hausa_voa_ner / hausa_voa_ner.py
system's picture
system HF staff
Update files from the datasets library (from 1.2.0)
dbc4d55
raw
history blame
6.42 kB
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Introduction to the Yoruba GV NER dataset: A Yoruba Global Voices (News) Named Entity Recognition Dataset"""
from __future__ import absolute_import, division, print_function
import logging
import datasets
# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@inproceedings{hedderich-etal-2020-transfer,
title = "Transfer Learning and Distant Supervision for Multilingual Transformer Models: A Study on {A}frican Languages",
author = "Hedderich, Michael A. and
Adelani, David and
Zhu, Dawei and
Alabi, Jesujoba and
Markus, Udia and
Klakow, Dietrich",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.emnlp-main.204",
doi = "10.18653/v1/2020.emnlp-main.204",
pages = "2580--2591",
}
"""
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
The Hausa VOA NER dataset is a labeled dataset for named entity recognition in Hausa. The texts were obtained from
Hausa Voice of America News articles https://www.voahausa.com/ . We concentrate on
four types of named entities: persons [PER], locations [LOC], organizations [ORG], and dates & time [DATE].
The Hausa VOA NER data files contain 2 columns separated by a tab ('\t'). Each word has been put on a separate line and
there is an empty line after each sentences i.e the CoNLL format. The first item on each line is a word, the second
is the named entity tag. The named entity tags have the format I-TYPE which means that the word is inside a phrase
of type TYPE. For every multi-word expression like 'New York', the first word gets a tag B-TYPE and the subsequent words
have tags I-TYPE, a word with tag O is not part of a phrase. The dataset is in the BIO tagging scheme.
For more details, see https://www.aclweb.org/anthology/2020.emnlp-main.204/
"""
_URL = "https://github.com/uds-lsv/transfer-distant-transformer-african/raw/master/data/hausa_ner/"
_TRAINING_FILE = "train_clean.tsv"
_DEV_FILE = "dev.tsv"
_TEST_FILE = "test.tsv"
class HausaVoaNerConfig(datasets.BuilderConfig):
"""BuilderConfig for HausaVoaNer"""
def __init__(self, **kwargs):
"""BuilderConfig for HausaVoaNer.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(HausaVoaNerConfig, self).__init__(**kwargs)
class HausaVoaNer(datasets.GeneratorBasedBuilder):
"""Hausa VOA NER dataset."""
BUILDER_CONFIGS = [
HausaVoaNerConfig(
name="hausa_voa_ner", version=datasets.Version("1.0.0"), description="Hausa VOA NER dataset"
),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"tokens": datasets.Sequence(datasets.Value("string")),
"ner_tags": datasets.Sequence(
datasets.features.ClassLabel(
names=[
"O",
"B-PER",
"I-PER",
"B-ORG",
"I-ORG",
"B-LOC",
"I-LOC",
"B-DATE",
"I-DATE",
]
)
),
}
),
supervised_keys=None,
homepage="https://www.aclweb.org/anthology/2020.emnlp-main.204/",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
urls_to_download = {
"train": f"{_URL}{_TRAINING_FILE}",
"dev": f"{_URL}{_DEV_FILE}",
"test": f"{_URL}{_TEST_FILE}",
}
downloaded_files = dl_manager.download_and_extract(urls_to_download)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
]
def _generate_examples(self, filepath):
logging.info("⏳ Generating examples from = %s", filepath)
with open(filepath, encoding="utf-8") as f:
guid = 0
tokens = []
ner_tags = []
for line in f:
line = line.strip()
if line.startswith("-DOCSTART-") or line == "" or line == "\n":
if tokens:
yield guid, {
"id": str(guid),
"tokens": tokens,
"ner_tags": ner_tags,
}
guid += 1
tokens = []
ner_tags = []
else:
# yoruba_gv_ner tokens are tab separated
splits = line.strip().split("\t")
tokens.append(splits[0])
ner_tags.append(splits[1].rstrip())
# last example
yield guid, {
"id": str(guid),
"tokens": tokens,
"ner_tags": ner_tags,
}