blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
7
139
content_id
stringlengths
40
40
detected_licenses
listlengths
0
16
license_type
stringclasses
2 values
repo_name
stringlengths
7
55
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
6 values
visit_date
int64
1,471B
1,694B
revision_date
int64
1,378B
1,694B
committer_date
int64
1,378B
1,694B
github_id
float64
1.33M
604M
star_events_count
int64
0
43.5k
fork_events_count
int64
0
1.5k
gha_license_id
stringclasses
6 values
gha_event_created_at
int64
1,402B
1,695B
gha_created_at
int64
1,359B
1,637B
gha_language
stringclasses
19 values
src_encoding
stringclasses
2 values
language
stringclasses
1 value
is_vendor
bool
1 class
is_generated
bool
1 class
length_bytes
int64
3
6.4M
extension
stringclasses
4 values
content
stringlengths
3
6.12M
77d54b344660a48cf1628133fce36d8d08e5278a
fa02ed5a3c9c0adee3c26887a16855e7841c668b
/src/analysis/complex/isometry.lean
de4b047e7f3afb976cc28f6c9122e8ab3ad773a8
[ "Apache-2.0" ]
permissive
jjgarzella/mathlib
96a345378c4e0bf26cf604aed84f90329e4896a2
395d8716c3ad03747059d482090e2bb97db612c8
refs/heads/master
1,686,480,124,379
1,625,163,323,000
1,625,163,323,000
281,190,421
2
0
Apache-2.0
1,595,268,170,000
1,595,268,169,000
null
UTF-8
Lean
false
false
5,906
lean
/- Copyright (c) 2021 François Sunatori. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: François Sunatori -/ import analysis.complex.basic import data.complex.exponential import data.real.sqrt import analysis.normed_space.linear_isometry import algebra.group.units /-! # Isometries of the Complex Plane The lemma `linear_isometry_complex` states the classification of isometries in the complex plane. Specifically, isometries with rotations but without translation. The proof involves: 1. creating a linear isometry `g` with two fixed points, `g(0) = 0`, `g(1) = 1` 2. applying `linear_isometry_complex_aux` to `g` The proof of `linear_isometry_complex_aux` is separated in the following parts: 1. show that the real parts match up: `linear_isometry.re_apply_eq_re` 2. show that I maps to either I or -I 3. every z is a linear combination of a + b * I ## References * [Isometries of the Complex Plane](http://helmut.knaust.info/mediawiki/images/b/b5/Iso.pdf) -/ noncomputable theory open complex local notation `|` x `|` := complex.abs x lemma linear_isometry.re_apply_eq_re_of_add_conj_eq (f : ℂ →ₗᵢ[ℝ] ℂ) (h₃ : ∀ z, z + conj z = f z + conj (f z)) (z : ℂ) : (f z).re = z.re := by simpa [ext_iff, add_re, add_im, conj_re, conj_im, ←two_mul, (show (2 : ℝ) ≠ 0, by simp [two_ne_zero'])] using (h₃ z).symm lemma linear_isometry.im_apply_eq_im_or_neg_of_re_apply_eq_re {f : ℂ →ₗᵢ[ℝ] ℂ} (h₁ : ∀ z, |f z| = |z|) (h₂ : ∀ z, (f z).re = z.re) (z : ℂ) : (f z).im = z.im ∨ (f z).im = -z.im := begin specialize h₁ z, simp only [complex.abs] at h₁, rwa [real.sqrt_inj (norm_sq_nonneg _) (norm_sq_nonneg _), norm_sq_apply (f z), norm_sq_apply z, h₂, add_left_cancel_iff, mul_self_eq_mul_self_iff] at h₁, end lemma linear_isometry.abs_apply_sub_one_eq_abs_sub_one {f : ℂ →ₗᵢ[ℝ] ℂ} (h : f 1 = 1) (z : ℂ) : ∥f z - 1∥ = ∥z - 1∥ := by rw [←linear_isometry.norm_map f (z - 1), linear_isometry.map_sub, h] lemma linear_isometry.im_apply_eq_im {f : ℂ →ₗᵢ[ℝ] ℂ} (h : f 1 = 1) (z : ℂ) : z + conj z = f z + conj (f z) := begin have := linear_isometry.abs_apply_sub_one_eq_abs_sub_one h z, apply_fun λ x, x ^ 2 at this, simp only [norm_eq_abs, ←norm_sq_eq_abs] at this, rw [←of_real_inj, ←mul_conj, ←mul_conj] at this, rw [conj.map_sub, conj.map_sub] at this, simp only [sub_mul, mul_sub, one_mul, mul_one] at this, rw [mul_conj, norm_sq_eq_abs, ←norm_eq_abs, linear_isometry.norm_map] at this, rw [mul_conj, norm_sq_eq_abs, ←norm_eq_abs] at this, simp only [sub_sub, sub_right_inj, mul_one, of_real_pow, ring_hom.map_one, norm_eq_abs] at this, simp only [add_sub, sub_left_inj] at this, rw [add_comm, ←this, add_comm], end lemma linear_isometry.re_apply_eq_re {f : ℂ →ₗᵢ[ℝ] ℂ} (h : f 1 = 1) (z : ℂ) : (f z).re = z.re := begin apply linear_isometry.re_apply_eq_re_of_add_conj_eq, intro z, apply linear_isometry.im_apply_eq_im h, end lemma linear_isometry_complex_aux (f : ℂ →ₗᵢ[ℝ] ℂ) (h : f 1 = 1) : (∀ z, f z = z) ∨ (∀ z, f z = conj z) := begin have h0 : f I = I ∨ f I = -I, { have : |f I| = 1, { rw [←norm_eq_abs, linear_isometry.norm_map, norm_eq_abs, abs_I] }, simp only [ext_iff, ←and_or_distrib_left, neg_re, I_re, neg_im, neg_zero], split, { rw ←I_re, rw linear_isometry.re_apply_eq_re h }, { apply linear_isometry.im_apply_eq_im_or_neg_of_re_apply_eq_re, { intro z, rw [←norm_eq_abs, ←norm_eq_abs, linear_isometry.norm_map] }, { intro z, rw linear_isometry.re_apply_eq_re h } } }, refine or.imp (λ h1, _) (λ h1 z, _) h0, { suffices : f.to_linear_map = linear_isometry.id.to_linear_map, { simp [this, ←linear_isometry.coe_to_linear_map, linear_map.id_apply] }, apply basis.ext basis_one_I, intro i, fin_cases i, { simp [h] }, { simp only [matrix.head_cons, linear_isometry.coe_to_linear_map, linear_map.id_coe, id.def, matrix.cons_val_one], simpa } }, { suffices : f.to_linear_map = conj_lie.to_linear_equiv, { rw [←linear_isometry.coe_to_linear_map, this], simp only [linear_isometry.coe_to_linear_map], refl }, apply basis.ext basis_one_I, intro i, fin_cases i, { simp only [h, linear_isometry.coe_to_linear_map, matrix.cons_val_zero], simpa }, { simp only [matrix.head_cons, linear_isometry.coe_to_linear_map, linear_map.id_coe, id.def, matrix.cons_val_one], simpa } }, end lemma linear_isometry_complex (f : ℂ →ₗᵢ[ℝ] ℂ) : ∃ a : ℂ, |a| = 1 ∧ ((∀ z, f z = a * z) ∨ (∀ z, f z = a * conj z)) := begin let a := f 1, use a, split, { simp only [← norm_eq_abs, a, linear_isometry.norm_map, norm_one] }, { let g : ℂ →ₗᵢ[ℝ] ℂ := { to_fun := λ z, a⁻¹ * f z, map_add' := by { intros x y, rw linear_isometry.map_add, rw mul_add }, map_smul' := by { intros m x, rw linear_isometry.map_smul, rw algebra.mul_smul_comm }, norm_map' := by { intros x, simp, suffices : ∥f 1∥⁻¹ * ∥f x∥ = ∥x∥, { simpa }, iterate 2 { rw linear_isometry.norm_map }, simp } }, have hg1 : g 1 = 1 := by { change a⁻¹ * a = 1, rw inv_mul_cancel, rw ← norm_sq_pos, rw norm_sq_eq_abs, change 0 < ∥a∥ ^ 2, rw linear_isometry.norm_map, simp }, have h : (∀ z, g z = z) ∨ (∀ z, g z = conj z) := linear_isometry_complex_aux g hg1, change (∀ z, a⁻¹ * f z = z) ∨ (∀ z, a⁻¹ * f z = conj z) at h, have ha : a ≠ 0 := by { rw ← norm_sq_pos, rw norm_sq_eq_abs, change 0 < ∥a∥ ^ 2, rw linear_isometry.norm_map, simp }, simpa only [← inv_mul_eq_iff_eq_mul' ha] } end
f78cc4a4845b9ebbdec3b259b0521f96f6238ecd
82e44445c70db0f03e30d7be725775f122d72f3e
/src/analysis/calculus/conformal.lean
081bf02093680761103c75ad8222b037e9c873a8
[ "Apache-2.0" ]
permissive
stjordanis/mathlib
51e286d19140e3788ef2c470bc7b953e4991f0c9
2568d41bca08f5d6bf39d915434c8447e21f42ee
refs/heads/master
1,631,748,053,501
1,627,938,886,000
1,627,938,886,000
228,728,358
0
0
Apache-2.0
1,576,630,588,000
1,576,630,587,000
null
UTF-8
Lean
false
false
6,998
lean
/- Copyright (c) 2021 Yourong Zang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yourong Zang -/ import analysis.normed_space.conformal_linear_map /-! # Conformal Maps A continuous linear map between real normed spaces `X` and `Y` is `conformal_at` some point `x` if it is real differentiable at that point and its differential `is_conformal_linear_map`. ## Main definitions * `conformal_at`: the main definition of conformal maps * `conformal`: maps that are conformal at every point * `conformal_factor_at`: the conformal factor of a conformal map at some point ## Main results * The conformality of the composition of two conformal maps, the identity map and multiplications by nonzero constants * `conformal_at_iff_is_conformal_map_fderiv`: an equivalent definition of the conformality of a map * `conformal_at_iff`: an equivalent definition of the conformality of a map * `conformal_at.preserves_angle`: if a map is conformal at `x`, then its differential preserves all angles at `x` ## Tags conformal ## Warning The definition of conformality in this file does NOT require the maps to be orientation-preserving. Maps such as the complex conjugate are considered to be conformal. -/ noncomputable theory variables {E F : Type*} [inner_product_space ℝ E] [inner_product_space ℝ F] {X Y Z : Type*} [normed_group X] [normed_group Y] [normed_group Z] [normed_space ℝ X] [normed_space ℝ Y] [normed_space ℝ Z] section loc_conformality open linear_isometry continuous_linear_map open_locale real_inner_product_space /-- A map `f` is said to be conformal if it has a conformal differential `f'`. -/ def conformal_at (f : X → Y) (x : X) := ∃ (f' : X →L[ℝ] Y), has_fderiv_at f f' x ∧ is_conformal_map f' lemma conformal_at_id (x : X) : conformal_at id x := ⟨id ℝ X, has_fderiv_at_id _, is_conformal_map_id⟩ lemma conformal_at_const_smul {c : ℝ} (h : c ≠ 0) (x : X) : conformal_at (λ (x': X), c • x') x := ⟨c • continuous_linear_map.id ℝ X, (has_fderiv_at_id x).const_smul c, is_conformal_map_const_smul h⟩ /-- A function is a conformal map if and only if its differential is a conformal linear map-/ lemma conformal_at_iff_is_conformal_map_fderiv {f : X → Y} {x : X} : conformal_at f x ↔ is_conformal_map (fderiv ℝ f x) := begin split, { rintros ⟨c, hf, hf'⟩, rw hf.fderiv, exact hf' }, { intros H, by_cases h : differentiable_at ℝ f x, { exact ⟨fderiv ℝ f x, h.has_fderiv_at, H⟩, }, { cases subsingleton_or_nontrivial X with w w; resetI, { exact ⟨(0 : X →L[ℝ] Y), has_fderiv_at_of_subsingleton f x, is_conformal_map_of_subsingleton 0⟩, }, { exfalso, rcases nontrivial_iff.mp w with ⟨a, b, hab⟩, rw [fderiv_zero_of_not_differentiable_at h] at H, exact hab (H.injective rfl), }, }, }, end /-- A real differentiable map `f` is conformal at point `x` if and only if its differential `fderiv ℝ f x` at that point scales every inner product by a positive scalar. -/ lemma conformal_at_iff' {f : E → F} {x : E} : conformal_at f x ↔ ∃ (c : ℝ), 0 < c ∧ ∀ (u v : E), ⟪fderiv ℝ f x u, fderiv ℝ f x v⟫ = c * ⟪u, v⟫ := by rw [conformal_at_iff_is_conformal_map_fderiv, is_conformal_map_iff] /-- A real differentiable map `f` is conformal at point `x` if and only if its differential `f'` at that point scales every inner product by a positive scalar. -/ lemma conformal_at_iff {f : E → F} {x : E} {f' : E →L[ℝ] F} (h : has_fderiv_at f f' x) : conformal_at f x ↔ ∃ (c : ℝ), 0 < c ∧ ∀ (u v : E), ⟪f' u, f' v⟫ = c * ⟪u, v⟫ := by simp only [conformal_at_iff', h.fderiv] namespace conformal_at lemma differentiable_at {f : X → Y} {x : X} (h : conformal_at f x) : differentiable_at ℝ f x := let ⟨_, h₁, _⟩ := h in h₁.differentiable_at lemma congr {f g : X → Y} {x : X} {u : set X} (hx : x ∈ u) (hu : is_open u) (hf : conformal_at f x) (h : ∀ (x : X), x ∈ u → g x = f x) : conformal_at g x := let ⟨f', hfderiv, hf'⟩ := hf in ⟨f', hfderiv.congr_of_eventually_eq ((hu.eventually_mem hx).mono h), hf'⟩ lemma comp {f : X → Y} {g : Y → Z} (x : X) (hg : conformal_at g (f x)) (hf : conformal_at f x) : conformal_at (g ∘ f) x := begin rcases hf with ⟨f', hf₁, cf⟩, rcases hg with ⟨g', hg₁, cg⟩, exact ⟨g'.comp f', hg₁.comp x hf₁, cf.comp cg⟩, end lemma const_smul {f : X → Y} {x : X} {c : ℝ} (hc : c ≠ 0) (hf : conformal_at f x) : conformal_at (c • f) x := (conformal_at_const_smul hc $ f x).comp x hf /-- The conformal factor of a conformal map at some point `x`. Some authors refer to this function as the characteristic function of the conformal map. -/ def conformal_factor_at {f : E → F} {x : E} (h : conformal_at f x) : ℝ := classical.some (conformal_at_iff'.mp h) lemma conformal_factor_at_pos {f : E → F} {x : E} (h : conformal_at f x) : 0 < conformal_factor_at h := (classical.some_spec $ conformal_at_iff'.mp h).1 lemma conformal_factor_at_inner_eq_mul_inner' {f : E → F} {x : E} (h : conformal_at f x) (u v : E) : ⟪(fderiv ℝ f x) u, (fderiv ℝ f x) v⟫ = (conformal_factor_at h : ℝ) * ⟪u, v⟫ := (classical.some_spec $ conformal_at_iff'.mp h).2 u v lemma conformal_factor_at_inner_eq_mul_inner {f : E → F} {x : E} {f' : E →L[ℝ] F} (h : has_fderiv_at f f' x) (H : conformal_at f x) (u v : E) : ⟪f' u, f' v⟫ = (conformal_factor_at H : ℝ) * ⟪u, v⟫ := (H.differentiable_at.has_fderiv_at.unique h) ▸ conformal_factor_at_inner_eq_mul_inner' H u v /-- If a real differentiable map `f` is conformal at a point `x`, then it preserves the angles at that point. -/ lemma preserves_angle {f : E → F} {x : E} {f' : E →L[ℝ] F} (h : has_fderiv_at f f' x) (H : conformal_at f x) (u v : E) : inner_product_geometry.angle (f' u) (f' v) = inner_product_geometry.angle u v := let ⟨f₁, h₁, c⟩ := H in h₁.unique h ▸ c.preserves_angle u v end conformal_at end loc_conformality section global_conformality /-- A map `f` is conformal if it's conformal at every point. -/ def conformal (f : X → Y) := ∀ (x : X), conformal_at f x lemma conformal_id : conformal (id : X → X) := λ x, conformal_at_id x lemma conformal_const_smul {c : ℝ} (h : c ≠ 0) : conformal (λ (x : X), c • x) := λ x, conformal_at_const_smul h x namespace conformal lemma conformal_at {f : X → Y} (h : conformal f) (x : X) : conformal_at f x := h x lemma differentiable {f : X → Y} (h : conformal f) : differentiable ℝ f := λ x, (h x).differentiable_at lemma comp {f : X → Y} {g : Y → Z} (hf : conformal f) (hg : conformal g) : conformal (g ∘ f) := λ x, (hg $ f x).comp x (hf x) lemma const_smul {f : X → Y} (hf : conformal f) {c : ℝ} (hc : c ≠ 0) : conformal (c • f) := λ x, (hf x).const_smul hc end conformal end global_conformality
250b8e21c2aa5d99ecd5376f9f46901c843ae564
b9a81ebb9de684db509231c4469a7d2c88915808
/src/super/datatypes.lean
bcf1b283cbead2d54f6233462888602c1417e657
[]
no_license
leanprover/super
3dd81ce8d9ac3cba20bce55e84833fadb2f5716e
47b107b4cec8f3b41d72daba9cbda2f9d54025de
refs/heads/master
1,678,482,996,979
1,676,526,367,000
1,676,526,367,000
92,215,900
12
6
null
1,513,327,539,000
1,495,570,640,000
Lean
UTF-8
Lean
false
false
1,506
lean
/- Copyright (c) 2017 Gabriel Ebner. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Gabriel Ebner -/ import .clause_ops .prover_state open expr tactic monad namespace super meta def has_diff_constr_eq_l (c : clause) : tactic bool := do env ← get_env, return $ list.bor $ do l ← c.get_lits, guard l.is_neg, return $ match is_eq l.formula with | some (lhs, rhs) := if env.is_constructor_app lhs ∧ env.is_constructor_app rhs ∧ lhs.get_app_fn.const_name ≠ rhs.get_app_fn.const_name then tt else ff | _ := ff end meta def diff_constr_eq_l_pre := preprocessing_rule $ filter (λc, bnot <$> has_diff_constr_eq_l c.c) meta def try_no_confusion_eq_r (c : clause) (i : ℕ) : tactic (list clause) := on_right_at' c i $ λhyp, match is_eq hyp.local_type with | some (lhs, rhs) := do env ← get_env, lhs ← whnf lhs, rhs ← whnf rhs, guard $ env.is_constructor_app lhs ∧ env.is_constructor_app rhs, pr ← mk_app (lhs.get_app_fn.const_name.get_prefix <.> "no_confusion") [`(false), lhs, rhs, hyp], -- FIXME: change to local false ^^ ty ← infer_type pr, ty ← whnf ty, pr ← to_expr ``(@eq.mpr _ %%ty rfl %%pr), -- FIXME return [([], pr)] | _ := failed end @[super.inf] meta def datatype_infs : inf_decl := inf_decl.mk 10 $ assume given, do sequence' (do i ← list.range given.c.num_lits, [inf_if_successful 0 given $ try_no_confusion_eq_r given.c i]) end super
e2f88655dc5dfa35b9da12656752d59f6a6bdf77
624f6f2ae8b3b1adc5f8f67a365c51d5126be45a
/src/Init/Lean/Compiler/IR/SimpCase.lean
bf7b018b5f79aa3878f48d3a26e7bf75de6a04c3
[ "Apache-2.0" ]
permissive
mhuisi/lean4
28d35a4febc2e251c7f05492e13f3b05d6f9b7af
dda44bc47f3e5d024508060dac2bcb59fd12e4c0
refs/heads/master
1,621,225,489,283
1,585,142,689,000
1,585,142,689,000
250,590,438
0
2
Apache-2.0
1,602,443,220,000
1,585,327,814,000
C
UTF-8
Lean
false
false
2,108
lean
/- Copyright (c) 2019 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura -/ prelude import Init.Lean.Compiler.IR.Basic import Init.Lean.Compiler.IR.Format namespace Lean namespace IR def ensureHasDefault (alts : Array Alt) : Array Alt := if alts.any Alt.isDefault then alts else if alts.size < 2 then alts else let last := alts.back; let alts := alts.pop; alts.push (Alt.default last.body) private def getOccsOf (alts : Array Alt) (i : Nat) : Nat := let aBody := (alts.get! i).body; alts.iterateFrom 1 (i + 1) $ fun _ a' n => if a'.body == aBody then n+1 else n private def maxOccs (alts : Array Alt) : Alt × Nat := alts.iterateFrom (alts.get! 0, getOccsOf alts 0) 1 $ fun i a p => let noccs := getOccsOf alts i.val; if noccs > p.2 then (alts.get i, noccs) else p private def addDefault (alts : Array Alt) : Array Alt := if alts.size <= 1 || alts.any Alt.isDefault then alts else let (max, noccs) := maxOccs alts; if noccs == 1 then alts else let alts := alts.filter $ (fun alt => alt.body != max.body); alts.push (Alt.default max.body) private def mkSimpCase (tid : Name) (x : VarId) (xType : IRType) (alts : Array Alt) : FnBody := let alts := alts.filter (fun alt => alt.body != FnBody.unreachable); let alts := addDefault alts; if alts.size == 0 then FnBody.unreachable else if alts.size == 1 then (alts.get! 0).body else FnBody.case tid x xType alts partial def FnBody.simpCase : FnBody → FnBody | b => let (bs, term) := b.flatten; let bs := modifyJPs bs FnBody.simpCase; match term with | FnBody.case tid x xType alts => let alts := alts.map $ fun alt => alt.modifyBody FnBody.simpCase; reshape bs (mkSimpCase tid x xType alts) | other => reshape bs term /-- Simplify `case` - Remove unreachable branches. - Remove `case` if there is only one branch. - Merge most common branches using `Alt.default`. -/ def Decl.simpCase : Decl → Decl | Decl.fdecl f xs t b => Decl.fdecl f xs t b.simpCase | other => other end IR end Lean
af4735e810ed265b34fbf068661a1f87577be612
74addaa0e41490cbaf2abd313a764c96df57b05d
/Mathlib/data/set/intervals/unordered_interval.lean
43f8c39e4197153a9120cc2ee6b844ecc19a381a
[]
no_license
AurelienSaue/Mathlib4_auto
f538cfd0980f65a6361eadea39e6fc639e9dae14
590df64109b08190abe22358fabc3eae000943f2
refs/heads/master
1,683,906,849,776
1,622,564,669,000
1,622,564,669,000
371,723,747
0
0
null
null
null
null
UTF-8
Lean
false
false
10,190
lean
/- Copyright (c) 2020 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou -/ import Mathlib.PrePort import Mathlib.Lean3Lib.init.default import Mathlib.order.bounds import Mathlib.data.set.intervals.image_preimage import Mathlib.PostPort universes u namespace Mathlib /-! # Intervals without endpoints ordering In any decidable linear order `α`, we define the set of elements lying between two elements `a` and `b` as `Icc (min a b) (max a b)`. `Icc a b` requires the assumption `a ≤ b` to be meaningful, which is sometimes inconvenient. The interval as defined in this file is always the set of things lying between `a` and `b`, regardless of the relative order of `a` and `b`. For real numbers, `Icc (min a b) (max a b)` is the same as `segment a b`. ## Notation We use the localized notation `[a, b]` for `interval a b`. One can open the locale `interval` to make the notation available. -/ namespace set /-- `interval a b` is the set of elements lying between `a` and `b`, with `a` and `b` included. -/ def interval {α : Type u} [linear_order α] (a : α) (b : α) : set α := Icc (min a b) (max a b) @[simp] theorem interval_of_le {α : Type u} [linear_order α] {a : α} {b : α} (h : a ≤ b) : interval a b = Icc a b := eq.mpr (id (Eq._oldrec (Eq.refl (interval a b = Icc a b)) (interval.equations._eqn_1 a b))) (eq.mpr (id (Eq._oldrec (Eq.refl (Icc (min a b) (max a b) = Icc a b)) (min_eq_left h))) (eq.mpr (id (Eq._oldrec (Eq.refl (Icc a (max a b) = Icc a b)) (max_eq_right h))) (Eq.refl (Icc a b)))) @[simp] theorem interval_of_ge {α : Type u} [linear_order α] {a : α} {b : α} (h : b ≤ a) : interval a b = Icc b a := eq.mpr (id (Eq._oldrec (Eq.refl (interval a b = Icc b a)) (interval.equations._eqn_1 a b))) (eq.mpr (id (Eq._oldrec (Eq.refl (Icc (min a b) (max a b) = Icc b a)) (min_eq_right h))) (eq.mpr (id (Eq._oldrec (Eq.refl (Icc b (max a b) = Icc b a)) (max_eq_left h))) (Eq.refl (Icc b a)))) theorem interval_swap {α : Type u} [linear_order α] (a : α) (b : α) : interval a b = interval b a := sorry theorem interval_of_lt {α : Type u} [linear_order α] {a : α} {b : α} (h : a < b) : interval a b = Icc a b := interval_of_le (le_of_lt h) theorem interval_of_gt {α : Type u} [linear_order α] {a : α} {b : α} (h : b < a) : interval a b = Icc b a := interval_of_ge (le_of_lt h) theorem interval_of_not_le {α : Type u} [linear_order α] {a : α} {b : α} (h : ¬a ≤ b) : interval a b = Icc b a := interval_of_gt (lt_of_not_ge h) theorem interval_of_not_ge {α : Type u} [linear_order α] {a : α} {b : α} (h : ¬b ≤ a) : interval a b = Icc a b := interval_of_lt (lt_of_not_ge h) @[simp] theorem interval_self {α : Type u} [linear_order α] {a : α} : interval a a = singleton a := sorry @[simp] theorem nonempty_interval {α : Type u} [linear_order α] {a : α} {b : α} : set.nonempty (interval a b) := sorry @[simp] theorem left_mem_interval {α : Type u} [linear_order α] {a : α} {b : α} : a ∈ interval a b := eq.mpr (id (Eq._oldrec (Eq.refl (a ∈ interval a b)) (interval.equations._eqn_1 a b))) (eq.mpr (id (Eq._oldrec (Eq.refl (a ∈ Icc (min a b) (max a b))) (propext mem_Icc))) { left := min_le_left a b, right := le_max_left a b }) @[simp] theorem right_mem_interval {α : Type u} [linear_order α] {a : α} {b : α} : b ∈ interval a b := eq.mpr (id (Eq._oldrec (Eq.refl (b ∈ interval a b)) (interval_swap a b))) left_mem_interval theorem Icc_subset_interval {α : Type u} [linear_order α] {a : α} {b : α} : Icc a b ⊆ interval a b := id fun (x : α) (h : x ∈ Icc a b) => eq.mpr (id (Eq._oldrec (Eq.refl (x ∈ interval a b)) (interval_of_le (le_trans (and.left h) (and.right h))))) h theorem Icc_subset_interval' {α : Type u} [linear_order α] {a : α} {b : α} : Icc b a ⊆ interval a b := eq.mpr (id (Eq._oldrec (Eq.refl (Icc b a ⊆ interval a b)) (interval_swap a b))) Icc_subset_interval theorem mem_interval_of_le {α : Type u} [linear_order α] {a : α} {b : α} {x : α} (ha : a ≤ x) (hb : x ≤ b) : x ∈ interval a b := Icc_subset_interval { left := ha, right := hb } theorem mem_interval_of_ge {α : Type u} [linear_order α] {a : α} {b : α} {x : α} (hb : b ≤ x) (ha : x ≤ a) : x ∈ interval a b := Icc_subset_interval' { left := hb, right := ha } theorem interval_subset_interval {α : Type u} [linear_order α] {a₁ : α} {a₂ : α} {b₁ : α} {b₂ : α} (h₁ : a₁ ∈ interval a₂ b₂) (h₂ : b₁ ∈ interval a₂ b₂) : interval a₁ b₁ ⊆ interval a₂ b₂ := Icc_subset_Icc (le_min (and.left h₁) (and.left h₂)) (max_le (and.right h₁) (and.right h₂)) theorem interval_subset_interval_iff_mem {α : Type u} [linear_order α] {a₁ : α} {a₂ : α} {b₁ : α} {b₂ : α} : interval a₁ b₁ ⊆ interval a₂ b₂ ↔ a₁ ∈ interval a₂ b₂ ∧ b₁ ∈ interval a₂ b₂ := { mp := fun (h : interval a₁ b₁ ⊆ interval a₂ b₂) => { left := h left_mem_interval, right := h right_mem_interval }, mpr := fun (h : a₁ ∈ interval a₂ b₂ ∧ b₁ ∈ interval a₂ b₂) => interval_subset_interval (and.left h) (and.right h) } theorem interval_subset_interval_iff_le {α : Type u} [linear_order α] {a₁ : α} {a₂ : α} {b₁ : α} {b₂ : α} : interval a₁ b₁ ⊆ interval a₂ b₂ ↔ min a₂ b₂ ≤ min a₁ b₁ ∧ max a₁ b₁ ≤ max a₂ b₂ := sorry theorem interval_subset_interval_right {α : Type u} [linear_order α] {a : α} {b : α} {x : α} (h : x ∈ interval a b) : interval x b ⊆ interval a b := interval_subset_interval h right_mem_interval theorem interval_subset_interval_left {α : Type u} [linear_order α] {a : α} {b : α} {x : α} (h : x ∈ interval a b) : interval a x ⊆ interval a b := interval_subset_interval left_mem_interval h theorem bdd_below_bdd_above_iff_subset_interval {α : Type u} [linear_order α] (s : set α) : bdd_below s ∧ bdd_above s ↔ ∃ (a : α), ∃ (b : α), s ⊆ interval a b := sorry @[simp] theorem preimage_const_add_interval {α : Type u} [linear_ordered_add_comm_group α] (a : α) (b : α) (c : α) : (fun (x : α) => a + x) ⁻¹' interval b c = interval (b - a) (c - a) := sorry @[simp] theorem preimage_add_const_interval {α : Type u} [linear_ordered_add_comm_group α] (a : α) (b : α) (c : α) : (fun (x : α) => x + a) ⁻¹' interval b c = interval (b - a) (c - a) := sorry @[simp] theorem preimage_neg_interval {α : Type u} [linear_ordered_add_comm_group α] (a : α) (b : α) : -interval a b = interval (-a) (-b) := sorry @[simp] theorem preimage_sub_const_interval {α : Type u} [linear_ordered_add_comm_group α] (a : α) (b : α) (c : α) : (fun (x : α) => x - a) ⁻¹' interval b c = interval (b + a) (c + a) := sorry @[simp] theorem preimage_const_sub_interval {α : Type u} [linear_ordered_add_comm_group α] (a : α) (b : α) (c : α) : (fun (x : α) => a - x) ⁻¹' interval b c = interval (a - b) (a - c) := sorry @[simp] theorem image_const_add_interval {α : Type u} [linear_ordered_add_comm_group α] (a : α) (b : α) (c : α) : (fun (x : α) => a + x) '' interval b c = interval (a + b) (a + c) := sorry @[simp] theorem image_add_const_interval {α : Type u} [linear_ordered_add_comm_group α] (a : α) (b : α) (c : α) : (fun (x : α) => x + a) '' interval b c = interval (b + a) (c + a) := sorry @[simp] theorem image_const_sub_interval {α : Type u} [linear_ordered_add_comm_group α] (a : α) (b : α) (c : α) : (fun (x : α) => a - x) '' interval b c = interval (a - b) (a - c) := sorry @[simp] theorem image_sub_const_interval {α : Type u} [linear_ordered_add_comm_group α] (a : α) (b : α) (c : α) : (fun (x : α) => x - a) '' interval b c = interval (b - a) (c - a) := sorry theorem image_neg_interval {α : Type u} [linear_ordered_add_comm_group α] (a : α) (b : α) : Neg.neg '' interval a b = interval (-a) (-b) := sorry /-- If `[x, y]` is a subinterval of `[a, b]`, then the distance between `x` and `y` is less than or equal to that of `a` and `b` -/ theorem abs_sub_le_of_subinterval {α : Type u} [linear_ordered_add_comm_group α] {a : α} {b : α} {x : α} {y : α} (h : interval x y ⊆ interval a b) : abs (y - x) ≤ abs (b - a) := sorry /-- If `x ∈ [a, b]`, then the distance between `a` and `x` is less than or equal to that of `a` and `b` -/ theorem abs_sub_left_of_mem_interval {α : Type u} [linear_ordered_add_comm_group α] {a : α} {b : α} {x : α} (h : x ∈ interval a b) : abs (x - a) ≤ abs (b - a) := abs_sub_le_of_subinterval (interval_subset_interval_left h) /-- If `x ∈ [a, b]`, then the distance between `x` and `b` is less than or equal to that of `a` and `b` -/ theorem abs_sub_right_of_mem_interval {α : Type u} [linear_ordered_add_comm_group α] {a : α} {b : α} {x : α} (h : x ∈ interval a b) : abs (b - x) ≤ abs (b - a) := abs_sub_le_of_subinterval (interval_subset_interval_right h) @[simp] theorem preimage_mul_const_interval {k : Type u} [linear_ordered_field k] {a : k} (ha : a ≠ 0) (b : k) (c : k) : (fun (x : k) => x * a) ⁻¹' interval b c = interval (b / a) (c / a) := sorry @[simp] theorem preimage_const_mul_interval {k : Type u} [linear_ordered_field k] {a : k} (ha : a ≠ 0) (b : k) (c : k) : (fun (x : k) => a * x) ⁻¹' interval b c = interval (b / a) (c / a) := sorry @[simp] theorem preimage_div_const_interval {k : Type u} [linear_ordered_field k] {a : k} (ha : a ≠ 0) (b : k) (c : k) : (fun (x : k) => x / a) ⁻¹' interval b c = interval (b * a) (c * a) := sorry @[simp] theorem image_mul_const_interval {k : Type u} [linear_ordered_field k] (a : k) (b : k) (c : k) : (fun (x : k) => x * a) '' interval b c = interval (b * a) (c * a) := sorry @[simp] theorem image_const_mul_interval {k : Type u} [linear_ordered_field k] (a : k) (b : k) (c : k) : (fun (x : k) => a * x) '' interval b c = interval (a * b) (a * c) := sorry @[simp] theorem image_div_const_interval {k : Type u} [linear_ordered_field k] (a : k) (b : k) (c : k) : (fun (x : k) => x / a) '' interval b c = interval (b / a) (c / a) := image_mul_const_interval (a⁻¹) b c
ab78a28031e6dc6f69ea2660923c52ffc785455e
94e33a31faa76775069b071adea97e86e218a8ee
/src/analysis/special_functions/log/basic.lean
c96d348628638e674d2cf08808e602c6d8ab5d54
[ "Apache-2.0" ]
permissive
urkud/mathlib
eab80095e1b9f1513bfb7f25b4fa82fa4fd02989
6379d39e6b5b279df9715f8011369a301b634e41
refs/heads/master
1,658,425,342,662
1,658,078,703,000
1,658,078,703,000
186,910,338
0
0
Apache-2.0
1,568,512,083,000
1,557,958,709,000
Lean
UTF-8
Lean
false
false
12,086
lean
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import analysis.special_functions.exp /-! # Real logarithm In this file we define `real.log` to be the logarithm of a real number. As usual, we extend it from its domain `(0, +∞)` to a globally defined function. We choose to do it so that `log 0 = 0` and `log (-x) = log x`. We prove some basic properties of this function and show that it is continuous. ## Tags logarithm, continuity -/ open set filter function open_locale topological_space noncomputable theory namespace real variables {x y : ℝ} /-- The real logarithm function, equal to the inverse of the exponential for `x > 0`, to `log |x|` for `x < 0`, and to `0` for `0`. We use this unconventional extension to `(-∞, 0]` as it gives the formula `log (x * y) = log x + log y` for all nonzero `x` and `y`, and the derivative of `log` is `1/x` away from `0`. -/ @[pp_nodot] noncomputable def log (x : ℝ) : ℝ := if hx : x = 0 then 0 else exp_order_iso.symm ⟨|x|, abs_pos.2 hx⟩ lemma log_of_ne_zero (hx : x ≠ 0) : log x = exp_order_iso.symm ⟨|x|, abs_pos.2 hx⟩ := dif_neg hx lemma log_of_pos (hx : 0 < x) : log x = exp_order_iso.symm ⟨x, hx⟩ := by { rw [log_of_ne_zero hx.ne'], congr, exact abs_of_pos hx } lemma exp_log_eq_abs (hx : x ≠ 0) : exp (log x) = |x| := by rw [log_of_ne_zero hx, ← coe_exp_order_iso_apply, order_iso.apply_symm_apply, subtype.coe_mk] lemma exp_log (hx : 0 < x) : exp (log x) = x := by { rw exp_log_eq_abs hx.ne', exact abs_of_pos hx } lemma exp_log_of_neg (hx : x < 0) : exp (log x) = -x := by { rw exp_log_eq_abs (ne_of_lt hx), exact abs_of_neg hx } lemma le_exp_log (x : ℝ) : x ≤ exp (log x) := begin by_cases h_zero : x = 0, { rw [h_zero, log, dif_pos rfl, exp_zero], exact zero_le_one, }, { rw exp_log_eq_abs h_zero, exact le_abs_self _, }, end @[simp] lemma log_exp (x : ℝ) : log (exp x) = x := exp_injective $ exp_log (exp_pos x) lemma surj_on_log : surj_on log (Ioi 0) univ := λ x _, ⟨exp x, exp_pos x, log_exp x⟩ lemma log_surjective : surjective log := λ x, ⟨exp x, log_exp x⟩ @[simp] lemma range_log : range log = univ := log_surjective.range_eq @[simp] lemma log_zero : log 0 = 0 := dif_pos rfl @[simp] lemma log_one : log 1 = 0 := exp_injective $ by rw [exp_log zero_lt_one, exp_zero] @[simp] lemma log_abs (x : ℝ) : log (|x|) = log x := begin by_cases h : x = 0, { simp [h] }, { rw [← exp_eq_exp, exp_log_eq_abs h, exp_log_eq_abs (abs_pos.2 h).ne', abs_abs] } end @[simp] lemma log_neg_eq_log (x : ℝ) : log (-x) = log x := by rw [← log_abs x, ← log_abs (-x), abs_neg] lemma sinh_log {x : ℝ} (hx : 0 < x) : sinh (log x) = (x - x⁻¹) / 2 := by rw [sinh_eq, exp_neg, exp_log hx] lemma cosh_log {x : ℝ} (hx : 0 < x) : cosh (log x) = (x + x⁻¹) / 2 := by rw [cosh_eq, exp_neg, exp_log hx] lemma surj_on_log' : surj_on log (Iio 0) univ := λ x _, ⟨-exp x, neg_lt_zero.2 $ exp_pos x, by rw [log_neg_eq_log, log_exp]⟩ lemma log_mul (hx : x ≠ 0) (hy : y ≠ 0) : log (x * y) = log x + log y := exp_injective $ by rw [exp_log_eq_abs (mul_ne_zero hx hy), exp_add, exp_log_eq_abs hx, exp_log_eq_abs hy, abs_mul] lemma log_div (hx : x ≠ 0) (hy : y ≠ 0) : log (x / y) = log x - log y := exp_injective $ by rw [exp_log_eq_abs (div_ne_zero hx hy), exp_sub, exp_log_eq_abs hx, exp_log_eq_abs hy, abs_div] @[simp] lemma log_inv (x : ℝ) : log (x⁻¹) = -log x := begin by_cases hx : x = 0, { simp [hx] }, rw [← exp_eq_exp, exp_log_eq_abs (inv_ne_zero hx), exp_neg, exp_log_eq_abs hx, abs_inv] end lemma log_le_log (h : 0 < x) (h₁ : 0 < y) : log x ≤ log y ↔ x ≤ y := by rw [← exp_le_exp, exp_log h, exp_log h₁] lemma log_lt_log (hx : 0 < x) : x < y → log x < log y := by { intro h, rwa [← exp_lt_exp, exp_log hx, exp_log (lt_trans hx h)] } lemma log_lt_log_iff (hx : 0 < x) (hy : 0 < y) : log x < log y ↔ x < y := by { rw [← exp_lt_exp, exp_log hx, exp_log hy] } lemma log_le_iff_le_exp (hx : 0 < x) : log x ≤ y ↔ x ≤ exp y := by rw [←exp_le_exp, exp_log hx] lemma log_lt_iff_lt_exp (hx : 0 < x) : log x < y ↔ x < exp y := by rw [←exp_lt_exp, exp_log hx] lemma le_log_iff_exp_le (hy : 0 < y) : x ≤ log y ↔ exp x ≤ y := by rw [←exp_le_exp, exp_log hy] lemma lt_log_iff_exp_lt (hy : 0 < y) : x < log y ↔ exp x < y := by rw [←exp_lt_exp, exp_log hy] lemma log_pos_iff (hx : 0 < x) : 0 < log x ↔ 1 < x := by { rw ← log_one, exact log_lt_log_iff zero_lt_one hx } lemma log_pos (hx : 1 < x) : 0 < log x := (log_pos_iff (lt_trans zero_lt_one hx)).2 hx lemma log_neg_iff (h : 0 < x) : log x < 0 ↔ x < 1 := by { rw ← log_one, exact log_lt_log_iff h zero_lt_one } lemma log_neg (h0 : 0 < x) (h1 : x < 1) : log x < 0 := (log_neg_iff h0).2 h1 lemma log_nonneg_iff (hx : 0 < x) : 0 ≤ log x ↔ 1 ≤ x := by rw [← not_lt, log_neg_iff hx, not_lt] lemma log_nonneg (hx : 1 ≤ x) : 0 ≤ log x := (log_nonneg_iff (zero_lt_one.trans_le hx)).2 hx lemma log_nonpos_iff (hx : 0 < x) : log x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, log_pos_iff hx, not_lt] lemma log_nonpos_iff' (hx : 0 ≤ x) : log x ≤ 0 ↔ x ≤ 1 := begin rcases hx.eq_or_lt with (rfl|hx), { simp [le_refl, zero_le_one] }, exact log_nonpos_iff hx end lemma log_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : log x ≤ 0 := (log_nonpos_iff' hx).2 h'x lemma strict_mono_on_log : strict_mono_on log (set.Ioi 0) := λ x hx y hy hxy, log_lt_log hx hxy lemma strict_anti_on_log : strict_anti_on log (set.Iio 0) := begin rintros x (hx : x < 0) y (hy : y < 0) hxy, rw [← log_abs y, ← log_abs x], refine log_lt_log (abs_pos.2 hy.ne) _, rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] end lemma log_inj_on_pos : set.inj_on log (set.Ioi 0) := strict_mono_on_log.inj_on lemma eq_one_of_pos_of_log_eq_zero {x : ℝ} (h₁ : 0 < x) (h₂ : log x = 0) : x = 1 := log_inj_on_pos (set.mem_Ioi.2 h₁) (set.mem_Ioi.2 zero_lt_one) (h₂.trans real.log_one.symm) lemma log_ne_zero_of_pos_of_ne_one {x : ℝ} (hx_pos : 0 < x) (hx : x ≠ 1) : log x ≠ 0 := mt (eq_one_of_pos_of_log_eq_zero hx_pos) hx @[simp] lemma log_eq_zero {x : ℝ} : log x = 0 ↔ x = 0 ∨ x = 1 ∨ x = -1 := begin split, { intros h, rcases lt_trichotomy x 0 with x_lt_zero | rfl | x_gt_zero, { refine or.inr (or.inr (eq_neg_iff_eq_neg.mp _)), rw [←log_neg_eq_log x] at h, exact (eq_one_of_pos_of_log_eq_zero (neg_pos.mpr x_lt_zero) h).symm, }, { exact or.inl rfl }, { exact or.inr (or.inl (eq_one_of_pos_of_log_eq_zero x_gt_zero h)), }, }, { rintro (rfl|rfl|rfl); simp only [log_one, log_zero, log_neg_eq_log], } end @[simp] lemma log_pow (x : ℝ) (n : ℕ) : log (x ^ n) = n * log x := begin induction n with n ih, { simp }, rcases eq_or_ne x 0 with rfl | hx, { simp }, rw [pow_succ', log_mul (pow_ne_zero _ hx) hx, ih, nat.cast_succ, add_mul, one_mul], end @[simp] lemma log_zpow (x : ℝ) (n : ℤ) : log (x ^ n) = n * log x := begin induction n, { rw [int.of_nat_eq_coe, zpow_coe_nat, log_pow, int.cast_coe_nat] }, rw [zpow_neg_succ_of_nat, log_inv, log_pow, int.cast_neg_succ_of_nat, nat.cast_add_one, neg_mul_eq_neg_mul], end lemma log_sqrt {x : ℝ} (hx : 0 ≤ x) : log (sqrt x) = log x / 2 := by { rw [eq_div_iff, mul_comm, ← nat.cast_two, ← log_pow, sq_sqrt hx], exact two_ne_zero } lemma log_le_sub_one_of_pos {x : ℝ} (hx : 0 < x) : log x ≤ x - 1 := begin rw le_sub_iff_add_le, convert add_one_le_exp (log x), rw exp_log hx, end /-- Bound for `|log x * x|` in the interval `(0, 1]`. -/ lemma abs_log_mul_self_lt (x: ℝ) (h1 : 0 < x) (h2 : x ≤ 1) : |log x * x| < 1 := begin have : 0 < 1/x := by simpa only [one_div, inv_pos] using h1, replace := log_le_sub_one_of_pos this, replace : log (1 / x) < 1/x := by linarith, rw [log_div one_ne_zero h1.ne', log_one, zero_sub, lt_div_iff h1] at this, have aux : 0 ≤ -log x * x, { refine mul_nonneg _ h1.le, rw ←log_inv, apply log_nonneg, rw [←(le_inv h1 zero_lt_one), inv_one], exact h2, }, rw [←(abs_of_nonneg aux), neg_mul, abs_neg] at this, exact this, end /-- The real logarithm function tends to `+∞` at `+∞`. -/ lemma tendsto_log_at_top : tendsto log at_top at_top := tendsto_comp_exp_at_top.1 $ by simpa only [log_exp] using tendsto_id lemma tendsto_log_nhds_within_zero : tendsto log (𝓝[≠] 0) at_bot := begin rw [← (show _ = log, from funext log_abs)], refine tendsto.comp _ tendsto_abs_nhds_within_zero, simpa [← tendsto_comp_exp_at_bot] using tendsto_id end lemma continuous_on_log : continuous_on log {0}ᶜ := begin rw [continuous_on_iff_continuous_restrict, restrict], conv in (log _) { rw [log_of_ne_zero (show (x : ℝ) ≠ 0, from x.2)] }, exact exp_order_iso.symm.continuous.comp (continuous_subtype_mk _ continuous_subtype_coe.norm) end @[continuity] lemma continuous_log : continuous (λ x : {x : ℝ // x ≠ 0}, log x) := continuous_on_iff_continuous_restrict.1 $ continuous_on_log.mono $ λ x hx, hx @[continuity] lemma continuous_log' : continuous (λ x : {x : ℝ // 0 < x}, log x) := continuous_on_iff_continuous_restrict.1 $ continuous_on_log.mono $ λ x hx, ne_of_gt hx lemma continuous_at_log (hx : x ≠ 0) : continuous_at log x := (continuous_on_log x hx).continuous_at $ is_open.mem_nhds is_open_compl_singleton hx @[simp] lemma continuous_at_log_iff : continuous_at log x ↔ x ≠ 0 := begin refine ⟨_, continuous_at_log⟩, rintros h rfl, exact not_tendsto_nhds_of_tendsto_at_bot tendsto_log_nhds_within_zero _ (h.tendsto.mono_left inf_le_left) end open_locale big_operators lemma log_prod {α : Type*} (s : finset α) (f : α → ℝ) (hf : ∀ x ∈ s, f x ≠ 0): log (∏ i in s, f i) = ∑ i in s, log (f i) := begin induction s using finset.cons_induction_on with a s ha ih, { simp }, { rw [finset.forall_mem_cons] at hf, simp [ih hf.2, log_mul hf.1 (finset.prod_ne_zero_iff.2 hf.2)] } end lemma log_nat_eq_sum_factorization (n : ℕ) : log n = n.factorization.sum (λ p t, t * log p) := begin rcases eq_or_ne n 0 with rfl | hn, { simp }, nth_rewrite 0 [←nat.factorization_prod_pow_eq_self hn], rw [finsupp.prod, nat.cast_prod, log_prod _ _ (λ p hp, _), finsupp.sum], { simp_rw [nat.cast_pow, log_pow] }, { norm_cast, exact pow_ne_zero _ (nat.prime_of_mem_factorization hp).ne_zero }, end lemma tendsto_pow_log_div_mul_add_at_top (a b : ℝ) (n : ℕ) (ha : a ≠ 0) : tendsto (λ x, log x ^ n / (a * x + b)) at_top (𝓝 0) := ((tendsto_div_pow_mul_exp_add_at_top a b n ha.symm).comp tendsto_log_at_top).congr' (by filter_upwards [eventually_gt_at_top (0 : ℝ)] with x hx using by simp [exp_log hx]) lemma is_o_pow_log_id_at_top {n : ℕ} : (λ x, log x ^ n) =o[at_top] id := begin rw asymptotics.is_o_iff_tendsto', { simpa using tendsto_pow_log_div_mul_add_at_top 1 0 n one_ne_zero }, filter_upwards [eventually_ne_at_top (0 : ℝ)] with x h₁ h₂ using (h₁ h₂).elim, end lemma is_o_log_id_at_top : log =o[at_top] id := is_o_pow_log_id_at_top.congr_left (λ x, pow_one _) end real section continuity open real variables {α : Type*} lemma filter.tendsto.log {f : α → ℝ} {l : filter α} {x : ℝ} (h : tendsto f l (𝓝 x)) (hx : x ≠ 0) : tendsto (λ x, log (f x)) l (𝓝 (log x)) := (continuous_at_log hx).tendsto.comp h variables [topological_space α] {f : α → ℝ} {s : set α} {a : α} lemma continuous.log (hf : continuous f) (h₀ : ∀ x, f x ≠ 0) : continuous (λ x, log (f x)) := continuous_on_log.comp_continuous hf h₀ lemma continuous_at.log (hf : continuous_at f a) (h₀ : f a ≠ 0) : continuous_at (λ x, log (f x)) a := hf.log h₀ lemma continuous_within_at.log (hf : continuous_within_at f s a) (h₀ : f a ≠ 0) : continuous_within_at (λ x, log (f x)) s a := hf.log h₀ lemma continuous_on.log (hf : continuous_on f s) (h₀ : ∀ x ∈ s, f x ≠ 0) : continuous_on (λ x, log (f x)) s := λ x hx, (hf x hx).log (h₀ x hx) end continuity
971cbed7a9d9dbf54bab8837b8a3111e9cadae26
c45b34bfd44d8607a2e8762c926e3cfaa7436201
/uexp/src/uexp/rules/transitiveInferenceJoin.lean
230dc105a08e980dafdf987a877439bee6700adc
[ "BSD-2-Clause" ]
permissive
Shamrock-Frost/Cosette
b477c442c07e45082348a145f19ebb35a7f29392
24cbc4adebf627f13f5eac878f04ffa20d1209af
refs/heads/master
1,619,721,304,969
1,526,082,841,000
1,526,082,841,000
121,695,605
1
0
null
1,518,737,210,000
1,518,737,210,000
null
UTF-8
Lean
false
false
2,247
lean
import ..sql import ..tactics import ..u_semiring import ..extra_constants import ..ucongr import ..TDP set_option profiler true open Expr open Proj open Pred open SQL open tree notation `int` := datatypes.int variable integer_1: const datatypes.int variable integer_7: const datatypes.int theorem rule: forall ( Γ scm_t scm_account scm_bonus scm_dept scm_emp: Schema) (rel_t: relation scm_t) (rel_account: relation scm_account) (rel_bonus: relation scm_bonus) (rel_dept: relation scm_dept) (rel_emp: relation scm_emp) (t_k0 : Column int scm_t) (t_c1 : Column int scm_t) (t_f1_a0 : Column int scm_t) (t_f2_a0 : Column int scm_t) (t_f0_c0 : Column int scm_t) (t_f1_c0 : Column int scm_t) (t_f0_c1 : Column int scm_t) (t_f1_c2 : Column int scm_t) (t_f2_c3 : Column int scm_t) (account_acctno : Column int scm_account) (account_type : Column int scm_account) (account_balance : Column int scm_account) (bonus_ename : Column int scm_bonus) (bonus_job : Column int scm_bonus) (bonus_sal : Column int scm_bonus) (bonus_comm : Column int scm_bonus) (dept_deptno : Column int scm_dept) (dept_name : Column int scm_dept) (emp_empno : Column int scm_emp) (emp_ename : Column int scm_emp) (emp_job : Column int scm_emp) (emp_mgr : Column int scm_emp) (emp_hiredate : Column int scm_emp) (emp_comm : Column int scm_emp) (emp_sal : Column int scm_emp) (emp_deptno : Column int scm_emp) (emp_slacker : Column int scm_emp), denoteSQL ((SELECT1 (e2p (constantExpr integer_1)) FROM1 (product (table rel_emp) ((SELECT * FROM1 (table rel_emp) WHERE (castPred (combine (right⋅emp_deptno) (e2p (constantExpr integer_7)) ) predicates.gt)))) WHERE (equal (uvariable (right⋅left⋅emp_deptno)) (uvariable (right⋅right⋅emp_deptno)))) :SQL Γ _) = denoteSQL ((SELECT1 (e2p (constantExpr integer_1)) FROM1 (product ((SELECT * FROM1 (table rel_emp) WHERE (castPred (combine (right⋅emp_deptno) (e2p (constantExpr integer_7)) ) predicates.gt))) ((SELECT * FROM1 (table rel_emp) WHERE (castPred (combine (right⋅emp_deptno) (e2p (constantExpr integer_7)) ) predicates.gt)))) WHERE (equal (uvariable (right⋅left⋅emp_deptno)) (uvariable (right⋅right⋅emp_deptno)))) :SQL Γ _) := begin intros, unfold_all_denotations, funext, try {simp}, TDP end
1c3fddb00898f44f25fc4963ba27eee41048d1d4
4727251e0cd73359b15b664c3170e5d754078599
/src/category_theory/idempotents/functor_categories.lean
910bdec18751e7d6ad18b6f6e3c7288d9cf5b33f
[ "Apache-2.0" ]
permissive
Vierkantor/mathlib
0ea59ac32a3a43c93c44d70f441c4ee810ccceca
83bc3b9ce9b13910b57bda6b56222495ebd31c2f
refs/heads/master
1,658,323,012,449
1,652,256,003,000
1,652,256,003,000
209,296,341
0
1
Apache-2.0
1,568,807,655,000
1,568,807,655,000
null
UTF-8
Lean
false
false
5,752
lean
/- Copyright (c) 2022 Joël Riou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joël Riou -/ import category_theory.idempotents.karoubi /-! # Idempotent completeness and functor categories In this file we define an instance `functor_category_is_idempotent_complete` expressing that a functor category `J ⥤ C` is idempotent complete when the target category `C` is. We also provide a fully faithful functor `karoubi_functor_category_embedding : karoubi (J ⥤ C)) : J ⥤ karoubi C` for all categories `J` and `C`. -/ open category_theory open category_theory.category open category_theory.idempotents.karoubi open category_theory.limits namespace category_theory namespace idempotents variables (J C : Type*) [category J] [category C] instance functor_category_is_idempotent_complete [is_idempotent_complete C] : is_idempotent_complete (J ⥤ C) := begin refine ⟨_⟩, intros F p hp, have hC := (is_idempotent_complete_iff_has_equalizer_of_id_and_idempotent C).mp infer_instance, haveI : ∀ (j : J), has_equalizer (𝟙 _) (p.app j) := λ j, hC _ _ (congr_app hp j), /- We construct the direct factor `Y` associated to `p : F ⟶ F` by computing the equalizer of the identity and `p.app j` on each object `(j : J)`. -/ let Y : J ⥤ C := { obj := λ j, limits.equalizer (𝟙 _) (p.app j), map := λ j j' φ, equalizer.lift (limits.equalizer.ι (𝟙 _) (p.app j) ≫ F.map φ) (by rw [comp_id, assoc, p.naturality φ, ← assoc, ← limits.equalizer.condition, comp_id]), map_id' := λ j, by { ext, simp only [comp_id, functor.map_id, equalizer.lift_ι, id_comp], }, map_comp' := λ j j' j'' φ φ', begin ext, simp only [assoc, functor.map_comp, equalizer.lift_ι, equalizer.lift_ι_assoc], end }, let i : Y ⟶ F := { app := λ j, equalizer.ι _ _, naturality' := λ j j' φ, by rw [equalizer.lift_ι], }, let e : F ⟶ Y := { app := λ j, equalizer.lift (p.app j) (by { rw comp_id, exact (congr_app hp j).symm, }), naturality' := λ j j' φ, begin ext, simp only [assoc, equalizer.lift_ι, nat_trans.naturality, equalizer.lift_ι_assoc], end }, use [Y, i, e], split; ext j, { simp only [nat_trans.comp_app, assoc, equalizer.lift_ι, nat_trans.id_app, id_comp, ← equalizer.condition, comp_id], }, { simp only [nat_trans.comp_app, equalizer.lift_ι], }, end namespace karoubi_functor_category_embedding variables {J C} /-- On objects, the functor which sends a formal direct factor `P` of a functor `F : J ⥤ C` to the functor `J ⥤ karoubi C` which sends `(j : J)` to the corresponding direct factor of `F.obj j`. -/ @[simps] def obj (P : karoubi (J ⥤ C)) : J ⥤ karoubi C := { obj := λ j, ⟨P.X.obj j, P.p.app j, congr_app P.idem j⟩, map := λ j j' φ, { f := P.p.app j ≫ P.X.map φ, comm := begin simp only [nat_trans.naturality, assoc], have h := congr_app P.idem j, rw [nat_trans.comp_app] at h, slice_rhs 1 3 { erw [h, h], }, end }, map_id' := λ j, by { ext, simp only [functor.map_id, comp_id, id_eq], }, map_comp' := λ j j' j'' φ φ', begin ext, have h := congr_app P.idem j, rw [nat_trans.comp_app] at h, simp only [assoc, nat_trans.naturality_assoc, functor.map_comp, comp], slice_rhs 1 2 { rw h, }, rw [assoc], end } /-- Tautological action on maps of the functor `karoubi (J ⥤ C) ⥤ (J ⥤ karoubi C)`. -/ @[simps] def map {P Q : karoubi (J ⥤ C)} (f : P ⟶ Q) : obj P ⟶ obj Q := { app := λ j, ⟨f.f.app j, congr_app f.comm j⟩, naturality' := λ j j' φ, begin ext, simp only [comp], have h := congr_app (comp_p f) j, have h' := congr_app (p_comp f) j', dsimp at h h' ⊢, slice_rhs 1 2 { erw h, }, rw ← P.p.naturality, slice_lhs 2 3 { erw h', }, rw f.f.naturality, end } end karoubi_functor_category_embedding variables (J C) /-- The tautological fully faithful functor `karoubi (J ⥤ C) ⥤ (J ⥤ karoubi C)`. -/ @[simps] def karoubi_functor_category_embedding : karoubi (J ⥤ C) ⥤ (J ⥤ karoubi C) := { obj := karoubi_functor_category_embedding.obj, map := λ P Q, karoubi_functor_category_embedding.map, map_id' := λ P, rfl, map_comp' := λ P Q R f g, rfl, } instance : full (karoubi_functor_category_embedding J C) := { preimage := λ P Q f, { f := { app := λ j, (f.app j).f, naturality' := λ j j' φ, begin slice_rhs 1 1 { rw ← karoubi.comp_p, }, have h := hom_ext.mp (f.naturality φ), simp only [comp] at h, dsimp [karoubi_functor_category_embedding] at h ⊢, erw [assoc, ← h, ← P.p.naturality φ, assoc, p_comp (f.app j')], end }, comm := by { ext j, exact (f.app j).comm, } }, witness' := λ P Q f, by { ext j, refl, }, } instance : faithful (karoubi_functor_category_embedding J C) := { map_injective' := λ P Q f f' h, by { ext j, exact hom_ext.mp (congr_app h j), }, } /-- The composition of `(J ⥤ C) ⥤ karoubi (J ⥤ C)` and `karoubi (J ⥤ C) ⥤ (J ⥤ karoubi C)` equals the functor `(J ⥤ C) ⥤ (J ⥤ karoubi C)` given by the composition with `to_karoubi C : C ⥤ karoubi C`. -/ lemma to_karoubi_comp_karoubi_functor_category_embedding : (to_karoubi _) ⋙ karoubi_functor_category_embedding J C = (whiskering_right J _ _).obj (to_karoubi C) := begin apply functor.ext, { intros X Y f, ext j, dsimp [to_karoubi], simp only [eq_to_hom_app, eq_to_hom_refl, id_comp], erw [comp_id], }, { intro X, apply functor.ext, { intros j j' φ, ext, dsimp, simpa only [comp_id, id_comp], }, { intro j, refl, }, } end end idempotents end category_theory
4398031971b0f415bede8b15277411eb3b11ded5
d29d82a0af640c937e499f6be79fc552eae0aa13
/src/group_theory/quotient_group.lean
59f39734f54f29eb18f4e6805742ec2c51171563
[ "Apache-2.0" ]
permissive
AbdulMajeedkhurasani/mathlib
835f8a5c5cf3075b250b3737172043ab4fa1edf6
79bc7323b164aebd000524ebafd198eb0e17f956
refs/heads/master
1,688,003,895,660
1,627,788,521,000
1,627,788,521,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
16,578
lean
/- Copyright (c) 2018 Kevin Buzzard, Patrick Massot. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kevin Buzzard, Patrick Massot This file is to a certain extent based on `quotient_module.lean` by Johannes Hölzl. -/ import group_theory.coset /-! # Quotients of groups by normal subgroups This files develops the basic theory of quotients of groups by normal subgroups. In particular it proves Noether's first and second isomorphism theorems. ## Main definitions * `mk'`: the canonical group homomorphism `G →* G/N` given a normal subgroup `N` of `G`. * `lift φ`: the group homomorphism `G/N →* H` given a group homomorphism `φ : G →* H` such that `N ⊆ ker φ`. * `map f`: the group homomorphism `G/N →* H/M` given a group homomorphism `f : G →* H` such that `N ⊆ f⁻¹(M)`. ## Main statements * `quotient_ker_equiv_range`: Noether's first isomorphism theorem, an explicit isomorphism `G/ker φ → range φ` for every group homomorphism `φ : G →* H`. * `quotient_inf_equiv_prod_normal_quotient`: Noether's second isomorphism theorem, an explicit isomorphism between `H/(H ∩ N)` and `(HN)/N` given a subgroup `H` and a normal subgroup `N` of a group `G`. * `quotient_group.quotient_quotient_equiv_quotient`: Noether's third isomorphism theorem, the canonical isomorphism between `(G / M) / (M / N)` and `G / N`, where `N ≤ M`. ## Tags isomorphism theorems, quotient groups -/ universes u v namespace quotient_group variables {G : Type u} [group G] (N : subgroup G) [nN : N.normal] {H : Type v} [group H] include nN -- Define the `div_inv_monoid` before the `group` structure, -- to make sure we have `inv` fully defined before we show `mul_left_inv`. -- TODO: is there a non-invasive way of defining this in one declaration? @[to_additive quotient_add_group.div_inv_monoid] instance : div_inv_monoid (quotient N) := { one := (1 : G), mul := quotient.map₂' (*) (λ a₁ b₁ hab₁ a₂ b₂ hab₂, ((N.mul_mem_cancel_right (N.inv_mem hab₂)).1 (by rw [mul_inv_rev, mul_inv_rev, ← mul_assoc (a₂⁻¹ * a₁⁻¹), mul_assoc _ b₂, ← mul_assoc b₂, mul_inv_self, one_mul, mul_assoc (a₂⁻¹)]; exact nN.conj_mem _ hab₁ _))), mul_assoc := λ a b c, quotient.induction_on₃' a b c (λ a b c, congr_arg mk (mul_assoc a b c)), one_mul := λ a, quotient.induction_on' a (λ a, congr_arg mk (one_mul a)), mul_one := λ a, quotient.induction_on' a (λ a, congr_arg mk (mul_one a)), inv := λ a, quotient.lift_on' a (λ a, ((a⁻¹ : G) : quotient N)) (λ a b hab, quotient.sound' begin show a⁻¹⁻¹ * b⁻¹ ∈ N, rw ← mul_inv_rev, exact N.inv_mem (nN.mem_comm hab) end) } @[to_additive quotient_add_group.add_group] instance : group (quotient N) := { mul_left_inv := λ a, quotient.induction_on' a (λ a, congr_arg mk (mul_left_inv a)), .. quotient.div_inv_monoid _ } /-- The group homomorphism from `G` to `G/N`. -/ @[to_additive quotient_add_group.mk' "The additive group homomorphism from `G` to `G/N`."] def mk' : G →* quotient N := monoid_hom.mk' (quotient_group.mk) (λ _ _, rfl) @[to_additive, simp] lemma coe_mk' : (mk' N : G → quotient N) = coe := rfl @[to_additive, simp] lemma mk'_apply (x : G) : mk' N x = x := rfl @[simp, to_additive quotient_add_group.eq_zero_iff] lemma eq_one_iff {N : subgroup G} [nN : N.normal] (x : G) : (x : quotient N) = 1 ↔ x ∈ N := begin refine quotient_group.eq.trans _, rw [mul_one, subgroup.inv_mem_iff], end @[simp, to_additive quotient_add_group.ker_mk] lemma ker_mk : monoid_hom.ker (quotient_group.mk' N : G →* quotient_group.quotient N) = N := subgroup.ext eq_one_iff @[to_additive quotient_add_group.eq_iff_sub_mem] lemma eq_iff_div_mem {N : subgroup G} [nN : N.normal] {x y : G} : (x : quotient N) = y ↔ x / y ∈ N := begin refine eq_comm.trans (quotient_group.eq.trans _), rw [nN.mem_comm_iff, div_eq_mul_inv] end -- for commutative groups we don't need normality assumption omit nN @[to_additive quotient_add_group.add_comm_group] instance {G : Type*} [comm_group G] (N : subgroup G) : comm_group (quotient N) := { mul_comm := λ a b, quotient.induction_on₂' a b (λ a b, congr_arg mk (mul_comm a b)), .. @quotient_group.quotient.group _ _ N N.normal_of_comm } include nN local notation ` Q ` := quotient N @[simp, to_additive quotient_add_group.coe_zero] lemma coe_one : ((1 : G) : Q) = 1 := rfl @[simp, to_additive quotient_add_group.coe_add] lemma coe_mul (a b : G) : ((a * b : G) : Q) = a * b := rfl @[simp, to_additive quotient_add_group.coe_neg] lemma coe_inv (a : G) : ((a⁻¹ : G) : Q) = a⁻¹ := rfl @[simp] lemma coe_pow (a : G) (n : ℕ) : ((a ^ n : G) : Q) = a ^ n := (mk' N).map_pow a n @[simp] lemma coe_gpow (a : G) (n : ℤ) : ((a ^ n : G) : Q) = a ^ n := (mk' N).map_gpow a n /-- A group homomorphism `φ : G →* H` with `N ⊆ ker(φ)` descends (i.e. `lift`s) to a group homomorphism `G/N →* H`. -/ @[to_additive quotient_add_group.lift "An `add_group` homomorphism `φ : G →+ H` with `N ⊆ ker(φ)` descends (i.e. `lift`s) to a group homomorphism `G/N →* H`."] def lift (φ : G →* H) (HN : ∀x∈N, φ x = 1) : Q →* H := monoid_hom.mk' (λ q : Q, q.lift_on' φ $ assume a b (hab : a⁻¹ * b ∈ N), (calc φ a = φ a * 1 : (mul_one _).symm ... = φ a * φ (a⁻¹ * b) : HN (a⁻¹ * b) hab ▸ rfl ... = φ (a * (a⁻¹ * b)) : (is_mul_hom.map_mul φ a (a⁻¹ * b)).symm ... = φ b : by rw mul_inv_cancel_left)) (λ q r, quotient.induction_on₂' q r $ is_mul_hom.map_mul φ) @[simp, to_additive quotient_add_group.lift_mk] lemma lift_mk {φ : G →* H} (HN : ∀x∈N, φ x = 1) (g : G) : lift N φ HN (g : Q) = φ g := rfl @[simp, to_additive quotient_add_group.lift_mk'] lemma lift_mk' {φ : G →* H} (HN : ∀x∈N, φ x = 1) (g : G) : lift N φ HN (mk g : Q) = φ g := rfl @[simp, to_additive quotient_add_group.lift_quot_mk] lemma lift_quot_mk {φ : G →* H} (HN : ∀x∈N, φ x = 1) (g : G) : lift N φ HN (quot.mk _ g : Q) = φ g := rfl /-- A group homomorphism `f : G →* H` induces a map `G/N →* H/M` if `N ⊆ f⁻¹(M)`. -/ @[to_additive quotient_add_group.map "An `add_group` homomorphism `f : G →+ H` induces a map `G/N →+ H/M` if `N ⊆ f⁻¹(M)`."] def map (M : subgroup H) [M.normal] (f : G →* H) (h : N ≤ M.comap f) : quotient N →* quotient M := begin refine quotient_group.lift N ((mk' M).comp f) _, assume x hx, refine quotient_group.eq.2 _, rw [mul_one, subgroup.inv_mem_iff], exact h hx, end @[simp, to_additive quotient_add_group.map_coe] lemma map_coe (M : subgroup H) [M.normal] (f : G →* H) (h : N ≤ M.comap f) (x : G) : map N M f h ↑x = ↑(f x) := lift_mk' _ _ x @[to_additive quotient_add_group.map_mk'] lemma map_mk' (M : subgroup H) [M.normal] (f : G →* H) (h : N ≤ M.comap f) (x : G) : map N M f h (mk' _ x) = ↑(f x) := quotient_group.lift_mk' _ _ x omit nN variables (φ : G →* H) open function monoid_hom /-- The induced map from the quotient by the kernel to the codomain. -/ @[to_additive quotient_add_group.ker_lift "The induced map from the quotient by the kernel to the codomain."] def ker_lift : quotient (ker φ) →* H := lift _ φ $ λ g, φ.mem_ker.mp @[simp, to_additive quotient_add_group.ker_lift_mk] lemma ker_lift_mk (g : G) : (ker_lift φ) g = φ g := lift_mk _ _ _ @[simp, to_additive quotient_add_group.ker_lift_mk'] lemma ker_lift_mk' (g : G) : (ker_lift φ) (mk g) = φ g := lift_mk' _ _ _ @[to_additive quotient_add_group.injective_ker_lift] lemma ker_lift_injective : injective (ker_lift φ) := assume a b, quotient.induction_on₂' a b $ assume a b (h : φ a = φ b), quotient.sound' $ show a⁻¹ * b ∈ ker φ, by rw [mem_ker, is_mul_hom.map_mul φ, ← h, is_group_hom.map_inv φ, inv_mul_self] -- Note that `ker φ` isn't definitionally `ker (φ.range_restrict)` -- so there is a bit of annoying code duplication here /-- The induced map from the quotient by the kernel to the range. -/ @[to_additive quotient_add_group.range_ker_lift "The induced map from the quotient by the kernel to the range."] def range_ker_lift : quotient (ker φ) →* φ.range := lift _ φ.range_restrict $ λ g hg, (mem_ker _).mp $ by rwa range_restrict_ker @[to_additive quotient_add_group.range_ker_lift_injective] lemma range_ker_lift_injective : injective (range_ker_lift φ) := assume a b, quotient.induction_on₂' a b $ assume a b (h : φ.range_restrict a = φ.range_restrict b), quotient.sound' $ show a⁻¹ * b ∈ ker φ, by rw [←range_restrict_ker, mem_ker, φ.range_restrict.map_mul, ← h, φ.range_restrict.map_inv, inv_mul_self] @[to_additive quotient_add_group.range_ker_lift_surjective] lemma range_ker_lift_surjective : surjective (range_ker_lift φ) := begin rintro ⟨_, g, rfl⟩, use mk g, refl, end /-- **Noether's first isomorphism theorem** (a definition): the canonical isomorphism between `G/(ker φ)` to `range φ`. -/ @[to_additive quotient_add_group.quotient_ker_equiv_range "The first isomorphism theorem (a definition): the canonical isomorphism between `G/(ker φ)` to `range φ`."] noncomputable def quotient_ker_equiv_range : (quotient (ker φ)) ≃* range φ := mul_equiv.of_bijective (range_ker_lift φ) ⟨range_ker_lift_injective φ, range_ker_lift_surjective φ⟩ /-- The canonical isomorphism `G/(ker φ) ≃* H` induced by a homomorphism `φ : G →* H` with a right inverse `ψ : H → G`. -/ @[to_additive quotient_add_group.quotient_ker_equiv_of_right_inverse "The canonical isomorphism `G/(ker φ) ≃+ H` induced by a homomorphism `φ : G →+ H` with a right inverse `ψ : H → G`.", simps] def quotient_ker_equiv_of_right_inverse (ψ : H → G) (hφ : function.right_inverse ψ φ) : quotient (ker φ) ≃* H := { to_fun := ker_lift φ, inv_fun := mk ∘ ψ, left_inv := λ x, ker_lift_injective φ (by rw [function.comp_app, ker_lift_mk', hφ]), right_inv := hφ, .. ker_lift φ } /-- The canonical isomorphism `G/(ker φ) ≃* H` induced by a surjection `φ : G →* H`. For a `computable` version, see `quotient_group.quotient_ker_equiv_of_right_inverse`. -/ @[to_additive quotient_add_group.quotient_ker_equiv_of_surjective "The canonical isomorphism `G/(ker φ) ≃+ H` induced by a surjection `φ : G →+ H`. For a `computable` version, see `quotient_add_group.quotient_ker_equiv_of_right_inverse`."] noncomputable def quotient_ker_equiv_of_surjective (hφ : function.surjective φ) : quotient (ker φ) ≃* H := quotient_ker_equiv_of_right_inverse φ _ hφ.has_right_inverse.some_spec /-- If two normal subgroups `M` and `N` of `G` are the same, their quotient groups are isomorphic. -/ @[to_additive "If two normal subgroups `M` and `N` of `G` are the same, their quotient groups are isomorphic."] def equiv_quotient_of_eq {M N : subgroup G} [M.normal] [N.normal] (h : M = N) : quotient M ≃* quotient N := { to_fun := (lift M (mk' N) (λ m hm, quotient_group.eq.mpr (by simpa [← h] using M.inv_mem hm))), inv_fun := (lift N (mk' M) (λ n hn, quotient_group.eq.mpr (by simpa [← h] using N.inv_mem hn))), left_inv := λ x, x.induction_on' $ by { intro, refl }, right_inv := λ x, x.induction_on' $ by { intro, refl }, map_mul' := λ x y, by rw map_mul } /-- Let `A', A, B', B` be subgroups of `G`. If `A' ≤ B'` and `A ≤ B`, then there is a map `A / (A' ⊓ A) →* B / (B' ⊓ B)` induced by the inclusions. -/ @[to_additive "Let `A', A, B', B` be subgroups of `G`. If `A' ≤ B'` and `A ≤ B`, then there is a map `A / (A' ⊓ A) →+ B / (B' ⊓ B)` induced by the inclusions."] def quotient_map_subgroup_of_of_le {A' A B' B : subgroup G} [hAN : (A'.subgroup_of A).normal] [hBN : (B'.subgroup_of B).normal] (h' : A' ≤ B') (h : A ≤ B) : quotient (A'.subgroup_of A) →* quotient (B'.subgroup_of B) := map _ _ (subgroup.inclusion h) $ by simp [subgroup.subgroup_of, subgroup.comap_comap]; exact subgroup.comap_mono h' /-- Let `A', A, B', B` be subgroups of `G`. If `A' = B'` and `A = B`, then the quotients `A / (A' ⊓ A)` and `B / (B' ⊓ B)` are isomorphic. Applying this equiv is nicer than rewriting along the equalities, since the type of `(A'.subgroup_of A : subgroup A)` depends on on `A`. -/ @[to_additive "Let `A', A, B', B` be subgroups of `G`. If `A' = B'` and `A = B`, then the quotients `A / (A' ⊓ A)` and `B / (B' ⊓ B)` are isomorphic. Applying this equiv is nicer than rewriting along the equalities, since the type of `(A'.add_subgroup_of A : add_subgroup A)` depends on on `A`. "] def equiv_quotient_subgroup_of_of_eq {A' A B' B : subgroup G} [hAN : (A'.subgroup_of A).normal] [hBN : (B'.subgroup_of B).normal] (h' : A' = B') (h : A = B) : quotient (A'.subgroup_of A) ≃* quotient (B'.subgroup_of B) := by apply monoid_hom.to_mul_equiv (quotient_map_subgroup_of_of_le h'.le h.le) (quotient_map_subgroup_of_of_le h'.ge h.ge); { ext ⟨x⟩, simp [quotient_map_subgroup_of_of_le, map, lift, mk', subgroup.inclusion], refl } section snd_isomorphism_thm open subgroup /-- **Noether's second isomorphism theorem**: given two subgroups `H` and `N` of a group `G`, where `N` is normal, defines an isomorphism between `H/(H ∩ N)` and `(HN)/N`. -/ @[to_additive "The second isomorphism theorem: given two subgroups `H` and `N` of a group `G`, where `N` is normal, defines an isomorphism between `H/(H ∩ N)` and `(H + N)/N`"] noncomputable def quotient_inf_equiv_prod_normal_quotient (H N : subgroup G) [N.normal] : quotient ((H ⊓ N).comap H.subtype) ≃* quotient (N.comap (H ⊔ N).subtype) := /- φ is the natural homomorphism H →* (HN)/N. -/ let φ : H →* quotient (N.comap (H ⊔ N).subtype) := (mk' $ N.comap (H ⊔ N).subtype).comp (inclusion le_sup_left) in have φ_surjective : function.surjective φ := λ x, x.induction_on' $ begin rintro ⟨y, (hy : y ∈ ↑(H ⊔ N))⟩, rw mul_normal H N at hy, rcases hy with ⟨h, n, hh, hn, rfl⟩, use [h, hh], apply quotient.eq.mpr, change h⁻¹ * (h * n) ∈ N, rwa [←mul_assoc, inv_mul_self, one_mul], end, (equiv_quotient_of_eq (by simp [comap_comap, ←comap_ker])).trans (quotient_ker_equiv_of_surjective φ φ_surjective) end snd_isomorphism_thm section third_iso_thm variables (M : subgroup G) [nM : M.normal] include nM nN @[to_additive quotient_add_group.map_normal] instance map_normal : (M.map (quotient_group.mk' N)).normal := { conj_mem := begin rintro _ ⟨x, hx, rfl⟩ y, refine induction_on' y (λ y, ⟨y * x * y⁻¹, subgroup.normal.conj_mem nM x hx y, _⟩), simp only [mk'_apply, coe_mul, coe_inv] end } variables (h : N ≤ M) /-- The map from the third isomorphism theorem for groups: `(G / N) / (M / N) → G / M`. -/ @[to_additive quotient_add_group.quotient_quotient_equiv_quotient_aux "The map from the third isomorphism theorem for additive groups: `(A / N) / (M / N) → A / M`."] def quotient_quotient_equiv_quotient_aux : quotient (M.map (mk' N)) →* quotient M := lift (M.map (mk' N)) (map N M (monoid_hom.id G) h) (by { rintro _ ⟨x, hx, rfl⟩, rw map_mk' N M _ _ x, exact (quotient_group.eq_one_iff _).mpr hx }) @[simp, to_additive quotient_add_group.quotient_quotient_equiv_quotient_aux_coe] lemma quotient_quotient_equiv_quotient_aux_coe (x : quotient_group.quotient N) : quotient_quotient_equiv_quotient_aux N M h x = quotient_group.map N M (monoid_hom.id G) h x := quotient_group.lift_mk' _ _ x @[to_additive quotient_add_group.quotient_quotient_equiv_quotient_aux_coe_coe] lemma quotient_quotient_equiv_quotient_aux_coe_coe (x : G) : quotient_quotient_equiv_quotient_aux N M h (x : quotient_group.quotient N) = x := quotient_group.lift_mk' _ _ x /-- **Noether's third isomorphism theorem** for groups: `(G / N) / (M / N) ≃ G / M`. -/ @[to_additive quotient_add_group.quotient_quotient_equiv_quotient "**Noether's third isomorphism theorem** for additive groups: `(A / N) / (M / N) ≃ A / M`."] def quotient_quotient_equiv_quotient : quotient_group.quotient (M.map (quotient_group.mk' N)) ≃* quotient_group.quotient M := { to_fun := quotient_quotient_equiv_quotient_aux N M h, inv_fun := quotient_group.map _ _ (quotient_group.mk' N) (subgroup.le_comap_map _ _), left_inv := λ x, quotient_group.induction_on' x $ λ x, quotient_group.induction_on' x $ λ x, by simp, right_inv := λ x, quotient_group.induction_on' x $ λ x, by simp, map_mul' := monoid_hom.map_mul _ } end third_iso_thm end quotient_group
ae0f6d7ec00eb71f2e4e0d622691b0a4b55de77a
9be442d9ec2fcf442516ed6e9e1660aa9071b7bd
/src/Init/Data/Float.lean
d6e5c0a6506fcc8e791b9ed120d5f1ef35ace178
[ "Apache-2.0", "LLVM-exception", "NCSA", "LGPL-3.0-only", "LicenseRef-scancode-inner-net-2.0", "BSD-3-Clause", "LGPL-2.0-or-later", "Spencer-94", "LGPL-2.1-or-later", "HPND", "LicenseRef-scancode-pcre", "ISC", "LGPL-2.1-only", "LicenseRef-scancode-other-permissive", "SunPro", "CMU-Mach" ]
permissive
EdAyers/lean4
57ac632d6b0789cb91fab2170e8c9e40441221bd
37ba0df5841bde51dbc2329da81ac23d4f6a4de4
refs/heads/master
1,676,463,245,298
1,660,619,433,000
1,660,619,433,000
183,433,437
1
0
Apache-2.0
1,657,612,672,000
1,556,196,574,000
Lean
UTF-8
Lean
false
false
4,656
lean
/- Copyright (c) 2020 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura -/ prelude import Init.Core import Init.Data.Int.Basic import Init.Data.ToString.Basic structure FloatSpec where float : Type val : float lt : float → float → Prop le : float → float → Prop decLt : DecidableRel lt decLe : DecidableRel le -- Just show FloatSpec is inhabited. opaque floatSpec : FloatSpec := { float := Unit, val := (), lt := fun _ _ => True, le := fun _ _ => True, decLt := fun _ _ => inferInstanceAs (Decidable True), decLe := fun _ _ => inferInstanceAs (Decidable True) } structure Float where val : floatSpec.float instance : Inhabited Float := ⟨{ val := floatSpec.val }⟩ @[extern "lean_float_add"] opaque Float.add : Float → Float → Float @[extern "lean_float_sub"] opaque Float.sub : Float → Float → Float @[extern "lean_float_mul"] opaque Float.mul : Float → Float → Float @[extern "lean_float_div"] opaque Float.div : Float → Float → Float @[extern "lean_float_negate"] opaque Float.neg : Float → Float set_option bootstrap.genMatcherCode false def Float.lt : Float → Float → Prop := fun a b => match a, b with | ⟨a⟩, ⟨b⟩ => floatSpec.lt a b def Float.le : Float → Float → Prop := fun a b => floatSpec.le a.val b.val instance : Add Float := ⟨Float.add⟩ instance : Sub Float := ⟨Float.sub⟩ instance : Mul Float := ⟨Float.mul⟩ instance : Div Float := ⟨Float.div⟩ instance : Neg Float := ⟨Float.neg⟩ instance : LT Float := ⟨Float.lt⟩ instance : LE Float := ⟨Float.le⟩ @[extern "lean_float_beq"] opaque Float.beq (a b : Float) : Bool instance : BEq Float := ⟨Float.beq⟩ @[extern "lean_float_decLt"] opaque Float.decLt (a b : Float) : Decidable (a < b) := match a, b with | ⟨a⟩, ⟨b⟩ => floatSpec.decLt a b @[extern "lean_float_decLe"] opaque Float.decLe (a b : Float) : Decidable (a ≤ b) := match a, b with | ⟨a⟩, ⟨b⟩ => floatSpec.decLe a b instance floatDecLt (a b : Float) : Decidable (a < b) := Float.decLt a b instance floatDecLe (a b : Float) : Decidable (a ≤ b) := Float.decLe a b @[extern "lean_float_to_string"] opaque Float.toString : Float → String @[extern "lean_float_to_uint8"] opaque Float.toUInt8 : Float → UInt8 @[extern "lean_float_to_uint16"] opaque Float.toUInt16 : Float → UInt16 @[extern "lean_float_to_uint32"] opaque Float.toUInt32 : Float → UInt32 @[extern "lean_float_to_uint64"] opaque Float.toUInt64 : Float → UInt64 @[extern "lean_float_to_usize"] opaque Float.toUSize : Float → USize @[extern "lean_float_isnan"] opaque Float.isNaN : Float → Bool @[extern "lean_float_isfinite"] opaque Float.isFinite : Float → Bool @[extern "lean_float_isinf"] opaque Float.isInf : Float → Bool @[extern "lean_float_frexp"] opaque Float.frExp : Float → Float × Int instance : ToString Float where toString := Float.toString instance : Repr Float where reprPrec n _ := Float.toString n instance : ReprAtom Float := ⟨⟩ @[extern "lean_uint64_to_float"] opaque UInt64.toFloat (n : UInt64) : Float @[extern "sin"] opaque Float.sin : Float → Float @[extern "cos"] opaque Float.cos : Float → Float @[extern "tan"] opaque Float.tan : Float → Float @[extern "asin"] opaque Float.asin : Float → Float @[extern "acos"] opaque Float.acos : Float → Float @[extern "atan"] opaque Float.atan : Float → Float @[extern "atan2"] opaque Float.atan2 : Float → Float → Float @[extern "sinh"] opaque Float.sinh : Float → Float @[extern "cosh"] opaque Float.cosh : Float → Float @[extern "tanh"] opaque Float.tanh : Float → Float @[extern "asinh"] opaque Float.asinh : Float → Float @[extern "acosh"] opaque Float.acosh : Float → Float @[extern "atanh"] opaque Float.atanh : Float → Float @[extern "exp"] opaque Float.exp : Float → Float @[extern "exp2"] opaque Float.exp2 : Float → Float @[extern "log"] opaque Float.log : Float → Float @[extern "log2"] opaque Float.log2 : Float → Float @[extern "log10"] opaque Float.log10 : Float → Float @[extern "pow"] opaque Float.pow : Float → Float → Float @[extern "sqrt"] opaque Float.sqrt : Float → Float @[extern "cbrt"] opaque Float.cbrt : Float → Float @[extern "ceil"] opaque Float.ceil : Float → Float @[extern "floor"] opaque Float.floor : Float → Float @[extern "round"] opaque Float.round : Float → Float instance : Pow Float Float := ⟨Float.pow⟩ /-- Efficiently computes `x * 2^i`. -/ @[extern "lean_float_scaleb"] opaque Float.scaleB (x : Float) (i : @& Int) : Float
2d6254e361a7c28cc31c62246926dcddd7574fd4
82b86ba2ae0d5aed0f01f49c46db5afec0eb2bd7
/stage0/src/Lean/PrettyPrinter/Parenthesizer.lean
0a87ed417cd7191b6c91ba40140f5a76e3a5436b
[ "Apache-2.0" ]
permissive
banksonian/lean4
3a2e6b0f1eb63aa56ff95b8d07b2f851072d54dc
78da6b3aa2840693eea354a41e89fc5b212a5011
refs/heads/master
1,673,703,624,165
1,605,123,551,000
1,605,123,551,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
30,115
lean
/- Copyright (c) 2020 Sebastian Ullrich. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Sebastian Ullrich -/ /-! The parenthesizer inserts parentheses into a `Syntax` object where syntactically necessary, usually as an intermediary step between the delaborator and the formatter. While the delaborator outputs structurally well-formed syntax trees that can be re-elaborated without post-processing, this tree structure is lost in the formatter and thus needs to be preserved by proper insertion of parentheses. # The abstract problem & solution The Lean 4 grammar is unstructured and extensible with arbitrary new parsers, so in general it is undecidable whether parentheses are necessary or even allowed at any point in the syntax tree. Parentheses for different categories, e.g. terms and levels, might not even have the same structure. In this module, we focus on the correct parenthesization of parsers defined via `Lean.Parser.prattParser`, which includes both aforementioned built-in categories. Custom parenthesizers can be added for new node kinds, but the data collected in the implementation below might not be appropriate for other parenthesization strategies. Usages of a parser defined via `prattParser` in general have the form `p prec`, where `prec` is the minimum precedence or binding power. Recall that a Pratt parser greedily runs a leading parser with precedence at least `prec` (otherwise it fails) followed by zero or more trailing parsers with precedence at least `prec`; the precedence of a parser is encoded in the call to `leadingNode/trailingNode`, respectively. Thus we should parenthesize a syntax node `stx` supposedly produced by `p prec` if 1. the leading/any trailing parser involved in `stx` has precedence < `prec` (because without parentheses, `p prec` would not produce all of `stx`), or 2. the trailing parser parsing the input to *the right of* `stx`, if any, has precedence >= `prec` (because without parentheses, `p prec` would have parsed it as well and made it a part of `stx`). We also check that the two parsers are from the same syntax category. Note that in case 2, it is also sufficient to parenthesize a *parent* node as long as the offending parser is still to the right of that node. For example, imagine the tree structure of `(f $ fun x => x) y` without parentheses. We need to insert *some* parentheses between `x` and `y` since the lambda body is parsed with precedence 0, while the identifier parser for `y` has precedence `maxPrec`. But we need to parenthesize the `$` node anyway since the precedence of its RHS (0) again is smaller than that of `y`. So it's better to only parenthesize the outer node than ending up with `(f $ (fun x => x)) y`. # Implementation We transform the syntax tree and collect the necessary precedence information for that in a single traversal. The traversal is right-to-left to cover case 2. More specifically, for every Pratt parser call, we store as monadic state the precedence of the left-most trailing parser and the minimum precedence of any parser (`contPrec`/`minPrec`) in this call, if any, and the precedence of the nested trailing Pratt parser call (`trailPrec`), if any. If `stP` is the state resulting from the traversal of a Pratt parser call `p prec`, and `st` is the state of the surrounding call, we parenthesize if `prec > stP.minPrec` (case 1) or if `stP.trailPrec <= st.contPrec` (case 2). The traversal can be customized for each `[*Parser]` parser declaration `c` (more specifically, each `SyntaxNodeKind` `c`) using the `[parenthesizer c]` attribute. Otherwise, a default parenthesizer will be synthesized from the used parser combinators by recursively replacing them with declarations tagged as `[combinatorParenthesizer]` for the respective combinator. If a called function does not have a registered combinator parenthesizer and is not reducible, the synthesizer fails. This happens mostly at the `Parser.mk` decl, which is irreducible, when some parser primitive has not been handled yet. The traversal over the `Syntax` object is complicated by the fact that a parser does not produce exactly one syntax node, but an arbitrary (but constant, for each parser) amount that it pushes on top of the parser stack. This amount can even be zero for parsers such as `checkWsBefore`. Thus we cannot simply pass and return a `Syntax` object to and from `visit`. Instead, we use a `Syntax.Traverser` that allows arbitrary movement and modification inside the syntax tree. Our traversal invariant is that a parser interpreter should stop at the syntax object to the *left* of all syntax objects its parser produced, except when it is already at the left-most child. This special case is not an issue in practice since if there is another parser to the left that produced zero nodes in this case, it should always do so, so there is no danger of the left-most child being processed multiple times. Ultimately, most parenthesizers are implemented via three primitives that do all the actual syntax traversal: `maybeParenthesize mkParen prec x` runs `x` and afterwards transforms it with `mkParen` if the above condition for `p prec` is fulfilled. `visitToken` advances to the preceding sibling and is used on atoms. `visitArgs x` executes `x` on the last child of the current node and then advances to the preceding sibling (of the original current node). -/ import Lean.CoreM import Lean.KeyedDeclsAttribute import Lean.Parser.Extension import Lean.ParserCompiler.Attribute import Lean.PrettyPrinter.Basic namespace Lean namespace PrettyPrinter namespace Parenthesizer structure Context := -- We need to store this `categoryParser` argument to deal with the implicit Pratt parser call in `trailingNode.parenthesizer`. (cat : Name := Name.anonymous) structure State := (stxTrav : Syntax.Traverser) --- precedence and category of the current left-most trailing parser, if any; see module doc for details (contPrec : Option Nat := none) (contCat : Name := Name.anonymous) -- current minimum precedence in this Pratt parser call, if any; see module doc for details (minPrec : Option Nat := none) -- precedence and category of the trailing Pratt parser call if any; see module doc for details (trailPrec : Option Nat := none) (trailCat : Name := Name.anonymous) -- true iff we have already visited a token on this parser level; used for detecting trailing parsers (visitedToken : Bool := false) end Parenthesizer abbrev ParenthesizerM := ReaderT Parenthesizer.Context $ StateRefT Parenthesizer.State CoreM abbrev Parenthesizer := ParenthesizerM Unit @[inline] def ParenthesizerM.orelse {α} (p₁ p₂ : ParenthesizerM α) : ParenthesizerM α := do let s ← get catchInternalId backtrackExceptionId p₁ (fun _ => do set s; p₂) instance {α} : OrElse (ParenthesizerM α) := ⟨ParenthesizerM.orelse⟩ unsafe def mkParenthesizerAttribute : IO (KeyedDeclsAttribute Parenthesizer) := KeyedDeclsAttribute.init { builtinName := `builtinParenthesizer, name := `parenthesizer, descr := "Register a parenthesizer for a parser. [parenthesizer k] registers a declaration of type `Lean.PrettyPrinter.Parenthesizer` for the `SyntaxNodeKind` `k`.", valueTypeName := `Lean.PrettyPrinter.Parenthesizer, evalKey := fun builtin args => do let env ← getEnv match attrParamSyntaxToIdentifier args with | some id => -- `isValidSyntaxNodeKind` is updated only in the next stage for new `[builtin*Parser]`s, but we try to -- synthesize a parenthesizer for it immediately, so we just check for a declaration in this case if (builtin && (env.find? id).isSome) || Parser.isValidSyntaxNodeKind env id then pure id else throwError ("invalid [parenthesizer] argument, unknown syntax kind '" ++ toString id ++ "'") | none => throwError "invalid [parenthesizer] argument, expected identifier" } `Lean.PrettyPrinter.parenthesizerAttribute @[builtinInit mkParenthesizerAttribute] constant parenthesizerAttribute : KeyedDeclsAttribute Parenthesizer abbrev CategoryParenthesizer := forall (prec : Nat), Parenthesizer unsafe def mkCategoryParenthesizerAttribute : IO (KeyedDeclsAttribute CategoryParenthesizer) := KeyedDeclsAttribute.init { builtinName := `builtinCategoryParenthesizer, name := `categoryParenthesizer, descr := "Register a parenthesizer for a syntax category. [parenthesizer cat] registers a declaration of type `Lean.PrettyPrinter.CategoryParenthesizer` for the category `cat`, which is used when parenthesizing calls of `categoryParser cat prec`. Implementations should call `maybeParenthesize` with the precedence and `cat`. If no category parenthesizer is registered, the category will never be parenthesized, but still be traversed for parenthesizing nested categories.", valueTypeName := `Lean.PrettyPrinter.CategoryParenthesizer, evalKey := fun _ args => do let env ← getEnv match attrParamSyntaxToIdentifier args with | some id => if Parser.isParserCategory env id then pure id else throwError ("invalid [parenthesizer] argument, unknown parser category '" ++ toString id ++ "'") | none => throwError "invalid [parenthesizer] argument, expected identifier" } `Lean.PrettyPrinter.categoryParenthesizerAttribute @[builtinInit mkCategoryParenthesizerAttribute] constant categoryParenthesizerAttribute : KeyedDeclsAttribute CategoryParenthesizer unsafe def mkCombinatorParenthesizerAttribute : IO ParserCompiler.CombinatorAttribute := ParserCompiler.registerCombinatorAttribute `combinatorParenthesizer "Register a parenthesizer for a parser combinator. [combinatorParenthesizer c] registers a declaration of type `Lean.PrettyPrinter.Parenthesizer` for the `Parser` declaration `c`. Note that, unlike with [parenthesizer], this is not a node kind since combinators usually do not introduce their own node kinds. The tagged declaration may optionally accept parameters corresponding to (a prefix of) those of `c`, where `Parser` is replaced with `Parenthesizer` in the parameter types." @[builtinInit mkCombinatorParenthesizerAttribute] constant combinatorParenthesizerAttribute : ParserCompiler.CombinatorAttribute namespace Parenthesizer open Lean.Core open Lean.Format def throwBacktrack {α} : ParenthesizerM α := throw $ Exception.internal backtrackExceptionId instance : Syntax.MonadTraverser ParenthesizerM := ⟨{ get := State.stxTrav <$> get, set := fun t => modify (fun st => { st with stxTrav := t }), modifyGet := fun f => modifyGet (fun st => let (a, t) := f st.stxTrav; (a, { st with stxTrav := t })) }⟩ open Syntax.MonadTraverser def addPrecCheck (prec : Nat) : ParenthesizerM Unit := modify fun st => { st with contPrec := Nat.min (st.contPrec.getD prec) prec, minPrec := Nat.min (st.minPrec.getD prec) prec } /-- Execute `x` at the right-most child of the current node, if any, then advance to the left. -/ def visitArgs (x : ParenthesizerM Unit) : ParenthesizerM Unit := do let stx ← getCur if stx.getArgs.size > 0 then goDown (stx.getArgs.size - 1) *> x <* goUp goLeft -- Macro scopes in the parenthesizer output are ultimately ignored by the pretty printer, -- so give a trivial implementation. instance : MonadQuotation ParenthesizerM := { getCurrMacroScope := pure $ arbitrary _, getMainModule := pure $ arbitrary _, withFreshMacroScope := fun x => x, } /-- Run `x` and parenthesize the result using `mkParen` if necessary. If `canJuxtapose` is false, we assume the category does not have a token-less juxtaposition syntax a la function application and deactivate rule 2. -/ def maybeParenthesize (cat : Name) (canJuxtapose : Bool) (mkParen : Syntax → Syntax) (prec : Nat) (x : ParenthesizerM Unit) : ParenthesizerM Unit := do let stx ← getCur let idx ← getIdx let st ← get -- reset precs for the recursive call set { stxTrav := st.stxTrav : State } trace[PrettyPrinter.parenthesize]! "parenthesizing (cont := {(st.contPrec, st.contCat)}){MessageData.nest 2 (line ++ stx)}" x let { minPrec := some minPrec, trailPrec := trailPrec, trailCat := trailCat, .. } ← get | panic! "maybeParenthesize: visited a syntax tree without precedences?!" trace[PrettyPrinter.parenthesize]! ("...precedences are {prec} >? {minPrec}" ++ if canJuxtapose then msg!", {(trailPrec, trailCat)} <=? {(st.contPrec, st.contCat)}" else "") -- Should we parenthesize? if (prec > minPrec || canJuxtapose && match trailPrec, st.contPrec with some trailPrec, some contPrec => trailCat == st.contCat && trailPrec <= contPrec | _, _ => false) then -- The recursive `visit` call, by the invariant, has moved to the preceding node. In order to parenthesize -- the original node, we must first move to the right, except if we already were at the left-most child in the first -- place. if idx > 0 then goRight let stx ← getCur match stx.getHeadInfo, stx.getTailInfo with | some hi, some ti => -- Move leading/trailing whitespace of `stx` outside of parentheses let stx := (stx.setHeadInfo { hi with leading := "".toSubstring }).setTailInfo { ti with trailing := "".toSubstring } let stx := mkParen stx let stx := (stx.setHeadInfo { hi with trailing := "".toSubstring }).setTailInfo { ti with leading := "".toSubstring } setCur stx | _, _ => setCur (mkParen stx) let stx ← getCur; trace! `PrettyPrinter.parenthesize ("parenthesized: " ++ stx.formatStx none) goLeft -- after parenthesization, there is no more trailing parser modify (fun st => { st with contPrec := Parser.maxPrec, contCat := cat, trailPrec := none }) let { trailPrec := trailPrec, .. } ← get -- If we already had a token at this level, keep the trailing parser. Otherwise, use the minimum of -- `prec` and `trailPrec`. if st.visitedToken then modify fun stP => { stP with trailPrec := st.trailPrec, trailCat := st.trailCat } else let trailPrec := match trailPrec with | some trailPrec => Nat.min trailPrec prec | _ => prec modify fun stP => { stP with trailPrec := trailPrec, trailCat := cat } modify fun stP => { stP with minPrec := st.minPrec } /-- Adjust state and advance. -/ def visitToken : Parenthesizer := do modify fun st => { st with contPrec := none, contCat := Name.anonymous, visitedToken := true } goLeft @[combinatorParenthesizer Lean.Parser.orelse] def orelse.parenthesizer (p1 p2 : Parenthesizer) : Parenthesizer := do let st ← get -- HACK: We have no (immediate) information on which side of the orelse could have produced the current node, so try -- them in turn. Uses the syntax traverser non-linearly! p1 <|> p2 -- `mkAntiquot` is quite complex, so we'd rather have its parenthesizer synthesized below the actual parser definition. -- Note that there is a mutual recursion -- `categoryParser -> mkAntiquot -> termParser -> categoryParser`, so we need to introduce an indirection somewhere -- anyway. @[extern 8 "lean_mk_antiquot_parenthesizer"] constant mkAntiquot.parenthesizer' (name : String) (kind : Option SyntaxNodeKind) (anonymous := true) : Parenthesizer @[inline] def liftCoreM {α} (x : CoreM α) : ParenthesizerM α := liftM x def throwError {α} (msg : MessageData) : ParenthesizerM α := liftCoreM $ Lean.throwError msg -- break up big mutual recursion @[extern "lean_pretty_printer_parenthesizer_interpret_parser_descr"] constant interpretParserDescr' : ParserDescr → CoreM Parenthesizer := arbitrary _ unsafe def parenthesizerForKindUnsafe (k : SyntaxNodeKind) : Parenthesizer := do (← liftM $ runForNodeKind parenthesizerAttribute k interpretParserDescr') @[implementedBy parenthesizerForKindUnsafe] constant parenthesizerForKind (k : SyntaxNodeKind) : Parenthesizer := arbitrary _ @[combinatorParenthesizer Lean.Parser.withAntiquot] def withAntiquot.parenthesizer (antiP p : Parenthesizer) : Parenthesizer := -- TODO: could be optimized using `isAntiquot` (which would have to be moved), but I'd rather -- fix the backtracking hack outright. orelse.parenthesizer antiP p def parenthesizeCategoryCore (cat : Name) (prec : Nat) : Parenthesizer := withReader (fun ctx => { ctx with cat := cat }) do let stx ← getCur if stx.getKind == `choice then visitArgs $ stx.getArgs.size.forM fun _ => do let stx ← getCur parenthesizerForKind stx.getKind else withAntiquot.parenthesizer (mkAntiquot.parenthesizer' cat.toString none) (parenthesizerForKind stx.getKind) modify fun st => { st with contCat := cat } @[combinatorParenthesizer Lean.Parser.categoryParser] def categoryParser.parenthesizer (cat : Name) (prec : Nat) : Parenthesizer := do let env ← getEnv match categoryParenthesizerAttribute.getValues env cat with | p::_ => p prec -- Fall back to the generic parenthesizer. -- In this case this node will never be parenthesized since we don't know which parentheses to use. | _ => parenthesizeCategoryCore cat prec @[combinatorParenthesizer Lean.Parser.categoryParserOfStack] def categoryParserOfStack.parenthesizer (offset : Nat) (prec : Nat) : Parenthesizer := do let st ← get let stx := st.stxTrav.parents.back.getArg (st.stxTrav.idxs.back - offset) categoryParser.parenthesizer stx.getId prec @[builtinCategoryParenthesizer term] def term.parenthesizer : CategoryParenthesizer | prec => do let stx ← getCur -- this can happen at `termParser <|> many1 commandParser` in `Term.stxQuot` if stx.getKind == nullKind then throwBacktrack else do maybeParenthesize `term true (fun stx => Unhygienic.run `(($stx))) prec $ parenthesizeCategoryCore `term prec @[builtinCategoryParenthesizer tactic] def tactic.parenthesizer : CategoryParenthesizer | prec => do maybeParenthesize `tactic false (fun stx => Unhygienic.run `(tactic|($stx))) prec $ parenthesizeCategoryCore `tactic prec @[builtinCategoryParenthesizer level] def level.parenthesizer : CategoryParenthesizer | prec => do maybeParenthesize `level false (fun stx => Unhygienic.run `(level|($stx))) prec $ parenthesizeCategoryCore `level prec @[combinatorParenthesizer Lean.Parser.error] def error.parenthesizer (msg : String) : Parenthesizer := pure () @[combinatorParenthesizer Lean.Parser.errorAtSavedPos] def errorAtSavedPos.parenthesizer (msg : String) (delta : Bool) : Parenthesizer := pure () @[combinatorParenthesizer Lean.Parser.try] def try.parenthesizer (p : Parenthesizer) : Parenthesizer := p @[combinatorParenthesizer Lean.Parser.lookahead] def lookahead.parenthesizer (p : Parenthesizer) : Parenthesizer := pure () @[combinatorParenthesizer Lean.Parser.notFollowedBy] def notFollowedBy.parenthesizer (p : Parenthesizer) : Parenthesizer := pure () @[combinatorParenthesizer Lean.Parser.andthen] def andthen.parenthesizer (p1 p2 : Parenthesizer) : Parenthesizer := p2 *> p1 @[combinatorParenthesizer Lean.Parser.node] def node.parenthesizer (k : SyntaxNodeKind) (p : Parenthesizer) : Parenthesizer := do let stx ← getCur if k != stx.getKind then trace[PrettyPrinter.parenthesize.backtrack]! "unexpected node kind '{stx.getKind}', expected '{k}'" -- HACK; see `orelse.parenthesizer` throwBacktrack visitArgs p @[combinatorParenthesizer Lean.Parser.checkPrec] def checkPrec.parenthesizer (prec : Nat) : Parenthesizer := addPrecCheck prec @[combinatorParenthesizer Lean.Parser.leadingNode] def leadingNode.parenthesizer (k : SyntaxNodeKind) (prec : Nat) (p : Parenthesizer) : Parenthesizer := do node.parenthesizer k p addPrecCheck prec -- Limit `cont` precedence to `maxPrec-1`. -- This is because `maxPrec-1` is the precedence of function application, which is the only way to turn a leading parser -- into a trailing one. modify fun st => { st with contPrec := Nat.min (Parser.maxPrec-1) prec } @[combinatorParenthesizer Lean.Parser.trailingNode] def trailingNode.parenthesizer (k : SyntaxNodeKind) (prec : Nat) (p : Parenthesizer) : Parenthesizer := do let stx ← getCur if k != stx.getKind then trace[PrettyPrinter.parenthesize.backtrack]! "unexpected node kind '{stx.getKind}', expected '{k}'" -- HACK; see `orelse.parenthesizer` throwBacktrack visitArgs do p addPrecCheck prec let ctx ← read modify fun st => { st with contCat := ctx.cat } -- After visiting the nodes actually produced by the parser passed to `trailingNode`, we are positioned on the -- left-most child, which is the term injected by `trailingNode` in place of the recursion. Left recursion is not an -- issue for the parenthesizer, so we can think of this child being produced by `termParser 0`, or whichever Pratt -- parser is calling us. categoryParser.parenthesizer ctx.cat 0 @[combinatorParenthesizer Lean.Parser.symbol] def symbol.parenthesizer (sym : String) := visitToken @[combinatorParenthesizer Lean.Parser.unicodeSymbol] def unicodeSymbol.parenthesizer (sym asciiSym : String) := visitToken @[combinatorParenthesizer Lean.Parser.identNoAntiquot] def identNoAntiquot.parenthesizer := visitToken @[combinatorParenthesizer Lean.Parser.rawIdent] def rawIdent.parenthesizer := visitToken @[combinatorParenthesizer Lean.Parser.identEq] def identEq.parenthesizer (id : Name) := visitToken @[combinatorParenthesizer Lean.Parser.nonReservedSymbol] def nonReservedSymbol.parenthesizer (sym : String) (includeIdent : Bool) := visitToken @[combinatorParenthesizer Lean.Parser.charLitNoAntiquot] def charLitNoAntiquot.parenthesizer := visitToken @[combinatorParenthesizer Lean.Parser.strLitNoAntiquot] def strLitNoAntiquot.parenthesizer := visitToken @[combinatorParenthesizer Lean.Parser.nameLitNoAntiquot] def nameLitNoAntiquot.parenthesizer := visitToken @[combinatorParenthesizer Lean.Parser.numLitNoAntiquot] def numLitNoAntiquot.parenthesizer := visitToken @[combinatorParenthesizer Lean.Parser.fieldIdx] def fieldIdx.parenthesizer := visitToken @[combinatorParenthesizer Lean.Parser.many] def many.parenthesizer (p : Parenthesizer) : Parenthesizer := do let stx ← getCur visitArgs $ stx.getArgs.size.forM fun _ => p @[combinatorParenthesizer Lean.Parser.many1] def many1.parenthesizer (p : Parenthesizer) : Parenthesizer := do many.parenthesizer p @[combinatorParenthesizer Lean.Parser.many1Unbox] def many1Unbox.parenthesizer (p : Parenthesizer) : Parenthesizer := do let stx ← getCur if stx.getKind == nullKind then many.parenthesizer p else p @[combinatorParenthesizer Lean.Parser.optional] def optional.parenthesizer (p : Parenthesizer) : Parenthesizer := do visitArgs p @[combinatorParenthesizer Lean.Parser.sepBy] def sepBy.parenthesizer (p pSep : Parenthesizer) : Parenthesizer := do let stx ← getCur visitArgs $ (List.range stx.getArgs.size).reverse.forM $ fun i => if i % 2 == 0 then p else pSep @[combinatorParenthesizer Lean.Parser.sepBy1] def sepBy1.parenthesizer := sepBy.parenthesizer @[combinatorParenthesizer Lean.Parser.withPosition] def withPosition.parenthesizer (p : Parenthesizer) : Parenthesizer := do -- We assume the formatter will indent syntax sufficiently such that parenthesizing a `withPosition` node is never necessary modify fun st => { st with contPrec := none } p @[combinatorParenthesizer Lean.Parser.withoutPosition] def withoutPosition.parenthesizer (p : Parenthesizer) : Parenthesizer := p @[combinatorParenthesizer Lean.Parser.withForbidden] def withForbidden.parenthesizer (tk : Parser.Token) (p : Parenthesizer) : Parenthesizer := p @[combinatorParenthesizer Lean.Parser.withoutForbidden] def withoutForbidden.parenthesizer (p : Parenthesizer) : Parenthesizer := p @[combinatorParenthesizer Lean.Parser.setExpected] def setExpected.parenthesizer (expected : List String) (p : Parenthesizer) : Parenthesizer := p @[combinatorParenthesizer Lean.Parser.toggleInsideQuot] def toggleInsideQuot.parenthesizer (p : Parenthesizer) : Parenthesizer := p @[combinatorParenthesizer Lean.Parser.suppressInsideQuot] def suppressInsideQuot.parenthesizer (p : Parenthesizer) : Parenthesizer := p @[combinatorParenthesizer Lean.Parser.checkStackTop] def checkStackTop.parenthesizer : Parenthesizer := pure () @[combinatorParenthesizer Lean.Parser.checkWsBefore] def checkWsBefore.parenthesizer : Parenthesizer := pure () @[combinatorParenthesizer Lean.Parser.checkNoWsBefore] def checkNoWsBefore.parenthesizer : Parenthesizer := pure () @[combinatorParenthesizer Lean.Parser.checkTailWs] def checkTailWs.parenthesizer : Parenthesizer := pure () @[combinatorParenthesizer Lean.Parser.checkColGe] def checkColGe.parenthesizer : Parenthesizer := pure () @[combinatorParenthesizer Lean.Parser.checkColGt] def checkColGt.parenthesizer : Parenthesizer := pure () @[combinatorParenthesizer Lean.Parser.checkLineEq] def checkLineEq.parenthesizer : Parenthesizer := pure () @[combinatorParenthesizer Lean.Parser.eoi] def eoi.parenthesizer : Parenthesizer := pure () @[combinatorParenthesizer Lean.Parser.notFollowedByCategoryToken] def notFollowedByCategoryToken.parenthesizer : Parenthesizer := pure () @[combinatorParenthesizer Lean.Parser.checkNoImmediateColon] def checkNoImmediateColon.parenthesizer : Parenthesizer := pure () @[combinatorParenthesizer Lean.Parser.checkInsideQuot] def checkInsideQuot.parenthesizer : Parenthesizer := pure () @[combinatorParenthesizer Lean.Parser.checkOutsideQuot] def checkOutsideQuot.parenthesizer : Parenthesizer := pure () @[combinatorParenthesizer Lean.Parser.skip] def skip.parenthesizer : Parenthesizer := pure () @[combinatorParenthesizer Lean.Parser.pushNone] def pushNone.parenthesizer : Parenthesizer := goLeft @[combinatorParenthesizer Lean.Parser.interpolatedStr] def interpolatedStr.parenthesizer (p : Parenthesizer) : Parenthesizer := do visitArgs $ (← getCur).getArgs.reverse.forM fun chunk => if chunk.isOfKind interpolatedStrLitKind then goLeft else p @[combinatorParenthesizer ite, macroInline] def ite {α : Type} (c : Prop) [h : Decidable c] (t e : Parenthesizer) : Parenthesizer := if c then t else e @[export lean_pretty_printer_parenthesizer_interpret_parser_descr] unsafe def interpretParserDescr : ParserDescr → CoreM Parenthesizer | ParserDescr.andthen d₁ d₂ => andthen.parenthesizer <$> interpretParserDescr d₁ <*> interpretParserDescr d₂ | ParserDescr.orelse d₁ d₂ => orelse.parenthesizer <$> interpretParserDescr d₁ <*> interpretParserDescr d₂ | ParserDescr.optional d => optional.parenthesizer <$> interpretParserDescr d | ParserDescr.lookahead d => lookahead.parenthesizer <$> interpretParserDescr d | ParserDescr.try d => try.parenthesizer <$> interpretParserDescr d | ParserDescr.notFollowedBy d => notFollowedBy.parenthesizer <$> interpretParserDescr d | ParserDescr.many d => many.parenthesizer <$> interpretParserDescr d | ParserDescr.many1 d => many1.parenthesizer <$> interpretParserDescr d | ParserDescr.sepBy d₁ d₂ _ => sepBy.parenthesizer <$> interpretParserDescr d₁ <*> interpretParserDescr d₂ | ParserDescr.sepBy1 d₁ d₂ _ => sepBy1.parenthesizer <$> interpretParserDescr d₁ <*> interpretParserDescr d₂ | ParserDescr.node k prec d => leadingNode.parenthesizer k prec <$> interpretParserDescr d | ParserDescr.trailingNode k prec d => trailingNode.parenthesizer k prec <$> interpretParserDescr d | ParserDescr.symbol tk => pure $ symbol.parenthesizer tk | ParserDescr.numLit => pure $ withAntiquot.parenthesizer (mkAntiquot.parenthesizer' "numLit" `numLit) numLitNoAntiquot.parenthesizer | ParserDescr.strLit => pure $ withAntiquot.parenthesizer (mkAntiquot.parenthesizer' "strLit" `strLit) strLitNoAntiquot.parenthesizer | ParserDescr.charLit => pure $ withAntiquot.parenthesizer (mkAntiquot.parenthesizer' "charLit" `charLit) charLitNoAntiquot.parenthesizer | ParserDescr.nameLit => pure $ withAntiquot.parenthesizer (mkAntiquot.parenthesizer' "nameLit" `nameLit) nameLitNoAntiquot.parenthesizer | ParserDescr.ident => pure $ withAntiquot.parenthesizer (mkAntiquot.parenthesizer' "ident" `ident) identNoAntiquot.parenthesizer | ParserDescr.interpolatedStr d => interpolatedStr.parenthesizer <$> interpretParserDescr d | ParserDescr.nonReservedSymbol tk includeIdent => pure $ nonReservedSymbol.parenthesizer tk includeIdent | ParserDescr.noWs => pure $ checkNoWsBefore.parenthesizer | ParserDescr.checkCol strict => pure $ if strict then checkColGt.parenthesizer else checkColGe.parenthesizer | ParserDescr.withPosition d => withPosition.parenthesizer <$> interpretParserDescr d | ParserDescr.parser constName => combinatorParenthesizerAttribute.runDeclFor constName | ParserDescr.cat catName prec => pure $ categoryParser.parenthesizer catName prec end Parenthesizer open Parenthesizer /-- Add necessary parentheses in `stx` parsed by `parser`. -/ def parenthesize (parenthesizer : Parenthesizer) (stx : Syntax) : CoreM Syntax := catchInternalId backtrackExceptionId (do let (_, st) ← (parenthesizer {}).run { stxTrav := Syntax.Traverser.fromSyntax stx } pure st.stxTrav.cur) (fun _ => throwError "parenthesize: uncaught backtrack exception") def parenthesizeTerm := parenthesize $ categoryParser.parenthesizer `term 0 def parenthesizeCommand := parenthesize $ categoryParser.parenthesizer `command 0 builtin_initialize registerTraceClass `PrettyPrinter.parenthesize end PrettyPrinter end Lean
b7df46505eab4237f1fd9179a81083064330f3c8
f618aea02cb4104ad34ecf3b9713065cc0d06103
/src/logic/basic.lean
19d0638ec798e12b8017d0f30cd0d125ee7886f0
[ "Apache-2.0" ]
permissive
joehendrix/mathlib
84b6603f6be88a7e4d62f5b1b0cbb523bb82b9a5
c15eab34ad754f9ecd738525cb8b5a870e834ddc
refs/heads/master
1,589,606,591,630
1,555,946,393,000
1,555,946,393,000
182,813,854
0
0
null
1,555,946,309,000
1,555,946,308,000
null
UTF-8
Lean
false
false
27,426
lean
/- Copyright (c) 2016 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura Theorems that require decidability hypotheses are in the namespace "decidable". Classical versions are in the namespace "classical". Note: in the presence of automation, this whole file may be unnecessary. On the other hand, maybe it is useful for writing automation. -/ import data.prod tactic.cache /- miscellany TODO: move elsewhere -/ section miscellany variables {α : Type*} {β : Type*} @[reducible] def hidden {a : α} := a def empty.elim {C : Sort*} : empty → C. instance : subsingleton empty := ⟨λa, a.elim⟩ instance : decidable_eq empty := λa, a.elim @[priority 0] instance decidable_eq_of_subsingleton {α} [subsingleton α] : decidable_eq α | a b := is_true (subsingleton.elim a b) /- Add an instance to "undo" coercion transitivity into a chain of coercions, because most simp lemmas are stated with respect to simple coercions and will not match when part of a chain. -/ @[simp] theorem coe_coe {α β γ} [has_coe α β] [has_coe_t β γ] (a : α) : (a : γ) = (a : β) := rfl @[simp] theorem coe_fn_coe_trans {α β γ} [has_coe α β] [has_coe_t_aux β γ] [has_coe_to_fun γ] (x : α) : @coe_fn α _ x = @coe_fn β _ x := rfl @[simp] theorem coe_fn_coe_base {α β} [has_coe α β] [has_coe_to_fun β] (x : α) : @coe_fn α _ x = @coe_fn β _ x := rfl @[simp] theorem coe_sort_coe_trans {α β γ} [has_coe α β] [has_coe_t_aux β γ] [has_coe_to_sort γ] (x : α) : @coe_sort α _ x = @coe_sort β _ x := rfl @[simp] theorem coe_sort_coe_base {α β} [has_coe α β] [has_coe_to_sort β] (x : α) : @coe_sort α _ x = @coe_sort β _ x := rfl /-- `pempty` is the universe-polymorphic analogue of `empty`. -/ @[derive decidable_eq] inductive {u} pempty : Sort u def pempty.elim {C : Sort*} : pempty → C. instance subsingleton_pempty : subsingleton pempty := ⟨λa, a.elim⟩ lemma congr_arg_heq {α} {β : α → Sort*} (f : ∀ a, β a) : ∀ {a₁ a₂ : α}, a₁ = a₂ → f a₁ == f a₂ | a _ rfl := heq.rfl lemma plift.down_inj {α : Sort*} : ∀ (a b : plift α), a.down = b.down → a = b | ⟨a⟩ ⟨b⟩ rfl := rfl end miscellany /- propositional connectives -/ @[simp] theorem false_ne_true : false ≠ true | h := h.symm ▸ trivial section propositional variables {a b c d : Prop} /- implies -/ theorem iff_of_eq (e : a = b) : a ↔ b := e ▸ iff.rfl theorem iff_iff_eq : (a ↔ b) ↔ a = b := ⟨propext, iff_of_eq⟩ @[simp] theorem imp_self : (a → a) ↔ true := iff_true_intro id theorem imp_intro {α β} (h : α) (h₂ : β) : α := h theorem imp_false : (a → false) ↔ ¬ a := iff.rfl theorem imp_and_distrib {α} : (α → b ∧ c) ↔ (α → b) ∧ (α → c) := ⟨λ h, ⟨λ ha, (h ha).left, λ ha, (h ha).right⟩, λ h ha, ⟨h.left ha, h.right ha⟩⟩ @[simp] theorem and_imp : (a ∧ b → c) ↔ (a → b → c) := iff.intro (λ h ha hb, h ⟨ha, hb⟩) (λ h ⟨ha, hb⟩, h ha hb) theorem iff_def : (a ↔ b) ↔ (a → b) ∧ (b → a) := iff_iff_implies_and_implies _ _ theorem iff_def' : (a ↔ b) ↔ (b → a) ∧ (a → b) := iff_def.trans and.comm @[simp] theorem imp_true_iff {α : Sort*} : (α → true) ↔ true := iff_true_intro $ λ_, trivial @[simp] theorem imp_iff_right (ha : a) : (a → b) ↔ b := ⟨λf, f ha, imp_intro⟩ /- not -/ theorem not.elim {α : Sort*} (H1 : ¬a) (H2 : a) : α := absurd H2 H1 @[reducible] theorem not.imp {a b : Prop} (H2 : ¬b) (H1 : a → b) : ¬a := mt H1 H2 theorem not_not_of_not_imp : ¬(a → b) → ¬¬a := mt not.elim theorem not_of_not_imp {α} : ¬(α → b) → ¬b := mt imp_intro theorem dec_em (p : Prop) [decidable p] : p ∨ ¬p := decidable.em p theorem by_contradiction {p} [decidable p] : (¬p → false) → p := decidable.by_contradiction @[simp] theorem not_not [decidable a] : ¬¬a ↔ a := iff.intro by_contradiction not_not_intro theorem of_not_not [decidable a] : ¬¬a → a := by_contradiction theorem of_not_imp [decidable a] (h : ¬ (a → b)) : a := by_contradiction (not_not_of_not_imp h) theorem not.imp_symm [decidable a] (h : ¬a → b) (hb : ¬b) : a := by_contradiction $ hb ∘ h theorem not_imp_comm [decidable a] [decidable b] : (¬a → b) ↔ (¬b → a) := ⟨not.imp_symm, not.imp_symm⟩ theorem imp.swap : (a → b → c) ↔ (b → a → c) := ⟨function.swap, function.swap⟩ theorem imp_not_comm : (a → ¬b) ↔ (b → ¬a) := imp.swap /- and -/ theorem not_and_of_not_left (b : Prop) : ¬a → ¬(a ∧ b) := mt and.left theorem not_and_of_not_right (a : Prop) {b : Prop} : ¬b → ¬(a ∧ b) := mt and.right theorem and.imp_left (h : a → b) : a ∧ c → b ∧ c := and.imp h id theorem and.imp_right (h : a → b) : c ∧ a → c ∧ b := and.imp id h lemma and.right_comm : (a ∧ b) ∧ c ↔ (a ∧ c) ∧ b := by simp [and.left_comm, and.comm] lemma and.rotate : a ∧ b ∧ c ↔ b ∧ c ∧ a := by simp [and.left_comm, and.comm] theorem and_not_self_iff (a : Prop) : a ∧ ¬ a ↔ false := iff.intro (assume h, (h.right) (h.left)) (assume h, h.elim) theorem not_and_self_iff (a : Prop) : ¬ a ∧ a ↔ false := iff.intro (assume ⟨hna, ha⟩, hna ha) false.elim theorem and_iff_left_of_imp {a b : Prop} (h : a → b) : (a ∧ b) ↔ a := iff.intro and.left (λ ha, ⟨ha, h ha⟩) theorem and_iff_right_of_imp {a b : Prop} (h : b → a) : (a ∧ b) ↔ b := iff.intro and.right (λ hb, ⟨h hb, hb⟩) lemma and.congr_right_iff : (a ∧ b ↔ a ∧ c) ↔ (a → (b ↔ c)) := ⟨λ h ha, by simp [ha] at h; exact h, and_congr_right⟩ /- or -/ theorem or_of_or_of_imp_of_imp (h₁ : a ∨ b) (h₂ : a → c) (h₃ : b → d) : c ∨ d := or.imp h₂ h₃ h₁ theorem or_of_or_of_imp_left (h₁ : a ∨ c) (h : a → b) : b ∨ c := or.imp_left h h₁ theorem or_of_or_of_imp_right (h₁ : c ∨ a) (h : a → b) : c ∨ b := or.imp_right h h₁ theorem or.elim3 (h : a ∨ b ∨ c) (ha : a → d) (hb : b → d) (hc : c → d) : d := or.elim h ha (assume h₂, or.elim h₂ hb hc) theorem or_imp_distrib : (a ∨ b → c) ↔ (a → c) ∧ (b → c) := ⟨assume h, ⟨assume ha, h (or.inl ha), assume hb, h (or.inr hb)⟩, assume ⟨ha, hb⟩, or.rec ha hb⟩ theorem or_iff_not_imp_left [decidable a] : a ∨ b ↔ (¬ a → b) := ⟨or.resolve_left, λ h, dite _ or.inl (or.inr ∘ h)⟩ theorem or_iff_not_imp_right [decidable b] : a ∨ b ↔ (¬ b → a) := or.comm.trans or_iff_not_imp_left theorem not_imp_not [decidable a] : (¬ a → ¬ b) ↔ (b → a) := ⟨assume h hb, by_contradiction $ assume na, h na hb, mt⟩ /- distributivity -/ theorem and_or_distrib_left : a ∧ (b ∨ c) ↔ (a ∧ b) ∨ (a ∧ c) := ⟨λ ⟨ha, hbc⟩, hbc.imp (and.intro ha) (and.intro ha), or.rec (and.imp_right or.inl) (and.imp_right or.inr)⟩ theorem or_and_distrib_right : (a ∨ b) ∧ c ↔ (a ∧ c) ∨ (b ∧ c) := (and.comm.trans and_or_distrib_left).trans (or_congr and.comm and.comm) theorem or_and_distrib_left : a ∨ (b ∧ c) ↔ (a ∨ b) ∧ (a ∨ c) := ⟨or.rec (λha, and.intro (or.inl ha) (or.inl ha)) (and.imp or.inr or.inr), and.rec $ or.rec (imp_intro ∘ or.inl) (or.imp_right ∘ and.intro)⟩ theorem and_or_distrib_right : (a ∧ b) ∨ c ↔ (a ∨ c) ∧ (b ∨ c) := (or.comm.trans or_and_distrib_left).trans (and_congr or.comm or.comm) /- iff -/ theorem iff_of_true (ha : a) (hb : b) : a ↔ b := ⟨λ_, hb, λ _, ha⟩ theorem iff_of_false (ha : ¬a) (hb : ¬b) : a ↔ b := ⟨ha.elim, hb.elim⟩ theorem iff_true_left (ha : a) : (a ↔ b) ↔ b := ⟨λ h, h.1 ha, iff_of_true ha⟩ theorem iff_true_right (ha : a) : (b ↔ a) ↔ b := iff.comm.trans (iff_true_left ha) theorem iff_false_left (ha : ¬a) : (a ↔ b) ↔ ¬b := ⟨λ h, mt h.2 ha, iff_of_false ha⟩ theorem iff_false_right (ha : ¬a) : (b ↔ a) ↔ ¬b := iff.comm.trans (iff_false_left ha) theorem not_or_of_imp [decidable a] (h : a → b) : ¬ a ∨ b := if ha : a then or.inr (h ha) else or.inl ha theorem imp_iff_not_or [decidable a] : (a → b) ↔ (¬ a ∨ b) := ⟨not_or_of_imp, or.neg_resolve_left⟩ theorem imp_or_distrib [decidable a] : (a → b ∨ c) ↔ (a → b) ∨ (a → c) := by simp [imp_iff_not_or, or.comm, or.left_comm] theorem imp_or_distrib' [decidable b] : (a → b ∨ c) ↔ (a → b) ∨ (a → c) := by by_cases b; simp [h, or_iff_right_of_imp ((∘) false.elim)] theorem not_imp_of_and_not : a ∧ ¬ b → ¬ (a → b) | ⟨ha, hb⟩ h := hb $ h ha @[simp] theorem not_imp [decidable a] : ¬(a → b) ↔ a ∧ ¬b := ⟨λ h, ⟨of_not_imp h, not_of_not_imp h⟩, not_imp_of_and_not⟩ -- for monotonicity lemma imp_imp_imp (h₀ : c → a) (h₁ : b → d) : (a → b) → (c → d) := assume (h₂ : a → b), h₁ ∘ h₂ ∘ h₀ theorem peirce (a b : Prop) [decidable a] : ((a → b) → a) → a := if ha : a then λ h, ha else λ h, h ha.elim theorem peirce' {a : Prop} (H : ∀ b : Prop, (a → b) → a) : a := H _ id theorem not_iff_not [decidable a] [decidable b] : (¬ a ↔ ¬ b) ↔ (a ↔ b) := by rw [@iff_def (¬ a), @iff_def' a]; exact and_congr not_imp_not not_imp_not theorem not_iff_comm [decidable a] [decidable b] : (¬ a ↔ b) ↔ (¬ b ↔ a) := by rw [@iff_def (¬ a), @iff_def (¬ b)]; exact and_congr not_imp_comm imp_not_comm theorem not_iff [decidable a] [decidable b] : ¬ (a ↔ b) ↔ (¬ a ↔ b) := by split; intro h; [split, skip]; intro h'; [by_contradiction,intro,skip]; try { refine h _; simp [*] }; rw [h',not_iff_self] at h; exact h theorem iff_not_comm [decidable a] [decidable b] : (a ↔ ¬ b) ↔ (b ↔ ¬ a) := by rw [@iff_def a, @iff_def b]; exact and_congr imp_not_comm not_imp_comm theorem iff_iff_and_or_not_and_not [decidable b] : (a ↔ b) ↔ (a ∧ b) ∨ (¬ a ∧ ¬ b) := by { split; intro h, { rw h; by_cases b; [left,right]; split; assumption }, { cases h with h h; cases h; split; intro; { contradiction <|> assumption } } } @[simp] theorem not_and_not_right [decidable b] : ¬(a ∧ ¬b) ↔ (a → b) := ⟨λ h ha, h.imp_symm $ and.intro ha, λ h ⟨ha, hb⟩, hb $ h ha⟩ @[inline] def decidable_of_iff (a : Prop) (h : a ↔ b) [D : decidable a] : decidable b := decidable_of_decidable_of_iff D h @[inline] def decidable_of_iff' (b : Prop) (h : a ↔ b) [D : decidable b] : decidable a := decidable_of_decidable_of_iff D h.symm def decidable_of_bool : ∀ (b : bool) (h : b ↔ a), decidable a | tt h := is_true (h.1 rfl) | ff h := is_false (mt h.2 bool.ff_ne_tt) /- de morgan's laws -/ theorem not_and_of_not_or_not (h : ¬ a ∨ ¬ b) : ¬ (a ∧ b) | ⟨ha, hb⟩ := or.elim h (absurd ha) (absurd hb) theorem not_and_distrib [decidable a] : ¬ (a ∧ b) ↔ ¬a ∨ ¬b := ⟨λ h, if ha : a then or.inr (λ hb, h ⟨ha, hb⟩) else or.inl ha, not_and_of_not_or_not⟩ theorem not_and_distrib' [decidable b] : ¬ (a ∧ b) ↔ ¬a ∨ ¬b := ⟨λ h, if hb : b then or.inl (λ ha, h ⟨ha, hb⟩) else or.inr hb, not_and_of_not_or_not⟩ @[simp] theorem not_and : ¬ (a ∧ b) ↔ (a → ¬ b) := and_imp theorem not_and' : ¬ (a ∧ b) ↔ b → ¬a := not_and.trans imp_not_comm theorem not_or_distrib : ¬ (a ∨ b) ↔ ¬ a ∧ ¬ b := ⟨λ h, ⟨λ ha, h (or.inl ha), λ hb, h (or.inr hb)⟩, λ ⟨h₁, h₂⟩ h, or.elim h h₁ h₂⟩ theorem or_iff_not_and_not [decidable a] [decidable b] : a ∨ b ↔ ¬ (¬a ∧ ¬b) := by rw [← not_or_distrib, not_not] theorem and_iff_not_or_not [decidable a] [decidable b] : a ∧ b ↔ ¬ (¬ a ∨ ¬ b) := by rw [← not_and_distrib, not_not] end propositional /- equality -/ section equality variables {α : Sort*} {a b : α} @[simp] theorem heq_iff_eq : a == b ↔ a = b := ⟨eq_of_heq, heq_of_eq⟩ theorem proof_irrel_heq {p q : Prop} (hp : p) (hq : q) : hp == hq := have p = q, from propext ⟨λ _, hq, λ _, hp⟩, by subst q; refl theorem ne_of_mem_of_not_mem {α β} [has_mem α β] {s : β} {a b : α} (h : a ∈ s) : b ∉ s → a ≠ b := mt $ λ e, e ▸ h theorem eq_equivalence : equivalence (@eq α) := ⟨eq.refl, @eq.symm _, @eq.trans _⟩ lemma heq_of_eq_mp : ∀ {α β : Sort*} {a : α} {a' : β} (e : α = β) (h₂ : (eq.mp e a) = a'), a == a' | α ._ a a' rfl h := eq.rec_on h (heq.refl _) lemma rec_heq_of_heq {β} {C : α → Sort*} {x : C a} {y : β} (eq : a = b) (h : x == y) : @eq.rec α a C x b eq == y := by subst eq; exact h @[simp] lemma {u} eq_mpr_heq {α β : Sort u} (h : β = α) (x : α) : eq.mpr h x == x := by subst h; refl protected lemma eq.congr {x₁ x₂ y₁ y₂ : α} (h₁ : x₁ = y₁) (h₂ : x₂ = y₂) : (x₁ = x₂) ↔ (y₁ = y₂) := by { subst h₁, subst h₂ } lemma congr_arg2 {α β γ : Type*} (f : α → β → γ) {x x' : α} {y y' : β} (hx : x = x') (hy : y = y') : f x y = f x' y' := by { subst hx, subst hy } end equality /- quantifiers -/ section quantifiers variables {α : Sort*} {p q : α → Prop} {b : Prop} def Exists.imp := @exists_imp_exists theorem forall_swap {α β} {p : α → β → Prop} : (∀ x y, p x y) ↔ ∀ y x, p x y := ⟨function.swap, function.swap⟩ theorem exists_swap {α β} {p : α → β → Prop} : (∃ x y, p x y) ↔ ∃ y x, p x y := ⟨λ ⟨x, y, h⟩, ⟨y, x, h⟩, λ ⟨y, x, h⟩, ⟨x, y, h⟩⟩ @[simp] theorem exists_imp_distrib : ((∃ x, p x) → b) ↔ ∀ x, p x → b := ⟨λ h x hpx, h ⟨x, hpx⟩, λ h ⟨x, hpx⟩, h x hpx⟩ --theorem forall_not_of_not_exists (h : ¬ ∃ x, p x) : ∀ x, ¬ p x := --forall_imp_of_exists_imp h theorem not_exists_of_forall_not (h : ∀ x, ¬ p x) : ¬ ∃ x, p x := exists_imp_distrib.2 h @[simp] theorem not_exists : (¬ ∃ x, p x) ↔ ∀ x, ¬ p x := exists_imp_distrib theorem not_forall_of_exists_not : (∃ x, ¬ p x) → ¬ ∀ x, p x | ⟨x, hn⟩ h := hn (h x) theorem not_forall {p : α → Prop} [decidable (∃ x, ¬ p x)] [∀ x, decidable (p x)] : (¬ ∀ x, p x) ↔ ∃ x, ¬ p x := ⟨not.imp_symm $ λ nx x, nx.imp_symm $ λ h, ⟨x, h⟩, not_forall_of_exists_not⟩ @[simp] theorem not_forall_not [decidable (∃ x, p x)] : (¬ ∀ x, ¬ p x) ↔ ∃ x, p x := by haveI := decidable_of_iff (¬ ∃ x, p x) not_exists; exact not_iff_comm.1 not_exists @[simp] theorem not_exists_not [∀ x, decidable (p x)] : (¬ ∃ x, ¬ p x) ↔ ∀ x, p x := by simp @[simp] theorem forall_true_iff : (α → true) ↔ true := iff_true_intro (λ _, trivial) -- Unfortunately this causes simp to loop sometimes, so we -- add the 2 and 3 cases as simp lemmas instead theorem forall_true_iff' (h : ∀ a, p a ↔ true) : (∀ a, p a) ↔ true := iff_true_intro (λ _, of_iff_true (h _)) @[simp] theorem forall_2_true_iff {β : α → Sort*} : (∀ a, β a → true) ↔ true := forall_true_iff' $ λ _, forall_true_iff @[simp] theorem forall_3_true_iff {β : α → Sort*} {γ : Π a, β a → Sort*} : (∀ a (b : β a), γ a b → true) ↔ true := forall_true_iff' $ λ _, forall_2_true_iff @[simp] theorem forall_const (α : Sort*) [inhabited α] : (α → b) ↔ b := ⟨λ h, h (arbitrary α), λ hb x, hb⟩ @[simp] theorem exists_const (α : Sort*) [inhabited α] : (∃ x : α, b) ↔ b := ⟨λ ⟨x, h⟩, h, λ h, ⟨arbitrary α, h⟩⟩ theorem forall_and_distrib : (∀ x, p x ∧ q x) ↔ (∀ x, p x) ∧ (∀ x, q x) := ⟨λ h, ⟨λ x, (h x).left, λ x, (h x).right⟩, λ ⟨h₁, h₂⟩ x, ⟨h₁ x, h₂ x⟩⟩ theorem exists_or_distrib : (∃ x, p x ∨ q x) ↔ (∃ x, p x) ∨ (∃ x, q x) := ⟨λ ⟨x, hpq⟩, hpq.elim (λ hpx, or.inl ⟨x, hpx⟩) (λ hqx, or.inr ⟨x, hqx⟩), λ hepq, hepq.elim (λ ⟨x, hpx⟩, ⟨x, or.inl hpx⟩) (λ ⟨x, hqx⟩, ⟨x, or.inr hqx⟩)⟩ @[simp] theorem exists_and_distrib_left {q : Prop} {p : α → Prop} : (∃x, q ∧ p x) ↔ q ∧ (∃x, p x) := ⟨λ ⟨x, hq, hp⟩, ⟨hq, x, hp⟩, λ ⟨hq, x, hp⟩, ⟨x, hq, hp⟩⟩ @[simp] theorem exists_and_distrib_right {q : Prop} {p : α → Prop} : (∃x, p x ∧ q) ↔ (∃x, p x) ∧ q := by simp [and_comm] @[simp] theorem forall_eq {a' : α} : (∀a, a = a' → p a) ↔ p a' := ⟨λ h, h a' rfl, λ h a e, e.symm ▸ h⟩ @[simp] theorem exists_eq {a' : α} : ∃ a, a = a' := ⟨_, rfl⟩ @[simp] theorem exists_eq_left {a' : α} : (∃ a, a = a' ∧ p a) ↔ p a' := ⟨λ ⟨a, e, h⟩, e ▸ h, λ h, ⟨_, rfl, h⟩⟩ @[simp] theorem exists_eq_right {a' : α} : (∃ a, p a ∧ a = a') ↔ p a' := (exists_congr $ by exact λ a, and.comm).trans exists_eq_left @[simp] theorem forall_eq' {a' : α} : (∀a, a' = a → p a) ↔ p a' := by simp [@eq_comm _ a'] @[simp] theorem exists_eq_left' {a' : α} : (∃ a, a' = a ∧ p a) ↔ p a' := by simp [@eq_comm _ a'] @[simp] theorem exists_eq_right' {a' : α} : (∃ a, p a ∧ a' = a) ↔ p a' := by simp [@eq_comm _ a'] theorem forall_or_of_or_forall (h : b ∨ ∀x, p x) (x) : b ∨ p x := h.imp_right $ λ h₂, h₂ x theorem forall_or_distrib_left {q : Prop} {p : α → Prop} [decidable q] : (∀x, q ∨ p x) ↔ q ∨ (∀x, p x) := ⟨λ h, if hq : q then or.inl hq else or.inr $ λ x, (h x).resolve_left hq, forall_or_of_or_forall⟩ @[simp] theorem exists_prop {p q : Prop} : (∃ h : p, q) ↔ p ∧ q := ⟨λ ⟨h₁, h₂⟩, ⟨h₁, h₂⟩, λ ⟨h₁, h₂⟩, ⟨h₁, h₂⟩⟩ @[simp] theorem exists_false : ¬ (∃a:α, false) := assume ⟨a, h⟩, h theorem Exists.fst {p : b → Prop} : Exists p → b | ⟨h, _⟩ := h theorem Exists.snd {p : b → Prop} : ∀ h : Exists p, p h.fst | ⟨_, h⟩ := h @[simp] theorem forall_prop_of_true {p : Prop} {q : p → Prop} (h : p) : (∀ h' : p, q h') ↔ q h := @forall_const (q h) p ⟨h⟩ @[simp] theorem exists_prop_of_true {p : Prop} {q : p → Prop} (h : p) : (∃ h' : p, q h') ↔ q h := @exists_const (q h) p ⟨h⟩ @[simp] theorem forall_prop_of_false {p : Prop} {q : p → Prop} (hn : ¬ p) : (∀ h' : p, q h') ↔ true := iff_true_intro $ λ h, hn.elim h @[simp] theorem exists_prop_of_false {p : Prop} {q : p → Prop} : ¬ p → ¬ (∃ h' : p, q h') := mt Exists.fst end quantifiers /- classical versions -/ namespace classical variables {α : Sort*} {p : α → Prop} local attribute [instance] prop_decidable protected theorem not_forall : (¬ ∀ x, p x) ↔ (∃ x, ¬ p x) := not_forall protected theorem not_exists_not : (¬ ∃ x, ¬ p x) ↔ ∀ x, p x := not_exists_not protected theorem forall_or_distrib_left {q : Prop} {p : α → Prop} : (∀x, q ∨ p x) ↔ q ∨ (∀x, p x) := forall_or_distrib_left theorem cases {p : Prop → Prop} (h1 : p true) (h2 : p false) : ∀a, p a := assume a, cases_on a h1 h2 theorem or_not {p : Prop} : p ∨ ¬ p := by_cases or.inl or.inr protected theorem or_iff_not_imp_left {p q : Prop} : p ∨ q ↔ (¬ p → q) := or_iff_not_imp_left protected theorem or_iff_not_imp_right {p q : Prop} : q ∨ p ↔ (¬ p → q) := or_iff_not_imp_right protected lemma not_not {p : Prop} : ¬¬p ↔ p := not_not protected lemma not_and_distrib {p q : Prop}: ¬(p ∧ q) ↔ ¬p ∨ ¬q := not_and_distrib protected lemma imp_iff_not_or {a b : Prop} : a → b ↔ ¬a ∨ b := imp_iff_not_or lemma iff_iff_not_or_and_or_not {a b : Prop} : (a ↔ b) ↔ ((¬a ∨ b) ∧ (a ∨ ¬b)) := begin rw [iff_iff_implies_and_implies a b], simp only [imp_iff_not_or, or.comm] end /- use shortened names to avoid conflict when classical namespace is open -/ noncomputable theorem dec (p : Prop) : decidable p := by apply_instance noncomputable theorem dec_pred (p : α → Prop) : decidable_pred p := by apply_instance noncomputable theorem dec_rel (p : α → α → Prop) : decidable_rel p := by apply_instance noncomputable theorem dec_eq (α : Sort*) : decidable_eq α := by apply_instance @[elab_as_eliminator] noncomputable def {u} exists_cases {C : Sort u} (H0 : C) (H : ∀ a, p a → C) : C := if h : ∃ a, p a then H (classical.some h) (classical.some_spec h) else H0 lemma some_spec2 {α : Type*} {p : α → Prop} {h : ∃a, p a} (q : α → Prop) (hpq : ∀a, p a → q a) : q (some h) := hpq _ $ some_spec _ /-- A version of classical.indefinite_description which is definitionally equal to a pair -/ noncomputable def subtype_of_exists {α : Type*} {P : α → Prop} (h : ∃ x, P x) : {x // P x} := ⟨classical.some h, classical.some_spec h⟩ end classical @[elab_as_eliminator] noncomputable def {u} exists.classical_rec_on {α} {p : α → Prop} (h : ∃ a, p a) {C : Sort u} (H : ∀ a, p a → C) : C := H (classical.some h) (classical.some_spec h) /- bounded quantifiers -/ section bounded_quantifiers variables {α : Sort*} {r p q : α → Prop} {P Q : ∀ x, p x → Prop} {b : Prop} theorem bex_def : (∃ x (h : p x), q x) ↔ ∃ x, p x ∧ q x := ⟨λ ⟨x, px, qx⟩, ⟨x, px, qx⟩, λ ⟨x, px, qx⟩, ⟨x, px, qx⟩⟩ theorem bex.elim {b : Prop} : (∃ x h, P x h) → (∀ a h, P a h → b) → b | ⟨a, h₁, h₂⟩ h' := h' a h₁ h₂ theorem bex.intro (a : α) (h₁ : p a) (h₂ : P a h₁) : ∃ x (h : p x), P x h := ⟨a, h₁, h₂⟩ theorem ball_congr (H : ∀ x h, P x h ↔ Q x h) : (∀ x h, P x h) ↔ (∀ x h, Q x h) := forall_congr $ λ x, forall_congr (H x) theorem bex_congr (H : ∀ x h, P x h ↔ Q x h) : (∃ x h, P x h) ↔ (∃ x h, Q x h) := exists_congr $ λ x, exists_congr (H x) theorem ball.imp_right (H : ∀ x h, (P x h → Q x h)) (h₁ : ∀ x h, P x h) (x h) : Q x h := H _ _ $ h₁ _ _ theorem bex.imp_right (H : ∀ x h, (P x h → Q x h)) : (∃ x h, P x h) → ∃ x h, Q x h | ⟨x, h, h'⟩ := ⟨_, _, H _ _ h'⟩ theorem ball.imp_left (H : ∀ x, p x → q x) (h₁ : ∀ x, q x → r x) (x) (h : p x) : r x := h₁ _ $ H _ h theorem bex.imp_left (H : ∀ x, p x → q x) : (∃ x (_ : p x), r x) → ∃ x (_ : q x), r x | ⟨x, hp, hr⟩ := ⟨x, H _ hp, hr⟩ theorem ball_of_forall (h : ∀ x, p x) (x) (_ : q x) : p x := h x theorem forall_of_ball (H : ∀ x, p x) (h : ∀ x, p x → q x) (x) : q x := h x $ H x theorem bex_of_exists (H : ∀ x, p x) : (∃ x, q x) → ∃ x (_ : p x), q x | ⟨x, hq⟩ := ⟨x, H x, hq⟩ theorem exists_of_bex : (∃ x (_ : p x), q x) → ∃ x, q x | ⟨x, _, hq⟩ := ⟨x, hq⟩ @[simp] theorem bex_imp_distrib : ((∃ x h, P x h) → b) ↔ (∀ x h, P x h → b) := by simp theorem not_bex : (¬ ∃ x h, P x h) ↔ ∀ x h, ¬ P x h := bex_imp_distrib theorem not_ball_of_bex_not : (∃ x h, ¬ P x h) → ¬ ∀ x h, P x h | ⟨x, h, hp⟩ al := hp $ al x h theorem not_ball [decidable (∃ x h, ¬ P x h)] [∀ x h, decidable (P x h)] : (¬ ∀ x h, P x h) ↔ (∃ x h, ¬ P x h) := ⟨not.imp_symm $ λ nx x h, nx.imp_symm $ λ h', ⟨x, h, h'⟩, not_ball_of_bex_not⟩ theorem ball_true_iff (p : α → Prop) : (∀ x, p x → true) ↔ true := iff_true_intro (λ h hrx, trivial) theorem ball_and_distrib : (∀ x h, P x h ∧ Q x h) ↔ (∀ x h, P x h) ∧ (∀ x h, Q x h) := iff.trans (forall_congr $ λ x, forall_and_distrib) forall_and_distrib theorem bex_or_distrib : (∃ x h, P x h ∨ Q x h) ↔ (∃ x h, P x h) ∨ (∃ x h, Q x h) := iff.trans (exists_congr $ λ x, exists_or_distrib) exists_or_distrib end bounded_quantifiers namespace classical local attribute [instance] prop_decidable theorem not_ball {α : Sort*} {p : α → Prop} {P : Π (x : α), p x → Prop} : (¬ ∀ x h, P x h) ↔ (∃ x h, ¬ P x h) := _root_.not_ball end classical section nonempty universe variables u v w variables {α : Type u} {β : Type v} {γ : α → Type w} attribute [simp] nonempty_of_inhabited lemma exists_true_iff_nonempty {α : Sort*} : (∃a:α, true) ↔ nonempty α := iff.intro (λ⟨a, _⟩, ⟨a⟩) (λ⟨a⟩, ⟨a, trivial⟩) @[simp] lemma nonempty_Prop {p : Prop} : nonempty p ↔ p := iff.intro (assume ⟨h⟩, h) (assume h, ⟨h⟩) lemma not_nonempty_iff_imp_false {p : Prop} : ¬ nonempty α ↔ α → false := ⟨λ h a, h ⟨a⟩, λ h ⟨a⟩, h a⟩ @[simp] lemma nonempty_sigma : nonempty (Σa:α, γ a) ↔ (∃a:α, nonempty (γ a)) := iff.intro (assume ⟨⟨a, c⟩⟩, ⟨a, ⟨c⟩⟩) (assume ⟨a, ⟨c⟩⟩, ⟨⟨a, c⟩⟩) @[simp] lemma nonempty_subtype {α : Sort u} {p : α → Prop} : nonempty (subtype p) ↔ (∃a:α, p a) := iff.intro (assume ⟨⟨a, h⟩⟩, ⟨a, h⟩) (assume ⟨a, h⟩, ⟨⟨a, h⟩⟩) @[simp] lemma nonempty_prod : nonempty (α × β) ↔ (nonempty α ∧ nonempty β) := iff.intro (assume ⟨⟨a, b⟩⟩, ⟨⟨a⟩, ⟨b⟩⟩) (assume ⟨⟨a⟩, ⟨b⟩⟩, ⟨⟨a, b⟩⟩) @[simp] lemma nonempty_pprod {α : Sort u} {β : Sort v} : nonempty (pprod α β) ↔ (nonempty α ∧ nonempty β) := iff.intro (assume ⟨⟨a, b⟩⟩, ⟨⟨a⟩, ⟨b⟩⟩) (assume ⟨⟨a⟩, ⟨b⟩⟩, ⟨⟨a, b⟩⟩) @[simp] lemma nonempty_sum : nonempty (α ⊕ β) ↔ (nonempty α ∨ nonempty β) := iff.intro (assume ⟨h⟩, match h with sum.inl a := or.inl ⟨a⟩ | sum.inr b := or.inr ⟨b⟩ end) (assume h, match h with or.inl ⟨a⟩ := ⟨sum.inl a⟩ | or.inr ⟨b⟩ := ⟨sum.inr b⟩ end) @[simp] lemma nonempty_psum {α : Sort u} {β : Sort v} : nonempty (psum α β) ↔ (nonempty α ∨ nonempty β) := iff.intro (assume ⟨h⟩, match h with psum.inl a := or.inl ⟨a⟩ | psum.inr b := or.inr ⟨b⟩ end) (assume h, match h with or.inl ⟨a⟩ := ⟨psum.inl a⟩ | or.inr ⟨b⟩ := ⟨psum.inr b⟩ end) @[simp] lemma nonempty_psigma {α : Sort u} {β : α → Sort v} : nonempty (psigma β) ↔ (∃a:α, nonempty (β a)) := iff.intro (assume ⟨⟨a, c⟩⟩, ⟨a, ⟨c⟩⟩) (assume ⟨a, ⟨c⟩⟩, ⟨⟨a, c⟩⟩) @[simp] lemma nonempty_empty : ¬ nonempty empty := assume ⟨h⟩, h.elim @[simp] lemma nonempty_ulift : nonempty (ulift α) ↔ nonempty α := iff.intro (assume ⟨⟨a⟩⟩, ⟨a⟩) (assume ⟨a⟩, ⟨⟨a⟩⟩) @[simp] lemma nonempty_plift {α : Sort u} : nonempty (plift α) ↔ nonempty α := iff.intro (assume ⟨⟨a⟩⟩, ⟨a⟩) (assume ⟨a⟩, ⟨⟨a⟩⟩) @[simp] lemma nonempty.forall {α : Sort u} {p : nonempty α → Prop} : (∀h:nonempty α, p h) ↔ (∀a, p ⟨a⟩) := iff.intro (assume h a, h _) (assume h ⟨a⟩, h _) @[simp] lemma nonempty.exists {α : Sort u} {p : nonempty α → Prop} : (∃h:nonempty α, p h) ↔ (∃a, p ⟨a⟩) := iff.intro (assume ⟨⟨a⟩, h⟩, ⟨a, h⟩) (assume ⟨a, h⟩, ⟨⟨a⟩, h⟩) lemma classical.nonempty_pi {α : Sort u} {β : α → Sort v} : nonempty (Πa:α, β a) ↔ (∀a:α, nonempty (β a)) := iff.intro (assume ⟨f⟩ a, ⟨f a⟩) (assume f, ⟨assume a, classical.choice $ f a⟩) -- inhabited_of_nonempty already exists, in core/init/classical.lean, but the -- assumption is not [...], which makes it unsuitable for some applications noncomputable def classical.inhabited_of_nonempty' {α : Sort u} [h : nonempty α] : inhabited α := ⟨classical.choice h⟩ -- `nonempty` cannot be a `functor`, because `functor` is restricted to Types. lemma nonempty.map {α : Sort u} {β : Sort v} (f : α → β) : nonempty α → nonempty β | ⟨h⟩ := ⟨f h⟩ protected lemma nonempty.map2 {α β γ : Sort*} (f : α → β → γ) : nonempty α → nonempty β → nonempty γ | ⟨x⟩ ⟨y⟩ := ⟨f x y⟩ protected lemma nonempty.congr {α : Sort u} {β : Sort v} (f : α → β) (g : β → α) : nonempty α ↔ nonempty β := ⟨nonempty.map f, nonempty.map g⟩ end nonempty
ce2d4b46db21786218a52528343e8acad50d7258
af6139dd14451ab8f69cf181cf3a20f22bd699be
/library/tools/super/prover_state.lean
ba43d3469984bbd674f4188ac7706597daefdac1
[ "Apache-2.0" ]
permissive
gitter-badger/lean-1
1cca01252d3113faa45681b6a00e1b5e3a0f6203
5c7ade4ee4f1cdf5028eabc5db949479d6737c85
refs/heads/master
1,611,425,383,521
1,487,871,140,000
1,487,871,140,000
82,995,612
0
0
null
1,487,905,618,000
1,487,905,618,000
null
UTF-8
Lean
false
false
15,599
lean
/- Copyright (c) 2016 Gabriel Ebner. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Gabriel Ebner -/ import .clause .lpo .cdcl_solver open tactic monad expr namespace super structure score := (priority : ℕ) (in_sos : bool) (cost : ℕ) (age : ℕ) namespace score def prio.immediate : ℕ := 0 def prio.default : ℕ := 1 def prio.never : ℕ := 2 def sched_default (sc : score) : score := { sc with priority := prio.default } def sched_now (sc : score) : score := { sc with priority := prio.immediate } def inc_cost (sc : score) (n : ℕ) : score := { sc with cost := sc^.cost + n } def min (a b : score) : score := { priority := nat.min a^.priority b^.priority, in_sos := a^.in_sos && b^.in_sos, cost := nat.min a^.cost b^.cost, age := nat.min a^.age b^.age } def combine (a b : score) : score := { priority := nat.max a^.priority b^.priority, in_sos := a^.in_sos && b^.in_sos, cost := a^.cost + b^.cost, age := nat.max a^.age b^.age } end score namespace score meta instance : has_to_string score := ⟨λe, "[" ++ to_string e^.priority ++ "," ++ to_string e^.cost ++ "," ++ to_string e^.age ++ ",sos=" ++ to_string e^.in_sos ++ "]"⟩ end score def clause_id := ℕ namespace clause_id def to_nat (id : clause_id) : ℕ := id instance : decidable_eq clause_id := nat.decidable_eq instance : has_ordering clause_id := nat.has_ordering end clause_id meta structure derived_clause := (id : clause_id) (c : clause) (selected : list ℕ) (assertions : list expr) (sc : score) namespace derived_clause meta instance : has_to_tactic_format derived_clause := ⟨λc, do prf_fmt ← pp c^.c^.proof, c_fmt ← pp c^.c, ass_fmt ← pp (c^.assertions^.for (λa, a^.local_type)), return $ to_string c^.sc ++ " " ++ prf_fmt ++ " " ++ c_fmt ++ " <- " ++ ass_fmt ++ " (selected: " ++ to_fmt c^.selected ++ ")" ⟩ meta def clause_with_assertions (ac : derived_clause) : clause := ac^.c^.close_constn ac^.assertions end derived_clause meta structure locked_clause := (dc : derived_clause) (reasons : list (list expr)) namespace locked_clause meta instance : has_to_tactic_format locked_clause := ⟨λc, do c_fmt ← pp c^.dc, reasons_fmt ← pp (c^.reasons^.for (λr, r^.for (λa, a^.local_type))), return $ c_fmt ++ " (locked in case of: " ++ reasons_fmt ++ ")" ⟩ end locked_clause meta structure prover_state := (active : rb_map clause_id derived_clause) (passive : rb_map clause_id derived_clause) (newly_derived : list derived_clause) (prec : list expr) (locked : list locked_clause) (local_false : expr) (sat_solver : cdcl.state) (current_model : rb_map expr bool) (sat_hyps : rb_map expr (expr × expr)) (needs_sat_run : bool) (clause_counter : nat) open prover_state private meta def join_with_nl : list format → format := list.foldl (λx y, x ++ format.line ++ y) format.nil private meta def prover_state_tactic_fmt (s : prover_state) : tactic format := do active_fmts ← mapm pp $ rb_map.values s^.active, passive_fmts ← mapm pp $ rb_map.values s^.passive, new_fmts ← mapm pp s^.newly_derived, locked_fmts ← mapm pp s^.locked, sat_fmts ← mapm pp s^.sat_solver^.clauses, sat_model_fmts ← for s^.current_model^.to_list (λx, if x.2 = tt then pp x.1 else pp (not_ x.1)), prec_fmts ← mapm pp s^.prec, return (join_with_nl ([to_fmt "active:"] ++ map (append (to_fmt " ")) active_fmts ++ [to_fmt "passive:"] ++ map (append (to_fmt " ")) passive_fmts ++ [to_fmt "new:"] ++ map (append (to_fmt " ")) new_fmts ++ [to_fmt "locked:"] ++ map (append (to_fmt " ")) locked_fmts ++ [to_fmt "sat formulas:"] ++ map (append (to_fmt " ")) sat_fmts ++ [to_fmt "sat model:"] ++ map (append (to_fmt " ")) sat_model_fmts ++ [to_fmt "precedence order: " ++ to_fmt prec_fmts])) meta instance : has_to_tactic_format prover_state := ⟨prover_state_tactic_fmt⟩ meta def prover := state_t prover_state tactic namespace prover meta instance : monad prover := state_t.monad _ _ meta instance : has_monad_lift tactic prover := monad.monad_transformer_lift (state_t prover_state) tactic meta instance (α : Type) : has_coe (tactic α) (prover α) := ⟨monad.monad_lift⟩ meta def fail {α β : Type} [has_to_format β] (msg : β) : prover α := tactic.fail msg meta def orelse (A : Type) (p1 p2 : prover A) : prover A := take state, p1 state <|> p2 state meta instance : alternative prover := { monad_is_applicative prover with failure := λα, fail "failed", orelse := orelse } end prover meta def selection_strategy := derived_clause → prover derived_clause meta def get_active : prover (rb_map clause_id derived_clause) := do state ← state_t.read, return state^.active meta def add_active (a : derived_clause) : prover unit := do state ← state_t.read, state_t.write { state with active := state^.active^.insert a^.id a } meta def get_passive : prover (rb_map clause_id derived_clause) := lift passive state_t.read meta def get_precedence : prover (list expr) := do state ← state_t.read, return state^.prec meta def get_term_order : prover (expr → expr → bool) := do state ← state_t.read, return $ mk_lpo (map name_of_funsym state^.prec) private meta def set_precedence (new_prec : list expr) : prover unit := do state ← state_t.read, state_t.write { state with prec := new_prec } meta def register_consts_in_precedence (consts : list expr) := do p ← get_precedence, p_set ← return (rb_map.set_of_list (map name_of_funsym p)), new_syms ← return $ list.filter (λc, ¬p_set^.contains (name_of_funsym c)) consts, set_precedence (new_syms ++ p) meta def in_sat_solver {A} (cmd : cdcl.solver A) : prover A := do state ← state_t.read, result ← cmd state^.sat_solver, state_t.write { state with sat_solver := result.2 }, return result.1 meta def collect_ass_hyps (c : clause) : prover (list expr) := let lcs := contained_lconsts c^.proof in do st ← state_t.read, return (do hs ← st^.sat_hyps^.values, h ← [hs.1, hs.2], guard $ lcs^.contains h^.local_uniq_name, [h]) meta def get_clause_count : prover ℕ := do s ← state_t.read, return s^.clause_counter meta def get_new_cls_id : prover clause_id := do state ← state_t.read, state_t.write { state with clause_counter := state^.clause_counter + 1 }, return state^.clause_counter meta def mk_derived (c : clause) (sc : score) : prover derived_clause := do ass ← collect_ass_hyps c, id ← get_new_cls_id, return { id := id, c := c, selected := [], assertions := ass, sc := sc } meta def add_inferred (c : derived_clause) : prover unit := do c' ← c^.c^.normalize, c' ← return { c with c := c' }, register_consts_in_precedence (contained_funsyms c'^.c^.type)^.values, state ← state_t.read, state_t.write { state with newly_derived := c' :: state^.newly_derived } -- FIXME: what if we've seen the variable before, but with a weaker score? meta def mk_sat_var (v : expr) (suggested_ph : bool) (suggested_ev : score) : prover unit := do st ← state_t.read, if st^.sat_hyps^.contains v then return () else do hpv ← mk_local_def `h v, hnv ← mk_local_def `hn $ imp v st^.local_false, state_t.modify $ λst, { st with sat_hyps := st^.sat_hyps^.insert v (hpv, hnv) }, in_sat_solver $ cdcl.mk_var_core v suggested_ph, match v with | (pi _ _ _ _) := do c ← clause.of_proof st^.local_false hpv, mk_derived c suggested_ev >>= add_inferred | _ := do cp ← clause.of_proof st^.local_false hpv, mk_derived cp suggested_ev >>= add_inferred, cn ← clause.of_proof st^.local_false hnv, mk_derived cn suggested_ev >>= add_inferred end meta def get_sat_hyp_core (v : expr) (ph : bool) : prover (option expr) := flip monad.lift state_t.read $ λst, match st^.sat_hyps^.find v with | some (hp, hn) := some $ if ph then hp else hn | none := none end meta def get_sat_hyp (v : expr) (ph : bool) : prover expr := do hyp_opt ← get_sat_hyp_core v ph, match hyp_opt with | some hyp := return hyp | none := fail $ "unknown sat variable: " ++ v^.to_string end meta def add_sat_clause (c : clause) (suggested_ev : score) : prover unit := do c ← c^.distinct, already_added ← flip monad.lift state_t.read $ λst, decidable.to_bool $ c^.type ∈ st^.sat_solver^.clauses^.for (λd, d^.type), if already_added then return () else do for c^.get_lits $ λl, mk_sat_var l^.formula l^.is_neg suggested_ev, in_sat_solver $ cdcl.mk_clause c, state_t.modify $ λst, { st with needs_sat_run := tt } meta def sat_eval_lit (v : expr) (pol : bool) : prover bool := do v_st ← flip monad.lift state_t.read $ λst, st^.current_model^.find v, match v_st with | some ph := return $ if pol then ph else bnot ph | none := return tt end meta def sat_eval_assertion (assertion : expr) : prover bool := do lf ← flip monad.lift state_t.read $ λst, st^.local_false, match is_local_not lf assertion^.local_type with | some v := sat_eval_lit v ff | none := sat_eval_lit assertion^.local_type tt end meta def sat_eval_assertions : list expr → prover bool | (a::ass) := do v_a ← sat_eval_assertion a, if v_a then sat_eval_assertions ass else return ff | [] := return tt private meta def intern_clause (c : derived_clause) : prover derived_clause := do hyp_name ← get_unused_name (mk_simple_name $ "clause_" ++ to_string c^.id^.to_nat) none, c' ← return $ c^.c^.close_constn c^.assertions, assertv hyp_name c'^.type c'^.proof, proof' ← get_local hyp_name, type ← infer_type proof', -- FIXME: otherwise "" return { c with c := { (c^.c : clause) with proof := app_of_list proof' c^.assertions } } meta def register_as_passive (c : derived_clause) : prover unit := do c ← intern_clause c, ass_v ← sat_eval_assertions c^.assertions, if c^.c^.num_quants = 0 ∧ c^.c^.num_lits = 0 then add_sat_clause c^.clause_with_assertions c^.sc else if ¬ass_v then do state_t.modify $ λst, { st with locked := ⟨c, []⟩ :: st^.locked } else do state_t.modify $ λst, { st with passive := st^.passive^.insert c^.id c } meta def remove_passive (id : clause_id) : prover unit := do state ← state_t.read, state_t.write { state with passive := state^.passive^.erase id } meta def move_locked_to_passive : prover unit := do locked ← flip monad.lift state_t.read (λst, st^.locked), new_locked ← flip filter locked (λlc, do reason_vals ← mapm sat_eval_assertions lc^.reasons, c_val ← sat_eval_assertions lc^.dc^.assertions, if reason_vals^.for_all (λr, r = ff) ∧ c_val then do state_t.modify $ λst, { st with passive := st^.passive^.insert lc^.dc^.id lc^.dc }, return ff else return tt ), state_t.modify $ λst, { st with locked := new_locked } meta def move_active_to_locked : prover unit := do active ← get_active, for' active^.values $ λac, do c_val ← sat_eval_assertions ac^.assertions, if ¬c_val then do state_t.modify $ λst, { st with active := st^.active^.erase ac^.id, locked := ⟨ac, []⟩ :: st^.locked } else return () meta def move_passive_to_locked : prover unit := do passive ← flip monad.lift state_t.read $ λst, st^.passive, for' passive^.to_list $ λpc, do c_val ← sat_eval_assertions pc.2^.assertions, if ¬c_val then do state_t.modify $ λst, { st with passive := st^.passive^.erase pc.1, locked := ⟨pc.2, []⟩ :: st^.locked } else return () def super_cc_config : cc_config := { em := ff } meta def do_sat_run : prover (option expr) := do sat_result ← in_sat_solver $ cdcl.run (cdcl.theory_solver_of_tactic $ using_smt $ return ()), state_t.modify $ λst, { st with needs_sat_run := ff }, old_model ← lift prover_state.current_model state_t.read, match sat_result with | (cdcl.result.unsat proof) := return (some proof) | (cdcl.result.sat new_model) := do state_t.modify $ λst, { st with current_model := new_model }, move_locked_to_passive, move_active_to_locked, move_passive_to_locked, return none end meta def take_newly_derived : prover (list derived_clause) := do state ← state_t.read, state_t.write { state with newly_derived := [] }, return state^.newly_derived meta def remove_redundant (id : clause_id) (parents : list derived_clause) : prover unit := do when (not $ parents^.for_all $ λp, p^.id ≠ id) (fail "clause is redundant because of itself"), red ← flip monad.lift state_t.read (λst, st^.active^.find id), match red with | none := return () | some red := do let reasons := parents^.for (λp, p^.assertions), assertion := red^.assertions in if reasons^.for_all $ λr, r^.subset_of assertion then do state_t.modify $ λst, { st with active := st^.active^.erase id } else do state_t.modify $ λst, { st with active := st^.active^.erase id, locked := ⟨red, reasons⟩ :: st^.locked } end meta def inference := derived_clause → prover unit meta structure inf_decl := (prio : ℕ) (inf : inference) meta def inf_attr : user_attribute := ⟨ `super.inf, "inference for the super prover" ⟩ run_command attribute.register `super.inf_attr meta def seq_inferences : list inference → inference | [] := λgiven, return () | (inf::infs) := λgiven, do inf given, now_active ← get_active, if rb_map.contains now_active given^.id then seq_inferences infs given else return () meta def simp_inference (simpl : derived_clause → prover (option clause)) : inference := λgiven, do maybe_simpld ← simpl given, match maybe_simpld with | some simpld := do derived_simpld ← mk_derived simpld given^.sc^.sched_now, add_inferred derived_simpld, remove_redundant given^.id [] | none := return () end meta def preprocessing_rule (f : list derived_clause → prover (list derived_clause)) : prover unit := do state ← state_t.read, newly_derived' ← f state^.newly_derived, state' ← state_t.read, state_t.write { state' with newly_derived := newly_derived' } meta def clause_selection_strategy := ℕ → prover clause_id namespace prover_state meta def empty (local_false : expr) : prover_state := { active := rb_map.mk _ _, passive := rb_map.mk _ _, newly_derived := [], prec := [], clause_counter := 0, local_false := local_false, locked := [], sat_solver := cdcl.state.initial local_false, current_model := rb_map.mk _ _, sat_hyps := rb_map.mk _ _, needs_sat_run := ff } meta def initial (local_false : expr) (clauses : list clause) : tactic prover_state := do after_setup ← for' clauses (λc, let in_sos := ((contained_lconsts c^.proof)^.erase local_false^.local_uniq_name)^.size = 0 in do mk_derived c { priority := score.prio.immediate, in_sos := in_sos, age := 0, cost := 0 } >>= add_inferred ) $ empty local_false, return after_setup.2 end prover_state meta def inf_score (add_cost : ℕ) (scores : list score) : prover score := do age ← get_clause_count, return $ list.foldl score.combine { priority := score.prio.default, in_sos := tt, age := age, cost := add_cost } scores meta def inf_if_successful (add_cost : ℕ) (parent : derived_clause) (tac : tactic (list clause)) : prover unit := (do inferred ← tac, for' inferred $ λc, inf_score add_cost [parent^.sc] >>= mk_derived c >>= add_inferred) <|> return () meta def simp_if_successful (parent : derived_clause) (tac : tactic (list clause)) : prover unit := (do inferred ← tac, for' inferred $ λc, mk_derived c parent^.sc^.sched_now >>= add_inferred, remove_redundant parent^.id []) <|> return () end super
56a8285757cde2fb26bc905181fdbbc95dadfacc
9dc8cecdf3c4634764a18254e94d43da07142918
/src/data/fintype/fin.lean
ab9824e81ff668dbbe9f70d47870b8323feb1a31
[ "Apache-2.0" ]
permissive
jcommelin/mathlib
d8456447c36c176e14d96d9e76f39841f69d2d9b
ee8279351a2e434c2852345c51b728d22af5a156
refs/heads/master
1,664,782,136,488
1,663,638,983,000
1,663,638,983,000
132,563,656
0
0
Apache-2.0
1,663,599,929,000
1,525,760,539,000
Lean
UTF-8
Lean
false
false
2,169
lean
/- Copyright (c) 2021 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen -/ import data.fin.interval /-! # The structure of `fintype (fin n)` This file contains some basic results about the `fintype` instance for `fin`, especially properties of `finset.univ : finset (fin n)`. -/ open finset open fintype namespace fin variables {α β : Type*} {n : ℕ} @[simp] lemma Ioi_zero_eq_map : Ioi (0 : fin n.succ) = univ.map (fin.succ_embedding _).to_embedding := begin ext i, simp only [mem_Ioi, mem_map, mem_univ, function.embedding.coe_fn_mk, exists_true_left], split, { refine cases _ _ i, { rintro ⟨⟨⟩⟩ }, { intros j _, exact ⟨j, rfl⟩ } }, { rintro ⟨i, _, rfl⟩, exact succ_pos _ }, end @[simp] lemma Ioi_succ (i : fin n) : Ioi i.succ = (Ioi i).map (fin.succ_embedding _).to_embedding := begin ext i, simp only [mem_filter, mem_Ioi, mem_map, mem_univ, true_and, function.embedding.coe_fn_mk, exists_true_left], split, { refine cases _ _ i, { rintro ⟨⟨⟩⟩ }, { intros i hi, refine ⟨i, succ_lt_succ_iff.mp hi, rfl⟩ } }, { rintro ⟨i, hi, rfl⟩, simpa }, end lemma card_filter_univ_succ' (p : fin (n + 1) → Prop) [decidable_pred p] : (univ.filter p).card = (ite (p 0) 1 0) + (univ.filter (p ∘ fin.succ)).card := begin rw [fin.univ_succ, filter_cons, card_disj_union, map_filter, card_map], split_ifs; simp, end lemma card_filter_univ_succ (p : fin (n + 1) → Prop) [decidable_pred p] : (univ.filter p).card = if p 0 then (univ.filter (p ∘ fin.succ)).card + 1 else (univ.filter (p ∘ fin.succ)).card := (card_filter_univ_succ' p).trans (by split_ifs; simp [add_comm 1]) lemma card_filter_univ_eq_vector_nth_eq_count [decidable_eq α] (a : α) (v : vector α n) : (univ.filter $ λ i, a = v.nth i).card = v.to_list.count a := begin induction v using vector.induction_on with n x xs hxs, { simp }, { simp_rw [card_filter_univ_succ', vector.nth_cons_zero, vector.to_list_cons, function.comp, vector.nth_cons_succ, hxs, list.count_cons', add_comm (ite (a = x) 1 0)] } end end fin
79203c72d154412f494ef591f93d559e92a853e2
a4673261e60b025e2c8c825dfa4ab9108246c32e
/stage0/src/Lean/Elab/DeclUtil.lean
67b6f16fdb103677e762c6d36bc5f68efe421c4a
[ "Apache-2.0" ]
permissive
jcommelin/lean4
c02dec0cc32c4bccab009285475f265f17d73228
2909313475588cc20ac0436e55548a4502050d0a
refs/heads/master
1,674,129,550,893
1,606,415,348,000
1,606,415,348,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
3,846
lean
