|
import joblib |
|
import numpy as np |
|
from generate_synthetic_data_online import generate_synth_dataset_log_512, generate_synth_dataset_log_muted_512 |
|
from tools import show_spc, spc_to_VAE_input, VAE_out_put_to_spc, np_log10 |
|
import torch.utils.data as data |
|
|
|
|
|
class Data_cache(): |
|
"""This is a class that stores synthetic data.""" |
|
|
|
def __init__(self, synthetic_data, external_sources): |
|
self.n_synthetic = np.shape(synthetic_data)[0] |
|
self.synthetic_data = synthetic_data.astype(np.float32) |
|
self.external_sources = external_sources.astype(np.float32) |
|
self.epsilon = 1e-20 |
|
|
|
def get_all_data(self): |
|
return np.vstack([self.synthetic_data, self.external_sources]) |
|
|
|
def refresh(self): |
|
self.synthetic_data = generate_synth_dataset(self.n_synthetic, mute=True) |
|
|
|
def get_data_loader(self, shuffle=True, BATCH_SIZE=8, new_way=False): |
|
all_data = self.get_all_data() |
|
our_data = [] |
|
for i in range(len(all_data)): |
|
if new_way: |
|
spectrogram = VAE_out_put_to_spc(np.reshape(all_data[i], (1, 512, 256))) |
|
log_spectrogram = np.log10(spectrogram + self.epsilon) |
|
our_data.append(log_spectrogram) |
|
else: |
|
our_data.append(np.reshape(all_data[i], (1, 512, 256))) |
|
|
|
iterator = data.DataLoader(our_data, shuffle=shuffle, batch_size=BATCH_SIZE) |
|
return iterator |
|
|
|
|
|
def generate_synth_dataset(n_synthetic, mute=False): |
|
"""Preprocessing for synthetic data""" |
|
n_synthetic_sample = n_synthetic |
|
if mute: |
|
Input0 = generate_synth_dataset_log_muted_512(n_synthetic_sample) |
|
else: |
|
Input0 = generate_synth_dataset_log_512(n_synthetic_sample) |
|
Input0 = spc_to_VAE_input(Input0) |
|
Input0 = Input0.reshape(Input0.shape[0], Input0.shape[1], Input0.shape[2], 1) |
|
return Input0 |
|
|
|
|
|
def read_data(data_path): |
|
"""Read external sources""" |
|
|
|
data = np.array(joblib.load(data_path)) |
|
data = spc_to_VAE_input(data) |
|
data = data.reshape(data.shape[0], data.shape[1], data.shape[2], 1) |
|
return data |
|
|
|
|
|
def load_data(n_synthetic): |
|
"""Generate the hybrid dataset.""" |
|
Input_synthetic = generate_synth_dataset(n_synthetic) |
|
|
|
Input_AU = read_data("./data/external_data/ARTURIA_data") |
|
print("ARTURIA dataset loaded.") |
|
|
|
Input_NSynth = read_data("./data/external_data/NSynth_data") |
|
print("NSynth dataset loaded.") |
|
|
|
Input_SF = read_data("./data/external_data/soundfonts_data") |
|
Input_SF_256 = np.zeros((337, 512, 256, 1)) |
|
Input_SF_256[:,:,:251,:] += Input_SF |
|
Input_SF =Input_SF_256 |
|
print("SoundFonts dataset loaded.") |
|
|
|
Input_google = read_data("./data/external_data/WaveNet_samples") |
|
|
|
Input_external = np.vstack([Input_AU, Input_NSynth, Input_SF, Input_google]) |
|
data_cache = Data_cache(Input_synthetic, Input_external) |
|
print(f"Data loaded, data shape: {np.shape(data_cache.get_all_data())}") |
|
return data_cache |
|
|
|
|
|
def show_data(dataset_name, n_sample=3, index=-1, new_way=False): |
|
"""Show and return a certain dataset. |
|
|
|
Parameters |
|
---------- |
|
dataset_name: String |
|
Name of the dataset to show. |
|
n_samples: int |
|
Number of samples to show. |
|
index: int |
|
Setting 'index' larger equal 0 shows the 'index'-th sample in the desired dataset. |
|
|
|
Returns |
|
------- |
|
np.ndarray: |
|
The showed dataset. |
|
""" |
|
|
|
if dataset_name == "ARTURIA": |
|
data = read_data("./data/external_data/ARTURIA_data") |
|
elif dataset_name == "NSynth": |
|
data = read_data("./data/external_data/NSynth_data") |
|
elif dataset_name == "SoundFonts": |
|
data = read_data("./data/external_data/soundfonts_data") |
|
elif dataset_name == "Synthetic": |
|
data = generate_synth_dataset(int(n_sample * 3)) |
|
else: |
|
print("Example command: \"!python thesis_main.py show_data -s [ARTURIA, NSynth, SoundFonts, Synthetic] -n 5\"") |
|
return |
|
|
|
if index >= 0: |
|
show_spc(VAE_out_put_to_spc(data[index])) |
|
else: |
|
for i in range(n_sample): |
|
index = np.random.randint(0,len(data)) |
|
print(index) |
|
show_spc(VAE_out_put_to_spc(data[index])) |
|
return data |
|
|
|
|
|
def show_data(tensor_batch, index=-1, new_way=False): |
|
if index < 0: |
|
index = np.random.randint(0, tensor_batch.shape[0]) |
|
|
|
if new_way: |
|
sample = tensor_batch[index].detach().numpy() |
|
spectrogram = 10.0 ** sample |
|
print(f"The {index}-th sample:") |
|
show_spc(spectrogram) |
|
else: |
|
sample = tensor_batch[index].detach().numpy() |
|
show_spc(VAE_out_put_to_spc(sample)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|