds : ℕ
end Mathlib
|
8bdb247653227e0d576b8d411b420767cc796203
|
b7f22e51856f4989b970961f794f1c435f9b8f78
|
/tests/lean/run/eq1.lean
|
cc0396146c8f52d179096cdac15430306da24701
|
[
"Apache-2.0"
] |
permissive
|
soonhokong/lean
|
cb8aa01055ffe2af0fb99a16b4cda8463b882cd1
|
38607e3eb57f57f77c0ac114ad169e9e4262e24f
|
refs/heads/master
| 1,611,187,284,081
| 1,450,766,737,000
| 1,476,122,547,000
| 11,513,992
| 2
| 0
| null | 1,401,763,102,000
| 1,374,182,235,000
|
C++
|
UTF-8
|
Lean
| false
| false
| 451
|
lean
|
inductive day :=
monday | tuesday | wednesday | thursday | friday | saturday | sunday
open day
definition next_weekday : day → day
| next_weekday monday := tuesday
| next_weekday tuesday := wednesday
| next_weekday wednesday := thursday
| next_weekday thursday := friday
| next_weekday friday := monday
| next_weekday saturday := monday
| next_weekday sunday := monday
example : next_weekday (next_weekday monday) = wednesday :=
rfl
|
62c82b667b67605d220db195d1d6b523a539934a
|
74addaa0e41490cbaf2abd313a764c96df57b05d
|
/Mathlib/algebra/lie/basic.lean
|
536ecab02cdb67e157618e9dfe58af0345192a49
|
[] |
no_license
|
AurelienSaue/Mathlib4_auto
|
f538cfd0980f65a6361eadea39e6fc639e9dae14
|
590df64109b08190abe22358fabc3eae000943f2
|
refs/heads/master
| 1,683,906,849,776
| 1,622,564,669,000
| 1,622,564,669,000
| 371,723,747
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 112,578
|
lean
|
/-
Copyright (c) 2019 Oliver Nash. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Oliver Nash
-/
import Mathlib.PrePort
import Mathlib.Lean3Lib.init.default
import Mathlib.data.bracket
import Mathlib.algebra.algebra.basic
import Mathlib.linear_algebra.bilinear_form
import Mathlib.linear_algebra.matrix
import Mathlib.order.preorder_hom
import Mathlib.order.compactly_generated
import Mathlib.tactic.noncomm_ring
import Mathlib.PostPort
universes v l u w w₁ w₂
namespace Mathlib
/-!
# Lie algebras
This file defines Lie rings, and Lie algebras over a commutative ring. It shows how these arise from
associative rings and algebras via the ring commutator. In particular it defines the Lie algebra
of endomorphisms of a module as well as of the algebra of square matrices over a commutative ring.
It also includes definitions of morphisms of Lie algebras, Lie subalgebras, Lie modules, Lie
submodules, and the quotient of a Lie algebra by an ideal.
## Notations
We introduce the notation ⁅x, y⁆ for the Lie bracket. Note that these are the Unicode "square with
quill" brackets rather than the usual square brackets.
Working over a fixed commutative ring `R`, we introduce the notations:
* `L →ₗ⁅R⁆ L'` for a morphism of Lie algebras,
* `L ≃ₗ⁅R⁆ L'` for an equivalence of Lie algebras,
* `M →ₗ⁅R,L⁆ N` for a morphism of Lie algebra modules `M`, `N` over a Lie algebra `L`,
* `M ≃ₗ⁅R,L⁆ N` for an equivalence of Lie algebra modules `M`, `N` over a Lie algebra `L`.
## Implementation notes
Lie algebras are defined as modules with a compatible Lie ring structure and thus, like modules,
are partially unbundled.
## References
* [N. Bourbaki, *Lie Groups and Lie Algebras, Chapters 1--3*][bourbaki1975]
## Tags
lie bracket, ring commutator, jacobi identity, lie ring, lie algebra
-/
/-- A Lie ring is an additive group with compatible product, known as the bracket, satisfying the
Jacobi identity. The bracket is not associative unless it is identically zero. -/
class lie_ring (L : Type v)
extends has_bracket L L, add_comm_group L
where
add_lie : ∀ (x y z : L), has_bracket.bracket (x + y) z = has_bracket.bracket x z + has_bracket.bracket y z
lie_add : ∀ (x y z : L), has_bracket.bracket x (y + z) = has_bracket.bracket x y + has_bracket.bracket x z
lie_self : ∀ (x : L), has_bracket.bracket x x = 0
leibniz_lie : ∀ (x y z : L),
has_bracket.bracket x (has_bracket.bracket y z) =
has_bracket.bracket (has_bracket.bracket x y) z + has_bracket.bracket y (has_bracket.bracket x z)
/-- A Lie algebra is a module with compatible product, known as the bracket, satisfying the Jacobi
identity. Forgetting the scalar multiplication, every Lie algebra is a Lie ring. -/
class lie_algebra (R : Type u) (L : Type v) [comm_ring R] [lie_ring L]
extends semimodule R L
where
lie_smul : ∀ (t : R) (x y : L), has_bracket.bracket x (t • y) = t • has_bracket.bracket x y
/-- A Lie ring module is an additive group, together with an additive action of a
Lie ring on this group, such that the Lie bracket acts as the commutator of endomorphisms.
(For representations of Lie *algebras* see `lie_module`.) -/
class lie_ring_module (L : Type v) (M : Type w) [lie_ring L] [add_comm_group M]
extends has_bracket L M
where
add_lie : ∀ (x y : L) (m : M), has_bracket.bracket (x + y) m = has_bracket.bracket x m + has_bracket.bracket y m
lie_add : ∀ (x : L) (m n : M), has_bracket.bracket x (m + n) = has_bracket.bracket x m + has_bracket.bracket x n
leibniz_lie : ∀ (x y : L) (m : M),
has_bracket.bracket x (has_bracket.bracket y m) =
has_bracket.bracket (has_bracket.bracket x y) m + has_bracket.bracket y (has_bracket.bracket x m)
/-- A Lie module is a module over a commutative ring, together with a linear action of a Lie
algebra on this module, such that the Lie bracket acts as the commutator of endomorphisms. -/
class lie_module (R : Type u) (L : Type v) (M : Type w) [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M]
where
smul_lie : ∀ (t : R) (x : L) (m : M), has_bracket.bracket (t • x) m = t • has_bracket.bracket x m
lie_smul : ∀ (t : R) (x : L) (m : M), has_bracket.bracket x (t • m) = t • has_bracket.bracket x m
@[simp] theorem add_lie {L : Type v} {M : Type w} [lie_ring L] [add_comm_group M] [lie_ring_module L M] (x : L) (y : L) (m : M) : has_bracket.bracket (x + y) m = has_bracket.bracket x m + has_bracket.bracket y m :=
lie_ring_module.add_lie x y m
@[simp] theorem lie_add {L : Type v} {M : Type w} [lie_ring L] [add_comm_group M] [lie_ring_module L M] (x : L) (m : M) (n : M) : has_bracket.bracket x (m + n) = has_bracket.bracket x m + has_bracket.bracket x n :=
lie_ring_module.lie_add x m n
@[simp] theorem smul_lie {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] (t : R) (x : L) (m : M) : has_bracket.bracket (t • x) m = t • has_bracket.bracket x m :=
lie_module.smul_lie t x m
@[simp] theorem lie_smul {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] (t : R) (x : L) (m : M) : has_bracket.bracket x (t • m) = t • has_bracket.bracket x m :=
lie_module.lie_smul t x m
theorem leibniz_lie {L : Type v} {M : Type w} [lie_ring L] [add_comm_group M] [lie_ring_module L M] (x : L) (y : L) (m : M) : has_bracket.bracket x (has_bracket.bracket y m) =
has_bracket.bracket (has_bracket.bracket x y) m + has_bracket.bracket y (has_bracket.bracket x m) :=
lie_ring_module.leibniz_lie x y m
@[simp] theorem lie_zero {L : Type v} {M : Type w} [lie_ring L] [add_comm_group M] [lie_ring_module L M] (x : L) : has_bracket.bracket x 0 = 0 :=
add_monoid_hom.map_zero (add_monoid_hom.mk' (has_bracket.bracket x) (lie_add x))
@[simp] theorem zero_lie {L : Type v} {M : Type w} [lie_ring L] [add_comm_group M] [lie_ring_module L M] (m : M) : has_bracket.bracket 0 m = 0 :=
add_monoid_hom.map_zero (add_monoid_hom.mk' (fun (x : L) => has_bracket.bracket x m) fun (x y : L) => add_lie x y m)
@[simp] theorem lie_self {L : Type v} [lie_ring L] (x : L) : has_bracket.bracket x x = 0 :=
lie_ring.lie_self x
protected instance lie_ring_self_module {L : Type v} [lie_ring L] : lie_ring_module L L :=
lie_ring_module.mk sorry sorry sorry
@[simp] theorem lie_skew {L : Type v} [lie_ring L] (x : L) (y : L) : -has_bracket.bracket y x = has_bracket.bracket x y := sorry
/-- Every Lie algebra is a module over itself. -/
protected instance lie_algebra_self_module {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [lie_algebra R L] : lie_module R L L :=
lie_module.mk sorry lie_algebra.lie_smul
@[simp] theorem neg_lie {L : Type v} {M : Type w} [lie_ring L] [add_comm_group M] [lie_ring_module L M] (x : L) (m : M) : has_bracket.bracket (-x) m = -has_bracket.bracket x m := sorry
@[simp] theorem lie_neg {L : Type v} {M : Type w} [lie_ring L] [add_comm_group M] [lie_ring_module L M] (x : L) (m : M) : has_bracket.bracket x (-m) = -has_bracket.bracket x m := sorry
@[simp] theorem gsmul_lie {L : Type v} {M : Type w} [lie_ring L] [add_comm_group M] [lie_ring_module L M] (x : L) (m : M) (a : ℤ) : has_bracket.bracket (a • x) m = a • has_bracket.bracket x m :=
add_monoid_hom.map_gsmul
(add_monoid_hom.mk (fun (x : L) => has_bracket.bracket x m) (zero_lie m) fun (_x _x_1 : L) => add_lie _x _x_1 m) x a
@[simp] theorem lie_gsmul {L : Type v} {M : Type w} [lie_ring L] [add_comm_group M] [lie_ring_module L M] (x : L) (m : M) (a : ℤ) : has_bracket.bracket x (a • m) = a • has_bracket.bracket x m :=
add_monoid_hom.map_gsmul
(add_monoid_hom.mk (fun (m : M) => has_bracket.bracket x m) (lie_zero x) fun (_x _x_1 : M) => lie_add x _x _x_1) m a
@[simp] theorem lie_lie {L : Type v} {M : Type w} [lie_ring L] [add_comm_group M] [lie_ring_module L M] (x : L) (y : L) (m : M) : has_bracket.bracket (has_bracket.bracket x y) m =
has_bracket.bracket x (has_bracket.bracket y m) - has_bracket.bracket y (has_bracket.bracket x m) := sorry
theorem lie_jacobi {L : Type v} [lie_ring L] (x : L) (y : L) (z : L) : has_bracket.bracket x (has_bracket.bracket y z) + has_bracket.bracket y (has_bracket.bracket z x) +
has_bracket.bracket z (has_bracket.bracket x y) =
0 := sorry
namespace lie_algebra
/-- A morphism of Lie algebras is a linear map respecting the bracket operations. -/
structure morphism (R : Type u) (L : Type v) (L' : Type w) [comm_ring R] [lie_ring L] [lie_algebra R L] [lie_ring L'] [lie_algebra R L']
extends linear_map R L L'
where
map_lie : ∀ {x y : L}, to_fun (has_bracket.bracket x y) = has_bracket.bracket (to_fun x) (to_fun y)
protected instance linear_map.has_coe {R : Type u} {L₁ : Type v} {L₂ : Type w} [comm_ring R] [lie_ring L₁] [lie_ring L₂] [lie_algebra R L₁] [lie_algebra R L₂] : has_coe (morphism R L₁ L₂) (linear_map R L₁ L₂) :=
has_coe.mk morphism.to_linear_map
/-- see Note [function coercion] -/
protected instance morphism.has_coe_to_fun {R : Type u} {L₁ : Type v} {L₂ : Type w} [comm_ring R] [lie_ring L₁] [lie_ring L₂] [lie_algebra R L₁] [lie_algebra R L₂] : has_coe_to_fun (morphism R L₁ L₂) :=
has_coe_to_fun.mk (fun (x : morphism R L₁ L₂) => L₁ → L₂) morphism.to_fun
@[simp] theorem coe_mk {R : Type u} {L₁ : Type v} {L₂ : Type w} [comm_ring R] [lie_ring L₁] [lie_ring L₂] [lie_algebra R L₁] [lie_algebra R L₂] (f : L₁ → L₂) (h₁ : ∀ (x y : L₁), f (x + y) = f x + f y) (h₂ : ∀ (m : R) (x : L₁), f (m • x) = m • f x) (h₃ : ∀ {x y : L₁}, f (has_bracket.bracket x y) = has_bracket.bracket (f x) (f y)) : ⇑(morphism.mk f h₁ h₂ h₃) = f :=
rfl
@[simp] theorem coe_to_linear_map {R : Type u} {L₁ : Type v} {L₂ : Type w} [comm_ring R] [lie_ring L₁] [lie_ring L₂] [lie_algebra R L₁] [lie_algebra R L₂] (f : morphism R L₁ L₂) : ⇑↑f = ⇑f :=
rfl
@[simp] theorem morphism.map_smul {R : Type u} {L₁ : Type v} {L₂ : Type w} [comm_ring R] [lie_ring L₁] [lie_ring L₂] [lie_algebra R L₁] [lie_algebra R L₂] (f : morphism R L₁ L₂) (c : R) (x : L₁) : coe_fn f (c • x) = c • coe_fn f x :=
linear_map.map_smul (↑f) c x
@[simp] theorem morphism.map_add {R : Type u} {L₁ : Type v} {L₂ : Type w} [comm_ring R] [lie_ring L₁] [lie_ring L₂] [lie_algebra R L₁] [lie_algebra R L₂] (f : morphism R L₁ L₂) (x : L₁) (y : L₁) : coe_fn f (x + y) = coe_fn f x + coe_fn f y :=
linear_map.map_add (↑f) x y
@[simp] theorem map_lie {R : Type u} {L₁ : Type v} {L₂ : Type w} [comm_ring R] [lie_ring L₁] [lie_ring L₂] [lie_algebra R L₁] [lie_algebra R L₂] (f : morphism R L₁ L₂) (x : L₁) (y : L₁) : coe_fn f (has_bracket.bracket x y) = has_bracket.bracket (coe_fn f x) (coe_fn f y) :=
morphism.map_lie f
@[simp] theorem map_zero {R : Type u} {L₁ : Type v} {L₂ : Type w} [comm_ring R] [lie_ring L₁] [lie_ring L₂] [lie_algebra R L₁] [lie_algebra R L₂] (f : morphism R L₁ L₂) : coe_fn f 0 = 0 :=
linear_map.map_zero ↑f
/-- The constant 0 map is a Lie algebra morphism. -/
protected instance morphism.has_zero {R : Type u} {L₁ : Type v} {L₂ : Type w} [comm_ring R] [lie_ring L₁] [lie_ring L₂] [lie_algebra R L₁] [lie_algebra R L₂] : HasZero (morphism R L₁ L₂) :=
{ zero := morphism.mk (linear_map.to_fun 0) sorry sorry sorry }
/-- The identity map is a Lie algebra morphism. -/
protected instance morphism.has_one {R : Type u} {L₁ : Type v} [comm_ring R] [lie_ring L₁] [lie_algebra R L₁] : HasOne (morphism R L₁ L₁) :=
{ one := morphism.mk (linear_map.to_fun 1) sorry sorry sorry }
protected instance morphism.inhabited {R : Type u} {L₁ : Type v} {L₂ : Type w} [comm_ring R] [lie_ring L₁] [lie_ring L₂] [lie_algebra R L₁] [lie_algebra R L₂] : Inhabited (morphism R L₁ L₂) :=
{ default := 0 }
theorem morphism.coe_injective {R : Type u} {L₁ : Type v} {L₂ : Type w} [comm_ring R] [lie_ring L₁] [lie_ring L₂] [lie_algebra R L₁] [lie_algebra R L₂] : function.injective fun (f : morphism R L₁ L₂) => (fun (this : L₁ → L₂) => this) ⇑f := sorry
theorem morphism.ext {R : Type u} {L₁ : Type v} {L₂ : Type w} [comm_ring R] [lie_ring L₁] [lie_ring L₂] [lie_algebra R L₁] [lie_algebra R L₂] {f : morphism R L₁ L₂} {g : morphism R L₁ L₂} (h : ∀ (x : L₁), coe_fn f x = coe_fn g x) : f = g :=
morphism.coe_injective (funext h)
theorem morphism.ext_iff {R : Type u} {L₁ : Type v} {L₂ : Type w} [comm_ring R] [lie_ring L₁] [lie_ring L₂] [lie_algebra R L₁] [lie_algebra R L₂] {f : morphism R L₁ L₂} {g : morphism R L₁ L₂} : f = g ↔ ∀ (x : L₁), coe_fn f x = coe_fn g x :=
{ mp := fun (ᾰ : f = g) (x : L₁) => Eq._oldrec (Eq.refl (coe_fn f x)) ᾰ, mpr := morphism.ext }
/-- The composition of morphisms is a morphism. -/
def morphism.comp {R : Type u} {L₁ : Type v} {L₂ : Type w} {L₃ : Type w₁} [comm_ring R] [lie_ring L₁] [lie_ring L₂] [lie_ring L₃] [lie_algebra R L₁] [lie_algebra R L₂] [lie_algebra R L₃] (f : morphism R L₂ L₃) (g : morphism R L₁ L₂) : morphism R L₁ L₃ :=
morphism.mk (linear_map.to_fun (linear_map.comp (morphism.to_linear_map f) (morphism.to_linear_map g))) sorry sorry
sorry
@[simp] theorem morphism.comp_apply {R : Type u} {L₁ : Type v} {L₂ : Type w} {L₃ : Type w₁} [comm_ring R] [lie_ring L₁] [lie_ring L₂] [lie_ring L₃] [lie_algebra R L₁] [lie_algebra R L₂] [lie_algebra R L₃] (f : morphism R L₂ L₃) (g : morphism R L₁ L₂) (x : L₁) : coe_fn (morphism.comp f g) x = coe_fn f (coe_fn g x) :=
rfl
theorem morphism.comp_coe {R : Type u} {L₁ : Type v} {L₂ : Type w} {L₃ : Type w₁} [comm_ring R] [lie_ring L₁] [lie_ring L₂] [lie_ring L₃] [lie_algebra R L₁] [lie_algebra R L₂] [lie_algebra R L₃] (f : morphism R L₂ L₃) (g : morphism R L₁ L₂) : ⇑f ∘ ⇑g = ⇑(morphism.comp f g) :=
rfl
/-- The inverse of a bijective morphism is a morphism. -/
def morphism.inverse {R : Type u} {L₁ : Type v} {L₂ : Type w} [comm_ring R] [lie_ring L₁] [lie_ring L₂] [lie_algebra R L₁] [lie_algebra R L₂] (f : morphism R L₁ L₂) (g : L₂ → L₁) (h₁ : function.left_inverse g ⇑f) (h₂ : function.right_inverse g ⇑f) : morphism R L₂ L₁ :=
morphism.mk (linear_map.to_fun (linear_map.inverse (morphism.to_linear_map f) g h₁ h₂)) sorry sorry sorry
/-- An equivalence of Lie algebras is a morphism which is also a linear equivalence. We could
instead define an equivalence to be a morphism which is also a (plain) equivalence. However it is
more convenient to define via linear equivalence to get `.to_linear_equiv` for free. -/
structure equiv (R : Type u) (L : Type v) (L' : Type w) [comm_ring R] [lie_ring L] [lie_algebra R L] [lie_ring L'] [lie_algebra R L']
extends morphism R L L', linear_equiv R L L'
where
namespace equiv
protected instance has_coe_to_lie_hom {R : Type u} {L₁ : Type v} {L₂ : Type w} [comm_ring R] [lie_ring L₁] [lie_ring L₂] [lie_algebra R L₁] [lie_algebra R L₂] : has_coe (equiv R L₁ L₂) (morphism R L₁ L₂) :=
has_coe.mk to_morphism
protected instance has_coe_to_linear_equiv {R : Type u} {L₁ : Type v} {L₂ : Type w} [comm_ring R] [lie_ring L₁] [lie_ring L₂] [lie_algebra R L₁] [lie_algebra R L₂] : has_coe (equiv R L₁ L₂) (linear_equiv R L₁ L₂) :=
has_coe.mk to_linear_equiv
/-- see Note [function coercion] -/
protected instance has_coe_to_fun {R : Type u} {L₁ : Type v} {L₂ : Type w} [comm_ring R] [lie_ring L₁] [lie_ring L₂] [lie_algebra R L₁] [lie_algebra R L₂] : has_coe_to_fun (equiv R L₁ L₂) :=
has_coe_to_fun.mk (fun (x : equiv R L₁ L₂) => L₁ → L₂) to_fun
@[simp] theorem coe_to_lie_equiv {R : Type u} {L₁ : Type v} {L₂ : Type w} [comm_ring R] [lie_ring L₁] [lie_ring L₂] [lie_algebra R L₁] [lie_algebra R L₂] (e : equiv R L₁ L₂) : ⇑↑e = ⇑e :=
rfl
@[simp] theorem coe_to_linear_equiv {R : Type u} {L₁ : Type v} {L₂ : Type w} [comm_ring R] [lie_ring L₁] [lie_ring L₂] [lie_algebra R L₁] [lie_algebra R L₂] (e : equiv R L₁ L₂) : ⇑↑e = ⇑e :=
rfl
protected instance has_one {R : Type u} {L₁ : Type v} [comm_ring R] [lie_ring L₁] [lie_algebra R L₁] : HasOne (equiv R L₁ L₁) :=
{ one := mk (linear_equiv.to_fun 1) sorry sorry sorry (linear_equiv.inv_fun 1) sorry sorry }
@[simp] theorem one_apply {R : Type u} {L₁ : Type v} [comm_ring R] [lie_ring L₁] [lie_algebra R L₁] (x : L₁) : coe_fn 1 x = x :=
rfl
protected instance inhabited {R : Type u} {L₁ : Type v} [comm_ring R] [lie_ring L₁] [lie_algebra R L₁] : Inhabited (equiv R L₁ L₁) :=
{ default := 1 }
/-- Lie algebra equivalences are reflexive. -/
def refl {R : Type u} {L₁ : Type v} [comm_ring R] [lie_ring L₁] [lie_algebra R L₁] : equiv R L₁ L₁ :=
1
@[simp] theorem refl_apply {R : Type u} {L₁ : Type v} [comm_ring R] [lie_ring L₁] [lie_algebra R L₁] (x : L₁) : coe_fn refl x = x :=
rfl
/-- Lie algebra equivalences are symmetric. -/
def symm {R : Type u} {L₁ : Type v} {L₂ : Type w} [comm_ring R] [lie_ring L₁] [lie_ring L₂] [lie_algebra R L₁] [lie_algebra R L₂] (e : equiv R L₁ L₂) : equiv R L₂ L₁ :=
mk (morphism.to_fun (morphism.inverse (to_morphism e) (inv_fun e) (left_inv e) (right_inv e))) sorry sorry sorry
(linear_equiv.inv_fun (linear_equiv.symm (to_linear_equiv e))) sorry sorry
@[simp] theorem symm_symm {R : Type u} {L₁ : Type v} {L₂ : Type w} [comm_ring R] [lie_ring L₁] [lie_ring L₂] [lie_algebra R L₁] [lie_algebra R L₂] (e : equiv R L₁ L₂) : symm (symm e) = e := sorry
@[simp] theorem apply_symm_apply {R : Type u} {L₁ : Type v} {L₂ : Type w} [comm_ring R] [lie_ring L₁] [lie_ring L₂] [lie_algebra R L₁] [lie_algebra R L₂] (e : equiv R L₁ L₂) (x : L₂) : coe_fn e (coe_fn (symm e) x) = x :=
linear_equiv.apply_symm_apply (to_linear_equiv e)
@[simp] theorem symm_apply_apply {R : Type u} {L₁ : Type v} {L₂ : Type w} [comm_ring R] [lie_ring L₁] [lie_ring L₂] [lie_algebra R L₁] [lie_algebra R L₂] (e : equiv R L₁ L₂) (x : L₁) : coe_fn (symm e) (coe_fn e x) = x :=
linear_equiv.symm_apply_apply (to_linear_equiv e)
/-- Lie algebra equivalences are transitive. -/
def trans {R : Type u} {L₁ : Type v} {L₂ : Type w} {L₃ : Type w₁} [comm_ring R] [lie_ring L₁] [lie_ring L₂] [lie_ring L₃] [lie_algebra R L₁] [lie_algebra R L₂] [lie_algebra R L₃] (e₁ : equiv R L₁ L₂) (e₂ : equiv R L₂ L₃) : equiv R L₁ L₃ :=
mk (morphism.to_fun (morphism.comp (to_morphism e₂) (to_morphism e₁))) sorry sorry sorry
(linear_equiv.inv_fun (linear_equiv.trans (to_linear_equiv e₁) (to_linear_equiv e₂))) sorry sorry
@[simp] theorem trans_apply {R : Type u} {L₁ : Type v} {L₂ : Type w} {L₃ : Type w₁} [comm_ring R] [lie_ring L₁] [lie_ring L₂] [lie_ring L₃] [lie_algebra R L₁] [lie_algebra R L₂] [lie_algebra R L₃] (e₁ : equiv R L₁ L₂) (e₂ : equiv R L₂ L₃) (x : L₁) : coe_fn (trans e₁ e₂) x = coe_fn e₂ (coe_fn e₁ x) :=
rfl
@[simp] theorem symm_trans_apply {R : Type u} {L₁ : Type v} {L₂ : Type w} {L₃ : Type w₁} [comm_ring R] [lie_ring L₁] [lie_ring L₂] [lie_ring L₃] [lie_algebra R L₁] [lie_algebra R L₂] [lie_algebra R L₃] (e₁ : equiv R L₁ L₂) (e₂ : equiv R L₂ L₃) (x : L₃) : coe_fn (symm (trans e₁ e₂)) x = coe_fn (symm e₁) (coe_fn (symm e₂) x) :=
rfl
end equiv
end lie_algebra
/-- A morphism of Lie algebra modules is a linear map which commutes with the action of the Lie
algebra. -/
structure lie_module_hom (R : Type u) (L : Type v) (M : Type w) (N : Type w₁) [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [add_comm_group N] [module R M] [module R N] [lie_ring_module L M] [lie_ring_module L N] [lie_module R L M] [lie_module R L N]
extends linear_map R M N
where
map_lie : ∀ {x : L} {m : M}, to_fun (has_bracket.bracket x m) = has_bracket.bracket x (to_fun m)
namespace lie_module_hom
protected instance linear_map.has_coe {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [add_comm_group N] [module R M] [module R N] [lie_ring_module L M] [lie_ring_module L N] [lie_module R L M] [lie_module R L N] : has_coe (lie_module_hom R L M N) (linear_map R M N) :=
has_coe.mk to_linear_map
/-- see Note [function coercion] -/
protected instance has_coe_to_fun {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [add_comm_group N] [module R M] [module R N] [lie_ring_module L M] [lie_ring_module L N] [lie_module R L M] [lie_module R L N] : has_coe_to_fun (lie_module_hom R L M N) :=
has_coe_to_fun.mk (fun (x : lie_module_hom R L M N) => M → N) to_fun
@[simp] theorem coe_mk {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [add_comm_group N] [module R M] [module R N] [lie_ring_module L M] [lie_ring_module L N] [lie_module R L M] [lie_module R L N] (f : M → N) (h₁ : ∀ (x y : M), f (x + y) = f x + f y) (h₂ : ∀ (m : R) (x : M), f (m • x) = m • f x) (h₃ : ∀ {x : L} {m : M}, f (has_bracket.bracket x m) = has_bracket.bracket x (f m)) : ⇑(mk f h₁ h₂ h₃) = f :=
rfl
@[simp] theorem coe_to_linear_map {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [add_comm_group N] [module R M] [module R N] [lie_ring_module L M] [lie_ring_module L N] [lie_module R L M] [lie_module R L N] (f : lie_module_hom R L M N) : ⇑↑f = ⇑f :=
rfl
@[simp] theorem map_lie' {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [add_comm_group N] [module R M] [module R N] [lie_ring_module L M] [lie_ring_module L N] [lie_module R L M] [lie_module R L N] (f : lie_module_hom R L M N) (x : L) (m : M) : coe_fn f (has_bracket.bracket x m) = has_bracket.bracket x (coe_fn f m) :=
map_lie f
/-- The constant 0 map is a Lie module morphism. -/
protected instance has_zero {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [add_comm_group N] [module R M] [module R N] [lie_ring_module L M] [lie_ring_module L N] [lie_module R L M] [lie_module R L N] : HasZero (lie_module_hom R L M N) :=
{ zero := mk (linear_map.to_fun 0) sorry sorry sorry }
/-- The identity map is a Lie module morphism. -/
protected instance has_one {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] : HasOne (lie_module_hom R L M M) :=
{ one := mk (linear_map.to_fun 1) sorry sorry sorry }
protected instance inhabited {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [add_comm_group N] [module R M] [module R N] [lie_ring_module L M] [lie_ring_module L N] [lie_module R L M] [lie_module R L N] : Inhabited (lie_module_hom R L M N) :=
{ default := 0 }
theorem coe_injective {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [add_comm_group N] [module R M] [module R N] [lie_ring_module L M] [lie_ring_module L N] [lie_module R L M] [lie_module R L N] : function.injective fun (f : lie_module_hom R L M N) => (fun (this : M → N) => this) ⇑f := sorry
theorem ext {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [add_comm_group N] [module R M] [module R N] [lie_ring_module L M] [lie_ring_module L N] [lie_module R L M] [lie_module R L N] {f : lie_module_hom R L M N} {g : lie_module_hom R L M N} (h : ∀ (m : M), coe_fn f m = coe_fn g m) : f = g :=
coe_injective (funext h)
theorem ext_iff {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [add_comm_group N] [module R M] [module R N] [lie_ring_module L M] [lie_ring_module L N] [lie_module R L M] [lie_module R L N] {f : lie_module_hom R L M N} {g : lie_module_hom R L M N} : f = g ↔ ∀ (m : M), coe_fn f m = coe_fn g m :=
{ mp := fun (ᾰ : f = g) (m : M) => Eq._oldrec (Eq.refl (coe_fn f m)) ᾰ, mpr := ext }
/-- The composition of Lie module morphisms is a morphism. -/
def comp {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} {P : Type w₂} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [add_comm_group N] [add_comm_group P] [module R M] [module R N] [module R P] [lie_ring_module L M] [lie_ring_module L N] [lie_ring_module L P] [lie_module R L M] [lie_module R L N] [lie_module R L P] (f : lie_module_hom R L N P) (g : lie_module_hom R L M N) : lie_module_hom R L M P :=
mk (linear_map.to_fun (linear_map.comp (to_linear_map f) (to_linear_map g))) sorry sorry sorry
@[simp] theorem comp_apply {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} {P : Type w₂} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [add_comm_group N] [add_comm_group P] [module R M] [module R N] [module R P] [lie_ring_module L M] [lie_ring_module L N] [lie_ring_module L P] [lie_module R L M] [lie_module R L N] [lie_module R L P] (f : lie_module_hom R L N P) (g : lie_module_hom R L M N) (m : M) : coe_fn (comp f g) m = coe_fn f (coe_fn g m) :=
rfl
theorem comp_coe {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} {P : Type w₂} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [add_comm_group N] [add_comm_group P] [module R M] [module R N] [module R P] [lie_ring_module L M] [lie_ring_module L N] [lie_ring_module L P] [lie_module R L M] [lie_module R L N] [lie_module R L P] (f : lie_module_hom R L N P) (g : lie_module_hom R L M N) : ⇑f ∘ ⇑g = ⇑(comp f g) :=
rfl
/-- The inverse of a bijective morphism of Lie modules is a morphism of Lie modules. -/
def inverse {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [add_comm_group N] [module R M] [module R N] [lie_ring_module L M] [lie_ring_module L N] [lie_module R L M] [lie_module R L N] (f : lie_module_hom R L M N) (g : N → M) (h₁ : function.left_inverse g ⇑f) (h₂ : function.right_inverse g ⇑f) : lie_module_hom R L N M :=
mk (linear_map.to_fun (linear_map.inverse (to_linear_map f) g h₁ h₂)) sorry sorry sorry
end lie_module_hom
/-- An equivalence of Lie algebra modules is a linear equivalence which is also a morphism of
Lie algebra modules. -/
structure lie_module_equiv (R : Type u) (L : Type v) (M : Type w) (N : Type w₁) [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [add_comm_group N] [module R M] [module R N] [lie_ring_module L M] [lie_ring_module L N] [lie_module R L M] [lie_module R L N]
extends linear_equiv R M N, lie_module_hom R L M N
where
namespace lie_module_equiv
protected instance has_coe_to_lie_module_hom {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [add_comm_group N] [module R M] [module R N] [lie_ring_module L M] [lie_ring_module L N] [lie_module R L M] [lie_module R L N] : has_coe (lie_module_equiv R L M N) (lie_module_hom R L M N) :=
has_coe.mk to_lie_module_hom
protected instance has_coe_to_linear_equiv {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [add_comm_group N] [module R M] [module R N] [lie_ring_module L M] [lie_ring_module L N] [lie_module R L M] [lie_module R L N] : has_coe (lie_module_equiv R L M N) (linear_equiv R M N) :=
has_coe.mk to_linear_equiv
/-- see Note [function coercion] -/
protected instance has_coe_to_fun {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [add_comm_group N] [module R M] [module R N] [lie_ring_module L M] [lie_ring_module L N] [lie_module R L M] [lie_module R L N] : has_coe_to_fun (lie_module_equiv R L M N) :=
has_coe_to_fun.mk (fun (x : lie_module_equiv R L M N) => M → N) to_fun
@[simp] theorem coe_to_lie_module_hom {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [add_comm_group N] [module R M] [module R N] [lie_ring_module L M] [lie_ring_module L N] [lie_module R L M] [lie_module R L N] (e : lie_module_equiv R L M N) : ⇑↑e = ⇑e :=
rfl
@[simp] theorem coe_to_linear_equiv {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [add_comm_group N] [module R M] [module R N] [lie_ring_module L M] [lie_ring_module L N] [lie_module R L M] [lie_module R L N] (e : lie_module_equiv R L M N) : ⇑↑e = ⇑e :=
rfl
protected instance has_one {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] : HasOne (lie_module_equiv R L M M) :=
{ one := mk (linear_equiv.to_fun 1) sorry sorry (linear_equiv.inv_fun 1) sorry sorry sorry }
@[simp] theorem one_apply {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] (m : M) : coe_fn 1 m = m :=
rfl
protected instance inhabited {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] : Inhabited (lie_module_equiv R L M M) :=
{ default := 1 }
/-- Lie module equivalences are reflexive. -/
def refl {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] : lie_module_equiv R L M M :=
1
@[simp] theorem refl_apply {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] (m : M) : coe_fn refl m = m :=
rfl
/-- Lie module equivalences are syemmtric. -/
def symm {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [add_comm_group N] [module R M] [module R N] [lie_ring_module L M] [lie_ring_module L N] [lie_module R L M] [lie_module R L N] (e : lie_module_equiv R L M N) : lie_module_equiv R L N M :=
mk (lie_module_hom.to_fun (lie_module_hom.inverse (to_lie_module_hom e) (inv_fun e) (left_inv e) (right_inv e))) sorry
sorry (linear_equiv.inv_fun (linear_equiv.symm ↑e)) sorry sorry sorry
@[simp] theorem symm_symm {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [add_comm_group N] [module R M] [module R N] [lie_ring_module L M] [lie_ring_module L N] [lie_module R L M] [lie_module R L N] (e : lie_module_equiv R L M N) : symm (symm e) = e := sorry
@[simp] theorem apply_symm_apply {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [add_comm_group N] [module R M] [module R N] [lie_ring_module L M] [lie_ring_module L N] [lie_module R L M] [lie_module R L N] (e : lie_module_equiv R L M N) (x : N) : coe_fn e (coe_fn (symm e) x) = x :=
linear_equiv.apply_symm_apply (to_linear_equiv e)
@[simp] theorem symm_apply_apply {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [add_comm_group N] [module R M] [module R N] [lie_ring_module L M] [lie_ring_module L N] [lie_module R L M] [lie_module R L N] (e : lie_module_equiv R L M N) (x : M) : coe_fn (symm e) (coe_fn e x) = x :=
linear_equiv.symm_apply_apply (to_linear_equiv e)
/-- Lie module equivalences are transitive. -/
def trans {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} {P : Type w₂} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [add_comm_group N] [add_comm_group P] [module R M] [module R N] [module R P] [lie_ring_module L M] [lie_ring_module L N] [lie_ring_module L P] [lie_module R L M] [lie_module R L N] [lie_module R L P] (e₁ : lie_module_equiv R L M N) (e₂ : lie_module_equiv R L N P) : lie_module_equiv R L M P :=
mk (lie_module_hom.to_fun (lie_module_hom.comp (to_lie_module_hom e₂) (to_lie_module_hom e₁))) sorry sorry
(linear_equiv.inv_fun (linear_equiv.trans (to_linear_equiv e₁) (to_linear_equiv e₂))) sorry sorry sorry
@[simp] theorem trans_apply {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} {P : Type w₂} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [add_comm_group N] [add_comm_group P] [module R M] [module R N] [module R P] [lie_ring_module L M] [lie_ring_module L N] [lie_ring_module L P] [lie_module R L M] [lie_module R L N] [lie_module R L P] (e₁ : lie_module_equiv R L M N) (e₂ : lie_module_equiv R L N P) (m : M) : coe_fn (trans e₁ e₂) m = coe_fn e₂ (coe_fn e₁ m) :=
rfl
@[simp] theorem symm_trans_apply {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} {P : Type w₂} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [add_comm_group N] [add_comm_group P] [module R M] [module R N] [module R P] [lie_ring_module L M] [lie_ring_module L N] [lie_ring_module L P] [lie_module R L M] [lie_module R L N] [lie_module R L P] (e₁ : lie_module_equiv R L M N) (e₂ : lie_module_equiv R L N P) (p : P) : coe_fn (symm (trans e₁ e₂)) p = coe_fn (symm e₁) (coe_fn (symm e₂) p) :=
rfl
end lie_module_equiv
namespace ring_commutator
/-- The bracket operation for rings is the ring commutator, which captures the extent to which a
ring is commutative. It is identically zero exactly when the ring is commutative. -/
protected instance has_bracket {A : Type v} [ring A] : has_bracket A A :=
has_bracket.mk fun (x y : A) => x * y - y * x
theorem commutator {A : Type v} [ring A] (x : A) (y : A) : has_bracket.bracket x y = x * y - y * x :=
rfl
end ring_commutator
namespace lie_ring
/-- An associative ring gives rise to a Lie ring by taking the bracket to be the ring commutator. -/
protected instance of_associative_ring {A : Type v} [ring A] : lie_ring A :=
mk sorry sorry sorry sorry
theorem of_associative_ring_bracket {A : Type v} [ring A] (x : A) (y : A) : has_bracket.bracket x y = x * y - y * x :=
rfl
end lie_ring
/-- A Lie (ring) module is trivial iff all brackets vanish. -/
class lie_module.is_trivial (L : Type v) (M : Type w) [has_bracket L M] [HasZero M]
where
trivial : ∀ (x : L) (m : M), has_bracket.bracket x m = 0
@[simp] theorem trivial_lie_zero (L : Type v) (M : Type w) [has_bracket L M] [HasZero M] [lie_module.is_trivial L M] (x : L) (m : M) : has_bracket.bracket x m = 0 :=
lie_module.is_trivial.trivial x m
/-- A Lie algebra is Abelian iff it is trivial as a Lie module over itself. -/
def is_lie_abelian (L : Type v) [has_bracket L L] [HasZero L] :=
lie_module.is_trivial L L
theorem commutative_ring_iff_abelian_lie_ring {A : Type v} [ring A] : is_commutative A Mul.mul ↔ is_lie_abelian A := sorry
namespace lie_algebra
/-- An associative algebra gives rise to a Lie algebra by taking the bracket to be the ring
commutator. -/
protected instance of_associative_algebra {A : Type v} [ring A] {R : Type u} [comm_ring R] [algebra R A] : lie_algebra R A :=
mk sorry
/-- The map `of_associative_algebra` associating a Lie algebra to an associative algebra is
functorial. -/
def of_associative_algebra_hom {A : Type v} [ring A] {R : Type u} [comm_ring R] [algebra R A] {B : Type w} [ring B] [algebra R B] (f : alg_hom R A B) : morphism R A B :=
morphism.mk (linear_map.to_fun (alg_hom.to_linear_map f)) sorry sorry sorry
@[simp] theorem of_associative_algebra_hom_id {A : Type v} [ring A] {R : Type u} [comm_ring R] [algebra R A] : of_associative_algebra_hom (alg_hom.id R A) = 1 :=
rfl
@[simp] theorem of_associative_algebra_hom_apply {A : Type v} [ring A] {R : Type u} [comm_ring R] [algebra R A] {B : Type w} [ring B] [algebra R B] (f : alg_hom R A B) (x : A) : coe_fn (of_associative_algebra_hom f) x = coe_fn f x :=
rfl
@[simp] theorem of_associative_algebra_hom_comp {A : Type v} [ring A] {R : Type u} [comm_ring R] [algebra R A] {B : Type w} {C : Type w₁} [ring B] [ring C] [algebra R B] [algebra R C] (f : alg_hom R A B) (g : alg_hom R B C) : of_associative_algebra_hom (alg_hom.comp g f) =
morphism.comp (of_associative_algebra_hom g) (of_associative_algebra_hom f) :=
rfl
end lie_algebra
/-- A Lie module yields a Lie algebra morphism into the linear endomorphisms of the module. -/
def lie_module.to_endo_morphism (R : Type u) (L : Type v) (M : Type w) [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] : lie_algebra.morphism R L (module.End R M) :=
lie_algebra.morphism.mk (fun (x : L) => linear_map.mk (fun (m : M) => has_bracket.bracket x m) (lie_add x) sorry) sorry
sorry sorry
/-- The adjoint action of a Lie algebra on itself. -/
def lie_algebra.ad (R : Type u) (L : Type v) [comm_ring R] [lie_ring L] [lie_algebra R L] : lie_algebra.morphism R L (module.End R L) :=
lie_module.to_endo_morphism R L L
@[simp] theorem lie_algebra.ad_apply (R : Type u) (L : Type v) [comm_ring R] [lie_ring L] [lie_algebra R L] (x : L) (y : L) : coe_fn (coe_fn (lie_algebra.ad R L) x) y = has_bracket.bracket x y :=
rfl
/-- A Lie subalgebra of a Lie algebra is submodule that is closed under the Lie bracket.
This is a sufficient condition for the subset itself to form a Lie algebra. -/
structure lie_subalgebra (R : Type u) (L : Type v) [comm_ring R] [lie_ring L] [lie_algebra R L]
extends submodule R L
where
lie_mem' : ∀ {x y : L}, x ∈ carrier → y ∈ carrier → has_bracket.bracket x y ∈ carrier
/-- The zero algebra is a subalgebra of any Lie algebra. -/
protected instance lie_subalgebra.has_zero (R : Type u) (L : Type v) [comm_ring R] [lie_ring L] [lie_algebra R L] : HasZero (lie_subalgebra R L) :=
{ zero := lie_subalgebra.mk (submodule.carrier 0) sorry sorry sorry sorry }
protected instance lie_subalgebra.inhabited (R : Type u) (L : Type v) [comm_ring R] [lie_ring L] [lie_algebra R L] : Inhabited (lie_subalgebra R L) :=
{ default := 0 }
protected instance set.has_coe (R : Type u) (L : Type v) [comm_ring R] [lie_ring L] [lie_algebra R L] : has_coe (lie_subalgebra R L) (set L) :=
has_coe.mk lie_subalgebra.carrier
protected instance lie_subalgebra.has_mem (R : Type u) (L : Type v) [comm_ring R] [lie_ring L] [lie_algebra R L] : has_mem L (lie_subalgebra R L) :=
has_mem.mk fun (x : L) (L' : lie_subalgebra R L) => x ∈ ↑L'
protected instance lie_subalgebra_coe_submodule (R : Type u) (L : Type v) [comm_ring R] [lie_ring L] [lie_algebra R L] : has_coe (lie_subalgebra R L) (submodule R L) :=
has_coe.mk lie_subalgebra.to_submodule
/-- A Lie subalgebra forms a new Lie ring. -/
protected instance lie_subalgebra_lie_ring (R : Type u) (L : Type v) [comm_ring R] [lie_ring L] [lie_algebra R L] (L' : lie_subalgebra R L) : lie_ring ↥L' :=
lie_ring.mk sorry sorry sorry sorry
/-- A Lie subalgebra forms a new Lie algebra. -/
protected instance lie_subalgebra_lie_algebra (R : Type u) (L : Type v) [comm_ring R] [lie_ring L] [lie_algebra R L] (L' : lie_subalgebra R L) : lie_algebra R ↥L' :=
lie_algebra.mk sorry
namespace lie_subalgebra
@[simp] theorem zero_mem {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [lie_algebra R L] (L' : lie_subalgebra R L) : 0 ∈ L' :=
submodule.zero_mem ↑L'
theorem smul_mem {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [lie_algebra R L] (L' : lie_subalgebra R L) (t : R) {x : L} (h : x ∈ L') : t • x ∈ L' :=
submodule.smul_mem (↑L') t h
theorem add_mem {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [lie_algebra R L] (L' : lie_subalgebra R L) {x : L} {y : L} (hx : x ∈ L') (hy : y ∈ L') : x + y ∈ L' :=
submodule.add_mem (↑L') hx hy
theorem lie_mem {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [lie_algebra R L] (L' : lie_subalgebra R L) {x : L} {y : L} (hx : x ∈ L') (hy : y ∈ L') : has_bracket.bracket x y ∈ L' :=
lie_mem' L' hx hy
@[simp] theorem mem_coe {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [lie_algebra R L] (L' : lie_subalgebra R L) {x : L} : x ∈ ↑L' ↔ x ∈ L' :=
iff.rfl
@[simp] theorem mem_coe' {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [lie_algebra R L] (L' : lie_subalgebra R L) {x : L} : x ∈ ↑L' ↔ x ∈ L' :=
iff.rfl
@[simp] theorem coe_bracket {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [lie_algebra R L] (L' : lie_subalgebra R L) (x : ↥L') (y : ↥L') : ↑(has_bracket.bracket x y) = has_bracket.bracket ↑x ↑y :=
rfl
theorem ext {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [lie_algebra R L] (L₁' : lie_subalgebra R L) (L₂' : lie_subalgebra R L) (h : ∀ (x : L), x ∈ L₁' ↔ x ∈ L₂') : L₁' = L₂' := sorry
theorem ext_iff {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [lie_algebra R L] (L₁' : lie_subalgebra R L) (L₂' : lie_subalgebra R L) : L₁' = L₂' ↔ ∀ (x : L), x ∈ L₁' ↔ x ∈ L₂' :=
{ mp := fun (h : L₁' = L₂') (x : L) => eq.mpr (id (Eq._oldrec (Eq.refl (x ∈ L₁' ↔ x ∈ L₂')) h)) (iff.refl (x ∈ L₂')),
mpr := ext L₁' L₂' }
@[simp] theorem mk_coe {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [lie_algebra R L] (S : set L) (h₁ : 0 ∈ S) (h₂ : ∀ {a b : L}, a ∈ S → b ∈ S → a + b ∈ S) (h₃ : ∀ (c : R) {x : L}, x ∈ S → c • x ∈ S) (h₄ : ∀ {x y : L}, x ∈ S → y ∈ S → has_bracket.bracket x y ∈ S) : ↑(mk S h₁ h₂ h₃ h₄) = S :=
rfl
theorem coe_injective {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [lie_algebra R L] : function.injective coe := sorry
@[simp] theorem coe_set_eq {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [lie_algebra R L] (L₁' : lie_subalgebra R L) (L₂' : lie_subalgebra R L) : ↑L₁' = ↑L₂' ↔ L₁' = L₂' :=
function.injective.eq_iff coe_injective
theorem to_submodule_injective {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [lie_algebra R L] : function.injective coe :=
fun (L₁' L₂' : lie_subalgebra R L) (h : ↑L₁' = ↑L₂') =>
eq.mpr (id (Eq._oldrec (Eq.refl (L₁' = L₂')) (Eq.symm (propext (coe_set_eq L₁' L₂')))))
(eq.mp (Eq._oldrec (Eq.refl (↑L₁' = ↑L₂')) (propext submodule.ext'_iff)) h)
@[simp] theorem coe_to_submodule_eq {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [lie_algebra R L] (L₁' : lie_subalgebra R L) (L₂' : lie_subalgebra R L) : ↑L₁' = ↑L₂' ↔ L₁' = L₂' :=
function.injective.eq_iff to_submodule_injective
end lie_subalgebra
/-- A subalgebra of an associative algebra is a Lie subalgebra of the associated Lie algebra. -/
def lie_subalgebra_of_subalgebra (R : Type u) [comm_ring R] (A : Type v) [ring A] [algebra R A] (A' : subalgebra R A) : lie_subalgebra R A :=
lie_subalgebra.mk (submodule.carrier (subalgebra.to_submodule A')) sorry sorry sorry sorry
/-- The embedding of a Lie subalgebra into the ambient space as a Lie morphism. -/
def lie_subalgebra.incl {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [lie_algebra R L] (L' : lie_subalgebra R L) : lie_algebra.morphism R (↥L') L :=
lie_algebra.morphism.mk (linear_map.to_fun (submodule.subtype (lie_subalgebra.to_submodule L'))) sorry sorry sorry
/-- The range of a morphism of Lie algebras is a Lie subalgebra. -/
def lie_algebra.morphism.range {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [lie_algebra R L] {L₂ : Type w} [lie_ring L₂] [lie_algebra R L₂] (f : lie_algebra.morphism R L L₂) : lie_subalgebra R L₂ :=
lie_subalgebra.mk (submodule.carrier (linear_map.range (lie_algebra.morphism.to_linear_map f))) sorry sorry sorry sorry
@[simp] theorem lie_algebra.morphism.range_bracket {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [lie_algebra R L] {L₂ : Type w} [lie_ring L₂] [lie_algebra R L₂] (f : lie_algebra.morphism R L L₂) (x : ↥(lie_algebra.morphism.range f)) (y : ↥(lie_algebra.morphism.range f)) : ↑(has_bracket.bracket x y) = has_bracket.bracket ↑x ↑y :=
rfl
@[simp] theorem lie_algebra.morphism.range_coe {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [lie_algebra R L] {L₂ : Type w} [lie_ring L₂] [lie_algebra R L₂] (f : lie_algebra.morphism R L L₂) : ↑(lie_algebra.morphism.range f) = set.range ⇑f :=
linear_map.range_coe ↑f
@[simp] theorem lie_subalgebra.range_incl {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [lie_algebra R L] (L' : lie_subalgebra R L) : lie_algebra.morphism.range (lie_subalgebra.incl L') = L' := sorry
/-- The image of a Lie subalgebra under a Lie algebra morphism is a Lie subalgebra of the
codomain. -/
def lie_subalgebra.map {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [lie_algebra R L] {L₂ : Type w} [lie_ring L₂] [lie_algebra R L₂] (f : lie_algebra.morphism R L L₂) (L' : lie_subalgebra R L) : lie_subalgebra R L₂ :=
lie_subalgebra.mk (submodule.carrier (submodule.map ↑f ↑L')) sorry sorry sorry sorry
@[simp] theorem lie_subalgebra.mem_map_submodule {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [lie_algebra R L] {L₂ : Type w} [lie_ring L₂] [lie_algebra R L₂] (e : lie_algebra.equiv R L L₂) (L' : lie_subalgebra R L) (x : L₂) : x ∈ lie_subalgebra.map (↑e) L' ↔ x ∈ submodule.map ↑e ↑L' :=
iff.rfl
namespace lie_algebra
namespace equiv
/-- An injective Lie algebra morphism is an equivalence onto its range. -/
def of_injective {R : Type u} {L₁ : Type v} {L₂ : Type w} [comm_ring R] [lie_ring L₁] [lie_ring L₂] [lie_algebra R L₁] [lie_algebra R L₂] (f : morphism R L₁ L₂) (h : function.injective ⇑f) : equiv R L₁ ↥(morphism.range f) :=
(fun (h' : linear_map.ker ↑f = ⊥) =>
mk (linear_equiv.to_fun (linear_equiv.of_injective (↑f) h')) sorry sorry sorry
(linear_equiv.inv_fun (linear_equiv.of_injective (↑f) h')) sorry sorry)
sorry
@[simp] theorem of_injective_apply {R : Type u} {L₁ : Type v} {L₂ : Type w} [comm_ring R] [lie_ring L₁] [lie_ring L₂] [lie_algebra R L₁] [lie_algebra R L₂] (f : morphism R L₁ L₂) (h : function.injective ⇑f) (x : L₁) : ↑(coe_fn (of_injective f h) x) = coe_fn f x :=
rfl
/-- Lie subalgebras that are equal as sets are equivalent as Lie algebras. -/
def of_eq {R : Type u} {L₁ : Type v} [comm_ring R] [lie_ring L₁] [lie_algebra R L₁] (L₁' : lie_subalgebra R L₁) (L₁'' : lie_subalgebra R L₁) (h : ↑L₁' = ↑L₁'') : equiv R ↥L₁' ↥L₁'' :=
mk (linear_equiv.to_fun (linear_equiv.of_eq ↑L₁' ↑L₁'' sorry)) sorry sorry sorry
(linear_equiv.inv_fun (linear_equiv.of_eq ↑L₁' ↑L₁'' sorry)) sorry sorry
@[simp] theorem of_eq_apply {R : Type u} {L₁ : Type v} [comm_ring R] [lie_ring L₁] [lie_algebra R L₁] (L : lie_subalgebra R L₁) (L' : lie_subalgebra R L₁) (h : ↑L = ↑L') (x : ↥L) : ↑(coe_fn (of_eq L L' h) x) = ↑x :=
rfl
/-- An equivalence of Lie algebras restricts to an equivalence from any Lie subalgebra onto its
image. -/
def of_subalgebra {R : Type u} {L₁ : Type v} {L₂ : Type w} [comm_ring R] [lie_ring L₁] [lie_ring L₂] [lie_algebra R L₁] [lie_algebra R L₂] (L₁'' : lie_subalgebra R L₁) (e : equiv R L₁ L₂) : equiv R ↥L₁'' ↥(lie_subalgebra.map (↑e) L₁'') :=
mk (linear_equiv.to_fun (linear_equiv.of_submodule ↑e ↑L₁'')) sorry sorry sorry
(linear_equiv.inv_fun (linear_equiv.of_submodule ↑e ↑L₁'')) sorry sorry
@[simp] theorem of_subalgebra_apply {R : Type u} {L₁ : Type v} {L₂ : Type w} [comm_ring R] [lie_ring L₁] [lie_ring L₂] [lie_algebra R L₁] [lie_algebra R L₂] (L₁'' : lie_subalgebra R L₁) (e : equiv R L₁ L₂) (x : ↥L₁'') : ↑(coe_fn (of_subalgebra L₁'' e) x) = coe_fn e ↑x :=
rfl
/-- An equivalence of Lie algebras restricts to an equivalence from any Lie subalgebra onto its
image. -/
def of_subalgebras {R : Type u} {L₁ : Type v} {L₂ : Type w} [comm_ring R] [lie_ring L₁] [lie_ring L₂] [lie_algebra R L₁] [lie_algebra R L₂] (L₁' : lie_subalgebra R L₁) (L₂' : lie_subalgebra R L₂) (e : equiv R L₁ L₂) (h : lie_subalgebra.map (↑e) L₁' = L₂') : equiv R ↥L₁' ↥L₂' :=
mk (linear_equiv.to_fun (linear_equiv.of_submodules ↑e ↑L₁' ↑L₂' sorry)) sorry sorry sorry
(linear_equiv.inv_fun (linear_equiv.of_submodules ↑e ↑L₁' ↑L₂' sorry)) sorry sorry
@[simp] theorem of_subalgebras_apply {R : Type u} {L₁ : Type v} {L₂ : Type w} [comm_ring R] [lie_ring L₁] [lie_ring L₂] [lie_algebra R L₁] [lie_algebra R L₂] (L₁' : lie_subalgebra R L₁) (L₂' : lie_subalgebra R L₂) (e : equiv R L₁ L₂) (h : lie_subalgebra.map (↑e) L₁' = L₂') (x : ↥L₁') : ↑(coe_fn (of_subalgebras L₁' L₂' e h) x) = coe_fn e ↑x :=
rfl
@[simp] theorem of_subalgebras_symm_apply {R : Type u} {L₁ : Type v} {L₂ : Type w} [comm_ring R] [lie_ring L₁] [lie_ring L₂] [lie_algebra R L₁] [lie_algebra R L₂] (L₁' : lie_subalgebra R L₁) (L₂' : lie_subalgebra R L₂) (e : equiv R L₁ L₂) (h : lie_subalgebra.map (↑e) L₁' = L₂') (x : ↥L₂') : ↑(coe_fn (symm (of_subalgebras L₁' L₂' e h)) x) = coe_fn (symm e) ↑x :=
rfl
end equiv
end lie_algebra
/-- A Lie submodule of a Lie module is a submodule that is closed under the Lie bracket.
This is a sufficient condition for the subset itself to form a Lie module. -/
structure lie_submodule (R : Type u) (L : Type v) (M : Type w) [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M]
extends submodule R M
where
lie_mem : ∀ {x : L} {m : M}, m ∈ carrier → has_bracket.bracket x m ∈ carrier
namespace lie_submodule
/-- The zero module is a Lie submodule of any Lie module. -/
protected instance has_zero {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] : HasZero (lie_submodule R L M) :=
{ zero := mk (submodule.carrier 0) sorry sorry sorry sorry }
protected instance inhabited {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] : Inhabited (lie_submodule R L M) :=
{ default := 0 }
protected instance coe_submodule {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] : has_coe (lie_submodule R L M) (submodule R M) :=
has_coe.mk to_submodule
theorem coe_to_submodule {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] (N : lie_submodule R L M) : ↑↑N = ↑N :=
rfl
protected instance has_mem {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] : has_mem M (lie_submodule R L M) :=
has_mem.mk fun (x : M) (N : lie_submodule R L M) => x ∈ ↑N
@[simp] theorem mem_carrier {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] (N : lie_submodule R L M) {x : M} : x ∈ carrier N ↔ x ∈ ↑N :=
iff.rfl
@[simp] theorem mem_coe_submodule {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] (N : lie_submodule R L M) {x : M} : x ∈ ↑N ↔ x ∈ N :=
iff.rfl
theorem mem_coe {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] (N : lie_submodule R L M) {x : M} : x ∈ ↑N ↔ x ∈ N :=
iff.rfl
@[simp] theorem zero_mem {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] (N : lie_submodule R L M) : 0 ∈ N :=
submodule.zero_mem ↑N
@[simp] theorem coe_to_set_mk {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] (S : set M) (h₁ : 0 ∈ S) (h₂ : ∀ {a b : M}, a ∈ S → b ∈ S → a + b ∈ S) (h₃ : ∀ (c : R) {x : M}, x ∈ S → c • x ∈ S) (h₄ : ∀ {x : L} {m : M}, m ∈ S → has_bracket.bracket x m ∈ S) : ↑(mk S h₁ h₂ h₃ h₄) = S :=
rfl
@[simp] theorem coe_to_submodule_mk {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] (p : submodule R M) (h : ∀ {x : L} {m : M}, m ∈ submodule.carrier p → has_bracket.bracket x m ∈ submodule.carrier p) : ↑(mk (submodule.carrier p) (submodule.zero_mem' p) (submodule.add_mem' p) (submodule.smul_mem' p) h) = p := sorry
theorem ext {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] (N : lie_submodule R L M) (N' : lie_submodule R L M) (h : ∀ (m : M), m ∈ N ↔ m ∈ N') : N = N' := sorry
@[simp] theorem coe_to_submodule_eq_iff {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] (N : lie_submodule R L M) (N' : lie_submodule R L M) : ↑N = ↑N' ↔ N = N' := sorry
protected instance lie_ring_module {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] (N : lie_submodule R L M) : lie_ring_module L ↥N :=
lie_ring_module.mk sorry sorry sorry
protected instance lie_module {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] (N : lie_submodule R L M) : lie_module R L ↥N :=
lie_module.mk sorry sorry
end lie_submodule
/-- An ideal of a Lie algebra is a Lie submodule of the Lie algebra as a Lie module over itself. -/
def lie_ideal (R : Type u) (L : Type v) [comm_ring R] [lie_ring L] [lie_algebra R L] :=
lie_submodule R L L
theorem lie_mem_right (R : Type u) (L : Type v) [comm_ring R] [lie_ring L] [lie_algebra R L] (I : lie_ideal R L) (x : L) (y : L) (h : y ∈ I) : has_bracket.bracket x y ∈ I :=
lie_submodule.lie_mem I h
theorem lie_mem_left (R : Type u) (L : Type v) [comm_ring R] [lie_ring L] [lie_algebra R L] (I : lie_ideal R L) (x : L) (y : L) (h : x ∈ I) : has_bracket.bracket x y ∈ I :=
eq.mpr (id (Eq._oldrec (Eq.refl (has_bracket.bracket x y ∈ I)) (Eq.symm (lie_skew x y))))
(eq.mpr (id (Eq._oldrec (Eq.refl (-has_bracket.bracket y x ∈ I)) (Eq.symm (neg_lie y x))))
(lie_mem_right R L I (-y) x h))
/-- An ideal of a Lie algebra is a Lie subalgebra. -/
def lie_ideal_subalgebra (R : Type u) (L : Type v) [comm_ring R] [lie_ring L] [lie_algebra R L] (I : lie_ideal R L) : lie_subalgebra R L :=
lie_subalgebra.mk (submodule.carrier (lie_submodule.to_submodule I)) sorry sorry sorry sorry
protected instance lie_subalgebra.has_coe (R : Type u) (L : Type v) [comm_ring R] [lie_ring L] [lie_algebra R L] : has_coe (lie_ideal R L) (lie_subalgebra R L) :=
has_coe.mk fun (I : lie_ideal R L) => lie_ideal_subalgebra R L I
theorem lie_ideal.coe_to_subalgebra (R : Type u) (L : Type v) [comm_ring R] [lie_ring L] [lie_algebra R L] (I : lie_ideal R L) : ↑↑I = ↑I :=
rfl
namespace lie_submodule
theorem coe_injective {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] : function.injective coe := sorry
theorem coe_submodule_injective {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] : function.injective coe := sorry
protected instance partial_order {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] : partial_order (lie_submodule R L M) :=
partial_order.mk (fun (N N' : lie_submodule R L M) => ∀ {x : M}, x ∈ N → x ∈ N') partial_order.lt sorry sorry sorry
theorem le_def {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] (N : lie_submodule R L M) (N' : lie_submodule R L M) : N ≤ N' ↔ ↑N ⊆ ↑N' :=
iff.rfl
@[simp] theorem coe_submodule_le_coe_submodule {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] (N : lie_submodule R L M) (N' : lie_submodule R L M) : ↑N ≤ ↑N' ↔ N ≤ N' :=
iff.rfl
protected instance has_bot {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] : has_bot (lie_submodule R L M) :=
has_bot.mk 0
@[simp] theorem bot_coe {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] : ↑⊥ = singleton 0 :=
rfl
@[simp] theorem bot_coe_submodule {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] : ↑⊥ = ⊥ :=
rfl
@[simp] theorem mem_bot {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] (x : M) : x ∈ ⊥ ↔ x = 0 :=
set.mem_singleton_iff
protected instance has_top {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] : has_top (lie_submodule R L M) :=
has_top.mk (mk (submodule.carrier ⊤) sorry sorry sorry sorry)
@[simp] theorem top_coe {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] : ↑⊤ = set.univ :=
rfl
@[simp] theorem top_coe_submodule {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] : ↑⊤ = ⊤ :=
rfl
theorem mem_top {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] (x : M) : x ∈ ⊤ :=
set.mem_univ x
protected instance has_inf {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] : has_inf (lie_submodule R L M) :=
has_inf.mk fun (N N' : lie_submodule R L M) => mk (submodule.carrier (↑N ⊓ ↑N')) sorry sorry sorry sorry
protected instance has_Inf {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] : has_Inf (lie_submodule R L M) :=
has_Inf.mk
fun (S : set (lie_submodule R L M)) =>
mk
(submodule.carrier (Inf (set_of fun (_x : submodule R M) => ∃ (s : lie_submodule R L M), ∃ (H : s ∈ S), ↑s = _x)))
sorry sorry sorry sorry
@[simp] theorem inf_coe {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] (N : lie_submodule R L M) (N' : lie_submodule R L M) : ↑(N ⊓ N') = ↑N ∩ ↑N' :=
rfl
@[simp] theorem Inf_coe_to_submodule {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] (S : set (lie_submodule R L M)) : ↑(Inf S) = Inf (set_of fun (_x : submodule R M) => ∃ (s : lie_submodule R L M), ∃ (H : s ∈ S), ↑s = _x) :=
rfl
@[simp] theorem Inf_coe {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] (S : set (lie_submodule R L M)) : ↑(Inf S) = set.Inter fun (s : lie_submodule R L M) => set.Inter fun (H : s ∈ S) => ↑s := sorry
theorem Inf_glb {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] (S : set (lie_submodule R L M)) : is_glb S (Inf S) := sorry
/-- The set of Lie submodules of a Lie module form a complete lattice.
We provide explicit values for the fields `bot`, `top`, `inf` to get more convenient definitions
than we would otherwise obtain from `complete_lattice_of_Inf`. -/
protected instance complete_lattice {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] : complete_lattice (lie_submodule R L M) :=
complete_lattice.mk complete_lattice.sup complete_lattice.le complete_lattice.lt sorry sorry sorry sorry sorry sorry
has_inf.inf sorry sorry sorry ⊤ sorry ⊥ sorry complete_lattice.Sup complete_lattice.Inf sorry sorry sorry sorry
protected instance add_comm_monoid {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] : add_comm_monoid (lie_submodule R L M) :=
add_comm_monoid.mk has_sup.sup sorry ⊥ sorry sorry sorry
@[simp] theorem add_eq_sup {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] (N : lie_submodule R L M) (N' : lie_submodule R L M) : N + N' = N ⊔ N' :=
rfl
@[simp] theorem sup_coe_to_submodule {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] (N : lie_submodule R L M) (N' : lie_submodule R L M) : ↑(N ⊔ N') = ↑N ⊔ ↑N' := sorry
@[simp] theorem inf_coe_to_submodule {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] (N : lie_submodule R L M) (N' : lie_submodule R L M) : ↑(N ⊓ N') = ↑N ⊓ ↑N' :=
rfl
@[simp] theorem mem_inf {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] (N : lie_submodule R L M) (N' : lie_submodule R L M) (x : M) : x ∈ N ⊓ N' ↔ x ∈ N ∧ x ∈ N' := sorry
theorem mem_sup {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] (N : lie_submodule R L M) (N' : lie_submodule R L M) (x : M) : x ∈ N ⊔ N' ↔ ∃ (y : M), ∃ (H : y ∈ N), ∃ (z : M), ∃ (H : z ∈ N'), y + z = x := sorry
theorem eq_bot_iff {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] (N : lie_submodule R L M) : N = ⊥ ↔ ∀ (m : M), m ∈ N → m = 0 :=
eq.mpr (id (Eq._oldrec (Eq.refl (N = ⊥ ↔ ∀ (m : M), m ∈ N → m = 0)) (propext eq_bot_iff))) iff.rfl
theorem of_bot_eq_bot {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] (N : lie_submodule R L ↥⊥) : N = ⊥ := sorry
theorem unique_of_bot {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] (N : lie_submodule R L ↥⊥) (N' : lie_submodule R L ↥⊥) : N = N' :=
eq.mpr (id (Eq._oldrec (Eq.refl (N = N')) (of_bot_eq_bot N)))
(eq.mpr (id (Eq._oldrec (Eq.refl (⊥ = N')) (of_bot_eq_bot N'))) (Eq.refl ⊥))
/-- The inclusion of a Lie submodule into its ambient space is a morphism of Lie modules. -/
def incl {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] (N : lie_submodule R L M) : lie_module_hom R L (↥N) M :=
lie_module_hom.mk (linear_map.to_fun (submodule.subtype ↑N)) sorry sorry sorry
@[simp] theorem incl_apply {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] (N : lie_submodule R L M) (m : ↥N) : coe_fn (incl N) m = ↑m :=
rfl
theorem incl_eq_val {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] (N : lie_submodule R L M) : ⇑(incl N) = subtype.val :=
rfl
/-- Given two nested Lie submodules `N ⊆ N'`, the inclusion `N ↪ N'` is a morphism of Lie modules.-/
def hom_of_le {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] {N : lie_submodule R L M} {N' : lie_submodule R L M} (h : N ≤ N') : lie_module_hom R L ↥N ↥N' :=
lie_module_hom.mk (linear_map.to_fun (submodule.of_le h)) sorry sorry sorry
@[simp] theorem coe_hom_of_le {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] {N : lie_submodule R L M} {N' : lie_submodule R L M} (h : N ≤ N') (m : ↥N) : ↑(coe_fn (hom_of_le h) m) = ↑m :=
rfl
theorem hom_of_le_apply {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] {N : lie_submodule R L M} {N' : lie_submodule R L M} (h : N ≤ N') (m : ↥N) : coe_fn (hom_of_le h) m = { val := subtype.val m, property := h (subtype.property m) } :=
rfl
/-- The `lie_span` of a set `s ⊆ M` is the smallest Lie submodule of `M` that contains `s`. -/
def lie_span (R : Type u) (L : Type v) {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] (s : set M) : lie_submodule R L M :=
Inf (set_of fun (N : lie_submodule R L M) => s ⊆ ↑N)
theorem mem_lie_span {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] {s : set M} {x : M} : x ∈ lie_span R L s ↔ ∀ (N : lie_submodule R L M), s ⊆ ↑N → x ∈ N := sorry
theorem subset_lie_span {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] {s : set M} : s ⊆ ↑(lie_span R L s) := sorry
theorem submodule_span_le_lie_span {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] {s : set M} : submodule.span R s ≤ ↑(lie_span R L s) :=
eq.mpr (id (Eq._oldrec (Eq.refl (submodule.span R s ≤ ↑(lie_span R L s))) (propext submodule.span_le)))
(eq.mpr (id (Eq._oldrec (Eq.refl (s ⊆ ↑↑(lie_span R L s))) (coe_to_submodule (lie_span R L s)))) subset_lie_span)
theorem lie_span_le {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] {s : set M} {N : lie_submodule R L M} : lie_span R L s ≤ N ↔ s ⊆ ↑N := sorry
theorem lie_span_mono {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] {s : set M} {t : set M} (h : s ⊆ t) : lie_span R L s ≤ lie_span R L t :=
eq.mpr (id (Eq._oldrec (Eq.refl (lie_span R L s ≤ lie_span R L t)) (propext lie_span_le)))
(set.subset.trans h subset_lie_span)
theorem lie_span_eq {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] (N : lie_submodule R L M) : lie_span R L ↑N = N :=
le_antisymm (iff.mpr lie_span_le (eq.subset rfl)) subset_lie_span
theorem well_founded_of_noetherian (R : Type u) (L : Type v) (M : Type w) [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] [is_noetherian R M] : well_founded gt :=
let f : gt →r gt := rel_hom.mk coe fun (N N' : lie_submodule R L M) (h : N > N') => h;
rel_hom.well_founded f
(eq.mpr (id (Eq._oldrec (Eq.refl (well_founded gt)) (Eq.symm (propext is_noetherian_iff_well_founded)))) _inst_8)
/-- Given a Lie module `M` over a Lie algebra `L`, the set of Lie ideals of `L` acts on the set
of submodules of `M`. -/
protected instance has_bracket {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] : has_bracket (lie_ideal R L) (lie_submodule R L M) :=
has_bracket.mk
fun (I : lie_ideal R L) (N : lie_submodule R L M) =>
lie_span R L (set_of fun (m : M) => ∃ (x : ↥I), ∃ (n : ↥N), has_bracket.bracket ↑x ↑n = m)
theorem lie_ideal_oper_eq_span {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] (N : lie_submodule R L M) (I : lie_ideal R L) : has_bracket.bracket I N = lie_span R L (set_of fun (m : M) => ∃ (x : ↥I), ∃ (n : ↥N), has_bracket.bracket ↑x ↑n = m) :=
rfl
theorem lie_ideal_oper_eq_linear_span {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] (N : lie_submodule R L M) (I : lie_ideal R L) : ↑(has_bracket.bracket I N) =
submodule.span R (set_of fun (m : M) => ∃ (x : ↥I), ∃ (n : ↥N), has_bracket.bracket ↑x ↑n = m) := sorry
theorem lie_mem_lie {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] (N : lie_submodule R L M) (I : lie_ideal R L) (x : ↥I) (m : ↥N) : has_bracket.bracket ↑x ↑m ∈ has_bracket.bracket I N :=
eq.mpr (id (Eq._oldrec (Eq.refl (has_bracket.bracket ↑x ↑m ∈ has_bracket.bracket I N)) (lie_ideal_oper_eq_span N I)))
(subset_lie_span (Exists.intro x (Exists.intro m (id (Eq.refl (has_bracket.bracket ↑x ↑m))))))
theorem lie_comm {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [lie_algebra R L] (I : lie_ideal R L) (J : lie_ideal R L) : has_bracket.bracket I J = has_bracket.bracket J I := sorry
theorem lie_le_right {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] (N : lie_submodule R L M) (I : lie_ideal R L) : has_bracket.bracket I N ≤ N := sorry
theorem lie_le_left {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [lie_algebra R L] (I : lie_ideal R L) (J : lie_ideal R L) : has_bracket.bracket I J ≤ I :=
eq.mpr (id (Eq._oldrec (Eq.refl (has_bracket.bracket I J ≤ I)) (lie_comm I J))) (lie_le_right I J)
theorem lie_le_inf {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [lie_algebra R L] (I : lie_ideal R L) (J : lie_ideal R L) : has_bracket.bracket I J ≤ I ⊓ J :=
eq.mpr (id (Eq._oldrec (Eq.refl (has_bracket.bracket I J ≤ I ⊓ J)) (propext le_inf_iff)))
{ left := lie_le_left I J, right := lie_le_right J I }
@[simp] theorem lie_bot {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] (I : lie_ideal R L) : has_bracket.bracket I ⊥ = ⊥ :=
eq.mpr (id (Eq._oldrec (Eq.refl (has_bracket.bracket I ⊥ = ⊥)) (propext (eq_bot_iff (has_bracket.bracket I ⊥)))))
(lie_le_right ⊥ I)
@[simp] theorem bot_lie {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] (N : lie_submodule R L M) : has_bracket.bracket ⊥ N = ⊥ := sorry
theorem mono_lie {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] (N : lie_submodule R L M) (N' : lie_submodule R L M) (I : lie_ideal R L) (J : lie_ideal R L) (h₁ : I ≤ J) (h₂ : N ≤ N') : has_bracket.bracket I N ≤ has_bracket.bracket J N' := sorry
theorem mono_lie_left {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] (N : lie_submodule R L M) (I : lie_ideal R L) (J : lie_ideal R L) (h : I ≤ J) : has_bracket.bracket I N ≤ has_bracket.bracket J N :=
mono_lie N N I J h (le_refl N)
theorem mono_lie_right {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] (N : lie_submodule R L M) (N' : lie_submodule R L M) (I : lie_ideal R L) (h : N ≤ N') : has_bracket.bracket I N ≤ has_bracket.bracket I N' :=
mono_lie N N' I I (le_refl I) h
@[simp] theorem lie_sup {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] (N : lie_submodule R L M) (N' : lie_submodule R L M) (I : lie_ideal R L) : has_bracket.bracket I (N ⊔ N') = has_bracket.bracket I N ⊔ has_bracket.bracket I N' := sorry
@[simp] theorem sup_lie {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] (N : lie_submodule R L M) (I : lie_ideal R L) (J : lie_ideal R L) : has_bracket.bracket (I ⊔ J) N = has_bracket.bracket I N ⊔ has_bracket.bracket J N := sorry
@[simp] theorem lie_inf {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] (N : lie_submodule R L M) (N' : lie_submodule R L M) (I : lie_ideal R L) : has_bracket.bracket I (N ⊓ N') ≤ has_bracket.bracket I N ⊓ has_bracket.bracket I N' := sorry
@[simp] theorem inf_lie {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] (N : lie_submodule R L M) (I : lie_ideal R L) (J : lie_ideal R L) : has_bracket.bracket (I ⊓ J) N ≤ has_bracket.bracket I N ⊓ has_bracket.bracket J N := sorry
@[simp] theorem trivial_lie_oper_zero {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] (N : lie_submodule R L M) (I : lie_ideal R L) [lie_module.is_trivial L M] : has_bracket.bracket I N = ⊥ := sorry
/-- The quotient of a Lie module by a Lie submodule. It is a Lie module. -/
def quotient {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] (N : lie_submodule R L M) :=
submodule.quotient (to_submodule N)
namespace quotient
/-- Map sending an element of `M` to the corresponding element of `M/N`, when `N` is a
lie_submodule of the lie_module `N`. -/
def mk {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] {N : lie_submodule R L M} : M → quotient N :=
submodule.quotient.mk
theorem is_quotient_mk {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] {N : lie_submodule R L M} (m : M) : quotient.mk' m = mk m :=
rfl
/-- Given a Lie module `M` over a Lie algebra `L`, together with a Lie submodule `N ⊆ M`, there
is a natural linear map from `L` to the endomorphisms of `M` leaving `N` invariant. -/
def lie_submodule_invariant {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] {N : lie_submodule R L M} : linear_map R L ↥(submodule.compatible_maps (to_submodule N) (to_submodule N)) :=
linear_map.cod_restrict (submodule.compatible_maps (to_submodule N) (to_submodule N))
(↑(lie_module.to_endo_morphism R L M)) (lie_mem N)
/-- Given a Lie module `M` over a Lie algebra `L`, together with a Lie submodule `N ⊆ M`, there
is a natural Lie algebra morphism from `L` to the linear endomorphism of the quotient `M/N`. -/
def action_as_endo_map {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] (N : lie_submodule R L M) : lie_algebra.morphism R L (module.End R (quotient N)) :=
lie_algebra.morphism.mk (linear_map.to_fun (linear_map.comp (submodule.mapq_linear ↑N ↑N) lie_submodule_invariant))
sorry sorry sorry
/-- Given a Lie module `M` over a Lie algebra `L`, together with a Lie submodule `N ⊆ M`, there is
a natural bracket action of `L` on the quotient `M/N`. -/
def action_as_endo_map_bracket {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] (N : lie_submodule R L M) : has_bracket L (quotient N) :=
has_bracket.mk fun (x : L) (n : quotient N) => coe_fn (coe_fn (action_as_endo_map N) x) n
protected instance lie_quotient_lie_ring_module {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] (N : lie_submodule R L M) : lie_ring_module L (quotient N) :=
lie_ring_module.mk sorry sorry sorry
/-- The quotient of a Lie module by a Lie submodule, is a Lie module. -/
protected instance lie_quotient_lie_module {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] (N : lie_submodule R L M) : lie_module R L (quotient N) :=
lie_module.mk sorry sorry
protected instance lie_quotient_has_bracket {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [lie_algebra R L] {I : lie_ideal R L} : has_bracket (quotient I) (quotient I) :=
has_bracket.mk
fun (x y : quotient I) => quotient.lift_on₂' x y (fun (x' y' : L) => mk (has_bracket.bracket x' y')) sorry
@[simp] theorem mk_bracket {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [lie_algebra R L] {I : lie_ideal R L} (x : L) (y : L) : mk (has_bracket.bracket x y) = has_bracket.bracket (mk x) (mk y) :=
rfl
protected instance lie_quotient_lie_ring {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [lie_algebra R L] {I : lie_ideal R L} : lie_ring (quotient I) :=
lie_ring.mk sorry sorry sorry sorry
protected instance lie_quotient_lie_algebra {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [lie_algebra R L] {I : lie_ideal R L} : lie_algebra R (quotient I) :=
lie_algebra.mk sorry
end quotient
end lie_submodule
namespace lie_algebra
/-- A generalisation of the derived series of a Lie algebra, whose zeroth term is a specified ideal.
It can be more convenient to work with this generalisation when considering the derived series of
an ideal since it provides a type-theoretic expression of the fact that the terms of the ideal's
derived series are also ideals of the enclosing algebra.
See also `lie_ideal.derived_series_eq_derived_series_of_ideal_comap` and
`lie_ideal.derived_series_eq_derived_series_of_ideal_map` below. -/
def derived_series_of_ideal (R : Type u) (L : Type v) [comm_ring R] [lie_ring L] [lie_algebra R L] (k : ℕ) : lie_ideal R L → lie_ideal R L :=
nat.iterate (fun (I : lie_ideal R L) => has_bracket.bracket I I) k
@[simp] theorem derived_series_of_ideal_zero (R : Type u) (L : Type v) [comm_ring R] [lie_ring L] [lie_algebra R L] (I : lie_ideal R L) : derived_series_of_ideal R L 0 I = I :=
rfl
@[simp] theorem derived_series_of_ideal_succ (R : Type u) (L : Type v) [comm_ring R] [lie_ring L] [lie_algebra R L] (I : lie_ideal R L) (k : ℕ) : derived_series_of_ideal R L (k + 1) I =
has_bracket.bracket (derived_series_of_ideal R L k I) (derived_series_of_ideal R L k I) :=
function.iterate_succ_apply' (fun (I : lie_ideal R L) => has_bracket.bracket I I) k I
/-- The derived series of Lie ideals of a Lie algebra. -/
def derived_series (R : Type u) (L : Type v) [comm_ring R] [lie_ring L] [lie_algebra R L] (k : ℕ) : lie_ideal R L :=
derived_series_of_ideal R L k ⊤
theorem derived_series_def (R : Type u) (L : Type v) [comm_ring R] [lie_ring L] [lie_algebra R L] (k : ℕ) : derived_series R L k = derived_series_of_ideal R L k ⊤ :=
rfl
theorem derived_series_of_ideal_add {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [lie_algebra R L] (I : lie_ideal R L) (k : ℕ) (l : ℕ) : derived_series_of_ideal R L (k + l) I = derived_series_of_ideal R L k (derived_series_of_ideal R L l I) := sorry
theorem derived_series_of_ideal_le {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [lie_algebra R L] {I : lie_ideal R L} {J : lie_ideal R L} {k : ℕ} {l : ℕ} (h₁ : I ≤ J) (h₂ : l ≤ k) : derived_series_of_ideal R L k I ≤ derived_series_of_ideal R L l J := sorry
theorem derived_series_of_ideal_succ_le {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [lie_algebra R L] (I : lie_ideal R L) (k : ℕ) : derived_series_of_ideal R L (k + 1) I ≤ derived_series_of_ideal R L k I :=
derived_series_of_ideal_le (le_refl I) (nat.le_succ k)
theorem derived_series_of_ideal_le_self {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [lie_algebra R L] (I : lie_ideal R L) (k : ℕ) : derived_series_of_ideal R L k I ≤ I :=
derived_series_of_ideal_le (le_refl I) (zero_le k)
theorem derived_series_of_ideal_mono {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [lie_algebra R L] {I : lie_ideal R L} {J : lie_ideal R L} (h : I ≤ J) (k : ℕ) : derived_series_of_ideal R L k I ≤ derived_series_of_ideal R L k J :=
derived_series_of_ideal_le h (le_refl k)
theorem derived_series_of_ideal_antimono {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [lie_algebra R L] (I : lie_ideal R L) {k : ℕ} {l : ℕ} (h : l ≤ k) : derived_series_of_ideal R L k I ≤ derived_series_of_ideal R L l I :=
derived_series_of_ideal_le (le_refl I) h
theorem derived_series_of_ideal_add_le_add {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [lie_algebra R L] (I : lie_ideal R L) (J : lie_ideal R L) (k : ℕ) (l : ℕ) : derived_series_of_ideal R L (k + l) (I + J) ≤ derived_series_of_ideal R L k I + derived_series_of_ideal R L l J := sorry
end lie_algebra
namespace lie_module
/-- The lower central series of Lie submodules of a Lie module. -/
def lower_central_series (R : Type u) (L : Type v) (M : Type w) [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] (k : ℕ) : lie_submodule R L M :=
nat.iterate (fun (I : lie_submodule R L M) => has_bracket.bracket ⊤ I) k ⊤
@[simp] theorem lower_central_series_zero (R : Type u) (L : Type v) (M : Type w) [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] : lower_central_series R L M 0 = ⊤ :=
rfl
@[simp] theorem lower_central_series_succ (R : Type u) (L : Type v) (M : Type w) [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] (k : ℕ) : lower_central_series R L M (k + 1) = has_bracket.bracket ⊤ (lower_central_series R L M k) :=
function.iterate_succ_apply' (fun (I : lie_submodule R L M) => has_bracket.bracket ⊤ I) k ⊤
theorem trivial_iff_derived_eq_bot (R : Type u) (L : Type v) (M : Type w) [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] : is_trivial L M ↔ lower_central_series R L M 1 = ⊥ := sorry
theorem derived_series_le_lower_central_series (R : Type u) (L : Type v) [comm_ring R] [lie_ring L] [lie_algebra R L] (k : ℕ) : lie_algebra.derived_series R L k ≤ lower_central_series R L L k := sorry
end lie_module
namespace lie_submodule
/-- A morphism of Lie modules `f : M → M'` pushes forward Lie submodules of `M` to Lie submodules
of `M'`. -/
def map {R : Type u} {L : Type v} {M : Type w} {M' : Type w₁} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] [add_comm_group M'] [module R M'] [lie_ring_module L M'] [lie_module R L M'] (f : lie_module_hom R L M M') (N : lie_submodule R L M) : lie_submodule R L M' :=
mk (submodule.carrier (submodule.map ↑f ↑N)) sorry sorry sorry sorry
/-- A morphism of Lie modules `f : M → M'` pulls back Lie submodules of `M'` to Lie submodules of
`M`. -/
def comap {R : Type u} {L : Type v} {M : Type w} {M' : Type w₁} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] [add_comm_group M'] [module R M'] [lie_ring_module L M'] [lie_module R L M'] (f : lie_module_hom R L M M') (N : lie_submodule R L M') : lie_submodule R L M :=
mk (submodule.carrier (submodule.comap ↑f ↑N)) sorry sorry sorry sorry
theorem map_le_iff_le_comap {R : Type u} {L : Type v} {M : Type w} {M' : Type w₁} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] [add_comm_group M'] [module R M'] [lie_ring_module L M'] [lie_module R L M'] {f : lie_module_hom R L M M'} {N : lie_submodule R L M} {N' : lie_submodule R L M'} : map f N ≤ N' ↔ N ≤ comap f N' :=
set.image_subset_iff
theorem gc_map_comap {R : Type u} {L : Type v} {M : Type w} {M' : Type w₁} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] [add_comm_group M'] [module R M'] [lie_ring_module L M'] [lie_module R L M'] (f : lie_module_hom R L M M') : galois_connection (map f) (comap f) :=
fun (N : lie_submodule R L M) (N' : lie_submodule R L M') => map_le_iff_le_comap
end lie_submodule
namespace lie_ideal
/-- A morphism of Lie algebras `f : L → L'` pushes forward Lie ideals of `L` to Lie ideals of `L'`.
Note that unlike `lie_submodule.map`, we must take the `lie_span` of the image. Mathematically
this is because although `f` makes `L'` into a Lie module over `L`, in general the `L` submodules of
`L'` are not the same as the ideals of `L'`. -/
def map {R : Type u} {L : Type v} {L' : Type w₂} [comm_ring R] [lie_ring L] [lie_algebra R L] [lie_ring L'] [lie_algebra R L'] (f : lie_algebra.morphism R L L') (I : lie_ideal R L) : lie_ideal R L' :=
lie_submodule.lie_span R L' (⇑f '' ↑I)
/-- A morphism of Lie algebras `f : L → L'` pulls back Lie ideals of `L'` to Lie ideals of `L`.
Note that `f` makes `L'` into a Lie module over `L` (turning `f` into a morphism of Lie modules)
and so this is a special case of `lie_submodule.comap` but we do not exploit this fact. -/
def comap {R : Type u} {L : Type v} {L' : Type w₂} [comm_ring R] [lie_ring L] [lie_algebra R L] [lie_ring L'] [lie_algebra R L'] (f : lie_algebra.morphism R L L') (J : lie_ideal R L') : lie_ideal R L :=
lie_submodule.mk (submodule.carrier (submodule.comap ↑f ↑J)) sorry sorry sorry sorry
@[simp] theorem map_coe_submodule {R : Type u} {L : Type v} {L' : Type w₂} [comm_ring R] [lie_ring L] [lie_algebra R L] [lie_ring L'] [lie_algebra R L'] (f : lie_algebra.morphism R L L') (I : lie_ideal R L) (h : ↑(map f I) = ⇑f '' ↑I) : ↑(map f I) = submodule.map ↑f ↑I := sorry
@[simp] theorem comap_coe_submodule {R : Type u} {L : Type v} {L' : Type w₂} [comm_ring R] [lie_ring L] [lie_algebra R L] [lie_ring L'] [lie_algebra R L'] (f : lie_algebra.morphism R L L') (J : lie_ideal R L') : ↑(comap f J) = submodule.comap ↑f ↑J :=
rfl
theorem map_le {R : Type u} {L : Type v} {L' : Type w₂} [comm_ring R] [lie_ring L] [lie_algebra R L] [lie_ring L'] [lie_algebra R L'] (f : lie_algebra.morphism R L L') (I : lie_ideal R L) (J : lie_ideal R L') : map f I ≤ J ↔ ⇑f '' ↑I ⊆ ↑J :=
lie_submodule.lie_span_le
theorem mem_map {R : Type u} {L : Type v} {L' : Type w₂} [comm_ring R] [lie_ring L] [lie_algebra R L] [lie_ring L'] [lie_algebra R L'] {f : lie_algebra.morphism R L L'} {I : lie_ideal R L} {x : L} (hx : x ∈ I) : coe_fn f x ∈ map f I :=
lie_submodule.subset_lie_span (Exists.intro x (id { left := hx, right := rfl }))
@[simp] theorem mem_comap {R : Type u} {L : Type v} {L' : Type w₂} [comm_ring R] [lie_ring L] [lie_algebra R L] [lie_ring L'] [lie_algebra R L'] {f : lie_algebra.morphism R L L'} {J : lie_ideal R L'} {x : L} : x ∈ comap f J ↔ coe_fn f x ∈ J :=
iff.rfl
theorem map_le_iff_le_comap {R : Type u} {L : Type v} {L' : Type w₂} [comm_ring R] [lie_ring L] [lie_algebra R L] [lie_ring L'] [lie_algebra R L'] {f : lie_algebra.morphism R L L'} {I : lie_ideal R L} {J : lie_ideal R L'} : map f I ≤ J ↔ I ≤ comap f J :=
eq.mpr (id (Eq._oldrec (Eq.refl (map f I ≤ J ↔ I ≤ comap f J)) (propext (map_le f I J)))) set.image_subset_iff
theorem gc_map_comap {R : Type u} {L : Type v} {L' : Type w₂} [comm_ring R] [lie_ring L] [lie_algebra R L] [lie_ring L'] [lie_algebra R L'] {f : lie_algebra.morphism R L L'} : galois_connection (map f) (comap f) :=
fun (I : lie_ideal R L) (I' : lie_ideal R L') => map_le_iff_le_comap
theorem map_comap_le {R : Type u} {L : Type v} {L' : Type w₂} [comm_ring R] [lie_ring L] [lie_algebra R L] [lie_ring L'] [lie_algebra R L'] {f : lie_algebra.morphism R L L'} {J : lie_ideal R L'} : map f (comap f J) ≤ J :=
eq.mpr (id (Eq._oldrec (Eq.refl (map f (comap f J) ≤ J)) (propext map_le_iff_le_comap))) (le_refl (comap f J))
/-- See also `map_comap_eq` below. -/
theorem comap_map_le {R : Type u} {L : Type v} {L' : Type w₂} [comm_ring R] [lie_ring L] [lie_algebra R L] [lie_ring L'] [lie_algebra R L'] {f : lie_algebra.morphism R L L'} {I : lie_ideal R L} : I ≤ comap f (map f I) :=
eq.mpr (id (Eq._oldrec (Eq.refl (I ≤ comap f (map f I))) (Eq.symm (propext map_le_iff_le_comap)))) (le_refl (map f I))
theorem map_mono {R : Type u} {L : Type v} {L' : Type w₂} [comm_ring R] [lie_ring L] [lie_algebra R L] [lie_ring L'] [lie_algebra R L'] {f : lie_algebra.morphism R L L'} : monotone (map f) :=
fun (I₁ I₂ : lie_ideal R L) (h : I₁ ≤ I₂) =>
lie_submodule.lie_span_mono
(set.image_subset (⇑f) (eq.mp (Eq._oldrec (Eq.refl (I₁ ≤ I₂)) (propext (lie_submodule.le_def I₁ I₂))) h))
theorem comap_mono {R : Type u} {L : Type v} {L' : Type w₂} [comm_ring R] [lie_ring L] [lie_algebra R L] [lie_ring L'] [lie_algebra R L'] {f : lie_algebra.morphism R L L'} : monotone (comap f) := sorry
theorem map_of_image {R : Type u} {L : Type v} {L' : Type w₂} [comm_ring R] [lie_ring L] [lie_algebra R L] [lie_ring L'] [lie_algebra R L'] {f : lie_algebra.morphism R L L'} {I : lie_ideal R L} {J : lie_ideal R L'} (h : ⇑f '' ↑I = ↑J) : map f I = J := sorry
/-- Note that this is not a special case of `lie_submodule.of_bot_eq_bot`. Indeed, given
`I : lie_ideal R L`, in general the two lattices `lie_ideal R I` and `lie_submodule R L I` are
different (though the latter does naturally inject into the former).
In other words, in general, ideals of `I`, regarded as a Lie algebra in its own right, are not the
same as ideals of `L` contained in `I`. -/
theorem of_bot_eq_bot {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [lie_algebra R L] (I : lie_ideal R ↥⊥) : I = ⊥ := sorry
theorem unique_of_bot {R : Type u} {L : Type v} {M : Type w} [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] (I : lie_submodule R L ↥⊥) (J : lie_submodule R L ↥⊥) : I = J :=
eq.mpr (id (Eq._oldrec (Eq.refl (I = J)) (lie_submodule.of_bot_eq_bot I)))
(eq.mpr (id (Eq._oldrec (Eq.refl (⊥ = J)) (lie_submodule.of_bot_eq_bot J))) (Eq.refl ⊥))
end lie_ideal
namespace lie_algebra.morphism
/-- The kernel of a morphism of Lie algebras, as an ideal in the domain. -/
def ker {R : Type u} {L : Type v} {L' : Type w₂} [comm_ring R] [lie_ring L] [lie_algebra R L] [lie_ring L'] [lie_algebra R L'] (f : morphism R L L') : lie_ideal R L :=
lie_ideal.comap f ⊥
/-- The range of a morphism of Lie algebras as an ideal in the codomain. -/
def ideal_range {R : Type u} {L : Type v} {L' : Type w₂} [comm_ring R] [lie_ring L] [lie_algebra R L] [lie_ring L'] [lie_algebra R L'] (f : morphism R L L') : lie_ideal R L' :=
lie_ideal.map f ⊤
/-- The condition that the image of a morphism of Lie algebras is an ideal. -/
def is_ideal_morphism {R : Type u} {L : Type v} {L' : Type w₂} [comm_ring R] [lie_ring L] [lie_algebra R L] [lie_ring L'] [lie_algebra R L'] (f : morphism R L L') :=
↑(ideal_range f) = range f
@[simp] theorem is_ideal_morphism_def {R : Type u} {L : Type v} {L' : Type w₂} [comm_ring R] [lie_ring L] [lie_algebra R L] [lie_ring L'] [lie_algebra R L'] (f : morphism R L L') : is_ideal_morphism f ↔ ↑(ideal_range f) = range f :=
iff.rfl
theorem range_subset_ideal_range {R : Type u} {L : Type v} {L' : Type w₂} [comm_ring R] [lie_ring L] [lie_algebra R L] [lie_ring L'] [lie_algebra R L'] (f : morphism R L L') : ↑(range f) ⊆ ↑(ideal_range f) :=
lie_submodule.subset_lie_span
theorem map_le_ideal_range {R : Type u} {L : Type v} {L' : Type w₂} [comm_ring R] [lie_ring L] [lie_algebra R L] [lie_ring L'] [lie_algebra R L'] (f : morphism R L L') (I : lie_ideal R L) : lie_ideal.map f I ≤ ideal_range f :=
lie_ideal.map_mono le_top
theorem ker_le_comap {R : Type u} {L : Type v} {L' : Type w₂} [comm_ring R] [lie_ring L] [lie_algebra R L] [lie_ring L'] [lie_algebra R L'] (f : morphism R L L') (J : lie_ideal R L') : ker f ≤ lie_ideal.comap f J :=
lie_ideal.comap_mono bot_le
@[simp] theorem ker_coe_submodule {R : Type u} {L : Type v} {L' : Type w₂} [comm_ring R] [lie_ring L] [lie_algebra R L] [lie_ring L'] [lie_algebra R L'] (f : morphism R L L') : ↑(ker f) = linear_map.ker ↑f :=
rfl
@[simp] theorem mem_ker {R : Type u} {L : Type v} {L' : Type w₂} [comm_ring R] [lie_ring L] [lie_algebra R L] [lie_ring L'] [lie_algebra R L'] (f : morphism R L L') {x : L} : x ∈ ker f ↔ coe_fn f x = 0 := sorry
theorem mem_ideal_range {R : Type u} {L : Type v} {L' : Type w₂} [comm_ring R] [lie_ring L] [lie_algebra R L] [lie_ring L'] [lie_algebra R L'] (f : morphism R L L') {x : L} : coe_fn f x ∈ ideal_range f :=
lie_ideal.mem_map (lie_submodule.mem_top x)
@[simp] theorem mem_ideal_range_iff {R : Type u} {L : Type v} {L' : Type w₂} [comm_ring R] [lie_ring L] [lie_algebra R L] [lie_ring L'] [lie_algebra R L'] (f : morphism R L L') (h : is_ideal_morphism f) {y : L'} : y ∈ ideal_range f ↔ ∃ (x : L), coe_fn f x = y := sorry
theorem le_ker_iff {R : Type u} {L : Type v} {L' : Type w₂} [comm_ring R] [lie_ring L] [lie_algebra R L] [lie_ring L'] [lie_algebra R L'] (f : morphism R L L') (I : lie_ideal R L) : I ≤ ker f ↔ ∀ (x : L), x ∈ I → coe_fn f x = 0 := sorry
@[simp] theorem map_bot_iff {R : Type u} {L : Type v} {L' : Type w₂} [comm_ring R] [lie_ring L] [lie_algebra R L] [lie_ring L'] [lie_algebra R L'] (f : morphism R L L') (I : lie_ideal R L) : lie_ideal.map f I = ⊥ ↔ I ≤ ker f := sorry
end lie_algebra.morphism
namespace lie_ideal
theorem map_sup_ker_eq_map {R : Type u} {L : Type v} {L' : Type w₂} [comm_ring R] [lie_ring L] [lie_algebra R L] [lie_ring L'] [lie_algebra R L'] {f : lie_algebra.morphism R L L'} {I : lie_ideal R L} : map f (I ⊔ lie_algebra.morphism.ker f) = map f I := sorry
@[simp] theorem map_comap_eq {R : Type u} {L : Type v} {L' : Type w₂} [comm_ring R] [lie_ring L] [lie_algebra R L] [lie_ring L'] [lie_algebra R L'] {f : lie_algebra.morphism R L L'} {J : lie_ideal R L'} (h : lie_algebra.morphism.is_ideal_morphism f) : map f (comap f J) = lie_algebra.morphism.ideal_range f ⊓ J := sorry
@[simp] theorem comap_map_eq {R : Type u} {L : Type v} {L' : Type w₂} [comm_ring R] [lie_ring L] [lie_algebra R L] [lie_ring L'] [lie_algebra R L'] {f : lie_algebra.morphism R L L'} {I : lie_ideal R L} (h : ↑(map f I) = ⇑f '' ↑I) : comap f (map f I) = I ⊔ lie_algebra.morphism.ker f := sorry
/-- Regarding an ideal `I` as a subalgebra, the inclusion map into its ambient space is a morphism
of Lie algebras. -/
def incl {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [lie_algebra R L] (I : lie_ideal R L) : lie_algebra.morphism R (↥I) L :=
lie_subalgebra.incl ↑I
@[simp] theorem incl_apply {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [lie_algebra R L] (I : lie_ideal R L) (x : ↥I) : coe_fn (incl I) x = ↑x :=
rfl
@[simp] theorem incl_coe {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [lie_algebra R L] (I : lie_ideal R L) : ↑(incl I) = submodule.subtype ↑I :=
rfl
@[simp] theorem comap_incl_self {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [lie_algebra R L] (I : lie_ideal R L) : comap (incl I) I = ⊤ := sorry
@[simp] theorem ker_incl {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [lie_algebra R L] (I : lie_ideal R L) : lie_algebra.morphism.ker (incl I) = ⊥ := sorry
@[simp] theorem incl_ideal_range {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [lie_algebra R L] (I : lie_ideal R L) : lie_algebra.morphism.ideal_range (incl I) = I := sorry
theorem incl_is_ideal_morphism {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [lie_algebra R L] (I : lie_ideal R L) : lie_algebra.morphism.is_ideal_morphism (incl I) := sorry
/-- Note that the inequality can be strict; e.g., the inclusion of an Abelian subalgebra of a
simple algebra. -/
theorem map_bracket_le {R : Type u} {L : Type v} {L' : Type w₂} [comm_ring R] [lie_ring L] [lie_algebra R L] [lie_ring L'] [lie_algebra R L'] (f : lie_algebra.morphism R L L') {I₁ : lie_ideal R L} {I₂ : lie_ideal R L} : map f (has_bracket.bracket I₁ I₂) ≤ has_bracket.bracket (map f I₁) (map f I₂) := sorry
theorem comap_bracket_le {R : Type u} {L : Type v} {L' : Type w₂} [comm_ring R] [lie_ring L] [lie_algebra R L] [lie_ring L'] [lie_algebra R L'] (f : lie_algebra.morphism R L L') {J₁ : lie_ideal R L'} {J₂ : lie_ideal R L'} : has_bracket.bracket (comap f J₁) (comap f J₂) ≤ comap f (has_bracket.bracket J₁ J₂) := sorry
theorem map_comap_incl {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [lie_algebra R L] {I₁ : lie_ideal R L} {I₂ : lie_ideal R L} : map (incl I₁) (comap (incl I₁) I₂) = I₁ ⊓ I₂ := sorry
theorem comap_bracket_eq {R : Type u} {L : Type v} {L' : Type w₂} [comm_ring R] [lie_ring L] [lie_algebra R L] [lie_ring L'] [lie_algebra R L'] {f : lie_algebra.morphism R L L'} {J₁ : lie_ideal R L'} {J₂ : lie_ideal R L'} (h : lie_algebra.morphism.is_ideal_morphism f) : comap f (has_bracket.bracket (lie_algebra.morphism.ideal_range f ⊓ J₁) (lie_algebra.morphism.ideal_range f ⊓ J₂)) =
has_bracket.bracket (comap f J₁) (comap f J₂) ⊔ lie_algebra.morphism.ker f := sorry
theorem map_comap_bracket_eq {R : Type u} {L : Type v} {L' : Type w₂} [comm_ring R] [lie_ring L] [lie_algebra R L] [lie_ring L'] [lie_algebra R L'] {f : lie_algebra.morphism R L L'} {J₁ : lie_ideal R L'} {J₂ : lie_ideal R L'} (h : lie_algebra.morphism.is_ideal_morphism f) : map f (has_bracket.bracket (comap f J₁) (comap f J₂)) =
has_bracket.bracket (lie_algebra.morphism.ideal_range f ⊓ J₁) (lie_algebra.morphism.ideal_range f ⊓ J₂) := sorry
theorem comap_bracket_incl {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [lie_algebra R L] (I : lie_ideal R L) {I₁ : lie_ideal R L} {I₂ : lie_ideal R L} : has_bracket.bracket (comap (incl I) I₁) (comap (incl I) I₂) = comap (incl I) (has_bracket.bracket (I ⊓ I₁) (I ⊓ I₂)) := sorry
/-- This is a very useful result; it allows us to use the fact that inclusion distributes over the
Lie bracket operation on ideals, subject to the conditions shown. -/
theorem comap_bracket_incl_of_le {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [lie_algebra R L] (I : lie_ideal R L) {I₁ : lie_ideal R L} {I₂ : lie_ideal R L} (h₁ : I₁ ≤ I) (h₂ : I₂ ≤ I) : has_bracket.bracket (comap (incl I) I₁) (comap (incl I) I₂) = comap (incl I) (has_bracket.bracket I₁ I₂) := sorry
theorem derived_series_eq_derived_series_of_ideal_comap {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [lie_algebra R L] (I : lie_ideal R L) (k : ℕ) : lie_algebra.derived_series R (↥I) k = comap (incl I) (lie_algebra.derived_series_of_ideal R L k I) := sorry
theorem derived_series_eq_derived_series_of_ideal_map {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [lie_algebra R L] (I : lie_ideal R L) (k : ℕ) : map (incl I) (lie_algebra.derived_series R (↥I) k) = lie_algebra.derived_series_of_ideal R L k I := sorry
theorem derived_series_eq_bot_iff {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [lie_algebra R L] (I : lie_ideal R L) (k : ℕ) : lie_algebra.derived_series R (↥I) k = ⊥ ↔ lie_algebra.derived_series_of_ideal R L k I = ⊥ := sorry
theorem derived_series_add_eq_bot {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [lie_algebra R L] {k : ℕ} {l : ℕ} {I : lie_ideal R L} {J : lie_ideal R L} (hI : lie_algebra.derived_series R (↥I) k = ⊥) (hJ : lie_algebra.derived_series R (↥J) l = ⊥) : lie_algebra.derived_series R (↥(I + J)) (k + l) = ⊥ := sorry
end lie_ideal
namespace lie_module
/-- A Lie module is irreducible if it is zero or its only non-trivial Lie submodule is itself. -/
class is_irreducible (R : Type u) (L : Type v) (M : Type w) [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M]
where
irreducible : ∀ (N : lie_submodule R L M), N ≠ ⊥ → N = ⊤
/-- A Lie module is nilpotent if its lower central series reaches 0 (in a finite number of steps).-/
class is_nilpotent (R : Type u) (L : Type v) (M : Type w) [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M]
where
nilpotent : ∃ (k : ℕ), lower_central_series R L M k = ⊥
protected instance trivial_is_nilpotent (R : Type u) (L : Type v) (M : Type w) [comm_ring R] [lie_ring L] [lie_algebra R L] [add_comm_group M] [module R M] [lie_ring_module L M] [lie_module R L M] [is_trivial L M] : is_nilpotent R L M :=
is_nilpotent.mk
(Exists.intro 1
(id
(id
(eq.mpr
(id
(Eq.trans
((fun (a a_1 : lie_submodule R L M) (e_1 : a = a_1) (ᾰ ᾰ_1 : lie_submodule R L M) (e_2 : ᾰ = ᾰ_1) =>
congr (congr_arg Eq e_1) e_2)
(has_bracket.bracket ⊤ ⊤) ⊥ (lie_submodule.trivial_lie_oper_zero ⊤ ⊤) ⊥ ⊥ (Eq.refl ⊥))
(propext (eq_self_iff_true ⊥))))
trivial))))
end lie_module
namespace lie_algebra
/-- A Lie algebra is simple if it is irreducible as a Lie module over itself via the adjoint
action, and it is non-Abelian. -/
class is_simple (R : Type u) (L : Type v) [comm_ring R] [lie_ring L] [lie_algebra R L]
extends lie_module.is_irreducible R L L
where
non_abelian : ¬is_lie_abelian L
/-- A Lie algebra is solvable if its derived series reaches 0 (in a finite number of steps). -/
class is_solvable (R : Type u) (L : Type v) [comm_ring R] [lie_ring L] [lie_algebra R L]
where
solvable : ∃ (k : ℕ), derived_series R L k = ⊥
protected instance is_solvable_bot (R : Type u) (L : Type v) [comm_ring R] [lie_ring L] [lie_algebra R L] : is_solvable R ↥⊥ :=
is_solvable.mk (Exists.intro 0 (lie_ideal.of_bot_eq_bot ⊤))
protected instance is_solvable_add (R : Type u) (L : Type v) [comm_ring R] [lie_ring L] [lie_algebra R L] {I : lie_ideal R L} {J : lie_ideal R L} [hI : is_solvable R ↥I] [hJ : is_solvable R ↥J] : is_solvable R ↥(I + J) :=
is_solvable.dcases_on hI
fun (hI : ∃ (k : ℕ), derived_series R (↥I) k = ⊥) =>
Exists.dcases_on hI
fun (k : ℕ) (hk : derived_series R (↥I) k = ⊥) =>
is_solvable.dcases_on hJ
fun (hJ : ∃ (k : ℕ), derived_series R (↥J) k = ⊥) =>
Exists.dcases_on hJ
fun (l : ℕ) (hl : derived_series R (↥J) l = ⊥) =>
is_solvable.mk (Exists.intro (k + l) (lie_ideal.derived_series_add_eq_bot hk hl))
/-- The (solvable) radical of Lie algebra is the `Sup` of all solvable ideals. -/
def radical (R : Type u) (L : Type v) [comm_ring R] [lie_ring L] [lie_algebra R L] : lie_ideal R L :=
Sup (set_of fun (I : lie_ideal R L) => is_solvable R ↥I)
/-- The radical of a Noetherian Lie algebra is solvable. -/
protected instance radical_is_solvable (R : Type u) (L : Type v) [comm_ring R] [lie_ring L] [lie_algebra R L] [is_noetherian R L] : is_solvable R ↥(radical R L) :=
eq.mp
(Eq._oldrec (Eq.refl (well_founded gt))
(Eq.symm (propext (complete_lattice.is_sup_closed_compact_iff_well_founded (lie_submodule R L L)))))
(lie_submodule.well_founded_of_noetherian R L L) (set_of fun (I : lie_ideal R L) => is_solvable R ↥I)
(Exists.intro ⊥ (id (lie_algebra.is_solvable_bot R L)))
fun (I J : lie_submodule R L L) (hI : I ∈ set_of fun (I : lie_ideal R L) => is_solvable R ↥I)
(hJ : J ∈ set_of fun (I : lie_ideal R L) => is_solvable R ↥I) => lie_algebra.is_solvable_add R L
protected instance is_solvable_of_is_nilpotent (R : Type u) (L : Type v) [comm_ring R] [lie_ring L] [lie_algebra R L] [hL : lie_module.is_nilpotent R L L] : is_solvable R L :=
Exists.dcases_on lie_module.is_nilpotent.nilpotent
fun (k : ℕ) (h : lie_module.lower_central_series R L L k = ⊥) =>
is_solvable.mk
(Exists.intro k
(id
(eq.mpr (id (Eq._oldrec (Eq.refl (derived_series R L k = ⊥)) (Eq.symm (propext le_bot_iff))))
(le_trans (lie_module.derived_series_le_lower_central_series R L k)
(eq.mp (Eq._oldrec (Eq.refl (lie_module.lower_central_series R L L k = ⊥)) (Eq.symm (propext le_bot_iff)))
h)))))
end lie_algebra
namespace linear_equiv
/-- A linear equivalence of two modules induces a Lie algebra equivalence of their endomorphisms. -/
def lie_conj {R : Type u} {M₁ : Type v} {M₂ : Type w} [comm_ring R] [add_comm_group M₁] [module R M₁] [add_comm_group M₂] [module R M₂] (e : linear_equiv R M₁ M₂) : lie_algebra.equiv R (module.End R M₁) (module.End R M₂) :=
lie_algebra.equiv.mk (to_fun (conj e)) sorry sorry sorry (inv_fun (conj e)) sorry sorry
@[simp] theorem lie_conj_apply {R : Type u} {M₁ : Type v} {M₂ : Type w} [comm_ring R] [add_comm_group M₁] [module R M₁] [add_comm_group M₂] [module R M₂] (e : linear_equiv R M₁ M₂) (f : module.End R M₁) : coe_fn (lie_conj e) f = coe_fn (conj e) f :=
rfl
@[simp] theorem lie_conj_symm {R : Type u} {M₁ : Type v} {M₂ : Type w} [comm_ring R] [add_comm_group M₁] [module R M₁] [add_comm_group M₂] [module R M₂] (e : linear_equiv R M₁ M₂) : lie_algebra.equiv.symm (lie_conj e) = lie_conj (symm e) :=
rfl
end linear_equiv
namespace alg_equiv
/-- An equivalence of associative algebras is an equivalence of associated Lie algebras. -/
def to_lie_equiv {R : Type u} {A₁ : Type v} {A₂ : Type w} [comm_ring R] [ring A₁] [ring A₂] [algebra R A₁] [algebra R A₂] (e : alg_equiv R A₁ A₂) : lie_algebra.equiv R A₁ A₂ :=
lie_algebra.equiv.mk (to_fun e) sorry sorry sorry (linear_equiv.inv_fun (to_linear_equiv e)) sorry sorry
@[simp] theorem to_lie_equiv_apply {R : Type u} {A₁ : Type v} {A₂ : Type w} [comm_ring R] [ring A₁] [ring A₂] [algebra R A₁] [algebra R A₂] (e : alg_equiv R A₁ A₂) (x : A₁) : coe_fn (to_lie_equiv e) x = coe_fn e x :=
rfl
@[simp] theorem to_lie_equiv_symm_apply {R : Type u} {A₁ : Type v} {A₂ : Type w} [comm_ring R] [ring A₁] [ring A₂] [algebra R A₁] [algebra R A₂] (e : alg_equiv R A₁ A₂) (x : A₂) : coe_fn (lie_algebra.equiv.symm (to_lie_equiv e)) x = coe_fn (symm e) x :=
rfl
end alg_equiv
/-! ### Matrices
An important class of Lie algebras are those arising from the associative algebra structure on
square matrices over a commutative ring.
-/
/-- The natural equivalence between linear endomorphisms of finite free modules and square matrices
is compatible with the Lie algebra structures. -/
def lie_equiv_matrix' {R : Type u} [comm_ring R] {n : Type w} [DecidableEq n] [fintype n] : lie_algebra.equiv R (module.End R (n → R)) (matrix n n R) :=
lie_algebra.equiv.mk (linear_equiv.to_fun linear_map.to_matrix') sorry sorry sorry
(linear_equiv.inv_fun linear_map.to_matrix') sorry sorry
@[simp] theorem lie_equiv_matrix'_apply {R : Type u} [comm_ring R] {n : Type w} [DecidableEq n] [fintype n] (f : module.End R (n → R)) : coe_fn lie_equiv_matrix' f = coe_fn linear_map.to_matrix' f :=
rfl
@[simp] theorem lie_equiv_matrix'_symm_apply {R : Type u} [comm_ring R] {n : Type w} [DecidableEq n] [fintype n] (A : matrix n n R) : coe_fn (lie_algebra.equiv.symm lie_equiv_matrix') A = coe_fn matrix.to_lin' A :=
rfl
/-- An invertible matrix induces a Lie algebra equivalence from the space of matrices to itself. -/
def matrix.lie_conj {R : Type u} [comm_ring R] {n : Type w} [DecidableEq n] [fintype n] (P : matrix n n R) (h : is_unit P) : lie_algebra.equiv R (matrix n n R) (matrix n n R) :=
lie_algebra.equiv.trans
(lie_algebra.equiv.trans (lie_algebra.equiv.symm lie_equiv_matrix')
(linear_equiv.lie_conj (matrix.to_linear_equiv P h)))
lie_equiv_matrix'
@[simp] theorem matrix.lie_conj_apply {R : Type u} [comm_ring R] {n : Type w} [DecidableEq n] [fintype n] (P : matrix n n R) (A : matrix n n R) (h : is_unit P) : coe_fn (matrix.lie_conj P h) A = matrix.mul (matrix.mul P A) (P⁻¹) := sorry
@[simp] theorem matrix.lie_conj_symm_apply {R : Type u} [comm_ring R] {n : Type w} [DecidableEq n] [fintype n] (P : matrix n n R) (A : matrix n n R) (h : is_unit P) : coe_fn (lie_algebra.equiv.symm (matrix.lie_conj P h)) A = matrix.mul (matrix.mul (P⁻¹) A) P := sorry
/-- For square matrices, the natural map that reindexes a matrix's rows and columns with equivalent
types is an equivalence of Lie algebras. -/
def matrix.reindex_lie_equiv {R : Type u} [comm_ring R] {n : Type w} [DecidableEq n] [fintype n] {m : Type w₁} [DecidableEq m] [fintype m] (e : n ≃ m) : lie_algebra.equiv R (matrix n n R) (matrix m m R) :=
lie_algebra.equiv.mk (linear_equiv.to_fun (matrix.reindex_linear_equiv e e)) sorry sorry sorry
(linear_equiv.inv_fun (matrix.reindex_linear_equiv e e)) sorry sorry
@[simp] theorem matrix.reindex_lie_equiv_apply {R : Type u} [comm_ring R] {n : Type w} [DecidableEq n] [fintype n] {m : Type w₁} [DecidableEq m] [fintype m] (e : n ≃ m) (M : matrix n n R) : coe_fn (matrix.reindex_lie_equiv e) M = fun (i j : m) => M (coe_fn (equiv.symm e) i) (coe_fn (equiv.symm e) j) :=
rfl
@[simp] theorem matrix.reindex_lie_equiv_symm_apply {R : Type u} [comm_ring R] {n : Type w} [DecidableEq n] [fintype n] {m : Type w₁} [DecidableEq m] [fintype m] (e : n ≃ m) (M : matrix m m R) : coe_fn (lie_algebra.equiv.symm (matrix.reindex_lie_equiv e)) M = fun (i j : n) => M (coe_fn e i) (coe_fn e j) :=
rfl
|
57712cf42695a57436a8cc0e9a0075d1c4340ab2
|
8d65764a9e5f0923a67fc435eb1a5a1d02fd80e3
|
/src/algebra/ordered_monoid_lemmas.lean
|
7cf18ca39c22bdc1f417a2fd7da3c51b38d74406
|
[
"Apache-2.0"
] |
permissive
|
troyjlee/mathlib
|
e18d4b8026e32062ab9e89bc3b003a5d1cfec3f5
|
45e7eb8447555247246e3fe91c87066506c14875
|
refs/heads/master
| 1,689,248,035,046
| 1,629,470,528,000
| 1,629,470,528,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 27,761
|
lean
|
/-
Copyright (c) 2016 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Leonardo de Moura, Mario Carneiro, Johannes Hölzl, Damiano Testa
-/
import algebra.covariant_and_contravariant
import order.basic
/-!
# Ordered monoids
This file develops the basics of ordered monoids.
## Implementation details
Unfortunately, the number of `'` appended to lemmas in this file
may differ between the multiplicative and the additive version of a lemma.
The reason is that we did not want to change existing names in the library.
## Remark
Almost no monoid is actually present in this file: most assumptions have been generalized to
`has_mul` or `mul_one_class`.
-/
-- TODO: If possible, uniformize lemma names, taking special care of `'`,
-- after the `ordered`-refactor is done.
open function
variables {α : Type*}
section has_mul
variables [has_mul α]
section has_le
variables [has_le α]
/- The prime on this lemma is present only on the multiplicative version. The unprimed version
is taken by the analogous lemma for semiring, with an extra non-negativity assumption. -/
@[to_additive add_le_add_left]
lemma mul_le_mul_left' [covariant_class α α (*) (≤)] {b c : α} (bc : b ≤ c) (a : α) :
a * b ≤ a * c :=
covariant_class.elim _ bc
@[to_additive le_of_add_le_add_left]
lemma le_of_mul_le_mul_left' [contravariant_class α α (*) (≤)]
{a b c : α} (bc : a * b ≤ a * c) :
b ≤ c :=
contravariant_class.elim _ bc
/- The prime on this lemma is present only on the multiplicative version. The unprimed version
is taken by the analogous lemma for semiring, with an extra non-negativity assumption. -/
@[to_additive add_le_add_right]
lemma mul_le_mul_right' [covariant_class α α (function.swap (*)) (≤)]
{b c : α} (bc : b ≤ c) (a : α) :
b * a ≤ c * a :=
covariant_class.elim a bc
@[to_additive le_of_add_le_add_right]
lemma le_of_mul_le_mul_right' [contravariant_class α α (function.swap (*)) (≤)]
{a b c : α} (bc : b * a ≤ c * a) :
b ≤ c :=
contravariant_class.elim a bc
@[simp, to_additive]
lemma mul_le_mul_iff_left [covariant_class α α (*) (≤)] [contravariant_class α α (*) (≤)]
(a : α) {b c : α} :
a * b ≤ a * c ↔ b ≤ c :=
rel_iff_cov α α (*) (≤) a
@[simp, to_additive]
lemma mul_le_mul_iff_right
[covariant_class α α (function.swap (*)) (≤)] [contravariant_class α α (function.swap (*)) (≤)]
(a : α) {b c : α} :
b * a ≤ c * a ↔ b ≤ c :=
rel_iff_cov α α (function.swap (*)) (≤) a
end has_le
section has_lt
variables [has_lt α]
@[simp, to_additive]
lemma mul_lt_mul_iff_left [covariant_class α α (*) (<)] [contravariant_class α α (*) (<)]
(a : α) {b c : α} :
a * b < a * c ↔ b < c :=
rel_iff_cov α α (*) (<) a
@[simp, to_additive]
lemma mul_lt_mul_iff_right
[covariant_class α α (function.swap (*)) (<)] [contravariant_class α α (function.swap (*)) (<)]
(a : α) {b c : α} :
b * a < c * a ↔ b < c :=
rel_iff_cov α α (function.swap (*)) (<) a
@[to_additive add_lt_add_left]
lemma mul_lt_mul_left' [covariant_class α α (*) (<)] {b c : α} (bc : b < c) (a : α) :
a * b < a * c :=
covariant_class.elim _ bc
@[to_additive lt_of_add_lt_add_left]
lemma lt_of_mul_lt_mul_left' [contravariant_class α α (*) (<)]
{a b c : α} (bc : a * b < a * c) :
b < c :=
contravariant_class.elim _ bc
@[to_additive add_lt_add_right]
lemma mul_lt_mul_right' [covariant_class α α (function.swap (*)) (<)]
{b c : α} (bc : b < c) (a : α) :
b * a < c * a :=
covariant_class.elim a bc
@[to_additive lt_of_add_lt_add_right]
lemma lt_of_mul_lt_mul_right' [contravariant_class α α (function.swap (*)) (<)]
{a b c : α} (bc : b * a < c * a) :
b < c :=
contravariant_class.elim a bc
end has_lt
end has_mul
-- using one
section mul_one_class
variables [mul_one_class α]
section has_le
variables [has_le α]
@[simp, to_additive le_add_iff_nonneg_right]
lemma le_mul_iff_one_le_right'
[covariant_class α α (*) (≤)] [contravariant_class α α (*) (≤)]
(a : α) {b : α} : a ≤ a * b ↔ 1 ≤ b :=
iff.trans (by rw [mul_one]) (mul_le_mul_iff_left a)
@[simp, to_additive add_le_iff_nonpos_right]
lemma mul_le_iff_le_one_right'
[covariant_class α α (*) (≤)] [contravariant_class α α (*) (≤)]
(a : α) {b : α} :
a * b ≤ a ↔ b ≤ 1 :=
iff.trans (by rw [mul_one]) (mul_le_mul_iff_left a)
@[simp, to_additive le_add_iff_nonneg_left]
lemma le_mul_iff_one_le_left'
[covariant_class α α (function.swap (*)) (≤)] [contravariant_class α α (function.swap (*)) (≤)]
(a : α) {b : α} :
a ≤ b * a ↔ 1 ≤ b :=
iff.trans (by rw one_mul) (mul_le_mul_iff_right a)
@[simp, to_additive add_le_iff_nonpos_left]
lemma mul_le_iff_le_one_left'
[covariant_class α α (function.swap (*)) (≤)] [contravariant_class α α (function.swap (*)) (≤)]
{a b : α} :
a * b ≤ b ↔ a ≤ 1 :=
iff.trans (by rw one_mul) (mul_le_mul_iff_right b)
end has_le
section has_lt
variable [has_lt α]
@[to_additive lt_add_of_pos_right]
lemma lt_mul_of_one_lt_right'
[covariant_class α α (*) (<)]
(a : α) {b : α} (h : 1 < b) : a < a * b :=
calc a = a * 1 : (mul_one _).symm
... < a * b : mul_lt_mul_left' h a
@[simp, to_additive lt_add_iff_pos_right]
lemma lt_mul_iff_one_lt_right'
[covariant_class α α (*) (<)] [contravariant_class α α (*) (<)]
(a : α) {b : α} :
a < a * b ↔ 1 < b :=
iff.trans (by rw mul_one) (mul_lt_mul_iff_left a)
@[simp, to_additive add_lt_iff_neg_left]
lemma mul_lt_iff_lt_one_left'
[covariant_class α α (*) (<)] [contravariant_class α α (*) (<)] {a b : α} :
a * b < a ↔ b < 1 :=
iff.trans (by rw mul_one) (mul_lt_mul_iff_left a)
@[simp, to_additive lt_add_iff_pos_left]
lemma lt_mul_iff_one_lt_left'
[covariant_class α α (function.swap (*)) (<)] [contravariant_class α α (function.swap (*)) (<)]
(a : α) {b : α} : a < b * a ↔ 1 < b :=
iff.trans (by rw one_mul) (mul_lt_mul_iff_right a)
@[simp, to_additive add_lt_iff_neg_right]
lemma mul_lt_iff_lt_one_right'
[covariant_class α α (function.swap (*)) (<)] [contravariant_class α α (function.swap (*)) (<)]
{a : α} (b : α) :
a * b < b ↔ a < 1 :=
iff.trans (by rw one_mul) (mul_lt_mul_iff_right b)
end has_lt
section preorder
variable [preorder α]
@[to_additive]
lemma mul_le_of_le_of_le_one [covariant_class α α (*) (≤)]
{a b c : α} (hbc : b ≤ c) (ha : a ≤ 1) : b * a ≤ c :=
calc b * a ≤ b * 1 : mul_le_mul_left' ha b
... = b : mul_one b
... ≤ c : hbc
alias mul_le_of_le_of_le_one ← mul_le_one'
attribute [to_additive add_nonpos] mul_le_one'
@[to_additive]
lemma lt_mul_of_lt_of_one_le [covariant_class α α (*) (≤)]
{a b c : α} (hbc : b < c) (ha : 1 ≤ a) : b < c * a :=
calc b < c : hbc
... = c * 1 : (mul_one c).symm
... ≤ c * a : mul_le_mul_left' ha c
@[to_additive]
lemma mul_lt_of_lt_of_le_one [covariant_class α α (*) (≤)]
{a b c : α} (hbc : b < c) (ha : a ≤ 1) : b * a < c :=
calc b * a ≤ b * 1 : mul_le_mul_left' ha b
... = b : mul_one b
... < c : hbc
@[to_additive]
lemma lt_mul_of_le_of_one_lt [covariant_class α α (*) (<)]
{a b c : α} (hbc : b ≤ c) (ha : 1 < a) : b < c * a :=
calc b ≤ c : hbc
... = c * 1 : (mul_one c).symm
... < c * a : mul_lt_mul_left' ha c
@[to_additive]
lemma mul_lt_of_le_one_of_lt [covariant_class α α (function.swap (*)) (≤)]
{a b c : α} (ha : a ≤ 1) (hb : b < c) : a * b < c :=
calc a * b ≤ 1 * b : mul_le_mul_right' ha b
... = b : one_mul b
... < c : hb
@[to_additive]
lemma mul_le_of_le_one_of_le [covariant_class α α (function.swap (*)) (≤)]
{a b c : α} (ha : a ≤ 1) (hbc : b ≤ c) :
a * b ≤ c :=
calc a * b ≤ 1 * b : mul_le_mul_right' ha b
... = b : one_mul b
... ≤ c : hbc
@[to_additive]
lemma le_mul_of_one_le_of_le [covariant_class α α (function.swap (*)) (≤)]
{a b c: α} (ha : 1 ≤ a) (hbc : b ≤ c) : b ≤ a * c :=
calc b ≤ c : hbc
... = 1 * c : (one_mul c).symm
... ≤ a * c : mul_le_mul_right' ha c
/--
Assume monotonicity on the `left`. The lemma assuming `right` is `right.mul_lt_one`. -/
@[to_additive]
lemma left.mul_lt_one [covariant_class α α (*) (<)]
{a b : α} (ha : a < 1) (hb : b < 1) : a * b < 1 :=
calc a * b < a * 1 : mul_lt_mul_left' hb a
... = a : mul_one a
... < 1 : ha
/--
Assume monotonicity on the `right`. The lemma assuming `left` is `left.mul_lt_one`. -/
@[to_additive]
lemma right.mul_lt_one [covariant_class α α (function.swap (*)) (<)]
{a b : α} (ha : a < 1) (hb : b < 1) : a * b < 1 :=
calc a * b < 1 * b : mul_lt_mul_right' ha b
... = b : one_mul b
... < 1 : hb
@[to_additive]
lemma mul_lt_of_le_of_lt_one
[covariant_class α α (*) (<)] [covariant_class α α (function.swap (*)) (≤)]
{a b c: α} (hbc : b ≤ c) (ha : a < 1) : b * a < c :=
calc b * a ≤ c * a : mul_le_mul_right' hbc a
... < c * 1 : mul_lt_mul_left' ha c
... = c : mul_one c
@[to_additive]
lemma mul_lt_of_lt_one_of_le [covariant_class α α (function.swap (*)) (<)]
{a b c : α} (ha : a < 1) (hbc : b ≤ c) : a * b < c :=
calc a * b < 1 * b : mul_lt_mul_right' ha b
... = b : one_mul b
... ≤ c : hbc
@[to_additive]
lemma lt_mul_of_one_lt_of_le [covariant_class α α (function.swap (*)) (<)]
{a b c : α} (ha : 1 < a) (hbc : b ≤ c) : b < a * c :=
calc b ≤ c : hbc
... = 1 * c : (one_mul c).symm
... < a * c : mul_lt_mul_right' ha c
/-- Assumes left covariance. -/
@[to_additive]
lemma le_mul_of_le_of_le_one [covariant_class α α (*) (≤)]
{a b c : α} (ha : c ≤ a) (hb : 1 ≤ b) : c ≤ a * b :=
calc c ≤ a : ha
... = a * 1 : (mul_one a).symm
... ≤ a * b : mul_le_mul_left' hb a
/- This lemma is present to mimick the name of an existing one. -/
@[to_additive add_nonneg]
lemma one_le_mul [covariant_class α α (*) (≤)]
{a b : α} (ha : 1 ≤ a) (hb : 1 ≤ b) : 1 ≤ a * b :=
le_mul_of_le_of_le_one ha hb
/-- Assumes left covariance. -/
@[to_additive]
lemma lt_mul_of_lt_of_one_lt [covariant_class α α (*) (<)]
{a b c : α} (ha : c < a) (hb : 1 < b) : c < a * b :=
calc c < a : ha
... = a * 1 : (mul_one _).symm
... < a * b : mul_lt_mul_left' hb a
/-- Assumes left covariance. -/
@[to_additive]
lemma left.mul_lt_one_of_lt_of_lt_one [covariant_class α α (*) (<)]
{a b c : α} (ha : a < c) (hb : b < 1) : a * b < c :=
calc a * b < a * 1 : mul_lt_mul_left' hb a
... = a : mul_one a
... < c : ha
/-- Assumes right covariance. -/
@[to_additive]
lemma right.mul_lt_one_of_lt_of_lt_one [covariant_class α α (function.swap (*)) (<)]
{a b c : α} (ha : a < 1) (hb : b < c) : a * b < c :=
calc a * b < 1 * b : mul_lt_mul_right' ha b
... = b : one_mul b
... < c : hb
/-- Assumes right covariance. -/
@[to_additive right.add_nonneg]
lemma right.one_le_mul [covariant_class α α (function.swap (*)) (≤)]
{a b : α} (ha : 1 ≤ a) (hb : 1 ≤ b) : 1 ≤ a * b :=
calc 1 ≤ b : hb
... = 1 * b : (one_mul b).symm
... ≤ a * b : mul_le_mul_right' ha b
/-- Assumes right covariance. -/
@[to_additive right.add_pos]
lemma right.one_lt_mul [covariant_class α α (function.swap (*)) (<)]
{b : α} (hb : 1 < b) {a: α} (ha : 1 < a) : 1 < a * b :=
calc 1 < b : hb
... = 1 * b : (one_mul _).symm
... < a * b : mul_lt_mul_right' ha b
end preorder
@[to_additive le_add_of_nonneg_right]
lemma le_mul_of_one_le_right' [has_le α] [covariant_class α α (*) (≤)] {a b : α} (h : 1 ≤ b) :
a ≤ a * b :=
calc a = a * 1 : (mul_one _).symm
... ≤ a * b : mul_le_mul_left' h a
@[to_additive add_le_of_nonpos_right]
lemma mul_le_of_le_one_right' [has_le α] [covariant_class α α (*) (≤)] {a b : α} (h : b ≤ 1) :
a * b ≤ a :=
calc a * b ≤ a * 1 : mul_le_mul_left' h a
... = a : mul_one a
end mul_one_class
@[to_additive]
lemma mul_left_cancel'' [semigroup α] [partial_order α]
[contravariant_class α α (*) (≤)] {a b c : α} (h : a * b = a * c) : b = c :=
(le_of_mul_le_mul_left' h.le).antisymm (le_of_mul_le_mul_left' h.ge)
@[to_additive]
lemma mul_right_cancel'' [semigroup α] [partial_order α]
[contravariant_class α α (function.swap (*)) (≤)] {a b c : α} (h : a * b = c * b) :
a = c :=
le_antisymm (le_of_mul_le_mul_right' h.le) (le_of_mul_le_mul_right' h.ge)
/- This is not instance, since we want to have an instance from `left_cancel_semigroup`s
to the appropriate `covariant_class`. -/
/-- A semigroup with a partial order and satisfying `left_cancel_semigroup`
(i.e. `a * c < b * c → a < b`) is a `left_cancel semigroup`. -/
@[to_additive
"An additive semigroup with a partial order and satisfying `left_cancel_add_semigroup`
(i.e. `c + a < c + b → a < b`) is a `left_cancel add_semigroup`."]
def contravariant.to_left_cancel_semigroup [semigroup α] [partial_order α]
[contravariant_class α α (*) (≤)] :
left_cancel_semigroup α :=
{ mul_left_cancel := λ a b c, mul_left_cancel''
..‹semigroup α› }
/- This is not instance, since we want to have an instance from `right_cancel_semigroup`s
to the appropriate `covariant_class`. -/
/-- A semigroup with a partial order and satisfying `right_cancel_semigroup`
(i.e. `a * c < b * c → a < b`) is a `right_cancel semigroup`. -/
@[to_additive
"An additive semigroup with a partial order and satisfying `right_cancel_add_semigroup`
(`a + c < b + c → a < b`) is a `right_cancel add_semigroup`."]
def contravariant.to_right_cancel_semigroup [semigroup α] [partial_order α]
[contravariant_class α α (function.swap (*)) (≤)] :
right_cancel_semigroup α :=
{ mul_right_cancel := λ a b c, mul_right_cancel''
..‹semigroup α› }
variables {a b c d : α}
section left
variables [preorder α]
section has_mul
variables [has_mul α]
@[to_additive]
lemma mul_lt_mul_of_lt_of_lt
[covariant_class α α (*) (<)] [covariant_class α α (function.swap (*)) (<)]
(h₁ : a < b) (h₂ : c < d) : a * c < b * d :=
calc a * c < a * d : mul_lt_mul_left' h₂ a
... < b * d : mul_lt_mul_right' h₁ d
section contravariant_mul_lt_left_le_right
variables [covariant_class α α (*) (<)] [covariant_class α α (function.swap (*)) (≤)]
@[to_additive]
lemma mul_lt_mul_of_le_of_lt
(h₁ : a ≤ b) (h₂ : c < d) : a * c < b * d :=
(mul_le_mul_right' h₁ _).trans_lt (mul_lt_mul_left' h₂ b)
@[to_additive add_lt_add]
lemma mul_lt_mul''' (h₁ : a < b) (h₂ : c < d) : a * c < b * d :=
mul_lt_mul_of_le_of_lt h₁.le h₂
end contravariant_mul_lt_left_le_right
variable [covariant_class α α (*) (≤)]
@[to_additive]
lemma mul_lt_of_mul_lt_left (h : a * b < c) (hle : d ≤ b) :
a * d < c :=
(mul_le_mul_left' hle a).trans_lt h
@[to_additive]
lemma mul_le_of_mul_le_left (h : a * b ≤ c) (hle : d ≤ b) :
a * d ≤ c :=
@act_rel_of_rel_of_act_rel _ _ _ (≤) _ ⟨λ _ _ _, le_trans⟩ a _ _ _ hle h
@[to_additive]
lemma lt_mul_of_lt_mul_left (h : a < b * c) (hle : c ≤ d) :
a < b * d :=
h.trans_le (mul_le_mul_left' hle b)
@[to_additive]
lemma le_mul_of_le_mul_left (h : a ≤ b * c) (hle : c ≤ d) :
a ≤ b * d :=
@rel_act_of_rel_of_rel_act _ _ _ (≤) _ ⟨λ _ _ _, le_trans⟩ b _ _ _ hle h
@[to_additive]
lemma mul_lt_mul_of_lt_of_le [covariant_class α α (function.swap (*)) (<)]
(h₁ : a < b) (h₂ : c ≤ d) : a * c < b * d :=
(mul_le_mul_left' h₂ _).trans_lt (mul_lt_mul_right' h₁ d)
end has_mul
/-! Here we start using properties of one, on the left. -/
section mul_one_class
variables [mul_one_class α] [covariant_class α α (*) (≤)]
@[to_additive]
lemma lt_of_mul_lt_of_one_le_left (h : a * b < c) (hle : 1 ≤ b) : a < c :=
(le_mul_of_one_le_right' hle).trans_lt h
@[to_additive]
lemma le_of_mul_le_of_one_le_left (h : a * b ≤ c) (hle : 1 ≤ b) : a ≤ c :=
(le_mul_of_one_le_right' hle).trans h
@[to_additive]
lemma lt_of_lt_mul_of_le_one_left (h : a < b * c) (hle : c ≤ 1) : a < b :=
h.trans_le (mul_le_of_le_one_right' hle)
@[to_additive]
lemma le_of_le_mul_of_le_one_left (h : a ≤ b * c) (hle : c ≤ 1) : a ≤ b :=
h.trans (mul_le_of_le_one_right' hle)
@[to_additive]
theorem mul_lt_of_lt_of_lt_one (bc : b < c) (a1 : a < 1) :
b * a < c :=
calc b * a ≤ b * 1 : mul_le_mul_left' a1.le _
... = b : mul_one b
... < c : bc
end mul_one_class
end left
section right
section preorder
variables [preorder α]
section has_mul
variables [has_mul α]
variable [covariant_class α α (function.swap (*)) (≤)]
@[to_additive]
lemma mul_lt_of_mul_lt_right (h : a * b < c) (hle : d ≤ a) :
d * b < c :=
(mul_le_mul_right' hle b).trans_lt h
@[to_additive]
lemma mul_le_of_mul_le_right (h : a * b ≤ c) (hle : d ≤ a) :
d * b ≤ c :=
(mul_le_mul_right' hle b).trans h
@[to_additive]
lemma lt_mul_of_lt_mul_right (h : a < b * c) (hle : b ≤ d) :
a < d * c :=
h.trans_le (mul_le_mul_right' hle c)
@[to_additive]
lemma le_mul_of_le_mul_right (h : a ≤ b * c) (hle : b ≤ d) :
a ≤ d * c :=
h.trans (mul_le_mul_right' hle c)
variable [covariant_class α α (*) (≤)]
@[to_additive add_le_add]
lemma mul_le_mul' (h₁ : a ≤ b) (h₂ : c ≤ d) : a * c ≤ b * d :=
(mul_le_mul_left' h₂ _).trans (mul_le_mul_right' h₁ d)
@[to_additive]
lemma mul_le_mul_three {e f : α} (h₁ : a ≤ d) (h₂ : b ≤ e) (h₃ : c ≤ f) :
a * b * c ≤ d * e * f :=
mul_le_mul' (mul_le_mul' h₁ h₂) h₃
end has_mul
/-! Here we start using properties of one, on the right. -/
section mul_one_class
variables [mul_one_class α]
section le_right
variable [covariant_class α α (function.swap (*)) (≤)]
@[to_additive le_add_of_nonneg_left]
lemma le_mul_of_one_le_left' (h : 1 ≤ b) : a ≤ b * a :=
calc a = 1 * a : (one_mul a).symm
... ≤ b * a : mul_le_mul_right' h a
@[to_additive add_le_of_nonpos_left]
lemma mul_le_of_le_one_left' (h : b ≤ 1) : b * a ≤ a :=
calc b * a ≤ 1 * a : mul_le_mul_right' h a
... = a : one_mul a
@[to_additive]
lemma lt_of_mul_lt_of_one_le_right (h : a * b < c) (hle : 1 ≤ a) : b < c :=
(le_mul_of_one_le_left' hle).trans_lt h
@[to_additive]
lemma le_of_mul_le_of_one_le_right (h : a * b ≤ c) (hle : 1 ≤ a) : b ≤ c :=
(le_mul_of_one_le_left' hle).trans h
@[to_additive]
lemma lt_of_lt_mul_of_le_one_right (h : a < b * c) (hle : b ≤ 1) : a < c :=
h.trans_le (mul_le_of_le_one_left' hle)
@[to_additive]
lemma le_of_le_mul_of_le_one_right (h : a ≤ b * c) (hle : b ≤ 1) : a ≤ c :=
h.trans (mul_le_of_le_one_left' hle)
theorem mul_lt_of_lt_one_of_lt (a1 : a < 1) (bc : b < c) :
a * b < c :=
calc a * b ≤ 1 * b : mul_le_mul_right' a1.le _
... = b : one_mul b
... < c : bc
end le_right
section lt_right
@[to_additive lt_add_of_pos_left]
lemma lt_mul_of_one_lt_left' [covariant_class α α (function.swap (*)) (<)]
(a : α) {b : α} (h : 1 < b) : a < b * a :=
calc a = 1 * a : (one_mul _).symm
... < b * a : mul_lt_mul_right' h a
end lt_right
end mul_one_class
end preorder
end right
section preorder
variables [preorder α]
section mul_one_class
variables [mul_one_class α]
section covariant_left
variable [covariant_class α α (*) (≤)]
@[to_additive add_pos_of_pos_of_nonneg]
lemma one_lt_mul_of_lt_of_le' (ha : 1 < a) (hb : 1 ≤ b) : 1 < a * b :=
lt_of_lt_of_le ha $ le_mul_of_one_le_right' hb
@[to_additive add_pos]
lemma one_lt_mul' (ha : 1 < a) (hb : 1 < b) : 1 < a * b :=
one_lt_mul_of_lt_of_le' ha hb.le
@[to_additive]
lemma lt_mul_of_lt_of_one_le' (hbc : b < c) (ha : 1 ≤ a) :
b < c * a :=
hbc.trans_le $ le_mul_of_one_le_right' ha
@[to_additive]
lemma lt_mul_of_lt_of_one_lt' (hbc : b < c) (ha : 1 < a) :
b < c * a :=
lt_mul_of_lt_of_one_le' hbc ha.le
@[to_additive]
lemma le_mul_of_le_of_one_le (hbc : b ≤ c) (ha : 1 ≤ a) : b ≤ c * a :=
calc b ≤ c : hbc
... = c * 1 : (mul_one c).symm
... ≤ c * a : mul_le_mul_left' ha c
@[to_additive add_nonneg]
lemma one_le_mul_right (ha : 1 ≤ a) (hb : 1 ≤ b) : 1 ≤ a * b :=
calc 1 ≤ a : ha
... = a * 1 : (mul_one a).symm
... ≤ a * b : mul_le_mul_left' hb a
end covariant_left
section covariant_right
variable [covariant_class α α (function.swap (*)) (≤)]
@[to_additive add_pos_of_nonneg_of_pos]
lemma one_lt_mul_of_le_of_lt' (ha : 1 ≤ a) (hb : 1 < b) : 1 < a * b :=
lt_of_lt_of_le hb $ le_mul_of_one_le_left' ha
@[to_additive]
lemma lt_mul_of_one_le_of_lt (ha : 1 ≤ a) (hbc : b < c) : b < a * c :=
hbc.trans_le $ le_mul_of_one_le_left' ha
@[to_additive]
lemma lt_mul_of_one_lt_of_lt (ha : 1 < a) (hbc : b < c) : b < a * c :=
lt_mul_of_one_le_of_lt ha.le hbc
end covariant_right
end mul_one_class
end preorder
section partial_order
/-! Properties assuming `partial_order`. -/
variables [mul_one_class α] [partial_order α]
[covariant_class α α (*) (≤)] [covariant_class α α (function.swap (*)) (≤)]
@[to_additive]
lemma mul_eq_one_iff' (ha : 1 ≤ a) (hb : 1 ≤ b) : a * b = 1 ↔ a = 1 ∧ b = 1 :=
iff.intro
(assume hab : a * b = 1,
have a ≤ 1, from hab ▸ le_mul_of_le_of_one_le le_rfl hb,
have a = 1, from le_antisymm this ha,
have b ≤ 1, from hab ▸ le_mul_of_one_le_of_le ha le_rfl,
have b = 1, from le_antisymm this hb,
and.intro ‹a = 1› ‹b = 1›)
(assume ⟨ha', hb'⟩, by rw [ha', hb', mul_one])
end partial_order
section mono
variables [has_mul α] {β : Type*} {f g : β → α}
section has_le
variables [preorder α] [preorder β]
@[to_additive monotone.const_add]
lemma monotone.const_mul' [covariant_class α α (*) (≤)] (hf : monotone f) (a : α) :
monotone (λ x, a * f x) :=
λ x y h, mul_le_mul_left' (hf h) a
@[to_additive monotone.add_const]
lemma monotone.mul_const' [covariant_class α α (function.swap (*)) (≤)]
(hf : monotone f) (a : α) : monotone (λ x, f x * a) :=
λ x y h, mul_le_mul_right' (hf h) a
end has_le
variables [preorder α] [preorder β]
/-- The product of two monotone functions is monotone. -/
@[to_additive monotone.add "The sum of two monotone functions is monotone."]
lemma monotone.mul' [covariant_class α α (*) (≤)] [covariant_class α α (function.swap (*)) (≤)]
(hf : monotone f) (hg : monotone g) : monotone (λ x, f x * g x) :=
λ x y h, mul_le_mul' (hf h) (hg h)
end mono
section strict_mono
variables [has_mul α] {β : Type*} {f g : β → α}
section left
variables [has_lt α] [covariant_class α α (*) (<)] [has_lt β]
@[to_additive strict_mono.const_add]
lemma strict_mono.const_mul' (hf : strict_mono f) (c : α) :
strict_mono (λ x, c * f x) :=
λ a b ab, mul_lt_mul_left' (hf ab) c
end left
section right
variables [has_lt α] [covariant_class α α (function.swap (*)) (<)] [has_lt β]
@[to_additive strict_mono.add_const]
lemma strict_mono.mul_const' (hf : strict_mono f) (c : α) :
strict_mono (λ x, f x * c) :=
λ a b ab, mul_lt_mul_right' (hf ab) c
end right
/-- The product of two strictly monotone functions is strictly monotone. -/
@[to_additive strict_mono.add
"The sum of two strictly monotone functions is strictly monotone."]
lemma strict_mono.mul' [has_lt β] [preorder α]
[covariant_class α α (*) (<)] [covariant_class α α (function.swap (*)) (<)]
(hf : strict_mono f) (hg : strict_mono g) :
strict_mono (λ x, f x * g x) :=
λ a b ab, mul_lt_mul_of_lt_of_lt (hf ab) (hg ab)
variables [preorder α]
/-- The product of a monotone function and a strictly monotone function is strictly monotone. -/
@[to_additive monotone.add_strict_mono
"The sum of a monotone function and a strictly monotone function is strictly monotone."]
lemma monotone.mul_strict_mono' [covariant_class α α (*) (<)]
[covariant_class α α (function.swap (*)) (≤)] {β : Type*} [preorder β]
{f g : β → α} (hf : monotone f) (hg : strict_mono g) :
strict_mono (λ x, f x * g x) :=
λ x y h, mul_lt_mul_of_le_of_lt (hf h.le) (hg h)
variables [covariant_class α α (*) (≤)] [covariant_class α α (function.swap (*)) (<)] [preorder β]
/-- The product of a strictly monotone function and a monotone function is strictly monotone. -/
@[to_additive strict_mono.add_monotone
"The sum of a strictly monotone function and a monotone function is strictly monotone."]
lemma strict_mono.mul_monotone' (hf : strict_mono f) (hg : monotone g) :
strict_mono (λ x, f x * g x) :=
λ x y h, mul_lt_mul_of_lt_of_le (hf h) (hg h.le)
end strict_mono
/--
An element `a : α` is `mul_le_cancellable` if `x ↦ a * x` is order-reflecting.
We will make a separate version of many lemmas that require `[contravariant_class α α (*) (≤)]` with
`mul_le_cancellable` assumptions instead. These lemmas can then be instantiated to specific types,
like `ennreal`, where we can replace the assumption `add_le_cancellable x` by `x ≠ ∞`.
-/
@[to_additive /-" An element `a : α` is `add_le_cancellable` if `x ↦ a + x` is order-reflecting.
We will make a separate version of many lemmas that require `[contravariant_class α α (+) (≤)]` with
`mul_le_cancellable` assumptions instead. These lemmas can then be instantiated to specific types,
like `ennreal`, where we can replace the assumption `add_le_cancellable x` by `x ≠ ∞`. "-/
]
def mul_le_cancellable [has_mul α] [has_le α] (a : α) : Prop :=
∀ ⦃b c⦄, a * b ≤ a * c → b ≤ c
@[to_additive]
lemma contravariant.mul_le_cancellable [has_mul α] [has_le α] [contravariant_class α α (*) (≤)]
{a : α} : mul_le_cancellable a :=
λ b c, le_of_mul_le_mul_left'
namespace mul_le_cancellable
@[to_additive]
protected lemma injective [has_mul α] [partial_order α] {a : α} (ha : mul_le_cancellable a) :
injective ((*) a) :=
λ b c h, le_antisymm (ha h.le) (ha h.ge)
@[to_additive]
protected lemma inj [has_mul α] [partial_order α] {a b c : α} (ha : mul_le_cancellable a) :
a * b = a * c ↔ b = c :=
ha.injective.eq_iff
@[to_additive]
protected lemma injective_left [comm_semigroup α] [partial_order α] {a : α}
(ha : mul_le_cancellable a) : injective (* a) :=
λ b c h, ha.injective $ by rwa [mul_comm a, mul_comm a]
@[to_additive]
protected lemma inj_left [comm_semigroup α] [partial_order α] {a b c : α}
(hc : mul_le_cancellable c) : a * c = b * c ↔ a = b :=
hc.injective_left.eq_iff
variable [has_le α]
@[to_additive]
protected lemma mul_le_mul_iff_left [has_mul α] [covariant_class α α (*) (≤)]
{a b c : α} (ha : mul_le_cancellable a) : a * b ≤ a * c ↔ b ≤ c :=
⟨λ h, ha h, λ h, mul_le_mul_left' h a⟩
@[to_additive]
protected lemma mul_le_mul_iff_right [comm_semigroup α] [covariant_class α α (*) (≤)]
{a b c : α} (ha : mul_le_cancellable a) : b * a ≤ c * a ↔ b ≤ c :=
by rw [mul_comm b, mul_comm c, ha.mul_le_mul_iff_left]
@[to_additive]
protected lemma le_mul_iff_one_le_right [mul_one_class α] [covariant_class α α (*) (≤)]
{a b : α} (ha : mul_le_cancellable a) : a ≤ a * b ↔ 1 ≤ b :=
iff.trans (by rw [mul_one]) ha.mul_le_mul_iff_left
@[to_additive]
protected lemma mul_le_iff_le_one_right [mul_one_class α] [covariant_class α α (*) (≤)]
{a b : α} (ha : mul_le_cancellable a) : a * b ≤ a ↔ b ≤ 1 :=
iff.trans (by rw [mul_one]) ha.mul_le_mul_iff_left
@[to_additive]
protected lemma le_mul_iff_one_le_left [comm_monoid α] [covariant_class α α (*) (≤)]
{a b : α} (ha : mul_le_cancellable a) : a ≤ b * a ↔ 1 ≤ b :=
by rw [mul_comm, ha.le_mul_iff_one_le_right]
@[to_additive]
protected lemma mul_le_iff_le_one_left [comm_monoid α] [covariant_class α α (*) (≤)]
{a b : α} (ha : mul_le_cancellable a) : b * a ≤ a ↔ b ≤ 1 :=
by rw [mul_comm, ha.mul_le_iff_le_one_right]
end mul_le_cancellable
|
65479b22f49e5b5fa16736e6d03b6599c7f19a30
|
fa02ed5a3c9c0adee3c26887a16855e7841c668b
|
/src/category_theory/abelian/non_preadditive.lean
|
22cddc8ee19033c4929d366ab9698bd45e6fac06
|
[
"Apache-2.0"
] |
permissive
|
jjgarzella/mathlib
|
96a345378c4e0bf26cf604aed84f90329e4896a2
|
395d8716c3ad03747059d482090e2bb97db612c8
|
refs/heads/master
| 1,686,480,124,379
| 1,625,163,323,000
| 1,625,163,323,000
| 281,190,421
| 2
| 0
|
Apache-2.0
| 1,595,268,170,000
| 1,595,268,169,000
| null |
UTF-8
|
Lean
| false
| false
| 32,034
|
lean
|
/-
Copyright (c) 2020 Markus Himmel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Markus Himmel
-/
import category_theory.limits.shapes.finite_products
import category_theory.limits.shapes.kernels
import category_theory.limits.shapes.normal_mono
import category_theory.preadditive
/-!
# Every non_preadditive_abelian category is preadditive
In mathlib, we define an abelian category as a preadditive category with a zero object,
kernels and cokernels, products and coproducts and in which every monomorphism and epimorphis is
normal.
While virtually every interesting abelian category has a natural preadditive structure (which is why
it is included in the definition), preadditivity is not actually needed: Every category that has
all of the other properties appearing in the definition of an abelian category admits a preadditive
structure. This is the construction we carry out in this file.
The proof proceeds in roughly five steps:
1. Prove some results (for example that all equalizers exist) that would be trivial if we already
had the preadditive structure but are a bit of work without it.
2. Develop images and coimages to show that every monomorphism is the kernel of its cokernel.
The results of the first two steps are also useful for the "normal" development of abelian
categories, and will be used there.
3. For every object `A`, define a "subtraction" morphism `σ : A ⨯ A ⟶ A` and use it to define
subtraction on morphisms as `f - g := prod.lift f g ≫ σ`.
4. Prove a small number of identities about this subtraction from the definition of `σ`.
5. From these identities, prove a large number of other identities that imply that defining
`f + g := f - (0 - g)` indeed gives an abelian group structure on morphisms such that composition
is bilinear.
The construction is non-trivial and it is quite remarkable that this abelian group structure can
be constructed purely from the existence of a few limits and colimits. What's even more impressive
is that all additive structures on a category are in some sense isomorphic, so for abelian
categories with a natural preadditive structure, this construction manages to "almost" reconstruct
this natural structure. However, we have not formalized this isomorphism.
## References
* [F. Borceux, *Handbook of Categorical Algebra 2*][borceux-vol2]
-/
noncomputable theory
open category_theory
open category_theory.limits
namespace category_theory
section
universes v u
variables (C : Type u) [category.{v} C]
/-- We call a category `non_preadditive_abelian` if it has a zero object, kernels, cokernels, binary
products and coproducts, and every monomorphism and every epimorphism is normal. -/
class non_preadditive_abelian :=
[has_zero_object : has_zero_object C]
[has_zero_morphisms : has_zero_morphisms C]
[has_kernels : has_kernels C]
[has_cokernels : has_cokernels C]
[has_finite_products : has_finite_products C]
[has_finite_coproducts : has_finite_coproducts C]
(normal_mono : Π {X Y : C} (f : X ⟶ Y) [mono f], normal_mono f)
(normal_epi : Π {X Y : C} (f : X ⟶ Y) [epi f], normal_epi f)
set_option default_priority 100
attribute [instance] non_preadditive_abelian.has_zero_object
attribute [instance] non_preadditive_abelian.has_zero_morphisms
attribute [instance] non_preadditive_abelian.has_kernels
attribute [instance] non_preadditive_abelian.has_cokernels
attribute [instance] non_preadditive_abelian.has_finite_products
attribute [instance] non_preadditive_abelian.has_finite_coproducts
end
end category_theory
open category_theory
namespace category_theory.non_preadditive_abelian
universes v u
variables {C : Type u} [category.{v} C]
section
variables [non_preadditive_abelian C]
section strong
local attribute [instance] non_preadditive_abelian.normal_epi
/-- In a `non_preadditive_abelian` category, every epimorphism is strong. -/
lemma strong_epi_of_epi {P Q : C} (f : P ⟶ Q) [epi f] : strong_epi f := by apply_instance
end strong
section mono_epi_iso
variables {X Y : C} (f : X ⟶ Y)
local attribute [instance] strong_epi_of_epi
/-- In a `non_preadditive_abelian` category, a monomorphism which is also an epimorphism is an
isomorphism. -/
lemma is_iso_of_mono_of_epi [mono f] [epi f] : is_iso f :=
is_iso_of_mono_of_strong_epi _
end mono_epi_iso
/-- The pullback of two monomorphisms exists. -/
@[irreducible]
lemma pullback_of_mono {X Y Z : C} (a : X ⟶ Z) (b : Y ⟶ Z) [mono a] [mono b] :
has_limit (cospan a b) :=
let ⟨P, f, haf, i⟩ := non_preadditive_abelian.normal_mono a in
let ⟨Q, g, hbg, i'⟩ := non_preadditive_abelian.normal_mono b in
let ⟨a', ha'⟩ := kernel_fork.is_limit.lift' i (kernel.ι (prod.lift f g)) $
calc kernel.ι (prod.lift f g) ≫ f
= kernel.ι (prod.lift f g) ≫ prod.lift f g ≫ limits.prod.fst : by rw prod.lift_fst
... = (0 : kernel (prod.lift f g) ⟶ P ⨯ Q) ≫ limits.prod.fst : by rw kernel.condition_assoc
... = 0 : zero_comp in
let ⟨b', hb'⟩ := kernel_fork.is_limit.lift' i' (kernel.ι (prod.lift f g)) $
calc kernel.ι (prod.lift f g) ≫ g
= kernel.ι (prod.lift f g) ≫ (prod.lift f g) ≫ limits.prod.snd : by rw prod.lift_snd
... = (0 : kernel (prod.lift f g) ⟶ P ⨯ Q) ≫ limits.prod.snd : by rw kernel.condition_assoc
... = 0 : zero_comp in
has_limit.mk { cone := pullback_cone.mk a' b' $ by { simp at ha' hb', rw [ha', hb'] },
is_limit := pullback_cone.is_limit.mk _
(λ s, kernel.lift (prod.lift f g) (pullback_cone.snd s ≫ b) $ prod.hom_ext
(calc ((pullback_cone.snd s ≫ b) ≫ prod.lift f g) ≫ limits.prod.fst
= pullback_cone.snd s ≫ b ≫ f : by simp only [prod.lift_fst, category.assoc]
... = pullback_cone.fst s ≫ a ≫ f : by rw pullback_cone.condition_assoc
... = pullback_cone.fst s ≫ 0 : by rw haf
... = 0 ≫ limits.prod.fst :
by rw [comp_zero, zero_comp])
(calc ((pullback_cone.snd s ≫ b) ≫ prod.lift f g) ≫ limits.prod.snd
= pullback_cone.snd s ≫ b ≫ g : by simp only [prod.lift_snd, category.assoc]
... = pullback_cone.snd s ≫ 0 : by rw hbg
... = 0 ≫ limits.prod.snd :
by rw [comp_zero, zero_comp]))
(λ s, (cancel_mono a).1 $
by { rw kernel_fork.ι_of_ι at ha', simp [ha', pullback_cone.condition s] })
(λ s, (cancel_mono b).1 $
by { rw kernel_fork.ι_of_ι at hb', simp [hb'] })
(λ s m h₁ h₂, (cancel_mono (kernel.ι (prod.lift f g))).1 $ calc m ≫ kernel.ι (prod.lift f g)
= m ≫ a' ≫ a : by { congr, exact ha'.symm }
... = pullback_cone.fst s ≫ a : by rw [←category.assoc, h₁]
... = pullback_cone.snd s ≫ b : pullback_cone.condition s
... = kernel.lift (prod.lift f g) (pullback_cone.snd s ≫ b) _ ≫ kernel.ι (prod.lift f g) :
by rw kernel.lift_ι) }
/-- The pushout of two epimorphisms exists. -/
@[irreducible]
lemma pushout_of_epi {X Y Z : C} (a : X ⟶ Y) (b : X ⟶ Z) [epi a] [epi b] :
has_colimit (span a b) :=
let ⟨P, f, hfa, i⟩ := non_preadditive_abelian.normal_epi a in
let ⟨Q, g, hgb, i'⟩ := non_preadditive_abelian.normal_epi b in
let ⟨a', ha'⟩ := cokernel_cofork.is_colimit.desc' i (cokernel.π (coprod.desc f g)) $
calc f ≫ cokernel.π (coprod.desc f g)
= coprod.inl ≫ coprod.desc f g ≫ cokernel.π (coprod.desc f g) : by rw coprod.inl_desc_assoc
... = coprod.inl ≫ (0 : P ⨿ Q ⟶ cokernel (coprod.desc f g)) : by rw cokernel.condition
... = 0 : has_zero_morphisms.comp_zero _ _ in
let ⟨b', hb'⟩ := cokernel_cofork.is_colimit.desc' i' (cokernel.π (coprod.desc f g)) $
calc g ≫ cokernel.π (coprod.desc f g)
= coprod.inr ≫ coprod.desc f g ≫ cokernel.π (coprod.desc f g) : by rw coprod.inr_desc_assoc
... = coprod.inr ≫ (0 : P ⨿ Q ⟶ cokernel (coprod.desc f g)) : by rw cokernel.condition
... = 0 : has_zero_morphisms.comp_zero _ _ in
has_colimit.mk
{ cocone := pushout_cocone.mk a' b' $ by { simp only [cofork.π_of_π] at ha' hb', rw [ha', hb'] },
is_colimit := pushout_cocone.is_colimit.mk _
(λ s, cokernel.desc (coprod.desc f g) (b ≫ pushout_cocone.inr s) $ coprod.hom_ext
(calc coprod.inl ≫ coprod.desc f g ≫ b ≫ pushout_cocone.inr s
= f ≫ b ≫ pushout_cocone.inr s : by rw coprod.inl_desc_assoc
... = f ≫ a ≫ pushout_cocone.inl s : by rw pushout_cocone.condition
... = 0 ≫ pushout_cocone.inl s : by rw reassoc_of hfa
... = coprod.inl ≫ 0 : by rw [comp_zero, zero_comp])
(calc coprod.inr ≫ coprod.desc f g ≫ b ≫ pushout_cocone.inr s
= g ≫ b ≫ pushout_cocone.inr s : by rw coprod.inr_desc_assoc
... = 0 ≫ pushout_cocone.inr s : by rw reassoc_of hgb
... = coprod.inr ≫ 0 : by rw [comp_zero, zero_comp]))
(λ s, (cancel_epi a).1 $
by { rw cokernel_cofork.π_of_π at ha', simp [reassoc_of ha', pushout_cocone.condition s] })
(λ s, (cancel_epi b).1 $ by { rw cokernel_cofork.π_of_π at hb', simp [reassoc_of hb'] })
(λ s m h₁ h₂, (cancel_epi (cokernel.π (coprod.desc f g))).1 $
calc cokernel.π (coprod.desc f g) ≫ m
= (a ≫ a') ≫ m : by { congr, exact ha'.symm }
... = a ≫ pushout_cocone.inl s : by rw [category.assoc, h₁]
... = b ≫ pushout_cocone.inr s : pushout_cocone.condition s
... = cokernel.π (coprod.desc f g) ≫
cokernel.desc (coprod.desc f g) (b ≫ pushout_cocone.inr s) _ :
by rw cokernel.π_desc) }
section
local attribute [instance] pullback_of_mono
/-- The pullback of `(𝟙 X, f)` and `(𝟙 X, g)` -/
private abbreviation P {X Y : C} (f g : X ⟶ Y)
[mono (prod.lift (𝟙 X) f)] [mono (prod.lift (𝟙 X) g)] : C :=
pullback (prod.lift (𝟙 X) f) (prod.lift (𝟙 X) g)
/-- The equalizer of `f` and `g` exists. -/
@[irreducible]
lemma has_limit_parallel_pair {X Y : C} (f g : X ⟶ Y) : has_limit (parallel_pair f g) :=
have huv : (pullback.fst : P f g ⟶ X) = pullback.snd, from
calc (pullback.fst : P f g ⟶ X) = pullback.fst ≫ 𝟙 _ : eq.symm $ category.comp_id _
... = pullback.fst ≫ prod.lift (𝟙 X) f ≫ limits.prod.fst : by rw prod.lift_fst
... = pullback.snd ≫ prod.lift (𝟙 X) g ≫ limits.prod.fst : by rw pullback.condition_assoc
... = pullback.snd : by rw [prod.lift_fst, category.comp_id],
have hvu : (pullback.fst : P f g ⟶ X) ≫ f = pullback.snd ≫ g, from
calc (pullback.fst : P f g ⟶ X) ≫ f
= pullback.fst ≫ prod.lift (𝟙 X) f ≫ limits.prod.snd : by rw prod.lift_snd
... = pullback.snd ≫ prod.lift (𝟙 X) g ≫ limits.prod.snd : by rw pullback.condition_assoc
... = pullback.snd ≫ g : by rw prod.lift_snd,
have huu : (pullback.fst : P f g ⟶ X) ≫ f = pullback.fst ≫ g, by rw [hvu, ←huv],
has_limit.mk { cone := fork.of_ι pullback.fst huu,
is_limit := fork.is_limit.mk _
(λ s, pullback.lift (fork.ι s) (fork.ι s) $ prod.hom_ext
(by simp only [prod.lift_fst, category.assoc])
(by simp only [fork.app_zero_right, fork.app_zero_left, prod.lift_snd, category.assoc]))
(λ s, by simp only [fork.ι_of_ι, pullback.lift_fst])
(λ s m h, pullback.hom_ext
(by simpa only [pullback.lift_fst] using h walking_parallel_pair.zero)
(by simpa only [huv.symm, pullback.lift_fst] using h walking_parallel_pair.zero)) }
end
section
local attribute [instance] pushout_of_epi
/-- The pushout of `(𝟙 Y, f)` and `(𝟙 Y, g)`. -/
private abbreviation Q {X Y : C} (f g : X ⟶ Y)
[epi (coprod.desc (𝟙 Y) f)] [epi (coprod.desc (𝟙 Y) g)] : C :=
pushout (coprod.desc (𝟙 Y) f) (coprod.desc (𝟙 Y) g)
/-- The coequalizer of `f` and `g` exists. -/
@[irreducible]
lemma has_colimit_parallel_pair {X Y : C} (f g : X ⟶ Y) : has_colimit (parallel_pair f g) :=
have huv : (pushout.inl : Y ⟶ Q f g) = pushout.inr, from
calc (pushout.inl : Y ⟶ Q f g) = 𝟙 _ ≫ pushout.inl : eq.symm $ category.id_comp _
... = (coprod.inl ≫ coprod.desc (𝟙 Y) f) ≫ pushout.inl : by rw coprod.inl_desc
... = (coprod.inl ≫ coprod.desc (𝟙 Y) g) ≫ pushout.inr :
by simp only [category.assoc, pushout.condition]
... = pushout.inr : by rw [coprod.inl_desc, category.id_comp],
have hvu : f ≫ (pushout.inl : Y ⟶ Q f g) = g ≫ pushout.inr, from
calc f ≫ (pushout.inl : Y ⟶ Q f g)
= (coprod.inr ≫ coprod.desc (𝟙 Y) f) ≫ pushout.inl : by rw coprod.inr_desc
... = (coprod.inr ≫ coprod.desc (𝟙 Y) g) ≫ pushout.inr :
by simp only [category.assoc, pushout.condition]
... = g ≫ pushout.inr : by rw coprod.inr_desc,
have huu : f ≫ (pushout.inl : Y ⟶ Q f g) = g ≫ pushout.inl, by rw [hvu, huv],
has_colimit.mk { cocone := cofork.of_π pushout.inl huu,
is_colimit := cofork.is_colimit.mk _
(λ s, pushout.desc (cofork.π s) (cofork.π s) $ coprod.hom_ext
(by simp only [coprod.inl_desc_assoc])
(by simp only [cofork.right_app_one, coprod.inr_desc_assoc, cofork.left_app_one]))
(λ s, by simp only [pushout.inl_desc, cofork.π_of_π])
(λ s m h, pushout.hom_ext
(by simpa only [pushout.inl_desc] using h walking_parallel_pair.one)
(by simpa only [huv.symm, pushout.inl_desc] using h walking_parallel_pair.one)) }
end
section
local attribute [instance] has_limit_parallel_pair
/-- A `non_preadditive_abelian` category has all equalizers. -/
@[priority 100] instance has_equalizers : has_equalizers C :=
has_equalizers_of_has_limit_parallel_pair _
end
section
local attribute [instance] has_colimit_parallel_pair
/-- A `non_preadditive_abelian` category has all coequalizers. -/
@[priority 100] instance has_coequalizers : has_coequalizers C :=
has_coequalizers_of_has_colimit_parallel_pair _
end
section
/-- If a zero morphism is a kernel of `f`, then `f` is a monomorphism. -/
lemma mono_of_zero_kernel {X Y : C} (f : X ⟶ Y) (Z : C)
(l : is_limit (kernel_fork.of_ι (0 : Z ⟶ X) (show 0 ≫ f = 0, by simp))) : mono f :=
⟨λ P u v huv,
begin
obtain ⟨W, w, hw, hl⟩ := non_preadditive_abelian.normal_epi (coequalizer.π u v),
obtain ⟨m, hm⟩ := coequalizer.desc' f huv,
have hwf : w ≫ f = 0,
{ rw [←hm, reassoc_of hw, zero_comp] },
obtain ⟨n, hn⟩ := kernel_fork.is_limit.lift' l _ hwf,
rw [fork.ι_of_ι, has_zero_morphisms.comp_zero] at hn,
haveI : is_iso (coequalizer.π u v) :=
by apply is_iso_colimit_cocone_parallel_pair_of_eq hn.symm hl,
apply (cancel_mono (coequalizer.π u v)).1,
exact coequalizer.condition _ _
end⟩
/-- If a zero morphism is a cokernel of `f`, then `f` is an epimorphism. -/
lemma epi_of_zero_cokernel {X Y : C} (f : X ⟶ Y) (Z : C)
(l : is_colimit (cokernel_cofork.of_π (0 : Y ⟶ Z) (show f ≫ 0 = 0, by simp))) : epi f :=
⟨λ P u v huv,
begin
obtain ⟨W, w, hw, hl⟩ := non_preadditive_abelian.normal_mono (equalizer.ι u v),
obtain ⟨m, hm⟩ := equalizer.lift' f huv,
have hwf : f ≫ w = 0,
{ rw [←hm, category.assoc, hw, comp_zero] },
obtain ⟨n, hn⟩ := cokernel_cofork.is_colimit.desc' l _ hwf,
rw [cofork.π_of_π, zero_comp] at hn,
haveI : is_iso (equalizer.ι u v) :=
by apply is_iso_limit_cone_parallel_pair_of_eq hn.symm hl,
apply (cancel_epi (equalizer.ι u v)).1,
exact equalizer.condition _ _
end⟩
open_locale zero_object
/-- If `g ≫ f = 0` implies `g = 0` for all `g`, then `0 : 0 ⟶ X` is a kernel of `f`. -/
def zero_kernel_of_cancel_zero {X Y : C} (f : X ⟶ Y)
(hf : ∀ (Z : C) (g : Z ⟶ X) (hgf : g ≫ f = 0), g = 0) :
is_limit (kernel_fork.of_ι (0 : 0 ⟶ X) (show 0 ≫ f = 0, by simp)) :=
fork.is_limit.mk _ (λ s, 0)
(λ s, by rw [hf _ _ (kernel_fork.condition s), zero_comp])
(λ s m h, by ext)
/-- If `f ≫ g = 0` implies `g = 0` for all `g`, then `0 : Y ⟶ 0` is a cokernel of `f`. -/
def zero_cokernel_of_zero_cancel {X Y : C} (f : X ⟶ Y)
(hf : ∀ (Z : C) (g : Y ⟶ Z) (hgf : f ≫ g = 0), g = 0) :
is_colimit (cokernel_cofork.of_π (0 : Y ⟶ 0) (show f ≫ 0 = 0, by simp)) :=
cofork.is_colimit.mk _ (λ s, 0)
(λ s, by rw [hf _ _ (cokernel_cofork.condition s), comp_zero])
(λ s m h, by ext)
/-- If `g ≫ f = 0` implies `g = 0` for all `g`, then `f` is a monomorphism. -/
lemma mono_of_cancel_zero {X Y : C} (f : X ⟶ Y)
(hf : ∀ (Z : C) (g : Z ⟶ X) (hgf : g ≫ f = 0), g = 0) : mono f :=
mono_of_zero_kernel f 0 $ zero_kernel_of_cancel_zero f hf
/-- If `f ≫ g = 0` implies `g = 0` for all `g`, then `g` is a monomorphism. -/
lemma epi_of_zero_cancel {X Y : C} (f : X ⟶ Y)
(hf : ∀ (Z : C) (g : Y ⟶ Z) (hgf : f ≫ g = 0), g = 0) : epi f :=
epi_of_zero_cokernel f 0 $ zero_cokernel_of_zero_cancel f hf
end
section factor
variables {P Q : C} (f : P ⟶ Q)
/-- The kernel of the cokernel of `f` is called the image of `f`. -/
protected abbreviation image : C := kernel (cokernel.π f)
/-- The inclusion of the image into the codomain. -/
protected abbreviation image.ι : non_preadditive_abelian.image f ⟶ Q :=
kernel.ι (cokernel.π f)
/-- There is a canonical epimorphism `p : P ⟶ image f` for every `f`. -/
protected abbreviation factor_thru_image : P ⟶ non_preadditive_abelian.image f :=
kernel.lift (cokernel.π f) f $ cokernel.condition f
/-- `f` factors through its image via the canonical morphism `p`. -/
@[simp, reassoc] protected lemma image.fac :
non_preadditive_abelian.factor_thru_image f ≫ image.ι f = f :=
kernel.lift_ι _ _ _
/-- The map `p : P ⟶ image f` is an epimorphism -/
instance : epi (non_preadditive_abelian.factor_thru_image f) :=
let I := non_preadditive_abelian.image f, p := non_preadditive_abelian.factor_thru_image f,
i := kernel.ι (cokernel.π f) in
-- It will suffice to consider some g : I ⟶ R such that p ≫ g = 0 and show that g = 0.
epi_of_zero_cancel _ $ λ R (g : I ⟶ R) (hpg : p ≫ g = 0),
begin
-- Since C is abelian, u := ker g ≫ i is the kernel of some morphism h.
let u := kernel.ι g ≫ i,
haveI : mono u := mono_comp _ _,
haveI hu := non_preadditive_abelian.normal_mono u,
let h := hu.g,
-- By hypothesis, p factors through the kernel of g via some t.
obtain ⟨t, ht⟩ := kernel.lift' g p hpg,
have fh : f ≫ h = 0, calc
f ≫ h = (p ≫ i) ≫ h : (image.fac f).symm ▸ rfl
... = ((t ≫ kernel.ι g) ≫ i) ≫ h : ht ▸ rfl
... = t ≫ u ≫ h : by simp only [category.assoc]; conv_lhs { congr, skip, rw ←category.assoc }
... = t ≫ 0 : hu.w ▸ rfl
... = 0 : has_zero_morphisms.comp_zero _ _,
-- h factors through the cokernel of f via some l.
obtain ⟨l, hl⟩ := cokernel.desc' f h fh,
have hih : i ≫ h = 0, calc
i ≫ h = i ≫ cokernel.π f ≫ l : hl ▸ rfl
... = 0 ≫ l : by rw [←category.assoc, kernel.condition]
... = 0 : zero_comp,
-- i factors through u = ker h via some s.
obtain ⟨s, hs⟩ := normal_mono.lift' u i hih,
have hs' : (s ≫ kernel.ι g) ≫ i = 𝟙 I ≫ i, by rw [category.assoc, hs, category.id_comp],
haveI : epi (kernel.ι g) := epi_of_epi_fac ((cancel_mono _).1 hs'),
-- ker g is an epimorphism, but ker g ≫ g = 0 = ker g ≫ 0, so g = 0 as required.
exact zero_of_epi_comp _ (kernel.condition g)
end
instance mono_factor_thru_image [mono f] : mono (non_preadditive_abelian.factor_thru_image f) :=
mono_of_mono_fac $ image.fac f
instance is_iso_factor_thru_image [mono f] : is_iso (non_preadditive_abelian.factor_thru_image f) :=
is_iso_of_mono_of_epi _
/-- The cokernel of the kernel of `f` is called the coimage of `f`. -/
protected abbreviation coimage : C := cokernel (kernel.ι f)
/-- The projection onto the coimage. -/
protected abbreviation coimage.π : P ⟶ non_preadditive_abelian.coimage f :=
cokernel.π (kernel.ι f)
/-- There is a canonical monomorphism `i : coimage f ⟶ Q`. -/
protected abbreviation factor_thru_coimage : non_preadditive_abelian.coimage f ⟶ Q :=
cokernel.desc (kernel.ι f) f $ kernel.condition f
/-- `f` factors through its coimage via the canonical morphism `p`. -/
protected lemma coimage.fac : coimage.π f ≫ non_preadditive_abelian.factor_thru_coimage f = f :=
cokernel.π_desc _ _ _
/-- The canonical morphism `i : coimage f ⟶ Q` is a monomorphism -/
instance : mono (non_preadditive_abelian.factor_thru_coimage f) :=
let I := non_preadditive_abelian.coimage f, i := non_preadditive_abelian.factor_thru_coimage f,
p := cokernel.π (kernel.ι f) in
mono_of_cancel_zero _ $ λ R (g : R ⟶ I) (hgi : g ≫ i = 0),
begin
-- Since C is abelian, u := p ≫ coker g is the cokernel of some morphism h.
let u := p ≫ cokernel.π g,
haveI : epi u := epi_comp _ _,
haveI hu := non_preadditive_abelian.normal_epi u,
let h := hu.g,
-- By hypothesis, i factors through the cokernel of g via some t.
obtain ⟨t, ht⟩ := cokernel.desc' g i hgi,
have hf : h ≫ f = 0, calc
h ≫ f = h ≫ (p ≫ i) : (coimage.fac f).symm ▸ rfl
... = h ≫ (p ≫ (cokernel.π g ≫ t)) : ht ▸ rfl
... = h ≫ u ≫ t : by simp only [category.assoc]; conv_lhs { congr, skip, rw ←category.assoc }
... = 0 ≫ t : by rw [←category.assoc, hu.w]
... = 0 : zero_comp,
-- h factors through the kernel of f via some l.
obtain ⟨l, hl⟩ := kernel.lift' f h hf,
have hhp : h ≫ p = 0, calc
h ≫ p = (l ≫ kernel.ι f) ≫ p : hl ▸ rfl
... = l ≫ 0 : by rw [category.assoc, cokernel.condition]
... = 0 : comp_zero,
-- p factors through u = coker h via some s.
obtain ⟨s, hs⟩ := normal_epi.desc' u p hhp,
have hs' : p ≫ cokernel.π g ≫ s = p ≫ 𝟙 I, by rw [←category.assoc, hs, category.comp_id],
haveI : mono (cokernel.π g) := mono_of_mono_fac ((cancel_epi _).1 hs'),
-- coker g is a monomorphism, but g ≫ coker g = 0 = 0 ≫ coker g, so g = 0 as required.
exact zero_of_comp_mono _ (cokernel.condition g)
end
instance epi_factor_thru_coimage [epi f] : epi (non_preadditive_abelian.factor_thru_coimage f) :=
epi_of_epi_fac $ coimage.fac f
instance is_iso_factor_thru_coimage [epi f] :
is_iso (non_preadditive_abelian.factor_thru_coimage f) :=
is_iso_of_mono_of_epi _
end factor
section cokernel_of_kernel
variables {X Y : C} {f : X ⟶ Y}
/-- In a `non_preadditive_abelian` category, an epi is the cokernel of its kernel. More precisely:
If `f` is an epimorphism and `s` is some limit kernel cone on `f`, then `f` is a cokernel
of `fork.ι s`. -/
def epi_is_cokernel_of_kernel [epi f] (s : fork f 0) (h : is_limit s) :
is_colimit (cokernel_cofork.of_π f (kernel_fork.condition s)) :=
is_cokernel.cokernel_iso _ _
(cokernel.of_iso_comp _ _
(limits.is_limit.cone_point_unique_up_to_iso (limit.is_limit _) h)
(cone_morphism.w (limits.is_limit.unique_up_to_iso (limit.is_limit _) h).hom _))
(as_iso $ non_preadditive_abelian.factor_thru_coimage f) (coimage.fac f)
/-- In a `non_preadditive_abelian` category, a mono is the kernel of its cokernel. More precisely:
If `f` is a monomorphism and `s` is some colimit cokernel cocone on `f`, then `f` is a kernel
of `cofork.π s`. -/
def mono_is_kernel_of_cokernel [mono f] (s : cofork f 0) (h : is_colimit s) :
is_limit (kernel_fork.of_ι f (cokernel_cofork.condition s)) :=
is_kernel.iso_kernel _ _
(kernel.of_comp_iso _ _
(limits.is_colimit.cocone_point_unique_up_to_iso h (colimit.is_colimit _))
(cocone_morphism.w (limits.is_colimit.unique_up_to_iso h $ colimit.is_colimit _).hom _))
(as_iso $ non_preadditive_abelian.factor_thru_image f) (image.fac f)
end cokernel_of_kernel
section
/-- The composite `A ⟶ A ⨯ A ⟶ cokernel (Δ A)`, where the first map is `(𝟙 A, 0)` and the second map
is the canonical projection into the cokernel. -/
abbreviation r (A : C) : A ⟶ cokernel (diag A) := prod.lift (𝟙 A) 0 ≫ cokernel.π (diag A)
instance mono_Δ {A : C} : mono (diag A) := mono_of_mono_fac $ prod.lift_fst _ _
instance mono_r {A : C} : mono (r A) :=
begin
let hl : is_limit (kernel_fork.of_ι (diag A) (cokernel.condition (diag A))),
{ exact mono_is_kernel_of_cokernel _ (colimit.is_colimit _) },
apply mono_of_cancel_zero,
intros Z x hx,
have hxx : (x ≫ prod.lift (𝟙 A) (0 : A ⟶ A)) ≫ cokernel.π (diag A) = 0,
{ rw [category.assoc, hx] },
obtain ⟨y, hy⟩ := kernel_fork.is_limit.lift' hl _ hxx,
rw kernel_fork.ι_of_ι at hy,
have hyy : y = 0,
{ erw [←category.comp_id y, ←limits.prod.lift_snd (𝟙 A) (𝟙 A), ←category.assoc, hy,
category.assoc, prod.lift_snd, has_zero_morphisms.comp_zero] },
haveI : mono (prod.lift (𝟙 A) (0 : A ⟶ A)) := mono_of_mono_fac (prod.lift_fst _ _),
apply (cancel_mono (prod.lift (𝟙 A) (0 : A ⟶ A))).1,
rw [←hy, hyy, zero_comp, zero_comp]
end
instance epi_r {A : C} : epi (r A) :=
begin
have hlp : prod.lift (𝟙 A) (0 : A ⟶ A) ≫ limits.prod.snd = 0 := prod.lift_snd _ _,
let hp1 : is_limit (kernel_fork.of_ι (prod.lift (𝟙 A) (0 : A ⟶ A)) hlp),
{ refine fork.is_limit.mk _ (λ s, fork.ι s ≫ limits.prod.fst) _ _,
{ intro s,
ext; simp, erw category.comp_id },
{ intros s m h,
haveI : mono (prod.lift (𝟙 A) (0 : A ⟶ A)) := mono_of_mono_fac (prod.lift_fst _ _),
apply (cancel_mono (prod.lift (𝟙 A) (0 : A ⟶ A))).1,
convert h walking_parallel_pair.zero,
ext; simp } },
let hp2 : is_colimit (cokernel_cofork.of_π (limits.prod.snd : A ⨯ A ⟶ A) hlp),
{ exact epi_is_cokernel_of_kernel _ hp1 },
apply epi_of_zero_cancel,
intros Z z hz,
have h : prod.lift (𝟙 A) (0 : A ⟶ A) ≫ cokernel.π (diag A) ≫ z = 0,
{ rw [←category.assoc, hz] },
obtain ⟨t, ht⟩ := cokernel_cofork.is_colimit.desc' hp2 _ h,
rw cokernel_cofork.π_of_π at ht,
have htt : t = 0,
{ rw [←category.id_comp t],
change 𝟙 A ≫ t = 0,
rw [←limits.prod.lift_snd (𝟙 A) (𝟙 A), category.assoc, ht, ←category.assoc,
cokernel.condition, zero_comp] },
apply (cancel_epi (cokernel.π (diag A))).1,
rw [←ht, htt, comp_zero, comp_zero]
end
instance is_iso_r {A : C} : is_iso (r A) :=
is_iso_of_mono_of_epi _
/-- The composite `A ⨯ A ⟶ cokernel (diag A) ⟶ A` given by the natural projection into the cokernel
followed by the inverse of `r`. In the category of modules, using the normal kernels and
cokernels, this map is equal to the map `(a, b) ↦ a - b`, hence the name `σ` for
"subtraction". -/
abbreviation σ {A : C} : A ⨯ A ⟶ A := cokernel.π (diag A) ≫ inv (r A)
end
@[simp, reassoc] lemma diag_σ {X : C} : diag X ≫ σ = 0 :=
by rw [cokernel.condition_assoc, zero_comp]
@[simp, reassoc] lemma lift_σ {X : C} : prod.lift (𝟙 X) 0 ≫ σ = 𝟙 X :=
by rw [←category.assoc, is_iso.hom_inv_id]
@[reassoc] lemma lift_map {X Y : C} (f : X ⟶ Y) :
prod.lift (𝟙 X) 0 ≫ limits.prod.map f f = f ≫ prod.lift (𝟙 Y) 0 :=
by simp
/-- σ is a cokernel of Δ X. -/
def is_colimit_σ {X : C} : is_colimit (cokernel_cofork.of_π σ diag_σ) :=
cokernel.cokernel_iso _ σ (as_iso (r X)).symm (by rw [iso.symm_hom, as_iso_inv])
/-- This is the key identity satisfied by `σ`. -/
lemma σ_comp {X Y : C} (f : X ⟶ Y) : σ ≫ f = limits.prod.map f f ≫ σ :=
begin
obtain ⟨g, hg⟩ :=
cokernel_cofork.is_colimit.desc' is_colimit_σ (limits.prod.map f f ≫ σ) (by simp),
suffices hfg : f = g,
{ rw [←hg, cofork.π_of_π, hfg] },
calc f = f ≫ prod.lift (𝟙 Y) 0 ≫ σ : by rw [lift_σ, category.comp_id]
... = prod.lift (𝟙 X) 0 ≫ limits.prod.map f f ≫ σ : by rw lift_map_assoc
... = prod.lift (𝟙 X) 0 ≫ σ ≫ g : by rw [←hg, cokernel_cofork.π_of_π]
... = g : by rw [←category.assoc, lift_σ, category.id_comp]
end
section
/- We write `f - g` for `prod.lift f g ≫ σ`. -/
/-- Subtraction of morphisms in a `non_preadditive_abelian` category. -/
def has_sub {X Y : C} : has_sub (X ⟶ Y) := ⟨λ f g, prod.lift f g ≫ σ⟩
local attribute [instance] has_sub
/- We write `-f` for `0 - f`. -/
/-- Negation of morphisms in a `non_preadditive_abelian` category. -/
def has_neg {X Y : C} : has_neg (X ⟶ Y) := ⟨λ f, 0 - f⟩
local attribute [instance] has_neg
/- We write `f + g` for `f - (-g)`. -/
/-- Addition of morphisms in a `non_preadditive_abelian` category. -/
def has_add {X Y : C} : has_add (X ⟶ Y) := ⟨λ f g, f - (-g)⟩
local attribute [instance] has_add
lemma sub_def {X Y : C} (a b : X ⟶ Y) : a - b = prod.lift a b ≫ σ := rfl
lemma add_def {X Y : C} (a b : X ⟶ Y) : a + b = a - (-b) := rfl
lemma neg_def {X Y : C} (a : X ⟶ Y) : -a = 0 - a := rfl
lemma sub_zero {X Y : C} (a : X ⟶ Y) : a - 0 = a :=
begin
rw sub_def,
conv_lhs { congr, congr, rw ←category.comp_id a, skip, rw (show 0 = a ≫ (0 : Y ⟶ Y), by simp)},
rw [← prod.comp_lift, category.assoc, lift_σ, category.comp_id]
end
lemma sub_self {X Y : C} (a : X ⟶ Y) : a - a = 0 :=
by rw [sub_def, ←category.comp_id a, ← prod.comp_lift, category.assoc, diag_σ, comp_zero]
lemma lift_sub_lift {X Y : C} (a b c d : X ⟶ Y) :
prod.lift a b - prod.lift c d = prod.lift (a - c) (b - d) :=
begin
simp only [sub_def],
ext,
{ rw [category.assoc, σ_comp, prod.lift_map_assoc, prod.lift_fst, prod.lift_fst, prod.lift_fst] },
{ rw [category.assoc, σ_comp, prod.lift_map_assoc, prod.lift_snd, prod.lift_snd, prod.lift_snd] }
end
lemma sub_sub_sub {X Y : C} (a b c d : X ⟶ Y) : (a - c) - (b - d) = (a - b) - (c - d) :=
begin
rw [sub_def, ←lift_sub_lift, sub_def, category.assoc, σ_comp, prod.lift_map_assoc], refl
end
lemma neg_sub {X Y : C} (a b : X ⟶ Y) : (-a) - b = (-b) - a :=
by conv_lhs { rw [neg_def, ←sub_zero b, sub_sub_sub, sub_zero, ←neg_def] }
lemma neg_neg {X Y : C} (a : X ⟶ Y) : -(-a) = a :=
begin
rw [neg_def, neg_def],
conv_lhs { congr, rw ←sub_self a },
rw [sub_sub_sub, sub_zero, sub_self, sub_zero]
end
lemma add_comm {X Y : C} (a b : X ⟶ Y) : a + b = b + a :=
begin
rw [add_def],
conv_lhs { rw ←neg_neg a },
rw [neg_def, neg_def, neg_def, sub_sub_sub],
conv_lhs {congr, skip, rw [←neg_def, neg_sub] },
rw [sub_sub_sub, add_def, ←neg_def, neg_neg b, neg_def]
end
lemma add_neg {X Y : C} (a b : X ⟶ Y) : a + (-b) = a - b :=
by rw [add_def, neg_neg]
lemma add_neg_self {X Y : C} (a : X ⟶ Y) : a + (-a) = 0 :=
by rw [add_neg, sub_self]
lemma neg_add_self {X Y : C} (a : X ⟶ Y) : (-a) + a = 0 :=
by rw [add_comm, add_neg_self]
lemma neg_sub' {X Y : C} (a b : X ⟶ Y) : -(a - b) = (-a) + b :=
begin
rw [neg_def, neg_def],
conv_lhs { rw ←sub_self (0 : X ⟶ Y) },
rw [sub_sub_sub, add_def, neg_def]
end
lemma neg_add {X Y : C} (a b : X ⟶ Y) : -(a + b) = (-a) - b :=
by rw [add_def, neg_sub', add_neg]
lemma sub_add {X Y : C} (a b c : X ⟶ Y) : (a - b) + c = a - (b - c) :=
by rw [add_def, neg_def, sub_sub_sub, sub_zero]
lemma add_assoc {X Y : C} (a b c : X ⟶ Y) : (a + b) + c = a + (b + c) :=
begin
conv_lhs { congr, rw add_def },
rw [sub_add, ←add_neg, neg_sub', neg_neg]
end
lemma add_zero {X Y : C} (a : X ⟶ Y) : a + 0 = a :=
by rw [add_def, neg_def, sub_self, sub_zero]
lemma comp_sub {X Y Z : C} (f : X ⟶ Y) (g h : Y ⟶ Z) : f ≫ (g - h) = f ≫ g - f ≫ h :=
by rw [sub_def, ←category.assoc, prod.comp_lift, sub_def]
lemma sub_comp {X Y Z : C} (f g : X ⟶ Y) (h : Y ⟶ Z) : (f - g) ≫ h = f ≫ h - g ≫ h :=
by rw [sub_def, category.assoc, σ_comp, ←category.assoc, prod.lift_map, sub_def]
lemma comp_add (X Y Z : C) (f : X ⟶ Y) (g h : Y ⟶ Z) : f ≫ (g + h) = f ≫ g + f ≫ h :=
by rw [add_def, comp_sub, neg_def, comp_sub, comp_zero, add_def, neg_def]
lemma add_comp (X Y Z : C) (f g : X ⟶ Y) (h : Y ⟶ Z) : (f + g) ≫ h = f ≫ h + g ≫ h :=
by rw [add_def, sub_comp, neg_def, sub_comp, zero_comp, add_def, neg_def]
/-- Every `non_preadditive_abelian` category is preadditive. -/
def preadditive : preadditive C :=
{ hom_group := λ X Y,
{ add := (+),
add_assoc := add_assoc,
zero := 0,
zero_add := neg_neg,
add_zero := add_zero,
neg := λ f, -f,
add_left_neg := neg_add_self,
add_comm := add_comm },
add_comp' := add_comp,
comp_add' := comp_add }
end
end
end category_theory.non_preadditive_abelian
|
5d89e525e021c87e1bf2a121c59708a990f280a5
|
d406927ab5617694ec9ea7001f101b7c9e3d9702
|
/src/analysis/inner_product_space/two_dim.lean
|
4dc3137d0858225e1cefcd132ee1c63eb46d9aa5
|
[
"Apache-2.0"
] |
permissive
|
alreadydone/mathlib
|
dc0be621c6c8208c581f5170a8216c5ba6721927
|
c982179ec21091d3e102d8a5d9f5fe06c8fafb73
|
refs/heads/master
| 1,685,523,275,196
| 1,670,184,141,000
| 1,670,184,141,000
| 287,574,545
| 0
| 0
|
Apache-2.0
| 1,670,290,714,000
| 1,597,421,623,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 26,930
|
lean
|
/-
Copyright (c) 2022 Heather Macbeth. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Heather Macbeth
-/
import analysis.inner_product_space.dual
import analysis.inner_product_space.orientation
import tactic.linear_combination
/-!
# Oriented two-dimensional real inner product spaces
This file defines constructions specific to the geometry of an oriented two-dimensional real inner
product space `E`.
## Main declarations
* `orientation.area_form`: an antisymmetric bilinear form `E →ₗ[ℝ] E →ₗ[ℝ] ℝ` (usual notation `ω`).
Morally, when `ω` is evaluated on two vectors, it gives the oriented area of the parallelogram
they span. (But mathlib does not yet have a construction of oriented area, and in fact the
construction of oriented area should pass through `ω`.)
* `orientation.right_angle_rotation`: an isometric automorphism `E ≃ₗᵢ[ℝ] E` (usual notation `J`).
This automorphism squares to -1. In a later file, rotations (`orientation.rotation`) are defined,
in such a way that this automorphism is equal to rotation by 90 degrees.
* `orientation.basis_right_angle_rotation`: for a nonzero vector `x` in `E`, the basis `![x, J x]`
for `E`.
* `orientation.kahler`: a complex-valued real-bilinear map `E →ₗ[ℝ] E →ₗ[ℝ] ℂ`. Its real part is the
inner product and its imaginary part is `orientation.area_form`. For vectors `x` and `y` in `E`,
the complex number `o.kahler x y` has modulus `‖x‖ * ‖y‖`. In a later file, oriented angles
(`orientation.oangle`) are defined, in such a way that the argument of `o.kahler x y` is the
oriented angle from `x` to `y`.
## Main results
* `orientation.right_angle_rotation_right_angle_rotation`: the identity `J (J x) = - x`
* `orientation.nonneg_inner_and_area_form_eq_zero_iff_same_ray`: `x`, `y` are in the same ray, if
and only if `0 ≤ ⟪x, y⟫` and `ω x y = 0`
* `orientation.kahler_mul`: the identity `o.kahler x a * o.kahler a y = ‖a‖ ^ 2 * o.kahler x y`
* `complex.area_form`, `complex.right_angle_rotation`, `complex.kahler`: the concrete
interpretations of `area_form`, `right_angle_rotation`, `kahler` for the oriented real inner
product space `ℂ`
* `orientation.area_form_map_complex`, `orientation.right_angle_rotation_map_complex`,
`orientation.kahler_map_complex`: given an orientation-preserving isometry from `E` to `ℂ`,
expressions for `area_form`, `right_angle_rotation`, `kahler` as the pullback of their concrete
interpretations on `ℂ`
## Implementation notes
Notation `ω` for `orientation.area_form` and `J` for `orientation.right_angle_rotation` should be
defined locally in each file which uses them, since otherwise one would need a more cumbersome
notation which mentions the orientation explicitly (something like `ω[o]`). Write
```
local notation `ω` := o.area_form
local notation `J` := o.right_angle_rotation
```
-/
noncomputable theory
open_locale real_inner_product_space complex_conjugate
open finite_dimensional
local attribute [instance] fact_finite_dimensional_of_finrank_eq_succ
variables {E : Type*} [inner_product_space ℝ E] [fact (finrank ℝ E = 2)]
(o : orientation ℝ E (fin 2))
namespace orientation
include o
/-- An antisymmetric bilinear form on an oriented real inner product space of dimension 2 (usual
notation `ω`). When evaluated on two vectors, it gives the oriented area of the parallelogram they
span. -/
@[irreducible] def area_form : E →ₗ[ℝ] E →ₗ[ℝ] ℝ :=
begin
let z : alternating_map ℝ E ℝ (fin 0) ≃ₗ[ℝ] ℝ :=
alternating_map.const_linear_equiv_of_is_empty.symm,
let y : alternating_map ℝ E ℝ (fin 1) →ₗ[ℝ] E →ₗ[ℝ] ℝ :=
(linear_map.llcomp ℝ E (alternating_map ℝ E ℝ (fin 0)) ℝ z) ∘ₗ
alternating_map.curry_left_linear_map,
exact y ∘ₗ (alternating_map.curry_left_linear_map o.volume_form),
end
omit o
local notation `ω` := o.area_form
lemma area_form_to_volume_form (x y : E) : ω x y = o.volume_form ![x, y] := by simp [area_form]
@[simp] lemma area_form_apply_self (x : E) : ω x x = 0 :=
begin
rw area_form_to_volume_form,
refine o.volume_form.map_eq_zero_of_eq ![x, x] _ (_ : (0 : fin 2) ≠ 1),
{ simp },
{ norm_num }
end
lemma area_form_swap (x y : E) : ω x y = - ω y x :=
begin
simp only [area_form_to_volume_form],
convert o.volume_form.map_swap ![y, x] (_ : (0 : fin 2) ≠ 1),
{ ext i,
fin_cases i; refl },
{ norm_num }
end
@[simp] lemma area_form_neg_orientation : (-o).area_form = -o.area_form :=
begin
ext x y,
simp [area_form_to_volume_form]
end
/-- Continuous linear map version of `orientation.area_form`, useful for calculus. -/
def area_form' : E →L[ℝ] (E →L[ℝ] ℝ) :=
((↑(linear_map.to_continuous_linear_map : (E →ₗ[ℝ] ℝ) ≃ₗ[ℝ] (E →L[ℝ] ℝ)))
∘ₗ o.area_form).to_continuous_linear_map
@[simp] lemma area_form'_apply (x : E) :
o.area_form' x = (o.area_form x).to_continuous_linear_map :=
rfl
lemma abs_area_form_le (x y : E) : |ω x y| ≤ ‖x‖ * ‖y‖ :=
by simpa [area_form_to_volume_form, fin.prod_univ_succ] using o.abs_volume_form_apply_le ![x, y]
lemma area_form_le (x y : E) : ω x y ≤ ‖x‖ * ‖y‖ :=
by simpa [area_form_to_volume_form, fin.prod_univ_succ] using o.volume_form_apply_le ![x, y]
lemma abs_area_form_of_orthogonal {x y : E} (h : ⟪x, y⟫ = 0) : |ω x y| = ‖x‖ * ‖y‖ :=
begin
rw [o.area_form_to_volume_form, o.abs_volume_form_apply_of_pairwise_orthogonal],
{ simp [fin.prod_univ_succ] },
intros i j hij,
fin_cases i; fin_cases j,
{ simpa },
{ simpa using h },
{ simpa [real_inner_comm] using h },
{ simpa }
end
lemma area_form_map {F : Type*} [inner_product_space ℝ F] [fact (finrank ℝ F = 2)]
(φ : E ≃ₗᵢ[ℝ] F) (x y : F) :
(orientation.map (fin 2) φ.to_linear_equiv o).area_form x y = o.area_form (φ.symm x) (φ.symm y) :=
begin
have : φ.symm ∘ ![x, y] = ![φ.symm x, φ.symm y],
{ ext i,
fin_cases i; refl },
simp [area_form_to_volume_form, volume_form_map, this],
end
/-- The area form is invariant under pullback by a positively-oriented isometric automorphism. -/
lemma area_form_comp_linear_isometry_equiv (φ : E ≃ₗᵢ[ℝ] E)
(hφ : 0 < (φ.to_linear_equiv : E →ₗ[ℝ] E).det) (x y : E) :
o.area_form (φ x) (φ y) = o.area_form x y :=
begin
convert o.area_form_map φ (φ x) (φ y),
{ symmetry,
rwa ← o.map_eq_iff_det_pos φ.to_linear_equiv at hφ,
rw [fact.out (finrank ℝ E = 2), fintype.card_fin] },
{ simp },
{ simp }
end
/-- Auxiliary construction for `orientation.right_angle_rotation`, rotation by 90 degrees in an
oriented real inner product space of dimension 2. -/
@[irreducible] def right_angle_rotation_aux₁ : E →ₗ[ℝ] E :=
let to_dual : E ≃ₗ[ℝ] (E →ₗ[ℝ] ℝ) :=
(inner_product_space.to_dual ℝ E).to_linear_equiv ≪≫ₗ linear_map.to_continuous_linear_map.symm in
↑to_dual.symm ∘ₗ ω
@[simp] lemma inner_right_angle_rotation_aux₁_left (x y : E) :
⟪o.right_angle_rotation_aux₁ x, y⟫ = ω x y :=
by simp only [right_angle_rotation_aux₁, linear_equiv.trans_symm, linear_equiv.coe_trans,
linear_equiv.coe_coe, inner_product_space.to_dual_symm_apply, eq_self_iff_true,
linear_map.coe_to_continuous_linear_map', linear_isometry_equiv.coe_to_linear_equiv,
linear_map.comp_apply, linear_equiv.symm_symm,
linear_isometry_equiv.to_linear_equiv_symm]
@[simp] lemma inner_right_angle_rotation_aux₁_right (x y : E) :
⟪x, o.right_angle_rotation_aux₁ y⟫ = - ω x y :=
begin
rw real_inner_comm,
simp [o.area_form_swap y x],
end
/-- Auxiliary construction for `orientation.right_angle_rotation`, rotation by 90 degrees in an
oriented real inner product space of dimension 2. -/
def right_angle_rotation_aux₂ : E →ₗᵢ[ℝ] E :=
{ norm_map' := λ x, begin
dsimp,
refine le_antisymm _ _,
{ cases eq_or_lt_of_le (norm_nonneg (o.right_angle_rotation_aux₁ x)) with h h,
{ rw ← h,
positivity },
refine le_of_mul_le_mul_right _ h,
rw [← real_inner_self_eq_norm_mul_norm, o.inner_right_angle_rotation_aux₁_left],
exact o.area_form_le x (o.right_angle_rotation_aux₁ x) },
{ let K : submodule ℝ E := ℝ ∙ x,
haveI : nontrivial Kᗮ,
{ apply @finite_dimensional.nontrivial_of_finrank_pos ℝ,
have : finrank ℝ K ≤ finset.card {x},
{ rw ← set.to_finset_singleton,
exact finrank_span_le_card ({x} : set E) },
have : finset.card {x} = 1 := finset.card_singleton x,
have : finrank ℝ K + finrank ℝ Kᗮ = finrank ℝ E := K.finrank_add_finrank_orthogonal,
have : finrank ℝ E = 2 := fact.out _,
linarith },
obtain ⟨w, hw₀⟩ : ∃ w : Kᗮ, w ≠ 0 := exists_ne 0,
have hw' : ⟪x, (w:E)⟫ = 0 := inner_right_of_mem_orthogonal_singleton x w.2, -- hw'₀,
have hw : (w:E) ≠ 0 := λ h, hw₀ (submodule.coe_eq_zero.mp h),
refine le_of_mul_le_mul_right _ (by rwa norm_pos_iff : 0 < ‖(w:E)‖),
rw ← o.abs_area_form_of_orthogonal hw',
rw ← o.inner_right_angle_rotation_aux₁_left x w,
exact abs_real_inner_le_norm (o.right_angle_rotation_aux₁ x) w },
end,
.. o.right_angle_rotation_aux₁ }
@[simp] lemma right_angle_rotation_aux₁_right_angle_rotation_aux₁ (x : E) :
o.right_angle_rotation_aux₁ (o.right_angle_rotation_aux₁ x) = - x :=
begin
apply ext_inner_left ℝ,
intros y,
have : ⟪o.right_angle_rotation_aux₁ y, o.right_angle_rotation_aux₁ x⟫ = ⟪y, x⟫ :=
linear_isometry.inner_map_map o.right_angle_rotation_aux₂ y x,
rw [o.inner_right_angle_rotation_aux₁_right, ← o.inner_right_angle_rotation_aux₁_left, this,
inner_neg_right],
end
/-- An isometric automorphism of an oriented real inner product space of dimension 2 (usual notation
`J`). This automorphism squares to -1. We will define rotations in such a way that this
automorphism is equal to rotation by 90 degrees. -/
@[irreducible] def right_angle_rotation : E ≃ₗᵢ[ℝ] E :=
linear_isometry_equiv.of_linear_isometry
o.right_angle_rotation_aux₂
(-o.right_angle_rotation_aux₁)
(by ext; simp [right_angle_rotation_aux₂])
(by ext; simp [right_angle_rotation_aux₂])
local notation `J` := o.right_angle_rotation
@[simp] lemma inner_right_angle_rotation_left (x y : E) : ⟪J x, y⟫ = ω x y :=
begin
rw right_angle_rotation,
exact o.inner_right_angle_rotation_aux₁_left x y
end
@[simp] lemma inner_right_angle_rotation_right (x y : E) : ⟪x, J y⟫ = - ω x y :=
begin
rw right_angle_rotation,
exact o.inner_right_angle_rotation_aux₁_right x y
end
@[simp] lemma right_angle_rotation_right_angle_rotation (x : E) : J (J x) = - x :=
begin
rw right_angle_rotation,
exact o.right_angle_rotation_aux₁_right_angle_rotation_aux₁ x
end
@[simp] lemma right_angle_rotation_symm :
linear_isometry_equiv.symm J = linear_isometry_equiv.trans J (linear_isometry_equiv.neg ℝ) :=
begin
rw right_angle_rotation,
exact linear_isometry_equiv.to_linear_isometry_injective rfl
end
@[simp] lemma inner_right_angle_rotation_self (x : E) : ⟪J x, x⟫ = 0 := by simp
lemma inner_right_angle_rotation_swap (x y : E) : ⟪x, J y⟫ = - ⟪J x, y⟫ := by simp
lemma inner_right_angle_rotation_swap' (x y : E) : ⟪J x, y⟫ = - ⟪x, J y⟫ :=
by simp [o.inner_right_angle_rotation_swap x y]
lemma inner_comp_right_angle_rotation (x y : E) : ⟪J x, J y⟫ = ⟪x, y⟫ :=
linear_isometry_equiv.inner_map_map J x y
@[simp] lemma area_form_right_angle_rotation_left (x y : E) : ω (J x) y = - ⟪x, y⟫ :=
by rw [← o.inner_comp_right_angle_rotation, o.inner_right_angle_rotation_right, neg_neg]
@[simp] lemma area_form_right_angle_rotation_right (x y : E) : ω x (J y) = ⟪x, y⟫ :=
by rw [← o.inner_right_angle_rotation_left, o.inner_comp_right_angle_rotation]
@[simp] lemma area_form_comp_right_angle_rotation (x y : E) : ω (J x) (J y) = ω x y :=
by simp
@[simp] lemma right_angle_rotation_trans_right_angle_rotation :
linear_isometry_equiv.trans J J = linear_isometry_equiv.neg ℝ :=
by ext; simp
lemma right_angle_rotation_neg_orientation (x : E) :
(-o).right_angle_rotation x = - o.right_angle_rotation x :=
begin
apply ext_inner_right ℝ,
intros y,
rw inner_right_angle_rotation_left,
simp
end
@[simp] lemma right_angle_rotation_trans_neg_orientation :
(-o).right_angle_rotation = o.right_angle_rotation.trans (linear_isometry_equiv.neg ℝ) :=
linear_isometry_equiv.ext $ o.right_angle_rotation_neg_orientation
lemma right_angle_rotation_map {F : Type*} [inner_product_space ℝ F] [fact (finrank ℝ F = 2)]
(φ : E ≃ₗᵢ[ℝ] F) (x : F) :
(orientation.map (fin 2) φ.to_linear_equiv o).right_angle_rotation x
= φ (o.right_angle_rotation (φ.symm x)) :=
begin
apply ext_inner_right ℝ,
intros y,
rw inner_right_angle_rotation_left,
transitivity ⟪J (φ.symm x), φ.symm y⟫,
{ simp [o.area_form_map] },
transitivity ⟪φ (J (φ.symm x)), φ (φ.symm y)⟫,
{ rw φ.inner_map_map },
{ simp },
end
/-- `J` commutes with any positively-oriented isometric automorphism. -/
lemma linear_isometry_equiv_comp_right_angle_rotation (φ : E ≃ₗᵢ[ℝ] E)
(hφ : 0 < (φ.to_linear_equiv : E →ₗ[ℝ] E).det) (x : E) :
φ (J x) = J (φ x) :=
begin
convert (o.right_angle_rotation_map φ (φ x)).symm,
{ simp },
{ symmetry,
rwa ← o.map_eq_iff_det_pos φ.to_linear_equiv at hφ,
rw [fact.out (finrank ℝ E = 2), fintype.card_fin] },
end
lemma right_angle_rotation_map' {F : Type*} [inner_product_space ℝ F] [fact (finrank ℝ F = 2)]
(φ : E ≃ₗᵢ[ℝ] F) :
(orientation.map (fin 2) φ.to_linear_equiv o).right_angle_rotation
= (φ.symm.trans o.right_angle_rotation).trans φ :=
linear_isometry_equiv.ext $ o.right_angle_rotation_map φ
/-- `J` commutes with any positively-oriented isometric automorphism. -/
lemma linear_isometry_equiv_comp_right_angle_rotation' (φ : E ≃ₗᵢ[ℝ] E)
(hφ : 0 < (φ.to_linear_equiv : E →ₗ[ℝ] E).det) :
linear_isometry_equiv.trans J φ = φ.trans J :=
linear_isometry_equiv.ext $ o.linear_isometry_equiv_comp_right_angle_rotation φ hφ
/-- For a nonzero vector `x` in an oriented two-dimensional real inner product space `E`,
`![x, J x]` forms an (orthogonal) basis for `E`. -/
def basis_right_angle_rotation (x : E) (hx : x ≠ 0) : basis (fin 2) ℝ E :=
@basis_of_linear_independent_of_card_eq_finrank ℝ _ _ _ _ _ _ _ ![x, J x]
(linear_independent_of_ne_zero_of_inner_eq_zero (λ i, by { fin_cases i; simp [hx] })
begin
intros i j hij,
fin_cases i; fin_cases j,
{ simpa },
{ simp },
{ simp },
{ simpa }
end)
(fact.out (finrank ℝ E = 2)).symm
@[simp] lemma coe_basis_right_angle_rotation (x : E) (hx : x ≠ 0) :
⇑(o.basis_right_angle_rotation x hx) = ![x, J x] :=
coe_basis_of_linear_independent_of_card_eq_finrank _ _
/-- For vectors `a x y : E`, the identity `⟪a, x⟫ * ⟪a, y⟫ + ω a x * ω a y = ‖a‖ ^ 2 * ⟪x, y⟫`. (See
`orientation.inner_mul_inner_add_area_form_mul_area_form` for the "applied" form.)-/
lemma inner_mul_inner_add_area_form_mul_area_form' (a x : E) :
⟪a, x⟫ • @innerₛₗ ℝ _ _ _ a + ω a x • ω a = ‖a‖ ^ 2 • @innerₛₗ ℝ _ _ _ x :=
begin
by_cases ha : a = 0,
{ simp [ha] },
apply (o.basis_right_angle_rotation a ha).ext,
intros i,
fin_cases i,
{ simp only [real_inner_self_eq_norm_sq, algebra.id.smul_eq_mul, innerₛₗ_apply,
linear_map.smul_apply, linear_map.add_apply, matrix.cons_val_zero,
o.coe_basis_right_angle_rotation, o.area_form_apply_self, real_inner_comm],
ring },
{ simp only [real_inner_self_eq_norm_sq, algebra.id.smul_eq_mul, innerₛₗ_apply,
linear_map.smul_apply, neg_inj, linear_map.add_apply, matrix.cons_val_one, matrix.head_cons,
o.coe_basis_right_angle_rotation, o.area_form_right_angle_rotation_right,
o.area_form_apply_self, o.inner_right_angle_rotation_right],
rw o.area_form_swap,
ring, }
end
/-- For vectors `a x y : E`, the identity `⟪a, x⟫ * ⟪a, y⟫ + ω a x * ω a y = ‖a‖ ^ 2 * ⟪x, y⟫`. -/
lemma inner_mul_inner_add_area_form_mul_area_form (a x y : E) :
⟪a, x⟫ * ⟪a, y⟫ + ω a x * ω a y = ‖a‖ ^ 2 * ⟪x, y⟫ :=
congr_arg (λ f : E →ₗ[ℝ] ℝ, f y) (o.inner_mul_inner_add_area_form_mul_area_form' a x)
lemma inner_sq_add_area_form_sq (a b : E) : ⟪a, b⟫ ^ 2 + ω a b ^ 2 = ‖a‖ ^ 2 * ‖b‖ ^ 2 :=
by simpa [sq, real_inner_self_eq_norm_sq] using o.inner_mul_inner_add_area_form_mul_area_form a b b
/-- For vectors `a x y : E`, the identity `⟪a, x⟫ * ω a y - ω a x * ⟪a, y⟫ = ‖a‖ ^ 2 * ω x y`. (See
`orientation.inner_mul_area_form_sub` for the "applied" form.) -/
lemma inner_mul_area_form_sub' (a x : E) :
⟪a, x⟫ • ω a - ω a x • @innerₛₗ ℝ _ _ _ a = ‖a‖ ^ 2 • ω x :=
begin
by_cases ha : a = 0,
{ simp [ha] },
apply (o.basis_right_angle_rotation a ha).ext,
intros i,
fin_cases i,
{ simp only [o.coe_basis_right_angle_rotation, o.area_form_apply_self, o.area_form_swap a x,
real_inner_self_eq_norm_sq, algebra.id.smul_eq_mul, innerₛₗ_apply, linear_map.sub_apply,
linear_map.smul_apply, matrix.cons_val_zero],
ring },
{ simp only [o.area_form_right_angle_rotation_right, o.area_form_apply_self,
o.coe_basis_right_angle_rotation, o.inner_right_angle_rotation_right,
real_inner_self_eq_norm_sq, real_inner_comm, algebra.id.smul_eq_mul, innerₛₗ_apply,
linear_map.smul_apply, linear_map.sub_apply, matrix.cons_val_one, matrix.head_cons],
ring},
end
/-- For vectors `a x y : E`, the identity `⟪a, x⟫ * ω a y - ω a x * ⟪a, y⟫ = ‖a‖ ^ 2 * ω x y`. -/
lemma inner_mul_area_form_sub (a x y : E) : ⟪a, x⟫ * ω a y - ω a x * ⟪a, y⟫ = ‖a‖ ^ 2 * ω x y :=
congr_arg (λ f : E →ₗ[ℝ] ℝ, f y) (o.inner_mul_area_form_sub' a x)
lemma nonneg_inner_and_area_form_eq_zero_iff_same_ray (x y : E) :
0 ≤ ⟪x, y⟫ ∧ ω x y = 0 ↔ same_ray ℝ x y :=
begin
by_cases hx : x = 0,
{ simp [hx] },
split,
{ let a : ℝ := (o.basis_right_angle_rotation x hx).repr y 0,
let b : ℝ := (o.basis_right_angle_rotation x hx).repr y 1,
suffices : 0 ≤ a * ‖x‖ ^ 2 ∧ b * ‖x‖ ^ 2 = 0 → same_ray ℝ x (a • x + b • J x),
{ -- TODO trace the `dsimp` lemmas in this block to make a single `simp only`
rw ← (o.basis_right_angle_rotation x hx).sum_repr y,
simp only [fin.sum_univ_succ, coe_basis_right_angle_rotation],
dsimp,
simp only [o.area_form_apply_self, map_smul, map_add, map_zero, inner_smul_left,
inner_smul_right, inner_add_left, inner_add_right, inner_zero_right, linear_map.add_apply,
matrix.cons_val_one],
dsimp,
simp only [o.area_form_right_angle_rotation_right, mul_zero, add_zero, zero_add, neg_zero,
o.inner_right_angle_rotation_right, o.area_form_apply_self, real_inner_self_eq_norm_sq],
exact this },
rintros ⟨ha, hb⟩,
have hx' : 0 < ‖x‖ := by simpa using hx,
have ha' : 0 ≤ a := nonneg_of_mul_nonneg_left ha (by positivity),
have hb' : b = 0 := eq_zero_of_ne_zero_of_mul_right_eq_zero (pow_ne_zero 2 hx'.ne') hb,
simpa [hb'] using same_ray_nonneg_smul_right x ha' },
{ intros h,
obtain ⟨r, hr, rfl⟩ := h.exists_nonneg_left hx,
simp only [inner_smul_right, real_inner_self_eq_norm_sq, linear_map.map_smulₛₗ,
area_form_apply_self, algebra.id.smul_eq_mul, mul_zero, eq_self_iff_true, and_true],
positivity },
end
/-- A complex-valued real-bilinear map on an oriented real inner product space of dimension 2. Its
real part is the inner product and its imaginary part is `orientation.area_form`.