/- Copyright (c) 2020 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura, Sebastian Ullrich -/ import Lean.Meta.ExprDefEq namespace Lean.Meta def forallTelescopeCompatibleAux {α} (k : Array Expr → Expr → Expr → MetaM α) : Nat → Expr → Expr → Array Expr → MetaM α | 0, type₁, type₂, xs => k xs type₁ type₂ | i+1, type₁, type₂, xs => do let type₁ ← whnf type₁ let type₂ ← whnf type₂ match type₁, type₂ with | Expr.forallE n₁ d₁ b₁ c₁, Expr.forallE n₂ d₂ b₂ c₂ => unless n₁ == n₂ do throwError! "parameter name mismatch '{n₁}', expected '{n₂}'" unless (← isDefEq d₁ d₂) do throwError! "type mismatch at parameter '{n₁}'{indentExpr d₁}\nexpected type{indentExpr d₂}" unless c₁.binderInfo == c₂.binderInfo do throwError! "binder annotation mismatch at parameter '{n₁}'" withLocalDecl n₁ c₁.binderInfo d₁ fun x => let type₁ := b₁.instantiate1 x let type₂ := b₂.instantiate1 x forallTelescopeCompatibleAux k i type₁ type₂ (xs.push x) | _, _ => throwError "unexpected number of parameters" /-- Given two forall-expressions `type₁` and `type₂`, ensure the first `numParams` parameters are compatible, and then execute `k` with the parameters and remaining types. -/ @[inline] def forallTelescopeCompatible {α m} [Monad m] [MonadControlT MetaM m] (type₁ type₂ : Expr) (numParams : Nat) (k : Array Expr → Expr → Expr → m α) : m α := controlAt MetaM fun runInBase => forallTelescopeCompatibleAux (fun xs type₁ type₂ => runInBase $ k xs type₁ type₂) numParams type₁ type₂ #[] end Meta namespace Elab def expandOptDeclSig (stx : Syntax) : Syntax × Option Syntax := -- many Term.bracketedBinder >> Term.optType let binders := stx[0] let optType := stx[1] -- optional (parser! " : " >> termParser) if optType.isNone then (binders, none) else let typeSpec := optType[0] (binders, some typeSpec[1]) def expandDeclSig (stx : Syntax) : Syntax × Syntax := -- many Term.bracketedBinder >> Term.typeSpec let binders := stx[0] let typeSpec := stx[1] (binders, typeSpec[1]) def mkFreshInstanceName (env : Environment) (nextIdx : Nat) : Name := (env.mainModule ++ `_instance).appendIndexAfter nextIdx def isFreshInstanceName (name : Name) : Bool := match name with | Name.str _ s _ => "_instance".isPrefixOf s | _ => false /-- Sort the given list of `usedParams` using the following order: - If it is an explicit level `allUserParams`, then use user given order. - Otherwise, use lexicographical. Remark: `scopeParams` are the universe params introduced using the `universe` command. `allUserParams` contains the universe params introduced using the `universe` command *and* the `.{...}` notation. Remark: this function return an exception if there is an `u` not in `usedParams`, that is in `allUserParams` but not in `scopeParams`. Remark: `explicitParams` are in reverse declaration order. That is, the head is the last declared parameter. -/ def sortDeclLevelParams (scopeParams : List Name) (allUserParams : List Name) (usedParams : Array Name) : Except String (List Name) := match allUserParams.find? $ fun u => !usedParams.contains u && !scopeParams.elem u with | some u => throw s!"unused universe parameter '{u}'" | none => let result := allUserParams.foldl (fun result levelName => if usedParams.elem levelName then levelName :: result else result) [] let remaining := usedParams.filter (fun levelParam => !allUserParams.elem levelParam) let remaining := remaining.qsort Name.lt pure $ result ++ remaining.toList end Lean.Elab
518406ef352135d9738a45a207bc0aedd503dea5
5749d8999a76f3a8fddceca1f6941981e33aaa96
/src/topology/bases.lean
27413b094ba0aca119937d055083822c8aafcb44
[ "Apache-2.0" ]
permissive
jdsalchow/mathlib
13ab43ef0d0515a17e550b16d09bd14b76125276
497e692b946d93906900bb33a51fd243e7649406
refs/heads/master
1,585,819,143,348
1,580,072,892,000
1,580,072,892,000
154,287,128
0
0
Apache-2.0
1,540,281,610,000
1,540,281,609,000
null
UTF-8
Lean
false
false
18,393
lean
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro Bases of topologies. Countability axioms. -/ import topology.constructions data.set.countable open set filter lattice classical open_locale topological_space namespace filter universes u v variables {α : Type u} {β : Type v} /-- A filter has a countable basis iff it is generated by a countable collection of subsets of α. (A filter is a generated by a collection of sets iff it is the infimum of the principal filters.) Note: we do not require the collection to be closed under finite intersections. -/ def has_countable_basis (f : filter α) : Prop := ∃ s : set (set α), countable s ∧ f = ⨅ t ∈ s, principal t lemma has_countable_basis_of_seq (f : filter α) (x : ℕ → set α) (h : f = ⨅ i, principal (x i)) : f.has_countable_basis := ⟨range x, countable_range _, by rwa infi_range⟩ lemma seq_of_has_countable_basis (f : filter α) (cblb : f.has_countable_basis) : ∃ x : ℕ → set α, f = ⨅ i, principal (x i) := begin rcases cblb with ⟨B, Bcbl, gen⟩, subst gen, classical, by_cases Bnonempty : B = ∅, { use λ n, set.univ, simp [principal_univ, *] }, rw countable_iff_exists_surjective_to_subtype Bnonempty at Bcbl, rcases Bcbl with ⟨g, gsurj⟩, rw lattice.infi_subtype', use (λ n, g n), apply le_antisymm; rw le_infi_iff, { intro i, apply infi_le_of_le (g i) _, apply le_refl _ }, { intros a, rcases gsurj a with i, apply infi_le_of_le i _, subst h, apply le_refl _ } end /-- Different characterization of countable basis. A filter has a countable basis iff it is generated by a sequence of sets. -/ lemma has_countable_basis_iff_seq (f : filter α) : f.has_countable_basis ↔ ∃ x : ℕ → set α, f = ⨅ i, principal (x i) := ⟨seq_of_has_countable_basis _, λ ⟨x, xgen⟩, has_countable_basis_of_seq _ x xgen⟩ lemma mono_seq_of_has_countable_basis (f : filter α) (cblb : f.has_countable_basis) : ∃ x : ℕ → set α, (∀ i j, i ≤ j → x j ⊆ x i) ∧ f = ⨅ i, principal (x i) := begin rcases (seq_of_has_countable_basis f cblb) with ⟨x', hx'⟩, let x := λ n, ⋂ m ≤ n, x' m, use x, split, { intros i j hij a, simp [x], intros h i' hi'i, apply h, transitivity; assumption }, subst hx', apply le_antisymm; rw le_infi_iff; intro i, { rw le_principal_iff, apply Inter_mem_sets (finite_le_nat _), intros j hji, rw ← le_principal_iff, apply infi_le_of_le j _, apply le_refl _ }, { apply infi_le_of_le i _, rw principal_mono, intro a, simp [x], intro h, apply h, refl }, end /-- Different characterization of countable basis. A filter has a countable basis iff it is generated by a monotonically decreasing sequence of sets. -/ lemma has_countable_basis_iff_mono_seq (f : filter α) : f.has_countable_basis ↔ ∃ x : ℕ → set α, (∀ i j, i ≤ j → x j ⊆ x i) ∧ f = ⨅ i, principal (x i) := ⟨mono_seq_of_has_countable_basis _, λ ⟨x, _, xgen⟩, has_countable_basis_of_seq _ x xgen⟩ /-- Different characterization of countable basis. A filter has a countable basis iff there exists a monotonically decreasing sequence of sets `x i` such that `s ∈ f ↔ ∃ i, x i ⊆ s`. -/ lemma has_countable_basis_iff_mono_seq' (f : filter α) : f.has_countable_basis ↔ ∃ x : ℕ → set α, (∀ i j, i ≤ j → x j ⊆ x i) ∧ (∀ {s}, s ∈ f ↔ ∃ i, x i ⊆ s) := begin refine (has_countable_basis_iff_mono_seq f).trans (exists_congr $ λ x, and_congr_right _), intro hmono, have : directed (≥) (λ i, principal (x i)), from directed_of_mono _ (λ i j hij, principal_mono.2 (hmono _ _ hij)), simp only [filter.ext_iff, mem_infi this ⟨0⟩, mem_Union, mem_principal_sets] end lemma has_countable_basis.comap {l : filter β} (h : has_countable_basis l) (f : α → β) : has_countable_basis (l.comap f) := begin rcases h with ⟨S, h₁, h₂⟩, refine ⟨preimage f '' S, countable_image _ h₁, _⟩, calc comap f l = ⨅ s ∈ S, principal (f ⁻¹' s) : by simp [h₂] ... = ⨅ s ∈ S, ⨅ (t : set α) (H : f ⁻¹' s = t), principal t : by simp ... = ⨅ (t : set α) (s ∈ S) (h₂ : f ⁻¹' s = t), principal t : by { rw [infi_comm], congr' 1, ext t, rw [infi_comm] } ... = _ : by simp [-infi_infi_eq_right, infi_and] end -- TODO : prove this for a encodable type lemma has_countable_basis_at_top_finset_nat : has_countable_basis (@at_top (finset ℕ) _) := begin refine has_countable_basis_of_seq _ (λN, Ici (finset.range N)) (eq_infi_of_mem_sets_iff_exists_mem _), assume s, rw mem_at_top_sets, refine ⟨_, λ ⟨N, hN⟩, ⟨finset.range N, hN⟩⟩, rintros ⟨t, ht⟩, rcases mem_at_top_sets.1 (tendsto_finset_range (mem_at_top t)) with ⟨N, hN⟩, simp only [preimage, mem_set_of_eq] at hN, exact ⟨N, mem_principal_sets.2 $ λ t' ht', ht t' $ le_trans (hN _ $ le_refl N) ht'⟩ end lemma has_countable_basis.tendsto_iff_seq_tendsto {f : α → β} {k : filter α} {l : filter β} (hcb : k.has_countable_basis) : tendsto f k l ↔ (∀ x : ℕ → α, tendsto x at_top k → tendsto (f ∘ x) at_top l) := suffices (∀ x : ℕ → α, tendsto x at_top k → tendsto (f ∘ x) at_top l) → tendsto f k l, from ⟨by intros; apply tendsto.comp; assumption, by assumption⟩, begin rw filter.has_countable_basis_iff_mono_seq at hcb, rcases hcb with ⟨g, gmon, gbasis⟩, have gbasis : ∀ A, A ∈ k ↔ ∃ i, g i ⊆ A, { intro A, subst gbasis, rw mem_infi, { simp only [set.mem_Union, iff_self, filter.mem_principal_sets] }, { exact directed_of_mono _ (λ i j h, principal_mono.mpr $ gmon _ _ h) }, { apply_instance } }, classical, contrapose, simp only [not_forall, not_imp, not_exists, subset_def, @tendsto_def _ _ f, gbasis], rintro ⟨B, hBl, hfBk⟩, choose x h using hfBk, use x, split, { simp only [tendsto_at_top', gbasis], rintros A ⟨i, hgiA⟩, use i, refine (λ j hj, hgiA $ gmon _ _ hj _), simp only [h] }, { simp only [tendsto_at_top', (∘), not_forall, not_exists], use [B, hBl], intro i, use [i, (le_refl _)], apply (h i).right }, end lemma has_countable_basis.tendsto_of_seq_tendsto {f : α → β} {k : filter α} {l : filter β} (hcb : k.has_countable_basis) : (∀ x : ℕ → α, tendsto x at_top k → tendsto (f ∘ x) at_top l) → tendsto f k l := hcb.tendsto_iff_seq_tendsto.2 end filter namespace topological_space /- countability axioms For our applications we are interested that there exists a countable basis, but we do not need the concrete basis itself. This allows us to declare these type classes as `Prop` to use them as mixins. -/ universe u variables {α : Type u} [t : topological_space α] include t /-- A topological basis is one that satisfies the necessary conditions so that it suffices to take unions of the basis sets to get a topology (without taking finite intersections as well). -/ def is_topological_basis (s : set (set α)) : Prop := (∀t₁∈s, ∀t₂∈s, ∀ x ∈ t₁ ∩ t₂, ∃ t₃∈s, x ∈ t₃ ∧ t₃ ⊆ t₁ ∩ t₂) ∧ (⋃₀ s) = univ ∧ t = generate_from s lemma is_topological_basis_of_subbasis {s : set (set α)} (hs : t = generate_from s) : is_topological_basis ((λf, ⋂₀ f) '' {f:set (set α) | finite f ∧ f ⊆ s ∧ ⋂₀ f ≠ ∅}) := let b' := (λf, ⋂₀ f) '' {f:set (set α) | finite f ∧ f ⊆ s ∧ ⋂₀ f ≠ ∅} in ⟨assume s₁ ⟨t₁, ⟨hft₁, ht₁b, ht₁⟩, eq₁⟩ s₂ ⟨t₂, ⟨hft₂, ht₂b, ht₂⟩, eq₂⟩, have ie : ⋂₀(t₁ ∪ t₂) = ⋂₀ t₁ ∩ ⋂₀ t₂, from Inf_union, eq₁ ▸ eq₂ ▸ assume x h, ⟨_, ⟨t₁ ∪ t₂, ⟨finite_union hft₁ hft₂, union_subset ht₁b ht₂b, by simpa only [ie] using ne_empty_of_mem h⟩, ie⟩, h, subset.refl _⟩, eq_univ_iff_forall.2 $ assume a, ⟨univ, ⟨∅, ⟨finite_empty, empty_subset _, by rw sInter_empty; exact nonempty_iff_univ_ne_empty.1 ⟨a⟩⟩, sInter_empty⟩, mem_univ _⟩, have generate_from s = generate_from b', from le_antisymm (le_generate_from $ assume u ⟨t, ⟨hft, htb, ne⟩, eq⟩, eq ▸ @is_open_sInter _ (generate_from s) _ hft (assume s hs, generate_open.basic _ $ htb hs)) (le_generate_from $ assume s hs, by_cases (assume : s = ∅, by rw [this]; apply @is_open_empty _ _) (assume : s ≠ ∅, generate_open.basic _ ⟨{s}, ⟨finite_singleton s, singleton_subset_iff.2 hs, by rwa [sInter_singleton]⟩, sInter_singleton s⟩)), this ▸ hs⟩ lemma is_topological_basis_of_open_of_nhds {s : set (set α)} (h_open : ∀ u ∈ s, _root_.is_open u) (h_nhds : ∀(a:α) (u : set α), a ∈ u → _root_.is_open u → ∃v ∈ s, a ∈ v ∧ v ⊆ u) : is_topological_basis s := ⟨assume t₁ ht₁ t₂ ht₂ x ⟨xt₁, xt₂⟩, h_nhds x (t₁ ∩ t₂) ⟨xt₁, xt₂⟩ (is_open_inter _ _ _ (h_open _ ht₁) (h_open _ ht₂)), eq_univ_iff_forall.2 $ assume a, let ⟨u, h₁, h₂, _⟩ := h_nhds a univ trivial (is_open_univ _) in ⟨u, h₁, h₂⟩, le_antisymm (le_generate_from h_open) (assume u hu, (@is_open_iff_nhds α (generate_from _) _).mpr $ assume a hau, let ⟨v, hvs, hav, hvu⟩ := h_nhds a u hau hu in by rw nhds_generate_from; exact infi_le_of_le v (infi_le_of_le ⟨hav, hvs⟩ $ le_principal_iff.2 hvu))⟩ lemma mem_nhds_of_is_topological_basis {a : α} {s : set α} {b : set (set α)} (hb : is_topological_basis b) : s ∈ 𝓝 a ↔ ∃t∈b, a ∈ t ∧ t ⊆ s := begin change s ∈ (𝓝 a).sets ↔ ∃t∈b, a ∈ t ∧ t ⊆ s, rw [hb.2.2, nhds_generate_from, binfi_sets_eq], { simp only [mem_bUnion_iff, exists_prop, mem_set_of_eq, and_assoc, and.left_comm], refl }, { exact assume s ⟨hs₁, hs₂⟩ t ⟨ht₁, ht₂⟩, have a ∈ s ∩ t, from ⟨hs₁, ht₁⟩, let ⟨u, hu₁, hu₂, hu₃⟩ := hb.1 _ hs₂ _ ht₂ _ this in ⟨u, ⟨hu₂, hu₁⟩, le_principal_iff.2 (subset.trans hu₃ (inter_subset_left _ _)), le_principal_iff.2 (subset.trans hu₃ (inter_subset_right _ _))⟩ }, { rcases eq_univ_iff_forall.1 hb.2.1 a with ⟨i, h1, h2⟩, exact ⟨i, h2, h1⟩ } end lemma is_open_of_is_topological_basis {s : set α} {b : set (set α)} (hb : is_topological_basis b) (hs : s ∈ b) : _root_.is_open s := is_open_iff_mem_nhds.2 $ λ a as, (mem_nhds_of_is_topological_basis hb).2 ⟨s, hs, as, subset.refl _⟩ lemma mem_basis_subset_of_mem_open {b : set (set α)} (hb : is_topological_basis b) {a:α} {u : set α} (au : a ∈ u) (ou : _root_.is_open u) : ∃v ∈ b, a ∈ v ∧ v ⊆ u := (mem_nhds_of_is_topological_basis hb).1 $ mem_nhds_sets ou au lemma sUnion_basis_of_is_open {B : set (set α)} (hB : is_topological_basis B) {u : set α} (ou : _root_.is_open u) : ∃ S ⊆ B, u = ⋃₀ S := ⟨{s ∈ B | s ⊆ u}, λ s h, h.1, set.ext $ λ a, ⟨λ ha, let ⟨b, hb, ab, bu⟩ := mem_basis_subset_of_mem_open hB ha ou in ⟨b, ⟨hb, bu⟩, ab⟩, λ ⟨b, ⟨hb, bu⟩, ab⟩, bu ab⟩⟩ lemma Union_basis_of_is_open {B : set (set α)} (hB : is_topological_basis B) {u : set α} (ou : _root_.is_open u) : ∃ (β : Type u) (f : β → set α), u = (⋃ i, f i) ∧ ∀ i, f i ∈ B := let ⟨S, sb, su⟩ := sUnion_basis_of_is_open hB ou in ⟨S, subtype.val, su.trans set.sUnion_eq_Union, λ ⟨b, h⟩, sb h⟩ variables (α) /-- A separable space is one with a countable dense subset. -/ class separable_space : Prop := (exists_countable_closure_eq_univ : ∃s:set α, countable s ∧ closure s = univ) /-- A first-countable space is one in which every point has a countable neighborhood basis. -/ class first_countable_topology : Prop := (nhds_generated_countable : ∀a:α, (𝓝 a).has_countable_basis) /-- A second-countable space is one with a countable basis. -/ class second_countable_topology : Prop := (is_open_generated_countable : ∃b:set (set α), countable b ∧ t = topological_space.generate_from b) @[priority 100] -- see Note [lower instance priority] instance second_countable_topology.to_first_countable_topology [second_countable_topology α] : first_countable_topology α := let ⟨b, hb, eq⟩ := second_countable_topology.is_open_generated_countable α in ⟨assume a, ⟨{s | a ∈ s ∧ s ∈ b}, countable_subset (assume x ⟨_, hx⟩, hx) hb, by rw [eq, nhds_generate_from]⟩⟩ lemma second_countable_topology_induced (β) [t : topological_space β] [second_countable_topology β] (f : α → β) : @second_countable_topology α (t.induced f) := begin rcases second_countable_topology.is_open_generated_countable β with ⟨b, hb, eq⟩, refine { is_open_generated_countable := ⟨preimage f '' b, countable_image _ hb, _⟩ }, rw [eq, induced_generate_from_eq] end instance subtype.second_countable_topology (s : set α) [second_countable_topology α] : second_countable_topology s := second_countable_topology_induced s α coe lemma is_open_generated_countable_inter [second_countable_topology α] : ∃b:set (set α), countable b ∧ ∅ ∉ b ∧ is_topological_basis b := let ⟨b, hb₁, hb₂⟩ := second_countable_topology.is_open_generated_countable α in let b' := (λs, ⋂₀ s) '' {s:set (set α) | finite s ∧ s ⊆ b ∧ ⋂₀ s ≠ ∅} in ⟨b', countable_image _ $ countable_subset (by simp only [(and_assoc _ _).symm]; exact inter_subset_left _ _) (countable_set_of_finite_subset hb₁), assume ⟨s, ⟨_, _, hn⟩, hp⟩, hn hp, is_topological_basis_of_subbasis hb₂⟩ /- TODO: more fine grained instances for first_countable_topology, separable_space, t2_space, ... -/ instance {β : Type*} [topological_space β] [second_countable_topology α] [second_countable_topology β] : second_countable_topology (α × β) := ⟨let ⟨a, ha₁, ha₂, ha₃, ha₄, ha₅⟩ := is_open_generated_countable_inter α in let ⟨b, hb₁, hb₂, hb₃, hb₄, hb₅⟩ := is_open_generated_countable_inter β in ⟨{g | ∃u∈a, ∃v∈b, g = set.prod u v}, have {g | ∃u∈a, ∃v∈b, g = set.prod u v} = (⋃u∈a, ⋃v∈b, {set.prod u v}), by apply set.ext; simp, by rw [this]; exact (countable_bUnion ha₁ $ assume u hu, countable_bUnion hb₁ $ by simp), by rw [ha₅, hb₅, prod_generate_from_generate_from_eq ha₄ hb₄]⟩⟩ instance second_countable_topology_fintype {ι : Type*} {π : ι → Type*} [fintype ι] [t : ∀a, topological_space (π a)] [sc : ∀a, second_countable_topology (π a)] : second_countable_topology (∀a, π a) := have ∀i, ∃b : set (set (π i)), countable b ∧ ∅ ∉ b ∧ is_topological_basis b, from assume a, @is_open_generated_countable_inter (π a) _ (sc a), let ⟨g, hg⟩ := classical.axiom_of_choice this in have t = (λa, generate_from (g a)), from funext $ assume a, (hg a).2.2.2.2, begin constructor, refine ⟨pi univ '' pi univ g, countable_image _ _, _⟩, { suffices : countable {f : Πa, set (π a) | ∀a, f a ∈ g a}, { simpa [pi] }, exact countable_pi (assume i, (hg i).1), }, rw [this, pi_generate_from_eq_fintype], { congr' 1, ext f, simp [pi, eq_comm] }, exact assume a, (hg a).2.2.2.1 end @[priority 100] -- see Note [lower instance priority] instance second_countable_topology.to_separable_space [second_countable_topology α] : separable_space α := let ⟨b, hb₁, hb₂, hb₃, hb₄, eq⟩ := is_open_generated_countable_inter α in have nhds_eq : ∀a, 𝓝 a = (⨅ s : {s : set α // a ∈ s ∧ s ∈ b}, principal s.val), by intro a; rw [eq, nhds_generate_from, infi_subtype]; refl, have ∀s∈b, ∃a, a ∈ s, from assume s hs, exists_mem_of_ne_empty $ assume eq, hb₂ $ eq ▸ hs, have ∃f:∀s∈b, α, ∀s h, f s h ∈ s, by simp only [skolem] at this; exact this, let ⟨f, hf⟩ := this in ⟨⟨(⋃s∈b, ⋃h:s∈b, {f s h}), countable_bUnion hb₁ (λ _ _, countable_Union_Prop $ λ _, countable_singleton _), set.ext $ assume a, have a ∈ (⋃₀ b), by rw [hb₄]; exact trivial, let ⟨t, ht₁, ht₂⟩ := this in have w : {s : set α // a ∈ s ∧ s ∈ b}, from ⟨t, ht₂, ht₁⟩, suffices (⨅ (x : {s // a ∈ s ∧ s ∈ b}), principal (x.val ∩ ⋃s (h₁ h₂ : s ∈ b), {f s h₂})) ≠ ⊥, by simpa only [closure_eq_nhds, nhds_eq, infi_inf w, inf_principal, mem_set_of_eq, mem_univ, iff_true], infi_ne_bot_of_directed ⟨a⟩ (assume ⟨s₁, has₁, hs₁⟩ ⟨s₂, has₂, hs₂⟩, have a ∈ s₁ ∩ s₂, from ⟨has₁, has₂⟩, let ⟨s₃, hs₃, has₃, hs⟩ := hb₃ _ hs₁ _ hs₂ _ this in ⟨⟨s₃, has₃, hs₃⟩, begin simp only [le_principal_iff, mem_principal_sets, (≥)], simp only [subset_inter_iff] at hs, split; apply inter_subset_inter_left; simp only [hs] end⟩) (assume ⟨s, has, hs⟩, have s ∩ (⋃ (s : set α) (H h : s ∈ b), {f s h}) ≠ ∅, from ne_empty_of_mem ⟨hf _ hs, mem_bUnion hs $ mem_Union.mpr ⟨hs, mem_singleton _⟩⟩, mt principal_eq_bot_iff.1 this) ⟩⟩ variables {α} lemma is_open_Union_countable [second_countable_topology α] {ι} (s : ι → set α) (H : ∀ i, _root_.is_open (s i)) : ∃ T : set ι, countable T ∧ (⋃ i ∈ T, s i) = ⋃ i, s i := let ⟨B, cB, _, bB⟩ := is_open_generated_countable_inter α in begin let B' := {b ∈ B | ∃ i, b ⊆ s i}, choose f hf using λ b:B', b.2.2, haveI : encodable B' := (countable_subset (sep_subset _ _) cB).to_encodable, refine ⟨_, countable_range f, subset.antisymm (bUnion_subset_Union _ _) (sUnion_subset _)⟩, rintro _ ⟨i, rfl⟩ x xs, rcases mem_basis_subset_of_mem_open bB xs (H _) with ⟨b, hb, xb, bs⟩, exact ⟨_, ⟨_, rfl⟩, _, ⟨⟨⟨_, hb, _, bs⟩, rfl⟩, rfl⟩, hf _ (by exact xb)⟩ end lemma is_open_sUnion_countable [second_countable_topology α] (S : set (set α)) (H : ∀ s ∈ S, _root_.is_open s) : ∃ T : set (set α), countable T ∧ T ⊆ S ∧ ⋃₀ T = ⋃₀ S := let ⟨T, cT, hT⟩ := is_open_Union_countable (λ s:S, s.1) (λ s, H s.1 s.2) in ⟨subtype.val '' T, countable_image _ cT, image_subset_iff.2 $ λ ⟨x, xs⟩ xt, xs, by rwa [sUnion_image, sUnion_eq_Union]⟩ end topological_space
b8fa9931fd310856691de80e4ab4d869c8e00954
437dc96105f48409c3981d46fb48e57c9ac3a3e4
/src/algebra/group/units.lean
b8f83ad34e961c863eb01eca23824125aa233e62
[ "Apache-2.0" ]
permissive
dan-c-k/mathlib
08efec79bd7481ee6da9cc44c24a653bff4fbe0d
96efc220f6225bc7a5ed8349900391a33a38cc56
refs/heads/master
1,658,082,847,093
1,589,013,201,000
1,589,013,201,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
7,761
lean
/- Copyright (c) 2017 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau, Mario Carneiro, Johannes, Hölzl, Chris Hughes -/ import logic.function import algebra.group.to_additive import tactic.norm_cast /-! # Units (i.e., invertible elements) of a multiplicative monoid -/ universe u variable {α : Type u} /-- Units of a monoid, bundled version. An element of a `monoid` is a unit if it has a two-sided inverse. This version bundles the inverse element so that it can be computed. For a predicate see `is_unit`. -/ structure units (α : Type u) [monoid α] := (val : α) (inv : α) (val_inv : val * inv = 1) (inv_val : inv * val = 1) /-- Units of an add_monoid, bundled version. An element of an add_monoid is a unit if it has a two-sided additive inverse. This version bundles the inverse element so that it can be computed. For a predicate see `is_add_unit`. -/ structure add_units (α : Type u) [add_monoid α] := (val : α) (neg : α) (val_neg : val + neg = 0) (neg_val : neg + val = 0) attribute [to_additive add_units] units namespace units variables [monoid α] @[to_additive] instance : has_coe (units α) α := ⟨val⟩ @[simp, to_additive] lemma coe_mk (a : α) (b h₁ h₂) : ↑(units.mk a b h₁ h₂) = a := rfl @[ext, to_additive] theorem ext : function.injective (coe : units α → α) | ⟨v, i₁, vi₁, iv₁⟩ ⟨v', i₂, vi₂, iv₂⟩ e := by change v = v' at e; subst v'; congr; simpa only [iv₂, vi₁, one_mul, mul_one] using mul_assoc i₂ v i₁ @[to_additive] theorem ext_iff {a b : units α} : a = b ↔ (a : α) = b := ext.eq_iff.symm @[to_additive] instance [decidable_eq α] : decidable_eq (units α) := λ a b, decidable_of_iff' _ ext_iff /-- Units of a monoid form a group. -/ @[to_additive] instance : group (units α) := { mul := λ u₁ u₂, ⟨u₁.val * u₂.val, u₂.inv * u₁.inv, by rw [mul_assoc, ← mul_assoc u₂.val, val_inv, one_mul, val_inv], by rw [mul_assoc, ← mul_assoc u₁.inv, inv_val, one_mul, inv_val]⟩, one := ⟨1, 1, one_mul 1, one_mul 1⟩, mul_one := λ u, ext $ mul_one u, one_mul := λ u, ext $ one_mul u, mul_assoc := λ u₁ u₂ u₃, ext $ mul_assoc u₁ u₂ u₃, inv := λ u, ⟨u.2, u.1, u.4, u.3⟩, mul_left_inv := λ u, ext u.inv_val } variables (a b : units α) {c : units α} @[simp, norm_cast, to_additive] lemma coe_mul : (↑(a * b) : α) = a * b := rfl attribute [norm_cast] add_units.coe_add @[simp, norm_cast, to_additive] lemma coe_one : ((1 : units α) : α) = 1 := rfl attribute [norm_cast] add_units.coe_zero @[to_additive] lemma val_coe : (↑a : α) = a.val := rfl @[norm_cast, to_additive] lemma coe_inv : ((a⁻¹ : units α) : α) = a.inv := rfl attribute [norm_cast] add_units.coe_neg @[simp, to_additive] lemma inv_mul : (↑a⁻¹ * a : α) = 1 := inv_val _ @[simp, to_additive] lemma mul_inv : (a * ↑a⁻¹ : α) = 1 := val_inv _ @[simp, to_additive] lemma mul_inv_cancel_left (a : units α) (b : α) : (a:α) * (↑a⁻¹ * b) = b := by rw [← mul_assoc, mul_inv, one_mul] @[simp, to_additive] lemma inv_mul_cancel_left (a : units α) (b : α) : (↑a⁻¹:α) * (a * b) = b := by rw [← mul_assoc, inv_mul, one_mul] @[simp, to_additive] lemma mul_inv_cancel_right (a : α) (b : units α) : a * b * ↑b⁻¹ = a := by rw [mul_assoc, mul_inv, mul_one] @[simp, to_additive] lemma inv_mul_cancel_right (a : α) (b : units α) : a * ↑b⁻¹ * b = a := by rw [mul_assoc, inv_mul, mul_one] @[to_additive] instance : inhabited (units α) := ⟨1⟩ @[to_additive] instance {α} [comm_monoid α] : comm_group (units α) := { mul_comm := λ u₁ u₂, ext $ mul_comm _ _, ..units.group } @[to_additive] instance [has_repr α] : has_repr (units α) := ⟨repr ∘ val⟩ @[simp, to_additive] theorem mul_left_inj (a : units α) {b c : α} : (a:α) * b = a * c ↔ b = c := ⟨λ h, by simpa only [inv_mul_cancel_left] using congr_arg ((*) ↑(a⁻¹ : units α)) h, congr_arg _⟩ @[simp, to_additive] theorem mul_right_inj (a : units α) {b c : α} : b * a = c * a ↔ b = c := ⟨λ h, by simpa only [mul_inv_cancel_right] using congr_arg (* ↑(a⁻¹ : units α)) h, congr_arg _⟩ @[to_additive] theorem eq_mul_inv_iff_mul_eq {a b : α} : a = b * ↑c⁻¹ ↔ a * c = b := ⟨λ h, by rw [h, inv_mul_cancel_right], λ h, by rw [← h, mul_inv_cancel_right]⟩ @[to_additive] theorem eq_inv_mul_iff_mul_eq {a c : α} : a = ↑b⁻¹ * c ↔ ↑b * a = c := ⟨λ h, by rw [h, mul_inv_cancel_left], λ h, by rw [← h, inv_mul_cancel_left]⟩ @[to_additive] theorem inv_mul_eq_iff_eq_mul {b c : α} : ↑a⁻¹ * b = c ↔ b = a * c := ⟨λ h, by rw [← h, mul_inv_cancel_left], λ h, by rw [h, inv_mul_cancel_left]⟩ @[to_additive] theorem mul_inv_eq_iff_eq_mul {a c : α} : a * ↑b⁻¹ = c ↔ a = c * b := ⟨λ h, by rw [← h, inv_mul_cancel_right], λ h, by rw [h, mul_inv_cancel_right]⟩ end units theorem nat.units_eq_one (u : units ℕ) : u = 1 := units.ext $ nat.eq_one_of_dvd_one ⟨u.inv, u.val_inv.symm⟩ theorem nat.add_units_eq_zero (u : add_units ℕ) : u = 0 := add_units.ext $ (nat.eq_zero_of_add_eq_zero u.val_neg).1 /-- For `a, b` in a `comm_monoid` such that `a * b = 1`, makes a unit out of `a`. -/ @[to_additive "For `a, b` in an `add_comm_monoid` such that `a + b = 0`, makes an add_unit out of `a`."] def units.mk_of_mul_eq_one [comm_monoid α] (a b : α) (hab : a * b = 1) : units α := ⟨a, b, hab, (mul_comm b a).trans hab⟩ @[simp, to_additive] lemma units.coe_mk_of_mul_eq_one [comm_monoid α] {a b : α} (h : a * b = 1) : (units.mk_of_mul_eq_one a b h : α) = a := rfl section monoid variables [monoid α] {a b c : α} /-- Partial division. It is defined when the second argument is invertible, and unlike the division operator in `division_ring` it is not totalized at zero. -/ def divp (a : α) (u) : α := a * (u⁻¹ : units α) infix ` /ₚ `:70 := divp @[simp] theorem divp_self (u : units α) : (u : α) /ₚ u = 1 := units.mul_inv _ @[simp] theorem divp_one (a : α) : a /ₚ 1 = a := mul_one _ theorem divp_assoc (a b : α) (u : units α) : a * b /ₚ u = a * (b /ₚ u) := mul_assoc _ _ _ @[simp] theorem divp_inv (u : units α) : a /ₚ u⁻¹ = a * u := rfl @[simp] theorem divp_mul_cancel (a : α) (u : units α) : a /ₚ u * u = a := (mul_assoc _ _ _).trans $ by rw [units.inv_mul, mul_one] @[simp] theorem mul_divp_cancel (a : α) (u : units α) : (a * u) /ₚ u = a := (mul_assoc _ _ _).trans $ by rw [units.mul_inv, mul_one] @[simp] theorem divp_right_inj (u : units α) {a b : α} : a /ₚ u = b /ₚ u ↔ a = b := units.mul_right_inj _ theorem divp_divp_eq_divp_mul (x : α) (u₁ u₂ : units α) : (x /ₚ u₁) /ₚ u₂ = x /ₚ (u₂ * u₁) := by simp only [divp, mul_inv_rev, units.coe_mul, mul_assoc] theorem divp_eq_iff_mul_eq {x : α} {u : units α} {y : α} : x /ₚ u = y ↔ y * u = x := u.mul_right_inj.symm.trans $ by rw [divp_mul_cancel]; exact ⟨eq.symm, eq.symm⟩ theorem divp_eq_one_iff_eq {a : α} {u : units α} : a /ₚ u = 1 ↔ a = u := (units.mul_right_inj u).symm.trans $ by rw [divp_mul_cancel, one_mul] @[simp] theorem one_divp (u : units α) : 1 /ₚ u = ↑u⁻¹ := one_mul _ end monoid section comm_monoid variables [comm_monoid α] theorem divp_eq_divp_iff {x y : α} {ux uy : units α} : x /ₚ ux = y /ₚ uy ↔ x * uy = y * ux := by rw [divp_eq_iff_mul_eq, mul_comm, ← divp_assoc, divp_eq_iff_mul_eq, mul_comm y ux] theorem divp_mul_divp (x y : α) (ux uy : units α) : (x /ₚ ux) * (y /ₚ uy) = (x * y) /ₚ (ux * uy) := by rw [← divp_divp_eq_divp_mul, divp_assoc, mul_comm x, divp_assoc, mul_comm] end comm_monoid
b3017463cf5eee177eff33a7f255a2c2c7293b00
07c76fbd96ea1786cc6392fa834be62643cea420
/hott/types/sigma.hlean
f9c8b42637edeb9515e8bdd977c7ce0dc35bc7dc
[ "Apache-2.0" ]
permissive
fpvandoorn/lean2
5a430a153b570bf70dc8526d06f18fc000a60ad9
0889cf65b7b3cebfb8831b8731d89c2453dd1e9f
refs/heads/master
1,592,036,508,364
1,545,093,958,000
1,545,093,958,000
75,436,854
0
0
null
1,480,718,780,000
1,480,718,780,000
null
UTF-8
Lean
false
false
29,232
hlean
/- Copyright (c) 2014-15 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Floris van Doorn Partially ported from Coq HoTT Theorems about sigma-types (dependent sums) -/ import types.prod open eq sigma sigma.ops equiv is_equiv function is_trunc sum unit namespace sigma variables {A A' : Type} {B : A → Type} {B' : A' → Type} {C : Πa, B a → Type} {D : Πa b, C a b → Type} {a a' a'' : A} {b b₁ b₂ : B a} {b' : B a'} {b'' : B a''} {u v w : Σa, B a} definition destruct := @sigma.cases_on /- Paths in a sigma-type -/ protected definition eta [unfold 3] : Π (u : Σa, B a), ⟨u.1 , u.2⟩ = u | eta ⟨u₁, u₂⟩ := idp definition eta2 : Π (u : Σa b, C a b), ⟨u.1, u.2.1, u.2.2⟩ = u | eta2 ⟨u₁, u₂, u₃⟩ := idp definition eta3 : Π (u : Σa b c, D a b c), ⟨u.1, u.2.1, u.2.2.1, u.2.2.2⟩ = u | eta3 ⟨u₁, u₂, u₃, u₄⟩ := idp definition dpair_eq_dpair [unfold 8] (p : a = a') (q : b =[p] b') : ⟨a, b⟩ = ⟨a', b'⟩ := apd011 sigma.mk p q definition sigma_eq [unfold 5 6] (p : u.1 = v.1) (q : u.2 =[p] v.2) : u = v := by induction u; induction v; exact (dpair_eq_dpair p q) definition sigma_eq_right [unfold 6] (q : b₁ = b₂) : ⟨a, b₁⟩ = ⟨a, b₂⟩ := ap (dpair a) q definition eq_pr1 [unfold 5] (p : u = v) : u.1 = v.1 := ap pr1 p postfix `..1`:(max+1) := eq_pr1 definition eq_pr2 [unfold 5] (p : u = v) : u.2 =[p..1] v.2 := by induction p; exact idpo postfix `..2`:(max+1) := eq_pr2 definition dpair_sigma_eq (p : u.1 = v.1) (q : u.2 =[p] v.2) : ⟨(sigma_eq p q)..1, (sigma_eq p q)..2⟩ = ⟨p, q⟩ := by induction u; induction v;esimp at *;induction q;esimp definition sigma_eq_pr1 (p : u.1 = v.1) (q : u.2 =[p] v.2) : (sigma_eq p q)..1 = p := (dpair_sigma_eq p q)..1 definition sigma_eq_pr2 (p : u.1 = v.1) (q : u.2 =[p] v.2) : (sigma_eq p q)..2 =[sigma_eq_pr1 p q] q := (dpair_sigma_eq p q)..2 definition sigma_eq_eta (p : u = v) : sigma_eq (p..1) (p..2) = p := by induction p; induction u; reflexivity definition eq2_pr1 {p q : u = v} (r : p = q) : p..1 = q..1 := ap eq_pr1 r definition eq2_pr2 {p q : u = v} (r : p = q) : p..2 =[eq2_pr1 r] q..2 := !pathover_ap (apd eq_pr2 r) definition tr_pr1_sigma_eq {B' : A → Type} (p : u.1 = v.1) (q : u.2 =[p] v.2) : transport (λx, B' x.1) (sigma_eq p q) = transport B' p := by induction u; induction v; esimp at *;induction q; reflexivity protected definition ap_pr1 (p : u = v) : ap (λx : sigma B, x.1) p = p..1 := idp /- the uncurried version of sigma_eq. We will prove that this is an equivalence -/ definition sigma_eq_unc [unfold 5] : Π (pq : Σ(p : u.1 = v.1), u.2 =[p] v.2), u = v | sigma_eq_unc ⟨pq₁, pq₂⟩ := sigma_eq pq₁ pq₂ definition dpair_sigma_eq_unc : Π (pq : Σ(p : u.1 = v.1), u.2 =[p] v.2), ⟨(sigma_eq_unc pq)..1, (sigma_eq_unc pq)..2⟩ = pq | dpair_sigma_eq_unc ⟨pq₁, pq₂⟩ := dpair_sigma_eq pq₁ pq₂ definition sigma_eq_pr1_unc (pq : Σ(p : u.1 = v.1), u.2 =[p] v.2) : (sigma_eq_unc pq)..1 = pq.1 := (dpair_sigma_eq_unc pq)..1 definition sigma_eq_pr2_unc (pq : Σ(p : u.1 = v.1), u.2 =[p] v.2) : (sigma_eq_unc pq)..2 =[sigma_eq_pr1_unc pq] pq.2 := (dpair_sigma_eq_unc pq)..2 definition sigma_eq_eta_unc (p : u = v) : sigma_eq_unc ⟨p..1, p..2⟩ = p := sigma_eq_eta p definition tr_sigma_eq_pr1_unc {B' : A → Type} (pq : Σ(p : u.1 = v.1), u.2 =[p] v.2) : transport (λx, B' x.1) (@sigma_eq_unc A B u v pq) = transport B' pq.1 := destruct pq tr_pr1_sigma_eq definition is_equiv_sigma_eq [instance] [constructor] (u v : Σa, B a) : is_equiv (@sigma_eq_unc A B u v) := adjointify sigma_eq_unc (λp, ⟨p..1, p..2⟩) sigma_eq_eta_unc dpair_sigma_eq_unc definition sigma_eq_equiv [constructor] (u v : Σa, B a) : (u = v) ≃ (Σ(p : u.1 = v.1), u.2 =[p] v.2) := (equiv.mk sigma_eq_unc _)⁻¹ᵉ /- induction principle for a path between pairs -/ definition eq.rec_sigma {A : Type} {B : A → Type} {a : A} {b : B a} (P : Π⦃a'⦄ {b' : B a'}, ⟨a, b⟩ = ⟨a', b'⟩ → Type) (IH : P idp) ⦃a' : A⦄ {b' : B a'} (p : ⟨a, b⟩ = ⟨a', b'⟩) : P p := begin apply transport (λp, P p) (to_left_inv !sigma_eq_equiv p), generalize !sigma_eq_equiv p, esimp, intro q, induction q with q₁ q₂, induction q₂, exact IH end definition dpair_eq_dpair_con (p1 : a = a' ) (q1 : b =[p1] b' ) (p2 : a' = a'') (q2 : b' =[p2] b'') : dpair_eq_dpair (p1 ⬝ p2) (q1 ⬝o q2) = dpair_eq_dpair p1 q1 ⬝ dpair_eq_dpair p2 q2 := by induction q1; induction q2; reflexivity definition sigma_eq_con (p1 : u.1 = v.1) (q1 : u.2 =[p1] v.2) (p2 : v.1 = w.1) (q2 : v.2 =[p2] w.2) : sigma_eq (p1 ⬝ p2) (q1 ⬝o q2) = sigma_eq p1 q1 ⬝ sigma_eq p2 q2 := by induction u; induction v; induction w; apply dpair_eq_dpair_con definition sigma_eq_concato_eq {b : B a} {b₁ b₂ : B a'} (p : a = a') (q : b =[p] b₁) (q' : b₁ = b₂) : sigma_eq p (q ⬝op q') = sigma_eq p q ⬝ ap (dpair a') q' := by induction q'; reflexivity definition dpair_eq_dpair_inv (p : a = a') (q : b =[p] b') : (dpair_eq_dpair p q)⁻¹ = dpair_eq_dpair p⁻¹ q⁻¹ᵒ := begin induction q, reflexivity end local attribute dpair_eq_dpair [reducible] definition dpair_eq_dpair_con_idp (p : a = a') (q : b =[p] b') : dpair_eq_dpair p q = dpair_eq_dpair p !pathover_tr ⬝ dpair_eq_dpair idp (pathover_idp_of_eq (tr_eq_of_pathover q)) := by induction q; reflexivity definition ap_sigma_pr1 {A B : Type} {C : B → Type} {a₁ a₂ : A} (f : A → B) (g : Πa, C (f a)) (p : a₁ = a₂) : (ap (λa, ⟨f a, g a⟩) p)..1 = ap f p := by induction p; reflexivity definition ap_sigma_pr2 {A B : Type} {C : B → Type} {a₁ a₂ : A} (f : A → B) (g : Πa, C (f a)) (p : a₁ = a₂) : (ap (λa, ⟨f a, g a⟩) p)..2 = change_path (ap_sigma_pr1 f g p)⁻¹ (pathover_ap C f (apd g p)) := by induction p; reflexivity definition sigma_eq_pr2_constant {A B : Type} {a a' : A} {b b' : B} (p : a = a') (q : b =[p] b') : ap pr2 (sigma_eq p q) = (eq_of_pathover q) := by induction q; reflexivity definition sigma_eq_pr2_constant2 {A B : Type} {a a' : A} {b b' : B} (p : a = a') (q : b = b') : ap pr2 (sigma_eq p (pathover_of_eq p q)) = q := by induction p; induction q; reflexivity /- eq_pr1 commutes with the groupoid structure. -/ definition eq_pr1_idp (u : Σa, B a) : (refl u) ..1 = refl (u.1) := idp definition eq_pr1_con (p : u = v) (q : v = w) : (p ⬝ q) ..1 = (p..1) ⬝ (q..1) := !ap_con definition eq_pr1_inv (p : u = v) : p⁻¹ ..1 = (p..1)⁻¹ := !ap_inv /- Applying dpair to one argument is the same as dpair_eq_dpair with reflexivity in the first place. -/ definition ap_dpair (q : b₁ = b₂) : ap (sigma.mk a) q = dpair_eq_dpair idp (pathover_idp_of_eq q) := by induction q; reflexivity /- Dependent transport is the same as transport along a sigma_eq. -/ definition transportD_eq_transport (p : a = a') (c : C a b) : p ▸D c = transport (λu, C (u.1) (u.2)) (dpair_eq_dpair p !pathover_tr) c := by induction p; reflexivity definition sigma_eq_eq_sigma_eq {p1 q1 : a = a'} {p2 : b =[p1] b'} {q2 : b =[q1] b'} (r : p1 = q1) (s : p2 =[r] q2) : sigma_eq p1 p2 = sigma_eq q1 q2 := by induction s; reflexivity /- A path between paths in a total space is commonly shown component wise. -/ definition sigma_eq2 {p q : u = v} (r : p..1 = q..1) (s : p..2 =[r] q..2) : p = q := begin induction p, induction u with u1 u2, transitivity sigma_eq q..1 q..2, apply sigma_eq_eq_sigma_eq r s, apply sigma_eq_eta, end definition sigma_eq2_unc {p q : u = v} (rs : Σ(r : p..1 = q..1), p..2 =[r] q..2) : p = q := destruct rs sigma_eq2 /- two equalities about applying a function to a pair of equalities. These two functions are not definitionally equal (but they are equal on all pairs) -/ definition ap_dpair_eq_dpair (f : Πa, B a → A') (p : a = a') (q : b =[p] b') : ap (sigma.rec f) (dpair_eq_dpair p q) = apd011 f p q := by induction q; reflexivity definition ap_dpair_eq_dpair_pr (f : Πa, B a → A') (p : a = a') (q : b =[p] b') : ap (λx, f x.1 x.2) (dpair_eq_dpair p q) = apd011 f p q := by induction q; reflexivity /- Transport -/ /- The concrete description of transport in sigmas (and also pis) is rather trickier than in the other types. In particular, these cannot be described just in terms of transport in simpler types; they require also the dependent transport [transportD]. In particular, this indicates why `transport` alone cannot be fully defined by induction on the structure of types, although Id-elim/transportD can be (cf. Observational Type Theory). A more thorough set of lemmas, along the lines of the present ones but dealing with Id-elim rather than just transport, might be nice to have eventually? -/ definition sigma_transport (p : a = a') (bc : Σ(b : B a), C a b) : p ▸ bc = ⟨p ▸ bc.1, p ▸D bc.2⟩ := by induction p; induction bc; reflexivity /- The special case when the second variable doesn't depend on the first is simpler. -/ definition sigma_transport_constant {B : Type} {C : A → B → Type} (p : a = a') (bc : Σ(b : B), C a b) : p ▸ bc = ⟨bc.1, p ▸ bc.2⟩ := by induction p; induction bc; reflexivity /- Or if the second variable contains a first component that doesn't depend on the first. -/ definition sigma_transport2_constant {C : A → Type} {D : Π a:A, B a → C a → Type} (p : a = a') (bcd : Σ(b : B a) (c : C a), D a b c) : p ▸ bcd = ⟨p ▸ bcd.1, p ▸ bcd.2.1, p ▸D2 bcd.2.2⟩ := begin induction p, induction bcd with b cd, induction cd, reflexivity end /- Pathovers -/ definition etao (p : a = a') (bc : Σ(b : B a), C a b) : bc =[p] ⟨p ▸ bc.1, p ▸D bc.2⟩ := by induction p; induction bc; apply idpo definition sigma_pathover' (p : a = a') (u : Σ(b : B a), C a b) (v : Σ(b : B a'), C a' b) (r : u.1 =[p] v.1) (s : u.2 =[apd011 C p r] v.2) : u =[p] v := begin induction u, induction v, esimp at *, induction r, esimp [apd011] at s, induction s using idp_rec_on, apply idpo end definition sigma_pathover (p : a = a') (u : Σ(b : B a), C a b) (v : Σ(b : B a'), C a' b) (r : u.1 =[p] v.1) (s : pathover (λx, C x.1 x.2) u.2 (sigma_eq p r) v.2) : u =[p] v := begin induction u, induction v, esimp at *, induction r, induction s using idp_rec_on, apply idpo end definition sigma_pathover_constant {B : Type} {C : A → B → Type} (p : a = a') (u : Σ(b : B), C a b) (v : Σ(b : B), C a' b) (r : u.1 = v.1) (s : pathover (λx, C (prod.pr1 x) (prod.pr2 x)) u.2 (prod.prod_eq p r) v.2) : u =[p] v := begin induction p, induction u, induction v, esimp at *, induction r, induction s using idp_rec_on, apply idpo end definition pathover_pr1 [unfold 9] {A : Type} {B : A → Type} {C : Πa, B a → Type} {a a' : A} {p : a = a'} {x : Σb, C a b} {x' : Σb', C a' b'} (q : x =[p] x') : x.1 =[p] x'.1 := begin induction q, constructor end definition sigma_pathover_equiv_of_is_prop {A : Type} {B : A → Type} (C : Πa, B a → Type) {a a' : A} (p : a = a') (x : Σb, C a b) (x' : Σb', C a' b') (H : Πa b, is_prop (C a b)) : x =[p] x' ≃ x.1 =[p] x'.1 := begin fapply equiv.MK, { exact pathover_pr1 }, { intro q, induction x with b c, induction x' with b' c', esimp at q, induction q, apply pathover_idp_of_eq, exact sigma_eq idp !is_prop.elimo }, { intro q, induction x with b c, induction x' with b' c', esimp at q, induction q, have c = c', from !is_prop.elim, induction this, rewrite [▸*, is_prop_elimo_self (C a) c] }, { intro q, induction q, induction x with b c, rewrite [▸*, is_prop_elimo_self (C a) c] } end /- TODO: * define the projections from the type u =[p] v * show that the uncurried version of sigma_pathover is an equivalence -/ /- Squares in a sigma type are characterized in cubical.squareover (to avoid circular imports) -/ /- Functorial action -/ variables (f : A → A') (g : Πa, B a → B' (f a)) definition sigma_functor [unfold 7] (u : Σa, B a) : Σa', B' a' := ⟨f u.1, g u.1 u.2⟩ definition total [reducible] [unfold 5] {B' : A → Type} (g : Πa, B a → B' a) : (Σa, B a) → (Σa, B' a) := sigma_functor id g definition sigma_functor_compose {A A' A'' : Type} {B : A → Type} {B' : A' → Type} {B'' : A'' → Type} {f' : A' → A''} {f : A → A'} (g' : Πa, B' a → B'' (f' a)) (g : Πa, B a → B' (f a)) (x : Σa, B a) : sigma_functor f' g' (sigma_functor f g x) = sigma_functor (f' ∘ f) (λa, g' (f a) ∘ g a) x := begin reflexivity end definition sigma_functor_homotopy {A A' : Type} {B : A → Type} {B' : A' → Type} {f f' : A → A'} {g : Πa, B a → B' (f a)} {g' : Πa, B a → B' (f' a)} (h : f ~ f') (k : Πa b, g a b =[h a] g' a b) (x : Σa, B a) : sigma_functor f g x = sigma_functor f' g' x := sigma_eq (h x.1) (k x.1 x.2) section hsquare variables {A₀₀ A₂₀ A₀₂ A₂₂ : Type} {B₀₀ : A₀₀ → Type} {B₂₀ : A₂₀ → Type} {B₀₂ : A₀₂ → Type} {B₂₂ : A₂₂ → Type} {f₁₀ : A₀₀ → A₂₀} {f₁₂ : A₀₂ → A₂₂} {f₀₁ : A₀₀ → A₀₂} {f₂₁ : A₂₀ → A₂₂} {g₁₀ : Πa, B₀₀ a → B₂₀ (f₁₀ a)} {g₁₂ : Πa, B₀₂ a → B₂₂ (f₁₂ a)} {g₀₁ : Πa, B₀₀ a → B₀₂ (f₀₁ a)} {g₂₁ : Πa, B₂₀ a → B₂₂ (f₂₁ a)} definition sigma_functor_hsquare (h : hsquare f₁₀ f₁₂ f₀₁ f₂₁) (k : Πa (b : B₀₀ a), g₂₁ _ (g₁₀ _ b) =[h a] g₁₂ _ (g₀₁ _ b)) : hsquare (sigma_functor f₁₀ g₁₀) (sigma_functor f₁₂ g₁₂) (sigma_functor f₀₁ g₀₁) (sigma_functor f₂₁ g₂₁) := λx, sigma_functor_compose g₂₁ g₁₀ x ⬝ sigma_functor_homotopy h k x ⬝ (sigma_functor_compose g₁₂ g₀₁ x)⁻¹ end hsquare definition sigma_functor2 [constructor] {A₁ A₂ A₃ : Type} {B₁ : A₁ → Type} {B₂ : A₂ → Type} {B₃ : A₃ → Type} (f : A₁ → A₂ → A₃) (g : Π⦃a₁ a₂⦄, B₁ a₁ → B₂ a₂ → B₃ (f a₁ a₂)) (x₁ : Σa₁, B₁ a₁) (x₂ : Σa₂, B₂ a₂) : Σa₃, B₃ a₃ := ⟨f x₁.1 x₂.1, g x₁.2 x₂.2⟩ /- Equivalences -/ definition is_equiv_sigma_functor [constructor] [H1 : is_equiv f] [H2 : Π a, is_equiv (g a)] : is_equiv (sigma_functor f g) := adjointify (sigma_functor f g) (sigma_functor f⁻¹ (λ(a' : A') (b' : B' a'), ((g (f⁻¹ a'))⁻¹ (transport B' (right_inv f a')⁻¹ b')))) abstract begin intro u', induction u' with a' b', apply sigma_eq (right_inv f a'), rewrite [▸*,right_inv (g (f⁻¹ a')),▸*], apply tr_pathover end end abstract begin intro u, induction u with a b, apply (sigma_eq (left_inv f a)), apply pathover_of_tr_eq, rewrite [▸*,adj f,-(fn_tr_eq_tr_fn (left_inv f a) (λ a, (g a)⁻¹)), ▸*,tr_compose B' f,tr_inv_tr,left_inv] end end definition sigma_equiv_sigma_of_is_equiv [constructor] [H1 : is_equiv f] [H2 : Π a, is_equiv (g a)] : (Σa, B a) ≃ (Σa', B' a') := equiv.mk (sigma_functor f g) !is_equiv_sigma_functor definition sigma_equiv_sigma [constructor] (Hf : A ≃ A') (Hg : Π a, B a ≃ B' (to_fun Hf a)) : (Σa, B a) ≃ (Σa', B' a') := sigma_equiv_sigma_of_is_equiv (to_fun Hf) (λ a, to_fun (Hg a)) definition sigma_equiv_sigma_right [constructor] {B' : A → Type} (Hg : Π a, B a ≃ B' a) : (Σa, B a) ≃ Σa, B' a := sigma_equiv_sigma equiv.rfl Hg definition sigma_equiv_sigma_left [constructor] (Hf : A ≃ A') : (Σa, B a) ≃ (Σa', B (to_inv Hf a')) := sigma_equiv_sigma Hf (λ a, equiv_ap B !right_inv⁻¹) definition sigma_equiv_sigma_left' [constructor] (Hf : A' ≃ A) : (Σa, B (Hf a)) ≃ (Σa', B a') := sigma_equiv_sigma Hf (λa, erfl) definition ap_sigma_functor_sigma_eq {A A' : Type} {B : A → Type} {B' : A' → Type} {a a' : A} {b : B a} {b' : B a'} (f : A → A') (g : Πa, B a → B' (f a)) (p : a = a') (q : b =[p] b') : ap (sigma_functor f g) (sigma_eq p q) = sigma_eq (ap f p) (pathover_ap B' f (apo g q)) := by induction q; reflexivity definition ap_sigma_functor_id_sigma_eq {A : Type} {B B' : A → Type} {a a' : A} {b : B a} {b' : B a'} (g : Πa, B a → B' a) (p : a = a') (q : b =[p] b') : ap (sigma_functor id g) (sigma_eq p q) = sigma_eq p (apo g q) := by induction q; reflexivity definition sigma_ua {A B : Type} (C : A ≃ B → Type) : (Σ(p : A = B), C (equiv_of_eq p)) ≃ Σ(e : A ≃ B), C e := sigma_equiv_sigma_left' !eq_equiv_equiv -- definition ap_sigma_functor_eq (p : u.1 = v.1) (q : u.2 =[p] v.2) -- : ap (sigma_functor f g) (sigma_eq p q) = -- sigma_eq (ap f p) -- ((tr_compose B' f p (g u.1 u.2))⁻¹ ⬝ (fn_tr_eq_tr_fn p g u.2)⁻¹ ⬝ ap (g v.1) q) := -- by induction u; induction v; apply ap_sigma_functor_eq_dpair /- definition 3.11.9(i): Summing up a contractible family of types does nothing. -/ definition is_equiv_pr1 [instance] [constructor] (B : A → Type) [H : Π a, is_contr (B a)] : is_equiv (@pr1 A B) := adjointify pr1 (λa, ⟨a, !center⟩) (λa, idp) (λu, sigma_eq idp (pathover_idp_of_eq !center_eq)) definition sigma_equiv_of_is_contr_right [constructor] (B : A → Type) (H : Π a, is_contr (B a)) : (Σa, B a) ≃ A := equiv.mk pr1 _ /- definition 3.11.9(ii): Dually, summing up over a contractible type does nothing. -/ definition sigma_equiv_of_is_contr_left [constructor] (B : A → Type) (H : is_contr A) : (Σa, B a) ≃ B (center A) := equiv.MK (λu, (center_eq u.1)⁻¹ ▸ u.2) (λb, ⟨!center, b⟩) abstract (λb, ap (λx, x ▸ b) !prop_eq_of_is_contr) end abstract (λu, sigma_eq !center_eq !tr_pathover) end /- Associativity -/ --this proof is harder than in Coq because we don't have eta definitionally for sigma definition sigma_assoc_equiv [constructor] (C : (Σa, B a) → Type) : (Σu, C u) ≃ (Σa b, C ⟨a, b⟩) := equiv.mk _ (adjointify (λuc, ⟨uc.1.1, uc.1.2, transport C (sigma.eta uc.1)⁻¹ uc.2⟩) (λav, ⟨⟨av.1, av.2.1⟩, av.2.2⟩) abstract begin intro av, induction av with a v, induction v, reflexivity end end abstract begin intro uc, induction uc with u c, induction u, reflexivity end end) definition sigma_assoc_equiv' [constructor] (C : Πa, B a → Type) : (Σa b, C a b) ≃ (Σu, C u.1 u.2) := !sigma_assoc_equiv⁻¹ᵉ open prod prod.ops definition assoc_equiv_prod [constructor] (C : (A × A') → Type) : (Σa a', C (a,a')) ≃ (Σu, C u) := equiv.mk _ (adjointify (λav, ⟨(av.1, av.2.1), av.2.2⟩) (λuc, ⟨pr₁ (uc.1), pr₂ (uc.1), !prod.eta⁻¹ ▸ uc.2⟩) abstract proof (λuc, destruct uc (λu, prod.destruct u (λa b c, idp))) qed end abstract proof (λav, destruct av (λa v, destruct v (λb c, idp))) qed end) definition sigma_assoc_equiv_left {A D : Type} {B : A → Type} {E : D → Type} (C : Πa, B a → Type) (f : (Σd, E d) ≃ Σa, B a) : (Σa b, C a b) ≃ Σd e, C (f ⟨d, e⟩).1 (f ⟨d, e⟩).2 := begin refine !sigma_assoc_equiv' ⬝e _, refine sigma_equiv_sigma_left f⁻¹ᵉ ⬝e _, exact !sigma_assoc_equiv, end /- Symmetry -/ definition comm_equiv_unc (C : A × A' → Type) : (Σa a', C (a, a')) ≃ (Σa' a, C (a, a')) := calc (Σa a', C (a, a')) ≃ Σu, C u : assoc_equiv_prod ... ≃ Σv, C (flip v) : sigma_equiv_sigma !prod_comm_equiv (λu, prod.destruct u (λa a', equiv.rfl)) ... ≃ Σa' a, C (a, a') : assoc_equiv_prod definition sigma_comm_equiv [constructor] (C : A → A' → Type) : (Σa a', C a a') ≃ (Σa' a, C a a') := comm_equiv_unc (λu, C (prod.pr1 u) (prod.pr2 u)) definition equiv_prod [constructor] (A B : Type) : (Σ(a : A), B) ≃ A × B := equiv.mk _ (adjointify (λs, (s.1, s.2)) (λp, ⟨pr₁ p, pr₂ p⟩) proof (λp, prod.destruct p (λa b, idp)) qed proof (λs, destruct s (λa b, idp)) qed) definition comm_equiv_constant (A B : Type) : (Σ(a : A), B) ≃ Σ(b : B), A := calc (Σ(a : A), B) ≃ A × B : equiv_prod ... ≃ B × A : prod_comm_equiv ... ≃ Σ(b : B), A : equiv_prod definition sigma_assoc_comm_equiv {A : Type} (B C : A → Type) : (Σ(v : Σa, B a), C v.1) ≃ (Σ(u : Σa, C a), B u.1) := calc (Σ(v : Σa, B a), C v.1) ≃ (Σa (b : B a), C a) : sigma_assoc_equiv ... ≃ (Σa (c : C a), B a) : sigma_equiv_sigma_right (λa, !comm_equiv_constant) ... ≃ (Σ(u : Σa, C a), B u.1) : sigma_assoc_equiv /- Interaction with other type constructors -/ definition sigma_empty_left [constructor] (B : empty → Type) : (Σx, B x) ≃ empty := begin fapply equiv.MK, { intro v, induction v, contradiction}, { intro x, contradiction}, { intro x, contradiction}, { intro v, induction v, contradiction}, end definition sigma_empty_right [constructor] (A : Type) : (Σ(a : A), empty) ≃ empty := begin fapply equiv.MK, { intro v, induction v, contradiction}, { intro x, contradiction}, { intro x, contradiction}, { intro v, induction v, contradiction}, end definition sigma_unit_left [constructor] (B : unit → Type) : (Σx, B x) ≃ B star := sigma_equiv_of_is_contr_left B _ definition sigma_unit_right [constructor] (A : Type) : (Σ(a : A), unit) ≃ A := sigma_equiv_of_is_contr_right _ _ definition sigma_sum_left [constructor] (B : A + A' → Type) : (Σp, B p) ≃ (Σa, B (inl a)) + (Σa, B (inr a)) := begin fapply equiv.MK, { intro v, induction v with p b, induction p, { apply inl, constructor, assumption }, { apply inr, constructor, assumption }}, { intro p, induction p with v v: induction v; constructor; assumption}, { intro p, induction p with v v: induction v; reflexivity}, { intro v, induction v with p b, induction p: reflexivity}, end definition sigma_sum_right [constructor] (B C : A → Type) : (Σa, B a + C a) ≃ (Σa, B a) + (Σa, C a) := begin fapply equiv.MK, { intro v, induction v with a p, induction p, { apply inl, constructor, assumption}, { apply inr, constructor, assumption}}, { intro p, induction p with v v, { induction v, constructor, apply inl, assumption }, { induction v, constructor, apply inr, assumption }}, { intro p, induction p with v v: induction v; reflexivity}, { intro v, induction v with a p, induction p: reflexivity}, end definition sigma_sigma_eq_right (a : A) (P : Π(b : A), a = b → Type) : (Σ(b : A) (p : a = b), P b p) ≃ P a idp := calc (Σ(b : A) (p : a = b), P b p) ≃ (Σ(v : Σ(b : A), a = b), P v.1 v.2) : sigma_assoc_equiv ... ≃ P a idp : sigma_equiv_of_is_contr_left _ _ definition sigma_sigma_eq_left (a : A) (P : Π(b : A), b = a → Type) : (Σ(b : A) (p : b = a), P b p) ≃ P a idp := calc (Σ(b : A) (p : b = a), P b p) ≃ (Σ(v : Σ(b : A), b = a), P v.1 v.2) : sigma_assoc_equiv ... ≃ P a idp : sigma_equiv_of_is_contr_left _ _ definition sigma_assoc_equiv_of_is_contr_left (C : (Σa, B a) → Type) (H : is_contr (Σa, B a)) : (Σa b, C ⟨a, b⟩) ≃ C (@center _ H) := (sigma_assoc_equiv C)⁻¹ᵉ ⬝e !sigma_equiv_of_is_contr_left definition sigma_homotopy_constant_equiv {A B : Type} (a₀ : A) (f : A → B) : (Σ(b : B), Πa, f a = b) ≃ Σ(h : Πa, f a = f a₀), h a₀ = idp := begin transitivity Σ(b : B) (h : Πa, f a = b) (p : f a₀ = b), h a₀ = p, { symmetry, apply sigma_equiv_sigma_right, intro b, apply sigma_equiv_of_is_contr_right, intro h, apply is_trunc.is_contr_sigma_eq }, { refine sigma_equiv_sigma_right (λb, !sigma_comm_equiv) ⬝e _, exact sigma_sigma_eq_right _ (λb p, Σ(h : Πa, f a = b), h a₀ = p) } end /- ** Universal mapping properties -/ /- *** The positive universal property. -/ section definition is_equiv_sigma_rec [instance] (C : (Σa, B a) → Type) : is_equiv (sigma.rec : (Πa b, C ⟨a, b⟩) → Πab, C ab) := adjointify _ (λ g a b, g ⟨a, b⟩) (λ g, proof eq_of_homotopy (λu, destruct u (λa b, idp)) qed) (λ f, refl f) definition equiv_sigma_rec (C : (Σa, B a) → Type) : (Π(a : A) (b: B a), C ⟨a, b⟩) ≃ (Πxy, C xy) := equiv.mk sigma.rec _ /- *** The negative universal property. -/ protected definition coind_unc [constructor] (fg : Σ(f : Πa, B a), Πa, C a (f a)) (a : A) : Σ(b : B a), C a b := ⟨fg.1 a, fg.2 a⟩ protected definition coind [constructor] (f : Π a, B a) (g : Π a, C a (f a)) (a : A) : Σ(b : B a), C a b := sigma.coind_unc ⟨f, g⟩ a definition is_equiv_coind [constructor] (C : Πa, B a → Type) : is_equiv (@sigma.coind_unc _ _ C) := adjointify _ (λ h, ⟨λa, (h a).1, λa, (h a).2⟩) (λ h, proof eq_of_homotopy (λu, !sigma.eta) qed) (λfg, destruct fg (λ(f : Π (a : A), B a) (g : Π (x : A), C x (f x)), proof idp qed)) definition sigma_pi_equiv_pi_sigma [constructor] : (Σ(f : Πa, B a), Πa, C a (f a)) ≃ (Πa, Σb, C a b) := equiv.mk sigma.coind_unc !is_equiv_coind end /- Subtypes (sigma types whose second components are props) -/ definition subtype [reducible] {A : Type} (P : A → Type) [H : Πa, is_prop (P a)] := Σ(a : A), P a notation [parsing_only] `{` binder `|` r:(scoped:1 P, subtype P) `}` := r /- To prove equality in a subtype, we only need equality of the first component. -/ definition subtype_eq [unfold_full] [H : Πa, is_prop (B a)] {u v : {a | B a}} : u.1 = v.1 → u = v := sigma_eq_unc ∘ inv pr1 definition is_equiv_subtype_eq [constructor] [H : Πa, is_prop (B a)] (u v : {a | B a}) : is_equiv (subtype_eq : u.1 = v.1 → u = v) := is_equiv_compose _ _ _ _ local attribute is_equiv_subtype_eq [instance] definition equiv_subtype [constructor] [H : Πa, is_prop (B a)] (u v : {a | B a}) : (u.1 = v.1) ≃ (u = v) := equiv.mk !subtype_eq _ definition subtype_eq_equiv [constructor] [H : Πa, is_prop (B a)] (u v : {a | B a}) : (u = v) ≃ (u.1 = v.1) := (equiv_subtype u v)⁻¹ᵉ definition subtype_eq_inv {A : Type} {B : A → Type} [H : Πa, is_prop (B a)] (u v : Σa, B a) : u = v → u.1 = v.1 := subtype_eq⁻¹ᶠ local attribute subtype_eq_inv [reducible] definition is_equiv_subtype_eq_inv {A : Type} {B : A → Type} [H : Πa, is_prop (B a)] (u v : Σa, B a) : is_equiv (subtype_eq_inv u v) := _ /- truncatedness -/ theorem is_trunc_sigma (B : A → Type) (n : ℕ₋₂) [HA : is_trunc n A] [HB : Πa, is_trunc n (B a)] : is_trunc n (Σa, B a) := begin revert A B HA HB, induction n with n IH, { intro A B HA HB, exact is_contr_equiv_closed_rev (sigma_equiv_of_is_contr_left _ _) _ }, { intro A B HA HB, apply is_trunc_succ_intro, intro u v, exact is_trunc_equiv_closed_rev n !sigma_eq_equiv (IH _ _ _ _) } end theorem is_trunc_subtype (B : A → Prop) (n : ℕ₋₂) [HA : is_trunc (n.+1) A] : is_trunc (n.+1) (Σa, B a) := @(is_trunc_sigma B (n.+1)) _ (λa, is_trunc_succ_of_is_prop _ _ _) /- if the total space is a mere proposition, you can equate two points in the base type by finding points in their fibers -/ definition eq_base_of_is_prop_sigma {A : Type} (B : A → Type) (H : is_prop (Σa, B a)) {a a' : A} (b : B a) (b' : B a') : a = a' := (is_prop.elim ⟨a, b⟩ ⟨a', b'⟩)..1 end sigma attribute sigma.is_trunc_sigma [instance] [priority 1490] attribute sigma.is_trunc_subtype [instance] [priority 1200] namespace sigma /- pointed sigma type -/ open pointed definition pointed_sigma [instance] [constructor] {A : Type} (P : A → Type) [G : pointed A] [H : pointed (P pt)] : pointed (Σx, P x) := pointed.mk ⟨pt,pt⟩ definition psigma [constructor] {A : Type*} (P : A → Type*) : Type* := pointed.mk' (Σa, P a) notation `Σ*` binders `, ` r:(scoped P, psigma P) := r definition ppr1 [constructor] {A : Type*} {B : A → Type*} : (Σ*(x : A), B x) →* A := pmap.mk pr1 idp definition ppr2 [unfold_full] {A : Type*} {B : A → Type*} (v : (Σ*(x : A), B x)) : B (ppr1 v) := pr2 v definition ptsigma [constructor] {n : ℕ₋₂} {A : n-Type*} (P : A → n-Type*) : n-Type* := ptrunctype.mk' n (Σa, P a) end sigma
b356fc0949f141527e82d13565f3e12686658e44
4efff1f47634ff19e2f786deadd394270a59ecd2
/src/data/finset/nat_antidiagonal.lean
b265819cf0df446b23c79ef013a316d5459f3d5b
[ "Apache-2.0" ]
permissive
agjftucker/mathlib
d634cd0d5256b6325e3c55bb7fb2403548371707
87fe50de17b00af533f72a102d0adefe4a2285e8
refs/heads/master
1,625,378,131,941
1,599,166,526,000
1,599,166,526,000
160,748,509
0
0
Apache-2.0
1,544,141,789,000
1,544,141,789,000
null
UTF-8
Lean
false
false
1,105
lean
/- Copyright (c) 2019 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin -/ import data.finset.basic import data.multiset.nat_antidiagonal /-! # The "antidiagonal" {(0,n), (1,n-1), ..., (n,0)} as a finset. -/ namespace finset namespace nat /-- The antidiagonal of a natural number `n` is the finset of pairs `(i,j)` such that `i+j = n`. -/ def antidiagonal (n : ℕ) : finset (ℕ × ℕ) := ⟨multiset.nat.antidiagonal n, multiset.nat.nodup_antidiagonal n⟩ /-- A pair (i,j) is contained in the antidiagonal of `n` if and only if `i+j=n`. -/ @[simp] lemma mem_antidiagonal {n : ℕ} {x : ℕ × ℕ} : x ∈ antidiagonal n ↔ x.1 + x.2 = n := by rw [antidiagonal, finset.mem_def, multiset.nat.mem_antidiagonal] /-- The cardinality of the antidiagonal of `n` is `n+1`. -/ @[simp] lemma card_antidiagonal (n : ℕ) : (antidiagonal n).card = n+1 := by simp [antidiagonal] /-- The antidiagonal of `0` is the list `[(0,0)]` -/ @[simp] lemma antidiagonal_zero : antidiagonal 0 = {(0, 0)} := rfl end nat end finset
3dae18a69a0369a5a7a516f8bdd6694b97196b93
74924b1fe80b8f61262cefcfc0cd4d96135c8731
/src/tactic/linarith.lean
0215798aa1238c70e083e34008eda66ce0fa4a8f
[ "Apache-2.0" ]
permissive
101damnations/mathlib
0938b3806a09032d8716d3642cbab65db7688c23
900c53ae6d5e3f8cc47953363479593e8debc4d8
refs/heads/master
1,593,832,305,164
1,565,631,735,000
1,565,631,735,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
33,368
lean
/- Copyright (c) 2018 Robert Y. Lewis. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Robert Y. Lewis A tactic for discharging linear arithmetic goals using Fourier-Motzkin elimination. `linarith` is (in principle) complete for ℚ and ℝ. It is not complete for non-dense orders, i.e. ℤ. @TODO: investigate storing comparisons in a list instead of a set, for possible efficiency gains @TODO: delay proofs of denominator normalization and nat casting until after contradiction is found -/ import tactic.ring data.nat.gcd data.list.basic meta.rb_map meta def nat.to_pexpr : ℕ → pexpr | 0 := ``(0) | 1 := ``(1) | n := if n % 2 = 0 then ``(bit0 %%(nat.to_pexpr (n/2))) else ``(bit1 %%(nat.to_pexpr (n/2))) open native namespace linarith section lemmas lemma int.coe_nat_bit0 (n : ℕ) : (↑(bit0 n : ℕ) : ℤ) = bit0 (↑n : ℤ) := by simp [bit0] lemma int.coe_nat_bit1 (n : ℕ) : (↑(bit1 n : ℕ) : ℤ) = bit1 (↑n : ℤ) := by simp [bit1, bit0] lemma int.coe_nat_bit0_mul (n : ℕ) (x : ℕ) : (↑(bit0 n * x) : ℤ) = (↑(bit0 n) : ℤ) * (↑x : ℤ) := by simp lemma int.coe_nat_bit1_mul (n : ℕ) (x : ℕ) : (↑(bit1 n * x) : ℤ) = (↑(bit1 n) : ℤ) * (↑x : ℤ) := by simp lemma int.coe_nat_one_mul (x : ℕ) : (↑(1 * x) : ℤ) = 1 * (↑x : ℤ) := by simp lemma int.coe_nat_zero_mul (x : ℕ) : (↑(0 * x) : ℤ) = 0 * (↑x : ℤ) := by simp lemma int.coe_nat_mul_bit0 (n : ℕ) (x : ℕ) : (↑(x * bit0 n) : ℤ) = (↑x : ℤ) * (↑(bit0 n) : ℤ) := by simp lemma int.coe_nat_mul_bit1 (n : ℕ) (x : ℕ) : (↑(x * bit1 n) : ℤ) = (↑x : ℤ) * (↑(bit1 n) : ℤ) := by simp lemma int.coe_nat_mul_one (x : ℕ) : (↑(x * 1) : ℤ) = (↑x : ℤ) * 1 := by simp lemma int.coe_nat_mul_zero (x : ℕ) : (↑(x * 0) : ℤ) = (↑x : ℤ) * 0 := by simp lemma nat_eq_subst {n1 n2 : ℕ} {z1 z2 : ℤ} (hn : n1 = n2) (h1 : ↑n1 = z1) (h2 : ↑n2 = z2) : z1 = z2 := by simpa [eq.symm h1, eq.symm h2, int.coe_nat_eq_coe_nat_iff] lemma nat_le_subst {n1 n2 : ℕ} {z1 z2 : ℤ} (hn : n1 ≤ n2) (h1 : ↑n1 = z1) (h2 : ↑n2 = z2) : z1 ≤ z2 := by simpa [eq.symm h1, eq.symm h2, int.coe_nat_le] lemma nat_lt_subst {n1 n2 : ℕ} {z1 z2 : ℤ} (hn : n1 < n2) (h1 : ↑n1 = z1) (h2 : ↑n2 = z2) : z1 < z2 := by simpa [eq.symm h1, eq.symm h2, int.coe_nat_lt] lemma eq_of_eq_of_eq {α} [ordered_semiring α] {a b : α} (ha : a = 0) (hb : b = 0) : a + b = 0 := by simp * lemma le_of_eq_of_le {α} [ordered_semiring α] {a b : α} (ha : a = 0) (hb : b ≤ 0) : a + b ≤ 0 := by simp * lemma lt_of_eq_of_lt {α} [ordered_semiring α] {a b : α} (ha : a = 0) (hb : b < 0) : a + b < 0 := by simp * lemma le_of_le_of_eq {α} [ordered_semiring α] {a b : α} (ha : a ≤ 0) (hb : b = 0) : a + b ≤ 0 := by simp * lemma lt_of_lt_of_eq {α} [ordered_semiring α] {a b : α} (ha : a < 0) (hb : b = 0) : a + b < 0 := by simp * lemma mul_neg {α} [ordered_ring α] {a b : α} (ha : a < 0) (hb : b > 0) : b * a < 0 := have (-b)*a > 0, from mul_pos_of_neg_of_neg (neg_neg_of_pos hb) ha, neg_of_neg_pos (by simpa) lemma mul_nonpos {α} [ordered_ring α] {a b : α} (ha : a ≤ 0) (hb : b > 0) : b * a ≤ 0 := have (-b)*a ≥ 0, from mul_nonneg_of_nonpos_of_nonpos (le_of_lt (neg_neg_of_pos hb)) ha, nonpos_of_neg_nonneg (by simp at this; exact this) lemma mul_eq {α} [ordered_semiring α] {a b : α} (ha : a = 0) (hb : b > 0) : b * a = 0 := by simp * lemma eq_of_not_lt_of_not_gt {α} [linear_order α] (a b : α) (h1 : ¬ a < b) (h2 : ¬ b < a) : a = b := le_antisymm (le_of_not_gt h2) (le_of_not_gt h1) lemma add_subst {α} [ring α] {n e1 e2 t1 t2 : α} (h1 : n * e1 = t1) (h2 : n * e2 = t2) : n * (e1 + e2) = t1 + t2 := by simp [left_distrib, *] lemma sub_subst {α} [ring α] {n e1 e2 t1 t2 : α} (h1 : n * e1 = t1) (h2 : n * e2 = t2) : n * (e1 - e2) = t1 - t2 := by simp [left_distrib, *] lemma neg_subst {α} [ring α] {n e t : α} (h1 : n * e = t) : n * (-e) = -t := by simp * private meta def apnn : tactic unit := `[norm_num] lemma mul_subst {α} [comm_ring α] {n1 n2 k e1 e2 t1 t2 : α} (h1 : n1 * e1 = t1) (h2 : n2 * e2 = t2) (h3 : n1*n2 = k . apnn) : k * (e1 * e2) = t1 * t2 := have h3 : n1 * n2 = k, from h3, by rw [←h3, mul_comm n1, mul_assoc n2, ←mul_assoc n1, h1, ←mul_assoc n2, mul_comm n2, mul_assoc, h2] -- OUCH lemma div_subst {α} [field α] {n1 n2 k e1 e2 t1 : α} (h1 : n1 * e1 = t1) (h2 : n2 / e2 = 1) (h3 : n1*n2 = k) : k * (e1 / e2) = t1 := by rw [←h3, mul_assoc, mul_div_comm, h2, ←mul_assoc, h1, mul_comm, one_mul] end lemmas section datatypes @[derive decidable_eq] inductive ineq | eq | le | lt open ineq def ineq.max : ineq → ineq → ineq | eq a := a | le a := a | lt a := lt def ineq.is_lt : ineq → ineq → bool | eq le := tt | eq lt := tt | le lt := tt | _ _ := ff def ineq.to_string : ineq → string | eq := "=" | le := "≤" | lt := "<" instance : has_to_string ineq := ⟨ineq.to_string⟩ /-- The main datatype for FM elimination. Variables are represented by natural numbers, each of which has an integer coefficient. Index 0 is reserved for constants, i.e. `coeffs.find 0` is the coefficient of 1. The represented term is coeffs.keys.sum (λ i, coeffs.find i * Var[i]). str determines the direction of the comparison -- is it < 0, ≤ 0, or = 0? -/ meta structure comp := (str : ineq) (coeffs : rb_map ℕ int) meta instance : inhabited comp := ⟨⟨ineq.eq, mk_rb_map⟩⟩ meta inductive comp_source | assump : ℕ → comp_source | add : comp_source → comp_source → comp_source | scale : ℕ → comp_source → comp_source meta def comp_source.flatten : comp_source → rb_map ℕ ℕ | (comp_source.assump n) := mk_rb_map.insert n 1 | (comp_source.add c1 c2) := (comp_source.flatten c1).add (comp_source.flatten c2) | (comp_source.scale n c) := (comp_source.flatten c).map (λ v, v * n) meta def comp_source.to_string : comp_source → string | (comp_source.assump e) := to_string e | (comp_source.add c1 c2) := comp_source.to_string c1 ++ " + " ++ comp_source.to_string c2 | (comp_source.scale n c) := to_string n ++ " * " ++ comp_source.to_string c meta instance comp_source.has_to_format : has_to_format comp_source := ⟨λ a, comp_source.to_string a⟩ meta structure pcomp := (c : comp) (src : comp_source) meta def map_lt (m1 m2 : rb_map ℕ int) : bool := list.lex (prod.lex (<) (<)) m1.to_list m2.to_list -- make more efficient meta def comp.lt (c1 c2 : comp) : bool := (c1.str.is_lt c2.str) || (c1.str = c2.str) && map_lt c1.coeffs c2.coeffs meta instance comp.has_lt : has_lt comp := ⟨λ a b, comp.lt a b⟩ meta instance pcomp.has_lt : has_lt pcomp := ⟨λ p1 p2, p1.c < p2.c⟩ meta instance pcomp.has_lt_dec : decidable_rel ((<) : pcomp → pcomp → Prop) := by apply_instance meta def comp.coeff_of (c : comp) (a : ℕ) : ℤ := c.coeffs.zfind a meta def comp.scale (c : comp) (n : ℕ) : comp := { c with coeffs := c.coeffs.map ((*) (n : ℤ)) } meta def comp.add (c1 c2 : comp) : comp := ⟨c1.str.max c2.str, c1.coeffs.add c2.coeffs⟩ meta def pcomp.scale (c : pcomp) (n : ℕ) : pcomp := ⟨c.c.scale n, comp_source.scale n c.src⟩ meta def pcomp.add (c1 c2 : pcomp) : pcomp := ⟨c1.c.add c2.c, comp_source.add c1.src c2.src⟩ meta instance pcomp.to_format : has_to_format pcomp := ⟨λ p, to_fmt p.c.coeffs ++ to_string p.c.str ++ "0"⟩ meta instance comp.to_format : has_to_format comp := ⟨λ p, to_fmt p.coeffs⟩ end datatypes section fm_elim /-- If c1 and c2 both contain variable a with opposite coefficients, produces v1, v2, and c such that a has been cancelled in c := v1*c1 + v2*c2 -/ meta def elim_var (c1 c2 : comp) (a : ℕ) : option (ℕ × ℕ × comp) := let v1 := c1.coeff_of a, v2 := c2.coeff_of a in if v1 * v2 < 0 then let vlcm := nat.lcm v1.nat_abs v2.nat_abs, v1' := vlcm / v1.nat_abs, v2' := vlcm / v2.nat_abs in some ⟨v1', v2', comp.add (c1.scale v1') (c2.scale v2')⟩ else none meta def pelim_var (p1 p2 : pcomp) (a : ℕ) : option pcomp := do (n1, n2, c) ← elim_var p1.c p2.c a, return ⟨c, comp_source.add (p1.src.scale n1) (p2.src.scale n2)⟩ meta def comp.is_contr (c : comp) : bool := c.coeffs.empty ∧ c.str = ineq.lt meta def pcomp.is_contr (p : pcomp) : bool := p.c.is_contr meta def elim_with_set (a : ℕ) (p : pcomp) (comps : rb_set pcomp) : rb_set pcomp := if ¬ p.c.coeffs.contains a then mk_rb_set.insert p else comps.fold mk_rb_set $ λ pc s, match pelim_var p pc a with | some pc := s.insert pc | none := s end /-- The state for the elimination monad. vars: the set of variables present in comps comps: a set of comparisons inputs: a set of pairs of exprs (t, pf), where t is a term and pf is a proof that t {<, ≤, =} 0, indexed by ℕ. has_false: stores a pcomp of 0 < 0 if one has been found TODO: is it more efficient to store comps as a list, to avoid comparisons? -/ meta structure linarith_structure := (vars : rb_set ℕ) (comps : rb_set pcomp) @[reducible] meta def linarith_monad := state_t linarith_structure (except_t pcomp id) meta instance : monad linarith_monad := state_t.monad meta instance : monad_except pcomp linarith_monad := state_t.monad_except pcomp meta def get_vars : linarith_monad (rb_set ℕ) := linarith_structure.vars <$> get meta def get_var_list : linarith_monad (list ℕ) := rb_set.to_list <$> get_vars meta def get_comps : linarith_monad (rb_set pcomp) := linarith_structure.comps <$> get meta def validate : linarith_monad unit := do ⟨_, comps⟩ ← get, match comps.to_list.find (λ p : pcomp, p.is_contr) with | none := return () | some c := throw c end meta def update (vars : rb_set ℕ) (comps : rb_set pcomp) : linarith_monad unit := state_t.put ⟨vars, comps⟩ >> validate meta def monad.elim_var (a : ℕ) : linarith_monad unit := do vs ← get_vars, when (vs.contains a) $ do comps ← get_comps, let cs' := comps.fold mk_rb_set (λ p s, s.union (elim_with_set a p comps)), update (vs.erase a) cs' meta def elim_all_vars : linarith_monad unit := get_var_list >>= list.mmap' monad.elim_var end fm_elim section parse open ineq tactic meta def map_of_expr_mul_aux (c1 c2 : rb_map ℕ ℤ) : option (rb_map ℕ ℤ) := match c1.keys, c2.keys with | [0], _ := some $ c2.scale (c1.zfind 0) | _, [0] := some $ c1.scale (c2.zfind 0) | [], _ := some mk_rb_map | _, [] := some mk_rb_map | _, _ := none end meta def list.mfind {α} (tac : α → tactic unit) : list α → tactic α | [] := failed | (h::t) := tac h >> return h <|> list.mfind t meta def rb_map.find_defeq (red : transparency) {v} (m : expr_map v) (e : expr) : tactic v := prod.snd <$> list.mfind (λ p, is_def_eq e p.1 red) m.to_list /-- Turns an expression into a map from ℕ to ℤ, for use in a comp object. The expr_map ℕ argument identifies which expressions have already been assigned numbers. Returns a new map. -/ meta def map_of_expr (red : transparency) : expr_map ℕ → expr → tactic (expr_map ℕ × rb_map ℕ ℤ) | m e@`(%%e1 * %%e2) := (do (m', comp1) ← map_of_expr m e1, (m', comp2) ← map_of_expr m' e2, mp ← map_of_expr_mul_aux comp1 comp2, return (m', mp)) <|> (do k ← rb_map.find_defeq red m e, return (m, mk_rb_map.insert k 1)) <|> (let n := m.size + 1 in return (m.insert e n, mk_rb_map.insert n 1)) | m `(%%e1 + %%e2) := do (m', comp1) ← map_of_expr m e1, (m', comp2) ← map_of_expr m' e2, return (m', comp1.add comp2) | m `(%%e1 - %%e2) := do (m', comp1) ← map_of_expr m e1, (m', comp2) ← map_of_expr m' e2, return (m', comp1.add (comp2.scale (-1))) | m `(-%%e) := do (m', comp) ← map_of_expr m e, return (m', comp.scale (-1)) | m e := match e.to_int with | some 0 := return ⟨m, mk_rb_map⟩ | some z := return ⟨m, mk_rb_map.insert 0 z⟩ | none := (do k ← rb_map.find_defeq red m e, return (m, mk_rb_map.insert k 1)) <|> (let n := m.size + 1 in return (m.insert e n, mk_rb_map.insert n 1)) end meta def parse_into_comp_and_expr : expr → option (ineq × expr) | `(%%e < 0) := (ineq.lt, e) | `(%%e ≤ 0) := (ineq.le, e) | `(%%e = 0) := (ineq.eq, e) | _ := none meta def to_comp (red : transparency) (e : expr) (m : expr_map ℕ) : tactic (comp × expr_map ℕ) := do (iq, e) ← parse_into_comp_and_expr e, (m', comp') ← map_of_expr red m e, return ⟨⟨iq, comp'⟩, m'⟩ meta def to_comp_fold (red : transparency) : expr_map ℕ → list expr → tactic (list (option comp) × expr_map ℕ) | m [] := return ([], m) | m (h::t) := (do (c, m') ← to_comp red h m, (l, mp) ← to_comp_fold m' t, return (c::l, mp)) <|> (do (l, mp) ← to_comp_fold m t, return (none::l, mp)) /-- Takes a list of proofs of props of the form t {<, ≤, =} 0, and creates a linarith_structure. -/ meta def mk_linarith_structure (red : transparency) (l : list expr) : tactic (linarith_structure × rb_map ℕ (expr × expr)) := do pftps ← l.mmap infer_type, (l', map) ← to_comp_fold red mk_rb_map pftps, let lz := list.enum $ ((l.zip pftps).zip l').filter_map (λ ⟨a, b⟩, prod.mk a <$> b), let prmap := rb_map.of_list $ lz.map (λ ⟨n, x⟩, (n, x.1)), let vars : rb_set ℕ := rb_map.set_of_list $ list.range map.size.succ, let pc : rb_set pcomp := rb_map.set_of_list $ lz.map (λ ⟨n, x⟩, ⟨x.2, comp_source.assump n⟩), return (⟨vars, pc⟩, prmap) meta def linarith_monad.run (red : transparency) {α} (tac : linarith_monad α) (l : list expr) : tactic ((pcomp ⊕ α) × rb_map ℕ (expr × expr)) := do (struct, inputs) ← mk_linarith_structure red l, match (state_t.run (validate >> tac) struct).run with | (except.ok (a, _)) := return (sum.inr a, inputs) | (except.error contr) := return (sum.inl contr, inputs) end end parse section prove open ineq tactic meta def get_rel_sides : expr → tactic (expr × expr) | `(%%a < %%b) := return (a, b) | `(%%a ≤ %%b) := return (a, b) | `(%%a = %%b) := return (a, b) | `(%%a ≥ %%b) := return (a, b) | `(%%a > %%b) := return (a, b) | _ := failed meta def mul_expr (n : ℕ) (e : expr) : pexpr := if n = 1 then ``(%%e) else ``(%%(nat.to_pexpr n) * %%e) meta def add_exprs_aux : pexpr → list pexpr → pexpr | p [] := p | p [a] := ``(%%p + %%a) | p (h::t) := add_exprs_aux ``(%%p + %%h) t meta def add_exprs : list pexpr → pexpr | [] := ``(0) | (h::t) := add_exprs_aux h t meta def find_contr (m : rb_set pcomp) : option pcomp := m.keys.find (λ p, p.c.is_contr) meta def ineq_const_mul_nm : ineq → name | lt := ``mul_neg | le := ``mul_nonpos | eq := ``mul_eq meta def ineq_const_nm : ineq → ineq → (name × ineq) | eq eq := (``eq_of_eq_of_eq, eq) | eq le := (``le_of_eq_of_le, le) | eq lt := (``lt_of_eq_of_lt, lt) | le eq := (``le_of_le_of_eq, le) | le le := (`add_nonpos, le) | le lt := (`add_neg_of_nonpos_of_neg, lt) | lt eq := (``lt_of_lt_of_eq, lt) | lt le := (`add_neg_of_neg_of_nonpos, lt) | lt lt := (`add_neg, lt) meta def mk_single_comp_zero_pf (c : ℕ) (h : expr) : tactic (ineq × expr) := do tp ← infer_type h, some (iq, e) ← return $ parse_into_comp_and_expr tp, if c = 0 then do e' ← mk_app ``zero_mul [e], return (eq, e') else if c = 1 then return (iq, h) else do nm ← resolve_name (ineq_const_mul_nm iq), tp ← (prod.snd <$> (infer_type h >>= get_rel_sides)) >>= infer_type, cpos ← to_expr ``((%%c.to_pexpr : %%tp) > 0), (_, ex) ← solve_aux cpos `[norm_num, done], -- e' ← mk_app (ineq_const_mul_nm iq) [h, ex], -- this takes many seconds longer in some examples! why? e' ← to_expr ``(%%nm %%h %%ex) ff, return (iq, e') meta def mk_lt_zero_pf_aux (c : ineq) (pf npf : expr) (coeff : ℕ) : tactic (ineq × expr) := do (iq, h') ← mk_single_comp_zero_pf coeff npf, let (nm, niq) := ineq_const_nm c iq, n ← resolve_name nm, e' ← to_expr ``(%%n %%pf %%h'), return (niq, e') /-- Takes a list of coefficients [c] and list of expressions, of equal length. Each expression is a proof of a prop of the form t {<, ≤, =} 0. Produces a proof that the sum of (c*t) {<, ≤, =} 0, where the comp is as strong as possible. -/ meta def mk_lt_zero_pf : list ℕ → list expr → tactic expr | _ [] := fail "no linear hypotheses found" | [c] [h] := prod.snd <$> mk_single_comp_zero_pf c h | (c::ct) (h::t) := do (iq, h') ← mk_single_comp_zero_pf c h, prod.snd <$> (ct.zip t).mfoldl (λ pr ce, mk_lt_zero_pf_aux pr.1 pr.2 ce.2 ce.1) (iq, h') | _ _ := fail "not enough args to mk_lt_zero_pf" meta def term_of_ineq_prf (prf : expr) : tactic expr := do (lhs, _) ← infer_type prf >>= get_rel_sides, return lhs meta structure linarith_config := (discharger : tactic unit := `[ring]) (restrict_type : option Type := none) (restrict_type_reflect : reflected restrict_type . apply_instance) (exfalso : bool := tt) (transparency : transparency := reducible) meta def ineq_pf_tp (pf : expr) : tactic expr := do (_, z) ← infer_type pf >>= get_rel_sides, infer_type z meta def mk_neg_one_lt_zero_pf (tp : expr) : tactic expr := to_expr ``((neg_neg_of_pos zero_lt_one : -1 < (0 : %%tp))) /-- Assumes e is a proof that t = 0. Creates a proof that -t = 0. -/ meta def mk_neg_eq_zero_pf (e : expr) : tactic expr := to_expr ``(neg_eq_zero.mpr %%e) meta def add_neg_eq_pfs : list expr → tactic (list expr) | [] := return [] | (h::t) := do some (iq, tp) ← parse_into_comp_and_expr <$> infer_type h, match iq with | ineq.eq := do nep ← mk_neg_eq_zero_pf h, tl ← add_neg_eq_pfs t, return $ h::nep::tl | _ := list.cons h <$> add_neg_eq_pfs t end /-- Takes a list of proofs of propositions of the form t {<, ≤, =} 0, and tries to prove the goal `false`. -/ meta def prove_false_by_linarith1 (cfg : linarith_config) : list expr → tactic unit | [] := fail "no args to linarith" | l@(h::t) := do l' ← add_neg_eq_pfs l, hz ← ineq_pf_tp h >>= mk_neg_one_lt_zero_pf, (sum.inl contr, inputs) ← elim_all_vars.run cfg.transparency (hz::l') | fail "linarith failed to find a contradiction", let coeffs := inputs.keys.map (λ k, (contr.src.flatten.ifind k)), let pfs : list expr := inputs.keys.map (λ k, (inputs.ifind k).1), let zip := (coeffs.zip pfs).filter (λ pr, pr.1 ≠ 0), let (coeffs, pfs) := zip.unzip, mls ← zip.mmap (λ pr, do e ← term_of_ineq_prf pr.2, return (mul_expr pr.1 e)), sm ← to_expr $ add_exprs mls, tgt ← to_expr ``(%%sm = 0), (a, b) ← solve_aux tgt (cfg.discharger >> done), pf ← mk_lt_zero_pf coeffs pfs, pftp ← infer_type pf, (_, nep, _) ← rewrite_core b pftp, pf' ← mk_eq_mp nep pf, mk_app `lt_irrefl [pf'] >>= exact end prove section normalize open tactic set_option eqn_compiler.max_steps 50000 meta def rem_neg (prf : expr) : expr → tactic expr | `(_ ≤ _) := to_expr ``(lt_of_not_ge %%prf) | `(_ < _) := to_expr ``(le_of_not_gt %%prf) | `(_ > _) := to_expr ``(le_of_not_gt %%prf) | `(_ ≥ _) := to_expr ``(lt_of_not_ge %%prf) | e := failed meta def rearr_comp : expr → expr → tactic expr | prf `(%%a ≤ 0) := return prf | prf `(%%a < 0) := return prf | prf `(%%a = 0) := return prf | prf `(%%a ≥ 0) := to_expr ``(neg_nonpos.mpr %%prf) | prf `(%%a > 0) := to_expr ``(neg_neg_of_pos %%prf) | prf `(0 ≥ %%a) := to_expr ``(show %%a ≤ 0, from %%prf) | prf `(0 > %%a) := to_expr ``(show %%a < 0, from %%prf) | prf `(0 = %%a) := to_expr ``(eq.symm %%prf) | prf `(0 ≤ %%a) := to_expr ``(neg_nonpos.mpr %%prf) | prf `(0 < %%a) := to_expr ``(neg_neg_of_pos %%prf) | prf `(%%a ≤ %%b) := to_expr ``(sub_nonpos.mpr %%prf) | prf `(%%a < %%b) := to_expr ``(sub_neg_of_lt %%prf) | prf `(%%a = %%b) := to_expr ``(sub_eq_zero.mpr %%prf) | prf `(%%a > %%b) := to_expr ``(sub_neg_of_lt %%prf) | prf `(%%a ≥ %%b) := to_expr ``(sub_nonpos.mpr %%prf) | prf `(¬ %%t) := do nprf ← rem_neg prf t, tp ← infer_type nprf, rearr_comp nprf tp | prf _ := fail "couldn't rearrange comp" meta def is_numeric : expr → option ℚ | `(%%e1 + %%e2) := (+) <$> is_numeric e1 <*> is_numeric e2 | `(%%e1 - %%e2) := has_sub.sub <$> is_numeric e1 <*> is_numeric e2 | `(%%e1 * %%e2) := (*) <$> is_numeric e1 <*> is_numeric e2 | `(%%e1 / %%e2) := (/) <$> is_numeric e1 <*> is_numeric e2 | `(-%%e) := rat.neg <$> is_numeric e | e := e.to_rat inductive {u} tree (α : Type u) : Type u | nil {} : tree | node : α → tree → tree → tree def tree.repr {α} [has_repr α] : tree α → string | tree.nil := "nil" | (tree.node a t1 t2) := "tree.node " ++ repr a ++ " (" ++ tree.repr t1 ++ ") (" ++ tree.repr t2 ++ ")" instance {α} [has_repr α] : has_repr (tree α) := ⟨tree.repr⟩ meta def find_cancel_factor : expr → ℕ × tree ℕ | `(%%e1 + %%e2) := let (v1, t1) := find_cancel_factor e1, (v2, t2) := find_cancel_factor e2, lcm := v1.lcm v2 in (lcm, tree.node lcm t1 t2) | `(%%e1 - %%e2) := let (v1, t1) := find_cancel_factor e1, (v2, t2) := find_cancel_factor e2, lcm := v1.lcm v2 in (lcm, tree.node lcm t1 t2) | `(%%e1 * %%e2) := match is_numeric e1, is_numeric e2 with | none, none := (1, tree.node 1 tree.nil tree.nil) | _, _ := let (v1, t1) := find_cancel_factor e1, (v2, t2) := find_cancel_factor e2, pd := v1*v2 in (pd, tree.node pd t1 t2) end | `(%%e1 / %%e2) := match is_numeric e2 with | some q := let (v1, t1) := find_cancel_factor e1, n := v1.lcm q.num.nat_abs in (n, tree.node n t1 (tree.node q.num.nat_abs tree.nil tree.nil)) | none := (1, tree.node 1 tree.nil tree.nil) end | `(-%%e) := find_cancel_factor e | _ := (1, tree.node 1 tree.nil tree.nil) open tree meta def mk_prod_prf : ℕ → tree ℕ → expr → tactic expr | v (node _ lhs rhs) `(%%e1 + %%e2) := do v1 ← mk_prod_prf v lhs e1, v2 ← mk_prod_prf v rhs e2, mk_app ``add_subst [v1, v2] | v (node _ lhs rhs) `(%%e1 - %%e2) := do v1 ← mk_prod_prf v lhs e1, v2 ← mk_prod_prf v rhs e2, mk_app ``sub_subst [v1, v2] | v (node n lhs@(node ln _ _) rhs) `(%%e1 * %%e2) := do tp ← infer_type e1, v1 ← mk_prod_prf ln lhs e1, v2 ← mk_prod_prf (v/ln) rhs e2, ln' ← tp.of_nat ln, vln' ← tp.of_nat (v/ln), v' ← tp.of_nat v, ntp ← to_expr ``(%%ln' * %%vln' = %%v'), (_, npf) ← solve_aux ntp `[norm_num, done], mk_app ``mul_subst [v1, v2, npf] | v (node n lhs rhs@(node rn _ _)) `(%%e1 / %%e2) := do tp ← infer_type e1, v1 ← mk_prod_prf (v/rn) lhs e1, rn' ← tp.of_nat rn, vrn' ← tp.of_nat (v/rn), n' ← tp.of_nat n, v' ← tp.of_nat v, ntp ← to_expr ``(%%rn' / %%e2 = 1), (_, npf) ← solve_aux ntp `[norm_num, done], ntp2 ← to_expr ``(%%vrn' * %%n' = %%v'), (_, npf2) ← solve_aux ntp2 `[norm_num, done], mk_app ``div_subst [v1, npf, npf2] | v t `(-%%e) := do v' ← mk_prod_prf v t e, mk_app ``neg_subst [v'] | v _ e := do tp ← infer_type e, v' ← tp.of_nat v, e' ← to_expr ``(%%v' * %%e), mk_app `eq.refl [e'] /-- e is a term with rational division. produces a natural number n and a proof that n*e = e', where e' has no division. -/ meta def kill_factors (e : expr) : tactic (ℕ × expr) := let (n, t) := find_cancel_factor e in do e' ← mk_prod_prf n t e, return (n, e') open expr meta def expr_contains (n : name) : expr → bool | (const nm _) := nm = n | (lam _ _ _ bd) := expr_contains bd | (pi _ _ _ bd) := expr_contains bd | (app e1 e2) := expr_contains e1 || expr_contains e2 | _ := ff lemma sub_into_lt {α} [ordered_semiring α] {a b : α} (he : a = b) (hl : a ≤ 0) : b ≤ 0 := by rwa he at hl meta def norm_hyp_aux (h' lhs : expr) : tactic expr := do (v, lhs') ← kill_factors lhs, if v = 1 then return h' else do (ih, h'') ← mk_single_comp_zero_pf v h', (_, nep, _) ← infer_type h'' >>= rewrite_core lhs', mk_eq_mp nep h'' meta def norm_hyp (h : expr) : tactic expr := do htp ← infer_type h, h' ← rearr_comp h htp, some (c, lhs) ← parse_into_comp_and_expr <$> infer_type h', if expr_contains `has_div.div lhs then norm_hyp_aux h' lhs else return h' meta def get_contr_lemma_name : expr → option name | `(%%a < %%b) := return `lt_of_not_ge | `(%%a ≤ %%b) := return `le_of_not_gt | `(%%a = %%b) := return ``eq_of_not_lt_of_not_gt | `(%%a ≠ %%b) := return `not.intro | `(%%a ≥ %%b) := return `le_of_not_gt | `(%%a > %%b) := return `lt_of_not_ge | `(¬ %%a < %%b) := return `not.intro | `(¬ %%a ≤ %%b) := return `not.intro | `(¬ %%a = %%b) := return `not.intro | `(¬ %%a ≥ %%b) := return `not.intro | `(¬ %%a > %%b) := return `not.intro | _ := none -- assumes the input t is of type ℕ. Produces t' of type ℤ such that ↑t = t' and a proof of equality meta def cast_expr (e : expr) : tactic (expr × expr) := do s ← [`int.coe_nat_add, `int.coe_nat_zero, `int.coe_nat_one, ``int.coe_nat_bit0_mul, ``int.coe_nat_bit1_mul, ``int.coe_nat_zero_mul, ``int.coe_nat_one_mul, ``int.coe_nat_mul_bit0, ``int.coe_nat_mul_bit1, ``int.coe_nat_mul_zero, ``int.coe_nat_mul_one, ``int.coe_nat_bit0, ``int.coe_nat_bit1].mfoldl simp_lemmas.add_simp simp_lemmas.mk, ce ← to_expr ``(↑%%e : ℤ), simplify s [] ce {fail_if_unchanged := ff} meta def is_nat_int_coe : expr → option expr | `((↑(%%n : ℕ) : ℤ)) := some n | _ := none meta def mk_coe_nat_nonneg_prf (e : expr) : tactic expr := mk_app `int.coe_nat_nonneg [e] meta def get_nat_comps : expr → list expr | `(%%a + %%b) := (get_nat_comps a).append (get_nat_comps b) | `(%%a * %%b) := (get_nat_comps a).append (get_nat_comps b) | e := match is_nat_int_coe e with | some e' := [e'] | none := [] end meta def mk_coe_nat_nonneg_prfs (e : expr) : tactic (list expr) := (get_nat_comps e).mmap mk_coe_nat_nonneg_prf meta def mk_cast_eq_and_nonneg_prfs (pf a b : expr) (ln : name) : tactic (list expr) := do (a', prfa) ← cast_expr a, (b', prfb) ← cast_expr b, la ← mk_coe_nat_nonneg_prfs a', lb ← mk_coe_nat_nonneg_prfs b', pf' ← mk_app ln [pf, prfa, prfb], return $ pf'::(la.append lb) meta def mk_int_pfs_of_nat_pf (pf : expr) : tactic (list expr) := do tp ← infer_type pf, match tp with | `(%%a = %%b) := mk_cast_eq_and_nonneg_prfs pf a b ``nat_eq_subst | `(%%a ≤ %%b) := mk_cast_eq_and_nonneg_prfs pf a b ``nat_le_subst | `(%%a < %%b) := mk_cast_eq_and_nonneg_prfs pf a b ``nat_lt_subst | `(%%a ≥ %%b) := mk_cast_eq_and_nonneg_prfs pf b a ``nat_le_subst | `(%%a > %%b) := mk_cast_eq_and_nonneg_prfs pf b a ``nat_lt_subst | `(¬ %%a ≤ %%b) := do pf' ← mk_app ``lt_of_not_ge [pf], mk_cast_eq_and_nonneg_prfs pf' b a ``nat_lt_subst | `(¬ %%a < %%b) := do pf' ← mk_app ``le_of_not_gt [pf], mk_cast_eq_and_nonneg_prfs pf' b a ``nat_le_subst | `(¬ %%a ≥ %%b) := do pf' ← mk_app ``lt_of_not_ge [pf], mk_cast_eq_and_nonneg_prfs pf' a b ``nat_lt_subst | `(¬ %%a > %%b) := do pf' ← mk_app ``le_of_not_gt [pf], mk_cast_eq_and_nonneg_prfs pf' a b ``nat_le_subst | _ := fail "mk_int_pfs_of_nat_pf failed: proof is not an inequality" end meta def mk_non_strict_int_pf_of_strict_int_pf (pf : expr) : tactic expr := do tp ← infer_type pf, match tp with | `(%%a < %%b) := to_expr ``(@cast (%%a < %%b) (%%a + 1 ≤ %%b) (by refl) %%pf) | `(%%a > %%b) := to_expr ``(@cast (%%a > %%b) (%%a ≥ %%b + 1) (by refl) %%pf) | `(¬ %%a ≤ %%b) := to_expr ``(@cast (%%a > %%b) (%%a ≥ %%b + 1) (by refl) (lt_of_not_ge %%pf)) | `(¬ %%a ≥ %%b) := to_expr ``(@cast (%%a < %%b) (%%a + 1 ≤ %%b) (by refl) (lt_of_not_ge %%pf)) | _ := fail "mk_non_strict_int_pf_of_strict_int_pf failed: proof is not an inequality" end meta def guard_is_nat_prop : expr → tactic unit | `(%%a = _) := infer_type a >>= unify `(ℕ) | `(%%a ≤ _) := infer_type a >>= unify `(ℕ) | `(%%a < _) := infer_type a >>= unify `(ℕ) | `(%%a ≥ _) := infer_type a >>= unify `(ℕ) | `(%%a > _) := infer_type a >>= unify `(ℕ) | `(¬ %%p) := guard_is_nat_prop p | _ := failed meta def guard_is_strict_int_prop : expr → tactic unit | `(%%a < _) := infer_type a >>= unify `(ℤ) | `(%%a > _) := infer_type a >>= unify `(ℤ) | `(¬ %%a ≤ _) := infer_type a >>= unify `(ℤ) | `(¬ %%a ≥ _) := infer_type a >>= unify `(ℤ) | _ := failed meta def replace_nat_pfs : list expr → tactic (list expr) | [] := return [] | (h::t) := (do infer_type h >>= guard_is_nat_prop, ls ← mk_int_pfs_of_nat_pf h, list.append ls <$> replace_nat_pfs t) <|> list.cons h <$> replace_nat_pfs t meta def replace_strict_int_pfs : list expr → tactic (list expr) | [] := return [] | (h::t) := (do infer_type h >>= guard_is_strict_int_prop, l ← mk_non_strict_int_pf_of_strict_int_pf h, list.cons l <$> replace_strict_int_pfs t) <|> list.cons h <$> replace_strict_int_pfs t meta def partition_by_type_aux : rb_lmap expr expr → list expr → tactic (rb_lmap expr expr) | m [] := return m | m (h::t) := do tp ← ineq_pf_tp h, partition_by_type_aux (m.insert tp h) t meta def partition_by_type (l : list expr) : tactic (rb_lmap expr expr) := partition_by_type_aux mk_rb_map l private meta def try_linarith_on_lists (cfg : linarith_config) (ls : list (list expr)) : tactic unit := (first $ ls.map $ prove_false_by_linarith1 cfg) <|> fail "linarith failed" /-- Takes a list of proofs of propositions. Filters out the proofs of linear (in)equalities, and tries to use them to prove `false`. If pref_type is given, starts by working over this type -/ meta def prove_false_by_linarith (cfg : linarith_config) (pref_type : option expr) (l : list expr) : tactic unit := do l' ← replace_nat_pfs l, l'' ← replace_strict_int_pfs l', ls ← list.reduce_option <$> l''.mmap (λ h, (do s ← norm_hyp h, return (some s)) <|> return none) >>= partition_by_type, pref_type ← (unify pref_type.iget `(ℕ) >> return (some `(ℤ) : option expr)) <|> return pref_type, match cfg.restrict_type, ls.values, pref_type with | some rtp, _, _ := do m ← mk_mvar, unify `(some %%m : option Type) cfg.restrict_type_reflect, m ← instantiate_mvars m, prove_false_by_linarith1 cfg (ls.ifind m) | none, [ls'], _ := prove_false_by_linarith1 cfg ls' | none, ls', none := try_linarith_on_lists cfg ls' | none, _, (some t) := prove_false_by_linarith1 cfg (ls.ifind t) <|> try_linarith_on_lists cfg (ls.erase t).values end end normalize end linarith section open tactic linarith open lean lean.parser interactive tactic interactive.types local postfix `?`:9001 := optional local postfix *:9001 := many meta def linarith.elab_arg_list : option (list pexpr) → tactic (list expr) | none := return [] | (some l) := l.mmap i_to_expr meta def linarith.preferred_type_of_goal : option expr → tactic (option expr) | none := return none | (some e) := some <$> ineq_pf_tp e /-- linarith.interactive_aux cfg o_goal restrict_hyps args: * cfg is a linarith_config object * o_goal : option expr is the local constant corresponding to the former goal, if there was one * restrict_hyps : bool is tt if `linarith only [...]` was used * args : option (list pexpr) is the optional list of arguments in `linarith [...]` -/ meta def linarith.interactive_aux (cfg : linarith_config) : option expr → bool → option (list pexpr) → tactic unit | none tt none := fail "linarith only called with no arguments" | none tt (some l) := l.mmap i_to_expr >>= prove_false_by_linarith cfg none | (some e) tt l := do tp ← ineq_pf_tp e, list.cons e <$> linarith.elab_arg_list l >>= prove_false_by_linarith cfg (some tp) | oe ff l := do otp ← linarith.preferred_type_of_goal oe, list.append <$> local_context <*> (list.filter (λ a, bnot $ expr.is_local_constant a) <$> linarith.elab_arg_list l) >>= prove_false_by_linarith cfg otp /-- Tries to prove a goal of `false` by linear arithmetic on hypotheses. If the goal is a linear (in)equality, tries to prove it by contradiction. If the goal is not `false` or an inequality, applies `exfalso` and tries linarith on the hypotheses. `linarith` will use all relevant hypotheses in the local context. `linarith [t1, t2, t3]` will add proof terms t1, t2, t3 to the local context. `linarith only [h1, h2, h3, t1, t2, t3]` will use only the goal (if relevant), local hypotheses h1, h2, h3, and proofs t1, t2, t3. It will ignore the rest of the local context. `linarith!` will use a stronger reducibility setting to identify atoms. Config options: `linarith {exfalso := ff}` will fail on a goal that is neither an inequality nor `false` `linarith {restrict_type := T}` will run only on hypotheses that are inequalities over `T` `linarith {discharger := tac}` will use `tac` instead of `ring` for normalization. Options: `ring2`, `ring SOP`, `simp` -/ meta def tactic.interactive.linarith (red : parse ((tk "!")?)) (restr : parse ((tk "only")?)) (hyps : parse pexpr_list?) (cfg : linarith_config := {}) : tactic unit := let cfg := if red.is_some then {cfg with transparency := semireducible, discharger := `[ring!]} else cfg in do t ← target, match get_contr_lemma_name t with | some nm := seq (applyc nm) $ do t ← intro1, linarith.interactive_aux cfg (some t) restr.is_some hyps | none := if cfg.exfalso then exfalso >> linarith.interactive_aux cfg none restr.is_some hyps else fail "linarith failed: target type is not an inequality." end end
9df63dd49a118d5e6a80fdf6077f8f97c236c412
6dc0c8ce7a76229dd81e73ed4474f15f88a9e294
/src/Lean/Elab/Deriving/FromToJson.lean
ddd56a08c4ea72278e4ae2b15d4e423a289d32d7
[ "Apache-2.0" ]
permissive
williamdemeo/lean4
72161c58fe65c3ad955d6a3050bb7d37c04c0d54
6d00fcf1d6d873e195f9220c668ef9c58e9c4a35
refs/heads/master
1,678,305,356,877
1,614,708,995,000
1,614,708,995,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
2,641
lean
/- Copyright (c) 2020 Sebastian Ullrich. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Sebastian Ullrich -/ import Lean.Meta.Transform import Lean.Elab.Deriving.Basic import Lean.Elab.Deriving.Util import Lean.Data.Json.FromToJson namespace Lean.Elab.Deriving.FromToJson open Lean.Elab.Command open Lean.Json def mkJsonField (n : Name) : Bool × Syntax := let s := n.toString let s₁ := s.dropRightWhile (· == '?') (s != s₁, Syntax.mkStrLit s₁) def mkToJsonInstanceHandler (declNames : Array Name) : CommandElabM Bool := do if declNames.size == 1 && (← isStructure (← getEnv) declNames[0]) then let cmds ← liftTermElabM none <| do let ctx ← mkContext "toJson" declNames[0] let header ← mkHeader ctx ``ToJson 1 ctx.typeInfos[0] let fields := getStructureFieldsFlattened (← getEnv) declNames[0] (includeSubobjectFields := false) let fields : Array Syntax ← fields.mapM fun field => do let (isOptField, nm) ← mkJsonField field if isOptField then `(opt $nm $(mkIdent <| header.targetNames[0] ++ field)) else `([($nm, toJson $(mkIdent <| header.targetNames[0] ++ field))]) let cmd ← `(private def $(mkIdent ctx.auxFunNames[0]):ident $header.binders:explicitBinder* := mkObj <| List.join [$fields,*]) return #[cmd] ++ (← mkInstanceCmds ctx ``ToJson declNames) cmds.forM elabCommand return true else return false def mkFromJsonInstanceHandler (declNames : Array Name) : CommandElabM Bool := do if declNames.size == 1 && (← isStructure (← getEnv) declNames[0]) then let cmds ← liftTermElabM none <| do let ctx ← mkContext "fromJson" declNames[0] let header ← mkHeader ctx ``FromJson 0 ctx.typeInfos[0] let fields := getStructureFieldsFlattened (← getEnv) declNames[0] (includeSubobjectFields := false) let jsonFields := fields.map (Prod.snd ∘ mkJsonField) let fields := fields.map mkIdent let cmd ← `(private def $(mkIdent ctx.auxFunNames[0]):ident $header.binders:explicitBinder* (j : Json) : Option $(← mkInductiveApp ctx.typeInfos[0] header.argNames) := do $[let $fields:ident ← getObjValAs? j _ $jsonFields]* return { $[$fields:ident := $(id fields)]* }) return #[cmd] ++ (← mkInstanceCmds ctx ``FromJson declNames) cmds.forM elabCommand return true else return false builtin_initialize registerBuiltinDerivingHandler ``ToJson mkToJsonInstanceHandler registerBuiltinDerivingHandler ``FromJson mkFromJsonInstanceHandler end Lean.Elab.Deriving.FromToJson
d54d5a1ed68ba5ac8cc9f8eb8d822f039df46c6c
737dc4b96c97368cb66b925eeea3ab633ec3d702
/stage0/src/Lean/Meta/SynthInstance.lean
788d630804c5b5f621a59ff608d78173f8912fd4
[ "Apache-2.0" ]
permissive
Bioye97/lean4
1ace34638efd9913dc5991443777b01a08983289
bc3900cbb9adda83eed7e6affeaade7cfd07716d
refs/heads/master
1,690,589,820,211
1,631,051,000,000
1,631,067,598,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
28,336
lean
/- Copyright (c) 2019 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Daniel Selsam, Leonardo de Moura Type class instance synthesizer using tabled resolution. -/ import Lean.Meta.Basic import Lean.Meta.Instances import Lean.Meta.LevelDefEq import Lean.Meta.AbstractMVars import Lean.Meta.WHNF import Lean.Util.Profile namespace Lean.Meta register_builtin_option synthInstance.maxHeartbeats : Nat := { defValue := 500 descr := "maximum amount of heartbeats per typeclass resolution problem. A heartbeat is number of (small) memory allocations (in thousands), 0 means no limit" } register_builtin_option synthInstance.maxSize : Nat := { defValue := 128 descr := "maximum number of instances used to construct a solution in the type class instance synthesis procedure" } namespace SynthInstance def getMaxHeartbeats (opts : Options) : Nat := synthInstance.maxHeartbeats.get opts * 1000 open Std (HashMap) builtin_initialize inferTCGoalsRLAttr : TagAttribute ← registerTagAttribute `inferTCGoalsRL "instruct type class resolution procedure to solve goals from right to left for this instance" def hasInferTCGoalsRLAttribute (env : Environment) (constName : Name) : Bool := inferTCGoalsRLAttr.hasTag env constName structure GeneratorNode where mvar : Expr key : Expr mctx : MetavarContext instances : Array Expr currInstanceIdx : Nat deriving Inhabited structure ConsumerNode where mvar : Expr key : Expr mctx : MetavarContext subgoals : List Expr size : Nat -- instance size so far deriving Inhabited inductive Waiter where | consumerNode : ConsumerNode → Waiter | root : Waiter def Waiter.isRoot : Waiter → Bool | Waiter.consumerNode _ => false | Waiter.root => true /- In tabled resolution, we creating a mapping from goals (e.g., `Coe Nat ?x`) to answers and waiters. Waiters are consumer nodes that are waiting for answers for a particular node. We implement this mapping using a `HashMap` where the keys are normalized expressions. That is, we replace assignable metavariables with auxiliary free variables of the form `_tc.<idx>`. We do not declare these free variables in any local context, and we should view them as "normalized names" for metavariables. For example, the term `f ?m ?m ?n` is normalized as `f _tc.0 _tc.0 _tc.1`. This approach is structural, and we may visit the same goal more than once if the different occurrences are just definitionally equal, but not structurally equal. Remark: a metavariable is assignable only if its depth is equal to the metavar context depth. -/ namespace MkTableKey structure State where nextIdx : Nat := 0 lmap : HashMap MVarId Level := {} emap : HashMap MVarId Expr := {} abbrev M := ReaderT MetavarContext (StateM State) partial def normLevel (u : Level) : M Level := do if !u.hasMVar then pure u else match u with | Level.succ v _ => return u.updateSucc! (← normLevel v) | Level.max v w _ => return u.updateMax! (← normLevel v) (← normLevel w) | Level.imax v w _ => return u.updateIMax! (← normLevel v) (← normLevel w) | Level.mvar mvarId _ => let mctx ← read if !mctx.isLevelAssignable mvarId then pure u else let s ← get match s.lmap.find? mvarId with | some u' => pure u' | none => let u' := mkLevelParam $ Name.mkNum `_tc s.nextIdx modify fun s => { s with nextIdx := s.nextIdx + 1, lmap := s.lmap.insert mvarId u' } pure u' | u => pure u partial def normExpr (e : Expr) : M Expr := do if !e.hasMVar then pure e else match e with | Expr.const _ us _ => return e.updateConst! (← us.mapM normLevel) | Expr.sort u _ => return e.updateSort! (← normLevel u) | Expr.app f a _ => return e.updateApp! (← normExpr f) (← normExpr a) | Expr.letE _ t v b _ => return e.updateLet! (← normExpr t) (← normExpr v) (← normExpr b) | Expr.forallE _ d b _ => return e.updateForallE! (← normExpr d) (← normExpr b) | Expr.lam _ d b _ => return e.updateLambdaE! (← normExpr d) (← normExpr b) | Expr.mdata _ b _ => return e.updateMData! (← normExpr b) | Expr.proj _ _ b _ => return e.updateProj! (← normExpr b) | Expr.mvar mvarId _ => let mctx ← read if !mctx.isExprAssignable mvarId then pure e else let s ← get match s.emap.find? mvarId with | some e' => pure e' | none => do let e' := mkFVar $ Name.mkNum `_tc s.nextIdx modify fun s => { s with nextIdx := s.nextIdx + 1, emap := s.emap.insert mvarId e' } pure e' | _ => pure e end MkTableKey /- Remark: `mkTableKey` assumes `e` does not contain assigned metavariables. -/ def mkTableKey (mctx : MetavarContext) (e : Expr) : Expr := MkTableKey.normExpr e mctx |>.run' {} structure Answer where result : AbstractMVarsResult resultType : Expr size : Nat instance : Inhabited Answer where default := { result := arbitrary, resultType := arbitrary, size := 0 } structure TableEntry where waiters : Array Waiter answers : Array Answer := #[] structure Context where maxResultSize : Nat maxHeartbeats : Nat /- Remark: the SynthInstance.State is not really an extension of `Meta.State`. The field `postponed` is not needed, and the field `mctx` is misleading since `synthInstance` methods operate over different `MetavarContext`s simultaneously. That being said, we still use `extends` because it makes it simpler to move from `M` to `MetaM`. -/ structure State where result? : Option AbstractMVarsResult := none generatorStack : Array GeneratorNode := #[] resumeStack : Array (ConsumerNode × Answer) := #[] tableEntries : HashMap Expr TableEntry := {} abbrev SynthM := ReaderT Context $ StateRefT State MetaM def checkMaxHeartbeats : SynthM Unit := do Core.checkMaxHeartbeatsCore "typeclass" `synthInstance.maxHeartbeats (← read).maxHeartbeats @[inline] def mapMetaM (f : forall {α}, MetaM α → MetaM α) {α} : SynthM α → SynthM α := monadMap @f instance : Inhabited (SynthM α) where default := fun _ _ => arbitrary /-- Return globals and locals instances that may unify with `type` -/ def getInstances (type : Expr) : MetaM (Array Expr) := do -- We must retrieve `localInstances` before we use `forallTelescopeReducing` because it will update the set of local instances let localInstances ← getLocalInstances forallTelescopeReducing type fun _ type => do let className? ← isClass? type match className? with | none => throwError "type class instance expected{indentExpr type}" | some className => let globalInstances ← getGlobalInstancesIndex let result ← globalInstances.getUnify type -- Using insertion sort because it is stable and the array `result` should be mostly sorted. -- Most instances have default priority. let result := result.insertionSort fun e₁ e₂ => e₁.priority < e₂.priority let erasedInstances ← getErasedInstances let result ← result.filterMapM fun e => match e.val with | Expr.const constName us _ => if erasedInstances.contains constName then return none else return some <| e.val.updateConst! (← us.mapM (fun _ => mkFreshLevelMVar)) | _ => panic! "global instance is not a constant" trace[Meta.synthInstance.globalInstances] "{type}, {result}" let result := localInstances.foldl (init := result) fun (result : Array Expr) linst => if linst.className == className then result.push linst.fvar else result pure result def mkGeneratorNode? (key mvar : Expr) : MetaM (Option GeneratorNode) := do let mvarType ← inferType mvar let mvarType ← instantiateMVars mvarType let instances ← getInstances mvarType if instances.isEmpty then pure none else let mctx ← getMCtx pure $ some { mvar := mvar, key := key, mctx := mctx, instances := instances, currInstanceIdx := instances.size } /-- Create a new generator node for `mvar` and add `waiter` as its waiter. `key` must be `mkTableKey mctx mvarType`. -/ def newSubgoal (mctx : MetavarContext) (key : Expr) (mvar : Expr) (waiter : Waiter) : SynthM Unit := withMCtx mctx do trace[Meta.synthInstance.newSubgoal] key match (← mkGeneratorNode? key mvar) with | none => pure () | some node => let entry : TableEntry := { waiters := #[waiter] } modify fun s => { s with generatorStack := s.generatorStack.push node, tableEntries := s.tableEntries.insert key entry } def findEntry? (key : Expr) : SynthM (Option TableEntry) := do return (← get).tableEntries.find? key def getEntry (key : Expr) : SynthM TableEntry := do match (← findEntry? key) with | none => panic! "invalid key at synthInstance" | some entry => pure entry /-- Create a `key` for the goal associated with the given metavariable. That is, we create a key for the type of the metavariable. We must instantiate assigned metavariables before we invoke `mkTableKey`. -/ def mkTableKeyFor (mctx : MetavarContext) (mvar : Expr) : SynthM Expr := withMCtx mctx do let mvarType ← inferType mvar let mvarType ← instantiateMVars mvarType return mkTableKey mctx mvarType /- See `getSubgoals` and `getSubgoalsAux` We use the parameter `j` to reduce the number of `instantiate*` invocations. It is the same approach we use at `forallTelescope` and `lambdaTelescope`. Given `getSubgoalsAux args j subgoals instVal type`, we have that `type.instantiateRevRange j args.size args` does not have loose bound variables. -/ structure SubgoalsResult where subgoals : List Expr instVal : Expr instTypeBody : Expr private partial def getSubgoalsAux (lctx : LocalContext) (localInsts : LocalInstances) (xs : Array Expr) : Array Expr → Nat → List Expr → Expr → Expr → MetaM SubgoalsResult | args, j, subgoals, instVal, Expr.forallE n d b c => do let d := d.instantiateRevRange j args.size args let mvarType ← mkForallFVars xs d let mvar ← mkFreshExprMVarAt lctx localInsts mvarType let arg := mkAppN mvar xs let instVal := mkApp instVal arg let subgoals := if c.binderInfo.isInstImplicit then mvar::subgoals else subgoals let args := args.push (mkAppN mvar xs) getSubgoalsAux lctx localInsts xs args j subgoals instVal b | args, j, subgoals, instVal, type => do let type := type.instantiateRevRange j args.size args let type ← whnf type if type.isForall then getSubgoalsAux lctx localInsts xs args args.size subgoals instVal type else pure ⟨subgoals, instVal, type⟩ /-- `getSubgoals lctx localInsts xs inst` creates the subgoals for the instance `inst`. The subgoals are in the context of the free variables `xs`, and `(lctx, localInsts)` is the local context and instances before we added the free variables to it. This extra complication is required because 1- We want all metavariables created by `synthInstance` to share the same local context. 2- We want to ensure that applications such as `mvar xs` are higher order patterns. The method `getGoals` create a new metavariable for each parameter of `inst`. For example, suppose the type of `inst` is `forall (x_1 : A_1) ... (x_n : A_n), B x_1 ... x_n`. Then, we create the metavariables `?m_i : forall xs, A_i`, and return the subset of these metavariables that are instance implicit arguments, and the expressions: - `inst (?m_1 xs) ... (?m_n xs)` (aka `instVal`) - `B (?m_1 xs) ... (?m_n xs)` -/ def getSubgoals (lctx : LocalContext) (localInsts : LocalInstances) (xs : Array Expr) (inst : Expr) : MetaM SubgoalsResult := do let instType ← inferType inst let result ← getSubgoalsAux lctx localInsts xs #[] 0 [] inst instType match inst.getAppFn with | Expr.const constName _ _ => let env ← getEnv if hasInferTCGoalsRLAttribute env constName then pure result else pure { result with subgoals := result.subgoals.reverse } | _ => pure result def tryResolveCore (mvar : Expr) (inst : Expr) : MetaM (Option (MetavarContext × List Expr)) := do let mvar ← instantiateMVars mvar if !(← hasAssignableMVar mvar) then /- The metavariable `mvar` may have been assinged when solving typing constraints. This may happen when a local instance type depends on other local instances. For example, in Mathlib, we have ``` @Submodule.setLike : {R : Type u_1} → {M : Type u_2} → [_inst_1 : Semiring R] → [_inst_2 : AddCommMonoid M] → [_inst_3 : @ModuleS R M _inst_1 _inst_2] → SetLike (@Submodule R M _inst_1 _inst_2 _inst_3) M ``` TODO: discuss what is the correct behavior here. There are other possibilities. 1) We could try to synthesize the instances `_inst_1` and `_inst_2` and check whether it is defeq to the one inferred by typing constraints. That is, we remove this `if`-statement. We discarded this one because some Mathlib theorems failed to be elaborated using it. 2) Generate an error/warning message when instances such as `Submodule.setLike` are declared, and instruct user to use `{}` binder annotation for `_inst_1` `_inst_2`. -/ return some ((← getMCtx), []) let mvarType ← inferType mvar let lctx ← getLCtx let localInsts ← getLocalInstances forallTelescopeReducing mvarType fun xs mvarTypeBody => do let ⟨subgoals, instVal, instTypeBody⟩ ← getSubgoals lctx localInsts xs inst trace[Meta.synthInstance.tryResolve] "{mvarTypeBody} =?= {instTypeBody}" if (← isDefEq mvarTypeBody instTypeBody) then let instVal ← mkLambdaFVars xs instVal if (← isDefEq mvar instVal) then trace[Meta.synthInstance.tryResolve] "success" pure (some ((← getMCtx), subgoals)) else trace[Meta.synthInstance.tryResolve] "failure assigning" pure none else trace[Meta.synthInstance.tryResolve] "failure" pure none /-- Try to synthesize metavariable `mvar` using the instance `inst`. Remark: `mctx` contains `mvar`. If it succeeds, the result is a new updated metavariable context and a new list of subgoals. A subgoal is created for each instance implicit parameter of `inst`. -/ def tryResolve (mctx : MetavarContext) (mvar : Expr) (inst : Expr) : SynthM (Option (MetavarContext × List Expr)) := traceCtx `Meta.synthInstance.tryResolve <| withMCtx mctx <| tryResolveCore mvar inst /-- Assign a precomputed answer to `mvar`. If it succeeds, the result is a new updated metavariable context and a new list of subgoals. -/ def tryAnswer (mctx : MetavarContext) (mvar : Expr) (answer : Answer) : SynthM (Option MetavarContext) := withMCtx mctx do let (_, _, val) ← openAbstractMVarsResult answer.result if (← isDefEq mvar val) then pure (some (← getMCtx)) else pure none /-- Move waiters that are waiting for the given answer to the resume stack. -/ def wakeUp (answer : Answer) : Waiter → SynthM Unit | Waiter.root => do /- Recall that we now use `ignoreLevelMVarDepth := true`. Thus, we should allow solutions containing universe metavariables, and not check `answer.result.paramNames.isEmpty`. We use `openAbstractMVarsResult` to construct the universe metavariables at the correct depth. -/ if answer.result.numMVars == 0 then modify fun s => { s with result? := answer.result } else let (_, _, answerExpr) ← openAbstractMVarsResult answer.result trace[Meta.synthInstance] "skip answer containing metavariables {answerExpr}" pure () | Waiter.consumerNode cNode => modify fun s => { s with resumeStack := s.resumeStack.push (cNode, answer) } def isNewAnswer (oldAnswers : Array Answer) (answer : Answer) : Bool := oldAnswers.all fun oldAnswer => do -- Remark: isDefEq here is too expensive. TODO: if `==` is too imprecise, add some light normalization to `resultType` at `addAnswer` -- iseq ← isDefEq oldAnswer.resultType answer.resultType; pure (!iseq) oldAnswer.resultType != answer.resultType private def mkAnswer (cNode : ConsumerNode) : MetaM Answer := withMCtx cNode.mctx do traceM `Meta.synthInstance.newAnswer do m!"size: {cNode.size}, {← inferType cNode.mvar}" let val ← instantiateMVars cNode.mvar trace[Meta.synthInstance.newAnswer] "val: {val}" let result ← abstractMVars val -- assignable metavariables become parameters let resultType ← inferType result.expr pure { result := result, resultType := resultType, size := cNode.size + 1 } /-- Create a new answer after `cNode` resolved all subgoals. That is, `cNode.subgoals == []`. And then, store it in the tabled entries map, and wakeup waiters. -/ def addAnswer (cNode : ConsumerNode) : SynthM Unit := do if cNode.size ≥ (← read).maxResultSize then traceM `Meta.synthInstance.discarded do m!"size: {cNode.size} ≥ {(← read).maxResultSize}, {← inferType cNode.mvar}" return () else let answer ← mkAnswer cNode -- Remark: `answer` does not contain assignable or assigned metavariables. let key := cNode.key let entry ← getEntry key if isNewAnswer entry.answers answer then let newEntry := { entry with answers := entry.answers.push answer } modify fun s => { s with tableEntries := s.tableEntries.insert key newEntry } entry.waiters.forM (wakeUp answer) /-- Process the next subgoal in the given consumer node. -/ def consume (cNode : ConsumerNode) : SynthM Unit := match cNode.subgoals with | [] => addAnswer cNode | mvar::_ => do let waiter := Waiter.consumerNode cNode let key ← mkTableKeyFor cNode.mctx mvar let entry? ← findEntry? key match entry? with | none => newSubgoal cNode.mctx key mvar waiter | some entry => modify fun s => { s with resumeStack := entry.answers.foldl (fun s answer => s.push (cNode, answer)) s.resumeStack, tableEntries := s.tableEntries.insert key { entry with waiters := entry.waiters.push waiter } } def getTop : SynthM GeneratorNode := do pure (← get).generatorStack.back @[inline] def modifyTop (f : GeneratorNode → GeneratorNode) : SynthM Unit := modify fun s => { s with generatorStack := s.generatorStack.modify (s.generatorStack.size - 1) f } /-- Try the next instance in the node on the top of the generator stack. -/ def generate : SynthM Unit := do let gNode ← getTop if gNode.currInstanceIdx == 0 then modify fun s => { s with generatorStack := s.generatorStack.pop } else do let key := gNode.key let idx := gNode.currInstanceIdx - 1 let inst := gNode.instances.get! idx let mctx := gNode.mctx let mvar := gNode.mvar trace[Meta.synthInstance.generate] "instance {inst}" modifyTop fun gNode => { gNode with currInstanceIdx := idx } match (← tryResolve mctx mvar inst) with | none => pure () | some (mctx, subgoals) => consume { key := key, mvar := mvar, subgoals := subgoals, mctx := mctx, size := 0 } def getNextToResume : SynthM (ConsumerNode × Answer) := do let s ← get let r := s.resumeStack.back modify fun s => { s with resumeStack := s.resumeStack.pop } pure r /-- Given `(cNode, answer)` on the top of the resume stack, continue execution by using `answer` to solve the next subgoal. -/ def resume : SynthM Unit := do let (cNode, answer) ← getNextToResume match cNode.subgoals with | [] => panic! "resume found no remaining subgoals" | mvar::rest => match (← tryAnswer cNode.mctx mvar answer) with | none => pure () | some mctx => withMCtx mctx <| traceM `Meta.synthInstance.resume do let goal ← inferType cNode.mvar let subgoal ← inferType mvar pure m!"size: {cNode.size + answer.size}, {goal} <== {subgoal}" consume { key := cNode.key, mvar := cNode.mvar, subgoals := rest, mctx := mctx, size := cNode.size + answer.size } def step : SynthM Bool := do checkMaxHeartbeats let s ← get if !s.resumeStack.isEmpty then resume pure true else if !s.generatorStack.isEmpty then generate pure true else pure false def getResult : SynthM (Option AbstractMVarsResult) := do pure (← get).result? partial def synth : SynthM (Option AbstractMVarsResult) := do if (← step) then match (← getResult) with | none => synth | some result => pure result else trace[Meta.synthInstance] "failed" pure none def main (type : Expr) (maxResultSize : Nat) : MetaM (Option AbstractMVarsResult) := withCurrHeartbeats <| traceCtx `Meta.synthInstance do trace[Meta.synthInstance] "main goal {type}" let mvar ← mkFreshExprMVar type let mctx ← getMCtx let key := mkTableKey mctx type let action : SynthM (Option AbstractMVarsResult) := do newSubgoal mctx key mvar Waiter.root synth action.run { maxResultSize := maxResultSize, maxHeartbeats := getMaxHeartbeats (← getOptions) } |>.run' {} end SynthInstance /- Type class parameters can be annotated with `outParam` annotations. Given `C a_1 ... a_n`, we replace `a_i` with a fresh metavariable `?m_i` IF `a_i` is an `outParam`. The result is type correct because we reject type class declarations IF it contains a regular parameter X that depends on an `out` parameter Y. Then, we execute type class resolution as usual. If it succeeds, and metavariables ?m_i have been assigned, we try to unify the original type `C a_1 ... a_n` witht the normalized one. -/ private def preprocess (type : Expr) : MetaM Expr := forallTelescopeReducing type fun xs type => do let type ← whnf type mkForallFVars xs type private def preprocessLevels (us : List Level) : MetaM (List Level × Bool) := do let mut r := #[] let mut modified := false for u in us do let u ← instantiateLevelMVars u if u.hasMVar then r := r.push (← mkFreshLevelMVar) modified := true else r := r.push u return (r.toList, modified) private partial def preprocessArgs (type : Expr) (i : Nat) (args : Array Expr) : MetaM (Array Expr) := do if h : i < args.size then let type ← whnf type match type with | Expr.forallE _ d b _ => do let arg := args.get ⟨i, h⟩ let arg ← if isOutParam d then mkFreshExprMVar d else pure arg let args := args.set ⟨i, h⟩ arg preprocessArgs (b.instantiate1 arg) (i+1) args | _ => throwError "type class resolution failed, insufficient number of arguments" -- TODO improve error message else return args private def preprocessOutParam (type : Expr) : MetaM Expr := forallTelescope type fun xs typeBody => do match typeBody.getAppFn with | c@(Expr.const constName us _) => let env ← getEnv if !hasOutParams env constName then return type else let args := typeBody.getAppArgs let cType ← inferType c let args ← preprocessArgs cType 0 args mkForallFVars xs (mkAppN c args) | _ => return type /- Remark: when `maxResultSize? == none`, the configuration option `synthInstance.maxResultSize` is used. Remark: we use a different option for controlling the maximum result size for coercions. -/ def synthInstance? (type : Expr) (maxResultSize? : Option Nat := none) : MetaM (Option Expr) := do profileitM Exception "typeclass inference" (← getOptions) do let opts ← getOptions let maxResultSize := maxResultSize?.getD (synthInstance.maxSize.get opts) let inputConfig ← getConfig withConfig (fun config => { config with isDefEqStuckEx := true, transparency := TransparencyMode.instances, foApprox := true, ctxApprox := true, constApprox := false, ignoreLevelMVarDepth := true }) do let type ← instantiateMVars type let type ← preprocess type let s ← get match s.cache.synthInstance.find? type with | some result => pure result | none => let result? ← withNewMCtxDepth do let normType ← preprocessOutParam type trace[Meta.synthInstance] "preprocess: {type} ==> {normType}" SynthInstance.main normType maxResultSize let resultHasUnivMVars := if let some result := result? then !result.paramNames.isEmpty else false let result? ← match result? with | none => pure none | some result => do let (_, _, result) ← openAbstractMVarsResult result trace[Meta.synthInstance] "result {result}" let resultType ← inferType result if (← withConfig (fun _ => inputConfig) <| isDefEq type resultType) then let result ← instantiateMVars result pure (some result) else trace[Meta.synthInstance] "result type{indentExpr resultType}\nis not definitionally equal to{indentExpr type}" pure none if type.hasMVar || resultHasUnivMVars then pure result? else do modify fun s => { s with cache := { s.cache with synthInstance := s.cache.synthInstance.insert type result? } } pure result? /-- Return `LOption.some r` if succeeded, `LOption.none` if it failed, and `LOption.undef` if instance cannot be synthesized right now because `type` contains metavariables. -/ def trySynthInstance (type : Expr) (maxResultSize? : Option Nat := none) : MetaM (LOption Expr) := do catchInternalId isDefEqStuckExceptionId (toLOptionM <| synthInstance? type maxResultSize?) (fun _ => pure LOption.undef) def synthInstance (type : Expr) (maxResultSize? : Option Nat := none) : MetaM Expr := catchInternalId isDefEqStuckExceptionId (do let result? ← synthInstance? type maxResultSize? match result? with | some result => pure result | none => throwError "failed to synthesize{indentExpr type}") (fun _ => throwError "failed to synthesize{indentExpr type}") @[export lean_synth_pending] private def synthPendingImp (mvarId : MVarId) : MetaM Bool := withIncRecDepth <| withMVarContext mvarId do let mvarDecl ← getMVarDecl mvarId match mvarDecl.kind with | MetavarKind.syntheticOpaque => return false | _ => /- Check whether the type of the given metavariable is a class or not. If yes, then try to synthesize it using type class resolution. We only do it for `synthetic` and `natural` metavariables. -/ match (← isClass? mvarDecl.type) with | none => return false | some _ => /- TODO: use a configuration option instead of the hard-coded limit `1`. -/ if (← read).synthPendingDepth > 1 then trace[Meta.synthPending] "too many nested synthPending invocations" return false else withReader (fun ctx => { ctx with synthPendingDepth := ctx.synthPendingDepth + 1 }) do trace[Meta.synthPending] "synthPending {mkMVar mvarId}" let val? ← catchInternalId isDefEqStuckExceptionId (synthInstance? mvarDecl.type (maxResultSize? := none)) (fun _ => pure none) match val? with | none => return false | some val => if (← isExprMVarAssigned mvarId) then return false else assignExprMVar mvarId val return true builtin_initialize registerTraceClass `Meta.synthInstance registerTraceClass `Meta.synthInstance.globalInstances registerTraceClass `Meta.synthInstance.newSubgoal registerTraceClass `Meta.synthInstance.tryResolve registerTraceClass `Meta.synthInstance.resume registerTraceClass `Meta.synthInstance.generate registerTraceClass `Meta.synthPending end Lean.Meta
26b33c6ddc6761c01a363c9288a51c8dcc35250b
4efff1f47634ff19e2f786deadd394270a59ecd2
/src/data/finset/sort.lean
5bfebfda436ee4ef071a24f11abc91a7b5b1742d
[ "Apache-2.0" ]
permissive
agjftucker/mathlib
d634cd0d5256b6325e3c55bb7fb2403548371707
87fe50de17b00af533f72a102d0adefe4a2285e8
refs/heads/master
1,625,378,131,941
1,599,166,526,000
1,599,166,526,000
160,748,509
0
0
Apache-2.0
1,544,141,789,000
1,544,141,789,000
null
UTF-8
Lean
false
false
10,553
lean
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Mario Carneiro -/ import data.finset.lattice import data.multiset.sort /-! # Construct a sorted list from a finset. -/ namespace finset open multiset nat variables {α β : Type*} /-! ### sort -/ section sort variables (r : α → α → Prop) [decidable_rel r] [is_trans α r] [is_antisymm α r] [is_total α r] /-- `sort s` constructs a sorted list from the unordered set `s`. (Uses merge sort algorithm.) -/ def sort (s : finset α) : list α := sort r s.1 @[simp] theorem sort_sorted (s : finset α) : list.sorted r (sort r s) := sort_sorted _ _ @[simp] theorem sort_eq (s : finset α) : ↑(sort r s) = s.1 := sort_eq _ _ @[simp] theorem sort_nodup (s : finset α) : (sort r s).nodup := (by rw sort_eq; exact s.2 : @multiset.nodup α (sort r s)) @[simp] theorem sort_to_finset [decidable_eq α] (s : finset α) : (sort r s).to_finset = s := list.to_finset_eq (sort_nodup r s) ▸ eq_of_veq (sort_eq r s) @[simp] theorem mem_sort {s : finset α} {a : α} : a ∈ sort r s ↔ a ∈ s := multiset.mem_sort _ @[simp] theorem length_sort {s : finset α} : (sort r s).length = s.card := multiset.length_sort _ end sort section sort_linear_order variables [decidable_linear_order α] theorem sort_sorted_lt (s : finset α) : list.sorted (<) (sort (≤) s) := (sort_sorted _ _).imp₂ (@lt_of_le_of_ne _ _) (sort_nodup _ _) lemma sorted_zero_eq_inf' (s : finset α) (h : 0 < (s.sort (≤)).length) : (s.sort (≤)).nth_le 0 h = s.1.inf' (by rwa [length_sort, card_pos] at h) := begin let l := s.sort (≤), apply le_antisymm, { have : s.1.inf' _ ∈ l := (finset.mem_sort (≤)).mpr (s.1.inf'_mem _), obtain ⟨i, i_lt, hi⟩ : ∃ i (hi : i < l.length), l.nth_le i hi = s.1.inf' _ := list.mem_iff_nth_le.1 this, rw ← hi, exact list.nth_le_of_sorted_of_le (s.sort_sorted (≤)) (nat.zero_le i) }, { have : l.nth_le 0 h ∈ s := (finset.mem_sort (≤)).1 (list.nth_le_mem l 0 h), exact s.1.inf'_le _ this } end lemma inf'_eq_sorted_zero (s : finset α) (H : s.nonempty) : s.1.inf' H = (s.sort (≤)).nth_le 0 (by rwa [length_sort, card_pos]) := by rw sorted_zero_eq_inf' lemma sorted_last_eq_sup' (s : finset α) (h : (s.sort (≤)).length - 1 < (s.sort (≤)).length) : (s.sort (≤)).nth_le ((s.sort (≤)).length - 1) h = s.1.sup' (by simpa [card_pos] using lt_of_le_of_lt (nat.zero_le _) h) := begin let l := s.sort (≤), apply le_antisymm, { have : l.nth_le ((s.sort (≤)).length - 1) h ∈ s := (finset.mem_sort (≤)).1 (list.nth_le_mem l _ h), exact s.1.le_sup' _ this }, { have : s.1.sup' _ ∈ l := (finset.mem_sort (≤)).mpr (s.1.sup'_mem _), obtain ⟨i, i_lt, hi⟩ : ∃ i (hi : i < l.length), l.nth_le i hi = s.1.sup' _ := list.mem_iff_nth_le.1 this, rw ← hi, have : i ≤ l.length - 1 := nat.le_pred_of_lt i_lt, exact list.nth_le_of_sorted_of_le (s.sort_sorted (≤)) (nat.le_pred_of_lt i_lt) }, end lemma sup'_eq_sorted_last (s : finset α) (H : s.nonempty) : s.1.sup' H = (s.sort (≤)).nth_le ((s.sort (≤)).length - 1) (by simpa using sub_lt (card_pos.mpr H) zero_lt_one) := by rw sorted_last_eq_sup' /-- Given a finset `s` of cardinal `k` in a linear order `α`, the map `mono_of_fin s h` is the increasing bijection between `fin k` and `s` as an `α`-valued map. Here, `h` is a proof that the cardinality of `s` is `k`. We use this instead of a map `fin s.card → α` to avoid casting issues in further uses of this function. -/ def mono_of_fin (s : finset α) {k : ℕ} (h : s.card = k) (i : fin k) : α := have A : (i : ℕ) < (s.sort (≤)).length, by simpa [h] using i.2, (s.sort (≤)).nth_le i A lemma mono_of_fin_strict_mono (s : finset α) {k : ℕ} (h : s.card = k) : strict_mono (s.mono_of_fin h) := begin assume i j hij, exact list.pairwise_iff_nth_le.1 s.sort_sorted_lt _ _ _ hij end lemma mono_of_fin_bij_on (s : finset α) {k : ℕ} (h : s.card = k) : set.bij_on (s.mono_of_fin h) set.univ ↑s := begin have A : ∀ j, j ∈ s ↔ j ∈ (s.sort (≤)) := λ j, by simp, apply set.bij_on.mk, { assume i hi, simp only [mono_of_fin, set.mem_preimage, mem_coe, list.nth_le, A], exact list.nth_le_mem _ _ _ }, { exact ((mono_of_fin_strict_mono s h).injective).inj_on _ }, { assume x hx, simp only [mem_coe, A] at hx, obtain ⟨i, il, hi⟩ : ∃ (i : ℕ) (h : i < (s.sort (≤)).length), (s.sort (≤)).nth_le i h = x := list.nth_le_of_mem hx, simp [h] at il, exact ⟨⟨i, il⟩, set.mem_univ _, hi⟩ } end lemma mono_of_fin_injective (s : finset α) {k : ℕ} (h : s.card = k) : function.injective (s.mono_of_fin h) := set.injective_iff_inj_on_univ.mpr (s.mono_of_fin_bij_on h).inj_on /-- The bijection `mono_of_fin s h` sends `0` to the minimum of `s`. -/ lemma mono_of_fin_zero_eq_inf' {s : finset α} {k : ℕ} (h : s.card = k) (hz : 0 < k) : mono_of_fin s h ⟨0, hz⟩ = s.1.inf' (card_pos.1 (h.symm ▸ hz)) := begin apply le_antisymm, { have : inf' _ _ ∈ s := inf'_mem _ _, rcases (mono_of_fin_bij_on s h).surj_on this with ⟨a, _, ha⟩, rw ← ha, apply (mono_of_fin_strict_mono s h).monotone, exact zero_le a.val }, { have : mono_of_fin s h ⟨0, hz⟩ ∈ s := (mono_of_fin_bij_on s h).maps_to (set.mem_univ _), exact inf'_le _ _ this } end lemma inf'_eq_mono_of_fin_zero {s : finset α} (hs : s.nonempty) : s.1.inf' hs = mono_of_fin s rfl ⟨0, card_pos.2 hs⟩ := by rw mono_of_fin_zero_eq_inf' /-- The bijection `mono_of_fin s h` sends `k-1` to the maximum of `s`. -/ lemma mono_of_fin_last_eq_sup' {s : finset α} {k : ℕ} (h : s.card = k) (hz : 0 < k) : mono_of_fin s h ⟨k-1, sub_lt hz zero_lt_one⟩ = s.1.sup' (card_pos.1 (h.symm ▸ hz)) := begin apply le_antisymm, { have : mono_of_fin s h ⟨k-1, _⟩ ∈ s := (mono_of_fin_bij_on s h).maps_to (set.mem_univ _), exact le_sup' _ _ this }, { have : sup' _ _ ∈ s := sup'_mem _ _, rcases (mono_of_fin_bij_on s h).surj_on this with ⟨a, _, ha⟩, rw ← ha, apply (mono_of_fin_strict_mono s h).monotone, exact le_pred_of_lt a.2}, end lemma sup'_eq_mono_of_fin_last {s : finset α} (hs : s.nonempty) : s.1.sup' hs = mono_of_fin s rfl ⟨s.card - 1, sub_lt (card_pos.2 hs) zero_lt_one⟩ := by rw mono_of_fin_last_eq_sup' /-- `mono_of_fin {a} h` sends any argument to `a`. -/ @[simp] lemma mono_of_fin_singleton_eq (a : α) (i : fin 1) {h} : mono_of_fin {a} h i = a := begin rw [subsingleton.elim i ⟨0, zero_lt_one⟩, mono_of_fin_zero_eq_inf' h zero_lt_one], simp, end lemma eq_mono_of_fin_singleton (a : α) (i : fin 1) : a = mono_of_fin {a} (card_singleton a) i := by rw mono_of_fin_singleton_eq /-- The range of `mono_of_fin`. -/ @[simp] lemma range_mono_of_fin {s : finset α} {k : ℕ} (h : s.card = k) : set.range (s.mono_of_fin h) = ↑s := begin rw ←set.image_univ, exact (mono_of_fin_bij_on s h).image_eq end /-- Any increasing bijection between `fin k` and a finset of cardinality `k` has to coincide with the increasing bijection `mono_of_fin s h`. For a statement assuming only that `f` maps `univ` to `s`, see `mono_of_fin_unique'`.-/ lemma mono_of_fin_unique {s : finset α} {k : ℕ} (h : s.card = k) {f : fin k → α} (hbij : set.bij_on f set.univ ↑s) (hmono : strict_mono f) : f = s.mono_of_fin h := begin ext ⟨i, hi⟩, induction i using nat.strong_induction_on with i IH, rcases lt_trichotomy (f ⟨i, hi⟩) (mono_of_fin s h ⟨i, hi⟩) with H|H|H, { have A : f ⟨i, hi⟩ ∈ ↑s := hbij.maps_to (set.mem_univ _), rcases (mono_of_fin_bij_on s h).surj_on A with ⟨j, _, hj⟩, rw ← hj at H, have ji : j < ⟨i, hi⟩ := (mono_of_fin_strict_mono s h).lt_iff_lt.1 H, have : f j = mono_of_fin s h j, by { convert IH j ji (lt_trans ji hi), rw [fin.ext_iff, fin.coe_mk] }, rw ← this at hj, exact (ne_of_lt (hmono ji) hj).elim }, { exact H }, { have A : mono_of_fin s h ⟨i, hi⟩ ∈ ↑s := (mono_of_fin_bij_on s h).maps_to (set.mem_univ _), rcases hbij.surj_on A with ⟨j, _, hj⟩, rw ← hj at H, have ji : j < ⟨i, hi⟩ := hmono.lt_iff_lt.1 H, have : f j = mono_of_fin s h j, by { convert IH j ji (lt_trans ji hi), rw [fin.ext_iff, fin.coe_mk] }, rw this at hj, exact (ne_of_lt (mono_of_fin_strict_mono s h ji) hj).elim } end /-- Any increasing map between `fin k` and a finset of cardinality `k` has to coincide with the increasing bijection `mono_of_fin s h`. -/ lemma mono_of_fin_unique' {s : finset α} {k : ℕ} (h : s.card = k) {f : fin k → α} (fmap : set.maps_to f set.univ ↑s) (hmono : strict_mono f) : f = s.mono_of_fin h := begin have finj : set.inj_on f set.univ := hmono.injective.inj_on _, apply mono_of_fin_unique h (set.bij_on.mk fmap finj (λ y hy, _)) hmono, simp only [set.image_univ, set.mem_range], rcases surj_on_of_inj_on_of_card_le (λ i (hi : i ∈ finset.fin_range k), f i) (λ i hi, fmap (set.mem_univ i)) (λ i j hi hj hij, finj (set.mem_univ i) (set.mem_univ j) hij) (by simp [h]) y hy with ⟨x, _, hx⟩, exact ⟨x, hx.symm⟩ end /-- Two parametrizations `mono_of_fin` of the same set take the same value on `i` and `j` if and only if `i = j`. Since they can be defined on a priori not defeq types `fin k` and `fin l` (although necessarily `k = l`), the conclusion is rather written `(i : ℕ) = (j : ℕ)`. -/ @[simp] lemma mono_of_fin_eq_mono_of_fin_iff {k l : ℕ} {s : finset α} {i : fin k} {j : fin l} {h : s.card = k} {h' : s.card = l} : s.mono_of_fin h i = s.mono_of_fin h' j ↔ (i : ℕ) = (j : ℕ) := begin have A : k = l, by rw [← h', ← h], have : s.mono_of_fin h = (s.mono_of_fin h') ∘ (λ j : (fin k), ⟨j, A ▸ j.is_lt⟩) := rfl, rw [this, function.comp_app, (s.mono_of_fin_injective h').eq_iff, fin.ext_iff, fin.coe_mk] end /-- Given a finset `s` of cardinal `k` in a linear order `α`, the equiv `mono_equiv_of_fin s h` is the increasing bijection between `fin k` and `s` as an `s`-valued map. Here, `h` is a proof that the cardinality of `s` is `k`. We use this instead of a map `fin s.card → α` to avoid casting issues in further uses of this function. -/ noncomputable def mono_equiv_of_fin (s : finset α) {k : ℕ} (h : s.card = k) : fin k ≃ {x // x ∈ s} := (s.mono_of_fin_bij_on h).equiv _ end sort_linear_order instance [has_repr α] : has_repr (finset α) := ⟨λ s, repr s.1⟩ end finset
137348eab63a795f7111de061b2a14eee1655cb4
36938939954e91f23dec66a02728db08a7acfcf9
/lean4/deps/galois_stdlib/src/Galois/Data/RBMap.lean
a3c926d9345d80e19b9f2ad260963ddc2f838f58
[]
no_license
pnwamk/reopt-vcg
f8b56dd0279392a5e1c6aee721be8138e6b558d3
c9f9f185fbefc25c36c4b506bbc85fd1a03c3b6d
refs/heads/master
1,631,145,017,772
1,593,549,019,000
1,593,549,143,000
254,191,418
0
0
null
1,586,377,077,000
1,586,377,077,000
null
UTF-8
Lean
false
false
1,450
lean
namespace RBMap universes u v w variables {α : Type u} {β : Type v} /-- Builds an RBMap from a list with String keys. --/ def ltMap [HasLess α] [∀ (a b : α), Decidable (a < b)] (entries: List (α × β)) : RBMap α β (λ (x y:α)=> x<y) := RBMap.fromList entries (λ (x y:α)=> x<y) section variable {lt : α → α → Bool} @[specialize] def keys : RBMap α β lt → List α | ⟨t, _⟩ => t.revFold (fun ps k _v => k::ps) [] @[specialize] def values : RBMap α β lt → List β | ⟨t, _⟩ => t.revFold (fun ps _k v => v::ps) [] @[inline] def map {σ : Type w} (f : α → β → σ) : RBMap α β lt → RBMap α σ lt | ⟨t, _⟩ => t.fold (λ acc k v => acc.insert k (f k v)) RBMap.empty /-- Appends two RBMaps, with the second argument's entries overwriting any entries in the first argument where applicable. --/ @[specialize] def append (lhs rhs : RBMap α β lt) : RBMap α β lt := if lhs.isEmpty then rhs else rhs.fold (λ m k v => m.insert k v) lhs instance : HasAppend (RBMap α β lt) := ⟨RBMap.append⟩ end end RBMap namespace RBMap -- It's not happy about the universes on this one if we try and add the level parameters (and even use max/ULift/etc) =\ @[inline] def mapM {α β σ : Type} {lt : α → α → Bool} {m : Type → Type} [Monad m] (f : α → β → m σ) : RBMap α β lt → m (RBMap α σ lt) | ⟨t, _⟩ => t.mfold (λ acc k v => acc.insert k <$> (f k v)) RBMap.empty end RBMap
15b830de022389d76baa7eefe313753d700268d2
a44280b79dc85615010e3fbda46abf82c6730fa3
/library/init/lean/format.lean
020eb04d57db8f123d97c1b12b78882141a2509a
[ "Apache-2.0" ]
permissive
kodyvajjha/lean4
8e1c613248b531d47367ca6e8d97ee1046645aa1
c8a045d69fac152fd5e3a577f718615cecb9c53d
refs/heads/master
1,589,684,450,102
1,555,200,447,000
1,556,139,945,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
6,320
lean
/- Copyright (c) 2018 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura -/ prelude import init.lean.options universes u v namespace Lean inductive Format | nil : Format | line : Format | text : String → Format | nest : Nat → Format → Format | compose : Bool → Format → Format → Format | choice : Format → Format → Format namespace Format instance : HasAppend Format := ⟨compose false⟩ instance : HasCoe String Format := ⟨text⟩ instance : Inhabited Format := ⟨nil⟩ def join (xs : List Format) : Format := xs.foldl (++) "" def flatten : Format → Format | nil := nil | line := text " " | f@(text _) := f | (nest _ f) := flatten f | (choice f _) := flatten f | f@(compose true _ _) := f | f@(compose false f₁ f₂) := compose true (flatten f₁) (flatten f₂) def group : Format → Format | nil := nil | f@(text _) := f | f@(compose true _ _) := f | f := choice (flatten f) f structure SpaceResult := (found := false) (exceeded := false) (space := 0) @[inline] private def merge (w : Nat) (r₁ : SpaceResult) (r₂ : Thunk SpaceResult) : SpaceResult := if r₁.exceeded || r₁.found then r₁ else let y := r₂.get in if y.exceeded || y.found then y else let newSpace := r₁.space + y.space in { space := newSpace, exceeded := newSpace > w } def spaceUptoLine : Format → Nat → SpaceResult | nil w := {} | line w := { found := true } | (text s) w := { space := s.length, exceeded := s.length > w } | (compose _ f₁ f₂) w := merge w (spaceUptoLine f₁ w) (spaceUptoLine f₂ w) | (nest _ f) w := spaceUptoLine f w | (choice f₁ f₂) w := spaceUptoLine f₂ w def spaceUptoLine' : List (Nat × Format) → Nat → SpaceResult | [] w := {} | (p::ps) w := merge w (spaceUptoLine p.2 w) (spaceUptoLine' ps w) partial def be : Nat → Nat → String → List (Nat × Format) → String | w k out [] := out | w k out ((i, nil)::z) := be w k out z | w k out ((i, (compose _ f₁ f₂))::z) := be w k out ((i, f₁)::(i, f₂)::z) | w k out ((i, (nest n f))::z) := be w k out ((i+n, f)::z) | w k out ((i, text s)::z) := be w (k + s.length) (out ++ s) z | w k out ((i, line)::z) := be w i ((out ++ "\n").pushn ' ' i) z | w k out ((i, choice f₁ f₂)::z) := let r := merge w (spaceUptoLine f₁ w) (spaceUptoLine' z w) in if r.exceeded then be w k out ((i, f₂)::z) else be w k out ((i, f₁)::z) @[inline] def bracket (l : String) (f : Format) (r : String) : Format := group (nest l.length $ l ++ f ++ r) @[inline] def paren (f : Format) : Format := bracket "(" f ")" @[inline] def sbracket (f : Format) : Format := bracket "[" f "]" def defIndent := 4 def defUnicode := true def defWidth := 120 def getWidth (o : Options) : Nat := o.get `format.width defWidth def getIndent (o : Options) : Nat := o.get `format.indent defIndent def getUnicode (o : Options) : Bool := o.get `format.unicode defUnicode @[init] def indentOption : IO Unit := registerOption `format.indent { defValue := defIndent, group := "format", descr := "indentation" } @[init] def unicodeOption : IO Unit := registerOption `format.unicode { defValue := defUnicode, group := "format", descr := "unicode characters" } @[init] def widthOption : IO Unit := registerOption `format.width { defValue := defWidth, group := "format", descr := "line width" } def pretty (f : Format) (o : Options := {}) : String := let w := getWidth o in be w 0 "" [(0, f)] end Format open Lean.Format class HasToFormat (α : Type u) := (toFormat : α → Format) export Lean.HasToFormat (toFormat) def toFmt {α : Type u} [HasToFormat α] : α → Format := toFormat instance toStringToFormat {α : Type u} [HasToString α] : HasToFormat α := ⟨text ∘ toString⟩ -- note: must take precendence over the above instance to avoid premature formatting instance formatHasToFormat : HasToFormat Format := ⟨id⟩ instance stringHasToFormat : HasToFormat String := ⟨Format.text⟩ def Format.joinSep {α : Type u} [HasToFormat α] : List α → Format → Format | [] sep := nil | [a] sep := toFmt a | (a::as) sep := toFmt a ++ sep ++ Format.joinSep as sep def Format.prefixJoin {α : Type u} [HasToFormat α] (pre : Format) : List α → Format | [] := nil | (a::as) := pre ++ toFmt a ++ Format.prefixJoin as def Format.joinSuffix {α : Type u} [HasToFormat α] : List α → Format → Format | [] suffix := nil | (a::as) suffix := toFmt a ++ suffix ++ Format.joinSuffix as suffix def List.toFormat {α : Type u} [HasToFormat α] : List α → Format | [] := "[]" | xs := sbracket $ Format.joinSep xs ("," ++ line) instance listHasToFormat {α : Type u} [HasToFormat α] : HasToFormat (List α) := ⟨List.toFormat⟩ instance prodHasToFormat {α : Type u} {β : Type v} [HasToFormat α] [HasToFormat β] : HasToFormat (Prod α β) := ⟨λ ⟨a, b⟩, paren $ toFormat a ++ "," ++ line ++ toFormat b⟩ instance natHasToFormat : HasToFormat Nat := ⟨λ n, toString n⟩ instance uint16HasToFormat : HasToFormat UInt16 := ⟨λ n, toString n⟩ instance uint32HasToFormat : HasToFormat UInt32 := ⟨λ n, toString n⟩ instance uint64HasToFormat : HasToFormat UInt64 := ⟨λ n, toString n⟩ instance usizeHasToFormat : HasToFormat USize := ⟨λ n, toString n⟩ instance nameHasToFormat : HasToFormat Name := ⟨λ n, n.toString⟩ protected def Format.repr : Format → Format | nil := "Format.nil" | line := "Format.line" | (text s) := paren $ "Format.text" ++ line ++ repr s | (nest n f) := paren $ "Format.nest" ++ line ++ repr n ++ line ++ Format.repr f | (compose b f₁ f₂) := paren $ "Format.compose " ++ repr b ++ line ++ Format.repr f₁ ++ line ++ Format.repr f₂ | (choice f₁ f₂) := paren $ "Format.choice" ++ line ++ Format.repr f₁ ++ line ++ Format.repr f₂ instance formatHasToString : HasToString Format := ⟨Format.pretty⟩ instance : HasRepr Format := ⟨Format.pretty ∘ Format.repr⟩ end Lean
9651c751568991b12549de5eb3665fe4b616fe41
88fb7558b0636ec6b181f2a548ac11ad3919f8a5
/tests/lean/run/eval_attr_cache.lean
7bb5ab2c4c923ec616281067e4540dcda2438519
[ "Apache-2.0" ]
permissive
moritayasuaki/lean
9f666c323cb6fa1f31ac597d777914aed41e3b7a
ae96ebf6ee953088c235ff7ae0e8c95066ba8001
refs/heads/master
1,611,135,440,814
1,493,852,869,000
1,493,852,869,000
90,269,903
0
0
null
1,493,906,291,000
1,493,906,291,000
null
UTF-8
Lean
false
false
840
lean
open tactic meta def list_name.to_expr (n : list name) : tactic expr := to_expr (quote n) @[user_attribute] meta def my_attr : caching_user_attribute (name → bool) := { name := "my_attr", descr := "my attr", mk_cache := λ ls, do { els ← list_name.to_expr ls, c ← to_expr `(λ n : name, (name.cases_on n ff (λ _ _, to_bool (n ∈ %%els)) (λ _ _, ff) : bool)), eval_expr (name → bool) c }, dependencies := [] } meta def my_tac : tactic unit := do f ← caching_user_attribute.get_cache my_attr, trace (f `foo), return () @[my_attr] def bla := 10 run_cmd my_tac @[my_attr] def foo := 10 -- Cache was invalided run_cmd my_tac -- Add closure to the cache containing auxiliary function created by eval_expr run_cmd my_tac -- Cache should be flushed since the auxiliary function is gone
543ac5edae88fcc0cfc37b88411c0cffe1089fba
4d2583807a5ac6caaffd3d7a5f646d61ca85d532
/src/ring_theory/polynomial/scale_roots.lean
8b74c8e1e0e327cf69accdc125e1e98af32ea58c
[ "Apache-2.0" ]
permissive
AntoineChambert-Loir/mathlib
64aabb896129885f12296a799818061bc90da1ff
07be904260ab6e36a5769680b6012f03a4727134
refs/heads/master
1,693,187,631,771
1,636,719,886,000
1,636,719,886,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
5,326
lean
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Devon Tuma -/ import ring_theory.polynomial.basic import ring_theory.non_zero_divisors /-! # Scaling the roots of a polynomial This file defines `scale_roots p s` for a polynomial `p` in one variable and a ring element `s` to be the polynomial with root `r * s` for each root `r` of `p` and proves some basic results about it. -/ section scale_roots variables {A K R S : Type*} [comm_ring A] [is_domain A] [field K] [comm_ring R] [comm_ring S] variables {M : submonoid A} open polynomial open_locale big_operators /-- `scale_roots p s` is a polynomial with root `r * s` for each root `r` of `p`. -/ noncomputable def scale_roots (p : polynomial R) (s : R) : polynomial R := ∑ i in p.support, monomial i (p.coeff i * s ^ (p.nat_degree - i)) @[simp] lemma coeff_scale_roots (p : polynomial R) (s : R) (i : ℕ) : (scale_roots p s).coeff i = coeff p i * s ^ (p.nat_degree - i) := by simp [scale_roots, coeff_monomial] {contextual := tt} lemma coeff_scale_roots_nat_degree (p : polynomial R) (s : R) : (scale_roots p s).coeff p.nat_degree = p.leading_coeff := by rw [leading_coeff, coeff_scale_roots, tsub_self, pow_zero, mul_one] @[simp] lemma zero_scale_roots (s : R) : scale_roots 0 s = 0 := by { ext, simp } lemma scale_roots_ne_zero {p : polynomial R} (hp : p ≠ 0) (s : R) : scale_roots p s ≠ 0 := begin intro h, have : p.coeff p.nat_degree ≠ 0 := mt leading_coeff_eq_zero.mp hp, have : (scale_roots p s).coeff p.nat_degree = 0 := congr_fun (congr_arg (coeff : polynomial R → ℕ → R) h) p.nat_degree, rw [coeff_scale_roots_nat_degree] at this, contradiction end lemma support_scale_roots_le (p : polynomial R) (s : R) : (scale_roots p s).support ≤ p.support := by { intro, simpa using left_ne_zero_of_mul } lemma support_scale_roots_eq (p : polynomial R) {s : R} (hs : s ∈ non_zero_divisors R) : (scale_roots p s).support = p.support := le_antisymm (support_scale_roots_le p s) begin intro i, simp only [coeff_scale_roots, polynomial.mem_support_iff], intros p_ne_zero ps_zero, have := ((non_zero_divisors R).pow_mem hs (p.nat_degree - i)) _ ps_zero, contradiction end @[simp] lemma degree_scale_roots (p : polynomial R) {s : R} : degree (scale_roots p s) = degree p := begin haveI := classical.prop_decidable, by_cases hp : p = 0, { rw [hp, zero_scale_roots] }, have := scale_roots_ne_zero hp s, refine le_antisymm (finset.sup_mono (support_scale_roots_le p s)) (degree_le_degree _), rw coeff_scale_roots_nat_degree, intro h, have := leading_coeff_eq_zero.mp h, contradiction, end @[simp] lemma nat_degree_scale_roots (p : polynomial R) (s : R) : nat_degree (scale_roots p s) = nat_degree p := by simp only [nat_degree, degree_scale_roots] lemma monic_scale_roots_iff {p : polynomial R} (s : R) : monic (scale_roots p s) ↔ monic p := by simp only [monic, leading_coeff, nat_degree_scale_roots, coeff_scale_roots_nat_degree] lemma scale_roots_eval₂_eq_zero {p : polynomial S} (f : S →+* R) {r : R} {s : S} (hr : eval₂ f r p = 0) : eval₂ f (f s * r) (scale_roots p s) = 0 := calc eval₂ f (f s * r) (scale_roots p s) = (scale_roots p s).support.sum (λ i, f (coeff p i * s ^ (p.nat_degree - i)) * (f s * r) ^ i) : by simp [eval₂_eq_sum, sum_def] ... = p.support.sum (λ i, f (coeff p i * s ^ (p.nat_degree - i)) * (f s * r) ^ i) : finset.sum_subset (support_scale_roots_le p s) (λ i hi hi', let this : coeff p i * s ^ (p.nat_degree - i) = 0 := by simpa using hi' in by simp [this]) ... = p.support.sum (λ (i : ℕ), f (p.coeff i) * f s ^ (p.nat_degree - i + i) * r ^ i) : finset.sum_congr rfl (λ i hi, by simp_rw [f.map_mul, f.map_pow, pow_add, mul_pow, mul_assoc]) ... = p.support.sum (λ (i : ℕ), f s ^ p.nat_degree * (f (p.coeff i) * r ^ i)) : finset.sum_congr rfl (λ i hi, by { rw [mul_assoc, mul_left_comm, tsub_add_cancel_of_le], exact le_nat_degree_of_ne_zero (polynomial.mem_support_iff.mp hi) }) ... = f s ^ p.nat_degree * p.support.sum (λ (i : ℕ), (f (p.coeff i) * r ^ i)) : finset.mul_sum.symm ... = f s ^ p.nat_degree * eval₂ f r p : by { simp [eval₂_eq_sum, sum_def] } ... = 0 : by rw [hr, _root_.mul_zero] lemma scale_roots_aeval_eq_zero [algebra S R] {p : polynomial S} {r : R} {s : S} (hr : aeval r p = 0) : aeval (algebra_map S R s * r) (scale_roots p s) = 0 := scale_roots_eval₂_eq_zero (algebra_map S R) hr lemma scale_roots_eval₂_eq_zero_of_eval₂_div_eq_zero {p : polynomial A} {f : A →+* K} (hf : function.injective f) {r s : A} (hr : eval₂ f (f r / f s) p = 0) (hs : s ∈ non_zero_divisors A) : eval₂ f (f r) (scale_roots p s) = 0 := begin convert scale_roots_eval₂_eq_zero f hr, rw [←mul_div_assoc, mul_comm, mul_div_cancel], exact f.map_ne_zero_of_mem_non_zero_divisors hf hs end lemma scale_roots_aeval_eq_zero_of_aeval_div_eq_zero [algebra A K] (inj : function.injective (algebra_map A K)) {p : polynomial A} {r s : A} (hr : aeval (algebra_map A K r / algebra_map A K s) p = 0) (hs : s ∈ non_zero_divisors A) : aeval (algebra_map A K r) (scale_roots p s) = 0 := scale_roots_eval₂_eq_zero_of_eval₂_div_eq_zero inj hr hs end scale_roots
e788321487bf416c7bea98becaf11d1f03a32f39
947fa6c38e48771ae886239b4edce6db6e18d0fb
/src/algebra/order/floor.lean
87ec96e477564b59f83749d609e527f077085edf
[ "Apache-2.0" ]
permissive
ramonfmir/mathlib
c5dc8b33155473fab97c38bd3aa6723dc289beaa
14c52e990c17f5a00c0cc9e09847af16fabbed25
refs/heads/master
1,661,979,343,526
1,660,830,384,000
1,660,830,384,000
182,072,989
0
0
null
1,555,585,876,000
1,555,585,876,000
null
UTF-8
Lean
false
false
30,772
lean
