LaCour / LaCourfinished.py
yassine-thlija's picture
Init LaCourFinished
823603f
raw
history blame
9.03 kB
import xml.etree.ElementTree as ET
import datasets
import pandas as pd
from huggingface_hub import hf_hub_url
logger = datasets.logging.get_logger(__name__)
class LaCourConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super(LaCourConfig, self).__init__(**kwargs)
class LaCourDataset(datasets.GeneratorBasedBuilder):
"""
A class used to represent a Dataset.
...
Attributes
----------
VERSION : datasets.Version
a version number for the dataset
BUILDER_CONFIGS : list
a list of BuilderConfig instances
Methods
-------
_info():
Returns the dataset information.
_split_generators(download_manager: datasets.DownloadManager):
Returns SplitGenerators.
_generate_examples():
Yields examples.
"""
# Version history
# 0.1.0 initial release
VERSION = datasets.Version("0.1.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="transcripts",
version=VERSION,
description="transcript dataset based on xml files",
),
datasets.BuilderConfig(
name="documents",
version=VERSION,
description="linked documents associated with the webcast"
)
]
DEFAULT_CONFIG_NAME = "transcripts"
def _info(self):
"""
Returns the dataset information.
...
Returns
-------
datasets.DatasetInfo
a DatasetInfo instance containing information about the dataset
"""
if self.config.name == "transcripts":
return datasets.DatasetInfo(
features=datasets.Features(
{
"id": datasets.Value("int32"),
"webcast_id": datasets.Value("string"),
"segment_id": datasets.features.Value("int32"),
"speaker_name": datasets.features.Value("string"),
"speaker_role": datasets.features.Value("string"),
"data": datasets.features.Sequence({
"begin": datasets.features.Value("float32"),
"end": datasets.features.Value("float32"),
"language": datasets.features.Value("string"),
"text": datasets.features.Value("string"),
})
}
),
supervised_keys=None,
)
else:
return datasets.DatasetInfo(
features=datasets.Features(
{
"id": datasets.Value("int32"),
"webcast_id": datasets.Value("string"),
"hearing_title": datasets.Value("string"),
"hearing_date": datasets.Value("string"),
"hearing_type": datasets.Value("string"),
"application_number": datasets.features.Sequence(datasets.Value("string")),
"case_id": datasets.Value("string"),
"case_name": datasets.Value("string"),
"case_url": datasets.Value("string"),
"ecli": datasets.Value("string"),
"type": datasets.Value("string"),
"document_date": datasets.Value("string"),
"importance": datasets.Value("int32"),
"articles": datasets.features.Sequence(datasets.Value("string")),
"respondent_government": datasets.features.Sequence(datasets.Value("string")),
"issue": datasets.Value("string"),
"strasbourg_caselaw": datasets.Value("string"),
"external_sources": datasets.Value("string"),
"conclusion": datasets.Value("string"),
"separate_opinion": datasets.Value("bool")
}
),
supervised_keys=None,
)
def _split_generators(self, dl_manager):
"""
Returns SplitGenerators.
Parameters
----------
download_manager : datasets.DownloadManager
a DownloadManager instance
Returns
-------
list
a list of SplitGenerator instances
"""
base_url_xml = hf_hub_url("TrustHLT-ECALP/LaCourfinished]", filename="lacourxml.tar.gz", repo_type="dataset")
base_url_json = hf_hub_url("TrustHLT-ECALP/LaCourfinished]", filename="lacour_linked_documents.json", repo_type="dataset")
if self.config.name == "transcripts":
path = dl_manager.download(base_url_xml)
xmlpath = dl_manager.iter_archive(path)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": xmlpath}),
]
else:
jsonpath = dl_manager.download(base_url_json)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": jsonpath}),
]
def _generate_examples(self, filepaths):
"""
This method reads the files in the provided transcripts, parses the data, and yields it in a structured format.
For the configuration "xml", it reads XML files and extracts speaker segments and associated metadata.
Parameters
----------
filepaths : list
A list of filepaths to the data files.
Yields
------
tuple
A tuple containing an ID and a dictionary with the data. The dictionary keys include 'id' and 'data'.
'data' is a list of lists, where each inner list contains a key and a value extracted from the data file.
"""
if self.config.name == "transcripts":
id_ = 0
for fpath, file in filepaths:
logger.info("generating examples from = %s", fpath)
tree = ET.parse(file)
root = tree.getroot()
segment_id = 0
for speakerSegment in root.findall('SpeakerSegment'):
text_segments = []
for segment in speakerSegment.findall('Segment'):
meta_data = segment.find('meta_data')
text_segments.append({
"begin": meta_data.findtext('TimestampBegin', ''),
"end": meta_data.findtext('TimestampEnd', ''),
"language": meta_data.findtext('Language', ''),
"text": segment.findtext('text', '').strip(),
})
feature = id_, {
"id": id_,
"webcast_id": fpath.split('_')[1] + "_" + fpath.split('_')[2].split('.')[0],
"segment_id": segment_id,
"speaker_role": meta_data.findtext('Role', ''),
"speaker_name": meta_data.findtext('Name', ''),
"data": text_segments
}
yield feature
id_ += 1
segment_id += 1
elif self.config.name == "documents":
id_ = 0
df = pd.read_json(filepaths, orient="index", dtype={"webcast_id": str})
logger.info("generating examples from = %s", filepaths)
cols = df.columns.tolist()
cols.remove('appno')
# group appnos to avoid duplicates
df = df.groupby(cols)['appno'].apply(';'.join).reset_index()
for _, row in df.iterrows():
feature = id_,{
"id": id_,
"webcast_id": row["webcast_id"],
"hearing_title": row["hearing_title"],
"hearing_date": row["hearing_date"],
"hearing_type": row["hearing_type"],
"application_number": row["appno"].split(';'),
"case_id": row["case_id"],
"case_name": row["case_name"],
"case_url": row["case_url"],
"ecli": row["ecli"],
"type": row["type"],
"document_date": row["document_date"],
"importance": row["importance"],
"articles": row["articles"].split(';'),
"respondent_government": row["respondent"].split(';'),
"issue": row["issue"],
"strasbourg_caselaw": row["strasbourg_caselaw"],
"external_sources": row["external_sources"],
"conclusion": row["conclusion"],
"separate_opinion": row["separate_opinion"]
}
yield feature
id_ += 1