|
--- |
|
language: en |
|
license: mit |
|
dataset_info: |
|
features: |
|
- name: _id |
|
dtype: string |
|
- name: sentence |
|
dtype: string |
|
- name: target |
|
dtype: string |
|
- name: aspect |
|
dtype: string |
|
- name: score |
|
dtype: float64 |
|
- name: type |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 119567 |
|
num_examples: 822 |
|
- name: valid |
|
num_bytes: 17184 |
|
num_examples: 117 |
|
- name: test |
|
num_bytes: 33728 |
|
num_examples: 234 |
|
download_size: 102225 |
|
dataset_size: 170479 |
|
--- |
|
# Dataset Name |
|
|
|
## Dataset Description |
|
|
|
This dataset is based on the task 1 of the Financial Sentiment Analysis in the Wild (FiQA) challenge. It follows the same settings as described in the paper 'A Baseline for Aspect-Based Sentiment Analysis in Financial Microblogs and News'. The dataset is split into three subsets: train, valid, test with sizes 822, 117, 234 respectively. |
|
|
|
## Dataset Structure |
|
|
|
- `_id`: ID of the data point |
|
- `sentence`: The sentence |
|
- `target`: The target of the sentiment |
|
- `aspect`: The aspect of the sentiment |
|
- `score`: The sentiment score |
|
- `type`: The type of the data point (headline or post) |
|
|
|
## Additional Information |
|
|
|
- Homepage: [FiQA Challenge](https://sites.google.com/view/fiqa/home) |
|
- Citation: [A Baseline for Aspect-Based Sentiment Analysis in Financial Microblogs and News](https://arxiv.org/pdf/2211.00083.pdf) |
|
|
|
## Downloading CSV |
|
```python |
|
from datasets import load_dataset |
|
|
|
# Load the dataset from the hub |
|
dataset = load_dataset("ChanceFocus/fiqa-sentiment-classification") |
|
|
|
# Save the dataset to a CSV file |
|
dataset["train"].to_csv("train.csv") |
|
dataset["valid"].to_csv("valid.csv") |
|
dataset["test"].to_csv("test.csv") |
|
``` |
|
|