/- Copyright (c) 2018 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro, Kevin Kappelmann -/ import tactic.abel import tactic.linarith /-! # Floor and ceil ## Summary We define the natural- and integer-valued floor and ceil functions on linearly ordered rings. ## Main Definitions * `floor_semiring`: An ordered semiring with natural-valued floor and ceil. * `nat.floor a`: Greatest natural `n` such that `n ≤ a`. Equal to `0` if `a < 0`. * `nat.ceil a`: Least natural `n` such that `a ≤ n`. * `floor_ring`: A linearly ordered ring with integer-valued floor and ceil. * `int.floor a`: Greatest integer `z` such that `z ≤ a`. * `int.ceil a`: Least integer `z` such that `a ≤ z`. * `int.fract a`: Fractional part of `a`, defined as `a - floor a`. * `round a`: Nearest integer to `a`. It rounds halves towards infinity. ## Notations * `⌊a⌋₊` is `nat.floor a`. * `⌈a⌉₊` is `nat.ceil a`. * `⌊a⌋` is `int.floor a`. * `⌈a⌉` is `int.ceil a`. The index `₊` in the notations for `nat.floor` and `nat.ceil` is used in analogy to the notation for `nnnorm`. ## TODO Some `nat.floor` and `nat.ceil` lemmas require `linear_ordered_ring α`. Is `has_ordered_sub` enough? `linear_ordered_ring`/`linear_ordered_semiring` can be relaxed to `order_ring`/`order_semiring` in many lemmas. ## Tags rounding, floor, ceil -/ open set variables {α : Type*} /-! ### Floor semiring -/ /-- A `floor_semiring` is an ordered semiring over `α` with a function `floor : α → ℕ` satisfying `∀ (n : ℕ) (x : α), n ≤ ⌊x⌋ ↔ (n : α) ≤ x)`. Note that many lemmas require a `linear_order`. Please see the above `TODO`. -/ class floor_semiring (α) [ordered_semiring α] := (floor : α → ℕ) (ceil : α → ℕ) (floor_of_neg {a : α} (ha : a < 0) : floor a = 0) (gc_floor {a : α} {n : ℕ} (ha : 0 ≤ a) : n ≤ floor a ↔ (n : α) ≤ a) (gc_ceil : galois_connection ceil coe) instance : floor_semiring ℕ := { floor := id, ceil := id, floor_of_neg := λ a ha, (a.not_lt_zero ha).elim, gc_floor := λ n a ha, by { rw nat.cast_id, refl }, gc_ceil := λ n a, by { rw nat.cast_id, refl } } namespace nat section ordered_semiring variables [ordered_semiring α] [floor_semiring α] {a : α} {n : ℕ} /-- `⌊a⌋₊` is the greatest natural `n` such that `n ≤ a`. If `a` is negative, then `⌊a⌋₊ = 0`. -/ def floor : α → ℕ := floor_semiring.floor /-- `⌈a⌉₊` is the least natural `n` such that `a ≤ n` -/ def ceil : α → ℕ := floor_semiring.ceil @[simp] lemma floor_nat : (nat.floor : ℕ → ℕ) = id := rfl @[simp] lemma ceil_nat : (nat.ceil : ℕ → ℕ) = id := rfl notation `⌊` a `⌋₊` := nat.floor a notation `⌈` a `⌉₊` := nat.ceil a end ordered_semiring section linear_ordered_semiring variables [linear_ordered_semiring α] [floor_semiring α] {a : α} {n : ℕ} lemma le_floor_iff (ha : 0 ≤ a) : n ≤ ⌊a⌋₊ ↔ (n : α) ≤ a := floor_semiring.gc_floor ha lemma le_floor (h : (n : α) ≤ a) : n ≤ ⌊a⌋₊ := (le_floor_iff $ n.cast_nonneg.trans h).2 h lemma floor_lt (ha : 0 ≤ a) : ⌊a⌋₊ < n ↔ a < n := lt_iff_lt_of_le_iff_le $ le_floor_iff ha lemma floor_lt_one (ha : 0 ≤ a) : ⌊a⌋₊ < 1 ↔ a < 1 := (floor_lt ha).trans $ by rw nat.cast_one lemma lt_of_floor_lt (h : ⌊a⌋₊ < n) : a < n := lt_of_not_le $ λ h', (le_floor h').not_lt h lemma lt_one_of_floor_lt_one (h : ⌊a⌋₊ < 1) : a < 1 := by exact_mod_cast lt_of_floor_lt h lemma floor_le (ha : 0 ≤ a) : (⌊a⌋₊ : α) ≤ a := (le_floor_iff ha).1 le_rfl lemma lt_succ_floor (a : α) : a < ⌊a⌋₊.succ := lt_of_floor_lt $ nat.lt_succ_self _ lemma lt_floor_add_one (a : α) : a < ⌊a⌋₊ + 1 := by simpa using lt_succ_floor a @[simp] lemma floor_coe (n : ℕ) : ⌊(n : α)⌋₊ = n := eq_of_forall_le_iff $ λ a, by { rw [le_floor_iff, nat.cast_le], exact n.cast_nonneg } @[simp] lemma floor_zero : ⌊(0 : α)⌋₊ = 0 := by rw [← nat.cast_zero, floor_coe] @[simp] lemma floor_one : ⌊(1 : α)⌋₊ = 1 := by rw [←nat.cast_one, floor_coe] lemma floor_of_nonpos (ha : a ≤ 0) : ⌊a⌋₊ = 0 := ha.lt_or_eq.elim floor_semiring.floor_of_neg $ by { rintro rfl, exact floor_zero } lemma floor_mono : monotone (floor : α → ℕ) := λ a b h, begin obtain ha | ha := le_total a 0, { rw floor_of_nonpos ha, exact nat.zero_le _ }, { exact le_floor ((floor_le ha).trans h) } end lemma le_floor_iff' (hn : n ≠ 0) : n ≤ ⌊a⌋₊ ↔ (n : α) ≤ a := begin obtain ha | ha := le_total a 0, { rw floor_of_nonpos ha, exact iff_of_false (nat.pos_of_ne_zero hn).not_le (not_le_of_lt $ ha.trans_lt $ cast_pos.2 $ nat.pos_of_ne_zero hn) }, { exact le_floor_iff ha } end @[simp] lemma one_le_floor_iff (x : α) : 1 ≤ ⌊x⌋₊ ↔ 1 ≤ x := by exact_mod_cast (@le_floor_iff' α _ _ x 1 one_ne_zero) lemma floor_lt' (hn : n ≠ 0) : ⌊a⌋₊ < n ↔ a < n := lt_iff_lt_of_le_iff_le $ le_floor_iff' hn lemma floor_pos : 0 < ⌊a⌋₊ ↔ 1 ≤ a := by { convert le_floor_iff' nat.one_ne_zero, exact cast_one.symm } lemma pos_of_floor_pos (h : 0 < ⌊a⌋₊) : 0 < a := (le_or_lt a 0).resolve_left (λ ha, lt_irrefl 0 $ by rwa floor_of_nonpos ha at h) lemma lt_of_lt_floor (h : n < ⌊a⌋₊) : ↑n < a := (nat.cast_lt.2 h).trans_le $ floor_le (pos_of_floor_pos $ (nat.zero_le n).trans_lt h).le lemma floor_le_of_le (h : a ≤ n) : ⌊a⌋₊ ≤ n := le_imp_le_iff_lt_imp_lt.2 lt_of_lt_floor h lemma floor_le_one_of_le_one (h : a ≤ 1) : ⌊a⌋₊ ≤ 1 := floor_le_of_le $ h.trans_eq $ nat.cast_one.symm @[simp] lemma floor_eq_zero : ⌊a⌋₊ = 0 ↔ a < 1 := by { rw [←lt_one_iff, ←@cast_one α], exact floor_lt' nat.one_ne_zero } lemma floor_eq_iff (ha : 0 ≤ a) : ⌊a⌋₊ = n ↔ ↑n ≤ a ∧ a < ↑n + 1 := by rw [←le_floor_iff ha, ←nat.cast_one, ←nat.cast_add, ←floor_lt ha, nat.lt_add_one_iff, le_antisymm_iff, and.comm] lemma floor_eq_iff' (hn : n ≠ 0) : ⌊a⌋₊ = n ↔ ↑n ≤ a ∧ a < ↑n + 1 := by rw [← le_floor_iff' hn, ← nat.cast_one, ← nat.cast_add, ← floor_lt' (nat.add_one_ne_zero n), nat.lt_add_one_iff, le_antisymm_iff, and.comm] lemma floor_eq_on_Ico (n : ℕ) : ∀ a ∈ (set.Ico n (n+1) : set α), ⌊a⌋₊ = n := λ a ⟨h₀, h₁⟩, (floor_eq_iff $ n.cast_nonneg.trans h₀).mpr ⟨h₀, h₁⟩ lemma floor_eq_on_Ico' (n : ℕ) : ∀ a ∈ (set.Ico n (n+1) : set α), (⌊a⌋₊ : α) = n := λ x hx, by exact_mod_cast floor_eq_on_Ico n x hx @[simp] lemma preimage_floor_zero : (floor : α → ℕ) ⁻¹' {0} = Iio 1 := ext $ λ a, floor_eq_zero lemma preimage_floor_of_ne_zero {n : ℕ} (hn : n ≠ 0) : (floor : α → ℕ) ⁻¹' {n} = Ico n (n + 1) := ext $ λ a, floor_eq_iff' hn /-! #### Ceil -/ lemma gc_ceil_coe : galois_connection (ceil : α → ℕ) coe := floor_semiring.gc_ceil @[simp] lemma ceil_le : ⌈a⌉₊ ≤ n ↔ a ≤ n := gc_ceil_coe _ _ lemma lt_ceil : n < ⌈a⌉₊ ↔ (n : α) < a := lt_iff_lt_of_le_iff_le ceil_le lemma le_ceil (a : α) : a ≤ ⌈a⌉₊ := ceil_le.1 le_rfl lemma ceil_mono : monotone (ceil : α → ℕ) := gc_ceil_coe.monotone_l @[simp] lemma ceil_coe (n : ℕ) : ⌈(n : α)⌉₊ = n := eq_of_forall_ge_iff $ λ a, ceil_le.trans nat.cast_le @[simp] lemma ceil_zero : ⌈(0 : α)⌉₊ = 0 := by rw [← nat.cast_zero, ceil_coe] @[simp] lemma ceil_one : ⌈(1 : α)⌉₊ = 1 := by rw [←nat.cast_one, ceil_coe] @[simp] lemma ceil_eq_zero : ⌈a⌉₊ = 0 ↔ a ≤ 0 := by rw [← le_zero_iff, ceil_le, nat.cast_zero] @[simp] lemma ceil_pos : 0 < ⌈a⌉₊ ↔ 0 < a := by rw [lt_ceil, cast_zero] lemma lt_of_ceil_lt (h : ⌈a⌉₊ < n) : a < n := (le_ceil a).trans_lt (nat.cast_lt.2 h) lemma le_of_ceil_le (h : ⌈a⌉₊ ≤ n) : a ≤ n := (le_ceil a).trans (nat.cast_le.2 h) lemma floor_le_ceil (a : α) : ⌊a⌋₊ ≤ ⌈a⌉₊ := begin obtain ha | ha := le_total a 0, { rw floor_of_nonpos ha, exact nat.zero_le _ }, { exact cast_le.1 ((floor_le ha).trans $ le_ceil _) } end lemma floor_lt_ceil_of_lt_of_pos {a b : α} (h : a < b) (h' : 0 < b) : ⌊a⌋₊ < ⌈b⌉₊ := begin rcases le_or_lt 0 a with ha|ha, { rw floor_lt ha, exact h.trans_le (le_ceil _) }, { rwa [floor_of_nonpos ha.le, lt_ceil, nat.cast_zero] } end lemma ceil_eq_iff (hn : n ≠ 0) : ⌈a⌉₊ = n ↔ ↑(n - 1) < a ∧ a ≤ n := by rw [← ceil_le, ← not_le, ← ceil_le, not_le, tsub_lt_iff_right (nat.add_one_le_iff.2 (pos_iff_ne_zero.2 hn)), nat.lt_add_one_iff, le_antisymm_iff, and.comm] @[simp] lemma preimage_ceil_zero : (nat.ceil : α → ℕ) ⁻¹' {0} = Iic 0 := ext $ λ x, ceil_eq_zero lemma preimage_ceil_of_ne_zero (hn : n ≠ 0) : (nat.ceil : α → ℕ) ⁻¹' {n} = Ioc ↑(n - 1) n := ext $ λ x, ceil_eq_iff hn /-! #### Intervals -/ @[simp] lemma preimage_Ioo {a b : α} (ha : 0 ≤ a) : ((coe : ℕ → α) ⁻¹' (set.Ioo a b)) = set.Ioo ⌊a⌋₊ ⌈b⌉₊ := by { ext, simp [floor_lt, lt_ceil, ha] } @[simp] lemma preimage_Ico {a b : α} : ((coe : ℕ → α) ⁻¹' (set.Ico a b)) = set.Ico ⌈a⌉₊ ⌈b⌉₊ := by { ext, simp [ceil_le, lt_ceil] } @[simp] lemma preimage_Ioc {a b : α} (ha : 0 ≤ a) (hb : 0 ≤ b) : ((coe : ℕ → α) ⁻¹' (set.Ioc a b)) = set.Ioc ⌊a⌋₊ ⌊b⌋₊ := by { ext, simp [floor_lt, le_floor_iff, hb, ha] } @[simp] lemma preimage_Icc {a b : α} (hb : 0 ≤ b) : ((coe : ℕ → α) ⁻¹' (set.Icc a b)) = set.Icc ⌈a⌉₊ ⌊b⌋₊ := by { ext, simp [ceil_le, hb, le_floor_iff] } @[simp] lemma preimage_Ioi {a : α} (ha : 0 ≤ a) : ((coe : ℕ → α) ⁻¹' (set.Ioi a)) = set.Ioi ⌊a⌋₊ := by { ext, simp [floor_lt, ha] } @[simp] lemma preimage_Ici {a : α} : ((coe : ℕ → α) ⁻¹' (set.Ici a)) = set.Ici ⌈a⌉₊ := by { ext, simp [ceil_le] } @[simp] lemma preimage_Iio {a : α} : ((coe : ℕ → α) ⁻¹' (set.Iio a)) = set.Iio ⌈a⌉₊ := by { ext, simp [lt_ceil] } @[simp] lemma preimage_Iic {a : α} (ha : 0 ≤ a) : ((coe : ℕ → α) ⁻¹' (set.Iic a)) = set.Iic ⌊a⌋₊ := by { ext, simp [le_floor_iff, ha] } lemma floor_add_nat (ha : 0 ≤ a) (n : ℕ) : ⌊a + n⌋₊ = ⌊a⌋₊ + n := eq_of_forall_le_iff $ λ b, begin rw [le_floor_iff (add_nonneg ha n.cast_nonneg)], obtain hb | hb := le_total n b, { obtain ⟨d, rfl⟩ := exists_add_of_le hb, rw [nat.cast_add, add_comm n, add_comm (n : α), add_le_add_iff_right, add_le_add_iff_right, le_floor_iff ha] }, { obtain ⟨d, rfl⟩ := exists_add_of_le hb, rw [nat.cast_add, add_left_comm _ b, add_left_comm _ (b : α)], refine iff_of_true _ le_self_add, exact (le_add_of_nonneg_right $ ha.trans $ le_add_of_nonneg_right d.cast_nonneg) } end lemma floor_add_one (ha : 0 ≤ a) : ⌊a + 1⌋₊ = ⌊a⌋₊ + 1 := by { convert floor_add_nat ha 1, exact cast_one.symm } lemma floor_sub_nat [has_sub α] [has_ordered_sub α] [has_exists_add_of_le α] (a : α) (n : ℕ) : ⌊a - n⌋₊ = ⌊a⌋₊ - n := begin obtain ha | ha := le_total a 0, { rw [floor_of_nonpos ha, floor_of_nonpos (tsub_nonpos_of_le (ha.trans n.cast_nonneg)), zero_tsub] }, cases le_total a n, { rw [floor_of_nonpos (tsub_nonpos_of_le h), eq_comm, tsub_eq_zero_iff_le], exact nat.cast_le.1 ((nat.floor_le ha).trans h) }, { rw [eq_tsub_iff_add_eq_of_le (le_floor h), ←floor_add_nat _, tsub_add_cancel_of_le h], exact le_tsub_of_add_le_left ((add_zero _).trans_le h), } end lemma ceil_add_nat (ha : 0 ≤ a) (n : ℕ) : ⌈a + n⌉₊ = ⌈a⌉₊ + n := eq_of_forall_ge_iff $ λ b, begin rw [←not_lt, ←not_lt, not_iff_not], rw [lt_ceil], obtain hb | hb := le_or_lt n b, { obtain ⟨d, rfl⟩ := exists_add_of_le hb, rw [nat.cast_add, add_comm n, add_comm (n : α), add_lt_add_iff_right, add_lt_add_iff_right, lt_ceil] }, { exact iff_of_true (lt_add_of_nonneg_of_lt ha $ cast_lt.2 hb) (lt_add_left _ _ _ hb) } end lemma ceil_add_one (ha : 0 ≤ a) : ⌈a + 1⌉₊ = ⌈a⌉₊ + 1 := by { convert ceil_add_nat ha 1, exact cast_one.symm } lemma ceil_lt_add_one (ha : 0 ≤ a) : (⌈a⌉₊ : α) < a + 1 := lt_ceil.1 $ (nat.lt_succ_self _).trans_le (ceil_add_one ha).ge end linear_ordered_semiring section linear_ordered_ring variables [linear_ordered_ring α] [floor_semiring α] lemma sub_one_lt_floor (a : α) : a - 1 < ⌊a⌋₊ := sub_lt_iff_lt_add.2 $ lt_floor_add_one a end linear_ordered_ring section linear_ordered_semifield variables [linear_ordered_semifield α] [floor_semiring α] lemma floor_div_nat (a : α) (n : ℕ) : ⌊a / n⌋₊ = ⌊a⌋₊ / n := begin cases le_total a 0 with ha ha, { rw [floor_of_nonpos, floor_of_nonpos ha], { simp }, apply div_nonpos_of_nonpos_of_nonneg ha n.cast_nonneg }, obtain rfl | hn := n.eq_zero_or_pos, { rw [cast_zero, div_zero, nat.div_zero, floor_zero] }, refine (floor_eq_iff _).2 _, { exact div_nonneg ha n.cast_nonneg }, split, { exact cast_div_le.trans (div_le_div_of_le_of_nonneg (floor_le ha) n.cast_nonneg) }, rw [div_lt_iff, add_mul, one_mul, ←cast_mul, ←cast_add, ←floor_lt ha], { exact lt_div_mul_add hn }, { exact (cast_pos.2 hn) } end /-- Natural division is the floor of field division. -/ lemma floor_div_eq_div (m n : ℕ) : ⌊(m : α) / n⌋₊ = m / n := by { convert floor_div_nat (m : α) n, rw m.floor_coe } end linear_ordered_semifield end nat /-- There exists at most one `floor_semiring` structure on a linear ordered semiring. -/ lemma subsingleton_floor_semiring {α} [linear_ordered_semiring α] : subsingleton (floor_semiring α) := begin refine ⟨λ H₁ H₂, _⟩, have : H₁.ceil = H₂.ceil, from funext (λ a, H₁.gc_ceil.l_unique H₂.gc_ceil $ λ n, rfl), have : H₁.floor = H₂.floor, { ext a, cases lt_or_le a 0, { rw [H₁.floor_of_neg, H₂.floor_of_neg]; exact h }, { refine eq_of_forall_le_iff (λ n, _), rw [H₁.gc_floor, H₂.gc_floor]; exact h } }, cases H₁, cases H₂, congr; assumption end /-! ### Floor rings -/ /-- A `floor_ring` is a linear ordered ring over `α` with a function `floor : α → ℤ` satisfying `∀ (z : ℤ) (a : α), z ≤ floor a ↔ (z : α) ≤ a)`. -/ class floor_ring (α) [linear_ordered_ring α] := (floor : α → ℤ) (ceil : α → ℤ) (gc_coe_floor : galois_connection coe floor) (gc_ceil_coe : galois_connection ceil coe) instance : floor_ring ℤ := { floor := id, ceil := id, gc_coe_floor := λ a b, by { rw int.cast_id, refl }, gc_ceil_coe := λ a b, by { rw int.cast_id, refl } } /-- A `floor_ring` constructor from the `floor` function alone. -/ def floor_ring.of_floor (α) [linear_ordered_ring α] (floor : α → ℤ) (gc_coe_floor : galois_connection coe floor) : floor_ring α := { floor := floor, ceil := λ a, -floor (-a), gc_coe_floor := gc_coe_floor, gc_ceil_coe := λ a z, by rw [neg_le, ←gc_coe_floor, int.cast_neg, neg_le_neg_iff] } /-- A `floor_ring` constructor from the `ceil` function alone. -/ def floor_ring.of_ceil (α) [linear_ordered_ring α] (ceil : α → ℤ) (gc_ceil_coe : galois_connection ceil coe) : floor_ring α := { floor := λ a, -ceil (-a), ceil := ceil, gc_coe_floor := λ a z, by rw [le_neg, gc_ceil_coe, int.cast_neg, neg_le_neg_iff], gc_ceil_coe := gc_ceil_coe } namespace int variables [linear_ordered_ring α] [floor_ring α] {z : ℤ} {a : α} /-- `int.floor a` is the greatest integer `z` such that `z ≤ a`. It is denoted with `⌊a⌋`. -/ def floor : α → ℤ := floor_ring.floor /-- `int.ceil a` is the smallest integer `z` such that `a ≤ z`. It is denoted with `⌈a⌉`. -/ def ceil : α → ℤ := floor_ring.ceil /-- `int.fract a`, the fractional part of `a`, is `a` minus its floor. -/ def fract (a : α) : α := a - floor a @[simp] lemma floor_int : (int.floor : ℤ → ℤ) = id := rfl @[simp] lemma ceil_int : (int.ceil : ℤ → ℤ) = id := rfl @[simp] lemma fract_int : (int.fract : ℤ → ℤ) = 0 := funext $ λ x, by simp [fract] notation `⌊` a `⌋` := int.floor a notation `⌈` a `⌉` := int.ceil a -- Mathematical notation for `fract a` is usually `{a}`. Let's not even go there. @[simp] lemma floor_ring_floor_eq : @floor_ring.floor = @int.floor := rfl @[simp] lemma floor_ring_ceil_eq : @floor_ring.ceil = @int.ceil := rfl /-! #### Floor -/ lemma gc_coe_floor : galois_connection (coe : ℤ → α) floor := floor_ring.gc_coe_floor lemma le_floor : z ≤ ⌊a⌋ ↔ (z : α) ≤ a := (gc_coe_floor z a).symm lemma floor_lt : ⌊a⌋ < z ↔ a < z := lt_iff_lt_of_le_iff_le le_floor lemma floor_le (a : α) : (⌊a⌋ : α) ≤ a := gc_coe_floor.l_u_le a lemma floor_nonneg : 0 ≤ ⌊a⌋ ↔ 0 ≤ a := by rw [le_floor, int.cast_zero] lemma floor_nonpos (ha : a ≤ 0) : ⌊a⌋ ≤ 0 := begin rw [← @cast_le α, int.cast_zero], exact (floor_le a).trans ha, end lemma lt_succ_floor (a : α) : a < ⌊a⌋.succ := floor_lt.1 $ int.lt_succ_self _ lemma lt_floor_add_one (a : α) : a < ⌊a⌋ + 1 := by simpa only [int.succ, int.cast_add, int.cast_one] using lt_succ_floor a lemma sub_one_lt_floor (a : α) : a - 1 < ⌊a⌋ := sub_lt_iff_lt_add.2 (lt_floor_add_one a) @[simp] lemma floor_coe (z : ℤ) : ⌊(z : α)⌋ = z := eq_of_forall_le_iff $ λ a, by rw [le_floor, int.cast_le] @[simp] lemma floor_zero : ⌊(0 : α)⌋ = 0 := by rw [← int.cast_zero, floor_coe] @[simp] lemma floor_one : ⌊(1 : α)⌋ = 1 := by rw [← int.cast_one, floor_coe] @[mono] lemma floor_mono : monotone (floor : α → ℤ) := gc_coe_floor.monotone_u lemma floor_pos : 0 < ⌊a⌋ ↔ 1 ≤ a := by { convert le_floor, exact cast_one.symm } @[simp] lemma floor_add_int (a : α) (z : ℤ) : ⌊a + z⌋ = ⌊a⌋ + z := eq_of_forall_le_iff $ λ a, by rw [le_floor, ← sub_le_iff_le_add, ← sub_le_iff_le_add, le_floor, int.cast_sub] lemma floor_add_one (a : α) : ⌊a + 1⌋ = ⌊a⌋ + 1 := by { convert floor_add_int a 1, exact cast_one.symm } @[simp] lemma floor_int_add (z : ℤ) (a : α) : ⌊↑z + a⌋ = z + ⌊a⌋ := by simpa only [add_comm] using floor_add_int a z @[simp] lemma floor_add_nat (a : α) (n : ℕ) : ⌊a + n⌋ = ⌊a⌋ + n := by rw [← int.cast_coe_nat, floor_add_int] @[simp] lemma floor_nat_add (n : ℕ) (a : α) : ⌊↑n + a⌋ = n + ⌊a⌋ := by rw [← int.cast_coe_nat, floor_int_add] @[simp] lemma floor_sub_int (a : α) (z : ℤ) : ⌊a - z⌋ = ⌊a⌋ - z := eq.trans (by rw [int.cast_neg, sub_eq_add_neg]) (floor_add_int _ _) @[simp] lemma floor_sub_nat (a : α) (n : ℕ) : ⌊a - n⌋ = ⌊a⌋ - n := by rw [← int.cast_coe_nat, floor_sub_int] lemma abs_sub_lt_one_of_floor_eq_floor {α : Type*} [linear_ordered_comm_ring α] [floor_ring α] {a b : α} (h : ⌊a⌋ = ⌊b⌋) : |a - b| < 1 := begin have : a < ⌊a⌋ + 1 := lt_floor_add_one a, have : b < ⌊b⌋ + 1 := lt_floor_add_one b, have : (⌊a⌋ : α) = ⌊b⌋ := int.cast_inj.2 h, have : (⌊a⌋ : α) ≤ a := floor_le a, have : (⌊b⌋ : α) ≤ b := floor_le b, exact abs_sub_lt_iff.2 ⟨by linarith, by linarith⟩ end lemma floor_eq_iff : ⌊a⌋ = z ↔ ↑z ≤ a ∧ a < z + 1 := by rw [le_antisymm_iff, le_floor, ←int.lt_add_one_iff, floor_lt, int.cast_add, int.cast_one, and.comm] lemma floor_eq_on_Ico (n : ℤ) : ∀ a ∈ set.Ico (n : α) (n + 1), ⌊a⌋ = n := λ a ⟨h₀, h₁⟩, floor_eq_iff.mpr ⟨h₀, h₁⟩ lemma floor_eq_on_Ico' (n : ℤ) : ∀ a ∈ set.Ico (n : α) (n + 1), (⌊a⌋ : α) = n := λ a ha, congr_arg _ $ floor_eq_on_Ico n a ha @[simp] lemma preimage_floor_singleton (m : ℤ) : (floor : α → ℤ) ⁻¹' {m} = Ico m (m + 1) := ext $ λ x, floor_eq_iff /-! #### Fractional part -/ @[simp] lemma self_sub_floor (a : α) : a - ⌊a⌋ = fract a := rfl @[simp] lemma floor_add_fract (a : α) : (⌊a⌋ : α) + fract a = a := add_sub_cancel'_right _ _ @[simp] lemma fract_add_floor (a : α) : fract a + ⌊a⌋ = a := sub_add_cancel _ _ @[simp] lemma fract_add_int (a : α) (m : ℤ) : fract (a + m) = fract a := by { rw fract, simp } @[simp] lemma fract_sub_int (a : α) (m : ℤ) : fract (a - m) = fract a := by { rw fract, simp } @[simp] lemma fract_int_add (m : ℤ) (a : α) : fract (↑m + a) = fract a := by rw [add_comm, fract_add_int] @[simp] lemma self_sub_fract (a : α) : a - fract a = ⌊a⌋ := sub_sub_cancel _ _ @[simp] lemma fract_sub_self (a : α) : fract a - a = -⌊a⌋ := sub_sub_cancel_left _ _ lemma fract_nonneg (a : α) : 0 ≤ fract a := sub_nonneg.2 $ floor_le _ lemma fract_lt_one (a : α) : fract a < 1 := sub_lt.1 $ sub_one_lt_floor _ @[simp] lemma fract_zero : fract (0 : α) = 0 := by rw [fract, floor_zero, cast_zero, sub_self] @[simp] lemma fract_one : fract (1 : α) = 0 := by simp [fract] @[simp] lemma fract_coe (z : ℤ) : fract (z : α) = 0 := by { unfold fract, rw floor_coe, exact sub_self _ } @[simp] lemma fract_floor (a : α) : fract (⌊a⌋ : α) = 0 := fract_coe _ @[simp] lemma floor_fract (a : α) : ⌊fract a⌋ = 0 := by rw [floor_eq_iff, int.cast_zero, zero_add]; exact ⟨fract_nonneg _, fract_lt_one _⟩ lemma fract_eq_iff {a b : α} : fract a = b ↔ 0 ≤ b ∧ b < 1 ∧ ∃ z : ℤ, a - b = z := ⟨λ h, by { rw ←h, exact ⟨fract_nonneg _, fract_lt_one _, ⟨⌊a⌋, sub_sub_cancel _ _⟩⟩}, begin rintro ⟨h₀, h₁, z, hz⟩, show a - ⌊a⌋ = b, apply eq.symm, rw [eq_sub_iff_add_eq, add_comm, ←eq_sub_iff_add_eq], rw [hz, int.cast_inj, floor_eq_iff, ←hz], clear hz, split; simpa [sub_eq_add_neg, add_assoc] end⟩ lemma fract_eq_fract {a b : α} : fract a = fract b ↔ ∃ z : ℤ, a - b = z := ⟨λ h, ⟨⌊a⌋ - ⌊b⌋, begin unfold fract at h, rw [int.cast_sub, sub_eq_sub_iff_sub_eq_sub.1 h], end⟩, begin rintro ⟨z, hz⟩, refine fract_eq_iff.2 ⟨fract_nonneg _, fract_lt_one _, z + ⌊b⌋, _⟩, rw [eq_add_of_sub_eq hz, add_comm, int.cast_add], exact add_sub_sub_cancel _ _ _, end⟩ @[simp] lemma fract_eq_self {a : α} : fract a = a ↔ 0 ≤ a ∧ a < 1 := fract_eq_iff.trans $ and.assoc.symm.trans $ and_iff_left ⟨0, by simp⟩ @[simp] lemma fract_fract (a : α) : fract (fract a) = fract a := fract_eq_self.2 ⟨fract_nonneg _, fract_lt_one _⟩ lemma fract_add (a b : α) : ∃ z : ℤ, fract (a + b) - fract a - fract b = z := ⟨⌊a⌋ + ⌊b⌋ - ⌊a + b⌋, by { unfold fract, simp [sub_eq_add_neg], abel }⟩ lemma fract_mul_nat (a : α) (b : ℕ) : ∃ z : ℤ, fract a * b - fract (a * b) = z := begin induction b with c hc, use 0, simp, rcases hc with ⟨z, hz⟩, rw [nat.succ_eq_add_one, nat.cast_add, mul_add, mul_add, nat.cast_one, mul_one, mul_one], rcases fract_add (a * c) a with ⟨y, hy⟩, use z - y, rw [int.cast_sub, ←hz, ←hy], abel end lemma preimage_fract (s : set α) : fract ⁻¹' s = ⋃ m : ℤ, (λ x, x - m) ⁻¹' (s ∩ Ico (0 : α) 1) := begin ext x, simp only [mem_preimage, mem_Union, mem_inter_eq], refine ⟨λ h, ⟨⌊x⌋, h, fract_nonneg x, fract_lt_one x⟩, _⟩, rintro ⟨m, hms, hm0, hm1⟩, obtain rfl : ⌊x⌋ = m, from floor_eq_iff.2 ⟨sub_nonneg.1 hm0, sub_lt_iff_lt_add'.1 hm1⟩, exact hms end lemma image_fract (s : set α) : fract '' s = ⋃ m : ℤ, (λ x, x - m) '' s ∩ Ico 0 1 := begin ext x, simp only [mem_image, mem_inter_eq, mem_Union], split, { rintro ⟨y, hy, rfl⟩, exact ⟨⌊y⌋, ⟨y, hy, rfl⟩, fract_nonneg y, fract_lt_one y⟩ }, { rintro ⟨m, ⟨y, hys, rfl⟩, h0, h1⟩, obtain rfl : ⌊y⌋ = m, from floor_eq_iff.2 ⟨sub_nonneg.1 h0, sub_lt_iff_lt_add'.1 h1⟩, exact ⟨y, hys, rfl⟩ } end section linear_ordered_field variables {k : Type*} [linear_ordered_field k] [floor_ring k] {b : k} lemma fract_div_mul_self_mem_Ico (a b : k) (ha : 0 < a) : fract (b/a) * a ∈ Ico 0 a := ⟨(zero_le_mul_right ha).2 (fract_nonneg (b/a)), (mul_lt_iff_lt_one_left ha).2 (fract_lt_one (b/a))⟩ lemma fract_div_mul_self_add_zsmul_eq (a b : k) (ha : a ≠ 0) : fract (b/a) * a + ⌊b/a⌋ • a = b := by rw [zsmul_eq_mul, ← add_mul, fract_add_floor, div_mul_cancel b ha] lemma sub_floor_div_mul_nonneg (a : k) (hb : 0 < b) : 0 ≤ a - ⌊a / b⌋ * b := sub_nonneg_of_le $ (le_div_iff hb).1 $ floor_le _ lemma sub_floor_div_mul_lt (a : k) (hb : 0 < b) : a - ⌊a / b⌋ * b < b := sub_lt_iff_lt_add.2 $ by { rw [←one_add_mul, ←div_lt_iff hb, add_comm], exact lt_floor_add_one _ } end linear_ordered_field /-! #### Ceil -/ lemma gc_ceil_coe : galois_connection ceil (coe : ℤ → α) := floor_ring.gc_ceil_coe lemma ceil_le : ⌈a⌉ ≤ z ↔ a ≤ z := gc_ceil_coe a z lemma floor_neg : ⌊-a⌋ = -⌈a⌉ := eq_of_forall_le_iff (λ z, by rw [le_neg, ceil_le, le_floor, int.cast_neg, le_neg]) lemma ceil_neg : ⌈-a⌉ = -⌊a⌋ := eq_of_forall_ge_iff (λ z, by rw [neg_le, ceil_le, le_floor, int.cast_neg, neg_le]) lemma lt_ceil : z < ⌈a⌉ ↔ (z : α) < a := lt_iff_lt_of_le_iff_le ceil_le lemma ceil_le_floor_add_one (a : α) : ⌈a⌉ ≤ ⌊a⌋ + 1 := by { rw [ceil_le, int.cast_add, int.cast_one], exact (lt_floor_add_one a).le } lemma le_ceil (a : α) : a ≤ ⌈a⌉ := gc_ceil_coe.le_u_l a @[simp] lemma ceil_coe (z : ℤ) : ⌈(z : α)⌉ = z := eq_of_forall_ge_iff $ λ a, by rw [ceil_le, int.cast_le] lemma ceil_mono : monotone (ceil : α → ℤ) := gc_ceil_coe.monotone_l @[simp] lemma ceil_add_int (a : α) (z : ℤ) : ⌈a + z⌉ = ⌈a⌉ + z := by rw [←neg_inj, neg_add', ←floor_neg, ←floor_neg, neg_add', floor_sub_int] @[simp] lemma ceil_add_one (a : α) : ⌈a + 1⌉ = ⌈a⌉ + 1 := by { convert ceil_add_int a (1 : ℤ), exact cast_one.symm } @[simp] lemma ceil_sub_int (a : α) (z : ℤ) : ⌈a - z⌉ = ⌈a⌉ - z := eq.trans (by rw [int.cast_neg, sub_eq_add_neg]) (ceil_add_int _ _) @[simp] lemma ceil_sub_one (a : α) : ⌈a - 1⌉ = ⌈a⌉ - 1 := by rw [eq_sub_iff_add_eq, ← ceil_add_one, sub_add_cancel] lemma ceil_lt_add_one (a : α) : (⌈a⌉ : α) < a + 1 := by { rw [← lt_ceil, ← int.cast_one, ceil_add_int], apply lt_add_one } @[simp] lemma ceil_pos : 0 < ⌈a⌉ ↔ 0 < a := by rw [lt_ceil, cast_zero] @[simp] lemma ceil_zero : ⌈(0 : α)⌉ = 0 := by rw [← int.cast_zero, ceil_coe] @[simp] lemma ceil_one : ⌈(1 : α)⌉ = 1 := by rw [←int.cast_one, ceil_coe] lemma ceil_nonneg (ha : 0 ≤ a) : 0 ≤ ⌈a⌉ := by exact_mod_cast ha.trans (le_ceil a) lemma ceil_eq_iff : ⌈a⌉ = z ↔ ↑z - 1 < a ∧ a ≤ z := by rw [←ceil_le, ←int.cast_one, ←int.cast_sub, ←lt_ceil, int.sub_one_lt_iff, le_antisymm_iff, and.comm] lemma ceil_eq_on_Ioc (z : ℤ) : ∀ a ∈ set.Ioc (z - 1 : α) z, ⌈a⌉ = z := λ a ⟨h₀, h₁⟩, ceil_eq_iff.mpr ⟨h₀, h₁⟩ lemma ceil_eq_on_Ioc' (z : ℤ) : ∀ a ∈ set.Ioc (z - 1 : α) z, (⌈a⌉ : α) = z := λ a ha, by exact_mod_cast ceil_eq_on_Ioc z a ha lemma floor_le_ceil (a : α) : ⌊a⌋ ≤ ⌈a⌉ := cast_le.1 $ (floor_le _).trans $ le_ceil _ lemma floor_lt_ceil_of_lt {a b : α} (h : a < b) : ⌊a⌋ < ⌈b⌉ := cast_lt.1 $ (floor_le a).trans_lt $ h.trans_le $ le_ceil b @[simp] lemma preimage_ceil_singleton (m : ℤ) : (ceil : α → ℤ) ⁻¹' {m} = Ioc (m - 1) m := ext $ λ x, ceil_eq_iff /-! #### Intervals -/ @[simp] lemma preimage_Ioo {a b : α} : ((coe : ℤ → α) ⁻¹' (set.Ioo a b)) = set.Ioo ⌊a⌋ ⌈b⌉ := by { ext, simp [floor_lt, lt_ceil] } @[simp] lemma preimage_Ico {a b : α} : ((coe : ℤ → α) ⁻¹' (set.Ico a b)) = set.Ico ⌈a⌉ ⌈b⌉ := by { ext, simp [ceil_le, lt_ceil] } @[simp] lemma preimage_Ioc {a b : α} : ((coe : ℤ → α) ⁻¹' (set.Ioc a b)) = set.Ioc ⌊a⌋ ⌊b⌋ := by { ext, simp [floor_lt, le_floor] } @[simp] lemma preimage_Icc {a b : α} : ((coe : ℤ → α) ⁻¹' (set.Icc a b)) = set.Icc ⌈a⌉ ⌊b⌋ := by { ext, simp [ceil_le, le_floor] } @[simp] lemma preimage_Ioi : ((coe : ℤ → α) ⁻¹' (set.Ioi a)) = set.Ioi ⌊a⌋ := by { ext, simp [floor_lt] } @[simp] lemma preimage_Ici : ((coe : ℤ → α) ⁻¹' (set.Ici a)) = set.Ici ⌈a⌉ := by { ext, simp [ceil_le] } @[simp] lemma preimage_Iio : ((coe : ℤ → α) ⁻¹' (set.Iio a)) = set.Iio ⌈a⌉ := by { ext, simp [lt_ceil] } @[simp] lemma preimage_Iic : ((coe : ℤ → α) ⁻¹' (set.Iic a)) = set.Iic ⌊a⌋ := by { ext, simp [le_floor] } end int open int /-! ### Round -/ section round variables [linear_ordered_field α] [floor_ring α] /-- `round` rounds a number to the nearest integer. `round (1 / 2) = 1` -/ def round (x : α) : ℤ := ⌊x + 1 / 2⌋ @[simp] lemma round_zero : round (0 : α) = 0 := floor_eq_iff.2 (by norm_num) @[simp] lemma round_one : round (1 : α) = 1 := floor_eq_iff.2 (by norm_num) lemma abs_sub_round (x : α) : |x - round x| ≤ 1 / 2 := begin rw [round, abs_sub_le_iff], have := floor_le (x + 1 / 2), have := lt_floor_add_one (x + 1 / 2), split; linarith end end round variables {α} [linear_ordered_ring α] [floor_ring α] /-! #### A floor ring as a floor semiring -/ @[priority 100] -- see Note [lower instance priority] instance _root_.floor_ring.to_floor_semiring : floor_semiring α := { floor := λ a, ⌊a⌋.to_nat, ceil := λ a, ⌈a⌉.to_nat, floor_of_neg := λ a ha, int.to_nat_of_nonpos (int.floor_nonpos ha.le), gc_floor := λ a n ha, by rw [int.le_to_nat_iff (int.floor_nonneg.2 ha), int.le_floor, int.cast_coe_nat], gc_ceil := λ a n, by rw [int.to_nat_le, int.ceil_le, int.cast_coe_nat] } lemma int.floor_to_nat (a : α) : ⌊a⌋.to_nat = ⌊a⌋₊ := rfl lemma int.ceil_to_nat (a : α) : ⌈a⌉.to_nat = ⌈a⌉₊ := rfl @[simp] lemma nat.floor_int : (nat.floor : ℤ → ℕ) = int.to_nat := rfl @[simp] lemma nat.ceil_int : (nat.ceil : ℤ → ℕ) = int.to_nat := rfl variables {a : α} lemma nat.cast_floor_eq_int_floor (ha : 0 ≤ a) : (⌊a⌋₊ : ℤ) = ⌊a⌋ := by rw [←int.floor_to_nat, int.to_nat_of_nonneg (int.floor_nonneg.2 ha)] lemma nat.cast_floor_eq_cast_int_floor (ha : 0 ≤ a) : (⌊a⌋₊ : α) = ⌊a⌋ := by rw [←nat.cast_floor_eq_int_floor ha, int.cast_coe_nat] lemma nat.cast_ceil_eq_int_ceil (ha : 0 ≤ a) : (⌈a⌉₊ : ℤ) = ⌈a⌉ := by { rw [←int.ceil_to_nat, int.to_nat_of_nonneg (int.ceil_nonneg ha)] } lemma nat.cast_ceil_eq_cast_int_ceil (ha : 0 ≤ a) : (⌈a⌉₊ : α) = ⌈a⌉ := by rw [←nat.cast_ceil_eq_int_ceil ha, int.cast_coe_nat] /-- There exists at most one `floor_ring` structure on a given linear ordered ring. -/ lemma subsingleton_floor_ring {α} [linear_ordered_ring α] : subsingleton (floor_ring α) := begin refine ⟨λ H₁ H₂, _⟩, have : H₁.floor = H₂.floor := funext (λ a, H₁.gc_coe_floor.u_unique H₂.gc_coe_floor $ λ _, rfl), have : H₁.ceil = H₂.ceil := funext (λ a, H₁.gc_ceil_coe.l_unique H₂.gc_ceil_coe $ λ _, rfl), cases H₁, cases H₂, congr; assumption end
98517d7f667b632ef88786b79b09efa2a88ee7b0
74addaa0e41490cbaf2abd313a764c96df57b05d
/Mathlib/linear_algebra/affine_space/independent_auto.lean
4d5cd2622854bfa36a9d2afc490ac0376242db7c
[]
no_license
AurelienSaue/Mathlib4_auto
f538cfd0980f65a6361eadea39e6fc639e9dae14
590df64109b08190abe22358fabc3eae000943f2
refs/heads/master
1,683,906,849,776
1,622,564,669,000
1,622,564,669,000
371,723,747
0
0
null
null
null
null
UTF-8
Lean
false
false
17,596
lean
/- Copyright (c) 2020 Joseph Myers. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Joseph Myers. -/ import Mathlib.PrePort import Mathlib.Lean3Lib.init.default import Mathlib.data.finset.sort import Mathlib.data.matrix.notation import Mathlib.linear_algebra.affine_space.combination import Mathlib.linear_algebra.basis import Mathlib.PostPort universes u_1 u_2 u_3 u_4 u_5 l namespace Mathlib /-! # Affine independence This file defines affinely independent families of points. ## Main definitions * `affine_independent` defines affinely independent families of points as those where no nontrivial weighted subtraction is 0. This is proved equivalent to two other formulations: linear independence of the results of subtracting a base point in the family from the other points in the family, or any equal affine combinations having the same weights. A bundled type `simplex` is provided for finite affinely independent families of points, with an abbreviation `triangle` for the case of three points. ## References * https://en.wikipedia.org/wiki/Affine_space -/ /-- An indexed family is said to be affinely independent if no nontrivial weighted subtractions (where the sum of weights is 0) are 0. -/ def affine_independent (k : Type u_1) {V : Type u_2} {P : Type u_3} [ring k] [add_comm_group V] [module k V] [add_torsor V P] {ι : Type u_4} (p : ι → P) := ∀ (s : finset ι) (w : ι → k), (finset.sum s fun (i : ι) => w i) = 0 → coe_fn (finset.weighted_vsub s p) w = 0 → ∀ (i : ι), i ∈ s → w i = 0 /-- The definition of `affine_independent`. -/ theorem affine_independent_def (k : Type u_1) {V : Type u_2} {P : Type u_3} [ring k] [add_comm_group V] [module k V] [add_torsor V P] {ι : Type u_4} (p : ι → P) : affine_independent k p ↔ ∀ (s : finset ι) (w : ι → k), (finset.sum s fun (i : ι) => w i) = 0 → coe_fn (finset.weighted_vsub s p) w = 0 → ∀ (i : ι), i ∈ s → w i = 0 := iff.rfl /-- A family with at most one point is affinely independent. -/ theorem affine_independent_of_subsingleton (k : Type u_1) {V : Type u_2} {P : Type u_3} [ring k] [add_comm_group V] [module k V] [add_torsor V P] {ι : Type u_4} [subsingleton ι] (p : ι → P) : affine_independent k p := fun (s : finset ι) (w : ι → k) (h : (finset.sum s fun (i : ι) => w i) = 0) (hs : coe_fn (finset.weighted_vsub s p) w = 0) (i : ι) (hi : i ∈ s) => fintype.eq_of_subsingleton_of_sum_eq h i hi /-- A family indexed by a `fintype` is affinely independent if and only if no nontrivial weighted subtractions over `finset.univ` (where the sum of the weights is 0) are 0. -/ theorem affine_independent_iff_of_fintype (k : Type u_1) {V : Type u_2} {P : Type u_3} [ring k] [add_comm_group V] [module k V] [add_torsor V P] {ι : Type u_4} [fintype ι] (p : ι → P) : affine_independent k p ↔ ∀ (w : ι → k), (finset.sum finset.univ fun (i : ι) => w i) = 0 → coe_fn (finset.weighted_vsub finset.univ p) w = 0 → ∀ (i : ι), w i = 0 := sorry /-- A family is affinely independent if and only if the differences from a base point in that family are linearly independent. -/ theorem affine_independent_iff_linear_independent_vsub (k : Type u_1) {V : Type u_2} {P : Type u_3} [ring k] [add_comm_group V] [module k V] [add_torsor V P] {ι : Type u_4} (p : ι → P) (i1 : ι) : affine_independent k p ↔ linear_independent k fun (i : Subtype fun (x : ι) => x ≠ i1) => p ↑i -ᵥ p i1 := sorry /-- A set is affinely independent if and only if the differences from a base point in that set are linearly independent. -/ theorem affine_independent_set_iff_linear_independent_vsub (k : Type u_1) {V : Type u_2} {P : Type u_3} [ring k] [add_comm_group V] [module k V] [add_torsor V P] {s : set P} {p₁ : P} (hp₁ : p₁ ∈ s) : (affine_independent k fun (p : ↥s) => ↑p) ↔ linear_independent k fun (v : ↥((fun (p : P) => p -ᵥ p₁) '' (s \ singleton p₁))) => ↑v := sorry /-- A set of nonzero vectors is linearly independent if and only if, given a point `p₁`, the vectors added to `p₁` and `p₁` itself are affinely independent. -/ theorem linear_independent_set_iff_affine_independent_vadd_union_singleton (k : Type u_1) {V : Type u_2} {P : Type u_3} [ring k] [add_comm_group V] [module k V] [add_torsor V P] {s : set V} (hs : ∀ (v : V), v ∈ s → v ≠ 0) (p₁ : P) : (linear_independent k fun (v : ↥s) => ↑v) ↔ affine_independent k fun (p : ↥(singleton p₁ ∪ (fun (v : V) => v +ᵥ p₁) '' s)) => ↑p := sorry /-- A family is affinely independent if and only if any affine combinations (with sum of weights 1) that evaluate to the same point have equal `set.indicator`. -/ theorem affine_independent_iff_indicator_eq_of_affine_combination_eq (k : Type u_1) {V : Type u_2} {P : Type u_3} [ring k] [add_comm_group V] [module k V] [add_torsor V P] {ι : Type u_4} (p : ι → P) : affine_independent k p ↔ ∀ (s1 s2 : finset ι) (w1 w2 : ι → k), (finset.sum s1 fun (i : ι) => w1 i) = 1 → (finset.sum s2 fun (i : ι) => w2 i) = 1 → coe_fn (finset.affine_combination s1 p) w1 = coe_fn (finset.affine_combination s2 p) w2 → set.indicator (↑s1) w1 = set.indicator (↑s2) w2 := sorry /-- An affinely independent family is injective, if the underlying ring is nontrivial. -/ theorem injective_of_affine_independent {k : Type u_1} {V : Type u_2} {P : Type u_3} [ring k] [add_comm_group V] [module k V] [add_torsor V P] {ι : Type u_4} [nontrivial k] {p : ι → P} (ha : affine_independent k p) : function.injective p := sorry /-- If a family is affinely independent, so is any subfamily given by composition of an embedding into index type with the original family. -/ theorem affine_independent_embedding_of_affine_independent {k : Type u_1} {V : Type u_2} {P : Type u_3} [ring k] [add_comm_group V] [module k V] [add_torsor V P] {ι : Type u_4} {ι2 : Type u_5} (f : ι2 ↪ ι) {p : ι → P} (ha : affine_independent k p) : affine_independent k (p ∘ ⇑f) := sorry /-- If a family is affinely independent, so is any subfamily indexed by a subtype of the index type. -/ theorem affine_independent_subtype_of_affine_independent {k : Type u_1} {V : Type u_2} {P : Type u_3} [ring k] [add_comm_group V] [module k V] [add_torsor V P] {ι : Type u_4} {p : ι → P} (ha : affine_independent k p) (s : set ι) : affine_independent k fun (i : ↥s) => p ↑i := affine_independent_embedding_of_affine_independent (function.embedding.subtype fun (x : ι) => x ∈ s) ha /-- If an indexed family of points is affinely independent, so is the corresponding set of points. -/ theorem affine_independent_set_of_affine_independent {k : Type u_1} {V : Type u_2} {P : Type u_3} [ring k] [add_comm_group V] [module k V] [add_torsor V P] {ι : Type u_4} {p : ι → P} (ha : affine_independent k p) : affine_independent k fun (x : ↥(set.range p)) => ↑x := sorry /-- If a set of points is affinely independent, so is any subset. -/ theorem affine_independent_of_subset_affine_independent {k : Type u_1} {V : Type u_2} {P : Type u_3} [ring k] [add_comm_group V] [module k V] [add_torsor V P] {s : set P} {t : set P} (ha : affine_independent k fun (x : ↥t) => ↑x) (hs : s ⊆ t) : affine_independent k fun (x : ↥s) => ↑x := affine_independent_embedding_of_affine_independent (set.embedding_of_subset s t hs) ha /-- If the range of an injective indexed family of points is affinely independent, so is that family. -/ theorem affine_independent_of_affine_independent_set_of_injective {k : Type u_1} {V : Type u_2} {P : Type u_3} [ring k] [add_comm_group V] [module k V] [add_torsor V P] {ι : Type u_4} {p : ι → P} (ha : affine_independent k fun (x : ↥(set.range p)) => ↑x) (hi : function.injective p) : affine_independent k p := sorry /-- If a family is affinely independent, and the spans of points indexed by two subsets of the index type have a point in common, those subsets of the index type have an element in common, if the underlying ring is nontrivial. -/ theorem exists_mem_inter_of_exists_mem_inter_affine_span_of_affine_independent {k : Type u_1} {V : Type u_2} {P : Type u_3} [ring k] [add_comm_group V] [module k V] [add_torsor V P] {ι : Type u_4} [nontrivial k] {p : ι → P} (ha : affine_independent k p) {s1 : set ι} {s2 : set ι} {p0 : P} (hp0s1 : p0 ∈ affine_span k (p '' s1)) (hp0s2 : p0 ∈ affine_span k (p '' s2)) : ∃ (i : ι), i ∈ s1 ∩ s2 := sorry /-- If a family is affinely independent, the spans of points indexed by disjoint subsets of the index type are disjoint, if the underlying ring is nontrivial. -/ theorem affine_span_disjoint_of_disjoint_of_affine_independent {k : Type u_1} {V : Type u_2} {P : Type u_3} [ring k] [add_comm_group V] [module k V] [add_torsor V P] {ι : Type u_4} [nontrivial k] {p : ι → P} (ha : affine_independent k p) {s1 : set ι} {s2 : set ι} (hd : s1 ∩ s2 = ∅) : ↑(affine_span k (p '' s1)) ∩ ↑(affine_span k (p '' s2)) = ∅ := sorry /-- If a family is affinely independent, a point in the family is in the span of some of the points given by a subset of the index type if and only if that point's index is in the subset, if the underlying ring is nontrivial. -/ @[simp] theorem mem_affine_span_iff_mem_of_affine_independent {k : Type u_1} {V : Type u_2} {P : Type u_3} [ring k] [add_comm_group V] [module k V] [add_torsor V P] {ι : Type u_4} [nontrivial k] {p : ι → P} (ha : affine_independent k p) (i : ι) (s : set ι) : p i ∈ affine_span k (p '' s) ↔ i ∈ s := sorry /-- If a family is affinely independent, a point in the family is not in the affine span of the other points, if the underlying ring is nontrivial. -/ theorem not_mem_affine_span_diff_of_affine_independent {k : Type u_1} {V : Type u_2} {P : Type u_3} [ring k] [add_comm_group V] [module k V] [add_torsor V P] {ι : Type u_4} [nontrivial k] {p : ι → P} (ha : affine_independent k p) (i : ι) (s : set ι) : ¬p i ∈ affine_span k (p '' (s \ singleton i)) := sorry /-- An affinely independent set of points can be extended to such a set that spans the whole space. -/ theorem exists_subset_affine_independent_affine_span_eq_top {k : Type u_1} {V : Type u_2} {P : Type u_3} [field k] [add_comm_group V] [module k V] [add_torsor V P] {s : set P} (h : affine_independent k fun (p : ↥s) => ↑p) : ∃ (t : set P), s ⊆ t ∧ (affine_independent k fun (p : ↥t) => ↑p) ∧ affine_span k t = ⊤ := sorry /-- Two different points are affinely independent. -/ theorem affine_independent_of_ne (k : Type u_1) {V : Type u_2} {P : Type u_3} [field k] [add_comm_group V] [module k V] [add_torsor V P] {p₁ : P} {p₂ : P} (h : p₁ ≠ p₂) : affine_independent k (matrix.vec_cons p₁ (matrix.vec_cons p₂ matrix.vec_empty)) := sorry namespace affine /-- A `simplex k P n` is a collection of `n + 1` affinely independent points. -/ structure simplex (k : Type u_1) {V : Type u_2} (P : Type u_3) [ring k] [add_comm_group V] [module k V] [add_torsor V P] (n : ℕ) where points : fin (n + 1) → P independent : affine_independent k points /-- A `triangle k P` is a collection of three affinely independent points. -/ def triangle (k : Type u_1) {V : Type u_2} (P : Type u_3) [ring k] [add_comm_group V] [module k V] [add_torsor V P] := simplex k P (bit0 1) namespace simplex /-- Construct a 0-simplex from a point. -/ def mk_of_point (k : Type u_1) {V : Type u_2} {P : Type u_3} [ring k] [add_comm_group V] [module k V] [add_torsor V P] (p : P) : simplex k P 0 := mk (fun (_x : fin (0 + 1)) => p) sorry /-- The point in a simplex constructed with `mk_of_point`. -/ @[simp] theorem mk_of_point_points (k : Type u_1) {V : Type u_2} {P : Type u_3} [ring k] [add_comm_group V] [module k V] [add_torsor V P] (p : P) (i : fin 1) : points (mk_of_point k p) i = p := rfl protected instance inhabited (k : Type u_1) {V : Type u_2} {P : Type u_3} [ring k] [add_comm_group V] [module k V] [add_torsor V P] [Inhabited P] : Inhabited (simplex k P 0) := { default := mk_of_point k Inhabited.default } protected instance nonempty (k : Type u_1) {V : Type u_2} {P : Type u_3} [ring k] [add_comm_group V] [module k V] [add_torsor V P] : Nonempty (simplex k P 0) := Nonempty.intro (mk_of_point k (nonempty.some add_torsor.nonempty)) /-- Two simplices are equal if they have the same points. -/ theorem ext {k : Type u_1} {V : Type u_2} {P : Type u_3} [ring k] [add_comm_group V] [module k V] [add_torsor V P] {n : ℕ} {s1 : simplex k P n} {s2 : simplex k P n} (h : ∀ (i : fin (n + 1)), points s1 i = points s2 i) : s1 = s2 := sorry /-- Two simplices are equal if and only if they have the same points. -/ theorem ext_iff {k : Type u_1} {V : Type u_2} {P : Type u_3} [ring k] [add_comm_group V] [module k V] [add_torsor V P] {n : ℕ} (s1 : simplex k P n) (s2 : simplex k P n) : s1 = s2 ↔ ∀ (i : fin (n + 1)), points s1 i = points s2 i := { mp := fun (h : s1 = s2) (_x : fin (n + 1)) => h ▸ rfl, mpr := ext } /-- A face of a simplex is a simplex with the given subset of points. -/ def face {k : Type u_1} {V : Type u_2} {P : Type u_3} [ring k] [add_comm_group V] [module k V] [add_torsor V P] {n : ℕ} (s : simplex k P n) {fs : finset (fin (n + 1))} {m : ℕ} (h : finset.card fs = m + 1) : simplex k P m := mk (points s ∘ ⇑(finset.order_emb_of_fin fs h)) sorry /-- The points of a face of a simplex are given by `mono_of_fin`. -/ theorem face_points {k : Type u_1} {V : Type u_2} {P : Type u_3} [ring k] [add_comm_group V] [module k V] [add_torsor V P] {n : ℕ} (s : simplex k P n) {fs : finset (fin (n + 1))} {m : ℕ} (h : finset.card fs = m + 1) (i : fin (m + 1)) : points (face s h) i = points s (coe_fn (finset.order_emb_of_fin fs h) i) := rfl /-- The points of a face of a simplex are given by `mono_of_fin`. -/ theorem face_points' {k : Type u_1} {V : Type u_2} {P : Type u_3} [ring k] [add_comm_group V] [module k V] [add_torsor V P] {n : ℕ} (s : simplex k P n) {fs : finset (fin (n + 1))} {m : ℕ} (h : finset.card fs = m + 1) : points (face s h) = points s ∘ ⇑(finset.order_emb_of_fin fs h) := rfl /-- A single-point face equals the 0-simplex constructed with `mk_of_point`. -/ @[simp] theorem face_eq_mk_of_point {k : Type u_1} {V : Type u_2} {P : Type u_3} [ring k] [add_comm_group V] [module k V] [add_torsor V P] {n : ℕ} (s : simplex k P n) (i : fin (n + 1)) : face s (finset.card_singleton i) = mk_of_point k (points s i) := sorry /-- The set of points of a face. -/ @[simp] theorem range_face_points {k : Type u_1} {V : Type u_2} {P : Type u_3} [ring k] [add_comm_group V] [module k V] [add_torsor V P] {n : ℕ} (s : simplex k P n) {fs : finset (fin (n + 1))} {m : ℕ} (h : finset.card fs = m + 1) : set.range (points (face s h)) = points s '' ↑fs := sorry end simplex end affine namespace affine namespace simplex /-- The centroid of a face of a simplex as the centroid of a subset of the points. -/ @[simp] theorem face_centroid_eq_centroid {k : Type u_1} {V : Type u_2} {P : Type u_3} [division_ring k] [add_comm_group V] [module k V] [add_torsor V P] {n : ℕ} (s : simplex k P n) {fs : finset (fin (n + 1))} {m : ℕ} (h : finset.card fs = m + 1) : finset.centroid k finset.univ (points (face s h)) = finset.centroid k fs (points s) := sorry /-- Over a characteristic-zero division ring, the centroids given by two subsets of the points of a simplex are equal if and only if those faces are given by the same subset of points. -/ @[simp] theorem centroid_eq_iff {k : Type u_1} {V : Type u_2} {P : Type u_3} [division_ring k] [add_comm_group V] [module k V] [add_torsor V P] [char_zero k] {n : ℕ} (s : simplex k P n) {fs₁ : finset (fin (n + 1))} {fs₂ : finset (fin (n + 1))} {m₁ : ℕ} {m₂ : ℕ} (h₁ : finset.card fs₁ = m₁ + 1) (h₂ : finset.card fs₂ = m₂ + 1) : finset.centroid k fs₁ (points s) = finset.centroid k fs₂ (points s) ↔ fs₁ = fs₂ := sorry /-- Over a characteristic-zero division ring, the centroids of two faces of a simplex are equal if and only if those faces are given by the same subset of points. -/ theorem face_centroid_eq_iff {k : Type u_1} {V : Type u_2} {P : Type u_3} [division_ring k] [add_comm_group V] [module k V] [add_torsor V P] [char_zero k] {n : ℕ} (s : simplex k P n) {fs₁ : finset (fin (n + 1))} {fs₂ : finset (fin (n + 1))} {m₁ : ℕ} {m₂ : ℕ} (h₁ : finset.card fs₁ = m₁ + 1) (h₂ : finset.card fs₂ = m₂ + 1) : finset.centroid k finset.univ (points (face s h₁)) = finset.centroid k finset.univ (points (face s h₂)) ↔ fs₁ = fs₂ := sorry /-- Two simplices with the same points have the same centroid. -/ theorem centroid_eq_of_range_eq {k : Type u_1} {V : Type u_2} {P : Type u_3} [division_ring k] [add_comm_group V] [module k V] [add_torsor V P] {n : ℕ} {s₁ : simplex k P n} {s₂ : simplex k P n} (h : set.range (points s₁) = set.range (points s₂)) : finset.centroid k finset.univ (points s₁) = finset.centroid k finset.univ (points s₂) := sorry end Mathlib
e031c2ab8cea1e02fff1c9bfd7768fd450662d93
626e312b5c1cb2d88fca108f5933076012633192
/src/linear_algebra/dual.lean
aad8570beb3a1dd86f1be21258162248f08e1d17
[ "Apache-2.0" ]
permissive
Bioye97/mathlib
9db2f9ee54418d29dd06996279ba9dc874fd6beb
782a20a27ee83b523f801ff34efb1a9557085019
refs/heads/master
1,690,305,956,488
1,631,067,774,000
1,631,067,774,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
24,708
lean
/- Copyright (c) 2019 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Fabian Glöckle -/ import linear_algebra.finite_dimensional import linear_algebra.projection /-! # Dual vector spaces The dual space of an R-module M is the R-module of linear maps `M → R`. ## Main definitions * `dual R M` defines the dual space of M over R. * Given a basis for an `R`-module `M`, `basis.to_dual` produces a map from `M` to `dual R M`. * Given families of vectors `e` and `ε`, `dual_pair e ε` states that these families have the characteristic properties of a basis and a dual. * `dual_annihilator W` is the submodule of `dual R M` where every element annihilates `W`. ## Main results * `to_dual_equiv` : the linear equivalence between the dual module and primal module, given a finite basis. * `dual_pair.basis` and `dual_pair.eq_dual`: if `e` and `ε` form a dual pair, `e` is a basis and `ε` is its dual basis. * `quot_equiv_annihilator`: the quotient by a subspace is isomorphic to its dual annihilator. ## Notation We sometimes use `V'` as local notation for `dual K V`. ## TODO Erdös-Kaplansky theorem about the dimension of a dual vector space in case of infinite dimension. -/ noncomputable theory namespace module variables (R : Type*) (M : Type*) variables [comm_semiring R] [add_comm_monoid M] [module R M] /-- The dual space of an R-module M is the R-module of linear maps `M → R`. -/ @[derive [add_comm_monoid, module R]] def dual := M →ₗ[R] R instance {S : Type*} [comm_ring S] {N : Type*} [add_comm_group N] [module S N] : add_comm_group (dual S N) := by {unfold dual, apply_instance} namespace dual instance : inhabited (dual R M) := by dunfold dual; apply_instance instance : has_coe_to_fun (dual R M) := ⟨_, linear_map.to_fun⟩ /-- Maps a module M to the dual of the dual of M. See `module.erange_coe` and `module.eval_equiv`. -/ def eval : M →ₗ[R] (dual R (dual R M)) := linear_map.flip linear_map.id @[simp] lemma eval_apply (v : M) (a : dual R M) : eval R M v a = a v := begin dunfold eval, rw [linear_map.flip_apply, linear_map.id_apply] end variables {R M} {M' : Type*} [add_comm_monoid M'] [module R M'] /-- The transposition of linear maps, as a linear map from `M →ₗ[R] M'` to `dual R M' →ₗ[R] dual R M`. -/ def transpose : (M →ₗ[R] M') →ₗ[R] (dual R M' →ₗ[R] dual R M) := (linear_map.llcomp R M M' R).flip lemma transpose_apply (u : M →ₗ[R] M') (l : dual R M') : transpose u l = l.comp u := rfl variables {M'' : Type*} [add_comm_monoid M''] [module R M''] lemma transpose_comp (u : M' →ₗ[R] M'') (v : M →ₗ[R] M') : transpose (u.comp v) = (transpose v).comp (transpose u) := rfl end dual end module namespace basis universes u v w open module module.dual submodule linear_map cardinal function variables {R M K V ι : Type*} section comm_semiring variables [comm_semiring R] [add_comm_monoid M] [module R M] [decidable_eq ι] variables (b : basis ι R M) /-- The linear map from a vector space equipped with basis to its dual vector space, taking basis elements to corresponding dual basis elements. -/ def to_dual : M →ₗ[R] module.dual R M := b.constr ℕ $ λ v, b.constr ℕ $ λ w, if w = v then (1 : R) else 0 lemma to_dual_apply (i j : ι) : b.to_dual (b i) (b j) = if i = j then 1 else 0 := by { erw [constr_basis b, constr_basis b], ac_refl } @[simp] lemma to_dual_total_left (f : ι →₀ R) (i : ι) : b.to_dual (finsupp.total ι M R b f) (b i) = f i := begin rw [finsupp.total_apply, finsupp.sum, linear_map.map_sum, linear_map.sum_apply], simp_rw [linear_map.map_smul, linear_map.smul_apply, to_dual_apply, smul_eq_mul, mul_boole, finset.sum_ite_eq'], split_ifs with h, { refl }, { rw finsupp.not_mem_support_iff.mp h } end @[simp] lemma to_dual_total_right (f : ι →₀ R) (i : ι) : b.to_dual (b i) (finsupp.total ι M R b f) = f i := begin rw [finsupp.total_apply, finsupp.sum, linear_map.map_sum], simp_rw [linear_map.map_smul, to_dual_apply, smul_eq_mul, mul_boole, finset.sum_ite_eq], split_ifs with h, { refl }, { rw finsupp.not_mem_support_iff.mp h } end lemma to_dual_apply_left (m : M) (i : ι) : b.to_dual m (b i) = b.repr m i := by rw [← b.to_dual_total_left, b.total_repr] lemma to_dual_apply_right (i : ι) (m : M) : b.to_dual (b i) m = b.repr m i := by rw [← b.to_dual_total_right, b.total_repr] lemma coe_to_dual_self (i : ι) : b.to_dual (b i) = b.coord i := by { ext, apply to_dual_apply_right } /-- `h.to_dual_flip v` is the linear map sending `w` to `h.to_dual w v`. -/ def to_dual_flip (m : M) : (M →ₗ[R] R) := b.to_dual.flip m lemma to_dual_flip_apply (m₁ m₂ : M) : b.to_dual_flip m₁ m₂ = b.to_dual m₂ m₁ := rfl lemma to_dual_eq_repr (m : M) (i : ι) : b.to_dual m (b i) = b.repr m i := b.to_dual_apply_left m i lemma to_dual_eq_equiv_fun [fintype ι] (m : M) (i : ι) : b.to_dual m (b i) = b.equiv_fun m i := by rw [b.equiv_fun_apply, to_dual_eq_repr] lemma to_dual_inj (m : M) (a : b.to_dual m = 0) : m = 0 := begin rw [← mem_bot R, ← b.repr.ker, mem_ker, linear_equiv.coe_coe], apply finsupp.ext, intro b, rw [← to_dual_eq_repr, a], refl end theorem to_dual_ker : b.to_dual.ker = ⊥ := ker_eq_bot'.mpr b.to_dual_inj theorem to_dual_range [fin : fintype ι] : b.to_dual.range = ⊤ := begin rw eq_top_iff', intro f, rw linear_map.mem_range, let lin_comb : ι →₀ R := finsupp.on_finset fin.elems (λ i, f.to_fun (b i)) _, { use finsupp.total ι M R b lin_comb, apply b.ext, { intros i, rw [b.to_dual_eq_repr _ i, repr_total b], { refl } } }, { intros a _, apply fin.complete } end end comm_semiring section comm_ring variables [comm_ring R] [add_comm_group M] [module R M] [decidable_eq ι] variables (b : basis ι R M) /-- A vector space is linearly equivalent to its dual space. -/ @[simps] def to_dual_equiv [fintype ι] : M ≃ₗ[R] (dual R M) := linear_equiv.of_bijective b.to_dual b.to_dual_ker b.to_dual_range /-- Maps a basis for `V` to a basis for the dual space. -/ def dual_basis [fintype ι] : basis ι R (dual R M) := b.map b.to_dual_equiv -- We use `j = i` to match `basis.repr_self` lemma dual_basis_apply_self [fintype ι] (i j : ι) : b.dual_basis i (b j) = if j = i then 1 else 0 := by { convert b.to_dual_apply i j using 2, rw @eq_comm _ j i } lemma total_dual_basis [fintype ι] (f : ι →₀ R) (i : ι) : finsupp.total ι (dual R M) R b.dual_basis f (b i) = f i := begin rw [finsupp.total_apply, finsupp.sum_fintype, linear_map.sum_apply], { simp_rw [linear_map.smul_apply, smul_eq_mul, dual_basis_apply_self, mul_boole, finset.sum_ite_eq, if_pos (finset.mem_univ i)] }, { intro, rw zero_smul }, end lemma dual_basis_repr [fintype ι] (l : dual R M) (i : ι) : b.dual_basis.repr l i = l (b i) := by rw [← total_dual_basis b, basis.total_repr b.dual_basis l] lemma dual_basis_equiv_fun [fintype ι] (l : dual R M) (i : ι) : b.dual_basis.equiv_fun l i = l (b i) := by rw [basis.equiv_fun_apply, dual_basis_repr] lemma dual_basis_apply [fintype ι] (i : ι) (m : M) : b.dual_basis i m = b.repr m i := b.to_dual_apply_right i m @[simp] lemma coe_dual_basis [fintype ι] : ⇑b.dual_basis = b.coord := by { ext i x, apply dual_basis_apply } @[simp] lemma to_dual_to_dual [fintype ι] : b.dual_basis.to_dual.comp b.to_dual = dual.eval R M := begin refine b.ext (λ i, b.dual_basis.ext (λ j, _)), rw [linear_map.comp_apply, to_dual_apply_left, coe_to_dual_self, ← coe_dual_basis, dual.eval_apply, basis.repr_self, finsupp.single_apply, dual_basis_apply_self] end theorem eval_ker {ι : Type*} (b : basis ι R M) : (dual.eval R M).ker = ⊥ := begin rw ker_eq_bot', intros m hm, simp_rw [linear_map.ext_iff, dual.eval_apply, zero_apply] at hm, exact (basis.forall_coord_eq_zero_iff _).mp (λ i, hm (b.coord i)) end lemma eval_range {ι : Type*} [fintype ι] (b : basis ι R M) : (eval R M).range = ⊤ := begin classical, rw [← b.to_dual_to_dual, range_comp, b.to_dual_range, map_top, to_dual_range _], apply_instance end /-- A module with a basis is linearly equivalent to the dual of its dual space. -/ def eval_equiv {ι : Type*} [fintype ι] (b : basis ι R M) : M ≃ₗ[R] dual R (dual R M) := linear_equiv.of_bijective (eval R M) b.eval_ker b.eval_range @[simp] lemma eval_equiv_to_linear_map {ι : Type*} [fintype ι] (b : basis ι R M) : (b.eval_equiv).to_linear_map = dual.eval R M := rfl end comm_ring /-- `simp` normal form version of `total_dual_basis` -/ @[simp] lemma total_coord [comm_ring R] [add_comm_group M] [module R M] [fintype ι] (b : basis ι R M) (f : ι →₀ R) (i : ι) : finsupp.total ι (dual R M) R b.coord f (b i) = f i := by { haveI := classical.dec_eq ι, rw [← coe_dual_basis, total_dual_basis] } -- TODO(jmc): generalize to rings, once `module.rank` is generalized theorem dual_dim_eq [field K] [add_comm_group V] [module K V] [fintype ι] (b : basis ι K V) : cardinal.lift (module.rank K V) = module.rank K (dual K V) := begin classical, have := linear_equiv.lift_dim_eq b.to_dual_equiv, simp only [cardinal.lift_umax] at this, rw [this, ← cardinal.lift_umax], apply cardinal.lift_id, end end basis namespace module variables {K V : Type*} variables [field K] [add_comm_group V] [module K V] open module module.dual submodule linear_map cardinal basis finite_dimensional theorem eval_ker : (eval K V).ker = ⊥ := by { classical, exact (basis.of_vector_space K V).eval_ker } -- TODO(jmc): generalize to rings, once `module.rank` is generalized theorem dual_dim_eq [finite_dimensional K V] : cardinal.lift (module.rank K V) = module.rank K (dual K V) := (basis.of_vector_space K V).dual_dim_eq lemma erange_coe [finite_dimensional K V] : (eval K V).range = ⊤ := by { classical, exact (basis.of_vector_space K V).eval_range } variables (K V) /-- A vector space is linearly equivalent to the dual of its dual space. -/ def eval_equiv [finite_dimensional K V] : V ≃ₗ[K] dual K (dual K V) := linear_equiv.of_bijective (eval K V) eval_ker (erange_coe) variables {K V} @[simp] lemma eval_equiv_to_linear_map [finite_dimensional K V] : (eval_equiv K V).to_linear_map = dual.eval K V := rfl end module section dual_pair open module variables {R M ι : Type*} variables [comm_ring R] [add_comm_group M] [module R M] [decidable_eq ι] /-- `e` and `ε` have characteristic properties of a basis and its dual -/ @[nolint has_inhabited_instance] structure dual_pair (e : ι → M) (ε : ι → (dual R M)) := (eval : ∀ i j : ι, ε i (e j) = if i = j then 1 else 0) (total : ∀ {m : M}, (∀ i, ε i m = 0) → m = 0) [finite : ∀ m : M, fintype {i | ε i m ≠ 0}] end dual_pair namespace dual_pair open module module.dual linear_map function variables {R M ι : Type*} variables [comm_ring R] [add_comm_group M] [module R M] variables {e : ι → M} {ε : ι → dual R M} /-- The coefficients of `v` on the basis `e` -/ def coeffs [decidable_eq ι] (h : dual_pair e ε) (m : M) : ι →₀ R := { to_fun := λ i, ε i m, support := by { haveI := h.finite m, exact {i : ι | ε i m ≠ 0}.to_finset }, mem_support_to_fun := by {intro i, rw set.mem_to_finset, exact iff.rfl } } @[simp] lemma coeffs_apply [decidable_eq ι] (h : dual_pair e ε) (m : M) (i : ι) : h.coeffs m i = ε i m := rfl /-- linear combinations of elements of `e`. This is a convenient abbreviation for `finsupp.total _ M R e l` -/ def lc {ι} (e : ι → M) (l : ι →₀ R) : M := l.sum (λ (i : ι) (a : R), a • (e i)) lemma lc_def (e : ι → M) (l : ι →₀ R) : lc e l = finsupp.total _ _ _ e l := rfl variables [decidable_eq ι] (h : dual_pair e ε) include h lemma dual_lc (l : ι →₀ R) (i : ι) : ε i (dual_pair.lc e l) = l i := begin erw linear_map.map_sum, simp only [h.eval, map_smul, smul_eq_mul], rw finset.sum_eq_single i, { simp }, { intros q q_in q_ne, simp [q_ne.symm] }, { intro p_not_in, simp [finsupp.not_mem_support_iff.1 p_not_in] }, end @[simp] lemma coeffs_lc (l : ι →₀ R) : h.coeffs (dual_pair.lc e l) = l := by { ext i, rw [h.coeffs_apply, h.dual_lc] } /-- For any m : M n, \sum_{p ∈ Q n} (ε p m) • e p = m -/ @[simp] lemma lc_coeffs (m : M) : dual_pair.lc e (h.coeffs m) = m := begin refine eq_of_sub_eq_zero (h.total _), intros i, simp [-sub_eq_add_neg, linear_map.map_sub, h.dual_lc, sub_eq_zero] end /-- `(h : dual_pair e ε).basis` shows the family of vectors `e` forms a basis. -/ @[simps] def basis : basis ι R M := basis.of_repr { to_fun := coeffs h, inv_fun := lc e, left_inv := lc_coeffs h, right_inv := coeffs_lc h, map_add' := λ v w, by { ext i, exact (ε i).map_add v w }, map_smul' := λ c v, by { ext i, exact (ε i).map_smul c v } } @[simp] lemma coe_basis : ⇑h.basis = e := by { ext i, rw basis.apply_eq_iff, ext j, rw [h.basis_repr_apply, coeffs_apply, h.eval, finsupp.single_apply], convert if_congr eq_comm rfl rfl } -- `convert` to get rid of a `decidable_eq` mismatch lemma mem_of_mem_span {H : set ι} {x : M} (hmem : x ∈ submodule.span R (e '' H)) : ∀ i : ι, ε i x ≠ 0 → i ∈ H := begin intros i hi, rcases (finsupp.mem_span_image_iff_total _).mp hmem with ⟨l, supp_l, rfl⟩, apply not_imp_comm.mp ((finsupp.mem_supported' _ _).mp supp_l i), rwa [← lc_def, h.dual_lc] at hi end lemma coe_dual_basis [fintype ι] : ⇑h.basis.dual_basis = ε := funext (λ i, h.basis.ext (λ j, by rw [h.basis.dual_basis_apply_self, h.coe_basis, h.eval, if_congr eq_comm rfl rfl])) end dual_pair namespace submodule universes u v w variables {R : Type u} {M : Type v} [comm_ring R] [add_comm_group M] [module R M] variable {W : submodule R M} /-- The `dual_restrict` of a submodule `W` of `M` is the linear map from the dual of `M` to the dual of `W` such that the domain of each linear map is restricted to `W`. -/ def dual_restrict (W : submodule R M) : module.dual R M →ₗ[R] module.dual R W := linear_map.dom_restrict' W @[simp] lemma dual_restrict_apply (W : submodule R M) (φ : module.dual R M) (x : W) : W.dual_restrict φ x = φ (x : M) := rfl /-- The `dual_annihilator` of a submodule `W` is the set of linear maps `φ` such that `φ w = 0` for all `w ∈ W`. -/ def dual_annihilator {R : Type u} {M : Type v} [comm_ring R] [add_comm_group M] [module R M] (W : submodule R M) : submodule R $ module.dual R M := W.dual_restrict.ker @[simp] lemma mem_dual_annihilator (φ : module.dual R M) : φ ∈ W.dual_annihilator ↔ ∀ w ∈ W, φ w = 0 := begin refine linear_map.mem_ker.trans _, simp_rw [linear_map.ext_iff, dual_restrict_apply], exact ⟨λ h w hw, h ⟨w, hw⟩, λ h w, h w.1 w.2⟩ end lemma dual_restrict_ker_eq_dual_annihilator (W : submodule R M) : W.dual_restrict.ker = W.dual_annihilator := rfl lemma dual_annihilator_sup_eq_inf_dual_annihilator (U V : submodule R M) : (U ⊔ V).dual_annihilator = U.dual_annihilator ⊓ V.dual_annihilator := begin ext φ, rw [mem_inf, mem_dual_annihilator, mem_dual_annihilator, mem_dual_annihilator], split; intro h, { refine ⟨_, _⟩; intros x hx, exact h x (mem_sup.2 ⟨x, hx, 0, zero_mem _, add_zero _⟩), exact h x (mem_sup.2 ⟨0, zero_mem _, x, hx, zero_add _⟩) }, { simp_rw mem_sup, rintro _ ⟨x, hx, y, hy, rfl⟩, rw [linear_map.map_add, h.1 _ hx, h.2 _ hy, add_zero] } end /-- The pullback of a submodule in the dual space along the evaluation map. -/ def dual_annihilator_comap (Φ : submodule R (module.dual R M)) : submodule R M := Φ.dual_annihilator.comap (module.dual.eval R M) lemma mem_dual_annihilator_comap_iff {Φ : submodule R (module.dual R M)} (x : M) : x ∈ Φ.dual_annihilator_comap ↔ ∀ φ ∈ Φ, (φ x : R) = 0 := by simp_rw [dual_annihilator_comap, mem_comap, mem_dual_annihilator, module.dual.eval_apply] end submodule namespace subspace open submodule linear_map universes u v w -- We work in vector spaces because `exists_is_compl` only hold for vector spaces variables {K : Type u} {V : Type v} [field K] [add_comm_group V] [module K V] /-- Given a subspace `W` of `V` and an element of its dual `φ`, `dual_lift W φ` is the natural extension of `φ` to an element of the dual of `V`. That is, `dual_lift W φ` sends `w ∈ W` to `φ x` and `x` in the complement of `W` to `0`. -/ noncomputable def dual_lift (W : subspace K V) : module.dual K W →ₗ[K] module.dual K V := let h := classical.indefinite_description _ W.exists_is_compl in (linear_map.of_is_compl_prod h.2).comp (linear_map.inl _ _ _) variable {W : subspace K V} @[simp] lemma dual_lift_of_subtype {φ : module.dual K W} (w : W) : W.dual_lift φ (w : V) = φ w := by { erw of_is_compl_left_apply _ w, refl } lemma dual_lift_of_mem {φ : module.dual K W} {w : V} (hw : w ∈ W) : W.dual_lift φ w = φ ⟨w, hw⟩ := dual_lift_of_subtype ⟨w, hw⟩ @[simp] lemma dual_restrict_comp_dual_lift (W : subspace K V) : W.dual_restrict.comp W.dual_lift = 1 := by { ext φ x, simp } lemma dual_restrict_left_inverse (W : subspace K V) : function.left_inverse W.dual_restrict W.dual_lift := λ x, show W.dual_restrict.comp W.dual_lift x = x, by { rw [dual_restrict_comp_dual_lift], refl } lemma dual_lift_right_inverse (W : subspace K V) : function.right_inverse W.dual_lift W.dual_restrict := W.dual_restrict_left_inverse lemma dual_restrict_surjective : function.surjective W.dual_restrict := W.dual_lift_right_inverse.surjective lemma dual_lift_injective : function.injective W.dual_lift := W.dual_restrict_left_inverse.injective /-- The quotient by the `dual_annihilator` of a subspace is isomorphic to the dual of that subspace. -/ noncomputable def quot_annihilator_equiv (W : subspace K V) : W.dual_annihilator.quotient ≃ₗ[K] module.dual K W := (quot_equiv_of_eq _ _ W.dual_restrict_ker_eq_dual_annihilator).symm.trans $ W.dual_restrict.quot_ker_equiv_of_surjective dual_restrict_surjective /-- The natural isomorphism forom the dual of a subspace `W` to `W.dual_lift.range`. -/ noncomputable def dual_equiv_dual (W : subspace K V) : module.dual K W ≃ₗ[K] W.dual_lift.range := linear_equiv.of_injective _ $ ker_eq_bot.2 dual_lift_injective lemma dual_equiv_dual_def (W : subspace K V) : W.dual_equiv_dual.to_linear_map = W.dual_lift.range_restrict := rfl @[simp] lemma dual_equiv_dual_apply (φ : module.dual K W) : W.dual_equiv_dual φ = ⟨W.dual_lift φ, mem_range.2 ⟨φ, rfl⟩⟩ := rfl section open_locale classical open finite_dimensional variables {V₁ : Type*} [add_comm_group V₁] [module K V₁] instance [H : finite_dimensional K V] : finite_dimensional K (module.dual K V) := linear_equiv.finite_dimensional (basis.of_vector_space K V).to_dual_equiv variables [finite_dimensional K V] [finite_dimensional K V₁] @[simp] lemma dual_finrank_eq : finrank K (module.dual K V) = finrank K V := linear_equiv.finrank_eq (basis.of_vector_space K V).to_dual_equiv.symm /-- The quotient by the dual is isomorphic to its dual annihilator. -/ noncomputable def quot_dual_equiv_annihilator (W : subspace K V) : W.dual_lift.range.quotient ≃ₗ[K] W.dual_annihilator := linear_equiv.quot_equiv_of_quot_equiv $ linear_equiv.trans W.quot_annihilator_equiv W.dual_equiv_dual /-- The quotient by a subspace is isomorphic to its dual annihilator. -/ noncomputable def quot_equiv_annihilator (W : subspace K V) : W.quotient ≃ₗ[K] W.dual_annihilator := begin refine _ ≪≫ₗ W.quot_dual_equiv_annihilator, refine linear_equiv.quot_equiv_of_equiv _ (basis.of_vector_space K V).to_dual_equiv, exact (basis.of_vector_space K W).to_dual_equiv.trans W.dual_equiv_dual end open finite_dimensional @[simp] lemma finrank_dual_annihilator_comap_eq {Φ : subspace K (module.dual K V)} : finrank K Φ.dual_annihilator_comap = finrank K Φ.dual_annihilator := begin rw [submodule.dual_annihilator_comap, ← module.eval_equiv_to_linear_map], exact linear_equiv.finrank_eq (linear_equiv.of_submodule' _ _), end lemma finrank_add_finrank_dual_annihilator_comap_eq (W : subspace K (module.dual K V)) : finrank K W + finrank K W.dual_annihilator_comap = finrank K V := begin rw [finrank_dual_annihilator_comap_eq, W.quot_equiv_annihilator.finrank_eq.symm, add_comm, submodule.finrank_quotient_add_finrank, subspace.dual_finrank_eq], end end end subspace variables {R : Type*} [comm_ring R] {M₁ : Type*} {M₂ : Type*} variables [add_comm_group M₁] [module R M₁] [add_comm_group M₂] [module R M₂] open module /-- Given a linear map `f : M₁ →ₗ[R] M₂`, `f.dual_map` is the linear map between the dual of `M₂` and `M₁` such that it maps the functional `φ` to `φ ∘ f`. -/ def linear_map.dual_map (f : M₁ →ₗ[R] M₂) : dual R M₂ →ₗ[R] dual R M₁ := linear_map.lcomp R R f @[simp] lemma linear_map.dual_map_apply (f : M₁ →ₗ[R] M₂) (g : dual R M₂) (x : M₁) : f.dual_map g x = g (f x) := linear_map.lcomp_apply f g x @[simp] lemma linear_map.dual_map_id : (linear_map.id : M₁ →ₗ[R] M₁).dual_map = linear_map.id := by { ext, refl } lemma linear_map.dual_map_comp_dual_map {M₃ : Type*} [add_comm_group M₃] [module R M₃] (f : M₁ →ₗ[R] M₂) (g : M₂ →ₗ[R] M₃) : f.dual_map.comp g.dual_map = (g.comp f).dual_map := rfl /-- The `linear_equiv` version of `linear_map.dual_map`. -/ def linear_equiv.dual_map (f : M₁ ≃ₗ[R] M₂) : dual R M₂ ≃ₗ[R] dual R M₁ := { inv_fun := f.symm.to_linear_map.dual_map, left_inv := begin intro φ, ext x, simp only [linear_map.dual_map_apply, linear_equiv.coe_to_linear_map, linear_map.to_fun_eq_coe, linear_equiv.apply_symm_apply] end, right_inv := begin intro φ, ext x, simp only [linear_map.dual_map_apply, linear_equiv.coe_to_linear_map, linear_map.to_fun_eq_coe, linear_equiv.symm_apply_apply] end, .. f.to_linear_map.dual_map } @[simp] lemma linear_equiv.dual_map_apply (f : M₁ ≃ₗ[R] M₂) (g : dual R M₂) (x : M₁) : f.dual_map g x = g (f x) := linear_map.lcomp_apply f g x @[simp] lemma linear_equiv.dual_map_refl : (linear_equiv.refl R M₁).dual_map = linear_equiv.refl R (dual R M₁) := by { ext, refl } @[simp] lemma linear_equiv.dual_map_symm {f : M₁ ≃ₗ[R] M₂} : (linear_equiv.dual_map f).symm = linear_equiv.dual_map f.symm := rfl lemma linear_equiv.dual_map_trans {M₃ : Type*} [add_comm_group M₃] [module R M₃] (f : M₁ ≃ₗ[R] M₂) (g : M₂ ≃ₗ[R] M₃) : g.dual_map.trans f.dual_map = (f.trans g).dual_map := rfl namespace linear_map variable (f : M₁ →ₗ[R] M₂) lemma ker_dual_map_eq_dual_annihilator_range : f.dual_map.ker = f.range.dual_annihilator := begin ext φ, split; intro hφ, { rw mem_ker at hφ, rw submodule.mem_dual_annihilator, rintro y ⟨x, rfl⟩, rw [← dual_map_apply, hφ, zero_apply] }, { ext x, rw dual_map_apply, rw submodule.mem_dual_annihilator at hφ, exact hφ (f x) ⟨x, rfl⟩ } end lemma range_dual_map_le_dual_annihilator_ker : f.dual_map.range ≤ f.ker.dual_annihilator := begin rintro _ ⟨ψ, rfl⟩, simp_rw [submodule.mem_dual_annihilator, mem_ker], rintro x hx, rw [dual_map_apply, hx, map_zero] end section finite_dimensional variables {K : Type*} [field K] {V₁ : Type*} {V₂ : Type*} variables [add_comm_group V₁] [module K V₁] [add_comm_group V₂] [module K V₂] open finite_dimensional variable [finite_dimensional K V₂] @[simp] lemma finrank_range_dual_map_eq_finrank_range (f : V₁ →ₗ[K] V₂) : finrank K f.dual_map.range = finrank K f.range := begin have := submodule.finrank_quotient_add_finrank f.range, rw [(subspace.quot_equiv_annihilator f.range).finrank_eq, ← ker_dual_map_eq_dual_annihilator_range] at this, conv_rhs at this { rw ← subspace.dual_finrank_eq }, refine add_left_injective (finrank K f.dual_map.ker) _, change _ + _ = _ + _, rw [finrank_range_add_finrank_ker f.dual_map, add_comm, this], end lemma range_dual_map_eq_dual_annihilator_ker [finite_dimensional K V₁] (f : V₁ →ₗ[K] V₂) : f.dual_map.range = f.ker.dual_annihilator := begin refine eq_of_le_of_finrank_eq f.range_dual_map_le_dual_annihilator_ker _, have := submodule.finrank_quotient_add_finrank f.ker, rw (subspace.quot_equiv_annihilator f.ker).finrank_eq at this, refine add_left_injective (finrank K f.ker) _, simp_rw [this, finrank_range_dual_map_eq_finrank_range], exact finrank_range_add_finrank_ker f, end end finite_dimensional end linear_map
74a9ec7b286d86968f98b9ae14ba71659b4ce198
b7f22e51856f4989b970961f794f1c435f9b8f78
/library/logic/cast.lean
43ff778e91a368fb4edf9bc81afcef4d3e346e10
[ "Apache-2.0" ]
permissive
soonhokong/lean
cb8aa01055ffe2af0fb99a16b4cda8463b882cd1
38607e3eb57f57f77c0ac114ad169e9e4262e24f
refs/heads/master
1,611,187,284,081
1,450,766,737,000
1,476,122,547,000
11,513,992
2
0
null
1,401,763,102,000
1,374,182,235,000
C++
UTF-8
Lean
false
false
5,653
lean
/- Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura Casts and heterogeneous equality. See also init.datatypes and init.logic. -/ import logic.eq logic.quantifiers open eq.ops namespace heq universe variable u variables {A B C : Type.{u}} {a a' : A} {b b' : B} {c : C} theorem drec_on {C : Π {B : Type} (b : B), a == b → Type} (H₁ : a == b) (H₂ : C a (refl a)) : C b H₁ := heq.rec (λ H₁ : a == a, show C a H₁, from H₂) H₁ H₁ theorem to_cast_eq (H : a == b) : cast (type_eq_of_heq H) a = b := drec_on H !cast_eq end heq section universe variables u v variables {A A' B C : Type.{u}} {P P' : A → Type.{v}} {a a' : A} {b : B} theorem hcongr_fun {f : Π x, P x} {f' : Π x, P' x} (a : A) (H₁ : f == f') (H₂ : P = P') : f a == f' a := begin cases H₂, cases H₁, reflexivity end theorem hcongr {P' : A' → Type} {f : Π a, P a} {f' : Π a', P' a'} {a : A} {a' : A'} (Hf : f == f') (HP : P == P') (Ha : a == a') : f a == f' a' := begin cases Ha, cases HP, cases Hf, reflexivity end theorem hcongr_arg (f : Πx, P x) {a b : A} (H : a = b) : f a == f b := H ▸ (heq.refl (f a)) end section variables {A : Type} {B : A → Type} {C : Πa, B a → Type} {D : Πa b, C a b → Type} variables {a a' : A} {b : B a} {b' : B a'} {c : C a b} {c' : C a' b'} theorem hcongr_arg2 (f : Πa b, C a b) (Ha : a = a') (Hb : b == b') : f a b == f a' b' := hcongr (hcongr_arg f Ha) (hcongr_arg C Ha) Hb theorem hcongr_arg3 (f : Πa b c, D a b c) (Ha : a = a') (Hb : b == b') (Hc : c == c') : f a b c == f a' b' c' := hcongr (hcongr_arg2 f Ha Hb) (hcongr_arg2 D Ha Hb) Hc end section universe variables u v variables {A A' B C : Type.{u}} {P P' : A → Type.{v}} {a a' : A} {b : B} -- should H₁ be explicit (useful in e.g. hproof_irrel) theorem eq_rec_to_heq {H₁ : a = a'} {p : P a} {p' : P a'} (H₂ : eq.rec_on H₁ p = p') : p == p' := by subst H₁; subst H₂ theorem cast_to_heq {H₁ : A = B} (H₂ : cast H₁ a = b) : a == b := eq_rec_to_heq H₂ theorem hproof_irrel {a b : Prop} (H : a = b) (H₁ : a) (H₂ : b) : H₁ == H₂ := eq_rec_to_heq (proof_irrel (cast H H₁) H₂) --TODO: generalize to eq.rec. This is a special case of rec_on_comp in eq.lean theorem cast_trans (Hab : A = B) (Hbc : B = C) (a : A) : cast Hbc (cast Hab a) = cast (Hab ⬝ Hbc) a := by subst Hab theorem pi_eq (H : P = P') : (Π x, P x) = (Π x, P' x) := by subst H theorem rec_on_app (H : P = P') (f : Π x, P x) (a : A) : eq.rec_on H f a == f a := by subst H theorem rec_on_pull (H : P = P') (f : Π x, P x) (a : A) : eq.rec_on H f a = eq.rec_on (congr_fun H a) (f a) := eq_of_heq (calc eq.rec_on H f a == f a : rec_on_app H f a ... == eq.rec_on (congr_fun H a) (f a) : heq.symm (eq_rec_heq (congr_fun H a) (f a))) theorem cast_app (H : P = P') (f : Π x, P x) (a : A) : cast (pi_eq H) f a == f a := by subst H end -- function extensionality wrt heterogeneous equality theorem hfunext {A : Type} {B : A → Type} {B' : A → Type} {f : Π x, B x} {g : Π x, B' x} (H : ∀ a, f a == g a) : f == g := cast_to_heq (funext (λ a, eq_of_heq (heq.trans (cast_app (funext (λ x, type_eq_of_heq (H x))) f a) (H a)))) section variables {A : Type} {B : A → Type} {C : Πa, B a → Type} {D : Πa b, C a b → Type} {E : Πa b c, D a b c → Type} {F : Type} variables {a a' : A} {b : B a} {b' : B a'} {c : C a b} {c' : C a' b'} {d : D a b c} {d' : D a' b' c'} theorem hcongr_arg4 (f : Πa b c d, E a b c d) (Ha : a = a') (Hb : b == b') (Hc : c == c') (Hd : d == d') : f a b c d == f a' b' c' d' := hcongr (hcongr_arg3 f Ha Hb Hc) (hcongr_arg3 E Ha Hb Hc) Hd theorem dcongr_arg2 (f : Πa, B a → F) (Ha : a = a') (Hb : eq.rec_on Ha b = b') : f a b = f a' b' := eq_of_heq (hcongr_arg2 f Ha (eq_rec_to_heq Hb)) theorem dcongr_arg3 (f : Πa b, C a b → F) (Ha : a = a') (Hb : eq.rec_on Ha b = b') (Hc : cast (dcongr_arg2 C Ha Hb) c = c') : f a b c = f a' b' c' := eq_of_heq (hcongr_arg3 f Ha (eq_rec_to_heq Hb) (eq_rec_to_heq Hc)) theorem dcongr_arg4 (f : Πa b c, D a b c → F) (Ha : a = a') (Hb : eq.rec_on Ha b = b') (Hc : cast (dcongr_arg2 C Ha Hb) c = c') (Hd : cast (dcongr_arg3 D Ha Hb Hc) d = d') : f a b c d = f a' b' c' d' := eq_of_heq (hcongr_arg4 f Ha (eq_rec_to_heq Hb) (eq_rec_to_heq Hc) (eq_rec_to_heq Hd)) -- mixed versions (we want them for example if C a' b' is a subsingleton, like a proposition. -- Then proving eq is easier than proving heq) theorem hdcongr_arg3 (f : Πa b, C a b → F) (Ha : a = a') (Hb : b == b') (Hc : cast (eq_of_heq (hcongr_arg2 C Ha Hb)) c = c') : f a b c = f a' b' c' := eq_of_heq (hcongr_arg3 f Ha Hb (eq_rec_to_heq Hc)) theorem hhdcongr_arg4 (f : Πa b c, D a b c → F) (Ha : a = a') (Hb : b == b') (Hc : c == c') (Hd : cast (dcongr_arg3 D Ha (!eq.rec_on_irrel_arg ⬝ heq.to_cast_eq Hb) (!eq.rec_on_irrel_arg ⬝ heq.to_cast_eq Hc)) d = d') : f a b c d = f a' b' c' d' := eq_of_heq (hcongr_arg4 f Ha Hb Hc (eq_rec_to_heq Hd)) theorem hddcongr_arg4 (f : Πa b c, D a b c → F) (Ha : a = a') (Hb : b == b') (Hc : cast (eq_of_heq (hcongr_arg2 C Ha Hb)) c = c') (Hd : cast (hdcongr_arg3 D Ha Hb Hc) d = d') : f a b c d = f a' b' c' d' := eq_of_heq (hcongr_arg4 f Ha Hb (eq_rec_to_heq Hc) (eq_rec_to_heq Hd)) end
2039e836c6ac69d9a7a865504adb2fc588191ce6
b7f22e51856f4989b970961f794f1c435f9b8f78
/tests/lean/run/sec_var.lean
a004a59ff6ea62a6eee47c7beca3129e6fb727df
[ "Apache-2.0" ]
permissive
soonhokong/lean
cb8aa01055ffe2af0fb99a16b4cda8463b882cd1
38607e3eb57f57f77c0ac114ad169e9e4262e24f
refs/heads/master
1,611,187,284,081
1,450,766,737,000
1,476,122,547,000
11,513,992
2
0
null
1,401,763,102,000
1,374,182,235,000
C++
UTF-8
Lean
false
false
548
lean
import logic section parameter A : Type definition foo : ∀ ⦃ a b : A ⦄, a = b → a = b := take a b H, H variable a : A set_option pp.implicit true check foo (eq.refl a) check foo check foo = (λ (a b : A) (H : a = b), H) end check foo = (λ (A : Type) (a b : A) (H : a = b), H) section variable A : Type definition foo2 : ∀ ⦃ a b : A ⦄, a = b → a = b := take a b H, H variable a : A set_option pp.implicit true check foo2 A (eq.refl a) check foo2 check foo2 A = (λ (a b : A) (H : a = b), H) end
b7df2422a3ea8365ab0ad05e1c13f857767aca86
6432ea7a083ff6ba21ea17af9ee47b9c371760f7
/src/lake/test/meta/lakefile.lean
ec6aefa1bff57a59429cd973c6301efabf725314
[ "Apache-2.0", "LLVM-exception", "NCSA", "LGPL-3.0-only", "LicenseRef-scancode-inner-net-2.0", "BSD-3-Clause", "LGPL-2.0-or-later", "Spencer-94", "LGPL-2.1-or-later", "HPND", "LicenseRef-scancode-pcre", "ISC", "LGPL-2.1-only", "LicenseRef-scancode-other-permissive", "SunPro", "CMU-Mach" ]
permissive
leanprover/lean4
4bdf9790294964627eb9be79f5e8f6157780b4cc
f1f9dc0f2f531af3312398999d8b8303fa5f096b
refs/heads/master
1,693,360,665,786
1,693,350,868,000
1,693,350,868,000
129,571,436
2,827
311
Apache-2.0
1,694,716,156,000
1,523,760,560,000
Lean
UTF-8
Lean
false
false
282
lean
import Lake open Lake DSL package test_meta #print "lorem" meta if get_config? baz |>.isSome then #print "baz" meta if get_config? env = some "foo" then do #print "foo" #print "1" else meta if get_config? env = some "bar" then do #print "bar" #print "2" #print "ipsum"
89eb6bd25d2d8779a483ca78a9ae9c86738fb837
cf39355caa609c0f33405126beee2739aa3cb77e
/tests/lean/run/secnot.lean
beb1a45b3e8931beb95ef0d5ec2548decf3bd6f7
[ "Apache-2.0" ]
permissive
leanprover-community/lean
12b87f69d92e614daea8bcc9d4de9a9ace089d0e
cce7990ea86a78bdb383e38ed7f9b5ba93c60ce0
refs/heads/master
1,687,508,156,644
1,684,951,104,000
1,684,951,104,000
169,960,991
457
107
Apache-2.0
1,686,744,372,000
1,549,790,268,000
C++
UTF-8
Lean
false
false
411
lean
section variable {A : Type} definition f (a b : A) := a infixl ` ◀ `:65 := f variables a b : A #check a ◀ b end inductive List (T : Type) : Type | nil {} : List | cons : T → List → List namespace List section variable {T : Type} notation (name := list) `[` l:(foldr `,` (h t, cons h t) nil) `]` := l #check [(10:nat), 20, 30] end end List open List #check [(10:nat), 20, 40] #check (10:nat) ◀ 20
2b2293f7adcf2dc6718b4d4d35de9ec17407f739
9c1ad797ec8a5eddb37d34806c543602d9a6bf70
/opposites.lean
29175d39336ffd38c38ffc87cc25f4292828dd62
[]
no_license
timjb/lean-category-theory
816eefc3a0582c22c05f4ee1c57ed04e57c0982f
12916cce261d08bb8740bc85e0175b75fb2a60f4
refs/heads/master
1,611,078,926,765
1,492,080,000,000
1,492,080,000,000
88,348,246
0
0
null
1,492,262,499,000
1,492,262,498,000
null
UTF-8
Lean
false
false
788
lean
-- Copyright (c) 2017 Scott Morrison. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Authors: Stephen Morgan, Scott Morrison import .functor open tqft.categories open tqft.categories.functor namespace tqft.categories definition Opposite ( C : Category ) : Category := { Obj := C.Obj, Hom := λ X Y, C.Hom Y X, compose := λ _ _ _ f g, C.compose g f, identity := λ X, C.identity X, left_identity := ♮, right_identity := ♮, associativity := ♮ } definition OppositeFunctor { C D : Category } ( F : Functor C D ) : Functor (Opposite C) (Opposite D) := { onObjects := F.onObjects, onMorphisms := λ X Y f, F.onMorphisms f, identities := ♯, functoriality := ♯ } end tqft.categories
0f2eec6b42ff89bfb754cb93a57eeac4d444c3c2
8cae430f0a71442d02dbb1cbb14073b31048e4b0
/src/data/sym/basic.lean
7e43f0dc741ad2126eab97b2bfe7b993aae7e8d5
[ "Apache-2.0" ]
permissive
leanprover-community/mathlib
56a2cadd17ac88caf4ece0a775932fa26327ba0e
442a83d738cb208d3600056c489be16900ba701d
refs/heads/master
1,693,584,102,358
1,693,471,902,000
1,693,471,902,000
97,922,418
1,595
352
Apache-2.0
1,694,693,445,000
1,500,624,130,000
Lean
UTF-8
Lean
false
false
18,177
lean
/- Copyright (c) 2020 Kyle Miller All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kyle Miller -/ import data.multiset.basic import data.vector.basic import data.setoid.basic import tactic.apply_fun /-! # Symmetric powers > THIS FILE IS SYNCHRONIZED WITH MATHLIB4. > Any changes to this file require a corresponding PR to mathlib4. This file defines symmetric powers of a type. The nth symmetric power consists of homogeneous n-tuples modulo permutations by the symmetric group. The special case of 2-tuples is called the symmetric square, which is addressed in more detail in `data.sym.sym2`. TODO: This was created as supporting material for `sym2`; it needs a fleshed-out interface. ## Tags symmetric powers -/ open function /-- The nth symmetric power is n-tuples up to permutation. We define it as a subtype of `multiset` since these are well developed in the library. We also give a definition `sym.sym'` in terms of vectors, and we show these are equivalent in `sym.sym_equiv_sym'`. -/ def sym (α : Type*) (n : ℕ) := {s : multiset α // s.card = n} instance sym.has_coe (α : Type*) (n : ℕ) : has_coe (sym α n) (multiset α) := coe_subtype /-- This is the `list.perm` setoid lifted to `vector`. See note [reducible non-instances]. -/ @[reducible] def vector.perm.is_setoid (α : Type*) (n : ℕ) : setoid (vector α n) := (list.is_setoid α).comap subtype.val local attribute [instance] vector.perm.is_setoid namespace sym variables {α β : Type*} {n n' m : ℕ} {s : sym α n} {a b : α} lemma coe_injective : injective (coe : sym α n → multiset α) := subtype.coe_injective @[simp, norm_cast] lemma coe_inj {s₁ s₂ : sym α n} : (s₁ : multiset α) = s₂ ↔ s₁ = s₂ := coe_injective.eq_iff /-- Construct an element of the `n`th symmetric power from a multiset of cardinality `n`. -/ @[simps, pattern] abbreviation mk (m : multiset α) (h : m.card = n) : sym α n := ⟨m, h⟩ /-- The unique element in `sym α 0`. -/ @[pattern] def nil : sym α 0 := ⟨0, multiset.card_zero⟩ @[simp] lemma coe_nil : (coe (@sym.nil α)) = (0 : multiset α) := rfl /-- Inserts an element into the term of `sym α n`, increasing the length by one. -/ @[pattern] def cons (a : α) (s : sym α n) : sym α n.succ := ⟨a ::ₘ s.1, by rw [multiset.card_cons, s.2]⟩ infixr ` ::ₛ `:67 := cons @[simp] lemma cons_inj_right (a : α) (s s' : sym α n) : a ::ₛ s = a ::ₛ s' ↔ s = s' := subtype.ext_iff.trans $ (multiset.cons_inj_right _).trans subtype.ext_iff.symm @[simp] lemma cons_inj_left (a a' : α) (s : sym α n) : a ::ₛ s = a' ::ₛ s ↔ a = a' := subtype.ext_iff.trans $ multiset.cons_inj_left _ lemma cons_swap (a b : α) (s : sym α n) : a ::ₛ b ::ₛ s = b ::ₛ a ::ₛ s := subtype.ext $ multiset.cons_swap a b s.1 lemma coe_cons (s : sym α n) (a : α) : (a ::ₛ s : multiset α) = a ::ₘ s := rfl /-- This is the quotient map that takes a list of n elements as an n-tuple and produces an nth symmetric power. -/ instance : has_lift (vector α n) (sym α n) := { lift := λ x, ⟨↑x.val, (multiset.coe_card _).trans x.2⟩ } @[simp] lemma of_vector_nil : ↑(vector.nil : vector α 0) = (sym.nil : sym α 0) := rfl @[simp] lemma of_vector_cons (a : α) (v : vector α n) : ↑(vector.cons a v) = a ::ₛ (↑v : sym α n) := by { cases v, refl } /-- `α ∈ s` means that `a` appears as one of the factors in `s`. -/ instance : has_mem α (sym α n) := ⟨λ a s, a ∈ s.1⟩ instance decidable_mem [decidable_eq α] (a : α) (s : sym α n) : decidable (a ∈ s) := s.1.decidable_mem _ @[simp] lemma mem_mk (a : α) (s : multiset α) (h : s.card = n) : a ∈ mk s h ↔ a ∈ s := iff.rfl @[simp] lemma mem_cons : a ∈ b ::ₛ s ↔ a = b ∨ a ∈ s := multiset.mem_cons @[simp] lemma mem_coe : a ∈ (s : multiset α) ↔ a ∈ s := iff.rfl lemma mem_cons_of_mem (h : a ∈ s) : a ∈ b ::ₛ s := multiset.mem_cons_of_mem h @[simp] lemma mem_cons_self (a : α) (s : sym α n) : a ∈ a ::ₛ s := multiset.mem_cons_self a s.1 lemma cons_of_coe_eq (a : α) (v : vector α n) : a ::ₛ (↑v : sym α n) = ↑(a ::ᵥ v) := subtype.ext $ by { cases v, refl } lemma sound {a b : vector α n} (h : a.val ~ b.val) : (↑a : sym α n) = ↑b := subtype.ext $ quotient.sound h /-- `erase s a h` is the sym that subtracts 1 from the multiplicity of `a` if a is present in the sym. -/ def erase [decidable_eq α] (s : sym α (n + 1)) (a : α) (h : a ∈ s) : sym α n := ⟨s.val.erase a, (multiset.card_erase_of_mem h).trans $ s.property.symm ▸ n.pred_succ⟩ @[simp] lemma erase_mk [decidable_eq α] (m : multiset α) (hc : m.card = n + 1) (a : α) (h : a ∈ m) : (mk m hc).erase a h = mk (m.erase a) (by { rw [multiset.card_erase_of_mem h, hc], refl }) := rfl @[simp] lemma coe_erase [decidable_eq α] {s : sym α n.succ} {a : α} (h : a ∈ s) : (s.erase a h : multiset α) = multiset.erase s a := rfl @[simp] lemma cons_erase [decidable_eq α] {s : sym α n.succ} {a : α} (h : a ∈ s) : a ::ₛ s.erase a h = s := coe_injective $ multiset.cons_erase h @[simp] lemma erase_cons_head [decidable_eq α] (s : sym α n) (a : α) (h : a ∈ a ::ₛ s := mem_cons_self a s) : (a ::ₛ s).erase a h = s := coe_injective $ multiset.erase_cons_head a s.1 /-- Another definition of the nth symmetric power, using vectors modulo permutations. (See `sym`.) -/ def sym' (α : Type*) (n : ℕ) := quotient (vector.perm.is_setoid α n) /-- This is `cons` but for the alternative `sym'` definition. -/ def cons' {α : Type*} {n : ℕ} : α → sym' α n → sym' α (nat.succ n) := λ a, quotient.map (vector.cons a) (λ ⟨l₁, h₁⟩ ⟨l₂, h₂⟩ h, list.perm.cons _ h) notation (name := sym.cons') a :: b := cons' a b /-- Multisets of cardinality n are equivalent to length-n vectors up to permutations. -/ def sym_equiv_sym' {α : Type*} {n : ℕ} : sym α n ≃ sym' α n := equiv.subtype_quotient_equiv_quotient_subtype _ _ (λ _, by refl) (λ _ _, by refl) lemma cons_equiv_eq_equiv_cons (α : Type*) (n : ℕ) (a : α) (s : sym α n) : a :: sym_equiv_sym' s = sym_equiv_sym' (a ::ₛ s) := by { rcases s with ⟨⟨l⟩, _⟩, refl, } instance : has_zero (sym α 0) := ⟨⟨0, rfl⟩⟩ instance : has_emptyc (sym α 0) := ⟨0⟩ lemma eq_nil_of_card_zero (s : sym α 0) : s = nil := subtype.ext $ multiset.card_eq_zero.1 s.2 instance unique_zero : unique (sym α 0) := ⟨⟨nil⟩, eq_nil_of_card_zero⟩ /-- `replicate n a` is the sym containing only `a` with multiplicity `n`. -/ def replicate (n : ℕ) (a : α) : sym α n := ⟨multiset.replicate n a, multiset.card_replicate _ _⟩ lemma replicate_succ {a : α} {n : ℕ} : replicate n.succ a = a ::ₛ replicate n a := rfl lemma coe_replicate : (replicate n a : multiset α) = multiset.replicate n a := rfl @[simp] lemma mem_replicate : b ∈ replicate n a ↔ n ≠ 0 ∧ b = a := multiset.mem_replicate lemma eq_replicate_iff : s = replicate n a ↔ ∀ b ∈ s, b = a := begin rw [subtype.ext_iff, coe_replicate, multiset.eq_replicate], exact and_iff_right s.2 end lemma exists_mem (s : sym α n.succ) : ∃ a, a ∈ s := multiset.card_pos_iff_exists_mem.1 $ s.2.symm ▸ n.succ_pos lemma exists_eq_cons_of_succ (s : sym α n.succ) : ∃ (a : α) (s' : sym α n), s = a ::ₛ s' := begin obtain ⟨a, ha⟩ := exists_mem s, classical, exact ⟨a, s.erase a ha, (cons_erase ha).symm⟩, end lemma eq_replicate {a : α} {n : ℕ} {s : sym α n} : s = replicate n a ↔ ∀ b ∈ s, b = a := subtype.ext_iff.trans $ multiset.eq_replicate.trans $ and_iff_right s.prop lemma eq_replicate_of_subsingleton [subsingleton α] (a : α) {n : ℕ} (s : sym α n) : s = replicate n a := eq_replicate.2 $ λ b hb, subsingleton.elim _ _ instance [subsingleton α] (n : ℕ) : subsingleton (sym α n) := ⟨begin cases n, { simp, }, { intros s s', obtain ⟨b, -⟩ := exists_mem s, rw [eq_replicate_of_subsingleton b s', eq_replicate_of_subsingleton b s], }, end⟩ instance inhabited_sym [inhabited α] (n : ℕ) : inhabited (sym α n) := ⟨replicate n default⟩ instance inhabited_sym' [inhabited α] (n : ℕ) : inhabited (sym' α n) := ⟨quotient.mk' (vector.replicate n default)⟩ instance (n : ℕ) [is_empty α] : is_empty (sym α n.succ) := ⟨λ s, by { obtain ⟨a, -⟩ := exists_mem s, exact is_empty_elim a }⟩ instance (n : ℕ) [unique α] : unique (sym α n) := unique.mk' _ lemma replicate_right_inj {a b : α} {n : ℕ} (h : n ≠ 0) : replicate n a = replicate n b ↔ a = b := subtype.ext_iff.trans (multiset.replicate_right_inj h) lemma replicate_right_injective {n : ℕ} (h : n ≠ 0) : function.injective (replicate n : α → sym α n) := λ a b, (replicate_right_inj h).1 instance (n : ℕ) [nontrivial α] : nontrivial (sym α (n + 1)) := (replicate_right_injective n.succ_ne_zero).nontrivial /-- A function `α → β` induces a function `sym α n → sym β n` by applying it to every element of the underlying `n`-tuple. -/ def map {n : ℕ} (f : α → β) (x : sym α n) : sym β n := ⟨x.val.map f, by simpa [multiset.card_map] using x.property⟩ @[simp] lemma mem_map {n : ℕ} {f : α → β} {b : β} {l : sym α n} : b ∈ sym.map f l ↔ ∃ a, a ∈ l ∧ f a = b := multiset.mem_map /-- Note: `sym.map_id` is not simp-normal, as simp ends up unfolding `id` with `sym.map_congr` -/ @[simp] lemma map_id' {α : Type*} {n : ℕ} (s : sym α n) : sym.map (λ (x : α), x) s = s := by simp [sym.map] lemma map_id {α : Type*} {n : ℕ} (s : sym α n) : sym.map id s = s := by simp [sym.map] @[simp] lemma map_map {α β γ : Type*} {n : ℕ} (g : β → γ) (f : α → β) (s : sym α n) : sym.map g (sym.map f s) = sym.map (g ∘ f) s := by simp [sym.map] @[simp] lemma map_zero (f : α → β) : sym.map f (0 : sym α 0) = (0 : sym β 0) := rfl @[simp] lemma map_cons {n : ℕ} (f : α → β) (a : α) (s : sym α n) : (a ::ₛ s).map f = (f a) ::ₛ s.map f := by simp [map, cons] @[congr] lemma map_congr {f g : α → β} {s : sym α n} (h : ∀ x ∈ s, f x = g x) : map f s = map g s := subtype.ext $ multiset.map_congr rfl h @[simp] lemma map_mk {f : α → β} {m : multiset α} {hc : m.card = n} : map f (mk m hc) = mk (m.map f) (by simp [hc]) := rfl @[simp] lemma coe_map (s : sym α n) (f : α → β) : ↑(s.map f) = multiset.map f s := rfl lemma map_injective {f : α → β} (hf : injective f) (n : ℕ) : injective (map f : sym α n → sym β n) := λ s t h, coe_injective $ multiset.map_injective hf $ coe_inj.2 h /-- Mapping an equivalence `α ≃ β` using `sym.map` gives an equivalence between `sym α n` and `sym β n`. -/ @[simps] def equiv_congr (e : α ≃ β) : sym α n ≃ sym β n := { to_fun := map e, inv_fun := map e.symm, left_inv := λ x, by rw [map_map, equiv.symm_comp_self, map_id], right_inv := λ x, by rw [map_map, equiv.self_comp_symm, map_id] } /-- "Attach" a proof that `a ∈ s` to each element `a` in `s` to produce an element of the symmetric power on `{x // x ∈ s}`. -/ def attach (s : sym α n) : sym {x // x ∈ s} n := ⟨s.val.attach, by rw [multiset.card_attach, s.2]⟩ @[simp] lemma attach_mk {m : multiset α} {hc : m.card = n} : attach (mk m hc) = mk m.attach (multiset.card_attach.trans hc) := rfl @[simp] lemma coe_attach (s : sym α n) : (s.attach : multiset {a // a ∈ s}) = multiset.attach s := rfl lemma attach_map_coe (s : sym α n) : s.attach.map coe = s := coe_injective $ multiset.attach_map_val _ @[simp] lemma mem_attach (s : sym α n) (x : {x // x ∈ s}) : x ∈ s.attach := multiset.mem_attach _ _ @[simp] lemma attach_nil : (nil : sym α 0).attach = nil := rfl @[simp] lemma attach_cons (x : α) (s : sym α n) : (cons x s).attach = cons ⟨x, mem_cons_self _ _⟩ (s.attach.map (λ x, ⟨x, mem_cons_of_mem x.prop⟩)) := coe_injective $ multiset.attach_cons _ _ /-- Change the length of a `sym` using an equality. The simp-normal form is for the `cast` to be pushed outward. -/ protected def cast {n m : ℕ} (h : n = m) : sym α n ≃ sym α m := { to_fun := λ s, ⟨s.val, s.2.trans h⟩, inv_fun := λ s, ⟨s.val, s.2.trans h.symm⟩, left_inv := λ s, subtype.ext rfl, right_inv := λ s, subtype.ext rfl } @[simp] lemma cast_rfl : sym.cast rfl s = s := subtype.ext rfl @[simp] lemma cast_cast {n'' : ℕ} (h : n = n') (h' : n' = n'') : sym.cast h' (sym.cast h s) = sym.cast (h.trans h') s := rfl @[simp] lemma coe_cast (h : n = m) : (sym.cast h s : multiset α) = s := rfl @[simp] lemma mem_cast (h : n = m) : a ∈ sym.cast h s ↔ a ∈ s := iff.rfl /-- Append a pair of `sym` terms. -/ def append (s : sym α n) (s' : sym α n') : sym α (n + n') := ⟨s.1 + s'.1, by simp_rw [← s.2, ← s'.2, map_add]⟩ @[simp] lemma append_inj_right (s : sym α n) {t t' : sym α n'} : s.append t = s.append t' ↔ t = t' := subtype.ext_iff.trans $ (add_right_inj _).trans subtype.ext_iff.symm @[simp] lemma append_inj_left {s s' : sym α n} (t : sym α n') : s.append t = s'.append t ↔ s = s' := subtype.ext_iff.trans $ (add_left_inj _).trans subtype.ext_iff.symm lemma append_comm (s : sym α n') (s' : sym α n') : s.append s' = sym.cast (add_comm _ _) (s'.append s) := by { ext, simp [append, add_comm], } @[simp, norm_cast] lemma coe_append (s : sym α n) (s' : sym α n') : (s.append s' : multiset α) = s + s' := rfl lemma mem_append_iff {s' : sym α m} : a ∈ s.append s' ↔ a ∈ s ∨ a ∈ s' := multiset.mem_add /-- Fill a term `m : sym α (n - i)` with `i` copies of `a` to obtain a term of `sym α n`. This is a convenience wrapper for `m.append (replicate i a)` that adjusts the term using `sym.cast`. -/ def fill (a : α) (i : fin (n + 1)) (m : sym α (n - i)) : sym α n := sym.cast (nat.sub_add_cancel i.is_le) (m.append (replicate i a)) lemma coe_fill {a : α} {i : fin (n + 1)} {m : sym α (n - i)} : (fill a i m : multiset α) = m + replicate i a := rfl lemma mem_fill_iff {a b : α} {i : fin (n + 1)} {s : sym α (n - i)} : a ∈ sym.fill b i s ↔ ((i : ℕ) ≠ 0 ∧ a = b) ∨ a ∈ s := by rw [fill, mem_cast, mem_append_iff, or_comm, mem_replicate] open multiset /-- Remove every `a` from a given `sym α n`. Yields the number of copies `i` and a term of `sym α (n - i)`. -/ def filter_ne [decidable_eq α] (a : α) (m : sym α n) : Σ i : fin (n + 1), sym α (n - i) := ⟨⟨m.1.count a, (count_le_card _ _).trans_lt $ by rw [m.2, nat.lt_succ_iff]⟩, m.1.filter ((≠) a), eq_tsub_of_add_eq $ eq.trans begin rw [← countp_eq_card_filter, add_comm], exact (card_eq_countp_add_countp _ _).symm, end m.2⟩ lemma sigma_sub_ext {m₁ m₂ : Σ i : fin (n + 1), sym α (n - i)} (h : (m₁.2 : multiset α) = m₂.2) : m₁ = m₂ := sigma.subtype_ext (fin.ext $ by rw [← nat.sub_sub_self m₁.1.is_le, ← nat.sub_sub_self m₂.1.is_le, ← m₁.2.2, ← m₂.2.2, subtype.val_eq_coe, subtype.val_eq_coe, h]) h lemma fill_filter_ne [decidable_eq α] (a : α) (m : sym α n) : (m.filter_ne a).2.fill a (m.filter_ne a).1 = m := subtype.ext begin dsimp only [coe_fill, filter_ne, subtype.coe_mk, fin.coe_mk], ext b, rw [count_add, count_filter, sym.coe_replicate, count_replicate], obtain rfl | h := eq_or_ne a b, { rw [if_pos rfl, if_neg (not_not.2 rfl), zero_add], refl }, { rw [if_pos h, if_neg h.symm, add_zero], refl }, end lemma filter_ne_fill [decidable_eq α] (a : α) (m : Σ i : fin (n + 1), sym α (n - i)) (h : a ∉ m.2) : (m.2.fill a m.1).filter_ne a = m := sigma_sub_ext begin dsimp only [filter_ne, subtype.coe_mk, subtype.val_eq_coe, coe_fill], rw [filter_add, filter_eq_self.2, add_right_eq_self, eq_zero_iff_forall_not_mem], { intros b hb, rw [mem_filter, sym.mem_coe, mem_replicate] at hb, exact hb.2 hb.1.2.symm }, { exact λ b hb, (hb.ne_of_not_mem h).symm }, end end sym section equiv /-! ### Combinatorial equivalences -/ variables {α : Type*} {n : ℕ} open sym namespace sym_option_succ_equiv /-- Function from the symmetric product over `option` splitting on whether or not it contains a `none`. -/ def encode [decidable_eq α] (s : sym (option α) n.succ) : sym (option α) n ⊕ sym α n.succ := if h : none ∈ s then sum.inl (s.erase none h) else sum.inr (s.attach.map $ λ o, option.get $ option.ne_none_iff_is_some.1 $ ne_of_mem_of_not_mem o.2 h) @[simp] lemma encode_of_none_mem [decidable_eq α] (s : sym (option α) n.succ) (h : none ∈ s) : encode s = sum.inl (s.erase none h) := dif_pos h @[simp] lemma encode_of_not_none_mem [decidable_eq α] (s : sym (option α) n.succ) (h : ¬ none ∈ s) : encode s = sum.inr (s.attach.map $ λ o, option.get $ option.ne_none_iff_is_some.1 $ ne_of_mem_of_not_mem o.2 h) := dif_neg h /-- Inverse of `sym_option_succ_equiv.decode`. -/ @[simp] def decode : sym (option α) n ⊕ sym α n.succ → sym (option α) n.succ | (sum.inl s) := none ::ₛ s | (sum.inr s) := s.map embedding.coe_option @[simp] lemma decode_encode [decidable_eq α] (s : sym (option α) n.succ) : decode (encode s) = s := begin by_cases h : none ∈ s, { simp [h] }, { simp only [h, decode, not_false_iff, subtype.val_eq_coe, encode_of_not_none_mem, embedding.coe_option_apply, map_map, comp_app, option.coe_get], convert s.attach_map_coe } end @[simp] lemma encode_decode [decidable_eq α] (s : sym (option α) n ⊕ sym α n.succ) : encode (decode s) = s := begin obtain (s | s) := s, { simp }, { unfold sym_option_succ_equiv.encode, split_ifs, { obtain ⟨a, _, ha⟩ := multiset.mem_map.mp h, exact option.some_ne_none _ ha }, { refine map_injective (option.some_injective _) _ _, convert eq.trans _ (sym_option_succ_equiv.decode (sum.inr s)).attach_map_coe, simp } } end end sym_option_succ_equiv /-- The symmetric product over `option` is a disjoint union over simpler symmetric products. -/ @[simps] def sym_option_succ_equiv [decidable_eq α] : sym (option α) n.succ ≃ sym (option α) n ⊕ sym α n.succ := { to_fun := sym_option_succ_equiv.encode, inv_fun := sym_option_succ_equiv.decode, left_inv := sym_option_succ_equiv.decode_encode, right_inv := sym_option_succ_equiv.encode_decode } end equiv
47436729b73630d760a2734ad57732a64f6984bd
87a08a8e9b222ec02f3327dca4ae24590c1b3de9
/src/category_theory/types.lean
92e77748357bfc123e560319fd564966e25ccaf7
[ "Apache-2.0" ]
permissive
naussicaa/mathlib
86d05223517a39e80920549a8052f9cf0e0b77b8
1ef2c2df20cf45c21675d855436228c7ae02d47a
refs/heads/master
1,592,104,950,080
1,562,073,069,000
1,562,073,069,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
4,515
lean
-- Copyright (c) 2017 Scott Morrison. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Authors: Stephen Morgan, Scott Morrison, Johannes Hölzl import category_theory.functor_category import category_theory.fully_faithful import data.equiv.basic namespace category_theory universes v v' w u u' -- declare the `v`'s first; see `category_theory.category` for an explanation instance types : large_category (Sort u) := { hom := λ a b, (a → b), id := λ a, id, comp := λ _ _ _ f g, g ∘ f } @[simp] lemma types_hom {α β : Sort u} : (α ⟶ β) = (α → β) := rfl @[simp] lemma types_id (X : Sort u) : 𝟙 X = id := rfl @[simp] lemma types_comp {X Y Z : Sort u} (f : X ⟶ Y) (g : Y ⟶ Z) : f ≫ g = g ∘ f := rfl namespace functor variables {J : Type u} [𝒥 : category.{v} J] include 𝒥 def sections (F : J ⥤ Type w) : set (Π j, F.obj j) := { u | ∀ {j j'} (f : j ⟶ j'), F.map f (u j) = u j'} end functor namespace functor_to_types variables {C : Type u} [𝒞 : category.{v} C] (F G H : C ⥤ Sort w) {X Y Z : C} include 𝒞 variables (σ : F ⟶ G) (τ : G ⟶ H) @[simp] lemma map_comp (f : X ⟶ Y) (g : Y ⟶ Z) (a : F.obj X) : (F.map (f ≫ g)) a = (F.map g) ((F.map f) a) := by simp @[simp] lemma map_id (a : F.obj X) : (F.map (𝟙 X)) a = a := by simp lemma naturality (f : X ⟶ Y) (x : F.obj X) : σ.app Y ((F.map f) x) = (G.map f) (σ.app X x) := congr_fun (σ.naturality f) x @[simp] lemma comp (x : F.obj X) : (σ ≫ τ).app X x = τ.app X (σ.app X x) := rfl variables {D : Type u'} [𝒟 : category.{u'} D] (I J : D ⥤ C) (ρ : I ⟶ J) {W : D} @[simp] lemma hcomp (x : (I ⋙ F).obj W) : (ρ ◫ σ).app W x = (G.map (ρ.app W)) (σ.app (I.obj W) x) := rfl end functor_to_types def ulift_trivial (V : Type u) : ulift.{u} V ≅ V := by tidy def ulift_functor : Type u ⥤ Type (max u v) := { obj := λ X, ulift.{v} X, map := λ X Y f, λ x : ulift.{v} X, ulift.up (f x.down) } @[simp] lemma ulift_functor_map {X Y : Type u} (f : X ⟶ Y) (x : ulift.{v} X) : ulift_functor.map f x = ulift.up (f x.down) := rfl instance ulift_functor_faithful : fully_faithful ulift_functor := { preimage := λ X Y f x, (f (ulift.up x)).down, injectivity' := λ X Y f g p, funext $ λ x, congr_arg ulift.down ((congr_fun p (ulift.up x)) : ((ulift.up (f x)) = (ulift.up (g x)))) } def hom_of_element {X : Type u} (x : X) : punit ⟶ X := λ _, x lemma hom_of_element_eq_iff {X : Type u} (x y : X) : hom_of_element x = hom_of_element y ↔ x = y := ⟨λ H, congr_fun H punit.star, by cc⟩ lemma mono_iff_injective {X Y : Type u} (f : X ⟶ Y) : mono f ↔ function.injective f := begin split, { intros H x x' h, resetI, rw ←hom_of_element_eq_iff at ⊢ h, exact (cancel_mono f).mp h }, { refine λ H, ⟨λ Z g h H₂, _⟩, ext z, replace H₂ := congr_fun H₂ z, exact H H₂ } end lemma epi_iff_surjective {X Y : Type u} (f : X ⟶ Y) : epi f ↔ function.surjective f := begin split, { intros H, let g : Y ⟶ ulift Prop := λ y, ⟨true⟩, let h : Y ⟶ ulift Prop := λ y, ⟨∃ x, f x = y⟩, suffices : f ≫ g = f ≫ h, { resetI, rw cancel_epi at this, intro y, replace this := congr_fun this y, replace this : true = ∃ x, f x = y := congr_arg ulift.down this, rw ←this, trivial }, ext x, change true ↔ ∃ x', f x' = f x, rw true_iff, exact ⟨x, rfl⟩ }, { intro H, constructor, intros Z g h H₂, apply funext, rw ←forall_iff_forall_surj H, intro x, exact (congr_fun H₂ x : _) } end end category_theory -- Isomorphisms in Type and equivalences. namespace equiv universe u variables {X Y : Sort u} def to_iso (e : X ≃ Y) : X ≅ Y := { hom := e.to_fun, inv := e.inv_fun, hom_inv_id' := funext e.left_inv, inv_hom_id' := funext e.right_inv } @[simp] lemma to_iso_hom {e : X ≃ Y} : e.to_iso.hom = e := rfl @[simp] lemma to_iso_inv {e : X ≃ Y} : e.to_iso.inv = e.symm := rfl end equiv namespace category_theory.iso universe u variables {X Y : Sort u} def to_equiv (i : X ≅ Y) : X ≃ Y := { to_fun := i.hom, inv_fun := i.inv, left_inv := λ x, congr_fun i.hom_inv_id x, right_inv := λ y, congr_fun i.inv_hom_id y } @[simp] lemma to_equiv_fun (i : X ≅ Y) : (i.to_equiv : X → Y) = i.hom := rfl @[simp] lemma to_equiv_symm_fun (i : X ≅ Y) : (i.to_equiv.symm : Y → X) = i.inv := rfl end category_theory.iso
d247eb396f4b996735f24d6ac43f5e8501e8c213
4efff1f47634ff19e2f786deadd394270a59ecd2
/src/topology/instances/ennreal.lean
0c5b88753bfd6f6b4a5e0ecffd2a31e79385afcf
[ "Apache-2.0" ]
permissive
agjftucker/mathlib
d634cd0d5256b6325e3c55bb7fb2403548371707
87fe50de17b00af533f72a102d0adefe4a2285e8
refs/heads/master
1,625,378,131,941
1,599,166,526,000
1,599,166,526,000
160,748,509
0
0
Apache-2.0
1,544,141,789,000
1,544,141,789,000
null
UTF-8
Lean
false
false
39,193
lean
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Johannes Hölzl -/ import topology.instances.nnreal /-! # Extended non-negative reals -/ noncomputable theory open classical set filter metric open_locale classical open_locale topological_space variables {α : Type*} {β : Type*} {γ : Type*} open_locale ennreal big_operators filter namespace ennreal variables {a b c d : ennreal} {r p q : nnreal} variables {x y z : ennreal} {ε ε₁ ε₂ : ennreal} {s : set ennreal} section topological_space open topological_space /-- Topology on `ennreal`. Note: this is different from the `emetric_space` topology. The `emetric_space` topology has `is_open {⊤}`, while this topology doesn't have singleton elements. -/ instance : topological_space ennreal := preorder.topology ennreal instance : order_topology ennreal := ⟨rfl⟩ instance : t2_space ennreal := by apply_instance -- short-circuit type class inference instance : second_countable_topology ennreal := ⟨⟨⋃q ≥ (0:ℚ), {{a : ennreal | a < nnreal.of_real q}, {a : ennreal | ↑(nnreal.of_real q) < a}}, (countable_encodable _).bUnion $ assume a ha, (countable_singleton _).insert _, le_antisymm (le_generate_from $ by simp [or_imp_distrib, is_open_lt', is_open_gt'] {contextual := tt}) (le_generate_from $ λ s h, begin rcases h with ⟨a, hs | hs⟩; [ rw show s = ⋃q∈{q:ℚ | 0 ≤ q ∧ a < nnreal.of_real q}, {b | ↑(nnreal.of_real q) < b}, from set.ext (assume b, by simp [hs, @ennreal.lt_iff_exists_rat_btwn a b, and_assoc]), rw show s = ⋃q∈{q:ℚ | 0 ≤ q ∧ ↑(nnreal.of_real q) < a}, {b | b < ↑(nnreal.of_real q)}, from set.ext (assume b, by simp [hs, @ennreal.lt_iff_exists_rat_btwn b a, and_comm, and_assoc])]; { apply is_open_Union, intro q, apply is_open_Union, intro hq, exact generate_open.basic _ (mem_bUnion hq.1 $ by simp) } end)⟩⟩ lemma embedding_coe : embedding (coe : nnreal → ennreal) := ⟨⟨begin refine le_antisymm _ _, { rw [@order_topology.topology_eq_generate_intervals ennreal _, ← coinduced_le_iff_le_induced], refine le_generate_from (assume s ha, _), rcases ha with ⟨a, rfl | rfl⟩, show is_open {b : nnreal | a < ↑b}, { cases a; simp [none_eq_top, some_eq_coe, is_open_lt'] }, show is_open {b : nnreal | ↑b < a}, { cases a; simp [none_eq_top, some_eq_coe, is_open_gt', is_open_const] } }, { rw [@order_topology.topology_eq_generate_intervals nnreal _], refine le_generate_from (assume s ha, _), rcases ha with ⟨a, rfl | rfl⟩, exact ⟨Ioi a, is_open_Ioi, by simp [Ioi]⟩, exact ⟨Iio a, is_open_Iio, by simp [Iio]⟩ } end⟩, assume a b, coe_eq_coe.1⟩ lemma is_open_ne_top : is_open {a : ennreal | a ≠ ⊤} := is_open_ne lemma is_open_Ico_zero : is_open (Ico 0 b) := by { rw ennreal.Ico_eq_Iio, exact is_open_Iio} lemma coe_range_mem_nhds : range (coe : nnreal → ennreal) ∈ 𝓝 (r : ennreal) := have {a : ennreal | a ≠ ⊤} = range (coe : nnreal → ennreal), from set.ext $ assume a, by cases a; simp [none_eq_top, some_eq_coe], this ▸ mem_nhds_sets is_open_ne_top coe_ne_top @[norm_cast] lemma tendsto_coe {f : filter α} {m : α → nnreal} {a : nnreal} : tendsto (λa, (m a : ennreal)) f (𝓝 ↑a) ↔ tendsto m f (𝓝 a) := embedding_coe.tendsto_nhds_iff.symm lemma continuous_coe {α} [topological_space α] {f : α → nnreal} : continuous (λa, (f a : ennreal)) ↔ continuous f := embedding_coe.continuous_iff.symm lemma nhds_coe {r : nnreal} : 𝓝 (r : ennreal) = (𝓝 r).map coe := by rw [embedding_coe.induced, map_nhds_induced_eq coe_range_mem_nhds] lemma nhds_coe_coe {r p : nnreal} : 𝓝 ((r : ennreal), (p : ennreal)) = (𝓝 (r, p)).map (λp:nnreal×nnreal, (p.1, p.2)) := begin rw [(embedding_coe.prod_mk embedding_coe).map_nhds_eq], rw [← prod_range_range_eq], exact prod_mem_nhds_sets coe_range_mem_nhds coe_range_mem_nhds end lemma continuous_of_real : continuous ennreal.of_real := (continuous_coe.2 continuous_id).comp nnreal.continuous_of_real lemma tendsto_of_real {f : filter α} {m : α → ℝ} {a : ℝ} (h : tendsto m f (𝓝 a)) : tendsto (λa, ennreal.of_real (m a)) f (𝓝 (ennreal.of_real a)) := tendsto.comp (continuous.tendsto continuous_of_real _) h lemma tendsto_to_nnreal {a : ennreal} : a ≠ ⊤ → tendsto (ennreal.to_nnreal) (𝓝 a) (𝓝 a.to_nnreal) := begin cases a; simp [some_eq_coe, none_eq_top, nhds_coe, tendsto_map'_iff, (∘)], exact tendsto_id end lemma continuous_on_to_nnreal : continuous_on ennreal.to_nnreal {a | a ≠ ∞} := continuous_on_iff_continuous_restrict.2 $ continuous_iff_continuous_at.2 $ λ x, (tendsto_to_nnreal x.2).comp continuous_at_subtype_coe lemma tendsto_to_real {a : ennreal} : a ≠ ⊤ → tendsto (ennreal.to_real) (𝓝 a) (𝓝 a.to_real) := λ ha, tendsto.comp ((@nnreal.tendsto_coe _ (𝓝 a.to_nnreal) id (a.to_nnreal)).2 tendsto_id) (tendsto_to_nnreal ha) lemma tendsto_nhds_top {m : α → ennreal} {f : filter α} (h : ∀ n : ℕ, ∀ᶠ a in f, ↑n < m a) : tendsto m f (𝓝 ⊤) := tendsto_nhds_generate_from $ assume s hs, match s, hs with | _, ⟨none, or.inl rfl⟩, hr := (lt_irrefl ⊤ hr).elim | _, ⟨some r, or.inl rfl⟩, hr := let ⟨n, hrn⟩ := exists_nat_gt r in mem_sets_of_superset (h n) $ assume a hnma, show ↑r < m a, from lt_trans (show (r : ennreal) < n, from (coe_nat n) ▸ coe_lt_coe.2 hrn) hnma | _, ⟨a, or.inr rfl⟩, hr := (not_top_lt $ show ⊤ < a, from hr).elim end lemma tendsto_nat_nhds_top : tendsto (λ n : ℕ, ↑n) at_top (𝓝 ∞) := tendsto_nhds_top $ λ n, mem_at_top_sets.2 ⟨n+1, λ m hm, ennreal.coe_nat_lt_coe_nat.2 $ nat.lt_of_succ_le hm⟩ lemma nhds_top : 𝓝 ∞ = ⨅a ≠ ∞, 𝓟 (Ioi a) := nhds_top_order.trans $ by simp [lt_top_iff_ne_top, Ioi] lemma nhds_zero : 𝓝 (0 : ennreal) = ⨅a ≠ 0, 𝓟 (Iio a) := nhds_bot_order.trans $ by simp [bot_lt_iff_ne_bot, Iio] /-- The set of finite `ennreal` numbers is homeomorphic to `nnreal`. -/ def ne_top_homeomorph_nnreal : {a | a ≠ ∞} ≃ₜ nnreal := { to_fun := λ x, ennreal.to_nnreal x, inv_fun := λ x, ⟨x, coe_ne_top⟩, left_inv := λ ⟨x, hx⟩, subtype.eq $ coe_to_nnreal hx, right_inv := λ x, to_nnreal_coe, continuous_to_fun := continuous_on_iff_continuous_restrict.1 continuous_on_to_nnreal, continuous_inv_fun := continuous_subtype_mk _ (continuous_coe.2 continuous_id) } /-- The set of finite `ennreal` numbers is homeomorphic to `nnreal`. -/ def lt_top_homeomorph_nnreal : {a | a < ∞} ≃ₜ nnreal := by refine (homeomorph.set_congr $ set.ext $ λ x, _).trans ne_top_homeomorph_nnreal; simp only [mem_set_of_eq, lt_top_iff_ne_top] -- using Icc because -- • don't have 'Ioo (x - ε) (x + ε) ∈ 𝓝 x' unless x > 0 -- • (x - y ≤ ε ↔ x ≤ ε + y) is true, while (x - y < ε ↔ x < ε + y) is not lemma Icc_mem_nhds : x ≠ ⊤ → 0 < ε → Icc (x - ε) (x + ε) ∈ 𝓝 x := begin assume xt ε0, rw mem_nhds_sets_iff, by_cases x0 : x = 0, { use Iio (x + ε), have : Iio (x + ε) ⊆ Icc (x - ε) (x + ε), assume a, rw x0, simpa using le_of_lt, use this, exact ⟨is_open_Iio, mem_Iio_self_add xt ε0⟩ }, { use Ioo (x - ε) (x + ε), use Ioo_subset_Icc_self, exact ⟨is_open_Ioo, mem_Ioo_self_sub_add xt x0 ε0 ε0 ⟩ } end lemma nhds_of_ne_top : x ≠ ⊤ → 𝓝 x = ⨅ε > 0, 𝓟 (Icc (x - ε) (x + ε)) := begin assume xt, refine le_antisymm _ _, -- first direction simp only [le_infi_iff, le_principal_iff], assume ε ε0, exact Icc_mem_nhds xt ε0, -- second direction rw nhds_generate_from, refine le_infi (assume s, le_infi $ assume hs, _), simp only [mem_set_of_eq] at hs, rcases hs with ⟨xs, ⟨a, ha⟩⟩, cases ha, { rw ha at *, rcases dense xs with ⟨b, ⟨ab, bx⟩⟩, have xb_pos : x - b > 0 := zero_lt_sub_iff_lt.2 bx, have xxb : x - (x - b) = b := sub_sub_cancel (by rwa lt_top_iff_ne_top) (le_of_lt bx), refine infi_le_of_le (x - b) (infi_le_of_le xb_pos _), simp only [mem_principal_sets, le_principal_iff], assume y, rintros ⟨h₁, h₂⟩, rw xxb at h₁, calc a < b : ab ... ≤ y : h₁ }, { rw ha at *, rcases dense xs with ⟨b, ⟨xb, ba⟩⟩, have bx_pos : b - x > 0 := zero_lt_sub_iff_lt.2 xb, have xbx : x + (b - x) = b := add_sub_cancel_of_le (le_of_lt xb), refine infi_le_of_le (b - x) (infi_le_of_le bx_pos _), simp only [mem_principal_sets, le_principal_iff], assume y, rintros ⟨h₁, h₂⟩, rw xbx at h₂, calc y ≤ b : h₂ ... < a : ba }, end /-- Characterization of neighborhoods for `ennreal` numbers. See also `tendsto_order` for a version with strict inequalities. -/ protected theorem tendsto_nhds {f : filter α} {u : α → ennreal} {a : ennreal} (ha : a ≠ ⊤) : tendsto u f (𝓝 a) ↔ ∀ ε > 0, ∀ᶠ x in f, (u x) ∈ Icc (a - ε) (a + ε) := by simp only [nhds_of_ne_top ha, tendsto_infi, tendsto_principal, mem_Icc] protected lemma tendsto_at_top [nonempty β] [semilattice_sup β] {f : β → ennreal} {a : ennreal} (ha : a ≠ ⊤) : tendsto f at_top (𝓝 a) ↔ ∀ε>0, ∃N, ∀n≥N, (f n) ∈ Icc (a - ε) (a + ε) := by simp only [ennreal.tendsto_nhds ha, mem_at_top_sets, mem_set_of_eq, filter.eventually] lemma tendsto_coe_nnreal_nhds_top {α} {l : filter α} {f : α → nnreal} (h : tendsto f l at_top) : tendsto (λa, (f a : ennreal)) l (𝓝 ∞) := tendsto_nhds_top $ assume n, have ∀ᶠ a in l, ↑(n+1) ≤ f a := h $ mem_at_top _, mem_sets_of_superset this $ assume a (ha : ↑(n+1) ≤ f a), begin rw [← coe_nat], dsimp, exact coe_lt_coe.2 (lt_of_lt_of_le (nat.cast_lt.2 (nat.lt_succ_self _)) ha) end instance : has_continuous_add ennreal := ⟨ continuous_iff_continuous_at.2 $ have hl : ∀a:ennreal, tendsto (λ (p : ennreal × ennreal), p.fst + p.snd) (𝓝 (⊤, a)) (𝓝 ⊤), from assume a, tendsto_nhds_top $ assume n, have set.prod {a | ↑n < a } univ ∈ 𝓝 ((⊤:ennreal), a), from prod_mem_nhds_sets (lt_mem_nhds $ coe_nat n ▸ coe_lt_top) univ_mem_sets, show {a : ennreal × ennreal | ↑n < a.fst + a.snd} ∈ 𝓝 (⊤, a), begin filter_upwards [this] assume ⟨a₁, a₂⟩ ⟨h₁, h₂⟩, lt_of_lt_of_le h₁ (le_add_right $ le_refl _) end, begin rintro ⟨a₁, a₂⟩, cases a₁, { simp [continuous_at, none_eq_top, hl a₂], }, cases a₂, { simp [continuous_at, none_eq_top, some_eq_coe, nhds_swap (a₁ : ennreal) ⊤, tendsto_map'_iff, (∘)], convert hl a₁, simp [add_comm] }, simp [continuous_at, some_eq_coe, nhds_coe_coe, tendsto_map'_iff, (∘)], simp only [coe_add.symm, tendsto_coe, tendsto_add] end ⟩ protected lemma tendsto_mul (ha : a ≠ 0 ∨ b ≠ ⊤) (hb : b ≠ 0 ∨ a ≠ ⊤) : tendsto (λp:ennreal×ennreal, p.1 * p.2) (𝓝 (a, b)) (𝓝 (a * b)) := have ht : ∀b:ennreal, b ≠ 0 → tendsto (λp:ennreal×ennreal, p.1 * p.2) (𝓝 ((⊤:ennreal), b)) (𝓝 ⊤), begin refine assume b hb, tendsto_nhds_top $ assume n, _, rcases dense (zero_lt_iff_ne_zero.2 hb) with ⟨ε', hε', hεb'⟩, rcases ennreal.lt_iff_exists_coe.1 hεb' with ⟨ε, rfl, h⟩, rcases exists_nat_gt (↑n / ε) with ⟨m, hm⟩, have hε : ε > 0, from coe_lt_coe.1 hε', refine mem_sets_of_superset (prod_mem_nhds_sets (lt_mem_nhds $ @coe_lt_top m) (lt_mem_nhds $ h)) _, rintros ⟨a₁, a₂⟩ ⟨h₁, h₂⟩, dsimp at h₁ h₂ ⊢, calc (n:ennreal) = ↑(((n:nnreal) / ε) * ε) : begin norm_cast, simp [nnreal.div_def, mul_assoc, nnreal.inv_mul_cancel (ne_of_gt hε)] end ... < (↑m * ε : nnreal) : coe_lt_coe.2 $ mul_lt_mul hm (le_refl _) hε (nat.cast_nonneg _) ... ≤ a₁ * a₂ : by rw [coe_mul]; exact canonically_ordered_semiring.mul_le_mul (le_of_lt h₁) (le_of_lt h₂) end, begin cases a, {simp [none_eq_top] at hb, simp [none_eq_top, ht b hb, top_mul, hb] }, cases b, { simp [none_eq_top] at ha, simp [*, nhds_swap (a : ennreal) ⊤, none_eq_top, some_eq_coe, top_mul, tendsto_map'_iff, (∘), mul_comm] }, simp [some_eq_coe, nhds_coe_coe, tendsto_map'_iff, (∘)], simp only [coe_mul.symm, tendsto_coe, tendsto_mul] end protected lemma tendsto.mul {f : filter α} {ma : α → ennreal} {mb : α → ennreal} {a b : ennreal} (hma : tendsto ma f (𝓝 a)) (ha : a ≠ 0 ∨ b ≠ ⊤) (hmb : tendsto mb f (𝓝 b)) (hb : b ≠ 0 ∨ a ≠ ⊤) : tendsto (λa, ma a * mb a) f (𝓝 (a * b)) := show tendsto ((λp:ennreal×ennreal, p.1 * p.2) ∘ (λa, (ma a, mb a))) f (𝓝 (a * b)), from tendsto.comp (ennreal.tendsto_mul ha hb) (hma.prod_mk_nhds hmb) protected lemma tendsto.const_mul {f : filter α} {m : α → ennreal} {a b : ennreal} (hm : tendsto m f (𝓝 b)) (hb : b ≠ 0 ∨ a ≠ ⊤) : tendsto (λb, a * m b) f (𝓝 (a * b)) := by_cases (assume : a = 0, by simp [this, tendsto_const_nhds]) (assume ha : a ≠ 0, ennreal.tendsto.mul tendsto_const_nhds (or.inl ha) hm hb) protected lemma tendsto.mul_const {f : filter α} {m : α → ennreal} {a b : ennreal} (hm : tendsto m f (𝓝 a)) (ha : a ≠ 0 ∨ b ≠ ⊤) : tendsto (λx, m x * b) f (𝓝 (a * b)) := by simpa only [mul_comm] using ennreal.tendsto.const_mul hm ha protected lemma continuous_at_const_mul {a b : ennreal} (h : a ≠ ⊤ ∨ b ≠ 0) : continuous_at ((*) a) b := tendsto.const_mul tendsto_id h.symm protected lemma continuous_at_mul_const {a b : ennreal} (h : a ≠ ⊤ ∨ b ≠ 0) : continuous_at (λ x, x * a) b := tendsto.mul_const tendsto_id h.symm protected lemma continuous_const_mul {a : ennreal} (ha : a ≠ ⊤) : continuous ((*) a) := continuous_iff_continuous_at.2 $ λ x, ennreal.continuous_at_const_mul (or.inl ha) protected lemma continuous_mul_const {a : ennreal} (ha : a ≠ ⊤) : continuous (λ x, x * a) := continuous_iff_continuous_at.2 $ λ x, ennreal.continuous_at_mul_const (or.inl ha) lemma infi_mul_left {ι} [nonempty ι] {f : ι → ennreal} {a : ennreal} (h : a = ⊤ → (⨅ i, f i) = 0 → ∃ i, f i = 0) : (⨅ i, a * f i) = a * ⨅ i, f i := begin by_cases H : a = ⊤ ∧ (⨅ i, f i) = 0, { rcases h H.1 H.2 with ⟨i, hi⟩, rw [H.2, mul_zero, ← bot_eq_zero, infi_eq_bot], exact λ b hb, ⟨i, by rwa [hi, mul_zero, ← bot_eq_zero]⟩ }, { rw not_and_distrib at H, exact (map_infi_of_continuous_at_of_monotone' (ennreal.continuous_at_const_mul H) ennreal.mul_left_mono).symm } end lemma infi_mul_right {ι} [nonempty ι] {f : ι → ennreal} {a : ennreal} (h : a = ⊤ → (⨅ i, f i) = 0 → ∃ i, f i = 0) : (⨅ i, f i * a) = (⨅ i, f i) * a := by simpa only [mul_comm a] using infi_mul_left h protected lemma continuous_inv : continuous (has_inv.inv : ennreal → ennreal) := continuous_iff_continuous_at.2 $ λ a, tendsto_order.2 ⟨begin assume b hb, simp only [@ennreal.lt_inv_iff_lt_inv b], exact gt_mem_nhds (ennreal.lt_inv_iff_lt_inv.1 hb), end, begin assume b hb, simp only [gt_iff_lt, @ennreal.inv_lt_iff_inv_lt _ b], exact lt_mem_nhds (ennreal.inv_lt_iff_inv_lt.1 hb) end⟩ @[simp] protected lemma tendsto_inv_iff {f : filter α} {m : α → ennreal} {a : ennreal} : tendsto (λ x, (m x)⁻¹) f (𝓝 a⁻¹) ↔ tendsto m f (𝓝 a) := ⟨λ h, by simpa only [function.comp, ennreal.inv_inv] using (ennreal.continuous_inv.tendsto a⁻¹).comp h, (ennreal.continuous_inv.tendsto a).comp⟩ protected lemma tendsto.div {f : filter α} {ma : α → ennreal} {mb : α → ennreal} {a b : ennreal} (hma : tendsto ma f (𝓝 a)) (ha : a ≠ 0 ∨ b ≠ 0) (hmb : tendsto mb f (𝓝 b)) (hb : b ≠ ⊤ ∨ a ≠ ⊤) : tendsto (λa, ma a / mb a) f (𝓝 (a / b)) := by { apply tendsto.mul hma _ (ennreal.tendsto_inv_iff.2 hmb) _; simp [ha, hb] } protected lemma tendsto.const_div {f : filter α} {m : α → ennreal} {a b : ennreal} (hm : tendsto m f (𝓝 b)) (hb : b ≠ ⊤ ∨ a ≠ ⊤) : tendsto (λb, a / m b) f (𝓝 (a / b)) := by { apply tendsto.const_mul (ennreal.tendsto_inv_iff.2 hm), simp [hb] } protected lemma tendsto.div_const {f : filter α} {m : α → ennreal} {a b : ennreal} (hm : tendsto m f (𝓝 a)) (ha : a ≠ 0 ∨ b ≠ 0) : tendsto (λx, m x / b) f (𝓝 (a / b)) := by { apply tendsto.mul_const hm, simp [ha] } protected lemma tendsto_inv_nat_nhds_zero : tendsto (λ n : ℕ, (n : ennreal)⁻¹) at_top (𝓝 0) := ennreal.inv_top ▸ ennreal.tendsto_inv_iff.2 tendsto_nat_nhds_top lemma Sup_add {s : set ennreal} (hs : s.nonempty) : Sup s + a = ⨆b∈s, b + a := have Sup ((λb, b + a) '' s) = Sup s + a, from is_lub.Sup_eq (is_lub_of_is_lub_of_tendsto (assume x _ y _ h, add_le_add h (le_refl _)) (is_lub_Sup s) hs (tendsto.add (tendsto_id' inf_le_left) tendsto_const_nhds)), by simp [Sup_image, -add_comm] at this; exact this.symm lemma supr_add {ι : Sort*} {s : ι → ennreal} [h : nonempty ι] : supr s + a = ⨆b, s b + a := let ⟨x⟩ := h in calc supr s + a = Sup (range s) + a : by simp [Sup_range] ... = (⨆b∈range s, b + a) : Sup_add ⟨s x, x, rfl⟩ ... = _ : supr_range lemma add_supr {ι : Sort*} {s : ι → ennreal} [h : nonempty ι] : a + supr s = ⨆b, a + s b := by rw [add_comm, supr_add]; simp [add_comm] lemma supr_add_supr {ι : Sort*} {f g : ι → ennreal} (h : ∀i j, ∃k, f i + g j ≤ f k + g k) : supr f + supr g = (⨆ a, f a + g a) := begin by_cases hι : nonempty ι, { letI := hι, refine le_antisymm _ (supr_le $ λ a, add_le_add (le_supr _ _) (le_supr _ _)), simpa [add_supr, supr_add] using λ i j:ι, show f i + g j ≤ ⨆ a, f a + g a, from let ⟨k, hk⟩ := h i j in le_supr_of_le k hk }, { have : ∀f:ι → ennreal, (⨆i, f i) = 0 := assume f, bot_unique (supr_le $ assume i, (hι ⟨i⟩).elim), rw [this, this, this, zero_add] } end lemma supr_add_supr_of_monotone {ι : Sort*} [semilattice_sup ι] {f g : ι → ennreal} (hf : monotone f) (hg : monotone g) : supr f + supr g = (⨆ a, f a + g a) := supr_add_supr $ assume i j, ⟨i ⊔ j, add_le_add (hf $ le_sup_left) (hg $ le_sup_right)⟩ lemma finset_sum_supr_nat {α} {ι} [semilattice_sup ι] {s : finset α} {f : α → ι → ennreal} (hf : ∀a, monotone (f a)) : ∑ a in s, supr (f a) = (⨆ n, ∑ a in s, f a n) := begin refine finset.induction_on s _ _, { simp, exact (bot_unique $ supr_le $ assume i, le_refl ⊥).symm }, { assume a s has ih, simp only [finset.sum_insert has], rw [ih, supr_add_supr_of_monotone (hf a)], assume i j h, exact (finset.sum_le_sum $ assume a ha, hf a h) } end section priority -- for some reason the next proof fails without changing the priority of this instance local attribute [instance, priority 1000] classical.prop_decidable lemma mul_Sup {s : set ennreal} {a : ennreal} : a * Sup s = ⨆i∈s, a * i := begin by_cases hs : ∀x∈s, x = (0:ennreal), { have h₁ : Sup s = 0 := (bot_unique $ Sup_le $ assume a ha, (hs a ha).symm ▸ le_refl 0), have h₂ : (⨆i ∈ s, a * i) = 0 := (bot_unique $ supr_le $ assume a, supr_le $ assume ha, by simp [hs a ha]), rw [h₁, h₂, mul_zero] }, { simp only [not_forall] at hs, rcases hs with ⟨x, hx, hx0⟩, have s₁ : Sup s ≠ 0 := zero_lt_iff_ne_zero.1 (lt_of_lt_of_le (zero_lt_iff_ne_zero.2 hx0) (le_Sup hx)), have : Sup ((λb, a * b) '' s) = a * Sup s := is_lub.Sup_eq (is_lub_of_is_lub_of_tendsto (assume x _ y _ h, canonically_ordered_semiring.mul_le_mul (le_refl _) h) (is_lub_Sup _) ⟨x, hx⟩ (ennreal.tendsto.const_mul (tendsto_id' inf_le_left) (or.inl s₁))), rw [this.symm, Sup_image] } end end priority lemma mul_supr {ι : Sort*} {f : ι → ennreal} {a : ennreal} : a * supr f = ⨆i, a * f i := by rw [← Sup_range, mul_Sup, supr_range] lemma supr_mul {ι : Sort*} {f : ι → ennreal} {a : ennreal} : supr f * a = ⨆i, f i * a := by rw [mul_comm, mul_supr]; congr; funext; rw [mul_comm] protected lemma tendsto_coe_sub : ∀{b:ennreal}, tendsto (λb:ennreal, ↑r - b) (𝓝 b) (𝓝 (↑r - b)) := begin refine (forall_ennreal.2 $ and.intro (assume a, _) _), { simp [@nhds_coe a, tendsto_map'_iff, (∘), tendsto_coe, coe_sub.symm], exact nnreal.tendsto.sub tendsto_const_nhds tendsto_id }, simp, exact (tendsto.congr' (mem_sets_of_superset (lt_mem_nhds $ @coe_lt_top r) $ by simp [le_of_lt] {contextual := tt})) tendsto_const_nhds end lemma sub_supr {ι : Sort*} [hι : nonempty ι] {b : ι → ennreal} (hr : a < ⊤) : a - (⨆i, b i) = (⨅i, a - b i) := let ⟨i⟩ := hι in let ⟨r, eq, _⟩ := lt_iff_exists_coe.mp hr in have Inf ((λb, ↑r - b) '' range b) = ↑r - (⨆i, b i), from is_glb.Inf_eq $ is_glb_of_is_lub_of_tendsto (assume x _ y _, sub_le_sub (le_refl _)) is_lub_supr ⟨_, i, rfl⟩ (tendsto.comp ennreal.tendsto_coe_sub (tendsto_id' inf_le_left)), by rw [eq, ←this]; simp [Inf_image, infi_range, -mem_range]; exact le_refl _ end topological_space section tsum variables {f g : α → ennreal} @[norm_cast] protected lemma has_sum_coe {f : α → nnreal} {r : nnreal} : has_sum (λa, (f a : ennreal)) ↑r ↔ has_sum f r := have (λs:finset α, ∑ a in s, ↑(f a)) = (coe : nnreal → ennreal) ∘ (λs:finset α, ∑ a in s, f a), from funext $ assume s, ennreal.coe_finset_sum.symm, by unfold has_sum; rw [this, tendsto_coe] protected lemma tsum_coe_eq {f : α → nnreal} (h : has_sum f r) : (∑'a, (f a : ennreal)) = r := (ennreal.has_sum_coe.2 h).tsum_eq protected lemma coe_tsum {f : α → nnreal} : summable f → ↑(tsum f) = (∑'a, (f a : ennreal)) | ⟨r, hr⟩ := by rw [hr.tsum_eq, ennreal.tsum_coe_eq hr] protected lemma has_sum : has_sum f (⨆s:finset α, ∑ a in s, f a) := tendsto_order.2 ⟨assume a' ha', let ⟨s, hs⟩ := lt_supr_iff.mp ha' in mem_at_top_sets.mpr ⟨s, assume t ht, lt_of_lt_of_le hs $ finset.sum_le_sum_of_subset ht⟩, assume a' ha', univ_mem_sets' $ assume s, have ∑ a in s, f a ≤ ⨆(s : finset α), ∑ a in s, f a, from le_supr (λ(s : finset α), ∑ a in s, f a) s, lt_of_le_of_lt this ha'⟩ @[simp] protected lemma summable : summable f := ⟨_, ennreal.has_sum⟩ lemma tsum_coe_ne_top_iff_summable {f : β → nnreal} : (∑' b, (f b:ennreal)) ≠ ∞ ↔ summable f := begin refine ⟨λ h, _, λ h, ennreal.coe_tsum h ▸ ennreal.coe_ne_top⟩, lift (∑' b, (f b:ennreal)) to nnreal using h with a ha, refine ⟨a, ennreal.has_sum_coe.1 _⟩, rw ha, exact ennreal.summable.has_sum end protected lemma tsum_eq_supr_sum : (∑'a, f a) = (⨆s:finset α, ∑ a in s, f a) := ennreal.has_sum.tsum_eq protected lemma tsum_eq_supr_sum' {ι : Type*} (s : ι → finset α) (hs : ∀ t, ∃ i, t ⊆ s i) : (∑' a, f a) = ⨆ i, ∑ a in s i, f a := begin rw [ennreal.tsum_eq_supr_sum], symmetry, change (⨆i:ι, (λ t : finset α, ∑ a in t, f a) (s i)) = ⨆s:finset α, ∑ a in s, f a, exact (finset.sum_mono_set f).supr_comp_eq hs end protected lemma tsum_sigma {β : α → Type*} (f : Πa, β a → ennreal) : (∑'p:Σa, β a, f p.1 p.2) = (∑'a b, f a b) := tsum_sigma' (assume b, ennreal.summable) ennreal.summable protected lemma tsum_sigma' {β : α → Type*} (f : (Σ a, β a) → ennreal) : (∑'p:(Σa, β a), f p) = (∑'a b, f ⟨a, b⟩) := tsum_sigma' (assume b, ennreal.summable) ennreal.summable protected lemma tsum_prod {f : α → β → ennreal} : (∑'p:α×β, f p.1 p.2) = (∑'a, ∑'b, f a b) := tsum_prod' ennreal.summable $ λ _, ennreal.summable protected lemma tsum_comm {f : α → β → ennreal} : (∑'a, ∑'b, f a b) = (∑'b, ∑'a, f a b) := tsum_comm' ennreal.summable (λ _, ennreal.summable) (λ _, ennreal.summable) protected lemma tsum_add : (∑'a, f a + g a) = (∑'a, f a) + (∑'a, g a) := tsum_add ennreal.summable ennreal.summable protected lemma tsum_le_tsum (h : ∀a, f a ≤ g a) : (∑'a, f a) ≤ (∑'a, g a) := tsum_le_tsum h ennreal.summable ennreal.summable protected lemma sum_le_tsum {f : α → ennreal} (s : finset α) : ∑ x in s, f x ≤ ∑' x, f x := sum_le_tsum s (λ x hx, zero_le _) ennreal.summable protected lemma tsum_eq_supr_nat {f : ℕ → ennreal} : (∑'i:ℕ, f i) = (⨆i:ℕ, ∑ a in finset.range i, f a) := ennreal.tsum_eq_supr_sum' _ finset.exists_nat_subset_range protected lemma le_tsum (a : α) : f a ≤ (∑'a, f a) := calc f a = ∑ x in {a}, f x : finset.sum_singleton.symm ... ≤ ∑' x, f x : ennreal.sum_le_tsum {a} protected lemma tsum_eq_top_of_eq_top : (∃ a, f a = ∞) → (∑' a, f a) = ∞ | ⟨a, ha⟩ := top_unique $ ha ▸ ennreal.le_tsum a protected lemma ne_top_of_tsum_ne_top (h : (∑' a, f a) ≠ ∞) (a : α) : f a ≠ ∞ := λ ha, h $ ennreal.tsum_eq_top_of_eq_top ⟨a, ha⟩ protected lemma tsum_mul_left : (∑'i, a * f i) = a * (∑'i, f i) := if h : ∀i, f i = 0 then by simp [h] else let ⟨i, (hi : f i ≠ 0)⟩ := not_forall.mp h in have sum_ne_0 : (∑'i, f i) ≠ 0, from ne_of_gt $ calc 0 < f i : lt_of_le_of_ne (zero_le _) hi.symm ... ≤ (∑'i, f i) : ennreal.le_tsum _, have tendsto (λs:finset α, ∑ j in s, a * f j) at_top (𝓝 (a * (∑'i, f i))), by rw [← show (*) a ∘ (λs:finset α, ∑ j in s, f j) = λs, ∑ j in s, a * f j, from funext $ λ s, finset.mul_sum]; exact ennreal.tendsto.const_mul ennreal.summable.has_sum (or.inl sum_ne_0), has_sum.tsum_eq this protected lemma tsum_mul_right : (∑'i, f i * a) = (∑'i, f i) * a := by simp [mul_comm, ennreal.tsum_mul_left] @[simp] lemma tsum_supr_eq {α : Type*} (a : α) {f : α → ennreal} : (∑'b:α, ⨆ (h : a = b), f b) = f a := le_antisymm (by rw [ennreal.tsum_eq_supr_sum]; exact supr_le (assume s, calc (∑ b in s, ⨆ (h : a = b), f b) ≤ ∑ b in {a}, ⨆ (h : a = b), f b : finset.sum_le_sum_of_ne_zero $ assume b _ hb, suffices a = b, by simpa using this.symm, classical.by_contradiction $ assume h, by simpa [h] using hb ... = f a : by simp)) (calc f a ≤ (⨆ (h : a = a), f a) : le_supr (λh:a=a, f a) rfl ... ≤ (∑'b:α, ⨆ (h : a = b), f b) : ennreal.le_tsum _) lemma has_sum_iff_tendsto_nat {f : ℕ → ennreal} (r : ennreal) : has_sum f r ↔ tendsto (λn:ℕ, ∑ i in finset.range n, f i) at_top (𝓝 r) := begin refine ⟨has_sum.tendsto_sum_nat, assume h, _⟩, rw [← supr_eq_of_tendsto _ h, ← ennreal.tsum_eq_supr_nat], { exact ennreal.summable.has_sum }, { exact assume s t hst, finset.sum_le_sum_of_subset (finset.range_subset.2 hst) } end end tsum end ennreal namespace nnreal lemma exists_le_has_sum_of_le {f g : β → nnreal} {r : nnreal} (hgf : ∀b, g b ≤ f b) (hfr : has_sum f r) : ∃p≤r, has_sum g p := have (∑'b, (g b : ennreal)) ≤ r, begin refine has_sum_le (assume b, _) ennreal.summable.has_sum (ennreal.has_sum_coe.2 hfr), exact ennreal.coe_le_coe.2 (hgf _) end, let ⟨p, eq, hpr⟩ := ennreal.le_coe_iff.1 this in ⟨p, hpr, ennreal.has_sum_coe.1 $ eq ▸ ennreal.summable.has_sum⟩ lemma summable_of_le {f g : β → nnreal} (hgf : ∀b, g b ≤ f b) : summable f → summable g | ⟨r, hfr⟩ := let ⟨p, _, hp⟩ := exists_le_has_sum_of_le hgf hfr in hp.summable lemma has_sum_iff_tendsto_nat {f : ℕ → nnreal} (r : nnreal) : has_sum f r ↔ tendsto (λn:ℕ, ∑ i in finset.range n, f i) at_top (𝓝 r) := begin rw [← ennreal.has_sum_coe, ennreal.has_sum_iff_tendsto_nat], simp only [ennreal.coe_finset_sum.symm], exact ennreal.tendsto_coe end lemma tsum_comp_le_tsum_of_inj {β : Type*} {f : α → nnreal} (hf : summable f) {i : β → α} (hi : function.injective i) : tsum (f ∘ i) ≤ tsum f := tsum_le_tsum_of_inj i hi (λ c hc, zero_le _) (λ b, le_refl _) (summable_comp_injective hf hi) hf end nnreal lemma tsum_comp_le_tsum_of_inj {β : Type*} {f : α → ℝ} (hf : summable f) (hn : ∀ a, 0 ≤ f a) {i : β → α} (hi : function.injective i) : tsum (f ∘ i) ≤ tsum f := begin let g : α → nnreal := λ a, ⟨f a, hn a⟩, have hg : summable g, by rwa ← nnreal.summable_coe, convert nnreal.coe_le_coe.2 (nnreal.tsum_comp_le_tsum_of_inj hg hi); { rw nnreal.coe_tsum, congr } end lemma summable_of_nonneg_of_le {f g : β → ℝ} (hg : ∀b, 0 ≤ g b) (hgf : ∀b, g b ≤ f b) (hf : summable f) : summable g := let f' (b : β) : nnreal := ⟨f b, le_trans (hg b) (hgf b)⟩ in let g' (b : β) : nnreal := ⟨g b, hg b⟩ in have summable f', from nnreal.summable_coe.1 hf, have summable g', from nnreal.summable_of_le (assume b, (@nnreal.coe_le_coe (g' b) (f' b)).2 $ hgf b) this, show summable (λb, g' b : β → ℝ), from nnreal.summable_coe.2 this lemma has_sum_iff_tendsto_nat_of_nonneg {f : ℕ → ℝ} (hf : ∀i, 0 ≤ f i) (r : ℝ) : has_sum f r ↔ tendsto (λn:ℕ, ∑ i in finset.range n, f i) at_top (𝓝 r) := ⟨has_sum.tendsto_sum_nat, assume hfr, have 0 ≤ r := ge_of_tendsto hfr $ univ_mem_sets' $ assume i, show 0 ≤ ∑ j in finset.range i, f j, from finset.sum_nonneg $ assume i _, hf i, let f' (n : ℕ) : nnreal := ⟨f n, hf n⟩, r' : nnreal := ⟨r, this⟩ in have f_eq : f = (λi:ℕ, (f' i : ℝ)) := rfl, have r_eq : r = r' := rfl, begin rw [f_eq, r_eq, nnreal.has_sum_coe, nnreal.has_sum_iff_tendsto_nat, ← nnreal.tendsto_coe], simp only [nnreal.coe_sum], exact hfr end⟩ lemma infi_real_pos_eq_infi_nnreal_pos {α : Type*} [complete_lattice α] {f : ℝ → α} : (⨅(n:ℝ) (h : 0 < n), f n) = (⨅(n:nnreal) (h : 0 < n), f n) := le_antisymm (le_infi $ assume n, le_infi $ assume hn, infi_le_of_le n $ infi_le _ (nnreal.coe_pos.2 hn)) (le_infi $ assume r, le_infi $ assume hr, infi_le_of_le ⟨r, le_of_lt hr⟩ $ infi_le _ hr) section variables [emetric_space β] open ennreal filter emetric /-- In an emetric ball, the distance between points is everywhere finite -/ lemma edist_ne_top_of_mem_ball {a : β} {r : ennreal} (x y : ball a r) : edist x.1 y.1 ≠ ⊤ := lt_top_iff_ne_top.1 $ calc edist x y ≤ edist a x + edist a y : edist_triangle_left x.1 y.1 a ... < r + r : by rw [edist_comm a x, edist_comm a y]; exact add_lt_add x.2 y.2 ... ≤ ⊤ : le_top /-- Each ball in an extended metric space gives us a metric space, as the edist is everywhere finite. -/ def metric_space_emetric_ball (a : β) (r : ennreal) : metric_space (ball a r) := emetric_space.to_metric_space edist_ne_top_of_mem_ball local attribute [instance] metric_space_emetric_ball lemma nhds_eq_nhds_emetric_ball (a x : β) (r : ennreal) (h : x ∈ ball a r) : 𝓝 x = map (coe : ball a r → β) (𝓝 ⟨x, h⟩) := (map_nhds_subtype_coe_eq _ $ mem_nhds_sets emetric.is_open_ball h).symm end section variable [emetric_space α] open emetric lemma tendsto_iff_edist_tendsto_0 {l : filter β} {f : β → α} {y : α} : tendsto f l (𝓝 y) ↔ tendsto (λ x, edist (f x) y) l (𝓝 0) := by simp only [emetric.nhds_basis_eball.tendsto_right_iff, emetric.mem_ball, @tendsto_order ennreal β _ _, forall_prop_of_false ennreal.not_lt_zero, forall_const, true_and] /-- Yet another metric characterization of Cauchy sequences on integers. This one is often the most efficient. -/ lemma emetric.cauchy_seq_iff_le_tendsto_0 [nonempty β] [semilattice_sup β] {s : β → α} : cauchy_seq s ↔ (∃ (b: β → ennreal), (∀ n m N : β, N ≤ n → N ≤ m → edist (s n) (s m) ≤ b N) ∧ (tendsto b at_top (𝓝 0))) := ⟨begin assume hs, rw emetric.cauchy_seq_iff at hs, /- `s` is Cauchy sequence. The sequence `b` will be constructed by taking the supremum of the distances between `s n` and `s m` for `n m ≥ N`-/ let b := λN, Sup ((λ(p : β × β), edist (s p.1) (s p.2))''{p | p.1 ≥ N ∧ p.2 ≥ N}), --Prove that it bounds the distances of points in the Cauchy sequence have C : ∀ n m N, N ≤ n → N ≤ m → edist (s n) (s m) ≤ b N, { refine λm n N hm hn, le_Sup _, use (prod.mk m n), simp only [and_true, eq_self_iff_true, set.mem_set_of_eq], exact ⟨hm, hn⟩ }, --Prove that it tends to `0`, by using the Cauchy property of `s` have D : tendsto b at_top (𝓝 0), { refine tendsto_order.2 ⟨λa ha, absurd ha (ennreal.not_lt_zero), λε εpos, _⟩, rcases dense εpos with ⟨δ, δpos, δlt⟩, rcases hs δ δpos with ⟨N, hN⟩, refine filter.mem_at_top_sets.2 ⟨N, λn hn, _⟩, have : b n ≤ δ := Sup_le begin simp only [and_imp, set.mem_image, set.mem_set_of_eq, exists_imp_distrib, prod.exists], intros d p q hp hq hd, rw ← hd, exact le_of_lt (hN p q (le_trans hn hp) (le_trans hn hq)) end, simpa using lt_of_le_of_lt this δlt }, -- Conclude exact ⟨b, ⟨C, D⟩⟩ end, begin rintros ⟨b, ⟨b_bound, b_lim⟩⟩, /-b : ℕ → ℝ, b_bound : ∀ (n m N : ℕ), N ≤ n → N ≤ m → edist (s n) (s m) ≤ b N, b_lim : tendsto b at_top (𝓝 0)-/ refine emetric.cauchy_seq_iff.2 (λε εpos, _), have : ∀ᶠ n in at_top, b n < ε := (tendsto_order.1 b_lim ).2 _ εpos, rcases filter.mem_at_top_sets.1 this with ⟨N, hN⟩, exact ⟨N, λm n hm hn, calc edist (s m) (s n) ≤ b N : b_bound m n N hm hn ... < ε : (hN _ (le_refl N)) ⟩ end⟩ lemma continuous_of_le_add_edist {f : α → ennreal} (C : ennreal) (hC : C ≠ ⊤) (h : ∀x y, f x ≤ f y + C * edist x y) : continuous f := begin refine continuous_iff_continuous_at.2 (λx, tendsto_order.2 ⟨_, _⟩), show ∀e, e < f x → ∀ᶠ y in 𝓝 x, e < f y, { assume e he, let ε := min (f x - e) 1, have : ε < ⊤ := lt_of_le_of_lt (min_le_right _ _) (by simp [lt_top_iff_ne_top]), have : 0 < ε := by simp [ε, hC, he, ennreal.zero_lt_one], have : 0 < C⁻¹ * (ε/2) := bot_lt_iff_ne_bot.2 (by simp [hC, (ne_of_lt this).symm, mul_eq_zero]), have I : C * (C⁻¹ * (ε/2)) < ε, { by_cases C_zero : C = 0, { simp [C_zero, ‹0 < ε›] }, { calc C * (C⁻¹ * (ε/2)) = (C * C⁻¹) * (ε/2) : by simp [mul_assoc] ... = ε/2 : by simp [ennreal.mul_inv_cancel C_zero hC] ... < ε : ennreal.half_lt_self (bot_lt_iff_ne_bot.1 ‹0 < ε›) (lt_top_iff_ne_top.1 ‹ε < ⊤›) }}, have : ball x (C⁻¹ * (ε/2)) ⊆ {y : α | e < f y}, { rintros y hy, by_cases htop : f y = ⊤, { simp [htop, lt_top_iff_ne_top, ne_top_of_lt he] }, { simp at hy, have : e + ε < f y + ε := calc e + ε ≤ e + (f x - e) : add_le_add_left (min_le_left _ _) _ ... = f x : by simp [le_of_lt he] ... ≤ f y + C * edist x y : h x y ... = f y + C * edist y x : by simp [edist_comm] ... ≤ f y + C * (C⁻¹ * (ε/2)) : add_le_add_left (canonically_ordered_semiring.mul_le_mul (le_refl _) (le_of_lt hy)) _ ... < f y + ε : (ennreal.add_lt_add_iff_left (lt_top_iff_ne_top.2 htop)).2 I, show e < f y, from (ennreal.add_lt_add_iff_right ‹ε < ⊤›).1 this }}, apply filter.mem_sets_of_superset (ball_mem_nhds _ (‹0 < C⁻¹ * (ε/2)›)) this }, show ∀e, f x < e → ∀ᶠ y in 𝓝 x, f y < e, { assume e he, let ε := min (e - f x) 1, have : ε < ⊤ := lt_of_le_of_lt (min_le_right _ _) (by simp [lt_top_iff_ne_top]), have : 0 < ε := by simp [ε, he, ennreal.zero_lt_one], have : 0 < C⁻¹ * (ε/2) := bot_lt_iff_ne_bot.2 (by simp [hC, (ne_of_lt this).symm, mul_eq_zero]), have I : C * (C⁻¹ * (ε/2)) < ε, { by_cases C_zero : C = 0, simp [C_zero, ‹0 < ε›], calc C * (C⁻¹ * (ε/2)) = (C * C⁻¹) * (ε/2) : by simp [mul_assoc] ... = ε/2 : by simp [ennreal.mul_inv_cancel C_zero hC] ... < ε : ennreal.half_lt_self (bot_lt_iff_ne_bot.1 ‹0 < ε›) (lt_top_iff_ne_top.1 ‹ε < ⊤›) }, have : ball x (C⁻¹ * (ε/2)) ⊆ {y : α | f y < e}, { rintros y hy, have htop : f x ≠ ⊤ := ne_top_of_lt he, show f y < e, from calc f y ≤ f x + C * edist y x : h y x ... ≤ f x + C * (C⁻¹ * (ε/2)) : add_le_add_left (canonically_ordered_semiring.mul_le_mul (le_refl _) (le_of_lt hy)) _ ... < f x + ε : (ennreal.add_lt_add_iff_left (lt_top_iff_ne_top.2 htop)).2 I ... ≤ f x + (e - f x) : add_le_add_left (min_le_left _ _) _ ... = e : by simp [le_of_lt he] }, apply filter.mem_sets_of_superset (ball_mem_nhds _ (‹0 < C⁻¹ * (ε/2)›)) this }, end theorem continuous_edist : continuous (λp:α×α, edist p.1 p.2) := begin apply continuous_of_le_add_edist 2 (by norm_num), rintros ⟨x, y⟩ ⟨x', y'⟩, calc edist x y ≤ edist x x' + edist x' y' + edist y' y : edist_triangle4 _ _ _ _ ... = edist x' y' + (edist x x' + edist y y') : by simp [edist_comm]; cc ... ≤ edist x' y' + (edist (x, y) (x', y') + edist (x, y) (x', y')) : add_le_add_left (add_le_add (le_max_left _ _) (le_max_right _ _)) _ ... = edist x' y' + 2 * edist (x, y) (x', y') : by rw [← mul_two, mul_comm] end theorem continuous.edist [topological_space β] {f g : β → α} (hf : continuous f) (hg : continuous g) : continuous (λb, edist (f b) (g b)) := continuous_edist.comp (hf.prod_mk hg) theorem filter.tendsto.edist {f g : β → α} {x : filter β} {a b : α} (hf : tendsto f x (𝓝 a)) (hg : tendsto g x (𝓝 b)) : tendsto (λx, edist (f x) (g x)) x (𝓝 (edist a b)) := (continuous_edist.tendsto (a, b)).comp (hf.prod_mk_nhds hg) lemma cauchy_seq_of_edist_le_of_tsum_ne_top {f : ℕ → α} (d : ℕ → ennreal) (hf : ∀ n, edist (f n) (f n.succ) ≤ d n) (hd : tsum d ≠ ∞) : cauchy_seq f := begin lift d to (ℕ → nnreal) using (λ i, ennreal.ne_top_of_tsum_ne_top hd i), rw ennreal.tsum_coe_ne_top_iff_summable at hd, exact cauchy_seq_of_edist_le_of_summable d hf hd end lemma emetric.is_closed_ball {a : α} {r : ennreal} : is_closed (closed_ball a r) := is_closed_le (continuous_id.edist continuous_const) continuous_const /-- If `edist (f n) (f (n+1))` is bounded above by a function `d : ℕ → ennreal`, then the distance from `f n` to the limit is bounded by `∑'_{k=n}^∞ d k`. -/ lemma edist_le_tsum_of_edist_le_of_tendsto {f : ℕ → α} (d : ℕ → ennreal) (hf : ∀ n, edist (f n) (f n.succ) ≤ d n) {a : α} (ha : tendsto f at_top (𝓝 a)) (n : ℕ) : edist (f n) a ≤ ∑' m, d (n + m) := begin refine le_of_tendsto (tendsto_const_nhds.edist ha) (mem_at_top_sets.2 ⟨n, λ m hnm, _⟩), refine le_trans (edist_le_Ico_sum_of_edist_le hnm (λ k _ _, hf k)) _, rw [finset.sum_Ico_eq_sum_range], exact sum_le_tsum _ (λ _ _, zero_le _) ennreal.summable end /-- If `edist (f n) (f (n+1))` is bounded above by a function `d : ℕ → ennreal`, then the distance from `f 0` to the limit is bounded by `∑'_{k=0}^∞ d k`. -/ lemma edist_le_tsum_of_edist_le_of_tendsto₀ {f : ℕ → α} (d : ℕ → ennreal) (hf : ∀ n, edist (f n) (f n.succ) ≤ d n) {a : α} (ha : tendsto f at_top (𝓝 a)) : edist (f 0) a ≤ ∑' m, d m := by simpa using edist_le_tsum_of_edist_le_of_tendsto d hf ha 0 end --section
dd1d9982726939fffba510ab2f034d2449350be3
e030b0259b777fedcdf73dd966f3f1556d392178
/tests/lean/run/smt_destruct.lean
a013ee2eb8577811c9a4c3e11e7ebbc558083e8e
[ "Apache-2.0" ]
permissive
fgdorais/lean
17b46a095b70b21fa0790ce74876658dc5faca06
c3b7c54d7cca7aaa25328f0a5660b6b75fe26055
refs/heads/master
1,611,523,590,686
1,484,412,902,000
1,484,412,902,000
38,489,734
0
0
null
1,435,923,380,000
1,435,923,379,000
null
UTF-8
Lean
false
false
1,668
lean
open smt_tactic lemma ex1 (p q : Prop) : p ∨ q → p ∨ ¬q → ¬p ∨ q → ¬p ∨ ¬q → false := by using_smt $ do intros, trace_state, a_1 ← tactic.get_local `a_1, destruct a_1, repeat close lemma ex2 (p q : Prop) : p ∨ q → p ∨ ¬q → ¬p ∨ q → ¬p ∨ ¬q → false := begin [smt] intros, assert h : p ∨ q, destruct h end lemma ex3 (p q : Prop) : p ∨ q → p ∨ ¬q → ¬p ∨ q → ¬p ∨ ¬q → false := begin [smt] intros, destruct a_1 -- bad style, it relies on automatically generated names end lemma ex4 (p q : Prop) : p ∨ q → p ∨ ¬q → ¬p ∨ q → ¬p ∨ ¬q → false := begin [smt] -- the default configuration is classical intros, by_cases p end lemma ex5 (p q : Prop) [decidable p] : p ∨ q → p ∨ ¬q → ¬p ∨ q → ¬p ∨ ¬q → false := begin [smt] with default_smt_config^.set_classical ff, intros, by_cases p -- will fail if p is not decidable end lemma ex6 (p q : Prop) : p ∨ q → p ∨ ¬q → ¬p ∨ q → p ∧ q := begin [smt] -- the default configuration is classical intros, by_contradiction, trace_state, by_cases p, end lemma ex7 (p q : Prop) [decidable p] : p ∨ q → p ∨ ¬q → ¬p ∨ q → p ∧ q := begin [smt] with default_smt_config^.set_classical ff, intros, by_cases p -- will fail if p is not decidable end lemma ex8 (p q : Prop) [decidable p] [decidable q] : p ∨ q → p ∨ ¬q → ¬p ∨ q → p ∧ q := begin [smt] with default_smt_config^.set_classical ff, intros, by_contradiction, -- will fail if p or q is not decidable trace_state, by_cases p -- will fail if p is not decidable end
fa7bc4cfd57e7e6dc4ed718a0a99d10536d4f190
9be442d9ec2fcf442516ed6e9e1660aa9071b7bd
/doc/BoolExpr.lean
a5cb9010ea2ad1b83efce2358bf71d9b1efdc8c2
[ "Apache-2.0", "LLVM-exception", "NCSA", "LGPL-3.0-only", "LicenseRef-scancode-inner-net-2.0", "BSD-3-Clause", "LGPL-2.0-or-later", "Spencer-94", "LGPL-2.1-or-later", "HPND", "LicenseRef-scancode-pcre", "ISC", "LGPL-2.1-only", "LicenseRef-scancode-other-permissive", "SunPro", "CMU-Mach" ]
permissive
EdAyers/lean4
57ac632d6b0789cb91fab2170e8c9e40441221bd
37ba0df5841bde51dbc2329da81ac23d4f6a4de4
refs/heads/master
1,676,463,245,298
1,660,619,433,000
1,660,619,433,000
183,433,437
1
0
Apache-2.0
1,657,612,672,000
1,556,196,574,000
Lean
UTF-8
Lean
false
false
3,616
lean
import Std open Std open Lean inductive BoolExpr where | var (name : String) | val (b : Bool) | or (p q : BoolExpr) | not (p : BoolExpr) deriving Repr, BEq, DecidableEq def BoolExpr.isValue : BoolExpr → Bool | val _ => true | _ => false instance : Inhabited BoolExpr where default := BoolExpr.val false namespace BoolExpr deriving instance DecidableEq for BoolExpr #eval decide (BoolExpr.val true = BoolExpr.val false) #check (a b : BoolExpr) → Decidable (a = b) abbrev Context := AssocList String Bool def denote (ctx : Context) : BoolExpr → Bool | BoolExpr.or p q => denote ctx p || denote ctx q | BoolExpr.not p => !denote ctx p | BoolExpr.val b => b | BoolExpr.var x => if let some b := ctx.find? x then b else false def simplify : BoolExpr → BoolExpr | or p q => mkOr (simplify p) (simplify q) | not p => mkNot (simplify p) | e => e where mkOr : BoolExpr → BoolExpr → BoolExpr | p, val true => val true | p, val false => p | val true, p => val true | val false, p => p | p, q => or p q mkNot : BoolExpr → BoolExpr | val b => val (!b) | p => not p @[simp] theorem denote_not_Eq (ctx : Context) (p : BoolExpr) : denote ctx (not p) = !denote ctx p := rfl @[simp] theorem denote_or_Eq (ctx : Context) (p q : BoolExpr) : denote ctx (or p q) = (denote ctx p || denote ctx q) := rfl @[simp] theorem denote_val_Eq (ctx : Context) (b : Bool) : denote ctx (val b) = b := rfl @[simp] theorem denote_mkNot_Eq (ctx : Context) (p : BoolExpr) : denote ctx (simplify.mkNot p) = denote ctx (not p) := by cases p <;> rfl @[simp] theorem mkOr_p_true (p : BoolExpr) : simplify.mkOr p (val true) = val true := by cases p with | val x => cases x <;> rfl | _ => rfl @[simp] theorem mkOr_p_false (p : BoolExpr) : simplify.mkOr p (val false) = p := by cases p with | val x => cases x <;> rfl | _ => rfl @[simp] theorem mkOr_true_p (p : BoolExpr) : simplify.mkOr (val true) p = val true := by cases p with | val x => cases x <;> rfl | _ => rfl @[simp] theorem mkOr_false_p (p : BoolExpr) : simplify.mkOr (val false) p = p := by cases p with | val x => cases x <;> rfl | _ => rfl @[simp] theorem denote_mkOr (ctx : Context) (p q : BoolExpr) : denote ctx (simplify.mkOr p q) = denote ctx (or p q) := by cases p with | val x => cases q with | val y => cases x <;> cases y <;> simp | _ => cases x <;> simp | _ => cases q with | val y => cases y <;> simp | _ => rfl @[simp] theorem simplify_not (p : BoolExpr) : simplify (not p) = simplify.mkNot (simplify p) := rfl @[simp] theorem simplify_or (p q : BoolExpr) : simplify (or p q) = simplify.mkOr (simplify p) (simplify q) := rfl def denote_simplify_eq (ctx : Context) (b : BoolExpr) : denote ctx (simplify b) = denote ctx b := by induction b with | or p q ih₁ ih₂ => simp [ih₁, ih₂] | not p ih => simp [ih] | _ => rfl syntax "`[BExpr|" term "]" : term macro_rules | `(`[BExpr| true]) => `(val true) | `(`[BExpr| false]) => `(val false) | `(`[BExpr| $x:ident]) => `(var $(quote x.getId.toString)) | `(`[BExpr| $p ∨ $q]) => `(or `[BExpr| $p] `[BExpr| $q]) | `(`[BExpr| ¬ $p]) => `(not `[BExpr| $p]) #check `[BExpr| ¬ p ∨ q] syntax entry := ident " ↦ " term:max syntax entry,* "⊢" term : term macro_rules | `( $[$xs ↦ $vs],* ⊢ $p) => let xs := xs.map fun x => quote x.getId.toString `(denote (List.toAssocList [$[($xs, $vs)],*]) `[BExpr| $p]) #check b ↦ true ⊢ b ∨ b #eval a ↦ false, b ↦ false ⊢ b ∨ a
aea691778640221530f6385932f8d31a08c65705
f3849be5d845a1cb97680f0bbbe03b85518312f0
/library/tools/super/misc_preprocessing.lean
176f276ed7e37546b6cfaf96bf0acdfdebbbc977
[ "Apache-2.0" ]
permissive
bjoeris/lean
0ed95125d762b17bfcb54dad1f9721f953f92eeb
4e496b78d5e73545fa4f9a807155113d8e6b0561
refs/heads/master
1,611,251,218,281
1,495,337,658,000
1,495,337,658,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
1,136
lean
