Datasets:
Tasks:
Token Classification
Sub-tasks:
named-entity-recognition
Languages:
Finnish
Size:
10K<n<100K
License:
# coding=utf-8 | |
# Copyright 2020 HuggingFace Datasets Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Lint as: python3 | |
import datasets | |
_DESCRIPTION = """\ | |
An open, broad-coverage corpus for Finnish named entity recognition presented in Luoma et al. (2020) A Broad-coverage Corpus for Finnish Named Entity Recognition. | |
""" | |
_HOMEPAGE_URL = "https://turkunlp.org/fin-ner.html" | |
_URL = "https://github.com/TurkuNLP/turku-ner-corpus/archive/v1.0.tar.gz" | |
_CITATION = """\ | |
@inproceedings{luoma-etal-2020-broad, | |
title = "A Broad-coverage Corpus for {F}innish Named Entity Recognition", | |
author = {Luoma, Jouni and Oinonen, Miika and Pyyk{\"o}nen, Maria and Laippala, Veronika and Pyysalo, Sampo}, | |
booktitle = "Proceedings of The 12th Language Resources and Evaluation Conference", | |
year = "2020", | |
url = "https://www.aclweb.org/anthology/2020.lrec-1.567", | |
pages = "4615--4624", | |
} | |
""" | |
class TurkuNERCorpus(datasets.GeneratorBasedBuilder): | |
VERSION = datasets.Version("1.0.0") | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"tokens": datasets.Sequence(datasets.Value("string")), | |
"ner_tags": datasets.Sequence( | |
datasets.features.ClassLabel( | |
names=[ | |
"B-DATE", | |
"B-EVENT", | |
"B-LOC", | |
"B-ORG", | |
"B-PER", | |
"B-PRO", | |
"I-DATE", | |
"I-EVENT", | |
"I-LOC", | |
"I-ORG", | |
"I-PER", | |
"I-PRO", | |
"O", | |
] | |
) | |
), | |
}, | |
), | |
supervised_keys=None, | |
homepage=_HOMEPAGE_URL, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
archive = dl_manager.download(_URL) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={"files": dl_manager.iter_archive(archive), "data_type": "train"}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={"files": dl_manager.iter_archive(archive), "data_type": "valid"}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={"files": dl_manager.iter_archive(archive), "data_type": "test"}, | |
), | |
] | |
def _generate_examples(self, files, data_type): | |
if data_type == "train": | |
data_path = "turku-ner-corpus-1.0/data/conll/train.tsv" | |
elif data_type == "valid": | |
data_path = "turku-ner-corpus-1.0/data/conll/dev.tsv" | |
elif data_type == "test": | |
data_path = "turku-ner-corpus-1.0/data/conll/test.tsv" | |
else: | |
raise Exception("data_type not understood") | |
sentence_counter = 0 | |
for path, f in files: | |
if path == data_path: | |
current_words = [] | |
current_labels = [] | |
for row in f: | |
row = row.decode("utf-8").rstrip() | |
row_split = row.split("\t") | |
if len(row_split) == 2: | |
token, label = row_split | |
current_words.append(token) | |
current_labels.append(label) | |
else: | |
if not current_words: | |
continue | |
assert len(current_words) == len(current_labels), "word len doesnt match label length" | |
sentence = ( | |
sentence_counter, | |
{ | |
"id": str(sentence_counter), | |
"tokens": current_words, | |
"ner_tags": current_labels, | |
}, | |
) | |
sentence_counter += 1 | |
current_words = [] | |
current_labels = [] | |
yield sentence | |
# if something remains: | |
if current_words: | |
sentence = ( | |
sentence_counter, | |
{ | |
"id": str(sentence_counter), | |
"tokens": current_words, | |
"ner_tags": current_labels, | |
}, | |
) | |
yield sentence | |
break | |