| import torch | |
| from torch import nn | |
| from torch.nn import functional as F | |
| class FusedLeakyReLU(nn.Module): | |
| def __init__(self, channel, bias=True, negative_slope=0.2, scale=2 ** 0.5): | |
| super().__init__() | |
| if bias: | |
| self.bias = nn.Parameter(torch.zeros(channel)) | |
| else: | |
| self.bias = None | |
| self.negative_slope = negative_slope | |
| self.scale = scale | |
| def forward(self, inputs): | |
| return fused_leaky_relu(inputs, self.bias, self.negative_slope, self.scale) | |
| def fused_leaky_relu(inputs, bias=None, negative_slope=0.2, scale=2 ** 0.5): | |
| if bias is not None: | |
| rest_dim = [1] * (inputs.ndim - bias.ndim - 1) | |
| return ( | |
| F.leaky_relu( | |
| inputs + bias.view(1, bias.shape[0], *rest_dim), negative_slope=negative_slope | |
| ) | |
| * scale | |
| ) | |
| else: | |
| return F.leaky_relu(inputs, negative_slope=negative_slope) * scale |