/- Copyright (c) 2016 Gabriel Ebner. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Gabriel Ebner -/ import .clause .prover_state open expr list monad namespace super meta def is_taut (c : clause) : tactic bool := do qf ← c.open_constn c.num_quants, return $ list.bor $ do l1 ← qf.1.get_lits, guard l1.is_neg, l2 ← qf.1.get_lits, guard l2.is_pos, [decidable.to_bool $ l1.formula = l2.formula] meta def tautology_removal_pre : prover unit := preprocessing_rule $ λnew, filter (λc, lift bnot $ is_taut c.c) new meta def remove_duplicates : list derived_clause → list derived_clause | [] := [] | (c :: cs) := let (same_type, other_type) := partition (λc' : derived_clause, c'.c.type = c.c.type) cs in { c with sc := foldl score.min c.sc (same_type.map $ λc, c.sc) } :: remove_duplicates other_type meta def remove_duplicates_pre : prover unit := preprocessing_rule $ λnew, return $ remove_duplicates new meta def clause_normalize_pre : prover unit := preprocessing_rule $ λnew, for new $ λdc, do c' ← dc.c.normalize, return { dc with c := c' } end super
d384c7e3a0f44983d8cb270ee5008973a4dcd64a
cf39355caa609c0f33405126beee2739aa3cb77e
/tests/lean/run/1089.lean
d48b1d42497823c5da69952631eb72cc04fb3d63
[ "Apache-2.0" ]
permissive
leanprover-community/lean
12b87f69d92e614daea8bcc9d4de9a9ace089d0e
cce7990ea86a78bdb383e38ed7f9b5ba93c60ce0
refs/heads/master
1,687,508,156,644
1,684,951,104,000
1,684,951,104,000
169,960,991
457
107
Apache-2.0
1,686,744,372,000
1,549,790,268,000
C++
UTF-8
Lean
false
false
329
lean
import system.io inductive token | eof : token | plus : token | var : string -> token open token open option def to_token : list char → option token | [] := none | (c :: cs) := let t : option token := match c with | 'x' := some (var "x") | 'y' := some (var "y") | '+' := some plus | _ := none end in t
3e7cc3fbf457c7eb15c7121e8c1681880e12bcba
ae1e94c332e17c7dc7051ce976d5a9eebe7ab8a5
/stage0/src/Lean/Data/Json/Printer.lean
71c353caeadef2785958f38c82482e554851f9eb
[ "Apache-2.0" ]
permissive
dupuisf/lean4
d082d13b01243e1de29ae680eefb476961221eef
6a39c65bd28eb0e28c3870188f348c8914502718
refs/heads/master
1,676,948,755,391
1,610,665,114,000
1,610,665,114,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
2,814
lean
/- Copyright (c) 2019 Gabriel Ebner. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Gabriel Ebner, Marc Huisinga -/ import Lean.Data.Format import Lean.Data.Json.Basic namespace Lean namespace Json private def escapeAux (c : Char) (acc : String) : String := -- escape ", \, \n and \r, keep all other characters ≥ 0x20 and render characters < 0x20 with \u if c = '"' then -- hack to prevent emacs from regarding the rest of the file as a string: " "\\\"" ++ acc else if c = '\\' then "\\\\" ++ acc else if c = '\n' then "\\n" ++ acc else if c = '\x0d' then "\\r" ++ acc -- the c.val ≤ 0x10ffff check is technically redundant, -- since Lean chars are unicode scalar values ≤ 0x10ffff. -- as to whether c.val > 0xffff should be split up and encoded with multiple \u, -- the JSON standard is not definite: both directly printing the character -- and encoding it with multiple \u is allowed, and it is up to parsers to make the -- decision. else if 0x0020 ≤ c.val ∧ c.val ≤ 0x10ffff then String.singleton c ++ acc else let n := c.toNat; -- since c.val < 0x20 in this case, this conversion is more involved than necessary -- (but we keep it for completeness) "\\u" ++ [ Nat.digitChar (n / 4096), Nat.digitChar ((n % 4096) / 256), Nat.digitChar ((n % 256) / 16), Nat.digitChar (n % 16) ].asString ++ acc def escape (s : String) : String := do s.foldr escapeAux "" def renderString (s : String) : String := "\"" ++ escape s ++ "\"" section @[specialize] partial def render : Json → Format | null => "null" | bool true => "true" | bool false => "false" | num s => s.toString | str s => renderString s | arr elems => let elems := Format.joinSep (elems.map render).toList ("," ++ Format.line); Format.bracket "[" elems "]" | obj kvs => let renderKV : String → Json → Format := fun k v => Format.group (renderString k ++ ":" ++ Format.line ++ render v); let kvs := Format.joinSep (kvs.fold (fun acc k j => renderKV k j :: acc) []) ("," ++ Format.line); Format.bracket "{" kvs "}" end def pretty (j : Json) (lineWidth := 80) : String := Format.pretty (render j) lineWidth partial def compress : Json → String | null => "null" | bool true => "true" | bool false => "false" | num s => s.toString | str s => renderString s | arr elems => let f := ",".intercalate (elems.map compress).toList s!"[{f}]" | obj kvs => let ckvs := kvs.fold (fun acc k j => s!"{renderString k}:{compress j}" :: acc) [] let ckvs := ",".intercalate ckvs s!"\{{ckvs}}" instance : ToFormat Json := ⟨render⟩ instance : ToString Json := ⟨pretty⟩ end Json end Lean
273f4958129029c9a85d1e31e713d81bd34cf6ed
b7f22e51856f4989b970961f794f1c435f9b8f78
/library/theories/measure_theory/sigma_algebra.lean
95da2a9fdbe31254606958b2d19d083907abcfff
[ "Apache-2.0" ]
permissive
soonhokong/lean
cb8aa01055ffe2af0fb99a16b4cda8463b882cd1
38607e3eb57f57f77c0ac114ad169e9e4262e24f
refs/heads/master
1,611,187,284,081
1,450,766,737,000
1,476,122,547,000
11,513,992
2
0
null
1,401,763,102,000
1,374,182,235,000
C++
UTF-8
Lean
false
false
12,160
lean
/- Copyright (c) 2016 Jacob Gross. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jacob Gross, Jeremy Avigad Sigma algebras. -/ import data.set data.nat theories.topology.continuous ..move open eq.ops set nat structure sigma_algebra [class] (X : Type) := (sets : set (set X)) (univ_mem_sets : univ ∈ sets) (comp_mem_sets : ∀ {s : set X}, s ∈ sets → (-s ∈ sets)) (cUnion_mem_sets : ∀ {s : ℕ → set X}, (∀ i, s i ∈ sets) → (⋃ i, s i) ∈ sets) /- Closure properties -/ namespace measure_theory open sigma_algebra variables {X : Type} [sigma_algebra X] definition measurable (t : set X) : Prop := t ∈ sets X theorem measurable_univ : measurable (@univ X) := univ_mem_sets X theorem measurable_compl {s : set X} (H : measurable s) : measurable (-s) := comp_mem_sets H theorem measurable_of_measurable_compl {s : set X} (H : measurable (-s)) : measurable s := !compl_compl ▸ measurable_compl H theorem measurable_empty : measurable (∅ : set X) := compl_univ ▸ measurable_compl measurable_univ theorem measurable_cUnion {s : ℕ → set X} (H : ∀ i, measurable (s i)) : measurable (⋃ i, s i) := cUnion_mem_sets H theorem measurable_cInter {s : ℕ → set X} (H : ∀ i, measurable (s i)) : measurable (⋂ i, s i) := have ∀ i, measurable (-(s i)), from take i, measurable_compl (H i), have measurable (-(⋃ i, -(s i))), from measurable_compl (measurable_cUnion this), show measurable (⋂ i, s i), by rewrite Inter_eq_comp_Union_comp; apply this theorem measurable_union {s t : set X} (Hs : measurable s) (Ht : measurable t) : measurable (s ∪ t) := have ∀ i, measurable (bin_ext s t i), by intro i; cases i; exact Hs; exact Ht, show measurable (s ∪ t), by rewrite -Union_bin_ext; exact measurable_cUnion this theorem measurable_inter {s t : set X} (Hs : measurable s) (Ht : measurable t) : measurable (s ∩ t) := have ∀ i, measurable (bin_ext s t i), by intro i; cases i; exact Hs; exact Ht, show measurable (s ∩ t), by rewrite -Inter_bin_ext; exact measurable_cInter this theorem measurable_diff {s t : set X} (Hs : measurable s) (Ht : measurable t) : measurable (s \ t) := measurable_inter Hs (measurable_compl Ht) theorem measurable_insert {x : X} {s : set X} (Hx : measurable '{x}) (Hs : measurable s) : measurable (insert x s) := !insert_eq⁻¹ ▸ measurable_union Hx Hs end measure_theory /- Measurable functions -/ namespace measure_theory open sigma_algebra function variables {X Y Z : Type} {M : sigma_algebra X} {N : sigma_algebra Y} {L : sigma_algebra Z} definition measurable_fun (f : X → Y) (M : sigma_algebra X) (N : sigma_algebra Y) := ∀ ⦃s⦄, s ∈ sets Y → f '- s ∈ sets X theorem measurable_fun_id : measurable_fun (@id X) M M := take s, suppose s ∈ sets X, this theorem measurable_fun_comp {f : X → Y} {g : Y → Z} (Hf : measurable_fun f M N) (Hg : measurable_fun g N L) : measurable_fun (g ∘ f) M L := take s, assume Hs, Hf (Hg Hs) section open classical theorem measurable_fun_const (c : Y) : measurable_fun (λ x : X, c) M N := take s, assume Hs, if cs : c ∈ s then have (λx, c) '- s = @univ X, from eq_univ_of_forall (take x, mem_preimage cs), by rewrite this; apply measurable_univ else have (λx, c) '- s = (∅ : set X), from eq_empty_of_forall_not_mem (take x, assume H, cs (mem_of_mem_preimage H)), by rewrite this; apply measurable_empty end end measure_theory /- -- Properties of sigma algebras -/ namespace sigma_algebra open measure_theory variables {X : Type} protected theorem eq {M N : sigma_algebra X} (H : @sets X M = @sets X N) : M = N := by cases M; cases N; cases H; apply rfl /- sigma algebra generated by a set -/ inductive sets_generated_by (G : set (set X)) : set X → Prop := | generators_mem : ∀ ⦃s : set X⦄, s ∈ G → sets_generated_by G s | univ_mem : sets_generated_by G univ | comp_mem : ∀ ⦃s : set X⦄, sets_generated_by G s → sets_generated_by G (-s) | cUnion_mem : ∀ ⦃s : ℕ → set X⦄, (∀ i, sets_generated_by G (s i)) → sets_generated_by G (⋃ i, s i) protected definition generated_by {X : Type} (G : set (set X)) : sigma_algebra X := ⦃sigma_algebra, sets := sets_generated_by G, univ_mem_sets := sets_generated_by.univ_mem G, comp_mem_sets := sets_generated_by.comp_mem , cUnion_mem_sets := sets_generated_by.cUnion_mem ⦄ theorem sets_generated_by_initial {G : set (set X)} {M : sigma_algebra X} (H : G ⊆ @sets _ M) : sets_generated_by G ⊆ @sets _ M := begin intro s Hs, induction Hs with s sG s Hs ssX s Hs sisX, {exact H sG}, {exact measurable_univ}, {exact measurable_compl ssX}, exact measurable_cUnion sisX end theorem measurable_generated_by {G : set (set X)} : ∀₀ s ∈ G, @measurable _ (sigma_algebra.generated_by G) s := λ s H, sets_generated_by.generators_mem H section variables {Y : Type} {M : sigma_algebra X} theorem measurable_fun_generated_by (f : X → Y) (G : set (set Y)) (Hg : ∀₀ g ∈ G, f '- g ∈ sets X) : measurable_fun f M (sigma_algebra.generated_by G) := begin intro A HA, induction HA with Hg A s setsG pre s' HsetsG HsetsG', exact Hg A, exact measurable_univ, rewrite [preimage_compl]; exact measurable_compl pre, rewrite [preimage_Union]; exact measurable_cUnion HsetsG' end end /- The collection of sigma algebras forms a complete lattice. -/ protected definition le (M N : sigma_algebra X) : Prop := @sets _ M ⊆ @sets _ N definition sigma_algebra_has_le [instance] : has_le (sigma_algebra X) := has_le.mk sigma_algebra.le protected theorem le_refl (M : sigma_algebra X) : M ≤ M := subset.refl (@sets _ M) protected theorem le_trans (M N L : sigma_algebra X) : M ≤ N → N ≤ L → M ≤ L := assume H1, assume H2, subset.trans H1 H2 protected theorem le_antisymm (M N : sigma_algebra X) : M ≤ N → N ≤ M → M = N := assume H1, assume H2, sigma_algebra.eq (subset.antisymm H1 H2) protected theorem generated_by_initial {G : set (set X)} {M : sigma_algebra X} (H : G ⊆ @sets X M) : sigma_algebra.generated_by G ≤ M := sets_generated_by_initial H protected definition inf (M N : sigma_algebra X) : sigma_algebra X := ⦃sigma_algebra, sets := @sets X M ∩ @sets X N, univ_mem_sets := abstract and.intro (@measurable_univ X M) (@measurable_univ X N) end, comp_mem_sets := abstract take s, assume Hs, and.intro (@measurable_compl X M s (and.elim_left Hs)) (@measurable_compl X N s (and.elim_right Hs)) end, cUnion_mem_sets := abstract take s, assume Hs, and.intro (@measurable_cUnion X M s (λ i, and.elim_left (Hs i))) (@measurable_cUnion X N s (λ i, and.elim_right (Hs i))) end⦄ protected theorem inf_le_left (M N : sigma_algebra X) : sigma_algebra.inf M N ≤ M := λ s, !inter_subset_left protected theorem inf_le_right (M N : sigma_algebra X) : sigma_algebra.inf M N ≤ N := λ s, !inter_subset_right protected theorem le_inf (M N L : sigma_algebra X) (H1 : L ≤ M) (H2 : L ≤ N) : L ≤ sigma_algebra.inf M N := λ s H, and.intro (H1 s H) (H2 s H) protected definition Inf (MS : set (sigma_algebra X)) : sigma_algebra X := ⦃sigma_algebra, sets := ⋂ M ∈ MS, @sets _ M, univ_mem_sets := abstract take M, assume HM, @measurable_univ X M end, comp_mem_sets := abstract take s, assume Hs, take M, assume HM, measurable_compl (Hs M HM) end, cUnion_mem_sets := abstract take s, assume Hs, take M, assume HM, measurable_cUnion (λ i, Hs i M HM) end ⦄ protected theorem Inf_le {M : sigma_algebra X} {MS : set (sigma_algebra X)} (MMS : M ∈ MS) : sigma_algebra.Inf MS ≤ M := bInter_subset_of_mem MMS protected theorem le_Inf {M : sigma_algebra X} {MS : set (sigma_algebra X)} (H : ∀₀ N ∈ MS, M ≤ N) : M ≤ sigma_algebra.Inf MS := take s, assume Hs : s ∈ @sets _ M, take N, assume NMS : N ∈ MS, show s ∈ @sets _ N, from H NMS s Hs protected definition sup (M N : sigma_algebra X) : sigma_algebra X := sigma_algebra.generated_by (@sets _ M ∪ @sets _ N) protected theorem le_sup_left (M N : sigma_algebra X) : M ≤ sigma_algebra.sup M N := take s, assume Hs : s ∈ @sets _ M, measurable_generated_by (or.inl Hs) protected theorem le_sup_right (M N : sigma_algebra X) : N ≤ sigma_algebra.sup M N := take s, assume Hs : s ∈ @sets _ N, measurable_generated_by (or.inr Hs) protected theorem sup_le {M N L : sigma_algebra X} (H1 : M ≤ L) (H2 : N ≤ L) : sigma_algebra.sup M N ≤ L := have @sets _ M ∪ @sets _ N ⊆ @sets _ L, from union_subset H1 H2, sets_generated_by_initial this protected definition Sup (MS : set (sigma_algebra X)) : sigma_algebra X := sigma_algebra.generated_by (⋃ M ∈ MS, @sets _ M) protected theorem le_Sup {M : sigma_algebra X} {MS : set (sigma_algebra X)} (MMS : M ∈ MS) : M ≤ sigma_algebra.Sup MS := take s, assume Hs : s ∈ @sets _ M, measurable_generated_by (mem_bUnion MMS Hs) protected theorem Sup_le {N : sigma_algebra X} {MS : set (sigma_algebra X)} (H : ∀₀ M ∈ MS, M ≤ N) : sigma_algebra.Sup MS ≤ N := have (⋃ M ∈ MS, @sets _ M) ⊆ @sets _ N, from bUnion_subset H, sets_generated_by_initial this protected definition complete_lattice [trans_instance] : complete_lattice (sigma_algebra X) := ⦃complete_lattice, le := sigma_algebra.le, le_refl := sigma_algebra.le_refl, le_trans := sigma_algebra.le_trans, le_antisymm := sigma_algebra.le_antisymm, inf := sigma_algebra.inf, sup := sigma_algebra.sup, inf_le_left := sigma_algebra.inf_le_left, inf_le_right := sigma_algebra.inf_le_right, le_inf := sigma_algebra.le_inf, le_sup_left := sigma_algebra.le_sup_left, le_sup_right := sigma_algebra.le_sup_right, sup_le := @sigma_algebra.sup_le X, Inf := sigma_algebra.Inf, Sup := sigma_algebra.Sup, Inf_le := @sigma_algebra.Inf_le X, le_Inf := @sigma_algebra.le_Inf X, le_Sup := @sigma_algebra.le_Sup X, Sup_le := @sigma_algebra.Sup_le X⦄ end sigma_algebra /- Borel sets -/ namespace measure_theory section open topology variables (X : Type) [topology X] definition borel_algebra : sigma_algebra X := sigma_algebra.generated_by (opens X) variable {X} definition borel (s : set X) : Prop := @measurable _ (borel_algebra X) s theorem borel_of_Open {s : set X} (H : Open s) : borel s := sigma_algebra.measurable_generated_by H theorem borel_of_closed {s : set X} (H : closed s) : borel s := have borel (-s), from borel_of_Open H, @measurable_of_measurable_compl _ (borel_algebra X) _ this end /- borel functions -/ section open topology function variables {X Y Z : Type} [topology X] [topology Y] [topology Z] definition borel_fun (f : X → Y) := ∀ ⦃s⦄, Open s → borel (f '- s) theorem borel_fun_id : borel_fun (@id X) := λ s Os, borel_of_Open Os theorem borel_fun_of_continuous {f : X → Y} (H : continuous f) : borel_fun f := λ s Os, borel_of_Open (H Os) theorem borel_fun_const (c : Y) : borel_fun (λ x : X, c) := borel_fun_of_continuous (continuous_const c) theorem measurable_fun_of_borel_fun {f : X → Y} (H : borel_fun f) : measurable_fun f (borel_algebra X) (borel_algebra Y) := sigma_algebra.measurable_fun_generated_by f (opens Y) H theorem borel_fun_of_measurable_fun {f : X → Y} (H : measurable_fun f (borel_algebra X) (borel_algebra Y)) : borel_fun f := λ s Os, H (borel_of_Open Os) theorem borel_fun_iff (f : X → Y) : borel_fun f ↔ measurable_fun f (borel_algebra X) (borel_algebra Y) := iff.intro measurable_fun_of_borel_fun borel_fun_of_measurable_fun theorem borel_fun_comp {f : X → Y} {g : Y → Z} (Hf : borel_fun f) (Hg : borel_fun g) : borel_fun (g ∘ f) := λ s Os, measurable_fun_of_borel_fun Hf (Hg Os) end end measure_theory
d82f131ad328a3b39222de1150c0ca472a776944
4d78f6fde72627abc31dd386af0c26b8737db543
/MDK-ARM/Project.uvguix.Lean
8e9d0205240afba3488bd07afc460b3a4e04293b
[ "BSD-2-Clause" ]
permissive
ljprediger/TP_Final_CursoDSP2015
b39e30fe2a13bf08dfc484cb1e413e9903b92b76
4c80768ef309ed9cc646dd787274f32d84c74b49
refs/heads/master
1,610,266,559,346
1,448,658,586,000
1,448,658,586,000
46,999,684
0
0
null
null
null
null
UTF-8
Lean
false
false
136,912
lean
<?xml version="1.0" encoding="UTF-8" standalone="no" ?> <ProjectGui xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="project_guix.xsd"> <SchemaVersion>-5.1</SchemaVersion> <Header>### uVision Project, (C) Keil Software</Header> <ViewPool/> <SECTreeCtrl> <View> <WinId>38003</WinId> <ViewName>Registers</ViewName> <TableColWidths>115 281</TableColWidths> </View> <View> <WinId>346</WinId> <ViewName>Code Coverage</ViewName> <TableColWidths>665 160</TableColWidths> </View> <View> <WinId>204</WinId> <ViewName>Performance Analyzer</ViewName> <TableColWidths>825</TableColWidths> </View> </SECTreeCtrl> <TreeListPane> <View> <WinId>1506</WinId> <ViewName>Symbols</ViewName> <UserString></UserString> <TableColWidths>56 56 56</TableColWidths> </View> <View> <WinId>1936</WinId> <ViewName>Watch 1</ViewName> <UserString></UserString> <TableColWidths>56 56 56</TableColWidths> </View> <View> <WinId>1937</WinId> <ViewName>Watch 2</ViewName> <UserString></UserString> <TableColWidths>56 56 56</TableColWidths> </View> <View> <WinId>1935</WinId> <ViewName>Call Stack + Locals</ViewName> <UserString></UserString> <TableColWidths>56 56 56</TableColWidths> </View> <View> <WinId>2506</WinId> <ViewName>Trace Data</ViewName> <UserString></UserString> <TableColWidths>75 135 130 95 70 230 200 150</TableColWidths> </View> </TreeListPane> <WindowSettings> <LogicAnalizer> <ShowLACursor>0</ShowLACursor> <ShowSignalInfo>0</ShowSignalInfo> <ShowCycles>0</ShowCycles> <LeftSideBarSize>50</LeftSideBarSize> <TimeBaseIndex>16</TimeBaseIndex> </LogicAnalizer> </WindowSettings> <WinLayoutEx> <sActiveDebugView></sActiveDebugView> <WindowPosition> <length>44</length> <flags>2</flags> <showCmd>3</showCmd> <MinPosition> <xPos>-32000</xPos> <yPos>-32000</yPos> </MinPosition> <MaxPosition> <xPos>-1</xPos> <yPos>-1</yPos> </MaxPosition> <NormalPosition> <Top>78</Top> <Left>78</Left> <Right>1103</Right> <Bottom>603</Bottom> </NormalPosition> </WindowPosition> <MDIClientArea> <RegID>0</RegID> <MDITabState> <Len>60</Len> <Data>010000000400000001000000010000000100000001000000000000000200000000000000010000000100000000000000280000002800000000000000</Data> </MDITabState> </MDIClientArea> <ViewEx> <ViewType>0</ViewType> <ViewName>Build</ViewName> <Window> <RegID>-1</RegID> <PaneID>-1</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>AE0000004F000000F1030000B3000000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>AE00000066000000F1030000CA000000</Data> </RectRecentFloat> </Window> <Window> <RegID>1005</RegID> <PaneID>1005</PaneID> <IsVisible>1</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>030000006600000032010000A7010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>560000006D00000000010000FA000000</Data> </RectRecentFloat> </Window> <Window> <RegID>109</RegID> <PaneID>109</PaneID> <IsVisible>1</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>030000006600000032010000A7010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>560000006D0000001F010000F2010000</Data> </RectRecentFloat> </Window> <Window> <RegID>1465</RegID> <PaneID>1465</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>0300000075010000EE030000BA010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>560000006D0000004E020000CE000000</Data> </RectRecentFloat> </Window> <Window> <RegID>1466</RegID> <PaneID>1466</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>0300000075010000EE030000BA010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>560000006D0000004E020000CE000000</Data> </RectRecentFloat> </Window> <Window> <RegID>1467</RegID> <PaneID>1467</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>0300000075010000EE030000BA010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>560000006D0000004E020000CE000000</Data> </RectRecentFloat> </Window> <Window> <RegID>1468</RegID> <PaneID>1468</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>0300000075010000EE030000BA010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>560000006D0000004E020000CE000000</Data> </RectRecentFloat> </Window> <Window> <RegID>1506</RegID> <PaneID>1506</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>16384</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>4A03000066000000EE03000052010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>560000006D00000000010000FA000000</Data> </RectRecentFloat> </Window> <Window> <RegID>1913</RegID> <PaneID>1913</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>B100000066000000EE0300009A000000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>560000006D0000004E020000CE000000</Data> </RectRecentFloat> </Window> <Window> <RegID>1935</RegID> <PaneID>1935</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>32768</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>0300000075010000EE030000BA010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>560000006D00000000010000FA000000</Data> </RectRecentFloat> </Window> <Window> <RegID>1936</RegID> <PaneID>1936</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>0300000075010000EE030000BA010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>560000006D00000000010000FA000000</Data> </RectRecentFloat> </Window> <Window> <RegID>1937</RegID> <PaneID>1937</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>0300000075010000EE030000BA010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>560000006D00000000010000FA000000</Data> </RectRecentFloat> </Window> <Window> <RegID>1939</RegID> <PaneID>1939</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>0300000075010000EE030000BA010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>560000006D0000004E020000CE000000</Data> </RectRecentFloat> </Window> <Window> <RegID>1940</RegID> <PaneID>1940</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>0300000075010000EE030000BA010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>560000006D0000004E020000CE000000</Data> </RectRecentFloat> </Window> <Window> <RegID>1941</RegID> <PaneID>1941</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>0300000075010000EE030000BA010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>560000006D0000004E020000CE000000</Data> </RectRecentFloat> </Window> <Window> <RegID>1942</RegID> <PaneID>1942</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>0300000075010000EE030000BA010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>560000006D0000004E020000CE000000</Data> </RectRecentFloat> </Window> <Window> <RegID>195</RegID> <PaneID>195</PaneID> <IsVisible>1</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>030000006600000032010000A7010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>560000006D0000001F010000F2010000</Data> </RectRecentFloat> </Window> <Window> <RegID>196</RegID> <PaneID>196</PaneID> <IsVisible>1</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>030000006600000032010000A7010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>560000006D0000001F010000F2010000</Data> </RectRecentFloat> </Window> <Window> <RegID>197</RegID> <PaneID>197</PaneID> <IsVisible>1</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>32768</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>03000000DB0100005305000095020000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>560000006D0000004E020000CE000000</Data> </RectRecentFloat> </Window> <Window> <RegID>198</RegID> <PaneID>198</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>32768</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>000000005E010000F1030000D3010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>560000006D0000004E020000CE000000</Data> </RectRecentFloat> </Window> <Window> <RegID>199</RegID> <PaneID>199</PaneID> <IsVisible>1</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>03000000DB0100005305000095020000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>560000006D0000004E020000CE000000</Data> </RectRecentFloat> </Window> <Window> <RegID>203</RegID> <PaneID>203</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>8192</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>B100000066000000EE0300009A000000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>560000006D0000004E020000CE000000</Data> </RectRecentFloat> </Window> <Window> <RegID>204</RegID> <PaneID>204</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>B100000066000000EE0300009A000000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>560000006D0000004E020000CE000000</Data> </RectRecentFloat> </Window> <Window> <RegID>221</RegID> <PaneID>221</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>00000000000000000000000000000000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>0A0000000A0000006E0000006E000000</Data> </RectRecentFloat> </Window> <Window> <RegID>2506</RegID> <PaneID>2506</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>4A03000066000000EE03000052010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>560000006D00000000010000FA000000</Data> </RectRecentFloat> </Window> <Window> <RegID>2507</RegID> <PaneID>2507</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>0300000075010000EE030000BA010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>560000006D0000004E020000CE000000</Data> </RectRecentFloat> </Window> <Window> <RegID>343</RegID> <PaneID>343</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>B100000066000000EE0300009A000000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>560000006D0000004E020000CE000000</Data> </RectRecentFloat> </Window> <Window> <RegID>346</RegID> <PaneID>346</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>B100000066000000EE0300009A000000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>560000006D0000004E020000CE000000</Data> </RectRecentFloat> </Window> <Window> <RegID>35824</RegID> <PaneID>35824</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>B100000066000000EE0300009A000000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>560000006D0000004E020000CE000000</Data> </RectRecentFloat> </Window> <Window> <RegID>35885</RegID> <PaneID>35885</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>4A03000066000000EE03000052010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>560000006D00000000010000FA000000</Data> </RectRecentFloat> </Window> <Window> <RegID>35886</RegID> <PaneID>35886</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>4A03000066000000EE03000052010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>560000006D00000000010000FA000000</Data> </RectRecentFloat> </Window> <Window> <RegID>35887</RegID> <PaneID>35887</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>4A03000066000000EE03000052010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>560000006D00000000010000FA000000</Data> </RectRecentFloat> </Window> <Window> <RegID>35888</RegID> <PaneID>35888</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>4A03000066000000EE03000052010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>560000006D00000000010000FA000000</Data> </RectRecentFloat> </Window> <Window> <RegID>35889</RegID> <PaneID>35889</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>4A03000066000000EE03000052010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>560000006D00000000010000FA000000</Data> </RectRecentFloat> </Window> <Window> <RegID>35890</RegID> <PaneID>35890</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>4A03000066000000EE03000052010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>560000006D00000000010000FA000000</Data> </RectRecentFloat> </Window> <Window> <RegID>35891</RegID> <PaneID>35891</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>4A03000066000000EE03000052010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>560000006D00000000010000FA000000</Data> </RectRecentFloat> </Window> <Window> <RegID>35892</RegID> <PaneID>35892</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>4A03000066000000EE03000052010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>560000006D00000000010000FA000000</Data> </RectRecentFloat> </Window> <Window> <RegID>35893</RegID> <PaneID>35893</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>4A03000066000000EE03000052010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>560000006D00000000010000FA000000</Data> </RectRecentFloat> </Window> <Window> <RegID>35894</RegID> <PaneID>35894</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>4A03000066000000EE03000052010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>560000006D00000000010000FA000000</Data> </RectRecentFloat> </Window> <Window> <RegID>35895</RegID> <PaneID>35895</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>4A03000066000000EE03000052010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>560000006D00000000010000FA000000</Data> </RectRecentFloat> </Window> <Window> <RegID>35896</RegID> <PaneID>35896</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>4A03000066000000EE03000052010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>560000006D00000000010000FA000000</Data> </RectRecentFloat> </Window> <Window> <RegID>35897</RegID> <PaneID>35897</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>4A03000066000000EE03000052010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>560000006D00000000010000FA000000</Data> </RectRecentFloat> </Window> <Window> <RegID>35898</RegID> <PaneID>35898</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>4A03000066000000EE03000052010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>560000006D00000000010000FA000000</Data> </RectRecentFloat> </Window> <Window> <RegID>35899</RegID> <PaneID>35899</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>4A03000066000000EE03000052010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>560000006D00000000010000FA000000</Data> </RectRecentFloat> </Window> <Window> <RegID>35900</RegID> <PaneID>35900</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>4A03000066000000EE03000052010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>560000006D00000000010000FA000000</Data> </RectRecentFloat> </Window> <Window> <RegID>35901</RegID> <PaneID>35901</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>4A03000066000000EE03000052010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>560000006D00000000010000FA000000</Data> </RectRecentFloat> </Window> <Window> <RegID>35902</RegID> <PaneID>35902</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>4A03000066000000EE03000052010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>560000006D00000000010000FA000000</Data> </RectRecentFloat> </Window> <Window> <RegID>35903</RegID> <PaneID>35903</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>4A03000066000000EE03000052010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>560000006D00000000010000FA000000</Data> </RectRecentFloat> </Window> <Window> <RegID>35904</RegID> <PaneID>35904</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>4A03000066000000EE03000052010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>560000006D00000000010000FA000000</Data> </RectRecentFloat> </Window> <Window> <RegID>35905</RegID> <PaneID>35905</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>4A03000066000000EE03000052010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>560000006D00000000010000FA000000</Data> </RectRecentFloat> </Window> <Window> <RegID>38003</RegID> <PaneID>38003</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>030000006600000093010000ED010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>560000006D0000001F010000F2010000</Data> </RectRecentFloat> </Window> <Window> <RegID>38007</RegID> <PaneID>38007</PaneID> <IsVisible>1</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>03000000DB0100005305000095020000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>560000006D0000004E020000CE000000</Data> </RectRecentFloat> </Window> <Window> <RegID>436</RegID> <PaneID>436</PaneID> <IsVisible>1</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>03000000DB0100005305000095020000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>560000006D0000001F010000F2010000</Data> </RectRecentFloat> </Window> <Window> <RegID>437</RegID> <PaneID>437</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>0300000075010000EE030000BA010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>560000006D00000000010000FA000000</Data> </RectRecentFloat> </Window> <Window> <RegID>440</RegID> <PaneID>440</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>0300000075010000EE030000BA010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>560000006D00000000010000FA000000</Data> </RectRecentFloat> </Window> <Window> <RegID>59392</RegID> <PaneID>59392</PaneID> <IsVisible>1</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>940</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>8192</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>0000000000000000B70300001C000000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>0A0000000A0000006E0000006E000000</Data> </RectRecentFloat> </Window> <Window> <RegID>59393</RegID> <PaneID>0</PaneID> <IsVisible>1</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>00000000AE02000056050000C1020000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>0A0000000A0000006E0000006E000000</Data> </RectRecentFloat> </Window> <Window> <RegID>59399</RegID> <PaneID>59399</PaneID> <IsVisible>1</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>463</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>8192</RecentFrameAlignment> <RecentRowIndex>1</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>000000001C000000DA01000038000000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>0A0000000A0000006E0000006E000000</Data> </RectRecentFloat> </Window> <Window> <RegID>59400</RegID> <PaneID>59400</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>612</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>8192</RecentFrameAlignment> <RecentRowIndex>2</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>00000000380000006F02000054000000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>0A0000000A0000006E0000006E000000</Data> </RectRecentFloat> </Window> <DockMan> <Len>2619</Len> <Data>000000000B000000000000000020000000000000FFFFFFFFFFFFFFFFAE000000B3000000F1030000B7000000000000000100000004000000010000000000000000000000FFFFFFFF06000000CB00000057010000CC000000F08B00005A01000079070000FFFF02000B004354616262656450616E650020000000000000AE00000066000000F1030000CA000000AE0000004F000000F1030000B30000000000000040280046060000000B446973617373656D626C7900000000CB00000001000000FFFFFFFFFFFFFFFF14506572666F726D616E636520416E616C797A6572000000005701000001000000FFFFFFFFFFFFFFFF14506572666F726D616E636520416E616C797A657200000000CC00000001000000FFFFFFFFFFFFFFFF0E4C6F67696320416E616C797A657200000000F08B000001000000FFFFFFFFFFFFFFFF0D436F646520436F766572616765000000005A01000001000000FFFFFFFFFFFFFFFF11496E737472756374696F6E205472616365000000007907000001000000FFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000000000000000000000001000000FFFFFFFFCB00000001000000FFFFFFFFCB000000000000000040000000000000FFFFFFFFFFFFFFFF430300004F000000470300006B010000000000000200000004000000010000000000000000000000FFFFFFFF17000000E2050000CA0900002D8C00002E8C00002F8C0000308C0000318C0000328C0000338C0000348C0000358C0000368C0000378C0000388C0000398C00003A8C00003B8C00003C8C00003D8C00003E8C00003F8C0000408C0000418C0000018000400000000000004703000066000000F103000082010000470300004F000000F10300006B0100000000000040410046170000000753796D626F6C7300000000E205000001000000FFFFFFFFFFFFFFFF0A5472616365204461746100000000CA09000001000000FFFFFFFFFFFFFFFF00000000002D8C000001000000FFFFFFFFFFFFFFFF00000000002E8C000001000000FFFFFFFFFFFFFFFF00000000002F8C000001000000FFFFFFFFFFFFFFFF0000000000308C000001000000FFFFFFFFFFFFFFFF0000000000318C000001000000FFFFFFFFFFFFFFFF0000000000328C000001000000FFFFFFFFFFFFFFFF0000000000338C000001000000FFFFFFFFFFFFFFFF0000000000348C000001000000FFFFFFFFFFFFFFFF0000000000358C000001000000FFFFFFFFFFFFFFFF0000000000368C000001000000FFFFFFFFFFFFFFFF0000000000378C000001000000FFFFFFFFFFFFFFFF0000000000388C000001000000FFFFFFFFFFFFFFFF0000000000398C000001000000FFFFFFFFFFFFFFFF00000000003A8C000001000000FFFFFFFFFFFFFFFF00000000003B8C000001000000FFFFFFFFFFFFFFFF00000000003C8C000001000000FFFFFFFFFFFFFFFF00000000003D8C000001000000FFFFFFFFFFFFFFFF00000000003E8C000001000000FFFFFFFFFFFFFFFF00000000003F8C000001000000FFFFFFFFFFFFFFFF0000000000408C000001000000FFFFFFFFFFFFFFFF0000000000418C000001000000FFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000000000000000000000001000000FFFFFFFFE205000001000000FFFFFFFFE2050000000000000010000001000000FFFFFFFFFFFFFFFF350100004F00000039010000C0010000010000000200001004000000010000009DFFFFFFE8040000FFFFFFFF05000000ED0300006D000000C3000000C400000073940000018000100000010000000000000066000000960100001D020000000000004F00000035010000C00100000000000040410056050000000750726F6A65637401000000ED03000001000000FFFFFFFFFFFFFFFF05426F6F6B73010000006D00000001000000FFFFFFFFFFFFFFFF0946756E6374696F6E7301000000C300000001000000FFFFFFFFFFFFFFFF0954656D706C6174657301000000C400000001000000FFFFFFFFFFFFFFFF09526567697374657273000000007394000001000000FFFFFFFFFFFFFFFF00000000000000000000000000000000000000000000000001000000FFFFFFFFED03000001000000FFFFFFFFED030000000000000080000000000000FFFFFFFFFFFFFFFF000000005A010000F10300005E01000000000000010000000400000001000000000000000000000000000000000000000000000001000000C6000000FFFFFFFF0E0000008F070000930700009407000095070000960700009007000091070000B5010000B8010000B9050000BA050000BB050000BC050000CB090000018000800000000000000000000075010000F1030000EA010000000000005E010000F1030000D301000000000000404100460E0000001343616C6C20537461636B202B204C6F63616C73000000008F07000001000000FFFFFFFFFFFFFFFF0755415254202331000000009307000001000000FFFFFFFFFFFFFFFF0755415254202332000000009407000001000000FFFFFFFFFFFFFFFF0755415254202333000000009507000001000000FFFFFFFFFFFFFFFF15446562756720287072696E74662920566965776572000000009607000001000000FFFFFFFFFFFFFFFF0757617463682031000000009007000001000000FFFFFFFFFFFFFFFF0757617463682032000000009107000001000000FFFFFFFFFFFFFFFF10547261636520457863657074696F6E7300000000B501000001000000FFFFFFFFFFFFFFFF0E4576656E7420436F756E7465727300000000B801000001000000FFFFFFFFFFFFFFFF084D656D6F7279203100000000B905000001000000FFFFFFFFFFFFFFFF084D656D6F7279203200000000BA05000001000000FFFFFFFFFFFFFFFF084D656D6F7279203300000000BB05000001000000FFFFFFFFFFFFFFFF084D656D6F7279203400000000BC05000001000000FFFFFFFFFFFFFFFF105472616365204E617669676174696F6E00000000CB09000001000000FFFFFFFFFFFFFFFFFFFFFFFF0000000001000000000000000000000001000000FFFFFFFFF90100005E010000FD010000D301000000000000020000000400000000000000000000000000000000000000000000000000000002000000C6000000FFFFFFFF8F07000001000000FFFFFFFF8F07000001000000C6000000000000000080000001000000FFFFFFFFFFFFFFFF00000000C001000056050000C4010000010000000100001004000000010000000BFEFFFF56000000FFFFFFFF04000000C5000000C7000000B40100007794000001800080000001000000000000002102000056050000C502000000000000C401000056050000AE0200000000000040820056040000000C4275696C64204F757470757401000000C500000001000000FFFFFFFFFFFFFFFF0D46696E6420496E2046696C657301000000C700000001000000FFFFFFFFFFFFFFFF0A4572726F72204C69737401000000B401000001000000FFFFFFFFFFFFFFFF0742726F77736572010000007794000001000000FFFFFFFFFFFFFFFF00000000000000000000000000000000000000000000000001000000FFFFFFFFC500000001000000FFFFFFFFC5000000000000000000000000000000</Data> </DockMan> <ToolBar> <RegID>59392</RegID> <Name>File</Name> <Buttons> <Len>2021</Len> <Data>00200000010000002800FFFF01001100434D4643546F6F6C426172427574746F6E00E100000000000000000000000000000000000000000000000100000001000000018001E100000000000001000000000000000000000000000000000100000001000000018003E1000000000400020000000000000000000000000000000001000000010000000180CD7F0000000000000300000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF000000000000000000000000000100000001000000018023E100000000040004000000000000000000000000000000000100000001000000018022E100000000040005000000000000000000000000000000000100000001000000018025E10000000004000600000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000001802BE10000000004000700000000000000000000000000000000010000000100000001802CE10000000004000800000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000001807A8A0000000004000900000000000000000000000000000000010000000100000001807B8A0000000004000A00000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180D3B00000000004000B000000000000000000000000000000000100000001000000018015B10000000004000C0000000000000000000000000000000001000000010000000180F4B00000000004000D000000000000000000000000000000000100000001000000018036B10000000004000E00000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180FF88000000000400460000000000000000000000000000000001000000010000000180FE880000000004004500000000000000000000000000000000010000000100000001800B810000000004001300000000000000000000000000000000010000000100000001800C810000000004001400000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180F0880000020000000F000000000000000000000000000000000100000001000000FFFF0100120043555646696E64436F6D626F427574746F6EE8030000000004000000000000000000000000000000000000010000000100000096000000020020500000000003726D739600000000000000020003726D730361726D0000000000000000018024E10000000000001100000000000000000000000000000000010000000100000001800A810000000004001200000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF000000000000000000000000000100000001000000018022800000020000001500000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180C488000000000400160000000000000000000000000000000001000000010000000180C988000000000400180000000000000000000000000000000001000000010000000180C788000000000000190000000000000000000000000000000001000000010000000180C8880000000000001700000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF000000000000000000000000000100000001000000FFFF01001500434D4643546F6F6C4261724D656E75427574746F6E4C010000020001001A0000000F2650726F6A6563742057696E646F77000000000000000000000000010000000100000000000000000000000100000008002880DD880000000000001A0000000750726F6A656374000000000000000000000000010000000100000000000000000000000100000000002880DC8B0000000000003A00000005426F6F6B73000000000000000000000000010000000100000000000000000000000100000000002880E18B0000000000003B0000000946756E6374696F6E73000000000000000000000000010000000100000000000000000000000100000000002880E28B000000000000400000000954656D706C6174657300000000000000000000000001000000010000000000000000000000010000000000288018890000000000003D0000000E536F757263652042726F777365720000000000000000000000000100000001000000000000000000000001000000000028800000000000000400FFFFFFFF00000000000000000001000000000000000100000000000000000000000100000000002880D988000000000000390000000C4275696C64204F7574707574000000000000000000000000010000000100000000000000000000000100000000002880E38B000000000000410000000B46696E64204F75747075740000000000000000000000000100000001000000000000000000000001000000000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180FB7F0000000000001B000000000000000000000000000000000100000001000000000000000446696C65AC030000</Data> </Buttons> <OriginalItems> <Len>1423</Len> <Data>2800FFFF01001100434D4643546F6F6C426172427574746F6E00E1000000000000FFFFFFFF000100000000000000010000000000000001000000018001E1000000000000FFFFFFFF000100000000000000010000000000000001000000018003E1000000000000FFFFFFFF0001000000000000000100000000000000010000000180CD7F000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF000000000000000000010000000000000001000000018023E1000000000000FFFFFFFF000100000000000000010000000000000001000000018022E1000000000000FFFFFFFF000100000000000000010000000000000001000000018025E1000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF00000000000000000001000000000000000100000001802BE1000000000000FFFFFFFF00010000000000000001000000000000000100000001802CE1000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF00000000000000000001000000000000000100000001807A8A000000000000FFFFFFFF00010000000000000001000000000000000100000001807B8A000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF0000000000000000000100000000000000010000000180D3B0000000000000FFFFFFFF000100000000000000010000000000000001000000018015B1000000000000FFFFFFFF0001000000000000000100000000000000010000000180F4B0000000000000FFFFFFFF000100000000000000010000000000000001000000018036B1000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF0000000000000000000100000000000000010000000180FF88000000000000FFFFFFFF0001000000000000000100000000000000010000000180FE88000000000000FFFFFFFF00010000000000000001000000000000000100000001800B81000000000000FFFFFFFF00010000000000000001000000000000000100000001800C81000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF0000000000000000000100000000000000010000000180F088000000000000FFFFFFFF0001000000000000000100000000000000010000000180EE7F000000000000FFFFFFFF000100000000000000010000000000000001000000018024E1000000000000FFFFFFFF00010000000000000001000000000000000100000001800A81000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF00000000000000000001000000000000000100000001802280000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF0000000000000000000100000000000000010000000180C488000000000000FFFFFFFF0001000000000000000100000000000000010000000180C988000000000000FFFFFFFF0001000000000000000100000000000000010000000180C788000000000000FFFFFFFF0001000000000000000100000000000000010000000180C888000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF0000000000000000000100000000000000010000000180DD88000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF0000000000000000000100000000000000010000000180FB7F000000000000FFFFFFFF000100000000000000010000000000000001000000</Data> </OriginalItems> <OrigResetItems> <Len>1423</Len> <Data>2800FFFF01001100434D4643546F6F6C426172427574746F6E00E100000000000000000000000000000000000000000000000100000001000000018001E100000000000001000000000000000000000000000000000100000001000000018003E1000000000000020000000000000000000000000000000001000000010000000180CD7F0000000000000300000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF000000000000000000000000000100000001000000018023E100000000000004000000000000000000000000000000000100000001000000018022E100000000000005000000000000000000000000000000000100000001000000018025E10000000000000600000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000001802BE10000000000000700000000000000000000000000000000010000000100000001802CE10000000000000800000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000001807A8A0000000000000900000000000000000000000000000000010000000100000001807B8A0000000000000A00000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180D3B00000000000000B000000000000000000000000000000000100000001000000018015B10000000000000C0000000000000000000000000000000001000000010000000180F4B00000000000000D000000000000000000000000000000000100000001000000018036B10000000000000E00000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180FF880000000000000F0000000000000000000000000000000001000000010000000180FE880000000000001000000000000000000000000000000000010000000100000001800B810000000000001100000000000000000000000000000000010000000100000001800C810000000000001200000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180F088000000000000130000000000000000000000000000000001000000010000000180EE7F00000000000014000000000000000000000000000000000100000001000000018024E10000000000001500000000000000000000000000000000010000000100000001800A810000000000001600000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF000000000000000000000000000100000001000000018022800000000000001700000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180C488000000000000180000000000000000000000000000000001000000010000000180C988000000000000190000000000000000000000000000000001000000010000000180C7880000000000001A0000000000000000000000000000000001000000010000000180C8880000000000001B00000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180DD880000000000001C00000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180FB7F0000000000001D000000000000000000000000000000000100000001000000</Data> </OrigResetItems> </ToolBar> <ToolBar> <RegID>59399</RegID> <Name>Build</Name> <Buttons> <Len>692</Len> <Data>00200000010000001000FFFF01001100434D4643546F6F6C426172427574746F6ECF7F0000000004001C0000000000000000000000000000000001000000010000000180D07F0000000000001D000000000000000000000000000000000100000001000000018030800000000000001E00000000000000000000000000000000010000000100000001809E8A0000000000001F0000000000000000000000000000000001000000010000000180D17F0000000004002000000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000001804C8A0000000000002100000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF000000000000000000000000000100000001000000FFFF01001900434D4643546F6F6C426172436F6D626F426F78427574746F6EBA00000000000000000000000000000000000000000000000001000000010000009600000003002050000000000F53544D3332463430312D444953434F960000000000000001000F53544D3332463430312D444953434F000000000180EB880000000000002200000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180C07F000000000000230000000000000000000000000000000001000000010000000180B08A000000000400240000000000000000000000000000000001000000010000000180A8010000000000004E00000000000000000000000000000000010000000100000001807202000000000000530000000000000000000000000000000001000000010000000180BE010000000000005000000000000000000000000000000000010000000100000000000000054275696C64CF010000</Data> </Buttons> <OriginalItems> <Len>583</Len> <Data>1000FFFF01001100434D4643546F6F6C426172427574746F6ECF7F000000000000FFFFFFFF0001000000000000000100000000000000010000000180D07F000000000000FFFFFFFF00010000000000000001000000000000000100000001803080000000000000FFFFFFFF00010000000000000001000000000000000100000001809E8A000000000000FFFFFFFF0001000000000000000100000000000000010000000180D17F000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF00000000000000000001000000000000000100000001804C8A000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF00000000000000000001000000000000000100000001806680000000000000FFFFFFFF0001000000000000000100000000000000010000000180EB88000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF0000000000000000000100000000000000010000000180C07F000000000000FFFFFFFF0001000000000000000100000000000000010000000180B08A000000000000FFFFFFFF0001000000000000000100000000000000010000000180A801000000000000FFFFFFFF00010000000000000001000000000000000100000001807202000000000000FFFFFFFF0001000000000000000100000000000000010000000180BE01000000000000FFFFFFFF000100000000000000010000000000000001000000</Data> </OriginalItems> <OrigResetItems> <Len>583</Len> <Data>1000FFFF01001100434D4643546F6F6C426172427574746F6ECF7F000000000000000000000000000000000000000000000001000000010000000180D07F00000000000001000000000000000000000000000000000100000001000000018030800000000000000200000000000000000000000000000000010000000100000001809E8A000000000000030000000000000000000000000000000001000000010000000180D17F0000000000000400000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000001804C8A0000000000000500000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000001806680000000000000060000000000000000000000000000000001000000010000000180EB880000000000000700000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180C07F000000000000080000000000000000000000000000000001000000010000000180B08A000000000000090000000000000000000000000000000001000000010000000180A8010000000000000A000000000000000000000000000000000100000001000000018072020000000000000B0000000000000000000000000000000001000000010000000180BE010000000000000C000000000000000000000000000000000100000001000000</Data> </OrigResetItems> </ToolBar> <ToolBar> <RegID>59400</RegID> <Name>Debug</Name> <Buttons> <Len>2247</Len> <Data>00200000000000001900FFFF01001100434D4643546F6F6C426172427574746F6ECC880000000000002500000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF000000000000000000000000000100000001000000018017800000000000002600000000000000000000000000000000010000000100000001801D800000000000002700000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000001801A800000000000002800000000000000000000000000000000010000000100000001801B80000000000000290000000000000000000000000000000001000000010000000180E57F0000000000002A00000000000000000000000000000000010000000100000001801C800000000000002B00000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF000000000000000000000000000100000001000000018000890000000000002C00000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180E48B0000000000002D0000000000000000000000000000000001000000010000000180F07F0000000000002E0000000000000000000000000000000001000000010000000180E8880000000000003700000000000000000000000000000000010000000100000001803B010000000000002F0000000000000000000000000000000001000000010000000180BB8A00000000000030000000000000000000000000000000000100000001000000FFFF01001500434D4643546F6F6C4261724D656E75427574746F6E0E01000000000000310000000D57617463682057696E646F7773000000000000000000000000010000000100000000000000000000000100000002001380D88B00000000000031000000085761746368202631000000000000000000000000010000000100000000000000000000000100000000001380D98B000000000000310000000857617463682026320000000000000000000000000100000001000000000000000000000001000000000013800F01000000000000320000000E4D656D6F72792057696E646F7773000000000000000000000000010000000100000000000000000000000100000004001380D28B00000000000032000000094D656D6F7279202631000000000000000000000000010000000100000000000000000000000100000000001380D38B00000000000032000000094D656D6F7279202632000000000000000000000000010000000100000000000000000000000100000000001380D48B00000000000032000000094D656D6F7279202633000000000000000000000000010000000100000000000000000000000100000000001380D58B00000000000032000000094D656D6F72792026340000000000000000000000000100000001000000000000000000000001000000000013801001000000000000330000000E53657269616C2057696E646F777300000000000000000000000001000000010000000000000000000000010000000400138093070000000000003300000008554152542023263100000000000000000000000001000000010000000000000000000000010000000000138094070000000000003300000008554152542023263200000000000000000000000001000000010000000000000000000000010000000000138095070000000000003300000008554152542023263300000000000000000000000001000000010000000000000000000000010000000000138096070000000000003300000015446562756720287072696E746629205669657765720000000000000000000000000100000001000000000000000000000001000000000013803C010000000000003400000010416E616C797369732057696E646F7773000000000000000000000000010000000100000000000000000000000100000003001380658A000000000000340000000F264C6F67696320416E616C797A6572000000000000000000000000010000000100000000000000000000000100000000001380DC7F0000000000003E0000001526506572666F726D616E636520416E616C797A6572000000000000000000000000010000000100000000000000000000000100000000001380E788000000000000380000000E26436F646520436F76657261676500000000000000000000000001000000010000000000000000000000010000000000138053010000000000003F0000000D54726163652057696E646F77730000000000000000000000000100000001000000000000000000000001000000010013805401000000000000FFFFFFFF115472616365204D656E7520416E63686F720100000000000000010000000000000001000000000000000000000001000000000013802901000000000000350000001553797374656D205669657765722057696E646F77730000000000000000000000000100000001000000000000000000000001000000010013804B01000000000000FFFFFFFF1453797374656D2056696577657220416E63686F720100000000000000010000000000000001000000000000000000000001000000000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000013800189000000000000360000000F26546F6F6C626F782057696E646F7700000000000000000000000001000000010000000000000000000000010000000300138044C5000000000000FFFFFFFF0E5570646174652057696E646F77730100000000000000010000000000000001000000000000000000000001000000000013800000000000000400FFFFFFFF000000000000000000010000000000000001000000000000000000000001000000000013805B01000000000000FFFFFFFF12546F6F6C626F78204D656E75416E63686F72010000000000000001000000000000000100000000000000000000000100000000000000000005446562756764020000</Data> </Buttons> <OriginalItems> <Len>898</Len> <Data>1900FFFF01001100434D4643546F6F6C426172427574746F6ECC88000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF00000000000000000001000000000000000100000001801780000000000000FFFFFFFF00010000000000000001000000000000000100000001801D80000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF00000000000000000001000000000000000100000001801A80000000000000FFFFFFFF00010000000000000001000000000000000100000001801B80000000000000FFFFFFFF0001000000000000000100000000000000010000000180E57F000000000000FFFFFFFF00010000000000000001000000000000000100000001801C80000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF00000000000000000001000000000000000100000001800089000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF0000000000000000000100000000000000010000000180E48B000000000000FFFFFFFF0001000000000000000100000000000000010000000180F07F000000000000FFFFFFFF0001000000000000000100000000000000010000000180E888000000000000FFFFFFFF00010000000000000001000000000000000100000001803B01000000000000FFFFFFFF0001000000000000000100000000000000010000000180BB8A000000000000FFFFFFFF0001000000000000000100000000000000010000000180D88B000000000000FFFFFFFF0001000000000000000100000000000000010000000180D28B000000000000FFFFFFFF00010000000000000001000000000000000100000001809307000000000000FFFFFFFF0001000000000000000100000000000000010000000180658A000000000000FFFFFFFF0001000000000000000100000000000000010000000180C18A000000000000FFFFFFFF0001000000000000000100000000000000010000000180EE8B000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF00000000000000000001000000000000000100000001800189000000000000FFFFFFFF000100000000000000010000000000000001000000</Data> </OriginalItems> <OrigResetItems> <Len>898</Len> <Data>1900FFFF01001100434D4643546F6F6C426172427574746F6ECC880000000000000000000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF000000000000000000000000000100000001000000018017800000000000000100000000000000000000000000000000010000000100000001801D800000000000000200000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000001801A800000000000000300000000000000000000000000000000010000000100000001801B80000000000000040000000000000000000000000000000001000000010000000180E57F0000000000000500000000000000000000000000000000010000000100000001801C800000000000000600000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF000000000000000000000000000100000001000000018000890000000000000700000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180E48B000000000000080000000000000000000000000000000001000000010000000180F07F000000000000090000000000000000000000000000000001000000010000000180E8880000000000000A00000000000000000000000000000000010000000100000001803B010000000000000B0000000000000000000000000000000001000000010000000180BB8A0000000000000C0000000000000000000000000000000001000000010000000180D88B0000000000000D0000000000000000000000000000000001000000010000000180D28B0000000000000E000000000000000000000000000000000100000001000000018093070000000000000F0000000000000000000000000000000001000000010000000180658A000000000000100000000000000000000000000000000001000000010000000180C18A000000000000110000000000000000000000000000000001000000010000000180EE8B0000000000001200000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180018900000000000013000000000000000000000000000000000100000001000000</Data> </OrigResetItems> </ToolBar> <ControlBarsSummary> <Bars>0</Bars> <ScreenCX>1366</ScreenCX> <ScreenCY>768</ScreenCY> </ControlBarsSummary> </ViewEx> <ViewEx> <ViewType>1</ViewType> <ViewName>Debug</ViewName> <Window> <RegID>-1</RegID> <PaneID>-1</PaneID> <IsVisible>1</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>4C0100004F00000056050000B3000000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>4C0100006600000056050000CA000000</Data> </RectRecentFloat> </Window> <Window> <RegID>1005</RegID> <PaneID>1005</PaneID> <IsVisible>1</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>0300000066000000450100001C020000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>2200000039000000CC000000C6000000</Data> </RectRecentFloat> </Window> <Window> <RegID>109</RegID> <PaneID>109</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>0300000066000000450100001C020000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>2200000039000000EB000000BE010000</Data> </RectRecentFloat> </Window> <Window> <RegID>1465</RegID> <PaneID>1465</PaneID> <IsVisible>1</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>B2020000500200005305000095020000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>22000000390000001A0200009A000000</Data> </RectRecentFloat> </Window> <Window> <RegID>1466</RegID> <PaneID>1466</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>B2020000500200005305000095020000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>22000000390000001A0200009A000000</Data> </RectRecentFloat> </Window> <Window> <RegID>1467</RegID> <PaneID>1467</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>B2020000500200005305000095020000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>22000000390000001A0200009A000000</Data> </RectRecentFloat> </Window> <Window> <RegID>1468</RegID> <PaneID>1468</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>B2020000500200005305000095020000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>22000000390000001A0200009A000000</Data> </RectRecentFloat> </Window> <Window> <RegID>1506</RegID> <PaneID>1506</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>16384</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>4A03000066000000EE03000052010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>2200000039000000CC000000C6000000</Data> </RectRecentFloat> </Window> <Window> <RegID>1913</RegID> <PaneID>1913</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>4F01000066000000530500009A000000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>22000000390000001A0200009A000000</Data> </RectRecentFloat> </Window> <Window> <RegID>1935</RegID> <PaneID>1935</PaneID> <IsVisible>1</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>32768</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>B2020000500200005305000095020000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>2200000039000000CC000000C6000000</Data> </RectRecentFloat> </Window> <Window> <RegID>1936</RegID> <PaneID>1936</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>B2020000500200005305000095020000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>2200000039000000CC000000C6000000</Data> </RectRecentFloat> </Window> <Window> <RegID>1937</RegID> <PaneID>1937</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>B2020000500200005305000095020000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>2200000039000000CC000000C6000000</Data> </RectRecentFloat> </Window> <Window> <RegID>1939</RegID> <PaneID>1939</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>B2020000500200005305000095020000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>22000000390000001A0200009A000000</Data> </RectRecentFloat> </Window> <Window> <RegID>1940</RegID> <PaneID>1940</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>B2020000500200005305000095020000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>22000000390000001A0200009A000000</Data> </RectRecentFloat> </Window> <Window> <RegID>1941</RegID> <PaneID>1941</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>B2020000500200005305000095020000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>22000000390000001A0200009A000000</Data> </RectRecentFloat> </Window> <Window> <RegID>1942</RegID> <PaneID>1942</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>B2020000500200005305000095020000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>22000000390000001A0200009A000000</Data> </RectRecentFloat> </Window> <Window> <RegID>195</RegID> <PaneID>195</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>0300000066000000450100001C020000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>2200000039000000EB000000BE010000</Data> </RectRecentFloat> </Window> <Window> <RegID>196</RegID> <PaneID>196</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>0300000066000000450100001C020000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>2200000039000000EB000000BE010000</Data> </RectRecentFloat> </Window> <Window> <RegID>197</RegID> <PaneID>197</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>32768</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>0300000086010000EE030000BA010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>22000000390000001A0200009A000000</Data> </RectRecentFloat> </Window> <Window> <RegID>198</RegID> <PaneID>198</PaneID> <IsVisible>1</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>32768</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>0000000039020000AB020000AE020000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>22000000390000001A0200009A000000</Data> </RectRecentFloat> </Window> <Window> <RegID>199</RegID> <PaneID>199</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>0300000086010000EE030000BA010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>22000000390000001A0200009A000000</Data> </RectRecentFloat> </Window> <Window> <RegID>203</RegID> <PaneID>203</PaneID> <IsVisible>1</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>8192</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>4C0100006300000056050000B3000000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>22000000390000001A0200009A000000</Data> </RectRecentFloat> </Window> <Window> <RegID>204</RegID> <PaneID>204</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>4F01000066000000530500009A000000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>22000000390000001A0200009A000000</Data> </RectRecentFloat> </Window> <Window> <RegID>221</RegID> <PaneID>221</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>00000000000000000000000000000000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>0A0000000A0000006E0000006E000000</Data> </RectRecentFloat> </Window> <Window> <RegID>2506</RegID> <PaneID>2506</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>4A03000066000000EE03000052010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>2200000039000000CC000000C6000000</Data> </RectRecentFloat> </Window> <Window> <RegID>2507</RegID> <PaneID>2507</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>B2020000500200005305000095020000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>22000000390000001A0200009A000000</Data> </RectRecentFloat> </Window> <Window> <RegID>343</RegID> <PaneID>343</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>4F01000066000000530500009A000000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>22000000390000001A0200009A000000</Data> </RectRecentFloat> </Window> <Window> <RegID>346</RegID> <PaneID>346</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>4F01000066000000530500009A000000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>22000000390000001A0200009A000000</Data> </RectRecentFloat> </Window> <Window> <RegID>35824</RegID> <PaneID>35824</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>4F01000066000000530500009A000000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>22000000390000001A0200009A000000</Data> </RectRecentFloat> </Window> <Window> <RegID>35885</RegID> <PaneID>35885</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>4A03000066000000EE03000052010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>2200000039000000CC000000C6000000</Data> </RectRecentFloat> </Window> <Window> <RegID>35886</RegID> <PaneID>35886</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>4A03000066000000EE03000052010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>2200000039000000CC000000C6000000</Data> </RectRecentFloat> </Window> <Window> <RegID>35887</RegID> <PaneID>35887</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>4A03000066000000EE03000052010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>2200000039000000CC000000C6000000</Data> </RectRecentFloat> </Window> <Window> <RegID>35888</RegID> <PaneID>35888</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>4A03000066000000EE03000052010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>2200000039000000CC000000C6000000</Data> </RectRecentFloat> </Window> <Window> <RegID>35889</RegID> <PaneID>35889</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>4A03000066000000EE03000052010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>2200000039000000CC000000C6000000</Data> </RectRecentFloat> </Window> <Window> <RegID>35890</RegID> <PaneID>35890</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>4A03000066000000EE03000052010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>2200000039000000CC000000C6000000</Data> </RectRecentFloat> </Window> <Window> <RegID>35891</RegID> <PaneID>35891</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>4A03000066000000EE03000052010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>2200000039000000CC000000C6000000</Data> </RectRecentFloat> </Window> <Window> <RegID>35892</RegID> <PaneID>35892</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>4A03000066000000EE03000052010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>2200000039000000CC000000C6000000</Data> </RectRecentFloat> </Window> <Window> <RegID>35893</RegID> <PaneID>35893</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>4A03000066000000EE03000052010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>2200000039000000CC000000C6000000</Data> </RectRecentFloat> </Window> <Window> <RegID>35894</RegID> <PaneID>35894</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>4A03000066000000EE03000052010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>2200000039000000CC000000C6000000</Data> </RectRecentFloat> </Window> <Window> <RegID>35895</RegID> <PaneID>35895</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>4A03000066000000EE03000052010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>2200000039000000CC000000C6000000</Data> </RectRecentFloat> </Window> <Window> <RegID>35896</RegID> <PaneID>35896</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>4A03000066000000EE03000052010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>2200000039000000CC000000C6000000</Data> </RectRecentFloat> </Window> <Window> <RegID>35897</RegID> <PaneID>35897</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>4A03000066000000EE03000052010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>2200000039000000CC000000C6000000</Data> </RectRecentFloat> </Window> <Window> <RegID>35898</RegID> <PaneID>35898</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>4A03000066000000EE03000052010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>2200000039000000CC000000C6000000</Data> </RectRecentFloat> </Window> <Window> <RegID>35899</RegID> <PaneID>35899</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>4A03000066000000EE03000052010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>2200000039000000CC000000C6000000</Data> </RectRecentFloat> </Window> <Window> <RegID>35900</RegID> <PaneID>35900</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>4A03000066000000EE03000052010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>2200000039000000CC000000C6000000</Data> </RectRecentFloat> </Window> <Window> <RegID>35901</RegID> <PaneID>35901</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>4A03000066000000EE03000052010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>2200000039000000CC000000C6000000</Data> </RectRecentFloat> </Window> <Window> <RegID>35902</RegID> <PaneID>35902</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>4A03000066000000EE03000052010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>2200000039000000CC000000C6000000</Data> </RectRecentFloat> </Window> <Window> <RegID>35903</RegID> <PaneID>35903</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>4A03000066000000EE03000052010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>2200000039000000CC000000C6000000</Data> </RectRecentFloat> </Window> <Window> <RegID>35904</RegID> <PaneID>35904</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>4A03000066000000EE03000052010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>2200000039000000CC000000C6000000</Data> </RectRecentFloat> </Window> <Window> <RegID>35905</RegID> <PaneID>35905</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>4A03000066000000EE03000052010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>2200000039000000CC000000C6000000</Data> </RectRecentFloat> </Window> <Window> <RegID>38003</RegID> <PaneID>38003</PaneID> <IsVisible>1</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>0300000066000000450100001C020000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>2200000039000000EB000000BE010000</Data> </RectRecentFloat> </Window> <Window> <RegID>38007</RegID> <PaneID>38007</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>0300000086010000EE030000BA010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>22000000390000001A0200009A000000</Data> </RectRecentFloat> </Window> <Window> <RegID>436</RegID> <PaneID>436</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>0300000086010000EE030000BA010000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>2200000039000000EB000000BE010000</Data> </RectRecentFloat> </Window> <Window> <RegID>437</RegID> <PaneID>437</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>B2020000500200005305000095020000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>2200000039000000CC000000C6000000</Data> </RectRecentFloat> </Window> <Window> <RegID>440</RegID> <PaneID>440</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>B2020000500200005305000095020000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>2200000039000000CC000000C6000000</Data> </RectRecentFloat> </Window> <Window> <RegID>59392</RegID> <PaneID>59392</PaneID> <IsVisible>1</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>940</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>8192</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>0000000000000000B70300001C000000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>0A0000000A0000006E0000006E000000</Data> </RectRecentFloat> </Window> <Window> <RegID>59393</RegID> <PaneID>0</PaneID> <IsVisible>1</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>32767</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>4096</RecentFrameAlignment> <RecentRowIndex>0</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>00000000AE02000056050000C1020000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>0A0000000A0000006E0000006E000000</Data> </RectRecentFloat> </Window> <Window> <RegID>59399</RegID> <PaneID>59399</PaneID> <IsVisible>0</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>463</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>8192</RecentFrameAlignment> <RecentRowIndex>1</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>000000001C000000DA01000038000000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>0A0000000A0000006E0000006E000000</Data> </RectRecentFloat> </Window> <Window> <RegID>59400</RegID> <PaneID>59400</PaneID> <IsVisible>1</IsVisible> <IsFloating>0</IsFloating> <IsTabbed>0</IsTabbed> <IsActivated>0</IsActivated> <MRUWidth>612</MRUWidth> <PinState>0</PinState> <RecentFrameAlignment>8192</RecentFrameAlignment> <RecentRowIndex>2</RecentRowIndex> <RectRecentDocked> <Len>16</Len> <Data>000000001C0000006F02000038000000</Data> </RectRecentDocked> <RectRecentFloat> <Len>16</Len> <Data>0A0000000A0000006E0000006E000000</Data> </RectRecentFloat> </Window> <DockMan> <Len>2618</Len> <Data>000000000B000000000000000020000001000000FFFFFFFFFFFFFFFF4C010000B300000056050000B7000000010000000100001004000000010000000000000000000000FFFFFFFF06000000CB00000057010000CC000000F08B00005A01000079070000FFFF02000B004354616262656450616E6500200000010000004C0100006600000056050000CA0000004C0100004F00000056050000B30000000000000040280056060000000B446973617373656D626C7901000000CB00000001000000FFFFFFFFFFFFFFFF14506572666F726D616E636520416E616C797A6572000000005701000001000000FFFFFFFFFFFFFFFF14506572666F726D616E636520416E616C797A657200000000CC00000001000000FFFFFFFFFFFFFFFF0E4C6F67696320416E616C797A657200000000F08B000001000000FFFFFFFFFFFFFFFF0D436F646520436F766572616765000000005A01000001000000FFFFFFFFFFFFFFFF11496E737472756374696F6E205472616365000000007907000001000000FFFFFFFFFFFFFFFF00000000000000000000000000000000000000000000000001000000FFFFFFFFCB00000001000000FFFFFFFFCB000000000000000040000000000000FFFFFFFFFFFFFFFF430300004F000000470300006B010000000000000200000004000000010000000000000000000000FFFFFFFF17000000E2050000CA0900002D8C00002E8C00002F8C0000308C0000318C0000328C0000338C0000348C0000358C0000368C0000378C0000388C0000398C00003A8C00003B8C00003C8C00003D8C00003E8C00003F8C0000408C0000418C0000018000400000000000004703000066000000F103000082010000470300004F000000F10300006B0100000000000040410046170000000753796D626F6C7300000000E205000001000000FFFFFFFFFFFFFFFF0A5472616365204461746100000000CA09000001000000FFFFFFFFFFFFFFFF00000000002D8C000001000000FFFFFFFFFFFFFFFF00000000002E8C000001000000FFFFFFFFFFFFFFFF00000000002F8C000001000000FFFFFFFFFFFFFFFF0000000000308C000001000000FFFFFFFFFFFFFFFF0000000000318C000001000000FFFFFFFFFFFFFFFF0000000000328C000001000000FFFFFFFFFFFFFFFF0000000000338C000001000000FFFFFFFFFFFFFFFF0000000000348C000001000000FFFFFFFFFFFFFFFF0000000000358C000001000000FFFFFFFFFFFFFFFF0000000000368C000001000000FFFFFFFFFFFFFFFF0000000000378C000001000000FFFFFFFFFFFFFFFF0000000000388C000001000000FFFFFFFFFFFFFFFF0000000000398C000001000000FFFFFFFFFFFFFFFF00000000003A8C000001000000FFFFFFFFFFFFFFFF00000000003B8C000001000000FFFFFFFFFFFFFFFF00000000003C8C000001000000FFFFFFFFFFFFFFFF00000000003D8C000001000000FFFFFFFFFFFFFFFF00000000003E8C000001000000FFFFFFFFFFFFFFFF00000000003F8C000001000000FFFFFFFFFFFFFFFF0000000000408C000001000000FFFFFFFFFFFFFFFF0000000000418C000001000000FFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000000000000000000000001000000FFFFFFFFE205000001000000FFFFFFFFE2050000000000000010000001000000FFFFFFFFFFFFFFFF480100004F0000004C010000350200000100000002000010040000000100000058FFFFFFA3040000FFFFFFFF05000000ED0300006D000000C3000000C400000073940000018000100000010000000000000066000000480100004C020000000000004F00000048010000350200000000000040410056050000000750726F6A65637401000000ED03000001000000FFFFFFFFFFFFFFFF05426F6F6B73000000006D00000001000000FFFFFFFFFFFFFFFF0946756E6374696F6E7300000000C300000001000000FFFFFFFFFFFFFFFF0954656D706C6174657300000000C400000001000000FFFFFFFFFFFFFFFF09526567697374657273010000007394000001000000FFFFFFFFFFFFFFFF04000000000000000000000000000000000000000000000001000000FFFFFFFFED03000001000000FFFFFFFFED030000000000000080000001000000FFFFFFFFFFFFFFFF0000000035020000560500003902000001000000010000100400000001000000000000000000000000000000000000000000000001000000C6000000FFFFFFFF0E0000008F070000930700009407000095070000960700009007000091070000B5010000B8010000B9050000BA050000BB050000BC050000CB09000001800080000001000000AF0200005002000056050000C5020000AF0200003902000056050000AE02000000000000404100560E0000001343616C6C20537461636B202B204C6F63616C73010000008F07000001000000FFFFFFFFFFFFFFFF0755415254202331000000009307000001000000FFFFFFFFFFFFFFFF0755415254202332000000009407000001000000FFFFFFFFFFFFFFFF0755415254202333000000009507000001000000FFFFFFFFFFFFFFFF15446562756720287072696E74662920566965776572000000009607000001000000FFFFFFFFFFFFFFFF0757617463682031000000009007000001000000FFFFFFFFFFFFFFFF0757617463682032000000009107000001000000FFFFFFFFFFFFFFFF10547261636520457863657074696F6E7300000000B501000001000000FFFFFFFFFFFFFFFF0E4576656E7420436F756E7465727300000000B801000001000000FFFFFFFFFFFFFFFF084D656D6F7279203101000000B905000001000000FFFFFFFFFFFFFFFF084D656D6F7279203200000000BA05000001000000FFFFFFFFFFFFFFFF084D656D6F7279203300000000BB05000001000000FFFFFFFFFFFFFFFF084D656D6F7279203400000000BC05000001000000FFFFFFFFFFFFFFFF105472616365204E617669676174696F6E00000000CB09000001000000FFFFFFFFFFFFFFFF000000000000000001000000000000000100000001000000FFFFFFFFAB02000039020000AF020000AE02000001000000020000100400000000000000000000000000000000000000000000000000000002000000C6000000FFFFFFFF8F07000001000000FFFFFFFF8F07000001000000C6000000000000000080000000000000FFFFFFFFFFFFFFFF000000006B010000F10300006F010000000000000100000004000000010000000000000000000000FFFFFFFF04000000C5000000C7000000B401000077940000018000800000000000000000000086010000F1030000EA010000000000006F010000F1030000D30100000000000040820046040000000C4275696C64204F757470757400000000C500000001000000FFFFFFFFFFFFFFFF0D46696E6420496E2046696C657300000000C700000001000000FFFFFFFFFFFFFFFF0A4572726F72204C69737400000000B401000001000000FFFFFFFFFFFFFFFF0642726F777365000000007794000001000000FFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000000000000000000000001000000FFFFFFFFC500000001000000FFFFFFFFC5000000000000000000000000000000</Data> </DockMan> <ToolBar> <RegID>59392</RegID> <Name>File</Name> <Buttons> <Len>2002</Len> <Data>00200000010000002800FFFF01001100434D4643546F6F6C426172427574746F6E00E100000000000000000000000000000000000000000000000100000001000000018001E100000000000001000000000000000000000000000000000100000001000000018003E1000000000000020000000000000000000000000000000001000000010000000180CD7F0000000000000300000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF000000000000000000000000000100000001000000018023E100000000040004000000000000000000000000000000000100000001000000018022E100000000040005000000000000000000000000000000000100000001000000018025E10000000000000600000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000001802BE10000000004000700000000000000000000000000000000010000000100000001802CE10000000004000800000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000001807A8A0000000000000900000000000000000000000000000000010000000100000001807B8A0000000004000A00000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180D3B00000000000000B000000000000000000000000000000000100000001000000018015B10000000004000C0000000000000000000000000000000001000000010000000180F4B00000000004000D000000000000000000000000000000000100000001000000018036B10000000004000E00000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180FF88000000000400460000000000000000000000000000000001000000010000000180FE880000000004004500000000000000000000000000000000010000000100000001800B810000000004001300000000000000000000000000000000010000000100000001800C810000000004001400000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180F0880000020000000F000000000000000000000000000000000100000001000000FFFF0100120043555646696E64436F6D626F427574746F6EE803000000000000000000000000000000000000000000000001000000010000009600000002002050FFFFFFFF0096000000000000000000018024E10000000000001100000000000000000000000000000000010000000100000001800A810000000000001200000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF000000000000000000000000000100000001000000018022800000020003001500000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180C488000000000000160000000000000000000000000000000001000000010000000180C988000000000400180000000000000000000000000000000001000000010000000180C788000000000000190000000000000000000000000000000001000000010000000180C8880000000000001700000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF000000000000000000000000000100000001000000FFFF01001500434D4643546F6F6C4261724D656E75427574746F6E4C010000020001001A0000000F2650726F6A6563742057696E646F77000000000000000000000000010000000100000000000000000000000100000008002880DD880000000000001A0000000750726F6A656374000000000000000000000000010000000100000000000000000000000100000000002880DC8B0000000000003A00000005426F6F6B73000000000000000000000000010000000100000000000000000000000100000000002880E18B0000000000003B0000000946756E6374696F6E73000000000000000000000000010000000100000000000000000000000100000000002880E28B000000000000400000000954656D706C6174657300000000000000000000000001000000010000000000000000000000010000000000288018890000000000003D0000000E536F757263652042726F777365720000000000000000000000000100000001000000000000000000000001000000000028800000000000000400FFFFFFFF00000000000000000001000000000000000100000000000000000000000100000000002880D988000000000000390000000C4275696C64204F7574707574000000000000000000000000010000000100000000000000000000000100000000002880E38B000000000000410000000B46696E64204F75747075740000000000000000000000000100000001000000000000000000000001000000000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180FB7F0000000000001B000000000000000000000000000000000100000001000000000000000446696C65AC030000</Data> </Buttons> <OriginalItems> <Len>1423</Len> <Data>2800FFFF01001100434D4643546F6F6C426172427574746F6E00E1000000000000FFFFFFFF000100000000000000010000000000000001000000018001E1000000000000FFFFFFFF000100000000000000010000000000000001000000018003E1000000000000FFFFFFFF0001000000000000000100000000000000010000000180CD7F000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF000000000000000000010000000000000001000000018023E1000000000000FFFFFFFF000100000000000000010000000000000001000000018022E1000000000000FFFFFFFF000100000000000000010000000000000001000000018025E1000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF00000000000000000001000000000000000100000001802BE1000000000000FFFFFFFF00010000000000000001000000000000000100000001802CE1000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF00000000000000000001000000000000000100000001807A8A000000000000FFFFFFFF00010000000000000001000000000000000100000001807B8A000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF0000000000000000000100000000000000010000000180D3B0000000000000FFFFFFFF000100000000000000010000000000000001000000018015B1000000000000FFFFFFFF0001000000000000000100000000000000010000000180F4B0000000000000FFFFFFFF000100000000000000010000000000000001000000018036B1000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF0000000000000000000100000000000000010000000180FF88000000000000FFFFFFFF0001000000000000000100000000000000010000000180FE88000000000000FFFFFFFF00010000000000000001000000000000000100000001800B81000000000000FFFFFFFF00010000000000000001000000000000000100000001800C81000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF0000000000000000000100000000000000010000000180F088000000000000FFFFFFFF0001000000000000000100000000000000010000000180EE7F000000000000FFFFFFFF000100000000000000010000000000000001000000018024E1000000000000FFFFFFFF00010000000000000001000000000000000100000001800A81000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF00000000000000000001000000000000000100000001802280000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF0000000000000000000100000000000000010000000180C488000000000000FFFFFFFF0001000000000000000100000000000000010000000180C988000000000000FFFFFFFF0001000000000000000100000000000000010000000180C788000000000000FFFFFFFF0001000000000000000100000000000000010000000180C888000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF0000000000000000000100000000000000010000000180DD88000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF0000000000000000000100000000000000010000000180FB7F000000000000FFFFFFFF000100000000000000010000000000000001000000</Data> </OriginalItems> <OrigResetItems> <Len>1423</Len> <Data>2800FFFF01001100434D4643546F6F6C426172427574746F6E00E100000000000000000000000000000000000000000000000100000001000000018001E100000000000001000000000000000000000000000000000100000001000000018003E1000000000000020000000000000000000000000000000001000000010000000180CD7F0000000000000300000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF000000000000000000000000000100000001000000018023E100000000000004000000000000000000000000000000000100000001000000018022E100000000000005000000000000000000000000000000000100000001000000018025E10000000000000600000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000001802BE10000000000000700000000000000000000000000000000010000000100000001802CE10000000000000800000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000001807A8A0000000000000900000000000000000000000000000000010000000100000001807B8A0000000000000A00000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180D3B00000000000000B000000000000000000000000000000000100000001000000018015B10000000000000C0000000000000000000000000000000001000000010000000180F4B00000000000000D000000000000000000000000000000000100000001000000018036B10000000000000E00000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180FF880000000000000F0000000000000000000000000000000001000000010000000180FE880000000000001000000000000000000000000000000000010000000100000001800B810000000000001100000000000000000000000000000000010000000100000001800C810000000000001200000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180F088000000000000130000000000000000000000000000000001000000010000000180EE7F00000000000014000000000000000000000000000000000100000001000000018024E10000000000001500000000000000000000000000000000010000000100000001800A810000000000001600000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF000000000000000000000000000100000001000000018022800000000000001700000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180C488000000000000180000000000000000000000000000000001000000010000000180C988000000000000190000000000000000000000000000000001000000010000000180C7880000000000001A0000000000000000000000000000000001000000010000000180C8880000000000001B00000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180DD880000000000001C00000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180FB7F0000000000001D000000000000000000000000000000000100000001000000</Data> </OrigResetItems> </ToolBar> <ToolBar> <RegID>59399</RegID> <Name>Build</Name> <Buttons> <Len>657</Len> <Data>00200000000000001000FFFF01001100434D4643546F6F6C426172427574746F6ECF7F0000000000001C0000000000000000000000000000000001000000010000000180D07F0000000000001D000000000000000000000000000000000100000001000000018030800000000000001E00000000000000000000000000000000010000000100000001809E8A0000000000001F0000000000000000000000000000000001000000010000000180D17F0000000000002000000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000001804C8A0000000000002100000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF000000000000000000000000000100000001000000FFFF01001900434D4643546F6F6C426172436F6D626F426F78427574746F6EBA00000000000000000000000000000000000000000000000001000000010000009600000003002050FFFFFFFF00960000000000000000000180EB880000000000002200000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180C07F000000000000230000000000000000000000000000000001000000010000000180B08A000000000000240000000000000000000000000000000001000000010000000180A8010000000000004E00000000000000000000000000000000010000000100000001807202000000000000530000000000000000000000000000000001000000010000000180BE010000000000005000000000000000000000000000000000010000000100000000000000054275696C64CF010000</Data> </Buttons> <OriginalItems> <Len>583</Len> <Data>1000FFFF01001100434D4643546F6F6C426172427574746F6ECF7F000000000000FFFFFFFF0001000000000000000100000000000000010000000180D07F000000000000FFFFFFFF00010000000000000001000000000000000100000001803080000000000000FFFFFFFF00010000000000000001000000000000000100000001809E8A000000000000FFFFFFFF0001000000000000000100000000000000010000000180D17F000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF00000000000000000001000000000000000100000001804C8A000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF00000000000000000001000000000000000100000001806680000000000000FFFFFFFF0001000000000000000100000000000000010000000180EB88000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF0000000000000000000100000000000000010000000180C07F000000000000FFFFFFFF0001000000000000000100000000000000010000000180B08A000000000000FFFFFFFF0001000000000000000100000000000000010000000180A801000000000000FFFFFFFF00010000000000000001000000000000000100000001807202000000000000FFFFFFFF0001000000000000000100000000000000010000000180BE01000000000000FFFFFFFF000100000000000000010000000000000001000000</Data> </OriginalItems> <OrigResetItems> <Len>583</Len> <Data>1000FFFF01001100434D4643546F6F6C426172427574746F6ECF7F000000000000000000000000000000000000000000000001000000010000000180D07F00000000000001000000000000000000000000000000000100000001000000018030800000000000000200000000000000000000000000000000010000000100000001809E8A000000000000030000000000000000000000000000000001000000010000000180D17F0000000000000400000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000001804C8A0000000000000500000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000001806680000000000000060000000000000000000000000000000001000000010000000180EB880000000000000700000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180C07F000000000000080000000000000000000000000000000001000000010000000180B08A000000000000090000000000000000000000000000000001000000010000000180A8010000000000000A000000000000000000000000000000000100000001000000018072020000000000000B0000000000000000000000000000000001000000010000000180BE010000000000000C000000000000000000000000000000000100000001000000</Data> </OrigResetItems> </ToolBar> <ToolBar> <RegID>59400</RegID> <Name>Debug</Name> <Buttons> <Len>2236</Len> <Data>00200000010000001900FFFF01001100434D4643546F6F6C426172427574746F6ECC880000000000002500000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF000000000000000000000000000100000001000000018017800000000000002600000000000000000000000000000000010000000100000001801D800000000004002700000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000001801A800000000000002800000000000000000000000000000000010000000100000001801B80000000000000290000000000000000000000000000000001000000010000000180E57F0000000004002A00000000000000000000000000000000010000000100000001801C800000000000002B00000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF000000000000000000000000000100000001000000018000890000000000002C00000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180E48B0000020001002D0000000000000000000000000000000001000000010000000180F07F0000020001002E0000000000000000000000000000000001000000010000000180E8880000020000003700000000000000000000000000000000010000000100000001803B010000020001002F0000000000000000000000000000000001000000010000000180BB8A00000200010030000000000000000000000000000000000100000001000000FFFF01001500434D4643546F6F6C4261724D656E75427574746F6E0E01000002000000310000000D57617463682057696E646F7773000000000000000000000000010000000100000000000000000000000100000002001380D88B00000000000031000000085761746368202631000000000000000000000000010000000100000000000000000000000100000000001380D98B000000000000310000000857617463682026320000000000000000000000000100000001000000000000000000000001000000000013800F0100000200010032000000094D656D6F7279202631000000000000000000000000010000000100000000000000000000000100000004001380D28B00000000000032000000094D656D6F7279202631000000000000000000000000010000000100000000000000000000000100000000001380D38B00000000000032000000094D656D6F7279202632000000000000000000000000010000000100000000000000000000000100000000001380D48B00000000000032000000094D656D6F7279202633000000000000000000000000010000000100000000000000000000000100000000001380D58B00000000000032000000094D656D6F727920263400000000000000000000000001000000010000000000000000000000010000000000138010010000020000003300000008554152542023263100000000000000000000000001000000010000000000000000000000010000000400138093070000000000003300000008554152542023263100000000000000000000000001000000010000000000000000000000010000000000138094070000000000003300000008554152542023263200000000000000000000000001000000010000000000000000000000010000000000138095070000000000003300000008554152542023263300000000000000000000000001000000010000000000000000000000010000000000138096070000000000003300000015446562756720287072696E746629205669657765720000000000000000000000000100000001000000000000000000000001000000000013803C010000020000003400000010416E616C797369732057696E646F7773000000000000000000000000010000000100000000000000000000000100000003001380658A000000000000340000000F264C6F67696320416E616C797A6572000000000000000000000000010000000100000000000000000000000100000000001380DC7F0000000000003E0000001526506572666F726D616E636520416E616C797A6572000000000000000000000000010000000100000000000000000000000100000000001380E788000000000000380000000E26436F646520436F76657261676500000000000000000000000001000000010000000000000000000000010000000000138053010000000000003F0000000D54726163652057696E646F77730000000000000000000000000100000001000000000000000000000001000000010013805401000000000000FFFFFFFF115472616365204D656E7520416E63686F720000000000000000010000000000000001000000000000000000000001000000000013802901000000000000350000001553797374656D205669657765722057696E646F77730000000000000000000000000100000001000000000000000000000001000000010013804B01000000000000FFFFFFFF1453797374656D2056696577657220416E63686F720000000000000000010000000000000001000000000000000000000001000000000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000013800189000002000000360000000F26546F6F6C626F782057696E646F7700000000000000000000000001000000010000000000000000000000010000000300138044C5000000000000FFFFFFFF0E5570646174652057696E646F77730000000000000000010000000000000001000000000000000000000001000000000013800000000000000400FFFFFFFF000000000000000000010000000000000001000000000000000000000001000000000013805B01000000000000FFFFFFFF12546F6F6C626F78204D656E75416E63686F72000000000000000001000000000000000100000000000000000000000100000000000000000005446562756764020000</Data> </Buttons> <OriginalItems> <Len>898</Len> <Data>1900FFFF01001100434D4643546F6F6C426172427574746F6ECC88000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF00000000000000000001000000000000000100000001801780000000000000FFFFFFFF00010000000000000001000000000000000100000001801D80000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF00000000000000000001000000000000000100000001801A80000000000000FFFFFFFF00010000000000000001000000000000000100000001801B80000000000000FFFFFFFF0001000000000000000100000000000000010000000180E57F000000000000FFFFFFFF00010000000000000001000000000000000100000001801C80000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF00000000000000000001000000000000000100000001800089000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF0000000000000000000100000000000000010000000180E48B000000000000FFFFFFFF0001000000000000000100000000000000010000000180F07F000000000000FFFFFFFF0001000000000000000100000000000000010000000180E888000000000000FFFFFFFF00010000000000000001000000000000000100000001803B01000000000000FFFFFFFF0001000000000000000100000000000000010000000180BB8A000000000000FFFFFFFF0001000000000000000100000000000000010000000180D88B000000000000FFFFFFFF0001000000000000000100000000000000010000000180D28B000000000000FFFFFFFF00010000000000000001000000000000000100000001809307000000000000FFFFFFFF0001000000000000000100000000000000010000000180658A000000000000FFFFFFFF0001000000000000000100000000000000010000000180C18A000000000000FFFFFFFF0001000000000000000100000000000000010000000180EE8B000000000000FFFFFFFF00010000000000000001000000000000000100000001800000000000000000FFFFFFFF00000000000000000001000000000000000100000001800189000000000000FFFFFFFF000100000000000000010000000000000001000000</Data> </OriginalItems> <OrigResetItems> <Len>898</Len> <Data>1900FFFF01001100434D4643546F6F6C426172427574746F6ECC880000000000000000000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF000000000000000000000000000100000001000000018017800000000000000100000000000000000000000000000000010000000100000001801D800000000000000200000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF00000000000000000000000000010000000100000001801A800000000000000300000000000000000000000000000000010000000100000001801B80000000000000040000000000000000000000000000000001000000010000000180E57F0000000000000500000000000000000000000000000000010000000100000001801C800000000000000600000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF000000000000000000000000000100000001000000018000890000000000000700000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180E48B000000000000080000000000000000000000000000000001000000010000000180F07F000000000000090000000000000000000000000000000001000000010000000180E8880000000000000A00000000000000000000000000000000010000000100000001803B010000000000000B0000000000000000000000000000000001000000010000000180BB8A0000000000000C0000000000000000000000000000000001000000010000000180D88B0000000000000D0000000000000000000000000000000001000000010000000180D28B0000000000000E000000000000000000000000000000000100000001000000018093070000000000000F0000000000000000000000000000000001000000010000000180658A000000000000100000000000000000000000000000000001000000010000000180C18A000000000000110000000000000000000000000000000001000000010000000180EE8B0000000000001200000000000000000000000000000000010000000100000001800000000001000000FFFFFFFF0000000000000000000000000001000000010000000180018900000000000013000000000000000000000000000000000100000001000000</Data> </OrigResetItems> </ToolBar> <ControlBarsSummary> <Bars>0</Bars> <ScreenCX>1366</ScreenCX> <ScreenCY>768</ScreenCY> </ControlBarsSummary> </ViewEx> </WinLayoutEx> </ProjectGui>
78ac13919d1b6504a8945363b2c25a002024a50e
46125763b4dbf50619e8846a1371029346f4c3db
/src/data/pnat/basic.lean
5642520be43a74a9cafece359fbea9a39b892262
[ "Apache-2.0" ]
permissive
thjread/mathlib
a9d97612cedc2c3101060737233df15abcdb9eb1
7cffe2520a5518bba19227a107078d83fa725ddc
refs/heads/master
1,615,637,696,376
1,583,953,063,000
1,583,953,063,000
246,680,271
0
0
Apache-2.0
1,583,960,875,000
1,583,960,875,000
null
UTF-8
Lean
false
false
13,131
lean
/- Copyright (c) 2017 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Mario Carneiro, Neil Strickland -/ import tactic.basic import data.nat.basic data.nat.prime algebra.group_power /-- `ℕ+` is the type of positive natural numbers. It is defined as a subtype, and the VM representation of `ℕ+` is the same as `ℕ` because the proof is not stored. -/ def pnat := {n : ℕ // 0 < n} notation `ℕ+` := pnat instance coe_pnat_nat : has_coe ℕ+ ℕ := ⟨subtype.val⟩ instance : has_repr ℕ+ := ⟨λ n, repr n.1⟩ namespace nat /-- Convert a natural number to a positive natural number. The positivity assumption is inferred by `dec_trivial`. -/ def to_pnat (n : ℕ) (h : 0 < n . tactic.exact_dec_trivial) : ℕ+ := ⟨n, h⟩ /-- Write a successor as an element of `ℕ+`. -/ def succ_pnat (n : ℕ) : ℕ+ := ⟨succ n, succ_pos n⟩ @[simp] theorem succ_pnat_coe (n : ℕ) : (succ_pnat n : ℕ) = succ n := rfl theorem succ_pnat_inj {n m : ℕ} : succ_pnat n = succ_pnat m → n = m := λ h, by { let h' := congr_arg (coe : ℕ+ → ℕ) h, exact nat.succ_inj h' } /-- Convert a natural number to a pnat. `n+1` is mapped to itself, and `0` becomes `1`. -/ def to_pnat' (n : ℕ) : ℕ+ := succ_pnat (pred n) @[simp] theorem to_pnat'_coe : ∀ (n : ℕ), ((to_pnat' n) : ℕ) = ite (0 < n) n 1 | 0 := rfl | (m + 1) := by {rw [if_pos (succ_pos m)], refl} namespace primes instance coe_pnat : has_coe nat.primes ℕ+ := ⟨λ p, ⟨(p : ℕ), p.property.pos⟩⟩ theorem coe_pnat_nat (p : nat.primes) : ((p : ℕ+) : ℕ) = p := rfl theorem coe_pnat_inj (p q : nat.primes) : (p : ℕ+) = (q : ℕ+) → p = q := λ h, begin replace h : ((p : ℕ+) : ℕ) = ((q : ℕ+) : ℕ) := congr_arg subtype.val h, rw [coe_pnat_nat, coe_pnat_nat] at h, exact subtype.eq h, end end primes end nat namespace pnat open nat /-- We now define a long list of structures on ℕ+ induced by similar structures on ℕ. Most of these behave in a completely obvious way, but there are a few things to be said about subtraction, division and powers. -/ instance : decidable_eq ℕ+ := λ (a b : ℕ+), by apply_instance instance : decidable_linear_order ℕ+ := subtype.decidable_linear_order _ @[simp] theorem pos (n : ℕ+) : 0 < (n : ℕ) := n.2 theorem eq {m n : ℕ+} : (m : ℕ) = n → m = n := subtype.eq @[simp] theorem mk_coe (n h) : ((⟨n, h⟩ : ℕ+) : ℕ) = n := rfl instance : add_comm_semigroup ℕ+ := { add := λ a b, ⟨(a + b : ℕ), add_pos a.pos b.pos⟩, add_comm := λ a b, subtype.eq (add_comm a b), add_assoc := λ a b c, subtype.eq (add_assoc a b c) } @[simp] theorem add_coe (m n : ℕ+) : ((m + n : ℕ+) : ℕ) = m + n := rfl instance coe_add_hom : is_add_hom (coe : ℕ+ → ℕ) := ⟨add_coe⟩ instance : add_left_cancel_semigroup ℕ+ := { add_left_cancel := λ a b c h, by { replace h := congr_arg (coe : ℕ+ → ℕ) h, rw [add_coe, add_coe] at h, exact eq ((add_left_inj (a : ℕ)).mp h)}, .. (pnat.add_comm_semigroup) } instance : add_right_cancel_semigroup ℕ+ := { add_right_cancel := λ a b c h, by { replace h := congr_arg (coe : ℕ+ → ℕ) h, rw [add_coe, add_coe] at h, exact eq ((add_right_inj (b : ℕ)).mp h)}, .. (pnat.add_comm_semigroup) } @[simp] theorem ne_zero (n : ℕ+) : (n : ℕ) ≠ 0 := ne_of_gt n.2 theorem to_pnat'_coe {n : ℕ} : 0 < n → (n.to_pnat' : ℕ) = n := succ_pred_eq_of_pos @[simp] theorem coe_to_pnat' (n : ℕ+) : (n : ℕ).to_pnat' = n := eq (to_pnat'_coe n.pos) instance : comm_monoid ℕ+ := { mul := λ m n, ⟨m.1 * n.1, mul_pos m.2 n.2⟩, mul_assoc := λ a b c, subtype.eq (mul_assoc _ _ _), one := succ_pnat 0, one_mul := λ a, subtype.eq (one_mul _), mul_one := λ a, subtype.eq (mul_one _), mul_comm := λ a b, subtype.eq (mul_comm _ _) } theorem lt_add_one_iff : ∀ {a b : ℕ+}, a < b + 1 ↔ a ≤ b := λ a b, nat.lt_add_one_iff theorem add_one_le_iff : ∀ {a b : ℕ+}, a + 1 ≤ b ↔ a < b := λ a b, nat.add_one_le_iff @[simp] lemma one_le (n : ℕ+) : (1 : ℕ+) ≤ n := n.2 instance : lattice.order_bot ℕ+ := { bot := 1, bot_le := λ a, a.property, ..(by apply_instance : partial_order ℕ+) } @[simp] lemma bot_eq_zero : (⊥ : ℕ+) = 1 := rfl instance : inhabited ℕ+ := ⟨1⟩ -- Some lemmas that rewrite `pnat.mk n h`, for `n` an explicit numeral, into explicit numerals. @[simp] lemma mk_one {h} : (⟨1, h⟩ : ℕ+) = (1 : ℕ+) := rfl @[simp] lemma mk_bit0 (n) {h} : (⟨bit0 n, h⟩ : ℕ+) = (bit0 ⟨n, pos_of_bit0_pos h⟩ : ℕ+) := rfl @[simp] lemma mk_bit1 (n) {h} {k} : (⟨bit1 n, h⟩ : ℕ+) = (bit1 ⟨n, k⟩ : ℕ+) := rfl -- Some lemmas that rewrite inequalities between explicit numerals in `pnat` -- into the corresponding inequalities in `nat`. -- TODO: perhaps this should not be attempted by `simp`, -- and instead we should expect `norm_num` to take care of these directly? -- TODO: these lemmas are perhaps incomplete: -- * 1 is not represented as a bit0 or bit1 -- * strict inequalities? @[simp] lemma bit0_le_bit0 (n m : ℕ+) : (bit0 n) ≤ (bit0 m) ↔ (bit0 (n : ℕ)) ≤ (bit0 (m : ℕ)) := iff.refl _ @[simp] lemma bit0_le_bit1 (n m : ℕ+) : (bit0 n) ≤ (bit1 m) ↔ (bit0 (n : ℕ)) ≤ (bit1 (m : ℕ)) := iff.refl _ @[simp] lemma bit1_le_bit0 (n m : ℕ+) : (bit1 n) ≤ (bit0 m) ↔ (bit1 (n : ℕ)) ≤ (bit0 (m : ℕ)) := iff.refl _ @[simp] lemma bit1_le_bit1 (n m : ℕ+) : (bit1 n) ≤ (bit1 m) ↔ (bit1 (n : ℕ)) ≤ (bit1 (m : ℕ)) := iff.refl _ @[simp] theorem one_coe : ((1 : ℕ+) : ℕ) = 1 := rfl @[simp] theorem mul_coe (m n : ℕ+) : ((m * n : ℕ+) : ℕ) = m * n := rfl instance coe_mul_hom : is_monoid_hom (coe : ℕ+ → ℕ) := {map_one := one_coe, map_mul := mul_coe} @[simp] lemma coe_bit0 (a : ℕ+) : ((bit0 a : ℕ+) : ℕ) = bit0 (a : ℕ) := rfl @[simp] lemma coe_bit1 (a : ℕ+) : ((bit1 a : ℕ+) : ℕ) = bit1 (a : ℕ) := rfl @[simp] theorem pow_coe (m : ℕ+) (n : ℕ) : ((m ^ n : ℕ+) : ℕ) = (m : ℕ) ^ n := by induction n with n ih; [refl, rw [nat.pow_succ, _root_.pow_succ, mul_coe, mul_comm, ih]] instance : left_cancel_semigroup ℕ+ := { mul_left_cancel := λ a b c h, by { replace h := congr_arg (coe : ℕ+ → ℕ) h, exact eq ((nat.mul_left_inj a.pos).mp h)}, .. (pnat.comm_monoid) } instance : right_cancel_semigroup ℕ+ := { mul_right_cancel := λ a b c h, by { replace h := congr_arg (coe : ℕ+ → ℕ) h, exact eq ((nat.mul_right_inj b.pos).mp h)}, .. (pnat.comm_monoid) } instance : distrib ℕ+ := { left_distrib := λ a b c, eq (mul_add a b c), right_distrib := λ a b c, eq (add_mul a b c), ..(pnat.add_comm_semigroup), ..(pnat.comm_monoid) } /-- Subtraction a - b is defined in the obvious way when a > b, and by a - b = 1 if a ≤ b. -/ instance : has_sub ℕ+ := ⟨λ a b, to_pnat' (a - b : ℕ)⟩ theorem sub_coe (a b : ℕ+) : ((a - b : ℕ+) : ℕ) = ite (b < a) (a - b : ℕ) 1 := begin change ((to_pnat' ((a : ℕ) - (b : ℕ)) : ℕ)) = ite ((a : ℕ) > (b : ℕ)) ((a : ℕ) - (b : ℕ)) 1, split_ifs with h, { exact to_pnat'_coe (nat.sub_pos_of_lt h) }, { rw [nat.sub_eq_zero_iff_le.mpr (le_of_not_gt h)], refl } end theorem add_sub_of_lt {a b : ℕ+} : a < b → a + (b - a) = b := λ h, eq $ by { rw [add_coe, sub_coe, if_pos h], exact nat.add_sub_of_le (le_of_lt h) } /-- We define m % k and m / k in the same way as for nat except that when m = n * k we take m % k = k and m / k = n - 1. This ensures that m % k is always positive and m = (m % k) + k * (m / k) in all cases. Later we define a function div_exact which gives the usual m / k in the case where k divides m. -/ def mod_div_aux : ℕ+ → ℕ → ℕ → ℕ+ × ℕ | k 0 q := ⟨k, q.pred⟩ | k (r + 1) q := ⟨⟨r + 1, nat.succ_pos r⟩, q⟩ lemma mod_div_aux_spec : ∀ (k : ℕ+) (r q : ℕ) (h : ¬ (r = 0 ∧ q = 0)), (((mod_div_aux k r q).1 : ℕ) + k * (mod_div_aux k r q).2 = (r + k * q)) | k 0 0 h := (h ⟨rfl, rfl⟩).elim | k 0 (q + 1) h := by { change (k : ℕ) + (k : ℕ) * (q + 1).pred = 0 + (k : ℕ) * (q + 1), rw [nat.pred_succ, nat.mul_succ, zero_add, add_comm]} | k (r + 1) q h := rfl def mod_div (m k : ℕ+) : ℕ+ × ℕ := mod_div_aux k ((m : ℕ) % (k : ℕ)) ((m : ℕ) / (k : ℕ)) def mod (m k : ℕ+) : ℕ+ := (mod_div m k).1 def div (m k : ℕ+) : ℕ := (mod_div m k).2 theorem mod_add_div (m k : ℕ+) : (m : ℕ) = (mod m k) + k * (div m k) := begin let h₀ := nat.mod_add_div (m : ℕ) (k : ℕ), have : ¬ ((m : ℕ) % (k : ℕ) = 0 ∧ (m : ℕ) / (k : ℕ) = 0), by { rintro ⟨hr, hq⟩, rw [hr, hq, mul_zero, zero_add] at h₀, exact (m.ne_zero h₀.symm).elim }, have := mod_div_aux_spec k ((m : ℕ) % (k : ℕ)) ((m : ℕ) / (k : ℕ)) this, exact (this.trans h₀).symm, end theorem mod_coe (m k : ℕ+) : ((mod m k) : ℕ) = ite ((m : ℕ) % (k : ℕ) = 0) (k : ℕ) ((m : ℕ) % (k : ℕ)) := begin dsimp [mod, mod_div], cases (m : ℕ) % (k : ℕ), { rw [if_pos rfl], refl }, { rw [if_neg n.succ_ne_zero], refl } end theorem div_coe (m k : ℕ+) : ((div m k) : ℕ) = ite ((m : ℕ) % (k : ℕ) = 0) ((m : ℕ) / (k : ℕ)).pred ((m : ℕ) / (k : ℕ)) := begin dsimp [div, mod_div], cases (m : ℕ) % (k : ℕ), { rw [if_pos rfl], refl }, { rw [if_neg n.succ_ne_zero], refl } end theorem mod_le (m k : ℕ+) : mod m k ≤ m ∧ mod m k ≤ k := begin change ((mod m k) : ℕ) ≤ (m : ℕ) ∧ ((mod m k) : ℕ) ≤ (k : ℕ), rw [mod_coe], split_ifs, { have hm : (m : ℕ) > 0 := m.pos, rw [← nat.mod_add_div (m : ℕ) (k : ℕ), h, zero_add] at hm ⊢, by_cases h' : ((m : ℕ) / (k : ℕ)) = 0, { rw [h', mul_zero] at hm, exact (lt_irrefl _ hm).elim}, { let h' := nat.mul_le_mul_left (k : ℕ) (nat.succ_le_of_lt (nat.pos_of_ne_zero h')), rw [mul_one] at h', exact ⟨h', le_refl (k : ℕ)⟩ } }, { exact ⟨nat.mod_le (m : ℕ) (k : ℕ), le_of_lt (nat.mod_lt (m : ℕ) k.pos)⟩ } end instance : has_dvd ℕ+ := ⟨λ k m, (k : ℕ) ∣ (m : ℕ)⟩ theorem dvd_iff {k m : ℕ+} : k ∣ m ↔ (k : ℕ) ∣ (m : ℕ) := by {refl} theorem dvd_iff' {k m : ℕ+} : k ∣ m ↔ mod m k = k := begin change (k : ℕ) ∣ (m : ℕ) ↔ mod m k = k, rw [nat.dvd_iff_mod_eq_zero], split, { intro h, apply eq, rw [mod_coe, if_pos h] }, { intro h, by_cases h' : (m : ℕ) % (k : ℕ) = 0, { exact h'}, { replace h : ((mod m k) : ℕ) = (k : ℕ) := congr_arg _ h, rw [mod_coe, if_neg h'] at h, exact (ne_of_lt (nat.mod_lt (m : ℕ) k.pos) h).elim } } end def div_exact {m k : ℕ+} (h : k ∣ m) : ℕ+ := ⟨(div m k).succ, nat.succ_pos _⟩ theorem mul_div_exact {m k : ℕ+} (h : k ∣ m) : k * (div_exact h) = m := begin apply eq, rw [mul_coe], change (k : ℕ) * (div m k).succ = m, rw [mod_add_div m k, dvd_iff'.mp h, nat.mul_succ, add_comm], end theorem dvd_iff'' {k n : ℕ+} : k ∣ n ↔ ∃ m, k * m = n := ⟨λ h, ⟨div_exact h, mul_div_exact h⟩, λ ⟨m, h⟩, dvd.intro (m : ℕ) ((mul_coe k m).symm.trans (congr_arg subtype.val h))⟩ theorem dvd_intro {k n : ℕ+} (m : ℕ+) (h : k * m = n) : k ∣ n := dvd_iff''.mpr ⟨m, h⟩ theorem dvd_refl (m : ℕ+) : m ∣ m := dvd_intro 1 (mul_one m) theorem dvd_antisymm {m n : ℕ+} : m ∣ n → n ∣ m → m = n := λ hmn hnm, subtype.eq (nat.dvd_antisymm hmn hnm) theorem dvd_trans {k m n : ℕ+} : k ∣ m → m ∣ n → k ∣ n := @_root_.dvd_trans ℕ _ (k : ℕ) (m : ℕ) (n : ℕ) theorem one_dvd (n : ℕ+) : 1 ∣ n := dvd_intro n (one_mul n) theorem dvd_one_iff (n : ℕ+) : n ∣ 1 ↔ n = 1 := ⟨λ h, dvd_antisymm h (one_dvd n), λ h, h.symm ▸ (dvd_refl 1)⟩ def gcd (n m : ℕ+) : ℕ+ := ⟨nat.gcd (n : ℕ) (m : ℕ), nat.gcd_pos_of_pos_left (m : ℕ) n.pos⟩ def lcm (n m : ℕ+) : ℕ+ := ⟨nat.lcm (n : ℕ) (m : ℕ), by { let h := mul_pos n.pos m.pos, rw [← gcd_mul_lcm (n : ℕ) (m : ℕ), mul_comm] at h, exact pos_of_dvd_of_pos (dvd.intro (nat.gcd (n : ℕ) (m : ℕ)) rfl) h }⟩ @[simp] theorem gcd_coe (n m : ℕ+) : ((gcd n m) : ℕ) = nat.gcd n m := rfl @[simp] theorem lcm_coe (n m : ℕ+) : ((lcm n m) : ℕ) = nat.lcm n m := rfl theorem gcd_dvd_left (n m : ℕ+) : (gcd n m) ∣ n := nat.gcd_dvd_left (n : ℕ) (m : ℕ) theorem gcd_dvd_right (n m : ℕ+) : (gcd n m) ∣ m := nat.gcd_dvd_right (n : ℕ) (m : ℕ) theorem dvd_gcd {m n k : ℕ+} (hm : k ∣ m) (hn : k ∣ n) : k ∣ gcd m n := @nat.dvd_gcd (m : ℕ) (n : ℕ) (k : ℕ) hm hn theorem dvd_lcm_left (n m : ℕ+) : n ∣ lcm n m := nat.dvd_lcm_left (n : ℕ) (m : ℕ) theorem dvd_lcm_right (n m : ℕ+) : m ∣ lcm n m := nat.dvd_lcm_right (n : ℕ) (m : ℕ) theorem lcm_dvd {m n k : ℕ+} (hm : m ∣ k) (hn : n ∣ k) : lcm m n ∣ k := @nat.lcm_dvd (m : ℕ) (n : ℕ) (k : ℕ) hm hn theorem gcd_mul_lcm (n m : ℕ+) : (gcd n m) * (lcm n m) = n * m := subtype.eq (nat.gcd_mul_lcm (n : ℕ) (m : ℕ)) def prime (p : ℕ+) : Prop := (p : ℕ).prime end pnat
d20d8e1fd5c2d1a4967428e9b30eafaf89ec8a80
5ae26df177f810c5006841e9c73dc56e01b978d7
/src/category_theory/single_obj.lean
711ad56d35ecb0497f128d1d8b1b75ebaa704966
[ "Apache-2.0" ]
permissive
ChrisHughes24/mathlib
98322577c460bc6b1fe5c21f42ce33ad1c3e5558
a2a867e827c2a6702beb9efc2b9282bd801d5f9a
refs/heads/master
1,583,848,251,477
1,565,164,247,000
1,565,164,247,000
129,409,993
0
1
Apache-2.0
1,565,164,817,000
1,523,628,059,000
Lean
UTF-8
Lean
false
false
4,667
lean
import category_theory.endomorphism category_theory.groupoid category_theory.Cat import data.equiv.algebra algebra.Mon.basic import tactic.find /-! Copyright (c) 2019 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov # Single-object category Single object category with a given monoid of endomorphisms. It is defined to faciliate transfering some definitions and lemmas (e.g., conjugacy etc.) from category theory to monoids and groups. ## Main definitions Given a type `α` with a monoid structure, `single_obj α` is `unit` type with `category` structure such that `End (single_obj α).star` is the monoid `α`. This can be extended to a functor `Mon ⥤ Cat`. If `α` is a group, then `single_obj α` is a groupoid. An element `x : α` can be reinterpreted as an element of `End (single_obj.star α)` using `single_obj.to_End`. ## Implementation notes - `category_struct.comp` on `End (single_obj.star α)` is `flip (*)`, not `(*)`. This way multiplication on `End` agrees with the multiplication on `α`. - By default, Lean puts instances into `category_theory` namespace instead of `category_theory.single_obj`, so we give all names explicitly. -/ universes u v w namespace category_theory /-- Type tag on `unit` used to define single-object categories and groupoids. -/ def single_obj (α : Type u) : Type := unit namespace single_obj variables (α : Type u) /-- One and `flip (*)` become `id` and `comp` for morphisms of the single object category. -/ instance category_struct [has_one α] [has_mul α] : category_struct (single_obj α) := { hom := λ _ _, α, comp := λ _ _ _ x y, y * x, id := λ _, 1 } /-- Monoid laws become category laws for the single object category. -/ instance category [monoid α] : category (single_obj α) := { comp_id' := λ _ _, one_mul, id_comp' := λ _ _, mul_one, assoc' := λ _ _ _ _ x y z, (mul_assoc z y x).symm } /-- Groupoid structure on `single_obj α` -/ instance groupoid [group α] : groupoid (single_obj α) := { inv := λ _ _ x, x⁻¹, inv_comp' := λ _ _, mul_right_inv, comp_inv' := λ _ _, mul_left_inv } protected def star : single_obj α := unit.star /-- The endomorphisms monoid of the only object in `single_obj α` is equivalent to the original monoid α. -/ def to_End_equiv [monoid α] : End (single_obj.star α) ≃* α := mul_equiv.refl α /-- Reinterpret an element of a monoid as an element of the endomorphisms monoid of the only object in the `single_obj α` category. -/ def to_End {α} [monoid α] (x : α) : End (single_obj.star α) := x lemma to_End_def [monoid α] (x : α) : to_End x = x := rfl /-- There is a 1-1 correspondence between monoid homomorphisms `α → β` and functors between the corresponding single-object categories. It means that `single_obj` is a fully faithful functor. -/ def map_hom_equiv (α : Type u) (β : Type v) [monoid α] [monoid β] : { f : α → β // is_monoid_hom f } ≃ (single_obj α) ⥤ (single_obj β) := { to_fun := λ f, { obj := id, map := λ _ _, f.1, map_id' := λ _, f.2.map_one, map_comp' := λ _ _ _ x y, @is_mul_hom.map_mul _ _ _ _ _ f.2.1 y x }, inv_fun := λ f, ⟨@functor.map _ _ _ _ f (single_obj.star α) (single_obj.star α), { map_mul := λ x y, f.map_comp y x, map_one := f.map_id _ }⟩, left_inv := λ ⟨f, hf⟩, rfl, right_inv := assume f, by rcases f; obviously } /-- Reinterpret a monoid homomorphism `f : α → β` as a functor `(single_obj α) ⥤ (single_obj β)`. See also `map_hom_equiv` for an equivalence between these types. -/ @[reducible] def map_hom {α : Type u} {β : Type v} [monoid α] [monoid β] (f : α → β) [hf : is_monoid_hom f] : (single_obj α) ⥤ (single_obj β) := map_hom_equiv α β ⟨f, hf⟩ lemma map_hom_id {α : Type u} [monoid α] : map_hom (@id α) = 𝟭 _ := rfl lemma map_hom_comp {α : Type u} {β : Type v} [monoid α] [monoid β] (f : α → β) [is_monoid_hom f] {γ : Type w} [monoid γ] (g : β → γ) [is_monoid_hom g] : map_hom f ⋙ map_hom g = map_hom (g ∘ f) := rfl end single_obj end category_theory namespace Mon open category_theory /-- The fully faithful functor from `Mon` to `Cat`. -/ def to_Cat : Mon ⥤ Cat := { obj := λ x, Cat.of (single_obj x), map := λ x y f, single_obj.map_hom f } instance to_Cat_full : full to_Cat := { preimage := λ x y, (single_obj.map_hom_equiv x y).inv_fun, witness' := λ x y, (single_obj.map_hom_equiv x y).right_inv } instance to_Cat_faithful : faithful to_Cat := { injectivity' := λ x y, (single_obj.map_hom_equiv x y).injective } end Mon
b904ab7f27e66286a1a84df6f38cbedb54ed8f95
80cc5bf14c8ea85ff340d1d747a127dcadeb966f
/src/data/int/modeq.lean
353bf0b90196b0b11221cc288230c9c6835eba44
[ "Apache-2.0" ]
permissive
lacker/mathlib
f2439c743c4f8eb413ec589430c82d0f73b2d539
ddf7563ac69d42cfa4a1bfe41db1fed521bd795f
refs/heads/master
1,671,948,326,773
1,601,479,268,000
1,601,479,268,000
298,686,743
0
0
Apache-2.0
1,601,070,794,000
1,601,070,794,000
null
UTF-8
Lean
false
false
6,084
lean
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes -/ import data.nat.modeq import tactic.ring namespace int def modeq (n a b : ℤ) := a % n = b % n notation a ` ≡ `:50 b ` [ZMOD `:50 n `]`:0 := modeq n a b namespace modeq variables {n m a b c d : ℤ} @[refl] protected theorem refl (a : ℤ) : a ≡ a [ZMOD n] := @rfl _ _ @[symm] protected theorem symm : a ≡ b [ZMOD n] → b ≡ a [ZMOD n] := eq.symm @[trans] protected theorem trans : a ≡ b [ZMOD n] → b ≡ c [ZMOD n] → a ≡ c [ZMOD n] := eq.trans lemma coe_nat_modeq_iff {a b n : ℕ} : a ≡ b [ZMOD n] ↔ a ≡ b [MOD n] := by unfold modeq nat.modeq; rw ← int.coe_nat_eq_coe_nat_iff; simp [int.coe_nat_mod] instance : decidable (a ≡ b [ZMOD n]) := by unfold modeq; apply_instance theorem modeq_zero_iff : a ≡ 0 [ZMOD n] ↔ n ∣ a := by rw [modeq, zero_mod, dvd_iff_mod_eq_zero] theorem modeq_iff_dvd : a ≡ b [ZMOD n] ↔ (n:ℤ) ∣ b - a := by rw [modeq, eq_comm]; simp [int.mod_eq_mod_iff_mod_sub_eq_zero, int.dvd_iff_mod_eq_zero, -euclidean_domain.mod_eq_zero] theorem modeq_of_dvd_of_modeq (d : m ∣ n) (h : a ≡ b [ZMOD n]) : a ≡ b [ZMOD m] := modeq_iff_dvd.2 $ dvd_trans d (modeq_iff_dvd.1 h) theorem modeq_mul_left' (hc : 0 ≤ c) (h : a ≡ b [ZMOD n]) : c * a ≡ c * b [ZMOD (c * n)] := or.cases_on (lt_or_eq_of_le hc) (λ hc, by unfold modeq; simp [mul_mod_mul_of_pos _ _ hc, (show _ = _, from h)] ) (λ hc, by simp [hc.symm]) theorem modeq_mul_right' (hc : 0 ≤ c) (h : a ≡ b [ZMOD n]) : a * c ≡ b * c [ZMOD (n * c)] := by rw [mul_comm a, mul_comm b, mul_comm n]; exact modeq_mul_left' hc h theorem modeq_add (h₁ : a ≡ b [ZMOD n]) (h₂ : c ≡ d [ZMOD n]) : a + c ≡ b + d [ZMOD n] := modeq_iff_dvd.2 $ by {convert dvd_add (modeq_iff_dvd.1 h₁) (modeq_iff_dvd.1 h₂), ring} theorem modeq_add_cancel_left (h₁ : a ≡ b [ZMOD n]) (h₂ : a + c ≡ b + d [ZMOD n]) : c ≡ d [ZMOD n] := have d - c = b + d - (a + c) - (b - a) := by ring, modeq_iff_dvd.2 $ by { rw [this], exact dvd_sub (modeq_iff_dvd.1 h₂) (modeq_iff_dvd.1 h₁) } theorem modeq_add_cancel_right (h₁ : c ≡ d [ZMOD n]) (h₂ : a + c ≡ b + d [ZMOD n]) : a ≡ b [ZMOD n] := by rw [add_comm a, add_comm b] at h₂; exact modeq_add_cancel_left h₁ h₂ theorem mod_modeq (a n) : a % n ≡ a [ZMOD n] := int.mod_mod _ _ theorem modeq_neg (h : a ≡ b [ZMOD n]) : -a ≡ -b [ZMOD n] := modeq_add_cancel_left h (by simp) theorem modeq_sub (h₁ : a ≡ b [ZMOD n]) (h₂ : c ≡ d [ZMOD n]) : a - c ≡ b - d [ZMOD n] := by rw [sub_eq_add_neg, sub_eq_add_neg]; exact modeq_add h₁ (modeq_neg h₂) theorem modeq_mul_left (c : ℤ) (h : a ≡ b [ZMOD n]) : c * a ≡ c * b [ZMOD n] := or.cases_on (le_total 0 c) (λ hc, modeq_of_dvd_of_modeq (dvd_mul_left _ _) (modeq_mul_left' hc h)) (λ hc, by rw [← neg_neg c, ← neg_mul_eq_neg_mul, ← neg_mul_eq_neg_mul _ b]; exact modeq_neg (modeq_of_dvd_of_modeq (dvd_mul_left _ _) (modeq_mul_left' (neg_nonneg.2 hc) h))) theorem modeq_mul_right (c : ℤ) (h : a ≡ b [ZMOD n]) : a * c ≡ b * c [ZMOD n] := by rw [mul_comm a, mul_comm b]; exact modeq_mul_left c h theorem modeq_mul (h₁ : a ≡ b [ZMOD n]) (h₂ : c ≡ d [ZMOD n]) : a * c ≡ b * d [ZMOD n] := (modeq_mul_left _ h₂).trans (modeq_mul_right _ h₁) theorem modeq_of_modeq_mul_left (m : ℤ) (h : a ≡ b [ZMOD m * n]) : a ≡ b [ZMOD n] := by rw [modeq_iff_dvd] at *; exact dvd.trans (dvd_mul_left n m) h theorem modeq_of_modeq_mul_right (m : ℤ) : a ≡ b [ZMOD n * m] → a ≡ b [ZMOD n] := mul_comm m n ▸ modeq_of_modeq_mul_left _ lemma modeq_and_modeq_iff_modeq_mul {a b m n : ℤ} (hmn : nat.coprime m.nat_abs n.nat_abs) : a ≡ b [ZMOD m] ∧ a ≡ b [ZMOD n] ↔ (a ≡ b [ZMOD m * n]) := ⟨λ h, begin rw [int.modeq.modeq_iff_dvd, int.modeq.modeq_iff_dvd] at h, rw [int.modeq.modeq_iff_dvd, ← int.nat_abs_dvd, ← int.dvd_nat_abs, int.coe_nat_dvd, int.nat_abs_mul], refine hmn.mul_dvd_of_dvd_of_dvd _ _; rw [← int.coe_nat_dvd, int.nat_abs_dvd, int.dvd_nat_abs]; tauto end, λ h, ⟨int.modeq.modeq_of_modeq_mul_right _ h, int.modeq.modeq_of_modeq_mul_left _ h⟩⟩ lemma gcd_a_modeq (a b : ℕ) : (a : ℤ) * nat.gcd_a a b ≡ nat.gcd a b [ZMOD b] := by rw [← add_zero ((a : ℤ) * _), nat.gcd_eq_gcd_ab]; exact int.modeq.modeq_add rfl (int.modeq.modeq_zero_iff.2 (dvd_mul_right _ _)).symm theorem modeq_add_fac {a b n : ℤ} (c : ℤ) (ha : a ≡ b [ZMOD n]) : a + n*c ≡ b [ZMOD n] := calc a + n*c ≡ b + n*c [ZMOD n] : int.modeq.modeq_add ha (int.modeq.refl _) ... ≡ b + 0 [ZMOD n] : int.modeq.modeq_add (int.modeq.refl _) (int.modeq.modeq_zero_iff.2 (dvd_mul_right _ _)) ... ≡ b [ZMOD n] : by simp open nat lemma mod_coprime {a b : ℕ} (hab : coprime a b) : ∃ y : ℤ, a * y ≡ 1 [ZMOD b] := ⟨ gcd_a a b, have hgcd : nat.gcd a b = 1, from coprime.gcd_eq_one hab, calc ↑a * gcd_a a b ≡ ↑a*gcd_a a b + ↑b*gcd_b a b [ZMOD ↑b] : int.modeq.symm $ modeq_add_fac _ $ int.modeq.refl _ ... ≡ 1 [ZMOD ↑b] : by rw [←gcd_eq_gcd_ab, hgcd]; reflexivity ⟩ lemma exists_unique_equiv (a : ℤ) {b : ℤ} (hb : 0 < b) : ∃ z : ℤ, 0 ≤ z ∧ z < b ∧ z ≡ a [ZMOD b] := ⟨ a % b, int.mod_nonneg _ (ne_of_gt hb), have a % b < abs b, from int.mod_lt _ (ne_of_gt hb), by rwa abs_of_pos hb at this, by simp [int.modeq] ⟩ lemma exists_unique_equiv_nat (a : ℤ) {b : ℤ} (hb : 0 < b) : ∃ z : ℕ, ↑z < b ∧ ↑z ≡ a [ZMOD b] := let ⟨z, hz1, hz2, hz3⟩ := exists_unique_equiv a hb in ⟨z.nat_abs, by split; rw [←int.of_nat_eq_coe, int.of_nat_nat_abs_eq_of_nonneg hz1]; assumption⟩ end modeq @[simp] lemma mod_mul_right_mod (a b c : ℤ) : a % (b * c) % b = a % b := int.modeq.modeq_of_modeq_mul_right _ (int.modeq.mod_modeq _ _) @[simp] lemma mod_mul_left_mod (a b c : ℤ) : a % (b * c) % c = a % c := int.modeq.modeq_of_modeq_mul_left _ (int.modeq.mod_modeq _ _) end int
ce844ac63b993c52abe5ca2f1602c1ff106f6cd5
624f6f2ae8b3b1adc5f8f67a365c51d5126be45a
/tests/plugin/Default.lean
3dfe24a6284d891710d56b5fbe10877a2013b0fc
[ "Apache-2.0" ]
permissive
mhuisi/lean4
28d35a4febc2e251c7f05492e13f3b05d6f9b7af
dda44bc47f3e5d024508060dac2bcb59fd12e4c0
refs/heads/master
1,621,225,489,283
1,585,142,689,000
1,585,142,689,000
250,590,438
0
2
Apache-2.0
1,602,443,220,000
1,585,327,814,000
C
UTF-8
Lean
false
false
330
lean
import Init.Lean open Lean def oh_no : Nat := 0 def snakeLinter : Linter := fun env n => -- TODO(Sebastian): return actual message with position from syntax tree if n.toString.contains '_' then throw $ IO.userError "SNAKES!!" else pure MessageLog.empty @[init] def registerSnakeLinter : IO Unit := addLinter snakeLinter
f5231450a883ef8c861eb4fb3bf575f622edff34
46125763b4dbf50619e8846a1371029346f4c3db
/src/topology/order.lean
8514d0b1368554fb3e03341dff381b5f36f3ba8c
[ "Apache-2.0" ]
permissive
thjread/mathlib
a9d97612cedc2c3101060737233df15abcdb9eb1
7cffe2520a5518bba19227a107078d83fa725ddc
refs/heads/master
1,615,637,696,376
1,583,953,063,000
1,583,953,063,000
246,680,271
0
0
Apache-2.0
1,583,960,875,000
1,583,960,875,000
null
UTF-8
Lean
false
false
27,306
lean
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro -/ import topology.basic /-! # Ordering on topologies and (co)induced topologies Topologies on a fixed type `α` are ordered, by reverse inclusion. That is, for topologies `t₁` and `t₂` on `α`, we write `t₁ ≤ t₂` if every set open in `t₂` is also open in `t₁`. (One also calls `t₁` finer than `t₂`, and `t₂` coarser than `t₁`.) Any function `f : α → β` induces `induced f : topological_space β → topological_space α` and `coinduced f : topological_space α → topological_space β`. Continuity, the ordering on topologies and (co)induced topologies are related as follows: * The identity map (α, t₁) → (α, t₂) is continuous iff t₁ ≤ t₂. * A map f : (α, t) → (β, u) is continuous iff t ≤ induced f u (`continuous_iff_le_induced`) iff coinduced f t ≤ u (`continuous_iff_coinduced_le`). Topologies on α form a complete lattice, with ⊥ the discrete topology and ⊤ the indiscrete topology. For a function f : α → β, (coinduced f, induced f) is a Galois connection between topologies on α and topologies on β. ## Implementation notes There is a Galois insertion between topologies on α (with the inclusion ordering) and all collections of sets in α. The complete lattice structure on topologies on α is defined as the reverse of the one obtained via this Galois insertion. ## Tags finer, coarser, induced topology, coinduced topology -/ open set filter lattice classical open_locale classical topological_space universes u v w namespace topological_space variables {α : Type u} /-- The open sets of the least topology containing a collection of basic sets. -/ inductive generate_open (g : set (set α)) : set α → Prop | basic : ∀s∈g, generate_open s | univ : generate_open univ | inter : ∀s t, generate_open s → generate_open t → generate_open (s ∩ t) | sUnion : ∀k, (∀s∈k, generate_open s) → generate_open (⋃₀ k) /-- The smallest topological space containing the collection `g` of basic sets -/ def generate_from (g : set (set α)) : topological_space α := { is_open := generate_open g, is_open_univ := generate_open.univ g, is_open_inter := generate_open.inter, is_open_sUnion := generate_open.sUnion } lemma nhds_generate_from {g : set (set α)} {a : α} : @nhds α (generate_from g) a = (⨅s∈{s | a ∈ s ∧ s ∈ g}, principal s) := by rw nhds_def; exact le_antisymm (infi_le_infi $ assume s, infi_le_infi_const $ assume ⟨as, sg⟩, ⟨as, generate_open.basic _ sg⟩) (le_infi $ assume s, le_infi $ assume ⟨as, hs⟩, begin revert as, clear_, induction hs, case generate_open.basic : s hs { exact assume as, infi_le_of_le s $ infi_le _ ⟨as, hs⟩ }, case generate_open.univ { rw [principal_univ], exact assume _, le_top }, case generate_open.inter : s t hs' ht' hs ht { exact assume ⟨has, hat⟩, calc _ ≤ principal s ⊓ principal t : le_inf (hs has) (ht hat) ... = _ : inf_principal }, case generate_open.sUnion : k hk' hk { exact λ ⟨t, htk, hat⟩, calc _ ≤ principal t : hk t htk hat ... ≤ _ : le_principal_iff.2 $ subset_sUnion_of_mem htk } end) lemma tendsto_nhds_generate_from {β : Type*} {m : α → β} {f : filter α} {g : set (set β)} {b : β} (h : ∀s∈g, b ∈ s → m ⁻¹' s ∈ f) : tendsto m f (@nhds β (generate_from g) b) := by rw [nhds_generate_from]; exact (tendsto_infi.2 $ assume s, tendsto_infi.2 $ assume ⟨hbs, hsg⟩, tendsto_principal.2 $ h s hsg hbs) /-- Construct a topology on α given the filter of neighborhoods of each point of α. -/ protected def mk_of_nhds (n : α → filter α) : topological_space α := { is_open := λs, ∀a∈s, s ∈ n a, is_open_univ := assume x h, univ_mem_sets, is_open_inter := assume s t hs ht x ⟨hxs, hxt⟩, inter_mem_sets (hs x hxs) (ht x hxt), is_open_sUnion := assume s hs a ⟨x, hx, hxa⟩, mem_sets_of_superset (hs x hx _ hxa) (set.subset_sUnion_of_mem hx) } lemma nhds_mk_of_nhds (n : α → filter α) (a : α) (h₀ : pure ≤ n) (h₁ : ∀{a s}, s ∈ n a → ∃ t ∈ n a, t ⊆ s ∧ ∀a' ∈ t, s ∈ n a') : @nhds α (topological_space.mk_of_nhds n) a = n a := begin letI := topological_space.mk_of_nhds n, refine le_antisymm (assume s hs, _) (assume s hs, _), { have h₀ : {b | s ∈ n b} ⊆ s := assume b hb, mem_pure_sets.1 $ h₀ b hb, have h₁ : {b | s ∈ n b} ∈ 𝓝 a, { refine mem_nhds_sets (assume b (hb : s ∈ n b), _) hs, rcases h₁ hb with ⟨t, ht, hts, h⟩, exact mem_sets_of_superset ht h }, exact mem_sets_of_superset h₁ h₀ }, { rcases (@mem_nhds_sets_iff α (topological_space.mk_of_nhds n) _ _).1 hs with ⟨t, hts, ht, hat⟩, exact (n a).sets_of_superset (ht _ hat) hts }, end end topological_space section lattice variables {α : Type u} {β : Type v} /-- The inclusion ordering on topologies on α. We use it to get a complete lattice instance via the Galois insertion method, but the partial order that we will eventually impose on `topological_space α` is the reverse one. -/ def tmp_order : partial_order (topological_space α) := { le := λt s, t.is_open ≤ s.is_open, le_antisymm := assume t s h₁ h₂, topological_space_eq $ le_antisymm h₁ h₂, le_refl := assume t, le_refl t.is_open, le_trans := assume a b c h₁ h₂, @le_trans _ _ a.is_open b.is_open c.is_open h₁ h₂ } local attribute [instance] tmp_order /- We'll later restate this lemma in terms of the correct order on `topological_space α`. -/ private lemma generate_from_le_iff_subset_is_open {g : set (set α)} {t : topological_space α} : topological_space.generate_from g ≤ t ↔ g ⊆ {s | t.is_open s} := iff.intro (assume ht s hs, ht _ $ topological_space.generate_open.basic s hs) (assume hg s hs, hs.rec_on (assume v hv, hg hv) t.is_open_univ (assume u v _ _, t.is_open_inter u v) (assume k _, t.is_open_sUnion k)) /-- If `s` equals the collection of open sets in the topology it generates, then `s` defines a topology. -/ protected def mk_of_closure (s : set (set α)) (hs : {u | (topological_space.generate_from s).is_open u} = s) : topological_space α := { is_open := λu, u ∈ s, is_open_univ := hs ▸ topological_space.generate_open.univ _, is_open_inter := hs ▸ topological_space.generate_open.inter, is_open_sUnion := hs ▸ topological_space.generate_open.sUnion } lemma mk_of_closure_sets {s : set (set α)} {hs : {u | (topological_space.generate_from s).is_open u} = s} : mk_of_closure s hs = topological_space.generate_from s := topological_space_eq hs.symm /-- The Galois insertion between `set (set α)` and `topological_space α` whose lower part sends a collection of subsets of α to the topology they generate, and whose upper part sends a topology to its collection of open subsets. -/ def gi_generate_from (α : Type*) : galois_insertion topological_space.generate_from (λt:topological_space α, {s | t.is_open s}) := { gc := assume g t, generate_from_le_iff_subset_is_open, le_l_u := assume ts s hs, topological_space.generate_open.basic s hs, choice := λg hg, mk_of_closure g (subset.antisymm hg $ generate_from_le_iff_subset_is_open.1 $ le_refl _), choice_eq := assume s hs, mk_of_closure_sets } lemma generate_from_mono {α} {g₁ g₂ : set (set α)} (h : g₁ ⊆ g₂) : topological_space.generate_from g₁ ≤ topological_space.generate_from g₂ := (gi_generate_from _).gc.monotone_l h /-- The complete lattice of topological spaces, but built on the inclusion ordering. -/ def tmp_complete_lattice {α : Type u} : complete_lattice (topological_space α) := (gi_generate_from α).lift_complete_lattice /-- The ordering on topologies on the type `α`. `t ≤ s` if every set open in `s` is also open in `t` (`t` is finer than `s`). -/ instance : partial_order (topological_space α) := { le := λ t s, s.is_open ≤ t.is_open, le_antisymm := assume t s h₁ h₂, topological_space_eq $ le_antisymm h₂ h₁, le_refl := assume t, le_refl t.is_open, le_trans := assume a b c h₁ h₂, le_trans h₂ h₁ } lemma le_generate_from_iff_subset_is_open {g : set (set α)} {t : topological_space α} : t ≤ topological_space.generate_from g ↔ g ⊆ {s | t.is_open s} := generate_from_le_iff_subset_is_open /-- Topologies on `α` form a complete lattice, with `⊥` the discrete topology and `⊤` the indiscrete topology. The infimum of a collection of topologies is the topology generated by all their open sets, while the supremem is the topology whose open sets are those sets open in every member of the collection. -/ instance : complete_lattice (topological_space α) := @order_dual.lattice.complete_lattice _ tmp_complete_lattice /-- A topological space is discrete if every set is open, that is, its topology equals the discrete topology `⊥`. -/ class discrete_topology (α : Type*) [t : topological_space α] : Prop := (eq_bot : t = ⊥) @[simp] lemma is_open_discrete [topological_space α] [discrete_topology α] (s : set α) : is_open s := (discrete_topology.eq_bot α).symm ▸ trivial lemma continuous_of_discrete_topology [topological_space α] [discrete_topology α] [topological_space β] {f : α → β} : continuous f := λs hs, is_open_discrete _ lemma nhds_bot (α : Type*) : (@nhds α ⊥) = pure := begin refine le_antisymm _ (@pure_le_nhds α ⊥), assume a s hs, exact @mem_nhds_sets α ⊥ a s trivial hs end lemma nhds_discrete (α : Type*) [topological_space α] [discrete_topology α] : (@nhds α _) = pure := (discrete_topology.eq_bot α).symm ▸ nhds_bot α lemma le_of_nhds_le_nhds {t₁ t₂ : topological_space α} (h : ∀x, @nhds α t₁ x ≤ @nhds α t₂ x) : t₁ ≤ t₂ := assume s, show @is_open α t₂ s → @is_open α t₁ s, by { simp only [is_open_iff_nhds, le_principal_iff], exact assume hs a ha, h _ $ hs _ ha } lemma eq_of_nhds_eq_nhds {t₁ t₂ : topological_space α} (h : ∀x, @nhds α t₁ x = @nhds α t₂ x) : t₁ = t₂ := le_antisymm (le_of_nhds_le_nhds $ assume x, le_of_eq $ h x) (le_of_nhds_le_nhds $ assume x, le_of_eq $ (h x).symm) lemma eq_bot_of_singletons_open {t : topological_space α} (h : ∀ x, t.is_open {x}) : t = ⊥ := bot_unique $ λ s hs, bUnion_of_singleton s ▸ is_open_bUnion (λ x _, h x) end lattice section galois_connection variables {α : Type*} {β : Type*} {γ : Type*} /-- Given `f : α → β` and a topology on `β`, the induced topology on `α` is the collection of sets that are preimages of some open set in `β`. This is the coarsest topology that makes `f` continuous. -/ def topological_space.induced {α : Type u} {β : Type v} (f : α → β) (t : topological_space β) : topological_space α := { is_open := λs, ∃s', t.is_open s' ∧ f ⁻¹' s' = s, is_open_univ := ⟨univ, t.is_open_univ, preimage_univ⟩, is_open_inter := by rintro s₁ s₂ ⟨s'₁, hs₁, rfl⟩ ⟨s'₂, hs₂, rfl⟩; exact ⟨s'₁ ∩ s'₂, t.is_open_inter _ _ hs₁ hs₂, preimage_inter⟩, is_open_sUnion := assume s h, begin simp only [classical.skolem] at h, cases h with f hf, apply exists.intro (⋃(x : set α) (h : x ∈ s), f x h), simp only [sUnion_eq_bUnion, preimage_Union, (λx h, (hf x h).right)], refine ⟨_, rfl⟩, exact (@is_open_Union β _ t _ $ assume i, show is_open (⋃h, f i h), from @is_open_Union β _ t _ $ assume h, (hf i h).left) end } lemma is_open_induced_iff [t : topological_space β] {s : set α} {f : α → β} : @is_open α (t.induced f) s ↔ (∃t, is_open t ∧ f ⁻¹' t = s) := iff.rfl lemma is_closed_induced_iff [t : topological_space β] {s : set α} {f : α → β} : @is_closed α (t.induced f) s ↔ (∃t, is_closed t ∧ s = f ⁻¹' t) := ⟨assume ⟨t, ht, heq⟩, ⟨-t, is_closed_compl_iff.2 ht, by simp only [preimage_compl, heq, lattice.neg_neg]⟩, assume ⟨t, ht, heq⟩, ⟨-t, ht, by simp only [preimage_compl, heq.symm]⟩⟩ /-- Given `f : α → β` and a topology on `α`, the coinduced topology on `β` is defined such that `s:set β` is open if the preimage of `s` is open. This is the finest topology that makes `f` continuous. -/ def topological_space.coinduced {α : Type u} {β : Type v} (f : α → β) (t : topological_space α) : topological_space β := { is_open := λs, t.is_open (f ⁻¹' s), is_open_univ := by rw preimage_univ; exact t.is_open_univ, is_open_inter := assume s₁ s₂ h₁ h₂, by rw preimage_inter; exact t.is_open_inter _ _ h₁ h₂, is_open_sUnion := assume s h, by rw [preimage_sUnion]; exact (@is_open_Union _ _ t _ $ assume i, show is_open (⋃ (H : i ∈ s), f ⁻¹' i), from @is_open_Union _ _ t _ $ assume hi, h i hi) } lemma is_open_coinduced {t : topological_space α} {s : set β} {f : α → β} : @is_open β (topological_space.coinduced f t) s ↔ is_open (f ⁻¹' s) := iff.rfl variables {t t₁ t₂ : topological_space α} {t' : topological_space β} {f : α → β} {g : β → α} lemma coinduced_le_iff_le_induced {f : α → β } {tα : topological_space α} {tβ : topological_space β} : tα.coinduced f ≤ tβ ↔ tα ≤ tβ.induced f := iff.intro (assume h s ⟨t, ht, hst⟩, hst ▸ h _ ht) (assume h s hs, show tα.is_open (f ⁻¹' s), from h _ ⟨s, hs, rfl⟩) lemma gc_coinduced_induced (f : α → β) : galois_connection (topological_space.coinduced f) (topological_space.induced f) := assume f g, coinduced_le_iff_le_induced lemma induced_mono (h : t₁ ≤ t₂) : t₁.induced g ≤ t₂.induced g := (gc_coinduced_induced g).monotone_u h lemma coinduced_mono (h : t₁ ≤ t₂) : t₁.coinduced f ≤ t₂.coinduced f := (gc_coinduced_induced f).monotone_l h @[simp] lemma induced_top : (⊤ : topological_space α).induced g = ⊤ := (gc_coinduced_induced g).u_top @[simp] lemma induced_inf : (t₁ ⊓ t₂).induced g = t₁.induced g ⊓ t₂.induced g := (gc_coinduced_induced g).u_inf @[simp] lemma induced_infi {ι : Sort w} {t : ι → topological_space α} : (⨅i, t i).induced g = (⨅i, (t i).induced g) := (gc_coinduced_induced g).u_infi @[simp] lemma coinduced_bot : (⊥ : topological_space α).coinduced f = ⊥ := (gc_coinduced_induced f).l_bot @[simp] lemma coinduced_sup : (t₁ ⊔ t₂).coinduced f = t₁.coinduced f ⊔ t₂.coinduced f := (gc_coinduced_induced f).l_sup @[simp] lemma coinduced_supr {ι : Sort w} {t : ι → topological_space α} : (⨆i, t i).coinduced f = (⨆i, (t i).coinduced f) := (gc_coinduced_induced f).l_supr lemma induced_id [t : topological_space α] : t.induced id = t := topological_space_eq $ funext $ assume s, propext $ ⟨assume ⟨s', hs, h⟩, h ▸ hs, assume hs, ⟨s, hs, rfl⟩⟩ lemma induced_compose [tγ : topological_space γ] {f : α → β} {g : β → γ} : (tγ.induced g).induced f = tγ.induced (g ∘ f) := topological_space_eq $ funext $ assume s, propext $ ⟨assume ⟨s', ⟨s, hs, h₂⟩, h₁⟩, h₁ ▸ h₂ ▸ ⟨s, hs, rfl⟩, assume ⟨s, hs, h⟩, ⟨preimage g s, ⟨s, hs, rfl⟩, h ▸ rfl⟩⟩ lemma coinduced_id [t : topological_space α] : t.coinduced id = t := topological_space_eq rfl lemma coinduced_compose [tα : topological_space α] {f : α → β} {g : β → γ} : (tα.coinduced f).coinduced g = tα.coinduced (g ∘ f) := topological_space_eq rfl end galois_connection /- constructions using the complete lattice structure -/ section constructions open topological_space variables {α : Type u} {β : Type v} instance inhabited_topological_space {α : Type u} : inhabited (topological_space α) := ⟨⊤⟩ instance : topological_space empty := ⊥ instance : discrete_topology empty := ⟨rfl⟩ instance : topological_space unit := ⊥ instance : discrete_topology unit := ⟨rfl⟩ instance : topological_space bool := ⊥ instance : discrete_topology bool := ⟨rfl⟩ instance : topological_space ℕ := ⊥ instance : discrete_topology ℕ := ⟨rfl⟩ instance : topological_space ℤ := ⊥ instance : discrete_topology ℤ := ⟨rfl⟩ instance sierpinski_space : topological_space Prop := generate_from {{true}} lemma le_generate_from {t : topological_space α} { g : set (set α) } (h : ∀s∈g, is_open s) : t ≤ generate_from g := le_generate_from_iff_subset_is_open.2 h lemma induced_generate_from_eq {α β} {b : set (set β)} {f : α → β} : (generate_from b).induced f = topological_space.generate_from (preimage f '' b) := le_antisymm (le_generate_from $ ball_image_iff.2 $ assume s hs, ⟨s, generate_open.basic _ hs, rfl⟩) (coinduced_le_iff_le_induced.1 $ le_generate_from $ assume s hs, generate_open.basic _ $ mem_image_of_mem _ hs) /-- This construction is left adjoint to the operation sending a topology on `α` to its neighborhood filter at a fixed point `a : α`. -/ protected def topological_space.nhds_adjoint (a : α) (f : filter α) : topological_space α := { is_open := λs, a ∈ s → s ∈ f, is_open_univ := assume s, univ_mem_sets, is_open_inter := assume s t hs ht ⟨has, hat⟩, inter_mem_sets (hs has) (ht hat), is_open_sUnion := assume k hk ⟨u, hu, hau⟩, mem_sets_of_superset (hk u hu hau) (subset_sUnion_of_mem hu) } lemma gc_nhds (a : α) : galois_connection (topological_space.nhds_adjoint a) (λt, @nhds α t a) := assume f t, by { rw le_nhds_iff, exact ⟨λ H s hs has, H _ has hs, λ H s has hs, H _ hs has⟩ } lemma nhds_mono {t₁ t₂ : topological_space α} {a : α} (h : t₁ ≤ t₂) : @nhds α t₁ a ≤ @nhds α t₂ a := (gc_nhds a).monotone_u h lemma nhds_infi {ι : Sort*} {t : ι → topological_space α} {a : α} : @nhds α (infi t) a = (⨅i, @nhds α (t i) a) := (gc_nhds a).u_infi lemma nhds_Inf {s : set (topological_space α)} {a : α} : @nhds α (Inf s) a = (⨅t∈s, @nhds α t a) := (gc_nhds a).u_Inf lemma nhds_inf {t₁ t₂ : topological_space α} {a : α} : @nhds α (t₁ ⊓ t₂) a = @nhds α t₁ a ⊓ @nhds α t₂ a := (gc_nhds a).u_inf lemma nhds_top {a : α} : @nhds α ⊤ a = ⊤ := (gc_nhds a).u_top local notation `cont` := @continuous _ _ local notation `tspace` := topological_space open topological_space variables {γ : Type*} {f : α → β} {ι : Sort*} lemma continuous_iff_coinduced_le {t₁ : tspace α} {t₂ : tspace β} : cont t₁ t₂ f ↔ coinduced f t₁ ≤ t₂ := iff.rfl lemma continuous_iff_le_induced {t₁ : tspace α} {t₂ : tspace β} : cont t₁ t₂ f ↔ t₁ ≤ induced f t₂ := iff.trans continuous_iff_coinduced_le (gc_coinduced_induced f _ _) theorem continuous_generated_from {t : tspace α} {b : set (set β)} (h : ∀s∈b, is_open (f ⁻¹' s)) : cont t (generate_from b) f := continuous_iff_coinduced_le.2 $ le_generate_from h lemma continuous_induced_dom {t : tspace β} : cont (induced f t) t f := assume s h, ⟨_, h, rfl⟩ lemma continuous_induced_rng {g : γ → α} {t₂ : tspace β} {t₁ : tspace γ} (h : cont t₁ t₂ (f ∘ g)) : cont t₁ (induced f t₂) g := assume s ⟨t, ht, s_eq⟩, s_eq ▸ h t ht lemma continuous_coinduced_rng {t : tspace α} : cont t (coinduced f t) f := assume s h, h lemma continuous_coinduced_dom {g : β → γ} {t₁ : tspace α} {t₂ : tspace γ} (h : cont t₁ t₂ (g ∘ f)) : cont (coinduced f t₁) t₂ g := assume s hs, h s hs lemma continuous_le_dom {t₁ t₂ : tspace α} {t₃ : tspace β} (h₁ : t₂ ≤ t₁) (h₂ : cont t₁ t₃ f) : cont t₂ t₃ f := assume s h, h₁ _ (h₂ s h) lemma continuous_le_rng {t₁ : tspace α} {t₂ t₃ : tspace β} (h₁ : t₂ ≤ t₃) (h₂ : cont t₁ t₂ f) : cont t₁ t₃ f := assume s h, h₂ s (h₁ s h) lemma continuous_sup_dom {t₁ t₂ : tspace α} {t₃ : tspace β} (h₁ : cont t₁ t₃ f) (h₂ : cont t₂ t₃ f) : cont (t₁ ⊔ t₂) t₃ f := assume s h, ⟨h₁ s h, h₂ s h⟩ lemma continuous_sup_rng_left {t₁ : tspace α} {t₃ t₂ : tspace β} : cont t₁ t₂ f → cont t₁ (t₂ ⊔ t₃) f := continuous_le_rng le_sup_left lemma continuous_sup_rng_right {t₁ : tspace α} {t₃ t₂ : tspace β} : cont t₁ t₃ f → cont t₁ (t₂ ⊔ t₃) f := continuous_le_rng le_sup_right lemma continuous_Sup_dom {t₁ : set (tspace α)} {t₂ : tspace β} (h : ∀t∈t₁, cont t t₂ f) : cont (Sup t₁) t₂ f := continuous_iff_le_induced.2 $ Sup_le $ assume t ht, continuous_iff_le_induced.1 $ h t ht lemma continuous_Sup_rng {t₁ : tspace α} {t₂ : set (tspace β)} {t : tspace β} (h₁ : t ∈ t₂) (hf : cont t₁ t f) : cont t₁ (Sup t₂) f := continuous_iff_coinduced_le.2 $ le_Sup_of_le h₁ $ continuous_iff_coinduced_le.1 hf lemma continuous_supr_dom {t₁ : ι → tspace α} {t₂ : tspace β} (h : ∀i, cont (t₁ i) t₂ f) : cont (supr t₁) t₂ f := continuous_Sup_dom $ assume t ⟨i, (t_eq : t₁ i = t)⟩, t_eq ▸ h i lemma continuous_supr_rng {t₁ : tspace α} {t₂ : ι → tspace β} {i : ι} (h : cont t₁ (t₂ i) f) : cont t₁ (supr t₂) f := continuous_Sup_rng ⟨i, rfl⟩ h lemma continuous_inf_rng {t₁ : tspace α} {t₂ t₃ : tspace β} (h₁ : cont t₁ t₂ f) (h₂ : cont t₁ t₃ f) : cont t₁ (t₂ ⊓ t₃) f := continuous_iff_coinduced_le.2 $ le_inf (continuous_iff_coinduced_le.1 h₁) (continuous_iff_coinduced_le.1 h₂) lemma continuous_inf_dom_left {t₁ t₂ : tspace α} {t₃ : tspace β} : cont t₁ t₃ f → cont (t₁ ⊓ t₂) t₃ f := continuous_le_dom inf_le_left lemma continuous_inf_dom_right {t₁ t₂ : tspace α} {t₃ : tspace β} : cont t₂ t₃ f → cont (t₁ ⊓ t₂) t₃ f := continuous_le_dom inf_le_right lemma continuous_Inf_dom {t₁ : set (tspace α)} {t₂ : tspace β} {t : tspace α} (h₁ : t ∈ t₁) : cont t t₂ f → cont (Inf t₁) t₂ f := continuous_le_dom $ Inf_le h₁ lemma continuous_Inf_rng {t₁ : tspace α} {t₂ : set (tspace β)} (h : ∀t∈t₂, cont t₁ t f) : cont t₁ (Inf t₂) f := continuous_iff_coinduced_le.2 $ le_Inf $ assume b hb, continuous_iff_coinduced_le.1 $ h b hb lemma continuous_infi_dom {t₁ : ι → tspace α} {t₂ : tspace β} {i : ι} : cont (t₁ i) t₂ f → cont (infi t₁) t₂ f := continuous_le_dom $ infi_le _ _ lemma continuous_infi_rng {t₁ : tspace α} {t₂ : ι → tspace β} (h : ∀i, cont t₁ (t₂ i) f) : cont t₁ (infi t₂) f := continuous_iff_coinduced_le.2 $ le_infi $ assume i, continuous_iff_coinduced_le.1 $ h i lemma continuous_bot {t : tspace β} : cont ⊥ t f := continuous_iff_le_induced.2 $ bot_le lemma continuous_top {t : tspace α} : cont t ⊤ f := continuous_iff_coinduced_le.2 $ le_top /- 𝓝 in the induced topology -/ theorem mem_nhds_induced [T : topological_space α] (f : β → α) (a : β) (s : set β) : s ∈ @nhds β (topological_space.induced f T) a ↔ ∃ u ∈ 𝓝 (f a), f ⁻¹' u ⊆ s := begin simp only [mem_nhds_sets_iff, is_open_induced_iff, exists_prop, set.mem_set_of_eq], split, { rintros ⟨u, usub, ⟨v, openv, ueq⟩, au⟩, exact ⟨v, ⟨v, set.subset.refl v, openv, by rwa ←ueq at au⟩, by rw ueq; exact usub⟩ }, rintros ⟨u, ⟨v, vsubu, openv, amem⟩, finvsub⟩, exact ⟨f ⁻¹' v, set.subset.trans (set.preimage_mono vsubu) finvsub, ⟨⟨v, openv, rfl⟩, amem⟩⟩ end theorem nhds_induced [T : topological_space α] (f : β → α) (a : β) : @nhds β (topological_space.induced f T) a = comap f (𝓝 (f a)) := filter_eq $ by ext s; rw mem_nhds_induced; rw mem_comap_sets lemma induced_iff_nhds_eq [tα : topological_space α] [tβ : topological_space β] (f : β → α) : tβ = tα.induced f ↔ ∀ b, 𝓝 b = comap f (𝓝 $ f b) := ⟨λ h a, h.symm ▸ nhds_induced f a, λ h, eq_of_nhds_eq_nhds $ λ x, by rw [h, nhds_induced]⟩ theorem map_nhds_induced_of_surjective [T : topological_space α] {f : β → α} (hf : function.surjective f) (a : β) : map f (@nhds β (topological_space.induced f T) a) = 𝓝 (f a) := by rw [nhds_induced, map_comap_of_surjective hf] end constructions section induced open topological_space variables {α : Type*} {β : Type*} variables [t : topological_space β] {f : α → β} theorem is_open_induced_eq {s : set α} : @_root_.is_open _ (induced f t) s ↔ s ∈ preimage f '' {s | is_open s} := iff.rfl theorem is_open_induced {s : set β} (h : is_open s) : (induced f t).is_open (f ⁻¹' s) := ⟨s, h, rfl⟩ lemma map_nhds_induced_eq {a : α} (h : range f ∈ 𝓝 (f a)) : map f (@nhds α (induced f t) a) = 𝓝 (f a) := by rw [nhds_induced, filter.map_comap h] lemma closure_induced [t : topological_space β] {f : α → β} {a : α} {s : set α} (hf : ∀x y, f x = f y → x = y) : a ∈ @closure α (topological_space.induced f t) s ↔ f a ∈ closure (f '' s) := have comap f (𝓝 (f a) ⊓ principal (f '' s)) ≠ ⊥ ↔ 𝓝 (f a) ⊓ principal (f '' s) ≠ ⊥, from ⟨assume h₁ h₂, h₁ $ h₂.symm ▸ comap_bot, assume h, forall_sets_nonempty_iff_ne_bot.mp $ assume s₁ ⟨s₂, hs₂, (hs : f ⁻¹' s₂ ⊆ s₁)⟩, have f '' s ∈ 𝓝 (f a) ⊓ principal (f '' s), from mem_inf_sets_of_right $ by simp [subset.refl], have s₂ ∩ f '' s ∈ 𝓝 (f a) ⊓ principal (f '' s), from inter_mem_sets hs₂ this, let ⟨b, hb₁, ⟨a, ha, ha₂⟩⟩ := nonempty_of_mem_sets h this in ⟨_, hs $ by rwa [←ha₂] at hb₁⟩⟩, calc a ∈ @closure α (topological_space.induced f t) s ↔ (@nhds α (topological_space.induced f t) a) ⊓ principal s ≠ ⊥ : by rw [closure_eq_nhds]; refl ... ↔ comap f (𝓝 (f a)) ⊓ principal (f ⁻¹' (f '' s)) ≠ ⊥ : by rw [nhds_induced, preimage_image_eq _ hf] ... ↔ comap f (𝓝 (f a) ⊓ principal (f '' s)) ≠ ⊥ : by rw [comap_inf, ←comap_principal] ... ↔ _ : by rwa [closure_eq_nhds] end induced section sierpinski variables {α : Type*} [topological_space α] @[simp] lemma is_open_singleton_true : is_open ({true} : set Prop) := topological_space.generate_open.basic _ (by simp) lemma continuous_Prop {p : α → Prop} : continuous p ↔ is_open {x | p x} := ⟨assume h : continuous p, have is_open (p ⁻¹' {true}), from h _ is_open_singleton_true, by simp [preimage, eq_true] at this; assumption, assume h : is_open {x | p x}, continuous_generated_from $ assume s (hs : s ∈ {{true}}), by simp at hs; simp [hs, preimage, eq_true, h]⟩ end sierpinski section infi variables {α : Type u} {ι : Type v} {t : ι → topological_space α} lemma is_open_supr_iff {s : set α} : @is_open _ (⨆ i, t i) s ↔ ∀ i, @is_open _ (t i) s := begin -- s defines a map from α to Prop, which is continuous iff s is open. suffices : @continuous _ _ (⨆ i, t i) _ s ↔ ∀ i, @continuous _ _ (t i) _ s, { simpa only [continuous_Prop] using this }, simp only [continuous_iff_le_induced, supr_le_iff] end lemma is_closed_infi_iff {s : set α} : @is_closed _ (⨆ i, t i) s ↔ ∀ i, @is_closed _ (t i) s := is_open_supr_iff end infi