On `ℂ` with the standard orientation, `kahler w z = conj w * z`; see `complex.kahler`. -/
def kahler : E →ₗ[ℝ] E →ₗ[ℝ] ℂ :=
(linear_map.llcomp ℝ E ℝ ℂ complex.of_real_clm) ∘ₗ (@innerₛₗ ℝ E _ _)
+ (linear_map.llcomp ℝ E ℝ ℂ ((linear_map.lsmul ℝ ℂ).flip complex.I)) ∘ₗ ω
lemma kahler_apply_apply (x y : E) : o.kahler x y = ⟪x, y⟫ + ω x y • complex.I := rfl
lemma kahler_swap (x y : E) : o.kahler x y = conj (o.kahler y x) :=
begin
simp only [kahler_apply_apply],
rw [real_inner_comm, area_form_swap],
simp,
end
@[simp] lemma kahler_apply_self (x : E) : o.kahler x x = ‖x‖ ^ 2 :=
by simp [kahler_apply_apply, real_inner_self_eq_norm_sq]
@[simp] lemma kahler_right_angle_rotation_left (x y : E) :
o.kahler (J x) y = - complex.I * o.kahler x y :=
begin
simp only [o.area_form_right_angle_rotation_left, o.inner_right_angle_rotation_left,
o.kahler_apply_apply, complex.of_real_neg, complex.real_smul],
linear_combination ω x y * complex.I_sq,
end
@[simp] lemma kahler_right_angle_rotation_right (x y : E) :
o.kahler x (J y) = complex.I * o.kahler x y :=
begin
simp only [o.area_form_right_angle_rotation_right, o.inner_right_angle_rotation_right,
o.kahler_apply_apply, complex.of_real_neg, complex.real_smul],
linear_combination - ω x y * complex.I_sq,
end
@[simp] lemma kahler_comp_right_angle_rotation (x y : E) : o.kahler (J x) (J y) = o.kahler x y :=
begin
simp only [kahler_right_angle_rotation_left, kahler_right_angle_rotation_right],
linear_combination - o.kahler x y * complex.I_sq,
end
@[simp] lemma kahler_neg_orientation (x y : E) : (-o).kahler x y = conj (o.kahler x y) :=
by simp [kahler_apply_apply]
lemma kahler_mul (a x y : E) : o.kahler x a * o.kahler a y = ‖a‖ ^ 2 * o.kahler x y :=
begin
transitivity (↑(‖a‖ ^ 2) : ℂ) * o.kahler x y,
{ ext,
{ simp only [o.kahler_apply_apply, complex.add_im, complex.add_re, complex.I_im, complex.I_re,
complex.mul_im, complex.mul_re, complex.of_real_im, complex.of_real_re, complex.real_smul],
rw [real_inner_comm a x, o.area_form_swap x a],
linear_combination o.inner_mul_inner_add_area_form_mul_area_form a x y },
{ simp only [o.kahler_apply_apply, complex.add_im, complex.add_re, complex.I_im, complex.I_re,
complex.mul_im, complex.mul_re, complex.of_real_im, complex.of_real_re, complex.real_smul],
rw [real_inner_comm a x, o.area_form_swap x a],
linear_combination o.inner_mul_area_form_sub a x y } },
{ norm_cast },
end
lemma norm_sq_kahler (x y : E) : complex.norm_sq (o.kahler x y) = ‖x‖ ^ 2 * ‖y‖ ^ 2 :=
by simpa [kahler_apply_apply, complex.norm_sq, sq] using o.inner_sq_add_area_form_sq x y
lemma abs_kahler (x y : E) : complex.abs (o.kahler x y) = ‖x‖ * ‖y‖ :=
begin
rw [← sq_eq_sq, complex.sq_abs],
{ linear_combination o.norm_sq_kahler x y },
{ positivity },
{ positivity }
end
lemma norm_kahler (x y : E) : ‖o.kahler x y‖ = ‖x‖ * ‖y‖ := by simpa using o.abs_kahler x y
lemma eq_zero_or_eq_zero_of_kahler_eq_zero {x y : E} (hx : o.kahler x y = 0) : x = 0 ∨ y = 0 :=
begin
have : ‖x‖ * ‖y‖ = 0 := by simpa [hx] using (o.norm_kahler x y).symm,
cases eq_zero_or_eq_zero_of_mul_eq_zero this with h h,
{ left,
simpa using h },
{ right,
simpa using h },
end
lemma kahler_eq_zero_iff (x y : E) : o.kahler x y = 0 ↔ x = 0 ∨ y = 0 :=
begin
refine ⟨o.eq_zero_or_eq_zero_of_kahler_eq_zero, _⟩,
rintros (rfl | rfl);
simp,
end
lemma kahler_ne_zero {x y : E} (hx : x ≠ 0) (hy : y ≠ 0) : o.kahler x y ≠ 0 :=
begin
apply mt o.eq_zero_or_eq_zero_of_kahler_eq_zero,
tauto,
end
lemma kahler_ne_zero_iff (x y : E) : o.kahler x y ≠ 0 ↔ x ≠ 0 ∧ y ≠ 0 :=
begin
refine ⟨_, λ h, o.kahler_ne_zero h.1 h.2⟩,
contrapose,
simp only [not_and_distrib, not_not, kahler_apply_apply, complex.real_smul],
rintros (rfl | rfl);
simp,
end
lemma kahler_map {F : Type*} [inner_product_space ℝ F] [fact (finrank ℝ F = 2)]
(φ : E ≃ₗᵢ[ℝ] F) (x y : F) :
(orientation.map (fin 2) φ.to_linear_equiv o).kahler x y = o.kahler (φ.symm x) (φ.symm y) :=
by simp [kahler_apply_apply, area_form_map]
/-- The bilinear map `kahler` is invariant under pullback by a positively-oriented isometric
automorphism. -/
lemma kahler_comp_linear_isometry_equiv (φ : E ≃ₗᵢ[ℝ] E)
(hφ : 0 < (φ.to_linear_equiv : E →ₗ[ℝ] E).det) (x y : E) :
o.kahler (φ x) (φ y) = o.kahler x y :=
by simp [kahler_apply_apply, o.area_form_comp_linear_isometry_equiv φ hφ]
end orientation
namespace complex
local attribute [instance] complex.finrank_real_complex_fact
@[simp] protected lemma area_form (w z : ℂ) : complex.orientation.area_form w z = (conj w * z).im :=
begin
let o := complex.orientation,
simp only [o.area_form_to_volume_form, o.volume_form_robust complex.orthonormal_basis_one_I rfl,
basis.det_apply, matrix.det_fin_two, basis.to_matrix_apply,to_basis_orthonormal_basis_one_I,
matrix.cons_val_zero, coe_basis_one_I_repr, matrix.cons_val_one, matrix.head_cons, mul_im,
conj_re, conj_im],
ring,
end
@[simp] protected lemma right_angle_rotation (z : ℂ) :
complex.orientation.right_angle_rotation z = I * z :=
begin
apply ext_inner_right ℝ,
intros w,
rw orientation.inner_right_angle_rotation_left,
simp only [complex.area_form, complex.inner, mul_re, mul_im, conj_re, conj_im, map_mul, conj_I,
neg_re, neg_im, I_re, I_im],
ring,
end
@[simp] protected lemma kahler (w z : ℂ) :
complex.orientation.kahler w z = conj w * z :=
begin
rw orientation.kahler_apply_apply,
ext1; simp,
end
end complex
namespace orientation
local notation `ω` := o.area_form
local notation `J` := o.right_angle_rotation
open complex
/-- The area form on an oriented real inner product space of dimension 2 can be evaluated in terms
of a complex-number representation of the space. -/
lemma area_form_map_complex (f : E ≃ₗᵢ[ℝ] ℂ)
(hf : (orientation.map (fin 2) f.to_linear_equiv o) = complex.orientation) (x y : E) :
ω x y = (conj (f x) * f y).im :=
begin
rw [← complex.area_form, ← hf, o.area_form_map],
simp,
end
/-- The rotation by 90 degrees on an oriented real inner product space of dimension 2 can be
evaluated in terms of a complex-number representation of the space. -/
lemma right_angle_rotation_map_complex (f : E ≃ₗᵢ[ℝ] ℂ)
(hf : (orientation.map (fin 2) f.to_linear_equiv o) = complex.orientation) (x : E) :
f (J x) = I * f x :=
begin
rw [← complex.right_angle_rotation, ← hf, o.right_angle_rotation_map],
simp,
end
/-- The Kahler form on an oriented real inner product space of dimension 2 can be evaluated in terms
of a complex-number representation of the space. -/
lemma kahler_map_complex (f : E ≃ₗᵢ[ℝ] ℂ)
(hf : (orientation.map (fin 2) f.to_linear_equiv o) = complex.orientation) (x y : E) :
o.kahler x y = conj (f x) * f y :=
begin
rw [← complex.kahler, ← hf, o.kahler_map],
simp,
end
end orientation
|
545c5b12e3b30b1826bf22dcb7e26420ba2928b1
|
2385ce0e3b60d8dbea33dd439902a2070cca7a24
|
/tests/lean/run/1804a.lean
|
da6fbf403955eabd1eaecbad5524082eeb2aa36a
|
[
"Apache-2.0"
] |
permissive
|
TehMillhouse/lean
|
68d6fdd2fb11a6c65bc28dec308d70f04dad38b4
|
6bbf2fbd8912617e5a973575bab8c383c9c268a1
|
refs/heads/master
| 1,620,830,893,339
| 1,515,592,479,000
| 1,515,592,997,000
| 116,964,828
| 0
| 0
| null | 1,515,592,734,000
| 1,515,592,734,000
| null |
UTF-8
|
Lean
| false
| false
| 688
|
lean
|
section
parameter P : match unit.star with
| unit.star := true
end
include P
example : false :=
begin
dsimp [_match_1] at P,
guard_hyp P := true,
sorry
end
end
section
parameter P : match unit.star with
| unit.star := true
end
include P
example : false :=
begin
dsimp [_match_1] at P,
guard_hyp P := true,
sorry
end
end
section
parameter P : match unit.star with
| unit.star := true
end
parameter Q : match unit.star with
| unit.star := true
end
section
include P
example : false :=
begin
dsimp [_match_1] at P,
guard_hyp P := true,
sorry
end
end
section
include Q
example : false :=
begin
dsimp [_match_2] at Q,
guard_hyp Q := true,
sorry
end
end
end
|
0694e6d39d3339394d77a84a2295b64c80a259fe
|
624f6f2ae8b3b1adc5f8f67a365c51d5126be45a
|
/stage0/src/Init/Data/HashMap.lean
|
1c6779cedfca18470118bded785446a8737910e3
|
[
"Apache-2.0"
] |
permissive
|
mhuisi/lean4
|
28d35a4febc2e251c7f05492e13f3b05d6f9b7af
|
dda44bc47f3e5d024508060dac2bcb59fd12e4c0
|
refs/heads/master
| 1,621,225,489,283
| 1,585,142,689,000
| 1,585,142,689,000
| 250,590,438
| 0
| 2
|
Apache-2.0
| 1,602,443,220,000
| 1,585,327,814,000
|
C
|
UTF-8
|
Lean
| false
| false
| 202
|
lean
|
/-
Copyright (c) 2019 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
-/
prelude
import Init.Data.HashMap.Basic
|
30d19c1d7feb42e483878c182735f14e7dea83bb
|
ce6917c5bacabee346655160b74a307b4a5ab620
|
/src/ch2/ex0207.lean
|
ad18c6f7b573fcd4400b3580391e5cb5f6ab1bcf
|
[] |
no_license
|
Ailrun/Theorem_Proving_in_Lean
|
ae6a23f3c54d62d401314d6a771e8ff8b4132db2
|
2eb1b5caf93c6a5a555c79e9097cf2ba5a66cf68
|
refs/heads/master
| 1,609,838,270,467
| 1,586,846,743,000
| 1,586,846,743,000
| 240,967,761
| 1
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 27
|
lean
|
#check Type
#check Type 0
|
8661fdf64cc1a70d39dd79a4b398432d26dddd6c
|
74addaa0e41490cbaf2abd313a764c96df57b05d
|
/Mathlib/Lean3Lib/init/meta/comp_value_tactics.lean
|
61b74f8870075b9abf762bcbaa38e3f5817635a6
|
[] |
no_license
|
AurelienSaue/Mathlib4_auto
|
f538cfd0980f65a6361eadea39e6fc639e9dae14
|
590df64109b08190abe22358fabc3eae000943f2
|
refs/heads/master
| 1,683,906,849,776
| 1,622,564,669,000
| 1,622,564,669,000
| 371,723,747
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 297
|
lean
|
/-
Copyright (c) 2016 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
-/
import Mathlib.PrePort
import Mathlib.Lean3Lib.init.meta.tactic
import Mathlib.Lean3Lib.init.data.option.basic
namespace Mathlib
|
8c082029bca39c05b66650edb746876710a5a015
|
8cae430f0a71442d02dbb1cbb14073b31048e4b0
|
/src/data/nat/pow.lean
|
4b2ac6720c4e647c86a08a364b43f3dcae2fb112
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/mathlib
|
56a2cadd17ac88caf4ece0a775932fa26327ba0e
|
442a83d738cb208d3600056c489be16900ba701d
|
refs/heads/master
| 1,693,584,102,358
| 1,693,471,902,000
| 1,693,471,902,000
| 97,922,418
| 1,595
| 352
|
Apache-2.0
| 1,694,693,445,000
| 1,500,624,130,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 7,726
|
lean
|
/-
Copyright (c) 2014 Floris van Doorn (c) 2016 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn, Leonardo de Moura, Jeremy Avigad, Mario Carneiro
-/
import algebra.group_power.order
/-! # `nat.pow`
> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
> Any changes to this file require a corresponding PR to mathlib4.
Results on the power operation on natural numbers.
-/
namespace nat
/-! ### `pow` -/
-- This is redundant with `pow_le_pow_of_le_left'`,
-- We leave a version in the `nat` namespace as well.
-- (The global `pow_le_pow_of_le_left` needs an extra hypothesis `0 ≤ x`.)
protected theorem pow_le_pow_of_le_left {x y : ℕ} (H : x ≤ y) : ∀ i : ℕ, x^i ≤ y^i :=
pow_le_pow_of_le_left' H
theorem pow_le_pow_of_le_right {x : ℕ} (H : 0 < x) {i j : ℕ} (h : i ≤ j) : x ^ i ≤ x ^ j :=
pow_le_pow' H h
theorem pow_lt_pow_of_lt_left {x y : ℕ} (H : x < y) {i} (h : 0 < i) : x^i < y^i :=
pow_lt_pow_of_lt_left H (zero_le _) h
theorem pow_lt_pow_of_lt_right {x : ℕ} (H : 1 < x) {i j : ℕ} (h : i < j) : x^i < x^j :=
pow_lt_pow H h
lemma pow_lt_pow_succ {p : ℕ} (h : 1 < p) (n : ℕ) : p^n < p^(n+1) :=
pow_lt_pow_of_lt_right h n.lt_succ_self
lemma le_self_pow {n : ℕ} (hn : n ≠ 0) : ∀ m : ℕ, m ≤ m ^ n
| 0 := zero_le _
| (m + 1) := _root_.le_self_pow dec_trivial hn
lemma lt_pow_self {p : ℕ} (h : 1 < p) : ∀ n : ℕ, n < p ^ n
| 0 := by simp [zero_lt_one]
| (n+1) := calc
n + 1 < p^n + 1 : nat.add_lt_add_right (lt_pow_self _) _
... ≤ p ^ (n+1) : pow_lt_pow_succ h _
lemma lt_two_pow (n : ℕ) : n < 2^n :=
lt_pow_self dec_trivial n
lemma one_le_pow (n m : ℕ) (h : 0 < m) : 1 ≤ m^n :=
by { rw ←one_pow n, exact nat.pow_le_pow_of_le_left h n }
lemma one_le_pow' (n m : ℕ) : 1 ≤ (m+1)^n := one_le_pow n (m+1) (succ_pos m)
lemma one_le_two_pow (n : ℕ) : 1 ≤ 2^n := one_le_pow n 2 dec_trivial
lemma one_lt_pow (n m : ℕ) (h₀ : 0 < n) (h₁ : 1 < m) : 1 < m^n :=
by { rw ←one_pow n, exact pow_lt_pow_of_lt_left h₁ h₀ }
lemma one_lt_pow' (n m : ℕ) : 1 < (m+2)^(n+1) :=
one_lt_pow (n+1) (m+2) (succ_pos n) (nat.lt_of_sub_eq_succ rfl)
@[simp] lemma one_lt_pow_iff {k n : ℕ} (h : 0 ≠ k) : 1 < n ^ k ↔ 1 < n :=
begin
cases n,
{ cases k; simp [zero_pow_eq] },
cases n,
{ rw one_pow },
refine ⟨λ _, one_lt_succ_succ n, λ _, _⟩,
induction k with k hk,
{ exact absurd rfl h },
cases k,
{ simp },
exact one_lt_mul (one_lt_succ_succ _).le (hk (succ_ne_zero k).symm),
end
lemma one_lt_two_pow (n : ℕ) (h₀ : 0 < n) : 1 < 2^n := one_lt_pow n 2 h₀ dec_trivial
lemma one_lt_two_pow' (n : ℕ) : 1 < 2^(n+1) := one_lt_pow (n+1) 2 (succ_pos n) dec_trivial
lemma pow_right_strict_mono {x : ℕ} (k : 2 ≤ x) : strict_mono (λ (n : ℕ), x^n) :=
λ _ _, pow_lt_pow_of_lt_right k
lemma pow_le_iff_le_right {x m n : ℕ} (k : 2 ≤ x) : x^m ≤ x^n ↔ m ≤ n :=
strict_mono.le_iff_le (pow_right_strict_mono k)
lemma pow_lt_iff_lt_right {x m n : ℕ} (k : 2 ≤ x) : x^m < x^n ↔ m < n :=
strict_mono.lt_iff_lt (pow_right_strict_mono k)
lemma pow_right_injective {x : ℕ} (k : 2 ≤ x) : function.injective (λ (n : ℕ), x^n) :=
strict_mono.injective (pow_right_strict_mono k)
lemma pow_left_strict_mono {m : ℕ} (k : 1 ≤ m) : strict_mono (λ (x : ℕ), x^m) :=
λ _ _ h, pow_lt_pow_of_lt_left h k
lemma mul_lt_mul_pow_succ {n a q : ℕ} (a0 : 0 < a) (q1 : 1 < q) :
n * q < a * q ^ (n + 1) :=
begin
rw [pow_succ', ← mul_assoc, mul_lt_mul_right (zero_lt_one.trans q1)],
exact lt_mul_of_one_le_of_lt (nat.succ_le_iff.mpr a0) (nat.lt_pow_self q1 n),
end
end nat
lemma strict_mono.nat_pow {n : ℕ} (hn : 1 ≤ n) {f : ℕ → ℕ} (hf : strict_mono f) :
strict_mono (λ m, (f m) ^ n) :=
(nat.pow_left_strict_mono hn).comp hf
namespace nat
lemma pow_le_iff_le_left {m x y : ℕ} (k : 1 ≤ m) : x^m ≤ y^m ↔ x ≤ y :=
strict_mono.le_iff_le (pow_left_strict_mono k)
lemma pow_lt_iff_lt_left {m x y : ℕ} (k : 1 ≤ m) : x^m < y^m ↔ x < y :=
strict_mono.lt_iff_lt (pow_left_strict_mono k)
lemma pow_left_injective {m : ℕ} (k : 1 ≤ m) : function.injective (λ (x : ℕ), x^m) :=
strict_mono.injective (pow_left_strict_mono k)
theorem sq_sub_sq (a b : ℕ) : a ^ 2 - b ^ 2 = (a + b) * (a - b) :=
by { rw [sq, sq], exact nat.mul_self_sub_mul_self_eq a b }
alias sq_sub_sq ← pow_two_sub_pow_two
/-! ### `pow` and `mod` / `dvd` -/
theorem pow_mod (a b n : ℕ) : a ^ b % n = (a % n) ^ b % n :=
begin
induction b with b ih,
refl, simp [pow_succ, nat.mul_mod, ih],
end
theorem mod_pow_succ {b : ℕ} (w m : ℕ) :
m % (b^succ w) = b * (m/b % b^w) + m % b :=
begin
by_cases b_h : b = 0,
{ simp [b_h, pow_succ], },
have b_pos := nat.pos_of_ne_zero b_h,
apply nat.strong_induction_on m,
clear m,
intros p IH,
cases lt_or_ge p (b^succ w) with h₁ h₁,
-- base case: p < b^succ w
{ have h₂ : p / b < b^w,
{ rw [div_lt_iff_lt_mul b_pos],
simpa [pow_succ'] using h₁ },
rw [mod_eq_of_lt h₁, mod_eq_of_lt h₂],
simp [div_add_mod] },
-- step: p ≥ b^succ w
{ -- Generate condition for induction hypothesis
have h₂ : p - b^succ w < p,
{ exact tsub_lt_self ((pow_pos b_pos _).trans_le h₁) (pow_pos b_pos _) },
-- Apply induction
rw [mod_eq_sub_mod h₁, IH _ h₂],
-- Normalize goal and h1
simp only [pow_succ],
simp only [ge, pow_succ] at h₁,
-- Pull subtraction outside mod and div
rw [sub_mul_mod _ _ _ h₁, sub_mul_div _ _ _ h₁],
-- Cancel subtraction inside mod b^w
have p_b_ge : b^w ≤ p / b,
{ rw [le_div_iff_mul_le b_pos, mul_comm],
exact h₁ },
rw [eq.symm (mod_eq_sub_mod p_b_ge)] }
end
lemma pow_dvd_pow_iff_pow_le_pow {k l : ℕ} : Π {x : ℕ} (w : 0 < x), x^k ∣ x^l ↔ x^k ≤ x^l
| (x+1) w :=
begin
split,
{ intro a, exact le_of_dvd (pow_pos (succ_pos x) l) a, },
{ intro a, cases x with x,
{ simp only [one_pow], },
{ have le := (pow_le_iff_le_right (nat.le_add_left _ _)).mp a,
use (x+2)^(l-k),
rw [←pow_add, add_comm k, tsub_add_cancel_of_le le], } }
end
/-- If `1 < x`, then `x^k` divides `x^l` if and only if `k` is at most `l`. -/
lemma pow_dvd_pow_iff_le_right {x k l : ℕ} (w : 1 < x) : x^k ∣ x^l ↔ k ≤ l :=
by rw [pow_dvd_pow_iff_pow_le_pow (lt_of_succ_lt w), pow_le_iff_le_right w]
lemma pow_dvd_pow_iff_le_right' {b k l : ℕ} : (b+2)^k ∣ (b+2)^l ↔ k ≤ l :=
pow_dvd_pow_iff_le_right (nat.lt_of_sub_eq_succ rfl)
lemma not_pos_pow_dvd : ∀ {p k : ℕ} (hp : 1 < p) (hk : 1 < k), ¬ p^k ∣ p
| (succ p) (succ k) hp hk h :=
have succ p * (succ p)^k ∣ succ p * 1, by simpa [pow_succ] using h,
have (succ p) ^ k ∣ 1, from dvd_of_mul_dvd_mul_left (succ_pos _) this,
have he : (succ p) ^ k = 1, from eq_one_of_dvd_one this,
have k < (succ p) ^ k, from lt_pow_self hp k,
have k < 1, by rwa [he] at this,
have k = 0, from nat.eq_zero_of_le_zero $ le_of_lt_succ this,
have 1 < 1, by rwa [this] at hk,
absurd this dec_trivial
lemma pow_dvd_of_le_of_pow_dvd {p m n k : ℕ} (hmn : m ≤ n) (hdiv : p ^ n ∣ k) : p ^ m ∣ k :=
(pow_dvd_pow _ hmn).trans hdiv
lemma dvd_of_pow_dvd {p k m : ℕ} (hk : 1 ≤ k) (hpk : p^k ∣ m) : p ∣ m :=
by rw ←pow_one p; exact pow_dvd_of_le_of_pow_dvd hk hpk
lemma pow_div {x m n : ℕ} (h : n ≤ m) (hx : 0 < x) : x ^ m / x ^ n = x ^ (m - n) :=
by rw [nat.div_eq_iff_eq_mul_left (pow_pos hx n) (pow_dvd_pow _ h), pow_sub_mul_pow _ h]
lemma lt_of_pow_dvd_right {p i n : ℕ} (hn : n ≠ 0) (hp : 2 ≤ p) (h : p ^ i ∣ n) : i < n :=
begin
rw ←pow_lt_iff_lt_right hp,
exact lt_of_le_of_lt (le_of_dvd hn.bot_lt h) (lt_pow_self (succ_le_iff.mp hp) n),
end
end nat
|
03b963dc5bf8e57b0a8f9a7170b46f7caa59f186
|
e2c1ee9c02c59b832eb48536755242ce5f9b2c3e
|
/src/t10.lean
|
8b385572a50a30a84cde771fb4f433b8d9c68a14
|
[] |
no_license
|
yairgueta/Lean
|
cb5bb16d81674e8a07f85c9dbeb56dc2f543d4eb
|
af8a4fa24f76edfdd0dd33f013db194e611e6a86
|
refs/heads/master
| 1,676,275,529,938
| 1,610,289,661,000
| 1,610,289,661,000
| 328,405,309
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 1,364
|
lean
|
import tactic
open tactic
/-!
## Exercise 1
Write a `contradiction` tactic.
The tactic should look through the hypotheses in the local context
trying to find two that contradict each other,
i.e. proving `P` and `¬ P` for some proposition `P`.
It should use this contradiction to close the goal.
Bonus: handle `P → false` as well as `¬ P`.
This exercise is to practice manipulating the hypotheses and goal.
Note: this exists as `tactic.interactive.contradiction`.
-/
meta def contr_single : expr → expr → tactic unit
| `(%%a → false) `(%%b) :=
if (a=b) then do skip
else do failed
| `(¬ %%a) `(%%b) :=
if (a=b) then do skip
else do failed
| a b := do failed
meta def helper (hyp : expr) (ctx_s : expr): tactic unit :=
do hyp_tp ← infer_type hyp,
ctx_s_type ← infer_type ctx_s,
contr_single hyp_tp ctx_s_type
meta def contr_single_ctx (hyp : expr) (ctx : list expr): tactic unit :=
ctx.mmap' (λ x, do {helper hyp x, exact (hyp x)} <|> skip)
meta def tactic.interactive.contr : tactic unit :=
do
ctx ← local_context,
ctx.mmap' (λ x, (contr_single_ctx x ctx))
example (P Q R : Prop) (hp : P) (hq : Q) (hr : ¬ R) (hnq : ¬ Q) : false :=
by contr
example (P Q R : Prop) (hnq : ¬ Q) (hp : P) (hq : Q) (hr : ¬ R) : 0 = 1 :=
by contr
example (P Q R : Prop) (hp : P) (hq : Q) (hr : ¬ R) (hnq : Q → false) : false :=
by contr
|
6fe9ed412c86ef5f75aa2e2e7c79c9547d8b2ef1
|
2a70b774d16dbdf5a533432ee0ebab6838df0948
|
/_target/deps/mathlib/src/number_theory/quadratic_reciprocity.lean
|
5a8d3488911c340fc8c659c6101eb7a5e18789f9
|
[
"Apache-2.0"
] |
permissive
|
hjvromen/lewis
|
40b035973df7c77ebf927afab7878c76d05ff758
|
105b675f73630f028ad5d890897a51b3c1146fb0
|
refs/heads/master
| 1,677,944,636,343
| 1,676,555,301,000
| 1,676,555,301,000
| 327,553,599
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 25,020
|
lean
|
/-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes
-/
import field_theory.finite.basic
import data.zmod.basic
import data.nat.parity
/-!
# Quadratic reciprocity.
This file contains results about quadratic residues modulo a prime number.
The main results are the law of quadratic reciprocity, `quadratic_reciprocity`, as well as the
interpretations in terms of existence of square roots depending on the congruence mod 4,
`exists_pow_two_eq_prime_iff_of_mod_four_eq_one`, and
`exists_pow_two_eq_prime_iff_of_mod_four_eq_three`.
Also proven are conditions for `-1` and `2` to be a square modulo a prime,
`exists_pow_two_eq_neg_one_iff_mod_four_ne_three` and
`exists_pow_two_eq_two_iff`
## Implementation notes
The proof of quadratic reciprocity implemented uses Gauss' lemma and Eisenstein's lemma
-/
open function finset nat finite_field zmod
open_locale big_operators nat
namespace zmod
variables (p q : ℕ) [fact p.prime] [fact q.prime]
/-- Euler's Criterion: A unit `x` of `zmod p` is a square if and only if `x ^ (p / 2) = 1`. -/
lemma euler_criterion_units (x : units (zmod p)) :
(∃ y : units (zmod p), y ^ 2 = x) ↔ x ^ (p / 2) = 1 :=
begin
cases nat.prime.eq_two_or_odd ‹p.prime› with hp2 hp_odd,
{ substI p, refine iff_of_true ⟨1, _⟩ _; apply subsingleton.elim },
obtain ⟨g, hg⟩ := is_cyclic.exists_generator (units (zmod p)),
obtain ⟨n, hn⟩ : x ∈ submonoid.powers g, { rw mem_powers_iff_mem_gpowers, apply hg },
split,
{ rintro ⟨y, rfl⟩, rw [← pow_mul, two_mul_odd_div_two hp_odd, units_pow_card_sub_one_eq_one], },
{ subst x, assume h,
have key : 2 * (p / 2) ∣ n * (p / 2),
{ rw [← pow_mul] at h,
rw [two_mul_odd_div_two hp_odd, ← card_units, ← order_of_eq_card_of_forall_mem_gpowers hg],
apply order_of_dvd_of_pow_eq_one h },
have : 0 < p / 2 := nat.div_pos (show fact (1 < p), by apply_instance) dec_trivial,
obtain ⟨m, rfl⟩ := dvd_of_mul_dvd_mul_right this key,
refine ⟨g ^ m, _⟩,
rw [mul_comm, pow_mul], },
end
/-- Euler's Criterion: a nonzero `a : zmod p` is a square if and only if `x ^ (p / 2) = 1`. -/
lemma euler_criterion {a : zmod p} (ha : a ≠ 0) :
(∃ y : zmod p, y ^ 2 = a) ↔ a ^ (p / 2) = 1 :=
begin
apply (iff_congr _ (by simp [units.ext_iff])).mp (euler_criterion_units p (units.mk0 a ha)),
simp only [units.ext_iff, pow_two, units.coe_mk0, units.coe_mul],
split, { rintro ⟨y, hy⟩, exact ⟨y, hy⟩ },
{ rintro ⟨y, rfl⟩,
have hy : y ≠ 0, { rintro rfl, simpa [zero_pow] using ha, },
refine ⟨units.mk0 y hy, _⟩, simp, }
end
lemma exists_pow_two_eq_neg_one_iff_mod_four_ne_three :
(∃ y : zmod p, y ^ 2 = -1) ↔ p % 4 ≠ 3 :=
begin
cases nat.prime.eq_two_or_odd ‹p.prime› with hp2 hp_odd,
{ substI p, exact dec_trivial },
change fact (p % 2 = 1) at hp_odd, resetI,
have neg_one_ne_zero : (-1 : zmod p) ≠ 0, from mt neg_eq_zero.1 one_ne_zero,
rw [euler_criterion p neg_one_ne_zero, neg_one_pow_eq_pow_mod_two],
cases mod_two_eq_zero_or_one (p / 2) with p_half_even p_half_odd,
{ rw [p_half_even, pow_zero, eq_self_iff_true, true_iff],
contrapose! p_half_even with hp,
rw [← nat.mod_mul_right_div_self, show 2 * 2 = 4, from rfl, hp],
exact dec_trivial },
{ rw [p_half_odd, pow_one,
iff_false_intro (ne_neg_self p one_ne_zero).symm, false_iff, not_not],
rw [← nat.mod_mul_right_div_self, show 2 * 2 = 4, from rfl] at p_half_odd,
rw [_root_.fact, ← nat.mod_mul_left_mod _ 2, show 2 * 2 = 4, from rfl] at hp_odd,
have hp : p % 4 < 4, from nat.mod_lt _ dec_trivial,
revert hp hp_odd p_half_odd,
generalize : p % 4 = k, dec_trivial! }
end
lemma pow_div_two_eq_neg_one_or_one {a : zmod p} (ha : a ≠ 0) :
a ^ (p / 2) = 1 ∨ a ^ (p / 2) = -1 :=
begin
cases nat.prime.eq_two_or_odd ‹p.prime› with hp2 hp_odd,
{ substI p, revert a ha, exact dec_trivial },
rw [← mul_self_eq_one_iff, ← pow_add, ← two_mul, two_mul_odd_div_two hp_odd],
exact pow_card_sub_one_eq_one ha
end
/-- Wilson's Lemma: the product of `1`, ..., `p-1` is `-1` modulo `p`. -/
@[simp] lemma wilsons_lemma : ((p - 1)! : zmod p) = -1 :=
begin
refine
calc ((p - 1)! : zmod p) = (∏ x in Ico 1 (succ (p - 1)), x) :
by rw [← finset.prod_Ico_id_eq_factorial, prod_nat_cast]
... = (∏ x : units (zmod p), x) : _
... = -1 :
by rw [prod_hom _ (coe : units (zmod p) → zmod p),
prod_univ_units_id_eq_neg_one, units.coe_neg, units.coe_one],
have hp : 0 < p := nat.prime.pos ‹p.prime›,
symmetry,
refine prod_bij (λ a _, (a : zmod p).val) _ _ _ _,
{ intros a ha,
rw [Ico.mem, ← nat.succ_sub hp, nat.succ_sub_one],
split,
{ apply nat.pos_of_ne_zero, rw ← @val_zero p,
assume h, apply units.ne_zero a (val_injective p h) },
{ exact val_lt _ } },
{ intros a ha, simp only [cast_id, nat_cast_val], },
{ intros _ _ _ _ h, rw units.ext_iff, exact val_injective p h },
{ intros b hb,
rw [Ico.mem, nat.succ_le_iff, ← succ_sub hp, succ_sub_one, pos_iff_ne_zero] at hb,
refine ⟨units.mk0 b _, finset.mem_univ _, _⟩,
{ assume h, apply hb.1, apply_fun val at h,
simpa only [val_cast_of_lt hb.right, val_zero] using h },
{ simp only [val_cast_of_lt hb.right, units.coe_mk0], } }
end
@[simp] lemma prod_Ico_one_prime : (∏ x in Ico 1 p, (x : zmod p)) = -1 :=
begin
conv in (Ico 1 p) { rw [← succ_sub_one p, succ_sub (nat.prime.pos ‹p.prime›)] },
rw [← prod_nat_cast, finset.prod_Ico_id_eq_factorial, wilsons_lemma]
end
end zmod
/-- The image of the map sending a non zero natural number `x ≤ p / 2` to the absolute value
of the element of interger in the interval `(-p/2, p/2]` congruent to `a * x` mod p is the set
of non zero natural numbers `x` such that `x ≤ p / 2` -/
lemma Ico_map_val_min_abs_nat_abs_eq_Ico_map_id
(p : ℕ) [hp : fact p.prime] (a : zmod p) (hap : a ≠ 0) :
(Ico 1 (p / 2).succ).1.map (λ x, (a * x).val_min_abs.nat_abs) =
(Ico 1 (p / 2).succ).1.map (λ a, a) :=
begin
have he : ∀ {x}, x ∈ Ico 1 (p / 2).succ → x ≠ 0 ∧ x ≤ p / 2,
by simp [nat.lt_succ_iff, nat.succ_le_iff, pos_iff_ne_zero] {contextual := tt},
have hep : ∀ {x}, x ∈ Ico 1 (p / 2).succ → x < p,
from λ x hx, lt_of_le_of_lt (he hx).2 (nat.div_lt_self hp.pos dec_trivial),
have hpe : ∀ {x}, x ∈ Ico 1 (p / 2).succ → ¬ p ∣ x,
from λ x hx hpx, not_lt_of_ge (le_of_dvd (nat.pos_of_ne_zero (he hx).1) hpx) (hep hx),
have hmem : ∀ (x : ℕ) (hx : x ∈ Ico 1 (p / 2).succ),
(a * x : zmod p).val_min_abs.nat_abs ∈ Ico 1 (p / 2).succ,
{ assume x hx,
simp [hap, char_p.cast_eq_zero_iff (zmod p) p, hpe hx, lt_succ_iff, succ_le_iff,
pos_iff_ne_zero, nat_abs_val_min_abs_le _], },
have hsurj : ∀ (b : ℕ) (hb : b ∈ Ico 1 (p / 2).succ),
∃ x ∈ Ico 1 (p / 2).succ, b = (a * x : zmod p).val_min_abs.nat_abs,
{ assume b hb,
refine ⟨(b / a : zmod p).val_min_abs.nat_abs, Ico.mem.mpr ⟨_, _⟩, _⟩,
{ apply nat.pos_of_ne_zero,
simp only [div_eq_mul_inv, hap, char_p.cast_eq_zero_iff (zmod p) p, hpe hb, not_false_iff,
val_min_abs_eq_zero, inv_eq_zero, int.nat_abs_eq_zero, ne.def, mul_eq_zero, or_self] },
{ apply lt_succ_of_le, apply nat_abs_val_min_abs_le },
{ rw cast_nat_abs_val_min_abs,
split_ifs,
{ erw [mul_div_cancel' _ hap, val_min_abs_def_pos, val_cast_of_lt (hep hb),
if_pos (le_of_lt_succ (Ico.mem.1 hb).2), int.nat_abs_of_nat], },
{ erw [mul_neg_eq_neg_mul_symm, mul_div_cancel' _ hap, nat_abs_val_min_abs_neg,
val_min_abs_def_pos, val_cast_of_lt (hep hb), if_pos (le_of_lt_succ (Ico.mem.1 hb).2),
int.nat_abs_of_nat] } } },
exact multiset.map_eq_map_of_bij_of_nodup _ _ (finset.nodup _) (finset.nodup _)
(λ x _, (a * x : zmod p).val_min_abs.nat_abs) hmem (λ _ _, rfl)
(inj_on_of_surj_on_of_card_le _ hmem hsurj (le_refl _)) hsurj
end
private lemma gauss_lemma_aux₁ (p : ℕ) [hp : fact p.prime] [hp2 : fact (p % 2 = 1)]
{a : ℕ} (hap : (a : zmod p) ≠ 0) :
(a^(p / 2) * (p / 2)! : zmod p) =
(-1)^((Ico 1 (p / 2).succ).filter
(λ x : ℕ, ¬(a * x : zmod p).val ≤ p / 2)).card * (p / 2)! :=
calc (a ^ (p / 2) * (p / 2)! : zmod p) =
(∏ x in Ico 1 (p / 2).succ, a * x) :
by rw [prod_mul_distrib, ← prod_nat_cast, ← prod_nat_cast, prod_Ico_id_eq_factorial,
prod_const, Ico.card, succ_sub_one]; simp
... = (∏ x in Ico 1 (p / 2).succ, (a * x : zmod p).val) : by simp
... = (∏ x in Ico 1 (p / 2).succ,
(if (a * x : zmod p).val ≤ p / 2 then 1 else -1) *
(a * x : zmod p).val_min_abs.nat_abs) :
prod_congr rfl $ λ _ _, begin
simp only [cast_nat_abs_val_min_abs],
split_ifs; simp
end
... = (-1)^((Ico 1 (p / 2).succ).filter
(λ x : ℕ, ¬(a * x : zmod p).val ≤ p / 2)).card *
(∏ x in Ico 1 (p / 2).succ, (a * x : zmod p).val_min_abs.nat_abs) :
have (∏ x in Ico 1 (p / 2).succ,
if (a * x : zmod p).val ≤ p / 2 then (1 : zmod p) else -1) =
(∏ x in (Ico 1 (p / 2).succ).filter
(λ x : ℕ, ¬(a * x : zmod p).val ≤ p / 2), -1),
from prod_bij_ne_one (λ x _ _, x)
(λ x, by split_ifs; simp * at * {contextual := tt})
(λ _ _ _ _ _ _, id)
(λ b h _, ⟨b, by simp [-not_le, *] at *⟩)
(by intros; split_ifs at *; simp * at *),
by rw [prod_mul_distrib, this]; simp
... = (-1)^((Ico 1 (p / 2).succ).filter
(λ x : ℕ, ¬(a * x : zmod p).val ≤ p / 2)).card * (p / 2)! :
by rw [← prod_nat_cast, finset.prod_eq_multiset_prod,
Ico_map_val_min_abs_nat_abs_eq_Ico_map_id p a hap,
← finset.prod_eq_multiset_prod, prod_Ico_id_eq_factorial]
private lemma gauss_lemma_aux₂ (p : ℕ) [hp : fact p.prime] [hp2 : fact (p % 2 = 1)]
{a : ℕ} (hap : (a : zmod p) ≠ 0) :
(a^(p / 2) : zmod p) = (-1)^((Ico 1 (p / 2).succ).filter
(λ x : ℕ, p / 2 < (a * x : zmod p).val)).card :=
(mul_left_inj'
(show ((p / 2)! : zmod p) ≠ 0,
by rw [ne.def, char_p.cast_eq_zero_iff (zmod p) p, hp.dvd_factorial, not_le];
exact nat.div_lt_self hp.pos dec_trivial)).1 $
by simpa using gauss_lemma_aux₁ p hap
private lemma eisenstein_lemma_aux₁ (p : ℕ) [hp : fact p.prime] [hp2 : fact (p % 2 = 1)]
{a : ℕ} (hap : (a : zmod p) ≠ 0) :
((∑ x in Ico 1 (p / 2).succ, a * x : ℕ) : zmod 2) =
((Ico 1 (p / 2).succ).filter
((λ x : ℕ, p / 2 < (a * x : zmod p).val))).card +
∑ x in Ico 1 (p / 2).succ, x
+ (∑ x in Ico 1 (p / 2).succ, (a * x) / p : ℕ) :=
have hp2 : (p : zmod 2) = (1 : ℕ), from (eq_iff_modeq_nat _).2 hp2,
calc ((∑ x in Ico 1 (p / 2).succ, a * x : ℕ) : zmod 2)
= ((∑ x in Ico 1 (p / 2).succ, ((a * x) % p + p * ((a * x) / p)) : ℕ) : zmod 2) :
by simp only [mod_add_div]
... = (∑ x in Ico 1 (p / 2).succ, ((a * x : ℕ) : zmod p).val : ℕ) +
(∑ x in Ico 1 (p / 2).succ, (a * x) / p : ℕ) :
by simp only [val_cast_nat];
simp [sum_add_distrib, mul_sum.symm, nat.cast_add, nat.cast_mul, sum_nat_cast, hp2]
... = _ : congr_arg2 (+)
(calc ((∑ x in Ico 1 (p / 2).succ, ((a * x : ℕ) : zmod p).val : ℕ) : zmod 2)
= ∑ x in Ico 1 (p / 2).succ,
((((a * x : zmod p).val_min_abs +
(if (a * x : zmod p).val ≤ p / 2 then 0 else p)) : ℤ) : zmod 2) :
by simp only [(val_eq_ite_val_min_abs _).symm]; simp [sum_nat_cast]
... = ((Ico 1 (p / 2).succ).filter
(λ x : ℕ, p / 2 < (a * x : zmod p).val)).card +
((∑ x in Ico 1 (p / 2).succ, (a * x : zmod p).val_min_abs.nat_abs) : ℕ) :
by { simp [ite_cast, add_comm, sum_add_distrib, finset.sum_ite, hp2, sum_nat_cast], }
... = _ : by rw [finset.sum_eq_multiset_sum,
Ico_map_val_min_abs_nat_abs_eq_Ico_map_id p a hap,
← finset.sum_eq_multiset_sum];
simp [sum_nat_cast]) rfl
private lemma eisenstein_lemma_aux₂ (p : ℕ) [hp : fact p.prime] [hp2 : fact (p % 2 = 1)]
{a : ℕ} (ha2 : a % 2 = 1) (hap : (a : zmod p) ≠ 0) :
((Ico 1 (p / 2).succ).filter
((λ x : ℕ, p / 2 < (a * x : zmod p).val))).card
≡ ∑ x in Ico 1 (p / 2).succ, (x * a) / p [MOD 2] :=
have ha2 : (a : zmod 2) = (1 : ℕ), from (eq_iff_modeq_nat _).2 ha2,
(eq_iff_modeq_nat 2).1 $ sub_eq_zero.1 $
by simpa [add_left_comm, sub_eq_add_neg, finset.mul_sum.symm, mul_comm, ha2, sum_nat_cast,
add_neg_eq_iff_eq_add.symm, neg_eq_self_mod_two, add_assoc]
using eq.symm (eisenstein_lemma_aux₁ p hap)
lemma div_eq_filter_card {a b c : ℕ} (hb0 : 0 < b) (hc : a / b ≤ c) : a / b =
((Ico 1 c.succ).filter (λ x, x * b ≤ a)).card :=
calc a / b = (Ico 1 (a / b).succ).card : by simp
... = ((Ico 1 c.succ).filter (λ x, x * b ≤ a)).card :
congr_arg _ $ finset.ext $ λ x,
have x * b ≤ a → x ≤ c,
from λ h, le_trans (by rwa [le_div_iff_mul_le _ _ hb0]) hc,
by simp [lt_succ_iff, le_div_iff_mul_le _ _ hb0]; tauto
/-- The given sum is the number of integer points in the triangle formed by the diagonal of the
rectangle `(0, p/2) × (0, q/2)` -/
private lemma sum_Ico_eq_card_lt {p q : ℕ} :
∑ a in Ico 1 (p / 2).succ, (a * q) / p =
(((Ico 1 (p / 2).succ).product (Ico 1 (q / 2).succ)).filter
(λ x : ℕ × ℕ, x.2 * p ≤ x.1 * q)).card :=
if hp0 : p = 0 then by simp [hp0, finset.ext_iff]
else
calc ∑ a in Ico 1 (p / 2).succ, (a * q) / p =
∑ a in Ico 1 (p / 2).succ,
((Ico 1 (q / 2).succ).filter (λ x, x * p ≤ a * q)).card :
finset.sum_congr rfl $ λ x hx,
div_eq_filter_card (nat.pos_of_ne_zero hp0)
(calc x * q / p ≤ (p / 2) * q / p :
nat.div_le_div_right (mul_le_mul_of_nonneg_right
(le_of_lt_succ $ by finish)
(nat.zero_le _))
... ≤ _ : nat.div_mul_div_le_div _ _ _)
... = _ : by rw [← card_sigma];
exact card_congr (λ a _, ⟨a.1, a.2⟩)
(by simp only [mem_filter, mem_sigma, and_self, forall_true_iff, mem_product]
{contextual := tt})
(λ ⟨_, _⟩ ⟨_, _⟩, by simp only [prod.mk.inj_iff, eq_self_iff_true, and_self, heq_iff_eq,
forall_true_iff] {contextual := tt})
(λ ⟨b₁, b₂⟩ h, ⟨⟨b₁, b₂⟩,
by revert h; simp only [mem_filter, eq_self_iff_true, exists_prop_of_true, mem_sigma,
and_self, forall_true_iff, mem_product] {contextual := tt}⟩)
/-- Each of the sums in this lemma is the cardinality of the set integer points in each of the
two triangles formed by the diagonal of the rectangle `(0, p/2) × (0, q/2)`. Adding them
gives the number of points in the rectangle. -/
private lemma sum_mul_div_add_sum_mul_div_eq_mul (p q : ℕ) [hp : fact p.prime]
(hq0 : (q : zmod p) ≠ 0) :
∑ a in Ico 1 (p / 2).succ, (a * q) / p +
∑ a in Ico 1 (q / 2).succ, (a * p) / q =
(p / 2) * (q / 2) :=
begin
have hswap : (((Ico 1 (q / 2).succ).product (Ico 1 (p / 2).succ)).filter
(λ x : ℕ × ℕ, x.2 * q ≤ x.1 * p)).card =
(((Ico 1 (p / 2).succ).product (Ico 1 (q / 2).succ)).filter
(λ x : ℕ × ℕ, x.1 * q ≤ x.2 * p)).card :=
card_congr (λ x _, prod.swap x)
(λ ⟨_, _⟩, by simp only [mem_filter, and_self, prod.swap_prod_mk, forall_true_iff, mem_product]
{contextual := tt})
(λ ⟨_, _⟩ ⟨_, _⟩, by simp only [prod.mk.inj_iff, eq_self_iff_true, and_self, prod.swap_prod_mk,
forall_true_iff] {contextual := tt})
(λ ⟨x₁, x₂⟩ h, ⟨⟨x₂, x₁⟩, by revert h; simp only [mem_filter, eq_self_iff_true, and_self,
exists_prop_of_true, prod.swap_prod_mk, forall_true_iff, mem_product] {contextual := tt}⟩),
have hdisj : disjoint
(((Ico 1 (p / 2).succ).product (Ico 1 (q / 2).succ)).filter
(λ x : ℕ × ℕ, x.2 * p ≤ x.1 * q))
(((Ico 1 (p / 2).succ).product (Ico 1 (q / 2).succ)).filter
(λ x : ℕ × ℕ, x.1 * q ≤ x.2 * p)),
{ apply disjoint_filter.2 (λ x hx hpq hqp, _),
have hxp : x.1 < p, from lt_of_le_of_lt
(show x.1 ≤ p / 2, by simp only [*, lt_succ_iff, Ico.mem, mem_product] at *; tauto)
(nat.div_lt_self hp.pos dec_trivial),
have : (x.1 : zmod p) = 0,
{ simpa [hq0] using congr_arg (coe : ℕ → zmod p) (le_antisymm hpq hqp) },
apply_fun zmod.val at this,
rw [val_cast_of_lt hxp, val_zero] at this,
simpa only [this, nonpos_iff_eq_zero, Ico.mem, one_ne_zero, false_and, mem_product] using hx },
have hunion : ((Ico 1 (p / 2).succ).product (Ico 1 (q / 2).succ)).filter
(λ x : ℕ × ℕ, x.2 * p ≤ x.1 * q) ∪
((Ico 1 (p / 2).succ).product (Ico 1 (q / 2).succ)).filter
(λ x : ℕ × ℕ, x.1 * q ≤ x.2 * p) =
((Ico 1 (p / 2).succ).product (Ico 1 (q / 2).succ)),
from finset.ext (λ x, by have := le_total (x.2 * p) (x.1 * q);
simp only [mem_union, mem_filter, Ico.mem, mem_product]; tauto),
rw [sum_Ico_eq_card_lt, sum_Ico_eq_card_lt, hswap, ← card_disjoint_union hdisj, hunion,
card_product],
simp only [Ico.card, nat.sub_zero, succ_sub_succ_eq_sub]
end
variables (p q : ℕ) [fact p.prime] [fact q.prime]
namespace zmod
/-- The Legendre symbol of `a` and `p` is an integer defined as
* `0` if `a` is `0` modulo `p`;
* `1` if `a ^ (p / 2)` is `1` modulo `p`
(by `euler_criterion` this is equivalent to “`a` is a square modulo `p`”);
* `-1` otherwise.
-/
def legendre_sym (a p : ℕ) : ℤ :=
if (a : zmod p) = 0 then 0
else if (a : zmod p) ^ (p / 2) = 1 then 1
else -1
lemma legendre_sym_eq_pow (a p : ℕ) [hp : fact p.prime] :
(legendre_sym a p : zmod p) = (a ^ (p / 2)) :=
begin
rw legendre_sym,
by_cases ha : (a : zmod p) = 0,
{ simp only [if_pos, ha, zero_pow (nat.div_pos (hp.two_le) (succ_pos 1)), int.cast_zero] },
cases hp.eq_two_or_odd with hp2 hp_odd,
{ substI p,
generalize : (a : (zmod 2)) = b, revert b, dec_trivial, },
{ change fact (p % 2 = 1) at hp_odd, resetI,
rw if_neg ha,
have : (-1 : zmod p) ≠ 1, from (ne_neg_self p one_ne_zero).symm,
cases pow_div_two_eq_neg_one_or_one p ha with h h,
{ rw [if_pos h, h, int.cast_one], },
{ rw [h, if_neg this, int.cast_neg, int.cast_one], } }
end
lemma legendre_sym_eq_one_or_neg_one (a p : ℕ) (ha : (a : zmod p) ≠ 0) :
legendre_sym a p = -1 ∨ legendre_sym a p = 1 :=
by unfold legendre_sym; split_ifs; simp only [*, eq_self_iff_true, or_true, true_or] at *
lemma legendre_sym_eq_zero_iff (a p : ℕ) :
legendre_sym a p = 0 ↔ (a : zmod p) = 0 :=
begin
split,
{ classical, contrapose,
assume ha, cases legendre_sym_eq_one_or_neg_one a p ha with h h,
all_goals { rw h, norm_num } },
{ assume ha, rw [legendre_sym, if_pos ha] }
end
/-- Gauss' lemma. The legendre symbol can be computed by considering the number of naturals less
than `p/2` such that `(a * x) % p > p / 2` -/
lemma gauss_lemma {a : ℕ} [hp1 : fact (p % 2 = 1)] (ha0 : (a : zmod p) ≠ 0) :
legendre_sym a p = (-1) ^ ((Ico 1 (p / 2).succ).filter
(λ x : ℕ, p / 2 < (a * x : zmod p).val)).card :=
have (legendre_sym a p : zmod p) = (((-1)^((Ico 1 (p / 2).succ).filter
(λ x : ℕ, p / 2 < (a * x : zmod p).val)).card : ℤ) : zmod p),
by rw [legendre_sym_eq_pow, gauss_lemma_aux₂ p ha0]; simp,
begin
cases legendre_sym_eq_one_or_neg_one a p ha0;
cases @neg_one_pow_eq_or ℤ _ ((Ico 1 (p / 2).succ).filter
(λ x : ℕ, p / 2 < (a * x : zmod p).val)).card;
simp [*, ne_neg_self p one_ne_zero, (ne_neg_self p one_ne_zero).symm] at *
end
lemma legendre_sym_eq_one_iff {a : ℕ} (ha0 : (a : zmod p) ≠ 0) :
legendre_sym a p = 1 ↔ (∃ b : zmod p, b ^ 2 = a) :=
begin
rw [euler_criterion p ha0, legendre_sym, if_neg ha0],
split_ifs,
{ simp only [h, eq_self_iff_true] },
finish -- this is quite slow. I'm actually surprised that it can close the goal at all!
end
lemma eisenstein_lemma [hp1 : fact (p % 2 = 1)] {a : ℕ} (ha1 : a % 2 = 1) (ha0 : (a : zmod p) ≠ 0) :
legendre_sym a p = (-1)^∑ x in Ico 1 (p / 2).succ, (x * a) / p :=
by rw [neg_one_pow_eq_pow_mod_two, gauss_lemma p ha0, neg_one_pow_eq_pow_mod_two,
show _ = _, from eisenstein_lemma_aux₂ p ha1 ha0]
theorem quadratic_reciprocity [hp1 : fact (p % 2 = 1)] [hq1 : fact (q % 2 = 1)] (hpq : p ≠ q) :
legendre_sym p q * legendre_sym q p = (-1) ^ ((p / 2) * (q / 2)) :=
have hpq0 : (p : zmod q) ≠ 0, from prime_ne_zero q p hpq.symm,
have hqp0 : (q : zmod p) ≠ 0, from prime_ne_zero p q hpq,
by rw [eisenstein_lemma q hp1 hpq0, eisenstein_lemma p hq1 hqp0,
← pow_add, sum_mul_div_add_sum_mul_div_eq_mul q p hpq0, mul_comm]
-- move this
instance fact_prime_two : fact (nat.prime 2) := nat.prime_two
lemma legendre_sym_two [hp1 : fact (p % 2 = 1)] : legendre_sym 2 p = (-1) ^ (p / 4 + p / 2) :=
have hp2 : p ≠ 2, from mt (congr_arg (% 2)) (by simpa using hp1),
have hp22 : p / 2 / 2 = _ := div_eq_filter_card (show 0 < 2, from dec_trivial)
(nat.div_le_self (p / 2) 2),
have hcard : (Ico 1 (p / 2).succ).card = p / 2, by simp,
have hx2 : ∀ x ∈ Ico 1 (p / 2).succ, (2 * x : zmod p).val = 2 * x,
from λ x hx, have h2xp : 2 * x < p,
from calc 2 * x ≤ 2 * (p / 2) : mul_le_mul_of_nonneg_left
(le_of_lt_succ $ by finish) dec_trivial
... < _ : by conv_rhs {rw [← mod_add_div p 2, add_comm, show p % 2 = 1, from hp1]}; exact lt_succ_self _,
by rw [← nat.cast_two, ← nat.cast_mul, val_cast_of_lt h2xp],
have hdisj : disjoint
((Ico 1 (p / 2).succ).filter (λ x, p / 2 < ((2 : ℕ) * x : zmod p).val))
((Ico 1 (p / 2).succ).filter (λ x, x * 2 ≤ p / 2)),
from disjoint_filter.2 (λ x hx, by simp [hx2 _ hx, mul_comm]),
have hunion :
((Ico 1 (p / 2).succ).filter (λ x, p / 2 < ((2 : ℕ) * x : zmod p).val)) ∪
((Ico 1 (p / 2).succ).filter (λ x, x * 2 ≤ p / 2)) =
Ico 1 (p / 2).succ,
begin
rw [filter_union_right],
conv_rhs {rw [← @filter_true _ (Ico 1 (p / 2).succ)]},
exact filter_congr (λ x hx, by simp [hx2 _ hx, lt_or_le, mul_comm])
end,
begin
rw [gauss_lemma p (prime_ne_zero p 2 hp2),
neg_one_pow_eq_pow_mod_two, @neg_one_pow_eq_pow_mod_two _ _ (p / 4 + p / 2)],
refine congr_arg2 _ rfl ((eq_iff_modeq_nat 2).1 _),
rw [show 4 = 2 * 2, from rfl, ← nat.div_div_eq_div_mul, hp22, nat.cast_add,
← sub_eq_iff_eq_add', sub_eq_add_neg, neg_eq_self_mod_two,
← nat.cast_add, ← card_disjoint_union hdisj, hunion, hcard]
end
lemma exists_pow_two_eq_two_iff [hp1 : fact (p % 2 = 1)] :
(∃ a : zmod p, a ^ 2 = 2) ↔ p % 8 = 1 ∨ p % 8 = 7 :=
have hp2 : ((2 : ℕ) : zmod p) ≠ 0,
from prime_ne_zero p 2 (λ h, by simpa [h] using hp1),
have hpm4 : p % 4 = p % 8 % 4, from (nat.mod_mul_left_mod p 2 4).symm,
have hpm2 : p % 2 = p % 8 % 2, from (nat.mod_mul_left_mod p 4 2).symm,
begin
rw [show (2 : zmod p) = (2 : ℕ), by simp, ← legendre_sym_eq_one_iff p hp2,
legendre_sym_two p, neg_one_pow_eq_one_iff_even (show (-1 : ℤ) ≠ 1, from dec_trivial),
even_add, even_div, even_div],
have := nat.mod_lt p (show 0 < 8, from dec_trivial),
resetI, rw _root_.fact at hp1,
revert this hp1,
erw [hpm4, hpm2],
generalize hm : p % 8 = m, unfreezingI {clear_dependent p},
dec_trivial!,
end
lemma exists_pow_two_eq_prime_iff_of_mod_four_eq_one (hp1 : p % 4 = 1) [hq1 : fact (q % 2 = 1)] :
(∃ a : zmod p, a ^ 2 = q) ↔ ∃ b : zmod q, b ^ 2 = p :=
if hpq : p = q then by substI hpq else
have h1 : ((p / 2) * (q / 2)) % 2 = 0,
from (dvd_iff_mod_eq_zero _ _).1
(dvd_mul_of_dvd_left ((dvd_iff_mod_eq_zero _ _).2 $
by rw [← mod_mul_right_div_self, show 2 * 2 = 4, from rfl, hp1]; refl) _),
begin
haveI hp_odd : fact (p % 2 = 1) := odd_of_mod_four_eq_one hp1,
have hpq0 : (p : zmod q) ≠ 0 := prime_ne_zero q p (ne.symm hpq),
have hqp0 : (q : zmod p) ≠ 0 := prime_ne_zero p q hpq,
have := quadratic_reciprocity p q hpq,
rw [neg_one_pow_eq_pow_mod_two, h1, legendre_sym, legendre_sym,
if_neg hqp0, if_neg hpq0] at this,
rw [euler_criterion q hpq0, euler_criterion p hqp0],
split_ifs at this; simp *; contradiction,
end
lemma exists_pow_two_eq_prime_iff_of_mod_four_eq_three (hp3 : p % 4 = 3)
(hq3 : q % 4 = 3) (hpq : p ≠ q) : (∃ a : zmod p, a ^ 2 = q) ↔ ¬∃ b : zmod q, b ^ 2 = p :=
have h1 : ((p / 2) * (q / 2)) % 2 = 1,
from nat.odd_mul_odd
(by rw [← mod_mul_right_div_self, show 2 * 2 = 4, from rfl, hp3]; refl)
(by rw [← mod_mul_right_div_self, show 2 * 2 = 4, from rfl, hq3]; refl),
begin
haveI hp_odd : fact (p % 2 = 1) := odd_of_mod_four_eq_three hp3,
haveI hq_odd : fact (q % 2 = 1) := odd_of_mod_four_eq_three hq3,
have hpq0 : (p : zmod q) ≠ 0 := prime_ne_zero q p (ne.symm hpq),
have hqp0 : (q : zmod p) ≠ 0 := prime_ne_zero p q hpq,
have := quadratic_reciprocity p q hpq,
rw [neg_one_pow_eq_pow_mod_two, h1, legendre_sym, legendre_sym,
if_neg hpq0, if_neg hqp0] at this,
rw [euler_criterion q hpq0, euler_criterion p hqp0],
split_ifs at this; simp *; contradiction
end
end zmod
|
beb8d348d8a94b41e3606e5ccf6e362fcea30a27
|
8cae430f0a71442d02dbb1cbb14073b31048e4b0
|
/src/ring_theory/dedekind_domain/integral_closure.lean
|
357d4b6ec65e08a2865b8034d679e53d29425ab6
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/mathlib
|
56a2cadd17ac88caf4ece0a775932fa26327ba0e
|
442a83d738cb208d3600056c489be16900ba701d
|
refs/heads/master
| 1,693,584,102,358
| 1,693,471,902,000
| 1,693,471,902,000
| 97,922,418
| 1,595
| 352
|
Apache-2.0
| 1,694,693,445,000
| 1,500,624,130,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 13,514
|
lean
|
/-
Copyright (c) 2020 Kenji Nakagawa. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenji Nakagawa, Anne Baanen, Filippo A. E. Nuccio
-/
import linear_algebra.free_module.pid
import ring_theory.dedekind_domain.basic
import ring_theory.localization.module
import ring_theory.trace
/-!
# Integral closure of Dedekind domains
> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
> Any changes to this file require a corresponding PR to mathlib4.
This file shows the integral closure of a Dedekind domain (in particular, the ring of integers
of a number field) is a Dedekind domain.
## Implementation notes
The definitions that involve a field of fractions choose a canonical field of fractions,
but are independent of that choice. The `..._iff` lemmas express this independence.
Often, definitions assume that Dedekind domains are not fields. We found it more practical
to add a `(h : ¬ is_field A)` assumption whenever this is explicitly needed.
## References
* [D. Marcus, *Number Fields*][marcus1977number]
* [J.W.S. Cassels, A. Frölich, *Algebraic Number Theory*][cassels1967algebraic]
* [J. Neukirch, *Algebraic Number Theory*][Neukirch1992]
## Tags
dedekind domain, dedekind ring
-/
variables (R A K : Type*) [comm_ring R] [comm_ring A] [field K]
open_locale non_zero_divisors polynomial
variables [is_domain A]
section is_integral_closure
/-! ### `is_integral_closure` section
We show that an integral closure of a Dedekind domain in a finite separable
field extension is again a Dedekind domain. This implies the ring of integers
of a number field is a Dedekind domain. -/
open algebra
open_locale big_operators
variables (A K) [algebra A K] [is_fraction_ring A K]
variables (L : Type*) [field L] (C : Type*) [comm_ring C]
variables [algebra K L] [algebra A L] [is_scalar_tower A K L]
variables [algebra C L] [is_integral_closure C A L] [algebra A C] [is_scalar_tower A C L]
/- If `L` is a separable extension of `K = Frac(A)` and `L` has no zero smul divisors by `A`,
then `L` is the localization of the integral closure `C` of `A` in `L` at `A⁰`. -/
lemma is_integral_closure.is_localization [is_separable K L] [no_zero_smul_divisors A L] :
is_localization (algebra.algebra_map_submonoid C A⁰) L :=
begin
haveI : is_domain C :=
(is_integral_closure.equiv A C L (integral_closure A L)).to_ring_equiv.is_domain
(integral_closure A L),
haveI : no_zero_smul_divisors A C := is_integral_closure.no_zero_smul_divisors A L,
refine ⟨_, λ z, _, λ x y, ⟨λ h, ⟨1, _⟩, _⟩⟩,
{ rintros ⟨_, x, hx, rfl⟩,
rw [is_unit_iff_ne_zero, map_ne_zero_iff _ (is_integral_closure.algebra_map_injective C A L),
subtype.coe_mk, map_ne_zero_iff _ (no_zero_smul_divisors.algebra_map_injective A C)],
exact mem_non_zero_divisors_iff_ne_zero.mp hx, },
{ obtain ⟨m, hm⟩ := is_integral.exists_multiple_integral_of_is_localization A⁰ z
(is_separable.is_integral K z),
obtain ⟨x, hx⟩ : ∃ x, algebra_map C L x = m • z := is_integral_closure.is_integral_iff.mp hm,
refine ⟨⟨x, algebra_map A C m, m, set_like.coe_mem m, rfl⟩, _⟩,
rw [subtype.coe_mk, ← is_scalar_tower.algebra_map_apply, hx, mul_comm, submonoid.smul_def,
smul_def], },
{ simp only [is_integral_closure.algebra_map_injective C A L h], },
{ rintros ⟨⟨_, m, hm, rfl⟩, h⟩,
refine congr_arg (algebra_map C L) ((mul_right_inj' _).mp h),
rw [subtype.coe_mk, map_ne_zero_iff _ (no_zero_smul_divisors.algebra_map_injective A C)],
exact mem_non_zero_divisors_iff_ne_zero.mp hm, },
end
variable [finite_dimensional K L]
variables {A K L}
lemma is_integral_closure.range_le_span_dual_basis [is_separable K L]
{ι : Type*} [fintype ι] [decidable_eq ι] (b : basis ι K L)
(hb_int : ∀ i, is_integral A (b i)) [is_integrally_closed A] :
((algebra.linear_map C L).restrict_scalars A).range ≤
submodule.span A (set.range $ (trace_form K L).dual_basis (trace_form_nondegenerate K L) b) :=
begin
let db := (trace_form K L).dual_basis (trace_form_nondegenerate K L) b,
rintros _ ⟨x, rfl⟩,
simp only [linear_map.coe_restrict_scalars_eq_coe, algebra.linear_map_apply],
have hx : is_integral A (algebra_map C L x) :=
(is_integral_closure.is_integral A L x).algebra_map,
rsuffices ⟨c, x_eq⟩ : ∃ (c : ι → A), algebra_map C L x = ∑ i, c i • db i,
{ rw x_eq,
refine submodule.sum_mem _ (λ i _, submodule.smul_mem _ _ (submodule.subset_span _)),
rw set.mem_range,
exact ⟨i, rfl⟩ },
suffices : ∃ (c : ι → K), ((∀ i, is_integral A (c i)) ∧ algebra_map C L x = ∑ i, c i • db i),
{ obtain ⟨c, hc, hx⟩ := this,
have hc' : ∀ i, is_localization.is_integer A (c i) :=
λ i, is_integrally_closed.is_integral_iff.mp (hc i),
use λ i, classical.some (hc' i),
refine hx.trans (finset.sum_congr rfl (λ i _, _)),
conv_lhs { rw [← classical.some_spec (hc' i)] },
rw [← is_scalar_tower.algebra_map_smul K (classical.some (hc' i)) (db i)] },
refine ⟨λ i, db.repr (algebra_map C L x) i, (λ i, _), (db.sum_repr _).symm⟩,
rw bilin_form.dual_basis_repr_apply,
exact is_integral_trace (is_integral_mul hx (hb_int i))
end
lemma integral_closure_le_span_dual_basis [is_separable K L]
{ι : Type*} [fintype ι] [decidable_eq ι] (b : basis ι K L)
(hb_int : ∀ i, is_integral A (b i)) [is_integrally_closed A] :
(integral_closure A L).to_submodule ≤ submodule.span A (set.range $
(trace_form K L).dual_basis (trace_form_nondegenerate K L) b) :=
begin
refine le_trans _ (is_integral_closure.range_le_span_dual_basis (integral_closure A L) b hb_int),
intros x hx,
exact ⟨⟨x, hx⟩, rfl⟩
end
variables (A) (K)
include K
/-- Send a set of `x`'es in a finite extension `L` of the fraction field of `R`
to `(y : R) • x ∈ integral_closure R L`. -/
lemma exists_integral_multiples (s : finset L) :
∃ (y ≠ (0 : A)), ∀ x ∈ s, is_integral A (y • x) :=
begin
haveI := classical.dec_eq L,
refine s.induction _ _,
{ use [1, one_ne_zero],
rintros x ⟨⟩ },
{ rintros x s hx ⟨y, hy, hs⟩,
obtain ⟨x', y', hy', hx'⟩ := exists_integral_multiple
((is_fraction_ring.is_algebraic_iff A K L).mpr (is_algebraic_of_finite _ _ x))
((injective_iff_map_eq_zero (algebra_map A L)).mp _),
refine ⟨y * y', mul_ne_zero hy hy', λ x'' hx'', _⟩,
rcases finset.mem_insert.mp hx'' with (rfl | hx''),
{ rw [mul_smul, algebra.smul_def, algebra.smul_def, mul_comm _ x'', hx'],
exact is_integral_mul is_integral_algebra_map x'.2 },
{ rw [mul_comm, mul_smul, algebra.smul_def],
exact is_integral_mul is_integral_algebra_map (hs _ hx'') },
{ rw is_scalar_tower.algebra_map_eq A K L,
apply (algebra_map K L).injective.comp,
exact is_fraction_ring.injective _ _ } }
end
variables (L)
/-- If `L` is a finite extension of `K = Frac(A)`,
then `L` has a basis over `A` consisting of integral elements. -/
lemma finite_dimensional.exists_is_basis_integral :
∃ (s : finset L) (b : basis s K L), (∀ x, is_integral A (b x)) :=
begin
letI := classical.dec_eq L,
letI : is_noetherian K L := is_noetherian.iff_fg.2 infer_instance,
let s' := is_noetherian.finset_basis_index K L,
let bs' := is_noetherian.finset_basis K L,
obtain ⟨y, hy, his'⟩ := exists_integral_multiples A K (finset.univ.image bs'),
have hy' : algebra_map A L y ≠ 0,
{ refine mt ((injective_iff_map_eq_zero (algebra_map A L)).mp _ _) hy,
rw is_scalar_tower.algebra_map_eq A K L,
exact (algebra_map K L).injective.comp (is_fraction_ring.injective A K) },
refine ⟨s', bs'.map { to_fun := λ x, algebra_map A L y * x,
inv_fun := λ x, (algebra_map A L y)⁻¹ * x,
left_inv := _,
right_inv := _,
.. algebra.lmul _ _ (algebra_map A L y) },
_⟩,
{ intros x, simp only [inv_mul_cancel_left₀ hy'] },
{ intros x, simp only [mul_inv_cancel_left₀ hy'] },
{ rintros ⟨x', hx'⟩,
simp only [algebra.smul_def, finset.mem_image, exists_prop, finset.mem_univ, true_and] at his',
simp only [basis.map_apply, linear_equiv.coe_mk],
exact his' _ ⟨_, rfl⟩ }
end
variables (A K L) [is_separable K L]
include L
/- If `L` is a finite separable extension of `K = Frac(A)`, where `A` is
integrally closed and Noetherian, the integral closure `C` of `A` in `L` is
Noetherian over `A`. -/
lemma is_integral_closure.is_noetherian [is_integrally_closed A] [is_noetherian_ring A] :
is_noetherian A C :=
begin
haveI := classical.dec_eq L,
obtain ⟨s, b, hb_int⟩ := finite_dimensional.exists_is_basis_integral A K L,
let b' := (trace_form K L).dual_basis (trace_form_nondegenerate K L) b,
letI := is_noetherian_span_of_finite A (set.finite_range b'),
let f : C →ₗ[A] submodule.span A (set.range b') :=
(submodule.of_le (is_integral_closure.range_le_span_dual_basis C b hb_int)).comp
((algebra.linear_map C L).restrict_scalars A).range_restrict,
refine is_noetherian_of_ker_bot f _,
rw [linear_map.ker_comp, submodule.ker_of_le, submodule.comap_bot, linear_map.ker_cod_restrict],
exact linear_map.ker_eq_bot_of_injective (is_integral_closure.algebra_map_injective C A L)
end
/- If `L` is a finite separable extension of `K = Frac(A)`, where `A` is
integrally closed and Noetherian, the integral closure `C` of `A` in `L` is
Noetherian. -/
lemma is_integral_closure.is_noetherian_ring [is_integrally_closed A] [is_noetherian_ring A] :
is_noetherian_ring C :=
is_noetherian_ring_iff.mpr $ is_noetherian_of_tower A (is_integral_closure.is_noetherian A K L C)
/- If `L` is a finite separable extension of `K = Frac(A)`, where `A` is a principal ring
and `L` has no zero smul divisors by `A`, the integral closure `C` of `A` in `L` is
a free `A`-module. -/
lemma is_integral_closure.module_free [no_zero_smul_divisors A L] [is_principal_ideal_ring A] :
module.free A C :=
begin
haveI : no_zero_smul_divisors A C := is_integral_closure.no_zero_smul_divisors A L,
haveI : is_noetherian A C := is_integral_closure.is_noetherian A K L _,
exact module.free_of_finite_type_torsion_free',
end
/- If `L` is a finite separable extension of `K = Frac(A)`, where `A` is a principal ring
and `L` has no zero smul divisors by `A`, the `A`-rank of the integral closure `C` of `A` in `L`
is equal to the `K`-rank of `L`. -/
lemma is_integral_closure.rank [is_principal_ideal_ring A] [no_zero_smul_divisors A L] :
finite_dimensional.finrank A C = finite_dimensional.finrank K L :=
begin
haveI : module.free A C := is_integral_closure.module_free A K L C,
haveI : is_noetherian A C := is_integral_closure.is_noetherian A K L C,
haveI : is_localization (algebra.algebra_map_submonoid C A⁰) L :=
is_integral_closure.is_localization A K L C,
let b := basis.localization_localization K A⁰ L (module.free.choose_basis A C),
rw [finite_dimensional.finrank_eq_card_choose_basis_index,
finite_dimensional.finrank_eq_card_basis b],
end
variables {A K}
/- If `L` is a finite separable extension of `K = Frac(A)`, where `A` is
integrally closed and Noetherian, the integral closure of `A` in `L` is
Noetherian. -/
lemma integral_closure.is_noetherian_ring [is_integrally_closed A] [is_noetherian_ring A] :
is_noetherian_ring (integral_closure A L) :=
is_integral_closure.is_noetherian_ring A K L (integral_closure A L)
variables (A K) [is_domain C]
/- If `L` is a finite separable extension of `K = Frac(A)`, where `A` is a Dedekind domain,
the integral closure `C` of `A` in `L` is a Dedekind domain.
Can't be an instance since `A`, `K` or `L` can't be inferred. See also the instance
`integral_closure.is_dedekind_domain_fraction_ring` where `K := fraction_ring A`
and `C := integral_closure A L`.
-/
lemma is_integral_closure.is_dedekind_domain [h : is_dedekind_domain A] :
is_dedekind_domain C :=
begin
haveI : is_fraction_ring C L := is_integral_closure.is_fraction_ring_of_finite_extension A K L C,
exact
⟨is_integral_closure.is_noetherian_ring A K L C,
h.dimension_le_one.is_integral_closure _ L _,
(is_integrally_closed_iff L).mpr (λ x hx, ⟨is_integral_closure.mk' C x
(is_integral_trans (is_integral_closure.is_integral_algebra A L) _ hx),
is_integral_closure.algebra_map_mk' _ _ _⟩)⟩
end
/- If `L` is a finite separable extension of `K = Frac(A)`, where `A` is a Dedekind domain,
the integral closure of `A` in `L` is a Dedekind domain.
Can't be an instance since `K` can't be inferred. See also the instance
`integral_closure.is_dedekind_domain_fraction_ring` where `K := fraction_ring A`.
-/
lemma integral_closure.is_dedekind_domain [h : is_dedekind_domain A] :
is_dedekind_domain (integral_closure A L) :=
is_integral_closure.is_dedekind_domain A K L (integral_closure A L)
omit K
variables [algebra (fraction_ring A) L] [is_scalar_tower A (fraction_ring A) L]
variables [finite_dimensional (fraction_ring A) L] [is_separable (fraction_ring A) L]
/- If `L` is a finite separable extension of `Frac(A)`, where `A` is a Dedekind domain,
the integral closure of `A` in `L` is a Dedekind domain.
See also the lemma `integral_closure.is_dedekind_domain` where you can choose
the field of fractions yourself.
-/
instance integral_closure.is_dedekind_domain_fraction_ring
[is_dedekind_domain A] : is_dedekind_domain (integral_closure A L) :=
integral_closure.is_dedekind_domain A (fraction_ring A) L
end is_integral_closure
|
3a3ed11f119cf599bcbf5fe49d1b2665a1d5e27e
|
0d4c30038160d9c35586ce4dace36fe26a35023b
|
/src/algebra/lie_algebra.lean
|
5f28951990308ae2f74523cad111be3e25a75892
|
[
"Apache-2.0"
] |
permissive
|
b-mehta/mathlib
|
b0c8ec929ec638447e4262f7071570d23db52e14
|
ce72cde867feabe5bb908cf9e895acc0e11bf1eb
|
refs/heads/master
| 1,599,457,264,781
| 1,586,969,260,000
| 1,586,969,260,000
| 220,672,634
| 0
| 0
|
Apache-2.0
| 1,583,944,480,000
| 1,573,317,991,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 22,697
|
lean
|
/-
Copyright (c) 2019 Oliver Nash. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Oliver Nash
-/
import ring_theory.algebra data.matrix.basic linear_algebra.linear_action
/-!
# Lie algebras
This file defines Lie rings, and Lie algebras over a commutative ring. It shows how these arise from
associative rings and algebras via the ring commutator. In particular it defines the Lie algebra
of endomorphisms of a module as well as of the algebra of square matrices over a commutative ring.
It also includes definitions of morphisms of Lie algebras, Lie subalgebras, Lie modules, Lie
submodules, and the quotient of a Lie algebra by an ideal.
## Notations
We introduce the notation ⁅x, y⁆ for the Lie bracket. Note that these are the Unicode "square with
quill" brackets rather than the usual square brackets.
We also introduce the notations L →ₗ⁅R⁆ L' for a morphism of Lie algebras over a commutative ring R,
and L →ₗ⁅⁆ L' for the same, when the ring is implicit.
## Implementation notes
Lie algebras are defined as modules with a compatible Lie ring structure, and thus are partially
unbundled. Since they extend Lie rings, these are also partially unbundled.
## References
* [N. Bourbaki, *Lie Groups and Lie Algebras, Chapters 1--3*][bourbaki1975]
## Tags
lie bracket, ring commutator, jacobi identity, lie ring, lie algebra
-/
universes u v w w₁
/--
A binary operation, intended use in Lie algebras and similar structures.
-/
class has_bracket (L : Type v) := (bracket : L → L → L)
notation `⁅`x`,` y`⁆` := has_bracket.bracket x y
namespace ring_commutator
variables {A : Type v} [ring A]
/--
The ring commutator captures the extent to which a ring is commutative. It is identically zero
exactly when the ring is commutative.
-/
def commutator (x y : A) := x*y - y*x
local notation `⁅`x`,` y`⁆` := commutator x y
@[simp] lemma add_left (x y z : A) :
⁅x + y, z⁆ = ⁅x, z⁆ + ⁅y, z⁆ :=
by simp [commutator, right_distrib, left_distrib, sub_eq_add_neg, add_comm, add_left_comm]
@[simp] lemma add_right (x y z : A) :
⁅z, x + y⁆ = ⁅z, x⁆ + ⁅z, y⁆ :=
by simp [commutator, right_distrib, left_distrib, sub_eq_add_neg, add_comm, add_left_comm]
@[simp] lemma alternate (x : A) :
⁅x, x⁆ = 0 :=
by simp [commutator]
lemma jacobi (x y z : A) :
⁅x, ⁅y, z⁆⁆ + ⁅y, ⁅z, x⁆⁆ + ⁅z, ⁅x, y⁆⁆ = 0 :=
begin
unfold commutator,
repeat { rw mul_sub_left_distrib },
repeat { rw mul_sub_right_distrib },
repeat { rw add_sub },
repeat { rw ←sub_add },
repeat { rw ←mul_assoc },
have h : ∀ (x y z : A), x - y + z + y = x+z := by simp [sub_eq_add_neg, add_left_comm],
repeat { rw h },
simp [sub_eq_add_neg, add_left_comm],
end
end ring_commutator
section prio
set_option default_priority 100 -- see Note [default priority]
/--
A Lie ring is an additive group with compatible product, known as the bracket, satisfying the
Jacobi identity. The bracket is not associative unless it is identically zero.
-/
class lie_ring (L : Type v) extends add_comm_group L, has_bracket L :=
(add_lie : ∀ (x y z : L), ⁅x + y, z⁆ = ⁅x, z⁆ + ⁅y, z⁆)
(lie_add : ∀ (x y z : L), ⁅z, x + y⁆ = ⁅z, x⁆ + ⁅z, y⁆)
(lie_self : ∀ (x : L), ⁅x, x⁆ = 0)
(jacobi : ∀ (x y z : L), ⁅x, ⁅y, z⁆⁆ + ⁅y, ⁅z, x⁆⁆ + ⁅z, ⁅x, y⁆⁆ = 0)
end prio
section lie_ring
variables {L : Type v} [lie_ring L]
@[simp] lemma add_lie (x y z : L) : ⁅x + y, z⁆ = ⁅x, z⁆ + ⁅y, z⁆ := lie_ring.add_lie x y z
@[simp] lemma lie_add (x y z : L) : ⁅z, x + y⁆ = ⁅z, x⁆ + ⁅z, y⁆ := lie_ring.lie_add x y z
@[simp] lemma lie_self (x : L) : ⁅x, x⁆ = 0 := lie_ring.lie_self x
@[simp] lemma lie_skew (x y : L) :
-⁅y, x⁆ = ⁅x, y⁆ :=
begin
symmetry,
rw [←sub_eq_zero_iff_eq, sub_neg_eq_add],
have H : ⁅x + y, x + y⁆ = 0, from lie_self _,
rw add_lie at H,
simpa using H,
end
@[simp] lemma lie_zero (x : L) :
⁅x, 0⁆ = 0 :=
begin
have H : ⁅x, 0⁆ + ⁅x, 0⁆ = ⁅x, 0⁆ + 0 := by { rw ←lie_add, simp, },
exact add_left_cancel H,
end
@[simp] lemma zero_lie (x : L) :
⁅0, x⁆ = 0 := by { rw [←lie_skew, lie_zero], simp, }
@[simp] lemma neg_lie (x y : L) :
⁅-x, y⁆ = -⁅x, y⁆ := by { rw [←sub_eq_zero_iff_eq, sub_neg_eq_add, ←add_lie], simp, }
@[simp] lemma lie_neg (x y : L) :
⁅x, -y⁆ = -⁅x, y⁆ := by { rw [←lie_skew, ←lie_skew], simp, }
@[simp] lemma gsmul_lie (x y : L) (n : ℤ) :
⁅n • x, y⁆ = n • ⁅x, y⁆ :=
add_monoid_hom.map_gsmul ⟨λ x, ⁅x, y⁆, zero_lie y, λ _ _, add_lie _ _ _⟩ _ _
@[simp] lemma lie_gsmul (x y : L) (n : ℤ) :
⁅x, n • y⁆ = n • ⁅x, y⁆ :=
begin
rw [←lie_skew, ←lie_skew x, gsmul_lie],
unfold has_scalar.smul, rw gsmul_neg,
end
/--
An associative ring gives rise to a Lie ring by taking the bracket to be the ring commutator.
-/
def lie_ring.of_associative_ring (A : Type v) [ring A] : lie_ring A :=
{ bracket := ring_commutator.commutator,
add_lie := ring_commutator.add_left,
lie_add := ring_commutator.add_right,
lie_self := ring_commutator.alternate,
jacobi := ring_commutator.jacobi }
end lie_ring
section prio
set_option default_priority 100 -- see Note [default priority]
/--
A Lie algebra is a module with compatible product, known as the bracket, satisfying the Jacobi
identity. Forgetting the scalar multiplication, every Lie algebra is a Lie ring.
-/
class lie_algebra (R : Type u) (L : Type v) [comm_ring R] [lie_ring L] extends module R L :=
(lie_smul : ∀ (t : R) (x y : L), ⁅x, t • y⁆ = t • ⁅x, y⁆)
end prio
@[simp] lemma lie_smul (R : Type u) (L : Type v) [comm_ring R] [lie_ring L] [lie_algebra R L]
(t : R) (x y : L) : ⁅x, t • y⁆ = t • ⁅x, y⁆ :=
lie_algebra.lie_smul t x y
@[simp] lemma smul_lie (R : Type u) (L : Type v) [comm_ring R] [lie_ring L] [lie_algebra R L]
(t : R) (x y : L) : ⁅t • x, y⁆ = t • ⁅x, y⁆ :=
by { rw [←lie_skew, ←lie_skew x y], simp [-lie_skew], }
namespace lie_algebra
set_option old_structure_cmd true
/-- A morphism of Lie algebras is a linear map respecting the bracket operations. -/
structure morphism (R : Type u) (L : Type v) (L' : Type w)
[comm_ring R] [lie_ring L] [lie_algebra R L] [lie_ring L'] [lie_algebra R L']
extends linear_map R L L' :=
(map_lie : ∀ {x y : L}, to_fun ⁅x, y⁆ = ⁅to_fun x, to_fun y⁆)
attribute [nolint doc_blame] lie_algebra.morphism.to_linear_map
infixr ` →ₗ⁅⁆ `:25 := morphism _
notation L ` →ₗ⁅`:25 R:25 `⁆ `:0 L':0 := morphism R L L'
section morphism_properties
variables {R : Type u} {L₁ : Type v} {L₂ : Type w} {L₃ : Type w₁}
variables [comm_ring R] [lie_ring L₁] [lie_ring L₂] [lie_ring L₃]
variables [lie_algebra R L₁] [lie_algebra R L₂] [lie_algebra R L₃]
instance : has_coe (L₁ →ₗ⁅R⁆ L₂) (L₁ →ₗ[R] L₂) := ⟨morphism.to_linear_map⟩
lemma map_lie (f : L₁ →ₗ⁅R⁆ L₂) (x y : L₁) : f ⁅x, y⁆ = ⁅f x, f y⁆ := morphism.map_lie f
@[simp] lemma map_lie' (f : L₁ →ₗ⁅R⁆ L₂) (x y : L₁) : (f : L₁ →ₗ[R] L₂) ⁅x, y⁆ = ⁅f x, f y⁆ :=
morphism.map_lie f
/-- The constant 0 map is a Lie algebra morphism. -/
instance : has_zero (L₁ →ₗ⁅R⁆ L₂) := ⟨{ map_lie := by simp, ..(0 : L₁ →ₗ[R] L₂)}⟩
/-- The identity map is a Lie algebra morphism. -/
instance : has_one (L₁ →ₗ⁅R⁆ L₁) := ⟨{ map_lie := by simp, ..(1 : L₁ →ₗ[R] L₁)}⟩
instance : inhabited (L₁ →ₗ⁅R⁆ L₂) := ⟨0⟩
/-- The composition of morphisms is a morphism. -/
def morphism.comp (f : L₂ →ₗ⁅R⁆ L₃) (g : L₁ →ₗ⁅R⁆ L₂) : L₁ →ₗ⁅R⁆ L₃ :=
{ map_lie := λ x y, by { change f (g ⁅x, y⁆) = ⁅f (g x), f (g y)⁆, rw [map_lie, map_lie], },
..linear_map.comp f.to_linear_map g.to_linear_map }
lemma morphism.comp_apply (f : L₂ →ₗ⁅R⁆ L₃) (g : L₁ →ₗ⁅R⁆ L₂) (x : L₁) :
f.comp g x = f (g x) := rfl
/-- The inverse of a bijective morphism is a morphism. -/
def morphism.inverse (f : L₁ →ₗ⁅R⁆ L₂) (g : L₂ → L₁)
(h₁ : function.left_inverse g f) (h₂ : function.right_inverse g f) : L₂ →ₗ⁅R⁆ L₁ :=
{ map_lie := λ x y, by {
calc g ⁅x, y⁆ = g ⁅f (g x), f (g y)⁆ : by { conv_lhs { rw [←h₂ x, ←h₂ y], }, }
... = g (f ⁅g x, g y⁆) : by rw map_lie
... = ⁅g x, g y⁆ : (h₁ _), },
..linear_map.inverse f.to_linear_map g h₁ h₂ }
end morphism_properties
/-- An equivalence of Lie algebras is a morphism which is also a linear equivalence. We could
instead define an equivalence to be a morphism which is also a (plain) equivalence. However it is
more convenient to define via linear equivalence to get `.to_linear_equiv` for free. -/
structure equiv (R : Type u) (L : Type v) (L' : Type w)
[comm_ring R] [lie_ring L] [lie_algebra R L] [lie_ring L'] [lie_algebra R L']
extends L →ₗ⁅R⁆ L', L ≃ₗ[R] L'
attribute [nolint doc_blame] lie_algebra.equiv.to_morphism
attribute [nolint doc_blame] lie_algebra.equiv.to_linear_equiv
notation L ` ≃ₗ⁅`:50 R `⁆ ` L' := equiv R L L'
namespace equiv
variables {R : Type u} {L₁ : Type v} {L₂ : Type w} {L₃ : Type w₁}
variables [comm_ring R] [lie_ring L₁] [lie_ring L₂] [lie_ring L₃]
variables [lie_algebra R L₁] [lie_algebra R L₂] [lie_algebra R L₃]
instance : has_one (L₁ ≃ₗ⁅R⁆ L₁) :=
⟨{ map_lie := λ x y, by { change ((1 : L₁→ₗ[R] L₁) ⁅x, y⁆) = ⁅(1 : L₁→ₗ[R] L₁) x, (1 : L₁→ₗ[R] L₁) y⁆, simp, },
..(1 : L₁ ≃ₗ[R] L₁)}⟩
instance : inhabited (L₁ ≃ₗ⁅R⁆ L₁) := ⟨1⟩
/-- Lie algebra equivalences are reflexive. -/
@[refl]
def refl : L₁ ≃ₗ⁅R⁆ L₁ := 1
/-- Lie algebra equivalences are symmetric. -/
@[symm]
def symm (e : L₁ ≃ₗ⁅R⁆ L₂) : L₂ ≃ₗ⁅R⁆ L₁ :=
{ ..morphism.inverse e.to_morphism e.inv_fun e.left_inv e.right_inv,
..e.to_linear_equiv.symm }
/-- Lie algebra equivalences are transitive. -/
@[trans]
def trans (e₁ : L₁ ≃ₗ⁅R⁆ L₂) (e₂ : L₂ ≃ₗ⁅R⁆ L₃) : L₁ ≃ₗ⁅R⁆ L₃ :=
{ ..morphism.comp e₂.to_morphism e₁.to_morphism,
..linear_equiv.trans e₁.to_linear_equiv e₂.to_linear_equiv }
end equiv
namespace direct_sum
open dfinsupp
variables {R : Type u} [comm_ring R]
variables {ι : Type v} [decidable_eq ι] {L : ι → Type w}
variables [Π i, lie_ring (L i)] [Π i, lie_algebra R (L i)]
/-- The direct sum of Lie rings carries a natural Lie ring structure. -/
instance : lie_ring (direct_sum ι L) := {
bracket := zip_with (λ i, λ x y, ⁅x, y⁆) (λ i, lie_zero 0),
add_lie := λ x y z, by { ext, simp only [zip_with_apply, add_apply, add_lie], },
lie_add := λ x y z, by { ext, simp only [zip_with_apply, add_apply, lie_add], },
lie_self := λ x, by { ext, simp only [zip_with_apply, add_apply, lie_self, zero_apply], },
jacobi := λ x y z, by { ext, simp only [zip_with_apply, add_apply, lie_ring.jacobi, zero_apply], },
..(infer_instance : add_comm_group _) }
@[simp] lemma bracket_apply {x y : direct_sum ι L} {i : ι} :
⁅x, y⁆ i = ⁅x i, y i⁆ := zip_with_apply
/-- The direct sum of Lie algebras carries a natural Lie algebra structure. -/
instance : lie_algebra R (direct_sum ι L) :=
{ lie_smul := λ c x y, by { ext, simp only [zip_with_apply, smul_apply, bracket_apply, lie_smul], },
..(infer_instance : module R _) }
end direct_sum
variables {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [lie_algebra R L]
/--
An associative algebra gives rise to a Lie algebra by taking the bracket to be the ring commutator.
-/
def of_associative_algebra (A : Type v) [ring A] [algebra R A] :
@lie_algebra R A _ (lie_ring.of_associative_ring _) :=
{ lie_smul :=
begin
intros,
show _ - _ = _ • (_ - _),
rw [algebra.mul_smul_comm, algebra.smul_mul_assoc, smul_sub],
end }
instance (M : Type v) [add_comm_group M] [module R M] : lie_ring (module.End R M) :=
lie_ring.of_associative_ring _
/--
An important class of Lie algebras are those arising from the associative algebra structure on
module endomorphisms.
-/
instance of_endomorphism_algebra (M : Type v) [add_comm_group M] [module R M] :
lie_algebra R (module.End R M) :=
of_associative_algebra (module.End R M)
lemma endo_algebra_bracket (M : Type v) [add_comm_group M] [module R M] (f g : module.End R M) :
⁅f, g⁆ = f.comp g - g.comp f := rfl
/--
The adjoint action of a Lie algebra on itself.
-/
def Ad : L →ₗ⁅R⁆ module.End R L := {
to_fun := λ x, {
to_fun := has_bracket.bracket x,
add := by { intros, apply lie_add, },
smul := by { intros, apply lie_smul, } },
add := by { intros, ext, simp, },
smul := by { intros, ext, simp, },
map_lie := by {
intros x y, ext z,
rw endo_algebra_bracket,
suffices : ⁅⁅x, y⁆, z⁆ = ⁅x, ⁅y, z⁆⁆ + ⁅⁅x, z⁆, y⁆, by simpa [sub_eq_add_neg],
rw [eq_comm, ←lie_skew ⁅x, y⁆ z, ←lie_skew ⁅x, z⁆ y, ←lie_skew x z, lie_neg, neg_neg,
←sub_eq_zero_iff_eq, sub_neg_eq_add, lie_ring.jacobi], } }
end lie_algebra
section lie_subalgebra
variables (R : Type u) (L : Type v) [comm_ring R] [lie_ring L] [lie_algebra R L]
/--
A Lie subalgebra of a Lie algebra is submodule that is closed under the Lie bracket.
This is a sufficient condition for the subset itself to form a Lie algebra.
-/
structure lie_subalgebra extends submodule R L :=
(lie_mem : ∀ {x y}, x ∈ carrier → y ∈ carrier → ⁅x, y⁆ ∈ carrier)
instance lie_subalgebra_coe_submodule : has_coe (lie_subalgebra R L) (submodule R L) :=
⟨lie_subalgebra.to_submodule⟩
/-- A Lie subalgebra forms a new Lie ring.
This cannot be an instance, since being a Lie subalgebra is (currently) not a class. -/
def lie_subalgebra_lie_ring (L' : lie_subalgebra R L) : lie_ring L' := {
bracket := λ x y, ⟨⁅x.val, y.val⁆, L'.lie_mem x.property y.property⟩,
lie_add := by { intros, apply set_coe.ext, apply lie_add, },
add_lie := by { intros, apply set_coe.ext, apply add_lie, },
lie_self := by { intros, apply set_coe.ext, apply lie_self, },
jacobi := by { intros, apply set_coe.ext, apply lie_ring.jacobi, } }
/-- A Lie subalgebra forms a new Lie algebra.
This cannot be an instance, since being a Lie subalgebra is (currently) not a class. -/
def lie_subalgebra_lie_algebra (L' : lie_subalgebra R L) :
@lie_algebra R L' _ (lie_subalgebra_lie_ring _ _ _) :=
{ lie_smul := by { intros, apply set_coe.ext, apply lie_smul } }
end lie_subalgebra
section lie_module
variables (R : Type u) (L : Type v) [comm_ring R] [lie_ring L] [lie_algebra R L]
variables (M : Type v) [add_comm_group M] [module R M]
section prio
set_option default_priority 100 -- see Note [default priority]
/--
A Lie module is a module over a commutative ring, together with a linear action of a Lie algebra
on this module, such that the Lie bracket acts as the commutator of endomorphisms.
-/
class lie_module extends linear_action R L M :=
(lie_act : ∀ (l l' : L) (m : M), act ⁅l, l'⁆ m = act l (act l' m) - act l' (act l m))
end prio
@[simp] lemma lie_act [lie_module R L M]
(l l' : L) (m : M) : linear_action.act R ⁅l, l'⁆ m =
linear_action.act R l (linear_action.act R l' m) -
linear_action.act R l' (linear_action.act R l m) :=
lie_module.lie_act l l' m
protected lemma of_endo_map_action (α : L →ₗ⁅R⁆ module.End R M) (x : L) (m : M) :
@linear_action.act R _ _ _ _ _ _ _ (linear_action.of_endo_map R L M α) x m = α x m := rfl
/--
A Lie morphism from a Lie algebra to the endomorphism algebra of a module yields
a Lie module structure.
-/
def lie_module.of_endo_morphism (α : L →ₗ⁅R⁆ module.End R M) : lie_module R L M := {
lie_act := by { intros x y m, rw [of_endo_map_action, lie_algebra.map_lie,
lie_algebra.endo_algebra_bracket], refl, },
..(linear_action.of_endo_map R L M α) }
/--
Every Lie algebra is a module over itself.
-/
instance lie_algebra_self_module : lie_module R L L :=
lie_module.of_endo_morphism R L L lie_algebra.Ad
/--
A Lie submodule of a Lie module is a submodule that is closed under the Lie bracket.
This is a sufficient condition for the subset itself to form a Lie module.
-/
structure lie_submodule [lie_module R L M] extends submodule R M :=
(lie_mem : ∀ {x : L} {m : M}, m ∈ carrier → linear_action.act R x m ∈ carrier)
instance lie_submodule_coe_submodule [lie_module R L M] :
has_coe (lie_submodule R L M) (submodule R M) := ⟨lie_submodule.to_submodule⟩
instance lie_submodule_has_mem [lie_module R L M] :
has_mem M (lie_submodule R L M) := ⟨λ x N, x ∈ (N : set M)⟩
instance lie_submodule_lie_module [lie_module R L M] (N : lie_submodule R L M) :
lie_module R L N := {
act := λ x m, ⟨linear_action.act R x m.val, N.lie_mem m.property⟩,
add_act := by { intros x y m, apply set_coe.ext, apply linear_action.add_act, },
act_add := by { intros x m n, apply set_coe.ext, apply linear_action.act_add, },
act_smul := by { intros r x y, apply set_coe.ext, apply linear_action.act_smul, },
smul_act := by { intros r x y, apply set_coe.ext, apply linear_action.smul_act, },
lie_act := by { intros x y m, apply set_coe.ext, apply lie_module.lie_act, } }
/--
An ideal of a Lie algebra is a Lie submodule of the Lie algebra as a Lie module over itself.
-/
abbreviation lie_ideal := lie_submodule R L L
lemma lie_mem_right (I : lie_ideal R L) (x y : L) (h : y ∈ I) : ⁅x, y⁆ ∈ I := I.lie_mem h
lemma lie_mem_left (I : lie_ideal R L) (x y : L) (h : x ∈ I) : ⁅x, y⁆ ∈ I := by {
rw [←lie_skew, ←neg_lie], apply lie_mem_right, assumption, }
/--
An ideal of a Lie algebra is a Lie subalgebra.
-/
def lie_ideal_subalgebra (I : lie_ideal R L) : lie_subalgebra R L := {
lie_mem := by { intros x y hx hy, apply lie_mem_right, exact hy, },
..I.to_submodule, }
end lie_module
namespace lie_submodule
variables {R : Type u} {L : Type v} [comm_ring R] [lie_ring L] [lie_algebra R L]
variables {M : Type v} [add_comm_group M] [module R M] [α : lie_module R L M]
variables (N : lie_submodule R L M) (I : lie_ideal R L)
/--
The quotient of a Lie module by a Lie submodule. It is a Lie module.
-/
abbreviation quotient := N.to_submodule.quotient
namespace quotient
variables {N I}
/--
Map sending an element of `M` to the corresponding element of `M/N`, when `N` is a lie_submodule of
the lie_module `N`.
-/
abbreviation mk : M → N.quotient := submodule.quotient.mk
lemma is_quotient_mk (m : M) :
quotient.mk' m = (mk m : N.quotient) := rfl
/-- Given a Lie module `M` over a Lie algebra `L`, together with a Lie submodule `N ⊆ M`, there
is a natural linear map from `L` to the endomorphisms of `M` leaving `N` invariant. -/
def lie_submodule_invariant : L →ₗ[R] submodule.compatible_maps N.to_submodule N.to_submodule :=
linear_map.cod_restrict _ (α.to_linear_action.to_endo_map _ _ _) N.lie_mem
instance lie_quotient_action : linear_action R L N.quotient :=
linear_action.of_endo_map _ _ _ (linear_map.comp (submodule.mapq_linear N N) lie_submodule_invariant)
lemma lie_quotient_action_apply (z : L) (m : M) :
linear_action.act R z (mk m : N.quotient) = mk (linear_action.act R z m) := rfl
/-- The quotient of a Lie module by a Lie submodule, is a Lie module. -/
instance lie_quotient_lie_module : lie_module R L N.quotient :=
{ lie_act := λ x y m', by { apply quotient.induction_on' m', intros m, rw is_quotient_mk,
repeat { rw lie_quotient_action_apply, }, rw lie_act, refl, },
..quotient.lie_quotient_action, }
instance lie_quotient_has_bracket : has_bracket (quotient I) := ⟨by {
intros x y,
apply quotient.lift_on₂' x y (λ x' y', mk ⁅x', y'⁆),
intros x₁ x₂ y₁ y₂ h₁ h₂,
apply (submodule.quotient.eq I.to_submodule).2,
have h : ⁅x₁, x₂⁆ - ⁅y₁, y₂⁆ = ⁅x₁, x₂ - y₂⁆ + ⁅x₁ - y₁, y₂⁆ := by simp [-lie_skew, sub_eq_add_neg],
rw h,
apply submodule.add_mem,
{ apply lie_mem_right R L I x₁ (x₂ - y₂) h₂, },
{ apply lie_mem_left R L I (x₁ - y₁) y₂ h₁, }, }⟩
@[simp] lemma mk_bracket (x y : L) :
(mk ⁅x, y⁆ : quotient I) = ⁅mk x, mk y⁆ := rfl
instance lie_quotient_lie_ring : lie_ring (quotient I) := {
add_lie := by { intros x' y' z', apply quotient.induction_on₃' x' y' z', intros x y z,
repeat { rw is_quotient_mk <|>
rw ←mk_bracket <|>
rw ←submodule.quotient.mk_add, },
apply congr_arg, apply add_lie, },
lie_add := by { intros x' y' z', apply quotient.induction_on₃' x' y' z', intros x y z,
repeat { rw is_quotient_mk <|>
rw ←mk_bracket <|>
rw ←submodule.quotient.mk_add, },
apply congr_arg, apply lie_add, },
lie_self := by { intros x', apply quotient.induction_on' x', intros x,
rw [is_quotient_mk, ←mk_bracket],
apply congr_arg, apply lie_self, },
jacobi := by { intros x' y' z', apply quotient.induction_on₃' x' y' z', intros x y z,
repeat { rw is_quotient_mk <|>
rw ←mk_bracket <|>
rw ←submodule.quotient.mk_add, },
apply congr_arg, apply lie_ring.jacobi, } }
instance lie_quotient_lie_algebra : lie_algebra R (quotient I) := {
lie_smul := by { intros t x' y', apply quotient.induction_on₂' x' y', intros x y,
repeat { rw is_quotient_mk <|>
rw ←mk_bracket <|>
rw ←submodule.quotient.mk_smul, },
apply congr_arg, apply lie_smul, } }
end quotient
end lie_submodule
/--
An important class of Lie rings are those arising from the associative algebra structure on
square matrices over a commutative ring.
-/
def matrix.lie_ring (n : Type u) (R : Type v)
[fintype n] [decidable_eq n] [comm_ring R] : lie_ring (matrix n n R) :=
lie_ring.of_associative_ring (matrix n n R)
local attribute [instance] matrix.lie_ring
/--
An important class of Lie algebras are those arising from the associative algebra structure on
square matrices over a commutative ring.
-/
def matrix.lie_algebra (n : Type u) (R : Type v)
[fintype n] [decidable_eq n] [comm_ring R] : lie_algebra R (matrix n n R) :=
lie_algebra.of_associative_algebra (matrix n n R)
|
642ef01da6ba77ec9ec4f85ef39d5f77b662718f
|
624f6f2ae8b3b1adc5f8f67a365c51d5126be45a
|
/stage0/src/Init/Data/Nat.lean
|
cf7be93c6e838845fae022378fe6f8d85baddf0a
|
[
"Apache-2.0"
] |
permissive
|
mhuisi/lean4
|
28d35a4febc2e251c7f05492e13f3b05d6f9b7af
|
dda44bc47f3e5d024508060dac2bcb59fd12e4c0
|
refs/heads/master
| 1,621,225,489,283
| 1,585,142,689,000
| 1,585,142,689,000
| 250,590,438
| 0
| 2
|
Apache-2.0
| 1,602,443,220,000
| 1,585,327,814,000
|
C
|
UTF-8
|
Lean
| false
| false
| 282
|
lean
|
/-
Copyright (c) 2016 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
-/
prelude
import Init.Data.Nat.Basic
import Init.Data.Nat.Div
import Init.Data.Nat.Bitwise
import Init.Data.Nat.Control
|
fa280efe3bf724ae444b8dc4776766c24ac31beb
|
8930e38ac0fae2e5e55c28d0577a8e44e2639a6d
|
/analysis/ennreal.lean
|
8fa4186bc307621c9047a604b44f7018af0bc228
|
[
"Apache-2.0"
] |
permissive
|
SG4316/mathlib
|
3d64035d02a97f8556ad9ff249a81a0a51a3321a
|
a7846022507b531a8ab53b8af8a91953fceafd3a
|
refs/heads/master
| 1,584,869,960,527
| 1,530,718,645,000
| 1,530,724,110,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 46,588
|
lean
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Johannes Hölzl
Extended non-negative reals
TODO: base ennreal on nnreal!
-/
import order.bounds algebra.ordered_group analysis.nnreal analysis.topology.infinite_sum
noncomputable theory
open classical set lattice filter
local attribute [instance] prop_decidable
variables {α : Type*} {β : Type*}
/-- The extended nonnegative real numbers. This is usually denoted [0, ∞],
and is relevant as the codomain of a measure. -/
inductive ennreal : Type
| of_nonneg_real : Πr:real, 0 ≤ r → ennreal
| infinity : ennreal
local notation `∞` := ennreal.infinity
namespace ennreal
variables {a b c d : ennreal} {r p q : ℝ}
section projections
/-- `of_real r` is the nonnegative extended real number `r` if `r` is nonnegative,
otherwise 0. -/
def of_real (r : ℝ) : ennreal := of_nonneg_real (max 0 r) (le_max_left 0 r)
/-- `of_ennreal x` returns `x` if it is real, otherwise 0. -/
def of_ennreal : ennreal → ℝ
| (of_nonneg_real r _) := r
| ∞ := 0
@[simp] lemma of_ennreal_of_real (h : 0 ≤ r) : of_ennreal (of_real r) = r := max_eq_right h
lemma zero_le_of_ennreal : ∀{a}, 0 ≤ of_ennreal a
| (of_nonneg_real r hr) := hr
| ∞ := le_refl 0
@[simp] lemma of_real_of_ennreal : ∀{a}, a ≠ ∞ → of_real (of_ennreal a) = a
| (of_nonneg_real r hr) h := by simp [of_real, of_ennreal, max, hr]
| ∞ h := false.elim $ h rfl
lemma forall_ennreal {p : ennreal → Prop} : (∀a, p a) ↔ (∀r (h : 0 ≤ r), p (of_real r)) ∧ p ∞ :=
⟨assume h, ⟨assume r hr, h _, h _⟩,
assume ⟨h₁, h₂⟩, ennreal.rec
begin
intros r hr,
let h₁ := h₁ r hr,
simp [of_real, max, hr] at h₁,
exact h₁
end
h₂⟩
end projections
section semiring
instance : has_zero ennreal := ⟨of_real 0⟩
instance : has_one ennreal := ⟨of_real 1⟩
instance : inhabited ennreal := ⟨0⟩
@[simp] lemma of_real_zero : of_real 0 = 0 := rfl
@[simp] lemma of_real_one : of_real 1 = 1 := rfl
@[simp] lemma zero_ne_infty : 0 ≠ ∞ := assume h, ennreal.no_confusion h
@[simp] lemma infty_ne_zero : ∞ ≠ 0 := assume h, ennreal.no_confusion h
@[simp] lemma of_real_ne_infty : of_real r ≠ ∞ := assume h, ennreal.no_confusion h
@[simp] lemma infty_ne_of_real : ∞ ≠ of_real r := assume h, ennreal.no_confusion h
@[simp] lemma of_real_eq_of_real_of (hr : 0 ≤ r) (hq : 0 ≤ q) : of_real r = of_real q ↔ r = q :=
by simp [of_real, max, hr, hq]; exact ⟨ennreal.of_nonneg_real.inj, by simp {contextual := tt}⟩
lemma of_real_ne_of_real_of (hr : 0 ≤ r) (hq : 0 ≤ q) : of_real r ≠ of_real q ↔ r ≠ q :=
by simp [hr, hq]
lemma of_real_of_nonpos (hr : r ≤ 0) : of_real r = 0 :=
have ∀r₁ r₂ : real, r₁ = r₂ → ∀h₁:0≤r₁, ∀h₂:0≤r₂, of_nonneg_real r₁ h₁ = of_nonneg_real r₂ h₂,
from assume r₁ r₂ h, match r₁, r₂, h with _, _, rfl := assume _ _, rfl end,
this _ _ (by simp [hr, max_eq_left]) _ _
lemma of_real_of_not_nonneg (hr : ¬ 0 ≤ r) : of_real r = 0 :=
of_real_of_nonpos $ le_of_lt $ lt_of_not_ge hr
instance : zero_ne_one_class ennreal :=
{ zero := 0, one := 1, zero_ne_one := (of_real_ne_of_real_of (le_refl 0) zero_le_one).mpr zero_ne_one }
@[simp] lemma of_real_eq_zero_iff (hr : 0 ≤ r) : of_real r = 0 ↔ r = 0 :=
of_real_eq_of_real_of hr (le_refl 0)
@[simp] lemma zero_eq_of_real_iff (hr : 0 ≤ r) : 0 = of_real r ↔ 0 = r :=
of_real_eq_of_real_of (le_refl 0) hr
@[simp] lemma of_real_eq_one_iff : of_real r = 1 ↔ r = 1 :=
match le_total 0 r with
| or.inl h := of_real_eq_of_real_of h zero_le_one
| or.inr h :=
have r ≠ 1, from assume h', lt_irrefl (0:ℝ) $ lt_of_lt_of_le (by rw [h']; exact zero_lt_one) h,
by simp [of_real_of_nonpos h, this]
end
@[simp] lemma one_eq_of_real_iff : 1 = of_real r ↔ 1 = r :=
by rw [eq_comm, of_real_eq_one_iff, eq_comm]
lemma of_nonneg_real_eq_of_real (hr : 0 ≤ r) : of_nonneg_real r hr = of_real r :=
by simp [of_real, hr, max]
protected def add : ennreal → ennreal → ennreal
| (of_nonneg_real a ha) (of_nonneg_real b hb) := of_real (a + b)
| _ _ := ∞
protected def mul : ennreal → ennreal → ennreal
| (of_nonneg_real a ha) (of_nonneg_real b hb) := of_real (a * b)
| ∞ (of_nonneg_real b hb) := if b = 0 then 0 else ∞
| (of_nonneg_real a ha) ∞ := if a = 0 then 0 else ∞
| _ _ := ∞
instance : has_add ennreal := ⟨ennreal.add⟩
instance : has_mul ennreal := ⟨ennreal.mul⟩
@[simp] lemma of_real_add (hr : 0 ≤ r) (hq : 0 ≤ p) :
of_real r + of_real p = of_real (r + p) :=
by simp [of_real, max, hr, hq, add_comm]; refl
@[simp] lemma add_infty : a + ∞ = ∞ :=
by cases a; refl
@[simp] lemma infty_add : ∞ + a = ∞ :=
by cases a; refl
@[simp] lemma of_real_mul_of_real (hr : 0 ≤ r) (hq : 0 ≤ p) :
of_real r * of_real p = of_real (r * p) :=
by simp [of_real, max, hr, hq]; refl
@[simp] lemma of_real_mul_infty (hr : 0 ≤ r) : of_real r * ∞ = (if r = 0 then 0 else ∞) :=
by simp [of_real, max, hr]; refl
@[simp] lemma infty_mul_of_real (hr : 0 ≤ r) : ∞ * of_real r = (if r = 0 then 0 else ∞) :=
by simp [of_real, max, hr]; refl
@[simp] lemma mul_infty : ∀{a}, a * ∞ = (if a = 0 then 0 else ∞) :=
forall_ennreal.mpr ⟨assume r hr, by simp [hr]; by_cases r = 0; simp [h], by simp; refl⟩
@[simp] lemma infty_mul : ∀{a}, ∞ * a = (if a = 0 then 0 else ∞) :=
forall_ennreal.mpr ⟨assume r hr, by simp [hr]; by_cases r = 0; simp [h], by simp; refl⟩
instance : add_comm_monoid ennreal :=
{ zero := 0,
add := (+),
add_zero := forall_ennreal.2 ⟨λ a ha,
by rw [← of_real_zero, of_real_add ha (le_refl _), add_zero], by simp⟩,
zero_add := forall_ennreal.2 ⟨λ a ha,
by rw [← of_real_zero, of_real_add (le_refl _) ha, zero_add], by simp⟩,
add_comm := begin
refine forall_ennreal.2 ⟨λ a ha, _, by simp⟩,
refine forall_ennreal.2 ⟨λ b hb, _, by simp⟩,
rw [of_real_add ha hb, of_real_add hb ha, add_comm]
end,
add_assoc := begin
refine forall_ennreal.2 ⟨λ a ha, _, by simp⟩,
refine forall_ennreal.2 ⟨λ b hb, _, by simp⟩,
refine forall_ennreal.2 ⟨λ c hc, _, by simp⟩,
rw [of_real_add ha hb, of_real_add (add_nonneg ha hb) hc,
of_real_add hb hc, of_real_add ha (add_nonneg hb hc), add_assoc],
end }
@[simp] lemma sum_of_real {α : Type*} {s : finset α} {f : α → ℝ} :
(∀a∈s, 0 ≤ f a) → s.sum (λa, of_real (f a)) = of_real (s.sum f) :=
finset.induction_on s (by simp) $ assume a s has ih h,
have 0 ≤ s.sum f, from finset.zero_le_sum $ assume a ha, h a $ finset.mem_insert_of_mem ha,
by simp [has, *] {contextual := tt}
protected lemma mul_zero : ∀a:ennreal, a * 0 = 0 :=
by simp [forall_ennreal, -of_real_zero, of_real_zero.symm] {contextual := tt}
protected lemma mul_comm : ∀a b:ennreal, a * b = b * a :=
by simp [forall_ennreal, mul_comm] {contextual := tt}
protected lemma zero_mul : ∀a:ennreal, 0 * a = 0 :=
by simp [forall_ennreal, -of_real_zero, of_real_zero.symm] {contextual := tt}
protected lemma mul_assoc : ∀a b c:ennreal, a * b * c = a * (b * c) :=
begin
rw [forall_ennreal], constructor,
{ intros ra ha,
by_cases ha' : ra = 0, simp [*, ennreal.mul_zero, ennreal.zero_mul],
rw [forall_ennreal], constructor,
{ intros rb hrb,
by_cases hb' : rb = 0, simp [*, ennreal.mul_zero, ennreal.zero_mul],
rw [forall_ennreal], constructor,
{ intros rc hrc, simp [*, zero_le_mul, mul_assoc] },
simp [*, zero_le_mul, mul_eq_zero_iff_eq_zero_or_eq_zero] },
rw [forall_ennreal], constructor,
{ intros rc hrc,
by_cases hc' : rc = 0, simp [*, ennreal.mul_zero, ennreal.zero_mul],
simp [*, zero_le_mul] },
simp [*] },
rw [forall_ennreal], constructor,
{ intros rb hrb,
by_cases hb' : rb = 0, simp [*, ennreal.mul_zero, ennreal.zero_mul],
rw [forall_ennreal], constructor,
{ intros rc hrc,
by_cases hb' : rc = 0;
simp [*, zero_le_mul, ennreal.mul_zero, mul_eq_zero_iff_eq_zero_or_eq_zero] },
simp [*, zero_le_mul, mul_eq_zero_iff_eq_zero_or_eq_zero] },
intro c, by_cases c = 0; simp *
end
protected lemma left_distrib : ∀a b c:ennreal, a * (b + c) = a * b + a * c :=
begin
rw [forall_ennreal], constructor,
{ intros ra ha,
by_cases ha' : ra = 0, simp [*, ennreal.mul_zero, ennreal.zero_mul],
rw [forall_ennreal], constructor,
{ intros rb hrb,
by_cases hb' : rb = 0, simp [*, ennreal.mul_zero, ennreal.zero_mul],
rw [forall_ennreal], constructor,
{ intros rc hrc, simp [*, zero_le_mul, add_nonneg, left_distrib] },
simp [*, zero_le_mul, mul_eq_zero_iff_eq_zero_or_eq_zero] },
rw [forall_ennreal], constructor,
{ intros rc hrc,
by_cases hv' : rc = 0, simp [*, ennreal.mul_zero, ennreal.zero_mul],
simp [*, zero_le_mul] },
simp [*] },
rw [forall_ennreal], constructor,
{ intros rb hrb,
by_cases hb' : rb = 0, simp [*, ennreal.mul_zero, ennreal.zero_mul],
rw [forall_ennreal], constructor,
{ intros rc hrc,
by_cases hb' : rc = 0;
simp [*, zero_le_mul, ennreal.mul_zero, mul_eq_zero_iff_eq_zero_or_eq_zero, add_nonneg,
add_eq_zero_iff_eq_zero_and_eq_zero_of_nonneg_of_nonneg] },
simp [*, zero_le_mul, mul_eq_zero_iff_eq_zero_or_eq_zero] },
intro c, by_cases c = 0; simp [*]
end
instance : comm_semiring ennreal :=
{ one := 1,
mul := (*),
mul_zero := ennreal.mul_zero,
zero_mul := ennreal.zero_mul,
one_mul := by simp [forall_ennreal, -of_real_one, of_real_one.symm, zero_le_one] {contextual := tt},
mul_one := by simp [forall_ennreal, -of_real_one, of_real_one.symm, zero_le_one] {contextual := tt},
mul_comm := ennreal.mul_comm,
mul_assoc := ennreal.mul_assoc,
left_distrib := ennreal.left_distrib,
right_distrib := assume a b c, by rw [ennreal.mul_comm, ennreal.left_distrib,
ennreal.mul_comm, ennreal.mul_comm b c]; refl,
..ennreal.add_comm_monoid }
end semiring
section order
instance : has_le ennreal := ⟨λ a b, b = ∞ ∨ (∃r p, 0 ≤ r ∧ r ≤ p ∧ a = of_real r ∧ b = of_real p)⟩
theorem le_def : a ≤ b ↔ b = ∞ ∨ (∃r p, 0 ≤ r ∧ r ≤ p ∧ a = of_real r ∧ b = of_real p) := iff.rfl
@[simp] lemma infty_le_iff : ∞ ≤ a ↔ a = ∞ :=
by simp [le_def]
@[simp] lemma le_infty : a ≤ ∞ :=
by simp [le_def]
@[simp] lemma of_real_le_of_real_iff (hr : 0 ≤ r) (hp : 0 ≤ p) :
of_real r ≤ of_real p ↔ r ≤ p :=
by simpa [le_def] using show (∃ (r' : ℝ), 0 ≤ r' ∧ ∃ (q : ℝ), r' ≤ q ∧
of_real r = of_real r' ∧ of_real p = of_real q) ↔ r ≤ p, from
⟨λ ⟨r', hr', q, hrq, h₁, h₂⟩,
by simp [hr, hr', le_trans hr' hrq, hp] at h₁ h₂; simp *,
λ h, ⟨r, hr, p, h, rfl, rfl⟩⟩
@[simp] lemma one_le_of_real_iff (hr : 0 ≤ r) : 1 ≤ of_real r ↔ 1 ≤ r :=
of_real_le_of_real_iff zero_le_one hr
instance : decidable_linear_order ennreal :=
{ le := (≤),
le_refl := by simp [forall_ennreal, le_refl] {contextual := tt},
le_trans := by simp [forall_ennreal] {contextual := tt}; exact assume a ha b hb c hc, le_trans,
le_antisymm := by simp [forall_ennreal] {contextual := tt}; exact assume a ha b hb, le_antisymm,
le_total := by simp [forall_ennreal] {contextual := tt}; exact assume a ha b hb, le_total _ _,
decidable_le := by apply_instance }
@[simp] lemma not_infty_lt : ¬ ∞ < a :=
by simp
@[simp] lemma of_real_lt_infty : of_real r < ∞ :=
⟨le_infty, assume h, ennreal.no_confusion $ infty_le_iff.mp h⟩
lemma le_of_real_iff (hr : 0 ≤ r) : ∀{a}, a ≤ of_real r ↔ (∃p, 0 ≤ p ∧ p ≤ r ∧ a = of_real p) :=
have ∀p, 0 ≤ p → (of_real p ≤ of_real r ↔ ∃ (q : ℝ), 0 ≤ q ∧ q ≤ r ∧ of_real p = of_real q),
from assume p hp, ⟨assume h, ⟨p, hp, (of_real_le_of_real_iff hp hr).mp h, rfl⟩,
assume ⟨q, hq, hqr, heq⟩, calc of_real p = of_real q : heq
... ≤ _ : (of_real_le_of_real_iff hq hr).mpr hqr⟩,
forall_ennreal.mpr $ ⟨this, by simp⟩
@[simp] lemma of_real_lt_of_real_iff :
0 ≤ r → 0 ≤ p → (of_real r < of_real p ↔ r < p) :=
by simp [lt_iff_le_not_le, -not_le] {contextual:=tt}
lemma lt_iff_exists_of_real : ∀{a b}, a < b ↔ (∃p, 0 ≤ p ∧ a = of_real p ∧ of_real p < b) :=
by simp [forall_ennreal]; exact λ r hr,
⟨λ p hp, ⟨λ h, ⟨r, by simp *⟩, λ ⟨q, h₁, h₂, h₃⟩, by simp * at *⟩, r, hr, rfl⟩
@[simp] protected lemma zero_le : ∀{a:ennreal}, 0 ≤ a :=
by simp [forall_ennreal, -of_real_zero, of_real_zero.symm] {contextual:=tt}
@[simp] lemma le_zero_iff_eq : a ≤ 0 ↔ a = 0 :=
⟨assume h, le_antisymm h ennreal.zero_le, assume h, h ▸ le_refl a⟩
@[simp] lemma zero_lt_of_real_iff : 0 < of_real p ↔ 0 < p :=
by_cases
(assume : 0 ≤ p, of_real_lt_of_real_iff (le_refl _) this)
(by simp [lt_irrefl, not_imp_not, le_of_lt, of_real_of_not_nonneg] {contextual := tt})
@[simp] lemma not_lt_zero : ¬ a < 0 :=
by simp
protected lemma zero_lt_one : 0 < (1 : ennreal) :=
zero_lt_of_real_iff.mpr zero_lt_one
lemma of_real_le_of_real (h : r ≤ p) : of_real r ≤ of_real p :=
match le_total 0 r with
| or.inl hr := (of_real_le_of_real_iff hr $ le_trans hr h).mpr h
| or.inr hr := by simp [of_real_of_nonpos, hr, zero_le]
end
lemma of_real_lt_of_real_iff_cases : of_real r < of_real p ↔ 0 < p ∧ r < p :=
begin
by_cases hp : 0 ≤ p,
{ by_cases hr : 0 ≤ r,
{ simp [*, iff_def] {contextual := tt},
show r < p → 0 < p, from lt_of_le_of_lt hr },
{ have h : r ≤ 0, from le_of_lt (lt_of_not_ge hr),
simp [*, of_real_of_not_nonneg, and_iff_left_of_imp (lt_of_le_of_lt h)] } },
simp [*, not_le, not_lt, le_of_lt, of_real_of_not_nonneg, and_comm] at *
end
instance : densely_ordered ennreal :=
⟨by simp [forall_ennreal, of_real_lt_of_real_iff_cases]; exact
λ r hr, ⟨λ p _ _ h,
let ⟨q, h₁, h₂⟩ := dense h in
have 0 ≤ q, from le_trans hr $ le_of_lt h₁,
⟨of_real q, by simp *⟩,
of_real (r + 1), by simp [hr, add_nonneg, lt_add_of_le_of_pos, zero_le_one, zero_lt_one]⟩⟩
private lemma add_le_add : ∀{b d}, a ≤ b → c ≤ d → a + c ≤ b + d :=
forall_ennreal.mpr ⟨assume r hr, forall_ennreal.mpr ⟨assume p hp,
by simp [le_of_real_iff, *, exists_imp_distrib, -and_imp] {contextual:=tt};
simp [*, add_nonneg, add_le_add] {contextual := tt}, by simp⟩, by simp⟩
private lemma lt_of_add_lt_add_left (h : a + b < a + c) : b < c :=
lt_of_not_ge $ assume h', lt_irrefl (a + b) (lt_of_lt_of_le h $ add_le_add (le_refl a) h')
instance : ordered_comm_monoid ennreal :=
{ add_le_add_left := assume a b h c, add_le_add (le_refl c) h,
lt_of_add_lt_add_left := assume a b c, lt_of_add_lt_add_left,
..ennreal.add_comm_monoid, ..ennreal.decidable_linear_order }
lemma le_add_left (h : a ≤ c) : a ≤ b + c :=
calc a = 0 + a : by simp
... ≤ b + c : add_le_add ennreal.zero_le h
lemma le_add_right (h : a ≤ b) : a ≤ b + c :=
calc a = a + 0 : by simp
... ≤ b + c : add_le_add h ennreal.zero_le
lemma lt_add_right : ∀{a b}, a < ∞ → 0 < b → a < a + b :=
by simp [forall_ennreal, of_real_lt_of_real_iff, add_nonneg, lt_add_of_le_of_pos] {contextual := tt}
instance : canonically_ordered_monoid ennreal :=
{ le_iff_exists_add := by simp [forall_ennreal] {contextual:=tt}; exact
λ r hr, ⟨λ p hp,
⟨λ h, ⟨of_real (p - r),
by rw [of_real_add (sub_nonneg.2 h) hr, sub_add_cancel]⟩,
λ ⟨c, hc⟩, by rw [← of_real_le_of_real_iff hr hp, hc]; exact le_add_left (le_refl _)⟩,
⟨∞, by simp⟩⟩,
..ennreal.ordered_comm_monoid }
lemma mul_le_mul : ∀{b d}, a ≤ b → c ≤ d → a * c ≤ b * d :=
forall_ennreal.mpr ⟨assume r hr, forall_ennreal.mpr ⟨assume p hp,
by simp [le_of_real_iff, *, exists_imp_distrib, -and_imp] {contextual:=tt};
simp [*, zero_le_mul, mul_le_mul] {contextual := tt},
by by_cases r = 0; simp [*] {contextual:=tt}⟩,
assume d, by by_cases d = 0; simp [*] {contextual:=tt}⟩
lemma le_of_forall_epsilon_le (h : ∀ε>0, b < ∞ → a ≤ b + of_real ε) : a ≤ b :=
suffices ∀r, 0 ≤ r → of_real r > b → a ≤ of_real r,
from le_of_forall_le_of_dense $ forall_ennreal.mpr $ by simp; assumption,
assume r hr hrb,
let ⟨p, hp, b_eq, hpr⟩ := lt_iff_exists_of_real.mp hrb in
have p < r, by simp [hp, hr] at hpr; assumption,
have pos : 0 < r - p, from lt_sub_iff_add_lt.mpr $ by simp [this],
calc a ≤ b + of_real (r - p) : h _ pos (by simp [b_eq])
... = of_real r :
by simp [-sub_eq_add_neg, le_of_lt pos, hp, hr, b_eq]; simp [sub_eq_add_neg]
protected lemma lt_iff_exists_rat_btwn :
a < b ↔ (∃q:ℚ, 0 ≤ q ∧ a < of_real q ∧ of_real q < b) :=
⟨λ h, by
rcases lt_iff_exists_of_real.1 h with ⟨p, p0, rfl, _⟩;
rcases dense h with ⟨c, pc, cb⟩;
rcases lt_iff_exists_of_real.1 cb with ⟨r, r0, rfl, _⟩;
rcases exists_rat_btwn ((of_real_lt_of_real_iff p0 r0).1 pc) with ⟨q, pq, qr⟩;
have q0 := le_trans p0 (le_of_lt pq); exact
⟨q, rat.cast_nonneg.1 q0, (of_real_lt_of_real_iff p0 q0).2 pq,
lt_trans ((of_real_lt_of_real_iff q0 r0).2 qr) cb⟩,
λ ⟨q, q0, qa, qb⟩, lt_trans qa qb⟩
end order
section complete_lattice
@[simp] lemma infty_mem_upper_bounds {s : set ennreal} : ∞ ∈ upper_bounds s :=
assume x hx, le_infty
lemma of_real_mem_upper_bounds {s : set real} (hs : ∀x∈s, (0:real) ≤ x) (hr : 0 ≤ r) :
of_real r ∈ upper_bounds (of_real '' s) ↔ r ∈ upper_bounds s :=
by simp [upper_bounds, ball_image_iff, -mem_image, *] {contextual := tt}
lemma is_lub_of_real {s : set real} (hs : ∀x∈s, (0:real) ≤ x) (hr : 0 ≤ r) (h : s ≠ ∅) :
is_lub (of_real '' s) (of_real r) ↔ is_lub s r :=
let ⟨x, hx₁⟩ := exists_mem_of_ne_empty h in
have hx₂ : 0 ≤ x, from hs _ hx₁,
begin
simp [is_lub, is_least, lower_bounds, of_real_mem_upper_bounds, hs, hr, forall_ennreal]
{contextual := tt},
exact (and_congr_right $ assume hrb,
⟨assume h p hp, h _ (le_trans hx₂ $ hp _ hx₁) hp, assume h p _ hp, h _ hp⟩)
end
protected lemma exists_is_lub (s : set ennreal) : ∃x, is_lub s x :=
by_cases (assume h : s = ∅, ⟨0, by simp [h, is_lub, is_least, lower_bounds, upper_bounds]⟩) $
assume h : s ≠ ∅,
let ⟨x, hx⟩ := exists_mem_of_ne_empty h in
by_cases
(assume : ∃r, 0 ≤ r ∧ of_real r ∈ upper_bounds s,
let ⟨r, hr, hb⟩ := this in
let s' := of_real ⁻¹' s ∩ {x | 0 ≤ x} in
have s'_nn : ∀x∈s', (0:real) ≤ x, from assume x h, h.right,
have s_eq : s = of_real '' s',
from set.ext $ assume a, ⟨assume ha,
let ⟨q, hq₁, hq₂, hq₃⟩ := (le_of_real_iff hr).mp (hb _ ha) in
⟨q, ⟨show of_real q ∈ s, from hq₃ ▸ ha, hq₁⟩, hq₃ ▸ rfl⟩,
assume ⟨r, ⟨hr₁, hr₂⟩, hr₃⟩, hr₃ ▸ hr₁⟩,
have x ∈ of_real '' s', from s_eq ▸ hx,
let ⟨x', hx', hx'_eq⟩ := this in
have ∃x, is_lub s' x, from exists_supremum_real ‹x' ∈ s'› $
(of_real_mem_upper_bounds s'_nn hr).mp $ s_eq ▸ hb,
let ⟨x, hx⟩ := this in
have 0 ≤ x, from le_trans hx'.right $ hx.left _ hx',
⟨of_real x, by rwa [s_eq, is_lub_of_real s'_nn this]; exact ne_empty_of_mem hx'⟩)
begin
intro h,
existsi ∞,
simp [is_lub, is_least, lower_bounds, forall_ennreal, not_exists, not_and] at h ⊢,
assumption
end
instance : has_Sup ennreal := ⟨λs, some (ennreal.exists_is_lub s)⟩
protected lemma is_lub_Sup {s : set ennreal} : is_lub s (Sup s) :=
some_spec _
protected lemma le_Sup {s : set ennreal} : a ∈ s → a ≤ Sup s :=
ennreal.is_lub_Sup.left a
protected lemma Sup_le {s : set ennreal} : (∀b ∈ s, b ≤ a) → Sup s ≤ a :=
ennreal.is_lub_Sup.right _
instance : complete_linear_order ennreal :=
{ top := ∞,
bot := 0,
inf := min,
sup := max,
Sup := Sup,
Inf := λs, Sup {a | ∀b ∈ s, a ≤ b},
le_top := assume a, le_infty,
bot_le := assume a, ennreal.zero_le,
le_sup_left := le_max_left,
le_sup_right := le_max_right,
sup_le := assume a b c, max_le,
inf_le_left := min_le_left,
inf_le_right := min_le_right,
le_inf := assume a b c, le_min,
le_Sup := assume s a, ennreal.le_Sup,
Sup_le := assume s a, ennreal.Sup_le,
le_Inf := assume s a h, ennreal.le_Sup h,
Inf_le := assume s a ha, ennreal.Sup_le $ assume b hb, hb _ ha,
..ennreal.decidable_linear_order }
@[simp] protected lemma bot_eq_zero : (⊥ : ennreal) = 0 := rfl
@[simp] protected lemma top_eq_infty : (⊤ : ennreal) = ∞ := rfl
end complete_lattice
section topological_space
open topological_space
instance : topological_space ennreal :=
topological_space.generate_from {s | ∃a, s = {b | a < b} ∨ s = {b | b < a}}
instance : orderable_topology ennreal := ⟨rfl⟩
instance : t2_space ennreal := by apply_instance
instance : second_countable_topology ennreal :=
⟨⟨⋃q ≥ (0:ℚ), {{a : ennreal | a < of_real q}, {a : ennreal | of_real ↑q < a}},
countable_bUnion countable_encodable $ assume a ha, countable_insert countable_singleton,
le_antisymm
(generate_from_le $ λ s h, begin
rcases h with ⟨a, hs | hs⟩;
[ rw show s = ⋃q∈{q:ℚ | 0 ≤ q ∧ a < of_real q}, {b | of_real q < b},
from set.ext (assume b, by simp [hs, @ennreal.lt_iff_exists_rat_btwn a b, and_assoc]),
rw show s = ⋃q∈{q:ℚ | 0 ≤ q ∧ of_real q < a}, {b | b < of_real q},
from set.ext (assume b, by simp [hs, @ennreal.lt_iff_exists_rat_btwn b a, and_comm, and_assoc])];
{ apply is_open_Union, intro q,
apply is_open_Union, intro hq,
exact generate_open.basic _ (mem_bUnion hq.1 $ by simp) }
end)
(generate_from_le $ by simp [or_imp_distrib, is_open_lt', is_open_gt'] {contextual := tt})⟩⟩
lemma continuous_of_real : continuous of_real :=
have ∀x:ennreal, is_open {a : ℝ | x < of_real a},
from forall_ennreal.mpr ⟨assume r hr,
by simp [of_real_lt_of_real_iff_cases]; exact is_open_and (is_open_lt' 0) (is_open_lt' r),
by simp⟩,
have ∀x:ennreal, is_open {a : ℝ | of_real a < x},
from forall_ennreal.mpr ⟨assume r hr,
by simp [of_real_lt_of_real_iff_cases]; exact is_open_and is_open_const (is_open_gt' r),
by simp [is_open_const]⟩,
continuous_generated_from $ begin simp [or_imp_distrib, *] {contextual := tt} end
lemma tendsto_of_real : tendsto of_real (nhds r) (nhds (of_real r)) :=
continuous_iff_tendsto.mp continuous_of_real r
lemma tendsto_of_ennreal (hr : 0 ≤ r) : tendsto of_ennreal (nhds (of_real r)) (nhds r) :=
tendsto_orderable_unbounded (no_top _) (no_bot _) $
assume l u hl hu,
by_cases
(assume hr : r = 0,
have hl : l < 0, by rw [hr] at hl; exact hl,
have hu : 0 < u, by rw [hr] at hu; exact hu,
have nhds (of_real r) = (⨅l (h₂ : 0 < l), principal {x | x < l}),
from calc nhds (of_real r) = nhds ⊥ : by simp [hr]; refl
... = (⨅u (h₂ : 0 < u), principal {x | x < u}) : nhds_bot_orderable,
have {x | x < of_real u} ∈ (nhds (of_real r)).sets,
by rw [this];
from mem_infi_sets (of_real u) (mem_infi_sets (by simp *) (subset.refl _)),
((nhds (of_real r)).upwards_sets this $ forall_ennreal.mpr $
by simp [le_of_lt, hu, hl] {contextual := tt}; exact assume p hp _, lt_of_lt_of_le hl hp))
(assume hr_ne : r ≠ 0,
have hu0 : 0 < u, from lt_of_le_of_lt hr hu,
have hu_nn: 0 ≤ u, from le_of_lt hu0,
have hr' : 0 < r, from lt_of_le_of_ne hr hr_ne.symm,
have hl' : ∃l, l < of_real r, from ⟨0, by simp [hr, hr']⟩,
have hu' : ∃u, of_real r < u, from ⟨of_real u, by simp [hr, hu_nn, hu]⟩,
begin
rw [mem_nhds_unbounded hu' hl'],
existsi (of_real l), existsi (of_real u),
simp [*, of_real_lt_of_real_iff_cases, forall_ennreal] {contextual := tt}
end)
lemma nhds_of_real_eq_map_of_real_nhds {r : ℝ} (hr : 0 ≤ r) :
nhds (of_real r) = (nhds r).map of_real :=
have h₁ : {x | x < ∞} ∈ (nhds (of_real r)).sets,
from mem_nhds_sets (is_open_gt' ∞) of_real_lt_infty,
have h₂ : {x | x < ∞} ∈ ((nhds r).map of_real).sets,
from mem_map.mpr $ univ_mem_sets' $ assume a, of_real_lt_infty,
have h : ∀x<∞, ∀y<∞, of_ennreal x = of_ennreal y → x = y,
by simp [forall_ennreal] {contextual:=tt},
le_antisymm
(by_cases
(assume (hr : r = 0) s (hs : {x | of_real x ∈ s} ∈ (nhds r).sets),
have hs : {x | of_real x ∈ s} ∈ (nhds (0:ℝ)).sets, from hr ▸ hs,
let ⟨l, u, hl, hu, h⟩ := (mem_nhds_unbounded (no_top 0) (no_bot 0)).mp hs in
have nhds (of_real r) = nhds ⊥, by simp [hr]; refl,
begin
rw [this, nhds_bot_orderable],
apply mem_infi_sets (of_real u) _,
apply mem_infi_sets (zero_lt_of_real_iff.mpr hu) _,
simp [set.subset_def],
intro x, rw [lt_iff_exists_of_real],
simp [le_of_lt hu] {contextual := tt},
exact assume p hp _ hpu, h _ (lt_of_lt_of_le hl hp) hpu
end)
(assume : r ≠ 0,
have hr' : 0 < r, from lt_of_le_of_ne hr this.symm,
have h' : map (of_ennreal ∘ of_real) (nhds r) = map id (nhds r),
from map_cong $ (nhds r).upwards_sets (mem_nhds_sets (is_open_lt' 0) hr') $
assume r hr, by simp [le_of_lt hr, (∘)],
le_of_map_le_map_inj' h₁ h₂ h $ le_trans (tendsto_of_ennreal hr) $ by simp [h']))
tendsto_of_real
lemma nhds_of_real_eq_map_of_real_nhds_nonneg {r : ℝ} (hr : 0 ≤ r) :
nhds (of_real r) = (nhds r ⊓ principal {x | 0 ≤ x}).map of_real :=
by rw [nhds_of_real_eq_map_of_real_nhds hr];
from by_cases
(assume : r = 0,
le_antisymm
(assume s (hs : {a | of_real a ∈ s} ∈ (nhds r ⊓ principal {x | 0 ≤ x}).sets),
let ⟨t₁, ht₁, t₂, ht₂, ht⟩ := mem_inf_sets.mp hs in
show {a | of_real a ∈ s} ∈ (nhds r).sets,
from (nhds r).upwards_sets ht₁ $ assume a ha,
match le_total 0 a with
| or.inl h := have a ∈ t₂, from ht₂ h, ht ⟨ha, this⟩
| or.inr h :=
have r ∈ t₁ ∩ t₂, from ⟨mem_of_nhds ht₁, ht₂ (le_of_eq ‹r = 0›.symm)⟩,
have of_real 0 ∈ s, from ‹r = 0› ▸ ht this,
by simp [of_real_of_nonpos h]; assumption
end)
(map_mono inf_le_left))
(assume : r ≠ 0,
have 0 < r, from lt_of_le_of_ne hr this.symm,
have nhds r ⊓ principal {x : ℝ | 0 ≤ x} = nhds r,
from inf_of_le_left $ le_principal_iff.mpr $ le_mem_nhds this,
by simp [*])
instance : topological_add_monoid ennreal :=
have hinf : ∀a, tendsto (λ(p : ennreal × ennreal), p.1 + p.2) ((nhds ∞).prod (nhds a)) (nhds ⊤),
begin
intro a,
rw [nhds_top_orderable],
apply tendsto_infi.2 _, intro b,
apply tendsto_infi.2 _, intro hb,
apply tendsto_principal.2 _,
revert b,
simp [forall_ennreal],
exact assume r hr, mem_prod_iff.mpr ⟨
{a | of_real r < a}, mem_nhds_sets (is_open_lt' _) of_real_lt_infty,
univ, univ_mem_sets, assume ⟨c, d⟩ ⟨hc, _⟩, lt_of_lt_of_le hc $ le_add_right $ le_refl _⟩
end,
have h : ∀{p r : ℝ}, 0 ≤ p → 0 ≤ r → tendsto (λp:ennreal×ennreal, p.1 + p.2)
((nhds (of_real r)).prod (nhds (of_real p))) (nhds (of_real (r + p))),
from assume p r hp hr,
begin
rw [nhds_of_real_eq_map_of_real_nhds_nonneg hp, nhds_of_real_eq_map_of_real_nhds_nonneg hr,
prod_map_map_eq, ←prod_inf_prod, prod_principal_principal, ←nhds_prod_eq],
exact tendsto_map' (tendsto_cong
(tendsto_le_left inf_le_left $ tendsto_add'.comp tendsto_of_real)
(mem_inf_sets_of_right $ mem_principal_sets.mpr $ by simp [subset_def, (∘)] {contextual:=tt}))
end,
have ∀{a₁ a₂ : ennreal}, tendsto (λp:ennreal×ennreal, p.1 + p.2) (nhds (a₁, a₂)) (nhds (a₁ + a₂)),
from forall_ennreal.mpr ⟨assume r hr, forall_ennreal.mpr
⟨assume p hp, by simp [*, nhds_prod_eq]; exact h _ _,
begin
rw [nhds_prod_eq, prod_comm],
apply tendsto_map' _,
simp [(∘)],
exact hinf _
end⟩,
by simp [nhds_prod_eq]; exact hinf⟩,
⟨continuous_iff_tendsto.mpr $ assume ⟨a₁, a₂⟩, this⟩
protected lemma tendsto_mul : ∀{a b : ennreal}, b ≠ 0 → tendsto ((*) a) (nhds b) (nhds (a * b)) :=
forall_ennreal.mpr $ and.intro
(assume p hp, forall_ennreal.mpr $ and.intro
(assume r hr hr0,
have r ≠ 0, from assume h, by simp [h] at hr0; contradiction,
have 0 < r, from lt_of_le_of_ne hr this.symm,
have tendsto (λr, of_real (p * r)) (nhds r ⊓ principal {x : ℝ | 0 ≤ x}) (nhds (of_real (p * r))),
from tendsto.comp (tendsto_mul tendsto_const_nhds $ tendsto_id' inf_le_left) tendsto_of_real,
begin
rw [nhds_of_real_eq_map_of_real_nhds_nonneg hr, of_real_mul_of_real hp hr],
apply tendsto_map' (tendsto_cong this $ mem_inf_sets_of_right $ mem_principal_sets.mpr _),
simp [subset_def, (∘), hp] {contextual := tt}
end)
(assume _, by_cases
(assume : p = 0,
tendsto_cong tendsto_const_nhds $
(nhds ∞).upwards_sets (mem_nhds_sets (is_open_lt' _) (@of_real_lt_infty 1)) $
by simp [this])
(assume p0 : p ≠ 0,
have p_pos : 0 < p, from lt_of_le_of_ne hp p0.symm,
suffices tendsto ((*) (of_real p)) (nhds ⊤) (nhds ⊤), { simpa [hp, p0] },
by rw [nhds_top_orderable];
from (tendsto_infi.2 $ assume l, tendsto_infi.2 $ assume hl,
let ⟨q, hq, hlq, _⟩ := ennreal.lt_iff_exists_of_real.mp hl in
tendsto_infi' (of_real (q / p)) $ tendsto_infi' of_real_lt_infty $ tendsto_principal_principal.2 $
forall_ennreal.mpr $ and.intro
begin
have : ∀r:ℝ, 0 < r → q / p < r → q < p * r ∧ 0 < p * r,
from assume r r_pos qpr,
have q < p * r,
from calc q = (q / p) * p : by rw [div_mul_cancel _ (ne_of_gt p_pos)]
... < r * p : mul_lt_mul_of_pos_right qpr p_pos
... = p * r : mul_comm _ _,
⟨this, mul_pos p_pos r_pos⟩,
simp [hlq, hp, of_real_lt_of_real_iff_cases, this] {contextual := tt}
end
begin simp [hp, p0]; exact hl end))))
begin
assume b hb0,
have : 0 < b, from lt_of_le_of_ne ennreal.zero_le hb0.symm,
suffices : tendsto ((*) ∞) (nhds b) (nhds ∞), { simpa [hb0] },
apply (tendsto_cong tendsto_const_nhds $
(nhds b).upwards_sets (mem_nhds_sets (is_open_lt' _) this) _),
{ assume c hc,
have : c ≠ 0, from assume h, by simp [h] at hc; contradiction,
simp [this] }
end
lemma supr_of_real {s : set ℝ} {a : ℝ} (h : is_lub s a) : (⨆a∈s, of_real a) = of_real a :=
suffices Sup (of_real '' s) = of_real a, by simpa [Sup_image],
is_lub_iff_Sup_eq.mp $ is_lub_of_is_lub_of_tendsto
(assume x _ y _, of_real_le_of_real) h (ne_empty_of_is_lub h)
(tendsto.comp (tendsto_id' inf_le_left) tendsto_of_real)
lemma infi_of_real {s : set ℝ} {a : ℝ} (h : is_glb s a) : (⨅a∈s, of_real a) = of_real a :=
suffices Inf (of_real '' s) = of_real a, by simpa [Inf_image],
is_glb_iff_Inf_eq.mp $ is_glb_of_is_glb_of_tendsto
(assume x _ y _, of_real_le_of_real) h (ne_empty_of_is_glb h)
(tendsto.comp (tendsto_id' inf_le_left) tendsto_of_real)
lemma Inf_add {s : set ennreal} : Inf s + a = ⨅b∈s, b + a :=
by_cases
(assume : s = ∅, by simp [this, ennreal.top_eq_infty])
(assume : s ≠ ∅,
have Inf ((λb, b + a) '' s) = Inf s + a,
from is_glb_iff_Inf_eq.mp $ is_glb_of_is_glb_of_tendsto
(assume x _ y _ h, add_le_add' h (le_refl _))
is_glb_Inf
this
(tendsto_add (tendsto_id' inf_le_left) tendsto_const_nhds),
by simp [Inf_image, -add_comm] at this; exact this.symm)
lemma Sup_add {s : set ennreal} (hs : s ≠ ∅) : Sup s + a = ⨆b∈s, b + a :=
have Sup ((λb, b + a) '' s) = Sup s + a,
from is_lub_iff_Sup_eq.mp $ is_lub_of_is_lub_of_tendsto
(assume x _ y _ h, add_le_add' h (le_refl _))
is_lub_Sup
hs
(tendsto_add (tendsto_id' inf_le_left) tendsto_const_nhds),
by simp [Sup_image, -add_comm] at this; exact this.symm
lemma supr_add {ι : Sort*} {s : ι → ennreal} [h : nonempty ι] : supr s + a = ⨆b, s b + a :=
let ⟨x⟩ := h in
calc supr s + a = Sup (range s) + a : by simp [Sup_range]
... = (⨆b∈range s, b + a) : Sup_add $ ne_empty_iff_exists_mem.mpr ⟨s x, x, rfl⟩
... = _ : by simp [supr_range, -mem_range]
lemma infi_add {ι : Sort*} {s : ι → ennreal} {a : ennreal} : infi s + a = ⨅b, s b + a :=
calc infi s + a = Inf (range s) + a : by simp [Inf_range]
... = (⨅b∈range s, b + a) : Inf_add
... = _ : by simp [infi_range, -mem_range]
lemma add_infi {ι : Sort*} {s : ι → ennreal} {a : ennreal} : a + infi s = ⨅b, a + s b :=
by rw [add_comm, infi_add]; simp
lemma infi_add_infi {ι : Sort*} {f g : ι → ennreal} (h : ∀i j, ∃k, f k + g k ≤ f i + g j) :
infi f + infi g = (⨅a, f a + g a) :=
suffices (⨅a, f a + g a) ≤ infi f + infi g,
from le_antisymm (le_infi $ assume a, add_le_add' (infi_le _ _) (infi_le _ _)) this,
calc (⨅a, f a + g a) ≤ (⨅a', ⨅a, f a + g a') :
le_infi $ assume a', le_infi $ assume a, let ⟨k, h⟩ := h a a' in infi_le_of_le k h
... ≤ infi f + infi g :
by simp [infi_add, add_infi, -add_comm, -le_infi_iff]
lemma infi_sum {α : Type*} {ι : Sort*} {f : ι → α → ennreal} {s : finset α} [inhabited ι]
(h : ∀(t : finset α) (i j : ι), ∃k, ∀a∈t, f k a ≤ f i a ∧ f k a ≤ f j a) :
(⨅i, s.sum (f i)) = s.sum (λa, ⨅i, f i a) :=
finset.induction_on s (by simp) $ assume a s ha ih,
have ∀ (i j : ι), ∃ (k : ι), f k a + s.sum (f k) ≤ f i a + s.sum (f j),
from assume i j,
let ⟨k, hk⟩ := h (insert a s) i j in
⟨k, add_le_add' (hk a (finset.mem_insert_self _ _)).left $ finset.sum_le_sum' $
assume a ha, (hk _ $ finset.mem_insert_of_mem ha).right⟩,
by simp [ha, ih.symm, infi_add_infi this]
end topological_space
section sub
instance : has_sub ennreal := ⟨λa b, Inf {d | a ≤ d + b}⟩
@[simp] lemma sub_eq_zero_of_le (h : a ≤ b) : a - b = 0 :=
le_antisymm (Inf_le $ le_add_left h) ennreal.zero_le
@[simp] lemma sub_add_cancel_of_le (h : b ≤ a) : (a - b) + b = a :=
let ⟨c, hc⟩ := le_iff_exists_add.mp h in
eq.trans Inf_add $ le_antisymm
(infi_le_of_le c $ infi_le_of_le (by simp [hc]) $ by simp [hc])
(le_infi $ assume d, le_infi $ assume hd, hd)
@[simp] lemma add_sub_cancel_of_le (h : b ≤ a) : b + (a - b) = a :=
by rwa [add_comm, sub_add_cancel_of_le]
lemma sub_add_self_eq_max : (a - b) + b = max a b :=
match le_total a b with
| or.inl h := by simp [h, max_eq_right]
| or.inr h := by simp [h, max_eq_left]
end
lemma sub_le_sub (h₁ : a ≤ b) (h₂ : d ≤ c) : a - c ≤ b - d :=
Inf_le_Inf $ assume e (h : b ≤ e + d),
calc a ≤ b : h₁
... ≤ e + d : h
... ≤ e + c : add_le_add (le_refl _) h₂
@[simp] protected lemma sub_le_iff_le_add : a - b ≤ c ↔ a ≤ c + b :=
iff.intro
(assume h : a - b ≤ c,
calc a ≤ (a - b) + b : by rw [sub_add_self_eq_max]; exact le_max_left _ _
... ≤ c + b : add_le_add h (le_refl _))
(assume h : a ≤ c + b,
calc a - b ≤ (c + b) - b : sub_le_sub h (le_refl _)
... ≤ c : Inf_le (le_refl (c + b)))
@[simp] lemma zero_sub : 0 - a = 0 :=
le_antisymm (Inf_le ennreal.zero_le) ennreal.zero_le
@[simp] lemma sub_infty : a - ∞ = 0 :=
le_antisymm (Inf_le le_infty) ennreal.zero_le
@[simp] lemma sub_zero : a - 0 = a :=
eq.trans (add_zero (a - 0)).symm $ by simp
@[simp] lemma infty_sub_of_real (hr : 0 ≤ r) : ∞ - of_real r = ∞ :=
top_unique $ le_Inf $ by simp [forall_ennreal, hr] {contextual := tt}; refl
@[simp] lemma of_real_sub_of_real (hr : 0 ≤ r) : of_real p - of_real r = of_real (p - r) :=
match le_total p r with
| or.inr h :=
have 0 ≤ p - r, from le_sub_iff_add_le.mpr $ by simp [h],
have eq : r + (p - r) = p, by rw [add_comm, sub_add_cancel],
le_antisymm
(Inf_le $ by simp [-sub_eq_add_neg, this, hr, le_trans hr h, eq, le_refl])
(le_Inf $
by simp [forall_ennreal, hr, le_trans hr h, add_nonneg, -sub_eq_add_neg,
this, sub_le_iff_le_add]
{contextual := tt})
| or.inl h :=
begin
rw [sub_eq_zero_of_le, of_real_of_nonpos],
{ rw [sub_le_iff_le_add], simp [h] },
{ exact of_real_le_of_real h }
end
end
@[simp] lemma add_sub_self : ∀{a b : ennreal}, b < ∞ → (a + b) - b = a :=
by simp [forall_ennreal] {contextual:=tt}
protected lemma tendsto_of_real_sub (hr : 0 ≤ r) :
tendsto (λb, of_real r - b) (nhds b) (nhds (of_real r - b)) :=
by_cases
(assume h : of_real r < b,
suffices tendsto (λb, of_real r - b) (nhds b) (nhds ⊥),
by simpa [le_of_lt h],
by rw [nhds_bot_orderable];
from (tendsto_infi.2 $ assume p, tendsto_infi.2 $ assume hp : 0 < p, tendsto_principal.2 $
(nhds b).upwards_sets (mem_nhds_sets (is_open_lt' (of_real r)) h) $
by simp [forall_ennreal, hr, le_of_lt, hp] {contextual := tt}))
(assume h : ¬ of_real r < b,
let ⟨p, hp, hpr, eq⟩ := (le_of_real_iff hr).mp $ not_lt.1 h in
have tendsto (λb, of_real ((r - b))) (nhds p ⊓ principal {x | 0 ≤ x}) (nhds (of_real (r - p))),
from tendsto.comp (tendsto_sub tendsto_const_nhds (tendsto_id' inf_le_left)) tendsto_of_real,
have tendsto (λb, of_real r - b) (map of_real (nhds p ⊓ principal {x | 0 ≤ x}))
(nhds (of_real (r - p))),
from tendsto_map' $ tendsto_cong this $ mem_inf_sets_of_right $
by simp [(∘), -sub_eq_add_neg] {contextual:=tt},
by simp at this; simp [eq, hr, hp, hpr, nhds_of_real_eq_map_of_real_nhds_nonneg, this])
lemma sub_supr {ι : Sort*} [hι : nonempty ι] {b : ι → ennreal} (hr : a < ⊤) :
a - (⨆i, b i) = (⨅i, a - b i) :=
let ⟨i⟩ := hι in
let ⟨r, hr, eq, _⟩ := lt_iff_exists_of_real.mp hr in
have Inf ((λb, of_real r - b) '' range b) = of_real r - (⨆i, b i),
from is_glb_iff_Inf_eq.mp $ is_glb_of_is_lub_of_tendsto
(assume x _ y _, sub_le_sub (le_refl _))
is_lub_supr
(ne_empty_of_mem ⟨i, rfl⟩)
(tendsto.comp (tendsto_id' inf_le_left) (ennreal.tendsto_of_real_sub hr)),
by rw [eq, ←this]; simp [Inf_image, infi_range, -mem_range]
end sub
section inv
instance : has_inv ennreal := ⟨λa, Inf {b | 1 ≤ a * b}⟩
instance : has_div ennreal := ⟨λa b, a * b⁻¹⟩
@[simp] lemma inv_zero : (0 : ennreal)⁻¹ = ∞ :=
show Inf {b : ennreal | 1 ≤ 0 * b} = ∞, by simp; refl
@[simp] lemma inv_infty : (∞ : ennreal)⁻¹ = 0 :=
bot_unique $ le_of_forall_le_of_dense $ λ a (h : a > 0), Inf_le $ by simp [*, ne_of_gt h]
@[simp] lemma inv_of_real (hr : 0 < r) : (of_real r)⁻¹ = of_real (r⁻¹) :=
have 0 ≤ r⁻¹, from le_of_lt (inv_pos hr),
have r0 : 0 ≤ r, from le_of_lt hr,
le_antisymm
(Inf_le $ by simp [*, inv_pos hr, mul_inv_cancel (ne_of_gt hr)])
(le_Inf $ forall_ennreal.mpr ⟨λ p hp,
by simp [*, show 0 ≤ r*p, from mul_nonneg r0 hp];
intro; rwa [inv_eq_one_div, div_le_iff hr, mul_comm],
λ h, le_top⟩)
lemma inv_inv : ∀{a:ennreal}, (a⁻¹)⁻¹ = a :=
forall_ennreal.mpr $ and.intro
(assume r hr, by_cases
(assume : r = 0, by simp [this])
(assume : r ≠ 0,
have 0 < r, from lt_of_le_of_ne hr this.symm,
by simp [*, inv_pos, inv_inv']))
(by simp)
end inv
section tsum
variables {f g : α → ennreal}
protected lemma is_sum : is_sum f (⨆s:finset α, s.sum f) :=
tendsto_orderable.2
⟨assume a' ha',
let ⟨s, hs⟩ := lt_supr_iff.mp ha' in
mem_at_top_sets.mpr ⟨s, assume t ht, lt_of_lt_of_le hs $ finset.sum_le_sum_of_subset ht⟩,
assume a' ha',
univ_mem_sets' $ assume s,
have s.sum f ≤ ⨆(s : finset α), s.sum f,
from le_supr (λ(s : finset α), s.sum f) s,
lt_of_le_of_lt this ha'⟩
@[simp] protected lemma has_sum : has_sum f := ⟨_, ennreal.is_sum⟩
protected lemma tsum_eq_supr_sum : (∑a, f a) = (⨆s:finset α, s.sum f) :=
tsum_eq_is_sum ennreal.is_sum
protected lemma tsum_sigma {β : α → Type*} (f : Πa, β a → ennreal) :
(∑p:Σa, β a, f p.1 p.2) = (∑a, ∑b, f a b) :=
tsum_sigma (assume b, ennreal.has_sum) ennreal.has_sum
protected lemma tsum_prod {f : α → β → ennreal} : (∑p:α×β, f p.1 p.2) = (∑a, ∑b, f a b) :=
let j : α × β → (Σa:α, β) := λp, sigma.mk p.1 p.2 in
let i : (Σa:α, β) → α × β := λp, (p.1, p.2) in
let f' : (Σa:α, β) → ennreal := λp, f p.1 p.2 in
calc (∑p:α×β, f' (j p)) = (∑p:Σa:α, β, f p.1 p.2) :
tsum_eq_tsum_of_iso j i (assume ⟨a, b⟩, rfl) (assume ⟨a, b⟩, rfl)
... = (∑a, ∑b, f a b) : ennreal.tsum_sigma f
protected lemma tsum_of_real {f : α → ℝ} (h : is_sum f r) (hf : ∀a, 0 ≤ f a) :
(∑a, of_real (f a)) = of_real r :=
have (λs:finset α, s.sum (of_real ∘ f)) = of_real ∘ (λs:finset α, s.sum f),
from funext $ assume s, sum_of_real $ assume a _, hf a,
have tendsto (λs:finset α, s.sum (of_real ∘ f)) at_top (nhds (of_real r)),
by rw [this]; exact h.comp tendsto_of_real,
tsum_eq_is_sum this
protected lemma tsum_comm {f : α → β → ennreal} : (∑a, ∑b, f a b) = (∑b, ∑a, f a b) :=
let f' : α×β → ennreal := λp, f p.1 p.2 in
calc (∑a, ∑b, f a b) = (∑p:α×β, f' p) : ennreal.tsum_prod.symm
... = (∑p:β×α, f' (prod.swap p)) :
(tsum_eq_tsum_of_iso prod.swap (@prod.swap α β) (assume ⟨a, b⟩, rfl) (assume ⟨a, b⟩, rfl)).symm
... = (∑b, ∑a, f' (prod.swap (b, a))) : @ennreal.tsum_prod β α (λb a, f' (prod.swap (b, a)))
protected lemma tsum_le_tsum (h : ∀a, f a ≤ g a) : (∑a, f a) ≤ (∑a, g a) :=
tsum_le_tsum h ennreal.has_sum ennreal.has_sum
protected lemma tsum_eq_supr_nat {f : ℕ → ennreal} :
(∑i:ℕ, f i) = (⨆i:ℕ, (finset.range i).sum f) :=
calc _ = (⨆s:finset ℕ, s.sum f) : ennreal.tsum_eq_supr_sum
... = (⨆i:ℕ, (finset.range i).sum f) : le_antisymm
(supr_le_supr2 $ assume s,
let ⟨n, hn⟩ := finset.exists_nat_subset_range s in
⟨n, finset.sum_le_sum_of_subset hn⟩)
(supr_le_supr2 $ assume i, ⟨finset.range i, le_refl _⟩)
protected lemma le_tsum {a : α} : f a ≤ (∑a, f a) :=
calc f a = ({a} : finset α).sum f : by simp
... ≤ (⨆s:finset α, s.sum f) : le_supr (λs:finset α, s.sum f) _
... = (∑a, f a) : by rw [ennreal.tsum_eq_supr_sum]
protected lemma mul_tsum : (∑i, a * f i) = a * (∑i, f i) :=
if h : ∀i, f i = 0 then by simp [h] else
let ⟨i, (hi : f i ≠ 0)⟩ := classical.not_forall.mp h in
have sum_ne_0 : (∑i, f i) ≠ 0, from ne_of_gt $
calc 0 < f i : lt_of_le_of_ne ennreal.zero_le hi.symm
... ≤ (∑i, f i) : ennreal.le_tsum,
have tendsto (λs:finset α, s.sum ((*) a ∘ f)) at_top (nhds (a * (∑i, f i))),
by rw [← show (*) a ∘ (λs:finset α, s.sum f) = λs, s.sum ((*) a ∘ f),
from funext $ λ s, finset.mul_sum];
exact (is_sum_tsum ennreal.has_sum).comp (ennreal.tendsto_mul sum_ne_0),
tsum_eq_is_sum this
protected lemma tsum_mul : (∑i, f i * a) = (∑i, f i) * a :=
by simp [mul_comm, ennreal.mul_tsum]
@[simp] lemma tsum_supr_eq {α : Type*} (a : α) {f : α → ennreal} :
(∑b:α, ⨆ (h : a = b), f b) = f a :=
le_antisymm
(by rw [ennreal.tsum_eq_supr_sum]; exact supr_le (assume s,
calc s.sum (λb, ⨆ (h : a = b), f b) ≤ (finset.singleton a).sum (λb, ⨆ (h : a = b), f b) :
finset.sum_le_sum_of_ne_zero $ assume b _ hb,
suffices a = b, by simpa using this.symm,
classical.by_contradiction $ assume h,
by simpa [h] using hb
... = f a : by simp))
(calc f a ≤ (⨆ (h : a = a), f a) : le_supr (λh:a=a, f a) rfl
... ≤ (∑b:α, ⨆ (h : a = b), f b) : ennreal.le_tsum)
end tsum
section nnreal
-- TODO: use nnreal to define ennreal
instance : has_coe nnreal ennreal := ⟨ennreal.of_real ∘ coe⟩
lemma tendsto_of_real_iff {f : filter α} {m : α → ℝ} {r : ℝ} (hm : ∀a, 0 ≤ m a) (hr : 0 ≤ r) :
tendsto (λx, of_real (m x)) f (nhds (of_real r)) ↔ tendsto m f (nhds r) :=
iff.intro
(assume h,
have tendsto (λ (x : α), of_ennreal (of_real (m x))) f (nhds r), from
h.comp (tendsto_of_ennreal hr),
by simpa [hm])
(assume h, h.comp tendsto_of_real)
lemma tendsto_coe_iff {f : filter α} {m : α → nnreal} {r : nnreal} :
tendsto (λx, (m x : ennreal)) f (nhds r) ↔ tendsto m f (nhds r) :=
iff.trans (tendsto_of_real_iff (assume a, (m a).2) r.2) nnreal.tendsto_coe
protected lemma is_sum_of_real_iff {f : α → ℝ} {r : ℝ} (hf : ∀a, 0 ≤ f a) (hr : 0 ≤ r) :
is_sum (λa, of_real (f a)) (of_real r) ↔ is_sum f r :=
by simp [is_sum, sum_of_real, hf];
exact tendsto_of_real_iff (assume s, finset.zero_le_sum $ assume a ha, hf a) hr
protected lemma is_sum_coe_iff {f : α → nnreal} {r : nnreal} :
is_sum (λa, (f a : ennreal)) r ↔ is_sum f r :=
iff.trans (ennreal.is_sum_of_real_iff (assume a, (f a).2) r.2) nnreal.is_sum_coe
protected lemma coe_tsum {f : α → nnreal} (h : has_sum f) : ↑(∑a, f a) = (∑a, f a : ennreal) :=
eq.symm (tsum_eq_is_sum $ ennreal.is_sum_coe_iff.2 $ is_sum_tsum h)
@[simp] lemma coe_mul (a b : nnreal) : ↑(a * b) = (a * b : ennreal) :=
(ennreal.of_real_mul_of_real a.2 b.2).symm
@[simp] lemma coe_one : ↑(1 : nnreal) = (1 : ennreal) := rfl
@[simp] lemma coe_eq_coe {n m : nnreal} : (↑n : ennreal) = m ↔ n = m :=
iff.trans (of_real_eq_of_real_of n.2 m.2) (iff.intro subtype.eq $ assume eq, eq ▸ rfl)
end nnreal
end ennreal
lemma has_sum_of_nonneg_of_le {f g : β → ℝ} (hg : ∀b, 0 ≤ g b) (hgf : ∀b, g b ≤ f b) :
has_sum f → has_sum g
| ⟨r, hfr⟩ :=
have hf : ∀a, 0 ≤ f a, from assume a, le_trans (hg a) (hgf a),
have hr : 0 ≤ r, from is_sum_le hf is_sum_zero hfr,
have is_sum (λa, ennreal.of_real (f a)) (ennreal.of_real r), from
(ennreal.is_sum_of_real_iff hf hr).2 hfr,
have (∑b, ennreal.of_real (g b)) ≤ ennreal.of_real r,
begin
refine is_sum_le (assume b, _) (is_sum_tsum ennreal.has_sum) this,
exact ennreal.of_real_le_of_real (hgf _)
end,
let ⟨p, hp, hpr, eq⟩ := (ennreal.le_of_real_iff hr).1 this in
have is_sum g p, from
(ennreal.is_sum_of_real_iff hg hp).1 (eq ▸ is_sum_tsum ennreal.has_sum),
has_sum_spec this
lemma nnreal.has_sum_of_le {f g : β → nnreal} (hgf : ∀b, g b ≤ f b) (hf : has_sum f) : has_sum g :=
nnreal.has_sum_coe.1 $ has_sum_of_nonneg_of_le (assume b, (g b).2) hgf $ nnreal.has_sum_coe.2 hf
|
e816554484890160d9f4bbb351b626d4fc8ee6ed
|
6dc0c8ce7a76229dd81e73ed4474f15f88a9e294
|
/stage0/src/Lean/Meta.lean
|
75be9686fbbc126aa20d0a000000f6e23f442013
|
[
"Apache-2.0"
] |
permissive
|
williamdemeo/lean4
|
72161c58fe65c3ad955d6a3050bb7d37c04c0d54
|
6d00fcf1d6d873e195f9220c668ef9c58e9c4a35
|
refs/heads/master
| 1,678,305,356,877
| 1,614,708,995,000
| 1,614,708,995,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 901
|
lean
|
/-
Copyright (c) 2019 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
-/
import Lean.Meta.Basic
import Lean.Meta.LevelDefEq
import Lean.Meta.WHNF
import Lean.Meta.InferType
import Lean.Meta.FunInfo
import Lean.Meta.ExprDefEq
import Lean.Meta.DiscrTree
import Lean.Meta.Reduce
import Lean.Meta.Instances
import Lean.Meta.AbstractMVars
import Lean.Meta.SynthInstance
import Lean.Meta.AppBuilder
import Lean.Meta.Tactic
import Lean.Meta.KAbstract
import Lean.Meta.RecursorInfo
import Lean.Meta.GeneralizeTelescope
import Lean.Meta.Match
import Lean.Meta.ReduceEval
import Lean.Meta.Closure
import Lean.Meta.AbstractNestedProofs
import Lean.Meta.ForEachExpr
import Lean.Meta.Transform
import Lean.Meta.PPGoal
import Lean.Meta.UnificationHint
import Lean.Meta.Inductive
import Lean.Meta.SizeOf
import Lean.Meta.Coe
|
2dacf10c91ad9fe921ab798838cd4e463b865857
|
d9d511f37a523cd7659d6f573f990e2a0af93c6f
|
/src/geometry/euclidean/sphere.lean
|
a9d1680a5aee6fd9a919d7427ef03069bc56e191
|
[
"Apache-2.0"
] |
permissive
|
hikari0108/mathlib
|
b7ea2b7350497ab1a0b87a09d093ecc025a50dfa
|
a9e7d333b0cfd45f13a20f7b96b7d52e19fa2901
|
refs/heads/master
| 1,690,483,608,260
| 1,631,541,580,000
| 1,631,541,580,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 8,399
|
lean
|
/-
Copyright (c) 2021 Manuel Candales. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Manuel Candales, Benjamin Davidson
-/
import geometry.euclidean.triangle
/-!
# Spheres
This file proves basic geometrical results about distances and angles
in spheres in real inner product spaces and Euclidean affine spaces.
## Main theorems
* `mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_pi`: Intersecting Chords Theorem (Freek No. 55).
* `mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_zero`: Intersecting Secants Theorem.
* `mul_dist_add_mul_dist_eq_mul_dist_of_cospherical`: Ptolemy’s Theorem (Freek No. 95).
TODO: The current statement of Ptolemy’s theorem works around the lack of a "cyclic polygon" concept
in mathlib, which is what the theorem statement would naturally use (or two such concepts, since
both a strict version, where all vertices must be distinct, and a weak version, where consecutive
vertices may be equal, would be useful; Ptolemy's theorem should then use the weak one).
An API needs to be built around that concept, which would include:
- strict cyclic implies weak cyclic,
- weak cyclic and consecutive points distinct implies strict cyclic,
- weak/strict cyclic implies weak/strict cyclic for any subsequence,
- any three points on a sphere are weakly or strictly cyclic according to whether they are distinct,
- any number of points on a sphere intersected with a two-dimensional affine subspace are cyclic in
some order,
- a list of points is cyclic if and only if its reversal is,
- a list of points is cyclic if and only if any cyclic permutation is, while other permutations
are not when the points are distinct,
- a point P where the diagonals of a cyclic polygon cross exists (and is unique) with weak/strict
betweenness depending on weak/strict cyclicity,
- four points on a sphere with such a point P are cyclic in the appropriate order,
and so on.
-/
open real
open_locale euclidean_geometry real_inner_product_space real
variables {V : Type*} [inner_product_space ℝ V]
namespace inner_product_geometry
/-!
### Geometrical results on spheres in real inner product spaces
This section develops some results on spheres in real inner product spaces,
which are used to deduce corresponding results for Euclidean affine spaces.
-/
lemma mul_norm_eq_abs_sub_sq_norm {x y z : V}
(h₁ : ∃ k : ℝ, k ≠ 1 ∧ x + y = k • (x - y)) (h₂ : ∥z - y∥ = ∥z + y∥) :
∥x - y∥ * ∥x + y∥ = abs (∥z + y∥ ^ 2 - ∥z - x∥ ^ 2) :=
begin
obtain ⟨k, hk_ne_one, hk⟩ := h₁,
let r := (k - 1)⁻¹ * (k + 1),
have hxy : x = r • y,
{ rw [← smul_smul, eq_inv_smul_iff' (sub_ne_zero.mpr hk_ne_one), ← sub_eq_zero],
calc (k - 1) • x - (k + 1) • y
= (k • x - x) - (k • y + y) : by simp_rw [sub_smul, add_smul, one_smul]
... = (k • x - k • y) - (x + y) : by simp_rw [← sub_sub, sub_right_comm]
... = k • (x - y) - (x + y) : by rw ← smul_sub k x y
... = 0 : sub_eq_zero.mpr hk.symm },
have hzy : ⟪z, y⟫ = 0,
by rwa [inner_eq_zero_iff_angle_eq_pi_div_two, ← norm_add_eq_norm_sub_iff_angle_eq_pi_div_two,
eq_comm],
have hzx : ⟪z, x⟫ = 0 := by rw [hxy, inner_smul_right, hzy, mul_zero],
calc ∥x - y∥ * ∥x + y∥
= ∥(r - 1) • y∥ * ∥(r + 1) • y∥ : by simp [sub_smul, add_smul, hxy]
... = ∥r - 1∥ * ∥y∥ * (∥r + 1∥ * ∥y∥) : by simp_rw [norm_smul]
... = ∥r - 1∥ * ∥r + 1∥ * ∥y∥ ^ 2 : by ring
... = abs ((r - 1) * (r + 1) * ∥y∥ ^ 2) : by simp [abs_mul, norm_eq_abs]
... = abs (r ^ 2 * ∥y∥ ^ 2 - ∥y∥ ^ 2) : by ring_nf
... = abs (∥x∥ ^ 2 - ∥y∥ ^ 2) : by simp [hxy, norm_smul, mul_pow, norm_eq_abs, sq_abs]
... = abs (∥z + y∥ ^ 2 - ∥z - x∥ ^ 2) : by simp [norm_add_sq_real, norm_sub_sq_real,
hzy, hzx, abs_sub_comm],
end
end inner_product_geometry
namespace euclidean_geometry
/-!
### Geometrical results on spheres in Euclidean affine spaces
This section develops some results on spheres in Euclidean affine spaces.
-/
open inner_product_geometry
variables {P : Type*} [metric_space P] [normed_add_torsor V P]
include V
/-- If `P` is a point on the line `AB` and `Q` is equidistant from `A` and `B`, then
`AP * BP = abs (BQ ^ 2 - PQ ^ 2)`. -/
lemma mul_dist_eq_abs_sub_sq_dist {a b p q : P}
(hp : ∃ k : ℝ, k ≠ 1 ∧ b -ᵥ p = k • (a -ᵥ p)) (hq : dist a q = dist b q) :
dist a p * dist b p = abs (dist b q ^ 2 - dist p q ^ 2) :=
begin
let m : P := midpoint ℝ a b,
obtain ⟨v, h1, h2, h3⟩ := ⟨vsub_sub_vsub_cancel_left, v a p m, v p q m, v a q m⟩,
have h : ∀ r, b -ᵥ r = (m -ᵥ r) + (m -ᵥ a) :=
λ r, by rw [midpoint_vsub_left, ← right_vsub_midpoint, add_comm, vsub_add_vsub_cancel],
iterate 4 { rw dist_eq_norm_vsub V },
rw [← h1, ← h2, h, h],
rw [← h1, h] at hp,
rw [dist_eq_norm_vsub V a q, dist_eq_norm_vsub V b q, ← h3, h] at hq,
exact mul_norm_eq_abs_sub_sq_norm hp hq,
end
/-- If `A`, `B`, `C`, `D` are cospherical and `P` is on both lines `AB` and `CD`, then
`AP * BP = CP * DP`. -/
lemma mul_dist_eq_mul_dist_of_cospherical {a b c d p : P}
(h : cospherical ({a, b, c, d} : set P))
(hapb : ∃ k₁ : ℝ, k₁ ≠ 1 ∧ b -ᵥ p = k₁ • (a -ᵥ p))
(hcpd : ∃ k₂ : ℝ, k₂ ≠ 1 ∧ d -ᵥ p = k₂ • (c -ᵥ p)) :
dist a p * dist b p = dist c p * dist d p :=
begin
obtain ⟨q, r, h'⟩ := (cospherical_def {a, b, c, d}).mp h,
obtain ⟨ha, hb, hc, hd⟩ := ⟨h' a _, h' b _, h' c _, h' d _⟩,
{ rw ← hd at hc,
rw ← hb at ha,
rw [mul_dist_eq_abs_sub_sq_dist hapb ha, hb, mul_dist_eq_abs_sub_sq_dist hcpd hc, hd] },
all_goals { simp },
end
/-- **Intersecting Chords Theorem**. -/
theorem mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_pi {a b c d p : P}
(h : cospherical ({a, b, c, d} : set P))
(hapb : ∠ a p b = π) (hcpd : ∠ c p d = π) :
dist a p * dist b p = dist c p * dist d p :=
begin
obtain ⟨-, k₁, _, hab⟩ := angle_eq_pi_iff.mp hapb,
obtain ⟨-, k₂, _, hcd⟩ := angle_eq_pi_iff.mp hcpd,
exact mul_dist_eq_mul_dist_of_cospherical h ⟨k₁, (by linarith), hab⟩ ⟨k₂, (by linarith), hcd⟩,
end
/-- **Intersecting Secants Theorem**. -/
theorem mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_zero {a b c d p : P}
(h : cospherical ({a, b, c, d} : set P))
(hab : a ≠ b) (hcd : c ≠ d) (hapb : ∠ a p b = 0) (hcpd : ∠ c p d = 0) :
dist a p * dist b p = dist c p * dist d p :=
begin
obtain ⟨-, k₁, -, hab₁⟩ := angle_eq_zero_iff.mp hapb,
obtain ⟨-, k₂, -, hcd₁⟩ := angle_eq_zero_iff.mp hcpd,
refine mul_dist_eq_mul_dist_of_cospherical h ⟨k₁, _, hab₁⟩ ⟨k₂, _, hcd₁⟩;
by_contra hnot;
simp only [not_not, *, one_smul] at *,
exacts [hab (vsub_left_cancel hab₁).symm, hcd (vsub_left_cancel hcd₁).symm],
end
/-- **Ptolemy’s Theorem**. -/
theorem mul_dist_add_mul_dist_eq_mul_dist_of_cospherical {a b c d p : P}
(h : cospherical ({a, b, c, d} : set P))
(hapc : ∠ a p c = π) (hbpd : ∠ b p d = π) :
dist a b * dist c d + dist b c * dist d a = dist a c * dist b d :=
begin
have h' : cospherical ({a, c, b, d} : set P), { rwa set.insert_comm c b {d} },
have hmul := mul_dist_eq_mul_dist_of_cospherical_of_angle_eq_pi h' hapc hbpd,
have hbp := left_dist_ne_zero_of_angle_eq_pi hbpd,
have h₁ : dist c d = dist c p / dist b p * dist a b,
{ rw [dist_mul_of_eq_angle_of_dist_mul b p a c p d, dist_comm a b],
{ rw [angle_eq_angle_of_angle_eq_pi_of_angle_eq_pi hbpd hapc, angle_comm] },
all_goals { field_simp [mul_comm, hmul] } },
have h₂ : dist d a = dist a p / dist b p * dist b c,
{ rw [dist_mul_of_eq_angle_of_dist_mul c p b d p a, dist_comm c b],
{ rwa [angle_comm, angle_eq_angle_of_angle_eq_pi_of_angle_eq_pi], rwa angle_comm },
all_goals { field_simp [mul_comm, hmul] } },
have h₃ : dist d p = dist a p * dist c p / dist b p, { field_simp [mul_comm, hmul] },
have h₄ : ∀ x y : ℝ, x * (y * x) = x * x * y := λ x y, by rw [mul_left_comm, mul_comm],
field_simp [h₁, h₂, dist_eq_add_dist_of_angle_eq_pi hbpd, h₃, hbp, dist_comm a b,
h₄, ← sq, dist_sq_mul_dist_add_dist_sq_mul_dist b, hapc],
end
end euclidean_geometry
|
12c72dbd940f17009455cc1607aad38f36cdfef6
|
bd57135d92f6f3b771aae7ca08550ff8719ec590
|
/src/determinants.lean
|
526126e323eb024a35d5164fb5ead4bb68975939
|
[] |
no_license
|
simonjwinwood/kbb
|
109775572d17fceb93ee2419905bbecff776ebd2
|
b5ff345e1022aee40dfda406c1c0631a9bba9c03
|
refs/heads/master
| 1,585,550,843,265
| 1,537,509,365,000
| 1,537,509,365,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 9,988
|
lean
|
import tactic.tidy
import group_theory.subgroup
import group_theory.perm
import data.finset
import .monoid_stuff
import .matrices
import .Sym
universes u v
lemma finset.prod_mul_right {α} [group α]
{β} [comm_monoid β] {f : α → β} {s : finset α} (x : α) :
s.prod f =
(s.map ⟨λ z, z * x⁻¹, λ _ _, mul_right_cancel⟩).prod (λ z, f (z * x)) :=
finset.prod_bij (λ z _, z * x⁻¹) (λ _ _, by simpa) (λ _ _, by simp)
(λ _ _ _ _, mul_right_cancel) (λ b H,
⟨b * x, by revert H; simp [eq_comm] {contextual:=tt}, by simp⟩)
lemma finset.sum_mul_right {α} [group α]
{β} [add_comm_monoid β] {f : α → β} {s : finset α} (x : α) :
s.sum f =
(s.map ⟨λ z, z * x⁻¹, λ _ _, mul_right_cancel⟩).sum (λ z, f (z * x)) :=
finset.sum_bij (λ z _, z * x⁻¹) (λ _ _, by simpa) (λ _ _, by simp)
(λ _ _ _ _, mul_right_cancel) (λ b H,
⟨b * x, by revert H; simp [eq_comm] {contextual:=tt}, by simp⟩)
lemma finset.univ_sum_mul_right {α} [group α] [fintype α]
{β} [add_comm_monoid β] {f : α → β} (x : α) :
finset.univ.sum f =
finset.univ.sum (λ z, f (z * x)) :=
finset.sum_bij (λ z _, z * x⁻¹) (λ _ _, finset.mem_univ _) (λ _ _, by simp)
(λ _ _ _ _, mul_right_cancel) (λ b H,
⟨b * x, by revert H; simp [eq_comm] {contextual:=tt}, by simp⟩)
lemma finset.prod_perm {α} [fintype α] [decidable_eq α]
{β} [comm_monoid β] {f : α → β} (σ : equiv.perm α) :
(finset.univ : finset α).prod f
= finset.univ.prod (λ z, f (σ z)) :=
eq.symm $ finset.prod_bij (λ z _, σ z) (λ _ _, finset.mem_univ _) (λ _ _, rfl)
(λ _ _ _ _ H, σ.bijective.1 H) (λ b _, ⟨σ⁻¹ b, finset.mem_univ _, by simp⟩)
instance {α} (H : α → Prop) : subsingleton (decidable_pred H) :=
by apply_instance
@[simp] lemma finset.filter_true {α} (s : finset α) [h : decidable_pred (λ _, true)] :
@finset.filter α (λ _, true) h s = s :=
by ext; simp
namespace matrix
variables {n : Type u} [fintype n] [decidable_eq n] {R : Type v} [comm_ring R]
instance : group (equiv.perm n) := by apply_instance
@[simp] lemma equiv.swap_mul_self (i j : n) : equiv.swap i j * equiv.swap i j = 1 :=
equiv.swap_swap i j
@[simp] lemma equiv.swap_swap_apply (i j k : n) : equiv.swap i j (equiv.swap i j k) = k :=
equiv.swap_core_swap_core k i j
instance : decidable_pred (function.bijective : (n → n) → Prop) :=
λ _, by unfold function.bijective; apply_instance
instance bij_fintype : fintype {f : n → n // function.bijective f} :=
set_fintype _
@[extensionality] theorem equiv.perm.ext (σ τ : equiv.perm n)
(H : ∀ i, σ i = τ i) : σ = τ :=
equiv.ext _ _ H
instance equiv_perm_fin_finite : fintype (equiv.perm n):=
trunc.rec_on_subsingleton (fintype.equiv_fin n) $ λ φ,
fintype.of_equiv (Sym (fintype.card n)) $
{ to_fun := λ σ, φ.trans (σ.trans φ.symm),
inv_fun := λ σ, φ.symm.trans (σ.trans φ),
left_inv := λ σ, by ext i; simp,
right_inv := λ σ, by ext i; simp }
@[simp] lemma equiv.perm.sign_mul (σ τ : equiv.perm n) :
(σ * τ).sign = σ.sign * τ.sign :=
is_group_hom.mul _ _ _
@[simp] lemma equiv.perm.sign_one :
equiv.perm.sign (1 : equiv.perm n) = 1 :=
is_group_hom.one _
@[simp] lemma equiv.perm.sign_refl :
equiv.perm.sign (equiv.refl n) = 1 :=
is_group_hom.one equiv.perm.sign
@[simp] lemma equiv.perm.sign_swap' {i j : n} :
(equiv.swap i j).sign = if i = j then 1 else -1 :=
if H : i = j then by simp [H, equiv.swap_self] else
by simp [equiv.perm.sign_swap H, H]
def e (σ : equiv.perm n) : R := ((σ.sign : ℤ) : R)
@[simp] lemma e_mul (σ τ : equiv.perm n) : (e (σ * τ) : R) = e σ * e τ :=
by unfold e; rw ← int.cast_mul; congr; rw ← units.mul_coe; congr; apply is_group_hom.mul
@[simp] lemma e_swap {i j : n} : (e (equiv.swap i j) : R) = if i = j then 1 else -1 :=
by by_cases H : i = j; simp [e, H]
@[simp] lemma e_one : (e (1 : equiv.perm n) : R) = 1 :=
by unfold e; rw is_group_hom.one (equiv.perm.sign : equiv.perm n → units ℤ); simp
@[simp] lemma e_inv (σ : equiv.perm n): (e σ⁻¹ : R) = e σ :=
by unfold e; rw is_group_hom.inv (equiv.perm.sign : equiv.perm n → units ℤ);
cases int.units_eq_one_or σ.sign with H H; rw H; refl
lemma e_eq_one_or (σ : equiv.perm n) : (e σ : R) = 1 ∨ (e σ : R) = -1 :=
by cases int.units_eq_one_or σ.sign with H H; unfold e; rw H; simp
definition det (M : matrix n n R) : R :=
finset.univ.sum (λ (σ : equiv.perm n),
(e σ) * finset.univ.prod (λ (i:n), M (σ i) i))
@[simp] lemma det_diagonal {d : n → R} : det (diagonal d) = finset.univ.prod d :=
begin
refine (finset.sum_eq_single 1 _ _).trans _,
{ intros σ h1 h2,
cases not_forall.1 (mt (equiv.ext _ _) h2) with x h3,
convert mul_zero _,
apply finset.prod_eq_zero,
{ change x ∈ _, simp },
exact if_neg h3 },
simp,
simp
end
@[simp] lemma det_scalar {r : R} : det (scalar r : matrix n n R) = r^(fintype.card n) :=
by simp [scalar, fintype.card]
-- Useful lemma by Chris
lemma zero_pow : ∀ {n : ℕ}, 0 < n → (0 : R) ^ n = 0
| (n+1) H := zero_mul _
@[simp] lemma det_zero (h : nonempty n) : det (0 : matrix n n R) = (0 : R) :=
by rw ← scalar_zero; simp [-scalar_zero, zero_pow, fintype.card_pos_iff.mpr h]
@[simp] lemma det_one : det (1 : matrix n n R) = (1 : R) :=
by rw ← scalar_one; simp [-scalar_one]
lemma det_mul_aux (M N : matrix n n R) (p : n → n) (H : ¬function.bijective p) :
finset.sum (finset.univ : finset (equiv.perm n))
(λ σ, e σ * (finset.prod (finset.univ : finset n) (λ x, M (σ x) (p x))
* finset.prod (finset.univ : finset n) (λ x, N (p x) x))) = 0 :=
begin
have H1 : ¬function.injective p,
from mt (λ h, and.intro h $ fintype.injective_iff_surjective.1 h) H,
unfold function.injective at H1, simp only [not_forall] at H1,
rcases H1 with ⟨i, j, H2, H3⟩,
have H4 : (finset.univ : finset (equiv.perm n)) = finset.univ.filter (λ σ, σ.sign = 1) ∪ finset.univ.filter (λ σ, σ.sign = -1),
{ rw [← finset.filter_or], simp only [int.units_eq_one_or],
ext k, simp only [finset.mem_univ, finset.mem_filter, true_and] },
have H5 : (finset.univ : finset (equiv.perm n)).filter (λ σ, σ.sign = 1) ∩ finset.univ.filter (λ σ, σ.sign = -1) = ∅,
{ rw [← finset.filter_and], refine finset.eq_empty_of_forall_not_mem (λ _ H, _),
rw finset.mem_filter at H, exact absurd (H.2.1.symm.trans H.2.2) dec_trivial },
have H6 : finset.map ⟨λ z, z * equiv.swap i j, λ _ _, mul_right_cancel⟩
(finset.univ.filter (λ σ, σ.sign = -1))
= finset.univ.filter (λ σ, σ.sign = 1),
{ ext k, split,
{ exact λ H, finset.mem_filter.2 ⟨finset.mem_univ _,
let ⟨b, hb1, hb2⟩ := finset.mem_map.1 H in
by rw ← hb2; dsimp only [function.embedding.coe_fn_mk];
rw [equiv.perm.sign_mul, (finset.mem_filter.1 hb1).2, equiv.perm.sign_swap H3]; refl⟩ },
{ exact λ H, finset.mem_map.2 ⟨k * equiv.swap i j,
finset.mem_filter.2 ⟨finset.mem_univ _,
by rw [equiv.perm.sign_mul, (finset.mem_filter.1 H).2, equiv.perm.sign_swap H3, one_mul]⟩,
by dsimp only [function.embedding.coe_fn_mk];
rw [mul_assoc, equiv.swap_mul_self, mul_one]⟩ } },
have H7 : ∀ k, p (equiv.swap i j k) = p k,
{ intro k, rw [equiv.swap_apply_def], split_ifs; cc },
rw [H4, finset.sum_union H5],
refine eq.trans (congr_arg _ (finset.sum_mul_right $ equiv.swap i j)) _,
conv { to_lhs, congr, skip, for (finset.prod _ _) [1] { rw finset.prod_perm (equiv.swap i j)}},
simp [H3, H6, H7]
end
@[simp] lemma det_mul (M N : matrix n n R) :
det (M * N) = det M * det N :=
begin
unfold det,
conv { to_lhs, simp only [mul_val', finset.prod_sum, finset.mul_sum] },
conv { to_lhs, for (M _ _ * N _ _) [1] { rw @proof_irrel _ x.2 (finset.mem_univ x.1) } },
rw finset.sum_comm,
refine (finset.sum_bij (λ (p : Π (a : n), a ∈ finset.univ → n) _, (λ i, p i (finset.mem_univ i) : n → n))
(λ _ _, finset.mem_univ _) (λ p _, _) _ _).trans _,
{ exact (λ p, finset.sum (finset.univ : finset (equiv.perm n))
(λ σ, e σ * (finset.prod (finset.univ : finset n) (λ x, M (σ x) (p x))
* finset.prod (finset.univ : finset n) (λ x, N (p x) x)))) },
{ conv { to_lhs, congr, skip, funext,
rw @finset.prod_attach n R finset.univ _ (λ k, M (x k) (p k _) * N (p k _) k),
rw finset.prod_mul_distrib } },
{ exact λ _ _ _ _ H, funext (λ i, funext (λ _, have _ := congr_fun H i, this)) },
{ exact λ b _, ⟨λ i _, b i, finset.mem_pi.2 (λ _ _, finset.mem_univ _), rfl⟩ },
refine (finset.sum_subset (finset.subset_univ (finset.univ.filter function.bijective)) _).symm.trans _,
{ exact λ p _ H, det_mul_aux M N p (mt (λ H2, finset.mem_filter.2 ⟨finset.mem_univ _, H2⟩) H) },
refine (finset.sum_bij (λ (τ : equiv.perm n) (_ : _ ∈ finset.univ) x, τ x)
(λ τ _, finset.mem_filter.2 ⟨finset.mem_univ _, τ.bijective⟩) _ _ _).symm.trans _,
{ exact (λ τ, e τ * finset.prod (finset.univ : finset n) (λ x, N (τ x) x) *
finset.sum (finset.univ : finset (equiv.perm n))
(λ σ, e σ * finset.prod (finset.univ : finset n) (λ x, M (σ x) x))) },
{ intros τ _, dsimp only,
conv { to_lhs, rw [mul_assoc, mul_left_comm, finset.mul_sum],
congr, skip, rw [finset.univ_sum_mul_right τ⁻¹],
congr, skip, funext, rw [← mul_assoc, mul_comm (e τ), ← e_mul, inv_mul_cancel_right],
rw [finset.prod_perm τ],
simp only [equiv.perm.mul_apply, equiv.perm.inv_apply_self] },
conv { to_rhs, congr, skip, funext, rw [← mul_assoc, mul_comm] },
conv { to_rhs, rw ← finset.mul_sum} },
{ exact λ _ _ _ _ H, equiv.perm.ext _ _ (congr_fun H) },
{ exact λ b H, ⟨equiv.of_bijective (finset.mem_filter.1 H).2, finset.mem_univ _,
equiv.of_bijective_to_fun (finset.mem_filter.1 H).2⟩ },
rw [← finset.sum_mul, mul_comm]
end
instance : is_monoid_hom (det : matrix n n R → R) :=
{ map_one := det_one,
map_mul := det_mul }
end matrix
|
aaa132caba39083a60dd965168caee63c49a5542
|
8cae430f0a71442d02dbb1cbb14073b31048e4b0
|
/src/algebra/char_p/algebra.lean
|
2273ed60cc6eef7c69d5249f89b675565c689f08
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/mathlib
|
56a2cadd17ac88caf4ece0a775932fa26327ba0e
|
442a83d738cb208d3600056c489be16900ba701d
|
refs/heads/master
| 1,693,584,102,358
| 1,693,471,902,000
| 1,693,471,902,000
| 97,922,418
| 1,595
| 352
|
Apache-2.0
| 1,694,693,445,000
| 1,500,624,130,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 5,188
|
lean
|
/-
Copyright (c) 2021 Jon Eugster. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jon Eugster, Eric Wieser
-/
import algebra.char_p.basic
import ring_theory.localization.fraction_ring
import algebra.free_algebra
/-!
# Characteristics of algebras
> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
> Any changes to this file require a corresponding PR to mathlib4.
In this file we describe the characteristic of `R`-algebras.
In particular we are interested in the characteristic of free algebras over `R`
and the fraction field `fraction_ring R`.
## Main results
- `char_p_of_injective_algebra_map` If `R →+* A` is an injective algebra map
then `A` has the same characteristic as `R`.
Instances constructed from this result:
- Any `free_algebra R X` has the same characteristic as `R`.
- The `fraction_ring R` of an integral domain `R` has the same characteristic as `R`.
-/
/-- If the algebra map `R →+* A` is injective then `A` has the same characteristic as `R`. -/
lemma char_p_of_injective_algebra_map {R A : Type*} [comm_semiring R] [semiring A] [algebra R A]
(h : function.injective (algebra_map R A)) (p : ℕ) [char_p R p] : char_p A p :=
{ cast_eq_zero_iff := λx,
begin
rw ←char_p.cast_eq_zero_iff R p x,
change algebra_map ℕ A x = 0 ↔ algebra_map ℕ R x = 0,
rw is_scalar_tower.algebra_map_apply ℕ R A x,
refine iff.trans _ h.eq_iff,
rw ring_hom.map_zero,
end }
lemma char_p_of_injective_algebra_map' (R A : Type*) [field R] [semiring A] [algebra R A]
[nontrivial A] (p : ℕ) [char_p R p] : char_p A p :=
char_p_of_injective_algebra_map (algebra_map R A).injective p
/-- If the algebra map `R →+* A` is injective and `R` has characteristic zero then so does `A`. -/
lemma char_zero_of_injective_algebra_map {R A : Type*} [comm_semiring R] [semiring A] [algebra R A]
(h : function.injective (algebra_map R A)) [char_zero R] : char_zero A :=
{ cast_injective := λ x y hxy,
begin
change algebra_map ℕ A x = algebra_map ℕ A y at hxy,
rw is_scalar_tower.algebra_map_apply ℕ R A x at hxy,
rw is_scalar_tower.algebra_map_apply ℕ R A y at hxy,
exact char_zero.cast_injective (h hxy),
end }
-- `char_p.char_p_to_char_zero A _ (char_p_of_injective_algebra_map h 0)` does not work
-- here as it would require `ring A`.
/-!
As an application, a `ℚ`-algebra has characteristic zero.
-/
section Q_algebra
variables (R : Type*) [nontrivial R]
/-- A nontrivial `ℚ`-algebra has `char_p` equal to zero.
This cannot be a (local) instance because it would immediately form a loop with the
instance `algebra_rat`. It's probably easier to go the other way: prove `char_zero R` and
automatically receive an `algebra ℚ R` instance.
-/
lemma algebra_rat.char_p_zero [semiring R] [algebra ℚ R] : char_p R 0 :=
char_p_of_injective_algebra_map (algebra_map ℚ R).injective 0
/-- A nontrivial `ℚ`-algebra has characteristic zero.
This cannot be a (local) instance because it would immediately form a loop with the
instance `algebra_rat`. It's probably easier to go the other way: prove `char_zero R` and
automatically receive an `algebra ℚ R` instance.
-/
lemma algebra_rat.char_zero [ring R] [algebra ℚ R] : char_zero R :=
@char_p.char_p_to_char_zero R _ (algebra_rat.char_p_zero R)
end Q_algebra
/-!
An algebra over a field has the same characteristic as the field.
-/
section
variables (K L : Type*) [field K] [comm_semiring L] [nontrivial L] [algebra K L]
lemma algebra.char_p_iff (p : ℕ) : char_p K p ↔ char_p L p :=
(algebra_map K L).char_p_iff_char_p p
lemma algebra.ring_char_eq : ring_char K = ring_char L :=
by { rw [ring_char.eq_iff, algebra.char_p_iff K L], apply ring_char.char_p }
end
namespace free_algebra
variables {R X : Type*} [comm_semiring R] (p : ℕ)
/-- If `R` has characteristic `p`, then so does `free_algebra R X`. -/
instance char_p [char_p R p] : char_p (free_algebra R X) p :=
char_p_of_injective_algebra_map free_algebra.algebra_map_left_inverse.injective p
/-- If `R` has characteristic `0`, then so does `free_algebra R X`. -/
instance char_zero [char_zero R] : char_zero (free_algebra R X) :=
char_zero_of_injective_algebra_map free_algebra.algebra_map_left_inverse.injective
end free_algebra
namespace is_fraction_ring
variables (R : Type*) {K : Type*} [comm_ring R]
[field K] [algebra R K] [is_fraction_ring R K]
variables (p : ℕ)
/-- If `R` has characteristic `p`, then so does Frac(R). -/
lemma char_p_of_is_fraction_ring [char_p R p] : char_p K p :=
char_p_of_injective_algebra_map (is_fraction_ring.injective R K) p
/-- If `R` has characteristic `0`, then so does Frac(R). -/
lemma char_zero_of_is_fraction_ring [char_zero R] : char_zero K :=
@char_p.char_p_to_char_zero K _ (char_p_of_is_fraction_ring R 0)
variables [is_domain R]
/-- If `R` has characteristic `p`, then so does `fraction_ring R`. -/
instance char_p [char_p R p] : char_p (fraction_ring R) p :=
char_p_of_is_fraction_ring R p
/-- If `R` has characteristic `0`, then so does `fraction_ring R`. -/
instance char_zero [char_zero R] : char_zero (fraction_ring R) :=
char_zero_of_is_fraction_ring R
end is_fraction_ring
|
59dbaacb6b61aa4d4653628c91714a2539a92eaf
|
a0e23cfdd129a671bf3154ee1a8a3a72bf4c7940
|
/stage0/src/Init/Data/Nat/Bitwise.lean
|
4d014d5c09fffc3f381f35eb0759c7688fd04c65
|
[
"Apache-2.0"
] |
permissive
|
WojciechKarpiel/lean4
|
7f89706b8e3c1f942b83a2c91a3a00b05da0e65b
|
f6e1314fa08293dea66a329e05b6c196a0189163
|
refs/heads/master
| 1,686,633,402,214
| 1,625,821,189,000
| 1,625,821,258,000
| 384,640,886
| 0
| 0
|
Apache-2.0
| 1,625,903,617,000
| 1,625,903,026,000
| null |
UTF-8
|
Lean
| false
| false
| 1,278
|
lean
|
/-
Copyright (c) 2019 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
-/
prelude
import Init.Data.Nat.Basic
import Init.Data.Nat.Div
import Init.Coe
namespace Nat
partial def bitwise (f : Bool → Bool → Bool) (n m : Nat) : Nat :=
if n = 0 then
if f false true then m else 0
else if m = 0 then
if f true false then n else 0
else
let n' := n / 2
let m' := m / 2
let b₁ := n % 2 = 1
let b₂ := m % 2 = 1
let r := bitwise f n' m'
if f b₁ b₂ then
r+r+1
else
r+r
@[extern "lean_nat_land"]
def land : Nat → Nat → Nat := bitwise and
@[extern "lean_nat_lor"]
def lor : Nat → Nat → Nat := bitwise or
@[extern "lean_nat_lxor"]
def xor : Nat → Nat → Nat := bitwise bne
@[extern "lean_nat_shiftl"]
def shiftLeft : Nat → Nat → Nat
| n, 0 => n
| n, succ m => shiftLeft (2*n) m
@[extern "lean_nat_shiftr"]
def shiftRight : Nat → Nat → Nat
| n, 0 => n
| n, succ m => shiftRight n m / 2
instance : AndOp Nat := ⟨Nat.land⟩
instance : OrOp Nat := ⟨Nat.lor⟩
instance : Xor Nat := ⟨Nat.xor⟩
instance : ShiftLeft Nat := ⟨Nat.shiftLeft⟩
instance : ShiftRight Nat := ⟨Nat.shiftRight⟩
end Nat
|
87aeff80933ecff1a71414d6825c9ddec3932842
|
b7f22e51856f4989b970961f794f1c435f9b8f78
|
/tests/lean/notation_priority.lean
|
dd3d098abcfd235d0f8fade956206ae0f03a5da8
|
[
"Apache-2.0"
] |
permissive
|
soonhokong/lean
|
cb8aa01055ffe2af0fb99a16b4cda8463b882cd1
|
38607e3eb57f57f77c0ac114ad169e9e4262e24f
|
refs/heads/master
| 1,611,187,284,081
| 1,450,766,737,000
| 1,476,122,547,000
| 11,513,992
| 2
| 0
| null | 1,401,763,102,000
| 1,374,182,235,000
|
C++
|
UTF-8
|
Lean
| false
| false
| 342
|
lean
|
import data.real
open real int nat
variables a b : nat
variables i j : int
set_option pp.all true
check a + b
check i + j
example : a + b = nat.add a b :=
rfl
example : i + j = int.add i j :=
rfl
open nat real int
example : a + b = nat.add a b :=
rfl
example : i + j = int.add i j :=
rfl
set_option pp.all true
check a + b
check i + j
|
a8d02b09850f75d0c613c1f50f9994e5f0fe65a5
|
fa02ed5a3c9c0adee3c26887a16855e7841c668b
|
/src/computability/epsilon_NFA.lean
|
90127af4c675dc570710ad8d958af63c7845adb2
|
[
"Apache-2.0"
] |
permissive
|
jjgarzella/mathlib
|
96a345378c4e0bf26cf604aed84f90329e4896a2
|
395d8716c3ad03747059d482090e2bb97db612c8
|
refs/heads/master
| 1,686,480,124,379
| 1,625,163,323,000
| 1,625,163,323,000
| 281,190,421
| 2
| 0
|
Apache-2.0
| 1,595,268,170,000
| 1,595,268,169,000
| null |
UTF-8
|
Lean
| false
| false
| 4,467
|
lean
|
/-
Copyright (c) 2021 Fox Thomson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Fox Thomson
-/
import computability.NFA
/-!
# Epsilon Nondeterministic Finite Automata
This file contains the definition of an epsilon Nondeterministic Finite Automaton (`ε_NFA`), a state
machine which determines whether a string (implemented as a list over an arbitrary alphabet) is in a
regular set by evaluating the string over every possible path, also having access to ε-transitons,
which can be followed without reading a character.
Since this definition allows for automata with infinite states, a `fintype` instance must be
supplied for true `ε_NFA`'s.
-/
universes u v
/-- An `ε_NFA` is a set of states (`σ`), a transition function from state to state labelled by the
alphabet (`step`), a starting state (`start`) and a set of acceptance states (`accept`).
Note the transition function sends a state to a `set` of states and can make ε-transitions by
inputing `none`.
Since this definition allows for Automata with infinite states, a `fintype` instance must be
supplied for true `ε_NFA`'s.-/
structure ε_NFA (α : Type u) (σ : Type v) :=
(step : σ → option α → set σ)
(start : set σ)
(accept : set σ)
variables {α : Type u} {σ σ' : Type v} (M : ε_NFA α σ)
namespace ε_NFA
instance : inhabited (ε_NFA α σ) := ⟨ ε_NFA.mk (λ _ _, ∅) ∅ ∅ ⟩
/-- The `ε_closure` of a set is the set of states which can be reached by taking a finite string of
ε-transitions from an element of the the set -/
inductive ε_closure : set σ → set σ
| base : ∀ S (s ∈ S), ε_closure S s
| step : ∀ S s (t ∈ M.step s none), ε_closure S s → ε_closure S t
/-- `M.step_set S a` is the union of the ε-closure of `M.step s a` for all `s ∈ S`. -/
def step_set : set σ → α → set σ :=
λ S a, S >>= (λ s, M.ε_closure (M.step s a))
/-- `M.eval_from S x` computes all possible paths though `M` with input `x` starting at an element
of `S`. -/
def eval_from (start : set σ) : list α → set σ :=
list.foldl M.step_set (M.ε_closure start)
/-- `M.eval x` computes all possible paths though `M` with input `x` starting at an element of
`M.start`. -/
def eval := M.eval_from M.start
/-- `M.accepts` is the language of `x` such that there is an accept state in `M.eval x`. -/
def accepts : language α :=
λ x, ∃ S ∈ M.accept, S ∈ M.eval x
/-- `M.to_NFA` is an `NFA` constructed from an `ε_NFA` `M`. -/
def to_NFA : NFA α σ :=
{ step := λ S a, M.ε_closure (M.step S a),
start := M.ε_closure M.start,
accept := M.accept }
@[simp] lemma to_NFA_eval_from_match (start : set σ) :
M.to_NFA.eval_from (M.ε_closure start) = M.eval_from start := rfl
@[simp] lemma to_NFA_correct :
M.to_NFA.accepts = M.accepts :=
begin
ext x,
rw [accepts, NFA.accepts, eval, NFA.eval, ←to_NFA_eval_from_match],
refl
end
lemma pumping_lemma [fintype σ] {x : list α} (hx : x ∈ M.accepts)
(hlen : fintype.card (set σ) + 1 ≤ list.length x) :
∃ a b c, x = a ++ b ++ c ∧ a.length + b.length ≤ fintype.card (set σ) + 1 ∧ b ≠ [] ∧
{a} * language.star {b} * {c} ≤ M.accepts :=
begin
rw ←to_NFA_correct at hx ⊢,
exact M.to_NFA.pumping_lemma hx hlen
end
end ε_NFA
namespace NFA
/-- `M.to_ε_NFA` is an `ε_NFA` constructed from an `NFA` `M` by using the same start and accept
states and transition functions. -/
def to_ε_NFA (M : NFA α σ) : ε_NFA α σ :=
{ step := λ s a, a.cases_on' ∅ (λ a, M.step s a),
start := M.start,
accept := M.accept }
@[simp] lemma to_ε_NFA_ε_closure (M : NFA α σ) (S : set σ) : M.to_ε_NFA.ε_closure S = S :=
begin
ext a,
split,
{ rintro ( ⟨ _, _, h ⟩ | ⟨ _, _, _, h, _ ⟩ ),
exact h,
cases h },
{ intro h,
apply ε_NFA.ε_closure.base,
exact h }
end
@[simp] lemma to_ε_NFA_eval_from_match (M : NFA α σ) (start : set σ) :
M.to_ε_NFA.eval_from start = M.eval_from start :=
begin
rw [eval_from, ε_NFA.eval_from, step_set, ε_NFA.step_set, to_ε_NFA_ε_closure],
congr,
ext S s,
simp only [exists_prop, set.mem_Union, set.bind_def],
apply exists_congr,
simp only [and.congr_right_iff],
intros t ht,
rw M.to_ε_NFA_ε_closure,
refl
end
@[simp] lemma to_ε_NFA_correct (M : NFA α σ) :
M.to_ε_NFA.accepts = M.accepts :=
begin
rw [accepts, ε_NFA.accepts, eval, ε_NFA.eval, to_ε_NFA_eval_from_match],
refl
end
end NFA
|
de92acb6f77584a904e38bc654813453dc83ceea
|
c465bc191b95d7a9e7544551279b09708d373f58
|
/test_v2.lean
|
6d081d95fed5788fbb1819b7d487efd15c533e15
|
[] |
no_license
|
kevinsullivan/physvm_develop
|
b7a4149c72a10b3a87894c5db5af9b2ce5885c80
|
a57e9c87d4d3fb7548dc6dfae3b932a51fc25b67
|
refs/heads/main
| 1,692,010,146,359
| 1,633,989,164,000
| 1,633,989,164,000
| 397,360,532
| 0
| 1
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 29,167
|
lean
|
import .phys.time.time
import .phys.time_series.geom3d
import .std.time_std
import .std.geom3d_std
noncomputable theory
-- Kevin: See http://petitjeanmichel.free.fr/itoweb.petitjean.symmetry.html
/-
We need to assume a physical interpretation of the data
representing our coordinate system on geom3d. See geom3d_std.lean
for more details on the coordinate system and physical interpretation.
-/
def geometry3d_acs : geom3d_space _ := rice420_acs
/-
We need to assume a physical interpretation of the data
representing our coordinate system on time. We derive a new ACS from
"coordinated_universal_time_in_seconds" - see time_std.lean
for a more details on the coordinate system and physical interpretation
(note : this is a conventional UTC ACS expressed with units in seconds)
The gist of this interpretation of our "world time" is that we have formalized
some fixed time at which our application is run, expressed in terms of UTC.
To do so, we have simply translated the UTC origin to the time at which this was written,
August 18th at ~240 PM. Note: any arbitrary time does not hold any impact on our formal model
(although presumably if we set the origin to the stone age,
there should not be a robotics camera running there).
We do not change the basis - which is a standard
basis whose unit vectors are expressed in seconds.
(1) ORIGIN: We move the origin up to 1629311979
(2) BASIS VECTORS
basis0
- points to the future
- unit length is 1 second (as in UTC)
- Presumably no dilation occur, since this is supposed to represent "empirical"
(atomically-sampled-and-average-weighted) time
(3) ACS is given by [Origin, b0]
-/
def August18thTwoFortyPMTimestamp : scalar := 1629311979
def current_time_in_UTC : time_space _ :=
let origin := mk_time coordinated_universal_time_in_seconds 1629311979 in
let basis := mk_duration coordinated_universal_time_in_seconds 1 in
mk_time_space (mk_time_frame origin basis)
/-
We're assuming a RealSense D435I hardware
unit. It comes with a defined coordinate
system.
We derive from the Rice Hall 420 standard,
aliased in this file as "world_geom_acs".
We'll assume that the camera_imu is two
meters to the right along the back wall,
one meter out from the wall and one meter
high. We'll inhert the standard vector
space structure from the world_geom_acs.
That's its position in space. As for its
orientation, we'll use the orientation provided
by realsense documentation. In ROS orientation notation,
we might call that 'EDN'
1. The positive x-axis points to the subject.
2. The positive y-axis points down.
3. The positive z-axis points forward
-/
def camera_imu_acs : geom3d_space _ :=
let origin := mk_position3d geometry3d_acs 2 1 1 in
let basis0 := mk_displacement3d geometry3d_acs 1 0 0 in
let basis1 := mk_displacement3d geometry3d_acs 0 0 (-1) in
let basis2 := mk_displacement3d geometry3d_acs 0 1 0 in
let fr := mk_geom3d_frame origin basis0 basis1 basis2 in
mk_geom3d_space fr
-- https://www.intelrealsense.com/how-to-getting-imu-data-from-d435i-and-t265/#Tracking_Sensor_Origin_and_CS
/-
We provide an intepretation for the camera's OS clock,
referred to as "System Time" in RealSense nomenclature.
We are presumably running our application at some "recent" time,
expressed in terms of UTC, so we inherit from the ACS "current_time_in_UTC",
our global intepretation of "world time" - when the "application" is running, in terms of UTC.
This is effectively the camera OS's interpretation of
what it believes the current UTC time is.
(https://intelrealsense.github.io/librealsense/doxygen/rs__frame_8h.html#a55750afe3461ea7748fbb2ef6fb19e8a)
We will assume that the origin of the camera OS clock's
affine coordinate system is off by some delta from the "current time in UTC's" origin,
which, particularly, is unknowable-statically,
so we're using the "current" origin of the UTC as the origin Camera's time frame, plus an unspecified delta.
Note that the RealSense API provides sensor dataframes with timestamps expressed in milliseconds - so
our frame is thus expressed in milliseconds as well to reflect that we are consuming this API.
(1) ORIGIN: Some unknown, small constant offset, δ₁,
away from the origin of the current UTC time's origin,
which reflects the current drift of the clock's origin
(2) BASIS VECTORS
basis0
- points to the future
- unit length is 1 millisecond
- A dilation factor, ε₁, scales the basis vector,
to convey the speed of the clock relative to an atomic approximation of UTC time
(3) ACS is given by [Origin, b0]
-/
axiom δ₁ : scalar
axiom ε₁ : scalar
def camera_system_time_acs : time_space _ :=
let milliseconds := (0.001) in -- SHOULD THIS BE MOVED TO STANDARDS? WHAT SHOULD IT LOOK LIKE?
let origin := mk_time current_time_in_UTC δ₁ in
let basis := mk_duration current_time_in_UTC (milliseconds*ε₁) in
mk_time_space (mk_time_frame origin basis)
/-
As we must convert from milliseconds (as retrieved through the rs2::Frame API) to seconds,
we express a new ACS which simply conveys the camera_system_time_acs, defined and described just above,
with units in seconds rather than milliseconds.
