|
from itertools import combinations |
|
import numpy as np |
|
import pandas as pd |
|
|
|
SUPPORTED_TYPES = [".csv", ".json", ".xlsx"] |
|
|
|
def hello_world(): return "hello world!" |
|
|
|
def load_file(file): |
|
""" |
|
Takes a file given by Streamlit and loads into a DataFrame. |
|
Returns a DataFrame, metadata, and result string. |
|
|
|
@param file: File uploaded into streamlit. |
|
@rtype: tuple |
|
@return: A tuple of format (pd.DataFrame, (str, str), str). |
|
""" |
|
df = None |
|
|
|
if file is None: return df, ("", ""), "" |
|
|
|
filename = file.name |
|
extension = filename.split(".")[-1] |
|
metadata = (filename, extension) |
|
|
|
import_functions = { |
|
"csv": pd.read_csv, |
|
"json": pd.read_json, |
|
"xlsx": pd.read_excel |
|
} |
|
try: |
|
reader = import_functions.get(extension, None) |
|
if reader is None: |
|
return df, metadata, f"Error: Invalid extension '{extension}'" |
|
df = reader(file) |
|
rows, columns = df.shape |
|
return df, metadata, f"File '{filename}' loaded successfully.\nFound {rows} rows, {columns} columns." |
|
except Exception as error: |
|
return df, metadata, f"Error: Unable to read file '{filename}' ({type(error)}: {error})" |
|
|
|
def data_cleaner(df, drop_missing=False, remove_duplicates=True): |
|
""" |
|
Takes a DataFrame and removes empty and duplicate entries. |
|
|
|
@type df: pd.DataFrame |
|
@param df: A DataFrame of uncleaned data. |
|
@type drop_missing: bool |
|
@param drop_missing: Determines if rows with any missing values are dropped ("any"), or just empty rows ("all"). |
|
@type remove_duplicates: bool |
|
@param remove_duplicates: Determines if duplicate rows are removed. |
|
@rtype: pd.DataFrame |
|
@return: A DataFrame with requested cleaning applied |
|
""" |
|
df = df.dropna(how="any" if drop_missing else "all") |
|
if remove_duplicates: df = df.drop_duplicates() |
|
return df |
|
|
|
def column_combinations(df, k): |
|
return list(combinations(df.columns, k)) |
|
|
|
def k_redact(df, k): |
|
kwise_combinations = column_combinations(df, k) |
|
|
|
for columns in kwise_combinations: |
|
df_search = df.loc[:, columns] |
|
sensitive_data = [ |
|
(columns, key) |
|
for key, value |
|
in df_search.value_counts().to_dict().items() |
|
if value == 1 |
|
] |
|
if not sensitive_data: continue |
|
for columns, values in sensitive_data: |
|
for column, value in zip(columns, values): |
|
df_search = df_search.loc[df[column] == value] |
|
if df_search.shape[0] == 1: |
|
for column in columns: |
|
df_search[column] = None |
|
|
|
return df |
|
|
|
def sensitive_values(series, sensitivity_minimum): |
|
return {key |
|
for key, value |
|
in series.value_counts().to_dict().items() |
|
if value < sensitivity_minimum |
|
} |
|
|
|
def drop_sensitive(series, sensitivity_minimum): |
|
series.loc[series.isin(sensitive_values(series, sensitivity_minimum))] = None |
|
|
|
def bin_numeric(df, to_process, bin_size, sensitivity_minimum): |
|
processed = set() |
|
rows, _ = df.shape |
|
num_bins = rows//bin_size |
|
for column_name in to_process: |
|
column = df[column_name] |
|
if column.dtype.kind not in "biufc": continue |
|
array = sorted(np.array(column)) |
|
array_min, array_max = array[0], array[-1] |
|
splits = [array_min] + list(np.array_split(array, num_bins)) + [array_max] |
|
bins = [ |
|
(np.min(split), np.max(split)) |
|
for split |
|
in (splits[i] for i in range(num_bins)) |
|
] |
|
result = [None] * rows |
|
for bin_min, bin_max in bins: |
|
for i, value in enumerate(column): |
|
if bin_min <= value <= bin_max: |
|
result[i] = (bin_min, bin_max) |
|
df[column_name] = result |
|
drop_sensitive(df[column_name], sensitivity_minimum) |
|
processed.add(column_name) |
|
return df, to_process - processed |
|
|
|
def find_categorical(df, to_process, max_categorical_size, sensitivity_minimum): |
|
processed = set() |
|
for column_name in to_process: |
|
column = df[column_name] |
|
if column.nunique() <= max_categorical_size: |
|
drop_sensitive(column, sensitivity_minimum) |
|
processed.add(column_name) |
|
return df, to_process - processed |
|
|
|
def redact(df, to_process, sensitivity_minimum): |
|
processed = set() |
|
for column_name in to_process: |
|
column = df[column_name] |
|
|
|
is_object = column.dtype == object |
|
if not is_object: continue |
|
|
|
|
|
drop_sensitive(column, sensitivity_minimum) |
|
processed.add(column_name) |
|
|
|
return df, to_process - processed |
|
|
|
def anonymize(df, max_categorical_size, bin_size, sensitivity_minimum): |
|
to_process = set(df.columns) |
|
df, to_process = redact(df, to_process, sensitivity_minimum) |
|
df, to_process = find_categorical(df, to_process, max_categorical_size, sensitivity_minimum) |
|
df, to_process = bin_numeric(df, to_process, bin_size, sensitivity_minimum) |
|
return df, to_process |
|
|
|
def data_anonymizer(df, k, max_categorical_size, bin_size, sensitivity_minimum): |
|
start_dtypes = df.dtypes.to_dict() |
|
df, unprocessed = anonymize(df, max_categorical_size, bin_size, sensitivity_minimum) |
|
df = k_redact(df, k) |
|
end_dtypes = df.dtypes.to_dict() |
|
|
|
|
|
for column in df.columns: |
|
start_type, end_type = start_dtypes[column], end_dtypes[column] |
|
if start_type == end_type: continue |
|
if start_type.kind == "i" and end_type.kind == "f": |
|
df[column] = df[column].astype("Int64") |
|
|
|
return df, unprocessed |
|
|