07c02c388c78d0742d31bc239b96eaa4a0fe1b78
cf39355caa609c0f33405126beee2739aa3cb77e
/tests/lean/run/smt_facts_as_hinst_lemmas.lean
012fa7f8ec3bdd765466f0327f46882e1769467e
[ "Apache-2.0" ]
permissive
leanprover-community/lean
12b87f69d92e614daea8bcc9d4de9a9ace089d0e
cce7990ea86a78bdb383e38ed7f9b5ba93c60ce0
refs/heads/master
1,687,508,156,644
1,684,951,104,000
1,684,951,104,000
169,960,991
457
107
Apache-2.0
1,686,744,372,000
1,549,790,268,000
C++
UTF-8
Lean
false
false
132
lean
lemma aux : nat.succ 0 = 1 := rfl attribute [ematch] aux lemma ex (a : nat) : a = 1 → nat.succ 0 = a := begin [smt] close end
a6d21296aacc290c20e7ea54a9ea0004d924e6e9
46125763b4dbf50619e8846a1371029346f4c3db
/src/topology/basic.lean
76432e56356eb5653341393ea2134c603fbc6e66
[ "Apache-2.0" ]
permissive
thjread/mathlib
a9d97612cedc2c3101060737233df15abcdb9eb1
7cffe2520a5518bba19227a107078d83fa725ddc
refs/heads/master
1,615,637,696,376
1,583,953,063,000
1,583,953,063,000
246,680,271
0
0
Apache-2.0
1,583,960,875,000
1,583,960,875,000
null
UTF-8
Lean
false
false
35,543
lean
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Mario Carneiro, Jeremy Avigad -/ import order.filter order.filter.bases /-! # Basic theory of topological spaces. The main definition is the type class `topological space α` which endows a type `α` with a topology. Then `set α` gets predicates `is_open`, `is_closed` and functions `interior`, `closure` and `frontier`. Each point `x` of `α` gets a neighborhood filter `𝓝 x`. This file also defines locally finite families of subsets of `α`. For topological spaces `α` and `β`, a function `f : α → β` and a point `a : α`, `continuous_at f a` means `f` is continuous at `a`, and global continuity is `continuous f`. There is also a version of continuity `pcontinuous` for partially defined functions. ## Implementation notes Topology in mathlib heavily uses filters (even more than in Bourbaki). See explanations in `docs/theories/topology.md`. ## References * [N. Bourbaki, *General Topology*][bourbaki1966] * [I. M. James, *Topologies and Uniformities*][james1999] ## Tags topological space, interior, closure, frontier, neighborhood, continuity, continuous function -/ open set filter lattice classical open_locale classical universes u v w /-- A topology on `α`. -/ structure topological_space (α : Type u) := (is_open : set α → Prop) (is_open_univ : is_open univ) (is_open_inter : ∀s t, is_open s → is_open t → is_open (s ∩ t)) (is_open_sUnion : ∀s, (∀t∈s, is_open t) → is_open (⋃₀ s)) attribute [class] topological_space /-- A constructor for topologies by specifying the closed sets, and showing that they satisfy the appropriate conditions. -/ def topological_space.of_closed {α : Type u} (T : set (set α)) (empty_mem : ∅ ∈ T) (sInter_mem : ∀ A ⊆ T, ⋂₀ A ∈ T) (union_mem : ∀ A B ∈ T, A ∪ B ∈ T) : topological_space α := { is_open := λ X, -X ∈ T, is_open_univ := by simp [empty_mem], is_open_inter := λ s t hs ht, by simpa [set.compl_inter] using union_mem (-s) (-t) hs ht, is_open_sUnion := λ s hs, by rw set.compl_sUnion; exact sInter_mem (set.compl '' s) (λ z ⟨y, hy, hz⟩, by simpa [hz.symm] using hs y hy) } section topological_space variables {α : Type u} {β : Type v} {ι : Sort w} {a : α} {s s₁ s₂ : set α} {p p₁ p₂ : α → Prop} @[ext] lemma topological_space_eq : ∀ {f g : topological_space α}, f.is_open = g.is_open → f = g | ⟨a, _, _, _⟩ ⟨b, _, _, _⟩ rfl := rfl section variables [t : topological_space α] include t /-- `is_open s` means that `s` is open in the ambient topological space on `α` -/ def is_open (s : set α) : Prop := topological_space.is_open t s @[simp] lemma is_open_univ : is_open (univ : set α) := topological_space.is_open_univ t lemma is_open_inter (h₁ : is_open s₁) (h₂ : is_open s₂) : is_open (s₁ ∩ s₂) := topological_space.is_open_inter t s₁ s₂ h₁ h₂ lemma is_open_sUnion {s : set (set α)} (h : ∀t ∈ s, is_open t) : is_open (⋃₀ s) := topological_space.is_open_sUnion t s h end lemma is_open_fold {s : set α} {t : topological_space α} : t.is_open s = @is_open α t s := rfl variables [topological_space α] lemma is_open_Union {f : ι → set α} (h : ∀i, is_open (f i)) : is_open (⋃i, f i) := is_open_sUnion $ by rintro _ ⟨i, rfl⟩; exact h i lemma is_open_bUnion {s : set β} {f : β → set α} (h : ∀i∈s, is_open (f i)) : is_open (⋃i∈s, f i) := is_open_Union $ assume i, is_open_Union $ assume hi, h i hi lemma is_open_union (h₁ : is_open s₁) (h₂ : is_open s₂) : is_open (s₁ ∪ s₂) := by rw union_eq_Union; exact is_open_Union (bool.forall_bool.2 ⟨h₂, h₁⟩) @[simp] lemma is_open_empty : is_open (∅ : set α) := by rw ← sUnion_empty; exact is_open_sUnion (assume a, false.elim) lemma is_open_sInter {s : set (set α)} (hs : finite s) : (∀t ∈ s, is_open t) → is_open (⋂₀ s) := finite.induction_on hs (λ _, by rw sInter_empty; exact is_open_univ) $ λ a s has hs ih h, by rw sInter_insert; exact is_open_inter (h _ $ mem_insert _ _) (ih $ λ t, h t ∘ mem_insert_of_mem _) lemma is_open_bInter {s : set β} {f : β → set α} (hs : finite s) : (∀i∈s, is_open (f i)) → is_open (⋂i∈s, f i) := finite.induction_on hs (λ _, by rw bInter_empty; exact is_open_univ) (λ a s has hs ih h, by rw bInter_insert; exact is_open_inter (h a (mem_insert _ _)) (ih (λ i hi, h i (mem_insert_of_mem _ hi)))) lemma is_open_Inter [fintype β] {s : β → set α} (h : ∀ i, is_open (s i)) : is_open (⋂ i, s i) := suffices is_open (⋂ (i : β) (hi : i ∈ @univ β), s i), by simpa, is_open_bInter finite_univ (λ i _, h i) lemma is_open_Inter_prop {p : Prop} {s : p → set α} (h : ∀ h : p, is_open (s h)) : is_open (Inter s) := by by_cases p; simp * lemma is_open_const {p : Prop} : is_open {a : α | p} := by_cases (assume : p, begin simp only [this]; exact is_open_univ end) (assume : ¬ p, begin simp only [this]; exact is_open_empty end) lemma is_open_and : is_open {a | p₁ a} → is_open {a | p₂ a} → is_open {a | p₁ a ∧ p₂ a} := is_open_inter /-- A set is closed if its complement is open -/ def is_closed (s : set α) : Prop := is_open (-s) @[simp] lemma is_closed_empty : is_closed (∅ : set α) := by unfold is_closed; rw compl_empty; exact is_open_univ @[simp] lemma is_closed_univ : is_closed (univ : set α) := by unfold is_closed; rw compl_univ; exact is_open_empty lemma is_closed_union : is_closed s₁ → is_closed s₂ → is_closed (s₁ ∪ s₂) := λ h₁ h₂, by unfold is_closed; rw compl_union; exact is_open_inter h₁ h₂ lemma is_closed_sInter {s : set (set α)} : (∀t ∈ s, is_closed t) → is_closed (⋂₀ s) := by simp only [is_closed, compl_sInter, sUnion_image]; exact assume h, is_open_Union $ assume t, is_open_Union $ assume ht, h t ht lemma is_closed_Inter {f : ι → set α} (h : ∀i, is_closed (f i)) : is_closed (⋂i, f i ) := is_closed_sInter $ assume t ⟨i, (heq : f i = t)⟩, heq ▸ h i @[simp] lemma is_open_compl_iff {s : set α} : is_open (-s) ↔ is_closed s := iff.rfl @[simp] lemma is_closed_compl_iff {s : set α} : is_closed (-s) ↔ is_open s := by rw [←is_open_compl_iff, compl_compl] lemma is_open_diff {s t : set α} (h₁ : is_open s) (h₂ : is_closed t) : is_open (s \ t) := is_open_inter h₁ $ is_open_compl_iff.mpr h₂ lemma is_closed_inter (h₁ : is_closed s₁) (h₂ : is_closed s₂) : is_closed (s₁ ∩ s₂) := by rw [is_closed, compl_inter]; exact is_open_union h₁ h₂ lemma is_closed_bUnion {s : set β} {f : β → set α} (hs : finite s) : (∀i∈s, is_closed (f i)) → is_closed (⋃i∈s, f i) := finite.induction_on hs (λ _, by rw bUnion_empty; exact is_closed_empty) (λ a s has hs ih h, by rw bUnion_insert; exact is_closed_union (h a (mem_insert _ _)) (ih (λ i hi, h i (mem_insert_of_mem _ hi)))) lemma is_closed_Union [fintype β] {s : β → set α} (h : ∀ i, is_closed (s i)) : is_closed (Union s) := suffices is_closed (⋃ (i : β) (hi : i ∈ @univ β), s i), by convert this; simp [set.ext_iff], is_closed_bUnion finite_univ (λ i _, h i) lemma is_closed_Union_prop {p : Prop} {s : p → set α} (h : ∀ h : p, is_closed (s h)) : is_closed (Union s) := by by_cases p; simp * lemma is_closed_imp {p q : α → Prop} (hp : is_open {x | p x}) (hq : is_closed {x | q x}) : is_closed {x | p x → q x} := have {x | p x → q x} = (- {x | p x}) ∪ {x | q x}, from set.ext $ λ x, imp_iff_not_or, by rw [this]; exact is_closed_union (is_closed_compl_iff.mpr hp) hq lemma is_open_neg : is_closed {a | p a} → is_open {a | ¬ p a} := is_open_compl_iff.mpr /-- The interior of a set `s` is the largest open subset of `s`. -/ def interior (s : set α) : set α := ⋃₀ {t | is_open t ∧ t ⊆ s} lemma mem_interior {s : set α} {x : α} : x ∈ interior s ↔ ∃ t ⊆ s, is_open t ∧ x ∈ t := by simp only [interior, mem_set_of_eq, exists_prop, and_assoc, and.left_comm] @[simp] lemma is_open_interior {s : set α} : is_open (interior s) := is_open_sUnion $ assume t ⟨h₁, h₂⟩, h₁ lemma interior_subset {s : set α} : interior s ⊆ s := sUnion_subset $ assume t ⟨h₁, h₂⟩, h₂ lemma interior_maximal {s t : set α} (h₁ : t ⊆ s) (h₂ : is_open t) : t ⊆ interior s := subset_sUnion_of_mem ⟨h₂, h₁⟩ lemma interior_eq_of_open {s : set α} (h : is_open s) : interior s = s := subset.antisymm interior_subset (interior_maximal (subset.refl s) h) lemma interior_eq_iff_open {s : set α} : interior s = s ↔ is_open s := ⟨assume h, h ▸ is_open_interior, interior_eq_of_open⟩ lemma subset_interior_iff_open {s : set α} : s ⊆ interior s ↔ is_open s := by simp only [interior_eq_iff_open.symm, subset.antisymm_iff, interior_subset, true_and] lemma subset_interior_iff_subset_of_open {s t : set α} (h₁ : is_open s) : s ⊆ interior t ↔ s ⊆ t := ⟨assume h, subset.trans h interior_subset, assume h₂, interior_maximal h₂ h₁⟩ lemma interior_mono {s t : set α} (h : s ⊆ t) : interior s ⊆ interior t := interior_maximal (subset.trans interior_subset h) is_open_interior @[simp] lemma interior_empty : interior (∅ : set α) = ∅ := interior_eq_of_open is_open_empty @[simp] lemma interior_univ : interior (univ : set α) = univ := interior_eq_of_open is_open_univ @[simp] lemma interior_interior {s : set α} : interior (interior s) = interior s := interior_eq_of_open is_open_interior @[simp] lemma interior_inter {s t : set α} : interior (s ∩ t) = interior s ∩ interior t := subset.antisymm (subset_inter (interior_mono $ inter_subset_left s t) (interior_mono $ inter_subset_right s t)) (interior_maximal (inter_subset_inter interior_subset interior_subset) $ is_open_inter is_open_interior is_open_interior) lemma interior_union_is_closed_of_interior_empty {s t : set α} (h₁ : is_closed s) (h₂ : interior t = ∅) : interior (s ∪ t) = interior s := have interior (s ∪ t) ⊆ s, from assume x ⟨u, ⟨(hu₁ : is_open u), (hu₂ : u ⊆ s ∪ t)⟩, (hx₁ : x ∈ u)⟩, classical.by_contradiction $ assume hx₂ : x ∉ s, have u \ s ⊆ t, from assume x ⟨h₁, h₂⟩, or.resolve_left (hu₂ h₁) h₂, have u \ s ⊆ interior t, by rwa subset_interior_iff_subset_of_open (is_open_diff hu₁ h₁), have u \ s ⊆ ∅, by rwa h₂ at this, this ⟨hx₁, hx₂⟩, subset.antisymm (interior_maximal this is_open_interior) (interior_mono $ subset_union_left _ _) lemma is_open_iff_forall_mem_open : is_open s ↔ ∀ x ∈ s, ∃ t ⊆ s, is_open t ∧ x ∈ t := by rw ← subset_interior_iff_open; simp only [subset_def, mem_interior] /-- The closure of `s` is the smallest closed set containing `s`. -/ def closure (s : set α) : set α := ⋂₀ {t | is_closed t ∧ s ⊆ t} @[simp] lemma is_closed_closure {s : set α} : is_closed (closure s) := is_closed_sInter $ assume t ⟨h₁, h₂⟩, h₁ lemma subset_closure {s : set α} : s ⊆ closure s := subset_sInter $ assume t ⟨h₁, h₂⟩, h₂ lemma closure_minimal {s t : set α} (h₁ : s ⊆ t) (h₂ : is_closed t) : closure s ⊆ t := sInter_subset_of_mem ⟨h₂, h₁⟩ lemma closure_eq_of_is_closed {s : set α} (h : is_closed s) : closure s = s := subset.antisymm (closure_minimal (subset.refl s) h) subset_closure lemma closure_eq_iff_is_closed {s : set α} : closure s = s ↔ is_closed s := ⟨assume h, h ▸ is_closed_closure, closure_eq_of_is_closed⟩ lemma closure_subset_iff_subset_of_is_closed {s t : set α} (h₁ : is_closed t) : closure s ⊆ t ↔ s ⊆ t := ⟨subset.trans subset_closure, assume h, closure_minimal h h₁⟩ lemma closure_mono {s t : set α} (h : s ⊆ t) : closure s ⊆ closure t := closure_minimal (subset.trans h subset_closure) is_closed_closure lemma monotone_closure (α : Type*) [topological_space α] : monotone (@closure α _) := λ _ _, closure_mono lemma closure_inter_subset_inter_closure (s t : set α) : closure (s ∩ t) ⊆ closure s ∩ closure t := (monotone_closure α).map_inf_le s t lemma is_closed_of_closure_subset {s : set α} (h : closure s ⊆ s) : is_closed s := by rw subset.antisymm subset_closure h; exact is_closed_closure @[simp] lemma closure_empty : closure (∅ : set α) = ∅ := closure_eq_of_is_closed is_closed_empty lemma closure_empty_iff (s : set α) : closure s = ∅ ↔ s = ∅ := ⟨subset_eq_empty subset_closure, λ h, h.symm ▸ closure_empty⟩ lemma set.nonempty.closure {s : set α} (h : s.nonempty) : set.nonempty (closure s) := let ⟨x, hx⟩ := h in ⟨x, subset_closure hx⟩ @[simp] lemma closure_univ : closure (univ : set α) = univ := closure_eq_of_is_closed is_closed_univ @[simp] lemma closure_closure {s : set α} : closure (closure s) = closure s := closure_eq_of_is_closed is_closed_closure @[simp] lemma closure_union {s t : set α} : closure (s ∪ t) = closure s ∪ closure t := subset.antisymm (closure_minimal (union_subset_union subset_closure subset_closure) $ is_closed_union is_closed_closure is_closed_closure) ((monotone_closure α).le_map_sup s t) lemma interior_subset_closure {s : set α} : interior s ⊆ closure s := subset.trans interior_subset subset_closure lemma closure_eq_compl_interior_compl {s : set α} : closure s = - interior (- s) := begin unfold interior closure is_closed, rw [compl_sUnion, compl_image_set_of], simp only [compl_subset_compl] end @[simp] lemma interior_compl {s : set α} : interior (- s) = - closure s := by simp [closure_eq_compl_interior_compl] @[simp] lemma closure_compl {s : set α} : closure (- s) = - interior s := by simp [closure_eq_compl_interior_compl] theorem mem_closure_iff {s : set α} {a : α} : a ∈ closure s ↔ ∀ o, is_open o → a ∈ o → (o ∩ s).nonempty := ⟨λ h o oo ao, classical.by_contradiction $ λ os, have s ⊆ -o, from λ x xs xo, os ⟨x, xo, xs⟩, closure_minimal this (is_closed_compl_iff.2 oo) h ao, λ H c ⟨h₁, h₂⟩, classical.by_contradiction $ λ nc, let ⟨x, hc, hs⟩ := (H _ h₁ nc) in hc (h₂ hs)⟩ lemma dense_iff_inter_open {s : set α} : closure s = univ ↔ ∀ U, is_open U → U.nonempty → (U ∩ s).nonempty := begin split ; intro h, { rintros U U_op ⟨x, x_in⟩, exact mem_closure_iff.1 (by simp only [h]) U U_op x_in }, { apply eq_univ_of_forall, intro x, rw mem_closure_iff, intros U U_op x_in, exact h U U_op ⟨_, x_in⟩ }, end lemma dense_of_subset_dense {s₁ s₂ : set α} (h : s₁ ⊆ s₂) (hd : closure s₁ = univ) : closure s₂ = univ := by { rw [← univ_subset_iff, ← hd], exact closure_mono h } /-- The frontier of a set is the set of points between the closure and interior. -/ def frontier (s : set α) : set α := closure s \ interior s lemma frontier_eq_closure_inter_closure {s : set α} : frontier s = closure s ∩ closure (- s) := by rw [closure_compl, frontier, diff_eq] /-- The complement of a set has the same frontier as the original set. -/ @[simp] lemma frontier_compl (s : set α) : frontier (-s) = frontier s := by simp only [frontier_eq_closure_inter_closure, lattice.neg_neg, inter_comm] lemma frontier_inter_subset (s t : set α) : frontier (s ∩ t) ⊆ (frontier s ∩ closure t) ∪ (closure s ∩ frontier t) := begin simp only [frontier_eq_closure_inter_closure, compl_inter, closure_union], convert inter_subset_inter_left _ (closure_inter_subset_inter_closure s t), simp only [inter_distrib_left, inter_distrib_right, inter_assoc], congr' 2, apply inter_comm end lemma frontier_union_subset (s t : set α) : frontier (s ∪ t) ⊆ (frontier s ∩ closure (-t)) ∪ (closure (-s) ∩ frontier t) := by simpa only [frontier_compl, (compl_union _ _).symm] using frontier_inter_subset (-s) (-t) lemma is_closed.frontier_eq {s : set α} (hs : is_closed s) : frontier s = s \ interior s := by rw [frontier, closure_eq_of_is_closed hs] lemma is_open.frontier_eq {s : set α} (hs : is_open s) : frontier s = closure s \ s := by rw [frontier, interior_eq_of_open hs] /-- The frontier of a set is closed. -/ lemma is_closed_frontier {s : set α} : is_closed (frontier s) := by rw frontier_eq_closure_inter_closure; exact is_closed_inter is_closed_closure is_closed_closure /-- The frontier of a set has no interior point. -/ lemma interior_frontier {s : set α} (h : is_closed s) : interior (frontier s) = ∅ := begin have A : frontier s = s \ interior s, from h.frontier_eq, have B : interior (frontier s) ⊆ interior s, by rw A; exact interior_mono (diff_subset _ _), have C : interior (frontier s) ⊆ frontier s := interior_subset, have : interior (frontier s) ⊆ (interior s) ∩ (s \ interior s) := subset_inter B (by simpa [A] using C), rwa [inter_diff_self, subset_empty_iff] at this, end /-- neighbourhood filter -/ def nhds (a : α) : filter α := (⨅ s ∈ {s : set α | a ∈ s ∧ is_open s}, principal s) localized "notation `𝓝` := nhds" in topological_space lemma nhds_def (a : α) : 𝓝 a = (⨅ s ∈ {s : set α | a ∈ s ∧ is_open s}, principal s) := rfl lemma nhds_basis_opens (a : α) : (𝓝 a).has_basis (λ s : set α, a ∈ s ∧ is_open s) id := has_basis_binfi_principal (λ s ⟨has, hs⟩ t ⟨hat, ht⟩, ⟨s ∩ t, ⟨⟨has, hat⟩, is_open_inter hs ht⟩, ⟨inter_subset_left _ _, inter_subset_right _ _⟩⟩) ⟨univ, ⟨mem_univ a, is_open_univ⟩⟩ lemma le_nhds_iff {f a} : f ≤ 𝓝 a ↔ ∀ s : set α, a ∈ s → is_open s → s ∈ f := by simp [nhds_def] lemma nhds_le_of_le {f a} {s : set α} (h : a ∈ s) (o : is_open s) (sf : principal s ≤ f) : 𝓝 a ≤ f := by rw nhds_def; exact infi_le_of_le s (infi_le_of_le ⟨h, o⟩ sf) lemma mem_nhds_sets_iff {a : α} {s : set α} : s ∈ 𝓝 a ↔ ∃t⊆s, is_open t ∧ a ∈ t := (nhds_basis_opens a).mem_iff.trans ⟨λ ⟨t, ⟨hat, ht⟩, hts⟩, ⟨t, hts, ht, hat⟩, λ ⟨t, hts, ht, hat⟩, ⟨t, ⟨hat, ht⟩, hts⟩⟩ lemma map_nhds {a : α} {f : α → β} : map f (𝓝 a) = (⨅ s ∈ {s : set α | a ∈ s ∧ is_open s}, principal (image f s)) := ((nhds_basis_opens a).map f).eq_binfi attribute [irreducible] nhds lemma mem_of_nhds {a : α} {s : set α} : s ∈ 𝓝 a → a ∈ s := λ H, let ⟨t, ht, _, hs⟩ := mem_nhds_sets_iff.1 H in ht hs lemma mem_nhds_sets {a : α} {s : set α} (hs : is_open s) (ha : a ∈ s) : s ∈ 𝓝 a := mem_nhds_sets_iff.2 ⟨s, subset.refl _, hs, ha⟩ theorem all_mem_nhds (x : α) (P : set α → Prop) (hP : ∀ s t, s ⊆ t → P s → P t) : (∀ s ∈ 𝓝 x, P s) ↔ (∀ s, is_open s → x ∈ s → P s) := iff.intro (λ h s os xs, h s (mem_nhds_sets os xs)) (λ h t, begin change t ∈ 𝓝 x → P t, rw mem_nhds_sets_iff, rintros ⟨s, hs, opens, xs⟩, exact hP _ _ hs (h s opens xs), end) theorem all_mem_nhds_filter (x : α) (f : set α → set β) (hf : ∀ s t, s ⊆ t → f s ⊆ f t) (l : filter β) : (∀ s ∈ 𝓝 x, f s ∈ l) ↔ (∀ s, is_open s → x ∈ s → f s ∈ l) := all_mem_nhds _ _ (λ s t ssubt h, mem_sets_of_superset h (hf s t ssubt)) theorem rtendsto_nhds {r : rel β α} {l : filter β} {a : α} : rtendsto r l (𝓝 a) ↔ (∀ s, is_open s → a ∈ s → r.core s ∈ l) := all_mem_nhds_filter _ _ (λ s t, id) _ theorem rtendsto'_nhds {r : rel β α} {l : filter β} {a : α} : rtendsto' r l (𝓝 a) ↔ (∀ s, is_open s → a ∈ s → r.preimage s ∈ l) := by { rw [rtendsto'_def], apply all_mem_nhds_filter, apply rel.preimage_mono } theorem ptendsto_nhds {f : β →. α} {l : filter β} {a : α} : ptendsto f l (𝓝 a) ↔ (∀ s, is_open s → a ∈ s → f.core s ∈ l) := rtendsto_nhds theorem ptendsto'_nhds {f : β →. α} {l : filter β} {a : α} : ptendsto' f l (𝓝 a) ↔ (∀ s, is_open s → a ∈ s → f.preimage s ∈ l) := rtendsto'_nhds theorem tendsto_nhds {f : β → α} {l : filter β} {a : α} : tendsto f l (𝓝 a) ↔ (∀ s, is_open s → a ∈ s → f ⁻¹' s ∈ l) := all_mem_nhds_filter _ _ (λ s t h, preimage_mono h) _ lemma tendsto_const_nhds {a : α} {f : filter β} : tendsto (λb:β, a) f (𝓝 a) := tendsto_nhds.mpr $ assume s hs ha, univ_mem_sets' $ assume _, ha lemma pure_le_nhds : pure ≤ (𝓝 : α → filter α) := assume a s hs, mem_pure_sets.2 $ mem_of_nhds hs lemma tendsto_pure_nhds {α : Type*} [topological_space β] (f : α → β) (a : α) : tendsto f (pure a) (𝓝 (f a)) := begin rw [tendsto, filter.map_pure], exact pure_le_nhds (f a) end @[simp] lemma nhds_ne_bot {a : α} : 𝓝 a ≠ ⊥ := ne_bot_of_le_ne_bot pure_ne_bot (pure_le_nhds a) lemma interior_eq_nhds {s : set α} : interior s = {a | 𝓝 a ≤ principal s} := set.ext $ λ x, by simp only [mem_interior, le_principal_iff, mem_nhds_sets_iff]; refl lemma mem_interior_iff_mem_nhds {s : set α} {a : α} : a ∈ interior s ↔ s ∈ 𝓝 a := by simp only [interior_eq_nhds, le_principal_iff]; refl lemma is_open_iff_nhds {s : set α} : is_open s ↔ ∀a∈s, 𝓝 a ≤ principal s := calc is_open s ↔ s ⊆ interior s : subset_interior_iff_open.symm ... ↔ (∀a∈s, 𝓝 a ≤ principal s) : by rw [interior_eq_nhds]; refl lemma is_open_iff_mem_nhds {s : set α} : is_open s ↔ ∀a∈s, s ∈ 𝓝 a := is_open_iff_nhds.trans $ forall_congr $ λ _, imp_congr_right $ λ _, le_principal_iff lemma closure_eq_nhds {s : set α} : closure s = {a | 𝓝 a ⊓ principal s ≠ ⊥} := calc closure s = - interior (- s) : closure_eq_compl_interior_compl ... = {a | ¬ 𝓝 a ≤ principal (-s)} : by rw [interior_eq_nhds]; refl ... = {a | 𝓝 a ⊓ principal s ≠ ⊥} : set.ext $ assume a, not_congr (inf_eq_bot_iff_le_compl (show principal s ⊔ principal (-s) = ⊤, by simp only [sup_principal, union_compl_self, principal_univ]) (by simp only [inf_principal, inter_compl_self, principal_empty])).symm theorem mem_closure_iff_nhds {s : set α} {a : α} : a ∈ closure s ↔ ∀ t ∈ 𝓝 a, (t ∩ s).nonempty := mem_closure_iff.trans ⟨λ H t ht, nonempty.mono (inter_subset_inter_left _ interior_subset) (H _ is_open_interior (mem_interior_iff_mem_nhds.2 ht)), λ H o oo ao, H _ (mem_nhds_sets oo ao)⟩ theorem mem_closure_iff_nhds_basis {a : α} {p : β → Prop} {s : β → set α} (h : (𝓝 a).has_basis p s) {t : set α} : a ∈ closure t ↔ ∀ i, p i → ∃ y ∈ t, y ∈ s i := mem_closure_iff_nhds.trans ⟨λ H i hi, let ⟨x, hx⟩ := (H _ $ h.mem_of_mem hi) in ⟨x, hx.2, hx.1⟩, λ H t' ht', let ⟨i, hi, hit⟩ := (h t').1 ht', ⟨x, xt, hx⟩ := H i hi in ⟨x, hit hx, xt⟩⟩ /-- `x` belongs to the closure of `s` if and only if some ultrafilter supported on `s` converges to `x`. -/ lemma mem_closure_iff_ultrafilter {s : set α} {x : α} : x ∈ closure s ↔ ∃ (u : ultrafilter α), s ∈ u.val ∧ u.val ≤ 𝓝 x := begin rw closure_eq_nhds, change 𝓝 x ⊓ principal s ≠ ⊥ ↔ _, symmetry, convert exists_ultrafilter_iff _, ext u, rw [←le_principal_iff, inf_comm, le_inf_iff] end lemma is_closed_iff_nhds {s : set α} : is_closed s ↔ ∀a, 𝓝 a ⊓ principal s ≠ ⊥ → a ∈ s := calc is_closed s ↔ closure s = s : by rw [closure_eq_iff_is_closed] ... ↔ closure s ⊆ s : ⟨assume h, by rw h, assume h, subset.antisymm h subset_closure⟩ ... ↔ (∀a, 𝓝 a ⊓ principal s ≠ ⊥ → a ∈ s) : by rw [closure_eq_nhds]; refl lemma closure_inter_open {s t : set α} (h : is_open s) : s ∩ closure t ⊆ closure (s ∩ t) := assume a ⟨hs, ht⟩, have s ∈ 𝓝 a, from mem_nhds_sets h hs, have 𝓝 a ⊓ principal s = 𝓝 a, from inf_of_le_left $ by rwa le_principal_iff, have 𝓝 a ⊓ principal (s ∩ t) ≠ ⊥, from calc 𝓝 a ⊓ principal (s ∩ t) = 𝓝 a ⊓ (principal s ⊓ principal t) : by rw inf_principal ... = 𝓝 a ⊓ principal t : by rw [←inf_assoc, this] ... ≠ ⊥ : by rw [closure_eq_nhds] at ht; assumption, by rw [closure_eq_nhds]; assumption lemma closure_diff {s t : set α} : closure s - closure t ⊆ closure (s - t) := calc closure s \ closure t = (- closure t) ∩ closure s : by simp only [diff_eq, inter_comm] ... ⊆ closure (- closure t ∩ s) : closure_inter_open $ is_open_compl_iff.mpr $ is_closed_closure ... = closure (s \ closure t) : by simp only [diff_eq, inter_comm] ... ⊆ closure (s \ t) : closure_mono $ diff_subset_diff (subset.refl s) subset_closure lemma mem_of_closed_of_tendsto {f : β → α} {b : filter β} {a : α} {s : set α} (hb : b ≠ ⊥) (hf : tendsto f b (𝓝 a)) (hs : is_closed s) (h : f ⁻¹' s ∈ b) : a ∈ s := have b.map f ≤ 𝓝 a ⊓ principal s, from le_trans (le_inf (le_refl _) (le_principal_iff.mpr h)) (inf_le_inf hf (le_refl _)), is_closed_iff_nhds.mp hs a $ ne_bot_of_le_ne_bot (map_ne_bot hb) this lemma mem_of_closed_of_tendsto' {f : β → α} {x : filter β} {a : α} {s : set α} (hf : tendsto f x (𝓝 a)) (hs : is_closed s) (h : x ⊓ principal (f ⁻¹' s) ≠ ⊥) : a ∈ s := is_closed_iff_nhds.mp hs _ $ ne_bot_of_le_ne_bot (@map_ne_bot _ _ _ f h) $ le_inf (le_trans (map_mono $ inf_le_left) hf) $ le_trans (map_mono $ inf_le_right_of_le $ by simp only [comap_principal, le_principal_iff]; exact subset.refl _) (@map_comap_le _ _ _ f) lemma mem_closure_of_tendsto {f : β → α} {b : filter β} {a : α} {s : set α} (hb : b ≠ ⊥) (hf : tendsto f b (𝓝 a)) (h : f ⁻¹' s ∈ b) : a ∈ closure s := mem_of_closed_of_tendsto hb hf (is_closed_closure) $ filter.mem_sets_of_superset h (preimage_mono subset_closure) /-- Suppose that `f` sends the complement to `s` to a single point `a`, and `l` is some filter. Then `f` tends to `a` along `l` restricted to `s` if and only it tends to `a` along `l`. -/ lemma tendsto_inf_principal_nhds_iff_of_forall_eq {f : β → α} {l : filter β} {s : set β} {a : α} (h : ∀ x ∉ s, f x = a) : tendsto f (l ⊓ principal s) (𝓝 a) ↔ tendsto f l (𝓝 a) := begin rw [tendsto_iff_comap, tendsto_iff_comap], replace h : principal (-s) ≤ comap f (𝓝 a), { rintros U ⟨t, ht, htU⟩ x hx, have : f x ∈ t, from (h x hx).symm ▸ mem_of_nhds ht, exact htU this }, refine ⟨λ h', _, le_trans inf_le_left⟩, have := sup_le h' h, rw [sup_inf_right, sup_principal, union_compl_self, principal_univ, inf_top_eq, sup_le_iff] at this, exact this.1 end section lim variables [nonempty α] /-- If `f` is a filter, then `lim f` is a limit of the filter, if it exists. -/ noncomputable def lim (f : filter α) : α := epsilon $ λa, f ≤ 𝓝 a lemma lim_spec {f : filter α} (h : ∃a, f ≤ 𝓝 a) : f ≤ 𝓝 (lim f) := epsilon_spec h end lim /- locally finite family [General Topology (Bourbaki, 1995)] -/ section locally_finite /-- A family of sets in `set α` is locally finite if at every point `x:α`, there is a neighborhood of `x` which meets only finitely many sets in the family -/ def locally_finite (f : β → set α) := ∀x:α, ∃t ∈ 𝓝 x, finite {i | (f i ∩ t).nonempty } lemma locally_finite_of_finite {f : β → set α} (h : finite (univ : set β)) : locally_finite f := assume x, ⟨univ, univ_mem_sets, finite_subset h $ subset_univ _⟩ lemma locally_finite_subset {f₁ f₂ : β → set α} (hf₂ : locally_finite f₂) (hf : ∀b, f₁ b ⊆ f₂ b) : locally_finite f₁ := assume a, let ⟨t, ht₁, ht₂⟩ := hf₂ a in ⟨t, ht₁, finite_subset ht₂ $ assume i hi, hi.mono $ inter_subset_inter (hf i) $ subset.refl _⟩ lemma is_closed_Union_of_locally_finite {f : β → set α} (h₁ : locally_finite f) (h₂ : ∀i, is_closed (f i)) : is_closed (⋃i, f i) := is_open_iff_nhds.mpr $ assume a, assume h : a ∉ (⋃i, f i), have ∀i, a ∈ -f i, from assume i hi, h $ mem_Union.2 ⟨i, hi⟩, have ∀i, - f i ∈ (𝓝 a), by simp only [mem_nhds_sets_iff]; exact assume i, ⟨- f i, subset.refl _, h₂ i, this i⟩, let ⟨t, h_sets, (h_fin : finite {i | (f i ∩ t).nonempty })⟩ := h₁ a in calc 𝓝 a ≤ principal (t ∩ (⋂ i∈{i | (f i ∩ t).nonempty }, - f i)) : begin rw [le_principal_iff], apply @filter.inter_mem_sets _ (𝓝 a) _ _ h_sets, apply @filter.Inter_mem_sets _ (𝓝 a) _ _ _ h_fin, exact assume i h, this i end ... ≤ principal (- ⋃i, f i) : begin simp only [principal_mono, subset_def, mem_compl_eq, mem_inter_eq, mem_Inter, mem_set_of_eq, mem_Union, and_imp, not_exists, exists_imp_distrib, ne_empty_iff_nonempty, set.nonempty], exact assume x xt ht i xfi, ht i x xfi xt xfi end end locally_finite end topological_space section continuous variables {α : Type*} {β : Type*} {γ : Type*} {δ : Type*} variables [topological_space α] [topological_space β] [topological_space γ] open_locale topological_space /-- A function between topological spaces is continuous if the preimage of every open set is open. -/ def continuous (f : α → β) := ∀s, is_open s → is_open (f ⁻¹' s) /-- A function between topological spaces is continuous at a point `x₀` if `f x` tends to `f x₀` when `x` tends to `x₀`. -/ def continuous_at (f : α → β) (x : α) := tendsto f (𝓝 x) (𝓝 (f x)) lemma continuous_at.preimage_mem_nhds {f : α → β} {x : α} {t : set β} (h : continuous_at f x) (ht : t ∈ 𝓝 (f x)) : f ⁻¹' t ∈ 𝓝 x := h ht lemma continuous_id : continuous (id : α → α) := assume s h, h lemma continuous.comp {g : β → γ} {f : α → β} (hg : continuous g) (hf : continuous f) : continuous (g ∘ f) := assume s h, hf _ (hg s h) lemma continuous_at.comp {g : β → γ} {f : α → β} {x : α} (hg : continuous_at g (f x)) (hf : continuous_at f x) : continuous_at (g ∘ f) x := hg.comp hf lemma continuous.tendsto {f : α → β} (hf : continuous f) (x) : tendsto f (𝓝 x) (𝓝 (f x)) := ((nhds_basis_opens x).tendsto_iff $ nhds_basis_opens $ f x).2 $ λ t ⟨hxt, ht⟩, ⟨f ⁻¹' t, ⟨hxt, hf _ ht⟩, subset.refl _⟩ lemma continuous.continuous_at {f : α → β} {x : α} (h : continuous f) : continuous_at f x := h.tendsto x lemma continuous_iff_continuous_at {f : α → β} : continuous f ↔ ∀ x, continuous_at f x := ⟨continuous.tendsto, assume hf : ∀x, tendsto f (𝓝 x) (𝓝 (f x)), assume s, assume hs : is_open s, have ∀a, f a ∈ s → s ∈ 𝓝 (f a), from λ a ha, mem_nhds_sets hs ha, show is_open (f ⁻¹' s), from is_open_iff_nhds.2 $ λ a ha, le_principal_iff.2 $ hf _ (this a ha)⟩ lemma continuous_const {b : β} : continuous (λa:α, b) := continuous_iff_continuous_at.mpr $ assume a, tendsto_const_nhds lemma continuous_at_const {x : α} {b : β} : continuous_at (λ a:α, b) x := continuous_const.continuous_at lemma continuous_at_id {x : α} : continuous_at id x := continuous_id.continuous_at lemma continuous_iff_is_closed {f : α → β} : continuous f ↔ (∀s, is_closed s → is_closed (f ⁻¹' s)) := ⟨assume hf s hs, hf (-s) hs, assume hf s, by rw [←is_closed_compl_iff, ←is_closed_compl_iff]; exact hf _⟩ lemma continuous_at_iff_ultrafilter {f : α → β} (x) : continuous_at f x ↔ ∀ g, is_ultrafilter g → g ≤ 𝓝 x → g.map f ≤ 𝓝 (f x) := tendsto_iff_ultrafilter f (𝓝 x) (𝓝 (f x)) lemma continuous_iff_ultrafilter {f : α → β} : continuous f ↔ ∀ x g, is_ultrafilter g → g ≤ 𝓝 x → g.map f ≤ 𝓝 (f x) := by simp only [continuous_iff_continuous_at, continuous_at_iff_ultrafilter] /-- A piecewise defined function `if p then f else g` is continuous, if both `f` and `g` are continuous, and they coincide on the frontier (boundary) of the set `{a | p a}`. -/ lemma continuous_if {p : α → Prop} {f g : α → β} {h : ∀a, decidable (p a)} (hp : ∀a∈frontier {a | p a}, f a = g a) (hf : continuous f) (hg : continuous g) : continuous (λa, @ite (p a) (h a) β (f a) (g a)) := continuous_iff_is_closed.mpr $ assume s hs, have (λa, ite (p a) (f a) (g a)) ⁻¹' s = (closure {a | p a} ∩ f ⁻¹' s) ∪ (closure {a | ¬ p a} ∩ g ⁻¹' s), from set.ext $ assume a, classical.by_cases (assume : a ∈ frontier {a | p a}, have hac : a ∈ closure {a | p a}, from this.left, have hai : a ∈ closure {a | ¬ p a}, from have a ∈ - interior {a | p a}, from this.right, by rwa [←closure_compl] at this, by by_cases p a; simp [h, hp a this, hac, hai, iff_def] {contextual := tt}) (assume hf : a ∈ - frontier {a | p a}, classical.by_cases (assume : p a, have hc : a ∈ closure {a | p a}, from subset_closure this, have hnc : a ∉ closure {a | ¬ p a}, by show a ∉ closure (- {a | p a}); rw [closure_compl]; simpa [frontier, hc] using hf, by simp [this, hc, hnc]) (assume : ¬ p a, have hc : a ∈ closure {a | ¬ p a}, from subset_closure this, have hnc : a ∉ closure {a | p a}, begin have hc : a ∈ closure (- {a | p a}), from hc, simp [closure_compl] at hc, simpa [frontier, hc] using hf end, by simp [this, hc, hnc])), by rw [this]; exact is_closed_union (is_closed_inter is_closed_closure $ continuous_iff_is_closed.mp hf s hs) (is_closed_inter is_closed_closure $ continuous_iff_is_closed.mp hg s hs) /- Continuity and partial functions -/ /-- Continuity of a partial function -/ def pcontinuous (f : α →. β) := ∀ s, is_open s → is_open (f.preimage s) lemma open_dom_of_pcontinuous {f : α →. β} (h : pcontinuous f) : is_open f.dom := by rw [←pfun.preimage_univ]; exact h _ is_open_univ lemma pcontinuous_iff' {f : α →. β} : pcontinuous f ↔ ∀ {x y} (h : y ∈ f x), ptendsto' f (𝓝 x) (𝓝 y) := begin split, { intros h x y h', simp only [ptendsto'_def, mem_nhds_sets_iff], rintros s ⟨t, tsubs, opent, yt⟩, exact ⟨f.preimage t, pfun.preimage_mono _ tsubs, h _ opent, ⟨y, yt, h'⟩⟩ }, intros hf s os, rw is_open_iff_nhds, rintros x ⟨y, ys, fxy⟩ t, rw [mem_principal_sets], assume h : f.preimage s ⊆ t, change t ∈ 𝓝 x, apply mem_sets_of_superset _ h, have h' : ∀ s ∈ 𝓝 y, f.preimage s ∈ 𝓝 x, { intros s hs, have : ptendsto' f (𝓝 x) (𝓝 y) := hf fxy, rw ptendsto'_def at this, exact this s hs }, show f.preimage s ∈ 𝓝 x, apply h', rw mem_nhds_sets_iff, exact ⟨s, set.subset.refl _, os, ys⟩ end lemma image_closure_subset_closure_image {f : α → β} {s : set α} (h : continuous f) : f '' closure s ⊆ closure (f '' s) := have ∀ (a : α), 𝓝 a ⊓ principal s ≠ ⊥ → 𝓝 (f a) ⊓ principal (f '' s) ≠ ⊥, from assume a ha, have h₁ : ¬ map f (𝓝 a ⊓ principal s) = ⊥, by rwa[map_eq_bot_iff], have h₂ : map f (𝓝 a ⊓ principal s) ≤ 𝓝 (f a) ⊓ principal (f '' s), from le_inf (le_trans (map_mono inf_le_left) $ by rw [continuous_iff_continuous_at] at h; exact h a) (le_trans (map_mono inf_le_right) $ by simp; exact subset.refl _), ne_bot_of_le_ne_bot h₁ h₂, by simp [image_subset_iff, closure_eq_nhds]; assumption lemma mem_closure {s : set α} {t : set β} {f : α → β} {a : α} (hf : continuous f) (ha : a ∈ closure s) (ht : ∀a∈s, f a ∈ t) : f a ∈ closure t := subset.trans (image_closure_subset_closure_image hf) (closure_mono $ image_subset_iff.2 ht) $ (mem_image_of_mem f ha) end continuous
19eef72c82974d1c11b0a2c510c20959660f06bd
dd4e652c749fea9ac77e404005cb3470e5f75469
/src/trace/trace.lean
acb3caa50e670a9d5d7c10dce3497d7c6a78955a
[]
no_license
skbaek/cvx
e32822ad5943541539966a37dee162b0a5495f55
c50c790c9116f9fac8dfe742903a62bdd7292c15
refs/heads/master
1,623,803,010,339
1,618,058,958,000
1,618,058,958,000
176,293,135
3
2
null
null
null
null
UTF-8
Lean
false
false
1,340
lean
import data.matrix.basic universe variables u v namespace matrix variables {l m n o : Type u} [fintype l] [fintype m] [fintype n] [fintype o] variables {α : Type v} open_locale matrix section trace def trace [add_comm_monoid α] (M : matrix m m α) : α := finset.univ.sum (λ i, M i i) variables {L M N : matrix m m α} @[simp] lemma trace_transpose [add_comm_monoid α] : Mᵀ.trace = M.trace := rfl lemma trace_add [add_comm_monoid α] : (M + N).trace = M.trace + N.trace := finset.sum_add_distrib lemma trace_smul [ring α] {a : α} : (a • M).trace = a * M.trace := finset.mul_sum.symm lemma trace_comm [comm_ring α] : (M ⬝ N).trace = (N ⬝ M).trace := begin classical, unfold trace, dsimp [(⬝)], rw finset.sum_comm, simp only [mul_comm], end lemma trace_zero [add_comm_monoid α] : trace (0 : matrix m m α) = 0 := by simp only [trace, add_monoid.smul_zero, finset.sum_const, matrix.zero_val] lemma trace_diagonal [add_comm_monoid α] [decidable_eq m] {d : m → α} : trace (diagonal d) = finset.univ.sum d := by simp [trace, diagonal] lemma trace_one [decidable_eq m] [add_comm_monoid α] [has_one α] : trace (1 : matrix m m α) = (fintype.card m : α) := begin unfold has_one.one, rw [trace_diagonal, finset.sum_const, add_monoid.smul_one], refl, end end trace end matrix
bfabf661fe83f210ebf7e7b219fca6a48a935dc4
a9d0fb7b0e4f802bd3857b803e6c5c23d87fef91
/library/init/id_locked.lean
8bdb06fe91be9624c5e33db6648e73e17f1d9eff
[ "Apache-2.0" ]
permissive
soonhokong/lean-osx
4a954262c780e404c1369d6c06516161d07fcb40
3670278342d2f4faa49d95b46d86642d7875b47c
refs/heads/master
1,611,410,334,552
1,474,425,686,000
1,474,425,686,000
12,043,103
5
1
null
null
null
null
UTF-8
Lean
false
false
708
lean
/- Copyright (c) 2016 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura -/ prelude import init.meta.tactic init.meta.constructor_tactic open tactic /- Define id_locked using meta-programming because we don't have syntax for setting reducibility_hints. See module init.meta.declaration. -/ run_command do l ← return $ level.param `l, Ty ← return $ expr.sort l, type ← to_expr `(Π {A : %%Ty}, A → A), val ← to_expr `(λ {A : %%Ty} (a : A), a), add_decl (declaration.defn `id_locked [`l] type val reducibility_hints.opaque tt) lemma {u} id_locked_eq {A : Type u} (a : A) : id_locked a = a := rfl
b28074c6368ece37dfab8d093b3c3bcdda0c2122
bbecf0f1968d1fba4124103e4f6b55251d08e9c4
/src/ring_theory/algebraic.lean
a36ab9ece6c073efd36b03ebe3372050cb3ec967
[ "Apache-2.0" ]
permissive
waynemunro/mathlib
e3fd4ff49f4cb43d4a8ded59d17be407bc5ee552
065a70810b5480d584033f7bbf8e0409480c2118
refs/heads/master
1,693,417,182,397
1,634,644,781,000
1,634,644,781,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
10,128
lean
/- Copyright (c) 2019 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin -/ import linear_algebra.finite_dimensional import ring_theory.integral_closure import data.polynomial.integral_normalization /-! # Algebraic elements and algebraic extensions An element of an R-algebra is algebraic over R if it is the root of a nonzero polynomial. An R-algebra is algebraic over R if and only if all its elements are algebraic over R. The main result in this file proves transitivity of algebraicity: a tower of algebraic field extensions is algebraic. -/ universe variables u v open_locale classical open polynomial section variables (R : Type u) {A : Type v} [comm_ring R] [ring A] [algebra R A] /-- An element of an R-algebra is algebraic over R if it is the root of a nonzero polynomial. -/ def is_algebraic (x : A) : Prop := ∃ p : polynomial R, p ≠ 0 ∧ aeval x p = 0 /-- An element of an R-algebra is transcendental over R if it is not algebraic over R. -/ def transcendental (x : A) : Prop := ¬ is_algebraic R x variables {R} /-- A subalgebra is algebraic if all its elements are algebraic. -/ def subalgebra.is_algebraic (S : subalgebra R A) : Prop := ∀ x ∈ S, is_algebraic R x variables (R A) /-- An algebra is algebraic if all its elements are algebraic. -/ def algebra.is_algebraic : Prop := ∀ x : A, is_algebraic R x variables {R A} /-- A subalgebra is algebraic if and only if it is algebraic an algebra. -/ lemma subalgebra.is_algebraic_iff (S : subalgebra R A) : S.is_algebraic ↔ @algebra.is_algebraic R S _ _ (S.algebra) := begin delta algebra.is_algebraic subalgebra.is_algebraic, rw [subtype.forall'], apply forall_congr, rintro ⟨x, hx⟩, apply exists_congr, intro p, apply and_congr iff.rfl, have h : function.injective (S.val) := subtype.val_injective, conv_rhs { rw [← h.eq_iff, alg_hom.map_zero], }, rw [← aeval_alg_hom_apply, S.val_apply] end /-- An algebra is algebraic if and only if it is algebraic as a subalgebra. -/ lemma algebra.is_algebraic_iff : algebra.is_algebraic R A ↔ (⊤ : subalgebra R A).is_algebraic := begin delta algebra.is_algebraic subalgebra.is_algebraic, simp only [algebra.mem_top, forall_prop_of_true, iff_self], end lemma is_algebraic_iff_not_injective {x : A} : is_algebraic R x ↔ ¬ function.injective (polynomial.aeval x : polynomial R →ₐ[R] A) := by simp only [is_algebraic, alg_hom.injective_iff, not_forall, and.comm, exists_prop] end section zero_ne_one variables (R : Type u) {A : Type v} [comm_ring R] [nontrivial R] [ring A] [algebra R A] /-- An integral element of an algebra is algebraic.-/ lemma is_integral.is_algebraic {x : A} (h : is_integral R x) : is_algebraic R x := by { rcases h with ⟨p, hp, hpx⟩, exact ⟨p, hp.ne_zero, hpx⟩ } variables {R} /-- An element of `R` is algebraic, when viewed as an element of the `R`-algebra `A`. -/ lemma is_algebraic_algebra_map (a : R) : is_algebraic R (algebra_map R A a) := ⟨X - C a, X_sub_C_ne_zero a, by simp only [aeval_C, aeval_X, alg_hom.map_sub, sub_self]⟩ end zero_ne_one section field variables (K : Type u) {A : Type v} [field K] [ring A] [algebra K A] /-- An element of an algebra over a field is algebraic if and only if it is integral.-/ lemma is_algebraic_iff_is_integral {x : A} : is_algebraic K x ↔ is_integral K x := begin refine ⟨_, is_integral.is_algebraic K⟩, rintro ⟨p, hp, hpx⟩, refine ⟨_, monic_mul_leading_coeff_inv hp, _⟩, rw [← aeval_def, alg_hom.map_mul, hpx, zero_mul], end lemma is_algebraic_iff_is_integral' : algebra.is_algebraic K A ↔ algebra.is_integral K A := ⟨λ h x, (is_algebraic_iff_is_integral K).mp (h x), λ h x, (is_algebraic_iff_is_integral K).mpr (h x)⟩ end field namespace algebra variables {K : Type*} {L : Type*} {R : Type*} {S : Type*} {A : Type*} variables [field K] [field L] [comm_ring R] [comm_ring S] [comm_ring A] variables [algebra K L] [algebra L A] [algebra K A] [is_scalar_tower K L A] variables [algebra R S] [algebra S A] [algebra R A] [is_scalar_tower R S A] /-- If L is an algebraic field extension of K and A is an algebraic algebra over L, then A is algebraic over K. -/ lemma is_algebraic_trans (L_alg : is_algebraic K L) (A_alg : is_algebraic L A) : is_algebraic K A := begin simp only [is_algebraic, is_algebraic_iff_is_integral] at L_alg A_alg ⊢, exact is_integral_trans L_alg A_alg, end variables (K L) /-- If A is an algebraic algebra over R, then A is algebraic over A when S is an extension of R, and the map from `R` to `S` is injective. -/ lemma is_algebraic_of_larger_base_of_injective (hinj : function.injective (algebra_map R S)) (A_alg : is_algebraic R A) : is_algebraic S A := λ x, let ⟨p, hp₁, hp₂⟩ := A_alg x in ⟨p.map (algebra_map _ _), by rwa [ne.def, ← degree_eq_bot, degree_map' hinj, degree_eq_bot], by simpa⟩ /-- If A is an algebraic algebra over K, then A is algebraic over L when L is an extension of K -/ lemma is_algebraic_of_larger_base (A_alg : is_algebraic K A) : is_algebraic L A := is_algebraic_of_larger_base_of_injective (algebra_map K L).injective A_alg variables {R S K L} /-- A field extension is algebraic if it is finite. -/ lemma is_algebraic_of_finite [finite : finite_dimensional K L] : is_algebraic K L := λ x, (is_algebraic_iff_is_integral _).mpr (is_integral_of_submodule_noetherian ⊤ (is_noetherian_of_submodule_of_noetherian _ _ _ finite) x algebra.mem_top) end algebra variables {R S : Type*} [comm_ring R] [integral_domain R] [comm_ring S] lemma exists_integral_multiple [algebra R S] {z : S} (hz : is_algebraic R z) (inj : ∀ x, algebra_map R S x = 0 → x = 0) : ∃ (x : integral_closure R S) (y ≠ (0 : R)), z * algebra_map R S y = x := begin rcases hz with ⟨p, p_ne_zero, px⟩, set a := p.leading_coeff with a_def, have a_ne_zero : a ≠ 0 := mt polynomial.leading_coeff_eq_zero.mp p_ne_zero, have y_integral : is_integral R (algebra_map R S a) := is_integral_algebra_map, have x_integral : is_integral R (z * algebra_map R S a) := ⟨p.integral_normalization, monic_integral_normalization p_ne_zero, integral_normalization_aeval_eq_zero px inj⟩, exact ⟨⟨_, x_integral⟩, a, a_ne_zero, rfl⟩ end /-- A fraction `(a : S) / (b : S)` can be reduced to `(c : S) / (d : R)`, if `S` is the integral closure of `R` in an algebraic extension `L` of `R`. -/ lemma is_integral_closure.exists_smul_eq_mul {L : Type*} [field L] [algebra R S] [algebra S L] [algebra R L] [is_scalar_tower R S L] [is_integral_closure S R L] (h : algebra.is_algebraic R L) (inj : function.injective (algebra_map R L)) (a : S) {b : S} (hb : b ≠ 0) : ∃ (c : S) (d ≠ (0 : R)), d • a = b * c := begin obtain ⟨c, d, d_ne, hx⟩ := exists_integral_multiple (h (algebra_map _ L a / algebra_map _ L b)) ((ring_hom.injective_iff _).mp inj), refine ⟨is_integral_closure.mk' S (c : L) c.2, d, d_ne, is_integral_closure.algebra_map_injective S R L _⟩, simp only [algebra.smul_def, ring_hom.map_mul, is_integral_closure.algebra_map_mk', ← hx, ← is_scalar_tower.algebra_map_apply], rw [← mul_assoc _ (_ / _), mul_div_cancel' (algebra_map S L a), mul_comm], exact mt ((ring_hom.injective_iff _).mp (is_integral_closure.algebra_map_injective S R L) _) hb end section field variables {K L : Type*} [field K] [field L] [algebra K L] (A : subalgebra K L) lemma inv_eq_of_aeval_div_X_ne_zero {x : L} {p : polynomial K} (aeval_ne : aeval x (div_X p) ≠ 0) : x⁻¹ = aeval x (div_X p) / (aeval x p - algebra_map _ _ (p.coeff 0)) := begin rw [inv_eq_iff, inv_div, div_eq_iff, sub_eq_iff_eq_add, mul_comm], conv_lhs { rw ← div_X_mul_X_add p }, rw [alg_hom.map_add, alg_hom.map_mul, aeval_X, aeval_C], exact aeval_ne end lemma inv_eq_of_root_of_coeff_zero_ne_zero {x : L} {p : polynomial K} (aeval_eq : aeval x p = 0) (coeff_zero_ne : p.coeff 0 ≠ 0) : x⁻¹ = - (aeval x (div_X p) / algebra_map _ _ (p.coeff 0)) := begin convert inv_eq_of_aeval_div_X_ne_zero (mt (λ h, (algebra_map K L).injective _) coeff_zero_ne), { rw [aeval_eq, zero_sub, div_neg] }, rw ring_hom.map_zero, convert aeval_eq, conv_rhs { rw ← div_X_mul_X_add p }, rw [alg_hom.map_add, alg_hom.map_mul, h, zero_mul, zero_add, aeval_C] end lemma subalgebra.inv_mem_of_root_of_coeff_zero_ne_zero {x : A} {p : polynomial K} (aeval_eq : aeval x p = 0) (coeff_zero_ne : p.coeff 0 ≠ 0) : (x⁻¹ : L) ∈ A := begin have : (x⁻¹ : L) = aeval x (div_X p) / (aeval x p - algebra_map _ _ (p.coeff 0)), { rw [aeval_eq, subalgebra.coe_zero, zero_sub, div_neg], convert inv_eq_of_root_of_coeff_zero_ne_zero _ coeff_zero_ne, { rw subalgebra.aeval_coe }, { simpa using aeval_eq } }, rw [this, div_eq_mul_inv, aeval_eq, subalgebra.coe_zero, zero_sub, ← ring_hom.map_neg, ← ring_hom.map_inv], exact A.mul_mem (aeval x p.div_X).2 (A.algebra_map_mem _), end lemma subalgebra.inv_mem_of_algebraic {x : A} (hx : is_algebraic K (x : L)) : (x⁻¹ : L) ∈ A := begin obtain ⟨p, ne_zero, aeval_eq⟩ := hx, rw [subalgebra.aeval_coe, subalgebra.coe_eq_zero] at aeval_eq, revert ne_zero aeval_eq, refine p.rec_on_horner _ _ _, { intro h, contradiction }, { intros p a hp ha ih ne_zero aeval_eq, refine A.inv_mem_of_root_of_coeff_zero_ne_zero aeval_eq _, rwa [coeff_add, hp, zero_add, coeff_C, if_pos rfl] }, { intros p hp ih ne_zero aeval_eq, rw [alg_hom.map_mul, aeval_X, mul_eq_zero] at aeval_eq, cases aeval_eq with aeval_eq x_eq, { exact ih hp aeval_eq }, { rw [x_eq, subalgebra.coe_zero, inv_zero], exact A.zero_mem } } end /-- In an algebraic extension L/K, an intermediate subalgebra is a field. -/ lemma subalgebra.is_field_of_algebraic (hKL : algebra.is_algebraic K L) : is_field A := { mul_inv_cancel := λ a ha, ⟨ ⟨a⁻¹, A.inv_mem_of_algebraic (hKL a)⟩, subtype.ext (mul_inv_cancel (mt (subalgebra.coe_eq_zero _).mp ha))⟩, .. show nontrivial A, by apply_instance, .. subalgebra.to_comm_ring A } end field
870e1673ddc602fe726f7e672853c9917250c807
69d4931b605e11ca61881fc4f66db50a0a875e39
/src/category_theory/limits/shapes/equalizers.lean
0d5536579ed0f90162a2bd498f88e9d4f08429be
[ "Apache-2.0" ]
permissive
abentkamp/mathlib
d9a75d291ec09f4637b0f30cc3880ffb07549ee5
5360e476391508e092b5a1e5210bd0ed22dc0755
refs/heads/master
1,682,382,954,948
1,622,106,077,000
1,622,106,077,000
149,285,665
0
0
null
null
null
null
UTF-8
Lean
false
false
33,121
lean
/- Copyright (c) 2018 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison, Markus Himmel -/ import category_theory.epi_mono import category_theory.limits.has_limits /-! # Equalizers and coequalizers This file defines (co)equalizers as special cases of (co)limits. An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`. A coequalizer is the dual concept. ## Main definitions * `walking_parallel_pair` is the indexing category used for (co)equalizer_diagrams * `parallel_pair` is a functor from `walking_parallel_pair` to our category `C`. * a `fork` is a cone over a parallel pair. * there is really only one interesting morphism in a fork: the arrow from the vertex of the fork to the domain of f and g. It is called `fork.ι`. * an `equalizer` is now just a `limit (parallel_pair f g)` Each of these has a dual. ## Main statements * `equalizer.ι_mono` states that every equalizer map is a monomorphism * `is_iso_limit_cone_parallel_pair_of_self` states that the identity on the domain of `f` is an equalizer of `f` and `f`. ## Implementation notes As with the other special shapes in the limits library, all the definitions here are given as `abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about general limits can be used. ## References * [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1] -/ noncomputable theory open category_theory namespace category_theory.limits local attribute [tidy] tactic.case_bash universes v u u₂ /-- The type of objects for the diagram indexing a (co)equalizer. -/ @[derive decidable_eq, derive inhabited] inductive walking_parallel_pair : Type v | zero | one open walking_parallel_pair /-- The type family of morphisms for the diagram indexing a (co)equalizer. -/ @[derive decidable_eq] inductive walking_parallel_pair_hom : walking_parallel_pair → walking_parallel_pair → Type v | left : walking_parallel_pair_hom zero one | right : walking_parallel_pair_hom zero one | id : Π X : walking_parallel_pair.{v}, walking_parallel_pair_hom X X /-- Satisfying the inhabited linter -/ instance : inhabited (walking_parallel_pair_hom zero one) := { default := walking_parallel_pair_hom.left } open walking_parallel_pair_hom /-- Composition of morphisms in the indexing diagram for (co)equalizers. -/ def walking_parallel_pair_hom.comp : Π (X Y Z : walking_parallel_pair) (f : walking_parallel_pair_hom X Y) (g : walking_parallel_pair_hom Y Z), walking_parallel_pair_hom X Z | _ _ _ (id _) h := h | _ _ _ left (id one) := left | _ _ _ right (id one) := right . instance walking_parallel_pair_hom_category : small_category walking_parallel_pair := { hom := walking_parallel_pair_hom, id := walking_parallel_pair_hom.id, comp := walking_parallel_pair_hom.comp } @[simp] lemma walking_parallel_pair_hom_id (X : walking_parallel_pair) : walking_parallel_pair_hom.id X = 𝟙 X := rfl variables {C : Type u} [category.{v} C] variables {X Y : C} /-- `parallel_pair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with common domain and codomain. -/ def parallel_pair (f g : X ⟶ Y) : walking_parallel_pair.{v} ⥤ C := { obj := λ x, match x with | zero := X | one := Y end, map := λ x y h, match x, y, h with | _, _, (id _) := 𝟙 _ | _, _, left := f | _, _, right := g end, -- `tidy` can cope with this, but it's too slow: map_comp' := begin rintros (⟨⟩|⟨⟩) (⟨⟩|⟨⟩) (⟨⟩|⟨⟩) ⟨⟩⟨⟩; { unfold_aux, simp; refl }, end, }. @[simp] lemma parallel_pair_obj_zero (f g : X ⟶ Y) : (parallel_pair f g).obj zero = X := rfl @[simp] lemma parallel_pair_obj_one (f g : X ⟶ Y) : (parallel_pair f g).obj one = Y := rfl @[simp] lemma parallel_pair_map_left (f g : X ⟶ Y) : (parallel_pair f g).map left = f := rfl @[simp] lemma parallel_pair_map_right (f g : X ⟶ Y) : (parallel_pair f g).map right = g := rfl @[simp] lemma parallel_pair_functor_obj {F : walking_parallel_pair ⥤ C} (j : walking_parallel_pair) : (parallel_pair (F.map left) (F.map right)).obj j = F.obj j := begin cases j; refl end /-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a `parallel_pair` -/ @[simps] def diagram_iso_parallel_pair (F : walking_parallel_pair ⥤ C) : F ≅ parallel_pair (F.map left) (F.map right) := nat_iso.of_components (λ j, eq_to_iso $ by cases j; tidy) $ by tidy /-- A fork on `f` and `g` is just a `cone (parallel_pair f g)`. -/ abbreviation fork (f g : X ⟶ Y) := cone (parallel_pair f g) /-- A cofork on `f` and `g` is just a `cocone (parallel_pair f g)`. -/ abbreviation cofork (f g : X ⟶ Y) := cocone (parallel_pair f g) variables {f g : X ⟶ Y} /-- A fork `t` on the parallel pair `f g : X ⟶ Y` consists of two morphisms `t.π.app zero : t.X ⟶ X` and `t.π.app one : t.X ⟶ Y`. Of these, only the first one is interesting, and we give it the shorter name `fork.ι t`. -/ abbreviation fork.ι (t : fork f g) := t.π.app zero /-- A cofork `t` on the parallel_pair `f g : X ⟶ Y` consists of two morphisms `t.ι.app zero : X ⟶ t.X` and `t.ι.app one : Y ⟶ t.X`. Of these, only the second one is interesting, and we give it the shorter name `cofork.π t`. -/ abbreviation cofork.π (t : cofork f g) := t.ι.app one @[simp] lemma fork.ι_eq_app_zero (t : fork f g) : t.ι = t.π.app zero := rfl @[simp] lemma cofork.π_eq_app_one (t : cofork f g) : t.π = t.ι.app one := rfl @[simp, reassoc] lemma fork.app_zero_left (s : fork f g) : s.π.app zero ≫ f = s.π.app one := by rw [←s.w left, parallel_pair_map_left] @[simp, reassoc] lemma fork.app_zero_right (s : fork f g) : s.π.app zero ≫ g = s.π.app one := by rw [←s.w right, parallel_pair_map_right] @[simp, reassoc] lemma cofork.left_app_one (s : cofork f g) : f ≫ s.ι.app one = s.ι.app zero := by rw [←s.w left, parallel_pair_map_left] @[simp, reassoc] lemma cofork.right_app_one (s : cofork f g) : g ≫ s.ι.app one = s.ι.app zero := by rw [←s.w right, parallel_pair_map_right] /-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`. -/ @[simps] def fork.of_ι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : fork f g := { X := P, π := { app := λ X, begin cases X, exact ι, exact ι ≫ f, end, naturality' := λ X Y f, begin cases X; cases Y; cases f; dsimp; simp, { dsimp, simp, }, -- See note [dsimp, simp]. { exact w }, { dsimp, simp, }, end } } /-- A cofork on `f g : X ⟶ Y` is determined by the morphism `π : Y ⟶ P` satisfying `f ≫ π = g ≫ π`. -/ @[simps] def cofork.of_π {P : C} (π : Y ⟶ P) (w : f ≫ π = g ≫ π) : cofork f g := { X := P, ι := { app := λ X, walking_parallel_pair.cases_on X (f ≫ π) π, naturality' := λ i j f, by { cases f; dsimp; simp [w] } } } -- See note [dsimp, simp] lemma fork.ι_of_ι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : (fork.of_ι ι w).ι = ι := rfl lemma cofork.π_of_π {P : C} (π : Y ⟶ P) (w : f ≫ π = g ≫ π) : (cofork.of_π π w).π = π := rfl @[reassoc] lemma fork.condition (t : fork f g) : t.ι ≫ f = t.ι ≫ g := by rw [t.app_zero_left, t.app_zero_right] @[reassoc] lemma cofork.condition (t : cofork f g) : f ≫ t.π = g ≫ t.π := by rw [t.left_app_one, t.right_app_one] /-- To check whether two maps are equalized by both maps of a fork, it suffices to check it for the first map -/ lemma fork.equalizer_ext (s : fork f g) {W : C} {k l : W ⟶ s.X} (h : k ≫ fork.ι s = l ≫ fork.ι s) : ∀ (j : walking_parallel_pair), k ≫ s.π.app j = l ≫ s.π.app j | zero := h | one := by rw [←fork.app_zero_left, reassoc_of h] /-- To check whether two maps are coequalized by both maps of a cofork, it suffices to check it for the second map -/ lemma cofork.coequalizer_ext (s : cofork f g) {W : C} {k l : s.X ⟶ W} (h : cofork.π s ≫ k = cofork.π s ≫ l) : ∀ (j : walking_parallel_pair), s.ι.app j ≫ k = s.ι.app j ≫ l | zero := by simp only [←cofork.left_app_one, category.assoc, h] | one := h lemma fork.is_limit.hom_ext {s : fork f g} (hs : is_limit s) {W : C} {k l : W ⟶ s.X} (h : k ≫ fork.ι s = l ≫ fork.ι s) : k = l := hs.hom_ext $ fork.equalizer_ext _ h lemma cofork.is_colimit.hom_ext {s : cofork f g} (hs : is_colimit s) {W : C} {k l : s.X ⟶ W} (h : cofork.π s ≫ k = cofork.π s ≫ l) : k = l := hs.hom_ext $ cofork.coequalizer_ext _ h /-- If `s` is a limit fork over `f` and `g`, then a morphism `k : W ⟶ X` satisfying `k ≫ f = k ≫ g` induces a morphism `l : W ⟶ s.X` such that `l ≫ fork.ι s = k`. -/ def fork.is_limit.lift' {s : fork f g} (hs : is_limit s) {W : C} (k : W ⟶ X) (h : k ≫ f = k ≫ g) : {l : W ⟶ s.X // l ≫ fork.ι s = k} := ⟨hs.lift $ fork.of_ι _ h, hs.fac _ _⟩ /-- If `s` is a colimit cofork over `f` and `g`, then a morphism `k : Y ⟶ W` satisfying `f ≫ k = g ≫ k` induces a morphism `l : s.X ⟶ W` such that `cofork.π s ≫ l = k`. -/ def cofork.is_colimit.desc' {s : cofork f g} (hs : is_colimit s) {W : C} (k : Y ⟶ W) (h : f ≫ k = g ≫ k) : {l : s.X ⟶ W // cofork.π s ≫ l = k} := ⟨hs.desc $ cofork.of_π _ h, hs.fac _ _⟩ /-- This is a slightly more convenient method to verify that a fork is a limit cone. It only asks for a proof of facts that carry any mathematical content -/ def fork.is_limit.mk (t : fork f g) (lift : Π (s : fork f g), s.X ⟶ t.X) (fac : ∀ (s : fork f g), lift s ≫ fork.ι t = fork.ι s) (uniq : ∀ (s : fork f g) (m : s.X ⟶ t.X) (w : ∀ j : walking_parallel_pair, m ≫ t.π.app j = s.π.app j), m = lift s) : is_limit t := { lift := lift, fac' := λ s j, walking_parallel_pair.cases_on j (fac s) $ by erw [←s.w left, ←t.w left, ←category.assoc, fac]; refl, uniq' := uniq } /-- This is another convenient method to verify that a fork is a limit cone. It only asks for a proof of facts that carry any mathematical content, and allows access to the same `s` for all parts. -/ def fork.is_limit.mk' {X Y : C} {f g : X ⟶ Y} (t : fork f g) (create : Π (s : fork f g), {l // l ≫ t.ι = s.ι ∧ ∀ {m}, m ≫ t.ι = s.ι → m = l}) : is_limit t := fork.is_limit.mk t (λ s, (create s).1) (λ s, (create s).2.1) (λ s m w, (create s).2.2 (w zero)) /-- This is a slightly more convenient method to verify that a cofork is a colimit cocone. It only asks for a proof of facts that carry any mathematical content -/ def cofork.is_colimit.mk (t : cofork f g) (desc : Π (s : cofork f g), t.X ⟶ s.X) (fac : ∀ (s : cofork f g), cofork.π t ≫ desc s = cofork.π s) (uniq : ∀ (s : cofork f g) (m : t.X ⟶ s.X) (w : ∀ j : walking_parallel_pair, t.ι.app j ≫ m = s.ι.app j), m = desc s) : is_colimit t := { desc := desc, fac' := λ s j, walking_parallel_pair.cases_on j (by erw [←s.w left, ←t.w left, category.assoc, fac]; refl) (fac s), uniq' := uniq } /-- This is another convenient method to verify that a fork is a limit cone. It only asks for a proof of facts that carry any mathematical content, and allows access to the same `s` for all parts. -/ def cofork.is_colimit.mk' {X Y : C} {f g : X ⟶ Y} (t : cofork f g) (create : Π (s : cofork f g), {l : t.X ⟶ s.X // t.π ≫ l = s.π ∧ ∀ {m}, t.π ≫ m = s.π → m = l}) : is_colimit t := cofork.is_colimit.mk t (λ s, (create s).1) (λ s, (create s).2.1) (λ s m w, (create s).2.2 (w one)) /-- Given a limit cone for the pair `f g : X ⟶ Y`, for any `Z`, morphisms from `Z` to its point are in bijection with morphisms `h : Z ⟶ X` such that `h ≫ f = h ≫ g`. Further, this bijection is natural in `Z`: see `fork.is_limit.hom_iso_natural`. This is a special case of `is_limit.hom_iso'`, often useful to construct adjunctions. -/ @[simps] def fork.is_limit.hom_iso {X Y : C} {f g : X ⟶ Y} {t : fork f g} (ht : is_limit t) (Z : C) : (Z ⟶ t.X) ≃ {h : Z ⟶ X // h ≫ f = h ≫ g} := { to_fun := λ k, ⟨k ≫ t.ι, by simp⟩, inv_fun := λ h, (fork.is_limit.lift' ht _ h.prop).1, left_inv := λ k, fork.is_limit.hom_ext ht (fork.is_limit.lift' _ _ _).prop, right_inv := λ h, subtype.ext (fork.is_limit.lift' ht _ _).prop } /-- The bijection of `fork.is_limit.hom_iso` is natural in `Z`. -/ lemma fork.is_limit.hom_iso_natural {X Y : C} {f g : X ⟶ Y} {t : fork f g} (ht : is_limit t) {Z Z' : C} (q : Z' ⟶ Z) (k : Z ⟶ t.X) : (fork.is_limit.hom_iso ht _ (q ≫ k) : Z' ⟶ X) = q ≫ (fork.is_limit.hom_iso ht _ k : Z ⟶ X) := category.assoc _ _ _ /-- Given a colimit cocone for the pair `f g : X ⟶ Y`, for any `Z`, morphisms from the cocone point to `Z` are in bijection with morphisms `h : Y ⟶ Z` such that `f ≫ h = g ≫ h`. Further, this bijection is natural in `Z`: see `cofork.is_colimit.hom_iso_natural`. This is a special case of `is_colimit.hom_iso'`, often useful to construct adjunctions. -/ @[simps] def cofork.is_colimit.hom_iso {X Y : C} {f g : X ⟶ Y} {t : cofork f g} (ht : is_colimit t) (Z : C) : (t.X ⟶ Z) ≃ {h : Y ⟶ Z // f ≫ h = g ≫ h} := { to_fun := λ k, ⟨t.π ≫ k, by simp⟩, inv_fun := λ h, (cofork.is_colimit.desc' ht _ h.prop).1, left_inv := λ k, cofork.is_colimit.hom_ext ht (cofork.is_colimit.desc' _ _ _).prop, right_inv := λ h, subtype.ext (cofork.is_colimit.desc' ht _ _).prop } /-- The bijection of `cofork.is_colimit.hom_iso` is natural in `Z`. -/ lemma cofork.is_colimit.hom_iso_natural {X Y : C} {f g : X ⟶ Y} {t : cofork f g} {Z Z' : C} (q : Z ⟶ Z') (ht : is_colimit t) (k : t.X ⟶ Z) : (cofork.is_colimit.hom_iso ht _ (k ≫ q) : Y ⟶ Z') = (cofork.is_colimit.hom_iso ht _ k : Y ⟶ Z) ≫ q := (category.assoc _ _ _).symm /-- This is a helper construction that can be useful when verifying that a category has all equalizers. Given `F : walking_parallel_pair ⥤ C`, which is really the same as `parallel_pair (F.map left) (F.map right)`, and a fork on `F.map left` and `F.map right`, we get a cone on `F`. If you're thinking about using this, have a look at `has_equalizers_of_has_limit_parallel_pair`, which you may find to be an easier way of achieving your goal. -/ def cone.of_fork {F : walking_parallel_pair ⥤ C} (t : fork (F.map left) (F.map right)) : cone F := { X := t.X, π := { app := λ X, t.π.app X ≫ eq_to_hom (by tidy), naturality' := λ j j' g, by { cases j; cases j'; cases g; dsimp; simp } } } /-- This is a helper construction that can be useful when verifying that a category has all coequalizers. Given `F : walking_parallel_pair ⥤ C`, which is really the same as `parallel_pair (F.map left) (F.map right)`, and a cofork on `F.map left` and `F.map right`, we get a cocone on `F`. If you're thinking about using this, have a look at `has_coequalizers_of_has_colimit_parallel_pair`, which you may find to be an easier way of achieving your goal. -/ def cocone.of_cofork {F : walking_parallel_pair ⥤ C} (t : cofork (F.map left) (F.map right)) : cocone F := { X := t.X, ι := { app := λ X, eq_to_hom (by tidy) ≫ t.ι.app X, naturality' := λ j j' g, by { cases j; cases j'; cases g; dsimp; simp } } } @[simp] lemma cone.of_fork_π {F : walking_parallel_pair ⥤ C} (t : fork (F.map left) (F.map right)) (j) : (cone.of_fork t).π.app j = t.π.app j ≫ eq_to_hom (by tidy) := rfl @[simp] lemma cocone.of_cofork_ι {F : walking_parallel_pair ⥤ C} (t : cofork (F.map left) (F.map right)) (j) : (cocone.of_cofork t).ι.app j = eq_to_hom (by tidy) ≫ t.ι.app j := rfl /-- Given `F : walking_parallel_pair ⥤ C`, which is really the same as `parallel_pair (F.map left) (F.map right)` and a cone on `F`, we get a fork on `F.map left` and `F.map right`. -/ def fork.of_cone {F : walking_parallel_pair ⥤ C} (t : cone F) : fork (F.map left) (F.map right) := { X := t.X, π := { app := λ X, t.π.app X ≫ eq_to_hom (by tidy) } } /-- Given `F : walking_parallel_pair ⥤ C`, which is really the same as `parallel_pair (F.map left) (F.map right)` and a cocone on `F`, we get a cofork on `F.map left` and `F.map right`. -/ def cofork.of_cocone {F : walking_parallel_pair ⥤ C} (t : cocone F) : cofork (F.map left) (F.map right) := { X := t.X, ι := { app := λ X, eq_to_hom (by tidy) ≫ t.ι.app X } } @[simp] lemma fork.of_cone_π {F : walking_parallel_pair ⥤ C} (t : cone F) (j) : (fork.of_cone t).π.app j = t.π.app j ≫ eq_to_hom (by tidy) := rfl @[simp] lemma cofork.of_cocone_ι {F : walking_parallel_pair ⥤ C} (t : cocone F) (j) : (cofork.of_cocone t).ι.app j = eq_to_hom (by tidy) ≫ t.ι.app j := rfl /-- Helper function for constructing morphisms between equalizer forks. -/ @[simps] def fork.mk_hom {s t : fork f g} (k : s.X ⟶ t.X) (w : k ≫ t.ι = s.ι) : s ⟶ t := { hom := k, w' := begin rintro ⟨_|_⟩, { exact w }, { simpa using w =≫ f }, end } /-- To construct an isomorphism between forks, it suffices to give an isomorphism between the cone points and check that it commutes with the `ι` morphisms. -/ @[simps] def fork.ext {s t : fork f g} (i : s.X ≅ t.X) (w : i.hom ≫ t.ι = s.ι) : s ≅ t := { hom := fork.mk_hom i.hom w, inv := fork.mk_hom i.inv (by rw [← w, iso.inv_hom_id_assoc]) } /-- Helper function for constructing morphisms between coequalizer coforks. -/ @[simps] def cofork.mk_hom {s t : cofork f g} (k : s.X ⟶ t.X) (w : s.π ≫ k = t.π) : s ⟶ t := { hom := k, w' := begin rintro ⟨_|_⟩, simpa using f ≫= w, exact w, end } /-- To construct an isomorphism between coforks, it suffices to give an isomorphism between the cocone points and check that it commutes with the `π` morphisms. -/ def cofork.ext {s t : cofork f g} (i : s.X ≅ t.X) (w : s.π ≫ i.hom = t.π) : s ≅ t := { hom := cofork.mk_hom i.hom w, inv := cofork.mk_hom i.inv (by rw [iso.comp_inv_eq, w]) } variables (f g) section /-- `has_equalizer f g` represents a particular choice of limiting cone for the parallel pair of morphisms `f` and `g`. -/ abbreviation has_equalizer := has_limit (parallel_pair f g) variables [has_equalizer f g] /-- If an equalizer of `f` and `g` exists, we can access an arbitrary choice of such by saying `equalizer f g`. -/ abbreviation equalizer : C := limit (parallel_pair f g) /-- If an equalizer of `f` and `g` exists, we can access the inclusion `equalizer f g ⟶ X` by saying `equalizer.ι f g`. -/ abbreviation equalizer.ι : equalizer f g ⟶ X := limit.π (parallel_pair f g) zero /-- An equalizer cone for a parallel pair `f` and `g`. -/ abbreviation equalizer.fork : fork f g := limit.cone (parallel_pair f g) @[simp] lemma equalizer.fork_ι : (equalizer.fork f g).ι = equalizer.ι f g := rfl @[simp] lemma equalizer.fork_π_app_zero : (equalizer.fork f g).π.app zero = equalizer.ι f g := rfl @[reassoc] lemma equalizer.condition : equalizer.ι f g ≫ f = equalizer.ι f g ≫ g := fork.condition $ limit.cone $ parallel_pair f g /-- The equalizer built from `equalizer.ι f g` is limiting. -/ def equalizer_is_equalizer : is_limit (fork.of_ι (equalizer.ι f g) (equalizer.condition f g)) := is_limit.of_iso_limit (limit.is_limit _) (fork.ext (iso.refl _) (by tidy)) variables {f g} /-- A morphism `k : W ⟶ X` satisfying `k ≫ f = k ≫ g` factors through the equalizer of `f` and `g` via `equalizer.lift : W ⟶ equalizer f g`. -/ abbreviation equalizer.lift {W : C} (k : W ⟶ X) (h : k ≫ f = k ≫ g) : W ⟶ equalizer f g := limit.lift (parallel_pair f g) (fork.of_ι k h) @[simp, reassoc] lemma equalizer.lift_ι {W : C} (k : W ⟶ X) (h : k ≫ f = k ≫ g) : equalizer.lift k h ≫ equalizer.ι f g = k := limit.lift_π _ _ /-- A morphism `k : W ⟶ X` satisfying `k ≫ f = k ≫ g` induces a morphism `l : W ⟶ equalizer f g` satisfying `l ≫ equalizer.ι f g = k`. -/ def equalizer.lift' {W : C} (k : W ⟶ X) (h : k ≫ f = k ≫ g) : {l : W ⟶ equalizer f g // l ≫ equalizer.ι f g = k} := ⟨equalizer.lift k h, equalizer.lift_ι _ _⟩ /-- Two maps into an equalizer are equal if they are are equal when composed with the equalizer map. -/ @[ext] lemma equalizer.hom_ext {W : C} {k l : W ⟶ equalizer f g} (h : k ≫ equalizer.ι f g = l ≫ equalizer.ι f g) : k = l := fork.is_limit.hom_ext (limit.is_limit _) h /-- An equalizer morphism is a monomorphism -/ instance equalizer.ι_mono : mono (equalizer.ι f g) := { right_cancellation := λ Z h k w, equalizer.hom_ext w } end section variables {f g} /-- The equalizer morphism in any limit cone is a monomorphism. -/ lemma mono_of_is_limit_parallel_pair {c : cone (parallel_pair f g)} (i : is_limit c) : mono (fork.ι c) := { right_cancellation := λ Z h k w, fork.is_limit.hom_ext i w } end section variables {f g} /-- The identity determines a cone on the equalizer diagram of `f` and `g` if `f = g`. -/ def id_fork (h : f = g) : fork f g := fork.of_ι (𝟙 X) $ h ▸ rfl /-- The identity on `X` is an equalizer of `(f, g)`, if `f = g`. -/ def is_limit_id_fork (h : f = g) : is_limit (id_fork h) := fork.is_limit.mk _ (λ s, fork.ι s) (λ s, category.comp_id _) (λ s m h, by { convert h zero, exact (category.comp_id _).symm }) /-- Every equalizer of `(f, g)`, where `f = g`, is an isomorphism. -/ lemma is_iso_limit_cone_parallel_pair_of_eq (h₀ : f = g) {c : cone (parallel_pair f g)} (h : is_limit c) : is_iso (c.π.app zero) := is_iso.of_iso $ is_limit.cone_point_unique_up_to_iso h $ is_limit_id_fork h₀ /-- The equalizer of `(f, g)`, where `f = g`, is an isomorphism. -/ lemma equalizer.ι_of_eq [has_equalizer f g] (h : f = g) : is_iso (equalizer.ι f g) := is_iso_limit_cone_parallel_pair_of_eq h $ limit.is_limit _ /-- Every equalizer of `(f, f)` is an isomorphism. -/ lemma is_iso_limit_cone_parallel_pair_of_self {c : cone (parallel_pair f f)} (h : is_limit c) : is_iso (c.π.app zero) := is_iso_limit_cone_parallel_pair_of_eq rfl h /-- An equalizer that is an epimorphism is an isomorphism. -/ lemma is_iso_limit_cone_parallel_pair_of_epi {c : cone (parallel_pair f g)} (h : is_limit c) [epi (c.π.app zero)] : is_iso (c.π.app zero) := is_iso_limit_cone_parallel_pair_of_eq ((cancel_epi _).1 (fork.condition c)) h end instance has_equalizer_of_self : has_equalizer f f := has_limit.mk { cone := id_fork rfl, is_limit := is_limit_id_fork rfl } /-- The equalizer inclusion for `(f, f)` is an isomorphism. -/ instance equalizer.ι_of_self : is_iso (equalizer.ι f f) := equalizer.ι_of_eq rfl /-- The equalizer of a morphism with itself is isomorphic to the source. -/ def equalizer.iso_source_of_self : equalizer f f ≅ X := as_iso (equalizer.ι f f) @[simp] lemma equalizer.iso_source_of_self_hom : (equalizer.iso_source_of_self f).hom = equalizer.ι f f := rfl @[simp] lemma equalizer.iso_source_of_self_inv : (equalizer.iso_source_of_self f).inv = equalizer.lift (𝟙 X) (by simp) := by { ext, simp [equalizer.iso_source_of_self], } section /-- `has_coequalizer f g` represents a particular choice of colimiting cocone for the parallel pair of morphisms `f` and `g`. -/ abbreviation has_coequalizer := has_colimit (parallel_pair f g) variables [has_coequalizer f g] /-- If a coequalizer of `f` and `g` exists, we can access an arbitrary choice of such by saying `coequalizer f g`. -/ abbreviation coequalizer : C := colimit (parallel_pair f g) /-- If a coequalizer of `f` and `g` exists, we can access the corresponding projection by saying `coequalizer.π f g`. -/ abbreviation coequalizer.π : Y ⟶ coequalizer f g := colimit.ι (parallel_pair f g) one /-- An arbitrary choice of coequalizer cocone for a parallel pair `f` and `g`. -/ abbreviation coequalizer.cofork : cofork f g := colimit.cocone (parallel_pair f g) @[simp] lemma coequalizer.cofork_π : (coequalizer.cofork f g).π = coequalizer.π f g := rfl @[simp] lemma coequalizer.cofork_ι_app_one : (coequalizer.cofork f g).ι.app one = coequalizer.π f g := rfl @[reassoc] lemma coequalizer.condition : f ≫ coequalizer.π f g = g ≫ coequalizer.π f g := cofork.condition $ colimit.cocone $ parallel_pair f g /-- The cofork built from `coequalizer.π f g` is colimiting. -/ def coequalizer_is_coequalizer : is_colimit (cofork.of_π (coequalizer.π f g) (coequalizer.condition f g)) := is_colimit.of_iso_colimit (colimit.is_colimit _) (cofork.ext (iso.refl _) (by tidy)) variables {f g} /-- Any morphism `k : Y ⟶ W` satisfying `f ≫ k = g ≫ k` factors through the coequalizer of `f` and `g` via `coequalizer.desc : coequalizer f g ⟶ W`. -/ abbreviation coequalizer.desc {W : C} (k : Y ⟶ W) (h : f ≫ k = g ≫ k) : coequalizer f g ⟶ W := colimit.desc (parallel_pair f g) (cofork.of_π k h) @[simp, reassoc] lemma coequalizer.π_desc {W : C} (k : Y ⟶ W) (h : f ≫ k = g ≫ k) : coequalizer.π f g ≫ coequalizer.desc k h = k := colimit.ι_desc _ _ /-- Any morphism `k : Y ⟶ W` satisfying `f ≫ k = g ≫ k` induces a morphism `l : coequalizer f g ⟶ W` satisfying `coequalizer.π ≫ g = l`. -/ def coequalizer.desc' {W : C} (k : Y ⟶ W) (h : f ≫ k = g ≫ k) : {l : coequalizer f g ⟶ W // coequalizer.π f g ≫ l = k} := ⟨coequalizer.desc k h, coequalizer.π_desc _ _⟩ /-- Two maps from a coequalizer are equal if they are equal when composed with the coequalizer map -/ @[ext] lemma coequalizer.hom_ext {W : C} {k l : coequalizer f g ⟶ W} (h : coequalizer.π f g ≫ k = coequalizer.π f g ≫ l) : k = l := cofork.is_colimit.hom_ext (colimit.is_colimit _) h /-- A coequalizer morphism is an epimorphism -/ instance coequalizer.π_epi : epi (coequalizer.π f g) := { left_cancellation := λ Z h k w, coequalizer.hom_ext w } end section variables {f g} /-- The coequalizer morphism in any colimit cocone is an epimorphism. -/ lemma epi_of_is_colimit_parallel_pair {c : cocone (parallel_pair f g)} (i : is_colimit c) : epi (c.ι.app one) := { left_cancellation := λ Z h k w, cofork.is_colimit.hom_ext i w } end section variables {f g} /-- The identity determines a cocone on the coequalizer diagram of `f` and `g`, if `f = g`. -/ def id_cofork (h : f = g) : cofork f g := cofork.of_π (𝟙 Y) $ h ▸ rfl /-- The identity on `Y` is a coequalizer of `(f, g)`, where `f = g`. -/ def is_colimit_id_cofork (h : f = g) : is_colimit (id_cofork h) := cofork.is_colimit.mk _ (λ s, cofork.π s) (λ s, category.id_comp _) (λ s m h, by { convert h one, exact (category.id_comp _).symm }) /-- Every coequalizer of `(f, g)`, where `f = g`, is an isomorphism. -/ lemma is_iso_colimit_cocone_parallel_pair_of_eq (h₀ : f = g) {c : cocone (parallel_pair f g)} (h : is_colimit c) : is_iso (c.ι.app one) := is_iso.of_iso $ is_colimit.cocone_point_unique_up_to_iso (is_colimit_id_cofork h₀) h /-- The coequalizer of `(f, g)`, where `f = g`, is an isomorphism. -/ lemma coequalizer.π_of_eq [has_coequalizer f g] (h : f = g) : is_iso (coequalizer.π f g) := is_iso_colimit_cocone_parallel_pair_of_eq h $ colimit.is_colimit _ /-- Every coequalizer of `(f, f)` is an isomorphism. -/ lemma is_iso_colimit_cocone_parallel_pair_of_self {c : cocone (parallel_pair f f)} (h : is_colimit c) : is_iso (c.ι.app one) := is_iso_colimit_cocone_parallel_pair_of_eq rfl h /-- A coequalizer that is a monomorphism is an isomorphism. -/ lemma is_iso_limit_cocone_parallel_pair_of_epi {c : cocone (parallel_pair f g)} (h : is_colimit c) [mono (c.ι.app one)] : is_iso (c.ι.app one) := is_iso_colimit_cocone_parallel_pair_of_eq ((cancel_mono _).1 (cofork.condition c)) h end instance has_coequalizer_of_self : has_coequalizer f f := has_colimit.mk { cocone := id_cofork rfl, is_colimit := is_colimit_id_cofork rfl } /-- The coequalizer projection for `(f, f)` is an isomorphism. -/ instance coequalizer.π_of_self : is_iso (coequalizer.π f f) := coequalizer.π_of_eq rfl /-- The coequalizer of a morphism with itself is isomorphic to the target. -/ def coequalizer.iso_target_of_self : coequalizer f f ≅ Y := (as_iso (coequalizer.π f f)).symm @[simp] lemma coequalizer.iso_target_of_self_hom : (coequalizer.iso_target_of_self f).hom = coequalizer.desc (𝟙 Y) (by simp) := by { ext, simp [coequalizer.iso_target_of_self], } @[simp] lemma coequalizer.iso_target_of_self_inv : (coequalizer.iso_target_of_self f).inv = coequalizer.π f f := rfl section comparison variables {D : Type u₂} [category.{v} D] (G : C ⥤ D) /-- The comparison morphism for the equalizer of `f,g`. This is an isomorphism iff `G` preserves the equalizer of `f,g`; see `category_theory/limits/preserves/shapes/equalizers.lean` -/ def equalizer_comparison [has_equalizer f g] [has_equalizer (G.map f) (G.map g)] : G.obj (equalizer f g) ⟶ equalizer (G.map f) (G.map g) := equalizer.lift (G.map (equalizer.ι _ _)) (by simp only [←G.map_comp, equalizer.condition]) @[simp, reassoc] lemma equalizer_comparison_comp_π [has_equalizer f g] [has_equalizer (G.map f) (G.map g)] : equalizer_comparison f g G ≫ equalizer.ι (G.map f) (G.map g) = G.map (equalizer.ι f g) := equalizer.lift_ι _ _ @[simp, reassoc] lemma map_lift_equalizer_comparison [has_equalizer f g] [has_equalizer (G.map f) (G.map g)] {Z : C} {h : Z ⟶ X} (w : h ≫ f = h ≫ g) : G.map (equalizer.lift h w) ≫ equalizer_comparison f g G = equalizer.lift (G.map h) (by simp only [←G.map_comp, w]) := by { ext, simp [← G.map_comp] } /-- The comparison morphism for the coequalizer of `f,g`. -/ def coequalizer_comparison [has_coequalizer f g] [has_coequalizer (G.map f) (G.map g)] : coequalizer (G.map f) (G.map g) ⟶ G.obj (coequalizer f g) := coequalizer.desc (G.map (coequalizer.π _ _)) (by simp only [←G.map_comp, coequalizer.condition]) @[simp, reassoc] lemma ι_comp_coequalizer_comparison [has_coequalizer f g] [has_coequalizer (G.map f) (G.map g)] : coequalizer.π _ _ ≫ coequalizer_comparison f g G = G.map (coequalizer.π _ _) := coequalizer.π_desc _ _ @[simp, reassoc] lemma coequalizer_comparison_map_desc [has_coequalizer f g] [has_coequalizer (G.map f) (G.map g)] {Z : C} {h : Y ⟶ Z} (w : f ≫ h = g ≫ h) : coequalizer_comparison f g G ≫ G.map (coequalizer.desc h w) = coequalizer.desc (G.map h) (by simp only [←G.map_comp, w]) := by { ext, simp [← G.map_comp] } end comparison variables (C) /-- `has_equalizers` represents a choice of equalizer for every pair of morphisms -/ abbreviation has_equalizers := has_limits_of_shape walking_parallel_pair C /-- `has_coequalizers` represents a choice of coequalizer for every pair of morphisms -/ abbreviation has_coequalizers := has_colimits_of_shape walking_parallel_pair C /-- If `C` has all limits of diagrams `parallel_pair f g`, then it has all equalizers -/ lemma has_equalizers_of_has_limit_parallel_pair [Π {X Y : C} {f g : X ⟶ Y}, has_limit (parallel_pair f g)] : has_equalizers C := { has_limit := λ F, has_limit_of_iso (diagram_iso_parallel_pair F).symm } /-- If `C` has all colimits of diagrams `parallel_pair f g`, then it has all coequalizers -/ lemma has_coequalizers_of_has_colimit_parallel_pair [Π {X Y : C} {f g : X ⟶ Y}, has_colimit (parallel_pair f g)] : has_coequalizers C := { has_colimit := λ F, has_colimit_of_iso (diagram_iso_parallel_pair F) } section -- In this section we show that a split mono `f` equalizes `(retraction f ≫ f)` and `(𝟙 Y)`. variables {C} [split_mono f] /-- A split mono `f` equalizes `(retraction f ≫ f)` and `(𝟙 Y)`. Here we build the cone, and show in `split_mono_equalizes` that it is a limit cone. -/ @[simps {rhs_md := semireducible}] def cone_of_split_mono : cone (parallel_pair (𝟙 Y) (retraction f ≫ f)) := fork.of_ι f (by simp) /-- A split mono `f` equalizes `(retraction f ≫ f)` and `(𝟙 Y)`. -/ def split_mono_equalizes {X Y : C} (f : X ⟶ Y) [split_mono f] : is_limit (cone_of_split_mono f) := fork.is_limit.mk' _ $ λ s, ⟨s.ι ≫ retraction f, by { dsimp, rw [category.assoc, ←s.condition], apply category.comp_id }, λ m hm, by simp [←hm]⟩ end section -- In this section we show that a split epi `f` coequalizes `(f ≫ section_ f)` and `(𝟙 X)`. variables {C} [split_epi f] /-- A split epi `f` coequalizes `(f ≫ section_ f)` and `(𝟙 X)`. Here we build the cocone, and show in `split_epi_coequalizes` that it is a colimit cocone. -/ @[simps {rhs_md := semireducible}] def cocone_of_split_epi : cocone (parallel_pair (𝟙 X) (f ≫ section_ f)) := cofork.of_π f (by simp) /-- A split epi `f` coequalizes `(f ≫ section_ f)` and `(𝟙 X)`. -/ def split_epi_coequalizes {X Y : C} (f : X ⟶ Y) [split_epi f] : is_colimit (cocone_of_split_epi f) := cofork.is_colimit.mk' _ $ λ s, ⟨section_ f ≫ s.π, by { dsimp, rw [← category.assoc, ← s.condition, category.id_comp] }, λ m hm, by simp [← hm]⟩ end end category_theory.limits
998f02787590a7d60fa9dc6053c069273bbbe0d5
80cc5bf14c8ea85ff340d1d747a127dcadeb966f
/src/data/complex/basic.lean
3c31ff2e46bf05c310dc2c13f5bd72b41cd583e4
[ "Apache-2.0" ]
permissive
lacker/mathlib
f2439c743c4f8eb413ec589430c82d0f73b2d539
ddf7563ac69d42cfa4a1bfe41db1fed521bd795f
refs/heads/master
1,671,948,326,773
1,601,479,268,000
1,601,479,268,000
298,686,743
0
0
Apache-2.0
1,601,070,794,000
1,601,070,794,000
null
UTF-8
Lean
false
false
20,037
lean
/- Copyright (c) 2017 Kevin Buzzard. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kevin Buzzard, Mario Carneiro -/ import data.real.basic /-! # The complex numbers The complex numbers are modelled as ℝ^2 in the obvious way. -/ /-! ### Definition and basic arithmmetic -/ /-- Complex numbers consist of two `real`s: a real part `re` and an imaginary part `im`. -/ structure complex : Type := (re : ℝ) (im : ℝ) notation `ℂ` := complex namespace complex noncomputable instance : decidable_eq ℂ := classical.dec_eq _ /-- The equivalence between the complex numbers and `ℝ × ℝ`. -/ def equiv_real_prod : ℂ ≃ (ℝ × ℝ) := { to_fun := λ z, ⟨z.re, z.im⟩, inv_fun := λ p, ⟨p.1, p.2⟩, left_inv := λ ⟨x, y⟩, rfl, right_inv := λ ⟨x, y⟩, rfl } @[simp] theorem equiv_real_prod_apply (z : ℂ) : equiv_real_prod z = (z.re, z.im) := rfl theorem equiv_real_prod_symm_re (x y : ℝ) : (equiv_real_prod.symm (x, y)).re = x := rfl theorem equiv_real_prod_symm_im (x y : ℝ) : (equiv_real_prod.symm (x, y)).im = y := rfl @[simp] theorem eta : ∀ z : ℂ, complex.mk z.re z.im = z | ⟨a, b⟩ := rfl @[ext] theorem ext : ∀ {z w : ℂ}, z.re = w.re → z.im = w.im → z = w | ⟨zr, zi⟩ ⟨_, _⟩ rfl rfl := rfl theorem ext_iff {z w : ℂ} : z = w ↔ z.re = w.re ∧ z.im = w.im := ⟨λ H, by simp [H], and.rec ext⟩ instance : has_coe ℝ ℂ := ⟨λ r, ⟨r, 0⟩⟩ @[simp, norm_cast] lemma of_real_re (r : ℝ) : (r : ℂ).re = r := rfl @[simp, norm_cast] lemma of_real_im (r : ℝ) : (r : ℂ).im = 0 := rfl @[simp, norm_cast] theorem of_real_inj {z w : ℝ} : (z : ℂ) = w ↔ z = w := ⟨congr_arg re, congr_arg _⟩ instance : has_zero ℂ := ⟨(0 : ℝ)⟩ instance : inhabited ℂ := ⟨0⟩ @[simp] lemma zero_re : (0 : ℂ).re = 0 := rfl @[simp] lemma zero_im : (0 : ℂ).im = 0 := rfl @[simp, norm_cast] lemma of_real_zero : ((0 : ℝ) : ℂ) = 0 := rfl @[simp] theorem of_real_eq_zero {z : ℝ} : (z : ℂ) = 0 ↔ z = 0 := of_real_inj theorem of_real_ne_zero {z : ℝ} : (z : ℂ) ≠ 0 ↔ z ≠ 0 := not_congr of_real_eq_zero instance : has_one ℂ := ⟨(1 : ℝ)⟩ @[simp] lemma one_re : (1 : ℂ).re = 1 := rfl @[simp] lemma one_im : (1 : ℂ).im = 0 := rfl @[simp, norm_cast] lemma of_real_one : ((1 : ℝ) : ℂ) = 1 := rfl instance : has_add ℂ := ⟨λ z w, ⟨z.re + w.re, z.im + w.im⟩⟩ @[simp] lemma add_re (z w : ℂ) : (z + w).re = z.re + w.re := rfl @[simp] lemma add_im (z w : ℂ) : (z + w).im = z.im + w.im := rfl @[simp] lemma bit0_re (z : ℂ) : (bit0 z).re = bit0 z.re := rfl @[simp] lemma bit1_re (z : ℂ) : (bit1 z).re = bit1 z.re := rfl @[simp] lemma bit0_im (z : ℂ) : (bit0 z).im = bit0 z.im := eq.refl _ @[simp] lemma bit1_im (z : ℂ) : (bit1 z).im = bit0 z.im := add_zero _ @[simp, norm_cast] lemma of_real_add (r s : ℝ) : ((r + s : ℝ) : ℂ) = r + s := ext_iff.2 $ by simp @[simp, norm_cast] lemma of_real_bit0 (r : ℝ) : ((bit0 r : ℝ) : ℂ) = bit0 r := ext_iff.2 $ by simp [bit0] @[simp, norm_cast] lemma of_real_bit1 (r : ℝ) : ((bit1 r : ℝ) : ℂ) = bit1 r := ext_iff.2 $ by simp [bit1] instance : has_neg ℂ := ⟨λ z, ⟨-z.re, -z.im⟩⟩ @[simp] lemma neg_re (z : ℂ) : (-z).re = -z.re := rfl @[simp] lemma neg_im (z : ℂ) : (-z).im = -z.im := rfl @[simp, norm_cast] lemma of_real_neg (r : ℝ) : ((-r : ℝ) : ℂ) = -r := ext_iff.2 $ by simp instance : has_mul ℂ := ⟨λ z w, ⟨z.re * w.re - z.im * w.im, z.re * w.im + z.im * w.re⟩⟩ @[simp] lemma mul_re (z w : ℂ) : (z * w).re = z.re * w.re - z.im * w.im := rfl @[simp] lemma mul_im (z w : ℂ) : (z * w).im = z.re * w.im + z.im * w.re := rfl @[simp, norm_cast] lemma of_real_mul (r s : ℝ) : ((r * s : ℝ) : ℂ) = r * s := ext_iff.2 $ by simp lemma smul_re (r : ℝ) (z : ℂ) : (↑r * z).re = r * z.re := by simp lemma smul_im (r : ℝ) (z : ℂ) : (↑r * z).im = r * z.im := by simp lemma of_real_smul (r : ℝ) (z : ℂ) : (↑r * z) = ⟨r * z.re, r * z.im⟩ := ext (smul_re _ _) (smul_im _ _) /-! ### The imaginary unit, `I` -/ /-- The imaginary unit. -/ def I : ℂ := ⟨0, 1⟩ @[simp] lemma I_re : I.re = 0 := rfl @[simp] lemma I_im : I.im = 1 := rfl @[simp] lemma I_mul_I : I * I = -1 := ext_iff.2 $ by simp lemma I_mul (z : ℂ) : I * z = ⟨-z.im, z.re⟩ := ext_iff.2 $ by simp lemma I_ne_zero : (I : ℂ) ≠ 0 := mt (congr_arg im) zero_ne_one.symm lemma mk_eq_add_mul_I (a b : ℝ) : complex.mk a b = a + b * I := ext_iff.2 $ by simp @[simp] lemma re_add_im (z : ℂ) : (z.re : ℂ) + z.im * I = z := ext_iff.2 $ by simp /-! ### Commutative ring instance and lemmas -/ instance : comm_ring ℂ := by refine { zero := 0, add := (+), neg := has_neg.neg, one := 1, mul := (*), ..}; { intros, apply ext_iff.2; split; simp; ring } instance re.is_add_group_hom : is_add_group_hom complex.re := { map_add := complex.add_re } instance im.is_add_group_hom : is_add_group_hom complex.im := { map_add := complex.add_im } /-! ### Complex conjugation -/ /-- The complex conjugate. -/ def conj : ℂ →+* ℂ := begin refine_struct { to_fun := λ z : ℂ, (⟨z.re, -z.im⟩ : ℂ), .. }; { intros, ext; simp [add_comm], }, end @[simp] lemma conj_re (z : ℂ) : (conj z).re = z.re := rfl @[simp] lemma conj_im (z : ℂ) : (conj z).im = -z.im := rfl @[simp] lemma conj_of_real (r : ℝ) : conj r = r := ext_iff.2 $ by simp [conj] @[simp] lemma conj_I : conj I = -I := ext_iff.2 $ by simp @[simp] lemma conj_bit0 (z : ℂ) : conj (bit0 z) = bit0 (conj z) := ext_iff.2 $ by simp [bit0] @[simp] lemma conj_bit1 (z : ℂ) : conj (bit1 z) = bit1 (conj z) := ext_iff.2 $ by simp [bit0] @[simp] lemma conj_neg_I : conj (-I) = I := ext_iff.2 $ by simp @[simp] lemma conj_conj (z : ℂ) : conj (conj z) = z := ext_iff.2 $ by simp lemma conj_involutive : function.involutive conj := conj_conj lemma conj_bijective : function.bijective conj := conj_involutive.bijective lemma conj_inj {z w : ℂ} : conj z = conj w ↔ z = w := conj_bijective.1.eq_iff @[simp] lemma conj_eq_zero {z : ℂ} : conj z = 0 ↔ z = 0 := by simpa using @conj_inj z 0 lemma eq_conj_iff_real {z : ℂ} : conj z = z ↔ ∃ r : ℝ, z = r := ⟨λ h, ⟨z.re, ext rfl $ eq_zero_of_neg_eq (congr_arg im h)⟩, λ ⟨h, e⟩, by rw [e, conj_of_real]⟩ lemma eq_conj_iff_re {z : ℂ} : conj z = z ↔ (z.re : ℂ) = z := eq_conj_iff_real.trans ⟨by rintro ⟨r, rfl⟩; simp, λ h, ⟨_, h.symm⟩⟩ /-! ### Norm squared -/ /-- The norm squared function. -/ @[pp_nodot] def norm_sq (z : ℂ) : ℝ := z.re * z.re + z.im * z.im @[simp] lemma norm_sq_of_real (r : ℝ) : norm_sq r = r * r := by simp [norm_sq] @[simp] lemma norm_sq_zero : norm_sq 0 = 0 := by simp [norm_sq] @[simp] lemma norm_sq_one : norm_sq 1 = 1 := by simp [norm_sq] @[simp] lemma norm_sq_I : norm_sq I = 1 := by simp [norm_sq] lemma norm_sq_nonneg (z : ℂ) : 0 ≤ norm_sq z := add_nonneg (mul_self_nonneg _) (mul_self_nonneg _) @[simp] lemma norm_sq_eq_zero {z : ℂ} : norm_sq z = 0 ↔ z = 0 := ⟨λ h, ext (eq_zero_of_mul_self_add_mul_self_eq_zero h) (eq_zero_of_mul_self_add_mul_self_eq_zero $ (add_comm _ _).trans h), λ h, h.symm ▸ norm_sq_zero⟩ @[simp] lemma norm_sq_pos {z : ℂ} : 0 < norm_sq z ↔ z ≠ 0 := by rw [lt_iff_le_and_ne, ne, eq_comm]; simp [norm_sq_nonneg] @[simp] lemma norm_sq_neg (z : ℂ) : norm_sq (-z) = norm_sq z := by simp [norm_sq] @[simp] lemma norm_sq_conj (z : ℂ) : norm_sq (conj z) = norm_sq z := by simp [norm_sq] @[simp] lemma norm_sq_mul (z w : ℂ) : norm_sq (z * w) = norm_sq z * norm_sq w := by dsimp [norm_sq]; ring lemma norm_sq_add (z w : ℂ) : norm_sq (z + w) = norm_sq z + norm_sq w + 2 * (z * conj w).re := by dsimp [norm_sq]; ring lemma re_sq_le_norm_sq (z : ℂ) : z.re * z.re ≤ norm_sq z := le_add_of_nonneg_right (mul_self_nonneg _) lemma im_sq_le_norm_sq (z : ℂ) : z.im * z.im ≤ norm_sq z := le_add_of_nonneg_left (mul_self_nonneg _) theorem mul_conj (z : ℂ) : z * conj z = norm_sq z := ext_iff.2 $ by simp [norm_sq, mul_comm, sub_eq_neg_add, add_comm] theorem add_conj (z : ℂ) : z + conj z = (2 * z.re : ℝ) := ext_iff.2 $ by simp [two_mul] /-- The coercion `ℝ → ℂ` as a `ring_hom`. -/ def of_real : ℝ →+* ℂ := ⟨coe, of_real_one, of_real_mul, of_real_zero, of_real_add⟩ @[simp] lemma of_real_eq_coe (r : ℝ) : of_real r = r := rfl @[simp] lemma I_sq : I ^ 2 = -1 := by rw [pow_two, I_mul_I] @[simp] lemma sub_re (z w : ℂ) : (z - w).re = z.re - w.re := rfl @[simp] lemma sub_im (z w : ℂ) : (z - w).im = z.im - w.im := rfl @[simp, norm_cast] lemma of_real_sub (r s : ℝ) : ((r - s : ℝ) : ℂ) = r - s := ext_iff.2 $ by simp @[simp, norm_cast] lemma of_real_pow (r : ℝ) (n : ℕ) : ((r ^ n : ℝ) : ℂ) = r ^ n := by induction n; simp [*, of_real_mul, pow_succ] theorem sub_conj (z : ℂ) : z - conj z = (2 * z.im : ℝ) * I := ext_iff.2 $ by simp [two_mul, sub_eq_add_neg] lemma norm_sq_sub (z w : ℂ) : norm_sq (z - w) = norm_sq z + norm_sq w - 2 * (z * conj w).re := by rw [sub_eq_add_neg, norm_sq_add]; simp [-mul_re, add_comm, add_left_comm, sub_eq_add_neg] /-! ### Inversion -/ noncomputable instance : has_inv ℂ := ⟨λ z, conj z * ((norm_sq z)⁻¹:ℝ)⟩ theorem inv_def (z : ℂ) : z⁻¹ = conj z * ((norm_sq z)⁻¹:ℝ) := rfl @[simp] lemma inv_re (z : ℂ) : (z⁻¹).re = z.re / norm_sq z := by simp [inv_def, division_def] @[simp] lemma inv_im (z : ℂ) : (z⁻¹).im = -z.im / norm_sq z := by simp [inv_def, division_def] @[simp, norm_cast] lemma of_real_inv (r : ℝ) : ((r⁻¹ : ℝ) : ℂ) = r⁻¹ := ext_iff.2 $ begin simp, by_cases r = 0, { simp [h] }, { rw [← div_div_eq_div_mul, div_self h, one_div] }, end protected lemma inv_zero : (0⁻¹ : ℂ) = 0 := by rw [← of_real_zero, ← of_real_inv, inv_zero] protected theorem mul_inv_cancel {z : ℂ} (h : z ≠ 0) : z * z⁻¹ = 1 := by rw [inv_def, ← mul_assoc, mul_conj, ← of_real_mul, mul_inv_cancel (mt norm_sq_eq_zero.1 h), of_real_one] /-! ### Field instance and lemmas -/ noncomputable instance : field ℂ := { inv := has_inv.inv, exists_pair_ne := ⟨0, 1, mt (congr_arg re) zero_ne_one⟩, mul_inv_cancel := @complex.mul_inv_cancel, inv_zero := complex.inv_zero, ..complex.comm_ring } lemma div_re (z w : ℂ) : (z / w).re = z.re * w.re / norm_sq w + z.im * w.im / norm_sq w := by simp [div_eq_mul_inv, mul_assoc, sub_eq_add_neg] lemma div_im (z w : ℂ) : (z / w).im = z.im * w.re / norm_sq w - z.re * w.im / norm_sq w := by simp [div_eq_mul_inv, mul_assoc, sub_eq_add_neg, add_comm] @[simp, norm_cast] lemma of_real_div (r s : ℝ) : ((r / s : ℝ) : ℂ) = r / s := of_real.map_div r s @[simp, norm_cast] lemma of_real_fpow (r : ℝ) (n : ℤ) : ((r ^ n : ℝ) : ℂ) = (r : ℂ) ^ n := of_real.map_fpow r n @[simp] lemma div_I (z : ℂ) : z / I = -(z * I) := (div_eq_iff_mul_eq I_ne_zero).2 $ by simp [mul_assoc] @[simp] lemma inv_I : I⁻¹ = -I := by simp [inv_eq_one_div] @[simp] lemma norm_sq_inv (z : ℂ) : norm_sq z⁻¹ = (norm_sq z)⁻¹ := if h : z = 0 then by simp [h] else mul_right_cancel' (mt norm_sq_eq_zero.1 h) $ by rw [← norm_sq_mul]; simp [h, -norm_sq_mul] @[simp] lemma norm_sq_div (z w : ℂ) : norm_sq (z / w) = norm_sq z / norm_sq w := by rw [division_def, norm_sq_mul, norm_sq_inv]; refl /-! ### Cast lemmas -/ @[simp, norm_cast] theorem of_real_nat_cast (n : ℕ) : ((n : ℝ) : ℂ) = n := of_real.map_nat_cast n @[simp, norm_cast] lemma nat_cast_re (n : ℕ) : (n : ℂ).re = n := by rw [← of_real_nat_cast, of_real_re] @[simp, norm_cast] lemma nat_cast_im (n : ℕ) : (n : ℂ).im = 0 := by rw [← of_real_nat_cast, of_real_im] @[simp, norm_cast] theorem of_real_int_cast (n : ℤ) : ((n : ℝ) : ℂ) = n := of_real.map_int_cast n @[simp, norm_cast] lemma int_cast_re (n : ℤ) : (n : ℂ).re = n := by rw [← of_real_int_cast, of_real_re] @[simp, norm_cast] lemma int_cast_im (n : ℤ) : (n : ℂ).im = 0 := by rw [← of_real_int_cast, of_real_im] @[simp, norm_cast] theorem of_real_rat_cast (n : ℚ) : ((n : ℝ) : ℂ) = n := of_real.map_rat_cast n @[simp, norm_cast] lemma rat_cast_re (q : ℚ) : (q : ℂ).re = q := by rw [← of_real_rat_cast, of_real_re] @[simp, norm_cast] lemma rat_cast_im (q : ℚ) : (q : ℂ).im = 0 := by rw [← of_real_rat_cast, of_real_im] /-! ### Characteristic zero -/ instance char_zero_complex : char_zero ℂ := add_group.char_zero_of_inj_zero $ λ n h, by rwa [← of_real_nat_cast, of_real_eq_zero, nat.cast_eq_zero] at h theorem re_eq_add_conj (z : ℂ) : (z.re : ℂ) = (z + conj z) / 2 := by rw [add_conj]; simp; rw [mul_div_cancel_left (z.re:ℂ) two_ne_zero'] /-! ### Absolute value -/ /-- The complex absolute value function, defined as the square root of the norm squared. -/ @[pp_nodot] noncomputable def abs (z : ℂ) : ℝ := (norm_sq z).sqrt local notation `abs'` := _root_.abs @[simp] lemma abs_of_real (r : ℝ) : abs r = abs' r := by simp [abs, norm_sq_of_real, real.sqrt_mul_self_eq_abs] lemma abs_of_nonneg {r : ℝ} (h : 0 ≤ r) : abs r = r := (abs_of_real _).trans (abs_of_nonneg h) lemma abs_of_nat (n : ℕ) : complex.abs n = n := calc complex.abs n = complex.abs (n:ℝ) : by rw [of_real_nat_cast] ... = _ : abs_of_nonneg (nat.cast_nonneg n) lemma mul_self_abs (z : ℂ) : abs z * abs z = norm_sq z := real.mul_self_sqrt (norm_sq_nonneg _) @[simp] lemma abs_zero : abs 0 = 0 := by simp [abs] @[simp] lemma abs_one : abs 1 = 1 := by simp [abs] @[simp] lemma abs_I : abs I = 1 := by simp [abs] @[simp] lemma abs_two : abs 2 = 2 := calc abs 2 = abs (2 : ℝ) : by rw [of_real_bit0, of_real_one] ... = (2 : ℝ) : abs_of_nonneg (by norm_num) lemma abs_nonneg (z : ℂ) : 0 ≤ abs z := real.sqrt_nonneg _ @[simp] lemma abs_eq_zero {z : ℂ} : abs z = 0 ↔ z = 0 := (real.sqrt_eq_zero $ norm_sq_nonneg _).trans norm_sq_eq_zero lemma abs_ne_zero {z : ℂ} : abs z ≠ 0 ↔ z ≠ 0 := not_congr abs_eq_zero @[simp] lemma abs_conj (z : ℂ) : abs (conj z) = abs z := by simp [abs] @[simp] lemma abs_mul (z w : ℂ) : abs (z * w) = abs z * abs w := by rw [abs, norm_sq_mul, real.sqrt_mul (norm_sq_nonneg _)]; refl lemma abs_re_le_abs (z : ℂ) : abs' z.re ≤ abs z := by rw [mul_self_le_mul_self_iff (_root_.abs_nonneg z.re) (abs_nonneg _), abs_mul_abs_self, mul_self_abs]; apply re_sq_le_norm_sq lemma abs_im_le_abs (z : ℂ) : abs' z.im ≤ abs z := by rw [mul_self_le_mul_self_iff (_root_.abs_nonneg z.im) (abs_nonneg _), abs_mul_abs_self, mul_self_abs]; apply im_sq_le_norm_sq lemma re_le_abs (z : ℂ) : z.re ≤ abs z := (abs_le.1 (abs_re_le_abs _)).2 lemma im_le_abs (z : ℂ) : z.im ≤ abs z := (abs_le.1 (abs_im_le_abs _)).2 lemma abs_add (z w : ℂ) : abs (z + w) ≤ abs z + abs w := (mul_self_le_mul_self_iff (abs_nonneg _) (add_nonneg (abs_nonneg _) (abs_nonneg _))).2 $ begin rw [mul_self_abs, add_mul_self_eq, mul_self_abs, mul_self_abs, add_right_comm, norm_sq_add, add_le_add_iff_left, mul_assoc, mul_le_mul_left (@two_pos ℝ _)], simpa [-mul_re] using re_le_abs (z * conj w) end instance : is_absolute_value abs := { abv_nonneg := abs_nonneg, abv_eq_zero := λ _, abs_eq_zero, abv_add := abs_add, abv_mul := abs_mul } open is_absolute_value @[simp] lemma abs_abs (z : ℂ) : abs' (abs z) = abs z := _root_.abs_of_nonneg (abs_nonneg _) @[simp] lemma abs_pos {z : ℂ} : 0 < abs z ↔ z ≠ 0 := abv_pos abs @[simp] lemma abs_neg : ∀ z, abs (-z) = abs z := abv_neg abs lemma abs_sub : ∀ z w, abs (z - w) = abs (w - z) := abv_sub abs lemma abs_sub_le : ∀ a b c, abs (a - c) ≤ abs (a - b) + abs (b - c) := abv_sub_le abs @[simp] theorem abs_inv : ∀ z, abs z⁻¹ = (abs z)⁻¹ := abv_inv abs @[simp] theorem abs_div : ∀ z w, abs (z / w) = abs z / abs w := abv_div abs lemma abs_abs_sub_le_abs_sub : ∀ z w, abs' (abs z - abs w) ≤ abs (z - w) := abs_abv_sub_le_abv_sub abs lemma abs_le_abs_re_add_abs_im (z : ℂ) : abs z ≤ abs' z.re + abs' z.im := by simpa [re_add_im] using abs_add z.re (z.im * I) lemma abs_re_div_abs_le_one (z : ℂ) : abs' (z.re / z.abs) ≤ 1 := if hz : z = 0 then by simp [hz, zero_le_one] else by { simp_rw [_root_.abs_div, abs_abs, div_le_iff (abs_pos.2 hz), one_mul, abs_re_le_abs] } lemma abs_im_div_abs_le_one (z : ℂ) : abs' (z.im / z.abs) ≤ 1 := if hz : z = 0 then by simp [hz, zero_le_one] else by { simp_rw [_root_.abs_div, abs_abs, div_le_iff (abs_pos.2 hz), one_mul, abs_im_le_abs] } @[simp, norm_cast] lemma abs_cast_nat (n : ℕ) : abs (n : ℂ) = n := by rw [← of_real_nat_cast, abs_of_nonneg (nat.cast_nonneg n)] lemma norm_sq_eq_abs (x : ℂ) : norm_sq x = abs x ^ 2 := by rw [abs, pow_two, real.mul_self_sqrt (norm_sq_nonneg _)] /-! ### Cauchy sequences -/ theorem is_cau_seq_re (f : cau_seq ℂ abs) : is_cau_seq abs' (λ n, (f n).re) := λ ε ε0, (f.cauchy ε0).imp $ λ i H j ij, lt_of_le_of_lt (by simpa using abs_re_le_abs (f j - f i)) (H _ ij) theorem is_cau_seq_im (f : cau_seq ℂ abs) : is_cau_seq abs' (λ n, (f n).im) := λ ε ε0, (f.cauchy ε0).imp $ λ i H j ij, lt_of_le_of_lt (by simpa using abs_im_le_abs (f j - f i)) (H _ ij) /-- The real part of a complex Cauchy sequence, as a real Cauchy sequence. -/ noncomputable def cau_seq_re (f : cau_seq ℂ abs) : cau_seq ℝ abs' := ⟨_, is_cau_seq_re f⟩ /-- The imaginary part of a complex Cauchy sequence, as a real Cauchy sequence. -/ noncomputable def cau_seq_im (f : cau_seq ℂ abs) : cau_seq ℝ abs' := ⟨_, is_cau_seq_im f⟩ lemma is_cau_seq_abs {f : ℕ → ℂ} (hf : is_cau_seq abs f) : is_cau_seq abs' (abs ∘ f) := λ ε ε0, let ⟨i, hi⟩ := hf ε ε0 in ⟨i, λ j hj, lt_of_le_of_lt (abs_abs_sub_le_abs_sub _ _) (hi j hj)⟩ /-- The limit of a Cauchy sequence of complex numbers. -/ noncomputable def lim_aux (f : cau_seq ℂ abs) : ℂ := ⟨cau_seq.lim (cau_seq_re f), cau_seq.lim (cau_seq_im f)⟩ theorem equiv_lim_aux (f : cau_seq ℂ abs) : f ≈ cau_seq.const abs (lim_aux f) := λ ε ε0, (exists_forall_ge_and (cau_seq.equiv_lim ⟨_, is_cau_seq_re f⟩ _ (half_pos ε0)) (cau_seq.equiv_lim ⟨_, is_cau_seq_im f⟩ _ (half_pos ε0))).imp $ λ i H j ij, begin cases H _ ij with H₁ H₂, apply lt_of_le_of_lt (abs_le_abs_re_add_abs_im _), dsimp [lim_aux] at *, have := add_lt_add H₁ H₂, rwa add_halves at this, end noncomputable instance : cau_seq.is_complete ℂ abs := ⟨λ f, ⟨lim_aux f, equiv_lim_aux f⟩⟩ open cau_seq lemma lim_eq_lim_im_add_lim_re (f : cau_seq ℂ abs) : lim f = ↑(lim (cau_seq_re f)) + ↑(lim (cau_seq_im f)) * I := lim_eq_of_equiv_const $ calc f ≈ _ : equiv_lim_aux f ... = cau_seq.const abs (↑(lim (cau_seq_re f)) + ↑(lim (cau_seq_im f)) * I) : cau_seq.ext (λ _, complex.ext (by simp [lim_aux, cau_seq_re]) (by simp [lim_aux, cau_seq_im])) lemma lim_re (f : cau_seq ℂ abs) : lim (cau_seq_re f) = (lim f).re := by rw [lim_eq_lim_im_add_lim_re]; simp lemma lim_im (f : cau_seq ℂ abs) : lim (cau_seq_im f) = (lim f).im := by rw [lim_eq_lim_im_add_lim_re]; simp lemma is_cau_seq_conj (f : cau_seq ℂ abs) : is_cau_seq abs (λ n, conj (f n)) := λ ε ε0, let ⟨i, hi⟩ := f.2 ε ε0 in ⟨i, λ j hj, by rw [← conj.map_sub, abs_conj]; exact hi j hj⟩ /-- The complex conjugate of a complex Cauchy sequence, as a complex Cauchy sequence. -/ noncomputable def cau_seq_conj (f : cau_seq ℂ abs) : cau_seq ℂ abs := ⟨_, is_cau_seq_conj f⟩ lemma lim_conj (f : cau_seq ℂ abs) : lim (cau_seq_conj f) = conj (lim f) := complex.ext (by simp [cau_seq_conj, (lim_re _).symm, cau_seq_re]) (by simp [cau_seq_conj, (lim_im _).symm, cau_seq_im, (lim_neg _).symm]; refl) /-- The absolute value of a complex Cauchy sequence, as a real Cauchy sequence. -/ noncomputable def cau_seq_abs (f : cau_seq ℂ abs) : cau_seq ℝ abs' := ⟨_, is_cau_seq_abs f.2⟩ lemma lim_abs (f : cau_seq ℂ abs) : lim (cau_seq_abs f) = abs (lim f) := lim_eq_of_equiv_const (λ ε ε0, let ⟨i, hi⟩ := equiv_lim f ε ε0 in ⟨i, λ j hj, lt_of_le_of_lt (abs_abs_sub_le_abs_sub _ _) (hi j hj)⟩) end complex
7ece8dd9ea549514089190ce1bc0ec00ecf72094
137c667471a40116a7afd7261f030b30180468c2
/src/data/dfinsupp.lean
c6620a35eb14ccf7bedd784e3a5958373dad2b52
[ "Apache-2.0" ]
permissive
bragadeesh153/mathlib
46bf814cfb1eecb34b5d1549b9117dc60f657792
b577bb2cd1f96eb47031878256856020b76f73cd
refs/heads/master
1,687,435,188,334
1,626,384,207,000
1,626,384,207,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
52,068
lean
/- Copyright (c) 2018 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Kenny Lau -/ import algebra.module.pi import algebra.big_operators.basic import data.set.finite import group_theory.submonoid.membership /-! # Dependent functions with finite support For a non-dependent version see `data/finsupp.lean`. -/ universes u u₁ u₂ v v₁ v₂ v₃ w x y l open_locale big_operators variables (ι : Type u) (β : ι → Type v) {β₁ : ι → Type v₁} {β₂ : ι → Type v₂} namespace dfinsupp variable [Π i, has_zero (β i)] structure pre : Type (max u v) := (to_fun : Π i, β i) (pre_support : multiset ι) (zero : ∀ i, i ∈ pre_support ∨ to_fun i = 0) instance inhabited_pre : inhabited (pre ι β) := ⟨⟨λ i, 0, ∅, λ i, or.inr rfl⟩⟩ instance : setoid (pre ι β) := { r := λ x y, ∀ i, x.to_fun i = y.to_fun i, iseqv := ⟨λ f i, rfl, λ f g H i, (H i).symm, λ f g h H1 H2 i, (H1 i).trans (H2 i)⟩ } end dfinsupp variable {ι} /-- A dependent function `Π i, β i` with finite support. -/ @[reducible] def dfinsupp [Π i, has_zero (β i)] : Type* := quotient (dfinsupp.pre.setoid ι β) variable {β} notation `Π₀` binders `, ` r:(scoped f, dfinsupp f) := r infix ` →ₚ `:25 := dfinsupp namespace dfinsupp section basic variables [Π i, has_zero (β i)] [Π i, has_zero (β₁ i)] [Π i, has_zero (β₂ i)] instance : has_coe_to_fun (Π₀ i, β i) := ⟨λ _, Π i, β i, λ f, quotient.lift_on f pre.to_fun $ λ _ _, funext⟩ instance : has_zero (Π₀ i, β i) := ⟨⟦⟨0, ∅, λ i, or.inr rfl⟩⟧⟩ instance : inhabited (Π₀ i, β i) := ⟨0⟩ @[simp] lemma coe_pre_mk (f : Π i, β i) (s : multiset ι) (hf) : ⇑(⟦⟨f, s, hf⟩⟧ : Π₀ i, β i) = f := rfl @[simp] lemma coe_zero : ⇑(0 : Π₀ i, β i) = 0 := rfl lemma zero_apply (i : ι) : (0 : Π₀ i, β i) i = 0 := rfl lemma coe_fn_injective : @function.injective (Π₀ i, β i) (Π i, β i) coe_fn := λ f g H, quotient.induction_on₂ f g (λ _ _ H, quotient.sound H) (congr_fun H) @[ext] lemma ext {f g : Π₀ i, β i} (H : ∀ i, f i = g i) : f = g := coe_fn_injective (funext H) /-- The composition of `f : β₁ → β₂` and `g : Π₀ i, β₁ i` is `map_range f hf g : Π₀ i, β₂ i`, well defined when `f 0 = 0`. This preserves the structure on `f`, and exists in various bundled forms for when `f` is itself bundled: * `dfinsupp.map_range.add_monoid_hom` * `dfinsupp.map_range.add_equiv` * `dfinsupp.map_range.linear_map` * `dfinsupp.map_range.linear_equiv` -/ def map_range (f : Π i, β₁ i → β₂ i) (hf : ∀ i, f i 0 = 0) (g : Π₀ i, β₁ i) : Π₀ i, β₂ i := quotient.lift_on g (λ x, ⟦(⟨λ i, f i (x.1 i), x.2, λ i, or.cases_on (x.3 i) or.inl $ λ H, or.inr $ by rw [H, hf]⟩ : pre ι β₂)⟧) $ λ x y H, quotient.sound $ λ i, by simp only [H i] @[simp] lemma map_range_apply (f : Π i, β₁ i → β₂ i) (hf : ∀ i, f i 0 = 0) (g : Π₀ i, β₁ i) (i : ι) : map_range f hf g i = f i (g i) := quotient.induction_on g $ λ x, rfl @[simp] lemma map_range_id (h : ∀ i, id (0 : β₁ i) = 0 := λ i, rfl) (g : Π₀ (i : ι), β₁ i) : map_range (λ i, (id : β₁ i → β₁ i)) h g = g := by { ext, simp only [map_range_apply, id.def] } lemma map_range_comp (f : Π i, β₁ i → β₂ i) (f₂ : Π i, β i → β₁ i) (hf : ∀ i, f i 0 = 0) (hf₂ : ∀ i, f₂ i 0 = 0) (h : ∀ i, (f i ∘ f₂ i) 0 = 0) (g : Π₀ (i : ι), β i) : map_range (λ i, f i ∘ f₂ i) h g = map_range f hf (map_range f₂ hf₂ g) := by { ext, simp only [map_range_apply] } @[simp] lemma map_range_zero (f : Π i, β₁ i → β₂ i) (hf : ∀ i, f i 0 = 0) : map_range f hf (0 : Π₀ i, β₁ i) = 0 := by { ext, simp only [map_range_apply, coe_zero, pi.zero_apply, hf] } /-- Let `f i` be a binary operation `β₁ i → β₂ i → β i` such that `f i 0 0 = 0`. Then `zip_with f hf` is a binary operation `Π₀ i, β₁ i → Π₀ i, β₂ i → Π₀ i, β i`. -/ def zip_with (f : Π i, β₁ i → β₂ i → β i) (hf : ∀ i, f i 0 0 = 0) (g₁ : Π₀ i, β₁ i) (g₂ : Π₀ i, β₂ i) : (Π₀ i, β i) := begin refine quotient.lift_on₂ g₁ g₂ (λ x y, ⟦(⟨λ i, f i (x.1 i) (y.1 i), x.2 + y.2, λ i, _⟩ : pre ι β)⟧) _, { cases x.3 i with h1 h1, { left, rw multiset.mem_add, left, exact h1 }, cases y.3 i with h2 h2, { left, rw multiset.mem_add, right, exact h2 }, right, rw [h1, h2, hf] }, exact λ x₁ x₂ y₁ y₂ H1 H2, quotient.sound $ λ i, by simp only [H1 i, H2 i] end @[simp] lemma zip_with_apply (f : Π i, β₁ i → β₂ i → β i) (hf : ∀ i, f i 0 0 = 0) (g₁ : Π₀ i, β₁ i) (g₂ : Π₀ i, β₂ i) (i : ι) : zip_with f hf g₁ g₂ i = f i (g₁ i) (g₂ i) := quotient.induction_on₂ g₁ g₂ $ λ _ _, rfl end basic section algebra instance [Π i, add_zero_class (β i)] : has_add (Π₀ i, β i) := ⟨zip_with (λ _, (+)) (λ _, add_zero 0)⟩ lemma add_apply [Π i, add_zero_class (β i)] (g₁ g₂ : Π₀ i, β i) (i : ι) : (g₁ + g₂) i = g₁ i + g₂ i := zip_with_apply _ _ g₁ g₂ i @[simp] lemma coe_add [Π i, add_zero_class (β i)] (g₁ g₂ : Π₀ i, β i) : ⇑(g₁ + g₂) = g₁ + g₂ := funext $ add_apply g₁ g₂ instance [Π i, add_zero_class (β i)] : add_zero_class (Π₀ i, β i) := { zero := 0, add := (+), zero_add := λ f, ext $ λ i, by simp only [add_apply, zero_apply, zero_add], add_zero := λ f, ext $ λ i, by simp only [add_apply, zero_apply, add_zero] } instance [Π i, add_monoid (β i)] : add_monoid (Π₀ i, β i) := { add_monoid . zero := 0, add := (+), add_assoc := λ f g h, ext $ λ i, by simp only [add_apply, add_assoc], .. dfinsupp.add_zero_class } /-- Coercion from a `dfinsupp` to a pi type is an `add_monoid_hom`. -/ def coe_fn_add_monoid_hom [Π i, add_zero_class (β i)] : (Π₀ i, β i) →+ (Π i, β i) := { to_fun := coe_fn, map_zero' := coe_zero, map_add' := coe_add } /-- Evaluation at a point is an `add_monoid_hom`. This is the finitely-supported version of `pi.eval_add_monoid_hom`. -/ def eval_add_monoid_hom [Π i, add_zero_class (β i)] (i : ι) : (Π₀ i, β i) →+ β i := (pi.eval_add_monoid_hom β i).comp coe_fn_add_monoid_hom instance is_add_monoid_hom [Π i, add_zero_class (β i)] {i : ι} : is_add_monoid_hom (λ g : Π₀ i : ι, β i, g i) := (eval_add_monoid_hom i).is_add_monoid_hom instance [Π i, add_group (β i)] : has_neg (Π₀ i, β i) := ⟨λ f, f.map_range (λ _, has_neg.neg) (λ _, neg_zero)⟩ instance [Π i, add_comm_monoid (β i)] : add_comm_monoid (Π₀ i, β i) := { add_comm := λ f g, ext $ λ i, by simp only [add_apply, add_comm], .. dfinsupp.add_monoid } @[simp] lemma coe_finset_sum {α} [Π i, add_comm_monoid (β i)] (s : finset α) (g : α → Π₀ i, β i) : ⇑(∑ a in s, g a) = ∑ a in s, g a := (coe_fn_add_monoid_hom : _ →+ (Π i, β i)).map_sum g s @[simp] lemma finset_sum_apply {α} [Π i, add_comm_monoid (β i)] (s : finset α) (g : α → Π₀ i, β i) (i : ι) : (∑ a in s, g a) i = ∑ a in s, g a i := (eval_add_monoid_hom i : _ →+ β i).map_sum g s lemma neg_apply [Π i, add_group (β i)] (g : Π₀ i, β i) (i : ι) : (- g) i = - g i := map_range_apply _ _ g i @[simp] lemma coe_neg [Π i, add_group (β i)] (g : Π₀ i, β i) : ⇑(- g) = - g := funext $ neg_apply g instance [Π i, add_group (β i)] : add_group (Π₀ i, β i) := { add_left_neg := λ f, ext $ λ i, by simp only [add_apply, neg_apply, zero_apply, add_left_neg], .. dfinsupp.add_monoid, .. (infer_instance : has_neg (Π₀ i, β i)) } lemma sub_apply [Π i, add_group (β i)] (g₁ g₂ : Π₀ i, β i) (i : ι) : (g₁ - g₂) i = g₁ i - g₂ i := by rw [sub_eq_add_neg]; simp [sub_eq_add_neg] @[simp] lemma coe_sub [Π i, add_group (β i)] (g₁ g₂ : Π₀ i, β i) : ⇑(g₁ - g₂) = g₁ - g₂ := funext $ sub_apply g₁ g₂ instance [Π i, add_comm_group (β i)] : add_comm_group (Π₀ i, β i) := { add_comm := λ f g, ext $ λ i, by simp only [add_apply, add_comm], ..dfinsupp.add_group } /-- Dependent functions with finite support inherit a semiring action from an action on each coordinate. -/ instance {γ : Type w} [monoid γ] [Π i, add_monoid (β i)] [Π i, distrib_mul_action γ (β i)] : has_scalar γ (Π₀ i, β i) := ⟨λc v, v.map_range (λ _, (•) c) (λ _, smul_zero _)⟩ lemma smul_apply {γ : Type w} [monoid γ] [Π i, add_monoid (β i)] [Π i, distrib_mul_action γ (β i)] (b : γ) (v : Π₀ i, β i) (i : ι) : (b • v) i = b • (v i) := map_range_apply _ _ v i @[simp] lemma coe_smul {γ : Type w} [monoid γ] [Π i, add_monoid (β i)] [Π i, distrib_mul_action γ (β i)] (b : γ) (v : Π₀ i, β i) : ⇑(b • v) = b • v := funext $ smul_apply b v instance {γ : Type w} {δ : Type*} [monoid γ] [monoid δ] [Π i, add_monoid (β i)] [Π i, distrib_mul_action γ (β i)] [Π i, distrib_mul_action δ (β i)] [Π i, smul_comm_class γ δ (β i)] : smul_comm_class γ δ (Π₀ i, β i) := { smul_comm := λ r s m, ext $ λ i, by simp only [smul_apply, smul_comm r s (m i)] } instance {γ : Type w} {δ : Type*} [monoid γ] [monoid δ] [Π i, add_monoid (β i)] [Π i, distrib_mul_action γ (β i)] [Π i, distrib_mul_action δ (β i)] [has_scalar γ δ] [Π i, is_scalar_tower γ δ (β i)] : is_scalar_tower γ δ (Π₀ i, β i) := { smul_assoc := λ r s m, ext $ λ i, by simp only [smul_apply, smul_assoc r s (m i)] } /-- Dependent functions with finite support inherit a `distrib_mul_action` structure from such a structure on each coordinate. -/ instance {γ : Type w} [monoid γ] [Π i, add_monoid (β i)] [Π i, distrib_mul_action γ (β i)] : distrib_mul_action γ (Π₀ i, β i) := { smul_zero := λ c, ext $ λ i, by simp only [smul_apply, smul_zero, zero_apply], smul_add := λ c x y, ext $ λ i, by simp only [add_apply, smul_apply, smul_add], one_smul := λ x, ext $ λ i, by simp only [smul_apply, one_smul], mul_smul := λ r s x, ext $ λ i, by simp only [smul_apply, smul_smul], ..dfinsupp.has_scalar } /-- Dependent functions with finite support inherit a module structure from such a structure on each coordinate. -/ instance {γ : Type w} [semiring γ] [Π i, add_comm_monoid (β i)] [Π i, module γ (β i)] : module γ (Π₀ i, β i) := { zero_smul := λ c, ext $ λ i, by simp only [smul_apply, zero_smul, zero_apply], add_smul := λ c x y, ext $ λ i, by simp only [add_apply, smul_apply, add_smul], ..dfinsupp.distrib_mul_action } end algebra section filter_and_subtype_domain /-- `filter p f` is the function which is `f i` if `p i` is true and 0 otherwise. -/ def filter [Π i, has_zero (β i)] (p : ι → Prop) [decidable_pred p] (f : Π₀ i, β i) : Π₀ i, β i := quotient.lift_on f (λ x, ⟦(⟨λ i, if p i then x.1 i else 0, x.2, λ i, or.cases_on (x.3 i) or.inl $ λ H, or.inr $ by rw [H, if_t_t]⟩ : pre ι β)⟧) $ λ x y H, quotient.sound $ λ i, by simp only [H i] @[simp] lemma filter_apply [Π i, has_zero (β i)] (p : ι → Prop) [decidable_pred p] (i : ι) (f : Π₀ i, β i) : f.filter p i = if p i then f i else 0 := quotient.induction_on f $ λ x, rfl lemma filter_apply_pos [Π i, has_zero (β i)] {p : ι → Prop} [decidable_pred p] (f : Π₀ i, β i) {i : ι} (h : p i) : f.filter p i = f i := by simp only [filter_apply, if_pos h] lemma filter_apply_neg [Π i, has_zero (β i)] {p : ι → Prop} [decidable_pred p] (f : Π₀ i, β i) {i : ι} (h : ¬ p i) : f.filter p i = 0 := by simp only [filter_apply, if_neg h] lemma filter_pos_add_filter_neg [Π i, add_zero_class (β i)] (f : Π₀ i, β i) (p : ι → Prop) [decidable_pred p] : f.filter p + f.filter (λi, ¬ p i) = f := ext $ λ i, by simp only [add_apply, filter_apply]; split_ifs; simp only [add_zero, zero_add] /-- `subtype_domain p f` is the restriction of the finitely supported function `f` to the subtype `p`. -/ def subtype_domain [Π i, has_zero (β i)] (p : ι → Prop) [decidable_pred p] (f : Π₀ i, β i) : Π₀ i : subtype p, β i := begin fapply quotient.lift_on f, { intro x, refine ⟦⟨λ i, x.1 (i : ι), (x.2.filter p).attach.map $ λ j, ⟨j, (multiset.mem_filter.1 j.2).2⟩, _⟩⟧, refine λ i, or.cases_on (x.3 i) (λ H, _) or.inr, left, rw multiset.mem_map, refine ⟨⟨i, multiset.mem_filter.2 ⟨H, i.2⟩⟩, _, subtype.eta _ _⟩, apply multiset.mem_attach }, intros x y H, exact quotient.sound (λ i, H i) end @[simp] lemma subtype_domain_zero [Π i, has_zero (β i)] {p : ι → Prop} [decidable_pred p] : subtype_domain p (0 : Π₀ i, β i) = 0 := rfl @[simp] lemma subtype_domain_apply [Π i, has_zero (β i)] {p : ι → Prop} [decidable_pred p] {i : subtype p} {v : Π₀ i, β i} : (subtype_domain p v) i = v i := quotient.induction_on v $ λ x, rfl @[simp] lemma subtype_domain_add [Π i, add_zero_class (β i)] {p : ι → Prop} [decidable_pred p] {v v' : Π₀ i, β i} : (v + v').subtype_domain p = v.subtype_domain p + v'.subtype_domain p := ext $ λ i, by simp only [add_apply, subtype_domain_apply] instance subtype_domain.is_add_monoid_hom [Π i, add_zero_class (β i)] {p : ι → Prop} [decidable_pred p] : is_add_monoid_hom (subtype_domain p : (Π₀ i : ι, β i) → Π₀ i : subtype p, β i) := { map_add := λ _ _, subtype_domain_add, map_zero := subtype_domain_zero } @[simp] lemma subtype_domain_neg [Π i, add_group (β i)] {p : ι → Prop} [decidable_pred p] {v : Π₀ i, β i} : (- v).subtype_domain p = - v.subtype_domain p := ext $ λ i, by simp only [neg_apply, subtype_domain_apply] @[simp] lemma subtype_domain_sub [Π i, add_group (β i)] {p : ι → Prop} [decidable_pred p] {v v' : Π₀ i, β i} : (v - v').subtype_domain p = v.subtype_domain p - v'.subtype_domain p := ext $ λ i, by simp only [sub_apply, subtype_domain_apply] end filter_and_subtype_domain variable [dec : decidable_eq ι] include dec section basic variable [Π i, has_zero (β i)] omit dec lemma finite_support (f : Π₀ i, β i) : set.finite {i | f i ≠ 0} := begin classical, exact quotient.induction_on f (λ x, x.2.to_finset.finite_to_set.subset (λ i H, multiset.mem_to_finset.2 ((x.3 i).resolve_right H))) end include dec /-- Create an element of `Π₀ i, β i` from a finset `s` and a function `x` defined on this `finset`. -/ def mk (s : finset ι) (x : Π i : (↑s : set ι), β (i : ι)) : Π₀ i, β i := ⟦⟨λ i, if H : i ∈ s then x ⟨i, H⟩ else 0, s.1, λ i, if H : i ∈ s then or.inl H else or.inr $ dif_neg H⟩⟧ @[simp] lemma mk_apply {s : finset ι} {x : Π i : (↑s : set ι), β i} {i : ι} : (mk s x : Π i, β i) i = if H : i ∈ s then x ⟨i, H⟩ else 0 := rfl theorem mk_injective (s : finset ι) : function.injective (@mk ι β _ _ s) := begin intros x y H, ext i, have h1 : (mk s x : Π i, β i) i = (mk s y : Π i, β i) i, {rw H}, cases i with i hi, change i ∈ s at hi, dsimp only [mk_apply, subtype.coe_mk] at h1, simpa only [dif_pos hi] using h1 end /-- The function `single i b : Π₀ i, β i` sends `i` to `b` and all other points to `0`. -/ def single (i : ι) (b : β i) : Π₀ i, β i := mk {i} $ λ j, eq.rec_on (finset.mem_singleton.1 j.prop).symm b @[simp] lemma single_apply {i i' b} : (single i b : Π₀ i, β i) i' = (if h : i = i' then eq.rec_on h b else 0) := begin dsimp only [single], by_cases h : i = i', { have h1 : i' ∈ ({i} : finset ι) := finset.mem_singleton.2 h.symm, simp only [mk_apply, dif_pos h, dif_pos h1], refl }, { have h1 : i' ∉ ({i} : finset ι) := finset.not_mem_singleton.2 (ne.symm h), simp only [mk_apply, dif_neg h, dif_neg h1] } end @[simp] lemma single_zero {i} : (single i 0 : Π₀ i, β i) = 0 := quotient.sound $ λ j, if H : j ∈ ({i} : finset _) then by dsimp only; rw [dif_pos H]; cases finset.mem_singleton.1 H; refl else dif_neg H @[simp] lemma single_eq_same {i b} : (single i b : Π₀ i, β i) i = b := by simp only [single_apply, dif_pos rfl] lemma single_eq_of_ne {i i' b} (h : i ≠ i') : (single i b : Π₀ i, β i) i' = 0 := by simp only [single_apply, dif_neg h] lemma single_injective {i} : function.injective (single i : β i → Π₀ i, β i) := λ x y H, congr_fun (mk_injective _ H) ⟨i, by simp⟩ /-- Like `finsupp.single_eq_single_iff`, but with a `heq` due to dependent types -/ lemma single_eq_single_iff (i j : ι) (xi : β i) (xj : β j) : dfinsupp.single i xi = dfinsupp.single j xj ↔ i = j ∧ xi == xj ∨ xi = 0 ∧ xj = 0 := begin split, { intro h, by_cases hij : i = j, { subst hij, exact or.inl ⟨rfl, heq_of_eq (dfinsupp.single_injective h)⟩, }, { have h_coe : ⇑(dfinsupp.single i xi) = dfinsupp.single j xj := congr_arg coe_fn h, have hci := congr_fun h_coe i, have hcj := congr_fun h_coe j, rw dfinsupp.single_eq_same at hci hcj, rw dfinsupp.single_eq_of_ne (ne.symm hij) at hci, rw dfinsupp.single_eq_of_ne (hij) at hcj, exact or.inr ⟨hci, hcj.symm⟩, }, }, { rintros (⟨hi, hxi⟩ | ⟨hi, hj⟩), { subst hi, rw eq_of_heq hxi, }, { rw [hi, hj, dfinsupp.single_zero, dfinsupp.single_zero], }, }, end /-- Equality of sigma types is sufficient (but not necessary) to show equality of `dfinsupp`s. -/ lemma single_eq_of_sigma_eq {i j} {xi : β i} {xj : β j} (h : (⟨i, xi⟩ : sigma β) = ⟨j, xj⟩) : dfinsupp.single i xi = dfinsupp.single j xj := by { cases h, refl } /-- Redefine `f i` to be `0`. -/ def erase (i : ι) (f : Π₀ i, β i) : Π₀ i, β i := quotient.lift_on f (λ x, ⟦(⟨λ j, if j = i then 0 else x.1 j, x.2, λ j, or.cases_on (x.3 j) or.inl $ λ H, or.inr $ by simp only [H, if_t_t]⟩ : pre ι β)⟧) $ λ x y H, quotient.sound $ λ j, if h : j = i then by simp only [if_pos h] else by simp only [if_neg h, H j] @[simp] lemma erase_apply {i j : ι} {f : Π₀ i, β i} : (f.erase i) j = if j = i then 0 else f j := quotient.induction_on f $ λ x, rfl @[simp] lemma erase_same {i : ι} {f : Π₀ i, β i} : (f.erase i) i = 0 := by simp lemma erase_ne {i i' : ι} {f : Π₀ i, β i} (h : i' ≠ i) : (f.erase i) i' = f i' := by simp [h] end basic section add_monoid variable [Π i, add_zero_class (β i)] @[simp] lemma single_add {i : ι} {b₁ b₂ : β i} : single i (b₁ + b₂) = single i b₁ + single i b₂ := ext $ assume i', begin by_cases h : i = i', { subst h, simp only [add_apply, single_eq_same] }, { simp only [add_apply, single_eq_of_ne h, zero_add] } end variables (β) /-- `dfinsupp.single` as an `add_monoid_hom`. -/ @[simps] def single_add_hom (i : ι) : β i →+ Π₀ i, β i := { to_fun := single i, map_zero' := single_zero, map_add' := λ _ _, single_add } variables {β} lemma single_add_erase {i : ι} {f : Π₀ i, β i} : single i (f i) + f.erase i = f := ext $ λ i', if h : i = i' then by subst h; simp only [add_apply, single_apply, erase_apply, dif_pos rfl, if_pos, add_zero] else by simp only [add_apply, single_apply, erase_apply, dif_neg h, if_neg (ne.symm h), zero_add] lemma erase_add_single {i : ι} {f : Π₀ i, β i} : f.erase i + single i (f i) = f := ext $ λ i', if h : i = i' then by subst h; simp only [add_apply, single_apply, erase_apply, dif_pos rfl, if_pos, zero_add] else by simp only [add_apply, single_apply, erase_apply, dif_neg h, if_neg (ne.symm h), add_zero] protected theorem induction {p : (Π₀ i, β i) → Prop} (f : Π₀ i, β i) (h0 : p 0) (ha : ∀i b (f : Π₀ i, β i), f i = 0 → b ≠ 0 → p f → p (single i b + f)) : p f := begin refine quotient.induction_on f (λ x, _), cases x with f s H, revert f H, apply multiset.induction_on s, { intros f H, convert h0, ext i, exact (H i).resolve_left id }, intros i s ih f H, by_cases H1 : i ∈ s, { have H2 : ∀ j, j ∈ s ∨ f j = 0, { intro j, cases H j with H2 H2, { cases multiset.mem_cons.1 H2 with H3 H3, { left, rw H3, exact H1 }, { left, exact H3 } }, right, exact H2 }, have H3 : (⟦{to_fun := f, pre_support := i ::ₘ s, zero := H}⟧ : Π₀ i, β i) = ⟦{to_fun := f, pre_support := s, zero := H2}⟧, { exact quotient.sound (λ i, rfl) }, rw H3, apply ih }, have H2 : p (erase i ⟦{to_fun := f, pre_support := i ::ₘ s, zero := H}⟧), { dsimp only [erase, quotient.lift_on_mk], have H2 : ∀ j, j ∈ s ∨ ite (j = i) 0 (f j) = 0, { intro j, cases H j with H2 H2, { cases multiset.mem_cons.1 H2 with H3 H3, { right, exact if_pos H3 }, { left, exact H3 } }, right, split_ifs; [refl, exact H2] }, have H3 : (⟦{to_fun := λ (j : ι), ite (j = i) 0 (f j), pre_support := i ::ₘ s, zero := _}⟧ : Π₀ i, β i) = ⟦{to_fun := λ (j : ι), ite (j = i) 0 (f j), pre_support := s, zero := H2}⟧ := quotient.sound (λ i, rfl), rw H3, apply ih }, have H3 : single i _ + _ = (⟦{to_fun := f, pre_support := i ::ₘ s, zero := H}⟧ : Π₀ i, β i) := single_add_erase, rw ← H3, change p (single i (f i) + _), cases classical.em (f i = 0) with h h, { rw [h, single_zero, zero_add], exact H2 }, refine ha _ _ _ _ h H2, rw erase_same end lemma induction₂ {p : (Π₀ i, β i) → Prop} (f : Π₀ i, β i) (h0 : p 0) (ha : ∀i b (f : Π₀ i, β i), f i = 0 → b ≠ 0 → p f → p (f + single i b)) : p f := dfinsupp.induction f h0 $ λ i b f h1 h2 h3, have h4 : f + single i b = single i b + f, { ext j, by_cases H : i = j, { subst H, simp [h1] }, { simp [H] } }, eq.rec_on h4 $ ha i b f h1 h2 h3 @[simp] lemma add_closure_Union_range_single : add_submonoid.closure (⋃ i : ι, set.range (single i : β i → (Π₀ i, β i))) = ⊤ := top_unique $ λ x hx, (begin apply dfinsupp.induction x, exact add_submonoid.zero_mem _, exact λ a b f ha hb hf, add_submonoid.add_mem _ (add_submonoid.subset_closure $ set.mem_Union.2 ⟨a, set.mem_range_self _⟩) hf end) /-- If two additive homomorphisms from `Π₀ i, β i` are equal on each `single a b`, then they are equal. -/ lemma add_hom_ext {γ : Type w} [add_zero_class γ] ⦃f g : (Π₀ i, β i) →+ γ⦄ (H : ∀ (i : ι) (y : β i), f (single i y) = g (single i y)) : f = g := begin refine add_monoid_hom.eq_of_eq_on_mdense add_closure_Union_range_single (λ f hf, _), simp only [set.mem_Union, set.mem_range] at hf, rcases hf with ⟨x, y, rfl⟩, apply H end /-- If two additive homomorphisms from `Π₀ i, β i` are equal on each `single a b`, then they are equal. See note [partially-applied ext lemmas]. -/ @[ext] lemma add_hom_ext' {γ : Type w} [add_zero_class γ] ⦃f g : (Π₀ i, β i) →+ γ⦄ (H : ∀ x, f.comp (single_add_hom β x) = g.comp (single_add_hom β x)) : f = g := add_hom_ext $ λ x, add_monoid_hom.congr_fun (H x) end add_monoid @[simp] lemma mk_add [Π i, add_zero_class (β i)] {s : finset ι} {x y : Π i : (↑s : set ι), β i} : mk s (x + y) = mk s x + mk s y := ext $ λ i, by simp only [add_apply, mk_apply]; split_ifs; [refl, rw zero_add] @[simp] lemma mk_zero [Π i, has_zero (β i)] {s : finset ι} : mk s (0 : Π i : (↑s : set ι), β i.1) = 0 := ext $ λ i, by simp only [mk_apply]; split_ifs; refl @[simp] lemma mk_neg [Π i, add_group (β i)] {s : finset ι} {x : Π i : (↑s : set ι), β i.1} : mk s (-x) = -mk s x := ext $ λ i, by simp only [neg_apply, mk_apply]; split_ifs; [refl, rw neg_zero] @[simp] lemma mk_sub [Π i, add_group (β i)] {s : finset ι} {x y : Π i : (↑s : set ι), β i.1} : mk s (x - y) = mk s x - mk s y := ext $ λ i, by simp only [sub_apply, mk_apply]; split_ifs; [refl, rw sub_zero] instance [Π i, add_group (β i)] {s : finset ι} : is_add_group_hom (@mk ι β _ _ s) := { map_add := λ _ _, mk_add } section variables (γ : Type w) [semiring γ] [Π i, add_comm_monoid (β i)] [Π i, module γ (β i)] include γ @[simp] lemma mk_smul {s : finset ι} {c : γ} (x : Π i : (↑s : set ι), β i.1) : mk s (c • x) = c • mk s x := ext $ λ i, by simp only [smul_apply, mk_apply]; split_ifs; [refl, rw smul_zero] @[simp] lemma single_smul {i : ι} {c : γ} {x : β i} : single i (c • x) = c • single i x := ext $ λ i, by simp only [smul_apply, single_apply]; split_ifs; [cases h, rw smul_zero]; refl end section support_basic variables [Π i, has_zero (β i)] [Π i (x : β i), decidable (x ≠ 0)] /-- Set `{i | f x ≠ 0}` as a `finset`. -/ def support (f : Π₀ i, β i) : finset ι := quotient.lift_on f (λ x, x.2.to_finset.filter $ λ i, x.1 i ≠ 0) $ begin intros x y Hxy, ext i, split, { intro H, rcases finset.mem_filter.1 H with ⟨h1, h2⟩, rw Hxy i at h2, exact finset.mem_filter.2 ⟨multiset.mem_to_finset.2 $ (y.3 i).resolve_right h2, h2⟩ }, { intro H, rcases finset.mem_filter.1 H with ⟨h1, h2⟩, rw ← Hxy i at h2, exact finset.mem_filter.2 ⟨multiset.mem_to_finset.2 $ (x.3 i).resolve_right h2, h2⟩ }, end @[simp] theorem support_mk_subset {s : finset ι} {x : Π i : (↑s : set ι), β i.1} : (mk s x).support ⊆ s := λ i H, multiset.mem_to_finset.1 (finset.mem_filter.1 H).1 @[simp] theorem mem_support_to_fun (f : Π₀ i, β i) (i) : i ∈ f.support ↔ f i ≠ 0 := begin refine quotient.induction_on f (λ x, _), dsimp only [support, quotient.lift_on_mk], rw [finset.mem_filter, multiset.mem_to_finset], exact and_iff_right_of_imp (x.3 i).resolve_right end theorem eq_mk_support (f : Π₀ i, β i) : f = mk f.support (λ i, f i) := begin change f = mk f.support (λ i, f i.1), ext i, by_cases h : f i ≠ 0; [skip, rw [not_not] at h]; simp [h] end @[simp] lemma support_zero : (0 : Π₀ i, β i).support = ∅ := rfl lemma mem_support_iff (f : Π₀ i, β i) : ∀i:ι, i ∈ f.support ↔ f i ≠ 0 := f.mem_support_to_fun @[simp] lemma support_eq_empty {f : Π₀ i, β i} : f.support = ∅ ↔ f = 0 := ⟨λ H, ext $ by simpa [finset.ext_iff] using H, by simp {contextual:=tt}⟩ instance decidable_zero : decidable_pred (eq (0 : Π₀ i, β i)) := λ f, decidable_of_iff _ $ support_eq_empty.trans eq_comm lemma support_subset_iff {s : set ι} {f : Π₀ i, β i} : ↑f.support ⊆ s ↔ (∀i∉s, f i = 0) := by simp [set.subset_def]; exact forall_congr (assume i, not_imp_comm) lemma support_single_ne_zero {i : ι} {b : β i} (hb : b ≠ 0) : (single i b).support = {i} := begin ext j, by_cases h : i = j, { subst h, simp [hb] }, simp [ne.symm h, h] end lemma support_single_subset {i : ι} {b : β i} : (single i b).support ⊆ {i} := support_mk_subset section map_range_and_zip_with variables [Π i, has_zero (β₁ i)] [Π i, has_zero (β₂ i)] lemma map_range_def [Π i (x : β₁ i), decidable (x ≠ 0)] {f : Π i, β₁ i → β₂ i} {hf : ∀ i, f i 0 = 0} {g : Π₀ i, β₁ i} : map_range f hf g = mk g.support (λ i, f i.1 (g i.1)) := begin ext i, by_cases h : g i ≠ 0; simp at h; simp [h, hf] end @[simp] lemma map_range_single {f : Π i, β₁ i → β₂ i} {hf : ∀ i, f i 0 = 0} {i : ι} {b : β₁ i} : map_range f hf (single i b) = single i (f i b) := dfinsupp.ext $ λ i', by by_cases i = i'; [{subst i', simp}, simp [h, hf]] variables [Π i (x : β₁ i), decidable (x ≠ 0)] [Π i (x : β₂ i), decidable (x ≠ 0)] lemma support_map_range {f : Π i, β₁ i → β₂ i} {hf : ∀ i, f i 0 = 0} {g : Π₀ i, β₁ i} : (map_range f hf g).support ⊆ g.support := by simp [map_range_def] lemma zip_with_def {f : Π i, β₁ i → β₂ i → β i} {hf : ∀ i, f i 0 0 = 0} {g₁ : Π₀ i, β₁ i} {g₂ : Π₀ i, β₂ i} : zip_with f hf g₁ g₂ = mk (g₁.support ∪ g₂.support) (λ i, f i.1 (g₁ i.1) (g₂ i.1)) := begin ext i, by_cases h1 : g₁ i ≠ 0; by_cases h2 : g₂ i ≠ 0; simp only [not_not, ne.def] at h1 h2; simp [h1, h2, hf] end lemma support_zip_with {f : Π i, β₁ i → β₂ i → β i} {hf : ∀ i, f i 0 0 = 0} {g₁ : Π₀ i, β₁ i} {g₂ : Π₀ i, β₂ i} : (zip_with f hf g₁ g₂).support ⊆ g₁.support ∪ g₂.support := by simp [zip_with_def] end map_range_and_zip_with lemma erase_def (i : ι) (f : Π₀ i, β i) : f.erase i = mk (f.support.erase i) (λ j, f j.1) := by { ext j, by_cases h1 : j = i; by_cases h2 : f j ≠ 0; simp at h2; simp [h1, h2] } @[simp] lemma support_erase (i : ι) (f : Π₀ i, β i) : (f.erase i).support = f.support.erase i := by { ext j, by_cases h1 : j = i; by_cases h2 : f j ≠ 0; simp at h2; simp [h1, h2] } section filter_and_subtype_domain variables {p : ι → Prop} [decidable_pred p] lemma filter_def (f : Π₀ i, β i) : f.filter p = mk (f.support.filter p) (λ i, f i.1) := by ext i; by_cases h1 : p i; by_cases h2 : f i ≠ 0; simp at h2; simp [h1, h2] @[simp] lemma support_filter (f : Π₀ i, β i) : (f.filter p).support = f.support.filter p := by ext i; by_cases h : p i; simp [h] lemma subtype_domain_def (f : Π₀ i, β i) : f.subtype_domain p = mk (f.support.subtype p) (λ i, f i) := by ext i; by_cases h1 : p i; by_cases h2 : f i ≠ 0; try {simp at h2}; dsimp; simp [h1, h2, ← subtype.val_eq_coe] @[simp] lemma support_subtype_domain {f : Π₀ i, β i} : (subtype_domain p f).support = f.support.subtype p := by ext i; by_cases h1 : p i; by_cases h2 : f i ≠ 0; try {simp at h2}; dsimp; simp [h1, h2] end filter_and_subtype_domain end support_basic lemma support_add [Π i, add_zero_class (β i)] [Π i (x : β i), decidable (x ≠ 0)] {g₁ g₂ : Π₀ i, β i} : (g₁ + g₂).support ⊆ g₁.support ∪ g₂.support := support_zip_with @[simp] lemma support_neg [Π i, add_group (β i)] [Π i (x : β i), decidable (x ≠ 0)] {f : Π₀ i, β i} : support (-f) = support f := by ext i; simp lemma support_smul {γ : Type w} [semiring γ] [Π i, add_comm_monoid (β i)] [Π i, module γ (β i)] [Π ( i : ι) (x : β i), decidable (x ≠ 0)] (b : γ) (v : Π₀ i, β i) : (b • v).support ⊆ v.support := support_map_range instance [Π i, has_zero (β i)] [Π i, decidable_eq (β i)] : decidable_eq (Π₀ i, β i) := assume f g, decidable_of_iff (f.support = g.support ∧ (∀i∈f.support, f i = g i)) ⟨assume ⟨h₁, h₂⟩, ext $ assume i, if h : i ∈ f.support then h₂ i h else have hf : f i = 0, by rwa [f.mem_support_iff, not_not] at h, have hg : g i = 0, by rwa [h₁, g.mem_support_iff, not_not] at h, by rw [hf, hg], by intro h; subst h; simp⟩ section prod_and_sum variables {γ : Type w} -- [to_additive sum] for dfinsupp.prod doesn't work, the equation lemmas are not generated /-- `sum f g` is the sum of `g i (f i)` over the support of `f`. -/ def sum [Π i, has_zero (β i)] [Π i (x : β i), decidable (x ≠ 0)] [add_comm_monoid γ] (f : Π₀ i, β i) (g : Π i, β i → γ) : γ := ∑ i in f.support, g i (f i) /-- `prod f g` is the product of `g i (f i)` over the support of `f`. -/ @[to_additive] def prod [Π i, has_zero (β i)] [Π i (x : β i), decidable (x ≠ 0)] [comm_monoid γ] (f : Π₀ i, β i) (g : Π i, β i → γ) : γ := ∏ i in f.support, g i (f i) @[to_additive] lemma prod_map_range_index {β₁ : ι → Type v₁} {β₂ : ι → Type v₂} [Π i, has_zero (β₁ i)] [Π i, has_zero (β₂ i)] [Π i (x : β₁ i), decidable (x ≠ 0)] [Π i (x : β₂ i), decidable (x ≠ 0)] [comm_monoid γ] {f : Π i, β₁ i → β₂ i} {hf : ∀ i, f i 0 = 0} {g : Π₀ i, β₁ i} {h : Π i, β₂ i → γ} (h0 : ∀i, h i 0 = 1) : (map_range f hf g).prod h = g.prod (λi b, h i (f i b)) := begin rw [map_range_def], refine (finset.prod_subset support_mk_subset _).trans _, { intros i h1 h2, dsimp, simp [h1] at h2, dsimp at h2, simp [h1, h2, h0] }, { refine finset.prod_congr rfl _, intros i h1, simp [h1] } end @[to_additive] lemma prod_zero_index [Π i, add_comm_monoid (β i)] [Π i (x : β i), decidable (x ≠ 0)] [comm_monoid γ] {h : Π i, β i → γ} : (0 : Π₀ i, β i).prod h = 1 := rfl @[to_additive] lemma prod_single_index [Π i, has_zero (β i)] [Π i (x : β i), decidable (x ≠ 0)] [comm_monoid γ] {i : ι} {b : β i} {h : Π i, β i → γ} (h_zero : h i 0 = 1) : (single i b).prod h = h i b := begin by_cases h : b ≠ 0, { simp [dfinsupp.prod, support_single_ne_zero h] }, { rw [not_not] at h, simp [h, prod_zero_index, h_zero], refl } end @[to_additive] lemma prod_neg_index [Π i, add_group (β i)] [Π i (x : β i), decidable (x ≠ 0)] [comm_monoid γ] {g : Π₀ i, β i} {h : Π i, β i → γ} (h0 : ∀i, h i 0 = 1) : (-g).prod h = g.prod (λi b, h i (- b)) := prod_map_range_index h0 omit dec @[to_additive] lemma prod_comm {ι₁ ι₂ : Sort*} {β₁ : ι₁ → Type*} {β₂ : ι₂ → Type*} [decidable_eq ι₁] [decidable_eq ι₂] [Π i, has_zero (β₁ i)] [Π i, has_zero (β₂ i)] [Π i (x : β₁ i), decidable (x ≠ 0)] [Π i (x : β₂ i), decidable (x ≠ 0)] [comm_monoid γ] (f₁ : Π₀ i, β₁ i) (f₂ : Π₀ i, β₂ i) (h : Π i, β₁ i → Π i, β₂ i → γ) : f₁.prod (λ i₁ x₁, f₂.prod $ λ i₂ x₂, h i₁ x₁ i₂ x₂) = f₂.prod (λ i₂ x₂, f₁.prod $ λ i₁ x₁, h i₁ x₁ i₂ x₂) := finset.prod_comm @[simp] lemma sum_apply {ι₁ : Type u₁} [decidable_eq ι₁] {β₁ : ι₁ → Type v₁} [Π i₁, has_zero (β₁ i₁)] [Π i (x : β₁ i), decidable (x ≠ 0)] [Π i, add_comm_monoid (β i)] {f : Π₀ i₁, β₁ i₁} {g : Π i₁, β₁ i₁ → Π₀ i, β i} {i₂ : ι} : (f.sum g) i₂ = f.sum (λi₁ b, g i₁ b i₂) := (f.support.sum_hom (λf : Π₀ i, β i, f i₂)).symm include dec lemma support_sum {ι₁ : Type u₁} [decidable_eq ι₁] {β₁ : ι₁ → Type v₁} [Π i₁, has_zero (β₁ i₁)] [Π i (x : β₁ i), decidable (x ≠ 0)] [Π i, add_comm_monoid (β i)] [Π i (x : β i), decidable (x ≠ 0)] {f : Π₀ i₁, β₁ i₁} {g : Π i₁, β₁ i₁ → Π₀ i, β i} : (f.sum g).support ⊆ f.support.bUnion (λi, (g i (f i)).support) := have ∀i₁ : ι, f.sum (λ (i : ι₁) (b : β₁ i), (g i b) i₁) ≠ 0 → (∃ (i : ι₁), f i ≠ 0 ∧ ¬ (g i (f i)) i₁ = 0), from assume i₁ h, let ⟨i, hi, ne⟩ := finset.exists_ne_zero_of_sum_ne_zero h in ⟨i, (f.mem_support_iff i).mp hi, ne⟩, by simpa [finset.subset_iff, mem_support_iff, finset.mem_bUnion, sum_apply] using this @[simp, to_additive] lemma prod_one [Π i, add_comm_monoid (β i)] [Π i (x : β i), decidable (x ≠ 0)] [comm_monoid γ] {f : Π₀ i, β i} : f.prod (λi b, (1 : γ)) = 1 := finset.prod_const_one @[simp, to_additive] lemma prod_mul [Π i, add_comm_monoid (β i)] [Π i (x : β i), decidable (x ≠ 0)] [comm_monoid γ] {f : Π₀ i, β i} {h₁ h₂ : Π i, β i → γ} : f.prod (λi b, h₁ i b * h₂ i b) = f.prod h₁ * f.prod h₂ := finset.prod_mul_distrib @[simp, to_additive] lemma prod_inv [Π i, add_comm_monoid (β i)] [Π i (x : β i), decidable (x ≠ 0)] [comm_group γ] {f : Π₀ i, β i} {h : Π i, β i → γ} : f.prod (λi b, (h i b)⁻¹) = (f.prod h)⁻¹ := f.support.prod_hom (@has_inv.inv γ _) @[to_additive] lemma prod_add_index [Π i, add_comm_monoid (β i)] [Π i (x : β i), decidable (x ≠ 0)] [comm_monoid γ] {f g : Π₀ i, β i} {h : Π i, β i → γ} (h_zero : ∀i, h i 0 = 1) (h_add : ∀i b₁ b₂, h i (b₁ + b₂) = h i b₁ * h i b₂) : (f + g).prod h = f.prod h * g.prod h := have f_eq : ∏ i in f.support ∪ g.support, h i (f i) = f.prod h, from (finset.prod_subset (finset.subset_union_left _ _) $ by simp [mem_support_iff, h_zero] {contextual := tt}).symm, have g_eq : ∏ i in f.support ∪ g.support, h i (g i) = g.prod h, from (finset.prod_subset (finset.subset_union_right _ _) $ by simp [mem_support_iff, h_zero] {contextual := tt}).symm, calc ∏ i in (f + g).support, h i ((f + g) i) = ∏ i in f.support ∪ g.support, h i ((f + g) i) : finset.prod_subset support_add $ by simp [mem_support_iff, h_zero] {contextual := tt} ... = (∏ i in f.support ∪ g.support, h i (f i)) * (∏ i in f.support ∪ g.support, h i (g i)) : by simp [h_add, finset.prod_mul_distrib] ... = _ : by rw [f_eq, g_eq] @[to_additive] lemma _root_.submonoid.dfinsupp_prod_mem [Π i, has_zero (β i)] [Π i (x : β i), decidable (x ≠ 0)] [comm_monoid γ] (S : submonoid γ) (f : Π₀ i, β i) (g : Π i, β i → γ) (h : ∀ c, f c ≠ 0 → g c (f c) ∈ S) : f.prod g ∈ S := S.prod_mem $ λ i hi, h _ $ (f.mem_support_iff _).mp hi /-- When summing over an `add_monoid_hom`, the decidability assumption is not needed, and the result is also an `add_monoid_hom`. -/ def sum_add_hom [Π i, add_zero_class (β i)] [add_comm_monoid γ] (φ : Π i, β i →+ γ) : (Π₀ i, β i) →+ γ := { to_fun := (λ f, quotient.lift_on f (λ x, ∑ i in x.2.to_finset, φ i (x.1 i)) $ λ x y H, begin have H1 : x.2.to_finset ∩ y.2.to_finset ⊆ x.2.to_finset, from finset.inter_subset_left _ _, have H2 : x.2.to_finset ∩ y.2.to_finset ⊆ y.2.to_finset, from finset.inter_subset_right _ _, refine (finset.sum_subset H1 _).symm.trans ((finset.sum_congr rfl _).trans (finset.sum_subset H2 _)), { intros i H1 H2, rw finset.mem_inter at H2, rw H i, simp only [multiset.mem_to_finset] at H1 H2, rw [(y.3 i).resolve_left (mt (and.intro H1) H2), add_monoid_hom.map_zero] }, { intros i H1, rw H i }, { intros i H1 H2, rw finset.mem_inter at H2, rw ← H i, simp only [multiset.mem_to_finset] at H1 H2, rw [(x.3 i).resolve_left (mt (λ H3, and.intro H3 H1) H2), add_monoid_hom.map_zero] } end), map_add' := assume f g, begin refine quotient.induction_on f (λ x, _), refine quotient.induction_on g (λ y, _), change ∑ i in _, _ = (∑ i in _, _) + (∑ i in _, _), simp only, conv { to_lhs, congr, skip, funext, rw add_monoid_hom.map_add }, simp only [finset.sum_add_distrib], congr' 1, { refine (finset.sum_subset _ _).symm, { intro i, simp only [multiset.mem_to_finset, multiset.mem_add], exact or.inl }, { intros i H1 H2, simp only [multiset.mem_to_finset, multiset.mem_add] at H2, rw [(x.3 i).resolve_left H2, add_monoid_hom.map_zero] } }, { refine (finset.sum_subset _ _).symm, { intro i, simp only [multiset.mem_to_finset, multiset.mem_add], exact or.inr }, { intros i H1 H2, simp only [multiset.mem_to_finset, multiset.mem_add] at H2, rw [(y.3 i).resolve_left H2, add_monoid_hom.map_zero] } } end, map_zero' := rfl } @[simp] lemma sum_add_hom_single [Π i, add_zero_class (β i)] [add_comm_monoid γ] (φ : Π i, β i →+ γ) (i) (x : β i) : sum_add_hom φ (single i x) = φ i x := (add_zero _).trans $ congr_arg (φ i) $ show (if H : i ∈ ({i} : finset _) then x else 0) = x, from dif_pos $ finset.mem_singleton_self i @[simp] lemma sum_add_hom_comp_single [Π i, add_zero_class (β i)] [add_comm_monoid γ] (f : Π i, β i →+ γ) (i : ι) : (sum_add_hom f).comp (single_add_hom β i) = f i := add_monoid_hom.ext $ λ x, sum_add_hom_single f i x /-- While we didn't need decidable instances to define it, we do to reduce it to a sum -/ lemma sum_add_hom_apply [Π i, add_zero_class (β i)] [Π i (x : β i), decidable (x ≠ 0)] [add_comm_monoid γ] (φ : Π i, β i →+ γ) (f : Π₀ i, β i) : sum_add_hom φ f = f.sum (λ x, φ x) := begin refine quotient.induction_on f (λ x, _), change ∑ i in _, _ = (∑ i in finset.filter _ _, _), rw [finset.sum_filter, finset.sum_congr rfl], intros i _, dsimp only, split_ifs, refl, rw [(not_not.mp h), add_monoid_hom.map_zero], end lemma _root_.add_submonoid.dfinsupp_sum_add_hom_mem [Π i, add_zero_class (β i)] [add_comm_monoid γ] (S : add_submonoid γ) (f : Π₀ i, β i) (g : Π i, β i →+ γ) (h : ∀ c, f c ≠ 0 → g c (f c) ∈ S) : dfinsupp.sum_add_hom g f ∈ S := begin classical, rw dfinsupp.sum_add_hom_apply, convert S.dfinsupp_sum_mem _ _ _, exact h end /-- The supremum of a family of commutative additive submonoids is equal to the range of `finsupp.sum_add_hom`; that is, every element in the `supr` can be produced from taking a finite number of non-zero elements of `p i`, coercing them to `γ`, and summing them. -/ lemma _root_.add_submonoid.supr_eq_mrange_dfinsupp_sum_add_hom [add_comm_monoid γ] (p : ι → add_submonoid γ) : supr p = (dfinsupp.sum_add_hom (λ i, (p i).subtype)).mrange := begin apply le_antisymm, { apply supr_le _, intros i y hy, exact ⟨dfinsupp.single i ⟨y, hy⟩, dfinsupp.sum_add_hom_single _ _ _⟩, }, { rintros x ⟨v, rfl⟩, exact add_submonoid.dfinsupp_sum_add_hom_mem _ v _ (λ i _, (le_supr p i : p i ≤ _) (v i).prop) } end lemma _root_.add_submonoid.mem_supr_iff_exists_dfinsupp [add_comm_monoid γ] (p : ι → add_submonoid γ) (x : γ) : x ∈ supr p ↔ ∃ f : Π₀ i, p i, dfinsupp.sum_add_hom (λ i, (p i).subtype) f = x := set_like.ext_iff.mp (add_submonoid.supr_eq_mrange_dfinsupp_sum_add_hom p) x /-- A variant of `add_submonoid.mem_supr_iff_exists_dfinsupp` with the RHS fully unfolded. -/ lemma _root_.add_submonoid.mem_supr_iff_exists_dfinsupp' [add_comm_monoid γ] (p : ι → add_submonoid γ) [Π i (x : p i), decidable (x ≠ 0)] (x : γ) : x ∈ supr p ↔ ∃ f : Π₀ i, p i, f.sum (λ i xi, ↑xi) = x := begin rw add_submonoid.mem_supr_iff_exists_dfinsupp, simp_rw sum_add_hom_apply, congr', end omit dec lemma sum_add_hom_comm {ι₁ ι₂ : Sort*} {β₁ : ι₁ → Type*} {β₂ : ι₂ → Type*} {γ : Type*} [decidable_eq ι₁] [decidable_eq ι₂] [Π i, add_zero_class (β₁ i)] [Π i, add_zero_class (β₂ i)] [add_comm_monoid γ] (f₁ : Π₀ i, β₁ i) (f₂ : Π₀ i, β₂ i) (h : Π i j, β₁ i →+ β₂ j →+ γ) : sum_add_hom (λ i₂, sum_add_hom (λ i₁, h i₁ i₂) f₁) f₂ = sum_add_hom (λ i₁, sum_add_hom (λ i₂, (h i₁ i₂).flip) f₂) f₁ := begin refine quotient.induction_on₂ f₁ f₂ (λ x₁ x₂, _), simp only [sum_add_hom, add_monoid_hom.finset_sum_apply, quotient.lift_on_mk, add_monoid_hom.coe_mk, add_monoid_hom.flip_apply], exact finset.sum_comm, end include dec /-- The `dfinsupp` version of `finsupp.lift_add_hom`,-/ @[simps apply symm_apply] def lift_add_hom [Π i, add_zero_class (β i)] [add_comm_monoid γ] : (Π i, β i →+ γ) ≃+ ((Π₀ i, β i) →+ γ) := { to_fun := sum_add_hom, inv_fun := λ F i, F.comp (single_add_hom β i), left_inv := λ x, by { ext, simp }, right_inv := λ ψ, by { ext, simp }, map_add' := λ F G, by { ext, simp } } /-- The `dfinsupp` version of `finsupp.lift_add_hom_single_add_hom`,-/ @[simp] lemma lift_add_hom_single_add_hom [Π i, add_comm_monoid (β i)] : lift_add_hom (single_add_hom β) = add_monoid_hom.id (Π₀ i, β i) := lift_add_hom.to_equiv.apply_eq_iff_eq_symm_apply.2 rfl /-- The `dfinsupp` version of `finsupp.lift_add_hom_apply_single`,-/ lemma lift_add_hom_apply_single [Π i, add_zero_class (β i)] [add_comm_monoid γ] (f : Π i, β i →+ γ) (i : ι) (x : β i) : lift_add_hom f (single i x) = f i x := by simp /-- The `dfinsupp` version of `finsupp.lift_add_hom_comp_single`,-/ lemma lift_add_hom_comp_single [Π i, add_zero_class (β i)] [add_comm_monoid γ] (f : Π i, β i →+ γ) (i : ι) : (lift_add_hom f).comp (single_add_hom β i) = f i := by simp /-- The `dfinsupp` version of `finsupp.comp_lift_add_hom`,-/ lemma comp_lift_add_hom {δ : Type*} [Π i, add_zero_class (β i)] [add_comm_monoid γ] [add_comm_monoid δ] (g : γ →+ δ) (f : Π i, β i →+ γ) : g.comp (lift_add_hom f) = lift_add_hom (λ a, g.comp (f a)) := lift_add_hom.symm_apply_eq.1 $ funext $ λ a, by rw [lift_add_hom_symm_apply, add_monoid_hom.comp_assoc, lift_add_hom_comp_single] @[simp] lemma sum_add_hom_zero [Π i, add_zero_class (β i)] [add_comm_monoid γ] : sum_add_hom (λ i, (0 : β i →+ γ)) = 0 := (lift_add_hom : (Π i, β i →+ γ) ≃+ _).map_zero @[simp] lemma sum_add_hom_add [Π i, add_zero_class (β i)] [add_comm_monoid γ] (g : Π i, β i →+ γ) (h : Π i, β i →+ γ) : sum_add_hom (λ i, g i + h i) = sum_add_hom g + sum_add_hom h := lift_add_hom.map_add _ _ @[simp] lemma sum_add_hom_single_add_hom [Π i, add_comm_monoid (β i)] : sum_add_hom (single_add_hom β) = add_monoid_hom.id _ := lift_add_hom_single_add_hom lemma comp_sum_add_hom {δ : Type*} [Π i, add_zero_class (β i)] [add_comm_monoid γ] [add_comm_monoid δ] (g : γ →+ δ) (f : Π i, β i →+ γ) : g.comp (sum_add_hom f) = sum_add_hom (λ a, g.comp (f a)) := comp_lift_add_hom _ _ lemma sum_sub_index [Π i, add_group (β i)] [Π i (x : β i), decidable (x ≠ 0)] [add_comm_group γ] {f g : Π₀ i, β i} {h : Π i, β i → γ} (h_sub : ∀i b₁ b₂, h i (b₁ - b₂) = h i b₁ - h i b₂) : (f - g).sum h = f.sum h - g.sum h := begin have := (lift_add_hom (λ a, add_monoid_hom.of_map_sub (h a) (h_sub a))).map_sub f g, rw [lift_add_hom_apply, sum_add_hom_apply, sum_add_hom_apply, sum_add_hom_apply] at this, exact this, end @[to_additive] lemma prod_finset_sum_index {γ : Type w} {α : Type x} [Π i, add_comm_monoid (β i)] [Π i (x : β i), decidable (x ≠ 0)] [comm_monoid γ] {s : finset α} {g : α → Π₀ i, β i} {h : Π i, β i → γ} (h_zero : ∀i, h i 0 = 1) (h_add : ∀i b₁ b₂, h i (b₁ + b₂) = h i b₁ * h i b₂) : ∏ i in s, (g i).prod h = (∑ i in s, g i).prod h := begin classical, exact finset.induction_on s (by simp [prod_zero_index]) (by simp [prod_add_index, h_zero, h_add] {contextual := tt}) end @[to_additive] lemma prod_sum_index {ι₁ : Type u₁} [decidable_eq ι₁] {β₁ : ι₁ → Type v₁} [Π i₁, has_zero (β₁ i₁)] [Π i (x : β₁ i), decidable (x ≠ 0)] [Π i, add_comm_monoid (β i)] [Π i (x : β i), decidable (x ≠ 0)] [comm_monoid γ] {f : Π₀ i₁, β₁ i₁} {g : Π i₁, β₁ i₁ → Π₀ i, β i} {h : Π i, β i → γ} (h_zero : ∀i, h i 0 = 1) (h_add : ∀i b₁ b₂, h i (b₁ + b₂) = h i b₁ * h i b₂) : (f.sum g).prod h = f.prod (λi b, (g i b).prod h) := (prod_finset_sum_index h_zero h_add).symm @[simp] lemma sum_single [Π i, add_comm_monoid (β i)] [Π i (x : β i), decidable (x ≠ 0)] {f : Π₀ i, β i} : f.sum single = f := begin have := add_monoid_hom.congr_fun lift_add_hom_single_add_hom f, rw [lift_add_hom_apply, sum_add_hom_apply] at this, exact this, end @[to_additive] lemma prod_subtype_domain_index [Π i, has_zero (β i)] [Π i (x : β i), decidable (x ≠ 0)] [comm_monoid γ] {v : Π₀ i, β i} {p : ι → Prop} [decidable_pred p] {h : Π i, β i → γ} (hp : ∀ x ∈ v.support, p x) : (v.subtype_domain p).prod (λi b, h i b) = v.prod h := finset.prod_bij (λp _, p) (by simp) (by simp) (assume ⟨a₀, ha₀⟩ ⟨a₁, ha₁⟩, by simp) (λ i hi, ⟨⟨i, hp i hi⟩, by simpa using hi, rfl⟩) omit dec lemma subtype_domain_sum [Π i, add_comm_monoid (β i)] {s : finset γ} {h : γ → Π₀ i, β i} {p : ι → Prop} [decidable_pred p] : (∑ c in s, h c).subtype_domain p = ∑ c in s, (h c).subtype_domain p := eq.symm (s.sum_hom _) lemma subtype_domain_finsupp_sum {δ : γ → Type x} [decidable_eq γ] [Π c, has_zero (δ c)] [Π c (x : δ c), decidable (x ≠ 0)] [Π i, add_comm_monoid (β i)] {p : ι → Prop} [decidable_pred p] {s : Π₀ c, δ c} {h : Π c, δ c → Π₀ i, β i} : (s.sum h).subtype_domain p = s.sum (λc d, (h c d).subtype_domain p) := subtype_domain_sum end prod_and_sum /-! ### Bundled versions of `dfinsupp.map_range` The names should match the equivalent bundled `finsupp.map_range` definitions. -/ section map_range omit dec variables [Π i, add_zero_class (β i)] [Π i, add_zero_class (β₁ i)] [Π i, add_zero_class (β₂ i)] lemma map_range_add (f : Π i, β₁ i → β₂ i) (hf : ∀ i, f i 0 = 0) (hf' : ∀ i x y, f i (x + y) = f i x + f i y) (g₁ g₂ : Π₀ i, β₁ i): map_range f hf (g₁ + g₂) = map_range f hf g₁ + map_range f hf g₂ := begin ext, simp only [map_range_apply f, coe_add, pi.add_apply, hf'] end /-- `dfinsupp.map_range` as an `add_monoid_hom`. -/ @[simps apply] def map_range.add_monoid_hom (f : Π i, β₁ i →+ β₂ i) : (Π₀ i, β₁ i) →+ (Π₀ i, β₂ i) := { to_fun := map_range (λ i x, f i x) (λ i, (f i).map_zero), map_zero' := map_range_zero _ _, map_add' := map_range_add _ _ (λ i, (f i).map_add) } @[simp] lemma map_range.add_monoid_hom_id : map_range.add_monoid_hom (λ i, add_monoid_hom.id (β₂ i)) = add_monoid_hom.id _ := add_monoid_hom.ext map_range_id lemma map_range.add_monoid_hom_comp (f : Π i, β₁ i →+ β₂ i) (f₂ : Π i, β i →+ β₁ i): map_range.add_monoid_hom (λ i, (f i).comp (f₂ i)) = (map_range.add_monoid_hom f).comp (map_range.add_monoid_hom f₂) := add_monoid_hom.ext $ map_range_comp (λ i x, f i x) (λ i x, f₂ i x) _ _ _ /-- `dfinsupp.map_range.add_monoid_hom` as an `add_equiv`. -/ @[simps apply] def map_range.add_equiv (e : Π i, β₁ i ≃+ β₂ i) : (Π₀ i, β₁ i) ≃+ (Π₀ i, β₂ i) := { to_fun := map_range (λ i x, e i x) (λ i, (e i).map_zero), inv_fun := map_range (λ i x, (e i).symm x) (λ i, (e i).symm.map_zero), left_inv := λ x, by rw ←map_range_comp; { simp_rw add_equiv.symm_comp_self, simp }, right_inv := λ x, by rw ←map_range_comp; { simp_rw add_equiv.self_comp_symm, simp }, .. map_range.add_monoid_hom (λ i, (e i).to_add_monoid_hom) } @[simp] lemma map_range.add_equiv_refl : (map_range.add_equiv $ λ i, add_equiv.refl (β₁ i)) = add_equiv.refl _ := add_equiv.ext map_range_id lemma map_range.add_equiv_trans (f : Π i, β i ≃+ β₁ i) (f₂ : Π i, β₁ i ≃+ β₂ i): map_range.add_equiv (λ i, (f i).trans (f₂ i)) = (map_range.add_equiv f).trans (map_range.add_equiv f₂) := add_equiv.ext $ map_range_comp (λ i x, f₂ i x) (λ i x, f i x) _ _ _ @[simp] lemma map_range.add_equiv_symm (e : Π i, β₁ i ≃+ β₂ i) : (map_range.add_equiv e).symm = map_range.add_equiv (λ i, (e i).symm) := rfl end map_range end dfinsupp /-! ### Product and sum lemmas for bundled morphisms -/ section variables [decidable_eq ι] namespace monoid_hom variables {R S : Type*} variables [Π i, has_zero (β i)] [Π i (x : β i), decidable (x ≠ 0)] @[simp, to_additive] lemma map_dfinsupp_prod [comm_monoid R] [comm_monoid S] (h : R →* S) (f : Π₀ i, β i) (g : Π i, β i → R) : h (f.prod g) = f.prod (λ a b, h (g a b)) := h.map_prod _ _ @[to_additive] lemma coe_dfinsupp_prod [monoid R] [comm_monoid S] (f : Π₀ i, β i) (g : Π i, β i → R →* S) : ⇑(f.prod g) = f.prod (λ a b, (g a b)) := coe_prod _ _ @[simp, to_additive] lemma dfinsupp_prod_apply [monoid R] [comm_monoid S] (f : Π₀ i, β i) (g : Π i, β i → R →* S) (r : R) : (f.prod g) r = f.prod (λ a b, (g a b) r) := finset_prod_apply _ _ _ end monoid_hom namespace add_monoid_hom variables {R S : Type*} open dfinsupp /-! The above lemmas, repeated for `dfinsupp.sum_add_hom`. -/ @[simp] lemma map_dfinsupp_sum_add_hom [add_comm_monoid R] [add_comm_monoid S] [Π i, add_comm_monoid (β i)] (h : R →+ S) (f : Π₀ i, β i) (g : Π i, β i →+ R) : h (sum_add_hom g f) = sum_add_hom (λ i, h.comp (g i)) f := congr_fun (comp_lift_add_hom h g) f @[simp] lemma dfinsupp_sum_add_hom_apply [add_zero_class R] [add_comm_monoid S] [Π i, add_comm_monoid (β i)] (f : Π₀ i, β i) (g : Π i, β i →+ R →+ S) (r : R) : (sum_add_hom g f) r = sum_add_hom (λ i, (eval r).comp (g i)) f := map_dfinsupp_sum_add_hom (eval r) f g lemma coe_dfinsupp_sum_add_hom [add_zero_class R] [add_comm_monoid S] [Π i, add_comm_monoid (β i)] (f : Π₀ i, β i) (g : Π i, β i →+ R →+ S) : ⇑(sum_add_hom g f) = sum_add_hom (λ i, (coe_fn R S).comp (g i)) f := map_dfinsupp_sum_add_hom (coe_fn R S) f g end add_monoid_hom end