(1) ORIGIN: The origin is unchanged from camera_system_time_acs
(2) BASIS VECTORS
basis0
- points to the future
- unit length is 1 second
- The dilation factor is unchanged from the parent ACS
(3) ACS is given by [Origin, b0]
-/
def camera_system_time_seconds : time_space _ :=
let milliseconds_to_seconds := 1000 in --MOVE TO STANDARDS? DEFINE WHAT UNITS ARE SOMEWHERE ELSE?
let origin := mk_time camera_system_time_acs 0 in
let basis := mk_duration camera_system_time_acs milliseconds_to_seconds in
mk_time_space (mk_time_frame origin basis)
/-
Next we construct the "hardware time" of the RealSense Camera
(https://intelrealsense.github.io/librealsense/doxygen/rs__frame_8h.html#a55750afe3461ea7748fbb2ef6fb19e8a)
This is a zero-initiated time (it does not reflect the current time in UTC, rather, it conveys how much
time has passed since the camera has begun transmitting data).
We define this in terms of UTC time, giving it an origin of 0, with no intrinsic "drift". We share the same
dilation factor as camera_system_time_acs, as we are making the assumption that both of these measurements
share the same rate of error.
(1) ORIGIN: 0, reflecting that each run of the camera begins at the UTC origin, rather than at the current time
(2) BASIS VECTORS
basis0
- points to the future
- unit length is 1 millisecond
- A dilation factor, ε₁, scales the basis vector,
to convey the speed of the clock relative to an atomic approximation of UTC time
(3) ACS is given by [Origin, b0]
-/
def camera_hardware_time_acs : time_space _ :=
let milliseconds := (0.001) in -- SHOULD THIS BE MOVED TO STANDARDS? WHAT SHOULD IT LOOK LIKE?
let origin := mk_time coordinated_universal_time_in_seconds 0 in
let basis := mk_duration coordinated_universal_time_in_seconds (milliseconds*ε₁) in
mk_time_space (mk_time_frame origin basis)
/-
Similar to the definition of camera_system_time_acs, we define camera_hardware_time_seconds, reflecting the
need to convert from camera_hardware_time_acs (in milliseconds) to an ACS expressed in seconds.
(1) ORIGIN: The origin is unchanged from camera_hardware_time_acs
(2) BASIS VECTORS
basis0
- points to the future
- unit length is 1 second
- The dilation factor is unchanged from the parent ACS
(3) ACS is given by [Origin, b0]
-/
def camera_hardware_time_seconds : time_space _ :=
let milliseconds_to_seconds := 1000 in --MOVE TO STANDARDS? DEFINE WHAT UNITS ARE SOMEWHERE ELSE?
let origin := mk_time camera_hardware_time_acs 0 in
let basis := mk_duration camera_hardware_time_acs milliseconds_to_seconds in
mk_time_space (mk_time_frame origin basis)
/-
This is the ROS client (of the RealSense camera) node's system time, an OS approximation
of the current UTC time expressed in units seconds
One gap to mention here is that this will be used to annotate the system time, which has a native
representation of seconds + nanoseconds, so there is arguably some mismatch when we
annotate the ros::Time variable simply as having units in seconds.
As with our previously-defined camera_system_time_acs, we model a small drift from the origin,
as well as a constant dilation factor to represent the idiosyncratic error of the clock.
(1) ORIGIN: Some unknown, small constant offset, δ₂,
away from the origin of the current UTC time's origin,
which reflects the current drift of the clock's origin
(2) BASIS VECTORS
basis0
- points to the future
- unit length is 1 second
- A dilation factor, ε₂, scales the basis vector,
to convey the speed of the clock relative to an atomic approximation of UTC time
(3) ACS is given by [Origin, b0]
-/
axiom δ₂ : scalar
axiom ε₂ : scalar
def platform_time_in_seconds :=
let seconds := 1 in
let origin := mk_time coordinated_universal_time_in_seconds δ₂ in
let basis := mk_duration coordinated_universal_time_in_seconds (seconds*ε₂) in
mk_time_space (mk_time_frame origin basis)
/-
Lastly formalize the "global time"
(https://intelrealsense.github.io/librealsense/doxygen/rs__frame_8h.html#a55750afe3461ea7748fbb2ef6fb19e8a)
This is a conversion of the "hardware time", adjusted such specifically it's "dilation rate" has been adjusted
from that of the camera's clock to that of a client's clock. Thus, we may think
This is done in RealSense by a simply linear regression algorithm, and in reality may be subject to some error
if the clock varies over time, but we are only able to model linear relationships, and in this case,
the necessary conversion reduces to adjusting the hardware's basis by a factor of ε₂/ε₁.
(1) ORIGIN: The origin is 0, as we are not translating the hardware ACS, just adjusting its dilation factor.
(2) BASIS VECTORS
basis0
- points to the future
- unit length is 1 millisecond (specified in parent ACS, camera_hardware_time_acs)
- A dilation factor, ε₂/ε₁, which removes the scaling of the camera's clock, and applies the ROS node's clock dilation
(3) ACS is given by [Origin, b0]
-/
def camera_global_time_acs : time_space _ :=
let origin := mk_time camera_hardware_time_acs δ₁ in
let basis := mk_duration camera_hardware_time_acs (ε₂/ε₁) in
mk_time_space (mk_time_frame origin basis)
/-
CODE FORMALIZATION OVERVIEW
The parameter of the method imu_callback_sync, "frame", is either timestamped Acceleration or Angular Velocity Vector.
We have no implementation for either in Peirce (or for sum types for that matter).
Per discussion on last 8/6, this is replaced with a Displacement3D.
We model two versions of this method, reflecting that different sorts of errors can occur. The gap/limitation that causes us to
need to construct two versions of this method is that Peirce, as it is currently constructed, annotates a single execution path.
Thus, to model two execution paths, we need two versions of formalization.
In the first instance, we presume that we've received "_camera_time_base" in the camera_hardware_time_acs ACS,
but that we've just received a dataframe whose timestamp "dataframe.timestamp" domain is expressed in camera_system_time_acs.
What transpires is that we will subtract two timestamps - "dataframe.timestamp - _camera_time_base", which will yield a type error.
In the actual C++ code, this computation will not yield a type error,
rather, it will produce an extremely large "change in timestamps" (doubling of the UTC timestamp) which is physically meaningless and can lead to client failures.
The dilation rates + units of the respective ACS's of the operands are compatibile, in this case, but the origins are obviously off by a dramatic amount.
In the second instance, we presume that we've received "_camera_time_base" in the camera_global_time_acs ACS,
but that we've just received a dataframe whose timestamp "dataframe.timestamp" domain is expressed in camera_hardware_time_acs.
The only difference from above is that, the error will result in a smaller error - to the tune of a few hundred MS
(varying over time, as the dilation rates are not in equal in this case).
There are several other others that manifest in either treatment. One is that we annotate a variable suffixed "_ms"
with a frame expressed in "milliseconds" units, whereas its actual computation is very clearly expressed in seconds.
We formalize this such that there is clearly a conversion
to (a) seconds (ACS), whereas the variable is typed in (a) milliseconds (ACS), such that a type error manifests.
Next, when constructing a timestamped datum (CImuData imu_data), the developers are treating a double value which clearly represents a duration, not a
time, as a timestamp. In our formalization, a type error manifests when constructing the timestamped value.
Lastly, when adding a coordinate from a time expressed in our platform time WITH a coordinate from a time expressed in one of the
camera's timestamp domains, there is no error in our formalization (currently - discussed extensively with Dr. Sullivan),
although we would like one to be. The specific error that we would like to capture is that, due to differences in dilation rates,
the addition of _ros_time_base with imu_msg.timestamp (an alias of elapsed_camera_ms), will not produce an accurate timestamp,
even when elapsed_camera_ms is computed properly (using matching timestamp domains for both timestamp domains).
void BaseRealSenseNode::imu_callback_sync(rs2::frame dataframe, imu_sync_method sync_method)
-/
def imu_callback_sync_v1 : timestamped camera_system_time_acs (displacement3d camera_imu_acs) → punit :=
/-
We define the argument to the method, dataframe. It has an interpretation of
timestamped camera_time_acs (displacement3d camera_imu_acs)
, although it's actual physical type manifest in the code would be an Acceleration or Angular Velocity Vector, representing
a timestamped reading coming from a Gyroscope or Accelerometer.
-/
λ dataframe,
/-
double frame_time = frame.get_timestamp();
In this line, we extract the timestamp of the dataframe, which represents the timestamp at which the IMU data was gathered.
-/
let dataframe_time := dataframe.timestamp in
/-setBaseTime(frame_time, frame.get_frame_timestamp_domain());
_ros_time_base = ros::Time::now();
_camera_time_base = frame_time;
A call is made to the method "setBaseTime". setBaseTime contains two salient lines: setting both _ros_time_base and
_camera_time_base. _ros_time_base is intended to represent the first time point at which the camera
has sent an IMU data reading, expressed in terms of of the local system clock that is reading
data from the RealSense camera data feed. _camera_time_base is intended to represent the first time point at which the camera
has sent an IMU data reading, expressed in terms of the clock directly on the camera.
-/
let _ros_time_base := mk_time platform_time_in_seconds August18thTwoFortyPMTimestamp in
let _camera_time_base := mk_time camera_hardware_time_acs 10 in -- 10 is an arbitrary constant
--double elapsed_camera_ms = (/*ms*/ frame_time - /*ms*/ _camera_time_base) / 1000.0;
/-
We take the difference between the first camera measurement, when the method "imu_callback_sync" was first called, and
the current camera measurement, as contained in "dataframe_time". Thus, the resulting difference is a duration in time.
The variable name suggests that the resulting computation is in milliseconds. The dataframe_time and the _camera_time_base
are expressed in milliseconds due to the implementation of the camera's clock, however, the actual units are expressed in seconds,
as there is a division by 1000. Thus, we transform the duration from its native millisecond frame to a seconds ACS. Mathematically,
we might represent this as Tₘˢ(t₂-t₁). Finally,
there is a type error, as we are attempting to assign a value in an ACS representing seconds to a variable in an ACS
representing milliseconds, which portrays a misconception by the developer when naming this variable.
-/
let elapsed_camera_ms : duration camera_system_time_acs
:= (camera_system_time_acs.mk_time_transform_to camera_system_time_seconds).transform_duration ((dataframe_time -ᵥ _camera_time_base : duration camera_system_time_acs)) in
/-
auto crnt_reading = *(reinterpret_cast<const float3*>(frame.get_data()));
Eigen::Vector3d v(crnt_reading.x, crnt_reading.y, crnt_reading.z);
There are some uneventful assignments that occur here.
The first casts (via static_casting) the vector-quantity data that the frame argument encapsulates to a "float3 object"
and stores it into a variable named "crnt_reading".
The second converts the prior "float3" object into an "Eigen::Vector3d" object, by extracting its x, y, and z coordinates,
using those respectively in the constructor to Eigen::Vector3d, and binding the constructed value into a variable called v.
We model in this in Lean simply by defining a value called "crnt_reading" and assigning the vector-valued data property stored in the
timestamped dataframe method argument. Since the physical type of the dataframe is "timestamped camera_time_acs (displacement3d camera_imu_acs)",
we know that the type of crnt_reading must simply be "displacement3d camera_imu_acs".
Next, we construct the vector v in the code. We define a variable v, which, again, has the physical type "displacement3d camera_imu_acs",
since it is built by simply constructing a new displacement3d using the exact same x, y, and z coordinates of the prior value, crnt_reading.
-/
let crnt_reading : displacement3d camera_imu_acs := dataframe.value in
let v : displacement3d camera_imu_acs := mk_displacement3d camera_imu_acs crnt_reading.x crnt_reading.y crnt_reading.z in
--CimuData imu_data(stream_index, v, elapsed_camera_ms);
/-
The constructor of CimuData in the next line of code simply re-packages the vector data stored in the original frame argument,
whose physical interpretation was a timestamped displacement3d in the camera, back into an another object which represents
a timestamped displacement3d, but this time, the timestamp is expressed in terms of the camera_time_seconds ACS, as the developer
explicitly converted from milliseconds into seconds when constructing what is intended to be the timestamp, elapsed_camera_seconds.
Thus, in order to formalize this in Lean, declare a variable called "imu_data" with type "timestamped camera_time_seconds (displacement3d camera_imu_acs)",
and populate it using the vector-valued data v (which is, again, the same displacement3d encapsulated in the argument to the method),
as well as the variable "elapsed_camera_ms" as a timestamp, which, again is a duration, not a point,
as it is the result of subtracting two time variables, and so, we see an error here in our formalization.
-/
let imu_data : timestamped camera_system_time_seconds (displacement3d camera_imu_acs) := ⟨elapsed_camera_ms, v⟩ in
/-
std::deque<sensor_msgs::Imu> imu_msgs;
switch (sync_method)
{
case NONE: //Cannot really be NONE. Just to avoid compilation warning.
case COPY:
FillImuData_Copy(imu_data, imu_msgs);
break;
case LINEAR_INTERPOLATION:
FillImuData_LinearInterpolation(imu_data, imu_msgs);
break;
}
-/
/-
We define a double-ended queue called "imu_msgs" and attempt to populate it. A call is made to the procedure "FillImuData_Copy"
or "FillImuData_LinearInterpolation", which is omitted here. The purpose of these procedures includes are to construct IMU messages,
specifically tuples of 2 3-dimensional (non-geometric) vectors, along with a linear interpolation that are beyond
the scope of what we can currently formalize, and the resulting IMU messages stores either 0 (if the dataframe argument came from an accelerometer),
1 (if the dataframe argument came from a gyroscope and sync_method is set to "COPY"), or n (if the dataframe argument came from a gyroscope
and sync_method is set to "LINEAR_INTERPOLATION") into deque "imu_msgs". The purpose of the method call is that entries are added to imu_msgs, so this is
simulated by simply instantiating the list with an initial value: imu_data - the timestamped value that we've constructed above. Note that
due to our limitations in Peirce, we have annotated the type of imu_msgs as being the type of the data that we have available,
"(timestamped camera_time_seconds (displacement3d camera_imu_acs))", as opposed to a timestamped IMU message, since we are not yet able to formalize the latter.
-/
let imu_msgs : list (timestamped camera_system_time_seconds (displacement3d camera_imu_acs)) := [imu_data] in
/-
while (imu_msgs.size())
{
sensor_msgs::Imu imu_msg = imu_msgs.front();
-/
/-
We now process each entry in the deque. Each entry has its timestamp updated, then it is published, and then it is removed from the queue, until the queue is empty.
Firstly, we retrieve the front of the queue, which is simply a call to "list.head" in Lean, and,
since "imu_msgs" has type "list (timestamped camera_time_seconds (displacement3d camera_imu_acs))",
the resulting expression is simply of type "(timestamped camera_time_seconds (displacement3d camera_imu_acs))"
-/
let imu_msg : timestamped camera_system_time_seconds (displacement3d camera_imu_acs) := imu_msgs.head in
--ros::Time t(_ros_time_base.toSec() + imu_msg.header.stamp.toSec());
/-
The developers now construct a new timestamp for the IMU message first by
retrieving "base time" of the "platform"/local system time (which was computed earlier, specifically in the first call to this method (imu_callback_sync)),
stored in variable "_ros_time_base", and then converting its value into seconds along with extracting its underlying coordinate via a "toSec" call.
Next, they retrieve timestamp of imu_msg, stored as "imu_msg.header.stamp" in C++ or "imu_msg.timestamp" in our formalization,
whose value is an alias of elapsed_camera_ms, which represents the "offset"/difference
between the current hardware/camera timestamp and the "base" of the hardware/camera time (which, again,
was computed specifically in the first call to this method) with the overall expression expressed in seconds. The coordinates of this object are extracted via the
"toSec" call. These two coordinates are added together and used as an argument in the construction of the ros::Time object.
We've formalized this by interpreting t as a time expressed in the hardware_time_acs. We bind a value to it by constructing a new
value of type "time camera_time_seconds" via our mk_time call. The complexity resides in how we compute the coordinates to the new time.
We define an overload of the "toSec" call for both _ros_time_base and imu_msg.timestamp, whether to provide a global or context-dependent interpretation for
toSec is a nuanced issue. Regardless, both overloads of "toSec", "_ros_time_base_toSec" and "_imu_msg_timestamp_toSec", simply extract
the respective coordinates of _ros_time_base and _imu_msg_timestamp. Thus, the respective overloads are applied using the respective values, _ros_time_base and _imu_msg_timestamp,
and the resulting expressions, which have type "scalar", are added together and supplied as an argument to the newly constructed time.
Note here that, although there is no error here, there should be. The coordinates composing the addition operation hail from two different spaces: platform_time_acs and camera_time_seconds,
which should yield a type error - as these coordinates hail from different ACSes.
-/
let t : time camera_system_time_seconds :=
mk_time _
((
let _ros_time_base_toSec : time platform_time_in_seconds → scalar :=
λt,
(t).coord in
_ros_time_base_toSec _ros_time_base
)
+
(
--casting time to duration discussed
--Whether or not to first convert "imu_msg.timestamp" from a time (point) to a duration (vector) should be confirmed by Dr. S
--let imu_time_as_duration := mk_duration camera_time_seconds imu_msg.timestamp.coord in
let _imu_msg_timestamp_toSec : time camera_system_time_seconds → scalar :=
λt,
t.coord in
_imu_msg_timestamp_toSec imu_msg.timestamp--imu_time_as_duration
)) in
/-
Finally, we update the timestamp of imu_msg with our newly misconstructed time, t
There is no error at this position.
imu_msg.header.stamp = t;
-/
let imu_msg0 : timestamped camera_system_time_seconds (displacement3d camera_imu_acs) := {
timestamp := t,
..imu_msg
} in
punit.star
/-
As discussed above, a second version of this method is presented. The only difference is
that, rather than "_camera_time_base" being in the camera_hardware_time_acs ACS and
"dataframe.timestamp" domain being expressed in the camera_system_time_acs ACS,
we have "_camera_time_base" being in the camera_global_time_acs ACS and
"dataframe.timestamp" domain being expressed in the camera_hardware_time_acs ACS, which reflects an error
where we have a "time dilation" discrepancy in the subtraction operation, rather than a massive origin mismatch.
The reason, again, for maintaining two versions of the method is due to a limitation in our formalization, in that
we can only express one execution path. Thus, describing a different execution path, in this case inputs with differing
timestamp domains, must be formalized separately.
Verbose comments are omitted from this version - as they only differ in terms of the ACS of the "dataframe" argument to the method
(particularly, the ACS of the timestamp),
as well as the _camera_time_base's type (particularly, the dependent type's ACS value)
void BaseRealSenseNode::imu_callback_sync(rs2::frame dataframe, imu_sync_method sync_method)
-/
def imu_callback_sync_v2 : timestamped camera_hardware_time_acs (displacement3d camera_imu_acs) → punit :=
λ dataframe,
/-
double frame_time = frame.get_timestamp();
-/
let dataframe_time := dataframe.timestamp in
/-setBaseTime(frame_time, frame.get_frame_timestamp_domain());
_ros_time_base = ros::Time::now();
_camera_time_base = frame_time;
-/
let _ros_time_base := mk_time platform_time_in_seconds August18thTwoFortyPMTimestamp in
let _camera_time_base := mk_time camera_global_time_acs 10 in -- 10 is an arbitrary constant
--double elapsed_camera_ms = (/*ms*/ frame_time - /*ms*/ _camera_time_base) / 1000.0;
let elapsed_camera_ms : duration camera_hardware_time_acs
:= (camera_system_time_acs.mk_time_transform_to camera_system_time_seconds).transform_duration ((dataframe_time -ᵥ _camera_time_base : duration camera_system_time_acs)) in
/-
auto crnt_reading = *(reinterpret_cast<const float3*>(frame.get_data()));
Eigen::Vector3d v(crnt_reading.x, crnt_reading.y, crnt_reading.z);
-/
let crnt_reading : displacement3d camera_imu_acs := dataframe.value in
let v : displacement3d camera_imu_acs := mk_displacement3d camera_imu_acs crnt_reading.x crnt_reading.y crnt_reading.z in
--CimuData imu_data(stream_index, v, elapsed_camera_ms);
let imu_data : timestamped camera_hardware_time_seconds (displacement3d camera_imu_acs) := ⟨elapsed_camera_ms, v⟩ in
/-
std::deque<sensor_msgs::Imu> imu_msgs;
switch (sync_method)
{
case NONE: //Cannot really be NONE. Just to avoid compilation warning.
case COPY:
FillImuData_Copy(imu_data, imu_msgs);
break;
case LINEAR_INTERPOLATION:
FillImuData_LinearInterpolation(imu_data, imu_msgs);
break;
}
-/
let imu_msgs : list (timestamped camera_hardware_time_seconds (displacement3d camera_imu_acs)) := [imu_data] in
/-
while (imu_msgs.size())
{
sensor_msgs::Imu imu_msg = imu_msgs.front();
-/
let imu_msg : timestamped camera_hardware_time_seconds (displacement3d camera_imu_acs) := imu_msgs.head in
--ros::Time t(_ros_time_base.toSec() + imu_msg.header.stamp.toSec());
let t : time camera_hardware_time_seconds :=
mk_time _
((
let _ros_time_base_toSec : time platform_time_in_seconds → scalar :=
λt,
(t).coord in
_ros_time_base_toSec _ros_time_base
)
+
(
let _imu_msg_timestamp_toSec : time camera_hardware_time_seconds → scalar :=
λt,
t.coord in
_imu_msg_timestamp_toSec imu_msg.timestamp
)) in
/-
imu_msg.header.stamp = t;
-/
let imu_msg0 : timestamped camera_hardware_time_seconds (displacement3d camera_imu_acs) := {
timestamp := t,
..imu_msg
} in
punit.star
|
04c6e233159c0696e820ccba35b0a15c8dd43eac
|
6432ea7a083ff6ba21ea17af9ee47b9c371760f7
|
/tests/lean/matchErrorMsg.lean
|
c6327bb1d46c8207d79602f798741947ff38fd55
|
[
"Apache-2.0",
"LLVM-exception",
"NCSA",
"LGPL-3.0-only",
"LicenseRef-scancode-inner-net-2.0",
"BSD-3-Clause",
"LGPL-2.0-or-later",
"Spencer-94",
"LGPL-2.1-or-later",
"HPND",
"LicenseRef-scancode-pcre",
"ISC",
"LGPL-2.1-only",
"LicenseRef-scancode-other-permissive",
"SunPro",
"CMU-Mach"
] |
permissive
|
leanprover/lean4
|
4bdf9790294964627eb9be79f5e8f6157780b4cc
|
f1f9dc0f2f531af3312398999d8b8303fa5f096b
|
refs/heads/master
| 1,693,360,665,786
| 1,693,350,868,000
| 1,693,350,868,000
| 129,571,436
| 2,827
| 311
|
Apache-2.0
| 1,694,716,156,000
| 1,523,760,560,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 78
|
lean
|
def f (x : Nat × Nat) : Nat :=
match x with
| (0, 0) => 1
| (x+1, _) => 2
|
a6a5ce67b4761b31ad1e7519101b50e45aa5c44e
|
74addaa0e41490cbaf2abd313a764c96df57b05d
|
/Mathlib/ring_theory/adjoin_root.lean
|
47253c25d6afdf27a26f269dd5d14b1e8d6a61eb
|
[] |
no_license
|
AurelienSaue/Mathlib4_auto
|
f538cfd0980f65a6361eadea39e6fc639e9dae14
|
590df64109b08190abe22358fabc3eae000943f2
|
refs/heads/master
| 1,683,906,849,776
| 1,622,564,669,000
| 1,622,564,669,000
| 371,723,747
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 8,733
|
lean
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Chris Hughes
Adjoining roots of polynomials
-/
import Mathlib.PrePort
import Mathlib.Lean3Lib.init.default
import Mathlib.data.polynomial.field_division
import Mathlib.ring_theory.adjoin
import Mathlib.ring_theory.principal_ideal_domain
import Mathlib.linear_algebra.finite_dimensional
import Mathlib.PostPort
universes u v u_1 u_2 w
namespace Mathlib
/-!
# Adjoining roots of polynomials
This file defines the commutative ring `adjoin_root f`, the ring R[X]/(f) obtained from a
commutative ring `R` and a polynomial `f : R[X]`. If furthermore `R` is a field and `f` is
irreducible, the field structure on `adjoin_root f` is constructed.
## Main definitions and results
The main definitions are in the `adjoin_root` namespace.
* `mk f : polynomial R →+* adjoin_root f`, the natural ring homomorphism.
* `of f : R →+* adjoin_root f`, the natural ring homomorphism.
* `root f : adjoin_root f`, the image of X in R[X]/(f).
* `lift (i : R →+* S) (x : S) (h : f.eval₂ i x = 0) : (adjoin_root f) →+* S`, the ring
homomorphism from R[X]/(f) to S extending `i : R →+* S` and sending `X` to `x`.
* `lift_hom (x : S) (hfx : aeval x f = 0) : adjoin_root f →ₐ[R] S`, the algebra
homomorphism from R[X]/(f) to S extending `algebra_map R S` and sending `X` to `x`
* `equiv : (adjoin_root f →ₐ[F] E) ≃ {x // x ∈ (f.map (algebra_map F E)).roots}` a
bijection between algebra homomorphisms from `adjoin_root` and roots of `f` in `S`
-/
/-- Adjoin a root of a polynomial `f` to a commutative ring `R`. We define the new ring
as the quotient of `R` by the principal ideal of `f`. -/
def adjoin_root {R : Type u} [comm_ring R] (f : polynomial R) :=
ideal.quotient (ideal.span (singleton f))
namespace adjoin_root
protected instance comm_ring {R : Type u} [comm_ring R] (f : polynomial R) : comm_ring (adjoin_root f) :=
ideal.quotient.comm_ring (ideal.span (singleton f))
protected instance inhabited {R : Type u} [comm_ring R] (f : polynomial R) : Inhabited (adjoin_root f) :=
{ default := 0 }
protected instance decidable_eq {R : Type u} [comm_ring R] (f : polynomial R) : DecidableEq (adjoin_root f) :=
classical.dec_eq (adjoin_root f)
/-- Ring homomorphism from `R[x]` to `adjoin_root f` sending `X` to the `root`. -/
def mk {R : Type u} [comm_ring R] (f : polynomial R) : polynomial R →+* adjoin_root f :=
ideal.quotient.mk (ideal.span (singleton f))
theorem induction_on {R : Type u} [comm_ring R] (f : polynomial R) {C : adjoin_root f → Prop} (x : adjoin_root f) (ih : ∀ (p : polynomial R), C (coe_fn (mk f) p)) : C x :=
quotient.induction_on' x ih
/-- Embedding of the original ring `R` into `adjoin_root f`. -/
def of {R : Type u} [comm_ring R] (f : polynomial R) : R →+* adjoin_root f :=
ring_hom.comp (mk f) (ring_hom.of ⇑polynomial.C)
protected instance algebra {R : Type u} [comm_ring R] (f : polynomial R) : algebra R (adjoin_root f) :=
ring_hom.to_algebra (of f)
@[simp] theorem algebra_map_eq {R : Type u} [comm_ring R] (f : polynomial R) : algebra_map R (adjoin_root f) = of f :=
rfl
/-- The adjoined root. -/
def root {R : Type u} [comm_ring R] (f : polynomial R) : adjoin_root f :=
coe_fn (mk f) polynomial.X
protected instance adjoin_root.has_coe_t {R : Type u} [comm_ring R] {f : polynomial R} : has_coe_t R (adjoin_root f) :=
has_coe_t.mk ⇑(of f)
@[simp] theorem mk_self {R : Type u} [comm_ring R] {f : polynomial R} : coe_fn (mk f) f = 0 := sorry
@[simp] theorem mk_C {R : Type u} [comm_ring R] {f : polynomial R} (x : R) : coe_fn (mk f) (coe_fn polynomial.C x) = ↑x :=
rfl
@[simp] theorem mk_X {R : Type u} [comm_ring R] {f : polynomial R} : coe_fn (mk f) polynomial.X = root f :=
rfl
@[simp] theorem aeval_eq {R : Type u} [comm_ring R] {f : polynomial R} (p : polynomial R) : coe_fn (polynomial.aeval (root f)) p = coe_fn (mk f) p := sorry
theorem adjoin_root_eq_top {R : Type u} [comm_ring R] {f : polynomial R} : algebra.adjoin R (singleton (root f)) = ⊤ := sorry
@[simp] theorem eval₂_root {R : Type u} [comm_ring R] (f : polynomial R) : polynomial.eval₂ (of f) (root f) f = 0 := sorry
theorem is_root_root {R : Type u} [comm_ring R] (f : polynomial R) : polynomial.is_root (polynomial.map (of f) f) (root f) := sorry
/-- Lift a ring homomorphism `i : R →+* S` to `adjoin_root f →+* S`. -/
def lift {R : Type u} {S : Type v} [comm_ring R] {f : polynomial R} [comm_ring S] (i : R →+* S) (x : S) (h : polynomial.eval₂ i x f = 0) : adjoin_root f →+* S :=
ideal.quotient.lift (ideal.span (singleton f)) (polynomial.eval₂_ring_hom i x) sorry
@[simp] theorem lift_mk {R : Type u} {S : Type v} [comm_ring R] {f : polynomial R} [comm_ring S] {i : R →+* S} {a : S} {h : polynomial.eval₂ i a f = 0} {g : polynomial R} : coe_fn (lift i a h) (coe_fn (mk f) g) = polynomial.eval₂ i a g :=
ideal.quotient.lift_mk (ideal.span (singleton f)) (polynomial.eval₂_ring_hom i a) (lift._proof_1 i a h)
@[simp] theorem lift_root {R : Type u} {S : Type v} [comm_ring R] {f : polynomial R} [comm_ring S] {i : R →+* S} {a : S} {h : polynomial.eval₂ i a f = 0} : coe_fn (lift i a h) (root f) = a :=
eq.mpr (id (Eq._oldrec (Eq.refl (coe_fn (lift i a h) (root f) = a)) (root.equations._eqn_1 f)))
(eq.mpr (id (Eq._oldrec (Eq.refl (coe_fn (lift i a h) (coe_fn (mk f) polynomial.X) = a)) lift_mk))
(eq.mpr (id (Eq._oldrec (Eq.refl (polynomial.eval₂ i a polynomial.X = a)) (polynomial.eval₂_X i a))) (Eq.refl a)))
@[simp] theorem lift_of {R : Type u} {S : Type v} [comm_ring R] {f : polynomial R} [comm_ring S] {i : R →+* S} {a : S} {h : polynomial.eval₂ i a f = 0} {x : R} : coe_fn (lift i a h) ↑x = coe_fn i x := sorry
@[simp] theorem lift_comp_of {R : Type u} {S : Type v} [comm_ring R] {f : polynomial R} [comm_ring S] {i : R →+* S} {a : S} {h : polynomial.eval₂ i a f = 0} : ring_hom.comp (lift i a h) (of f) = i :=
ring_hom.ext fun (_x : R) => lift_of
/-- Produce an algebra homomorphism `adjoin_root f →ₐ[R] S` sending `root f` to
a root of `f` in `S`. -/
def lift_hom {R : Type u} {S : Type v} [comm_ring R] (f : polynomial R) [comm_ring S] [algebra R S] (x : S) (hfx : coe_fn (polynomial.aeval x) f = 0) : alg_hom R (adjoin_root f) S :=
alg_hom.mk (ring_hom.to_fun (lift (algebra_map R S) x hfx)) sorry sorry sorry sorry sorry
@[simp] theorem coe_lift_hom {R : Type u} {S : Type v} [comm_ring R] (f : polynomial R) [comm_ring S] [algebra R S] (x : S) (hfx : coe_fn (polynomial.aeval x) f = 0) : ↑(lift_hom f x hfx) = lift (algebra_map R S) x hfx :=
rfl
@[simp] theorem aeval_alg_hom_eq_zero {R : Type u} {S : Type v} [comm_ring R] (f : polynomial R) [comm_ring S] [algebra R S] (ϕ : alg_hom R (adjoin_root f) S) : coe_fn (polynomial.aeval (coe_fn ϕ (root f))) f = 0 := sorry
@[simp] theorem lift_hom_eq_alg_hom {R : Type u} {S : Type v} [comm_ring R] [comm_ring S] [algebra R S] (f : polynomial R) (ϕ : alg_hom R (adjoin_root f) S) : lift_hom f (coe_fn ϕ (root f)) (aeval_alg_hom_eq_zero f ϕ) = ϕ := sorry
/-- If `E` is a field extension of `F` and `f` is a polynomial over `F` then the set
of maps from `F[x]/(f)` into `E` is in bijection with the set of roots of `f` in `E`. -/
def equiv (F : Type u_1) (E : Type u_2) [field F] [field E] [algebra F E] (f : polynomial F) (hf : f ≠ 0) : alg_hom F (adjoin_root f) E ≃ Subtype fun (x : E) => x ∈ polynomial.roots (polynomial.map (algebra_map F E) f) :=
equiv.mk (fun (ϕ : alg_hom F (adjoin_root f) E) => { val := coe_fn ϕ (root f), property := sorry })
(fun (x : Subtype fun (x : E) => x ∈ polynomial.roots (polynomial.map (algebra_map F E) f)) => lift_hom f ↑x sorry)
sorry sorry
protected instance is_maximal_span {K : Type w} [field K] {f : polynomial K} [irreducible f] : ideal.is_maximal (ideal.span (singleton f)) :=
principal_ideal_ring.is_maximal_of_irreducible _inst_2
protected instance field {K : Type w} [field K] {f : polynomial K} [irreducible f] : field (adjoin_root f) :=
field.mk comm_ring.add sorry comm_ring.zero sorry sorry comm_ring.neg comm_ring.sub sorry sorry comm_ring.mul sorry
comm_ring.one sorry sorry sorry sorry sorry field.inv sorry sorry sorry
theorem coe_injective {K : Type w} [field K] {f : polynomial K} [irreducible f] : function.injective coe :=
ring_hom.injective (of f)
theorem mul_div_root_cancel {K : Type w} [field K] (f : polynomial K) [irreducible f] : (polynomial.X - coe_fn polynomial.C (root f)) *
(polynomial.map (of f) f / (polynomial.X - coe_fn polynomial.C (root f))) =
polynomial.map (of f) f :=
iff.mpr polynomial.mul_div_eq_iff_is_root (is_root_root f)
|
5e28849ca67ec105bec5e4079985ae6e23b442b9
|
4efff1f47634ff19e2f786deadd394270a59ecd2
|
/src/analysis/normed_space/add_torsor.lean
|
c6f9a0630657759c65a9318e0faeac34c3467b8c
|
[
"Apache-2.0"
] |
permissive
|
agjftucker/mathlib
|
d634cd0d5256b6325e3c55bb7fb2403548371707
|
87fe50de17b00af533f72a102d0adefe4a2285e8
|
refs/heads/master
| 1,625,378,131,941
| 1,599,166,526,000
| 1,599,166,526,000
| 160,748,509
| 0
| 0
|
Apache-2.0
| 1,544,141,789,000
| 1,544,141,789,000
| null |
UTF-8
|
Lean
| false
| false
| 4,264
|
lean
|
/-
Copyright (c) 2020 Joseph Myers. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Joseph Myers.
-/
import algebra.add_torsor
import topology.metric_space.isometry
noncomputable theory
/-!
# Torsors of additive normed group actions.
This file defines torsors of additive normed group actions, with a
metric space structure. The motivating case is Euclidean affine
spaces.
-/
universes u v
section prio
set_option default_priority 100 -- see Note [default priority]
/-- A `normed_add_torsor V P` is a torsor of an additive normed group
action by a `normed_group V` on points `P`. We bundle the metric space
structure and require the distance to be the same as results from the
norm (which in fact implies the distance yields a metric space, but
bundling just the distance and using an instance for the metric space
results in type class problems). -/
class normed_add_torsor (V : out_param $ Type u) (P : Type v)
[out_param $ normed_group V] [metric_space P]
extends add_torsor V P :=
(dist_eq_norm' : ∀ (x y : P), dist x y = ∥(x -ᵥ y : V)∥)
end prio
variables (V : Type u) {P : Type v} [normed_group V] [metric_space P] [normed_add_torsor V P]
include V
/-- The distance equals the norm of subtracting two points. In this
lemma, it is necessary to have `V` as an explicit argument; otherwise
`rw dist_eq_norm_vsub` sometimes doesn't work. -/
lemma dist_eq_norm_vsub (x y : P) :
dist x y = ∥(x -ᵥ y)∥ :=
normed_add_torsor.dist_eq_norm' x y
variable {V}
@[simp] lemma dist_vadd_cancel_left (v : V) (x y : P) :
dist (v +ᵥ x) (v +ᵥ y) = dist x y :=
by rw [dist_eq_norm_vsub V, dist_eq_norm_vsub V, vadd_vsub_vadd_cancel_left]
@[simp] lemma dist_vadd_cancel_right (v₁ v₂ : V) (x : P) :
dist (v₁ +ᵥ x) (v₂ +ᵥ x) = dist v₁ v₂ :=
by rw [dist_eq_norm_vsub V, dist_eq_norm, vadd_vsub_vadd_cancel_right]
/-- A `normed_group` is a `normed_add_torsor` over itself. -/
@[nolint instance_priority] -- false positive
instance normed_group.normed_add_torsor (V : Type u) [normed_group V] :
normed_add_torsor V V :=
{ dist_eq_norm' := dist_eq_norm }
/-- The distance defines a metric space structure on the torsor. This
is not an instance because it depends on `V` to define a `metric_space
P`. -/
def metric_space_of_normed_group_of_add_torsor (V : Type u) (P : Type v) [normed_group V]
[add_torsor V P] : metric_space P :=
{ dist := λ x y, ∥(x -ᵥ y : V)∥,
dist_self := λ x, by simp,
eq_of_dist_eq_zero := λ x y h, by simpa using h,
dist_comm := λ x y, by simp only [←neg_vsub_eq_vsub_rev y x, norm_neg],
dist_triangle := begin
intros x y z,
change ∥x -ᵥ z∥ ≤ ∥x -ᵥ y∥ + ∥y -ᵥ z∥,
rw ←vsub_add_vsub_cancel,
apply norm_add_le
end }
namespace isometric
/-- The map `v ↦ v +ᵥ p` as an isometric equivalence between `V` and `P`. -/
def vadd_const (p : P) : V ≃ᵢ P :=
⟨equiv.vadd_const V p, isometry_emetric_iff_metric.2 $ λ x₁ x₂, dist_vadd_cancel_right x₁ x₂ p⟩
@[simp] lemma coe_vadd_const (p : P) : ⇑(vadd_const p) = λ v, v +ᵥ p := rfl
@[simp] lemma coe_vadd_const_symm (p : P) : ⇑(vadd_const p).symm = λ p', p' -ᵥ p := rfl
@[simp] lemma vadd_const_to_equiv (p : P) : (vadd_const p).to_equiv = equiv.vadd_const V p := rfl
variables (P)
/-- The map `p ↦ v +ᵥ p` as an isometric automorphism of `P`. -/
def const_vadd (v : V) : P ≃ᵢ P :=
⟨equiv.const_vadd P v, isometry_emetric_iff_metric.2 $ dist_vadd_cancel_left v⟩
@[simp] lemma coe_const_vadd (v : V) : ⇑(const_vadd P v) = (+ᵥ) v := rfl
variable (V)
@[simp] lemma const_vadd_zero : const_vadd P (0:V) = isometric.refl P :=
isometric.to_equiv_inj $ equiv.const_vadd_zero V P
end isometric
variables {V' : Type*} {P' : Type*} [normed_group V'] [metric_space P'] [normed_add_torsor V' P']
/-- The map `g` from `V1` to `V2` corresponding to a map `f` from `P1`
to `P2`, at a base point `p`, is an isometry if `f` is one. -/
lemma isometry.vadd_vsub {f : P → P'} (hf : isometry f) {p : P} {g : V → V'}
(hg : ∀ v, g v = f (v +ᵥ p) -ᵥ f p) : isometry g :=
begin
convert (isometric.vadd_const (f p)).symm.isometry.comp
(hf.comp (isometric.vadd_const p).isometry),
exact funext hg
end
|
1510c1cfcc09f5d13b8221fba4925756fe247bce
|
94e33a31faa76775069b071adea97e86e218a8ee
|
/src/analysis/normed_space/hahn_banach/extension.lean
|
accee48ac378f93211fd171554ee76fab0c364ea
|
[
"Apache-2.0"
] |
permissive
|
urkud/mathlib
|
eab80095e1b9f1513bfb7f25b4fa82fa4fd02989
|
6379d39e6b5b279df9715f8011369a301b634e41
|
refs/heads/master
| 1,658,425,342,662
| 1,658,078,703,000
| 1,658,078,703,000
| 186,910,338
| 0
| 0
|
Apache-2.0
| 1,568,512,083,000
| 1,557,958,709,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 6,787
|
lean
|
/-
Copyright (c) 2020 Yury Kudryashov All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov, Heather Macbeth
-/
import analysis.convex.cone
import analysis.normed_space.is_R_or_C
import analysis.normed_space.extend
/-!
# Extension Hahn-Banach theorem
In this file we prove the analytic Hahn-Banach theorem. For any continuous linear function on a
subspace, we can extend it to a function on the entire space without changing its norm.
We prove
* `real.exists_extension_norm_eq`: Hahn-Banach theorem for continuous linear functions on normed
spaces over `ℝ`.
* `exists_extension_norm_eq`: Hahn-Banach theorem for continuous linear functions on normed spaces
over `ℝ` or `ℂ`.
In order to state and prove the corollaries uniformly, we prove the statements for a field `𝕜`
satisfying `is_R_or_C 𝕜`.
In this setting, `exists_dual_vector` states that, for any nonzero `x`, there exists a continuous
linear form `g` of norm `1` with `g x = ∥x∥` (where the norm has to be interpreted as an element
of `𝕜`).
-/
universes u v
namespace real
variables {E : Type*} [semi_normed_group E] [normed_space ℝ E]
/-- Hahn-Banach theorem for continuous linear functions over `ℝ`. -/
theorem exists_extension_norm_eq (p : subspace ℝ E) (f : p →L[ℝ] ℝ) :
∃ g : E →L[ℝ] ℝ, (∀ x : p, g x = f x) ∧ ∥g∥ = ∥f∥ :=
begin
rcases exists_extension_of_le_sublinear ⟨p, f⟩ (λ x, ∥f∥ * ∥x∥)
(λ c hc x, by simp only [norm_smul c x, real.norm_eq_abs, abs_of_pos hc, mul_left_comm])
(λ x y, _) (λ x, le_trans (le_abs_self _) (f.le_op_norm _))
with ⟨g, g_eq, g_le⟩,
set g' := g.mk_continuous (∥f∥)
(λ x, abs_le.2 ⟨neg_le.1 $ g.map_neg x ▸ norm_neg x ▸ g_le (-x), g_le x⟩),
{ refine ⟨g', g_eq, _⟩,
{ apply le_antisymm (g.mk_continuous_norm_le (norm_nonneg f) _),
refine f.op_norm_le_bound (norm_nonneg _) (λ x, _),
dsimp at g_eq,
rw ← g_eq,
apply g'.le_op_norm } },
{ simp only [← mul_add],
exact mul_le_mul_of_nonneg_left (norm_add_le x y) (norm_nonneg f) }
end
end real
section is_R_or_C
open is_R_or_C
variables {𝕜 : Type*} [is_R_or_C 𝕜] {F : Type*} [semi_normed_group F] [normed_space 𝕜 F]
/-- Hahn-Banach theorem for continuous linear functions over `𝕜` satisyfing `is_R_or_C 𝕜`. -/
theorem exists_extension_norm_eq (p : subspace 𝕜 F) (f : p →L[𝕜] 𝕜) :
∃ g : F →L[𝕜] 𝕜, (∀ x : p, g x = f x) ∧ ∥g∥ = ∥f∥ :=
begin
letI : module ℝ F := restrict_scalars.module ℝ 𝕜 F,
letI : is_scalar_tower ℝ 𝕜 F := restrict_scalars.is_scalar_tower _ _ _,
letI : normed_space ℝ F := normed_space.restrict_scalars _ 𝕜 _,
-- Let `fr: p →L[ℝ] ℝ` be the real part of `f`.
let fr := re_clm.comp (f.restrict_scalars ℝ),
have fr_apply : ∀ x, fr x = re (f x), by { assume x, refl },
-- Use the real version to get a norm-preserving extension of `fr`, which
-- we'll call `g : F →L[ℝ] ℝ`.
rcases real.exists_extension_norm_eq (p.restrict_scalars ℝ) fr with ⟨g, ⟨hextends, hnormeq⟩⟩,
-- Now `g` can be extended to the `F →L[𝕜] 𝕜` we need.
refine ⟨g.extend_to_𝕜, _⟩,
-- It is an extension of `f`.
have h : ∀ x : p, g.extend_to_𝕜 x = f x,
{ assume x,
rw [continuous_linear_map.extend_to_𝕜_apply, ←submodule.coe_smul, hextends, hextends],
have : (fr x : 𝕜) - I * ↑(fr (I • x)) = (re (f x) : 𝕜) - (I : 𝕜) * (re (f ((I : 𝕜) • x))),
by refl,
rw this,
apply ext,
{ simp only [add_zero, algebra.id.smul_eq_mul, I_re, of_real_im, add_monoid_hom.map_add,
zero_sub, I_im', zero_mul, of_real_re, eq_self_iff_true, sub_zero, mul_neg,
of_real_neg, mul_re, mul_zero, sub_neg_eq_add, continuous_linear_map.map_smul] },
{ simp only [algebra.id.smul_eq_mul, I_re, of_real_im, add_monoid_hom.map_add, zero_sub, I_im',
zero_mul, of_real_re, mul_neg, mul_im, zero_add, of_real_neg, mul_re,
sub_neg_eq_add, continuous_linear_map.map_smul] } },
-- And we derive the equality of the norms by bounding on both sides.
refine ⟨h, le_antisymm _ _⟩,
{ calc ∥g.extend_to_𝕜∥
≤ ∥g∥ : g.extend_to_𝕜.op_norm_le_bound g.op_norm_nonneg (norm_bound _)
... = ∥fr∥ : hnormeq
... ≤ ∥re_clm∥ * ∥f∥ : continuous_linear_map.op_norm_comp_le _ _
... = ∥f∥ : by rw [re_clm_norm, one_mul] },
{ exact f.op_norm_le_bound g.extend_to_𝕜.op_norm_nonneg (λ x, h x ▸ g.extend_to_𝕜.le_op_norm x) }
end
end is_R_or_C
section dual_vector
variables (𝕜 : Type v) [is_R_or_C 𝕜]
variables {E : Type u} [normed_group E] [normed_space 𝕜 E]
open continuous_linear_equiv submodule
open_locale classical
lemma coord_norm' {x : E} (h : x ≠ 0) : ∥(∥x∥ : 𝕜) • coord 𝕜 x h∥ = 1 :=
by rw [norm_smul, is_R_or_C.norm_coe_norm, coord_norm, mul_inv_cancel (mt norm_eq_zero.mp h)]
/-- Corollary of Hahn-Banach. Given a nonzero element `x` of a normed space, there exists an
element of the dual space, of norm `1`, whose value on `x` is `∥x∥`. -/
theorem exists_dual_vector (x : E) (h : x ≠ 0) : ∃ g : E →L[𝕜] 𝕜, ∥g∥ = 1 ∧ g x = ∥x∥ :=
begin
let p : submodule 𝕜 E := 𝕜 ∙ x,
let f := (∥x∥ : 𝕜) • coord 𝕜 x h,
obtain ⟨g, hg⟩ := exists_extension_norm_eq p f,
refine ⟨g, _, _⟩,
{ rw [hg.2, coord_norm'] },
{ calc g x = g (⟨x, mem_span_singleton_self x⟩ : 𝕜 ∙ x) : by rw coe_mk
... = ((∥x∥ : 𝕜) • coord 𝕜 x h) (⟨x, mem_span_singleton_self x⟩ : 𝕜 ∙ x) : by rw ← hg.1
... = ∥x∥ : by simp }
end
/-- Variant of Hahn-Banach, eliminating the hypothesis that `x` be nonzero, and choosing
the dual element arbitrarily when `x = 0`. -/
theorem exists_dual_vector' [nontrivial E] (x : E) :
∃ g : E →L[𝕜] 𝕜, ∥g∥ = 1 ∧ g x = ∥x∥ :=
begin
by_cases hx : x = 0,
{ obtain ⟨y, hy⟩ := exists_ne (0 : E),
obtain ⟨g, hg⟩ : ∃ g : E →L[𝕜] 𝕜, ∥g∥ = 1 ∧ g y = ∥y∥ := exists_dual_vector 𝕜 y hy,
refine ⟨g, hg.left, _⟩,
simp [hx] },
{ exact exists_dual_vector 𝕜 x hx }
end
/-- Variant of Hahn-Banach, eliminating the hypothesis that `x` be nonzero, but only ensuring that
the dual element has norm at most `1` (this can not be improved for the trivial
vector space). -/
theorem exists_dual_vector'' (x : E) :
∃ g : E →L[𝕜] 𝕜, ∥g∥ ≤ 1 ∧ g x = ∥x∥ :=
begin
by_cases hx : x = 0,
{ refine ⟨0, by simp, _⟩,
symmetry,
simp [hx], },
{ rcases exists_dual_vector 𝕜 x hx with ⟨g, g_norm, g_eq⟩,
exact ⟨g, g_norm.le, g_eq⟩ }
end
end dual_vector
|
598e4828f10542c664860bbbbb6d9670f302af42
|
74addaa0e41490cbaf2abd313a764c96df57b05d
|
/Mathlib/ring_theory/valuation/basic_auto.lean
|
088b697aab61825036289423c49e621a417f2f98
|
[] |
no_license
|
AurelienSaue/Mathlib4_auto
|
f538cfd0980f65a6361eadea39e6fc639e9dae14
|
590df64109b08190abe22358fabc3eae000943f2
|
refs/heads/master
| 1,683,906,849,776
| 1,622,564,669,000
| 1,622,564,669,000
| 371,723,747
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 19,501
|
lean
|
/-
Copyright (c) 2020 Johan Commelin. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kevin Buzzard, Johan Commelin, Patrick Massot
-/
import Mathlib.PrePort
import Mathlib.Lean3Lib.init.default
import Mathlib.algebra.linear_ordered_comm_group_with_zero
import Mathlib.algebra.group_power.default
import Mathlib.ring_theory.ideal.operations
import Mathlib.algebra.punit_instances
import Mathlib.PostPort
universes u_1 u_2 l u_3 u_4
namespace Mathlib
/-!
# The basics of valuation theory.
The basic theory of valuations (non-archimedean norms) on a commutative ring,
following T. Wedhorn's unpublished notes “Adic Spaces” ([wedhorn_adic]).
The definition of a valuation we use here is Definition 1.22 of [wedhorn_adic].
A valuation on a ring `R` is a monoid homomorphism `v` to a linearly ordered
commutative group with zero, that in addition satisfies the following two axioms:
* `v 0 = 0`
* `∀ x y, v (x + y) ≤ max (v x) (v y)`
`valuation R Γ₀`is the type of valuations `R → Γ₀`, with a coercion to the underlying
function. If `v` is a valuation from `R` to `Γ₀` then the induced group
homomorphism `units(R) → Γ₀` is called `unit_map v`.
The equivalence "relation" `is_equiv v₁ v₂ : Prop` defined in 1.27 of [wedhorn_adic] is not strictly
speaking a relation, because `v₁ : valuation R Γ₁` and `v₂ : valuation R Γ₂` might
not have the same type. This corresponds in ZFC to the set-theoretic difficulty
that the class of all valuations (as `Γ₀` varies) on a ring `R` is not a set.
The "relation" is however reflexive, symmetric and transitive in the obvious
sense. Note that we use 1.27(iii) of [wedhorn_adic] as the definition of equivalence.
The support of a valuation `v : valuation R Γ₀` is `supp v`. If `J` is an ideal of `R`
with `h : J ⊆ supp v` then the induced valuation
on R / J = `ideal.quotient J` is `on_quot v h`.
## Main definitions
* `valuation R Γ₀`, the type of valuations on `R` with values in `Γ₀`
* `valuation.is_equiv`, the heterogeneous equivalence relation on valuations
* `valuation.supp`, the support of a valuation
-/
-- universes u u₀ u₁ u₂ -- v is used for valuations
/-- The type of Γ₀-valued valuations on R. -/
structure valuation (R : Type u_1) (Γ₀ : Type u_2) [linear_ordered_comm_group_with_zero Γ₀] [ring R]
extends monoid_with_zero_hom R Γ₀ where
map_add' : ∀ (x y : R), to_fun (x + y) ≤ max (to_fun x) (to_fun y)
/-- The `monoid_with_zero_hom` underlying a valuation. -/
namespace valuation
/-- A valuation is coerced to the underlying function R → Γ₀. -/
protected instance has_coe_to_fun (R : Type u_1) (Γ₀ : Type u_2)
[linear_ordered_comm_group_with_zero Γ₀] [ring R] : has_coe_to_fun (valuation R Γ₀) :=
has_coe_to_fun.mk (fun (_x : valuation R Γ₀) => R → Γ₀) to_fun
/-- A valuation is coerced to a monoid morphism R → Γ₀. -/
protected instance monoid_with_zero_hom.has_coe (R : Type u_1) (Γ₀ : Type u_2)
[linear_ordered_comm_group_with_zero Γ₀] [ring R] :
has_coe (valuation R Γ₀) (monoid_with_zero_hom R Γ₀) :=
has_coe.mk to_monoid_with_zero_hom
@[simp] theorem coe_coe {R : Type u_1} {Γ₀ : Type u_2} [linear_ordered_comm_group_with_zero Γ₀]
[ring R] (v : valuation R Γ₀) : ⇑↑v = ⇑v :=
rfl
@[simp] theorem map_zero {R : Type u_1} {Γ₀ : Type u_2} [linear_ordered_comm_group_with_zero Γ₀]
[ring R] (v : valuation R Γ₀) : coe_fn v 0 = 0 :=
map_zero' v
@[simp] theorem map_one {R : Type u_1} {Γ₀ : Type u_2} [linear_ordered_comm_group_with_zero Γ₀]
[ring R] (v : valuation R Γ₀) : coe_fn v 1 = 1 :=
map_one' v
@[simp] theorem map_mul {R : Type u_1} {Γ₀ : Type u_2} [linear_ordered_comm_group_with_zero Γ₀]
[ring R] (v : valuation R Γ₀) (x : R) (y : R) : coe_fn v (x * y) = coe_fn v x * coe_fn v y :=
map_mul' v
@[simp] theorem map_add {R : Type u_1} {Γ₀ : Type u_2} [linear_ordered_comm_group_with_zero Γ₀]
[ring R] (v : valuation R Γ₀) (x : R) (y : R) :
coe_fn v (x + y) ≤ max (coe_fn v x) (coe_fn v y) :=
map_add' v
theorem map_add_le {R : Type u_1} {Γ₀ : Type u_2} [linear_ordered_comm_group_with_zero Γ₀] [ring R]
(v : valuation R Γ₀) {x : R} {y : R} {g : Γ₀} (hx : coe_fn v x ≤ g) (hy : coe_fn v y ≤ g) :
coe_fn v (x + y) ≤ g :=
le_trans (map_add v x y) (max_le hx hy)
theorem map_add_lt {R : Type u_1} {Γ₀ : Type u_2} [linear_ordered_comm_group_with_zero Γ₀] [ring R]
(v : valuation R Γ₀) {x : R} {y : R} {g : Γ₀} (hx : coe_fn v x < g) (hy : coe_fn v y < g) :
coe_fn v (x + y) < g :=
lt_of_le_of_lt (map_add v x y) (max_lt hx hy)
theorem map_sum_le {R : Type u_1} {Γ₀ : Type u_2} [linear_ordered_comm_group_with_zero Γ₀] [ring R]
(v : valuation R Γ₀) {ι : Type u_3} {s : finset ι} {f : ι → R} {g : Γ₀}
(hf : ∀ (i : ι), i ∈ s → coe_fn v (f i) ≤ g) : coe_fn v (finset.sum s fun (i : ι) => f i) ≤ g :=
sorry
theorem map_sum_lt {R : Type u_1} {Γ₀ : Type u_2} [linear_ordered_comm_group_with_zero Γ₀] [ring R]
(v : valuation R Γ₀) {ι : Type u_3} {s : finset ι} {f : ι → R} {g : Γ₀} (hg : g ≠ 0)
(hf : ∀ (i : ι), i ∈ s → coe_fn v (f i) < g) : coe_fn v (finset.sum s fun (i : ι) => f i) < g :=
sorry
theorem map_sum_lt' {R : Type u_1} {Γ₀ : Type u_2} [linear_ordered_comm_group_with_zero Γ₀] [ring R]
(v : valuation R Γ₀) {ι : Type u_3} {s : finset ι} {f : ι → R} {g : Γ₀} (hg : 0 < g)
(hf : ∀ (i : ι), i ∈ s → coe_fn v (f i) < g) : coe_fn v (finset.sum s fun (i : ι) => f i) < g :=
map_sum_lt v (ne_of_gt hg) hf
@[simp] theorem map_pow {R : Type u_1} {Γ₀ : Type u_2} [linear_ordered_comm_group_with_zero Γ₀]
[ring R] (v : valuation R Γ₀) (x : R) (n : ℕ) : coe_fn v (x ^ n) = coe_fn v x ^ n :=
monoid_hom.map_pow (monoid_with_zero_hom.to_monoid_hom (to_monoid_with_zero_hom v))
theorem ext {R : Type u_1} {Γ₀ : Type u_2} [linear_ordered_comm_group_with_zero Γ₀] [ring R]
{v₁ : valuation R Γ₀} {v₂ : valuation R Γ₀} (h : ∀ (r : R), coe_fn v₁ r = coe_fn v₂ r) :
v₁ = v₂ :=
sorry
theorem ext_iff {R : Type u_1} {Γ₀ : Type u_2} [linear_ordered_comm_group_with_zero Γ₀] [ring R]
{v₁ : valuation R Γ₀} {v₂ : valuation R Γ₀} : v₁ = v₂ ↔ ∀ (r : R), coe_fn v₁ r = coe_fn v₂ r :=
{ mp := fun (h : v₁ = v₂) (r : R) => congr_arg (fun {v₁ : valuation R Γ₀} => coe_fn v₁ r) h,
mpr := ext }
-- The following definition is not an instance, because we have more than one `v` on a given `R`.
-- In addition, type class inference would not be able to infer `v`.
/-- A valuation gives a preorder on the underlying ring. -/
def to_preorder {R : Type u_1} {Γ₀ : Type u_2} [linear_ordered_comm_group_with_zero Γ₀] [ring R]
(v : valuation R Γ₀) : preorder R :=
preorder.lift ⇑v
/-- If `v` is a valuation on a division ring then `v(x) = 0` iff `x = 0`. -/
@[simp] theorem zero_iff {Γ₀ : Type u_2} [linear_ordered_comm_group_with_zero Γ₀] {K : Type u_1}
[division_ring K] (v : valuation K Γ₀) {x : K} : coe_fn v x = 0 ↔ x = 0 :=
monoid_with_zero_hom.map_eq_zero (to_monoid_with_zero_hom v)
theorem ne_zero_iff {Γ₀ : Type u_2} [linear_ordered_comm_group_with_zero Γ₀] {K : Type u_1}
[division_ring K] (v : valuation K Γ₀) {x : K} : coe_fn v x ≠ 0 ↔ x ≠ 0 :=
monoid_with_zero_hom.map_ne_zero (to_monoid_with_zero_hom v)
@[simp] theorem map_inv {Γ₀ : Type u_2} [linear_ordered_comm_group_with_zero Γ₀] {K : Type u_1}
[division_ring K] (v : valuation K Γ₀) {x : K} : coe_fn v (x⁻¹) = (coe_fn v x⁻¹) :=
monoid_with_zero_hom.map_inv' (to_monoid_with_zero_hom v) x
theorem map_units_inv {R : Type u_1} {Γ₀ : Type u_2} [linear_ordered_comm_group_with_zero Γ₀]
[ring R] (v : valuation R Γ₀) (x : units R) : coe_fn v ↑(x⁻¹) = (coe_fn v ↑x⁻¹) :=
monoid_hom.map_units_inv (monoid_with_zero_hom.to_monoid_hom (to_monoid_with_zero_hom v)) x
theorem unit_map_eq {R : Type u_1} {Γ₀ : Type u_2} [linear_ordered_comm_group_with_zero Γ₀] [ring R]
(v : valuation R Γ₀) (u : units R) : ↑(coe_fn (units.map ↑v) u) = coe_fn v ↑u :=
rfl
@[simp] theorem map_neg {R : Type u_1} {Γ₀ : Type u_2} [linear_ordered_comm_group_with_zero Γ₀]
[ring R] (v : valuation R Γ₀) (x : R) : coe_fn v (-x) = coe_fn v x :=
monoid_hom.map_neg (monoid_with_zero_hom.to_monoid_hom (to_monoid_with_zero_hom v)) x
theorem map_sub_swap {R : Type u_1} {Γ₀ : Type u_2} [linear_ordered_comm_group_with_zero Γ₀]
[ring R] (v : valuation R Γ₀) (x : R) (y : R) : coe_fn v (x - y) = coe_fn v (y - x) :=
monoid_hom.map_sub_swap (monoid_with_zero_hom.to_monoid_hom (to_monoid_with_zero_hom v)) x y
theorem map_sub_le_max {R : Type u_1} {Γ₀ : Type u_2} [linear_ordered_comm_group_with_zero Γ₀]
[ring R] (v : valuation R Γ₀) (x : R) (y : R) :
coe_fn v (x - y) ≤ max (coe_fn v x) (coe_fn v y) :=
sorry
theorem map_add_of_distinct_val {R : Type u_1} {Γ₀ : Type u_2}
[linear_ordered_comm_group_with_zero Γ₀] [ring R] (v : valuation R Γ₀) {x : R} {y : R}
(h : coe_fn v x ≠ coe_fn v y) : coe_fn v (x + y) = max (coe_fn v x) (coe_fn v y) :=
sorry
theorem map_eq_of_sub_lt {R : Type u_1} {Γ₀ : Type u_2} [linear_ordered_comm_group_with_zero Γ₀]
[ring R] (v : valuation R Γ₀) {x : R} {y : R} (h : coe_fn v (y - x) < coe_fn v x) :
coe_fn v y = coe_fn v x :=
sorry
/-- A ring homomorphism S → R induces a map valuation R Γ₀ → valuation S Γ₀ -/
def comap {R : Type u_1} {Γ₀ : Type u_2} [linear_ordered_comm_group_with_zero Γ₀] [ring R]
{S : Type u_3} [ring S] (f : S →+* R) (v : valuation R Γ₀) : valuation S Γ₀ :=
mk (⇑v ∘ ⇑f) sorry sorry sorry sorry
@[simp] theorem comap_id {R : Type u_1} {Γ₀ : Type u_2} [linear_ordered_comm_group_with_zero Γ₀]
[ring R] (v : valuation R Γ₀) : comap (ring_hom.id R) v = v :=
ext fun (r : R) => rfl
theorem comap_comp {R : Type u_1} {Γ₀ : Type u_2} [linear_ordered_comm_group_with_zero Γ₀] [ring R]
(v : valuation R Γ₀) {S₁ : Type u_3} {S₂ : Type u_4} [ring S₁] [ring S₂] (f : S₁ →+* S₂)
(g : S₂ →+* R) : comap (ring_hom.comp g f) v = comap f (comap g v) :=
ext fun (r : S₁) => rfl
/-- A ≤-preserving group homomorphism Γ₀ → Γ'₀ induces a map valuation R Γ₀ → valuation R Γ'₀. -/
def map {R : Type u_1} {Γ₀ : Type u_2} [linear_ordered_comm_group_with_zero Γ₀] {Γ'₀ : Type u_3}
[linear_ordered_comm_group_with_zero Γ'₀] [ring R] (f : monoid_with_zero_hom Γ₀ Γ'₀)
(hf : monotone ⇑f) (v : valuation R Γ₀) : valuation R Γ'₀ :=
mk (⇑f ∘ ⇑v) sorry sorry sorry sorry
/-- Two valuations on R are defined to be equivalent if they induce the same preorder on R. -/
def is_equiv {R : Type u_1} {Γ₀ : Type u_2} [linear_ordered_comm_group_with_zero Γ₀]
{Γ'₀ : Type u_3} [linear_ordered_comm_group_with_zero Γ'₀] [ring R] (v₁ : valuation R Γ₀)
(v₂ : valuation R Γ'₀) :=
∀ (r s : R), coe_fn v₁ r ≤ coe_fn v₁ s ↔ coe_fn v₂ r ≤ coe_fn v₂ s
namespace is_equiv
theorem refl {R : Type u_1} {Γ₀ : Type u_2} [linear_ordered_comm_group_with_zero Γ₀] [ring R]
{v : valuation R Γ₀} : is_equiv v v :=
fun (_x _x_1 : R) => iff.refl (coe_fn v _x ≤ coe_fn v _x_1)
theorem symm {R : Type u_1} {Γ₀ : Type u_2} [linear_ordered_comm_group_with_zero Γ₀]
{Γ'₀ : Type u_3} [linear_ordered_comm_group_with_zero Γ'₀] [ring R] {v₁ : valuation R Γ₀}
{v₂ : valuation R Γ'₀} (h : is_equiv v₁ v₂) : is_equiv v₂ v₁ :=
fun (_x _x_1 : R) => iff.symm (h _x _x_1)
theorem trans {R : Type u_1} {Γ₀ : Type u_2} [linear_ordered_comm_group_with_zero Γ₀]
{Γ'₀ : Type u_3} [linear_ordered_comm_group_with_zero Γ'₀] {Γ''₀ : Type u_4}
[linear_ordered_comm_group_with_zero Γ''₀] [ring R] {v₁ : valuation R Γ₀} {v₂ : valuation R Γ'₀}
{v₃ : valuation R Γ''₀} (h₁₂ : is_equiv v₁ v₂) (h₂₃ : is_equiv v₂ v₃) : is_equiv v₁ v₃ :=
fun (_x _x_1 : R) => iff.trans (h₁₂ _x _x_1) (h₂₃ _x _x_1)
theorem of_eq {R : Type u_1} {Γ₀ : Type u_2} [linear_ordered_comm_group_with_zero Γ₀] [ring R]
{v : valuation R Γ₀} {v' : valuation R Γ₀} (h : v = v') : is_equiv v v' :=
Eq._oldrec refl h
theorem map {R : Type u_1} {Γ₀ : Type u_2} [linear_ordered_comm_group_with_zero Γ₀] {Γ'₀ : Type u_3}
[linear_ordered_comm_group_with_zero Γ'₀] [ring R] {v : valuation R Γ₀} {v' : valuation R Γ₀}
(f : monoid_with_zero_hom Γ₀ Γ'₀) (hf : monotone ⇑f) (inf : function.injective ⇑f)
(h : is_equiv v v') : is_equiv (map f hf v) (map f hf v') :=
sorry
/-- `comap` preserves equivalence. -/
theorem comap {R : Type u_1} {Γ₀ : Type u_2} [linear_ordered_comm_group_with_zero Γ₀]
{Γ'₀ : Type u_3} [linear_ordered_comm_group_with_zero Γ'₀] [ring R] {v₁ : valuation R Γ₀}
{v₂ : valuation R Γ'₀} {S : Type u_4} [ring S] (f : S →+* R) (h : is_equiv v₁ v₂) :
is_equiv (comap f v₁) (comap f v₂) :=
fun (r s : S) => h (coe_fn f r) (coe_fn f s)
theorem val_eq {R : Type u_1} {Γ₀ : Type u_2} [linear_ordered_comm_group_with_zero Γ₀]
{Γ'₀ : Type u_3} [linear_ordered_comm_group_with_zero Γ'₀] [ring R] {v₁ : valuation R Γ₀}
{v₂ : valuation R Γ'₀} (h : is_equiv v₁ v₂) {r : R} {s : R} :
coe_fn v₁ r = coe_fn v₁ s ↔ coe_fn v₂ r = coe_fn v₂ s :=
sorry
theorem ne_zero {R : Type u_1} {Γ₀ : Type u_2} [linear_ordered_comm_group_with_zero Γ₀]
{Γ'₀ : Type u_3} [linear_ordered_comm_group_with_zero Γ'₀] [ring R] {v₁ : valuation R Γ₀}
{v₂ : valuation R Γ'₀} (h : is_equiv v₁ v₂) {r : R} : coe_fn v₁ r ≠ 0 ↔ coe_fn v₂ r ≠ 0 :=
eq.mp (Eq._oldrec (Eq.refl (coe_fn v₁ r ≠ 0 ↔ coe_fn v₂ r ≠ coe_fn v₂ 0)) (map_zero v₂))
(eq.mp
(Eq._oldrec (Eq.refl (coe_fn v₁ r ≠ coe_fn v₁ 0 ↔ coe_fn v₂ r ≠ coe_fn v₂ 0)) (map_zero v₁))
(not_iff_not_of_iff (val_eq h)))
theorem Mathlib.valuation.is_equiv_of_map_strict_mono {R : Type u_1} {Γ₀ : Type u_2}
[linear_ordered_comm_group_with_zero Γ₀] {Γ'₀ : Type u_3}
[linear_ordered_comm_group_with_zero Γ'₀] [ring R] {v : valuation R Γ₀}
(f : monoid_with_zero_hom Γ₀ Γ'₀) (H : strict_mono ⇑f) :
is_equiv (map f (strict_mono.monotone H) v) v :=
fun (x y : R) =>
{ mp := iff.mp (strict_mono.le_iff_le H),
mpr := fun (h : coe_fn v x ≤ coe_fn v y) => strict_mono.monotone H h }
theorem Mathlib.valuation.is_equiv_of_val_le_one {Γ₀ : Type u_2}
[linear_ordered_comm_group_with_zero Γ₀] {Γ'₀ : Type u_3}
[linear_ordered_comm_group_with_zero Γ'₀] {K : Type u_1} [division_ring K] (v : valuation K Γ₀)
(v' : valuation K Γ'₀) (h : ∀ {x : K}, coe_fn v x ≤ 1 ↔ coe_fn v' x ≤ 1) : is_equiv v v' :=
sorry
/-- The support of a valuation `v : R → Γ₀` is the ideal of `R` where `v` vanishes. -/
def Mathlib.valuation.supp {R : Type u_1} {Γ₀ : Type u_2} [linear_ordered_comm_group_with_zero Γ₀]
[comm_ring R] (v : valuation R Γ₀) : ideal R :=
submodule.mk (set_of fun (x : R) => coe_fn v x = 0) sorry sorry sorry
-- @[simp] lemma mem_supp_iff' (x : R) : x ∈ (supp v : set R) ↔ v x = 0 := iff.rfl
@[simp] theorem Mathlib.valuation.mem_supp_iff {R : Type u_1} {Γ₀ : Type u_2}
[linear_ordered_comm_group_with_zero Γ₀] [comm_ring R] (v : valuation R Γ₀) (x : R) :
x ∈ supp v ↔ coe_fn v x = 0 :=
iff.rfl
/-- The support of a valuation is a prime ideal. -/
protected instance Mathlib.valuation.supp.ideal.is_prime {R : Type u_1} {Γ₀ : Type u_2}
[linear_ordered_comm_group_with_zero Γ₀] [comm_ring R] (v : valuation R Γ₀) :
ideal.is_prime (supp v) :=
{ left :=
fun (h : supp v = ⊤) =>
one_ne_zero
((fun (this : 1 = 0) => this)
(Eq.trans (Eq.symm (map_one v))
((fun (this : 1 ∈ supp v) => this)
(eq.mpr (id (Eq._oldrec (Eq.refl (1 ∈ supp v)) h)) trivial)))),
right :=
fun (x y : R) (hxy : x * y ∈ supp v) =>
id
(id
(fun (hxy : coe_fn v (x * y) = 0) =>
eq_zero_or_eq_zero_of_mul_eq_zero
(eq.mp (Eq._oldrec (Eq.refl (coe_fn v (x * y) = 0)) (map_mul v x y)) hxy))
hxy) }
theorem Mathlib.valuation.map_add_supp {R : Type u_1} {Γ₀ : Type u_2}
[linear_ordered_comm_group_with_zero Γ₀] [comm_ring R] (v : valuation R Γ₀) (a : R) {s : R}
(h : s ∈ supp v) : coe_fn v (a + s) = coe_fn v a :=
sorry
/-- If `hJ : J ⊆ supp v` then `on_quot_val hJ` is the induced function on R/J as a function.
Note: it's just the function; the valuation is `on_quot hJ`. -/
def Mathlib.valuation.on_quot_val {R : Type u_1} {Γ₀ : Type u_2}
[linear_ordered_comm_group_with_zero Γ₀] [comm_ring R] (v : valuation R Γ₀) {J : ideal R}
(hJ : J ≤ supp v) : ideal.quotient J → Γ₀ :=
fun (q : ideal.quotient J) => quotient.lift_on' q ⇑v sorry
/-- The extension of valuation v on R to valuation on R/J if J ⊆ supp v -/
def Mathlib.valuation.on_quot {R : Type u_1} {Γ₀ : Type u_2}
[linear_ordered_comm_group_with_zero Γ₀] [comm_ring R] (v : valuation R Γ₀) {J : ideal R}
(hJ : J ≤ supp v) : valuation (ideal.quotient J) Γ₀ :=
mk (on_quot_val v hJ) sorry sorry sorry sorry
@[simp] theorem Mathlib.valuation.on_quot_comap_eq {R : Type u_1} {Γ₀ : Type u_2}
[linear_ordered_comm_group_with_zero Γ₀] [comm_ring R] (v : valuation R Γ₀) {J : ideal R}
(hJ : J ≤ supp v) : comap (ideal.quotient.mk J) (on_quot v hJ) = v :=
sorry
theorem Mathlib.valuation.comap_supp {R : Type u_1} {Γ₀ : Type u_2}
[linear_ordered_comm_group_with_zero Γ₀] [comm_ring R] (v : valuation R Γ₀) {S : Type u_3}
[comm_ring S] (f : S →+* R) : supp (comap f v) = ideal.comap f (supp v) :=
sorry
theorem Mathlib.valuation.self_le_supp_comap {R : Type u_1} {Γ₀ : Type u_2}
[linear_ordered_comm_group_with_zero Γ₀] [comm_ring R] (J : ideal R)
(v : valuation (ideal.quotient J) Γ₀) : J ≤ supp (comap (ideal.quotient.mk J) v) :=
sorry
@[simp] theorem Mathlib.valuation.comap_on_quot_eq {R : Type u_1} {Γ₀ : Type u_2}
[linear_ordered_comm_group_with_zero Γ₀] [comm_ring R] (J : ideal R)
(v : valuation (ideal.quotient J) Γ₀) :
on_quot (comap (ideal.quotient.mk J) v) (self_le_supp_comap J v) = v :=
sorry
/-- The quotient valuation on R/J has support supp(v)/J if J ⊆ supp v. -/
theorem Mathlib.valuation.supp_quot {R : Type u_1} {Γ₀ : Type u_2}
[linear_ordered_comm_group_with_zero Γ₀] [comm_ring R] (v : valuation R Γ₀) {J : ideal R}
(hJ : J ≤ supp v) : supp (on_quot v hJ) = ideal.map (ideal.quotient.mk J) (supp v) :=
sorry
theorem Mathlib.valuation.supp_quot_supp {R : Type u_1} {Γ₀ : Type u_2}
[linear_ordered_comm_group_with_zero Γ₀] [comm_ring R] (v : valuation R Γ₀) :
supp (on_quot v (le_refl (supp v))) = 0 :=
eq.mpr
(id
(Eq._oldrec (Eq.refl (supp (on_quot v (le_refl (supp v))) = 0))
(supp_quot v (le_refl (supp v)))))
(ideal.map_quotient_self (supp v))
end Mathlib
|
fa3ac634e779d7c7c5a4b718a4652b1484a33a2a
|
94e33a31faa76775069b071adea97e86e218a8ee
|
/src/analysis/normed_space/exponential.lean
|
dfd830406afcd0101a90d464b2ac0f0f4b965a2c
|
[
"Apache-2.0"
] |
permissive
|
urkud/mathlib
|
eab80095e1b9f1513bfb7f25b4fa82fa4fd02989
|
6379d39e6b5b279df9715f8011369a301b634e41
|
refs/heads/master
| 1,658,425,342,662
| 1,658,078,703,000
| 1,658,078,703,000
| 186,910,338
| 0
| 0
|
Apache-2.0
| 1,568,512,083,000
| 1,557,958,709,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 26,250
|
lean
|
/-
Copyright (c) 2021 Anatole Dedecker. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Anatole Dedecker, Eric Wieser
-/
import analysis.specific_limits.basic
import analysis.analytic.basic
import analysis.complex.basic
import data.nat.choose.cast
import data.finset.noncomm_prod
/-!
# Exponential in a Banach algebra
In this file, we define `exp 𝕂 : 𝔸 → 𝔸`, the exponential map in a topological algebra `𝔸` over a
field `𝕂`.
While for most interesting results we need `𝔸` to be normed algebra, we do not require this in the
definition in order to make `exp` independent of a particular choice of norm. The definition also
does not require that `𝔸` be complete, but we need to assume it for most results.
We then prove some basic results, but we avoid importing derivatives here to minimize dependencies.
Results involving derivatives and comparisons with `real.exp` and `complex.exp` can be found in
`analysis/special_functions/exponential`.
## Main results
We prove most result for an arbitrary field `𝕂`, and then specialize to `𝕂 = ℝ` or `𝕂 = ℂ`.
### General case
- `exp_add_of_commute_of_mem_ball` : if `𝕂` has characteristic zero, then given two commuting
elements `x` and `y` in the disk of convergence, we have
`exp 𝕂 (x+y) = (exp 𝕂 x) * (exp 𝕂 y)`
- `exp_add_of_mem_ball` : if `𝕂` has characteristic zero and `𝔸` is commutative, then given two
elements `x` and `y` in the disk of convergence, we have
`exp 𝕂 (x+y) = (exp 𝕂 x) * (exp 𝕂 y)`
- `exp_neg_of_mem_ball` : if `𝕂` has characteristic zero and `𝔸` is a division ring, then given an
element `x` in the disk of convergence, we have `exp 𝕂 (-x) = (exp 𝕂 x)⁻¹`.
### `𝕂 = ℝ` or `𝕂 = ℂ`
- `exp_series_radius_eq_top` : the `formal_multilinear_series` defining `exp 𝕂` has infinite
radius of convergence
- `exp_add_of_commute` : given two commuting elements `x` and `y`, we have
`exp 𝕂 (x+y) = (exp 𝕂 x) * (exp 𝕂 y)`
- `exp_add` : if `𝔸` is commutative, then we have `exp 𝕂 (x+y) = (exp 𝕂 x) * (exp 𝕂 y)`
for any `x` and `y`
- `exp_neg` : if `𝔸` is a division ring, then we have `exp 𝕂 (-x) = (exp 𝕂 x)⁻¹`.
- `exp_sum_of_commute` : the analogous result to `exp_add_of_commute` for `finset.sum`.
- `exp_sum` : the analogous result to `exp_add` for `finset.sum`.
- `exp_nsmul` : repeated addition in the domain corresponds to repeated multiplication in the
codomain.
- `exp_zsmul` : repeated addition in the domain corresponds to repeated multiplication in the
codomain.
### Other useful compatibility results
- `exp_eq_exp` : if `𝔸` is a normed algebra over two fields `𝕂` and `𝕂'`, then `exp 𝕂 = exp 𝕂' 𝔸`
-/
open filter is_R_or_C continuous_multilinear_map normed_field asymptotics
open_locale nat topological_space big_operators ennreal
section topological_algebra
variables (𝕂 𝔸 : Type*) [field 𝕂] [ring 𝔸] [algebra 𝕂 𝔸] [topological_space 𝔸]
[topological_ring 𝔸]
/-- `exp_series 𝕂 𝔸` is the `formal_multilinear_series` whose `n`-th term is the map
`(xᵢ) : 𝔸ⁿ ↦ (1/n! : 𝕂) • ∏ xᵢ`. Its sum is the exponential map `exp 𝕂 : 𝔸 → 𝔸`. -/
def exp_series : formal_multilinear_series 𝕂 𝔸 𝔸 :=
λ n, (n!⁻¹ : 𝕂) • continuous_multilinear_map.mk_pi_algebra_fin 𝕂 n 𝔸
variables {𝔸}
/-- `exp 𝕂 : 𝔸 → 𝔸` is the exponential map determined by the action of `𝕂` on `𝔸`.
It is defined as the sum of the `formal_multilinear_series` `exp_series 𝕂 𝔸`.
Note that when `𝔸 = matrix n n 𝕂`, this is the **Matrix Exponential**; see
[`analysis.normed_space.matrix_exponential`](../matrix_exponential) for lemmas specific to that
case. -/
noncomputable def exp (x : 𝔸) : 𝔸 := (exp_series 𝕂 𝔸).sum x
variables {𝕂}
lemma exp_series_apply_eq (x : 𝔸) (n : ℕ) : exp_series 𝕂 𝔸 n (λ _, x) = (n!⁻¹ : 𝕂) • x^n :=
by simp [exp_series]
lemma exp_series_apply_eq' (x : 𝔸) :
(λ n, exp_series 𝕂 𝔸 n (λ _, x)) = (λ n, (n!⁻¹ : 𝕂) • x^n) :=
funext (exp_series_apply_eq x)
lemma exp_series_sum_eq (x : 𝔸) : (exp_series 𝕂 𝔸).sum x = ∑' (n : ℕ), (n!⁻¹ : 𝕂) • x^n :=
tsum_congr (λ n, exp_series_apply_eq x n)
lemma exp_eq_tsum : exp 𝕂 = (λ x : 𝔸, ∑' (n : ℕ), (n!⁻¹ : 𝕂) • x^n) :=
funext exp_series_sum_eq
@[simp] lemma exp_zero [t2_space 𝔸] : exp 𝕂 (0 : 𝔸) = 1 :=
begin
suffices : (λ x : 𝔸, ∑' (n : ℕ), (n!⁻¹ : 𝕂) • x^n) 0 = ∑' (n : ℕ), if n = 0 then 1 else 0,
{ have key : ∀ n ∉ ({0} : finset ℕ), (if n = 0 then (1 : 𝔸) else 0) = 0,
from λ n hn, if_neg (finset.not_mem_singleton.mp hn),
rw [exp_eq_tsum, this, tsum_eq_sum key, finset.sum_singleton],
simp },
refine tsum_congr (λ n, _),
split_ifs with h h;
simp [h]
end
@[simp] lemma exp_op [t2_space 𝔸] (x : 𝔸) :
exp 𝕂 (mul_opposite.op x) = mul_opposite.op (exp 𝕂 x) :=
by simp_rw [exp, exp_series_sum_eq, ←mul_opposite.op_pow, ←mul_opposite.op_smul, tsum_op]
@[simp] lemma exp_unop [t2_space 𝔸] (x : 𝔸ᵐᵒᵖ) :
exp 𝕂 (mul_opposite.unop x) = mul_opposite.unop (exp 𝕂 x) :=
by simp_rw [exp, exp_series_sum_eq, ←mul_opposite.unop_pow, ←mul_opposite.unop_smul, tsum_unop]
lemma star_exp [t2_space 𝔸] [star_ring 𝔸] [has_continuous_star 𝔸] (x : 𝔸) :
star (exp 𝕂 x) = exp 𝕂 (star x) :=
by simp_rw [exp_eq_tsum, ←star_pow, ←star_inv_nat_cast_smul, ←tsum_star]
variables (𝕂)
lemma commute.exp_right [t2_space 𝔸] {x y : 𝔸} (h : commute x y) : commute x (exp 𝕂 y) :=
begin
rw exp_eq_tsum,
exact commute.tsum_right x (λ n, (h.pow_right n).smul_right _),
end
lemma commute.exp_left [t2_space 𝔸] {x y : 𝔸} (h : commute x y) : commute (exp 𝕂 x) y :=
(h.symm.exp_right 𝕂).symm
lemma commute.exp [t2_space 𝔸] {x y : 𝔸} (h : commute x y) : commute (exp 𝕂 x) (exp 𝕂 y) :=
(h.exp_left _).exp_right _
end topological_algebra
section topological_division_algebra
variables {𝕂 𝔸 : Type*} [field 𝕂] [division_ring 𝔸] [algebra 𝕂 𝔸] [topological_space 𝔸]
[topological_ring 𝔸]
lemma exp_series_apply_eq_div (x : 𝔸) (n : ℕ) : exp_series 𝕂 𝔸 n (λ _, x) = x^n / n! :=
by rw [div_eq_mul_inv, ←(nat.cast_commute n! (x ^ n)).inv_left₀.eq, ←smul_eq_mul,
exp_series_apply_eq, inv_nat_cast_smul_eq _ _ _ _]
lemma exp_series_apply_eq_div' (x : 𝔸) : (λ n, exp_series 𝕂 𝔸 n (λ _, x)) = (λ n, x^n / n!) :=
funext (exp_series_apply_eq_div x)
lemma exp_series_sum_eq_div (x : 𝔸) : (exp_series 𝕂 𝔸).sum x = ∑' (n : ℕ), x^n / n! :=
tsum_congr (exp_series_apply_eq_div x)
lemma exp_eq_tsum_div : exp 𝕂 = (λ x : 𝔸, ∑' (n : ℕ), x^n / n!) :=
funext exp_series_sum_eq_div
end topological_division_algebra
section normed
section any_field_any_algebra
variables {𝕂 𝔸 𝔹 : Type*} [nondiscrete_normed_field 𝕂]
variables [normed_ring 𝔸] [normed_ring 𝔹] [normed_algebra 𝕂 𝔸] [normed_algebra 𝕂 𝔹]
lemma norm_exp_series_summable_of_mem_ball (x : 𝔸)
(hx : x ∈ emetric.ball (0 : 𝔸) (exp_series 𝕂 𝔸).radius) :
summable (λ n, ∥exp_series 𝕂 𝔸 n (λ _, x)∥) :=
(exp_series 𝕂 𝔸).summable_norm_apply hx
lemma norm_exp_series_summable_of_mem_ball' (x : 𝔸)
(hx : x ∈ emetric.ball (0 : 𝔸) (exp_series 𝕂 𝔸).radius) :
summable (λ n, ∥(n!⁻¹ : 𝕂) • x^n∥) :=
begin
change summable (norm ∘ _),
rw ← exp_series_apply_eq',
exact norm_exp_series_summable_of_mem_ball x hx
end
section complete_algebra
variables [complete_space 𝔸]
lemma exp_series_summable_of_mem_ball (x : 𝔸)
(hx : x ∈ emetric.ball (0 : 𝔸) (exp_series 𝕂 𝔸).radius) :
summable (λ n, exp_series 𝕂 𝔸 n (λ _, x)) :=
summable_of_summable_norm (norm_exp_series_summable_of_mem_ball x hx)
lemma exp_series_summable_of_mem_ball' (x : 𝔸)
(hx : x ∈ emetric.ball (0 : 𝔸) (exp_series 𝕂 𝔸).radius) :
summable (λ n, (n!⁻¹ : 𝕂) • x^n) :=
summable_of_summable_norm (norm_exp_series_summable_of_mem_ball' x hx)
lemma exp_series_has_sum_exp_of_mem_ball (x : 𝔸)
(hx : x ∈ emetric.ball (0 : 𝔸) (exp_series 𝕂 𝔸).radius) :
has_sum (λ n, exp_series 𝕂 𝔸 n (λ _, x)) (exp 𝕂 x) :=
formal_multilinear_series.has_sum (exp_series 𝕂 𝔸) hx
lemma exp_series_has_sum_exp_of_mem_ball' (x : 𝔸)
(hx : x ∈ emetric.ball (0 : 𝔸) (exp_series 𝕂 𝔸).radius) :
has_sum (λ n, (n!⁻¹ : 𝕂) • x^n) (exp 𝕂 x):=
begin
rw ← exp_series_apply_eq',
exact exp_series_has_sum_exp_of_mem_ball x hx
end
lemma has_fpower_series_on_ball_exp_of_radius_pos (h : 0 < (exp_series 𝕂 𝔸).radius) :
has_fpower_series_on_ball (exp 𝕂) (exp_series 𝕂 𝔸) 0 (exp_series 𝕂 𝔸).radius :=
(exp_series 𝕂 𝔸).has_fpower_series_on_ball h
lemma has_fpower_series_at_exp_zero_of_radius_pos (h : 0 < (exp_series 𝕂 𝔸).radius) :
has_fpower_series_at (exp 𝕂) (exp_series 𝕂 𝔸) 0 :=
(has_fpower_series_on_ball_exp_of_radius_pos h).has_fpower_series_at
lemma continuous_on_exp :
continuous_on (exp 𝕂 : 𝔸 → 𝔸) (emetric.ball 0 (exp_series 𝕂 𝔸).radius) :=
formal_multilinear_series.continuous_on
lemma analytic_at_exp_of_mem_ball (x : 𝔸) (hx : x ∈ emetric.ball (0 : 𝔸) (exp_series 𝕂 𝔸).radius) :
analytic_at 𝕂 (exp 𝕂) x:=
begin
by_cases h : (exp_series 𝕂 𝔸).radius = 0,
{ rw h at hx, exact (ennreal.not_lt_zero hx).elim },
{ have h := pos_iff_ne_zero.mpr h,
exact (has_fpower_series_on_ball_exp_of_radius_pos h).analytic_at_of_mem hx }
end
/-- In a Banach-algebra `𝔸` over a normed field `𝕂` of characteristic zero, if `x` and `y` are
in the disk of convergence and commute, then `exp 𝕂 (x + y) = (exp 𝕂 x) * (exp 𝕂 y)`. -/
lemma exp_add_of_commute_of_mem_ball [char_zero 𝕂]
{x y : 𝔸} (hxy : commute x y) (hx : x ∈ emetric.ball (0 : 𝔸) (exp_series 𝕂 𝔸).radius)
(hy : y ∈ emetric.ball (0 : 𝔸) (exp_series 𝕂 𝔸).radius) :
exp 𝕂 (x + y) = (exp 𝕂 x) * (exp 𝕂 y) :=
begin
rw [exp_eq_tsum, tsum_mul_tsum_eq_tsum_sum_antidiagonal_of_summable_norm
(norm_exp_series_summable_of_mem_ball' x hx) (norm_exp_series_summable_of_mem_ball' y hy)],
dsimp only,
conv_lhs {congr, funext, rw [hxy.add_pow' _, finset.smul_sum]},
refine tsum_congr (λ n, finset.sum_congr rfl $ λ kl hkl, _),
rw [nsmul_eq_smul_cast 𝕂, smul_smul, smul_mul_smul, ← (finset.nat.mem_antidiagonal.mp hkl),
nat.cast_add_choose, (finset.nat.mem_antidiagonal.mp hkl)],
congr' 1,
have : (n! : 𝕂) ≠ 0 := nat.cast_ne_zero.mpr n.factorial_ne_zero,
field_simp [this]
end
/-- `exp 𝕂 x` has explicit two-sided inverse `exp 𝕂 (-x)`. -/
noncomputable def invertible_exp_of_mem_ball [char_zero 𝕂] {x : 𝔸}
(hx : x ∈ emetric.ball (0 : 𝔸) (exp_series 𝕂 𝔸).radius) : invertible (exp 𝕂 x) :=
{ inv_of := exp 𝕂 (-x),
inv_of_mul_self := begin
have hnx : -x ∈ emetric.ball (0 : 𝔸) (exp_series 𝕂 𝔸).radius,
{ rw [emetric.mem_ball, ←neg_zero, edist_neg_neg],
exact hx },
rw [←exp_add_of_commute_of_mem_ball (commute.neg_left $ commute.refl x) hnx hx, neg_add_self,
exp_zero],
end,
mul_inv_of_self := begin
have hnx : -x ∈ emetric.ball (0 : 𝔸) (exp_series 𝕂 𝔸).radius,
{ rw [emetric.mem_ball, ←neg_zero, edist_neg_neg],
exact hx },
rw [←exp_add_of_commute_of_mem_ball (commute.neg_right $ commute.refl x) hx hnx, add_neg_self,
exp_zero],
end }
lemma is_unit_exp_of_mem_ball [char_zero 𝕂] {x : 𝔸}
(hx : x ∈ emetric.ball (0 : 𝔸) (exp_series 𝕂 𝔸).radius) : is_unit (exp 𝕂 x) :=
@is_unit_of_invertible _ _ _ (invertible_exp_of_mem_ball hx)
lemma inv_of_exp_of_mem_ball [char_zero 𝕂] {x : 𝔸}
(hx : x ∈ emetric.ball (0 : 𝔸) (exp_series 𝕂 𝔸).radius) [invertible (exp 𝕂 x)] :
⅟(exp 𝕂 x) = exp 𝕂 (-x) :=
by { letI := invertible_exp_of_mem_ball hx, convert (rfl : ⅟(exp 𝕂 x) = _) }
/-- Any continuous ring homomorphism commutes with `exp`. -/
lemma map_exp_of_mem_ball {F} [ring_hom_class F 𝔸 𝔹] (f : F) (hf : continuous f) (x : 𝔸)
(hx : x ∈ emetric.ball (0 : 𝔸) (exp_series 𝕂 𝔸).radius) :
f (exp 𝕂 x) = exp 𝕂 (f x) :=
begin
rw [exp_eq_tsum, exp_eq_tsum],
refine ((exp_series_summable_of_mem_ball' _ hx).has_sum.map f hf).tsum_eq.symm.trans _,
dsimp only [function.comp],
simp_rw [one_div, map_inv_nat_cast_smul f 𝕂 𝕂, map_pow],
end
end complete_algebra
lemma algebra_map_exp_comm_of_mem_ball [complete_space 𝕂] (x : 𝕂)
(hx : x ∈ emetric.ball (0 : 𝕂) (exp_series 𝕂 𝕂).radius) :
algebra_map 𝕂 𝔸 (exp 𝕂 x) = exp 𝕂 (algebra_map 𝕂 𝔸 x) :=
map_exp_of_mem_ball _ (algebra_map_clm _ _).continuous _ hx
end any_field_any_algebra
section any_field_division_algebra
variables {𝕂 𝔸 : Type*} [nondiscrete_normed_field 𝕂] [normed_division_ring 𝔸] [normed_algebra 𝕂 𝔸]
variables (𝕂)
lemma norm_exp_series_div_summable_of_mem_ball (x : 𝔸)
(hx : x ∈ emetric.ball (0 : 𝔸) (exp_series 𝕂 𝔸).radius) :
summable (λ n, ∥x^n / n!∥) :=
begin
change summable (norm ∘ _),
rw ← exp_series_apply_eq_div' x,
exact norm_exp_series_summable_of_mem_ball x hx
end
lemma exp_series_div_summable_of_mem_ball [complete_space 𝔸] (x : 𝔸)
(hx : x ∈ emetric.ball (0 : 𝔸) (exp_series 𝕂 𝔸).radius) : summable (λ n, x^n / n!) :=
summable_of_summable_norm (norm_exp_series_div_summable_of_mem_ball 𝕂 x hx)
lemma exp_series_div_has_sum_exp_of_mem_ball [complete_space 𝔸] (x : 𝔸)
(hx : x ∈ emetric.ball (0 : 𝔸) (exp_series 𝕂 𝔸).radius) : has_sum (λ n, x^n / n!) (exp 𝕂 x) :=
begin
rw ← exp_series_apply_eq_div' x,
exact exp_series_has_sum_exp_of_mem_ball x hx
end
variables {𝕂}
lemma exp_neg_of_mem_ball [char_zero 𝕂] [complete_space 𝔸] {x : 𝔸}
(hx : x ∈ emetric.ball (0 : 𝔸) (exp_series 𝕂 𝔸).radius) :
exp 𝕂 (-x) = (exp 𝕂 x)⁻¹ :=
begin
letI := invertible_exp_of_mem_ball hx,
exact inv_of_eq_inv (exp 𝕂 x),
end
end any_field_division_algebra
section any_field_comm_algebra
variables {𝕂 𝔸 : Type*} [nondiscrete_normed_field 𝕂] [normed_comm_ring 𝔸] [normed_algebra 𝕂 𝔸]
[complete_space 𝔸]
/-- In a commutative Banach-algebra `𝔸` over a normed field `𝕂` of characteristic zero,
`exp 𝕂 (x+y) = (exp 𝕂 x) * (exp 𝕂 y)` for all `x`, `y` in the disk of convergence. -/
lemma exp_add_of_mem_ball [char_zero 𝕂] {x y : 𝔸}
(hx : x ∈ emetric.ball (0 : 𝔸) (exp_series 𝕂 𝔸).radius)
(hy : y ∈ emetric.ball (0 : 𝔸) (exp_series 𝕂 𝔸).radius) :
exp 𝕂 (x + y) = (exp 𝕂 x) * (exp 𝕂 y) :=
exp_add_of_commute_of_mem_ball (commute.all x y) hx hy
end any_field_comm_algebra
section is_R_or_C
section any_algebra
variables (𝕂 𝔸 𝔹 : Type*) [is_R_or_C 𝕂] [normed_ring 𝔸] [normed_algebra 𝕂 𝔸]
variables [normed_ring 𝔹] [normed_algebra 𝕂 𝔹]
/-- In a normed algebra `𝔸` over `𝕂 = ℝ` or `𝕂 = ℂ`, the series defining the exponential map
has an infinite radius of convergence. -/
lemma exp_series_radius_eq_top : (exp_series 𝕂 𝔸).radius = ∞ :=
begin
refine (exp_series 𝕂 𝔸).radius_eq_top_of_summable_norm (λ r, _),
refine summable_of_norm_bounded_eventually _ (real.summable_pow_div_factorial r) _,
filter_upwards [eventually_cofinite_ne 0] with n hn,
rw [norm_mul, norm_norm (exp_series 𝕂 𝔸 n), exp_series, norm_smul, norm_inv, norm_pow,
nnreal.norm_eq, norm_eq_abs, abs_cast_nat, mul_comm, ←mul_assoc, ←div_eq_mul_inv],
have : ∥continuous_multilinear_map.mk_pi_algebra_fin 𝕂 n 𝔸∥ ≤ 1 :=
norm_mk_pi_algebra_fin_le_of_pos (nat.pos_of_ne_zero hn),
exact mul_le_of_le_one_right (div_nonneg (pow_nonneg r.coe_nonneg n) n!.cast_nonneg) this
end
lemma exp_series_radius_pos : 0 < (exp_series 𝕂 𝔸).radius :=
begin
rw exp_series_radius_eq_top,
exact with_top.zero_lt_top
end
variables {𝕂 𝔸 𝔹}
lemma norm_exp_series_summable (x : 𝔸) : summable (λ n, ∥exp_series 𝕂 𝔸 n (λ _, x)∥) :=
norm_exp_series_summable_of_mem_ball x ((exp_series_radius_eq_top 𝕂 𝔸).symm ▸ edist_lt_top _ _)
lemma norm_exp_series_summable' (x : 𝔸) : summable (λ n, ∥(n!⁻¹ : 𝕂) • x^n∥) :=
norm_exp_series_summable_of_mem_ball' x ((exp_series_radius_eq_top 𝕂 𝔸).symm ▸ edist_lt_top _ _)
section complete_algebra
variables [complete_space 𝔸]
lemma exp_series_summable (x : 𝔸) : summable (λ n, exp_series 𝕂 𝔸 n (λ _, x)) :=
summable_of_summable_norm (norm_exp_series_summable x)
lemma exp_series_summable' (x : 𝔸) : summable (λ n, (n!⁻¹ : 𝕂) • x^n) :=
summable_of_summable_norm (norm_exp_series_summable' x)
lemma exp_series_has_sum_exp (x : 𝔸) : has_sum (λ n, exp_series 𝕂 𝔸 n (λ _, x)) (exp 𝕂 x) :=
exp_series_has_sum_exp_of_mem_ball x ((exp_series_radius_eq_top 𝕂 𝔸).symm ▸ edist_lt_top _ _)
lemma exp_series_has_sum_exp' (x : 𝔸) : has_sum (λ n, (n!⁻¹ : 𝕂) • x^n) (exp 𝕂 x):=
exp_series_has_sum_exp_of_mem_ball' x ((exp_series_radius_eq_top 𝕂 𝔸).symm ▸ edist_lt_top _ _)
lemma exp_has_fpower_series_on_ball :
has_fpower_series_on_ball (exp 𝕂) (exp_series 𝕂 𝔸) 0 ∞ :=
exp_series_radius_eq_top 𝕂 𝔸 ▸
has_fpower_series_on_ball_exp_of_radius_pos (exp_series_radius_pos _ _)
lemma exp_has_fpower_series_at_zero :
has_fpower_series_at (exp 𝕂) (exp_series 𝕂 𝔸) 0 :=
exp_has_fpower_series_on_ball.has_fpower_series_at
lemma exp_continuous : continuous (exp 𝕂 : 𝔸 → 𝔸) :=
begin
rw [continuous_iff_continuous_on_univ, ← metric.eball_top_eq_univ (0 : 𝔸),
← exp_series_radius_eq_top 𝕂 𝔸],
exact continuous_on_exp
end
lemma exp_analytic (x : 𝔸) :
analytic_at 𝕂 (exp 𝕂) x :=
analytic_at_exp_of_mem_ball x ((exp_series_radius_eq_top 𝕂 𝔸).symm ▸ edist_lt_top _ _)
/-- In a Banach-algebra `𝔸` over `𝕂 = ℝ` or `𝕂 = ℂ`, if `x` and `y` commute, then
`exp 𝕂 (x+y) = (exp 𝕂 x) * (exp 𝕂 y)`. -/
lemma exp_add_of_commute
{x y : 𝔸} (hxy : commute x y) :
exp 𝕂 (x + y) = (exp 𝕂 x) * (exp 𝕂 y) :=
exp_add_of_commute_of_mem_ball hxy ((exp_series_radius_eq_top 𝕂 𝔸).symm ▸ edist_lt_top _ _)
((exp_series_radius_eq_top 𝕂 𝔸).symm ▸ edist_lt_top _ _)
section
variables (𝕂)
/-- `exp 𝕂 x` has explicit two-sided inverse `exp 𝕂 (-x)`. -/
noncomputable def invertible_exp (x : 𝔸) : invertible (exp 𝕂 x) :=
invertible_exp_of_mem_ball $ (exp_series_radius_eq_top 𝕂 𝔸).symm ▸ edist_lt_top _ _
lemma is_unit_exp (x : 𝔸) : is_unit (exp 𝕂 x) :=
is_unit_exp_of_mem_ball $ (exp_series_radius_eq_top 𝕂 𝔸).symm ▸ edist_lt_top _ _
lemma inv_of_exp (x : 𝔸) [invertible (exp 𝕂 x)] :
⅟(exp 𝕂 x) = exp 𝕂 (-x) :=
inv_of_exp_of_mem_ball $ (exp_series_radius_eq_top 𝕂 𝔸).symm ▸ edist_lt_top _ _
lemma ring.inverse_exp (x : 𝔸) : ring.inverse (exp 𝕂 x) = exp 𝕂 (-x) :=
begin
letI := invertible_exp 𝕂 x,
exact ring.inverse_invertible _,
end
end
/-- In a Banach-algebra `𝔸` over `𝕂 = ℝ` or `𝕂 = ℂ`, if a family of elements `f i` mutually
commute then `exp 𝕂 (∑ i, f i) = ∏ i, exp 𝕂 (f i)`. -/
lemma exp_sum_of_commute {ι} (s : finset ι) (f : ι → 𝔸)
(h : ∀ (i ∈ s) (j ∈ s), commute (f i) (f j)) :
exp 𝕂 (∑ i in s, f i) = s.noncomm_prod (λ i, exp 𝕂 (f i))
(λ i hi j hj, (h i hi j hj).exp 𝕂) :=
begin
classical,
induction s using finset.induction_on with a s ha ih,
{ simp },
rw [finset.noncomm_prod_insert_of_not_mem _ _ _ _ ha, finset.sum_insert ha,
exp_add_of_commute, ih],
refine commute.sum_right _ _ _ _,
intros i hi,
exact h _ (finset.mem_insert_self _ _) _ (finset.mem_insert_of_mem hi),
end
lemma exp_nsmul (n : ℕ) (x : 𝔸) :
exp 𝕂 (n • x) = exp 𝕂 x ^ n :=
begin
induction n with n ih,
{ rw [zero_smul, pow_zero, exp_zero], },
{ rw [succ_nsmul, pow_succ, exp_add_of_commute ((commute.refl x).smul_right n), ih] }
end
variables (𝕂)
/-- Any continuous ring homomorphism commutes with `exp`. -/
lemma map_exp {F} [ring_hom_class F 𝔸 𝔹] (f : F) (hf : continuous f) (x : 𝔸) :
f (exp 𝕂 x) = exp 𝕂 (f x) :=
map_exp_of_mem_ball f hf x $ (exp_series_radius_eq_top 𝕂 𝔸).symm ▸ edist_lt_top _ _
lemma exp_smul {G} [monoid G] [mul_semiring_action G 𝔸] [has_continuous_const_smul G 𝔸]
(g : G) (x : 𝔸) :
exp 𝕂 (g • x) = g • exp 𝕂 x :=
(map_exp 𝕂 (mul_semiring_action.to_ring_hom G 𝔸 g) (continuous_const_smul _) x).symm
lemma exp_units_conj (y : 𝔸ˣ) (x : 𝔸) :
exp 𝕂 (y * x * ↑(y⁻¹) : 𝔸) = y * exp 𝕂 x * ↑(y⁻¹) :=
exp_smul _ (conj_act.to_conj_act y) x
lemma exp_units_conj' (y : 𝔸ˣ) (x : 𝔸) :
exp 𝕂 (↑(y⁻¹) * x * y) = ↑(y⁻¹) * exp 𝕂 x * y :=
exp_units_conj _ _ _
@[simp] lemma prod.fst_exp [complete_space 𝔹] (x : 𝔸 × 𝔹) : (exp 𝕂 x).fst = exp 𝕂 x.fst :=
map_exp _ (ring_hom.fst 𝔸 𝔹) continuous_fst x
@[simp] lemma prod.snd_exp [complete_space 𝔹] (x : 𝔸 × 𝔹) : (exp 𝕂 x).snd = exp 𝕂 x.snd :=
map_exp _ (ring_hom.snd 𝔸 𝔹) continuous_snd x
@[simp] lemma pi.exp_apply {ι : Type*} {𝔸 : ι → Type*} [fintype ι]
[Π i, normed_ring (𝔸 i)] [Π i, normed_algebra 𝕂 (𝔸 i)] [Π i, complete_space (𝔸 i)]
(x : Π i, 𝔸 i) (i : ι) :
exp 𝕂 x i = exp 𝕂 (x i) :=
begin
-- Lean struggles to infer this instance due to it wanting `[Π i, semi_normed_ring (𝔸 i)]`
letI : normed_algebra 𝕂 (Π i, 𝔸 i) := pi.normed_algebra _,
exact map_exp _ (pi.eval_ring_hom 𝔸 i) (continuous_apply _) x
end
lemma pi.exp_def {ι : Type*} {𝔸 : ι → Type*} [fintype ι]
[Π i, normed_ring (𝔸 i)] [Π i, normed_algebra 𝕂 (𝔸 i)] [Π i, complete_space (𝔸 i)]
(x : Π i, 𝔸 i) :
exp 𝕂 x = λ i, exp 𝕂 (x i) :=
funext $ pi.exp_apply 𝕂 x
lemma function.update_exp {ι : Type*} {𝔸 : ι → Type*} [fintype ι] [decidable_eq ι]
[Π i, normed_ring (𝔸 i)] [Π i, normed_algebra 𝕂 (𝔸 i)] [Π i, complete_space (𝔸 i)]
(x : Π i, 𝔸 i) (j : ι) (xj : 𝔸 j) :
function.update (exp 𝕂 x) j (exp 𝕂 xj) = exp 𝕂 (function.update x j xj) :=
begin
ext i,
simp_rw [pi.exp_def],
exact (function.apply_update (λ i, exp 𝕂) x j xj i).symm,
end
end complete_algebra
lemma algebra_map_exp_comm (x : 𝕂) :
algebra_map 𝕂 𝔸 (exp 𝕂 x) = exp 𝕂 (algebra_map 𝕂 𝔸 x) :=
algebra_map_exp_comm_of_mem_ball x $
(exp_series_radius_eq_top 𝕂 𝕂).symm ▸ edist_lt_top _ _
end any_algebra
section division_algebra
variables {𝕂 𝔸 : Type*} [is_R_or_C 𝕂] [normed_division_ring 𝔸] [normed_algebra 𝕂 𝔸]
variables (𝕂)
lemma norm_exp_series_div_summable (x : 𝔸) : summable (λ n, ∥x^n / n!∥) :=
norm_exp_series_div_summable_of_mem_ball 𝕂 x
((exp_series_radius_eq_top 𝕂 𝔸).symm ▸ edist_lt_top _ _)
variables [complete_space 𝔸]
lemma exp_series_div_summable (x : 𝔸) : summable (λ n, x^n / n!) :=
summable_of_summable_norm (norm_exp_series_div_summable 𝕂 x)
lemma exp_series_div_has_sum_exp (x : 𝔸) : has_sum (λ n, x^n / n!) (exp 𝕂 x):=
exp_series_div_has_sum_exp_of_mem_ball 𝕂 x
((exp_series_radius_eq_top 𝕂 𝔸).symm ▸ edist_lt_top _ _)
variables {𝕂}
lemma exp_neg (x : 𝔸) : exp 𝕂 (-x) = (exp 𝕂 x)⁻¹ :=
exp_neg_of_mem_ball $ (exp_series_radius_eq_top 𝕂 𝔸).symm ▸ edist_lt_top _ _
lemma exp_zsmul (z : ℤ) (x : 𝔸) : exp 𝕂 (z • x) = (exp 𝕂 x) ^ z :=
begin
obtain ⟨n, rfl | rfl⟩ := z.eq_coe_or_neg,
{ rw [zpow_coe_nat, coe_nat_zsmul, exp_nsmul] },
{ rw [zpow_neg, zpow_coe_nat, neg_smul, exp_neg, coe_nat_zsmul, exp_nsmul] },
end
lemma exp_conj (y : 𝔸) (x : 𝔸) (hy : y ≠ 0) :
exp 𝕂 (y * x * y⁻¹) = y * exp 𝕂 x * y⁻¹ :=
exp_units_conj _ (units.mk0 y hy) x
lemma exp_conj' (y : 𝔸) (x : 𝔸) (hy : y ≠ 0) :
exp 𝕂 (y⁻¹ * x * y) = y⁻¹ * exp 𝕂 x * y :=
exp_units_conj' _ (units.mk0 y hy) x
end division_algebra
section comm_algebra
variables {𝕂 𝔸 : Type*} [is_R_or_C 𝕂] [normed_comm_ring 𝔸] [normed_algebra 𝕂 𝔸] [complete_space 𝔸]
/-- In a commutative Banach-algebra `𝔸` over `𝕂 = ℝ` or `𝕂 = ℂ`,
`exp 𝕂 (x+y) = (exp 𝕂 x) * (exp 𝕂 y)`. -/
lemma exp_add {x y : 𝔸} : exp 𝕂 (x + y) = (exp 𝕂 x) * (exp 𝕂 y) :=
exp_add_of_mem_ball ((exp_series_radius_eq_top 𝕂 𝔸).symm ▸ edist_lt_top _ _)
((exp_series_radius_eq_top 𝕂 𝔸).symm ▸ edist_lt_top _ _)
/-- A version of `exp_sum_of_commute` for a commutative Banach-algebra. -/
lemma exp_sum {ι} (s : finset ι) (f : ι → 𝔸) :
exp 𝕂 (∑ i in s, f i) = ∏ i in s, exp 𝕂 (f i) :=
begin
rw [exp_sum_of_commute, finset.noncomm_prod_eq_prod],
exact λ i hi j hj, commute.all _ _,
end
end comm_algebra
end is_R_or_C
end normed
section scalar_tower
variables (𝕂 𝕂' 𝔸 : Type*) [field 𝕂] [field 𝕂'] [ring 𝔸] [algebra 𝕂 𝔸] [algebra 𝕂' 𝔸]
[topological_space 𝔸] [topological_ring 𝔸]
/-- If a normed ring `𝔸` is a normed algebra over two fields, then they define the same
`exp_series` on `𝔸`. -/
lemma exp_series_eq_exp_series (n : ℕ) (x : 𝔸) :
(exp_series 𝕂 𝔸 n (λ _, x)) = (exp_series 𝕂' 𝔸 n (λ _, x)) :=
by rw [exp_series_apply_eq, exp_series_apply_eq, inv_nat_cast_smul_eq 𝕂 𝕂']
/-- If a normed ring `𝔸` is a normed algebra over two fields, then they define the same
exponential function on `𝔸`. -/
lemma exp_eq_exp : (exp 𝕂 : 𝔸 → 𝔸) = exp 𝕂' :=
begin
ext,
rw [exp, exp],
refine tsum_congr (λ n, _),
rw exp_series_eq_exp_series 𝕂 𝕂' 𝔸 n x
end
lemma exp_ℝ_ℂ_eq_exp_ℂ_ℂ : (exp ℝ : ℂ → ℂ) = exp ℂ :=
exp_eq_exp ℝ ℂ ℂ
end scalar_tower
|
152fac571073d21c91a3c40a3bf0bf3ccddb2fff
|
82e44445c70db0f03e30d7be725775f122d72f3e
|
/src/analysis/normed_space/inner_product.lean
|
c003be86f4e5faab5a8ed70947f68616239b88f9
|
[
"Apache-2.0"
] |
permissive
|
stjordanis/mathlib
|
51e286d19140e3788ef2c470bc7b953e4991f0c9
|
2568d41bca08f5d6bf39d915434c8447e21f42ee
|
refs/heads/master
| 1,631,748,053,501
| 1,627,938,886,000
| 1,627,938,886,000
| 228,728,358
| 0
| 0
|
Apache-2.0
| 1,576,630,588,000
| 1,576,630,587,000
| null |
UTF-8
|
Lean
| false
| false
| 125,220
|
lean
|
/-
Copyright (c) 2019 Zhouhang Zhou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Zhouhang Zhou, Sébastien Gouëzel, Frédéric Dupuis, Heather Macbeth
-/
import analysis.complex.basic
import analysis.normed_space.bounded_linear_maps
import analysis.special_functions.sqrt
import linear_algebra.bilinear_form
import linear_algebra.sesquilinear_form
/-!
# Inner Product Space
This file defines inner product spaces and proves its basic properties.
An inner product space is a vector space endowed with an inner product. It generalizes the notion of
dot product in `ℝ^n` and provides the means of defining the length of a vector and the angle between
two vectors. In particular vectors `x` and `y` are orthogonal if their inner product equals zero.
We define both the real and complex cases at the same time using the `is_R_or_C` typeclass.
This file proves general results on inner product spaces. For the specific construction of an inner
product structure on `n → 𝕜` for `𝕜 = ℝ` or `ℂ`, see `euclidean_space` in `analysis.pi_Lp`.
## Main results
- We define the class `inner_product_space 𝕜 E` extending `normed_space 𝕜 E` with a number of basic
properties, most notably the Cauchy-Schwarz inequality. Here `𝕜` is understood to be either `ℝ`
or `ℂ`, through the `is_R_or_C` typeclass.
- We show that if `f i` is an inner product space for each `i`, then so is `Π i, f i`
- Existence of orthogonal projection onto nonempty complete subspace:
Let `u` be a point in an inner product space, and let `K` be a nonempty complete subspace.
Then there exists a unique `v` in `K` that minimizes the distance `∥u - v∥` to `u`.
The point `v` is usually called the orthogonal projection of `u` onto `K`.
- We define `orthonormal`, a predicate on a function `v : ι → E`. We prove the existence of a
maximal orthonormal set, `exists_maximal_orthonormal`, and also prove that a maximal orthonormal
set is a basis (`maximal_orthonormal_iff_basis_of_finite_dimensional`), if `E` is finite-
dimensional, or in general (`maximal_orthonormal_iff_dense_span`) a set whose span is dense
(i.e., a Hilbert basis, although we do not make that definition).
## Notation
We globally denote the real and complex inner products by `⟪·, ·⟫_ℝ` and `⟪·, ·⟫_ℂ` respectively.
We also provide two notation namespaces: `real_inner_product_space`, `complex_inner_product_space`,
which respectively introduce the plain notation `⟪·, ·⟫` for the the real and complex inner product.
The orthogonal complement of a submodule `K` is denoted by `Kᗮ`.
## Implementation notes
We choose the convention that inner products are conjugate linear in the first argument and linear
in the second.
## Tags
inner product space, norm
## References
* [Clément & Martin, *The Lax-Milgram Theorem. A detailed proof to be formalized in Coq*]
* [Clément & Martin, *A Coq formal proof of the Lax–Milgram theorem*]
The Coq code is available at the following address: <http://www.lri.fr/~sboldo/elfic/index.html>
-/
noncomputable theory
open is_R_or_C real filter
open_locale big_operators classical topological_space
variables {𝕜 E F : Type*} [is_R_or_C 𝕜]
/-- Syntactic typeclass for types endowed with an inner product -/
class has_inner (𝕜 E : Type*) := (inner : E → E → 𝕜)
export has_inner (inner)
notation `⟪`x`, `y`⟫_ℝ` := @inner ℝ _ _ x y
notation `⟪`x`, `y`⟫_ℂ` := @inner ℂ _ _ x y
section notations
localized "notation `⟪`x`, `y`⟫` := @inner ℝ _ _ x y" in real_inner_product_space
localized "notation `⟪`x`, `y`⟫` := @inner ℂ _ _ x y" in complex_inner_product_space
end notations
/--
An inner product space is a vector space with an additional operation called inner product.
The norm could be derived from the inner product, instead we require the existence of a norm and
the fact that `∥x∥^2 = re ⟪x, x⟫` to be able to put instances on `𝕂` or product
spaces.
To construct a norm from an inner product, see `inner_product_space.of_core`.
-/
class inner_product_space (𝕜 : Type*) (E : Type*) [is_R_or_C 𝕜]
extends normed_group E, normed_space 𝕜 E, has_inner 𝕜 E :=
(norm_sq_eq_inner : ∀ (x : E), ∥x∥^2 = re (inner x x))
(conj_sym : ∀ x y, conj (inner y x) = inner x y)
(add_left : ∀ x y z, inner (x + y) z = inner x z + inner y z)
(smul_left : ∀ x y r, inner (r • x) y = (conj r) * inner x y)
attribute [nolint dangerous_instance] inner_product_space.to_normed_group
-- note [is_R_or_C instance]
/-!
### Constructing a normed space structure from an inner product
In the definition of an inner product space, we require the existence of a norm, which is equal
(but maybe not defeq) to the square root of the scalar product. This makes it possible to put
an inner product space structure on spaces with a preexisting norm (for instance `ℝ`), with good
properties. However, sometimes, one would like to define the norm starting only from a well-behaved
scalar product. This is what we implement in this paragraph, starting from a structure
`inner_product_space.core` stating that we have a nice scalar product.
Our goal here is not to develop a whole theory with all the supporting API, as this will be done
below for `inner_product_space`. Instead, we implement the bare minimum to go as directly as
possible to the construction of the norm and the proof of the triangular inequality.
Warning: Do not use this `core` structure if the space you are interested in already has a norm
instance defined on it, otherwise this will create a second non-defeq norm instance!
-/
/-- A structure requiring that a scalar product is positive definite and symmetric, from which one
can construct an `inner_product_space` instance in `inner_product_space.of_core`. -/
@[nolint has_inhabited_instance]
structure inner_product_space.core
(𝕜 : Type*) (F : Type*)
[is_R_or_C 𝕜] [add_comm_group F] [module 𝕜 F] :=
(inner : F → F → 𝕜)
(conj_sym : ∀ x y, conj (inner y x) = inner x y)
(nonneg_re : ∀ x, 0 ≤ re (inner x x))
(definite : ∀ x, inner x x = 0 → x = 0)
(add_left : ∀ x y z, inner (x + y) z = inner x z + inner y z)
(smul_left : ∀ x y r, inner (r • x) y = (conj r) * inner x y)
/- We set `inner_product_space.core` to be a class as we will use it as such in the construction
of the normed space structure that it produces. However, all the instances we will use will be
local to this proof. -/
attribute [class] inner_product_space.core
namespace inner_product_space.of_core
variables [add_comm_group F] [module 𝕜 F] [c : inner_product_space.core 𝕜 F]
include c
local notation `⟪`x`, `y`⟫` := @inner 𝕜 F _ x y
local notation `norm_sqK` := @is_R_or_C.norm_sq 𝕜 _
local notation `reK` := @is_R_or_C.re 𝕜 _
local notation `absK` := @is_R_or_C.abs 𝕜 _
local notation `ext_iff` := @is_R_or_C.ext_iff 𝕜 _
local postfix `†`:90 := @is_R_or_C.conj 𝕜 _
/-- Inner product defined by the `inner_product_space.core` structure. -/
def to_has_inner : has_inner 𝕜 F := { inner := c.inner }
local attribute [instance] to_has_inner
/-- The norm squared function for `inner_product_space.core` structure. -/
def norm_sq (x : F) := reK ⟪x, x⟫
local notation `norm_sqF` := @norm_sq 𝕜 F _ _ _ _
lemma inner_conj_sym (x y : F) : ⟪y, x⟫† = ⟪x, y⟫ := c.conj_sym x y
lemma inner_self_nonneg {x : F} : 0 ≤ re ⟪x, x⟫ := c.nonneg_re _
lemma inner_self_nonneg_im {x : F} : im ⟪x, x⟫ = 0 :=
by rw [← @of_real_inj 𝕜, im_eq_conj_sub]; simp [inner_conj_sym]
lemma inner_self_im_zero {x : F} : im ⟪x, x⟫ = 0 :=
inner_self_nonneg_im
lemma inner_add_left {x y z : F} : ⟪x + y, z⟫ = ⟪x, z⟫ + ⟪y, z⟫ :=
c.add_left _ _ _
lemma inner_add_right {x y z : F} : ⟪x, y + z⟫ = ⟪x, y⟫ + ⟪x, z⟫ :=
by rw [←inner_conj_sym, inner_add_left, ring_hom.map_add]; simp only [inner_conj_sym]
lemma inner_norm_sq_eq_inner_self (x : F) : (norm_sqF x : 𝕜) = ⟪x, x⟫ :=
begin
rw ext_iff,
exact ⟨by simp only [of_real_re]; refl, by simp only [inner_self_nonneg_im, of_real_im]⟩
end
lemma inner_re_symm {x y : F} : re ⟪x, y⟫ = re ⟪y, x⟫ :=
by rw [←inner_conj_sym, conj_re]
lemma inner_im_symm {x y : F} : im ⟪x, y⟫ = -im ⟪y, x⟫ :=
by rw [←inner_conj_sym, conj_im]
lemma inner_smul_left {x y : F} {r : 𝕜} : ⟪r • x, y⟫ = r† * ⟪x, y⟫ :=
c.smul_left _ _ _
lemma inner_smul_right {x y : F} {r : 𝕜} : ⟪x, r • y⟫ = r * ⟪x, y⟫ :=
by rw [←inner_conj_sym, inner_smul_left]; simp only [conj_conj, inner_conj_sym, ring_hom.map_mul]
lemma inner_zero_left {x : F} : ⟪0, x⟫ = 0 :=
by rw [←zero_smul 𝕜 (0 : F), inner_smul_left]; simp only [zero_mul, ring_hom.map_zero]
lemma inner_zero_right {x : F} : ⟪x, 0⟫ = 0 :=
by rw [←inner_conj_sym, inner_zero_left]; simp only [ring_hom.map_zero]
lemma inner_self_eq_zero {x : F} : ⟪x, x⟫ = 0 ↔ x = 0 :=
iff.intro (c.definite _) (by { rintro rfl, exact inner_zero_left })
lemma inner_self_re_to_K {x : F} : (re ⟪x, x⟫ : 𝕜) = ⟪x, x⟫ :=
by norm_num [ext_iff, inner_self_nonneg_im]
lemma inner_abs_conj_sym {x y : F} : abs ⟪x, y⟫ = abs ⟪y, x⟫ :=
by rw [←inner_conj_sym, abs_conj]
lemma inner_neg_left {x y : F} : ⟪-x, y⟫ = -⟪x, y⟫ :=
by { rw [← neg_one_smul 𝕜 x, inner_smul_left], simp }
lemma inner_neg_right {x y : F} : ⟪x, -y⟫ = -⟪x, y⟫ :=
by rw [←inner_conj_sym, inner_neg_left]; simp only [ring_hom.map_neg, inner_conj_sym]
lemma inner_sub_left {x y z : F} : ⟪x - y, z⟫ = ⟪x, z⟫ - ⟪y, z⟫ :=
by { simp [sub_eq_add_neg, inner_add_left, inner_neg_left] }
lemma inner_sub_right {x y z : F} : ⟪x, y - z⟫ = ⟪x, y⟫ - ⟪x, z⟫ :=
by { simp [sub_eq_add_neg, inner_add_right, inner_neg_right] }
lemma inner_mul_conj_re_abs {x y : F} : re (⟪x, y⟫ * ⟪y, x⟫) = abs (⟪x, y⟫ * ⟪y, x⟫) :=
by { rw[←inner_conj_sym, mul_comm], exact re_eq_abs_of_mul_conj (inner y x), }
/-- Expand `inner (x + y) (x + y)` -/
lemma inner_add_add_self {x y : F} : ⟪x + y, x + y⟫ = ⟪x, x⟫ + ⟪x, y⟫ + ⟪y, x⟫ + ⟪y, y⟫ :=
by simp only [inner_add_left, inner_add_right]; ring
/- Expand `inner (x - y) (x - y)` -/
lemma inner_sub_sub_self {x y : F} : ⟪x - y, x - y⟫ = ⟪x, x⟫ - ⟪x, y⟫ - ⟪y, x⟫ + ⟪y, y⟫ :=
by simp only [inner_sub_left, inner_sub_right]; ring
/--
**Cauchy–Schwarz inequality**. This proof follows "Proof 2" on Wikipedia.
We need this for the `core` structure to prove the triangle inequality below when
showing the core is a normed group.
-/
lemma inner_mul_inner_self_le (x y : F) : abs ⟪x, y⟫ * abs ⟪y, x⟫ ≤ re ⟪x, x⟫ * re ⟪y, y⟫ :=
begin
by_cases hy : y = 0,
{ rw [hy], simp only [is_R_or_C.abs_zero, inner_zero_left, mul_zero, add_monoid_hom.map_zero] },
{ change y ≠ 0 at hy,
have hy' : ⟪y, y⟫ ≠ 0 := λ h, by rw [inner_self_eq_zero] at h; exact hy h,
set T := ⟪y, x⟫ / ⟪y, y⟫ with hT,
have h₁ : re ⟪y, x⟫ = re ⟪x, y⟫ := inner_re_symm,
have h₂ : im ⟪y, x⟫ = -im ⟪x, y⟫ := inner_im_symm,
have h₃ : ⟪y, x⟫ * ⟪x, y⟫ * ⟪y, y⟫ / (⟪y, y⟫ * ⟪y, y⟫) = ⟪y, x⟫ * ⟪x, y⟫ / ⟪y, y⟫,
{ rw [mul_div_assoc],
have : ⟪y, y⟫ / (⟪y, y⟫ * ⟪y, y⟫) = 1 / ⟪y, y⟫ :=
by rw [div_mul_eq_div_mul_one_div, div_self hy', one_mul],
rw [this, div_eq_mul_inv, one_mul, ←div_eq_mul_inv] },
have h₄ : ⟪y, y⟫ = re ⟪y, y⟫ := by simp only [inner_self_re_to_K],
have h₅ : re ⟪y, y⟫ > 0,
{ refine lt_of_le_of_ne inner_self_nonneg _,
intro H,
apply hy',
rw ext_iff,
exact ⟨by simp only [H, zero_re'],
by simp only [inner_self_nonneg_im, add_monoid_hom.map_zero]⟩ },
have h₆ : re ⟪y, y⟫ ≠ 0 := ne_of_gt h₅,
have hmain := calc
0 ≤ re ⟪x - T • y, x - T • y⟫
: inner_self_nonneg
... = re ⟪x, x⟫ - re ⟪T • y, x⟫ - re ⟪x, T • y⟫ + re ⟪T • y, T • y⟫
: by simp only [inner_sub_sub_self, inner_smul_left, inner_smul_right, h₁, h₂,
neg_mul_eq_neg_mul_symm, add_monoid_hom.map_add, mul_re,
conj_im, add_monoid_hom.map_sub, mul_neg_eq_neg_mul_symm, conj_re, neg_neg]
... = re ⟪x, x⟫ - re (T† * ⟪y, x⟫) - re (T * ⟪x, y⟫) + re (T * T† * ⟪y, y⟫)
: by simp only [inner_smul_left, inner_smul_right, mul_assoc]
... = re ⟪x, x⟫ - re (⟪x, y⟫ / ⟪y, y⟫ * ⟪y, x⟫)
: by field_simp [-mul_re, inner_conj_sym, hT, conj_div, h₁, h₃]
... = re ⟪x, x⟫ - re (⟪x, y⟫ * ⟪y, x⟫ / ⟪y, y⟫)
: by rw [div_mul_eq_mul_div_comm, ←mul_div_assoc]
... = re ⟪x, x⟫ - re (⟪x, y⟫ * ⟪y, x⟫ / re ⟪y, y⟫)
: by conv_lhs { rw [h₄] }
... = re ⟪x, x⟫ - re (⟪x, y⟫ * ⟪y, x⟫) / re ⟪y, y⟫
: by rw [div_re_of_real]
... = re ⟪x, x⟫ - abs (⟪x, y⟫ * ⟪y, x⟫) / re ⟪y, y⟫
: by rw [inner_mul_conj_re_abs]
... = re ⟪x, x⟫ - abs ⟪x, y⟫ * abs ⟪y, x⟫ / re ⟪y, y⟫
: by rw is_R_or_C.abs_mul,
have hmain' : abs ⟪x, y⟫ * abs ⟪y, x⟫ / re ⟪y, y⟫ ≤ re ⟪x, x⟫ := by linarith,
have := (mul_le_mul_right h₅).mpr hmain',
rwa [div_mul_cancel (abs ⟪x, y⟫ * abs ⟪y, x⟫) h₆] at this }
end
/-- Norm constructed from a `inner_product_space.core` structure, defined to be the square root
of the scalar product. -/
def to_has_norm : has_norm F :=
{ norm := λ x, sqrt (re ⟪x, x⟫) }
local attribute [instance] to_has_norm
lemma norm_eq_sqrt_inner (x : F) : ∥x∥ = sqrt (re ⟪x, x⟫) := rfl
lemma inner_self_eq_norm_sq (x : F) : re ⟪x, x⟫ = ∥x∥ * ∥x∥ :=
by rw[norm_eq_sqrt_inner, ←sqrt_mul inner_self_nonneg (re ⟪x, x⟫),
sqrt_mul_self inner_self_nonneg]
lemma sqrt_norm_sq_eq_norm {x : F} : sqrt (norm_sqF x) = ∥x∥ := rfl
/-- Cauchy–Schwarz inequality with norm -/
lemma abs_inner_le_norm (x y : F) : abs ⟪x, y⟫ ≤ ∥x∥ * ∥y∥ :=
nonneg_le_nonneg_of_sq_le_sq (mul_nonneg (sqrt_nonneg _) (sqrt_nonneg _))
begin
have H : ∥x∥ * ∥y∥ * (∥x∥ * ∥y∥) = re ⟪y, y⟫ * re ⟪x, x⟫,
{ simp only [inner_self_eq_norm_sq], ring, },
rw H,
conv
begin
to_lhs, congr, rw[inner_abs_conj_sym],
end,
exact inner_mul_inner_self_le y x,
end
/-- Normed group structure constructed from an `inner_product_space.core` structure -/
def to_normed_group : normed_group F :=
normed_group.of_core F
{ norm_eq_zero_iff := assume x,
begin
split,
{ intro H,
change sqrt (re ⟪x, x⟫) = 0 at H,
rw [sqrt_eq_zero inner_self_nonneg] at H,
apply (inner_self_eq_zero : ⟪x, x⟫ = 0 ↔ x = 0).mp,
rw ext_iff,
exact ⟨by simp [H], by simp [inner_self_im_zero]⟩ },
{ rintro rfl,
change sqrt (re ⟪0, 0⟫) = 0,
simp only [sqrt_zero, inner_zero_right, add_monoid_hom.map_zero] }
end,
triangle := assume x y,
begin
have h₁ : abs ⟪x, y⟫ ≤ ∥x∥ * ∥y∥ := abs_inner_le_norm _ _,
have h₂ : re ⟪x, y⟫ ≤ abs ⟪x, y⟫ := re_le_abs _,
have h₃ : re ⟪x, y⟫ ≤ ∥x∥ * ∥y∥ := by linarith,
have h₄ : re ⟪y, x⟫ ≤ ∥x∥ * ∥y∥ := by rwa [←inner_conj_sym, conj_re],
have : ∥x + y∥ * ∥x + y∥ ≤ (∥x∥ + ∥y∥) * (∥x∥ + ∥y∥),
{ simp [←inner_self_eq_norm_sq, inner_add_add_self, add_mul, mul_add, mul_comm],
linarith },
exact nonneg_le_nonneg_of_sq_le_sq (add_nonneg (sqrt_nonneg _) (sqrt_nonneg _)) this
end,
norm_neg := λ x, by simp only [norm, inner_neg_left, neg_neg, inner_neg_right] }
local attribute [instance] to_normed_group
/-- Normed space structure constructed from a `inner_product_space.core` structure -/
def to_normed_space : normed_space 𝕜 F :=
{ norm_smul_le := assume r x,
begin
rw [norm_eq_sqrt_inner, inner_smul_left, inner_smul_right, ←mul_assoc],
rw [conj_mul_eq_norm_sq_left, of_real_mul_re, sqrt_mul, ←inner_norm_sq_eq_inner_self,
of_real_re],
{ simp [sqrt_norm_sq_eq_norm, is_R_or_C.sqrt_norm_sq_eq_norm] },
{ exact norm_sq_nonneg r }
end }
end inner_product_space.of_core
/-- Given a `inner_product_space.core` structure on a space, one can use it to turn
the space into an inner product space, constructing the norm out of the inner product -/
def inner_product_space.of_core [add_comm_group F] [module 𝕜 F]
(c : inner_product_space.core 𝕜 F) : inner_product_space 𝕜 F :=
begin
letI : normed_group F := @inner_product_space.of_core.to_normed_group 𝕜 F _ _ _ c,
letI : normed_space 𝕜 F := @inner_product_space.of_core.to_normed_space 𝕜 F _ _ _ c,
exact { norm_sq_eq_inner := λ x,
begin
have h₁ : ∥x∥^2 = (sqrt (re (c.inner x x))) ^ 2 := rfl,
have h₂ : 0 ≤ re (c.inner x x) := inner_product_space.of_core.inner_self_nonneg,
simp [h₁, sq_sqrt, h₂],
end,
..c }
end
/-! ### Properties of inner product spaces -/
variables [inner_product_space 𝕜 E] [inner_product_space ℝ F]
local notation `⟪`x`, `y`⟫` := @inner 𝕜 _ _ x y
local notation `IK` := @is_R_or_C.I 𝕜 _
local notation `absR` := _root_.abs
local notation `absK` := @is_R_or_C.abs 𝕜 _
local postfix `†`:90 := @is_R_or_C.conj 𝕜 _
local postfix `⋆`:90 := complex.conj
export inner_product_space (norm_sq_eq_inner)
section basic_properties
@[simp] lemma inner_conj_sym (x y : E) : ⟪y, x⟫† = ⟪x, y⟫ := inner_product_space.conj_sym _ _
lemma real_inner_comm (x y : F) : ⟪y, x⟫_ℝ = ⟪x, y⟫_ℝ := inner_conj_sym x y
lemma inner_eq_zero_sym {x y : E} : ⟪x, y⟫ = 0 ↔ ⟪y, x⟫ = 0 :=
⟨λ h, by simp [←inner_conj_sym, h], λ h, by simp [←inner_conj_sym, h]⟩
@[simp] lemma inner_self_nonneg_im {x : E} : im ⟪x, x⟫ = 0 :=
by rw [← @of_real_inj 𝕜, im_eq_conj_sub]; simp
lemma inner_self_im_zero {x : E} : im ⟪x, x⟫ = 0 := inner_self_nonneg_im
lemma inner_add_left {x y z : E} : ⟪x + y, z⟫ = ⟪x, z⟫ + ⟪y, z⟫ :=
inner_product_space.add_left _ _ _
lemma inner_add_right {x y z : E} : ⟪x, y + z⟫ = ⟪x, y⟫ + ⟪x, z⟫ :=
by { rw [←inner_conj_sym, inner_add_left, ring_hom.map_add], simp only [inner_conj_sym] }
lemma inner_re_symm {x y : E} : re ⟪x, y⟫ = re ⟪y, x⟫ :=
by rw [←inner_conj_sym, conj_re]
lemma inner_im_symm {x y : E} : im ⟪x, y⟫ = -im ⟪y, x⟫ :=
by rw [←inner_conj_sym, conj_im]
lemma inner_smul_left {x y : E} {r : 𝕜} : ⟪r • x, y⟫ = r† * ⟪x, y⟫ :=
inner_product_space.smul_left _ _ _
lemma real_inner_smul_left {x y : F} {r : ℝ} : ⟪r • x, y⟫_ℝ = r * ⟪x, y⟫_ℝ := inner_smul_left
lemma inner_smul_real_left {x y : E} {r : ℝ} : ⟪(r : 𝕜) • x, y⟫ = r • ⟪x, y⟫ :=
by { rw [inner_smul_left, conj_of_real, algebra.smul_def], refl }
lemma inner_smul_right {x y : E} {r : 𝕜} : ⟪x, r • y⟫ = r * ⟪x, y⟫ :=
by rw [←inner_conj_sym, inner_smul_left, ring_hom.map_mul, conj_conj, inner_conj_sym]
lemma real_inner_smul_right {x y : F} {r : ℝ} : ⟪x, r • y⟫_ℝ = r * ⟪x, y⟫_ℝ := inner_smul_right
lemma inner_smul_real_right {x y : E} {r : ℝ} : ⟪x, (r : 𝕜) • y⟫ = r • ⟪x, y⟫ :=
by { rw [inner_smul_right, algebra.smul_def], refl }
/-- The inner product as a sesquilinear form. -/
@[simps]
def sesq_form_of_inner : sesq_form 𝕜 E (conj_to_ring_equiv 𝕜) :=
{ sesq := λ x y, ⟪y, x⟫, -- Note that sesquilinear forms are linear in the first argument
sesq_add_left := λ x y z, inner_add_right,
sesq_add_right := λ x y z, inner_add_left,
sesq_smul_left := λ r x y, inner_smul_right,
sesq_smul_right := λ r x y, inner_smul_left }
/-- The real inner product as a bilinear form. -/
@[simps]
def bilin_form_of_real_inner : bilin_form ℝ F :=
{ bilin := inner,
bilin_add_left := λ x y z, inner_add_left,
bilin_smul_left := λ a x y, inner_smul_left,
bilin_add_right := λ x y z, inner_add_right,
bilin_smul_right := λ a x y, inner_smul_right }
/-- An inner product with a sum on the left. -/
lemma sum_inner {ι : Type*} (s : finset ι) (f : ι → E) (x : E) :
⟪∑ i in s, f i, x⟫ = ∑ i in s, ⟪f i, x⟫ :=
sesq_form.sum_right (sesq_form_of_inner) _ _ _
/-- An inner product with a sum on the right. -/
lemma inner_sum {ι : Type*} (s : finset ι) (f : ι → E) (x : E) :
⟪x, ∑ i in s, f i⟫ = ∑ i in s, ⟪x, f i⟫ :=
sesq_form.sum_left (sesq_form_of_inner) _ _ _
/-- An inner product with a sum on the left, `finsupp` version. -/
lemma finsupp.sum_inner {ι : Type*} (l : ι →₀ 𝕜) (v : ι → E) (x : E) :
⟪l.sum (λ (i : ι) (a : 𝕜), a • v i), x⟫
= l.sum (λ (i : ι) (a : 𝕜), (is_R_or_C.conj a) • ⟪v i, x⟫) :=
by { convert sum_inner l.support (λ a, l a • v a) x, simp [inner_smul_left, finsupp.sum] }
/-- An inner product with a sum on the right, `finsupp` version. -/
lemma finsupp.inner_sum {ι : Type*} (l : ι →₀ 𝕜) (v : ι → E) (x : E) :
⟪x, l.sum (λ (i : ι) (a : 𝕜), a • v i)⟫ = l.sum (λ (i : ι) (a : 𝕜), a • ⟪x, v i⟫) :=
by { convert inner_sum l.support (λ a, l a • v a) x, simp [inner_smul_right, finsupp.sum] }
@[simp] lemma inner_zero_left {x : E} : ⟪0, x⟫ = 0 :=
by rw [← zero_smul 𝕜 (0:E), inner_smul_left, ring_hom.map_zero, zero_mul]
lemma inner_re_zero_left {x : E} : re ⟪0, x⟫ = 0 :=
by simp only [inner_zero_left, add_monoid_hom.map_zero]
@[simp] lemma inner_zero_right {x : E} : ⟪x, 0⟫ = 0 :=
by rw [←inner_conj_sym, inner_zero_left, ring_hom.map_zero]
lemma inner_re_zero_right {x : E} : re ⟪x, 0⟫ = 0 :=
by simp only [inner_zero_right, add_monoid_hom.map_zero]
lemma inner_self_nonneg {x : E} : 0 ≤ re ⟪x, x⟫ :=
by rw [←norm_sq_eq_inner]; exact pow_nonneg (norm_nonneg x) 2
lemma real_inner_self_nonneg {x : F} : 0 ≤ ⟪x, x⟫_ℝ := @inner_self_nonneg ℝ F _ _ x
@[simp] lemma inner_self_eq_zero {x : E} : ⟪x, x⟫ = 0 ↔ x = 0 :=
begin
split,
{ intro h,
have h₁ : re ⟪x, x⟫ = 0 := by rw is_R_or_C.ext_iff at h; simp [h.1],
rw [←norm_sq_eq_inner x] at h₁,
rw [←norm_eq_zero],
exact pow_eq_zero h₁ },
{ rintro rfl,
exact inner_zero_left }
end
@[simp] lemma inner_self_nonpos {x : E} : re ⟪x, x⟫ ≤ 0 ↔ x = 0 :=
begin
split,
{ intro h,
rw ←inner_self_eq_zero,
have H₁ : re ⟪x, x⟫ ≥ 0, exact inner_self_nonneg,
have H₂ : re ⟪x, x⟫ = 0, exact le_antisymm h H₁,
rw is_R_or_C.ext_iff,
exact ⟨by simp [H₂], by simp [inner_self_nonneg_im]⟩ },
{ rintro rfl,
simp only [inner_zero_left, add_monoid_hom.map_zero] }
end
lemma real_inner_self_nonpos {x : F} : ⟪x, x⟫_ℝ ≤ 0 ↔ x = 0 :=
by { have h := @inner_self_nonpos ℝ F _ _ x, simpa using h }
@[simp] lemma inner_self_re_to_K {x : E} : (re ⟪x, x⟫ : 𝕜) = ⟪x, x⟫ :=
by rw is_R_or_C.ext_iff; exact ⟨by simp, by simp [inner_self_nonneg_im]⟩
lemma inner_self_eq_norm_sq_to_K (x : E) : ⟪x, x⟫ = (∥x∥ ^ 2 : 𝕜) :=
begin
suffices : (is_R_or_C.re ⟪x, x⟫ : 𝕜) = ∥x∥ ^ 2,
{ simpa [inner_self_re_to_K] using this },
exact_mod_cast (norm_sq_eq_inner x).symm
end
lemma inner_self_re_abs {x : E} : re ⟪x, x⟫ = abs ⟪x, x⟫ :=
begin
conv_rhs { rw [←inner_self_re_to_K] },
symmetry,
exact is_R_or_C.abs_of_nonneg inner_self_nonneg,
end
lemma inner_self_abs_to_K {x : E} : (absK ⟪x, x⟫ : 𝕜) = ⟪x, x⟫ :=
by { rw[←inner_self_re_abs], exact inner_self_re_to_K }
lemma real_inner_self_abs {x : F} : absR ⟪x, x⟫_ℝ = ⟪x, x⟫_ℝ :=
by { have h := @inner_self_abs_to_K ℝ F _ _ x, simpa using h }
lemma inner_abs_conj_sym {x y : E} : abs ⟪x, y⟫ = abs ⟪y, x⟫ :=
by rw [←inner_conj_sym, abs_conj]
@[simp] lemma inner_neg_left {x y : E} : ⟪-x, y⟫ = -⟪x, y⟫ :=
by { rw [← neg_one_smul 𝕜 x, inner_smul_left], simp }
@[simp] lemma inner_neg_right {x y : E} : ⟪x, -y⟫ = -⟪x, y⟫ :=
by rw [←inner_conj_sym, inner_neg_left]; simp only [ring_hom.map_neg, inner_conj_sym]
lemma inner_neg_neg {x y : E} : ⟪-x, -y⟫ = ⟪x, y⟫ := by simp
@[simp] lemma inner_self_conj {x : E} : ⟪x, x⟫† = ⟪x, x⟫ :=
by rw [is_R_or_C.ext_iff]; exact ⟨by rw [conj_re], by rw [conj_im, inner_self_im_zero, neg_zero]⟩
lemma inner_sub_left {x y z : E} : ⟪x - y, z⟫ = ⟪x, z⟫ - ⟪y, z⟫ :=
by { simp [sub_eq_add_neg, inner_add_left] }
lemma inner_sub_right {x y z : E} : ⟪x, y - z⟫ = ⟪x, y⟫ - ⟪x, z⟫ :=
by { simp [sub_eq_add_neg, inner_add_right] }
lemma inner_mul_conj_re_abs {x y : E} : re (⟪x, y⟫ * ⟪y, x⟫) = abs (⟪x, y⟫ * ⟪y, x⟫) :=
by { rw[←inner_conj_sym, mul_comm], exact re_eq_abs_of_mul_conj (inner y x), }
/-- Expand `⟪x + y, x + y⟫` -/
lemma inner_add_add_self {x y : E} : ⟪x + y, x + y⟫ = ⟪x, x⟫ + ⟪x, y⟫ + ⟪y, x⟫ + ⟪y, y⟫ :=
by simp only [inner_add_left, inner_add_right]; ring
/-- Expand `⟪x + y, x + y⟫_ℝ` -/
lemma real_inner_add_add_self {x y : F} : ⟪x + y, x + y⟫_ℝ = ⟪x, x⟫_ℝ + 2 * ⟪x, y⟫_ℝ + ⟪y, y⟫_ℝ :=
begin
have : ⟪y, x⟫_ℝ = ⟪x, y⟫_ℝ := by rw [←inner_conj_sym]; refl,
simp [inner_add_add_self, this],
ring,
end
/- Expand `⟪x - y, x - y⟫` -/
lemma inner_sub_sub_self {x y : E} : ⟪x - y, x - y⟫ = ⟪x, x⟫ - ⟪x, y⟫ - ⟪y, x⟫ + ⟪y, y⟫ :=
by simp only [inner_sub_left, inner_sub_right]; ring
/-- Expand `⟪x - y, x - y⟫_ℝ` -/
lemma real_inner_sub_sub_self {x y : F} : ⟪x - y, x - y⟫_ℝ = ⟪x, x⟫_ℝ - 2 * ⟪x, y⟫_ℝ + ⟪y, y⟫_ℝ :=
begin
have : ⟪y, x⟫_ℝ = ⟪x, y⟫_ℝ := by rw [←inner_conj_sym]; refl,
simp [inner_sub_sub_self, this],
ring,
end
/-- Parallelogram law -/
lemma parallelogram_law {x y : E} :
⟪x + y, x + y⟫ + ⟪x - y, x - y⟫ = 2 * (⟪x, x⟫ + ⟪y, y⟫) :=
by simp [inner_add_add_self, inner_sub_sub_self, two_mul, sub_eq_add_neg, add_comm, add_left_comm]
/-- Cauchy–Schwarz inequality. This proof follows "Proof 2" on Wikipedia. -/
lemma inner_mul_inner_self_le (x y : E) : abs ⟪x, y⟫ * abs ⟪y, x⟫ ≤ re ⟪x, x⟫ * re ⟪y, y⟫ :=
begin
by_cases hy : y = 0,
{ rw [hy], simp only [is_R_or_C.abs_zero, inner_zero_left, mul_zero, add_monoid_hom.map_zero] },
{ change y ≠ 0 at hy,
have hy' : ⟪y, y⟫ ≠ 0 := λ h, by rw [inner_self_eq_zero] at h; exact hy h,
set T := ⟪y, x⟫ / ⟪y, y⟫ with hT,
have h₁ : re ⟪y, x⟫ = re ⟪x, y⟫ := inner_re_symm,
have h₂ : im ⟪y, x⟫ = -im ⟪x, y⟫ := inner_im_symm,
have h₃ : ⟪y, x⟫ * ⟪x, y⟫ * ⟪y, y⟫ / (⟪y, y⟫ * ⟪y, y⟫) = ⟪y, x⟫ * ⟪x, y⟫ / ⟪y, y⟫,
{ rw [mul_div_assoc],
have : ⟪y, y⟫ / (⟪y, y⟫ * ⟪y, y⟫) = 1 / ⟪y, y⟫ :=
by rw [div_mul_eq_div_mul_one_div, div_self hy', one_mul],
rw [this, div_eq_mul_inv, one_mul, ←div_eq_mul_inv] },
have h₄ : ⟪y, y⟫ = re ⟪y, y⟫ := by simp,
have h₅ : re ⟪y, y⟫ > 0,
{ refine lt_of_le_of_ne inner_self_nonneg _,
intro H,
apply hy',
rw is_R_or_C.ext_iff,
exact ⟨by simp only [H, zero_re'],
by simp only [inner_self_nonneg_im, add_monoid_hom.map_zero]⟩ },
have h₆ : re ⟪y, y⟫ ≠ 0 := ne_of_gt h₅,
have hmain := calc
0 ≤ re ⟪x - T • y, x - T • y⟫
: inner_self_nonneg
... = re ⟪x, x⟫ - re ⟪T • y, x⟫ - re ⟪x, T • y⟫ + re ⟪T • y, T • y⟫
: by simp only [inner_sub_sub_self, inner_smul_left, inner_smul_right, h₁, h₂,
neg_mul_eq_neg_mul_symm, add_monoid_hom.map_add, conj_im,
add_monoid_hom.map_sub, mul_neg_eq_neg_mul_symm, conj_re, neg_neg, mul_re]
... = re ⟪x, x⟫ - re (T† * ⟪y, x⟫) - re (T * ⟪x, y⟫) + re (T * T† * ⟪y, y⟫)
: by simp only [inner_smul_left, inner_smul_right, mul_assoc]
... = re ⟪x, x⟫ - re (⟪x, y⟫ / ⟪y, y⟫ * ⟪y, x⟫)
: by field_simp [-mul_re, hT, conj_div, h₁, h₃, inner_conj_sym]
... = re ⟪x, x⟫ - re (⟪x, y⟫ * ⟪y, x⟫ / ⟪y, y⟫)
: by rw [div_mul_eq_mul_div_comm, ←mul_div_assoc]
... = re ⟪x, x⟫ - re (⟪x, y⟫ * ⟪y, x⟫ / re ⟪y, y⟫)
: by conv_lhs { rw [h₄] }
... = re ⟪x, x⟫ - re (⟪x, y⟫ * ⟪y, x⟫) / re ⟪y, y⟫
: by rw [div_re_of_real]
... = re ⟪x, x⟫ - abs (⟪x, y⟫ * ⟪y, x⟫) / re ⟪y, y⟫
: by rw [inner_mul_conj_re_abs]
... = re ⟪x, x⟫ - abs ⟪x, y⟫ * abs ⟪y, x⟫ / re ⟪y, y⟫
: by rw is_R_or_C.abs_mul,
have hmain' : abs ⟪x, y⟫ * abs ⟪y, x⟫ / re ⟪y, y⟫ ≤ re ⟪x, x⟫ := by linarith,
have := (mul_le_mul_right h₅).mpr hmain',
rwa [div_mul_cancel (abs ⟪x, y⟫ * abs ⟪y, x⟫) h₆] at this }
end
/-- Cauchy–Schwarz inequality for real inner products. -/
lemma real_inner_mul_inner_self_le (x y : F) : ⟪x, y⟫_ℝ * ⟪x, y⟫_ℝ ≤ ⟪x, x⟫_ℝ * ⟪y, y⟫_ℝ :=
begin
have h₁ : ⟪y, x⟫_ℝ = ⟪x, y⟫_ℝ := by rw [←inner_conj_sym]; refl,
have h₂ := @inner_mul_inner_self_le ℝ F _ _ x y,
dsimp at h₂,
have h₃ := abs_mul_abs_self ⟪x, y⟫_ℝ,
rw [h₁] at h₂,
simpa [h₃] using h₂,
end
/-- A family of vectors is linearly independent if they are nonzero
and orthogonal. -/
lemma linear_independent_of_ne_zero_of_inner_eq_zero {ι : Type*} {v : ι → E}
(hz : ∀ i, v i ≠ 0) (ho : ∀ i j, i ≠ j → ⟪v i, v j⟫ = 0) : linear_independent 𝕜 v :=
begin
rw linear_independent_iff',
intros s g hg i hi,
have h' : g i * inner (v i) (v i) = inner (v i) (∑ j in s, g j • v j),
{ rw inner_sum,
symmetry,
convert finset.sum_eq_single i _ _,
{ rw inner_smul_right },
{ intros j hj hji,
rw [inner_smul_right, ho i j hji.symm, mul_zero] },
{ exact λ h, false.elim (h hi) } },
simpa [hg, hz] using h'
end
end basic_properties
section orthonormal_sets
variables {ι : Type*} (𝕜)
include 𝕜
/-- An orthonormal set of vectors in an `inner_product_space` -/
def orthonormal (v : ι → E) : Prop :=
(∀ i, ∥v i∥ = 1) ∧ (∀ {i j}, i ≠ j → ⟪v i, v j⟫ = 0)
omit 𝕜
variables {𝕜}
/-- `if ... then ... else` characterization of an indexed set of vectors being orthonormal. (Inner
product equals Kronecker delta.) -/
lemma orthonormal_iff_ite {v : ι → E} :
orthonormal 𝕜 v ↔ ∀ i j, ⟪v i, v j⟫ = if i = j then (1:𝕜) else (0:𝕜) :=
begin
split,
{ intros hv i j,
split_ifs,
{ simp [h, inner_self_eq_norm_sq_to_K, hv.1] },
{ exact hv.2 h } },
{ intros h,
split,
{ intros i,
have h' : ∥v i∥ ^ 2 = 1 ^ 2 := by simp [norm_sq_eq_inner, h i i],
have h₁ : 0 ≤ ∥v i∥ := norm_nonneg _,
have h₂ : (0:ℝ) ≤ 1 := by norm_num,
rwa eq_of_sq_eq_sq h₁ h₂ at h' },
{ intros i j hij,
simpa [hij] using h i j } }
end
/-- `if ... then ... else` characterization of a set of vectors being orthonormal. (Inner product
equals Kronecker delta.) -/
theorem orthonormal_subtype_iff_ite {s : set E} :
orthonormal 𝕜 (coe : s → E) ↔
(∀ v ∈ s, ∀ w ∈ s, ⟪v, w⟫ = if v = w then 1 else 0) :=
begin
rw orthonormal_iff_ite,
split,
{ intros h v hv w hw,
convert h ⟨v, hv⟩ ⟨w, hw⟩ using 1,
simp },
{ rintros h ⟨v, hv⟩ ⟨w, hw⟩,
convert h v hv w hw using 1,
simp }
end
/-- The inner product of a linear combination of a set of orthonormal vectors with one of those
vectors picks out the coefficient of that vector. -/
lemma orthonormal.inner_right_finsupp {v : ι → E} (hv : orthonormal 𝕜 v) (l : ι →₀ 𝕜) (i : ι) :
⟪v i, finsupp.total ι E 𝕜 v l⟫ = l i :=
by simp [finsupp.total_apply, finsupp.inner_sum, orthonormal_iff_ite.mp hv]
/-- The inner product of a linear combination of a set of orthonormal vectors with one of those
vectors picks out the coefficient of that vector. -/
lemma orthonormal.inner_right_fintype [fintype ι]
{v : ι → E} (hv : orthonormal 𝕜 v) (l : ι → 𝕜) (i : ι) :
⟪v i, ∑ i : ι, (l i) • (v i)⟫ = l i :=
by simp [inner_sum, inner_smul_right, orthonormal_iff_ite.mp hv]
/-- The inner product of a linear combination of a set of orthonormal vectors with one of those
vectors picks out the coefficient of that vector. -/
lemma orthonormal.inner_left_finsupp {v : ι → E} (hv : orthonormal 𝕜 v) (l : ι →₀ 𝕜) (i : ι) :
⟪finsupp.total ι E 𝕜 v l, v i⟫ = conj (l i) :=
by rw [← inner_conj_sym, hv.inner_right_finsupp]
/-- The inner product of a linear combination of a set of orthonormal vectors with one of those
vectors picks out the coefficient of that vector. -/
lemma orthonormal.inner_left_fintype [fintype ι]
{v : ι → E} (hv : orthonormal 𝕜 v) (l : ι → 𝕜) (i : ι) :
⟪∑ i : ι, (l i) • (v i), v i⟫ = conj (l i) :=
by simp [sum_inner, inner_smul_left, orthonormal_iff_ite.mp hv]
/--
The double sum of weighted inner products of pairs of vectors from an orthonormal sequence is the
sum of the weights.
-/
lemma orthonormal.inner_left_right_finset {s : finset ι} {v : ι → E} (hv : orthonormal 𝕜 v)
{a : ι → ι → 𝕜} : ∑ i in s, ∑ j in s, (a i j) • ⟪v j, v i⟫ = ∑ k in s, a k k :=
by simp [orthonormal_iff_ite.mp hv, finset.sum_ite_of_true]
/-- An orthonormal set is linearly independent. -/
lemma orthonormal.linear_independent {v : ι → E} (hv : orthonormal 𝕜 v) :
linear_independent 𝕜 v :=
begin
rw linear_independent_iff,
intros l hl,
ext i,
have key : ⟪v i, finsupp.total ι E 𝕜 v l⟫ = ⟪v i, 0⟫ := by rw hl,
simpa [hv.inner_right_finsupp] using key
end
/-- A subfamily of an orthonormal family (i.e., a composition with an injective map) is an
orthonormal family. -/
lemma orthonormal.comp
{ι' : Type*} {v : ι → E} (hv : orthonormal 𝕜 v) (f : ι' → ι) (hf : function.injective f) :
orthonormal 𝕜 (v ∘ f) :=
begin
rw orthonormal_iff_ite at ⊢ hv,
intros i j,
convert hv (f i) (f j) using 1,
simp [hf.eq_iff]
end
/-- A linear combination of some subset of an orthonormal set is orthogonal to other members of the
set. -/
lemma orthonormal.inner_finsupp_eq_zero
{v : ι → E} (hv : orthonormal 𝕜 v) {s : set ι} {i : ι} (hi : i ∉ s) {l : ι →₀ 𝕜}
(hl : l ∈ finsupp.supported 𝕜 𝕜 s) :
⟪finsupp.total ι E 𝕜 v l, v i⟫ = 0 :=
begin
rw finsupp.mem_supported' at hl,
simp [hv.inner_left_finsupp, hl i hi],
end
/- The material that follows, culminating in the existence of a maximal orthonormal subset, is
adapted from the corresponding development of the theory of linearly independents sets. See
`exists_linear_independent` in particular. -/
variables (𝕜 E)
lemma orthonormal_empty : orthonormal 𝕜 (λ x, x : (∅ : set E) → E) :=
by simp [orthonormal_subtype_iff_ite]
variables {𝕜 E}
lemma orthonormal_Union_of_directed
{η : Type*} {s : η → set E} (hs : directed (⊆) s) (h : ∀ i, orthonormal 𝕜 (λ x, x : s i → E)) :
orthonormal 𝕜 (λ x, x : (⋃ i, s i) → E) :=
begin
rw orthonormal_subtype_iff_ite,
rintros x ⟨_, ⟨i, rfl⟩, hxi⟩ y ⟨_, ⟨j, rfl⟩, hyj⟩,
obtain ⟨k, hik, hjk⟩ := hs i j,
have h_orth : orthonormal 𝕜 (λ x, x : (s k) → E) := h k,
rw orthonormal_subtype_iff_ite at h_orth,
exact h_orth x (hik hxi) y (hjk hyj)
end
lemma orthonormal_sUnion_of_directed
{s : set (set E)} (hs : directed_on (⊆) s)
(h : ∀ a ∈ s, orthonormal 𝕜 (λ x, x : (a : set E) → E)) :
orthonormal 𝕜 (λ x, x : (⋃₀ s) → E) :=
by rw set.sUnion_eq_Union; exact orthonormal_Union_of_directed hs.directed_coe (by simpa using h)
/-- Given an orthonormal set `v` of vectors in `E`, there exists a maximal orthonormal set
containing it. -/
lemma exists_maximal_orthonormal {s : set E} (hs : orthonormal 𝕜 (coe : s → E)) :
∃ w ⊇ s, orthonormal 𝕜 (coe : w → E) ∧ ∀ u ⊇ w, orthonormal 𝕜 (coe : u → E) → u = w :=
begin
rcases zorn.zorn_subset_nonempty {b | orthonormal 𝕜 (coe : b → E)} _ _ hs with ⟨b, bi, sb, h⟩,
{ refine ⟨b, sb, bi, _⟩,
exact λ u hus hu, h u hu hus },
{ refine λ c hc cc c0, ⟨⋃₀ c, _, _⟩,
{ exact orthonormal_sUnion_of_directed cc.directed_on (λ x xc, hc xc) },
{ exact λ _, set.subset_sUnion_of_mem } }
end
lemma orthonormal.ne_zero {v : ι → E} (hv : orthonormal 𝕜 v) (i : ι) : v i ≠ 0 :=
begin
have : ∥v i∥ ≠ 0,
{ rw hv.1 i,
norm_num },
simpa using this
end
open finite_dimensional
/-- A family of orthonormal vectors with the correct cardinality forms a basis. -/
def basis_of_orthonormal_of_card_eq_finrank [fintype ι] [nonempty ι] {v : ι → E}
(hv : orthonormal 𝕜 v) (card_eq : fintype.card ι = finrank 𝕜 E) :
basis ι 𝕜 E :=
basis_of_linear_independent_of_card_eq_finrank hv.linear_independent card_eq
@[simp] lemma coe_basis_of_orthonormal_of_card_eq_finrank [fintype ι] [nonempty ι] {v : ι → E}
(hv : orthonormal 𝕜 v) (card_eq : fintype.card ι = finrank 𝕜 E) :
(basis_of_orthonormal_of_card_eq_finrank hv card_eq : ι → E) = v :=
coe_basis_of_linear_independent_of_card_eq_finrank _ _
end orthonormal_sets
section norm
lemma norm_eq_sqrt_inner (x : E) : ∥x∥ = sqrt (re ⟪x, x⟫) :=
begin
have h₁ : ∥x∥^2 = re ⟪x, x⟫ := norm_sq_eq_inner x,
have h₂ := congr_arg sqrt h₁,
simpa using h₂,
end
lemma norm_eq_sqrt_real_inner (x : F) : ∥x∥ = sqrt ⟪x, x⟫_ℝ :=
by { have h := @norm_eq_sqrt_inner ℝ F _ _ x, simpa using h }
lemma inner_self_eq_norm_sq (x : E) : re ⟪x, x⟫ = ∥x∥ * ∥x∥ :=
by rw[norm_eq_sqrt_inner, ←sqrt_mul inner_self_nonneg (re ⟪x, x⟫),
sqrt_mul_self inner_self_nonneg]
lemma real_inner_self_eq_norm_sq (x : F) : ⟪x, x⟫_ℝ = ∥x∥ * ∥x∥ :=
by { have h := @inner_self_eq_norm_sq ℝ F _ _ x, simpa using h }
/-- Expand the square -/
lemma norm_add_sq {x y : E} : ∥x + y∥^2 = ∥x∥^2 + 2 * (re ⟪x, y⟫) + ∥y∥^2 :=
begin
repeat {rw [sq, ←inner_self_eq_norm_sq]},
rw[inner_add_add_self, two_mul],
simp only [add_assoc, add_left_inj, add_right_inj, add_monoid_hom.map_add],
rw [←inner_conj_sym, conj_re],
end
alias norm_add_sq ← norm_add_pow_two
/-- Expand the square -/
lemma norm_add_sq_real {x y : F} : ∥x + y∥^2 = ∥x∥^2 + 2 * ⟪x, y⟫_ℝ + ∥y∥^2 :=
by { have h := @norm_add_sq ℝ F _ _, simpa using h }
alias norm_add_sq_real ← norm_add_pow_two_real
/-- Expand the square -/
lemma norm_add_mul_self {x y : E} : ∥x + y∥ * ∥x + y∥ = ∥x∥ * ∥x∥ + 2 * (re ⟪x, y⟫) + ∥y∥ * ∥y∥ :=
by { repeat {rw [← sq]}, exact norm_add_sq }
/-- Expand the square -/
lemma norm_add_mul_self_real {x y : F} : ∥x + y∥ * ∥x + y∥ = ∥x∥ * ∥x∥ + 2 * ⟪x, y⟫_ℝ + ∥y∥ * ∥y∥ :=
by { have h := @norm_add_mul_self ℝ F _ _, simpa using h }
/-- Expand the square -/
lemma norm_sub_sq {x y : E} : ∥x - y∥^2 = ∥x∥^2 - 2 * (re ⟪x, y⟫) + ∥y∥^2 :=
begin
repeat {rw [sq, ←inner_self_eq_norm_sq]},
rw[inner_sub_sub_self],
calc
re (⟪x, x⟫ - ⟪x, y⟫ - ⟪y, x⟫ + ⟪y, y⟫)
= re ⟪x, x⟫ - re ⟪x, y⟫ - re ⟪y, x⟫ + re ⟪y, y⟫ : by simp
... = -re ⟪y, x⟫ - re ⟪x, y⟫ + re ⟪x, x⟫ + re ⟪y, y⟫ : by ring
... = -re (⟪x, y⟫†) - re ⟪x, y⟫ + re ⟪x, x⟫ + re ⟪y, y⟫ : by rw[inner_conj_sym]
... = -re ⟪x, y⟫ - re ⟪x, y⟫ + re ⟪x, x⟫ + re ⟪y, y⟫ : by rw[conj_re]
... = re ⟪x, x⟫ - 2*re ⟪x, y⟫ + re ⟪y, y⟫ : by ring
end
alias norm_sub_sq ← norm_sub_pow_two
/-- Expand the square -/
lemma norm_sub_sq_real {x y : F} : ∥x - y∥^2 = ∥x∥^2 - 2 * ⟪x, y⟫_ℝ + ∥y∥^2 :=
norm_sub_sq
alias norm_sub_sq_real ← norm_sub_pow_two_real
/-- Expand the square -/
lemma norm_sub_mul_self {x y : E} : ∥x - y∥ * ∥x - y∥ = ∥x∥ * ∥x∥ - 2 * re ⟪x, y⟫ + ∥y∥ * ∥y∥ :=
by { repeat {rw [← sq]}, exact norm_sub_sq }
/-- Expand the square -/
lemma norm_sub_mul_self_real {x y : F} : ∥x - y∥ * ∥x - y∥ = ∥x∥ * ∥x∥ - 2 * ⟪x, y⟫_ℝ + ∥y∥ * ∥y∥ :=
by { have h := @norm_sub_mul_self ℝ F _ _, simpa using h }
/-- Cauchy–Schwarz inequality with norm -/
lemma abs_inner_le_norm (x y : E) : abs ⟪x, y⟫ ≤ ∥x∥ * ∥y∥ :=
nonneg_le_nonneg_of_sq_le_sq (mul_nonneg (norm_nonneg _) (norm_nonneg _))
begin
have : ∥x∥ * ∥y∥ * (∥x∥ * ∥y∥) = (re ⟪x, x⟫) * (re ⟪y, y⟫),
simp only [inner_self_eq_norm_sq], ring,
rw this,
conv_lhs { congr, skip, rw [inner_abs_conj_sym] },
exact inner_mul_inner_self_le _ _
end
/-- Cauchy–Schwarz inequality with norm -/
lemma abs_real_inner_le_norm (x y : F) : absR ⟪x, y⟫_ℝ ≤ ∥x∥ * ∥y∥ :=
by { have h := @abs_inner_le_norm ℝ F _ _ x y, simpa using h }
/-- Cauchy–Schwarz inequality with norm -/
lemma real_inner_le_norm (x y : F) : ⟪x, y⟫_ℝ ≤ ∥x∥ * ∥y∥ :=
le_trans (le_abs_self _) (abs_real_inner_le_norm _ _)
include 𝕜
lemma parallelogram_law_with_norm {x y : E} :
∥x + y∥ * ∥x + y∥ + ∥x - y∥ * ∥x - y∥ = 2 * (∥x∥ * ∥x∥ + ∥y∥ * ∥y∥) :=
begin
simp only [← inner_self_eq_norm_sq],
rw[← re.map_add, parallelogram_law, two_mul, two_mul],
simp only [re.map_add],
end
omit 𝕜
lemma parallelogram_law_with_norm_real {x y : F} :
∥x + y∥ * ∥x + y∥ + ∥x - y∥ * ∥x - y∥ = 2 * (∥x∥ * ∥x∥ + ∥y∥ * ∥y∥) :=
by { have h := @parallelogram_law_with_norm ℝ F _ _ x y, simpa using h }
/-- Polarization identity: The real part of the inner product, in terms of the norm. -/
lemma re_inner_eq_norm_add_mul_self_sub_norm_mul_self_sub_norm_mul_self_div_two (x y : E) :
re ⟪x, y⟫ = (∥x + y∥ * ∥x + y∥ - ∥x∥ * ∥x∥ - ∥y∥ * ∥y∥) / 2 :=
by { rw norm_add_mul_self, ring }
/-- Polarization identity: The real part of the inner product, in terms of the norm. -/
lemma re_inner_eq_norm_mul_self_add_norm_mul_self_sub_norm_sub_mul_self_div_two (x y : E) :
re ⟪x, y⟫ = (∥x∥ * ∥x∥ + ∥y∥ * ∥y∥ - ∥x - y∥ * ∥x - y∥) / 2 :=
by { rw [norm_sub_mul_self], ring }
/-- Polarization identity: The real part of the inner product, in terms of the norm. -/
lemma re_inner_eq_norm_add_mul_self_sub_norm_sub_mul_self_div_four (x y : E) :
re ⟪x, y⟫ = (∥x + y∥ * ∥x + y∥ - ∥x - y∥ * ∥x - y∥) / 4 :=
by { rw [norm_add_mul_self, norm_sub_mul_self], ring }
/-- Polarization identity: The imaginary part of the inner product, in terms of the norm. -/
lemma im_inner_eq_norm_sub_I_smul_mul_self_sub_norm_add_I_smul_mul_self_div_four (x y : E) :
im ⟪x, y⟫ = (∥x - IK • y∥ * ∥x - IK • y∥ - ∥x + IK • y∥ * ∥x + IK • y∥) / 4 :=
by { simp only [norm_add_mul_self, norm_sub_mul_self, inner_smul_right, I_mul_re], ring }
/-- Polarization identity: The inner product, in terms of the norm. -/
lemma inner_eq_sum_norm_sq_div_four (x y : E) :
⟪x, y⟫ = (∥x + y∥ ^ 2 - ∥x - y∥ ^ 2 + (∥x - IK • y∥ ^ 2 - ∥x + IK • y∥ ^ 2) * IK) / 4 :=
begin
rw [← re_add_im ⟪x, y⟫, re_inner_eq_norm_add_mul_self_sub_norm_sub_mul_self_div_four,
im_inner_eq_norm_sub_I_smul_mul_self_sub_norm_add_I_smul_mul_self_div_four],
push_cast,
simp only [sq, ← mul_div_right_comm, ← add_div]
end
section
variables {E' : Type*} [inner_product_space 𝕜 E']
/-- A linear isometry preserves the inner product. -/
@[simp] lemma linear_isometry.inner_map_map (f : E →ₗᵢ[𝕜] E') (x y : E) : ⟪f x, f y⟫ = ⟪x, y⟫ :=
by simp [inner_eq_sum_norm_sq_div_four, ← f.norm_map]
/-- A linear isometric equivalence preserves the inner product. -/
@[simp] lemma linear_isometry_equiv.inner_map_map (f : E ≃ₗᵢ[𝕜] E') (x y : E) :
⟪f x, f y⟫ = ⟪x, y⟫ :=
f.to_linear_isometry.inner_map_map x y
/-- A linear map that preserves the inner product is a linear isometry. -/
def linear_map.isometry_of_inner (f : E →ₗ[𝕜] E') (h : ∀ x y, ⟪f x, f y⟫ = ⟪x, y⟫) : E →ₗᵢ[𝕜] E' :=
⟨f, λ x, by simp only [norm_eq_sqrt_inner, h]⟩
@[simp] lemma linear_map.coe_isometry_of_inner (f : E →ₗ[𝕜] E') (h) :
⇑(f.isometry_of_inner h) = f := rfl
@[simp] lemma linear_map.isometry_of_inner_to_linear_map (f : E →ₗ[𝕜] E') (h) :
(f.isometry_of_inner h).to_linear_map = f := rfl
/-- A linear equivalence that preserves the inner product is a linear isometric equivalence. -/
def linear_equiv.isometry_of_inner (f : E ≃ₗ[𝕜] E') (h : ∀ x y, ⟪f x, f y⟫ = ⟪x, y⟫) :
E ≃ₗᵢ[𝕜] E' :=
⟨f, ((f : E →ₗ[𝕜] E').isometry_of_inner h).norm_map⟩
@[simp] lemma linear_equiv.coe_isometry_of_inner (f : E ≃ₗ[𝕜] E') (h) :
⇑(f.isometry_of_inner h) = f := rfl
@[simp] lemma linear_equiv.isometry_of_inner_to_linear_equiv (f : E ≃ₗ[𝕜] E') (h) :
(f.isometry_of_inner h).to_linear_equiv = f := rfl
end
/-- Polarization identity: The real inner product, in terms of the norm. -/
lemma real_inner_eq_norm_add_mul_self_sub_norm_mul_self_sub_norm_mul_self_div_two (x y : F) :
⟪x, y⟫_ℝ = (∥x + y∥ * ∥x + y∥ - ∥x∥ * ∥x∥ - ∥y∥ * ∥y∥) / 2 :=
re_to_real.symm.trans $
re_inner_eq_norm_add_mul_self_sub_norm_mul_self_sub_norm_mul_self_div_two x y
/-- Polarization identity: The real inner product, in terms of the norm. -/
lemma real_inner_eq_norm_mul_self_add_norm_mul_self_sub_norm_sub_mul_self_div_two (x y : F) :
⟪x, y⟫_ℝ = (∥x∥ * ∥x∥ + ∥y∥ * ∥y∥ - ∥x - y∥ * ∥x - y∥) / 2 :=
re_to_real.symm.trans $
re_inner_eq_norm_mul_self_add_norm_mul_self_sub_norm_sub_mul_self_div_two x y
/-- Pythagorean theorem, if-and-only-if vector inner product form. -/
lemma norm_add_sq_eq_norm_sq_add_norm_sq_iff_real_inner_eq_zero (x y : F) :
∥x + y∥ * ∥x + y∥ = ∥x∥ * ∥x∥ + ∥y∥ * ∥y∥ ↔ ⟪x, y⟫_ℝ = 0 :=
begin
rw [norm_add_mul_self, add_right_cancel_iff, add_right_eq_self, mul_eq_zero],
norm_num
end
/-- Pythagorean theorem, vector inner product form. -/
lemma norm_add_sq_eq_norm_sq_add_norm_sq_of_inner_eq_zero (x y : E) (h : ⟪x, y⟫ = 0) :
∥x + y∥ * ∥x + y∥ = ∥x∥ * ∥x∥ + ∥y∥ * ∥y∥ :=
begin
rw [norm_add_mul_self, add_right_cancel_iff, add_right_eq_self, mul_eq_zero],
apply or.inr,
simp only [h, zero_re'],
end
/-- Pythagorean theorem, vector inner product form. -/
lemma norm_add_sq_eq_norm_sq_add_norm_sq_real {x y : F} (h : ⟪x, y⟫_ℝ = 0) :
∥x + y∥ * ∥x + y∥ = ∥x∥ * ∥x∥ + ∥y∥ * ∥y∥ :=
(norm_add_sq_eq_norm_sq_add_norm_sq_iff_real_inner_eq_zero x y).2 h
/-- Pythagorean theorem, subtracting vectors, if-and-only-if vector
inner product form. -/
lemma norm_sub_sq_eq_norm_sq_add_norm_sq_iff_real_inner_eq_zero (x y : F) :
∥x - y∥ * ∥x - y∥ = ∥x∥ * ∥x∥ + ∥y∥ * ∥y∥ ↔ ⟪x, y⟫_ℝ = 0 :=
begin
rw [norm_sub_mul_self, add_right_cancel_iff, sub_eq_add_neg, add_right_eq_self, neg_eq_zero,
mul_eq_zero],
norm_num
end
/-- Pythagorean theorem, subtracting vectors, vector inner product
form. -/
lemma norm_sub_sq_eq_norm_sq_add_norm_sq_real {x y : F} (h : ⟪x, y⟫_ℝ = 0) :
∥x - y∥ * ∥x - y∥ = ∥x∥ * ∥x∥ + ∥y∥ * ∥y∥ :=
(norm_sub_sq_eq_norm_sq_add_norm_sq_iff_real_inner_eq_zero x y).2 h
/-- The sum and difference of two vectors are orthogonal if and only
if they have the same norm. -/
lemma real_inner_add_sub_eq_zero_iff (x y : F) : ⟪x + y, x - y⟫_ℝ = 0 ↔ ∥x∥ = ∥y∥ :=
begin
conv_rhs { rw ←mul_self_inj_of_nonneg (norm_nonneg _) (norm_nonneg _) },
simp only [←inner_self_eq_norm_sq, inner_add_left, inner_sub_right,
real_inner_comm y x, sub_eq_zero, re_to_real],
split,
{ intro h,
rw [add_comm] at h,
linarith },
{ intro h,
linarith }
end
/-- The real inner product of two vectors, divided by the product of their
norms, has absolute value at most 1. -/
lemma abs_real_inner_div_norm_mul_norm_le_one (x y : F) : absR (⟪x, y⟫_ℝ / (∥x∥ * ∥y∥)) ≤ 1 :=
begin
rw _root_.abs_div,
by_cases h : 0 = absR (∥x∥ * ∥y∥),
{ rw [←h, div_zero],
norm_num },
{ change 0 ≠ absR (∥x∥ * ∥y∥) at h,
rw div_le_iff' (lt_of_le_of_ne (ge_iff_le.mp (_root_.abs_nonneg (∥x∥ * ∥y∥))) h),
convert abs_real_inner_le_norm x y using 1,
rw [_root_.abs_mul, _root_.abs_of_nonneg (norm_nonneg x), _root_.abs_of_nonneg (norm_nonneg y),
mul_one] }
end
/-- The inner product of a vector with a multiple of itself. -/
lemma real_inner_smul_self_left (x : F) (r : ℝ) : ⟪r • x, x⟫_ℝ = r * (∥x∥ * ∥x∥) :=
by rw [real_inner_smul_left, ←real_inner_self_eq_norm_sq]
/-- The inner product of a vector with a multiple of itself. -/
lemma real_inner_smul_self_right (x : F) (r : ℝ) : ⟪x, r • x⟫_ℝ = r * (∥x∥ * ∥x∥) :=
by rw [inner_smul_right, ←real_inner_self_eq_norm_sq]
/-- The inner product of a nonzero vector with a nonzero multiple of
itself, divided by the product of their norms, has absolute value
1. -/
lemma abs_inner_div_norm_mul_norm_eq_one_of_ne_zero_of_ne_zero_mul
{x : E} {r : 𝕜} (hx : x ≠ 0) (hr : r ≠ 0) : abs ⟪x, r • x⟫ / (∥x∥ * ∥r • x∥) = 1 :=
begin
have hx' : ∥x∥ ≠ 0 := by simp [norm_eq_zero, hx],
have hr' : abs r ≠ 0 := by simp [is_R_or_C.abs_eq_zero, hr],
rw [inner_smul_right, is_R_or_C.abs_mul, ←inner_self_re_abs, inner_self_eq_norm_sq,
norm_smul],
rw [is_R_or_C.norm_eq_abs, ←mul_assoc, ←div_div_eq_div_mul, mul_div_cancel _ hx',
←div_div_eq_div_mul, mul_comm, mul_div_cancel _ hr', div_self hx'],
end
/-- The inner product of a nonzero vector with a nonzero multiple of
itself, divided by the product of their norms, has absolute value
1. -/
lemma abs_real_inner_div_norm_mul_norm_eq_one_of_ne_zero_of_ne_zero_mul
{x : F} {r : ℝ} (hx : x ≠ 0) (hr : r ≠ 0) : absR ⟪x, r • x⟫_ℝ / (∥x∥ * ∥r • x∥) = 1 :=
begin
rw ← abs_to_real,
exact abs_inner_div_norm_mul_norm_eq_one_of_ne_zero_of_ne_zero_mul hx hr
end
/-- The inner product of a nonzero vector with a positive multiple of
itself, divided by the product of their norms, has value 1. -/
lemma real_inner_div_norm_mul_norm_eq_one_of_ne_zero_of_pos_mul
{x : F} {r : ℝ} (hx : x ≠ 0) (hr : 0 < r) : ⟪x, r • x⟫_ℝ / (∥x∥ * ∥r • x∥) = 1 :=
begin
rw [real_inner_smul_self_right, norm_smul, real.norm_eq_abs, ←mul_assoc ∥x∥, mul_comm _ (absR r),
mul_assoc, _root_.abs_of_nonneg (le_of_lt hr), div_self],
exact mul_ne_zero (ne_of_gt hr)
(λ h, hx (norm_eq_zero.1 (eq_zero_of_mul_self_eq_zero h)))
end
/-- The inner product of a nonzero vector with a negative multiple of
itself, divided by the product of their norms, has value -1. -/
lemma real_inner_div_norm_mul_norm_eq_neg_one_of_ne_zero_of_neg_mul
{x : F} {r : ℝ} (hx : x ≠ 0) (hr : r < 0) : ⟪x, r • x⟫_ℝ / (∥x∥ * ∥r • x∥) = -1 :=
begin
rw [real_inner_smul_self_right, norm_smul, real.norm_eq_abs, ←mul_assoc ∥x∥, mul_comm _ (absR r),
mul_assoc, abs_of_neg hr, ←neg_mul_eq_neg_mul, div_neg_eq_neg_div, div_self],
exact mul_ne_zero (ne_of_lt hr)
(λ h, hx (norm_eq_zero.1 (eq_zero_of_mul_self_eq_zero h)))
end
/-- The inner product of two vectors, divided by the product of their
norms, has absolute value 1 if and only if they are nonzero and one is
a multiple of the other. One form of equality case for Cauchy-Schwarz. -/
lemma abs_inner_div_norm_mul_norm_eq_one_iff (x y : E) :
abs (⟪x, y⟫ / (∥x∥ * ∥y∥)) = 1 ↔ (x ≠ 0 ∧ ∃ (r : 𝕜), r ≠ 0 ∧ y = r • x) :=
begin
split,
{ intro h,
have hx0 : x ≠ 0,
{ intro hx0,
rw [hx0, inner_zero_left, zero_div] at h,
norm_num at h, },
refine and.intro hx0 _,
set r := ⟪x, y⟫ / (∥x∥ * ∥x∥) with hr,
use r,
set t := y - r • x with ht,
have ht0 : ⟪x, t⟫ = 0,
{ rw [ht, inner_sub_right, inner_smul_right, hr],
norm_cast,
rw [←inner_self_eq_norm_sq, inner_self_re_to_K,
div_mul_cancel _ (λ h, hx0 (inner_self_eq_zero.1 h)), sub_self] },
replace h : ∥r • x∥ / ∥t + r • x∥ = 1,
{ rw [←sub_add_cancel y (r • x), ←ht, inner_add_right, ht0, zero_add, inner_smul_right,
is_R_or_C.abs_div, is_R_or_C.abs_mul, ←inner_self_re_abs,
inner_self_eq_norm_sq] at h,
norm_cast at h,
rwa [_root_.abs_mul, abs_norm_eq_norm, abs_norm_eq_norm, ←mul_assoc, mul_comm,
mul_div_mul_left _ _ (λ h, hx0 (norm_eq_zero.1 h)), ←is_R_or_C.norm_eq_abs,
←norm_smul] at h },
have hr0 : r ≠ 0,
{ intro hr0,
rw [hr0, zero_smul, norm_zero, zero_div] at h,
norm_num at h },
refine and.intro hr0 _,
have h2 : ∥r • x∥ ^ 2 = ∥t + r • x∥ ^ 2,
{ rw [eq_of_div_eq_one h] },
replace h2 : ⟪r • x, r • x⟫ = ⟪t, t⟫ + ⟪t, r • x⟫ + ⟪r • x, t⟫ + ⟪r • x, r • x⟫,
{ rw [sq, sq, ←inner_self_eq_norm_sq, ←inner_self_eq_norm_sq ] at h2,
have h2' := congr_arg (λ z : ℝ, (z : 𝕜)) h2,
simp_rw [inner_self_re_to_K, inner_add_add_self] at h2',
exact h2' },
conv at h2 in ⟪r • x, t⟫ { rw [inner_smul_left, ht0, mul_zero] },
symmetry' at h2,
have h₁ : ⟪t, r • x⟫ = 0 := by { rw [inner_smul_right, ←inner_conj_sym, ht0], simp },
rw [add_zero, h₁, add_left_eq_self, add_zero, inner_self_eq_zero] at h2,
rw h2 at ht,
exact eq_of_sub_eq_zero ht.symm },
{ intro h,
rcases h with ⟨hx, ⟨r, ⟨hr, hy⟩⟩⟩,
rw [hy, is_R_or_C.abs_div],
norm_cast,
rw [_root_.abs_mul, abs_norm_eq_norm, abs_norm_eq_norm],
exact abs_inner_div_norm_mul_norm_eq_one_of_ne_zero_of_ne_zero_mul hx hr }
end
/-- The inner product of two vectors, divided by the product of their
norms, has absolute value 1 if and only if they are nonzero and one is
a multiple of the other. One form of equality case for Cauchy-Schwarz. -/
lemma abs_real_inner_div_norm_mul_norm_eq_one_iff (x y : F) :
absR (⟪x, y⟫_ℝ / (∥x∥ * ∥y∥)) = 1 ↔ (x ≠ 0 ∧ ∃ (r : ℝ), r ≠ 0 ∧ y = r • x) :=
begin
have := @abs_inner_div_norm_mul_norm_eq_one_iff ℝ F _ _ x y,
simpa [coe_real_eq_id] using this,
end
/--
If the inner product of two vectors is equal to the product of their norms, then the two vectors
are multiples of each other. One form of the equality case for Cauchy-Schwarz.
Compare `inner_eq_norm_mul_iff`, which takes the stronger hypothesis `⟪x, y⟫ = ∥x∥ * ∥y∥`. -/
lemma abs_inner_eq_norm_iff (x y : E) (hx0 : x ≠ 0) (hy0 : y ≠ 0):
abs ⟪x, y⟫ = ∥x∥ * ∥y∥ ↔ ∃ (r : 𝕜), r ≠ 0 ∧ y = r • x :=
begin
have hx0' : ∥x∥ ≠ 0 := by simp [norm_eq_zero, hx0],
have hy0' : ∥y∥ ≠ 0 := by simp [norm_eq_zero, hy0],
have hxy0 : ∥x∥ * ∥y∥ ≠ 0 := by simp [hx0', hy0'],
have h₁ : abs ⟪x, y⟫ = ∥x∥ * ∥y∥ ↔ abs (⟪x, y⟫ / (∥x∥ * ∥y∥)) = 1,
{ refine ⟨_ ,_⟩,
{ intro h,
norm_cast,
rw [is_R_or_C.abs_div, h, abs_of_real, _root_.abs_mul, abs_norm_eq_norm, abs_norm_eq_norm],
exact div_self hxy0 },
{ intro h,
norm_cast at h,
rwa [is_R_or_C.abs_div, abs_of_real, _root_.abs_mul, abs_norm_eq_norm, abs_norm_eq_norm,
div_eq_one_iff_eq hxy0] at h } },
rw [h₁, abs_inner_div_norm_mul_norm_eq_one_iff x y],
have : x ≠ 0 := λ h, (hx0' $ norm_eq_zero.mpr h),
simp [this]
end
/-- The inner product of two vectors, divided by the product of their
norms, has value 1 if and only if they are nonzero and one is
a positive multiple of the other. -/
lemma real_inner_div_norm_mul_norm_eq_one_iff (x y : F) :
⟪x, y⟫_ℝ / (∥x∥ * ∥y∥) = 1 ↔ (x ≠ 0 ∧ ∃ (r : ℝ), 0 < r ∧ y = r • x) :=
begin
split,
{ intro h,
have ha := h,
apply_fun absR at ha,
norm_num at ha,
rcases (abs_real_inner_div_norm_mul_norm_eq_one_iff x y).1 ha with ⟨hx, ⟨r, ⟨hr, hy⟩⟩⟩,
use [hx, r],
refine and.intro _ hy,
by_contradiction hrneg,
rw hy at h,
rw real_inner_div_norm_mul_norm_eq_neg_one_of_ne_zero_of_neg_mul hx
(lt_of_le_of_ne (le_of_not_lt hrneg) hr) at h,
norm_num at h },
{ intro h,
rcases h with ⟨hx, ⟨r, ⟨hr, hy⟩⟩⟩,
rw hy,
exact real_inner_div_norm_mul_norm_eq_one_of_ne_zero_of_pos_mul hx hr }
end
/-- The inner product of two vectors, divided by the product of their
norms, has value -1 if and only if they are nonzero and one is
a negative multiple of the other. -/
lemma real_inner_div_norm_mul_norm_eq_neg_one_iff (x y : F) :
⟪x, y⟫_ℝ / (∥x∥ * ∥y∥) = -1 ↔ (x ≠ 0 ∧ ∃ (r : ℝ), r < 0 ∧ y = r • x) :=
begin
split,
{ intro h,
have ha := h,
apply_fun absR at ha,
norm_num at ha,
rcases (abs_real_inner_div_norm_mul_norm_eq_one_iff x y).1 ha with ⟨hx, ⟨r, ⟨hr, hy⟩⟩⟩,
use [hx, r],
refine and.intro _ hy,
by_contradiction hrpos,
rw hy at h,
rw real_inner_div_norm_mul_norm_eq_one_of_ne_zero_of_pos_mul hx
(lt_of_le_of_ne (le_of_not_lt hrpos) hr.symm) at h,
norm_num at h },
{ intro h,
rcases h with ⟨hx, ⟨r, ⟨hr, hy⟩⟩⟩,
rw hy,
exact real_inner_div_norm_mul_norm_eq_neg_one_of_ne_zero_of_neg_mul hx hr }
end
/-- If the inner product of two vectors is equal to the product of their norms (i.e.,
`⟪x, y⟫ = ∥x∥ * ∥y∥`), then the two vectors are nonnegative real multiples of each other. One form
of the equality case for Cauchy-Schwarz.
Compare `abs_inner_eq_norm_iff`, which takes the weaker hypothesis `abs ⟪x, y⟫ = ∥x∥ * ∥y∥`. -/
lemma inner_eq_norm_mul_iff {x y : E} :
⟪x, y⟫ = (∥x∥ : 𝕜) * ∥y∥ ↔ (∥y∥ : 𝕜) • x = (∥x∥ : 𝕜) • y :=
begin
by_cases h : (x = 0 ∨ y = 0), -- WLOG `x` and `y` are nonzero
{ cases h; simp [h] },
calc ⟪x, y⟫ = (∥x∥ : 𝕜) * ∥y∥ ↔ ∥x∥ * ∥y∥ = re ⟪x, y⟫ :
begin
norm_cast,
split,
{ intros h',
simp [h'] },
{ have cauchy_schwarz := abs_inner_le_norm x y,
intros h',
rw h' at ⊢ cauchy_schwarz,
rwa re_eq_self_of_le }
end
... ↔ 2 * ∥x∥ * ∥y∥ * (∥x∥ * ∥y∥ - re ⟪x, y⟫) = 0 :
by simp [h, show (2:ℝ) ≠ 0, by norm_num, sub_eq_zero]
... ↔ ∥(∥y∥:𝕜) • x - (∥x∥:𝕜) • y∥ * ∥(∥y∥:𝕜) • x - (∥x∥:𝕜) • y∥ = 0 :
begin
simp only [norm_sub_mul_self, inner_smul_left, inner_smul_right, norm_smul, conj_of_real,
is_R_or_C.norm_eq_abs, abs_of_real, of_real_im, of_real_re, mul_re, abs_norm_eq_norm],
refine eq.congr _ rfl,
ring
end
... ↔ (∥y∥ : 𝕜) • x = (∥x∥ : 𝕜) • y : by simp [norm_sub_eq_zero_iff]
end
/-- If the inner product of two vectors is equal to the product of their norms (i.e.,
`⟪x, y⟫ = ∥x∥ * ∥y∥`), then the two vectors are nonnegative real multiples of each other. One form
of the equality case for Cauchy-Schwarz.
Compare `abs_inner_eq_norm_iff`, which takes the weaker hypothesis `abs ⟪x, y⟫ = ∥x∥ * ∥y∥`. -/
lemma inner_eq_norm_mul_iff_real {x y : F} : ⟪x, y⟫_ℝ = ∥x∥ * ∥y∥ ↔ ∥y∥ • x = ∥x∥ • y :=
inner_eq_norm_mul_iff
/-- If the inner product of two unit vectors is `1`, then the two vectors are equal. One form of
the equality case for Cauchy-Schwarz. -/
lemma inner_eq_norm_mul_iff_of_norm_one {x y : E} (hx : ∥x∥ = 1) (hy : ∥y∥ = 1) :
⟪x, y⟫ = 1 ↔ x = y :=
by { convert inner_eq_norm_mul_iff using 2; simp [hx, hy] }
lemma inner_lt_norm_mul_iff_real {x y : F} :
⟪x, y⟫_ℝ < ∥x∥ * ∥y∥ ↔ ∥y∥ • x ≠ ∥x∥ • y :=
calc ⟪x, y⟫_ℝ < ∥x∥ * ∥y∥
↔ ⟪x, y⟫_ℝ ≠ ∥x∥ * ∥y∥ : ⟨ne_of_lt, lt_of_le_of_ne (real_inner_le_norm _ _)⟩
... ↔ ∥y∥ • x ≠ ∥x∥ • y : not_congr inner_eq_norm_mul_iff_real
/-- If the inner product of two unit vectors is strictly less than `1`, then the two vectors are
distinct. One form of the equality case for Cauchy-Schwarz. -/
lemma inner_lt_one_iff_real_of_norm_one {x y : F} (hx : ∥x∥ = 1) (hy : ∥y∥ = 1) :
⟪x, y⟫_ℝ < 1 ↔ x ≠ y :=
by { convert inner_lt_norm_mul_iff_real; simp [hx, hy] }
/-- The inner product of two weighted sums, where the weights in each
sum add to 0, in terms of the norms of pairwise differences. -/
lemma inner_sum_smul_sum_smul_of_sum_eq_zero {ι₁ : Type*} {s₁ : finset ι₁} {w₁ : ι₁ → ℝ}
(v₁ : ι₁ → F) (h₁ : ∑ i in s₁, w₁ i = 0) {ι₂ : Type*} {s₂ : finset ι₂} {w₂ : ι₂ → ℝ}
(v₂ : ι₂ → F) (h₂ : ∑ i in s₂, w₂ i = 0) :
⟪(∑ i₁ in s₁, w₁ i₁ • v₁ i₁), (∑ i₂ in s₂, w₂ i₂ • v₂ i₂)⟫_ℝ =
(-∑ i₁ in s₁, ∑ i₂ in s₂, w₁ i₁ * w₂ i₂ * (∥v₁ i₁ - v₂ i₂∥ * ∥v₁ i₁ - v₂ i₂∥)) / 2 :=
by simp_rw [sum_inner, inner_sum, real_inner_smul_left, real_inner_smul_right,
real_inner_eq_norm_mul_self_add_norm_mul_self_sub_norm_sub_mul_self_div_two,
←div_sub_div_same, ←div_add_div_same, mul_sub_left_distrib, left_distrib,
finset.sum_sub_distrib, finset.sum_add_distrib, ←finset.mul_sum, ←finset.sum_mul,
h₁, h₂, zero_mul, mul_zero, finset.sum_const_zero, zero_add, zero_sub, finset.mul_sum,
neg_div, finset.sum_div, mul_div_assoc, mul_assoc]
/-- The inner product with a fixed left element, as a continuous linear map. This can be upgraded
to a continuous map which is jointly conjugate-linear in the left argument and linear in the right
argument, once (TODO) conjugate-linear maps have been defined. -/
def inner_right (v : E) : E →L[𝕜] 𝕜 :=
linear_map.mk_continuous
{ to_fun := λ w, ⟪v, w⟫,
map_add' := λ x y, inner_add_right,
map_smul' := λ c x, inner_smul_right }
∥v∥
(by simpa [is_R_or_C.norm_eq_abs] using abs_inner_le_norm v)
@[simp] lemma inner_right_coe (v : E) : (inner_right v : E → 𝕜) = λ w, ⟪v, w⟫ := rfl
@[simp] lemma inner_right_apply (v w : E) : inner_right v w = ⟪v, w⟫ := rfl
end norm
section bessels_inequality
variables {ι: Type*} (x : E) {v : ι → E}
/-- Bessel's inequality for finite sums. -/
lemma orthonormal.sum_inner_products_le {s : finset ι} (hv : orthonormal 𝕜 v) :
∑ i in s, ∥⟪v i, x⟫∥ ^ 2 ≤ ∥x∥ ^ 2 :=
begin
have h₂ : ∑ i in s, ∑ j in s, ⟪v i, x⟫ * ⟪x, v j⟫ * ⟪v j, v i⟫
= (∑ k in s, (⟪v k, x⟫ * ⟪x, v k⟫) : 𝕜),
{ exact hv.inner_left_right_finset },
have h₃ : ∀ z : 𝕜, re (z * conj (z)) = ∥z∥ ^ 2,
{ intro z,
simp only [mul_conj, norm_sq_eq_def'],
norm_cast, },
suffices hbf: ∥x - ∑ i in s, ⟪v i, x⟫ • (v i)∥ ^ 2 = ∥x∥ ^ 2 - ∑ i in s, ∥⟪v i, x⟫∥ ^ 2,
{ rw [←sub_nonneg, ←hbf],
simp only [norm_nonneg, pow_nonneg], },
rw [norm_sub_sq, sub_add],
simp only [inner_product_space.norm_sq_eq_inner, inner_sum],
simp only [sum_inner, two_mul, inner_smul_right, inner_conj_sym, ←mul_assoc, h₂, ←h₃,
inner_conj_sym, add_monoid_hom.map_sum, finset.mul_sum, ←finset.sum_sub_distrib, inner_smul_left,
add_sub_cancel'],
end
/-- Bessel's inequality. -/
lemma orthonormal.tsum_inner_products_le (hv : orthonormal 𝕜 v) :
∑' i, ∥⟪v i, x⟫∥ ^ 2 ≤ ∥x∥ ^ 2 :=
begin
refine tsum_le_of_sum_le' _ (λ s, hv.sum_inner_products_le x),
simp only [norm_nonneg, pow_nonneg]
end
/-- The sum defined in Bessel's inequality is summable. -/
lemma orthonormal.inner_products_summable (hv : orthonormal 𝕜 v) : summable (λ i, ∥⟪v i, x⟫∥ ^ 2) :=
begin
by_cases hnon : nonempty ι,
{ use Sup (set.range (λ s : finset ι, ∑ i in s, ∥⟪v i, x⟫∥ ^ 2)),
apply has_sum_of_is_lub_of_nonneg,
{ intro b,
simp only [norm_nonneg, pow_nonneg], },
{ refine is_lub_cSup (set.range_nonempty _) _,
use ∥x∥ ^ 2,
rintro y ⟨s, rfl⟩,
exact hv.sum_inner_products_le x, }, },
{ rw not_nonempty_iff at hnon,
haveI := hnon,
exact summable_empty, },
end
end bessels_inequality
/-- A field `𝕜` satisfying `is_R_or_C` is itself a `𝕜`-inner product space. -/
instance is_R_or_C.inner_product_space : inner_product_space 𝕜 𝕜 :=
{ inner := (λ x y, (conj x) * y),
norm_sq_eq_inner := λ x,
by { unfold inner, rw [mul_comm, mul_conj, of_real_re, norm_sq_eq_def'] },
conj_sym := λ x y, by simp [mul_comm],
add_left := λ x y z, by simp [inner, add_mul],
smul_left := λ x y z, by simp [inner, mul_assoc] }
@[simp] lemma is_R_or_C.inner_apply (x y : 𝕜) : ⟪x, y⟫ = (conj x) * y := rfl
/-! ### Inner product space structure on subspaces -/
/-- Induced inner product on a submodule. -/
instance submodule.inner_product_space (W : submodule 𝕜 E) : inner_product_space 𝕜 W :=
{ inner := λ x y, ⟪(x:E), (y:E)⟫,
conj_sym := λ _ _, inner_conj_sym _ _ ,
norm_sq_eq_inner := λ _, norm_sq_eq_inner _,
add_left := λ _ _ _ , inner_add_left,
smul_left := λ _ _ _, inner_smul_left,
..submodule.normed_space W }
/-- The inner product on submodules is the same as on the ambient space. -/
@[simp] lemma submodule.coe_inner (W : submodule 𝕜 E) (x y : W) : ⟪x, y⟫ = ⟪(x:E), ↑y⟫ := rfl
section is_R_or_C_to_real
variables {G : Type*}
variables (𝕜 E)
include 𝕜
/-- A general inner product implies a real inner product. This is not registered as an instance
since it creates problems with the case `𝕜 = ℝ`. -/
def has_inner.is_R_or_C_to_real : has_inner ℝ E :=
{ inner := λ x y, re ⟪x, y⟫ }
/-- A general inner product space structure implies a real inner product structure. This is not
registered as an instance since it creates problems with the case `𝕜 = ℝ`, but in can be used in a
proof to obtain a real inner product space structure from a given `𝕜`-inner product space
structure. -/
def inner_product_space.is_R_or_C_to_real : inner_product_space ℝ E :=
{ norm_sq_eq_inner := norm_sq_eq_inner,
conj_sym := λ x y, inner_re_symm,
add_left := λ x y z, by {
change re ⟪x + y, z⟫ = re ⟪x, z⟫ + re ⟪y, z⟫,
simp [inner_add_left] },
smul_left := λ x y r, by {
change re ⟪(r : 𝕜) • x, y⟫ = r * re ⟪x, y⟫,
simp [inner_smul_left] },
..has_inner.is_R_or_C_to_real 𝕜 E,
..normed_space.restrict_scalars ℝ 𝕜 E }
variable {E}
lemma real_inner_eq_re_inner (x y : E) :
@has_inner.inner ℝ E (has_inner.is_R_or_C_to_real 𝕜 E) x y = re ⟪x, y⟫ := rfl
omit 𝕜
/-- A complex inner product implies a real inner product -/
instance inner_product_space.complex_to_real [inner_product_space ℂ G] : inner_product_space ℝ G :=
inner_product_space.is_R_or_C_to_real ℂ G
end is_R_or_C_to_real
section deriv
/-!
### Derivative of the inner product
In this section we prove that the inner product and square of the norm in an inner space are
infinitely `ℝ`-smooth. In order to state these results, we need a `normed_space ℝ E`
instance. Though we can deduce this structure from `inner_product_space 𝕜 E`, this instance may be
not definitionally equal to some other “natural” instance. So, we assume `[normed_space ℝ E]` and
`[is_scalar_tower ℝ 𝕜 E]`. In both interesting cases `𝕜 = ℝ` and `𝕜 = ℂ` we have these instances.
-/
variables [normed_space ℝ E] [is_scalar_tower ℝ 𝕜 E]
lemma is_bounded_bilinear_map_inner : is_bounded_bilinear_map ℝ (λ p : E × E, ⟪p.1, p.2⟫) :=
{ add_left := λ _ _ _, inner_add_left,
smul_left := λ r x y,
by simp only [← algebra_map_smul 𝕜 r x, algebra_map_eq_of_real, inner_smul_real_left],
add_right := λ _ _ _, inner_add_right,
smul_right := λ r x y,
by simp only [← algebra_map_smul 𝕜 r y, algebra_map_eq_of_real, inner_smul_real_right],
bound := ⟨1, zero_lt_one, λ x y,
by { rw [one_mul, is_R_or_C.norm_eq_abs], exact abs_inner_le_norm x y, }⟩ }
/-- Derivative of the inner product. -/
def fderiv_inner_clm (p : E × E) : E × E →L[ℝ] 𝕜 := is_bounded_bilinear_map_inner.deriv p
@[simp] lemma fderiv_inner_clm_apply (p x : E × E) :
fderiv_inner_clm p x = ⟪p.1, x.2⟫ + ⟪x.1, p.2⟫ := rfl
lemma times_cont_diff_inner {n} : times_cont_diff ℝ n (λ p : E × E, ⟪p.1, p.2⟫) :=
is_bounded_bilinear_map_inner.times_cont_diff
lemma times_cont_diff_at_inner {p : E × E} {n} :
times_cont_diff_at ℝ n (λ p : E × E, ⟪p.1, p.2⟫) p :=
times_cont_diff_inner.times_cont_diff_at
lemma differentiable_inner : differentiable ℝ (λ p : E × E, ⟪p.1, p.2⟫) :=
is_bounded_bilinear_map_inner.differentiable_at
variables {G : Type*} [normed_group G] [normed_space ℝ G]
{f g : G → E} {f' g' : G →L[ℝ] E} {s : set G} {x : G} {n : with_top ℕ}
include 𝕜
lemma times_cont_diff_within_at.inner (hf : times_cont_diff_within_at ℝ n f s x)
(hg : times_cont_diff_within_at ℝ n g s x) :
times_cont_diff_within_at ℝ n (λ x, ⟪f x, g x⟫) s x :=
times_cont_diff_at_inner.comp_times_cont_diff_within_at x (hf.prod hg)
lemma times_cont_diff_at.inner (hf : times_cont_diff_at ℝ n f x)
(hg : times_cont_diff_at ℝ n g x) :
times_cont_diff_at ℝ n (λ x, ⟪f x, g x⟫) x :=
hf.inner hg
lemma times_cont_diff_on.inner (hf : times_cont_diff_on ℝ n f s) (hg : times_cont_diff_on ℝ n g s) :
times_cont_diff_on ℝ n (λ x, ⟪f x, g x⟫) s :=
λ x hx, (hf x hx).inner (hg x hx)
lemma times_cont_diff.inner (hf : times_cont_diff ℝ n f) (hg : times_cont_diff ℝ n g) :
times_cont_diff ℝ n (λ x, ⟪f x, g x⟫) :=
times_cont_diff_inner.comp (hf.prod hg)
lemma has_fderiv_within_at.inner (hf : has_fderiv_within_at f f' s x)
(hg : has_fderiv_within_at g g' s x) :
has_fderiv_within_at (λ t, ⟪f t, g t⟫) ((fderiv_inner_clm (f x, g x)).comp $ f'.prod g') s x :=
(is_bounded_bilinear_map_inner.has_fderiv_at (f x, g x)).comp_has_fderiv_within_at x (hf.prod hg)
lemma has_fderiv_at.inner (hf : has_fderiv_at f f' x) (hg : has_fderiv_at g g' x) :
has_fderiv_at (λ t, ⟪f t, g t⟫) ((fderiv_inner_clm (f x, g x)).comp $ f'.prod g') x :=
(is_bounded_bilinear_map_inner.has_fderiv_at (f x, g x)).comp x (hf.prod hg)
lemma has_deriv_within_at.inner {f g : ℝ → E} {f' g' : E} {s : set ℝ} {x : ℝ}
(hf : has_deriv_within_at f f' s x) (hg : has_deriv_within_at g g' s x) :
has_deriv_within_at (λ t, ⟪f t, g t⟫) (⟪f x, g'⟫ + ⟪f', g x⟫) s x :=
by simpa using (hf.has_fderiv_within_at.inner hg.has_fderiv_within_at).has_deriv_within_at
lemma has_deriv_at.inner {f g : ℝ → E} {f' g' : E} {x : ℝ} :
has_deriv_at f f' x → has_deriv_at g g' x →
has_deriv_at (λ t, ⟪f t, g t⟫) (⟪f x, g'⟫ + ⟪f', g x⟫) x :=
by simpa only [← has_deriv_within_at_univ] using has_deriv_within_at.inner
lemma differentiable_within_at.inner (hf : differentiable_within_at ℝ f s x)
(hg : differentiable_within_at ℝ g s x) :
differentiable_within_at ℝ (λ x, ⟪f x, g x⟫) s x :=
((differentiable_inner _).has_fderiv_at.comp_has_fderiv_within_at x
(hf.prod hg).has_fderiv_within_at).differentiable_within_at
lemma differentiable_at.inner (hf : differentiable_at ℝ f x) (hg : differentiable_at ℝ g x) :
differentiable_at ℝ (λ x, ⟪f x, g x⟫) x :=
(differentiable_inner _).comp x (hf.prod hg)
lemma differentiable_on.inner (hf : differentiable_on ℝ f s) (hg : differentiable_on ℝ g s) :
differentiable_on ℝ (λ x, ⟪f x, g x⟫) s :=
λ x hx, (hf x hx).inner (hg x hx)
lemma differentiable.inner (hf : differentiable ℝ f) (hg : differentiable ℝ g) :
differentiable ℝ (λ x, ⟪f x, g x⟫) :=
λ x, (hf x).inner (hg x)
lemma fderiv_inner_apply (hf : differentiable_at ℝ f x) (hg : differentiable_at ℝ g x) (y : G) :
fderiv ℝ (λ t, ⟪f t, g t⟫) x y = ⟪f x, fderiv ℝ g x y⟫ + ⟪fderiv ℝ f x y, g x⟫ :=
by { rw [(hf.has_fderiv_at.inner hg.has_fderiv_at).fderiv], refl }
lemma deriv_inner_apply {f g : ℝ → E} {x : ℝ} (hf : differentiable_at ℝ f x)
(hg : differentiable_at ℝ g x) :
deriv (λ t, ⟪f t, g t⟫) x = ⟪f x, deriv g x⟫ + ⟪deriv f x, g x⟫ :=
(hf.has_deriv_at.inner hg.has_deriv_at).deriv
lemma times_cont_diff_norm_sq : times_cont_diff ℝ n (λ x : E, ∥x∥ ^ 2) :=
begin
simp only [sq, ← inner_self_eq_norm_sq],
exact (re_clm : 𝕜 →L[ℝ] ℝ).times_cont_diff.comp (times_cont_diff_id.inner times_cont_diff_id)
end
lemma times_cont_diff.norm_sq (hf : times_cont_diff ℝ n f) :
times_cont_diff ℝ n (λ x, ∥f x∥ ^ 2) :=
times_cont_diff_norm_sq.comp hf
lemma times_cont_diff_within_at.norm_sq (hf : times_cont_diff_within_at ℝ n f s x) :
times_cont_diff_within_at ℝ n (λ y, ∥f y∥ ^ 2) s x :=
times_cont_diff_norm_sq.times_cont_diff_at.comp_times_cont_diff_within_at x hf
lemma times_cont_diff_at.norm_sq (hf : times_cont_diff_at ℝ n f x) :
times_cont_diff_at ℝ n (λ y, ∥f y∥ ^ 2) x :=
hf.norm_sq
lemma times_cont_diff_at_norm {x : E} (hx : x ≠ 0) : times_cont_diff_at ℝ n norm x :=
have ∥id x∥ ^ 2 ≠ 0, from pow_ne_zero _ (norm_pos_iff.2 hx).ne',
by simpa only [id, sqrt_sq, norm_nonneg] using times_cont_diff_at_id.norm_sq.sqrt this
lemma times_cont_diff_at.norm (hf : times_cont_diff_at ℝ n f x) (h0 : f x ≠ 0) :
times_cont_diff_at ℝ n (λ y, ∥f y∥) x :=
(times_cont_diff_at_norm h0).comp x hf
lemma times_cont_diff_at.dist (hf : times_cont_diff_at ℝ n f x) (hg : times_cont_diff_at ℝ n g x)
(hne : f x ≠ g x) :
times_cont_diff_at ℝ n (λ y, dist (f y) (g y)) x :=
by { simp only [dist_eq_norm], exact (hf.sub hg).norm (sub_ne_zero.2 hne) }
lemma times_cont_diff_within_at.norm (hf : times_cont_diff_within_at ℝ n f s x) (h0 : f x ≠ 0) :
times_cont_diff_within_at ℝ n (λ y, ∥f y∥) s x :=
(times_cont_diff_at_norm h0).comp_times_cont_diff_within_at x hf
lemma times_cont_diff_within_at.dist (hf : times_cont_diff_within_at ℝ n f s x)
(hg : times_cont_diff_within_at ℝ n g s x) (hne : f x ≠ g x) :
times_cont_diff_within_at ℝ n (λ y, dist (f y) (g y)) s x :=
by { simp only [dist_eq_norm], exact (hf.sub hg).norm (sub_ne_zero.2 hne) }
lemma times_cont_diff_on.norm_sq (hf : times_cont_diff_on ℝ n f s) :
times_cont_diff_on ℝ n (λ y, ∥f y∥ ^ 2) s :=
(λ x hx, (hf x hx).norm_sq)
lemma times_cont_diff_on.norm (hf : times_cont_diff_on ℝ n f s) (h0 : ∀ x ∈ s, f x ≠ 0) :
times_cont_diff_on ℝ n (λ y, ∥f y∥) s :=
λ x hx, (hf x hx).norm (h0 x hx)
lemma times_cont_diff_on.dist (hf : times_cont_diff_on ℝ n f s)
(hg : times_cont_diff_on ℝ n g s) (hne : ∀ x ∈ s, f x ≠ g x) :
times_cont_diff_on ℝ n (λ y, dist (f y) (g y)) s :=
λ x hx, (hf x hx).dist (hg x hx) (hne x hx)
lemma times_cont_diff.norm (hf : times_cont_diff ℝ n f) (h0 : ∀ x, f x ≠ 0) :
times_cont_diff ℝ n (λ y, ∥f y∥) :=
times_cont_diff_iff_times_cont_diff_at.2 $ λ x, hf.times_cont_diff_at.norm (h0 x)
lemma times_cont_diff.dist (hf : times_cont_diff ℝ n f) (hg : times_cont_diff ℝ n g)
(hne : ∀ x, f x ≠ g x) :
times_cont_diff ℝ n (λ y, dist (f y) (g y)) :=
times_cont_diff_iff_times_cont_diff_at.2 $
λ x, hf.times_cont_diff_at.dist hg.times_cont_diff_at (hne x)
lemma differentiable_at.norm_sq (hf : differentiable_at ℝ f x) :
differentiable_at ℝ (λ y, ∥f y∥ ^ 2) x :=
(times_cont_diff_at_id.norm_sq.differentiable_at le_rfl).comp x hf
lemma differentiable_at.norm (hf : differentiable_at ℝ f x) (h0 : f x ≠ 0) :
differentiable_at ℝ (λ y, ∥f y∥) x :=
((times_cont_diff_at_norm h0).differentiable_at le_rfl).comp x hf
lemma differentiable_at.dist (hf : differentiable_at ℝ f x) (hg : differentiable_at ℝ g x)
(hne : f x ≠ g x) :
differentiable_at ℝ (λ y, dist (f y) (g y)) x :=
by { simp only [dist_eq_norm], exact (hf.sub hg).norm (sub_ne_zero.2 hne) }
lemma differentiable.norm_sq (hf : differentiable ℝ f) : differentiable ℝ (λ y, ∥f y∥ ^ 2) :=
λ x, (hf x).norm_sq
lemma differentiable.norm (hf : differentiable ℝ f) (h0 : ∀ x, f x ≠ 0) :
differentiable ℝ (λ y, ∥f y∥) :=
λ x, (hf x).norm (h0 x)
lemma differentiable.dist (hf : differentiable ℝ f) (hg : differentiable ℝ g)
(hne : ∀ x, f x ≠ g x) :
differentiable ℝ (λ y, dist (f y) (g y)) :=
λ x, (hf x).dist (hg x) (hne x)
lemma differentiable_within_at.norm_sq (hf : differentiable_within_at ℝ f s x) :
differentiable_within_at ℝ (λ y, ∥f y∥ ^ 2) s x :=
(times_cont_diff_at_id.norm_sq.differentiable_at le_rfl).comp_differentiable_within_at x hf
lemma differentiable_within_at.norm (hf : differentiable_within_at ℝ f s x) (h0 : f x ≠ 0) :
differentiable_within_at ℝ (λ y, ∥f y∥) s x :=
((times_cont_diff_at_id.norm h0).differentiable_at le_rfl).comp_differentiable_within_at x hf
lemma differentiable_within_at.dist (hf : differentiable_within_at ℝ f s x)
(hg : differentiable_within_at ℝ g s x) (hne : f x ≠ g x) :
differentiable_within_at ℝ (λ y, dist (f y) (g y)) s x :=
by { simp only [dist_eq_norm], exact (hf.sub hg).norm (sub_ne_zero.2 hne) }
lemma differentiable_on.norm_sq (hf : differentiable_on ℝ f s) :
differentiable_on ℝ (λ y, ∥f y∥ ^ 2) s :=
λ x hx, (hf x hx).norm_sq
lemma differentiable_on.norm (hf : differentiable_on ℝ f s) (h0 : ∀ x ∈ s, f x ≠ 0) :
differentiable_on ℝ (λ y, ∥f y∥) s :=
λ x hx, (hf x hx).norm (h0 x hx)
lemma differentiable_on.dist (hf : differentiable_on ℝ f s) (hg : differentiable_on ℝ g s)
(hne : ∀ x ∈ s, f x ≠ g x) :
differentiable_on ℝ (λ y, dist (f y) (g y)) s :=
λ x hx, (hf x hx).dist (hg x hx) (hne x hx)
end deriv
section continuous
/-!
