|
# AToMiC Prebuilt Indexes |
|
|
|
## Example Usage: |
|
|
|
### Reproduction |
|
|
|
Toolkits: |
|
https://github.com/TREC-AToMiC/AToMiC/tree/main/examples/dense_retriever_baselines |
|
|
|
```bash |
|
# Skip the encode and index steps, search with the prebuilt indexes and topics directly |
|
|
|
python search.py \ |
|
--topics topics/openai.clip-vit-base-patch32.text.validation \ |
|
--index indexes/openai.clip-vit-base-patch32.image.faiss.flat \ |
|
--hits 1000 \ |
|
--output runs/run.openai.clip-vit-base-patch32.validation.t2i.large.trec |
|
|
|
python search.py \ |
|
--topics topics/openai.clip-vit-base-patch32.image.validation \ |
|
--index indexes/openai.clip-vit-base-patch32.text.faiss.flat \ |
|
--hits 1000 \ |
|
--output runs/run.openai.clip-vit-base-patch32.validation.i2t.large.trec |
|
``` |
|
|
|
### Explore AToMiC datasets |
|
|
|
```python |
|
import torch |
|
from pathlib import Path |
|
from datasets import load_dataset |
|
from transformers import AutoModel, AutoProcessor |
|
|
|
INDEX_DIR='indexes' |
|
INDEX_NAME='openai.clip-vit-base-patch32.image.faiss.flat' |
|
QUERY = 'Elizabeth II' |
|
|
|
images = load_dataset('TREC-AToMiC/AToMiC-Images-v0.2', split='train') |
|
images.load_faiss_index(index_name=INDEX_NAME, file=Path(INDEX_DIR, INDEX_NAME, 'index')) |
|
|
|
model = AutoModel.from_pretrained('openai/clip-vit-base-patch32') |
|
processor = AutoProcessor.from_pretrained('openai/clip-vit-base-patch32') |
|
|
|
# prebuilt indexes contain L2-normalized vectors |
|
with torch.no_grad(): |
|
q_embedding = model.get_text_features(**processor(text=query, return_tensors="pt")) |
|
q_embedding = torch.nn.functional.normalize(q_embedding, dim=-1).detach().numpy() |
|
|
|
scores, retrieved = images.get_nearest_examples(index_name, q_embedding, k=10) |
|
``` |