959a7925ec2602c1dbc883b7e2e8142d0509abc3
36938939954e91f23dec66a02728db08a7acfcf9
/lean/deps/x86_semantics/src/x86_semantics/sexpr.lean
9e754f569e3ed4839b0c27f4f0d8e33f293317d5
[ "Apache-2.0" ]
permissive
pnwamk/reopt-vcg
f8b56dd0279392a5e1c6aee721be8138e6b558d3
c9f9f185fbefc25c36c4b506bbc85fd1a03c3b6d
refs/heads/master
1,631,145,017,772
1,593,549,019,000
1,593,549,143,000
254,191,418
0
0
null
1,586,377,077,000
1,586,377,077,000
null
UTF-8
Lean
false
false
10,830
lean
import .common namespace mc_semantics namespace sexpr_rep def symbol := string instance : has_append symbol := ⟨string.append⟩ /- A atomic expression within an s-expression. -/ inductive atom | symbol : symbol → atom | numeral : ℕ → atom | string : string → atom protected def repr : atom → string | (atom.symbol s) := s | (atom.numeral n) := n.repr | (atom.string s) := "̈\"" ++ s ++ "\"" protected def symbol.sexpr : symbol → sexpr atom | s := sexpr.mk_atom (atom.symbol s) protected def numeral.sexpr : ℕ → sexpr atom | n := sexpr.mk_atom (atom.numeral n) protected def string.sexpr : string → sexpr atom | s := sexpr.mk_atom (atom.string s) protected def to_char_buffer : atom → char_buffer | (atom.symbol s) := s.to_char_buffer | (atom.numeral s) := s.repr.to_char_buffer | (atom.string s) := ("\"" ++ s ++ "\"").to_char_buffer /-- Symbol characters allowed in simple symbols -/ def char_symbols : list char := ['$', '_'] /-- Predicate that checks if character is allowed in a simple symbol. -/ inductive is_symbol_char (c:char) : Prop | is_alpha : char.is_alpha c → is_symbol_char | is_digit : char.is_digit c → is_symbol_char | is_other : c ∈ char_symbols → is_symbol_char namespace is_symbol_char instance is_decidable : decidable_pred is_symbol_char | c := if f : c.is_alpha then is_true (is_alpha f) else if g : c.is_digit then is_true (is_digit g) else if h : c ∈ char_symbols then is_true (is_other h) else is_false begin intro p, cases p; contradiction, end end is_symbol_char protected def read {m} [char_reader string m] (read_count:ℕ) : m atom := do mc ← char_reader.peek_char, match mc with | option.none := throw "Unexpected end of stream." | option.some '\"' := do char_reader.consume_char, b ← char_reader.read_while (λc, c ≠ '\"') read_count, char_reader.consume_char, pure (atom.string b.to_string) | option.some c := if c.is_digit then (do b ← char_reader.read_while char.is_digit read_count, pure (atom.numeral b.to_string.to_nat)) else if is_symbol_char c then (do -- Read symbol characters b ← char_reader.read_while is_symbol_char read_count, pure (atom.symbol b.to_string)) else throw $ "Unexpected character " ++ c.to_string end instance atom_is_atom : sexpr.is_atom atom := { to_char_buffer := sexpr_rep.to_char_buffer , read := @sexpr_rep.read } def app (s:symbol) (l:list (sexpr atom)) := sexpr.app s.sexpr l end sexpr_rep open sexpr_rep def arg_index.sexpr (idx:arg_index) : sexpr atom := app "arg" [numeral.sexpr idx] namespace nat_expr protected def sexpr : nat_expr → sexpr atom | (lit x) := numeral.sexpr x | (var x) := x.sexpr | (add x y) := app "add" [x.sexpr, y.sexpr] | (sub x y) := app "sub" [x.sexpr, y.sexpr] | (mul x y) := app "mul" [x.sexpr, y.sexpr] | (div x y) := app "div" [x.sexpr, y.sexpr] instance : has_repr nat_expr := ⟨sexpr.repr ∘ nat_expr.sexpr⟩ end nat_expr namespace one_of protected def pp {l:list ℕ} : one_of l → string | (var i) := i.sexpr.repr protected def sexpr {l:list ℕ} (x:one_of l) := x.to_nat_expr.sexpr end one_of namespace type protected def sexpr' : Π(in_fun:bool), type → sexpr atom | _ (bv w) := app "bv" [w.sexpr] | _ bit := symbol.sexpr "bit" | _ float := symbol.sexpr "float" | _ double := symbol.sexpr "double" | _ x86_80 := symbol.sexpr "x86_80" | _ (vec w tp) := app "vec" [w.sexpr, tp.sexpr' ff] | _ (pair x y) := app "pair" [x.sexpr' ff, y.sexpr' ff] | in_fun (fn a r) := if in_fun then sexpr.parens [a.sexpr' ff, r.sexpr' tt] else app "fun" [a.sexpr' ff, r.sexpr' tt] protected def sexpr : type → sexpr atom := type.sexpr' ff protected def pp : type → string := sexpr.repr ∘ type.sexpr end type end mc_semantics namespace x86 open mc_semantics open mc_semantics.sexpr_rep open mc_semantics.type namespace reg /- protected def sexpr : Π{tp:type}, reg tp → sexpr atom | ._ (concrete_gpreg idx tp) := symbol.sexpr $ "$" ++ match tp with | gpreg_type.reg8l := list.nth_le reg.r8l_names idx.val idx.is_lt | gpreg_type.reg16 := list.nth_le reg.r16_names idx.val idx.is_lt | gpreg_type.reg32 := list.nth_le reg.r32_names idx.val idx.is_lt | gpreg_type.reg64 := list.nth_le reg.r64_names idx.val idx.is_lt end | ._ (concrete_flagreg idx) := symbol.sexpr $ "$" ++ match list.nth reg.flag_names idx.val with | (option.some nm) := nm | option.none := "REVERSED_" ++ idx.val.repr end -/ --protected def repr : Π{tp:type}, reg tp → string := λ_, sexpr.repr ∘ reg.sexpr end reg namespace addr protected def sexpr {tp:type} : addr tp → sexpr atom | (arg idx) := idx.sexpr end addr namespace prim def sexpr : Π{tp:type}, prim tp → sexpr atom | ._ (eq tp) := app "eq" [tp.sexpr] | ._ (neq tp) := app "neq" [tp.sexpr] | ._ (mux tp) := app "mux" [tp.sexpr] | ._ bit_zero := symbol.sexpr "bit0" | ._ bit_one := symbol.sexpr "bit1" | ._ bit_or := symbol.sexpr "bit_or" | ._ bit_and := symbol.sexpr "bit_and" | ._ bit_xor := symbol.sexpr "bit_xor" | ._ (bv_nat w n) := app "bv_nat" [w.sexpr, n.sexpr] | ._ (add i) := app "add" [i.sexpr] | ._ (adc i) := app "adc" [i.sexpr] | ._ (uadc_overflows i) := app "uadc_overflows" [i.sexpr] | ._ (sadc_overflows i) := app "sadc_overflows" [i.sexpr] | ._ (sub i) := app "sub" [i.sexpr] | ._ (ssbb_overflows i) := app "ssbb_overflows" [i.sexpr] | ._ (usbb_overflows i) := app "usbb_overflows" [i.sexpr] | ._ (neg tp) := app "neg" [tp.sexpr] | ._ (mul i) := app "mul" [i.sexpr] | ._ (quotRem i) := app "quotRem" [i.sexpr] | ._ (squotRem i) := app "squotRem" [i.sexpr] | ._ (ule i) := app "ule" [i.sexpr] | ._ (ult i) := app "ult" [i.sexpr] | ._ (slice w u l) := app "slice" [w.sexpr, u.sexpr, l.sexpr] | ._ (sext i o) := app "sext" [i.sexpr, o.sexpr] | ._ (uext i o) := app "uext" [i.sexpr, o.sexpr] | ._ (trunc i o) := app "trunc" [i.sexpr, o.sexpr] | ._ (cat i) := app "cat" [i.sexpr] | ._ (msb i) := app "msb" [i.sexpr] | ._ (bv_and i) := app "bv_and" [i.sexpr] | ._ (bv_or i) := app "bv_or" [i.sexpr] | ._ (bv_xor i) := app "bv_xor" [i.sexpr] | ._ (bv_complement i) := app "bv_complement" [i.sexpr] | ._ (shl i) := app "shl" [i.sexpr] | ._ (shl_carry i) := app "shl_carry" [i.sexpr] | ._ (shr i) := app "shr" [i.sexpr] | ._ (shr_carry i) := app "shr_carry" [i.sexpr] | ._ (sar i) := app "sar" [i.sexpr] | ._ (sar_carry i) := app "sar_carry" [i.sexpr] | ._ (even_parity i) := app "even_parity" [i.sexpr] | ._ (bsf i) := app "bsf" [i.sexpr] | ._ (bsr i) := app "bsr" [i.sexpr] | ._ (bswap i) := app "bswap" [i.sexpr] | ._ (btc w j) := app "btc" [w.sexpr, j.sexpr] | ._ (btr w j) := app "btr" [w.sexpr, j.sexpr] | ._ (bts w j) := app "bts" [w.sexpr, j.sexpr] | ._ (bv_to_x86_80 w) := app "sext" [w.sexpr] | ._ float_to_x86_80 := symbol.sexpr "float_to_x86_80" | ._ double_to_x86_80 := symbol.sexpr "double_to_X86_80" | ._ x87_fadd := symbol.sexpr "x87_fadd" | ._ (pair_fst x y) := app "pair_fst" [x.sexpr, y.sexpr] | ._ (pair_snd x y) := app "pair_snd" [x.sexpr, y.sexpr] end prim namespace gpreg_type protected def sexpr : gpreg_type → sexpr atom | reg8l := symbol.sexpr "reg8l" | reg8h := symbol.sexpr "reg8h" | reg16 := symbol.sexpr "reg16" | reg32 := symbol.sexpr "reg32" | reg64 := symbol.sexpr "reg64" end gpreg_type namespace concrete_reg protected def sexpr : Π{tp:type}, concrete_reg tp → sexpr atom | ._ (gpreg i tp) := app "gpreg" [numeral.sexpr i.val, tp.sexpr] | ._ (flagreg i) := app "flagreg" [numeral.sexpr i.val] end concrete_reg namespace expression protected def sexpr' : Π{tp:type} (v:expression tp), list (sexpr atom) → sexpr atom | ._ (primitive o) l := sexpr.app o.sexpr l | ._ (@bit_test wr wi r i) l := sexpr_rep.app "bit_test" [wr.sexpr, wi.sexpr, r.sexpr' [], i.sexpr' []] | ._ (@mulc m x) l := sexpr_rep.app "mulc" [m.sexpr, x.sexpr' []] | ._ (@quotc m x) l := sexpr_rep.app "quotc" [m.sexpr, x.sexpr' []] | ._ (@undef tp) l := sexpr_rep.app "undef" [tp.sexpr] | ._ (@app _ _ f x) l := sexpr' f (x.sexpr' [] :: l) | ._ (@get_reg _ r) l := sexpr_rep.app "get_reg" [r.sexpr] | ._ (@read tp a) l := sexpr_rep.app "read" [tp.sexpr, a.sexpr' []] | ._ (@streg i) l := sexpr_rep.app "streg" [numeral.sexpr i.val] | ._ (@get_local i tp) l := sexpr_rep.app "read" [numeral.sexpr i, tp.sexpr] | ._ (@imm_arg i tp) l := sexpr_rep.app "imm_arg" [i.sexpr, tp.sexpr] | ._ (@addr_arg i) l := sexpr_rep.app "addr_arg" [i.sexpr] | ._ (@read_arg i tp) l := sexpr_rep.app "read_arg" [i.sexpr, tp.sexpr] protected def sexpr {tp:type} (e:expression tp) : sexpr atom := e.sexpr' [] end expression namespace lhs protected def sexpr : Π{tp:type}, lhs tp → sexpr atom | ._ (set_reg r) := app "set_reg" [r.sexpr] | ._ (write_addr a tp) := app "write_addr" [a.sexpr, tp.sexpr] | ._ (write_arg idx tp) := app "write_arg" [idx.sexpr, tp.sexpr] | ._ (streg idx) := app "streg" [numeral.sexpr idx.val] end lhs namespace event protected def sexpr : event → sexpr atom | syscall := app "syscall" [] | (unsupported msg) := app "unsupported" [string.sexpr msg] | pop_x87_register_stack := app "pop_x87_register_stack" [] | (call addr) := app "call" [addr.sexpr] | (jmp addr) := app "jmp" [addr.sexpr] | (branch cond addr) := app "branch" [cond.sexpr, addr.sexpr] | hlt := app "hlt" [] | (xchg addr1 addr2) := app "xchg" [addr1.sexpr, addr2.sexpr] | cpuid := app "cpuid" [] end event namespace action protected def sexpr : action → sexpr atom | (set l r) := app "set" [l.sexpr, r.sexpr] | (set_cond l c v) := app "set_cond" [l.sexpr, c.sexpr, v.sexpr] | (set_aligned l r a) := app "set_aligned" [l.sexpr, r.sexpr, a.sexpr] | (local_def idx v) := app "var" [numeral.sexpr idx, v.sexpr] | (event e) := e.sexpr end action namespace binding def sexpr : binding → sexpr atom | (one_of l) := app "one_of" (numeral.sexpr <$> l) | (reg tp) := app "reg" [tp.sexpr] | (addr tp) := app "addr" [tp.sexpr] | (imm tp) := app "imm" [tp.sexpr] | (lhs tp) := app "lhs" [tp.sexpr] | (expression tp) := app "expr" [tp.sexpr] --def pp : binding → string := sexpr.repr ∘ binding.sexpr end binding namespace pattern private def sexpr_bindings : list binding → list (sexpr atom) → list (sexpr atom) | [] r := r | (b::r) l := sexpr_bindings r (b.sexpr :: l) protected def sexpr (p:pattern) : sexpr atom := app "pattern" $ sexpr.parens (sexpr_bindings p.context.bindings []) :: (action.sexpr <$> p.actions) end pattern namespace instruction def sexpr (i:instruction) : sexpr atom := app "instruction" (symbol.sexpr i.mnemonic :: pattern.sexpr <$> i.patterns) def repr : instruction → string := sexpr.repr ∘ instruction.sexpr instance : has_repr instruction := ⟨instruction.repr⟩ end instruction end x86
85e7b7e4a7a0bd3ebe24c8f460ec905fc3409a36
f41725a360d902d3c7939fdf81a5acaf0d0467f0
/src/degree_of_simple_extension.lean
fcaa91aaaa9a8d51ac98e1db5c3bfad128eda456
[]
no_license
pglutz/galois_theory
978765d82b7586c21fd719b84b21d5eea030b25d
4561c2c97d4c49377356e1d7a2051dedc87d30ba
refs/heads/master
1,671,472,063,361
1,603,597,360,000
1,603,597,360,000
281,502,125
0
0
null
null
null
null
UTF-8
Lean
false
false
9,831
lean
-- import subfield_stuff -- import group_theory.subgroup -- import field_theory.minimal_polynomial -- import linear_algebra.dimension -- import linear_algebra.finite_dimensional -- import linear_algebra.basis -- import ring_theory.adjoin_root -- import data.zmod.basic -- import data.polynomial.basic -- import adjoin import ring_theory.adjoin_root import linear_algebra.finite_dimensional import field_theory.minimal_polynomial noncomputable theory local attribute [instance, priority 100] classical.prop_decidable open vector_space polynomial finite_dimensional lemma polynomial.degree_mod_lt {R : Type*} [field R] (p q : polynomial R) (h : p ≠ 0) : (q % p).degree < p.degree := begin exact euclidean_domain.mod_lt q h, end variables {F : Type*} [field F] (p : polynomial F) def module_map : polynomial.degree_lt F (p.nat_degree) →ₗ[F] adjoin_root p := { to_fun := λ q, adjoin_root.mk p q, map_add' := λ _ _, ring_hom.map_add _ _ _, map_smul' := λ _ _, by simpa [algebra.smul_def, ring_hom.map_mul], } lemma module_map_injective : function.injective (module_map p) := begin rw is_add_group_hom.injective_iff, intros q hq, change ideal.quotient.mk _ _ = 0 at hq, rw [ideal.quotient.eq_zero_iff_mem, ideal.mem_span_singleton] at hq, cases hq with r hr, cases q with q hq, rw submodule.coe_mk at hr, rw [submodule.mk_eq_zero, hr], rw [mem_degree_lt, hr, degree_mul] at hq, clear hr q, by_cases hp : (p = 0), { rw [hp, zero_mul] }, by_cases hr : (r = 0), { rw [hr, mul_zero] }, rw [degree_eq_nat_degree hp, degree_eq_nat_degree hr, ←with_bot.coe_add, with_bot.coe_lt_coe] at hq, exfalso, nlinarith, end lemma module_map_surjective' (h : p ≠ 0) : function.surjective (module_map p) := begin intro q, obtain ⟨q', hq'⟩ : ∃ q', adjoin_root.mk p q' = q := ideal.quotient.mk_surjective q, use (q' % p), { rw [mem_degree_lt, ← degree_eq_nat_degree h], exact euclidean_domain.mod_lt q' h, }, { change adjoin_root.mk p (q' % p) = q, symmetry, rw [← hq', adjoin_root.mk, ideal.quotient.eq, ideal.mem_span_singleton'], exact ⟨q' / p, by rw [eq_sub_iff_add_eq, mul_comm, euclidean_domain.div_add_mod]⟩, }, end lemma module_map_surjective [polynomial.degree p>0]: function.surjective (module_map p) := begin intro q, have s : function.surjective (adjoin_root.mk p) := ideal.quotient.mk_surjective, have t : ∃ g : polynomial F, (adjoin_root.mk p) g = q := s q, cases t with preimage salem, use (preimage % p), have u:(preimage % p).degree<p.degree, { rw polynomial.mod_def, have w:=ne_zero_of_degree_gt _inst_2, { have alpha: p * C ((p.leading_coeff)⁻¹)=normalize p, { dsimp, rw polynomial.coe_norm_unit_of_ne_zero w}, rw alpha, have beta:p.degree=(normalize p).degree, rw [polynomial.degree_normalize], rw beta, apply polynomial.degree_mod_by_monic_lt, exact monic_normalize w, exact monic.ne_zero (polynomial.monic_normalize w), }, }, have gamma:p.degree=p.nat_degree, { exact polynomial.degree_eq_nat_degree (ne_zero_of_degree_gt _inst_2), }, rw gamma at u, exact mem_degree_lt.mpr u, --exact monic.ne_zero gamma, --rw ← polynomial.degree_normalize p, --have v:(p * C (p.leading_coeff)⁻¹).monic, --exact polynomial.monic_mul_leading_coeff_inv w, --have z:p.degree=(p * C (p.leading_coeff)⁻¹).degree, --simp, --library_search, --let y:=polynomial.coe_norm_unit_of_ne_zero _ _, --apply polynomial.degree_mod_by_monic_lt, --apply polynomial.degree_div_lt, --#check polynomial.degree_div_lt, sorry, end lemma module_map_bijective (h : p ≠ 0) : function.bijective (module_map p) := ⟨module_map_injective p, module_map_surjective' p h⟩ def module_isomorphism (h : p ≠ 0) : polynomial.degree_lt F (p.nat_degree) ≃ₗ[F] adjoin_root p := { .. (module_map p), .. equiv.of_bijective _ (module_map_bijective p h) } def module_quotient_map : polynomial F →ₐ[F] adjoin_root p := { to_fun := (adjoin_root.mk p).to_fun, map_zero' := (adjoin_root.mk p).map_zero, map_add' := (adjoin_root.mk p).map_add, map_one' := (adjoin_root.mk p).map_one, map_mul' := (adjoin_root.mk p).map_mul, commutes' := λ _, rfl, } def canonical_basis: {n: ℕ| n<polynomial.nat_degree p }→ adjoin_root p:= λ (n:{n: ℕ| n<polynomial.nat_degree p }), adjoin_root.mk p (polynomial.X^(n:ℕ)) lemma canonical_basis_is_basis : is_basis F (canonical_basis p) := begin split, { apply linear_independent_iff.mpr, intros f hf, dsimp only [canonical_basis] at hf, dsimp only [finsupp.total] at hf, rw finsupp.lsum_apply at hf, dsimp [finsupp.sum] at hf, simp only [linear_map.id_coe, id.def] at hf, change f.support.sum (λ a, (f a) • (module_quotient_map p (X ^ ↑a))) = 0 at hf, simp only [←alg_hom.map_smul] at hf, haveI : is_add_monoid_hom (module_quotient_map p) := sorry, rw finset.sum_hom at hf, sorry, }, { sorry, }, end lemma adjunction_basis : is_basis F (canonical_basis p):= begin let degree:=polynomial.nat_degree p, let x:polynomial F:= polynomial.X, let S:= {n: ℕ| n<degree}, let ν:= λ (n:S), (x^(n:ℕ)), let η := (adjoin_root.mk p)∘ν, have nonneg: degree=0 ∨ degree>0, exact nat.eq_zero_or_pos degree, cases nonneg with zero_deg pos_deg, {sorry}, have comp: η = (adjoin_root.mk p) ∘ ν := rfl, { unfold is_basis, split, { apply linear_independent_iff.2, intros l eq_zero, have decomp: (finsupp.total S (adjoin_root p) F η) l = (adjoin_root.mk p) ((finsupp.total ↥S (polynomial F) F ν) l), { rw comp, have is_fin':finset ↥S := finset.univ, symmetry, let algebra_1 :=algebra_map F (adjoin_root p), let algebra_2 :=algebra_map F (polynomial F), have adjoin_root_is_module_map:(adjoin_root.mk p).to_fun=(module_quotient_map p).to_fun:=by simpa, have eq_1:(adjoin_root.mk p) ((finsupp.total ↥S (polynomial F) F ν) l) = (module_quotient_map p)((finsupp.total ↥S (polynomial F) F ν) l):= by simpa[adjoin_root_is_module_map], have eq_2: (finsupp.total ↥S (adjoin_root p) F ((adjoin_root.mk p) ∘ ν)) l = (finsupp.total ↥S (adjoin_root p) F ((module_quotient_map p) ∘ ν)) l:= by simpa[adjoin_root_is_module_map], have eq_3: (module_quotient_map p)((finsupp.total ↥S (polynomial F) F ν) l) = (finsupp.total ↥S (adjoin_root p) F ((module_quotient_map p) ∘ ν)) l:=sorry, --dsimp[finsupp.total], --simp[finsupp.lmap_domain_total], --exact finsupp.lmap_domain_total F, --simp_rw[finsupp.lmap_domain_total], simp*, }, sorry, }, { sorry, }, }, end -- I have written an outline of a different way of proving the theorems above, which -- does not involve working with bases. The basic idea is to show that (adjoin_root p) -- is isomorphic to F^(degree p) (which is expressed in mathlib as (fin (nat_degree p) → F)). -- Also, I think this can be proved for all nonzero polynomials, not just those which happen -- to be the minimal polynomial for something. Of course, with an arbitrary polynomial p, -- F[x]/p is not a field, but that doesn't matter if you just care about the vector space -- structure. -- -- Here's my proposed strategy for proving the isomorphism: -- 1) First construct the map from (fin (nat_degree p) → F) to adjoin_root p -- Hopefully this should be easy because there's a map from (fin (nat_degree p) → F) -- to polynomial F and so it should give a map on the quotient. -- 2) Show that this map is linear. Maybe it's better to first show that the map to -- polynomial F is linear and automatically get a linear map by composing with the -- quotient. -- 3) Show that this map is a bijection.begin -- 4) Use the theorem linear_equiv.of_bijective to finish. lemma adjunction_degree_finite : finite_dimensional F (adjoin_root p) := begin let degree:=polynomial.nat_degree p, let x:polynomial F:= polynomial.X, let S:= {n: ℕ| n<degree}, let η := λ (n:S), adjoin_root.mk p (x^(n:ℕ)), let ν:= λ (n:S), (x^(n:ℕ)), have comp: η = (adjoin_root.mk p) ∘ ν := rfl, have is_fin:fintype S, exact set.fintype_lt_nat degree, have basis:is_basis F η, { unfold is_basis, split, { apply linear_independent_iff.2, intros l eq_zero, have decomp: (finsupp.total ↥S (adjoin_root p) F η) l=(adjoin_root.mk p) ((finsupp.total ↥S (polynomial F) F ν) l), { rw comp, have is_fin':finset ↥S := finset.univ, symmetry, let algebra_1 :=algebra_map F (adjoin_root p), let algebra_2 :=algebra_map F (polynomial F), have degree_is_positive: 0<degree := sorry, sorry, }, sorry, }, { sorry, }, }, sorry, end /- apply finite_dimensional.of_finite_basis, -/ lemma quotient_degree : (finite_dimensional.findim F (adjoin_root p)) = p.nat_degree := begin sorry end lemma adjoin_root_equiv_fin_fun_degree (p : polynomial F) (h : p ≠ 0) : (fin (nat_degree p) → F) ≃ₗ[F] adjoin_root p := begin sorry, end lemma adjoin_root_finite_dimensional (p : polynomial F) (h : p ≠ 0) : finite_dimensional F (adjoin_root p) := linear_equiv.finite_dimensional (adjoin_root_equiv_fin_fun_degree p h) lemma adjoin_root_findim_eq_degree (p : polynomial F) (h : p ≠ 0) : findim F (adjoin_root p) = nat_degree p := by {rw [← linear_equiv.findim_eq (adjoin_root_equiv_fin_fun_degree p h), findim_fin_fun]} lemma adjoin_root_dim_eq_degree (p : polynomial F) (h : p ≠ 0) : dim F (adjoin_root p) = nat_degree p := by rw [← linear_equiv.dim_eq (adjoin_root_equiv_fin_fun_degree p h), dim_fin_fun]
07f9c5053040af8a789b459f3fba4f77f2ee6ade
8cae430f0a71442d02dbb1cbb14073b31048e4b0
/src/data/set/intervals/ord_connected_component.lean
e425e8a41bc87dedf66fce34338b3a9dff123c26
[ "Apache-2.0" ]
permissive
leanprover-community/mathlib
56a2cadd17ac88caf4ece0a775932fa26327ba0e
442a83d738cb208d3600056c489be16900ba701d
refs/heads/master
1,693,584,102,358
1,693,471,902,000
1,693,471,902,000
97,922,418
1,595
352
Apache-2.0
1,694,693,445,000
1,500,624,130,000
Lean
UTF-8
Lean
false
false
9,190
lean
/- Copyright (c) 2022 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov -/ import data.set.intervals.ord_connected import tactic.wlog /-! # Order connected components of a set > THIS FILE IS SYNCHRONIZED WITH MATHLIB4. > Any changes to this file require a corresponding PR to mathlib4. In this file we define `set.ord_connected_component s x` to be the set of `y` such that `set.uIcc x y ⊆ s` and prove some basic facts about this definition. At the moment of writing, this construction is used only to prove that any linear order with order topology is a T₅ space, so we only add API needed for this lemma. -/ open function order_dual open_locale interval namespace set variables {α : Type*} [linear_order α] {s t : set α} {x y z : α} /-- Order-connected component of a point `x` in a set `s`. It is defined as the set of `y` such that `set.uIcc x y ⊆ s`. Note that it is empty if and only if `x ∉ s`. -/ def ord_connected_component (s : set α) (x : α) : set α := {y | [x, y] ⊆ s} lemma mem_ord_connected_component : y ∈ ord_connected_component s x ↔ [x, y] ⊆ s := iff.rfl lemma dual_ord_connected_component : ord_connected_component (of_dual ⁻¹' s) (to_dual x) = of_dual ⁻¹' (ord_connected_component s x) := ext $ to_dual.surjective.forall.2 $ λ x, by { rw [mem_ord_connected_component, dual_uIcc], refl } lemma ord_connected_component_subset : ord_connected_component s x ⊆ s := λ y hy, hy right_mem_uIcc lemma subset_ord_connected_component {t} [h : ord_connected s] (hs : x ∈ s) (ht : s ⊆ t) : s ⊆ ord_connected_component t x := λ y hy, (h.uIcc_subset hs hy).trans ht @[simp] lemma self_mem_ord_connected_component : x ∈ ord_connected_component s x ↔ x ∈ s := by rw [mem_ord_connected_component, uIcc_self, singleton_subset_iff] @[simp] lemma nonempty_ord_connected_component : (ord_connected_component s x).nonempty ↔ x ∈ s := ⟨λ ⟨y, hy⟩, hy $ left_mem_uIcc, λ h, ⟨x, self_mem_ord_connected_component.2 h⟩⟩ @[simp] lemma ord_connected_component_eq_empty : ord_connected_component s x = ∅ ↔ x ∉ s := by rw [← not_nonempty_iff_eq_empty, nonempty_ord_connected_component] @[simp] lemma ord_connected_component_empty : ord_connected_component ∅ x = ∅ := ord_connected_component_eq_empty.2 (not_mem_empty x) @[simp] lemma ord_connected_component_univ : ord_connected_component univ x = univ := by simp [ord_connected_component] lemma ord_connected_component_inter (s t : set α) (x : α) : ord_connected_component (s ∩ t) x = ord_connected_component s x ∩ ord_connected_component t x := by simp [ord_connected_component, set_of_and] lemma mem_ord_connected_component_comm : y ∈ ord_connected_component s x ↔ x ∈ ord_connected_component s y := by rw [mem_ord_connected_component, mem_ord_connected_component, uIcc_comm] lemma mem_ord_connected_component_trans (hxy : y ∈ ord_connected_component s x) (hyz : z ∈ ord_connected_component s y) : z ∈ ord_connected_component s x := calc [x, z] ⊆ [x, y] ∪ [y, z] : uIcc_subset_uIcc_union_uIcc ... ⊆ s : union_subset hxy hyz lemma ord_connected_component_eq (h : [x, y] ⊆ s) : ord_connected_component s x = ord_connected_component s y := ext $ λ z, ⟨mem_ord_connected_component_trans (mem_ord_connected_component_comm.2 h), mem_ord_connected_component_trans h⟩ instance : ord_connected (ord_connected_component s x) := ord_connected_of_uIcc_subset_left $ λ y hy z hz, (uIcc_subset_uIcc_left hz).trans hy /-- Projection from `s : set α` to `α` sending each order connected component of `s` to a single point of this component. -/ noncomputable def ord_connected_proj (s : set α) : s → α := λ x : s, (nonempty_ord_connected_component.2 x.prop).some lemma ord_connected_proj_mem_ord_connected_component (s : set α) (x : s) : ord_connected_proj s x ∈ ord_connected_component s x := nonempty.some_mem _ lemma mem_ord_connected_component_ord_connected_proj (s : set α) (x : s) : ↑x ∈ ord_connected_component s (ord_connected_proj s x) := mem_ord_connected_component_comm.2 $ ord_connected_proj_mem_ord_connected_component s x @[simp] lemma ord_connected_component_ord_connected_proj (s : set α) (x : s) : ord_connected_component s (ord_connected_proj s x) = ord_connected_component s x := ord_connected_component_eq $ mem_ord_connected_component_ord_connected_proj _ _ @[simp] lemma ord_connected_proj_eq {x y : s} : ord_connected_proj s x = ord_connected_proj s y ↔ [(x : α), y] ⊆ s := begin split; intro h, { rw [← mem_ord_connected_component, ← ord_connected_component_ord_connected_proj, h, ord_connected_component_ord_connected_proj, self_mem_ord_connected_component], exact y.2 }, { simp only [ord_connected_proj], congr' 1, exact ord_connected_component_eq h } end /-- A set that intersects each order connected component of a set by a single point. Defined as the range of `set.ord_connected_proj s`. -/ def ord_connected_section (s : set α) : set α := range $ ord_connected_proj s lemma dual_ord_connected_section (s : set α) : ord_connected_section (of_dual ⁻¹' s) = of_dual ⁻¹' (ord_connected_section s) := begin simp only [ord_connected_section, ord_connected_proj], congr' 1 with x, simp only, congr' 1, exact dual_ord_connected_component end lemma ord_connected_section_subset : ord_connected_section s ⊆ s := range_subset_iff.2 $ λ x, ord_connected_component_subset $ nonempty.some_mem _ lemma eq_of_mem_ord_connected_section_of_uIcc_subset (hx : x ∈ ord_connected_section s) (hy : y ∈ ord_connected_section s) (h : [x, y] ⊆ s) : x = y := begin rcases hx with ⟨x, rfl⟩, rcases hy with ⟨y, rfl⟩, exact ord_connected_proj_eq.2 (mem_ord_connected_component_trans (mem_ord_connected_component_trans (ord_connected_proj_mem_ord_connected_component _ _) h) (mem_ord_connected_component_ord_connected_proj _ _)) end /-- Given two sets `s t : set α`, the set `set.order_separating_set s t` is the set of points that belong both to some `set.ord_connected_component tᶜ x`, `x ∈ s`, and to some `set.ord_connected_component sᶜ x`, `x ∈ t`. In the case of two disjoint closed sets, this is the union of all open intervals $(a, b)$ such that their endpoints belong to different sets. -/ def ord_separating_set (s t : set α) : set α := (⋃ x ∈ s, ord_connected_component tᶜ x) ∩ (⋃ x ∈ t, ord_connected_component sᶜ x) lemma ord_separating_set_comm (s t : set α) : ord_separating_set s t = ord_separating_set t s := inter_comm _ _ lemma disjoint_left_ord_separating_set : disjoint s (ord_separating_set s t) := disjoint.inter_right' _ $ disjoint_Union₂_right.2 $ λ x hx, disjoint_compl_right.mono_right $ ord_connected_component_subset lemma disjoint_right_ord_separating_set : disjoint t (ord_separating_set s t) := ord_separating_set_comm t s ▸ disjoint_left_ord_separating_set lemma dual_ord_separating_set : ord_separating_set (of_dual ⁻¹' s) (of_dual ⁻¹' t) = of_dual ⁻¹' (ord_separating_set s t) := by simp only [ord_separating_set, mem_preimage, ← to_dual.surjective.Union_comp, of_dual_to_dual, dual_ord_connected_component, ← preimage_compl, preimage_inter, preimage_Union] /-- An auxiliary neighborhood that will be used in the proof of `order_topology.t5_space`. -/ def ord_t5_nhd (s t : set α) : set α := ⋃ x ∈ s, ord_connected_component (tᶜ ∩ (ord_connected_section $ ord_separating_set s t)ᶜ) x lemma disjoint_ord_t5_nhd : disjoint (ord_t5_nhd s t) (ord_t5_nhd t s) := begin rw disjoint_iff_inf_le, rintro x ⟨hx₁, hx₂⟩, rcases mem_Union₂.1 hx₁ with ⟨a, has, ha⟩, clear hx₁, rcases mem_Union₂.1 hx₂ with ⟨b, hbt, hb⟩, clear hx₂, rw [mem_ord_connected_component, subset_inter_iff] at ha hb, wlog hab : a ≤ b, { exact this b hbt a has ha hb (le_of_not_le hab) }, cases ha with ha ha', cases hb with hb hb', have hsub : [a, b] ⊆ (ord_separating_set s t).ord_connected_sectionᶜ, { rw [ord_separating_set_comm, uIcc_comm] at hb', calc [a, b] ⊆ [a, x] ∪ [x, b] : uIcc_subset_uIcc_union_uIcc ... ⊆ (ord_separating_set s t).ord_connected_sectionᶜ : union_subset ha' hb' }, clear ha' hb', cases le_total x a with hxa hax, { exact hb (Icc_subset_uIcc' ⟨hxa, hab⟩) has }, cases le_total b x with hbx hxb, { exact ha (Icc_subset_uIcc ⟨hab, hbx⟩) hbt }, have : x ∈ ord_separating_set s t, { exact ⟨mem_Union₂.2 ⟨a, has, ha⟩, mem_Union₂.2 ⟨b, hbt, hb⟩⟩ }, lift x to ord_separating_set s t using this, suffices : ord_connected_component (ord_separating_set s t) x ⊆ [a, b], from hsub (this $ ord_connected_proj_mem_ord_connected_component _ _) (mem_range_self _), rintros y (hy : [↑x, y] ⊆ ord_separating_set s t), rw [uIcc_of_le hab, mem_Icc, ← not_lt, ← not_lt], exact ⟨λ hya, disjoint_left.1 disjoint_left_ord_separating_set has (hy $ Icc_subset_uIcc' ⟨hya.le, hax⟩), λ hyb, disjoint_left.1 disjoint_right_ord_separating_set hbt (hy $ Icc_subset_uIcc ⟨hxb, hyb.le⟩)⟩ end end set
b0eb4a1ea810a250f40b4ff957f5add42a4a2976
86f6f4f8d827a196a32bfc646234b73328aeb306
/examples/sets_functions_and_relations/unnamed_367.lean
d335fba043f8f630b070dc2cfa9120def2c21d28
[]
no_license
jamescheuk91/mathematics_in_lean
09f1f87d2b0dce53464ff0cbe592c568ff59cf5e
4452499264e2975bca2f42565c0925506ba5dda3
refs/heads/master
1,679,716,410,967
1,613,957,947,000
1,613,957,947,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
157
lean
import data.set.basic open set variable {α : Type*} variables (s t u : set α) -- BEGIN example : s ∩ t = t ∩ s := subset.antisymm sorry sorry -- END
32bdf86a029d1fc72bd77c54142267e3986a0de5
ce89339993655da64b6ccb555c837ce6c10f9ef4
/bluejam/topprover/11.lean
5d8628cba760a727b3b170b0e17f0471de6c144a
[]
no_license
zeptometer/LearnLean
ef32dc36a22119f18d843f548d0bb42f907bff5d
bb84d5dbe521127ba134d4dbf9559b294a80b9f7
refs/heads/master
1,625,710,824,322
1,601,382,570,000
1,601,382,570,000
195,228,870
2
0
null
null
null
null
UTF-8
Lean
false
false
2,217
lean
inductive swap_once: list nat → list nat → Prop | swap : ∀ (h1 h2 : nat) (t : list nat), swap_once (h1 :: h2 :: t) (h2 :: h1 :: t) | delegate : ∀ (h : nat) (t1 t2 : list nat), swap_once t1 t2 → swap_once (h :: t1) (h :: t2) inductive is_odd_permutation: list nat → list nat → Prop | OddPermutation1: forall l1 l2, swap_once l1 l2 -> is_odd_permutation l1 l2 | OddPermutation2: forall l1 l2 l3 l4, swap_once l1 l2 -> swap_once l2 l3 -> is_odd_permutation l3 l4 -> is_odd_permutation l1 l4 inductive no_dup: list nat → Prop | empty: no_dup [] | first_appear: ∀ (h : nat) (l : list nat), (h ∉ l) → no_dup (h :: l) lemma eq_len (l1 l2 : list nat) : l1 = l2 → list.length l1 = list.length l2 := match l1, l2 with | list.nil, list.nil := by intros; refl | list.nil, (h :: t) := by intros; contradiction | (h :: t), list.nil := by intros; contradiction | (h1 :: t1), (h2 :: t2) := by intros; simp * at * end lemma equals_even (l1 l2 : list nat) : l1 = l2 → no_dup l1 → ¬ is_odd_permutation l1 l2 := match l1, l2 with | list.nil, _ := begin intros, intro h_n, cases h_n; cases h_n_a, end | (h :: t), list.nil := by intros; simp * at * | (ha :: t1), (hb :: t2) := begin intros, intro h_n, have h_tail_eq : t1 = t2, simp * at *, have h_head_eq : ha = hb, simp * at *, have h_tail_no_dup : no_dup t1, simp * at *, have h_even_sub : ¬ is_odd_permutation t1 t2, from _match t1 t2 h_tail_eq h_tail_no_dup, cases h_n, cases h_n_a, have: ¬ no_dup (ha :: hb :: h_n_a_t), intro sub_no_dup, cases sub_no_dup, simp * at *, contradiction, have : is_odd_permutation t1 t2, from is_odd_permutation.OddPermutation1 t1 t2 h_n_a_a, contradiction, sorry end end example : ∀ (l1 l2 : list nat), no_dup l1 → is_odd_permutation l1 l2 -> l1 ≠ l2 := begin intros l1 l2 h_dp h_odd equiv, have: ¬ is_odd_permutation l1 l2, from absurd h_odd (equals_even l1 l2 equiv h_dp), contradiction, end
766d11a20a099ecfadf49498cae193fd89bdd61a
6432ea7a083ff6ba21ea17af9ee47b9c371760f7
/tests/lean/run/abstractExpr.lean
155d05bae8126953972cb868ed010e24cca0b793
[ "Apache-2.0", "LLVM-exception", "NCSA", "LGPL-3.0-only", "LicenseRef-scancode-inner-net-2.0", "BSD-3-Clause", "LGPL-2.0-or-later", "Spencer-94", "LGPL-2.1-or-later", "HPND", "LicenseRef-scancode-pcre", "ISC", "LGPL-2.1-only", "LicenseRef-scancode-other-permissive", "SunPro", "CMU-Mach" ]
permissive
leanprover/lean4
4bdf9790294964627eb9be79f5e8f6157780b4cc
f1f9dc0f2f531af3312398999d8b8303fa5f096b
refs/heads/master
1,693,360,665,786
1,693,350,868,000
1,693,350,868,000
129,571,436
2,827
311
Apache-2.0
1,694,716,156,000
1,523,760,560,000
Lean
UTF-8
Lean
false
false
348
lean
import Lean open Lean open Lean.Meta def test : MetaM Unit := do let x ← mkFreshExprMVar (mkConst ``Nat) let y ← mkFreshExprMVar (mkConst ``Nat) let add := mkConst ``Nat.add let e := mkApp3 add x (mkNatLit 1) y IO.println (e.abstract #[x, y]) assert! e.abstract #[x, y] == mkApp3 add (mkBVar 1) (mkNatLit 1) (mkBVar 0) #eval test
d7fcf66b34da6a098b3ca7543a0918405190c8dc
c8d830ce6c7de4840cf0c892d8b58e7e8df97e37
/src/property_catalogue/LTL/sat/precedes.lean
c3c97359c6a1b79e08b5ce2179e82a7768216773
[]
no_license
loganrjmurphy/lean-strategies
4b8dd54771bb421c929a8bcb93a528ce6c1a70f1
020e2a65dc2ab475696dfea5ad8935a0a4085918
refs/heads/main
1,682,732,168,860
1,614,820,630,000
1,614,820,630,000
278,458,841
3
0
null
1,613,755,728,000
1,594,324,763,000
Lean
UTF-8
Lean
false
false
3,655
lean
import LTS property_catalogue.LTL.patterns tactic common_meta open tactic variable {M : LTS} namespace precedes namespace globally -- Proof 1 : Because S never happens lemma vacuous (P S : formula M) (π : path M) : (sat (absent.globally S) π) → sat (precedes.globally P S) π := λ s, or.inl s -- Proof 2 : P precedes S because S can't happen before P local notation π `⊨ `P := sat P π variables (P Q R : formula M) (π : path M) lemma by_absent_before (P Q : formula M) (π : path M) : (π ⊨ absent.before Q P) ∧ (π ⊨ exist.globally P ) → (π ⊨ precedes.globally P Q) := begin rintros ⟨H1,H2⟩, rw precedes.globally, rw [absent.before, sat, imp_iff_not_or] at H1, cases H1, left, rw always_eventually_dual, contradiction, right, assumption, end -- Proof 3 : P precedes R because P precedes Q and Q precedes R lemma by_transitive (P Q R : formula M) (π : path M) : (π ⊨ precedes.globally P R) ∧ (π ⊨ precedes.globally R Q) → (π ⊨ precedes.globally P Q) := begin rintros ⟨H1, H2⟩, cases H2, left, assumption, cases H1, cases H2 with k H2, replace H1 := (H1 k), replace H2:= H2.1, have := sat_em R (π.drop k),replace this := this H2, contradiction, rcases H1 with ⟨k,Hk1,Hk2⟩, rcases H2 with ⟨w, Hw1, Hw2⟩, right, use k, split, assumption, intros i Hi, apply Hw2, have EM : (k < w) ∨ ¬ (k < w), from em (k < w), cases EM, apply lt_trans Hi, assumption, simp at EM, have EM2 : (k = w) ∨ ¬ (k = w), from em (k = w), cases EM2, rw ← EM2, assumption, have : w < k, by omega, replace Hk2 := Hk2 w this, have := sat_em R (π.drop w),replace this := this Hw1, contradiction, end meta def solve_by_transitive (e₁ e₂ e₃ : expr) (s : string): tactic unit := do tactic.interactive.apply ``(by_transitive %%e₁ %%e₂ %%e₃) -- e₁ ← tactic_format_expr e₁, -- e₂ ← tactic_format_expr e₂, -- e₃ ← tactic_format_expr e₃, -- return $ s.append $ -- "apply precedes.globally.by_transitive " ++ -- e₁.to_string ++ " " ++ e₂.to_string ++ " " ++ e₃.to_string ++ ",\n" meta def solve_by_absent_before (e₁ e₂ : expr) (s : string) : tactic unit := do tactic.interactive.apply ``(by_absent_before %%e₁ %%e₂) -- e₁ ← e₁.log_format, -- e₂ ← e₂.log_format, -- s.log $ -- "apply precedes.globally.by_absent_before " ++ -- e₁ ++ " " ++ e₂ ++ ",\n" meta def solve (e₁ e₂ : expr) (s : string) : list expr → tactic unit | [] := return () | (h::t) := do typ ← infer_type h, match typ with | `(sat (precedes.globally _ %%new) _) := solve_by_transitive e₁ e₂ new s <|> solve t | `(sat (absent.before _ _) _) := solve_by_absent_before e₁ e₂ s <|> solve t | _ := solve t end end globally namespace before -- (◆R) ⇒ ((!P) U (S ⅋ R)) lemma vacuous (P R S: formula M) (π : path M) : sat (absent.globally S) π → sat (precedes.before P R S) π := by {intro H, rw [precedes.before,sat,imp_iff_not_or, ← always_eventually_dual], left, assumption} lemma by_absent_before (P R S: formula M) (π : path M) : sat (exist.globally (P ⅋ S)) π ∧ sat (absent.before R (P ⅋ S)) π → sat (precedes.before P R S) π := begin rintros ⟨L,R⟩, replace R := R L, rw [precedes.before, sat, imp_iff_not_or], exact or.inr R, end end before namespace after -- (◾!Q) ⅋ ◆(Q & ((!P) W S)) end after namespace between -- ◾((Q & (!R) & ◆R) ⇒ (!P U (S ⅋ R))) end between end precedes
68184ebbd334547bcabf5fe62ea3363534803ec0
680b0d1592ce164979dab866b232f6fa743f2cc8
/library/data/hf.lean
652103f21b5d14b281d15634d0e0921b72e4b8e5
[ "Apache-2.0" ]
permissive
syohex/lean
657428ab520f8277fc18cf04bea2ad200dbae782
081ad1212b686780f3ff8a6d0e5f8a1d29a7d8bc
refs/heads/master
1,611,274,838,635
1,452,668,188,000
1,452,668,188,000
49,562,028
0
0
null
1,452,675,604,000
1,452,675,602,000
null
UTF-8
Lean
false
false
25,395
lean
/- Copyright (c) 2015 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura Hereditarily finite sets: finite sets whose elements are all hereditarily finite sets. Remark: all definitions compute, however the performace is quite poor since we implement this module using a bijection from (finset nat) to nat, and this bijection is implemeted using the Ackermann coding. -/ import data.nat data.finset.equiv data.list open nat binary open - [notation] finset definition hf := nat namespace hf local attribute hf [reducible] protected definition prio : num := num.succ std.priority.default protected definition is_inhabited [instance] : inhabited hf := nat.is_inhabited protected definition has_decidable_eq [reducible] [instance] : decidable_eq hf := nat.has_decidable_eq definition of_finset (s : finset hf) : hf := @equiv.to_fun _ _ finset_nat_equiv_nat s definition to_finset (h : hf) : finset hf := @equiv.inv _ _ finset_nat_equiv_nat h definition to_nat (h : hf) : nat := h definition of_nat (n : nat) : hf := n lemma to_finset_of_finset (s : finset hf) : to_finset (of_finset s) = s := @equiv.left_inv _ _ finset_nat_equiv_nat s lemma of_finset_to_finset (s : hf) : of_finset (to_finset s) = s := @equiv.right_inv _ _ finset_nat_equiv_nat s lemma to_finset_inj {s₁ s₂ : hf} : to_finset s₁ = to_finset s₂ → s₁ = s₂ := λ h, function.injective_of_left_inverse of_finset_to_finset h lemma of_finset_inj {s₁ s₂ : finset hf} : of_finset s₁ = of_finset s₂ → s₁ = s₂ := λ h, function.injective_of_left_inverse to_finset_of_finset h /- empty -/ definition empty : hf := of_finset (finset.empty) notation `∅` := hf.empty /- insert -/ definition insert (a s : hf) : hf := of_finset (finset.insert a (to_finset s)) /- mem -/ definition mem (a : hf) (s : hf) : Prop := finset.mem a (to_finset s) infix ∈ := mem notation [priority finset.prio] a ∉ b := ¬ mem a b lemma insert_lt_of_not_mem {a s : hf} : a ∉ s → s < insert a s := begin unfold [insert, of_finset, equiv.to_fun, finset_nat_equiv_nat, mem, to_finset, equiv.inv], intro h, rewrite [finset.to_nat_insert h], rewrite [to_nat_of_nat, -zero_add s at {1}], apply add_lt_add_right, apply pow_pos_of_pos _ dec_trivial end lemma insert_lt_insert_of_not_mem_of_not_mem_of_lt {a s₁ s₂ : hf} : a ∉ s₁ → a ∉ s₂ → s₁ < s₂ → insert a s₁ < insert a s₂ := begin unfold [insert, of_finset, equiv.to_fun, finset_nat_equiv_nat, mem, to_finset, equiv.inv], intro h₁ h₂ h₃, rewrite [finset.to_nat_insert h₁], rewrite [finset.to_nat_insert h₂, *to_nat_of_nat], apply add_lt_add_left h₃ end open decidable protected definition decidable_mem [instance] : ∀ a s, decidable (a ∈ s) := λ a s, finset.decidable_mem a (to_finset s) lemma insert_le (a s : hf) : s ≤ insert a s := by_cases (suppose a ∈ s, by rewrite [↑insert, insert_eq_of_mem this, of_finset_to_finset]) (suppose a ∉ s, le_of_lt (insert_lt_of_not_mem this)) lemma not_mem_empty (a : hf) : a ∉ ∅ := begin unfold [mem, empty], rewrite to_finset_of_finset, apply finset.not_mem_empty end lemma mem_insert (a s : hf) : a ∈ insert a s := begin unfold [mem, insert], rewrite to_finset_of_finset, apply finset.mem_insert end lemma mem_insert_of_mem {a s : hf} (b : hf) : a ∈ s → a ∈ insert b s := begin unfold [mem, insert], intros, rewrite to_finset_of_finset, apply finset.mem_insert_of_mem, assumption end lemma eq_or_mem_of_mem_insert {a b s : hf} : a ∈ insert b s → a = b ∨ a ∈ s := begin unfold [mem, insert], rewrite to_finset_of_finset, intros, apply eq_or_mem_of_mem_insert, assumption end theorem mem_of_mem_insert_of_ne {x a : hf} {s : hf} : x ∈ insert a s → x ≠ a → x ∈ s := begin unfold [mem, insert], rewrite to_finset_of_finset, intros, apply mem_of_mem_insert_of_ne, repeat assumption end protected theorem ext {s₁ s₂ : hf} : (∀ a, a ∈ s₁ ↔ a ∈ s₂) → s₁ = s₂ := assume h, assert to_finset s₁ = to_finset s₂, from finset.ext h, assert of_finset (to_finset s₁) = of_finset (to_finset s₂), by rewrite this, by rewrite [*of_finset_to_finset at this]; exact this theorem insert_eq_of_mem {a : hf} {s : hf} : a ∈ s → insert a s = s := begin unfold mem, intro h, unfold [mem, insert], rewrite (finset.insert_eq_of_mem h), rewrite of_finset_to_finset end protected theorem induction [recursor 4] {P : hf → Prop} (h₁ : P empty) (h₂ : ∀ (a s : hf), a ∉ s → P s → P (insert a s)) (s : hf) : P s := assert P (of_finset (to_finset s)), from @finset.induction _ _ _ h₁ (λ a s nain ih, begin unfold [mem, insert] at h₂, rewrite -(to_finset_of_finset s) at nain, have P (insert a (of_finset s)), by exact h₂ a (of_finset s) nain ih, rewrite [↑insert at this, to_finset_of_finset at this], exact this end) (to_finset s), by rewrite of_finset_to_finset at this; exact this lemma insert_le_insert_of_le {a s₁ s₂ : hf} : a ∈ s₁ ∨ a ∉ s₂ → s₁ ≤ s₂ → insert a s₁ ≤ insert a s₂ := suppose a ∈ s₁ ∨ a ∉ s₂, suppose s₁ ≤ s₂, by_cases (suppose s₁ = s₂, by rewrite this) (suppose s₁ ≠ s₂, have s₁ < s₂, from lt_of_le_of_ne `s₁ ≤ s₂` `s₁ ≠ s₂`, by_cases (suppose a ∈ s₁, by_cases (suppose a ∈ s₂, by rewrite [insert_eq_of_mem `a ∈ s₁`, insert_eq_of_mem `a ∈ s₂`]; assumption) (suppose a ∉ s₂, by rewrite [insert_eq_of_mem `a ∈ s₁`]; exact le.trans `s₁ ≤ s₂` !insert_le)) (suppose a ∉ s₁, by_cases (suppose a ∈ s₂, or.elim `a ∈ s₁ ∨ a ∉ s₂` (by contradiction) (by contradiction)) (suppose a ∉ s₂, le_of_lt (insert_lt_insert_of_not_mem_of_not_mem_of_lt `a ∉ s₁` `a ∉ s₂` `s₁ < s₂`)))) /- union -/ definition union (s₁ s₂ : hf) : hf := of_finset (finset.union (to_finset s₁) (to_finset s₂)) infix [priority hf.prio] ∪ := union theorem mem_union_left {a : hf} {s₁ : hf} (s₂ : hf) : a ∈ s₁ → a ∈ s₁ ∪ s₂ := begin unfold mem, intro h, unfold union, rewrite to_finset_of_finset, apply finset.mem_union_left _ h end theorem mem_union_l {a : hf} {s₁ : hf} {s₂ : hf} : a ∈ s₁ → a ∈ s₁ ∪ s₂ := mem_union_left s₂ theorem mem_union_right {a : hf} {s₂ : hf} (s₁ : hf) : a ∈ s₂ → a ∈ s₁ ∪ s₂ := begin unfold mem, intro h, unfold union, rewrite to_finset_of_finset, apply finset.mem_union_right _ h end theorem mem_union_r {a : hf} {s₂ : hf} {s₁ : hf} : a ∈ s₂ → a ∈ s₁ ∪ s₂ := mem_union_right s₁ theorem mem_or_mem_of_mem_union {a : hf} {s₁ s₂ : hf} : a ∈ s₁ ∪ s₂ → a ∈ s₁ ∨ a ∈ s₂ := begin unfold [mem, union], rewrite to_finset_of_finset, intro h, apply finset.mem_or_mem_of_mem_union h end theorem mem_union_iff {a : hf} (s₁ s₂ : hf) : a ∈ s₁ ∪ s₂ ↔ a ∈ s₁ ∨ a ∈ s₂ := iff.intro (λ h, mem_or_mem_of_mem_union h) (λ d, or.elim d (λ i, mem_union_left _ i) (λ i, mem_union_right _ i)) theorem mem_union_eq {a : hf} (s₁ s₂ : hf) : (a ∈ s₁ ∪ s₂) = (a ∈ s₁ ∨ a ∈ s₂) := propext !mem_union_iff theorem union_comm (s₁ s₂ : hf) : s₁ ∪ s₂ = s₂ ∪ s₁ := hf.ext (λ a, by rewrite [*mem_union_eq]; exact or.comm) theorem union_assoc (s₁ s₂ s₃ : hf) : (s₁ ∪ s₂) ∪ s₃ = s₁ ∪ (s₂ ∪ s₃) := hf.ext (λ a, by rewrite [*mem_union_eq]; exact or.assoc) theorem union_left_comm (s₁ s₂ s₃ : hf) : s₁ ∪ (s₂ ∪ s₃) = s₂ ∪ (s₁ ∪ s₃) := !left_comm union_comm union_assoc s₁ s₂ s₃ theorem union_right_comm (s₁ s₂ s₃ : hf) : (s₁ ∪ s₂) ∪ s₃ = (s₁ ∪ s₃) ∪ s₂ := !right_comm union_comm union_assoc s₁ s₂ s₃ theorem union_self (s : hf) : s ∪ s = s := hf.ext (λ a, iff.intro (λ ain, or.elim (mem_or_mem_of_mem_union ain) (λ i, i) (λ i, i)) (λ i, mem_union_left _ i)) theorem union_empty (s : hf) : s ∪ ∅ = s := hf.ext (λ a, iff.intro (suppose a ∈ s ∪ ∅, or.elim (mem_or_mem_of_mem_union this) (λ i, i) (λ i, absurd i !not_mem_empty)) (suppose a ∈ s, mem_union_left _ this)) theorem empty_union (s : hf) : ∅ ∪ s = s := calc ∅ ∪ s = s ∪ ∅ : union_comm ... = s : union_empty /- inter -/ definition inter (s₁ s₂ : hf) : hf := of_finset (finset.inter (to_finset s₁) (to_finset s₂)) infix [priority hf.prio] ∩ := inter theorem mem_of_mem_inter_left {a : hf} {s₁ s₂ : hf} : a ∈ s₁ ∩ s₂ → a ∈ s₁ := begin unfold mem, unfold inter, rewrite to_finset_of_finset, intro h, apply finset.mem_of_mem_inter_left h end theorem mem_of_mem_inter_right {a : hf} {s₁ s₂ : hf} : a ∈ s₁ ∩ s₂ → a ∈ s₂ := begin unfold mem, unfold inter, rewrite to_finset_of_finset, intro h, apply finset.mem_of_mem_inter_right h end theorem mem_inter {a : hf} {s₁ s₂ : hf} : a ∈ s₁ → a ∈ s₂ → a ∈ s₁ ∩ s₂ := begin unfold mem, intro h₁ h₂, unfold inter, rewrite to_finset_of_finset, apply finset.mem_inter h₁ h₂ end theorem mem_inter_iff (a : hf) (s₁ s₂ : hf) : a ∈ s₁ ∩ s₂ ↔ a ∈ s₁ ∧ a ∈ s₂ := iff.intro (λ h, and.intro (mem_of_mem_inter_left h) (mem_of_mem_inter_right h)) (λ h, mem_inter (and.elim_left h) (and.elim_right h)) theorem mem_inter_eq (a : hf) (s₁ s₂ : hf) : (a ∈ s₁ ∩ s₂) = (a ∈ s₁ ∧ a ∈ s₂) := propext !mem_inter_iff theorem inter_comm (s₁ s₂ : hf) : s₁ ∩ s₂ = s₂ ∩ s₁ := hf.ext (λ a, by rewrite [*mem_inter_eq]; exact and.comm) theorem inter_assoc (s₁ s₂ s₃ : hf) : (s₁ ∩ s₂) ∩ s₃ = s₁ ∩ (s₂ ∩ s₃) := hf.ext (λ a, by rewrite [*mem_inter_eq]; exact and.assoc) theorem inter_left_comm (s₁ s₂ s₃ : hf) : s₁ ∩ (s₂ ∩ s₃) = s₂ ∩ (s₁ ∩ s₃) := !left_comm inter_comm inter_assoc s₁ s₂ s₃ theorem inter_right_comm (s₁ s₂ s₃ : hf) : (s₁ ∩ s₂) ∩ s₃ = (s₁ ∩ s₃) ∩ s₂ := !right_comm inter_comm inter_assoc s₁ s₂ s₃ theorem inter_self (s : hf) : s ∩ s = s := hf.ext (λ a, iff.intro (λ h, mem_of_mem_inter_right h) (λ h, mem_inter h h)) theorem inter_empty (s : hf) : s ∩ ∅ = ∅ := hf.ext (λ a, iff.intro (suppose a ∈ s ∩ ∅, absurd (mem_of_mem_inter_right this) !not_mem_empty) (suppose a ∈ ∅, absurd this !not_mem_empty)) theorem empty_inter (s : hf) : ∅ ∩ s = ∅ := calc ∅ ∩ s = s ∩ ∅ : inter_comm ... = ∅ : inter_empty /- card -/ definition card (s : hf) : nat := finset.card (to_finset s) theorem card_empty : card ∅ = 0 := rfl lemma ne_empty_of_card_eq_succ {s : hf} {n : nat} : card s = succ n → s ≠ ∅ := by intros; substvars; contradiction /- erase -/ definition erase (a : hf) (s : hf) : hf := of_finset (erase a (to_finset s)) theorem mem_erase (a : hf) (s : hf) : a ∉ erase a s := begin unfold [mem, erase], rewrite to_finset_of_finset, apply finset.mem_erase end theorem card_erase_of_mem {a : hf} {s : hf} : a ∈ s → card (erase a s) = pred (card s) := begin unfold mem, intro h, unfold [erase, card], rewrite to_finset_of_finset, apply finset.card_erase_of_mem h end theorem card_erase_of_not_mem {a : hf} {s : hf} : a ∉ s → card (erase a s) = card s := begin unfold [mem], intro h, unfold [erase, card], rewrite to_finset_of_finset, apply finset.card_erase_of_not_mem h end theorem erase_empty (a : hf) : erase a ∅ = ∅ := rfl theorem ne_of_mem_erase {a b : hf} {s : hf} : b ∈ erase a s → b ≠ a := by intro h beqa; subst b; exact absurd h !mem_erase theorem mem_of_mem_erase {a b : hf} {s : hf} : b ∈ erase a s → b ∈ s := begin unfold [erase, mem], rewrite to_finset_of_finset, intro h, apply mem_of_mem_erase h end theorem mem_erase_of_ne_of_mem {a b : hf} {s : hf} : a ≠ b → a ∈ s → a ∈ erase b s := begin intro h₁, unfold mem, intro h₂, unfold erase, rewrite to_finset_of_finset, apply mem_erase_of_ne_of_mem h₁ h₂ end theorem mem_erase_iff (a b : hf) (s : hf) : a ∈ erase b s ↔ a ∈ s ∧ a ≠ b := iff.intro (assume H, and.intro (mem_of_mem_erase H) (ne_of_mem_erase H)) (assume H, mem_erase_of_ne_of_mem (and.right H) (and.left H)) theorem mem_erase_eq (a b : hf) (s : hf) : a ∈ erase b s = (a ∈ s ∧ a ≠ b) := propext !mem_erase_iff theorem erase_insert {a : hf} {s : hf} : a ∉ s → erase a (insert a s) = s := begin unfold [mem, erase, insert], intro h, rewrite [to_finset_of_finset, finset.erase_insert h, of_finset_to_finset] end theorem insert_erase {a : hf} {s : hf} : a ∈ s → insert a (erase a s) = s := begin unfold mem, intro h, unfold [insert, erase], rewrite [to_finset_of_finset, finset.insert_erase h, of_finset_to_finset] end /- subset -/ definition subset (s₁ s₂ : hf) : Prop := finset.subset (to_finset s₁) (to_finset s₂) infix [priority hf.prio] ⊆ := subset theorem empty_subset (s : hf) : ∅ ⊆ s := begin unfold [empty, subset], rewrite to_finset_of_finset, apply finset.empty_subset (to_finset s) end theorem subset.refl (s : hf) : s ⊆ s := begin unfold [subset], apply finset.subset.refl (to_finset s) end theorem subset.trans {s₁ s₂ s₃ : hf} : s₁ ⊆ s₂ → s₂ ⊆ s₃ → s₁ ⊆ s₃ := begin unfold [subset], intro h₁ h₂, apply finset.subset.trans h₁ h₂ end theorem mem_of_subset_of_mem {s₁ s₂ : hf} {a : hf} : s₁ ⊆ s₂ → a ∈ s₁ → a ∈ s₂ := begin unfold [subset, mem], intro h₁ h₂, apply finset.mem_of_subset_of_mem h₁ h₂ end theorem subset.antisymm {s₁ s₂ : hf} : s₁ ⊆ s₂ → s₂ ⊆ s₁ → s₁ = s₂ := begin unfold [subset], intro h₁ h₂, apply to_finset_inj (finset.subset.antisymm h₁ h₂) end -- alternative name theorem eq_of_subset_of_subset {s₁ s₂ : hf} (H₁ : s₁ ⊆ s₂) (H₂ : s₂ ⊆ s₁) : s₁ = s₂ := subset.antisymm H₁ H₂ theorem subset_of_forall {s₁ s₂ : hf} : (∀x, x ∈ s₁ → x ∈ s₂) → s₁ ⊆ s₂ := begin unfold [mem, subset], intro h, apply finset.subset_of_forall h end theorem subset_insert (s : hf) (a : hf) : s ⊆ insert a s := begin unfold [subset, insert], rewrite to_finset_of_finset, apply finset.subset_insert (to_finset s) end theorem eq_empty_of_subset_empty {x : hf} (H : x ⊆ ∅) : x = ∅ := subset.antisymm H (empty_subset x) theorem subset_empty_iff (x : hf) : x ⊆ ∅ ↔ x = ∅ := iff.intro eq_empty_of_subset_empty (take xeq, by rewrite xeq; apply subset.refl ∅) theorem erase_subset_erase (a : hf) {s t : hf} : s ⊆ t → erase a s ⊆ erase a t := begin unfold [subset, erase], intro h, rewrite *to_finset_of_finset, apply finset.erase_subset_erase a h end theorem erase_subset (a : hf) (s : hf) : erase a s ⊆ s := begin unfold [subset, erase], rewrite to_finset_of_finset, apply finset.erase_subset a (to_finset s) end theorem erase_eq_of_not_mem {a : hf} {s : hf} : a ∉ s → erase a s = s := begin unfold [mem, erase], intro h, rewrite [finset.erase_eq_of_not_mem h, of_finset_to_finset] end theorem erase_insert_subset (a : hf) (s : hf) : erase a (insert a s) ⊆ s := begin unfold [erase, insert, subset], rewrite [*to_finset_of_finset], apply finset.erase_insert_subset a (to_finset s) end theorem erase_subset_of_subset_insert {a : hf} {s t : hf} (H : s ⊆ insert a t) : erase a s ⊆ t := hf.subset.trans (!hf.erase_subset_erase H) (erase_insert_subset a t) theorem insert_erase_subset (a : hf) (s : hf) : s ⊆ insert a (erase a s) := decidable.by_cases (assume ains : a ∈ s, by rewrite [!insert_erase ains]; apply subset.refl) (assume nains : a ∉ s, suffices s ⊆ insert a s, by rewrite [erase_eq_of_not_mem nains]; assumption, subset_insert s a) theorem insert_subset_insert (a : hf) {s t : hf} : s ⊆ t → insert a s ⊆ insert a t := begin unfold [subset, insert], intro h, rewrite *to_finset_of_finset, apply finset.insert_subset_insert a h end theorem subset_insert_of_erase_subset {s t : hf} {a : hf} (H : erase a s ⊆ t) : s ⊆ insert a t := subset.trans (insert_erase_subset a s) (!insert_subset_insert H) theorem subset_insert_iff (s t : hf) (a : hf) : s ⊆ insert a t ↔ erase a s ⊆ t := iff.intro !erase_subset_of_subset_insert !subset_insert_of_erase_subset theorem le_of_subset {s₁ s₂ : hf} : s₁ ⊆ s₂ → s₁ ≤ s₂ := begin revert s₂, induction s₁ with a s₁ nain ih, take s₂, suppose ∅ ⊆ s₂, !zero_le, take s₂, suppose insert a s₁ ⊆ s₂, assert a ∈ s₂, from mem_of_subset_of_mem this !mem_insert, have a ∉ erase a s₂, from !mem_erase, have s₁ ⊆ erase a s₂, from subset_of_forall (take x xin, by_cases (suppose x = a, by subst x; contradiction) (suppose x ≠ a, have x ∈ s₂, from mem_of_subset_of_mem `insert a s₁ ⊆ s₂` (mem_insert_of_mem _ `x ∈ s₁`), mem_erase_of_ne_of_mem `x ≠ a` `x ∈ s₂`)), have s₁ ≤ erase a s₂, from ih _ this, assert insert a s₁ ≤ insert a (erase a s₂), from insert_le_insert_of_le (or.inr `a ∉ erase a s₂`) this, by rewrite [insert_erase `a ∈ s₂` at this]; exact this end /- image -/ definition image (f : hf → hf) (s : hf) : hf := of_finset (finset.image f (to_finset s)) theorem image_empty (f : hf → hf) : image f ∅ = ∅ := rfl theorem mem_image_of_mem (f : hf → hf) {s : hf} {a : hf} : a ∈ s → f a ∈ image f s := begin unfold [mem, image], intro h, rewrite to_finset_of_finset, apply finset.mem_image_of_mem f h end theorem mem_image {f : hf → hf} {s : hf} {a : hf} {b : hf} (H1 : a ∈ s) (H2 : f a = b) : b ∈ image f s := eq.subst H2 (mem_image_of_mem f H1) theorem exists_of_mem_image {f : hf → hf} {s : hf} {b : hf} : b ∈ image f s → ∃a, a ∈ s ∧ f a = b := begin unfold [mem, image], rewrite to_finset_of_finset, intro h, apply finset.exists_of_mem_image h end theorem mem_image_iff (f : hf → hf) {s : hf} {y : hf} : y ∈ image f s ↔ ∃x, x ∈ s ∧ f x = y := begin unfold [mem, image], rewrite to_finset_of_finset, apply finset.mem_image_iff end theorem mem_image_eq (f : hf → hf) {s : hf} {y : hf} : y ∈ image f s = ∃x, x ∈ s ∧ f x = y := propext (mem_image_iff f) theorem mem_image_of_mem_image_of_subset {f : hf → hf} {s t : hf} {y : hf} (H1 : y ∈ image f s) (H2 : s ⊆ t) : y ∈ image f t := obtain x `x ∈ s` `f x = y`, from exists_of_mem_image H1, have x ∈ t, from mem_of_subset_of_mem H2 `x ∈ s`, show y ∈ image f t, from mem_image `x ∈ t` `f x = y` theorem image_insert (f : hf → hf) (s : hf) (a : hf) : image f (insert a s) = insert (f a) (image f s) := begin unfold [image, insert], rewrite [*to_finset_of_finset, finset.image_insert] end open function lemma image_compose {f : hf → hf} {g : hf → hf} {s : hf} : image (f∘g) s = image f (image g s) := begin unfold image, rewrite [*to_finset_of_finset, finset.image_compose] end lemma image_subset {a b : hf} (f : hf → hf) : a ⊆ b → image f a ⊆ image f b := begin unfold [subset, image], intro h, rewrite *to_finset_of_finset, apply finset.image_subset f h end theorem image_union (f : hf → hf) (s t : hf) : image f (s ∪ t) = image f s ∪ image f t := begin unfold [image, union], rewrite [*to_finset_of_finset, finset.image_union] end /- powerset -/ definition powerset (s : hf) : hf := of_finset (finset.image of_finset (finset.powerset (to_finset s))) prefix [priority hf.prio] `𝒫`:100 := powerset theorem powerset_empty : 𝒫 ∅ = insert ∅ ∅ := rfl theorem powerset_insert {a : hf} {s : hf} : a ∉ s → 𝒫 (insert a s) = 𝒫 s ∪ image (insert a) (𝒫 s) := begin unfold [mem, powerset, insert, union, image], rewrite [*to_finset_of_finset], intro h, have (λ (x : finset hf), of_finset (finset.insert a x)) = (λ (x : finset hf), of_finset (finset.insert a (to_finset (of_finset x)))), from funext (λ x, by rewrite to_finset_of_finset), rewrite [finset.powerset_insert h, finset.image_union, -*finset.image_compose,↑compose,this] end theorem mem_powerset_iff_subset (s : hf) : ∀ x : hf, x ∈ 𝒫 s ↔ x ⊆ s := begin intro x, unfold [mem, powerset, subset], rewrite [to_finset_of_finset, finset.mem_image_eq], apply iff.intro, suppose (∃ (w : finset hf), finset.mem w (finset.powerset (to_finset s)) ∧ of_finset w = x), obtain w h₁ h₂, from this, begin subst x, rewrite to_finset_of_finset, exact iff.mp !finset.mem_powerset_iff_subset h₁ end, suppose finset.subset (to_finset x) (to_finset s), assert finset.mem (to_finset x) (finset.powerset (to_finset s)), from iff.mpr !finset.mem_powerset_iff_subset this, exists.intro (to_finset x) (and.intro this (of_finset_to_finset x)) end theorem subset_of_mem_powerset {s t : hf} (H : s ∈ 𝒫 t) : s ⊆ t := iff.mp (mem_powerset_iff_subset t s) H theorem mem_powerset_of_subset {s t : hf} (H : s ⊆ t) : s ∈ 𝒫 t := iff.mpr (mem_powerset_iff_subset t s) H theorem empty_mem_powerset (s : hf) : ∅ ∈ 𝒫 s := mem_powerset_of_subset (empty_subset s) /- hf as lists -/ open - [notation] list definition of_list (s : list hf) : hf := @equiv.to_fun _ _ list_nat_equiv_nat s definition to_list (h : hf) : list hf := @equiv.inv _ _ list_nat_equiv_nat h lemma to_list_of_list (s : list hf) : to_list (of_list s) = s := @equiv.left_inv _ _ list_nat_equiv_nat s lemma of_list_to_list (s : hf) : of_list (to_list s) = s := @equiv.right_inv _ _ list_nat_equiv_nat s lemma to_list_inj {s₁ s₂ : hf} : to_list s₁ = to_list s₂ → s₁ = s₂ := λ h, function.injective_of_left_inverse of_list_to_list h lemma of_list_inj {s₁ s₂ : list hf} : of_list s₁ = of_list s₂ → s₁ = s₂ := λ h, function.injective_of_left_inverse to_list_of_list h definition nil : hf := of_list list.nil lemma empty_eq_nil : ∅ = nil := rfl definition cons (a l : hf) : hf := of_list (list.cons a (to_list l)) infixr :: := cons lemma cons_ne_nil (a l : hf) : a::l ≠ nil := by contradiction lemma head_eq_of_cons_eq {h₁ h₂ t₁ t₂ : hf} : (h₁::t₁) = (h₂::t₂) → h₁ = h₂ := begin unfold cons, intro h, apply list.head_eq_of_cons_eq (of_list_inj h) end lemma tail_eq_of_cons_eq {h₁ h₂ t₁ t₂ : hf} : (h₁::t₁) = (h₂::t₂) → t₁ = t₂ := begin unfold cons, intro h, apply to_list_inj (list.tail_eq_of_cons_eq (of_list_inj h)) end lemma cons_inj {a : hf} : injective (cons a) := take l₁ l₂, assume Pe, tail_eq_of_cons_eq Pe /- append -/ definition append (l₁ l₂ : hf) : hf := of_list (list.append (to_list l₁) (to_list l₂)) notation l₁ ++ l₂ := append l₁ l₂ theorem append_nil_left [simp] (t : hf) : nil ++ t = t := begin unfold [nil, append], rewrite [to_list_of_list, list.append_nil_left, of_list_to_list] end theorem append_cons [simp] (x s t : hf) : (x::s) ++ t = x::(s ++ t) := begin unfold [cons, append], rewrite [*to_list_of_list, list.append_cons] end theorem append_nil_right [simp] (t : hf) : t ++ nil = t := begin unfold [nil, append], rewrite [to_list_of_list, list.append_nil_right, of_list_to_list] end theorem append.assoc [simp] (s t u : hf) : s ++ t ++ u = s ++ (t ++ u) := begin unfold append, rewrite [*to_list_of_list, list.append.assoc] end /- length -/ definition length (l : hf) : nat := list.length (to_list l) theorem length_nil [simp] : length nil = 0 := begin unfold [length, nil] end theorem length_cons [simp] (x t : hf) : length (x::t) = length t + 1 := begin unfold [length, cons], rewrite to_list_of_list end theorem length_append [simp] (s t : hf) : length (s ++ t) = length s + length t := begin unfold [length, append], rewrite [to_list_of_list, list.length_append] end theorem eq_nil_of_length_eq_zero {l : hf} : length l = 0 → l = nil := begin unfold [length, nil], intro h, rewrite [-list.eq_nil_of_length_eq_zero h, of_list_to_list] end theorem ne_nil_of_length_eq_succ {l : hf} {n : nat} : length l = succ n → l ≠ nil := begin unfold [length, nil], intro h₁ h₂, subst l, rewrite to_list_of_list at h₁, contradiction end /- head and tail -/ definition head (l : hf) : hf := list.head (to_list l) theorem head_cons [simp] (a l : hf) : head (a::l) = a := begin unfold [head, cons], rewrite to_list_of_list end private lemma to_list_ne_list_nil {s : hf} : s ≠ nil → to_list s ≠ list.nil := begin unfold nil, intro h, suppose to_list s = list.nil, by rewrite [-this at h, of_list_to_list at h]; exact absurd rfl h end theorem head_append [simp] (t : hf) {s : hf} : s ≠ nil → head (s ++ t) = head s := begin unfold [nil, head, append], rewrite to_list_of_list, suppose s ≠ of_list list.nil, by rewrite [list.head_append _ (to_list_ne_list_nil this)] end definition tail (l : hf) : hf := of_list (list.tail (to_list l)) theorem tail_nil [simp] : tail nil = nil := begin unfold [tail, nil] end theorem tail_cons [simp] (a l : hf) : tail (a::l) = l := begin unfold [tail, cons], rewrite [to_list_of_list, list.tail_cons, of_list_to_list] end theorem cons_head_tail {l : hf} : l ≠ nil → (head l)::(tail l) = l := begin unfold [nil, head, tail, cons], suppose l ≠ of_list list.nil, by rewrite [to_list_of_list, list.cons_head_tail (to_list_ne_list_nil this), of_list_to_list] end end hf
9ca79bba52e97e45aff1092fb78e3929e3c662bc
d406927ab5617694ec9ea7001f101b7c9e3d9702
/src/analysis/special_functions/trigonometric/inverse.lean
2112d3833abbeb767b7a31cf889ed6b34f655605
[ "Apache-2.0" ]
permissive
alreadydone/mathlib
dc0be621c6c8208c581f5170a8216c5ba6721927
c982179ec21091d3e102d8a5d9f5fe06c8fafb73
refs/heads/master
1,685,523,275,196
1,670,184,141,000
1,670,184,141,000
287,574,545
0
0
Apache-2.0
1,670,290,714,000
1,597,421,623,000
Lean
UTF-8
Lean
false
false
15,401
lean
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson -/ import analysis.special_functions.trigonometric.basic import topology.algebra.order.proj_Icc /-! # Inverse trigonometric functions. See also `analysis.special_functions.trigonometric.arctan` for the inverse tan function. (This is delayed as it is easier to set up after developing complex trigonometric functions.) Basic inequalities on trigonometric functions. -/ noncomputable theory open_locale classical topological_space filter open set filter open_locale real namespace real /-- Inverse of the `sin` function, returns values in the range `-π / 2 ≤ arcsin x ≤ π / 2`. It defaults to `-π / 2` on `(-∞, -1)` and to `π / 2` to `(1, ∞)`. -/ @[pp_nodot] noncomputable def arcsin : ℝ → ℝ := coe ∘ Icc_extend (neg_le_self zero_le_one) sin_order_iso.symm lemma arcsin_mem_Icc (x : ℝ) : arcsin x ∈ Icc (-(π / 2)) (π / 2) := subtype.coe_prop _ @[simp] lemma range_arcsin : range arcsin = Icc (-(π / 2)) (π / 2) := by { rw [arcsin, range_comp coe], simp [Icc] } lemma arcsin_le_pi_div_two (x : ℝ) : arcsin x ≤ π / 2 := (arcsin_mem_Icc x).2 lemma neg_pi_div_two_le_arcsin (x : ℝ) : -(π / 2) ≤ arcsin x := (arcsin_mem_Icc x).1 lemma arcsin_proj_Icc (x : ℝ) : arcsin (proj_Icc (-1) 1 (neg_le_self zero_le_one) x) = arcsin x := by rw [arcsin, function.comp_app, Icc_extend_coe, function.comp_app, Icc_extend] lemma sin_arcsin' {x : ℝ} (hx : x ∈ Icc (-1 : ℝ) 1) : sin (arcsin x) = x := by simpa [arcsin, Icc_extend_of_mem _ _ hx, -order_iso.apply_symm_apply] using subtype.ext_iff.1 (sin_order_iso.apply_symm_apply ⟨x, hx⟩) lemma sin_arcsin {x : ℝ} (hx₁ : -1 ≤ x) (hx₂ : x ≤ 1) : sin (arcsin x) = x := sin_arcsin' ⟨hx₁, hx₂⟩ lemma arcsin_sin' {x : ℝ} (hx : x ∈ Icc (-(π / 2)) (π / 2)) : arcsin (sin x) = x := inj_on_sin (arcsin_mem_Icc _) hx $ by rw [sin_arcsin (neg_one_le_sin _) (sin_le_one _)] lemma arcsin_sin {x : ℝ} (hx₁ : -(π / 2) ≤ x) (hx₂ : x ≤ π / 2) : arcsin (sin x) = x := arcsin_sin' ⟨hx₁, hx₂⟩ lemma strict_mono_on_arcsin : strict_mono_on arcsin (Icc (-1) 1) := (subtype.strict_mono_coe _).comp_strict_mono_on $ sin_order_iso.symm.strict_mono.strict_mono_on_Icc_extend _ lemma monotone_arcsin : monotone arcsin := (subtype.mono_coe _).comp $ sin_order_iso.symm.monotone.Icc_extend _ lemma inj_on_arcsin : inj_on arcsin (Icc (-1) 1) := strict_mono_on_arcsin.inj_on lemma arcsin_inj {x y : ℝ} (hx₁ : -1 ≤ x) (hx₂ : x ≤ 1) (hy₁ : -1 ≤ y) (hy₂ : y ≤ 1) : arcsin x = arcsin y ↔ x = y := inj_on_arcsin.eq_iff ⟨hx₁, hx₂⟩ ⟨hy₁, hy₂⟩ @[continuity] lemma continuous_arcsin : continuous arcsin := continuous_subtype_coe.comp sin_order_iso.symm.continuous.Icc_extend' lemma continuous_at_arcsin {x : ℝ} : continuous_at arcsin x := continuous_arcsin.continuous_at lemma arcsin_eq_of_sin_eq {x y : ℝ} (h₁ : sin x = y) (h₂ : x ∈ Icc (-(π / 2)) (π / 2)) : arcsin y = x := begin subst y, exact inj_on_sin (arcsin_mem_Icc _) h₂ (sin_arcsin' (sin_mem_Icc x)) end @[simp] lemma arcsin_zero : arcsin 0 = 0 := arcsin_eq_of_sin_eq sin_zero ⟨neg_nonpos.2 pi_div_two_pos.le, pi_div_two_pos.le⟩ @[simp] lemma arcsin_one : arcsin 1 = π / 2 := arcsin_eq_of_sin_eq sin_pi_div_two $ right_mem_Icc.2 (neg_le_self pi_div_two_pos.le) lemma arcsin_of_one_le {x : ℝ} (hx : 1 ≤ x) : arcsin x = π / 2 := by rw [← arcsin_proj_Icc, proj_Icc_of_right_le _ hx, subtype.coe_mk, arcsin_one] lemma arcsin_neg_one : arcsin (-1) = -(π / 2) := arcsin_eq_of_sin_eq (by rw [sin_neg, sin_pi_div_two]) $ left_mem_Icc.2 (neg_le_self pi_div_two_pos.le) lemma arcsin_of_le_neg_one {x : ℝ} (hx : x ≤ -1) : arcsin x = -(π / 2) := by rw [← arcsin_proj_Icc, proj_Icc_of_le_left _ hx, subtype.coe_mk, arcsin_neg_one] @[simp] lemma arcsin_neg (x : ℝ) : arcsin (-x) = -arcsin x := begin cases le_total x (-1) with hx₁ hx₁, { rw [arcsin_of_le_neg_one hx₁, neg_neg, arcsin_of_one_le (le_neg.2 hx₁)] }, cases le_total 1 x with hx₂ hx₂, { rw [arcsin_of_one_le hx₂, arcsin_of_le_neg_one (neg_le_neg hx₂)] }, refine arcsin_eq_of_sin_eq _ _, { rw [sin_neg, sin_arcsin hx₁ hx₂] }, { exact ⟨neg_le_neg (arcsin_le_pi_div_two _), neg_le.2 (neg_pi_div_two_le_arcsin _)⟩ } end lemma arcsin_le_iff_le_sin {x y : ℝ} (hx : x ∈ Icc (-1 : ℝ) 1) (hy : y ∈ Icc (-(π / 2)) (π / 2)) : arcsin x ≤ y ↔ x ≤ sin y := by rw [← arcsin_sin' hy, strict_mono_on_arcsin.le_iff_le hx (sin_mem_Icc _), arcsin_sin' hy] lemma arcsin_le_iff_le_sin' {x y : ℝ} (hy : y ∈ Ico (-(π / 2)) (π / 2)) : arcsin x ≤ y ↔ x ≤ sin y := begin cases le_total x (-1) with hx₁ hx₁, { simp [arcsin_of_le_neg_one hx₁, hy.1, hx₁.trans (neg_one_le_sin _)] }, cases lt_or_le 1 x with hx₂ hx₂, { simp [arcsin_of_one_le hx₂.le, hy.2.not_le, (sin_le_one y).trans_lt hx₂] }, exact arcsin_le_iff_le_sin ⟨hx₁, hx₂⟩ (mem_Icc_of_Ico hy) end lemma le_arcsin_iff_sin_le {x y : ℝ} (hx : x ∈ Icc (-(π / 2)) (π / 2)) (hy : y ∈ Icc (-1 : ℝ) 1) : x ≤ arcsin y ↔ sin x ≤ y := by rw [← neg_le_neg_iff, ← arcsin_neg, arcsin_le_iff_le_sin ⟨neg_le_neg hy.2, neg_le.2 hy.1⟩ ⟨neg_le_neg hx.2, neg_le.2 hx.1⟩, sin_neg, neg_le_neg_iff] lemma le_arcsin_iff_sin_le' {x y : ℝ} (hx : x ∈ Ioc (-(π / 2)) (π / 2)) : x ≤ arcsin y ↔ sin x ≤ y := by rw [← neg_le_neg_iff, ← arcsin_neg, arcsin_le_iff_le_sin' ⟨neg_le_neg hx.2, neg_lt.2 hx.1⟩, sin_neg, neg_le_neg_iff] lemma arcsin_lt_iff_lt_sin {x y : ℝ} (hx : x ∈ Icc (-1 : ℝ) 1) (hy : y ∈ Icc (-(π / 2)) (π / 2)) : arcsin x < y ↔ x < sin y := not_le.symm.trans $ (not_congr $ le_arcsin_iff_sin_le hy hx).trans not_le lemma arcsin_lt_iff_lt_sin' {x y : ℝ} (hy : y ∈ Ioc (-(π / 2)) (π / 2)) : arcsin x < y ↔ x < sin y := not_le.symm.trans $ (not_congr $ le_arcsin_iff_sin_le' hy).trans not_le lemma lt_arcsin_iff_sin_lt {x y : ℝ} (hx : x ∈ Icc (-(π / 2)) (π / 2)) (hy : y ∈ Icc (-1 : ℝ) 1) : x < arcsin y ↔ sin x < y := not_le.symm.trans $ (not_congr $ arcsin_le_iff_le_sin hy hx).trans not_le lemma lt_arcsin_iff_sin_lt' {x y : ℝ} (hx : x ∈ Ico (-(π / 2)) (π / 2)) : x < arcsin y ↔ sin x < y := not_le.symm.trans $ (not_congr $ arcsin_le_iff_le_sin' hx).trans not_le lemma arcsin_eq_iff_eq_sin {x y : ℝ} (hy : y ∈ Ioo (-(π / 2)) (π / 2)) : arcsin x = y ↔ x = sin y := by simp only [le_antisymm_iff, arcsin_le_iff_le_sin' (mem_Ico_of_Ioo hy), le_arcsin_iff_sin_le' (mem_Ioc_of_Ioo hy)] @[simp] lemma arcsin_nonneg {x : ℝ} : 0 ≤ arcsin x ↔ 0 ≤ x := (le_arcsin_iff_sin_le' ⟨neg_lt_zero.2 pi_div_two_pos, pi_div_two_pos.le⟩).trans $ by rw [sin_zero] @[simp] lemma arcsin_nonpos {x : ℝ} : arcsin x ≤ 0 ↔ x ≤ 0 := neg_nonneg.symm.trans $ arcsin_neg x ▸ arcsin_nonneg.trans neg_nonneg @[simp] lemma arcsin_eq_zero_iff {x : ℝ} : arcsin x = 0 ↔ x = 0 := by simp [le_antisymm_iff] @[simp] lemma zero_eq_arcsin_iff {x} : 0 = arcsin x ↔ x = 0 := eq_comm.trans arcsin_eq_zero_iff @[simp] lemma arcsin_pos {x : ℝ} : 0 < arcsin x ↔ 0 < x := lt_iff_lt_of_le_iff_le arcsin_nonpos @[simp] lemma arcsin_lt_zero {x : ℝ} : arcsin x < 0 ↔ x < 0 := lt_iff_lt_of_le_iff_le arcsin_nonneg @[simp] lemma arcsin_lt_pi_div_two {x : ℝ} : arcsin x < π / 2 ↔ x < 1 := (arcsin_lt_iff_lt_sin' (right_mem_Ioc.2 $ neg_lt_self pi_div_two_pos)).trans $ by rw sin_pi_div_two @[simp] lemma neg_pi_div_two_lt_arcsin {x : ℝ} : -(π / 2) < arcsin x ↔ -1 < x := (lt_arcsin_iff_sin_lt' $ left_mem_Ico.2 $ neg_lt_self pi_div_two_pos).trans $ by rw [sin_neg, sin_pi_div_two] @[simp] lemma arcsin_eq_pi_div_two {x : ℝ} : arcsin x = π / 2 ↔ 1 ≤ x := ⟨λ h, not_lt.1 $ λ h', (arcsin_lt_pi_div_two.2 h').ne h, arcsin_of_one_le⟩ @[simp] lemma pi_div_two_eq_arcsin {x} : π / 2 = arcsin x ↔ 1 ≤ x := eq_comm.trans arcsin_eq_pi_div_two @[simp] lemma pi_div_two_le_arcsin {x} : π / 2 ≤ arcsin x ↔ 1 ≤ x := (arcsin_le_pi_div_two x).le_iff_eq.trans pi_div_two_eq_arcsin @[simp] lemma arcsin_eq_neg_pi_div_two {x : ℝ} : arcsin x = -(π / 2) ↔ x ≤ -1 := ⟨λ h, not_lt.1 $ λ h', (neg_pi_div_two_lt_arcsin.2 h').ne' h, arcsin_of_le_neg_one⟩ @[simp] lemma neg_pi_div_two_eq_arcsin {x} : -(π / 2) = arcsin x ↔ x ≤ -1 := eq_comm.trans arcsin_eq_neg_pi_div_two @[simp] lemma arcsin_le_neg_pi_div_two {x} : arcsin x ≤ -(π / 2) ↔ x ≤ -1 := (neg_pi_div_two_le_arcsin x).le_iff_eq.trans arcsin_eq_neg_pi_div_two @[simp] lemma pi_div_four_le_arcsin {x} : π / 4 ≤ arcsin x ↔ sqrt 2 / 2 ≤ x := by { rw [← sin_pi_div_four, le_arcsin_iff_sin_le'], have := pi_pos, split; linarith } lemma maps_to_sin_Ioo : maps_to sin (Ioo (-(π / 2)) (π / 2)) (Ioo (-1) 1) := λ x h, by rwa [mem_Ioo, ← arcsin_lt_pi_div_two, ← neg_pi_div_two_lt_arcsin, arcsin_sin h.1.le h.2.le] /-- `real.sin` as a `local_homeomorph` between `(-π / 2, π / 2)` and `(-1, 1)`. -/ @[simp] def sin_local_homeomorph : local_homeomorph ℝ ℝ := { to_fun := sin, inv_fun := arcsin, source := Ioo (-(π / 2)) (π / 2), target := Ioo (-1) 1, map_source' := maps_to_sin_Ioo, map_target' := λ y hy, ⟨neg_pi_div_two_lt_arcsin.2 hy.1, arcsin_lt_pi_div_two.2 hy.2⟩, left_inv' := λ x hx, arcsin_sin hx.1.le hx.2.le, right_inv' := λ y hy, sin_arcsin hy.1.le hy.2.le, open_source := is_open_Ioo, open_target := is_open_Ioo, continuous_to_fun := continuous_sin.continuous_on, continuous_inv_fun := continuous_arcsin.continuous_on } lemma cos_arcsin_nonneg (x : ℝ) : 0 ≤ cos (arcsin x) := cos_nonneg_of_mem_Icc ⟨neg_pi_div_two_le_arcsin _, arcsin_le_pi_div_two _⟩ -- The junk values for `arcsin` and `sqrt` make this true even outside `[-1, 1]`. lemma cos_arcsin (x : ℝ) : cos (arcsin x) = sqrt (1 - x ^ 2) := begin by_cases hx₁ : -1 ≤ x, swap, { rw not_le at hx₁, rw [arcsin_of_le_neg_one hx₁.le, cos_neg, cos_pi_div_two, sqrt_eq_zero_of_nonpos], nlinarith }, by_cases hx₂ : x ≤ 1, swap, { rw not_le at hx₂, rw [arcsin_of_one_le hx₂.le, cos_pi_div_two, sqrt_eq_zero_of_nonpos], nlinarith }, have : sin (arcsin x) ^ 2 + cos (arcsin x) ^ 2 = 1 := sin_sq_add_cos_sq (arcsin x), rw [← eq_sub_iff_add_eq', ← sqrt_inj (sq_nonneg _) (sub_nonneg.2 (sin_sq_le_one (arcsin x))), sq, sqrt_mul_self (cos_arcsin_nonneg _)] at this, rw [this, sin_arcsin hx₁ hx₂], end -- The junk values for `arcsin` and `sqrt` make this true even outside `[-1, 1]`. lemma tan_arcsin (x : ℝ) : tan (arcsin x) = x / sqrt (1 - x ^ 2) := begin rw [tan_eq_sin_div_cos, cos_arcsin], by_cases hx₁ : -1 ≤ x, swap, { have h : sqrt (1 - x ^ 2) = 0, { exact sqrt_eq_zero_of_nonpos (by nlinarith) }, rw h, simp }, by_cases hx₂ : x ≤ 1, swap, { have h : sqrt (1 - x ^ 2) = 0, { exact sqrt_eq_zero_of_nonpos (by nlinarith) }, rw h, simp }, rw sin_arcsin hx₁ hx₂ end /-- Inverse of the `cos` function, returns values in the range `0 ≤ arccos x` and `arccos x ≤ π`. It defaults to `π` on `(-∞, -1)` and to `0` to `(1, ∞)`. -/ @[pp_nodot] noncomputable def arccos (x : ℝ) : ℝ := π / 2 - arcsin x lemma arccos_eq_pi_div_two_sub_arcsin (x : ℝ) : arccos x = π / 2 - arcsin x := rfl lemma arcsin_eq_pi_div_two_sub_arccos (x : ℝ) : arcsin x = π / 2 - arccos x := by simp [arccos] lemma arccos_le_pi (x : ℝ) : arccos x ≤ π := by unfold arccos; linarith [neg_pi_div_two_le_arcsin x] lemma arccos_nonneg (x : ℝ) : 0 ≤ arccos x := by unfold arccos; linarith [arcsin_le_pi_div_two x] @[simp] lemma arccos_pos {x : ℝ} : 0 < arccos x ↔ x < 1 := by simp [arccos] lemma cos_arccos {x : ℝ} (hx₁ : -1 ≤ x) (hx₂ : x ≤ 1) : cos (arccos x) = x := by rw [arccos, cos_pi_div_two_sub, sin_arcsin hx₁ hx₂] lemma arccos_cos {x : ℝ} (hx₁ : 0 ≤ x) (hx₂ : x ≤ π) : arccos (cos x) = x := by rw [arccos, ← sin_pi_div_two_sub, arcsin_sin]; simp [sub_eq_add_neg]; linarith lemma strict_anti_on_arccos : strict_anti_on arccos (Icc (-1) 1) := λ x hx y hy h, sub_lt_sub_left (strict_mono_on_arcsin hx hy h) _ lemma arccos_inj_on : inj_on arccos (Icc (-1) 1) := strict_anti_on_arccos.inj_on lemma arccos_inj {x y : ℝ} (hx₁ : -1 ≤ x) (hx₂ : x ≤ 1) (hy₁ : -1 ≤ y) (hy₂ : y ≤ 1) : arccos x = arccos y ↔ x = y := arccos_inj_on.eq_iff ⟨hx₁, hx₂⟩ ⟨hy₁, hy₂⟩ @[simp] lemma arccos_zero : arccos 0 = π / 2 := by simp [arccos] @[simp] lemma arccos_one : arccos 1 = 0 := by simp [arccos] @[simp] lemma arccos_neg_one : arccos (-1) = π := by simp [arccos, add_halves] @[simp] lemma arccos_eq_zero {x} : arccos x = 0 ↔ 1 ≤ x := by simp [arccos, sub_eq_zero] @[simp] lemma arccos_eq_pi_div_two {x} : arccos x = π / 2 ↔ x = 0 := by simp [arccos] @[simp] lemma arccos_eq_pi {x} : arccos x = π ↔ x ≤ -1 := by rw [arccos, sub_eq_iff_eq_add, ← sub_eq_iff_eq_add', div_two_sub_self, neg_pi_div_two_eq_arcsin] lemma arccos_neg (x : ℝ) : arccos (-x) = π - arccos x := by rw [← add_halves π, arccos, arcsin_neg, arccos, add_sub_assoc, sub_sub_self, sub_neg_eq_add] lemma arccos_of_one_le {x : ℝ} (hx : 1 ≤ x) : arccos x = 0 := by rw [arccos, arcsin_of_one_le hx, sub_self] lemma arccos_of_le_neg_one {x : ℝ} (hx : x ≤ -1) : arccos x = π := by rw [arccos, arcsin_of_le_neg_one hx, sub_neg_eq_add, add_halves'] -- The junk values for `arccos` and `sqrt` make this true even outside `[-1, 1]`. lemma sin_arccos (x : ℝ) : sin (arccos x) = sqrt (1 - x ^ 2) := begin by_cases hx₁ : -1 ≤ x, swap, { rw not_le at hx₁, rw [arccos_of_le_neg_one hx₁.le, sin_pi, sqrt_eq_zero_of_nonpos], nlinarith }, by_cases hx₂ : x ≤ 1, swap, { rw not_le at hx₂, rw [arccos_of_one_le hx₂.le, sin_zero, sqrt_eq_zero_of_nonpos], nlinarith }, rw [arccos_eq_pi_div_two_sub_arcsin, sin_pi_div_two_sub, cos_arcsin] end @[simp] lemma arccos_le_pi_div_two {x} : arccos x ≤ π / 2 ↔ 0 ≤ x := by simp [arccos] @[simp] lemma arccos_lt_pi_div_two {x : ℝ} : arccos x < π / 2 ↔ 0 < x := by simp [arccos] @[simp] lemma arccos_le_pi_div_four {x} : arccos x ≤ π / 4 ↔ sqrt 2 / 2 ≤ x := by { rw [arccos, ← pi_div_four_le_arcsin], split; { intro, linarith } } @[continuity] lemma continuous_arccos : continuous arccos := continuous_const.sub continuous_arcsin -- The junk values for `arccos` and `sqrt` make this true even outside `[-1, 1]`. lemma tan_arccos (x : ℝ) : tan (arccos x) = sqrt (1 - x ^ 2) / x := by rw [arccos, tan_pi_div_two_sub, tan_arcsin, inv_div] -- The junk values for `arccos` and `sqrt` make this true even for `1 < x`. lemma arccos_eq_arcsin {x : ℝ} (h : 0 ≤ x) : arccos x = arcsin (sqrt (1 - x ^ 2)) := (arcsin_eq_of_sin_eq (sin_arccos _) ⟨(left.neg_nonpos_iff.2 (div_nonneg pi_pos.le (by norm_num))).trans (arccos_nonneg _), arccos_le_pi_div_two.2 h⟩).symm -- The junk values for `arcsin` and `sqrt` make this true even for `1 < x`. lemma arcsin_eq_arccos {x : ℝ} (h : 0 ≤ x) : arcsin x = arccos (sqrt (1 - x ^ 2)) := begin rw [eq_comm, ← cos_arcsin], exact arccos_cos (arcsin_nonneg.2 h) ((arcsin_le_pi_div_two _).trans (div_le_self pi_pos.le one_le_two)) end end real
6ae4ca6ac24d5b90d9ae3a74c67860b5900cdcd8
9dd3f3912f7321eb58ee9aa8f21778ad6221f87c
/tests/lean/run/t10.lean
5b0b3ab86ee049ed3a65629422788ce8691f988d
[ "Apache-2.0" ]
permissive
bre7k30/lean
de893411bcfa7b3c5572e61b9e1c52951b310aa4
5a924699d076dab1bd5af23a8f910b433e598d7a
refs/heads/master
1,610,900,145,817
1,488,006,845,000
1,488,006,845,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
109
lean
set_option pp.colors true set_option pp.unicode false print options set_option pp.unicode true print options
655d25fe28e4fd69a9e7eec9f80add268cb26da4
acc85b4be2c618b11fc7cb3005521ae6858a8d07
/data/set/countable.lean
9416a473da1f1223cb7bdd7887df6728786d5de0
[ "Apache-2.0" ]
permissive
linpingchuan/mathlib
d49990b236574df2a45d9919ba43c923f693d341
5ad8020f67eb13896a41cc7691d072c9331b1f76
refs/heads/master
1,626,019,377,808
1,508,048,784,000
1,508,048,784,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
6,538
lean
/- Copyright (c) 2017 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Johannes Hölzl Countable sets. -/ import data.encodable data.set.finite logic.function noncomputable theory open function set encodable open classical (hiding some) local attribute [instance] decidable_inhabited prop_decidable universes u v w variables {α : Type u} {β : Type v} {γ : Type w} namespace set /-- Countable sets A set is countable if there exists a injective functions from the set into the natural numbers. This is choosen instead of surjective functions, as this would require that α is non empty. -/ def countable (s : set α) : Prop := ∃f:α → ℕ, ∀x ∈ s, ∀y ∈ s, f x = f y → x = y lemma countable_iff_exists_surjective [ne : inhabited α] {s : set α} : countable s ↔ (∃f:ℕ → α, s ⊆ range f) := iff.intro (assume ⟨f, hf⟩, ⟨inv_fun_on f s, assume a ha, ⟨f a, inv_fun_on_eq' hf ha⟩⟩) (assume ⟨f, hf⟩, ⟨inv_fun f, assume x hx y hy h, calc x = f (inv_fun f x) : (inv_fun_eq $ hf hx).symm ... = f (inv_fun f y) : by rw [h] ... = y : inv_fun_eq $ hf hy⟩) lemma countable.to_encodable {s : set α} (h : countable s) : encodable {a // a ∈ s} := let f := classical.some h in have hf : ∀x∈s, ∀y∈s, f x = f y → x = y, from classical.some_spec h, let f' : {a // a ∈ s} → ℕ := f ∘ subtype.val in encodable_of_inj f' $ assume ⟨a, ha⟩ ⟨b, hb⟩ (h : f a = f b), subtype.eq $ hf a ha b hb h lemma countable_encodable' {s : set α} (e : encodable {a // a∈s}) : countable s := ⟨λx, if h : x ∈ s then @encode _ e ⟨x, h⟩ else 0, assume x hx y hy h, have @encode _ e ⟨x, hx⟩ = @encode _ e ⟨y, hy⟩, by simp [hx, hy] at h; assumption, have decode {a // a∈s} (@encode _ e ⟨x, hx⟩) = decode {a // a∈s} (@encode _ e ⟨y, hy⟩), from congr_arg _ this, by simp [encodek] at this; injection this⟩ lemma countable_encodable [e : encodable α] {s : set α} : countable s := ⟨encode, assume x _ y _ eq, have decode α (encode x) = decode α (encode y), from congr_arg _ eq, by simpa [encodek]⟩ @[simp] lemma countable_empty : countable (∅ : set α) := ⟨λ_, 0, by simp⟩ @[simp] lemma countable_singleton {a : α} : countable ({a} : set α) := ⟨λ_, 0, by simp⟩ lemma countable_subset {s₁ s₂ : set α} (h : s₁ ⊆ s₂) : countable s₂ → countable s₁ | ⟨f, hf⟩ := ⟨f, assume x hx y hy eq, hf x (h hx) y (h hy) eq⟩ lemma countable_image {s : set α} {f : α → β} (hs : countable s) : countable (f '' s) := let f' : {a // a ∈ s} → {b // b ∈ f '' s} := λ⟨a, ha⟩, ⟨f a, mem_image_of_mem f ha⟩ in have hf' : surjective f', from assume ⟨b, a, ha, hab⟩, ⟨⟨a, ha⟩, subtype.eq hab⟩, countable_encodable' $ @encodable_of_inj _ _ hs.to_encodable (surj_inv hf') (injective_surj_inv hf') lemma countable_sUnion {s : set (set α)} (hs : countable s) (h : ∀a∈s, countable a) : countable (⋃₀ s) := by_cases (assume : nonempty α, let ⟨a⟩ := this, inh : inhabited α := ⟨a⟩ in let ⟨fs, hfs⟩ := countable_iff_exists_surjective.mp hs in have ∀t, ∃ft:ℕ → α, t ∈ s → t ⊆ range ft, from assume t, by_cases (assume : t ∈ s, let ⟨ft, hft⟩ := (@countable_iff_exists_surjective α inh _).mp $ h t this in ⟨ft, assume _, hft⟩) (assume : t ∉ s, ⟨λ_, a, assume h, (this h).elim⟩), have ∃ft:(∀t:set α, ℕ → α), ∀t∈s, t ⊆ range (ft t), by simp [classical.skolem] at this; assumption, let ⟨ft, hft⟩ := this in (@countable_iff_exists_surjective α inh _).mpr ⟨(λp:ℕ×ℕ, ft (fs p.1) p.2) ∘ nat.unpair, by simp [subset_def]; from assume a t ha ht, let ⟨i, hi⟩ := hfs ht, ⟨j, hj⟩ := hft t ht ha in ⟨nat.mkpair i j, by simp [function.comp, nat.unpair_mkpair, hi, hj]⟩⟩) (assume : ¬ nonempty α, ⟨λ_, 0, assume a, (this ⟨a⟩).elim⟩) lemma countable_bUnion {s : set α} {t : α → set β} (hs : countable s) (ht : ∀a∈s, countable (t a)) : countable (⋃a∈s, t a) := have ⋃₀ (t '' s) = (⋃a∈s, t a), from lattice.Sup_image, by rw [←this]; from (countable_sUnion (countable_image hs) $ assume a ⟨s', hs', eq⟩, eq ▸ ht s' hs') lemma countable_Union {t : α → set β} [encodable α] (ht : ∀a, countable (t a)) : countable (⋃a, t a) := suffices countable (⋃a∈(univ : set α), t a), by simpa, countable_bUnion countable_encodable (assume a _, ht a) lemma countable_Union_Prop {p : Prop} {t : p → set β} (ht : ∀h:p, countable (t h)) : countable (⋃h:p, t h) := by by_cases p; simp [h, ht] lemma countable_union {s₁ s₂ : set α} (h₁ : countable s₁) (h₂ : countable s₂) : countable (s₁ ∪ s₂) := have s₁ ∪ s₂ = (⨆b ∈ ({tt, ff} : set bool), bool.cases_on b s₁ s₂), by simp [lattice.supr_or, lattice.supr_sup_eq]; refl, by rw [this]; from countable_bUnion countable_encodable (assume b, match b with | tt := by simp [h₂] | ff := by simp [h₁] end) lemma countable_insert {s : set α} {a : α} (h : countable s) : countable (insert a s) := by rw [set.insert_eq]; from countable_union countable_singleton h lemma countable_finite {s : set α} (h : finite s) : countable s := h.rec_on countable_empty $ assume a s _ _, countable_insert lemma countable_set_of_finite_subset {s : set α} (h : countable s) : countable {t | finite t ∧ t ⊆ s } := have {t | finite t ∧ t ⊆ s } ⊆ (λt, {a:α | ∃h:a∈s, subtype.mk a h ∈ t} : finset {a:α // a ∈ s} → set α) '' univ, from assume t ht, begin cases ht with ht₁ ht₂, induction ht₁, case finite.empty { exact ⟨∅, mem_univ _, by simp⟩ }, case finite.insert a t ha ht ih { exact have has : a ∈ s, from ht₂ $ mem_insert _ _, have t ⊆ s, from assume x hx, ht₂ $ mem_insert_of_mem _ hx, let ⟨t', ht', eq⟩ := ih this in ⟨insert ⟨a, has⟩ t', mem_univ _, set.ext $ assume x, begin simp [eq.symm, iff_def, or_imp_distrib, has] {contextual:=tt}, constructor, exact assume hxs hxt', ⟨hxs, or.inr hxt'⟩, exact assume hxs, or.imp (congr_arg subtype.val) (assume hxt', ⟨hxs, hxt'⟩) end⟩ } end, by have enc := h.to_encodable; exact countable_subset this (countable_image countable_encodable) end set
9cf5ce6b1568f852d0c0e437cf77330cef0160fa
d406927ab5617694ec9ea7001f101b7c9e3d9702
/src/category_theory/thin.lean
174ec06b38aca13eb82645e171986eabc2ba0136
[ "Apache-2.0" ]
permissive
alreadydone/mathlib
dc0be621c6c8208c581f5170a8216c5ba6721927
c982179ec21091d3e102d8a5d9f5fe06c8fafb73
refs/heads/master
1,685,523,275,196
1,670,184,141,000
1,670,184,141,000
287,574,545
0
0
Apache-2.0
1,670,290,714,000
1,597,421,623,000
Lean
UTF-8
Lean
false
false
2,157
lean
/- Copyright (c) 2019 Scott Morrison, Bhavik Mehta. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison, Bhavik Mehta -/ import category_theory.functor.category import category_theory.isomorphism /-! # Thin categories > THIS FILE IS SYNCHRONIZED WITH MATHLIB4. > https://github.com/leanprover-community/mathlib4/pull/822 > Any changes to this file require a corresponding PR to mathlib4. A thin category (also known as a sparse category) is a category with at most one morphism between each pair of objects. Examples include posets, but also some indexing categories (diagrams) for special shapes of (co)limits. To construct a category instance one only needs to specify the `category_struct` part, as the axioms hold for free. If `C` is thin, then the category of functors to `C` is also thin. Further, to show two objects are isomorphic in a thin category, it suffices only to give a morphism in each direction. -/ universes v₁ v₂ u₁ u₂ namespace category_theory variables {C : Type u₁} section variables [category_struct.{v₁} C] [quiver.is_thin C] /-- Construct a category instance from a category_struct, using the fact that hom spaces are subsingletons to prove the axioms. -/ def thin_category : category C := {}. end -- We don't assume anything about where the category instance on `C` came from. -- In particular this allows `C` to be a preorder, with the category instance inherited from the -- preorder structure. variables [category.{v₁} C] {D : Type u₂} [category.{v₂} D] variable [quiver.is_thin C] /-- If `C` is a thin category, then `D ⥤ C` is a thin category. -/ instance functor_thin : quiver.is_thin (D ⥤ C) := λ _ _, ⟨λ α β, nat_trans.ext α β (funext (λ _, subsingleton.elim _ _))⟩ /-- To show `X ≅ Y` in a thin category, it suffices to just give any morphism in each direction. -/ def iso_of_both_ways {X Y : C} (f : X ⟶ Y) (g : Y ⟶ X) : X ≅ Y := { hom := f, inv := g } instance subsingleton_iso {X Y : C} : subsingleton (X ≅ Y) := ⟨by { intros i₁ i₂, ext1, apply subsingleton.elim }⟩ end category_theory
c68500705d1a38cc118c8a730d608e144a62d332
4d2583807a5ac6caaffd3d7a5f646d61ca85d532
/src/number_theory/pythagorean_triples.lean
4611650d5ebbf0f75a5e2af7247200da1cdd8b49
[ "Apache-2.0" ]
permissive
AntoineChambert-Loir/mathlib
64aabb896129885f12296a799818061bc90da1ff
07be904260ab6e36a5769680b6012f03a4727134
refs/heads/master
1,693,187,631,771
1,636,719,886,000
1,636,719,886,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
25,919
lean
/- Copyright (c) 2020 Paul van Wamelen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Paul van Wamelen -/ import algebra.field import ring_theory.int.basic import algebra.group_with_zero.power import tactic.ring import tactic.ring_exp import tactic.field_simp import data.zmod.basic /-! # Pythagorean Triples The main result is the classification of Pythagorean triples. The final result is for general Pythagorean triples. It follows from the more interesting relatively prime case. We use the "rational parametrization of the circle" method for the proof. The parametrization maps the point `(x / z, y / z)` to the slope of the line through `(-1 , 0)` and `(x / z, y / z)`. This quickly shows that `(x / z, y / z) = (2 * m * n / (m ^ 2 + n ^ 2), (m ^ 2 - n ^ 2) / (m ^ 2 + n ^ 2))` where `m / n` is the slope. In order to identify numerators and denominators we now need results showing that these are coprime. This is easy except for the prime 2. In order to deal with that we have to analyze the parity of `x`, `y`, `m` and `n` and eliminate all the impossible cases. This takes up the bulk of the proof below. -/ lemma sq_ne_two_fin_zmod_four (z : zmod 4) : z * z ≠ 2 := begin change fin 4 at z, fin_cases z; norm_num [fin.ext_iff, fin.coe_bit0, fin.coe_bit1] end lemma int.sq_ne_two_mod_four (z : ℤ) : (z * z) % 4 ≠ 2 := suffices ¬ (z * z) % (4 : ℕ) = 2 % (4 : ℕ), by norm_num at this, begin rw ← zmod.int_coe_eq_int_coe_iff', simpa using sq_ne_two_fin_zmod_four _ end noncomputable theory open_locale classical /-- Three integers `x`, `y`, and `z` form a Pythagorean triple if `x * x + y * y = z * z`. -/ def pythagorean_triple (x y z : ℤ) : Prop := x * x + y * y = z * z /-- Pythagorean triples are interchangable, i.e `x * x + y * y = y * y + x * x = z * z`. This comes from additive commutativity. -/ lemma pythagorean_triple_comm {x y z : ℤ} : (pythagorean_triple x y z) ↔ (pythagorean_triple y x z) := by { delta pythagorean_triple, rw add_comm } /-- The zeroth Pythagorean triple is all zeros. -/ lemma pythagorean_triple.zero : pythagorean_triple 0 0 0 := by simp only [pythagorean_triple, zero_mul, zero_add] namespace pythagorean_triple variables {x y z : ℤ} (h : pythagorean_triple x y z) include h lemma eq : x * x + y * y = z * z := h @[symm] lemma symm : pythagorean_triple y x z := by rwa [pythagorean_triple_comm] /-- A triple is still a triple if you multiply `x`, `y` and `z` by a constant `k`. -/ lemma mul (k : ℤ) : pythagorean_triple (k * x) (k * y) (k * z) := begin by_cases hk : k = 0, { simp only [pythagorean_triple, hk, zero_mul, zero_add], }, { calc (k * x) * (k * x) + (k * y) * (k * y) = k ^ 2 * (x * x + y * y) : by ring ... = k ^ 2 * (z * z) : by rw h.eq ... = (k * z) * (k * z) : by ring } end omit h /-- `(k*x, k*y, k*z)` is a Pythagorean triple if and only if `(x, y, z)` is also a triple. -/ lemma mul_iff (k : ℤ) (hk : k ≠ 0) : pythagorean_triple (k * x) (k * y) (k * z) ↔ pythagorean_triple x y z := begin refine ⟨_, λ h, h.mul k⟩, simp only [pythagorean_triple], intro h, rw ← mul_left_inj' (mul_ne_zero hk hk), convert h using 1; ring, end include h /-- A Pythagorean triple `x, y, z` is “classified” if there exist integers `k, m, n` such that either * `x = k * (m ^ 2 - n ^ 2)` and `y = k * (2 * m * n)`, or * `x = k * (2 * m * n)` and `y = k * (m ^ 2 - n ^ 2)`. -/ @[nolint unused_arguments] def is_classified := ∃ (k m n : ℤ), ((x = k * (m ^ 2 - n ^ 2) ∧ y = k * (2 * m * n)) ∨ (x = k * (2 * m * n) ∧ y = k * (m ^ 2 - n ^ 2))) ∧ int.gcd m n = 1 /-- A primitive pythogorean triple `x, y, z` is a pythagorean triple with `x` and `y` coprime. Such a triple is “primitively classified” if there exist coprime integers `m, n` such that either * `x = m ^ 2 - n ^ 2` and `y = 2 * m * n`, or * `x = 2 * m * n` and `y = m ^ 2 - n ^ 2`. -/ @[nolint unused_arguments] def is_primitive_classified := ∃ (m n : ℤ), ((x = m ^ 2 - n ^ 2 ∧ y = 2 * m * n) ∨ (x = 2 * m * n ∧ y = m ^ 2 - n ^ 2)) ∧ int.gcd m n = 1 ∧ ((m % 2 = 0 ∧ n % 2 = 1) ∨ (m % 2 = 1 ∧ n % 2 = 0)) lemma mul_is_classified (k : ℤ) (hc : h.is_classified) : (h.mul k).is_classified := begin obtain ⟨l, m, n, ⟨⟨rfl, rfl⟩ | ⟨rfl, rfl⟩, co⟩⟩ := hc, { use [k * l, m, n], apply and.intro _ co, left, split; ring }, { use [k * l, m, n], apply and.intro _ co, right, split; ring }, end lemma even_odd_of_coprime (hc : int.gcd x y = 1) : (x % 2 = 0 ∧ y % 2 = 1) ∨ (x % 2 = 1 ∧ y % 2 = 0) := begin cases int.mod_two_eq_zero_or_one x with hx hx; cases int.mod_two_eq_zero_or_one y with hy hy, { -- x even, y even exfalso, apply nat.not_coprime_of_dvd_of_dvd (dec_trivial : 1 < 2) _ _ hc, { apply int.dvd_nat_abs_of_of_nat_dvd, apply int.dvd_of_mod_eq_zero hx }, { apply int.dvd_nat_abs_of_of_nat_dvd, apply int.dvd_of_mod_eq_zero hy } }, { left, exact ⟨hx, hy⟩ }, -- x even, y odd { right, exact ⟨hx, hy⟩ }, -- x odd, y even { -- x odd, y odd exfalso, obtain ⟨x0, y0, rfl, rfl⟩ : ∃ x0 y0, x = x0* 2 + 1 ∧ y = y0 * 2 + 1, { cases exists_eq_mul_left_of_dvd (int.dvd_sub_of_mod_eq hx) with x0 hx2, cases exists_eq_mul_left_of_dvd (int.dvd_sub_of_mod_eq hy) with y0 hy2, rw sub_eq_iff_eq_add at hx2 hy2, exact ⟨x0, y0, hx2, hy2⟩ }, apply int.sq_ne_two_mod_four z, rw show z * z = 4 * (x0 * x0 + x0 + y0 * y0 + y0) + 2, by { rw ← h.eq, ring }, norm_num [int.add_mod] } end lemma gcd_dvd : (int.gcd x y : ℤ) ∣ z := begin by_cases h0 : int.gcd x y = 0, { have hx : x = 0, { apply int.nat_abs_eq_zero.mp, apply nat.eq_zero_of_gcd_eq_zero_left h0 }, have hy : y = 0, { apply int.nat_abs_eq_zero.mp, apply nat.eq_zero_of_gcd_eq_zero_right h0 }, have hz : z = 0, { simpa only [pythagorean_triple, hx, hy, add_zero, zero_eq_mul, mul_zero, or_self] using h }, simp only [hz, dvd_zero], }, obtain ⟨k, x0, y0, k0, h2, rfl, rfl⟩ : ∃ (k : ℕ) x0 y0, 0 < k ∧ int.gcd x0 y0 = 1 ∧ x = x0 * k ∧ y = y0 * k := int.exists_gcd_one' (nat.pos_of_ne_zero h0), rw [int.gcd_mul_right, h2, int.nat_abs_of_nat, one_mul], rw [← int.pow_dvd_pow_iff (dec_trivial : 0 < 2), sq z, ← h.eq], rw (by ring : x0 * k * (x0 * k) + y0 * k * (y0 * k) = k ^ 2 * (x0 * x0 + y0 * y0)), exact dvd_mul_right _ _ end lemma normalize : pythagorean_triple (x / int.gcd x y) (y / int.gcd x y) (z / int.gcd x y) := begin by_cases h0 : int.gcd x y = 0, { have hx : x = 0, { apply int.nat_abs_eq_zero.mp, apply nat.eq_zero_of_gcd_eq_zero_left h0 }, have hy : y = 0, { apply int.nat_abs_eq_zero.mp, apply nat.eq_zero_of_gcd_eq_zero_right h0 }, have hz : z = 0, { simpa only [pythagorean_triple, hx, hy, add_zero, zero_eq_mul, mul_zero, or_self] using h }, simp only [hx, hy, hz, int.zero_div], exact zero }, rcases h.gcd_dvd with ⟨z0, rfl⟩, obtain ⟨k, x0, y0, k0, h2, rfl, rfl⟩ : ∃ (k : ℕ) x0 y0, 0 < k ∧ int.gcd x0 y0 = 1 ∧ x = x0 * k ∧ y = y0 * k := int.exists_gcd_one' (nat.pos_of_ne_zero h0), have hk : (k : ℤ) ≠ 0, { norm_cast, rwa pos_iff_ne_zero at k0 }, rw [int.gcd_mul_right, h2, int.nat_abs_of_nat, one_mul] at h ⊢, rw [mul_comm x0, mul_comm y0, mul_iff k hk] at h, rwa [int.mul_div_cancel _ hk, int.mul_div_cancel _ hk, int.mul_div_cancel_left _ hk], end lemma is_classified_of_is_primitive_classified (hp : h.is_primitive_classified) : h.is_classified := begin obtain ⟨m, n, H⟩ := hp, use [1, m, n], rcases H with ⟨⟨rfl, rfl⟩ | ⟨rfl, rfl⟩, co, pp⟩; { apply and.intro _ co, rw one_mul, rw one_mul, tauto } end lemma is_classified_of_normalize_is_primitive_classified (hc : h.normalize.is_primitive_classified) : h.is_classified := begin convert h.normalize.mul_is_classified (int.gcd x y) (is_classified_of_is_primitive_classified h.normalize hc); rw int.mul_div_cancel', { exact int.gcd_dvd_left x y }, { exact int.gcd_dvd_right x y }, { exact h.gcd_dvd } end lemma ne_zero_of_coprime (hc : int.gcd x y = 1) : z ≠ 0 := begin suffices : 0 < z * z, { rintro rfl, norm_num at this }, rw [← h.eq, ← sq, ← sq], have hc' : int.gcd x y ≠ 0, { rw hc, exact one_ne_zero }, cases int.ne_zero_of_gcd hc' with hxz hyz, { apply lt_add_of_pos_of_le (sq_pos_of_ne_zero x hxz) (sq_nonneg y) }, { apply lt_add_of_le_of_pos (sq_nonneg x) (sq_pos_of_ne_zero y hyz) } end lemma is_primitive_classified_of_coprime_of_zero_left (hc : int.gcd x y = 1) (hx : x = 0) : h.is_primitive_classified := begin subst x, change nat.gcd 0 (int.nat_abs y) = 1 at hc, rw [nat.gcd_zero_left (int.nat_abs y)] at hc, cases int.nat_abs_eq y with hy hy, { use [1, 0], rw [hy, hc, int.gcd_zero_right], norm_num }, { use [0, 1], rw [hy, hc, int.gcd_zero_left], norm_num } end lemma coprime_of_coprime (hc : int.gcd x y = 1) : int.gcd y z = 1 := begin by_contradiction H, obtain ⟨p, hp, hpy, hpz⟩ := nat.prime.not_coprime_iff_dvd.mp H, apply hp.not_dvd_one, rw [← hc], apply nat.dvd_gcd (int.prime.dvd_nat_abs_of_coe_dvd_sq hp _ _) hpy, rw [sq, eq_sub_of_add_eq h], rw [← int.coe_nat_dvd_left] at hpy hpz, exact dvd_sub ((hpz).mul_right _) ((hpy).mul_right _), end end pythagorean_triple section circle_equiv_gen /-! ### A parametrization of the unit circle For the classification of pythogorean triples, we will use a parametrization of the unit circle. -/ variables {K : Type*} [field K] /-- A parameterization of the unit circle that is useful for classifying Pythagorean triples. (To be applied in the case where `K = ℚ`.) -/ def circle_equiv_gen (hk : ∀ x : K, 1 + x^2 ≠ 0) : K ≃ {p : K × K // p.1^2 + p.2^2 = 1 ∧ p.2 ≠ -1} := { to_fun := λ x, ⟨⟨2 * x / (1 + x^2), (1 - x^2) / (1 + x^2)⟩, by { field_simp [hk x, div_pow], ring }, begin simp only [ne.def, div_eq_iff (hk x), ←neg_mul_eq_neg_mul, one_mul, neg_add, sub_eq_add_neg, add_left_inj], simpa only [eq_neg_iff_add_eq_zero, one_pow] using hk 1, end⟩, inv_fun := λ p, (p : K × K).1 / ((p : K × K).2 + 1), left_inv := λ x, begin have h2 : (1 + 1 : K) = 2 := rfl, have h3 : (2 : K) ≠ 0, { convert hk 1, rw [one_pow 2, h2] }, field_simp [hk x, h2, add_assoc, add_comm, add_sub_cancel'_right, mul_comm], end, right_inv := λ ⟨⟨x, y⟩, hxy, hy⟩, begin change x ^ 2 + y ^ 2 = 1 at hxy, have h2 : y + 1 ≠ 0, { apply mt eq_neg_of_add_eq_zero, exact hy }, have h3 : (y + 1) ^ 2 + x ^ 2 = 2 * (y + 1), { rw [(add_neg_eq_iff_eq_add.mpr hxy.symm).symm], ring }, have h4 : (2 : K) ≠ 0, { convert hk 1, rw one_pow 2, refl }, simp only [prod.mk.inj_iff, subtype.mk_eq_mk], split, { field_simp [h3], ring }, { field_simp [h3], rw [← add_neg_eq_iff_eq_add.mpr hxy.symm], ring } end } @[simp] lemma circle_equiv_apply (hk : ∀ x : K, 1 + x^2 ≠ 0) (x : K) : (circle_equiv_gen hk x : K × K) = ⟨2 * x / (1 + x^2), (1 - x^2) / (1 + x^2)⟩ := rfl @[simp] lemma circle_equiv_symm_apply (hk : ∀ x : K, 1 + x^2 ≠ 0) (v : {p : K × K // p.1^2 + p.2^2 = 1 ∧ p.2 ≠ -1}) : (circle_equiv_gen hk).symm v = (v : K × K).1 / ((v : K × K).2 + 1) := rfl end circle_equiv_gen private lemma coprime_sq_sub_sq_add_of_even_odd {m n : ℤ} (h : int.gcd m n = 1) (hm : m % 2 = 0) (hn : n % 2 = 1) : int.gcd (m ^ 2 - n ^ 2) (m ^ 2 + n ^ 2) = 1 := begin by_contradiction H, obtain ⟨p, hp, hp1, hp2⟩ := nat.prime.not_coprime_iff_dvd.mp H, rw ← int.coe_nat_dvd_left at hp1 hp2, have h2m : (p : ℤ) ∣ 2 * m ^ 2, { convert dvd_add hp2 hp1, ring }, have h2n : (p : ℤ) ∣ 2 * n ^ 2, { convert dvd_sub hp2 hp1, ring }, have hmc : p = 2 ∨ p ∣ int.nat_abs m := prime_two_or_dvd_of_dvd_two_mul_pow_self_two hp h2m, have hnc : p = 2 ∨ p ∣ int.nat_abs n := prime_two_or_dvd_of_dvd_two_mul_pow_self_two hp h2n, by_cases h2 : p = 2, { have h3 : (m ^ 2 + n ^ 2) % 2 = 1, { norm_num [sq, int.add_mod, int.mul_mod, hm, hn] }, have h4 : (m ^ 2 + n ^ 2) % 2 = 0, { apply int.mod_eq_zero_of_dvd, rwa h2 at hp2 }, rw h4 at h3, exact zero_ne_one h3 }, { apply hp.not_dvd_one, rw ← h, exact nat.dvd_gcd (or.resolve_left hmc h2) (or.resolve_left hnc h2), } end private lemma coprime_sq_sub_sq_add_of_odd_even {m n : ℤ} (h : int.gcd m n = 1) (hm : m % 2 = 1) (hn : n % 2 = 0): int.gcd (m ^ 2 - n ^ 2) (m ^ 2 + n ^ 2) = 1 := begin rw [int.gcd, ← int.nat_abs_neg (m ^ 2 - n ^ 2)], rw [(by ring : -(m ^ 2 - n ^ 2) = n ^ 2 - m ^ 2), add_comm], apply coprime_sq_sub_sq_add_of_even_odd _ hn hm, rwa [int.gcd_comm], end private lemma coprime_sq_sub_mul_of_even_odd {m n : ℤ} (h : int.gcd m n = 1) (hm : m % 2 = 0) (hn : n % 2 = 1) : int.gcd (m ^ 2 - n ^ 2) (2 * m * n) = 1 := begin by_contradiction H, obtain ⟨p, hp, hp1, hp2⟩ := nat.prime.not_coprime_iff_dvd.mp H, rw ← int.coe_nat_dvd_left at hp1 hp2, have hnp : ¬ (p : ℤ) ∣ int.gcd m n, { rw h, norm_cast, exact mt nat.dvd_one.mp (nat.prime.ne_one hp) }, cases int.prime.dvd_mul hp hp2 with hp2m hpn, { rw int.nat_abs_mul at hp2m, cases (nat.prime.dvd_mul hp).mp hp2m with hp2 hpm, { have hp2' : p = 2 := (nat.le_of_dvd zero_lt_two hp2).antisymm hp.two_le, revert hp1, rw hp2', apply mt int.mod_eq_zero_of_dvd, norm_num [sq, int.sub_mod, int.mul_mod, hm, hn] }, apply mt (int.dvd_gcd (int.coe_nat_dvd_left.mpr hpm)) hnp, apply (or_self _).mp, apply int.prime.dvd_mul' hp, rw (by ring : n * n = - (m ^ 2 - n ^ 2) + m * m), apply dvd_add (dvd_neg_of_dvd hp1), exact dvd_mul_of_dvd_left (int.coe_nat_dvd_left.mpr hpm) m }, rw int.gcd_comm at hnp, apply mt (int.dvd_gcd (int.coe_nat_dvd_left.mpr hpn)) hnp, apply (or_self _).mp, apply int.prime.dvd_mul' hp, rw (by ring : m * m = (m ^ 2 - n ^ 2) + n * n), apply dvd_add hp1, exact (int.coe_nat_dvd_left.mpr hpn).mul_right n end private lemma coprime_sq_sub_mul_of_odd_even {m n : ℤ} (h : int.gcd m n = 1) (hm : m % 2 = 1) (hn : n % 2 = 0) : int.gcd (m ^ 2 - n ^ 2) (2 * m * n) = 1 := begin rw [int.gcd, ← int.nat_abs_neg (m ^ 2 - n ^ 2)], rw [(by ring : 2 * m * n = 2 * n * m), (by ring : -(m ^ 2 - n ^ 2) = n ^ 2 - m ^ 2)], apply coprime_sq_sub_mul_of_even_odd _ hn hm, rwa [int.gcd_comm] end private lemma coprime_sq_sub_mul {m n : ℤ} (h : int.gcd m n = 1) (hmn : (m % 2 = 0 ∧ n % 2 = 1) ∨ (m % 2 = 1 ∧ n % 2 = 0)) : int.gcd (m ^ 2 - n ^ 2) (2 * m * n) = 1 := begin cases hmn with h1 h2, { exact coprime_sq_sub_mul_of_even_odd h h1.left h1.right }, { exact coprime_sq_sub_mul_of_odd_even h h2.left h2.right } end private lemma coprime_sq_sub_sq_sum_of_odd_odd {m n : ℤ} (h : int.gcd m n = 1) (hm : m % 2 = 1) (hn : n % 2 = 1) : 2 ∣ m ^ 2 + n ^ 2 ∧ 2 ∣ m ^ 2 - n ^ 2 ∧ ((m ^ 2 - n ^ 2) / 2) % 2 = 0 ∧ int.gcd ((m ^ 2 - n ^ 2) / 2) ((m ^ 2 + n ^ 2) / 2) = 1 := begin cases exists_eq_mul_left_of_dvd (int.dvd_sub_of_mod_eq hm) with m0 hm2, cases exists_eq_mul_left_of_dvd (int.dvd_sub_of_mod_eq hn) with n0 hn2, rw sub_eq_iff_eq_add at hm2 hn2, subst m, subst n, have h1 : (m0 * 2 + 1) ^ 2 + (n0 * 2 + 1) ^ 2 = 2 * (2 * (m0 ^ 2 + n0 ^ 2 + m0 + n0) + 1), by ring_exp, have h2 : (m0 * 2 + 1) ^ 2 - (n0 * 2 + 1) ^ 2 = 2 * (2 * (m0 ^ 2 - n0 ^ 2 + m0 - n0)), by ring_exp, have h3 : ((m0 * 2 + 1) ^ 2 - (n0 * 2 + 1) ^ 2) / 2 % 2 = 0, { rw [h2, int.mul_div_cancel_left, int.mul_mod_right], exact dec_trivial }, refine ⟨⟨_, h1⟩, ⟨_, h2⟩, h3, _⟩, have h20 : (2:ℤ) ≠ 0 := dec_trivial, rw [h1, h2, int.mul_div_cancel_left _ h20, int.mul_div_cancel_left _ h20], by_contra h4, obtain ⟨p, hp, hp1, hp2⟩ := nat.prime.not_coprime_iff_dvd.mp h4, apply hp.not_dvd_one, rw ← h, rw ← int.coe_nat_dvd_left at hp1 hp2, apply nat.dvd_gcd, { apply int.prime.dvd_nat_abs_of_coe_dvd_sq hp, convert dvd_add hp1 hp2, ring_exp }, { apply int.prime.dvd_nat_abs_of_coe_dvd_sq hp, convert dvd_sub hp2 hp1, ring_exp }, end namespace pythagorean_triple variables {x y z : ℤ} (h : pythagorean_triple x y z) include h lemma is_primitive_classified_aux (hc : x.gcd y = 1) (hzpos : 0 < z) {m n : ℤ} (hm2n2 : 0 < m ^ 2 + n ^ 2) (hv2 : (x : ℚ) / z = 2 * m * n / (m ^ 2 + n ^ 2)) (hw2 : (y : ℚ) / z = (m ^ 2 - n ^ 2) / (m ^ 2 + n ^ 2)) (H : int.gcd (m ^ 2 - n ^ 2) (m ^ 2 + n ^ 2) = 1) (co : int.gcd m n = 1) (pp : (m % 2 = 0 ∧ n % 2 = 1) ∨ (m % 2 = 1 ∧ n % 2 = 0)): h.is_primitive_classified := begin have hz : z ≠ 0, apply ne_of_gt hzpos, have h2 : y = m ^ 2 - n ^ 2 ∧ z = m ^ 2 + n ^ 2, { apply rat.div_int_inj hzpos hm2n2 (h.coprime_of_coprime hc) H, rw [hw2], norm_cast }, use [m, n], apply and.intro _ (and.intro co pp), right, refine ⟨_, h2.left⟩, rw [← rat.coe_int_inj _ _, ← div_left_inj' ((mt (rat.coe_int_inj z 0).mp) hz), hv2, h2.right], norm_cast end theorem is_primitive_classified_of_coprime_of_odd_of_pos (hc : int.gcd x y = 1) (hyo : y % 2 = 1) (hzpos : 0 < z) : h.is_primitive_classified := begin by_cases h0 : x = 0, { exact h.is_primitive_classified_of_coprime_of_zero_left hc h0 }, let v := (x : ℚ) / z, let w := (y : ℚ) / z, have hz : z ≠ 0, apply ne_of_gt hzpos, have hq : v ^ 2 + w ^ 2 = 1, { field_simp [hz, sq], norm_cast, exact h }, have hvz : v ≠ 0, { field_simp [hz], exact h0 }, have hw1 : w ≠ -1, { contrapose! hvz with hw1, rw [hw1, neg_sq, one_pow, add_left_eq_self] at hq, exact pow_eq_zero hq, }, have hQ : ∀ x : ℚ, 1 + x^2 ≠ 0, { intro q, apply ne_of_gt, exact lt_add_of_pos_of_le zero_lt_one (sq_nonneg q) }, have hp : (⟨v, w⟩ : ℚ × ℚ) ∈ {p : ℚ × ℚ | p.1^2 + p.2^2 = 1 ∧ p.2 ≠ -1} := ⟨hq, hw1⟩, let q := (circle_equiv_gen hQ).symm ⟨⟨v, w⟩, hp⟩, have ht4 : v = 2 * q / (1 + q ^ 2) ∧ w = (1 - q ^ 2) / (1 + q ^ 2), { apply prod.mk.inj, have := ((circle_equiv_gen hQ).apply_symm_apply ⟨⟨v, w⟩, hp⟩).symm, exact congr_arg subtype.val this, }, let m := (q.denom : ℤ), let n := q.num, have hm0 : m ≠ 0, { norm_cast, apply rat.denom_ne_zero q }, have hq2 : q = n / m := (rat.num_div_denom q).symm, have hm2n2 : 0 < m ^ 2 + n ^ 2, { apply lt_add_of_pos_of_le _ (sq_nonneg n), exact lt_of_le_of_ne (sq_nonneg m) (ne.symm (pow_ne_zero 2 hm0)) }, have hw2 : w = (m ^ 2 - n ^ 2) / (m ^ 2 + n ^ 2), { rw [ht4.2, hq2], field_simp [hm2n2, rat.denom_ne_zero q, -rat.num_div_denom] }, have hm2n20 : (m : ℚ) ^ 2 + (n : ℚ) ^ 2 ≠ 0, { norm_cast, simpa only [int.coe_nat_pow] using ne_of_gt hm2n2 }, have hv2 : v = 2 * m * n / (m ^ 2 + n ^ 2), { apply eq.symm, apply (div_eq_iff hm2n20).mpr, rw [ht4.1], field_simp [hQ q], rw [hq2] {occs := occurrences.pos [2, 3]}, field_simp [rat.denom_ne_zero q, -rat.num_div_denom], ring }, have hnmcp : int.gcd n m = 1 := q.cop, have hmncp : int.gcd m n = 1, { rw int.gcd_comm, exact hnmcp }, cases int.mod_two_eq_zero_or_one m with hm2 hm2; cases int.mod_two_eq_zero_or_one n with hn2 hn2, { -- m even, n even exfalso, have h1 : 2 ∣ (int.gcd n m : ℤ), { exact int.dvd_gcd (int.dvd_of_mod_eq_zero hn2) (int.dvd_of_mod_eq_zero hm2) }, rw hnmcp at h1, revert h1, norm_num }, { -- m even, n odd apply h.is_primitive_classified_aux hc hzpos hm2n2 hv2 hw2 _ hmncp, { apply or.intro_left, exact and.intro hm2 hn2 }, { apply coprime_sq_sub_sq_add_of_even_odd hmncp hm2 hn2 } }, { -- m odd, n even apply h.is_primitive_classified_aux hc hzpos hm2n2 hv2 hw2 _ hmncp, { apply or.intro_right, exact and.intro hm2 hn2 }, apply coprime_sq_sub_sq_add_of_odd_even hmncp hm2 hn2 }, { -- m odd, n odd exfalso, have h1 : 2 ∣ m ^ 2 + n ^ 2 ∧ 2 ∣ m ^ 2 - n ^ 2 ∧ ((m ^ 2 - n ^ 2) / 2) % 2 = 0 ∧ int.gcd ((m ^ 2 - n ^ 2) / 2) ((m ^ 2 + n ^ 2) / 2) = 1, { exact coprime_sq_sub_sq_sum_of_odd_odd hmncp hm2 hn2 }, have h2 : y = (m ^ 2 - n ^ 2) / 2 ∧ z = (m ^ 2 + n ^ 2) / 2, { apply rat.div_int_inj hzpos _ (h.coprime_of_coprime hc) h1.2.2.2, { show w = _, rw [←rat.mk_eq_div, ←(rat.div_mk_div_cancel_left (by norm_num : (2 : ℤ) ≠ 0))], rw [int.div_mul_cancel h1.1, int.div_mul_cancel h1.2.1, hw2], norm_cast }, { apply (mul_lt_mul_right (by norm_num : 0 < (2 : ℤ))).mp, rw [int.div_mul_cancel h1.1, zero_mul], exact hm2n2 } }, rw [h2.1, h1.2.2.1] at hyo, revert hyo, norm_num } end theorem is_primitive_classified_of_coprime_of_pos (hc : int.gcd x y = 1) (hzpos : 0 < z): h.is_primitive_classified := begin cases h.even_odd_of_coprime hc with h1 h2, { exact (h.is_primitive_classified_of_coprime_of_odd_of_pos hc h1.right hzpos) }, rw int.gcd_comm at hc, obtain ⟨m, n, H⟩ := (h.symm.is_primitive_classified_of_coprime_of_odd_of_pos hc h2.left hzpos), use [m, n], tauto end theorem is_primitive_classified_of_coprime (hc : int.gcd x y = 1) : h.is_primitive_classified := begin by_cases hz : 0 < z, { exact h.is_primitive_classified_of_coprime_of_pos hc hz }, have h' : pythagorean_triple x y (-z), { simpa [pythagorean_triple, neg_mul_neg] using h.eq, }, apply h'.is_primitive_classified_of_coprime_of_pos hc, apply lt_of_le_of_ne _ (h'.ne_zero_of_coprime hc).symm, exact le_neg.mp (not_lt.mp hz) end theorem classified : h.is_classified := begin by_cases h0 : int.gcd x y = 0, { have hx : x = 0, { apply int.nat_abs_eq_zero.mp, apply nat.eq_zero_of_gcd_eq_zero_left h0 }, have hy : y = 0, { apply int.nat_abs_eq_zero.mp, apply nat.eq_zero_of_gcd_eq_zero_right h0 }, use [0, 1, 0], norm_num [hx, hy], }, apply h.is_classified_of_normalize_is_primitive_classified, apply h.normalize.is_primitive_classified_of_coprime, apply int.gcd_div_gcd_div_gcd (nat.pos_of_ne_zero h0), end omit h theorem coprime_classification : pythagorean_triple x y z ∧ int.gcd x y = 1 ↔ ∃ m n, ((x = m ^ 2 - n ^ 2 ∧ y = 2 * m * n) ∨ (x = 2 * m * n ∧ y = m ^ 2 - n ^ 2)) ∧ (z = m ^ 2 + n ^ 2 ∨ z = - (m ^ 2 + n ^ 2)) ∧ int.gcd m n = 1 ∧ ((m % 2 = 0 ∧ n % 2 = 1) ∨ (m % 2 = 1 ∧ n % 2 = 0)) := begin split, { intro h, obtain ⟨m, n, H⟩ := h.left.is_primitive_classified_of_coprime h.right, use [m, n], rcases H with ⟨⟨rfl, rfl⟩ | ⟨rfl, rfl⟩, co, pp⟩, { refine ⟨or.inl ⟨rfl, rfl⟩, _, co, pp⟩, have : z ^ 2 = (m ^ 2 + n ^ 2) ^ 2, { rw [sq, ← h.left.eq], ring }, simpa using eq_or_eq_neg_of_sq_eq_sq _ _ this }, { refine ⟨or.inr ⟨rfl, rfl⟩, _, co, pp⟩, have : z ^ 2 = (m ^ 2 + n ^ 2) ^ 2, { rw [sq, ← h.left.eq], ring }, simpa using eq_or_eq_neg_of_sq_eq_sq _ _ this } }, { delta pythagorean_triple, rintro ⟨m, n, ⟨rfl, rfl⟩ | ⟨rfl, rfl⟩, rfl | rfl, co, pp⟩; { split, { ring }, exact coprime_sq_sub_mul co pp } <|> { split, { ring }, rw int.gcd_comm, exact coprime_sq_sub_mul co pp } } end /-- by assuming `x` is odd and `z` is positive we get a slightly more precise classification of the pythagorean triple `x ^ 2 + y ^ 2 = z ^ 2`-/ theorem coprime_classification' {x y z : ℤ} (h : pythagorean_triple x y z) (h_coprime : int.gcd x y = 1) (h_parity : x % 2 = 1) (h_pos : 0 < z) : ∃ m n, x = m ^ 2 - n ^ 2 ∧ y = 2 * m * n ∧ z = m ^ 2 + n ^ 2 ∧ int.gcd m n = 1 ∧ ((m % 2 = 0 ∧ n % 2 = 1) ∨ (m % 2 = 1 ∧ n % 2 = 0)) ∧ 0 ≤ m := begin obtain ⟨m, n, ht1, ht2, ht3, ht4⟩ := pythagorean_triple.coprime_classification.mp (and.intro h h_coprime), cases le_or_lt 0 m with hm hm, { use [m, n], cases ht1 with h_odd h_even, { apply and.intro h_odd.1, apply and.intro h_odd.2, cases ht2 with h_pos h_neg, { apply and.intro h_pos (and.intro ht3 (and.intro ht4 hm)) }, { exfalso, revert h_pos, rw h_neg, exact imp_false.mpr (not_lt.mpr (neg_nonpos.mpr (add_nonneg (sq_nonneg m) (sq_nonneg n)))) } }, exfalso, rcases h_even with ⟨rfl, -⟩, rw [mul_assoc, int.mul_mod_right] at h_parity, exact zero_ne_one h_parity }, { use [-m, -n], cases ht1 with h_odd h_even, { rw [neg_sq m], rw [neg_sq n], apply and.intro h_odd.1, split, { rw h_odd.2, ring }, cases ht2 with h_pos h_neg, { apply and.intro h_pos, split, { delta int.gcd, rw [int.nat_abs_neg, int.nat_abs_neg], exact ht3 }, { rw [int.neg_mod_two, int.neg_mod_two], apply and.intro ht4, linarith } }, { exfalso, revert h_pos, rw h_neg, exact imp_false.mpr (not_lt.mpr (neg_nonpos.mpr (add_nonneg (sq_nonneg m) (sq_nonneg n)))) } }, exfalso, rcases h_even with ⟨rfl, -⟩, rw [mul_assoc, int.mul_mod_right] at h_parity, exact zero_ne_one h_parity } end /-- **Formula for Pythagorean Triples** -/ theorem classification : pythagorean_triple x y z ↔ ∃ k m n, ((x = k * (m ^ 2 - n ^ 2) ∧ y = k * (2 * m * n)) ∨ (x = k * (2 * m * n) ∧ y = k * (m ^ 2 - n ^ 2))) ∧ (z = k * (m ^ 2 + n ^ 2) ∨ z = - k * (m ^ 2 + n ^ 2)) := begin split, { intro h, obtain ⟨k, m, n, H⟩ := h.classified, use [k, m, n], rcases H with ⟨rfl, rfl⟩ | ⟨rfl, rfl⟩, { refine ⟨or.inl ⟨rfl, rfl⟩, _⟩, have : z ^ 2 = (k * (m ^ 2 + n ^ 2)) ^ 2, { rw [sq, ← h.eq], ring }, simpa using eq_or_eq_neg_of_sq_eq_sq _ _ this }, { refine ⟨or.inr ⟨rfl, rfl⟩, _⟩, have : z ^ 2 = (k * (m ^ 2 + n ^ 2)) ^ 2, { rw [sq, ← h.eq], ring }, simpa using eq_or_eq_neg_of_sq_eq_sq _ _ this } }, { rintro ⟨k, m, n, ⟨rfl, rfl⟩ | ⟨rfl, rfl⟩, rfl | rfl⟩; delta pythagorean_triple; ring } end end pythagorean_triple
e3b20afc7f2b69d06eff06f88550b4563ee9af4a
38bf3fd2bb651ab70511408fcf70e2029e2ba310
/src/data/nat/modeq.lean
a98f47cf21799c9e4ffd173f31b159c6ae0e62ff
[ "Apache-2.0" ]
permissive
JaredCorduan/mathlib
130392594844f15dad65a9308c242551bae6cd2e
d5de80376088954d592a59326c14404f538050a1
refs/heads/master
1,595,862,206,333
1,570,816,457,000
1,570,816,457,000
209,134,499
0
0
Apache-2.0
1,568,746,811,000
1,568,746,811,000
null
UTF-8
Lean
false
false
9,007
lean
/- Copyright (c) 2017 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro Modular equality relation. -/ import data.int.gcd algebra.ordered_ring namespace nat /-- Modular equality. `modeq n a b`, or `a ≡ b [MOD n]`, means that `a - b` is a multiple of `n`. -/ @[derive decidable] def modeq (n a b : ℕ) := a % n = b % n notation a ` ≡ `:50 b ` [MOD `:50 n `]`:0 := modeq n a b namespace modeq variables {n m a b c d : ℕ} @[refl] protected theorem refl (a : ℕ) : a ≡ a [MOD n] := @rfl _ _ @[symm] protected theorem symm : a ≡ b [MOD n] → b ≡ a [MOD n] := eq.symm @[trans] protected theorem trans : a ≡ b [MOD n] → b ≡ c [MOD n] → a ≡ c [MOD n] := eq.trans theorem modeq_zero_iff : a ≡ 0 [MOD n] ↔ n ∣ a := by rw [modeq, zero_mod, dvd_iff_mod_eq_zero] theorem modeq_iff_dvd : a ≡ b [MOD n] ↔ (n:ℤ) ∣ b - a := by rw [modeq, eq_comm, ← int.coe_nat_inj']; simp [int.mod_eq_mod_iff_mod_sub_eq_zero, int.dvd_iff_mod_eq_zero] theorem modeq_of_dvd : (n:ℤ) ∣ b - a → a ≡ b [MOD n] := modeq_iff_dvd.2 theorem dvd_of_modeq : a ≡ b [MOD n] → (n:ℤ) ∣ b - a := modeq_iff_dvd.1 theorem mod_modeq (a n) : a % n ≡ a [MOD n] := nat.mod_mod _ _ theorem modeq_of_dvd_of_modeq (d : m ∣ n) (h : a ≡ b [MOD n]) : a ≡ b [MOD m] := modeq_of_dvd $ dvd_trans (int.coe_nat_dvd.2 d) (dvd_of_modeq h) theorem modeq_mul_left' (c : ℕ) (h : a ≡ b [MOD n]) : c * a ≡ c * b [MOD (c * n)] := by unfold modeq at *; rw [mul_mod_mul_left, mul_mod_mul_left, h] theorem modeq_mul_left (c : ℕ) (h : a ≡ b [MOD n]) : c * a ≡ c * b [MOD n] := modeq_of_dvd_of_modeq (dvd_mul_left _ _) $ modeq_mul_left' _ h theorem modeq_mul_right' (c : ℕ) (h : a ≡ b [MOD n]) : a * c ≡ b * c [MOD (n * c)] := by rw [mul_comm a, mul_comm b, mul_comm n]; exact modeq_mul_left' c h theorem modeq_mul_right (c : ℕ) (h : a ≡ b [MOD n]) : a * c ≡ b * c [MOD n] := by rw [mul_comm a, mul_comm b]; exact modeq_mul_left c h theorem modeq_mul (h₁ : a ≡ b [MOD n]) (h₂ : c ≡ d [MOD n]) : a * c ≡ b * d [MOD n] := (modeq_mul_left _ h₂).trans (modeq_mul_right _ h₁) theorem modeq_add (h₁ : a ≡ b [MOD n]) (h₂ : c ≡ d [MOD n]) : a + c ≡ b + d [MOD n] := modeq_of_dvd $ by simpa using dvd_add (dvd_of_modeq h₁) (dvd_of_modeq h₂) theorem modeq_add_cancel_left (h₁ : a ≡ b [MOD n]) (h₂ : a + c ≡ b + d [MOD n]) : c ≡ d [MOD n] := have (n:ℤ) ∣ a + (-a + (d + -c)), by simpa using _root_.dvd_sub (dvd_of_modeq h₂) (dvd_of_modeq h₁), modeq_of_dvd $ by rwa add_neg_cancel_left at this theorem modeq_add_cancel_right (h₁ : c ≡ d [MOD n]) (h₂ : a + c ≡ b + d [MOD n]) : a ≡ b [MOD n] := by rw [add_comm a, add_comm b] at h₂; exact modeq_add_cancel_left h₁ h₂ theorem modeq_of_modeq_mul_left (m : ℕ) (h : a ≡ b [MOD m * n]) : a ≡ b [MOD n] := by rw [modeq_iff_dvd] at *; exact dvd.trans (dvd_mul_left (n : ℤ) (m : ℤ)) h theorem modeq_of_modeq_mul_right (m : ℕ) : a ≡ b [MOD n * m] → a ≡ b [MOD n] := mul_comm m n ▸ modeq_of_modeq_mul_left _ def chinese_remainder (co : coprime n m) (a b : ℕ) : {k // k ≡ a [MOD n] ∧ k ≡ b [MOD m]} := ⟨let (c, d) := xgcd n m in int.to_nat ((b * c * n + a * d * m) % (n * m)), begin rw xgcd_val, dsimp [chinese_remainder._match_1], rw [modeq_iff_dvd, modeq_iff_dvd], rw [int.to_nat_of_nonneg], swap, { by_cases h₁ : n = 0, {simp [coprime, h₁] at co, substs m n, simp}, by_cases h₂ : m = 0, {simp [coprime, h₂] at co, substs m n, simp}, exact int.mod_nonneg _ (mul_ne_zero (int.coe_nat_ne_zero.2 h₁) (int.coe_nat_ne_zero.2 h₂)) }, have := gcd_eq_gcd_ab n m, simp [co.gcd_eq_one, mul_comm] at this, rw [int.mod_def, ← sub_add, ← sub_add]; split, { refine dvd_add _ (dvd_trans (dvd_mul_right _ _) (dvd_mul_right _ _)), rw [add_comm, ← sub_sub], refine _root_.dvd_sub _ (dvd_mul_left _ _), have := congr_arg ((*) ↑a) this, exact ⟨_, by rwa [mul_add, ← mul_assoc, ← mul_assoc, mul_one, mul_comm, ← sub_eq_iff_eq_add] at this⟩ }, { refine dvd_add _ (dvd_trans (dvd_mul_left _ _) (dvd_mul_right _ _)), rw [← sub_sub], refine _root_.dvd_sub _ (dvd_mul_left _ _), have := congr_arg ((*) ↑b) this, exact ⟨_, by rwa [mul_add, ← mul_assoc, ← mul_assoc, mul_one, mul_comm _ ↑m, ← sub_eq_iff_eq_add'] at this⟩ } end⟩ lemma modeq_and_modeq_iff_modeq_mul {a b m n : ℕ} (hmn : coprime m n) : a ≡ b [MOD m] ∧ a ≡ b [MOD n] ↔ (a ≡ b [MOD m * n]) := ⟨λ h, begin rw [nat.modeq.modeq_iff_dvd, nat.modeq.modeq_iff_dvd, ← int.dvd_nat_abs, int.coe_nat_dvd, ← int.dvd_nat_abs, int.coe_nat_dvd] at h, rw [nat.modeq.modeq_iff_dvd, ← int.dvd_nat_abs, int.coe_nat_dvd], exact hmn.mul_dvd_of_dvd_of_dvd h.1 h.2 end, λ h, ⟨nat.modeq.modeq_of_modeq_mul_right _ h, nat.modeq.modeq_of_modeq_mul_left _ h⟩⟩ lemma coprime_of_mul_modeq_one (b : ℕ) {a n : ℕ} (h : a * b ≡ 1 [MOD n]) : coprime a n := nat.coprime_of_dvd' (λ k ⟨ka, hka⟩ ⟨kb, hkb⟩, int.coe_nat_dvd.1 begin rw [hka, hkb, modeq_iff_dvd] at h, cases h with z hz, rw [sub_eq_iff_eq_add] at hz, rw [hz, int.coe_nat_mul, mul_assoc, mul_assoc, int.coe_nat_mul, ← mul_add], exact dvd_mul_right _ _, end) end modeq @[simp] lemma mod_mul_right_mod (a b c : ℕ) : a % (b * c) % b = a % b := modeq.modeq_of_modeq_mul_right _ (modeq.mod_modeq _ _) @[simp] lemma mod_mul_left_mod (a b c : ℕ) : a % (b * c) % c = a % c := modeq.modeq_of_modeq_mul_left _ (modeq.mod_modeq _ _) lemma odd_mul_odd {n m : ℕ} (hn1 : n % 2 = 1) (hm1 : m % 2 = 1) : (n * m) % 2 = 1 := show (n * m) % 2 = (1 * 1) % 2, from nat.modeq.modeq_mul hn1 hm1 lemma odd_mul_odd_div_two {m n : ℕ} (hm1 : m % 2 = 1) (hn1 : n % 2 = 1) : (m * n) / 2 = m * (n / 2) + m / 2 := have hm0 : 0 < m := nat.pos_of_ne_zero (λ h, by simp * at *), have hn0 : 0 < n := nat.pos_of_ne_zero (λ h, by simp * at *), (nat.mul_left_inj (show 0 < 2, from dec_trivial)).1 $ by rw [mul_add, two_mul_odd_div_two hm1, mul_left_comm, two_mul_odd_div_two hn1, two_mul_odd_div_two (nat.odd_mul_odd hm1 hn1), nat.mul_sub_left_distrib, mul_one, ← nat.add_sub_assoc hm0, nat.sub_add_cancel (le_mul_of_one_le_right' (nat.zero_le _) hn0)] lemma odd_of_mod_four_eq_one {n : ℕ} (h : n % 4 = 1) : n % 2 = 1 := @modeq.modeq_of_modeq_mul_left 2 n 1 2 h lemma odd_of_mod_four_eq_three {n : ℕ} (h : n % 4 = 3) : n % 2 = 1 := @modeq.modeq_of_modeq_mul_left 2 n 3 2 h end nat namespace list variable {α : Type*} lemma nth_rotate : ∀ {l : list α} {n m : ℕ} (hml : m < l.length), (l.rotate n).nth m = l.nth ((m + n) % l.length) | [] n m hml := (nat.not_lt_zero _ hml).elim | l 0 m hml := by simp [nat.mod_eq_of_lt hml] | (a::l) (n+1) m hml := have h₃ : m < list.length (l ++ [a]), by simpa using hml, (lt_or_eq_of_le (nat.le_of_lt_succ $ nat.mod_lt (m + n) (lt_of_le_of_lt (nat.zero_le _) hml))).elim (λ hml', have h₁ : (m + (n + 1)) % ((a :: l : list α).length) = (m + n) % ((a :: l : list α).length) + 1, from calc (m + (n + 1)) % (l.length + 1) = ((m + n) % (l.length + 1) + 1) % (l.length + 1) : add_assoc m n 1 ▸ nat.modeq.modeq_add (nat.mod_mod _ _).symm rfl ... = (m + n) % (l.length + 1) + 1 : nat.mod_eq_of_lt (nat.succ_lt_succ hml'), have h₂ : (m + n) % (l ++ [a]).length < l.length, by simpa [nat.add_one] using hml', by rw [list.rotate_cons_succ, nth_rotate h₃, list.nth_append h₂, h₁, list.nth]; simp) (λ hml', have h₁ : (m + (n + 1)) % (l.length + 1) = 0, from calc (m + (n + 1)) % (l.length + 1) = (l.length + 1) % (l.length + 1) : add_assoc m n 1 ▸ nat.modeq.modeq_add (hml'.trans (nat.mod_eq_of_lt (nat.lt_succ_self _)).symm) rfl ... = 0 : by simp, have h₂ : l.length < (l ++ [a]).length, by simp [nat.lt_succ_self], by rw [list.length, list.rotate_cons_succ, nth_rotate h₃, list.length_append, list.length_cons, list.length, zero_add, hml', h₁, list.nth_concat_length]; refl) lemma rotate_eq_self_iff_eq_repeat [hα : nonempty α] : ∀ {l : list α}, (∀ n, l.rotate n = l) ↔ ∃ a, l = list.repeat a l.length | [] := ⟨λ h, nonempty.elim hα (λ a, ⟨a, by simp⟩), by simp⟩ | (a::l) := ⟨λ h, ⟨a, list.ext_le (by simp) $ λ n hn h₁, begin rw [← option.some_inj, ← list.nth_le_nth], conv {to_lhs, rw ← h ((list.length (a :: l)) - n)}, rw [nth_rotate hn, nat.add_sub_cancel' (le_of_lt hn), nat.mod_self, nth_le_repeat _ hn], refl end⟩, λ ⟨a, ha⟩ n, ha.symm ▸ list.ext_le (by simp) (λ m hm h, have hm' : (m + n) % (list.repeat a (list.length (a :: l))).length < list.length (a :: l), by rw list.length_repeat; exact nat.mod_lt _ (nat.succ_pos _), by rw [nth_le_repeat, ← option.some_inj, ← list.nth_le_nth, nth_rotate h, list.nth_le_nth, nth_le_repeat]; simp * at *)⟩ end list
e848f82394cc408a23fcdd001ae66a3ca32dd6f7
35677d2df3f081738fa6b08138e03ee36bc33cad
/src/data/equiv/denumerable.lean
654c4551474c3b949bc226e4536e355832b34d18
[ "Apache-2.0" ]
permissive
gebner/mathlib
eab0150cc4f79ec45d2016a8c21750244a2e7ff0
cc6a6edc397c55118df62831e23bfbd6e6c6b4ab
refs/heads/master
1,625,574,853,976
1,586,712,827,000
1,586,712,827,000
99,101,412
1
0
Apache-2.0
1,586,716,389,000
1,501,667,958,000
Lean
UTF-8
Lean
false
false
9,110
lean
/- Copyright (c) 2018 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Mario Carneiro Denumerable (countably infinite) types, as a typeclass extending encodable. This is used to provide explicit encode/decode functions from nat, where the functions are known inverses of each other. -/ import data.equiv.encodable data.sigma data.fintype.basic data.list.min_max open nat section prio set_option default_priority 100 -- see Note [default priority] /-- A denumerable type is one which is (constructively) bijective with ℕ. Although we already have a name for this property, namely `α ≃ ℕ`, we are here interested in using it as a typeclass. -/ class denumerable (α : Type*) extends encodable α := (decode_inv : ∀ n, ∃ a ∈ decode n, encode a = n) end prio namespace denumerable section variables {α : Type*} {β : Type*} [denumerable α] [denumerable β] open encodable theorem decode_is_some (α) [denumerable α] (n : ℕ) : (decode α n).is_some := option.is_some_iff_exists.2 $ (decode_inv n).imp $ λ a, Exists.fst def of_nat (α) [f : denumerable α] (n : ℕ) : α := option.get (decode_is_some α n) @[simp, priority 900] theorem decode_eq_of_nat (α) [denumerable α] (n : ℕ) : decode α n = some (of_nat α n) := option.eq_some_of_is_some _ @[simp] theorem of_nat_of_decode {n b} (h : decode α n = some b) : of_nat α n = b := option.some.inj $ (decode_eq_of_nat _ _).symm.trans h @[simp] theorem encode_of_nat (n) : encode (of_nat α n) = n := let ⟨a, h, e⟩ := decode_inv n in by rwa [of_nat_of_decode h] @[simp] theorem of_nat_encode (a) : of_nat α (encode a) = a := of_nat_of_decode (encodek _) def eqv (α) [denumerable α] : α ≃ ℕ := ⟨encode, of_nat α, of_nat_encode, encode_of_nat⟩ def mk' {α} (e : α ≃ ℕ) : denumerable α := { encode := e, decode := some ∘ e.symm, encodek := λ a, congr_arg some (e.symm_apply_apply _), decode_inv := λ n, ⟨_, rfl, e.apply_symm_apply _⟩ } def of_equiv (α) {β} [denumerable α] (e : β ≃ α) : denumerable β := { decode_inv := λ n, by simp, ..encodable.of_equiv _ e } @[simp] theorem of_equiv_of_nat (α) {β} [denumerable α] (e : β ≃ α) (n) : @of_nat β (of_equiv _ e) n = e.symm (of_nat α n) := by apply of_nat_of_decode; show option.map _ _ = _; simp def equiv₂ (α β) [denumerable α] [denumerable β] : α ≃ β := (eqv α).trans (eqv β).symm instance nat : denumerable nat := ⟨λ n, ⟨_, rfl, rfl⟩⟩ @[simp] theorem of_nat_nat (n) : of_nat ℕ n = n := rfl instance option : denumerable (option α) := ⟨λ n, by cases n; simp⟩ instance sum : denumerable (α ⊕ β) := ⟨λ n, begin suffices : ∃ a ∈ @decode_sum α β _ _ n, encode_sum a = bit (bodd n) (div2 n), {simpa [bit_decomp]}, simp [decode_sum]; cases bodd n; simp [decode_sum, bit, encode_sum] end⟩ section sigma variables {γ : α → Type*} [∀ a, denumerable (γ a)] instance sigma : denumerable (sigma γ) := ⟨λ n, by simp [decode_sigma]; exact ⟨_, _, ⟨rfl, heq.rfl⟩, by simp⟩⟩ @[simp] theorem sigma_of_nat_val (n : ℕ) : of_nat (sigma γ) n = ⟨of_nat α (unpair n).1, of_nat (γ _) (unpair n).2⟩ := option.some.inj $ by rw [← decode_eq_of_nat, decode_sigma_val]; simp; refl end sigma instance prod : denumerable (α × β) := of_equiv _ (equiv.sigma_equiv_prod α β).symm @[simp] theorem prod_of_nat_val (n : ℕ) : of_nat (α × β) n = (of_nat α (unpair n).1, of_nat β (unpair n).2) := by simp; refl @[simp] theorem prod_nat_of_nat : of_nat (ℕ × ℕ) = unpair := by funext; simp instance int : denumerable ℤ := denumerable.mk' equiv.int_equiv_nat instance pnat : denumerable ℕ+ := denumerable.mk' equiv.pnat_equiv_nat instance ulift : denumerable (ulift α) := of_equiv _ equiv.ulift instance plift : denumerable (plift α) := of_equiv _ equiv.plift def pair : α × α ≃ α := equiv₂ _ _ end end denumerable namespace nat.subtype open function encodable variables {s : set ℕ} [infinite s] section classical open_locale classical lemma exists_succ (x : s) : ∃ n, x.1 + n + 1 ∈ s := classical.by_contradiction $ λ h, have ∀ (a : ℕ) (ha : a ∈ s), a < x.val.succ, from λ a ha, lt_of_not_ge (λ hax, h ⟨a - (x.1 + 1), by rwa [add_right_comm, nat.add_sub_cancel' hax]⟩), infinite.not_fintype ⟨(((multiset.range x.1.succ).filter (∈ s)).pmap (λ (y : ℕ) (hy : y ∈ s), subtype.mk y hy) (by simp [-multiset.range_succ])).to_finset, by simpa [subtype.ext, multiset.mem_filter, -multiset.range_succ]⟩ end classical variable [decidable_pred s] def succ (x : s) : s := have h : ∃ m, x.1 + m + 1 ∈ s, from exists_succ x, ⟨x.1 + nat.find h + 1, nat.find_spec h⟩ lemma succ_le_of_lt {x y : s} (h : y < x) : succ y ≤ x := have hx : ∃ m, y.1 + m + 1 ∈ s, from exists_succ _, let ⟨k, hk⟩ := nat.exists_eq_add_of_lt h in have nat.find hx ≤ k, from nat.find_min' _ (hk ▸ x.2), show y.1 + nat.find hx + 1 ≤ x.1, by rw hk; exact add_le_add_right (add_le_add_left this _) _ lemma le_succ_of_forall_lt_le {x y : s} (h : ∀ z < x, z ≤ y) : x ≤ succ y := have hx : ∃ m, y.1 + m + 1 ∈ s, from exists_succ _, show x.1 ≤ y.1 + nat.find hx + 1, from le_of_not_gt $ λ hxy, have y.1 + nat.find hx + 1 ≤ y.1 := h ⟨_, nat.find_spec hx⟩ hxy, not_lt_of_le this $ calc y.1 ≤ y.1 + nat.find hx : le_add_of_nonneg_right (nat.zero_le _) ... < y.1 + nat.find hx + 1 : nat.lt_succ_self _ lemma lt_succ_self (x : s) : x < succ x := calc x.1 ≤ x.1 + _ : le_add_right (le_refl _) ... < succ x : nat.lt_succ_self (x.1 + _) lemma lt_succ_iff_le {x y : s} : x < succ y ↔ x ≤ y := ⟨λ h, le_of_not_gt (λ h', not_le_of_gt h (succ_le_of_lt h')), λ h, lt_of_le_of_lt h (lt_succ_self _)⟩ def of_nat (s : set ℕ) [decidable_pred s] [infinite s] : ℕ → s | 0 := ⊥ | (n+1) := succ (of_nat n) lemma of_nat_surjective_aux : ∀ {x : ℕ} (hx : x ∈ s), ∃ n, of_nat s n = ⟨x, hx⟩ | x := λ hx, let t : list s := ((list.range x).filter (λ y, y ∈ s)).pmap (λ (y : ℕ) (hy : y ∈ s), ⟨y, hy⟩) (by simp) in have hmt : ∀ {y : s}, y ∈ t ↔ y < ⟨x, hx⟩, by simp [list.mem_filter, subtype.ext, t]; intros; refl, have wf : ∀ m : s, list.maximum t = m → m.1 < x, from λ m hmax, by simpa [hmt] using list.maximum_mem hmax, begin cases hmax : list.maximum t with m, { exact ⟨0, le_antisymm (@bot_le s _ _) (le_of_not_gt (λ h, list.not_mem_nil (⊥ : s) $ by rw [← list.maximum_eq_none.1 hmax, hmt]; exact h))⟩ }, { cases of_nat_surjective_aux m.2 with a ha, exact ⟨a + 1, le_antisymm (by rw of_nat; exact succ_le_of_lt (by rw ha; exact wf _ hmax)) $ by rw of_nat; exact le_succ_of_forall_lt_le (λ z hz, by rw ha; cases m; exact list.le_maximum_of_mem (hmt.2 hz) hmax)⟩ } end using_well_founded {dec_tac := `[tauto]} lemma of_nat_surjective : surjective (of_nat s) := λ ⟨x, hx⟩, of_nat_surjective_aux hx private def to_fun_aux (x : s) : ℕ := (list.range x).countp s private lemma to_fun_aux_eq (x : s) : to_fun_aux x = ((finset.range x).filter s).card := by rw [to_fun_aux, list.countp_eq_length_filter]; refl open finset private lemma right_inverse_aux : ∀ n, to_fun_aux (of_nat s n) = n | 0 := begin rw [to_fun_aux_eq, card_eq_zero, eq_empty_iff_forall_not_mem], assume n, rw [mem_filter, of_nat, mem_range], assume h, exact not_lt_of_le bot_le (show (⟨n, h.2⟩ : s) < ⊥, from h.1) end | (n+1) := have ih : to_fun_aux (of_nat s n) = n, from right_inverse_aux n, have h₁ : (of_nat s n : ℕ) ∉ (range (of_nat s n)).filter s, by simp, have h₂ : (range (succ (of_nat s n))).filter s = insert (of_nat s n) ((range (of_nat s n)).filter s), begin simp only [finset.ext, mem_insert, mem_range, mem_filter], assume m, exact ⟨λ h, by simp only [h.2, and_true]; exact or.symm (lt_or_eq_of_le ((@lt_succ_iff_le _ _ _ ⟨m, h.2⟩ _).1 h.1)), λ h, h.elim (λ h, h.symm ▸ ⟨lt_succ_self _, subtype.property _⟩) (λ h, ⟨lt_of_le_of_lt (le_of_lt h.1) (lt_succ_self _), h.2⟩)⟩ end, begin clear_aux_decl, simp only [to_fun_aux_eq, of_nat, range_succ] at *, conv {to_rhs, rw [← ih, ← card_insert_of_not_mem h₁, ← h₂] }, end def denumerable (s : set ℕ) [decidable_pred s] [infinite s] : denumerable s := denumerable.of_equiv ℕ { to_fun := to_fun_aux, inv_fun := of_nat s, left_inv := left_inverse_of_surjective_of_right_inverse of_nat_surjective right_inverse_aux, right_inv := right_inverse_aux } end nat.subtype namespace denumerable open encodable def of_encodable_of_infinite (α : Type*) [encodable α] [infinite α] : denumerable α := begin letI := @decidable_range_encode α _; letI : infinite (set.range (@encode α _)) := infinite.of_injective _ (equiv.set.range _ encode_injective).injective, letI := nat.subtype.denumerable (set.range (@encode α _)), exact denumerable.of_equiv (set.range (@encode α _)) (equiv_range_encode α) end end denumerable
21e16caeb78980646a0209171076370688aab2b7
dd4e652c749fea9ac77e404005cb3470e5f75469
/src/eigenvectors/hermitian_form.lean
b202fe939b9972a07132bd0dcfc9bc63ed622c26
[]
no_license
skbaek/cvx
e32822ad5943541539966a37dee162b0a5495f55
c50c790c9116f9fac8dfe742903a62bdd7292c15
refs/heads/master
1,623,803,010,339
1,618,058,958,000
1,618,058,958,000
176,293,135
3
2
null
null
null
null
UTF-8
Lean
false
false
616
lean
import linear_algebra.sesquilinear_form universes u v structure hermitian_form (R : Type u) (M : Type v) [ring R] (I : R ≃+* Rᵒᵖ) [add_comm_group M] [module R M] extends sesq_form R M I := (sesq_comm: ∀ (x y : M), (I (sesq x y)).unop = sesq y x) variables {R : Type u} {M : Type v} [ring R] [add_comm_group M] [module R M] variables {I : R ≃+* Rᵒᵖ} {H : hermitian_form R M I} instance : has_coe_to_fun (hermitian_form R M I) := ⟨_, λ H, H.to_sesq_form.sesq⟩ lemma hermitian_form.comm (H : hermitian_form R M I) : ∀ (x y : M), (I (H x y)).unop = H y x := by apply hermitian_form.sesq_comm
89aa4300fddabaeaf7c15142bf02528d008ef703
57c233acf9386e610d99ed20ef139c5f97504ba3
/src/tactic/ring.lean
bea374067d3f082aeaa8dd40700f1fb31193fa6c
[ "Apache-2.0" ]
permissive
robertylewis/mathlib
3d16e3e6daf5ddde182473e03a1b601d2810952c
1d13f5b932f5e40a8308e3840f96fc882fae01f0
refs/heads/master
1,651,379,945,369
1,644,276,960,000
1,644,276,960,000
98,875,504
0
0
Apache-2.0
1,644,253,514,000
1,501,495,700,000
Lean
UTF-8
Lean
false
false
30,707
lean