### Continuity of the inner product
Since the inner product is `ℝ`-smooth, it is continuous. We do not need a `[normed_space ℝ E]`
structure to *state* this fact and its corollaries, so we introduce them in the proof instead.
-/
lemma continuous_inner : continuous (λ p : E × E, ⟪p.1, p.2⟫) :=
begin
letI : inner_product_space ℝ E := inner_product_space.is_R_or_C_to_real 𝕜 E,
letI : is_scalar_tower ℝ 𝕜 E := restrict_scalars.is_scalar_tower _ _ _,
exact differentiable_inner.continuous
end
variables {α : Type*}
lemma filter.tendsto.inner {f g : α → E} {l : filter α} {x y : E} (hf : tendsto f l (𝓝 x))
(hg : tendsto g l (𝓝 y)) :
tendsto (λ t, ⟪f t, g t⟫) l (𝓝 ⟪x, y⟫) :=
(continuous_inner.tendsto _).comp (hf.prod_mk_nhds hg)
variables [topological_space α] {f g : α → E} {x : α} {s : set α}
include 𝕜
lemma continuous_within_at.inner (hf : continuous_within_at f s x)
(hg : continuous_within_at g s x) :
continuous_within_at (λ t, ⟪f t, g t⟫) s x :=
hf.inner hg
lemma continuous_at.inner (hf : continuous_at f x) (hg : continuous_at g x) :
continuous_at (λ t, ⟪f t, g t⟫) x :=
hf.inner hg
lemma continuous_on.inner (hf : continuous_on f s) (hg : continuous_on g s) :
continuous_on (λ t, ⟪f t, g t⟫) s :=
λ x hx, (hf x hx).inner (hg x hx)
lemma continuous.inner (hf : continuous f) (hg : continuous g) : continuous (λ t, ⟪f t, g t⟫) :=
continuous_iff_continuous_at.2 $ λ x, hf.continuous_at.inner hg.continuous_at
end continuous
/-! ### Orthogonal projection in inner product spaces -/
section orthogonal
open filter
/--
Existence of minimizers
Let `u` be a point in a real inner product space, and let `K` be a nonempty complete convex subset.
Then there exists a (unique) `v` in `K` that minimizes the distance `∥u - v∥` to `u`.
-/
-- FIXME this monolithic proof causes a deterministic timeout with `-T50000`
-- It should be broken in a sequence of more manageable pieces,
-- perhaps with individual statements for the three steps below.
theorem exists_norm_eq_infi_of_complete_convex {K : set F} (ne : K.nonempty) (h₁ : is_complete K)
(h₂ : convex K) : ∀ u : F, ∃ v ∈ K, ∥u - v∥ = ⨅ w : K, ∥u - w∥ := assume u,
begin
let δ := ⨅ w : K, ∥u - w∥,
letI : nonempty K := ne.to_subtype,
have zero_le_δ : 0 ≤ δ := le_cinfi (λ _, norm_nonneg _),
have δ_le : ∀ w : K, δ ≤ ∥u - w∥,
from cinfi_le ⟨0, set.forall_range_iff.2 $ λ _, norm_nonneg _⟩,
have δ_le' : ∀ w ∈ K, δ ≤ ∥u - w∥ := assume w hw, δ_le ⟨w, hw⟩,
-- Step 1: since `δ` is the infimum, can find a sequence `w : ℕ → K` in `K`
-- such that `∥u - w n∥ < δ + 1 / (n + 1)` (which implies `∥u - w n∥ --> δ`);
-- maybe this should be a separate lemma
have exists_seq : ∃ w : ℕ → K, ∀ n, ∥u - w n∥ < δ + 1 / (n + 1),
{ have hδ : ∀n:ℕ, δ < δ + 1 / (n + 1), from
λ n, lt_add_of_le_of_pos (le_refl _) nat.one_div_pos_of_nat,
have h := λ n, exists_lt_of_cinfi_lt (hδ n),
let w : ℕ → K := λ n, classical.some (h n),
exact ⟨w, λ n, classical.some_spec (h n)⟩ },
rcases exists_seq with ⟨w, hw⟩,
have norm_tendsto : tendsto (λ n, ∥u - w n∥) at_top (nhds δ),
{ have h : tendsto (λ n:ℕ, δ) at_top (nhds δ) := tendsto_const_nhds,
have h' : tendsto (λ n:ℕ, δ + 1 / (n + 1)) at_top (nhds δ),
{ convert h.add tendsto_one_div_add_at_top_nhds_0_nat, simp only [add_zero] },
exact tendsto_of_tendsto_of_tendsto_of_le_of_le h h'
(λ x, δ_le _) (λ x, le_of_lt (hw _)) },
-- Step 2: Prove that the sequence `w : ℕ → K` is a Cauchy sequence
have seq_is_cauchy : cauchy_seq (λ n, ((w n):F)),
{ rw cauchy_seq_iff_le_tendsto_0, -- splits into three goals
let b := λ n:ℕ, (8 * δ * (1/(n+1)) + 4 * (1/(n+1)) * (1/(n+1))),
use (λn, sqrt (b n)),
split,
-- first goal : `∀ (n : ℕ), 0 ≤ sqrt (b n)`
assume n, exact sqrt_nonneg _,
split,
-- second goal : `∀ (n m N : ℕ), N ≤ n → N ≤ m → dist ↑(w n) ↑(w m) ≤ sqrt (b N)`
assume p q N hp hq,
let wp := ((w p):F), let wq := ((w q):F),
let a := u - wq, let b := u - wp,
let half := 1 / (2:ℝ), let div := 1 / ((N:ℝ) + 1),
have : 4 * ∥u - half • (wq + wp)∥ * ∥u - half • (wq + wp)∥ + ∥wp - wq∥ * ∥wp - wq∥ =
2 * (∥a∥ * ∥a∥ + ∥b∥ * ∥b∥) :=
calc
4 * ∥u - half•(wq + wp)∥ * ∥u - half•(wq + wp)∥ + ∥wp - wq∥ * ∥wp - wq∥
= (2*∥u - half•(wq + wp)∥) * (2 * ∥u - half•(wq + wp)∥) + ∥wp-wq∥*∥wp-wq∥ : by ring
... = (absR ((2:ℝ)) * ∥u - half•(wq + wp)∥) * (absR ((2:ℝ)) * ∥u - half•(wq+wp)∥) +
∥wp-wq∥*∥wp-wq∥ :
by { rw _root_.abs_of_nonneg, exact zero_le_two }
... = ∥(2:ℝ) • (u - half • (wq + wp))∥ * ∥(2:ℝ) • (u - half • (wq + wp))∥ +
∥wp-wq∥ * ∥wp-wq∥ :
by simp [norm_smul]
... = ∥a + b∥ * ∥a + b∥ + ∥a - b∥ * ∥a - b∥ :
begin
rw [smul_sub, smul_smul, mul_one_div_cancel (_root_.two_ne_zero : (2 : ℝ) ≠ 0),
← one_add_one_eq_two, add_smul],
simp only [one_smul],
have eq₁ : wp - wq = a - b, from (sub_sub_sub_cancel_left _ _ _).symm,
have eq₂ : u + u - (wq + wp) = a + b, show u + u - (wq + wp) = (u - wq) + (u - wp), abel,
rw [eq₁, eq₂],
end
... = 2 * (∥a∥ * ∥a∥ + ∥b∥ * ∥b∥) : parallelogram_law_with_norm,
have eq : δ ≤ ∥u - half • (wq + wp)∥,
{ rw smul_add,
apply δ_le', apply h₂,
repeat {exact subtype.mem _},
repeat {exact le_of_lt one_half_pos},
exact add_halves 1 },
have eq₁ : 4 * δ * δ ≤ 4 * ∥u - half • (wq + wp)∥ * ∥u - half • (wq + wp)∥,
{ mono, mono, norm_num, apply mul_nonneg, norm_num, exact norm_nonneg _ },
have eq₂ : ∥a∥ * ∥a∥ ≤ (δ + div) * (δ + div) :=
mul_self_le_mul_self (norm_nonneg _)
(le_trans (le_of_lt $ hw q) (add_le_add_left (nat.one_div_le_one_div hq) _)),
have eq₂' : ∥b∥ * ∥b∥ ≤ (δ + div) * (δ + div) :=
mul_self_le_mul_self (norm_nonneg _)
(le_trans (le_of_lt $ hw p) (add_le_add_left (nat.one_div_le_one_div hp) _)),
rw dist_eq_norm,
apply nonneg_le_nonneg_of_sq_le_sq, { exact sqrt_nonneg _ },
rw mul_self_sqrt,
exact calc
∥wp - wq∥ * ∥wp - wq∥ = 2 * (∥a∥*∥a∥ + ∥b∥*∥b∥) -
4 * ∥u - half • (wq+wp)∥ * ∥u - half • (wq+wp)∥ : by { rw ← this, simp }
... ≤ 2 * (∥a∥ * ∥a∥ + ∥b∥ * ∥b∥) - 4 * δ * δ : sub_le_sub_left eq₁ _
... ≤ 2 * ((δ + div) * (δ + div) + (δ + div) * (δ + div)) - 4 * δ * δ :
sub_le_sub_right (mul_le_mul_of_nonneg_left (add_le_add eq₂ eq₂') (by norm_num)) _
... = 8 * δ * div + 4 * div * div : by ring,
exact add_nonneg
(mul_nonneg (mul_nonneg (by norm_num) zero_le_δ) (le_of_lt nat.one_div_pos_of_nat))
(mul_nonneg (mul_nonneg (by norm_num) nat.one_div_pos_of_nat.le) nat.one_div_pos_of_nat.le),
-- third goal : `tendsto (λ (n : ℕ), sqrt (b n)) at_top (𝓝 0)`
apply tendsto.comp,
{ convert continuous_sqrt.continuous_at, exact sqrt_zero.symm },
have eq₁ : tendsto (λ (n : ℕ), 8 * δ * (1 / (n + 1))) at_top (nhds (0:ℝ)),
{ convert (@tendsto_const_nhds _ _ _ (8 * δ) _).mul tendsto_one_div_add_at_top_nhds_0_nat,
simp only [mul_zero] },
have : tendsto (λ (n : ℕ), (4:ℝ) * (1 / (n + 1))) at_top (nhds (0:ℝ)),
{ convert (@tendsto_const_nhds _ _ _ (4:ℝ) _).mul tendsto_one_div_add_at_top_nhds_0_nat,
simp only [mul_zero] },
have eq₂ : tendsto (λ (n : ℕ), (4:ℝ) * (1 / (n + 1)) * (1 / (n + 1))) at_top (nhds (0:ℝ)),
{ convert this.mul tendsto_one_div_add_at_top_nhds_0_nat,
simp only [mul_zero] },
convert eq₁.add eq₂, simp only [add_zero] },
-- Step 3: By completeness of `K`, let `w : ℕ → K` converge to some `v : K`.
-- Prove that it satisfies all requirements.
rcases cauchy_seq_tendsto_of_is_complete h₁ (λ n, _) seq_is_cauchy with ⟨v, hv, w_tendsto⟩,
use v, use hv,
have h_cont : continuous (λ v, ∥u - v∥) :=
continuous.comp continuous_norm (continuous.sub continuous_const continuous_id),
have : tendsto (λ n, ∥u - w n∥) at_top (nhds ∥u - v∥),
convert (tendsto.comp h_cont.continuous_at w_tendsto),
exact tendsto_nhds_unique this norm_tendsto,
exact subtype.mem _
end
/-- Characterization of minimizers for the projection on a convex set in a real inner product
space. -/
theorem norm_eq_infi_iff_real_inner_le_zero {K : set F} (h : convex K) {u : F} {v : F}
(hv : v ∈ K) : ∥u - v∥ = (⨅ w : K, ∥u - w∥) ↔ ∀ w ∈ K, ⟪u - v, w - v⟫_ℝ ≤ 0 :=
iff.intro
begin
assume eq w hw,
let δ := ⨅ w : K, ∥u - w∥, let p := ⟪u - v, w - v⟫_ℝ, let q := ∥w - v∥^2,
letI : nonempty K := ⟨⟨v, hv⟩⟩,
have zero_le_δ : 0 ≤ δ,
apply le_cinfi, intro, exact norm_nonneg _,
have δ_le : ∀ w : K, δ ≤ ∥u - w∥,
assume w, apply cinfi_le, use (0:ℝ), rintros _ ⟨_, rfl⟩, exact norm_nonneg _,
have δ_le' : ∀ w ∈ K, δ ≤ ∥u - w∥ := assume w hw, δ_le ⟨w, hw⟩,
have : ∀θ:ℝ, 0 < θ → θ ≤ 1 → 2 * p ≤ θ * q,
assume θ hθ₁ hθ₂,
have : ∥u - v∥^2 ≤ ∥u - v∥^2 - 2 * θ * ⟪u - v, w - v⟫_ℝ + θ*θ*∥w - v∥^2 :=
calc
∥u - v∥^2 ≤ ∥u - (θ•w + (1-θ)•v)∥^2 :
begin
simp only [sq], apply mul_self_le_mul_self (norm_nonneg _),
rw [eq], apply δ_le',
apply h hw hv,
exacts [le_of_lt hθ₁, sub_nonneg.2 hθ₂, add_sub_cancel'_right _ _],
end
... = ∥(u - v) - θ • (w - v)∥^2 :
begin
have : u - (θ•w + (1-θ)•v) = (u - v) - θ • (w - v),
{ rw [smul_sub, sub_smul, one_smul],
simp only [sub_eq_add_neg, add_comm, add_left_comm, add_assoc, neg_add_rev] },
rw this
end
... = ∥u - v∥^2 - 2 * θ * inner (u - v) (w - v) + θ*θ*∥w - v∥^2 :
begin
rw [norm_sub_sq, inner_smul_right, norm_smul],
simp only [sq],
show ∥u-v∥*∥u-v∥-2*(θ*inner(u-v)(w-v))+absR (θ)*∥w-v∥*(absR (θ)*∥w-v∥)=
∥u-v∥*∥u-v∥-2*θ*inner(u-v)(w-v)+θ*θ*(∥w-v∥*∥w-v∥),
rw abs_of_pos hθ₁, ring
end,
have eq₁ : ∥u-v∥^2-2*θ*inner(u-v)(w-v)+θ*θ*∥w-v∥^2=∥u-v∥^2+(θ*θ*∥w-v∥^2-2*θ*inner(u-v)(w-v)),
by abel,
rw [eq₁, le_add_iff_nonneg_right] at this,
have eq₂ : θ*θ*∥w-v∥^2-2*θ*inner(u-v)(w-v)=θ*(θ*∥w-v∥^2-2*inner(u-v)(w-v)), ring,
rw eq₂ at this,
have := le_of_sub_nonneg (nonneg_of_mul_nonneg_left this hθ₁),
exact this,
by_cases hq : q = 0,
{ rw hq at this,
have : p ≤ 0,
have := this (1:ℝ) (by norm_num) (by norm_num),
linarith,
exact this },
{ have q_pos : 0 < q,
apply lt_of_le_of_ne, exact sq_nonneg _, intro h, exact hq h.symm,
by_contradiction hp, rw not_le at hp,
let θ := min (1:ℝ) (p / q),
have eq₁ : θ*q ≤ p := calc
θ*q ≤ (p/q) * q : mul_le_mul_of_nonneg_right (min_le_right _ _) (sq_nonneg _)
... = p : div_mul_cancel _ hq,
have : 2 * p ≤ p := calc
2 * p ≤ θ*q : by { refine this θ (lt_min (by norm_num) (div_pos hp q_pos)) (by norm_num) }
... ≤ p : eq₁,
linarith }
end
begin
assume h,
letI : nonempty K := ⟨⟨v, hv⟩⟩,
apply le_antisymm,
{ apply le_cinfi, assume w,
apply nonneg_le_nonneg_of_sq_le_sq (norm_nonneg _),
have := h w w.2,
exact calc
∥u - v∥ * ∥u - v∥ ≤ ∥u - v∥ * ∥u - v∥ - 2 * inner (u - v) ((w:F) - v) : by linarith
... ≤ ∥u - v∥^2 - 2 * inner (u - v) ((w:F) - v) + ∥(w:F) - v∥^2 :
by { rw sq, refine le_add_of_nonneg_right _, exact sq_nonneg _ }
... = ∥(u - v) - (w - v)∥^2 : norm_sub_sq.symm
... = ∥u - w∥ * ∥u - w∥ :
by { have : (u - v) - (w - v) = u - w, abel, rw [this, sq] } },
{ show (⨅ (w : K), ∥u - w∥) ≤ (λw:K, ∥u - w∥) ⟨v, hv⟩,
apply cinfi_le, use 0, rintros y ⟨z, rfl⟩, exact norm_nonneg _ }
end
variables (K : submodule 𝕜 E)
/--
Existence of projections on complete subspaces.
Let `u` be a point in an inner product space, and let `K` be a nonempty complete subspace.
Then there exists a (unique) `v` in `K` that minimizes the distance `∥u - v∥` to `u`.
This point `v` is usually called the orthogonal projection of `u` onto `K`.
-/
theorem exists_norm_eq_infi_of_complete_subspace
(h : is_complete (↑K : set E)) : ∀ u : E, ∃ v ∈ K, ∥u - v∥ = ⨅ w : (K : set E), ∥u - w∥ :=
begin
letI : inner_product_space ℝ E := inner_product_space.is_R_or_C_to_real 𝕜 E,
letI : module ℝ E := restrict_scalars.module ℝ 𝕜 E,
letI : is_scalar_tower ℝ 𝕜 E := restrict_scalars.is_scalar_tower _ _ _,
let K' : submodule ℝ E := submodule.restrict_scalars ℝ K,
exact exists_norm_eq_infi_of_complete_convex ⟨0, K'.zero_mem⟩ h K'.convex
end
/--
Characterization of minimizers in the projection on a subspace, in the real case.
Let `u` be a point in a real inner product space, and let `K` be a nonempty subspace.
Then point `v` minimizes the distance `∥u - v∥` over points in `K` if and only if
for all `w ∈ K`, `⟪u - v, w⟫ = 0` (i.e., `u - v` is orthogonal to the subspace `K`).
This is superceded by `norm_eq_infi_iff_inner_eq_zero` that gives the same conclusion over
any `is_R_or_C` field.
-/
theorem norm_eq_infi_iff_real_inner_eq_zero (K : submodule ℝ F) {u : F} {v : F}
(hv : v ∈ K) : ∥u - v∥ = (⨅ w : (↑K : set F), ∥u - w∥) ↔ ∀ w ∈ K, ⟪u - v, w⟫_ℝ = 0 :=
iff.intro
begin
assume h,
have h : ∀ w ∈ K, ⟪u - v, w - v⟫_ℝ ≤ 0,
{ rwa [norm_eq_infi_iff_real_inner_le_zero] at h, exacts [K.convex, hv] },
assume w hw,
have le : ⟪u - v, w⟫_ℝ ≤ 0,
let w' := w + v,
have : w' ∈ K := submodule.add_mem _ hw hv,
have h₁ := h w' this,
have h₂ : w' - v = w, simp only [add_neg_cancel_right, sub_eq_add_neg],
rw h₂ at h₁, exact h₁,
have ge : ⟪u - v, w⟫_ℝ ≥ 0,
let w'' := -w + v,
have : w'' ∈ K := submodule.add_mem _ (submodule.neg_mem _ hw) hv,
have h₁ := h w'' this,
have h₂ : w'' - v = -w, simp only [neg_inj, add_neg_cancel_right, sub_eq_add_neg],
rw [h₂, inner_neg_right] at h₁,
linarith,
exact le_antisymm le ge
end
begin
assume h,
have : ∀ w ∈ K, ⟪u - v, w - v⟫_ℝ ≤ 0,
assume w hw,
let w' := w - v,
have : w' ∈ K := submodule.sub_mem _ hw hv,
have h₁ := h w' this,
exact le_of_eq h₁,
rwa norm_eq_infi_iff_real_inner_le_zero,
exacts [submodule.convex _, hv]
end
/--
Characterization of minimizers in the projection on a subspace.
Let `u` be a point in an inner product space, and let `K` be a nonempty subspace.
Then point `v` minimizes the distance `∥u - v∥` over points in `K` if and only if
for all `w ∈ K`, `⟪u - v, w⟫ = 0` (i.e., `u - v` is orthogonal to the subspace `K`)
-/
theorem norm_eq_infi_iff_inner_eq_zero {u : E} {v : E}
(hv : v ∈ K) : ∥u - v∥ = (⨅ w : (↑K : set E), ∥u - w∥) ↔ ∀ w ∈ K, ⟪u - v, w⟫ = 0 :=
begin
letI : inner_product_space ℝ E := inner_product_space.is_R_or_C_to_real 𝕜 E,
letI : module ℝ E := restrict_scalars.module ℝ 𝕜 E,
letI : is_scalar_tower ℝ 𝕜 E := restrict_scalars.is_scalar_tower _ _ _,
let K' : submodule ℝ E := K.restrict_scalars ℝ,
split,
{ assume H,
have A : ∀ w ∈ K, re ⟪u - v, w⟫ = 0 := (norm_eq_infi_iff_real_inner_eq_zero K' hv).1 H,
assume w hw,
apply ext,
{ simp [A w hw] },
{ symmetry, calc
im (0 : 𝕜) = 0 : im.map_zero
... = re ⟪u - v, (-I) • w⟫ : (A _ (K.smul_mem (-I) hw)).symm
... = re ((-I) * ⟪u - v, w⟫) : by rw inner_smul_right
... = im ⟪u - v, w⟫ : by simp } },
{ assume H,
have : ∀ w ∈ K', ⟪u - v, w⟫_ℝ = 0,
{ assume w hw,
rw [real_inner_eq_re_inner, H w hw],
exact zero_re' },
exact (norm_eq_infi_iff_real_inner_eq_zero K' hv).2 this }
end
section orthogonal_projection
variables [complete_space K]
/-- The orthogonal projection onto a complete subspace, as an
unbundled function. This definition is only intended for use in
setting up the bundled version `orthogonal_projection` and should not
be used once that is defined. -/
def orthogonal_projection_fn (v : E) :=
(exists_norm_eq_infi_of_complete_subspace K (complete_space_coe_iff_is_complete.mp ‹_›) v).some
variables {K}
/-- The unbundled orthogonal projection is in the given subspace.
This lemma is only intended for use in setting up the bundled version
and should not be used once that is defined. -/
lemma orthogonal_projection_fn_mem (v : E) : orthogonal_projection_fn K v ∈ K :=
(exists_norm_eq_infi_of_complete_subspace K
(complete_space_coe_iff_is_complete.mp ‹_›) v).some_spec.some
/-- The characterization of the unbundled orthogonal projection. This
lemma is only intended for use in setting up the bundled version
and should not be used once that is defined. -/
lemma orthogonal_projection_fn_inner_eq_zero (v : E) :
∀ w ∈ K, ⟪v - orthogonal_projection_fn K v, w⟫ = 0 :=
begin
rw ←norm_eq_infi_iff_inner_eq_zero K (orthogonal_projection_fn_mem v),
exact (exists_norm_eq_infi_of_complete_subspace K
(complete_space_coe_iff_is_complete.mp ‹_›) v).some_spec.some_spec
end
/-- The unbundled orthogonal projection is the unique point in `K`
with the orthogonality property. This lemma is only intended for use
in setting up the bundled version and should not be used once that is
defined. -/
lemma eq_orthogonal_projection_fn_of_mem_of_inner_eq_zero
{u v : E} (hvm : v ∈ K) (hvo : ∀ w ∈ K, ⟪u - v, w⟫ = 0) :
orthogonal_projection_fn K u = v :=
begin
rw [←sub_eq_zero, ←inner_self_eq_zero],
have hvs : orthogonal_projection_fn K u - v ∈ K :=
submodule.sub_mem K (orthogonal_projection_fn_mem u) hvm,
have huo : ⟪u - orthogonal_projection_fn K u, orthogonal_projection_fn K u - v⟫ = 0 :=
orthogonal_projection_fn_inner_eq_zero u _ hvs,
have huv : ⟪u - v, orthogonal_projection_fn K u - v⟫ = 0 := hvo _ hvs,
have houv : ⟪(u - v) - (u - orthogonal_projection_fn K u), orthogonal_projection_fn K u - v⟫ = 0,
{ rw [inner_sub_left, huo, huv, sub_zero] },
rwa sub_sub_sub_cancel_left at houv
end
variables (K)
lemma orthogonal_projection_fn_norm_sq (v : E) :
∥v∥ * ∥v∥ = ∥v - (orthogonal_projection_fn K v)∥ * ∥v - (orthogonal_projection_fn K v)∥
+ ∥orthogonal_projection_fn K v∥ * ∥orthogonal_projection_fn K v∥ :=
begin
set p := orthogonal_projection_fn K v,
have h' : ⟪v - p, p⟫ = 0,
{ exact orthogonal_projection_fn_inner_eq_zero _ _ (orthogonal_projection_fn_mem v) },
convert norm_add_sq_eq_norm_sq_add_norm_sq_of_inner_eq_zero (v - p) p h' using 2;
simp,
end
/-- The orthogonal projection onto a complete subspace. -/
def orthogonal_projection : E →L[𝕜] K :=
linear_map.mk_continuous
{ to_fun := λ v, ⟨orthogonal_projection_fn K v, orthogonal_projection_fn_mem v⟩,
map_add' := λ x y, begin
have hm : orthogonal_projection_fn K x + orthogonal_projection_fn K y ∈ K :=
submodule.add_mem K (orthogonal_projection_fn_mem x) (orthogonal_projection_fn_mem y),
have ho :
∀ w ∈ K, ⟪x + y - (orthogonal_projection_fn K x + orthogonal_projection_fn K y), w⟫ = 0,
{ intros w hw,
rw [add_sub_comm, inner_add_left, orthogonal_projection_fn_inner_eq_zero _ w hw,
orthogonal_projection_fn_inner_eq_zero _ w hw, add_zero] },
ext,
simp [eq_orthogonal_projection_fn_of_mem_of_inner_eq_zero hm ho]
end,
map_smul' := λ c x, begin
have hm : c • orthogonal_projection_fn K x ∈ K :=
submodule.smul_mem K _ (orthogonal_projection_fn_mem x),
have ho : ∀ w ∈ K, ⟪c • x - c • orthogonal_projection_fn K x, w⟫ = 0,
{ intros w hw,
rw [←smul_sub, inner_smul_left, orthogonal_projection_fn_inner_eq_zero _ w hw, mul_zero] },
ext,
simp [eq_orthogonal_projection_fn_of_mem_of_inner_eq_zero hm ho]
end }
1
(λ x, begin
simp only [one_mul, linear_map.coe_mk],
refine le_of_pow_le_pow 2 (norm_nonneg _) (by norm_num) _,
change ∥orthogonal_projection_fn K x∥ ^ 2 ≤ ∥x∥ ^ 2,
nlinarith [orthogonal_projection_fn_norm_sq K x]
end)
variables {K}
@[simp]
lemma orthogonal_projection_fn_eq (v : E) :
orthogonal_projection_fn K v = (orthogonal_projection K v : E) :=
rfl
/-- The characterization of the orthogonal projection. -/
@[simp]
lemma orthogonal_projection_inner_eq_zero (v : E) :
∀ w ∈ K, ⟪v - orthogonal_projection K v, w⟫ = 0 :=
orthogonal_projection_fn_inner_eq_zero v
/-- The orthogonal projection is the unique point in `K` with the
orthogonality property. -/
lemma eq_orthogonal_projection_of_mem_of_inner_eq_zero
{u v : E} (hvm : v ∈ K) (hvo : ∀ w ∈ K, ⟪u - v, w⟫ = 0) :
(orthogonal_projection K u : E) = v :=
eq_orthogonal_projection_fn_of_mem_of_inner_eq_zero hvm hvo
/-- The orthogonal projections onto equal subspaces are coerced back to the same point in `E`. -/
lemma eq_orthogonal_projection_of_eq_submodule
{K' : submodule 𝕜 E} [complete_space K'] (h : K = K') (u : E) :
(orthogonal_projection K u : E) = (orthogonal_projection K' u : E) :=
begin
change orthogonal_projection_fn K u = orthogonal_projection_fn K' u,
congr,
exact h
end
/-- The orthogonal projection sends elements of `K` to themselves. -/
@[simp] lemma orthogonal_projection_mem_subspace_eq_self (v : K) : orthogonal_projection K v = v :=
by { ext, apply eq_orthogonal_projection_of_mem_of_inner_eq_zero; simp }
local attribute [instance] finite_dimensional_bot
/-- The orthogonal projection onto the trivial submodule is the zero map. -/
@[simp] lemma orthogonal_projection_bot : orthogonal_projection (⊥ : submodule 𝕜 E) = 0 :=
by ext
variables (K)
/-- The orthogonal projection has norm `≤ 1`. -/
lemma orthogonal_projection_norm_le : ∥orthogonal_projection K∥ ≤ 1 :=
linear_map.mk_continuous_norm_le _ (by norm_num) _
variables (𝕜)
lemma smul_orthogonal_projection_singleton {v : E} (w : E) :
(∥v∥ ^ 2 : 𝕜) • (orthogonal_projection (𝕜 ∙ v) w : E) = ⟪v, w⟫ • v :=
begin
suffices : ↑(orthogonal_projection (𝕜 ∙ v) ((∥v∥ ^ 2 : 𝕜) • w)) = ⟪v, w⟫ • v,
{ simpa using this },
apply eq_orthogonal_projection_of_mem_of_inner_eq_zero,
{ rw submodule.mem_span_singleton,
use ⟪v, w⟫ },
{ intros x hx,
obtain ⟨c, rfl⟩ := submodule.mem_span_singleton.mp hx,
have hv : ↑∥v∥ ^ 2 = ⟪v, v⟫ := by { norm_cast, simp [norm_sq_eq_inner] },
simp [inner_sub_left, inner_smul_left, inner_smul_right, is_R_or_C.conj_div, mul_comm, hv,
inner_product_space.conj_sym, hv] }
end
/-- Formula for orthogonal projection onto a single vector. -/
lemma orthogonal_projection_singleton {v : E} (w : E) :
(orthogonal_projection (𝕜 ∙ v) w : E) = (⟪v, w⟫ / ∥v∥ ^ 2) • v :=
begin
by_cases hv : v = 0,
{ rw [hv, eq_orthogonal_projection_of_eq_submodule submodule.span_zero_singleton],
{ simp },
{ apply_instance } },
have hv' : ∥v∥ ≠ 0 := ne_of_gt (norm_pos_iff.mpr hv),
have key : ((∥v∥ ^ 2 : 𝕜)⁻¹ * ∥v∥ ^ 2) • ↑(orthogonal_projection (𝕜 ∙ v) w)
= ((∥v∥ ^ 2 : 𝕜)⁻¹ * ⟪v, w⟫) • v,
{ simp [mul_smul, smul_orthogonal_projection_singleton 𝕜 w] },
convert key;
field_simp [hv']
end
/-- Formula for orthogonal projection onto a single unit vector. -/
lemma orthogonal_projection_unit_singleton {v : E} (hv : ∥v∥ = 1) (w : E) :
(orthogonal_projection (𝕜 ∙ v) w : E) = ⟪v, w⟫ • v :=
by { rw ← smul_orthogonal_projection_singleton 𝕜 w, simp [hv] }
end orthogonal_projection
/-- The subspace of vectors orthogonal to a given subspace. -/
def submodule.orthogonal : submodule 𝕜 E :=
{ carrier := {v | ∀ u ∈ K, ⟪u, v⟫ = 0},
zero_mem' := λ _ _, inner_zero_right,
add_mem' := λ x y hx hy u hu, by rw [inner_add_right, hx u hu, hy u hu, add_zero],
smul_mem' := λ c x hx u hu, by rw [inner_smul_right, hx u hu, mul_zero] }
notation K`ᗮ`:1200 := submodule.orthogonal K
/-- When a vector is in `Kᗮ`. -/
lemma submodule.mem_orthogonal (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪u, v⟫ = 0 := iff.rfl
/-- When a vector is in `Kᗮ`, with the inner product the
other way round. -/
lemma submodule.mem_orthogonal' (v : E) : v ∈ Kᗮ ↔ ∀ u ∈ K, ⟪v, u⟫ = 0 :=
by simp_rw [submodule.mem_orthogonal, inner_eq_zero_sym]
variables {K}
/-- A vector in `K` is orthogonal to one in `Kᗮ`. -/
lemma submodule.inner_right_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪u, v⟫ = 0 :=
(K.mem_orthogonal v).1 hv u hu
/-- A vector in `Kᗮ` is orthogonal to one in `K`. -/
lemma submodule.inner_left_of_mem_orthogonal {u v : E} (hu : u ∈ K) (hv : v ∈ Kᗮ) : ⟪v, u⟫ = 0 :=
by rw [inner_eq_zero_sym]; exact submodule.inner_right_of_mem_orthogonal hu hv
/-- A vector in `(𝕜 ∙ u)ᗮ` is orthogonal to `u`. -/
lemma inner_right_of_mem_orthogonal_singleton (u : E) {v : E} (hv : v ∈ (𝕜 ∙ u)ᗮ) : ⟪u, v⟫ = 0 :=
submodule.inner_right_of_mem_orthogonal (submodule.mem_span_singleton_self u) hv
/-- A vector in `(𝕜 ∙ u)ᗮ` is orthogonal to `u`. -/
lemma inner_left_of_mem_orthogonal_singleton (u : E) {v : E} (hv : v ∈ (𝕜 ∙ u)ᗮ) : ⟪v, u⟫ = 0 :=
submodule.inner_left_of_mem_orthogonal (submodule.mem_span_singleton_self u) hv
variables (K)
/-- `K` and `Kᗮ` have trivial intersection. -/
lemma submodule.inf_orthogonal_eq_bot : K ⊓ Kᗮ = ⊥ :=
begin
rw submodule.eq_bot_iff,
intros x,
rw submodule.mem_inf,
exact λ ⟨hx, ho⟩, inner_self_eq_zero.1 (ho x hx)
end
/-- `K` and `Kᗮ` have trivial intersection. -/
lemma submodule.orthogonal_disjoint : disjoint K Kᗮ :=
by simp [disjoint_iff, K.inf_orthogonal_eq_bot]
/-- `Kᗮ` can be characterized as the intersection of the kernels of the operations of
inner product with each of the elements of `K`. -/
lemma orthogonal_eq_inter : Kᗮ = ⨅ v : K, (inner_right (v:E)).ker :=
begin
apply le_antisymm,
{ rw le_infi_iff,
rintros ⟨v, hv⟩ w hw,
simpa using hw _ hv },
{ intros v hv w hw,
simp only [submodule.mem_infi] at hv,
exact hv ⟨w, hw⟩ }
end
/-- The orthogonal complement of any submodule `K` is closed. -/
lemma submodule.is_closed_orthogonal : is_closed (Kᗮ : set E) :=
begin
rw orthogonal_eq_inter K,
convert is_closed_Inter (λ v : K, (inner_right (v:E)).is_closed_ker),
simp
end
/-- In a complete space, the orthogonal complement of any submodule `K` is complete. -/
instance [complete_space E] : complete_space Kᗮ := K.is_closed_orthogonal.complete_space_coe
variables (𝕜 E)
/-- `submodule.orthogonal` gives a `galois_connection` between
`submodule 𝕜 E` and its `order_dual`. -/
lemma submodule.orthogonal_gc :
@galois_connection (submodule 𝕜 E) (order_dual $ submodule 𝕜 E) _ _
submodule.orthogonal submodule.orthogonal :=
λ K₁ K₂, ⟨λ h v hv u hu, submodule.inner_left_of_mem_orthogonal hv (h hu),
λ h v hv u hu, submodule.inner_left_of_mem_orthogonal hv (h hu)⟩
variables {𝕜 E}
/-- `submodule.orthogonal` reverses the `≤` ordering of two
subspaces. -/
lemma submodule.orthogonal_le {K₁ K₂ : submodule 𝕜 E} (h : K₁ ≤ K₂) : K₂ᗮ ≤ K₁ᗮ :=
(submodule.orthogonal_gc 𝕜 E).monotone_l h
/-- `submodule.orthogonal.orthogonal` preserves the `≤` ordering of two
subspaces. -/
lemma submodule.orthogonal_orthogonal_monotone {K₁ K₂ : submodule 𝕜 E} (h : K₁ ≤ K₂) :
K₁ᗮᗮ ≤ K₂ᗮᗮ :=
submodule.orthogonal_le (submodule.orthogonal_le h)
/-- `K` is contained in `Kᗮᗮ`. -/
lemma submodule.le_orthogonal_orthogonal : K ≤ Kᗮᗮ := (submodule.orthogonal_gc 𝕜 E).le_u_l _
/-- The inf of two orthogonal subspaces equals the subspace orthogonal
to the sup. -/
lemma submodule.inf_orthogonal (K₁ K₂ : submodule 𝕜 E) : K₁ᗮ ⊓ K₂ᗮ = (K₁ ⊔ K₂)ᗮ :=
(submodule.orthogonal_gc 𝕜 E).l_sup.symm
/-- The inf of an indexed family of orthogonal subspaces equals the
subspace orthogonal to the sup. -/
lemma submodule.infi_orthogonal {ι : Type*} (K : ι → submodule 𝕜 E) : (⨅ i, (K i)ᗮ) = (supr K)ᗮ :=
(submodule.orthogonal_gc 𝕜 E).l_supr.symm
/-- The inf of a set of orthogonal subspaces equals the subspace orthogonal to the sup. -/
lemma submodule.Inf_orthogonal (s : set $ submodule 𝕜 E) : (⨅ K ∈ s, Kᗮ) = (Sup s)ᗮ :=
(submodule.orthogonal_gc 𝕜 E).l_Sup.symm
/-- If `K₁` is complete and contained in `K₂`, `K₁` and `K₁ᗮ ⊓ K₂` span `K₂`. -/
lemma submodule.sup_orthogonal_inf_of_is_complete {K₁ K₂ : submodule 𝕜 E} (h : K₁ ≤ K₂)
(hc : is_complete (K₁ : set E)) : K₁ ⊔ (K₁ᗮ ⊓ K₂) = K₂ :=
begin
ext x,
rw submodule.mem_sup,
rcases exists_norm_eq_infi_of_complete_subspace K₁ hc x with ⟨v, hv, hvm⟩,
rw norm_eq_infi_iff_inner_eq_zero K₁ hv at hvm,
split,
{ rintro ⟨y, hy, z, hz, rfl⟩,
exact K₂.add_mem (h hy) hz.2 },
{ exact λ hx, ⟨v, hv, x - v, ⟨(K₁.mem_orthogonal' _).2 hvm, K₂.sub_mem hx (h hv)⟩,
add_sub_cancel'_right _ _⟩ }
end
variables {K}
/-- If `K` is complete, `K` and `Kᗮ` span the whole space. -/
lemma submodule.sup_orthogonal_of_is_complete (h : is_complete (K : set E)) : K ⊔ Kᗮ = ⊤ :=
begin
convert submodule.sup_orthogonal_inf_of_is_complete (le_top : K ≤ ⊤) h,
simp
end
/-- If `K` is complete, `K` and `Kᗮ` span the whole space. Version using `complete_space`. -/
lemma submodule.sup_orthogonal_of_complete_space [complete_space K] : K ⊔ Kᗮ = ⊤ :=
submodule.sup_orthogonal_of_is_complete (complete_space_coe_iff_is_complete.mp ‹_›)
variables (K)
/-- If `K` is complete, any `v` in `E` can be expressed as a sum of elements of `K` and `Kᗮ`. -/
lemma submodule.exists_sum_mem_mem_orthogonal [complete_space K] (v : E) :
∃ (y ∈ K) (z ∈ Kᗮ), v = y + z :=
begin
have h_mem : v ∈ K ⊔ Kᗮ := by simp [submodule.sup_orthogonal_of_complete_space],
obtain ⟨y, hy, z, hz, hyz⟩ := submodule.mem_sup.mp h_mem,
exact ⟨y, hy, z, hz, hyz.symm⟩
end
/-- If `K` is complete, then the orthogonal complement of its orthogonal complement is itself. -/
@[simp] lemma submodule.orthogonal_orthogonal [complete_space K] : Kᗮᗮ = K :=
begin
ext v,
split,
{ obtain ⟨y, hy, z, hz, rfl⟩ := K.exists_sum_mem_mem_orthogonal v,
intros hv,
have hz' : z = 0,
{ have hyz : ⟪z, y⟫ = 0 := by simp [hz y hy, inner_eq_zero_sym],
simpa [inner_add_right, hyz] using hv z hz },
simp [hy, hz'] },
{ intros hv w hw,
rw inner_eq_zero_sym,
exact hw v hv }
end
lemma submodule.orthogonal_orthogonal_eq_closure [complete_space E] :
Kᗮᗮ = K.topological_closure :=
begin
refine le_antisymm _ _,
{ convert submodule.orthogonal_orthogonal_monotone K.submodule_topological_closure,
haveI : complete_space K.topological_closure :=
K.is_closed_topological_closure.complete_space_coe,
rw K.topological_closure.orthogonal_orthogonal },
{ exact K.topological_closure_minimal K.le_orthogonal_orthogonal Kᗮ.is_closed_orthogonal }
end
variables {K}
/-- If `K` is complete, `K` and `Kᗮ` are complements of each other. -/
lemma submodule.is_compl_orthogonal_of_is_complete (h : is_complete (K : set E)) : is_compl K Kᗮ :=
⟨K.orthogonal_disjoint, le_of_eq (submodule.sup_orthogonal_of_is_complete h).symm⟩
@[simp] lemma submodule.top_orthogonal_eq_bot : (⊤ : submodule 𝕜 E)ᗮ = ⊥ :=
begin
ext,
rw [submodule.mem_bot, submodule.mem_orthogonal],
exact ⟨λ h, inner_self_eq_zero.mp (h x submodule.mem_top), by { rintro rfl, simp }⟩
end
@[simp] lemma submodule.bot_orthogonal_eq_top : (⊥ : submodule 𝕜 E)ᗮ = ⊤ :=
begin
rw [← submodule.top_orthogonal_eq_bot, eq_top_iff],
exact submodule.le_orthogonal_orthogonal ⊤
end
@[simp] lemma submodule.orthogonal_eq_bot_iff (hK : is_complete (K : set E)) :
Kᗮ = ⊥ ↔ K = ⊤ :=
begin
refine ⟨_, by { rintro rfl, exact submodule.top_orthogonal_eq_bot }⟩,
intro h,
have : K ⊔ Kᗮ = ⊤ := submodule.sup_orthogonal_of_is_complete hK,
rwa [h, sup_comm, bot_sup_eq] at this,
end
@[simp] lemma submodule.orthogonal_eq_top_iff : Kᗮ = ⊤ ↔ K = ⊥ :=
begin
refine ⟨_, by { rintro rfl, exact submodule.bot_orthogonal_eq_top }⟩,
intro h,
have : K ⊓ Kᗮ = ⊥ := K.orthogonal_disjoint.eq_bot,
rwa [h, inf_comm, top_inf_eq] at this
end
/-- A point in `K` with the orthogonality property (here characterized in terms of `Kᗮ`) must be the
orthogonal projection. -/
lemma eq_orthogonal_projection_of_mem_orthogonal
[complete_space K] {u v : E} (hv : v ∈ K) (hvo : u - v ∈ Kᗮ) :
(orthogonal_projection K u : E) = v :=
eq_orthogonal_projection_fn_of_mem_of_inner_eq_zero hv (λ w, inner_eq_zero_sym.mp ∘ (hvo w))
/-- A point in `K` with the orthogonality property (here characterized in terms of `Kᗮ`) must be the
orthogonal projection. -/
lemma eq_orthogonal_projection_of_mem_orthogonal'
[complete_space K] {u v z : E} (hv : v ∈ K) (hz : z ∈ Kᗮ) (hu : u = v + z) :
(orthogonal_projection K u : E) = v :=
eq_orthogonal_projection_of_mem_orthogonal hv (by simpa [hu])
/-- The orthogonal projection onto `K` of an element of `Kᗮ` is zero. -/
lemma orthogonal_projection_mem_subspace_orthogonal_complement_eq_zero
[complete_space K] {v : E} (hv : v ∈ Kᗮ) :
orthogonal_projection K v = 0 :=
by { ext, convert eq_orthogonal_projection_of_mem_orthogonal _ _; simp [hv] }
/-- The orthogonal projection onto `Kᗮ` of an element of `K` is zero. -/
lemma orthogonal_projection_mem_subspace_orthogonal_precomplement_eq_zero
[complete_space E] {v : E} (hv : v ∈ K) :
orthogonal_projection Kᗮ v = 0 :=
orthogonal_projection_mem_subspace_orthogonal_complement_eq_zero (K.le_orthogonal_orthogonal hv)
/-- The orthogonal projection onto `(𝕜 ∙ v)ᗮ` of `v` is zero. -/
lemma orthogonal_projection_orthogonal_complement_singleton_eq_zero [complete_space E] (v : E) :
orthogonal_projection (𝕜 ∙ v)ᗮ v = 0 :=
orthogonal_projection_mem_subspace_orthogonal_precomplement_eq_zero
(submodule.mem_span_singleton_self v)
variables (K)
/-- In a complete space `E`, a vector splits as the sum of its orthogonal projections onto a
complete submodule `K` and onto the orthogonal complement of `K`.-/
lemma eq_sum_orthogonal_projection_self_orthogonal_complement
[complete_space E] [complete_space K] (w : E) :
w = (orthogonal_projection K w : E) + (orthogonal_projection Kᗮ w : E) :=
begin
obtain ⟨y, hy, z, hz, hwyz⟩ := K.exists_sum_mem_mem_orthogonal w,
convert hwyz,
{ exact eq_orthogonal_projection_of_mem_orthogonal' hy hz hwyz },
{ rw add_comm at hwyz,
refine eq_orthogonal_projection_of_mem_orthogonal' hz _ hwyz,
simp [hy] }
end
/-- In a complete space `E`, the projection maps onto a complete subspace `K` and its orthogonal
complement sum to the identity. -/
lemma id_eq_sum_orthogonal_projection_self_orthogonal_complement
[complete_space E] [complete_space K] :
continuous_linear_map.id 𝕜 E
= K.subtypeL.comp (orthogonal_projection K)
+ Kᗮ.subtypeL.comp (orthogonal_projection Kᗮ) :=
by { ext w, exact eq_sum_orthogonal_projection_self_orthogonal_complement K w }
/-- The orthogonal projection is self-adjoint. -/
lemma inner_orthogonal_projection_left_eq_right [complete_space E]
[complete_space K] (u v : E) :
⟪↑(orthogonal_projection K u), v⟫ = ⟪u, orthogonal_projection K v⟫ :=
begin
nth_rewrite 0 eq_sum_orthogonal_projection_self_orthogonal_complement K v,
nth_rewrite 1 eq_sum_orthogonal_projection_self_orthogonal_complement K u,
rw [inner_add_left, inner_add_right,
submodule.inner_right_of_mem_orthogonal (submodule.coe_mem (orthogonal_projection K u))
(submodule.coe_mem (orthogonal_projection Kᗮ v)),
submodule.inner_left_of_mem_orthogonal (submodule.coe_mem (orthogonal_projection K v))
(submodule.coe_mem (orthogonal_projection Kᗮ u))],
end
open finite_dimensional
/-- Given a finite-dimensional subspace `K₂`, and a subspace `K₁`
containined in it, the dimensions of `K₁` and the intersection of its
orthogonal subspace with `K₂` add to that of `K₂`. -/
lemma submodule.finrank_add_inf_finrank_orthogonal {K₁ K₂ : submodule 𝕜 E}
[finite_dimensional 𝕜 K₂] (h : K₁ ≤ K₂) :
finrank 𝕜 K₁ + finrank 𝕜 (K₁ᗮ ⊓ K₂ : submodule 𝕜 E) = finrank 𝕜 K₂ :=
begin
haveI := submodule.finite_dimensional_of_le h,
have hd := submodule.dim_sup_add_dim_inf_eq K₁ (K₁ᗮ ⊓ K₂),
rw [←inf_assoc, (submodule.orthogonal_disjoint K₁).eq_bot, bot_inf_eq, finrank_bot,
submodule.sup_orthogonal_inf_of_is_complete h
(submodule.complete_of_finite_dimensional _)] at hd,
rw add_zero at hd,
exact hd.symm
end
/-- Given a finite-dimensional subspace `K₂`, and a subspace `K₁`
containined in it, the dimensions of `K₁` and the intersection of its
orthogonal subspace with `K₂` add to that of `K₂`. -/
lemma submodule.finrank_add_inf_finrank_orthogonal' {K₁ K₂ : submodule 𝕜 E}
[finite_dimensional 𝕜 K₂] (h : K₁ ≤ K₂) {n : ℕ} (h_dim : finrank 𝕜 K₁ + n = finrank 𝕜 K₂) :
finrank 𝕜 (K₁ᗮ ⊓ K₂ : submodule 𝕜 E) = n :=
by { rw ← add_right_inj (finrank 𝕜 K₁),
simp [submodule.finrank_add_inf_finrank_orthogonal h, h_dim] }
/-- Given a finite-dimensional space `E` and subspace `K`, the dimensions of `K` and `Kᗮ` add to
that of `E`. -/
lemma submodule.finrank_add_finrank_orthogonal [finite_dimensional 𝕜 E] {K : submodule 𝕜 E} :
finrank 𝕜 K + finrank 𝕜 Kᗮ = finrank 𝕜 E :=
begin
convert submodule.finrank_add_inf_finrank_orthogonal (le_top : K ≤ ⊤) using 1,
{ rw inf_top_eq },
{ simp }
end
/-- Given a finite-dimensional space `E` and subspace `K`, the dimensions of `K` and `Kᗮ` add to
that of `E`. -/
lemma submodule.finrank_add_finrank_orthogonal' [finite_dimensional 𝕜 E] {K : submodule 𝕜 E} {n : ℕ}
(h_dim : finrank 𝕜 K + n = finrank 𝕜 E) :
finrank 𝕜 Kᗮ = n :=
by { rw ← add_right_inj (finrank 𝕜 K), simp [submodule.finrank_add_finrank_orthogonal, h_dim] }
local attribute [instance] finite_dimensional_of_finrank_eq_succ
/-- In a finite-dimensional inner product space, the dimension of the orthogonal complement of the
span of a nonzero vector is one less than the dimension of the space. -/
lemma finrank_orthogonal_span_singleton {n : ℕ} [_i : fact (finrank 𝕜 E = n + 1)]
{v : E} (hv : v ≠ 0) :
finrank 𝕜 (𝕜 ∙ v)ᗮ = n :=
submodule.finrank_add_finrank_orthogonal' $ by simp [finrank_span_singleton hv, _i.elim, add_comm]
end orthogonal
section orthonormal_basis
/-! ### Existence of Hilbert basis, orthonormal basis, etc. -/
variables {𝕜 E} {v : set E}
open finite_dimensional submodule set
/-- An orthonormal set in an `inner_product_space` is maximal, if and only if the orthogonal
complement of its span is empty. -/
lemma maximal_orthonormal_iff_orthogonal_complement_eq_bot (hv : orthonormal 𝕜 (coe : v → E)) :
(∀ u ⊇ v, orthonormal 𝕜 (coe : u → E) → u = v) ↔ (span 𝕜 v)ᗮ = ⊥ :=
begin
rw submodule.eq_bot_iff,
split,
{ contrapose!,
-- ** direction 1: nonempty orthogonal complement implies nonmaximal
rintros ⟨x, hx', hx⟩,
-- take a nonzero vector and normalize it
let e := (∥x∥⁻¹ : 𝕜) • x,
have he : ∥e∥ = 1 := by simp [e, norm_smul_inv_norm hx],
have he' : e ∈ (span 𝕜 v)ᗮ := smul_mem' _ _ hx',
have he'' : e ∉ v,
{ intros hev,
have : e = 0,
{ have : e ∈ (span 𝕜 v) ⊓ (span 𝕜 v)ᗮ := ⟨subset_span hev, he'⟩,
simpa [(span 𝕜 v).inf_orthogonal_eq_bot] using this },
have : e ≠ 0 := hv.ne_zero ⟨e, hev⟩,
contradiction },
-- put this together with `v` to provide a candidate orthonormal basis for the whole space
refine ⟨v.insert e, v.subset_insert e, ⟨_, _⟩, (v.ne_insert_of_not_mem he'').symm⟩,
{ -- show that the elements of `v.insert e` have unit length
rintros ⟨a, ha'⟩,
cases eq_or_mem_of_mem_insert ha' with ha ha,
{ simp [ha, he] },
{ exact hv.1 ⟨a, ha⟩ } },
{ -- show that the elements of `v.insert e` are orthogonal
have h_end : ∀ a ∈ v, ⟪a, e⟫ = 0,
{ intros a ha,
exact he' a (submodule.subset_span ha) },
rintros ⟨a, ha'⟩,
cases eq_or_mem_of_mem_insert ha' with ha ha,
{ rintros ⟨b, hb'⟩ hab',
have hb : b ∈ v,
{ refine mem_of_mem_insert_of_ne hb' _,
intros hbe',
apply hab',
simp [ha, hbe'] },
rw inner_eq_zero_sym,
simpa [ha] using h_end b hb },
rintros ⟨b, hb'⟩ hab',
cases eq_or_mem_of_mem_insert hb' with hb hb,
{ simpa [hb] using h_end a ha },
have : (⟨a, ha⟩ : v) ≠ ⟨b, hb⟩,
{ intros hab'',
apply hab',
simpa using hab'' },
exact hv.2 this } },
{ -- ** direction 2: empty orthogonal complement implies maximal
simp only [subset.antisymm_iff],
rintros h u (huv : v ⊆ u) hu,
refine ⟨_, huv⟩,
intros x hxu,
refine ((mt (h x)) (hu.ne_zero ⟨x, hxu⟩)).imp_symm _,
intros hxv y hy,
have hxv' : (⟨x, hxu⟩ : u) ∉ (coe ⁻¹' v : set u) := by simp [huv, hxv],
obtain ⟨l, hl, rfl⟩ :
∃ l ∈ finsupp.supported 𝕜 𝕜 (coe ⁻¹' v : set u), (finsupp.total ↥u E 𝕜 coe) l = y,
{ rw ← finsupp.mem_span_image_iff_total,
simp [huv, inter_eq_self_of_subset_left, hy] },
exact hu.inner_finsupp_eq_zero hxv' hl }
end
/-- An orthonormal set in an `inner_product_space` is maximal, if and only if the closure of its
span is the whole space. -/
lemma maximal_orthonormal_iff_dense_span [complete_space E] (hv : orthonormal 𝕜 (coe : v → E)) :
(∀ u ⊇ v, orthonormal 𝕜 (coe : u → E) → u = v) ↔ (span 𝕜 v).topological_closure = ⊤ :=
by rw [maximal_orthonormal_iff_orthogonal_complement_eq_bot hv, ← submodule.orthogonal_eq_top_iff,
(span 𝕜 v).orthogonal_orthogonal_eq_closure]
/-- Any orthonormal subset can be extended to an orthonormal set whose span is dense. -/
lemma exists_subset_is_orthonormal_dense_span
[complete_space E] (hv : orthonormal 𝕜 (coe : v → E)) :
∃ u ⊇ v, orthonormal 𝕜 (coe : u → E) ∧ (span 𝕜 u).topological_closure = ⊤ :=
begin
obtain ⟨u, hus, hu, hu_max⟩ := exists_maximal_orthonormal hv,
rw maximal_orthonormal_iff_dense_span hu at hu_max,
exact ⟨u, hus, hu, hu_max⟩
end
variables (𝕜 E)
/-- An inner product space admits an orthonormal set whose span is dense. -/
lemma exists_is_orthonormal_dense_span [complete_space E] :
∃ u : set E, orthonormal 𝕜 (coe : u → E) ∧ (span 𝕜 u).topological_closure = ⊤ :=
let ⟨u, hus, hu, hu_max⟩ := exists_subset_is_orthonormal_dense_span (orthonormal_empty 𝕜 E) in
⟨u, hu, hu_max⟩
variables {𝕜 E}
/-- An orthonormal set in a finite-dimensional `inner_product_space` is maximal, if and only if it
is a basis. -/
lemma maximal_orthonormal_iff_basis_of_finite_dimensional
[finite_dimensional 𝕜 E] (hv : orthonormal 𝕜 (coe : v → E)) :
(∀ u ⊇ v, orthonormal 𝕜 (coe : u → E) → u = v) ↔ ∃ b : basis v 𝕜 E, ⇑b = coe :=
begin
rw maximal_orthonormal_iff_orthogonal_complement_eq_bot hv,
have hv_compl : is_complete (span 𝕜 v : set E) := (span 𝕜 v).complete_of_finite_dimensional,
rw submodule.orthogonal_eq_bot_iff hv_compl,
have hv_coe : range (coe : v → E) = v := by simp,
split,
{ refine λ h, ⟨basis.mk hv.linear_independent _, basis.coe_mk _ _⟩,
convert h },
{ rintros ⟨h, coe_h⟩,
rw [← h.span_eq, coe_h, hv_coe] }
end
/-- In a finite-dimensional `inner_product_space`, any orthonormal subset can be extended to an
orthonormal basis. -/
lemma exists_subset_is_orthonormal_basis
[finite_dimensional 𝕜 E] (hv : orthonormal 𝕜 (coe : v → E)) :
∃ (u ⊇ v) (b : basis u 𝕜 E), orthonormal 𝕜 b ∧ ⇑b = coe :=
begin
obtain ⟨u, hus, hu, hu_max⟩ := exists_maximal_orthonormal hv,
obtain ⟨b, hb⟩ := (maximal_orthonormal_iff_basis_of_finite_dimensional hu).mp hu_max,
exact ⟨u, hus, b, by rwa hb, hb⟩
end
variables (𝕜 E)
/-- Index for an arbitrary orthonormal basis on a finite-dimensional `inner_product_space`. -/
def orthonormal_basis_index [finite_dimensional 𝕜 E] : set E :=
classical.some (exists_subset_is_orthonormal_basis (orthonormal_empty 𝕜 E))
/-- A finite-dimensional `inner_product_space` has an orthonormal basis. -/
def orthonormal_basis [finite_dimensional 𝕜 E] :
basis (orthonormal_basis_index 𝕜 E) 𝕜 E :=
(exists_subset_is_orthonormal_basis (orthonormal_empty 𝕜 E)).some_spec.some_spec.some
lemma orthonormal_basis_orthonormal [finite_dimensional 𝕜 E] :
orthonormal 𝕜 (orthonormal_basis 𝕜 E) :=
(exists_subset_is_orthonormal_basis (orthonormal_empty 𝕜 E)).some_spec.some_spec.some_spec.1
@[simp] lemma coe_orthonormal_basis [finite_dimensional 𝕜 E] :
⇑(orthonormal_basis 𝕜 E) = coe :=
(exists_subset_is_orthonormal_basis (orthonormal_empty 𝕜 E)).some_spec.some_spec.some_spec.2
instance [finite_dimensional 𝕜 E] : fintype (orthonormal_basis_index 𝕜 E) :=
is_noetherian.fintype_basis_index (orthonormal_basis 𝕜 E)
variables {𝕜 E}
/-- An `n`-dimensional `inner_product_space` has an orthonormal basis indexed by `fin n`. -/
def fin_orthonormal_basis [finite_dimensional 𝕜 E] {n : ℕ} (hn : finrank 𝕜 E = n) :
basis (fin n) 𝕜 E :=
have h : fintype.card (orthonormal_basis_index 𝕜 E) = n,
by rw [← finrank_eq_card_basis (orthonormal_basis 𝕜 E), hn],
(orthonormal_basis 𝕜 E).reindex (fintype.equiv_fin_of_card_eq h)
lemma fin_orthonormal_basis_orthonormal [finite_dimensional 𝕜 E] {n : ℕ} (hn : finrank 𝕜 E = n) :
orthonormal 𝕜 (fin_orthonormal_basis hn) :=
suffices orthonormal 𝕜 (orthonormal_basis _ _ ∘ equiv.symm _),
by { simp only [fin_orthonormal_basis, basis.coe_reindex], assumption }, -- why doesn't simpa work?
(orthonormal_basis_orthonormal 𝕜 E).comp _ (equiv.injective _)
end orthonormal_basis
|
8c521c419817cfb246e317977e6f672a77dda88c
|
9d2e3d5a2e2342a283affd97eead310c3b528a24
|
/src/hints/thursday/afternoon/category_theory/exercise6/hint1.lean
|
deaea5287e9312bd9f941fcef426b9dd2e6955f4
|
[] |
permissive
|
Vtec234/lftcm2020
|
ad2610ab614beefe44acc5622bb4a7fff9a5ea46
|
bbbd4c8162f8c2ef602300ab8fdeca231886375d
|
refs/heads/master
| 1,668,808,098,623
| 1,594,989,081,000
| 1,594,990,079,000
| 280,423,039
| 0
| 0
|
MIT
| 1,594,990,209,000
| 1,594,990,209,000
| null |
UTF-8
|
Lean
| false
| false
| 903
|
lean
|
import category_theory.limits.shapes.pullbacks
/-!
Thanks to Markus Himmel for suggesting this question.
-/
open category_theory
open category_theory.limits
/-!
Let C be a category, X and Y be objects and f : X ⟶ Y be a morphism. Show that f is an epimorphism
if and only if the diagram
X --f--→ Y
| |
f 𝟙
| |
↓ ↓
Y --𝟙--→ Y
is a pushout.
-/
universes v u
variables {C : Type u} [category.{v} C]
def pushout_of_epi {X Y : C} (f : X ⟶ Y) [epi f] :
is_colimit (pushout_cocone.mk (𝟙 Y) (𝟙 Y) rfl : pushout_cocone f f) :=
begin
fapply pushout_cocone.is_colimit.mk,
all_goals { sorry, },
end
theorem epi_of_pushout {X Y : C} (f : X ⟶ Y)
(is_colim : is_colimit (pushout_cocone.mk (𝟙 Y) (𝟙 Y) rfl : pushout_cocone f f)) : epi f :=
{ left_cancellation := λ Z g h hf,
begin
let a := pushout_cocone.mk _ _ hf,
sorry,
end }
|
3b4e0b1e5895137c0e642e933cb56a58f10a4f42
|
a4673261e60b025e2c8c825dfa4ab9108246c32e
|
/stage0/src/Lean/Meta/ForEachExpr.lean
|
743436e8f282bd55dae4c20f72859f7bfd72cc25
|
[
"Apache-2.0"
] |
permissive
|
jcommelin/lean4
|
c02dec0cc32c4bccab009285475f265f17d73228
|
2909313475588cc20ac0436e55548a4502050d0a
|
refs/heads/master
| 1,674,129,550,893
| 1,606,415,348,000
| 1,606,415,348,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 2,245
|
lean
|
/-
Copyright (c) 2020 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
-/
import Lean.Expr
import Lean.Util.MonadCache
import Lean.Meta.Basic
namespace Lean.Meta
namespace ForEachExpr
abbrev M := MonadCacheT Expr Unit MetaM
mutual
private partial def visitBinder (fn : Expr → MetaM Bool) : Array Expr → Nat → Expr → M Unit
| fvars, j, Expr.lam n d b c => do
let d := d.instantiateRevRange j fvars.size fvars;
visit fn d;
withLocalDecl n c.binderInfo d fun x =>
visitBinder fn (fvars.push x) j b
| fvars, j, Expr.forallE n d b c => do
let d := d.instantiateRevRange j fvars.size fvars;
visit fn d;
withLocalDecl n c.binderInfo d fun x =>
visitBinder fn (fvars.push x) j b
| fvars, j, Expr.letE n t v b _ => do
let t := t.instantiateRevRange j fvars.size fvars;
visit fn t;
let v := v.instantiateRevRange j fvars.size fvars;
visit fn v;
withLetDecl n t v fun x =>
visitBinder fn (fvars.push x) j b
| fvars, j, e => visit fn $ e.instantiateRevRange j fvars.size fvars
partial def visit (fn : Expr → MetaM Bool) (e : Expr) : M Unit :=
checkCache e fun e => do
if (← liftM (fn e)) then
match e with
| Expr.forallE _ _ _ _ => visitBinder fn #[] 0 e
| Expr.lam _ _ _ _ => visitBinder fn #[] 0 e
| Expr.letE _ _ _ _ _ => visitBinder fn #[] 0 e
| Expr.app f a _ => do visit fn f; visit fn a
| Expr.mdata _ b _ => visit fn b
| Expr.proj _ _ b _ => visit fn b
| _ => pure ()
end
end ForEachExpr
def forEachExprImp' (e : Expr) (f : Expr → MetaM Bool) : MetaM Unit :=
ForEachExpr.visit f e |>.run
/-- Similar to `Expr.forEach'`, but creates free variables whenever going inside of a binder. -/
def forEachExpr' {m} [MonadLiftT MetaM m] (e : Expr) (f : Expr → MetaM Bool) : m Unit :=
liftM $ forEachExprImp' e f
/-- Similar to `Expr.forEach`, but creates free variables whenever going inside of a binder. -/
def forEachExpr {m} [MonadLiftT MetaM m] (e : Expr) (f : Expr → MetaM Unit) : m Unit :=
forEachExpr' e fun e => do
f e
pure true
end Lean.Meta
|
e1394079acf2cb2c73250005d9a60096ef28357f
|
a339bc2ac96174381fb610f4b2e1ba42df2be819
|
/hott/algebra/homotopy_group.hlean
|
2347493bf9888a7a49bdbcbae0c020c61998234b
|
[
"Apache-2.0"
] |
permissive
|
kalfsvag/lean2
|
25b2dccc07a98e5aa20f9a11229831f9d3edf2e7
|
4d4a0c7c53a9922c5f630f6f8ebdccf7ddef2cc7
|
refs/heads/master
| 1,610,513,122,164
| 1,483,135,198,000
| 1,483,135,198,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 10,545
|
hlean
|
/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
homotopy groups of a pointed space
-/
import .trunc_group types.trunc .group_theory types.nat.hott
open nat eq pointed trunc is_trunc algebra group function equiv unit is_equiv nat
-- TODO: consistently make n an argument before A
namespace eq
definition homotopy_group [reducible] [constructor] (n : ℕ) (A : Type*) : Set* :=
ptrunc 0 (Ω[n] A)
notation `π[`:95 n:0 `]`:0 := homotopy_group n
definition group_homotopy_group [instance] [constructor] [reducible] (n : ℕ) (A : Type*)
: group (π[succ n] A) :=
trunc_group concat inverse idp con.assoc idp_con con_idp con.left_inv
definition group_homotopy_group2 [instance] (k : ℕ) (A : Type*) :
group (carrier (ptrunctype.to_pType (π[k + 1] A))) :=
group_homotopy_group k A
definition ab_group_homotopy_group [constructor] [reducible] (n : ℕ) (A : Type*)
: ab_group (π[succ (succ n)] A) :=
trunc_ab_group concat inverse idp con.assoc idp_con con_idp con.left_inv eckmann_hilton
local attribute ab_group_homotopy_group [instance]
definition ghomotopy_group [constructor] : Π(n : ℕ) [is_succ n] (A : Type*), Group
| (succ n) x A := Group.mk (π[succ n] A) _
definition cghomotopy_group [constructor] :
Π(n : ℕ) [is_at_least_two n] (A : Type*), AbGroup
| (succ (succ n)) x A := AbGroup.mk (π[succ (succ n)] A) _
definition fundamental_group [constructor] (A : Type*) : Group :=
ghomotopy_group 1 A
notation `πg[`:95 n:0 `]`:0 := ghomotopy_group n
notation `πag[`:95 n:0 `]`:0 := cghomotopy_group n
notation `π₁` := fundamental_group -- should this be notation for the group or pointed type?
definition tr_mul_tr {n : ℕ} {A : Type*} (p q : Ω[n + 1] A) :
tr p *[πg[n+1] A] tr q = tr (p ⬝ q) :=
by reflexivity
definition tr_mul_tr' {n : ℕ} {A : Type*} (p q : Ω[succ n] A)
: tr p *[π[succ n] A] tr q = tr (p ⬝ q) :=
idp
definition homotopy_group_pequiv [constructor] (n : ℕ) {A B : Type*} (H : A ≃* B)
: π[n] A ≃* π[n] B :=
ptrunc_pequiv_ptrunc 0 (loopn_pequiv_loopn n H)
definition homotopy_group_pequiv_loop_ptrunc [constructor] (k : ℕ) (A : Type*) :
π[k] A ≃* Ω[k] (ptrunc k A) :=
begin
refine !loopn_ptrunc_pequiv⁻¹ᵉ* ⬝e* _,
exact loopn_pequiv_loopn k (pequiv_of_eq begin rewrite [trunc_index.zero_add] end)
end
open trunc_index
definition homotopy_group_ptrunc_of_le [constructor] {k n : ℕ} (H : k ≤ n) (A : Type*) :
π[k] (ptrunc n A) ≃* π[k] A :=
calc
π[k] (ptrunc n A) ≃* Ω[k] (ptrunc k (ptrunc n A))
: homotopy_group_pequiv_loop_ptrunc k (ptrunc n A)
... ≃* Ω[k] (ptrunc k A)
: loopn_pequiv_loopn k (ptrunc_ptrunc_pequiv_left A (of_nat_le_of_nat H))
... ≃* π[k] A : (homotopy_group_pequiv_loop_ptrunc k A)⁻¹ᵉ*
definition homotopy_group_ptrunc [constructor] (k : ℕ) (A : Type*) :
π[k] (ptrunc k A) ≃* π[k] A :=
homotopy_group_ptrunc_of_le (le.refl k) A
theorem trivial_homotopy_of_is_set (A : Type*) [H : is_set A] (n : ℕ) : πg[n+1] A ≃g G0 :=
begin
apply trivial_group_of_is_contr,
apply is_trunc_trunc_of_is_trunc,
apply is_contr_loop_of_is_trunc,
apply is_trunc_succ_succ_of_is_set
end
definition homotopy_group_succ_out (A : Type*) (n : ℕ) : π[n + 1] A = π₁ (Ω[n] A) := idp
definition homotopy_group_succ_in (A : Type*) (n : ℕ) : π[n + 1] A ≃* π[n] (Ω A) :=
ptrunc_pequiv_ptrunc 0 (loopn_succ_in A n)
definition ghomotopy_group_succ_out (A : Type*) (n : ℕ) : πg[n + 1] A = π₁ (Ω[n] A) := idp
definition homotopy_group_succ_in_con {A : Type*} {n : ℕ} (g h : πg[n + 2] A) :
homotopy_group_succ_in A (succ n) (g * h) =
homotopy_group_succ_in A (succ n) g * homotopy_group_succ_in A (succ n) h :=
begin
induction g with p, induction h with q, esimp,
apply ap tr, apply loopn_succ_in_con
end
definition ghomotopy_group_succ_in [constructor] (A : Type*) (n : ℕ) :
πg[n + 2] A ≃g πg[n + 1] (Ω A) :=
begin
fapply isomorphism_of_equiv,
{ exact homotopy_group_succ_in A (succ n)},
{ exact homotopy_group_succ_in_con},
end
definition homotopy_group_functor [constructor] (n : ℕ) {A B : Type*} (f : A →* B)
: π[n] A →* π[n] B :=
ptrunc_functor 0 (apn n f)
notation `π→[`:95 n:0 `]`:0 := homotopy_group_functor n
definition homotopy_group_functor_phomotopy [constructor] (n : ℕ) {A B : Type*} {f g : A →* B}
(p : f ~* g) : π→[n] f ~* π→[n] g :=
ptrunc_functor_phomotopy 0 (apn_phomotopy n p)
definition homotopy_group_functor_pid (n : ℕ) (A : Type*) : π→[n] (pid A) ~* pid (π[n] A) :=
ptrunc_functor_phomotopy 0 !apn_pid ⬝* !ptrunc_functor_pid
definition homotopy_group_functor_compose [constructor] (n : ℕ) {A B C : Type*} (g : B →* C)
(f : A →* B) : π→[n] (g ∘* f) ~* π→[n] g ∘* π→[n] f :=
ptrunc_functor_phomotopy 0 !apn_pcompose ⬝* !ptrunc_functor_pcompose
definition is_equiv_homotopy_group_functor [constructor] (n : ℕ) {A B : Type*} (f : A →* B)
[is_equiv f] : is_equiv (π→[n] f) :=
@(is_equiv_trunc_functor 0 _) !is_equiv_apn
definition homotopy_group_functor_succ_phomotopy_in (n : ℕ) {A B : Type*} (f : A →* B) :
homotopy_group_succ_in B n ∘* π→[n + 1] f ~*
π→[n] (Ω→ f) ∘* homotopy_group_succ_in A n :=
begin
refine !ptrunc_functor_pcompose⁻¹* ⬝* _ ⬝* !ptrunc_functor_pcompose,
exact ptrunc_functor_phomotopy 0 (apn_succ_phomotopy_in n f)
end
definition is_equiv_homotopy_group_functor_ap1 (n : ℕ) {A B : Type*} (f : A →* B)
[is_equiv (π→[n + 1] f)] : is_equiv (π→[n] (Ω→ f)) :=
have is_equiv (homotopy_group_succ_in B n ∘* π→[n + 1] f),
from is_equiv_compose _ (π→[n + 1] f),
have is_equiv (π→[n] (Ω→ f) ∘ homotopy_group_succ_in A n),
from is_equiv.homotopy_closed _ (homotopy_group_functor_succ_phomotopy_in n f),
is_equiv.cancel_right (homotopy_group_succ_in A n) _
definition tinverse [constructor] {X : Type*} : π[1] X →* π[1] X :=
ptrunc_functor 0 pinverse
definition is_equiv_tinverse [constructor] (A : Type*) : is_equiv (@tinverse A) :=
by apply @is_equiv_trunc_functor; apply is_equiv_eq_inverse
definition ptrunc_functor_pinverse [constructor] {X : Type*}
: ptrunc_functor 0 (@pinverse X) ~* @tinverse X :=
begin
fapply phomotopy.mk,
{ reflexivity},
{ reflexivity}
end
definition homotopy_group_functor_mul [constructor] (n : ℕ) {A B : Type*} (g : A →* B)
(p q : πg[n+1] A) :
(π→[n + 1] g) (p *[πg[n+1] A] q) = (π→[n+1] g) p *[πg[n+1] B] (π→[n + 1] g) q :=
begin
unfold [ghomotopy_group, homotopy_group] at *,
refine @trunc.rec _ _ _ (λq, !is_trunc_eq) _ p, clear p, intro p,
refine @trunc.rec _ _ _ (λq, !is_trunc_eq) _ q, clear q, intro q,
apply ap tr, apply apn_con
end
definition homotopy_group_homomorphism [constructor] (n : ℕ) [H : is_succ n] {A B : Type*}
(f : A →* B) : πg[n] A →g πg[n] B :=
begin
induction H with n, fconstructor,
{ exact homotopy_group_functor (n+1) f},
{ apply homotopy_group_functor_mul}
end
notation `π→g[`:95 n:0 `]`:0 := homotopy_group_homomorphism n
definition homotopy_group_isomorphism_of_pequiv [constructor] (n : ℕ) {A B : Type*} (f : A ≃* B)
: πg[n+1] A ≃g πg[n+1] B :=
begin
apply isomorphism.mk (homotopy_group_homomorphism (succ n) f),
esimp, apply is_equiv_trunc_functor, apply is_equiv_apn,
end
definition homotopy_group_add (A : Type*) (n m : ℕ) :
πg[n+m+1] A ≃g πg[n+1] (Ω[m] A) :=
begin
revert A, induction m with m IH: intro A,
{ reflexivity},
{ esimp [loopn, nat.add], refine !ghomotopy_group_succ_in ⬝g _, refine !IH ⬝g _,
apply homotopy_group_isomorphism_of_pequiv,
exact !loopn_succ_in⁻¹ᵉ*}
end
theorem trivial_homotopy_add_of_is_set_loopn {A : Type*} {n : ℕ} (m : ℕ)
(H : is_set (Ω[n] A)) : πg[m+n+1] A ≃g G0 :=
!homotopy_group_add ⬝g !trivial_homotopy_of_is_set
theorem trivial_homotopy_le_of_is_set_loopn {A : Type*} {n : ℕ} (m : ℕ) (H1 : n ≤ m)
(H2 : is_set (Ω[n] A)) : πg[m+1] A ≃g G0 :=
obtain (k : ℕ) (p : n + k = m), from le.elim H1,
isomorphism_of_eq (ap (λx, πg[x+1] A) (p⁻¹ ⬝ add.comm n k)) ⬝g
trivial_homotopy_add_of_is_set_loopn k H2
definition homotopy_group_pequiv_loop_ptrunc_con {k : ℕ} {A : Type*} (p q : πg[k +1] A) :
homotopy_group_pequiv_loop_ptrunc (succ k) A (p * q) =
homotopy_group_pequiv_loop_ptrunc (succ k) A p ⬝
homotopy_group_pequiv_loop_ptrunc (succ k) A q :=
begin
refine _ ⬝ !loopn_pequiv_loopn_con,
exact ap (loopn_pequiv_loopn _ _) !loopn_ptrunc_pequiv_inv_con
end
definition homotopy_group_pequiv_loop_ptrunc_inv_con {k : ℕ} {A : Type*}
(p q : Ω[succ k] (ptrunc (succ k) A)) :
(homotopy_group_pequiv_loop_ptrunc (succ k) A)⁻¹ᵉ* (p ⬝ q) =
(homotopy_group_pequiv_loop_ptrunc (succ k) A)⁻¹ᵉ* p *
(homotopy_group_pequiv_loop_ptrunc (succ k) A)⁻¹ᵉ* q :=
inv_preserve_binary (homotopy_group_pequiv_loop_ptrunc (succ k) A) mul concat
(@homotopy_group_pequiv_loop_ptrunc_con k A) p q
definition ghomotopy_group_ptrunc [constructor] (k : ℕ) (A : Type*) :
πg[k+1] (ptrunc (k+1) A) ≃g πg[k+1] A :=
begin
fapply isomorphism_of_equiv,
{ exact homotopy_group_ptrunc (k+1) A},
{ intro g₁ g₂,
refine _ ⬝ !homotopy_group_pequiv_loop_ptrunc_inv_con,
apply ap ((homotopy_group_pequiv_loop_ptrunc (k+1) A)⁻¹ᵉ*),
refine _ ⬝ !loopn_pequiv_loopn_con ,
apply ap (loopn_pequiv_loopn (k+1) _),
apply homotopy_group_pequiv_loop_ptrunc_con}
end
/- some homomorphisms -/
-- definition is_homomorphism_cast_loopn_succ_eq_in {A : Type*} (n : ℕ) :
-- is_homomorphism (loopn_succ_in A (succ n) : πg[n+1+1] A → πg[n+1] (Ω A)) :=
-- begin
-- intro g h, induction g with g, induction h with h,
-- xrewrite [tr_mul_tr, - + fn_cast_eq_cast_fn _ (λn, tr), tr_mul_tr, ↑cast, -tr_compose,
-- loopn_succ_eq_in_concat, - + tr_compose],
-- end
definition is_homomorphism_inverse (A : Type*) (n : ℕ)
: is_homomorphism (λp, p⁻¹ : (πag[n+2] A) → (πag[n+2] A)) :=
begin
intro g h, exact ap inv (mul.comm g h) ⬝ mul_inv h g,
end
end eq
|
51bec885a70ff9f5589366771057817e39fd3228
|
624f6f2ae8b3b1adc5f8f67a365c51d5126be45a
|
/src/Init/Lean/Util/ReplaceExpr.lean
|
471f7a4cddfe0a4ef28dbb388056f745d2c30c6b
|
[
"Apache-2.0"
] |
permissive
|
mhuisi/lean4
|
28d35a4febc2e251c7f05492e13f3b05d6f9b7af
|
dda44bc47f3e5d024508060dac2bcb59fd12e4c0
|
refs/heads/master
| 1,621,225,489,283
| 1,585,142,689,000
| 1,585,142,689,000
| 250,590,438
| 0
| 2
|
Apache-2.0
| 1,602,443,220,000
| 1,585,327,814,000
|
C
|
UTF-8
|
Lean
| false
| false
| 3,087
|
lean
|
/-
Copyright (c) 2020 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
-/
prelude
import Init.Lean.Expr
namespace Lean
namespace Expr
namespace ReplaceImpl
abbrev cacheSize : USize := 8192
structure State :=
(keys : Array Expr) -- Remark: our "unsafe" implementation relies on the fact that `()` is not a valid Expr
(results : Array Expr)
abbrev ReplaceM := StateM State
@[inline] unsafe def cache (i : USize) (key : Expr) (result : Expr) : ReplaceM Expr := do
modify $ fun s => { keys := s.keys.uset i key lcProof, results := s.results.uset i result lcProof };
pure result
@[specialize] unsafe def replaceUnsafeM (f? : Expr → Option Expr) (size : USize) : Expr → ReplaceM Expr
| e => do
c ← get;
let h := ptrAddrUnsafe e;
let i := h % size;
if ptrAddrUnsafe (c.keys.uget i lcProof) == h then
pure $ c.results.uget i lcProof
else match f? e with
| some eNew => cache i e eNew
| none => match e with
| Expr.forallE _ d b _ => do d ← replaceUnsafeM d; b ← replaceUnsafeM b; cache i e $ e.updateForallE! d b
| Expr.lam _ d b _ => do d ← replaceUnsafeM d; b ← replaceUnsafeM b; cache i e $ e.updateLambdaE! d b
| Expr.mdata _ b _ => do b ← replaceUnsafeM b; cache i e $ e.updateMData! b
| Expr.letE _ t v b _ => do t ← replaceUnsafeM t; v ← replaceUnsafeM v; b ← replaceUnsafeM b; cache i e $ e.updateLet! t v b
| Expr.app f a _ => do f ← replaceUnsafeM f; a ← replaceUnsafeM a; cache i e $ e.updateApp! f a
| Expr.proj _ _ b _ => do b ← replaceUnsafeM b; cache i e $ e.updateProj! b
| Expr.localE _ _ _ _ => unreachable!
| e => pure e
unsafe def initCache : State :=
{ keys := mkArray cacheSize.toNat (cast lcProof ()), -- `()` is not a valid `Expr`
results := mkArray cacheSize.toNat (arbitrary _) }
@[inline] unsafe def replaceUnsafe (f? : Expr → Option Expr) (e : Expr) : Expr :=
(replaceUnsafeM f? cacheSize e).run' initCache
end ReplaceImpl
/- TODO: use withPtrAddr, withPtrEq to avoid unsafe tricks above.
We also need an invariant at `State` and proofs for the `uget` operations. -/
@[implementedBy ReplaceImpl.replaceUnsafe]
partial def replace (f? : Expr → Option Expr) : Expr → Expr
| e =>
/- This is a reference implementation for the unsafe one above -/
match f? e with
| some eNew => eNew
| none => match e with
| Expr.forallE _ d b _ => let d := replace d; let b := replace b; e.updateForallE! d b
| Expr.lam _ d b _ => let d := replace d; let b := replace b; e.updateLambdaE! d b
| Expr.mdata _ b _ => let b := replace b; e.updateMData! b
| Expr.letE _ t v b _ => let t := replace t; let v := replace v; let b := replace b; e.updateLet! t v b
| Expr.app f a _ => let f := replace f; let a := replace a; e.updateApp! f a
| Expr.proj _ _ b _ => let b := replace b; e.updateProj! b
| e => e
end Expr
end Lean
|
eff8d62bab3f72d26e38c9ccab80e1f95ea5fa24
|
8cae430f0a71442d02dbb1cbb14073b31048e4b0
|
/src/algebra/big_operators/ring.lean
|
6a0c5a9dca0dd0b6c3c4cbb803547f3b2dc375f2
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/mathlib
|
56a2cadd17ac88caf4ece0a775932fa26327ba0e
|
442a83d738cb208d3600056c489be16900ba701d
|
refs/heads/master
| 1,693,584,102,358
| 1,693,471,902,000
| 1,693,471,902,000
| 97,922,418
| 1,595
| 352
|
Apache-2.0
| 1,694,693,445,000
| 1,500,624,130,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 11,114
|
lean
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl
-/
import algebra.big_operators.basic
import algebra.field.defs
import data.finset.pi
import data.finset.powerset
/-!
# Results about big operators with values in a (semi)ring
> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
> Any changes to this file require a corresponding PR to mathlib4.
We prove results about big operators that involve some interaction between
multiplicative and additive structures on the values being combined.
-/
universes u v w
open_locale big_operators
variables {α : Type u} {β : Type v} {γ : Type w}
namespace finset
variables {s s₁ s₂ : finset α} {a : α} {b : β} {f g : α → β}
section comm_monoid
variables [comm_monoid β]
open_locale classical
lemma prod_pow_eq_pow_sum {x : β} {f : α → ℕ} :
∀ {s : finset α}, (∏ i in s, x ^ (f i)) = x ^ (∑ x in s, f x) :=
begin
apply finset.induction,
{ simp },
{ assume a s has H,
rw [finset.prod_insert has, finset.sum_insert has, pow_add, H] }
end
end comm_monoid
section semiring
variables [non_unital_non_assoc_semiring β]
lemma sum_mul : (∑ x in s, f x) * b = ∑ x in s, f x * b :=
add_monoid_hom.map_sum (add_monoid_hom.mul_right b) _ s
lemma mul_sum : b * (∑ x in s, f x) = ∑ x in s, b * f x :=
add_monoid_hom.map_sum (add_monoid_hom.mul_left b) _ s
lemma sum_mul_sum {ι₁ : Type*} {ι₂ : Type*} (s₁ : finset ι₁) (s₂ : finset ι₂)
(f₁ : ι₁ → β) (f₂ : ι₂ → β) :
(∑ x₁ in s₁, f₁ x₁) * (∑ x₂ in s₂, f₂ x₂) = ∑ p in s₁ ×ˢ s₂, f₁ p.1 * f₂ p.2 :=
by { rw [sum_product, sum_mul, sum_congr rfl], intros, rw mul_sum }
end semiring
section semiring
variables [non_assoc_semiring β]
lemma sum_mul_boole [decidable_eq α] (s : finset α) (f : α → β) (a : α) :
(∑ x in s, (f x * ite (a = x) 1 0)) = ite (a ∈ s) (f a) 0 :=
by simp
lemma sum_boole_mul [decidable_eq α] (s : finset α) (f : α → β) (a : α) :
(∑ x in s, (ite (a = x) 1 0) * f x) = ite (a ∈ s) (f a) 0 :=
by simp
end semiring
lemma sum_div [division_semiring β] {s : finset α} {f : α → β} {b : β} :
(∑ x in s, f x) / b = ∑ x in s, f x / b :=
by simp only [div_eq_mul_inv, sum_mul]
section comm_semiring
variables [comm_semiring β]
/-- The product over a sum can be written as a sum over the product of sets, `finset.pi`.
`finset.prod_univ_sum` is an alternative statement when the product is over `univ`. -/
lemma prod_sum {δ : α → Type*} [decidable_eq α] [∀a, decidable_eq (δ a)]
{s : finset α} {t : Πa, finset (δ a)} {f : Πa, δ a → β} :
(∏ a in s, ∑ b in (t a), f a b) =
∑ p in (s.pi t), ∏ x in s.attach, f x.1 (p x.1 x.2) :=
begin
induction s using finset.induction with a s ha ih,
{ rw [pi_empty, sum_singleton], refl },
{ have h₁ : ∀x ∈ t a, ∀y ∈ t a, ∀h : x ≠ y,
disjoint (image (pi.cons s a x) (pi s t)) (image (pi.cons s a y) (pi s t)),
{ assume x hx y hy h,
simp only [disjoint_iff_ne, mem_image],
rintros _ ⟨p₂, hp, eq₂⟩ _ ⟨p₃, hp₃, eq₃⟩ eq,
have : pi.cons s a x p₂ a (mem_insert_self _ _) = pi.cons s a y p₃ a (mem_insert_self _ _),
{ rw [eq₂, eq₃, eq] },
rw [pi.cons_same, pi.cons_same] at this,
exact h this },
rw [prod_insert ha, pi_insert ha, ih, sum_mul, sum_bUnion h₁],
refine sum_congr rfl (λ b _, _),
have h₂ : ∀p₁∈pi s t, ∀p₂∈pi s t, pi.cons s a b p₁ = pi.cons s a b p₂ → p₁ = p₂, from
assume p₁ h₁ p₂ h₂ eq, pi.cons_injective ha eq,
rw [sum_image h₂, mul_sum],
refine sum_congr rfl (λ g _, _),
rw [attach_insert, prod_insert, prod_image],
{ simp only [pi.cons_same],
congr' with ⟨v, hv⟩, congr',
exact (pi.cons_ne (by rintro rfl; exact ha hv)).symm },
{ exact λ _ _ _ _, subtype.eq ∘ subtype.mk.inj },
{ simp only [mem_image], rintro ⟨⟨_, hm⟩, _, rfl⟩, exact ha hm } }
end
open_locale classical
/-- The product of `f a + g a` over all of `s` is the sum
over the powerset of `s` of the product of `f` over a subset `t` times
the product of `g` over the complement of `t` -/
lemma prod_add (f g : α → β) (s : finset α) :
∏ a in s, (f a + g a) = ∑ t in s.powerset, ((∏ a in t, f a) * (∏ a in (s \ t), g a)) :=
calc ∏ a in s, (f a + g a)
= ∏ a in s, ∑ p in ({true, false} : finset Prop), if p then f a else g a : by simp
... = ∑ p in (s.pi (λ _, {true, false}) : finset (Π a ∈ s, Prop)),
∏ a in s.attach, if p a.1 a.2 then f a.1 else g a.1 : prod_sum
... = ∑ t in s.powerset, (∏ a in t, f a) * (∏ a in (s \ t), g a) : begin
refine eq.symm (sum_bij (λ t _ a _, a ∈ t) _ _ _ _),
{ simp [subset_iff]; tauto },
{ intros t ht,
erw [prod_ite (λ a : {a // a ∈ s}, f a.1) (λ a : {a // a ∈ s}, g a.1)],
refine congr_arg2 _
(prod_bij (λ (a : α) (ha : a ∈ t), ⟨a, mem_powerset.1 ht ha⟩)
_ _ _
(λ b hb, ⟨b, by cases b;
simpa only [true_and, exists_prop, mem_filter, and_true, mem_attach, eq_self_iff_true,
subtype.coe_mk] using hb⟩))
(prod_bij (λ (a : α) (ha : a ∈ s \ t), ⟨a, by simp * at *⟩)
_ _ _
(λ b hb, ⟨b, by cases b; begin
simp only [true_and, mem_filter, mem_attach, subtype.coe_mk] at hb,
simpa only [true_and, exists_prop, and_true, mem_sdiff, eq_self_iff_true, subtype.coe_mk,
b_property],
end⟩));
intros; simp * at *; simp * at * },
{ assume a₁ a₂ h₁ h₂ H,
ext x,
simp only [function.funext_iff, subset_iff, mem_powerset, eq_iff_iff] at h₁ h₂ H,
exact ⟨λ hx, (H x (h₁ hx)).1 hx, λ hx, (H x (h₂ hx)).2 hx⟩ },
{ assume f hf,
exact ⟨s.filter (λ a : α, ∃ h : a ∈ s, f a h),
by simp, by funext; intros; simp *⟩ }
end
/-- `∏ i, (f i + g i) = (∏ i, f i) + ∑ i, g i * (∏ j < i, f j + g j) * (∏ j > i, f j)`. -/
lemma prod_add_ordered {ι R : Type*} [comm_semiring R] [linear_order ι] (s : finset ι)
(f g : ι → R) :
(∏ i in s, (f i + g i)) = (∏ i in s, f i) +
∑ i in s, g i * (∏ j in s.filter (< i), (f j + g j)) * ∏ j in s.filter (λ j, i < j), f j :=
begin
refine finset.induction_on_max s (by simp) _,
clear s, intros a s ha ihs,
have ha' : a ∉ s, from λ ha', (ha a ha').false,
rw [prod_insert ha', prod_insert ha', sum_insert ha', filter_insert, if_neg (lt_irrefl a),
filter_true_of_mem ha, ihs, add_mul, mul_add, mul_add, add_assoc],
congr' 1, rw add_comm, congr' 1,
{ rw [filter_false_of_mem, prod_empty, mul_one],
exact (forall_mem_insert _ _ _).2 ⟨lt_irrefl a, λ i hi, (ha i hi).not_lt⟩ },
{ rw mul_sum,
refine sum_congr rfl (λ i hi, _),
rw [filter_insert, if_neg (ha i hi).not_lt, filter_insert, if_pos (ha i hi), prod_insert,
mul_left_comm],
exact mt (λ ha, (mem_filter.1 ha).1) ha' }
end
/-- `∏ i, (f i - g i) = (∏ i, f i) - ∑ i, g i * (∏ j < i, f j - g j) * (∏ j > i, f j)`. -/
lemma prod_sub_ordered {ι R : Type*} [comm_ring R] [linear_order ι] (s : finset ι) (f g : ι → R) :
(∏ i in s, (f i - g i)) = (∏ i in s, f i) -
∑ i in s, g i * (∏ j in s.filter (< i), (f j - g j)) * ∏ j in s.filter (λ j, i < j), f j :=
begin
simp only [sub_eq_add_neg],
convert prod_add_ordered s f (λ i, -g i),
simp,
end
/-- `∏ i, (1 - f i) = 1 - ∑ i, f i * (∏ j < i, 1 - f j)`. This formula is useful in construction of
a partition of unity from a collection of “bump” functions. -/
lemma prod_one_sub_ordered {ι R : Type*} [comm_ring R] [linear_order ι] (s : finset ι) (f : ι → R) :
(∏ i in s, (1 - f i)) = 1 - ∑ i in s, f i * ∏ j in s.filter (< i), (1 - f j) :=
by { rw prod_sub_ordered, simp }
/-- Summing `a^s.card * b^(n-s.card)` over all finite subsets `s` of a `finset`
gives `(a + b)^s.card`.-/
lemma sum_pow_mul_eq_add_pow
{α R : Type*} [comm_semiring R] (a b : R) (s : finset α) :
(∑ t in s.powerset, a ^ t.card * b ^ (s.card - t.card)) = (a + b) ^ s.card :=
begin
rw [← prod_const, prod_add],
refine finset.sum_congr rfl (λ t ht, _),
rw [prod_const, prod_const, ← card_sdiff (mem_powerset.1 ht)]
end
theorem dvd_sum {b : β} {s : finset α} {f : α → β}
(h : ∀ x ∈ s, b ∣ f x) : b ∣ ∑ x in s, f x :=
multiset.dvd_sum (λ y hy, by rcases multiset.mem_map.1 hy with ⟨x, hx, rfl⟩; exact h x hx)
@[norm_cast]
lemma prod_nat_cast (s : finset α) (f : α → ℕ) :
↑(∏ x in s, f x : ℕ) = (∏ x in s, (f x : β)) :=
(nat.cast_ring_hom β).map_prod f s
end comm_semiring
section comm_ring
variables {R : Type*} [comm_ring R]
lemma prod_range_cast_nat_sub (n k : ℕ) :
∏ i in range k, (n - i : R) = (∏ i in range k, (n - i) : ℕ) :=
begin
rw prod_nat_cast,
cases le_or_lt k n with hkn hnk,
{ exact prod_congr rfl (λ i hi, (nat.cast_sub $ (mem_range.1 hi).le.trans hkn).symm) },
{ rw ← mem_range at hnk,
rw [prod_eq_zero hnk, prod_eq_zero hnk]; simp }
end
end comm_ring
/-- A product over all subsets of `s ∪ {x}` is obtained by multiplying the product over all subsets
of `s`, and over all subsets of `s` to which one adds `x`. -/
@[to_additive "A sum over all subsets of `s ∪ {x}` is obtained by summing the sum over all subsets
of `s`, and over all subsets of `s` to which one adds `x`."]
lemma prod_powerset_insert [decidable_eq α] [comm_monoid β] {s : finset α} {x : α} (h : x ∉ s)
(f : finset α → β) :
(∏ a in (insert x s).powerset, f a) =
(∏ a in s.powerset, f a) * (∏ t in s.powerset, f (insert x t)) :=
begin
rw [powerset_insert, finset.prod_union, finset.prod_image],
{ assume t₁ h₁ t₂ h₂ heq,
rw [← finset.erase_insert (not_mem_of_mem_powerset_of_not_mem h₁ h),
← finset.erase_insert (not_mem_of_mem_powerset_of_not_mem h₂ h), heq] },
{ rw finset.disjoint_iff_ne,
assume t₁ h₁ t₂ h₂,
rcases finset.mem_image.1 h₂ with ⟨t₃, h₃, H₃₂⟩,
rw ← H₃₂,
exact ne_insert_of_not_mem _ _ (not_mem_of_mem_powerset_of_not_mem h₁ h) }
end
/-- A product over `powerset s` is equal to the double product over sets of subsets of `s` with
`card s = k`, for `k = 1, ..., card s`. -/
@[to_additive "A sum over `powerset s` is equal to the double sum over sets of subsets of `s` with
`card s = k`, for `k = 1, ..., card s`"]
lemma prod_powerset [comm_monoid β] (s : finset α) (f : finset α → β) :
∏ t in powerset s, f t = ∏ j in range (card s + 1), ∏ t in powerset_len j s, f t :=
by rw [powerset_card_disj_Union, prod_disj_Union]
lemma sum_range_succ_mul_sum_range_succ [non_unital_non_assoc_semiring β] (n k : ℕ) (f g : ℕ → β) :
(∑ i in range (n+1), f i) * (∑ i in range (k+1), g i) =
(∑ i in range n, f i) * (∑ i in range k, g i) +
f n * (∑ i in range k, g i) +
(∑ i in range n, f i) * g k +
f n * g k :=
by simp only [add_mul, mul_add, add_assoc, sum_range_succ]
end finset
|
6991c140a0d7817db283cf5bd7c0374481d5ae39
|
957a80ea22c5abb4f4670b250d55534d9db99108
|
/tests/lean/run/eval_attr_cache.lean
|
93afefb04beb88c624289405a9bd5fea86950848
|
[
"Apache-2.0"
] |
permissive
|
GaloisInc/lean
|
aa1e64d604051e602fcf4610061314b9a37ab8cd
|
f1ec117a24459b59c6ff9e56a1d09d9e9e60a6c0
|
refs/heads/master
| 1,592,202,909,807
| 1,504,624,387,000
| 1,504,624,387,000
| 75,319,626
| 2
| 1
|
Apache-2.0
| 1,539,290,164,000
| 1,480,616,104,000
|
C++
|
UTF-8
|
Lean
| false
| false
| 719
|
lean
|
open tactic
@[user_attribute]
meta def my_attr : caching_user_attribute (name → bool) :=
{ name := "my_attr",
descr := "my attr",
mk_cache := λ ls, do {
let c := `(λ n : name, (name.cases_on n ff (λ _ _, to_bool (n ∈ ls)) (λ _ _, ff) : bool)),
eval_expr (name → bool) c
},
dependencies := []
}
meta def my_tac : tactic unit :=
do f ← caching_user_attribute.get_cache my_attr,
trace (f `foo),
return ()
@[my_attr] def bla := 10
run_cmd my_tac
@[my_attr] def foo := 10 -- Cache was invalided
run_cmd my_tac -- Add closure to the cache containing auxiliary function created by eval_expr
run_cmd my_tac -- Cache should be flushed since the auxiliary function is gone
|
50d380377bdc94b89556333a02cff807e383d610
|
8d65764a9e5f0923a67fc435eb1a5a1d02fd80e3
|
/src/field_theory/separable.lean
|
46622868d23bbdd561453f5a1dfe34563d67d890
|
[
"Apache-2.0"
] |
permissive
|
troyjlee/mathlib
|
e18d4b8026e32062ab9e89bc3b003a5d1cfec3f5
|
45e7eb8447555247246e3fe91c87066506c14875
|
refs/heads/master
| 1,689,248,035,046
| 1,629,470,528,000
| 1,629,470,528,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 27,388
|
lean
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import algebra.polynomial.big_operators
import field_theory.minpoly
import field_theory.splitting_field
import field_theory.tower
import algebra.squarefree
/-!
# Separable polynomials
We define a polynomial to be separable if it is coprime with its derivative. We prove basic
properties about separable polynomials here.
## Main definitions
* `polynomial.separable f`: a polynomial `f` is separable iff it is coprime with its derivative.
* `polynomial.expand R p f`: expand the polynomial `f` with coefficients in a
commutative semiring `R` by a factor of p, so `expand R p (∑ aₙ xⁿ)` is `∑ aₙ xⁿᵖ`.
* `polynomial.contract p f`: the opposite of `expand`, so it sends `∑ aₙ xⁿᵖ` to `∑ aₙ xⁿ`.
-/
universes u v w
open_locale classical big_operators
open finset
namespace polynomial
section comm_semiring
variables {R : Type u} [comm_semiring R] {S : Type v} [comm_semiring S]
/-- A polynomial is separable iff it is coprime with its derivative. -/
def separable (f : polynomial R) : Prop :=
is_coprime f f.derivative
lemma separable_def (f : polynomial R) :
f.separable ↔ is_coprime f f.derivative :=
iff.rfl
lemma separable_def' (f : polynomial R) :
f.separable ↔ ∃ a b : polynomial R, a * f + b * f.derivative = 1 :=
iff.rfl
lemma separable_one : (1 : polynomial R).separable :=
is_coprime_one_left
lemma separable_X_add_C (a : R) : (X + C a).separable :=
by { rw [separable_def, derivative_add, derivative_X, derivative_C, add_zero],
exact is_coprime_one_right }
lemma separable_X : (X : polynomial R).separable :=
by { rw [separable_def, derivative_X], exact is_coprime_one_right }
lemma separable_C (r : R) : (C r).separable ↔ is_unit r :=
by rw [separable_def, derivative_C, is_coprime_zero_right, is_unit_C]
lemma separable.of_mul_left {f g : polynomial R} (h : (f * g).separable) : f.separable :=
begin
have := h.of_mul_left_left, rw derivative_mul at this,
exact is_coprime.of_mul_right_left (is_coprime.of_add_mul_left_right this)
end
lemma separable.of_mul_right {f g : polynomial R} (h : (f * g).separable) : g.separable :=
by { rw mul_comm at h, exact h.of_mul_left }
lemma separable.of_dvd {f g : polynomial R} (hf : f.separable) (hfg : g ∣ f) : g.separable :=
by { rcases hfg with ⟨f', rfl⟩, exact separable.of_mul_left hf }
lemma separable_gcd_left {F : Type*} [field F] {f : polynomial F}
(hf : f.separable) (g : polynomial F) : (euclidean_domain.gcd f g).separable :=
separable.of_dvd hf (euclidean_domain.gcd_dvd_left f g)
lemma separable_gcd_right {F : Type*} [field F] {g : polynomial F}
(f : polynomial F) (hg : g.separable) : (euclidean_domain.gcd f g).separable :=
separable.of_dvd hg (euclidean_domain.gcd_dvd_right f g)
lemma separable.is_coprime {f g : polynomial R} (h : (f * g).separable) : is_coprime f g :=
begin
have := h.of_mul_left_left, rw derivative_mul at this,
exact is_coprime.of_mul_right_right (is_coprime.of_add_mul_left_right this)
end
theorem separable.of_pow' {f : polynomial R} :
∀ {n : ℕ} (h : (f ^ n).separable), is_unit f ∨ (f.separable ∧ n = 1) ∨ n = 0
| 0 := λ h, or.inr $ or.inr rfl
| 1 := λ h, or.inr $ or.inl ⟨pow_one f ▸ h, rfl⟩
| (n+2) := λ h, by { rw [pow_succ, pow_succ] at h,
exact or.inl (is_coprime_self.1 h.is_coprime.of_mul_right_left) }
theorem separable.of_pow {f : polynomial R} (hf : ¬is_unit f) {n : ℕ} (hn : n ≠ 0)
(hfs : (f ^ n).separable) : f.separable ∧ n = 1 :=
(hfs.of_pow'.resolve_left hf).resolve_right hn
theorem separable.map {p : polynomial R} (h : p.separable) {f : R →+* S} : (p.map f).separable :=
let ⟨a, b, H⟩ := h in ⟨a.map f, b.map f,
by rw [derivative_map, ← map_mul, ← map_mul, ← map_add, H, map_one]⟩
variables (R) (p q : ℕ)
/-- Expand the polynomial by a factor of p, so `∑ aₙ xⁿ` becomes `∑ aₙ xⁿᵖ`. -/
noncomputable def expand : polynomial R →ₐ[R] polynomial R :=
{ commutes' := λ r, eval₂_C _ _,
.. (eval₂_ring_hom C (X ^ p) : polynomial R →+* polynomial R) }
lemma coe_expand : (expand R p : polynomial R → polynomial R) = eval₂ C (X ^ p) := rfl
variables {R}
lemma expand_eq_sum {f : polynomial R} :
expand R p f = f.sum (λ e a, C a * (X ^ p) ^ e) :=
by { dsimp [expand, eval₂], refl, }
@[simp] lemma expand_C (r : R) : expand R p (C r) = C r := eval₂_C _ _
@[simp] lemma expand_X : expand R p X = X ^ p := eval₂_X _ _
@[simp] lemma expand_monomial (r : R) : expand R p (monomial q r) = monomial (q * p) r :=
by simp_rw [monomial_eq_smul_X, alg_hom.map_smul, alg_hom.map_pow, expand_X, mul_comm, pow_mul]
theorem expand_expand (f : polynomial R) : expand R p (expand R q f) = expand R (p * q) f :=
polynomial.induction_on f (λ r, by simp_rw expand_C)
(λ f g ihf ihg, by simp_rw [alg_hom.map_add, ihf, ihg])
(λ n r ih, by simp_rw [alg_hom.map_mul, expand_C, alg_hom.map_pow, expand_X,
alg_hom.map_pow, expand_X, pow_mul])
theorem expand_mul (f : polynomial R) : expand R (p * q) f = expand R p (expand R q f) :=
(expand_expand p q f).symm
@[simp] theorem expand_one (f : polynomial R) : expand R 1 f = f :=
polynomial.induction_on f
(λ r, by rw expand_C)
(λ f g ihf ihg, by rw [alg_hom.map_add, ihf, ihg])
(λ n r ih, by rw [alg_hom.map_mul, expand_C, alg_hom.map_pow, expand_X, pow_one])
theorem expand_pow (f : polynomial R) : expand R (p ^ q) f = (expand R p ^[q] f) :=
nat.rec_on q (by rw [pow_zero, expand_one, function.iterate_zero, id]) $ λ n ih,
by rw [function.iterate_succ_apply', pow_succ, expand_mul, ih]
theorem derivative_expand (f : polynomial R) :
(expand R p f).derivative = expand R p f.derivative * (p * X ^ (p - 1)) :=
by rw [coe_expand, derivative_eval₂_C, derivative_pow, derivative_X, mul_one]
theorem coeff_expand {p : ℕ} (hp : 0 < p) (f : polynomial R) (n : ℕ) :
(expand R p f).coeff n = if p ∣ n then f.coeff (n / p) else 0 :=
begin
simp only [expand_eq_sum],
simp_rw [coeff_sum, ← pow_mul, C_mul_X_pow_eq_monomial, coeff_monomial, sum],
split_ifs with h,
{ rw [finset.sum_eq_single (n/p), nat.mul_div_cancel' h, if_pos rfl],
{ intros b hb1 hb2, rw if_neg, intro hb3, apply hb2, rw [← hb3, nat.mul_div_cancel_left b hp] },
{ intro hn, rw not_mem_support_iff.1 hn, split_ifs; refl } },
{ rw finset.sum_eq_zero, intros k hk, rw if_neg, exact λ hkn, h ⟨k, hkn.symm⟩, },
end
@[simp] theorem coeff_expand_mul {p : ℕ} (hp : 0 < p) (f : polynomial R) (n : ℕ) :
(expand R p f).coeff (n * p) = f.coeff n :=
by rw [coeff_expand hp, if_pos (dvd_mul_left _ _), nat.mul_div_cancel _ hp]
@[simp] theorem coeff_expand_mul' {p : ℕ} (hp : 0 < p) (f : polynomial R) (n : ℕ) :
(expand R p f).coeff (p * n) = f.coeff n :=
by rw [mul_comm, coeff_expand_mul hp]
theorem expand_inj {p : ℕ} (hp : 0 < p) {f g : polynomial R} :
expand R p f = expand R p g ↔ f = g :=
⟨λ H, ext $ λ n, by rw [← coeff_expand_mul hp, H, coeff_expand_mul hp], congr_arg _⟩
theorem expand_eq_zero {p : ℕ} (hp : 0 < p) {f : polynomial R} : expand R p f = 0 ↔ f = 0 :=
by rw [← (expand R p).map_zero, expand_inj hp, alg_hom.map_zero]
theorem expand_eq_C {p : ℕ} (hp : 0 < p) {f : polynomial R} {r : R} :
expand R p f = C r ↔ f = C r :=
by rw [← expand_C, expand_inj hp, expand_C]
theorem nat_degree_expand (p : ℕ) (f : polynomial R) :
(expand R p f).nat_degree = f.nat_degree * p :=
begin
cases p.eq_zero_or_pos with hp hp,
{ rw [hp, coe_expand, pow_zero, mul_zero, ← C_1, eval₂_hom, nat_degree_C] },
by_cases hf : f = 0,
{ rw [hf, alg_hom.map_zero, nat_degree_zero, zero_mul] },
have hf1 : expand R p f ≠ 0 := mt (expand_eq_zero hp).1 hf,
rw [← with_bot.coe_eq_coe, ← degree_eq_nat_degree hf1],
refine le_antisymm ((degree_le_iff_coeff_zero _ _).2 $ λ n hn, _) _,
{ rw coeff_expand hp, split_ifs with hpn,
{ rw coeff_eq_zero_of_nat_degree_lt, contrapose! hn,
rw [with_bot.coe_le_coe, ← nat.div_mul_cancel hpn], exact nat.mul_le_mul_right p hn },
{ refl } },
{ refine le_degree_of_ne_zero _,
rw [coeff_expand_mul hp, ← leading_coeff], exact mt leading_coeff_eq_zero.1 hf }
end
theorem map_expand {p : ℕ} (hp : 0 < p) {f : R →+* S} {q : polynomial R} :
map f (expand R p q) = expand S p (map f q) :=
by { ext, rw [coeff_map, coeff_expand hp, coeff_expand hp], split_ifs; simp, }
/-- Expansion is injective. -/
lemma expand_injective {n : ℕ} (hn : 0 < n) :
function.injective (expand R n) :=
λ g g' h, begin
ext,
have h' : (expand R n g).coeff (n * n_1) = (expand R n g').coeff (n * n_1) :=
begin
apply polynomial.ext_iff.1,
exact h,
end,
rw [polynomial.coeff_expand hn g (n * n_1), polynomial.coeff_expand hn g' (n * n_1)] at h',
simp only [if_true, dvd_mul_right] at h',
rw (nat.mul_div_right n_1 hn) at h',
exact h',
end
end comm_semiring
section comm_ring
variables {R : Type u} [comm_ring R]
lemma separable_X_sub_C {x : R} : separable (X - C x) :=
by simpa only [sub_eq_add_neg, C_neg] using separable_X_add_C (-x)
lemma separable.mul {f g : polynomial R} (hf : f.separable) (hg : g.separable)
(h : is_coprime f g) : (f * g).separable :=
by { rw [separable_def, derivative_mul], exact ((hf.mul_right h).add_mul_left_right _).mul_left
((h.symm.mul_right hg).mul_add_right_right _) }
lemma separable_prod' {ι : Sort*} {f : ι → polynomial R} {s : finset ι} :
(∀x∈s, ∀y∈s, x ≠ y → is_coprime (f x) (f y)) → (∀x∈s, (f x).separable) →
(∏ x in s, f x).separable :=
finset.induction_on s (λ _ _, separable_one) $ λ a s has ih h1 h2, begin
simp_rw [finset.forall_mem_insert, forall_and_distrib] at h1 h2, rw prod_insert has,
exact h2.1.mul (ih h1.2.2 h2.2) (is_coprime.prod_right $ λ i his, h1.1.2 i his $
ne.symm $ ne_of_mem_of_not_mem his has)
end
lemma separable_prod {ι : Sort*} [fintype ι] {f : ι → polynomial R}
(h1 : pairwise (is_coprime on f)) (h2 : ∀ x, (f x).separable) : (∏ x, f x).separable :=
separable_prod' (λ x hx y hy hxy, h1 x y hxy) (λ x hx, h2 x)
lemma separable.inj_of_prod_X_sub_C [nontrivial R] {ι : Sort*} {f : ι → R} {s : finset ι}
(hfs : (∏ i in s, (X - C (f i))).separable)
{x y : ι} (hx : x ∈ s) (hy : y ∈ s) (hfxy : f x = f y) : x = y :=
begin
by_contra hxy,
rw [← insert_erase hx, prod_insert (not_mem_erase _ _),
← insert_erase (mem_erase_of_ne_of_mem (ne.symm hxy) hy),
prod_insert (not_mem_erase _ _), ← mul_assoc, hfxy, ← sq] at hfs,
cases (hfs.of_mul_left.of_pow (by exact not_is_unit_X_sub_C) two_ne_zero).2
end
lemma separable.injective_of_prod_X_sub_C [nontrivial R] {ι : Sort*} [fintype ι] {f : ι → R}
(hfs : (∏ i, (X - C (f i))).separable) : function.injective f :=
λ x y hfxy, hfs.inj_of_prod_X_sub_C (mem_univ _) (mem_univ _) hfxy
lemma is_unit_of_self_mul_dvd_separable {p q : polynomial R}
(hp : p.separable) (hq : q * q ∣ p) : is_unit q :=
begin
obtain ⟨p, rfl⟩ := hq,
apply is_coprime_self.mp,
have : is_coprime (q * (q * p)) (q * (q.derivative * p + q.derivative * p + q * p.derivative)),
{ simp only [← mul_assoc, mul_add],
convert hp,
rw [derivative_mul, derivative_mul],
ring },
exact is_coprime.of_mul_right_left (is_coprime.of_mul_left_left this)
end
end comm_ring
section integral_domain
variables (R : Type u) [integral_domain R]
theorem is_local_ring_hom_expand {p : ℕ} (hp : 0 < p) :
is_local_ring_hom (↑(expand R p) : polynomial R →+* polynomial R) :=
begin
refine ⟨λ f hf1, _⟩, rw ← coe_fn_coe_base at hf1,
have hf2 := eq_C_of_degree_eq_zero (degree_eq_zero_of_is_unit hf1),
rw [coeff_expand hp, if_pos (dvd_zero _), p.zero_div] at hf2,
rw [hf2, is_unit_C] at hf1, rw expand_eq_C hp at hf2, rwa [hf2, is_unit_C]
end
end integral_domain
section field
variables {F : Type u} [field F] {K : Type v} [field K]
theorem separable_iff_derivative_ne_zero {f : polynomial F} (hf : irreducible f) :
f.separable ↔ f.derivative ≠ 0 :=
⟨λ h1 h2, hf.not_unit $ is_coprime_zero_right.1 $ h2 ▸ h1,
λ h, is_coprime_of_dvd (mt and.right h) $ λ g hg1 hg2 ⟨p, hg3⟩ hg4,
let ⟨u, hu⟩ := (hf.is_unit_or_is_unit hg3).resolve_left hg1 in
have f ∣ f.derivative, by { conv_lhs { rw [hg3, ← hu] }, rwa units.mul_right_dvd },
not_lt_of_le (nat_degree_le_of_dvd this h) $ nat_degree_derivative_lt h⟩
theorem separable_map (f : F →+* K) {p : polynomial F} : (p.map f).separable ↔ p.separable :=
by simp_rw [separable_def, derivative_map, is_coprime_map]
section char_p
/-- The opposite of `expand`: sends `∑ aₙ xⁿᵖ` to `∑ aₙ xⁿ`. -/
noncomputable def contract (p : ℕ) (f : polynomial F) : polynomial F :=
∑ n in range (f.nat_degree + 1), monomial n (f.coeff (n * p))
variables (p : ℕ) [hp : fact p.prime]
include hp
theorem coeff_contract (f : polynomial F) (n : ℕ) : (contract p f).coeff n = f.coeff (n * p) :=
begin
simp only [contract, coeff_monomial, sum_ite_eq', finset_sum_coeff, mem_range, not_lt,
ite_eq_left_iff],
assume hn,
apply (coeff_eq_zero_of_nat_degree_lt _).symm,
calc f.nat_degree < f.nat_degree + 1 : nat.lt_succ_self _
... ≤ n * 1 : by simpa only [mul_one] using hn
... ≤ n * p : mul_le_mul_of_nonneg_left (@nat.prime.one_lt p (fact.out _)).le (zero_le n)
end
theorem of_irreducible_expand {f : polynomial F} (hf : irreducible (expand F p f)) :
irreducible f :=
@@of_irreducible_map _ _ _ (is_local_ring_hom_expand F hp.1.pos) hf
theorem of_irreducible_expand_pow {f : polynomial F} {n : ℕ} :
irreducible (expand F (p ^ n) f) → irreducible f :=
nat.rec_on n (λ hf, by rwa [pow_zero, expand_one] at hf) $ λ n ih hf,
ih $ of_irreducible_expand p $ by { rw pow_succ at hf, rwa [expand_expand] }
variables [HF : char_p F p]
include HF
theorem expand_char (f : polynomial F) :
map (frobenius F p) (expand F p f) = f ^ p :=
begin
refine f.induction_on' (λ a b ha hb, _) (λ n a, _),
{ rw [alg_hom.map_add, map_add, ha, hb, add_pow_char], },
{ rw [expand_monomial, map_monomial, monomial_eq_C_mul_X, monomial_eq_C_mul_X,
mul_pow, ← C.map_pow, frobenius_def],
ring_exp }
end
theorem map_expand_pow_char (f : polynomial F) (n : ℕ) :
map ((frobenius F p) ^ n) (expand F (p ^ n) f) = f ^ (p ^ n) :=
begin
induction n, { simp [ring_hom.one_def] },
symmetry,
rw [pow_succ', pow_mul, ← n_ih, ← expand_char, pow_succ, ring_hom.mul_def, ← map_map, mul_comm,
expand_mul, ← map_expand (nat.prime.pos hp.1)],
end
theorem expand_contract {f : polynomial F} (hf : f.derivative = 0) :
expand F p (contract p f) = f :=
begin
ext n, rw [coeff_expand hp.1.pos, coeff_contract], split_ifs with h,
{ rw nat.div_mul_cancel h },
{ cases n, { exact absurd (dvd_zero p) h },
have := coeff_derivative f n, rw [hf, coeff_zero, zero_eq_mul] at this, cases this, { rw this },
rw [← nat.cast_succ, char_p.cast_eq_zero_iff F p] at this,
exact absurd this h }
end
theorem separable_or {f : polynomial F} (hf : irreducible f) : f.separable ∨
¬f.separable ∧ ∃ g : polynomial F, irreducible g ∧ expand F p g = f :=
if H : f.derivative = 0 then or.inr
⟨by rw [separable_iff_derivative_ne_zero hf, not_not, H],
contract p f,
by haveI := is_local_ring_hom_expand F hp.1.pos; exact
of_irreducible_map ↑(expand F p) (by rwa ← expand_contract p H at hf),
expand_contract p H⟩
else or.inl $ (separable_iff_derivative_ne_zero hf).2 H
theorem exists_separable_of_irreducible {f : polynomial F} (hf : irreducible f) (hf0 : f ≠ 0) :
∃ (n : ℕ) (g : polynomial F), g.separable ∧ expand F (p ^ n) g = f :=
begin
generalize hn : f.nat_degree = N, unfreezingI { revert f },
apply nat.strong_induction_on N, intros N ih f hf hf0 hn,
rcases separable_or p hf with h | ⟨h1, g, hg, hgf⟩,
{ refine ⟨0, f, h, _⟩, rw [pow_zero, expand_one] },
{ cases N with N,
{ rw [nat_degree_eq_zero_iff_degree_le_zero, degree_le_zero_iff] at hn,
rw [hn, separable_C, is_unit_iff_ne_zero, not_not] at h1,
rw [h1, C_0] at hn, exact absurd hn hf0 },
have hg1 : g.nat_degree * p = N.succ,
{ rwa [← nat_degree_expand, hgf] },
have hg2 : g.nat_degree ≠ 0,
{ intro this, rw [this, zero_mul] at hg1, cases hg1 },
have hg3 : g.nat_degree < N.succ,
{ rw [← mul_one g.nat_degree, ← hg1],
exact nat.mul_lt_mul_of_pos_left hp.1.one_lt (nat.pos_of_ne_zero hg2) },
have hg4 : g ≠ 0,
{ rintro rfl, exact hg2 nat_degree_zero },
rcases ih _ hg3 hg hg4 rfl with ⟨n, g, hg5, rfl⟩, refine ⟨n+1, g, hg5, _⟩,
rw [← hgf, expand_expand, pow_succ] }
end
theorem is_unit_or_eq_zero_of_separable_expand {f : polynomial F} (n : ℕ)
(hf : (expand F (p ^ n) f).separable) : is_unit f ∨ n = 0 :=
begin
rw or_iff_not_imp_right, intro hn,
have hf2 : (expand F (p ^ n) f).derivative = 0,
{ by rw [derivative_expand, nat.cast_pow, char_p.cast_eq_zero,
zero_pow (nat.pos_of_ne_zero hn), zero_mul, mul_zero] },
rw [separable_def, hf2, is_coprime_zero_right, is_unit_iff] at hf, rcases hf with ⟨r, hr, hrf⟩,
rw [eq_comm, expand_eq_C (pow_pos hp.1.pos _)] at hrf,
rwa [hrf, is_unit_C]
end
theorem unique_separable_of_irreducible {f : polynomial F} (hf : irreducible f) (hf0 : f ≠ 0)
(n₁ : ℕ) (g₁ : polynomial F) (hg₁ : g₁.separable) (hgf₁ : expand F (p ^ n₁) g₁ = f)
(n₂ : ℕ) (g₂ : polynomial F) (hg₂ : g₂.separable) (hgf₂ : expand F (p ^ n₂) g₂ = f) :
n₁ = n₂ ∧ g₁ = g₂ :=
begin
revert g₁ g₂, wlog hn : n₁ ≤ n₂ := le_total n₁ n₂ using [n₁ n₂, n₂ n₁] tactic.skip,
unfreezingI { intros, rw le_iff_exists_add at hn, rcases hn with ⟨k, rfl⟩,
rw [← hgf₁, pow_add, expand_mul, expand_inj (pow_pos hp.1.pos n₁)] at hgf₂, subst hgf₂,
subst hgf₁,
rcases is_unit_or_eq_zero_of_separable_expand p k hg₁ with h | rfl,
{ rw is_unit_iff at h, rcases h with ⟨r, hr, rfl⟩,
simp_rw expand_C at hf, exact absurd (is_unit_C.2 hr) hf.1 },
{ rw [add_zero, pow_zero, expand_one], split; refl } },
exact λ g₁ g₂ hg₁ hgf₁ hg₂ hgf₂, let ⟨hn, hg⟩ :=
this g₂ g₁ hg₂ hgf₂ hg₁ hgf₁ in ⟨hn.symm, hg.symm⟩
end
end char_p
lemma separable_prod_X_sub_C_iff' {ι : Sort*} {f : ι → F} {s : finset ι} :
(∏ i in s, (X - C (f i))).separable ↔ (∀ (x ∈ s) (y ∈ s), f x = f y → x = y) :=
⟨λ hfs x hx y hy hfxy, hfs.inj_of_prod_X_sub_C hx hy hfxy,
λ H, by { rw ← prod_attach, exact separable_prod' (λ x hx y hy hxy,
@pairwise_coprime_X_sub _ _ { x // x ∈ s } (λ x, f x)
(λ x y hxy, subtype.eq $ H x.1 x.2 y.1 y.2 hxy) _ _ hxy)
(λ _ _, separable_X_sub_C) }⟩
lemma separable_prod_X_sub_C_iff {ι : Sort*} [fintype ι] {f : ι → F} :
(∏ i, (X - C (f i))).separable ↔ function.injective f :=
separable_prod_X_sub_C_iff'.trans $ by simp_rw [mem_univ, true_implies_iff]
section splits
open_locale big_operators
variables {i : F →+* K}
lemma not_unit_X_sub_C (a : F) : ¬ is_unit (X - C a) :=
λ h, have one_eq_zero : (1 : with_bot ℕ) = 0, by simpa using degree_eq_zero_of_is_unit h,
one_ne_zero (option.some_injective _ one_eq_zero)
lemma nodup_of_separable_prod {s : multiset F}
(hs : separable (multiset.map (λ a, X - C a) s).prod) : s.nodup :=
begin
rw multiset.nodup_iff_ne_cons_cons,
rintros a t rfl,
refine not_unit_X_sub_C a (is_unit_of_self_mul_dvd_separable hs _),
simpa only [multiset.map_cons, multiset.prod_cons] using mul_dvd_mul_left _ (dvd_mul_right _ _)
end
lemma multiplicity_le_one_of_separable {p q : polynomial F} (hq : ¬ is_unit q)
(hsep : separable p) : multiplicity q p ≤ 1 :=
begin
contrapose! hq,
apply is_unit_of_self_mul_dvd_separable hsep,
rw ← sq,
apply multiplicity.pow_dvd_of_le_multiplicity,
exact_mod_cast (enat.add_one_le_of_lt hq)
end
lemma separable.squarefree {p : polynomial F} (hsep : separable p) : squarefree p :=
begin
rw multiplicity.squarefree_iff_multiplicity_le_one p,
intro f,
by_cases hunit : is_unit f,
{ exact or.inr hunit },
exact or.inl (multiplicity_le_one_of_separable hunit hsep)
end
/--If `n ≠ 0` in `F`, then ` X ^ n - a` is separable for any `a ≠ 0`. -/
lemma separable_X_pow_sub_C {n : ℕ} (a : F) (hn : (n : F) ≠ 0) (ha : a ≠ 0) :
separable (X ^ n - C a) :=
begin
cases nat.eq_zero_or_pos n with hzero hpos,
{ exfalso,
rw hzero at hn,
exact hn (refl 0) },
apply (separable_def' (X ^ n - C a)).2,
use [-C (a⁻¹), (C ((a⁻¹) * (↑n)⁻¹) * X)],
have mul_pow_sub : X * X ^ (n - 1) = X ^ n,
{ nth_rewrite 0 [←pow_one X],
rw pow_mul_pow_sub X (nat.succ_le_iff.mpr hpos) },
rw [derivative_sub, derivative_C, sub_zero, derivative_pow X n, derivative_X, mul_one],
have hcalc : C (a⁻¹ * (↑n)⁻¹) * (↑n * (X ^ n)) = C a⁻¹ * (X ^ n),
{ calc C (a⁻¹ * (↑n)⁻¹) * (↑n * (X ^ n))
= C a⁻¹ * C ((↑n)⁻¹) * (C ↑n * (X ^ n)) : by rw [C_mul, C_eq_nat_cast]
... = C a⁻¹ * (C ((↑n)⁻¹) * C ↑n) * (X ^ n) : by ring
... = C a⁻¹ * C ((↑n)⁻¹ * ↑n) * (X ^ n) : by rw [← C_mul]
... = C a⁻¹ * C 1 * (X ^ n) : by field_simp [hn]
... = C a⁻¹ * (X ^ n) : by rw [C_1, mul_one] },
calc -C a⁻¹ * (X ^ n - C a) + C (a⁻¹ * (↑n)⁻¹) * X * (↑n * X ^ (n - 1))
= -C a⁻¹ * (X ^ n - C a) + C (a⁻¹ * (↑n)⁻¹) * (↑n * (X * X ^ (n - 1))) : by ring
... = -C a⁻¹ * (X ^ n - C a) + C a⁻¹ * (X ^ n) : by rw [mul_pow_sub, hcalc]
... = C a⁻¹ * C a : by ring
... = (1 : polynomial F) : by rw [← C_mul, inv_mul_cancel ha, C_1]
end
/--If `n ≠ 0` in `F`, then ` X ^ n - a` is squarefree for any `a ≠ 0`. -/
lemma squarefree_X_pow_sub_C {n : ℕ} (a : F) (hn : (n : F) ≠ 0) (ha : a ≠ 0) :
squarefree (X ^ n - C a) :=
(separable_X_pow_sub_C a hn ha).squarefree
lemma root_multiplicity_le_one_of_separable {p : polynomial F} (hp : p ≠ 0)
(hsep : separable p) (x : F) : root_multiplicity x p ≤ 1 :=
begin
rw [root_multiplicity_eq_multiplicity, dif_neg hp, ← enat.coe_le_coe, enat.coe_get],
exact multiplicity_le_one_of_separable (not_unit_X_sub_C _) hsep
end
lemma count_roots_le_one {p : polynomial F} (hsep : separable p) (x : F) :
p.roots.count x ≤ 1 :=
begin
by_cases hp : p = 0,
{ simp [hp] },
rw count_roots hp,
exact root_multiplicity_le_one_of_separable hp hsep x
end
lemma nodup_roots {p : polynomial F} (hsep : separable p) :
p.roots.nodup :=
multiset.nodup_iff_count_le_one.mpr (count_roots_le_one hsep)
lemma card_root_set_eq_nat_degree [algebra F K] {p : polynomial F} (hsep : p.separable)
(hsplit : splits (algebra_map F K) p) : fintype.card (p.root_set K) = p.nat_degree :=
begin
simp_rw [root_set_def, finset.coe_sort_coe, fintype.card_coe],
rw [multiset.to_finset_card_of_nodup, ←nat_degree_eq_card_roots hsplit],
exact nodup_roots hsep.map,
end
lemma eq_X_sub_C_of_separable_of_root_eq {x : F} {h : polynomial F} (h_ne_zero : h ≠ 0)
(h_sep : h.separable) (h_root : h.eval x = 0) (h_splits : splits i h)
(h_roots : ∀ y ∈ (h.map i).roots, y = i x) : h = (C (leading_coeff h)) * (X - C x) :=
begin
apply polynomial.eq_X_sub_C_of_splits_of_single_root i h_splits,
apply finset.mk.inj,
{ change _ = {i x},
rw finset.eq_singleton_iff_unique_mem,
split,
{ apply finset.mem_mk.mpr,
rw mem_roots (show h.map i ≠ 0, by exact map_ne_zero h_ne_zero),
rw [is_root.def,←eval₂_eq_eval_map,eval₂_hom,h_root],
exact ring_hom.map_zero i },
{ exact h_roots } },
{ exact nodup_roots (separable.map h_sep) },
end
end splits
end field
end polynomial
open polynomial
theorem irreducible.separable {F : Type u} [field F] [char_zero F] {f : polynomial F}
(hf : irreducible f) : f.separable :=
begin
rw [separable_iff_derivative_ne_zero hf, ne, ← degree_eq_bot, degree_derivative_eq], rintro ⟨⟩,
rw [pos_iff_ne_zero, ne, nat_degree_eq_zero_iff_degree_le_zero, degree_le_zero_iff],
refine λ hf1, hf.not_unit _, rw [hf1, is_unit_C, is_unit_iff_ne_zero],
intro hf2, rw [hf2, C_0] at hf1, exact absurd hf1 hf.ne_zero
end
-- TODO: refactor to allow transcendental extensions?
-- See: https://en.wikipedia.org/wiki/Separable_extension#Separability_of_transcendental_extensions
/-- Typeclass for separable field extension: `K` is a separable field extension of `F` iff
the minimal polynomial of every `x : K` is separable. -/
class is_separable (F K : Sort*) [field F] [field K] [algebra F K] : Prop :=
(is_integral' (x : K) : is_integral F x)
(separable' (x : K) : (minpoly F x).separable)
theorem is_separable.is_integral {F K} [field F] [field K] [algebra F K] (h : is_separable F K) :
∀ x : K, is_integral F x := is_separable.is_integral'
theorem is_separable.separable {F K} [field F] [field K] [algebra F K] (h : is_separable F K) :
∀ x : K, (minpoly F x).separable := is_separable.separable'
theorem is_separable_iff {F K} [field F] [field K] [algebra F K] : is_separable F K ↔
∀ x : K, is_integral F x ∧ (minpoly F x).separable :=
⟨λ h x, ⟨h.is_integral x, h.separable x⟩, λ h, ⟨λ x, (h x).1, λ x, (h x).2⟩⟩
instance is_separable_self (F : Type*) [field F] : is_separable F F :=
⟨λ x, is_integral_algebra_map, λ x, by { rw minpoly.eq_X_sub_C', exact separable_X_sub_C }⟩
section is_separable_tower
variables (F K E : Type*) [field F] [field K] [field E] [algebra F K] [algebra F E]
[algebra K E] [is_scalar_tower F K E]
lemma is_separable_tower_top_of_is_separable [h : is_separable F E] : is_separable K E :=
⟨λ x, is_integral_of_is_scalar_tower x (h.is_integral x),
λ x, (h.separable x).map.of_dvd (minpoly.dvd_map_of_is_scalar_tower _ _ _)⟩
lemma is_separable_tower_bot_of_is_separable [h : is_separable F E] : is_separable F K :=
is_separable_iff.2 $ λ x, begin
refine (is_separable_iff.1 h (algebra_map K E x)).imp
is_integral_tower_bot_of_is_integral_field (λ hs, _),
obtain ⟨q, hq⟩ := minpoly.dvd F x
(is_scalar_tower.aeval_eq_zero_of_aeval_algebra_map_eq_zero_field
(minpoly.aeval F ((algebra_map K E) x))),
rw hq at hs,
exact hs.of_mul_left
end
variables {E}
lemma is_separable.of_alg_hom (E' : Type*) [field E'] [algebra F E']
(f : E →ₐ[F] E') [is_separable F E'] : is_separable F E :=
begin
letI : algebra E E' := ring_hom.to_algebra f.to_ring_hom,
haveI : is_scalar_tower F E E' := is_scalar_tower.of_algebra_map_eq (λ x, (f.commutes x).symm),
exact is_separable_tower_bot_of_is_separable F E E',
end
end is_separable_tower
section card_alg_hom
variables {R S T : Type*} [comm_ring S]
variables {K L F : Type*} [field K] [field L] [field F]
variables [algebra K S] [algebra K L]
lemma alg_hom.card_of_power_basis (pb : power_basis K S) (h_sep : (minpoly K pb.gen).separable)
(h_splits : (minpoly K pb.gen).splits (algebra_map K L)) :
@fintype.card (S →ₐ[K] L) (power_basis.alg_hom.fintype pb) = (minpoly K pb.gen).nat_degree :=
begin
let s := ((minpoly K pb.gen).map (algebra_map K L)).roots.to_finset,
have H := λ x, multiset.mem_to_finset,
rw [fintype.card_congr pb.lift_equiv', fintype.card_of_subtype s H,
nat_degree_eq_card_roots h_splits, multiset.to_finset_card_of_nodup],
exact nodup_roots ((separable_map (algebra_map K L)).mpr h_sep)
end
end card_alg_hom
|
8cff9ccb92740b95d388f863a8aed3cd499d155c
|
94e33a31faa76775069b071adea97e86e218a8ee
|
/src/algebraic_geometry/projective_spectrum/topology.lean
|
4425efc12d9dece2df2acbd004e5f234e79b6f87
|
[
"Apache-2.0"
] |
permissive
|
urkud/mathlib
|
eab80095e1b9f1513bfb7f25b4fa82fa4fd02989
|
6379d39e6b5b279df9715f8011369a301b634e41
|
refs/heads/master
| 1,658,425,342,662
| 1,658,078,703,000
| 1,658,078,703,000
| 186,910,338
| 0
| 0
|
Apache-2.0
| 1,568,512,083,000
| 1,557,958,709,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 18,868
|
lean
|
/-
Copyright (c) 2020 Jujian Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jujian Zhang, Johan Commelin
-/
import topology.category.Top
import ring_theory.graded_algebra.homogeneous_ideal
/-!
# Projective spectrum of a graded ring
The projective spectrum of a graded commutative ring is the subtype of all homogenous ideals that
are prime and do not contain the irrelevant ideal.
It is naturally endowed with a topology: the Zariski topology.
## Notation
- `R` is a commutative semiring;
- `A` is a commutative ring and an `R`-algebra;
- `𝒜 : ℕ → submodule R A` is the grading of `A`;
## Main definitions
* `projective_spectrum 𝒜`: The projective spectrum of a graded ring `A`, or equivalently, the set of
all homogeneous ideals of `A` that is both prime and relevant i.e. not containing irrelevant
ideal. Henceforth, we call elements of projective spectrum *relevant homogeneous prime ideals*.
* `projective_spectrum.zero_locus 𝒜 s`: The zero locus of a subset `s` of `A`
is the subset of `projective_spectrum 𝒜` consisting of all relevant homogeneous prime ideals that
contain `s`.
* `projective_spectrum.vanishing_ideal t`: The vanishing ideal of a subset `t` of
`projective_spectrum 𝒜` is the intersection of points in `t` (viewed as relevant homogeneous prime
ideals).
* `projective_spectrum.Top`: the topological space of `projective_spectrum 𝒜` endowed with the
Zariski topology
-/
noncomputable theory
open_locale direct_sum big_operators pointwise
open direct_sum set_like Top topological_space category_theory opposite
variables {R A: Type*}
variables [comm_semiring R] [comm_ring A] [algebra R A]
variables (𝒜 : ℕ → submodule R A) [graded_algebra 𝒜]
/--
The projective spectrum of a graded commutative ring is the subtype of all homogenous ideals that
are prime and do not contain the irrelevant ideal.
-/
@[nolint has_inhabited_instance]
def projective_spectrum :=
{I : homogeneous_ideal 𝒜 // I.to_ideal.is_prime ∧ ¬(homogeneous_ideal.irrelevant 𝒜 ≤ I)}
namespace projective_spectrum
variable {𝒜}
/-- A method to view a point in the projective spectrum of a graded ring
as a homogeneous ideal of that ring. -/
abbreviation as_homogeneous_ideal (x : projective_spectrum 𝒜) : homogeneous_ideal 𝒜 := x.1
lemma as_homogeneous_ideal_def (x : projective_spectrum 𝒜) :
x.as_homogeneous_ideal = x.1 := rfl
instance is_prime (x : projective_spectrum 𝒜) :
x.as_homogeneous_ideal.to_ideal.is_prime := x.2.1
@[ext] lemma ext {x y : projective_spectrum 𝒜} :
x = y ↔ x.as_homogeneous_ideal = y.as_homogeneous_ideal :=
subtype.ext_iff_val
variable (𝒜)
/-- The zero locus of a set `s` of elements of a commutative ring `A`
is the set of all relevant homogeneous prime ideals of the ring that contain the set `s`.
An element `f` of `A` can be thought of as a dependent function on the projective spectrum of `𝒜`.
At a point `x` (a homogeneous prime ideal)
the function (i.e., element) `f` takes values in the quotient ring `A` modulo the prime ideal `x`.
In this manner, `zero_locus s` is exactly the subset of `projective_spectrum 𝒜`
where all "functions" in `s` vanish simultaneously. -/
def zero_locus (s : set A) : set (projective_spectrum 𝒜) :=
{x | s ⊆ x.as_homogeneous_ideal}
@[simp] lemma mem_zero_locus (x : projective_spectrum 𝒜) (s : set A) :
x ∈ zero_locus 𝒜 s ↔ s ⊆ x.as_homogeneous_ideal := iff.rfl
@[simp] lemma zero_locus_span (s : set A) :
zero_locus 𝒜 (ideal.span s) = zero_locus 𝒜 s :=
by { ext x, exact (submodule.gi _ _).gc s x.as_homogeneous_ideal.to_ideal }
variable {𝒜}
/-- The vanishing ideal of a set `t` of points
of the prime spectrum of a commutative ring `R`
is the intersection of all the prime ideals in the set `t`.
An element `f` of `A` can be thought of as a dependent function on the projective spectrum of `𝒜`.
At a point `x` (a homogeneous prime ideal)
the function (i.e., element) `f` takes values in the quotient ring `A` modulo the prime ideal `x`.
In this manner, `vanishing_ideal t` is exactly the ideal of `A`
consisting of all "functions" that vanish on all of `t`. -/
def vanishing_ideal (t : set (projective_spectrum 𝒜)) : homogeneous_ideal 𝒜 :=
⨅ (x : projective_spectrum 𝒜) (h : x ∈ t), x.as_homogeneous_ideal
lemma coe_vanishing_ideal (t : set (projective_spectrum 𝒜)) :
(vanishing_ideal t : set A) =
{f | ∀ x : projective_spectrum 𝒜, x ∈ t → f ∈ x.as_homogeneous_ideal} :=
begin
ext f,
rw [vanishing_ideal, set_like.mem_coe, ← homogeneous_ideal.mem_iff,
homogeneous_ideal.to_ideal_infi, submodule.mem_infi],
apply forall_congr (λ x, _),
rw [homogeneous_ideal.to_ideal_infi, submodule.mem_infi, homogeneous_ideal.mem_iff],
end
lemma mem_vanishing_ideal (t : set (projective_spectrum 𝒜)) (f : A) :
f ∈ vanishing_ideal t ↔
∀ x : projective_spectrum 𝒜, x ∈ t → f ∈ x.as_homogeneous_ideal :=
by rw [← set_like.mem_coe, coe_vanishing_ideal, set.mem_set_of_eq]
@[simp] lemma vanishing_ideal_singleton (x : projective_spectrum 𝒜) :
vanishing_ideal ({x} : set (projective_spectrum 𝒜)) = x.as_homogeneous_ideal :=
by simp [vanishing_ideal]
lemma subset_zero_locus_iff_le_vanishing_ideal (t : set (projective_spectrum 𝒜))
(I : ideal A) :
t ⊆ zero_locus 𝒜 I ↔ I ≤ (vanishing_ideal t).to_ideal :=
⟨λ h f k, (mem_vanishing_ideal _ _).mpr (λ x j, (mem_zero_locus _ _ _).mpr (h j) k), λ h,
λ x j, (mem_zero_locus _ _ _).mpr (le_trans h (λ f h, ((mem_vanishing_ideal _ _).mp h) x j))⟩
variable (𝒜)
/-- `zero_locus` and `vanishing_ideal` form a galois connection. -/
lemma gc_ideal : @galois_connection
(ideal A) (set (projective_spectrum 𝒜))ᵒᵈ _ _
(λ I, zero_locus 𝒜 I) (λ t, (vanishing_ideal t).to_ideal) :=
λ I t, subset_zero_locus_iff_le_vanishing_ideal t I
/-- `zero_locus` and `vanishing_ideal` form a galois connection. -/
lemma gc_set : @galois_connection
(set A) (set (projective_spectrum 𝒜))ᵒᵈ _ _
(λ s, zero_locus 𝒜 s) (λ t, vanishing_ideal t) :=
have ideal_gc : galois_connection (ideal.span) coe := (submodule.gi A _).gc,
by simpa [zero_locus_span, function.comp] using galois_connection.compose ideal_gc (gc_ideal 𝒜)
lemma gc_homogeneous_ideal : @galois_connection
(homogeneous_ideal 𝒜) (set (projective_spectrum 𝒜))ᵒᵈ _ _
(λ I, zero_locus 𝒜 I) (λ t, (vanishing_ideal t)) :=
λ I t, by simpa [show I.to_ideal ≤ (vanishing_ideal t).to_ideal ↔ I ≤ (vanishing_ideal t),
from iff.rfl] using subset_zero_locus_iff_le_vanishing_ideal t I.to_ideal
lemma subset_zero_locus_iff_subset_vanishing_ideal (t : set (projective_spectrum 𝒜))
(s : set A) :
t ⊆ zero_locus 𝒜 s ↔ s ⊆ vanishing_ideal t :=
(gc_set _) s t
lemma subset_vanishing_ideal_zero_locus (s : set A) :
s ⊆ vanishing_ideal (zero_locus 𝒜 s) :=
(gc_set _).le_u_l s
lemma ideal_le_vanishing_ideal_zero_locus (I : ideal A) :
I ≤ (vanishing_ideal (zero_locus 𝒜 I)).to_ideal :=
(gc_ideal _).le_u_l I
lemma homogeneous_ideal_le_vanishing_ideal_zero_locus (I : homogeneous_ideal 𝒜) :
I ≤ vanishing_ideal (zero_locus 𝒜 I) :=
(gc_homogeneous_ideal _).le_u_l I
lemma subset_zero_locus_vanishing_ideal (t : set (projective_spectrum 𝒜)) :
t ⊆ zero_locus 𝒜 (vanishing_ideal t) :=
(gc_ideal _).l_u_le t
lemma zero_locus_anti_mono {s t : set A} (h : s ⊆ t) : zero_locus 𝒜 t ⊆ zero_locus 𝒜 s :=
(gc_set _).monotone_l h
lemma zero_locus_anti_mono_ideal {s t : ideal A} (h : s ≤ t) :
zero_locus 𝒜 (t : set A) ⊆ zero_locus 𝒜 (s : set A) :=
(gc_ideal _).monotone_l h
lemma zero_locus_anti_mono_homogeneous_ideal {s t : homogeneous_ideal 𝒜} (h : s ≤ t) :
zero_locus 𝒜 (t : set A) ⊆ zero_locus 𝒜 (s : set A) :=
(gc_homogeneous_ideal _).monotone_l h
lemma vanishing_ideal_anti_mono {s t : set (projective_spectrum 𝒜)} (h : s ⊆ t) :
vanishing_ideal t ≤ vanishing_ideal s :=
(gc_ideal _).monotone_u h
lemma zero_locus_bot :
zero_locus 𝒜 ((⊥ : ideal A) : set A) = set.univ :=
(gc_ideal 𝒜).l_bot
@[simp] lemma zero_locus_singleton_zero :
zero_locus 𝒜 ({0} : set A) = set.univ :=
zero_locus_bot _
@[simp] lemma zero_locus_empty :
zero_locus 𝒜 (∅ : set A) = set.univ :=
(gc_set 𝒜).l_bot
@[simp] lemma vanishing_ideal_univ :
vanishing_ideal (∅ : set (projective_spectrum 𝒜)) = ⊤ :=
by simpa using (gc_ideal _).u_top
lemma zero_locus_empty_of_one_mem {s : set A} (h : (1:A) ∈ s) :
zero_locus 𝒜 s = ∅ :=
set.eq_empty_iff_forall_not_mem.mpr $ λ x hx,
(infer_instance : x.as_homogeneous_ideal.to_ideal.is_prime).ne_top $
x.as_homogeneous_ideal.to_ideal.eq_top_iff_one.mpr $ hx h
@[simp] lemma zero_locus_singleton_one :
zero_locus 𝒜 ({1} : set A) = ∅ :=
zero_locus_empty_of_one_mem 𝒜 (set.mem_singleton (1 : A))
@[simp] lemma zero_locus_univ :
zero_locus 𝒜 (set.univ : set A) = ∅ :=
zero_locus_empty_of_one_mem _ (set.mem_univ 1)
lemma zero_locus_sup_ideal (I J : ideal A) :
zero_locus 𝒜 ((I ⊔ J : ideal A) : set A) = zero_locus _ I ∩ zero_locus _ J :=
(gc_ideal 𝒜).l_sup
lemma zero_locus_sup_homogeneous_ideal (I J : homogeneous_ideal 𝒜) :
zero_locus 𝒜 ((I ⊔ J : homogeneous_ideal 𝒜) : set A) = zero_locus _ I ∩ zero_locus _ J :=
(gc_homogeneous_ideal 𝒜).l_sup
lemma zero_locus_union (s s' : set A) :
zero_locus 𝒜 (s ∪ s') = zero_locus _ s ∩ zero_locus _ s' :=
(gc_set 𝒜).l_sup
lemma vanishing_ideal_union (t t' : set (projective_spectrum 𝒜)) :
vanishing_ideal (t ∪ t') = vanishing_ideal t ⊓ vanishing_ideal t' :=
by ext1; convert (gc_ideal 𝒜).u_inf
lemma zero_locus_supr_ideal {γ : Sort*} (I : γ → ideal A) :
zero_locus _ ((⨆ i, I i : ideal A) : set A) = (⋂ i, zero_locus 𝒜 (I i)) :=
(gc_ideal 𝒜).l_supr
lemma zero_locus_supr_homogeneous_ideal {γ : Sort*} (I : γ → homogeneous_ideal 𝒜) :
zero_locus _ ((⨆ i, I i : homogeneous_ideal 𝒜) : set A) = (⋂ i, zero_locus 𝒜 (I i)) :=
(gc_homogeneous_ideal 𝒜).l_supr
lemma zero_locus_Union {γ : Sort*} (s : γ → set A) :
zero_locus 𝒜 (⋃ i, s i) = (⋂ i, zero_locus 𝒜 (s i)) :=
(gc_set 𝒜).l_supr
lemma zero_locus_bUnion (s : set (set A)) :
zero_locus 𝒜 (⋃ s' ∈ s, s' : set A) = ⋂ s' ∈ s, zero_locus 𝒜 s' :=
by simp only [zero_locus_Union]
lemma vanishing_ideal_Union {γ : Sort*} (t : γ → set (projective_spectrum 𝒜)) :
vanishing_ideal (⋃ i, t i) = (⨅ i, vanishing_ideal (t i)) :=
homogeneous_ideal.to_ideal_injective $
by convert (gc_ideal 𝒜).u_infi; exact homogeneous_ideal.to_ideal_infi _
lemma zero_locus_inf (I J : ideal A) :
zero_locus 𝒜 ((I ⊓ J : ideal A) : set A) = zero_locus 𝒜 I ∪ zero_locus 𝒜 J :=
set.ext $ λ x, by simpa using x.2.1.inf_le
lemma union_zero_locus (s s' : set A) :
zero_locus 𝒜 s ∪ zero_locus 𝒜 s' = zero_locus 𝒜 ((ideal.span s) ⊓ (ideal.span s'): ideal A) :=
by { rw zero_locus_inf, simp }
lemma zero_locus_mul_ideal (I J : ideal A) :
zero_locus 𝒜 ((I * J : ideal A) : set A) = zero_locus 𝒜 I ∪ zero_locus 𝒜 J :=
set.ext $ λ x, by simpa using x.2.1.mul_le
lemma zero_locus_mul_homogeneous_ideal (I J : homogeneous_ideal 𝒜) :
zero_locus 𝒜 ((I * J : homogeneous_ideal 𝒜) : set A) = zero_locus 𝒜 I ∪ zero_locus 𝒜 J :=
set.ext $ λ x, by simpa using x.2.1.mul_le
lemma zero_locus_singleton_mul (f g : A) :
zero_locus 𝒜 ({f * g} : set A) = zero_locus 𝒜 {f} ∪ zero_locus 𝒜 {g} :=
set.ext $ λ x, by simpa using x.2.1.mul_mem_iff_mem_or_mem
@[simp] lemma zero_locus_singleton_pow (f : A) (n : ℕ) (hn : 0 < n) :
zero_locus 𝒜 ({f ^ n} : set A) = zero_locus 𝒜 {f} :=
set.ext $ λ x, by simpa using x.2.1.pow_mem_iff_mem n hn
lemma sup_vanishing_ideal_le (t t' : set (projective_spectrum 𝒜)) :
vanishing_ideal t ⊔ vanishing_ideal t' ≤ vanishing_ideal (t ∩ t') :=
begin
intros r,
rw [← homogeneous_ideal.mem_iff, homogeneous_ideal.to_ideal_sup, mem_vanishing_ideal,
submodule.mem_sup],
rintro ⟨f, hf, g, hg, rfl⟩ x ⟨hxt, hxt'⟩,
erw mem_vanishing_ideal at hf hg,
apply submodule.add_mem; solve_by_elim
end
lemma mem_compl_zero_locus_iff_not_mem {f : A} {I : projective_spectrum 𝒜} :
I ∈ (zero_locus 𝒜 {f} : set (projective_spectrum 𝒜))ᶜ ↔ f ∉ I.as_homogeneous_ideal :=
by rw [set.mem_compl_eq, mem_zero_locus, set.singleton_subset_iff]; refl
/-- The Zariski topology on the prime spectrum of a commutative ring
is defined via the closed sets of the topology:
they are exactly those sets that are the zero locus of a subset of the ring. -/
instance zariski_topology : topological_space (projective_spectrum 𝒜) :=
topological_space.of_closed (set.range (projective_spectrum.zero_locus 𝒜))
(⟨set.univ, by simp⟩)
begin
intros Zs h,
rw set.sInter_eq_Inter,
let f : Zs → set _ := λ i, classical.some (h i.2),
have hf : ∀ i : Zs, ↑i = zero_locus 𝒜 (f i) := λ i, (classical.some_spec (h i.2)).symm,
simp only [hf],
exact ⟨_, zero_locus_Union 𝒜 _⟩
end
(by { rintros _ ⟨s, rfl⟩ _ ⟨t, rfl⟩, exact ⟨_, (union_zero_locus 𝒜 s t).symm⟩ })
/--
The underlying topology of `Proj` is the projective spectrum of graded ring `A`.
-/
def Top : Top := Top.of (projective_spectrum 𝒜)
lemma is_open_iff (U : set (projective_spectrum 𝒜)) :
is_open U ↔ ∃ s, Uᶜ = zero_locus 𝒜 s :=
by simp only [@eq_comm _ Uᶜ]; refl
lemma is_closed_iff_zero_locus (Z : set (projective_spectrum 𝒜)) :
is_closed Z ↔ ∃ s, Z = zero_locus 𝒜 s :=
by rw [← is_open_compl_iff, is_open_iff, compl_compl]
lemma is_closed_zero_locus (s : set A) :
is_closed (zero_locus 𝒜 s) :=
by { rw [is_closed_iff_zero_locus], exact ⟨s, rfl⟩ }
lemma zero_locus_vanishing_ideal_eq_closure (t : set (projective_spectrum 𝒜)) :
zero_locus 𝒜 (vanishing_ideal t : set A) = closure t :=
begin
apply set.subset.antisymm,
{ rintro x hx t' ⟨ht', ht⟩,
obtain ⟨fs, rfl⟩ : ∃ s, t' = zero_locus 𝒜 s,
by rwa [is_closed_iff_zero_locus] at ht',
rw [subset_zero_locus_iff_subset_vanishing_ideal] at ht,
exact set.subset.trans ht hx },
{ rw (is_closed_zero_locus _ _).closure_subset_iff,
exact subset_zero_locus_vanishing_ideal 𝒜 t }
end
lemma vanishing_ideal_closure (t : set (projective_spectrum 𝒜)) :
vanishing_ideal (closure t) = vanishing_ideal t :=
begin
have := (gc_ideal 𝒜).u_l_u_eq_u t,
dsimp only at this,
ext1,
erw zero_locus_vanishing_ideal_eq_closure 𝒜 t at this,
exact this,
end
section basic_open
/-- `basic_open r` is the open subset containing all prime ideals not containing `r`. -/
def basic_open (r : A) : topological_space.opens (projective_spectrum 𝒜) :=
{ val := { x | r ∉ x.as_homogeneous_ideal },
property := ⟨{r}, set.ext $ λ x, set.singleton_subset_iff.trans $ not_not.symm⟩ }
@[simp] lemma mem_basic_open (f : A) (x : projective_spectrum 𝒜) :
x ∈ basic_open 𝒜 f ↔ f ∉ x.as_homogeneous_ideal := iff.rfl
lemma mem_coe_basic_open (f : A) (x : projective_spectrum 𝒜) :
x ∈ (↑(basic_open 𝒜 f): set (projective_spectrum 𝒜)) ↔ f ∉ x.as_homogeneous_ideal := iff.rfl
lemma is_open_basic_open {a : A} : is_open ((basic_open 𝒜 a) :
set (projective_spectrum 𝒜)) :=
(basic_open 𝒜 a).property
@[simp] lemma basic_open_eq_zero_locus_compl (r : A) :
(basic_open 𝒜 r : set (projective_spectrum 𝒜)) = (zero_locus 𝒜 {r})ᶜ :=
set.ext $ λ x, by simpa only [set.mem_compl_eq, mem_zero_locus, set.singleton_subset_iff]
@[simp] lemma basic_open_one : basic_open 𝒜 (1 : A) = ⊤ :=
topological_space.opens.ext $ by simp
@[simp] lemma basic_open_zero : basic_open 𝒜 (0 : A) = ⊥ :=
topological_space.opens.ext $ by simp
lemma basic_open_mul (f g : A) : basic_open 𝒜 (f * g) = basic_open 𝒜 f ⊓ basic_open 𝒜 g :=
topological_space.opens.ext $ by {simp [zero_locus_singleton_mul]}
lemma basic_open_mul_le_left (f g : A) : basic_open 𝒜 (f * g) ≤ basic_open 𝒜 f :=
by { rw basic_open_mul 𝒜 f g, exact inf_le_left }
lemma basic_open_mul_le_right (f g : A) : basic_open 𝒜 (f * g) ≤ basic_open 𝒜 g :=
by { rw basic_open_mul 𝒜 f g, exact inf_le_right }
@[simp] lemma basic_open_pow (f : A) (n : ℕ) (hn : 0 < n) :
basic_open 𝒜 (f ^ n) = basic_open 𝒜 f :=
topological_space.opens.ext $ by simpa using zero_locus_singleton_pow 𝒜 f n hn
lemma basic_open_eq_union_of_projection (f : A) :
basic_open 𝒜 f = ⨆ (i : ℕ), basic_open 𝒜 (graded_algebra.proj 𝒜 i f) :=
topological_space.opens.ext $ set.ext $ λ z, begin
erw [mem_coe_basic_open, topological_space.opens.mem_Sup],
split; intros hz,
{ rcases show ∃ i, graded_algebra.proj 𝒜 i f ∉ z.as_homogeneous_ideal, begin
contrapose! hz with H,
classical,
rw ←direct_sum.sum_support_decompose 𝒜 f,
apply ideal.sum_mem _ (λ i hi, H i)
end with ⟨i, hi⟩,
exact ⟨basic_open 𝒜 (graded_algebra.proj 𝒜 i f), ⟨i, rfl⟩, by rwa mem_basic_open⟩ },
{ obtain ⟨_, ⟨i, rfl⟩, hz⟩ := hz,
exact λ rid, hz (z.1.2 i rid) },
end
lemma is_topological_basis_basic_opens : topological_space.is_topological_basis
(set.range (λ (r : A), (basic_open 𝒜 r : set (projective_spectrum 𝒜)))) :=
begin
apply topological_space.is_topological_basis_of_open_of_nhds,
{ rintros _ ⟨r, rfl⟩,
exact is_open_basic_open 𝒜 },
{ rintros p U hp ⟨s, hs⟩,
rw [← compl_compl U, set.mem_compl_eq, ← hs, mem_zero_locus, set.not_subset] at hp,
obtain ⟨f, hfs, hfp⟩ := hp,
refine ⟨basic_open 𝒜 f, ⟨f, rfl⟩, hfp, _⟩,
rw [← set.compl_subset_compl, ← hs, basic_open_eq_zero_locus_compl, compl_compl],
exact zero_locus_anti_mono 𝒜 (set.singleton_subset_iff.mpr hfs) }
end
end basic_open
section order
/-!
## The specialization order
We endow `projective_spectrum 𝒜` with a partial order,
where `x ≤ y` if and only if `y ∈ closure {x}`.
-/
instance : partial_order (projective_spectrum 𝒜) :=
subtype.partial_order _
@[simp] lemma as_ideal_le_as_ideal (x y : projective_spectrum 𝒜) :
x.as_homogeneous_ideal ≤ y.as_homogeneous_ideal ↔ x ≤ y :=
subtype.coe_le_coe
@[simp] lemma as_ideal_lt_as_ideal (x y : projective_spectrum 𝒜) :
x.as_homogeneous_ideal < y.as_homogeneous_ideal ↔ x < y :=
subtype.coe_lt_coe
lemma le_iff_mem_closure (x y : projective_spectrum 𝒜) :
x ≤ y ↔ y ∈ closure ({x} : set (projective_spectrum 𝒜)) :=
begin
rw [← as_ideal_le_as_ideal, ← zero_locus_vanishing_ideal_eq_closure,
mem_zero_locus, vanishing_ideal_singleton],
simp only [coe_subset_coe, subtype.coe_le_coe, coe_coe],
end
end order
end projective_spectrum
|
b9d90bcff9d90a334e940b98dbef16357ce54af4
|
cf39355caa609c0f33405126beee2739aa3cb77e
|
/library/init/control/reader.lean
|
fe4b34ff9fe11b2c827329921dbcb9a75a233aa7
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/lean
|
12b87f69d92e614daea8bcc9d4de9a9ace089d0e
|
cce7990ea86a78bdb383e38ed7f9b5ba93c60ce0
|
refs/heads/master
| 1,687,508,156,644
| 1,684,951,104,000
| 1,684,951,104,000
| 169,960,991
| 457
| 107
|
Apache-2.0
| 1,686,744,372,000
| 1,549,790,268,000
|
C++
|
UTF-8
|
Lean
| false
| false
| 5,008
|
lean
|
/-
Copyright (c) 2017 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sebastian Ullrich
The reader monad transformer for passing immutable state.
-/
prelude
import init.control.lift init.control.id init.control.alternative init.control.except
universes u v w
/-- An implementation of [ReaderT](https://hackage.haskell.org/package/transformers-0.5.5.0/docs/Control-Monad-Trans-Reader.html#t:ReaderT) -/
structure reader_t (ρ : Type u) (m : Type u → Type v) (α : Type u) : Type (max u v) :=
(run : ρ → m α)
@[reducible] def reader (ρ : Type u) := reader_t ρ id
attribute [pp_using_anonymous_constructor] reader_t
namespace reader_t
section
variable {ρ : Type u}
variable {m : Type u → Type v}
variable [monad m]
variables {α β : Type u}
@[inline] protected def read : reader_t ρ m ρ :=
⟨pure⟩
@[inline] protected def pure (a : α) : reader_t ρ m α :=
⟨λ r, pure a⟩
@[inline] protected def bind (x : reader_t ρ m α) (f : α → reader_t ρ m β) : reader_t ρ m β :=
⟨λ r, do a ← x.run r,
(f a).run r⟩
instance : monad (reader_t ρ m) :=
{ pure := @reader_t.pure _ _ _, bind := @reader_t.bind _ _ _ }
@[inline] protected def lift (a : m α) : reader_t ρ m α :=
⟨λ r, a⟩
instance (m) [monad m] : has_monad_lift m (reader_t ρ m) :=
⟨@reader_t.lift ρ m _⟩
@[inline] protected def monad_map {ρ m m'} [monad m] [monad m'] {α} (f : Π {α}, m α → m' α) : reader_t ρ m α → reader_t ρ m' α :=
λ x, ⟨λ r, f (x.run r)⟩
instance (ρ m m') [monad m] [monad m'] : monad_functor m m' (reader_t ρ m) (reader_t ρ m') :=
⟨@reader_t.monad_map ρ m m' _ _⟩
@[inline] protected def adapt {ρ' : Type u} [monad m] {α : Type u} (f : ρ' → ρ) : reader_t ρ m α → reader_t ρ' m α :=
λ x, ⟨λ r, x.run (f r)⟩
protected def orelse [alternative m] {α : Type u} (x₁ x₂ : reader_t ρ m α) : reader_t ρ m α :=
⟨λ s, x₁.run s <|> x₂.run s⟩
protected def failure [alternative m] {α : Type u} : reader_t ρ m α :=
⟨λ s, failure⟩
instance [alternative m] : alternative (reader_t ρ m) :=
{ failure := @reader_t.failure _ _ _ _,
orelse := @reader_t.orelse _ _ _ _ }
instance (ε) [monad m] [monad_except ε m] : monad_except ε (reader_t ρ m) :=
{ throw := λ α, reader_t.lift ∘ throw,
catch := λ α x c, ⟨λ r, catch (x.run r) (λ e, (c e).run r)⟩ }
end
end reader_t
/-- An implementation of [MonadReader](https://hackage.haskell.org/package/mtl-2.2.2/docs/Control-Monad-Reader-Class.html#t:MonadReader).
It does not contain `local` because this function cannot be lifted using `monad_lift`.
Instead, the `monad_reader_adapter` class provides the more general `adapt_reader` function.
Note: This class can be seen as a simplification of the more "principled" definition
```
class monad_reader (ρ : out_param (Type u)) (n : Type u → Type u) :=
(lift {α : Type u} : (∀ {m : Type u → Type u} [monad m], reader_t ρ m α) → n α)
```
-/
class monad_reader (ρ : out_param (Type u)) (m : Type u → Type v) :=
(read : m ρ)
export monad_reader (read)
@[priority 100]
instance monad_reader_trans {ρ : Type u} {m : Type u → Type v} {n : Type u → Type w}
[monad_reader ρ m] [has_monad_lift m n] : monad_reader ρ n :=
⟨monad_lift (monad_reader.read : m ρ)⟩
instance {ρ : Type u} {m : Type u → Type v} [monad m] : monad_reader ρ (reader_t ρ m) :=
⟨reader_t.read⟩
/-- Adapt a monad stack, changing the type of its top-most environment.
This class is comparable to [Control.Lens.Magnify](https://hackage.haskell.org/package/lens-4.15.4/docs/Control-Lens-Zoom.html#t:Magnify), but does not use lenses (why would it), and is derived automatically for any transformer implementing `monad_functor`.
Note: This class can be seen as a simplification of the more "principled" definition
```
class monad_reader_functor (ρ ρ' : out_param (Type u)) (n n' : Type u → Type u) :=
(map {α : Type u} : (∀ {m : Type u → Type u} [monad m], reader_t ρ m α → reader_t ρ' m α) → n α → n' α)
```
-/
class monad_reader_adapter (ρ ρ' : out_param (Type u)) (m m' : Type u → Type v) :=
(adapt_reader {α : Type u} : (ρ' → ρ) → m α → m' α)
export monad_reader_adapter (adapt_reader)
section
variables {ρ ρ' : Type u} {m m' : Type u → Type v}
@[priority 100]
instance monad_reader_adapter_trans {n n' : Type u → Type v} [monad_reader_adapter ρ ρ' m m']
[monad_functor m m' n n'] : monad_reader_adapter ρ ρ' n n' :=
⟨λ α f, monad_map (λ α, (adapt_reader f : m α → m' α))⟩
instance [monad m] : monad_reader_adapter ρ ρ' (reader_t ρ m) (reader_t ρ' m) :=
⟨λ α, reader_t.adapt⟩
end
instance (ρ : Type u) (m out) [monad_run out m] : monad_run (λ α, ρ → out α) (reader_t ρ m) :=
⟨λ α x, run ∘ x.run⟩
|
d1263e66b91923d8aa563a97d67ab99d62c389e9
|
c3de33d4701e6113627153fe1103b255e752ed7d
|
/theories/set_theory.lean
|
59fb6f165161c3b1dc289bdb0264cc5f414dffde
|
[] |
no_license
|
jroesch/library_dev
|
77d2b246ff47ab05d55cb9706a37d3de97038388
|
4faa0a45c6aa7eee6e661113c2072b8840bff79b
|
refs/heads/master
| 1,611,281,606,352
| 1,495,661,644,000
| 1,495,661,644,000
| 92,340,430
| 0
| 0
| null | 1,495,663,344,000
| 1,495,663,344,000
| null |
UTF-8
|
Lean
| false
| false
| 27,875
|
lean
|
import data.set.basic
universes u v
@[simp]
lemma subtype.eta {α : Type u} {p : α → Prop} {a : subtype p} {h : p (a.val)} :
{subtype . val := a.val, property := h} = a :=
by cases a; refl
def arity (α : Type u) : nat → Type u
| 0 := α
| (n+1) := α → arity n
inductive pSet : Type (u+1)
| mk (α : Type u) (A : α → pSet) : pSet
namespace pSet
def type : pSet → Type u
| ⟨α, A⟩ := α
def func : Π (x : pSet), x.type → pSet
| ⟨α, A⟩ := A
def mk_type_func : Π (x : pSet), mk x.type x.func = x
| ⟨α, A⟩ := rfl
def equiv (x y : pSet) : Prop :=
pSet.rec (λα z m ⟨β, B⟩, (∀a, ∃b, m a (B b)) ∧ (∀b, ∃a, m a (B b))) x y
def equiv.refl (x) : equiv x x :=
pSet.rec_on x $ λα A IH, ⟨λa, ⟨a, IH a⟩, λa, ⟨a, IH a⟩⟩
def equiv.euc {x} : Π {y z}, equiv x y → equiv z y → equiv x z :=
pSet.rec_on x $ λα A IH y, pSet.rec_on y $ λβ B _ ⟨γ, Γ⟩ ⟨αβ, βα⟩ ⟨γβ, βγ⟩,
⟨λa, let ⟨b, ab⟩ := αβ a, ⟨c, bc⟩ := βγ b in ⟨c, IH a ab bc⟩,
λc, let ⟨b, cb⟩ := γβ c, ⟨a, ba⟩ := βα b in ⟨a, IH a ba cb⟩⟩
def equiv.symm {x y} : equiv x y → equiv y x :=
equiv.euc (equiv.refl y)
def equiv.trans {x y z} (h1 : equiv x y) (h2 : equiv y z) : equiv x z :=
equiv.euc h1 (equiv.symm h2)
instance setoid : setoid pSet :=
⟨pSet.equiv, equiv.refl, λx y, equiv.symm, λx y z, equiv.trans⟩
protected def subset : pSet → pSet → Prop
| ⟨α, A⟩ ⟨β, B⟩ := ∀a, ∃b, equiv (A a) (B b)
instance : has_subset pSet := ⟨pSet.subset⟩
def equiv.ext : Π (x y : pSet), equiv x y ↔ (x ⊆ y ∧ y ⊆ x)
| ⟨α, A⟩ ⟨β, B⟩ :=
⟨λ⟨αβ, βα⟩, ⟨αβ, λb, let ⟨a, h⟩ := βα b in ⟨a, equiv.symm h⟩⟩,
λ⟨αβ, βα⟩, ⟨αβ, λb, let ⟨a, h⟩ := βα b in ⟨a, equiv.symm h⟩⟩⟩
def subset.congr_left : Π {x y z : pSet}, equiv x y → (x ⊆ z ↔ y ⊆ z)
| ⟨α, A⟩ ⟨β, B⟩ ⟨γ, Γ⟩ ⟨αβ, βα⟩ :=
⟨λαγ b, let ⟨a, ba⟩ := βα b, ⟨c, ac⟩ := αγ a in ⟨c, equiv.trans (equiv.symm ba) ac⟩,
λβγ a, let ⟨b, ab⟩ := αβ a, ⟨c, bc⟩ := βγ b in ⟨c, equiv.trans ab bc⟩⟩
def subset.congr_right : Π {x y z : pSet}, equiv x y → (z ⊆ x ↔ z ⊆ y)
| ⟨α, A⟩ ⟨β, B⟩ ⟨γ, Γ⟩ ⟨αβ, βα⟩ :=
⟨λγα c, let ⟨a, ca⟩ := γα c, ⟨b, ab⟩ := αβ a in ⟨b, equiv.trans ca ab⟩,
λγβ c, let ⟨b, cb⟩ := γβ c, ⟨a, ab⟩ := βα b in ⟨a, equiv.trans cb (equiv.symm ab)⟩⟩
def mem : pSet → pSet → Prop
| x ⟨β, B⟩ := ∃b, equiv x (B b)
instance : has_mem pSet.{u} pSet.{u} := ⟨mem⟩
def mem.mk {α: Type u} (A : α → pSet) (a : α) : A a ∈ mk α A :=
show mem (A a) ⟨α, A⟩, from ⟨a, equiv.refl (A a)⟩
def mem.ext : Π {x y : pSet.{u}}, (∀w:pSet.{u}, w ∈ x ↔ w ∈ y) → equiv x y
| ⟨α, A⟩ ⟨β, B⟩ h := ⟨λa, (h (A a)).1 (mem.mk A a),
λb, let ⟨a, ha⟩ := (h (B b)).2 (mem.mk B b) in ⟨a, equiv.symm ha⟩⟩
def mem.congr_right : Π {x y : pSet.{u}}, equiv x y → (∀{w:pSet.{u}}, w ∈ x ↔ w ∈ y)
| ⟨α, A⟩ ⟨β, B⟩ ⟨αβ, βα⟩ w :=
⟨λ⟨a, ha⟩, let ⟨b, hb⟩ := αβ a in ⟨b, equiv.trans ha hb⟩,
λ⟨b, hb⟩, let ⟨a, ha⟩ := βα b in ⟨a, equiv.euc hb ha⟩⟩
def mem.congr_left : Π {x y : pSet.{u}}, equiv x y → (∀{w : pSet.{u}}, x ∈ w ↔ y ∈ w)
| x y h ⟨α, A⟩ := ⟨λ⟨a, ha⟩, ⟨a, equiv.trans (equiv.symm h) ha⟩, λ⟨a, ha⟩, ⟨a, equiv.trans h ha⟩⟩
def to_set (u : pSet.{u}) : set pSet.{u} := {x | x ∈ u}
def equiv.eq {x y : pSet} (h : equiv x y) : to_set x = to_set y :=
set.ext (λz, mem.congr_right h)
instance : has_coe pSet (set pSet) := ⟨to_set⟩
protected def empty : pSet := ⟨ulift empty, λe, match e with end⟩
instance : has_emptyc pSet := ⟨pSet.empty⟩
def mem_empty (x : pSet.{u}) : x ∉ (∅:pSet.{u}) := λe, match e with end
protected def insert : pSet → pSet → pSet
| u ⟨α, A⟩ := ⟨option α, λo, option.rec u A o⟩
instance : has_insert pSet pSet := ⟨pSet.insert⟩
def of_nat : ℕ → pSet
| 0 := ∅
| (n+1) := pSet.insert (of_nat n) (of_nat n)
def omega : pSet := ⟨ulift ℕ, λn, of_nat n.down⟩
protected def sep (p : set pSet) : pSet → pSet
| ⟨α, A⟩ := ⟨{a // p (A a)}, λx, A x.1⟩
instance : has_sep pSet pSet := ⟨pSet.sep⟩
def powerset : pSet → pSet
| ⟨α, A⟩ := ⟨set α, λp, ⟨{a // p a}, λx, A x.1⟩⟩
theorem mem_powerset : Π {x y : pSet}, y ∈ powerset x ↔ y ⊆ x
| ⟨α, A⟩ ⟨β, B⟩ := ⟨λ⟨p, e⟩, (subset.congr_left e).2 $ λ⟨a, pa⟩, ⟨a, equiv.refl (A a)⟩,
λβα, ⟨{a | ∃b, equiv (B b) (A a)}, λb, let ⟨a, ba⟩ := βα b in ⟨⟨a, b, ba⟩, ba⟩,
λ⟨a, b, ba⟩, ⟨b, ba⟩⟩⟩
def Union : pSet → pSet
| ⟨α, A⟩ := ⟨Σx, (A x).type, λ⟨x, y⟩, (A x).func y⟩
theorem mem_Union : Π {x y : pSet.{u}}, y ∈ Union x ↔ ∃ z:pSet.{u}, ∃_:z ∈ x, y ∈ z
| ⟨α, A⟩ y :=
⟨λ⟨⟨a, c⟩, (e : equiv y ((A a).func c))⟩,
have func (A a) c ∈ mk (A a).type (A a).func, from mem.mk (A a).func c,
⟨_, mem.mk _ _, (mem.congr_left e).2 (by rwa mk_type_func at this)⟩,
λ⟨⟨β, B⟩, ⟨a, (e:equiv (mk β B) (A a))⟩, ⟨b, yb⟩⟩,
by rw -(mk_type_func (A a)) at e; exact
let ⟨βt, tβ⟩ := e, ⟨c, bc⟩ := βt b in ⟨⟨a, c⟩, equiv.trans yb bc⟩⟩
def image (f : pSet.{u} → pSet.{u}) : pSet.{u} → pSet
| ⟨α, A⟩ := ⟨α, λa, f (A a)⟩
def mem_image {f : pSet.{u} → pSet.{u}} (H : ∀{x y}, equiv x y → equiv (f x) (f y)) :
Π {x y : pSet.{u}}, y ∈ image f x ↔ ∃z ∈ x, equiv y (f z)
| ⟨α, A⟩ y := ⟨λ⟨a, ya⟩, ⟨A a, mem.mk A a, ya⟩, λ⟨z, ⟨a, za⟩, yz⟩, ⟨a, equiv.trans yz (H za)⟩⟩
protected def lift : pSet.{u} → pSet.{max u v}
| ⟨α, A⟩ := ⟨ulift α, λ⟨x⟩, lift (A x)⟩
prefix ⇑ := pSet.lift
def embed : pSet.{max u+1 v} := ⟨ulift.{v u+1} pSet, λ⟨x⟩, pSet.lift.{u (max u+1 v)} x⟩
def lift_mem_embed : Π (x : pSet.{u}), pSet.lift.{u (max u+1 v)} x ∈ embed.{u v} :=
λx, ⟨⟨x⟩, equiv.refl _⟩
def arity.equiv : Π {n}, arity pSet.{u} n → arity pSet.{u} n → Prop
| 0 a b := equiv a b
| (n+1) a b := ∀ x y, equiv x y → arity.equiv (a x) (b y)
def resp (n) := { x : arity pSet.{u} n // arity.equiv x x }
def resp.f {n} (f : resp (n+1)) (x : pSet) : resp n :=
⟨f.1 x, f.2 _ _ $ equiv.refl x⟩
def resp.equiv {n} (a b : resp n) : Prop := arity.equiv a.1 b.1
def resp.refl {n} (a : resp n) : resp.equiv a a := a.2
def resp.euc : Π {n} {a b c : resp n}, resp.equiv a b → resp.equiv c b → resp.equiv a c
| 0 a b c hab hcb := equiv.euc hab hcb
| (n+1) a b c hab hcb := by delta resp.equiv; simp[arity.equiv]; exact λx y h,
@resp.euc n (a.f x) (b.f y) (c.f y) (hab _ _ h) (hcb _ _ $ equiv.refl y)
instance resp.setoid {n} : setoid (resp n) :=
⟨resp.equiv, resp.refl, λx y h, resp.euc (resp.refl y) h, λx y z h1 h2, resp.euc h1 $ resp.euc (resp.refl z) h2⟩
end pSet
def Set : Type (u+1) := quotient pSet.setoid.{u}
namespace pSet
namespace resp
def eval_aux : Π {n}, { f : resp n → arity Set.{u} n // ∀ (a b : resp n), resp.equiv a b → f a = f b }
| 0 := ⟨λa, ⟦a.1⟧, λa b h, quotient.sound h⟩
| (n+1) := let F : resp (n + 1) → arity Set (n + 1) := λa, @quotient.lift _ _ pSet.setoid
(λx, eval_aux.1 (a.f x)) (λb c h, eval_aux.2 _ _ (a.2 _ _ h)) in
⟨F, λb c h, funext $ @quotient.ind _ _ (λq, F b q = F c q) $ λz,
eval_aux.2 (resp.f b z) (resp.f c z) (h _ _ (equiv.refl z))⟩
def eval (n) : resp n → arity Set.{u} n := eval_aux.1
@[simp] def eval_val {n f x} : (@eval (n+1) f : Set → arity Set n) ⟦x⟧ = eval n (f.f x) := rfl
end resp
inductive definable (n) : arity Set.{u} n → Type (u+1)
| mk (f) : definable (resp.eval _ f)
attribute [class] definable
attribute [instance] definable.mk
def definable.eq_mk {n} (f) : Π {s : arity Set.{u} n} (H : resp.eval _ f = s), definable n s
| ._ rfl := ⟨f⟩
def definable.resp {n} : Π (s : arity Set.{u} n) [definable n s], resp n
| ._ ⟨f⟩ := f
def definable.eq {n} : Π (s : arity Set.{u} n) [H : definable n s], (@definable.resp n s H).eval _ = s
| ._ ⟨f⟩ := rfl
end pSet
namespace classical
open pSet
noncomputable def all_definable : Π {n} (F : arity Set.{u} n), definable n F
| 0 F := let p := @quotient.exists_rep pSet _ F in
definable.eq_mk ⟨some p, equiv.refl _⟩ (some_spec p)
| (n+1) (F : Set → arity Set.{u} n) := begin
note I := λx, (all_definable (F x)),
refine definable.eq_mk ⟨λx:pSet, (@definable.resp _ _ (I ⟦x⟧)).1, _⟩ _,
{ dsimp[arity.equiv],
intros x y h,
rw @quotient.sound pSet _ _ _ h,
exact (definable.resp (F ⟦y⟧)).2 },
exact funext (λq, quotient.induction_on q $ λx,
by simp[resp.f]; exact @definable.eq _ (F ⟦x⟧) (I ⟦x⟧))
end
local attribute [instance] prop_decidable
end classical
namespace Set
open pSet
def mem : Set → Set → Prop :=
quotient.lift₂ pSet.mem
(λx y x' y' hx hy, propext (iff.trans (mem.congr_left hx) (mem.congr_right hy)))
instance : has_mem Set Set := ⟨mem⟩
def to_set (u : Set.{u}) : set Set.{u} := {x | x ∈ u}
protected def subset (x y : Set.{u}) :=
∀ ⦃z:Set.{u}⦄, z ∈ x → z ∈ y
instance has_subset : has_subset Set :=
⟨Set.subset⟩
instance has_subset' : has_subset (quotient pSet.setoid) := Set.has_subset
theorem subset_iff : Π (x y : pSet), ⟦x⟧ ⊆ ⟦y⟧ ↔ x ⊆ y
| ⟨α, A⟩ ⟨β, B⟩ := ⟨λh a, @h ⟦A a⟧ (mem.mk A a),
λh z, quotient.induction_on z (λz ⟨a, za⟩, let ⟨b, ab⟩ := h a in ⟨b, equiv.trans za ab⟩)⟩
def ext {x y : Set.{u}} : (∀z:Set.{u}, z ∈ x ↔ z ∈ y) → x = y :=
quotient.induction_on₂ x y (λu v h, quotient.sound (mem.ext (λw, h ⟦w⟧)))
def ext_iff {x y : Set.{u}} : (∀z:Set.{u}, z ∈ x ↔ z ∈ y) ↔ x = y :=
⟨ext, λh, by simp[h]⟩
def empty : Set := ⟦∅⟧
instance : has_emptyc Set.{u} := ⟨empty⟩
instance : inhabited Set := ⟨∅⟩
@[simp] def mem_empty (x : Set.{u}) : x ∉ (∅:Set.{u}) :=
quotient.induction_on x pSet.mem_empty
def eq_empty (x : Set.{u}) : x = ∅ ↔ ∀y:Set.{u}, y ∉ x :=
⟨λh, by rw h; exact mem_empty,
λh, ext (λy, ⟨λyx, absurd yx (h y), λy0, absurd y0 (mem_empty _)⟩)⟩
protected def insert : Set.{u} → Set.{u} → Set.{u} :=
resp.eval 2 ⟨pSet.insert, λu v uv ⟨α, A⟩ ⟨β, B⟩ ⟨αβ, βα⟩,
⟨λo, match o with
| some a := let ⟨b, hb⟩ := αβ a in ⟨some b, hb⟩
| none := ⟨none, uv⟩
end, λo, match o with
| some b := let ⟨a, ha⟩ := βα b in ⟨some a, ha⟩
| none := ⟨none, uv⟩
end⟩⟩
instance : has_insert Set Set := ⟨Set.insert⟩
@[simp] def mem_insert {x y z : Set.{u}} : x ∈ insert y z ↔ (x = y ∨ x ∈ z) :=
quotient.induction_on₃ x y z
(λx y ⟨α, A⟩, show x ∈ mk (option α) (λo, option.rec y A o) ↔ ⟦x⟧ = ⟦y⟧ ∨ x ∈ mk α A, from
⟨λm, match m with
| ⟨some a, ha⟩ := or.inr ⟨a, ha⟩
| ⟨none, h⟩ := or.inl (quotient.sound h)
end, λm, match m with
| or.inr ⟨a, ha⟩ := ⟨some a, ha⟩
| or.inl h := ⟨none, quotient.exact h⟩
end⟩)
@[simp] theorem mem_singleton {x y : Set.{u}} : x ∈ @singleton Set.{u} Set.{u} _ _ y ↔ x = y :=
iff.trans mem_insert ⟨λo, or.rec (λh, h) (λn, absurd n (mem_empty _)) o, or.inl⟩
@[simp] theorem mem_singleton' {x y : Set.{u}} : x ∈ @insert Set.{u} Set.{u} _ y ∅ ↔ x = y := mem_singleton
-- It looks better when you print it, but I can't get the {y, z} notation to typecheck
@[simp] theorem mem_pair {x y z : Set.{u}} : x ∈ (insert z (@insert Set.{u} Set.{u} _ y ∅)) ↔ (x = y ∨ x = z) :=
iff.trans mem_insert $ iff.trans or.comm $ let m := @mem_singleton x y in ⟨or.imp_left m.1, or.imp_left m.2⟩
def omega : Set := ⟦omega⟧
@[simp] theorem omega_zero : (∅:Set.{u}) ∈ omega.{u} :=
show pSet.mem ∅ pSet.omega, from ⟨⟨0⟩, equiv.refl _⟩
@[simp] theorem omega_succ {n : Set.{u}} : n ∈ omega.{u} → insert n n ∈ omega.{u} :=
quotient.induction_on n (λx ⟨⟨n⟩, (h : x ≈ of_nat n)⟩, ⟨⟨n+1⟩,
have Set.insert ⟦x⟧ ⟦x⟧ = Set.insert ⟦of_nat n⟧ ⟦of_nat n⟧, by rw (@quotient.sound pSet _ _ _ h),
quotient.exact this⟩)
protected def sep (p : Set → Prop) : Set → Set :=
resp.eval 1 ⟨pSet.sep (λy, p ⟦y⟧), λ⟨α, A⟩ ⟨β, B⟩ ⟨αβ, βα⟩,
⟨λ⟨a, pa⟩, let ⟨b, hb⟩ := αβ a in ⟨⟨b, by rwa -(@quotient.sound pSet _ _ _ hb)⟩, hb⟩,
λ⟨b, pb⟩, let ⟨a, ha⟩ := βα b in ⟨⟨a, by rwa (@quotient.sound pSet _ _ _ ha)⟩, ha⟩⟩⟩
instance : has_sep Set Set := ⟨Set.sep⟩
@[simp] theorem mem_sep {p : Set.{u} → Prop} {x y : Set.{u}} : y ∈ {y ∈ x | p y} ↔ (y ∈ x ∧ p y) :=
quotient.induction_on₂ x y (λ⟨α, A⟩ y,
⟨λ⟨⟨a, pa⟩, h⟩, ⟨⟨a, h⟩, by rw (@quotient.sound pSet _ _ _ h); exact pa⟩,
λ⟨⟨a, h⟩, pa⟩, ⟨⟨a, by rw -(@quotient.sound pSet _ _ _ h); exact pa⟩, h⟩⟩)
def powerset : Set → Set :=
resp.eval 1 ⟨powerset, λ⟨α, A⟩ ⟨β, B⟩ ⟨αβ, βα⟩,
⟨λp, ⟨{b | ∃a, p a ∧ equiv (A a) (B b)},
λ⟨a, pa⟩, let ⟨b, ab⟩ := αβ a in ⟨⟨b, a, pa, ab⟩, ab⟩,
λ⟨b, a, pa, ab⟩, ⟨⟨a, pa⟩, ab⟩⟩,
λq, ⟨{a | ∃b, q b ∧ equiv (A a) (B b)},
λ⟨a, b, qb, ab⟩, ⟨⟨b, qb⟩, ab⟩,
λ⟨b, qb⟩, let ⟨a, ab⟩ := βα b in ⟨⟨a, b, qb, ab⟩, ab⟩⟩⟩⟩
@[simp] theorem mem_powerset {x y : Set} : y ∈ powerset x ↔ y ⊆ x :=
quotient.induction_on₂ x y (λ⟨α, A⟩ ⟨β, B⟩,
show (⟨β, B⟩ : pSet) ∈ (pSet.powerset ⟨α, A⟩) ↔ _,
by rw [mem_powerset, subset_iff])
theorem Union_lem {α β : Type u} (A : α → pSet) (B : β → pSet)
(αβ : ∀a, ∃b, equiv (A a) (B b)) : ∀a, ∃b, (equiv ((Union ⟨α, A⟩).func a) ((Union ⟨β, B⟩).func b))
| ⟨a, c⟩ := let ⟨b, hb⟩ := αβ a in
begin
ginduction A a with ea γ Γ,
ginduction B b with eb δ Δ,
rw [ea, eb] at hb,
cases hb with γδ δγ,
exact
let c : type (A a) := c, ⟨d, hd⟩ := γδ (by rwa ea at c) in
have equiv ((A a).func c) ((B b).func (eq.rec d (eq.symm eb))), from
match A a, B b, ea, eb, c, d, hd with ._, ._, rfl, rfl, x, y, hd := hd end,
⟨⟨b, eq.rec d (eq.symm eb)⟩, this⟩
end
def Union : Set → Set :=
resp.eval 1 ⟨pSet.Union, λ⟨α, A⟩ ⟨β, B⟩ ⟨αβ, βα⟩,
⟨Union_lem A B αβ, λa, exists.elim (Union_lem B A (λb,
exists.elim (βα b) (λc hc, ⟨c, equiv.symm hc⟩)) a) (λb hb, ⟨b, equiv.symm hb⟩)⟩⟩
notation `⋃` := Union
@[simp] theorem mem_Union {x y : Set.{u}} : y ∈ Union x ↔ ∃ z:Set.{u}, ∃_:z ∈ x, y ∈ z :=
quotient.induction_on₂ x y (λx y, iff.trans mem_Union
⟨λ⟨z, h⟩, ⟨⟦z⟧, h⟩, λ⟨z, h⟩, quotient.induction_on z (λz h, ⟨z, h⟩) h⟩)
@[simp] theorem Union_singleton {x : Set.{u}} : Union (@insert Set.{u} _ _ x ∅) = x :=
ext $ λy, by simp; exact ⟨λ⟨z, zx, yz⟩, by simp at zx; simp[zx] at yz; exact yz, λyx, ⟨x, by simp, yx⟩⟩
theorem singleton_inj {x y : Set.{u}} (H : @insert Set.{u} Set.{u} _ x ∅ = @insert Set _ _ y ∅) : x = y :=
let this := congr_arg Union H in by rwa [Union_singleton, Union_singleton] at this
protected def union (x y : Set.{u}) : Set.{u} := -- ⋃ {x, y}
Set.Union (@insert Set _ _ y (insert x ∅))
protected def inter (x y : Set.{u}) : Set.{u} := -- {z ∈ x | z ∈ y}
Set.sep (λz, z ∈ y) x
protected def diff (x y : Set.{u}) : Set.{u} := -- {z ∈ x | z ∉ y}
Set.sep (λz, z ∉ y) x
instance : has_union Set := ⟨Set.union⟩
instance : has_inter Set := ⟨Set.inter⟩
instance : has_sdiff Set := ⟨Set.diff⟩
@[simp] theorem mem_union {x y z : Set.{u}} : z ∈ x ∪ y ↔ (z ∈ x ∨ z ∈ y) :=
iff.trans mem_Union
⟨λ⟨w, wxy, zw⟩, match mem_pair.1 wxy with
| or.inl wx := or.inl (by rwa -wx)
| or.inr wy := or.inr (by rwa -wy)
end, λzxy, match zxy with
| or.inl zx := ⟨x, mem_pair.2 (or.inl rfl), zx⟩
| or.inr zy := ⟨y, mem_pair.2 (or.inr rfl), zy⟩
end⟩
@[simp] theorem mem_inter {x y z : Set.{u}} : z ∈ x ∩ y ↔ (z ∈ x ∧ z ∈ y) := mem_sep
@[simp] theorem mem_diff {x y z : Set.{u}} : z ∈ x \ y ↔ (z ∈ x ∧ z ∉ y) := mem_sep
theorem induction_on {p : Set → Prop} (x) (h : ∀x, (∀y ∈ x, p y) → p x) : p x :=
quotient.induction_on x $ λu, pSet.rec_on u $ λα A IH, h _ $ λy,
show @has_mem.mem _ _ Set.has_mem y ⟦⟨α, A⟩⟧ → p y, from
quotient.induction_on y (λv ⟨a, ha⟩, by rw (@quotient.sound pSet _ _ _ ha); exact IH a)
theorem regularity (x : Set.{u}) (h : x ≠ ∅) : ∃ y ∈ x, x ∩ y = ∅ :=
classical.by_contradiction $ λne, h $ (eq_empty x).2 $ λy,
induction_on y $ λz (IH : ∀w:Set.{u}, w ∈ z → w ∉ x), show z ∉ x, from λzx,
ne ⟨z, zx, (eq_empty _).2 (λw wxz, let ⟨wx, wz⟩ := mem_inter.1 wxz in IH w wz wx)⟩
def image (f : Set → Set) [H : definable 1 f] : Set → Set :=
let r := @definable.resp 1 f _ in
resp.eval 1 ⟨image r.1, λx y e, mem.ext $ λz,
iff.trans (mem_image r.2) $ iff.trans (by exact
⟨λ⟨w, h1, h2⟩, ⟨w, (mem.congr_right e).1 h1, h2⟩,
λ⟨w, h1, h2⟩, ⟨w, (mem.congr_right e).2 h1, h2⟩⟩) $
iff.symm (mem_image r.2)⟩
def image.mk : Π (f : Set.{u} → Set.{u}) [H : definable 1 f] (x) {y} (h : y ∈ x), f y ∈ @image f H x
| ._ ⟨F⟩ x y := quotient.induction_on₂ x y $ λ⟨α, A⟩ y ⟨a, ya⟩, ⟨a, F.2 _ _ ya⟩
@[simp] def mem_image : Π {f : Set.{u} → Set.{u}} [H : definable 1 f] {x y : Set.{u}}, y ∈ @image f H x ↔ ∃z ∈ x, f z = y
| ._ ⟨F⟩ x y := quotient.induction_on₂ x y $ λ⟨α, A⟩ y,
⟨λ⟨a, ya⟩, ⟨⟦A a⟧, mem.mk A a, eq.symm $ quotient.sound ya⟩,
λ⟨z, hz, e⟩, e ▸ image.mk _ _ hz⟩
def pair (x y : Set.{u}) : Set.{u} := -- {{x}, {x, y}}
@insert Set.{u} _ _ (@insert Set.{u} _ _ y {x}) {insert x (∅ : Set.{u})}
def pair_sep (p : Set.{u} → Set.{u} → Prop) (x y : Set.{u}) : Set.{u} :=
{z ∈ powerset (powerset (x ∪ y)) | ∃a ∈ x, ∃b ∈ y, z = pair a b ∧ p a b}
@[simp] theorem mem_pair_sep {p} {x y z : Set.{u}} : z ∈ pair_sep p x y ↔ ∃a ∈ x, ∃b ∈ y, z = pair a b ∧ p a b := by
refine iff.trans mem_sep ⟨and.right, λe, ⟨_, e⟩⟩; exact
let ⟨a, ax, b, bY, ze, pab⟩ := e in by rw ze; exact
mem_powerset.2 (λu uz, mem_powerset.2 $ (mem_pair.1 uz).elim
(λua, by rw ua; exact λv vu, by rw mem_singleton.1 vu; exact mem_union.2 (or.inl ax))
(λuab, by rw uab; exact λv vu, (mem_pair.1 vu).elim
(λva, by rw va; exact mem_union.2 (or.inl ax))
(λvb, by rw vb; exact mem_union.2 (or.inr bY))))
def pair_inj {x y x' y' : Set.{u}} (H : pair x y = pair x' y') : x = x' ∧ y = y' := begin
note ae := ext_iff.2 H,
simp[pair] at ae,
assert this : x = x',
{ note xx'y' := (ae (@insert Set.{u} _ _ x ∅)).1 (by simp),
cases xx'y' with h h,
exact singleton_inj h,
{ assert m : x' ∈ insert x (∅:Set.{u}),
{ rw h, simp },
simp at m, simph } },
refine ⟨this, _⟩,
cases this,
assert he : y = x → y = y',
{ intro yx,
cases yx,
note xy'x := (ae (@insert Set.{u} _ _ y' {x})).2 (by simp),
cases xy'x with xy'x xy'xx,
{ note y'x : y' ∈ @insert Set.{u} Set.{u} _ x ∅ := by rw -xy'x; simp,
simp at y'x, simph },
{ note yxx := (ext_iff.2 xy'xx y').1 (by simp),
simp at yxx, cases yxx; simp } },
note xyxy' := (ae (@insert Set.{u} _ _ y {x})).1 (by simp),
cases xyxy' with xyx xyy',
{ note yx := (ext_iff.2 xyx y).1 (by simp),
simp at yx, exact he yx },
{ note yxy' := (ext_iff.2 xyy' y).1 (by simp),
simp at yxy',
cases yxy' with yx yy',
exact he yx,
assumption }
end
def prod : Set.{u} → Set.{u} → Set.{u} := pair_sep (λa b, true)
@[simp] def mem_prod {x y z : Set.{u}} : z ∈ prod x y ↔ ∃a ∈ x, ∃b ∈ y, z = pair a b :=
by simp[prod]
@[simp] def pair_mem_prod {x y a b : Set.{u}} : pair a b ∈ prod x y ↔ a ∈ x ∧ b ∈ y :=
⟨λh, let ⟨a', a'x, b', b'y, e⟩ := mem_prod.1 h in
match a', b', pair_inj e, a'x, b'y with ._, ._, ⟨rfl, rfl⟩, ax, bY := ⟨ax, bY⟩ end,
λ⟨ax, bY⟩, by simp; exact ⟨a, ax, b, bY, rfl⟩⟩
def is_func (x y f : Set.{u}) : Prop :=
f ⊆ prod x y ∧ ∀z:Set.{u}, z ∈ x → ∃! w, pair z w ∈ f
def funs (x y : Set.{u}) : Set.{u} :=
{f ∈ powerset (prod x y) | is_func x y f}
@[simp] def mem_funs {x y f : Set.{u}} : f ∈ funs x y ↔ is_func x y f :=
by simp[funs]; exact ⟨and.left, λh, ⟨h, h.left⟩⟩
-- TODO(Mario): Prove this computably
noncomputable instance map_definable_aux (f : Set → Set) [H : definable 1 f] : definable 1 (λy, pair y (f y)) :=
@classical.all_definable 1 _
noncomputable def map (f : Set → Set) [H : definable 1 f] : Set → Set :=
image (λy, pair y (f y))
@[simp] theorem mem_map {f : Set → Set} [H : definable 1 f] {x y : Set} : y ∈ map f x ↔ ∃z ∈ x, pair z (f z) = y :=
mem_image
theorem map_unique {f : Set.{u} → Set.{u}} [H : definable 1 f] {x z : Set.{u}} (zx : z ∈ x) : ∃! w, pair z w ∈ map f x :=
⟨f z, image.mk _ _ zx, λy yx, let ⟨w, wx, we⟩ := mem_image.1 yx, ⟨wz, fy⟩ := pair_inj we in by rw[-fy, wz]⟩
@[simp] theorem map_is_func {f : Set → Set} [H : definable 1 f] {x y : Set} : is_func x y (map f x) ↔ ∀z ∈ x, f z ∈ y :=
⟨λ⟨ss, h⟩ z zx, let ⟨t, t1, t2⟩ := h z zx in by rw (t2 (f z) (image.mk _ _ zx)); exact (pair_mem_prod.1 (ss t1)).right,
λh, ⟨λy yx, let ⟨z, zx, ze⟩ := mem_image.1 yx in by rw -ze; exact pair_mem_prod.2 ⟨zx, h z zx⟩,
λz, map_unique⟩⟩
end Set
def Class := set Set
namespace Class
instance has_mem_Set_Class : has_mem Set Class := ⟨set.mem⟩
instance : has_subset Class := ⟨set.subset⟩
instance : has_sep Set Class := ⟨set.sep⟩
instance : has_emptyc Class := ⟨λ a, false⟩
instance : has_insert Set Class := ⟨set.insert⟩
instance : has_union Class := ⟨set.union⟩
instance : has_inter Class := ⟨set.inter⟩
instance : has_neg Class := ⟨set.compl⟩
instance : has_sdiff Class := ⟨set.diff⟩
def of_Set (x : Set.{u}) : Class.{u} := {y | y ∈ x}
instance : has_coe Set Class := ⟨of_Set⟩
def univ : Class := set.univ
def to_Set (p : Set.{u} → Prop) (A : Class.{u}) : Prop := ∃x, ↑x = A ∧ p x
protected def mem (A B : Class.{u}) : Prop := to_Set.{u} (λx, x ∈ B) A
instance : has_mem Class Class := ⟨Class.mem⟩
theorem mem_univ {A : Class.{u}} : A ∈ univ.{u} ↔ ∃ x : Set.{u}, ↑x = A :=
exists_congr $ λx, and_true _
def Cong_to_Class (x : set Class.{u}) : Class.{u} := {y | ↑y ∈ x}
def Class_to_Cong (x : Class.{u}) : set Class.{u} := {y | y ∈ x}
def powerset (x : Class) : Class := Cong_to_Class (set.powerset x)
notation `𝒫` := powerset
def Union (x : Class) : Class := set.sUnion (Class_to_Cong x)
notation `⋃` := Union
theorem of_Set.inj {x y : Set.{u}} (h : (x : Class.{u}) = y) : x = y :=
Set.ext $ λz, by change z ∈ (x : Class.{u}) ↔ z ∈ (y : Class.{u}); simph
@[simp] theorem to_Set_of_Set (p : Set.{u} → Prop) (x : Set.{u}) : to_Set p x ↔ p x :=
⟨λ⟨y, yx, py⟩, by rwa of_Set.inj yx at py, λpx, ⟨x, rfl, px⟩⟩
@[simp] theorem mem_hom_left (x : Set.{u}) (A : Class.{u}) : (x : Class.{u}) ∈ A ↔ x ∈ A :=
to_Set_of_Set _ _
@[simp] theorem mem_hom_right (x y : Set.{u}) : x ∈ (y : Class.{u}) ↔ x ∈ y := iff.refl _
@[simp] theorem subset_hom (x y : Set.{u}) : (x : Class.{u}) ⊆ y ↔ x ⊆ y := iff.refl _
@[simp] theorem sep_hom (p : Set.{u} → Prop) (x : Set.{u}) : (↑{y ∈ x | p y} : Class.{u}) = {y ∈ x | p y} :=
set.ext $ λy, Set.mem_sep
@[simp] theorem empty_hom : ↑(∅ : Set.{u}) = (∅ : Class.{u}) :=
set.ext $ λy, show _ ↔ false, by simp; exact Set.mem_empty y
@[simp] theorem insert_hom (x y : Set.{u}) : (@insert Set.{u} Class.{u} _ x y) = ↑(insert x y) :=
set.ext $ λz, iff.symm Set.mem_insert
@[simp] theorem union_hom (x y : Set.{u}) : (x : Class.{u}) ∪ y = (x ∪ y : Set.{u}) :=
set.ext $ λz, iff.symm Set.mem_union
@[simp] theorem inter_hom (x y : Set.{u}) : (x : Class.{u}) ∩ y = (x ∩ y : Set.{u}) :=
set.ext $ λz, iff.symm Set.mem_inter
@[simp] theorem diff_hom (x y : Set.{u}) : (x : Class.{u}) \ y = (x \ y : Set.{u}) :=
set.ext $ λz, iff.symm Set.mem_diff
@[simp] theorem powerset_hom (x : Set.{u}) : powerset.{u} x = Set.powerset x :=
set.ext $ λz, iff.symm Set.mem_powerset
@[simp] theorem Union_hom (x : Set.{u}) : Union.{u} x = Set.Union x :=
set.ext $ λz, by refine iff.trans _ (iff.symm Set.mem_Union); exact
⟨λ⟨._, ⟨a, rfl, ax⟩, za⟩, ⟨a, ax, za⟩, λ⟨a, ax, za⟩, ⟨_, ⟨a, rfl, ax⟩, za⟩⟩
def iota (p : Set → Prop) : Class := Union {x | ∀y, p y ↔ y = x}
theorem iota_val (p : Set → Prop) (x : Set) (H : ∀y, p y ↔ y = x) : iota p = ↑x :=
set.ext $ λy, ⟨λ⟨._, ⟨x', rfl, h⟩, yx'⟩, by rwa -((H x').1 $ (h x').2 rfl), λyx, ⟨_, ⟨x, rfl, H⟩, yx⟩⟩
-- Unlike the other set constructors, the "iota" definite descriptor is a set for any set input,
-- but not constructively so, so there is no associated (Set → Prop) → Set function.
theorem iota_ex (p) : iota.{u} p ∈ univ.{u} :=
mem_univ.2 $ or.elim (classical.em $ ∃x, ∀y, p y ↔ y = x)
(λ⟨x, h⟩, ⟨x, eq.symm $ iota_val p x h⟩)
(λhn, ⟨∅, by simp; exact set.ext (λz, ⟨false.rec _, λ⟨._, ⟨x, rfl, H⟩, zA⟩, hn ⟨x, H⟩⟩)⟩)
def fval (F A : Class.{u}) : Class.{u} := iota (λy, to_Set (λx, Set.pair x y ∈ F) A)
infixl `′`:100 := fval
theorem fval_ex (F A : Class.{u}) : F ′ A ∈ univ.{u} := iota_ex _
end Class
namespace Set
@[simp] def map_fval {f : Set.{u} → Set.{u}} [H : pSet.definable 1 f] {x y : Set.{u}} (h : y ∈ x) :
(Set.map f x ′ y : Class.{u}) = f y :=
Class.iota_val _ _ (λz, by simp; exact
⟨λ⟨w, wz, pr⟩, let ⟨wy, fw⟩ := Set.pair_inj pr in by rw[-fw, wy],
λe, by cases e; exact ⟨_, h, rfl⟩⟩)
variables (x : Set.{u}) (h : (∅:Set.{u}) ∉ x)
noncomputable def choice : Set := @map (λy, classical.epsilon (λz, z ∈ y)) (classical.all_definable _) x
include h
def choice_mem_aux (y : Set.{u}) (yx : y ∈ x) : classical.epsilon (λz:Set.{u}, z ∈ y) ∈ y :=
@classical.epsilon_spec _ (λz:Set.{u}, z ∈ y) $ classical.by_contradiction $ λn, h $
by rwa -((eq_empty y).2 $ λz zx, n ⟨z, zx⟩)
def choice_is_func : is_func x (Union x) (choice x) :=
(@map_is_func _ (classical.all_definable _) _ _).2 $ λy yx, by simp; exact ⟨y, yx, choice_mem_aux x h y yx⟩
def choice_mem (y : Set.{u}) (yx : y ∈ x) : (choice x ′ y : Class.{u}) ∈ (y : Class.{u}) :=
by delta choice; rw map_fval yx; simp[choice_mem_aux x h y yx]
end Set
|
21398bac739a495dea4000bbc5dfb8409bc6747a
|
4efff1f47634ff19e2f786deadd394270a59ecd2
|
/src/topology/sheaves/sheaf_of_functions.lean
|
46f6b4c426fce1769e0ebc3bae6f3f24ab3f977c
|
[
"Apache-2.0"
] |
permissive
|
agjftucker/mathlib
|
d634cd0d5256b6325e3c55bb7fb2403548371707
|
87fe50de17b00af533f72a102d0adefe4a2285e8
|
refs/heads/master
| 1,625,378,131,941
| 1,599,166,526,000
| 1,599,166,526,000
| 160,748,509
| 0
| 0
|
Apache-2.0
| 1,544,141,789,000
| 1,544,141,789,000
| null |
UTF-8
|
Lean
| false
| false
| 7,115
|
lean
|
/-
Copyright (c) 2020 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin, Scott Morrison
-/
import topology.sheaves.presheaf_of_functions
import topology.sheaves.sheaf
import category_theory.limits.shapes.types
import topology.local_homeomorph
/-!
# Sheaf conditions for presheaves of (continuous) functions.
We show that
* `Top.sheaf_condition.to_Type`: not-necessarily-continuous functions into a type form a sheaf
* `Top.sheaf_condition.to_Types`: in fact, these may be dependent functions into a type family
For
* `Top.sheaf_condition.to_Top`: continuous functions into a topological space form a sheaf
please see `topology/sheaves/local_predicate.lean`, where we set up a general framework
for constructing sub(pre)sheaves of the sheaf of dependent functions.
## Future work
Obviously there's more to do:
* sections of a fiber bundle
* various classes of smooth and structure preserving functions
* functions into spaces with algebraic structure, which the sections inherit
-/
open category_theory
open category_theory.limits
open topological_space
open topological_space.opens
universe u
noncomputable theory
variables (X : Top.{u})
open Top
namespace Top.sheaf_condition
/--
We show that the presheaf of functions to a type `T`
(no continuity assumptions, just plain functions)
form a sheaf.
In fact, the proof is identical when we do this for dependent functions to a type family `T`,
so we do the more general case.
-/
def to_Types (T : X → Type u) : sheaf_condition (presheaf_to_Types X T) :=
λ ι U,
-- U is a family of open sets, indexed by `ι`.
-- In the informal comments below, I'll just write `U` to represent the union.
begin
refine fork.is_limit.mk _ _ _ _,
{ -- Our first goal is to define a function "lifted" to all of `U`, given
-- `s`, some cone over the sheaf condition diagram
-- (which we can think of as some type `s.X` which we know nothing about,
-- except how to restrict terms to each of the `U i`, obtaining a function there,
-- and that these restrictions are compatible), and
-- `f`, a term of `s.X`.
-- We do this one point at a time, so we also pick some `x` and the evidence `mem : x ∈ supr U`.
rintros s f ⟨x, mem⟩,
change x ∈ supr U at mem, -- FIXME there is a stray `has_coe_t_aux.coe` here
-- Since `x ∈ supr U`, there must be some `i` so `x ∈ U i`:
simp [opens.mem_supr] at mem,
choose i hi using mem,
-- We define out function to be the restriction of `f` to that `U i`, evaluated at `x`.
exact ((s.ι ≫ pi.π _ i) f) ⟨x, hi⟩, },
{ -- Now we need to verify that this lifted function restricts correctly to each set `U i`.
-- Of course, the difficulty is that at any given point `x ∈ U i`,
-- we may have used the axiom of choice to pick a differnt `j` with `x ∈ U j`
-- when defining the function.
-- This we'll need to use the fact that the restrictions are compatible.
-- Again, we begin with some `s`, a cone over the sheaf condition diagram.
intros s,
-- The goal at this point is fairly inscrutable,
-- but we know we're trying two functions are equal, so we call `ext` and see what we get:
ext i f ⟨x, mem⟩,
dsimp at mem,
-- We now have `i : ι`, a term `f : s.X`, and a point `x` with `mem : x ∈ U i`.
-- We clean up the goal a little,
simp only [exists_prop, set.mem_range, set.mem_image, exists_exists_eq_and, category.assoc],
simp only [limit.lift_π, types_comp_apply, fan.mk_π_app, presheaf_to_Type],
dsimp,
-- although you still need to be ambitious to read it.
-- The mathematical content, of course, is that the lifted function we constructed from `f`,
-- when restricted to `U i` and evaluated at `x`,
-- has the same value as `f` restricted to to `U i` and evaluated at `x`.
-- We have a slightly annoying issue at this point,
-- that we're not really sure which `j : ι` was used to define the lifted function
-- and this point `x`, because we used choice.
-- As a trick, we create a new metavariable `j` to represent this choice,
-- and later in the proof it will be solved by unification.
let j : ι := _,
-- Now, we assert that the two restrictions of `f` to `U i` and `U j` coincide on `U i ⊓ U j`,
-- and in particular coincide there after evaluating at `x`.
have s₀ := s.condition =≫ pi.π _ (j, i),
simp only [sheaf_condition.left_res, sheaf_condition.right_res] at s₀,
have s₁ := congr_fun s₀ f,
have s₂ := congr_fun s₁ ⟨x, _⟩, clear s₀ s₁,
-- Notice at this point we've spun after an additional goal:
-- that `x ∈ U j ⊓ U i` to begin with! Let's get that out of the way.
swap,
{ -- We knew `x ∈ U i` right from the start:
refine ⟨_, mem⟩,
-- Notice that when we introduced `j`, we just introduced it as some metavariable.
-- However at this point it's received a concrete value,
-- because Lean's unification has worked out that this `j` must have been the index
-- that we picked using choice back when constructing the lift.
-- From this, we can extract the evidence that `x ∈ U j`:
convert @classical.some_spec _ (λ i, x ∈ (U i : set X)) _, },
-- Now, we can just assert that `s₂` is the droid you are looking for,
-- and do a little patching up afterwards.
convert s₂, },
{ -- On the home stretch now,
-- we just need to check that the lift we picked was the only possible one.
-- So we suppose we had some other way `m` of choosing lifts,
intros s m w,
-- and observe that we need to check that it agrees with our choice
-- for each `f : s .X` and each `x ∈ supr U`.
ext f ⟨x, mem⟩,
-- Now `w` is the evidence that other choice of lift agrees either on the `U i`s,
-- or on the `U i ⊓ U j`s.
-- We'll need the later,
specialize w walking_parallel_pair.zero,
-- because we're not sure which arbitrary `j : ι` we used to define our lift.
let j : ι := _,
-- Now it's just a matter of plugging in all the values;
-- `j` gets solved for during unification.
convert congr_fun (congr_fun (w =≫ pi.π _ j) f) ⟨x, _⟩, }
end.
-- We verify that the non-dependent version is an immediate consequence:
/--
The presheaf of not-necessarily-continuous functions to
a target type `T` satsifies the sheaf condition.
-/
def to_Type (T : Type u) : sheaf_condition (presheaf_to_Type X T) :=
to_Types X (λ _, T)
end Top.sheaf_condition
namespace Top
/--
The sheaf of not-necessarily-continuous functions on `X` with values in type family `T : X → Type u`.
-/
def sheaf_to_Types (T : X → Type u) : sheaf (Type u) X :=
{ presheaf := presheaf_to_Types X T,
sheaf_condition := sheaf_condition.to_Types _ _, }
/--
The sheaf of not-necessarily-continuous functions on `X` with values in a type `T`.
-/
def sheaf_to_Type (T : Type u) : sheaf (Type u) X :=
{ presheaf := presheaf_to_Type X T,
sheaf_condition := sheaf_condition.to_Type _ _, }
end Top
|
daeafbdaea5310f6059bc939016e43b67a0257bb
|
947fa6c38e48771ae886239b4edce6db6e18d0fb
|
/src/order/hom/basic.lean
|
5607f8afbb337ceae7504402898d49cac5760b02
|
[
"Apache-2.0"
] |
permissive
|
ramonfmir/mathlib
|
c5dc8b33155473fab97c38bd3aa6723dc289beaa
|
14c52e990c17f5a00c0cc9e09847af16fabbed25
|
refs/heads/master
| 1,661,979,343,526
| 1,660,830,384,000
| 1,660,830,384,000
| 182,072,989
| 0
| 0
| null | 1,555,585,876,000
| 1,555,585,876,000
| null |
UTF-8
|
Lean
| false
| false
| 41,777
|
lean
|
/-
Copyright (c) 2020 Johan Commelin. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin
-/
import logic.equiv.option
import order.rel_iso
import tactic.monotonicity.basic
/-!
# Order homomorphisms
This file defines order homomorphisms, which are bundled monotone functions. A preorder
homomorphism `f : α →o β` is a function `α → β` along with a proof that `∀ x y, x ≤ y → f x ≤ f y`.
## Main definitions
In this file we define the following bundled monotone maps:
* `order_hom α β` a.k.a. `α →o β`: Preorder homomorphism.
An `order_hom α β` is a function `f : α → β` such that `a₁ ≤ a₂ → f a₁ ≤ f a₂`
* `order_embedding α β` a.k.a. `α ↪o β`: Relation embedding.
An `order_embedding α β` is an embedding `f : α ↪ β` such that `a ≤ b ↔ f a ≤ f b`.
Defined as an abbreviation of `@rel_embedding α β (≤) (≤)`.
* `order_iso`: Relation isomorphism.
An `order_iso α β` is an equivalence `f : α ≃ β` such that `a ≤ b ↔ f a ≤ f b`.
Defined as an abbreviation of `@rel_iso α β (≤) (≤)`.
We also define many `order_hom`s. In some cases we define two versions, one with `ₘ` suffix and
one without it (e.g., `order_hom.compₘ` and `order_hom.comp`). This means that the former
function is a "more bundled" version of the latter. We can't just drop the "less bundled" version
because the more bundled version usually does not work with dot notation.
