hard-hat-detection / README.md
dgural's picture
Update README.md
d11e7d6 verified
---
annotations_creators: []
language: en
license: cc0-1.0
task_categories:
- object-detection
task_ids: []
pretty_name: hard-hat-detection
tags:
- fiftyone
- image
- object-detection
dataset_summary: '
![image/png](dataset_preview.gif)
This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 5000 samples.
## Installation
If you haven''t already, install FiftyOne:
```bash
pip install -U fiftyone
```
## Usage
```python
import fiftyone as fo
import fiftyone.utils.huggingface as fouh
# Load the dataset
# Note: other available arguments include ''split'', ''max_samples'', etc
dataset = fouh.load_from_hub("voxel51/hard-hat-detection")
# Launch the App
session = fo.launch_app(dataset)
```
'
---
# Dataset Card for hard-hat-detection
This dataset, contains 5000 images with bounding box annotations in the PASCAL VOC format for these 3 classes:
- Helmet
- Person
- Head
![image/png](dataset_preview.gif)
This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 5000 samples.
## Installation
If you haven't already, install FiftyOne:
```bash
pip install -U fiftyone
```
## Usage
```python
import fiftyone as fo
import fiftyone.utils.huggingface as fouh
# Load the dataset
# Note: other available arguments include 'split', 'max_samples', etc
dataset = fouh.load_from_hub("dgural/hard-hat-detection")
# Launch the App
session = fo.launch_app(dataset)
```
## Dataset Details
### Dataset Description
Improve workplace safety by detecting people and hard hats on 5k images with bbox annotations.
- **Language(s) (NLP):** en
- **License:** cc0-1.0
### Dataset Sources
- **Repository:** https://www.kaggle.com/datasets/andrewmvd/hard-hat-detection/data
### Source Data
Dataset taken from https://www.kaggle.com/datasets/andrewmvd/hard-hat-detection/data and created by [andrewmvd](https://www.kaggle.com/andrewmvd)
## Citation
**BibTeX:**
@misc{make ml,
title={Hard Hat Dataset},
url={https://makeml.app/datasets/hard-hat-workers},
journal={Make ML}}