|
from typing import Optional |
|
|
|
import numpy as np |
|
import torch |
|
from torch import Tensor, tensor |
|
|
|
from torchsynth.config import SynthConfig |
|
from torchsynth.module import ( |
|
ADSR, |
|
VCA, |
|
AudioMixer, |
|
ControlRateUpsample, |
|
MonophonicKeyboard, |
|
SineVCO, |
|
SquareSawVCO, |
|
VCO, LFO, ModulationMixer, |
|
) |
|
from torchsynth.signal import Signal |
|
from torchsynth.synth import AbstractSynth |
|
|
|
|
|
from melody_synth.non_random_LFOs import SinLFO, SawLFO, TriLFO, SquareLFO, RSawLFO |
|
|
|
|
|
class TriangleVCO(VCO): |
|
"""This is an expanded module that inherits VCO producing Triangle waves.""" |
|
|
|
def oscillator(self, argument: Signal, midi_f0: Tensor) -> Signal: |
|
return torch.arcsin(torch.sin(argument * 2)) * 2.0 / torch.pi |
|
|
|
|
|
class AmpModTorchSynth(AbstractSynth): |
|
"""This is an abstract class using the modules provided by 1B1Synth to assemble synthesizers that generate the |
|
training set. (The implementation of this class references code in TorchSynth) """ |
|
|
|
def __init__( |
|
self, |
|
synthconfig: Optional[SynthConfig] = None, |
|
nebula: Optional[str] = "nebula", |
|
*args, |
|
**kwargs, |
|
): |
|
AbstractSynth.__init__(self, synthconfig=synthconfig, *args, **kwargs) |
|
self.share_modules = [ |
|
("keyboard", MonophonicKeyboard), |
|
("adsr_1", ADSR), |
|
("adsr_2", ADSR), |
|
("upsample", ControlRateUpsample), |
|
("vca", VCA), |
|
("lfo_amp_sin", SinLFO), |
|
("lfo_pitch_sin_1", SinLFO), |
|
("lfo_pitch_sin_2", SinLFO), |
|
( |
|
"mixer", |
|
AudioMixer, |
|
{ |
|
"n_input": 2, |
|
"curves": [1.0, 1.0], |
|
"names": ["vco_1", "vco_2"], |
|
}, |
|
) |
|
] |
|
|
|
def output(self) -> Tensor: |
|
"""Synthesizes the signal as Tensor""" |
|
|
|
midi_f0, note_on_duration = self.keyboard() |
|
adsr1 = self.adsr_1(note_on_duration) |
|
adsr1 = self.upsample(adsr1) |
|
|
|
adsr2 = self.adsr_2(note_on_duration) |
|
adsr2 = self.upsample(adsr2) |
|
|
|
amp_modulation = self.lfo_amp_sin() |
|
amp_modulation = self.upsample(amp_modulation) |
|
|
|
pitch_modulation_1 = self.lfo_pitch_sin_1() |
|
pitch_modulation_1 = self.upsample(pitch_modulation_1) |
|
pitch_modulation_2 = self.lfo_pitch_sin_2() |
|
pitch_modulation_2 = self.upsample(pitch_modulation_2) |
|
|
|
vco_amp1 = adsr1 * (amp_modulation * 0.5 + 0.5) |
|
vco_amp2 = adsr2 * (amp_modulation * 0.5 + 0.5) |
|
vco_1_out = self.vco_1(midi_f0, pitch_modulation_1) |
|
vco_1_out = self.vca(vco_1_out, vco_amp1) |
|
|
|
vco_2_out = self.vco_2(midi_f0, pitch_modulation_2) |
|
vco_2_out = self.vca(vco_2_out, vco_amp2) |
|
|
|
return self.mixer(vco_1_out, vco_2_out) |
|
|
|
def get_signal(self, amp_mod_depth, amp_waveform, duration_l, amp1, amp2): |
|
"""Synthesizes the signal as Tensor""" |
|
|
|
midi_f0, note_on_duration = self.keyboard() |
|
adsr1 = self.adsr_1(note_on_duration) |
|
adsr1 = self.upsample(adsr1) |
|
|
|
adsr2 = self.adsr_2(note_on_duration) |
|
adsr2 = self.upsample(adsr2) |
|
|
|
amp_modulation = self.lfo_amp_sin() |
|
amp_modulation = self.upsample(amp_modulation) |
|
|
|
pitch_modulation_1 = self.lfo_pitch_sin_1() |
|
pitch_modulation_1 = self.upsample(pitch_modulation_1) |
|
pitch_modulation_2 = self.lfo_pitch_sin_2() |
|
pitch_modulation_2 = self.upsample(pitch_modulation_2) |
|
|
|
vco_amp1 = adsr1 * (amp_modulation * 0.5 + 0.5) |
|
vco_amp2 = adsr2 * (amp_modulation * 0.5 + 0.5) |
|