* `order_hom.id`: identity map as `α →o α`;
* `order_hom.curry`: an order isomorphism between `α × β →o γ` and `α →o β →o γ`;
* `order_hom.comp`: composition of two bundled monotone maps;
* `order_hom.compₘ`: composition of bundled monotone maps as a bundled monotone map;
* `order_hom.const`: constant function as a bundled monotone map;
* `order_hom.prod`: combine `α →o β` and `α →o γ` into `α →o β × γ`;
* `order_hom.prodₘ`: a more bundled version of `order_hom.prod`;
* `order_hom.prod_iso`: order isomorphism between `α →o β × γ` and `(α →o β) × (α →o γ)`;
* `order_hom.diag`: diagonal embedding of `α` into `α × α` as a bundled monotone map;
* `order_hom.on_diag`: restrict a monotone map `α →o α →o β` to the diagonal;
* `order_hom.fst`: projection `prod.fst : α × β → α` as a bundled monotone map;
* `order_hom.snd`: projection `prod.snd : α × β → β` as a bundled monotone map;
* `order_hom.prod_map`: `prod.map f g` as a bundled monotone map;
* `pi.eval_order_hom`: evaluation of a function at a point `function.eval i` as a bundled
monotone map;
* `order_hom.coe_fn_hom`: coercion to function as a bundled monotone map;
* `order_hom.apply`: application of a `order_hom` at a point as a bundled monotone map;
* `order_hom.pi`: combine a family of monotone maps `f i : α →o π i` into a monotone map
`α →o Π i, π i`;
* `order_hom.pi_iso`: order isomorphism between `α →o Π i, π i` and `Π i, α →o π i`;
* `order_hom.subtyle.val`: embedding `subtype.val : subtype p → α` as a bundled monotone map;
* `order_hom.dual`: reinterpret a monotone map `α →o β` as a monotone map `αᵒᵈ →o βᵒᵈ`;
* `order_hom.dual_iso`: order isomorphism between `α →o β` and `(αᵒᵈ →o βᵒᵈ)ᵒᵈ`;
* `order_iso.compl`: order isomorphism `α ≃o αᵒᵈ` given by taking complements in a
boolean algebra;
We also define two functions to convert other bundled maps to `α →o β`:
* `order_embedding.to_order_hom`: convert `α ↪o β` to `α →o β`;
* `rel_hom.to_order_hom`: convert a `rel_hom` between strict orders to a `order_hom`.
## Tags
monotone map, bundled morphism
-/
open order_dual
variables {F α β γ δ : Type*}
/-- Bundled monotone (aka, increasing) function -/
structure order_hom (α β : Type*) [preorder α] [preorder β] :=
(to_fun : α → β)
(monotone' : monotone to_fun)
infixr ` →o `:25 := order_hom
/-- An order embedding is an embedding `f : α ↪ β` such that `a ≤ b ↔ (f a) ≤ (f b)`.
This definition is an abbreviation of `rel_embedding (≤) (≤)`. -/
abbreviation order_embedding (α β : Type*) [has_le α] [has_le β] :=
@rel_embedding α β (≤) (≤)
infix ` ↪o `:25 := order_embedding
/-- An order isomorphism is an equivalence such that `a ≤ b ↔ (f a) ≤ (f b)`.
This definition is an abbreviation of `rel_iso (≤) (≤)`. -/
abbreviation order_iso (α β : Type*) [has_le α] [has_le β] := @rel_iso α β (≤) (≤)
infix ` ≃o `:25 := order_iso
/-- `order_hom_class F α b` asserts that `F` is a type of `≤`-preserving morphisms. -/
abbreviation order_hom_class (F : Type*) (α β : out_param Type*) [has_le α] [has_le β] :=
rel_hom_class F ((≤) : α → α → Prop) ((≤) : β → β → Prop)
/-- `order_iso_class F α β` states that `F` is a type of order isomorphisms.
You should extend this class when you extend `order_iso`. -/
class order_iso_class (F : Type*) (α β : out_param Type*) [has_le α] [has_le β]
extends equiv_like F α β :=
(map_le_map_iff (f : F) {a b : α} : f a ≤ f b ↔ a ≤ b)
export order_iso_class (map_le_map_iff)
attribute [simp] map_le_map_iff
instance [has_le α] [has_le β] [order_iso_class F α β] : has_coe_t F (α ≃o β) :=
⟨λ f, ⟨f, λ _ _, map_le_map_iff f⟩⟩
@[priority 100] -- See note [lower instance priority]
instance order_iso_class.to_order_hom_class [has_le α] [has_le β] [order_iso_class F α β] :
order_hom_class F α β :=
{ map_rel := λ f a b, (map_le_map_iff f).2, ..equiv_like.to_embedding_like }
namespace order_hom_class
variables [preorder α] [preorder β] [order_hom_class F α β]
protected lemma monotone (f : F) : monotone (f : α → β) := λ _ _, map_rel f
protected lemma mono (f : F) : monotone (f : α → β) := λ _ _, map_rel f
instance : has_coe_t F (α →o β) := ⟨λ f, { to_fun := f, monotone' := order_hom_class.mono _ }⟩
end order_hom_class
section order_iso_class
section has_le
variables [has_le α] [has_le β] [order_iso_class F α β]
@[simp] lemma map_inv_le_iff (f : F) {a : α} {b : β} : equiv_like.inv f b ≤ a ↔ b ≤ f a :=
by { convert (map_le_map_iff _).symm, exact (equiv_like.right_inv _ _).symm }
@[simp] lemma le_map_inv_iff (f : F) {a : α} {b : β} : a ≤ equiv_like.inv f b ↔ f a ≤ b :=
by { convert (map_le_map_iff _).symm, exact (equiv_like.right_inv _ _).symm }
end has_le
variables [preorder α] [preorder β] [order_iso_class F α β]
include β
lemma map_lt_map_iff (f : F) {a b : α} : f a < f b ↔ a < b :=
lt_iff_lt_of_le_iff_le' (map_le_map_iff f) (map_le_map_iff f)
@[simp] lemma map_inv_lt_iff (f : F) {a : α} {b : β} : equiv_like.inv f b < a ↔ b < f a :=
by { convert (map_lt_map_iff _).symm, exact (equiv_like.right_inv _ _).symm }
@[simp] lemma lt_map_inv_iff (f : F) {a : α} {b : β} : a < equiv_like.inv f b ↔ f a < b :=
by { convert (map_lt_map_iff _).symm, exact (equiv_like.right_inv _ _).symm }
end order_iso_class
namespace order_hom
variables [preorder α] [preorder β] [preorder γ] [preorder δ]
/-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun`
directly. -/
instance : has_coe_to_fun (α →o β) (λ _, α → β) := ⟨order_hom.to_fun⟩
initialize_simps_projections order_hom (to_fun → coe)
protected lemma monotone (f : α →o β) : monotone f := f.monotone'
protected lemma mono (f : α →o β) : monotone f := f.monotone
instance : order_hom_class (α →o β) α β :=
{ coe := to_fun,
coe_injective' := λ f g h, by { cases f, cases g, congr' },
map_rel := λ f, f.monotone }
@[simp] lemma to_fun_eq_coe {f : α →o β} : f.to_fun = f := rfl
@[simp] lemma coe_fun_mk {f : α → β} (hf : _root_.monotone f) : (mk f hf : α → β) = f := rfl
@[ext] -- See library note [partially-applied ext lemmas]
lemma ext (f g : α →o β) (h : (f : α → β) = g) : f = g := fun_like.coe_injective h
lemma coe_eq (f : α →o β) : coe f = f := by ext ; refl
/-- One can lift an unbundled monotone function to a bundled one. -/
instance : can_lift (α → β) (α →o β) :=
{ coe := coe_fn,
cond := monotone,
prf := λ f h, ⟨⟨f, h⟩, rfl⟩ }
/-- Copy of an `order_hom` with a new `to_fun` equal to the old one. Useful to fix definitional
equalities. -/
protected def copy (f : α →o β) (f' : α → β) (h : f' = f) : α →o β := ⟨f', h.symm.subst f.monotone'⟩
/-- The identity function as bundled monotone function. -/
@[simps {fully_applied := ff}]
def id : α →o α := ⟨id, monotone_id⟩
instance : inhabited (α →o α) := ⟨id⟩
/-- The preorder structure of `α →o β` is pointwise inequality: `f ≤ g ↔ ∀ a, f a ≤ g a`. -/
instance : preorder (α →o β) :=
@preorder.lift (α →o β) (α → β) _ coe_fn
instance {β : Type*} [partial_order β] : partial_order (α →o β) :=
@partial_order.lift (α →o β) (α → β) _ coe_fn ext
lemma le_def {f g : α →o β} : f ≤ g ↔ ∀ x, f x ≤ g x := iff.rfl
@[simp, norm_cast] lemma coe_le_coe {f g : α →o β} : (f : α → β) ≤ g ↔ f ≤ g := iff.rfl
@[simp] lemma mk_le_mk {f g : α → β} {hf hg} : mk f hf ≤ mk g hg ↔ f ≤ g := iff.rfl
@[mono] lemma apply_mono {f g : α →o β} {x y : α} (h₁ : f ≤ g) (h₂ : x ≤ y) :
f x ≤ g y :=
(h₁ x).trans $ g.mono h₂
/-- Curry/uncurry as an order isomorphism between `α × β →o γ` and `α →o β →o γ`. -/
def curry : (α × β →o γ) ≃o (α →o β →o γ) :=
{ to_fun := λ f, ⟨λ x, ⟨function.curry f x, λ y₁ y₂ h, f.mono ⟨le_rfl, h⟩⟩,
λ x₁ x₂ h y, f.mono ⟨h, le_rfl⟩⟩,
inv_fun := λ f, ⟨function.uncurry (λ x, f x), λ x y h, (f.mono h.1 x.2).trans $ (f y.1).mono h.2⟩,
left_inv := λ f, by { ext ⟨x, y⟩, refl },
right_inv := λ f, by { ext x y, refl },
map_rel_iff' := λ f g, by simp [le_def] }
@[simp] lemma curry_apply (f : α × β →o γ) (x : α) (y : β) : curry f x y = f (x, y) := rfl
@[simp] lemma curry_symm_apply (f : α →o β →o γ) (x : α × β) : curry.symm f x = f x.1 x.2 := rfl
/-- The composition of two bundled monotone functions. -/
@[simps {fully_applied := ff}]
def comp (g : β →o γ) (f : α →o β) : α →o γ := ⟨g ∘ f, g.mono.comp f.mono⟩
@[mono] lemma comp_mono ⦃g₁ g₂ : β →o γ⦄ (hg : g₁ ≤ g₂) ⦃f₁ f₂ : α →o β⦄ (hf : f₁ ≤ f₂) :
g₁.comp f₁ ≤ g₂.comp f₂ :=
λ x, (hg _).trans (g₂.mono $ hf _)
/-- The composition of two bundled monotone functions, a fully bundled version. -/
@[simps {fully_applied := ff}]
def compₘ : (β →o γ) →o (α →o β) →o α →o γ :=
curry ⟨λ f : (β →o γ) × (α →o β), f.1.comp f.2, λ f₁ f₂ h, comp_mono h.1 h.2⟩
@[simp] lemma comp_id (f : α →o β) : comp f id = f :=
by { ext, refl }
@[simp] lemma id_comp (f : α →o β) : comp id f = f :=
by { ext, refl }
/-- Constant function bundled as a `order_hom`. -/
@[simps {fully_applied := ff}]
def const (α : Type*) [preorder α] {β : Type*} [preorder β] : β →o α →o β :=
{ to_fun := λ b, ⟨function.const α b, λ _ _ _, le_rfl⟩,
monotone' := λ b₁ b₂ h x, h }
@[simp] lemma const_comp (f : α →o β) (c : γ) : (const β c).comp f = const α c := rfl
@[simp] lemma comp_const (γ : Type*) [preorder γ] (f : α →o β) (c : α) :
f.comp (const γ c) = const γ (f c) := rfl
/-- Given two bundled monotone maps `f`, `g`, `f.prod g` is the map `x ↦ (f x, g x)` bundled as a
`order_hom`. -/
@[simps] protected def prod (f : α →o β) (g : α →o γ) : α →o (β × γ) :=
⟨λ x, (f x, g x), λ x y h, ⟨f.mono h, g.mono h⟩⟩
@[mono] lemma prod_mono {f₁ f₂ : α →o β} (hf : f₁ ≤ f₂) {g₁ g₂ : α →o γ} (hg : g₁ ≤ g₂) :
f₁.prod g₁ ≤ f₂.prod g₂ :=
λ x, prod.le_def.2 ⟨hf _, hg _⟩
lemma comp_prod_comp_same (f₁ f₂ : β →o γ) (g : α →o β) :
(f₁.comp g).prod (f₂.comp g) = (f₁.prod f₂).comp g :=
rfl
/-- Given two bundled monotone maps `f`, `g`, `f.prod g` is the map `x ↦ (f x, g x)` bundled as a
`order_hom`. This is a fully bundled version. -/
@[simps] def prodₘ : (α →o β) →o (α →o γ) →o α →o β × γ :=
curry ⟨λ f : (α →o β) × (α →o γ), f.1.prod f.2, λ f₁ f₂ h, prod_mono h.1 h.2⟩
/-- Diagonal embedding of `α` into `α × α` as a `order_hom`. -/
@[simps] def diag : α →o α × α := id.prod id
/-- Restriction of `f : α →o α →o β` to the diagonal. -/
@[simps {simp_rhs := tt}] def on_diag (f : α →o α →o β) : α →o β := (curry.symm f).comp diag
/-- `prod.fst` as a `order_hom`. -/
@[simps] def fst : α × β →o α := ⟨prod.fst, λ x y h, h.1⟩
/-- `prod.snd` as a `order_hom`. -/
@[simps] def snd : α × β →o β := ⟨prod.snd, λ x y h, h.2⟩
@[simp] lemma fst_prod_snd : (fst : α × β →o α).prod snd = id :=
by { ext ⟨x, y⟩ : 2, refl }
@[simp] lemma fst_comp_prod (f : α →o β) (g : α →o γ) : fst.comp (f.prod g) = f := ext _ _ rfl
@[simp] lemma snd_comp_prod (f : α →o β) (g : α →o γ) : snd.comp (f.prod g) = g := ext _ _ rfl
/-- Order isomorphism between the space of monotone maps to `β × γ` and the product of the spaces
of monotone maps to `β` and `γ`. -/
@[simps] def prod_iso : (α →o β × γ) ≃o (α →o β) × (α →o γ) :=
{ to_fun := λ f, (fst.comp f, snd.comp f),
inv_fun := λ f, f.1.prod f.2,
left_inv := λ f, by ext; refl,
right_inv := λ f, by ext; refl,
map_rel_iff' := λ f g, forall_and_distrib.symm }
/-- `prod.map` of two `order_hom`s as a `order_hom`. -/
@[simps] def prod_map (f : α →o β) (g : γ →o δ) : α × γ →o β × δ :=
⟨prod.map f g, λ x y h, ⟨f.mono h.1, g.mono h.2⟩⟩
variables {ι : Type*} {π : ι → Type*} [Π i, preorder (π i)]
/-- Evaluation of an unbundled function at a point (`function.eval`) as a `order_hom`. -/
@[simps {fully_applied := ff}]
def _root_.pi.eval_order_hom (i : ι) : (Π j, π j) →o π i :=
⟨function.eval i, function.monotone_eval i⟩
/-- The "forgetful functor" from `α →o β` to `α → β` that takes the underlying function,
is monotone. -/
@[simps {fully_applied := ff}] def coe_fn_hom : (α →o β) →o (α → β) :=
{ to_fun := λ f, f,
monotone' := λ x y h, h }
/-- Function application `λ f, f a` (for fixed `a`) is a monotone function from the
monotone function space `α →o β` to `β`. See also `pi.eval_order_hom`. -/
@[simps {fully_applied := ff}] def apply (x : α) : (α →o β) →o β :=
(pi.eval_order_hom x).comp coe_fn_hom
/-- Construct a bundled monotone map `α →o Π i, π i` from a family of monotone maps
`f i : α →o π i`. -/
@[simps] def pi (f : Π i, α →o π i) : α →o (Π i, π i) :=
⟨λ x i, f i x, λ x y h i, (f i).mono h⟩
/-- Order isomorphism between bundled monotone maps `α →o Π i, π i` and families of bundled monotone
maps `Π i, α →o π i`. -/
@[simps] def pi_iso : (α →o Π i, π i) ≃o Π i, α →o π i :=
{ to_fun := λ f i, (pi.eval_order_hom i).comp f,
inv_fun := pi,
left_inv := λ f, by { ext x i, refl },
right_inv := λ f, by { ext x i, refl },
map_rel_iff' := λ f g, forall_swap }
/-- `subtype.val` as a bundled monotone function. -/
@[simps {fully_applied := ff}]
def subtype.val (p : α → Prop) : subtype p →o α :=
⟨subtype.val, λ x y h, h⟩
/-- There is a unique monotone map from a subsingleton to itself. -/
instance unique [subsingleton α] : unique (α →o α) :=
{ default := order_hom.id, uniq := λ a, ext _ _ (subsingleton.elim _ _) }
lemma order_hom_eq_id [subsingleton α] (g : α →o α) : g = order_hom.id :=
subsingleton.elim _ _
/-- Reinterpret a bundled monotone function as a monotone function between dual orders. -/
@[simps] protected def dual : (α →o β) ≃ (αᵒᵈ →o βᵒᵈ) :=
{ to_fun := λ f, ⟨order_dual.to_dual ∘ f ∘ order_dual.of_dual, f.mono.dual⟩,
inv_fun := λ f, ⟨order_dual.of_dual ∘ f ∘ order_dual.to_dual, f.mono.dual⟩,
left_inv := λ f, ext _ _ rfl,
right_inv := λ f, ext _ _ rfl }
@[simp] lemma dual_id : (order_hom.id : α →o α).dual = order_hom.id := rfl
@[simp] lemma dual_comp (g : β →o γ) (f : α →o β) : (g.comp f).dual = g.dual.comp f.dual := rfl
@[simp] lemma symm_dual_id : order_hom.dual.symm order_hom.id = (order_hom.id : α →o α) := rfl
@[simp] lemma symm_dual_comp (g : βᵒᵈ →o γᵒᵈ) (f : αᵒᵈ →o βᵒᵈ) :
order_hom.dual.symm (g.comp f) = (order_hom.dual.symm g).comp (order_hom.dual.symm f) := rfl
/-- `order_hom.dual` as an order isomorphism. -/
def dual_iso (α β : Type*) [preorder α] [preorder β] : (α →o β) ≃o (αᵒᵈ →o βᵒᵈ)ᵒᵈ :=
{ to_equiv := order_hom.dual.trans order_dual.to_dual,
map_rel_iff' := λ f g, iff.rfl }
/-- Lift an order homomorphism `f : α →o β` to an order homomorphism `with_bot α →o with_bot β`. -/
@[simps { fully_applied := ff }]
protected def with_bot_map (f : α →o β) : with_bot α →o with_bot β :=
⟨with_bot.map f, f.mono.with_bot_map⟩
/-- Lift an order homomorphism `f : α →o β` to an order homomorphism `with_top α →o with_top β`. -/
@[simps { fully_applied := ff }]
protected def with_top_map (f : α →o β) : with_top α →o with_top β :=
⟨with_top.map f, f.mono.with_top_map⟩
end order_hom
/-- Embeddings of partial orders that preserve `<` also preserve `≤`. -/
def rel_embedding.order_embedding_of_lt_embedding [partial_order α] [partial_order β]
(f : ((<) : α → α → Prop) ↪r ((<) : β → β → Prop)) :
α ↪o β :=
{ map_rel_iff' := by { intros, simp [le_iff_lt_or_eq,f.map_rel_iff, f.injective.eq_iff] }, .. f }
@[simp]
lemma rel_embedding.order_embedding_of_lt_embedding_apply [partial_order α] [partial_order β]
{f : ((<) : α → α → Prop) ↪r ((<) : β → β → Prop)} {x : α} :
rel_embedding.order_embedding_of_lt_embedding f x = f x := rfl
namespace order_embedding
variables [preorder α] [preorder β] (f : α ↪o β)
/-- `<` is preserved by order embeddings of preorders. -/
def lt_embedding : ((<) : α → α → Prop) ↪r ((<) : β → β → Prop) :=
{ map_rel_iff' := by intros; simp [lt_iff_le_not_le, f.map_rel_iff], .. f }
@[simp] lemma lt_embedding_apply (x : α) : f.lt_embedding x = f x := rfl
@[simp] theorem le_iff_le {a b} : (f a) ≤ (f b) ↔ a ≤ b := f.map_rel_iff
@[simp] theorem lt_iff_lt {a b} : f a < f b ↔ a < b :=
f.lt_embedding.map_rel_iff
@[simp] lemma eq_iff_eq {a b} : f a = f b ↔ a = b := f.injective.eq_iff
protected theorem monotone : monotone f := order_hom_class.monotone f
protected theorem strict_mono : strict_mono f := λ x y, f.lt_iff_lt.2
protected theorem acc (a : α) : acc (<) (f a) → acc (<) a :=
f.lt_embedding.acc a
protected theorem well_founded :
well_founded ((<) : β → β → Prop) → well_founded ((<) : α → α → Prop) :=
f.lt_embedding.well_founded
protected theorem is_well_order [is_well_order β (<)] : is_well_order α (<) :=
f.lt_embedding.is_well_order
/-- An order embedding is also an order embedding between dual orders. -/
protected def dual : αᵒᵈ ↪o βᵒᵈ :=
⟨f.to_embedding, λ a b, f.map_rel_iff⟩
/-- A version of `with_bot.map` for order embeddings. -/
@[simps { fully_applied := ff }]
protected def with_bot_map (f : α ↪o β) : with_bot α ↪o with_bot β :=
{ to_fun := with_bot.map f,
map_rel_iff' := with_bot.map_le_iff f (λ a b, f.map_rel_iff),
.. f.to_embedding.option_map }
/-- A version of `with_top.map` for order embeddings. -/
@[simps { fully_applied := ff }]
protected def with_top_map (f : α ↪o β) : with_top α ↪o with_top β :=
{ to_fun := with_top.map f,
.. f.dual.with_bot_map.dual }
/--
To define an order embedding from a partial order to a preorder it suffices to give a function
together with a proof that it satisfies `f a ≤ f b ↔ a ≤ b`.
-/
def of_map_le_iff {α β} [partial_order α] [preorder β] (f : α → β)
(hf : ∀ a b, f a ≤ f b ↔ a ≤ b) : α ↪o β :=
rel_embedding.of_map_rel_iff f hf
@[simp] lemma coe_of_map_le_iff {α β} [partial_order α] [preorder β] {f : α → β} (h) :
⇑(of_map_le_iff f h) = f := rfl
/-- A strictly monotone map from a linear order is an order embedding. --/
def of_strict_mono {α β} [linear_order α] [preorder β] (f : α → β)
(h : strict_mono f) : α ↪o β :=
of_map_le_iff f (λ _ _, h.le_iff_le)
@[simp] lemma coe_of_strict_mono {α β} [linear_order α] [preorder β] {f : α → β}
(h : strict_mono f) : ⇑(of_strict_mono f h) = f := rfl
/-- Embedding of a subtype into the ambient type as an `order_embedding`. -/
@[simps {fully_applied := ff}] def subtype (p : α → Prop) : subtype p ↪o α :=
⟨function.embedding.subtype p, λ x y, iff.rfl⟩
/-- Convert an `order_embedding` to a `order_hom`. -/
@[simps {fully_applied := ff}]
def to_order_hom {X Y : Type*} [preorder X] [preorder Y] (f : X ↪o Y) : X →o Y :=
{ to_fun := f,
monotone' := f.monotone }
end order_embedding
section rel_hom
variables [partial_order α] [preorder β]
namespace rel_hom
variables (f : ((<) : α → α → Prop) →r ((<) : β → β → Prop))
/-- A bundled expression of the fact that a map between partial orders that is strictly monotone
is weakly monotone. -/
@[simps {fully_applied := ff}]
def to_order_hom : α →o β :=
{ to_fun := f,
monotone' := strict_mono.monotone (λ x y, f.map_rel), }
end rel_hom
lemma rel_embedding.to_order_hom_injective (f : ((<) : α → α → Prop) ↪r ((<) : β → β → Prop)) :
function.injective (f : ((<) : α → α → Prop) →r ((<) : β → β → Prop)).to_order_hom :=
λ _ _ h, f.injective h
end rel_hom
namespace order_iso
section has_le
variables [has_le α] [has_le β] [has_le γ]
instance : order_iso_class (α ≃o β) α β :=
{ coe := λ f, f.to_fun,
inv := λ f, f.inv_fun,
left_inv := λ f, f.left_inv,
right_inv := λ f, f.right_inv,
coe_injective' := λ f g h₁ h₂, by { obtain ⟨⟨_, _⟩, _⟩ := f, obtain ⟨⟨_, _⟩, _⟩ := g, congr' },
map_le_map_iff := λ f, f.map_rel_iff' }
@[simp] lemma to_fun_eq_coe {f : α ≃o β} : f.to_fun = f := rfl
@[ext] -- See note [partially-applied ext lemmas]
lemma ext {f g : α ≃o β} (h : (f : α → β) = g) : f = g := fun_like.coe_injective h
/-- Reinterpret an order isomorphism as an order embedding. -/
def to_order_embedding (e : α ≃o β) : α ↪o β :=
e.to_rel_embedding
@[simp] lemma coe_to_order_embedding (e : α ≃o β) :
⇑(e.to_order_embedding) = e := rfl
protected lemma bijective (e : α ≃o β) : function.bijective e := e.to_equiv.bijective
protected lemma injective (e : α ≃o β) : function.injective e := e.to_equiv.injective
protected lemma surjective (e : α ≃o β) : function.surjective e := e.to_equiv.surjective
@[simp] lemma range_eq (e : α ≃o β) : set.range e = set.univ := e.surjective.range_eq
@[simp] lemma apply_eq_iff_eq (e : α ≃o β) {x y : α} : e x = e y ↔ x = y :=
e.to_equiv.apply_eq_iff_eq
/-- Identity order isomorphism. -/
def refl (α : Type*) [has_le α] : α ≃o α := rel_iso.refl (≤)
@[simp] lemma coe_refl : ⇑(refl α) = id := rfl
@[simp] lemma refl_apply (x : α) : refl α x = x := rfl
@[simp] lemma refl_to_equiv : (refl α).to_equiv = equiv.refl α := rfl
/-- Inverse of an order isomorphism. -/
def symm (e : α ≃o β) : β ≃o α := e.symm
@[simp] lemma apply_symm_apply (e : α ≃o β) (x : β) : e (e.symm x) = x :=
e.to_equiv.apply_symm_apply x
@[simp] lemma symm_apply_apply (e : α ≃o β) (x : α) : e.symm (e x) = x :=
e.to_equiv.symm_apply_apply x
@[simp] lemma symm_refl (α : Type*) [has_le α] : (refl α).symm = refl α := rfl
lemma apply_eq_iff_eq_symm_apply (e : α ≃o β) (x : α) (y : β) : e x = y ↔ x = e.symm y :=
e.to_equiv.apply_eq_iff_eq_symm_apply
theorem symm_apply_eq (e : α ≃o β) {x : α} {y : β} : e.symm y = x ↔ y = e x :=
e.to_equiv.symm_apply_eq
@[simp] lemma symm_symm (e : α ≃o β) : e.symm.symm = e := by { ext, refl }
lemma symm_injective : function.injective (symm : (α ≃o β) → (β ≃o α)) :=
λ e e' h, by rw [← e.symm_symm, h, e'.symm_symm]
@[simp] lemma to_equiv_symm (e : α ≃o β) : e.to_equiv.symm = e.symm.to_equiv := rfl
@[simp] lemma symm_image_image (e : α ≃o β) (s : set α) : e.symm '' (e '' s) = s :=
e.to_equiv.symm_image_image s
@[simp] lemma image_symm_image (e : α ≃o β) (s : set β) : e '' (e.symm '' s) = s :=
e.to_equiv.image_symm_image s
lemma image_eq_preimage (e : α ≃o β) (s : set α) : e '' s = e.symm ⁻¹' s :=
e.to_equiv.image_eq_preimage s
@[simp] lemma preimage_symm_preimage (e : α ≃o β) (s : set α) : e ⁻¹' (e.symm ⁻¹' s) = s :=
e.to_equiv.preimage_symm_preimage s
@[simp] lemma symm_preimage_preimage (e : α ≃o β) (s : set β) : e.symm ⁻¹' (e ⁻¹' s) = s :=
e.to_equiv.symm_preimage_preimage s
@[simp] lemma image_preimage (e : α ≃o β) (s : set β) : e '' (e ⁻¹' s) = s :=
e.to_equiv.image_preimage s
@[simp] lemma preimage_image (e : α ≃o β) (s : set α) : e ⁻¹' (e '' s) = s :=
e.to_equiv.preimage_image s
/-- Composition of two order isomorphisms is an order isomorphism. -/
@[trans] def trans (e : α ≃o β) (e' : β ≃o γ) : α ≃o γ := e.trans e'
@[simp] lemma coe_trans (e : α ≃o β) (e' : β ≃o γ) : ⇑(e.trans e') = e' ∘ e := rfl
@[simp] lemma trans_apply (e : α ≃o β) (e' : β ≃o γ) (x : α) : e.trans e' x = e' (e x) := rfl
@[simp] lemma refl_trans (e : α ≃o β) : (refl α).trans e = e := by { ext x, refl }
@[simp] lemma trans_refl (e : α ≃o β) : e.trans (refl β) = e := by { ext x, refl }
/-- `prod.swap` as an `order_iso`. -/
def prod_comm : (α × β) ≃o (β × α) :=
{ to_equiv := equiv.prod_comm α β,
map_rel_iff' := λ a b, prod.swap_le_swap }
@[simp] lemma coe_prod_comm : ⇑(prod_comm : (α × β) ≃o (β × α)) = prod.swap := rfl
@[simp] lemma prod_comm_symm : (prod_comm : (α × β) ≃o (β × α)).symm = prod_comm := rfl
variables (α)
/-- The order isomorphism between a type and its double dual. -/
def dual_dual : α ≃o αᵒᵈᵒᵈ := refl α
@[simp] lemma coe_dual_dual : ⇑(dual_dual α) = to_dual ∘ to_dual := rfl
@[simp] lemma coe_dual_dual_symm : ⇑(dual_dual α).symm = of_dual ∘ of_dual := rfl
variables {α}
@[simp] lemma dual_dual_apply (a : α) : dual_dual α a = to_dual (to_dual a) := rfl
@[simp] lemma dual_dual_symm_apply (a : αᵒᵈᵒᵈ) : (dual_dual α).symm a = of_dual (of_dual a) := rfl
end has_le
open set
section le
variables [has_le α] [has_le β] [has_le γ]
@[simp] lemma le_iff_le (e : α ≃o β) {x y : α} : e x ≤ e y ↔ x ≤ y := e.map_rel_iff
lemma le_symm_apply (e : α ≃o β) {x : α} {y : β} : x ≤ e.symm y ↔ e x ≤ y :=
e.rel_symm_apply
lemma symm_apply_le (e : α ≃o β) {x : α} {y : β} : e.symm y ≤ x ↔ y ≤ e x :=
e.symm_apply_rel
end le
variables [preorder α] [preorder β] [preorder γ]
protected lemma monotone (e : α ≃o β) : monotone e := e.to_order_embedding.monotone
protected lemma strict_mono (e : α ≃o β) : strict_mono e := e.to_order_embedding.strict_mono
@[simp] lemma lt_iff_lt (e : α ≃o β) {x y : α} : e x < e y ↔ x < y :=
e.to_order_embedding.lt_iff_lt
/-- Converts an `order_iso` into a `rel_iso (<) (<)`. -/
def to_rel_iso_lt (e : α ≃o β) : ((<) : α → α → Prop) ≃r ((<) : β → β → Prop) :=
⟨e.to_equiv, λ x y, lt_iff_lt e⟩
@[simp] lemma to_rel_iso_lt_apply (e : α ≃o β) (x : α) : e.to_rel_iso_lt x = e x := rfl
@[simp] lemma to_rel_iso_lt_symm (e : α ≃o β) : e.to_rel_iso_lt.symm = e.symm.to_rel_iso_lt := rfl
/-- Converts a `rel_iso (<) (<)` into an `order_iso`. -/
def of_rel_iso_lt {α β} [partial_order α] [partial_order β]
(e : ((<) : α → α → Prop) ≃r ((<) : β → β → Prop)) : α ≃o β :=
⟨e.to_equiv, λ x y, by simp [le_iff_eq_or_lt, e.map_rel_iff]⟩
@[simp] lemma of_rel_iso_lt_apply {α β} [partial_order α] [partial_order β]
(e : ((<) : α → α → Prop) ≃r ((<) : β → β → Prop)) (x : α) : of_rel_iso_lt e x = e x := rfl
@[simp] lemma of_rel_iso_lt_symm {α β} [partial_order α] [partial_order β]
(e : ((<) : α → α → Prop) ≃r ((<) : β → β → Prop)) :
(of_rel_iso_lt e).symm = of_rel_iso_lt e.symm := rfl
@[simp] lemma of_rel_iso_lt_to_rel_iso_lt {α β} [partial_order α] [partial_order β] (e : α ≃o β) :
of_rel_iso_lt (to_rel_iso_lt e) = e :=
by { ext, simp }
@[simp] lemma to_rel_iso_lt_of_rel_iso_lt {α β} [partial_order α] [partial_order β]
(e : ((<) : α → α → Prop) ≃r ((<) : β → β → Prop)) : to_rel_iso_lt (of_rel_iso_lt e) = e :=
by { ext, simp }
/-- To show that `f : α → β`, `g : β → α` make up an order isomorphism of linear orders,
it suffices to prove `cmp a (g b) = cmp (f a) b`. --/
def of_cmp_eq_cmp {α β} [linear_order α] [linear_order β] (f : α → β) (g : β → α)
(h : ∀ (a : α) (b : β), cmp a (g b) = cmp (f a) b) : α ≃o β :=
have gf : ∀ (a : α), a = g (f a) := by { intro, rw [←cmp_eq_eq_iff, h, cmp_self_eq_eq] },
{ to_fun := f,
inv_fun := g,
left_inv := λ a, (gf a).symm,
right_inv := by { intro, rw [←cmp_eq_eq_iff, ←h, cmp_self_eq_eq] },
map_rel_iff' := by { intros, apply le_iff_le_of_cmp_eq_cmp, convert (h _ _).symm, apply gf } }
/-- To show that `f : α →o β` and `g : β →o α` make up an order isomorphism it is enough to show
that `g` is the inverse of `f`-/
def of_hom_inv {F G : Type*} [order_hom_class F α β] [order_hom_class G β α]
(f : F) (g : G) (h₁ : (f : α →o β).comp (g : β →o α) = order_hom.id)
(h₂ : (g : β →o α).comp (f : α →o β) = order_hom.id) : α ≃o β :=
{ to_fun := f,
inv_fun := g,
left_inv := fun_like.congr_fun h₂,
right_inv := fun_like.congr_fun h₁,
map_rel_iff' := λ a b, ⟨λ h, by { replace h := map_rel g h, rwa [equiv.coe_fn_mk,
(show g (f a) = (g : β →o α).comp (f : α →o β) a, from rfl),
(show g (f b) = (g : β →o α).comp (f : α →o β) b, from rfl), h₂] at h },
λ h, (f : α →o β).monotone h⟩ }
/-- Order isomorphism between two equal sets. -/
def set_congr (s t : set α) (h : s = t) : s ≃o t :=
{ to_equiv := equiv.set_congr h,
map_rel_iff' := λ x y, iff.rfl }
/-- Order isomorphism between `univ : set α` and `α`. -/
def set.univ : (set.univ : set α) ≃o α :=
{ to_equiv := equiv.set.univ α,
map_rel_iff' := λ x y, iff.rfl }
/-- Order isomorphism between `α → β` and `β`, where `α` has a unique element. -/
@[simps to_equiv apply] def fun_unique (α β : Type*) [unique α] [preorder β] :
(α → β) ≃o β :=
{ to_equiv := equiv.fun_unique α β,
map_rel_iff' := λ f g, by simp [pi.le_def, unique.forall_iff] }
@[simp] lemma fun_unique_symm_apply {α β : Type*} [unique α] [preorder β] :
((fun_unique α β).symm : β → α → β) = function.const α := rfl
end order_iso
namespace equiv
variables [preorder α] [preorder β]
/-- If `e` is an equivalence with monotone forward and inverse maps, then `e` is an
order isomorphism. -/
def to_order_iso (e : α ≃ β) (h₁ : monotone e) (h₂ : monotone e.symm) :
α ≃o β :=
⟨e, λ x y, ⟨λ h, by simpa only [e.symm_apply_apply] using h₂ h, λ h, h₁ h⟩⟩
@[simp] lemma coe_to_order_iso (e : α ≃ β) (h₁ : monotone e) (h₂ : monotone e.symm) :
⇑(e.to_order_iso h₁ h₂) = e := rfl
@[simp] lemma to_order_iso_to_equiv (e : α ≃ β) (h₁ : monotone e) (h₂ : monotone e.symm) :
(e.to_order_iso h₁ h₂).to_equiv = e := rfl
end equiv
/-- If a function `f` is strictly monotone on a set `s`, then it defines an order isomorphism
between `s` and its image. -/
protected noncomputable def strict_mono_on.order_iso {α β} [linear_order α] [preorder β]
(f : α → β) (s : set α) (hf : strict_mono_on f s) :
s ≃o f '' s :=
{ to_equiv := hf.inj_on.bij_on_image.equiv _,
map_rel_iff' := λ x y, hf.le_iff_le x.2 y.2 }
namespace strict_mono
variables {α β} [linear_order α] [preorder β]
variables (f : α → β) (h_mono : strict_mono f) (h_surj : function.surjective f)
/-- A strictly monotone function from a linear order is an order isomorphism between its domain and
its range. -/
@[simps apply] protected noncomputable def order_iso : α ≃o set.range f :=
{ to_equiv := equiv.of_injective f h_mono.injective,
map_rel_iff' := λ a b, h_mono.le_iff_le }
/-- A strictly monotone surjective function from a linear order is an order isomorphism. -/
noncomputable def order_iso_of_surjective : α ≃o β :=
(h_mono.order_iso f).trans $ (order_iso.set_congr _ _ h_surj.range_eq).trans order_iso.set.univ
@[simp] lemma coe_order_iso_of_surjective :
(order_iso_of_surjective f h_mono h_surj : α → β) = f :=
rfl
@[simp] lemma order_iso_of_surjective_symm_apply_self (a : α) :
(order_iso_of_surjective f h_mono h_surj).symm (f a) = a :=
(order_iso_of_surjective f h_mono h_surj).symm_apply_apply _
lemma order_iso_of_surjective_self_symm_apply (b : β) :
f ((order_iso_of_surjective f h_mono h_surj).symm b) = b :=
(order_iso_of_surjective f h_mono h_surj).apply_symm_apply _
/-- A strictly monotone function with a right inverse is an order isomorphism. -/
@[simps {fully_applied := false}] def order_iso_of_right_inverse
(g : β → α) (hg : function.right_inverse g f) : α ≃o β :=
{ to_fun := f,
inv_fun := g,
left_inv := λ x, h_mono.injective $ hg _,
right_inv := hg,
.. order_embedding.of_strict_mono f h_mono }
end strict_mono
/-- An order isomorphism is also an order isomorphism between dual orders. -/
protected def order_iso.dual [has_le α] [has_le β] (f : α ≃o β) : αᵒᵈ ≃o βᵒᵈ :=
⟨f.to_equiv, λ _ _, f.map_rel_iff⟩
section lattice_isos
lemma order_iso.map_bot' [has_le α] [partial_order β] (f : α ≃o β) {x : α} {y : β}
(hx : ∀ x', x ≤ x') (hy : ∀ y', y ≤ y') : f x = y :=
by { refine le_antisymm _ (hy _), rw [← f.apply_symm_apply y, f.map_rel_iff], apply hx }
lemma order_iso.map_bot [has_le α] [partial_order β] [order_bot α] [order_bot β] (f : α ≃o β) :
f ⊥ = ⊥ :=
f.map_bot' (λ _, bot_le) (λ _, bot_le)
lemma order_iso.map_top' [has_le α] [partial_order β] (f : α ≃o β) {x : α} {y : β}
(hx : ∀ x', x' ≤ x) (hy : ∀ y', y' ≤ y) : f x = y :=
f.dual.map_bot' hx hy
lemma order_iso.map_top [has_le α] [partial_order β] [order_top α] [order_top β] (f : α ≃o β) :
f ⊤ = ⊤ :=
f.dual.map_bot
lemma order_embedding.map_inf_le [semilattice_inf α] [semilattice_inf β] (f : α ↪o β) (x y : α) :
f (x ⊓ y) ≤ f x ⊓ f y :=
f.monotone.map_inf_le x y
lemma order_embedding.le_map_sup [semilattice_sup α] [semilattice_sup β] (f : α ↪o β) (x y : α) :
f x ⊔ f y ≤ f (x ⊔ y) :=
f.monotone.le_map_sup x y
lemma order_iso.map_inf [semilattice_inf α] [semilattice_inf β] (f : α ≃o β) (x y : α) :
f (x ⊓ y) = f x ⊓ f y :=
begin
refine (f.to_order_embedding.map_inf_le x y).antisymm _,
simpa [← f.symm.le_iff_le] using f.symm.to_order_embedding.map_inf_le (f x) (f y)
end
lemma order_iso.map_sup [semilattice_sup α] [semilattice_sup β] (f : α ≃o β) (x y : α) :
f (x ⊔ y) = f x ⊔ f y :=
f.dual.map_inf x y
/-- Note that this goal could also be stated `(disjoint on f) a b` -/
lemma disjoint.map_order_iso [semilattice_inf α] [order_bot α] [semilattice_inf β] [order_bot β]
{a b : α} (f : α ≃o β) (ha : disjoint a b) : disjoint (f a) (f b) :=
by { rw [disjoint, ←f.map_inf, ←f.map_bot], exact f.monotone ha }
/-- Note that this goal could also be stated `(codisjoint on f) a b` -/
lemma codisjoint.map_order_iso [semilattice_sup α] [order_top α] [semilattice_sup β] [order_top β]
{a b : α} (f : α ≃o β) (ha : codisjoint a b) : codisjoint (f a) (f b) :=
by { rw [codisjoint, ←f.map_sup, ←f.map_top], exact f.monotone ha }
@[simp] lemma disjoint_map_order_iso_iff [semilattice_inf α] [order_bot α] [semilattice_inf β]
[order_bot β] {a b : α} (f : α ≃o β) : disjoint (f a) (f b) ↔ disjoint a b :=
⟨λ h, f.symm_apply_apply a ▸ f.symm_apply_apply b ▸ h.map_order_iso f.symm, λ h, h.map_order_iso f⟩
@[simp] lemma codisjoint_map_order_iso_iff [semilattice_sup α] [order_top α] [semilattice_sup β]
[order_top β] {a b : α} (f : α ≃o β) : codisjoint (f a) (f b) ↔ codisjoint a b :=
⟨λ h, f.symm_apply_apply a ▸ f.symm_apply_apply b ▸ h.map_order_iso f.symm, λ h, h.map_order_iso f⟩
namespace with_bot
/-- Taking the dual then adding `⊥` is the same as adding `⊤` then taking the dual.
This is the order iso form of `with_bot.of_dual`, as proven by `coe_to_dual_top_equiv_eq`.
-/
protected def to_dual_top_equiv [has_le α] : with_bot αᵒᵈ ≃o (with_top α)ᵒᵈ := order_iso.refl _
@[simp] lemma to_dual_top_equiv_coe [has_le α] (a : α) :
with_bot.to_dual_top_equiv ↑(to_dual a) = to_dual (a : with_top α) := rfl
@[simp] lemma to_dual_top_equiv_symm_coe [has_le α] (a : α) :
with_bot.to_dual_top_equiv.symm (to_dual (a : with_top α)) = ↑(to_dual a) := rfl
@[simp] lemma to_dual_top_equiv_bot [has_le α] :
with_bot.to_dual_top_equiv (⊥ : with_bot αᵒᵈ) = ⊥ := rfl
@[simp] lemma to_dual_top_equiv_symm_bot [has_le α] :
with_bot.to_dual_top_equiv.symm (⊥ : (with_top α)ᵒᵈ) = ⊥ := rfl
lemma coe_to_dual_top_equiv_eq [has_le α] :
(with_bot.to_dual_top_equiv : with_bot αᵒᵈ → (with_top α)ᵒᵈ) = to_dual ∘ with_bot.of_dual :=
funext $ λ _, rfl
end with_bot
namespace with_top
/-- Taking the dual then adding `⊤` is the same as adding `⊥` then taking the dual.
This is the order iso form of `with_top.of_dual`, as proven by `coe_to_dual_bot_equiv_eq`. -/
protected def to_dual_bot_equiv [has_le α] : with_top αᵒᵈ ≃o (with_bot α)ᵒᵈ := order_iso.refl _
@[simp] lemma to_dual_bot_equiv_coe [has_le α] (a : α) :
with_top.to_dual_bot_equiv ↑(to_dual a) = to_dual (a : with_bot α) := rfl
@[simp] lemma to_dual_bot_equiv_symm_coe [has_le α] (a : α) :
with_top.to_dual_bot_equiv.symm (to_dual (a : with_bot α)) = ↑(to_dual a) := rfl
@[simp] lemma to_dual_bot_equiv_top [has_le α] :
with_top.to_dual_bot_equiv (⊤ : with_top αᵒᵈ) = ⊤ := rfl
@[simp] lemma to_dual_bot_equiv_symm_top [has_le α] :
with_top.to_dual_bot_equiv.symm (⊤ : (with_bot α)ᵒᵈ) = ⊤ := rfl
lemma coe_to_dual_bot_equiv_eq [has_le α] :
(with_top.to_dual_bot_equiv : with_top αᵒᵈ → (with_bot α)ᵒᵈ) = to_dual ∘ with_top.of_dual :=
funext $ λ _, rfl
end with_top
namespace order_iso
variables [partial_order α] [partial_order β] [partial_order γ]
/-- A version of `equiv.option_congr` for `with_top`. -/
@[simps apply]
def with_top_congr (e : α ≃o β) : with_top α ≃o with_top β :=
{ to_equiv := e.to_equiv.option_congr,
.. e.to_order_embedding.with_top_map }
@[simp] lemma with_top_congr_refl : (order_iso.refl α).with_top_congr = order_iso.refl _ :=
rel_iso.to_equiv_injective equiv.option_congr_refl
@[simp] lemma with_top_congr_symm (e : α ≃o β) : e.with_top_congr.symm = e.symm.with_top_congr :=
rel_iso.to_equiv_injective e.to_equiv.option_congr_symm
@[simp] lemma with_top_congr_trans (e₁ : α ≃o β) (e₂ : β ≃o γ) :
e₁.with_top_congr.trans e₂.with_top_congr = (e₁.trans e₂).with_top_congr :=
rel_iso.to_equiv_injective $ e₁.to_equiv.option_congr_trans e₂.to_equiv
/-- A version of `equiv.option_congr` for `with_bot`. -/
@[simps apply]
def with_bot_congr (e : α ≃o β) :
with_bot α ≃o with_bot β :=
{ to_equiv := e.to_equiv.option_congr,
.. e.to_order_embedding.with_bot_map }
@[simp] lemma with_bot_congr_refl : (order_iso.refl α).with_bot_congr = order_iso.refl _ :=
rel_iso.to_equiv_injective equiv.option_congr_refl
@[simp] lemma with_bot_congr_symm (e : α ≃o β) : e.with_bot_congr.symm = e.symm.with_bot_congr :=
rel_iso.to_equiv_injective e.to_equiv.option_congr_symm
@[simp] lemma with_bot_congr_trans (e₁ : α ≃o β) (e₂ : β ≃o γ) :
e₁.with_bot_congr.trans e₂.with_bot_congr = (e₁.trans e₂).with_bot_congr :=
rel_iso.to_equiv_injective $ e₁.to_equiv.option_congr_trans e₂.to_equiv
end order_iso
section bounded_order
variables [lattice α] [lattice β] [bounded_order α] [bounded_order β] (f : α ≃o β)
include f
lemma order_iso.is_compl {x y : α} (h : is_compl x y) : is_compl (f x) (f y) :=
⟨h.1.map_order_iso _, h.2.map_order_iso _⟩
theorem order_iso.is_compl_iff {x y : α} :
is_compl x y ↔ is_compl (f x) (f y) :=
⟨f.is_compl, λ h, f.symm_apply_apply x ▸ f.symm_apply_apply y ▸ f.symm.is_compl h⟩
lemma order_iso.is_complemented
[is_complemented α] : is_complemented β :=
⟨λ x, begin
obtain ⟨y, hy⟩ := exists_is_compl (f.symm x),
rw ← f.symm_apply_apply y at hy,
refine ⟨f y, f.symm.is_compl_iff.2 hy⟩,
end⟩
theorem order_iso.is_complemented_iff :
is_complemented α ↔ is_complemented β :=
⟨by { introI, exact f.is_complemented }, by { introI, exact f.symm.is_complemented }⟩
end bounded_order
end lattice_isos
section boolean_algebra
variables (α) [boolean_algebra α]
/-- Taking complements as an order isomorphism to the order dual. -/
@[simps]
def order_iso.compl : α ≃o αᵒᵈ :=
{ to_fun := order_dual.to_dual ∘ compl,
inv_fun := compl ∘ order_dual.of_dual,
left_inv := compl_compl,
right_inv := compl_compl,
map_rel_iff' := λ x y, compl_le_compl_iff_le }
theorem compl_strict_anti : strict_anti (compl : α → α) :=
(order_iso.compl α).strict_mono
theorem compl_antitone : antitone (compl : α → α) :=
(order_iso.compl α).monotone
end boolean_algebra
|
10c45c7ca018014d81aed58fb6b436d848c5f669
|
a7dd8b83f933e72c40845fd168dde330f050b1c9
|
/src/category_theory/instances/CommRing/limits.lean
|
c807e1cb1bf3ec5b72ff00c3eec56597e4ad9ed7
|
[
"Apache-2.0"
] |
permissive
|
NeilStrickland/mathlib
|
10420e92ee5cb7aba1163c9a01dea2f04652ed67
|
3efbd6f6dff0fb9b0946849b43b39948560a1ffe
|
refs/heads/master
| 1,589,043,046,346
| 1,558,938,706,000
| 1,558,938,706,000
| 181,285,984
| 0
| 0
|
Apache-2.0
| 1,568,941,848,000
| 1,555,233,833,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 4,107
|
lean
|
-- Copyright (c) 2019 Scott Morrison. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Authors: Scott Morrison
import category_theory.instances.CommRing.basic
import category_theory.limits.types
import category_theory.limits.preserves
import ring_theory.subring
import algebra.pi_instances
open category_theory
open category_theory.instances
universe u
namespace category_theory.instances.CommRing
open category_theory.limits
variables {J : Type u} [small_category J]
instance (F : J ⥤ CommRing.{u}) (j) : comm_ring ((F ⋙ CommRing.forget).obj j) :=
by { dsimp, apply_instance }
instance (F : J ⥤ CommRing.{u}) (j j') (f : j ⟶ j') : is_ring_hom ((F ⋙ CommRing.forget).map f) :=
by { dsimp, apply_instance }
instance sections_submonoid (F : J ⥤ CommRing.{u}) : is_submonoid (F ⋙ forget).sections :=
{ one_mem := λ j j' f,
begin
simp only [functor.comp_map],
erw is_ring_hom.map_one (CommRing.forget.map (F.map f)),
refl,
end,
mul_mem := λ a b ah bh j j' f,
begin
simp only [functor.comp_map],
erw is_ring_hom.map_mul (CommRing.forget.map (F.map f)),
dsimp [functor.sections] at ah,
rw ah f,
dsimp [functor.sections] at bh,
rw bh f,
refl,
end }
instance sections_add_submonoid (F : J ⥤ CommRing.{u}) : is_add_submonoid (F ⋙ forget).sections :=
{ zero_mem := λ j j' f,
begin
simp only [functor.comp_map],
erw is_ring_hom.map_zero (CommRing.forget.map (F.map f)),
refl,
end,
add_mem := λ a b ah bh j j' f,
begin
simp only [functor.comp_map],
erw is_ring_hom.map_add (CommRing.forget.map (F.map f)),
dsimp [functor.sections] at ah,
rw ah f,
dsimp [functor.sections] at bh,
rw bh f,
refl,
end }
instance sections_add_subgroup (F : J ⥤ CommRing.{u}) : is_add_subgroup (F ⋙ forget).sections :=
{ neg_mem := λ a ah j j' f,
begin
simp only [functor.comp_map],
erw is_ring_hom.map_neg (CommRing.forget.map (F.map f)),
dsimp [functor.sections] at ah,
rw ah f,
refl,
end,
..(CommRing.sections_add_submonoid F) }
instance sections_subring (F : J ⥤ CommRing.{u}) : is_subring (F ⋙ forget).sections :=
{ ..(CommRing.sections_submonoid F),
..(CommRing.sections_add_subgroup F) }
instance limit_comm_ring (F : J ⥤ CommRing.{u}) : comm_ring (limit (F ⋙ forget)) :=
@subtype.comm_ring ((Π (j : J), (F ⋙ forget).obj j)) (by apply_instance) _
(by convert (CommRing.sections_subring F))
instance limit_π_is_ring_hom (F : J ⥤ CommRing.{u}) (j) : is_ring_hom (limit.π (F ⋙ CommRing.forget) j) :=
{ map_one := by { simp only [types.types_limit_π], refl },
map_mul := λ x y, by { simp only [types.types_limit_π], refl },
map_add := λ x y, by { simp only [types.types_limit_π], refl } }
def limit (F : J ⥤ CommRing.{u}) : cone F :=
{ X := ⟨limit (F ⋙ forget), by apply_instance⟩,
π :=
{ app := λ j, ⟨limit.π (F ⋙ forget) j, by apply_instance⟩,
naturality' := λ j j' f, subtype.eq ((limit.cone (F ⋙ forget)).π.naturality f) } }
def limit_is_limit (F : J ⥤ CommRing.{u}) : is_limit (limit F) :=
begin
refine is_limit.of_faithful forget (limit.is_limit _) (λ s, ⟨_, _⟩) (λ s, rfl),
dsimp, split,
{ apply subtype.eq, funext, dsimp,
erw is_ring_hom.map_one (CommRing.forget.map (s.π.app j)), refl },
{ intros x y, apply subtype.eq, funext, dsimp,
erw is_ring_hom.map_mul (CommRing.forget.map (s.π.app j)), refl },
{ intros x y, apply subtype.eq, funext, dsimp,
erw is_ring_hom.map_add (CommRing.forget.map (s.π.app j)), refl },
end
instance CommRing_has_limits : has_limits.{u} CommRing.{u} :=
{ has_limits_of_shape := λ J 𝒥,
{ has_limit := λ F, by exactI { cone := limit F, is_limit := limit_is_limit F } } }
instance forget_preserves_limits : preserves_limits (forget : CommRing.{u} ⥤ Type u) :=
{ preserves_limits_of_shape := λ J 𝒥,
{ preserves_limit := λ F,
by exactI preserves_limit_of_preserves_limit_cone
(limit.is_limit F) (limit.is_limit (F ⋙ forget)) } }
end category_theory.instances.CommRing
|
6a81aa9af1094dfeb8320474a73683a8c5a75bf2
|
7cef822f3b952965621309e88eadf618da0c8ae9
|
/src/data/nat/basic.lean
|
0d9a25d629099c3213564c076653a228dafd197b
|
[
"Apache-2.0"
] |
permissive
|
rmitta/mathlib
|
8d90aee30b4db2b013e01f62c33f297d7e64a43d
|
883d974b608845bad30ae19e27e33c285200bf84
|
refs/heads/master
| 1,585,776,832,544
| 1,576,874,096,000
| 1,576,874,096,000
| 153,663,165
| 0
| 2
|
Apache-2.0
| 1,544,806,490,000
| 1,539,884,365,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 55,271
|
lean
|
/-
Copyright (c) 2014 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn, Leonardo de Moura, Jeremy Avigad, Mario Carneiro
-/
import logic.basic algebra.ordered_ring data.option.basic algebra.order_functions
/-!
# Basic operations on the natural numbers
This files has some basic lemmas about natural numbers, definition of the `choice` function,
and extra recursors:
* `le_rec_on`, `le_induction`: recursion and induction principles starting at non-zero numbers.
* `decreasing_induction` : recursion gowing downwards.
* `strong_rec'` : recursion based on strong inequalities.
-/
universes u v
namespace nat
variables {m n k : ℕ}
-- Sometimes a bare `nat.add` or similar appears as a consequence of unfolding
-- during pattern matching. These lemmas package them back up as typeclass
-- mediated operations.
@[simp] theorem add_def {a b : ℕ} : nat.add a b = a + b := rfl
@[simp] theorem mul_def {a b : ℕ} : nat.mul a b = a * b := rfl
attribute [simp] nat.add_sub_cancel nat.add_sub_cancel_left
attribute [simp] nat.sub_self
@[simp] lemma succ_pos' {n : ℕ} : 0 < succ n := succ_pos n
theorem succ_inj' {n m : ℕ} : succ n = succ m ↔ n = m :=
⟨succ_inj, congr_arg _⟩
theorem succ_le_succ_iff {m n : ℕ} : succ m ≤ succ n ↔ m ≤ n :=
⟨le_of_succ_le_succ, succ_le_succ⟩
lemma zero_max {m : nat} : max 0 m = m :=
max_eq_right (zero_le _)
theorem max_succ_succ {m n : ℕ} :
max (succ m) (succ n) = succ (max m n) :=
begin
by_cases h1 : m ≤ n,
rw [max_eq_right h1, max_eq_right (succ_le_succ h1)],
{ rw not_le at h1, have h2 := le_of_lt h1,
rw [max_eq_left h2, max_eq_left (succ_le_succ h2)] }
end
lemma not_succ_lt_self {n : ℕ} : ¬succ n < n :=
not_lt_of_ge (nat.le_succ _)
theorem lt_succ_iff {m n : ℕ} : m < succ n ↔ m ≤ n :=
succ_le_succ_iff
lemma succ_le_iff {m n : ℕ} : succ m ≤ n ↔ m < n :=
⟨lt_of_succ_le, succ_le_of_lt⟩
lemma lt_iff_add_one_le {m n : ℕ} : m < n ↔ m + 1 ≤ n :=
by rw succ_le_iff
-- Just a restatement of `nat.lt_succ_iff` using `+1`.
lemma lt_add_one_iff {a b : ℕ} : a < b + 1 ↔ a ≤ b :=
nat.lt_succ_iff
-- A flipped version of `lt_add_one_iff`.
lemma lt_one_add_iff {a b : ℕ} : a < 1 + b ↔ a ≤ b :=
by simp only [add_comm, nat.lt_succ_iff]
theorem of_le_succ {n m : ℕ} (H : n ≤ m.succ) : n ≤ m ∨ n = m.succ :=
(lt_or_eq_of_le H).imp le_of_lt_succ id
/-- Recursion starting at a non-zero number: given a map `C k → C (k+1)` for each `k`,
there is a map from `C n` to each `C m`, `n ≤ m`. -/
@[elab_as_eliminator]
def le_rec_on {C : ℕ → Sort u} {n : ℕ} : Π {m : ℕ}, n ≤ m → (Π {k}, C k → C (k+1)) → C n → C m
| 0 H next x := eq.rec_on (eq_zero_of_le_zero H) x
| (m+1) H next x := or.by_cases (of_le_succ H) (λ h : n ≤ m, next $ le_rec_on h @next x) (λ h : n = m + 1, eq.rec_on h x)
theorem le_rec_on_self {C : ℕ → Sort u} {n} {h : n ≤ n} {next} (x : C n) : (le_rec_on h next x : C n) = x :=
by cases n; unfold le_rec_on or.by_cases; rw [dif_neg n.not_succ_le_self, dif_pos rfl]
theorem le_rec_on_succ {C : ℕ → Sort u} {n m} (h1 : n ≤ m) {h2 : n ≤ m+1} {next} (x : C n) :
(le_rec_on h2 @next x : C (m+1)) = next (le_rec_on h1 @next x : C m) :=
by conv { to_lhs, rw [le_rec_on, or.by_cases, dif_pos h1] }
theorem le_rec_on_succ' {C : ℕ → Sort u} {n} {h : n ≤ n+1} {next} (x : C n) :
(le_rec_on h next x : C (n+1)) = next x :=
by rw [le_rec_on_succ (le_refl n), le_rec_on_self]
theorem le_rec_on_trans {C : ℕ → Sort u} {n m k} (hnm : n ≤ m) (hmk : m ≤ k) {next} (x : C n) :
(le_rec_on (le_trans hnm hmk) @next x : C k) = le_rec_on hmk @next (le_rec_on hnm @next x) :=
begin
induction hmk with k hmk ih, { rw le_rec_on_self },
rw [le_rec_on_succ (le_trans hnm hmk), ih, le_rec_on_succ]
end
theorem le_rec_on_succ_left {C : ℕ → Sort u} {n m} (h1 : n ≤ m) (h2 : n+1 ≤ m)
{next : Π{{k}}, C k → C (k+1)} (x : C n) :
(le_rec_on h2 next (next x) : C m) = (le_rec_on h1 next x : C m) :=
begin
rw [subsingleton.elim h1 (le_trans (le_succ n) h2),
le_rec_on_trans (le_succ n) h2, le_rec_on_succ']
end
theorem le_rec_on_injective {C : ℕ → Sort u} {n m} (hnm : n ≤ m)
(next : Π n, C n → C (n+1)) (Hnext : ∀ n, function.injective (next n)) :
function.injective (le_rec_on hnm next) :=
begin
induction hnm with m hnm ih, { intros x y H, rwa [le_rec_on_self, le_rec_on_self] at H },
intros x y H, rw [le_rec_on_succ hnm, le_rec_on_succ hnm] at H, exact ih (Hnext _ H)
end
theorem le_rec_on_surjective {C : ℕ → Sort u} {n m} (hnm : n ≤ m)
(next : Π n, C n → C (n+1)) (Hnext : ∀ n, function.surjective (next n)) :
function.surjective (le_rec_on hnm next) :=
begin
induction hnm with m hnm ih, { intros x, use x, rw le_rec_on_self },
intros x, rcases Hnext _ x with ⟨w, rfl⟩, rcases ih w with ⟨x, rfl⟩, use x, rw le_rec_on_succ
end
theorem pred_eq_of_eq_succ {m n : ℕ} (H : m = n.succ) : m.pred = n := by simp [H]
@[simp] lemma pred_eq_succ_iff {n m : ℕ} : pred n = succ m ↔ n = m + 2 :=
by cases n; split; rintro ⟨⟩; refl
theorem pred_sub (n m : ℕ) : pred n - m = pred (n - m) :=
by rw [← sub_one, nat.sub_sub, one_add]; refl
lemma pred_eq_sub_one (n : ℕ) : pred n = n - 1 := rfl
lemma one_le_of_lt {n m : ℕ} (h : n < m) : 1 ≤ m :=
lt_of_le_of_lt (nat.zero_le _) h
lemma le_pred_of_lt {n m : ℕ} (h : m < n) : m ≤ n - 1 :=
nat.sub_le_sub_right h 1
lemma le_of_pred_lt {m n : ℕ} : pred m < n → m ≤ n :=
match m with
| 0 := le_of_lt
| m+1 := id
end
/-- This ensures that `simp` succeeds on `pred (n + 1) = n`. -/
@[simp] lemma pred_one_add (n : ℕ) : pred (1 + n) = n :=
by rw [add_comm, add_one, pred_succ]
theorem pos_iff_ne_zero : 0 < n ↔ n ≠ 0 :=
⟨ne_of_gt, nat.pos_of_ne_zero⟩
lemma one_lt_iff_ne_zero_and_ne_one : ∀ {n : ℕ}, 1 < n ↔ n ≠ 0 ∧ n ≠ 1
| 0 := dec_trivial
| 1 := dec_trivial
| (n+2) := dec_trivial
theorem eq_of_lt_succ_of_not_lt {a b : ℕ} (h1 : a < b + 1) (h2 : ¬ a < b) : a = b :=
have h3 : a ≤ b, from le_of_lt_succ h1,
or.elim (eq_or_lt_of_not_lt h2) (λ h, h) (λ h, absurd h (not_lt_of_ge h3))
protected theorem le_sub_add (n m : ℕ) : n ≤ n - m + m :=
or.elim (le_total n m)
(assume : n ≤ m, begin rw [sub_eq_zero_of_le this, zero_add], exact this end)
(assume : m ≤ n, begin rw (nat.sub_add_cancel this) end)
theorem sub_add_eq_max (n m : ℕ) : n - m + m = max n m :=
eq_max (nat.le_sub_add _ _) (le_add_left _ _) $ λ k h₁ h₂,
by rw ← nat.sub_add_cancel h₂; exact
add_le_add_right (nat.sub_le_sub_right h₁ _) _
theorem sub_add_min (n m : ℕ) : n - m + min n m = n :=
(le_total n m).elim
(λ h, by rw [min_eq_left h, sub_eq_zero_of_le h, zero_add])
(λ h, by rw [min_eq_right h, nat.sub_add_cancel h])
protected theorem add_sub_cancel' {n m : ℕ} (h : m ≤ n) : m + (n - m) = n :=
by rw [add_comm, nat.sub_add_cancel h]
protected theorem sub_eq_of_eq_add (h : k = m + n) : k - m = n :=
begin rw [h, nat.add_sub_cancel_left] end
theorem sub_cancel {a b c : ℕ} (h₁ : a ≤ b) (h₂ : a ≤ c) (w : b - a = c - a) : b = c :=
by rw [←nat.sub_add_cancel h₁, ←nat.sub_add_cancel h₂, w]
lemma sub_sub_sub_cancel_right {a b c : ℕ} (h₂ : c ≤ b) : (a - c) - (b - c) = a - b :=
by rw [nat.sub_sub, ←nat.add_sub_assoc h₂, nat.add_sub_cancel_left]
lemma add_sub_cancel_right (n m k : ℕ) : n + (m + k) - k = n + m :=
by { rw [nat.add_sub_assoc, nat.add_sub_cancel], apply k.le_add_left }
protected lemma sub_add_eq_add_sub {a b c : ℕ} (h : b ≤ a) : (a - b) + c = (a + c) - b :=
by rw [add_comm a, nat.add_sub_assoc h, add_comm]
theorem sub_min (n m : ℕ) : n - min n m = n - m :=
nat.sub_eq_of_eq_add $ by rw [add_comm, sub_add_min]
theorem sub_sub_assoc {a b c : ℕ} (h₁ : b ≤ a) (h₂ : c ≤ b) : a - (b - c) = a - b + c :=
(nat.sub_eq_iff_eq_add (le_trans (nat.sub_le _ _) h₁)).2 $
by rw [add_right_comm, add_assoc, nat.sub_add_cancel h₂, nat.sub_add_cancel h₁]
protected theorem lt_of_sub_pos (h : 0 < n - m) : m < n :=
lt_of_not_ge
(assume : n ≤ m,
have n - m = 0, from sub_eq_zero_of_le this,
begin rw this at h, exact lt_irrefl _ h end)
protected theorem lt_of_sub_lt_sub_right : m - k < n - k → m < n :=
lt_imp_lt_of_le_imp_le (λ h, nat.sub_le_sub_right h _)
protected theorem lt_of_sub_lt_sub_left : m - n < m - k → k < n :=
lt_imp_lt_of_le_imp_le (nat.sub_le_sub_left _)
protected theorem sub_lt_self (h₁ : 0 < m) (h₂ : 0 < n) : m - n < m :=
calc
m - n = succ (pred m) - succ (pred n) : by rw [succ_pred_eq_of_pos h₁, succ_pred_eq_of_pos h₂]
... = pred m - pred n : by rw succ_sub_succ
... ≤ pred m : sub_le _ _
... < succ (pred m) : lt_succ_self _
... = m : succ_pred_eq_of_pos h₁
protected theorem le_sub_right_of_add_le (h : m + k ≤ n) : m ≤ n - k :=
by rw ← nat.add_sub_cancel m k; exact nat.sub_le_sub_right h k
protected theorem le_sub_left_of_add_le (h : k + m ≤ n) : m ≤ n - k :=
nat.le_sub_right_of_add_le (by rwa add_comm at h)
protected theorem lt_sub_right_of_add_lt (h : m + k < n) : m < n - k :=
lt_of_succ_le $ nat.le_sub_right_of_add_le $
by rw succ_add; exact succ_le_of_lt h
protected theorem lt_sub_left_of_add_lt (h : k + m < n) : m < n - k :=
nat.lt_sub_right_of_add_lt (by rwa add_comm at h)
protected theorem add_lt_of_lt_sub_right (h : m < n - k) : m + k < n :=
@nat.lt_of_sub_lt_sub_right _ _ k (by rwa nat.add_sub_cancel)
protected theorem add_lt_of_lt_sub_left (h : m < n - k) : k + m < n :=
by rw add_comm; exact nat.add_lt_of_lt_sub_right h
protected theorem le_add_of_sub_le_right : n - k ≤ m → n ≤ m + k :=
le_imp_le_of_lt_imp_lt nat.lt_sub_right_of_add_lt
protected theorem le_add_of_sub_le_left : n - k ≤ m → n ≤ k + m :=
le_imp_le_of_lt_imp_lt nat.lt_sub_left_of_add_lt
protected theorem lt_add_of_sub_lt_right : n - k < m → n < m + k :=
lt_imp_lt_of_le_imp_le nat.le_sub_right_of_add_le
protected theorem lt_add_of_sub_lt_left : n - k < m → n < k + m :=
lt_imp_lt_of_le_imp_le nat.le_sub_left_of_add_le
protected theorem sub_le_left_of_le_add : n ≤ k + m → n - k ≤ m :=
le_imp_le_of_lt_imp_lt nat.add_lt_of_lt_sub_left
protected theorem sub_le_right_of_le_add : n ≤ m + k → n - k ≤ m :=
le_imp_le_of_lt_imp_lt nat.add_lt_of_lt_sub_right
protected theorem sub_lt_left_iff_lt_add (H : n ≤ k) : k - n < m ↔ k < n + m :=
⟨nat.lt_add_of_sub_lt_left,
λ h₁,
have succ k ≤ n + m, from succ_le_of_lt h₁,
have succ (k - n) ≤ m, from
calc succ (k - n) = succ k - n : by rw (succ_sub H)
... ≤ n + m - n : nat.sub_le_sub_right this n
... = m : by rw nat.add_sub_cancel_left,
lt_of_succ_le this⟩
protected theorem le_sub_left_iff_add_le (H : m ≤ k) : n ≤ k - m ↔ m + n ≤ k :=
le_iff_le_iff_lt_iff_lt.2 (nat.sub_lt_left_iff_lt_add H)
protected theorem le_sub_right_iff_add_le (H : n ≤ k) : m ≤ k - n ↔ m + n ≤ k :=
by rw [nat.le_sub_left_iff_add_le H, add_comm]
protected theorem lt_sub_left_iff_add_lt : n < k - m ↔ m + n < k :=
⟨nat.add_lt_of_lt_sub_left, nat.lt_sub_left_of_add_lt⟩
protected theorem lt_sub_right_iff_add_lt : m < k - n ↔ m + n < k :=
by rw [nat.lt_sub_left_iff_add_lt, add_comm]
theorem sub_le_left_iff_le_add : m - n ≤ k ↔ m ≤ n + k :=
le_iff_le_iff_lt_iff_lt.2 nat.lt_sub_left_iff_add_lt
theorem sub_le_right_iff_le_add : m - k ≤ n ↔ m ≤ n + k :=
by rw [nat.sub_le_left_iff_le_add, add_comm]
protected theorem sub_lt_right_iff_lt_add (H : k ≤ m) : m - k < n ↔ m < n + k :=
by rw [nat.sub_lt_left_iff_lt_add H, add_comm]
protected theorem sub_le_sub_left_iff (H : k ≤ m) : m - n ≤ m - k ↔ k ≤ n :=
⟨λ h,
have k + (m - k) - n ≤ m - k, by rwa nat.add_sub_cancel' H,
nat.le_of_add_le_add_right (nat.le_add_of_sub_le_left this),
nat.sub_le_sub_left _⟩
protected theorem sub_lt_sub_right_iff (H : k ≤ m) : m - k < n - k ↔ m < n :=
lt_iff_lt_of_le_iff_le (nat.sub_le_sub_right_iff _ _ _ H)
protected theorem sub_lt_sub_left_iff (H : n ≤ m) : m - n < m - k ↔ k < n :=
lt_iff_lt_of_le_iff_le (nat.sub_le_sub_left_iff H)
protected theorem sub_le_iff : m - n ≤ k ↔ m - k ≤ n :=
nat.sub_le_left_iff_le_add.trans nat.sub_le_right_iff_le_add.symm
protected lemma sub_le_self (n m : ℕ) : n - m ≤ n :=
nat.sub_le_left_of_le_add (nat.le_add_left _ _)
protected theorem sub_lt_iff (h₁ : n ≤ m) (h₂ : k ≤ m) : m - n < k ↔ m - k < n :=
(nat.sub_lt_left_iff_lt_add h₁).trans (nat.sub_lt_right_iff_lt_add h₂).symm
lemma pred_le_iff {n m : ℕ} : pred n ≤ m ↔ n ≤ succ m :=
@nat.sub_le_right_iff_le_add n m 1
lemma lt_pred_iff {n m : ℕ} : n < pred m ↔ succ n < m :=
@nat.lt_sub_right_iff_add_lt n 1 m
protected theorem mul_ne_zero {n m : ℕ} (n0 : n ≠ 0) (m0 : m ≠ 0) : n * m ≠ 0
| nm := (eq_zero_of_mul_eq_zero nm).elim n0 m0
@[simp] protected theorem mul_eq_zero {a b : ℕ} : a * b = 0 ↔ a = 0 ∨ b = 0 :=
iff.intro eq_zero_of_mul_eq_zero (by simp [or_imp_distrib] {contextual := tt})
@[simp] protected theorem zero_eq_mul {a b : ℕ} : 0 = a * b ↔ a = 0 ∨ b = 0 :=
by rw [eq_comm, nat.mul_eq_zero]
lemma eq_zero_of_double_le {a : ℕ} (h : 2 * a ≤ a) : a = 0 :=
nat.eq_zero_of_le_zero $
by rwa [two_mul, nat.add_le_to_le_sub, nat.sub_self] at h; refl
lemma eq_zero_of_mul_le {a b : ℕ} (hb : 2 ≤ b) (h : b * a ≤ a) : a = 0 :=
eq_zero_of_double_le $ le_trans (nat.mul_le_mul_right _ hb) h
lemma le_mul_of_pos_left {m n : ℕ} (h : 0 < n) : m ≤ n * m :=
begin
conv {to_lhs, rw [← one_mul(m)]},
exact mul_le_mul_of_nonneg_right (nat.succ_le_of_lt h) dec_trivial,
end
lemma le_mul_of_pos_right {m n : ℕ} (h : 0 < n) : m ≤ m * n :=
begin
conv {to_lhs, rw [← mul_one(m)]},
exact mul_le_mul_of_nonneg_left (nat.succ_le_of_lt h) dec_trivial,
end
theorem two_mul_ne_two_mul_add_one {n m} : 2 * n ≠ 2 * m + 1 :=
mt (congr_arg (%2)) (by rw [add_comm, add_mul_mod_self_left, mul_mod_right]; exact dec_trivial)
/-- Recursion principle based on `<`. -/
@[elab_as_eliminator]
protected def strong_rec' {p : ℕ → Sort u} (H : ∀ n, (∀ m, m < n → p m) → p n) : ∀ (n : ℕ), p n
| n := H n (λ m hm, strong_rec' m)
attribute [simp] nat.div_self
protected lemma div_le_of_le_mul' {m n : ℕ} {k} (h : m ≤ k * n) : m / k ≤ n :=
(eq_zero_or_pos k).elim
(λ k0, by rw [k0, nat.div_zero]; apply zero_le)
(λ k0, (decidable.mul_le_mul_left k0).1 $
calc k * (m / k)
≤ m % k + k * (m / k) : le_add_left _ _
... = m : mod_add_div _ _
... ≤ k * n : h)
protected lemma div_le_self' (m n : ℕ) : m / n ≤ m :=
(eq_zero_or_pos n).elim
(λ n0, by rw [n0, nat.div_zero]; apply zero_le)
(λ n0, nat.div_le_of_le_mul' $ calc
m = 1 * m : (one_mul _).symm
... ≤ n * m : mul_le_mul_right _ n0)
theorem le_div_iff_mul_le' {x y : ℕ} {k : ℕ} (k0 : 0 < k) : x ≤ y / k ↔ x * k ≤ y :=
begin
revert x, refine nat.strong_rec' _ y,
clear y, intros y IH x,
cases decidable.lt_or_le y k with h h,
{ rw [div_eq_of_lt h],
cases x with x,
{ simp [zero_mul, zero_le] },
{ rw succ_mul,
exact iff_of_false (not_succ_le_zero _)
(not_le_of_lt $ lt_of_lt_of_le h (le_add_left _ _)) } },
{ rw [div_eq_sub_div k0 h],
cases x with x,
{ simp [zero_mul, zero_le] },
{ rw [← add_one, nat.add_le_add_iff_le_right, succ_mul,
IH _ (sub_lt_of_pos_le _ _ k0 h), add_le_to_le_sub _ h] } }
end
theorem div_mul_le_self' (m n : ℕ) : m / n * n ≤ m :=
(nat.eq_zero_or_pos n).elim (λ n0, by simp [n0, zero_le]) $ λ n0,
(le_div_iff_mul_le' n0).1 (le_refl _)
theorem div_lt_iff_lt_mul' {x y : ℕ} {k : ℕ} (k0 : 0 < k) : x / k < y ↔ x < y * k :=
lt_iff_lt_of_le_iff_le $ le_div_iff_mul_le' k0
protected theorem div_le_div_right {n m : ℕ} (h : n ≤ m) {k : ℕ} : n / k ≤ m / k :=
(nat.eq_zero_or_pos k).elim (λ k0, by simp [k0]) $ λ hk,
(le_div_iff_mul_le' hk).2 $ le_trans (nat.div_mul_le_self' _ _) h
lemma lt_of_div_lt_div {m n k : ℕ} (h : m / k < n / k) : m < n :=
by_contradiction $ λ h₁, absurd h (not_lt_of_ge (nat.div_le_div_right (not_lt.1 h₁)))
protected theorem eq_mul_of_div_eq_right {a b c : ℕ} (H1 : b ∣ a) (H2 : a / b = c) :
a = b * c :=
by rw [← H2, nat.mul_div_cancel' H1]
protected theorem div_eq_iff_eq_mul_right {a b c : ℕ} (H : 0 < b) (H' : b ∣ a) :
a / b = c ↔ a = b * c :=
⟨nat.eq_mul_of_div_eq_right H', nat.div_eq_of_eq_mul_right H⟩
protected theorem div_eq_iff_eq_mul_left {a b c : ℕ} (H : 0 < b) (H' : b ∣ a) :
a / b = c ↔ a = c * b :=
by rw mul_comm; exact nat.div_eq_iff_eq_mul_right H H'
protected theorem eq_mul_of_div_eq_left {a b c : ℕ} (H1 : b ∣ a) (H2 : a / b = c) :
a = c * b :=
by rw [mul_comm, nat.eq_mul_of_div_eq_right H1 H2]
protected theorem mul_div_cancel_left' {a b : ℕ} (Hd : a ∣ b) : a * (b / a) = b :=
by rw [mul_comm,nat.div_mul_cancel Hd]
protected theorem div_mod_unique {n k m d : ℕ} (h : 0 < k) :
n / k = d ∧ n % k = m ↔ m + k * d = n ∧ m < k :=
⟨λ ⟨e₁, e₂⟩, e₁ ▸ e₂ ▸ ⟨mod_add_div _ _, mod_lt _ h⟩,
λ ⟨h₁, h₂⟩, h₁ ▸ by rw [add_mul_div_left _ _ h, add_mul_mod_self_left];
simp [div_eq_of_lt, mod_eq_of_lt, h₂]⟩
lemma two_mul_odd_div_two {n : ℕ} (hn : n % 2 = 1) : 2 * (n / 2) = n - 1 :=
by conv {to_rhs, rw [← nat.mod_add_div n 2, hn, nat.add_sub_cancel_left]}
lemma div_dvd_of_dvd {a b : ℕ} (h : b ∣ a) : (a / b) ∣ a :=
⟨b, (nat.div_mul_cancel h).symm⟩
protected lemma div_pos {a b : ℕ} (hba : b ≤ a) (hb : 0 < b) : 0 < a / b :=
nat.pos_of_ne_zero (λ h, lt_irrefl a
(calc a = a % b : by simpa [h] using (mod_add_div a b).symm
... < b : nat.mod_lt a hb
... ≤ a : hba))
protected theorem mul_right_inj {a b c : ℕ} (ha : 0 < a) : b * a = c * a ↔ b = c :=
⟨nat.eq_of_mul_eq_mul_right ha, λ e, e ▸ rfl⟩
protected theorem mul_left_inj {a b c : ℕ} (ha : 0 < a) : a * b = a * c ↔ b = c :=
⟨nat.eq_of_mul_eq_mul_left ha, λ e, e ▸ rfl⟩
protected lemma div_div_self : ∀ {a b : ℕ}, b ∣ a → 0 < a → a / (a / b) = b
| a 0 h₁ h₂ := by rw eq_zero_of_zero_dvd h₁; refl
| 0 b h₁ h₂ := absurd h₂ dec_trivial
| (a+1) (b+1) h₁ h₂ :=
(nat.mul_right_inj (nat.div_pos (le_of_dvd (succ_pos a) h₁) (succ_pos b))).1 $
by rw [nat.div_mul_cancel (div_dvd_of_dvd h₁), nat.mul_div_cancel' h₁]
protected lemma div_lt_of_lt_mul {m n k : ℕ} (h : m < n * k) : m / n < k :=
lt_of_mul_lt_mul_left
(calc n * (m / n) ≤ m % n + n * (m / n) : nat.le_add_left _ _
... = m : mod_add_div _ _
... < n * k : h)
(nat.zero_le n)
lemma lt_mul_of_div_lt {a b c : ℕ} (h : a / c < b) (w : 0 < c) : a < b * c :=
lt_of_not_ge $ not_le_of_gt h ∘ (nat.le_div_iff_mul_le _ _ w).2
protected lemma div_eq_zero_iff {a b : ℕ} (hb : 0 < b) : a / b = 0 ↔ a < b :=
⟨λ h, by rw [← mod_add_div a b, h, mul_zero, add_zero]; exact mod_lt _ hb,
λ h, by rw [← nat.mul_left_inj hb, ← @add_left_cancel_iff _ _ (a % b), mod_add_div,
mod_eq_of_lt h, mul_zero, add_zero]⟩
lemma eq_zero_of_le_div {a b : ℕ} (hb : 2 ≤ b) (h : a ≤ a / b) : a = 0 :=
eq_zero_of_mul_le hb $
by rw mul_comm; exact (nat.le_div_iff_mul_le' (lt_of_lt_of_le dec_trivial hb)).1 h
lemma mul_div_le_mul_div_assoc (a b c : ℕ) : a * (b / c) ≤ (a * b) / c :=
if hc0 : c = 0 then by simp [hc0]
else (nat.le_div_iff_mul_le _ _ (nat.pos_of_ne_zero hc0)).2
(by rw [mul_assoc]; exact mul_le_mul_left _ (nat.div_mul_le_self _ _))
lemma div_mul_div_le_div (a b c : ℕ) : ((a / c) * b) / a ≤ b / c :=
if ha0 : a = 0 then by simp [ha0]
else calc a / c * b / a ≤ b * a / c / a :
nat.div_le_div_right (by rw [mul_comm];
exact mul_div_le_mul_div_assoc _ _ _)
... = b / c : by rw [nat.div_div_eq_div_mul, mul_comm b, mul_comm c,
nat.mul_div_mul _ _ (nat.pos_of_ne_zero ha0)]
lemma eq_zero_of_le_half {a : ℕ} (h : a ≤ a / 2) : a = 0 :=
eq_zero_of_le_div (le_refl _) h
lemma mod_mul_right_div_self (a b c : ℕ) : a % (b * c) / b = (a / b) % c :=
if hb : b = 0 then by simp [hb] else if hc : c = 0 then by simp [hc]
else by conv {to_rhs, rw ← mod_add_div a (b * c)};
rw [mul_assoc, nat.add_mul_div_left _ _ (nat.pos_of_ne_zero hb), add_mul_mod_self_left,
mod_eq_of_lt (nat.div_lt_of_lt_mul (mod_lt _ (mul_pos (nat.pos_of_ne_zero hb) (nat.pos_of_ne_zero hc))))]
lemma mod_mul_left_div_self (a b c : ℕ) : a % (c * b) / b = (a / b) % c :=
by rw [mul_comm c, mod_mul_right_div_self]
/- The `n+1`-st triangle number is `n` more than the `n`-th triangle number -/
lemma triangle_succ (n : ℕ) : (n + 1) * ((n + 1) - 1) / 2 = n * (n - 1) / 2 + n :=
begin
rw [← add_mul_div_left, mul_comm 2 n, ← mul_add, nat.add_sub_cancel, mul_comm],
cases n; refl, apply zero_lt_succ
end
@[simp] protected theorem dvd_one {n : ℕ} : n ∣ 1 ↔ n = 1 :=
⟨eq_one_of_dvd_one, λ e, e.symm ▸ dvd_refl _⟩
protected theorem dvd_add_left {k m n : ℕ} (h : k ∣ n) : k ∣ m + n ↔ k ∣ m :=
(nat.dvd_add_iff_left h).symm
protected theorem dvd_add_right {k m n : ℕ} (h : k ∣ m) : k ∣ m + n ↔ k ∣ n :=
(nat.dvd_add_iff_right h).symm
/-- A natural number m divides the sum m + n if and only if m divides b.-/
@[simp] protected lemma dvd_add_self_left {m n : ℕ} :
m ∣ m + n ↔ m ∣ n :=
nat.dvd_add_right (dvd_refl m)
/-- A natural number m divides the sum n + m if and only if m divides b.-/
@[simp] protected lemma dvd_add_self_right {m n : ℕ} :
m ∣ n + m ↔ m ∣ n :=
nat.dvd_add_left (dvd_refl m)
protected theorem mul_dvd_mul_iff_left {a b c : ℕ} (ha : 0 < a) : a * b ∣ a * c ↔ b ∣ c :=
exists_congr $ λ d, by rw [mul_assoc, nat.mul_left_inj ha]
protected theorem mul_dvd_mul_iff_right {a b c : ℕ} (hc : 0 < c) : a * c ∣ b * c ↔ a ∣ b :=
exists_congr $ λ d, by rw [mul_right_comm, nat.mul_right_inj hc]
lemma succ_div : ∀ (a b : ℕ), (a + 1) / b =
a / b + if b ∣ a + 1 then 1 else 0
| a 0 := by simp
| 0 1 := rfl
| 0 (b+2) := have hb2 : b + 2 > 1, from dec_trivial,
by simp [ne_of_gt hb2, div_eq_of_lt hb2]
| (a+1) (b+1) := begin
rw [nat.div_def], conv_rhs { rw nat.div_def },
by_cases hb_eq_a : b = a + 1,
{ simp [hb_eq_a, le_refl] },
by_cases hb_le_a1 : b ≤ a + 1,
{ have hb_le_a : b ≤ a, from le_of_lt_succ (lt_of_le_of_ne hb_le_a1 hb_eq_a),
have h₁ : (0 < b + 1 ∧ b + 1 ≤ a + 1 + 1),
from ⟨succ_pos _, (add_le_add_iff_right _).2 hb_le_a1⟩,
have h₂ : (0 < b + 1 ∧ b + 1 ≤ a + 1),
from ⟨succ_pos _, (add_le_add_iff_right _).2 hb_le_a⟩,
have dvd_iff : b + 1 ∣ a - b + 1 ↔ b + 1 ∣ a + 1 + 1,
{ rw [nat.dvd_add_iff_left (dvd_refl (b + 1)),
← nat.add_sub_add_right a 1 b, add_comm (_ - _), add_assoc,
nat.sub_add_cancel (succ_le_succ hb_le_a)],
simp },
have wf : a - b < a + 1, from lt_succ_of_le (nat.sub_le_self _ _),
rw [if_pos h₁, if_pos h₂, nat.add_sub_add_right, nat.sub_add_comm hb_le_a,
by exact have _ := wf, succ_div (a - b),
nat.add_sub_add_right],
simp [dvd_iff, succ_eq_add_one], congr },
{ have hba : ¬ b ≤ a,
from not_le_of_gt (lt_trans (lt_succ_self a) (lt_of_not_ge hb_le_a1)),
have hb_dvd_a : ¬ b + 1 ∣ a + 2,
from λ h, hb_le_a1 (le_of_succ_le_succ (le_of_dvd (succ_pos _) h)),
simp [hba, hb_le_a1, hb_dvd_a], }
end
lemma succ_div_of_dvd {a b : ℕ} (hba : b ∣ a + 1) :
(a + 1) / b = a / b + 1 :=
by rw [succ_div, if_pos hba]
lemma succ_div_of_not_dvd {a b : ℕ} (hba : ¬ b ∣ a + 1) :
(a + 1) / b = a / b :=
by rw [succ_div, if_neg hba, add_zero]
@[simp] theorem mod_mod (a n : ℕ) : (a % n) % n = a % n :=
(eq_zero_or_pos n).elim
(λ n0, by simp [n0])
(λ npos, mod_eq_of_lt (mod_lt _ npos))
@[simp] theorem mod_mod_of_dvd (n : nat) {m k : nat} (h : m ∣ k) : n % k % m = n % m :=
begin
conv { to_rhs, rw ←mod_add_div n k },
rcases h with ⟨t, rfl⟩, rw [mul_assoc, add_mul_mod_self_left]
end
theorem add_pos_left {m : ℕ} (h : 0 < m) (n : ℕ) : 0 < m + n :=
calc
m + n > 0 + n : nat.add_lt_add_right h n
... = n : nat.zero_add n
... ≥ 0 : zero_le n
theorem add_pos_right (m : ℕ) {n : ℕ} (h : 0 < n) : 0 < m + n :=
begin rw add_comm, exact add_pos_left h m end
theorem add_pos_iff_pos_or_pos (m n : ℕ) : 0 < m + n ↔ 0 < m ∨ 0 < n :=
iff.intro
begin
intro h,
cases m with m,
{simp [zero_add] at h, exact or.inr h},
exact or.inl (succ_pos _)
end
begin
intro h, cases h with mpos npos,
{ apply add_pos_left mpos },
apply add_pos_right _ npos
end
lemma add_eq_one_iff : ∀ {a b : ℕ}, a + b = 1 ↔ (a = 0 ∧ b = 1) ∨ (a = 1 ∧ b = 0)
| 0 0 := dec_trivial
| 0 1 := dec_trivial
| 1 0 := dec_trivial
| 1 1 := dec_trivial
| (a+2) _ := by rw add_right_comm; exact dec_trivial
| _ (b+2) := by rw [← add_assoc]; simp only [nat.succ_inj', nat.succ_ne_zero]; simp
lemma mul_eq_one_iff : ∀ {a b : ℕ}, a * b = 1 ↔ a = 1 ∧ b = 1
| 0 0 := dec_trivial
| 0 1 := dec_trivial
| 1 0 := dec_trivial
| (a+2) 0 := by simp
| 0 (b+2) := by simp
| (a+1) (b+1) := ⟨λ h, by simp only [add_mul, mul_add, mul_add, one_mul, mul_one,
(add_assoc _ _ _).symm, nat.succ_inj', add_eq_zero_iff] at h; simp [h.1.2, h.2],
by clear_aux_decl; finish⟩
lemma mul_right_eq_self_iff {a b : ℕ} (ha : 0 < a) : a * b = a ↔ b = 1 :=
suffices a * b = a * 1 ↔ b = 1, by rwa mul_one at this,
nat.mul_left_inj ha
lemma mul_left_eq_self_iff {a b : ℕ} (hb : 0 < b) : a * b = b ↔ a = 1 :=
by rw [mul_comm, nat.mul_right_eq_self_iff hb]
lemma lt_succ_iff_lt_or_eq {n i : ℕ} : n < i.succ ↔ (n < i ∨ n = i) :=
lt_succ_iff.trans le_iff_lt_or_eq
theorem le_zero_iff {i : ℕ} : i ≤ 0 ↔ i = 0 :=
⟨nat.eq_zero_of_le_zero, assume h, h ▸ le_refl i⟩
theorem le_add_one_iff {i j : ℕ} : i ≤ j + 1 ↔ (i ≤ j ∨ i = j + 1) :=
⟨assume h,
match nat.eq_or_lt_of_le h with
| or.inl h := or.inr h
| or.inr h := or.inl $ nat.le_of_succ_le_succ h
end,
or.rec (assume h, le_trans h $ nat.le_add_right _ _) le_of_eq⟩
theorem mul_self_inj {n m : ℕ} : n * n = m * m ↔ n = m :=
le_antisymm_iff.trans (le_antisymm_iff.trans
(and_congr mul_self_le_mul_self_iff mul_self_le_mul_self_iff)).symm
instance decidable_ball_lt (n : nat) (P : Π k < n, Prop) :
∀ [H : ∀ n h, decidable (P n h)], decidable (∀ n h, P n h) :=
begin
induction n with n IH; intro; resetI,
{ exact is_true (λ n, dec_trivial) },
cases IH (λ k h, P k (lt_succ_of_lt h)) with h,
{ refine is_false (mt _ h), intros hn k h, apply hn },
by_cases p : P n (lt_succ_self n),
{ exact is_true (λ k h',
(lt_or_eq_of_le $ le_of_lt_succ h').elim (h _)
(λ e, match k, e, h' with _, rfl, h := p end)) },
{ exact is_false (mt (λ hn, hn _ _) p) }
end
instance decidable_forall_fin {n : ℕ} (P : fin n → Prop)
[H : decidable_pred P] : decidable (∀ i, P i) :=
decidable_of_iff (∀ k h, P ⟨k, h⟩) ⟨λ a ⟨k, h⟩, a k h, λ a k h, a ⟨k, h⟩⟩
instance decidable_ball_le (n : ℕ) (P : Π k ≤ n, Prop)
[H : ∀ n h, decidable (P n h)] : decidable (∀ n h, P n h) :=
decidable_of_iff (∀ k (h : k < succ n), P k (le_of_lt_succ h))
⟨λ a k h, a k (lt_succ_of_le h), λ a k h, a k _⟩
instance decidable_lo_hi (lo hi : ℕ) (P : ℕ → Prop) [H : decidable_pred P] : decidable (∀x, lo ≤ x → x < hi → P x) :=
decidable_of_iff (∀ x < hi - lo, P (lo + x))
⟨λal x hl hh, by have := al (x - lo) (lt_of_not_ge $
(not_congr (nat.sub_le_sub_right_iff _ _ _ hl)).2 $ not_le_of_gt hh);
rwa [nat.add_sub_of_le hl] at this,
λal x h, al _ (nat.le_add_right _ _) (nat.add_lt_of_lt_sub_left h)⟩
instance decidable_lo_hi_le (lo hi : ℕ) (P : ℕ → Prop) [H : decidable_pred P] : decidable (∀x, lo ≤ x → x ≤ hi → P x) :=
decidable_of_iff (∀x, lo ≤ x → x < hi + 1 → P x) $
ball_congr $ λ x hl, imp_congr lt_succ_iff iff.rfl
protected theorem bit0_le {n m : ℕ} (h : n ≤ m) : bit0 n ≤ bit0 m :=
add_le_add h h
protected theorem bit1_le {n m : ℕ} (h : n ≤ m) : bit1 n ≤ bit1 m :=
succ_le_succ (add_le_add h h)
theorem bit_le : ∀ (b : bool) {n m : ℕ}, n ≤ m → bit b n ≤ bit b m
| tt n m h := nat.bit1_le h
| ff n m h := nat.bit0_le h
theorem bit_ne_zero (b) {n} (h : n ≠ 0) : bit b n ≠ 0 :=
by cases b; [exact nat.bit0_ne_zero h, exact nat.bit1_ne_zero _]
theorem bit0_le_bit : ∀ (b) {m n : ℕ}, m ≤ n → bit0 m ≤ bit b n
| tt m n h := le_of_lt $ nat.bit0_lt_bit1 h
| ff m n h := nat.bit0_le h
theorem bit_le_bit1 : ∀ (b) {m n : ℕ}, m ≤ n → bit b m ≤ bit1 n
| ff m n h := le_of_lt $ nat.bit0_lt_bit1 h
| tt m n h := nat.bit1_le h
theorem bit_lt_bit0 : ∀ (b) {n m : ℕ}, n < m → bit b n < bit0 m
| tt n m h := nat.bit1_lt_bit0 h
| ff n m h := nat.bit0_lt h
theorem bit_lt_bit (a b) {n m : ℕ} (h : n < m) : bit a n < bit b m :=
lt_of_lt_of_le (bit_lt_bit0 _ h) (bit0_le_bit _ (le_refl _))
/- partial subtraction -/
/-- Partial predecessor operation. Returns `ppred n = some m`
if `n = m + 1`, otherwise `none`. -/
@[simp] def ppred : ℕ → option ℕ
| 0 := none
| (n+1) := some n
/-- Partial subtraction operation. Returns `psub m n = some k`
if `m = n + k`, otherwise `none`. -/
@[simp] def psub (m : ℕ) : ℕ → option ℕ
| 0 := some m
| (n+1) := psub n >>= ppred
theorem pred_eq_ppred (n : ℕ) : pred n = (ppred n).get_or_else 0 :=
by cases n; refl
theorem sub_eq_psub (m : ℕ) : ∀ n, m - n = (psub m n).get_or_else 0
| 0 := rfl
| (n+1) := (pred_eq_ppred (m-n)).trans $
by rw [sub_eq_psub, psub]; cases psub m n; refl
@[simp] theorem ppred_eq_some {m : ℕ} : ∀ {n}, ppred n = some m ↔ succ m = n
| 0 := by split; intro h; contradiction
| (n+1) := by dsimp; split; intro h; injection h; subst n
@[simp] theorem ppred_eq_none : ∀ {n : ℕ}, ppred n = none ↔ n = 0
| 0 := by simp
| (n+1) := by dsimp; split; contradiction
theorem psub_eq_some {m : ℕ} : ∀ {n k}, psub m n = some k ↔ k + n = m
| 0 k := by simp [eq_comm]
| (n+1) k := by dsimp; apply option.bind_eq_some.trans; simp [psub_eq_some]
theorem psub_eq_none (m n : ℕ) : psub m n = none ↔ m < n :=
begin
cases s : psub m n; simp [eq_comm],
{ show m < n, refine lt_of_not_ge (λ h, _),
cases le.dest h with k e,
injection s.symm.trans (psub_eq_some.2 $ (add_comm _ _).trans e) },
{ show n ≤ m, rw ← psub_eq_some.1 s, apply le_add_left }
end
theorem ppred_eq_pred {n} (h : 0 < n) : ppred n = some (pred n) :=
ppred_eq_some.2 $ succ_pred_eq_of_pos h
theorem psub_eq_sub {m n} (h : n ≤ m) : psub m n = some (m - n) :=
psub_eq_some.2 $ nat.sub_add_cancel h
theorem psub_add (m n k) : psub m (n + k) = do x ← psub m n, psub x k :=
by induction k; simp [*, add_succ, bind_assoc]
/- pow -/
attribute [simp] nat.pow_zero nat.pow_one
@[simp] lemma one_pow : ∀ n : ℕ, 1 ^ n = 1
| 0 := rfl
| (k+1) := show 1^k * 1 = 1, by rw [mul_one, one_pow]
theorem pow_add (a m n : ℕ) : a^(m + n) = a^m * a^n :=
by induction n; simp [*, pow_succ, mul_assoc]
theorem pow_two (a : ℕ) : a ^ 2 = a * a := show (1 * a) * a = _, by rw one_mul
theorem pow_dvd_pow (a : ℕ) {m n : ℕ} (h : m ≤ n) : a^m ∣ a^n :=
by rw [← nat.add_sub_cancel' h, pow_add]; apply dvd_mul_right
theorem pow_dvd_pow_of_dvd {a b : ℕ} (h : a ∣ b) : ∀ n:ℕ, a^n ∣ b^n
| 0 := dvd_refl _
| (n+1) := mul_dvd_mul (pow_dvd_pow_of_dvd n) h
theorem mul_pow (a b n : ℕ) : (a * b) ^ n = a ^ n * b ^ n :=
by induction n; simp [*, nat.pow_succ, mul_comm, mul_assoc, mul_left_comm]
protected theorem pow_mul (a b n : ℕ) : n ^ (a * b) = (n ^ a) ^ b :=
by induction b; simp [*, nat.succ_eq_add_one, nat.pow_add, mul_add, mul_comm]
theorem pow_pos {p : ℕ} (hp : 0 < p) : ∀ n : ℕ, 0 < p ^ n
| 0 := by simp
| (k+1) := mul_pos (pow_pos _) hp
lemma pow_eq_mul_pow_sub (p : ℕ) {m n : ℕ} (h : m ≤ n) : p ^ m * p ^ (n - m) = p ^ n :=
by rw [←nat.pow_add, nat.add_sub_cancel' h]
lemma pow_lt_pow_succ {p : ℕ} (h : 1 < p) (n : ℕ) : p^n < p^(n+1) :=
suffices p^n*1 < p^n*p, by simpa,
nat.mul_lt_mul_of_pos_left h (nat.pow_pos (lt_of_succ_lt h) n)
lemma lt_pow_self {p : ℕ} (h : 1 < p) : ∀ n : ℕ, n < p ^ n
| 0 := by simp [zero_lt_one]
| (n+1) := calc
n + 1 < p^n + 1 : nat.add_lt_add_right (lt_pow_self _) _
... ≤ p ^ (n+1) : pow_lt_pow_succ h _
lemma pow_right_strict_mono {x : ℕ} (k : 2 ≤ x) : strict_mono (nat.pow x) :=
λ _ _, pow_lt_pow_of_lt_right k
lemma pow_le_iff_le_right {x m n : ℕ} (k : 2 ≤ x) : x^m ≤ x^n ↔ m ≤ n :=
strict_mono.le_iff_le (pow_right_strict_mono k)
lemma pow_lt_iff_lt_right {x m n : ℕ} (k : 2 ≤ x) : x^m < x^n ↔ m < n :=
strict_mono.lt_iff_lt (pow_right_strict_mono k)
lemma pow_right_injective {x : ℕ} (k : 2 ≤ x) : function.injective (nat.pow x) :=
strict_mono.injective (pow_right_strict_mono k)
lemma pow_left_strict_mono {m : ℕ} (k : 1 ≤ m) : strict_mono (λ (x : ℕ), x^m) :=
λ _ _ h, pow_lt_pow_of_lt_left h k
lemma pow_le_iff_le_left {m x y : ℕ} (k : 1 ≤ m) : x^m ≤ y^m ↔ x ≤ y :=
strict_mono.le_iff_le (pow_left_strict_mono k)
lemma pow_lt_iff_lt_left {m x y : ℕ} (k : 1 ≤ m) : x^m < y^m ↔ x < y :=
strict_mono.lt_iff_lt (pow_left_strict_mono k)
lemma pow_left_injective {m : ℕ} (k : 1 ≤ m) : function.injective (λ (x : ℕ), x^m) :=
strict_mono.injective (pow_left_strict_mono k)
lemma not_pos_pow_dvd : ∀ {p k : ℕ} (hp : 1 < p) (hk : 1 < k), ¬ p^k ∣ p
| (succ p) (succ k) hp hk h :=
have (succ p)^k * succ p ∣ 1 * succ p, by simpa,
have (succ p) ^ k ∣ 1, from dvd_of_mul_dvd_mul_right (succ_pos _) this,
have he : (succ p) ^ k = 1, from eq_one_of_dvd_one this,
have k < (succ p) ^ k, from lt_pow_self hp k,
have k < 1, by rwa [he] at this,
have k = 0, from eq_zero_of_le_zero $ le_of_lt_succ this,
have 1 < 1, by rwa [this] at hk,
absurd this dec_trivial
@[simp] theorem bodd_div2_eq (n : ℕ) : bodd_div2 n = (bodd n, div2 n) :=
by unfold bodd div2; cases bodd_div2 n; refl
@[simp] lemma bodd_bit0 (n) : bodd (bit0 n) = ff := bodd_bit ff n
@[simp] lemma bodd_bit1 (n) : bodd (bit1 n) = tt := bodd_bit tt n
@[simp] lemma div2_bit0 (n) : div2 (bit0 n) = n := div2_bit ff n
@[simp] lemma div2_bit1 (n) : div2 (bit1 n) = n := div2_bit tt n
/- iterate -/
section
variables {α : Sort*} (op : α → α)
@[simp] theorem iterate_zero (a : α) : op^[0] a = a := rfl
@[simp] theorem iterate_succ (n : ℕ) (a : α) : op^[succ n] a = (op^[n]) (op a) := rfl
theorem iterate_add : ∀ (m n : ℕ) (a : α), op^[m + n] a = (op^[m]) (op^[n] a)
| m 0 a := rfl
| m (succ n) a := iterate_add m n _
theorem iterate_succ' (n : ℕ) (a : α) : op^[succ n] a = op (op^[n] a) :=
by rw [← one_add, iterate_add]; refl
theorem iterate₀ {α : Type u} {op : α → α} {x : α} (H : op x = x) {n : ℕ} :
op^[n] x = x :=
by induction n; [simp only [iterate_zero], simp only [iterate_succ', H, *]]
theorem iterate₁ {α : Type u} {β : Type v} {op : α → α} {op' : β → β} {op'' : α → β}
(H : ∀ x, op' (op'' x) = op'' (op x)) {n : ℕ} {x : α} :
op'^[n] (op'' x) = op'' (op^[n] x) :=
by induction n; [simp only [iterate_zero], simp only [iterate_succ', H, *]]
theorem iterate₂ {α : Type u} {op : α → α} {op' : α → α → α} (H : ∀ x y, op (op' x y) = op' (op x) (op y)) {n : ℕ} {x y : α} :
op^[n] (op' x y) = op' (op^[n] x) (op^[n] y) :=
by induction n; [simp only [iterate_zero], simp only [iterate_succ', H, *]]
theorem iterate_cancel {α : Type u} {op op' : α → α} (H : ∀ x, op (op' x) = x) {n : ℕ} {x : α} : op^[n] (op'^[n] x) = x :=
by induction n; [refl, rwa [iterate_succ, iterate_succ', H]]
theorem iterate_inj {α : Type u} {op : α → α} (Hinj : function.injective op) (n : ℕ) (x y : α)
(H : (op^[n] x) = (op^[n] y)) : x = y :=
by induction n with n ih; simp only [iterate_zero, iterate_succ'] at H;
[exact H, exact ih (Hinj H)]
end
/- size and shift -/
theorem shiftl'_ne_zero_left (b) {m} (h : m ≠ 0) (n) : shiftl' b m n ≠ 0 :=
by induction n; simp [shiftl', bit_ne_zero, *]
theorem shiftl'_tt_ne_zero (m) : ∀ {n} (h : n ≠ 0), shiftl' tt m n ≠ 0
| 0 h := absurd rfl h
| (succ n) _ := nat.bit1_ne_zero _
@[simp] theorem size_zero : size 0 = 0 := rfl
@[simp] theorem size_bit {b n} (h : bit b n ≠ 0) : size (bit b n) = succ (size n) :=
begin
rw size,
conv { to_lhs, rw [binary_rec], simp [h] },
rw div2_bit, refl
end
@[simp] theorem size_bit0 {n} (h : n ≠ 0) : size (bit0 n) = succ (size n) :=
@size_bit ff n (nat.bit0_ne_zero h)
@[simp] theorem size_bit1 (n) : size (bit1 n) = succ (size n) :=
@size_bit tt n (nat.bit1_ne_zero n)
@[simp] theorem size_one : size 1 = 1 := by apply size_bit1 0
@[simp] theorem size_shiftl' {b m n} (h : shiftl' b m n ≠ 0) :
size (shiftl' b m n) = size m + n :=
begin
induction n with n IH; simp [shiftl'] at h ⊢,
rw [size_bit h, nat.add_succ],
by_cases s0 : shiftl' b m n = 0; [skip, rw [IH s0]],
rw s0 at h ⊢,
cases b, {exact absurd rfl h},
have : shiftl' tt m n + 1 = 1 := congr_arg (+1) s0,
rw [shiftl'_tt_eq_mul_pow] at this,
have m0 := succ_inj (eq_one_of_dvd_one ⟨_, this.symm⟩),
subst m0,
simp at this,
have : n = 0 := eq_zero_of_le_zero (le_of_not_gt $ λ hn,
ne_of_gt (pow_lt_pow_of_lt_right dec_trivial hn) this),
subst n, refl
end
@[simp] theorem size_shiftl {m} (h : m ≠ 0) (n) :
size (shiftl m n) = size m + n :=
size_shiftl' (shiftl'_ne_zero_left _ h _)
theorem lt_size_self (n : ℕ) : n < 2^size n :=
begin
rw [← one_shiftl],
have : ∀ {n}, n = 0 → n < shiftl 1 (size n) :=
λ n e, by subst e; exact dec_trivial,
apply binary_rec _ _ n, {apply this rfl},
intros b n IH,
by_cases bit b n = 0, {apply this h},
rw [size_bit h, shiftl_succ],
exact bit_lt_bit0 _ IH
end
theorem size_le {m n : ℕ} : size m ≤ n ↔ m < 2^n :=
⟨λ h, lt_of_lt_of_le (lt_size_self _) (pow_le_pow_of_le_right dec_trivial h),
begin
rw [← one_shiftl], revert n,
apply binary_rec _ _ m,
{ intros n h, apply zero_le },
{ intros b m IH n h,
by_cases e : bit b m = 0, { rw e, apply zero_le },
rw [size_bit e],
cases n with n,
{ exact e.elim (eq_zero_of_le_zero (le_of_lt_succ h)) },
{ apply succ_le_succ (IH _),
apply lt_imp_lt_of_le_imp_le (λ h', bit0_le_bit _ h') h } }
end⟩
theorem lt_size {m n : ℕ} : m < size n ↔ 2^m ≤ n :=
by rw [← not_lt, iff_not_comm, not_lt, size_le]
theorem size_pos {n : ℕ} : 0 < size n ↔ 0 < n :=
by rw lt_size; refl
theorem size_eq_zero {n : ℕ} : size n = 0 ↔ n = 0 :=
by have := @size_pos n; simp [pos_iff_ne_zero] at this;
exact not_iff_not.1 this
theorem size_pow {n : ℕ} : size (2^n) = n+1 :=
le_antisymm
(size_le.2 $ pow_lt_pow_of_lt_right dec_trivial (lt_succ_self _))
(lt_size.2 $ le_refl _)
theorem size_le_size {m n : ℕ} (h : m ≤ n) : size m ≤ size n :=
size_le.2 $ lt_of_le_of_lt h (lt_size_self _)
/- factorial -/
/-- `fact n` is the factorial of `n`. -/
@[simp] def fact : nat → nat
| 0 := 1
| (succ n) := succ n * fact n
@[simp] theorem fact_zero : fact 0 = 1 := rfl
@[simp] theorem fact_one : fact 1 = 1 := rfl
@[simp] theorem fact_succ (n) : fact (succ n) = succ n * fact n := rfl
theorem fact_pos : ∀ n, 0 < fact n
| 0 := zero_lt_one
| (succ n) := mul_pos (succ_pos _) (fact_pos n)
theorem fact_ne_zero (n : ℕ) : fact n ≠ 0 := ne_of_gt (fact_pos _)
theorem fact_dvd_fact {m n} (h : m ≤ n) : fact m ∣ fact n :=
begin
induction n with n IH; simp,
{ have := eq_zero_of_le_zero h, subst m, simp },
{ cases eq_or_lt_of_le h with he hl,
{ subst m, simp },
{ apply dvd_mul_of_dvd_right (IH (le_of_lt_succ hl)) } }
end
theorem dvd_fact : ∀ {m n}, 0 < m → m ≤ n → m ∣ fact n
| (succ m) n _ h := dvd_of_mul_right_dvd (fact_dvd_fact h)
theorem fact_le {m n} (h : m ≤ n) : fact m ≤ fact n :=
le_of_dvd (fact_pos _) (fact_dvd_fact h)
lemma fact_mul_pow_le_fact : ∀ {m n : ℕ}, m.fact * m.succ ^ n ≤ (m + n).fact
| m 0 := by simp
| m (n+1) :=
by rw [← add_assoc, nat.fact_succ, mul_comm (nat.succ _), nat.pow_succ, ← mul_assoc];
exact mul_le_mul fact_mul_pow_le_fact
(nat.succ_le_succ (nat.le_add_right _ _)) (nat.zero_le _) (nat.zero_le _)
lemma monotone_fact : monotone fact := λ n m, fact_le
lemma fact_lt (h0 : 0 < n) : n.fact < m.fact ↔ n < m :=
begin
split; intro h,
{ rw [← not_le], intro hmn, apply not_le_of_lt h (fact_le hmn) },
{ have : ∀(n : ℕ), 0 < n → n.fact < n.succ.fact,
{ intros k hk, rw [fact_succ, succ_mul, lt_add_iff_pos_left],
apply mul_pos hk (fact_pos k) },
induction h generalizing h0,
{ exact this _ h0, },
{ refine lt_trans (h_ih h0) (this _ _), exact lt_trans h0 (lt_of_succ_le h_a) }}
end
lemma one_lt_fact : 1 < n.fact ↔ 1 < n :=
by { convert fact_lt _, refl, exact one_pos }
lemma fact_eq_one : n.fact = 1 ↔ n ≤ 1 :=
begin
split; intro h,
{ rw [← not_lt, ← one_lt_fact, h], apply lt_irrefl },
{ cases h with h h, refl, cases h, refl }
end
lemma fact_inj (h0 : 1 < n.fact) : n.fact = m.fact ↔ n = m :=
begin
split; intro h,
{ rcases lt_trichotomy n m with hnm|hnm|hnm,
{ exfalso, rw [← fact_lt, h] at hnm, exact lt_irrefl _ hnm,
rw [one_lt_fact] at h0, exact lt_trans one_pos h0 },
{ exact hnm },
{ exfalso, rw [← fact_lt, h] at hnm, exact lt_irrefl _ hnm,
rw [h, one_lt_fact] at h0, exact lt_trans one_pos h0 }},
{ rw h }
end
/- choose -/
/-- `choose n k` is the number of `k`-element subsets in an `n`-element set. Also known as binomial
coefficients. -/
def choose : ℕ → ℕ → ℕ
| _ 0 := 1
| 0 (k + 1) := 0
| (n + 1) (k + 1) := choose n k + choose n (succ k)
@[simp] lemma choose_zero_right (n : ℕ) : choose n 0 = 1 := by cases n; refl
@[simp] lemma choose_zero_succ (k : ℕ) : choose 0 (succ k) = 0 := rfl
lemma choose_succ_succ (n k : ℕ) : choose (succ n) (succ k) = choose n k + choose n (succ k) := rfl
lemma choose_eq_zero_of_lt : ∀ {n k}, n < k → choose n k = 0
| _ 0 hk := absurd hk dec_trivial
| 0 (k + 1) hk := choose_zero_succ _
| (n + 1) (k + 1) hk :=
have hnk : n < k, from lt_of_succ_lt_succ hk,
have hnk1 : n < k + 1, from lt_of_succ_lt hk,
by rw [choose_succ_succ, choose_eq_zero_of_lt hnk, choose_eq_zero_of_lt hnk1]
@[simp] lemma choose_self (n : ℕ) : choose n n = 1 :=
by induction n; simp [*, choose, choose_eq_zero_of_lt (lt_succ_self _)]
@[simp] lemma choose_succ_self (n : ℕ) : choose n (succ n) = 0 :=
choose_eq_zero_of_lt (lt_succ_self _)
@[simp] lemma choose_one_right (n : ℕ) : choose n 1 = n :=
by induction n; simp [*, choose]
/-- `choose n 2` is the `n`-th triangle number. -/
lemma choose_two_right (n : ℕ) : choose n 2 = n * (n - 1) / 2 :=
by { induction n, simp, simpa [n_ih, choose, add_one] using (triangle_succ n_n).symm }
lemma choose_pos : ∀ {n k}, k ≤ n → 0 < choose n k
| 0 _ hk := by rw [eq_zero_of_le_zero hk]; exact dec_trivial
| (n + 1) 0 hk := by simp; exact dec_trivial
| (n + 1) (k + 1) hk := by rw choose_succ_succ;
exact add_pos_of_pos_of_nonneg (choose_pos (le_of_succ_le_succ hk)) (nat.zero_le _)
lemma succ_mul_choose_eq : ∀ n k, succ n * choose n k = choose (succ n) (succ k) * succ k
| 0 0 := dec_trivial
| 0 (k + 1) := by simp [choose]
| (n + 1) 0 := by simp
| (n + 1) (k + 1) :=
by rw [choose_succ_succ (succ n) (succ k), add_mul, ←succ_mul_choose_eq, mul_succ,
←succ_mul_choose_eq, add_right_comm, ←mul_add, ←choose_succ_succ, ←succ_mul]
lemma choose_mul_fact_mul_fact : ∀ {n k}, k ≤ n → choose n k * fact k * fact (n - k) = fact n
| 0 _ hk := by simp [eq_zero_of_le_zero hk]
| (n + 1) 0 hk := by simp
| (n + 1) (succ k) hk :=
begin
cases lt_or_eq_of_le hk with hk₁ hk₁,
{ have h : choose n k * fact (succ k) * fact (n - k) = succ k * fact n :=
by rw ← choose_mul_fact_mul_fact (le_of_succ_le_succ hk);
simp [fact_succ, mul_comm, mul_left_comm],
have h₁ : fact (n - k) = (n - k) * fact (n - succ k) :=
by rw [← succ_sub_succ, succ_sub (le_of_lt_succ hk₁), fact_succ],
have h₂ : choose n (succ k) * fact (succ k) * ((n - k) * fact (n - succ k)) = (n - k) * fact n :=
by rw ← choose_mul_fact_mul_fact (le_of_lt_succ hk₁);
simp [fact_succ, mul_comm, mul_left_comm, mul_assoc],
have h₃ : k * fact n ≤ n * fact n := mul_le_mul_right _ (le_of_succ_le_succ hk),
rw [choose_succ_succ, add_mul, add_mul, succ_sub_succ, h, h₁, h₂, ← add_one, add_mul, nat.mul_sub_right_distrib,
fact_succ, ← nat.add_sub_assoc h₃, add_assoc, ← add_mul, nat.add_sub_cancel_left, add_comm] },
{ simp [hk₁, mul_comm, choose, nat.sub_self] }
end
theorem choose_eq_fact_div_fact {n k : ℕ} (hk : k ≤ n) : choose n k = fact n / (fact k * fact (n - k)) :=
begin
have : fact n = choose n k * (fact k * fact (n - k)) :=
by rw ← mul_assoc; exact (choose_mul_fact_mul_fact hk).symm,
exact (nat.div_eq_of_eq_mul_left (mul_pos (fact_pos _) (fact_pos _)) this).symm
end
theorem fact_mul_fact_dvd_fact {n k : ℕ} (hk : k ≤ n) : fact k * fact (n - k) ∣ fact n :=
by rw [←choose_mul_fact_mul_fact hk, mul_assoc]; exact dvd_mul_left _ _
@[simp] lemma choose_symm {n k : ℕ} (hk : k ≤ n) : choose n (n-k) = choose n k :=
by rw [choose_eq_fact_div_fact hk, choose_eq_fact_div_fact (sub_le _ _), nat.sub_sub_self hk, mul_comm]
lemma choose_succ_right_eq {n k : ℕ} : choose n (k + 1) * (k + 1) = choose n k * (n - k) :=
begin
have e : (n+1) * choose n k = choose n k * (k+1) + choose n (k+1) * (k+1),
rw [← right_distrib, ← choose_succ_succ, succ_mul_choose_eq],
rw [← nat.sub_eq_of_eq_add e, mul_comm, ← nat.mul_sub_left_distrib, nat.add_sub_add_right]
end
section find_greatest
/-- `find_greatest P b` is the largest `i ≤ bound` such that `P i` holds, or `0` if no such `i`
exists -/
protected def find_greatest (P : ℕ → Prop) [decidable_pred P] : ℕ → ℕ
| 0 := 0
| (n + 1) := if P (n + 1) then n + 1 else find_greatest n
variables {P : ℕ → Prop} [decidable_pred P]
@[simp] lemma find_greatest_zero : nat.find_greatest P 0 = 0 := rfl
@[simp] lemma find_greatest_eq : ∀{b}, P b → nat.find_greatest P b = b
| 0 h := rfl
| (n + 1) h := by simp [nat.find_greatest, h]
@[simp] lemma find_greatest_of_not {b} (h : ¬ P (b + 1)) :
nat.find_greatest P (b + 1) = nat.find_greatest P b :=
by simp [nat.find_greatest, h]
lemma find_greatest_spec_and_le :
∀{b m}, m ≤ b → P m → P (nat.find_greatest P b) ∧ m ≤ nat.find_greatest P b
| 0 m hm hP :=
have m = 0, from le_antisymm hm (nat.zero_le _),
show P 0 ∧ m ≤ 0, from this ▸ ⟨hP, le_refl _⟩
| (b + 1) m hm hP :=
begin
by_cases h : P (b + 1),
{ simp [h, hm] },
{ have : m ≠ b + 1 := assume this, h $ this ▸ hP,
have : m ≤ b := (le_of_not_gt $ assume h : b + 1 ≤ m, this $ le_antisymm hm h),
have : P (nat.find_greatest P b) ∧ m ≤ nat.find_greatest P b :=
find_greatest_spec_and_le this hP,
simp [h, this] }
end
lemma find_greatest_spec {b} : (∃m, m ≤ b ∧ P m) → P (nat.find_greatest P b)
| ⟨m, hmb, hm⟩ := (find_greatest_spec_and_le hmb hm).1
lemma find_greatest_le : ∀ {b}, nat.find_greatest P b ≤ b
| 0 := le_refl _
| (b + 1) :=
have nat.find_greatest P b ≤ b + 1, from le_trans find_greatest_le (nat.le_succ b),
by by_cases P (b + 1); simp [h, this]
lemma le_find_greatest {b m} (hmb : m ≤ b) (hm : P m) : m ≤ nat.find_greatest P b :=
(find_greatest_spec_and_le hmb hm).2
lemma find_greatest_is_greatest {P : ℕ → Prop} [decidable_pred P] {b} :
(∃ m, m ≤ b ∧ P m) → ∀ k, nat.find_greatest P b < k ∧ k ≤ b → ¬ P k
| ⟨m, hmb, hP⟩ k ⟨hk, hkb⟩ hPk := lt_irrefl k $ lt_of_le_of_lt (le_find_greatest hkb hPk) hk
lemma find_greatest_eq_zero {P : ℕ → Prop} [decidable_pred P] :
∀ {b}, (∀ n ≤ b, ¬ P n) → nat.find_greatest P b = 0
| 0 h := find_greatest_zero
| (n + 1) h :=
begin
have := nat.find_greatest_of_not (h (n + 1) (le_refl _)),
rw this, exact find_greatest_eq_zero (assume k hk, h k (le_trans hk $ nat.le_succ _))
end
lemma find_greatest_of_ne_zero {P : ℕ → Prop} [decidable_pred P] :
∀ {b m}, nat.find_greatest P b = m → m ≠ 0 → P m
| 0 m rfl h := by { have := @find_greatest_zero P _, contradiction }
| (b + 1) m rfl h :=
decidable.by_cases
(assume hb : P (b + 1), by { have := find_greatest_eq hb, rw this, exact hb })
(assume hb : ¬ P (b + 1), find_greatest_of_ne_zero (find_greatest_of_not hb).symm h)
end find_greatest
section div
lemma dvd_div_of_mul_dvd {a b c : ℕ} (h : a * b ∣ c) : b ∣ c / a :=
if ha : a = 0 then
by simp [ha]
else
have ha : 0 < a, from nat.pos_of_ne_zero ha,
have h1 : ∃ d, c = a * b * d, from h,
let ⟨d, hd⟩ := h1 in
have hac : a ∣ c, from dvd_of_mul_right_dvd h,
have h2 : c / a = b * d, from nat.div_eq_of_eq_mul_right ha (by simpa [mul_assoc] using hd),
show ∃ d, c / a = b * d, from ⟨d, h2⟩
lemma mul_dvd_of_dvd_div {a b c : ℕ} (hab : c ∣ b) (h : a ∣ b / c) : c * a ∣ b :=
have h1 : ∃ d, b / c = a * d, from h,
have h2 : ∃ e, b = c * e, from hab,
let ⟨d, hd⟩ := h1, ⟨e, he⟩ := h2 in
have h3 : b = a * d * c, from
nat.eq_mul_of_div_eq_left hab hd,
show ∃ d, b = c * a * d, from ⟨d, by cc⟩
lemma div_mul_div {a b c d : ℕ} (hab : b ∣ a) (hcd : d ∣ c) :
(a / b) * (c / d) = (a * c) / (b * d) :=
have exi1 : ∃ x, a = b * x, from hab,
have exi2 : ∃ y, c = d * y, from hcd,
if hb : b = 0 then by simp [hb]
else have 0 < b, from nat.pos_of_ne_zero hb,
if hd : d = 0 then by simp [hd]
else have 0 < d, from nat.pos_of_ne_zero hd,
begin
cases exi1 with x hx, cases exi2 with y hy,
rw [hx, hy, nat.mul_div_cancel_left, nat.mul_div_cancel_left],
symmetry,
apply nat.div_eq_of_eq_mul_left,
apply mul_pos,
repeat {assumption},
cc
end
lemma pow_dvd_of_le_of_pow_dvd {p m n k : ℕ} (hmn : m ≤ n) (hdiv : p ^ n ∣ k) : p ^ m ∣ k :=
have p ^ m ∣ p ^ n, from pow_dvd_pow _ hmn,
dvd_trans this hdiv
lemma dvd_of_pow_dvd {p k m : ℕ} (hk : 1 ≤ k) (hpk : p^k ∣ m) : p ∣ m :=
by rw ←nat.pow_one p; exact pow_dvd_of_le_of_pow_dvd hk hpk
lemma eq_of_dvd_of_div_eq_one {a b : ℕ} (w : a ∣ b) (h : b / a = 1) : a = b :=
by rw [←nat.div_mul_cancel w, h, one_mul]
lemma eq_zero_of_dvd_of_div_eq_zero {a b : ℕ} (w : a ∣ b) (h : b / a = 0) : b = 0 :=
by rw [←nat.div_mul_cancel w, h, zero_mul]
lemma div_le_div_left {a b c : ℕ} (h₁ : c ≤ b) (h₂ : 0 < c) : a / b ≤ a / c :=
(nat.le_div_iff_mul_le _ _ h₂).2 $
le_trans (mul_le_mul_left _ h₁) (div_mul_le_self _ _)
lemma div_eq_self {a b : ℕ} : a / b = a ↔ a = 0 ∨ b = 1 :=
begin
split,
{ intro,
cases b,
{ simp * at * },
{ cases b,
{ right, refl },
{ left,
have : a / (b + 2) ≤ a / 2 := div_le_div_left (by simp) dec_trivial,
refine eq_zero_of_le_half _,
simp * at * } } },
{ rintros (rfl|rfl); simp }
end
end div
lemma exists_eq_add_of_le : ∀ {m n : ℕ}, m ≤ n → ∃ k : ℕ, n = m + k
| 0 0 h := ⟨0, by simp⟩
| 0 (n+1) h := ⟨n+1, by simp⟩
| (m+1) (n+1) h := let ⟨k, hk⟩ := exists_eq_add_of_le (nat.le_of_succ_le_succ h) in ⟨k, by simp [hk]⟩
lemma exists_eq_add_of_lt : ∀ {m n : ℕ}, m < n → ∃ k : ℕ, n = m + k + 1
| 0 0 h := false.elim $ lt_irrefl _ h
| 0 (n+1) h := ⟨n, by simp⟩
| (m+1) (n+1) h := let ⟨k, hk⟩ := exists_eq_add_of_le (nat.le_of_succ_le_succ h) in ⟨k, by simp [hk]⟩
lemma with_bot.add_eq_zero_iff : ∀ {n m : with_bot ℕ}, n + m = 0 ↔ n = 0 ∧ m = 0
| none m := iff_of_false dec_trivial (λ h, absurd h.1 dec_trivial)
| n none := iff_of_false (by cases n; exact dec_trivial)
(λ h, absurd h.2 dec_trivial)
| (some n) (some m) := show (n + m : with_bot ℕ) = (0 : ℕ) ↔ (n : with_bot ℕ) = (0 : ℕ) ∧
(m : with_bot ℕ) = (0 : ℕ),
by rw [← with_bot.coe_add, with_bot.coe_eq_coe, with_bot.coe_eq_coe,
with_bot.coe_eq_coe, add_eq_zero_iff' (nat.zero_le _) (nat.zero_le _)]
lemma with_bot.add_eq_one_iff : ∀ {n m : with_bot ℕ}, n + m = 1 ↔ (n = 0 ∧ m = 1) ∨ (n = 1 ∧ m = 0)
| none none := dec_trivial
| none (some m) := dec_trivial
| (some n) none := iff_of_false dec_trivial (λ h, h.elim (λ h, absurd h.2 dec_trivial)
(λ h, absurd h.2 dec_trivial))
| (some n) (some 0) := by erw [with_bot.coe_eq_coe, with_bot.coe_eq_coe, with_bot.coe_eq_coe,
with_bot.coe_eq_coe]; simp
| (some n) (some (m + 1)) := by erw [with_bot.coe_eq_coe, with_bot.coe_eq_coe, with_bot.coe_eq_coe,
with_bot.coe_eq_coe, with_bot.coe_eq_coe]; simp [nat.add_succ, nat.succ_inj', nat.succ_ne_zero]
-- induction
/-- Induction principle starting at a non-zero number. For maps to a `Sort*` see `le_rec_on`. -/
@[elab_as_eliminator] lemma le_induction {P : nat → Prop} {m} (h0 : P m) (h1 : ∀ n, m ≤ n → P n → P (n + 1)) :
∀ n, m ≤ n → P n :=
by apply nat.less_than_or_equal.rec h0; exact h1
/-- Decreasing induction: if `P (k+1)` implies `P k`, then `P n` implies `P m` for all `m ≤ n`.
Also works for functions to `Sort*`. -/
@[elab_as_eliminator]
def decreasing_induction {P : ℕ → Sort*} (h : ∀n, P (n+1) → P n) {m n : ℕ} (mn : m ≤ n)
(hP : P n) : P m :=
le_rec_on mn (λ k ih hsk, ih $ h k hsk) (λ h, h) hP
@[simp] lemma decreasing_induction_self {P : ℕ → Sort*} (h : ∀n, P (n+1) → P n) {n : ℕ}
(nn : n ≤ n) (hP : P n) : (decreasing_induction h nn hP : P n) = hP :=
by { dunfold decreasing_induction, rw [le_rec_on_self] }
lemma decreasing_induction_succ {P : ℕ → Sort*} (h : ∀n, P (n+1) → P n) {m n : ℕ} (mn : m ≤ n)
(msn : m ≤ n + 1) (hP : P (n+1)) :
(decreasing_induction h msn hP : P m) = decreasing_induction h mn (h n hP) :=
by { dunfold decreasing_induction, rw [le_rec_on_succ] }
@[simp] lemma decreasing_induction_succ' {P : ℕ → Sort*} (h : ∀n, P (n+1) → P n) {m : ℕ}
(msm : m ≤ m + 1) (hP : P (m+1)) : (decreasing_induction h msm hP : P m) = h m hP :=
by { dunfold decreasing_induction, rw [le_rec_on_succ'] }
lemma decreasing_induction_trans {P : ℕ → Sort*} (h : ∀n, P (n+1) → P n) {m n k : ℕ}
(mn : m ≤ n) (nk : n ≤ k) (hP : P k) :
(decreasing_induction h (le_trans mn nk) hP : P m) =
decreasing_induction h mn (decreasing_induction h nk hP) :=
by { induction nk with k nk ih, rw [decreasing_induction_self],
rw [decreasing_induction_succ h (le_trans mn nk), ih, decreasing_induction_succ] }
lemma decreasing_induction_succ_left {P : ℕ → Sort*} (h : ∀n, P (n+1) → P n) {m n : ℕ}
(smn : m + 1 ≤ n) (mn : m ≤ n) (hP : P n) :
(decreasing_induction h mn hP : P m) = h m (decreasing_induction h smn hP) :=
by { rw [subsingleton.elim mn (le_trans (le_succ m) smn), decreasing_induction_trans,
decreasing_induction_succ'] }
end nat
|
53219bd63f91e49ea6cf664795d816920f97b755
|
367134ba5a65885e863bdc4507601606690974c1
|
/src/analysis/convex/caratheodory.lean
|
5c752c7fa6892bdf0d191aaf57e104d25d534e2a
|
[
"Apache-2.0"
] |
permissive
|
kodyvajjha/mathlib
|
9bead00e90f68269a313f45f5561766cfd8d5cad
|
b98af5dd79e13a38d84438b850a2e8858ec21284
|
refs/heads/master
| 1,624,350,366,310
| 1,615,563,062,000
| 1,615,563,062,000
| 162,666,963
| 0
| 0
|
Apache-2.0
| 1,545,367,651,000
| 1,545,367,651,000
| null |
UTF-8
|
Lean
| false
| false
| 8,962
|
lean
|
/-
Copyright (c) 2020 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin, Scott Morrison
-/
import analysis.convex.basic
import linear_algebra.finite_dimensional
/-!
# Carathéodory's convexity theorem
This file is devoted to proving Carathéodory's convexity theorem:
The convex hull of a set `s` in ℝᵈ is the union of the convex hulls of the (d+1)-tuples in `s`.
## Main results:
* `convex_hull_eq_union`: Carathéodory's convexity theorem
## Implementation details
This theorem was formalized as part of the Sphere Eversion project.
## Tags
convex hull, caratheodory
-/
universes u
open set finset finite_dimensional
open_locale big_operators
variables {E : Type u} [add_comm_group E] [vector_space ℝ E] [finite_dimensional ℝ E]
namespace caratheodory
/--
If `x` is in the convex hull of some finset `t` with strictly more than `findim + 1` elements,
then it is in the union of the convex hulls of the finsets `t.erase y` for `y ∈ t`.
-/
lemma mem_convex_hull_erase [decidable_eq E] {t : finset E} (h : findim ℝ E + 1 < t.card)
{x : E} (m : x ∈ convex_hull (↑t : set E)) :
∃ (y : (↑t : set E)), x ∈ convex_hull (↑(t.erase y) : set E) :=
begin
simp only [finset.convex_hull_eq, mem_set_of_eq] at m ⊢,
obtain ⟨f, fpos, fsum, rfl⟩ := m,
obtain ⟨g, gcombo, gsum, gpos⟩ := exists_relation_sum_zero_pos_coefficient_of_dim_succ_lt_card h,
clear h,
let s := t.filter (λ z : E, 0 < g z),
obtain ⟨i₀, mem, w⟩ : ∃ i₀ ∈ s, ∀ i ∈ s, f i₀ / g i₀ ≤ f i / g i,
{ apply s.exists_min_image (λ z, f z / g z),
obtain ⟨x, hx, hgx⟩ : ∃ x ∈ t, 0 < g x := gpos,
exact ⟨x, mem_filter.mpr ⟨hx, hgx⟩⟩, },
have hg : 0 < g i₀ := by { rw mem_filter at mem, exact mem.2 },
have hi₀ : i₀ ∈ t := filter_subset _ _ mem,
let k : E → ℝ := λ z, f z - (f i₀ / g i₀) * g z,
have hk : k i₀ = 0 := by field_simp [k, ne_of_gt hg],
have ksum : ∑ e in t.erase i₀, k e = 1,
{ calc ∑ e in t.erase i₀, k e = ∑ e in t, k e :
by conv_rhs { rw [← insert_erase hi₀, sum_insert (not_mem_erase i₀ t), hk, zero_add], }
... = ∑ e in t, (f e - f i₀ / g i₀ * g e) : rfl
... = 1 : by rw [sum_sub_distrib, fsum, ← mul_sum, gsum, mul_zero, sub_zero] },
refine ⟨⟨i₀, hi₀⟩, k, _, ksum, _⟩,
{ simp only [and_imp, sub_nonneg, mem_erase, ne.def, subtype.coe_mk],
intros e hei₀ het,
by_cases hes : e ∈ s,
{ have hge : 0 < g e := by { rw mem_filter at hes, exact hes.2 },
rw ← le_div_iff hge,
exact w _ hes, },
{ calc _ ≤ 0 : mul_nonpos_of_nonneg_of_nonpos _ _ -- prove two goals below
... ≤ f e : fpos e het,
{ apply div_nonneg (fpos i₀ (mem_of_subset (filter_subset _ t) mem)) (le_of_lt hg) },
{ simpa only [mem_filter, het, true_and, not_lt] using hes }, } },
{ simp only [subtype.coe_mk, center_mass_eq_of_sum_1 _ id ksum, id],
calc ∑ e in t.erase i₀, k e • e = ∑ e in t, k e • e :
by conv_rhs { rw [← insert_erase hi₀, sum_insert (not_mem_erase i₀ t), hk, zero_smul, zero_add], }
... = ∑ e in t, (f e - f i₀ / g i₀ * g e) • e : rfl
... = t.center_mass f id : _,
simp only [sub_smul, mul_smul, sum_sub_distrib, ← smul_sum, gcombo, smul_zero,
sub_zero, center_mass, fsum, inv_one, one_smul, id.def], },
end
/--
The convex hull of a finset `t` with `findim ℝ E + 1 < t.card` is equal to
the union of the convex hulls of the finsets `t.erase x` for `x ∈ t`.
-/
lemma step [decidable_eq E] (t : finset E) (h : findim ℝ E + 1 < t.card) :
convex_hull (↑t : set E) = ⋃ (x : (↑t : set E)), convex_hull ↑(t.erase x) :=
begin
apply set.subset.antisymm,
{ intros x m',
obtain ⟨y, m⟩ := mem_convex_hull_erase h m',
exact mem_Union.2 ⟨y, m⟩, },
{ refine Union_subset _,
intro x,
apply convex_hull_mono,
apply erase_subset, }
end
/--
The convex hull of a finset `t` with `findim ℝ E + 1 < t.card` is contained in
the union of the convex hulls of the finsets `t' ⊆ t` with `t'.card ≤ findim ℝ E + 1`.
-/
lemma shrink' (t : finset E) (k : ℕ) (h : t.card = findim ℝ E + 1 + k) :
convex_hull (↑t : set E) ⊆
⋃ (t' : finset E) (w : t' ⊆ t) (b : t'.card ≤ findim ℝ E + 1), convex_hull ↑t' :=
begin
induction k with k ih generalizing t,
{ apply subset_subset_Union t,
apply subset_subset_Union (set.subset.refl _),
exact subset_subset_Union (le_of_eq h) (subset.refl _), },
{ classical,
rw step _ (by { rw h, simp, } : findim ℝ E + 1 < t.card),
apply Union_subset,
intro i,
transitivity,
{ apply ih,
rw [card_erase_of_mem, h, nat.pred_succ],
exact i.2, },
{ apply Union_subset_Union,
intro t',
apply Union_subset_Union_const,
exact λ h, set.subset.trans h (erase_subset _ _), } }
end
/--
The convex hull of any finset `t` is contained in
the union of the convex hulls of the finsets `t' ⊆ t` with `t'.card ≤ findim ℝ E + 1`.
-/
lemma shrink (t : finset E) :
convex_hull (↑t : set E) ⊆
⋃ (t' : finset E) (w : t' ⊆ t) (b : t'.card ≤ findim ℝ E + 1), convex_hull ↑t' :=
begin
by_cases h : t.card ≤ findim ℝ E + 1,
{ apply subset_subset_Union t,
apply subset_subset_Union (set.subset.refl _),
exact subset_subset_Union h (set.subset.refl _), },
push_neg at h,
obtain ⟨k, w⟩ := le_iff_exists_add.mp (le_of_lt h), clear h,
exact shrink' _ _ w,
end
end caratheodory
/--
One inclusion of Carathéodory's convexity theorem.
The convex hull of a set `s` in ℝᵈ is contained in
the union of the convex hulls of the (d+1)-tuples in `s`.
-/
lemma convex_hull_subset_union (s : set E) :
convex_hull s ⊆ ⋃ (t : finset E) (w : ↑t ⊆ s) (b : t.card ≤ findim ℝ E + 1), convex_hull ↑t :=
begin
-- First we replace `convex_hull s` with the union of the convex hulls of finite subsets,
rw convex_hull_eq_union_convex_hull_finite_subsets,
-- and prove the inclusion for each of those.
apply Union_subset, intro r,
apply Union_subset, intro h,
-- Second, for each convex hull of a finite subset, we shrink it.
refine subset.trans (caratheodory.shrink _) _,
-- After that it's just shuffling unions around.
refine Union_subset_Union (λ t, _),
exact Union_subset_Union2 (λ htr, ⟨subset.trans htr h, subset.refl _⟩)
end
/--
Carathéodory's convexity theorem.
The convex hull of a set `s` in ℝᵈ is the union of the convex hulls of the (d+1)-tuples in `s`.
-/
theorem convex_hull_eq_union (s : set E) :
convex_hull s = ⋃ (t : finset E) (w : ↑t ⊆ s) (b : t.card ≤ findim ℝ E + 1), convex_hull ↑t :=
begin
apply set.subset.antisymm,
{ apply convex_hull_subset_union, },
iterate 3 { convert Union_subset _, intro, },
exact convex_hull_mono ‹_›,
end
/--
A more explicit formulation of Carathéodory's convexity theorem,
writing an element of a convex hull as the center of mass
of an explicit `finset` with cardinality at most `dim + 1`.
-/
theorem eq_center_mass_card_le_dim_succ_of_mem_convex_hull
{s : set E} {x : E} (h : x ∈ convex_hull s) :
∃ (t : finset E) (w : ↑t ⊆ s) (b : t.card ≤ findim ℝ E + 1)
(f : E → ℝ), (∀ y ∈ t, 0 ≤ f y) ∧ t.sum f = 1 ∧ t.center_mass f id = x :=
begin
rw convex_hull_eq_union at h,
simp only [exists_prop, mem_Union] at h,
obtain ⟨t, w, b, m⟩ := h,
refine ⟨t, w, b, _⟩,
rw finset.convex_hull_eq at m,
simpa only [exists_prop] using m,
end
/--
A variation on Carathéodory's convexity theorem,
writing an element of a convex hull as a center of mass
of an explicit `finset` with cardinality at most `dim + 1`,
where all coefficients in the center of mass formula
are strictly positive.
(This is proved using `eq_center_mass_card_le_dim_succ_of_mem_convex_hull`,
and discarding any elements of the set with coefficient zero.)
-/
theorem eq_pos_center_mass_card_le_dim_succ_of_mem_convex_hull
{s : set E} {x : E} (h : x ∈ convex_hull s) :
∃ (t : finset E) (w : ↑t ⊆ s) (b : t.card ≤ findim ℝ E + 1)
(f : E → ℝ), (∀ y ∈ t, 0 < f y) ∧ t.sum f = 1 ∧ t.center_mass f id = x :=
begin
obtain ⟨t, w, b, f, ⟨pos, sum, center⟩⟩ := eq_center_mass_card_le_dim_succ_of_mem_convex_hull h,
let t' := t.filter (λ z, 0 < f z),
have t'sum : t'.sum f = 1,
{ rw ← sum,
exact sum_filter_of_ne (λ x hxt hfx, (pos x hxt).lt_of_ne hfx.symm) },
refine ⟨t', _, _, f, ⟨_, t'sum, _⟩⟩,
{ exact subset.trans (filter_subset _ t) w, },
{ exact (card_filter_le _ _).trans b, },
{ exact λ y H, (mem_filter.mp H).right, },
{ rw ← center,
simp only [center_mass, t'sum, sum, inv_one, one_smul, id.def],
refine sum_filter_of_ne (λ x hxt hfx, (pos x hxt).lt_of_ne $ λ hf₀, _),
rw [← hf₀, zero_smul] at hfx,
exact hfx rfl },
end
|
7e41fe0523b568d902a4a60c1d07f9918cf56a93
|
74addaa0e41490cbaf2abd313a764c96df57b05d
|
/Mathlib/topology/algebra/group_with_zero_auto.lean
|
bac987bfa1a273b2356c1c8f9927e38cce5caffa
|
[] |
no_license
|
AurelienSaue/Mathlib4_auto
|
f538cfd0980f65a6361eadea39e6fc639e9dae14
|
590df64109b08190abe22358fabc3eae000943f2
|
refs/heads/master
| 1,683,906,849,776
| 1,622,564,669,000
| 1,622,564,669,000
| 371,723,747
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 9,441
|
lean
|
/-
Copyright (c) 2020 Yury G. Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Yury G. Kudryashov
-/
import Mathlib.PrePort
import Mathlib.Lean3Lib.init.default
import Mathlib.topology.algebra.monoid
import Mathlib.algebra.group.pi
import Mathlib.PostPort
universes u_1 u_2 u_3 l
namespace Mathlib
/-!
# Topological group with zero
In this file we define `has_continuous_inv'` to be a mixin typeclass a type with `has_inv` and
`has_zero` (e.g., a `group_with_zero`) such that `λ x, x⁻¹` is continuous at all nonzero points. Any
normed (semi)field has this property. Currently the only example of `has_continuous_inv'` in
`mathlib` which is not a normed field is the type `nnnreal` (a.k.a. `ℝ≥0`) of nonnegative real
numbers.
Then we prove lemmas about continuity of `x ↦ x⁻¹` and `f / g` providing dot-style `*.inv'` and
`*.div` operations on `filter.tendsto`, `continuous_at`, `continuous_within_at`, `continuous_on`,
and `continuous`. As a special case, we provide `*.div_const` operations that require only
`group_with_zero` and `has_continuous_mul` instances.
All lemmas about `(⁻¹)` use `inv'` in their names because lemmas without `'` are used for
`topological_group`s. We also use `'` in the typeclass name `has_continuous_inv'` for the sake of
consistency of notation.
-/
/-!
### A group with zero with continuous multiplication
If `G₀` is a group with zero with continuous `(*)`, then `(/y)` is continuous for any `y`. In this
section we prove lemmas that immediately follow from this fact providing `*.div_const` dot-style
operations on `filter.tendsto`, `continuous_at`, `continuous_within_at`, `continuous_on`, and
`continuous`.
-/
theorem filter.tendsto.div_const {α : Type u_1} {G₀ : Type u_2} [group_with_zero G₀]
[topological_space G₀] [has_continuous_mul G₀] {f : α → G₀} {l : filter α} {x : G₀} {y : G₀}
(hf : filter.tendsto f l (nhds x)) : filter.tendsto (fun (a : α) => f a / y) l (nhds (x / y)) :=
sorry
theorem continuous_at.div_const {α : Type u_1} {G₀ : Type u_2} [group_with_zero G₀]
[topological_space G₀] [has_continuous_mul G₀] {f : α → G₀} [topological_space α]
(hf : continuous f) {y : G₀} : continuous fun (x : α) => f x / y :=
sorry
theorem continuous_within_at.div_const {α : Type u_1} {G₀ : Type u_2} [group_with_zero G₀]
[topological_space G₀] [has_continuous_mul G₀] {f : α → G₀} {s : set α} [topological_space α]
{a : α} (hf : continuous_within_at f s a) {y : G₀} :
continuous_within_at (fun (x : α) => f x / y) s a :=
filter.tendsto.div_const hf
theorem continuous_on.div_const {α : Type u_1} {G₀ : Type u_2} [group_with_zero G₀]
[topological_space G₀] [has_continuous_mul G₀] {f : α → G₀} {s : set α} [topological_space α]
(hf : continuous_on f s) {y : G₀} : continuous_on (fun (x : α) => f x / y) s :=
sorry
theorem continuous.div_const {α : Type u_1} {G₀ : Type u_2} [group_with_zero G₀]
[topological_space G₀] [has_continuous_mul G₀] {f : α → G₀} [topological_space α]
(hf : continuous f) {y : G₀} : continuous fun (x : α) => f x / y :=
sorry
/-- A type with `0` and `has_inv` such that `λ x, x⁻¹` is continuous at all nonzero points. Any
normed (semi)field has this property. -/
class has_continuous_inv' (G₀ : Type u_3) [HasZero G₀] [has_inv G₀] [topological_space G₀] where
continuous_at_inv' : ∀ {x : G₀}, x ≠ 0 → continuous_at has_inv.inv x
/-!
### Continuity of `λ x, x⁻¹` at a non-zero point
We define `topological_group_with_zero` to be a `group_with_zero` such that the operation `x ↦ x⁻¹`
is continuous at all nonzero points. In this section we prove dot-style `*.inv'` lemmas for
`filter.tendsto`, `continuous_at`, `continuous_within_at`, `continuous_on`, and `continuous`.
-/
theorem tendsto_inv' {G₀ : Type u_2} [HasZero G₀] [has_inv G₀] [topological_space G₀]
[has_continuous_inv' G₀] {x : G₀} (hx : x ≠ 0) :
filter.tendsto has_inv.inv (nhds x) (nhds (x⁻¹)) :=
continuous_at_inv' hx
theorem continuous_on_inv' {G₀ : Type u_2} [HasZero G₀] [has_inv G₀] [topological_space G₀]
[has_continuous_inv' G₀] : continuous_on has_inv.inv (singleton 0ᶜ) :=
fun (x : G₀) (hx : x ∈ (singleton 0ᶜ)) =>
continuous_at.continuous_within_at (continuous_at_inv' hx)
/-- If a function converges to a nonzero value, its inverse converges to the inverse of this value.
We use the name `tendsto.inv'` as `tendsto.inv` is already used in multiplicative topological
groups. -/
theorem filter.tendsto.inv' {α : Type u_1} {G₀ : Type u_2} [HasZero G₀] [has_inv G₀]
[topological_space G₀] [has_continuous_inv' G₀] {l : filter α} {f : α → G₀} {a : G₀}
(hf : filter.tendsto f l (nhds a)) (ha : a ≠ 0) :
filter.tendsto (fun (x : α) => f x⁻¹) l (nhds (a⁻¹)) :=
filter.tendsto.comp (tendsto_inv' ha) hf
theorem continuous_within_at.inv' {α : Type u_1} {G₀ : Type u_2} [HasZero G₀] [has_inv G₀]
[topological_space G₀] [has_continuous_inv' G₀] {f : α → G₀} {s : set α} {a : α}
[topological_space α] (hf : continuous_within_at f s a) (ha : f a ≠ 0) :
continuous_within_at (fun (x : α) => f x⁻¹) s a :=
filter.tendsto.inv' hf ha
theorem continuous_at.inv' {α : Type u_1} {G₀ : Type u_2} [HasZero G₀] [has_inv G₀]
[topological_space G₀] [has_continuous_inv' G₀] {f : α → G₀} {a : α} [topological_space α]
(hf : continuous_at f a) (ha : f a ≠ 0) : continuous_at (fun (x : α) => f x⁻¹) a :=
filter.tendsto.inv' hf ha
theorem continuous.inv' {α : Type u_1} {G₀ : Type u_2} [HasZero G₀] [has_inv G₀]
[topological_space G₀] [has_continuous_inv' G₀] {f : α → G₀} [topological_space α]
(hf : continuous f) (h0 : ∀ (x : α), f x ≠ 0) : continuous fun (x : α) => f x⁻¹ :=
iff.mpr continuous_iff_continuous_at
fun (x : α) => filter.tendsto.inv' (continuous.tendsto hf x) (h0 x)
theorem continuous_on.inv' {α : Type u_1} {G₀ : Type u_2} [HasZero G₀] [has_inv G₀]
[topological_space G₀] [has_continuous_inv' G₀] {f : α → G₀} {s : set α} [topological_space α]
(hf : continuous_on f s) (h0 : ∀ (x : α), x ∈ s → f x ≠ 0) :
continuous_on (fun (x : α) => f x⁻¹) s :=
fun (x : α) (hx : x ∈ s) => continuous_within_at.inv' (hf x hx) (h0 x hx)
/-!
### Continuity of division
If `G₀` is a `group_with_zero` with `x ↦ x⁻¹` continuous at all nonzero points and `(*)`, then
division `(/)` is continuous at any point where the denominator is continuous.
-/
theorem filter.tendsto.div {α : Type u_1} {G₀ : Type u_2} [group_with_zero G₀]
[topological_space G₀] [has_continuous_inv' G₀] [has_continuous_mul G₀] {f : α → G₀}
{g : α → G₀} {l : filter α} {a : G₀} {b : G₀} (hf : filter.tendsto f l (nhds a))
(hg : filter.tendsto g l (nhds b)) (hy : b ≠ 0) : filter.tendsto (f / g) l (nhds (a / b)) :=
sorry
theorem continuous_within_at.div {α : Type u_1} {G₀ : Type u_2} [group_with_zero G₀]
[topological_space G₀] [has_continuous_inv' G₀] [has_continuous_mul G₀] {f : α → G₀}
{g : α → G₀} [topological_space α] {s : set α} {a : α} (hf : continuous_within_at f s a)
(hg : continuous_within_at g s a) (h₀ : g a ≠ 0) : continuous_within_at (f / g) s a :=
filter.tendsto.div hf hg h₀
theorem continuous_on.div {α : Type u_1} {G₀ : Type u_2} [group_with_zero G₀] [topological_space G₀]
[has_continuous_inv' G₀] [has_continuous_mul G₀] {f : α → G₀} {g : α → G₀} [topological_space α]
{s : set α} (hf : continuous_on f s) (hg : continuous_on g s)
(h₀ : ∀ (x : α), x ∈ s → g x ≠ 0) : continuous_on (f / g) s :=
fun (x : α) (hx : x ∈ s) => continuous_within_at.div (hf x hx) (hg x hx) (h₀ x hx)
/-- Continuity at a point of the result of dividing two functions continuous at that point, where
the denominator is nonzero. -/
theorem continuous_at.div {α : Type u_1} {G₀ : Type u_2} [group_with_zero G₀] [topological_space G₀]
[has_continuous_inv' G₀] [has_continuous_mul G₀] {f : α → G₀} {g : α → G₀} [topological_space α]
{a : α} (hf : continuous_at f a) (hg : continuous_at g a) (h₀ : g a ≠ 0) :
continuous_at (f / g) a :=
filter.tendsto.div hf hg h₀
theorem continuous.div {α : Type u_1} {G₀ : Type u_2} [group_with_zero G₀] [topological_space G₀]
[has_continuous_inv' G₀] [has_continuous_mul G₀] {f : α → G₀} {g : α → G₀} [topological_space α]
(hf : continuous f) (hg : continuous g) (h₀ : ∀ (x : α), g x ≠ 0) : continuous (f / g) :=
eq.mpr
(id
((fun (f f_1 : α → G₀) (e_3 : f = f_1) => congr_arg continuous e_3) (f / g) (f * (g⁻¹))
(div_eq_mul_inv f g)))
(eq.mp (Eq.refl (continuous fun (x : α) => f x * (g x⁻¹)))
(continuous.mul hf (continuous.inv' hg h₀)))
theorem continuous_on_div {G₀ : Type u_2} [group_with_zero G₀] [topological_space G₀]
[has_continuous_inv' G₀] [has_continuous_mul G₀] :
continuous_on (fun (p : G₀ × G₀) => prod.fst p / prod.snd p)
(set_of fun (p : G₀ × G₀) => prod.snd p ≠ 0) :=
continuous_on.div continuous_on_fst continuous_on_snd fun (_x : G₀ × G₀) => id
end Mathlib
|
79a8746f998f9139e56390b5ed5d50010d8191de
|
cf39355caa609c0f33405126beee2739aa3cb77e
|
/tests/lean/no_confusion_type.lean
|
cbcfeae1b93da2e64dcb473f3ca272ea13096b50
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/lean
|
12b87f69d92e614daea8bcc9d4de9a9ace089d0e
|
cce7990ea86a78bdb383e38ed7f9b5ba93c60ce0
|
refs/heads/master
| 1,687,508,156,644
| 1,684,951,104,000
| 1,684,951,104,000
| 169,960,991
| 457
| 107
|
Apache-2.0
| 1,686,744,372,000
| 1,549,790,268,000
|
C++
|
UTF-8
|
Lean
| false
| false
| 344
|
lean
|
namespace Ex
open nat
inductive vector (A : Type) : nat → Type
| vnil : vector nat.zero
| vcons : Π {n : nat}, A → vector n → vector (succ n)
#check vector.no_confusion_type
constants a1 a2 : nat
constants v1 v2 : vector nat 2
constant P : Type
#reduce vector.no_confusion_type P (vector.vcons a1 v1) (vector.vcons a2 v2)
end Ex
|
b408b5071e36e47af0130061e6c6fcb99f9f6745
|
d436468d80b739ba7e06843c4d0d2070e43448e5
|
/src/topology/instances/real.lean
|
54852b6ab476bd87006976f5cbe544ef03f1a2ee
|
[
"Apache-2.0"
] |
permissive
|
roro47/mathlib
|
761fdc002aef92f77818f3fef06bf6ec6fc1a28e
|
80aa7d52537571a2ca62a3fdf71c9533a09422cf
|
refs/heads/master
| 1,599,656,410,625
| 1,573,649,488,000
| 1,573,649,488,000
| 221,452,951
| 0
| 0
|
Apache-2.0
| 1,573,647,693,000
| 1,573,647,692,000
| null |
UTF-8
|
Lean
| false
| false
| 19,173
|
lean
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
The real numbers ℝ.
They are constructed as the topological completion of ℚ. With the following steps:
(1) prove that ℚ forms a uniform space.
(2) subtraction and addition are uniform continuous functions in this space
(3) for multiplication and inverse this only holds on bounded subsets
(4) ℝ is defined as separated Cauchy filters over ℚ (the separation requires a quotient construction)
(5) extend the uniform continuous functions along the completion
(6) proof field properties using the principle of extension of identities
TODO
generalizations:
* topological groups & rings
* order topologies
* Archimedean fields
-/
import topology.metric_space.basic topology.algebra.uniform_group
topology.algebra.ring tactic.linarith
noncomputable theory
open classical set lattice filter topological_space metric
open_locale classical
open_locale topological_space
universes u v w
variables {α : Type u} {β : Type v} {γ : Type w}
instance : metric_space ℚ :=
metric_space.induced coe rat.cast_injective real.metric_space
theorem rat.dist_eq (x y : ℚ) : dist x y = abs (x - y) := rfl
@[elim_cast, simp] lemma rat.dist_cast (x y : ℚ) : dist (x : ℝ) y = dist x y := rfl
instance : metric_space ℤ :=
begin
letI M := metric_space.induced coe int.cast_injective real.metric_space,
refine @metric_space.replace_uniformity _ int.uniform_space M
(le_antisymm refl_le_uniformity $ λ r ru,
mem_uniformity_dist.2 ⟨1, zero_lt_one, λ a b h,
mem_principal_sets.1 ru $ dist_le_zero.1 (_ : (abs (a - b) : ℝ) ≤ 0)⟩),
simpa using (@int.cast_le ℝ _ _ 0).2 (int.lt_add_one_iff.1 $
(@int.cast_lt ℝ _ (abs (a - b)) 1).1 $ by simpa using h)
end
theorem int.dist_eq (x y : ℤ) : dist x y = abs (x - y) := rfl
@[elim_cast, simp] theorem int.dist_cast_real (x y : ℤ) : dist (x : ℝ) y = dist x y := rfl
@[elim_cast, simp] theorem int.dist_cast_rat (x y : ℤ) : dist (x : ℚ) y = dist x y :=
by rw [← int.dist_cast_real, ← rat.dist_cast]; congr' 1; norm_cast
theorem uniform_continuous_of_rat : uniform_continuous (coe : ℚ → ℝ) :=
uniform_continuous_comap
theorem uniform_embedding_of_rat : uniform_embedding (coe : ℚ → ℝ) :=
uniform_embedding_comap rat.cast_injective
theorem dense_embedding_of_rat : dense_embedding (coe : ℚ → ℝ) :=
uniform_embedding_of_rat.dense_embedding $
λ x, mem_closure_iff_nhds.2 $ λ t ht,
let ⟨ε,ε0, hε⟩ := mem_nhds_iff.1 ht in
let ⟨q, h⟩ := exists_rat_near x ε0 in
ne_empty_iff_exists_mem.2 ⟨_, hε (mem_ball'.2 h), q, rfl⟩
theorem embedding_of_rat : embedding (coe : ℚ → ℝ) := dense_embedding_of_rat.to_embedding
theorem continuous_of_rat : continuous (coe : ℚ → ℝ) := uniform_continuous_of_rat.continuous
theorem real.uniform_continuous_add : uniform_continuous (λp : ℝ × ℝ, p.1 + p.2) :=
metric.uniform_continuous_iff.2 $ λ ε ε0,
let ⟨δ, δ0, Hδ⟩ := rat_add_continuous_lemma abs ε0 in
⟨δ, δ0, λ a b h, let ⟨h₁, h₂⟩ := max_lt_iff.1 h in Hδ h₁ h₂⟩
-- TODO(Mario): Find a way to use rat_add_continuous_lemma
theorem rat.uniform_continuous_add : uniform_continuous (λp : ℚ × ℚ, p.1 + p.2) :=
uniform_embedding_of_rat.to_uniform_inducing.uniform_continuous_iff.2 $ by simp [(∘)]; exact
real.uniform_continuous_add.comp ((uniform_continuous_of_rat.comp uniform_continuous_fst).prod_mk
(uniform_continuous_of_rat.comp uniform_continuous_snd))
theorem real.uniform_continuous_neg : uniform_continuous (@has_neg.neg ℝ _) :=
metric.uniform_continuous_iff.2 $ λ ε ε0, ⟨_, ε0, λ a b h,
by rw dist_comm at h; simpa [real.dist_eq] using h⟩
theorem rat.uniform_continuous_neg : uniform_continuous (@has_neg.neg ℚ _) :=
metric.uniform_continuous_iff.2 $ λ ε ε0, ⟨_, ε0, λ a b h,
by rw dist_comm at h; simpa [rat.dist_eq] using h⟩
instance : uniform_add_group ℝ :=
uniform_add_group.mk' real.uniform_continuous_add real.uniform_continuous_neg
instance : uniform_add_group ℚ :=
uniform_add_group.mk' rat.uniform_continuous_add rat.uniform_continuous_neg
instance : topological_add_group ℝ := by apply_instance
instance : topological_add_group ℚ := by apply_instance
instance : orderable_topology ℚ :=
induced_orderable_topology _ (λ x y, rat.cast_lt) (@exists_rat_btwn _ _ _)
lemma real.is_topological_basis_Ioo_rat :
@is_topological_basis ℝ _ (⋃(a b : ℚ) (h : a < b), {Ioo a b}) :=
is_topological_basis_of_open_of_nhds
(by simp [is_open_Ioo] {contextual:=tt})
(assume a v hav hv,
let ⟨l, u, hl, hu, h⟩ := (mem_nhds_unbounded (no_top _) (no_bot _)).mp (mem_nhds_sets hv hav),
⟨q, hlq, hqa⟩ := exists_rat_btwn hl,
⟨p, hap, hpu⟩ := exists_rat_btwn hu in
⟨Ioo q p,
by simp; exact ⟨q, p, rat.cast_lt.1 $ lt_trans hqa hap, rfl⟩,
⟨hqa, hap⟩, assume a' ⟨hqa', ha'p⟩, h _ (lt_trans hlq hqa') (lt_trans ha'p hpu)⟩)
instance : second_countable_topology ℝ :=
⟨⟨(⋃(a b : ℚ) (h : a < b), {Ioo a b}),
by simp [countable_Union, countable_Union_Prop],
real.is_topological_basis_Ioo_rat.2.2⟩⟩
/- TODO(Mario): Prove that these are uniform isomorphisms instead of uniform embeddings
lemma uniform_embedding_add_rat {r : ℚ} : uniform_embedding (λp:ℚ, p + r) :=
_
lemma uniform_embedding_mul_rat {q : ℚ} (hq : q ≠ 0) : uniform_embedding ((*) q) :=
_ -/
lemma real.uniform_continuous_inv (s : set ℝ) {r : ℝ} (r0 : 0 < r) (H : ∀ x ∈ s, r ≤ abs x) :
uniform_continuous (λp:s, p.1⁻¹) :=
metric.uniform_continuous_iff.2 $ λ ε ε0,
let ⟨δ, δ0, Hδ⟩ := rat_inv_continuous_lemma abs ε0 r0 in
⟨δ, δ0, λ a b h, Hδ (H _ a.2) (H _ b.2) h⟩
lemma real.uniform_continuous_abs : uniform_continuous (abs : ℝ → ℝ) :=
metric.uniform_continuous_iff.2 $ λ ε ε0,
⟨ε, ε0, λ a b, lt_of_le_of_lt (abs_abs_sub_abs_le_abs_sub _ _)⟩
lemma real.continuous_abs : continuous (abs : ℝ → ℝ) :=
real.uniform_continuous_abs.continuous
lemma rat.uniform_continuous_abs : uniform_continuous (abs : ℚ → ℚ) :=
metric.uniform_continuous_iff.2 $ λ ε ε0,
⟨ε, ε0, λ a b h, lt_of_le_of_lt
(by simpa [rat.dist_eq] using abs_abs_sub_abs_le_abs_sub _ _) h⟩
lemma rat.continuous_abs : continuous (abs : ℚ → ℚ) :=
rat.uniform_continuous_abs.continuous
lemma real.tendsto_inv {r : ℝ} (r0 : r ≠ 0) : tendsto (λq, q⁻¹) (𝓝 r) (𝓝 r⁻¹) :=
by rw ← abs_pos_iff at r0; exact
tendsto_of_uniform_continuous_subtype
(real.uniform_continuous_inv {x | abs r / 2 < abs x} (half_pos r0) (λ x h, le_of_lt h))
(mem_nhds_sets (real.continuous_abs _ $ is_open_lt' (abs r / 2)) (half_lt_self r0))
lemma real.continuous_inv' : continuous (λa:{r:ℝ // r ≠ 0}, a.val⁻¹) :=
continuous_iff_continuous_at.mpr $ assume ⟨r, hr⟩,
tendsto.comp (real.tendsto_inv hr) (continuous_iff_continuous_at.mp continuous_subtype_val _)
lemma real.continuous_inv [topological_space α] {f : α → ℝ} (h : ∀a, f a ≠ 0) (hf : continuous f) :
continuous (λa, (f a)⁻¹) :=
show continuous ((has_inv.inv ∘ @subtype.val ℝ (λr, r ≠ 0)) ∘ λa, ⟨f a, h a⟩),
from real.continuous_inv'.comp (continuous_subtype_mk _ hf)
lemma real.uniform_continuous_mul_const {x : ℝ} : uniform_continuous ((*) x) :=
metric.uniform_continuous_iff.2 $ λ ε ε0, begin
cases no_top (abs x) with y xy,
have y0 := lt_of_le_of_lt (abs_nonneg _) xy,
refine ⟨_, div_pos ε0 y0, λ a b h, _⟩,
rw [real.dist_eq, ← mul_sub, abs_mul, ← mul_div_cancel' ε (ne_of_gt y0)],
exact mul_lt_mul' (le_of_lt xy) h (abs_nonneg _) y0
end
lemma real.uniform_continuous_mul (s : set (ℝ × ℝ))
{r₁ r₂ : ℝ} (H : ∀ x ∈ s, abs (x : ℝ × ℝ).1 < r₁ ∧ abs x.2 < r₂) :
uniform_continuous (λp:s, p.1.1 * p.1.2) :=
metric.uniform_continuous_iff.2 $ λ ε ε0,
let ⟨δ, δ0, Hδ⟩ := rat_mul_continuous_lemma abs ε0 in
⟨δ, δ0, λ a b h,
let ⟨h₁, h₂⟩ := max_lt_iff.1 h in Hδ (H _ a.2).1 (H _ b.2).2 h₁ h₂⟩
protected lemma real.continuous_mul : continuous (λp : ℝ × ℝ, p.1 * p.2) :=
continuous_iff_continuous_at.2 $ λ ⟨a₁, a₂⟩,
tendsto_of_uniform_continuous_subtype
(real.uniform_continuous_mul
({x | abs x < abs a₁ + 1}.prod {x | abs x < abs a₂ + 1})
(λ x, id))
(mem_nhds_sets
(is_open_prod
(real.continuous_abs _ $ is_open_gt' (abs a₁ + 1))
(real.continuous_abs _ $ is_open_gt' (abs a₂ + 1)))
⟨lt_add_one (abs a₁), lt_add_one (abs a₂)⟩)
instance : topological_ring ℝ :=
{ continuous_mul := real.continuous_mul, ..real.topological_add_group }
instance : topological_semiring ℝ := by apply_instance
lemma rat.continuous_mul : continuous (λp : ℚ × ℚ, p.1 * p.2) :=
embedding_of_rat.continuous_iff.2 $ by simp [(∘)]; exact
real.continuous_mul.comp ((continuous_of_rat.comp continuous_fst).prod_mk
(continuous_of_rat.comp continuous_snd))
instance : topological_ring ℚ :=
{ continuous_mul := rat.continuous_mul, ..rat.topological_add_group }
theorem real.ball_eq_Ioo (x ε : ℝ) : ball x ε = Ioo (x - ε) (x + ε) :=
set.ext $ λ y, by rw [mem_ball, real.dist_eq,
abs_sub_lt_iff, sub_lt_iff_lt_add', and_comm, sub_lt]; refl
theorem real.Ioo_eq_ball (x y : ℝ) : Ioo x y = ball ((x + y) / 2) ((y - x) / 2) :=
by rw [real.ball_eq_Ioo, ← sub_div, add_comm, ← sub_add,
add_sub_cancel', add_self_div_two, ← add_div,
add_assoc, add_sub_cancel'_right, add_self_div_two]
lemma real.totally_bounded_Ioo (a b : ℝ) : totally_bounded (Ioo a b) :=
metric.totally_bounded_iff.2 $ λ ε ε0, begin
rcases exists_nat_gt ((b - a) / ε) with ⟨n, ba⟩,
rw [div_lt_iff' ε0, sub_lt_iff_lt_add'] at ba,
let s := (λ i:ℕ, a + ε * i) '' {i:ℕ | i < n},
refine ⟨s, finite_image _ ⟨set.fintype_lt_nat _⟩, λ x h, _⟩,
rcases h with ⟨ax, xb⟩,
let i : ℕ := ⌊(x - a) / ε⌋.to_nat,
have : (i : ℤ) = ⌊(x - a) / ε⌋ :=
int.to_nat_of_nonneg (floor_nonneg.2 $ le_of_lt (div_pos (sub_pos.2 ax) ε0)),
simp, refine ⟨_, ⟨i, _, rfl⟩, _⟩,
{ rw [← int.coe_nat_lt, this],
refine int.cast_lt.1 (lt_of_le_of_lt (floor_le _) _),
rw [int.cast_coe_nat, div_lt_iff' ε0, sub_lt_iff_lt_add'],
exact lt_trans xb ba },
{ rw [real.dist_eq, ← int.cast_coe_nat, this, abs_of_nonneg,
← sub_sub, sub_lt_iff_lt_add'],
{ have := lt_floor_add_one ((x - a) / ε),
rwa [div_lt_iff' ε0, mul_add, mul_one] at this },
{ have := floor_le ((x - a) / ε),
rwa [ge, sub_nonneg, ← le_sub_iff_add_le', ← le_div_iff' ε0] } }
end
lemma real.totally_bounded_ball (x ε : ℝ) : totally_bounded (ball x ε) :=
by rw real.ball_eq_Ioo; apply real.totally_bounded_Ioo
lemma real.totally_bounded_Ico (a b : ℝ) : totally_bounded (Ico a b) :=
let ⟨c, ac⟩ := no_bot a in totally_bounded_subset
(by exact λ x ⟨h₁, h₂⟩, ⟨lt_of_lt_of_le ac h₁, h₂⟩)
(real.totally_bounded_Ioo c b)
lemma real.totally_bounded_Icc (a b : ℝ) : totally_bounded (Icc a b) :=
let ⟨c, bc⟩ := no_top b in totally_bounded_subset
(by exact λ x ⟨h₁, h₂⟩, ⟨h₁, lt_of_le_of_lt h₂ bc⟩)
(real.totally_bounded_Ico a c)
lemma rat.totally_bounded_Icc (a b : ℚ) : totally_bounded (Icc a b) :=
begin
have := totally_bounded_preimage uniform_embedding_of_rat (real.totally_bounded_Icc a b),
rwa (set.ext (λ q, _) : Icc _ _ = _), simp
end
-- TODO(Mario): Generalize to first-countable uniform spaces?
instance : complete_space ℝ :=
⟨λ f cf, begin
let g : ℕ → {ε:ℝ//ε>0} := λ n, ⟨n.to_pnat'⁻¹, inv_pos (nat.cast_pos.2 n.to_pnat'.pos)⟩,
choose S hS hS_dist using show ∀n:ℕ, ∃t ∈ f.sets, ∀ x y ∈ t, dist x y < g n, from
assume n, let ⟨t, tf, h⟩ := (metric.cauchy_iff.1 cf).2 (g n).1 (g n).2 in ⟨t, tf, h⟩,
let F : ℕ → set ℝ := λn, ⋂i≤n, S i,
have hF : ∀n, F n ∈ f.sets := assume n, Inter_mem_sets (finite_le_nat n) (λ i _, hS i),
have hF_dist : ∀n, ∀ x y ∈ F n, dist x y < g n :=
assume n x y hx hy,
have F n ⊆ S n := bInter_subset_of_mem (le_refl n),
(hS_dist n) _ _ (this hx) (this hy),
choose G hG using assume n:ℕ, inhabited_of_mem_sets cf.1 (hF n),
have hg : ∀ ε > 0, ∃ n, ∀ j ≥ n, (g j : ℝ) < ε,
{ intros ε ε0,
cases exists_nat_gt ε⁻¹ with n hn,
refine ⟨n, λ j nj, _⟩,
have hj := lt_of_lt_of_le hn (nat.cast_le.2 nj),
have j0 := lt_trans (inv_pos ε0) hj,
have jε := (inv_lt j0 ε0).2 hj,
rwa ← pnat.to_pnat'_coe (nat.cast_pos.1 j0) at jε },
let c : cau_seq ℝ abs,
{ refine ⟨λ n, G n, λ ε ε0, _⟩,
cases hg _ ε0 with n hn,
refine ⟨n, λ j jn, _⟩,
have : F j ⊆ F n :=
bInter_subset_bInter_left (λ i h, @le_trans _ _ i n j h jn),
exact lt_trans (hF_dist n _ _ (this (hG j)) (hG n)) (hn _ $ le_refl _) },
refine ⟨cau_seq.lim c, λ s h, _⟩,
rcases metric.mem_nhds_iff.1 h with ⟨ε, ε0, hε⟩,
cases exists_forall_ge_and (hg _ $ half_pos ε0)
(cau_seq.equiv_lim c _ $ half_pos ε0) with n hn,
cases hn _ (le_refl _) with h₁ h₂,
refine sets_of_superset _ (hF n) (subset.trans _ $
subset.trans (ball_half_subset (G n) h₂) hε),
exact λ x h, lt_trans ((hF_dist n) x (G n) h (hG n)) h₁
end⟩
lemma tendsto_coe_nat_real_at_top_iff {f : α → ℕ} {l : filter α} :
tendsto (λ n, (f n : ℝ)) l at_top ↔ tendsto f l at_top :=
tendsto_at_top_embedding (assume a₁ a₂, nat.cast_le) $
assume r, let ⟨n, hn⟩ := exists_nat_gt r in ⟨n, le_of_lt hn⟩
lemma tendsto_coe_nat_real_at_top_at_top : tendsto (coe : ℕ → ℝ) at_top at_top :=
tendsto_coe_nat_real_at_top_iff.2 tendsto_id
lemma tendsto_coe_int_real_at_top_iff {f : α → ℤ} {l : filter α} :
tendsto (λ n, (f n : ℝ)) l at_top ↔ tendsto f l at_top :=
tendsto_at_top_embedding (assume a₁ a₂, int.cast_le) $
assume r, let ⟨n, hn⟩ := exists_nat_gt r in
⟨(n:ℤ), le_of_lt $ by rwa [int.cast_coe_nat]⟩
lemma tendsto_coe_int_real_at_top_at_top : tendsto (coe : ℤ → ℝ) at_top at_top :=
tendsto_coe_int_real_at_top_iff.2 tendsto_id
section
lemma closure_of_rat_image_lt {q : ℚ} : closure ((coe:ℚ → ℝ) '' {x | q < x}) = {r | ↑q ≤ r} :=
subset.antisymm
((closure_subset_iff_subset_of_is_closed (is_closed_ge' _)).2
(image_subset_iff.2 $ λ p h, le_of_lt $ (@rat.cast_lt ℝ _ _ _).2 h)) $
λ x hx, mem_closure_iff_nhds.2 $ λ t ht,
let ⟨ε, ε0, hε⟩ := metric.mem_nhds_iff.1 ht in
let ⟨p, h₁, h₂⟩ := exists_rat_btwn ((lt_add_iff_pos_right x).2 ε0) in
ne_empty_iff_exists_mem.2 ⟨_, hε (show abs _ < _,
by rwa [abs_of_nonneg (le_of_lt $ sub_pos.2 h₁), sub_lt_iff_lt_add']),
p, rat.cast_lt.1 (@lt_of_le_of_lt ℝ _ _ _ _ hx h₁), rfl⟩
/- TODO(Mario): Put these back only if needed later
lemma closure_of_rat_image_le_eq {q : ℚ} : closure ((coe:ℚ → ℝ) '' {x | q ≤ x}) = {r | ↑q ≤ r} :=
_
lemma closure_of_rat_image_le_le_eq {a b : ℚ} (hab : a ≤ b) :
closure (of_rat '' {q:ℚ | a ≤ q ∧ q ≤ b}) = {r:ℝ | of_rat a ≤ r ∧ r ≤ of_rat b} :=
_-/
lemma compact_Icc {a b : ℝ} : compact (Icc a b) :=
compact_of_totally_bounded_is_closed
(real.totally_bounded_Icc a b)
(is_closed_inter (is_closed_ge' a) (is_closed_le' b))
instance : proper_space ℝ :=
{ compact_ball := λx r, by rw closed_ball_Icc; apply compact_Icc }
open real
lemma real.intermediate_value {f : ℝ → ℝ} {a b t : ℝ}
(hf : ∀ x, a ≤ x → x ≤ b → tendsto f (𝓝 x) (𝓝 (f x)))
(ha : f a ≤ t) (hb : t ≤ f b) (hab : a ≤ b) : ∃ x : ℝ, a ≤ x ∧ x ≤ b ∧ f x = t :=
let x := real.Sup {x | f x ≤ t ∧ a ≤ x ∧ x ≤ b} in
have hx₁ : ∃ y, ∀ g ∈ {x | f x ≤ t ∧ a ≤ x ∧ x ≤ b}, g ≤ y := ⟨b, λ _ h, h.2.2⟩,
have hx₂ : ∃ y, y ∈ {x | f x ≤ t ∧ a ≤ x ∧ x ≤ b} := ⟨a, ha, le_refl _, hab⟩,
have hax : a ≤ x, from le_Sup _ hx₁ ⟨ha, le_refl _, hab⟩,
have hxb : x ≤ b, from (Sup_le _ hx₂ hx₁).2 (λ _ h, h.2.2),
⟨x, hax, hxb,
eq_of_forall_dist_le $ λ ε ε0,
let ⟨δ, hδ0, hδ⟩ := metric.tendsto_nhds_nhds.1 (hf _ hax hxb) ε ε0 in
(le_total t (f x)).elim
(λ h, le_of_not_gt $ λ hfε, begin
rw [dist_eq, abs_of_nonneg (sub_nonneg.2 h)] at hfε,
refine mt (Sup_le {x | f x ≤ t ∧ a ≤ x ∧ x ≤ b} hx₂ hx₁).2
(not_le_of_gt (sub_lt_self x (half_pos hδ0)))
(λ g hg, le_of_not_gt
(λ hgδ, not_lt_of_ge hg.1
(lt_trans (lt_sub.1 hfε) (sub_lt_of_sub_lt
(lt_of_le_of_lt (le_abs_self _) _))))),
rw abs_sub,
exact hδ (abs_sub_lt_iff.2 ⟨lt_of_le_of_lt (sub_nonpos.2 (le_Sup _ hx₁ hg)) hδ0,
by simp only [x] at *; linarith⟩)
end)
(λ h, le_of_not_gt $ λ hfε, begin
rw [dist_eq, abs_of_nonpos (sub_nonpos.2 h)] at hfε,
exact mt (le_Sup {x | f x ≤ t ∧ a ≤ x ∧ x ≤ b})
(λ h : ∀ k, k ∈ {x | f x ≤ t ∧ a ≤ x ∧ x ≤ b} → k ≤ x,
not_le_of_gt ((lt_add_iff_pos_left x).2 (half_pos hδ0))
(h _ ⟨le_trans (le_sub_iff_add_le.2 (le_trans (le_abs_self _)
(le_of_lt (hδ $ by rw [dist_eq, add_sub_cancel, abs_of_nonneg (le_of_lt (half_pos hδ0))];
exact half_lt_self hδ0))))
(by linarith),
le_trans hax (le_of_lt ((lt_add_iff_pos_left _).2 (half_pos hδ0))),
le_of_not_gt (λ hδy, not_lt_of_ge hb (lt_of_le_of_lt
(show f b ≤ f b - f x - ε + t, by linarith)
(add_lt_of_neg_of_le
(sub_neg_of_lt (lt_of_le_of_lt (le_abs_self _)
(@hδ b (abs_sub_lt_iff.2 ⟨by simp only [x] at *; linarith,
by linarith⟩))))
(le_refl _))))⟩))
hx₁
end)⟩
lemma real.intermediate_value' {f : ℝ → ℝ} {a b t : ℝ}
(hf : ∀ x, a ≤ x → x ≤ b → tendsto f (𝓝 x) (𝓝 (f x)))
(ha : t ≤ f a) (hb : f b ≤ t) (hab : a ≤ b) : ∃ x : ℝ, a ≤ x ∧ x ≤ b ∧ f x = t :=
let ⟨x, hx₁, hx₂, hx₃⟩ := @real.intermediate_value
(λ x, - f x) a b (-t) (λ x hax hxb, tendsto_neg (hf x hax hxb))
(neg_le_neg ha) (neg_le_neg hb) hab in
⟨x, hx₁, hx₂, neg_inj hx₃⟩
lemma real.bounded_iff_bdd_below_bdd_above {s : set ℝ} : bounded s ↔ bdd_below s ∧ bdd_above s :=
⟨begin
assume bdd,
rcases (bounded_iff_subset_ball 0).1 bdd with ⟨r, hr⟩, -- hr : s ⊆ closed_ball 0 r
rw closed_ball_Icc at hr, -- hr : s ⊆ Icc (0 - r) (0 + r)
exact ⟨⟨-r, λy hy, by simpa using (hr hy).1⟩, ⟨r, λy hy, by simpa using (hr hy).2⟩⟩
end,
begin
rintros ⟨⟨m, hm⟩, ⟨M, hM⟩⟩,
have I : s ⊆ Icc m M := λx hx, ⟨hm x hx, hM x hx⟩,
have : Icc m M = closed_ball ((m+M)/2) ((M-m)/2) :=
by rw closed_ball_Icc; congr; ring,
rw this at I,
exact bounded.subset I bounded_closed_ball
end⟩
end
|
faf6fcee3224bed146ffe2210995ab95ef03bd79
|
74addaa0e41490cbaf2abd313a764c96df57b05d
|
/Mathlib/ring_theory/witt_vector/compare_auto.lean
|
1168a2ed7da5b46ff03126a03a9263a5c1a7382e
|
[] |
no_license
|
AurelienSaue/Mathlib4_auto
|
f538cfd0980f65a6361eadea39e6fc639e9dae14
|
590df64109b08190abe22358fabc3eae000943f2
|
refs/heads/master
| 1,683,906,849,776
| 1,622,564,669,000
| 1,622,564,669,000
| 371,723,747
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 8,344
|
lean
|
/-
Copyright (c) 2020 Johan Commelin. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin, Robert Y. Lewis
-/
import Mathlib.PrePort
import Mathlib.Lean3Lib.init.default
import Mathlib.ring_theory.witt_vector.truncated
import Mathlib.ring_theory.witt_vector.identities
import Mathlib.data.padics.ring_homs
import Mathlib.PostPort
universes u_1
namespace Mathlib
/-!
# Comparison isomorphism between `witt_vector p (zmod p)` and `ℤ_[p]`
We construct a ring isomorphism between `witt_vector p (zmod p)` and `ℤ_[p]`.
This isomorphism follows from the fact that both satisfy the universal property
of the inverse limit of `zmod (p^n)`.
## Main declarations
* `witt_vector.to_zmod_pow`: a family of compatible ring homs `𝕎 (zmod p) → zmod (p^k)`
* `witt_vector.equiv`: the isomorphism
-/
namespace truncated_witt_vector
theorem eq_of_le_of_cast_pow_eq_zero (p : ℕ) [hp : fact (nat.prime p)] (n : ℕ) (R : Type u_1)
[comm_ring R] [char_p R p] (i : ℕ) (hin : i ≤ n) (hpi : ↑p ^ i = 0) : i = n :=
sorry
theorem card_zmod (p : ℕ) [hp : fact (nat.prime p)] (n : ℕ) :
fintype.card (truncated_witt_vector p n (zmod p)) = p ^ n :=
eq.mpr
(id
(Eq._oldrec (Eq.refl (fintype.card (truncated_witt_vector p n (zmod p)) = p ^ n)) (card p n)))
(eq.mpr (id (Eq._oldrec (Eq.refl (fintype.card (zmod p) ^ n = p ^ n)) (zmod.card p)))
(Eq.refl (p ^ n)))
theorem char_p_zmod (p : ℕ) [hp : fact (nat.prime p)] (n : ℕ) :
char_p (truncated_witt_vector p n (zmod p)) (p ^ n) :=
char_p_of_prime_pow_injective (truncated_witt_vector p n (zmod p)) p n (card_zmod p n)
(eq_of_le_of_cast_pow_eq_zero p n (zmod p))
/--
The unique isomorphism between `zmod p^n` and `truncated_witt_vector p n (zmod p)`.
This isomorphism exists, because `truncated_witt_vector p n (zmod p)` is a finite ring
with characteristic and cardinality `p^n`.
-/
def zmod_equiv_trunc (p : ℕ) [hp : fact (nat.prime p)] (n : ℕ) :
zmod (p ^ n) ≃+* truncated_witt_vector p n (zmod p) :=
zmod.ring_equiv (truncated_witt_vector p n (zmod p)) (card_zmod p n)
theorem zmod_equiv_trunc_apply (p : ℕ) [hp : fact (nat.prime p)] (n : ℕ) {x : zmod (p ^ n)} :
coe_fn (zmod_equiv_trunc p n) x =
coe_fn (zmod.cast_hom (dvd_refl (p ^ n)) (truncated_witt_vector p n (zmod p))) x :=
rfl
/--
The following diagram commutes:
```text
zmod (p^n) ----------------------------> zmod (p^m)
| |
| |
v v
truncated_witt_vector p n (zmod p) ----> truncated_witt_vector p m (zmod p)
```
Here the vertical arrows are `truncated_witt_vector.zmod_equiv_trunc`,
the horizontal arrow at the top is `zmod.cast_hom`,
and the horizontal arrow at the bottom is `truncated_witt_vector.truncate`.
-/
theorem commutes (p : ℕ) [hp : fact (nat.prime p)] (n : ℕ) {m : ℕ} (hm : n ≤ m) :
ring_hom.comp (truncate hm) (ring_equiv.to_ring_hom (zmod_equiv_trunc p m)) =
ring_hom.comp (ring_equiv.to_ring_hom (zmod_equiv_trunc p n))
(zmod.cast_hom (pow_dvd_pow p hm) (zmod (p ^ n))) :=
ring_hom.ext_zmod (ring_hom.comp (truncate hm) (ring_equiv.to_ring_hom (zmod_equiv_trunc p m)))
(ring_hom.comp (ring_equiv.to_ring_hom (zmod_equiv_trunc p n))
(zmod.cast_hom (pow_dvd_pow p hm) (zmod (p ^ n))))
theorem commutes' (p : ℕ) [hp : fact (nat.prime p)] (n : ℕ) {m : ℕ} (hm : n ≤ m)
(x : zmod (p ^ m)) :
coe_fn (truncate hm) (coe_fn (zmod_equiv_trunc p m) x) =
coe_fn (zmod_equiv_trunc p n)
(coe_fn (zmod.cast_hom (pow_dvd_pow p hm) (zmod (p ^ n))) x) :=
sorry
theorem commutes_symm' (p : ℕ) [hp : fact (nat.prime p)] (n : ℕ) {m : ℕ} (hm : n ≤ m)
(x : truncated_witt_vector p m (zmod p)) :
coe_fn (ring_equiv.symm (zmod_equiv_trunc p n)) (coe_fn (truncate hm) x) =
coe_fn (zmod.cast_hom (pow_dvd_pow p hm) (zmod (p ^ n)))
(coe_fn (ring_equiv.symm (zmod_equiv_trunc p m)) x) :=
sorry
/--
The following diagram commutes:
```text
truncated_witt_vector p n (zmod p) ----> truncated_witt_vector p m (zmod p)
| |
| |
v v
zmod (p^n) ----------------------------> zmod (p^m)
```
Here the vertical arrows are `(truncated_witt_vector.zmod_equiv_trunc p _).symm`,
the horizontal arrow at the top is `zmod.cast_hom`,
and the horizontal arrow at the bottom is `truncated_witt_vector.truncate`.
-/
theorem commutes_symm (p : ℕ) [hp : fact (nat.prime p)] (n : ℕ) {m : ℕ} (hm : n ≤ m) :
ring_hom.comp (ring_equiv.to_ring_hom (ring_equiv.symm (zmod_equiv_trunc p n))) (truncate hm) =
ring_hom.comp (zmod.cast_hom (pow_dvd_pow p hm) (zmod (p ^ n)))
(ring_equiv.to_ring_hom (ring_equiv.symm (zmod_equiv_trunc p m))) :=
ring_hom.ext fun (x : truncated_witt_vector p m (zmod p)) => commutes_symm' p n hm x
end truncated_witt_vector
namespace witt_vector
/--
`to_zmod_pow` is a family of compatible ring homs. We get this family by composing
`truncated_witt_vector.zmod_equiv_trunc` (in right-to-left direction)
with `witt_vector.truncate`.
-/
def to_zmod_pow (p : ℕ) [hp : fact (nat.prime p)] (k : ℕ) :
witt_vector p (zmod p) →+* zmod (p ^ k) :=
ring_hom.comp
(ring_equiv.to_ring_hom (ring_equiv.symm (truncated_witt_vector.zmod_equiv_trunc p k)))
(truncate k)
theorem to_zmod_pow_compat (p : ℕ) [hp : fact (nat.prime p)] (m : ℕ) (n : ℕ) (h : m ≤ n) :
ring_hom.comp (zmod.cast_hom (pow_dvd_pow p h) (zmod (p ^ m))) (to_zmod_pow p n) =
to_zmod_pow p m :=
sorry
/--
`to_padic_int` lifts `to_zmod_pow : 𝕎 (zmod p) →+* zmod (p ^ k)` to a ring hom to `ℤ_[p]`
using `padic_int.lift`, the universal property of `ℤ_[p]`.
-/
def to_padic_int (p : ℕ) [hp : fact (nat.prime p)] : witt_vector p (zmod p) →+* padic_int p :=
padic_int.lift (to_zmod_pow_compat p)
theorem zmod_equiv_trunc_compat (p : ℕ) [hp : fact (nat.prime p)] (k₁ : ℕ) (k₂ : ℕ) (hk : k₁ ≤ k₂) :
ring_hom.comp (truncated_witt_vector.truncate hk)
(ring_hom.comp (ring_equiv.to_ring_hom (truncated_witt_vector.zmod_equiv_trunc p k₂))
(padic_int.to_zmod_pow k₂)) =
ring_hom.comp (ring_equiv.to_ring_hom (truncated_witt_vector.zmod_equiv_trunc p k₁))
(padic_int.to_zmod_pow k₁) :=
sorry
/--
`from_padic_int` uses `witt_vector.lift` to lift `truncated_witt_vector.zmod_equiv_trunc`
composed with `padic_int.to_zmod_pow` to a ring hom `ℤ_[p] →+* 𝕎 (zmod p)`.
-/
def from_padic_int (p : ℕ) [hp : fact (nat.prime p)] : padic_int p →+* witt_vector p (zmod p) :=
lift
(fun (k : ℕ) =>
ring_hom.comp (ring_equiv.to_ring_hom (truncated_witt_vector.zmod_equiv_trunc p k))
(padic_int.to_zmod_pow k))
(zmod_equiv_trunc_compat p)
theorem to_padic_int_comp_from_padic_int (p : ℕ) [hp : fact (nat.prime p)] :
ring_hom.comp (to_padic_int p) (from_padic_int p) = ring_hom.id (padic_int p) :=
sorry
theorem to_padic_int_comp_from_padic_int_ext (p : ℕ) [hp : fact (nat.prime p)] (x : padic_int p) :
coe_fn (ring_hom.comp (to_padic_int p) (from_padic_int p)) x =
coe_fn (ring_hom.id (padic_int p)) x :=
sorry
theorem from_padic_int_comp_to_padic_int (p : ℕ) [hp : fact (nat.prime p)] :
ring_hom.comp (from_padic_int p) (to_padic_int p) = ring_hom.id (witt_vector p (zmod p)) :=
sorry
theorem from_padic_int_comp_to_padic_int_ext (p : ℕ) [hp : fact (nat.prime p)]
(x : witt_vector p (zmod p)) :
coe_fn (ring_hom.comp (from_padic_int p) (to_padic_int p)) x =
coe_fn (ring_hom.id (witt_vector p (zmod p))) x :=
sorry
/--
The ring of Witt vectors over `zmod p` is isomorphic to the ring of `p`-adic integers. This
equivalence is witnessed by `witt_vector.to_padic_int` with inverse `witt_vector.from_padic_int`.
-/
def equiv (p : ℕ) [hp : fact (nat.prime p)] : witt_vector p (zmod p) ≃+* padic_int p :=
ring_equiv.mk (⇑(to_padic_int p)) (⇑(from_padic_int p)) (from_padic_int_comp_to_padic_int_ext p)
(to_padic_int_comp_from_padic_int_ext p) sorry sorry
end Mathlib
|
730fec611808cc4789c95367bc18aa40fcca5869
|
4727251e0cd73359b15b664c3170e5d754078599
|
/src/category_theory/sites/dense_subsite.lean
|
d7498c315fffa972cab2b7e5e04b78a5246c147b
|
[
"Apache-2.0"
] |
permissive
|
Vierkantor/mathlib
|
0ea59ac32a3a43c93c44d70f441c4ee810ccceca
|
83bc3b9ce9b13910b57bda6b56222495ebd31c2f
|
refs/heads/master
| 1,658,323,012,449
| 1,652,256,003,000
| 1,652,256,003,000
| 209,296,341
| 0
| 1
|
Apache-2.0
| 1,568,807,655,000
| 1,568,807,655,000
| null |
UTF-8
|
Lean
| false
| false
| 19,314
|
lean
|
/-
Copyright (c) 2021 Andrew Yang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Andrew Yang
-/
import category_theory.sites.sheaf
import category_theory.sites.cover_lifting
import category_theory.adjunction.fully_faithful
/-!
# Dense subsites
We define `cover_dense` functors into sites as functors such that there exists a covering sieve
that factors through images of the functor for each object in `D`.
We will primarily consider cover-dense functors that are also full, since this notion is in general
not well-behaved otherwise. Note that https://ncatlab.org/nlab/show/dense+sub-site indeed has a
weaker notion of cover-dense that loosens this requirement, but it would not have all the properties
we would need, and some sheafification would be needed for here and there.
## Main results
- `category_theory.cover_dense.presheaf_hom`: If `G : C ⥤ (D, K)` is full and cover-dense,
then given any presheaf `ℱ` and sheaf `ℱ'` on `D`, and a morphism `α : G ⋙ ℱ ⟶ G ⋙ ℱ'`,
we may glue them together to obtain a morphism of presheaves `ℱ ⟶ ℱ'`.
- `category_theory.cover_dense.sheaf_iso`: If `ℱ` above is a sheaf and `α` is an iso,
then the result is also an iso.
- `category_theory.cover_dense.iso_of_restrict_iso`: If `G : C ⥤ (D, K)` is full and cover-dense,
then given any sheaves `ℱ, ℱ'` on `D`, and a morphism `α : ℱ ⟶ ℱ'`, then `α` is an iso if
`G ⋙ ℱ ⟶ G ⋙ ℱ'` is iso.
- `category_theory.cover_dense.Sheaf_equiv_of_cover_preserving_cover_lifting`:
If `G : (C, J) ⥤ (D, K)` is fully-faithful, cover-lifting, cover-preserving, and cover-dense,
then it will induce an equivalence of categories of sheaves valued in a complete category.
## References
* [Elephant]: *Sketches of an Elephant*, ℱ. T. Johnstone: C2.2.
* https://ncatlab.org/nlab/show/dense+sub-site
* https://ncatlab.org/nlab/show/comparison+lemma
-/
universes w v u
namespace category_theory
variables {C : Type*} [category C] {D : Type*} [category D] {E : Type*} [category E]
variables (J : grothendieck_topology C) (K : grothendieck_topology D)
variables {L : grothendieck_topology E}
/--
An auxiliary structure that witnesses the fact that `f` factors through an image object of `G`.
-/
@[nolint has_inhabited_instance]
structure presieve.cover_by_image_structure (G : C ⥤ D) {V U : D} (f : V ⟶ U) :=
(obj : C)
(lift : V ⟶ G.obj obj)
(map : G.obj obj ⟶ U)
(fac' : lift ≫ map = f . obviously)
restate_axiom presieve.cover_by_image_structure.fac'
attribute [simp, reassoc] presieve.cover_by_image_structure.fac
/--
For a functor `G : C ⥤ D`, and an object `U : D`, `presieve.cover_by_image G U` is the presieve
of `U` consisting of those arrows that factor through images of `G`.
-/
def presieve.cover_by_image (G : C ⥤ D) (U : D) : presieve U :=
λ Y f, nonempty (presieve.cover_by_image_structure G f)
/--
For a functor `G : C ⥤ D`, and an object `U : D`, `sieve.cover_by_image G U` is the sieve of `U`
consisting of those arrows that factor through images of `G`.
-/
def sieve.cover_by_image (G : C ⥤ D) (U : D) : sieve U :=
⟨presieve.cover_by_image G U,
λ X Y f ⟨⟨Z, f₁, f₂, (e : _ = _)⟩⟩ g,
⟨⟨Z, g ≫ f₁, f₂, show (g ≫ f₁) ≫ f₂ = g ≫ f, by rw [category.assoc, ← e]⟩⟩⟩
lemma presieve.in_cover_by_image (G : C ⥤ D) {X : D} {Y : C} (f : G.obj Y ⟶ X) :
presieve.cover_by_image G X f := ⟨⟨Y, 𝟙 _, f, by simp⟩⟩
/--
A functor `G : (C, J) ⥤ (D, K)` is called `cover_dense` if for each object in `D`,
there exists a covering sieve in `D` that factors through images of `G`.
This definition can be found in https://ncatlab.org/nlab/show/dense+sub-site Definition 2.2.
-/
structure cover_dense (K : grothendieck_topology D) (G : C ⥤ D) : Prop :=
(is_cover : ∀ (U : D), sieve.cover_by_image G U ∈ K U)
open presieve opposite
namespace cover_dense
variable {K}
variables {A : Type*} [category A] {G : C ⥤ D} (H : cover_dense K G)
-- this is not marked with `@[ext]` because `H` can not be inferred from the type
lemma ext (H : cover_dense K G) (ℱ : SheafOfTypes K) (X : D) {s t : ℱ.val.obj (op X)}
(h : ∀ ⦃Y : C⦄ (f : G.obj Y ⟶ X), ℱ.val.map f.op s = ℱ.val.map f.op t) :
s = t :=
begin
apply (ℱ.cond (sieve.cover_by_image G X) (H.is_cover X)).is_separated_for.ext,
rintros Y _ ⟨Z, f₁, f₂, ⟨rfl⟩⟩,
simp [h f₂]
end
lemma functor_pullback_pushforward_covering [full G] (H : cover_dense K G) {X : C}
(T : K (G.obj X)) : (T.val.functor_pullback G).functor_pushforward G ∈ K (G.obj X) :=
begin
refine K.superset_covering _ (K.bind_covering T.property (λ Y f Hf, H.is_cover Y)),
rintros Y _ ⟨Z, _, f, hf, ⟨W, g, f', ⟨rfl⟩⟩, rfl⟩,
use W, use G.preimage (f' ≫ f), use g,
split,
{ simpa using T.val.downward_closed hf f' },
{ simp },
end
/--
(Implementation). Given an hom between the pullbacks of two sheaves, we can whisker it with
`coyoneda` to obtain an hom between the pullbacks of the sheaves of maps from `X`.
-/
@[simps] def hom_over {ℱ : Dᵒᵖ ⥤ A} {ℱ' : Sheaf K A} (α : G.op ⋙ ℱ ⟶ G.op ⋙ ℱ'.val) (X : A) :
G.op ⋙ (ℱ ⋙ coyoneda.obj (op X)) ⟶ G.op ⋙ (sheaf_over ℱ' X).val :=
whisker_right α (coyoneda.obj (op X))
/--
(Implementation). Given an iso between the pullbacks of two sheaves, we can whisker it with
`coyoneda` to obtain an iso between the pullbacks of the sheaves of maps from `X`.
-/
@[simps] def iso_over {ℱ ℱ' : Sheaf K A} (α : G.op ⋙ ℱ.val ≅ G.op ⋙ ℱ'.val) (X : A) :
G.op ⋙ (sheaf_over ℱ X).val ≅ G.op ⋙ (sheaf_over ℱ' X).val :=
iso_whisker_right α (coyoneda.obj (op X))
lemma sheaf_eq_amalgamation (ℱ : Sheaf K A) {X : A} {U : D} {T : sieve U} (hT)
(x : family_of_elements _ T) (hx) (t) (h : x.is_amalgamation t) :
t = (ℱ.cond X T hT).amalgamate x hx :=
(ℱ.cond X T hT).is_separated_for x t _ h ((ℱ.cond X T hT).is_amalgamation hx)
include H
variable [full G]
namespace types
variables {ℱ : Dᵒᵖ ⥤ Type v} {ℱ' : SheafOfTypes.{v} K} (α : G.op ⋙ ℱ ⟶ G.op ⋙ ℱ'.val)
/--
(Implementation). Given a section of `ℱ` on `X`, we can obtain a family of elements valued in `ℱ'`
that is defined on a cover generated by the images of `G`. -/
@[simp, nolint unused_arguments] noncomputable
def pushforward_family {X} (x : ℱ.obj (op X)) :
family_of_elements ℱ'.val (cover_by_image G X) := λ Y f hf,
ℱ'.val.map hf.some.lift.op $ α.app (op _) (ℱ.map hf.some.map.op x : _)
/-- (Implementation). The `pushforward_family` defined is compatible. -/
lemma pushforward_family_compatible {X} (x : ℱ.obj (op X)) :
(pushforward_family H α x).compatible :=
begin
intros Y₁ Y₂ Z g₁ g₂ f₁ f₂ h₁ h₂ e,
apply H.ext,
intros Y f,
simp only [pushforward_family, ← functor_to_types.map_comp_apply, ← op_comp],
change (ℱ.map _ ≫ α.app (op _) ≫ ℱ'.val.map _) _ =
(ℱ.map _ ≫ α.app (op _) ≫ ℱ'.val.map _) _,
rw ← G.image_preimage (f ≫ g₁ ≫ _),
rw ← G.image_preimage (f ≫ g₂ ≫ _),
erw ← α.naturality (G.preimage _).op,
erw ← α.naturality (G.preimage _).op,
refine congr_fun _ x,
simp only [quiver.hom.unop_op, functor.comp_map, ← op_comp, ← category.assoc,
functor.op_map, ← ℱ.map_comp, G.image_preimage],
congr' 3,
simp [e]
end
/-- (Implementation). The morphism `ℱ(X) ⟶ ℱ'(X)` given by gluing the `pushforward_family`. -/
noncomputable
def app_hom (X : D) : ℱ.obj (op X) ⟶ ℱ'.val.obj (op X) := λ x,
(ℱ'.cond _ (H.is_cover X)).amalgamate
(pushforward_family H α x)
(pushforward_family_compatible H α x)
@[simp] lemma pushforward_family_apply {X} (x : ℱ.obj (op X)) {Y : C} (f : G.obj Y ⟶ X) :
pushforward_family H α x f (presieve.in_cover_by_image G f) = α.app (op Y) (ℱ.map f.op x) :=
begin
unfold pushforward_family,
refine congr_fun _ x,
rw ← G.image_preimage (nonempty.some _ : presieve.cover_by_image_structure _ _).lift,
change ℱ.map _ ≫ α.app (op _) ≫ ℱ'.val.map _ = ℱ.map f.op ≫ α.app (op Y),
erw ← α.naturality (G.preimage _).op,
simp only [← functor.map_comp, ← category.assoc, functor.comp_map, G.image_preimage,
G.op_map, quiver.hom.unop_op, ← op_comp, presieve.cover_by_image_structure.fac],
end
@[simp] lemma app_hom_restrict {X : D} {Y : C} (f : op X ⟶ op (G.obj Y)) (x) :
ℱ'.val.map f (app_hom H α X x) = α.app (op Y) (ℱ.map f x) :=
begin
refine ((ℱ'.cond _ (H.is_cover X)).valid_glue
(pushforward_family_compatible H α x) f.unop (presieve.in_cover_by_image G f.unop)).trans _,
apply pushforward_family_apply
end
@[simp] lemma app_hom_valid_glue {X : D} {Y : C} (f : op X ⟶ op (G.obj Y)) :
app_hom H α X ≫ ℱ'.val.map f = ℱ.map f ≫ α.app (op Y) :=
by { ext, apply app_hom_restrict }
/--
(Implementation). The maps given in `app_iso` is inverse to each other and gives a `ℱ(X) ≅ ℱ'(X)`.
-/
@[simps] noncomputable
def app_iso {ℱ ℱ' : SheafOfTypes.{v} K} (i : G.op ⋙ ℱ.val ≅ G.op ⋙ ℱ'.val) (X : D) :
ℱ.val.obj (op X) ≅ ℱ'.val.obj (op X) :=
{ hom := app_hom H i.hom X,
inv := app_hom H i.inv X,
hom_inv_id' := by { ext x, apply H.ext, intros Y f, simp },
inv_hom_id' := by { ext x, apply H.ext, intros Y f, simp } }
/--
Given an natural transformation `G ⋙ ℱ ⟶ G ⋙ ℱ'` between presheaves of types, where `G` is full
and cover-dense, and `ℱ'` is a sheaf, we may obtain a natural transformation between sheaves.
-/
@[simps] noncomputable
def presheaf_hom (α : G.op ⋙ ℱ ⟶ G.op ⋙ ℱ'.val) : ℱ ⟶ ℱ'.val :=
{ app := λ X, app_hom H α (unop X), naturality' := λ X Y f,
begin
ext x,
apply H.ext ℱ' (unop Y),
intros Y' f',
simp only [app_hom_restrict, types_comp_apply, ← functor_to_types.map_comp_apply],
rw app_hom_restrict H α (f ≫ f'.op : op (unop X) ⟶ _)
end }
/--
Given an natural isomorphism `G ⋙ ℱ ≅ G ⋙ ℱ'` between presheaves of types, where `G` is full and
cover-dense, and `ℱ, ℱ'` are sheaves, we may obtain a natural isomorphism between presheaves.
-/
@[simps] noncomputable
def presheaf_iso {ℱ ℱ' : SheafOfTypes.{v} K} (i : G.op ⋙ ℱ.val ≅ G.op ⋙ ℱ'.val) :
ℱ.val ≅ ℱ'.val :=
nat_iso.of_components (λ X, app_iso H i (unop X)) (presheaf_hom H i.hom).naturality
/--
Given an natural isomorphism `G ⋙ ℱ ≅ G ⋙ ℱ'` between presheaves of types, where `G` is full and
cover-dense, and `ℱ, ℱ'` are sheaves, we may obtain a natural isomorphism between sheaves.
-/
@[simps] noncomputable
def sheaf_iso {ℱ ℱ' : SheafOfTypes.{v} K} (i : G.op ⋙ ℱ.val ≅ G.op ⋙ ℱ'.val) : ℱ ≅ ℱ' :=
{ hom := ⟨(presheaf_iso H i).hom⟩,
inv := ⟨(presheaf_iso H i).inv⟩,
hom_inv_id' := by { ext1, apply (presheaf_iso H i).hom_inv_id },
inv_hom_id' := by { ext1, apply (presheaf_iso H i).inv_hom_id } }
end types
open types
variables {ℱ : Dᵒᵖ ⥤ A} {ℱ' : Sheaf K A}
/-- (Implementation). The sheaf map given in `types.sheaf_hom` is natural in terms of `X`. -/
@[simps] noncomputable
def sheaf_coyoneda_hom (α : G.op ⋙ ℱ ⟶ G.op ⋙ ℱ'.val) :
coyoneda ⋙ (whiskering_left Dᵒᵖ A Type*).obj ℱ ⟶
coyoneda ⋙ (whiskering_left Dᵒᵖ A Type*).obj ℱ'.val :=
{ app := λ X, presheaf_hom H (hom_over α (unop X)), naturality' := λ X Y f,
begin
ext U x,
change app_hom H (hom_over α (unop Y)) (unop U) (f.unop ≫ x) =
f.unop ≫ app_hom H (hom_over α (unop X)) (unop U) x,
symmetry,
apply sheaf_eq_amalgamation,
apply H.is_cover,
intros Y' f' hf',
change unop X ⟶ ℱ.obj (op (unop _)) at x,
dsimp,
simp only [pushforward_family, functor.comp_map,
coyoneda_obj_map, hom_over_app, category.assoc],
congr' 1,
conv_lhs { rw ← hf'.some.fac },
simp only [← category.assoc, op_comp, functor.map_comp],
congr' 1,
refine (app_hom_restrict H (hom_over α (unop X)) hf'.some.map.op x).trans _,
simp
end }
/--
(Implementation). `sheaf_coyoneda_hom` but the order of the arguments of the functor are swapped.
-/
noncomputable
def sheaf_yoneda_hom (α : G.op ⋙ ℱ ⟶ G.op ⋙ ℱ'.val) :
ℱ ⋙ yoneda ⟶ ℱ'.val ⋙ yoneda :=
begin
let α := sheaf_coyoneda_hom H α,
refine { app := _, naturality' := _ },
{ intro U,
refine { app := λ X, (α.app X).app U,
naturality' := λ X Y f, by simpa using congr_app (α.naturality f) U } },
{ intros U V i,
ext X x,
exact congr_fun ((α.app X).naturality i) x },
end
/--
Given an natural transformation `G ⋙ ℱ ⟶ G ⋙ ℱ'` between presheaves of arbitrary category,
where `G` is full and cover-dense, and `ℱ'` is a sheaf, we may obtain a natural transformation
between presheaves.
-/
noncomputable
def sheaf_hom (α : G.op ⋙ ℱ ⟶ G.op ⋙ ℱ'.val) :
ℱ ⟶ ℱ'.val :=
let α' := sheaf_yoneda_hom H α in
{ app := λ X, yoneda.preimage (α'.app X),
naturality' := λ X Y f, yoneda.map_injective (by simpa using α'.naturality f) }
/--
Given an natural isomorphism `G ⋙ ℱ ≅ G ⋙ ℱ'` between presheaves of arbitrary category,
where `G` is full and cover-dense, and `ℱ', ℱ` are sheaves,
we may obtain a natural isomorphism between presheaves.
-/
@[simps] noncomputable
def presheaf_iso {ℱ ℱ' : Sheaf K A} (i : G.op ⋙ ℱ.val ≅ G.op ⋙ ℱ'.val) :
ℱ.val ≅ ℱ'.val :=
begin
haveI : ∀ (X : Dᵒᵖ), is_iso ((sheaf_hom H i.hom).app X),
{ intro X,
apply is_iso_of_reflects_iso _ yoneda,
use (sheaf_yoneda_hom H i.inv).app X,
split;
ext x : 2;
simp only [sheaf_hom, nat_trans.comp_app, nat_trans.id_app, functor.image_preimage],
exact ((presheaf_iso H (iso_over i (unop x))).app X).hom_inv_id,
exact ((presheaf_iso H (iso_over i (unop x))).app X).inv_hom_id,
apply_instance },
haveI : is_iso (sheaf_hom H i.hom) := by apply nat_iso.is_iso_of_is_iso_app,
apply as_iso (sheaf_hom H i.hom),
end
/--
Given an natural isomorphism `G ⋙ ℱ ≅ G ⋙ ℱ'` between presheaves of arbitrary category,
where `G` is full and cover-dense, and `ℱ', ℱ` are sheaves,
we may obtain a natural isomorphism between presheaves.
-/
@[simps] noncomputable
def sheaf_iso {ℱ ℱ' : Sheaf K A} (i : G.op ⋙ ℱ.val ≅ G.op ⋙ ℱ'.val) : ℱ ≅ ℱ' :=
{ hom := ⟨(presheaf_iso H i).hom⟩,
inv := ⟨(presheaf_iso H i).inv⟩,
hom_inv_id' := by { ext1, apply (presheaf_iso H i).hom_inv_id },
inv_hom_id' := by { ext1, apply (presheaf_iso H i).inv_hom_id } }
/--
The constructed `sheaf_hom α` is equal to `α` when restricted onto `C`.
-/
lemma sheaf_hom_restrict_eq (α : G.op ⋙ ℱ ⟶ G.op ⋙ ℱ'.val) :
whisker_left G.op (sheaf_hom H α) = α :=
begin
ext X,
apply yoneda.map_injective,
ext U,
erw yoneda.image_preimage,
symmetry,
change (show (ℱ'.val ⋙ coyoneda.obj (op (unop U))).obj (op (G.obj (unop X))), from _) = _,
apply sheaf_eq_amalgamation ℱ' (H.is_cover _),
intros Y f hf,
conv_lhs { rw ← hf.some.fac },
simp only [pushforward_family, functor.comp_map, yoneda_map_app,
coyoneda_obj_map, op_comp, functor_to_types.map_comp_apply, hom_over_app, ← category.assoc],
congr' 1,
simp only [category.assoc],
congr' 1,
rw ← G.image_preimage hf.some.map,
symmetry,
apply α.naturality (G.preimage hf.some.map).op,
apply_instance
end
/--
If the pullback map is obtained via whiskering,
then the result `sheaf_hom (whisker_left G.op α)` is equal to `α`.
-/
lemma sheaf_hom_eq (α : ℱ ⟶ ℱ'.val) : sheaf_hom H (whisker_left G.op α) = α :=
begin
ext X,
apply yoneda.map_injective,
swap, { apply_instance },
ext U,
erw yoneda.image_preimage,
symmetry,
change (show (ℱ'.val ⋙ coyoneda.obj (op (unop U))).obj (op (unop X)), from _) = _,
apply sheaf_eq_amalgamation ℱ' (H.is_cover _),
intros Y f hf,
conv_lhs { rw ← hf.some.fac },
dsimp,
simp,
end
/--
A full and cover-dense functor `G` induces an equivalence between morphisms into a sheaf and
morphisms over the restrictions via `G`.
-/
noncomputable
def restrict_hom_equiv_hom : (G.op ⋙ ℱ ⟶ G.op ⋙ ℱ'.val) ≃ (ℱ ⟶ ℱ'.val) :=
{ to_fun := sheaf_hom H,
inv_fun := whisker_left G.op,
left_inv := sheaf_hom_restrict_eq H,
right_inv := sheaf_hom_eq H }
/--
Given a full and cover-dense functor `G` and a natural transformation of sheaves `α : ℱ ⟶ ℱ'`,
if the pullback of `α` along `G` is iso, then `α` is also iso.
-/
lemma iso_of_restrict_iso {ℱ ℱ' : Sheaf K A} (α : ℱ ⟶ ℱ')
(i : is_iso (whisker_left G.op α.val)) : is_iso α :=
begin
convert is_iso.of_iso (sheaf_iso H (as_iso (whisker_left G.op α.val))) using 1,
ext1,
apply (sheaf_hom_eq _ _).symm
end
/-- A fully faithful cover-dense functor preserves compatible families. -/
lemma compatible_preserving [faithful G] : compatible_preserving K G :=
begin
constructor,
intros ℱ Z T x hx Y₁ Y₂ X f₁ f₂ g₁ g₂ hg₁ hg₂ eq,
apply H.ext,
intros W i,
simp only [← functor_to_types.map_comp_apply, ← op_comp],
rw ← G.image_preimage (i ≫ f₁),
rw ← G.image_preimage (i ≫ f₂),
apply hx,
apply G.map_injective,
simp [eq]
end
noncomputable
instance sites.pullback.full [faithful G] (Hp : cover_preserving J K G) :
full (sites.pullback A H.compatible_preserving Hp) :=
{ preimage := λ ℱ ℱ' α, ⟨H.sheaf_hom α.val⟩,
witness' := λ ℱ ℱ' α, Sheaf.hom.ext _ _ $ H.sheaf_hom_restrict_eq α.val }
instance sites.pullback.faithful [faithful G] (Hp : cover_preserving J K G) :
faithful (sites.pullback A H.compatible_preserving Hp) :=
{ map_injective' := begin
intros ℱ ℱ' α β e,
ext1,
apply_fun (λ e, e.val) at e,
dsimp at e,
rw [← H.sheaf_hom_eq α.val, ← H.sheaf_hom_eq β.val, e],
end }
end cover_dense
end category_theory
namespace category_theory.cover_dense
open category_theory
variables {C D : Type u} [category.{v} C] [category.{v} D]
variables {G : C ⥤ D} [full G] [faithful G]
variables {J : grothendieck_topology C} {K : grothendieck_topology D}
variables {A : Type w} [category.{max u v} A] [limits.has_limits A]
variables (Hd : cover_dense K G) (Hp : cover_preserving J K G) (Hl : cover_lifting J K G)
include Hd Hp Hl
/--
Given a functor between small sites that is cover-dense, cover-preserving, and cover-lifting,
it induces an equivalence of category of sheaves valued in a complete category.