/- Copyright (c) 2018 Mario Carneiro. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Mario Carneiro -/ import tactic.norm_num /-! # `ring` Evaluate expressions in the language of commutative (semi)rings. Based on <http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf> . -/ namespace tactic namespace ring /-- The normal form that `ring` uses is mediated by the function `horner a x n b := a * x ^ n + b`. The reason we use a definition rather than the (more readable) expression on the right is because this expression contains a number of typeclass arguments in different positions, while `horner` contains only one `comm_semiring` instance at the top level. See also `horner_expr` for a description of normal form. -/ def horner {α} [comm_semiring α] (a x : α) (n : ℕ) (b : α) := a * x ^ n + b /-- This cache contains data required by the `ring` tactic during execution. -/ meta structure cache := (α : expr) (univ : level) (comm_semiring_inst : expr) (red : transparency) (ic : ref instance_cache) (nc : ref instance_cache) (atoms : ref (buffer expr)) /-- The monad that `ring` works in. This is a reader monad containing a mutable cache (using `ref` for mutability), as well as the list of atoms-up-to-defeq encountered thus far, used for atom sorting. -/ @[derive [monad, alternative]] meta def ring_m (α : Type) : Type := reader_t cache tactic α /-- Get the `ring` data from the monad. -/ meta def get_cache : ring_m cache := reader_t.read /-- Get an already encountered atom by its index. -/ meta def get_atom (n : ℕ) : ring_m expr := ⟨λ c, do es ← read_ref c.atoms, pure (es.read' n)⟩ /-- Get the index corresponding to an atomic expression, if it has already been encountered, or put it in the list of atoms and return the new index, otherwise. -/ meta def add_atom (e : expr) : ring_m ℕ := ⟨λ c, do let red := c.red, es ← read_ref c.atoms, es.iterate failed (λ n e' t, t <|> (is_def_eq e e' red $> n)) <|> (es.size <$ write_ref c.atoms (es.push_back e))⟩ /-- Lift a tactic into the `ring_m` monad. -/ @[inline] meta def lift {α} (m : tactic α) : ring_m α := reader_t.lift m /-- Run a `ring_m` tactic in the tactic monad. This version of `ring_m.run` uses an external atoms ref, so that subexpressions can be named across multiple `ring_m` calls. -/ meta def ring_m.run' (red : transparency) (atoms : ref (buffer expr)) (e : expr) {α} (m : ring_m α) : tactic α := do α ← infer_type e, u ← mk_meta_univ, infer_type α >>= unify (expr.sort (level.succ u)), u ← get_univ_assignment u, ic ← mk_instance_cache α, (ic, c) ← ic.get ``comm_semiring, nc ← mk_instance_cache `(ℕ), using_new_ref ic $ λ r, using_new_ref nc $ λ nr, reader_t.run m ⟨α, u, c, red, r, nr, atoms⟩ /-- Run a `ring_m` tactic in the tactic monad. -/ meta def ring_m.run (red : transparency) (e : expr) {α} (m : ring_m α) : tactic α := using_new_ref mk_buffer $ λ atoms, ring_m.run' red atoms e m /-- Lift an instance cache tactic (probably from `norm_num`) to the `ring_m` monad. This version is abstract over the instance cache in question (either the ring `α`, or `ℕ` for exponents). -/ @[inline] meta def ic_lift' (icf : cache → ref instance_cache) {α} (f : instance_cache → tactic (instance_cache × α)) : ring_m α := ⟨λ c, do let r := icf c, ic ← read_ref r, (ic', a) ← f ic, a <$ write_ref r ic'⟩ /-- Lift an instance cache tactic (probably from `norm_num`) to the `ring_m` monad. This uses the instance cache corresponding to the ring `α`. -/ @[inline] meta def ic_lift {α} : (instance_cache → tactic (instance_cache × α)) → ring_m α := ic_lift' cache.ic /-- Lift an instance cache tactic (probably from `norm_num`) to the `ring_m` monad. This uses the instance cache corresponding to `ℕ`, which is used for computations in the exponent. -/ @[inline] meta def nc_lift {α} : (instance_cache → tactic (instance_cache × α)) → ring_m α := ic_lift' cache.nc /-- Apply a theorem that expects a `comm_semiring` instance. This is a special case of `ic_lift mk_app`, but it comes up often because `horner` and all its theorems have this assumption; it also does not require the tactic monad which improves access speed a bit. -/ meta def cache.cs_app (c : cache) (n : name) : list expr → expr := (@expr.const tt n [c.univ] c.α c.comm_semiring_inst).mk_app /-- Every expression in the language of commutative semirings can be viewed as a sum of monomials, where each monomial is a product of powers of atoms. We fix a global order on atoms (up to definitional equality), and then separate the terms according to their smallest atom. So the top level expression is `a * x^n + b` where `x` is the smallest atom and `n > 0` is a numeral, and `n` is maximal (so `a` contains at least one monomial not containing an `x`), and `b` contains no monomials with an `x` (hence all atoms in `b` are larger than `x`). If there is no `x` satisfying these constraints, then the expression must be a numeral. Even though we are working over rings, we allow rational constants when these can be interpreted in the ring, so we can solve problems like `x / 3 = 1 / 3 * x` even though these are not technically in the language of rings. These constraints ensure that there is a unique normal form for each ring expression, and so the algorithm is simply to calculate the normal form of each side and compare for equality. To allow us to efficiently pattern match on normal forms, we maintain this inductive type that holds a normalized expression together with its structure. All the `expr`s in this type could be removed without loss of information, and conversely the `horner_expr` structure and the `ℕ` and `ℚ` values can be recovered from the top level `expr`, but we keep both in order to keep proof producing normalization functions efficient. -/ meta inductive horner_expr : Type | const (e : expr) (coeff : ℚ) : horner_expr | xadd (e : expr) (a : horner_expr) (x : expr × ℕ) (n : expr × ℕ) (b : horner_expr) : horner_expr /-- Get the expression corresponding to a `horner_expr`. This can be calculated recursively from the structure, but we cache the exprs in all subterms so that this function can be computed in constant time. -/ meta def horner_expr.e : horner_expr → expr | (horner_expr.const e _) := e | (horner_expr.xadd e _ _ _ _) := e /-- Is this expr the constant `0`? -/ meta def horner_expr.is_zero : horner_expr → bool | (horner_expr.const _ c) := c = 0 | _ := ff meta instance : has_coe horner_expr expr := ⟨horner_expr.e⟩ meta instance : has_coe_to_fun horner_expr (λ _, expr → expr) := ⟨λ e, ⇑(e : expr)⟩ /-- Construct a `xadd` node, generating the cached expr using the input cache. -/ meta def horner_expr.xadd' (c : cache) (a : horner_expr) (x : expr × ℕ) (n : expr × ℕ) (b : horner_expr) : horner_expr := horner_expr.xadd (c.cs_app ``horner [a, x.1, n.1, b]) a x n b open horner_expr /-- Pretty printer for `horner_expr`. -/ meta def horner_expr.to_string : horner_expr → string | (const e c) := to_string (e, c) | (xadd e a x (_, n) b) := "(" ++ a.to_string ++ ") * (" ++ to_string x.1 ++ ")^" ++ to_string n ++ " + " ++ b.to_string /-- Pretty printer for `horner_expr`. -/ meta def horner_expr.pp : horner_expr → tactic format | (const e c) := pp (e, c) | (xadd e a x (_, n) b) := do pa ← a.pp, pb ← b.pp, px ← pp x.1, return $ "(" ++ pa ++ ") * (" ++ px ++ ")^" ++ to_string n ++ " + " ++ pb meta instance : has_to_tactic_format horner_expr := ⟨horner_expr.pp⟩ /-- Reflexivity conversion for a `horner_expr`. -/ meta def horner_expr.refl_conv (e : horner_expr) : ring_m (horner_expr × expr) := do p ← lift $ mk_eq_refl e, return (e, p) theorem zero_horner {α} [comm_semiring α] (x n b) : @horner α _ 0 x n b = b := by simp [horner] theorem horner_horner {α} [comm_semiring α] (a₁ x n₁ n₂ b n') (h : n₁ + n₂ = n') : @horner α _ (horner a₁ x n₁ 0) x n₂ b = horner a₁ x n' b := by simp [h.symm, horner, pow_add, mul_assoc] /-- Evaluate `horner a n x b` where `a` and `b` are already in normal form. -/ meta def eval_horner : horner_expr → expr × ℕ → expr × ℕ → horner_expr → ring_m (horner_expr × expr) | ha@(const a coeff) x n b := do c ← get_cache, if coeff = 0 then return (b, c.cs_app ``zero_horner [x.1, n.1, b]) else (xadd' c ha x n b).refl_conv | ha@(xadd a a₁ x₁ n₁ b₁) x n b := do c ← get_cache, if x₁.2 = x.2 ∧ b₁.e.to_nat = some 0 then do (n', h) ← nc_lift $ λ nc, norm_num.prove_add_nat' nc n₁.1 n.1, return (xadd' c a₁ x (n', n₁.2 + n.2) b, c.cs_app ``horner_horner [a₁, x.1, n₁.1, n.1, b, n', h]) else (xadd' c ha x n b).refl_conv theorem const_add_horner {α} [comm_semiring α] (k a x n b b') (h : k + b = b') : k + @horner α _ a x n b = horner a x n b' := by simp [h.symm, horner]; cc theorem horner_add_const {α} [comm_semiring α] (a x n b k b') (h : b + k = b') : @horner α _ a x n b + k = horner a x n b' := by simp [h.symm, horner, add_assoc] theorem horner_add_horner_lt {α} [comm_semiring α] (a₁ x n₁ b₁ a₂ n₂ b₂ k a' b') (h₁ : n₁ + k = n₂) (h₂ : (a₁ + horner a₂ x k 0 : α) = a') (h₃ : b₁ + b₂ = b') : @horner α _ a₁ x n₁ b₁ + horner a₂ x n₂ b₂ = horner a' x n₁ b' := by simp [h₂.symm, h₃.symm, h₁.symm, horner, pow_add, mul_add, mul_comm, mul_left_comm]; cc theorem horner_add_horner_gt {α} [comm_semiring α] (a₁ x n₁ b₁ a₂ n₂ b₂ k a' b') (h₁ : n₂ + k = n₁) (h₂ : (horner a₁ x k 0 + a₂ : α) = a') (h₃ : b₁ + b₂ = b') : @horner α _ a₁ x n₁ b₁ + horner a₂ x n₂ b₂ = horner a' x n₂ b' := by simp [h₂.symm, h₃.symm, h₁.symm, horner, pow_add, mul_add, mul_comm, mul_left_comm]; cc theorem horner_add_horner_eq {α} [comm_semiring α] (a₁ x n b₁ a₂ b₂ a' b' t) (h₁ : a₁ + a₂ = a') (h₂ : b₁ + b₂ = b') (h₃ : horner a' x n b' = t) : @horner α _ a₁ x n b₁ + horner a₂ x n b₂ = t := by simp [h₃.symm, h₂.symm, h₁.symm, horner, add_mul, mul_comm (x ^ n)]; cc /-- Evaluate `a + b` where `a` and `b` are already in normal form. -/ meta def eval_add : horner_expr → horner_expr → ring_m (horner_expr × expr) | (const e₁ c₁) (const e₂ c₂) := ic_lift $ λ ic, do let n := c₁ + c₂, (ic, e) ← ic.of_rat n, (ic, p) ← norm_num.prove_add_rat ic e₁ e₂ e c₁ c₂ n, return (ic, const e n, p) | he₁@(const e₁ c₁) he₂@(xadd e₂ a x n b) := do c ← get_cache, if c₁ = 0 then ic_lift $ λ ic, do (ic, p) ← ic.mk_app ``zero_add [e₂], return (ic, he₂, p) else do (b', h) ← eval_add he₁ b, return (xadd' c a x n b', c.cs_app ``const_add_horner [e₁, a, x.1, n.1, b, b', h]) | he₁@(xadd e₁ a x n b) he₂@(const e₂ c₂) := do c ← get_cache, if c₂ = 0 then ic_lift $ λ ic, do (ic, p) ← ic.mk_app ``add_zero [e₁], return (ic, he₁, p) else do (b', h) ← eval_add b he₂, return (xadd' c a x n b', c.cs_app ``horner_add_const [a, x.1, n.1, b, e₂, b', h]) | he₁@(xadd e₁ a₁ x₁ n₁ b₁) he₂@(xadd e₂ a₂ x₂ n₂ b₂) := do c ← get_cache, if x₁.2 < x₂.2 then do (b', h) ← eval_add b₁ he₂, return (xadd' c a₁ x₁ n₁ b', c.cs_app ``horner_add_const [a₁, x₁.1, n₁.1, b₁, e₂, b', h]) else if x₁.2 ≠ x₂.2 then do (b', h) ← eval_add he₁ b₂, return (xadd' c a₂ x₂ n₂ b', c.cs_app ``const_add_horner [e₁, a₂, x₂.1, n₂.1, b₂, b', h]) else if n₁.2 < n₂.2 then do let k := n₂.2 - n₁.2, (ek, h₁) ← nc_lift (λ nc, do (nc, ek) ← nc.of_nat k, (nc, h₁) ← norm_num.prove_add_nat nc n₁.1 ek n₂.1, return (nc, ek, h₁)), α0 ← ic_lift $ λ ic, ic.mk_app ``has_zero.zero [], (a', h₂) ← eval_add a₁ (xadd' c a₂ x₁ (ek, k) (const α0 0)), (b', h₃) ← eval_add b₁ b₂, return (xadd' c a' x₁ n₁ b', c.cs_app ``horner_add_horner_lt [a₁, x₁.1, n₁.1, b₁, a₂, n₂.1, b₂, ek, a', b', h₁, h₂, h₃]) else if n₁.2 ≠ n₂.2 then do let k := n₁.2 - n₂.2, (ek, h₁) ← nc_lift (λ nc, do (nc, ek) ← nc.of_nat k, (nc, h₁) ← norm_num.prove_add_nat nc n₂.1 ek n₁.1, return (nc, ek, h₁)), α0 ← ic_lift $ λ ic, ic.mk_app ``has_zero.zero [], (a', h₂) ← eval_add (xadd' c a₁ x₁ (ek, k) (const α0 0)) a₂, (b', h₃) ← eval_add b₁ b₂, return (xadd' c a' x₁ n₂ b', c.cs_app ``horner_add_horner_gt [a₁, x₁.1, n₁.1, b₁, a₂, n₂.1, b₂, ek, a', b', h₁, h₂, h₃]) else do (a', h₁) ← eval_add a₁ a₂, (b', h₂) ← eval_add b₁ b₂, (t, h₃) ← eval_horner a' x₁ n₁ b', return (t, c.cs_app ``horner_add_horner_eq [a₁, x₁.1, n₁.1, b₁, a₂, b₂, a', b', t, h₁, h₂, h₃]) theorem horner_neg {α} [comm_ring α] (a x n b a' b') (h₁ : -a = a') (h₂ : -b = b') : -@horner α _ a x n b = horner a' x n b' := by simp [h₂.symm, h₁.symm, horner]; cc /-- Evaluate `-a` where `a` is already in normal form. -/ meta def eval_neg : horner_expr → ring_m (horner_expr × expr) | (const e coeff) := do (e', p) ← ic_lift $ λ ic, norm_num.prove_neg ic e, return (const e' (-coeff), p) | (xadd e a x n b) := do c ← get_cache, (a', h₁) ← eval_neg a, (b', h₂) ← eval_neg b, p ← ic_lift $ λ ic, ic.mk_app ``horner_neg [a, x.1, n.1, b, a', b', h₁, h₂], return (xadd' c a' x n b', p) theorem horner_const_mul {α} [comm_semiring α] (c a x n b a' b') (h₁ : c * a = a') (h₂ : c * b = b') : c * @horner α _ a x n b = horner a' x n b' := by simp [h₂.symm, h₁.symm, horner, mul_add, mul_assoc] theorem horner_mul_const {α} [comm_semiring α] (a x n b c a' b') (h₁ : a * c = a') (h₂ : b * c = b') : @horner α _ a x n b * c = horner a' x n b' := by simp [h₂.symm, h₁.symm, horner, add_mul, mul_right_comm] /-- Evaluate `k * a` where `k` is a rational numeral and `a` is in normal form. -/ meta def eval_const_mul (k : expr × ℚ) : horner_expr → ring_m (horner_expr × expr) | (const e coeff) := do (e', p) ← ic_lift $ λ ic, norm_num.prove_mul_rat ic k.1 e k.2 coeff, return (const e' (k.2 * coeff), p) | (xadd e a x n b) := do c ← get_cache, (a', h₁) ← eval_const_mul a, (b', h₂) ← eval_const_mul b, return (xadd' c a' x n b', c.cs_app ``horner_const_mul [k.1, a, x.1, n.1, b, a', b', h₁, h₂]) theorem horner_mul_horner_zero {α} [comm_semiring α] (a₁ x n₁ b₁ a₂ n₂ aa t) (h₁ : @horner α _ a₁ x n₁ b₁ * a₂ = aa) (h₂ : horner aa x n₂ 0 = t) : horner a₁ x n₁ b₁ * horner a₂ x n₂ 0 = t := by rw [← h₂, ← h₁]; simp [horner, mul_add, mul_comm, mul_left_comm, mul_assoc] theorem horner_mul_horner {α} [comm_semiring α] (a₁ x n₁ b₁ a₂ n₂ b₂ aa haa ab bb t) (h₁ : @horner α _ a₁ x n₁ b₁ * a₂ = aa) (h₂ : horner aa x n₂ 0 = haa) (h₃ : a₁ * b₂ = ab) (h₄ : b₁ * b₂ = bb) (H : haa + horner ab x n₁ bb = t) : horner a₁ x n₁ b₁ * horner a₂ x n₂ b₂ = t := by rw [← H, ← h₂, ← h₁, ← h₃, ← h₄]; simp [horner, mul_add, mul_comm, mul_left_comm, mul_assoc] /-- Evaluate `a * b` where `a` and `b` are in normal form. -/ meta def eval_mul : horner_expr → horner_expr → ring_m (horner_expr × expr) | (const e₁ c₁) (const e₂ c₂) := do (e', p) ← ic_lift $ λ ic, norm_num.prove_mul_rat ic e₁ e₂ c₁ c₂, return (const e' (c₁ * c₂), p) | (const e₁ c₁) e₂ := if c₁ = 0 then do c ← get_cache, α0 ← ic_lift $ λ ic, ic.mk_app ``has_zero.zero [], p ← ic_lift $ λ ic, ic.mk_app ``zero_mul [e₂], return (const α0 0, p) else if c₁ = 1 then do p ← ic_lift $ λ ic, ic.mk_app ``one_mul [e₂], return (e₂, p) else eval_const_mul (e₁, c₁) e₂ | e₁ he₂@(const e₂ c₂) := do p₁ ← ic_lift $ λ ic, ic.mk_app ``mul_comm [e₁, e₂], (e', p₂) ← eval_mul he₂ e₁, p ← lift $ mk_eq_trans p₁ p₂, return (e', p) | he₁@(xadd e₁ a₁ x₁ n₁ b₁) he₂@(xadd e₂ a₂ x₂ n₂ b₂) := do c ← get_cache, if x₁.2 < x₂.2 then do (a', h₁) ← eval_mul a₁ he₂, (b', h₂) ← eval_mul b₁ he₂, return (xadd' c a' x₁ n₁ b', c.cs_app ``horner_mul_const [a₁, x₁.1, n₁.1, b₁, e₂, a', b', h₁, h₂]) else if x₁.2 ≠ x₂.2 then do (a', h₁) ← eval_mul he₁ a₂, (b', h₂) ← eval_mul he₁ b₂, return (xadd' c a' x₂ n₂ b', c.cs_app ``horner_const_mul [e₁, a₂, x₂.1, n₂.1, b₂, a', b', h₁, h₂]) else do (aa, h₁) ← eval_mul he₁ a₂, α0 ← ic_lift $ λ ic, ic.mk_app ``has_zero.zero [], (haa, h₂) ← eval_horner aa x₁ n₂ (const α0 0), if b₂.is_zero then return (haa, c.cs_app ``horner_mul_horner_zero [a₁, x₁.1, n₁.1, b₁, a₂, n₂.1, aa, haa, h₁, h₂]) else do (ab, h₃) ← eval_mul a₁ b₂, (bb, h₄) ← eval_mul b₁ b₂, (t, H) ← eval_add haa (xadd' c ab x₁ n₁ bb), return (t, c.cs_app ``horner_mul_horner [a₁, x₁.1, n₁.1, b₁, a₂, n₂.1, b₂, aa, haa, ab, bb, t, h₁, h₂, h₃, h₄, H]) theorem horner_pow {α} [comm_semiring α] (a x n m n' a') (h₁ : n * m = n') (h₂ : a ^ m = a') : @horner α _ a x n 0 ^ m = horner a' x n' 0 := by simp [h₁.symm, h₂.symm, horner, mul_pow, pow_mul] theorem pow_succ {α} [comm_semiring α] (a n b c) (h₁ : (a:α) ^ n = b) (h₂ : b * a = c) : a ^ (n + 1) = c := by rw [← h₂, ← h₁, pow_succ'] /-- Evaluate `a ^ n` where `a` is in normal form and `n` is a natural numeral. -/ meta def eval_pow : horner_expr → expr × ℕ → ring_m (horner_expr × expr) | e (_, 0) := do c ← get_cache, α1 ← ic_lift $ λ ic, ic.mk_app ``has_one.one [], p ← ic_lift $ λ ic, ic.mk_app ``pow_zero [e], return (const α1 1, p) | e (_, 1) := do p ← ic_lift $ λ ic, ic.mk_app ``pow_one [e], return (e, p) | (const e coeff) (e₂, m) := ic_lift $ λ ic, do (ic, e', p) ← norm_num.prove_pow e coeff ic e₂, return (ic, const e' (coeff ^ m), p) | he@(xadd e a x n b) m := do c ← get_cache, match b.e.to_nat with | some 0 := do (n', h₁) ← nc_lift $ λ nc, norm_num.prove_mul_rat nc n.1 m.1 n.2 m.2, (a', h₂) ← eval_pow a m, α0 ← ic_lift $ λ ic, ic.mk_app ``has_zero.zero [], return (xadd' c a' x (n', n.2 * m.2) (const α0 0), c.cs_app ``horner_pow [a, x.1, n.1, m.1, n', a', h₁, h₂]) | _ := do e₂ ← nc_lift $ λ nc, nc.of_nat (m.2-1), (tl, hl) ← eval_pow he (e₂, m.2-1), (t, p₂) ← eval_mul tl he, return (t, c.cs_app ``pow_succ [e, e₂, tl, t, hl, p₂]) end theorem horner_atom {α} [comm_semiring α] (x : α) : x = horner 1 x 1 0 := by simp [horner] /-- Evaluate `a` where `a` is an atom. -/ meta def eval_atom (e : expr) : ring_m (horner_expr × expr) := do c ← get_cache, i ← add_atom e, α0 ← ic_lift $ λ ic, ic.mk_app ``has_zero.zero [], α1 ← ic_lift $ λ ic, ic.mk_app ``has_one.one [], return (xadd' c (const α1 1) (e, i) (`(1), 1) (const α0 0), c.cs_app ``horner_atom [e]) lemma subst_into_pow {α} [monoid α] (l r tl tr t) (prl : (l : α) = tl) (prr : (r : ℕ) = tr) (prt : tl ^ tr = t) : l ^ r = t := by rw [prl, prr, prt] lemma unfold_sub {α} [add_group α] (a b c : α) (h : a + -b = c) : a - b = c := by rw [sub_eq_add_neg, h] lemma unfold_div {α} [division_ring α] (a b c : α) (h : a * b⁻¹ = c) : a / b = c := by rw [div_eq_mul_inv, h] /-- Evaluate a ring expression `e` recursively to normal form, together with a proof of equality. -/ meta def eval : expr → ring_m (horner_expr × expr) | `(%%e₁ + %%e₂) := do (e₁', p₁) ← eval e₁, (e₂', p₂) ← eval e₂, (e', p') ← eval_add e₁' e₂', p ← ic_lift $ λ ic, ic.mk_app ``norm_num.subst_into_add [e₁, e₂, e₁', e₂', e', p₁, p₂, p'], return (e', p) | e@`(@has_sub.sub %%α %%inst %%e₁ %%e₂) := mcond (succeeds (lift $ mk_app ``comm_ring [α] >>= mk_instance)) (do e₂' ← ic_lift $ λ ic, ic.mk_app ``has_neg.neg [e₂], e ← ic_lift $ λ ic, ic.mk_app ``has_add.add [e₁, e₂'], (e', p) ← eval e, p' ← ic_lift $ λ ic, ic.mk_app ``unfold_sub [e₁, e₂, e', p], return (e', p')) (eval_atom e) | `(- %%e) := do (e₁, p₁) ← eval e, (e₂, p₂) ← eval_neg e₁, p ← ic_lift $ λ ic, ic.mk_app ``norm_num.subst_into_neg [e, e₁, e₂, p₁, p₂], return (e₂, p) | `(%%e₁ * %%e₂) := do (e₁', p₁) ← eval e₁, (e₂', p₂) ← eval e₂, (e', p') ← eval_mul e₁' e₂', p ← ic_lift $ λ ic, ic.mk_app ``norm_num.subst_into_mul [e₁, e₂, e₁', e₂', e', p₁, p₂, p'], return (e', p) | e@`(has_inv.inv %%_) := (do (e', p) ← lift $ norm_num.derive e <|> refl_conv e, n ← lift $ e'.to_rat, return (const e' n, p)) <|> eval_atom e | e@`(@has_div.div _ %%inst %%e₁ %%e₂) := mcond (succeeds (do inst' ← ic_lift $ λ ic, ic.mk_app ``div_inv_monoid.to_has_div [], lift $ is_def_eq inst inst')) (do e₂' ← ic_lift $ λ ic, ic.mk_app ``has_inv.inv [e₂], e ← ic_lift $ λ ic, ic.mk_app ``has_mul.mul [e₁, e₂'], (e', p) ← eval e, p' ← ic_lift $ λ ic, ic.mk_app ``unfold_div [e₁, e₂, e', p], return (e', p')) (eval_atom e) | e@`(@has_pow.pow _ _ %%P %%e₁ %%e₂) := do (e₂', p₂) ← lift $ norm_num.derive e₂ <|> refl_conv e₂, match e₂'.to_nat, P with | some k, `(monoid.has_pow) := do (e₁', p₁) ← eval e₁, (e', p') ← eval_pow e₁' (e₂, k), p ← ic_lift $ λ ic, ic.mk_app ``subst_into_pow [e₁, e₂, e₁', e₂', e', p₁, p₂, p'], return (e', p) | _, _ := eval_atom e end | e := match e.to_nat with | some n := (const e (rat.of_int n)).refl_conv | none := eval_atom e end /-- Evaluate a ring expression `e` recursively to normal form, together with a proof of equality. -/ meta def eval' (red : transparency) (atoms : ref (buffer expr)) (e : expr) : tactic (expr × expr) := ring_m.run' red atoms e $ do (e', p) ← eval e, return (e', p) theorem horner_def' {α} [comm_semiring α] (a x n b) : @horner α _ a x n b = x ^ n * a + b := by simp [horner, mul_comm] theorem mul_assoc_rev {α} [semigroup α] (a b c : α) : a * (b * c) = a * b * c := by simp [mul_assoc] theorem pow_add_rev {α} [monoid α] (a : α) (m n : ℕ) : a ^ m * a ^ n = a ^ (m + n) := by simp [pow_add] theorem pow_add_rev_right {α} [monoid α] (a b : α) (m n : ℕ) : b * a ^ m * a ^ n = b * a ^ (m + n) := by simp [pow_add, mul_assoc] theorem add_neg_eq_sub {α} [add_group α] (a b : α) : a + -b = a - b := (sub_eq_add_neg a b).symm /-- If `ring` fails to close the goal, it falls back on normalizing the expression to a "pretty" form so that you can see why it failed. This setting adjusts the resulting form: * `raw` is the form that `ring` actually uses internally, with iterated applications of `horner`. Not very readable but useful if you don't want any postprocessing. This results in terms like `horner (horner (horner 3 y 1 0) x 2 1) x 1 (horner 1 y 1 0)`. * `horner` maintains the Horner form structure, but it unfolds the `horner` definition itself, and tries to otherwise minimize parentheses. This results in terms like `(3 * x ^ 2 * y + 1) * x + y`. * `SOP` means sum of products form, expanding everything to monomials. This results in terms like `3 * x ^ 3 * y + x + y`. -/ @[derive [has_reflect, decidable_eq]] inductive normalize_mode | raw | SOP | horner instance : inhabited normalize_mode := ⟨normalize_mode.horner⟩ /-- A `ring`-based normalization simplifier that rewrites ring expressions into the specified mode. See `normalize`. This version takes a list of atoms to persist across multiple calls. -/ meta def normalize' (atoms : ref (buffer expr)) (red : transparency) (mode := normalize_mode.horner) (e : expr) : tactic (expr × expr) := do pow_lemma ← simp_lemmas.mk.add_simp ``pow_one, let lemmas := match mode with | normalize_mode.SOP := [``horner_def', ``add_zero, ``mul_one, ``mul_add, ``mul_sub, ``mul_assoc_rev, ``pow_add_rev, ``pow_add_rev_right, ``mul_neg_eq_neg_mul_symm, ``add_neg_eq_sub] | normalize_mode.horner := [``horner.equations._eqn_1, ``add_zero, ``one_mul, ``pow_one, ``neg_mul_eq_neg_mul_symm, ``add_neg_eq_sub] | _ := [] end, lemmas ← lemmas.mfoldl simp_lemmas.add_simp simp_lemmas.mk, trans_conv (λ e, do guard (mode ≠ normalize_mode.raw), (e', pr, _) ← simplify simp_lemmas.mk [] e, pure (e', pr)) (λ e, do a ← read_ref atoms, (a, e', pr) ← ext_simplify_core a {} simp_lemmas.mk (λ _, failed) (λ a _ _ _ e, do write_ref atoms a, (new_e, pr) ← match mode with | normalize_mode.raw := eval' red atoms | normalize_mode.horner := trans_conv (eval' red atoms) (λ e, do (e', prf, _) ← simplify lemmas [] e, pure (e', prf)) | normalize_mode.SOP := trans_conv (eval' red atoms) $ trans_conv (λ e, do (e', prf, _) ← simplify lemmas [] e, pure (e', prf)) $ simp_bottom_up' (λ e, norm_num.derive e <|> pow_lemma.rewrite e) end e, guard (¬ new_e =ₐ e), a ← read_ref atoms, pure (a, new_e, some pr, ff)) (λ _ _ _ _ _, failed) `eq e, write_ref atoms a, pure (e', pr)) e /-- A `ring`-based normalization simplifier that rewrites ring expressions into the specified mode. * `raw` is the form that `ring` actually uses internally, with iterated applications of `horner`. Not very readable but useful if you don't want any postprocessing. This results in terms like `horner (horner (horner 3 y 1 0) x 2 1) x 1 (horner 1 y 1 0)`. * `horner` maintains the Horner form structure, but it unfolds the `horner` definition itself, and tries to otherwise minimize parentheses. This results in terms like `(3 * x ^ 2 * y + 1) * x + y`. * `SOP` means sum of products form, expanding everything to monomials. This results in terms like `3 * x ^ 3 * y + x + y`. -/ meta def normalize (red : transparency) (mode := normalize_mode.horner) (e : expr) : tactic (expr × expr) := using_new_ref mk_buffer $ λ atoms, normalize' atoms red mode e end ring namespace interactive open tactic.ring setup_tactic_parser /-- Tactic for solving equations in the language of *commutative* (semi)rings. This version of `ring` fails if the target is not an equality that is provable by the axioms of commutative (semi)rings. -/ meta def ring1 (red : parse (tk "!")?) : tactic unit := let transp := if red.is_some then semireducible else reducible in do `(%%e₁ = %%e₂) ← target >>= instantiate_mvars, ((e₁', p₁), (e₂', p₂)) ← ring_m.run transp e₁ $ prod.mk <$> eval e₁ <*> eval e₂, is_def_eq e₁' e₂', p ← mk_eq_symm p₂ >>= mk_eq_trans p₁, tactic.exact p /-- Parser for `ring_nf`'s `mode` argument, which can only be the "keywords" `raw`, `horner` or `SOP`. (Because these are not actually keywords we use a name parser and postprocess the result.) -/ meta def ring.mode : lean.parser ring.normalize_mode := with_desc "(SOP|raw|horner)?" $ do mode ← ident?, match mode with | none := pure ring.normalize_mode.horner | some `horner := pure ring.normalize_mode.horner | some `SOP := pure ring.normalize_mode.SOP | some `raw := pure ring.normalize_mode.raw | _ := failed end /-- Simplification tactic for expressions in the language of commutative (semi)rings, which rewrites all ring expressions into a normal form. When writing a normal form, `ring_nf SOP` will use sum-of-products form instead of horner form. `ring_nf!` will use a more aggressive reducibility setting to identify atoms. -/ meta def ring_nf (red : parse (tk "!")?) (SOP : parse ring.mode) (loc : parse location) : tactic unit := do ns ← loc.get_locals, let transp := if red.is_some then semireducible else reducible, tt ← using_new_ref mk_buffer $ λ atoms, tactic.replace_at (normalize' atoms transp SOP) ns loc.include_goal | fail "ring_nf failed to simplify", when loc.include_goal $ try tactic.reflexivity /-- Tactic for solving equations in the language of *commutative* (semi)rings. `ring!` will use a more aggressive reducibility setting to identify atoms. If the goal is not solvable, it falls back to rewriting all ring expressions into a normal form, with a suggestion to use `ring_nf` instead, if this is the intent. See also `ring1`, which is the same as `ring` but without the fallback behavior. Based on [Proving Equalities in a Commutative Ring Done Right in Coq](http://www.cs.ru.nl/~freek/courses/tt-2014/read/10.1.1.61.3041.pdf) by Benjamin Grégoire and Assia Mahboubi. -/ meta def ring (red : parse (tk "!")?) : tactic unit := ring1 red <|> (ring_nf red normalize_mode.horner (loc.ns [none]) >> trace "Try this: ring_nf") add_hint_tactic "ring" add_tactic_doc { name := "ring", category := doc_category.tactic, decl_names := [``ring, ``ring_nf, ``ring1], inherit_description_from := ``ring, tags := ["arithmetic", "simplification", "decision procedure"] } end interactive end tactic namespace conv.interactive open conv interactive open tactic tactic.interactive (ring.mode ring1) open tactic.ring (normalize normalize_mode.horner) local postfix `?`:9001 := optional /-- Normalises expressions in commutative (semi-)rings inside of a `conv` block using the tactic `ring`. -/ meta def ring_nf (red : parse (lean.parser.tk "!")?) (SOP : parse ring.mode) : conv unit := let transp := if red.is_some then semireducible else reducible in replace_lhs (normalize transp SOP) <|> fail "ring_nf failed to simplify" /-- Normalises expressions in commutative (semi-)rings inside of a `conv` block using the tactic `ring`. -/ meta def ring (red : parse (lean.parser.tk "!")?) : conv unit := let transp := if red.is_some then semireducible else reducible in discharge_eq_lhs (ring1 red) <|> (replace_lhs (normalize transp normalize_mode.horner) >> trace "Try this: ring_nf") <|> fail "ring failed to simplify" end conv.interactive
4366b872c7a3558601feb5e46a7165cb0f80b41f
a721fe7446524f18ba361625fc01033d9c8b7a78
/src/principia/mylist/mylist.lean
66bfe029011347f567c08348339a9a735d34f0f9
[]
no_license
Sterrs/leaning
8fd80d1f0a6117a220bb2e57ece639b9a63deadc
3901cc953694b33adda86cb88ca30ba99594db31
refs/heads/master
1,627,023,822,744
1,616,515,221,000
1,616,515,221,000
245,512,190
2
0
null
1,616,429,050,000
1,583,527,118,000
Lean
UTF-8
Lean
false
false
17,154
lean
-- vim: ts=2 sw=0 sts=-1 et ai tw=70 import ..mynat.basic import ..mynat.lt import ..mynat.induction namespace hidden universe u -- list of elements of type T inductive mylist (T: Sort u) -- allow empty to infer its type. It doesn't seem to work very often | empty {}: mylist | cons (head: T) (tail: mylist): mylist open mylist open mynat namespace mylist variable {T: Sort u} -- Haskell-like convention, use x::xs to pattern match head/tail variables {x y z: T} variables {xs ys zs lst lst1 lst2 lst3: mylist T} variables {m n: mynat} -- I'm really just sort of making this up as I go along -- It would be nice to have notation like [1, 2, 3] notation h :: t := cons h t def singleton (x: T) := x :: (empty: mylist T) theorem cons_injective_1: x :: xs = y :: ys → x = y := λ h, (cons.inj h).left theorem cons_injective_2: x :: xs = y :: ys → xs = ys := λ h, (cons.inj h).right -- we don't define append explicitly, since lists are define by -- recursion on the tail. Also note that concat is defined by -- recursion on the first argument, so you should generally induct on -- the first argument. def concat: mylist T → mylist T → mylist T | empty lst := lst | (x :: xs) lst := x :: (concat xs lst) notation lst1 ++ lst2 := concat lst1 lst2 @[simp] theorem empty_concat: (empty: mylist T) ++ lst = lst := rfl @[simp] theorem cons_concat: (x :: xs) ++ lst = x :: (xs ++ lst) := rfl @[simp] theorem concat_empty: lst ++ (empty: mylist T) = lst := begin induction lst with lst_head lst_tail lst_ih, { simp, }, { simp [lst_ih], }, end @[simp] theorem singleton_concat_cons: singleton x ++ lst = x :: lst := rfl @[simp] theorem cons_not_empty: x :: xs ≠ empty := begin assume h, cases h, end @[simp] theorem concat_assoc: (lst1 ++ lst2) ++ lst3 = lst1 ++ (lst2 ++ lst3) := begin induction lst1 with lst1_head lst1_tail lst1_ih, { simp, }, { simp [lst1_ih], }, end instance concat_is_assoc (T: Type u): is_associative (mylist T) concat := ⟨λ a b c, concat_assoc⟩ def len: mylist T → mynat | empty := 0 | (_ :: xs) := succ (len xs) @[simp] theorem empty_len: len (empty: mylist T) = 0 := rfl @[simp] theorem len_cons_succ: len (x :: xs) = succ (len xs) := rfl @[simp] theorem len_singleton: len (singleton x) = 1 := len_cons_succ theorem len_of_refl: lst1 = lst2 → len lst1 = len lst2 := begin assume h, rw h, end @[simp] theorem len_concat_add: len (lst1 ++ lst2) = len lst1 + len lst2 := begin induction lst1 with lst1_head lst1_tail lst1_ih, { simp, }, { simp [lst1_ih], }, end def rev: mylist T → mylist T | empty := empty | (x :: xs) := (rev xs) ++ singleton x @[simp] theorem rev_empty: rev (empty: mylist T) = empty := rfl @[simp] theorem rev_cons: rev (x :: xs) = (rev xs) ++ singleton x := rfl @[simp] theorem rev_singleton: rev (singleton x) = singleton x := rfl @[simp] theorem rev_append: rev (lst ++ singleton x) = x :: rev lst := begin induction lst with lst_head lst_tail lst_ih, { refl, }, { rw [cons_concat, rev_cons, lst_ih], refl, }, end theorem rev_concat: rev (lst1 ++ lst2) = rev lst2 ++ rev lst1 := begin induction lst1 with lst1_head lst1_tail lst1_ih, { rw rev_empty, rw concat_empty, refl, }, { rw [cons_concat, rev_cons, lst1_ih, rev_cons, concat_assoc], }, end @[simp] theorem rev_rev: rev (rev lst) = lst := begin induction lst with lst_head lst_tail lst_ih, { simp, }, { simp [lst_ih, rev_concat], }, end @[simp] theorem rev_len: len (rev lst) = len lst := begin induction lst with lst_head lst_tail lst_ih, { simp, }, { simp [lst_ih], }, end theorem empty_iff_len_zero: lst = empty ↔ len lst = 0 := begin split, { assume h, rw h, refl, }, { assume h, cases lst, { refl, }, { exfalso, from succ_ne_zero h, }, }, end theorem nonempty_iff_len_nonzero: lst ≠ empty ↔ len lst ≠ 0 := iff_to_contrapositive empty_iff_len_zero theorem rev_not_empty: lst ≠ empty → rev lst ≠ empty := begin repeat {rw nonempty_iff_len_nonzero}, rw rev_len, assume h, from h, end -- These are some "maybe" operations, which are undefined on empty lists -- (or sometimes lists of a certain length), so they take as argument -- a proof that the input list is of the correct form, -- which is a dependent type thing. Maybe they're supposed to be Πs -- first element def head: Π lst: mylist T, lst ≠ empty → T | empty h := absurd rfl h | (x :: _) _ := x @[simp] theorem first_cons (h: x :: xs ≠ empty): head (x :: xs) h = x := rfl -- everything except first element def tail: Π lst: mylist T, lst ≠ empty → mylist T | empty h := absurd rfl h | (_ :: xs) _ := xs @[simp] theorem tail_cons (h: x :: xs ≠ empty): tail (x :: xs) h = xs := rfl -- everything except last element def init: Π lst: mylist T, lst ≠ empty → mylist T | empty h := absurd rfl h | (x :: empty) _ := empty | (x :: y :: xs) _ := x :: init (y :: xs) cons_not_empty @[simp] theorem init_singleton (h: singleton x ≠ empty): init (singleton x) h = empty := rfl @[simp] theorem init_ccons (h: x :: y :: xs ≠ empty): init (x :: y :: xs) h = x :: init (y :: xs) cons_not_empty := rfl -- last element def last: Π lst: mylist T, lst ≠ empty → T | empty h := absurd rfl h | (x :: empty) _ := x | (x :: y :: xs) h := last (y :: xs) cons_not_empty @[simp] theorem last_singleton (h: singleton x ≠ empty): last (singleton x) h = x := rfl @[simp] theorem last_ccons (h: x :: y :: xs ≠ empty): last (x :: y :: xs) h = last (y :: xs) cons_not_empty := rfl private theorem len_cons_succ_cancel1 (h: succ n ≤ len (x :: xs)): n ≤ len xs := begin simp at h, from le_succ_cancel h, end private theorem absurd_succ_le_zero: ¬succ n ≤ 0 := begin assume h, simp [le_iff_lt_succ] at h, exfalso, from lt_nzero (lt_succ_cancel h), end -- the first n elements def take: Π n: mynat, Π lst: mylist T, n ≤ len lst → mylist T | 0 _ _ := empty | (succ n) empty h := absurd h absurd_succ_le_zero | (succ n) (x :: xs) h := x :: take n xs (len_cons_succ_cancel1 h) @[simp] theorem take_zero (h: 0 ≤ len lst): take 0 lst h = empty := rfl @[simp] theorem take_succ_cons (h: succ n ≤ len (x :: xs)): take (succ n) (x :: xs) h = x :: take n xs (len_cons_succ_cancel1 h) := rfl -- everything except the first n elements def drop: Π n: mynat, Π lst: mylist T, n ≤ len lst → mylist T | 0 lst _ := lst | (succ n) empty h := absurd h absurd_succ_le_zero | (succ n) (_ :: xs) h := drop n xs (len_cons_succ_cancel1 h) @[simp] theorem drop_zero (h: 0 ≤ len lst): drop 0 lst h = lst := rfl @[simp] theorem drop_succ_cons (h: succ n ≤ len (x :: xs)): drop (succ n) (x :: xs) h = drop n xs (len_cons_succ_cancel1 h) := rfl private theorem len_cons_succ_cancel2 (h: succ n < len (x :: xs)): n < len xs := begin simp at h, from lt_succ_cancel h, end -- the nth element def get: Π n: mynat, Π lst: mylist T, n < len lst → T | n empty h := absurd h lt_nzero | 0 (x :: _) _ := x | (succ n) (x :: xs) h := get n xs (len_cons_succ_cancel2 h) @[simp] theorem get_zero_cons (h: 0 < len (x :: xs)): get 0 (x :: xs) h = x := rfl @[simp] theorem get_succ_cons (h: succ n < len (x :: xs)): get (succ n) (x :: xs) h = get n xs (len_cons_succ_cancel2 h) := rfl -- TODO: state this without tactic mode @[simp] theorem get_zero_head (h: 0 < len lst): get 0 lst h = head lst begin assume h', simp [h', lt_nrefl] at h, assumption, end := begin cases lst, { refl, }, { simp, }, end theorem cons_head_tail (h: lst ≠ empty): head lst h :: tail lst h = lst := begin cases lst, { contradiction, }, { simp, }, end theorem len_tail (h: lst ≠ empty): len lst = succ (len (tail lst h)) := begin cases lst, { contradiction, }, { simp, }, end -- I didn't really think this one through theorem len_init (h: lst ≠ empty): len lst = succ (len (init lst h)) := begin induction lst, { contradiction, }, { cases lst_tail, { refl, }, { have := lst_ih cons_not_empty, dsimp [len] at this, dsimp [len], rw this, }, }, end theorem append_init_last (h: lst ≠ empty): init lst h ++ (singleton (last lst h)) = lst := begin induction lst, { from absurd rfl h, }, { cases lst_tail, { refl, }, { rw init_ccons h, rw last_ccons h, simp, apply lst_ih, }, }, end private theorem succ_le_impl_le (h: succ n ≤ len lst): n ≤ len lst := (le_cancel_strong 1 h) theorem len_take_succ (hsnl: succ n ≤ len lst): len (take (succ n) lst hsnl) = succ (len (take n lst (succ_le_impl_le hsnl))) := begin induction n with n_n n_ih generalizing lst, { simp, cases lst, { exfalso, simp at hsnl, -- clearly absurd. Is there a quicker way? cases hsnl with d hd, from mynat.no_confusion (add_integral hd.symm), }, { -- why on Earth is this SO DIFFICULT -- I don't understand why I can't go straight to the rw have h: (1: mynat) = succ 0 := rfl, conv { to_lhs, congr, congr, rw h, }, rw take_succ_cons, simp, }, }, { cases lst, { exfalso, cases hsnl with d hd, from mynat.no_confusion (add_integral hd.symm), }, { simp, rw len_cons_succ at hsnl, from n_ih (le_succ_cancel hsnl), }, }, end @[simp] theorem len_take (hnl: n ≤ len lst): len (take n lst hnl) = n := begin induction n, { refl, }, { -- really all the hard work happens in len_take_succ simp [len_take_succ], apply n_ih, }, end theorem take_concat_drop (hnl: n ≤ len lst): take n lst hnl ++ drop n lst hnl = lst := begin induction n generalizing lst, { refl, }, { cases lst, { simp at hnl, cases hnl with d hd, rw succ_add at hd, cases hd, }, { simp, apply n_ih, }, }, end theorem len_drop (hnl: n ≤ len lst): len (drop n lst hnl) + n = len lst := begin conv { to_lhs, congr, skip, rw ←len_take hnl, }, rw [add_comm, ←len_concat_add, take_concat_drop], end theorem get_head_drop (hnl: n < len lst): get n lst hnl = head (drop n lst (lt_impl_le hnl)) ( begin rw nonempty_iff_len_nonzero, have := len_drop (lt_impl_le hnl), rw ←this at hnl, conv at hnl { to_lhs, rw ←add_zero n, rw add_comm, }, have this2 := lt_cancel n hnl, assume h, rw h at this2, from lt_nrefl this2, end ) := begin induction n generalizing lst, { simp, }, { cases lst, { exfalso, from lt_nzero hnl, }, { simp, apply n_ih, }, }, end theorem concat_cancel_left: lst1 ++ lst2 = lst1 ++ lst3 → lst2 = lst3 := begin assume hl1l2l1l3, induction lst1, { simp at hl1l2l1l3, assumption, }, { simp at hl1l2l1l3, apply lst1_ih, assumption, }, end theorem rev_injective: rev lst1 = rev lst2 → lst1 = lst2 := begin -- this is a bit silly. Is there a better way to apply -- something to both sides in Lean? assume hrl1rl2, suffices hrr: rev (rev lst1) = rev (rev lst2), { repeat {rw rev_rev at hrr}, assumption, }, { rw hrl1rl2, }, end theorem concat_cancel_right: lst2 ++ lst1 = lst3 ++ lst1 → lst2 = lst3 := begin assume hl1l2l1l3, apply rev_injective, apply @concat_cancel_left _ (rev lst1), rw [←rev_concat, hl1l2l1l3, rev_concat], end @[simp] theorem take_all (h: len lst ≤ len lst): take (len lst) lst h = lst := begin induction lst with lst_head lst_tail lst_ih, { refl, }, { simp, from lst_ih _, }, end @[simp] theorem drop_all (h: len lst ≤ len lst): drop (len lst) lst h = empty := begin induction lst with lst_head lst_tail lst_ih, { refl, }, { simp, from lst_ih _, }, end theorem take_idem (hml: m ≤ len lst): take m (take m lst hml) ( begin rw len_take, end ) = take m lst hml := begin induction m with m hm generalizing lst, { refl, }, { cases lst, { exfalso, from lt_nzero (lt_iff_succ_le.mpr hml), }, { simp, apply hm, }, }, end theorem take_take (hml: m ≤ len lst) (hnl: n ≤ len (take m lst hml)): take n (take m lst hml) hnl = take n lst ( begin rw len_take at hnl, from le_trans hnl hml, end ) := begin induction n with n hn generalizing m lst, { refl, }, { cases lst, { exfalso, rw len_take at hnl, from lt_nzero (lt_iff_succ_le.mpr (le_trans hnl hml)), }, { cases m, { exfalso, simp at hnl, from lt_nzero (lt_iff_succ_le.mpr hnl), }, { simp, apply hn, }, }, }, end theorem drop_drop (hml: m ≤ len lst) (hnl: n ≤ len (drop m lst hml)): drop n (drop m lst hml) hnl = drop (m + n) lst ( begin rw ←len_drop hml, rw add_comm m n, from le_comb hnl le_refl, end ) := begin induction m with m hm generalizing n lst, { simp, }, { cases lst, { exfalso, from succ_ne_zero (le_zero hml), }, { simp, apply hm, }, }, end theorem drop_one_tail (h1l: 1 ≤ len lst): drop 1 lst h1l = tail lst ( begin rw nonempty_iff_len_nonzero, assume h, rw h at h1l, from succ_nle_zero h1l, end ) := begin cases lst, { refl, }, { refl, }, end theorem take_init (hnl: len xs ≤ len (xs ++ singleton x)): take (len xs) (xs ++ singleton x) hnl = xs := begin induction xs, { refl, }, { simp, apply xs_ih, }, end theorem take_ignore (hnl: n ≤ len xs): take n (xs ++ singleton x) ( begin rw len_concat_add, from le_add_rhs hnl, end ) = take n xs hnl := begin suffices h: take n (take (len xs) (xs ++ singleton x) _) _ = take n xs hnl, { rw @take_take _ (xs ++ singleton x) (len xs) n _ _ at h, from h, }, { conv { to_lhs, congr, skip, rw take_init, }, }, { simp, from @le_to_add _ 1, }, { simp, assumption, }, end theorem rev_drop_take (hmn: m + n = len lst): drop m lst ( begin rw ←hmn, from le_to_add, end ) = rev (take n (rev lst) ( begin rw rev_len, rw ←hmn, rw add_comm, from le_to_add, end )) := begin induction m with m hm generalizing lst, { simp at hmn, conv in n {rw hmn}, conv in (len lst) {rw ←rev_len}, rw take_all, conv in zero {rw zz}, rw drop_zero, rw rev_rev, }, { cases lst, { exfalso, rw succ_add at hmn, from succ_ne_zero hmn, }, { rw drop_succ_cons, have hmlt: m + n = len lst_tail, { simp at hmn, assumption, }, have := hm hmlt, { rw this, conv in (rev (lst_head :: lst_tail)) {rw rev_cons}, rw take_ignore, }, }, }, end -- for some reason this has to be a Type ??? -- otherwise has_mem complains variable {T': Type u} variables {x' y' z': T'} variables {xs' ys' zs': mylist T'} -- the well-founded relation "is one strictly shorter than the other" def shorter (lst1 lst2: mylist T) := len lst1 < len lst2 private theorem shorter_lt: shorter lst1 lst2 ↔ lt (len lst1) (len lst2) := iff.rfl -- it should be easier than this, right? how on earth do I just say -- "because < is well-founded". theorem shorter_well_founded: well_founded (@shorter T) := begin split, -- can't figure out how to use "generalizing" suffices h: ∀ a: mylist T, ∀ n, n = len a → acc shorter a, { intro a, from h a (len a) rfl, }, { intros a n, revert n a, assume hnla, apply strict_strong_induction (λ n, ∀ a : mylist T, n = len a → acc shorter a), { intro n, assume h_ih, intro a, assume hnla, split, intro y, assume hysa, rw [shorter_lt, ←hnla] at hysa, from h_ih (len y) hysa y rfl, }, }, end -- this made the red lines go away namespace lwf instance: has_well_founded (mylist T) := ⟨shorter, shorter_well_founded⟩ end lwf -- attempts at defining things that recurse on the init -- private def lst_is_odd: mylist T → Prop -- | empty := false -- | (x :: xs) := have shorter (init (x :: xs) (cons_not_empty)) (x :: xs), -- from begin -- rw shorter_lt, -- have: ∀ x y, lt x y ↔ x < y := (λ x y, iff.rfl), -- rw this, -- rw lt_iff_succ_le, -- rw ←len_init, -- from le_refl, -- end, -- ¬lst_is_odd (init (x :: xs) (cons_not_empty)) -- TODO: make this work -- def palindrome: mylist T → Prop -- | empty := true -- | (x :: empty) := true -- | (x :: y :: xs) := x = last (y :: xs) (cons_not_empty _ _) -- ∧ palindrome (init (y :: xs) (cons_not_empty _ _)) end mylist end hidden
4494c56fcf966f1a686a47941d6cb925e4aa7f11
aa3f8992ef7806974bc1ffd468baa0c79f4d6643
/tests/lean/run/class11.lean
faf7b9fa622be3809df077d707c3f1e2e0748bb0
[ "Apache-2.0" ]
permissive
codyroux/lean
7f8dff750722c5382bdd0a9a9275dc4bb2c58dd3
0cca265db19f7296531e339192e9b9bae4a31f8b
refs/heads/master
1,610,909,964,159
1,407,084,399,000
1,416,857,075,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
184
lean
import logic constant C {A : Type} : A → Prop class C constant f {A : Type} (a : A) [H : C a] : Prop definition g {A : Type} (a b : A) {H1 : C a} {H2 : C b} : Prop := f a ∧ f b
f6367c86efedaba307d125e7a30893c13c8f07be
a7dd8b83f933e72c40845fd168dde330f050b1c9
/src/topology/algebra/uniform_ring.lean
f5e0b03eeea657a1bd2487f6040e54fb17f78d4d
[ "Apache-2.0" ]
permissive
NeilStrickland/mathlib
10420e92ee5cb7aba1163c9a01dea2f04652ed67
3efbd6f6dff0fb9b0946849b43b39948560a1ffe
refs/heads/master
1,589,043,046,346
1,558,938,706,000
1,558,938,706,000
181,285,984
0
0
Apache-2.0
1,568,941,848,000
1,555,233,833,000
Lean
UTF-8
Lean
false
false
6,577
lean
/- Copyright (c) 2018 Patrick Massot. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Patrick Massot, Johannes Hölzl Theory of topological rings with uniform structure. -/ import topology.algebra.group_completion topology.algebra.ring open classical set lattice filter topological_space add_comm_group local attribute [instance] classical.prop_decidable noncomputable theory namespace uniform_space.completion open dense_embedding uniform_space variables (α : Type*) [ring α] [uniform_space α] [uniform_add_group α] [topological_ring α] [separated α] instance is_Z_bilin_mul : is_Z_bilin (λp:α×α, p.1 * p.2) := ⟨assume a a' b, add_mul a a' b, assume a b b', mul_add a b b'⟩ instance : has_one (completion α) := ⟨(1:α)⟩ instance : has_mul (completion α) := ⟨λa b, extend (dense_embedding_coe.prod dense_embedding_coe) ((coe : α → completion α) ∘ (λp:α×α, p.1 * p.2)) (a, b)⟩ lemma coe_one : ((1 : α) : completion α) = 1 := rfl lemma continuous_mul' : continuous (λp:completion α×completion α, p.1 * p.2) := suffices continuous $ extend (dense_embedding_coe.prod dense_embedding_coe) $ ((coe : α → completion α) ∘ (λp:α×α, p.1 * p.2)), { convert this, ext ⟨a, b⟩, refl }, extend_Z_bilin dense_embedding_coe dense_embedding_coe ((continuous_coe α).comp continuous_mul') section rules variables {α} lemma coe_mul (a b : α) : ((a * b : α) : completion α) = a * b := eq.symm (extend_e_eq (dense_embedding_coe.prod dense_embedding_coe) (a, b)) lemma continuous_mul {β : Type*} [topological_space β] {f g : β → completion α} (hf : continuous f) (hg : continuous g) : continuous (λb, f b * g b) := (continuous_mul' α).comp (continuous.prod_mk hf hg) end rules instance : ring (completion α) := { one_mul := assume a, completion.induction_on a (is_closed_eq (continuous_mul continuous_const continuous_id) continuous_id) (assume a, by rw [← coe_one, ← coe_mul, one_mul]), mul_one := assume a, completion.induction_on a (is_closed_eq (continuous_mul continuous_id continuous_const) continuous_id) (assume a, by rw [← coe_one, ← coe_mul, mul_one]), mul_assoc := assume a b c, completion.induction_on₃ a b c (is_closed_eq (continuous_mul (continuous_mul continuous_fst (continuous_fst.comp continuous_snd)) (continuous_snd.comp continuous_snd)) (continuous_mul continuous_fst (continuous_mul (continuous_fst.comp continuous_snd) (continuous_snd.comp continuous_snd)))) (assume a b c, by rw [← coe_mul, ← coe_mul, ← coe_mul, ← coe_mul, mul_assoc]), left_distrib := assume a b c, completion.induction_on₃ a b c (is_closed_eq (continuous_mul continuous_fst (continuous_add (continuous_fst.comp continuous_snd) (continuous_snd.comp continuous_snd))) (continuous_add (continuous_mul continuous_fst (continuous_fst.comp continuous_snd)) (continuous_mul continuous_fst (continuous_snd.comp continuous_snd)))) (assume a b c, by rw [← coe_add, ← coe_mul, ← coe_mul, ← coe_mul, ←coe_add, mul_add]), right_distrib := assume a b c, completion.induction_on₃ a b c (is_closed_eq (continuous_mul (continuous_add continuous_fst (continuous_fst.comp continuous_snd)) (continuous_snd.comp continuous_snd)) (continuous_add (continuous_mul continuous_fst (continuous_snd.comp continuous_snd)) (continuous_mul (continuous_fst.comp continuous_snd) (continuous_snd.comp continuous_snd)))) (assume a b c, by rw [← coe_add, ← coe_mul, ← coe_mul, ← coe_mul, ←coe_add, add_mul]), ..completion.add_comm_group, ..completion.has_mul α, ..completion.has_one α } instance is_ring_hom_coe : is_ring_hom (coe : α → completion α) := ⟨coe_one α, assume a b, coe_mul a b, assume a b, coe_add a b⟩ universe u instance is_ring_hom_extension {β : Type u} [uniform_space β] [ring β] [uniform_add_group β] [topological_ring β] [complete_space β] [separated β] {f : α → β} [is_ring_hom f] (hf : continuous f) : is_ring_hom (completion.extension f) := have hf : uniform_continuous f, from uniform_continuous_of_continuous hf, { map_one := by rw [← coe_one, extension_coe hf, is_ring_hom.map_one f], map_add := assume a b, completion.induction_on₂ a b (is_closed_eq (continuous_extension.comp continuous_add') (continuous_add (continuous_extension.comp continuous_fst) (continuous_extension.comp continuous_snd))) (assume a b, by rw [← coe_add, extension_coe hf, extension_coe hf, extension_coe hf, is_add_group_hom.map_add f]), map_mul := assume a b, completion.induction_on₂ a b (is_closed_eq (continuous_extension.comp (continuous_mul' α)) (_root_.continuous_mul (continuous_extension.comp continuous_fst) (continuous_extension.comp continuous_snd))) (assume a b, by rw [← coe_mul, extension_coe hf, extension_coe hf, extension_coe hf, is_ring_hom.map_mul f]) } end uniform_space.completion namespace uniform_space variables {α : Type*} lemma ring_sep_rel (α) [comm_ring α] [uniform_space α] [uniform_add_group α] [topological_ring α] : separation_setoid α = submodule.quotient_rel (ideal.closure ⊥) := setoid.ext $ assume x y, group_separation_rel x y lemma ring_sep_quot (α) [r : comm_ring α] [uniform_space α] [uniform_add_group α] [topological_ring α] : quotient (separation_setoid α) = (⊥ : ideal α).closure.quotient := by rw [@ring_sep_rel α r]; refl def sep_quot_equiv_ring_quot (α) [r : comm_ring α] [uniform_space α] [uniform_add_group α] [topological_ring α] : quotient (separation_setoid α) ≃ (⊥ : ideal α).closure.quotient := quotient.congr $ assume x y, group_separation_rel x y /- TODO: use a form of transport a.k.a. lift definition a.k.a. transfer -/ instance [comm_ring α] [uniform_space α] [uniform_add_group α] [topological_ring α] : comm_ring (quotient (separation_setoid α)) := by rw ring_sep_quot α; apply_instance instance [comm_ring α] [uniform_space α] [uniform_add_group α] [topological_ring α] : topological_ring (quotient (separation_setoid α)) := begin convert topological_ring_quotient (⊥ : ideal α).closure, { apply ring_sep_rel }, { dsimp [topological_ring_quotient_topology, quotient.topological_space, to_topological_space], congr, apply ring_sep_rel, apply ring_sep_rel }, { apply ring_sep_rel }, { simp [uniform_space.comm_ring] }, end end uniform_space
305166bf58f95f2bd2ea9609b6e28e0ab23c0478
a9d0fb7b0e4f802bd3857b803e6c5c23d87fef91
/library/data/nat/examples/fib.lean
eaee98a1efacced66fc94162b96fd0522cb92cbe
[ "Apache-2.0" ]
permissive
soonhokong/lean-osx
4a954262c780e404c1369d6c06516161d07fcb40
3670278342d2f4faa49d95b46d86642d7875b47c
refs/heads/master
1,611,410,334,552
1,474,425,686,000
1,474,425,686,000
12,043,103
5
1
null
null
null
null
UTF-8
Lean
false
false
1,470
lean
/- Copyright (c) 2015 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura -/ import data.nat open nat definition fib : nat → nat | 0 := 1 | 1 := 1 | (n+2) := fib (n+1) + fib n private definition fib_fast_aux : nat → (nat × nat) | 0 := (0, 1) | 1 := (1, 1) | (n+2) := match (fib_fast_aux (n+1)) with | (fn, fn1) := (fn1, fn1 + fn) end open prod -- Get .1 .2 notation for pairs definition fib_fast (n : nat) := (fib_fast_aux n).2 -- We now prove that fib_fast and fib are equal lemma fib_fast_aux_lemma : ∀ n, (fib_fast_aux (succ n)).1 = (fib_fast_aux n).2 | 0 := rfl | 1 := rfl | (succ (succ n)) := sorry /- begin -- TODO(Leo): fix unfold -- unfold fib_fast_aux at {1}, esimp, -- rewrite [-prod.eta (fib_fast_aux _)], apply sorry end -/ theorem fib_eq_fib_fast : ∀ n, fib_fast n = fib n | 0 := rfl | 1 := rfl | (succ (succ n)) := sorry /- begin have feq : fib_fast n = fib n, from fib_eq_fib_fast n, have f1eq : fib_fast (succ n) = fib (succ n), from fib_eq_fib_fast (succ n), -- TODO(Leo): fix unfold apply sorry /- unfold [fib, fib_fast, fib_fast_aux], rewrite [-prod.eta (fib_fast_aux _)], fold fib_fast (succ n), rewrite f1eq, rewrite fib_fast_aux_lemma, fold fib_fast n, rewrite feq, -/ end -/
99c25bb06800b37ca25785be6165d958870b0e2e
8cae430f0a71442d02dbb1cbb14073b31048e4b0
/scripts/lint_mathlib.lean
f4ae1f3d52ca71256400e5220d164e7fdfff000c
[ "Apache-2.0" ]
permissive
leanprover-community/mathlib
56a2cadd17ac88caf4ece0a775932fa26327ba0e
442a83d738cb208d3600056c489be16900ba701d
refs/heads/master
1,693,584,102,358
1,693,471,902,000
1,693,471,902,000
97,922,418
1,595
352
Apache-2.0
1,694,693,445,000
1,500,624,130,000
Lean
UTF-8
Lean
false
false
3,745
lean
/- Copyright (c) 2020 Robert Y. Lewis. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Robert Y. Lewis, Gabriel Ebner -/ import tactic.lint import system.io -- these are required import all -- then import everything, to parse the library for failing linters /-! # lint_mathlib Script that runs the linters listed in `mathlib_linters` on all of mathlib. As a side effect, the file `nolints.txt` is generated in the current directory. This script needs to be run in the root directory of mathlib. It assumes that files generated by `mk_all.sh` are present. This is used by the CI script for mathlib. Usage: `lean --run scripts/lint_mathlib.lean` The optional flag `--github` can be placed at the end of the line, this is intended for CI and when this flag is enabled `lint_mathlib` will output error codes understood by GitHub actions. These tag linter failures with the position in the source code causing the failure. The purpose of this is to cause GitHub to annotate the files tab of PRs with the linter failure messages when a linter fails. -/ open native tactic /-- Returns the contents of the `nolints.txt` file. -/ meta def mk_nolint_file (env : environment) (mathlib_path_len : ℕ) (results : list (name × linter × rb_map name string)) : format := do let failed_decls_by_file := rb_lmap.of_list (do (linter_name, _, decls) ← results, (decl_name, _) ← decls.to_list, let file_name := (env.decl_olean decl_name).get_or_else "", pure (file_name.popn mathlib_path_len, decl_name.to_string, linter_name.last)), format.intercalate format.line $ "import .all" :: "run_cmd tactic.skip" :: do (file_name, decls) ← failed_decls_by_file.to_list.reverse, "" :: ("-- " ++ file_name) :: do (decl, linters) ← (rb_lmap.of_list decls).to_list.reverse, pure $ "apply_nolint " ++ decl ++ " " ++ " ".intercalate linters /-- Parses the list of lines of the `nolints.txt` into an `rb_lmap` from linters to declarations. -/ meta def parse_nolints (lines : list string) : rb_lmap name name := rb_lmap.of_list $ do line ← lines, guard $ line.front = 'a', _ :: decl :: linters ← pure $ line.split (= ' ') | [], let decl := name.from_string decl, linter ← linters, pure (linter, decl) open io io.fs /-- Reads the `nolints.txt`, and returns it as an `rb_lmap` from linters to declarations. -/ meta def read_nolints_file (fn := "scripts/nolints.txt") : io (rb_lmap name name) := do cont ← io.fs.read_file fn, pure $ parse_nolints $ cont.to_string.split (= '\n') meta instance coe_tactic_to_io {α} : has_coe (tactic α) (io α) := ⟨run_tactic⟩ /-- Writes a file with the given contents. -/ meta def io.write_file (fn : string) (contents : string) : io unit := do h ← mk_file_handle fn mode.write, put_str h contents, close h /-- Runs when called with `lean --run` -/ meta def main : io unit := do env ← get_env, args ← io.cmdline_args, mathlib_path ← get_mathlib_dir, decls ← lint_project_decls mathlib_path, linters ← get_linters mathlib_linters, let non_auto_decls := decls.filter (λ d, ¬ d.is_auto_or_internal env), results₀ ← lint_core decls non_auto_decls linters, nolint_file ← read_nolints_file, let results := (do (linter_name, linter, decls) ← results₀, [(linter_name, linter, (nolint_file.find linter_name).foldl rb_map.erase decls)]), let emit_workflow_commands : bool := "--github" ∈ args, io.print $ to_string $ format_linter_results env results decls non_auto_decls mathlib_path.length "in mathlib" tt lint_verbosity.medium linters.length emit_workflow_commands, io.write_file "nolints.txt" $ to_string $ mk_nolint_file env mathlib_path.length results₀, if results.all (λ r, r.2.2.empty) then pure () else io.fail ""
1d4c5feb90c0d404e9548dfb2b63650c16e187b4
d406927ab5617694ec9ea7001f101b7c9e3d9702
/src/category_theory/triangulated/basic.lean
7cfece83be0f9c38dc65fd9b62fe34d9f8dcb7ce
[ "Apache-2.0" ]
permissive
alreadydone/mathlib
dc0be621c6c8208c581f5170a8216c5ba6721927
c982179ec21091d3e102d8a5d9f5fe06c8fafb73
refs/heads/master
1,685,523,275,196
1,670,184,141,000
1,670,184,141,000
287,574,545
0
0
Apache-2.0
1,670,290,714,000
1,597,421,623,000
Lean
UTF-8
Lean
false
false
4,010
lean
/- Copyright (c) 2021 Luke Kershaw. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Luke Kershaw -/ import data.int.basic import category_theory.shift /-! # Triangles This file contains the definition of triangles in an additive category with an additive shift. It also defines morphisms between these triangles. TODO: generalise this to n-angles in n-angulated categories as in https://arxiv.org/abs/1006.4592 -/ noncomputable theory open category_theory open category_theory.limits universes v v₀ v₁ v₂ u u₀ u₁ u₂ namespace category_theory.pretriangulated open category_theory.category /- We work in a category `C` equipped with a shift. -/ variables (C : Type u) [category.{v} C] [has_shift C ℤ] /-- A triangle in `C` is a sextuple `(X,Y,Z,f,g,h)` where `X,Y,Z` are objects of `C`, and `f : X ⟶ Y`, `g : Y ⟶ Z`, `h : Z ⟶ X⟦1⟧` are morphisms in `C`. See <https://stacks.math.columbia.edu/tag/0144>. -/ structure triangle := mk' :: (obj₁ : C) (obj₂ : C) (obj₃ : C) (mor₁ : obj₁ ⟶ obj₂) (mor₂ : obj₂ ⟶ obj₃) (mor₃ : obj₃ ⟶ obj₁⟦(1:ℤ)⟧) variable {C} /-- A triangle `(X,Y,Z,f,g,h)` in `C` is defined by the morphisms `f : X ⟶ Y`, `g : Y ⟶ Z` and `h : Z ⟶ X⟦1⟧`. -/ @[simps] def triangle.mk {X Y Z : C} (f : X ⟶ Y) (g : Y ⟶ Z) (h : Z ⟶ X⟦(1:ℤ)⟧) : triangle C := { obj₁ := X, obj₂ := Y, obj₃ := Z, mor₁ := f, mor₂ := g, mor₃ := h } section variables [has_zero_object C] [has_zero_morphisms C] open_locale zero_object instance : inhabited (triangle C) := ⟨⟨0,0,0,0,0,0⟩⟩ /-- For each object in `C`, there is a triangle of the form `(X,X,0,𝟙 X,0,0)` -/ @[simps] def contractible_triangle (X : C) : triangle C := triangle.mk (𝟙 X) (0 : X ⟶ 0) 0 end /-- A morphism of triangles `(X,Y,Z,f,g,h) ⟶ (X',Y',Z',f',g',h')` in `C` is a triple of morphisms `a : X ⟶ X'`, `b : Y ⟶ Y'`, `c : Z ⟶ Z'` such that `a ≫ f' = f ≫ b`, `b ≫ g' = g ≫ c`, and `a⟦1⟧' ≫ h = h' ≫ c`. In other words, we have a commutative diagram: ``` f g h X ───> Y ───> Z ───> X⟦1⟧ │ │ │ │ │a │b │c │a⟦1⟧' V V V V X' ───> Y' ───> Z' ───> X'⟦1⟧ f' g' h' ``` See <https://stacks.math.columbia.edu/tag/0144>. -/ @[ext] structure triangle_morphism (T₁ : triangle C) (T₂ : triangle C) := (hom₁ : T₁.obj₁ ⟶ T₂.obj₁) (hom₂ : T₁.obj₂ ⟶ T₂.obj₂) (hom₃ : T₁.obj₃ ⟶ T₂.obj₃) (comm₁' : T₁.mor₁ ≫ hom₂ = hom₁ ≫ T₂.mor₁ . obviously) (comm₂' : T₁.mor₂ ≫ hom₃ = hom₂ ≫ T₂.mor₂ . obviously) (comm₃' : T₁.mor₃ ≫ hom₁⟦1⟧' = hom₃ ≫ T₂.mor₃ . obviously) restate_axiom triangle_morphism.comm₁' restate_axiom triangle_morphism.comm₂' restate_axiom triangle_morphism.comm₃' attribute [simp, reassoc] triangle_morphism.comm₁ triangle_morphism.comm₂ triangle_morphism.comm₃ /-- The identity triangle morphism. -/ @[simps] def triangle_morphism_id (T : triangle C) : triangle_morphism T T := { hom₁ := 𝟙 T.obj₁, hom₂ := 𝟙 T.obj₂, hom₃ := 𝟙 T.obj₃ } instance (T : triangle C) : inhabited (triangle_morphism T T) := ⟨triangle_morphism_id T⟩ variables {T₁ T₂ T₃ : triangle C} /-- Composition of triangle morphisms gives a triangle morphism. -/ @[simps] def triangle_morphism.comp (f : triangle_morphism T₁ T₂) (g : triangle_morphism T₂ T₃) : triangle_morphism T₁ T₃ := { hom₁ := f.hom₁ ≫ g.hom₁, hom₂ := f.hom₂ ≫ g.hom₂, hom₃ := f.hom₃ ≫ g.hom₃ } /-- Triangles with triangle morphisms form a category. -/ @[simps] instance triangle_category : category (triangle C) := { hom := λ A B, triangle_morphism A B, id := λ A, triangle_morphism_id A, comp := λ A B C f g, f.comp g } end category_theory.pretriangulated
0f2a8723cf3f5493909a941b0a038639025016ca
d406927ab5617694ec9ea7001f101b7c9e3d9702
/src/category_theory/limits/final.lean
4ef8f7ff0158f1f547fa25e0f3b51c9481bb4fa7
[ "Apache-2.0" ]
permissive
alreadydone/mathlib
dc0be621c6c8208c581f5170a8216c5ba6721927
c982179ec21091d3e102d8a5d9f5fe06c8fafb73
refs/heads/master
1,685,523,275,196
1,670,184,141,000
1,670,184,141,000
287,574,545
0
0
Apache-2.0
1,670,290,714,000
1,597,421,623,000
Lean
UTF-8
Lean
false
false
20,973
lean
/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import category_theory.punit import category_theory.structured_arrow import category_theory.is_connected import category_theory.limits.yoneda import category_theory.limits.types /-! # Final and initial functors A functor `F : C ⥤ D` is final if for every `d : D`, the comma category of morphisms `d ⟶ F.obj c` is connected. Dually, a functor `F : C ⥤ D` is initial if for every `d : D`, the comma category of morphisms `F.obj c ⟶ d` is connected. We show that right adjoints are examples of final functors, while left adjoints are examples of initial functors. For final functors, we prove that the following three statements are equivalent: 1. `F : C ⥤ D` is final. 2. Every functor `G : D ⥤ E` has a colimit if and only if `F ⋙ G` does, and these colimits are isomorphic via `colimit.pre G F`. 3. `colimit (F ⋙ coyoneda.obj (op d)) ≅ punit`. Starting at 1. we show (in `cocones_equiv`) that the categories of cocones over `G : D ⥤ E` and over `F ⋙ G` are equivalent. (In fact, via an equivalence which does not change the cocone point.) This readily implies 2., as `comp_has_colimit`, `has_colimit_of_comp`, and `colimit_iso`. From 2. we can specialize to `G = coyoneda.obj (op d)` to obtain 3., as `colimit_comp_coyoneda_iso`. From 3., we prove 1. directly in `cofinal_of_colimit_comp_coyoneda_iso_punit`. Dually, we prove that if a functor `F : C ⥤ D` is initial, then any functor `G : D ⥤ E` has a limit if and only if `F ⋙ G` does, and these limits are isomorphic via `limit.pre G F`. ## Naming There is some discrepancy in the literature about naming; some say 'cofinal' instead of 'final'. The explanation for this is that the 'co' prefix here is *not* the usual category-theoretic one indicating duality, but rather indicating the sense of "along with". ## Future work Dualise condition 3 above and the implications 2 ⇒ 3 and 3 ⇒ 1 to initial functors. ## References * https://stacks.math.columbia.edu/tag/09WN * https://ncatlab.org/nlab/show/final+functor * Borceux, Handbook of Categorical Algebra I, Section 2.11. (Note he reverses the roles of definition and main result relative to here!) -/ noncomputable theory universes v v₁ v₂ v₃ u₁ u₂ u₃ namespace category_theory namespace functor open opposite open category_theory.limits section arbitrary_universe variables {C : Type u₁} [category.{v₁} C] variables {D : Type u₂} [category.{v₂} D] /-- A functor `F : C ⥤ D` is final if for every `d : D`, the comma category of morphisms `d ⟶ F.obj c` is connected. See <https://stacks.math.columbia.edu/tag/04E6> -/ class final (F : C ⥤ D) : Prop := (out (d : D) : is_connected (structured_arrow d F)) attribute [instance] final.out /-- A functor `F : C ⥤ D` is initial if for every `d : D`, the comma category of morphisms `F.obj c ⟶ d` is connected. -/ class initial (F : C ⥤ D) : Prop := (out (d : D) : is_connected (costructured_arrow F d)) attribute [instance] initial.out instance final_op_of_initial (F : C ⥤ D) [initial F] : final F.op := { out := λ d, is_connected_of_equivalent (costructured_arrow_op_equivalence F (unop d)) } instance initial_op_of_final (F : C ⥤ D) [final F] : initial F.op := { out := λ d, is_connected_of_equivalent (structured_arrow_op_equivalence F (unop d)) } lemma final_of_initial_op (F : C ⥤ D) [initial F.op] : final F := { out := λ d, @is_connected_of_is_connected_op _ _ (is_connected_of_equivalent (structured_arrow_op_equivalence F d).symm) } lemma initial_of_final_op (F : C ⥤ D) [final F.op] : initial F := { out := λ d, @is_connected_of_is_connected_op _ _ (is_connected_of_equivalent (costructured_arrow_op_equivalence F d).symm) } /-- If a functor `R : D ⥤ C` is a right adjoint, it is final. -/ lemma final_of_adjunction {L : C ⥤ D} {R : D ⥤ C} (adj : L ⊣ R) : final R := { out := λ c, let u : structured_arrow c R := structured_arrow.mk (adj.unit.app c) in @zigzag_is_connected _ _ ⟨u⟩ $ λ f g, relation.refl_trans_gen.trans (relation.refl_trans_gen.single (show zag f u, from or.inr ⟨structured_arrow.hom_mk ((adj.hom_equiv c f.right).symm f.hom) (by simp)⟩)) (relation.refl_trans_gen.single (show zag u g, from or.inl ⟨structured_arrow.hom_mk ((adj.hom_equiv c g.right).symm g.hom) (by simp)⟩)) } /-- If a functor `L : C ⥤ D` is a left adjoint, it is initial. -/ lemma initial_of_adjunction {L : C ⥤ D} {R : D ⥤ C} (adj : L ⊣ R) : initial L := { out := λ d, let u : costructured_arrow L d := costructured_arrow.mk (adj.counit.app d) in @zigzag_is_connected _ _ ⟨u⟩ $ λ f g, relation.refl_trans_gen.trans (relation.refl_trans_gen.single (show zag f u, from or.inl ⟨costructured_arrow.hom_mk (adj.hom_equiv f.left d f.hom) (by simp)⟩)) (relation.refl_trans_gen.single (show zag u g, from or.inr ⟨costructured_arrow.hom_mk (adj.hom_equiv g.left d g.hom) (by simp)⟩)) } @[priority 100] instance final_of_is_right_adjoint (F : C ⥤ D) [h : is_right_adjoint F] : final F := final_of_adjunction h.adj @[priority 100] instance initial_of_is_left_adjoint (F : C ⥤ D) [h : is_left_adjoint F] : initial F := initial_of_adjunction h.adj namespace final variables (F : C ⥤ D) [final F] instance (d : D) : nonempty (structured_arrow d F) := is_connected.is_nonempty variables {E : Type u₃} [category.{v₃} E] (G : D ⥤ E) /-- When `F : C ⥤ D` is cofinal, we denote by `lift F d` an arbitrary choice of object in `C` such that there exists a morphism `d ⟶ F.obj (lift F d)`. -/ def lift (d : D) : C := (classical.arbitrary (structured_arrow d F)).right /-- When `F : C ⥤ D` is cofinal, we denote by `hom_to_lift` an arbitrary choice of morphism `d ⟶ F.obj (lift F d)`. -/ def hom_to_lift (d : D) : d ⟶ F.obj (lift F d) := (classical.arbitrary (structured_arrow d F)).hom /-- We provide an induction principle for reasoning about `lift` and `hom_to_lift`. We want to perform some construction (usually just a proof) about the particular choices `lift F d` and `hom_to_lift F d`, it suffices to perform that construction for some other pair of choices (denoted `X₀ : C` and `k₀ : d ⟶ F.obj X₀` below), and to show how to transport such a construction *both* directions along a morphism between such choices. -/ def induction {d : D} (Z : Π (X : C) (k : d ⟶ F.obj X), Sort*) (h₁ : Π X₁ X₂ (k₁ : d ⟶ F.obj X₁) (k₂ : d ⟶ F.obj X₂) (f : X₁ ⟶ X₂), (k₁ ≫ F.map f = k₂) → Z X₁ k₁ → Z X₂ k₂) (h₂ : Π X₁ X₂ (k₁ : d ⟶ F.obj X₁) (k₂ : d ⟶ F.obj X₂) (f : X₁ ⟶ X₂), (k₁ ≫ F.map f = k₂) → Z X₂ k₂ → Z X₁ k₁) {X₀ : C} {k₀ : d ⟶ F.obj X₀} (z : Z X₀ k₀) : Z (lift F d) (hom_to_lift F d) := begin apply nonempty.some, apply @is_preconnected_induction _ _ _ (λ (Y : structured_arrow d F), Z Y.right Y.hom) _ _ { right := X₀, hom := k₀, } z, { intros j₁ j₂ f a, fapply h₁ _ _ _ _ f.right _ a, convert f.w.symm, dsimp, simp, }, { intros j₁ j₂ f a, fapply h₂ _ _ _ _ f.right _ a, convert f.w.symm, dsimp, simp, }, end variables {F G} /-- Given a cocone over `F ⋙ G`, we can construct a `cocone G` with the same cocone point. -/ @[simps] def extend_cocone : cocone (F ⋙ G) ⥤ cocone G := { obj := λ c, { X := c.X, ι := { app := λ X, G.map (hom_to_lift F X) ≫ c.ι.app (lift F X), naturality' := λ X Y f, begin dsimp, simp, -- This would be true if we'd chosen `lift F X` to be `lift F Y` -- and `hom_to_lift F X` to be `f ≫ hom_to_lift F Y`. apply induction F (λ Z k, G.map f ≫ G.map (hom_to_lift F Y) ≫ c.ι.app (lift F Y) = G.map k ≫ c.ι.app Z), { intros Z₁ Z₂ k₁ k₂ g a z, rw [←a, functor.map_comp, category.assoc, ←functor.comp_map, c.w, z], }, { intros Z₁ Z₂ k₁ k₂ g a z, rw [←a, functor.map_comp, category.assoc, ←functor.comp_map, c.w] at z, rw z, }, { rw [←functor.map_comp_assoc], }, end } }, map := λ X Y f, { hom := f.hom, } } @[simp] lemma colimit_cocone_comp_aux (s : cocone (F ⋙ G)) (j : C) : G.map (hom_to_lift F (F.obj j)) ≫ s.ι.app (lift F (F.obj j)) = s.ι.app j := begin -- This point is that this would be true if we took `lift (F.obj j)` to just be `j` -- and `hom_to_lift (F.obj j)` to be `𝟙 (F.obj j)`. apply induction F (λ X k, G.map k ≫ s.ι.app X = (s.ι.app j : _)), { intros j₁ j₂ k₁ k₂ f w h, rw ←w, rw ← s.w f at h, simpa using h, }, { intros j₁ j₂ k₁ k₂ f w h, rw ←w at h, rw ← s.w f, simpa using h, }, { exact s.w (𝟙 _), }, end variables (F G) /-- If `F` is cofinal, the category of cocones on `F ⋙ G` is equivalent to the category of cocones on `G`, for any `G : D ⥤ E`. -/ @[simps] def cocones_equiv : cocone (F ⋙ G) ≌ cocone G := { functor := extend_cocone, inverse := cocones.whiskering F, unit_iso := nat_iso.of_components (λ c, cocones.ext (iso.refl _) (by tidy)) (by tidy), counit_iso := nat_iso.of_components (λ c, cocones.ext (iso.refl _) (by tidy)) (by tidy), }. variables {G} /-- When `F : C ⥤ D` is cofinal, and `t : cocone G` for some `G : D ⥤ E`, `t.whisker F` is a colimit cocone exactly when `t` is. -/ def is_colimit_whisker_equiv (t : cocone G) : is_colimit (t.whisker F) ≃ is_colimit t := is_colimit.of_cocone_equiv (cocones_equiv F G).symm /-- When `F` is cofinal, and `t : cocone (F ⋙ G)`, `extend_cocone.obj t` is a colimit coconne exactly when `t` is. -/ def is_colimit_extend_cocone_equiv (t : cocone (F ⋙ G)) : is_colimit (extend_cocone.obj t) ≃ is_colimit t := is_colimit.of_cocone_equiv (cocones_equiv F G) /-- Given a colimit cocone over `G : D ⥤ E` we can construct a colimit cocone over `F ⋙ G`. -/ @[simps] def colimit_cocone_comp (t : colimit_cocone G) : colimit_cocone (F ⋙ G) := { cocone := _, is_colimit := (is_colimit_whisker_equiv F _).symm (t.is_colimit) } @[priority 100] instance comp_has_colimit [has_colimit G] : has_colimit (F ⋙ G) := has_colimit.mk (colimit_cocone_comp F (get_colimit_cocone G)) lemma colimit_pre_is_iso_aux {t : cocone G} (P : is_colimit t) : ((is_colimit_whisker_equiv F _).symm P).desc (t.whisker F) = 𝟙 t.X := begin dsimp [is_colimit_whisker_equiv], apply P.hom_ext, intro j, dsimp, simp, end instance colimit_pre_is_iso [has_colimit G] : is_iso (colimit.pre G F) := begin rw colimit.pre_eq (colimit_cocone_comp F (get_colimit_cocone G)) (get_colimit_cocone G), erw colimit_pre_is_iso_aux, dsimp, apply_instance, end section variables (G) /-- When `F : C ⥤ D` is cofinal, and `G : D ⥤ E` has a colimit, then `F ⋙ G` has a colimit also and `colimit (F ⋙ G) ≅ colimit G` https://stacks.math.columbia.edu/tag/04E7 -/ def colimit_iso [has_colimit G] : colimit (F ⋙ G) ≅ colimit G := as_iso (colimit.pre G F) end /-- Given a colimit cocone over `F ⋙ G` we can construct a colimit cocone over `G`. -/ @[simps] def colimit_cocone_of_comp (t : colimit_cocone (F ⋙ G)) : colimit_cocone G := { cocone := extend_cocone.obj t.cocone, is_colimit := (is_colimit_extend_cocone_equiv F _).symm (t.is_colimit), } /-- When `F` is cofinal, and `F ⋙ G` has a colimit, then `G` has a colimit also. We can't make this an instance, because `F` is not determined by the goal. (Even if this weren't a problem, it would cause a loop with `comp_has_colimit`.) -/ lemma has_colimit_of_comp [has_colimit (F ⋙ G)] : has_colimit G := has_colimit.mk (colimit_cocone_of_comp F (get_colimit_cocone (F ⋙ G))) section local attribute [instance] has_colimit_of_comp /-- When `F` is cofinal, and `F ⋙ G` has a colimit, then `G` has a colimit also and `colimit (F ⋙ G) ≅ colimit G` https://stacks.math.columbia.edu/tag/04E7 -/ def colimit_iso' [has_colimit (F ⋙ G)] : colimit (F ⋙ G) ≅ colimit G := as_iso (colimit.pre G F) end end final end arbitrary_universe namespace final variables {C : Type v} [category.{v} C] {D : Type v} [category.{v} D] (F : C ⥤ D) [final F] /-- If the universal morphism `colimit (F ⋙ coyoneda.obj (op d)) ⟶ colimit (coyoneda.obj (op d))` is an isomorphism (as it always is when `F` is cofinal), then `colimit (F ⋙ coyoneda.obj (op d)) ≅ punit` (simply because `colimit (coyoneda.obj (op d)) ≅ punit`). -/ def colimit_comp_coyoneda_iso (d : D) [is_iso (colimit.pre (coyoneda.obj (op d)) F)] : colimit (F ⋙ coyoneda.obj (op d)) ≅ punit := as_iso (colimit.pre (coyoneda.obj (op d)) F) ≪≫ coyoneda.colimit_coyoneda_iso (op d) lemma zigzag_of_eqv_gen_quot_rel {F : C ⥤ D} {d : D} {f₁ f₂ : Σ X, d ⟶ F.obj X} (t : eqv_gen (types.quot.rel.{v v} (F ⋙ coyoneda.obj (op d))) f₁ f₂) : zigzag (structured_arrow.mk f₁.2) (structured_arrow.mk f₂.2) := begin induction t, case eqv_gen.rel : x y r { obtain ⟨f, w⟩ := r, fconstructor, swap 2, fconstructor, left, fsplit, exact { right := f, } }, case eqv_gen.refl { fconstructor, }, case eqv_gen.symm : x y h ih { apply zigzag_symmetric, exact ih, }, case eqv_gen.trans : x y z h₁ h₂ ih₁ ih₂ { apply relation.refl_trans_gen.trans, exact ih₁, exact ih₂, } end /-- If `colimit (F ⋙ coyoneda.obj (op d)) ≅ punit` for all `d : D`, then `F` is cofinal. -/ lemma cofinal_of_colimit_comp_coyoneda_iso_punit (I : Π d, colimit (F ⋙ coyoneda.obj (op d)) ≅ punit) : final F := ⟨λ d, begin haveI : nonempty (structured_arrow d F), { have := (I d).inv punit.star, obtain ⟨j, y, rfl⟩ := limits.types.jointly_surjective'.{v v} this, exact ⟨structured_arrow.mk y⟩, }, apply zigzag_is_connected, rintros ⟨⟨⟨⟩⟩,X₁,f₁⟩ ⟨⟨⟨⟩⟩,X₂,f₂⟩, dsimp at *, let y₁ := colimit.ι (F ⋙ coyoneda.obj (op d)) X₁ f₁, let y₂ := colimit.ι (F ⋙ coyoneda.obj (op d)) X₂ f₂, have e : y₁ = y₂, { apply (I d).to_equiv.injective, ext, }, have t := types.colimit_eq.{v v} e, clear e y₁ y₂, exact zigzag_of_eqv_gen_quot_rel t, end⟩ end final namespace initial variables {C : Type u₁} [category.{v₁} C] {D : Type u₂} [category.{v₂} D] (F : C ⥤ D) [initial F] instance (d : D) : nonempty (costructured_arrow F d) := is_connected.is_nonempty variables {E : Type u₃} [category.{v₃} E] (G : D ⥤ E) /-- When `F : C ⥤ D` is initial, we denote by `lift F d` an arbitrary choice of object in `C` such that there exists a morphism `F.obj (lift F d) ⟶ d`. -/ def lift (d : D) : C := (classical.arbitrary (costructured_arrow F d)).left /-- When `F : C ⥤ D` is initial, we denote by `hom_to_lift` an arbitrary choice of morphism `F.obj (lift F d) ⟶ d`. -/ def hom_to_lift (d : D) : F.obj (lift F d) ⟶ d := (classical.arbitrary (costructured_arrow F d)).hom /-- We provide an induction principle for reasoning about `lift` and `hom_to_lift`. We want to perform some construction (usually just a proof) about the particular choices `lift F d` and `hom_to_lift F d`, it suffices to perform that construction for some other pair of choices (denoted `X₀ : C` and `k₀ : F.obj X₀ ⟶ d` below), and to show how to transport such a construction *both* directions along a morphism between such choices. -/ def induction {d : D} (Z : Π (X : C) (k : F.obj X ⟶ d), Sort*) (h₁ : Π X₁ X₂ (k₁ : F.obj X₁ ⟶ d) (k₂ : F.obj X₂ ⟶ d) (f : X₁ ⟶ X₂), (F.map f ≫ k₂ = k₁) → Z X₁ k₁ → Z X₂ k₂) (h₂ : Π X₁ X₂ (k₁ : F.obj X₁ ⟶ d) (k₂ : F.obj X₂ ⟶ d) (f : X₁ ⟶ X₂), (F.map f ≫ k₂ = k₁) → Z X₂ k₂ → Z X₁ k₁) {X₀ : C} {k₀ : F.obj X₀ ⟶ d} (z : Z X₀ k₀) : Z (lift F d) (hom_to_lift F d) := begin apply nonempty.some, apply @is_preconnected_induction _ _ _ (λ Y : costructured_arrow F d, Z Y.left Y.hom) _ _ { left := X₀, hom := k₀ } z, { intros j₁ j₂ f a, fapply h₁ _ _ _ _ f.left _ a, convert f.w, dsimp, simp, }, { intros j₁ j₂ f a, fapply h₂ _ _ _ _ f.left _ a, convert f.w, dsimp, simp, }, end variables {F G} /-- Given a cone over `F ⋙ G`, we can construct a `cone G` with the same cocone point. -/ @[simps] def extend_cone : cone (F ⋙ G) ⥤ cone G := { obj := λ c, { X := c.X, π := { app := λ d, c.π.app (lift F d) ≫ G.map (hom_to_lift F d), naturality' := λ X Y f, begin dsimp, simp, -- This would be true if we'd chosen `lift F Y` to be `lift F X` -- and `hom_to_lift F Y` to be `hom_to_lift F X ≫ f`. apply induction F (λ Z k, (c.π.app Z ≫ G.map k : c.X ⟶ _) = c.π.app (lift F X) ≫ G.map (hom_to_lift F X) ≫ G.map f), { intros Z₁ Z₂ k₁ k₂ g a z, rw [←a, functor.map_comp, ←functor.comp_map, ←category.assoc, ←category.assoc, c.w] at z, rw [z, category.assoc] }, { intros Z₁ Z₂ k₁ k₂ g a z, rw [←a, functor.map_comp, ←functor.comp_map, ←category.assoc, ←category.assoc, c.w, z, category.assoc] }, { rw [←functor.map_comp], }, end } }, map := λ X Y f, { hom := f.hom, } } @[simp] lemma limit_cone_comp_aux (s : cone (F ⋙ G)) (j : C) : s.π.app (lift F (F.obj j)) ≫ G.map (hom_to_lift F (F.obj j)) = s.π.app j := begin -- This point is that this would be true if we took `lift (F.obj j)` to just be `j` -- and `hom_to_lift (F.obj j)` to be `𝟙 (F.obj j)`. apply induction F (λ X k, s.π.app X ≫ G.map k = (s.π.app j : _)), { intros j₁ j₂ k₁ k₂ f w h, rw ←s.w f, rw ←w at h, simpa using h, }, { intros j₁ j₂ k₁ k₂ f w h, rw ←s.w f at h, rw ←w, simpa using h, }, { exact s.w (𝟙 _), }, end variables (F G) /-- If `F` is initial, the category of cones on `F ⋙ G` is equivalent to the category of cones on `G`, for any `G : D ⥤ E`. -/ @[simps] def cones_equiv : cone (F ⋙ G) ≌ cone G := { functor := extend_cone, inverse := cones.whiskering F, unit_iso := nat_iso.of_components (λ c, cones.ext (iso.refl _) (by tidy)) (by tidy), counit_iso := nat_iso.of_components (λ c, cones.ext (iso.refl _) (by tidy)) (by tidy), }. variables {G} /-- When `F : C ⥤ D` is initial, and `t : cone G` for some `G : D ⥤ E`, `t.whisker F` is a limit cone exactly when `t` is. -/ def is_limit_whisker_equiv (t : cone G) : is_limit (t.whisker F) ≃ is_limit t := is_limit.of_cone_equiv (cones_equiv F G).symm /-- When `F` is initial, and `t : cone (F ⋙ G)`, `extend_cone.obj t` is a limit cone exactly when `t` is. -/ def is_limit_extend_cone_equiv (t : cone (F ⋙ G)) : is_limit (extend_cone.obj t) ≃ is_limit t := is_limit.of_cone_equiv (cones_equiv F G) /-- Given a limit cone over `G : D ⥤ E` we can construct a limit cone over `F ⋙ G`. -/ @[simps] def limit_cone_comp (t : limit_cone G) : limit_cone (F ⋙ G) := { cone := _, is_limit := (is_limit_whisker_equiv F _).symm (t.is_limit) } @[priority 100] instance comp_has_limit [has_limit G] : has_limit (F ⋙ G) := has_limit.mk (limit_cone_comp F (get_limit_cone G)) lemma limit_pre_is_iso_aux {t : cone G} (P : is_limit t) : ((is_limit_whisker_equiv F _).symm P).lift (t.whisker F) = 𝟙 t.X := begin dsimp [is_limit_whisker_equiv], apply P.hom_ext, intro j, simp, end instance limit_pre_is_iso [has_limit G] : is_iso (limit.pre G F) := begin rw limit.pre_eq (limit_cone_comp F (get_limit_cone G)) (get_limit_cone G), erw limit_pre_is_iso_aux, dsimp, apply_instance, end section variables (G) /-- When `F : C ⥤ D` is initial, and `G : D ⥤ E` has a limit, then `F ⋙ G` has a limit also and `limit (F ⋙ G) ≅ limit G` https://stacks.math.columbia.edu/tag/04E7 -/ def limit_iso [has_limit G] : limit (F ⋙ G) ≅ limit G := (as_iso (limit.pre G F)).symm end /-- Given a limit cone over `F ⋙ G` we can construct a limit cone over `G`. -/ @[simps] def limit_cone_of_comp (t : limit_cone (F ⋙ G)) : limit_cone G := { cone := extend_cone.obj t.cone, is_limit := (is_limit_extend_cone_equiv F _).symm (t.is_limit), } /-- When `F` is initial, and `F ⋙ G` has a limit, then `G` has a limit also. We can't make this an instance, because `F` is not determined by the goal. (Even if this weren't a problem, it would cause a loop with `comp_has_limit`.) -/ lemma has_limit_of_comp [has_limit (F ⋙ G)] : has_limit G := has_limit.mk (limit_cone_of_comp F (get_limit_cone (F ⋙ G))) section local attribute [instance] has_limit_of_comp /-- When `F` is initial, and `F ⋙ G` has a limit, then `G` has a limit also and `limit (F ⋙ G) ≅ limit G` https://stacks.math.columbia.edu/tag/04E7 -/ def limit_iso' [has_limit (F ⋙ G)] : limit (F ⋙ G) ≅ limit G := (as_iso (limit.pre G F)).symm end end initial end functor end category_theory
d9270f464c9370094a66331dc72b4b9ce2cf142a
a45212b1526d532e6e83c44ddca6a05795113ddc
/src/group_theory/group_action.lean
680484e3e62bdef4b172be403a518e5000c3a4b8
[ "Apache-2.0" ]
permissive
fpvandoorn/mathlib
b21ab4068db079cbb8590b58fda9cc4bc1f35df4
b3433a51ea8bc07c4159c1073838fc0ee9b8f227
refs/heads/master
1,624,791,089,608
1,556,715,231,000
1,556,715,231,000
165,722,980
5
0
Apache-2.0
1,552,657,455,000
1,547,494,646,000
Lean
UTF-8
Lean
false
false
6,548
lean
/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes -/ import data.set.finite group_theory.coset universes u v w variables {α : Type u} {β : Type v} {γ : Type w} /-- Typeclass for types with a scalar multiplication operation, denoted `•` (`\bu`) -/ class has_scalar (α : Type u) (γ : Type v) := (smul : α → γ → γ) infixr ` • `:73 := has_scalar.smul /-- Typeclass for multiplictive actions by monoids. This generalizes group actions. -/ class mul_action (α : Type u) (β : Type v) [monoid α] extends has_scalar α β := (one_smul : ∀ b : β, (1 : α) • b = b) (mul_smul : ∀ (x y : α) (b : β), (x * y) • b = x • y • b) section variables [monoid α] [mul_action α β] theorem mul_smul (a₁ a₂ : α) (b : β) : (a₁ * a₂) • b = a₁ • a₂ • b := mul_action.mul_smul _ _ _ variable (α) @[simp] theorem one_smul (b : β) : (1 : α) • b = b := mul_action.one_smul α _ end namespace mul_action variables (α) [monoid α] [mul_action α β] def orbit (b : β) := set.range (λ x : α, x • b) variable {α} @[simp] lemma mem_orbit_iff {b₁ b₂ : β} : b₂ ∈ orbit α b₁ ↔ ∃ x : α, x • b₁ = b₂ := iff.rfl @[simp] lemma mem_orbit (b : β) (x : α) : x • b ∈ orbit α b := ⟨x, rfl⟩ @[simp] lemma mem_orbit_self (b : β) : b ∈ orbit α b := ⟨1, by simp [mul_action.one_smul]⟩ instance orbit_fintype (b : β) [fintype α] [decidable_eq β] : fintype (orbit α b) := set.fintype_range _ variable (α) def stabilizer (b : β) : set α := {x : α | x • b = b} variable {α} @[simp] lemma mem_stabilizer_iff {b : β} {x : α} : x ∈ stabilizer α b ↔ x • b = b := iff.rfl variables (α) (β) def fixed_points : set β := {b : β | ∀ x, x ∈ stabilizer α b} variables {α} (β) @[simp] lemma mem_fixed_points {b : β} : b ∈ fixed_points α β ↔ ∀ x : α, x • b = b := iff.rfl lemma mem_fixed_points' {b : β} : b ∈ fixed_points α β ↔ (∀ b', b' ∈ orbit α b → b' = b) := ⟨λ h b h₁, let ⟨x, hx⟩ := mem_orbit_iff.1 h₁ in hx ▸ h x, λ h b, mem_stabilizer_iff.2 (h _ (mem_orbit _ _))⟩ def comp_hom [monoid γ] (g : γ → α) [is_monoid_hom g] : mul_action γ β := { smul := λ x b, (g x) • b, one_smul := by simp [is_monoid_hom.map_one g, mul_action.one_smul], mul_smul := by simp [is_monoid_hom.map_mul g, mul_action.mul_smul] } end mul_action namespace mul_action variables [group α] [mul_action α β] section open mul_action quotient_group variables (α) (β) def to_perm (g : α) : equiv.perm β := { to_fun := (•) g, inv_fun := (•) g⁻¹, left_inv := λ a, by rw [← mul_action.mul_smul, inv_mul_self, mul_action.one_smul], right_inv := λ a, by rw [← mul_action.mul_smul, mul_inv_self, mul_action.one_smul] } variables {α} {β} instance : is_group_hom (to_perm α β) := { map_mul := λ x y, equiv.ext _ _ (λ a, mul_action.mul_smul x y a) } lemma bijective (g : α) : function.bijective (λ b : β, g • b) := (to_perm α β g).bijective lemma orbit_eq_iff {a b : β} : orbit α a = orbit α b ↔ a ∈ orbit α b:= ⟨λ h, h ▸ mem_orbit_self _, λ ⟨x, (hx : x • b = a)⟩, set.ext (λ c, ⟨λ ⟨y, (hy : y • a = c)⟩, ⟨y * x, show (y * x) • b = c, by rwa [mul_action.mul_smul, hx]⟩, λ ⟨y, (hy : y • b = c)⟩, ⟨y * x⁻¹, show (y * x⁻¹) • a = c, by conv {to_rhs, rw [← hy, ← mul_one y, ← inv_mul_self x, ← mul_assoc, mul_action.mul_smul, hx]}⟩⟩)⟩ instance (b : β) : is_subgroup (stabilizer α b) := { one_mem := mul_action.one_smul _ _, mul_mem := λ x y (hx : x • b = b) (hy : y • b = b), show (x * y) • b = b, by rw mul_action.mul_smul; simp *, inv_mem := λ x (hx : x • b = b), show x⁻¹ • b = b, by rw [← hx, ← mul_action.mul_smul, inv_mul_self, mul_action.one_smul, hx] } variables (α) (β) def orbit_rel : setoid β := { r := λ a b, a ∈ orbit α b, iseqv := ⟨mem_orbit_self, λ a b, by simp [orbit_eq_iff.symm, eq_comm], λ a b, by simp [orbit_eq_iff.symm, eq_comm] {contextual := tt}⟩ } variables {β} open quotient_group noncomputable def orbit_equiv_quotient_stabilizer (b : β) : orbit α b ≃ quotient (stabilizer α b) := equiv.symm (@equiv.of_bijective _ _ (λ x : quotient (stabilizer α b), quotient.lift_on' x (λ x, (⟨x • b, mem_orbit _ _⟩ : orbit α b)) (λ g h (H : _ = _), subtype.eq $ (mul_action.bijective (g⁻¹)).1 $ show g⁻¹ • (g • b) = g⁻¹ • (h • b), by rw [← mul_action.mul_smul, ← mul_action.mul_smul, H, inv_mul_self, mul_action.one_smul])) ⟨λ g h, quotient.induction_on₂' g h (λ g h H, quotient.sound' $ have H : g • b = h • b := subtype.mk.inj H, show (g⁻¹ * h) • b = b, by rw [mul_action.mul_smul, ← H, ← mul_action.mul_smul, inv_mul_self, mul_action.one_smul]), λ ⟨b, ⟨g, hgb⟩⟩, ⟨g, subtype.eq hgb⟩⟩) end open quotient_group mul_action is_subgroup def mul_left_cosets (H : set α) [is_subgroup H] (x : α) (y : quotient H) : quotient H := quotient.lift_on' y (λ y, quotient_group.mk ((x : α) * y)) (λ a b (hab : _ ∈ H), quotient_group.eq.2 (by rwa [mul_inv_rev, ← mul_assoc, mul_assoc (a⁻¹), inv_mul_self, mul_one])) instance (H : set α) [is_subgroup H] : mul_action α (quotient H) := { smul := mul_left_cosets H, one_smul := λ a, quotient.induction_on' a (λ a, quotient_group.eq.2 (by simp [is_submonoid.one_mem])), mul_smul := λ x y a, quotient.induction_on' a (λ a, quotient_group.eq.2 (by simp [mul_inv_rev, is_submonoid.one_mem, mul_assoc])) } instance mul_left_cosets_comp_subtype_val (H I : set α) [is_subgroup H] [is_subgroup I] : mul_action I (quotient H) := mul_action.comp_hom (quotient H) (subtype.val : I → α) end mul_action /-- Typeclass for multiplicative actions on additive structures. This generalizes group modules. -/ class distrib_mul_action (α : Type u) (β : Type v) [monoid α] [add_monoid β] extends mul_action α β := (smul_add : ∀(r : α) (x y : β), r • (x + y) = r • x + r • y) (smul_zero {} : ∀(r : α), r • (0 : β) = 0) section variables [monoid α] [add_monoid β] [distrib_mul_action α β] theorem smul_add (a : α) (b₁ b₂ : β) : a • (b₁ + b₂) = a • b₁ + a • b₂ := distrib_mul_action.smul_add _ _ _ @[simp] theorem smul_zero (a : α) : a • (0 : β) = 0 := distrib_mul_action.smul_zero _ end
778fa98887a9183703bc9bca7416edc593ec11ed
74addaa0e41490cbaf2abd313a764c96df57b05d
/Mathlib/field_theory/mv_polynomial_auto.lean
e467777a0e87b32f742b54fa9d58ef7080b94e52
[]
no_license
AurelienSaue/Mathlib4_auto
f538cfd0980f65a6361eadea39e6fc639e9dae14
590df64109b08190abe22358fabc3eae000943f2
refs/heads/master
1,683,906,849,776
1,622,564,669,000
1,622,564,669,000
371,723,747
0
0
null
null
null
null
UTF-8
Lean
false
false
3,118
lean
/- Copyright (c) 2019 Johannes Hölzl. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Johannes Hölzl Multivariate functions of the form `α^n → α` are isomorphic to multivariate polynomials in `n` variables. -/ import Mathlib.PrePort import Mathlib.Lean3Lib.init.default import Mathlib.ring_theory.ideal.operations import Mathlib.linear_algebra.finsupp_vector_space import Mathlib.algebra.char_p.basic import Mathlib.PostPort universes u v u_1 u_2 namespace Mathlib namespace mv_polynomial theorem quotient_mk_comp_C_injective (σ : Type u) (α : Type v) [field α] (I : ideal (mv_polynomial σ α)) (hI : I ≠ ⊤) : function.injective ⇑(ring_hom.comp (ideal.quotient.mk I) C) := sorry def restrict_total_degree (σ : Type u) (α : Type v) [field α] (m : ℕ) : submodule α (mv_polynomial σ α) := finsupp.supported α α (set_of fun (n : σ →₀ ℕ) => (finsupp.sum n fun (n : σ) (e : ℕ) => e) ≤ m) theorem mem_restrict_total_degree (σ : Type u) (α : Type v) [field α] (m : ℕ) (p : mv_polynomial σ α) : p ∈ restrict_total_degree σ α m ↔ total_degree p ≤ m := sorry def restrict_degree (σ : Type u) (α : Type v) (m : ℕ) [field α] : submodule α (mv_polynomial σ α) := finsupp.supported α α (set_of fun (n : σ →₀ ℕ) => ∀ (i : σ), coe_fn n i ≤ m) theorem mem_restrict_degree {σ : Type u} {α : Type v} [field α] (p : mv_polynomial σ α) (n : ℕ) : p ∈ restrict_degree σ α n ↔ ∀ (s : σ →₀ ℕ), s ∈ finsupp.support p → ∀ (i : σ), coe_fn s i ≤ n := sorry theorem mem_restrict_degree_iff_sup {σ : Type u} {α : Type v} [field α] (p : mv_polynomial σ α) (n : ℕ) : p ∈ restrict_degree σ α n ↔ ∀ (i : σ), multiset.count i (degrees p) ≤ n := sorry theorem map_range_eq_map {σ : Type u} {α : Type v} {β : Type u_1} [comm_ring α] [comm_ring β] (p : mv_polynomial σ α) (f : α →+* β) : finsupp.map_range (⇑f) (ring_hom.map_zero f) p = coe_fn (map f) p := sorry theorem is_basis_monomials (σ : Type u) (α : Type v) [field α] : is_basis α fun (s : σ →₀ ℕ) => monomial s 1 := sorry end mv_polynomial namespace mv_polynomial theorem dim_mv_polynomial (σ : Type u) (α : Type u) [field α] : vector_space.dim α (mv_polynomial σ α) = cardinal.mk (σ →₀ ℕ) := sorry end mv_polynomial namespace mv_polynomial protected instance char_p (σ : Type u_1) (R : Type u_2) [comm_ring R] (p : ℕ) [char_p R p] : char_p (mv_polynomial σ R) p := char_p.mk fun (n : ℕ) => eq.mpr (id (Eq._oldrec (Eq.refl (↑n = 0 ↔ p ∣ n)) (Eq.symm (C_eq_coe_nat n)))) (eq.mpr (id (Eq._oldrec (Eq.refl (coe_fn C ↑n = 0 ↔ p ∣ n)) (Eq.symm C_0))) (eq.mpr (id (Eq._oldrec (Eq.refl (coe_fn C ↑n = coe_fn C 0 ↔ p ∣ n)) (propext (C_inj R (↑n) 0)))) (eq.mpr (id (Eq._oldrec (Eq.refl (↑n = 0 ↔ p ∣ n)) (propext (char_p.cast_eq_zero_iff R p n)))) (iff.refl (p ∣ n))))) end Mathlib
a1e7ece706602a496f84c99d94eff3706b602cf6
d406927ab5617694ec9ea7001f101b7c9e3d9702
/src/linear_algebra/pi_tensor_product.lean
451d7d9408fbd821d20d83dd03a8fb5c4c65115a
[ "Apache-2.0" ]
permissive
alreadydone/mathlib
dc0be621c6c8208c581f5170a8216c5ba6721927
c982179ec21091d3e102d8a5d9f5fe06c8fafb73
refs/heads/master
1,685,523,275,196
1,670,184,141,000
1,670,184,141,000
287,574,545
0
0
Apache-2.0
1,670,290,714,000
1,597,421,623,000
Lean
UTF-8
Lean
false
false
24,376
lean
/- Copyright (c) 2020 Frédéric Dupuis. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Frédéric Dupuis, Eric Wieser -/ import group_theory.congruence import linear_algebra.multilinear.tensor_product /-! # Tensor product of an indexed family of modules over commutative semirings We define the tensor product of an indexed family `s : ι → Type*` of modules over commutative semirings. We denote this space by `⨂[R] i, s i` and define it as `free_add_monoid (R × Π i, s i)` quotiented by the appropriate equivalence relation. The treatment follows very closely that of the binary tensor product in `linear_algebra/tensor_product.lean`. ## Main definitions * `pi_tensor_product R s` with `R` a commutative semiring and `s : ι → Type*` is the tensor product of all the `s i`'s. This is denoted by `⨂[R] i, s i`. * `tprod R f` with `f : Π i, s i` is the tensor product of the vectors `f i` over all `i : ι`. This is bundled as a multilinear map from `Π i, s i` to `⨂[R] i, s i`. * `lift_add_hom` constructs an `add_monoid_hom` from `(⨂[R] i, s i)` to some space `F` from a function `φ : (R × Π i, s i) → F` with the appropriate properties. * `lift φ` with `φ : multilinear_map R s E` is the corresponding linear map `(⨂[R] i, s i) →ₗ[R] E`. This is bundled as a linear equivalence. * `pi_tensor_product.reindex e` re-indexes the components of `⨂[R] i : ι, M` along `e : ι ≃ ι₂`. * `pi_tensor_product.tmul_equiv` equivalence between a `tensor_product` of `pi_tensor_product`s and a single `pi_tensor_product`. ## Notations * `⨂[R] i, s i` is defined as localized notation in locale `tensor_product` * `⨂ₜ[R] i, f i` with `f : Π i, f i` is defined globally as the tensor product of all the `f i`'s. ## Implementation notes * We define it via `free_add_monoid (R × Π i, s i)` with the `R` representing a "hidden" tensor factor, rather than `free_add_monoid (Π i, s i)` to ensure that, if `ι` is an empty type, the space is isomorphic to the base ring `R`. * We have not restricted the index type `ι` to be a `fintype`, as nothing we do here strictly requires it. However, problems may arise in the case where `ι` is infinite; use at your own caution. ## TODO * Define tensor powers, symmetric subspace, etc. * API for the various ways `ι` can be split into subsets; connect this with the binary tensor product. * Include connection with holors. * Port more of the API from the binary tensor product over to this case. ## Tags multilinear, tensor, tensor product -/ open function section semiring variables {ι ι₂ ι₃ : Type*} [decidable_eq ι] [decidable_eq ι₂] [decidable_eq ι₃] variables {R : Type*} [comm_semiring R] variables {R₁ R₂ : Type*} variables {s : ι → Type*} [∀ i, add_comm_monoid (s i)] [∀ i, module R (s i)] variables {M : Type*} [add_comm_monoid M] [module R M] variables {E : Type*} [add_comm_monoid E] [module R E] variables {F : Type*} [add_comm_monoid F] namespace pi_tensor_product include R variables (R) (s) /-- The relation on `free_add_monoid (R × Π i, s i)` that generates a congruence whose quotient is the tensor product. -/ inductive eqv : free_add_monoid (R × Π i, s i) → free_add_monoid (R × Π i, s i) → Prop | of_zero : ∀ (r : R) (f : Π i, s i) (i : ι) (hf : f i = 0), eqv (free_add_monoid.of (r, f)) 0 | of_zero_scalar : ∀ (f : Π i, s i), eqv (free_add_monoid.of (0, f)) 0 | of_add : ∀ (r : R) (f : Π i, s i) (i : ι) (m₁ m₂ : s i), eqv (free_add_monoid.of (r, update f i m₁) + free_add_monoid.of (r, update f i m₂)) (free_add_monoid.of (r, update f i (m₁ + m₂))) | of_add_scalar : ∀ (r r' : R) (f : Π i, s i), eqv (free_add_monoid.of (r, f) + free_add_monoid.of (r', f)) (free_add_monoid.of (r + r', f)) | of_smul : ∀ (r : R) (f : Π i, s i) (i : ι) (r' : R), eqv (free_add_monoid.of (r, update f i (r' • (f i)))) (free_add_monoid.of (r' * r, f)) | add_comm : ∀ x y, eqv (x + y) (y + x) end pi_tensor_product variables (R) (s) /-- `pi_tensor_product R s` with `R` a commutative semiring and `s : ι → Type*` is the tensor product of all the `s i`'s. This is denoted by `⨂[R] i, s i`. -/ def pi_tensor_product : Type* := (add_con_gen (pi_tensor_product.eqv R s)).quotient variables {R} /- This enables the notation `⨂[R] i : ι, s i` for the pi tensor product, given `s : ι → Type*`. -/ localized "notation (name := pi_tensor_product) `⨂[`:100 R `] ` binders `, ` r:(scoped:67 f, pi_tensor_product R f) := r" in tensor_product open_locale tensor_product namespace pi_tensor_product section module instance : add_comm_monoid (⨂[R] i, s i) := { add_comm := λ x y, add_con.induction_on₂ x y $ λ x y, quotient.sound' $ add_con_gen.rel.of _ _ $ eqv.add_comm _ _, .. (add_con_gen (pi_tensor_product.eqv R s)).add_monoid } instance : inhabited (⨂[R] i, s i) := ⟨0⟩ variables (R) {s} /-- `tprod_coeff R r f` with `r : R` and `f : Π i, s i` is the tensor product of the vectors `f i` over all `i : ι`, multiplied by the coefficient `r`. Note that this is meant as an auxiliary definition for this file alone, and that one should use `tprod` defined below for most purposes. -/ def tprod_coeff (r : R) (f : Π i, s i) : ⨂[R] i, s i := add_con.mk' _ $ free_add_monoid.of (r, f) variables {R} lemma zero_tprod_coeff (f : Π i, s i) : tprod_coeff R 0 f = 0 := quotient.sound' $ add_con_gen.rel.of _ _ $ eqv.of_zero_scalar _ lemma zero_tprod_coeff' (z : R) (f : Π i, s i) (i : ι) (hf: f i = 0) : tprod_coeff R z f = 0 := quotient.sound' $ add_con_gen.rel.of _ _ $ eqv.of_zero _ _ i hf lemma add_tprod_coeff (z : R) (f : Π i, s i) (i : ι) (m₁ m₂ : s i) : tprod_coeff R z (update f i m₁) + tprod_coeff R z (update f i m₂) = tprod_coeff R z (update f i (m₁ + m₂)) := quotient.sound' $ add_con_gen.rel.of _ _ (eqv.of_add z f i m₁ m₂) lemma add_tprod_coeff' (z₁ z₂ : R) (f : Π i, s i) : tprod_coeff R z₁ f + tprod_coeff R z₂ f = tprod_coeff R (z₁ + z₂) f := quotient.sound' $ add_con_gen.rel.of _ _ (eqv.of_add_scalar z₁ z₂ f) lemma smul_tprod_coeff_aux (z : R) (f : Π i, s i) (i : ι) (r : R) : tprod_coeff R z (update f i (r • f i)) = tprod_coeff R (r * z) f := quotient.sound' $ add_con_gen.rel.of _ _ $ eqv.of_smul _ _ _ _ lemma smul_tprod_coeff (z : R) (f : Π i, s i) (i : ι) (r : R₁) [has_smul R₁ R] [is_scalar_tower R₁ R R] [has_smul R₁ (s i)] [is_scalar_tower R₁ R (s i)] : tprod_coeff R z (update f i (r • f i)) = tprod_coeff R (r • z) f := begin have h₁ : r • z = (r • (1 : R)) * z := by rw [smul_mul_assoc, one_mul], have h₂ : r • (f i) = (r • (1 : R)) • f i := (smul_one_smul _ _ _).symm, rw [h₁, h₂], exact smul_tprod_coeff_aux z f i _, end /-- Construct an `add_monoid_hom` from `(⨂[R] i, s i)` to some space `F` from a function `φ : (R × Π i, s i) → F` with the appropriate properties. -/ def lift_add_hom (φ : (R × Π i, s i) → F) (C0 : ∀ (r : R) (f : Π i, s i) (i : ι) (hf : f i = 0), φ (r, f) = 0) (C0' : ∀ (f : Π i, s i), φ (0, f) = 0) (C_add : ∀ (r : R) (f : Π i, s i) (i : ι) (m₁ m₂ : s i), φ (r, update f i m₁) + φ (r, update f i m₂) = φ (r, update f i (m₁ + m₂))) (C_add_scalar : ∀ (r r' : R) (f : Π i, s i), φ (r , f) + φ (r', f) = φ (r + r', f)) (C_smul : ∀ (r : R) (f : Π i, s i) (i : ι) (r' : R), φ (r, update f i (r' • (f i))) = φ (r' * r, f)) : (⨂[R] i, s i) →+ F := (add_con_gen (pi_tensor_product.eqv R s)).lift (free_add_monoid.lift φ) $ add_con.add_con_gen_le $ λ x y hxy, match x, y, hxy with | _, _, (eqv.of_zero r' f i hf) := (add_con.ker_rel _).2 $ by simp [free_add_monoid.lift_eval_of, C0 r' f i hf] | _, _, (eqv.of_zero_scalar f) := (add_con.ker_rel _).2 $ by simp [free_add_monoid.lift_eval_of, C0'] | _, _, (eqv.of_add z f i m₁ m₂) := (add_con.ker_rel _).2 $ by simp [free_add_monoid.lift_eval_of, C_add] | _, _, (eqv.of_add_scalar z₁ z₂ f) := (add_con.ker_rel _).2 $ by simp [free_add_monoid.lift_eval_of, C_add_scalar] | _, _, (eqv.of_smul z f i r') := (add_con.ker_rel _).2 $ by simp [free_add_monoid.lift_eval_of, C_smul] | _, _, (eqv.add_comm x y) := (add_con.ker_rel _).2 $ by simp_rw [add_monoid_hom.map_add, add_comm] end @[elab_as_eliminator] protected theorem induction_on' {C : (⨂[R] i, s i) → Prop} (z : ⨂[R] i, s i) (C1 : ∀ {r : R} {f : Π i, s i}, C (tprod_coeff R r f)) (Cp : ∀ {x y}, C x → C y → C (x + y)) : C z := begin have C0 : C 0, { have h₁ := @C1 0 0, rwa [zero_tprod_coeff] at h₁ }, refine add_con.induction_on z (λ x, free_add_monoid.rec_on x C0 _), simp_rw add_con.coe_add, refine λ f y ih, Cp _ ih, convert @C1 f.1 f.2, simp only [prod.mk.eta], end section distrib_mul_action variables [monoid R₁] [distrib_mul_action R₁ R] [smul_comm_class R₁ R R] variables [monoid R₂] [distrib_mul_action R₂ R] [smul_comm_class R₂ R R] -- Most of the time we want the instance below this one, which is easier for typeclass resolution -- to find. instance has_smul' : has_smul R₁ (⨂[R] i, s i) := ⟨λ r, lift_add_hom (λ f : R × Π i, s i, tprod_coeff R (r • f.1) f.2) (λ r' f i hf, by simp_rw [zero_tprod_coeff' _ f i hf]) (λ f, by simp [zero_tprod_coeff]) (λ r' f i m₁ m₂, by simp [add_tprod_coeff]) (λ r' r'' f, by simp [add_tprod_coeff', mul_add]) (λ z f i r', by simp [smul_tprod_coeff, mul_smul_comm])⟩ instance : has_smul R (⨂[R] i, s i) := pi_tensor_product.has_smul' lemma smul_tprod_coeff' (r : R₁) (z : R) (f : Π i, s i) : r • (tprod_coeff R z f) = tprod_coeff R (r • z) f := rfl protected theorem smul_add (r : R₁) (x y : ⨂[R] i, s i) : r • (x + y) = r • x + r • y := add_monoid_hom.map_add _ _ _ instance distrib_mul_action' : distrib_mul_action R₁ (⨂[R] i, s i) := { smul := (•), smul_add := λ r x y, add_monoid_hom.map_add _ _ _, mul_smul := λ r r' x, pi_tensor_product.induction_on' x (λ r'' f, by simp [smul_tprod_coeff', smul_smul]) (λ x y ihx ihy, by simp_rw [pi_tensor_product.smul_add, ihx, ihy]), one_smul := λ x, pi_tensor_product.induction_on' x (λ f, by simp [smul_tprod_coeff' _ _]) (λ z y ihz ihy, by simp_rw [pi_tensor_product.smul_add, ihz, ihy]), smul_zero := λ r, add_monoid_hom.map_zero _ } instance smul_comm_class' [smul_comm_class R₁ R₂ R] : smul_comm_class R₁ R₂ (⨂[R] i, s i) := ⟨λ r' r'' x, pi_tensor_product.induction_on' x (λ xr xf, by simp only [smul_tprod_coeff', smul_comm]) (λ z y ihz ihy, by simp_rw [pi_tensor_product.smul_add, ihz, ihy])⟩ instance is_scalar_tower' [has_smul R₁ R₂] [is_scalar_tower R₁ R₂ R] : is_scalar_tower R₁ R₂ (⨂[R] i, s i) := ⟨λ r' r'' x, pi_tensor_product.induction_on' x (λ xr xf, by simp only [smul_tprod_coeff', smul_assoc]) (λ z y ihz ihy, by simp_rw [pi_tensor_product.smul_add, ihz, ihy])⟩ end distrib_mul_action -- Most of the time we want the instance below this one, which is easier for typeclass resolution -- to find. instance module' [semiring R₁] [module R₁ R] [smul_comm_class R₁ R R] : module R₁ (⨂[R] i, s i) := { smul := (•), add_smul := λ r r' x, pi_tensor_product.induction_on' x (λ r f, by simp [smul_tprod_coeff' _ _, add_smul, add_tprod_coeff']) (λ x y ihx ihy, by simp [pi_tensor_product.smul_add, ihx, ihy, add_add_add_comm]), zero_smul := λ x, pi_tensor_product.induction_on' x (λ r f, by { simp_rw [smul_tprod_coeff' _ _, zero_smul], exact zero_tprod_coeff _ }) (λ x y ihx ihy, by rw [pi_tensor_product.smul_add, ihx, ihy, add_zero]), ..pi_tensor_product.distrib_mul_action' } -- shortcut instances instance : module R (⨂[R] i, s i) := pi_tensor_product.module' instance : smul_comm_class R R (⨂[R] i, s i) := pi_tensor_product.smul_comm_class' instance : is_scalar_tower R R (⨂[R] i, s i) := pi_tensor_product.is_scalar_tower' variables {R} variables (R) /-- The canonical `multilinear_map R s (⨂[R] i, s i)`. -/ def tprod : multilinear_map R s (⨂[R] i, s i) := { to_fun := tprod_coeff R 1, map_add' := λ f i x y, (add_tprod_coeff (1 : R) f i x y).symm, map_smul' := λ f i r x, by simp_rw [smul_tprod_coeff', ←smul_tprod_coeff (1 : R) _ i, update_idem, update_same] } variables {R} notation `⨂ₜ[`:100 R`] ` binders `, ` r:(scoped:67 f, tprod R f) := r @[simp] lemma tprod_coeff_eq_smul_tprod (z : R) (f : Π i, s i) : tprod_coeff R z f = z • tprod R f := begin have : z = z • (1 : R) := by simp only [mul_one, algebra.id.smul_eq_mul], conv_lhs { rw this }, rw ←smul_tprod_coeff', refl, end @[elab_as_eliminator] protected theorem induction_on {C : (⨂[R] i, s i) → Prop} (z : ⨂[R] i, s i) (C1 : ∀ {r : R} {f : Π i, s i}, C (r • (tprod R f))) (Cp : ∀ {x y}, C x → C y → C (x + y)) : C z := begin simp_rw ←tprod_coeff_eq_smul_tprod at C1, exact pi_tensor_product.induction_on' z @C1 @Cp, end @[ext] theorem ext {φ₁ φ₂ : (⨂[R] i, s i) →ₗ[R] E} (H : φ₁.comp_multilinear_map (tprod R) = φ₂.comp_multilinear_map (tprod R)) : φ₁ = φ₂ := begin refine linear_map.ext _, refine λ z, (pi_tensor_product.induction_on' z _ (λ x y hx hy, by rw [φ₁.map_add, φ₂.map_add, hx, hy])), { intros r f, rw [tprod_coeff_eq_smul_tprod, φ₁.map_smul, φ₂.map_smul], apply _root_.congr_arg, exact multilinear_map.congr_fun H f } end end module section multilinear open multilinear_map variables {s} /-- Auxiliary function to constructing a linear map `(⨂[R] i, s i) → E` given a `multilinear map R s E` with the property that its composition with the canonical `multilinear_map R s (⨂[R] i, s i)` is the given multilinear map. -/ def lift_aux (φ : multilinear_map R s E) : (⨂[R] i, s i) →+ E := lift_add_hom (λ (p : R × Π i, s i), p.1 • (φ p.2)) (λ z f i hf, by rw [map_coord_zero φ i hf, smul_zero]) (λ f, by rw [zero_smul]) (λ z f i m₁ m₂, by rw [←smul_add, φ.map_add]) (λ z₁ z₂ f, by rw [←add_smul]) (λ z f i r, by simp [φ.map_smul, smul_smul, mul_comm]) lemma lift_aux_tprod (φ : multilinear_map R s E) (f : Π i, s i) : lift_aux φ (tprod R f) = φ f := by simp only [lift_aux, lift_add_hom, tprod, multilinear_map.coe_mk, tprod_coeff, free_add_monoid.lift_eval_of, one_smul, add_con.lift_mk'] lemma lift_aux_tprod_coeff (φ : multilinear_map R s E) (z : R) (f : Π i, s i) : lift_aux φ (tprod_coeff R z f) = z • φ f := by simp [lift_aux, lift_add_hom, tprod_coeff, free_add_monoid.lift_eval_of] lemma lift_aux.smul {φ : multilinear_map R s E} (r : R) (x : ⨂[R] i, s i) : lift_aux φ (r • x) = r • lift_aux φ x := begin refine pi_tensor_product.induction_on' x _ _, { intros z f, rw [smul_tprod_coeff' r z f, lift_aux_tprod_coeff, lift_aux_tprod_coeff, smul_assoc] }, { intros z y ihz ihy, rw [smul_add, (lift_aux φ).map_add, ihz, ihy, (lift_aux φ).map_add, smul_add] } end /-- Constructing a linear map `(⨂[R] i, s i) → E` given a `multilinear_map R s E` with the property that its composition with the canonical `multilinear_map R s E` is the given multilinear map `φ`. -/ def lift : (multilinear_map R s E) ≃ₗ[R] ((⨂[R] i, s i) →ₗ[R] E) := { to_fun := λ φ, { map_smul' := lift_aux.smul, .. lift_aux φ }, inv_fun := λ φ', φ'.comp_multilinear_map (tprod R), left_inv := λ φ, by { ext, simp [lift_aux_tprod, linear_map.comp_multilinear_map] }, right_inv := λ φ, by { ext, simp [lift_aux_tprod] }, map_add' := λ φ₁ φ₂, by { ext, simp [lift_aux_tprod] }, map_smul' := λ r φ₂, by { ext, simp [lift_aux_tprod] } } variables {φ : multilinear_map R s E} @[simp] lemma lift.tprod (f : Π i, s i) : lift φ (tprod R f) = φ f := lift_aux_tprod φ f theorem lift.unique' {φ' : (⨂[R] i, s i) →ₗ[R] E} (H : φ'.comp_multilinear_map (tprod R) = φ) : φ' = lift φ := ext $ H.symm ▸ (lift.symm_apply_apply φ).symm theorem lift.unique {φ' : (⨂[R] i, s i) →ₗ[R] E} (H : ∀ f, φ' (tprod R f) = φ f) : φ' = lift φ := lift.unique' (multilinear_map.ext H) @[simp] theorem lift_symm (φ' : (⨂[R] i, s i) →ₗ[R] E) : lift.symm φ' = φ'.comp_multilinear_map (tprod R) := rfl @[simp] theorem lift_tprod : lift (tprod R : multilinear_map R s _) = linear_map.id := eq.symm $ lift.unique' rfl section variables (R M) /-- Re-index the components of the tensor power by `e`. For simplicity, this is defined only for homogeneously- (rather than dependently-) typed components. -/ def reindex (e : ι ≃ ι₂) : ⨂[R] i : ι, M ≃ₗ[R] ⨂[R] i : ι₂, M := linear_equiv.of_linear (lift (dom_dom_congr e.symm (tprod R : multilinear_map R _ (⨂[R] i : ι₂, M)))) (lift (dom_dom_congr e (tprod R : multilinear_map R _ (⨂[R] i : ι, M)))) (by { ext, simp only [linear_map.comp_apply, linear_map.id_apply, lift_tprod, linear_map.comp_multilinear_map_apply, lift.tprod, dom_dom_congr_apply, equiv.apply_symm_apply] }) (by { ext, simp only [linear_map.comp_apply, linear_map.id_apply, lift_tprod, linear_map.comp_multilinear_map_apply, lift.tprod, dom_dom_congr_apply, equiv.symm_apply_apply] }) end @[simp] lemma reindex_tprod (e : ι ≃ ι₂) (f : Π i, M) : reindex R M e (tprod R f) = tprod R (λ i, f (e.symm i)) := lift_aux_tprod _ f @[simp] lemma reindex_comp_tprod (e : ι ≃ ι₂) : (reindex R M e : ⨂[R] i : ι, M →ₗ[R] ⨂[R] i : ι₂, M).comp_multilinear_map (tprod R) = (tprod R : multilinear_map R (λ i, M) _).dom_dom_congr e.symm := multilinear_map.ext $ reindex_tprod e @[simp] lemma lift_comp_reindex (e : ι ≃ ι₂) (φ : multilinear_map R (λ _ : ι₂, M) E) : (lift φ) ∘ₗ ↑(reindex R M e) = lift (φ.dom_dom_congr e.symm) := by { ext, simp, } @[simp] lemma lift_reindex (e : ι ≃ ι₂) (φ : multilinear_map R (λ _, M) E) (x : ⨂[R] i, M) : lift φ (reindex R M e x) = lift (φ.dom_dom_congr e.symm) x := linear_map.congr_fun (lift_comp_reindex e φ) x @[simp] lemma reindex_trans (e : ι ≃ ι₂) (e' : ι₂ ≃ ι₃) : (reindex R M e).trans (reindex R M e') = reindex R M (e.trans e') := begin apply linear_equiv.to_linear_map_injective, ext f, simp only [linear_equiv.trans_apply, linear_equiv.coe_coe, reindex_tprod, linear_map.coe_comp_multilinear_map, function.comp_app, multilinear_map.dom_dom_congr_apply, reindex_comp_tprod], congr, end @[simp] lemma reindex_reindex (e : ι ≃ ι₂) (e' : ι₂ ≃ ι₃) (x : ⨂[R] i, M) : reindex R M e' (reindex R M e x) = reindex R M (e.trans e') x := linear_equiv.congr_fun (reindex_trans e e' : _ = reindex R M (e.trans e')) x @[simp] lemma reindex_symm (e : ι ≃ ι₂) : (reindex R M e).symm = reindex R M e.symm := rfl @[simp] lemma reindex_refl : reindex R M (equiv.refl ι) = linear_equiv.refl R _ := begin apply linear_equiv.to_linear_map_injective, ext1, rw [reindex_comp_tprod, linear_equiv.refl_to_linear_map, equiv.refl_symm], refl, end variables (ι) /-- The tensor product over an empty index type `ι` is isomorphic to the base ring. -/ @[simps symm_apply] def is_empty_equiv [is_empty ι] : ⨂[R] i : ι, M ≃ₗ[R] R := { to_fun := lift (const_of_is_empty R 1), inv_fun := λ r, r • tprod R (@is_empty_elim _ _ _), left_inv := λ x, by { apply x.induction_on, { intros r f, have := subsingleton.elim f is_empty_elim, simp [this], }, { simp only, intros x y hx hy, simp [add_smul, hx, hy] }}, right_inv := λ t, by simp only [mul_one, algebra.id.smul_eq_mul, const_of_is_empty_apply, linear_map.map_smul, pi_tensor_product.lift.tprod], map_add' := linear_map.map_add _, map_smul' := linear_map.map_smul _, } @[simp] lemma is_empty_equiv_apply_tprod [is_empty ι] (f : ι → M) : is_empty_equiv ι (tprod R f) = 1 := lift.tprod _ variables {ι} /-- The tensor product over an single index is isomorphic to the module -/ @[simps symm_apply] def subsingleton_equiv [subsingleton ι] (i₀ : ι) : ⨂[R] i : ι, M ≃ₗ[R] M := { to_fun := lift (multilinear_map.of_subsingleton R M i₀), inv_fun := λ m, tprod R (λ v, m), left_inv := λ x, by { dsimp only, have : ∀ (f : ι → M) (z : M), (λ i : ι, z) = update f i₀ z, { intros f z, ext i, rw [subsingleton.elim i i₀, function.update_same] }, apply x.induction_on, { intros r f, simp only [linear_map.map_smul, lift.tprod, of_subsingleton_apply, function.eval, this f, multilinear_map.map_smul, update_eq_self], }, { intros x y hx hy, simp only [multilinear_map.map_add, this 0 (_ + _), linear_map.map_add, ←this 0 (lift _ _), hx, hy] } }, right_inv := λ t, by simp only [of_subsingleton_apply, lift.tprod, function.eval_apply], map_add' := linear_map.map_add _, map_smul' := linear_map.map_smul _, } @[simp] lemma subsingleton_equiv_apply_tprod [subsingleton ι] (i : ι) (f : ι → M) : subsingleton_equiv i (tprod R f) = f i := lift.tprod _ section tmul /-- Collapse a `tensor_product` of `pi_tensor_product`s. -/ private def tmul : (⨂[R] i : ι, M) ⊗[R] (⨂[R] i : ι₂, M) →ₗ[R] ⨂[R] i : ι ⊕ ι₂, M := tensor_product.lift { to_fun := λ a, pi_tensor_product.lift $ pi_tensor_product.lift (multilinear_map.curry_sum_equiv R _ _ M _ (tprod R)) a, map_add' := λ a b, by simp only [linear_equiv.map_add, linear_map.map_add], map_smul' := λ r a, by simp only [linear_equiv.map_smul, linear_map.map_smul, ring_hom.id_apply], } private lemma tmul_apply (a : ι → M) (b : ι₂ → M) : tmul ((⨂ₜ[R] i, a i) ⊗ₜ[R] (⨂ₜ[R] i, b i)) = ⨂ₜ[R] i, sum.elim a b i := begin erw [tensor_product.lift.tmul, pi_tensor_product.lift.tprod, pi_tensor_product.lift.tprod], refl end /-- Expand `pi_tensor_product` into a `tensor_product` of two factors. -/ private def tmul_symm : ⨂[R] i : ι ⊕ ι₂, M →ₗ[R] (⨂[R] i : ι, M) ⊗[R] (⨂[R] i : ι₂, M) := -- by using tactic mode, we avoid the need for a lot of `@`s and `_`s pi_tensor_product.lift $ by apply multilinear_map.dom_coprod; [exact tprod R, exact tprod R] private lemma tmul_symm_apply (a : ι ⊕ ι₂ → M) : tmul_symm (⨂ₜ[R] i, a i) = (⨂ₜ[R] i, a (sum.inl i)) ⊗ₜ[R] (⨂ₜ[R] i, a (sum.inr i)) := pi_tensor_product.lift.tprod _ variables (R M) local attribute [ext] tensor_product.ext /-- Equivalence between a `tensor_product` of `pi_tensor_product`s and a single `pi_tensor_product` indexed by a `sum` type. For simplicity, this is defined only for homogeneously- (rather than dependently-) typed components. -/ def tmul_equiv : (⨂[R] i : ι, M) ⊗[R] (⨂[R] i : ι₂, M) ≃ₗ[R] ⨂[R] i : ι ⊕ ι₂, M := linear_equiv.of_linear tmul tmul_symm (by { ext x, show tmul (tmul_symm (tprod R x)) = tprod R x, -- Speed up the call to `simp`. simp only [tmul_symm_apply, tmul_apply, sum.elim_comp_inl_inr], }) (by { ext x y, show tmul_symm (tmul (tprod R x ⊗ₜ[R] tprod R y)) = tprod R x ⊗ₜ[R] tprod R y, simp only [tmul_apply, tmul_symm_apply, sum.elim_inl, sum.elim_inr], }) @[simp] lemma tmul_equiv_apply (a : ι → M) (b : ι₂ → M) : tmul_equiv R M ((⨂ₜ[R] i, a i) ⊗ₜ[R] (⨂ₜ[R] i, b i)) = ⨂ₜ[R] i, sum.elim a b i := tmul_apply a b @[simp] lemma tmul_equiv_symm_apply (a : ι ⊕ ι₂ → M) : (tmul_equiv R M).symm (⨂ₜ[R] i, a i) = (⨂ₜ[R] i, a (sum.inl i)) ⊗ₜ[R] (⨂ₜ[R] i, a (sum.inr i)) := tmul_symm_apply a end tmul end multilinear end pi_tensor_product end semiring section ring namespace pi_tensor_product open pi_tensor_product open_locale tensor_product variables {ι : Type*} [decidable_eq ι] {R : Type*} [comm_ring R] variables {s : ι → Type*} [∀ i, add_comm_group (s i)] [∀ i, module R (s i)] /- Unlike for the binary tensor product, we require `R` to be a `comm_ring` here, otherwise this is false in the case where `ι` is empty. -/ instance : add_comm_group (⨂[R] i, s i) := module.add_comm_monoid_to_add_comm_group R end pi_tensor_product end ring
d2dba6ff661a6056cebeb0a1e381ee5a662147d9
4950bf76e5ae40ba9f8491647d0b6f228ddce173
/src/field_theory/adjoin.lean
6902d619eafc3dad9ea550965d523d6031fa82f3
[ "Apache-2.0" ]
permissive
ntzwq/mathlib
ca50b21079b0a7c6781c34b62199a396dd00cee2
36eec1a98f22df82eaccd354a758ef8576af2a7f
refs/heads/master
1,675,193,391,478
1,607,822,996,000
1,607,822,996,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
22,692
lean
/- Copyright (c) 2020 Thomas Browning and Patrick Lutz. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning and Patrick Lutz -/ import field_theory.intermediate_field import field_theory.splitting_field import field_theory.fixed /-! # Adjoining Elements to Fields In this file we introduce the notion of adjoining elements to fields. This isn't quite the same as adjoining elements to rings. For example, `algebra.adjoin K {x}` might not include `x⁻¹`. ## Main results - `adjoin_adjoin_left`: adjoining S and then T is the same as adjoining `S ∪ T`. - `bot_eq_top_of_dim_adjoin_eq_one`: if `F⟮x⟯` has dimension `1` over `F` for every `x` in `E` then `F = E` ## Notation - `F⟮α⟯`: adjoin a single element `α` to `F`. -/ open finite_dimensional open_locale classical namespace intermediate_field section adjoin_def variables (F : Type*) [field F] {E : Type*} [field E] [algebra F E] (S : set E) /-- `adjoin F S` extends a field `F` by adjoining a set `S ⊆ E`. -/ def adjoin : intermediate_field F E := { algebra_map_mem' := λ x, subfield.subset_closure (or.inl (set.mem_range_self x)), ..subfield.closure (set.range (algebra_map F E) ∪ S) } end adjoin_def section lattice variables {F : Type*} [field F] {E : Type*} [field E] [algebra F E] @[simp] lemma adjoin_le_iff {S : set E} {T : intermediate_field F E} : adjoin F S ≤ T ↔ S ≤ T := ⟨λ H, le_trans (le_trans (set.subset_union_right _ _) subfield.subset_closure) H, λ H, (@subfield.closure_le E _ (set.range (algebra_map F E) ∪ S) T.to_subfield).mpr (set.union_subset (intermediate_field.set_range_subset T) H)⟩ lemma gc : galois_connection (adjoin F : set E → intermediate_field F E) coe := λ _ _, adjoin_le_iff /-- Galois insertion between `adjoin` and `coe`. -/ def gi : galois_insertion (adjoin F : set E → intermediate_field F E) coe := { choice := λ S _, adjoin F S, gc := intermediate_field.gc, le_l_u := λ S, (intermediate_field.gc (S : set E) (adjoin F S)).1 $ le_refl _, choice_eq := λ _ _, rfl } instance : complete_lattice (intermediate_field F E) := galois_insertion.lift_complete_lattice intermediate_field.gi instance : inhabited (intermediate_field F E) := ⟨⊤⟩ lemma mem_bot {x : E} : x ∈ (⊥ : intermediate_field F E) ↔ x ∈ set.range (algebra_map F E) := begin suffices : set.range (algebra_map F E) = (⊥ : intermediate_field F E), { rw this, refl }, { change set.range (algebra_map F E) = subfield.closure (set.range (algebra_map F E) ∪ ∅), simp [←set.image_univ, ←ring_hom.map_field_closure] } end lemma mem_top {x : E} : x ∈ (⊤ : intermediate_field F E) := subfield.subset_closure $ or.inr trivial @[simp] lemma bot_to_subalgebra : (⊥ : intermediate_field F E).to_subalgebra = ⊥ := by { ext, rw [mem_to_subalgebra, algebra.mem_bot, mem_bot] } @[simp] lemma top_to_subalgebra : (⊤ : intermediate_field F E).to_subalgebra = ⊤ := by { ext, rw [mem_to_subalgebra, iff_true_right algebra.mem_top], exact mem_top } /-- Construct an algebra isomorphism from an equality of subalgebras -/ def subalgebra.equiv_of_eq {X Y : subalgebra F E} (h : X = Y) : X ≃ₐ[F] Y := by refine { to_fun := λ x, ⟨x, _⟩, inv_fun := λ x, ⟨x, _⟩, .. }; tidy /-- The bottom intermediate_field is isomorphic to the field. -/ noncomputable def bot_equiv : (⊥ : intermediate_field F E) ≃ₐ[F] F := (subalgebra.equiv_of_eq bot_to_subalgebra).trans (algebra.bot_equiv F E) @[simp] lemma bot_equiv_def (x : F) : bot_equiv (algebra_map F (⊥ : intermediate_field F E) x) = x := alg_equiv.commutes bot_equiv x noncomputable instance algebra_over_bot : algebra (⊥ : intermediate_field F E) F := ring_hom.to_algebra intermediate_field.bot_equiv.to_alg_hom.to_ring_hom instance is_scalar_tower_over_bot : is_scalar_tower (⊥ : intermediate_field F E) F E := is_scalar_tower.of_algebra_map_eq begin intro x, let ϕ := algebra.of_id F (⊥ : subalgebra F E), let ψ := alg_equiv.of_bijective ϕ ((algebra.bot_equiv F E).symm.bijective), change (↑x : E) = ↑(ψ (ψ.symm ⟨x, _⟩)), rw alg_equiv.apply_symm_apply ψ ⟨x, _⟩, refl end /-- The top intermediate_field is isomorphic to the field. -/ noncomputable def top_equiv : (⊤ : intermediate_field F E) ≃ₐ[F] E := (subalgebra.equiv_of_eq top_to_subalgebra).trans algebra.top_equiv @[simp] lemma top_equiv_def (x : (⊤ : intermediate_field F E)) : top_equiv x = ↑x := begin suffices : algebra.to_top (top_equiv x) = algebra.to_top (x : E), { rwa subtype.ext_iff at this }, exact alg_equiv.apply_symm_apply (alg_equiv.of_bijective algebra.to_top ⟨λ _ _, subtype.mk.inj, λ x, ⟨x.val, by { ext, refl }⟩⟩ : E ≃ₐ[F] (⊤ : subalgebra F E)) (subalgebra.equiv_of_eq top_to_subalgebra x), end @[simp] lemma coe_bot_eq_self (K : intermediate_field F E) : ↑(⊥ : intermediate_field K E) = K := by { ext, rw [mem_lift2, mem_bot], exact set.ext_iff.mp subtype.range_coe x } @[simp] lemma coe_top_eq_top (K : intermediate_field F E) : ↑(⊤ : intermediate_field K E) = (⊤ : intermediate_field F E) := intermediate_field.ext'_iff.mpr (set.ext_iff.mpr (λ _, iff_of_true mem_top mem_top)) end lattice section adjoin_def variables (F : Type*) [field F] {E : Type*} [field E] [algebra F E] (S : set E) lemma adjoin_eq_range_algebra_map_adjoin : (adjoin F S : set E) = set.range (algebra_map (adjoin F S) E) := (subtype.range_coe).symm lemma adjoin.algebra_map_mem (x : F) : algebra_map F E x ∈ adjoin F S := intermediate_field.algebra_map_mem (adjoin F S) x lemma adjoin.range_algebra_map_subset : set.range (algebra_map F E) ⊆ adjoin F S := begin intros x hx, cases hx with f hf, rw ← hf, exact adjoin.algebra_map_mem F S f, end instance adjoin.field_coe : has_coe_t F (adjoin F S) := {coe := λ x, ⟨algebra_map F E x, adjoin.algebra_map_mem F S x⟩} lemma subset_adjoin : S ⊆ adjoin F S := λ x hx, subfield.subset_closure (or.inr hx) instance adjoin.set_coe : has_coe_t S (adjoin F S) := {coe := λ x, ⟨x,subset_adjoin F S (subtype.mem x)⟩} @[mono] lemma adjoin.mono (T : set E) (h : S ⊆ T) : adjoin F S ≤ adjoin F T := galois_connection.monotone_l gc h lemma adjoin_contains_field_as_subfield (F : subfield E) : (F : set E) ⊆ adjoin F S := λ x hx, adjoin.algebra_map_mem F S ⟨x, hx⟩ lemma subset_adjoin_of_subset_left {F : subfield E} {T : set E} (HT : T ⊆ F) : T ⊆ adjoin F S := λ x hx, (adjoin F S).algebra_map_mem ⟨x, HT hx⟩ lemma subset_adjoin_of_subset_right {T : set E} (H : T ⊆ S) : T ⊆ adjoin F S := λ x hx, subset_adjoin F S (H hx) @[simp] lemma adjoin_empty (F E : Type*) [field F] [field E] [algebra F E] : adjoin F (∅ : set E) = ⊥ := eq_bot_iff.mpr (adjoin_le_iff.mpr (set.empty_subset _)) /-- If `K` is a field with `F ⊆ K` and `S ⊆ K` then `adjoin F S ≤ K`. -/ lemma adjoin_le_subfield {K : subfield E} (HF : set.range (algebra_map F E) ⊆ K) (HS : S ⊆ K) : (adjoin F S).to_subfield ≤ K := begin apply subfield.closure_le.mpr, rw set.union_subset_iff, exact ⟨HF, HS⟩, end lemma adjoin_subset_adjoin_iff {F' : Type*} [field F'] [algebra F' E] {S S' : set E} : (adjoin F S : set E) ⊆ adjoin F' S' ↔ set.range (algebra_map F E) ⊆ adjoin F' S' ∧ S ⊆ adjoin F' S' := ⟨λ h, ⟨trans (adjoin.range_algebra_map_subset _ _) h, trans (subset_adjoin _ _) h⟩, λ ⟨hF, hS⟩, subfield.closure_le.mpr (set.union_subset hF hS)⟩ /-- `F[S][T] = F[S ∪ T]` -/ lemma adjoin_adjoin_left (T : set E) : ↑(adjoin (adjoin F S) T) = adjoin F (S ∪ T) := begin rw intermediate_field.ext'_iff, change ↑(adjoin (adjoin F S) T) = _, apply set.eq_of_subset_of_subset; rw adjoin_subset_adjoin_iff; split, { rintros _ ⟨⟨x, hx⟩, rfl⟩, exact adjoin.mono _ _ _ (set.subset_union_left _ _) hx }, { exact subset_adjoin_of_subset_right _ _ (set.subset_union_right _ _) }, { exact subset_adjoin_of_subset_left _ (adjoin.range_algebra_map_subset _ _) }, { exact set.union_subset (subset_adjoin_of_subset_left _ (subset_adjoin _ _)) (subset_adjoin _ _) }, end @[simp] lemma adjoin_insert_adjoin (x : E) : adjoin F (insert x (adjoin F S : set E)) = adjoin F (insert x S) := le_antisymm (adjoin_le_iff.mpr (set.insert_subset.mpr ⟨subset_adjoin _ _ (set.mem_insert _ _), adjoin_le_iff.mpr (subset_adjoin_of_subset_right _ _ (set.subset_insert _ _))⟩)) (adjoin.mono _ _ _ (set.insert_subset_insert (subset_adjoin _ _))) /-- `F[S][T] = F[T][S]` -/ lemma adjoin_adjoin_comm (T : set E) : ↑(adjoin (adjoin F S) T) = (↑(adjoin (adjoin F T) S) : (intermediate_field F E)) := by rw [adjoin_adjoin_left, adjoin_adjoin_left, set.union_comm] lemma adjoin_map {E' : Type*} [field E'] [algebra F E'] (f : E →ₐ[F] E') : (adjoin F S).map f = adjoin F (f '' S) := begin ext x, show x ∈ (subfield.closure (set.range (algebra_map F E) ∪ S)).map (f : E →+* E') ↔ x ∈ subfield.closure (set.range (algebra_map F E') ∪ f '' S), rw [ring_hom.map_field_closure, set.image_union, ← set.range_comp, ← ring_hom.coe_comp, f.comp_algebra_map], refl, end lemma algebra_adjoin_le_adjoin : algebra.adjoin F S ≤ (adjoin F S).to_subalgebra := algebra.adjoin_le (subset_adjoin _ _) lemma adjoin_eq_algebra_adjoin (inv_mem : ∀ x ∈ algebra.adjoin F S, x⁻¹ ∈ algebra.adjoin F S) : (adjoin F S).to_subalgebra = algebra.adjoin F S := le_antisymm (show adjoin F S ≤ { neg_mem' := λ x, (algebra.adjoin F S).neg_mem, inv_mem' := inv_mem, .. algebra.adjoin F S}, from adjoin_le_iff.mpr (algebra.subset_adjoin)) (algebra_adjoin_le_adjoin _ _) lemma eq_adjoin_of_eq_algebra_adjoin (K : intermediate_field F E) (h : K.to_subalgebra = algebra.adjoin F S) : K = adjoin F S := begin apply to_subalgebra_injective, rw h, refine (adjoin_eq_algebra_adjoin _ _ _).symm, intros x, convert K.inv_mem, rw ← h, refl end @[elab_as_eliminator] lemma adjoin_induction {s : set E} {p : E → Prop} {x} (h : x ∈ adjoin F s) (Hs : ∀ x ∈ s, p x) (Hmap : ∀ x, p (algebra_map F E x)) (Hadd : ∀ x y, p x → p y → p (x + y)) (Hneg : ∀ x, p x → p (-x)) (Hinv : ∀ x, p x → p x⁻¹) (Hmul : ∀ x y, p x → p y → p (x * y)) : p x := subfield.closure_induction h (λ x hx, or.cases_on hx (λ ⟨x, hx⟩, hx ▸ Hmap x) (Hs x)) ((algebra_map F E).map_one ▸ Hmap 1) Hadd Hneg Hinv Hmul /-- Variation on `set.insert` to enable good notation for adjoining elements to fields. Used to preferentially use `singleton` rather than `insert` when adjoining one element. -/ --this definition of notation is courtesy of Kyle Miller on zulip class insert {α : Type*} (s : set α) := (insert : α → set α) @[priority 1000] instance insert_empty {α : Type*} : insert (∅ : set α) := { insert := λ x, @singleton _ _ set.has_singleton x } @[priority 900] instance insert_nonempty {α : Type*} (s : set α) : insert s := { insert := λ x, set.insert x s } notation K`⟮`:std.prec.max_plus l:(foldr `, ` (h t, insert.insert t h) ∅) `⟯` := adjoin K l section adjoin_simple variables (α : E) lemma mem_adjoin_simple_self : α ∈ F⟮α⟯ := subset_adjoin F {α} (set.mem_singleton α) /-- generator of `F⟮α⟯` -/ def adjoin_simple.gen : F⟮α⟯ := ⟨α, mem_adjoin_simple_self F α⟩ @[simp] lemma adjoin_simple.algebra_map_gen : algebra_map F⟮α⟯ E (adjoin_simple.gen F α) = α := rfl lemma adjoin_simple_adjoin_simple (β : E) : ↑F⟮α⟯⟮β⟯ = F⟮α, β⟯ := adjoin_adjoin_left _ _ _ lemma adjoin_simple_comm (β : E) : ↑F⟮α⟯⟮β⟯ = (↑F⟮β⟯⟮α⟯ : intermediate_field F E) := adjoin_adjoin_comm _ _ _ -- TODO: develop the API for `subalgebra.is_field_of_algebraic` so it can be used here lemma adjoin_simple_to_subalgebra_of_integral (hα : is_integral F α) : (F⟮α⟯).to_subalgebra = algebra.adjoin F {α} := begin apply adjoin_eq_algebra_adjoin, intros x hx, by_cases x = 0, { rw [h, inv_zero], exact subalgebra.zero_mem (algebra.adjoin F {α}) }, let ϕ := alg_equiv.adjoin_singleton_equiv_adjoin_root_minimal_polynomial F α hα, let inv := (@adjoin_root.field F _ _ (minimal_polynomial.irreducible hα)).inv, suffices : ϕ ⟨x, hx⟩ * inv (ϕ ⟨x, hx⟩) = 1, { convert subtype.mem (ϕ.symm (inv (ϕ ⟨x, hx⟩))), refine (eq_inv_of_mul_right_eq_one _).symm, apply_fun ϕ.symm at this, rw [alg_equiv.map_one, alg_equiv.map_mul, alg_equiv.symm_apply_apply] at this, rw [←subsemiring.coe_one, ←this, subsemiring.coe_mul, subtype.coe_mk] }, rw field.mul_inv_cancel (mt (λ key, _) h), rw ← ϕ.map_zero at key, change ↑(⟨x, hx⟩ : algebra.adjoin F {α}) = _, rw [ϕ.injective key, submodule.coe_zero] end end adjoin_simple end adjoin_def section adjoin_intermediate_field_lattice variables {F : Type*} [field F] {E : Type*} [field E] [algebra F E] {α : E} {S : set E} @[simp] lemma adjoin_eq_bot_iff : adjoin F S = ⊥ ↔ S ⊆ (⊥ : intermediate_field F E) := by { rw [eq_bot_iff, adjoin_le_iff], refl, } @[simp] lemma adjoin_simple_eq_bot_iff : F⟮α⟯ = ⊥ ↔ α ∈ (⊥ : intermediate_field F E) := by { rw adjoin_eq_bot_iff, exact set.singleton_subset_iff } @[simp] lemma adjoin_zero : F⟮(0 : E)⟯ = ⊥ := adjoin_simple_eq_bot_iff.mpr (zero_mem ⊥) @[simp] lemma adjoin_one : F⟮(1 : E)⟯ = ⊥ := adjoin_simple_eq_bot_iff.mpr (one_mem ⊥) @[simp] lemma adjoin_int (n : ℤ) : F⟮(n : E)⟯ = ⊥ := adjoin_simple_eq_bot_iff.mpr (coe_int_mem ⊥ n) @[simp] lemma adjoin_nat (n : ℕ) : F⟮(n : E)⟯ = ⊥ := adjoin_simple_eq_bot_iff.mpr (coe_int_mem ⊥ n) section adjoin_dim open finite_dimensional vector_space @[simp] lemma dim_intermediate_field_eq_dim_subalgebra : dim F (adjoin F S).to_subalgebra = dim F (adjoin F S) := rfl @[simp] lemma findim_intermediate_field_eq_findim_subalgebra : findim F (adjoin F S).to_subalgebra = findim F (adjoin F S) := rfl @[simp] lemma to_subalgebra_eq_iff {K L : intermediate_field F E} : K.to_subalgebra = L.to_subalgebra ↔ K = L := by { rw [subalgebra.ext_iff, intermediate_field.ext'_iff, set.ext_iff], refl } lemma dim_adjoin_eq_one_iff : dim F (adjoin F S) = 1 ↔ S ⊆ (⊥ : intermediate_field F E) := by rw [←dim_intermediate_field_eq_dim_subalgebra, subalgebra.dim_eq_one_iff, ←bot_to_subalgebra, to_subalgebra_eq_iff, adjoin_eq_bot_iff] lemma dim_adjoin_simple_eq_one_iff : dim F F⟮α⟯ = 1 ↔ α ∈ (⊥ : intermediate_field F E) := by { rw [dim_adjoin_eq_one_iff], exact set.singleton_subset_iff } lemma findim_adjoin_eq_one_iff : findim F (adjoin F S) = 1 ↔ S ⊆ (⊥ : intermediate_field F E) := by rw [←findim_intermediate_field_eq_findim_subalgebra, subalgebra.findim_eq_one_iff, ←bot_to_subalgebra, to_subalgebra_eq_iff, adjoin_eq_bot_iff] lemma findim_adjoin_simple_eq_one_iff : findim F F⟮α⟯ = 1 ↔ α ∈ (⊥ : intermediate_field F E) := by { rw [findim_adjoin_eq_one_iff], exact set.singleton_subset_iff } /-- If `F⟮x⟯` has dimension `1` over `F` for every `x ∈ E` then `F = E`. -/ lemma bot_eq_top_of_dim_adjoin_eq_one (h : ∀ x : E, dim F F⟮x⟯ = 1) : (⊥ : intermediate_field F E) = ⊤ := begin ext, rw iff_true_right intermediate_field.mem_top, exact dim_adjoin_simple_eq_one_iff.mp (h x), end lemma bot_eq_top_of_findim_adjoin_eq_one (h : ∀ x : E, findim F F⟮x⟯ = 1) : (⊥ : intermediate_field F E) = ⊤ := begin ext, rw iff_true_right intermediate_field.mem_top, exact findim_adjoin_simple_eq_one_iff.mp (h x), end lemma subsingleton_of_dim_adjoin_eq_one (h : ∀ x : E, dim F F⟮x⟯ = 1) : subsingleton (intermediate_field F E) := subsingleton_of_bot_eq_top (bot_eq_top_of_dim_adjoin_eq_one h) lemma subsingleton_of_findim_adjoin_eq_one (h : ∀ x : E, findim F F⟮x⟯ = 1) : subsingleton (intermediate_field F E) := subsingleton_of_bot_eq_top (bot_eq_top_of_findim_adjoin_eq_one h) /-- If `F⟮x⟯` has dimension `≤1` over `F` for every `x ∈ E` then `F = E`. -/ lemma bot_eq_top_of_findim_adjoin_le_one [finite_dimensional F E] (h : ∀ x : E, findim F F⟮x⟯ ≤ 1) : (⊥ : intermediate_field F E) = ⊤ := begin apply bot_eq_top_of_findim_adjoin_eq_one, exact λ x, by linarith [h x, show 0 < findim F F⟮x⟯, from findim_pos], end lemma subsingleton_of_findim_adjoin_le_one [finite_dimensional F E] (h : ∀ x : E, findim F F⟮x⟯ ≤ 1) : subsingleton (intermediate_field F E) := subsingleton_of_bot_eq_top (bot_eq_top_of_findim_adjoin_le_one h) end adjoin_dim end adjoin_intermediate_field_lattice section adjoin_integral_element variables (F : Type*) [field F] {E : Type*} [field E] [algebra F E] {α : E} variables {K : Type*} [field K] [algebra F K] lemma aeval_gen_minimal_polynomial (h : is_integral F α) : polynomial.aeval (adjoin_simple.gen F α) (minimal_polynomial h) = 0 := begin ext, convert minimal_polynomial.aeval h, conv in (polynomial.aeval α) { rw [← adjoin_simple.algebra_map_gen F α] }, exact is_scalar_tower.algebra_map_aeval F F⟮α⟯ E _ _ end /-- algebra isomorphism between `adjoin_root` and `F⟮α⟯` -/ noncomputable def adjoin_root_equiv_adjoin (h : is_integral F α) : adjoin_root (minimal_polynomial h) ≃ₐ[F] F⟮α⟯ := alg_equiv.of_bijective (alg_hom.mk (adjoin_root.lift (algebra_map F F⟮α⟯) (adjoin_simple.gen F α) (aeval_gen_minimal_polynomial F h)) (ring_hom.map_one _) (λ x y, ring_hom.map_mul _ x y) (ring_hom.map_zero _) (λ x y, ring_hom.map_add _ x y) (by { exact λ _, adjoin_root.lift_of })) (begin set f := adjoin_root.lift _ _ (aeval_gen_minimal_polynomial F h), haveI := minimal_polynomial.irreducible h, split, { exact ring_hom.injective f }, { suffices : F⟮α⟯.to_subfield ≤ ring_hom.field_range ((F⟮α⟯.to_subfield.subtype).comp f), { exact λ x, Exists.cases_on (this (subtype.mem x)) (λ y hy, ⟨y, subtype.ext hy.2⟩) }, exact subfield.closure_le.mpr (set.union_subset (λ x hx, Exists.cases_on hx (λ y hy, ⟨y, ⟨subfield.mem_top y, by { rw [ring_hom.comp_apply, adjoin_root.lift_of], exact hy }⟩⟩)) (set.singleton_subset_iff.mpr ⟨adjoin_root.root (minimal_polynomial h), ⟨subfield.mem_top (adjoin_root.root (minimal_polynomial h)), by { rw [ring_hom.comp_apply, adjoin_root.lift_root], refl }⟩⟩)) } end) lemma adjoin_root_equiv_adjoin_apply_root (h : is_integral F α) : adjoin_root_equiv_adjoin F h (adjoin_root.root (minimal_polynomial h)) = adjoin_simple.gen F α := begin refine adjoin_root.lift_root, { exact minimal_polynomial h }, { exact aeval_gen_minimal_polynomial F h } end /-- Algebra homomorphism `F⟮α⟯ →ₐ[F] K` are in bijection with the set of roots of `minimal_polynomial α` in `K`. -/ noncomputable def alg_hom_adjoin_integral_equiv (h : is_integral F α) : (F⟮α⟯ →ₐ[F] K) ≃ {x // x ∈ ((minimal_polynomial h).map (algebra_map F K)).roots} := let ϕ := adjoin_root_equiv_adjoin F h, swap1 : (F⟮α⟯ →ₐ[F] K) ≃ (adjoin_root (minimal_polynomial h) →ₐ[F] K) := { to_fun := λ f, f.comp ϕ.to_alg_hom, inv_fun := λ f, f.comp ϕ.symm.to_alg_hom, left_inv := λ _, by { ext, simp only [alg_equiv.coe_alg_hom, alg_equiv.to_alg_hom_eq_coe, alg_hom.comp_apply, alg_equiv.apply_symm_apply]}, right_inv := λ _, by { ext, simp only [alg_equiv.symm_apply_apply, alg_equiv.coe_alg_hom, alg_equiv.to_alg_hom_eq_coe, alg_hom.comp_apply] } }, swap2 := adjoin_root.equiv F K (minimal_polynomial h) (minimal_polynomial.ne_zero h) in swap1.trans swap2 /-- Fintype of algebra homomorphism `F⟮α⟯ →ₐ[F] K` -/ noncomputable def fintype_of_alg_hom_adjoin_integral (h : is_integral F α) : fintype (F⟮α⟯ →ₐ[F] K) := fintype.of_equiv _ (alg_hom_adjoin_integral_equiv F h).symm lemma card_alg_hom_adjoin_integral (h : is_integral F α) (h_sep : (minimal_polynomial h).separable) (h_splits : (minimal_polynomial h).splits (algebra_map F K)) : @fintype.card (F⟮α⟯ →ₐ[F] K) (fintype_of_alg_hom_adjoin_integral F h) = (minimal_polynomial h).nat_degree := begin let s := ((minimal_polynomial h).map (algebra_map F K)).roots.to_finset, have H := λ x, multiset.mem_to_finset, rw [fintype.card_congr (alg_hom_adjoin_integral_equiv F h), fintype.card_of_subtype s H, polynomial.nat_degree_eq_card_roots h_splits, multiset.to_finset_card_of_nodup], exact polynomial.nodup_roots ((polynomial.separable_map (algebra_map F K)).mpr h_sep), end end adjoin_integral_element section induction variables {F : Type*} [field F] {E : Type*} [field E] [algebra F E] /-- An intermediate field `S` is finitely generated if there exists `t : finset E` such that `intermediate_field.adjoin F t = S`. -/ def fg (S : intermediate_field F E) : Prop := ∃ (t : finset E), adjoin F ↑t = S lemma fg_adjoin_finset (t : finset E) : (adjoin F (↑t : set E)).fg := ⟨t, rfl⟩ theorem fg_def {S : intermediate_field F E} : S.fg ↔ ∃ t : set E, set.finite t ∧ adjoin F t = S := ⟨λ ⟨t, ht⟩, ⟨↑t, set.finite_mem_finset t, ht⟩, λ ⟨t, ht1, ht2⟩, ⟨ht1.to_finset, by rwa set.finite.coe_to_finset⟩⟩ theorem fg_bot : (⊥ : intermediate_field F E).fg := ⟨∅, adjoin_empty F E⟩ lemma fg_of_fg_to_subalgebra (S : intermediate_field F E) (h : S.to_subalgebra.fg) : S.fg := begin cases h with t ht, exact ⟨t, (eq_adjoin_of_eq_algebra_adjoin _ _ _ ht.symm).symm⟩ end lemma fg_of_noetherian (S : intermediate_field F E) [is_noetherian F E] : S.fg := S.fg_of_fg_to_subalgebra S.to_subalgebra.fg_of_noetherian lemma induction_on_adjoin_finset (S : finset E) (P : intermediate_field F E → Prop) (base : P ⊥) (ih : ∀ (K : intermediate_field F E) (x ∈ S), P K → P ↑K⟮x⟯) : P (adjoin F ↑S) := begin apply finset.induction_on' S, { exact base }, { intros a s h1 _ _ h4, rw [finset.coe_insert, set.insert_eq, set.union_comm, ←adjoin_adjoin_left], exact ih (adjoin F s) a h1 h4 } end lemma induction_on_adjoin_fg (P : intermediate_field F E → Prop) (base : P ⊥) (ih : ∀ (K : intermediate_field F E) (x : E), P K → P ↑K⟮x⟯) (K : intermediate_field F E) (hK : K.fg) : P K := begin obtain ⟨S, rfl⟩ := hK, exact induction_on_adjoin_finset S P base (λ K x _ hK, ih K x hK), end lemma induction_on_adjoin [fd : finite_dimensional F E] (P : intermediate_field F E → Prop) (base : P ⊥) (ih : ∀ (K : intermediate_field F E) (x : E), P K → P ↑K⟮x⟯) (K : intermediate_field F E) : P K := induction_on_adjoin_fg P base ih K K.fg_of_noetherian end induction end intermediate_field
5b86127f6b12e4ae2872ffa15a8859fc96c95e3d
82b86ba2ae0d5aed0f01f49c46db5afec0eb2bd7
/stage0/src/Lean/Elab/Quotation.lean
049e448e6fa3bad4cb9902dac8afe4abc31d87e5
[ "Apache-2.0" ]
permissive
banksonian/lean4
3a2e6b0f1eb63aa56ff95b8d07b2f851072d54dc
78da6b3aa2840693eea354a41e89fc5b212a5011
refs/heads/master
1,673,703,624,165
1,605,123,551,000
1,605,123,551,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
15,474
lean
/- Copyright (c) 2019 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Sebastian Ullrich Elaboration of syntax quotations as terms and patterns (in `match_syntax`). See also `./Hygiene.lean` for the basic hygiene workings and data types. -/ import Lean.Syntax import Lean.ResolveName import Lean.Elab.Term namespace Lean.Elab.Term.Quotation open Lean.Syntax (isQuot isAntiquot) open Meta -- Antiquotations can be escaped as in `$$x`, which is useful for nesting macros. def isEscapedAntiquot (stx : Syntax) : Bool := !stx[1].getArgs.isEmpty def unescapeAntiquot (stx : Syntax) : Syntax := if isAntiquot stx then stx.setArg 1 $ mkNullNode stx[1].getArgs.pop else stx def getAntiquotTerm (stx : Syntax) : Syntax := let e := stx[2] if e.isIdent then e else -- `e` is from `"(" >> termParser >> ")"` e[1] def antiquotKind? : Syntax → Option SyntaxNodeKind | Syntax.node (Name.str k "antiquot" _) args => if args[3].isOfKind `antiquotName then some k else -- we treat all antiquotations where the kind was left implicit (`$e`) the same (see `elimAntiquotChoices`) some Name.anonymous | _ => none -- `$e*` is an antiquotation "splice" matching an arbitrary number of syntax nodes def isAntiquotSplice (stx : Syntax) : Bool := isAntiquot stx && stx[4].getOptional?.isSome -- If any item of a `many` node is an antiquotation splice, its result should -- be substituted into the `many` node's children def isAntiquotSplicePat (stx : Syntax) : Bool := stx.isOfKind nullKind && stx.getArgs.any fun arg => isAntiquotSplice arg && !isEscapedAntiquot arg /-- A term like `($e) is actually ambiguous: the antiquotation could be of kind `term`, or `ident`, or ... . But it shouldn't really matter because antiquotations without explicit kinds behave the same at runtime. So we replace `choice` nodes that contain at least one implicit antiquotation with that antiquotation. -/ private partial def elimAntiquotChoices : Syntax → Syntax | Syntax.node `choice args => match args.find? fun arg => antiquotKind? arg == Name.anonymous with | some anti => anti | none => Syntax.node `choice $ args.map elimAntiquotChoices | Syntax.node k args => Syntax.node k $ args.map elimAntiquotChoices | stx => stx -- Elaborate the content of a syntax quotation term private partial def quoteSyntax : Syntax → TermElabM Syntax | Syntax.ident info rawVal val preresolved => do -- Add global scopes at compilation time (now), add macro scope at runtime (in the quotation). -- See the paper for details. let r ← resolveGlobalName val let preresolved := r ++ preresolved let val := quote val -- `scp` is bound in stxQuot.expand `(Syntax.ident (SourceInfo.mk none none none) $(quote rawVal) (addMacroScope mainModule $val scp) $(quote preresolved)) -- if antiquotation, insert contents as-is, else recurse | stx@(Syntax.node k _) => do if isAntiquot stx && !isEscapedAntiquot stx then -- splices must occur in a `many` node if isAntiquotSplice stx then throwErrorAt stx "unexpected antiquotation splice" else pure $ getAntiquotTerm stx else let empty ← `(Array.empty); -- if escaped antiquotation, decrement by one escape level let stx := unescapeAntiquot stx let args ← stx.getArgs.foldlM (fun args arg => if k == nullKind && isAntiquotSplice arg then -- antiquotation splice pattern: inject args array `(Array.append $args $(getAntiquotTerm arg)) else do let arg ← quoteSyntax arg; `(Array.push $args $arg)) empty `(Syntax.node $(quote k) $args) | Syntax.atom info val => `(Syntax.atom (SourceInfo.mk none none none) $(quote val)) | Syntax.missing => unreachable! def stxQuot.expand (stx : Syntax) : TermElabM Syntax := do let quoted := stx[1] /- Syntax quotations are monadic values depending on the current macro scope. For efficiency, we bind the macro scope once for each quotation, then build the syntax tree in a completely pure computation depending on this binding. Note that regular function calls do not introduce a new macro scope (i.e. we preserve referential transparency), so we can refer to this same `scp` inside `quoteSyntax` by including it literally in a syntax quotation. -/ -- TODO: simplify to `(do scp ← getCurrMacroScope; pure $(quoteSyntax quoted)) let stx ← quoteSyntax (elimAntiquotChoices quoted); `(Bind.bind getCurrMacroScope (fun scp => Bind.bind getMainModule (fun mainModule => Pure.pure $stx))) /- NOTE: It may seem like the newly introduced binding `scp` may accidentally capture identifiers in an antiquotation introduced by `quoteSyntax`. However, note that the syntax quotation above enjoys the same hygiene guarantees as anywhere else in Lean; that is, we implement hygienic quotations by making use of the hygienic quotation support of the bootstrapped Lean compiler! Aside: While this might sound "dangerous", it is in fact less reliant on a "chain of trust" than other bootstrapping parts of Lean: because this implementation itself never uses `scp` (or any other identifier) both inside and outside quotations, it can actually correctly be compiled by an unhygienic (but otherwise correct) implementation of syntax quotations. As long as it is then compiled again with the resulting executable (i.e. up to stage 2), the result is a correct hygienic implementation. In this sense the implementation is "self-stabilizing". It was in fact originally compiled by an unhygienic prototype implementation. -/ @[builtinTermElab Parser.Level.quot] def elabLevelQuot : TermElab := adaptExpander stxQuot.expand @[builtinTermElab Parser.Term.quot] def elabTermQuot : TermElab := adaptExpander stxQuot.expand @[builtinTermElab Parser.Term.funBinder.quot] def elabfunBinderQuot : TermElab := adaptExpander stxQuot.expand @[builtinTermElab Parser.Tactic.quot] def elabTacticQuot : TermElab := adaptExpander stxQuot.expand @[builtinTermElab Parser.Tactic.quotSeq] def elabTacticQuotSeq : TermElab := adaptExpander stxQuot.expand @[builtinTermElab Parser.Term.stx.quot] def elabStxQuot : TermElab := adaptExpander stxQuot.expand @[builtinTermElab Parser.Term.doElem.quot] def elabDoElemQuot : TermElab := adaptExpander stxQuot.expand /- match_syntax -/ -- an "alternative" of patterns plus right-hand side private abbrev Alt := List Syntax × Syntax /-- Information on a pattern's head that influences the compilation of a single match step. -/ structure HeadInfo := -- Node kind to match, if any (kind : Option SyntaxNodeKind := none) -- Nested patterns for each argument, if any. In a single match step, we only -- check that the arity matches. The arity is usually implied by the node kind, -- but not in the case of `many` nodes. (argPats : Option (Array Syntax) := none) -- Function to apply to the right-hand side in case the match succeeds. Used to -- bind pattern variables. (rhsFn : Syntax → TermElabM Syntax := pure) instance : Inhabited HeadInfo := ⟨{}⟩ /-- `h1.generalizes h2` iff h1 is equal to or more general than h2, i.e. it matches all nodes h2 matches. This induces a partial ordering. -/ def HeadInfo.generalizes : HeadInfo → HeadInfo → Bool | { kind := none, .. }, _ => true | { kind := some k1, argPats := none, .. }, { kind := some k2, .. } => k1 == k2 | { kind := some k1, argPats := some ps1, .. }, { kind := some k2, argPats := some ps2, .. } => k1 == k2 && ps1.size == ps2.size | _, _ => false private def getHeadInfo (alt : Alt) : HeadInfo := let pat := alt.fst.head!; let unconditional (rhsFn) := { rhsFn := rhsFn : HeadInfo }; -- variable pattern if pat.isIdent then unconditional $ fun rhs => `(let $pat := discr; $rhs) -- wildcard pattern else if pat.isOfKind `Lean.Parser.Term.hole then unconditional pure -- quotation pattern else if isQuot pat then let quoted := pat[1] if quoted.isAtom then -- We assume that atoms are uniquely determined by the node kind and never have to be checked unconditional pure else if isAntiquot quoted && !isEscapedAntiquot quoted then -- quotation contains a single antiquotation let k := antiquotKind? quoted; -- Antiquotation kinds like `$id:ident` influence the parser, but also need to be considered by -- match_syntax (but not by quotation terms). For example, `($id:ident) and `($e) are not -- distinguishable without checking the kind of the node to be captured. Note that some -- antiquotations like the latter one for terms do not correspond to any actual node kind -- (signified by `k == Name.anonymous`), so we would only check for `ident` here. -- -- if stx.isOfKind `ident then -- let id := stx; ... -- else -- let e := stx; ... let kind := if k == Name.anonymous then none else k let anti := getAntiquotTerm quoted -- Splices should only appear inside a nullKind node, see next case if isAntiquotSplice quoted then unconditional $ fun _ => throwErrorAt quoted "unexpected antiquotation splice" else if anti.isIdent then { kind := kind, rhsFn := fun rhs => `(let $anti := discr; $rhs) } else unconditional fun _ => throwErrorAt anti ("match_syntax: antiquotation must be variable " ++ toString anti) else if isAntiquotSplicePat quoted && quoted.getArgs.size == 1 then -- quotation is a single antiquotation splice => bind args array let anti := getAntiquotTerm quoted[0] unconditional fun rhs => `(let $anti := Syntax.getArgs discr; $rhs) -- TODO: support for more complex antiquotation splices else -- not an antiquotation or escaped antiquotation: match head shape let quoted := unescapeAntiquot quoted let argPats := quoted.getArgs.map (pat.setArg 1); { kind := quoted.getKind, argPats := argPats } else unconditional $ fun _ => throwErrorAt pat ("match_syntax: unexpected pattern kind " ++ toString pat) -- Assuming that the first pattern of the alternative is taken, replace it with patterns (if any) for its -- child nodes. -- Ex: `($a + (- $b)) => `($a), `(+), `(- $b) -- Note: The atom pattern `(+) will be discarded in a later step private def explodeHeadPat (numArgs : Nat) : HeadInfo × Alt → TermElabM Alt | (info, (pat::pats, rhs)) => do let newPats := match info.argPats with | some argPats => argPats.toList | none => List.replicate numArgs $ Unhygienic.run `(_) let rhs ← info.rhsFn rhs pure (newPats ++ pats, rhs) | _ => unreachable! private partial def compileStxMatch : List Syntax → List Alt → TermElabM Syntax | [], ([], rhs)::_ => pure rhs -- nothing left to match | _, [] => throwError "non-exhaustive 'match_syntax'" | discr::discrs, alts => do let alts := (alts.map getHeadInfo).zip alts; -- Choose a most specific pattern, ie. a minimal element according to `generalizes`. -- If there are multiple minimal elements, the choice does not matter. let (info, alt) := alts.tail!.foldl (fun (min : HeadInfo × Alt) (alt : HeadInfo × Alt) => if min.1.generalizes alt.1 then alt else min) alts.head!; -- introduce pattern matches on the discriminant's children if there are any nested patterns let newDiscrs ← match info.argPats with | some pats => (List.range pats.size).mapM fun i => `(Syntax.getArg discr $(quote i)) | none => pure [] -- collect matching alternatives and explode them let yesAlts := alts.filter fun (alt : HeadInfo × Alt) => alt.1.generalizes info let yesAlts ← yesAlts.mapM $ explodeHeadPat newDiscrs.length -- NOTE: use fresh macro scopes for recursive call so that different `discr`s introduced by the quotations below do not collide let yes ← withFreshMacroScope $ compileStxMatch (newDiscrs ++ discrs) yesAlts let some kind ← pure info.kind -- unconditional match step | `(let discr := $discr; $yes) -- conditional match step let noAlts := (alts.filter $ fun (alt : HeadInfo × Alt) => !info.generalizes alt.1).map (·.2) let no ← withFreshMacroScope $ compileStxMatch (discr::discrs) noAlts let cond ← match info.argPats with | some pats => `(and (Syntax.isOfKind discr $(quote kind)) (BEq.beq (Array.size (Syntax.getArgs discr)) $(quote pats.size))) | none => `(Syntax.isOfKind discr $(quote kind)) `(let discr := $discr; ite (Eq $cond true) $yes $no) | _, _ => unreachable! private partial def getPatternVarsAux : Syntax → List Syntax | stx@(Syntax.node k args) => if isAntiquot stx && !isEscapedAntiquot stx then let anti := getAntiquotTerm stx if anti.isIdent then [anti] else [] else List.join $ args.toList.map getPatternVarsAux | _ => [] -- Get all pattern vars (as `Syntax.ident`s) in `stx` partial def getPatternVars (stx : Syntax) : List Syntax := if isQuot stx then do let quoted := stx.getArg 1; getPatternVarsAux stx else if stx.isIdent then [stx] else [] -- Transform alternatives by binding all right-hand sides to outside the match_syntax in order to prevent -- code duplication during match_syntax compilation private def letBindRhss (cont : List Alt → TermElabM Syntax) : List Alt → List Alt → TermElabM Syntax | [], altsRev' => cont altsRev'.reverse | (pats, rhs)::alts, altsRev' => do let vars := List.join $ pats.map getPatternVars match vars with -- no antiquotations => introduce Unit parameter to preserve evaluation order | [] => -- NOTE: references binding below let rhs' ← `(rhs ()) -- NOTE: new macro scope so that introduced bindings do not collide let stx ← withFreshMacroScope $ letBindRhss cont alts ((pats, rhs')::altsRev') `(let rhs := fun _ => $rhs; $stx) | _ => -- rhs ← `(fun $vars* => $rhs) let rhs := Syntax.node `Lean.Parser.Term.fun #[mkAtom "fun", Syntax.node `null vars.toArray, mkAtom "=>", rhs] let rhs' ← `(rhs) let stx ← withFreshMacroScope $ letBindRhss cont alts ((pats, rhs')::altsRev') `(let rhs := $rhs; $stx) def match_syntax.expand (stx : Syntax) : TermElabM Syntax := do let discr := stx[1] let alts := stx[3][1] let alts ← alts.getSepArgs.mapM $ fun alt => do let pats := alt.getArg 0; let pat ← if pats.getArgs.size == 1 then pure pats[0] else throwError "match_syntax: expected exactly one pattern per alternative" let pat := if isQuot pat then pat.setArg 1 $ elimAntiquotChoices $ pat[1] else pat match pat.find? $ fun stx => stx.getKind == choiceKind with | some choiceStx => throwErrorAt choiceStx "invalid pattern, nested syntax has multiple interpretations" | none => let rhs := alt.getArg 2 pure ([pat], rhs) -- letBindRhss (compileStxMatch stx [discr]) alts.toList [] compileStxMatch [discr] alts.toList @[builtinTermElab «match_syntax»] def elabMatchSyntax : TermElab := adaptExpander match_syntax.expand end Lean.Elab.Term.Quotation