vco_1_out = self.vco_1(midi_f0, pitch_modulation_1) |
|
vco_1_out = self.vca(vco_1_out, vco_amp1) |
|
|
|
vco_2_out = self.vco_2(midi_f0, pitch_modulation_1) |
|
vco_2_out = self.vca(vco_2_out, vco_amp2) |
|
|
|
return self.mixer(vco_1_out, vco_2_out) |
|
|
|
|
|
class DoubleSawSynth(AmpModTorchSynth): |
|
"""In addition to the shared modules, this synthesizer uses two "SquareSawVCO" modules to generate square and |
|
sawtooth waves""" |
|
|
|
def __init__( |
|
self, |
|
synthconfig: Optional[SynthConfig] = None, |
|
nebula: Optional[str] = "saw_square_voice", |
|
*args, |
|
**kwargs, |
|
): |
|
AmpModTorchSynth.__init__(self, synthconfig=synthconfig, *args, **kwargs) |
|
|
|
|
|
module_list = self.share_modules |
|
module_list.append(("vco_1", SquareSawVCO)) |
|
module_list.append(("vco_2", SquareSawVCO)) |
|
self.add_synth_modules(module_list) |
|
|
|
|
|
class SinSawSynth(AmpModTorchSynth): |
|
"""In addition to the shared modules, this synthesizer uses a "SinVco" and a "SquareSawVCO" to generate |
|
sine and sawtooth/square waves """ |
|
|
|
def __init__( |
|
self, |
|
synthconfig: Optional[SynthConfig] = None, |
|
nebula: Optional[str] = "sin_saw_voice", |
|
*args, |
|
**kwargs, |
|
): |
|
AmpModTorchSynth.__init__(self, synthconfig=synthconfig, *args, **kwargs) |
|
|
|
|
|
module_list = self.share_modules |
|
module_list.append(("vco_1", SineVCO)) |
|
module_list.append(("vco_2", SquareSawVCO)) |
|
self.add_synth_modules(module_list) |
|
|
|
|
|
class SinTriangleSynth(AmpModTorchSynth): |
|
"""In addition to the shared modules, this synthesizer uses a "SinVco" and a "TriangleVCO" to generate |
|
sine and triangle waves """ |
|
|
|
def __init__( |
|
self, |
|
synthconfig: Optional[SynthConfig] = None, |
|
nebula: Optional[str] = "sin_tri_voice", |
|
*args, |
|
**kwargs, |
|
): |
|
AmpModTorchSynth.__init__(self, synthconfig=synthconfig, *args, **kwargs) |
|
|
|
|
|
module_list = self.share_modules |
|
module_list.append(("vco_1", SineVCO)) |
|
module_list.append(("vco_2", TriangleVCO)) |
|
self.add_synth_modules(module_list) |
|
|
|
|
|
class TriangleSawSynth(AmpModTorchSynth): |
|
"""In addition to the shared modules, this synthesizer uses a "TriangleVCO" and a "SquareSawVCO" to generate |
|
triangle and sawtooth/square waves """ |
|
|
|
def __init__( |
|
self, |
|
synthconfig: Optional[SynthConfig] = None, |
|
nebula: Optional[str] = "triangle_saw_voice", |
|
*args, |
|
**kwargs, |
|
): |
|
AmpModTorchSynth.__init__(self, synthconfig=synthconfig, *args, **kwargs) |
|
|
|
|
|
module_list = self.share_modules |
|
module_list.append(("vco_1", TriangleVCO)) |
|
module_list.append(("vco_2", SquareSawVCO)) |
|
self.add_synth_modules(module_list) |
|
|
|
|
|
def amp_mod_with_duration(env, duration_l): |
|
env_np = env.detach().numpy()[0] + 1e-30 |
|
env_np_shift = np.hstack([[0], env_np[:-1]]) |
|
env_np_sign = (env_np - env_np_shift)[:duration_l] + 1e-30 |
|
|
|
env_np_sign_nor = np.around(env_np_sign / np.abs(env_np_sign)) |
|
env_np_sign_nor_shift = np.hstack([[0], env_np_sign_nor[:-1]]) |
|
extreme_points = (env_np_sign_nor - env_np_sign_nor_shift) |
|
|
|
(max_loc,) = np.where(extreme_points == -2) |
|
|
|
n_max = len(max_loc) |
|
if n_max == 0: |
|
return env |
|
else: |
|
last_max_loc = max_loc[n_max - 1] - 1 |
|
|
|
new_env = np.hstack([env_np[:last_max_loc], (env_np[last_max_loc:] * 0.8 + 0.2)]) |
|
|
|
|
|
return tensor([new_env]) |
|
|