-/
@[simps functor inverse] noncomputable
def Sheaf_equiv_of_cover_preserving_cover_lifting : Sheaf J A ≌ Sheaf K A :=
begin
symmetry,
let α := sites.pullback_copullback_adjunction.{w v u} A Hp Hl Hd.compatible_preserving,
haveI : ∀ (X : Sheaf J A), is_iso (α.counit.app X),
{ intro ℱ,
apply_with (reflects_isomorphisms.reflects (Sheaf_to_presheaf J A)) { instances := ff },
exact is_iso.of_iso ((@as_iso _ _ _ _ _ (Ran.reflective A G.op)).app ℱ.val) },
haveI : is_iso α.counit := nat_iso.is_iso_of_is_iso_app _,
exact
{ functor := sites.pullback A Hd.compatible_preserving Hp,
inverse := sites.copullback A Hl,
unit_iso := as_iso α.unit,
counit_iso := as_iso α.counit,
functor_unit_iso_comp' := λ ℱ, by convert α.left_triangle_components }
end
end category_theory.cover_dense
|
bae33ae27417386c1ec8ded94e54ce0ad6676d81
|
22e97a5d648fc451e25a06c668dc03ac7ed7bc25
|
/src/topology/topological_fiber_bundle.lean
|
2828b3babf44150b63e707158cac50ea7783707a
|
[
"Apache-2.0"
] |
permissive
|
keeferrowan/mathlib
|
f2818da875dbc7780830d09bd4c526b0764a4e50
|
aad2dfc40e8e6a7e258287a7c1580318e865817e
|
refs/heads/master
| 1,661,736,426,952
| 1,590,438,032,000
| 1,590,438,032,000
| 266,892,663
| 0
| 0
|
Apache-2.0
| 1,590,445,835,000
| 1,590,445,835,000
| null |
UTF-8
|
Lean
| false
| false
| 24,281
|
lean
|
/-
Copyright (c) 2019 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import topology.local_homeomorph
/-!
# Fiber bundles
A topological fiber bundle with fiber F over a base B is a space projecting on B for which the
fibers are all homeomorphic to F, such that the local situation around each point is a direct
product. We define a predicate `is_topological_fiber_bundle F p` saying that `p : Z → B` is a
topological fiber bundle with fiber `F`.
It is in general nontrivial to construct a fiber bundle. A way is to start from the knowledge of
how changes of local trivializations act on the fiber. From this, one can construct the total space
of the bundle and its topology by a suitable gluing construction. The main content of this file is
an implementation of this construction: starting from an object of type
`topological_fiber_bundle_core` registering the trivialization changes, one gets the corresponding
fiber bundle and projection.
## Main definitions
`bundle_trivialization F p` : structure extending local homeomorphisms, defining a local
trivialization of a topological space `Z` with projection `p` and fiber `F`.
`is_topological_fiber_bundle F p` : Prop saying that the map `p` between topological spaces is a
fiber bundle with fiber `F`.
`topological_fiber_bundle_core ι B F` : structure registering how changes of coordinates act on the
fiber `F` above open subsets of `B`, where local trivializations are indexed by ι.
Let `Z : topological_fiber_bundle_core ι B F`. Then we define
`Z.total_space` : the total space of `Z`, defined as a Type as `B × F`, but with a twisted topology
coming from the fiber bundle structure
`Z.proj` : projection from `Z.total_space` to `B`. It is continuous.
`Z.fiber x` : the fiber above `x`, homeomorphic to `F` (and defeq to `F` as a type).
`Z.local_triv i`: for `i : ι`, a local homeomorphism from `Z.total_space` to `B × F`, that realizes
a trivialization above the set `Z.base_set i`, which is an open set in `B`.
## Implementation notes
A topological fiber bundle with fiber F over a base B is a family of spaces isomorphic to F,
indexed by B, which is locally trivial in the following sense: there is a covering of B by open
sets such that, on each such open set `s`, the bundle is isomorphic to `s × F`.
To construct a fiber bundle formally, the main data is what happens when one changes trivializations
from `s × F` to `s' × F` on `s ∩ s'`: one should get a family of homeomorphisms of `F`, depending
continuously on the base point, satisfying basic compatibility conditions (cocycle property).
Useful classes of bundles can then be specified by requiring that these homeomorphisms of `F`
belong to some subgroup, preserving some structure (the "structure group of the bundle"): then
these structures are inherited by the fibers of the bundle.
Given such trivialization change data (encoded below in a structure called
`topological_fiber_bundle_core`), one can construct the fiber bundle. The intrinsic canonical
mathematical construction is the following.
The fiber above `x` is the disjoint union of `F` over all trivializations, modulo the gluing
identifications: one gets a fiber which is isomorphic to `F`, but non-canonically
(each choice of one of the trivializations around x gives such an isomorphism). Given a
trivialization over a set `s`, one gets an isomorphism between `s × F` and `proj^{-1} s`, by using
the identification corresponding to this trivialization. One chooses the topology on the bundle that
makes all of these into homeomorphisms.
For the practical implementation, it turns out to be more convenient to avoid completely the
gluing and quotienting construction above, and to declare above each `x` that the fiber is `F`,
but thinking that it corresponds to the `F` coming from the choice of one trivialization around `x`.
This has several practical advantages:
* without any work, one gets a topological space structure on the fiber. And if `F` has more
structure it is inherited for free by the fiber.
* In the trivial situation of the trivial bundle where there is only one chart and one
trivialization, this construction gives the product space `B × F` with the product topology. In the
case of the tangent bundle of manifolds, this also implies that on vector spaces the derivative and
the manifold derivative are equal.
A drawback is that some silly constructions will typecheck: in the case of the tangent bundle, one
can add two vectors in different tangent spaces (as they both are elements of `F` from the point of
view of Lean). To solve this, one could mark the tangent space as irreducible, but then one would
lose the identification of the tangent space to `F` with `F`. There is however a big advantage of
this situation: even if Lean can not check that two basepoints are defeq, it will accept the fact
that the tangent spaces are the same. For instance, if two maps f and g are locally inverse to each
other, one can express that the composition of their derivatives is the identity of
`tangent_space I x`. One could fear issues as this composition goes from `tangent_space I x` to
`tangent_space I (g (f x))` (which should be the same, but should not be obvious to Lean
as it does not know that `g (f x) = x`). As these types are the same to Lean (equal to `F`), there
are in fact no dependent type difficulties here!
For this construction of a fiber bundle from a `topological_fiber_bundle_core`, we should thus
choose for each `x` one specific trivialization around it. We include this choice in the definition
of the `topological_fiber_bundle_core`, as it makes some constructions more
functorial and it is a nice way to say that the trivializations cover the whole space `B`.
With this definition, the type of the fiber bundle space constructed from the core data is just
`B × F`, but the topology is not the product one.
We also take the indexing type (indexing all the trivializations) as a parameter to the fiber bundle
core: it could always be taken as a subtype of all the maps from open subsets of `B` to continuous
maps of `F`, but in practice it will sometimes be something else. For instance, on a manifold, one
will use the set of charts as a good parameterization for the trivializations of the tangent bundle.
Or for the pullback of a `topological_fiber_bundle_core`, the indexing type will be the same as
for the initial bundle.
## Tags
Fiber bundle, topological bundle, vector bundle, local trivialization, structure group
-/
variables {ι : Type*} {B : Type*} {F : Type*}
open topological_space set
open_locale topological_space
section topological_fiber_bundle
variables {Z : Type*} [topological_space B] [topological_space Z]
[topological_space F] (proj : Z → B)
variable (F)
/--
A structure extending local homeomorphisms, defining a local trivialization of a projection
`proj : Z → B` with fiber `F`, as a local homeomorphism between `Z` and `B × F` defined between two
sets of the form `proj ⁻¹' base_set` and `base_set × F`, acting trivially on the first coordinate.
-/
structure bundle_trivialization extends local_homeomorph Z (B × F) :=
(base_set : set B)
(open_base_set : is_open base_set)
(source_eq : source = proj ⁻¹' base_set)
(target_eq : target = set.prod base_set univ)
(proj_to_fun : ∀ p ∈ source, (to_fun p).1 = proj p)
instance : has_coe_to_fun (bundle_trivialization F proj) := ⟨_, λ e, e.to_fun⟩
@[simp] lemma bundle_trivialization.coe_coe (e : bundle_trivialization F proj) (x : Z) :
e.to_local_homeomorph x = e x := rfl
@[simp] lemma bundle_trivialization.coe_mk (e : local_homeomorph Z (B × F)) (i j k l m) (x : Z) :
(bundle_trivialization.mk e i j k l m : bundle_trivialization F proj) x = e x := rfl
/-- A topological fiber bundle with fiber F over a base B is a space projecting on B for which the
fibers are all homeomorphic to F, such that the local situation around each point is a direct
product. -/
def is_topological_fiber_bundle : Prop :=
∀ x : Z, ∃e : bundle_trivialization F proj, x ∈ e.source
variables {F} {proj}
@[simp] lemma bundle_trivialization.coe_fst (e : bundle_trivialization F proj) {x : Z}
(ex : x ∈ e.source) : (e x).1 = proj x :=
e.proj_to_fun x ex
/-- In the domain of a bundle trivialization, the projection is continuous-/
lemma bundle_trivialization.continuous_at_proj (e : bundle_trivialization F proj) {x : Z}
(ex : x ∈ e.source) : continuous_at proj x :=
begin
assume s hs,
obtain ⟨t, st, t_open, xt⟩ : ∃ t ⊆ s, is_open t ∧ proj x ∈ t,
from mem_nhds_sets_iff.1 hs,
rw e.source_eq at ex,
let u := e.base_set ∩ t,
have u_open : is_open u := is_open_inter e.open_base_set t_open,
have xu : proj x ∈ u := ⟨ex, xt⟩,
/- Take a small enough open neighborhood u of `proj x`, contained in a trivialization domain o.
One should show that its preimage is open. -/
suffices : is_open (proj ⁻¹' u),
{ have : proj ⁻¹' u ∈ 𝓝 x := mem_nhds_sets this xu,
apply filter.mem_sets_of_superset this,
exact preimage_mono (subset.trans (inter_subset_right _ _) st) },
-- to do this, rewrite `proj ⁻¹' u` in terms of the trivialization, and use its continuity.
have : proj ⁻¹' u = e ⁻¹' (set.prod u univ) ∩ e.source,
{ ext p,
split,
{ assume h,
have : p ∈ e.source,
{ rw e.source_eq,
have : u ⊆ e.base_set := inter_subset_left _ _,
exact preimage_mono this h },
simp [this, h.1, h.2], },
{ rintros ⟨h, h_source⟩,
simpa [h_source] using h } },
rw [this, inter_comm],
exact continuous_on.preimage_open_of_open e.continuous_to_fun e.open_source
(is_open_prod u_open is_open_univ)
end
/-- The projection from a topological fiber bundle to its base is continuous. -/
lemma is_topological_fiber_bundle.continuous_proj (h : is_topological_fiber_bundle F proj) :
continuous proj :=
begin
rw continuous_iff_continuous_at,
assume x,
rcases h x with ⟨e, ex⟩,
exact e.continuous_at_proj ex
end
/-- The projection from a topological fiber bundle to its base is an open map. -/
lemma is_topological_fiber_bundle.is_open_map_proj (h : is_topological_fiber_bundle F proj) :
is_open_map proj :=
begin
assume s hs,
rw is_open_iff_forall_mem_open,
assume x xs,
obtain ⟨y, ys, yx⟩ : ∃ y, y ∈ s ∧ proj y = x, from (mem_image _ _ _).1 xs,
obtain ⟨e, he⟩ : ∃ (e : bundle_trivialization F proj), y ∈ e.source, from h y,
refine ⟨proj '' (s ∩ e.source), image_subset _ (inter_subset_left _ _), _, ⟨y, ⟨ys, he⟩, yx⟩⟩,
have : ∀z ∈ s ∩ e.source, prod.fst (e z) = proj z := λz hz, e.proj_to_fun z hz.2,
rw [← image_congr this, image_comp],
have : is_open (e '' (s ∩ e.source)) :=
e.to_local_homeomorph.image_open_of_open (is_open_inter hs e.to_local_homeomorph.open_source)
(inter_subset_right _ _),
exact is_open_map_fst _ this
end
/-- The first projection in a product is a topological fiber bundle. -/
lemma is_topological_fiber_bundle_fst : is_topological_fiber_bundle F (prod.fst : B × F → B) :=
begin
let F : bundle_trivialization F (prod.fst : B × F → B) :=
{ base_set := univ,
open_base_set := is_open_univ,
source_eq := rfl,
target_eq := by simp,
proj_to_fun := by simp,
..local_homeomorph.refl _ },
exact λx, ⟨F, by simp⟩
end
/-- The second projection in a product is a topological fiber bundle. -/
lemma is_topological_fiber_bundle_snd : is_topological_fiber_bundle F (prod.snd : F × B → B) :=
begin
let F : bundle_trivialization F (prod.snd : F × B → B) :=
{ base_set := univ,
open_base_set := is_open_univ,
source_eq := rfl,
target_eq := by simp,
proj_to_fun := λp, by { simp, refl },
..(homeomorph.prod_comm F B).to_local_homeomorph },
exact λx, ⟨F, by simp⟩
end
end topological_fiber_bundle
/-- Core data defining a locally trivial topological bundle with fiber `F` over a topological
space `B`. Note that "bundle" is used in its mathematical sense. This is the (computer science)
bundled version, i.e., all the relevant data is contained in the following structure. A family of
local trivializations is indexed by a type ι, on open subsets `base_set i` for each `i : ι`.
Trivialization changes from `i` to `j` are given by continuous maps `coord_change i j` from
`base_set i ∩ base_set j` to the set of homeomorphisms of `F`, but we express them as maps
`B → F → F` and require continuity on `(base_set i ∩ base_set j) × F` to avoid the topology on the
space of continuous maps on `F`. -/
structure topological_fiber_bundle_core (ι : Type*) (B : Type*) [topological_space B]
(F : Type*) [topological_space F] :=
(base_set : ι → set B)
(is_open_base_set : ∀i, is_open (base_set i))
(index_at : B → ι)
(mem_base_set_at : ∀x, x ∈ base_set (index_at x))
(coord_change : ι → ι → B → F → F)
(coord_change_self : ∀i, ∀ x ∈ base_set i, ∀v, coord_change i i x v = v)
(coord_change_continuous : ∀i j, continuous_on (λp : B × F, coord_change i j p.1 p.2)
(set.prod ((base_set i) ∩ (base_set j)) univ))
(coord_change_comp : ∀i j k, ∀x ∈ (base_set i) ∩ (base_set j) ∩ (base_set k), ∀v,
(coord_change j k x) (coord_change i j x v) = coord_change i k x v)
attribute [simp] topological_fiber_bundle_core.mem_base_set_at
namespace topological_fiber_bundle_core
variables [topological_space B] [topological_space F] (Z : topological_fiber_bundle_core ι B F)
include Z
/-- The index set of a topological fiber bundle core, as a convenience function for dot notation -/
@[nolint unused_arguments]
def index := ι
/-- The base space of a topological fiber bundle core, as a convenience function for dot notation -/
@[nolint unused_arguments]
def base := B
/-- The fiber of a topological fiber bundle core, as a convenience function for dot notation and
typeclass inference -/
@[nolint unused_arguments]
def fiber (x : B) := F
instance topological_space_fiber (x : B) : topological_space (Z.fiber x) :=
by { dsimp [fiber], apply_instance }
/-- Total space of a topological bundle created from core. It is equal to `B × F`, but as it is
not marked as reducible, typeclass inference will not infer the wrong topology, and will use the
instance `topological_fiber_bundle_core.to_topological_space` with the right topology. -/
@[nolint unused_arguments]
def total_space := B × F
/-- The projection from the total space of a topological fiber bundle core, on its base. -/
@[simp] def proj : Z.total_space → B := λp, p.1
/-- Local homeomorphism version of the trivialization change. -/
def triv_change (i j : ι) : local_homeomorph (B × F) (B × F) :=
{ source := set.prod (Z.base_set i ∩ Z.base_set j) univ,
target := set.prod (Z.base_set i ∩ Z.base_set j) univ,
to_fun := λp, ⟨p.1, Z.coord_change i j p.1 p.2⟩,
inv_fun := λp, ⟨p.1, Z.coord_change j i p.1 p.2⟩,
map_source' := λp hp, by simpa using hp,
map_target' := λp hp, by simpa using hp,
left_inv' := begin
rintros ⟨x, v⟩ hx,
simp only [prod_mk_mem_set_prod_eq, mem_inter_eq, and_true, mem_univ] at hx,
rw [Z.coord_change_comp, Z.coord_change_self],
{ exact hx.1 },
{ simp [hx] }
end,
right_inv' := begin
rintros ⟨x, v⟩ hx,
simp only [prod_mk_mem_set_prod_eq, mem_inter_eq, and_true, mem_univ] at hx,
rw [Z.coord_change_comp, Z.coord_change_self],
{ exact hx.2 },
{ simp [hx] },
end,
open_source :=
is_open_prod (is_open_inter (Z.is_open_base_set i) (Z.is_open_base_set j)) is_open_univ,
open_target :=
is_open_prod (is_open_inter (Z.is_open_base_set i) (Z.is_open_base_set j)) is_open_univ,
continuous_to_fun :=
continuous_on.prod continuous_fst.continuous_on (Z.coord_change_continuous i j),
continuous_inv_fun := by simpa [inter_comm]
using continuous_on.prod continuous_fst.continuous_on (Z.coord_change_continuous j i) }
@[simp] lemma mem_triv_change_source (i j : ι) (p : B × F) :
p ∈ (Z.triv_change i j).source ↔ p.1 ∈ Z.base_set i ∩ Z.base_set j :=
by { erw [mem_prod], simp }
/-- Associate to a trivialization index `i : ι` the corresponding trivialization, i.e., a bijection
between `proj ⁻¹ (base_set i)` and `base_set i × F`. As the fiber above `x` is `F` but read in the
chart with index `index_at x`, the trivialization in the fiber above x is by definition the
coordinate change from i to `index_at x`, so it depends on `x`.
The local trivialization will ultimately be a local homeomorphism. For now, we only introduce the
local equiv version, denoted with a prime. In further developments, avoid this auxiliary version,
and use Z.local_triv instead.
-/
def local_triv' (i : ι) : local_equiv Z.total_space (B × F) :=
{ source := Z.proj ⁻¹' (Z.base_set i),
target := set.prod (Z.base_set i) univ,
inv_fun := λp, ⟨p.1, Z.coord_change i (Z.index_at p.1) p.1 p.2⟩,
to_fun := λp, ⟨p.1, Z.coord_change (Z.index_at p.1) i p.1 p.2⟩,
map_source' := λp hp,
by simpa only [set.mem_preimage, and_true, set.mem_univ, set.prod_mk_mem_set_prod_eq] using hp,
map_target' := λp hp,
by simpa only [set.mem_preimage, and_true, set.mem_univ, set.mem_prod] using hp,
left_inv' := begin
rintros ⟨x, v⟩ hx,
change x ∈ Z.base_set i at hx,
dsimp,
rw [Z.coord_change_comp, Z.coord_change_self],
{ exact Z.mem_base_set_at _ },
{ simp [hx] }
end,
right_inv' := begin
rintros ⟨x, v⟩ hx,
simp only [prod_mk_mem_set_prod_eq, and_true, mem_univ] at hx,
rw [Z.coord_change_comp, Z.coord_change_self],
{ exact hx },
{ simp [hx] }
end }
@[simp] lemma mem_local_triv'_source (i : ι) (p : Z.total_space) :
p ∈ (Z.local_triv' i).source ↔ p.1 ∈ Z.base_set i :=
by refl
@[simp] lemma mem_local_triv'_target (i : ι) (p : B × F) :
p ∈ (Z.local_triv' i).target ↔ p.1 ∈ Z.base_set i :=
by { erw [mem_prod], simp }
@[simp] lemma local_triv'_fst (i : ι) (p : Z.total_space) :
((Z.local_triv' i) p).1 = p.1 := rfl
@[simp] lemma local_triv'_inv_fst (i : ι) (p : B × F) :
((Z.local_triv' i).symm p).1 = p.1 := rfl
/-- The composition of two local trivializations is the trivialization change Z.triv_change i j. -/
lemma local_triv'_trans (i j : ι) :
(Z.local_triv' i).symm.trans (Z.local_triv' j) ≈ (Z.triv_change i j).to_local_equiv :=
begin
split,
{ ext x, erw [mem_prod], simp [local_equiv.trans_source] },
{ rintros ⟨x, v⟩ hx,
simp only [triv_change, local_triv', local_equiv.symm, true_and, prod_mk_mem_set_prod_eq,
local_equiv.trans_source, mem_inter_eq, and_true, mem_univ, prod.mk.inj_iff, mem_preimage,
proj, local_equiv.coe_mk, eq_self_iff_true, local_equiv.coe_trans] at hx ⊢,
simp [Z.coord_change_comp, hx] }
end
/-- Topological structure on the total space of a topological bundle created from core, designed so
that all the local trivialization are continuous. -/
instance to_topological_space : topological_space Z.total_space :=
topological_space.generate_from $ ⋃ (i : ι) (s : set (B × F)) (s_open : is_open s),
{(Z.local_triv' i).source ∩ (Z.local_triv' i) ⁻¹' s}
lemma open_source' (i : ι) : is_open (Z.local_triv' i).source :=
begin
apply topological_space.generate_open.basic,
simp only [exists_prop, mem_Union, mem_singleton_iff],
refine ⟨i, set.prod (Z.base_set i) univ, is_open_prod (Z.is_open_base_set i) (is_open_univ), _⟩,
ext p,
simp [topological_fiber_bundle_core.local_triv'_fst,
topological_fiber_bundle_core.mem_local_triv'_source]
end
lemma open_target' (i : ι) : is_open (Z.local_triv' i).target :=
is_open_prod (Z.is_open_base_set i) (is_open_univ)
/-- Local trivialization of a topological bundle created from core, as a local homeomorphism. -/
def local_triv (i : ι) : local_homeomorph Z.total_space (B × F) :=
{ open_source := Z.open_source' i,
open_target := Z.open_target' i,
continuous_to_fun := begin
rw continuous_on_open_iff (Z.open_source' i),
assume s s_open,
apply topological_space.generate_open.basic,
simp only [exists_prop, mem_Union, mem_singleton_iff],
exact ⟨i, s, s_open, rfl⟩
end,
continuous_inv_fun := begin
apply continuous_on_open_of_generate_from (Z.open_target' i),
assume t ht,
simp only [exists_prop, mem_Union, mem_singleton_iff] at ht,
obtain ⟨j, s, s_open, ts⟩ : ∃ j s,
is_open s ∧ t = (local_triv' Z j).source ∩ (local_triv' Z j) ⁻¹' s := ht,
rw ts,
simp only [local_equiv.right_inv, preimage_inter, local_equiv.left_inv],
let e := Z.local_triv' i,
let e' := Z.local_triv' j,
let f := e.symm.trans e',
have : is_open (f.source ∩ f ⁻¹' s),
{ rw [local_equiv.eq_on_source_preimage (Z.local_triv'_trans i j)],
exact (continuous_on_open_iff (Z.triv_change i j).open_source).1
((Z.triv_change i j).continuous_on) _ s_open },
convert this using 1,
dsimp [local_equiv.trans_source],
rw [← preimage_comp, inter_assoc]
end,
..Z.local_triv' i }
/- We will now state again the basic properties of the local trivializations, but without primes,
i.e., for the local homeomorphism instead of the local equiv. -/
@[simp] lemma mem_local_triv_source (i : ι) (p : Z.total_space) :
p ∈ (Z.local_triv i).source ↔ p.1 ∈ Z.base_set i :=
by refl
@[simp] lemma mem_local_triv_target (i : ι) (p : B × F) :
p ∈ (Z.local_triv i).target ↔ p.1 ∈ Z.base_set i :=
by { erw [mem_prod], simp }
@[simp] lemma local_triv_fst (i : ι) (p : Z.total_space) :
((Z.local_triv i) p).1 = p.1 := rfl
@[simp] lemma local_triv_symm_fst (i : ι) (p : B × F) :
((Z.local_triv i).symm p).1 = p.1 := rfl
/-- The composition of two local trivializations is the trivialization change Z.triv_change i j. -/
lemma local_triv_trans (i j : ι) :
(Z.local_triv i).symm.trans (Z.local_triv j) ≈ Z.triv_change i j :=
Z.local_triv'_trans i j
/-- Extended version of the local trivialization of a fiber bundle constructed from core,
registering additionally in its type that it is a local bundle trivialization. -/
def local_triv_ext (i : ι) : bundle_trivialization F Z.proj :=
{ base_set := Z.base_set i,
open_base_set := Z.is_open_base_set i,
source_eq := rfl,
target_eq := rfl,
proj_to_fun := λp hp, by simp,
..Z.local_triv i }
/-- A topological fiber bundle constructed from core is indeed a topological fiber bundle. -/
theorem is_topological_fiber_bundle : is_topological_fiber_bundle F Z.proj :=
λx, ⟨Z.local_triv_ext (Z.index_at (Z.proj x)), by simp [local_triv_ext]⟩
/-- The projection on the base of a topological bundle created from core is continuous -/
lemma continuous_proj : continuous Z.proj :=
Z.is_topological_fiber_bundle.continuous_proj
/-- The projection on the base of a topological bundle created from core is an open map -/
lemma is_open_map_proj : is_open_map Z.proj :=
Z.is_topological_fiber_bundle.is_open_map_proj
/-- Preferred local trivialization of a fiber bundle constructed from core, at a given point, as
a local homeomorphism -/
def local_triv_at (p : Z.total_space) : local_homeomorph Z.total_space (B × F) :=
Z.local_triv (Z.index_at (Z.proj p))
@[simp] lemma mem_local_triv_at_source (p : Z.total_space) : p ∈ (Z.local_triv_at p).source :=
by simp [local_triv_at]
@[simp] lemma local_triv_at_fst (p q : Z.total_space) :
((Z.local_triv_at p) q).1 = q.1 := rfl
@[simp] lemma local_triv_at_symm_fst (p : Z.total_space) (q : B × F) :
((Z.local_triv_at p).symm q).1 = q.1 := rfl
/-- Preferred local trivialization of a fiber bundle constructed from core, at a given point, as
a bundle trivialization -/
def local_triv_at_ext (p : Z.total_space) : bundle_trivialization F Z.proj :=
Z.local_triv_ext (Z.index_at (Z.proj p))
@[simp] lemma local_triv_at_ext_to_local_homeomorph (p : Z.total_space) :
(Z.local_triv_at_ext p).to_local_homeomorph = Z.local_triv_at p := rfl
end topological_fiber_bundle_core
|
ef3cd6f8bca80934c92b4c28aff193de7d07121f
|
4727251e0cd73359b15b664c3170e5d754078599
|
/src/data/set/accumulate.lean
|
6e7eb323a9778a85b3b6ea079e3738855513f8e7
|
[
"Apache-2.0"
] |
permissive
|
Vierkantor/mathlib
|
0ea59ac32a3a43c93c44d70f441c4ee810ccceca
|
83bc3b9ce9b13910b57bda6b56222495ebd31c2f
|
refs/heads/master
| 1,658,323,012,449
| 1,652,256,003,000
| 1,652,256,003,000
| 209,296,341
| 0
| 1
|
Apache-2.0
| 1,568,807,655,000
| 1,568,807,655,000
| null |
UTF-8
|
Lean
| false
| false
| 1,519
|
lean
|
/-
Copyright (c) 2020 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
-/
import data.set.lattice
/-!
# Accumulate
The function `accumulate` takes a set `s` and returns `⋃ y ≤ x, s y`.
-/
variables {α β γ : Type*} {s : α → set β} {t : α → set γ}
namespace set
/-- `accumulate s` is the union of `s y` for `y ≤ x`. -/
def accumulate [has_le α] (s : α → set β) (x : α) : set β := ⋃ y ≤ x, s y
variable {s}
lemma accumulate_def [has_le α] {x : α} : accumulate s x = ⋃ y ≤ x, s y := rfl
@[simp] lemma mem_accumulate [has_le α] {x : α} {z : β} : z ∈ accumulate s x ↔ ∃ y ≤ x, z ∈ s y :=
mem_Union₂
lemma subset_accumulate [preorder α] {x : α} : s x ⊆ accumulate s x :=
λ z, mem_bUnion le_rfl
lemma monotone_accumulate [preorder α] : monotone (accumulate s) :=
λ x y hxy, bUnion_subset_bUnion_left $ λ z hz, le_trans hz hxy
lemma bUnion_accumulate [preorder α] (x : α) : (⋃ y ≤ x, accumulate s y) = ⋃ y ≤ x, s y :=
begin
apply subset.antisymm,
{ exact Union₂_subset (λ y hy, monotone_accumulate hy) },
{ exact Union₂_mono (λ y hy, subset_accumulate) }
end
lemma Union_accumulate [preorder α] : (⋃ x, accumulate s x) = ⋃ x, s x :=
begin
apply subset.antisymm,
{ simp only [subset_def, mem_Union, exists_imp_distrib, mem_accumulate],
intros z x x' hx'x hz, exact ⟨x', hz⟩ },
{ exact Union_mono (λ i, subset_accumulate), }
end
end set
|
b961bbbbccacc288faf1d64bfb0c5dcb21d2a71d
|
8cae430f0a71442d02dbb1cbb14073b31048e4b0
|
/src/data/fintype/array.lean
|
134d9d2837d71a4d5b314c28b8a4bbff9a0abbe8
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/mathlib
|
56a2cadd17ac88caf4ece0a775932fa26327ba0e
|
442a83d738cb208d3600056c489be16900ba701d
|
refs/heads/master
| 1,693,584,102,358
| 1,693,471,902,000
| 1,693,471,902,000
| 97,922,418
| 1,595
| 352
|
Apache-2.0
| 1,694,693,445,000
| 1,500,624,130,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 654
|
lean
|
/-
Copyright (c) 2017 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import data.fintype.pi
import logic.equiv.array
/-!
# `array n α` is a fintype when `α` is.
> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
> Any changes to this file require a corresponding PR to mathlib4.
-/
variables {α : Type*}
instance d_array.fintype {n : ℕ} {α : fin n → Type*}
[∀ n, fintype (α n)] : fintype (d_array n α) :=
fintype.of_equiv _ (equiv.d_array_equiv_fin _).symm
instance array.fintype {n : ℕ} {α : Type*} [fintype α] : fintype (array n α) :=
d_array.fintype
|
8c229dddeae16fc58e9eaa3e9ab7fd36aade32b1
|
432d948a4d3d242fdfb44b81c9e1b1baacd58617
|
/src/data/nat/prime.lean
|
3b8e6f089d36cf79ad6afeb6cd05d0dcc5bed546
|
[
"Apache-2.0"
] |
permissive
|
JLimperg/aesop3
|
306cc6570c556568897ed2e508c8869667252e8a
|
a4a116f650cc7403428e72bd2e2c4cda300fe03f
|
refs/heads/master
| 1,682,884,916,368
| 1,620,320,033,000
| 1,620,320,033,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 31,191
|
lean
|
/-
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura, Jeremy Avigad, Mario Carneiro
-/
import data.nat.sqrt
import data.nat.gcd
import algebra.group_power
import tactic.wlog
import tactic.norm_num
/-!
# Prime numbers
This file deals with prime numbers: natural numbers `p ≥ 2` whose only divisors are `p` and `1`.
## Important declarations
All the following declarations exist in the namespace `nat`.
- `prime`: the predicate that expresses that a natural number `p` is prime
- `primes`: the subtype of natural numbers that are prime
- `min_fac n`: the minimal prime factor of a natural number `n ≠ 1`
- `exists_infinite_primes`: Euclid's theorem that there exist infinitely many prime numbers
- `factors n`: the prime factorization of `n`
- `factors_unique`: uniqueness of the prime factorisation
-/
open bool subtype
open_locale nat
namespace nat
/-- `prime p` means that `p` is a prime number, that is, a natural number
at least 2 whose only divisors are `p` and `1`. -/
@[pp_nodot]
def prime (p : ℕ) := 2 ≤ p ∧ ∀ m ∣ p, m = 1 ∨ m = p
theorem prime.two_le {p : ℕ} : prime p → 2 ≤ p := and.left
theorem prime.one_lt {p : ℕ} : prime p → 1 < p := prime.two_le
instance prime.one_lt' (p : ℕ) [hp : _root_.fact p.prime] : _root_.fact (1 < p) := ⟨hp.1.one_lt⟩
lemma prime.ne_one {p : ℕ} (hp : p.prime) : p ≠ 1 :=
ne.symm $ ne_of_lt hp.one_lt
theorem prime_def_lt {p : ℕ} : prime p ↔ 2 ≤ p ∧ ∀ m < p, m ∣ p → m = 1 :=
and_congr_right $ λ p2, forall_congr $ λ m,
⟨λ h l d, (h d).resolve_right (ne_of_lt l),
λ h d, (decidable.lt_or_eq_of_le $
le_of_dvd (le_of_succ_le p2) d).imp_left (λ l, h l d)⟩
theorem prime_def_lt' {p : ℕ} : prime p ↔ 2 ≤ p ∧ ∀ m, 2 ≤ m → m < p → ¬ m ∣ p :=
prime_def_lt.trans $ and_congr_right $ λ p2, forall_congr $ λ m,
⟨λ h m2 l d, not_lt_of_ge m2 ((h l d).symm ▸ dec_trivial),
λ h l d, begin
rcases m with _|_|m,
{ rw eq_zero_of_zero_dvd d at p2, revert p2, exact dec_trivial },
{ refl },
{ exact (h dec_trivial l).elim d }
end⟩
theorem prime_def_le_sqrt {p : ℕ} : prime p ↔ 2 ≤ p ∧
∀ m, 2 ≤ m → m ≤ sqrt p → ¬ m ∣ p :=
prime_def_lt'.trans $ and_congr_right $ λ p2,
⟨λ a m m2 l, a m m2 $ lt_of_le_of_lt l $ sqrt_lt_self p2,
λ a, have ∀ {m k}, m ≤ k → 1 < m → p ≠ m * k, from
λ m k mk m1 e, a m m1
(le_sqrt.2 (e.symm ▸ mul_le_mul_left m mk)) ⟨k, e⟩,
λ m m2 l ⟨k, e⟩, begin
cases (le_total m k) with mk km,
{ exact this mk m2 e },
{ rw [mul_comm] at e,
refine this km (lt_of_mul_lt_mul_right _ (zero_le m)) e,
rwa [one_mul, ← e] }
end⟩
section
/--
This instance is slower than the instance `decidable_prime` defined below,
but has the advantage that it works in the kernel for small values.
If you need to prove that a particular number is prime, in any case
you should not use `dec_trivial`, but rather `by norm_num`, which is
much faster.
-/
local attribute [instance]
def decidable_prime_1 (p : ℕ) : decidable (prime p) :=
decidable_of_iff' _ prime_def_lt'
lemma prime.ne_zero {n : ℕ} (h : prime n) : n ≠ 0 :=
by { rintro rfl, revert h, dec_trivial }
theorem prime.pos {p : ℕ} (pp : prime p) : 0 < p :=
lt_of_succ_lt pp.one_lt
theorem not_prime_zero : ¬ prime 0 := by simp [prime]
theorem not_prime_one : ¬ prime 1 := by simp [prime]
theorem prime_two : prime 2 := dec_trivial
end
theorem prime.pred_pos {p : ℕ} (pp : prime p) : 0 < pred p :=
lt_pred_iff.2 pp.one_lt
theorem succ_pred_prime {p : ℕ} (pp : prime p) : succ (pred p) = p :=
succ_pred_eq_of_pos pp.pos
theorem dvd_prime {p m : ℕ} (pp : prime p) : m ∣ p ↔ m = 1 ∨ m = p :=
⟨λ d, pp.2 m d, λ h, h.elim (λ e, e.symm ▸ one_dvd _) (λ e, e.symm ▸ dvd_refl _)⟩
theorem dvd_prime_two_le {p m : ℕ} (pp : prime p) (H : 2 ≤ m) : m ∣ p ↔ m = p :=
(dvd_prime pp).trans $ or_iff_right_of_imp $ not.elim $ ne_of_gt H
theorem prime_dvd_prime_iff_eq {p q : ℕ} (pp : p.prime) (qp : q.prime) : p ∣ q ↔ p = q :=
dvd_prime_two_le qp (prime.two_le pp)
theorem prime.not_dvd_one {p : ℕ} (pp : prime p) : ¬ p ∣ 1
| d := (not_le_of_gt pp.one_lt) $ le_of_dvd dec_trivial d
theorem not_prime_mul {a b : ℕ} (a1 : 1 < a) (b1 : 1 < b) : ¬ prime (a * b) :=
λ h, ne_of_lt (nat.mul_lt_mul_of_pos_left b1 (lt_of_succ_lt a1)) $
by simpa using (dvd_prime_two_le h a1).1 (dvd_mul_right _ _)
lemma not_prime_mul' {a b n : ℕ} (h : a * b = n) (h₁ : 1 < a) (h₂ : 1 < b) : ¬ prime n :=
by { rw ← h, exact not_prime_mul h₁ h₂ }
section min_fac
private lemma min_fac_lemma (n k : ℕ) (h : ¬ n < k * k) :
sqrt n - k < sqrt n + 2 - k :=
(nat.sub_lt_sub_right_iff $ le_sqrt.2 $ le_of_not_gt h).2 $
nat.lt_add_of_pos_right dec_trivial
/-- If `n < k * k`, then `min_fac_aux n k = n`, if `k | n`, then `min_fac_aux n k = k`.
Otherwise, `min_fac_aux n k = min_fac_aux n (k+2)` using well-founded recursion.
If `n` is odd and `1 < n`, then then `min_fac_aux n 3` is the smallest prime factor of `n`. -/
def min_fac_aux (n : ℕ) : ℕ → ℕ | k :=
if h : n < k * k then n else
if k ∣ n then k else
have _, from min_fac_lemma n k h,
min_fac_aux (k + 2)
using_well_founded {rel_tac :=
λ _ _, `[exact ⟨_, measure_wf (λ k, sqrt n + 2 - k)⟩]}
/-- Returns the smallest prime factor of `n ≠ 1`. -/
def min_fac : ℕ → ℕ
| 0 := 2
| 1 := 1
| (n+2) := if 2 ∣ n then 2 else min_fac_aux (n + 2) 3
@[simp] theorem min_fac_zero : min_fac 0 = 2 := rfl
@[simp] theorem min_fac_one : min_fac 1 = 1 := rfl
theorem min_fac_eq : ∀ n, min_fac n = if 2 ∣ n then 2 else min_fac_aux n 3
| 0 := by simp
| 1 := by simp [show 2≠1, from dec_trivial]; rw min_fac_aux; refl
| (n+2) :=
have 2 ∣ n + 2 ↔ 2 ∣ n, from
(nat.dvd_add_iff_left (by refl)).symm,
by simp [min_fac, this]; congr
private def min_fac_prop (n k : ℕ) :=
2 ≤ k ∧ k ∣ n ∧ ∀ m, 2 ≤ m → m ∣ n → k ≤ m
theorem min_fac_aux_has_prop {n : ℕ} (n2 : 2 ≤ n) (nd2 : ¬ 2 ∣ n) :
∀ k i, k = 2*i+3 → (∀ m, 2 ≤ m → m ∣ n → k ≤ m) → min_fac_prop n (min_fac_aux n k)
| k := λ i e a, begin
rw min_fac_aux,
by_cases h : n < k*k; simp [h],
{ have pp : prime n :=
prime_def_le_sqrt.2 ⟨n2, λ m m2 l d,
not_lt_of_ge l $ lt_of_lt_of_le (sqrt_lt.2 h) (a m m2 d)⟩,
from ⟨n2, dvd_refl _, λ m m2 d, le_of_eq
((dvd_prime_two_le pp m2).1 d).symm⟩ },
have k2 : 2 ≤ k, { subst e, exact dec_trivial },
by_cases dk : k ∣ n; simp [dk],
{ exact ⟨k2, dk, a⟩ },
{ refine have _, from min_fac_lemma n k h,
min_fac_aux_has_prop (k+2) (i+1)
(by simp [e, left_distrib]) (λ m m2 d, _),
cases nat.eq_or_lt_of_le (a m m2 d) with me ml,
{ subst me, contradiction },
apply (nat.eq_or_lt_of_le ml).resolve_left, intro me,
rw [← me, e] at d, change 2 * (i + 2) ∣ n at d,
have := dvd_of_mul_right_dvd d, contradiction }
end
using_well_founded {rel_tac :=
λ _ _, `[exact ⟨_, measure_wf (λ k, sqrt n + 2 - k)⟩]}
theorem min_fac_has_prop {n : ℕ} (n1 : n ≠ 1) :
min_fac_prop n (min_fac n) :=
begin
by_cases n0 : n = 0, {simp [n0, min_fac_prop, ge]},
have n2 : 2 ≤ n, { revert n0 n1, rcases n with _|_|_; exact dec_trivial },
simp [min_fac_eq],
by_cases d2 : 2 ∣ n; simp [d2],
{ exact ⟨le_refl _, d2, λ k k2 d, k2⟩ },
{ refine min_fac_aux_has_prop n2 d2 3 0 rfl
(λ m m2 d, (nat.eq_or_lt_of_le m2).resolve_left (mt _ d2)),
exact λ e, e.symm ▸ d }
end
theorem min_fac_dvd (n : ℕ) : min_fac n ∣ n :=
if n1 : n = 1 then by simp [n1] else (min_fac_has_prop n1).2.1
theorem min_fac_prime {n : ℕ} (n1 : n ≠ 1) : prime (min_fac n) :=
let ⟨f2, fd, a⟩ := min_fac_has_prop n1 in
prime_def_lt'.2 ⟨f2, λ m m2 l d, not_le_of_gt l (a m m2 (dvd_trans d fd))⟩
theorem min_fac_le_of_dvd {n : ℕ} : ∀ {m : ℕ}, 2 ≤ m → m ∣ n → min_fac n ≤ m :=
by by_cases n1 : n = 1;
[exact λ m m2 d, n1.symm ▸ le_trans dec_trivial m2,
exact (min_fac_has_prop n1).2.2]
theorem min_fac_pos (n : ℕ) : 0 < min_fac n :=
by by_cases n1 : n = 1;
[exact n1.symm ▸ dec_trivial, exact (min_fac_prime n1).pos]
theorem min_fac_le {n : ℕ} (H : 0 < n) : min_fac n ≤ n :=
le_of_dvd H (min_fac_dvd n)
theorem prime_def_min_fac {p : ℕ} : prime p ↔ 2 ≤ p ∧ min_fac p = p :=
⟨λ pp, ⟨pp.two_le,
let ⟨f2, fd, a⟩ := min_fac_has_prop $ ne_of_gt pp.one_lt in
((dvd_prime pp).1 fd).resolve_left (ne_of_gt f2)⟩,
λ ⟨p2, e⟩, e ▸ min_fac_prime (ne_of_gt p2)⟩
/--
This instance is faster in the virtual machine than `decidable_prime_1`,
but slower in the kernel.
If you need to prove that a particular number is prime, in any case
you should not use `dec_trivial`, but rather `by norm_num`, which is
much faster.
-/
instance decidable_prime (p : ℕ) : decidable (prime p) :=
decidable_of_iff' _ prime_def_min_fac
theorem not_prime_iff_min_fac_lt {n : ℕ} (n2 : 2 ≤ n) : ¬ prime n ↔ min_fac n < n :=
(not_congr $ prime_def_min_fac.trans $ and_iff_right n2).trans $
(lt_iff_le_and_ne.trans $ and_iff_right $ min_fac_le $ le_of_succ_le n2).symm
lemma min_fac_le_div {n : ℕ} (pos : 0 < n) (np : ¬ prime n) : min_fac n ≤ n / min_fac n :=
match min_fac_dvd n with
| ⟨0, h0⟩ := absurd pos $ by rw [h0, mul_zero]; exact dec_trivial
| ⟨1, h1⟩ :=
begin
rw mul_one at h1,
rw [prime_def_min_fac, not_and_distrib, ← h1, eq_self_iff_true, not_true, or_false,
not_le] at np,
rw [le_antisymm (le_of_lt_succ np) (succ_le_of_lt pos), min_fac_one, nat.div_one]
end
| ⟨(x+2), hx⟩ :=
begin
conv_rhs { congr, rw hx },
rw [nat.mul_div_cancel_left _ (min_fac_pos _)],
exact min_fac_le_of_dvd dec_trivial ⟨min_fac n, by rwa mul_comm⟩
end
end
/--
The square of the smallest prime factor of a composite number `n` is at most `n`.
-/
lemma min_fac_sq_le_self {n : ℕ} (w : 0 < n) (h : ¬ prime n) : (min_fac n)^2 ≤ n :=
have t : (min_fac n) ≤ (n/min_fac n) := min_fac_le_div w h,
calc
(min_fac n)^2 = (min_fac n) * (min_fac n) : sq (min_fac n)
... ≤ (n/min_fac n) * (min_fac n) : mul_le_mul_right (min_fac n) t
... ≤ n : div_mul_le_self n (min_fac n)
@[simp]
lemma min_fac_eq_one_iff {n : ℕ} : min_fac n = 1 ↔ n = 1 :=
begin
split,
{ intro h,
by_contradiction hn,
have := min_fac_prime hn,
rw h at this,
exact not_prime_one this, },
{ rintro rfl, refl, }
end
@[simp]
lemma min_fac_eq_two_iff (n : ℕ) : min_fac n = 2 ↔ 2 ∣ n :=
begin
split,
{ intro h,
convert min_fac_dvd _,
rw h, },
{ intro h,
have ub := min_fac_le_of_dvd (le_refl 2) h,
have lb := min_fac_pos n,
-- If `interval_cases` and `norm_num` were already available here,
-- this would be easy and pleasant.
-- But they aren't, so it isn't.
cases h : n.min_fac with m,
{ rw h at lb, cases lb, },
{ cases m with m,
{ simp at h, subst h, cases h with n h, cases n; cases h, },
{ cases m with m,
{ refl, },
{ rw h at ub,
cases ub with _ ub, cases ub with _ ub, cases ub, } } } }
end
end min_fac
theorem exists_dvd_of_not_prime {n : ℕ} (n2 : 2 ≤ n) (np : ¬ prime n) :
∃ m, m ∣ n ∧ m ≠ 1 ∧ m ≠ n :=
⟨min_fac n, min_fac_dvd _, ne_of_gt (min_fac_prime (ne_of_gt n2)).one_lt,
ne_of_lt $ (not_prime_iff_min_fac_lt n2).1 np⟩
theorem exists_dvd_of_not_prime2 {n : ℕ} (n2 : 2 ≤ n) (np : ¬ prime n) :
∃ m, m ∣ n ∧ 2 ≤ m ∧ m < n :=
⟨min_fac n, min_fac_dvd _, (min_fac_prime (ne_of_gt n2)).two_le,
(not_prime_iff_min_fac_lt n2).1 np⟩
theorem exists_prime_and_dvd {n : ℕ} (n2 : 2 ≤ n) : ∃ p, prime p ∧ p ∣ n :=
⟨min_fac n, min_fac_prime (ne_of_gt n2), min_fac_dvd _⟩
/-- Euclid's theorem. There exist infinitely many prime numbers.
Here given in the form: for every `n`, there exists a prime number `p ≥ n`. -/
theorem exists_infinite_primes (n : ℕ) : ∃ p, n ≤ p ∧ prime p :=
let p := min_fac (n! + 1) in
have f1 : n! + 1 ≠ 1, from ne_of_gt $ succ_lt_succ $ factorial_pos _,
have pp : prime p, from min_fac_prime f1,
have np : n ≤ p, from le_of_not_ge $ λ h,
have h₁ : p ∣ n!, from dvd_factorial (min_fac_pos _) h,
have h₂ : p ∣ 1, from (nat.dvd_add_iff_right h₁).2 (min_fac_dvd _),
pp.not_dvd_one h₂,
⟨p, np, pp⟩
lemma prime.eq_two_or_odd {p : ℕ} (hp : prime p) : p = 2 ∨ p % 2 = 1 :=
(nat.mod_two_eq_zero_or_one p).elim
(λ h, or.inl ((hp.2 2 (dvd_of_mod_eq_zero h)).resolve_left dec_trivial).symm)
or.inr
theorem coprime_of_dvd {m n : ℕ} (H : ∀ k, prime k → k ∣ m → ¬ k ∣ n) : coprime m n :=
begin
cases eq_zero_or_pos (gcd m n) with g0 g1,
{ rw [eq_zero_of_gcd_eq_zero_left g0, eq_zero_of_gcd_eq_zero_right g0] at H,
exfalso,
exact H 2 prime_two (dvd_zero _) (dvd_zero _) },
apply eq.symm,
change 1 ≤ _ at g1,
apply (lt_or_eq_of_le g1).resolve_left,
intro g2,
obtain ⟨p, hp, hpdvd⟩ := exists_prime_and_dvd g2,
apply H p hp; apply dvd_trans hpdvd,
{ exact gcd_dvd_left _ _ },
{ exact gcd_dvd_right _ _ }
end
theorem coprime_of_dvd' {m n : ℕ} (H : ∀ k, prime k → k ∣ m → k ∣ n → k ∣ 1) : coprime m n :=
coprime_of_dvd $ λk kp km kn, not_le_of_gt kp.one_lt $ le_of_dvd zero_lt_one $ H k kp km kn
theorem factors_lemma {k} : (k+2) / min_fac (k+2) < k+2 :=
div_lt_self dec_trivial (min_fac_prime dec_trivial).one_lt
/-- `factors n` is the prime factorization of `n`, listed in increasing order. -/
def factors : ℕ → list ℕ
| 0 := []
| 1 := []
| n@(k+2) :=
let m := min_fac n in have n / m < n := factors_lemma,
m :: factors (n / m)
@[simp] lemma factors_zero : factors 0 = [] := by rw factors
@[simp] lemma factors_one : factors 1 = [] := by rw factors
lemma prime_of_mem_factors : ∀ {n p}, p ∈ factors n → prime p
| 0 := by simp
| 1 := by simp
| n@(k+2) := λ p h,
let m := min_fac n in have n / m < n := factors_lemma,
have h₁ : p = m ∨ p ∈ (factors (n / m)) :=
(list.mem_cons_iff _ _ _).1 (by rwa [factors] at h),
or.cases_on h₁ (λ h₂, h₂.symm ▸ min_fac_prime dec_trivial)
prime_of_mem_factors
lemma prod_factors : ∀ {n}, 0 < n → list.prod (factors n) = n
| 0 := by simp
| 1 := by simp
| n@(k+2) := λ h,
let m := min_fac n in have n / m < n := factors_lemma,
show (factors n).prod = n, from
have h₁ : 0 < n / m :=
nat.pos_of_ne_zero $ λ h,
have n = 0 * m := (nat.div_eq_iff_eq_mul_left (min_fac_pos _) (min_fac_dvd _)).1 h,
by rw zero_mul at this; exact (show k + 2 ≠ 0, from dec_trivial) this,
by rw [factors, list.prod_cons, prod_factors h₁, nat.mul_div_cancel' (min_fac_dvd _)]
lemma factors_prime {p : ℕ} (hp : nat.prime p) : p.factors = [p] :=
begin
have : p = (p - 2) + 2 := (nat.sub_eq_iff_eq_add hp.1).mp rfl,
rw [this, nat.factors],
simp only [eq.symm this],
have : nat.min_fac p = p := (nat.prime_def_min_fac.mp hp).2,
split,
{ exact this, },
{ simp only [this, nat.factors, nat.div_self (nat.prime.pos hp)], },
end
/-- `factors` can be constructed inductively by extracting `min_fac`, for sufficiently large `n`. -/
lemma factors_add_two (n : ℕ) :
factors (n+2) = (min_fac (n+2)) :: (factors ((n+2) / (min_fac (n+2)))) :=
by rw factors
@[simp]
lemma factors_eq_nil (n : ℕ) : n.factors = [] ↔ n = 0 ∨ n = 1 :=
begin
split; intro h,
{ rcases n with (_ | _ | n),
{ exact or.inl rfl },
{ exact or.inr rfl },
{ rw factors at h, injection h }, },
{ rcases h with (rfl | rfl),
{ exact factors_zero },
{ exact factors_one }, }
end
theorem prime.coprime_iff_not_dvd {p n : ℕ} (pp : prime p) : coprime p n ↔ ¬ p ∣ n :=
⟨λ co d, pp.not_dvd_one $ co.dvd_of_dvd_mul_left (by simp [d]),
λ nd, coprime_of_dvd $ λ m m2 mp, ((prime_dvd_prime_iff_eq m2 pp).1 mp).symm ▸ nd⟩
theorem prime.dvd_iff_not_coprime {p n : ℕ} (pp : prime p) : p ∣ n ↔ ¬ coprime p n :=
iff_not_comm.2 pp.coprime_iff_not_dvd
theorem prime.not_coprime_iff_dvd {m n : ℕ} :
¬ coprime m n ↔ ∃p, prime p ∧ p ∣ m ∧ p ∣ n :=
begin
apply iff.intro,
{ intro h,
exact ⟨min_fac (gcd m n), min_fac_prime h,
(dvd.trans (min_fac_dvd (gcd m n)) (gcd_dvd_left m n)),
(dvd.trans (min_fac_dvd (gcd m n)) (gcd_dvd_right m n))⟩ },
{ intro h,
cases h with p hp,
apply nat.not_coprime_of_dvd_of_dvd (prime.one_lt hp.1) hp.2.1 hp.2.2 }
end
theorem prime.dvd_mul {p m n : ℕ} (pp : prime p) : p ∣ m * n ↔ p ∣ m ∨ p ∣ n :=
⟨λ H, or_iff_not_imp_left.2 $ λ h,
(pp.coprime_iff_not_dvd.2 h).dvd_of_dvd_mul_left H,
or.rec (λ h, dvd_mul_of_dvd_left h _) (λ h, dvd_mul_of_dvd_right h _)⟩
theorem prime.not_dvd_mul {p m n : ℕ} (pp : prime p)
(Hm : ¬ p ∣ m) (Hn : ¬ p ∣ n) : ¬ p ∣ m * n :=
mt pp.dvd_mul.1 $ by simp [Hm, Hn]
theorem prime.dvd_of_dvd_pow {p m n : ℕ} (pp : prime p) (h : p ∣ m^n) : p ∣ m :=
by induction n with n IH;
[exact pp.not_dvd_one.elim h,
by { rw pow_succ at h, exact (pp.dvd_mul.1 h).elim id IH } ]
lemma prime.pow_not_prime {x n : ℕ} (hn : 2 ≤ n) : ¬ (x ^ n).prime :=
λ hp, (hp.2 x $ dvd_trans ⟨x, sq _⟩ (pow_dvd_pow _ hn)).elim
(λ hx1, hp.ne_one $ hx1.symm ▸ one_pow _)
(λ hxn, lt_irrefl x $ calc x = x ^ 1 : (pow_one _).symm
... < x ^ n : nat.pow_right_strict_mono (hxn.symm ▸ hp.two_le) hn
... = x : hxn.symm)
lemma prime.mul_eq_prime_sq_iff {x y p : ℕ} (hp : p.prime) (hx : x ≠ 1) (hy : y ≠ 1) :
x * y = p ^ 2 ↔ x = p ∧ y = p :=
⟨λ h, have pdvdxy : p ∣ x * y, by rw h; simp [sq],
begin
wlog := hp.dvd_mul.1 pdvdxy using x y,
cases case with a ha,
have hap : a ∣ p, from ⟨y, by rwa [ha, sq,
mul_assoc, nat.mul_right_inj hp.pos, eq_comm] at h⟩,
exact ((nat.dvd_prime hp).1 hap).elim
(λ _, by clear_aux_decl; simp [*, sq, nat.mul_right_inj hp.pos] at *
{contextual := tt})
(λ _, by clear_aux_decl; simp [*, sq, mul_comm, mul_assoc,
nat.mul_right_inj hp.pos, nat.mul_right_eq_self_iff hp.pos] at *
{contextual := tt})
end,
λ ⟨h₁, h₂⟩, h₁.symm ▸ h₂.symm ▸ (sq _).symm⟩
lemma prime.dvd_factorial : ∀ {n p : ℕ} (hp : prime p), p ∣ n! ↔ p ≤ n
| 0 p hp := iff_of_false hp.not_dvd_one (not_le_of_lt hp.pos)
| (n+1) p hp := begin
rw [factorial_succ, hp.dvd_mul, prime.dvd_factorial hp],
exact ⟨λ h, h.elim (le_of_dvd (succ_pos _)) le_succ_of_le,
λ h, (_root_.lt_or_eq_of_le h).elim (or.inr ∘ le_of_lt_succ)
(λ h, or.inl $ by rw h)⟩
end
theorem prime.coprime_pow_of_not_dvd {p m a : ℕ} (pp : prime p) (h : ¬ p ∣ a) : coprime a (p^m) :=
(pp.coprime_iff_not_dvd.2 h).symm.pow_right _
theorem coprime_primes {p q : ℕ} (pp : prime p) (pq : prime q) : coprime p q ↔ p ≠ q :=
pp.coprime_iff_not_dvd.trans $ not_congr $ dvd_prime_two_le pq pp.two_le
theorem coprime_pow_primes {p q : ℕ} (n m : ℕ) (pp : prime p) (pq : prime q) (h : p ≠ q) :
coprime (p^n) (q^m) :=
((coprime_primes pp pq).2 h).pow _ _
theorem coprime_or_dvd_of_prime {p} (pp : prime p) (i : ℕ) : coprime p i ∨ p ∣ i :=
by rw [pp.dvd_iff_not_coprime]; apply em
theorem dvd_prime_pow {p : ℕ} (pp : prime p) {m i : ℕ} : i ∣ (p^m) ↔ ∃ k ≤ m, i = p^k :=
begin
induction m with m IH generalizing i, {simp [pow_succ, le_zero_iff] at *},
by_cases p ∣ i,
{ cases h with a e, subst e,
rw [pow_succ, nat.mul_dvd_mul_iff_left pp.pos, IH],
split; intro h; rcases h with ⟨k, h, e⟩,
{ exact ⟨succ k, succ_le_succ h, by rw [e, pow_succ]; refl⟩ },
cases k with k,
{ apply pp.not_dvd_one.elim,
simp at e, rw ← e, apply dvd_mul_right },
{ refine ⟨k, le_of_succ_le_succ h, _⟩,
rwa [mul_comm, pow_succ', nat.mul_left_inj pp.pos] at e } },
{ split; intro d,
{ rw (pp.coprime_pow_of_not_dvd h).eq_one_of_dvd d,
exact ⟨0, zero_le _, rfl⟩ },
{ rcases d with ⟨k, l, e⟩,
rw e, exact pow_dvd_pow _ l } }
end
/--
If `p` is prime,
and `a` doesn't divide `p^k`, but `a` does divide `p^(k+1)`
then `a = p^(k+1)`.
-/
lemma eq_prime_pow_of_dvd_least_prime_pow
{a p k : ℕ} (pp : prime p) (h₁ : ¬(a ∣ p^k)) (h₂ : a ∣ p^(k+1)) :
a = p^(k+1) :=
begin
obtain ⟨l, ⟨h, rfl⟩⟩ := (dvd_prime_pow pp).1 h₂,
congr,
exact le_antisymm h (not_le.1 ((not_congr (pow_dvd_pow_iff_le_right (prime.one_lt pp))).1 h₁)),
end
section
open list
lemma mem_list_primes_of_dvd_prod {p : ℕ} (hp : prime p) :
∀ {l : list ℕ}, (∀ p ∈ l, prime p) → p ∣ prod l → p ∈ l
| [] := λ h₁ h₂, absurd h₂ (prime.not_dvd_one hp)
| (q :: l) := λ h₁ h₂,
have h₃ : p ∣ q * prod l := @prod_cons _ _ l q ▸ h₂,
have hq : prime q := h₁ q (mem_cons_self _ _),
or.cases_on ((prime.dvd_mul hp).1 h₃)
(λ h, by rw [prime.dvd_iff_not_coprime hp, coprime_primes hp hq, ne.def, not_not] at h;
exact h ▸ mem_cons_self _ _)
(λ h, have hl : ∀ p ∈ l, prime p := λ p hlp, h₁ p ((mem_cons_iff _ _ _).2 (or.inr hlp)),
(mem_cons_iff _ _ _).2 (or.inr (mem_list_primes_of_dvd_prod hl h)))
lemma mem_factors_iff_dvd {n p : ℕ} (hn : 0 < n) (hp : prime p) : p ∈ factors n ↔ p ∣ n :=
⟨λ h, prod_factors hn ▸ list.dvd_prod h,
λ h, mem_list_primes_of_dvd_prod hp (@prime_of_mem_factors n) ((prod_factors hn).symm ▸ h)⟩
lemma mem_factors {n p} (hn : 0 < n) : p ∈ factors n ↔ prime p ∧ p ∣ n :=
⟨λ h, ⟨prime_of_mem_factors h, (mem_factors_iff_dvd hn $ prime_of_mem_factors h).mp h⟩,
λ ⟨hprime, hdvd⟩, (mem_factors_iff_dvd hn hprime).mpr hdvd⟩
lemma perm_of_prod_eq_prod : ∀ {l₁ l₂ : list ℕ}, prod l₁ = prod l₂ →
(∀ p ∈ l₁, prime p) → (∀ p ∈ l₂, prime p) → l₁ ~ l₂
| [] [] _ _ _ := perm.nil
| [] (a :: l) h₁ h₂ h₃ :=
have ha : a ∣ 1 := @prod_nil ℕ _ ▸ h₁.symm ▸ (@prod_cons _ _ l a).symm ▸ dvd_mul_right _ _,
absurd ha (prime.not_dvd_one (h₃ a (mem_cons_self _ _)))
| (a :: l) [] h₁ h₂ h₃ :=
have ha : a ∣ 1 := @prod_nil ℕ _ ▸ h₁ ▸ (@prod_cons _ _ l a).symm ▸ dvd_mul_right _ _,
absurd ha (prime.not_dvd_one (h₂ a (mem_cons_self _ _)))
| (a :: l₁) (b :: l₂) h hl₁ hl₂ :=
have hl₁' : ∀ p ∈ l₁, prime p := λ p hp, hl₁ p (mem_cons_of_mem _ hp),
have hl₂' : ∀ p ∈ (b :: l₂).erase a, prime p := λ p hp, hl₂ p (mem_of_mem_erase hp),
have ha : a ∈ (b :: l₂) := mem_list_primes_of_dvd_prod (hl₁ a (mem_cons_self _ _)) hl₂
(h ▸ by rw prod_cons; exact dvd_mul_right _ _),
have hb : b :: l₂ ~ a :: (b :: l₂).erase a := perm_cons_erase ha,
have hl : prod l₁ = prod ((b :: l₂).erase a) :=
(nat.mul_right_inj (prime.pos (hl₁ a (mem_cons_self _ _)))).1 $
by rwa [← prod_cons, ← prod_cons, ← hb.prod_eq],
perm.trans ((perm_of_prod_eq_prod hl hl₁' hl₂').cons _) hb.symm
lemma factors_unique {n : ℕ} {l : list ℕ} (h₁ : prod l = n) (h₂ : ∀ p ∈ l, prime p) :
l ~ factors n :=
have hn : 0 < n := nat.pos_of_ne_zero $ λ h, begin
rw h at *, clear h,
induction l with a l hi,
{ exact absurd h₁ dec_trivial },
{ rw prod_cons at h₁,
exact nat.mul_ne_zero (ne_of_lt (prime.pos (h₂ a (mem_cons_self _ _)))).symm
(hi (λ p hp, h₂ p (mem_cons_of_mem _ hp))) h₁ }
end,
perm_of_prod_eq_prod (by rwa prod_factors hn) h₂ (@prime_of_mem_factors _)
end
lemma succ_dvd_or_succ_dvd_of_succ_sum_dvd_mul {p : ℕ} (p_prime : prime p) {m n k l : ℕ}
(hpm : p ^ k ∣ m) (hpn : p ^ l ∣ n) (hpmn : p ^ (k+l+1) ∣ m*n) :
p ^ (k+1) ∣ m ∨ p ^ (l+1) ∣ n :=
have hpd : p^(k+l)*p ∣ m*n, by rwa pow_succ' at hpmn,
have hpd2 : p ∣ (m*n) / p ^ (k+l), from dvd_div_of_mul_dvd hpd,
have hpd3 : p ∣ (m*n) / (p^k * p^l), by simpa [pow_add] using hpd2,
have hpd4 : p ∣ (m / p^k) * (n / p^l), by simpa [nat.div_mul_div hpm hpn] using hpd3,
have hpd5 : p ∣ (m / p^k) ∨ p ∣ (n / p^l), from (prime.dvd_mul p_prime).1 hpd4,
suffices p^k*p ∣ m ∨ p^l*p ∣ n, by rwa [pow_succ', pow_succ'],
hpd5.elim
(assume : p ∣ m / p ^ k, or.inl $ mul_dvd_of_dvd_div hpm this)
(assume : p ∣ n / p ^ l, or.inr $ mul_dvd_of_dvd_div hpn this)
/-- The type of prime numbers -/
def primes := {p : ℕ // p.prime}
namespace primes
instance : has_repr nat.primes := ⟨λ p, repr p.val⟩
instance inhabited_primes : inhabited primes := ⟨⟨2, prime_two⟩⟩
instance coe_nat : has_coe nat.primes ℕ := ⟨subtype.val⟩
theorem coe_nat_inj (p q : nat.primes) : (p : ℕ) = (q : ℕ) → p = q :=
λ h, subtype.eq h
end primes
instance monoid.prime_pow {α : Type*} [monoid α] : has_pow α primes := ⟨λ x p, x^p.val⟩
end nat
/-! ### Primality prover -/
namespace tactic
namespace norm_num
open norm_num
lemma is_prime_helper (n : ℕ)
(h₁ : 1 < n) (h₂ : nat.min_fac n = n) : nat.prime n :=
nat.prime_def_min_fac.2 ⟨h₁, h₂⟩
lemma min_fac_bit0 (n : ℕ) : nat.min_fac (bit0 n) = 2 :=
by simp [nat.min_fac_eq, show 2 ∣ bit0 n, by simp [bit0_eq_two_mul n]]
/-- A predicate representing partial progress in a proof of `min_fac`. -/
def min_fac_helper (n k : ℕ) : Prop :=
0 < k ∧ bit1 k ≤ nat.min_fac (bit1 n)
theorem min_fac_helper.n_pos {n k : ℕ} (h : min_fac_helper n k) : 0 < n :=
pos_iff_ne_zero.2 $ λ e,
by rw e at h; exact not_le_of_lt (nat.bit1_lt h.1) h.2
lemma min_fac_ne_bit0 {n k : ℕ} : nat.min_fac (bit1 n) ≠ bit0 k :=
by rw bit0_eq_two_mul; exact λ e, absurd
((nat.dvd_add_iff_right (by simp [bit0_eq_two_mul n])).2
(dvd_trans ⟨_, e⟩ (nat.min_fac_dvd _)))
(by norm_num)
lemma min_fac_helper_0 (n : ℕ) (h : 0 < n) : min_fac_helper n 1 :=
begin
refine ⟨zero_lt_one, lt_of_le_of_ne _ min_fac_ne_bit0.symm⟩,
refine @lt_of_le_of_ne ℕ _ _ _ (nat.min_fac_pos _) _,
intro e,
have := nat.min_fac_prime _,
{ rw ← e at this, exact nat.not_prime_one this },
{ exact ne_of_gt (nat.bit1_lt h) }
end
lemma min_fac_helper_1 {n k k' : ℕ} (e : k + 1 = k')
(np : nat.min_fac (bit1 n) ≠ bit1 k)
(h : min_fac_helper n k) : min_fac_helper n k' :=
begin
rw ← e,
refine ⟨nat.succ_pos _,
(lt_of_le_of_ne (lt_of_le_of_ne _ _ : k+1+k < _)
min_fac_ne_bit0.symm : bit0 (k+1) < _)⟩,
{ rw add_right_comm, exact h.2 },
{ rw add_right_comm, exact np.symm }
end
lemma min_fac_helper_2 (n k k' : ℕ) (e : k + 1 = k')
(np : ¬ nat.prime (bit1 k)) (h : min_fac_helper n k) : min_fac_helper n k' :=
begin
refine min_fac_helper_1 e _ h,
intro e₁, rw ← e₁ at np,
exact np (nat.min_fac_prime $ ne_of_gt $ nat.bit1_lt h.n_pos)
end
lemma min_fac_helper_3 (n k k' c : ℕ) (e : k + 1 = k')
(nc : bit1 n % bit1 k = c) (c0 : 0 < c)
(h : min_fac_helper n k) : min_fac_helper n k' :=
begin
refine min_fac_helper_1 e _ h,
refine mt _ (ne_of_gt c0), intro e₁,
rw [← nc, ← nat.dvd_iff_mod_eq_zero, ← e₁],
apply nat.min_fac_dvd
end
lemma min_fac_helper_4 (n k : ℕ) (hd : bit1 n % bit1 k = 0)
(h : min_fac_helper n k) : nat.min_fac (bit1 n) = bit1 k :=
by rw ← nat.dvd_iff_mod_eq_zero at hd; exact
le_antisymm (nat.min_fac_le_of_dvd (nat.bit1_lt h.1) hd) h.2
lemma min_fac_helper_5 (n k k' : ℕ) (e : bit1 k * bit1 k = k')
(hd : bit1 n < k') (h : min_fac_helper n k) : nat.min_fac (bit1 n) = bit1 n :=
begin
refine (nat.prime_def_min_fac.1 (nat.prime_def_le_sqrt.2
⟨nat.bit1_lt h.n_pos, _⟩)).2,
rw ← e at hd,
intros m m2 hm md,
have := le_trans h.2 (le_trans (nat.min_fac_le_of_dvd m2 md) hm),
rw nat.le_sqrt at this,
exact not_le_of_lt hd this
end
/-- Given `e` a natural numeral and `d : nat` a factor of it, return `⊢ ¬ prime e`. -/
meta def prove_non_prime (e : expr) (n d₁ : ℕ) : tactic expr :=
do let e₁ := reflect d₁,
c ← mk_instance_cache `(nat),
(c, p₁) ← prove_lt_nat c `(1) e₁,
let d₂ := n / d₁, let e₂ := reflect d₂,
(c, e', p) ← prove_mul_nat c e₁ e₂,
guard (e' =ₐ e),
(c, p₂) ← prove_lt_nat c `(1) e₂,
return $ `(@nat.not_prime_mul').mk_app [e₁, e₂, e, p, p₁, p₂]
/-- Given `a`,`a1 := bit1 a`, `n1` the value of `a1`, `b` and `p : min_fac_helper a b`,
returns `(c, ⊢ min_fac a1 = c)`. -/
meta def prove_min_fac_aux (a a1 : expr) (n1 : ℕ) :
instance_cache → expr → expr → tactic (instance_cache × expr × expr)
| ic b p := do
k ← b.to_nat,
let k1 := bit1 k,
let b1 := `(bit1:ℕ→ℕ).mk_app [b],
if n1 < k1*k1 then do
(ic, e', p₁) ← prove_mul_nat ic b1 b1,
(ic, p₂) ← prove_lt_nat ic a1 e',
return (ic, a1, `(min_fac_helper_5).mk_app [a, b, e', p₁, p₂, p])
else let d := k1.min_fac in
if to_bool (d < k1) then do
let k' := k+1, let e' := reflect k',
(ic, p₁) ← prove_succ ic b e',
p₂ ← prove_non_prime b1 k1 d,
prove_min_fac_aux ic e' $ `(min_fac_helper_2).mk_app [a, b, e', p₁, p₂, p]
else do
let nc := n1 % k1,
(ic, c, pc) ← prove_div_mod ic a1 b1 tt,
if nc = 0 then
return (ic, b1, `(min_fac_helper_4).mk_app [a, b, pc, p])
else do
(ic, p₀) ← prove_pos ic c,
let k' := k+1, let e' := reflect k',
(ic, p₁) ← prove_succ ic b e',
prove_min_fac_aux ic e' $ `(min_fac_helper_3).mk_app [a, b, e', c, p₁, pc, p₀, p]
/-- Given `a` a natural numeral, returns `(b, ⊢ min_fac a = b)`. -/
meta def prove_min_fac (ic : instance_cache) (e : expr) : tactic (instance_cache × expr × expr) :=
match match_numeral e with
| match_numeral_result.zero := return (ic, `(2:ℕ), `(nat.min_fac_zero))
| match_numeral_result.one := return (ic, `(1:ℕ), `(nat.min_fac_one))
| match_numeral_result.bit0 e := return (ic, `(2), `(min_fac_bit0).mk_app [e])
| match_numeral_result.bit1 e := do
n ← e.to_nat,
c ← mk_instance_cache `(nat),
(c, p) ← prove_pos c e,
let a1 := `(bit1:ℕ→ℕ).mk_app [e],
prove_min_fac_aux e a1 (bit1 n) c `(1) (`(min_fac_helper_0).mk_app [e, p])
| _ := failed
end
/-- Evaluates the `prime` and `min_fac` functions. -/
@[norm_num] meta def eval_prime : expr → tactic (expr × expr)
| `(nat.prime %%e) := do
n ← e.to_nat,
match n with
| 0 := false_intro `(nat.not_prime_zero)
| 1 := false_intro `(nat.not_prime_one)
| _ := let d₁ := n.min_fac in
if d₁ < n then prove_non_prime e n d₁ >>= false_intro
else do
let e₁ := reflect d₁,
c ← mk_instance_cache `(nat),
(c, p₁) ← prove_lt_nat c `(1) e₁,
(c, e₁, p) ← prove_min_fac c e,
true_intro $ `(is_prime_helper).mk_app [e, p₁, p]
end
| `(nat.min_fac %%e) := do
ic ← mk_instance_cache `(ℕ),
prod.snd <$> prove_min_fac ic e
| _ := failed
end norm_num
end tactic
namespace nat
theorem prime_three : prime 3 := by norm_num
end nat
|
6f68f51068e84da8256166c8fcc59151947a562a
|
36c7a18fd72e5b57229bd8ba36493daf536a19ce
|
/library/algebra/ordered_group.lean
|
c900ebea2245f330ddabb177f40ab006413c87e0
|
[
"Apache-2.0"
] |
permissive
|
YHVHvx/lean
|
732bf0fb7a298cd7fe0f15d82f8e248c11db49e9
|
038369533e0136dd395dc252084d3c1853accbf2
|
refs/heads/master
| 1,610,701,080,210
| 1,449,128,595,000
| 1,449,128,595,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 32,155
|
lean
|
/-
Copyright (c) 2014 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad
Partially ordered additive groups, modeled on Isabelle's library. These classes can be refined
if necessary.
-/
import logic.eq data.unit data.sigma data.prod
import algebra.binary algebra.group algebra.order
open eq eq.ops -- note: ⁻¹ will be overloaded
namespace algebra
variable {A : Type}
/- partially ordered monoids, such as the natural numbers -/
structure ordered_cancel_comm_monoid [class] (A : Type) extends add_comm_monoid A,
add_left_cancel_semigroup A, add_right_cancel_semigroup A, order_pair A :=
(add_le_add_left : ∀a b, le a b → ∀c, le (add c a) (add c b))
(le_of_add_le_add_left : ∀a b c, le (add a b) (add a c) → le b c)
(add_lt_add_left : ∀a b, lt a b → ∀c, lt (add c a) (add c b))
(lt_of_add_lt_add_left : ∀a b c, lt (add a b) (add a c) → lt b c)
section
variables [s : ordered_cancel_comm_monoid A]
variables {a b c d e : A}
include s
theorem add_lt_add_left (H : a < b) (c : A) : c + a < c + b :=
!ordered_cancel_comm_monoid.add_lt_add_left H c
theorem add_lt_add_right (H : a < b) (c : A) : a + c < b + c :=
begin
rewrite [add.comm, {b + _}add.comm],
exact (add_lt_add_left H c)
end
theorem add_le_add_left (H : a ≤ b) (c : A) : c + a ≤ c + b :=
!ordered_cancel_comm_monoid.add_le_add_left H c
theorem add_le_add_right (H : a ≤ b) (c : A) : a + c ≤ b + c :=
(add.comm c a) ▸ (add.comm c b) ▸ (add_le_add_left H c)
theorem add_le_add (Hab : a ≤ b) (Hcd : c ≤ d) : a + c ≤ b + d :=
le.trans (add_le_add_right Hab c) (add_le_add_left Hcd b)
theorem le_add_of_nonneg_right (H : b ≥ 0) : a ≤ a + b :=
begin
have H1 : a + b ≥ a + 0, from add_le_add_left H a,
rewrite add_zero at H1,
exact H1
end
theorem le_add_of_nonneg_left (H : b ≥ 0) : a ≤ b + a :=
begin
have H1 : 0 + a ≤ b + a, from add_le_add_right H a,
rewrite zero_add at H1,
exact H1
end
theorem add_lt_add (Hab : a < b) (Hcd : c < d) : a + c < b + d :=
lt.trans (add_lt_add_right Hab c) (add_lt_add_left Hcd b)
theorem add_lt_add_of_le_of_lt (Hab : a ≤ b) (Hcd : c < d) : a + c < b + d :=
lt_of_le_of_lt (add_le_add_right Hab c) (add_lt_add_left Hcd b)
theorem add_lt_add_of_lt_of_le (Hab : a < b) (Hcd : c ≤ d) : a + c < b + d :=
lt_of_lt_of_le (add_lt_add_right Hab c) (add_le_add_left Hcd b)
theorem lt_add_of_pos_right (H : b > 0) : a < a + b := !add_zero ▸ add_lt_add_left H a
theorem lt_add_of_pos_left (H : b > 0) : a < b + a := !zero_add ▸ add_lt_add_right H a
-- here we start using le_of_add_le_add_left.
theorem le_of_add_le_add_left (H : a + b ≤ a + c) : b ≤ c :=
!ordered_cancel_comm_monoid.le_of_add_le_add_left H
theorem le_of_add_le_add_right (H : a + b ≤ c + b) : a ≤ c :=
le_of_add_le_add_left (show b + a ≤ b + c, begin rewrite [add.comm, {b + _}add.comm], exact H end)
theorem lt_of_add_lt_add_left (H : a + b < a + c) : b < c :=
!ordered_cancel_comm_monoid.lt_of_add_lt_add_left H
theorem lt_of_add_lt_add_right (H : a + b < c + b) : a < c :=
lt_of_add_lt_add_left ((add.comm a b) ▸ (add.comm c b) ▸ H)
theorem add_le_add_left_iff (a b c : A) : a + b ≤ a + c ↔ b ≤ c :=
iff.intro le_of_add_le_add_left (assume H, add_le_add_left H _)
theorem add_le_add_right_iff (a b c : A) : a + b ≤ c + b ↔ a ≤ c :=
iff.intro le_of_add_le_add_right (assume H, add_le_add_right H _)
theorem add_lt_add_left_iff (a b c : A) : a + b < a + c ↔ b < c :=
iff.intro lt_of_add_lt_add_left (assume H, add_lt_add_left H _)
theorem add_lt_add_right_iff (a b c : A) : a + b < c + b ↔ a < c :=
iff.intro lt_of_add_lt_add_right (assume H, add_lt_add_right H _)
-- here we start using properties of zero.
theorem add_nonneg (Ha : 0 ≤ a) (Hb : 0 ≤ b) : 0 ≤ a + b :=
!zero_add ▸ (add_le_add Ha Hb)
theorem add_pos (Ha : 0 < a) (Hb : 0 < b) : 0 < a + b :=
!zero_add ▸ (add_lt_add Ha Hb)
theorem add_pos_of_pos_of_nonneg (Ha : 0 < a) (Hb : 0 ≤ b) : 0 < a + b :=
!zero_add ▸ (add_lt_add_of_lt_of_le Ha Hb)
theorem add_pos_of_nonneg_of_pos (Ha : 0 ≤ a) (Hb : 0 < b) : 0 < a + b :=
!zero_add ▸ (add_lt_add_of_le_of_lt Ha Hb)
theorem add_nonpos (Ha : a ≤ 0) (Hb : b ≤ 0) : a + b ≤ 0 :=
!zero_add ▸ (add_le_add Ha Hb)
theorem add_neg (Ha : a < 0) (Hb : b < 0) : a + b < 0 :=
!zero_add ▸ (add_lt_add Ha Hb)
theorem add_neg_of_neg_of_nonpos (Ha : a < 0) (Hb : b ≤ 0) : a + b < 0 :=
!zero_add ▸ (add_lt_add_of_lt_of_le Ha Hb)
theorem add_neg_of_nonpos_of_neg (Ha : a ≤ 0) (Hb : b < 0) : a + b < 0 :=
!zero_add ▸ (add_lt_add_of_le_of_lt Ha Hb)
-- TODO: add nonpos version (will be easier with simplifier)
theorem add_eq_zero_iff_eq_zero_and_eq_zero_of_nonneg_of_nonneg
(Ha : 0 ≤ a) (Hb : 0 ≤ b) : a + b = 0 ↔ a = 0 ∧ b = 0 :=
iff.intro
(assume Hab : a + b = 0,
have Ha' : a ≤ 0, from
calc
a = a + 0 : by rewrite add_zero
... ≤ a + b : add_le_add_left Hb
... = 0 : Hab,
have Haz : a = 0, from le.antisymm Ha' Ha,
have Hb' : b ≤ 0, from
calc
b = 0 + b : by rewrite zero_add
... ≤ a + b : by exact add_le_add_right Ha _
... = 0 : Hab,
have Hbz : b = 0, from le.antisymm Hb' Hb,
and.intro Haz Hbz)
(assume Hab : a = 0 ∧ b = 0,
obtain Ha' Hb', from Hab,
by rewrite [Ha', Hb', add_zero])
theorem le_add_of_nonneg_of_le (Ha : 0 ≤ a) (Hbc : b ≤ c) : b ≤ a + c :=
!zero_add ▸ add_le_add Ha Hbc
theorem le_add_of_le_of_nonneg (Hbc : b ≤ c) (Ha : 0 ≤ a) : b ≤ c + a :=
!add_zero ▸ add_le_add Hbc Ha
theorem lt_add_of_pos_of_le (Ha : 0 < a) (Hbc : b ≤ c) : b < a + c :=
!zero_add ▸ add_lt_add_of_lt_of_le Ha Hbc
theorem lt_add_of_le_of_pos (Hbc : b ≤ c) (Ha : 0 < a) : b < c + a :=
!add_zero ▸ add_lt_add_of_le_of_lt Hbc Ha
theorem add_le_of_nonpos_of_le (Ha : a ≤ 0) (Hbc : b ≤ c) : a + b ≤ c :=
!zero_add ▸ add_le_add Ha Hbc
theorem add_le_of_le_of_nonpos (Hbc : b ≤ c) (Ha : a ≤ 0) : b + a ≤ c :=
!add_zero ▸ add_le_add Hbc Ha
theorem add_lt_of_neg_of_le (Ha : a < 0) (Hbc : b ≤ c) : a + b < c :=
!zero_add ▸ add_lt_add_of_lt_of_le Ha Hbc
theorem add_lt_of_le_of_neg (Hbc : b ≤ c) (Ha : a < 0) : b + a < c :=
!add_zero ▸ add_lt_add_of_le_of_lt Hbc Ha
theorem lt_add_of_nonneg_of_lt (Ha : 0 ≤ a) (Hbc : b < c) : b < a + c :=
!zero_add ▸ add_lt_add_of_le_of_lt Ha Hbc
theorem lt_add_of_lt_of_nonneg (Hbc : b < c) (Ha : 0 ≤ a) : b < c + a :=
!add_zero ▸ add_lt_add_of_lt_of_le Hbc Ha
theorem lt_add_of_pos_of_lt (Ha : 0 < a) (Hbc : b < c) : b < a + c :=
!zero_add ▸ add_lt_add Ha Hbc
theorem lt_add_of_lt_of_pos (Hbc : b < c) (Ha : 0 < a) : b < c + a :=
!add_zero ▸ add_lt_add Hbc Ha
theorem add_lt_of_nonpos_of_lt (Ha : a ≤ 0) (Hbc : b < c) : a + b < c :=
!zero_add ▸ add_lt_add_of_le_of_lt Ha Hbc
theorem add_lt_of_lt_of_nonpos (Hbc : b < c) (Ha : a ≤ 0) : b + a < c :=
!add_zero ▸ add_lt_add_of_lt_of_le Hbc Ha
theorem add_lt_of_neg_of_lt (Ha : a < 0) (Hbc : b < c) : a + b < c :=
!zero_add ▸ add_lt_add Ha Hbc
theorem add_lt_of_lt_of_neg (Hbc : b < c) (Ha : a < 0) : b + a < c :=
!add_zero ▸ add_lt_add Hbc Ha
end
/- partially ordered groups -/
structure ordered_comm_group [class] (A : Type) extends add_comm_group A, order_pair A :=
(add_le_add_left : ∀a b, le a b → ∀c, le (add c a) (add c b))
(add_lt_add_left : ∀a b, lt a b → ∀ c, lt (add c a) (add c b))
theorem ordered_comm_group.le_of_add_le_add_left [s : ordered_comm_group A] {a b c : A}
(H : a + b ≤ a + c) : b ≤ c :=
assert H' : -a + (a + b) ≤ -a + (a + c), from ordered_comm_group.add_le_add_left _ _ H _,
by rewrite *neg_add_cancel_left at H'; exact H'
theorem ordered_comm_group.lt_of_add_lt_add_left [s : ordered_comm_group A] {a b c : A}
(H : a + b < a + c) : b < c :=
assert H' : -a + (a + b) < -a + (a + c), from ordered_comm_group.add_lt_add_left _ _ H _,
by rewrite *neg_add_cancel_left at H'; exact H'
set_option pp.all true
definition ordered_comm_group.to_ordered_cancel_comm_monoid [trans_instance] [reducible]
[s : ordered_comm_group A] : ordered_cancel_comm_monoid A :=
⦃ ordered_cancel_comm_monoid, s,
add_left_cancel := @add.left_cancel A _,
add_right_cancel := @add.right_cancel A _,
le_of_add_le_add_left := @ordered_comm_group.le_of_add_le_add_left A _,
lt_of_add_lt_add_left := @ordered_comm_group.lt_of_add_lt_add_left A _⦄
section
variables [s : ordered_comm_group A] (a b c d e : A)
include s
theorem neg_le_neg {a b : A} (H : a ≤ b) : -b ≤ -a :=
have H1 : 0 ≤ -a + b, from !add.left_inv ▸ !(add_le_add_left H),
!add_neg_cancel_right ▸ !zero_add ▸ add_le_add_right H1 (-b)
theorem le_of_neg_le_neg {a b : A} (H : -b ≤ -a) : a ≤ b :=
neg_neg a ▸ neg_neg b ▸ neg_le_neg H
theorem neg_le_neg_iff_le : -a ≤ -b ↔ b ≤ a :=
iff.intro le_of_neg_le_neg neg_le_neg
theorem nonneg_of_neg_nonpos {a : A} (H : -a ≤ 0) : 0 ≤ a :=
le_of_neg_le_neg (neg_zero⁻¹ ▸ H)
theorem neg_nonpos_of_nonneg {a : A} (H : 0 ≤ a) : -a ≤ 0 :=
neg_zero ▸ neg_le_neg H
theorem neg_nonpos_iff_nonneg : -a ≤ 0 ↔ 0 ≤ a :=
iff.intro nonneg_of_neg_nonpos neg_nonpos_of_nonneg
theorem nonpos_of_neg_nonneg {a : A} (H : 0 ≤ -a) : a ≤ 0 :=
le_of_neg_le_neg (neg_zero⁻¹ ▸ H)
theorem neg_nonneg_of_nonpos {a : A} (H : a ≤ 0) : 0 ≤ -a :=
neg_zero ▸ neg_le_neg H
theorem neg_nonneg_iff_nonpos : 0 ≤ -a ↔ a ≤ 0 :=
iff.intro nonpos_of_neg_nonneg neg_nonneg_of_nonpos
theorem neg_lt_neg {a b : A} (H : a < b) : -b < -a :=
have H1 : 0 < -a + b, from !add.left_inv ▸ !(add_lt_add_left H),
!add_neg_cancel_right ▸ !zero_add ▸ add_lt_add_right H1 (-b)
theorem lt_of_neg_lt_neg {a b : A} (H : -b < -a) : a < b :=
neg_neg a ▸ neg_neg b ▸ neg_lt_neg H
theorem neg_lt_neg_iff_lt : -a < -b ↔ b < a :=
iff.intro lt_of_neg_lt_neg neg_lt_neg
theorem pos_of_neg_neg {a : A} (H : -a < 0) : 0 < a :=
lt_of_neg_lt_neg (neg_zero⁻¹ ▸ H)
theorem neg_neg_of_pos {a : A} (H : 0 < a) : -a < 0 :=
neg_zero ▸ neg_lt_neg H
theorem neg_neg_iff_pos : -a < 0 ↔ 0 < a :=
iff.intro pos_of_neg_neg neg_neg_of_pos
theorem neg_of_neg_pos {a : A} (H : 0 < -a) : a < 0 :=
lt_of_neg_lt_neg (neg_zero⁻¹ ▸ H)
theorem neg_pos_of_neg {a : A} (H : a < 0) : 0 < -a :=
neg_zero ▸ neg_lt_neg H
theorem neg_pos_iff_neg : 0 < -a ↔ a < 0 :=
iff.intro neg_of_neg_pos neg_pos_of_neg
theorem le_neg_iff_le_neg : a ≤ -b ↔ b ≤ -a := !neg_neg ▸ !neg_le_neg_iff_le
theorem le_neg_of_le_neg {a b : A} : a ≤ -b → b ≤ -a := iff.mp !le_neg_iff_le_neg
theorem neg_le_iff_neg_le : -a ≤ b ↔ -b ≤ a := !neg_neg ▸ !neg_le_neg_iff_le
theorem neg_le_of_neg_le {a b : A} : -a ≤ b → -b ≤ a := iff.mp !neg_le_iff_neg_le
theorem lt_neg_iff_lt_neg : a < -b ↔ b < -a := !neg_neg ▸ !neg_lt_neg_iff_lt
theorem lt_neg_of_lt_neg {a b : A} : a < -b → b < -a := iff.mp !lt_neg_iff_lt_neg
theorem neg_lt_iff_neg_lt : -a < b ↔ -b < a := !neg_neg ▸ !neg_lt_neg_iff_lt
theorem neg_lt_of_neg_lt {a b : A} : -a < b → -b < a := iff.mp !neg_lt_iff_neg_lt
theorem sub_nonneg_iff_le : 0 ≤ a - b ↔ b ≤ a := !sub_self ▸ !add_le_add_right_iff
theorem sub_nonneg_of_le {a b : A} : b ≤ a → 0 ≤ a - b := iff.mpr !sub_nonneg_iff_le
theorem le_of_sub_nonneg {a b : A} : 0 ≤ a - b → b ≤ a := iff.mp !sub_nonneg_iff_le
theorem sub_nonpos_iff_le : a - b ≤ 0 ↔ a ≤ b := !sub_self ▸ !add_le_add_right_iff
theorem sub_nonpos_of_le {a b : A} : a ≤ b → a - b ≤ 0 := iff.mpr !sub_nonpos_iff_le
theorem le_of_sub_nonpos {a b : A} : a - b ≤ 0 → a ≤ b := iff.mp !sub_nonpos_iff_le
theorem sub_pos_iff_lt : 0 < a - b ↔ b < a := !sub_self ▸ !add_lt_add_right_iff
theorem sub_pos_of_lt {a b : A} : b < a → 0 < a - b := iff.mpr !sub_pos_iff_lt
theorem lt_of_sub_pos {a b : A} : 0 < a - b → b < a := iff.mp !sub_pos_iff_lt
theorem sub_neg_iff_lt : a - b < 0 ↔ a < b := !sub_self ▸ !add_lt_add_right_iff
theorem sub_neg_of_lt {a b : A} : a < b → a - b < 0 := iff.mpr !sub_neg_iff_lt
theorem lt_of_sub_neg {a b : A} : a - b < 0 → a < b := iff.mp !sub_neg_iff_lt
theorem add_le_iff_le_neg_add : a + b ≤ c ↔ b ≤ -a + c :=
have H: a + b ≤ c ↔ -a + (a + b) ≤ -a + c, from iff.symm (!add_le_add_left_iff),
!neg_add_cancel_left ▸ H
theorem add_le_of_le_neg_add {a b c : A} : b ≤ -a + c → a + b ≤ c :=
iff.mpr !add_le_iff_le_neg_add
theorem le_neg_add_of_add_le {a b c : A} : a + b ≤ c → b ≤ -a + c :=
iff.mp !add_le_iff_le_neg_add
theorem add_le_iff_le_sub_left : a + b ≤ c ↔ b ≤ c - a :=
by rewrite [sub_eq_add_neg, {c+_}add.comm]; apply add_le_iff_le_neg_add
theorem add_le_of_le_sub_left {a b c : A} : b ≤ c - a → a + b ≤ c :=
iff.mpr !add_le_iff_le_sub_left
theorem le_sub_left_of_add_le {a b c : A} : a + b ≤ c → b ≤ c - a :=
iff.mp !add_le_iff_le_sub_left
theorem add_le_iff_le_sub_right : a + b ≤ c ↔ a ≤ c - b :=
have H: a + b ≤ c ↔ a + b - b ≤ c - b, from iff.symm (!add_le_add_right_iff),
!add_neg_cancel_right ▸ H
theorem add_le_of_le_sub_right {a b c : A} : a ≤ c - b → a + b ≤ c :=
iff.mpr !add_le_iff_le_sub_right
theorem le_sub_right_of_add_le {a b c : A} : a + b ≤ c → a ≤ c - b :=
iff.mp !add_le_iff_le_sub_right
theorem le_add_iff_neg_add_le : a ≤ b + c ↔ -b + a ≤ c :=
assert H: a ≤ b + c ↔ -b + a ≤ -b + (b + c), from iff.symm (!add_le_add_left_iff),
by rewrite neg_add_cancel_left at H; exact H
theorem le_add_of_neg_add_le {a b c : A} : -b + a ≤ c → a ≤ b + c :=
iff.mpr !le_add_iff_neg_add_le
theorem neg_add_le_of_le_add {a b c : A} : a ≤ b + c → -b + a ≤ c :=
iff.mp !le_add_iff_neg_add_le
theorem le_add_iff_sub_left_le : a ≤ b + c ↔ a - b ≤ c :=
by rewrite [sub_eq_add_neg, {a+_}add.comm]; apply le_add_iff_neg_add_le
theorem le_add_of_sub_left_le {a b c : A} : a - b ≤ c → a ≤ b + c :=
iff.mpr !le_add_iff_sub_left_le
theorem sub_left_le_of_le_add {a b c : A} : a ≤ b + c → a - b ≤ c :=
iff.mp !le_add_iff_sub_left_le
theorem le_add_iff_sub_right_le : a ≤ b + c ↔ a - c ≤ b :=
assert H: a ≤ b + c ↔ a - c ≤ b + c - c, from iff.symm (!add_le_add_right_iff),
by rewrite [sub_eq_add_neg (b+c) c at H, add_neg_cancel_right at H]; exact H
theorem le_add_of_sub_right_le {a b c : A} : a - c ≤ b → a ≤ b + c :=
iff.mpr !le_add_iff_sub_right_le
theorem sub_right_le_of_le_add {a b c : A} : a ≤ b + c → a - c ≤ b :=
iff.mp !le_add_iff_sub_right_le
theorem le_add_iff_neg_add_le_left : a ≤ b + c ↔ -b + a ≤ c :=
assert H: a ≤ b + c ↔ -b + a ≤ -b + (b + c), from iff.symm (!add_le_add_left_iff),
by rewrite neg_add_cancel_left at H; exact H
theorem le_add_of_neg_add_le_left {a b c : A} : -b + a ≤ c → a ≤ b + c :=
iff.mpr !le_add_iff_neg_add_le_left
theorem neg_add_le_left_of_le_add {a b c : A} : a ≤ b + c → -b + a ≤ c :=
iff.mp !le_add_iff_neg_add_le_left
theorem le_add_iff_neg_add_le_right : a ≤ b + c ↔ -c + a ≤ b :=
by rewrite add.comm; apply le_add_iff_neg_add_le_left
theorem le_add_of_neg_add_le_right {a b c : A} : -c + a ≤ b → a ≤ b + c :=
iff.mpr !le_add_iff_neg_add_le_right
theorem neg_add_le_right_of_le_add {a b c : A} : a ≤ b + c → -c + a ≤ b :=
iff.mp !le_add_iff_neg_add_le_right
theorem le_add_iff_neg_le_sub_left : c ≤ a + b ↔ -a ≤ b - c :=
assert H : c ≤ a + b ↔ -a + c ≤ b, from !le_add_iff_neg_add_le,
assert H' : -a + c ≤ b ↔ -a ≤ b - c, from !add_le_iff_le_sub_right,
iff.trans H H'
theorem le_add_of_neg_le_sub_left {a b c : A} : -a ≤ b - c → c ≤ a + b :=
iff.mpr !le_add_iff_neg_le_sub_left
theorem neg_le_sub_left_of_le_add {a b c : A} : c ≤ a + b → -a ≤ b - c :=
iff.mp !le_add_iff_neg_le_sub_left
theorem le_add_iff_neg_le_sub_right : c ≤ a + b ↔ -b ≤ a - c :=
by rewrite add.comm; apply le_add_iff_neg_le_sub_left
theorem le_add_of_neg_le_sub_right {a b c : A} : -b ≤ a - c → c ≤ a + b :=
iff.mpr !le_add_iff_neg_le_sub_right
theorem neg_le_sub_right_of_le_add {a b c : A} : c ≤ a + b → -b ≤ a - c :=
iff.mp !le_add_iff_neg_le_sub_right
theorem add_lt_iff_lt_neg_add_left : a + b < c ↔ b < -a + c :=
assert H: a + b < c ↔ -a + (a + b) < -a + c, from iff.symm (!add_lt_add_left_iff),
begin rewrite neg_add_cancel_left at H, exact H end
theorem add_lt_of_lt_neg_add_left {a b c : A} : b < -a + c → a + b < c :=
iff.mpr !add_lt_iff_lt_neg_add_left
theorem lt_neg_add_left_of_add_lt {a b c : A} : a + b < c → b < -a + c :=
iff.mp !add_lt_iff_lt_neg_add_left
theorem add_lt_iff_lt_neg_add_right : a + b < c ↔ a < -b + c :=
by rewrite add.comm; apply add_lt_iff_lt_neg_add_left
theorem add_lt_of_lt_neg_add_right {a b c : A} : a < -b + c → a + b < c :=
iff.mpr !add_lt_iff_lt_neg_add_right
theorem lt_neg_add_right_of_add_lt {a b c : A} : a + b < c → a < -b + c :=
iff.mp !add_lt_iff_lt_neg_add_right
theorem add_lt_iff_lt_sub_left : a + b < c ↔ b < c - a :=
begin
rewrite [sub_eq_add_neg, {c+_}add.comm],
apply add_lt_iff_lt_neg_add_left
end
theorem add_lt_of_lt_sub_left {a b c : A} : b < c - a → a + b < c :=
iff.mpr !add_lt_iff_lt_sub_left
theorem lt_sub_left_of_add_lt {a b c : A} : a + b < c → b < c - a :=
iff.mp !add_lt_iff_lt_sub_left
theorem add_lt_iff_lt_sub_right : a + b < c ↔ a < c - b :=
assert H: a + b < c ↔ a + b - b < c - b, from iff.symm (!add_lt_add_right_iff),
by rewrite [sub_eq_add_neg at H, add_neg_cancel_right at H]; exact H
theorem add_lt_of_lt_sub_right {a b c : A} : a < c - b → a + b < c :=
iff.mpr !add_lt_iff_lt_sub_right
theorem lt_sub_right_of_add_lt {a b c : A} : a + b < c → a < c - b :=
iff.mp !add_lt_iff_lt_sub_right
theorem lt_add_iff_neg_add_lt_left : a < b + c ↔ -b + a < c :=
assert H: a < b + c ↔ -b + a < -b + (b + c), from iff.symm (!add_lt_add_left_iff),
by rewrite neg_add_cancel_left at H; exact H
theorem lt_add_of_neg_add_lt_left {a b c : A} : -b + a < c → a < b + c :=
iff.mpr !lt_add_iff_neg_add_lt_left
theorem neg_add_lt_left_of_lt_add {a b c : A} : a < b + c → -b + a < c :=
iff.mp !lt_add_iff_neg_add_lt_left
theorem lt_add_iff_neg_add_lt_right : a < b + c ↔ -c + a < b :=
by rewrite add.comm; apply lt_add_iff_neg_add_lt_left
theorem lt_add_of_neg_add_lt_right {a b c : A} : -c + a < b → a < b + c :=
iff.mpr !lt_add_iff_neg_add_lt_right
theorem neg_add_lt_right_of_lt_add {a b c : A} : a < b + c → -c + a < b :=
iff.mp !lt_add_iff_neg_add_lt_right
theorem lt_add_iff_sub_lt_left : a < b + c ↔ a - b < c :=
by rewrite [sub_eq_add_neg, {a + _}add.comm]; apply lt_add_iff_neg_add_lt_left
theorem lt_add_of_sub_lt_left {a b c : A} : a - b < c → a < b + c :=
iff.mpr !lt_add_iff_sub_lt_left
theorem sub_lt_left_of_lt_add {a b c : A} : a < b + c → a - b < c :=
iff.mp !lt_add_iff_sub_lt_left
theorem lt_add_iff_sub_lt_right : a < b + c ↔ a - c < b :=
by rewrite add.comm; apply lt_add_iff_sub_lt_left
theorem lt_add_of_sub_lt_right {a b c : A} : a - c < b → a < b + c :=
iff.mpr !lt_add_iff_sub_lt_right
theorem sub_lt_right_of_lt_add {a b c : A} : a < b + c → a - c < b :=
iff.mp !lt_add_iff_sub_lt_right
theorem sub_lt_of_sub_lt {a b c : A} : a - b < c → a - c < b :=
begin
intro H,
apply sub_lt_left_of_lt_add,
apply lt_add_of_sub_lt_right H
end
theorem sub_le_of_sub_le {a b c : A} : a - b ≤ c → a - c ≤ b :=
begin
intro H,
apply sub_left_le_of_le_add,
apply le_add_of_sub_right_le H
end
-- TODO: the Isabelle library has varations on a + b ≤ b ↔ a ≤ 0
theorem le_iff_le_of_sub_eq_sub {a b c d : A} (H : a - b = c - d) : a ≤ b ↔ c ≤ d :=
calc
a ≤ b ↔ a - b ≤ 0 : iff.symm (sub_nonpos_iff_le a b)
... = (c - d ≤ 0) : by rewrite H
... ↔ c ≤ d : sub_nonpos_iff_le c d
theorem lt_iff_lt_of_sub_eq_sub {a b c d : A} (H : a - b = c - d) : a < b ↔ c < d :=
calc
a < b ↔ a - b < 0 : iff.symm (sub_neg_iff_lt a b)
... = (c - d < 0) : by rewrite H
... ↔ c < d : sub_neg_iff_lt c d
theorem sub_le_sub_left {a b : A} (H : a ≤ b) (c : A) : c - b ≤ c - a :=
add_le_add_left (neg_le_neg H) c
theorem sub_le_sub_right {a b : A} (H : a ≤ b) (c : A) : a - c ≤ b - c := add_le_add_right H (-c)
theorem sub_le_sub {a b c d : A} (Hab : a ≤ b) (Hcd : c ≤ d) : a - d ≤ b - c :=
add_le_add Hab (neg_le_neg Hcd)
theorem sub_lt_sub_left {a b : A} (H : a < b) (c : A) : c - b < c - a :=
add_lt_add_left (neg_lt_neg H) c
theorem sub_lt_sub_right {a b : A} (H : a < b) (c : A) : a - c < b - c := add_lt_add_right H (-c)
theorem sub_lt_sub {a b c d : A} (Hab : a < b) (Hcd : c < d) : a - d < b - c :=
add_lt_add Hab (neg_lt_neg Hcd)
theorem sub_lt_sub_of_le_of_lt {a b c d : A} (Hab : a ≤ b) (Hcd : c < d) : a - d < b - c :=
add_lt_add_of_le_of_lt Hab (neg_lt_neg Hcd)
theorem sub_lt_sub_of_lt_of_le {a b c d : A} (Hab : a < b) (Hcd : c ≤ d) : a - d < b - c :=
add_lt_add_of_lt_of_le Hab (neg_le_neg Hcd)
theorem sub_le_self (a : A) {b : A} (H : b ≥ 0) : a - b ≤ a :=
calc
a - b = a + -b : rfl
... ≤ a + 0 : add_le_add_left (neg_nonpos_of_nonneg H)
... = a : by rewrite add_zero
theorem sub_lt_self (a : A) {b : A} (H : b > 0) : a - b < a :=
calc
a - b = a + -b : rfl
... < a + 0 : add_lt_add_left (neg_neg_of_pos H)
... = a : by rewrite add_zero
theorem add_le_add_three {a b c d e f : A} (H1 : a ≤ d) (H2 : b ≤ e) (H3 : c ≤ f) :
a + b + c ≤ d + e + f :=
begin
apply le.trans,
apply add_le_add,
apply add_le_add,
repeat assumption,
apply le.refl
end
theorem sub_le_of_nonneg {b : A} (H : b ≥ 0) : a - b ≤ a :=
add_le_of_le_of_nonpos (le.refl a) (neg_nonpos_of_nonneg H)
theorem sub_lt_of_pos {b : A} (H : b > 0) : a - b < a :=
add_lt_of_le_of_neg (le.refl a) (neg_neg_of_pos H)
theorem neg_add_neg_le_neg_of_pos {a : A} (H : a > 0) : -a + -a ≤ -a :=
!neg_add ▸ neg_le_neg (le_add_of_nonneg_left (le_of_lt H))
end
/- linear ordered group with decidable order -/
structure decidable_linear_ordered_comm_group [class] (A : Type)
extends add_comm_group A, decidable_linear_order A :=
(add_le_add_left : ∀ a b, le a b → ∀ c, le (add c a) (add c b))
(add_lt_add_left : ∀ a b, lt a b → ∀ c, lt (add c a) (add c b))
definition decidable_linear_ordered_comm_group.to_ordered_comm_group
[trans_instance] [reducible]
(A : Type) [s : decidable_linear_ordered_comm_group A] : ordered_comm_group A :=
⦃ ordered_comm_group, s,
le_of_lt := @le_of_lt A _,
lt_of_le_of_lt := @lt_of_le_of_lt A _,
lt_of_lt_of_le := @lt_of_lt_of_le A _ ⦄
section
variables [s : decidable_linear_ordered_comm_group A]
variables {a b c d e : A}
include s
/- these can be generalized to a lattice ordered group -/
theorem min_add_add_left : min (a + b) (a + c) = a + min b c :=
eq.symm (eq_min
(show a + min b c ≤ a + b, from add_le_add_left !min_le_left _)
(show a + min b c ≤ a + c, from add_le_add_left !min_le_right _)
(take d,
assume H₁ : d ≤ a + b,
assume H₂ : d ≤ a + c,
have H : d - a ≤ min b c,
from le_min (iff.mp !le_add_iff_sub_left_le H₁) (iff.mp !le_add_iff_sub_left_le H₂),
show d ≤ a + min b c, from iff.mpr !le_add_iff_sub_left_le H))
theorem min_add_add_right : min (a + c) (b + c) = min a b + c :=
by rewrite [add.comm a c, add.comm b c, add.comm _ c]; apply min_add_add_left
theorem max_add_add_left : max (a + b) (a + c) = a + max b c :=
eq.symm (eq_max
(add_le_add_left !le_max_left _)
(add_le_add_left !le_max_right _)
(λ d H₁ H₂,
have H : max b c ≤ d - a,
from max_le (iff.mp !add_le_iff_le_sub_left H₁) (iff.mp !add_le_iff_le_sub_left H₂),
show a + max b c ≤ d, from iff.mpr !add_le_iff_le_sub_left H))
theorem max_add_add_right : max (a + c) (b + c) = max a b + c :=
by rewrite [add.comm a c, add.comm b c, add.comm _ c]; apply max_add_add_left
theorem max_neg_neg : max (-a) (-b) = - min a b :=
eq.symm (eq_max
(show -a ≤ -(min a b), from neg_le_neg !min_le_left)
(show -b ≤ -(min a b), from neg_le_neg !min_le_right)
(take d,
assume H₁ : -a ≤ d,
assume H₂ : -b ≤ d,
have H : -d ≤ min a b,
from le_min (!iff.mp !neg_le_iff_neg_le H₁) (!iff.mp !neg_le_iff_neg_le H₂),
show -(min a b) ≤ d, from !iff.mp !neg_le_iff_neg_le H))
theorem min_eq_neg_max_neg_neg : min a b = - max (-a) (-b) :=
by rewrite [max_neg_neg, neg_neg]
theorem min_neg_neg : min (-a) (-b) = - max a b :=
by rewrite [min_eq_neg_max_neg_neg, *neg_neg]
theorem max_eq_neg_min_neg_neg : max a b = - min (-a) (-b) :=
by rewrite [min_neg_neg, neg_neg]
/- absolute value -/
variables {a b c}
definition abs (a : A) : A := max a (-a)
theorem abs_of_nonneg (H : a ≥ 0) : abs a = a :=
have H' : -a ≤ a, from le.trans (neg_nonpos_of_nonneg H) H,
max_eq_left H'
theorem abs_of_pos (H : a > 0) : abs a = a :=
abs_of_nonneg (le_of_lt H)
theorem abs_of_nonpos (H : a ≤ 0) : abs a = -a :=
have H' : a ≤ -a, from le.trans H (neg_nonneg_of_nonpos H),
max_eq_right H'
theorem abs_of_neg (H : a < 0) : abs a = -a := abs_of_nonpos (le_of_lt H)
theorem abs_zero : abs 0 = (0:A) := abs_of_nonneg (le.refl _)
theorem abs_neg (a : A) : abs (-a) = abs a :=
by rewrite [↑abs, max.comm, neg_neg]
theorem abs_pos_of_pos (H : a > 0) : abs a > 0 :=
by rewrite (abs_of_pos H); exact H
theorem abs_pos_of_neg (H : a < 0) : abs a > 0 :=
!abs_neg ▸ abs_pos_of_pos (neg_pos_of_neg H)
theorem abs_sub (a b : A) : abs (a - b) = abs (b - a) :=
by rewrite [-neg_sub, abs_neg]
theorem ne_zero_of_abs_ne_zero {a : A} (H : abs a ≠ 0) : a ≠ 0 :=
assume Ha, H (Ha⁻¹ ▸ abs_zero)
/- these assume a linear order -/
theorem eq_zero_of_neg_eq (H : -a = a) : a = 0 :=
lt.by_cases
(assume H1 : a < 0,
have H2: a > 0, from H ▸ neg_pos_of_neg H1,
absurd H1 (lt.asymm H2))
(assume H1 : a = 0, H1)
(assume H1 : a > 0,
have H2: a < 0, from H ▸ neg_neg_of_pos H1,
absurd H1 (lt.asymm H2))
theorem abs_nonneg (a : A) : abs a ≥ 0 :=
or.elim (le.total 0 a)
(assume H : 0 ≤ a, by rewrite (abs_of_nonneg H); exact H)
(assume H : a ≤ 0,
calc
0 ≤ -a : neg_nonneg_of_nonpos H
... = abs a : abs_of_nonpos H)
theorem abs_abs (a : A) : abs (abs a) = abs a := abs_of_nonneg !abs_nonneg
theorem le_abs_self (a : A) : a ≤ abs a :=
or.elim (le.total 0 a)
(assume H : 0 ≤ a, abs_of_nonneg H ▸ !le.refl)
(assume H : a ≤ 0, le.trans H !abs_nonneg)
theorem neg_le_abs_self (a : A) : -a ≤ abs a :=
!abs_neg ▸ !le_abs_self
theorem eq_zero_of_abs_eq_zero (H : abs a = 0) : a = 0 :=
have H1 : a ≤ 0, from H ▸ le_abs_self a,
have H2 : -a ≤ 0, from H ▸ abs_neg a ▸ le_abs_self (-a),
le.antisymm H1 (nonneg_of_neg_nonpos H2)
theorem abs_eq_zero_iff_eq_zero (a : A) : abs a = 0 ↔ a = 0 :=
iff.intro eq_zero_of_abs_eq_zero (assume H, congr_arg abs H ⬝ !abs_zero)
theorem eq_of_abs_sub_eq_zero {a b : A} (H : abs (a - b) = 0) : a = b :=
have a - b = 0, from eq_zero_of_abs_eq_zero H,
show a = b, from eq_of_sub_eq_zero this
theorem abs_pos_of_ne_zero (H : a ≠ 0) : abs a > 0 :=
or.elim (lt_or_gt_of_ne H) abs_pos_of_neg abs_pos_of_pos
theorem abs.by_cases {P : A → Prop} {a : A} (H1 : P a) (H2 : P (-a)) : P (abs a) :=
or.elim (le.total 0 a)
(assume H : 0 ≤ a, (abs_of_nonneg H)⁻¹ ▸ H1)
(assume H : a ≤ 0, (abs_of_nonpos H)⁻¹ ▸ H2)
theorem abs_le_of_le_of_neg_le (H1 : a ≤ b) (H2 : -a ≤ b) : abs a ≤ b :=
abs.by_cases H1 H2
theorem abs_lt_of_lt_of_neg_lt (H1 : a < b) (H2 : -a < b) : abs a < b :=
abs.by_cases H1 H2
-- the triangle inequality
section
private lemma aux1 {a b : A} (H1 : a + b ≥ 0) (H2 : a ≥ 0) : abs (a + b) ≤ abs a + abs b :=
decidable.by_cases
(assume H3 : b ≥ 0,
calc
abs (a + b) ≤ abs (a + b) : le.refl
... = a + b : by rewrite (abs_of_nonneg H1)
... = abs a + b : by rewrite (abs_of_nonneg H2)
... = abs a + abs b : by rewrite (abs_of_nonneg H3))
(assume H3 : ¬ b ≥ 0,
assert H4 : b ≤ 0, from le_of_lt (lt_of_not_ge H3),
calc
abs (a + b) = a + b : by rewrite (abs_of_nonneg H1)
... = abs a + b : by rewrite (abs_of_nonneg H2)
... ≤ abs a + 0 : add_le_add_left H4
... ≤ abs a + -b : add_le_add_left (neg_nonneg_of_nonpos H4)
... = abs a + abs b : by rewrite (abs_of_nonpos H4))
private lemma aux2 {a b : A} (H1 : a + b ≥ 0) : abs (a + b) ≤ abs a + abs b :=
or.elim (le.total b 0)
(assume H2 : b ≤ 0,
have H3 : ¬ a < 0, from
assume H4 : a < 0,
have H5 : a + b < 0, from !add_zero ▸ add_lt_add_of_lt_of_le H4 H2,
not_lt_of_ge H1 H5,
aux1 H1 (le_of_not_gt H3))
(assume H2 : 0 ≤ b,
begin
have H3 : abs (b + a) ≤ abs b + abs a,
begin
rewrite add.comm at H1,
exact aux1 H1 H2
end,
rewrite [add.comm, {abs a + _}add.comm],
exact H3
end)
theorem abs_add_le_abs_add_abs (a b : A) : abs (a + b) ≤ abs a + abs b :=
or.elim (le.total 0 (a + b))
(assume H2 : 0 ≤ a + b, aux2 H2)
(assume H2 : a + b ≤ 0,
assert H3 : -a + -b = -(a + b), by rewrite neg_add,
assert H4 : -(a + b) ≥ 0, from iff.mpr (neg_nonneg_iff_nonpos (a+b)) H2,
have H5 : -a + -b ≥ 0, begin rewrite -H3 at H4, exact H4 end,
calc
abs (a + b) = abs (-a + -b) : by rewrite [-abs_neg, neg_add]
... ≤ abs (-a) + abs (-b) : aux2 H5
... = abs a + abs b : by rewrite *abs_neg)
theorem abs_sub_abs_le_abs_sub (a b : A) : abs a - abs b ≤ abs (a - b) :=
have H1 : abs a - abs b + abs b ≤ abs (a - b) + abs b, from
calc
abs a - abs b + abs b = abs a : by rewrite sub_add_cancel
... = abs (a - b + b) : by rewrite sub_add_cancel
... ≤ abs (a - b) + abs b : abs_add_le_abs_add_abs,
algebra.le_of_add_le_add_right H1
theorem abs_sub_le (a b c : A) : abs (a - c) ≤ abs (a - b) + abs (b - c) :=
calc
abs (a - c) = abs (a - b + (b - c)) : by rewrite [*sub_eq_add_neg, add.assoc, neg_add_cancel_left]
... ≤ abs (a - b) + abs (b - c) : abs_add_le_abs_add_abs
theorem abs_add_three (a b c : A) : abs (a + b + c) ≤ abs a + abs b + abs c :=
begin
apply le.trans,
apply abs_add_le_abs_add_abs,
apply le.trans,
apply add_le_add_right,
apply abs_add_le_abs_add_abs,
apply le.refl
end
theorem dist_bdd_within_interval {a b lb ub : A} (H : lb < ub) (Hal : lb ≤ a) (Hau : a ≤ ub)
(Hbl : lb ≤ b) (Hbu : b ≤ ub) : abs (a - b) ≤ ub - lb :=
begin
cases (decidable.em (b ≤ a)) with [Hba, Hba],
rewrite (abs_of_nonneg (iff.mpr !sub_nonneg_iff_le Hba)),
apply sub_le_sub,
apply Hau,
apply Hbl,
rewrite [abs_of_neg (iff.mpr !sub_neg_iff_lt (lt_of_not_ge Hba)), neg_sub],
apply sub_le_sub,
apply Hbu,
apply Hal
end
end
end
end algebra
|
95b5e07936b3de30ddd9df2b163d023f51ffeb86
|
69d4931b605e11ca61881fc4f66db50a0a875e39
|
/src/ring_theory/algebra_tower.lean
|
0e69fa135c063ddce21f8c24e962b3143dc54d4a
|
[
"Apache-2.0"
] |
permissive
|
abentkamp/mathlib
|
d9a75d291ec09f4637b0f30cc3880ffb07549ee5
|
5360e476391508e092b5a1e5210bd0ed22dc0755
|
refs/heads/master
| 1,682,382,954,948
| 1,622,106,077,000
| 1,622,106,077,000
| 149,285,665
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 12,563
|
lean
|
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import algebra.algebra.tower
import algebra.invertible
import linear_algebra.basis
import ring_theory.adjoin.basic
import ring_theory.polynomial.tower
/-!
# Towers of algebras
We set up the basic theory of algebra towers.
An algebra tower A/S/R is expressed by having instances of `algebra A S`,
`algebra R S`, `algebra R A` and `is_scalar_tower R S A`, the later asserting the
compatibility condition `(r • s) • a = r • (s • a)`.
In `field_theory/tower.lean` we use this to prove the tower law for finite extensions,
that if `R` and `S` are both fields, then `[A:R] = [A:S] [S:A]`.
In this file we prepare the main lemma:
if `{bi | i ∈ I}` is an `R`-basis of `S` and `{cj | j ∈ J}` is a `S`-basis
of `A`, then `{bi cj | i ∈ I, j ∈ J}` is an `R`-basis of `A`. This statement does not require the
base rings to be a field, so we also generalize the lemma to rings in this file.
-/
universes u v w u₁
variables (R : Type u) (S : Type v) (A : Type w) (B : Type u₁)
namespace is_scalar_tower
section semiring
variables [comm_semiring R] [comm_semiring S] [semiring A] [semiring B]
variables [algebra R S] [algebra S A] [algebra S B] [algebra R A] [algebra R B]
variables [is_scalar_tower R S A] [is_scalar_tower R S B]
variables (R S A B)
/-- Suppose that `R -> S -> A` is a tower of algebras.
If an element `r : R` is invertible in `S`, then it is invertible in `A`. -/
def invertible.algebra_tower (r : R) [invertible (algebra_map R S r)] :
invertible (algebra_map R A r) :=
invertible.copy (invertible.map (algebra_map S A : S →* A) (algebra_map R S r)) (algebra_map R A r)
(by rw [ring_hom.coe_monoid_hom, is_scalar_tower.algebra_map_apply R S A])
/-- A natural number that is invertible when coerced to `R` is also invertible
when coerced to any `R`-algebra. -/
def invertible_algebra_coe_nat (n : ℕ) [inv : invertible (n : R)] :
invertible (n : A) :=
by { haveI : invertible (algebra_map ℕ R n) := inv, exact invertible.algebra_tower ℕ R A n }
end semiring
section comm_semiring
variables [comm_semiring R] [comm_semiring A] [comm_semiring B]
variables [algebra R A] [algebra A B] [algebra R B] [is_scalar_tower R A B]
end comm_semiring
end is_scalar_tower
namespace algebra
theorem adjoin_algebra_map' {R : Type u} {S : Type v} {A : Type w}
[comm_ring R] [comm_ring S] [comm_ring A] [algebra R S] [algebra S A] (s : set S) :
adjoin R (algebra_map S (comap R S A) '' s) = subalgebra.map (adjoin R s) (to_comap R S A) :=
le_antisymm (adjoin_le $ set.image_subset_iff.2 $ λ y hy, ⟨y, subset_adjoin hy, rfl⟩)
(subalgebra.map_le.2 $ adjoin_le $ λ y hy, subset_adjoin ⟨y, hy, rfl⟩)
theorem adjoin_algebra_map (R : Type u) (S : Type v) (A : Type w)
[comm_ring R] [comm_ring S] [comm_ring A] [algebra R S] [algebra S A] [algebra R A]
[is_scalar_tower R S A] (s : set S) :
adjoin R (algebra_map S A '' s) =
subalgebra.map (adjoin R s) (is_scalar_tower.to_alg_hom R S A) :=
le_antisymm (adjoin_le $ set.image_subset_iff.2 $ λ y hy, ⟨y, subset_adjoin hy, rfl⟩)
(subalgebra.map_le.2 $ adjoin_le $ λ y hy, subset_adjoin ⟨y, hy, rfl⟩)
lemma adjoin_res (C D E : Type*) [comm_semiring C] [comm_semiring D] [comm_semiring E]
[algebra C D] [algebra C E] [algebra D E] [is_scalar_tower C D E] (S : set E) :
(algebra.adjoin D S).res C = ((⊤ : subalgebra C D).map (is_scalar_tower.to_alg_hom C D E)).under
(algebra.adjoin ((⊤ : subalgebra C D).map (is_scalar_tower.to_alg_hom C D E)) S) :=
begin
suffices : set.range (algebra_map D E) =
set.range (algebra_map ((⊤ : subalgebra C D).map (is_scalar_tower.to_alg_hom C D E)) E),
{ ext x, change x ∈ subsemiring.closure (_ ∪ S) ↔ x ∈ subsemiring.closure (_ ∪ S), rw this },
ext x,
split,
{ rintros ⟨y, hy⟩,
exact ⟨⟨algebra_map D E y, ⟨y, ⟨algebra.mem_top, rfl⟩⟩⟩, hy⟩ },
{ rintros ⟨⟨y, ⟨z, ⟨h0, h1⟩⟩⟩, h2⟩,
exact ⟨z, eq.trans h1 h2⟩ },
end
lemma adjoin_res_eq_adjoin_res (C D E F : Type*) [comm_semiring C] [comm_semiring D]
[comm_semiring E] [comm_semiring F] [algebra C D] [algebra C E] [algebra C F] [algebra D F]
[algebra E F] [is_scalar_tower C D F] [is_scalar_tower C E F] {S : set D} {T : set E}
(hS : algebra.adjoin C S = ⊤) (hT : algebra.adjoin C T = ⊤) :
(algebra.adjoin E (algebra_map D F '' S)).res C =
(algebra.adjoin D (algebra_map E F '' T)).res C :=
by { rw [adjoin_res, adjoin_res, ←hS, ←hT, ←algebra.adjoin_image, ←algebra.adjoin_image,
←alg_hom.coe_to_ring_hom, ←alg_hom.coe_to_ring_hom, is_scalar_tower.coe_to_alg_hom,
is_scalar_tower.coe_to_alg_hom, ←algebra.adjoin_union, ←algebra.adjoin_union, set.union_comm] }
end algebra
section
open_locale classical
lemma algebra.fg_trans' {R S A : Type*} [comm_ring R] [comm_ring S] [comm_ring A]
[algebra R S] [algebra S A] [algebra R A] [is_scalar_tower R S A]
(hRS : (⊤ : subalgebra R S).fg) (hSA : (⊤ : subalgebra S A).fg) :
(⊤ : subalgebra R A).fg :=
let ⟨s, hs⟩ := hRS, ⟨t, ht⟩ := hSA in ⟨s.image (algebra_map S A) ∪ t,
by rw [finset.coe_union, finset.coe_image, algebra.adjoin_union, algebra.adjoin_algebra_map, hs,
algebra.map_top, is_scalar_tower.range_under_adjoin, ht, subalgebra.res_top]⟩
end
section ring
open finsupp
open_locale big_operators classical
universes v₁ w₁
variables {R S A}
variables [comm_ring R] [ring S] [add_comm_group A]
variables [algebra R S] [module S A] [module R A] [is_scalar_tower R S A]
theorem linear_independent_smul {ι : Type v₁} {b : ι → S} {ι' : Type w₁} {c : ι' → A}
(hb : linear_independent R b) (hc : linear_independent S c) :
linear_independent R (λ p : ι × ι', b p.1 • c p.2) :=
begin
rw linear_independent_iff' at hb hc, rw linear_independent_iff'', rintros s g hg hsg ⟨i, k⟩,
by_cases hik : (i, k) ∈ s,
{ have h1 : ∑ i in (s.image prod.fst).product (s.image prod.snd), g i • b i.1 • c i.2 = 0,
{ rw ← hsg, exact (finset.sum_subset finset.subset_product $ λ p _ hp,
show g p • b p.1 • c p.2 = 0, by rw [hg p hp, zero_smul]).symm },
rw [finset.sum_product, finset.sum_comm] at h1,
simp_rw [← smul_assoc, ← finset.sum_smul] at h1,
exact hb _ _ (hc _ _ h1 k (finset.mem_image_of_mem _ hik)) i (finset.mem_image_of_mem _ hik) },
exact hg _ hik
end
/-- `basis.smul (b : basis ι R S) (c : basis ι S A)` is the `R`-basis on `A`
where the `(i, j)`th basis vector is `b i • c j`. -/
noncomputable def basis.smul {ι : Type v₁} {ι' : Type w₁}
(b : basis ι R S) (c : basis ι' S A) : basis (ι × ι') R A :=
basis.of_repr ((c.repr.restrict_scalars R).trans $
(finsupp.lcongr (equiv.refl _) b.repr).trans $
(finsupp_prod_lequiv R).symm.trans $
(finsupp.lcongr (equiv.prod_comm ι' ι) (linear_equiv.refl _ _)))
@[simp] theorem basis.smul_repr {ι : Type v₁} {ι' : Type w₁}
(b : basis ι R S) (c : basis ι' S A) (x ij):
(b.smul c).repr x ij = b.repr (c.repr x ij.2) ij.1 :=
by simp [basis.smul]
theorem basis.smul_repr_mk {ι : Type v₁} {ι' : Type w₁}
(b : basis ι R S) (c : basis ι' S A) (x i j):
(b.smul c).repr x (i, j) = b.repr (c.repr x j) i :=
b.smul_repr c x (i, j)
@[simp] theorem basis.smul_apply {ι : Type v₁} {ι' : Type w₁}
(b : basis ι R S) (c : basis ι' S A) (ij) :
(b.smul c) ij = b ij.1 • c ij.2 :=
begin
obtain ⟨i, j⟩ := ij,
rw basis.apply_eq_iff,
ext ⟨i', j'⟩,
rw [basis.smul_repr, linear_equiv.map_smul, basis.repr_self, finsupp.smul_apply,
finsupp.single_apply],
dsimp only,
split_ifs with hi,
{ simp [hi, finsupp.single_apply] },
{ simp [hi] },
end
end ring
section artin_tate
variables (C : Type*)
variables [comm_ring A] [comm_ring B] [comm_ring C]
variables [algebra A B] [algebra B C] [algebra A C] [is_scalar_tower A B C]
open finset submodule
open_locale classical
lemma exists_subalgebra_of_fg (hAC : (⊤ : subalgebra A C).fg) (hBC : (⊤ : submodule B C).fg) :
∃ B₀ : subalgebra A B, B₀.fg ∧ (⊤ : submodule B₀ C).fg :=
begin
cases hAC with x hx,
cases hBC with y hy, have := hy,
simp_rw [eq_top_iff', mem_span_finset] at this, choose f hf,
let s : finset B := (finset.product (x ∪ (y * y)) y).image (function.uncurry f),
have hsx : ∀ (xi ∈ x) (yj ∈ y), f xi yj ∈ s := λ xi hxi yj hyj,
show function.uncurry f (xi, yj) ∈ s,
from mem_image_of_mem _ $ mem_product.2 ⟨mem_union_left _ hxi, hyj⟩,
have hsy : ∀ (yi yj yk ∈ y), f (yi * yj) yk ∈ s := λ yi yj yk hyi hyj hyk,
show function.uncurry f (yi * yj, yk) ∈ s,
from mem_image_of_mem _ $ mem_product.2 ⟨mem_union_right _ $ finset.mul_mem_mul hyi hyj, hyk⟩,
have hxy : ∀ xi ∈ x, xi ∈ span (algebra.adjoin A (↑s : set B))
(↑(insert 1 y : finset C) : set C) :=
λ xi hxi, hf xi ▸ sum_mem _ (λ yj hyj, smul_mem
(span (algebra.adjoin A (↑s : set B)) (↑(insert 1 y : finset C) : set C))
⟨f xi yj, algebra.subset_adjoin $ hsx xi hxi yj hyj⟩
(subset_span $ mem_insert_of_mem hyj)),
have hyy : span (algebra.adjoin A (↑s : set B)) (↑(insert 1 y : finset C) : set C) *
span (algebra.adjoin A (↑s : set B)) (↑(insert 1 y : finset C) : set C) ≤
span (algebra.adjoin A (↑s : set B)) (↑(insert 1 y : finset C) : set C),
{ rw [span_mul_span, span_le, coe_insert], rintros _ ⟨yi, yj, rfl | hyi, rfl | hyj, rfl⟩,
{ rw mul_one, exact subset_span (set.mem_insert _ _) },
{ rw one_mul, exact subset_span (set.mem_insert_of_mem _ hyj) },
{ rw mul_one, exact subset_span (set.mem_insert_of_mem _ hyi) },
{ rw ← hf (yi * yj), exact set_like.mem_coe.2 (sum_mem _ $ λ yk hyk, smul_mem
(span (algebra.adjoin A (↑s : set B)) (insert 1 ↑y : set C))
⟨f (yi * yj) yk, algebra.subset_adjoin $ hsy yi yj yk hyi hyj hyk⟩
(subset_span $ set.mem_insert_of_mem _ hyk : yk ∈ _)) } },
refine ⟨algebra.adjoin A (↑s : set B), subalgebra.fg_adjoin_finset _, insert 1 y, _⟩,
refine restrict_scalars_injective A _ _ _,
rw [restrict_scalars_top, eq_top_iff, ← algebra.top_to_submodule, ← hx,
algebra.adjoin_eq_span, span_le],
refine λ r hr, submonoid.closure_induction hr (λ c hc, hxy c hc)
(subset_span $ mem_insert_self _ _) (λ p q hp hq, hyy $ submodule.mul_mem_mul hp hq)
end
/-- Artin--Tate lemma: if A ⊆ B ⊆ C is a chain of subrings of commutative rings, and
A is noetherian, and C is algebra-finite over A, and C is module-finite over B,
then B is algebra-finite over A.
References: Atiyah--Macdonald Proposition 7.8; Stacks 00IS; Altman--Kleiman 16.17. -/
theorem fg_of_fg_of_fg [is_noetherian_ring A]
(hAC : (⊤ : subalgebra A C).fg) (hBC : (⊤ : submodule B C).fg)
(hBCi : function.injective (algebra_map B C)) :
(⊤ : subalgebra A B).fg :=
let ⟨B₀, hAB₀, hB₀C⟩ := exists_subalgebra_of_fg A B C hAC hBC in
algebra.fg_trans' (B₀.fg_top.2 hAB₀) $ subalgebra.fg_of_submodule_fg $
have is_noetherian_ring B₀, from is_noetherian_ring_of_fg hAB₀,
have is_noetherian B₀ C, by exactI is_noetherian_of_fg_of_noetherian' hB₀C,
by exactI fg_of_injective (is_scalar_tower.to_alg_hom B₀ B C).to_linear_map
(linear_map.ker_eq_bot.2 hBCi)
end artin_tate
section alg_hom_tower
variables {A} {C D : Type*} [comm_semiring A] [comm_semiring C] [comm_semiring D]
[algebra A C] [algebra A D]
variables (f : C →ₐ[A] D) (B) [comm_semiring B] [algebra A B] [algebra B C] [is_scalar_tower A B C]
/-- Restrict the domain of an `alg_hom`. -/
def alg_hom.restrict_domain : B →ₐ[A] D := f.comp (is_scalar_tower.to_alg_hom A B C)
/-- Extend the scalars of an `alg_hom`. -/
def alg_hom.extend_scalars : @alg_hom B C D _ _ _ _ (f.restrict_domain B).to_ring_hom.to_algebra :=
{ commutes' := λ _, rfl .. f }
variables {B}
/-- `alg_hom`s from the top of a tower are equivalent to a pair of `alg_hom`s. -/
def alg_hom_equiv_sigma :
(C →ₐ[A] D) ≃ Σ (f : B →ₐ[A] D), @alg_hom B C D _ _ _ _ f.to_ring_hom.to_algebra :=
{ to_fun := λ f, ⟨f.restrict_domain B, f.extend_scalars B⟩,
inv_fun := λ fg,
let alg := fg.1.to_ring_hom.to_algebra in by exactI fg.2.restrict_scalars A,
left_inv := λ f, by { dsimp only, ext, refl },
right_inv :=
begin
rintros ⟨⟨f, _, _, _, _, _⟩, g, _, _, _, _, hg⟩,
have : f = λ x, g (algebra_map B C x) := by { ext, exact (hg x).symm },
subst this,
refl,
end }
end alg_hom_tower
|
1fcdca8f52399598af30402b36b8b9e4fba3e3ba
|
491068d2ad28831e7dade8d6dff871c3e49d9431
|
/tests/lean/run/tt1.lean
|
c8a30b668398db0eb0fab555320b33b163b89418
|
[
"Apache-2.0"
] |
permissive
|
davidmueller13/lean
|
65a3ed141b4088cd0a268e4de80eb6778b21a0e9
|
c626e2e3c6f3771e07c32e82ee5b9e030de5b050
|
refs/heads/master
| 1,611,278,313,401
| 1,444,021,177,000
| 1,444,021,177,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 125
|
lean
|
import data.prod data.num logic.quantifiers
open prod
check (true, false, 10)
-- definition a f := f
check fun x, x ∧ x
|
8b3c2b2baf7bc0278873be17e9f4b5e69ff28bfb
|
8cae430f0a71442d02dbb1cbb14073b31048e4b0
|
/src/data/pequiv.lean
|
bb10920cf8b6c7c955e748fe3f4808261af32413
|
[
"Apache-2.0"
] |
permissive
|
leanprover-community/mathlib
|
56a2cadd17ac88caf4ece0a775932fa26327ba0e
|
442a83d738cb208d3600056c489be16900ba701d
|
refs/heads/master
| 1,693,584,102,358
| 1,693,471,902,000
| 1,693,471,902,000
| 97,922,418
| 1,595
| 352
|
Apache-2.0
| 1,694,693,445,000
| 1,500,624,130,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 13,887
|
lean
|
/-
Copyright (c) 2019 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes
-/
import data.set.basic
/-!
# Partial Equivalences
> THIS FILE IS SYNCHRONIZED WITH MATHLIB4.
> Any changes to this file require a corresponding PR to mathlib4.
In this file, we define partial equivalences `pequiv`, which are a bijection between a subset of `α`
and a subset of `β`. Notationally, a `pequiv` is denoted by "`≃.`" (note that the full stop is part
of the notation). The way we store these internally is with two functions `f : α → option β` and
the reverse function `g : β → option α`, with the condition that if `f a` is `option.some b`,
then `g b` is `option.some a`.
## Main results
- `pequiv.of_set`: creates a `pequiv` from a set `s`,
which sends an element to itself if it is in `s`.
- `pequiv.single`: given two elements `a : α` and `b : β`, create a `pequiv` that sends them to
each other, and ignores all other elements.
- `pequiv.injective_of_forall_ne_is_some`/`injective_of_forall_is_some`: If the domain of a `pequiv`
is all of `α` (except possibly one point), its `to_fun` is injective.
## Canonical order
`pequiv` is canonically ordered by inclusion; that is, if a function `f` defined on a subset `s`
is equal to `g` on that subset, but `g` is also defined on a larger set, then `f ≤ g`. We also have
a definition of `⊥`, which is the empty `pequiv` (sends all to `none`), which in the end gives us a
`semilattice_inf` with an `order_bot` instance.
## Tags
pequiv, partial equivalence
-/
universes u v w x
/-- A `pequiv` is a partial equivalence, a representation of a bijection between a subset
of `α` and a subset of `β`. See also `local_equiv` for a version that requires `to_fun` and
`inv_fun` to be globally defined functions and has `source` and `target` sets as extra fields. -/
structure pequiv (α : Type u) (β : Type v) :=
(to_fun : α → option β)
(inv_fun : β → option α)
(inv : ∀ (a : α) (b : β), a ∈ inv_fun b ↔ b ∈ to_fun a)
infixr ` ≃. `:25 := pequiv
namespace pequiv
variables {α : Type u} {β : Type v} {γ : Type w} {δ : Type x}
open function option
instance fun_like : fun_like (α ≃. β) α (λ _, option β) :=
{ coe := to_fun,
coe_injective' :=
begin
rintro ⟨f₁, f₂, hf⟩ ⟨g₁, g₂, hg⟩ (rfl : f₁ = g₁),
congr' with y x,
simp only [hf, hg]
end }
@[simp] lemma coe_mk_apply (f₁ : α → option β) (f₂ : β → option α) (h) (x : α) :
(pequiv.mk f₁ f₂ h : α → option β) x = f₁ x := rfl
@[ext] lemma ext {f g : α ≃. β} (h : ∀ x, f x = g x) : f = g :=
fun_like.ext f g h
lemma ext_iff {f g : α ≃. β} : f = g ↔ ∀ x, f x = g x := fun_like.ext_iff
/-- The identity map as a partial equivalence. -/
@[refl] protected def refl (α : Type*) : α ≃. α :=
{ to_fun := some,
inv_fun := some,
inv := λ _ _, eq_comm }
/-- The inverse partial equivalence. -/
@[symm] protected def symm (f : α ≃. β) : β ≃. α :=
{ to_fun := f.2,
inv_fun := f.1,
inv := λ _ _, (f.inv _ _).symm }
lemma mem_iff_mem (f : α ≃. β) : ∀ {a : α} {b : β}, a ∈ f.symm b ↔ b ∈ f a := f.3
lemma eq_some_iff (f : α ≃. β) : ∀ {a : α} {b : β}, f.symm b = some a ↔ f a = some b := f.3
/-- Composition of partial equivalences `f : α ≃. β` and `g : β ≃. γ`. -/
@[trans] protected def trans (f : α ≃. β) (g : β ≃. γ) : α ≃. γ :=
{ to_fun := λ a, (f a).bind g,
inv_fun := λ a, (g.symm a).bind f.symm,
inv := λ a b, by simp [*, and.comm, eq_some_iff f, eq_some_iff g] at * }
@[simp] lemma refl_apply (a : α) : pequiv.refl α a = some a := rfl
@[simp] lemma symm_refl : (pequiv.refl α).symm = pequiv.refl α := rfl
@[simp] lemma symm_symm (f : α ≃. β) : f.symm.symm = f := by cases f; refl
lemma symm_injective : function.injective (@pequiv.symm α β) :=
left_inverse.injective symm_symm
lemma trans_assoc (f : α ≃. β) (g : β ≃. γ) (h : γ ≃. δ) :
(f.trans g).trans h = f.trans (g.trans h) :=
ext (λ _, option.bind_assoc _ _ _)
lemma mem_trans (f : α ≃. β) (g : β ≃. γ) (a : α) (c : γ) :
c ∈ f.trans g a ↔ ∃ b, b ∈ f a ∧ c ∈ g b := option.bind_eq_some'
lemma trans_eq_some (f : α ≃. β) (g : β ≃. γ) (a : α) (c : γ) :
f.trans g a = some c ↔ ∃ b, f a = some b ∧ g b = some c := option.bind_eq_some'
lemma trans_eq_none (f : α ≃. β) (g : β ≃. γ) (a : α) :
f.trans g a = none ↔ (∀ b c, b ∉ f a ∨ c ∉ g b) :=
begin
simp only [eq_none_iff_forall_not_mem, mem_trans, imp_iff_not_or.symm],
push_neg, tauto
end
@[simp] lemma refl_trans (f : α ≃. β) : (pequiv.refl α).trans f = f :=
by ext; dsimp [pequiv.trans]; refl
@[simp] lemma trans_refl (f : α ≃. β) : f.trans (pequiv.refl β) = f :=
by ext; dsimp [pequiv.trans]; simp
protected lemma inj (f : α ≃. β) {a₁ a₂ : α} {b : β} (h₁ : b ∈ f a₁) (h₂ : b ∈ f a₂) : a₁ = a₂ :=
by rw ← mem_iff_mem at *; cases h : f.symm b; simp * at *
/-- If the domain of a `pequiv` is `α` except a point, its forward direction is injective. -/
lemma injective_of_forall_ne_is_some (f : α ≃. β) (a₂ : α)
(h : ∀ (a₁ : α), a₁ ≠ a₂ → is_some (f a₁)) : injective f :=
has_left_inverse.injective
⟨λ b, option.rec_on b a₂ (λ b', option.rec_on (f.symm b') a₂ id),
λ x, begin
classical,
cases hfx : f x,
{ have : x = a₂, from not_imp_comm.1 (h x) (hfx.symm ▸ by simp), simp [this] },
{ dsimp only, rw [(eq_some_iff f).2 hfx], refl }
end⟩
/-- If the domain of a `pequiv` is all of `α`, its forward direction is injective. -/
lemma injective_of_forall_is_some {f : α ≃. β}
(h : ∀ (a : α), is_some (f a)) : injective f :=
(classical.em (nonempty α)).elim
(λ hn, injective_of_forall_ne_is_some f (classical.choice hn)
(λ a _, h a))
(λ hn x, (hn ⟨x⟩).elim)
section of_set
variables (s : set α) [decidable_pred (∈ s)]
/-- Creates a `pequiv` that is the identity on `s`, and `none` outside of it. -/
def of_set (s : set α) [decidable_pred (∈ s)] : α ≃. α :=
{ to_fun := λ a, if a ∈ s then some a else none,
inv_fun := λ a, if a ∈ s then some a else none,
inv := λ a b, by
{ split_ifs with hb ha ha,
{ simp [eq_comm] },
{ simp [ne_of_mem_of_not_mem hb ha] },
{ simp [ne_of_mem_of_not_mem ha hb] },
{ simp } } }
lemma mem_of_set_self_iff {s : set α} [decidable_pred (∈ s)] {a : α} : a ∈ of_set s a ↔ a ∈ s :=
by dsimp [of_set]; split_ifs; simp *
lemma mem_of_set_iff {s : set α} [decidable_pred (∈ s)] {a b : α} :
a ∈ of_set s b ↔ a = b ∧ a ∈ s :=
begin
dsimp [of_set],
split_ifs,
{ simp only [iff_self_and, eq_comm],
rintro rfl,
exact h, },
{ simp only [false_iff, not_and],
rintro rfl,
exact h, }
end
@[simp] lemma of_set_eq_some_iff {s : set α} {h : decidable_pred (∈ s)} {a b : α} :
of_set s b = some a ↔ a = b ∧ a ∈ s := mem_of_set_iff
@[simp] lemma of_set_eq_some_self_iff {s : set α} {h : decidable_pred (∈ s)} {a : α} :
of_set s a = some a ↔ a ∈ s := mem_of_set_self_iff
@[simp] lemma of_set_symm : (of_set s).symm = of_set s := rfl
@[simp] lemma of_set_univ : of_set set.univ = pequiv.refl α := rfl
@[simp] lemma of_set_eq_refl {s : set α} [decidable_pred (∈ s)] :
of_set s = pequiv.refl α ↔ s = set.univ :=
⟨λ h, begin
rw [set.eq_univ_iff_forall],
intro,
rw [← mem_of_set_self_iff, h],
exact rfl
end, λ h, by simp only [← of_set_univ, h]⟩
end of_set
lemma symm_trans_rev (f : α ≃. β) (g : β ≃. γ) : (f.trans g).symm = g.symm.trans f.symm := rfl
lemma self_trans_symm (f : α ≃. β) : f.trans f.symm = of_set {a | (f a).is_some} :=
begin
ext,
dsimp [pequiv.trans],
simp only [eq_some_iff f, option.is_some_iff_exists, option.mem_def, bind_eq_some',
of_set_eq_some_iff],
split,
{ rintros ⟨b, hb₁, hb₂⟩,
exact ⟨pequiv.inj _ hb₂ hb₁, b, hb₂⟩ },
{ simp {contextual := tt} }
end
lemma symm_trans_self (f : α ≃. β) : f.symm.trans f = of_set {b | (f.symm b).is_some} :=
symm_injective $ by simp [symm_trans_rev, self_trans_symm, -symm_symm]
lemma trans_symm_eq_iff_forall_is_some {f : α ≃. β} :
f.trans f.symm = pequiv.refl α ↔ ∀ a, is_some (f a) :=
by rw [self_trans_symm, of_set_eq_refl, set.eq_univ_iff_forall]; refl
instance : has_bot (α ≃. β) :=
⟨{ to_fun := λ _, none,
inv_fun := λ _, none,
inv := by simp }⟩
instance : inhabited (α ≃. β) := ⟨⊥⟩
@[simp] lemma bot_apply (a : α) : (⊥ : α ≃. β) a = none := rfl
@[simp] lemma symm_bot : (⊥ : α ≃. β).symm = ⊥ := rfl
@[simp] lemma trans_bot (f : α ≃. β) : f.trans (⊥ : β ≃. γ) = ⊥ :=
by ext; dsimp [pequiv.trans]; simp
@[simp] lemma bot_trans (f : β ≃. γ) : (⊥ : α ≃. β).trans f = ⊥ :=
by ext; dsimp [pequiv.trans]; simp
lemma is_some_symm_get (f : α ≃. β) {a : α} (h : is_some (f a)) :
is_some (f.symm (option.get h)) :=
is_some_iff_exists.2 ⟨a, by rw [f.eq_some_iff, some_get]⟩
section single
variables [decidable_eq α] [decidable_eq β] [decidable_eq γ]
/-- Create a `pequiv` which sends `a` to `b` and `b` to `a`, but is otherwise `none`. -/
def single (a : α) (b : β) : α ≃. β :=
{ to_fun := λ x, if x = a then some b else none,
inv_fun := λ x, if x = b then some a else none,
inv := λ _ _, by simp; split_ifs; cc }
lemma mem_single (a : α) (b : β) : b ∈ single a b a := if_pos rfl
lemma mem_single_iff (a₁ a₂ : α) (b₁ b₂ : β) : b₁ ∈ single a₂ b₂ a₁ ↔ a₁ = a₂ ∧ b₁ = b₂ :=
by dsimp [single]; split_ifs; simp [*, eq_comm]
@[simp] lemma symm_single (a : α) (b : β) : (single a b).symm = single b a := rfl
@[simp] lemma single_apply (a : α) (b : β) : single a b a = some b := if_pos rfl
lemma single_apply_of_ne {a₁ a₂ : α} (h : a₁ ≠ a₂) (b : β) : single a₁ b a₂ = none := if_neg h.symm
lemma single_trans_of_mem (a : α) {b : β} {c : γ} {f : β ≃. γ} (h : c ∈ f b) :
(single a b).trans f = single a c :=
begin
ext,
dsimp [single, pequiv.trans],
split_ifs; simp * at *
end
lemma trans_single_of_mem {a : α} {b : β} (c : γ) {f : α ≃. β} (h : b ∈ f a) :
f.trans (single b c) = single a c :=
symm_injective $ single_trans_of_mem _ ((mem_iff_mem f).2 h)
@[simp]
lemma single_trans_single (a : α) (b : β) (c : γ) : (single a b).trans (single b c) = single a c :=
single_trans_of_mem _ (mem_single _ _)
@[simp] lemma single_subsingleton_eq_refl [subsingleton α] (a b : α) : single a b = pequiv.refl α :=
begin
ext i j,
dsimp [single],
rw [if_pos (subsingleton.elim i a), subsingleton.elim i j, subsingleton.elim b j]
end
lemma trans_single_of_eq_none {b : β} (c : γ) {f : δ ≃. β} (h : f.symm b = none) :
f.trans (single b c) = ⊥ :=
begin
ext,
simp only [eq_none_iff_forall_not_mem, option.mem_def, f.eq_some_iff] at h,
dsimp [pequiv.trans, single],
simp,
intros,
split_ifs;
simp * at *
end
lemma single_trans_of_eq_none (a : α) {b : β} {f : β ≃. δ} (h : f b = none) :
(single a b).trans f = ⊥ :=
symm_injective $ trans_single_of_eq_none _ h
lemma single_trans_single_of_ne {b₁ b₂ : β} (h : b₁ ≠ b₂) (a : α) (c : γ) :
(single a b₁).trans (single b₂ c) = ⊥ :=
single_trans_of_eq_none _ (single_apply_of_ne h.symm _)
end single
section order
instance : partial_order (α ≃. β) :=
{ le := λ f g, ∀ (a : α) (b : β), b ∈ f a → b ∈ g a,
le_refl := λ _ _ _, id,
le_trans := λ f g h fg gh a b, (gh a b) ∘ (fg a b),
le_antisymm := λ f g fg gf, ext begin
assume a,
cases h : g a with b,
{ exact eq_none_iff_forall_not_mem.2
(λ b hb, option.not_mem_none b $ h ▸ fg a b hb) },
{ exact gf _ _ h }
end }
lemma le_def {f g : α ≃. β} : f ≤ g ↔ (∀ (a : α) (b : β), b ∈ f a → b ∈ g a) := iff.rfl
instance : order_bot (α ≃. β) :=
{ bot_le := λ _ _ _ h, (not_mem_none _ h).elim,
..pequiv.has_bot }
instance [decidable_eq α] [decidable_eq β] : semilattice_inf (α ≃. β) :=
{ inf := λ f g,
{ to_fun := λ a, if f a = g a then f a else none,
inv_fun := λ b, if f.symm b = g.symm b then f.symm b else none,
inv := λ a b, begin
have hf := @mem_iff_mem _ _ f a b,
have hg := @mem_iff_mem _ _ g a b, -- `split_ifs; finish` closes this goal from here
split_ifs with h1 h2 h2; try { simp [hf] },
{ contrapose! h2,
rw h2,
rw [←h1,hf,h2] at hg,
simp only [mem_def, true_iff, eq_self_iff_true] at hg,
rw [hg] },
{ contrapose! h1,
rw h1 at *,
rw ←h2 at hg,
simp only [mem_def, eq_self_iff_true, iff_true] at hf hg,
rw [hf,hg] },
end },
inf_le_left := λ _ _ _ _, by simp; split_ifs; cc,
inf_le_right := λ _ _ _ _, by simp; split_ifs; cc,
le_inf := λ f g h fg gh a b, begin
intro H,
have hf := fg a b H,
have hg := gh a b H,
simp only [option.mem_def, pequiv.coe_mk_apply],
split_ifs with h1, { exact hf }, { exact h1 (hf.trans hg.symm) },
end,
..pequiv.partial_order }
end order
end pequiv
namespace equiv
variables {α : Type*} {β : Type*} {γ : Type*}
/-- Turns an `equiv` into a `pequiv` of the whole type. -/
def to_pequiv (f : α ≃ β) : α ≃. β :=
{ to_fun := some ∘ f,
inv_fun := some ∘ f.symm,
inv := by simp [equiv.eq_symm_apply, eq_comm] }
@[simp] lemma to_pequiv_refl : (equiv.refl α).to_pequiv = pequiv.refl α := rfl
lemma to_pequiv_trans (f : α ≃ β) (g : β ≃ γ) : (f.trans g).to_pequiv =
f.to_pequiv.trans g.to_pequiv := rfl
lemma to_pequiv_symm (f : α ≃ β) : f.symm.to_pequiv = f.to_pequiv.symm := rfl
lemma to_pequiv_apply (f : α ≃ β) (x : α) : f.to_pequiv x = some (f x) := rfl
end equiv
|
d2714262ddd03a4a3901a0f4038e2fc7d9936084
|
6432ea7a083ff6ba21ea17af9ee47b9c371760f7
|
/tests/lean/run/elabIte.lean
|
8a0413f125e01c370a76472bff8b169c7444d80e
|
[
"Apache-2.0",
"LLVM-exception",
"NCSA",
"LGPL-3.0-only",
"LicenseRef-scancode-inner-net-2.0",
"BSD-3-Clause",
"LGPL-2.0-or-later",
"Spencer-94",
"LGPL-2.1-or-later",
"HPND",
"LicenseRef-scancode-pcre",
"ISC",
"LGPL-2.1-only",
"LicenseRef-scancode-other-permissive",
"SunPro",
"CMU-Mach"
] |
permissive
|
leanprover/lean4
|
4bdf9790294964627eb9be79f5e8f6157780b4cc
|
f1f9dc0f2f531af3312398999d8b8303fa5f096b
|
refs/heads/master
| 1,693,360,665,786
| 1,693,350,868,000
| 1,693,350,868,000
| 129,571,436
| 2,827
| 311
|
Apache-2.0
| 1,694,716,156,000
| 1,523,760,560,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 62
|
lean
|
def f (x y : Nat) : Option Nat :=
if x > y then x else none
|
ef11fc95245968e871d69380252b5d0a32d9dc94
|
4b846d8dabdc64e7ea03552bad8f7fa74763fc67
|
/tests/lean/inaccessible2.lean
|
855153b7225a0bc8c6f9ffe081833464fc46b1e6
|
[
"Apache-2.0"
] |
permissive
|
pacchiano/lean
|
9324b33f3ac3b5c5647285160f9f6ea8d0d767dc
|
fdadada3a970377a6df8afcd629a6f2eab6e84e8
|
refs/heads/master
| 1,611,357,380,399
| 1,489,870,101,000
| 1,489,870,101,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 790
|
lean
|
inductive imf {A B : Sort*} (f : A → B) : B → Sort*
| mk : ∀ (a : A), imf (f a)
definition inv_1 {A B : Sort*} (f : A → B) : ∀ (b : B), imf f b → A
| .(f .a) (imf.mk .f a) := a -- Error inaccessible annotation inside inaccessible annotation
definition inv_2 {A B : Sort*} (f : A → B) : ∀ (b : B), imf f b → A
| .(f a) (let x := (imf.mk .f a) in x) := a -- Error invalid occurrence of 'let' expression
definition inv_3 {A B : Sort*} (f : A → B) : ∀ (b : B), imf f b → A
| .(f a) ((λ (x : imf f b), x) (imf.mk .f a)) := a -- Error invalid occurrence of 'lambda' expression
definition symm {A : Sort*} : ∀ a b : A, a = b → b = a
| .a .a (eq.refl a) := rfl -- Error `a` in eq.refl must be marked as inaccessible since it is an inductive datatype parameter
|
7d67d6bb5e9330cf820c589deea42a479cbd70ff
|
4d2583807a5ac6caaffd3d7a5f646d61ca85d532
|
/src/topology/separation.lean
|
22469d19d4ef89ebc00656d26feded65e70f6702
|
[
"Apache-2.0"
] |
permissive
|
AntoineChambert-Loir/mathlib
|
64aabb896129885f12296a799818061bc90da1ff
|
07be904260ab6e36a5769680b6012f03a4727134
|
refs/heads/master
| 1,693,187,631,771
| 1,636,719,886,000
| 1,636,719,886,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 61,442
|
lean
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import topology.subset_properties
import topology.connected
/-!
# Separation properties of topological spaces.
This file defines the predicate `separated`, and common separation axioms
(under the Kolmogorov classification).
## Main definitions
* `separated`: Two `set`s are separated if they are contained in disjoint open sets.
* `t0_space`: A T₀/Kolmogorov space is a space where, for every two points `x ≠ y`,
there is an open set that contains one, but not the other.
* `t1_space`: A T₁/Fréchet space is a space where every singleton set is closed.
This is equivalent to, for every pair `x ≠ y`, there existing an open set containing `x`
but not `y` (`t1_iff_exists_open` shows that these conditions are equivalent.)
* `t2_space`: A T₂/Hausdorff space is a space where, for every two points `x ≠ y`,
there is two disjoint open sets, one containing `x`, and the other `y`.
* `t2_5_space`: A T₂.₅/Urysohn space is a space where, for every two points `x ≠ y`,
there is two open sets, one containing `x`, and the other `y`, whose closures are disjoint.
* `regular_space`: A T₃ space (sometimes referred to as regular, but authors vary on
whether this includes T₂; `mathlib` does), is one where given any closed `C` and `x ∉ C`,
there is disjoint open sets containing `x` and `C` respectively. In `mathlib`, T₃ implies T₂.₅.
* `normal_space`: A T₄ space (sometimes referred to as normal, but authors vary on
whether this includes T₂; `mathlib` does), is one where given two disjoint closed sets,
we can find two open sets that separate them. In `mathlib`, T₄ implies T₃.
## Main results
### T₀ spaces
* `is_closed.exists_closed_singleton` Given a closed set `S` in a compact T₀ space,
there is some `x ∈ S` such that `{x}` is closed.
* `exists_open_singleton_of_open_finset` Given an open `finset` `S` in a T₀ space,
there is some `x ∈ S` such that `{x}` is open.
### T₁ spaces
* `is_closed_map_const`: The constant map is a closed map.
* `discrete_of_t1_of_finite`: A finite T₁ space must have the discrete topology.
### T₂ spaces
* `t2_iff_nhds`: A space is T₂ iff the neighbourhoods of distinct points generate the bottom filter.
* `t2_iff_is_closed_diagonal`: A space is T₂ iff the `diagonal` of `α` (that is, the set of all
points of the form `(a, a) : α × α`) is closed under the product topology.
* `finset_disjoing_finset_opens_of_t2`: Any two disjoint finsets are `separated`.
* Most topological constructions preserve Hausdorffness;
these results are part of the typeclass inference system (e.g. `embedding.t2_space`)
* `set.eq_on.closure`: If two functions are equal on some set `s`, they are equal on its closure.
* `is_compact.is_closed`: All compact sets are closed.
* `locally_compact_of_compact_nhds`: If every point has a compact neighbourhood,
then the space is locally compact.
* `tot_sep_of_zero_dim`: If `α` has a clopen basis, it is a `totally_separated_space`.
* `loc_compact_t2_tot_disc_iff_tot_sep`: A locally compact T₂ space is totally disconnected iff
it is totally separated.
If the space is also compact:
* `normal_of_compact_t2`: A compact T₂ space is a `normal_space`.
* `connected_components_eq_Inter_clopen`: The connected component of a point
is the intersection of all its clopen neighbourhoods.
* `compact_t2_tot_disc_iff_tot_sep`: Being a `totally_disconnected_space`
is equivalent to being a `totally_separated_space`.
* `connected_components.t2`: `connected_components α` is T₂ for `α` T₂ and compact.
### T₃ spaces
* `disjoint_nested_nhds`: Given two points `x ≠ y`, we can find neighbourhoods `x ∈ V₁ ⊆ U₁` and
`y ∈ V₂ ⊆ U₂`, with the `Vₖ` closed and the `Uₖ` open, such that the `Uₖ` are disjoint.
### Discrete spaces
* `discrete_topology_iff_nhds`: Discrete topological spaces are those whose neighbourhood
filters are the `pure` filter (which is the principal filter at a singleton).
* `induced_bot`/`discrete_topology_induced`: The pullback of the discrete topology
under an inclusion is the discrete topology.
## References
https://en.wikipedia.org/wiki/Separation_axiom
-/
open set filter
open_locale topological_space filter classical
universes u v
variables {α : Type u} {β : Type v} [topological_space α]
section separation
/--
`separated` is a predicate on pairs of sub`set`s of a topological space. It holds if the two
sub`set`s are contained in disjoint open sets.
-/
def separated : set α → set α → Prop :=
λ (s t : set α), ∃ U V : (set α), (is_open U) ∧ is_open V ∧
(s ⊆ U) ∧ (t ⊆ V) ∧ disjoint U V
namespace separated
open separated
@[symm] lemma symm {s t : set α} : separated s t → separated t s :=
λ ⟨U, V, oU, oV, aU, bV, UV⟩, ⟨V, U, oV, oU, bV, aU, disjoint.symm UV⟩
lemma comm (s t : set α) : separated s t ↔ separated t s :=
⟨symm, symm⟩
lemma empty_right (a : set α) : separated a ∅ :=
⟨_, _, is_open_univ, is_open_empty, λ a h, mem_univ a, λ a h, by cases h, disjoint_empty _⟩
lemma empty_left (a : set α) : separated ∅ a :=
(empty_right _).symm
lemma union_left {a b c : set α} : separated a c → separated b c → separated (a ∪ b) c :=
λ ⟨U, V, oU, oV, aU, bV, UV⟩ ⟨W, X, oW, oX, aW, bX, WX⟩,
⟨U ∪ W, V ∩ X, is_open.union oU oW, is_open.inter oV oX,
union_subset_union aU aW, subset_inter bV bX, set.disjoint_union_left.mpr
⟨disjoint_of_subset_right (inter_subset_left _ _) UV,
disjoint_of_subset_right (inter_subset_right _ _) WX⟩⟩
lemma union_right {a b c : set α} (ab : separated a b) (ac : separated a c) :
separated a (b ∪ c) :=
(ab.symm.union_left ac.symm).symm
end separated
/-- A T₀ space, also known as a Kolmogorov space, is a topological space
where for every pair `x ≠ y`, there is an open set containing one but not the other. -/
class t0_space (α : Type u) [topological_space α] : Prop :=
(t0 : ∀ x y, x ≠ y → ∃ U:set α, is_open U ∧ (xor (x ∈ U) (y ∈ U)))
/-- Given a closed set `S` in a compact T₀ space,
there is some `x ∈ S` such that `{x}` is closed. -/
theorem is_closed.exists_closed_singleton {α : Type*} [topological_space α]
[t0_space α] [compact_space α] {S : set α} (hS : is_closed S) (hne : S.nonempty) :
∃ (x : α), x ∈ S ∧ is_closed ({x} : set α) :=
begin
obtain ⟨V, Vsub, Vne, Vcls, hV⟩ := hS.exists_minimal_nonempty_closed_subset hne,
by_cases hnt : ∃ (x y : α) (hx : x ∈ V) (hy : y ∈ V), x ≠ y,
{ exfalso,
obtain ⟨x, y, hx, hy, hne⟩ := hnt,
obtain ⟨U, hU, hsep⟩ := t0_space.t0 _ _ hne,
have : ∀ (z w : α) (hz : z ∈ V) (hw : w ∈ V) (hz' : z ∈ U) (hw' : ¬ w ∈ U), false,
{ intros z w hz hw hz' hw',
have uvne : (V ∩ Uᶜ).nonempty,
{ use w, simp only [hw, hw', set.mem_inter_eq, not_false_iff, and_self, set.mem_compl_eq], },
specialize hV (V ∩ Uᶜ) (set.inter_subset_left _ _) uvne
(is_closed.inter Vcls (is_closed_compl_iff.mpr hU)),
have : V ⊆ Uᶜ,
{ rw ←hV, exact set.inter_subset_right _ _ },
exact this hz hz', },
cases hsep,
{ exact this x y hx hy hsep.1 hsep.2 },
{ exact this y x hy hx hsep.1 hsep.2 } },
{ push_neg at hnt,
obtain ⟨z, hz⟩ := Vne,
refine ⟨z, Vsub hz, _⟩,
convert Vcls,
ext,
simp only [set.mem_singleton_iff, set.mem_compl_eq],
split,
{ rintro rfl, exact hz, },
{ exact λ hx, hnt x z hx hz, }, },
end
/-- Given an open `finset` `S` in a T₀ space, there is some `x ∈ S` such that `{x}` is open. -/
theorem exists_open_singleton_of_open_finset [t0_space α] (s : finset α) (sne : s.nonempty)
(hso : is_open (s : set α)) :
∃ x ∈ s, is_open ({x} : set α):=
begin
induction s using finset.strong_induction_on with s ihs,
by_cases hs : set.subsingleton (s : set α),
{ rcases sne with ⟨x, hx⟩,
refine ⟨x, hx, _⟩,
have : (s : set α) = {x}, from hs.eq_singleton_of_mem hx,
rwa this at hso },
{ dunfold set.subsingleton at hs,
push_neg at hs,
rcases hs with ⟨x, hx, y, hy, hxy⟩,
rcases t0_space.t0 x y hxy with ⟨U, hU, hxyU⟩,
wlog H : x ∈ U ∧ y ∉ U := hxyU using [x y, y x],
obtain ⟨z, hzs, hz⟩ : ∃ z ∈ s.filter (λ z, z ∈ U), is_open ({z} : set α),
{ refine ihs _ (finset.filter_ssubset.2 ⟨y, hy, H.2⟩) ⟨x, finset.mem_filter.2 ⟨hx, H.1⟩⟩ _,
rw [finset.coe_filter],
exact is_open.inter hso hU },
exact ⟨z, (finset.mem_filter.1 hzs).1, hz⟩ }
end
theorem exists_open_singleton_of_fintype [t0_space α] [f : fintype α] [ha : nonempty α] :
∃ x:α, is_open ({x}:set α) :=
begin
refine ha.elim (λ x, _),
have : is_open ((finset.univ : finset α) : set α), { simp },
rcases exists_open_singleton_of_open_finset _ ⟨x, finset.mem_univ x⟩ this with ⟨x, _, hx⟩,
exact ⟨x, hx⟩
end
instance subtype.t0_space [t0_space α] {p : α → Prop} : t0_space (subtype p) :=
⟨λ x y hxy, let ⟨U, hU, hxyU⟩ := t0_space.t0 (x:α) y ((not_congr subtype.ext_iff_val).1 hxy) in
⟨(coe : subtype p → α) ⁻¹' U, is_open_induced hU, hxyU⟩⟩
/-- A T₁ space, also known as a Fréchet space, is a topological space
where every singleton set is closed. Equivalently, for every pair
`x ≠ y`, there is an open set containing `x` and not `y`. -/
class t1_space (α : Type u) [topological_space α] : Prop :=
(t1 : ∀x, is_closed ({x} : set α))
lemma is_closed_singleton [t1_space α] {x : α} : is_closed ({x} : set α) :=
t1_space.t1 x
lemma is_open_compl_singleton [t1_space α] {x : α} : is_open ({x}ᶜ : set α) :=
is_closed_singleton.is_open_compl
lemma is_open_ne [t1_space α] {x : α} : is_open {y | y ≠ x} :=
is_open_compl_singleton
lemma ne.nhds_within_compl_singleton [t1_space α] {x y : α} (h : x ≠ y) :
𝓝[{y}ᶜ] x = 𝓝 x :=
is_open_ne.nhds_within_eq h
lemma continuous_within_at_update_of_ne [t1_space α] [decidable_eq α] [topological_space β]
{f : α → β} {s : set α} {x y : α} {z : β} (hne : y ≠ x) :
continuous_within_at (function.update f x z) s y ↔ continuous_within_at f s y :=
eventually_eq.congr_continuous_within_at
(mem_nhds_within_of_mem_nhds $ mem_of_superset (is_open_ne.mem_nhds hne) $
λ y' hy', function.update_noteq hy' _ _)
(function.update_noteq hne _ _)
lemma continuous_on_update_iff [t1_space α] [decidable_eq α] [topological_space β]
{f : α → β} {s : set α} {x : α} {y : β} :
continuous_on (function.update f x y) s ↔
continuous_on f (s \ {x}) ∧ (x ∈ s → tendsto f (𝓝[s \ {x}] x) (𝓝 y)) :=
begin
rw [continuous_on, ← and_forall_ne x, and_comm],
refine and_congr ⟨λ H z hz, _, λ H z hzx hzs, _⟩ (forall_congr $ λ hxs, _),
{ specialize H z hz.2 hz.1,
rw continuous_within_at_update_of_ne hz.2 at H,
exact H.mono (diff_subset _ _) },
{ rw continuous_within_at_update_of_ne hzx,
refine (H z ⟨hzs, hzx⟩).mono_of_mem (inter_mem_nhds_within _ _),
exact is_open_ne.mem_nhds hzx },
{ exact continuous_within_at_update_same }
end
instance subtype.t1_space {α : Type u} [topological_space α] [t1_space α] {p : α → Prop} :
t1_space (subtype p) :=
⟨λ ⟨x, hx⟩, is_closed_induced_iff.2 $ ⟨{x}, is_closed_singleton, set.ext $ λ y,
by simp [subtype.ext_iff_val]⟩⟩
@[priority 100] -- see Note [lower instance priority]
instance t1_space.t0_space [t1_space α] : t0_space α :=
⟨λ x y h, ⟨{z | z ≠ y}, is_open_ne, or.inl ⟨h, not_not_intro rfl⟩⟩⟩
lemma t1_iff_exists_open : t1_space α ↔
∀ (x y), x ≠ y → (∃ (U : set α) (hU : is_open U), x ∈ U ∧ y ∉ U) :=
begin
split,
{ introsI t1 x y hxy,
exact ⟨{y}ᶜ, is_open_compl_iff.mpr (t1_space.t1 y),
mem_compl_singleton_iff.mpr hxy,
not_not.mpr rfl⟩},
{ intro h,
constructor,
intro x,
rw ← is_open_compl_iff,
have p : ⋃₀ {U : set α | (x ∉ U) ∧ (is_open U)} = {x}ᶜ,
{ apply subset.antisymm; intros t ht,
{ rcases ht with ⟨A, ⟨hxA, hA⟩, htA⟩,
rw [mem_compl_eq, mem_singleton_iff],
rintro rfl,
contradiction },
{ obtain ⟨U, hU, hh⟩ := h t x (mem_compl_singleton_iff.mp ht),
exact ⟨U, ⟨hh.2, hU⟩, hh.1⟩}},
rw ← p,
exact is_open_sUnion (λ B hB, hB.2) }
end
lemma compl_singleton_mem_nhds [t1_space α] {x y : α} (h : y ≠ x) : {x}ᶜ ∈ 𝓝 y :=
is_open.mem_nhds is_open_compl_singleton $ by rwa [mem_compl_eq, mem_singleton_iff]
@[simp] lemma closure_singleton [t1_space α] {a : α} :
closure ({a} : set α) = {a} :=
is_closed_singleton.closure_eq
lemma set.subsingleton.closure [t1_space α] {s : set α} (hs : s.subsingleton) :
(closure s).subsingleton :=
hs.induction_on (by simp) $ λ x, by simp
@[simp] lemma subsingleton_closure [t1_space α] {s : set α} :
(closure s).subsingleton ↔ s.subsingleton :=
⟨λ h, h.mono subset_closure, λ h, h.closure⟩
lemma is_closed_map_const {α β} [topological_space α] [topological_space β] [t1_space β] {y : β} :
is_closed_map (function.const α y) :=
begin
apply is_closed_map.of_nonempty, intros s hs h2s, simp_rw [h2s.image_const, is_closed_singleton]
end
lemma finite.is_closed {α} [topological_space α] [t1_space α] {s : set α} (hs : set.finite s) :
is_closed s :=
begin
rw ← bUnion_of_singleton s,
exact is_closed_bUnion hs (λ i hi, is_closed_singleton)
end
lemma bInter_basis_nhds [t1_space α] {ι : Sort*} {p : ι → Prop} {s : ι → set α} {x : α}
(h : (𝓝 x).has_basis p s) : (⋂ i (h : p i), s i) = {x} :=
begin
simp only [eq_singleton_iff_unique_mem, mem_Inter],
refine ⟨λ i hi, mem_of_mem_nhds $ h.mem_of_mem hi, λ y hy, _⟩,
contrapose! hy,
rcases h.mem_iff.1 (compl_singleton_mem_nhds hy.symm) with ⟨i, hi, hsub⟩,
exact ⟨i, hi, λ h, hsub h rfl⟩
end
/-- If a function to a `t1_space` tends to some limit `b` at some point `a`, then necessarily
`b = f a`. -/
lemma eq_of_tendsto_nhds [topological_space β] [t1_space β] {f : α → β} {a : α} {b : β}
(h : tendsto f (𝓝 a) (𝓝 b)) : f a = b :=
by_contra $ assume (hfa : f a ≠ b),
have fact₁ : {f a}ᶜ ∈ 𝓝 b := compl_singleton_mem_nhds hfa.symm,
have fact₂ : tendsto f (pure a) (𝓝 b) := h.comp (tendsto_id' $ pure_le_nhds a),
fact₂ fact₁ (eq.refl $ f a)
/-- To prove a function to a `t1_space` is continuous at some point `a`, it suffices to prove that
`f` admits *some* limit at `a`. -/
lemma continuous_at_of_tendsto_nhds [topological_space β] [t1_space β] {f : α → β} {a : α} {b : β}
(h : tendsto f (𝓝 a) (𝓝 b)) : continuous_at f a :=
show tendsto f (𝓝 a) (𝓝 $ f a), by rwa eq_of_tendsto_nhds h
/-- If the punctured neighborhoods of a point form a nontrivial filter, then any neighborhood is
infinite. -/
lemma infinite_of_mem_nhds {α} [topological_space α] [t1_space α] (x : α) [hx : ne_bot (𝓝[{x}ᶜ] x)]
{s : set α} (hs : s ∈ 𝓝 x) : set.infinite s :=
begin
unfreezingI { contrapose! hx },
rw set.not_infinite at hx,
have A : is_closed (s \ {x}) := finite.is_closed (hx.subset (diff_subset _ _)),
have B : (s \ {x})ᶜ ∈ 𝓝 x,
{ apply is_open.mem_nhds,
{ apply is_open_compl_iff.2 A },
{ simp only [not_true, not_false_iff, mem_diff, and_false, mem_compl_eq, mem_singleton] } },
have C : {x} ∈ 𝓝 x,
{ apply filter.mem_of_superset (filter.inter_mem hs B),
assume y hy,
simp only [mem_singleton_iff, mem_inter_eq, not_and, not_not, mem_diff, mem_compl_eq] at hy,
simp only [hy.right hy.left, mem_singleton] },
have D : {x}ᶜ ∈ 𝓝[{x}ᶜ] x := self_mem_nhds_within,
simpa [← empty_mem_iff_bot] using filter.inter_mem (mem_nhds_within_of_mem_nhds C) D
end
lemma discrete_of_t1_of_finite {X : Type*} [topological_space X] [t1_space X] [fintype X] :
discrete_topology X :=
begin
apply singletons_open_iff_discrete.mp,
intros x,
rw [← is_closed_compl_iff],
exact finite.is_closed (finite.of_fintype _)
end
lemma singleton_mem_nhds_within_of_mem_discrete {s : set α} [discrete_topology s]
{x : α} (hx : x ∈ s) :
{x} ∈ 𝓝[s] x :=
begin
have : ({⟨x, hx⟩} : set s) ∈ 𝓝 (⟨x, hx⟩ : s), by simp [nhds_discrete],
simpa only [nhds_within_eq_map_subtype_coe hx, image_singleton]
using @image_mem_map _ _ _ (coe : s → α) _ this
end
/-- The neighbourhoods filter of `x` within `s`, under the discrete topology, is equal to
the pure `x` filter (which is the principal filter at the singleton `{x}`.) -/
lemma nhds_within_of_mem_discrete {s : set α} [discrete_topology s] {x : α} (hx : x ∈ s) :
𝓝[s] x = pure x :=
le_antisymm (le_pure_iff.2 $ singleton_mem_nhds_within_of_mem_discrete hx) (pure_le_nhds_within hx)
lemma filter.has_basis.exists_inter_eq_singleton_of_mem_discrete
{ι : Type*} {p : ι → Prop} {t : ι → set α} {s : set α} [discrete_topology s] {x : α}
(hb : (𝓝 x).has_basis p t) (hx : x ∈ s) :
∃ i (hi : p i), t i ∩ s = {x} :=
begin
rcases (nhds_within_has_basis hb s).mem_iff.1 (singleton_mem_nhds_within_of_mem_discrete hx)
with ⟨i, hi, hix⟩,
exact ⟨i, hi, subset.antisymm hix $ singleton_subset_iff.2
⟨mem_of_mem_nhds $ hb.mem_of_mem hi, hx⟩⟩
end
/-- A point `x` in a discrete subset `s` of a topological space admits a neighbourhood
that only meets `s` at `x`. -/
lemma nhds_inter_eq_singleton_of_mem_discrete {s : set α} [discrete_topology s]
{x : α} (hx : x ∈ s) :
∃ U ∈ 𝓝 x, U ∩ s = {x} :=
by simpa using (𝓝 x).basis_sets.exists_inter_eq_singleton_of_mem_discrete hx
/-- For point `x` in a discrete subset `s` of a topological space, there is a set `U`
such that
1. `U` is a punctured neighborhood of `x` (ie. `U ∪ {x}` is a neighbourhood of `x`),
2. `U` is disjoint from `s`.
-/
lemma disjoint_nhds_within_of_mem_discrete {s : set α} [discrete_topology s] {x : α} (hx : x ∈ s) :
∃ U ∈ 𝓝[{x}ᶜ] x, disjoint U s :=
let ⟨V, h, h'⟩ := nhds_inter_eq_singleton_of_mem_discrete hx in
⟨{x}ᶜ ∩ V, inter_mem_nhds_within _ h,
(disjoint_iff_inter_eq_empty.mpr (by { rw [inter_assoc, h', compl_inter_self] }))⟩
/-- Let `X` be a topological space and let `s, t ⊆ X` be two subsets. If there is an inclusion
`t ⊆ s`, then the topological space structure on `t` induced by `X` is the same as the one
obtained by the induced topological space structure on `s`. -/
lemma topological_space.subset_trans {X : Type*} [tX : topological_space X]
{s t : set X} (ts : t ⊆ s) :
(subtype.topological_space : topological_space t) =
(subtype.topological_space : topological_space s).induced (set.inclusion ts) :=
begin
change tX.induced ((coe : s → X) ∘ (set.inclusion ts)) =
topological_space.induced (set.inclusion ts) (tX.induced _),
rw ← induced_compose,
end
/-- This lemma characterizes discrete topological spaces as those whose singletons are
neighbourhoods. -/
lemma discrete_topology_iff_nhds {X : Type*} [topological_space X] :
discrete_topology X ↔ (nhds : X → filter X) = pure :=
begin
split,
{ introI hX,
exact nhds_discrete X },
{ intro h,
constructor,
apply eq_of_nhds_eq_nhds,
simp [h, nhds_bot] }
end
/-- The topology pulled-back under an inclusion `f : X → Y` from the discrete topology (`⊥`) is the
discrete topology.
This version does not assume the choice of a topology on either the source `X`
nor the target `Y` of the inclusion `f`. -/
lemma induced_bot {X Y : Type*} {f : X → Y} (hf : function.injective f) :
topological_space.induced f ⊥ = ⊥ :=
eq_of_nhds_eq_nhds (by simp [nhds_induced, ← set.image_singleton, hf.preimage_image, nhds_bot])
/-- The topology induced under an inclusion `f : X → Y` from the discrete topological space `Y`
is the discrete topology on `X`. -/
lemma discrete_topology_induced {X Y : Type*} [tY : topological_space Y] [discrete_topology Y]
{f : X → Y} (hf : function.injective f) : @discrete_topology X (topological_space.induced f tY) :=
begin
constructor,
rw discrete_topology.eq_bot Y,
exact induced_bot hf
end
/-- Let `s, t ⊆ X` be two subsets of a topological space `X`. If `t ⊆ s` and the topology induced
by `X`on `s` is discrete, then also the topology induces on `t` is discrete. -/
lemma discrete_topology.of_subset {X : Type*} [topological_space X] {s t : set X}
(ds : discrete_topology s) (ts : t ⊆ s) :
discrete_topology t :=
begin
rw [topological_space.subset_trans ts, ds.eq_bot],
exact {eq_bot := induced_bot (set.inclusion_injective ts)}
end
/-- A T₂ space, also known as a Hausdorff space, is one in which for every
`x ≠ y` there exists disjoint open sets around `x` and `y`. This is
the most widely used of the separation axioms. -/
class t2_space (α : Type u) [topological_space α] : Prop :=
(t2 : ∀x y, x ≠ y → ∃u v : set α, is_open u ∧ is_open v ∧ x ∈ u ∧ y ∈ v ∧ u ∩ v = ∅)
lemma t2_separation [t2_space α] {x y : α} (h : x ≠ y) :
∃u v : set α, is_open u ∧ is_open v ∧ x ∈ u ∧ y ∈ v ∧ u ∩ v = ∅ :=
t2_space.t2 x y h
@[priority 100] -- see Note [lower instance priority]
instance t2_space.t1_space [t2_space α] : t1_space α :=
⟨λ x, is_open_compl_iff.1 $ is_open_iff_forall_mem_open.2 $ λ y hxy,
let ⟨u, v, hu, hv, hyu, hxv, huv⟩ := t2_separation (mt mem_singleton_of_eq hxy) in
⟨u, λ z hz1 hz2, (ext_iff.1 huv x).1 ⟨mem_singleton_iff.1 hz2 ▸ hz1, hxv⟩, hu, hyu⟩⟩
lemma eq_of_nhds_ne_bot [ht : t2_space α] {x y : α} (h : ne_bot (𝓝 x ⊓ 𝓝 y)) : x = y :=
classical.by_contradiction $ assume : x ≠ y,
let ⟨u, v, hu, hv, hx, hy, huv⟩ := t2_space.t2 x y this in
absurd huv $ (inf_ne_bot_iff.1 h (is_open.mem_nhds hu hx) (is_open.mem_nhds hv hy)).ne_empty
/-- A space is T₂ iff the neighbourhoods of distinct points generate the bottom filter. -/
lemma t2_iff_nhds : t2_space α ↔ ∀ {x y : α}, ne_bot (𝓝 x ⊓ 𝓝 y) → x = y :=
⟨assume h, by exactI λ x y, eq_of_nhds_ne_bot,
assume h, ⟨assume x y xy,
have 𝓝 x ⊓ 𝓝 y = ⊥ := not_ne_bot.1 $ mt h xy,
let ⟨u', hu', v', hv', u'v'⟩ := empty_mem_iff_bot.mpr this,
⟨u, uu', uo, hu⟩ := mem_nhds_iff.mp hu',
⟨v, vv', vo, hv⟩ := mem_nhds_iff.mp hv' in
⟨u, v, uo, vo, hu, hv, by { rw [← subset_empty_iff, u'v'], exact inter_subset_inter uu' vv' }⟩⟩⟩
lemma t2_iff_ultrafilter :
t2_space α ↔ ∀ {x y : α} (f : ultrafilter α), ↑f ≤ 𝓝 x → ↑f ≤ 𝓝 y → x = y :=
t2_iff_nhds.trans $ by simp only [←exists_ultrafilter_iff, and_imp, le_inf_iff, exists_imp_distrib]
lemma is_closed_diagonal [t2_space α] : is_closed (diagonal α) :=
begin
refine is_closed_iff_cluster_pt.mpr _,
rintro ⟨a₁, a₂⟩ h,
refine eq_of_nhds_ne_bot ⟨λ this : 𝓝 a₁ ⊓ 𝓝 a₂ = ⊥, h.ne _⟩,
obtain ⟨t₁, (ht₁ : t₁ ∈ 𝓝 a₁), t₂, (ht₂ : t₂ ∈ 𝓝 a₂), (h' : t₁ ∩ t₂ = ∅)⟩ :=
inf_eq_bot_iff.1 this,
rw [inf_principal_eq_bot, nhds_prod_eq],
apply mem_of_superset (prod_mem_prod ht₁ ht₂),
rintro ⟨x, y⟩ ⟨x_in, y_in⟩ (heq : x = y),
rw ← heq at *,
have : x ∈ t₁ ∩ t₂ := ⟨x_in, y_in⟩,
rwa h' at this
end
lemma t2_iff_is_closed_diagonal : t2_space α ↔ is_closed (diagonal α) :=
begin
split,
{ introI h,
exact is_closed_diagonal },
{ intro h,
constructor,
intros x y hxy,
have : (x, y) ∈ (diagonal α)ᶜ, by rwa [mem_compl_iff],
obtain ⟨t, t_sub, t_op, xyt⟩ : ∃ t ⊆ (diagonal α)ᶜ, is_open t ∧ (x, y) ∈ t :=
is_open_iff_forall_mem_open.mp h.is_open_compl _ this,
rcases is_open_prod_iff.mp t_op x y xyt with ⟨U, V, U_op, V_op, xU, yV, H⟩,
use [U, V, U_op, V_op, xU, yV],
have := subset.trans H t_sub,
rw eq_empty_iff_forall_not_mem,
rintros z ⟨zU, zV⟩,
have : ¬ (z, z) ∈ diagonal α := this (mk_mem_prod zU zV),
exact this rfl },
end
section separated
open separated finset
lemma finset_disjoint_finset_opens_of_t2 [t2_space α] :
∀ (s t : finset α), disjoint s t → separated (s : set α) t :=
begin
refine induction_on_union _ (λ a b hi d, (hi d.symm).symm) (λ a d, empty_right a) (λ a b ab, _) _,
{ obtain ⟨U, V, oU, oV, aU, bV, UV⟩ := t2_separation (finset.disjoint_singleton.1 ab),
refine ⟨U, V, oU, oV, _, _, set.disjoint_iff_inter_eq_empty.mpr UV⟩;
exact singleton_subset_set_iff.mpr ‹_› },
{ intros a b c ac bc d,
apply_mod_cast union_left (ac (disjoint_of_subset_left (a.subset_union_left b) d)) (bc _),
exact disjoint_of_subset_left (a.subset_union_right b) d },
end
lemma point_disjoint_finset_opens_of_t2 [t2_space α] {x : α} {s : finset α} (h : x ∉ s) :
separated ({x} : set α) s :=
by exact_mod_cast finset_disjoint_finset_opens_of_t2 {x} s (finset.disjoint_singleton_left.mpr h)
end separated
@[simp] lemma nhds_eq_nhds_iff {a b : α} [t2_space α] : 𝓝 a = 𝓝 b ↔ a = b :=
⟨assume h, eq_of_nhds_ne_bot $ by rw [h, inf_idem]; exact nhds_ne_bot, assume h, h ▸ rfl⟩
@[simp] lemma nhds_le_nhds_iff {a b : α} [t2_space α] : 𝓝 a ≤ 𝓝 b ↔ a = b :=
⟨assume h, eq_of_nhds_ne_bot $ by rw [inf_of_le_left h]; exact nhds_ne_bot, assume h, h ▸ le_refl _⟩
lemma tendsto_nhds_unique [t2_space α] {f : β → α} {l : filter β} {a b : α}
[ne_bot l] (ha : tendsto f l (𝓝 a)) (hb : tendsto f l (𝓝 b)) : a = b :=
eq_of_nhds_ne_bot $ ne_bot_of_le $ le_inf ha hb
lemma tendsto_nhds_unique' [t2_space α] {f : β → α} {l : filter β} {a b : α}
(hl : ne_bot l) (ha : tendsto f l (𝓝 a)) (hb : tendsto f l (𝓝 b)) : a = b :=
eq_of_nhds_ne_bot $ ne_bot_of_le $ le_inf ha hb
lemma tendsto_nhds_unique_of_eventually_eq [t2_space α] {f g : β → α} {l : filter β} {a b : α}
[ne_bot l] (ha : tendsto f l (𝓝 a)) (hb : tendsto g l (𝓝 b)) (hfg : f =ᶠ[l] g) :
a = b :=
tendsto_nhds_unique (ha.congr' hfg) hb
lemma tendsto_const_nhds_iff [t2_space α] {l : filter α} [ne_bot l] {c d : α} :
tendsto (λ x, c) l (𝓝 d) ↔ c = d :=
⟨λ h, tendsto_nhds_unique (tendsto_const_nhds) h, λ h, h ▸ tendsto_const_nhds⟩
/-- A T₂.₅ space, also known as a Urysohn space, is a topological space
where for every pair `x ≠ y`, there are two open sets, with the intersection of clousures
empty, one containing `x` and the other `y` . -/
class t2_5_space (α : Type u) [topological_space α]: Prop :=
(t2_5 : ∀ x y (h : x ≠ y), ∃ (U V: set α), is_open U ∧ is_open V ∧
closure U ∩ closure V = ∅ ∧ x ∈ U ∧ y ∈ V)
@[priority 100] -- see Note [lower instance priority]
instance t2_5_space.t2_space [t2_5_space α] : t2_space α :=
⟨λ x y hxy,
let ⟨U, V, hU, hV, hUV, hh⟩ := t2_5_space.t2_5 x y hxy in
⟨U, V, hU, hV, hh.1, hh.2, subset_eq_empty (powerset_mono.mpr
(closure_inter_subset_inter_closure U V) subset_closure) hUV⟩⟩
section lim
variables [t2_space α] {f : filter α}
/-!
### Properties of `Lim` and `lim`
In this section we use explicit `nonempty α` instances for `Lim` and `lim`. This way the lemmas
are useful without a `nonempty α` instance.
-/
lemma Lim_eq {a : α} [ne_bot f] (h : f ≤ 𝓝 a) :
@Lim _ _ ⟨a⟩ f = a :=
tendsto_nhds_unique (le_nhds_Lim ⟨a, h⟩) h
lemma Lim_eq_iff [ne_bot f] (h : ∃ (a : α), f ≤ nhds a) {a} : @Lim _ _ ⟨a⟩ f = a ↔ f ≤ 𝓝 a :=
⟨λ c, c ▸ le_nhds_Lim h, Lim_eq⟩
lemma ultrafilter.Lim_eq_iff_le_nhds [compact_space α] {x : α} {F : ultrafilter α} :
F.Lim = x ↔ ↑F ≤ 𝓝 x :=
⟨λ h, h ▸ F.le_nhds_Lim, Lim_eq⟩
lemma is_open_iff_ultrafilter' [compact_space α] (U : set α) :
is_open U ↔ (∀ F : ultrafilter α, F.Lim ∈ U → U ∈ F.1) :=
begin
rw is_open_iff_ultrafilter,
refine ⟨λ h F hF, h F.Lim hF F F.le_nhds_Lim, _⟩,
intros cond x hx f h,
rw [← (ultrafilter.Lim_eq_iff_le_nhds.2 h)] at hx,
exact cond _ hx
end
lemma filter.tendsto.lim_eq {a : α} {f : filter β} [ne_bot f] {g : β → α} (h : tendsto g f (𝓝 a)) :
@lim _ _ _ ⟨a⟩ f g = a :=
Lim_eq h
lemma filter.lim_eq_iff {f : filter β} [ne_bot f] {g : β → α} (h : ∃ a, tendsto g f (𝓝 a)) {a} :
@lim _ _ _ ⟨a⟩ f g = a ↔ tendsto g f (𝓝 a) :=
⟨λ c, c ▸ tendsto_nhds_lim h, filter.tendsto.lim_eq⟩
lemma continuous.lim_eq [topological_space β] {f : β → α} (h : continuous f) (a : β) :
@lim _ _ _ ⟨f a⟩ (𝓝 a) f = f a :=
(h.tendsto a).lim_eq
@[simp] lemma Lim_nhds (a : α) : @Lim _ _ ⟨a⟩ (𝓝 a) = a :=
Lim_eq (le_refl _)
@[simp] lemma lim_nhds_id (a : α) : @lim _ _ _ ⟨a⟩ (𝓝 a) id = a :=
Lim_nhds a
@[simp] lemma Lim_nhds_within {a : α} {s : set α} (h : a ∈ closure s) :
@Lim _ _ ⟨a⟩ (𝓝[s] a) = a :=
by haveI : ne_bot (𝓝[s] a) := mem_closure_iff_cluster_pt.1 h;
exact Lim_eq inf_le_left
@[simp] lemma lim_nhds_within_id {a : α} {s : set α} (h : a ∈ closure s) :
@lim _ _ _ ⟨a⟩ (𝓝[s] a) id = a :=
Lim_nhds_within h
end lim
/-!
### `t2_space` constructions
We use two lemmas to prove that various standard constructions generate Hausdorff spaces from
Hausdorff spaces:
* `separated_by_continuous` says that two points `x y : α` can be separated by open neighborhoods
provided that there exists a continuous map `f : α → β` with a Hausdorff codomain such that
`f x ≠ f y`. We use this lemma to prove that topological spaces defined using `induced` are
Hausdorff spaces.
* `separated_by_open_embedding` says that for an open embedding `f : α → β` of a Hausdorff space
`α`, the images of two distinct points `x y : α`, `x ≠ y` can be separated by open neighborhoods.
We use this lemma to prove that topological spaces defined using `coinduced` are Hausdorff spaces.
-/
@[priority 100] -- see Note [lower instance priority]
instance t2_space_discrete {α : Type*} [topological_space α] [discrete_topology α] : t2_space α :=
{ t2 := assume x y hxy, ⟨{x}, {y}, is_open_discrete _, is_open_discrete _, rfl, rfl,
eq_empty_iff_forall_not_mem.2 $ by intros z hz;
cases eq_of_mem_singleton hz.1; cases eq_of_mem_singleton hz.2; cc⟩ }
lemma separated_by_continuous {α : Type*} {β : Type*}
[topological_space α] [topological_space β] [t2_space β]
{f : α → β} (hf : continuous f) {x y : α} (h : f x ≠ f y) :
∃u v : set α, is_open u ∧ is_open v ∧ x ∈ u ∧ y ∈ v ∧ u ∩ v = ∅ :=
let ⟨u, v, uo, vo, xu, yv, uv⟩ := t2_separation h in
⟨f ⁻¹' u, f ⁻¹' v, uo.preimage hf, vo.preimage hf, xu, yv,
by rw [←preimage_inter, uv, preimage_empty]⟩
lemma separated_by_open_embedding {α β : Type*} [topological_space α] [topological_space β]
[t2_space α] {f : α → β} (hf : open_embedding f) {x y : α} (h : x ≠ y) :
∃ u v : set β, is_open u ∧ is_open v ∧ f x ∈ u ∧ f y ∈ v ∧ u ∩ v = ∅ :=
let ⟨u, v, uo, vo, xu, yv, uv⟩ := t2_separation h in
⟨f '' u, f '' v, hf.is_open_map _ uo, hf.is_open_map _ vo,
mem_image_of_mem _ xu, mem_image_of_mem _ yv, by rw [image_inter hf.inj, uv, image_empty]⟩
instance {α : Type*} {p : α → Prop} [t : topological_space α] [t2_space α] : t2_space (subtype p) :=
⟨assume x y h, separated_by_continuous continuous_subtype_val (mt subtype.eq h)⟩
instance {α : Type*} {β : Type*} [t₁ : topological_space α] [t2_space α]
[t₂ : topological_space β] [t2_space β] : t2_space (α × β) :=
⟨assume ⟨x₁,x₂⟩ ⟨y₁,y₂⟩ h,
or.elim (not_and_distrib.mp (mt prod.ext_iff.mpr h))
(λ h₁, separated_by_continuous continuous_fst h₁)
(λ h₂, separated_by_continuous continuous_snd h₂)⟩
lemma embedding.t2_space [topological_space β] [t2_space β] {f : α → β} (hf : embedding f) :
t2_space α :=
⟨λ x y h, separated_by_continuous hf.continuous (hf.inj.ne h)⟩
instance {α : Type*} {β : Type*} [t₁ : topological_space α] [t2_space α]
[t₂ : topological_space β] [t2_space β] : t2_space (α ⊕ β) :=
begin
constructor,
rintros (x|x) (y|y) h,
{ replace h : x ≠ y := λ c, (c.subst h) rfl,
exact separated_by_open_embedding open_embedding_inl h },
{ exact ⟨_, _, is_open_range_inl, is_open_range_inr, ⟨x, rfl⟩, ⟨y, rfl⟩,
range_inl_inter_range_inr⟩ },
{ exact ⟨_, _, is_open_range_inr, is_open_range_inl, ⟨x, rfl⟩, ⟨y, rfl⟩,
range_inr_inter_range_inl⟩ },
{ replace h : x ≠ y := λ c, (c.subst h) rfl,
exact separated_by_open_embedding open_embedding_inr h }
end
instance Pi.t2_space {α : Type*} {β : α → Type v} [t₂ : Πa, topological_space (β a)]
[∀a, t2_space (β a)] :
t2_space (Πa, β a) :=
⟨assume x y h,
let ⟨i, hi⟩ := not_forall.mp (mt funext h) in
separated_by_continuous (continuous_apply i) hi⟩
instance sigma.t2_space {ι : Type*} {α : ι → Type*} [Πi, topological_space (α i)]
[∀a, t2_space (α a)] :
t2_space (Σi, α i) :=
begin
constructor,
rintros ⟨i, x⟩ ⟨j, y⟩ neq,
rcases em (i = j) with (rfl|h),
{ replace neq : x ≠ y := λ c, (c.subst neq) rfl,
exact separated_by_open_embedding open_embedding_sigma_mk neq },
{ exact ⟨_, _, is_open_range_sigma_mk, is_open_range_sigma_mk, ⟨x, rfl⟩, ⟨y, rfl⟩, by tidy⟩ }
end
variables [topological_space β]
lemma is_closed_eq [t2_space α] {f g : β → α}
(hf : continuous f) (hg : continuous g) : is_closed {x:β | f x = g x} :=
continuous_iff_is_closed.mp (hf.prod_mk hg) _ is_closed_diagonal
/-- If two continuous maps are equal on `s`, then they are equal on the closure of `s`. -/
lemma set.eq_on.closure [t2_space α] {s : set β} {f g : β → α} (h : eq_on f g s)
(hf : continuous f) (hg : continuous g) :
eq_on f g (closure s) :=
closure_minimal h (is_closed_eq hf hg)
/-- If two continuous functions are equal on a dense set, then they are equal. -/
lemma continuous.ext_on [t2_space α] {s : set β} (hs : dense s) {f g : β → α}
(hf : continuous f) (hg : continuous g) (h : eq_on f g s) :
f = g :=
funext $ λ x, h.closure hf hg (hs x)
lemma function.left_inverse.closed_range [t2_space α] {f : α → β} {g : β → α}
(h : function.left_inverse f g) (hf : continuous f) (hg : continuous g) :
is_closed (range g) :=
have eq_on (g ∘ f) id (closure $ range g),
from h.right_inv_on_range.eq_on.closure (hg.comp hf) continuous_id,
is_closed_of_closure_subset $ λ x hx,
calc x = g (f x) : (this hx).symm
... ∈ _ : mem_range_self _
lemma function.left_inverse.closed_embedding [t2_space α] {f : α → β} {g : β → α}
(h : function.left_inverse f g) (hf : continuous f) (hg : continuous g) :
closed_embedding g :=
⟨h.embedding hf hg, h.closed_range hf hg⟩
lemma diagonal_eq_range_diagonal_map {α : Type*} : {p:α×α | p.1 = p.2} = range (λx, (x,x)) :=
ext $ assume p, iff.intro
(assume h, ⟨p.1, prod.ext_iff.2 ⟨rfl, h⟩⟩)
(assume ⟨x, hx⟩, show p.1 = p.2, by rw ←hx)
lemma prod_subset_compl_diagonal_iff_disjoint {α : Type*} {s t : set α} :
set.prod s t ⊆ {p:α×α | p.1 = p.2}ᶜ ↔ s ∩ t = ∅ :=
by rw [eq_empty_iff_forall_not_mem, subset_compl_comm,
diagonal_eq_range_diagonal_map, range_subset_iff]; simp
lemma compact_compact_separated [t2_space α] {s t : set α}
(hs : is_compact s) (ht : is_compact t) (hst : s ∩ t = ∅) :
∃u v : set α, is_open u ∧ is_open v ∧ s ⊆ u ∧ t ⊆ v ∧ u ∩ v = ∅ :=
by simp only [prod_subset_compl_diagonal_iff_disjoint.symm] at ⊢ hst;
exact generalized_tube_lemma hs ht is_closed_diagonal.is_open_compl hst
/-- In a `t2_space`, every compact set is closed. -/
lemma is_compact.is_closed [t2_space α] {s : set α} (hs : is_compact s) : is_closed s :=
is_open_compl_iff.1 $ is_open_iff_forall_mem_open.mpr $ assume x hx,
let ⟨u, v, uo, vo, su, xv, uv⟩ :=
compact_compact_separated hs (is_compact_singleton : is_compact {x})
(by rwa [inter_comm, ←subset_compl_iff_disjoint, singleton_subset_iff]) in
have v ⊆ sᶜ, from
subset_compl_comm.mp (subset.trans su (subset_compl_iff_disjoint.mpr uv)),
⟨v, this, vo, by simpa using xv⟩
@[simp] lemma filter.coclosed_compact_eq_cocompact [t2_space α] :
coclosed_compact α = cocompact α :=
by simp [coclosed_compact, cocompact, infi_and', and_iff_right_of_imp is_compact.is_closed]
/-- If `V : ι → set α` is a decreasing family of compact sets then any neighborhood of
`⋂ i, V i` contains some `V i`. This is a version of `exists_subset_nhd_of_compact'` where we
don't need to assume each `V i` closed because it follows from compactness since `α` is
assumed to be Hausdorff. -/
lemma exists_subset_nhd_of_compact [t2_space α] {ι : Type*} [nonempty ι] {V : ι → set α}
(hV : directed (⊇) V) (hV_cpct : ∀ i, is_compact (V i)) {U : set α}
(hU : ∀ x ∈ ⋂ i, V i, U ∈ 𝓝 x) : ∃ i, V i ⊆ U :=
exists_subset_nhd_of_compact' hV hV_cpct (λ i, (hV_cpct i).is_closed) hU
lemma compact_exhaustion.is_closed [t2_space α] (K : compact_exhaustion α) (n : ℕ) :
is_closed (K n) :=
(K.is_compact n).is_closed
lemma is_compact.inter [t2_space α] {s t : set α} (hs : is_compact s) (ht : is_compact t) :
is_compact (s ∩ t) :=
hs.inter_right $ ht.is_closed
lemma compact_closure_of_subset_compact [t2_space α] {s t : set α} (ht : is_compact t) (h : s ⊆ t) :
is_compact (closure s) :=
compact_of_is_closed_subset ht is_closed_closure (closure_minimal h ht.is_closed)
lemma image_closure_of_compact [t2_space β]
{s : set α} (hs : is_compact (closure s)) {f : α → β} (hf : continuous_on f (closure s)) :
f '' closure s = closure (f '' s) :=
subset.antisymm hf.image_closure $ closure_minimal (image_subset f subset_closure)
(hs.image_of_continuous_on hf).is_closed
/-- If a compact set is covered by two open sets, then we can cover it by two compact subsets. -/
lemma is_compact.binary_compact_cover [t2_space α] {K U V : set α} (hK : is_compact K)
(hU : is_open U) (hV : is_open V) (h2K : K ⊆ U ∪ V) :
∃ K₁ K₂ : set α, is_compact K₁ ∧ is_compact K₂ ∧ K₁ ⊆ U ∧ K₂ ⊆ V ∧ K = K₁ ∪ K₂ :=
begin
rcases compact_compact_separated (hK.diff hU) (hK.diff hV)
(by rwa [diff_inter_diff, diff_eq_empty]) with ⟨O₁, O₂, h1O₁, h1O₂, h2O₁, h2O₂, hO⟩,
refine ⟨_, _, hK.diff h1O₁, hK.diff h1O₂,
by rwa [diff_subset_comm], by rwa [diff_subset_comm], by rw [← diff_inter, hO, diff_empty]⟩
end
lemma continuous.is_closed_map [compact_space α] [t2_space β] {f : α → β} (h : continuous f) :
is_closed_map f :=
λ s hs, (hs.is_compact.image h).is_closed
lemma continuous.closed_embedding [compact_space α] [t2_space β] {f : α → β} (h : continuous f)
(hf : function.injective f) : closed_embedding f :=
closed_embedding_of_continuous_injective_closed h hf h.is_closed_map
section
open finset function
/-- For every finite open cover `Uᵢ` of a compact set, there exists a compact cover `Kᵢ ⊆ Uᵢ`. -/
lemma is_compact.finite_compact_cover [t2_space α] {s : set α} (hs : is_compact s)
{ι} (t : finset ι) (U : ι → set α) (hU : ∀ i ∈ t, is_open (U i)) (hsC : s ⊆ ⋃ i ∈ t, U i) :
∃ K : ι → set α, (∀ i, is_compact (K i)) ∧ (∀i, K i ⊆ U i) ∧ s = ⋃ i ∈ t, K i :=
begin
classical,
induction t using finset.induction with x t hx ih generalizing U hU s hs hsC,
{ refine ⟨λ _, ∅, λ i, is_compact_empty, λ i, empty_subset _, _⟩,
simpa only [subset_empty_iff, Union_false, Union_empty] using hsC },
simp only [finset.set_bUnion_insert] at hsC,
simp only [finset.mem_insert] at hU,
have hU' : ∀ i ∈ t, is_open (U i) := λ i hi, hU i (or.inr hi),
rcases hs.binary_compact_cover (hU x (or.inl rfl)) (is_open_bUnion hU') hsC
with ⟨K₁, K₂, h1K₁, h1K₂, h2K₁, h2K₂, hK⟩,
rcases ih U hU' h1K₂ h2K₂ with ⟨K, h1K, h2K, h3K⟩,
refine ⟨update K x K₁, _, _, _⟩,
{ intros i, by_cases hi : i = x,
{ simp only [update_same, hi, h1K₁] },
{ rw [← ne.def] at hi, simp only [update_noteq hi, h1K] }},
{ intros i, by_cases hi : i = x,
{ simp only [update_same, hi, h2K₁] },
{ rw [← ne.def] at hi, simp only [update_noteq hi, h2K] }},
{ simp only [set_bUnion_insert_update _ hx, hK, h3K] }
end
end
lemma locally_compact_of_compact_nhds [t2_space α] (h : ∀ x : α, ∃ s, s ∈ 𝓝 x ∧ is_compact s) :
locally_compact_space α :=
⟨assume x n hn,
let ⟨u, un, uo, xu⟩ := mem_nhds_iff.mp hn in
let ⟨k, kx, kc⟩ := h x in
-- K is compact but not necessarily contained in N.
-- K \ U is again compact and doesn't contain x, so
-- we may find open sets V, W separating x from K \ U.
-- Then K \ W is a compact neighborhood of x contained in U.
let ⟨v, w, vo, wo, xv, kuw, vw⟩ :=
compact_compact_separated is_compact_singleton (is_compact.diff kc uo)
(by rw [singleton_inter_eq_empty]; exact λ h, h.2 xu) in
have wn : wᶜ ∈ 𝓝 x, from
mem_nhds_iff.mpr
⟨v, subset_compl_iff_disjoint.mpr vw, vo, singleton_subset_iff.mp xv⟩,
⟨k \ w,
filter.inter_mem kx wn,
subset.trans (diff_subset_comm.mp kuw) un,
kc.diff wo⟩⟩
@[priority 100] -- see Note [lower instance priority]
instance locally_compact_of_compact [t2_space α] [compact_space α] : locally_compact_space α :=
locally_compact_of_compact_nhds (assume x, ⟨univ, is_open_univ.mem_nhds trivial, compact_univ⟩)
/-- In a locally compact T₂ space, every point has an open neighborhood with compact closure -/
lemma exists_open_with_compact_closure [locally_compact_space α] [t2_space α] (x : α) :
∃ (U : set α), is_open U ∧ x ∈ U ∧ is_compact (closure U) :=
begin
rcases exists_compact_mem_nhds x with ⟨K, hKc, hxK⟩,
rcases mem_nhds_iff.1 hxK with ⟨t, h1t, h2t, h3t⟩,
exact ⟨t, h2t, h3t, compact_closure_of_subset_compact hKc h1t⟩
end
end separation
section regularity
/-- A T₃ space, also known as a regular space (although this condition sometimes
omits T₂), is one in which for every closed `C` and `x ∉ C`, there exist
disjoint open sets containing `x` and `C` respectively. -/
class regular_space (α : Type u) [topological_space α] extends t0_space α : Prop :=
(regular : ∀{s:set α} {a}, is_closed s → a ∉ s → ∃t, is_open t ∧ s ⊆ t ∧ 𝓝[t] a = ⊥)
@[priority 100] -- see Note [lower instance priority]
instance regular_space.t1_space [regular_space α] : t1_space α :=
begin
rw t1_iff_exists_open,
intros x y hxy,
obtain ⟨U, hU, h⟩ := t0_space.t0 x y hxy,
cases h,
{ exact ⟨U, hU, h⟩ },
{ obtain ⟨R, hR, hh⟩ := regular_space.regular (is_closed_compl_iff.mpr hU) (not_not.mpr h.1),
obtain ⟨V, hV, hhh⟩ := mem_nhds_iff.1 (filter.inf_principal_eq_bot.1 hh.2),
exact ⟨R, hR, hh.1 (mem_compl h.2), hV hhh.2⟩ }
end
lemma nhds_is_closed [regular_space α] {a : α} {s : set α} (h : s ∈ 𝓝 a) :
∃ t ∈ 𝓝 a, t ⊆ s ∧ is_closed t :=
let ⟨s', h₁, h₂, h₃⟩ := mem_nhds_iff.mp h in
have ∃t, is_open t ∧ s'ᶜ ⊆ t ∧ 𝓝[t] a = ⊥,
from regular_space.regular (is_closed_compl_iff.mpr h₂) (not_not_intro h₃),
let ⟨t, ht₁, ht₂, ht₃⟩ := this in
⟨tᶜ,
mem_of_eq_bot $ by rwa [compl_compl],
subset.trans (compl_subset_comm.1 ht₂) h₁,
is_closed_compl_iff.mpr ht₁⟩
lemma closed_nhds_basis [regular_space α] (a : α) :
(𝓝 a).has_basis (λ s : set α, s ∈ 𝓝 a ∧ is_closed s) id :=
⟨λ t, ⟨λ t_in, let ⟨s, s_in, h_st, h⟩ := nhds_is_closed t_in in ⟨s, ⟨s_in, h⟩, h_st⟩,
λ ⟨s, ⟨s_in, hs⟩, hst⟩, mem_of_superset s_in hst⟩⟩
instance subtype.regular_space [regular_space α] {p : α → Prop} : regular_space (subtype p) :=
⟨begin
intros s a hs ha,
rcases is_closed_induced_iff.1 hs with ⟨s, hs', rfl⟩,
rcases regular_space.regular hs' ha with ⟨t, ht, hst, hat⟩,
refine ⟨coe ⁻¹' t, is_open_induced ht, preimage_mono hst, _⟩,
rw [nhds_within, nhds_induced, ← comap_principal, ← comap_inf, ← nhds_within, hat, comap_bot]
end⟩
variable (α)
@[priority 100] -- see Note [lower instance priority]
instance regular_space.t2_space [regular_space α] : t2_space α :=
⟨λ x y hxy,
let ⟨s, hs, hys, hxs⟩ := regular_space.regular is_closed_singleton
(mt mem_singleton_iff.1 hxy),
⟨t, hxt, u, hsu, htu⟩ := empty_mem_iff_bot.2 hxs,
⟨v, hvt, hv, hxv⟩ := mem_nhds_iff.1 hxt in
⟨v, s, hv, hs, hxv, singleton_subset_iff.1 hys,
eq_empty_of_subset_empty $ λ z ⟨hzv, hzs⟩, by { rw htu, exact ⟨hvt hzv, hsu hzs⟩ }⟩⟩
@[priority 100] -- see Note [lower instance priority]
instance regular_space.t2_5_space [regular_space α] : t2_5_space α :=
⟨λ x y hxy,
let ⟨U, V, hU, hV, hh_1, hh_2, hUV⟩ := t2_space.t2 x y hxy,
hxcV := not_not.mpr ((interior_maximal (subset_compl_iff_disjoint.mpr hUV) hU) hh_1),
⟨R, hR, hh⟩ := regular_space.regular is_closed_closure (by rwa closure_eq_compl_interior_compl),
⟨A, hA, hhh⟩ := mem_nhds_iff.1 (filter.inf_principal_eq_bot.1 hh.2) in
⟨A, V, hhh.1, hV, subset_eq_empty ((closure V).inter_subset_inter_left
(subset.trans (closure_minimal hA (is_closed_compl_iff.mpr hR)) (compl_subset_compl.mpr hh.1)))
(compl_inter_self (closure V)), hhh.2, hh_2⟩⟩
variable {α}
/-- Given two points `x ≠ y`, we can find neighbourhoods `x ∈ V₁ ⊆ U₁` and `y ∈ V₂ ⊆ U₂`,
with the `Vₖ` closed and the `Uₖ` open, such that the `Uₖ` are disjoint. -/
lemma disjoint_nested_nhds [regular_space α] {x y : α} (h : x ≠ y) :
∃ (U₁ V₁ ∈ 𝓝 x) (U₂ V₂ ∈ 𝓝 y), is_closed V₁ ∧ is_closed V₂ ∧ is_open U₁ ∧ is_open U₂ ∧
V₁ ⊆ U₁ ∧ V₂ ⊆ U₂ ∧ U₁ ∩ U₂ = ∅ :=
begin
rcases t2_separation h with ⟨U₁, U₂, U₁_op, U₂_op, x_in, y_in, H⟩,
rcases nhds_is_closed (is_open.mem_nhds U₁_op x_in) with ⟨V₁, V₁_in, h₁, V₁_closed⟩,
rcases nhds_is_closed (is_open.mem_nhds U₂_op y_in) with ⟨V₂, V₂_in, h₂, V₂_closed⟩,
use [U₁, V₁, mem_of_superset V₁_in h₁, V₁_in,
U₂, V₂, mem_of_superset V₂_in h₂, V₂_in],
tauto
end
end regularity
section normality
/-- A T₄ space, also known as a normal space (although this condition sometimes
omits T₂), is one in which for every pair of disjoint closed sets `C` and `D`,
there exist disjoint open sets containing `C` and `D` respectively. -/
class normal_space (α : Type u) [topological_space α] extends t1_space α : Prop :=
(normal : ∀ s t : set α, is_closed s → is_closed t → disjoint s t →
∃ u v, is_open u ∧ is_open v ∧ s ⊆ u ∧ t ⊆ v ∧ disjoint u v)
theorem normal_separation [normal_space α] {s t : set α}
(H1 : is_closed s) (H2 : is_closed t) (H3 : disjoint s t) :
∃ u v, is_open u ∧ is_open v ∧ s ⊆ u ∧ t ⊆ v ∧ disjoint u v :=
normal_space.normal s t H1 H2 H3
theorem normal_exists_closure_subset [normal_space α] {s t : set α} (hs : is_closed s)
(ht : is_open t) (hst : s ⊆ t) :
∃ u, is_open u ∧ s ⊆ u ∧ closure u ⊆ t :=
begin
have : disjoint s tᶜ, from λ x ⟨hxs, hxt⟩, hxt (hst hxs),
rcases normal_separation hs (is_closed_compl_iff.2 ht) this
with ⟨s', t', hs', ht', hss', htt', hs't'⟩,
refine ⟨s', hs', hss',
subset.trans (closure_minimal _ (is_closed_compl_iff.2 ht')) (compl_subset_comm.1 htt')⟩,
exact λ x hxs hxt, hs't' ⟨hxs, hxt⟩
end
@[priority 100] -- see Note [lower instance priority]
instance normal_space.regular_space [normal_space α] : regular_space α :=
{ regular := λ s x hs hxs, let ⟨u, v, hu, hv, hsu, hxv, huv⟩ :=
normal_separation hs is_closed_singleton
(λ _ ⟨hx, hy⟩, hxs $ mem_of_eq_of_mem (eq_of_mem_singleton hy).symm hx) in
⟨u, hu, hsu, filter.empty_mem_iff_bot.1 $ filter.mem_inf_iff.2
⟨v, is_open.mem_nhds hv (singleton_subset_iff.1 hxv), u, filter.mem_principal_self u,
by rwa [eq_comm, inter_comm, ← disjoint_iff_inter_eq_empty]⟩⟩ }
-- We can't make this an instance because it could cause an instance loop.
lemma normal_of_compact_t2 [compact_space α] [t2_space α] : normal_space α :=
begin
refine ⟨assume s t hs ht st, _⟩,
simp only [disjoint_iff],
exact compact_compact_separated hs.is_compact ht.is_compact st.eq_bot
end
end normality
/-- In a compact t2 space, the connected component of a point equals the intersection of all
its clopen neighbourhoods. -/
lemma connected_component_eq_Inter_clopen [t2_space α] [compact_space α] {x : α} :
connected_component x = ⋂ Z : {Z : set α // is_clopen Z ∧ x ∈ Z}, Z :=
begin
apply eq_of_subset_of_subset connected_component_subset_Inter_clopen,
-- Reduce to showing that the clopen intersection is connected.
refine is_preconnected.subset_connected_component _ (mem_Inter.2 (λ Z, Z.2.2)),
-- We do this by showing that any disjoint cover by two closed sets implies
-- that one of these closed sets must contain our whole thing.
-- To reduce to the case where the cover is disjoint on all of `α` we need that `s` is closed
have hs : @is_closed _ _inst_1 (⋂ (Z : {Z : set α // is_clopen Z ∧ x ∈ Z}), Z) :=
is_closed_Inter (λ Z, Z.2.1.2),
rw (is_preconnected_iff_subset_of_fully_disjoint_closed hs),
intros a b ha hb hab ab_empty,
haveI := @normal_of_compact_t2 α _ _ _,
-- Since our space is normal, we get two larger disjoint open sets containing the disjoint
-- closed sets. If we can show that our intersection is a subset of any of these we can then
-- "descend" this to show that it is a subset of either a or b.
rcases normal_separation ha hb (disjoint_iff.2 ab_empty) with ⟨u, v, hu, hv, hau, hbv, huv⟩,
-- If we can find a clopen set around x, contained in u ∪ v, we get a disjoint decomposition
-- Z = Z ∩ u ∪ Z ∩ v of clopen sets. The intersection of all clopen neighbourhoods will then lie
-- in whichever of u or v x lies in and hence will be a subset of either a or b.
suffices : ∃ (Z : set α), is_clopen Z ∧ x ∈ Z ∧ Z ⊆ u ∪ v,
{ cases this with Z H,
rw [disjoint_iff_inter_eq_empty] at huv,
have H1 := is_clopen_inter_of_disjoint_cover_clopen H.1 H.2.2 hu hv huv,
rw [union_comm] at H,
have H2 := is_clopen_inter_of_disjoint_cover_clopen H.1 H.2.2 hv hu (inter_comm u v ▸ huv),
by_cases (x ∈ u),
-- The x ∈ u case.