063704d01ef451c2db7d96ce1b08d6c975e1cbc9
86f6f4f8d827a196a32bfc646234b73328aeb306
/examples/logic/unnamed_1999.lean
c504902337e35bf9bbfab920c19f3b51427b17f8
[]
no_license
jamescheuk91/mathematics_in_lean
09f1f87d2b0dce53464ff0cbe592c568ff59cf5e
4452499264e2975bca2f42565c0925506ba5dda3
refs/heads/master
1,679,716,410,967
1,613,957,947,000
1,613,957,947,000
null
0
0
null
null
null
null
UTF-8
Lean
false
false
214
lean
import data.real.basic -- BEGIN example {x : ℝ} (h : x ≠ 0) : x < 0 ∨ x > 0 := begin rcases lt_trichotomy x 0 with xlt | xeq | xgt, { left, exact xlt }, { contradiction }, right, exact xgt end -- END
b94f0576484e97dd738008b1d617ffbf7c49c171
4727251e0cd73359b15b664c3170e5d754078599
/src/data/matrix/hadamard.lean
2985d309e17d2ac5a57d70e81fe88953baac548a
[ "Apache-2.0" ]
permissive
Vierkantor/mathlib
0ea59ac32a3a43c93c44d70f441c4ee810ccceca
83bc3b9ce9b13910b57bda6b56222495ebd31c2f
refs/heads/master
1,658,323,012,449
1,652,256,003,000
1,652,256,003,000
209,296,341
0
1
Apache-2.0
1,568,807,655,000
1,568,807,655,000
null
UTF-8
Lean
false
false
3,387
lean
/- Copyright (c) 2021 Lu-Ming Zhang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Lu-Ming Zhang -/ import linear_algebra.matrix.trace /-! # Hadamard product of matrices This file defines the Hadamard product `matrix.hadamard` and contains basic properties about them. ## Main definition - `matrix.hadamard`: defines the Hadamard product, which is the pointwise product of two matrices of the same size. ## Notation * `⊙`: the Hadamard product `matrix.hadamard`; ## References * <https://en.wikipedia.org/wiki/hadamard_product_(matrices)> ## Tags hadamard product, hadamard -/ variables {α β γ m n : Type*} variables {R : Type*} namespace matrix open_locale matrix big_operators /-- `matrix.hadamard` defines the Hadamard product, which is the pointwise product of two matrices of the same size.-/ @[simp] def hadamard [has_mul α] (A : matrix m n α) (B : matrix m n α) : matrix m n α | i j := A i j * B i j localized "infix ` ⊙ `:100 := matrix.hadamard" in matrix section basic_properties variables (A : matrix m n α) (B : matrix m n α) (C : matrix m n α) /- commutativity -/ lemma hadamard_comm [comm_semigroup α] : A ⊙ B = B ⊙ A := ext $ λ _ _, mul_comm _ _ /- associativity -/ lemma hadamard_assoc [semigroup α] : A ⊙ B ⊙ C = A ⊙ (B ⊙ C) := ext $ λ _ _, mul_assoc _ _ _ /- distributivity -/ lemma hadamard_add [distrib α] : A ⊙ (B + C) = A ⊙ B + A ⊙ C := ext $ λ _ _, left_distrib _ _ _ lemma add_hadamard [distrib α] : (B + C) ⊙ A = B ⊙ A + C ⊙ A := ext $ λ _ _, right_distrib _ _ _ /- scalar multiplication -/ section scalar @[simp] lemma smul_hadamard [has_mul α] [has_scalar R α] [is_scalar_tower R α α] (k : R) : (k • A) ⊙ B = k • A ⊙ B := ext $ λ _ _, smul_mul_assoc _ _ _ @[simp] lemma hadamard_smul [has_mul α] [has_scalar R α] [smul_comm_class R α α] (k : R): A ⊙ (k • B) = k • A ⊙ B := ext $ λ _ _, mul_smul_comm _ _ _ end scalar section zero variables [mul_zero_class α] @[simp] lemma hadamard_zero : A ⊙ (0 : matrix m n α) = 0 := ext $ λ _ _, mul_zero _ @[simp] lemma zero_hadamard : (0 : matrix m n α) ⊙ A = 0 := ext $ λ _ _, zero_mul _ end zero section one variables [decidable_eq n] [mul_zero_one_class α] variables (M : matrix n n α) lemma hadamard_one : M ⊙ (1 : matrix n n α) = diagonal (λ i, M i i) := by { ext, by_cases h : i = j; simp [h] } lemma one_hadamard : (1 : matrix n n α) ⊙ M = diagonal (λ i, M i i) := by { ext, by_cases h : i = j; simp [h] } end one section diagonal variables [decidable_eq n] [mul_zero_class α] lemma diagonal_hadamard_diagonal (v : n → α) (w : n → α) : diagonal v ⊙ diagonal w = diagonal (v * w) := ext $ λ _ _, (apply_ite2 _ _ _ _ _ _).trans (congr_arg _ $ zero_mul 0) end diagonal section trace variables [fintype m] [fintype n] variables (R) [semiring α] [semiring R] [module R α] lemma sum_hadamard_eq : ∑ (i : m) (j : n), (A ⊙ B) i j = trace (A ⬝ Bᵀ) := rfl lemma dot_product_vec_mul_hadamard [decidable_eq m] [decidable_eq n] (v : m → α) (w : n → α) : dot_product (vec_mul v (A ⊙ B)) w = trace (diagonal v ⬝ A ⬝ (B ⬝ diagonal w)ᵀ) := begin rw [←sum_hadamard_eq, finset.sum_comm], simp [dot_product, vec_mul, finset.sum_mul, mul_assoc], end end trace end basic_properties end matrix
e68800067c39c705650b34492ced926840e85fa7
cf3e23df8bb565635298b2fb52d319f281f42bf6
/src/compact_unit_ball.lean
fbb23f6b4dca38ff3a2b0b0a037c8a2c2ea4e2db
[]
no_license
PatrickMassot/compact_unit_ball
435545cd83da49bddeff77c6e3064236c5aa01e2
85a9dc82b73b99334adf7ed7cd595c593c6f4aac
refs/heads/lean-3.4.2
1,601,137,103,131
1,575,623,707,000
1,575,623,707,000
226,289,799
0
0
null
1,575,623,668,000
1,575,623,668,000
null
UTF-8
Lean
false
false
12,525
lean
import analysis.normed_space.banach import analysis.normed_space.basic import linear_algebra.basic import linear_algebra.basis import linear_algebra.dimension import linear_algebra.finite_dimensional import topology.subset_properties import set_theory.cardinal import data.real.basic import topology.sequences import order.bounded_lattice import analysis.specific_limits import analysis.normed_space.finite_dimension noncomputable theory open_locale classical local attribute [instance, priority 20000] nat.has_zero nat.has_one real.domain local attribute [instance, priority 10000] mul_action.to_has_scalar distrib_mul_action.to_mul_action semimodule.to_distrib_mul_action module.to_semimodule vector_space.to_module normed_space.to_vector_space ring.to_monoid normed_ring.to_ring normed_field.to_normed_ring add_group.to_add_monoid add_comm_group.to_add_group normed_group.to_add_comm_group ring.to_semiring add_comm_group.to_add_comm_monoid normed_field.to_discrete_field normed_field.to_has_norm nondiscrete_normed_field.to_normed_field zero_ne_one_class.to_has_zero zero_ne_one_class.to_has_one domain.to_zero_ne_one_class division_ring.to_domain field.to_division_ring discrete_field.to_field set_option class.instance_max_depth 100 open metric set universe u -- completeness of k is only assumed so we can use the library to prove that -- the span of a finite set is closed. Can someone find a non-complete -- field k and a normed vector space V over k in which there is finite -- dimensional subspace which is not closed? variables {k : Type} [nondiscrete_normed_field k] [complete_space k] {V : Type} [normed_group V] [normed_space k V] lemma nontrivial_norm_gt_one: ∃ x : k, x ≠ 0 ∧ norm x > 1 := begin cases normed_field.exists_one_lt_norm k with x hx, refine ⟨x, _, hx⟩, intro hzero, rw [hzero, norm_zero] at hx, linarith, end lemma nontrivial_arbitrarily_small_norm {e : ℝ} (he : e > 0) : ∃ x : k, x ≠ 0 ∧ norm x < e := begin rcases normed_field.exists_norm_lt k he with ⟨x, hx₁, hx₂⟩, refine ⟨x, _, hx₂⟩, intro xzero, rw [xzero, norm_zero] at hx₁, linarith end lemma nontrivial_norm_lt_one: ∃ x : k, x ≠ 0 ∧ norm x < 1 := nontrivial_arbitrarily_small_norm (by linarith) lemma ball_span_ash {A : set V} (hyp : ∀ v : V, norm v ≤ 1 → v ∈ submodule.span k A) (v : V) : v ∈ submodule.span k A := begin by_cases v0 : v = 0, { rw v0, exact submodule.zero_mem _ }, { have norm_pos : 0 < norm v, from (norm_pos_iff v).mpr v0, obtain ⟨x, hx₁, hx₂⟩ : ∃ x : k, x ≠ 0 ∧ norm x < 1 / norm v, from nontrivial_arbitrarily_small_norm (one_div_pos_of_pos norm_pos), rw ← submodule.smul_mem_iff (submodule.span k A) hx₁, apply hyp (x • v), rw [norm_smul], exact le_of_lt (mul_lt_of_lt_div norm_pos hx₂) } end /-- If A spans the closed unit ball then it spans all of V -/ lemma ball_span {A : set V} (H : (closed_ball 0 1 : set V) ⊆ submodule.span k A) : ∀ v : V, v ∈ submodule.span k A := begin apply ball_span_ash, intros v hv, rw ← dist_zero_right at hv, exact H hv, end theorem finite_dimensional_span_of_finite {A : set V} (hA : finite A) : finite_dimensional k ↥(submodule.span k A) := begin apply is_noetherian_of_fg_of_noetherian, exact submodule.fg_def.2 ⟨A, hA, rfl⟩, end -- the span of a finite set is (sequentially) closed lemma finite_span_seq_closed (A : set V) : finite A → is_seq_closed (↑(submodule.span k A) : set V) := begin intro h_fin, apply is_seq_closed_of_is_closed, haveI : finite_dimensional k ↥(submodule.span k A) := finite_dimensional_span_of_finite h_fin, exact submodule.closed_of_finite_dimensional _, end --turns cover into a choice function lemma cover_to_func (A X : set V) {r : ℝ} (hX : X ⊆ (⋃a ∈ A, ball a r)) (a : V) (ha : a ∈ A) : ∃(f : V → V), ∀x, f x ∈ A ∧ (x ∈ X → x ∈ ball (f x) r) := begin classical, have : ∀(x : V), ∃a, a ∈ A ∧ (x ∈ X → x ∈ ball a r) := begin assume x, by_cases h : x ∈ X, { simpa [h] using hX h }, { exact ⟨a, ha, by simp [h]⟩ } end, choose f hf using this, exact ⟨f, λx, hf x⟩ end -- if the closed unit ball is compact, then there is -- a function which selects the center of a ball of radius 1/2 close to it lemma compact_choice_func (hc : compact (closed_ball 0 1 : set V)) {r : k} (hr : norm r > 0) : ∃ A : set V, A ⊆ (closed_ball 0 1 : set V) ∧ finite A ∧ ∃ f : V → V, ∀ x : V, f x ∈ A ∧ (x ∈ (closed_ball 0 1 : set V) → x ∈ ball (f x) (1/norm r)) := begin let B : set V := closed_ball 0 1, have cover : B ⊆ ⋃ a ∈ B, ball a (1 / norm r), { intros x hx, simp, use x, rw dist_self, split, simp at hx, exact hx, norm_num, exact hr, }, obtain ⟨A, A_sub, A_fin, HcoverA⟩ : ∃ A ⊆ B, finite A ∧ B ⊆ ⋃ a ∈ A, ball a (1/ norm r) := compact_elim_finite_subcover_image hc (by simp[is_open_ball]) cover, -- need that A is non-empty to construct a choice function! have x_in : (0 : V) ∈ B, simp, norm_num, obtain ⟨a, a_in, ha⟩ : ∃ a ∈ A, dist (0 : V) a < 1/ norm r, by simpa using HcoverA x_in, have hfunc := cover_to_func A B HcoverA a a_in, existsi A, split, exact A_sub, split, exact A_fin, exact hfunc, end def aux_seq (v : V) (x : k) (f : V → V) : ℕ → V | 0 := v | (n + 1) := x • (aux_seq n - f (aux_seq n)) def partial_sum (f : ℕ → V) : ℕ → V | 0 := f 0 | (n + 1) := f (n + 1) + partial_sum n def approx_seq (v : V) (x : k) (f : V → V) : ℕ → V := partial_sum (λ n : ℕ, (1/x)^n • f(aux_seq v x f n)) -- if a sequence w n satisfies the bound |v - w n| < e^(n+1), where 0 < e < 1 -- then w n converges to v lemma bound_power_convergence (w : ℕ → V) {v : V} {x : k} (hx : norm x > 1) (h : ∀ n : ℕ, norm (v - w n) ≤ (1 / norm x)^(n + 1)) : filter.tendsto w filter.at_top (nhds v) := begin have hlt1 : 1 / norm x < 1, { rw div_lt_one_iff_lt, exact hx, apply lt_trans zero_lt_one, exact hx, }, have hpos : 1 / norm x > 0, { norm_num, apply lt_trans zero_lt_one, exact hx, }, have H : ∀ n : ℕ, norm (w n - v) ≤ (1 / norm x)^n, intro n, rw <- dist_eq_norm, rw dist_comm, rw dist_eq_norm, apply le_trans, exact h n, rw pow_succ, have h1 : (1 / norm x) * (1 / norm x)^n ≤ 1 * (1 / norm x)^n, rw mul_le_mul_right, rw le_iff_eq_or_lt, right, exact hlt1, apply pow_pos, exact hpos, rw one_mul at h1, exact h1, rw tendsto_iff_norm_tendsto_zero, apply squeeze_zero, intro t, exact norm_nonneg (w t - v), exact H, apply tendsto_pow_at_top_nhds_0_of_lt_1, rw le_iff_eq_or_lt, right, exact hpos, exact hlt1, end -- the approximation sequence (w n below) is contained in the span of A -- this is true since by construction w n is a linear combination -- of the elements in A lemma approx_in_span (A : set V) (v : V) (x : k) (f : V → V) (hf : ∀ x : V, f x ∈ A): ∀ n : ℕ, approx_seq v x f n ∈ submodule.span k A := begin let w := approx_seq v x f, have hw : w = approx_seq v x f, refl, intro n, rw submodule.mem_span, intros p hp, induction n with n hn, { have h1 : w 0 = (1/x)^0 • f(v), refl, simp at h1, rw <- hw, rw h1, have h2 : f v ∈ A := hf v, exact hp h2, },{ have h1 : w (n+1) = (1/x)^(n+1) • f(aux_seq v x f (n+1)) + w(n), refl, rw <- hw, rw h1, have h2 := hp (hf (aux_seq v x f (n+1))), have h3 := submodule.smul_mem p ((1/x)^(n+1)) h2, apply submodule.add_mem p, exact h3, exact hn, }, end theorem compact_unit_ball_implies_finite_dim (Hcomp : compact (closed_ball 0 1 : set V)) : finite_dimensional k V := begin -- there is an x in k such that norm x > 1 have hbignum : ∃ x : k, x ≠ 0 ∧ norm x > 1, exact nontrivial_norm_gt_one, cases hbignum with x hx, have hxpos : norm x > 0, { have h : (1:ℝ) > 0, norm_num, exact gt_trans hx.2 h, }, -- use compactness to find a finite set A -- and function f : V -> A such that for every -- v in closed_ball 0 1, |f v - v| < 1/ norm x obtain ⟨A, A_sub, A_fin, Hexistsf⟩ := compact_choice_func Hcomp hxpos, obtain ⟨f, hf⟩ := Hexistsf, -- suffices to show closed_ball 0 1 is spanned by A apply finite_dimensional.of_fg, rw submodule.fg_def, existsi A, split, exact A_fin, rw submodule.eq_top_iff', apply ball_span, -- let v in closed_ball 0 1 and show that it is in the span of A -- to do so we construct a sequence w n such that -- w n -> v and w n in span A for all n -- for this we do a kind of 'dyadic approximation' of v using the set A -- then we use that the span of a finite set is closed to conclude intros v hv, let u : ℕ → V := aux_seq v x f, let w : ℕ → V := partial_sum (λ n : ℕ, (1/x)^n • f(u(n))), -- show that w n is in the span of A have hw : ∀ n, w n ∈ submodule.span k A, { have hf' : ∀ x : V, f x ∈ A, intro x, exact (hf x).1, exact approx_in_span A v x f hf', }, -- this is just some algebraic manipulation have hdist : ∀ n : ℕ, v - w n = (1/x)^(n+1) • u (n+1), { intro n, induction n with n hn, { have h1 : w 0 = (1/x)^0 • f(v), refl, rw zero_add, rw pow_one, rw pow_zero at h1, rw one_smul at h1, rw h1, have h2 : u 1 = x • (v - f(v)), refl, rw h2, rw smul_smul, rw one_div_mul_cancel, rw one_smul, exact hx.1, }, { have h1 : w (n+1) = (1/x)^(n+1) • f(u (n+1)) + w(n), refl, have h2 : u (n+2) = x • (u (n+1) - f (u (n+1))), refl, rw h2, rw pow_succ, rw smul_smul, rw mul_comm, rw <- mul_assoc, rw mul_one_div_cancel, rw one_mul, rw smul_sub, rw <- hn, rw h1, rw add_comm _ (w n), rw sub_sub v (w n) _, exact hx.1, }, }, -- main bound for convergence using the expression hdist have hbound : ∀ n : ℕ, norm (v - w n) ≤ (1/norm x)^(n+1), { intro n, rw hdist n, rw norm_smul, have hu : u(n+1) = x • (u(n) - f(u(n))), refl, rw hu, have husmall : norm (u n) ≤ 1, { induction n with n hn, have h0 : u 0 = v, refl, rw h0, rw <- dist_zero_right, exact hv, have hu' : u(n + 1) = x • (u(n) - f(u(n))), refl, rw hu', have h2 := (hf (u n)).2, rw norm_smul, rw <- dist_eq_norm, have h3 := hn hu', rw <- dist_zero_right at h3, have h4 : dist (u n) (f (u n)) < 1/ norm x, exact h2 h3, rw le_iff_eq_or_lt, right, rw <- mul_lt_mul_left hxpos at h4, rw mul_one_div_cancel at h4, exact h4, exact mt (norm_eq_zero x).1 hx.1, }, have h2 : 0 < (1/norm x), norm_num, exact hxpos, have h1 : 0 < (1/ norm x)^(n+1), exact pow_pos h2 (n+1), have h3 : norm ((1/ x)^(n+1)) * norm (x • (u n - f(u n))) ≤ norm ((1/ x)^(n+1)) * 1 → (1/norm x)^(n+1) * norm (x • (u n - f(u n))) ≤ (1/norm x)^(n+1), intro h, rw mul_one at h, rw normed_field.norm_pow at h, rw normed_field.norm_div at h, rw normed_field.norm_one at h, exact h, rw normed_field.norm_pow, rw normed_field.norm_div, rw normed_field.norm_one, apply h3, rw normed_field.norm_pow, rw normed_field.norm_div, rw normed_field.norm_one, rw mul_le_mul_left h1, rw norm_smul, rw <- dist_zero_right at husmall, have h4 := (hf (u n)).2 husmall, rw <- dist_eq_norm, rw <- mul_le_mul_left h2, rw <- mul_assoc, rw mul_one, rw one_div_mul_cancel, rw one_mul, rw le_iff_eq_or_lt, right, exact h4, exact mt (norm_eq_zero x).1 hx.1, }, -- w n -> v as n -> infty have hlim : filter.tendsto w filter.at_top (nhds v : filter V) := bound_power_convergence w hx.2 hbound, -- the span of a finite set is (sequentially) closed let S : set V := ↑(submodule.span k A), have hspan_closed : is_seq_closed S := finite_span_seq_closed A A_fin, have hw' : ∀ n, w n ∈ S, exact hw, -- since S is closed, the limit v of w n is in S, as required. have hinS: v ∈ S, exact mem_of_is_seq_closed hspan_closed hw' hlim, exact hinS, end
331e812f756d2a03fdc5ed3de8506ff413151cd5
8cae430f0a71442d02dbb1cbb14073b31048e4b0
/src/topology/sets/order.lean
b11ca9821a8d3e393834f1efc39372c9f66e2865
[ "Apache-2.0" ]
permissive
leanprover-community/mathlib
56a2cadd17ac88caf4ece0a775932fa26327ba0e
442a83d738cb208d3600056c489be16900ba701d
refs/heads/master
1,693,584,102,358
1,693,471,902,000
1,693,471,902,000
97,922,418
1,595
352
Apache-2.0
1,694,693,445,000
1,500,624,130,000
Lean
UTF-8
Lean
false
false
2,479
lean
/- Copyright (c) 2022 Yaël Dillies. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yaël Dillies -/ import order.upper_lower.basic import topology.sets.closeds /-! # Clopen upper sets > THIS FILE IS SYNCHRONIZED WITH MATHLIB4. > Any changes to this file require a corresponding PR to mathlib4. In this file we define the type of clopen upper sets. -/ open set topological_space variables {α β : Type*} [topological_space α] [has_le α] [topological_space β] [has_le β] /-! ### Compact open sets -/ /-- The type of clopen upper sets of a topological space. -/ structure clopen_upper_set (α : Type*) [topological_space α] [has_le α] extends clopens α := (upper' : is_upper_set carrier) namespace clopen_upper_set instance : set_like (clopen_upper_set α) α := { coe := λ s, s.carrier, coe_injective' := λ s t h, by { obtain ⟨⟨_, _⟩, _⟩ := s, obtain ⟨⟨_, _⟩, _⟩ := t, congr' } } lemma upper (s : clopen_upper_set α) : is_upper_set (s : set α) := s.upper' lemma clopen (s : clopen_upper_set α) : is_clopen (s : set α) := s.clopen' /-- Reinterpret a upper clopen as an upper set. -/ @[simps] def to_upper_set (s : clopen_upper_set α) : upper_set α := ⟨s, s.upper⟩ @[ext] protected lemma ext {s t : clopen_upper_set α} (h : (s : set α) = t) : s = t := set_like.ext' h @[simp] lemma coe_mk (s : clopens α) (h) : (mk s h : set α) = s := rfl instance : has_sup (clopen_upper_set α) := ⟨λ s t, ⟨s.to_clopens ⊔ t.to_clopens, s.upper.union t.upper⟩⟩ instance : has_inf (clopen_upper_set α) := ⟨λ s t, ⟨s.to_clopens ⊓ t.to_clopens, s.upper.inter t.upper⟩⟩ instance : has_top (clopen_upper_set α) := ⟨⟨⊤, is_upper_set_univ⟩⟩ instance : has_bot (clopen_upper_set α) := ⟨⟨⊥, is_upper_set_empty⟩⟩ instance : lattice (clopen_upper_set α) := set_like.coe_injective.lattice _ (λ _ _, rfl) (λ _ _, rfl) instance : bounded_order (clopen_upper_set α) := bounded_order.lift (coe : _ → set α) (λ _ _, id) rfl rfl @[simp] lemma coe_sup (s t : clopen_upper_set α) : (↑(s ⊔ t) : set α) = s ∪ t := rfl @[simp] lemma coe_inf (s t : clopen_upper_set α) : (↑(s ⊓ t) : set α) = s ∩ t := rfl @[simp] lemma coe_top : (↑(⊤ : clopen_upper_set α) : set α) = univ := rfl @[simp] lemma coe_bot : (↑(⊥ : clopen_upper_set α) : set α) = ∅ := rfl instance : inhabited (clopen_upper_set α) := ⟨⊥⟩ end clopen_upper_set
3b184b8a006deac173045fbeb13f9135ca3d88ea
74addaa0e41490cbaf2abd313a764c96df57b05d
/Mathlib/analysis/calculus/extend_deriv.lean
b8abed6db88a7984d1502827b4f9f7187035970e
[]
no_license
AurelienSaue/Mathlib4_auto
f538cfd0980f65a6361eadea39e6fc639e9dae14
590df64109b08190abe22358fabc3eae000943f2
refs/heads/master
1,683,906,849,776
1,622,564,669,000
1,622,564,669,000
371,723,747
0
0
null
null
null
null
UTF-8
Lean
false
false
3,452
lean
/- Copyright (c) 2019 Sébastien Gouëzel. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Sébastien Gouëzel -/ import Mathlib.PrePort import Mathlib.Lean3Lib.init.default import Mathlib.analysis.calculus.mean_value import Mathlib.tactic.monotonicity.default import Mathlib.PostPort universes u_1 u_2 namespace Mathlib /-! # Extending differentiability to the boundary We investigate how differentiable functions inside a set extend to differentiable functions on the boundary. For this, it suffices that the function and its derivative admit limits there. A general version of this statement is given in `has_fderiv_at_boundary_of_tendsto_fderiv`. One-dimensional versions, in which one wants to obtain differentiability at the left endpoint or the right endpoint of an interval, are given in `has_deriv_at_interval_left_endpoint_of_tendsto_deriv` and `has_deriv_at_interval_right_endpoint_of_tendsto_deriv`. These versions are formulated in terms of the one-dimensional derivative `deriv ℝ f`. -/ /-- If a function `f` is differentiable in a convex open set and continuous on its closure, and its derivative converges to a limit `f'` at a point on the boundary, then `f` is differentiable there with derivative `f'`. -/ theorem has_fderiv_at_boundary_of_tendsto_fderiv {E : Type u_1} [normed_group E] [normed_space ℝ E] {F : Type u_2} [normed_group F] [normed_space ℝ F] {f : E → F} {s : set E} {x : E} {f' : continuous_linear_map ℝ E F} (f_diff : differentiable_on ℝ f s) (s_conv : convex s) (s_open : is_open s) (f_cont : ∀ (y : E), y ∈ closure s → continuous_within_at f s y) (h : filter.tendsto (fun (y : E) => fderiv ℝ f y) (nhds_within x s) (nhds f')) : has_fderiv_within_at f f' (closure s) x := sorry /-- If a function is differentiable on the right of a point `a : ℝ`, continuous at `a`, and its derivative also converges at `a`, then `f` is differentiable on the right at `a`. -/ theorem has_deriv_at_interval_left_endpoint_of_tendsto_deriv {E : Type u_1} [normed_group E] [normed_space ℝ E] {s : set ℝ} {e : E} {a : ℝ} {f : ℝ → E} (f_diff : differentiable_on ℝ f s) (f_lim : continuous_within_at f s a) (hs : s ∈ nhds_within a (set.Ioi a)) (f_lim' : filter.tendsto (fun (x : ℝ) => deriv f x) (nhds_within a (set.Ioi a)) (nhds e)) : has_deriv_within_at f e (set.Ici a) a := sorry /-- If a function is differentiable on the left of a point `a : ℝ`, continuous at `a`, and its derivative also converges at `a`, then `f` is differentiable on the left at `a`. -/ theorem has_deriv_at_interval_right_endpoint_of_tendsto_deriv {E : Type u_1} [normed_group E] [normed_space ℝ E] {s : set ℝ} {e : E} {a : ℝ} {f : ℝ → E} (f_diff : differentiable_on ℝ f s) (f_lim : continuous_within_at f s a) (hs : s ∈ nhds_within a (set.Iio a)) (f_lim' : filter.tendsto (fun (x : ℝ) => deriv f x) (nhds_within a (set.Iio a)) (nhds e)) : has_deriv_within_at f e (set.Iic a) a := sorry /-- If a real function `f` has a derivative `g` everywhere but at a point, and `f` and `g` are continuous at this point, then `g` is also the derivative of `f` at this point. -/ theorem has_deriv_at_of_has_deriv_at_of_ne {E : Type u_1} [normed_group E] [normed_space ℝ E] {f : ℝ → E} {g : ℝ → E} {x : ℝ} (f_diff : ∀ (y : ℝ), y ≠ x → has_deriv_at f (g y) y) (hf : continuous_at f x) (hg : continuous_at g x) : has_deriv_at f (g x) x := sorry
586888afa5213e3ce60884ed5166a6e1aa439072
63abd62053d479eae5abf4951554e1064a4c45b4
/src/analysis/analytic/basic.lean
289267cc877171d83ad2a68a573306e0c8440983
[ "Apache-2.0" ]
permissive
Lix0120/mathlib
0020745240315ed0e517cbf32e738d8f9811dd80
e14c37827456fc6707f31b4d1d16f1f3a3205e91
refs/heads/master
1,673,102,855,024
1,604,151,044,000
1,604,151,044,000
308,930,245
0
0
Apache-2.0
1,604,164,710,000
1,604,163,547,000
null
UTF-8
Lean
false
false
37,762
lean
/- Copyright (c) 2020 Sébastien Gouëzel. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Sébastien Gouëzel -/ import analysis.calculus.times_cont_diff import tactic.omega import analysis.special_functions.pow /-! # Analytic functions A function is analytic in one dimension around `0` if it can be written as a converging power series `Σ pₙ zⁿ`. This definition can be extended to any dimension (even in infinite dimension) by requiring that `pₙ` is a continuous `n`-multilinear map. In general, `pₙ` is not unique (in two dimensions, taking `p₂ (x, y) (x', y') = x y'` or `y x'` gives the same map when applied to a vector `(x, y) (x, y)`). A way to guarantee uniqueness is to take a symmetric `pₙ`, but this is not always possible in nonzero characteristic (in characteristic 2, the previous example has no symmetric representative). Therefore, we do not insist on symmetry or uniqueness in the definition, and we only require the existence of a converging series. The general framework is important to say that the exponential map on bounded operators on a Banach space is analytic, as well as the inverse on invertible operators. ## Main definitions Let `p` be a formal multilinear series from `E` to `F`, i.e., `p n` is a multilinear map on `E^n` for `n : ℕ`. * `p.radius`: the largest `r : ennreal` such that `∥p n∥ * r^n` grows subexponentially, defined as a liminf. * `p.le_radius_of_bound`, `p.bound_of_lt_radius`, `p.geometric_bound_of_lt_radius`: relating the value of the radius with the growth of `∥p n∥ * r^n`. * `p.partial_sum n x`: the sum `∑_{i = 0}^{n-1} pᵢ xⁱ`. * `p.sum x`: the sum `∑'_{i = 0}^{∞} pᵢ xⁱ`. Additionally, let `f` be a function from `E` to `F`. * `has_fpower_series_on_ball f p x r`: on the ball of center `x` with radius `r`, `f (x + y) = ∑'_n pₙ yⁿ`. * `has_fpower_series_at f p x`: on some ball of center `x` with positive radius, holds `has_fpower_series_on_ball f p x r`. * `analytic_at 𝕜 f x`: there exists a power series `p` such that holds `has_fpower_series_at f p x`. We develop the basic properties of these notions, notably: * If a function admits a power series, it is continuous (see `has_fpower_series_on_ball.continuous_on` and `has_fpower_series_at.continuous_at` and `analytic_at.continuous_at`). * In a complete space, the sum of a formal power series with positive radius is well defined on the disk of convergence, see `formal_multilinear_series.has_fpower_series_on_ball`. * If a function admits a power series in a ball, then it is analytic at any point `y` of this ball, and the power series there can be expressed in terms of the initial power series `p` as `p.change_origin y`. See `has_fpower_series_on_ball.change_origin`. It follows in particular that the set of points at which a given function is analytic is open, see `is_open_analytic_at`. ## Implementation details We only introduce the radius of convergence of a power series, as `p.radius`. For a power series in finitely many dimensions, there is a finer (directional, coordinate-dependent) notion, describing the polydisk of convergence. This notion is more specific, and not necessary to build the general theory. We do not define it here. -/ noncomputable theory variables {𝕜 : Type*} [nondiscrete_normed_field 𝕜] {E : Type*} [normed_group E] [normed_space 𝕜 E] {F : Type*} [normed_group F] [normed_space 𝕜 F] {G : Type*} [normed_group G] [normed_space 𝕜 G] open_locale topological_space classical big_operators open filter /-! ### The radius of a formal multilinear series -/ namespace formal_multilinear_series /-- The radius of a formal multilinear series is the largest `r` such that the sum `Σ pₙ yⁿ` converges for all `∥y∥ < r`. -/ def radius (p : formal_multilinear_series 𝕜 E F) : ennreal := liminf at_top (λ n, 1/((nnnorm (p n)) ^ (1 / (n : ℝ)) : nnreal)) /--If `∥pₙ∥ rⁿ` is bounded in `n`, then the radius of `p` is at least `r`. -/ lemma le_radius_of_bound (p : formal_multilinear_series 𝕜 E F) (C : nnreal) {r : nnreal} (h : ∀ (n : ℕ), nnnorm (p n) * r^n ≤ C) : (r : ennreal) ≤ p.radius := begin have L : tendsto (λ n : ℕ, (r : ennreal) / ((C + 1)^(1/(n : ℝ)) : nnreal)) at_top (𝓝 ((r : ennreal) / ((C + 1)^(0 : ℝ) : nnreal))), { apply ennreal.tendsto.div tendsto_const_nhds, { simp }, { rw ennreal.tendsto_coe, apply tendsto_const_nhds.nnrpow (tendsto_const_div_at_top_nhds_0_nat 1), simp }, { simp } }, have A : ∀ n : ℕ , 0 < n → (r : ennreal) ≤ ((C + 1)^(1/(n : ℝ)) : nnreal) * (1 / (nnnorm (p n) ^ (1/(n:ℝ)) : nnreal)), { assume n npos, simp only [one_div, mul_assoc, mul_one, eq.symm ennreal.mul_div_assoc], rw [ennreal.le_div_iff_mul_le _ _, ← nnreal.pow_nat_rpow_nat_inv r npos, ← ennreal.coe_mul, ennreal.coe_le_coe, ← nnreal.mul_rpow, mul_comm], { exact nnreal.rpow_le_rpow (le_trans (h n) (le_add_right (le_refl _))) (by simp) }, { simp }, { simp } }, have B : ∀ᶠ (n : ℕ) in at_top, (r : ennreal) / ((C + 1)^(1/(n : ℝ)) : nnreal) ≤ 1 / (nnnorm (p n) ^ (1/(n:ℝ)) : nnreal), { apply eventually_at_top.2 ⟨1, λ n hn, _⟩, rw [ennreal.div_le_iff_le_mul, mul_comm], { apply A n hn }, { simp }, { simp } }, have D : liminf at_top (λ n : ℕ, (r : ennreal) / ((C + 1)^(1/(n : ℝ)) : nnreal)) ≤ p.radius := liminf_le_liminf B, rw L.liminf_eq at D, simpa using D end /-- For `r` strictly smaller than the radius of `p`, then `∥pₙ∥ rⁿ` is bounded. -/ lemma bound_of_lt_radius (p : formal_multilinear_series 𝕜 E F) {r : nnreal} (h : (r : ennreal) < p.radius) : ∃ (C : nnreal), ∀ n, nnnorm (p n) * r^n ≤ C := begin obtain ⟨N, hN⟩ : ∃ (N : ℕ), ∀ n, n ≥ N → (r : ennreal) < 1 / ↑(nnnorm (p n) ^ (1 / (n : ℝ))) := eventually.exists_forall_of_at_top (eventually_lt_of_lt_liminf h), obtain ⟨D, hD⟩ : ∃D, ∀ x ∈ (↑((finset.range N.succ).image (λ i, nnnorm (p i) * r^i))), x ≤ D := finset.bdd_above _, refine ⟨max D 1, λ n, _⟩, cases le_or_lt n N with hn hn, { refine le_trans _ (le_max_left D 1), apply hD, have : n ∈ finset.range N.succ := list.mem_range.mpr (nat.lt_succ_iff.mpr hn), exact finset.mem_image_of_mem _ this }, { by_cases hpn : nnnorm (p n) = 0, { simp [hpn] }, have A : nnnorm (p n) ^ (1 / (n : ℝ)) ≠ 0, by simp [nnreal.rpow_eq_zero_iff, hpn], have B : r < (nnnorm (p n) ^ (1 / (n : ℝ)))⁻¹, { have := hN n (le_of_lt hn), rwa [ennreal.div_def, ← ennreal.coe_inv A, one_mul, ennreal.coe_lt_coe] at this }, rw [nnreal.lt_inv_iff_mul_lt A, mul_comm] at B, have : (nnnorm (p n) ^ (1 / (n : ℝ)) * r) ^ n ≤ 1 := pow_le_one n (zero_le (nnnorm (p n) ^ (1 / ↑n) * r)) (le_of_lt B), rw [mul_pow, one_div, nnreal.rpow_nat_inv_pow_nat _ (lt_of_le_of_lt (zero_le _) hn)] at this, exact le_trans this (le_max_right _ _) }, end /-- For `r` strictly smaller than the radius of `p`, then `∥pₙ∥ rⁿ` tends to zero exponentially. -/ lemma geometric_bound_of_lt_radius (p : formal_multilinear_series 𝕜 E F) {r : nnreal} (h : (r : ennreal) < p.radius) : ∃ a C, a < 1 ∧ ∀ n, nnnorm (p n) * r^n ≤ C * a^n := begin obtain ⟨t, rt, tp⟩ : ∃ (t : nnreal), (r : ennreal) < t ∧ (t : ennreal) < p.radius := ennreal.lt_iff_exists_nnreal_btwn.1 h, rw ennreal.coe_lt_coe at rt, have tpos : t ≠ 0 := ne_of_gt (lt_of_le_of_lt (zero_le _) rt), obtain ⟨C, hC⟩ : ∃ (C : nnreal), ∀ n, nnnorm (p n) * t^n ≤ C := p.bound_of_lt_radius tp, refine ⟨r / t, C, nnreal.div_lt_one_of_lt rt, λ n, _⟩, calc nnnorm (p n) * r ^ n = (nnnorm (p n) * t ^ n) * (r / t) ^ n : by { field_simp [tpos], ac_refl } ... ≤ C * (r / t) ^ n : mul_le_mul_of_nonneg_right (hC n) (zero_le _) end /-- The radius of the sum of two formal series is at least the minimum of their two radii. -/ lemma min_radius_le_radius_add (p q : formal_multilinear_series 𝕜 E F) : min p.radius q.radius ≤ (p + q).radius := begin refine le_of_forall_ge_of_dense (λ r hr, _), cases r, { simpa using hr }, obtain ⟨Cp, hCp⟩ : ∃ (C : nnreal), ∀ n, nnnorm (p n) * r^n ≤ C := p.bound_of_lt_radius (lt_of_lt_of_le hr (min_le_left _ _)), obtain ⟨Cq, hCq⟩ : ∃ (C : nnreal), ∀ n, nnnorm (q n) * r^n ≤ C := q.bound_of_lt_radius (lt_of_lt_of_le hr (min_le_right _ _)), have : ∀ n, nnnorm ((p + q) n) * r^n ≤ Cp + Cq, { assume n, calc nnnorm (p n + q n) * r ^ n ≤ (nnnorm (p n) + nnnorm (q n)) * r ^ n : mul_le_mul_of_nonneg_right (norm_add_le (p n) (q n)) (zero_le (r ^ n)) ... ≤ Cp + Cq : by { rw add_mul, exact add_le_add (hCp n) (hCq n) } }, exact (p + q).le_radius_of_bound _ this end lemma radius_neg (p : formal_multilinear_series 𝕜 E F) : (-p).radius = p.radius := by simp [formal_multilinear_series.radius, nnnorm_neg] /-- Given a formal multilinear series `p` and a vector `x`, then `p.sum x` is the sum `Σ pₙ xⁿ`. A priori, it only behaves well when `∥x∥ < p.radius`. -/ protected def sum (p : formal_multilinear_series 𝕜 E F) (x : E) : F := tsum (λn:ℕ, p n (λ(i : fin n), x)) /-- Given a formal multilinear series `p` and a vector `x`, then `p.partial_sum n x` is the sum `Σ pₖ xᵏ` for `k ∈ {0,..., n-1}`. -/ def partial_sum (p : formal_multilinear_series 𝕜 E F) (n : ℕ) (x : E) : F := ∑ k in finset.range n, p k (λ(i : fin k), x) /-- The partial sums of a formal multilinear series are continuous. -/ lemma partial_sum_continuous (p : formal_multilinear_series 𝕜 E F) (n : ℕ) : continuous (p.partial_sum n) := by continuity end formal_multilinear_series /-! ### Expanding a function as a power series -/ section variables {f g : E → F} {p pf pg : formal_multilinear_series 𝕜 E F} {x : E} {r r' : ennreal} /-- Given a function `f : E → F` and a formal multilinear series `p`, we say that `f` has `p` as a power series on the ball of radius `r > 0` around `x` if `f (x + y) = ∑' pₙ yⁿ` for all `∥y∥ < r`. -/ structure has_fpower_series_on_ball (f : E → F) (p : formal_multilinear_series 𝕜 E F) (x : E) (r : ennreal) : Prop := (r_le : r ≤ p.radius) (r_pos : 0 < r) (has_sum : ∀ {y}, y ∈ emetric.ball (0 : E) r → has_sum (λn:ℕ, p n (λ(i : fin n), y)) (f (x + y))) /-- Given a function `f : E → F` and a formal multilinear series `p`, we say that `f` has `p` as a power series around `x` if `f (x + y) = ∑' pₙ yⁿ` for all `y` in a neighborhood of `0`. -/ def has_fpower_series_at (f : E → F) (p : formal_multilinear_series 𝕜 E F) (x : E) := ∃ r, has_fpower_series_on_ball f p x r variable (𝕜) /-- Given a function `f : E → F`, we say that `f` is analytic at `x` if it admits a convergent power series expansion around `x`. -/ def analytic_at (f : E → F) (x : E) := ∃ (p : formal_multilinear_series 𝕜 E F), has_fpower_series_at f p x variable {𝕜} lemma has_fpower_series_on_ball.has_fpower_series_at (hf : has_fpower_series_on_ball f p x r) : has_fpower_series_at f p x := ⟨r, hf⟩ lemma has_fpower_series_at.analytic_at (hf : has_fpower_series_at f p x) : analytic_at 𝕜 f x := ⟨p, hf⟩ lemma has_fpower_series_on_ball.analytic_at (hf : has_fpower_series_on_ball f p x r) : analytic_at 𝕜 f x := hf.has_fpower_series_at.analytic_at lemma has_fpower_series_on_ball.radius_pos (hf : has_fpower_series_on_ball f p x r) : 0 < p.radius := lt_of_lt_of_le hf.r_pos hf.r_le lemma has_fpower_series_at.radius_pos (hf : has_fpower_series_at f p x) : 0 < p.radius := let ⟨r, hr⟩ := hf in hr.radius_pos lemma has_fpower_series_on_ball.mono (hf : has_fpower_series_on_ball f p x r) (r'_pos : 0 < r') (hr : r' ≤ r) : has_fpower_series_on_ball f p x r' := ⟨le_trans hr hf.1, r'_pos, λ y hy, hf.has_sum (emetric.ball_subset_ball hr hy)⟩ lemma has_fpower_series_on_ball.add (hf : has_fpower_series_on_ball f pf x r) (hg : has_fpower_series_on_ball g pg x r) : has_fpower_series_on_ball (f + g) (pf + pg) x r := { r_le := le_trans (le_min_iff.2 ⟨hf.r_le, hg.r_le⟩) (pf.min_radius_le_radius_add pg), r_pos := hf.r_pos, has_sum := λ y hy, (hf.has_sum hy).add (hg.has_sum hy) } lemma has_fpower_series_at.add (hf : has_fpower_series_at f pf x) (hg : has_fpower_series_at g pg x) : has_fpower_series_at (f + g) (pf + pg) x := begin rcases hf with ⟨rf, hrf⟩, rcases hg with ⟨rg, hrg⟩, have P : 0 < min rf rg, by simp [hrf.r_pos, hrg.r_pos], exact ⟨min rf rg, (hrf.mono P (min_le_left _ _)).add (hrg.mono P (min_le_right _ _))⟩ end lemma analytic_at.add (hf : analytic_at 𝕜 f x) (hg : analytic_at 𝕜 g x) : analytic_at 𝕜 (f + g) x := let ⟨pf, hpf⟩ := hf, ⟨qf, hqf⟩ := hg in (hpf.add hqf).analytic_at lemma has_fpower_series_on_ball.neg (hf : has_fpower_series_on_ball f pf x r) : has_fpower_series_on_ball (-f) (-pf) x r := { r_le := by { rw pf.radius_neg, exact hf.r_le }, r_pos := hf.r_pos, has_sum := λ y hy, (hf.has_sum hy).neg } lemma has_fpower_series_at.neg (hf : has_fpower_series_at f pf x) : has_fpower_series_at (-f) (-pf) x := let ⟨rf, hrf⟩ := hf in hrf.neg.has_fpower_series_at lemma analytic_at.neg (hf : analytic_at 𝕜 f x) : analytic_at 𝕜 (-f) x := let ⟨pf, hpf⟩ := hf in hpf.neg.analytic_at lemma has_fpower_series_on_ball.sub (hf : has_fpower_series_on_ball f pf x r) (hg : has_fpower_series_on_ball g pg x r) : has_fpower_series_on_ball (f - g) (pf - pg) x r := hf.add hg.neg lemma has_fpower_series_at.sub (hf : has_fpower_series_at f pf x) (hg : has_fpower_series_at g pg x) : has_fpower_series_at (f - g) (pf - pg) x := hf.add hg.neg lemma analytic_at.sub (hf : analytic_at 𝕜 f x) (hg : analytic_at 𝕜 g x) : analytic_at 𝕜 (f - g) x := hf.add hg.neg lemma has_fpower_series_on_ball.coeff_zero (hf : has_fpower_series_on_ball f pf x r) (v : fin 0 → E) : pf 0 v = f x := begin have v_eq : v = (λ i, 0), by { ext i, apply fin_zero_elim i }, have zero_mem : (0 : E) ∈ emetric.ball (0 : E) r, by simp [hf.r_pos], have : ∀ i ≠ 0, pf i (λ j, 0) = 0, { assume i hi, have : 0 < i := bot_lt_iff_ne_bot.mpr hi, apply continuous_multilinear_map.map_coord_zero _ (⟨0, this⟩ : fin i), refl }, have A := (hf.has_sum zero_mem).unique (has_sum_single _ this), simpa [v_eq] using A.symm, end lemma has_fpower_series_at.coeff_zero (hf : has_fpower_series_at f pf x) (v : fin 0 → E) : pf 0 v = f x := let ⟨rf, hrf⟩ := hf in hrf.coeff_zero v /-- If a function admits a power series expansion, then it is exponentially close to the partial sums of this power series on strict subdisks of the disk of convergence. -/ lemma has_fpower_series_on_ball.uniform_geometric_approx {r' : nnreal} (hf : has_fpower_series_on_ball f p x r) (h : (r' : ennreal) < r) : ∃ (a C : nnreal), a < 1 ∧ (∀ y ∈ metric.ball (0 : E) r', ∀ n, ∥f (x + y) - p.partial_sum n y∥ ≤ C * a ^ n) := begin obtain ⟨a, C, ha, hC⟩ : ∃ a C, a < 1 ∧ ∀ n, nnnorm (p n) * r' ^n ≤ C * a^n := p.geometric_bound_of_lt_radius (lt_of_lt_of_le h hf.r_le), refine ⟨a, C / (1 - a), ha, λ y hy n, _⟩, have yr' : ∥y∥ < r', by { rw ball_0_eq at hy, exact hy }, have : y ∈ emetric.ball (0 : E) r, { rw [emetric.mem_ball, edist_eq_coe_nnnorm], apply lt_trans _ h, rw [ennreal.coe_lt_coe, ← nnreal.coe_lt_coe], exact yr' }, simp only [nnreal.coe_sub (le_of_lt ha), nnreal.coe_sub, nnreal.coe_div, nnreal.coe_one], rw [← dist_eq_norm, dist_comm, dist_eq_norm, ← mul_div_right_comm], apply norm_sub_le_of_geometric_bound_of_has_sum ha _ (hf.has_sum this), assume n, calc ∥(p n) (λ (i : fin n), y)∥ ≤ ∥p n∥ * (∏ i : fin n, ∥y∥) : continuous_multilinear_map.le_op_norm _ _ ... = nnnorm (p n) * (nnnorm y)^n : by simp ... ≤ nnnorm (p n) * r' ^ n : mul_le_mul_of_nonneg_left (pow_le_pow_of_le_left (nnreal.coe_nonneg _) (le_of_lt yr') _) (nnreal.coe_nonneg _) ... ≤ C * a ^ n : by exact_mod_cast hC n, end /-- If a function admits a power series expansion at `x`, then it is the uniform limit of the partial sums of this power series on strict subdisks of the disk of convergence, i.e., `f (x + y)` is the uniform limit of `p.partial_sum n y` there. -/ lemma has_fpower_series_on_ball.tendsto_uniformly_on {r' : nnreal} (hf : has_fpower_series_on_ball f p x r) (h : (r' : ennreal) < r) : tendsto_uniformly_on (λ n y, p.partial_sum n y) (λ y, f (x + y)) at_top (metric.ball (0 : E) r') := begin rcases hf.uniform_geometric_approx h with ⟨a, C, ha, hC⟩, refine metric.tendsto_uniformly_on_iff.2 (λ ε εpos, _), have L : tendsto (λ n, (C : ℝ) * a^n) at_top (𝓝 ((C : ℝ) * 0)) := tendsto_const_nhds.mul (tendsto_pow_at_top_nhds_0_of_lt_1 (a.2) ha), rw mul_zero at L, apply ((tendsto_order.1 L).2 ε εpos).mono (λ n hn, _), assume y hy, rw dist_eq_norm, exact lt_of_le_of_lt (hC y hy n) hn end /-- If a function admits a power series expansion at `x`, then it is the locally uniform limit of the partial sums of this power series on the disk of convergence, i.e., `f (x + y)` is the locally uniform limit of `p.partial_sum n y` there. -/ lemma has_fpower_series_on_ball.tendsto_locally_uniformly_on (hf : has_fpower_series_on_ball f p x r) : tendsto_locally_uniformly_on (λ n y, p.partial_sum n y) (λ y, f (x + y)) at_top (emetric.ball (0 : E) r) := begin assume u hu x hx, rcases ennreal.lt_iff_exists_nnreal_btwn.1 hx with ⟨r', xr', hr'⟩, have : emetric.ball (0 : E) r' ∈ 𝓝 x := mem_nhds_sets emetric.is_open_ball xr', refine ⟨emetric.ball (0 : E) r', mem_nhds_within_of_mem_nhds this, _⟩, simpa [metric.emetric_ball_nnreal] using hf.tendsto_uniformly_on hr' u hu end /-- If a function admits a power series expansion at `x`, then it is the uniform limit of the partial sums of this power series on strict subdisks of the disk of convergence, i.e., `f y` is the uniform limit of `p.partial_sum n (y - x)` there. -/ lemma has_fpower_series_on_ball.tendsto_uniformly_on' {r' : nnreal} (hf : has_fpower_series_on_ball f p x r) (h : (r' : ennreal) < r) : tendsto_uniformly_on (λ n y, p.partial_sum n (y - x)) f at_top (metric.ball (x : E) r') := begin convert (hf.tendsto_uniformly_on h).comp (λ y, y - x), { ext z, simp }, { ext z, simp [dist_eq_norm] } end /-- If a function admits a power series expansion at `x`, then it is the locally uniform limit of the partial sums of this power series on the disk of convergence, i.e., `f y` is the locally uniform limit of `p.partial_sum n (y - x)` there. -/ lemma has_fpower_series_on_ball.tendsto_locally_uniformly_on' (hf : has_fpower_series_on_ball f p x r) : tendsto_locally_uniformly_on (λ n y, p.partial_sum n (y - x)) f at_top (emetric.ball (x : E) r) := begin have A : continuous_on (λ (y : E), y - x) (emetric.ball (x : E) r) := (continuous_id.sub continuous_const).continuous_on, convert (hf.tendsto_locally_uniformly_on).comp (λ (y : E), y - x) _ A, { ext z, simp }, { assume z, simp [edist_eq_coe_nnnorm, edist_eq_coe_nnnorm_sub] } end /-- If a function admits a power series expansion on a disk, then it is continuous there. -/ lemma has_fpower_series_on_ball.continuous_on (hf : has_fpower_series_on_ball f p x r) : continuous_on f (emetric.ball x r) := hf.tendsto_locally_uniformly_on'.continuous_on $ λ n, ((p.partial_sum_continuous n).comp (continuous_id.sub continuous_const)).continuous_on lemma has_fpower_series_at.continuous_at (hf : has_fpower_series_at f p x) : continuous_at f x := let ⟨r, hr⟩ := hf in hr.continuous_on.continuous_at (emetric.ball_mem_nhds x (hr.r_pos)) lemma analytic_at.continuous_at (hf : analytic_at 𝕜 f x) : continuous_at f x := let ⟨p, hp⟩ := hf in hp.continuous_at /-- In a complete space, the sum of a converging power series `p` admits `p` as a power series. This is not totally obvious as we need to check the convergence of the series. -/ lemma formal_multilinear_series.has_fpower_series_on_ball [complete_space F] (p : formal_multilinear_series 𝕜 E F) (h : 0 < p.radius) : has_fpower_series_on_ball p.sum p 0 p.radius := { r_le := le_refl _, r_pos := h, has_sum := λ y hy, begin rw zero_add, replace hy : (nnnorm y : ennreal) < p.radius, by { convert hy, exact (edist_eq_coe_nnnorm _).symm }, obtain ⟨a, C, ha, hC⟩ : ∃ a C, a < 1 ∧ ∀ n, nnnorm (p n) * (nnnorm y)^n ≤ C * a^n := p.geometric_bound_of_lt_radius hy, refine (summable_of_norm_bounded (λ n, (C : ℝ) * a ^ n) ((summable_geometric_of_lt_1 a.2 ha).mul_left _) (λ n, _)).has_sum, calc ∥(p n) (λ (i : fin n), y)∥ ≤ ∥p n∥ * (∏ i : fin n, ∥y∥) : continuous_multilinear_map.le_op_norm _ _ ... = nnnorm (p n) * (nnnorm y)^n : by simp ... ≤ C * a ^ n : by exact_mod_cast hC n end } lemma has_fpower_series_on_ball.sum [complete_space F] (h : has_fpower_series_on_ball f p x r) {y : E} (hy : y ∈ emetric.ball (0 : E) r) : f (x + y) = p.sum y := begin have A := h.has_sum hy, have B := (p.has_fpower_series_on_ball h.radius_pos).has_sum (lt_of_lt_of_le hy h.r_le), simpa using A.unique B end /-- The sum of a converging power series is continuous in its disk of convergence. -/ lemma formal_multilinear_series.continuous_on [complete_space F] : continuous_on p.sum (emetric.ball 0 p.radius) := begin by_cases h : 0 < p.radius, { exact (p.has_fpower_series_on_ball h).continuous_on }, { simp at h, simp [h, continuous_on_empty] } end end /-! ### Changing origin in a power series If a function is analytic in a disk `D(x, R)`, then it is analytic in any disk contained in that one. Indeed, one can write $$ f (x + y + z) = \sum_{n} p_n (y + z)^n = \sum_{n, k} \choose n k p_n y^{n-k} z^k = \sum_{k} (\sum_{n} \choose n k p_n y^{n-k}) z^k. $$ The corresponding power series has thus a `k`-th coefficient equal to `\sum_{n} \choose n k p_n y^{n-k}`. In the general case where `pₙ` is a multilinear map, this has to be interpreted suitably: instead of having a binomial coefficient, one should sum over all possible subsets `s` of `fin n` of cardinal `k`, and attribute `z` to the indices in `s` and `y` to the indices outside of `s`. In this paragraph, we implement this. The new power series is called `p.change_origin y`. Then, we check its convergence and the fact that its sum coincides with the original sum. The outcome of this discussion is that the set of points where a function is analytic is open. -/ namespace formal_multilinear_series variables (p : formal_multilinear_series 𝕜 E F) {x y : E} {r : nnreal} /-- Changing the origin of a formal multilinear series `p`, so that `p.sum (x+y) = (p.change_origin x).sum y` when this makes sense. Here, we don't use the bracket notation `⟨n, s, hs⟩` in place of the argument `i` in the lambda, as this leads to a bad definition with auxiliary `_match` statements, but we will try to use pattern matching in lambdas as much as possible in the proofs below to increase readability. -/ def change_origin (x : E) : formal_multilinear_series 𝕜 E F := λ k, tsum (λi, (p i.1).restr i.2.1 i.2.2 x : (Σ (n : ℕ), {s : finset (fin n) // finset.card s = k}) → (E [×k]→L[𝕜] F)) /-- Auxiliary lemma controlling the summability of the sequence appearing in the definition of `p.change_origin`, first version. -/ -- Note here and below it is necessary to use `@` and provide implicit arguments using `_`, -- so that it is possible to use pattern matching in the lambda. -- Overall this seems a good trade-off in readability. lemma change_origin_summable_aux1 (h : (nnnorm x + r : ennreal) < p.radius) : @summable ℝ _ _ _ ((λ ⟨n, s⟩, ∥p n∥ * ∥x∥ ^ (n - s.card) * r ^ s.card) : (Σ (n : ℕ), finset (fin n)) → ℝ) := begin obtain ⟨a, C, ha, hC⟩ : ∃ a C, a < 1 ∧ ∀ n, nnnorm (p n) * (nnnorm x + r) ^ n ≤ C * a^n := p.geometric_bound_of_lt_radius h, let Bnnnorm : (Σ (n : ℕ), finset (fin n)) → nnreal := λ ⟨n, s⟩, nnnorm (p n) * (nnnorm x) ^ (n - s.card) * r ^ s.card, have : ((λ ⟨n, s⟩, ∥p n∥ * ∥x∥ ^ (n - s.card) * r ^ s.card) : (Σ (n : ℕ), finset (fin n)) → ℝ) = (λ b, (Bnnnorm b : ℝ)), by { ext ⟨n, s⟩, simp [Bnnnorm, nnreal.coe_pow, coe_nnnorm] }, rw [this, nnreal.summable_coe, ← ennreal.tsum_coe_ne_top_iff_summable], apply ne_of_lt, calc (∑' b, ↑(Bnnnorm b)) = (∑' n, (∑' s, ↑(Bnnnorm ⟨n, s⟩))) : by exact ennreal.tsum_sigma' _ ... ≤ (∑' n, (((nnnorm (p n) * (nnnorm x + r)^n) : nnreal) : ennreal)) : begin refine ennreal.tsum_le_tsum (λ n, _), rw [tsum_fintype, ← ennreal.coe_finset_sum, ennreal.coe_le_coe], apply le_of_eq, calc ∑ s : finset (fin n), Bnnnorm ⟨n, s⟩ = ∑ s : finset (fin n), nnnorm (p n) * ((nnnorm x) ^ (n - s.card) * r ^ s.card) : by simp [← mul_assoc] ... = nnnorm (p n) * (nnnorm x + r) ^ n : by { rw [add_comm, ← finset.mul_sum, ← fin.sum_pow_mul_eq_add_pow], congr' with s : 1, ring } end ... ≤ (∑' (n : ℕ), (C * a ^ n : ennreal)) : tsum_le_tsum (λ n, by exact_mod_cast hC n) ennreal.summable ennreal.summable ... < ⊤ : by simp [ennreal.mul_eq_top, ha, ennreal.tsum_mul_left, ennreal.tsum_geometric, ennreal.lt_top_iff_ne_top] end /-- Auxiliary lemma controlling the summability of the sequence appearing in the definition of `p.change_origin`, second version. -/ lemma change_origin_summable_aux2 (h : (nnnorm x + r : ennreal) < p.radius) : @summable ℝ _ _ _ ((λ ⟨k, n, s, hs⟩, ∥(p n).restr s hs x∥ * ↑r ^ k) : (Σ (k : ℕ) (n : ℕ), {s : finset (fin n) // finset.card s = k}) → ℝ) := begin let γ : ℕ → Type* := λ k, (Σ (n : ℕ), {s : finset (fin n) // s.card = k}), let Bnorm : (Σ (n : ℕ), finset (fin n)) → ℝ := λ ⟨n, s⟩, ∥p n∥ * ∥x∥ ^ (n - s.card) * r ^ s.card, have SBnorm : summable Bnorm := p.change_origin_summable_aux1 h, let Anorm : (Σ (n : ℕ), finset (fin n)) → ℝ := λ ⟨n, s⟩, ∥(p n).restr s rfl x∥ * r ^ s.card, have SAnorm : summable Anorm, { refine summable_of_norm_bounded _ SBnorm (λ i, _), rcases i with ⟨n, s⟩, suffices H : ∥(p n).restr s rfl x∥ * (r : ℝ) ^ s.card ≤ (∥p n∥ * ∥x∥ ^ (n - finset.card s) * r ^ s.card), { have : ∥(r: ℝ)∥ = r, by rw [real.norm_eq_abs, abs_of_nonneg (nnreal.coe_nonneg _)], simpa [Anorm, Bnorm, this] using H }, exact mul_le_mul_of_nonneg_right ((p n).norm_restr s rfl x) (pow_nonneg (nnreal.coe_nonneg _) _) }, let e : (Σ (n : ℕ), finset (fin n)) ≃ (Σ (k : ℕ) (n : ℕ), {s : finset (fin n) // finset.card s = k}) := { to_fun := λ ⟨n, s⟩, ⟨s.card, n, s, rfl⟩, inv_fun := λ ⟨k, n, s, hs⟩, ⟨n, s⟩, left_inv := λ ⟨n, s⟩, rfl, right_inv := λ ⟨k, n, s, hs⟩, by { induction hs, refl } }, rw ← e.summable_iff, convert SAnorm, ext ⟨n, s⟩, refl end /-- An auxiliary definition for `change_origin_radius`. -/ def change_origin_summable_aux_j (k : ℕ) : (Σ (n : ℕ), {s : finset (fin n) // finset.card s = k}) → (Σ (k : ℕ) (n : ℕ), {s : finset (fin n) // finset.card s = k}) := λ ⟨n, s, hs⟩, ⟨k, n, s, hs⟩ lemma change_origin_summable_aux_j_injective (k : ℕ) : function.injective (change_origin_summable_aux_j k) := begin rintros ⟨_, ⟨_, _⟩⟩ ⟨_, ⟨_, _⟩⟩ a, simp only [change_origin_summable_aux_j, true_and, eq_self_iff_true, heq_iff_eq, sigma.mk.inj_iff] at a, rcases a with ⟨rfl, a⟩, simpa using a, end /-- Auxiliary lemma controlling the summability of the sequence appearing in the definition of `p.change_origin`, third version. -/ lemma change_origin_summable_aux3 (k : ℕ) (h : (nnnorm x : ennreal) < p.radius) : @summable ℝ _ _ _ (λ ⟨n, s, hs⟩, ∥(p n).restr s hs x∥ : (Σ (n : ℕ), {s : finset (fin n) // finset.card s = k}) → ℝ) := begin obtain ⟨r, rpos, hr⟩ : ∃ (r : nnreal), 0 < r ∧ ((nnnorm x + r) : ennreal) < p.radius := ennreal.lt_iff_exists_add_pos_lt.mp h, have S : @summable ℝ _ _ _ ((λ ⟨n, s, hs⟩, ∥(p n).restr s hs x∥ * (r : ℝ) ^ k) : (Σ (n : ℕ), {s : finset (fin n) // finset.card s = k}) → ℝ), { convert (p.change_origin_summable_aux2 hr).comp_injective (change_origin_summable_aux_j_injective k), -- again, cleanup that could be done by `tidy`: ext ⟨_, ⟨_, _⟩⟩, refl }, have : (r : ℝ)^k ≠ 0, by simp [pow_ne_zero, nnreal.coe_eq_zero, ne_of_gt rpos], apply (summable_mul_right_iff this).2, convert S, -- again, cleanup that could be done by `tidy`: ext ⟨_, ⟨_, _⟩⟩, refl, end -- FIXME this causes a deterministic timeout with `-T50000` /-- The radius of convergence of `p.change_origin x` is at least `p.radius - ∥x∥`. In other words, `p.change_origin x` is well defined on the largest ball contained in the original ball of convergence.-/ lemma change_origin_radius : p.radius - nnnorm x ≤ (p.change_origin x).radius := begin by_cases h : p.radius ≤ nnnorm x, { have : radius p - ↑(nnnorm x) = 0 := ennreal.sub_eq_zero_of_le h, rw this, exact zero_le _ }, replace h : (nnnorm x : ennreal) < p.radius, by simpa using h, refine le_of_forall_ge_of_dense (λ r hr, _), cases r, { simpa using hr }, rw [ennreal.lt_sub_iff_add_lt, add_comm] at hr, let A : (Σ (k : ℕ) (n : ℕ), {s : finset (fin n) // finset.card s = k}) → ℝ := λ ⟨k, n, s, hs⟩, ∥(p n).restr s hs x∥ * (r : ℝ) ^ k, have SA : summable A := p.change_origin_summable_aux2 hr, have A_nonneg : ∀ i, 0 ≤ A i, { rintros ⟨k, n, s, hs⟩, change 0 ≤ ∥(p n).restr s hs x∥ * (r : ℝ) ^ k, refine mul_nonneg (norm_nonneg _) (pow_nonneg (nnreal.coe_nonneg _) _) }, have tsum_nonneg : 0 ≤ tsum A := tsum_nonneg A_nonneg, apply le_radius_of_bound _ (nnreal.of_real (tsum A)) (λ k, _), rw [← nnreal.coe_le_coe, nnreal.coe_mul, nnreal.coe_pow, coe_nnnorm, nnreal.coe_of_real _ tsum_nonneg], calc ∥change_origin p x k∥ * ↑r ^ k = ∥@tsum (E [×k]→L[𝕜] F) _ _ _ (λ i, (p i.1).restr i.2.1 i.2.2 x : (Σ (n : ℕ), {s : finset (fin n) // finset.card s = k}) → (E [×k]→L[𝕜] F))∥ * ↑r ^ k : rfl ... ≤ tsum (λ i, ∥(p i.1).restr i.2.1 i.2.2 x∥ : (Σ (n : ℕ), {s : finset (fin n) // finset.card s = k}) → ℝ) * ↑r ^ k : begin apply mul_le_mul_of_nonneg_right _ (pow_nonneg (nnreal.coe_nonneg _) _), apply norm_tsum_le_tsum_norm, convert p.change_origin_summable_aux3 k h, ext a, tidy end ... = tsum (λ i, ∥(p i.1).restr i.2.1 i.2.2 x∥ * ↑r ^ k : (Σ (n : ℕ), {s : finset (fin n) // finset.card s = k}) → ℝ) : by { rw tsum_mul_right, convert p.change_origin_summable_aux3 k h, tidy } ... = tsum (A ∘ change_origin_summable_aux_j k) : by { congr, tidy } ... ≤ tsum A : tsum_comp_le_tsum_of_inj SA A_nonneg (change_origin_summable_aux_j_injective k) end -- From this point on, assume that the space is complete, to make sure that series that converge -- in norm also converge in `F`. variable [complete_space F] /-- The `k`-th coefficient of `p.change_origin` is the sum of a summable series. -/ lemma change_origin_has_sum (k : ℕ) (h : (nnnorm x : ennreal) < p.radius) : @has_sum (E [×k]→L[𝕜] F) _ _ _ ((λ i, (p i.1).restr i.2.1 i.2.2 x) : (Σ (n : ℕ), {s : finset (fin n) // finset.card s = k}) → (E [×k]→L[𝕜] F)) (p.change_origin x k) := begin apply summable.has_sum, apply summable_of_summable_norm, convert p.change_origin_summable_aux3 k h, tidy end /-- Summing the series `p.change_origin x` at a point `y` gives back `p (x + y)`-/ theorem change_origin_eval (h : (nnnorm x + nnnorm y : ennreal) < p.radius) : has_sum ((λk:ℕ, p.change_origin x k (λ (i : fin k), y))) (p.sum (x + y)) := begin /- The series on the left is a series of series. If we order the terms differently, we get back to `p.sum (x + y)`, in which the `n`-th term is expanded by multilinearity. In the proof below, the term on the left is the sum of a series of terms `A`, the sum on the right is the sum of a series of terms `B`, and we show that they correspond to each other by reordering to conclude the proof. -/ have radius_pos : 0 < p.radius := lt_of_le_of_lt (zero_le _) h, -- `A` is the terms of the series whose sum gives the series for `p.change_origin` let A : (Σ (k : ℕ) (n : ℕ), {s : finset (fin n) // s.card = k}) → F := λ ⟨k, n, s, hs⟩, (p n).restr s hs x (λ(i : fin k), y), -- `B` is the terms of the series whose sum gives `p (x + y)`, after expansion by multilinearity. let B : (Σ (n : ℕ), finset (fin n)) → F := λ ⟨n, s⟩, (p n).restr s rfl x (λ (i : fin s.card), y), let Bnorm : (Σ (n : ℕ), finset (fin n)) → ℝ := λ ⟨n, s⟩, ∥p n∥ * ∥x∥ ^ (n - s.card) * ∥y∥ ^ s.card, have SBnorm : summable Bnorm, by convert p.change_origin_summable_aux1 h, have SB : summable B, { refine summable_of_norm_bounded _ SBnorm _, rintros ⟨n, s⟩, calc ∥(p n).restr s rfl x (λ (i : fin s.card), y)∥ ≤ ∥(p n).restr s rfl x∥ * ∥y∥ ^ s.card : begin convert ((p n).restr s rfl x).le_op_norm (λ (i : fin s.card), y), simp [(finset.prod_const (∥y∥))], end ... ≤ (∥p n∥ * ∥x∥ ^ (n - s.card)) * ∥y∥ ^ s.card : mul_le_mul_of_nonneg_right ((p n).norm_restr _ _ _) (pow_nonneg (norm_nonneg _) _) }, -- Check that indeed the sum of `B` is `p (x + y)`. have has_sum_B : has_sum B (p.sum (x + y)), { have K1 : ∀ n, has_sum (λ (s : finset (fin n)), B ⟨n, s⟩) (p n (λ (i : fin n), x + y)), { assume n, have : (p n) (λ (i : fin n), y + x) = ∑ s : finset (fin n), p n (finset.piecewise s (λ (i : fin n), y) (λ (i : fin n), x)) := (p n).map_add_univ (λ i, y) (λ i, x), simp [add_comm y x] at this, rw this, exact has_sum_fintype _ }, have K2 : has_sum (λ (n : ℕ), (p n) (λ (i : fin n), x + y)) (p.sum (x + y)), { have : x + y ∈ emetric.ball (0 : E) p.radius, { apply lt_of_le_of_lt _ h, rw [edist_eq_coe_nnnorm, ← ennreal.coe_add, ennreal.coe_le_coe], exact norm_add_le x y }, simpa using (p.has_fpower_series_on_ball radius_pos).has_sum this }, exact has_sum.sigma_of_has_sum K2 K1 SB }, -- Deduce that the sum of `A` is also `p (x + y)`, as the terms `A` and `B` are the same up to -- reordering have has_sum_A : has_sum A (p.sum (x + y)), { let e : (Σ (n : ℕ), finset (fin n)) ≃ (Σ (k : ℕ) (n : ℕ), {s : finset (fin n) // finset.card s = k}) := { to_fun := λ ⟨n, s⟩, ⟨s.card, n, s, rfl⟩, inv_fun := λ ⟨k, n, s, hs⟩, ⟨n, s⟩, left_inv := λ ⟨n, s⟩, rfl, right_inv := λ ⟨k, n, s, hs⟩, by { induction hs, refl } }, have : A ∘ e = B, by { ext ⟨⟩, refl }, rw ← e.has_sum_iff, convert has_sum_B }, -- Summing `A ⟨k, c⟩` with fixed `k` and varying `c` is exactly the `k`-th term in the series -- defining `p.change_origin`, by definition have J : ∀k, has_sum (λ c, A ⟨k, c⟩) (p.change_origin x k (λ(i : fin k), y)), { assume k, have : (nnnorm x : ennreal) < radius p := lt_of_le_of_lt (le_add_right (le_refl _)) h, convert continuous_multilinear_map.has_sum_eval (p.change_origin_has_sum k this) (λ(i : fin k), y), ext i, tidy }, exact has_sum_A.sigma J end end formal_multilinear_series section variables [complete_space F] {f : E → F} {p : formal_multilinear_series 𝕜 E F} {x y : E} {r : ennreal} /-- If a function admits a power series expansion `p` on a ball `B (x, r)`, then it also admits a power series on any subball of this ball (even with a different center), given by `p.change_origin`. -/ theorem has_fpower_series_on_ball.change_origin (hf : has_fpower_series_on_ball f p x r) (h : (nnnorm y : ennreal) < r) : has_fpower_series_on_ball f (p.change_origin y) (x + y) (r - nnnorm y) := { r_le := begin apply le_trans _ p.change_origin_radius, exact ennreal.sub_le_sub hf.r_le (le_refl _) end, r_pos := by simp [h], has_sum := begin assume z hz, have A : (nnnorm y : ennreal) + nnnorm z < r, { have : edist z 0 < r - ↑(nnnorm y) := hz, rwa [edist_eq_coe_nnnorm, ennreal.lt_sub_iff_add_lt, add_comm] at this }, convert p.change_origin_eval (lt_of_lt_of_le A hf.r_le), have : y + z ∈ emetric.ball (0 : E) r := calc edist (y + z) 0 ≤ ↑(nnnorm y) + ↑(nnnorm z) : by { rw [edist_eq_coe_nnnorm, ← ennreal.coe_add, ennreal.coe_le_coe], exact norm_add_le y z } ... < r : A, simpa only [add_assoc] using hf.sum this end } lemma has_fpower_series_on_ball.analytic_at_of_mem (hf : has_fpower_series_on_ball f p x r) (h : y ∈ emetric.ball x r) : analytic_at 𝕜 f y := begin have : (nnnorm (y - x) : ennreal) < r, by simpa [edist_eq_coe_nnnorm_sub] using h, have := hf.change_origin this, rw [add_sub_cancel'_right] at this, exact this.analytic_at end variables (𝕜 f) lemma is_open_analytic_at : is_open {x | analytic_at 𝕜 f x} := begin rw is_open_iff_forall_mem_open, assume x hx, rcases hx with ⟨p, r, hr⟩, refine ⟨emetric.ball x r, λ y hy, hr.analytic_at_of_mem hy, emetric.is_open_ball, _⟩, simp only [edist_self, emetric.mem_ball, hr.r_pos] end variables {𝕜 f} end
37b647748b75e89353f2076efcc6774ab98c96b5
b7f22e51856f4989b970961f794f1c435f9b8f78
/tests/lean/run/e11.lean
ab7bef72e0db683bd330c9911af1cf28763fbb2e
[ "Apache-2.0" ]
permissive
soonhokong/lean
cb8aa01055ffe2af0fb99a16b4cda8463b882cd1
38607e3eb57f57f77c0ac114ad169e9e4262e24f
refs/heads/master
1,611,187,284,081
1,450,766,737,000
1,476,122,547,000
11,513,992
2
0
null
1,401,763,102,000
1,374,182,235,000
C++
UTF-8
Lean
false
false
914
lean
prelude precedence `+`:65 namespace nat constant nat : Type.{1} constant add : nat → nat → nat infixl + := add end nat namespace int open nat (nat) constant int : Type.{1} constant add : int → int → int infixl + := add constant of_nat : nat → int attribute of_nat [coercion] end int section -- Open "only" the notation and declarations from the namespaces nat and int open [notation] nat open [notation] int open [decl] nat open [decl] int variables n m : nat variables i j : int check n + m check i + j -- The following check does not work, since we are not open the coercions -- check n + i -- Here is a possible trick for this kind of configuration definition add_ni (a : nat) (b : int) := (of_nat a) + b definition add_in (a : int) (b : nat) := a + (of_nat b) infixl + := add_ni infixl + := add_in check add_ni check i + n check n + i end
e67fb70624e882ecfcaecf53fd1b3b05fbb93798
9dc8cecdf3c4634764a18254e94d43da07142918
/src/measure_theory/function/l1_space.lean
552e0764bfc5a40d51461ca1ad837124fb99b297
[ "Apache-2.0" ]
permissive
jcommelin/mathlib
d8456447c36c176e14d96d9e76f39841f69d2d9b
ee8279351a2e434c2852345c51b728d22af5a156
refs/heads/master
1,664,782,136,488
1,663,638,983,000
1,663,638,983,000
132,563,656
0
0
Apache-2.0
1,663,599,929,000
1,525,760,539,000
Lean
UTF-8
Lean
false
false
51,674
lean
/- Copyright (c) 2019 Zhouhang Zhou. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Zhouhang Zhou -/ import measure_theory.function.lp_order /-! # Integrable functions and `L¹` space In the first part of this file, the predicate `integrable` is defined and basic properties of integrable functions are proved. Such a predicate is already available under the name `mem_ℒp 1`. We give a direct definition which is easier to use, and show that it is equivalent to `mem_ℒp 1` In the second part, we establish an API between `integrable` and the space `L¹` of equivalence classes of integrable functions, already defined as a special case of `L^p` spaces for `p = 1`. ## Notation * `α →₁[μ] β` is the type of `L¹` space, where `α` is a `measure_space` and `β` is a `normed_add_comm_group` with a `second_countable_topology`. `f : α →ₘ β` is a "function" in `L¹`. In comments, `[f]` is also used to denote an `L¹` function. `₁` can be typed as `\1`. ## Main definitions * Let `f : α → β` be a function, where `α` is a `measure_space` and `β` a `normed_add_comm_group`. Then `has_finite_integral f` means `(∫⁻ a, ∥f a∥₊) < ∞`. * If `β` is moreover a `measurable_space` then `f` is called `integrable` if `f` is `measurable` and `has_finite_integral f` holds. ## Implementation notes To prove something for an arbitrary integrable function, a useful theorem is `integrable.induction` in the file `set_integral`. ## Tags integrable, function space, l1 -/ noncomputable theory open_locale classical topological_space big_operators ennreal measure_theory nnreal open set filter topological_space ennreal emetric measure_theory variables {α β γ δ : Type*} {m : measurable_space α} {μ ν : measure α} [measurable_space δ] variables [normed_add_comm_group β] variables [normed_add_comm_group γ] namespace measure_theory /-! ### Some results about the Lebesgue integral involving a normed group -/ lemma lintegral_nnnorm_eq_lintegral_edist (f : α → β) : ∫⁻ a, ∥f a∥₊ ∂μ = ∫⁻ a, edist (f a) 0 ∂μ := by simp only [edist_eq_coe_nnnorm] lemma lintegral_norm_eq_lintegral_edist (f : α → β) : ∫⁻ a, (ennreal.of_real ∥f a∥) ∂μ = ∫⁻ a, edist (f a) 0 ∂μ := by simp only [of_real_norm_eq_coe_nnnorm, edist_eq_coe_nnnorm] lemma lintegral_edist_triangle {f g h : α → β} (hf : ae_strongly_measurable f μ) (hh : ae_strongly_measurable h μ) : ∫⁻ a, edist (f a) (g a) ∂μ ≤ ∫⁻ a, edist (f a) (h a) ∂μ + ∫⁻ a, edist (g a) (h a) ∂μ := begin rw ← lintegral_add_left' (hf.edist hh), refine lintegral_mono (λ a, _), apply edist_triangle_right end lemma lintegral_nnnorm_zero : ∫⁻ a : α, ∥(0 : β)∥₊ ∂μ = 0 := by simp lemma lintegral_nnnorm_add_left {f : α → β} (hf : ae_strongly_measurable f μ) (g : α → γ) : ∫⁻ a, ∥f a∥₊ + ∥g a∥₊ ∂μ = ∫⁻ a, ∥f a∥₊ ∂μ + ∫⁻ a, ∥g a∥₊ ∂μ := lintegral_add_left' hf.ennnorm _ lemma lintegral_nnnorm_add_right (f : α → β) {g : α → γ} (hg : ae_strongly_measurable g μ) : ∫⁻ a, ∥f a∥₊ + ∥g a∥₊ ∂μ = ∫⁻ a, ∥f a∥₊ ∂μ + ∫⁻ a, ∥g a∥₊ ∂μ := lintegral_add_right' _ hg.ennnorm lemma lintegral_nnnorm_neg {f : α → β} : ∫⁻ a, ∥(-f) a∥₊ ∂μ = ∫⁻ a, ∥f a∥₊ ∂μ := by simp only [pi.neg_apply, nnnorm_neg] /-! ### The predicate `has_finite_integral` -/ /-- `has_finite_integral f μ` means that the integral `∫⁻ a, ∥f a∥ ∂μ` is finite. `has_finite_integral f` means `has_finite_integral f volume`. -/ def has_finite_integral {m : measurable_space α} (f : α → β) (μ : measure α . volume_tac) : Prop := ∫⁻ a, ∥f a∥₊ ∂μ < ∞ lemma has_finite_integral_iff_norm (f : α → β) : has_finite_integral f μ ↔ ∫⁻ a, (ennreal.of_real ∥f a∥) ∂μ < ∞ := by simp only [has_finite_integral, of_real_norm_eq_coe_nnnorm] lemma has_finite_integral_iff_edist (f : α → β) : has_finite_integral f μ ↔ ∫⁻ a, edist (f a) 0 ∂μ < ∞ := by simp only [has_finite_integral_iff_norm, edist_dist, dist_zero_right] lemma has_finite_integral_iff_of_real {f : α → ℝ} (h : 0 ≤ᵐ[μ] f) : has_finite_integral f μ ↔ ∫⁻ a, ennreal.of_real (f a) ∂μ < ∞ := by rw [has_finite_integral, lintegral_nnnorm_eq_of_ae_nonneg h] lemma has_finite_integral_iff_of_nnreal {f : α → ℝ≥0} : has_finite_integral (λ x, (f x : ℝ)) μ ↔ ∫⁻ a, f a ∂μ < ∞ := by simp [has_finite_integral_iff_norm] lemma has_finite_integral.mono {f : α → β} {g : α → γ} (hg : has_finite_integral g μ) (h : ∀ᵐ a ∂μ, ∥f a∥ ≤ ∥g a∥) : has_finite_integral f μ := begin simp only [has_finite_integral_iff_norm] at *, calc ∫⁻ a, (ennreal.of_real ∥f a∥) ∂μ ≤ ∫⁻ (a : α), (ennreal.of_real ∥g a∥) ∂μ : lintegral_mono_ae (h.mono $ assume a h, of_real_le_of_real h) ... < ∞ : hg end lemma has_finite_integral.mono' {f : α → β} {g : α → ℝ} (hg : has_finite_integral g μ) (h : ∀ᵐ a ∂μ, ∥f a∥ ≤ g a) : has_finite_integral f μ := hg.mono $ h.mono $ λ x hx, le_trans hx (le_abs_self _) lemma has_finite_integral.congr' {f : α → β} {g : α → γ} (hf : has_finite_integral f μ) (h : ∀ᵐ a ∂μ, ∥f a∥ = ∥g a∥) : has_finite_integral g μ := hf.mono $ eventually_eq.le $ eventually_eq.symm h lemma has_finite_integral_congr' {f : α → β} {g : α → γ} (h : ∀ᵐ a ∂μ, ∥f a∥ = ∥g a∥) : has_finite_integral f μ ↔ has_finite_integral g μ := ⟨λ hf, hf.congr' h, λ hg, hg.congr' $ eventually_eq.symm h⟩ lemma has_finite_integral.congr {f g : α → β} (hf : has_finite_integral f μ) (h : f =ᵐ[μ] g) : has_finite_integral g μ := hf.congr' $ h.fun_comp norm lemma has_finite_integral_congr {f g : α → β} (h : f =ᵐ[μ] g) : has_finite_integral f μ ↔ has_finite_integral g μ := has_finite_integral_congr' $ h.fun_comp norm lemma has_finite_integral_const_iff {c : β} : has_finite_integral (λ x : α, c) μ ↔ c = 0 ∨ μ univ < ∞ := by simp [has_finite_integral, lintegral_const, lt_top_iff_ne_top, or_iff_not_imp_left] lemma has_finite_integral_const [is_finite_measure μ] (c : β) : has_finite_integral (λ x : α, c) μ := has_finite_integral_const_iff.2 (or.inr $ measure_lt_top _ _) lemma has_finite_integral_of_bounded [is_finite_measure μ] {f : α → β} {C : ℝ} (hC : ∀ᵐ a ∂μ, ∥f a∥ ≤ C) : has_finite_integral f μ := (has_finite_integral_const C).mono' hC lemma has_finite_integral.mono_measure {f : α → β} (h : has_finite_integral f ν) (hμ : μ ≤ ν) : has_finite_integral f μ := lt_of_le_of_lt (lintegral_mono' hμ le_rfl) h lemma has_finite_integral.add_measure {f : α → β} (hμ : has_finite_integral f μ) (hν : has_finite_integral f ν) : has_finite_integral f (μ + ν) := begin simp only [has_finite_integral, lintegral_add_measure] at *, exact add_lt_top.2 ⟨hμ, hν⟩ end lemma has_finite_integral.left_of_add_measure {f : α → β} (h : has_finite_integral f (μ + ν)) : has_finite_integral f μ := h.mono_measure $ measure.le_add_right $ le_rfl lemma has_finite_integral.right_of_add_measure {f : α → β} (h : has_finite_integral f (μ + ν)) : has_finite_integral f ν := h.mono_measure $ measure.le_add_left $ le_rfl @[simp] lemma has_finite_integral_add_measure {f : α → β} : has_finite_integral f (μ + ν) ↔ has_finite_integral f μ ∧ has_finite_integral f ν := ⟨λ h, ⟨h.left_of_add_measure, h.right_of_add_measure⟩, λ h, h.1.add_measure h.2⟩ lemma has_finite_integral.smul_measure {f : α → β} (h : has_finite_integral f μ) {c : ℝ≥0∞} (hc : c ≠ ∞) : has_finite_integral f (c • μ) := begin simp only [has_finite_integral, lintegral_smul_measure] at *, exact mul_lt_top hc h.ne end @[simp] lemma has_finite_integral_zero_measure {m : measurable_space α} (f : α → β) : has_finite_integral f (0 : measure α) := by simp only [has_finite_integral, lintegral_zero_measure, with_top.zero_lt_top] variables (α β μ) @[simp] lemma has_finite_integral_zero : has_finite_integral (λa:α, (0:β)) μ := by simp [has_finite_integral] variables {α β μ} lemma has_finite_integral.neg {f : α → β} (hfi : has_finite_integral f μ) : has_finite_integral (-f) μ := by simpa [has_finite_integral] using hfi @[simp] lemma has_finite_integral_neg_iff {f : α → β} : has_finite_integral (-f) μ ↔ has_finite_integral f μ := ⟨λ h, neg_neg f ▸ h.neg, has_finite_integral.neg⟩ lemma has_finite_integral.norm {f : α → β} (hfi : has_finite_integral f μ) : has_finite_integral (λa, ∥f a∥) μ := have eq : (λa, (nnnorm ∥f a∥ : ℝ≥0∞)) = λa, (∥f a∥₊ : ℝ≥0∞), by { funext, rw nnnorm_norm }, by { rwa [has_finite_integral, eq] } lemma has_finite_integral_norm_iff (f : α → β) : has_finite_integral (λa, ∥f a∥) μ ↔ has_finite_integral f μ := has_finite_integral_congr' $ eventually_of_forall $ λ x, norm_norm (f x) lemma has_finite_integral_to_real_of_lintegral_ne_top {f : α → ℝ≥0∞} (hf : ∫⁻ x, f x ∂μ ≠ ∞) : has_finite_integral (λ x, (f x).to_real) μ := begin have : ∀ x, (∥(f x).to_real∥₊ : ℝ≥0∞) = @coe ℝ≥0 ℝ≥0∞ _ (⟨(f x).to_real, ennreal.to_real_nonneg⟩ : ℝ≥0), { intro x, rw real.nnnorm_of_nonneg }, simp_rw [has_finite_integral, this], refine lt_of_le_of_lt (lintegral_mono (λ x, _)) (lt_top_iff_ne_top.2 hf), by_cases hfx : f x = ∞, { simp [hfx] }, { lift f x to ℝ≥0 using hfx with fx, simp [← h] } end lemma is_finite_measure_with_density_of_real {f : α → ℝ} (hfi : has_finite_integral f μ) : is_finite_measure (μ.with_density (λ x, ennreal.of_real $ f x)) := begin refine is_finite_measure_with_density ((lintegral_mono $ λ x, _).trans_lt hfi).ne, exact real.of_real_le_ennnorm (f x) end section dominated_convergence variables {F : ℕ → α → β} {f : α → β} {bound : α → ℝ} lemma all_ae_of_real_F_le_bound (h : ∀ n, ∀ᵐ a ∂μ, ∥F n a∥ ≤ bound a) : ∀ n, ∀ᵐ a ∂μ, ennreal.of_real ∥F n a∥ ≤ ennreal.of_real (bound a) := λn, (h n).mono $ λ a h, ennreal.of_real_le_of_real h lemma all_ae_tendsto_of_real_norm (h : ∀ᵐ a ∂μ, tendsto (λ n, F n a) at_top $ 𝓝 $ f a) : ∀ᵐ a ∂μ, tendsto (λn, ennreal.of_real ∥F n a∥) at_top $ 𝓝 $ ennreal.of_real ∥f a∥ := h.mono $ λ a h, tendsto_of_real $ tendsto.comp (continuous.tendsto continuous_norm _) h lemma all_ae_of_real_f_le_bound (h_bound : ∀ n, ∀ᵐ a ∂μ, ∥F n a∥ ≤ bound a) (h_lim : ∀ᵐ a ∂μ, tendsto (λ n, F n a) at_top (𝓝 (f a))) : ∀ᵐ a ∂μ, ennreal.of_real ∥f a∥ ≤ ennreal.of_real (bound a) := begin have F_le_bound := all_ae_of_real_F_le_bound h_bound, rw ← ae_all_iff at F_le_bound, apply F_le_bound.mp ((all_ae_tendsto_of_real_norm h_lim).mono _), assume a tendsto_norm F_le_bound, exact le_of_tendsto' tendsto_norm (F_le_bound) end lemma has_finite_integral_of_dominated_convergence {F : ℕ → α → β} {f : α → β} {bound : α → ℝ} (bound_has_finite_integral : has_finite_integral bound μ) (h_bound : ∀ n, ∀ᵐ a ∂μ, ∥F n a∥ ≤ bound a) (h_lim : ∀ᵐ a ∂μ, tendsto (λ n, F n a) at_top (𝓝 (f a))) : has_finite_integral f μ := /- `∥F n a∥ ≤ bound a` and `∥F n a∥ --> ∥f a∥` implies `∥f a∥ ≤ bound a`, and so `∫ ∥f∥ ≤ ∫ bound < ∞` since `bound` is has_finite_integral -/ begin rw has_finite_integral_iff_norm, calc ∫⁻ a, (ennreal.of_real ∥f a∥) ∂μ ≤ ∫⁻ a, ennreal.of_real (bound a) ∂μ : lintegral_mono_ae $ all_ae_of_real_f_le_bound h_bound h_lim ... < ∞ : begin rw ← has_finite_integral_iff_of_real, { exact bound_has_finite_integral }, exact (h_bound 0).mono (λ a h, le_trans (norm_nonneg _) h) end end lemma tendsto_lintegral_norm_of_dominated_convergence {F : ℕ → α → β} {f : α → β} {bound : α → ℝ} (F_measurable : ∀ n, ae_strongly_measurable (F n) μ) (bound_has_finite_integral : has_finite_integral bound μ) (h_bound : ∀ n, ∀ᵐ a ∂μ, ∥F n a∥ ≤ bound a) (h_lim : ∀ᵐ a ∂μ, tendsto (λ n, F n a) at_top (𝓝 (f a))) : tendsto (λn, ∫⁻ a, (ennreal.of_real ∥F n a - f a∥) ∂μ) at_top (𝓝 0) := have f_measurable : ae_strongly_measurable f μ := ae_strongly_measurable_of_tendsto_ae _ F_measurable h_lim, let b := λ a, 2 * ennreal.of_real (bound a) in /- `∥F n a∥ ≤ bound a` and `F n a --> f a` implies `∥f a∥ ≤ bound a`, and thus by the triangle inequality, have `∥F n a - f a∥ ≤ 2 * (bound a). -/ have hb : ∀ n, ∀ᵐ a ∂μ, ennreal.of_real ∥F n a - f a∥ ≤ b a, begin assume n, filter_upwards [all_ae_of_real_F_le_bound h_bound n, all_ae_of_real_f_le_bound h_bound h_lim] with a h₁ h₂, calc ennreal.of_real ∥F n a - f a∥ ≤ (ennreal.of_real ∥F n a∥) + (ennreal.of_real ∥f a∥) : begin rw [← ennreal.of_real_add], apply of_real_le_of_real, { apply norm_sub_le }, { exact norm_nonneg _ }, { exact norm_nonneg _ } end ... ≤ (ennreal.of_real (bound a)) + (ennreal.of_real (bound a)) : add_le_add h₁ h₂ ... = b a : by rw ← two_mul end, /- On the other hand, `F n a --> f a` implies that `∥F n a - f a∥ --> 0` -/ have h : ∀ᵐ a ∂μ, tendsto (λ n, ennreal.of_real ∥F n a - f a∥) at_top (𝓝 0), begin rw ← ennreal.of_real_zero, refine h_lim.mono (λ a h, (continuous_of_real.tendsto _).comp _), rwa ← tendsto_iff_norm_tendsto_zero end, /- Therefore, by the dominated convergence theorem for nonnegative integration, have ` ∫ ∥f a - F n a∥ --> 0 ` -/ begin suffices h : tendsto (λn, ∫⁻ a, (ennreal.of_real ∥F n a - f a∥) ∂μ) at_top (𝓝 (∫⁻ (a:α), 0 ∂μ)), { rwa lintegral_zero at h }, -- Using the dominated convergence theorem. refine tendsto_lintegral_of_dominated_convergence' _ _ hb _ _, -- Show `λa, ∥f a - F n a∥` is almost everywhere measurable for all `n` { exact λ n, measurable_of_real.comp_ae_measurable ((F_measurable n).sub f_measurable).norm.ae_measurable }, -- Show `2 * bound` is has_finite_integral { rw has_finite_integral_iff_of_real at bound_has_finite_integral, { calc ∫⁻ a, b a ∂μ = 2 * ∫⁻ a, ennreal.of_real (bound a) ∂μ : by { rw lintegral_const_mul', exact coe_ne_top } ... ≠ ∞ : mul_ne_top coe_ne_top bound_has_finite_integral.ne }, filter_upwards [h_bound 0] with _ h using le_trans (norm_nonneg _) h }, -- Show `∥f a - F n a∥ --> 0` { exact h } end end dominated_convergence section pos_part /-! Lemmas used for defining the positive part of a `L¹` function -/ lemma has_finite_integral.max_zero {f : α → ℝ} (hf : has_finite_integral f μ) : has_finite_integral (λa, max (f a) 0) μ := hf.mono $ eventually_of_forall $ λ x, by simp [abs_le, le_abs_self] lemma has_finite_integral.min_zero {f : α → ℝ} (hf : has_finite_integral f μ) : has_finite_integral (λa, min (f a) 0) μ := hf.mono $ eventually_of_forall $ λ x, by simp [abs_le, neg_le, neg_le_abs_self, abs_eq_max_neg, le_total] end pos_part section normed_space variables {𝕜 : Type*} [normed_field 𝕜] [normed_space 𝕜 β] lemma has_finite_integral.smul (c : 𝕜) {f : α → β} : has_finite_integral f μ → has_finite_integral (c • f) μ := begin simp only [has_finite_integral], assume hfi, calc ∫⁻ (a : α), ∥c • f a∥₊ ∂μ = ∫⁻ (a : α), (∥c∥₊) * ∥f a∥₊ ∂μ : by simp only [nnnorm_smul, ennreal.coe_mul] ... < ∞ : begin rw lintegral_const_mul', exacts [mul_lt_top coe_ne_top hfi.ne, coe_ne_top] end end lemma has_finite_integral_smul_iff {c : 𝕜} (hc : c ≠ 0) (f : α → β) : has_finite_integral (c • f) μ ↔ has_finite_integral f μ := begin split, { assume h, simpa only [smul_smul, inv_mul_cancel hc, one_smul] using h.smul c⁻¹ }, exact has_finite_integral.smul _ end lemma has_finite_integral.const_mul {f : α → ℝ} (h : has_finite_integral f μ) (c : ℝ) : has_finite_integral (λ x, c * f x) μ := (has_finite_integral.smul c h : _) lemma has_finite_integral.mul_const {f : α → ℝ} (h : has_finite_integral f μ) (c : ℝ) : has_finite_integral (λ x, f x * c) μ := by simp_rw [mul_comm, h.const_mul _] end normed_space /-! ### The predicate `integrable` -/ -- variables [measurable_space β] [measurable_space γ] [measurable_space δ] /-- `integrable f μ` means that `f` is measurable and that the integral `∫⁻ a, ∥f a∥ ∂μ` is finite. `integrable f` means `integrable f volume`. -/ def integrable {α} {m : measurable_space α} (f : α → β) (μ : measure α . volume_tac) : Prop := ae_strongly_measurable f μ ∧ has_finite_integral f μ lemma mem_ℒp_one_iff_integrable {f : α → β} : mem_ℒp f 1 μ ↔ integrable f μ := by simp_rw [integrable, has_finite_integral, mem_ℒp, snorm_one_eq_lintegral_nnnorm] lemma integrable.ae_strongly_measurable {f : α → β} (hf : integrable f μ) : ae_strongly_measurable f μ := hf.1 lemma integrable.ae_measurable [measurable_space β] [borel_space β] {f : α → β} (hf : integrable f μ) : ae_measurable f μ := hf.ae_strongly_measurable.ae_measurable lemma integrable.has_finite_integral {f : α → β} (hf : integrable f μ) : has_finite_integral f μ := hf.2 lemma integrable.mono {f : α → β} {g : α → γ} (hg : integrable g μ) (hf : ae_strongly_measurable f μ) (h : ∀ᵐ a ∂μ, ∥f a∥ ≤ ∥g a∥) : integrable f μ := ⟨hf, hg.has_finite_integral.mono h⟩ lemma integrable.mono' {f : α → β} {g : α → ℝ} (hg : integrable g μ) (hf : ae_strongly_measurable f μ) (h : ∀ᵐ a ∂μ, ∥f a∥ ≤ g a) : integrable f μ := ⟨hf, hg.has_finite_integral.mono' h⟩ lemma integrable.congr' {f : α → β} {g : α → γ} (hf : integrable f μ) (hg : ae_strongly_measurable g μ) (h : ∀ᵐ a ∂μ, ∥f a∥ = ∥g a∥) : integrable g μ := ⟨hg, hf.has_finite_integral.congr' h⟩ lemma integrable_congr' {f : α → β} {g : α → γ} (hf : ae_strongly_measurable f μ) (hg : ae_strongly_measurable g μ) (h : ∀ᵐ a ∂μ, ∥f a∥ = ∥g a∥) : integrable f μ ↔ integrable g μ := ⟨λ h2f, h2f.congr' hg h, λ h2g, h2g.congr' hf $ eventually_eq.symm h⟩ lemma integrable.congr {f g : α → β} (hf : integrable f μ) (h : f =ᵐ[μ] g) : integrable g μ := ⟨hf.1.congr h, hf.2.congr h⟩ lemma integrable_congr {f g : α → β} (h : f =ᵐ[μ] g) : integrable f μ ↔ integrable g μ := ⟨λ hf, hf.congr h, λ hg, hg.congr h.symm⟩ lemma integrable_const_iff {c : β} : integrable (λ x : α, c) μ ↔ c = 0 ∨ μ univ < ∞ := begin have : ae_strongly_measurable (λ (x : α), c) μ := ae_strongly_measurable_const, rw [integrable, and_iff_right this, has_finite_integral_const_iff] end lemma integrable_const [is_finite_measure μ] (c : β) : integrable (λ x : α, c) μ := integrable_const_iff.2 $ or.inr $ measure_lt_top _ _ lemma mem_ℒp.integrable_norm_rpow {f : α → β} {p : ℝ≥0∞} (hf : mem_ℒp f p μ) (hp_ne_zero : p ≠ 0) (hp_ne_top : p ≠ ∞) : integrable (λ (x : α), ∥f x∥ ^ p.to_real) μ := begin rw ← mem_ℒp_one_iff_integrable, exact hf.norm_rpow hp_ne_zero hp_ne_top, end lemma mem_ℒp.integrable_norm_rpow' [is_finite_measure μ] {f : α → β} {p : ℝ≥0∞} (hf : mem_ℒp f p μ) : integrable (λ (x : α), ∥f x∥ ^ p.to_real) μ := begin by_cases h_zero : p = 0, { simp [h_zero, integrable_const] }, by_cases h_top : p = ∞, { simp [h_top, integrable_const] }, exact hf.integrable_norm_rpow h_zero h_top end lemma integrable.mono_measure {f : α → β} (h : integrable f ν) (hμ : μ ≤ ν) : integrable f μ := ⟨h.ae_strongly_measurable.mono_measure hμ, h.has_finite_integral.mono_measure hμ⟩ lemma integrable.of_measure_le_smul {μ' : measure α} (c : ℝ≥0∞) (hc : c ≠ ∞) (hμ'_le : μ' ≤ c • μ) {f : α → β} (hf : integrable f μ) : integrable f μ' := by { rw ← mem_ℒp_one_iff_integrable at hf ⊢, exact hf.of_measure_le_smul c hc hμ'_le, } lemma integrable.add_measure {f : α → β} (hμ : integrable f μ) (hν : integrable f ν) : integrable f (μ + ν) := begin simp_rw ← mem_ℒp_one_iff_integrable at hμ hν ⊢, refine ⟨hμ.ae_strongly_measurable.add_measure hν.ae_strongly_measurable, _⟩, rw [snorm_one_add_measure, ennreal.add_lt_top], exact ⟨hμ.snorm_lt_top, hν.snorm_lt_top⟩, end lemma integrable.left_of_add_measure {f : α → β} (h : integrable f (μ + ν)) : integrable f μ := by { rw ← mem_ℒp_one_iff_integrable at h ⊢, exact h.left_of_add_measure, } lemma integrable.right_of_add_measure {f : α → β} (h : integrable f (μ + ν)) : integrable f ν := by { rw ← mem_ℒp_one_iff_integrable at h ⊢, exact h.right_of_add_measure, } @[simp] lemma integrable_add_measure {f : α → β} : integrable f (μ + ν) ↔ integrable f μ ∧ integrable f ν := ⟨λ h, ⟨h.left_of_add_measure, h.right_of_add_measure⟩, λ h, h.1.add_measure h.2⟩ @[simp] lemma integrable_zero_measure {m : measurable_space α} {f : α → β} : integrable f (0 : measure α) := ⟨ae_strongly_measurable_zero_measure f, has_finite_integral_zero_measure f⟩ theorem integrable_finset_sum_measure {ι} {m : measurable_space α} {f : α → β} {μ : ι → measure α} {s : finset ι} : integrable f (∑ i in s, μ i) ↔ ∀ i ∈ s, integrable f (μ i) := by induction s using finset.induction_on; simp [*] lemma integrable.smul_measure {f : α → β} (h : integrable f μ) {c : ℝ≥0∞} (hc : c ≠ ∞) : integrable f (c • μ) := by { rw ← mem_ℒp_one_iff_integrable at h ⊢, exact h.smul_measure hc, } lemma integrable_smul_measure {f : α → β} {c : ℝ≥0∞} (h₁ : c ≠ 0) (h₂ : c ≠ ∞) : integrable f (c • μ) ↔ integrable f μ := ⟨λ h, by simpa only [smul_smul, ennreal.inv_mul_cancel h₁ h₂, one_smul] using h.smul_measure (ennreal.inv_ne_top.2 h₁), λ h, h.smul_measure h₂⟩ lemma integrable.to_average {f : α → β} (h : integrable f μ) : integrable f ((μ univ)⁻¹ • μ) := begin rcases eq_or_ne μ 0 with rfl|hne, { rwa smul_zero }, { apply h.smul_measure, simpa } end lemma integrable_average [is_finite_measure μ] {f : α → β} : integrable f ((μ univ)⁻¹ • μ) ↔ integrable f μ := (eq_or_ne μ 0).by_cases (λ h, by simp [h]) $ λ h, integrable_smul_measure (ennreal.inv_ne_zero.2 $ measure_ne_top _ _) (ennreal.inv_ne_top.2 $ mt measure.measure_univ_eq_zero.1 h) lemma integrable_map_measure {f : α → δ} {g : δ → β} (hg : ae_strongly_measurable g (measure.map f μ)) (hf : ae_measurable f μ) : integrable g (measure.map f μ) ↔ integrable (g ∘ f) μ := by { simp_rw ← mem_ℒp_one_iff_integrable, exact mem_ℒp_map_measure_iff hg hf, } lemma integrable.comp_ae_measurable {f : α → δ} {g : δ → β} (hg : integrable g (measure.map f μ)) (hf : ae_measurable f μ) : integrable (g ∘ f) μ := (integrable_map_measure hg.ae_strongly_measurable hf).mp hg lemma integrable.comp_measurable {f : α → δ} {g : δ → β} (hg : integrable g (measure.map f μ)) (hf : measurable f) : integrable (g ∘ f) μ := hg.comp_ae_measurable hf.ae_measurable lemma _root_.measurable_embedding.integrable_map_iff {f : α → δ} (hf : measurable_embedding f) {g : δ → β} : integrable g (measure.map f μ) ↔ integrable (g ∘ f) μ := by { simp_rw ← mem_ℒp_one_iff_integrable, exact hf.mem_ℒp_map_measure_iff, } lemma integrable_map_equiv (f : α ≃ᵐ δ) (g : δ → β) : integrable g (measure.map f μ) ↔ integrable (g ∘ f) μ := by { simp_rw ← mem_ℒp_one_iff_integrable, exact f.mem_ℒp_map_measure_iff, } lemma measure_preserving.integrable_comp {ν : measure δ} {g : δ → β} {f : α → δ} (hf : measure_preserving f μ ν) (hg : ae_strongly_measurable g ν) : integrable (g ∘ f) μ ↔ integrable g ν := by { rw ← hf.map_eq at hg ⊢, exact (integrable_map_measure hg hf.measurable.ae_measurable).symm } lemma measure_preserving.integrable_comp_emb {f : α → δ} {ν} (h₁ : measure_preserving f μ ν) (h₂ : measurable_embedding f) {g : δ → β} : integrable (g ∘ f) μ ↔ integrable g ν := h₁.map_eq ▸ iff.symm h₂.integrable_map_iff lemma lintegral_edist_lt_top {f g : α → β} (hf : integrable f μ) (hg : integrable g μ) : ∫⁻ a, edist (f a) (g a) ∂μ < ∞ := lt_of_le_of_lt (lintegral_edist_triangle hf.ae_strongly_measurable ae_strongly_measurable_zero) (ennreal.add_lt_top.2 $ by { simp_rw [pi.zero_apply, ← has_finite_integral_iff_edist], exact ⟨hf.has_finite_integral, hg.has_finite_integral⟩ }) variables (α β μ) @[simp] lemma integrable_zero : integrable (λ _, (0 : β)) μ := by simp [integrable, ae_strongly_measurable_const] variables {α β μ} lemma integrable.add' {f g : α → β} (hf : integrable f μ) (hg : integrable g μ) : has_finite_integral (f + g) μ := calc ∫⁻ a, ∥f a + g a∥₊ ∂μ ≤ ∫⁻ a, ∥f a∥₊ + ∥g a∥₊ ∂μ : lintegral_mono (λ a, by exact_mod_cast nnnorm_add_le _ _) ... = _ : lintegral_nnnorm_add_left hf.ae_strongly_measurable _ ... < ∞ : add_lt_top.2 ⟨hf.has_finite_integral, hg.has_finite_integral⟩ lemma integrable.add {f g : α → β} (hf : integrable f μ) (hg : integrable g μ) : integrable (f + g) μ := ⟨hf.ae_strongly_measurable.add hg.ae_strongly_measurable, hf.add' hg⟩ lemma integrable_finset_sum' {ι} (s : finset ι) {f : ι → α → β} (hf : ∀ i ∈ s, integrable (f i) μ) : integrable (∑ i in s, f i) μ := finset.sum_induction f (λ g, integrable g μ) (λ _ _, integrable.add) (integrable_zero _ _ _) hf lemma integrable_finset_sum {ι} (s : finset ι) {f : ι → α → β} (hf : ∀ i ∈ s, integrable (f i) μ) : integrable (λ a, ∑ i in s, f i a) μ := by simpa only [← finset.sum_apply] using integrable_finset_sum' s hf lemma integrable.neg {f : α → β} (hf : integrable f μ) : integrable (-f) μ := ⟨hf.ae_strongly_measurable.neg, hf.has_finite_integral.neg⟩ @[simp] lemma integrable_neg_iff {f : α → β} : integrable (-f) μ ↔ integrable f μ := ⟨λ h, neg_neg f ▸ h.neg, integrable.neg⟩ lemma integrable.sub {f g : α → β} (hf : integrable f μ) (hg : integrable g μ) : integrable (f - g) μ := by simpa only [sub_eq_add_neg] using hf.add hg.neg lemma integrable.norm {f : α → β} (hf : integrable f μ) : integrable (λ a, ∥f a∥) μ := ⟨hf.ae_strongly_measurable.norm, hf.has_finite_integral.norm⟩ lemma integrable.inf {β} [normed_lattice_add_comm_group β] {f g : α → β} (hf : integrable f μ) (hg : integrable g μ) : integrable (f ⊓ g) μ := by { rw ← mem_ℒp_one_iff_integrable at hf hg ⊢, exact hf.inf hg, } lemma integrable.sup {β} [normed_lattice_add_comm_group β] {f g : α → β} (hf : integrable f μ) (hg : integrable g μ) : integrable (f ⊔ g) μ := by { rw ← mem_ℒp_one_iff_integrable at hf hg ⊢, exact hf.sup hg, } lemma integrable.abs {β} [normed_lattice_add_comm_group β] {f : α → β} (hf : integrable f μ) : integrable (λ a, |f a|) μ := by { rw ← mem_ℒp_one_iff_integrable at hf ⊢, exact hf.abs, } lemma integrable.bdd_mul {F : Type*} [normed_division_ring F] {f g : α → F} (hint : integrable g μ) (hm : ae_strongly_measurable f μ) (hfbdd : ∃ C, ∀ x, ∥f x∥ ≤ C) : integrable (λ x, f x * g x) μ := begin casesI is_empty_or_nonempty α with hα hα, { rw μ.eq_zero_of_is_empty, exact integrable_zero_measure }, { refine ⟨hm.mul hint.1, _⟩, obtain ⟨C, hC⟩ := hfbdd, have hCnonneg : 0 ≤ C := le_trans (norm_nonneg _) (hC hα.some), have : (λ x, ∥f x * g x∥₊) ≤ λ x, ⟨C, hCnonneg⟩ * ∥g x∥₊, { intro x, simp only [nnnorm_mul], exact mul_le_mul_of_nonneg_right (hC x) (zero_le _) }, refine lt_of_le_of_lt (lintegral_mono_nnreal this) _, simp only [ennreal.coe_mul], rw lintegral_const_mul' _ _ ennreal.coe_ne_top, exact ennreal.mul_lt_top ennreal.coe_ne_top (ne_of_lt hint.2) }, end lemma integrable_norm_iff {f : α → β} (hf : ae_strongly_measurable f μ) : integrable (λa, ∥f a∥) μ ↔ integrable f μ := by simp_rw [integrable, and_iff_right hf, and_iff_right hf.norm, has_finite_integral_norm_iff] lemma integrable_of_norm_sub_le {f₀ f₁ : α → β} {g : α → ℝ} (hf₁_m : ae_strongly_measurable f₁ μ) (hf₀_i : integrable f₀ μ) (hg_i : integrable g μ) (h : ∀ᵐ a ∂μ, ∥f₀ a - f₁ a∥ ≤ g a) : integrable f₁ μ := begin have : ∀ᵐ a ∂μ, ∥f₁ a∥ ≤ ∥f₀ a∥ + g a, { apply h.mono, intros a ha, calc ∥f₁ a∥ ≤ ∥f₀ a∥ + ∥f₀ a - f₁ a∥ : norm_le_insert _ _ ... ≤ ∥f₀ a∥ + g a : add_le_add_left ha _ }, exact integrable.mono' (hf₀_i.norm.add hg_i) hf₁_m this end lemma integrable.prod_mk {f : α → β} {g : α → γ} (hf : integrable f μ) (hg : integrable g μ) : integrable (λ x, (f x, g x)) μ := ⟨hf.ae_strongly_measurable.prod_mk hg.ae_strongly_measurable, (hf.norm.add' hg.norm).mono $ eventually_of_forall $ λ x, calc max ∥f x∥ ∥g x∥ ≤ ∥f x∥ + ∥g x∥ : max_le_add_of_nonneg (norm_nonneg _) (norm_nonneg _) ... ≤ ∥(∥f x∥ + ∥g x∥)∥ : le_abs_self _⟩ lemma mem_ℒp.integrable {q : ℝ≥0∞} (hq1 : 1 ≤ q) {f : α → β} [is_finite_measure μ] (hfq : mem_ℒp f q μ) : integrable f μ := mem_ℒp_one_iff_integrable.mp (hfq.mem_ℒp_of_exponent_le hq1) lemma lipschitz_with.integrable_comp_iff_of_antilipschitz {K K'} {f : α → β} {g : β → γ} (hg : lipschitz_with K g) (hg' : antilipschitz_with K' g) (g0 : g 0 = 0) : integrable (g ∘ f) μ ↔ integrable f μ := by simp [← mem_ℒp_one_iff_integrable, hg.mem_ℒp_comp_iff_of_antilipschitz hg' g0] lemma integrable.real_to_nnreal {f : α → ℝ} (hf : integrable f μ) : integrable (λ x, ((f x).to_nnreal : ℝ)) μ := begin refine ⟨hf.ae_strongly_measurable.ae_measurable .real_to_nnreal.coe_nnreal_real.ae_strongly_measurable, _⟩, rw has_finite_integral_iff_norm, refine lt_of_le_of_lt _ ((has_finite_integral_iff_norm _).1 hf.has_finite_integral), apply lintegral_mono, assume x, simp [ennreal.of_real_le_of_real, abs_le, le_abs_self], end lemma of_real_to_real_ae_eq {f : α → ℝ≥0∞} (hf : ∀ᵐ x ∂μ, f x < ∞) : (λ x, ennreal.of_real (f x).to_real) =ᵐ[μ] f := begin filter_upwards [hf], assume x hx, simp only [hx.ne, of_real_to_real, ne.def, not_false_iff], end lemma coe_to_nnreal_ae_eq {f : α → ℝ≥0∞} (hf : ∀ᵐ x ∂μ, f x < ∞) : (λ x, ((f x).to_nnreal : ℝ≥0∞)) =ᵐ[μ] f := begin filter_upwards [hf], assume x hx, simp only [hx.ne, ne.def, not_false_iff, coe_to_nnreal], end section variables {E : Type*} [normed_add_comm_group E] [normed_space ℝ E] lemma integrable_with_density_iff_integrable_coe_smul {f : α → ℝ≥0} (hf : measurable f) {g : α → E} : integrable g (μ.with_density (λ x, f x)) ↔ integrable (λ x, (f x : ℝ) • g x) μ := begin by_cases H : ae_strongly_measurable (λ (x : α), (f x : ℝ) • g x) μ, { simp only [integrable, ae_strongly_measurable_with_density_iff hf, has_finite_integral, H, true_and], rw lintegral_with_density_eq_lintegral_mul₀' hf.coe_nnreal_ennreal.ae_measurable, { congr', ext1 x, simp only [nnnorm_smul, nnreal.nnnorm_eq, coe_mul, pi.mul_apply] }, { rw ae_measurable_with_density_ennreal_iff hf, convert H.ennnorm, ext1 x, simp only [nnnorm_smul, nnreal.nnnorm_eq, coe_mul] } }, { simp only [integrable, ae_strongly_measurable_with_density_iff hf, H, false_and] } end lemma integrable_with_density_iff_integrable_smul {f : α → ℝ≥0} (hf : measurable f) {g : α → E} : integrable g (μ.with_density (λ x, f x)) ↔ integrable (λ x, f x • g x) μ := integrable_with_density_iff_integrable_coe_smul hf lemma integrable_with_density_iff_integrable_smul' {f : α → ℝ≥0∞} (hf : measurable f) (hflt : ∀ᵐ x ∂μ, f x < ∞) {g : α → E} : integrable g (μ.with_density f) ↔ integrable (λ x, (f x).to_real • g x) μ := begin rw [← with_density_congr_ae (coe_to_nnreal_ae_eq hflt), integrable_with_density_iff_integrable_smul], { refl }, { exact hf.ennreal_to_nnreal }, end lemma integrable_with_density_iff_integrable_coe_smul₀ {f : α → ℝ≥0} (hf : ae_measurable f μ) {g : α → E} : integrable g (μ.with_density (λ x, f x)) ↔ integrable (λ x, (f x : ℝ) • g x) μ := calc integrable g (μ.with_density (λ x, f x)) ↔ integrable g (μ.with_density (λ x, hf.mk f x)) : begin suffices : (λ x, (f x : ℝ≥0∞)) =ᵐ[μ] (λ x, hf.mk f x), by rw with_density_congr_ae this, filter_upwards [hf.ae_eq_mk] with x hx, simp [hx], end ... ↔ integrable (λ x, (hf.mk f x : ℝ) • g x) μ : integrable_with_density_iff_integrable_coe_smul hf.measurable_mk ... ↔ integrable (λ x, (f x : ℝ) • g x) μ : begin apply integrable_congr, filter_upwards [hf.ae_eq_mk] with x hx, simp [hx], end lemma integrable_with_density_iff_integrable_smul₀ {f : α → ℝ≥0} (hf : ae_measurable f μ) {g : α → E} : integrable g (μ.with_density (λ x, f x)) ↔ integrable (λ x, f x • g x) μ := integrable_with_density_iff_integrable_coe_smul₀ hf end lemma integrable_with_density_iff {f : α → ℝ≥0∞} (hf : measurable f) (hflt : ∀ᵐ x ∂μ, f x < ∞) {g : α → ℝ} : integrable g (μ.with_density f) ↔ integrable (λ x, g x * (f x).to_real) μ := begin have : (λ x, g x * (f x).to_real) = (λ x, (f x).to_real • g x), by simp [mul_comm], rw this, exact integrable_with_density_iff_integrable_smul' hf hflt, end section variables {E : Type*} [normed_add_comm_group E] [normed_space ℝ E] lemma mem_ℒ1_smul_of_L1_with_density {f : α → ℝ≥0} (f_meas : measurable f) (u : Lp E 1 (μ.with_density (λ x, f x))) : mem_ℒp (λ x, f x • u x) 1 μ := mem_ℒp_one_iff_integrable.2 $ (integrable_with_density_iff_integrable_smul f_meas).1 $ mem_ℒp_one_iff_integrable.1 (Lp.mem_ℒp u) variable (μ) /-- The map `u ↦ f • u` is an isometry between the `L^1` spaces for `μ.with_density f` and `μ`. -/ noncomputable def with_density_smul_li {f : α → ℝ≥0} (f_meas : measurable f) : Lp E 1 (μ.with_density (λ x, f x)) →ₗᵢ[ℝ] Lp E 1 μ := { to_fun := λ u, (mem_ℒ1_smul_of_L1_with_density f_meas u).to_Lp _, map_add' := begin assume u v, ext1, filter_upwards [(mem_ℒ1_smul_of_L1_with_density f_meas u).coe_fn_to_Lp, (mem_ℒ1_smul_of_L1_with_density f_meas v).coe_fn_to_Lp, (mem_ℒ1_smul_of_L1_with_density f_meas (u + v)).coe_fn_to_Lp, Lp.coe_fn_add ((mem_ℒ1_smul_of_L1_with_density f_meas u).to_Lp _) ((mem_ℒ1_smul_of_L1_with_density f_meas v).to_Lp _), (ae_with_density_iff f_meas.coe_nnreal_ennreal).1 (Lp.coe_fn_add u v)], assume x hu hv huv h' h'', rw [huv, h', pi.add_apply, hu, hv], rcases eq_or_ne (f x) 0 with hx|hx, { simp only [hx, zero_smul, add_zero] }, { rw [h'' _, pi.add_apply, smul_add], simpa only [ne.def, ennreal.coe_eq_zero] using hx } end, map_smul' := begin assume r u, ext1, filter_upwards [(ae_with_density_iff f_meas.coe_nnreal_ennreal).1 (Lp.coe_fn_smul r u), (mem_ℒ1_smul_of_L1_with_density f_meas (r • u)).coe_fn_to_Lp, Lp.coe_fn_smul r ((mem_ℒ1_smul_of_L1_with_density f_meas u).to_Lp _), (mem_ℒ1_smul_of_L1_with_density f_meas u).coe_fn_to_Lp], assume x h h' h'' h''', rw [ring_hom.id_apply, h', h'', pi.smul_apply, h'''], rcases eq_or_ne (f x) 0 with hx|hx, { simp only [hx, zero_smul, smul_zero] }, { rw [h _, smul_comm, pi.smul_apply], simpa only [ne.def, ennreal.coe_eq_zero] using hx } end, norm_map' := begin assume u, simp only [snorm, linear_map.coe_mk, Lp.norm_to_Lp, one_ne_zero, ennreal.one_ne_top, ennreal.one_to_real, if_false, snorm', ennreal.rpow_one, _root_.div_one, Lp.norm_def], rw lintegral_with_density_eq_lintegral_mul_non_measurable _ f_meas.coe_nnreal_ennreal (filter.eventually_of_forall (λ x, ennreal.coe_lt_top)), congr' 1, apply lintegral_congr_ae, filter_upwards [(mem_ℒ1_smul_of_L1_with_density f_meas u).coe_fn_to_Lp] with x hx, rw [hx, pi.mul_apply], change ↑∥(f x : ℝ) • u x∥₊ = ↑(f x) * ↑∥u x∥₊, simp only [nnnorm_smul, nnreal.nnnorm_eq, ennreal.coe_mul], end } @[simp] lemma with_density_smul_li_apply {f : α → ℝ≥0} (f_meas : measurable f) (u : Lp E 1 (μ.with_density (λ x, f x))) : with_density_smul_li μ f_meas u = (mem_ℒ1_smul_of_L1_with_density f_meas u).to_Lp (λ x, f x • u x) := rfl end lemma mem_ℒ1_to_real_of_lintegral_ne_top {f : α → ℝ≥0∞} (hfm : ae_measurable f μ) (hfi : ∫⁻ x, f x ∂μ ≠ ∞) : mem_ℒp (λ x, (f x).to_real) 1 μ := begin rw [mem_ℒp, snorm_one_eq_lintegral_nnnorm], exact ⟨(ae_measurable.ennreal_to_real hfm).ae_strongly_measurable, has_finite_integral_to_real_of_lintegral_ne_top hfi⟩ end lemma integrable_to_real_of_lintegral_ne_top {f : α → ℝ≥0∞} (hfm : ae_measurable f μ) (hfi : ∫⁻ x, f x ∂μ ≠ ∞) : integrable (λ x, (f x).to_real) μ := mem_ℒp_one_iff_integrable.1 $ mem_ℒ1_to_real_of_lintegral_ne_top hfm hfi section pos_part /-! ### Lemmas used for defining the positive part of a `L¹` function -/ lemma integrable.pos_part {f : α → ℝ} (hf : integrable f μ) : integrable (λ a, max (f a) 0) μ := ⟨(hf.ae_strongly_measurable.ae_measurable.max ae_measurable_const).ae_strongly_measurable, hf.has_finite_integral.max_zero⟩ lemma integrable.neg_part {f : α → ℝ} (hf : integrable f μ) : integrable (λ a, max (-f a) 0) μ := hf.neg.pos_part end pos_part section normed_space variables {𝕜 : Type*} [normed_field 𝕜] [normed_space 𝕜 β] lemma integrable.smul (c : 𝕜) {f : α → β} (hf : integrable f μ) : integrable (c • f) μ := ⟨hf.ae_strongly_measurable.const_smul c, hf.has_finite_integral.smul c⟩ lemma integrable_smul_iff {c : 𝕜} (hc : c ≠ 0) (f : α → β) : integrable (c • f) μ ↔ integrable f μ := and_congr (ae_strongly_measurable_const_smul_iff₀ hc) (has_finite_integral_smul_iff hc f) lemma integrable.const_mul {f : α → ℝ} (h : integrable f μ) (c : ℝ) : integrable (λ x, c * f x) μ := integrable.smul c h lemma integrable.const_mul' {f : α → ℝ} (h : integrable f μ) (c : ℝ) : integrable ((λ (x : α), c) * f) μ := integrable.smul c h lemma integrable.mul_const {f : α → ℝ} (h : integrable f μ) (c : ℝ) : integrable (λ x, f x * c) μ := by simp_rw [mul_comm, h.const_mul _] lemma integrable.mul_const' {f : α → ℝ} (h : integrable f μ) (c : ℝ) : integrable (f * (λ (x : α), c)) μ := integrable.mul_const h c lemma integrable.div_const {f : α → ℝ} (h : integrable f μ) (c : ℝ) : integrable (λ x, f x / c) μ := by simp_rw [div_eq_mul_inv, h.mul_const] lemma integrable.bdd_mul' {f g : α → ℝ} {c : ℝ} (hg : integrable g μ) (hf : ae_strongly_measurable f μ) (hf_bound : ∀ᵐ x ∂μ, ∥f x∥ ≤ c) : integrable (λ x, f x * g x) μ := begin refine integrable.mono' (hg.norm.smul c) (hf.mul hg.1) _, filter_upwards [hf_bound] with x hx, rw [pi.smul_apply, smul_eq_mul], exact (norm_mul_le _ _).trans (mul_le_mul_of_nonneg_right hx (norm_nonneg _)), end end normed_space section normed_space_over_complete_field variables {𝕜 : Type*} [nontrivially_normed_field 𝕜] [complete_space 𝕜] variables {E : Type*} [normed_add_comm_group E] [normed_space 𝕜 E] lemma integrable_smul_const {f : α → 𝕜} {c : E} (hc : c ≠ 0) : integrable (λ x, f x • c) μ ↔ integrable f μ := begin simp_rw [integrable, ae_strongly_measurable_smul_const_iff hc, and.congr_right_iff, has_finite_integral, nnnorm_smul, ennreal.coe_mul], intro hf, rw [lintegral_mul_const' _ _ ennreal.coe_ne_top, ennreal.mul_lt_top_iff], have : ∀ x : ℝ≥0∞, x = 0 → x < ∞ := by simp, simp [hc, or_iff_left_of_imp (this _)] end end normed_space_over_complete_field section is_R_or_C variables {𝕜 : Type*} [is_R_or_C 𝕜] {f : α → 𝕜} lemma integrable.of_real {f : α → ℝ} (hf : integrable f μ) : integrable (λ x, (f x : 𝕜)) μ := by { rw ← mem_ℒp_one_iff_integrable at hf ⊢, exact hf.of_real } lemma integrable.re_im_iff : integrable (λ x, is_R_or_C.re (f x)) μ ∧ integrable (λ x, is_R_or_C.im (f x)) μ ↔ integrable f μ := by { simp_rw ← mem_ℒp_one_iff_integrable, exact mem_ℒp_re_im_iff } lemma integrable.re (hf : integrable f μ) : integrable (λ x, is_R_or_C.re (f x)) μ := by { rw ← mem_ℒp_one_iff_integrable at hf ⊢, exact hf.re, } lemma integrable.im (hf : integrable f μ) : integrable (λ x, is_R_or_C.im (f x)) μ := by { rw ← mem_ℒp_one_iff_integrable at hf ⊢, exact hf.im, } end is_R_or_C section inner_product variables {𝕜 E : Type*} [is_R_or_C 𝕜] [inner_product_space 𝕜 E] {f : α → E} local notation `⟪`x`, `y`⟫` := @inner 𝕜 E _ x y lemma integrable.const_inner (c : E) (hf : integrable f μ) : integrable (λ x, ⟪c, f x⟫) μ := by { rw ← mem_ℒp_one_iff_integrable at hf ⊢, exact hf.const_inner c, } lemma integrable.inner_const (hf : integrable f μ) (c : E) : integrable (λ x, ⟪f x, c⟫) μ := by { rw ← mem_ℒp_one_iff_integrable at hf ⊢, exact hf.inner_const c, } end inner_product section trim variables {H : Type*} [normed_add_comm_group H] {m0 : measurable_space α} {μ' : measure α} {f : α → H} lemma integrable.trim (hm : m ≤ m0) (hf_int : integrable f μ') (hf : strongly_measurable[m] f) : integrable f (μ'.trim hm) := begin refine ⟨hf.ae_strongly_measurable, _⟩, rw [has_finite_integral, lintegral_trim hm _], { exact hf_int.2, }, { exact @strongly_measurable.ennnorm _ m _ _ f hf }, end lemma integrable_of_integrable_trim (hm : m ≤ m0) (hf_int : integrable f (μ'.trim hm)) : integrable f μ' := begin obtain ⟨hf_meas_ae, hf⟩ := hf_int, refine ⟨ae_strongly_measurable_of_ae_strongly_measurable_trim hm hf_meas_ae, _⟩, rw has_finite_integral at hf ⊢, rwa lintegral_trim_ae hm _ at hf, exact ae_strongly_measurable.ennnorm hf_meas_ae end end trim section sigma_finite variables {E : Type*} {m0 : measurable_space α} [normed_add_comm_group E] lemma integrable_of_forall_fin_meas_le' {μ : measure α} (hm : m ≤ m0) [sigma_finite (μ.trim hm)] (C : ℝ≥0∞) (hC : C < ∞) {f : α → E} (hf_meas : ae_strongly_measurable f μ) (hf : ∀ s, measurable_set[m] s → μ s ≠ ∞ → ∫⁻ x in s, ∥f x∥₊ ∂μ ≤ C) : integrable f μ := ⟨hf_meas, (lintegral_le_of_forall_fin_meas_le' hm C hf_meas.ennnorm hf).trans_lt hC⟩ lemma integrable_of_forall_fin_meas_le [sigma_finite μ] (C : ℝ≥0∞) (hC : C < ∞) {f : α → E} (hf_meas : ae_strongly_measurable f μ) (hf : ∀ s : set α, measurable_set s → μ s ≠ ∞ → ∫⁻ x in s, ∥f x∥₊ ∂μ ≤ C) : integrable f μ := @integrable_of_forall_fin_meas_le' _ _ _ _ _ _ _ (by rwa trim_eq_self) C hC _ hf_meas hf end sigma_finite /-! ### The predicate `integrable` on measurable functions modulo a.e.-equality -/ namespace ae_eq_fun section /-- A class of almost everywhere equal functions is `integrable` if its function representative is integrable. -/ def integrable (f : α →ₘ[μ] β) : Prop := integrable f μ lemma integrable_mk {f : α → β} (hf : ae_strongly_measurable f μ ) : (integrable (mk f hf : α →ₘ[μ] β)) ↔ measure_theory.integrable f μ := begin simp [integrable], apply integrable_congr, exact coe_fn_mk f hf end lemma integrable_coe_fn {f : α →ₘ[μ] β} : (measure_theory.integrable f μ) ↔ integrable f := by rw [← integrable_mk, mk_coe_fn] lemma integrable_zero : integrable (0 : α →ₘ[μ] β) := (integrable_zero α β μ).congr (coe_fn_mk _ _).symm end section lemma integrable.neg {f : α →ₘ[μ] β} : integrable f → integrable (-f) := induction_on f $ λ f hfm hfi, (integrable_mk _).2 ((integrable_mk hfm).1 hfi).neg section lemma integrable_iff_mem_L1 {f : α →ₘ[μ] β} : integrable f ↔ f ∈ (α →₁[μ] β) := by rw [← integrable_coe_fn, ← mem_ℒp_one_iff_integrable, Lp.mem_Lp_iff_mem_ℒp] lemma integrable.add {f g : α →ₘ[μ] β} : integrable f → integrable g → integrable (f + g) := begin refine induction_on₂ f g (λ f hf g hg hfi hgi, _), simp only [integrable_mk, mk_add_mk] at hfi hgi ⊢, exact hfi.add hgi end lemma integrable.sub {f g : α →ₘ[μ] β} (hf : integrable f) (hg : integrable g) : integrable (f - g) := (sub_eq_add_neg f g).symm ▸ hf.add hg.neg end section normed_space variables {𝕜 : Type*} [normed_field 𝕜] [normed_space 𝕜 β] lemma integrable.smul {c : 𝕜} {f : α →ₘ[μ] β} : integrable f → integrable (c • f) := induction_on f $ λ f hfm hfi, (integrable_mk _).2 $ ((integrable_mk hfm).1 hfi).smul _ end normed_space end end ae_eq_fun namespace L1 lemma integrable_coe_fn (f : α →₁[μ] β) : integrable f μ := by { rw ← mem_ℒp_one_iff_integrable, exact Lp.mem_ℒp f } lemma has_finite_integral_coe_fn (f : α →₁[μ] β) : has_finite_integral f μ := (integrable_coe_fn f).has_finite_integral lemma strongly_measurable_coe_fn (f : α →₁[μ] β) : strongly_measurable f := Lp.strongly_measurable f lemma measurable_coe_fn [measurable_space β] [borel_space β] (f : α →₁[μ] β) : measurable f := (Lp.strongly_measurable f).measurable lemma ae_strongly_measurable_coe_fn (f : α →₁[μ] β) : ae_strongly_measurable f μ := Lp.ae_strongly_measurable f lemma ae_measurable_coe_fn [measurable_space β] [borel_space β] (f : α →₁[μ] β) : ae_measurable f μ := (Lp.strongly_measurable f).measurable.ae_measurable lemma edist_def (f g : α →₁[μ] β) : edist f g = ∫⁻ a, edist (f a) (g a) ∂μ := by { simp [Lp.edist_def, snorm, snorm'], simp [edist_eq_coe_nnnorm_sub] } lemma dist_def (f g : α →₁[μ] β) : dist f g = (∫⁻ a, edist (f a) (g a) ∂μ).to_real := by { simp [Lp.dist_def, snorm, snorm'], simp [edist_eq_coe_nnnorm_sub] } lemma norm_def (f : α →₁[μ] β) : ∥f∥ = (∫⁻ a, ∥f a∥₊ ∂μ).to_real := by { simp [Lp.norm_def, snorm, snorm'] } /-- Computing the norm of a difference between two L¹-functions. Note that this is not a special case of `norm_def` since `(f - g) x` and `f x - g x` are not equal (but only a.e.-equal). -/ lemma norm_sub_eq_lintegral (f g : α →₁[μ] β) : ∥f - g∥ = (∫⁻ x, (∥f x - g x∥₊ : ℝ≥0∞) ∂μ).to_real := begin rw [norm_def], congr' 1, rw lintegral_congr_ae, filter_upwards [Lp.coe_fn_sub f g] with _ ha, simp only [ha, pi.sub_apply], end lemma of_real_norm_eq_lintegral (f : α →₁[μ] β) : ennreal.of_real ∥f∥ = ∫⁻ x, (∥f x∥₊ : ℝ≥0∞) ∂μ := by { rw [norm_def, ennreal.of_real_to_real], exact ne_of_lt (has_finite_integral_coe_fn f) } /-- Computing the norm of a difference between two L¹-functions. Note that this is not a special case of `of_real_norm_eq_lintegral` since `(f - g) x` and `f x - g x` are not equal (but only a.e.-equal). -/ lemma of_real_norm_sub_eq_lintegral (f g : α →₁[μ] β) : ennreal.of_real ∥f - g∥ = ∫⁻ x, (∥f x - g x∥₊ : ℝ≥0∞) ∂μ := begin simp_rw [of_real_norm_eq_lintegral, ← edist_eq_coe_nnnorm], apply lintegral_congr_ae, filter_upwards [Lp.coe_fn_sub f g] with _ ha, simp only [ha, pi.sub_apply], end end L1 namespace integrable /-- Construct the equivalence class `[f]` of an integrable function `f`, as a member of the space `L1 β 1 μ`. -/ def to_L1 (f : α → β) (hf : integrable f μ) : α →₁[μ] β := (mem_ℒp_one_iff_integrable.2 hf).to_Lp f @[simp] lemma to_L1_coe_fn (f : α →₁[μ] β) (hf : integrable f μ) : hf.to_L1 f = f := by simp [integrable.to_L1] lemma coe_fn_to_L1 {f : α → β} (hf : integrable f μ) : hf.to_L1 f =ᵐ[μ] f := ae_eq_fun.coe_fn_mk _ _ @[simp] lemma to_L1_zero (h : integrable (0 : α → β) μ) : h.to_L1 0 = 0 := rfl @[simp] lemma to_L1_eq_mk (f : α → β) (hf : integrable f μ) : (hf.to_L1 f : α →ₘ[μ] β) = ae_eq_fun.mk f hf.ae_strongly_measurable := rfl @[simp] lemma to_L1_eq_to_L1_iff (f g : α → β) (hf : integrable f μ) (hg : integrable g μ) : to_L1 f hf = to_L1 g hg ↔ f =ᵐ[μ] g := mem_ℒp.to_Lp_eq_to_Lp_iff _ _ lemma to_L1_add (f g : α → β) (hf : integrable f μ) (hg : integrable g μ) : to_L1 (f + g) (hf.add hg) = to_L1 f hf + to_L1 g hg := rfl lemma to_L1_neg (f : α → β) (hf : integrable f μ) : to_L1 (- f) (integrable.neg hf) = - to_L1 f hf := rfl lemma to_L1_sub (f g : α → β) (hf : integrable f μ) (hg : integrable g μ) : to_L1 (f - g) (hf.sub hg) = to_L1 f hf - to_L1 g hg := rfl lemma norm_to_L1 (f : α → β) (hf : integrable f μ) : ∥hf.to_L1 f∥ = ennreal.to_real (∫⁻ a, edist (f a) 0 ∂μ) := by { simp [to_L1, snorm, snorm'], simp [edist_eq_coe_nnnorm] } lemma norm_to_L1_eq_lintegral_norm (f : α → β) (hf : integrable f μ) : ∥hf.to_L1 f∥ = ennreal.to_real (∫⁻ a, (ennreal.of_real ∥f a∥) ∂μ) := by { rw [norm_to_L1, lintegral_norm_eq_lintegral_edist] } @[simp] lemma edist_to_L1_to_L1 (f g : α → β) (hf : integrable f μ) (hg : integrable g μ) : edist (hf.to_L1 f) (hg.to_L1 g) = ∫⁻ a, edist (f a) (g a) ∂μ := by { simp [integrable.to_L1, snorm, snorm'], simp [edist_eq_coe_nnnorm_sub] } @[simp] lemma edist_to_L1_zero (f : α → β) (hf : integrable f μ) : edist (hf.to_L1 f) 0 = ∫⁻ a, edist (f a) 0 ∂μ := by { simp [integrable.to_L1, snorm, snorm'], simp [edist_eq_coe_nnnorm] } variables {𝕜 : Type*} [normed_field 𝕜] [normed_space 𝕜 β] lemma to_L1_smul (f : α → β) (hf : integrable f μ) (k : 𝕜) : to_L1 (λ a, k • f a) (hf.smul k) = k • to_L1 f hf := rfl lemma to_L1_smul' (f : α → β) (hf : integrable f μ) (k : 𝕜) : to_L1 (k • f) (hf.smul k) = k • to_L1 f hf := rfl end integrable end measure_theory open measure_theory variables {E : Type*} [normed_add_comm_group E] {𝕜 : Type*} [nontrivially_normed_field 𝕜] [normed_space 𝕜 E] {H : Type*} [normed_add_comm_group H] [normed_space 𝕜 H] lemma measure_theory.integrable.apply_continuous_linear_map {φ : α → H →L[𝕜] E} (φ_int : integrable φ μ) (v : H) : integrable (λ a, φ a v) μ := (φ_int.norm.mul_const ∥v∥).mono' (φ_int.ae_strongly_measurable.apply_continuous_linear_map v) (eventually_of_forall $ λ a, (φ a).le_op_norm v) lemma continuous_linear_map.integrable_comp {φ : α → H} (L : H →L[𝕜] E) (φ_int : integrable φ μ) : integrable (λ (a : α), L (φ a)) μ := ((integrable.norm φ_int).const_mul ∥L∥).mono' (L.continuous.comp_ae_strongly_measurable φ_int.ae_strongly_measurable) (eventually_of_forall $ λ a, L.le_op_norm (φ a))
86b59a4ec8f5eaf3fbf58918e14f24c8c007e96c
88fb7558b0636ec6b181f2a548ac11ad3919f8a5
/library/init/meta/default.lean
61f5b03fb5c6b9e6eddc4fde2f9563226d15d62c
[ "Apache-2.0" ]
permissive
moritayasuaki/lean
9f666c323cb6fa1f31ac597d777914aed41e3b7a
ae96ebf6ee953088c235ff7ae0e8c95066ba8001
refs/heads/master
1,611,135,440,814
1,493,852,869,000
1,493,852,869,000
90,269,903
0
0
null
1,493,906,291,000
1,493,906,291,000
null
UTF-8
Lean
false
false
915
lean
/- Copyright (c) 2016 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura -/ prelude import init.meta.name init.meta.options init.meta.format init.meta.rb_map import init.meta.level init.meta.expr init.meta.environment init.meta.attribute import init.meta.tactic init.meta.contradiction_tactic init.meta.constructor_tactic import init.meta.injection_tactic init.meta.relation_tactics init.meta.fun_info import init.meta.congr_lemma init.meta.match_tactic init.meta.ac_tactics import init.meta.backward init.meta.rewrite_tactic import init.meta.mk_dec_eq_instance init.meta.mk_inhabited_instance import init.meta.simp_tactic init.meta.set_get_option_tactics import init.meta.interactive init.meta.converter init.meta.vm import init.meta.comp_value_tactics init.meta.smt import init.meta.async_tactic init.meta.inductive_compiler
511f9ca515c0464393f073316ed6d7f6f18b23d8
4727251e0cd73359b15b664c3170e5d754078599
/src/algebra/hierarchy_design.lean
bf4e6b491e0d0389d25c12ae7e3c1b53a1acee62
[ "Apache-2.0" ]
permissive
Vierkantor/mathlib
0ea59ac32a3a43c93c44d70f441c4ee810ccceca
83bc3b9ce9b13910b57bda6b56222495ebd31c2f
refs/heads/master
1,658,323,012,449
1,652,256,003,000
1,652,256,003,000
209,296,341
0
1
Apache-2.0
1,568,807,655,000
1,568,807,655,000
null
UTF-8
Lean
false
false
9,132
lean
/- Copyright (c) 2021 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison, Eric Wieser -/ import tactic.doc_commands /-! # Documentation of the algebraic hierarchy A library note giving advice on modifying the algebraic hierarchy. (It is not intended as a "tour".) TODO: Add sections about interactions with topological typeclasses, and order typeclasses. -/ /-- # The algebraic hierarchy In any theorem proving environment, there are difficult decisions surrounding the design of the "algebraic hierarchy". There is a danger of exponential explosion in the number of gadgets, especially once interactions between algebraic and order/topological/etc structures are considered. In mathlib, we try to avoid this by only introducing new algebraic typeclasses either 1. when there is "real mathematics" to be done with them, or 2. when there is a meaninful gain in simplicity by factoring out a common substructure. (As examples, at this point we don't have `loop`, or `unital_magma`, but we do have `lie_submodule` and `topological_field`! We also have `group_with_zero`, as an exemplar of point 2.) Generally in mathlib we use the extension mechanism (so `comm_ring` extends `ring`) rather than mixins (e.g. with separate `ring` and `comm_mul` classes), in part because of the potential blow-up in term sizes described at https://www.ralfj.de/blog/2019/05/15/typeclasses-exponential-blowup.html However there is tension here, as it results in considerable duplication in the API, particularly in the interaction with order structures. This library note is not intended as a design document justifying and explaining the history of mathlib's algebraic hierarchy! Instead it is intended as a developer's guide, for contributors wanting to extend (either new leaves, or new intermediate classes) the algebraic hierarchy as it exists. (Ideally we would have both a tour guide to the existing hierarchy, and an account of the design choices. See https://arxiv.org/abs/1910.09336 for an overview of mathlib as a whole, with some attention to the algebraic hierarchy and https://leanprover-community.github.io/mathlib-overview.html for a summary of what is in mathlib today.) ## Instances When adding a new typeclass `Z` to the algebraic hierarchy one should attempt to add the following constructions and results, when applicable: * Instances transferred elementwise to products, like `prod.monoid`. See `algebra.group.prod` for more examples. ``` instance prod.Z [Z M] [Z N] : Z (M × N) := ... ``` * Instances transferred elementwise to pi types, like `pi.monoid`. See `algebra.group.pi` for more examples. ``` instance pi.Z [∀ i, Z $ f i] : Z (Π i : I, f i) := ... ``` * Instances transferred to `mul_opposite M`, like `mul_opposite.monoid`. See `algebra.opposites` for more examples. ``` instance mul_opposite.Z [Z M] : Z (mul_opposite M) := ... ``` * Instances transferred to `ulift M`, like `ulift.monoid`. See `algebra.group.ulift` for more examples. ``` instance ulift.Z [Z M] : Z (ulift M) := ... ``` * Definitions for transferring the proof fields of instances along injective or surjective functions that agree on the data fields, like `function.injective.monoid` and `function.surjective.monoid`. We make these definitions `@[reducible]`, see note [reducible non-instances]. See `algebra.group.inj_surj` for more examples. ``` @[reducible] def function.injective.Z [Z M₂] (f : M₁ → M₂) (hf : injective f) (one : f 1 = 1) (mul : ∀ x y, f (x * y) = f x * f y) : Z M₁ := ... @[reducible] def function.surjective.Z [Z M₁] (f : M₁ → M₂) (hf : surjective f) (one : f 1 = 1) (mul : ∀ x y, f (x * y) = f x * f y) : Z M₂ := ... ``` * Instances transferred elementwise to `finsupp`s, like `finsupp.semigroup`. See `data.finsupp.pointwise` for more examples. ``` instance finsupp.Z [Z β] : Z (α →₀ β) := ... ``` * Instances transferred elementwise to `set`s, like `set.monoid`. See `algebra.pointwise` for more examples. ``` instance set.Z [Z α] : Z (set α) := ... ``` * Definitions for transferring the entire structure across an equivalence, like `equiv.monoid`. See `data.equiv.transfer_instance` for more examples. See also the `transport` tactic. ``` def equiv.Z (e : α ≃ β) [Z β] : Z α := ... /- When there is a new notion of `Z`-equiv: -/ def equiv.Z_equiv (e : α ≃ β) [Z β] : by { letI := equiv.Z e, exact α ≃Z β } := ... ``` ## Subobjects When a new typeclass `Z` adds new data fields, you should also create a new `sub_Z` `structure` with a `carrier` field. This can be a lot of work; for now try to closely follow the existing examples (e.g. `submonoid`, `subring`, `subalgebra`). We would very much like to provide some automation here, but a prerequisite will be making all the existing APIs more uniform. If `Z` extends `Y`, then `sub_Z` should usually extend `sub_Y`. When `Z` adds only new proof fields to an existing structure `Y`, you should provide instances transferring `Z α` to `Z (sub_Y α)`, like `submonoid.to_comm_monoid`. Typically this is done using the `function.injective.Z` definition mentioned above. ``` instance sub_Y.to_Z [Z α] : Z (sub_Y α) := coe_injective.Z coe ... ``` ## Morphisms and equivalences ## Category theory For many algebraic structures, particularly ones used in representation theory, algebraic geometry, etc., we also define "bundled" versions, which carry `category` instances. These bundled versions are usually named in camel case, so for example we have `AddCommGroup` as a bundled `add_comm_group`, and `TopCommRing` (which bundles together `comm_ring`, `topological_space`, and `topological_ring`). These bundled versions have many appealing features: * a uniform notation for morphisms `X ⟶ Y` * a uniform notation (and definition) for isomorphisms `X ≅ Y` * a uniform API for subobjects, via the partial order `subobject X` * interoperability with unbundled structures, via coercions to `Type` (so if `G : AddCommGroup`, you can treat `G` as a type, and it automatically has an `add_comm_group` instance) and lifting maps `AddCommGroup.of G`, when `G` is a type with an `add_comm_group` instance. If, for example you do the work of proving that a typeclass `Z` has a good notion of tensor product, you are strongly encouraged to provide the corresponding `monoidal_category` instance on a bundled version. This ensures that the API for tensor products is complete, and enables use of general machinery. Similarly if you prove universal properties, or adjunctions, you are encouraged to state these using categorical language! One disadvantage of the bundled approach is that we can only speak of morphisms between objects living in the same type-theoretic universe. In practice this is rarely a problem. # Making a pull request With so many moving parts, how do you actually go about changing the algebraic hierarchy? We're still evolving how to handle this, but the current suggestion is: * If you're adding a new "leaf" class, the requirements are lower, and an initial PR can just add whatever is immediately needed. * A new "intermediate" class, especially low down in the hierarchy, needs to be careful about leaving gaps. In a perfect world, there would be a group of simultaneous PRs that basically cover everything! (Or at least an expectation that PRs may not be merged immediately while waiting on other PRs that fill out the API.) However "perfect is the enemy of good", and it would also be completely reasonable to add a TODO list in the main module doc-string for the new class, briefly listing the parts of the API which still need to be provided. Hopefully this document makes it easy to assemble this list. Another alternative to a TODO list in the doc-strings is adding github issues. -/ library_note "the algebraic hierarchy" /-- Some definitions that define objects of a class cannot be instances, because they have an explicit argument that does not occur in the conclusion. An example is `preorder.lift` that has a function `f : α → β` as an explicit argument to lift a preorder on `β` to a preorder on `α`. If these definitions are used to define instances of this class *and* this class is an argument to some other type-class so that type-class inference will have to unfold these instances to check for definitional equality, then these definitions should be marked `@[reducible]`. For example, `preorder.lift` is used to define `units.preorder` and `partial_order.lift` is used to define `units.partial_order`. In some cases it is important that type-class inference can recognize that `units.preorder` and `units.partial_order` give rise to the same `has_le` instance. For example, you might have another class that takes `[has_le α]` as an argument, and this argument sometimes comes from `units.preorder` and sometimes from `units.partial_order`. Therefore, `preorder.lift` and `partial_order.lift` are marked `@[reducible]`. -/ library_note "reducible non-instances"
383e2601866ade35fa123c7824daa89992c5ed27
d406927ab5617694ec9ea7001f101b7c9e3d9702
/src/category_theory/functor/flat.lean
90f129c513cfb26eb1cf71c6c11e35ca0f3add40
[ "Apache-2.0" ]
permissive
alreadydone/mathlib
dc0be621c6c8208c581f5170a8216c5ba6721927
c982179ec21091d3e102d8a5d9f5fe06c8fafb73
refs/heads/master
1,685,523,275,196
1,670,184,141,000
1,670,184,141,000
287,574,545
0
0
Apache-2.0
1,670,290,714,000
1,597,421,623,000
Lean
UTF-8
Lean
false
false
16,324
lean
/- Copyright (c) 2021 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import category_theory.limits.filtered_colimit_commutes_finite_limit import category_theory.limits.preserves.functor_category import category_theory.limits.bicones import category_theory.limits.comma import category_theory.limits.preserves.finite import category_theory.limits.shapes.finite_limits /-! # Representably flat functors We define representably flat functors as functors such that the category of structured arrows over `X` is cofiltered for each `X`. This concept is also known as flat functors as in [Elephant] Remark C2.3.7, and this name is suggested by Mike Shulman in https://golem.ph.utexas.edu/category/2011/06/flat_functors_and_morphisms_of.html to avoid confusion with other notions of flatness. This definition is equivalent to left exact functors (functors that preserves finite limits) when `C` has all finite limits. ## Main results * `flat_of_preserves_finite_limits`: If `F : C ⥤ D` preserves finite limits and `C` has all finite limits, then `F` is flat. * `preserves_finite_limits_of_flat`: If `F : C ⥤ D` is flat, then it preserves all finite limits. * `preserves_finite_limits_iff_flat`: If `C` has all finite limits, then `F` is flat iff `F` is left_exact. * `Lan_preserves_finite_limits_of_flat`: If `F : C ⥤ D` is a flat functor between small categories, then the functor `Lan F.op` between presheaves of sets preserves all finite limits. * `flat_iff_Lan_flat`: If `C`, `D` are small and `C` has all finite limits, then `F` is flat iff `Lan F.op : (Cᵒᵖ ⥤ Type*) ⥤ (Dᵒᵖ ⥤ Type*)` is flat. * `preserves_finite_limits_iff_Lan_preserves_finite_limits`: If `C`, `D` are small and `C` has all finite limits, then `F` preserves finite limits iff `Lan F.op : (Cᵒᵖ ⥤ Type*) ⥤ (Dᵒᵖ ⥤ Type*)` does. -/ universes w v₁ v₂ v₃ u₁ u₂ u₃ open category_theory open category_theory.limits open opposite namespace category_theory namespace structured_arrow_cone open structured_arrow variables {C : Type u₁} [category.{v₁} C] {D : Type u₂} [category.{v₁} D] variables {J : Type w} [small_category J] variables {K : J ⥤ C} (F : C ⥤ D) (c : cone K) /-- Given a cone `c : cone K` and a map `f : X ⟶ c.X`, we can construct a cone of structured arrows over `X` with `f` as the cone point. This is the underlying diagram. -/ @[simps] def to_diagram : J ⥤ structured_arrow c.X K := { obj := λ j, structured_arrow.mk (c.π.app j), map := λ j k g, structured_arrow.hom_mk g (by simpa) } /-- Given a diagram of `structured_arrow X F`s, we may obtain a cone with cone point `X`. -/ @[simps] def diagram_to_cone {X : D} (G : J ⥤ structured_arrow X F) : cone (G ⋙ proj X F ⋙ F) := { X := X, π := { app := λ j, (G.obj j).hom } } /-- Given a cone `c : cone K` and a map `f : X ⟶ F.obj c.X`, we can construct a cone of structured arrows over `X` with `f` as the cone point. -/ @[simps] def to_cone {X : D} (f : X ⟶ F.obj c.X) : cone (to_diagram (F.map_cone c) ⋙ map f ⋙ pre _ K F) := { X := mk f, π := { app := λ j, hom_mk (c.π.app j) rfl, naturality' := λ j k g, by { ext, dsimp, simp } } } end structured_arrow_cone section representably_flat variables {C : Type u₁} [category.{v₁} C] {D : Type u₂} [category.{v₂} D] variables {E : Type u₃} [category.{v₃} E] /-- A functor `F : C ⥤ D` is representably-flat functor if the comma category `(X/F)` is cofiltered for each `X : C`. -/ class representably_flat (F : C ⥤ D) : Prop := (cofiltered : ∀ (X : D), is_cofiltered (structured_arrow X F)) attribute [instance] representably_flat.cofiltered local attribute [instance] is_cofiltered.nonempty instance representably_flat.id : representably_flat (𝟭 C) := begin constructor, intro X, haveI : nonempty (structured_arrow X (𝟭 C)) := ⟨structured_arrow.mk (𝟙 _)⟩, rsufficesI : is_cofiltered_or_empty (structured_arrow X (𝟭 C)), { constructor }, constructor, { intros Y Z, use structured_arrow.mk (𝟙 _), use structured_arrow.hom_mk Y.hom (by erw [functor.id_map, category.id_comp]), use structured_arrow.hom_mk Z.hom (by erw [functor.id_map, category.id_comp]) }, { intros Y Z f g, use structured_arrow.mk (𝟙 _), use structured_arrow.hom_mk Y.hom (by erw [functor.id_map, category.id_comp]), ext, transitivity Z.hom; simp } end instance representably_flat.comp (F : C ⥤ D) (G : D ⥤ E) [representably_flat F] [representably_flat G] : representably_flat (F ⋙ G) := begin constructor, intro X, haveI : nonempty (structured_arrow X (F ⋙ G)), { have f₁ : structured_arrow X G := nonempty.some infer_instance, have f₂ : structured_arrow f₁.right F := nonempty.some infer_instance, exact ⟨structured_arrow.mk (f₁.hom ≫ G.map f₂.hom)⟩ }, rsufficesI : is_cofiltered_or_empty (structured_arrow X (F ⋙ G)), { constructor }, constructor, { intros Y Z, let W := @is_cofiltered.min (structured_arrow X G) _ _ (structured_arrow.mk Y.hom) (structured_arrow.mk Z.hom), let Y' : W ⟶ _ := is_cofiltered.min_to_left _ _, let Z' : W ⟶ _ := is_cofiltered.min_to_right _ _, let W' := @is_cofiltered.min (structured_arrow W.right F) _ _ (structured_arrow.mk Y'.right) (structured_arrow.mk Z'.right), let Y'' : W' ⟶ _ := is_cofiltered.min_to_left _ _, let Z'' : W' ⟶ _ := is_cofiltered.min_to_right _ _, use structured_arrow.mk (W.hom ≫ G.map W'.hom), use structured_arrow.hom_mk Y''.right (by simp [← G.map_comp]), use structured_arrow.hom_mk Z''.right (by simp [← G.map_comp]) }, { intros Y Z f g, let W := @is_cofiltered.eq (structured_arrow X G) _ _ (structured_arrow.mk Y.hom) (structured_arrow.mk Z.hom) (structured_arrow.hom_mk (F.map f.right) (structured_arrow.w f)) (structured_arrow.hom_mk (F.map g.right) (structured_arrow.w g)), let h : W ⟶ _ := is_cofiltered.eq_hom _ _, let h_cond : h ≫ _ = h ≫ _ := is_cofiltered.eq_condition _ _, let W' := @is_cofiltered.eq (structured_arrow W.right F) _ _ (structured_arrow.mk h.right) (structured_arrow.mk (h.right ≫ F.map f.right)) (structured_arrow.hom_mk f.right rfl) (structured_arrow.hom_mk g.right (congr_arg comma_morphism.right h_cond).symm), let h' : W' ⟶ _ := is_cofiltered.eq_hom _ _, let h'_cond : h' ≫ _ = h' ≫ _ := is_cofiltered.eq_condition _ _, use structured_arrow.mk (W.hom ≫ G.map W'.hom), use structured_arrow.hom_mk h'.right (by simp [← G.map_comp]), ext, exact (congr_arg comma_morphism.right h'_cond : _) } end end representably_flat section has_limit variables {C : Type u₁} [category.{v₁} C] {D : Type u₂} [category.{v₁} D] local attribute [instance] has_finite_limits_of_has_finite_limits_of_size lemma cofiltered_of_has_finite_limits [has_finite_limits C] : is_cofiltered C := { cocone_objs := λ A B, ⟨limits.prod A B, limits.prod.fst, limits.prod.snd, trivial⟩, cocone_maps := λ A B f g, ⟨equalizer f g, equalizer.ι f g, equalizer.condition f g⟩, nonempty := ⟨⊤_ C⟩ } lemma flat_of_preserves_finite_limits [has_finite_limits C] (F : C ⥤ D) [preserves_finite_limits F] : representably_flat F := ⟨λ X, begin haveI : has_finite_limits (structured_arrow X F) := begin apply has_finite_limits_of_has_finite_limits_of_size.{v₁} (structured_arrow X F), intros J sJ fJ, resetI, constructor end, exact cofiltered_of_has_finite_limits end⟩ namespace preserves_finite_limits_of_flat open structured_arrow open structured_arrow_cone variables {J : Type v₁} [small_category J] [fin_category J] {K : J ⥤ C} variables (F : C ⥤ D) [representably_flat F] {c : cone K} (hc : is_limit c) (s : cone (K ⋙ F)) include hc /-- (Implementation). Given a limit cone `c : cone K` and a cone `s : cone (K ⋙ F)` with `F` representably flat, `s` can factor through `F.map_cone c`. -/ noncomputable def lift : s.X ⟶ F.obj c.X := let s' := is_cofiltered.cone (to_diagram s ⋙ structured_arrow.pre _ K F) in s'.X.hom ≫ (F.map $ hc.lift $ (cones.postcompose ({ app := λ X, 𝟙 _, naturality' := by simp } : (to_diagram s ⋙ pre s.X K F) ⋙ proj s.X F ⟶ K)).obj $ (structured_arrow.proj s.X F).map_cone s') lemma fac (x : J) : lift F hc s ≫ (F.map_cone c).π.app x = s.π.app x := by simpa [lift, ←functor.map_comp] local attribute [simp] eq_to_hom_map lemma uniq {K : J ⥤ C} {c : cone K} (hc : is_limit c) (s : cone (K ⋙ F)) (f₁ f₂ : s.X ⟶ F.obj c.X) (h₁ : ∀ (j : J), f₁ ≫ (F.map_cone c).π.app j = s.π.app j) (h₂ : ∀ (j : J), f₂ ≫ (F.map_cone c).π.app j = s.π.app j) : f₁ = f₂ := begin -- We can make two cones over the diagram of `s` via `f₁` and `f₂`. let α₁ : to_diagram (F.map_cone c) ⋙ map f₁ ⟶ to_diagram s := { app := λ X, eq_to_hom (by simp [←h₁]), naturality' := λ _ _ _, by { ext, simp } }, let α₂ : to_diagram (F.map_cone c) ⋙ map f₂ ⟶ to_diagram s := { app := λ X, eq_to_hom (by simp [←h₂]), naturality' := λ _ _ _, by { ext, simp } }, let c₁ : cone (to_diagram s ⋙ pre s.X K F) := (cones.postcompose (whisker_right α₁ (pre s.X K F) : _)).obj (to_cone F c f₁), let c₂ : cone (to_diagram s ⋙ pre s.X K F) := (cones.postcompose (whisker_right α₂ (pre s.X K F) : _)).obj (to_cone F c f₂), -- The two cones can then be combined and we may obtain a cone over the two cones since -- `structured_arrow s.X F` is cofiltered. let c₀ := is_cofiltered.cone (bicone_mk _ c₁ c₂), let g₁ : c₀.X ⟶ c₁.X := c₀.π.app (bicone.left), let g₂ : c₀.X ⟶ c₂.X := c₀.π.app (bicone.right), -- Then `g₁.right` and `g₂.right` are two maps from the same cone into the `c`. have : ∀ (j : J), g₁.right ≫ c.π.app j = g₂.right ≫ c.π.app j, { intro j, injection c₀.π.naturality (bicone_hom.left j) with _ e₁, injection c₀.π.naturality (bicone_hom.right j) with _ e₂, simpa using e₁.symm.trans e₂ }, have : c.extend g₁.right = c.extend g₂.right, { unfold cone.extend, congr' 1, ext x, apply this }, -- And thus they are equal as `c` is the limit. have : g₁.right = g₂.right, calc g₁.right = hc.lift (c.extend g₁.right) : by { apply hc.uniq (c.extend _), tidy } ... = hc.lift (c.extend g₂.right) : by { congr, exact this } ... = g₂.right : by { symmetry, apply hc.uniq (c.extend _), tidy }, -- Finally, since `fᵢ` factors through `F(gᵢ)`, the result follows. calc f₁ = 𝟙 _ ≫ f₁ : by simp ... = c₀.X.hom ≫ F.map g₁.right : g₁.w ... = c₀.X.hom ≫ F.map g₂.right : by rw this ... = 𝟙 _ ≫ f₂ : g₂.w.symm ... = f₂ : by simp end end preserves_finite_limits_of_flat /-- Representably flat functors preserve finite limits. -/ noncomputable def preserves_finite_limits_of_flat (F : C ⥤ D) [representably_flat F] : preserves_finite_limits F := begin apply preserves_finite_limits_of_preserves_finite_limits_of_size, intros J _ _, constructor, intros K, constructor, intros c hc, exactI { lift := preserves_finite_limits_of_flat.lift F hc, fac' := preserves_finite_limits_of_flat.fac F hc, uniq' := λ s m h, by { apply preserves_finite_limits_of_flat.uniq F hc, exact h, exact preserves_finite_limits_of_flat.fac F hc s } } end /-- If `C` is finitely cocomplete, then `F : C ⥤ D` is representably flat iff it preserves finite limits. -/ noncomputable def preserves_finite_limits_iff_flat [has_finite_limits C] (F : C ⥤ D) : representably_flat F ≃ preserves_finite_limits F := { to_fun := λ _, by exactI preserves_finite_limits_of_flat F, inv_fun := λ _, by exactI flat_of_preserves_finite_limits F, left_inv := λ _, proof_irrel _ _, right_inv := λ x, by { cases x, unfold preserves_finite_limits_of_flat, dunfold preserves_finite_limits_of_preserves_finite_limits_of_size, congr } } end has_limit section small_category variables {C D : Type u₁} [small_category C] [small_category D] (E : Type u₂) [category.{u₁} E] /-- (Implementation) The evaluation of `Lan F` at `X` is the colimit over the costructured arrows over `X`. -/ noncomputable def Lan_evaluation_iso_colim (F : C ⥤ D) (X : D) [∀ (X : D), has_colimits_of_shape (costructured_arrow F X) E] : Lan F ⋙ (evaluation D E).obj X ≅ ((whiskering_left _ _ E).obj (costructured_arrow.proj F X)) ⋙ colim := nat_iso.of_components (λ G, colim.map_iso (iso.refl _)) begin intros G H i, ext, simp only [functor.comp_map, colimit.ι_desc_assoc, functor.map_iso_refl, evaluation_obj_map, whiskering_left_obj_map, category.comp_id, Lan_map_app, category.assoc], erw [colimit.ι_pre_assoc (Lan.diagram F H X) (costructured_arrow.map j.hom), category.id_comp, category.comp_id, colimit.ι_map], rcases j with ⟨j_left, ⟨⟨⟩⟩, j_hom⟩, congr, rw [costructured_arrow.map_mk, category.id_comp, costructured_arrow.mk] end variables [concrete_category.{u₁} E] [has_limits E] [has_colimits E] variables [reflects_limits (forget E)] [preserves_filtered_colimits (forget E)] variables [preserves_limits (forget E)] /-- If `F : C ⥤ D` is a representably flat functor between small categories, then the functor `Lan F.op` that takes presheaves over `C` to presheaves over `D` preserves finite limits. -/ noncomputable instance Lan_preserves_finite_limits_of_flat (F : C ⥤ D) [representably_flat F] : preserves_finite_limits (Lan F.op : _ ⥤ (Dᵒᵖ ⥤ E)) := begin apply preserves_finite_limits_of_preserves_finite_limits_of_size.{u₁}, intros J _ _, resetI, apply preserves_limits_of_shape_of_evaluation (Lan F.op : (Cᵒᵖ ⥤ E) ⥤ (Dᵒᵖ ⥤ E)) J, intro K, haveI : is_filtered (costructured_arrow F.op K) := is_filtered.of_equivalence (structured_arrow_op_equivalence F (unop K)), exact preserves_limits_of_shape_of_nat_iso (Lan_evaluation_iso_colim _ _ _).symm, end instance Lan_flat_of_flat (F : C ⥤ D) [representably_flat F] : representably_flat (Lan F.op : _ ⥤ (Dᵒᵖ ⥤ E)) := flat_of_preserves_finite_limits _ variable [has_finite_limits C] noncomputable instance Lan_preserves_finite_limits_of_preserves_finite_limits (F : C ⥤ D) [preserves_finite_limits F] : preserves_finite_limits (Lan F.op : _ ⥤ (Dᵒᵖ ⥤ E)) := begin haveI := flat_of_preserves_finite_limits F, apply_instance end lemma flat_iff_Lan_flat (F : C ⥤ D) : representably_flat F ↔ representably_flat (Lan F.op : _ ⥤ (Dᵒᵖ ⥤ Type u₁)) := ⟨λ H, by exactI infer_instance, λ H, begin resetI, haveI := preserves_finite_limits_of_flat (Lan F.op : _ ⥤ (Dᵒᵖ ⥤ Type u₁)), haveI : preserves_finite_limits F := begin apply preserves_finite_limits_of_preserves_finite_limits_of_size.{u₁}, intros, resetI, apply preserves_limit_of_Lan_presesrves_limit end, apply flat_of_preserves_finite_limits end⟩ /-- If `C` is finitely complete, then `F : C ⥤ D` preserves finite limits iff `Lan F.op : (Cᵒᵖ ⥤ Type*) ⥤ (Dᵒᵖ ⥤ Type*)` preserves finite limits. -/ noncomputable def preserves_finite_limits_iff_Lan_preserves_finite_limits (F : C ⥤ D) : preserves_finite_limits F ≃ preserves_finite_limits (Lan F.op : _ ⥤ (Dᵒᵖ ⥤ Type u₁)) := { to_fun := λ _, by exactI infer_instance, inv_fun := λ _, begin apply preserves_finite_limits_of_preserves_finite_limits_of_size.{u₁}, intros, resetI, apply preserves_limit_of_Lan_presesrves_limit end, left_inv := λ x, begin cases x, unfold preserves_finite_limits_of_flat, dunfold preserves_finite_limits_of_preserves_finite_limits_of_size, congr end, right_inv := λ x, begin cases x, unfold preserves_finite_limits_of_flat, congr, unfold category_theory.Lan_preserves_finite_limits_of_preserves_finite_limits category_theory.Lan_preserves_finite_limits_of_flat, dunfold preserves_finite_limits_of_preserves_finite_limits_of_size, congr end } end small_category end category_theory
d786c0d4652a661986c68b60b9f28016e5555645
63abd62053d479eae5abf4951554e1064a4c45b4
/src/topology/continuous_map.lean
851599ae9c7a613e1651cd3b4fc2131e68091253
[ "Apache-2.0" ]
permissive
Lix0120/mathlib
0020745240315ed0e517cbf32e738d8f9811dd80
e14c37827456fc6707f31b4d1d16f1f3a3205e91
refs/heads/master
1,673,102,855,024
1,604,151,044,000
1,604,151,044,000
308,930,245
0
0
Apache-2.0
1,604,164,710,000
1,604,163,547,000
null
UTF-8
Lean
false
false
1,752
lean
/- Copyright © 2020 Nicolò Cavalleri. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Nicolò Cavalleri. -/ import topology.subset_properties import topology.tactic /-! # Continuous bundled map In this file we define the type `continuous_map` of continuous bundled maps. -/ /-- Bundled continuous maps. -/ @[protect_proj] structure continuous_map (α : Type*) (β : Type*) [topological_space α] [topological_space β] := (to_fun : α → β) (continuous_to_fun : continuous to_fun . tactic.interactive.continuity') notation `C(` α `, ` β `)` := continuous_map α β namespace continuous_map attribute [continuity] continuous_map.continuous_to_fun variables {α : Type*} {β : Type*} {γ : Type*} variables [topological_space α] [topological_space β] [topological_space γ] instance : has_coe_to_fun (C(α, β)) := ⟨_, continuous_map.to_fun⟩ variables {α β} {f g : continuous_map α β} protected lemma continuous (f : C(α, β)) : continuous f := f.continuous_to_fun @[continuity] lemma coe_continuous : continuous (f : α → β) := f.continuous_to_fun @[ext] theorem ext (H : ∀ x, f x = g x) : f = g := by cases f; cases g; congr'; exact funext H instance [inhabited β] : inhabited C(α, β) := ⟨{ to_fun := λ _, default _, }⟩ lemma coe_inj ⦃f g : C(α, β)⦄ (h : (f : α → β) = g) : f = g := by cases f; cases g; cases h; refl /-- The identity as a continuous map. -/ def id : C(α, α) := ⟨id⟩ /-- The composition of continuous maps, as a continuous map. -/ def comp (f : C(β, γ)) (g : C(α, β)) : C(α, γ) := ⟨f ∘ g⟩ /-- Constant map as a continuous map -/ def const (b : β) : C(α, β) := ⟨λ x, b⟩ end continuous_map
25de7eedcd1eea9a9e26e5e474f4a4973f605be1
3dc4623269159d02a444fe898d33e8c7e7e9461b
/.github/workflows/project_1_a_decrire/lean-scheme-submission/src/instances/affine_scheme.lean
d4c2446aac70fd71577454ff7f27258e832b9b52
[]
no_license
Or7ando/lean
cc003e6c41048eae7c34aa6bada51c9e9add9e66
d41169cf4e416a0d42092fb6bdc14131cee9dd15
refs/heads/master
1,650,600,589,722
1,587,262,906,000
1,587,262,906,000
255,387,160
0
0
null
null
null
null
UTF-8
Lean
false
false
1,008
lean
/- An affine scheme is a scheme. -/ import topology.opens import spectrum_of_a_ring.spec_locally_ringed_space import scheme universe u noncomputable theory open topological_space variables (R : Type u) [comm_ring R] -- Spec(R) is a locally ringed space and it covers itself. def affine_scheme : scheme (Spec R) := { carrier := Spec.locally_ringed_space R, Haffinecov := begin existsi ({ γ := punit, Uis := λ x, opens.univ, Hcov := opens.ext $ set.ext $ λ x, ⟨λ Hx, trivial, λ Hx, ⟨set.univ, ⟨⟨opens.univ, ⟨⟨punit.star, rfl⟩, rfl⟩⟩, Hx⟩⟩⟩ } : covering.univ (Spec R)), intros i, use [R, by apply_instance], use [presheaf_of_rings.pullback_id (structure_sheaf.presheaf R)], split, { dsimp [presheaf_of_rings.pullback_id], apply opens.ext; dsimp, rw set.image_id, refl, }, { exact presheaf_of_rings.pullback_id.iso (structure_sheaf.presheaf R), } end }