{ left,
suffices : (⋂ (Z : {Z : set α // is_clopen Z ∧ x ∈ Z}), ↑Z) ⊆ u,
{ rw ←set.disjoint_iff_inter_eq_empty at huv,
replace hab : (⋂ (Z : {Z // is_clopen Z ∧ x ∈ Z}), ↑Z) ≤ a ∪ b := hab,
replace this : (⋂ (Z : {Z // is_clopen Z ∧ x ∈ Z}), ↑Z) ≤ u := this,
exact disjoint.left_le_of_le_sup_right hab (huv.mono this hbv) },
{ apply subset.trans _ (inter_subset_right Z u),
apply Inter_subset (λ Z : {Z : set α // is_clopen Z ∧ x ∈ Z}, ↑Z)
⟨Z ∩ u, H1, mem_inter H.2.1 h⟩ } },
-- If x ∉ u, we get x ∈ v since x ∈ u ∪ v. The rest is then like the x ∈ u case.
have h1 : x ∈ v,
{ cases (mem_union x u v).1 (mem_of_subset_of_mem (subset.trans hab
(union_subset_union hau hbv)) (mem_Inter.2 (λ i, i.2.2))) with h1 h1,
{ exfalso, exact h h1},
{ exact h1} },
right,
suffices : (⋂ (Z : {Z : set α // is_clopen Z ∧ x ∈ Z}), ↑Z) ⊆ v,
{ rw [inter_comm, ←set.disjoint_iff_inter_eq_empty] at huv,
replace hab : (⋂ (Z : {Z // is_clopen Z ∧ x ∈ Z}), ↑Z) ≤ a ∪ b := hab,
replace this : (⋂ (Z : {Z // is_clopen Z ∧ x ∈ Z}), ↑Z) ≤ v := this,
exact disjoint.left_le_of_le_sup_left hab (huv.mono this hau) },
{ apply subset.trans _ (inter_subset_right Z v),
apply Inter_subset (λ Z : {Z : set α // is_clopen Z ∧ x ∈ Z}, ↑Z)
⟨Z ∩ v, H2, mem_inter H.2.1 h1⟩ } },
-- Now we find the required Z. We utilize the fact that X \ u ∪ v will be compact,
-- so there must be some finite intersection of clopen neighbourhoods of X disjoint to it,
-- but a finite intersection of clopen sets is clopen so we let this be our Z.
have H1 := ((is_closed_compl_iff.2 (hu.union hv)).is_compact.inter_Inter_nonempty
(λ Z : {Z : set α // is_clopen Z ∧ x ∈ Z}, Z) (λ Z, Z.2.1.2)),
rw [←not_imp_not, not_forall, not_nonempty_iff_eq_empty, inter_comm] at H1,
have huv_union := subset.trans hab (union_subset_union hau hbv),
rw [← compl_compl (u ∪ v), subset_compl_iff_disjoint] at huv_union,
cases H1 huv_union with Zi H2,
refine ⟨(⋂ (U ∈ Zi), subtype.val U), _, _, _⟩,
{ exact is_clopen_bInter (λ Z hZ, Z.2.1) },
{ exact mem_bInter_iff.2 (λ Z hZ, Z.2.2) },
{ rwa [not_nonempty_iff_eq_empty, inter_comm, ←subset_compl_iff_disjoint, compl_compl] at H2 }
end
section profinite
open topological_space
variables [t2_space α]
/-- A Hausdorff space with a clopen basis is totally separated. -/
lemma tot_sep_of_zero_dim (h : is_topological_basis {s : set α | is_clopen s}) :
totally_separated_space α :=
begin
constructor,
rintros x - y - hxy,
obtain ⟨u, v, hu, hv, xu, yv, disj⟩ := t2_separation hxy,
obtain ⟨w, hw : is_clopen w, xw, wu⟩ := (is_topological_basis.mem_nhds_iff h).1
(is_open.mem_nhds hu xu),
refine ⟨w, wᶜ, hw.1, (is_clopen_compl_iff.2 hw).1, xw, _, _, set.inter_compl_self w⟩,
{ intro h,
have : y ∈ u ∩ v := ⟨wu h, yv⟩,
rwa disj at this },
rw set.union_compl_self,
end
variables [compact_space α]
/-- A compact Hausdorff space is totally disconnected if and only if it is totally separated, this
is also true for locally compact spaces. -/
theorem compact_t2_tot_disc_iff_tot_sep :
totally_disconnected_space α ↔ totally_separated_space α :=
begin
split,
{ intro h, constructor,
rintros x - y -,
contrapose!,
intros hyp,
suffices : x ∈ connected_component y,
by simpa [totally_disconnected_space_iff_connected_component_singleton.1 h y,
mem_singleton_iff],
rw [connected_component_eq_Inter_clopen, mem_Inter],
rintro ⟨w : set α, hw : is_clopen w, hy : y ∈ w⟩,
by_contra hx,
simpa using hyp wᶜ w (is_open_compl_iff.mpr hw.2) hw.1 hx hy },
apply totally_separated_space.totally_disconnected_space,
end
variables [totally_disconnected_space α]
lemma nhds_basis_clopen (x : α) : (𝓝 x).has_basis (λ s : set α, x ∈ s ∧ is_clopen s) id :=
⟨λ U, begin
split,
{ have : connected_component x = {x},
from totally_disconnected_space_iff_connected_component_singleton.mp ‹_› x,
rw connected_component_eq_Inter_clopen at this,
intros hU,
let N := {Z // is_clopen Z ∧ x ∈ Z},
suffices : ∃ Z : N, Z.val ⊆ U,
{ rcases this with ⟨⟨s, hs, hs'⟩, hs''⟩,
exact ⟨s, ⟨hs', hs⟩, hs''⟩ },
haveI : nonempty N := ⟨⟨univ, is_clopen_univ, mem_univ x⟩⟩,
have hNcl : ∀ Z : N, is_closed Z.val := (λ Z, Z.property.1.2),
have hdir : directed superset (λ Z : N, Z.val),
{ rintros ⟨s, hs, hxs⟩ ⟨t, ht, hxt⟩,
exact ⟨⟨s ∩ t, hs.inter ht, ⟨hxs, hxt⟩⟩, inter_subset_left s t, inter_subset_right s t⟩ },
have h_nhd: ∀ y ∈ (⋂ Z : N, Z.val), U ∈ 𝓝 y,
{ intros y y_in,
erw [this, mem_singleton_iff] at y_in,
rwa y_in },
exact exists_subset_nhd_of_compact_space hdir hNcl h_nhd },
{ rintro ⟨V, ⟨hxV, V_op, -⟩, hUV : V ⊆ U⟩,
rw mem_nhds_iff,
exact ⟨V, hUV, V_op, hxV⟩ }
end⟩
lemma is_topological_basis_clopen : is_topological_basis {s : set α | is_clopen s} :=
begin
apply is_topological_basis_of_open_of_nhds (λ U (hU : is_clopen U), hU.1),
intros x U hxU U_op,
have : U ∈ 𝓝 x,
from is_open.mem_nhds U_op hxU,
rcases (nhds_basis_clopen x).mem_iff.mp this with ⟨V, ⟨hxV, hV⟩, hVU : V ⊆ U⟩,
use V,
tauto
end
/-- Every member of an open set in a compact Hausdorff totally disconnected space
is contained in a clopen set contained in the open set. -/
lemma compact_exists_clopen_in_open {x : α} {U : set α} (is_open : is_open U) (memU : x ∈ U) :
∃ (V : set α) (hV : is_clopen V), x ∈ V ∧ V ⊆ U :=
(is_topological_basis.mem_nhds_iff is_topological_basis_clopen).1 (is_open.mem_nhds memU)
end profinite
section locally_compact
open topological_space
variables {H : Type*} [topological_space H] [locally_compact_space H] [t2_space H]
/-- A locally compact Hausdorff totally disconnected space has a basis with clopen elements. -/
lemma loc_compact_Haus_tot_disc_of_zero_dim [totally_disconnected_space H] :
is_topological_basis {s : set H | is_clopen s} :=
begin
refine is_topological_basis_of_open_of_nhds (λ u hu, hu.1) _,
rintros x U memU hU,
obtain ⟨s, comp, xs, sU⟩ := exists_compact_subset hU memU,
obtain ⟨t, h, ht, xt⟩ := mem_interior.1 xs,
let u : set s := (coe : s → H)⁻¹' (interior s),
have u_open_in_s : is_open u := is_open_interior.preimage continuous_subtype_coe,
let X : s := ⟨x, h xt⟩,
have Xu : X ∈ u := xs,
haveI : compact_space s := is_compact_iff_compact_space.1 comp,
obtain ⟨V : set s, clopen_in_s, Vx, V_sub⟩ := compact_exists_clopen_in_open u_open_in_s Xu,
have V_clopen : is_clopen ((coe : s → H) '' V),
{ refine ⟨_, (comp.is_closed.closed_embedding_subtype_coe.closed_iff_image_closed).1
clopen_in_s.2⟩,
let v : set u := (coe : u → s)⁻¹' V,
have : (coe : u → H) = (coe : s → H) ∘ (coe : u → s) := rfl,
have f0 : embedding (coe : u → H) := embedding_subtype_coe.comp embedding_subtype_coe,
have f1 : open_embedding (coe : u → H),
{ refine ⟨f0, _⟩,
{ have : set.range (coe : u → H) = interior s,
{ rw [this, set.range_comp, subtype.range_coe, subtype.image_preimage_coe],
apply set.inter_eq_self_of_subset_left interior_subset, },
rw this,
apply is_open_interior } },
have f2 : is_open v := clopen_in_s.1.preimage continuous_subtype_coe,
have f3 : (coe : s → H) '' V = (coe : u → H) '' v,
{ rw [this, image_comp coe coe, subtype.image_preimage_coe,
inter_eq_self_of_subset_left V_sub] },
rw f3,
apply f1.is_open_map v f2 },
refine ⟨coe '' V, V_clopen, by simp [Vx, h xt], _⟩,
transitivity s,
{ simp },
assumption
end
/-- A locally compact Hausdorff space is totally disconnected
if and only if it is totally separated. -/
theorem loc_compact_t2_tot_disc_iff_tot_sep :
totally_disconnected_space H ↔ totally_separated_space H :=
begin
split,
{ introI h,
exact tot_sep_of_zero_dim loc_compact_Haus_tot_disc_of_zero_dim, },
apply totally_separated_space.totally_disconnected_space,
end
end locally_compact
section connected_component_setoid
local attribute [instance] connected_component_setoid
/-- `connected_components α` is Hausdorff when `α` is Hausdorff and compact -/
instance connected_components.t2 [t2_space α] [compact_space α] :
t2_space (connected_components α) :=
begin
-- Proof follows that of: https://stacks.math.columbia.edu/tag/0900
-- Fix 2 distinct connected components, with points a and b
refine ⟨λ x y, quotient.induction_on x (quotient.induction_on y (λ a b ne, _))⟩,
rw connected_component_nrel_iff at ne,
have h := connected_component_disjoint ne,
-- write ⟦b⟧ as the intersection of all clopen subsets containing it
rw [connected_component_eq_Inter_clopen, disjoint_iff_inter_eq_empty, inter_comm] at h,
-- Now we show that this can be reduced to some clopen containing ⟦b⟧ being disjoint to ⟦a⟧
cases is_closed_connected_component.is_compact.elim_finite_subfamily_closed _ _ h
with fin_a ha,
swap, { exact λ Z, Z.2.1.2 },
set U : set α := (⋂ (i : {Z // is_clopen Z ∧ b ∈ Z}) (H : i ∈ fin_a), i) with hU,
rw ←hU at ha,
have hu_clopen : is_clopen U := is_clopen_bInter (λ i j, i.2.1),
-- This clopen and its complement will separate the points corresponding to ⟦a⟧ and ⟦b⟧
use [quotient.mk '' U, quotient.mk '' Uᶜ],
-- Using the fact that clopens are unions of connected components, we show that
-- U and Uᶜ is the preimage of a clopen set in the quotient
have hu : quotient.mk ⁻¹' (quotient.mk '' U) = U :=
(connected_components_preimage_image U ▸ eq.symm) hu_clopen.eq_union_connected_components,
have huc : quotient.mk ⁻¹' (quotient.mk '' Uᶜ) = Uᶜ :=
(connected_components_preimage_image Uᶜ ▸ eq.symm)
(is_clopen.compl hu_clopen).eq_union_connected_components,
-- showing that U and Uᶜ are open and separates ⟦a⟧ and ⟦b⟧
refine ⟨_,_,_,_,_⟩,
{ rw [(quotient_map_iff.1 quotient_map_quotient_mk).2 _, hu],
exact hu_clopen.1 },
{ rw [(quotient_map_iff.1 quotient_map_quotient_mk).2 _, huc],
exact is_open_compl_iff.2 hu_clopen.2 },
{ exact mem_image_of_mem _ (mem_Inter.2 (λ Z, mem_Inter.2 (λ Zmem, Z.2.2))) },
{ apply mem_image_of_mem,
exact mem_of_subset_of_mem (subset_compl_iff_disjoint.2 ha) (@mem_connected_component _ _ a) },
apply preimage_injective.2 (@surjective_quotient_mk _ _),
rw [preimage_inter, preimage_empty, hu, huc, inter_compl_self _],
end
end connected_component_setoid
|
14ee6145a470977cb3662df1682ce8be7ad204e5
|
f5f7e6fae601a5fe3cac7cc3ed353ed781d62419
|
/src/order/zorn.lean
|
b1bc534584c57d7e7156a9c971b2a15f5922f455
|
[
"Apache-2.0"
] |
permissive
|
EdAyers/mathlib
|
9ecfb2f14bd6caad748b64c9c131befbff0fb4e0
|
ca5d4c1f16f9c451cf7170b10105d0051db79e1b
|
refs/heads/master
| 1,626,189,395,845
| 1,555,284,396,000
| 1,555,284,396,000
| 144,004,030
| 0
| 0
|
Apache-2.0
| 1,533,727,664,000
| 1,533,727,663,000
| null |
UTF-8
|
Lean
| false
| false
| 11,973
|
lean
|
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl
Zorn's lemmas.
Ported from Isabelle/HOL (written by Jacques D. Fleuriot, Tobias Nipkow, and Christian Sternagel).
-/
import data.set.lattice order.order_iso
noncomputable theory
universes u
open set classical
local attribute [instance] prop_decidable
namespace zorn
section chain
parameters {α : Type u} (r : α → α → Prop)
local infix ` ≺ `:50 := r
/-- A chain is a subset `c` satisfying
`x ≺ y ∨ x = y ∨ y ≺ x` for all `x y ∈ c`. -/
def chain (c : set α) := pairwise_on c (λx y, x ≺ y ∨ y ≺ x)
parameters {r}
theorem chain.total_of_refl [is_refl α r]
{c} (H : chain c) {x y} (hx : x ∈ c) (hy : y ∈ c) :
x ≺ y ∨ y ≺ x :=
if e : x = y then or.inl (e ▸ refl _) else H _ hx _ hy e
theorem chain.directed [is_refl α r]
{c} (H : chain c) {x y} (hx : x ∈ c) (hy : y ∈ c) :
∃ z, z ∈ c ∧ x ≺ z ∧ y ≺ z :=
match H.total_of_refl hx hy with
| or.inl h := ⟨y, hy, h, refl _⟩
| or.inr h := ⟨x, hx, refl _, h⟩
end
theorem chain.mono {c c'} : c' ⊆ c → chain c → chain c' :=
pairwise_on.mono
theorem chain.directed_on [is_refl α r] {c} (H : chain c) : directed_on (≺) c :=
λ x xc y yc, let ⟨z, hz, h⟩ := H.directed xc yc in ⟨z, hz, h⟩
theorem chain_insert {c : set α} {a : α} (hc : chain c) (ha : ∀b∈c, b ≠ a → a ≺ b ∨ b ≺ a) :
chain (insert a c) :=
forall_insert_of_forall
(assume x hx, forall_insert_of_forall (hc x hx) (assume hneq, (ha x hx hneq).symm))
(forall_insert_of_forall (assume x hx hneq, ha x hx $ assume h', hneq h'.symm) (assume h, (h rfl).rec _))
def super_chain (c₁ c₂ : set α) := chain c₂ ∧ c₁ ⊂ c₂
def is_max_chain (c : set α) := chain c ∧ ¬ (∃c', super_chain c c')
def succ_chain (c : set α) :=
if h : ∃c', chain c ∧ super_chain c c' then some h else c
theorem succ_spec {c : set α} (h : ∃c', chain c ∧ super_chain c c') :
super_chain c (succ_chain c) :=
let ⟨c', hc'⟩ := h in
have chain c ∧ super_chain c (some h),
from @some_spec _ (λc', chain c ∧ super_chain c c') _,
by simp [succ_chain, dif_pos, h, this.right]
theorem chain_succ {c : set α} (hc : chain c) : chain (succ_chain c) :=
if h : ∃c', chain c ∧ super_chain c c' then
(succ_spec h).left
else
by simp [succ_chain, dif_neg, h]; exact hc
theorem super_of_not_max {c : set α} (hc₁ : chain c) (hc₂ : ¬ is_max_chain c) :
super_chain c (succ_chain c) :=
begin
simp [is_max_chain, not_and_distrib, not_forall_not] at hc₂,
cases hc₂.neg_resolve_left hc₁ with c' hc',
exact succ_spec ⟨c', hc₁, hc'⟩
end
theorem succ_increasing {c : set α} : c ⊆ succ_chain c :=
if h : ∃c', chain c ∧ super_chain c c' then
have super_chain c (succ_chain c), from succ_spec h,
this.right.left
else by simp [succ_chain, dif_neg, h, subset.refl]
inductive chain_closure : set α → Prop
| succ : ∀{s}, chain_closure s → chain_closure (succ_chain s)
| union : ∀{s}, (∀a∈s, chain_closure a) → chain_closure (⋃₀ s)
theorem chain_closure_empty : chain_closure ∅ :=
have chain_closure (⋃₀ ∅),
from chain_closure.union $ assume a h, h.rec _,
by simp at this; assumption
theorem chain_closure_closure : chain_closure (⋃₀ chain_closure) :=
chain_closure.union $ assume s hs, hs
variables {c c₁ c₂ c₃ : set α}
private lemma chain_closure_succ_total_aux (hc₁ : chain_closure c₁) (hc₂ : chain_closure c₂)
(h : ∀{c₃}, chain_closure c₃ → c₃ ⊆ c₂ → c₂ = c₃ ∨ succ_chain c₃ ⊆ c₂) :
c₁ ⊆ c₂ ∨ succ_chain c₂ ⊆ c₁ :=
begin
induction hc₁,
case _root_.zorn.chain_closure.succ : c₃ hc₃ ih {
cases ih with ih ih,
{ have h := h hc₃ ih,
cases h with h h,
{ exact or.inr (h ▸ subset.refl _) },
{ exact or.inl h } },
{ exact or.inr (subset.trans ih succ_increasing) } },
case _root_.zorn.chain_closure.union : s hs ih {
refine (classical.or_iff_not_imp_right.2 $ λ hn, sUnion_subset $ λ a ha, _),
apply (ih a ha).resolve_right,
apply mt (λ h, _) hn,
exact subset.trans h (subset_sUnion_of_mem ha) }
end
private lemma chain_closure_succ_total (hc₁ : chain_closure c₁) (hc₂ : chain_closure c₂) (h : c₁ ⊆ c₂) :
c₂ = c₁ ∨ succ_chain c₁ ⊆ c₂ :=
begin
induction hc₂ generalizing c₁ hc₁ h,
case _root_.zorn.chain_closure.succ : c₂ hc₂ ih {
have h₁ : c₁ ⊆ c₂ ∨ @succ_chain α r c₂ ⊆ c₁ :=
(chain_closure_succ_total_aux hc₁ hc₂ $ assume c₁, ih),
cases h₁ with h₁ h₁,
{ have h₂ := ih hc₁ h₁,
cases h₂ with h₂ h₂,
{ exact (or.inr $ h₂ ▸ subset.refl _) },
{ exact (or.inr $ subset.trans h₂ succ_increasing) } },
{ exact (or.inl $ subset.antisymm h₁ h) } },
case _root_.zorn.chain_closure.union : s hs ih {
apply or.imp_left (assume h', subset.antisymm h' h),
apply classical.by_contradiction,
simp [not_or_distrib, sUnion_subset_iff, classical.not_forall],
intros c₃ hc₃ h₁ h₂,
have h := chain_closure_succ_total_aux hc₁ (hs c₃ hc₃) (assume c₄, ih _ hc₃),
cases h with h h,
{ have h' := ih c₃ hc₃ hc₁ h,
cases h' with h' h',
{ exact (h₁ $ h' ▸ subset.refl _) },
{ exact (h₂ $ subset.trans h' $ subset_sUnion_of_mem hc₃) } },
{ exact (h₁ $ subset.trans succ_increasing h) } }
end
theorem chain_closure_total (hc₁ : chain_closure c₁) (hc₂ : chain_closure c₂) : c₁ ⊆ c₂ ∨ c₂ ⊆ c₁ :=
have c₁ ⊆ c₂ ∨ succ_chain c₂ ⊆ c₁,
from chain_closure_succ_total_aux hc₁ hc₂ $ assume c₃ hc₃, chain_closure_succ_total hc₃ hc₂,
or.imp_right (assume : succ_chain c₂ ⊆ c₁, subset.trans succ_increasing this) this
theorem chain_closure_succ_fixpoint (hc₁ : chain_closure c₁) (hc₂ : chain_closure c₂)
(h_eq : succ_chain c₂ = c₂) : c₁ ⊆ c₂ :=
begin
induction hc₁,
case _root_.zorn.chain_closure.succ : c₁ hc₁ h {
exact or.elim (chain_closure_succ_total hc₁ hc₂ h)
(assume h, h ▸ h_eq.symm ▸ subset.refl c₂) id },
case _root_.zorn.chain_closure.union : s hs ih {
exact (sUnion_subset $ assume c₁ hc₁, ih c₁ hc₁) }
end
theorem chain_closure_succ_fixpoint_iff (hc : chain_closure c) :
succ_chain c = c ↔ c = ⋃₀ chain_closure :=
⟨assume h, subset.antisymm
(subset_sUnion_of_mem hc)
(chain_closure_succ_fixpoint chain_closure_closure hc h),
assume : c = ⋃₀{c : set α | chain_closure c},
subset.antisymm
(calc succ_chain c ⊆ ⋃₀{c : set α | chain_closure c} :
subset_sUnion_of_mem $ chain_closure.succ hc
... = c : this.symm)
succ_increasing⟩
theorem chain_chain_closure (hc : chain_closure c) : chain c :=
begin
induction hc,
case _root_.zorn.chain_closure.succ : c hc h {
exact chain_succ h },
case _root_.zorn.chain_closure.union : s hs h {
have h : ∀c∈s, zorn.chain c := h,
exact assume c₁ ⟨t₁, ht₁, (hc₁ : c₁ ∈ t₁)⟩ c₂ ⟨t₂, ht₂, (hc₂ : c₂ ∈ t₂)⟩ hneq,
have t₁ ⊆ t₂ ∨ t₂ ⊆ t₁, from chain_closure_total (hs _ ht₁) (hs _ ht₂),
or.elim this
(assume : t₁ ⊆ t₂, h t₂ ht₂ c₁ (this hc₁) c₂ hc₂ hneq)
(assume : t₂ ⊆ t₁, h t₁ ht₁ c₁ hc₁ c₂ (this hc₂) hneq) }
end
def max_chain := ⋃₀ chain_closure
/-- Hausdorff's maximality principle
There exists a maximal totally ordered subset of `α`.
Note that we do not require `α` to be partially ordered by `r`. -/
theorem max_chain_spec : is_max_chain max_chain :=
classical.by_contradiction $
assume : ¬ is_max_chain (⋃₀ chain_closure),
have super_chain (⋃₀ chain_closure) (succ_chain (⋃₀ chain_closure)),
from super_of_not_max (chain_chain_closure chain_closure_closure) this,
let ⟨h₁, h₂, (h₃ : (⋃₀ chain_closure) ≠ succ_chain (⋃₀ chain_closure))⟩ := this in
have succ_chain (⋃₀ chain_closure) = (⋃₀ chain_closure),
from (chain_closure_succ_fixpoint_iff chain_closure_closure).mpr rfl,
h₃ this.symm
/-- Zorn's lemma
If every chain has an upper bound, then there is a maximal element -/
theorem zorn (h : ∀c, chain c → ∃ub, ∀a∈c, a ≺ ub) (trans : ∀{a b c}, a ≺ b → b ≺ c → a ≺ c) :
∃m, ∀a, m ≺ a → a ≺ m :=
have ∃ub, ∀a∈max_chain, a ≺ ub,
from h _ $ max_chain_spec.left,
let ⟨ub, (hub : ∀a∈max_chain, a ≺ ub)⟩ := this in
⟨ub, assume a ha,
have chain (insert a max_chain),
from chain_insert max_chain_spec.left $ assume b hb _, or.inr $ trans (hub b hb) ha,
have a ∈ max_chain, from
classical.by_contradiction $ assume h : a ∉ max_chain,
max_chain_spec.right $ ⟨insert a max_chain, this, ssubset_insert h⟩,
hub a this⟩
end chain
theorem zorn_partial_order {α : Type u} [partial_order α]
(h : ∀c:set α, @chain α (≤) c → ∃ub, ∀a∈c, a ≤ ub) : ∃m:α, ∀a, m ≤ a → a = m :=
let ⟨m, hm⟩ := @zorn α (≤) h (assume a b c, le_trans) in
⟨m, assume a ha, le_antisymm (hm a ha) ha⟩
theorem zorn_partial_order₀ {α : Type u} [partial_order α] (s : set α)
(ih : ∀ c ⊆ s, chain (≤) c → ∀ y ∈ c, ∃ ub ∈ s, ∀ z ∈ c, z ≤ ub)
(x : α) (hxs : x ∈ s) : ∃ m ∈ s, x ≤ m ∧ ∀ z ∈ s, m ≤ z → z = m :=
let ⟨⟨m, hms, hxm⟩, h⟩ := @zorn_partial_order {m // m ∈ s ∧ x ≤ m} _ (λ c hc, classical.by_cases
(assume hce : c = ∅, hce.symm ▸ ⟨⟨x, hxs, le_refl _⟩, λ _, false.elim⟩)
(assume hce : c ≠ ∅, let ⟨m, hmc⟩ := set.exists_mem_of_ne_empty hce in
let ⟨ub, hubs, hub⟩ := ih (subtype.val '' c) (image_subset_iff.2 $ λ z hzc, z.2.1)
(by rintro _ ⟨p, hpc, rfl⟩ _ ⟨q, hqc, rfl⟩ hpq;
exact hc p hpc q hqc (mt (by rintro rfl; refl) hpq)) m.1 (mem_image_of_mem _ hmc) in
⟨⟨ub, hubs, le_trans m.2.2 $ hub m.1 $ mem_image_of_mem _ hmc⟩, λ a hac, hub a.1 ⟨a, hac, rfl⟩⟩)) in
⟨m, hms, hxm, λ z hzs hmz, congr_arg subtype.val $ h ⟨z, hzs, le_trans hxm hmz⟩ hmz⟩
theorem zorn_subset {α : Type u} (S : set (set α))
(h : ∀c ⊆ S, chain (⊆) c → ∃ub ∈ S, ∀ s ∈ c, s ⊆ ub) :
∃ m ∈ S, ∀a ∈ S, m ⊆ a → a = m :=
begin
letI : partial_order S := partial_order.lift subtype.val (λ _ _, subtype.eq'),
have : ∀c:set S, @chain S (≤) c → ∃ub, ∀a∈c, a ≤ ub,
{ intros c hc,
rcases h (subtype.val '' c) (image_subset_iff.2 _) _ with ⟨s, sS, hs⟩,
{ exact ⟨⟨s, sS⟩, λ ⟨x, hx⟩ H, hs _ (mem_image_of_mem _ H)⟩ },
{ rintro ⟨x, hx⟩ _, exact hx },
{ rintro _ ⟨x, cx, rfl⟩ _ ⟨y, cy, rfl⟩ xy,
exact hc x cx y cy (mt (congr_arg _) xy) } },
rcases zorn_partial_order this with ⟨⟨m, mS⟩, hm⟩,
exact ⟨m, mS, λ a aS ha, congr_arg subtype.val (hm ⟨a, aS⟩ ha)⟩
end
theorem zorn_subset₀ {α : Type u} (S : set (set α))
(H : ∀c ⊆ S, chain (⊆) c → c ≠ ∅ → ∃ub ∈ S, ∀ s ∈ c, s ⊆ ub) (x) (hx : x ∈ S) :
∃ m ∈ S, x ⊆ m ∧ ∀a ∈ S, m ⊆ a → a = m :=
begin
let T := {s ∈ S | x ⊆ s},
rcases zorn_subset T _ with ⟨m, ⟨mS, mx⟩, hm⟩,
{ exact ⟨m, mS, mx, λ a ha ha', hm a ⟨ha, subset.trans mx ha'⟩ ha'⟩ },
{ intros c cT hc,
by_cases c0 : c = ∅,
{ rw c0, exact ⟨x, ⟨hx, subset.refl _⟩, λ _, false.elim⟩ },
{ rcases H _ (subset.trans cT (sep_subset _ _)) hc c0 with ⟨ub, us, h⟩,
refine ⟨ub, ⟨us, _⟩, h⟩,
rcases ne_empty_iff_exists_mem.1 c0 with ⟨s, hs⟩,
exact subset.trans (cT hs).2 (h _ hs) } }
end
theorem chain.total {α : Type u} [preorder α]
{c} (H : @chain α (≤) c) :
∀ {x y}, x ∈ c → y ∈ c → x ≤ y ∨ y ≤ x :=
@chain.total_of_refl _ (≤) ⟨le_refl⟩ _ H
end zorn
|
0dcbd4d0332ba05baf50945d540470c60149a2b0
|
d9d511f37a523cd7659d6f573f990e2a0af93c6f
|
/src/tactic/push_neg.lean
|
79f57c6c6113d5d18820b4044f0ce11636ff1698
|
[
"Apache-2.0"
] |
permissive
|
hikari0108/mathlib
|
b7ea2b7350497ab1a0b87a09d093ecc025a50dfa
|
a9e7d333b0cfd45f13a20f7b96b7d52e19fa2901
|
refs/heads/master
| 1,690,483,608,260
| 1,631,541,580,000
| 1,631,541,580,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 7,986
|
lean
|
/-
Copyright (c) 2019 Patrick Massot All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot, Simon Hudon
A tactic pushing negations into an expression
-/
import logic.basic
import algebra.order
open tactic expr
namespace push_neg
section
universe u
variable {α : Sort u}
variables (p q : Prop)
variable (s : α → Prop)
local attribute [instance, priority 10] classical.prop_decidable
theorem not_not_eq : (¬ ¬ p) = p := propext not_not
theorem not_and_eq : (¬ (p ∧ q)) = (p → ¬ q) := propext not_and
theorem not_or_eq : (¬ (p ∨ q)) = (¬ p ∧ ¬ q) := propext not_or_distrib
theorem not_forall_eq : (¬ ∀ x, s x) = (∃ x, ¬ s x) := propext not_forall
theorem not_exists_eq : (¬ ∃ x, s x) = (∀ x, ¬ s x) := propext not_exists
theorem not_implies_eq : (¬ (p → q)) = (p ∧ ¬ q) := propext not_imp
theorem classical.implies_iff_not_or : (p → q) ↔ (¬ p ∨ q) := imp_iff_not_or
theorem not_eq (a b : α) : (¬ a = b) ↔ (a ≠ b) := iff.rfl
variable {β : Type u}
variable [linear_order β]
theorem not_le_eq (a b : β) : (¬ (a ≤ b)) = (b < a) := propext not_le
theorem not_lt_eq (a b : β) : (¬ (a < b)) = (b ≤ a) := propext not_lt
end
meta def whnf_reducible (e : expr) : tactic expr := whnf e reducible
private meta def transform_negation_step (e : expr) :
tactic (option (expr × expr)) :=
do e ← whnf_reducible e,
match e with
| `(¬ %%ne) :=
(do ne ← whnf_reducible ne,
match ne with
| `(¬ %%a) := do pr ← mk_app ``not_not_eq [a],
return (some (a, pr))
| `(%%a ∧ %%b) := do pr ← mk_app ``not_and_eq [a, b],
return (some (`((%%a : Prop) → ¬ %%b), pr))
| `(%%a ∨ %%b) := do pr ← mk_app ``not_or_eq [a, b],
return (some (`(¬ %%a ∧ ¬ %%b), pr))
| `(%%a ≤ %%b) := do e ← to_expr ``(%%b < %%a),
pr ← mk_app ``not_le_eq [a, b],
return (some (e, pr))
| `(%%a < %%b) := do e ← to_expr ``(%%b ≤ %%a),
pr ← mk_app ``not_lt_eq [a, b],
return (some (e, pr))
| `(Exists %%p) := do pr ← mk_app ``not_exists_eq [p],
e ← match p with
| (lam n bi typ bo) := do
body ← mk_app ``not [bo],
return (pi n bi typ body)
| _ := tactic.fail "Unexpected failure negating ∃"
end,
return (some (e, pr))
| (pi n bi d p) := if p.has_var then do
pr ← mk_app ``not_forall_eq [lam n bi d p],
body ← mk_app ``not [p],
e ← mk_app ``Exists [lam n bi d body],
return (some (e, pr))
else do
pr ← mk_app ``not_implies_eq [d, p],
`(%%_ = %%e') ← infer_type pr,
return (some (e', pr))
| _ := return none
end)
| _ := return none
end
private meta def transform_negation : expr → tactic (option (expr × expr))
| e :=
do (some (e', pr)) ← transform_negation_step e | return none,
(some (e'', pr')) ← transform_negation e' | return (some (e', pr)),
pr'' ← mk_eq_trans pr pr',
return (some (e'', pr''))
meta def normalize_negations (t : expr) : tactic (expr × expr) :=
do (_, e, pr) ← simplify_top_down ()
(λ _, λ e, do
oepr ← transform_negation e,
match oepr with
| (some (e', pr)) := return ((), e', pr)
| none := do pr ← mk_eq_refl e, return ((), e, pr)
end)
t { eta := ff },
return (e, pr)
meta def push_neg_at_hyp (h : name) : tactic unit :=
do H ← get_local h,
t ← infer_type H,
(e, pr) ← normalize_negations t,
replace_hyp H e pr,
skip
meta def push_neg_at_goal : tactic unit :=
do H ← target,
(e, pr) ← normalize_negations H,
replace_target e pr
end push_neg
open interactive (parse loc.ns loc.wildcard)
open interactive.types (location texpr)
open lean.parser (tk ident many) interactive.loc
local postfix `?`:9001 := optional
local postfix *:9001 := many
open push_neg
/--
Push negations in the goal of some assumption.
For instance, a hypothesis `h : ¬ ∀ x, ∃ y, x ≤ y` will be transformed by `push_neg at h` into
`h : ∃ x, ∀ y, y < x`. Variables names are conserved.
This tactic pushes negations inside expressions. For instance, given an assumption
```lean
h : ¬ ∀ ε > 0, ∃ δ > 0, ∀ x, |x - x₀| ≤ δ → |f x - y₀| ≤ ε)
```
writing `push_neg at h` will turn `h` into
```lean
h : ∃ ε, ε > 0 ∧ ∀ δ, δ > 0 → (∃ x, |x - x₀| ≤ δ ∧ ε < |f x - y₀|),
```
(the pretty printer does *not* use the abreviations `∀ δ > 0` and `∃ ε > 0` but this issue
has nothing to do with `push_neg`).
Note that names are conserved by this tactic, contrary to what would happen with `simp`
using the relevant lemmas. One can also use this tactic at the goal using `push_neg`,
at every assumption and the goal using `push_neg at *` or at selected assumptions and the goal
using say `push_neg at h h' ⊢` as usual.
-/
meta def tactic.interactive.push_neg : parse location → tactic unit
| (loc.ns loc_l) :=
loc_l.mmap'
(λ l, match l with
| some h := do push_neg_at_hyp h,
try $ interactive.simp_core { eta := ff } failed tt
[simp_arg_type.expr ``(push_neg.not_eq)] []
(interactive.loc.ns [some h])
| none := do push_neg_at_goal,
try `[simp only [push_neg.not_eq] { eta := ff }]
end)
| loc.wildcard := do
push_neg_at_goal,
local_context >>= mmap' (λ h, push_neg_at_hyp (local_pp_name h)) ,
try `[simp only [push_neg.not_eq] at * { eta := ff }]
add_tactic_doc
{ name := "push_neg",
category := doc_category.tactic,
decl_names := [`tactic.interactive.push_neg],
tags := ["logic"] }
lemma imp_of_not_imp_not (P Q : Prop) : (¬ Q → ¬ P) → (P → Q) :=
λ h hP, classical.by_contradiction (λ h', h h' hP)
/-- Matches either an identifier "h" or a pair of identifiers "h with k" -/
meta def name_with_opt : lean.parser (name × option name) :=
prod.mk <$> ident <*> (some <$> (tk "with" >> ident) <|> return none)
/--
Transforms the goal into its contrapositive.
* `contrapose` turns a goal `P → Q` into `¬ Q → ¬ P`
* `contrapose!` turns a goal `P → Q` into `¬ Q → ¬ P` and pushes negations inside `P` and `Q`
using `push_neg`
* `contrapose h` first reverts the local assumption `h`, and then uses `contrapose` and `intro h`
* `contrapose! h` first reverts the local assumption `h`, and then uses `contrapose!` and `intro h`
* `contrapose h with new_h` uses the name `new_h` for the introduced hypothesis
-/
meta def tactic.interactive.contrapose (push : parse (tk "!" )?) :
parse name_with_opt? → tactic unit
| (some (h, h')) := get_local h >>= revert >> tactic.interactive.contrapose none >>
intro (h'.get_or_else h) >> skip
| none :=
do `(%%P → %%Q) ← target | fail
"The goal is not an implication, and you didn't specify an assumption",
cp ← mk_mapp ``imp_of_not_imp_not [P, Q] <|> fail
"contrapose only applies to nondependent arrows between props",
apply cp,
when push.is_some $ try (tactic.interactive.push_neg (loc.ns [none]))
add_tactic_doc
{ name := "contrapose",
category := doc_category.tactic,
decl_names := [`tactic.interactive.contrapose],
tags := ["logic"] }
|
198aca80d32da667942b174adff226a4af6ba810
|
36cfb52a5926b96dc8a44d3b71d2f14a21ef8574
|
/sort_benchmarks.lean
|
e3ce59d8011917f662f0d2fbfe7230edd05b7cb8
|
[] |
no_license
|
minchaowu/relevance_filter
|
b46e3cc166b8225b19fac61b8f9911eeecdd42d8
|
3ae59d297ed5a07bd14749112e520b74209f10fd
|
refs/heads/master
| 1,631,071,413,821
| 1,507,745,131,000
| 1,507,745,131,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 1,125
|
lean
|
import float sort data.list.sort
set_option profiler true
--set_option trace.array.update true
/-
all updates are destructive. I don't know why my array quicksort takes twice the time of list.qsort.
They seem to scale at the same rate.
-/
run_cmd
--let arr := (mk_array 80 (1 : float)).map (λ _, float.random) in
do return $ quicksort (λ a b, float.lt a b) $ (mk_array 8000 (1 : float)).map (λ _, float.random)
-- return $ list.qsort (λ a b, float.lt a b) ((mk_array 8000 (1 : float)).map (λ _, float.random)).to_list
#exit
run_cmd let a := (mk_array 800 (1 : float)).map (λ _, float.random) -- .55
in tactic.trace $ ((a.write' 10 50).read' 10) + (a.read' 1)
#exit
run_cmd return $ merge_sort $ (mk_array 20000 (1 : float)).map (λ _, float.random) -- 4 sec
run_cmd return $ quicksort (λ a b, a < b) $ (mk_array 20000 (1 : float)).map (λ _, float.random) -- .55
run_cmd return $ list.merge_sort (λ a b, a < b) ((list.repeat (0 : ℕ) 20000).map (λ _, float.random)) -- .24
run_cmd return $ list.qsort (λ a b, a < b) ((list.repeat (0 : ℕ) 20000).map (λ _, float.random)) -- .31
|
237351abb311b66264f46a86b82341495c4873a2
|
c31182a012eec69da0a1f6c05f42b0f0717d212d
|
/src/statement.lean
|
2b221858e0da321c5b28077e5abe6a2d5b4deeb6
|
[] |
no_license
|
Ja1941/lean-liquid
|
fbec3ffc7fc67df1b5ca95b7ee225685ab9ffbdc
|
8e80ed0cbdf5145d6814e833a674eaf05a1495c1
|
refs/heads/master
| 1,689,437,983,362
| 1,628,362,719,000
| 1,628,362,719,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 746
|
lean
|
import pseudo_normed_group.system_of_complexes
import Mbar.pseudo_normed_group
import breen_deligne.homotopy
.
open_locale nnreal
open category_theory ProFiltPseuNormGrpWithTinv opposite
variables (r r' : ℝ≥0) [fact (0 < r)] [fact (0 < r')] [fact (r < r')] [fact (r < 1)] [fact (r' < 1)]
variables (BD : breen_deligne.package) (κ : ℕ → ℝ≥0)
variables [BD.data.very_suitable r r' κ] [∀ (i : ℕ), fact (0 < κ i)]
include r r' BD κ
def first_target_stmt : Prop :=
∀ m : ℕ,
∃ (k K : ℝ≥0) [fact (1 ≤ k)],
∃ c₀ : ℝ≥0,
∀ (S : Type) [fintype S],
∀ (V : SemiNormedGroup.{0}) [normed_with_aut r V],
((BD.data.system κ r V r').obj (op $ of r' (Mbar r' S))).is_weak_bounded_exact k K m c₀
|
5b06bd476218b9e0c4eda5e14e56249c6ce55fc7
|
a0e23cfdd129a671bf3154ee1a8a3a72bf4c7940
|
/stage0/src/Lean/Data/SMap.lean
|
b92608979bbeda0b3e4da7db16bdf58d2f52af5c
|
[
"Apache-2.0"
] |
permissive
|
WojciechKarpiel/lean4
|
7f89706b8e3c1f942b83a2c91a3a00b05da0e65b
|
f6e1314fa08293dea66a329e05b6c196a0189163
|
refs/heads/master
| 1,686,633,402,214
| 1,625,821,189,000
| 1,625,821,258,000
| 384,640,886
| 0
| 0
|
Apache-2.0
| 1,625,903,617,000
| 1,625,903,026,000
| null |
UTF-8
|
Lean
| false
| false
| 3,709
|
lean
|
/-
Copyright (c) 2019 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
-/
import Std.Data.HashMap
import Std.Data.PersistentHashMap
universe u v w w'
namespace Lean
open Std (HashMap PHashMap)
/- Staged map for implementing the Environment. The idea is to store
imported entries into a hashtable and local entries into a persistent hashtable.
Hypotheses:
- The number of entries (i.e., declarations) coming from imported files is much bigger than
the number of entries in the current file.
- HashMap is faster than PersistentHashMap.
- When we are reading imported files, we have exclusive access to the map, and efficient
destructive updates are performed.
Remarks:
- We never remove declarations from the Environment. In principle, we could support
deletion by using `(PHashMap α (Option β))` where the value `none` would indicate
that an entry was "removed" from the hashtable.
- We do not need additional bookkeeping for extracting the local entries.
-/
structure SMap (α : Type u) (β : Type v) [BEq α] [Hashable α] where
stage₁ : Bool := true
map₁ : HashMap α β := {}
map₂ : PHashMap α β := {}
namespace SMap
variable {α : Type u} {β : Type v} [BEq α] [Hashable α]
instance : Inhabited (SMap α β) := ⟨{}⟩
def empty : SMap α β := {}
@[specialize] def insert : SMap α β → α → β → SMap α β
| ⟨true, m₁, m₂⟩, k, v => ⟨true, m₁.insert k v, m₂⟩
| ⟨false, m₁, m₂⟩, k, v => ⟨false, m₁, m₂.insert k v⟩
@[specialize] def find? : SMap α β → α → Option β
| ⟨true, m₁, _⟩, k => m₁.find? k
| ⟨false, m₁, m₂⟩, k => (m₂.find? k).orElse (m₁.find? k)
@[inline] def findD (m : SMap α β) (a : α) (b₀ : β) : β :=
(m.find? a).getD b₀
@[inline] def find! [Inhabited β] (m : SMap α β) (a : α) : β :=
match m.find? a with
| some b => b
| none => panic! "key is not in the map"
@[specialize] def contains : SMap α β → α → Bool
| ⟨true, m₁, _⟩, k => m₁.contains k
| ⟨false, m₁, m₂⟩, k => m₁.contains k || m₂.contains k
/- Similar to `find?`, but searches for result in the hashmap first.
So, the result is correct only if we never "overwrite" `map₁` entries using `map₂`. -/
@[specialize] def find?' : SMap α β → α → Option β
| ⟨true, m₁, _⟩, k => m₁.find? k
| ⟨false, m₁, m₂⟩, k => (m₁.find? k).orElse (m₂.find? k)
def forM [Monad m] (s : SMap α β) (f : α → β → m PUnit) : m PUnit := do
s.map₁.forM f
s.map₂.forM f
/- Move from stage 1 into stage 2. -/
def switch (m : SMap α β) : SMap α β :=
if m.stage₁ then { m with stage₁ := false } else m
@[inline] def foldStage2 {σ : Type w} (f : σ → α → β → σ) (s : σ) (m : SMap α β) : σ :=
m.map₂.foldl f s
def fold {σ : Type w} (f : σ → α → β → σ) (init : σ) (m : SMap α β) : σ :=
m.map₂.foldl f $ m.map₁.fold f init
def size (m : SMap α β) : Nat :=
m.map₁.size + m.map₂.size
def stageSizes (m : SMap α β) : Nat × Nat :=
(m.map₁.size, m.map₂.size)
def numBuckets (m : SMap α β) : Nat :=
m.map₁.numBuckets
def toList (m : SMap α β) : List (α × β) :=
m.fold (init := []) fun es a b => (a, b)::es
end SMap
def List.toSMap [BEq α] [Hashable α] (es : List (α × β)) : SMap α β :=
es.foldl (init := {}) fun s (a, b) => s.insert a b
instance {_ : BEq α} {_ : Hashable α} [Repr α] [Repr β] : Repr (SMap α β) where
reprPrec v prec := Repr.addAppParen (reprArg v.toList ++ ".toSMap") prec
end Lean
|
eb9842866f16cb21868e7ad64e415c912491dfd0
|
d9d511f37a523cd7659d6f573f990e2a0af93c6f
|
/src/computability/turing_machine.lean
|
18da3edca369aef4a2d4006f89a7c4e21dfc6dda
|
[
"Apache-2.0"
] |
permissive
|
hikari0108/mathlib
|
b7ea2b7350497ab1a0b87a09d093ecc025a50dfa
|
a9e7d333b0cfd45f13a20f7b96b7d52e19fa2901
|
refs/heads/master
| 1,690,483,608,260
| 1,631,541,580,000
| 1,631,541,580,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 109,924
|
lean
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
-/
import algebra.order
import data.fintype.basic
import data.pfun
import tactic.apply_fun
import logic.function.iterate
/-!
# Turing machines
This file defines a sequence of simple machine languages, starting with Turing machines and working
up to more complex languages based on Wang B-machines.
## Naming conventions
Each model of computation in this file shares a naming convention for the elements of a model of
computation. These are the parameters for the language:
* `Γ` is the alphabet on the tape.
* `Λ` is the set of labels, or internal machine states.
* `σ` is the type of internal memory, not on the tape. This does not exist in the TM0 model, and
later models achieve this by mixing it into `Λ`.
* `K` is used in the TM2 model, which has multiple stacks, and denotes the number of such stacks.
All of these variables denote "essentially finite" types, but for technical reasons it is
convenient to allow them to be infinite anyway. When using an infinite type, we will be interested
to prove that only finitely many values of the type are ever interacted with.
Given these parameters, there are a few common structures for the model that arise:
* `stmt` is the set of all actions that can be performed in one step. For the TM0 model this set is
finite, and for later models it is an infinite inductive type representing "possible program
texts".
* `cfg` is the set of instantaneous configurations, that is, the state of the machine together with
its environment.
* `machine` is the set of all machines in the model. Usually this is approximately a function
`Λ → stmt`, although different models have different ways of halting and other actions.
* `step : cfg → option cfg` is the function that describes how the state evolves over one step.
If `step c = none`, then `c` is a terminal state, and the result of the computation is read off
from `c`. Because of the type of `step`, these models are all deterministic by construction.
* `init : input → cfg` sets up the initial state. The type `input` depends on the model;
in most cases it is `list Γ`.
* `eval : machine → input → part output`, given a machine `M` and input `i`, starts from
`init i`, runs `step` until it reaches an output, and then applies a function `cfg → output` to
the final state to obtain the result. The type `output` depends on the model.
* `supports : machine → finset Λ → Prop` asserts that a machine `M` starts in `S : finset Λ`, and
can only ever jump to other states inside `S`. This implies that the behavior of `M` on any input
cannot depend on its values outside `S`. We use this to allow `Λ` to be an infinite set when
convenient, and prove that only finitely many of these states are actually accessible. This
formalizes "essentially finite" mentioned above.
-/
open relation
open nat (iterate)
open function (update iterate_succ iterate_succ_apply iterate_succ'
iterate_succ_apply' iterate_zero_apply)
namespace turing
/-- The `blank_extends` partial order holds of `l₁` and `l₂` if `l₂` is obtained by adding
blanks (`default Γ`) to the end of `l₁`. -/
def blank_extends {Γ} [inhabited Γ] (l₁ l₂ : list Γ) : Prop :=
∃ n, l₂ = l₁ ++ list.repeat (default Γ) n
@[refl] theorem blank_extends.refl {Γ} [inhabited Γ] (l : list Γ) : blank_extends l l :=
⟨0, by simp⟩
@[trans] theorem blank_extends.trans {Γ} [inhabited Γ] {l₁ l₂ l₃ : list Γ} :
blank_extends l₁ l₂ → blank_extends l₂ l₃ → blank_extends l₁ l₃ :=
by rintro ⟨i, rfl⟩ ⟨j, rfl⟩; exact ⟨i+j, by simp [list.repeat_add]⟩
theorem blank_extends.below_of_le {Γ} [inhabited Γ] {l l₁ l₂ : list Γ} :
blank_extends l l₁ → blank_extends l l₂ →
l₁.length ≤ l₂.length → blank_extends l₁ l₂ :=
begin
rintro ⟨i, rfl⟩ ⟨j, rfl⟩ h, use j - i,
simp only [list.length_append, add_le_add_iff_left, list.length_repeat] at h,
simp only [← list.repeat_add, nat.add_sub_cancel' h, list.append_assoc],
end
/-- Any two extensions by blank `l₁,l₂` of `l` have a common join (which can be taken to be the
longer of `l₁` and `l₂`). -/
def blank_extends.above {Γ} [inhabited Γ] {l l₁ l₂ : list Γ}
(h₁ : blank_extends l l₁) (h₂ : blank_extends l l₂) :
{l' // blank_extends l₁ l' ∧ blank_extends l₂ l'} :=
if h : l₁.length ≤ l₂.length then
⟨l₂, h₁.below_of_le h₂ h, blank_extends.refl _⟩
else
⟨l₁, blank_extends.refl _, h₂.below_of_le h₁ (le_of_not_ge h)⟩
theorem blank_extends.above_of_le {Γ} [inhabited Γ] {l l₁ l₂ : list Γ} :
blank_extends l₁ l → blank_extends l₂ l →
l₁.length ≤ l₂.length → blank_extends l₁ l₂ :=
begin
rintro ⟨i, rfl⟩ ⟨j, e⟩ h, use i - j,
refine list.append_right_cancel (e.symm.trans _),
rw [list.append_assoc, ← list.repeat_add, nat.sub_add_cancel],
apply_fun list.length at e,
simp only [list.length_append, list.length_repeat] at e,
rwa [← add_le_add_iff_left, e, add_le_add_iff_right]
end
/-- `blank_rel` is the symmetric closure of `blank_extends`, turning it into an equivalence
relation. Two lists are related by `blank_rel` if one extends the other by blanks. -/
def blank_rel {Γ} [inhabited Γ] (l₁ l₂ : list Γ) : Prop :=
blank_extends l₁ l₂ ∨ blank_extends l₂ l₁
@[refl] theorem blank_rel.refl {Γ} [inhabited Γ] (l : list Γ) : blank_rel l l :=
or.inl (blank_extends.refl _)
@[symm] theorem blank_rel.symm {Γ} [inhabited Γ] {l₁ l₂ : list Γ} :
blank_rel l₁ l₂ → blank_rel l₂ l₁ := or.symm
@[trans] theorem blank_rel.trans {Γ} [inhabited Γ] {l₁ l₂ l₃ : list Γ} :
blank_rel l₁ l₂ → blank_rel l₂ l₃ → blank_rel l₁ l₃ :=
begin
rintro (h₁|h₁) (h₂|h₂),
{ exact or.inl (h₁.trans h₂) },
{ cases le_total l₁.length l₃.length with h h,
{ exact or.inl (h₁.above_of_le h₂ h) },
{ exact or.inr (h₂.above_of_le h₁ h) } },
{ cases le_total l₁.length l₃.length with h h,
{ exact or.inl (h₁.below_of_le h₂ h) },
{ exact or.inr (h₂.below_of_le h₁ h) } },
{ exact or.inr (h₂.trans h₁) },
end
/-- Given two `blank_rel` lists, there exists (constructively) a common join. -/
def blank_rel.above {Γ} [inhabited Γ] {l₁ l₂ : list Γ} (h : blank_rel l₁ l₂) :
{l // blank_extends l₁ l ∧ blank_extends l₂ l} :=
begin
refine if hl : l₁.length ≤ l₂.length
then ⟨l₂, or.elim h id (λ h', _), blank_extends.refl _⟩
else ⟨l₁, blank_extends.refl _, or.elim h (λ h', _) id⟩,
exact (blank_extends.refl _).above_of_le h' hl,
exact (blank_extends.refl _).above_of_le h' (le_of_not_ge hl)
end
/-- Given two `blank_rel` lists, there exists (constructively) a common meet. -/
def blank_rel.below {Γ} [inhabited Γ] {l₁ l₂ : list Γ} (h : blank_rel l₁ l₂) :
{l // blank_extends l l₁ ∧ blank_extends l l₂} :=
begin
refine if hl : l₁.length ≤ l₂.length
then ⟨l₁, blank_extends.refl _, or.elim h id (λ h', _)⟩
else ⟨l₂, or.elim h (λ h', _) id, blank_extends.refl _⟩,
exact (blank_extends.refl _).above_of_le h' hl,
exact (blank_extends.refl _).above_of_le h' (le_of_not_ge hl)
end
theorem blank_rel.equivalence (Γ) [inhabited Γ] : equivalence (@blank_rel Γ _) :=
⟨blank_rel.refl, @blank_rel.symm _ _, @blank_rel.trans _ _⟩
/-- Construct a setoid instance for `blank_rel`. -/
def blank_rel.setoid (Γ) [inhabited Γ] : setoid (list Γ) := ⟨_, blank_rel.equivalence _⟩
/-- A `list_blank Γ` is a quotient of `list Γ` by extension by blanks at the end. This is used to
represent half-tapes of a Turing machine, so that we can pretend that the list continues
infinitely with blanks. -/
def list_blank (Γ) [inhabited Γ] := quotient (blank_rel.setoid Γ)
instance list_blank.inhabited {Γ} [inhabited Γ] : inhabited (list_blank Γ) := ⟨quotient.mk' []⟩
instance list_blank.has_emptyc {Γ} [inhabited Γ] : has_emptyc (list_blank Γ) := ⟨quotient.mk' []⟩
/-- A modified version of `quotient.lift_on'` specialized for `list_blank`, with the stronger
precondition `blank_extends` instead of `blank_rel`. -/
@[elab_as_eliminator, reducible]
protected def list_blank.lift_on {Γ} [inhabited Γ] {α} (l : list_blank Γ) (f : list Γ → α)
(H : ∀ a b, blank_extends a b → f a = f b) : α :=
l.lift_on' f $ by rintro a b (h|h); [exact H _ _ h, exact (H _ _ h).symm]
/-- The quotient map turning a `list` into a `list_blank`. -/
def list_blank.mk {Γ} [inhabited Γ] : list Γ → list_blank Γ := quotient.mk'
@[elab_as_eliminator]
protected lemma list_blank.induction_on {Γ} [inhabited Γ]
{p : list_blank Γ → Prop} (q : list_blank Γ)
(h : ∀ a, p (list_blank.mk a)) : p q := quotient.induction_on' q h
/-- The head of a `list_blank` is well defined. -/
def list_blank.head {Γ} [inhabited Γ] (l : list_blank Γ) : Γ :=
l.lift_on list.head begin
rintro _ _ ⟨i, rfl⟩,
cases a, {cases i; refl}, refl
end
@[simp] theorem list_blank.head_mk {Γ} [inhabited Γ] (l : list Γ) :
list_blank.head (list_blank.mk l) = l.head := rfl
/-- The tail of a `list_blank` is well defined (up to the tail of blanks). -/
def list_blank.tail {Γ} [inhabited Γ] (l : list_blank Γ) : list_blank Γ :=
l.lift_on (λ l, list_blank.mk l.tail) begin
rintro _ _ ⟨i, rfl⟩,
refine quotient.sound' (or.inl _),
cases a; [{cases i; [exact ⟨0, rfl⟩, exact ⟨i, rfl⟩]}, exact ⟨i, rfl⟩]
end
@[simp] theorem list_blank.tail_mk {Γ} [inhabited Γ] (l : list Γ) :
list_blank.tail (list_blank.mk l) = list_blank.mk l.tail := rfl
/-- We can cons an element onto a `list_blank`. -/
def list_blank.cons {Γ} [inhabited Γ] (a : Γ) (l : list_blank Γ) : list_blank Γ :=
l.lift_on (λ l, list_blank.mk (list.cons a l)) begin
rintro _ _ ⟨i, rfl⟩,
exact quotient.sound' (or.inl ⟨i, rfl⟩),
end
@[simp] theorem list_blank.cons_mk {Γ} [inhabited Γ] (a : Γ) (l : list Γ) :
list_blank.cons a (list_blank.mk l) = list_blank.mk (a :: l) := rfl
@[simp] theorem list_blank.head_cons {Γ} [inhabited Γ] (a : Γ) :
∀ (l : list_blank Γ), (l.cons a).head = a :=
quotient.ind' $ by exact λ l, rfl
@[simp] theorem list_blank.tail_cons {Γ} [inhabited Γ] (a : Γ) :
∀ (l : list_blank Γ), (l.cons a).tail = l :=
quotient.ind' $ by exact λ l, rfl
/-- The `cons` and `head`/`tail` functions are mutually inverse, unlike in the case of `list` where
this only holds for nonempty lists. -/
@[simp] theorem list_blank.cons_head_tail {Γ} [inhabited Γ] :
∀ (l : list_blank Γ), l.tail.cons l.head = l :=
quotient.ind' begin
refine (λ l, quotient.sound' (or.inr _)),
cases l, {exact ⟨1, rfl⟩}, {refl},
end
/-- The `cons` and `head`/`tail` functions are mutually inverse, unlike in the case of `list` where
this only holds for nonempty lists. -/
theorem list_blank.exists_cons {Γ} [inhabited Γ] (l : list_blank Γ) :
∃ a l', l = list_blank.cons a l' :=
⟨_, _, (list_blank.cons_head_tail _).symm⟩
/-- The n-th element of a `list_blank` is well defined for all `n : ℕ`, unlike in a `list`. -/
def list_blank.nth {Γ} [inhabited Γ] (l : list_blank Γ) (n : ℕ) : Γ :=
l.lift_on (λ l, list.inth l n) begin
rintro l _ ⟨i, rfl⟩,
simp only [list.inth],
cases lt_or_le _ _ with h h, {rw list.nth_append h},
rw list.nth_len_le h,
cases le_or_lt _ _ with h₂ h₂, {rw list.nth_len_le h₂},
rw [list.nth_le_nth h₂, list.nth_le_append_right h, list.nth_le_repeat]
end
@[simp] theorem list_blank.nth_mk {Γ} [inhabited Γ] (l : list Γ) (n : ℕ) :
(list_blank.mk l).nth n = l.inth n := rfl
@[simp] theorem list_blank.nth_zero {Γ} [inhabited Γ] (l : list_blank Γ) : l.nth 0 = l.head :=
begin
conv {to_lhs, rw [← list_blank.cons_head_tail l]},
exact quotient.induction_on' l.tail (λ l, rfl)
end
@[simp] theorem list_blank.nth_succ {Γ} [inhabited Γ] (l : list_blank Γ) (n : ℕ) :
l.nth (n + 1) = l.tail.nth n :=
begin
conv {to_lhs, rw [← list_blank.cons_head_tail l]},
exact quotient.induction_on' l.tail (λ l, rfl)
end
@[ext] theorem list_blank.ext {Γ} [inhabited Γ] {L₁ L₂ : list_blank Γ} :
(∀ i, L₁.nth i = L₂.nth i) → L₁ = L₂ :=
list_blank.induction_on L₁ $ λ l₁, list_blank.induction_on L₂ $ λ l₂ H,
begin
wlog h : l₁.length ≤ l₂.length using l₁ l₂,
swap, { exact (this $ λ i, (H i).symm).symm },
refine quotient.sound' (or.inl ⟨l₂.length - l₁.length, _⟩),
refine list.ext_le _ (λ i h h₂, eq.symm _),
{ simp only [nat.add_sub_of_le h, list.length_append, list.length_repeat] },
simp at H,
cases lt_or_le i l₁.length with h' h',
{ simpa only [list.nth_le_append _ h',
list.nth_le_nth h, list.nth_le_nth h', option.iget] using H i },
{ simpa only [list.nth_le_append_right h', list.nth_le_repeat,
list.nth_le_nth h, list.nth_len_le h', option.iget] using H i },
end
/-- Apply a function to a value stored at the nth position of the list. -/
@[simp] def list_blank.modify_nth {Γ} [inhabited Γ] (f : Γ → Γ) : ℕ → list_blank Γ → list_blank Γ
| 0 L := L.tail.cons (f L.head)
| (n+1) L := (L.tail.modify_nth n).cons L.head
theorem list_blank.nth_modify_nth {Γ} [inhabited Γ] (f : Γ → Γ) (n i) (L : list_blank Γ) :
(L.modify_nth f n).nth i = if i = n then f (L.nth i) else L.nth i :=
begin
induction n with n IH generalizing i L,
{ cases i; simp only [list_blank.nth_zero, if_true,
list_blank.head_cons, list_blank.modify_nth, eq_self_iff_true,
list_blank.nth_succ, if_false, list_blank.tail_cons] },
{ cases i,
{ rw if_neg (nat.succ_ne_zero _).symm,
simp only [list_blank.nth_zero, list_blank.head_cons, list_blank.modify_nth] },
{ simp only [IH, list_blank.modify_nth, list_blank.nth_succ, list_blank.tail_cons],
congr } }
end
/-- A pointed map of `inhabited` types is a map that sends one default value to the other. -/
structure {u v} pointed_map (Γ : Type u) (Γ' : Type v)
[inhabited Γ] [inhabited Γ'] : Type (max u v) :=
(f : Γ → Γ') (map_pt' : f (default _) = default _)
instance {Γ Γ'} [inhabited Γ] [inhabited Γ'] : inhabited (pointed_map Γ Γ') :=
⟨⟨λ _, default _, rfl⟩⟩
instance {Γ Γ'} [inhabited Γ] [inhabited Γ'] : has_coe_to_fun (pointed_map Γ Γ') :=
⟨_, pointed_map.f⟩
@[simp] theorem pointed_map.mk_val {Γ Γ'} [inhabited Γ] [inhabited Γ']
(f : Γ → Γ') (pt) : (pointed_map.mk f pt : Γ → Γ') = f := rfl
@[simp] theorem pointed_map.map_pt {Γ Γ'} [inhabited Γ] [inhabited Γ']
(f : pointed_map Γ Γ') : f (default _) = default _ := pointed_map.map_pt' _
@[simp] theorem pointed_map.head_map {Γ Γ'} [inhabited Γ] [inhabited Γ']
(f : pointed_map Γ Γ') (l : list Γ) : (l.map f).head = f l.head :=
by cases l; [exact (pointed_map.map_pt f).symm, refl]
/-- The `map` function on lists is well defined on `list_blank`s provided that the map is
pointed. -/
def list_blank.map {Γ Γ'} [inhabited Γ] [inhabited Γ']
(f : pointed_map Γ Γ') (l : list_blank Γ) : list_blank Γ' :=
l.lift_on (λ l, list_blank.mk (list.map f l)) begin
rintro l _ ⟨i, rfl⟩, refine quotient.sound' (or.inl ⟨i, _⟩),
simp only [pointed_map.map_pt, list.map_append, list.map_repeat],
end
@[simp] theorem list_blank.map_mk {Γ Γ'} [inhabited Γ] [inhabited Γ']
(f : pointed_map Γ Γ') (l : list Γ) : (list_blank.mk l).map f = list_blank.mk (l.map f) := rfl
@[simp] theorem list_blank.head_map {Γ Γ'} [inhabited Γ] [inhabited Γ']
(f : pointed_map Γ Γ') (l : list_blank Γ) : (l.map f).head = f l.head :=
begin
conv {to_lhs, rw [← list_blank.cons_head_tail l]},
exact quotient.induction_on' l (λ a, rfl)
end
@[simp] theorem list_blank.tail_map {Γ Γ'} [inhabited Γ] [inhabited Γ']
(f : pointed_map Γ Γ') (l : list_blank Γ) : (l.map f).tail = l.tail.map f :=
begin
conv {to_lhs, rw [← list_blank.cons_head_tail l]},
exact quotient.induction_on' l (λ a, rfl)
end
@[simp] theorem list_blank.map_cons {Γ Γ'} [inhabited Γ] [inhabited Γ']
(f : pointed_map Γ Γ') (l : list_blank Γ) (a : Γ) : (l.cons a).map f = (l.map f).cons (f a) :=
begin
refine (list_blank.cons_head_tail _).symm.trans _,
simp only [list_blank.head_map, list_blank.head_cons, list_blank.tail_map, list_blank.tail_cons]
end
@[simp] theorem list_blank.nth_map {Γ Γ'} [inhabited Γ] [inhabited Γ']
(f : pointed_map Γ Γ') (l : list_blank Γ) (n : ℕ) : (l.map f).nth n = f (l.nth n) :=
l.induction_on begin
intro l, simp only [list.nth_map, list_blank.map_mk, list_blank.nth_mk, list.inth],
cases l.nth n, {exact f.2.symm}, {refl}
end
/-- The `i`-th projection as a pointed map. -/
def proj {ι : Type*} {Γ : ι → Type*} [∀ i, inhabited (Γ i)] (i : ι) :
pointed_map (∀ i, Γ i) (Γ i) := ⟨λ a, a i, rfl⟩
theorem proj_map_nth {ι : Type*} {Γ : ι → Type*} [∀ i, inhabited (Γ i)] (i : ι)
(L n) : (list_blank.map (@proj ι Γ _ i) L).nth n = L.nth n i :=
by rw list_blank.nth_map; refl
theorem list_blank.map_modify_nth {Γ Γ'} [inhabited Γ] [inhabited Γ']
(F : pointed_map Γ Γ') (f : Γ → Γ) (f' : Γ' → Γ')
(H : ∀ x, F (f x) = f' (F x)) (n) (L : list_blank Γ) :
(L.modify_nth f n).map F = (L.map F).modify_nth f' n :=
by induction n with n IH generalizing L; simp only [*,
list_blank.head_map, list_blank.modify_nth, list_blank.map_cons, list_blank.tail_map]
/-- Append a list on the left side of a list_blank. -/
@[simp] def list_blank.append {Γ} [inhabited Γ] : list Γ → list_blank Γ → list_blank Γ
| [] L := L
| (a :: l) L := list_blank.cons a (list_blank.append l L)
@[simp] theorem list_blank.append_mk {Γ} [inhabited Γ] (l₁ l₂ : list Γ) :
list_blank.append l₁ (list_blank.mk l₂) = list_blank.mk (l₁ ++ l₂) :=
by induction l₁; simp only [*,
list_blank.append, list.nil_append, list.cons_append, list_blank.cons_mk]
theorem list_blank.append_assoc {Γ} [inhabited Γ] (l₁ l₂ : list Γ) (l₃ : list_blank Γ) :
list_blank.append (l₁ ++ l₂) l₃ = list_blank.append l₁ (list_blank.append l₂ l₃) :=
l₃.induction_on $ by intro; simp only [list_blank.append_mk, list.append_assoc]
/-- The `bind` function on lists is well defined on `list_blank`s provided that the default element
is sent to a sequence of default elements. -/
def list_blank.bind {Γ Γ'} [inhabited Γ] [inhabited Γ']
(l : list_blank Γ) (f : Γ → list Γ')
(hf : ∃ n, f (default _) = list.repeat (default _) n) : list_blank Γ' :=
l.lift_on (λ l, list_blank.mk (list.bind l f)) begin
rintro l _ ⟨i, rfl⟩, cases hf with n e, refine quotient.sound' (or.inl ⟨i * n, _⟩),
rw [list.bind_append, mul_comm], congr,
induction i with i IH, refl,
simp only [IH, e, list.repeat_add, nat.mul_succ, add_comm, list.repeat_succ, list.cons_bind],
end
@[simp] lemma list_blank.bind_mk {Γ Γ'} [inhabited Γ] [inhabited Γ']
(l : list Γ) (f : Γ → list Γ') (hf) :
(list_blank.mk l).bind f hf = list_blank.mk (l.bind f) := rfl
@[simp] lemma list_blank.cons_bind {Γ Γ'} [inhabited Γ] [inhabited Γ']
(a : Γ) (l : list_blank Γ) (f : Γ → list Γ') (hf) :
(l.cons a).bind f hf = (l.bind f hf).append (f a) :=
l.induction_on $ by intro; simp only [list_blank.append_mk,
list_blank.bind_mk, list_blank.cons_mk, list.cons_bind]
/-- The tape of a Turing machine is composed of a head element (which we imagine to be the
current position of the head), together with two `list_blank`s denoting the portions of the tape
going off to the left and right. When the Turing machine moves right, an element is pulled from the
right side and becomes the new head, while the head element is consed onto the left side. -/
structure tape (Γ : Type*) [inhabited Γ] :=
(head : Γ)
(left : list_blank Γ)
(right : list_blank Γ)
instance tape.inhabited {Γ} [inhabited Γ] : inhabited (tape Γ) :=
⟨by constructor; apply default⟩
/-- A direction for the turing machine `move` command, either
left or right. -/
@[derive decidable_eq, derive inhabited]
inductive dir | left | right
/-- The "inclusive" left side of the tape, including both `left` and `head`. -/
def tape.left₀ {Γ} [inhabited Γ] (T : tape Γ) : list_blank Γ := T.left.cons T.head
/-- The "inclusive" right side of the tape, including both `right` and `head`. -/
def tape.right₀ {Γ} [inhabited Γ] (T : tape Γ) : list_blank Γ := T.right.cons T.head
/-- Move the tape in response to a motion of the Turing machine. Note that `T.move dir.left` makes
`T.left` smaller; the Turing machine is moving left and the tape is moving right. -/
def tape.move {Γ} [inhabited Γ] : dir → tape Γ → tape Γ
| dir.left ⟨a, L, R⟩ := ⟨L.head, L.tail, R.cons a⟩
| dir.right ⟨a, L, R⟩ := ⟨R.head, L.cons a, R.tail⟩
@[simp] theorem tape.move_left_right {Γ} [inhabited Γ] (T : tape Γ) :
(T.move dir.left).move dir.right = T :=
by cases T; simp [tape.move]
@[simp] theorem tape.move_right_left {Γ} [inhabited Γ] (T : tape Γ) :
(T.move dir.right).move dir.left = T :=
by cases T; simp [tape.move]
/-- Construct a tape from a left side and an inclusive right side. -/
def tape.mk' {Γ} [inhabited Γ] (L R : list_blank Γ) : tape Γ := ⟨R.head, L, R.tail⟩
@[simp] theorem tape.mk'_left {Γ} [inhabited Γ] (L R : list_blank Γ) :
(tape.mk' L R).left = L := rfl
@[simp] theorem tape.mk'_head {Γ} [inhabited Γ] (L R : list_blank Γ) :
(tape.mk' L R).head = R.head := rfl
@[simp] theorem tape.mk'_right {Γ} [inhabited Γ] (L R : list_blank Γ) :
(tape.mk' L R).right = R.tail := rfl
@[simp] theorem tape.mk'_right₀ {Γ} [inhabited Γ] (L R : list_blank Γ) :
(tape.mk' L R).right₀ = R := list_blank.cons_head_tail _
@[simp] theorem tape.mk'_left_right₀ {Γ} [inhabited Γ] (T : tape Γ) :
tape.mk' T.left T.right₀ = T :=
by cases T; simp only [tape.right₀, tape.mk',
list_blank.head_cons, list_blank.tail_cons, eq_self_iff_true, and_self]
theorem tape.exists_mk' {Γ} [inhabited Γ] (T : tape Γ) :
∃ L R, T = tape.mk' L R := ⟨_, _, (tape.mk'_left_right₀ _).symm⟩
@[simp] theorem tape.move_left_mk' {Γ} [inhabited Γ] (L R : list_blank Γ) :
(tape.mk' L R).move dir.left = tape.mk' L.tail (R.cons L.head) :=
by simp only [tape.move, tape.mk', list_blank.head_cons, eq_self_iff_true,
list_blank.cons_head_tail, and_self, list_blank.tail_cons]
@[simp] theorem tape.move_right_mk' {Γ} [inhabited Γ] (L R : list_blank Γ) :
(tape.mk' L R).move dir.right = tape.mk' (L.cons R.head) R.tail :=
by simp only [tape.move, tape.mk', list_blank.head_cons, eq_self_iff_true,
list_blank.cons_head_tail, and_self, list_blank.tail_cons]
/-- Construct a tape from a left side and an inclusive right side. -/
def tape.mk₂ {Γ} [inhabited Γ] (L R : list Γ) : tape Γ :=
tape.mk' (list_blank.mk L) (list_blank.mk R)
/-- Construct a tape from a list, with the head of the list at the TM head and the rest going
to the right. -/
def tape.mk₁ {Γ} [inhabited Γ] (l : list Γ) : tape Γ :=
tape.mk₂ [] l
/-- The `nth` function of a tape is integer-valued, with index `0` being the head, negative indexes
on the left and positive indexes on the right. (Picture a number line.) -/
def tape.nth {Γ} [inhabited Γ] (T : tape Γ) : ℤ → Γ
| 0 := T.head
| (n+1:ℕ) := T.right.nth n
| -[1+ n] := T.left.nth n
@[simp] theorem tape.nth_zero {Γ} [inhabited Γ] (T : tape Γ) : T.nth 0 = T.1 := rfl
theorem tape.right₀_nth {Γ} [inhabited Γ] (T : tape Γ) (n : ℕ) : T.right₀.nth n = T.nth n :=
by cases n; simp only [tape.nth, tape.right₀, int.coe_nat_zero,
list_blank.nth_zero, list_blank.nth_succ, list_blank.head_cons, list_blank.tail_cons]
@[simp] theorem tape.mk'_nth_nat {Γ} [inhabited Γ] (L R : list_blank Γ) (n : ℕ) :
(tape.mk' L R).nth n = R.nth n :=
by rw [← tape.right₀_nth, tape.mk'_right₀]
@[simp] theorem tape.move_left_nth {Γ} [inhabited Γ] :
∀ (T : tape Γ) (i : ℤ), (T.move dir.left).nth i = T.nth (i-1)
| ⟨a, L, R⟩ -[1+ n] := (list_blank.nth_succ _ _).symm
| ⟨a, L, R⟩ 0 := (list_blank.nth_zero _).symm
| ⟨a, L, R⟩ 1 := (list_blank.nth_zero _).trans (list_blank.head_cons _ _)
| ⟨a, L, R⟩ ((n+1:ℕ)+1) := begin
rw add_sub_cancel,
change (R.cons a).nth (n+1) = R.nth n,
rw [list_blank.nth_succ, list_blank.tail_cons]
end
@[simp] theorem tape.move_right_nth {Γ} [inhabited Γ] (T : tape Γ) (i : ℤ) :
(T.move dir.right).nth i = T.nth (i+1) :=
by conv {to_rhs, rw ← T.move_right_left}; rw [tape.move_left_nth, add_sub_cancel]
@[simp] theorem tape.move_right_n_head {Γ} [inhabited Γ] (T : tape Γ) (i : ℕ) :
((tape.move dir.right)^[i] T).head = T.nth i :=
by induction i generalizing T; [refl, simp only [*,
tape.move_right_nth, int.coe_nat_succ, iterate_succ]]
/-- Replace the current value of the head on the tape. -/
def tape.write {Γ} [inhabited Γ] (b : Γ) (T : tape Γ) : tape Γ := {head := b, ..T}
@[simp] theorem tape.write_self {Γ} [inhabited Γ] : ∀ (T : tape Γ), T.write T.1 = T :=
by rintro ⟨⟩; refl
@[simp] theorem tape.write_nth {Γ} [inhabited Γ] (b : Γ) :
∀ (T : tape Γ) {i : ℤ}, (T.write b).nth i = if i = 0 then b else T.nth i
| ⟨a, L, R⟩ 0 := rfl
| ⟨a, L, R⟩ (n+1:ℕ) := rfl
| ⟨a, L, R⟩ -[1+ n] := rfl
@[simp] theorem tape.write_mk' {Γ} [inhabited Γ] (a b : Γ) (L R : list_blank Γ) :
(tape.mk' L (R.cons a)).write b = tape.mk' L (R.cons b) :=
by simp only [tape.write, tape.mk', list_blank.head_cons, list_blank.tail_cons,
eq_self_iff_true, and_self]
/-- Apply a pointed map to a tape to change the alphabet. -/
def tape.map {Γ Γ'} [inhabited Γ] [inhabited Γ'] (f : pointed_map Γ Γ') (T : tape Γ) : tape Γ' :=
⟨f T.1, T.2.map f, T.3.map f⟩
@[simp] theorem tape.map_fst {Γ Γ'} [inhabited Γ] [inhabited Γ']
(f : pointed_map Γ Γ') : ∀ (T : tape Γ), (T.map f).1 = f T.1 :=
by rintro ⟨⟩; refl
@[simp] theorem tape.map_write {Γ Γ'} [inhabited Γ] [inhabited Γ'] (f : pointed_map Γ Γ') (b : Γ) :
∀ (T : tape Γ), (T.write b).map f = (T.map f).write (f b) :=
by rintro ⟨⟩; refl
@[simp] theorem tape.write_move_right_n {Γ} [inhabited Γ] (f : Γ → Γ) (L R : list_blank Γ) (n : ℕ) :
((tape.move dir.right)^[n] (tape.mk' L R)).write (f (R.nth n)) =
((tape.move dir.right)^[n] (tape.mk' L (R.modify_nth f n))) :=
begin
induction n with n IH generalizing L R,
{ simp only [list_blank.nth_zero, list_blank.modify_nth, iterate_zero_apply],
rw [← tape.write_mk', list_blank.cons_head_tail] },
simp only [list_blank.head_cons, list_blank.nth_succ, list_blank.modify_nth,
tape.move_right_mk', list_blank.tail_cons, iterate_succ_apply, IH]
end
theorem tape.map_move {Γ Γ'} [inhabited Γ] [inhabited Γ']
(f : pointed_map Γ Γ') (T : tape Γ) (d) : (T.move d).map f = (T.map f).move d :=
by cases T; cases d; simp only [tape.move, tape.map,
list_blank.head_map, eq_self_iff_true, list_blank.map_cons, and_self, list_blank.tail_map]
theorem tape.map_mk' {Γ Γ'} [inhabited Γ] [inhabited Γ'] (f : pointed_map Γ Γ')
(L R : list_blank Γ) : (tape.mk' L R).map f = tape.mk' (L.map f) (R.map f) :=
by simp only [tape.mk', tape.map, list_blank.head_map,
eq_self_iff_true, and_self, list_blank.tail_map]
theorem tape.map_mk₂ {Γ Γ'} [inhabited Γ] [inhabited Γ'] (f : pointed_map Γ Γ')
(L R : list Γ) : (tape.mk₂ L R).map f = tape.mk₂ (L.map f) (R.map f) :=
by simp only [tape.mk₂, tape.map_mk', list_blank.map_mk]
theorem tape.map_mk₁ {Γ Γ'} [inhabited Γ] [inhabited Γ'] (f : pointed_map Γ Γ')
(l : list Γ) : (tape.mk₁ l).map f = tape.mk₁ (l.map f) := tape.map_mk₂ _ _ _
/-- Run a state transition function `σ → option σ` "to completion". The return value is the last
state returned before a `none` result. If the state transition function always returns `some`,
then the computation diverges, returning `part.none`. -/
def eval {σ} (f : σ → option σ) : σ → part σ :=
pfun.fix (λ s, part.some $ (f s).elim (sum.inl s) sum.inr)
/-- The reflexive transitive closure of a state transition function. `reaches f a b` means
there is a finite sequence of steps `f a = some a₁`, `f a₁ = some a₂`, ... such that `aₙ = b`.
This relation permits zero steps of the state transition function. -/
def reaches {σ} (f : σ → option σ) : σ → σ → Prop :=
refl_trans_gen (λ a b, b ∈ f a)
/-- The transitive closure of a state transition function. `reaches₁ f a b` means there is a
nonempty finite sequence of steps `f a = some a₁`, `f a₁ = some a₂`, ... such that `aₙ = b`.
This relation does not permit zero steps of the state transition function. -/
def reaches₁ {σ} (f : σ → option σ) : σ → σ → Prop :=
trans_gen (λ a b, b ∈ f a)
theorem reaches₁_eq {σ} {f : σ → option σ} {a b c}
(h : f a = f b) : reaches₁ f a c ↔ reaches₁ f b c :=
trans_gen.head'_iff.trans (trans_gen.head'_iff.trans $ by rw h).symm
theorem reaches_total {σ} {f : σ → option σ}
{a b c} : reaches f a b → reaches f a c →
reaches f b c ∨ reaches f c b :=
refl_trans_gen.total_of_right_unique ⟨λ _ _ _, option.mem_unique⟩
theorem reaches₁_fwd {σ} {f : σ → option σ}
{a b c} (h₁ : reaches₁ f a c) (h₂ : b ∈ f a) : reaches f b c :=
begin
rcases trans_gen.head'_iff.1 h₁ with ⟨b', hab, hbc⟩,
cases option.mem_unique hab h₂, exact hbc
end
/-- A variation on `reaches`. `reaches₀ f a b` holds if whenever `reaches₁ f b c` then
`reaches₁ f a c`. This is a weaker property than `reaches` and is useful for replacing states with
equivalent states without taking a step. -/
def reaches₀ {σ} (f : σ → option σ) (a b : σ) : Prop :=
∀ c, reaches₁ f b c → reaches₁ f a c
theorem reaches₀.trans {σ} {f : σ → option σ} {a b c : σ}
(h₁ : reaches₀ f a b) (h₂ : reaches₀ f b c) : reaches₀ f a c
| d h₃ := h₁ _ (h₂ _ h₃)
@[refl] theorem reaches₀.refl {σ} {f : σ → option σ} (a : σ) : reaches₀ f a a
| b h := h
theorem reaches₀.single {σ} {f : σ → option σ} {a b : σ}
(h : b ∈ f a) : reaches₀ f a b
| c h₂ := h₂.head h
theorem reaches₀.head {σ} {f : σ → option σ} {a b c : σ}
(h : b ∈ f a) (h₂ : reaches₀ f b c) : reaches₀ f a c :=
(reaches₀.single h).trans h₂
theorem reaches₀.tail {σ} {f : σ → option σ} {a b c : σ}
(h₁ : reaches₀ f a b) (h : c ∈ f b) : reaches₀ f a c :=
h₁.trans (reaches₀.single h)
theorem reaches₀_eq {σ} {f : σ → option σ} {a b}
(e : f a = f b) : reaches₀ f a b
| d h := (reaches₁_eq e).2 h
theorem reaches₁.to₀ {σ} {f : σ → option σ} {a b : σ}
(h : reaches₁ f a b) : reaches₀ f a b
| c h₂ := h.trans h₂
theorem reaches.to₀ {σ} {f : σ → option σ} {a b : σ}
(h : reaches f a b) : reaches₀ f a b
| c h₂ := h₂.trans_right h
theorem reaches₀.tail' {σ} {f : σ → option σ} {a b c : σ}
(h : reaches₀ f a b) (h₂ : c ∈ f b) : reaches₁ f a c :=
h _ (trans_gen.single h₂)
/-- (co-)Induction principle for `eval`. If a property `C` holds of any point `a` evaluating to `b`
which is either terminal (meaning `a = b`) or where the next point also satisfies `C`, then it
holds of any point where `eval f a` evaluates to `b`. This formalizes the notion that if
`eval f a` evaluates to `b` then it reaches terminal state `b` in finitely many steps. -/
@[elab_as_eliminator] def eval_induction {σ}
{f : σ → option σ} {b : σ} {C : σ → Sort*} {a : σ} (h : b ∈ eval f a)
(H : ∀ a, b ∈ eval f a →
(∀ a', b ∈ eval f a' → f a = some a' → C a') → C a) : C a :=
pfun.fix_induction h (λ a' ha' h', H _ ha' $ λ b' hb' e, h' _ hb' $
part.mem_some_iff.2 $ by rw e; refl)
theorem mem_eval {σ} {f : σ → option σ} {a b} :
b ∈ eval f a ↔ reaches f a b ∧ f b = none :=
⟨λ h, begin
refine eval_induction h (λ a h IH, _),
cases e : f a with a',
{ rw part.mem_unique h (pfun.mem_fix_iff.2 $ or.inl $
part.mem_some_iff.2 $ by rw e; refl),
exact ⟨refl_trans_gen.refl, e⟩ },
{ rcases pfun.mem_fix_iff.1 h with h | ⟨_, h, h'⟩;
rw e at h; cases part.mem_some_iff.1 h,
cases IH a' h' (by rwa e) with h₁ h₂,
exact ⟨refl_trans_gen.head e h₁, h₂⟩ }
end, λ ⟨h₁, h₂⟩, begin
refine refl_trans_gen.head_induction_on h₁ _ (λ a a' h _ IH, _),
{ refine pfun.mem_fix_iff.2 (or.inl _),
rw h₂, apply part.mem_some },
{ refine pfun.mem_fix_iff.2 (or.inr ⟨_, _, IH⟩),
rw show f a = _, from h,
apply part.mem_some }
end⟩
theorem eval_maximal₁ {σ} {f : σ → option σ} {a b}
(h : b ∈ eval f a) (c) : ¬ reaches₁ f b c | bc :=
let ⟨ab, b0⟩ := mem_eval.1 h, ⟨b', h', _⟩ := trans_gen.head'_iff.1 bc in
by cases b0.symm.trans h'
theorem eval_maximal {σ} {f : σ → option σ} {a b}
(h : b ∈ eval f a) {c} : reaches f b c ↔ c = b :=
let ⟨ab, b0⟩ := mem_eval.1 h in
refl_trans_gen_iff_eq $ λ b' h', by cases b0.symm.trans h'
theorem reaches_eval {σ} {f : σ → option σ} {a b}
(ab : reaches f a b) : eval f a = eval f b :=
part.ext $ λ c,
⟨λ h, let ⟨ac, c0⟩ := mem_eval.1 h in
mem_eval.2 ⟨(or_iff_left_of_imp $ by exact
λ cb, (eval_maximal h).1 cb ▸ refl_trans_gen.refl).1
(reaches_total ab ac), c0⟩,
λ h, let ⟨bc, c0⟩ := mem_eval.1 h in mem_eval.2 ⟨ab.trans bc, c0⟩,⟩
/-- Given a relation `tr : σ₁ → σ₂ → Prop` between state spaces, and state transition functions
`f₁ : σ₁ → option σ₁` and `f₂ : σ₂ → option σ₂`, `respects f₁ f₂ tr` means that if `tr a₁ a₂` holds
initially and `f₁` takes a step to `a₂` then `f₂` will take one or more steps before reaching a
state `b₂` satisfying `tr a₂ b₂`, and if `f₁ a₁` terminates then `f₂ a₂` also terminates.
Such a relation `tr` is also known as a refinement. -/
def respects {σ₁ σ₂}
(f₁ : σ₁ → option σ₁) (f₂ : σ₂ → option σ₂) (tr : σ₁ → σ₂ → Prop) :=
∀ ⦃a₁ a₂⦄, tr a₁ a₂ → (match f₁ a₁ with
| some b₁ := ∃ b₂, tr b₁ b₂ ∧ reaches₁ f₂ a₂ b₂
| none := f₂ a₂ = none
end : Prop)
theorem tr_reaches₁ {σ₁ σ₂ f₁ f₂} {tr : σ₁ → σ₂ → Prop}
(H : respects f₁ f₂ tr) {a₁ a₂} (aa : tr a₁ a₂) {b₁} (ab : reaches₁ f₁ a₁ b₁) :
∃ b₂, tr b₁ b₂ ∧ reaches₁ f₂ a₂ b₂ :=
begin
induction ab with c₁ ac c₁ d₁ ac cd IH,
{ have := H aa,
rwa (show f₁ a₁ = _, from ac) at this },
{ rcases IH with ⟨c₂, cc, ac₂⟩,
have := H cc,
rw (show f₁ c₁ = _, from cd) at this,
rcases this with ⟨d₂, dd, cd₂⟩,
exact ⟨_, dd, ac₂.trans cd₂⟩ }
end
theorem tr_reaches {σ₁ σ₂ f₁ f₂} {tr : σ₁ → σ₂ → Prop}
(H : respects f₁ f₂ tr) {a₁ a₂} (aa : tr a₁ a₂) {b₁} (ab : reaches f₁ a₁ b₁) :
∃ b₂, tr b₁ b₂ ∧ reaches f₂ a₂ b₂ :=
begin
rcases refl_trans_gen_iff_eq_or_trans_gen.1 ab with rfl | ab,
{ exact ⟨_, aa, refl_trans_gen.refl⟩ },
{ exact let ⟨b₂, bb, h⟩ := tr_reaches₁ H aa ab in
⟨b₂, bb, h.to_refl⟩ }
end
theorem tr_reaches_rev {σ₁ σ₂ f₁ f₂} {tr : σ₁ → σ₂ → Prop}
(H : respects f₁ f₂ tr) {a₁ a₂} (aa : tr a₁ a₂) {b₂} (ab : reaches f₂ a₂ b₂) :
∃ c₁ c₂, reaches f₂ b₂ c₂ ∧ tr c₁ c₂ ∧ reaches f₁ a₁ c₁ :=
begin
induction ab with c₂ d₂ ac cd IH,
{ exact ⟨_, _, refl_trans_gen.refl, aa, refl_trans_gen.refl⟩ },
{ rcases IH with ⟨e₁, e₂, ce, ee, ae⟩,
rcases refl_trans_gen.cases_head ce with rfl | ⟨d', cd', de⟩,
{ have := H ee, revert this,
cases eg : f₁ e₁ with g₁; simp only [respects, and_imp, exists_imp_distrib],
{ intro c0, cases cd.symm.trans c0 },
{ intros g₂ gg cg,
rcases trans_gen.head'_iff.1 cg with ⟨d', cd', dg⟩,
cases option.mem_unique cd cd',
exact ⟨_, _, dg, gg, ae.tail eg⟩ } },
{ cases option.mem_unique cd cd',
exact ⟨_, _, de, ee, ae⟩ } }
end
theorem tr_eval {σ₁ σ₂ f₁ f₂} {tr : σ₁ → σ₂ → Prop}
(H : respects f₁ f₂ tr) {a₁ b₁ a₂} (aa : tr a₁ a₂)
(ab : b₁ ∈ eval f₁ a₁) : ∃ b₂, tr b₁ b₂ ∧ b₂ ∈ eval f₂ a₂ :=
begin
cases mem_eval.1 ab with ab b0,
rcases tr_reaches H aa ab with ⟨b₂, bb, ab⟩,
refine ⟨_, bb, mem_eval.2 ⟨ab, _⟩⟩,
have := H bb, rwa b0 at this
end
theorem tr_eval_rev {σ₁ σ₂ f₁ f₂} {tr : σ₁ → σ₂ → Prop}
(H : respects f₁ f₂ tr) {a₁ b₂ a₂} (aa : tr a₁ a₂)
(ab : b₂ ∈ eval f₂ a₂) : ∃ b₁, tr b₁ b₂ ∧ b₁ ∈ eval f₁ a₁ :=
begin
cases mem_eval.1 ab with ab b0,
rcases tr_reaches_rev H aa ab with ⟨c₁, c₂, bc, cc, ac⟩,
cases (refl_trans_gen_iff_eq
(by exact option.eq_none_iff_forall_not_mem.1 b0)).1 bc,
refine ⟨_, cc, mem_eval.2 ⟨ac, _⟩⟩,
have := H cc, cases f₁ c₁ with d₁, {refl},
rcases this with ⟨d₂, dd, bd⟩,
rcases trans_gen.head'_iff.1 bd with ⟨e, h, _⟩,
cases b0.symm.trans h
end
theorem tr_eval_dom {σ₁ σ₂ f₁ f₂} {tr : σ₁ → σ₂ → Prop}
(H : respects f₁ f₂ tr) {a₁ a₂} (aa : tr a₁ a₂) :
(eval f₂ a₂).dom ↔ (eval f₁ a₁).dom :=
⟨λ h, let ⟨b₂, tr, h, _⟩ := tr_eval_rev H aa ⟨h, rfl⟩ in h,
λ h, let ⟨b₂, tr, h, _⟩ := tr_eval H aa ⟨h, rfl⟩ in h⟩
/-- A simpler version of `respects` when the state transition relation `tr` is a function. -/
def frespects {σ₁ σ₂} (f₂ : σ₂ → option σ₂) (tr : σ₁ → σ₂) (a₂ : σ₂) : option σ₁ → Prop
| (some b₁) := reaches₁ f₂ a₂ (tr b₁)
| none := f₂ a₂ = none
theorem frespects_eq {σ₁ σ₂} {f₂ : σ₂ → option σ₂} {tr : σ₁ → σ₂} {a₂ b₂}
(h : f₂ a₂ = f₂ b₂) : ∀ {b₁}, frespects f₂ tr a₂ b₁ ↔ frespects f₂ tr b₂ b₁
| (some b₁) := reaches₁_eq h
| none := by unfold frespects; rw h
theorem fun_respects {σ₁ σ₂ f₁ f₂} {tr : σ₁ → σ₂} :
respects f₁ f₂ (λ a b, tr a = b) ↔ ∀ ⦃a₁⦄, frespects f₂ tr (tr a₁) (f₁ a₁) :=
forall_congr $ λ a₁, by cases f₁ a₁; simp only [frespects, respects, exists_eq_left', forall_eq']
theorem tr_eval' {σ₁ σ₂}
(f₁ : σ₁ → option σ₁) (f₂ : σ₂ → option σ₂) (tr : σ₁ → σ₂)
(H : respects f₁ f₂ (λ a b, tr a = b))
(a₁) : eval f₂ (tr a₁) = tr <$> eval f₁ a₁ :=
part.ext $ λ b₂,
⟨λ h, let ⟨b₁, bb, hb⟩ := tr_eval_rev H rfl h in
(part.mem_map_iff _).2 ⟨b₁, hb, bb⟩,
λ h, begin
rcases (part.mem_map_iff _).1 h with ⟨b₁, ab, bb⟩,
rcases tr_eval H rfl ab with ⟨_, rfl, h⟩,
rwa bb at h
end⟩
/-!
## The TM0 model
A TM0 turing machine is essentially a Post-Turing machine, adapted for type theory.
A Post-Turing machine with symbol type `Γ` and label type `Λ` is a function
`Λ → Γ → option (Λ × stmt)`, where a `stmt` can be either `move left`, `move right` or `write a`
for `a : Γ`. The machine works over a "tape", a doubly-infinite sequence of elements of `Γ`, and
an instantaneous configuration, `cfg`, is a label `q : Λ` indicating the current internal state of
the machine, and a `tape Γ` (which is essentially `ℤ →₀ Γ`). The evolution is described by the
`step` function:
* If `M q T.head = none`, then the machine halts.
* If `M q T.head = some (q', s)`, then the machine performs action `s : stmt` and then transitions
to state `q'`.
The initial state takes a `list Γ` and produces a `tape Γ` where the head of the list is the head
of the tape and the rest of the list extends to the right, with the left side all blank. The final
state takes the entire right side of the tape right or equal to the current position of the
machine. (This is actually a `list_blank Γ`, not a `list Γ`, because we don't know, at this level
of generality, where the output ends. If equality to `default Γ` is decidable we can trim the list
to remove the infinite tail of blanks.)
-/
namespace TM0
section
parameters (Γ : Type*) [inhabited Γ] -- type of tape symbols
parameters (Λ : Type*) [inhabited Λ] -- type of "labels" or TM states
/-- A Turing machine "statement" is just a command to either move
left or right, or write a symbol on the tape. -/
inductive stmt
| move : dir → stmt
| write : Γ → stmt
instance stmt.inhabited : inhabited stmt := ⟨stmt.write (default _)⟩
/-- A Post-Turing machine with symbol type `Γ` and label type `Λ`
is a function which, given the current state `q : Λ` and
the tape head `a : Γ`, either halts (returns `none`) or returns
a new state `q' : Λ` and a `stmt` describing what to do,
either a move left or right, or a write command.
Both `Λ` and `Γ` are required to be inhabited; the default value
for `Γ` is the "blank" tape value, and the default value of `Λ` is
the initial state. -/
@[nolint unused_arguments] -- [inhabited Λ]: this is a deliberate addition, see comment
def machine := Λ → Γ → option (Λ × stmt)
instance machine.inhabited : inhabited machine := by unfold machine; apply_instance
/-- The configuration state of a Turing machine during operation
consists of a label (machine state), and a tape, represented in
the form `(a, L, R)` meaning the tape looks like `L.rev ++ [a] ++ R`
with the machine currently reading the `a`. The lists are
automatically extended with blanks as the machine moves around. -/
structure cfg :=
(q : Λ)
(tape : tape Γ)
instance cfg.inhabited : inhabited cfg := ⟨⟨default _, default _⟩⟩
parameters {Γ Λ}
/-- Execution semantics of the Turing machine. -/
def step (M : machine) : cfg → option cfg
| ⟨q, T⟩ := (M q T.1).map (λ ⟨q', a⟩, ⟨q',
match a with
| stmt.move d := T.move d
| stmt.write a := T.write a
end⟩)
/-- The statement `reaches M s₁ s₂` means that `s₂` is obtained
starting from `s₁` after a finite number of steps from `s₂`. -/
def reaches (M : machine) : cfg → cfg → Prop :=
refl_trans_gen (λ a b, b ∈ step M a)
/-- The initial configuration. -/
def init (l : list Γ) : cfg :=
⟨default Λ, tape.mk₁ l⟩
/-- Evaluate a Turing machine on initial input to a final state,
if it terminates. -/
def eval (M : machine) (l : list Γ) : part (list_blank Γ) :=
(eval (step M) (init l)).map (λ c, c.tape.right₀)
/-- The raw definition of a Turing machine does not require that
`Γ` and `Λ` are finite, and in practice we will be interested
in the infinite `Λ` case. We recover instead a notion of
"effectively finite" Turing machines, which only make use of a
finite subset of their states. We say that a set `S ⊆ Λ`
supports a Turing machine `M` if `S` is closed under the
transition function and contains the initial state. -/
def supports (M : machine) (S : set Λ) :=
default Λ ∈ S ∧ ∀ {q a q' s}, (q', s) ∈ M q a → q ∈ S → q' ∈ S
theorem step_supports (M : machine) {S}
(ss : supports M S) : ∀ {c c' : cfg},
c' ∈ step M c → c.q ∈ S → c'.q ∈ S
| ⟨q, T⟩ c' h₁ h₂ := begin
rcases option.map_eq_some'.1 h₁ with ⟨⟨q', a⟩, h, rfl⟩,
exact ss.2 h h₂,
end
theorem univ_supports (M : machine) : supports M set.univ :=
⟨trivial, λ q a q' s h₁ h₂, trivial⟩
end
section
variables {Γ : Type*} [inhabited Γ]
variables {Γ' : Type*} [inhabited Γ']
variables {Λ : Type*} [inhabited Λ]
variables {Λ' : Type*} [inhabited Λ']
/-- Map a TM statement across a function. This does nothing to move statements and maps the write
values. -/
def stmt.map (f : pointed_map Γ Γ') : stmt Γ → stmt Γ'
| (stmt.move d) := stmt.move d
| (stmt.write a) := stmt.write (f a)
/-- Map a configuration across a function, given `f : Γ → Γ'` a map of the alphabets and
`g : Λ → Λ'` a map of the machine states. -/
def cfg.map (f : pointed_map Γ Γ') (g : Λ → Λ') : cfg Γ Λ → cfg Γ' Λ'
| ⟨q, T⟩ := ⟨g q, T.map f⟩
variables (M : machine Γ Λ)
(f₁ : pointed_map Γ Γ') (f₂ : pointed_map Γ' Γ) (g₁ : Λ → Λ') (g₂ : Λ' → Λ)
/-- Because the state transition function uses the alphabet and machine states in both the input
and output, to map a machine from one alphabet and machine state space to another we need functions
in both directions, essentially an `equiv` without the laws. -/
def machine.map : machine Γ' Λ'
| q l := (M (g₂ q) (f₂ l)).map (prod.map g₁ (stmt.map f₁))
theorem machine.map_step {S : set Λ}
(f₂₁ : function.right_inverse f₁ f₂)
(g₂₁ : ∀ q ∈ S, g₂ (g₁ q) = q) :
∀ c : cfg Γ Λ, c.q ∈ S →
(step M c).map (cfg.map f₁ g₁) =
step (M.map f₁ f₂ g₁ g₂) (cfg.map f₁ g₁ c)
| ⟨q, T⟩ h := begin
unfold step machine.map cfg.map,
simp only [turing.tape.map_fst, g₂₁ q h, f₂₁ _],
rcases M q T.1 with _|⟨q', d|a⟩, {refl},
{ simp only [step, cfg.map, option.map_some', tape.map_move f₁], refl },
{ simp only [step, cfg.map, option.map_some', tape.map_write], refl }
end
theorem map_init (g₁ : pointed_map Λ Λ') (l : list Γ) :
(init l).map f₁ g₁ = init (l.map f₁) :=
congr (congr_arg cfg.mk g₁.map_pt) (tape.map_mk₁ _ _)
theorem machine.map_respects
(g₁ : pointed_map Λ Λ') (g₂ : Λ' → Λ)
{S} (ss : supports M S)
(f₂₁ : function.right_inverse f₁ f₂)
(g₂₁ : ∀ q ∈ S, g₂ (g₁ q) = q) :
respects (step M) (step (M.map f₁ f₂ g₁ g₂))
(λ a b, a.q ∈ S ∧ cfg.map f₁ g₁ a = b)
| c _ ⟨cs, rfl⟩ := begin
cases e : step M c with c'; unfold respects,
{ rw [← M.map_step f₁ f₂ g₁ g₂ f₂₁ g₂₁ _ cs, e], refl },
{ refine ⟨_, ⟨step_supports M ss e cs, rfl⟩, trans_gen.single _⟩,
rw [← M.map_step f₁ f₂ g₁ g₂ f₂₁ g₂₁ _ cs, e], exact rfl }
end
end
end TM0
/-!
## The TM1 model
The TM1 model is a simplification and extension of TM0 (Post-Turing model) in the direction of
Wang B-machines. The machine's internal state is extended with a (finite) store `σ` of variables
that may be accessed and updated at any time.
A machine is given by a `Λ` indexed set of procedures or functions. Each function has a body which
is a `stmt`. Most of the regular commands are allowed to use the current value `a` of the local
variables and the value `T.head` on the tape to calculate what to write or how to change local
state, but the statements themselves have a fixed structure. The `stmt`s can be as follows:
* `move d q`: move left or right, and then do `q`
* `write (f : Γ → σ → Γ) q`: write `f a T.head` to the tape, then do `q`
* `load (f : Γ → σ → σ) q`: change the internal state to `f a T.head`
* `branch (f : Γ → σ → bool) qtrue qfalse`: If `f a T.head` is true, do `qtrue`, else `qfalse`
* `goto (f : Γ → σ → Λ)`: Go to label `f a T.head`
* `halt`: Transition to the halting state, which halts on the following step
Note that here most statements do not have labels; `goto` commands can only go to a new function.
Only the `goto` and `halt` statements actually take a step; the rest is done by recursion on
statements and so take 0 steps. (There is a uniform bound on many statements can be executed before
the next `goto`, so this is an `O(1)` speedup with the constant depending on the machine.)
The `halt` command has a one step stutter before actually halting so that any changes made before
the halt have a chance to be "committed", since the `eval` relation uses the final configuration
before the halt as the output, and `move` and `write` etc. take 0 steps in this model.
-/
namespace TM1
section
parameters (Γ : Type*) [inhabited Γ] -- Type of tape symbols
parameters (Λ : Type*) -- Type of function labels
parameters (σ : Type*) -- Type of variable settings
/-- The TM1 model is a simplification and extension of TM0
(Post-Turing model) in the direction of Wang B-machines. The machine's
internal state is extended with a (finite) store `σ` of variables
that may be accessed and updated at any time.
A machine is given by a `Λ` indexed set of procedures or functions.
Each function has a body which is a `stmt`, which can either be a
`move` or `write` command, a `branch` (if statement based on the
current tape value), a `load` (set the variable value),
a `goto` (call another function), or `halt`. Note that here
most statements do not have labels; `goto` commands can only
go to a new function. All commands have access to the variable value
and current tape value. -/
inductive stmt
| move : dir → stmt → stmt
| write : (Γ → σ → Γ) → stmt → stmt
| load : (Γ → σ → σ) → stmt → stmt
| branch : (Γ → σ → bool) → stmt → stmt → stmt
| goto : (Γ → σ → Λ) → stmt
| halt : stmt
open stmt
instance stmt.inhabited : inhabited stmt := ⟨halt⟩
/-- The configuration of a TM1 machine is given by the currently
evaluating statement, the variable store value, and the tape. -/
structure cfg :=
(l : option Λ)
(var : σ)
(tape : tape Γ)
instance cfg.inhabited [inhabited σ] : inhabited cfg := ⟨⟨default _, default _, default _⟩⟩
parameters {Γ Λ σ}
/-- The semantics of TM1 evaluation. -/
def step_aux : stmt → σ → tape Γ → cfg
| (move d q) v T := step_aux q v (T.move d)
| (write a q) v T := step_aux q v (T.write (a T.1 v))
| (load s q) v T := step_aux q (s T.1 v) T
| (branch p q₁ q₂) v T := cond (p T.1 v) (step_aux q₁ v T) (step_aux q₂ v T)
| (goto l) v T := ⟨some (l T.1 v), v, T⟩
| halt v T := ⟨none, v, T⟩
/-- The state transition function. -/
def step (M : Λ → stmt) : cfg → option cfg
| ⟨none, v, T⟩ := none
| ⟨some l, v, T⟩ := some (step_aux (M l) v T)
/-- A set `S` of labels supports the statement `q` if all the `goto`
statements in `q` refer only to other functions in `S`. -/
def supports_stmt (S : finset Λ) : stmt → Prop
| (move d q) := supports_stmt q
| (write a q) := supports_stmt q
| (load s q) := supports_stmt q
| (branch p q₁ q₂) := supports_stmt q₁ ∧ supports_stmt q₂
| (goto l) := ∀ a v, l a v ∈ S
| halt := true
open_locale classical
/-- The subterm closure of a statement. -/
noncomputable def stmts₁ : stmt → finset stmt
| Q@(move d q) := insert Q (stmts₁ q)
| Q@(write a q) := insert Q (stmts₁ q)
| Q@(load s q) := insert Q (stmts₁ q)
| Q@(branch p q₁ q₂) := insert Q (stmts₁ q₁ ∪ stmts₁ q₂)
| Q := {Q}
theorem stmts₁_self {q} : q ∈ stmts₁ q :=
by cases q; apply_rules [finset.mem_insert_self, finset.mem_singleton_self]
theorem stmts₁_trans {q₁ q₂} :
q₁ ∈ stmts₁ q₂ → stmts₁ q₁ ⊆ stmts₁ q₂ :=
begin
intros h₁₂ q₀ h₀₁,
induction q₂ with _ q IH _ q IH _ q IH;
simp only [stmts₁] at h₁₂ ⊢;
simp only [finset.mem_insert, finset.mem_union, finset.mem_singleton] at h₁₂,
iterate 3 {
rcases h₁₂ with rfl | h₁₂,
{ unfold stmts₁ at h₀₁, exact h₀₁ },
{ exact finset.mem_insert_of_mem (IH h₁₂) } },
case TM1.stmt.branch : p q₁ q₂ IH₁ IH₂ {
rcases h₁₂ with rfl | h₁₂ | h₁₂,
{ unfold stmts₁ at h₀₁, exact h₀₁ },
{ exact finset.mem_insert_of_mem (finset.mem_union_left _ $ IH₁ h₁₂) },
{ exact finset.mem_insert_of_mem (finset.mem_union_right _ $ IH₂ h₁₂) } },
case TM1.stmt.goto : l {
subst h₁₂, exact h₀₁ },
case TM1.stmt.halt {
subst h₁₂, exact h₀₁ }
end
theorem stmts₁_supports_stmt_mono {S q₁ q₂}
(h : q₁ ∈ stmts₁ q₂) (hs : supports_stmt S q₂) : supports_stmt S q₁ :=
begin
induction q₂ with _ q IH _ q IH _ q IH;
simp only [stmts₁, supports_stmt, finset.mem_insert, finset.mem_union,
finset.mem_singleton] at h hs,
iterate 3 { rcases h with rfl | h; [exact hs, exact IH h hs] },
case TM1.stmt.branch : p q₁ q₂ IH₁ IH₂ {
rcases h with rfl | h | h, exacts [hs, IH₁ h hs.1, IH₂ h hs.2] },
case TM1.stmt.goto : l { subst h, exact hs },
case TM1.stmt.halt { subst h, trivial }
end
/-- The set of all statements in a turing machine, plus one extra value `none` representing the
halt state. This is used in the TM1 to TM0 reduction. -/
noncomputable def stmts (M : Λ → stmt) (S : finset Λ) : finset (option stmt) :=
(S.bUnion (λ q, stmts₁ (M q))).insert_none
theorem stmts_trans {M : Λ → stmt} {S q₁ q₂}
(h₁ : q₁ ∈ stmts₁ q₂) : some q₂ ∈ stmts M S → some q₁ ∈ stmts M S :=
by simp only [stmts, finset.mem_insert_none, finset.mem_bUnion,
option.mem_def, forall_eq', exists_imp_distrib];
exact λ l ls h₂, ⟨_, ls, stmts₁_trans h₂ h₁⟩
variable [inhabited Λ]
/-- A set `S` of labels supports machine `M` if all the `goto`
statements in the functions in `S` refer only to other functions
in `S`. -/
def supports (M : Λ → stmt) (S : finset Λ) :=
default Λ ∈ S ∧ ∀ q ∈ S, supports_stmt S (M q)
theorem stmts_supports_stmt {M : Λ → stmt} {S q}
(ss : supports M S) : some q ∈ stmts M S → supports_stmt S q :=
by simp only [stmts, finset.mem_insert_none, finset.mem_bUnion,
option.mem_def, forall_eq', exists_imp_distrib];
exact λ l ls h, stmts₁_supports_stmt_mono h (ss.2 _ ls)
theorem step_supports (M : Λ → stmt) {S}
(ss : supports M S) : ∀ {c c' : cfg},
c' ∈ step M c → c.l ∈ S.insert_none → c'.l ∈ S.insert_none
| ⟨some l₁, v, T⟩ c' h₁ h₂ := begin
replace h₂ := ss.2 _ (finset.some_mem_insert_none.1 h₂),
simp only [step, option.mem_def] at h₁, subst c',
revert h₂, induction M l₁ with _ q IH _ q IH _ q IH generalizing v T;
intro hs,
iterate 3 { exact IH _ _ hs },
case TM1.stmt.branch : p q₁' q₂' IH₁ IH₂ {
unfold step_aux, cases p T.1 v,
{ exact IH₂ _ _ hs.2 },
{ exact IH₁ _ _ hs.1 } },
case TM1.stmt.goto { exact finset.some_mem_insert_none.2 (hs _ _) },
case TM1.stmt.halt { apply multiset.mem_cons_self }
end
variable [inhabited σ]
/-- The initial state, given a finite input that is placed on the tape starting at the TM head and
going to the right. -/
def init (l : list Γ) : cfg :=
⟨some (default _), default _, tape.mk₁ l⟩
/-- Evaluate a TM to completion, resulting in an output list on the tape (with an indeterminate
number of blanks on the end). -/
def eval (M : Λ → stmt) (l : list Γ) : part (list_blank Γ) :=
(eval (step M) (init l)).map (λ c, c.tape.right₀)
end
end TM1
/-!
## TM1 emulator in TM0
To prove that TM1 computable functions are TM0 computable, we need to reduce each TM1 program to a
TM0 program. So suppose a TM1 program is given. We take the following:
* The alphabet `Γ` is the same for both TM1 and TM0
* The set of states `Λ'` is defined to be `option stmt₁ × σ`, that is, a TM1 statement or `none`
representing halt, and the possible settings of the internal variables.
Note that this is an infinite set, because `stmt₁` is infinite. This is okay because we assume
that from the initial TM1 state, only finitely many other labels are reachable, and there are
only finitely many statements that appear in all of these functions.
Even though `stmt₁` contains a statement called `halt`, we must separate it from `none`
(`some halt` steps to `none` and `none` actually halts) because there is a one step stutter in the
TM1 semantics.
-/
namespace TM1to0
section
parameters {Γ : Type*} [inhabited Γ]
parameters {Λ : Type*} [inhabited Λ]
parameters {σ : Type*} [inhabited σ]
local notation `stmt₁` := TM1.stmt Γ Λ σ
local notation `cfg₁` := TM1.cfg Γ Λ σ
local notation `stmt₀` := TM0.stmt Γ
parameters (M : Λ → stmt₁)
include M
/-- The base machine state space is a pair of an `option stmt₁` representing the current program
to be executed, or `none` for the halt state, and a `σ` which is the local state (stored in the TM,
not the tape). Because there are an infinite number of programs, this state space is infinite, but
for a finitely supported TM1 machine and a finite type `σ`, only finitely many of these states are
reachable. -/
@[nolint unused_arguments] -- [inhabited Λ] [inhabited σ] (M : Λ → stmt₁): We need the M assumption
-- because of the inhabited instance, but we could avoid the inhabited instances on Λ and σ here.
-- But they are parameters so we cannot easily skip them for just this definition.
def Λ' := option stmt₁ × σ
instance : inhabited Λ' := ⟨(some (M (default _)), default _)⟩
open TM0.stmt
/-- The core TM1 → TM0 translation function. Here `s` is the current value on the tape, and the
`stmt₁` is the TM1 statement to translate, with local state `v : σ`. We evaluate all regular
instructions recursively until we reach either a `move` or `write` command, or a `goto`; in the
latter case we emit a dummy `write s` step and transition to the new target location. -/
def tr_aux (s : Γ) : stmt₁ → σ → Λ' × stmt₀
| (TM1.stmt.move d q) v := ((some q, v), move d)
| (TM1.stmt.write a q) v := ((some q, v), write (a s v))
| (TM1.stmt.load a q) v := tr_aux q (a s v)
| (TM1.stmt.branch p q₁ q₂) v := cond (p s v) (tr_aux q₁ v) (tr_aux q₂ v)
| (TM1.stmt.goto l) v := ((some (M (l s v)), v), write s)
| TM1.stmt.halt v := ((none, v), write s)
local notation `cfg₀` := TM0.cfg Γ Λ'
/-- The translated TM0 machine (given the TM1 machine input). -/
def tr : TM0.machine Γ Λ'
| (none, v) s := none
| (some q, v) s := some (tr_aux s q v)
/-- Translate configurations from TM1 to TM0. -/
def tr_cfg : cfg₁ → cfg₀
| ⟨l, v, T⟩ := ⟨(l.map M, v), T⟩
theorem tr_respects : respects (TM1.step M) (TM0.step tr)
(λ c₁ c₂, tr_cfg c₁ = c₂) :=
fun_respects.2 $ λ ⟨l₁, v, T⟩, begin
cases l₁ with l₁, {exact rfl},
unfold tr_cfg TM1.step frespects option.map function.comp option.bind,
induction M l₁ with _ q IH _ q IH _ q IH generalizing v T,
case TM1.stmt.move : d q IH { exact trans_gen.head rfl (IH _ _) },
case TM1.stmt.write : a q IH { exact trans_gen.head rfl (IH _ _) },
case TM1.stmt.load : a q IH { exact (reaches₁_eq (by refl)).2 (IH _ _) },
case TM1.stmt.branch : p q₁ q₂ IH₁ IH₂ {
unfold TM1.step_aux, cases e : p T.1 v,
{ exact (reaches₁_eq (by simp only [TM0.step, tr, tr_aux, e]; refl)).2 (IH₂ _ _) },
{ exact (reaches₁_eq (by simp only [TM0.step, tr, tr_aux, e]; refl)).2 (IH₁ _ _) } },
iterate 2 {
exact trans_gen.single (congr_arg some
(congr (congr_arg TM0.cfg.mk rfl) (tape.write_self T))) }
end
theorem tr_eval (l : list Γ) : TM0.eval tr l = TM1.eval M l :=
(congr_arg _ (tr_eval' _ _ _ tr_respects ⟨some _, _, _⟩)).trans begin
rw [part.map_eq_map, part.map_map, TM1.eval],
congr' with ⟨⟩, refl
end
variables [fintype σ]
/-- Given a finite set of accessible `Λ` machine states, there is a finite set of accessible
machine states in the target (even though the type `Λ'` is infinite). -/
noncomputable def tr_stmts (S : finset Λ) : finset Λ' :=
(TM1.stmts M S).product finset.univ
open_locale classical
local attribute [simp] TM1.stmts₁_self
theorem tr_supports {S : finset Λ} (ss : TM1.supports M S) :
TM0.supports tr (↑(tr_stmts S)) :=
⟨finset.mem_product.2 ⟨finset.some_mem_insert_none.2
(finset.mem_bUnion.2 ⟨_, ss.1, TM1.stmts₁_self⟩),
finset.mem_univ _⟩,
λ q a q' s h₁ h₂, begin
rcases q with ⟨_|q, v⟩, {cases h₁},
cases q' with q' v', simp only [tr_stmts, finset.mem_coe,
finset.mem_product, finset.mem_univ, and_true] at h₂ ⊢,
cases q', {exact multiset.mem_cons_self _ _},
simp only [tr, option.mem_def] at h₁,
have := TM1.stmts_supports_stmt ss h₂,
revert this, induction q generalizing v; intro hs,
case TM1.stmt.move : d q {
cases h₁, refine TM1.stmts_trans _ h₂,
unfold TM1.stmts₁,
exact finset.mem_insert_of_mem TM1.stmts₁_self },
case TM1.stmt.write : b q {
cases h₁, refine TM1.stmts_trans _ h₂,
unfold TM1.stmts₁,
exact finset.mem_insert_of_mem TM1.stmts₁_self },
case TM1.stmt.load : b q IH {
refine IH (TM1.stmts_trans _ h₂) _ h₁ hs,
unfold TM1.stmts₁,
exact finset.mem_insert_of_mem TM1.stmts₁_self },
case TM1.stmt.branch : p q₁ q₂ IH₁ IH₂ {
change cond (p a v) _ _ = ((some q', v'), s) at h₁,
cases p a v,
{ refine IH₂ (TM1.stmts_trans _ h₂) _ h₁ hs.2,
unfold TM1.stmts₁,
exact finset.mem_insert_of_mem (finset.mem_union_right _ TM1.stmts₁_self) },
{ refine IH₁ (TM1.stmts_trans _ h₂) _ h₁ hs.1,
unfold TM1.stmts₁,
exact finset.mem_insert_of_mem (finset.mem_union_left _ TM1.stmts₁_self) } },
case TM1.stmt.goto : l {
cases h₁, exact finset.some_mem_insert_none.2
(finset.mem_bUnion.2 ⟨_, hs _ _, TM1.stmts₁_self⟩) },
case TM1.stmt.halt { cases h₁ }
end⟩
end
end TM1to0
/-!
## TM1(Γ) emulator in TM1(bool)
The most parsimonious Turing machine model that is still Turing complete is `TM0` with `Γ = bool`.
Because our construction in the previous section reducing `TM1` to `TM0` doesn't change the
alphabet, we can do the alphabet reduction on `TM1` instead of `TM0` directly.
The basic idea is to use a bijection between `Γ` and a subset of `vector bool n`, where `n` is a
fixed constant. Each tape element is represented as a block of `n` bools. Whenever the machine
wants to read a symbol from the tape, it traverses over the block, performing `n` `branch`
instructions to each any of the `2^n` results.
For the `write` instruction, we have to use a `goto` because we need to follow a different code
path depending on the local state, which is not available in the TM1 model, so instead we jump to
a label computed using the read value and the local state, which performs the writing and returns
to normal execution.
Emulation overhead is `O(1)`. If not for the above `write` behavior it would be 1-1 because we are
exploiting the 0-step behavior of regular commands to avoid taking steps, but there are
nevertheless a bounded number of `write` calls between `goto` statements because TM1 statements are
finitely long.
-/
namespace TM1to1
open TM1
section
parameters {Γ : Type*} [inhabited Γ]
theorem exists_enc_dec [fintype Γ] :
∃ n (enc : Γ → vector bool n) (dec : vector bool n → Γ),
enc (default _) = vector.repeat ff n ∧ ∀ a, dec (enc a) = a :=
begin
letI := classical.dec_eq Γ,
let n := fintype.card Γ,
obtain ⟨F⟩ := fintype.trunc_equiv_fin Γ,
let G : fin n ↪ fin n → bool := ⟨λ a b, a = b,
λ a b h, of_to_bool_true $ (congr_fun h b).trans $ to_bool_tt rfl⟩,
let H := (F.to_embedding.trans G).trans
(equiv.vector_equiv_fin _ _).symm.to_embedding,
classical,
let enc := H.set_value (default _) (vector.repeat ff n),
exact ⟨_, enc, function.inv_fun enc,
H.set_value_eq _ _, function.left_inverse_inv_fun enc.2⟩
end
parameters {Λ : Type*} [inhabited Λ]
parameters {σ : Type*} [inhabited σ]
local notation `stmt₁` := stmt Γ Λ σ
local notation `cfg₁` := cfg Γ Λ σ
/-- The configuration state of the TM. -/
inductive Λ' : Type (max u_1 u_2 u_3)
| normal : Λ → Λ'
| write : Γ → stmt₁ → Λ'
instance : inhabited Λ' := ⟨Λ'.normal (default _)⟩
local notation `stmt'` := stmt bool Λ' σ
local notation `cfg'` := cfg bool Λ' σ
/-- Read a vector of length `n` from the tape. -/
def read_aux : ∀ n, (vector bool n → stmt') → stmt'
| 0 f := f vector.nil
| (i+1) f := stmt.branch (λ a s, a)
(stmt.move dir.right $ read_aux i (λ v, f (tt ::ᵥ v)))
(stmt.move dir.right $ read_aux i (λ v, f (ff ::ᵥ v)))
parameters {n : ℕ} (enc : Γ → vector bool n) (dec : vector bool n → Γ)
/-- A move left or right corresponds to `n` moves across the super-cell. -/
def move (d : dir) (q : stmt') : stmt' := (stmt.move d)^[n] q
/-- To read a symbol from the tape, we use `read_aux` to traverse the symbol,
then return to the original position with `n` moves to the left. -/
def read (f : Γ → stmt') : stmt' :=
read_aux n (λ v, move dir.left $ f (dec v))
/-- Write a list of bools on the tape. -/
def write : list bool → stmt' → stmt'
| [] q := q
| (a :: l) q := stmt.write (λ _ _, a) $ stmt.move dir.right $ write l q
/-- Translate a normal instruction. For the `write` command, we use a `goto` indirection so that
we can access the current value of the tape. -/
def tr_normal : stmt₁ → stmt'
| (stmt.move d q) := move d $ tr_normal q
| (stmt.write f q) := read $ λ a, stmt.goto $ λ _ s, Λ'.write (f a s) q
| (stmt.load f q) := read $ λ a, stmt.load (λ _ s, f a s) $ tr_normal q
| (stmt.branch p q₁ q₂) := read $ λ a, stmt.branch (λ _ s, p a s) (tr_normal q₁) (tr_normal q₂)
| (stmt.goto l) := read $ λ a, stmt.goto $ λ _ s, Λ'.normal (l a s)
| stmt.halt := stmt.halt
theorem step_aux_move (d q v T) :
step_aux (move d q) v T =
step_aux q v ((tape.move d)^[n] T) :=
begin
suffices : ∀ i,
step_aux (stmt.move d^[i] q) v T =
step_aux q v (tape.move d^[i] T), from this n,
intro, induction i with i IH generalizing T, {refl},
rw [iterate_succ', step_aux, IH, iterate_succ]
end
theorem supports_stmt_move {S d q} :
supports_stmt S (move d q) = supports_stmt S q :=
suffices ∀ {i}, supports_stmt S (stmt.move d^[i] q) = _, from this,
by intro; induction i generalizing q; simp only [*, iterate]; refl
theorem supports_stmt_write {S l q} :
supports_stmt S (write l q) = supports_stmt S q :=
by induction l with a l IH; simp only [write, supports_stmt, *]
theorem supports_stmt_read {S} : ∀ {f : Γ → stmt'},
(∀ a, supports_stmt S (f a)) → supports_stmt S (read f) :=
suffices ∀ i (f : vector bool i → stmt'),
(∀ v, supports_stmt S (f v)) → supports_stmt S (read_aux i f),
from λ f hf, this n _ (by intro; simp only [supports_stmt_move, hf]),
λ i f hf, begin
induction i with i IH, {exact hf _},
split; apply IH; intro; apply hf,
end
parameter (enc0 : enc (default _) = vector.repeat ff n)
section
parameter {enc}
include enc0
/-- The low level tape corresponding to the given tape over alphabet `Γ`. -/
def tr_tape' (L R : list_blank Γ) : tape bool :=
begin
refine tape.mk'
(L.bind (λ x, (enc x).to_list.reverse) ⟨n, _⟩)
(R.bind (λ x, (enc x).to_list) ⟨n, _⟩);
simp only [enc0, vector.repeat,
list.reverse_repeat, bool.default_bool, vector.to_list_mk]
end
/-- The low level tape corresponding to the given tape over alphabet `Γ`. -/
def tr_tape (T : tape Γ) : tape bool := tr_tape' T.left T.right₀
theorem tr_tape_mk' (L R : list_blank Γ) : tr_tape (tape.mk' L R) = tr_tape' L R :=
by simp only [tr_tape, tape.mk'_left, tape.mk'_right₀]
end
parameters (M : Λ → stmt₁)
/-- The top level program. -/
def tr : Λ' → stmt'
| (Λ'.normal l) := tr_normal (M l)
| (Λ'.write a q) := write (enc a).to_list $ move dir.left $ tr_normal q
/-- The machine configuration translation. -/
def tr_cfg : cfg₁ → cfg'
| ⟨l, v, T⟩ := ⟨l.map Λ'.normal, v, tr_tape T⟩
parameter {enc}
include enc0
theorem tr_tape'_move_left (L R) :
(tape.move dir.left)^[n] (tr_tape' L R) =
(tr_tape' L.tail (R.cons L.head)) :=
begin
obtain ⟨a, L, rfl⟩ := L.exists_cons,
simp only [tr_tape', list_blank.cons_bind, list_blank.head_cons, list_blank.tail_cons],
suffices : ∀ {L' R' l₁ l₂}
(e : vector.to_list (enc a) = list.reverse_core l₁ l₂),
tape.move dir.left^[l₁.length]
(tape.mk' (list_blank.append l₁ L') (list_blank.append l₂ R')) =
tape.mk' L' (list_blank.append (vector.to_list (enc a)) R'),
{ simpa only [list.length_reverse, vector.to_list_length]
using this (list.reverse_reverse _).symm },
intros, induction l₁ with b l₁ IH generalizing l₂,
{ cases e, refl },
simp only [list.length, list.cons_append, iterate_succ_apply],
convert IH e,
simp only [list_blank.tail_cons, list_blank.append, tape.move_left_mk', list_blank.head_cons]
end
theorem tr_tape'_move_right (L R) :
(tape.move dir.right)^[n] (tr_tape' L R) =
(tr_tape' (L.cons R.head) R.tail) :=
begin
suffices : ∀ i L, (tape.move dir.right)^[i] ((tape.move dir.left)^[i] L) = L,
{ refine (eq.symm _).trans (this n _),
simp only [tr_tape'_move_left, list_blank.cons_head_tail,
list_blank.head_cons, list_blank.tail_cons] },
intros, induction i with i IH, {refl},
rw [iterate_succ_apply, iterate_succ_apply', tape.move_left_right, IH]
end
theorem step_aux_write (q v a b L R) :
step_aux (write (enc a).to_list q) v (tr_tape' L (list_blank.cons b R)) =
step_aux q v (tr_tape' (list_blank.cons a L) R) :=
begin
simp only [tr_tape', list.cons_bind, list.append_assoc],
suffices : ∀ {L' R'} (l₁ l₂ l₂' : list bool)
(e : l₂'.length = l₂.length),
step_aux (write l₂ q) v (tape.mk' (list_blank.append l₁ L') (list_blank.append l₂' R')) =
step_aux q v (tape.mk' (L'.append (list.reverse_core l₂ l₁)) R'),
{ convert this [] _ _ ((enc b).2.trans (enc a).2.symm);
rw list_blank.cons_bind; refl },
clear a b L R, intros,
induction l₂ with a l₂ IH generalizing l₁ l₂',
{ cases list.length_eq_zero.1 e, refl },
cases l₂' with b l₂'; injection e with e,
dunfold write step_aux,
convert IH _ _ e using 1,
simp only [list_blank.head_cons, list_blank.tail_cons,
list_blank.append, tape.move_right_mk', tape.write_mk']
end
parameters (encdec : ∀ a, dec (enc a) = a)
include encdec
theorem step_aux_read (f v L R) :
step_aux (read f) v (tr_tape' L R) =
step_aux (f R.head) v (tr_tape' L R) :=
begin
suffices : ∀ f,
step_aux (read_aux n f) v (tr_tape' enc0 L R) =
step_aux (f (enc R.head)) v
(tr_tape' enc0 (L.cons R.head) R.tail),
{ rw [read, this, step_aux_move, encdec, tr_tape'_move_left enc0],
simp only [list_blank.head_cons, list_blank.cons_head_tail, list_blank.tail_cons] },
obtain ⟨a, R, rfl⟩ := R.exists_cons,
simp only [list_blank.head_cons, list_blank.tail_cons,
tr_tape', list_blank.cons_bind, list_blank.append_assoc],
suffices : ∀ i f L' R' l₁ l₂ h,
step_aux (read_aux i f) v
(tape.mk' (list_blank.append l₁ L') (list_blank.append l₂ R')) =
step_aux (f ⟨l₂, h⟩) v
(tape.mk' (list_blank.append (l₂.reverse_core l₁) L') R'),
{ intro f, convert this n f _ _ _ _ (enc a).2; simp },
clear f L a R, intros, subst i,
induction l₂ with a l₂ IH generalizing l₁, {refl},
transitivity step_aux
(read_aux l₂.length (λ v, f (a ::ᵥ v))) v
(tape.mk' ((L'.append l₁).cons a) (R'.append l₂)),
{ dsimp [read_aux, step_aux], simp, cases a; refl },
rw [← list_blank.append, IH], refl
end
theorem tr_respects : respects (step M) (step tr)
(λ c₁ c₂, tr_cfg c₁ = c₂) :=
fun_respects.2 $ λ ⟨l₁, v, T⟩, begin
obtain ⟨L, R, rfl⟩ := T.exists_mk',
cases l₁ with l₁, {exact rfl},
suffices : ∀ q R, reaches (step (tr enc dec M))
(step_aux (tr_normal dec q) v (tr_tape' enc0 L R))
(tr_cfg enc0 (step_aux q v (tape.mk' L R))),
{ refine trans_gen.head' rfl _, rw tr_tape_mk', exact this _ R },
clear R l₁, intros,
induction q with _ q IH _ q IH _ q IH generalizing v L R,
case TM1.stmt.move : d q IH {
cases d; simp only [tr_normal, iterate, step_aux_move, step_aux,
list_blank.head_cons, tape.move_left_mk',
list_blank.cons_head_tail, list_blank.tail_cons,
tr_tape'_move_left enc0, tr_tape'_move_right enc0];
apply IH },
case TM1.stmt.write : f q IH {
simp only [tr_normal, step_aux_read dec enc0 encdec, step_aux],
refine refl_trans_gen.head rfl _,
obtain ⟨a, R, rfl⟩ := R.exists_cons,
rw [tr, tape.mk'_head, step_aux_write, list_blank.head_cons,
step_aux_move, tr_tape'_move_left enc0, list_blank.head_cons,
list_blank.tail_cons, tape.write_mk'],
apply IH },
case TM1.stmt.load : a q IH {
simp only [tr_normal, step_aux_read dec enc0 encdec],
apply IH },
case TM1.stmt.branch : p q₁ q₂ IH₁ IH₂ {
simp only [tr_normal, step_aux_read dec enc0 encdec, step_aux],
cases p R.head v; [apply IH₂, apply IH₁] },
case TM1.stmt.goto : l {
simp only [tr_normal, step_aux_read dec enc0 encdec, step_aux, tr_cfg, tr_tape_mk'],
apply refl_trans_gen.refl },
case TM1.stmt.halt {
simp only [tr_normal, step_aux, tr_cfg, step_aux_move,
tr_tape'_move_left enc0, tr_tape'_move_right enc0, tr_tape_mk'],
apply refl_trans_gen.refl }
end
omit enc0 encdec
open_locale classical
parameters [fintype Γ]
/-- The set of accessible `Λ'.write` machine states. -/
noncomputable def writes : stmt₁ → finset Λ'
| (stmt.move d q) := writes q
| (stmt.write f q) := finset.univ.image (λ a, Λ'.write a q) ∪ writes q
| (stmt.load f q) := writes q
| (stmt.branch p q₁ q₂) := writes q₁ ∪ writes q₂
| (stmt.goto l) := ∅
| stmt.halt := ∅
/-- The set of accessible machine states, assuming that the input machine is supported on `S`,
are the normal states embedded from `S`, plus all write states accessible from these states. -/
noncomputable def tr_supp (S : finset Λ) : finset Λ' :=
S.bUnion (λ l, insert (Λ'.normal l) (writes (M l)))
theorem tr_supports {S} (ss : supports M S) :
supports tr (tr_supp S) :=
⟨finset.mem_bUnion.2 ⟨_, ss.1, finset.mem_insert_self _ _⟩,
λ q h, begin
suffices : ∀ q, supports_stmt S q →
(∀ q' ∈ writes q, q' ∈ tr_supp M S) →
supports_stmt (tr_supp M S) (tr_normal dec q) ∧
∀ q' ∈ writes q, supports_stmt (tr_supp M S) (tr enc dec M q'),
{ rcases finset.mem_bUnion.1 h with ⟨l, hl, h⟩,
have := this _ (ss.2 _ hl) (λ q' hq,
finset.mem_bUnion.2 ⟨_, hl, finset.mem_insert_of_mem hq⟩),
rcases finset.mem_insert.1 h with rfl | h,
exacts [this.1, this.2 _ h] },
intros q hs hw, induction q,
case TM1.stmt.move : d q IH {
unfold writes at hw ⊢,
replace IH := IH hs hw, refine ⟨_, IH.2⟩,
cases d; simp only [tr_normal, iterate, supports_stmt_move, IH] },
case TM1.stmt.write : f q IH {
unfold writes at hw ⊢,
simp only [finset.mem_image, finset.mem_union, finset.mem_univ,
exists_prop, true_and] at hw ⊢,
replace IH := IH hs (λ q hq, hw q (or.inr hq)),
refine ⟨supports_stmt_read _ $ λ a _ s,
hw _ (or.inl ⟨_, rfl⟩), λ q' hq, _⟩,
rcases hq with ⟨a, q₂, rfl⟩ | hq,
{ simp only [tr, supports_stmt_write, supports_stmt_move, IH.1] },
{ exact IH.2 _ hq } },
case TM1.stmt.load : a q IH {
unfold writes at hw ⊢,
replace IH := IH hs hw,
refine ⟨supports_stmt_read _ (λ a, IH.1), IH.2⟩ },
case TM1.stmt.branch : p q₁ q₂ IH₁ IH₂ {
unfold writes at hw ⊢,
simp only [finset.mem_union] at hw ⊢,
replace IH₁ := IH₁ hs.1 (λ q hq, hw q (or.inl hq)),
replace IH₂ := IH₂ hs.2 (λ q hq, hw q (or.inr hq)),
exact ⟨supports_stmt_read _ (λ a, ⟨IH₁.1, IH₂.1⟩),
λ q, or.rec (IH₁.2 _) (IH₂.2 _)⟩ },
case TM1.stmt.goto : l {
refine ⟨_, λ _, false.elim⟩,
refine supports_stmt_read _ (λ a _ s, _),
exact finset.mem_bUnion.2 ⟨_, hs _ _, finset.mem_insert_self _ _⟩ },
case TM1.stmt.halt {
refine ⟨_, λ _, false.elim⟩,
simp only [supports_stmt, supports_stmt_move, tr_normal] }
end⟩
end
end TM1to1
/-!
## TM0 emulator in TM1
To establish that TM0 and TM1 are equivalent computational models, we must also have a TM0 emulator
in TM1. The main complication here is that TM0 allows an action to depend on the value at the head
and local state, while TM1 doesn't (in order to have more programming language-like semantics).
So we use a computed `goto` to go to a state that performes the desired action and then returns to
normal execution.
One issue with this is that the `halt` instruction is supposed to halt immediately, not take a step
to a halting state. To resolve this we do a check for `halt` first, then `goto` (with an
unreachable branch).
-/
namespace TM0to1
section
parameters {Γ : Type*} [inhabited Γ]
parameters {Λ : Type*} [inhabited Λ]
/-- The machine states for a TM1 emulating a TM0 machine. States of the TM0 machine are embedded
as `normal q` states, but the actual operation is split into two parts, a jump to `act s q`
followed by the action and a jump to the next `normal` state. -/
inductive Λ'
| normal : Λ → Λ'
| act : TM0.stmt Γ → Λ → Λ'
instance : inhabited Λ' := ⟨Λ'.normal (default _)⟩
local notation `cfg₀` := TM0.cfg Γ Λ
local notation `stmt₁` := TM1.stmt Γ Λ' unit
local notation `cfg₁` := TM1.cfg Γ Λ' unit
parameters (M : TM0.machine Γ Λ)
open TM1.stmt
/-- The program. -/
def tr : Λ' → stmt₁
| (Λ'.normal q) :=
branch (λ a _, (M q a).is_none) halt $
goto (λ a _, match M q a with
| none := default _ -- unreachable
| some (q', s) := Λ'.act s q'
end)
| (Λ'.act (TM0.stmt.move d) q) := move d $ goto (λ _ _, Λ'.normal q)
| (Λ'.act (TM0.stmt.write a) q) := write (λ _ _, a) $ goto (λ _ _, Λ'.normal q)
/-- The configuration translation. -/
def tr_cfg : cfg₀ → cfg₁
| ⟨q, T⟩ := ⟨cond (M q T.1).is_some (some (Λ'.normal q)) none, (), T⟩
theorem tr_respects : respects (TM0.step M) (TM1.step tr)
(λ a b, tr_cfg a = b) :=
fun_respects.2 $ λ ⟨q, T⟩, begin
cases e : M q T.1,
{ simp only [TM0.step, tr_cfg, e]; exact eq.refl none },
cases val with q' s,
simp only [frespects, TM0.step, tr_cfg, e, option.is_some, cond, option.map_some'],
have : TM1.step (tr M) ⟨some (Λ'.act s q'), (), T⟩ =
some ⟨some (Λ'.normal q'), (), TM0.step._match_1 T s⟩,
{ cases s with d a; refl },
refine trans_gen.head _ (trans_gen.head' this _),
{ unfold TM1.step TM1.step_aux tr has_mem.mem,
rw e, refl },
cases e' : M q' _,
{ apply refl_trans_gen.single,
unfold TM1.step TM1.step_aux tr has_mem.mem,
rw e', refl },
{ refl }
end
end
end TM0to1
/-!
## The TM2 model
The TM2 model removes the tape entirely from the TM1 model, replacing it with an arbitrary (finite)
collection of stacks, each with elements of different types (the alphabet of stack `k : K` is
`Γ k`). The statements are:
* `push k (f : σ → Γ k) q` puts `f a` on the `k`-th stack, then does `q`.
* `pop k (f : σ → option (Γ k) → σ) q` changes the state to `f a (S k).head`, where `S k` is the
value of the `k`-th stack, and removes this element from the stack, then does `q`.
* `peek k (f : σ → option (Γ k) → σ) q` changes the state to `f a (S k).head`, where `S k` is the
value of the `k`-th stack, then does `q`.
* `load (f : σ → σ) q` reads nothing but applies `f` to the internal state, then does `q`.
* `branch (f : σ → bool) qtrue qfalse` does `qtrue` or `qfalse` according to `f a`.
* `goto (f : σ → Λ)` jumps to label `f a`.
* `halt` halts on the next step.
The configuration is a tuple `(l, var, stk)` where `l : option Λ` is the current label to run or
`none` for the halting state, `var : σ` is the (finite) internal state, and `stk : ∀ k, list (Γ k)`
is the collection of stacks. (Note that unlike the `TM0` and `TM1` models, these are not
`list_blank`s, they have definite ends that can be detected by the `pop` command.)
Given a designated stack `k` and a value `L : list (Γ k)`, the initial configuration has all the
stacks empty except the designated "input" stack; in `eval` this designated stack also functions
as the output stack.
-/
namespace TM2
section
parameters {K : Type*} [decidable_eq K] -- Index type of stacks
parameters (Γ : K → Type*) -- Type of stack elements
parameters (Λ : Type*) -- Type of function labels
parameters (σ : Type*) -- Type of variable settings
/-- The TM2 model removes the tape entirely from the TM1 model,
replacing it with an arbitrary (finite) collection of stacks.
The operation `push` puts an element on one of the stacks,
and `pop` removes an element from a stack (and modifying the
internal state based on the result). `peek` modifies the
internal state but does not remove an element. -/
inductive stmt
| push : ∀ k, (σ → Γ k) → stmt → stmt
| peek : ∀ k, (σ → option (Γ k) → σ) → stmt → stmt
| pop : ∀ k, (σ → option (Γ k) → σ) → stmt → stmt
| load : (σ → σ) → stmt → stmt
| branch : (σ → bool) → stmt → stmt → stmt
| goto : (σ → Λ) → stmt
| halt : stmt
open stmt
instance stmt.inhabited : inhabited stmt := ⟨halt⟩
/-- A configuration in the TM2 model is a label (or `none` for the halt state), the state of
local variables, and the stacks. (Note that the stacks are not `list_blank`s, they have a definite
size.) -/
structure cfg :=
(l : option Λ)
(var : σ)
(stk : ∀ k, list (Γ k))
instance cfg.inhabited [inhabited σ] : inhabited cfg := ⟨⟨default _, default _, default _⟩⟩
parameters {Γ Λ σ K}
/-- The step function for the TM2 model. -/
@[simp] def step_aux : stmt → σ → (∀ k, list (Γ k)) → cfg
| (push k f q) v S := step_aux q v (update S k (f v :: S k))
| (peek k f q) v S := step_aux q (f v (S k).head') S
| (pop k f q) v S := step_aux q (f v (S k).head') (update S k (S k).tail)
| (load a q) v S := step_aux q (a v) S
| (branch f q₁ q₂) v S :=
cond (f v) (step_aux q₁ v S) (step_aux q₂ v S)
| (goto f) v S := ⟨some (f v), v, S⟩
| halt v S := ⟨none, v, S⟩
/-- The step function for the TM2 model. -/
@[simp] def step (M : Λ → stmt) : cfg → option cfg
| ⟨none, v, S⟩ := none
| ⟨some l, v, S⟩ := some (step_aux (M l) v S)
/-- The (reflexive) reachability relation for the TM2 model. -/
def reaches (M : Λ → stmt) : cfg → cfg → Prop :=
refl_trans_gen (λ a b, b ∈ step M a)
/-- Given a set `S` of states, `support_stmt S q` means that `q` only jumps to states in `S`. -/
def supports_stmt (S : finset Λ) : stmt → Prop
| (push k f q) := supports_stmt q
| (peek k f q) := supports_stmt q
| (pop k f q) := supports_stmt q
| (load a q) := supports_stmt q
| (branch f q₁ q₂) := supports_stmt q₁ ∧ supports_stmt q₂
| (goto l) := ∀ v, l v ∈ S
| halt := true
open_locale classical
/-- The set of subtree statements in a statement. -/
noncomputable def stmts₁ : stmt → finset stmt
| Q@(push k f q) := insert Q (stmts₁ q)
| Q@(peek k f q) := insert Q (stmts₁ q)
| Q@(pop k f q) := insert Q (stmts₁ q)
| Q@(load a q) := insert Q (stmts₁ q)
| Q@(branch f q₁ q₂) := insert Q (stmts₁ q₁ ∪ stmts₁ q₂)
| Q@(goto l) := {Q}
| Q@halt := {Q}
theorem stmts₁_self {q} : q ∈ stmts₁ q :=
by cases q; apply_rules [finset.mem_insert_self, finset.mem_singleton_self]
theorem stmts₁_trans {q₁ q₂} :
q₁ ∈ stmts₁ q₂ → stmts₁ q₁ ⊆ stmts₁ q₂ :=
begin
intros h₁₂ q₀ h₀₁,
induction q₂ with _ _ q IH _ _ q IH _ _ q IH _ q IH;
simp only [stmts₁] at h₁₂ ⊢;
simp only [finset.mem_insert, finset.mem_singleton, finset.mem_union] at h₁₂,
iterate 4 {
rcases h₁₂ with rfl | h₁₂,
{ unfold stmts₁ at h₀₁, exact h₀₁ },
{ exact finset.mem_insert_of_mem (IH h₁₂) } },
case TM2.stmt.branch : f q₁ q₂ IH₁ IH₂ {
rcases h₁₂ with rfl | h₁₂ | h₁₂,
{ unfold stmts₁ at h₀₁, exact h₀₁ },
{ exact finset.mem_insert_of_mem (finset.mem_union_left _ (IH₁ h₁₂)) },
{ exact finset.mem_insert_of_mem (finset.mem_union_right _ (IH₂ h₁₂)) } },
case TM2.stmt.goto : l {
subst h₁₂, exact h₀₁ },
case TM2.stmt.halt {
subst h₁₂, exact h₀₁ }
end
theorem stmts₁_supports_stmt_mono {S q₁ q₂}
(h : q₁ ∈ stmts₁ q₂) (hs : supports_stmt S q₂) : supports_stmt S q₁ :=
begin
induction q₂ with _ _ q IH _ _ q IH _ _ q IH _ q IH;
simp only [stmts₁, supports_stmt, finset.mem_insert, finset.mem_union,
finset.mem_singleton] at h hs,
iterate 4 { rcases h with rfl | h; [exact hs, exact IH h hs] },
case TM2.stmt.branch : f q₁ q₂ IH₁ IH₂ {
rcases h with rfl | h | h, exacts [hs, IH₁ h hs.1, IH₂ h hs.2] },
case TM2.stmt.goto : l { subst h, exact hs },
case TM2.stmt.halt { subst h, trivial }
end
/-- The set of statements accessible from initial set `S` of labels. -/
noncomputable def stmts (M : Λ → stmt) (S : finset Λ) : finset (option stmt) :=
(S.bUnion (λ q, stmts₁ (M q))).insert_none
theorem stmts_trans {M : Λ → stmt} {S q₁ q₂}
(h₁ : q₁ ∈ stmts₁ q₂) : some q₂ ∈ stmts M S → some q₁ ∈ stmts M S :=
by simp only [stmts, finset.mem_insert_none, finset.mem_bUnion,
option.mem_def, forall_eq', exists_imp_distrib];
exact λ l ls h₂, ⟨_, ls, stmts₁_trans h₂ h₁⟩
variable [inhabited Λ]
/-- Given a TM2 machine `M` and a set `S` of states, `supports M S` means that all states in
`S` jump only to other states in `S`. -/
def supports (M : Λ → stmt) (S : finset Λ) :=
default Λ ∈ S ∧ ∀ q ∈ S, supports_stmt S (M q)
theorem stmts_supports_stmt {M : Λ → stmt} {S q}
(ss : supports M S) : some q ∈ stmts M S → supports_stmt S q :=
by simp only [stmts, finset.mem_insert_none, finset.mem_bUnion,
option.mem_def, forall_eq', exists_imp_distrib];
exact λ l ls h, stmts₁_supports_stmt_mono h (ss.2 _ ls)
theorem step_supports (M : Λ → stmt) {S}
(ss : supports M S) : ∀ {c c' : cfg},
c' ∈ step M c → c.l ∈ S.insert_none → c'.l ∈ S.insert_none
| ⟨some l₁, v, T⟩ c' h₁ h₂ := begin
replace h₂ := ss.2 _ (finset.some_mem_insert_none.1 h₂),
simp only [step, option.mem_def] at h₁, subst c',
revert h₂, induction M l₁ with _ _ q IH _ _ q IH _ _ q IH _ q IH generalizing v T;
intro hs,
iterate 4 { exact IH _ _ hs },
case TM2.stmt.branch : p q₁' q₂' IH₁ IH₂ {
unfold step_aux, cases p v,
{ exact IH₂ _ _ hs.2 },
{ exact IH₁ _ _ hs.1 } },
case TM2.stmt.goto { exact finset.some_mem_insert_none.2 (hs _) },
case TM2.stmt.halt { apply multiset.mem_cons_self }
end
variable [inhabited σ]
/-- The initial state of the TM2 model. The input is provided on a designated stack. -/
def init (k) (L : list (Γ k)) : cfg :=
⟨some (default _), default _, update (λ _, []) k L⟩
/-- Evaluates a TM2 program to completion, with the output on the same stack as the input. -/
def eval (M : Λ → stmt) (k) (L : list (Γ k)) : part (list (Γ k)) :=
(eval (step M) (init k L)).map $ λ c, c.stk k
end
end TM2
/-!
## TM2 emulator in TM1
To prove that TM2 computable functions are TM1 computable, we need to reduce each TM2 program to a
TM1 program. So suppose a TM2 program is given. This program has to maintain a whole collection of
stacks, but we have only one tape, so we must "multiplex" them all together. Pictorially, if stack
1 contains `[a, b]` and stack 2 contains `[c, d, e, f]` then the tape looks like this:
```
bottom: ... | _ | T | _ | _ | _ | _ | ...
stack 1: ... | _ | b | a | _ | _ | _ | ...
stack 2: ... | _ | f | e | d | c | _ | ...
```
where a tape element is a vertical slice through the diagram. Here the alphabet is
`Γ' := bool × ∀ k, option (Γ k)`, where:
* `bottom : bool` is marked only in one place, the initial position of the TM, and represents the
tail of all stacks. It is never modified.
* `stk k : option (Γ k)` is the value of the `k`-th stack, if in range, otherwise `none` (which is
the blank value). Note that the head of the stack is at the far end; this is so that push and pop
don't have to do any shifting.
In "resting" position, the TM is sitting at the position marked `bottom`. For non-stack actions,
it operates in place, but for the stack actions `push`, `peek`, and `pop`, it must shuttle to the
end of the appropriate stack, make its changes, and then return to the bottom. So the states are:
* `normal (l : Λ)`: waiting at `bottom` to execute function `l`
* `go k (s : st_act k) (q : stmt₂)`: travelling to the right to get to the end of stack `k` in
order to perform stack action `s`, and later continue with executing `q`
* `ret (q : stmt₂)`: travelling to the left after having performed a stack action, and executing
`q` once we arrive
Because of the shuttling, emulation overhead is `O(n)`, where `n` is the current maximum of the
length of all stacks. Therefore a program that takes `k` steps to run in TM2 takes `O((m+k)k)`
steps to run when emulated in TM1, where `m` is the length of the input.
-/
namespace TM2to1
-- A displaced lemma proved in unnecessary generality
theorem stk_nth_val {K : Type*} {Γ : K → Type*} {L : list_blank (∀ k, option (Γ k))} {k S} (n)
(hL : list_blank.map (proj k) L = list_blank.mk (list.map some S).reverse) :
L.nth n k = S.reverse.nth n :=
begin
rw [← proj_map_nth, hL, ← list.map_reverse, list_blank.nth_mk, list.inth, list.nth_map],
cases S.reverse.nth n; refl
end
section
parameters {K : Type*} [decidable_eq K]
parameters {Γ : K → Type*}
parameters {Λ : Type*} [inhabited Λ]
parameters {σ : Type*} [inhabited σ]
local notation `stmt₂` := TM2.stmt Γ Λ σ
local notation `cfg₂` := TM2.cfg Γ Λ σ
/-- The alphabet of the TM2 simulator on TM1 is a marker for the stack bottom,
plus a vector of stack elements for each stack, or none if the stack does not extend this far. -/
@[nolint unused_arguments] -- [decidable_eq K]: Because K is a parameter, we cannot easily skip
-- the decidable_eq assumption, and this is a local definition anyway so it's not important.
def Γ' := bool × ∀ k, option (Γ k)
instance Γ'.inhabited : inhabited Γ' := ⟨⟨ff, λ _, none⟩⟩
instance Γ'.fintype [fintype K] [∀ k, fintype (Γ k)] : fintype Γ' :=
prod.fintype _ _
/-- The bottom marker is fixed throughout the calculation, so we use the `add_bottom` function
to express the program state in terms of a tape with only the stacks themselves. -/
def add_bottom (L : list_blank (∀ k, option (Γ k))) : list_blank Γ' :=
list_blank.cons (tt, L.head) (L.tail.map ⟨prod.mk ff, rfl⟩)
theorem add_bottom_map (L) : (add_bottom L).map ⟨prod.snd, rfl⟩ = L :=
begin
simp only [add_bottom, list_blank.map_cons]; convert list_blank.cons_head_tail _,
generalize : list_blank.tail L = L',
refine L'.induction_on _, intro l, simp,
rw (_ : _ ∘ _ = id), {simp},
funext a, refl
end
theorem add_bottom_modify_nth (f : (∀ k, option (Γ k)) → (∀ k, option (Γ k))) (L n) :
(add_bottom L).modify_nth (λ a, (a.1, f a.2)) n = add_bottom (L.modify_nth f n) :=
begin
cases n; simp only [add_bottom,
list_blank.head_cons, list_blank.modify_nth, list_blank.tail_cons],
congr, symmetry, apply list_blank.map_modify_nth, intro, refl
end
theorem add_bottom_nth_snd (L n) : ((add_bottom L).nth n).2 = L.nth n :=
by conv {to_rhs, rw [← add_bottom_map L, list_blank.nth_map]}; refl
theorem add_bottom_nth_succ_fst (L n) : ((add_bottom L).nth (n+1)).1 = ff :=
by rw [list_blank.nth_succ, add_bottom, list_blank.tail_cons, list_blank.nth_map]; refl
theorem add_bottom_head_fst (L) : (add_bottom L).head.1 = tt :=
by rw [add_bottom, list_blank.head_cons]; refl
/-- A stack action is a command that interacts with the top of a stack. Our default position
is at the bottom of all the stacks, so we have to hold on to this action while going to the end
to modify the stack. -/
inductive st_act (k : K)
| push : (σ → Γ k) → st_act
| peek : (σ → option (Γ k) → σ) → st_act
| pop : (σ → option (Γ k) → σ) → st_act
instance st_act.inhabited {k} : inhabited (st_act k) := ⟨st_act.peek (λ s _, s)⟩
section
open st_act
/-- The TM2 statement corresponding to a stack action. -/
@[nolint unused_arguments] -- [inhabited Λ]: as this is a local definition it is more trouble than
-- it is worth to omit the typeclass assumption without breaking the parameters
def st_run {k : K} : st_act k → stmt₂ → stmt₂
| (push f) := TM2.stmt.push k f
| (peek f) := TM2.stmt.peek k f
| (pop f) := TM2.stmt.pop k f
/-- The effect of a stack action on the local variables, given the value of the stack. -/
def st_var {k : K} (v : σ) (l : list (Γ k)) : st_act k → σ
| (push f) := v
| (peek f) := f v l.head'
| (pop f) := f v l.head'
/-- The effect of a stack action on the stack. -/
def st_write {k : K} (v : σ) (l : list (Γ k)) : st_act k → list (Γ k)
| (push f) := f v :: l
| (peek f) := l
| (pop f) := l.tail
/-- We have partitioned the TM2 statements into "stack actions", which require going to the end
of the stack, and all other actions, which do not. This is a modified recursor which lumps the
stack actions into one. -/
@[elab_as_eliminator] def {l} stmt_st_rec
{C : stmt₂ → Sort l}
(H₁ : Π k (s : st_act k) q (IH : C q), C (st_run s q))
(H₂ : Π a q (IH : C q), C (TM2.stmt.load a q))
(H₃ : Π p q₁ q₂ (IH₁ : C q₁) (IH₂ : C q₂), C (TM2.stmt.branch p q₁ q₂))
(H₄ : Π l, C (TM2.stmt.goto l))
(H₅ : C TM2.stmt.halt) : ∀ n, C n
| (TM2.stmt.push k f q) := H₁ _ (push f) _ (stmt_st_rec q)
| (TM2.stmt.peek k f q) := H₁ _ (peek f) _ (stmt_st_rec q)
| (TM2.stmt.pop k f q) := H₁ _ (pop f) _ (stmt_st_rec q)
| (TM2.stmt.load a q) := H₂ _ _ (stmt_st_rec q)
| (TM2.stmt.branch a q₁ q₂) := H₃ _ _ _ (stmt_st_rec q₁) (stmt_st_rec q₂)
| (TM2.stmt.goto l) := H₄ _
| TM2.stmt.halt := H₅
theorem supports_run (S : finset Λ) {k} (s : st_act k) (q) :
TM2.supports_stmt S (st_run s q) ↔ TM2.supports_stmt S q :=
by rcases s with _|_|_; refl
end
/-- The machine states of the TM2 emulator. We can either be in a normal state when waiting for the
next TM2 action, or we can be in the "go" and "return" states to go to the top of the stack and
return to the bottom, respectively. -/
inductive Λ' : Type (max u_1 u_2 u_3 u_4)
| normal : Λ → Λ'
| go (k) : st_act k → stmt₂ → Λ'
| ret : stmt₂ → Λ'
open Λ'
instance Λ'.inhabited : inhabited Λ' := ⟨normal (default _)⟩
local notation `stmt₁` := TM1.stmt Γ' Λ' σ
local notation `cfg₁` := TM1.cfg Γ' Λ' σ
open TM1.stmt
/-- The program corresponding to state transitions at the end of a stack. Here we start out just
after the top of the stack, and should end just after the new top of the stack. -/
def tr_st_act {k} (q : stmt₁) : st_act k → stmt₁
| (st_act.push f) := write (λ a s, (a.1, update a.2 k $ some $ f s)) $ move dir.right q
| (st_act.peek f) := move dir.left $ load (λ a s, f s (a.2 k)) $ move dir.right q
| (st_act.pop f) :=
branch (λ a _, a.1)
( load (λ a s, f s none) q )
( move dir.left $
load (λ a s, f s (a.2 k)) $
write (λ a s, (a.1, update a.2 k none)) q )
/-- The initial state for the TM2 emulator, given an initial TM2 state. All stacks start out empty
except for the input stack, and the stack bottom mark is set at the head. -/
def tr_init (k) (L : list (Γ k)) : list Γ' :=
let L' : list Γ' := L.reverse.map (λ a, (ff, update (λ _, none) k a)) in
(tt, L'.head.2) :: L'.tail
theorem step_run {k : K} (q v S) : ∀ s : st_act k,
TM2.step_aux (st_run s q) v S =
TM2.step_aux q (st_var v (S k) s) (update S k (st_write v (S k) s))
| (st_act.push f) := rfl
| (st_act.peek f) := by unfold st_write; rw function.update_eq_self; refl
| (st_act.pop f) := rfl
/-- The translation of TM2 statements to TM1 statements. regular actions have direct equivalents,
but stack actions are deferred by going to the corresponding `go` state, so that we can find the
appropriate stack top. -/
def tr_normal : stmt₂ → stmt₁
| (TM2.stmt.push k f q) := goto (λ _ _, go k (st_act.push f) q)
| (TM2.stmt.peek k f q) := goto (λ _ _, go k (st_act.peek f) q)
| (TM2.stmt.pop k f q) := goto (λ _ _, go k (st_act.pop f) q)
| (TM2.stmt.load a q) := load (λ _, a) (tr_normal q)
| (TM2.stmt.branch f q₁ q₂) := branch (λ a, f) (tr_normal q₁) (tr_normal q₂)
| (TM2.stmt.goto l) := goto (λ a s, normal (l s))
| TM2.stmt.halt := halt
theorem tr_normal_run {k} (s q) : tr_normal (st_run s q) = goto (λ _ _, go k s q) :=
by rcases s with _|_|_; refl
open_locale classical
/-- The set of machine states accessible from an initial TM2 statement. -/
noncomputable def tr_stmts₁ : stmt₂ → finset Λ'
| Q@(TM2.stmt.push k f q) := {go k (st_act.push f) q, ret q} ∪ tr_stmts₁ q
| Q@(TM2.stmt.peek k f q) := {go k (st_act.peek f) q, ret q} ∪ tr_stmts₁ q
| Q@(TM2.stmt.pop k f q) := {go k (st_act.pop f) q, ret q} ∪ tr_stmts₁ q
| Q@(TM2.stmt.load a q) := tr_stmts₁ q
| Q@(TM2.stmt.branch f q₁ q₂) := tr_stmts₁ q₁ ∪ tr_stmts₁ q₂
| _ := ∅
theorem tr_stmts₁_run {k s q} : tr_stmts₁ (st_run s q) = {go k s q, ret q} ∪ tr_stmts₁ q :=
by rcases s with _|_|_; unfold tr_stmts₁ st_run
theorem tr_respects_aux₂
{k q v} {S : Π k, list (Γ k)} {L : list_blank (∀ k, option (Γ k))}
(hL : ∀ k, L.map (proj k) = list_blank.mk ((S k).map some).reverse) (o) :
let v' := st_var v (S k) o,
Sk' := st_write v (S k) o,
S' := update S k Sk' in
∃ (L' : list_blank (∀ k, option (Γ k))),
(∀ k, L'.map (proj k) = list_blank.mk ((S' k).map some).reverse) ∧
TM1.step_aux (tr_st_act q o) v
((tape.move dir.right)^[(S k).length] (tape.mk' ∅ (add_bottom L))) =
TM1.step_aux q v'
((tape.move dir.right)^[(S' k).length] (tape.mk' ∅ (add_bottom L'))) :=
begin
dsimp only, simp, cases o;
simp only [st_write, st_var, tr_st_act, TM1.step_aux],
case TM2to1.st_act.push : f {
have := tape.write_move_right_n (λ a : Γ', (a.1, update a.2 k (some (f v)))),
dsimp only at this,
refine ⟨_, λ k', _, by rw [
tape.move_right_n_head, list.length, tape.mk'_nth_nat, this,
add_bottom_modify_nth (λ a, update a k (some (f v))),
nat.add_one, iterate_succ']⟩,
refine list_blank.ext (λ i, _),
rw [list_blank.nth_map, list_blank.nth_modify_nth, proj, pointed_map.mk_val],
by_cases h' : k' = k,
{ subst k', split_ifs; simp only [list.reverse_cons,
function.update_same, list_blank.nth_mk, list.inth, list.map],
{ rw [list.nth_le_nth, list.nth_le_append_right];
simp only [h, list.nth_le_singleton, list.length_map, list.length_reverse, nat.succ_pos',
list.length_append, lt_add_iff_pos_right, list.length] },
rw [← proj_map_nth, hL, list_blank.nth_mk, list.inth],
cases lt_or_gt_of_ne h with h h,
{ rw list.nth_append, simpa only [list.length_map, list.length_reverse] using h },
{ rw gt_iff_lt at h,
rw [list.nth_len_le, list.nth_len_le];
simp only [nat.add_one_le_iff, h, list.length, le_of_lt,
list.length_reverse, list.length_append, list.length_map] } },
{ split_ifs; rw [function.update_noteq h', ← proj_map_nth, hL],
rw function.update_noteq h' } },
case TM2to1.st_act.peek : f {
rw function.update_eq_self,
use [L, hL], rw [tape.move_left_right], congr,
cases e : S k, {refl},
rw [list.length_cons, iterate_succ', tape.move_right_left, tape.move_right_n_head,
tape.mk'_nth_nat, add_bottom_nth_snd, stk_nth_val _ (hL k), e,
list.reverse_cons, ← list.length_reverse, list.nth_concat_length], refl },
case TM2to1.st_act.pop : f {
cases e : S k,
{ simp only [tape.mk'_head, list_blank.head_cons, tape.move_left_mk',
list.length, tape.write_mk', list.head', iterate_zero_apply, list.tail_nil],
rw [← e, function.update_eq_self], exact ⟨L, hL, by rw [add_bottom_head_fst, cond]⟩ },
{ refine ⟨_, λ k', _, by rw [
list.length_cons, tape.move_right_n_head, tape.mk'_nth_nat, add_bottom_nth_succ_fst,
cond, iterate_succ', tape.move_right_left, tape.move_right_n_head, tape.mk'_nth_nat,
tape.write_move_right_n (λ a:Γ', (a.1, update a.2 k none)),
add_bottom_modify_nth (λ a, update a k none),
add_bottom_nth_snd, stk_nth_val _ (hL k), e,
show (list.cons hd tl).reverse.nth tl.length = some hd,
by rw [list.reverse_cons, ← list.length_reverse, list.nth_concat_length]; refl,
list.head', list.tail]⟩,
refine list_blank.ext (λ i, _),
rw [list_blank.nth_map, list_blank.nth_modify_nth, proj, pointed_map.mk_val],
by_cases h' : k' = k,
{ subst k', split_ifs; simp only [
function.update_same, list_blank.nth_mk, list.tail, list.inth],
{ rw [list.nth_len_le], {refl}, rw [h, list.length_reverse, list.length_map] },
rw [← proj_map_nth, hL, list_blank.nth_mk, list.inth, e, list.map, list.reverse_cons],
cases lt_or_gt_of_ne h with h h,
{ rw list.nth_append, simpa only [list.length_map, list.length_reverse] using h },
{ rw gt_iff_lt at h, rw [list.nth_len_le, list.nth_len_le];
simp only [nat.add_one_le_iff, h, list.length, le_of_lt,
list.length_reverse, list.length_append, list.length_map] } },
{ split_ifs; rw [function.update_noteq h', ← proj_map_nth, hL],
rw function.update_noteq h' } } },
end
parameters (M : Λ → stmt₂)
include M
/-- The TM2 emulator machine states written as a TM1 program.
This handles the `go` and `ret` states, which shuttle to and from a stack top. -/
def tr : Λ' → stmt₁
| (normal q) := tr_normal (M q)
| (go k s q) :=
branch (λ a s, (a.2 k).is_none) (tr_st_act (goto (λ _ _, ret q)) s)
(move dir.right $ goto (λ _ _, go k s q))
| (ret q) :=
branch (λ a s, a.1) (tr_normal q)
(move dir.left $ goto (λ _ _, ret q))
local attribute [pp_using_anonymous_constructor] turing.TM1.cfg
/-- The relation between TM2 configurations and TM1 configurations of the TM2 emulator. -/
inductive tr_cfg : cfg₂ → cfg₁ → Prop
| mk {q v} {S : ∀ k, list (Γ k)} (L : list_blank (∀ k, option (Γ k))) :
(∀ k, L.map (proj k) = list_blank.mk ((S k).map some).reverse) →
tr_cfg ⟨q, v, S⟩ ⟨q.map normal, v, tape.mk' ∅ (add_bottom L)⟩
theorem tr_respects_aux₁ {k} (o q v) {S : list (Γ k)} {L : list_blank (∀ k, option (Γ k))}
(hL : L.map (proj k) = list_blank.mk (S.map some).reverse) (n ≤ S.length) :
reaches₀ (TM1.step tr)
⟨some (go k o q), v, (tape.mk' ∅ (add_bottom L))⟩
⟨some (go k o q), v, (tape.move dir.right)^[n] (tape.mk' ∅ (add_bottom L))⟩ :=
begin
induction n with n IH, {refl},
apply (IH (le_of_lt H)).tail,
rw iterate_succ_apply', simp only [TM1.step, TM1.step_aux, tr,
tape.mk'_nth_nat, tape.move_right_n_head, add_bottom_nth_snd,
option.mem_def],
rw [stk_nth_val _ hL, list.nth_le_nth], refl, rwa list.length_reverse
end
theorem tr_respects_aux₃ {q v} {L : list_blank (∀ k, option (Γ k))} (n) :
reaches₀ (TM1.step tr)
⟨some (ret q), v, (tape.move dir.right)^[n] (tape.mk' ∅ (add_bottom L))⟩
⟨some (ret q), v, (tape.mk' ∅ (add_bottom L))⟩ :=
begin
induction n with n IH, {refl},
refine reaches₀.head _ IH,
rw [option.mem_def, TM1.step, tr, TM1.step_aux, tape.move_right_n_head, tape.mk'_nth_nat,
add_bottom_nth_succ_fst, TM1.step_aux, iterate_succ', tape.move_right_left], refl,
end
theorem tr_respects_aux {q v T k} {S : Π k, list (Γ k)}
(hT : ∀ k, list_blank.map (proj k) T = list_blank.mk ((S k).map some).reverse)
(o : st_act k)
(IH : ∀ {v : σ} {S : Π (k : K), list (Γ k)} {T : list_blank (∀ k, option (Γ k))},
(∀ k, list_blank.map (proj k) T = list_blank.mk ((S k).map some).reverse) →
(∃ b, tr_cfg (TM2.step_aux q v S) b ∧
reaches (TM1.step tr) (TM1.step_aux (tr_normal q) v (tape.mk' ∅ (add_bottom T))) b)) :
∃ b, tr_cfg (TM2.step_aux (st_run o q) v S) b ∧
reaches (TM1.step tr) (TM1.step_aux (tr_normal (st_run o q))
v (tape.mk' ∅ (add_bottom T))) b :=
begin
simp only [tr_normal_run, step_run],
have hgo := tr_respects_aux₁ M o q v (hT k) _ (le_refl _),
obtain ⟨T', hT', hrun⟩ := tr_respects_aux₂ hT o,
have hret := tr_respects_aux₃ M _,
have := hgo.tail' rfl,
rw [tr, TM1.step_aux, tape.move_right_n_head, tape.mk'_nth_nat, add_bottom_nth_snd,
stk_nth_val _ (hT k), list.nth_len_le (le_of_eq (list.length_reverse _)),
option.is_none, cond, hrun, TM1.step_aux] at this,
obtain ⟨c, gc, rc⟩ := IH hT',
refine ⟨c, gc, (this.to₀.trans hret c (trans_gen.head' rfl _)).to_refl⟩,
rw [tr, TM1.step_aux, tape.mk'_head, add_bottom_head_fst],
exact rc,
end
local attribute [simp] respects TM2.step TM2.step_aux tr_normal
theorem tr_respects : respects (TM2.step M) (TM1.step tr) tr_cfg :=
λ c₁ c₂ h, begin
cases h with l v S L hT, clear h,
cases l, {constructor},
simp only [TM2.step, respects, option.map_some'],
suffices : ∃ b, _ ∧ reaches (TM1.step (tr M)) _ _,
from let ⟨b, c, r⟩ := this in ⟨b, c, trans_gen.head' rfl r⟩,
rw [tr],
revert v S L hT, refine stmt_st_rec _ _ _ _ _ (M l); intros,
{ exact tr_respects_aux M hT s @IH },
{ exact IH _ hT },
{ unfold TM2.step_aux tr_normal TM1.step_aux,
cases p v; [exact IH₂ _ hT, exact IH₁ _ hT] },
{ exact ⟨_, ⟨_, hT⟩, refl_trans_gen.refl⟩ },
{ exact ⟨_, ⟨_, hT⟩, refl_trans_gen.refl⟩ }
end
theorem tr_cfg_init (k) (L : list (Γ k)) :
tr_cfg (TM2.init k L) (TM1.init (tr_init k L)) :=
begin
rw (_ : TM1.init _ = _),
{ refine ⟨list_blank.mk (L.reverse.map $ λ a, update (default _) k (some a)), λ k', _⟩,
refine list_blank.ext (λ i, _),
rw [list_blank.map_mk, list_blank.nth_mk, list.inth, list.map_map, (∘),
list.nth_map, proj, pointed_map.mk_val],
by_cases k' = k,
{ subst k', simp only [function.update_same],
rw [list_blank.nth_mk, list.inth, ← list.map_reverse, list.nth_map] },
{ simp only [function.update_noteq h],
rw [list_blank.nth_mk, list.inth, list.map, list.reverse_nil, list.nth],
cases L.reverse.nth i; refl } },
{ rw [tr_init, TM1.init], dsimp only, congr; cases L.reverse; try {refl},
simp only [list.map_map, list.tail_cons, list.map], refl }
end
theorem tr_eval_dom (k) (L : list (Γ k)) :
(TM1.eval tr (tr_init k L)).dom ↔ (TM2.eval M k L).dom :=
tr_eval_dom tr_respects (tr_cfg_init _ _)
theorem tr_eval (k) (L : list (Γ k)) {L₁ L₂}
(H₁ : L₁ ∈ TM1.eval tr (tr_init k L))
(H₂ : L₂ ∈ TM2.eval M k L) :
∃ (S : ∀ k, list (Γ k)) (L' : list_blank (∀ k, option (Γ k))),
add_bottom L' = L₁ ∧
(∀ k, L'.map (proj k) = list_blank.mk ((S k).map some).reverse) ∧
S k = L₂ :=
begin
obtain ⟨c₁, h₁, rfl⟩ := (part.mem_map_iff _).1 H₁,
obtain ⟨c₂, h₂, rfl⟩ := (part.mem_map_iff _).1 H₂,
obtain ⟨_, ⟨q, v, S, L', hT⟩, h₃⟩ := tr_eval (tr_respects M) (tr_cfg_init M k L) h₂,
cases part.mem_unique h₁ h₃,
exact ⟨S, L', by simp only [tape.mk'_right₀], hT, rfl⟩
end
/-- The support of a set of TM2 states in the TM2 emulator. -/
noncomputable def tr_supp (S : finset Λ) : finset Λ' :=
S.bUnion (λ l, insert (normal l) (tr_stmts₁ (M l)))
theorem tr_supports {S} (ss : TM2.supports M S) :
TM1.supports tr (tr_supp S) :=
⟨finset.mem_bUnion.2 ⟨_, ss.1, finset.mem_insert.2 $ or.inl rfl⟩,
λ l' h, begin
suffices : ∀ q (ss' : TM2.supports_stmt S q)
(sub : ∀ x ∈ tr_stmts₁ q, x ∈ tr_supp M S),
TM1.supports_stmt (tr_supp M S) (tr_normal q) ∧
(∀ l' ∈ tr_stmts₁ q, TM1.supports_stmt (tr_supp M S) (tr M l')),
{ rcases finset.mem_bUnion.1 h with ⟨l, lS, h⟩,
have := this _ (ss.2 l lS) (λ x hx,
finset.mem_bUnion.2 ⟨_, lS, finset.mem_insert_of_mem hx⟩),
rcases finset.mem_insert.1 h with rfl | h;
[exact this.1, exact this.2 _ h] },
clear h l', refine stmt_st_rec _ _ _ _ _; intros,
{ -- stack op
rw TM2to1.supports_run at ss',
simp only [TM2to1.tr_stmts₁_run, finset.mem_union,
finset.mem_insert, finset.mem_singleton] at sub,
have hgo := sub _ (or.inl $ or.inl rfl),
have hret := sub _ (or.inl $ or.inr rfl),
cases IH ss' (λ x hx, sub x $ or.inr hx) with IH₁ IH₂,
refine ⟨by simp only [tr_normal_run, TM1.supports_stmt]; intros; exact hgo, λ l h, _⟩,
rw [tr_stmts₁_run] at h,
simp only [TM2to1.tr_stmts₁_run, finset.mem_union,
finset.mem_insert, finset.mem_singleton] at h,
rcases h with ⟨rfl | rfl⟩ | h,
{ unfold TM1.supports_stmt TM2to1.tr,
rcases s with _|_|_,
{ exact ⟨λ _ _, hret, λ _ _, hgo⟩ },
{ exact ⟨λ _ _, hret, λ _ _, hgo⟩ },
{ exact ⟨⟨λ _ _, hret, λ _ _, hret⟩, λ _ _, hgo⟩ } },
{ unfold TM1.supports_stmt TM2to1.tr,
exact ⟨IH₁, λ _ _, hret⟩ },
{ exact IH₂ _ h } },
{ -- load
unfold TM2to1.tr_stmts₁ at ss' sub ⊢,
exact IH ss' sub },
{ -- branch
unfold TM2to1.tr_stmts₁ at sub,
cases IH₁ ss'.1 (λ x hx, sub x $ finset.mem_union_left _ hx) with IH₁₁ IH₁₂,
cases IH₂ ss'.2 (λ x hx, sub x $ finset.mem_union_right _ hx) with IH₂₁ IH₂₂,
refine ⟨⟨IH₁₁, IH₂₁⟩, λ l h, _⟩,
rw [tr_stmts₁] at h,
rcases finset.mem_union.1 h with h | h;
[exact IH₁₂ _ h, exact IH₂₂ _ h] },
{ -- goto
rw tr_stmts₁, unfold TM2to1.tr_normal TM1.supports_stmt,
unfold TM2.supports_stmt at ss',
exact ⟨λ _ v, finset.mem_bUnion.2 ⟨_, ss' v, finset.mem_insert_self _ _⟩, λ _, false.elim⟩ },
{ exact ⟨trivial, λ _, false.elim⟩ } -- halt
end⟩
end
end TM2to1
end turing
|
7d1b4853811d91d7282cb7e68f275e8416af592f
|
f4bff2062c030df03d65e8b69c88f79b63a359d8
|
/src/game/limits/seq_limitProd.lean
|
ceb04ad0de4b4cc186c8837ec83a06685c6f77b9
|
[
"Apache-2.0"
] |
permissive
|
adastra7470/real-number-game
|
776606961f52db0eb824555ed2f8e16f92216ea3
|
f9dcb7d9255a79b57e62038228a23346c2dc301b
|
refs/heads/master
| 1,669,221,575,893
| 1,594,669,800,000
| 1,594,669,800,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 2,464
|
lean
|
import game.limits.L01defs
import game.limits.seq_limSeqSub
open real
namespace xena -- hide
notation `|` x `|` := abs x -- hide
/-
Use previous results to obtain the limit of a product in the general case.
Work in progress.
-/
/- Lemma
If $\lim_{n \to \infty} a_n = \alpha$ and $\lim_{n \to \infty} b_n = \beta$, then
$\lim_{n \to \infty} (a_n * b_n) = \alpha * \beta$
-/
lemma lim_prod (a : ℕ → ℝ) (b : ℕ → ℝ) (α β : ℝ)
(ha : is_limit a α) (hb : is_limit b β) :
is_limit ( λ n, (a n) * (b n) ) (α * β) :=
begin
have Ha := lim_seq_sub_const a α α ha,
rw [sub_self α] at Ha,
have Hb := lim_seq_sub_const b β β hb,
rw [sub_self β] at Hb,
have G := lim_zero_prod (λ n, a n - α) (λ n, b n - β) Ha Hb,
have g1 := lim_times_const a α β ha,
have g2 := lim_times_const b β α hb,
-- becomes ugly, need to improve notation
have G1 := lim_linear (λ (n : ℕ),
(λ (n : ℕ), a n - α) n * (λ (n : ℕ), b n - β) n) a 0 α 1 β G ha,
have h1 : (1:ℝ) * 0 + β * α = β * α , norm_num,
rw h1 at G1,
have G2 := lim_linear (λ (n : ℕ),
1 * (λ (n : ℕ), (λ (n : ℕ), a n - α) n * (λ (n : ℕ), b n - β) n) n + β * a n) b
(β * α) β 1 α G1 hb,
-- to get rid of these non-terminal `simp`
simp at G2,
have h2 : β * α + α * β = 2 * α * β,
rw mul_comm β α, norm_num,
have h21 := mul_two (α * β), rw ← h21,
rw mul_assoc α β 2, rw mul_comm β _, rw ← mul_assoc,
rw mul_comm α 2,
rw h2 at G2,
have G3 := lim_seq_sub_const
(λ (n : ℕ), (a n - α) * (b n - β) + (β * a n + α * b n)) (2 * α * β) (α * β) _,
simp at G3,
have h3 : 2 * α * β - α * β = α * β,
have h31 : (2:ℝ) * α * β - α * β = (2:ℝ) * α * β + (-1:ℝ) * α * β, ring,
--rw ← add_mul (2:ℝ) (-1:ℝ) (α * β) at h31,
rw h31, norm_cast, norm_num, ring,
rw h3 at G3,
intros ε hε,
have G4 := G3 ε hε, cases G4 with N hN,
use N,
intros n hn,
have G5 := hN n hn,
simp at G5, simp,
have h4 : (a n - α) * (b n - β) = (a n) * (b n) - α * (b n) - β * (a n) + α * β, ring,
rw h4 at G5,
have h5 : a n * b n - α * b n - β * a n + α * β + (β * a n + α * b n) - α * β - α * β =
a n * b n - α * β, ring,
rw h5 at G5, exact G5, convert G2, ext, ring, done
end
end xena -- hide
|
da534023cc1b9581493edc5a89f96a68b9a8a860
|
d406927ab5617694ec9ea7001f101b7c9e3d9702
|
/src/algebraic_topology/dold_kan/homotopy_equivalence.lean
|
da71ea0ff73810a43ba163b4365797f12e6f4e4a
|
[
"Apache-2.0"
] |
permissive
|
alreadydone/mathlib
|
dc0be621c6c8208c581f5170a8216c5ba6721927
|
c982179ec21091d3e102d8a5d9f5fe06c8fafb73
|
refs/heads/master
| 1,685,523,275,196
| 1,670,184,141,000
| 1,670,184,141,000
| 287,574,545
| 0
| 0
|
Apache-2.0
| 1,670,290,714,000
| 1,597,421,623,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 3,697
|
lean
|
/-
Copyright (c) 2022 Joël Riou. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joël Riou
-/
import algebraic_topology.dold_kan.normalized
/-!
# The normalized Moore complex and the alternating face map complex are homotopy equivalent
In this file, when the category `A` is abelian, we obtain the homotopy equivalence
`homotopy_equiv_normalized_Moore_complex_alternating_face_map_complex` between the
normalized Moore complex and the alternating face map complex of a simplicial object in `A`.
-/
open category_theory category_theory.category category_theory.limits
category_theory.preadditive
open_locale simplicial dold_kan
noncomputable theory
namespace algebraic_topology
namespace dold_kan
variables {C : Type*} [category C] [preadditive C] (X : simplicial_object C)
/-- Inductive construction of homotopies from `P q` to `𝟙 _` -/
noncomputable def homotopy_P_to_id : Π (q : ℕ),
homotopy (P q : K[X] ⟶ _) (𝟙 _)
| 0 := homotopy.refl _
| (q+1) := begin
refine homotopy.trans (homotopy.of_eq _)
(homotopy.trans
(homotopy.add (homotopy_P_to_id q) (homotopy.comp_left (homotopy_Hσ_to_zero q) (P q)))
(homotopy.of_eq _)),
{ unfold P, simp only [comp_add, comp_id], },
{ simp only [add_zero, comp_zero], },
end
/-- The complement projection `Q q` to `P q` is homotopic to zero. -/
def homotopy_Q_to_zero (q : ℕ) : homotopy (Q q : K[X] ⟶ _) 0 :=
homotopy.equiv_sub_zero.to_fun (homotopy_P_to_id X q).symm
lemma homotopy_P_to_id_eventually_constant {q n : ℕ} (hqn : n<q):
((homotopy_P_to_id X (q+1)).hom n (n+1) : X _[n] ⟶ X _[n+1]) =
(homotopy_P_to_id X q).hom n (n+1) :=
begin
unfold homotopy_P_to_id,
simp only [homotopy_Hσ_to_zero, hσ'_eq_zero hqn (c_mk (n+1) n rfl), homotopy.trans_hom,
pi.add_apply, homotopy.of_eq_hom, pi.zero_apply, homotopy.add_hom, homotopy.comp_left_hom,
homotopy.null_homotopy'_hom, complex_shape.down_rel, eq_self_iff_true, dite_eq_ite,
if_true, comp_zero, add_zero, zero_add],
end
variable (X)
/-- Construction of the homotopy from `P_infty` to the identity using eventually
(termwise) constant homotopies from `P q` to the identity for all `q` -/
@[simps]
def homotopy_P_infty_to_id :
homotopy (P_infty : K[X] ⟶ _) (𝟙 _) :=
{ hom := λ i j, (homotopy_P_to_id X (j+1)).hom i j,
zero' := λ i j hij, homotopy.zero _ i j hij,
comm := λ n, begin
cases n,
{ simpa only [homotopy.d_next_zero_chain_complex, homotopy.prev_d_chain_complex, P_f_0_eq,
zero_add, homological_complex.id_f, P_infty_f] using (homotopy_P_to_id X 2).comm 0, },
{ simpa only [homotopy.d_next_succ_chain_complex, homotopy.prev_d_chain_complex,
homological_complex.id_f, P_infty_f, ← P_is_eventually_constant (rfl.le : n+1 ≤ n+1),
homotopy_P_to_id_eventually_constant X (lt_add_one (n+1))]
using (homotopy_P_to_id X (n+2)).comm (n+1), },
end }
/-- The inclusion of the Moore complex in the alternating face map complex
is an homotopy equivalence -/
@[simps]
def homotopy_equiv_normalized_Moore_complex_alternating_face_map_complex {A : Type*}
[category A] [abelian A] {Y : simplicial_object A} :
homotopy_equiv ((normalized_Moore_complex A).obj Y) ((alternating_face_map_complex A).obj Y) :=
{ hom := inclusion_of_Moore_complex_map Y,
inv := P_infty_to_normalized_Moore_complex Y,
homotopy_hom_inv_id := homotopy.of_eq (split_mono_inclusion_of_Moore_complex_map Y).id,
homotopy_inv_hom_id := homotopy.trans
(homotopy.of_eq (P_infty_to_normalized_Moore_complex_comp_inclusion_of_Moore_complex_map Y))
(homotopy_P_infty_to_id Y), }
end dold_kan
end algebraic_topology
|
54525a4afd3ec51714f2d173c62819ccc8f5b483
|
8c95816d6379a6864848d68ce735a5700c1cbbc3
|
/src/smt2/attributes.lean
|
da3b5b6b6abffd29ff547e273e7b63532c63a4f6
|
[
"Apache-2.0"
] |
permissive
|
aqjune/smt2_interface
|
f00ed0a4317d7c9112deb0806c8e89e6512a901e
|
598848a7a6fa47520fadcfe1b16891053a296084
|
refs/heads/master
| 1,631,518,664,718
| 1,524,489,340,000
| 1,524,489,340,000
| 115,204,811
| 0
| 0
| null | 1,514,043,428,000
| 1,514,043,427,000
| null |
UTF-8
|
Lean
| false
| false
| 193
|
lean
|
meta def smt2_attribute : user_attribute :=
{ name := `smt2,
descr := "Mark a decalartion as part of the gloabl environment of the smt2 tactic" }
run_cmd register_attribute `smt2_attribute
|
20b1c714b85422d716f11a8ccf6aa42c4aec8b1e
|
367134ba5a65885e863bdc4507601606690974c1
|
/src/data/list/chain.lean
|
4432e690c0afd8c8f50e6b8544efd4b5c6f157ef
|
[
"Apache-2.0"
] |
permissive
|
kodyvajjha/mathlib
|
9bead00e90f68269a313f45f5561766cfd8d5cad
|
b98af5dd79e13a38d84438b850a2e8858ec21284
|
refs/heads/master
| 1,624,350,366,310
| 1,615,563,062,000
| 1,615,563,062,000
| 162,666,963
| 0
| 0
|
Apache-2.0
| 1,545,367,651,000
| 1,545,367,651,000
| null |
UTF-8
|
Lean
| false
| false
| 12,568
|
lean
|
/-
Copyright (c) 2018 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro, Kenny Lau, Yury Kudryashov
-/
import data.list.pairwise
import logic.relation
universes u v
open nat
variables {α : Type u} {β : Type v}
namespace list
/- chain relation (conjunction of R a b ∧ R b c ∧ R c d ...) -/
mk_iff_of_inductive_prop list.chain list.chain_iff
variable {R : α → α → Prop}
theorem rel_of_chain_cons {a b : α} {l : list α}
(p : chain R a (b::l)) : R a b :=
(chain_cons.1 p).1
theorem chain_of_chain_cons {a b : α} {l : list α}
(p : chain R a (b::l)) : chain R b l :=
(chain_cons.1 p).2
theorem chain.imp' {S : α → α → Prop}
(HRS : ∀ ⦃a b⦄, R a b → S a b) {a b : α} (Hab : ∀ ⦃c⦄, R a c → S b c)
{l : list α} (p : chain R a l) : chain S b l :=
by induction p with _ a c l r p IH generalizing b; constructor;
[exact Hab r, exact IH (@HRS _)]
theorem chain.imp {S : α → α → Prop}
(H : ∀ a b, R a b → S a b) {a : α} {l : list α} (p : chain R a l) : chain S a l :=
p.imp' H (H a)
theorem chain.iff {S : α → α → Prop}
(H : ∀ a b, R a b ↔ S a b) {a : α} {l : list α} : chain R a l ↔ chain S a l :=
⟨chain.imp (λ a b, (H a b).1), chain.imp (λ a b, (H a b).2)⟩
theorem chain.iff_mem {a : α} {l : list α} :
chain R a l ↔ chain (λ x y, x ∈ a :: l ∧ y ∈ l ∧ R x y) a l :=
⟨λ p, by induction p with _ a b l r p IH; constructor;
[exact ⟨mem_cons_self _ _, mem_cons_self _ _, r⟩,
exact IH.imp (λ a b ⟨am, bm, h⟩,
⟨mem_cons_of_mem _ am, mem_cons_of_mem _ bm, h⟩)],
chain.imp (λ a b h, h.2.2)⟩
theorem chain_singleton {a b : α} : chain R a [b] ↔ R a b :=
by simp only [chain_cons, chain.nil, and_true]
theorem chain_split {a b : α} {l₁ l₂ : list α} : chain R a (l₁++b::l₂) ↔
chain R a (l₁++[b]) ∧ chain R b l₂ :=
by induction l₁ with x l₁ IH generalizing a;
simp only [*, nil_append, cons_append, chain.nil, chain_cons, and_true, and_assoc]
theorem chain_map (f : β → α) {b : β} {l : list β} :
chain R (f b) (map f l) ↔ chain (λ a b : β, R (f a) (f b)) b l :=
by induction l generalizing b; simp only [map, chain.nil, chain_cons, *]
theorem chain_of_chain_map {S : β → β → Prop} (f : α → β)
(H : ∀ a b : α, S (f a) (f b) → R a b) {a : α} {l : list α}
(p : chain S (f a) (map f l)) : chain R a l :=
((chain_map f).1 p).imp H
theorem chain_map_of_chain {S : β → β → Prop} (f : α → β)
(H : ∀ a b : α, R a b → S (f a) (f b)) {a : α} {l : list α}
(p : chain R a l) : chain S (f a) (map f l) :=
(chain_map f).2 $ p.imp H
theorem chain_pmap_of_chain {S : β → β → Prop} {p : α → Prop}
{f : Π a, p a → β}
(H : ∀ a b ha hb, R a b → S (f a ha) (f b hb))
{a : α} {l : list α}
(hl₁ : chain R a l) (ha : p a) (hl₂ : ∀ a ∈ l, p a) :
chain S (f a ha) (list.pmap f l hl₂) :=
begin
induction l with lh lt l_ih generalizing a,
{ simp },
{ simp [H _ _ _ _ (rel_of_chain_cons hl₁), l_ih _ (chain_of_chain_cons hl₁)] }
end
theorem chain_of_chain_pmap {S : β → β → Prop} {p : α → Prop}
(f : Π a, p a → β) {l : list α} (hl₁ : ∀ a ∈ l, p a)
{a : α} (ha : p a) (hl₂ : chain S (f a ha) (list.pmap f l hl₁))
(H : ∀ a b ha hb, S (f a ha) (f b hb) → R a b) :
chain R a l :=
begin
induction l with lh lt l_ih generalizing a,
{ simp },
{ simp [H _ _ _ _ (rel_of_chain_cons hl₂), l_ih _ _ (chain_of_chain_cons hl₂)] }
end
theorem chain_of_pairwise {a : α} {l : list α} (p : pairwise R (a::l)) : chain R a l :=
begin
cases pairwise_cons.1 p with r p', clear p,
induction p' with b l r' p IH generalizing a, {exact chain.nil},
simp only [chain_cons, forall_mem_cons] at r,
exact chain_cons.2 ⟨r.1, IH r'⟩
end
theorem chain_iff_pairwise (tr : transitive R) {a : α} {l : list α} :
chain R a l ↔ pairwise R (a::l) :=
⟨λ c, begin
induction c with b b c l r p IH, {exact pairwise_singleton _ _},
apply IH.cons _, simp only [mem_cons_iff, forall_eq_or_imp, r, true_and],
show ∀ x ∈ l, R b x, from λ x m, (tr r (rel_of_pairwise_cons IH m)),
end, chain_of_pairwise⟩
theorem chain_iff_nth_le {R} : ∀ {a : α} {l : list α},
chain R a l ↔ (∀ h : 0 < length l, R a (nth_le l 0 h)) ∧ (∀ i (h : i < length l - 1),
R (nth_le l i (lt_of_lt_pred h)) (nth_le l (i+1) (lt_pred_iff.mp h)))
| a [] := by simp
| a (b :: t) :=
begin
rw [chain_cons, chain_iff_nth_le],
split,
{ rintros ⟨R, ⟨h0, h⟩⟩,
split,
{ intro w, exact R, },
{ intros i w,
cases i,
{ apply h0, },
{ convert h i _ using 1,
simp only [succ_eq_add_one, add_succ_sub_one, add_zero, length, add_lt_add_iff_right] at w,
exact lt_pred_iff.mpr w, } } },
{ rintros ⟨h0, h⟩, split,
{ apply h0, simp, },
{ split,
{ apply h 0, },
{ intros i w, convert h (i+1) _ using 1,
exact lt_pred_iff.mp w, } } },
end
theorem chain'.imp {S : α → α → Prop}
(H : ∀ a b, R a b → S a b) {l : list α} (p : chain' R l) : chain' S l :=
by cases l; [trivial, exact p.imp H]
theorem chain'.iff {S : α → α → Prop}
(H : ∀ a b, R a b ↔ S a b) {l : list α} : chain' R l ↔ chain' S l :=
⟨chain'.imp (λ a b, (H a b).1), chain'.imp (λ a b, (H a b).2)⟩
theorem chain'.iff_mem : ∀ {l : list α}, chain' R l ↔ chain' (λ x y, x ∈ l ∧ y ∈ l ∧ R x y) l
| [] := iff.rfl
| (x::l) :=
⟨λ h, (chain.iff_mem.1 h).imp $ λ a b ⟨h₁, h₂, h₃⟩, ⟨h₁, or.inr h₂, h₃⟩,
chain'.imp $ λ a b h, h.2.2⟩
@[simp] theorem chain'_nil : chain' R [] := trivial
@[simp] theorem chain'_singleton (a : α) : chain' R [a] := chain.nil
theorem chain'_split {a : α} : ∀ {l₁ l₂ : list α}, chain' R (l₁++a::l₂) ↔
chain' R (l₁++[a]) ∧ chain' R (a::l₂)
| [] l₂ := (and_iff_right (chain'_singleton a)).symm
| (b::l₁) l₂ := chain_split
theorem chain'_map (f : β → α) {l : list β} :
chain' R (map f l) ↔ chain' (λ a b : β, R (f a) (f b)) l :=
by cases l; [refl, exact chain_map _]
theorem chain'_of_chain'_map {S : β → β → Prop} (f : α → β)
(H : ∀ a b : α, S (f a) (f b) → R a b) {l : list α}
(p : chain' S (map f l)) : chain' R l :=
((chain'_map f).1 p).imp H
theorem chain'_map_of_chain' {S : β → β → Prop} (f : α → β)
(H : ∀ a b : α, R a b → S (f a) (f b)) {l : list α}
(p : chain' R l) : chain' S (map f l) :=
(chain'_map f).2 $ p.imp H
theorem pairwise.chain' : ∀ {l : list α}, pairwise R l → chain' R l
| [] _ := trivial
| (a::l) h := chain_of_pairwise h
theorem chain'_iff_pairwise (tr : transitive R) : ∀ {l : list α},
chain' R l ↔ pairwise R l
| [] := (iff_true_intro pairwise.nil).symm
| (a::l) := chain_iff_pairwise tr
@[simp] theorem chain'_cons {x y l} : chain' R (x :: y :: l) ↔ R x y ∧ chain' R (y :: l) :=
chain_cons
theorem chain'.cons {x y l} (h₁ : R x y) (h₂ : chain' R (y :: l)) :
chain' R (x :: y :: l) :=
chain'_cons.2 ⟨h₁, h₂⟩
theorem chain'.tail : ∀ {l} (h : chain' R l), chain' R l.tail
| [] _ := trivial
| [x] _ := trivial
| (x :: y :: l) h := (chain'_cons.mp h).right
theorem chain'.rel_head {x y l} (h : chain' R (x :: y :: l)) : R x y :=
rel_of_chain_cons h
theorem chain'.rel_head' {x l} (h : chain' R (x :: l)) ⦃y⦄ (hy : y ∈ head' l) : R x y :=
by { rw ← cons_head'_tail hy at h, exact h.rel_head }
theorem chain'.cons' {x} :
∀ {l : list α}, chain' R l → (∀ y ∈ l.head', R x y) → chain' R (x :: l)
| [] _ _ := chain'_singleton x
| (a :: l) hl H := hl.cons $ H _ rfl
theorem chain'_cons' {x l} : chain' R (x :: l) ↔ (∀ y ∈ head' l, R x y) ∧ chain' R l :=
⟨λ h, ⟨h.rel_head', h.tail⟩, λ ⟨h₁, h₂⟩, h₂.cons' h₁⟩
theorem chain'.append : ∀ {l₁ l₂ : list α} (h₁ : chain' R l₁) (h₂ : chain' R l₂)
(h : ∀ (x ∈ l₁.last') (y ∈ l₂.head'), R x y),
chain' R (l₁ ++ l₂)
| [] l₂ h₁ h₂ h := h₂
| [a] l₂ h₁ h₂ h := h₂.cons' $ h _ rfl
| (a::b::l) l₂ h₁ h₂ h :=
begin
simp only [last'] at h,
have : chain' R (b::l) := h₁.tail,
exact (this.append h₂ h).cons h₁.rel_head
end
theorem chain'_pair {x y} : chain' R [x, y] ↔ R x y :=
by simp only [chain'_singleton, chain'_cons, and_true]
theorem chain'.imp_head {x y} (h : ∀ {z}, R x z → R y z) {l} (hl : chain' R (x :: l)) :
chain' R (y :: l) :=
hl.tail.cons' $ λ z hz, h $ hl.rel_head' hz
theorem chain'_reverse : ∀ {l}, chain' R (reverse l) ↔ chain' (flip R) l
| [] := iff.rfl
| [a] := by simp only [chain'_singleton, reverse_singleton]
| (a :: b :: l) := by rw [chain'_cons, reverse_cons, reverse_cons, append_assoc, cons_append,
nil_append, chain'_split, ← reverse_cons, @chain'_reverse (b :: l), and_comm, chain'_pair, flip]
theorem chain'_iff_nth_le {R} : ∀ {l : list α},
chain' R l ↔ ∀ i (h : i < length l - 1),
R (nth_le l i (lt_of_lt_pred h)) (nth_le l (i+1) (lt_pred_iff.mp h))
| [] := by simp
| (a :: nil) := by simp
| (a :: b :: t) :=
begin
rw [chain'_cons, chain'_iff_nth_le],
split,
{ rintros ⟨R, h⟩ i w,
cases i,
{ exact R, },
{ convert h i _ using 1,
simp only [succ_eq_add_one, add_succ_sub_one, add_zero, length, add_lt_add_iff_right] at w,
simpa using w, },
},
{ rintros h, split,
{ apply h 0, simp, },
{ intros i w, convert h (i+1) _ using 1,
simp only [add_zero, length, add_succ_sub_one] at w,
simpa using w, }
},
end
/-- If `l₁ l₂` and `l₃` are lists and `l₁ ++ l₂` and `l₂ ++ l₃` both satisfy
`chain' R`, then so does `l₁ ++ l₂ ++ l₃` provided `l₂ ≠ []` -/
lemma chain'.append_overlap : ∀ {l₁ l₂ l₃ : list α}
(h₁ : chain' R (l₁ ++ l₂)) (h₂ : chain' R (l₂ ++ l₃)) (hn : l₂ ≠ []),
chain' R (l₁ ++ l₂ ++ l₃)
| [] l₂ l₃ h₁ h₂ hn := h₂
| l₁ [] l₃ h₁ h₂ hn := (hn rfl).elim
| [a] (b::l₂) l₃ h₁ h₂ hn := by { simp at *, tauto }
| (a::b::l₁) (c::l₂) l₃ h₁ h₂ hn := begin
simp only [cons_append, chain'_cons] at h₁ h₂ ⊢,
simp only [← cons_append] at h₁ h₂ ⊢,
exact ⟨h₁.1, chain'.append_overlap h₁.2 h₂ (cons_ne_nil _ _)⟩
end
variables {r : α → α → Prop} {a b : α}
/--
If `a` and `b` are related by the reflexive transitive closure of `r`, then there is a `r`-chain
starting from `a` and ending on `b`.
The converse of `relation_refl_trans_gen_of_exists_chain`.
-/
lemma exists_chain_of_relation_refl_trans_gen (h : relation.refl_trans_gen r a b) :
∃ l, chain r a l ∧ last (a :: l) (cons_ne_nil _ _) = b :=
begin
apply relation.refl_trans_gen.head_induction_on h,
{ exact ⟨[], chain.nil, rfl⟩ },
{ intros c d e t ih,
obtain ⟨l, hl₁, hl₂⟩ := ih,
refine ⟨d :: l, chain.cons e hl₁, _⟩,
rwa last_cons_cons }
end
/--
Given a chain from `a` to `b`, and a predicate true at `b`, if `r x y → p y → p x` then
the predicate is true everywhere in the chain and at `a`.
That is, we can propagate the predicate up the chain.
-/
lemma chain.induction (p : α → Prop)
(l : list α) (h : chain r a l)
(hb : last (a :: l) (cons_ne_nil _ _) = b)
(carries : ∀ ⦃x y : α⦄, r x y → p y → p x) (final : p b) : ∀ i ∈ a :: l, p i :=
begin
induction l generalizing a,
{ cases hb,
simp [final] },
{ rw chain_cons at h,
rintro _ (rfl | _),
apply carries h.1 (l_ih h.2 hb _ (or.inl rfl)),
apply l_ih h.2 hb _ H }
end
/--
Given a chain from `a` to `b`, and a predicate true at `b`, if `r x y → p y → p x` then
the predicate is true at `a`.
That is, we can propagate the predicate all the way up the chain.
-/
@[elab_as_eliminator]
lemma chain.induction_head (p : α → Prop)
(l : list α) (h : chain r a l)
(hb : last (a :: l) (cons_ne_nil _ _) = b)
(carries : ∀ ⦃x y : α⦄, r x y → p y → p x) (final : p b) : p a :=
(chain.induction p l h hb carries final) _ (mem_cons_self _ _)
/--
If there is an `r`-chain starting from `a` and ending at `b`, then `a` and `b` are related by the
reflexive transitive closure of `r`. The converse of `exists_chain_of_relation_refl_trans_gen`.
-/
lemma relation_refl_trans_gen_of_exists_chain (l) (hl₁ : chain r a l)
(hl₂ : last (a :: l) (cons_ne_nil _ _) = b) :
relation.refl_trans_gen r a b :=
chain.induction_head _ l hl₁ hl₂ (λ x y, relation.refl_trans_gen.head) relation.refl_trans_gen.refl
end list
|
d7c5c20cba01991a7cf04666d2ed47a8cdd0bbd2
|
4d2583807a5ac6caaffd3d7a5f646d61ca85d532
|
/src/testing/slim_check/functions.lean
|
09873e603ead2454a1b71c5842d459e3b95aeebd
|
[
"Apache-2.0"
] |
permissive
|
AntoineChambert-Loir/mathlib
|
64aabb896129885f12296a799818061bc90da1ff
|
07be904260ab6e36a5769680b6012f03a4727134
|
refs/heads/master
| 1,693,187,631,771
| 1,636,719,886,000
| 1,636,719,886,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 16,940
|
lean
|
/-
Copyright (c) 2020 Simon Hudon. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon
-/
import data.list.sigma
import testing.slim_check.sampleable
import testing.slim_check.testable
import tactic.pretty_cases
/-!
## `slim_check`: generators for functions
This file defines `sampleable` instances for `α → β` functions and
`ℤ → ℤ` injective functions.
Functions are generated by creating a list of pairs and one more value
using the list as a lookup table and resorting to the additional value
when a value is not found in the table.
Injective functions are generated by creating a list of numbers and
a permutation of that list. The permutation insures that every input
is mapped to a unique output. When an input is not found in the list
the input itself is used as an output.
Injective functions `f : α → α` could be generated easily instead of
`ℤ → ℤ` by generating a `list α`, removing duplicates and creating a
permutations. One has to be careful when generating the domain to make
if vast enough that, when generating arguments to apply `f` to,
they argument should be likely to lie in the domain of `f`. This is
the reason that injective functions `f : ℤ → ℤ` are generated by
fixing the domain to the range `[-2*size .. -2*size]`, with `size`
the size parameter of the `gen` monad.
Much of the machinery provided in this file is applicable to generate
injective functions of type `α → α` and new instances should be easy
to define.
Other classes of functions such as monotone functions can generated using
similar techniques. For monotone functions, generating two lists, sorting them
and matching them should suffice, with appropriate default values.
Some care must be taken for shrinking such functions to make sure
their defining property is invariant through shrinking. Injective
functions are an example of how complicated it can get.
-/
universes u v w
variables {α : Type u} {β : Type v} {γ : Sort w}
namespace slim_check
/-- Data structure specifying a total function using a list of pairs
and a default value returned when the input is not in the domain of
the partial function.
`with_default f y` encodes `x ↦ f x` when `x ∈ f` and `x ↦ y`
otherwise.
We use `Σ` to encode mappings instead of `×` because we
rely on the association list API defined in `data.list.sigma`.
-/
inductive total_function (α : Type u) (β : Type v) : Type (max u v)
| with_default : list (Σ _ : α, β) → β → total_function
instance total_function.inhabited [inhabited β] : inhabited (total_function α β) :=
⟨ total_function.with_default ∅ (default _) ⟩
namespace total_function
/-- Apply a total function to an argument. -/
def apply [decidable_eq α] : total_function α β → α → β
| (total_function.with_default m y) x := (m.lookup x).get_or_else y
/--
Implementation of `has_repr (total_function α β)`.
Creates a string for a given `finmap` and output, `x₀ ↦ y₀, .. xₙ ↦ yₙ`
for each of the entries. The brackets are provided by the calling function.
-/
def repr_aux [has_repr α] [has_repr β] (m : list (Σ _ : α, β)) : string :=
string.join $ list.qsort (λ x y, x < y)
(m.map $ λ x, sformat!"{repr $ sigma.fst x} ↦ {repr $ sigma.snd x}, ")
/--
Produce a string for a given `total_function`.
The output is of the form `[x₀ ↦ f x₀, .. xₙ ↦ f xₙ, _ ↦ y]`.
-/
protected def repr [has_repr α] [has_repr β] : total_function α β → string
| (total_function.with_default m y) := sformat!"[{repr_aux m}_ ↦ {has_repr.repr y}]"
instance (α : Type u) (β : Type v) [has_repr α] [has_repr β] : has_repr (total_function α β) :=
⟨ total_function.repr ⟩
/-- Create a `finmap` from a list of pairs. -/
def list.to_finmap' (xs : list (α × β)) : list (Σ _ : α, β) :=
xs.map prod.to_sigma
section
variables [sampleable α] [sampleable β]
/-- Redefine `sizeof` to follow the structure of `sampleable` instances. -/
def total.sizeof : total_function α β → ℕ
| ⟨m, x⟩ := 1 + @sizeof _ sampleable.wf m + sizeof x
@[priority 2000]
instance : has_sizeof (total_function α β) :=
⟨ total.sizeof ⟩
variables [decidable_eq α]
/-- Shrink a total function by shrinking the lists that represent it. -/
protected def shrink : shrink_fn (total_function α β)
| ⟨m, x⟩ := (sampleable.shrink (m, x)).map $ λ ⟨⟨m', x'⟩, h⟩, ⟨⟨list.erase_dupkeys m', x'⟩,
lt_of_le_of_lt
(by unfold_wf; refine @list.sizeof_erase_dupkeys _ _ _ (@sampleable.wf _ _) _) h ⟩
variables [has_repr α] [has_repr β]
instance pi.sampleable_ext : sampleable_ext (α → β) :=
{ proxy_repr := total_function α β,
interp := total_function.apply,
sample := do {
xs ← (sampleable.sample (list (α × β)) : gen ((list (α × β)))),
⟨x⟩ ← (uliftable.up $ sample β : gen (ulift.{max u v} β)),
pure $ total_function.with_default (list.to_finmap' xs) x },
shrink := total_function.shrink }
end
section sampleable_ext
open sampleable_ext
@[priority 2000]
instance pi_pred.sampleable_ext [sampleable_ext (α → bool)] :
sampleable_ext.{u+1} (α → Prop) :=
{ proxy_repr := proxy_repr (α → bool),
interp := λ m x, interp (α → bool) m x,
sample := sample (α → bool),
shrink := shrink }
@[priority 2000]
instance pi_uncurry.sampleable_ext
[sampleable_ext (α × β → γ)] : sampleable_ext.{(imax (u+1) (v+1) w)} (α → β → γ) :=
{ proxy_repr := proxy_repr (α × β → γ),
interp := λ m x y, interp (α × β → γ) m (x, y),
sample := sample (α × β → γ),
shrink := shrink }
end sampleable_ext
end total_function
/--
Data structure specifying a total function using a list of pairs
and a default value returned when the input is not in the domain of
the partial function.
`map_to_self f` encodes `x ↦ f x` when `x ∈ f` and `x ↦ x`,
i.e. `x` to itself, otherwise.
We use `Σ` to encode mappings instead of `×` because we
rely on the association list API defined in `data.list.sigma`.
-/
inductive injective_function (α : Type u) : Type u
| map_to_self (xs : list (Σ _ : α, α)) :
xs.map sigma.fst ~ xs.map sigma.snd → list.nodup (xs.map sigma.snd) → injective_function
instance : inhabited (injective_function α) :=
⟨ ⟨ [], list.perm.nil, list.nodup_nil ⟩ ⟩
namespace injective_function
/-- Apply a total function to an argument. -/
def apply [decidable_eq α] : injective_function α → α → α
| (injective_function.map_to_self m _ _) x := (m.lookup x).get_or_else x
/--
Produce a string for a given `total_function`.
The output is of the form `[x₀ ↦ f x₀, .. xₙ ↦ f xₙ, x ↦ x]`.
Unlike for `total_function`, the default value is not a constant
but the identity function.
-/
protected def repr [has_repr α] : injective_function α → string
| (injective_function.map_to_self m _ _) := sformat!"[{total_function.repr_aux m}x ↦ x]"
instance (α : Type u) [has_repr α] : has_repr (injective_function α) :=
⟨ injective_function.repr ⟩
/-- Interpret a list of pairs as a total function, defaulting to
the identity function when no entries are found for a given function -/
def list.apply_id [decidable_eq α] (xs : list (α × α)) (x : α) : α :=
((xs.map prod.to_sigma).lookup x).get_or_else x
@[simp]
lemma list.apply_id_cons [decidable_eq α] (xs : list (α × α)) (x y z : α) :
list.apply_id ((y, z) :: xs) x = if y = x then z else list.apply_id xs x :=
by simp only [list.apply_id, list.lookup, eq_rec_constant, prod.to_sigma, list.map]; split_ifs; refl
open function _root_.list _root_.prod (to_sigma)
open _root_.nat
lemma list.apply_id_zip_eq [decidable_eq α] {xs ys : list α} (h₀ : list.nodup xs)
(h₁ : xs.length = ys.length) (x y : α) (i : ℕ)
(h₂ : xs.nth i = some x) :
list.apply_id.{u} (xs.zip ys) x = y ↔ ys.nth i = some y :=
begin
induction xs generalizing ys i,
case list.nil : ys i h₁ h₂
{ cases h₂ },
case list.cons : x' xs xs_ih ys i h₁ h₂
{ cases i,
{ injection h₂ with h₀ h₁, subst h₀,
cases ys,
{ cases h₁ },
{ simp only [list.apply_id, to_sigma, option.get_or_else_some, nth, lookup_cons_eq,
zip_cons_cons, list.map], } },
{ cases ys,
{ cases h₁ },
{ cases h₀ with _ _ h₀ h₁,
simp only [nth, zip_cons_cons, list.apply_id_cons] at h₂ ⊢,
rw if_neg,
{ apply xs_ih; solve_by_elim [succ.inj] },
{ apply h₀, apply nth_mem h₂ } } } }
end
lemma apply_id_mem_iff [decidable_eq α] {xs ys : list α} (h₀ : list.nodup xs)
(h₁ : xs ~ ys)
(x : α) :
list.apply_id.{u} (xs.zip ys) x ∈ ys ↔ x ∈ xs :=
begin
simp only [list.apply_id],
cases h₃ : (lookup x (map prod.to_sigma (xs.zip ys))),
{ dsimp [option.get_or_else],
rw h₁.mem_iff },
{ have h₂ : ys.nodup := h₁.nodup_iff.1 h₀,
replace h₁ : xs.length = ys.length := h₁.length_eq,
dsimp,
induction xs generalizing ys,
case list.nil : ys h₃ h₂ h₁
{ contradiction },
case list.cons : x' xs xs_ih ys h₃ h₂ h₁
{ cases ys with y ys,
{ cases h₃ },
dsimp [lookup] at h₃, split_ifs at h₃,
{ subst x', subst val,
simp only [mem_cons_iff, true_or, eq_self_iff_true], },
{ cases h₀ with _ _ h₀ h₅,
cases h₂ with _ _ h₂ h₄,
have h₆ := nat.succ.inj h₁,
specialize @xs_ih h₅ ys h₃ h₄ h₆,
simp only [ne.symm h, xs_ih, mem_cons_iff, false_or],
suffices : val ∈ ys, tauto!,
erw [← option.mem_def, mem_lookup_iff] at h₃,
simp only [to_sigma, mem_map, heq_iff_eq, prod.exists] at h₃,
rcases h₃ with ⟨a, b, h₃, h₄, h₅⟩,
subst a, subst b,
apply (mem_zip h₃).2,
simp only [nodupkeys, keys, comp, prod.fst_to_sigma, map_map],
rwa map_fst_zip _ _ (le_of_eq h₆) } } }
end
lemma list.apply_id_eq_self [decidable_eq α] {xs ys : list α} (x : α) :
x ∉ xs → list.apply_id.{u} (xs.zip ys) x = x :=
begin
intro h,
dsimp [list.apply_id],
rw lookup_eq_none.2, refl,
simp only [keys, not_exists, to_sigma, exists_and_distrib_right, exists_eq_right, mem_map,
comp_app, map_map, prod.exists],
intros y hy,
exact h (mem_zip hy).1,
end
lemma apply_id_injective [decidable_eq α] {xs ys : list α} (h₀ : list.nodup xs)
(h₁ : xs ~ ys) : injective.{u+1 u+1} (list.apply_id (xs.zip ys)) :=
begin
intros x y h,
by_cases hx : x ∈ xs;
by_cases hy : y ∈ xs,
{ rw mem_iff_nth at hx hy,
cases hx with i hx,
cases hy with j hy,
suffices : some x = some y,
{ injection this },
have h₂ := h₁.length_eq,
rw [list.apply_id_zip_eq h₀ h₂ _ _ _ hx] at h,
rw [← hx, ← hy], congr,
apply nth_injective _ (h₁.nodup_iff.1 h₀),
{ symmetry, rw h,
rw ← list.apply_id_zip_eq; assumption },
{ rw ← h₁.length_eq,
rw nth_eq_some at hx,
cases hx with hx hx',
exact hx } },
{ rw ← apply_id_mem_iff h₀ h₁ at hx hy,
rw h at hx,
contradiction, },
{ rw ← apply_id_mem_iff h₀ h₁ at hx hy,
rw h at hx,
contradiction, },
{ rwa [list.apply_id_eq_self, list.apply_id_eq_self] at h; assumption },
end
open total_function (list.to_finmap')
open sampleable
/--
Remove a slice of length `m` at index `n` in a list and a permutation, maintaining the property
that it is a permutation.
-/
def perm.slice [decidable_eq α] (n m : ℕ) :
(Σ' xs ys : list α, xs ~ ys ∧ ys.nodup) → (Σ' xs ys : list α, xs ~ ys ∧ ys.nodup)
| ⟨xs, ys, h, h'⟩ :=
let xs' := list.slice n m xs in
have h₀ : xs' ~ ys.inter xs',
from perm.slice_inter _ _ h h',
⟨xs', ys.inter xs', h₀, nodup_inter_of_nodup _ h'⟩
/--
A lazy list, in decreasing order, of sizes that should be
sliced off a list of length `n`
-/
def slice_sizes : ℕ → lazy_list ℕ+
| n :=
if h : 0 < n then
have n / 2 < n, from div_lt_self h dec_trivial,
lazy_list.cons ⟨_, h⟩ (slice_sizes $ n / 2)
else lazy_list.nil
/--
Shrink a permutation of a list, slicing a segment in the middle.
The sizes of the slice being removed start at `n` (with `n` the length
of the list) and then `n / 2`, then `n / 4`, etc down to 1. The slices
will be taken at index `0`, `n / k`, `2n / k`, `3n / k`, etc.
-/
protected def shrink_perm {α : Type} [decidable_eq α] [has_sizeof α] :
shrink_fn (Σ' xs ys : list α, xs ~ ys ∧ ys.nodup)
| xs := do
let k := xs.1.length,
n ← slice_sizes k,
i ← lazy_list.of_list $ list.fin_range $ k / n,
have ↑i * ↑n < xs.1.length,
from nat.lt_of_div_lt_div
(lt_of_le_of_lt (by simp only [nat.mul_div_cancel, gt_iff_lt, fin.val_eq_coe, pnat.pos]) i.2),
pure ⟨perm.slice (i*n) n xs,
by rcases xs with ⟨a,b,c,d⟩; dsimp [sizeof_lt]; unfold_wf; simp only [perm.slice];
unfold_wf; apply list.sizeof_slice_lt _ _ n.2 _ this⟩
instance [has_sizeof α] : has_sizeof (injective_function α) :=
⟨ λ ⟨xs,_,_⟩, sizeof (xs.map sigma.fst) ⟩
/--
Shrink an injective function slicing a segment in the middle of the domain and removing
the corresponding elements in the codomain, hence maintaining the property that
one is a permutation of the other.
-/
protected def shrink {α : Type} [has_sizeof α] [decidable_eq α] : shrink_fn (injective_function α)
| ⟨xs, h₀, h₁⟩ := do
⟨⟨xs', ys', h₀, h₁⟩, h₂⟩ ← injective_function.shrink_perm ⟨_, _, h₀, h₁⟩,
have h₃ : xs'.length ≤ ys'.length, from le_of_eq (perm.length_eq h₀),
have h₄ : ys'.length ≤ xs'.length, from le_of_eq (perm.length_eq h₀.symm),
pure ⟨⟨(list.zip xs' ys').map prod.to_sigma,
by simp only [comp, map_fst_zip, map_snd_zip, *, prod.fst_to_sigma, prod.snd_to_sigma, map_map],
by simp only [comp, map_snd_zip, *, prod.snd_to_sigma, map_map] ⟩,
by revert h₂; dsimp [sizeof_lt]; unfold_wf;
simp only [has_sizeof._match_1, map_map, comp, map_fst_zip, *, prod.fst_to_sigma];
unfold_wf; intro h₂; convert h₂ ⟩
/-- Create an injective function from one list and a permutation of that list. -/
protected def mk (xs ys : list α) (h : xs ~ ys) (h' : ys.nodup) : injective_function α :=
have h₀ : xs.length ≤ ys.length, from le_of_eq h.length_eq,
have h₁ : ys.length ≤ xs.length, from le_of_eq h.length_eq.symm,
injective_function.map_to_self (list.to_finmap' (xs.zip ys))
(by { simp only [list.to_finmap', comp, map_fst_zip, map_snd_zip, *,
prod.fst_to_sigma, prod.snd_to_sigma, map_map] })
(by { simp only [list.to_finmap', comp, map_snd_zip, *, prod.snd_to_sigma, map_map] })
protected lemma injective [decidable_eq α] (f : injective_function α) :
injective (apply f) :=
begin
cases f with xs hperm hnodup,
generalize h₀ : map sigma.fst xs = xs₀,
generalize h₁ : xs.map (@id ((Σ _ : α, α) → α) $ @sigma.snd α (λ _ : α, α)) = xs₁,
dsimp [id] at h₁,
have hxs : xs = total_function.list.to_finmap' (xs₀.zip xs₁),
{ rw [← h₀, ← h₁, list.to_finmap'], clear h₀ h₁ xs₀ xs₁ hperm hnodup,
induction xs,
case list.nil
{ simp only [zip_nil_right, map_nil] },
case list.cons : xs_hd xs_tl xs_ih
{ simp only [true_and, to_sigma, eq_self_iff_true, sigma.eta, zip_cons_cons, list.map],
exact xs_ih }, },
revert hperm hnodup,
rw hxs, intros,
apply apply_id_injective,
{ rwa [← h₀, hxs, hperm.nodup_iff], },
{ rwa [← hxs, h₀, h₁] at hperm, },
end
instance pi_injective.sampleable_ext : sampleable_ext { f : ℤ → ℤ // function.injective f } :=
{ proxy_repr := injective_function ℤ,
interp := λ f, ⟨ apply f, f.injective ⟩,
sample := gen.sized $ λ sz, do {
let xs' := int.range (-(2*sz+2)) (2*sz + 2),
ys ← gen.permutation_of xs',
have Hinj : injective (λ (r : ℕ), -(2*sz + 2 : ℤ) + ↑r),
from λ x y h, int.coe_nat_inj (add_right_injective _ h),
let r : injective_function ℤ :=
injective_function.mk.{0} xs' ys.1 ys.2 (ys.2.nodup_iff.1 $ nodup_map Hinj (nodup_range _)) in
pure r },
shrink := @injective_function.shrink ℤ _ _ }
end injective_function
open function
instance injective.testable (f : α → β)
[I : testable (named_binder "x" $
∀ x : α, named_binder "y" $ ∀ y : α, named_binder "H" $ f x = f y → x = y)] :
testable (injective f) := I
instance monotone.testable [preorder α] [preorder β] (f : α → β)
[I : testable (named_binder "x" $
∀ x : α, named_binder "y" $ ∀ y : α, named_binder "H" $ x ≤ y → f x ≤ f y)] :
testable (monotone f) := I
instance antitone.testable [preorder α] [preorder β] (f : α → β)
[I : testable (named_binder "x" $
∀ x : α, named_binder "y" $ ∀ y : α, named_binder "H" $ x ≤ y → f y ≤ f x)] :
testable (antitone f) := I
end slim_check
|
6f35af4f945a35bc83006064e3aab109aa9d2df9
|
ad0c7d243dc1bd563419e2767ed42fb323d7beea
|
/algebra/euclidean_domain.lean
|
0274873a3676d1c552ea20d8871348b7639d3d08
|
[
"Apache-2.0"
] |
permissive
|
sebzim4500/mathlib
|
e0b5a63b1655f910dee30badf09bd7e191d3cf30
|
6997cafbd3a7325af5cb318561768c316ceb7757
|
refs/heads/master
| 1,585,549,958,618
| 1,538,221,723,000
| 1,538,221,723,000
| 150,869,076
| 0
| 0
|
Apache-2.0
| 1,538,229,323,000
| 1,538,229,323,000
| null |
UTF-8
|
Lean
| false
| false
| 8,297
|
lean
|
/-
Copyright (c) 2018 Louis Carlin. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Louis Carlin, Mario Carneiro
Euclidean domains and Euclidean algorithm (extended to come)
A lot is based on pre-existing code in mathlib for natural number gcds
-/
import data.int.basic
universe u
class euclidean_domain (α : Type u) extends integral_domain α :=
(quotient : α → α → α)
(remainder : α → α → α)
-- This could be changed to the same order as int.mod_add_div.
-- We normally write qb+r rather than r + qb though.
(quotient_mul_add_remainder_eq : ∀ a b, b * quotient a b + remainder a b = a)
(r : α → α → Prop)
(r_well_founded : well_founded r)
(remainder_lt : ∀ a {b}, b ≠ 0 → r (remainder a b) b)
/- `val_le_mul_left` is often not a required in definitions of a euclidean
domain since given the other properties we can show there is a
(noncomputable) euclidean domain α with the property `val_le_mul_left`.
So potentially this definition could be split into two different ones
(euclidean_domain_weak and euclidean_domain_strong) with a noncomputable
function from weak to strong. I've currently divided the lemmas into
strong and weak depending on whether they require `val_le_mul_left` or not. -/
(mul_left_not_lt : ∀ a {b}, b ≠ 0 → ¬r (a * b) a)
namespace euclidean_domain
variable {α : Type u}
variables [euclidean_domain α]
local infix ` ≺ `:50 := euclidean_domain.r
instance : has_div α := ⟨quotient⟩
instance : has_mod α := ⟨remainder⟩
theorem div_add_mod (a b : α) : b * (a / b) + a % b = a :=
quotient_mul_add_remainder_eq _ _
lemma mod_eq_sub_mul_div {α : Type*} [euclidean_domain α] (a b : α) :
a % b = a - b * (a / b) :=
calc a % b = b * (a / b) + a % b - b * (a / b) : by simp
... = a - b * (a / b) : by rw div_add_mod
theorem mod_lt : ∀ a {b : α}, b ≠ 0 → (a % b) ≺ b :=
remainder_lt
theorem mul_right_not_lt {a : α} (b) (h : a ≠ 0) : ¬(a * b) ≺ b :=
by rw mul_comm; exact mul_left_not_lt b h
lemma mul_div_cancel_left {a : α} (b) (a0 : a ≠ 0) : a * b / a = b :=
eq.symm $ eq_of_sub_eq_zero $ classical.by_contradiction $ λ h,
begin
have := mul_left_not_lt a h,
rw [mul_sub, sub_eq_iff_eq_add'.2 (div_add_mod (a*b) a).symm] at this,
exact this (mod_lt _ a0)
end
lemma mul_div_cancel (a) {b : α} (b0 : b ≠ 0) : a * b / b = a :=
by rw mul_comm; exact mul_div_cancel_left a b0
@[simp] lemma mod_zero (a : α) : a % 0 = a :=
by simpa using div_add_mod a 0
@[simp] lemma mod_eq_zero {a b : α} : a % b = 0 ↔ b ∣ a :=
⟨λ h, by rw [← div_add_mod a b]; simp [h],
λ ⟨c, e⟩, begin
rw [e, ← add_left_cancel_iff, div_add_mod, add_zero],
haveI := classical.dec,
by_cases b0 : b = 0; simp [b0, mul_div_cancel_left],
end⟩
@[simp] lemma mod_self (a : α) : a % a = 0 :=
mod_eq_zero.2 (dvd_refl _)
lemma dvd_mod_iff {a b c : α} (h : c ∣ b) : c ∣ a % b ↔ c ∣ a :=
by rw [dvd_add_iff_right (dvd_mul_of_dvd_left h _), div_add_mod]
lemma lt_one (a : α) : a ≺ (1:α) → a = 0 :=
by haveI := classical.dec; exact
not_imp_not.1 (λ h, by simpa using mul_left_not_lt 1 h)
lemma val_dvd_le : ∀ a b : α, b ∣ a → a ≠ 0 → ¬a ≺ b
| _ b ⟨d, rfl⟩ ha := mul_left_not_lt b (λ h, by simpa [h] using ha)
@[simp] lemma mod_one (a : α) : a % 1 = 0 :=
mod_eq_zero.2 (one_dvd _)
@[simp] lemma zero_mod (b : α) : 0 % b = 0 :=
mod_eq_zero.2 (dvd_zero _)
@[simp] lemma zero_div {a : α} (a0 : a ≠ 0) : 0 / a = 0 :=
by simpa using mul_div_cancel 0 a0
@[simp] lemma div_self {a : α} (a0 : a ≠ 0) : a / a = 1 :=
by simpa using mul_div_cancel 1 a0
section gcd
variable [decidable_eq α]
def gcd : α → α → α
| a := λ b, if a0 : a = 0 then b else
have h:_ := mod_lt b a0,
gcd (b%a) a
using_well_founded {dec_tac := tactic.assumption,
rel_tac := λ _ _, `[exact ⟨_, r_well_founded α⟩]}
@[simp] theorem gcd_zero_left (a : α) : gcd 0 a = a :=
by rw gcd; simp
@[simp] theorem gcd_zero_right (a : α) : gcd a 0 = a :=
by rw gcd; by_cases a0 : a = 0; simp [a0]
theorem gcd_val (a b : α) : gcd a b = gcd (b % a) a :=
by rw gcd; by_cases a0 : a = 0; simp [a0]
@[elab_as_eliminator]
theorem gcd.induction {P : α → α → Prop} : ∀ a b : α,
(∀ x, P 0 x) →
(∀ a b, a ≠ 0 → P (b % a) a → P a b) →
P a b
| a := λ b H0 H1, if a0 : a = 0 then by simp [a0, H0] else
have h:_ := mod_lt b a0,
H1 _ _ a0 (gcd.induction (b%a) a H0 H1)
using_well_founded {dec_tac := tactic.assumption,
rel_tac := λ _ _, `[exact ⟨_, r_well_founded α⟩]}
theorem gcd_dvd (a b : α) : gcd a b ∣ a ∧ gcd a b ∣ b :=
gcd.induction a b
(λ b, by simp)
(λ a b aneq ⟨IH₁, IH₂⟩,
by rw gcd_val; exact
⟨IH₂, (dvd_mod_iff IH₂).1 IH₁⟩)
theorem gcd_dvd_left (a b : α) : gcd a b ∣ a := (gcd_dvd a b).left
theorem gcd_dvd_right (a b : α) : gcd a b ∣ b := (gcd_dvd a b).right
theorem dvd_gcd {a b c : α} : c ∣ a → c ∣ b → c ∣ gcd a b :=
gcd.induction a b
(by simp {contextual := tt})
(λ a b a0 IH ca cb,
by rw gcd_val; exact
IH ((dvd_mod_iff ca).2 cb) ca)
theorem gcd_eq_left {a b : α} : gcd a b = a ↔ a ∣ b :=
⟨λ h, by rw ← h; apply gcd_dvd_right,
λ h, by rw [gcd_val, mod_eq_zero.2 h, gcd_zero_left]⟩
@[simp] theorem gcd_one_left (a : α) : gcd 1 a = 1 :=
gcd_eq_left.2 (one_dvd _)
@[simp] theorem gcd_self (a : α) : gcd a a = a :=
gcd_eq_left.2 (dvd_refl _)
def xgcd_aux : α → α → α → α → α → α → α × α × α
| r := λ s t r' s' t',
if hr : r = 0 then (r', s', t')
else
have r' % r ≺ r, from mod_lt _ hr,
let q := r' / r in xgcd_aux (r' % r) (s' - q * s) (t' - q * t) r s t
using_well_founded {dec_tac := tactic.assumption,
rel_tac := λ _ _, `[exact ⟨_, r_well_founded α⟩]}
@[simp] theorem xgcd_zero_left {s t r' s' t' : α} : xgcd_aux 0 s t r' s' t' = (r', s', t') :=
by unfold xgcd_aux; rw if_pos rfl
@[simp] theorem xgcd_aux_rec {r s t r' s' t' : α} (h : r ≠ 0) :
xgcd_aux r s t r' s' t' = xgcd_aux (r' % r) (s' - (r' / r) * s) (t' - (r' / r) * t) r s t :=
by conv {to_lhs, rw [xgcd_aux]}; simp [h]
/-- Use the extended GCD algorithm to generate the `a` and `b` values
satisfying `gcd x y = x * a + y * b`. -/
def xgcd (x y : α) : α × α := (xgcd_aux x 1 0 y 0 1).2
/-- The extended GCD `a` value in the equation `gcd x y = x * a + y * b`. -/
def gcd_a (x y : α) : α := (xgcd x y).1
/-- The extended GCD `b` value in the equation `gcd x y = x * a + y * b`. -/
def gcd_b (x y : α) : α := (xgcd x y).2
@[simp] theorem xgcd_aux_fst (x y : α) : ∀ s t s' t',
(xgcd_aux x s t y s' t').1 = gcd x y :=
gcd.induction x y (by finish) (λ x y h IH s t s' t', by simp [h, IH]; rw ← gcd_val)
theorem xgcd_aux_val (x y : α) : xgcd_aux x 1 0 y 0 1 = (gcd x y, xgcd x y) :=
by rw [xgcd, ← xgcd_aux_fst x y 1 0 0 1]; cases xgcd_aux x 1 0 y 0 1; refl
theorem xgcd_val (x y : α) : xgcd x y = (gcd_a x y, gcd_b x y) :=
by unfold gcd_a gcd_b; cases xgcd x y; refl
private def P (a b : α) : α × α × α → Prop | (r, s, t) := (r : α) = a * s + b * t
theorem xgcd_aux_P (a b : α) {r r' : α} : ∀ {s t s' t'}, P a b (r, s, t) →
P a b (r', s', t') → P a b (xgcd_aux r s t r' s' t') :=
gcd.induction r r' (by finish) $ λ x y h IH s t s' t' p p', begin
rw [xgcd_aux_rec h], refine IH _ p, dsimp [P] at *,
rw [mod_eq_sub_mul_div, p, p'],
simp [mul_add, add_mul, mul_comm, mul_assoc, mul_left_comm]
end
theorem gcd_eq_gcd_ab (a b : α) : (gcd a b : α) = a * gcd_a a b + b * gcd_b a b :=
by have := @xgcd_aux_P _ _ _ a b a b 1 0 0 1 (by simp [P]) (by simp [P]);
rwa [xgcd_aux_val, xgcd_val] at this
end gcd
instance : euclidean_domain ℤ :=
{ quotient := (/),
remainder := (%),
quotient_mul_add_remainder_eq := λ a b, by rw add_comm; exact int.mod_add_div _ _,
r := λ a b, a.nat_abs < b.nat_abs,
r_well_founded := measure_wf (λ a, int.nat_abs a),
remainder_lt := λ a b b0, int.coe_nat_lt.1 $
by rw [int.nat_abs_of_nonneg (int.mod_nonneg _ b0), ← int.abs_eq_nat_abs];
exact int.mod_lt _ b0,
mul_left_not_lt := λ a b b0, not_lt_of_ge $
by rw [← mul_one a.nat_abs, int.nat_abs_mul];
exact mul_le_mul_of_nonneg_left (int.nat_abs_pos_of_ne_zero b0) (nat.zero_le _) }
end euclidean_domain
|
26142655f7e427240c3c1a80e4d66203c94b861f
|
59a4b050600ed7b3d5826a8478db0a9bdc190252
|
/src/category_theory/yoneda.lean
|
597e7e884c0d80b67afa3269cbc8b23accfa1078
|
[] |
no_license
|
rwbarton/lean-category-theory
|
f720268d800b62a25d69842ca7b5d27822f00652
|
00df814d463406b7a13a56f5dcda67758ba1b419
|
refs/heads/master
| 1,585,366,296,767
| 1,536,151,349,000
| 1,536,151,349,000
| 147,652,096
| 0
| 0
| null | 1,536,226,960,000
| 1,536,226,960,000
| null |
UTF-8
|
Lean
| false
| false
| 3,206
|
lean
|
-- Copyright (c) 2017 Scott Morrison. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Authors: Scott Morrison
import category_theory.natural_transformation
import category_theory.opposites
import category_theory.types
import category_theory.embedding
import category_theory.cancellation
import tactic.interactive
open category_theory
namespace category_theory.yoneda
universes u₁ v₁ u₂
variables (C : Type u₁) [𝒞 : category.{u₁ v₁} C]
include 𝒞
def yoneda : C ⥤ ((Cᵒᵖ) ⥤ (Type v₁)) :=
{ obj := λ X, { obj := λ Y : C, Y ⟶ X,
map' := λ Y Y' f g, f ≫ g },
map' := λ X X' f, { app := λ Y g, g ≫ f } }
@[simp] lemma yoneda_obj_obj (X Y : C) : ((yoneda C) X) Y = (Y ⟶ X) := rfl
@[simp] lemma yoneda_obj_map (X : C) {Y Y' : C} (f : Y ⟶ Y') : ((yoneda C) X).map f = λ g, f ≫ g := rfl
@[simp] lemma yoneda_map_app {X X' : C} (f : X ⟶ X') (Y : C) : ((yoneda C).map f) Y = λ g, g ≫ f := rfl
@[search] lemma yoneda_aux_1 {X Y : Cᵒᵖ} (f : X ⟶ Y) : ((yoneda C).map f) Y (𝟙 Y) = ((yoneda C) X).map f (𝟙 X) := by obviously
@[simp,search] lemma yoneda_aux_2 {X Y : C} (α : (yoneda C) X ⟶ (yoneda C) Y) {Z Z' : C} (f : Z ⟶ Z') (h : Z' ⟶ X) : α Z (f ≫ h) = f ≫ α Z' h := by obviously
instance yoneda_full : full (yoneda C) :=
{ preimage := λ X Y f, (f X) (𝟙 X) }.
instance yoneda_faithful : faithful (yoneda C) :=
begin
/- obviously says: -/
fsplit,
intros X Y f g p,
injections_and_clear,
have cancel_right'_f_g_h_1 := cancel_right' f g h_1,
assumption
end
-- We need to help typeclass inference with some awkward universe levels here.
instance instance_1 : category (((Cᵒᵖ) ⥤ Type v₁) × (Cᵒᵖ)) := category_theory.prod.{(max u₁ (v₁+1)) (max u₁ v₁) u₁ v₁} (Cᵒᵖ ⥤ Type v₁) (Cᵒᵖ)
instance instance_2 : category ((Cᵒᵖ) × ((Cᵒᵖ) ⥤ Type v₁)) := category_theory.prod.{u₁ v₁ (max u₁ (v₁+1)) (max u₁ v₁)} (Cᵒᵖ) (Cᵒᵖ ⥤ Type v₁)
def yoneda_evaluation : (((Cᵒᵖ) ⥤ (Type v₁)) × (Cᵒᵖ)) ⥤ (Type (max u₁ v₁))
:= (evaluation (Cᵒᵖ) (Type v₁)) ⋙ ulift_functor.{v₁ u₁}
@[simp] lemma yoneda_evaluation_map_down (P Q : (Cᵒᵖ ⥤ Type v₁) × (Cᵒᵖ)) (α : P ⟶ Q) (x : (yoneda_evaluation C) P)
: ((yoneda_evaluation C).map α x).down = (α.1) (Q.2) ((P.1).map (α.2) (x.down)) := rfl
def yoneda_pairing : (((Cᵒᵖ) ⥤ (Type v₁)) × (Cᵒᵖ)) ⥤ (Type (max u₁ v₁)) :=
let F := (category_theory.prod.swap ((Cᵒᵖ) ⥤ (Type v₁)) (Cᵒᵖ)) in
let G := (functor.prod ((yoneda C).op) (functor.id ((Cᵒᵖ) ⥤ (Type v₁)))) in
let H := (functor.hom ((Cᵒᵖ) ⥤ (Type v₁))) in
(F ⋙ G ⋙ H)
@[simp] lemma yoneda_pairing_map (P Q : (Cᵒᵖ ⥤ Type v₁) × (Cᵒᵖ)) (α : P ⟶ Q) (β : (yoneda_pairing C) (P.1, P.2)): (yoneda_pairing C).map α β = (yoneda C).map (α.snd) ≫ β ≫ α.fst := rfl
def yoneda_lemma : (yoneda_pairing C) ≅ (yoneda_evaluation C) :=
{ hom := { app := λ F x, ulift.up ((x.app F.2) (𝟙 F.2)) },
inv := { app := λ F x, { app := λ X a, (F.1.map a) x.down } } }.
end category_theory.yoneda
|
8189e6032cc33c706684e08385754d76bbcee4c9
|
64874bd1010548c7f5a6e3e8902efa63baaff785
|
/library/logic/identities.lean
|
cbf8afb63937f10700151b7497752e47900614ce
|
[
"Apache-2.0"
] |
permissive
|
tjiaqi/lean
|
4634d729795c164664d10d093f3545287c76628f
|
d0ce4cf62f4246b0600c07e074d86e51f2195e30
|
refs/heads/master
| 1,622,323,796,480
| 1,422,643,069,000
| 1,422,643,069,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 5,445
|
lean
|
/-
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: logic.identities
Authors: Jeremy Avigad, Leonardo de Moura
Useful logical identities. Since we are not using propositional extensionality, some of the
calculations use the type class support provided by logic.instances.
-/
import logic.connectives logic.instances logic.quantifiers logic.cast
open relation decidable relation.iff_ops
theorem or.right_comm (a b c : Prop) : (a ∨ b) ∨ c ↔ (a ∨ c) ∨ b :=
calc
(a ∨ b) ∨ c ↔ a ∨ (b ∨ c) : or.assoc
... ↔ a ∨ (c ∨ b) : {or.comm}
... ↔ (a ∨ c) ∨ b : iff.symm or.assoc
theorem or.left_comm (a b c : Prop) : a ∨ (b ∨ c)↔ b ∨ (a ∨ c) :=
calc
a ∨ (b ∨ c) ↔ (a ∨ b) ∨ c : iff.symm or.assoc
... ↔ (b ∨ a) ∨ c : {or.comm}
... ↔ b ∨ (a ∨ c) : or.assoc
theorem and.right_comm (a b c : Prop) : (a ∧ b) ∧ c ↔ (a ∧ c) ∧ b :=
calc
(a ∧ b) ∧ c ↔ a ∧ (b ∧ c) : and.assoc
... ↔ a ∧ (c ∧ b) : {and.comm}
... ↔ (a ∧ c) ∧ b : iff.symm and.assoc
theorem and.left_comm (a b c : Prop) : a ∧ (b ∧ c)↔ b ∧ (a ∧ c) :=
calc
a ∧ (b ∧ c) ↔ (a ∧ b) ∧ c : iff.symm and.assoc
... ↔ (b ∧ a) ∧ c : {and.comm}
... ↔ b ∧ (a ∧ c) : and.assoc
theorem not_not_iff {a : Prop} [D : decidable a] : (¬¬a) ↔ a :=
iff.intro
(assume H : ¬¬a,
by_cases (assume H' : a, H') (assume H' : ¬a, absurd H' H))
(assume H : a, assume H', H' H)
theorem not_not_elim {a : Prop} [D : decidable a] (H : ¬¬a) : a :=
iff.mp not_not_iff H
theorem not_true_iff_false : ¬true ↔ false :=
iff.intro (assume H, H trivial) false.elim
theorem not_false_iff_true : ¬false ↔ true :=
iff.intro (assume H, trivial) (assume H H', H')
theorem not_or_iff_not_and_not {a b : Prop} [Da : decidable a] [Db : decidable b] :
¬(a ∨ b) ↔ ¬a ∧ ¬b :=
iff.intro
(assume H, or.elim (em a)
(assume Ha, absurd (or.inl Ha) H)
(assume Hna, or.elim (em b)
(assume Hb, absurd (or.inr Hb) H)
(assume Hnb, and.intro Hna Hnb)))
(assume (H : ¬a ∧ ¬b) (N : a ∨ b),
or.elim N
(assume Ha, absurd Ha (and.elim_left H))
(assume Hb, absurd Hb (and.elim_right H)))
theorem not_and_iff_not_or_not {a b : Prop} [Da : decidable a] [Db : decidable b] :
¬(a ∧ b) ↔ ¬a ∨ ¬b :=
iff.intro
(assume H, or.elim (em a)
(assume Ha, or.elim (em b)
(assume Hb, absurd (and.intro Ha Hb) H)
(assume Hnb, or.inr Hnb))
(assume Hna, or.inl Hna))
(assume (H : ¬a ∨ ¬b) (N : a ∧ b),
or.elim H
(assume Hna, absurd (and.elim_left N) Hna)
(assume Hnb, absurd (and.elim_right N) Hnb))
theorem imp_iff_not_or {a b : Prop} [Da : decidable a] : (a → b) ↔ ¬a ∨ b :=
iff.intro
(assume H : a → b, (or.elim (em a)
(assume Ha : a, or.inr (H Ha))
(assume Hna : ¬a, or.inl Hna)))
(assume (H : ¬a ∨ b) (Ha : a),
or_resolve_right H (not_not_iff⁻¹ ▸ Ha))
theorem not_implies_iff_and_not {a b : Prop} [Da : decidable a] [Db : decidable b] :
¬(a → b) ↔ a ∧ ¬b :=
calc
¬(a → b) ↔ ¬(¬a ∨ b) : {imp_iff_not_or}
... ↔ ¬¬a ∧ ¬b : not_or_iff_not_and_not
... ↔ a ∧ ¬b : {not_not_iff}
theorem peirce {a b : Prop} [D : decidable a] : ((a → b) → a) → a :=
assume H, by_contradiction (assume Hna : ¬a,
have Hnna : ¬¬a, from not_not_of_not_implies (mt H Hna),
absurd (not_not_elim Hnna) Hna)
theorem forall_not_of_not_exists {A : Type} {P : A → Prop} [D : ∀x, decidable (P x)]
(H : ¬∃x, P x) : ∀x, ¬P x :=
take x, or.elim (em (P x))
(assume Hp : P x, absurd (exists.intro x Hp) H)
(assume Hn : ¬P x, Hn)
theorem exists_not_of_not_forall {A : Type} {P : A → Prop} [D : ∀x, decidable (P x)]
[D' : decidable (∃x, ¬P x)] (H : ¬∀x, P x) :
∃x, ¬P x :=
@by_contradiction _ D' (assume H1 : ¬∃x, ¬P x,
have H2 : ∀x, ¬¬P x, from @forall_not_of_not_exists _ _ (take x, not.decidable (D x)) H1,
have H3 : ∀x, P x, from take x, @not_not_elim _ (D x) (H2 x),
absurd H3 H)
theorem iff_true_intro {a : Prop} (H : a) : a ↔ true :=
iff.intro
(assume H1 : a, trivial)
(assume H2 : true, H)
theorem iff_false_intro {a : Prop} (H : ¬a) : a ↔ false :=
iff.intro
(assume H1 : a, absurd H1 H)
(assume H2 : false, false.elim H2)
theorem ne_self_iff_false {A : Type} (a : A) : (a ≠ a) ↔ false :=
iff.intro
(assume H, false.of_ne H)
(assume H, false.elim H)
theorem eq_self_iff_true {A : Type} (a : A) : (a = a) ↔ true :=
iff_true_intro rfl
theorem heq_self_iff_true {A : Type} (a : A) : (a == a) ↔ true :=
iff_true_intro (heq.refl a)
theorem iff_not_self (a : Prop) : (a ↔ ¬a) ↔ false :=
iff.intro
(assume H,
have H' : ¬a, from assume Ha, (H ▸ Ha) Ha,
H' (H⁻¹ ▸ H'))
(assume H, false.elim H)
theorem true_iff_false : (true ↔ false) ↔ false :=
not_true_iff_false ▸ (iff_not_self true)
theorem false_iff_true : (false ↔ true) ↔ false :=
not_false_iff_true ▸ (iff_not_self false)
theorem iff_true_iff (a : Prop) : (a ↔ true) ↔ a :=
iff.intro (assume H, of_iff_true H) (assume H, iff_true_intro H)
theorem iff_false_iff_not (a : Prop) : (a ↔ false) ↔ ¬a :=
iff.intro (assume H, not_of_iff_false H) (assume H, iff_false_intro H)
|
68a7895f19b53f1d29e2b41a66bce269fb6290f1
|
9dd3f3912f7321eb58ee9aa8f21778ad6221f87c
|
/tests/lean/run/cases_tac1.lean
|
8c329a80c433f55c1e9d1b4ffae2ec9200cf334f
|
[
"Apache-2.0"
] |
permissive
|
bre7k30/lean
|
de893411bcfa7b3c5572e61b9e1c52951b310aa4
|
5a924699d076dab1bd5af23a8f910b433e598d7a
|
refs/heads/master
| 1,610,900,145,817
| 1,488,006,845,000
| 1,488,006,845,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 1,021
|
lean
|
inductive {u} vec (A : Type u) : nat → Type u
| nil : vec 0
| cons : ∀ {n}, A → vec n → vec (n+1)
open tactic nat vec
def head {A : Type*} : ∀ {n : nat}, vec A (n+1) → A
| n (cons h t) := h
def tail {A : Type*} : ∀ {n : nat}, vec A (n+1) → vec A n
| n (cons h t) := t
@[simp] lemma head_cons {A : Type*} {n : nat} (a : A) (v : vec A n) : head (cons a v) = a :=
rfl
@[simp]
lemma tail_cons {A : Type*} {n : nat} (a : A) (v : vec A n) : tail (cons a v) = v :=
rfl
example {A : Type*} {n : nat} (v w : vec A (n+1)) : head v = head w → tail v = tail w → v = w :=
by do
v ← get_local `v,
cases v [`n', `hv, `tv],
trace_state,
w ← get_local `w,
cases w [`n', `hw, `tw],
trace_state,
dsimp,
trace_state,
Heq1 ← intro1,
Heq2 ← intro1,
subst Heq1, subst Heq2,
reflexivity
print "-------"
example (n : nat) : n ≠ 0 → succ (pred n) = n :=
by do
H ← intro `H,
n ← get_local `n,
cases n [`n'],
trace_state,
contradiction,
reflexivity
print "---------"
|
79de72f810b2d0e8d5c6613939af0e08993893f7
|
80b18137872dad7c3df334b9069d70935b4224f3
|
/src/data/fintype/intervals.lean
|
c9e5fdf36087bb0c137a34df23520b16f58f383e
|
[
"Apache-2.0"
] |
permissive
|
Jack-Pumpkinhead/mathlib
|
1bcf5692d355dc397847791c137158f01b407535
|
da8b23f907f750528539bffa604875b98717fb93
|
refs/heads/master
| 1,621,299,949,262
| 1,585,480,767,000
| 1,585,480,767,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 1,617
|
lean
|
/-
Copyright (c) 2019 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison
-/
import data.set.intervals
import data.set.finite
import data.fintype
import data.pnat.intervals
/-!
# fintype instances for intervals
We provide `fintype` instances for `Ico l u`, for `l u : ℕ`, and for `l u : ℤ`.
-/
namespace set
instance Ico_ℕ_fintype (l u : ℕ) : fintype (Ico l u) :=
fintype.of_finset (finset.Ico l u) $
(λ n, by { simp only [mem_Ico, finset.Ico.mem], })
@[simp] lemma Ico_ℕ_card (l u : ℕ) : fintype.card (Ico l u) = u - l :=
calc fintype.card (Ico l u) = (finset.Ico l u).card : fintype.card_of_finset _ _
... = u - l : finset.Ico.card l u
instance Ico_pnat_fintype (l u : ℕ+) : fintype (Ico l u) :=
fintype.of_finset (pnat.Ico l u) $
(λ n, by { simp only [mem_Ico, pnat.Ico.mem], })
@[simp] lemma Ico_pnat_card (l u : ℕ+) : fintype.card (Ico l u) = u - l :=
calc fintype.card (Ico l u) = (pnat.Ico l u).card : fintype.card_of_finset _ _
... = u - l : pnat.Ico.card l u
instance Ico_ℤ_fintype (l u : ℤ) : fintype (Ico l u) :=
fintype.of_finset (finset.Ico_ℤ l u) $
(λ n, by { simp only [mem_Ico, finset.Ico_ℤ.mem], })
@[simp] lemma Ico_ℤ_card (l u : ℤ) : fintype.card (Ico l u) = (u - l).to_nat :=
calc fintype.card (Ico l u) = (finset.Ico_ℤ l u).card : fintype.card_of_finset _ _
... = (u - l).to_nat : finset.Ico_ℤ.card l u
-- TODO other useful instances: fin n, zmod?
end set
|
293e54856445cb8323fa567d5174c8a86cfd941f
|
ee8cdbabf07f77e7be63a449b8483ce308d37218
|
/lean/src/valid/mathd-numbertheory-37.lean
|
7c106152257ff1be4ec9a28cab8a85d62d5aa1b0
|
[
"MIT",
"Apache-2.0"
] |
permissive
|
zeta1999/miniF2F
|
6d66c75d1c18152e224d07d5eed57624f731d4b7
|
c1ba9629559c5273c92ec226894baa0c1ce27861
|
refs/heads/main
| 1,681,897,460,642
| 1,620,646,361,000
| 1,620,646,361,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 275
|
lean
|
/-
Copyright (c) 2021 OpenAI. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kunhao Zheng
-/
import tactic.gptf
import data.real.basic
import data.nat.basic
example : ( nat.lcm 9999 100001 ) = 90900909 :=
begin
sorry
end
|
a2497ed09c10e3f4151a8c8a8daa97c23e281dd4
|
4727251e0cd73359b15b664c3170e5d754078599
|
/src/measure_theory/covering/besicovitch.lean
|
a88727f55140d8dd48e4195875e59c4fddac9a06
|
[
"Apache-2.0"
] |
permissive
|
Vierkantor/mathlib
|
0ea59ac32a3a43c93c44d70f441c4ee810ccceca
|
83bc3b9ce9b13910b57bda6b56222495ebd31c2f
|
refs/heads/master
| 1,658,323,012,449
| 1,652,256,003,000
| 1,652,256,003,000
| 209,296,341
| 0
| 1
|
Apache-2.0
| 1,568,807,655,000
| 1,568,807,655,000
| null |
UTF-8
|
Lean
| false
| false
| 60,324
|
lean
|
/-
Copyright (c) 2021 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import measure_theory.covering.differentiation
import measure_theory.covering.vitali_family
import measure_theory.integral.lebesgue
import measure_theory.measure.regular
import set_theory.ordinal.arithmetic
import topology.metric_space.basic
/-!
# Besicovitch covering theorems
The topological Besicovitch covering theorem ensures that, in a nice metric space, there exists a
number `N` such that, from any family of balls with bounded radii, one can extract `N` families,
each made of disjoint balls, covering together all the centers of the initial family.
By "nice metric space", we mean a technical property stated as follows: there exists no satellite
configuration of `N + 1` points (with a given parameter `τ > 1`). Such a configuration is a family
of `N + 1` balls, where the first `N` balls all intersect the last one, but none of them contains
the center of another one and their radii are controlled. This property is for instance
satisfied by finite-dimensional real vector spaces.
In this file, we prove the topological Besicovitch covering theorem,
in `besicovitch.exist_disjoint_covering_families`.
The measurable Besicovitch theorem ensures that, in the same class of metric spaces, if at every
point one considers a class of balls of arbitrarily small radii, called admissible balls, then
one can cover almost all the space by a family of disjoint admissible balls.
It is deduced from the topological Besicovitch theorem, and proved
in `besicovitch.exists_disjoint_closed_ball_covering_ae`.
This implies that balls of small radius form a Vitali family in such spaces. Therefore, theorems
on differentiation of measures hold as a consequence of general results. We restate them in this
context to make them more easily usable.
## Main definitions and results
* `satellite_config α N τ` is the type of all satellite configurations of `N + 1` points
in the metric space `α`, with parameter `τ`.
* `has_besicovitch_covering` is a class recording that there exist `N` and `τ > 1` such that
there is no satellite configuration of `N + 1` points with parameter `τ`.
* `exist_disjoint_covering_families` is the topological Besicovitch covering theorem: from any
family of balls one can extract finitely many disjoint subfamilies covering the same set.
* `exists_disjoint_closed_ball_covering` is the measurable Besicovitch covering theorem: from any
family of balls with arbitrarily small radii at every point, one can extract countably many
disjoint balls covering almost all the space. While the value of `N` is relevant for the precise
statement of the topological Besicovitch theorem, it becomes irrelevant for the measurable one.
Therefore, this statement is expressed using the `Prop`-valued
typeclass `has_besicovitch_covering`.
We also restate the following specialized versions of general theorems on differentiation of
measures:
* `besicovitch.ae_tendsto_rn_deriv` ensures that `ρ (closed_ball x r) / μ (closed_ball x r)` tends
almost surely to the Radon-Nikodym derivative of `ρ` with respect to `μ` at `x`.
* `besicovitch.ae_tendsto_measure_inter_div` states that almost every point in an arbitrary set `s`
is a Lebesgue density point, i.e., `μ (s ∩ closed_ball x r) / μ (closed_ball x r)` tends to `1` as
`r` tends to `0`. A stronger version for measurable sets is given in
`besicovitch.ae_tendsto_measure_inter_div_of_measurable_set`.
## Implementation
#### Sketch of proof of the topological Besicovitch theorem:
We choose balls in a greedy way. First choose a ball with maximal radius (or rather, since there
is no guarantee the maximal radius is realized, a ball with radius within a factor `τ` of the
supremum). Then, remove all balls whose center is covered by the first ball, and choose among the
remaining ones a ball with radius close to maximum. Go on forever until there is no available
center (this is a transfinite induction in general).
Then define inductively a coloring of the balls. A ball will be of color `i` if it intersects
already chosen balls of color `0`, ..., `i - 1`, but none of color `i`. In this way, balls of the
same color form a disjoint family, and the space is covered by the families of the different colors.
The nontrivial part is to show that at most `N` colors are used. If one needs `N + 1` colors,
consider the first time this happens. Then the corresponding ball intersects `N` balls of the
different colors. Moreover, the inductive construction ensures that the radii of all the balls are
controlled: they form a satellite configuration with `N + 1` balls (essentially by definition of
satellite configurations). Since we assume that there are no such configurations, this is a
contradiction.
#### Sketch of proof of the measurable Besicovitch theorem:
From the topological Besicovitch theorem, one can find a disjoint countable family of balls
covering a proportion `> 1 / (N + 1)` of the space. Taking a large enough finite subset of these
balls, one gets the same property for finitely many balls. Their union is closed. Therefore, any
point in the complement has around it an admissible ball not intersecting these finitely many balls.
Applying again the topological Besicovitch theorem, one extracts from these a disjoint countable
subfamily covering a proportion `> 1 / (N + 1)` of the remaining points, and then even a disjoint
finite subfamily. Then one goes on again and again, covering at each step a positive proportion of
the remaining points, while remaining disjoint from the already chosen balls. The union of all these
balls is the desired almost everywhere covering.
-/
noncomputable theory
universe u
open metric set filter fin measure_theory topological_space
open_locale topological_space classical big_operators ennreal measure_theory nnreal
/-!
### Satellite configurations
-/
/-- A satellite configuration is a configuration of `N+1` points that shows up in the inductive
construction for the Besicovitch covering theorem. It depends on some parameter `τ ≥ 1`.
This is a family of balls (indexed by `i : fin N.succ`, with center `c i` and radius `r i`) such
that the last ball intersects all the other balls (condition `inter`),
and given any two balls there is an order between them, ensuring that the first ball does not
contain the center of the other one, and the radius of the second ball can not be larger than
the radius of the first ball (up to a factor `τ`). This order corresponds to the order of choice
in the inductive construction: otherwise, the second ball would have been chosen before.
This is the condition `h`.
Finally, the last ball is chosen after all the other ones, meaning that `h` can be strengthened
by keeping only one side of the alternative in `hlast`.
-/
structure besicovitch.satellite_config (α : Type*) [metric_space α] (N : ℕ) (τ : ℝ) :=
(c : fin N.succ → α)
(r : fin N.succ → ℝ)
(rpos : ∀ i, 0 < r i)
(h : ∀ i j, i ≠ j → (r i ≤ dist (c i) (c j) ∧ r j ≤ τ * r i) ∨
(r j ≤ dist (c j) (c i) ∧ r i ≤ τ * r j))
(hlast : ∀ i < last N, r i ≤ dist (c i) (c (last N)) ∧ r (last N) ≤ τ * r i)
(inter : ∀ i < last N, dist (c i) (c (last N)) ≤ r i + r (last N))
/-- A metric space has the Besicovitch covering property if there exist `N` and `τ > 1` such that
there are no satellite configuration of parameter `τ` with `N+1` points. This is the condition that
guarantees that the measurable Besicovitch covering theorem holds. It is satified by
finite-dimensional real vector spaces. -/
class has_besicovitch_covering (α : Type*) [metric_space α] : Prop :=
(no_satellite_config [] : ∃ (N : ℕ) (τ : ℝ), 1 < τ ∧ is_empty (besicovitch.satellite_config α N τ))
/-- There is always a satellite configuration with a single point. -/
instance {α : Type*} {τ : ℝ} [inhabited α] [metric_space α] :
inhabited (besicovitch.satellite_config α 0 τ) :=
⟨{ c := λ i, default,
r := λ i, 1,
rpos := λ i, zero_lt_one,
h := λ i j hij, (hij (subsingleton.elim i j)).elim,
hlast := λ i hi, by { rw subsingleton.elim i (last 0) at hi, exact (lt_irrefl _ hi).elim },
inter := λ i hi, by { rw subsingleton.elim i (last 0) at hi, exact (lt_irrefl _ hi).elim } }⟩
namespace besicovitch
namespace satellite_config
variables {α : Type*} [metric_space α] {N : ℕ} {τ : ℝ} (a : satellite_config α N τ)
lemma inter' (i : fin N.succ) : dist (a.c i) (a.c (last N)) ≤ a.r i + a.r (last N) :=
begin
rcases lt_or_le i (last N) with H|H,
{ exact a.inter i H },
{ have I : i = last N := top_le_iff.1 H,
have := (a.rpos (last N)).le,
simp only [I, add_nonneg this this, dist_self] }
end
lemma hlast' (i : fin N.succ) (h : 1 ≤ τ) : a.r (last N) ≤ τ * a.r i :=
begin
rcases lt_or_le i (last N) with H|H,
{ exact (a.hlast i H).2 },
{ have : i = last N := top_le_iff.1 H,
rw this,
exact le_mul_of_one_le_left (a.rpos _).le h }
end
end satellite_config
/-! ### Extracting disjoint subfamilies from a ball covering -/
/-- A ball package is a family of balls in a metric space with positive bounded radii. -/
structure ball_package (β : Type*) (α : Type*) :=
(c : β → α)
(r : β → ℝ)
(rpos : ∀ b, 0 < r b)
(r_bound : ℝ)
(r_le : ∀ b, r b ≤ r_bound)
/-- The ball package made of unit balls. -/
def unit_ball_package (α : Type*) : ball_package α α :=
{ c := id,
r := λ _, 1,
rpos := λ _, zero_lt_one,
r_bound := 1,
r_le := λ _, le_rfl }
instance (α : Type*) : inhabited (ball_package α α) :=
⟨unit_ball_package α⟩
/-- A Besicovitch tau-package is a family of balls in a metric space with positive bounded radii,
together with enough data to proceed with the Besicovitch greedy algorithm. We register this in
a single structure to make sure that all our constructions in this algorithm only depend on
one variable. -/
structure tau_package (β : Type*) (α : Type*) extends ball_package β α :=
(τ : ℝ)
(one_lt_tau : 1 < τ)
instance (α : Type*) : inhabited (tau_package α α) :=
⟨{ τ := 2,
one_lt_tau := one_lt_two,
.. unit_ball_package α }⟩
variables {α : Type*} [metric_space α] {β : Type u}
namespace tau_package
variables [nonempty β] (p : tau_package β α)
include p
/-- Choose inductively large balls with centers that are not contained in the union of already
chosen balls. This is a transfinite induction. -/
noncomputable def index : ordinal.{u} → β
| i :=
-- `Z` is the set of points that are covered by already constructed balls
let Z := ⋃ (j : {j // j < i}), ball (p.c (index j)) (p.r (index j)),
-- `R` is the supremum of the radii of balls with centers not in `Z`
R := supr (λ b : {b : β // p.c b ∉ Z}, p.r b) in
-- return an index `b` for which the center `c b` is not in `Z`, and the radius is at
-- least `R / τ`, if such an index exists (and garbage otherwise).
classical.epsilon (λ b : β, p.c b ∉ Z ∧ R ≤ p.τ * p.r b)
using_well_founded {dec_tac := `[exact j.2]}
/-- The set of points that are covered by the union of balls selected at steps `< i`. -/
def Union_up_to (i : ordinal.{u}) : set α :=
⋃ (j : {j // j < i}), ball (p.c (p.index j)) (p.r (p.index j))
lemma monotone_Union_up_to : monotone p.Union_up_to :=
begin
assume i j hij,
simp only [Union_up_to],
exact Union_mono' (λ r, ⟨⟨r, r.2.trans_le hij⟩, subset.rfl⟩),
end
/-- Supremum of the radii of balls whose centers are not yet covered at step `i`. -/
def R (i : ordinal.{u}) : ℝ :=
supr (λ b : {b : β // p.c b ∉ p.Union_up_to i}, p.r b)
/-- Group the balls into disjoint families, by assigning to a ball the smallest color for which
it does not intersect any already chosen ball of this color. -/
noncomputable def color : ordinal.{u} → ℕ
| i := let A : set ℕ := ⋃ (j : {j // j < i})
(hj : (closed_ball (p.c (p.index j)) (p.r (p.index j))
∩ closed_ball (p.c (p.index i)) (p.r (p.index i))).nonempty), {color j} in
Inf (univ \ A)
using_well_founded {dec_tac := `[exact j.2]}
/-- `p.last_step` is the first ordinal where the construction stops making sense, i.e., `f` returns
garbage since there is no point left to be chosen. We will only use ordinals before this step. -/
def last_step : ordinal.{u} :=
Inf {i | ¬ ∃ (b : β), p.c b ∉ p.Union_up_to i ∧ p.R i ≤ p.τ * p.r b}
lemma last_step_nonempty :
{i | ¬ ∃ (b : β), p.c b ∉ p.Union_up_to i ∧ p.R i ≤ p.τ * p.r b}.nonempty :=
begin
by_contra,
suffices H : function.injective p.index, from not_injective_of_ordinal p.index H,
assume x y hxy,
wlog x_le_y : x ≤ y := le_total x y using [x y, y x],
rcases eq_or_lt_of_le x_le_y with rfl|H, { refl },
simp only [nonempty_def, not_exists, exists_prop, not_and, not_lt, not_le, mem_set_of_eq,
not_forall] at h,
specialize h y,
have A : p.c (p.index y) ∉ p.Union_up_to y,
{ have : p.index y = classical.epsilon (λ b : β, p.c b ∉ p.Union_up_to y ∧ p.R y ≤ p.τ * p.r b),
by { rw [tau_package.index], refl },
rw this,
exact (classical.epsilon_spec h).1 },
simp only [Union_up_to, not_exists, exists_prop, mem_Union, mem_closed_ball, not_and, not_le,
subtype.exists, subtype.coe_mk] at A,
specialize A x H,
simp [hxy] at A,
exact (lt_irrefl _ ((p.rpos (p.index y)).trans_le A)).elim
end
/-- Every point is covered by chosen balls, before `p.last_step`. -/
lemma mem_Union_up_to_last_step (x : β) : p.c x ∈ p.Union_up_to p.last_step :=
begin
have A : ∀ (z : β), p.c z ∈ p.Union_up_to p.last_step ∨ p.τ * p.r z < p.R p.last_step,
{ have : p.last_step ∈ {i | ¬ ∃ (b : β), p.c b ∉ p.Union_up_to i ∧ p.R i ≤ p.τ * p.r b} :=
Inf_mem p.last_step_nonempty,
simpa only [not_exists, mem_set_of_eq, not_and_distrib, not_le, not_not_mem] },
by_contra,
rcases A x with H|H, { exact h H },
have Rpos : 0 < p.R p.last_step,
{ apply lt_trans (mul_pos (_root_.zero_lt_one.trans p.one_lt_tau) (p.rpos _)) H },
have B : p.τ⁻¹ * p.R p.last_step < p.R p.last_step,
{ conv_rhs { rw ← one_mul (p.R p.last_step) },
exact mul_lt_mul (inv_lt_one p.one_lt_tau) le_rfl Rpos zero_le_one },
obtain ⟨y, hy1, hy2⟩ : ∃ (y : β),
p.c y ∉ p.Union_up_to p.last_step ∧ (p.τ)⁻¹ * p.R p.last_step < p.r y,
{ simpa only [exists_prop, mem_range, exists_exists_and_eq_and, subtype.exists, subtype.coe_mk]
using exists_lt_of_lt_cSup _ B,
rw [← image_univ, nonempty_image_iff],
exact ⟨⟨_, h⟩, mem_univ _⟩ },
rcases A y with Hy|Hy,
{ exact hy1 Hy },
{ rw ← div_eq_inv_mul at hy2,
have := (div_le_iff' (_root_.zero_lt_one.trans p.one_lt_tau)).1 hy2.le,
exact lt_irrefl _ (Hy.trans_le this) }
end
/-- If there are no configurations of satellites with `N+1` points, one never uses more than `N`
distinct families in the Besicovitch inductive construction. -/
lemma color_lt {i : ordinal.{u}} (hi : i < p.last_step)
{N : ℕ} (hN : is_empty (satellite_config α N p.τ)) :
p.color i < N :=
begin
/- By contradiction, consider the first ordinal `i` for which one would have `p.color i = N`.
Choose for each `k < N` a ball with color `k` that intersects the ball at color `i`
(there is such a ball, otherwise one would have used the color `k` and not `N`).
Then this family of `N+1` balls forms a satellite configuration, which is forbidden by
the assumption `hN`. -/
induction i using ordinal.induction with i IH,
let A : set ℕ := ⋃ (j : {j // j < i})
(hj : (closed_ball (p.c (p.index j)) (p.r (p.index j))
∩ closed_ball (p.c (p.index i)) (p.r (p.index i))).nonempty), {p.color j},
have color_i : p.color i = Inf (univ \ A), by rw [color],
rw color_i,
have N_mem : N ∈ univ \ A,
{ simp only [not_exists, true_and, exists_prop, mem_Union, mem_singleton_iff, mem_closed_ball,
not_and, mem_univ, mem_diff, subtype.exists, subtype.coe_mk],
assume j ji hj,
exact (IH j ji (ji.trans hi)).ne' },
suffices : Inf (univ \ A) ≠ N,
{ rcases (cInf_le (order_bot.bdd_below (univ \ A)) N_mem).lt_or_eq with H|H,
{ exact H },
{ exact (this H).elim } },
assume Inf_eq_N,
have : ∀ k, k < N → ∃ j, j < i
∧ (closed_ball (p.c (p.index j)) (p.r (p.index j))
∩ closed_ball (p.c (p.index i)) (p.r (p.index i))).nonempty
∧ k = p.color j,
{ assume k hk,
rw ← Inf_eq_N at hk,
have : k ∈ A,
by simpa only [true_and, mem_univ, not_not, mem_diff] using nat.not_mem_of_lt_Inf hk,
simp at this,
simpa only [exists_prop, mem_Union, mem_singleton_iff, mem_closed_ball, subtype.exists,
subtype.coe_mk] },
choose! g hg using this,
-- Choose for each `k < N` an ordinal `G k < i` giving a ball of color `k` intersecting
-- the last ball.
let G : ℕ → ordinal := λ n, if n = N then i else g n,
have color_G : ∀ n, n ≤ N → p.color (G n) = n,
{ assume n hn,
unfreezingI { rcases hn.eq_or_lt with rfl|H },
{ simp only [G], simp only [color_i, Inf_eq_N, if_true, eq_self_iff_true] },
{ simp only [G], simp only [H.ne, (hg n H).right.right.symm, if_false] } },
have G_lt_last : ∀ n, n ≤ N → G n < p.last_step,
{ assume n hn,
unfreezingI { rcases hn.eq_or_lt with rfl|H },
{ simp only [G], simp only [hi, if_true, eq_self_iff_true], },
{ simp only [G], simp only [H.ne, (hg n H).left.trans hi, if_false] } },
have fGn : ∀ n, n ≤ N →
p.c (p.index (G n)) ∉ p.Union_up_to (G n) ∧ p.R (G n) ≤ p.τ * p.r (p.index (G n)),
{ assume n hn,
have: p.index (G n) = classical.epsilon
(λ t, p.c t ∉ p.Union_up_to (G n) ∧ p.R (G n) ≤ p.τ * p.r t), by { rw index, refl },
rw this,
have : ∃ t, p.c t ∉ p.Union_up_to (G n) ∧ p.R (G n) ≤ p.τ * p.r t,
by simpa only [not_exists, exists_prop, not_and, not_lt, not_le, mem_set_of_eq,
not_forall] using not_mem_of_lt_cInf (G_lt_last n hn) (order_bot.bdd_below _),
exact classical.epsilon_spec this },
-- the balls with indices `G k` satisfy the characteristic property of satellite configurations.
have Gab : ∀ (a b : fin (nat.succ N)), G a < G b →
p.r (p.index (G a)) ≤ dist (p.c (p.index (G a))) (p.c (p.index (G b)))
∧ p.r (p.index (G b)) ≤ p.τ * p.r (p.index (G a)),
{ assume a b G_lt,
have ha : (a : ℕ) ≤ N := nat.lt_succ_iff.1 a.2,
have hb : (b : ℕ) ≤ N := nat.lt_succ_iff.1 b.2,
split,
{ have := (fGn b hb).1,
simp only [Union_up_to, not_exists, exists_prop, mem_Union, mem_closed_ball, not_and,
not_le, subtype.exists, subtype.coe_mk] at this,
simpa only [dist_comm, mem_ball, not_lt] using this (G a) G_lt },
{ apply le_trans _ (fGn a ha).2,
have B : p.c (p.index (G b)) ∉ p.Union_up_to (G a),
{ assume H, exact (fGn b hb).1 (p.monotone_Union_up_to G_lt.le H) },
let b' : {t // p.c t ∉ p.Union_up_to (G a)} := ⟨p.index (G b), B⟩,
apply @le_csupr _ _ _ (λ t : {t // p.c t ∉ p.Union_up_to (G a)}, p.r t) _ b',
refine ⟨p.r_bound, λ t ht, _⟩,
simp only [exists_prop, mem_range, subtype.exists, subtype.coe_mk] at ht,
rcases ht with ⟨u, hu⟩,
rw ← hu.2,
exact p.r_le _ } },
-- therefore, one may use them to construct a satellite configuration with `N+1` points
let sc : satellite_config α N p.τ :=
{ c := λ k, p.c (p.index (G k)),
r := λ k, p.r (p.index (G k)),
rpos := λ k, p.rpos (p.index (G k)),
h := begin
assume a b a_ne_b,
wlog G_le : G a ≤ G b := le_total (G a) (G b) using [a b, b a] tactic.skip,
{ have G_lt : G a < G b,
{ rcases G_le.lt_or_eq with H|H, { exact H },
have A : (a : ℕ) ≠ b := fin.coe_injective.ne a_ne_b,
rw [← color_G a (nat.lt_succ_iff.1 a.2), ← color_G b (nat.lt_succ_iff.1 b.2), H] at A,
exact (A rfl).elim },
exact or.inl (Gab a b G_lt) },
{ assume a_ne_b,
rw or_comm,
exact this a_ne_b.symm }
end,
hlast := begin
assume a ha,
have I : (a : ℕ) < N := ha,
have : G a < G (fin.last N), by { dsimp [G], simp [I.ne, (hg a I).1] },
exact Gab _ _ this,
end,
inter := begin
assume a ha,
have I : (a : ℕ) < N := ha,
have J : G (fin.last N) = i, by { dsimp [G], simp only [if_true, eq_self_iff_true], },
have K : G a = g a, { dsimp [G], simp [I.ne, (hg a I).1] },
convert dist_le_add_of_nonempty_closed_ball_inter_closed_ball (hg _ I).2.1,
end },
-- this is a contradiction
exact (hN.false : _) sc
end
end tau_package
open tau_package
/-- The topological Besicovitch covering theorem: there exist finitely many families of disjoint
balls covering all the centers in a package. More specifically, one can use `N` families if there
are no satellite configurations with `N+1` points. -/
theorem exist_disjoint_covering_families {N : ℕ} {τ : ℝ}
(hτ : 1 < τ) (hN : is_empty (satellite_config α N τ)) (q : ball_package β α) :
∃ s : fin N → set β,
(∀ (i : fin N), (s i).pairwise_disjoint (λ j, closed_ball (q.c j) (q.r j))) ∧
(range q.c ⊆ ⋃ (i : fin N), ⋃ (j ∈ s i), ball (q.c j) (q.r j)) :=
begin
-- first exclude the trivial case where `β` is empty (we need non-emptiness for the transfinite
-- induction, to be able to choose garbage when there is no point left).
casesI is_empty_or_nonempty β,
{ refine ⟨λ i, ∅, λ i, pairwise_disjoint_empty, _⟩,
rw [← image_univ, eq_empty_of_is_empty (univ : set β)],
simp },
-- Now, assume `β` is nonempty.
let p : tau_package β α := { τ := τ, one_lt_tau := hτ, .. q },
-- we use for `s i` the balls of color `i`.
let s := λ (i : fin N),
⋃ (k : ordinal.{u}) (hk : k < p.last_step) (h'k : p.color k = i), ({p.index k} : set β),
refine ⟨s, λ i, _, _⟩,
{ -- show that balls of the same color are disjoint
assume x hx y hy x_ne_y,
obtain ⟨jx, jx_lt, jxi, rfl⟩ :
∃ (jx : ordinal), jx < p.last_step ∧ p.color jx = i ∧ x = p.index jx,
by simpa only [exists_prop, mem_Union, mem_singleton_iff] using hx,
obtain ⟨jy, jy_lt, jyi, rfl⟩ :
∃ (jy : ordinal), jy < p.last_step ∧ p.color jy = i ∧ y = p.index jy,
by simpa only [exists_prop, mem_Union, mem_singleton_iff] using hy,
wlog jxy : jx ≤ jy := le_total jx jy using [jx jy, jy jx] tactic.skip,
swap,
{ assume h1 h2 h3 h4 h5 h6 h7,
rw [function.on_fun, disjoint.comm],
exact this h4 h5 h6 h1 h2 h3 h7.symm },
replace jxy : jx < jy,
by { rcases lt_or_eq_of_le jxy with H|rfl, { exact H }, { exact (x_ne_y rfl).elim } },
let A : set ℕ := ⋃ (j : {j // j < jy})
(hj : (closed_ball (p.c (p.index j)) (p.r (p.index j))
∩ closed_ball (p.c (p.index jy)) (p.r (p.index jy))).nonempty), {p.color j},
have color_j : p.color jy = Inf (univ \ A), by rw [tau_package.color],
have : p.color jy ∈ univ \ A,
{ rw color_j,
apply Inf_mem,
refine ⟨N, _⟩,
simp only [not_exists, true_and, exists_prop, mem_Union, mem_singleton_iff, not_and, mem_univ,
mem_diff, subtype.exists, subtype.coe_mk],
assume k hk H,
exact (p.color_lt (hk.trans jy_lt) hN).ne' },
simp only [not_exists, true_and, exists_prop, mem_Union, mem_singleton_iff, not_and, mem_univ,
mem_diff, subtype.exists, subtype.coe_mk] at this,
specialize this jx jxy,
contrapose! this,
simpa only [jxi, jyi, and_true, eq_self_iff_true, ← not_disjoint_iff_nonempty_inter] },
{ -- show that the balls of color at most `N` cover every center.
refine range_subset_iff.2 (λ b, _),
obtain ⟨a, ha⟩ :
∃ (a : ordinal), a < p.last_step ∧ dist (p.c b) (p.c (p.index a)) < p.r (p.index a),
by simpa only [Union_up_to, exists_prop, mem_Union, mem_ball, subtype.exists, subtype.coe_mk]
using p.mem_Union_up_to_last_step b,
simp only [exists_prop, mem_Union, mem_ball, mem_singleton_iff, bUnion_and', exists_eq_left,
Union_exists, exists_and_distrib_left],
exact ⟨⟨p.color a, p.color_lt ha.1 hN⟩, a, rfl, ha⟩ }
end
/-!
### The measurable Besicovitch covering theorem
-/
open_locale nnreal
variables [second_countable_topology α] [measurable_space α] [opens_measurable_space α]
/-- Consider, for each `x` in a set `s`, a radius `r x ∈ (0, 1]`. Then one can find finitely
many disjoint balls of the form `closed_ball x (r x)` covering a proportion `1/(N+1)` of `s`, if
there are no satellite configurations with `N+1` points.
-/
lemma exist_finset_disjoint_balls_large_measure
(μ : measure α) [is_finite_measure μ] {N : ℕ} {τ : ℝ}
(hτ : 1 < τ) (hN : is_empty (satellite_config α N τ)) (s : set α)
(r : α → ℝ) (rpos : ∀ x ∈ s, 0 < r x) (rle : ∀ x ∈ s, r x ≤ 1) :
∃ (t : finset α), (↑t ⊆ s) ∧ μ (s \ (⋃ (x ∈ t), closed_ball x (r x))) ≤ N/(N+1) * μ s
∧ (t : set α).pairwise_disjoint (λ x, closed_ball x (r x)) :=
begin
-- exclude the trivial case where `μ s = 0`.
rcases le_or_lt (μ s) 0 with hμs|hμs,
{ have : μ s = 0 := le_bot_iff.1 hμs,
refine ⟨∅, by simp only [finset.coe_empty, empty_subset], _, _⟩,
{ simp only [this, diff_empty, Union_false, Union_empty, nonpos_iff_eq_zero, mul_zero] },
{ simp only [finset.coe_empty, pairwise_disjoint_empty], } },
casesI is_empty_or_nonempty α,
{ simp only [eq_empty_of_is_empty s, measure_empty] at hμs,
exact (lt_irrefl _ hμs).elim },
have Npos : N ≠ 0,
{ unfreezingI { rintros rfl },
inhabit α,
exact (not_is_empty_of_nonempty _) hN },
-- introduce a measurable superset `o` with the same measure, for measure computations
obtain ⟨o, so, omeas, μo⟩ : ∃ (o : set α), s ⊆ o ∧ measurable_set o ∧ μ o = μ s :=
exists_measurable_superset μ s,
/- We will apply the topological Besicovitch theorem, giving `N` disjoint subfamilies of balls
covering `s`. Among these, one of them covers a proportion at least `1/N` of `s`. A large
enough finite subfamily will then cover a proportion at least `1/(N+1)`. -/
let a : ball_package s α :=
{ c := λ x, x,
r := λ x, r x,
rpos := λ x, rpos x x.2,
r_bound := 1,
r_le := λ x, rle x x.2 },
rcases exist_disjoint_covering_families hτ hN a with ⟨u, hu, hu'⟩,
have u_count : ∀ i, countable (u i),
{ assume i,
refine (hu i).countable_of_nonempty_interior (λ j hj, _),
have : (ball (j : α) (r j)).nonempty := nonempty_ball.2 (a.rpos _),
exact this.mono ball_subset_interior_closed_ball },
let v : fin N → set α := λ i, ⋃ (x : s) (hx : x ∈ u i), closed_ball x (r x),
have : ∀ i, measurable_set (v i) :=
λ i, measurable_set.bUnion (u_count i) (λ b hb, measurable_set_closed_ball),
have A : s = ⋃ (i : fin N), s ∩ v i,
{ refine subset.antisymm _ (Union_subset (λ i, inter_subset_left _ _)),
assume x hx,
obtain ⟨i, y, hxy, h'⟩ : ∃ (i : fin N) (i_1 : ↥s) (i : i_1 ∈ u i), x ∈ ball ↑i_1 (r ↑i_1),
{ have : x ∈ range a.c, by simpa only [subtype.range_coe_subtype, set_of_mem_eq],
simpa only [mem_Union] using hu' this },
refine mem_Union.2 ⟨i, ⟨hx, _⟩⟩,
simp only [v, exists_prop, mem_Union, set_coe.exists, exists_and_distrib_right, subtype.coe_mk],
exact ⟨y, ⟨y.2, by simpa only [subtype.coe_eta]⟩, ball_subset_closed_ball h'⟩ },
have S : ∑ (i : fin N), μ s / N ≤ ∑ i, μ (s ∩ v i) := calc
∑ (i : fin N), μ s / N = μ s : begin
simp only [finset.card_fin, finset.sum_const, nsmul_eq_mul],
rw ennreal.mul_div_cancel',
{ simp only [Npos, ne.def, nat.cast_eq_zero, not_false_iff] },
{ exact ennreal.coe_nat_ne_top }
end
... ≤ ∑ i, μ (s ∩ v i) : by { conv_lhs { rw A }, apply measure_Union_fintype_le },
-- choose an index `i` of a subfamily covering at least a proportion `1/N` of `s`.
obtain ⟨i, -, hi⟩ : ∃ (i : fin N) (hi : i ∈ finset.univ), μ s / N ≤ μ (s ∩ v i),
{ apply ennreal.exists_le_of_sum_le _ S,
exact ⟨⟨0, bot_lt_iff_ne_bot.2 Npos⟩, finset.mem_univ _⟩ },
replace hi : μ s / (N + 1) < μ (s ∩ v i),
{ apply lt_of_lt_of_le _ hi,
apply (ennreal.mul_lt_mul_left hμs.ne' (measure_lt_top μ s).ne).2,
rw ennreal.inv_lt_inv,
conv_lhs {rw ← add_zero (N : ℝ≥0∞) },
exact ennreal.add_lt_add_left (ennreal.nat_ne_top N) ennreal.zero_lt_one },
have B : μ (o ∩ v i) = ∑' (x : u i), μ (o ∩ closed_ball x (r x)),
{ have : o ∩ v i = ⋃ (x : s) (hx : x ∈ u i), o ∩ closed_ball x (r x), by simp only [inter_Union],
rw [this, measure_bUnion (u_count i)],
{ refl },
{ exact (hu i).mono (λ k, inter_subset_right _ _) },
{ exact λ b hb, omeas.inter measurable_set_closed_ball } },
-- A large enough finite subfamily of `u i` will also cover a proportion `> 1/(N+1)` of `s`.
-- Since `s` might not be measurable, we express this in terms of the measurable superset `o`.
obtain ⟨w, hw⟩ : ∃ (w : finset (u i)),
μ s / (N + 1) < ∑ (x : u i) in w, μ (o ∩ closed_ball (x : α) (r (x : α))),
{ have C : has_sum (λ (x : u i), μ (o ∩ closed_ball x (r x))) (μ (o ∩ v i)),
by { rw B, exact ennreal.summable.has_sum },
have : μ s / (N+1) < μ (o ∩ v i) :=
hi.trans_le (measure_mono (inter_subset_inter_left _ so)),
exact ((tendsto_order.1 C).1 _ this).exists },
-- Bring back the finset `w i` of `↑(u i)` to a finset of `α`, and check that it works by design.
refine ⟨finset.image (λ (x : u i), x) w, _, _, _⟩,
-- show that the finset is included in `s`.
{ simp only [image_subset_iff, coe_coe, finset.coe_image],
assume y hy,
simp only [subtype.coe_prop, mem_preimage] },
-- show that it covers a large enough proportion of `s`. For measure computations, we do not
-- use `s` (which might not be measurable), but its measurable superset `o`. Since their measures
-- are the same, this does not spoil the estimates
{ suffices H : μ (o \ ⋃ x ∈ w, closed_ball ↑x (r ↑x)) ≤ N/(N+1) * μ s,
{ rw [finset.set_bUnion_finset_image],
exact le_trans (measure_mono (diff_subset_diff so (subset.refl _))) H },
rw [← diff_inter_self_eq_diff,
measure_diff_le_iff_le_add _ (inter_subset_right _ _) ((measure_lt_top μ _).ne)], swap,
{ apply measurable_set.inter _ omeas,
haveI : encodable (u i) := (u_count i).to_encodable,
exact measurable_set.Union
(λ b, measurable_set.Union_Prop (λ hb, measurable_set_closed_ball)) },
calc
μ o = 1/(N+1) * μ s + N/(N+1) * μ s :
by { rw [μo, ← add_mul, ennreal.div_add_div_same, add_comm, ennreal.div_self, one_mul]; simp }
... ≤ μ ((⋃ (x ∈ w), closed_ball ↑x (r ↑x)) ∩ o) + N/(N+1) * μ s : begin
refine add_le_add _ le_rfl,
rw [div_eq_mul_inv, one_mul, mul_comm, ← div_eq_mul_inv],
apply hw.le.trans (le_of_eq _),
rw [← finset.set_bUnion_coe, inter_comm _ o, inter_Union₂, finset.set_bUnion_coe,
measure_bUnion_finset],
{ have : (w : set (u i)).pairwise_disjoint (λ (b : u i), closed_ball (b : α) (r (b : α))),
by { assume k hk l hl hkl, exact hu i k.2 l.2 (subtype.coe_injective.ne hkl) },
exact this.mono (λ k, inter_subset_right _ _) },
{ assume b hb,
apply omeas.inter measurable_set_closed_ball }
end },
-- show that the balls are disjoint
{ assume k hk l hl hkl,
obtain ⟨k', k'w, rfl⟩ : ∃ (k' : u i), k' ∈ w ∧ ↑↑k' = k,
by simpa only [mem_image, finset.mem_coe, coe_coe, finset.coe_image] using hk,
obtain ⟨l', l'w, rfl⟩ : ∃ (l' : u i), l' ∈ w ∧ ↑↑l' = l,
by simpa only [mem_image, finset.mem_coe, coe_coe, finset.coe_image] using hl,
have k'nel' : (k' : s) ≠ l',
by { assume h, rw h at hkl, exact hkl rfl },
exact hu i k'.2 l'.2 k'nel' }
end
variable [has_besicovitch_covering α]
/-- The measurable Besicovitch covering theorem. Assume that, for any `x` in a set `s`,
one is given a set of admissible closed balls centered at `x`, with arbitrarily small radii.
Then there exists a disjoint covering of almost all `s` by admissible closed balls centered at some
points of `s`.
This version requires that the underlying measure is finite, and that the space has the Besicovitch
covering property (which is satisfied for instance by normed real vector spaces). It expresses the
conclusion in a slightly awkward form (with a subset of `α × ℝ`) coming from the proof technique.
For a version assuming that the measure is sigma-finite,
see `exists_disjoint_closed_ball_covering_ae_aux`.
For a version giving the conclusion in a nicer form, see `exists_disjoint_closed_ball_covering_ae`.
-/
theorem exists_disjoint_closed_ball_covering_ae_of_finite_measure_aux
(μ : measure α) [is_finite_measure μ]
(f : α → set ℝ) (s : set α) (hf : ∀ x ∈ s, ∀ δ > 0, (f x ∩ Ioo 0 δ).nonempty) :
∃ (t : set (α × ℝ)), (countable t)
∧ (∀ (p : α × ℝ), p ∈ t → p.1 ∈ s) ∧ (∀ (p : α × ℝ), p ∈ t → p.2 ∈ f p.1)
∧ μ (s \ (⋃ (p : α × ℝ) (hp : p ∈ t), closed_ball p.1 p.2)) = 0
∧ t.pairwise_disjoint (λ p, closed_ball p.1 p.2) :=
begin
rcases has_besicovitch_covering.no_satellite_config α with ⟨N, τ, hτ, hN⟩,
/- Introduce a property `P` on finsets saying that we have a nice disjoint covering of a
subset of `s` by admissible balls. -/
let P : finset (α × ℝ) → Prop := λ t,
(t : set (α × ℝ)).pairwise_disjoint (λ p, closed_ball p.1 p.2) ∧
(∀ (p : α × ℝ), p ∈ t → p.1 ∈ s) ∧ (∀ (p : α × ℝ), p ∈ t → p.2 ∈ f p.1),
/- Given a finite good covering of a subset `s`, one can find a larger finite good covering,
covering additionally a proportion at least `1/(N+1)` of leftover points. This follows from
`exist_finset_disjoint_balls_large_measure` applied to balls not intersecting the initial
covering. -/
have : ∀ (t : finset (α × ℝ)), P t → ∃ (u : finset (α × ℝ)), t ⊆ u ∧ P u ∧
μ (s \ (⋃ (p : α × ℝ) (hp : p ∈ u), closed_ball p.1 p.2)) ≤
N/(N+1) * μ (s \ (⋃ (p : α × ℝ) (hp : p ∈ t), closed_ball p.1 p.2)),
{ assume t ht,
set B := ⋃ (p : α × ℝ) (hp : p ∈ t), closed_ball p.1 p.2 with hB,
have B_closed : is_closed B :=
is_closed_bUnion (finset.finite_to_set _) (λ i hi, is_closed_ball),
set s' := s \ B with hs',
have : ∀ x ∈ s', ∃ r ∈ f x ∩ Ioo 0 1, disjoint B (closed_ball x r),
{ assume x hx,
have xs : x ∈ s := ((mem_diff x).1 hx).1,
rcases eq_empty_or_nonempty B with hB|hB,
{ have : (0 : ℝ) < 1 := zero_lt_one,
rcases hf x xs 1 zero_lt_one with ⟨r, hr, h'r⟩,
exact ⟨r, ⟨hr, h'r⟩, by simp only [hB, empty_disjoint]⟩ },
{ let R := inf_dist x B,
have : 0 < min R 1 :=
lt_min ((B_closed.not_mem_iff_inf_dist_pos hB).1 ((mem_diff x).1 hx).2) zero_lt_one,
rcases hf x xs _ this with ⟨r, hr, h'r⟩,
refine ⟨r, ⟨hr, ⟨h'r.1, h'r.2.trans_le (min_le_right _ _)⟩⟩, _⟩,
rw disjoint.comm,
exact disjoint_closed_ball_of_lt_inf_dist (h'r.2.trans_le (min_le_left _ _)) } },
choose! r hr using this,
obtain ⟨v, vs', hμv, hv⟩ : ∃ (v : finset α), ↑v ⊆ s'
∧ μ (s' \ ⋃ (x ∈ v), closed_ball x (r x)) ≤ N/(N+1) * μ s'
∧ (v : set α).pairwise_disjoint (λ (x : α), closed_ball x (r x)),
{ have rI : ∀ x ∈ s', r x ∈ Ioo (0 : ℝ) 1 := λ x hx, (hr x hx).1.2,
exact exist_finset_disjoint_balls_large_measure μ hτ hN s' r (λ x hx, (rI x hx).1)
(λ x hx, (rI x hx).2.le) },
refine ⟨t ∪ (finset.image (λ x, (x, r x)) v), finset.subset_union_left _ _, ⟨_, _, _⟩, _⟩,
{ simp only [finset.coe_union, pairwise_disjoint_union, ht.1, true_and, finset.coe_image],
split,
{ assume p hp q hq hpq,
rcases (mem_image _ _ _).1 hp with ⟨p', p'v, rfl⟩,
rcases (mem_image _ _ _).1 hq with ⟨q', q'v, rfl⟩,
refine hv p'v q'v (λ hp'q', _),
rw [hp'q'] at hpq,
exact hpq rfl },
{ assume p hp q hq hpq,
rcases (mem_image _ _ _).1 hq with ⟨q', q'v, rfl⟩,
apply disjoint_of_subset_left _ (hr q' (vs' q'v)).2,
rw [hB, ← finset.set_bUnion_coe],
exact subset_bUnion_of_mem hp } },
{ assume p hp,
rcases finset.mem_union.1 hp with h'p|h'p,
{ exact ht.2.1 p h'p },
{ rcases finset.mem_image.1 h'p with ⟨p', p'v, rfl⟩,
exact ((mem_diff _).1 (vs' (finset.mem_coe.2 p'v))).1 } },
{ assume p hp,
rcases finset.mem_union.1 hp with h'p|h'p,
{ exact ht.2.2 p h'p },
{ rcases finset.mem_image.1 h'p with ⟨p', p'v, rfl⟩,
exact (hr p' (vs' p'v)).1.1 } },
{ convert hμv using 2,
rw [finset.set_bUnion_union, ← diff_diff, finset.set_bUnion_finset_image] } },
/- Define `F` associating to a finite good covering the above enlarged good covering, covering
a proportion `1/(N+1)` of leftover points. Iterating `F`, one will get larger and larger good
coverings, missing in the end only a measure-zero set. -/
choose! F hF using this,
let u := λ n, F^[n] ∅,
have u_succ : ∀ (n : ℕ), u n.succ = F (u n) :=
λ n, by simp only [u, function.comp_app, function.iterate_succ'],
have Pu : ∀ n, P (u n),
{ assume n,
induction n with n IH,
{ simp only [u, P, prod.forall, id.def, function.iterate_zero],
simp only [finset.not_mem_empty, forall_false_left, finset.coe_empty, forall_2_true_iff,
and_self, pairwise_disjoint_empty] },
{ rw u_succ,
exact (hF (u n) IH).2.1 } },
refine ⟨⋃ n, u n, countable_Union (λ n, (u n).countable_to_set), _, _, _, _⟩,
{ assume p hp,
rcases mem_Union.1 hp with ⟨n, hn⟩,
exact (Pu n).2.1 p (finset.mem_coe.1 hn) },
{ assume p hp,
rcases mem_Union.1 hp with ⟨n, hn⟩,
exact (Pu n).2.2 p (finset.mem_coe.1 hn) },
{ have A : ∀ n, μ (s \ ⋃ (p : α × ℝ) (hp : p ∈ ⋃ (n : ℕ), (u n : set (α × ℝ))),
closed_ball p.fst p.snd)
≤ μ (s \ ⋃ (p : α × ℝ) (hp : p ∈ u n), closed_ball p.fst p.snd),
{ assume n,
apply measure_mono,
apply diff_subset_diff (subset.refl _),
exact bUnion_subset_bUnion_left (subset_Union (λ i, (u i : set (α × ℝ))) n) },
have B : ∀ n, μ (s \ ⋃ (p : α × ℝ) (hp : p ∈ u n), closed_ball p.fst p.snd)
≤ (N/(N+1))^n * μ s,
{ assume n,
induction n with n IH,
{ simp only [le_refl, diff_empty, one_mul, Union_false, Union_empty, pow_zero] },
calc
μ (s \ ⋃ (p : α × ℝ) (hp : p ∈ u n.succ), closed_ball p.fst p.snd)
≤ (N/(N+1)) * μ (s \ ⋃ (p : α × ℝ) (hp : p ∈ u n), closed_ball p.fst p.snd) :
by { rw u_succ, exact (hF (u n) (Pu n)).2.2 }
... ≤ (N/(N+1))^n.succ * μ s :
by { rw [pow_succ, mul_assoc], exact ennreal.mul_le_mul le_rfl IH } },
have C : tendsto (λ (n : ℕ), ((N : ℝ≥0∞)/(N+1))^n * μ s) at_top (𝓝 (0 * μ s)),
{ apply ennreal.tendsto.mul_const _ (or.inr (measure_lt_top μ s).ne),
apply ennreal.tendsto_pow_at_top_nhds_0_of_lt_1,
rw [ennreal.div_lt_iff, one_mul],
{ conv_lhs {rw ← add_zero (N : ℝ≥0∞) },
exact ennreal.add_lt_add_left (ennreal.nat_ne_top N) ennreal.zero_lt_one },
{ simp only [true_or, add_eq_zero_iff, ne.def, not_false_iff, one_ne_zero, and_false] },
{ simp only [ennreal.nat_ne_top, ne.def, not_false_iff, or_true] } },
rw zero_mul at C,
apply le_bot_iff.1,
exact le_of_tendsto_of_tendsto' tendsto_const_nhds C (λ n, (A n).trans (B n)) },
{ refine (pairwise_disjoint_Union _).2 (λ n, (Pu n).1),
apply (monotone_nat_of_le_succ (λ n, _)).directed_le,
rw u_succ,
exact (hF (u n) (Pu n)).1 }
end
/-- The measurable Besicovitch covering theorem. Assume that, for any `x` in a set `s`,
one is given a set of admissible closed balls centered at `x`, with arbitrarily small radii.
Then there exists a disjoint covering of almost all `s` by admissible closed balls centered at some
points of `s`.
This version requires that the underlying measure is sigma-finite, and that the space has the
Besicovitch covering property (which is satisfied for instance by normed real vector spaces).
It expresses the conclusion in a slightly awkward form (with a subset of `α × ℝ`) coming from the
proof technique.
For a version giving the conclusion in a nicer form, see `exists_disjoint_closed_ball_covering_ae`.
-/
theorem exists_disjoint_closed_ball_covering_ae_aux (μ : measure α) [sigma_finite μ]
(f : α → set ℝ) (s : set α) (hf : ∀ x ∈ s, ∀ δ > 0, (f x ∩ Ioo 0 δ).nonempty) :
∃ (t : set (α × ℝ)), (countable t)
∧ (∀ (p : α × ℝ), p ∈ t → p.1 ∈ s) ∧ (∀ (p : α × ℝ), p ∈ t → p.2 ∈ f p.1)
∧ μ (s \ (⋃ (p : α × ℝ) (hp : p ∈ t), closed_ball p.1 p.2)) = 0
∧ t.pairwise_disjoint (λ p, closed_ball p.1 p.2) :=
begin
/- This is deduced from the finite measure case, by using a finite measure with respect to which
the initial sigma-finite measure is absolutely continuous. -/
unfreezingI { rcases exists_absolutely_continuous_is_finite_measure μ with ⟨ν, hν, hμν⟩ },
rcases exists_disjoint_closed_ball_covering_ae_of_finite_measure_aux ν f s hf
with ⟨t, t_count, ts, tr, tν, tdisj⟩,
exact ⟨t, t_count, ts, tr, hμν tν, tdisj⟩,
end
/-- The measurable Besicovitch covering theorem. Assume that, for any `x` in a set `s`,
one is given a set of admissible closed balls centered at `x`, with arbitrarily small radii.
Then there exists a disjoint covering of almost all `s` by admissible closed balls centered at some
points of `s`. We can even require that the radius at `x` is bounded by a given function `R x`.
(Take `R = 1` if you don't need this additional feature).
This version requires that the underlying measure is sigma-finite, and that the space has the
Besicovitch covering property (which is satisfied for instance by normed real vector spaces).
-/
theorem exists_disjoint_closed_ball_covering_ae (μ : measure α) [sigma_finite μ]
(f : α → set ℝ) (s : set α) (hf : ∀ x ∈ s, ∀ δ > 0, (f x ∩ Ioo 0 δ).nonempty)
(R : α → ℝ) (hR : ∀ x ∈ s, 0 < R x):
∃ (t : set α) (r : α → ℝ), countable t ∧ t ⊆ s ∧ (∀ x ∈ t, r x ∈ f x ∩ Ioo 0 (R x))
∧ μ (s \ (⋃ (x ∈ t), closed_ball x (r x))) = 0
∧ t.pairwise_disjoint (λ x, closed_ball x (r x)) :=
begin
let g := λ x, f x ∩ Ioo 0 (R x),
have hg : ∀ x ∈ s, ∀ δ > 0, (g x ∩ Ioo 0 δ).nonempty,
{ assume x hx δ δpos,
rcases hf x hx (min δ (R x)) (lt_min δpos (hR x hx)) with ⟨r, hr⟩,
exact ⟨r, ⟨⟨hr.1, hr.2.1, hr.2.2.trans_le (min_le_right _ _)⟩,
⟨hr.2.1, hr.2.2.trans_le (min_le_left _ _)⟩⟩⟩ },
rcases exists_disjoint_closed_ball_covering_ae_aux μ g s hg
with ⟨v, v_count, vs, vg, μv, v_disj⟩,
let t := prod.fst '' v,
have : ∀ x ∈ t, ∃ (r : ℝ), (x, r) ∈ v,
{ assume x hx,
rcases (mem_image _ _ _).1 hx with ⟨⟨p, q⟩, hp, rfl⟩,
exact ⟨q, hp⟩ },
choose! r hr using this,
have im_t : (λ x, (x, r x)) '' t = v,
{ have I : ∀ (p : α × ℝ), p ∈ v → 0 ≤ p.2 :=
λ p hp, (vg p hp).2.1.le,
apply subset.antisymm,
{ simp only [image_subset_iff],
rintros ⟨x, p⟩ hxp,
simp only [mem_preimage],
exact hr _ (mem_image_of_mem _ hxp) },
{ rintros ⟨x, p⟩ hxp,
have hxrx : (x, r x) ∈ v := hr _ (mem_image_of_mem _ hxp),
have : p = r x,
{ by_contra,
have A : (x, p) ≠ (x, r x),
by simpa only [true_and, prod.mk.inj_iff, eq_self_iff_true, ne.def] using h,
have H := v_disj hxp hxrx A,
contrapose H,
rw not_disjoint_iff_nonempty_inter,
refine ⟨x, by simp [I _ hxp, I _ hxrx]⟩ },
rw this,
apply mem_image_of_mem,
exact mem_image_of_mem _ hxp } },
refine ⟨t, r, v_count.image _, _, _, _, _⟩,
{ assume x hx,
rcases (mem_image _ _ _).1 hx with ⟨⟨p, q⟩, hp, rfl⟩,
exact vs _ hp },
{ assume x hx,
rcases (mem_image _ _ _).1 hx with ⟨⟨p, q⟩, hp, rfl⟩,
exact vg _ (hr _ hx) },
{ have : (⋃ (x : α) (H : x ∈ t), closed_ball x (r x)) =
(⋃ (p : α × ℝ) (H : p ∈ (λ x, (x, r x)) '' t), closed_ball p.1 p.2),
by conv_rhs { rw bUnion_image },
rw [this, im_t],
exact μv },
{ have A : inj_on (λ x : α, (x, r x)) t,
by simp only [inj_on, prod.mk.inj_iff, implies_true_iff, eq_self_iff_true] {contextual := tt},
rwa [← im_t, A.pairwise_disjoint_image] at v_disj }
end
/-- In a space with the Besicovitch property, any set `s` can be covered with balls whose measures
add up to at most `μ s + ε`, for any positive `ε`. This works even if one restricts the set of
allowed radii around a point `x` to a set `f x` which accumulates at `0`. -/
theorem exists_closed_ball_covering_tsum_measure_le
(μ : measure α) [sigma_finite μ] [measure.outer_regular μ]
{ε : ℝ≥0∞} (hε : ε ≠ 0) (f : α → set ℝ) (s : set α)
(hf : ∀ x ∈ s, ∀ δ > 0, (f x ∩ Ioo 0 δ).nonempty) :
∃ (t : set α) (r : α → ℝ), countable t ∧ t ⊆ s ∧ (∀ x ∈ t, r x ∈ f x)
∧ s ⊆ (⋃ (x ∈ t), closed_ball x (r x))
∧ ∑' (x : t), μ (closed_ball x (r x)) ≤ μ s + ε :=
begin
/- For the proof, first cover almost all `s` with disjoint balls thanks to the usual Besicovitch
theorem. Taking the balls included in a well-chosen open neighborhood `u` of `s`, one may
ensure that their measures add at most to `μ s + ε / 2`. Let `s'` be the remaining set, of measure
`0`. Applying the other version of Besicovitch, one may cover it with at most `N` disjoint
subfamilies. Making sure that they are all included in a neighborhood `v` of `s'` of measure at
most `ε / (2 N)`, the sum of their measures is at most `ε / 2`, completing the proof. -/
obtain ⟨u, su, u_open, μu⟩ : ∃ U ⊇ s, is_open U ∧ μ U ≤ μ s + ε / 2 :=
set.exists_is_open_le_add _ _ (by simpa only [or_false, ne.def, ennreal.div_zero_iff,
ennreal.one_ne_top, ennreal.bit0_eq_top_iff] using hε),
have : ∀ x ∈ s, ∃ R > 0, ball x R ⊆ u :=
λ x hx, metric.mem_nhds_iff.1 (u_open.mem_nhds (su hx)),
choose! R hR using this,
obtain ⟨t0, r0, t0_count, t0s, hr0, μt0, t0_disj⟩ :
∃ (t0 : set α) (r0 : α → ℝ), countable t0 ∧ t0 ⊆ s ∧ (∀ x ∈ t0, r0 x ∈ f x ∩ Ioo 0 (R x))
∧ μ (s \ (⋃ (x ∈ t0), closed_ball x (r0 x))) = 0
∧ t0.pairwise_disjoint (λ x, closed_ball x (r0 x)) :=
exists_disjoint_closed_ball_covering_ae μ f s hf R (λ x hx, (hR x hx).1),
-- we have constructed an almost everywhere covering of `s` by disjoint balls. Let `s'` be the
-- remaining set.
let s' := s \ (⋃ (x ∈ t0), closed_ball x (r0 x)),
have s's : s' ⊆ s := diff_subset _ _,
obtain ⟨N, τ, hτ, H⟩ : ∃ N τ, 1 < τ ∧ is_empty (besicovitch.satellite_config α N τ) :=
has_besicovitch_covering.no_satellite_config α,
obtain ⟨v, s'v, v_open, μv⟩ : ∃ v ⊇ s', is_open v ∧ μ v ≤ μ s' + (ε / 2) / N :=
set.exists_is_open_le_add _ _
(by simp only [hε, ennreal.nat_ne_top, with_top.mul_eq_top_iff, ne.def, ennreal.div_zero_iff,
ennreal.one_ne_top, not_false_iff, and_false, false_and, or_self, ennreal.bit0_eq_top_iff]),
have : ∀ x ∈ s', ∃ r1 ∈ (f x ∩ Ioo (0 : ℝ) 1), closed_ball x r1 ⊆ v,
{ assume x hx,
rcases metric.mem_nhds_iff.1 (v_open.mem_nhds (s'v hx)) with ⟨r, rpos, hr⟩,
rcases hf x (s's hx) (min r 1) (lt_min rpos zero_lt_one) with ⟨R', hR'⟩,
exact ⟨R', ⟨hR'.1, hR'.2.1, hR'.2.2.trans_le (min_le_right _ _)⟩,
subset.trans (closed_ball_subset_ball (hR'.2.2.trans_le (min_le_left _ _))) hr⟩, },
choose! r1 hr1 using this,
let q : ball_package s' α :=
{ c := λ x, x,
r := λ x, r1 x,
rpos := λ x, (hr1 x.1 x.2).1.2.1,
r_bound := 1,
r_le := λ x, (hr1 x.1 x.2).1.2.2.le },
-- by Besicovitch, we cover `s'` with at most `N` families of disjoint balls, all included in
-- a suitable neighborhood `v` of `s'`.
obtain ⟨S, S_disj, hS⟩ : ∃ S : fin N → set s',
(∀ (i : fin N), (S i).pairwise_disjoint (λ j, closed_ball (q.c j) (q.r j))) ∧
(range q.c ⊆ ⋃ (i : fin N), ⋃ (j ∈ S i), ball (q.c j) (q.r j)) :=
exist_disjoint_covering_families hτ H q,
have S_count : ∀ i, countable (S i),
{ assume i,
apply (S_disj i).countable_of_nonempty_interior (λ j hj, _),
have : (ball (j : α) (r1 j)).nonempty := nonempty_ball.2 (q.rpos _),
exact this.mono ball_subset_interior_closed_ball },
let r := λ x, if x ∈ s' then r1 x else r0 x,
have r_t0 : ∀ x ∈ t0, r x = r0 x,
{ assume x hx,
have : ¬ (x ∈ s'),
{ simp only [not_exists, exists_prop, mem_Union, mem_closed_ball, not_and, not_lt,
not_le, mem_diff, not_forall],
assume h'x,
refine ⟨x, hx, _⟩,
rw dist_self,
exact (hr0 x hx).2.1.le },
simp only [r, if_neg this] },
-- the desired covering set is given by the union of the families constructed in the first and
-- second steps.
refine ⟨t0 ∪ (⋃ (i : fin N), (coe : s' → α) '' (S i)), r, _, _, _, _, _⟩,
-- it remains to check that they have the desired properties
{ exact t0_count.union (countable_Union (λ i, (S_count i).image _)) },
{ simp only [t0s, true_and, union_subset_iff, image_subset_iff, Union_subset_iff],
assume i x hx,
exact s's x.2 },
{ assume x hx,
cases hx,
{ rw r_t0 x hx,
exact (hr0 _ hx).1 },
{ have h'x : x ∈ s',
{ simp only [mem_Union, mem_image] at hx,
rcases hx with ⟨i, y, ySi, rfl⟩,
exact y.2 },
simp only [r, if_pos h'x, (hr1 x h'x).1.1] } },
{ assume x hx,
by_cases h'x : x ∈ s',
{ obtain ⟨i, y, ySi, xy⟩ : ∃ (i : fin N) (y : ↥s') (ySi : y ∈ S i), x ∈ ball (y : α) (r1 y),
{ have A : x ∈ range q.c, by simpa only [not_exists, exists_prop, mem_Union, mem_closed_ball,
not_and, not_le, mem_set_of_eq, subtype.range_coe_subtype, mem_diff] using h'x,
simpa only [mem_Union, mem_image] using hS A },
refine mem_Union₂.2 ⟨y, or.inr _, _⟩,
{ simp only [mem_Union, mem_image],
exact ⟨i, y, ySi, rfl⟩ },
{ have : (y : α) ∈ s' := y.2,
simp only [r, if_pos this],
exact ball_subset_closed_ball xy } },
{ obtain ⟨y, yt0, hxy⟩ : ∃ (y : α), y ∈ t0 ∧ x ∈ closed_ball y (r0 y),
by simpa [hx, -mem_closed_ball] using h'x,
refine mem_Union₂.2 ⟨y, or.inl yt0, _⟩,
rwa r_t0 _ yt0 } },
-- the only nontrivial property is the measure control, which we check now
{ -- the sets in the first step have measure at most `μ s + ε / 2`
have A : ∑' (x : t0), μ (closed_ball x (r x)) ≤ μ s + ε / 2 := calc
∑' (x : t0), μ (closed_ball x (r x))
= ∑' (x : t0), μ (closed_ball x (r0 x)) :
by { congr' 1, ext x, rw r_t0 x x.2 }
... = μ (⋃ (x : t0), closed_ball x (r0 x)) :
begin
haveI : encodable t0 := t0_count.to_encodable,
rw measure_Union,
{ exact (pairwise_subtype_iff_pairwise_set _ _).2 t0_disj },
{ exact λ i, measurable_set_closed_ball }
end
... ≤ μ u :
begin
apply measure_mono,
simp only [set_coe.forall, subtype.coe_mk, Union_subset_iff],
assume x hx,
apply subset.trans (closed_ball_subset_ball (hr0 x hx).2.2) (hR x (t0s hx)).2,
end
... ≤ μ s + ε / 2 : μu,
-- each subfamily in the second step has measure at most `ε / (2 N)`.
have B : ∀ (i : fin N),
∑' (x : (coe : s' → α) '' (S i)), μ (closed_ball x (r x)) ≤ (ε / 2) / N := λ i, calc
∑' (x : (coe : s' → α) '' (S i)), μ (closed_ball x (r x)) =
∑' (x : S i), μ (closed_ball x (r x)) :
begin
have : inj_on (coe : s' → α) (S i) := subtype.coe_injective.inj_on _,
let F : S i ≃ (coe : s' → α) '' (S i) := this.bij_on_image.equiv _,
exact (F.tsum_eq (λ x, μ (closed_ball x (r x)))).symm,
end
... = ∑' (x : S i), μ (closed_ball x (r1 x)) :
by { congr' 1, ext x, have : (x : α) ∈ s' := x.1.2, simp only [r, if_pos this] }
... = μ (⋃ (x : S i), closed_ball x (r1 x)) :
begin
haveI : encodable (S i) := (S_count i).to_encodable,
rw measure_Union,
{ exact (pairwise_subtype_iff_pairwise_set _ _).2 (S_disj i) },
{ exact λ i, measurable_set_closed_ball }
end
... ≤ μ v :
begin
apply measure_mono,
simp only [set_coe.forall, subtype.coe_mk, Union_subset_iff],
assume x xs' xSi,
exact (hr1 x xs').2,
end
... ≤ (ε / 2) / N : by { have : μ s' = 0 := μt0, rwa [this, zero_add] at μv },
-- add up all these to prove the desired estimate
calc ∑' (x : (t0 ∪ ⋃ (i : fin N), (coe : s' → α) '' S i)), μ (closed_ball x (r x))
≤ ∑' (x : t0), μ (closed_ball x (r x))
+ ∑' (x : ⋃ (i : fin N), (coe : s' → α) '' S i), μ (closed_ball x (r x)) :
ennreal.tsum_union_le (λ x, μ (closed_ball x (r x))) _ _
... ≤ ∑' (x : t0), μ (closed_ball x (r x))
+ ∑ (i : fin N), ∑' (x : (coe : s' → α) '' S i), μ (closed_ball x (r x)) :
add_le_add le_rfl (ennreal.tsum_Union_le (λ x, μ (closed_ball x (r x))) _)
... ≤ (μ s + ε / 2) + ∑ (i : fin N), (ε / 2) / N :
begin
refine add_le_add A _,
refine finset.sum_le_sum _,
assume i hi,
exact B i
end
... ≤ (μ s + ε / 2) + ε / 2 :
begin
refine add_le_add le_rfl _,
simp only [finset.card_fin, finset.sum_const, nsmul_eq_mul, ennreal.mul_div_le],
end
... = μ s + ε : by rw [add_assoc, ennreal.add_halves] }
end
/-! ### Consequences on differentiation of measures -/
/-- In a space with the Besicovitch covering property, the set of closed balls with positive radius
forms a Vitali family. This is essentially a restatement of the measurable Besicovitch theorem. -/
protected def vitali_family (μ : measure α) [sigma_finite μ] :
vitali_family μ :=
{ sets_at := λ x, (λ (r : ℝ), closed_ball x r) '' (Ioi (0 : ℝ)),
measurable_set' := begin
assume x y hy,
obtain ⟨r, rpos, rfl⟩ : ∃ (r : ℝ), 0 < r ∧ closed_ball x r = y,
by simpa only [mem_image, mem_Ioi] using hy,
exact is_closed_ball.measurable_set
end,
nonempty_interior := begin
assume x y hy,
obtain ⟨r, rpos, rfl⟩ : ∃ (r : ℝ), 0 < r ∧ closed_ball x r = y,
by simpa only [mem_image, mem_Ioi] using hy,
simp only [nonempty.mono ball_subset_interior_closed_ball, rpos, nonempty_ball],
end,
nontrivial := λ x ε εpos, ⟨closed_ball x ε, mem_image_of_mem _ εpos, subset.refl _⟩,
covering := begin
assume s f fsubset ffine,
let g : α → set ℝ := λ x, {r | 0 < r ∧ closed_ball x r ∈ f x},
have A : ∀ x ∈ s, ∀ δ > 0, (g x ∩ Ioo 0 δ).nonempty,
{ assume x xs δ δpos,
obtain ⟨t, tf, ht⟩ : ∃ (t : set α) (H : t ∈ f x), t ⊆ closed_ball x (δ/2) :=
ffine x xs (δ/2) (half_pos δpos),
obtain ⟨r, rpos, rfl⟩ : ∃ (r : ℝ), 0 < r ∧ closed_ball x r = t,
by simpa using fsubset x xs tf,
rcases le_total r (δ/2) with H|H,
{ exact ⟨r, ⟨rpos, tf⟩, ⟨rpos, H.trans_lt (half_lt_self δpos)⟩⟩ },
{ have : closed_ball x r = closed_ball x (δ/2) :=
subset.antisymm ht (closed_ball_subset_closed_ball H),
rw this at tf,
refine ⟨δ/2, ⟨half_pos δpos, tf⟩, ⟨half_pos δpos, half_lt_self δpos⟩⟩ } },
obtain ⟨t, r, t_count, ts, tg, μt, tdisj⟩ : ∃ (t : set α) (r : α → ℝ), countable t
∧ t ⊆ s ∧ (∀ x ∈ t, r x ∈ g x ∩ Ioo 0 1)
∧ μ (s \ (⋃ (x ∈ t), closed_ball x (r x))) = 0
∧ t.pairwise_disjoint (λ x, closed_ball x (r x)) :=
exists_disjoint_closed_ball_covering_ae μ g s A (λ _, 1) (λ _ _, zero_lt_one),
exact ⟨t, λ x, closed_ball x (r x), ts, tdisj, λ x xt, (tg x xt).1.2, μt⟩,
end }
/-- The main feature of the Besicovitch Vitali family is that its filter at a point `x` corresponds
to convergence along closed balls. We record one of the two implications here, which will enable us
to deduce specific statements on differentiation of measures in this context from the general
versions. -/
lemma tendsto_filter_at (μ : measure α) [sigma_finite μ] (x : α) :
tendsto (λ r, closed_ball x r) (𝓝[>] 0) ((besicovitch.vitali_family μ).filter_at x) :=
begin
assume s hs,
simp only [mem_map],
obtain ⟨ε, εpos, hε⟩ : ∃ (ε : ℝ) (H : ε > 0), ∀ (a : set α),
a ∈ (besicovitch.vitali_family μ).sets_at x → a ⊆ closed_ball x ε → a ∈ s :=
(vitali_family.mem_filter_at_iff _).1 hs,
have : Ioc (0 : ℝ) ε ∈ 𝓝[>] (0 : ℝ) := Ioc_mem_nhds_within_Ioi ⟨le_rfl, εpos⟩,
filter_upwards [this] with _ hr,
apply hε,
{ exact mem_image_of_mem _ hr.1 },
{ exact closed_ball_subset_closed_ball hr.2 }
end
variables [metric_space β] [measurable_space β] [borel_space β] [sigma_compact_space β]
[has_besicovitch_covering β]
/-- In a space with the Besicovitch covering property, the ratio of the measure of balls converges
almost surely to to the Radon-Nikodym derivative. -/
lemma ae_tendsto_rn_deriv
(ρ μ : measure β) [is_locally_finite_measure μ] [is_locally_finite_measure ρ] :
∀ᵐ x ∂μ, tendsto (λ r, ρ (closed_ball x r) / μ (closed_ball x r))
(𝓝[>] 0) (𝓝 (ρ.rn_deriv μ x)) :=
begin
haveI : second_countable_topology β := emetric.second_countable_of_sigma_compact β,
filter_upwards [vitali_family.ae_tendsto_rn_deriv (besicovitch.vitali_family μ) ρ] with x hx,
exact hx.comp (tendsto_filter_at μ x)
end
/-- Given a measurable set `s`, then `μ (s ∩ closed_ball x r) / μ (closed_ball x r)` converges when
`r` tends to `0`, for almost every `x`. The limit is `1` for `x ∈ s` and `0` for `x ∉ s`.
This shows that almost every point of `s` is a Lebesgue density point for `s`.
A version for non-measurable sets holds, but it only gives the first conclusion,
see `ae_tendsto_measure_inter_div`. -/
lemma ae_tendsto_measure_inter_div_of_measurable_set
(μ : measure β) [is_locally_finite_measure μ] {s : set β} (hs : measurable_set s) :
∀ᵐ x ∂μ, tendsto (λ r, μ (s ∩ closed_ball x r) / μ (closed_ball x r))
(𝓝[>] 0) (𝓝 (s.indicator 1 x)) :=
begin
haveI : second_countable_topology β := emetric.second_countable_of_sigma_compact β,
filter_upwards [vitali_family.ae_tendsto_measure_inter_div_of_measurable_set
(besicovitch.vitali_family μ) hs],
assume x hx,
exact hx.comp (tendsto_filter_at μ x)
end
/-- Given an arbitrary set `s`, then `μ (s ∩ closed_ball x r) / μ (closed_ball x r)` converges
to `1` when `r` tends to `0`, for almost every `x` in `s`.
This shows that almost every point of `s` is a Lebesgue density point for `s`.
A stronger version holds for measurable sets, see `ae_tendsto_measure_inter_div_of_measurable_set`.
-/
lemma ae_tendsto_measure_inter_div (μ : measure β) [is_locally_finite_measure μ] (s : set β) :
∀ᵐ x ∂(μ.restrict s), tendsto (λ r, μ (s ∩ (closed_ball x r)) / μ (closed_ball x r))
(𝓝[>] 0) (𝓝 1) :=
begin
haveI : second_countable_topology β := emetric.second_countable_of_sigma_compact β,
filter_upwards [vitali_family.ae_tendsto_measure_inter_div (besicovitch.vitali_family μ)]
with x hx using hx.comp (tendsto_filter_at μ x),
end
end besicovitch
|
6b890d06ed1fa98771f5a1d7c7f91ca91ccbdfd9
|
d406927ab5617694ec9ea7001f101b7c9e3d9702
|
/src/algebra/direct_sum/basic.lean
|
3ebb86c9613d4d637be185a0838c863af418feed
|
[
"Apache-2.0"
] |
permissive
|
alreadydone/mathlib
|
dc0be621c6c8208c581f5170a8216c5ba6721927
|
c982179ec21091d3e102d8a5d9f5fe06c8fafb73
|
refs/heads/master
| 1,685,523,275,196
| 1,670,184,141,000
| 1,670,184,141,000
| 287,574,545
| 0
| 0
|
Apache-2.0
| 1,670,290,714,000
| 1,597,421,623,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 11,046
|
lean
|
/-
Copyright (c) 2019 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import data.dfinsupp.basic
import group_theory.submonoid.operations
/-!
# Direct sum
This file defines the direct sum of abelian groups, indexed by a discrete type.
## Notation
`⨁ i, β i` is the n-ary direct sum `direct_sum`.
This notation is in the `direct_sum` locale, accessible after `open_locale direct_sum`.
## References
* https://en.wikipedia.org/wiki/Direct_sum
-/
open_locale big_operators
universes u v w u₁
variables (ι : Type v) [dec_ι : decidable_eq ι] (β : ι → Type w)
/-- `direct_sum β` is the direct sum of a family of additive commutative monoids `β i`.
Note: `open_locale direct_sum` will enable the notation `⨁ i, β i` for `direct_sum β`. -/
@[derive [add_comm_monoid, inhabited]]
def direct_sum [Π i, add_comm_monoid (β i)] : Type* := Π₀ i, β i
instance [Π i, add_comm_monoid (β i)] : has_coe_to_fun (direct_sum ι β) (λ _, Π i : ι, β i) :=
dfinsupp.has_coe_to_fun
localized "notation (name := direct_sum)
`⨁` binders `, ` r:(scoped f, direct_sum _ f) := r" in direct_sum
namespace direct_sum
variables {ι}
section add_comm_group
variables [Π i, add_comm_group (β i)]
instance : add_comm_group (direct_sum ι β) := dfinsupp.add_comm_group
variables {β}
@[simp] lemma sub_apply (g₁ g₂ : ⨁ i, β i) (i : ι) : (g₁ - g₂) i = g₁ i - g₂ i := rfl
end add_comm_group
variables [Π i, add_comm_monoid (β i)]
@[simp] lemma zero_apply (i : ι) : (0 : ⨁ i, β i) i = 0 := rfl
variables {β}
@[simp] lemma add_apply (g₁ g₂ : ⨁ i, β i) (i : ι) : (g₁ + g₂) i = g₁ i + g₂ i := rfl
variables (β)
include dec_ι
/-- `mk β s x` is the element of `⨁ i, β i` that is zero outside `s`
and has coefficient `x i` for `i` in `s`. -/
def mk (s : finset ι) : (Π i : (↑s : set ι), β i.1) →+ ⨁ i, β i :=
{ to_fun := dfinsupp.mk s,
map_add' := λ _ _, dfinsupp.mk_add,
map_zero' := dfinsupp.mk_zero, }
/-- `of i` is the natural inclusion map from `β i` to `⨁ i, β i`. -/
def of (i : ι) : β i →+ ⨁ i, β i :=
dfinsupp.single_add_hom β i
@[simp] lemma of_eq_same (i : ι) (x : β i) : (of _ i x) i = x :=
dfinsupp.single_eq_same
lemma of_eq_of_ne (i j : ι) (x : β i) (h : i ≠ j) : (of _ i x) j = 0 :=
dfinsupp.single_eq_of_ne h
@[simp] lemma support_zero [Π (i : ι) (x : β i), decidable (x ≠ 0)] :
(0 : ⨁ i, β i).support = ∅ := dfinsupp.support_zero
@[simp] lemma support_of [Π (i : ι) (x : β i), decidable (x ≠ 0)]
(i : ι) (x : β i) (h : x ≠ 0) :
(of _ i x).support = {i} := dfinsupp.support_single_ne_zero h
lemma support_of_subset [Π (i : ι) (x : β i), decidable (x ≠ 0)] {i : ι} {b : β i} :
(of _ i b).support ⊆ {i} := dfinsupp.support_single_subset
lemma sum_support_of [Π (i : ι) (x : β i), decidable (x ≠ 0)] (x : ⨁ i, β i) :
∑ i in x.support, of β i (x i) = x := dfinsupp.sum_single
variables {β}
theorem mk_injective (s : finset ι) : function.injective (mk β s) :=
dfinsupp.mk_injective s
theorem of_injective (i : ι) : function.injective (of β i) :=
dfinsupp.single_injective
@[elab_as_eliminator]
protected theorem induction_on {C : (⨁ i, β i) → Prop}
(x : ⨁ i, β i) (H_zero : C 0)
(H_basic : ∀ (i : ι) (x : β i), C (of β i x))
(H_plus : ∀ x y, C x → C y → C (x + y)) : C x :=
begin
apply dfinsupp.induction x H_zero,
intros i b f h1 h2 ih,
solve_by_elim
end
/-- If two additive homomorphisms from `⨁ i, β i` are equal on each `of β i y`,
then they are equal. -/
lemma add_hom_ext {γ : Type*} [add_monoid γ] ⦃f g : (⨁ i, β i) →+ γ⦄
(H : ∀ (i : ι) (y : β i), f (of _ i y) = g (of _ i y)) : f = g :=
dfinsupp.add_hom_ext H
/-- If two additive homomorphisms from `⨁ i, β i` are equal on each `of β i y`,
then they are equal.
See note [partially-applied ext lemmas]. -/
@[ext] lemma add_hom_ext' {γ : Type*} [add_monoid γ] ⦃f g : (⨁ i, β i) →+ γ⦄
(H : ∀ (i : ι), f.comp (of _ i) = g.comp (of _ i)) : f = g :=
add_hom_ext $ λ i, add_monoid_hom.congr_fun $ H i
variables {γ : Type u₁} [add_comm_monoid γ]
section to_add_monoid
variables (φ : Π i, β i →+ γ) (ψ : (⨁ i, β i) →+ γ)
/-- `to_add_monoid φ` is the natural homomorphism from `⨁ i, β i` to `γ`
induced by a family `φ` of homomorphisms `β i → γ`. -/
def to_add_monoid : (⨁ i, β i) →+ γ :=
(dfinsupp.lift_add_hom φ)
@[simp] lemma to_add_monoid_of (i) (x : β i) : to_add_monoid φ (of β i x) = φ i x :=
dfinsupp.lift_add_hom_apply_single φ i x
theorem to_add_monoid.unique (f : ⨁ i, β i) :
ψ f = to_add_monoid (λ i, ψ.comp (of β i)) f :=
by {congr, ext, simp [to_add_monoid, of]}
end to_add_monoid
section from_add_monoid
/-- `from_add_monoid φ` is the natural homomorphism from `γ` to `⨁ i, β i`
induced by a family `φ` of homomorphisms `γ → β i`.
Note that this is not an isomorphism. Not every homomorphism `γ →+ ⨁ i, β i` arises in this way. -/
def from_add_monoid : (⨁ i, γ →+ β i) →+ (γ →+ ⨁ i, β i) :=
to_add_monoid $ λ i, add_monoid_hom.comp_hom (of β i)
@[simp] lemma from_add_monoid_of (i : ι) (f : γ →+ β i) :
from_add_monoid (of _ i f) = (of _ i).comp f :=
by { rw [from_add_monoid, to_add_monoid_of], refl }
lemma from_add_monoid_of_apply (i : ι) (f : γ →+ β i) (x : γ) :
from_add_monoid (of _ i f) x = of _ i (f x) :=
by rw [from_add_monoid_of, add_monoid_hom.coe_comp]
end from_add_monoid
variables (β)
/-- `set_to_set β S T h` is the natural homomorphism `⨁ (i : S), β i → ⨁ (i : T), β i`,
where `h : S ⊆ T`. -/
-- TODO: generalize this to remove the assumption `S ⊆ T`.
def set_to_set (S T : set ι) (H : S ⊆ T) :
(⨁ (i : S), β i) →+ (⨁ (i : T), β i) :=
to_add_monoid $ λ i, of (λ (i : subtype T), β i) ⟨↑i, H i.prop⟩
variables {β}
omit dec_ι
instance unique [∀ i, subsingleton (β i)] : unique (⨁ i, β i) := dfinsupp.unique
/-- A direct sum over an empty type is trivial. -/
instance unique_of_is_empty [is_empty ι] : unique (⨁ i, β i) := dfinsupp.unique_of_is_empty
/-- The natural equivalence between `⨁ _ : ι, M` and `M` when `unique ι`. -/
protected def id (M : Type v) (ι : Type* := punit) [add_comm_monoid M] [unique ι] :
(⨁ (_ : ι), M) ≃+ M :=
{ to_fun := direct_sum.to_add_monoid (λ _, add_monoid_hom.id M),
inv_fun := of (λ _, M) default,
left_inv := λ x, direct_sum.induction_on x
(by rw [add_monoid_hom.map_zero, add_monoid_hom.map_zero])
(λ p x, by rw [unique.default_eq p, to_add_monoid_of]; refl)
(λ x y ihx ihy, by rw [add_monoid_hom.map_add, add_monoid_hom.map_add, ihx, ihy]),
right_inv := λ x, to_add_monoid_of _ _ _,
..direct_sum.to_add_monoid (λ _, add_monoid_hom.id M) }
section congr_left
variables {κ : Type*}
/--Reindexing terms of a direct sum.-/
def equiv_congr_left (h : ι ≃ κ) : (⨁ i, β i) ≃+ ⨁ k, β (h.symm k) :=
{ map_add' := dfinsupp.comap_domain'_add _ _,
..dfinsupp.equiv_congr_left h }
@[simp] lemma equiv_congr_left_apply (h : ι ≃ κ) (f : ⨁ i, β i) (k : κ) :
equiv_congr_left h f k = f (h.symm k) := dfinsupp.comap_domain'_apply _ _ _ _
end congr_left
section option
variables {α : option ι → Type w} [Π i, add_comm_monoid (α i)]
include dec_ι
/--Isomorphism obtained by separating the term of index `none` of a direct sum over `option ι`.-/
@[simps] noncomputable def add_equiv_prod_direct_sum : (⨁ i, α i) ≃+ α none × ⨁ i, α (some i) :=
{ map_add' := dfinsupp.equiv_prod_dfinsupp_add, ..dfinsupp.equiv_prod_dfinsupp }
end option
section sigma
variables {α : ι → Type u} {δ : Π i, α i → Type w} [Π i j, add_comm_monoid (δ i j)]
/--The natural map between `⨁ (i : Σ i, α i), δ i.1 i.2` and `⨁ i (j : α i), δ i j`.-/
noncomputable def sigma_curry : (⨁ (i : Σ i, _), δ i.1 i.2) →+ ⨁ i j, δ i j :=
{ to_fun := @dfinsupp.sigma_curry _ _ δ _,
map_zero' := dfinsupp.sigma_curry_zero,
map_add' := λ f g, @dfinsupp.sigma_curry_add _ _ δ _ f g }
@[simp] lemma sigma_curry_apply (f : ⨁ (i : Σ i, _), δ i.1 i.2) (i : ι) (j : α i) :
sigma_curry f i j = f ⟨i, j⟩ := @dfinsupp.sigma_curry_apply _ _ δ _ f i j
/--The natural map between `⨁ i (j : α i), δ i j` and `Π₀ (i : Σ i, α i), δ i.1 i.2`, inverse of
`curry`.-/
noncomputable def sigma_uncurry : (⨁ i j, δ i j) →+ ⨁ (i : Σ i, _), δ i.1 i.2 :=
{ to_fun := dfinsupp.sigma_uncurry,
map_zero' := dfinsupp.sigma_uncurry_zero,
map_add' := dfinsupp.sigma_uncurry_add }
@[simp] lemma sigma_uncurry_apply (f : ⨁ i j, δ i j) (i : ι) (j : α i) :
sigma_uncurry f ⟨i, j⟩ = f i j := dfinsupp.sigma_uncurry_apply f i j
/--The natural map between `⨁ (i : Σ i, α i), δ i.1 i.2` and `⨁ i (j : α i), δ i j`.-/
noncomputable def sigma_curry_equiv : (⨁ (i : Σ i, _), δ i.1 i.2) ≃+ ⨁ i j, δ i j :=
{ ..sigma_curry, ..dfinsupp.sigma_curry_equiv }
end sigma
/-- The canonical embedding from `⨁ i, A i` to `M` where `A` is a collection of `add_submonoid M`
indexed by `ι`.
When `S = submodule _ M`, this is available as a `linear_map`, `direct_sum.coe_linear_map`. -/
protected def coe_add_monoid_hom {M S : Type*} [decidable_eq ι] [add_comm_monoid M]
[set_like S M] [add_submonoid_class S M] (A : ι → S) : (⨁ i, A i) →+ M :=
to_add_monoid (λ i, add_submonoid_class.subtype (A i))
@[simp] lemma coe_add_monoid_hom_of {M S : Type*} [decidable_eq ι] [add_comm_monoid M]
[set_like S M] [add_submonoid_class S M] (A : ι → S) (i : ι) (x : A i) :
direct_sum.coe_add_monoid_hom A (of (λ i, A i) i x) = x :=
to_add_monoid_of _ _ _
lemma coe_of_apply {M S : Type*} [decidable_eq ι] [add_comm_monoid M]
[set_like S M] [add_submonoid_class S M] {A : ι → S} (i j : ι) (x : A i) :
(of _ i x j : M) = if i = j then x else 0 :=
begin
obtain rfl | h := decidable.eq_or_ne i j,
{ rw [direct_sum.of_eq_same, if_pos rfl], },
{ rw [direct_sum.of_eq_of_ne _ _ _ _ h, if_neg h, zero_mem_class.coe_zero], },
end
/-- The `direct_sum` formed by a collection of additive submonoids (or subgroups, or submodules) of
`M` is said to be internal if the canonical map `(⨁ i, A i) →+ M` is bijective.
For the alternate statement in terms of independence and spanning, see
`direct_sum.subgroup_is_internal_iff_independent_and_supr_eq_top` and
`direct_sum.is_internal_submodule_iff_independent_and_supr_eq_top`. -/
def is_internal {M S : Type*} [decidable_eq ι] [add_comm_monoid M]
[set_like S M] [add_submonoid_class S M] (A : ι → S) : Prop :=
function.bijective (direct_sum.coe_add_monoid_hom A)
lemma is_internal.add_submonoid_supr_eq_top {M : Type*} [decidable_eq ι] [add_comm_monoid M]
(A : ι → add_submonoid M)
(h : is_internal A) : supr A = ⊤ :=
begin
rw [add_submonoid.supr_eq_mrange_dfinsupp_sum_add_hom, add_monoid_hom.mrange_top_iff_surjective],
exact function.bijective.surjective h,
end
end direct_sum
|
fadd3dc650efe807d302ebe8d68c76ff108e2a9c
|
0845ae2ca02071debcfd4ac24be871236c01784f
|
/library/init/lean/compiler/implementedbyattr.lean
|
26749baa0ac93911fdd0461f7aee6dbe679976f8
|
[
"Apache-2.0"
] |
permissive
|
GaloisInc/lean4
|
74c267eb0e900bfaa23df8de86039483ecbd60b7
|
228ddd5fdcd98dd4e9c009f425284e86917938aa
|
refs/heads/master
| 1,643,131,356,301
| 1,562,715,572,000
| 1,562,715,572,000
| 192,390,898
| 0
| 0
| null | 1,560,792,750,000
| 1,560,792,749,000
| null |
UTF-8
|
Lean
| false
| false
| 1,193
|
lean
|
/-
Copyright (c) 2019 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura
-/
prelude
import init.lean.attributes
namespace Lean
namespace Compiler
def mkImplementedByAttr : IO (ParametricAttribute Name) :=
registerParametricAttribute `implementedBy "name of the Lean (probably unsafe) function that implements opaque constant" $ fun env declName stx =>
match env.find declName with
| none => Except.error "unknown declaration"
| some decl =>
match attrParamSyntaxToIdentifier stx with
| some fnName =>
match env.find fnName with
| none => Except.error ("unknown function '" ++ toString fnName ++ "'")
| some fnDecl =>
if decl.type == fnDecl.type then Except.ok fnName
else Except.error ("invalid function '" ++ toString fnName ++ "' type mismatch")
| _ => Except.error "expected identifier"
@[init mkImplementedByAttr]
constant implementedByAttr : ParametricAttribute Name := default _
@[export lean.get_implemented_by_core]
def getImplementedBy (env : Environment) (n : Name) : Option Name :=
implementedByAttr.getParam env n
end Compiler
end Lean
|
55a73edccec26edb0e92c1343ad19667133d8041
|
6432ea7a083ff6ba21ea17af9ee47b9c371760f7
|
/tests/lean/run/printDecls.lean
|
6006ce421f608458f1d496bee6ae0fddc9de7ba1
|
[
"Apache-2.0",
"LLVM-exception",
"NCSA",
"LGPL-3.0-only",
"LicenseRef-scancode-inner-net-2.0",
"BSD-3-Clause",
"LGPL-2.0-or-later",
"Spencer-94",
"LGPL-2.1-or-later",
"HPND",
"LicenseRef-scancode-pcre",
"ISC",
"LGPL-2.1-only",
"LicenseRef-scancode-other-permissive",
"SunPro",
"CMU-Mach"
] |
permissive
|
leanprover/lean4
|
4bdf9790294964627eb9be79f5e8f6157780b4cc
|
f1f9dc0f2f531af3312398999d8b8303fa5f096b
|
refs/heads/master
| 1,693,360,665,786
| 1,693,350,868,000
| 1,693,350,868,000
| 129,571,436
| 2,827
| 311
|
Apache-2.0
| 1,694,716,156,000
| 1,523,760,560,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 834
|
lean
|
import Lean
open Lean
open Lean.Meta
-- Return true if `declName` should be ignored
def shouldIgnore (declName : Name) : Bool :=
declName.isInternal
|| match declName with
| .str _ s => "match_".isPrefixOf s || "proof_".isPrefixOf s || "eq_".isPrefixOf s
| _ => true
-- Print declarations that have the given prefix.
def printDecls (pre : Name) : MetaM Unit := do
let cs := (← getEnv).constants
cs.forM fun declName info => do
if pre.isPrefixOf declName && !shouldIgnore declName then
if let some docString ← findDocString? (← getEnv) declName then
IO.println s!"/-- {docString} -/\n{declName} : {← ppExpr info.type}"
else
IO.println s!"{declName} : {← ppExpr info.type}"
#eval printDecls `Array
#eval printDecls `List
#eval printDecls `Bool
#eval printDecls `Lean.Elab
|
0453eb6e34a455f7412f2c6ffc39a767b387ba8c
|
a0e23cfdd129a671bf3154ee1a8a3a72bf4c7940
|
/stage0/src/Std/Data/HashSet.lean
|
5710ff4e9389475ddc775bb8553dfab8d560140b
|
[
"Apache-2.0"
] |
permissive
|
WojciechKarpiel/lean4
|
7f89706b8e3c1f942b83a2c91a3a00b05da0e65b
|
f6e1314fa08293dea66a329e05b6c196a0189163
|
refs/heads/master
| 1,686,633,402,214
| 1,625,821,189,000
| 1,625,821,258,000
| 384,640,886
| 0
| 0
|
Apache-2.0
| 1,625,903,617,000
| 1,625,903,026,000
| null |
UTF-8
|
Lean
| false
| false
| 6,118
|
lean
|
/-
Copyright (c) 2019 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
-/
namespace Std
universe u v w
def HashSetBucket (α : Type u) :=
{ b : Array (List α) // b.size > 0 }
def HashSetBucket.update {α : Type u} (data : HashSetBucket α) (i : USize) (d : List α) (h : i.toNat < data.val.size) : HashSetBucket α :=
⟨ data.val.uset i d h,
by erw [Array.size_set]; exact data.property ⟩
structure HashSetImp (α : Type u) where
size : Nat
buckets : HashSetBucket α
def mkHashSetImp {α : Type u} (nbuckets := 8) : HashSetImp α :=
let n := if nbuckets = 0 then 8 else nbuckets
{ size := 0,
buckets :=
⟨ mkArray n [],
by rw [Array.size_mkArray]; cases nbuckets; decide; apply Nat.zeroLtSucc ⟩ }
namespace HashSetImp
variable {α : Type u}
def mkIdx {n : Nat} (h : n > 0) (u : USize) : { u : USize // u.toNat < n } :=
⟨u % n, USize.modn_lt _ h⟩
@[inline] def reinsertAux (hashFn : α → UInt64) (data : HashSetBucket α) (a : α) : HashSetBucket α :=
let ⟨i, h⟩ := mkIdx data.property (hashFn a |>.toUSize)
data.update i (a :: data.val.uget i h) h
@[inline] def foldBucketsM {δ : Type w} {m : Type w → Type w} [Monad m] (data : HashSetBucket α) (d : δ) (f : δ → α → m δ) : m δ :=
data.val.foldlM (init := d) fun d as => as.foldlM f d
@[inline] def foldBuckets {δ : Type w} (data : HashSetBucket α) (d : δ) (f : δ → α → δ) : δ :=
Id.run $ foldBucketsM data d f
@[inline] def foldM {δ : Type w} {m : Type w → Type w} [Monad m] (f : δ → α → m δ) (d : δ) (h : HashSetImp α) : m δ :=
foldBucketsM h.buckets d f
@[inline] def fold {δ : Type w} (f : δ → α → δ) (d : δ) (m : HashSetImp α) : δ :=
foldBuckets m.buckets d f
def find? [BEq α] [Hashable α] (m : HashSetImp α) (a : α) : Option α :=
match m with
| ⟨_, buckets⟩ =>
let ⟨i, h⟩ := mkIdx buckets.property (hash a |>.toUSize)
(buckets.val.uget i h).find? (fun a' => a == a')
def contains [BEq α] [Hashable α] (m : HashSetImp α) (a : α) : Bool :=
match m with
| ⟨_, buckets⟩ =>
let ⟨i, h⟩ := mkIdx buckets.property (hash a |>.toUSize)
(buckets.val.uget i h).contains a
-- TODO: remove `partial` by using well-founded recursion
partial def moveEntries [Hashable α] (i : Nat) (source : Array (List α)) (target : HashSetBucket α) : HashSetBucket α :=
if h : i < source.size then
let idx : Fin source.size := ⟨i, h⟩
let es : List α := source.get idx
-- We remove `es` from `source` to make sure we can reuse its memory cells when performing es.foldl
let source := source.set idx []
let target := es.foldl (reinsertAux hash) target
moveEntries (i+1) source target
else target
def expand [Hashable α] (size : Nat) (buckets : HashSetBucket α) : HashSetImp α :=
let nbuckets := buckets.val.size * 2
have : nbuckets > 0 := Nat.mulPos buckets.property (by decide)
let new_buckets : HashSetBucket α := ⟨mkArray nbuckets [], by rw [Array.size_mkArray]; assumption⟩
{ size := size,
buckets := moveEntries 0 buckets.val new_buckets }
def insert [BEq α] [Hashable α] (m : HashSetImp α) (a : α) : HashSetImp α :=
match m with
| ⟨size, buckets⟩ =>
let ⟨i, h⟩ := mkIdx buckets.property (hash a |>.toUSize)
let bkt := buckets.val.uget i h
if bkt.contains a
then ⟨size, buckets.update i (bkt.replace a a) h⟩
else
let size' := size + 1
let buckets' := buckets.update i (a :: bkt) h
if size' ≤ buckets.val.size
then { size := size', buckets := buckets' }
else expand size' buckets'
def erase [BEq α] [Hashable α] (m : HashSetImp α) (a : α) : HashSetImp α :=
match m with
| ⟨ size, buckets ⟩ =>
let ⟨i, h⟩ := mkIdx buckets.property (hash a |>.toUSize)
let bkt := buckets.val.uget i h
if bkt.contains a then ⟨size - 1, buckets.update i (bkt.erase a) h⟩
else m
inductive WellFormed [BEq α] [Hashable α] : HashSetImp α → Prop where
| mkWff : ∀ n, WellFormed (mkHashSetImp n)
| insertWff : ∀ m a, WellFormed m → WellFormed (insert m a)
| eraseWff : ∀ m a, WellFormed m → WellFormed (erase m a)
end HashSetImp
def HashSet (α : Type u) [BEq α] [Hashable α] :=
{ m : HashSetImp α // m.WellFormed }
open HashSetImp
def mkHashSet {α : Type u} [BEq α] [Hashable α] (nbuckets := 8) : HashSet α :=
⟨ mkHashSetImp nbuckets, WellFormed.mkWff nbuckets ⟩
namespace HashSet
variable {α : Type u} [BEq α] [Hashable α]
instance : Inhabited (HashSet α) where
default := mkHashSet
instance : EmptyCollection (HashSet α) := ⟨mkHashSet⟩
@[inline] def insert (m : HashSet α) (a : α) : HashSet α :=
match m with
| ⟨ m, hw ⟩ => ⟨ m.insert a, WellFormed.insertWff m a hw ⟩
@[inline] def erase (m : HashSet α) (a : α) : HashSet α :=
match m with
| ⟨ m, hw ⟩ => ⟨ m.erase a, WellFormed.eraseWff m a hw ⟩
@[inline] def find? (m : HashSet α) (a : α) : Option α :=
match m with
| ⟨ m, _ ⟩ => m.find? a
@[inline] def contains (m : HashSet α) (a : α) : Bool :=
match m with
| ⟨ m, _ ⟩ => m.contains a
@[inline] def foldM {δ : Type w} {m : Type w → Type w} [Monad m] (f : δ → α → m δ) (init : δ) (h : HashSet α) : m δ :=
match h with
| ⟨ h, _ ⟩ => h.foldM f init
@[inline] def fold {δ : Type w} (f : δ → α → δ) (init : δ) (m : HashSet α) : δ :=
match m with
| ⟨ m, _ ⟩ => m.fold f init
@[inline] def size (m : HashSet α) : Nat :=
match m with
| ⟨ {size := sz, ..}, _ ⟩ => sz
@[inline] def isEmpty (m : HashSet α) : Bool :=
m.size = 0
@[inline] def empty : HashSet α :=
mkHashSet
def toList (m : HashSet α) : List α :=
m.fold (init := []) fun r a => a::r
def toArray (m : HashSet α) : Array α :=
m.fold (init := #[]) fun r a => r.push a
def numBuckets (m : HashSet α) : Nat :=
m.val.buckets.val.size
end HashSet
end Std
|
be1b93d1b7ed5d3a1ce59048d9387dd00b0831ea
|
b70031c8e2c5337b91d7e70f1e0c5f528f7b0e77
|
/src/data/polynomial/degree/definitions.lean
|
954421b208ed34f164569465823ae8418dbe7654
|
[
"Apache-2.0"
] |
permissive
|
molodiuc/mathlib
|
cae2ba3ef1601c1f42ca0b625c79b061b63fef5b
|
98ebe5a6739fbe254f9ee9d401882d4388f91035
|
refs/heads/master
| 1,674,237,127,059
| 1,606,353,533,000
| 1,606,353,533,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 36,381
|
lean
|
/-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Johannes Hölzl, Scott Morrison, Jens Wagemaker
-/
import data.polynomial.coeff
import data.nat.with_bot
/-!
# Theory of univariate polynomials
The definitions include
`degree`, `monic`, `leading_coeff`
Results include
- `degree_mul` : The degree of the product is the sum of degrees
- `leading_coeff_add_of_degree_eq` and `leading_coeff_add_of_degree_lt` :
The leading_coefficient of a sum is determined by the leading coefficients and degrees
-/
noncomputable theory
local attribute [instance, priority 100] classical.prop_decidable
open finsupp finset
open_locale big_operators
namespace polynomial
universes u v
variables {R : Type u} {S : Type v} {a b : R} {n m : ℕ}
section semiring
variables [semiring R] {p q r : polynomial R}
/-- `degree p` is the degree of the polynomial `p`, i.e. the largest `X`-exponent in `p`.
`degree p = some n` when `p ≠ 0` and `n` is the highest power of `X` that appears in `p`, otherwise
`degree 0 = ⊥`. -/
def degree (p : polynomial R) : with_bot ℕ := p.support.sup some
lemma degree_lt_wf : well_founded (λp q : polynomial R, degree p < degree q) :=
inv_image.wf degree (with_bot.well_founded_lt nat.lt_wf)
instance : has_well_founded (polynomial R) := ⟨_, degree_lt_wf⟩
/-- `nat_degree p` forces `degree p` to ℕ, by defining nat_degree 0 = 0. -/
def nat_degree (p : polynomial R) : ℕ := (degree p).get_or_else 0
/-- `leading_coeff p` gives the coefficient of the highest power of `X` in `p`-/
def leading_coeff (p : polynomial R) : R := coeff p (nat_degree p)
/-- a polynomial is `monic` if its leading coefficient is 1 -/
def monic (p : polynomial R) := leading_coeff p = (1 : R)
@[nontriviality] lemma monic_of_subsingleton [subsingleton R] (p : polynomial R) : monic p :=
subsingleton.elim _ _
lemma monic.def : monic p ↔ leading_coeff p = 1 := iff.rfl
instance monic.decidable [decidable_eq R] : decidable (monic p) :=
by unfold monic; apply_instance
@[simp] lemma monic.leading_coeff {p : polynomial R} (hp : p.monic) :
leading_coeff p = 1 := hp
@[simp] lemma degree_zero : degree (0 : polynomial R) = ⊥ := rfl
@[simp] lemma nat_degree_zero : nat_degree (0 : polynomial R) = 0 := rfl
@[simp] lemma coeff_nat_degree : coeff p (nat_degree p) = leading_coeff p := rfl
lemma degree_eq_bot : degree p = ⊥ ↔ p = 0 :=
⟨λ h, by rw [degree, ← max_eq_sup_with_bot] at h;
exact support_eq_empty.1 (max_eq_none.1 h),
λ h, h.symm ▸ rfl⟩
lemma degree_eq_nat_degree (hp : p ≠ 0) : degree p = (nat_degree p : with_bot ℕ) :=
let ⟨n, hn⟩ :=
not_forall.1 (mt option.eq_none_iff_forall_not_mem.2 (mt degree_eq_bot.1 hp)) in
have hn : degree p = some n := not_not.1 hn,
by rw [nat_degree, hn]; refl
lemma degree_eq_iff_nat_degree_eq {p : polynomial R} {n : ℕ} (hp : p ≠ 0) :
p.degree = n ↔ p.nat_degree = n :=
by rw [degree_eq_nat_degree hp, with_bot.coe_eq_coe]
lemma degree_eq_iff_nat_degree_eq_of_pos {p : polynomial R} {n : ℕ} (hn : 0 < n) :
p.degree = n ↔ p.nat_degree = n :=
begin
split,
{ intro H, rwa ← degree_eq_iff_nat_degree_eq, rintro rfl,
rw degree_zero at H, exact option.no_confusion H },
{ intro H, rwa degree_eq_iff_nat_degree_eq, rintro rfl,
rw nat_degree_zero at H, rw H at hn, exact lt_irrefl _ hn }
end
lemma nat_degree_eq_of_degree_eq_some {p : polynomial R} {n : ℕ}
(h : degree p = n) : nat_degree p = n :=
have hp0 : p ≠ 0, from λ hp0, by rw hp0 at h; exact option.no_confusion h,
option.some_inj.1 $ show (nat_degree p : with_bot ℕ) = n,
by rwa [← degree_eq_nat_degree hp0]
@[simp] lemma degree_le_nat_degree : degree p ≤ nat_degree p :=
with_bot.gi_get_or_else_bot.gc.le_u_l _
lemma nat_degree_eq_of_degree_eq [semiring S] {q : polynomial S} (h : degree p = degree q) :
nat_degree p = nat_degree q :=
by unfold nat_degree; rw h
lemma le_degree_of_ne_zero (h : coeff p n ≠ 0) : (n : with_bot ℕ) ≤ degree p :=
show @has_le.le (with_bot ℕ) _ (some n : with_bot ℕ) (p.support.sup some : with_bot ℕ),
from finset.le_sup (finsupp.mem_support_iff.2 h)
lemma le_nat_degree_of_ne_zero (h : coeff p n ≠ 0) : n ≤ nat_degree p :=
begin
rw [← with_bot.coe_le_coe, ← degree_eq_nat_degree],
exact le_degree_of_ne_zero h,
{ assume h, subst h, exact h rfl }
end
lemma le_nat_degree_of_mem_supp (a : ℕ) :
a ∈ p.support → a ≤ nat_degree p:=
le_nat_degree_of_ne_zero ∘ mem_support_iff_coeff_ne_zero.mp
lemma supp_subset_range (h : nat_degree p < m) : p.support ⊆ finset.range m :=
λ n hn, mem_range.2 $ (le_nat_degree_of_mem_supp _ hn).trans_lt h
lemma supp_subset_range_nat_degree_succ : p.support ⊆ finset.range (nat_degree p + 1) :=
supp_subset_range (nat.lt_succ_self _)
lemma degree_le_degree (h : coeff q (nat_degree p) ≠ 0) : degree p ≤ degree q :=
begin
by_cases hp : p = 0,
{ rw hp, exact bot_le },
{ rw degree_eq_nat_degree hp, exact le_degree_of_ne_zero h }
end
lemma degree_ne_of_nat_degree_ne {n : ℕ} :
p.nat_degree ≠ n → degree p ≠ n :=
mt $ λ h, by rw [nat_degree, h, option.get_or_else_coe]
theorem nat_degree_le_iff_degree_le {n : ℕ} : nat_degree p ≤ n ↔ degree p ≤ n :=
with_bot.get_or_else_bot_le_iff
alias polynomial.nat_degree_le_iff_degree_le ↔ . .
lemma nat_degree_le_nat_degree (hpq : p.degree ≤ q.degree) : p.nat_degree ≤ q.nat_degree :=
with_bot.gi_get_or_else_bot.gc.monotone_l hpq
@[simp] lemma degree_C (ha : a ≠ 0) : degree (C a) = (0 : with_bot ℕ) :=
show sup (ite (a = 0) ∅ {0}) some = 0, by rw if_neg ha; refl
lemma degree_C_le : degree (C a) ≤ (0 : with_bot ℕ) :=
by by_cases h : a = 0; [rw [h, C_0], rw [degree_C h]]; [exact bot_le, exact le_refl _]
lemma degree_one_le : degree (1 : polynomial R) ≤ (0 : with_bot ℕ) :=
by rw [← C_1]; exact degree_C_le
@[simp] lemma nat_degree_C (a : R) : nat_degree (C a) = 0 :=
begin
by_cases ha : a = 0,
{ have : C a = 0, { rw [ha, C_0] },
rw [nat_degree, degree_eq_bot.2 this],
refl },
{ rw [nat_degree, degree_C ha], refl }
end
@[simp] lemma nat_degree_one : nat_degree (1 : polynomial R) = 0 := nat_degree_C 1
@[simp] lemma nat_degree_nat_cast (n : ℕ) : nat_degree (n : polynomial R) = 0 :=
by simp only [←C_eq_nat_cast, nat_degree_C]
@[simp] lemma degree_monomial (n : ℕ) (ha : a ≠ 0) : degree (monomial n a) = n :=
by rw [degree, support_monomial _ _ ha]; refl
@[simp] lemma degree_C_mul_X_pow (n : ℕ) (ha : a ≠ 0) : degree (C a * X ^ n) = n :=
by rw [← single_eq_C_mul_X, degree_monomial n ha]
lemma degree_monomial_le (n : ℕ) (a : R) : degree (monomial n a) ≤ n :=
if h : a = 0 then by rw [h, (monomial n).map_zero]; exact bot_le else le_of_eq (degree_monomial n h)
lemma degree_C_mul_X_pow_le (n : ℕ) (a : R) : degree (C a * X ^ n) ≤ n :=
by { rw C_mul_X_pow_eq_monomial, apply degree_monomial_le }
@[simp] lemma nat_degree_C_mul_X_pow (n : ℕ) (a : R) (ha : a ≠ 0) : nat_degree (C a * X ^ n) = n :=
nat_degree_eq_of_degree_eq_some (degree_C_mul_X_pow n ha)
@[simp] lemma nat_degree_monomial (i : ℕ) (r : R) (hr : r ≠ 0) :
nat_degree (monomial i r) = i :=
by rw [← C_mul_X_pow_eq_monomial, nat_degree_C_mul_X_pow i r hr]
lemma coeff_eq_zero_of_degree_lt (h : degree p < n) : coeff p n = 0 :=
not_not.1 (mt le_degree_of_ne_zero (not_le_of_gt h))
lemma coeff_eq_zero_of_nat_degree_lt {p : polynomial R} {n : ℕ} (h : p.nat_degree < n) :
p.coeff n = 0 :=
begin
apply coeff_eq_zero_of_degree_lt,
by_cases hp : p = 0,
{ subst hp, exact with_bot.bot_lt_coe n },
{ rwa [degree_eq_nat_degree hp, with_bot.coe_lt_coe] }
end
@[simp] lemma coeff_nat_degree_succ_eq_zero {p : polynomial R} : p.coeff (p.nat_degree + 1) = 0 :=
coeff_eq_zero_of_nat_degree_lt (lt_add_one _)
-- We need the explicit `decidable` argument here because an exotic one shows up in a moment!
lemma ite_le_nat_degree_coeff (p : polynomial R) (n : ℕ) (I : decidable (n < 1 + nat_degree p)) :
@ite (n < 1 + nat_degree p) I _ (coeff p n) 0 = coeff p n :=
begin
split_ifs,
{ refl },
{ exact (coeff_eq_zero_of_nat_degree_lt (not_le.1 (λ w, h (nat.lt_one_add_iff.2 w)))).symm, }
end
lemma as_sum_support (p : polynomial R) :
p = ∑ i in p.support, monomial i (p.coeff i) :=
p.sum_single.symm
lemma as_sum_support_C_mul_X_pow (p : polynomial R) :
p = ∑ i in p.support, C (p.coeff i) * X^i :=
trans p.as_sum_support $ by simp only [C_mul_X_pow_eq_monomial]
/--
We can reexpress a sum over `p.support` as a sum over `range n`,
for any `n` satisfying `p.nat_degree < n`.
-/
lemma sum_over_range' [add_comm_monoid S] (p : polynomial R) {f : ℕ → R → S} (h : ∀ n, f n 0 = 0)
(n : ℕ) (w : p.nat_degree < n) :
p.sum f = ∑ (a : ℕ) in range n, f a (coeff p a) :=
finsupp.sum_of_support_subset _ (supp_subset_range w) _ $ λ n hn, h n
/--
We can reexpress a sum over `p.support` as a sum over `range (p.nat_degree + 1)`.
-/
lemma sum_over_range [add_comm_monoid S] (p : polynomial R) {f : ℕ → R → S} (h : ∀ n, f n 0 = 0) :
p.sum f = ∑ (a : ℕ) in range (p.nat_degree + 1), f a (coeff p a) :=
sum_over_range' p h (p.nat_degree + 1) (lt_add_one _)
lemma as_sum_range' (p : polynomial R) (n : ℕ) (w : p.nat_degree < n) :
p = ∑ i in range n, monomial i (coeff p i) :=
p.sum_single.symm.trans $ p.sum_over_range' (λ n, single_zero) _ w
lemma as_sum_range (p : polynomial R) :
p = ∑ i in range (p.nat_degree + 1), monomial i (coeff p i) :=
p.sum_single.symm.trans $ p.sum_over_range $ λ n, single_zero
lemma as_sum_range_C_mul_X_pow (p : polynomial R) :
p = ∑ i in range (p.nat_degree + 1), C (coeff p i) * X ^ i :=
p.as_sum_range.trans $ by simp only [C_mul_X_pow_eq_monomial]
lemma coeff_ne_zero_of_eq_degree (hn : degree p = n) :
coeff p n ≠ 0 :=
λ h, mem_support_iff.mp (mem_of_max hn) h
lemma eq_X_add_C_of_degree_le_one (h : degree p ≤ 1) :
p = C (p.coeff 1) * X + C (p.coeff 0) :=
ext (λ n, nat.cases_on n (by simp)
(λ n, nat.cases_on n (by simp [coeff_C])
(λ m, have degree p < m.succ.succ, from lt_of_le_of_lt h dec_trivial,
by simp [coeff_eq_zero_of_degree_lt this, coeff_C, nat.succ_ne_zero, coeff_X,
nat.succ_inj', @eq_comm ℕ 0])))
lemma eq_X_add_C_of_degree_eq_one (h : degree p = 1) :
p = C (p.leading_coeff) * X + C (p.coeff 0) :=
(eq_X_add_C_of_degree_le_one (show degree p ≤ 1, from h ▸ le_refl _)).trans
(by simp [leading_coeff, nat_degree_eq_of_degree_eq_some h])
lemma eq_X_add_C_of_nat_degree_le_one (h : nat_degree p ≤ 1) :
p = C (p.coeff 1) * X + C (p.coeff 0) :=
eq_X_add_C_of_degree_le_one $ degree_le_of_nat_degree_le h
lemma exists_eq_X_add_C_of_nat_degree_le_one (h : nat_degree p ≤ 1) :
∃ a b, p = C a * X + C b :=
⟨p.coeff 1, p.coeff 0, eq_X_add_C_of_nat_degree_le_one h⟩
theorem degree_X_pow_le (n : ℕ) : degree (X^n : polynomial R) ≤ n :=
by simpa only [C_1, one_mul] using degree_C_mul_X_pow_le n (1:R)
theorem degree_X_le : degree (X : polynomial R) ≤ 1 :=
degree_monomial_le _ _
lemma nat_degree_X_le : (X : polynomial R).nat_degree ≤ 1 :=
nat_degree_le_of_degree_le degree_X_le
lemma support_C_mul_X_pow (c : R) (n : ℕ) : (C c * X ^ n).support ⊆ singleton n :=
begin
rw [C_mul_X_pow_eq_monomial],
exact support_single_subset
end
lemma mem_support_C_mul_X_pow {n a : ℕ} {c : R} (h : a ∈ (C c * X ^ n).support) : a = n :=
mem_singleton.1 $ support_C_mul_X_pow _ _ h
lemma card_support_C_mul_X_pow_le_one {c : R} {n : ℕ} : (C c * X ^ n).support.card ≤ 1 :=
begin
rw ← card_singleton n,
apply card_le_of_subset (support_C_mul_X_pow c n),
end
lemma card_supp_le_succ_nat_degree (p : polynomial R) : p.support.card ≤ p.nat_degree + 1 :=
begin
rw ← finset.card_range (p.nat_degree + 1),
exact finset.card_le_of_subset supp_subset_range_nat_degree_succ,
end
lemma le_degree_of_mem_supp (a : ℕ) :
a ∈ p.support → ↑a ≤ degree p :=
le_degree_of_ne_zero ∘ mem_support_iff_coeff_ne_zero.mp
lemma nonempty_support_iff : p.support.nonempty ↔ p ≠ 0 :=
by rw [ne.def, nonempty_iff_ne_empty, ne.def, ← support_eq_empty]
lemma support_C_mul_X_pow_nonzero {c : R} {n : ℕ} (h : c ≠ 0) :
(C c * X ^ n).support = singleton n :=
begin
rw [C_mul_X_pow_eq_monomial],
exact support_single_ne_zero h
end
end semiring
section nonzero_semiring
variables [semiring R] [nontrivial R] {p q : polynomial R}
@[simp] lemma degree_one : degree (1 : polynomial R) = (0 : with_bot ℕ) :=
degree_C (show (1 : R) ≠ 0, from zero_ne_one.symm)
@[simp] lemma degree_X : degree (X : polynomial R) = 1 :=
degree_monomial _ one_ne_zero
@[simp] lemma nat_degree_X : (X : polynomial R).nat_degree = 1 :=
nat_degree_eq_of_degree_eq_some degree_X
end nonzero_semiring
section ring
variables [ring R]
lemma coeff_mul_X_sub_C {p : polynomial R} {r : R} {a : ℕ} :
coeff (p * (X - C r)) (a + 1) = coeff p a - coeff p (a + 1) * r :=
by simp [mul_sub]
lemma C_eq_int_cast (n : ℤ) : C (n : R) = n :=
(C : R →+* _).map_int_cast n
@[simp] lemma degree_neg (p : polynomial R) : degree (-p) = degree p :=
by unfold degree; rw support_neg
@[simp] lemma nat_degree_neg (p : polynomial R) : nat_degree (-p) = nat_degree p :=
by simp [nat_degree]
@[simp] lemma nat_degree_int_cast (n : ℤ) : nat_degree (n : polynomial R) = 0 :=
by simp only [←C_eq_int_cast, nat_degree_C]
end ring
section semiring
variables [semiring R]
/-- The second-highest coefficient, or 0 for constants -/
def next_coeff (p : polynomial R) : R :=
if p.nat_degree = 0 then 0 else p.coeff (p.nat_degree - 1)
@[simp]
lemma next_coeff_C_eq_zero (c : R) :
next_coeff (C c) = 0 := by { rw next_coeff, simp }
lemma next_coeff_of_pos_nat_degree (p : polynomial R) (hp : 0 < p.nat_degree) :
next_coeff p = p.coeff (p.nat_degree - 1) :=
by { rw [next_coeff, if_neg], contrapose! hp, simpa }
end semiring
section semiring
variables [semiring R] {p q : polynomial R} {ι : Type*}
lemma coeff_nat_degree_eq_zero_of_degree_lt (h : degree p < degree q) :
coeff p (nat_degree q) = 0 :=
coeff_eq_zero_of_degree_lt (lt_of_lt_of_le h degree_le_nat_degree)
lemma ne_zero_of_degree_gt {n : with_bot ℕ} (h : n < degree p) : p ≠ 0 :=
mt degree_eq_bot.2 (ne.symm (ne_of_lt (lt_of_le_of_lt bot_le h)))
lemma eq_C_of_degree_le_zero (h : degree p ≤ 0) : p = C (coeff p 0) :=
begin
ext (_|n), { simp },
rw [coeff_C, if_neg (nat.succ_ne_zero _), coeff_eq_zero_of_degree_lt],
exact h.trans_lt (with_bot.some_lt_some.2 n.succ_pos),
end
lemma eq_C_of_degree_eq_zero (h : degree p = 0) : p = C (coeff p 0) :=
eq_C_of_degree_le_zero (h ▸ le_refl _)
lemma degree_le_zero_iff : degree p ≤ 0 ↔ p = C (coeff p 0) :=
⟨eq_C_of_degree_le_zero, λ h, h.symm ▸ degree_C_le⟩
lemma degree_add_le (p q : polynomial R) : degree (p + q) ≤ max (degree p) (degree q) :=
calc degree (p + q) = ((p + q).support).sup some : rfl
... ≤ (p.support ∪ q.support).sup some : by convert sup_mono support_add
... = p.support.sup some ⊔ q.support.sup some : by convert sup_union
... = _ : with_bot.sup_eq_max _ _
@[simp] lemma leading_coeff_zero : leading_coeff (0 : polynomial R) = 0 := rfl
@[simp] lemma leading_coeff_eq_zero : leading_coeff p = 0 ↔ p = 0 :=
⟨λ h, by_contradiction $ λ hp, mt mem_support_iff.1
(not_not.2 h) (mem_of_max (degree_eq_nat_degree hp)),
λ h, h.symm ▸ leading_coeff_zero⟩
lemma leading_coeff_eq_zero_iff_deg_eq_bot : leading_coeff p = 0 ↔ degree p = ⊥ :=
by rw [leading_coeff_eq_zero, degree_eq_bot]
lemma nat_degree_mem_support_of_nonzero (H : p ≠ 0) : p.nat_degree ∈ p.support :=
(p.mem_support_to_fun p.nat_degree).mpr ((not_congr leading_coeff_eq_zero).mpr H)
lemma nat_degree_eq_support_max' (h : p ≠ 0) :
p.nat_degree = p.support.max' (nonempty_support_iff.mpr h) :=
begin
apply le_antisymm,
{ apply finset.le_max',
rw mem_support_iff_coeff_ne_zero,
exact (not_congr leading_coeff_eq_zero).mpr h, },
{ apply max'_le,
refine le_nat_degree_of_mem_supp, },
end
lemma nat_degree_C_mul_X_pow_le (a : R) (n : ℕ) : nat_degree (C a * X ^ n) ≤ n :=
begin
by_cases a0 : a = 0,
{ rw [a0, C_0, zero_mul, nat_degree_zero],
exact nat.zero_le n, },
{ rw nat_degree_eq_support_max',
{ simp_rw [support_C_mul_X_pow_nonzero a0, max'_singleton n], },
{ intro,
apply a0,
rw [← C_inj, C_0],
apply mul_X_pow_eq_zero ‹_›, }, },
end
lemma nat_degree_C_mul_X_pow_of_nonzero {a : R} (n : ℕ) (ha : a ≠ 0) :
nat_degree (C a * X ^ n) = n :=
begin
rw nat_degree_eq_support_max',
{ simp_rw [support_C_mul_X_pow_nonzero ha, max'_singleton n], },
{ intro,
apply ha,
rw [← C_inj, C_0],
exact mul_X_pow_eq_zero ‹_›, },
end
lemma degree_add_eq_left_of_degree_lt (h : degree q < degree p) : degree (p + q) = degree p :=
le_antisymm (max_eq_left_of_lt h ▸ degree_add_le _ _) $ degree_le_degree $
begin
rw [coeff_add, coeff_nat_degree_eq_zero_of_degree_lt h, add_zero],
exact mt leading_coeff_eq_zero.1 (ne_zero_of_degree_gt h)
end
lemma degree_add_eq_right_of_degree_lt (h : degree p < degree q) : degree (p + q) = degree q :=
by rw [add_comm, degree_add_eq_left_of_degree_lt h]
lemma degree_add_C (hp : 0 < degree p) : degree (p + C a) = degree p :=
add_comm (C a) p ▸ degree_add_eq_right_of_degree_lt $ lt_of_le_of_lt degree_C_le hp
lemma degree_add_eq_of_leading_coeff_add_ne_zero (h : leading_coeff p + leading_coeff q ≠ 0) :
degree (p + q) = max p.degree q.degree :=
le_antisymm (degree_add_le _ _) $
match lt_trichotomy (degree p) (degree q) with
| or.inl hlt :=
by rw [degree_add_eq_right_of_degree_lt hlt, max_eq_right_of_lt hlt]; exact le_refl _
| or.inr (or.inl heq) :=
le_of_not_gt $
assume hlt : max (degree p) (degree q) > degree (p + q),
h $ show leading_coeff p + leading_coeff q = 0,
begin
rw [heq, max_self] at hlt,
rw [leading_coeff, leading_coeff, nat_degree_eq_of_degree_eq heq, ← coeff_add],
exact coeff_nat_degree_eq_zero_of_degree_lt hlt
end
| or.inr (or.inr hlt) :=
by rw [degree_add_eq_left_of_degree_lt hlt, max_eq_left_of_lt hlt]; exact le_refl _
end
lemma degree_erase_le (p : polynomial R) (n : ℕ) : degree (p.erase n) ≤ degree p :=
by convert sup_mono (erase_subset _ _)
lemma degree_erase_lt (hp : p ≠ 0) : degree (p.erase (nat_degree p)) < degree p :=
lt_of_le_of_ne (degree_erase_le _ _) $
(degree_eq_nat_degree hp).symm ▸ (by convert λ h, not_mem_erase _ _ (mem_of_max h))
lemma degree_sum_le (s : finset ι) (f : ι → polynomial R) :
degree (∑ i in s, f i) ≤ s.sup (λ b, degree (f b)) :=
finset.induction_on s (by simp only [sum_empty, sup_empty, degree_zero, le_refl]) $
assume a s has ih,
calc degree (∑ i in insert a s, f i) ≤ max (degree (f a)) (degree (∑ i in s, f i)) :
by rw sum_insert has; exact degree_add_le _ _
... ≤ _ : by rw [sup_insert, with_bot.sup_eq_max]; exact max_le_max (le_refl _) ih
lemma degree_mul_le (p q : polynomial R) : degree (p * q) ≤ degree p + degree q :=
calc degree (p * q) ≤ (p.support).sup (λi, degree (sum q (λj a, C (coeff p i * a) * X ^ (i + j)))) :
by simp only [single_eq_C_mul_X.symm]; exact degree_sum_le _ _
... ≤ p.support.sup (λi, q.support.sup (λj, degree (C (coeff p i * coeff q j) * X ^ (i + j)))) :
finset.sup_mono_fun (assume i hi, degree_sum_le _ _)
... ≤ degree p + degree q :
begin
refine finset.sup_le (λ a ha, finset.sup_le (λ b hb, le_trans (degree_C_mul_X_pow_le _ _) _)),
rw [with_bot.coe_add],
rw mem_support_iff at ha hb,
exact add_le_add (le_degree_of_ne_zero ha) (le_degree_of_ne_zero hb)
end
lemma degree_pow_le (p : polynomial R) : ∀ n, degree (p ^ n) ≤ n •ℕ (degree p)
| 0 := by rw [pow_zero, zero_nsmul]; exact degree_one_le
| (n+1) := calc degree (p ^ (n + 1)) ≤ degree p + degree (p ^ n) :
by rw pow_succ; exact degree_mul_le _ _
... ≤ _ : by rw succ_nsmul; exact add_le_add (le_refl _) (degree_pow_le _)
@[simp] lemma leading_coeff_monomial (a : R) (n : ℕ) : leading_coeff (C a * X ^ n) = a :=
begin
by_cases ha : a = 0,
{ simp only [ha, C_0, zero_mul, leading_coeff_zero] },
{ rw [leading_coeff, nat_degree_C_mul_X_pow _ _ ha, C_mul_X_pow_eq_monomial],
exact @finsupp.single_eq_same _ _ _ n a }
end
@[simp] lemma leading_coeff_monomial' (a : R) (n : ℕ) : leading_coeff (monomial n a) = a :=
by rw [← C_mul_X_pow_eq_monomial, leading_coeff_monomial]
@[simp] lemma leading_coeff_C (a : R) : leading_coeff (C a) = a :=
suffices leading_coeff (C a * X^0) = a, by rwa [pow_zero, mul_one] at this,
leading_coeff_monomial a 0
@[simp] lemma leading_coeff_X : leading_coeff (X : polynomial R) = 1 :=
suffices leading_coeff (C (1:R) * X^1) = 1, by rwa [C_1, pow_one, one_mul] at this,
leading_coeff_monomial 1 1
@[simp] lemma monic_X : monic (X : polynomial R) := leading_coeff_X
@[simp] lemma leading_coeff_one : leading_coeff (1 : polynomial R) = 1 :=
suffices leading_coeff (C (1:R) * X^0) = 1, by rwa [C_1, pow_zero, mul_one] at this,
leading_coeff_monomial 1 0
@[simp] lemma monic_one : monic (1 : polynomial R) := leading_coeff_C _
lemma monic.ne_zero {R : Type*} [semiring R] [nontrivial R] {p : polynomial R} (hp : p.monic) :
p ≠ 0 :=
by { rintro rfl, simpa [monic] using hp }
lemma monic.ne_zero_of_ne (h : (0:R) ≠ 1) {p : polynomial R} (hp : p.monic) :
p ≠ 0 :=
by { nontriviality R, exact hp.ne_zero }
lemma monic.ne_zero_of_polynomial_ne {r} (hp : monic p) (hne : q ≠ r) : p ≠ 0 :=
by { haveI := nontrivial.of_polynomial_ne hne, exact hp.ne_zero }
lemma leading_coeff_add_of_degree_lt (h : degree p < degree q) :
leading_coeff (p + q) = leading_coeff q :=
have coeff p (nat_degree q) = 0, from coeff_nat_degree_eq_zero_of_degree_lt h,
by simp only [leading_coeff, nat_degree_eq_of_degree_eq (degree_add_eq_right_of_degree_lt h),
this, coeff_add, zero_add]
lemma leading_coeff_add_of_degree_eq (h : degree p = degree q)
(hlc : leading_coeff p + leading_coeff q ≠ 0) :
leading_coeff (p + q) = leading_coeff p + leading_coeff q :=
have nat_degree (p + q) = nat_degree p,
by apply nat_degree_eq_of_degree_eq;
rw [degree_add_eq_of_leading_coeff_add_ne_zero hlc, h, max_self],
by simp only [leading_coeff, this, nat_degree_eq_of_degree_eq h, coeff_add]
@[simp] lemma coeff_mul_degree_add_degree (p q : polynomial R) :
coeff (p * q) (nat_degree p + nat_degree q) = leading_coeff p * leading_coeff q :=
calc coeff (p * q) (nat_degree p + nat_degree q) =
∑ x in nat.antidiagonal (nat_degree p + nat_degree q),
coeff p x.1 * coeff q x.2 : coeff_mul _ _ _
... = coeff p (nat_degree p) * coeff q (nat_degree q) :
begin
refine finset.sum_eq_single (nat_degree p, nat_degree q) _ _,
{ rintro ⟨i,j⟩ h₁ h₂, rw nat.mem_antidiagonal at h₁,
by_cases H : nat_degree p < i,
{ rw [coeff_eq_zero_of_degree_lt
(lt_of_le_of_lt degree_le_nat_degree (with_bot.coe_lt_coe.2 H)), zero_mul] },
{ rw not_lt_iff_eq_or_lt at H, cases H,
{ subst H, rw add_left_cancel_iff at h₁, dsimp at h₁, subst h₁, exfalso, exact h₂ rfl },
{ suffices : nat_degree q < j,
{ rw [coeff_eq_zero_of_degree_lt
(lt_of_le_of_lt degree_le_nat_degree (with_bot.coe_lt_coe.2 this)), mul_zero] },
{ by_contra H', rw not_lt at H',
exact ne_of_lt (nat.lt_of_lt_of_le
(nat.add_lt_add_right H j) (nat.add_le_add_left H' _)) h₁ } } } },
{ intro H, exfalso, apply H, rw nat.mem_antidiagonal }
end
lemma degree_mul' (h : leading_coeff p * leading_coeff q ≠ 0) :
degree (p * q) = degree p + degree q :=
have hp : p ≠ 0 := by refine mt _ h; exact λ hp, by rw [hp, leading_coeff_zero, zero_mul],
have hq : q ≠ 0 := by refine mt _ h; exact λ hq, by rw [hq, leading_coeff_zero, mul_zero],
le_antisymm (degree_mul_le _ _)
begin
rw [degree_eq_nat_degree hp, degree_eq_nat_degree hq],
refine le_degree_of_ne_zero _,
rwa coeff_mul_degree_add_degree
end
lemma nat_degree_mul' (h : leading_coeff p * leading_coeff q ≠ 0) :
nat_degree (p * q) = nat_degree p + nat_degree q :=
have hp : p ≠ 0 := mt leading_coeff_eq_zero.2 (λ h₁, h $ by rw [h₁, zero_mul]),
have hq : q ≠ 0 := mt leading_coeff_eq_zero.2 (λ h₁, h $ by rw [h₁, mul_zero]),
have hpq : p * q ≠ 0 := λ hpq, by rw [← coeff_mul_degree_add_degree, hpq, coeff_zero] at h;
exact h rfl,
option.some_inj.1 (show (nat_degree (p * q) : with_bot ℕ) = nat_degree p + nat_degree q,
by rw [← degree_eq_nat_degree hpq, degree_mul' h, degree_eq_nat_degree hp,
degree_eq_nat_degree hq])
lemma leading_coeff_mul' (h : leading_coeff p * leading_coeff q ≠ 0) :
leading_coeff (p * q) = leading_coeff p * leading_coeff q :=
begin
unfold leading_coeff,
rw [nat_degree_mul' h, coeff_mul_degree_add_degree],
refl
end
lemma leading_coeff_pow' : leading_coeff p ^ n ≠ 0 →
leading_coeff (p ^ n) = leading_coeff p ^ n :=
nat.rec_on n (by simp) $
λ n ih h,
have h₁ : leading_coeff p ^ n ≠ 0 :=
λ h₁, h $ by rw [pow_succ, h₁, mul_zero],
have h₂ : leading_coeff p * leading_coeff (p ^ n) ≠ 0 :=
by rwa [pow_succ, ← ih h₁] at h,
by rw [pow_succ, pow_succ, leading_coeff_mul' h₂, ih h₁]
lemma degree_pow' : ∀ {n}, leading_coeff p ^ n ≠ 0 →
degree (p ^ n) = n •ℕ (degree p)
| 0 := λ h, by rw [pow_zero, ← C_1] at *;
rw [degree_C h, zero_nsmul]
| (n+1) := λ h,
have h₁ : leading_coeff p ^ n ≠ 0 := λ h₁, h $
by rw [pow_succ, h₁, mul_zero],
have h₂ : leading_coeff p * leading_coeff (p ^ n) ≠ 0 :=
by rwa [pow_succ, ← leading_coeff_pow' h₁] at h,
by rw [pow_succ, degree_mul' h₂, succ_nsmul, degree_pow' h₁]
lemma nat_degree_pow' {n : ℕ} (h : leading_coeff p ^ n ≠ 0) :
nat_degree (p ^ n) = n * nat_degree p :=
if hp0 : p = 0 then
if hn0 : n = 0 then by simp *
else by rw [hp0, zero_pow (nat.pos_of_ne_zero hn0)]; simp
else
have hpn : p ^ n ≠ 0, from λ hpn0, have h1 : _ := h,
by rw [← leading_coeff_pow' h1, hpn0, leading_coeff_zero] at h;
exact h rfl,
option.some_inj.1 $ show (nat_degree (p ^ n) : with_bot ℕ) = (n * nat_degree p : ℕ),
by rw [← degree_eq_nat_degree hpn, degree_pow' h, degree_eq_nat_degree hp0,
← with_bot.coe_nsmul]; simp
@[simp] lemma leading_coeff_X_pow : ∀ n : ℕ, leading_coeff ((X : polynomial R) ^ n) = 1
| 0 := by simp
| (n+1) :=
if h10 : (1 : R) = 0
then by rw [pow_succ, ← one_mul X, ← C_1, h10]; simp
else
have h : leading_coeff (X : polynomial R) * leading_coeff (X ^ n) ≠ 0,
by rw [leading_coeff_X, leading_coeff_X_pow n, one_mul];
exact h10,
by rw [pow_succ, leading_coeff_mul' h, leading_coeff_X, leading_coeff_X_pow, one_mul]
theorem leading_coeff_mul_X_pow {p : polynomial R} {n : ℕ} :
leading_coeff (p * X ^ n) = leading_coeff p :=
decidable.by_cases
(λ H : leading_coeff p = 0, by rw [H, leading_coeff_eq_zero.1 H, zero_mul, leading_coeff_zero])
(λ H : leading_coeff p ≠ 0,
by rw [leading_coeff_mul', leading_coeff_X_pow, mul_one];
rwa [leading_coeff_X_pow, mul_one])
lemma nat_degree_mul_le {p q : polynomial R} : nat_degree (p * q) ≤ nat_degree p + nat_degree q :=
begin
apply nat_degree_le_of_degree_le,
apply le_trans (degree_mul_le p q),
rw with_bot.coe_add,
refine add_le_add _ _; apply degree_le_nat_degree,
end
lemma subsingleton_of_monic_zero (h : monic (0 : polynomial R)) :
(∀ p q : polynomial R, p = q) ∧ (∀ a b : R, a = b) :=
by rw [monic.def, leading_coeff_zero] at h;
exact ⟨λ p q, by rw [← mul_one p, ← mul_one q, ← C_1, ← h, C_0, mul_zero, mul_zero],
λ a b, by rw [← mul_one a, ← mul_one b, ← h, mul_zero, mul_zero]⟩
lemma zero_le_degree_iff {p : polynomial R} : 0 ≤ degree p ↔ p ≠ 0 :=
by rw [ne.def, ← degree_eq_bot];
cases degree p; exact dec_trivial
lemma degree_nonneg_iff_ne_zero : 0 ≤ degree p ↔ p ≠ 0 :=
⟨λ h0p hp0, absurd h0p (by rw [hp0, degree_zero]; exact dec_trivial),
λ hp0, le_of_not_gt (λ h, by simp [gt, degree_eq_bot, *] at *)⟩
lemma nat_degree_eq_zero_iff_degree_le_zero : p.nat_degree = 0 ↔ p.degree ≤ 0 :=
by rw [← le_zero_iff_eq, nat_degree_le_iff_degree_le, with_bot.coe_zero]
theorem degree_le_iff_coeff_zero (f : polynomial R) (n : with_bot ℕ) :
degree f ≤ n ↔ ∀ m : ℕ, n < m → coeff f m = 0 :=
⟨λ (H : finset.sup (f.support) some ≤ n) m (Hm : n < (m : with_bot ℕ)), decidable.of_not_not $ λ H4,
have H1 : m ∉ f.support,
from λ H2, not_lt_of_ge ((finset.sup_le_iff.1 H) m H2 : ((m : with_bot ℕ) ≤ n)) Hm,
H1 $ (finsupp.mem_support_to_fun f m).2 H4,
λ H, finset.sup_le $ λ b Hb, decidable.of_not_not $ λ Hn,
(finsupp.mem_support_to_fun f b).1 Hb $ H b $ lt_of_not_ge Hn⟩
theorem degree_lt_iff_coeff_zero (f : polynomial R) (n : ℕ) :
degree f < n ↔ ∀ m : ℕ, n ≤ m → coeff f m = 0 :=
begin
refine ⟨λ hf m hm, coeff_eq_zero_of_degree_lt (lt_of_lt_of_le hf (with_bot.coe_le_coe.2 hm)), _⟩,
simp only [degree, finset.sup_lt_iff (with_bot.bot_lt_coe n), mem_support_iff,
with_bot.some_eq_coe, with_bot.coe_lt_coe, ← @not_le ℕ],
exact λ h m, mt (h m),
end
lemma degree_lt_degree_mul_X (hp : p ≠ 0) : p.degree < (p * X).degree :=
by haveI := nontrivial.of_polynomial_ne hp; exact
have leading_coeff p * leading_coeff X ≠ 0, by simpa,
by erw [degree_mul' this, degree_eq_nat_degree hp,
degree_X, ← with_bot.coe_one, ← with_bot.coe_add, with_bot.coe_lt_coe];
exact nat.lt_succ_self _
lemma nat_degree_pos_iff_degree_pos {p : polynomial R} :
0 < nat_degree p ↔ 0 < degree p :=
lt_iff_lt_of_le_iff_le nat_degree_le_iff_degree_le
lemma eq_C_of_nat_degree_le_zero {p : polynomial R} (h : nat_degree p ≤ 0) : p = C (coeff p 0) :=
eq_C_of_degree_le_zero $ degree_le_of_nat_degree_le h
lemma eq_C_of_nat_degree_eq_zero {p : polynomial R} (h : nat_degree p = 0) : p = C (coeff p 0) :=
eq_C_of_nat_degree_le_zero h.le
end semiring
section nonzero_semiring
variables [semiring R] [nontrivial R] {p q : polynomial R}
@[simp] lemma degree_X_pow (n : ℕ) : degree ((X : polynomial R) ^ n) = n :=
by rw [X_pow_eq_monomial, degree_monomial _ (@one_ne_zero R _ _)]
theorem not_is_unit_X : ¬ is_unit (X : polynomial R) :=
λ ⟨⟨_, g, hfg, hgf⟩, rfl⟩, @zero_ne_one R _ _ $ by { rw [← coeff_one_zero, ← hgf], simp }
end nonzero_semiring
section ring
variables [ring R] {p q : polynomial R}
lemma degree_sub_le (p q : polynomial R) : degree (p - q) ≤ max (degree p) (degree q) :=
degree_neg q ▸ degree_add_le p (-q)
lemma degree_sub_lt (hd : degree p = degree q)
(hp0 : p ≠ 0) (hlc : leading_coeff p = leading_coeff q) :
degree (p - q) < degree p :=
have hp : single (nat_degree p) (leading_coeff p) + p.erase (nat_degree p) = p :=
finsupp.single_add_erase _ _,
have hq : single (nat_degree q) (leading_coeff q) + q.erase (nat_degree q) = q :=
finsupp.single_add_erase _ _,
have hd' : nat_degree p = nat_degree q := by unfold nat_degree; rw hd,
have hq0 : q ≠ 0 := mt degree_eq_bot.2 (hd ▸ mt degree_eq_bot.1 hp0),
calc degree (p - q) = degree (erase (nat_degree q) p + -erase (nat_degree q) q) :
by conv {to_lhs, rw [← hp, ← hq, hlc, hd', add_sub_add_left_eq_sub, sub_eq_add_neg]}
... ≤ max (degree (erase (nat_degree q) p)) (degree (erase (nat_degree q) q))
: degree_neg (erase (nat_degree q) q) ▸ degree_add_le _ _
... < degree p : max_lt_iff.2 ⟨hd' ▸ degree_erase_lt hp0, hd.symm ▸ degree_erase_lt hq0⟩
lemma nat_degree_X_sub_C_le {r : R} : (X - C r).nat_degree ≤ 1 :=
nat_degree_le_iff_degree_le.2 $ le_trans (degree_sub_le _ _) $ max_le degree_X_le $
le_trans degree_C_le $ with_bot.coe_le_coe.2 zero_le_one
lemma degree_sum_fin_lt {n : ℕ} (f : fin n → R) :
degree (∑ i : fin n, C (f i) * X ^ (i : ℕ)) < n :=
begin
haveI : is_commutative (with_bot ℕ) max := ⟨max_comm⟩,
haveI : is_associative (with_bot ℕ) max := ⟨max_assoc⟩,
calc (∑ i, C (f i) * X ^ (i : ℕ)).degree
≤ finset.univ.fold (⊔) ⊥ (λ i, (C (f i) * X ^ (i : ℕ)).degree) : degree_sum_le _ _
... = finset.univ.fold max ⊥ (λ i, (C (f i) * X ^ (i : ℕ)).degree) :
(@finset.fold_hom _ _ _ (⊔) _ _ _ ⊥ finset.univ _ _ _ id (with_bot.sup_eq_max)).symm
... < n : (finset.fold_max_lt (n : with_bot ℕ)).mpr ⟨with_bot.bot_lt_some _, _⟩,
rintros ⟨i, hi⟩ -,
calc (C (f ⟨i, hi⟩) * X ^ i).degree
≤ (C _).degree + (X ^ i).degree : degree_mul_le _ _
... ≤ 0 + i : add_le_add degree_C_le (degree_X_pow_le i)
... = i : zero_add _
... < n : with_bot.some_lt_some.mpr hi,
end
lemma degree_sub_eq_left_of_degree_lt (h : degree q < degree p) : degree (p - q) = degree p :=
by { rw ← degree_neg q at h, rw [sub_eq_add_neg, degree_add_eq_left_of_degree_lt h] }
lemma degree_sub_eq_right_of_degree_lt (h : degree p < degree q) : degree (p - q) = degree q :=
by { rw ← degree_neg q at h, rw [sub_eq_add_neg, degree_add_eq_right_of_degree_lt h, degree_neg] }
end ring
section nonzero_ring
variables [nontrivial R] [ring R]
@[simp] lemma degree_X_sub_C (a : R) : degree (X - C a) = 1 :=
have degree (C a) < degree (X : polynomial R),
from calc degree (C a) ≤ 0 : degree_C_le
... < 1 : with_bot.some_lt_some.mpr zero_lt_one
... = degree X : degree_X.symm,
by rw [degree_sub_eq_left_of_degree_lt this, degree_X]
@[simp] lemma nat_degree_X_sub_C (x : R) : (X - C x).nat_degree = 1 :=
nat_degree_eq_of_degree_eq_some $ degree_X_sub_C x
@[simp]
lemma next_coeff_X_sub_C (c : R) : next_coeff (X - C c) = - c :=
by simp [next_coeff_of_pos_nat_degree]
lemma degree_X_pow_sub_C {n : ℕ} (hn : 0 < n) (a : R) :
degree ((X : polynomial R) ^ n - C a) = n :=
have degree (C a) < degree ((X : polynomial R) ^ n),
from calc degree (C a) ≤ 0 : degree_C_le
... < degree ((X : polynomial R) ^ n) : by rwa [degree_X_pow];
exact with_bot.coe_lt_coe.2 hn,
by rw [degree_sub_eq_left_of_degree_lt this, degree_X_pow]
lemma X_pow_sub_C_ne_zero {n : ℕ} (hn : 0 < n) (a : R) :
(X : polynomial R) ^ n - C a ≠ 0 :=
mt degree_eq_bot.2 (show degree ((X : polynomial R) ^ n - C a) ≠ ⊥,
by rw degree_X_pow_sub_C hn a; exact dec_trivial)
theorem X_sub_C_ne_zero (r : R) : X - C r ≠ 0 :=
pow_one (X : polynomial R) ▸ X_pow_sub_C_ne_zero zero_lt_one r
lemma nat_degree_X_pow_sub_C {n : ℕ} (hn : 0 < n) {r : R} :
(X ^ n - C r).nat_degree = n :=
by { apply nat_degree_eq_of_degree_eq_some, simp [degree_X_pow_sub_C hn], }
end nonzero_ring
section integral_domain
variables [integral_domain R] {p q : polynomial R}
@[simp] lemma degree_mul : degree (p * q) = degree p + degree q :=
if hp0 : p = 0 then by simp only [hp0, degree_zero, zero_mul, with_bot.bot_add]
else if hq0 : q = 0 then by simp only [hq0, degree_zero, mul_zero, with_bot.add_bot]
else degree_mul' $ mul_ne_zero (mt leading_coeff_eq_zero.1 hp0)
(mt leading_coeff_eq_zero.1 hq0)
@[simp] lemma degree_pow (p : polynomial R) (n : ℕ) :
degree (p ^ n) = n •ℕ (degree p) :=
by induction n; [simp only [pow_zero, degree_one, zero_nsmul],
simp only [*, pow_succ, succ_nsmul, degree_mul]]
@[simp] lemma leading_coeff_mul (p q : polynomial R) : leading_coeff (p * q) =
leading_coeff p * leading_coeff q :=
begin
by_cases hp : p = 0,
{ simp only [hp, zero_mul, leading_coeff_zero] },
{ by_cases hq : q = 0,
{ simp only [hq, mul_zero, leading_coeff_zero] },
{ rw [leading_coeff_mul'],
exact mul_ne_zero (mt leading_coeff_eq_zero.1 hp) (mt leading_coeff_eq_zero.1 hq) } }
end
@[simp] lemma leading_coeff_X_add_C (a b : R) (ha : a ≠ 0):
leading_coeff (C a * X + C b) = a :=
begin
rw [add_comm, leading_coeff_add_of_degree_lt],
{ simp },
{ simpa [degree_C ha] using lt_of_le_of_lt degree_C_le (with_bot.coe_lt_coe.2 zero_lt_one)}
end
/-- `polynomial.leading_coeff` bundled as a `monoid_hom` when `R` is an `integral_domain`, and thus
`leading_coeff` is multiplicative -/
def leading_coeff_hom : polynomial R →* R :=
{ to_fun := leading_coeff,
map_one' := by simp,
map_mul' := leading_coeff_mul }
@[simp] lemma leading_coeff_hom_apply (p : polynomial R) :
leading_coeff_hom p = leading_coeff p := rfl
@[simp] lemma leading_coeff_pow (p : polynomial R) (n : ℕ) :
leading_coeff (p ^ n) = leading_coeff p ^ n :=
leading_coeff_hom.map_pow p n
end integral_domain
end polynomial
|
bd3718bdf79b2d29cc3235da79731073c3d315f0
|
4727251e0cd73359b15b664c3170e5d754078599
|
/src/field_theory/laurent.lean
|
ac3f52e1a6b894cb4d11a49ab3c3bdf69c668cd9
|
[
"Apache-2.0"
] |
permissive
|
Vierkantor/mathlib
|
0ea59ac32a3a43c93c44d70f441c4ee810ccceca
|
83bc3b9ce9b13910b57bda6b56222495ebd31c2f
|
refs/heads/master
| 1,658,323,012,449
| 1,652,256,003,000
| 1,652,256,003,000
| 209,296,341
| 0
| 1
|
Apache-2.0
| 1,568,807,655,000
| 1,568,807,655,000
| null |
UTF-8
|
Lean
| false
| false
| 3,699
|
lean
|
/-
Copyright (c) 2022 Yakov Pechersky. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yakov Pechersky
-/
import data.polynomial.taylor
import field_theory.ratfunc
import ring_theory.laurent_series
/-!
# Laurent expansions of rational functions
## Main declarations
* `ratfunc.laurent`: the Laurent expansion of the rational function `f` at `r`, as an `alg_hom`.
* `ratfunc.laurent_injective`: the Laurent expansion at `r` is unique
## Implementation details
Implemented as the quotient of two Taylor expansions, over domains.
An auxiliary definition is provided first to make the construction of the `alg_hom` easier,
which works on `comm_ring` which are not necessarily domains.
-/
universe u
namespace ratfunc
noncomputable theory
open polynomial
open_locale classical non_zero_divisors polynomial
variables {R : Type u} [comm_ring R] [hdomain : is_domain R]
(r s : R) (p q : R[X]) (f : ratfunc R)
lemma taylor_mem_non_zero_divisors (hp : p ∈ R[X]⁰) : taylor r p ∈ R[X]⁰ :=
begin
rw mem_non_zero_divisors_iff,
intros x hx,
have : x = taylor (r - r) x,
{ simp },
rwa [this, sub_eq_add_neg, ←taylor_taylor, ←taylor_mul,
linear_map.map_eq_zero_iff _ (taylor_injective _),
mul_right_mem_non_zero_divisors_eq_zero_iff hp,
linear_map.map_eq_zero_iff _ (taylor_injective _)] at hx,
end
/-- The Laurent expansion of rational functions about a value.
Auxiliary definition, usage when over integral domains should prefer `ratfunc.laurent`. -/
def laurent_aux : ratfunc R →+* ratfunc R :=
ratfunc.map_ring_hom (ring_hom.mk (taylor r) (taylor_one _) (taylor_mul _)
(linear_map.map_zero _) (linear_map.map_add _)) (taylor_mem_non_zero_divisors _)
lemma laurent_aux_of_fraction_ring_mk (q : R[X]⁰) :
laurent_aux r (of_fraction_ring (localization.mk p q)) =
of_fraction_ring (localization.mk (taylor r p)
⟨taylor r q, taylor_mem_non_zero_divisors r q q.prop⟩) :=
map_apply_of_fraction_ring_mk _ _ _ _
include hdomain
lemma laurent_aux_div :
laurent_aux r (algebra_map _ _ p / (algebra_map _ _ q)) =
algebra_map _ _ (taylor r p) / (algebra_map _ _ (taylor r q)) :=
map_apply_div _ _ _ _
@[simp] lemma laurent_aux_algebra_map :
laurent_aux r (algebra_map _ _ p) = algebra_map _ _ (taylor r p) :=
by rw [←mk_one, ←mk_one, mk_eq_div, laurent_aux_div, mk_eq_div, taylor_one, _root_.map_one]
/-- The Laurent expansion of rational functions about a value. -/
def laurent : ratfunc R →ₐ[R] ratfunc R :=
ratfunc.map_alg_hom (alg_hom.mk (taylor r) (taylor_one _) (taylor_mul _)
(linear_map.map_zero _) (linear_map.map_add _) (by simp [polynomial.algebra_map_apply]))
(taylor_mem_non_zero_divisors _)
lemma laurent_div :
laurent r (algebra_map _ _ p / (algebra_map _ _ q)) =
algebra_map _ _ (taylor r p) / (algebra_map _ _ (taylor r q)) :=
laurent_aux_div r p q
@[simp] lemma laurent_algebra_map :
laurent r (algebra_map _ _ p) = algebra_map _ _ (taylor r p) :=
laurent_aux_algebra_map _ _
@[simp] lemma laurent_X : laurent r X = X + C r :=
by rw [←algebra_map_X, laurent_algebra_map, taylor_X, _root_.map_add, algebra_map_C]
@[simp] lemma laurent_C (x : R) : laurent r (C x) = C x :=
by rw [←algebra_map_C, laurent_algebra_map, taylor_C]
@[simp] lemma laurent_at_zero : laurent 0 f = f :=
by { induction f using ratfunc.induction_on, simp }
lemma laurent_laurent :
laurent r (laurent s f) = laurent (r + s) f :=
begin
induction f using ratfunc.induction_on,
simp_rw [laurent_div, taylor_taylor]
end
lemma laurent_injective : function.injective (laurent r) :=
λ _ _ h, by simpa [laurent_laurent] using congr_arg (laurent (-r)) h
end ratfunc
|
1eb921f77730425852bec24462307842c1c5a427
|
6432ea7a083ff6ba21ea17af9ee47b9c371760f7
|
/tests/lean/diamond2.lean
|
42cbf3ac98bd86f4c041363d6c2c23a0ded8923c
|
[
"Apache-2.0",
"LLVM-exception",
"NCSA",
"LGPL-3.0-only",
"LicenseRef-scancode-inner-net-2.0",
"BSD-3-Clause",
"LGPL-2.0-or-later",
"Spencer-94",
"LGPL-2.1-or-later",
"HPND",
"LicenseRef-scancode-pcre",
"ISC",
"LGPL-2.1-only",
"LicenseRef-scancode-other-permissive",
"SunPro",
"CMU-Mach"
] |
permissive
|
leanprover/lean4
|
4bdf9790294964627eb9be79f5e8f6157780b4cc
|
f1f9dc0f2f531af3312398999d8b8303fa5f096b
|
refs/heads/master
| 1,693,360,665,786
| 1,693,350,868,000
| 1,693,350,868,000
| 129,571,436
| 2,827
| 311
|
Apache-2.0
| 1,694,716,156,000
| 1,523,760,560,000
|
Lean
|
UTF-8
|
Lean
| false
| false
| 737
|
lean
|
structure Bar (α : Type) where
a : α
x : Nat → α
structure Baz (α : Type) where
a : α → α
β : Type
b : α → β
set_option structureDiamondWarning false
structure Foo1 (α : Type) extends Bar (α → α), Baz α
#check Foo1.mk
def f1 (x : Nat) : Foo1 Nat :=
{ a := id
x := (· + ·)
b := fun _ => "" }
structure Boo1 (α : Type) extends Baz α where
x1 : α
structure Boo2 (α : Type) extends Boo1 α where
x2 : α
structure Foo2 (α : Type) extends Bar (α → α), Boo2 α
#check Foo2.mk
def f2 (v : Nat) : Foo2 Nat :=
{ a := id
x := (· + ·)
b := fun _ => ""
x1 := 1
x2 := v }
theorem ex2 (v : Nat) : (f2 v |>.x2) = v :=
rfl
#print Foo2.toBar
#print Foo2.toBoo2
|
4f087d0218017a311be8a86e88cd466b6b61e99a
|
2a70b774d16dbdf5a533432ee0ebab6838df0948
|
/src/reasons.lean
|
7b846c913db85dd9b36c8f08ce2e12f732412b63
|
[] |
no_license
|
hjvromen/lewis
|
40b035973df7c77ebf927afab7878c76d05ff758
|
105b675f73630f028ad5d890897a51b3c1146fb0
|
refs/heads/master
| 1,677,944,636,343
| 1,676,555,301,000
| 1,676,555,301,000
| 327,553,599
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 4,165
|
lean
|
/-
Copyright (c) 2022 Huub Vromen. All rights reserved.
Author: Huub Vromen
-/
import data.list.basic
/-- Type for individuals -/
variable {indiv : Type}
variables {i j : indiv}
/-- Type for reasons to believe -/
variables {reason : Type} [has_mul reason]
variables {r s t : reason}
/-- These reasons will be used in the axioms for reasoning with reasons -/
constants {a b c : reason}
/-- A and φ are propositions that are used in the definition of a basis for common knowledge -/
constants {A φ : Prop}
variables {α β γ : Prop}
/-- `rb` is the property of being a reason for an individual to believe a
proposition -/
variable rb : reason → indiv → Prop → Prop
/-- R is defined as having `a` reason to believe a proposition -/
def R (i : indiv) (φ : Prop) : Prop := ∃r, rb r i φ
/-- Indication is defined as having `a` reason to believe that φ implies ψ -/
def Ind (φ : Prop) (i : indiv) (ψ : Prop) : Prop := R rb i (φ → ψ)
/-- Our logic of reasons has the `application rule` as an axiom. This rule is
based on the justification logic of Artemov (2019). -/
axiom AR : rb s i (α → β ) → rb t i α → rb (s * t) i β
/-- The following axioms define a minimal logic of reasons -/
axiom T1 : rb a i (α → β → (α ∧ β))
axiom T2 : rb b i (((α → β ) ∧ ( β → γ )) → (α → γ ))
axiom T3 : rb c i (R rb j (α → β ) → (R rb j α → R rb j β ))
/-- This lemma is a direct consequence of the application rule `AR` -/
lemma E1 : R rb i (α → β) → R rb i α → R rb i β :=
begin
intros h1 h2,
rw R at *,
cases h1 with s hs,
cases h2 with t ht,
apply exists.intro (s * t),
exact AR rb hs ht,
end
/-- This lemma is needed for proving lemma (E2) -/
lemma L1 : R rb i α → R rb i β → R rb i (α ∧ β) :=
begin
intros h1 h2,
rw R at *,
cases h1 with s hs,
cases h2 with t ht,
have h3 : rb (a * s) i (β → (α ∧ β)) :=
begin
have h4 : rb a i (α → (β → (α ∧ β))) := T1 rb,
exact AR rb h4 hs
end,
apply exists.intro (a * s * t),
exact AR rb h3 ht,
end
/-- The lemmas (E2) and (E3) are needed for proving lemma (A6) -/
lemma E2 : R rb i (α → β ) → R rb i (β → γ ) → R rb i (α → γ ) :=
begin
intros h1 h2,
have h3 : R rb i ((α → β) ∧ (β → γ)) := L1 rb h1 h2,
cases h3 with s hs,
apply exists.intro (b * s),
exact AR rb (T2 rb) hs
end
lemma E3 : R rb i (R rb j (α → β )) → R rb i (R rb j α → R rb j β ) :=
begin
intros h1,
cases h1 with s hs,
apply exists.intro (c * s),
exact AR rb (T3 rb) hs
end
/-- (A1) follows immediately from the definition of indication and the application
rule. So it does not have to be taken as an axiom, like Cubitt and Sugden did. -/
lemma A1 : Ind rb A i α → R rb i A → R rb i α :=
begin
intros h1 h2,
rw Ind at h1,
rw R at *,
cases h2 with t ht,
cases h1 with s hs,
apply exists.intro (s * t),
exact AR rb hs ht
end
/-- Using (E1) provides a simpler proof -/
lemma A1_alternative_proof : Ind rb A i α → R rb i A → R rb i α :=
λ h1 h2, E1 rb h1 h2
/-- (A6) can be proven using lemmas (E2) and (E3). So it does not have to be taken
as an axiom anymore, like Cubitt and Sugden did. -/
lemma A6 : ∀α, Ind rb A i (R rb j A) → R rb i (Ind rb A j α) → Ind rb A i (R rb j α) :=
begin
intros p h1 h2,
rw Ind at *,
have h3: R rb i (R rb j A → R rb j p) := E3 rb h2,
have h4 : R rb i (A → R rb j p) := E2 rb h1 h3,
assumption
end
/-- We are now at the point where we can prove Lewis' theorem -/
inductive G : Prop → Prop
| base : G φ
| step (p : Prop) (i : indiv) : G p → G (R rb i p)
lemma Lewis (p : Prop)
(C1 : ∀i, R rb i A)
(C2 : ∀i j, Ind rb A i (R rb j A))
(C3 : ∀i, Ind rb A i φ)
(C4 : ∀α i j, Ind rb A i α → R rb i (Ind rb A j α))
(h7 : G rb p) :
∀i, R rb i p :=
begin
intro i,
have h1 : Ind rb A i p :=
begin
induction h7 with u j hu ih,
{ exact C3 _ },
{ have h3 : R rb i (Ind rb A j u) := C4 u _ _ ih,
have h4 : R rb i (Ind rb A j u) → Ind rb A i (R rb j u) := A6 rb u (C2 _ _),
have h5 : Ind rb A i (R rb j u) := h4 h3,
assumption }
end,
exact A1 rb h1 (C1 _),
end
#lint
|
53addf0381ac9e745647d86d0e14aefdf2bcd3f5
|
200b12985a863d01fbbde6abfc9326bb82424a8b
|
/src/propLogic/Ex012.lean
|
6ee7a70d7ac3130a21fb33603026c759281b2c2b
|
[] |
no_license
|
SvenWille/LeanLogicExercises
|
38eacd36733ac48e5a7aacf863c681c9a9a48271
|
2dbc920feadd63bbc50f87e69646c0081db26eba
|
refs/heads/master
| 1,629,676,667,365
| 1,512,161,459,000
| 1,512,161,459,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 94
|
lean
|
theorem Ex012(a b : Prop): a → (a ∨ b) :=
assume H1:a,
show a ∨ b, from or.inl H1
|
723eeee6f21c37a3e32085ebdae9ea9e2cb4143e
|
64874bd1010548c7f5a6e3e8902efa63baaff785
|
/tests/lean/run/fun.lean
|
a602b6cd052430d4bde9ebae8bd562cbfb5533ee
|
[
"Apache-2.0"
] |
permissive
|
tjiaqi/lean
|
4634d729795c164664d10d093f3545287c76628f
|
d0ce4cf62f4246b0600c07e074d86e51f2195e30
|
refs/heads/master
| 1,622,323,796,480
| 1,422,643,069,000
| 1,422,643,069,000
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 391
|
lean
|
import logic algebra.function
open function bool
constant f : num → bool
constant g : num → num
check f ∘ g ∘ g
check typeof id : num → num
check num → num ⟨is_typeof⟩ id
constant h : num → bool → num
check flip h
check flip h ff num.zero
check typeof flip h ff num.zero : num
constant f1 : num → num → bool
constant f2 : bool → num
check (f1 on f2) ff tt
|
cc228c1e332f034dadf07a122e462e089fc97ff1
|
63abd62053d479eae5abf4951554e1064a4c45b4
|
/src/data/int/parity.lean
|
0a075235ea27eae4b5941a7a7ad250d47190b641
|
[
"Apache-2.0"
] |
permissive
|
Lix0120/mathlib
|
0020745240315ed0e517cbf32e738d8f9811dd80
|
e14c37827456fc6707f31b4d1d16f1f3a3205e91
|
refs/heads/master
| 1,673,102,855,024
| 1,604,151,044,000
| 1,604,151,044,000
| 308,930,245
| 0
| 0
|
Apache-2.0
| 1,604,164,710,000
| 1,604,163,547,000
| null |
UTF-8
|
Lean
| false
| false
| 3,770
|
lean
|
/-
Copyright (c) 2019 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad
The `even` and `odd` predicates on the integers.
-/
import data.int.modeq
import data.nat.parity
namespace int
@[simp] theorem mod_two_ne_one {n : ℤ} : ¬ n % 2 = 1 ↔ n % 2 = 0 :=
by cases mod_two_eq_zero_or_one n with h h; simp [h]
local attribute [simp] -- euclidean_domain.mod_eq_zero uses (2 ∣ n) as normal form
theorem mod_two_ne_zero {n : ℤ} : ¬ n % 2 = 0 ↔ n % 2 = 1 :=
by cases mod_two_eq_zero_or_one n with h h; simp [h]
@[simp] theorem even_coe_nat (n : nat) : even (n : ℤ) ↔ even n :=
have ∀ m, 2 * to_nat m = to_nat (2 * m),
from λ m, by cases m; refl,
⟨λ ⟨m, hm⟩, ⟨to_nat m, by rw [this, ←to_nat_coe_nat n, hm]⟩,
λ ⟨m, hm⟩, ⟨m, by simp [hm]⟩⟩
theorem even_iff {n : ℤ} : even n ↔ n % 2 = 0 :=
⟨λ ⟨m, hm⟩, by simp [hm], λ h, ⟨n / 2, (mod_add_div n 2).symm.trans (by simp [h])⟩⟩
theorem odd_iff {n : ℤ} : odd n ↔ n % 2 = 1 :=
⟨λ ⟨m, hm⟩, by { rw [hm, add_mod], norm_num },
λ h, ⟨n / 2, (mod_add_div n 2).symm.trans (by { rw h, abel })⟩⟩
lemma not_even_iff {n : ℤ} : ¬ even n ↔ n % 2 = 1 :=
by rw [even_iff, mod_two_ne_zero]
@[simp] lemma odd_iff_not_even {n : ℤ} : odd n ↔ ¬ even n :=
by rw [not_even_iff, odd_iff]
lemma ne_of_odd_sum {x y : ℤ} (h : odd (x + y)) : x ≠ y :=
by { rw odd_iff_not_even at h, intros contra, apply h, exact ⟨x, by rw [contra, two_mul]⟩, }
@[simp] theorem two_dvd_ne_zero {n : ℤ} : ¬ 2 ∣ n ↔ n % 2 = 1 :=
not_even_iff
instance : decidable_pred (even : ℤ → Prop) :=
λ n, decidable_of_decidable_of_iff (by apply_instance) even_iff.symm
instance decidable_pred_odd : decidable_pred (odd : ℤ → Prop) :=
λ n, decidable_of_decidable_of_iff (by apply_instance) odd_iff_not_even.symm
@[simp] theorem even_zero : even (0 : ℤ) := ⟨0, dec_trivial⟩
@[simp] theorem not_even_one : ¬ even (1 : ℤ) :=
by rw even_iff; apply one_ne_zero
@[simp] theorem even_bit0 (n : ℤ) : even (bit0 n) :=
⟨n, by rw [bit0, two_mul]⟩
@[parity_simps] theorem even_add {m n : ℤ} : even (m + n) ↔ (even m ↔ even n) :=
begin
cases mod_two_eq_zero_or_one m with h₁ h₁; cases mod_two_eq_zero_or_one n with h₂ h₂;
simp [even_iff, h₁, h₂, -euclidean_domain.mod_eq_zero],
{ exact @modeq.modeq_add _ _ 0 _ 0 h₁ h₂ },
{ exact @modeq.modeq_add _ _ 0 _ 1 h₁ h₂ },
{ exact @modeq.modeq_add _ _ 1 _ 0 h₁ h₂ },
exact @modeq.modeq_add _ _ 1 _ 1 h₁ h₂
end
@[parity_simps] theorem even_neg {n : ℤ} : even (-n) ↔ even n := by simp [even_iff]
@[simp] theorem not_even_bit1 (n : ℤ) : ¬ even (bit1 n) :=
by simp [bit1] with parity_simps
@[parity_simps] theorem even_sub {m n : ℤ} : even (m - n) ↔ (even m ↔ even n) :=
by simp [sub_eq_add_neg] with parity_simps
@[parity_simps] theorem even_mul {m n : ℤ} : even (m * n) ↔ even m ∨ even n :=
begin
cases mod_two_eq_zero_or_one m with h₁ h₁; cases mod_two_eq_zero_or_one n with h₂ h₂;
simp [even_iff, h₁, h₂, -euclidean_domain.mod_eq_zero],
{ exact @modeq.modeq_mul _ _ 0 _ 0 h₁ h₂ },
{ exact @modeq.modeq_mul _ _ 0 _ 1 h₁ h₂ },
{ exact @modeq.modeq_mul _ _ 1 _ 0 h₁ h₂ },
exact @modeq.modeq_mul _ _ 1 _ 1 h₁ h₂
end
@[parity_simps] theorem even_pow {m : ℤ} {n : ℕ} : even (m^n) ↔ even m ∧ n ≠ 0 :=
by { induction n with n ih; simp [*, even_mul, pow_succ], tauto }
-- Here are examples of how `parity_simps` can be used with `int`.
example (m n : ℤ) (h : even m) : ¬ even (n + 3) ↔ even (m^2 + m + n) :=
by simp [*, (dec_trivial : ¬ 2 = 0)] with parity_simps
example : ¬ even (25394535 : ℤ) :=
by simp
end int
|
4a8988326e0118921c5f486fe918a448ac16812b
|
74addaa0e41490cbaf2abd313a764c96df57b05d
|
/Mathlib/data/rat/order.lean
|
d463b3e63454f48fb3cce1d176223c3e81010974
|
[] |
no_license
|
AurelienSaue/Mathlib4_auto
|
f538cfd0980f65a6361eadea39e6fc639e9dae14
|
590df64109b08190abe22358fabc3eae000943f2
|
refs/heads/master
| 1,683,906,849,776
| 1,622,564,669,000
| 1,622,564,669,000
| 371,723,747
| 0
| 0
| null | null | null | null |
UTF-8
|
Lean
| false
| false
| 7,049
|
lean
|
/-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl, Mario Carneiro
-/
import Mathlib.PrePort
import Mathlib.Lean3Lib.init.default
import Mathlib.data.rat.basic
import Mathlib.PostPort
namespace Mathlib
/-!
# Order for Rational Numbers
## Summary
We define the order on `ℚ`, prove that `ℚ` is a discrete, linearly ordered field, and define
functions such as `abs` and `sqrt` that depend on this order.
## Notations
- `/.` is infix notation for `rat.mk`.
## Tags
rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering, sqrt, abs
-/
namespace rat
protected def nonneg : ℚ → Prop :=
sorry
@[simp] theorem mk_nonneg (a : ℤ) {b : ℤ} (h : 0 < b) : rat.nonneg (mk a b) ↔ 0 ≤ a := sorry
protected theorem nonneg_add {a : ℚ} {b : ℚ} : rat.nonneg a → rat.nonneg b → rat.nonneg (a + b) := sorry
protected theorem nonneg_mul {a : ℚ} {b : ℚ} : rat.nonneg a → rat.nonneg b → rat.nonneg (a * b) := sorry
protected theorem nonneg_antisymm {a : ℚ} : rat.nonneg a → rat.nonneg (-a) → a = 0 := sorry
protected theorem nonneg_total (a : ℚ) : rat.nonneg a ∨ rat.nonneg (-a) :=
cases_on a
fun (n : ℤ) (a_denom : ℕ) (a_pos : 0 < a_denom) (a_cop : nat.coprime (int.nat_abs n) a_denom) =>
or.imp_right neg_nonneg_of_nonpos (le_total 0 n)
protected instance decidable_nonneg (a : ℚ) : Decidable (rat.nonneg a) :=
cases_on a
fun (a_num : ℤ) (a_denom : ℕ) (a_pos : 0 < a_denom) (a_cop : nat.coprime (int.nat_abs a_num) a_denom) =>
eq.mpr sorry (int.decidable_le 0 a_num)
protected def le (a : ℚ) (b : ℚ) :=
rat.nonneg (b - a)
protected instance has_le : HasLessEq ℚ :=
{ LessEq := rat.le }
protected instance decidable_le : DecidableRel LessEq :=
sorry
protected theorem le_def {a : ℤ} {b : ℤ} {c : ℤ} {d : ℤ} (b0 : 0 < b) (d0 : 0 < d) : mk a b ≤ mk c d ↔ a * d ≤ c * b := sorry
protected theorem le_refl (a : ℚ) : a ≤ a :=
(fun (this : rat.nonneg (a - a)) => this)
(eq.mpr (id (Eq._oldrec (Eq.refl (rat.nonneg (a - a))) (sub_self a))) (le_refl 0))
protected theorem le_total (a : ℚ) (b : ℚ) : a ≤ b ∨ b ≤ a :=
eq.mp (Eq._oldrec (Eq.refl (rat.nonneg (b - a) ∨ rat.nonneg (-(b - a)))) (neg_sub b a)) (rat.nonneg_total (b - a))
protected theorem le_antisymm {a : ℚ} {b : ℚ} (hab : a ≤ b) (hba : b ≤ a) : a = b := sorry
protected theorem le_trans {a : ℚ} {b : ℚ} {c : ℚ} (hab : a ≤ b) (hbc : b ≤ c) : a ≤ c := sorry
protected instance linear_order : linear_order ℚ :=
linear_order.mk rat.le (partial_order.lt._default rat.le) rat.le_refl rat.le_trans rat.le_antisymm rat.le_total
(fun (a b : ℚ) => rat.decidable_nonneg (b - a)) (fun (a b : ℚ) => rat.decidable_eq a b)
Mathlib.decidable_lt_of_decidable_le
/- Extra instances to short-circuit type class resolution -/
protected instance has_lt : HasLess ℚ :=
preorder.to_has_lt ℚ
protected instance distrib_lattice : distrib_lattice ℚ :=
Mathlib.distrib_lattice_of_linear_order
protected instance lattice : lattice ℚ :=
Mathlib.lattice_of_linear_order
protected instance semilattice_inf : semilattice_inf ℚ :=
lattice.to_semilattice_inf ℚ
protected instance semilattice_sup : semilattice_sup ℚ :=
lattice.to_semilattice_sup ℚ
protected instance has_inf : has_inf ℚ :=
semilattice_inf.to_has_inf ℚ
protected instance has_sup : has_sup ℚ :=
semilattice_sup.to_has_sup ℚ
protected instance partial_order : partial_order ℚ :=
semilattice_inf.to_partial_order ℚ
protected instance preorder : preorder ℚ :=
directed_order.to_preorder
protected theorem le_def' {p : ℚ} {q : ℚ} : p ≤ q ↔ num p * ↑(denom q) ≤ num q * ↑(denom p) := sorry
protected theorem lt_def {p : ℚ} {q : ℚ} : p < q ↔ num p * ↑(denom q) < num q * ↑(denom p) := sorry
theorem nonneg_iff_zero_le {a : ℚ} : rat.nonneg a ↔ 0 ≤ a := sorry
theorem num_nonneg_iff_zero_le {a : ℚ} : 0 ≤ num a ↔ 0 ≤ a :=
cases_on a
fun (a_num : ℤ) (a_denom : ℕ) (a_pos : 0 < a_denom) (a_cop : nat.coprime (int.nat_abs a_num) a_denom) =>
idRhs (rat.nonneg (mk' a_num a_denom a_pos a_cop) ↔ 0 ≤ mk' a_num a_denom a_pos a_cop) nonneg_iff_zero_le
protected theorem add_le_add_left {a : ℚ} {b : ℚ} {c : ℚ} : c + a ≤ c + b ↔ a ≤ b := sorry
protected theorem mul_nonneg {a : ℚ} {b : ℚ} (ha : 0 ≤ a) (hb : 0 ≤ b) : 0 ≤ a * b :=
eq.mpr (id (Eq._oldrec (Eq.refl (0 ≤ a * b)) (Eq.symm (propext nonneg_iff_zero_le))))
(rat.nonneg_mul (eq.mp (Eq._oldrec (Eq.refl (0 ≤ a)) (Eq.symm (propext nonneg_iff_zero_le))) ha)
(eq.mp (Eq._oldrec (Eq.refl (0 ≤ b)) (Eq.symm (propext nonneg_iff_zero_le))) hb))
protected instance linear_ordered_field : linear_ordered_field ℚ :=
linear_ordered_field.mk field.add field.add_assoc field.zero field.zero_add field.add_zero field.neg field.sub
field.add_left_neg field.add_comm field.mul field.mul_assoc field.one field.one_mul field.mul_one field.left_distrib
field.right_distrib linear_order.le linear_order.lt linear_order.le_refl linear_order.le_trans
linear_order.le_antisymm sorry sorry sorry linear_order.le_total linear_order.decidable_le linear_order.decidable_eq
linear_order.decidable_lt field.exists_pair_ne field.mul_comm field.inv field.mul_inv_cancel field.inv_zero
/- Extra instances to short-circuit type class resolution -/
protected instance linear_ordered_comm_ring : linear_ordered_comm_ring ℚ :=
linear_ordered_field.to_linear_ordered_comm_ring ℚ
protected instance linear_ordered_ring : linear_ordered_ring ℚ :=
linear_ordered_comm_ring.to_linear_ordered_ring ℚ
protected instance ordered_ring : ordered_ring ℚ :=
linear_ordered_ring.to_ordered_ring ℚ
protected instance linear_ordered_semiring : linear_ordered_semiring ℚ :=
linear_ordered_comm_ring.to_linear_ordered_semiring
protected instance ordered_semiring : ordered_semiring ℚ :=
ordered_ring.to_ordered_semiring
protected instance linear_ordered_add_comm_group : linear_ordered_add_comm_group ℚ :=
linear_ordered_ring.to_linear_ordered_add_comm_group
protected instance ordered_add_comm_group : ordered_add_comm_group ℚ :=
ordered_ring.to_ordered_add_comm_group ℚ
protected instance ordered_cancel_add_comm_monoid : ordered_cancel_add_comm_monoid ℚ :=
ordered_semiring.to_ordered_cancel_add_comm_monoid ℚ
protected instance ordered_add_comm_monoid : ordered_add_comm_monoid ℚ :=
ordered_cancel_add_comm_monoid.to_ordered_add_comm_monoid
theorem num_pos_iff_pos {a : ℚ} : 0 < num a ↔ 0 < a := sorry
theorem div_lt_div_iff_mul_lt_mul {a : ℤ} {b : ℤ} {c : ℤ} {d : ℤ} (b_pos : 0 < b) (d_pos : 0 < d) : ↑a / ↑b < ↑c / ↑d ↔ a * d < c * b := sorry
theorem lt_one_iff_num_lt_denom {q : ℚ} : q < 1 ↔ num q < ↑(denom q) := sorry
theorem abs_def (q : ℚ) : abs q = mk ↑(int.nat_abs (num q)) ↑(denom q) := sorry
|
dd5eb4612987b8764ce26b1cbf9f0b03aa4d49f4
|
e00ea76a720126cf9f6d732ad6216b5b824d20a7
|
/src/algebra/char_zero.lean
|
708c4b8f1d19c27cc2609a0a92a066b378f4d338
|
[
"Apache-2.0"
] |
permissive
|
vaibhavkarve/mathlib
|
a574aaf68c0a431a47fa82ce0637f0f769826bfe
|
17f8340912468f49bdc30acdb9a9fa02eeb0473a
|
refs/heads/master
| 1,621,263,802,637
| 1,585,399,588,000
| 1,585,399,588,000
| 250,833,447
| 0
| 0
|
Apache-2.0
| 1,585,410,341,000
| 1,585,410,341,000
| null |
UTF-8
|
Lean
| false
| false
| 3,195
|
lean
|
/-
Copyright (c) 2014 Mario Carneiro. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Mario Carneiro
Natural homomorphism from the natural numbers into a monoid with one.
-/
import data.nat.cast algebra.field tactic.wlog
/-- Typeclass for monoids with characteristic zero.
(This is usually stated on fields but it makes sense for any additive monoid with 1.) -/
class char_zero (α : Type*) [add_monoid α] [has_one α] : Prop :=
(cast_injective : function.injective (coe : ℕ → α))
theorem char_zero_of_inj_zero {α : Type*} [add_monoid α] [has_one α]
(add_left_cancel : ∀ a b c : α, a + b = a + c → b = c)
(H : ∀ n:ℕ, (n:α) = 0 → n = 0) : char_zero α :=
⟨λ m n, begin
assume h,
wlog hle : m ≤ n,
cases nat.le.dest hle with k e,
suffices : k = 0, by rw [← e, this, add_zero],
apply H, apply add_left_cancel n,
rw [← h, ← nat.cast_add, e, add_zero, h]
end⟩
-- We have no `left_cancel_add_monoid`, so we restate it for `add_group`
-- and `ordered_cancel_comm_monoid`.
theorem add_group.char_zero_of_inj_zero {α : Type*} [add_group α] [has_one α]
(H : ∀ n:ℕ, (n:α) = 0 → n = 0) : char_zero α :=
char_zero_of_inj_zero (@add_left_cancel _ _) H
theorem ordered_cancel_comm_monoid.char_zero_of_inj_zero {α : Type*}
[ordered_cancel_comm_monoid α] [has_one α]
(H : ∀ n:ℕ, (n:α) = 0 → n = 0) : char_zero α :=
char_zero_of_inj_zero (@add_left_cancel _ _) H
@[priority 100] -- see Note [lower instance priority]
instance linear_ordered_semiring.to_char_zero {α : Type*}
[linear_ordered_semiring α] : char_zero α :=
ordered_cancel_comm_monoid.char_zero_of_inj_zero $
λ n h, nat.eq_zero_of_le_zero $
(@nat.cast_le α _ _ _).1 (le_of_eq h)
namespace nat
variables {α : Type*} [add_monoid α] [has_one α] [char_zero α]
theorem cast_injective : function.injective (coe : ℕ → α) :=
char_zero.cast_injective α
@[simp, elim_cast] theorem cast_inj {m n : ℕ} : (m : α) = n ↔ m = n :=
cast_injective.eq_iff
@[simp, elim_cast] theorem cast_eq_zero {n : ℕ} : (n : α) = 0 ↔ n = 0 :=
by rw [← cast_zero, cast_inj]
@[elim_cast] theorem cast_ne_zero {n : ℕ} : (n : α) ≠ 0 ↔ n ≠ 0 :=
not_congr cast_eq_zero
end nat
@[field_simps] lemma two_ne_zero' {α : Type*} [add_monoid α] [has_one α] [char_zero α] : (2:α) ≠ 0 :=
have ((2:ℕ):α) ≠ 0, from nat.cast_ne_zero.2 dec_trivial,
by rwa [nat.cast_succ, nat.cast_one] at this
section
variables {α : Type*} [domain α] [char_zero α]
lemma add_self_eq_zero {a : α} : a + a = 0 ↔ a = 0 :=
by simp only [(two_mul a).symm, mul_eq_zero, two_ne_zero', false_or]
lemma bit0_eq_zero {a : α} : bit0 a = 0 ↔ a = 0 := add_self_eq_zero
end
section
variables {α : Type*} [division_ring α] [char_zero α]
@[simp] lemma half_add_self (a : α) : (a + a) / 2 = a :=
by rw [← mul_two, mul_div_cancel a two_ne_zero']
@[simp] lemma add_halves' (a : α) : a / 2 + a / 2 = a :=
by rw [← add_div, half_add_self]
lemma sub_half (a : α) : a - a / 2 = a / 2 :=
by rw [sub_eq_iff_eq_add, add_halves']
lemma half_sub (a : α) : a / 2 - a = - (a / 2) :=
by rw [← neg_sub, sub_half]
end
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.