|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
|
|
import datasets |
|
import json |
|
|
|
|
|
_DESCRIPTION = """\ |
|
LongBench is a comprehensive benchmark for multilingual and multi-task purposes, with the goal to fully measure and evaluate the ability of pre-trained language models to understand long text. This dataset consists of twenty different tasks, covering key long-text application scenarios such as multi-document QA, single-document QA, summarization, few-shot learning, synthetic tasks, and code completion. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/THUDM/LongBench" |
|
|
|
|
|
_URL = r"https://huggingface.co/datasets/THUDM/LongBench/resolve/main/data.zip" |
|
|
|
task_list = [ |
|
"narrativeqa", |
|
"qasper", |
|
"multifieldqa_en", |
|
"multifieldqa_zh", |
|
"hotpotqa", |
|
"2wikimqa", |
|
"musique", |
|
"dureader", |
|
"gov_report", |
|
"qmsum", |
|
"multi_news", |
|
"vcsum", |
|
"trec", |
|
"triviaqa", |
|
"samsum", |
|
"lsht", |
|
"passage_count", |
|
"passage_retrieval_en", |
|
"passage_retrieval_zh", |
|
"lcc", |
|
"repobench-p", |
|
"qasper_e", |
|
"multifieldqa_en_e", |
|
"hotpotqa_e", |
|
"2wikimqa_e", |
|
"gov_report_e", |
|
"multi_news_e", |
|
"trec_e", |
|
"triviaqa_e", |
|
"samsum_e", |
|
"passage_count_e", |
|
"passage_retrieval_en_e", |
|
"lcc_e", |
|
"repobench-p_e" |
|
] |
|
|
|
|
|
class LongBenchConfig(datasets.BuilderConfig): |
|
def __init__(self, **kwargs): |
|
super().__init__(version=datasets.Version("1.0.0"), **kwargs) |
|
|
|
|
|
class LongBench(datasets.GeneratorBasedBuilder): |
|
BUILDER_CONFIGS = [ |
|
LongBenchConfig( |
|
name=task_name, |
|
) |
|
for task_name in task_list |
|
] |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"input": datasets.Value("string"), |
|
"context": datasets.Value("string"), |
|
"answers": [datasets.Value("string")], |
|
"length": datasets.Value("int32"), |
|
"dataset": datasets.Value("string"), |
|
"language": datasets.Value("string"), |
|
"all_classes": [datasets.Value("string")], |
|
"_id": datasets.Value("string"), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
data_dir = dl_manager.download_and_extract(_URL) |
|
task_name = self.config.name |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": os.path.join( |
|
data_dir, "data", f"{task_name}.jsonl" |
|
), |
|
}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
with open(filepath, encoding="utf-8") as f: |
|
for idx, line in enumerate(f): |
|
key = f"{self.config.name}-{idx}" |
|
item = json.loads(line) |
|
yield key, { |
|
"input": item["input"], |
|
"context": item["context"], |
|
"answers": item["answers"], |
|
"length": item["length"], |
|
"dataset": item["dataset"], |
|
"language": item["language"], |
|
"_id": item["_id"], |
|
"all_classes": item["all_classes"], |
|
} |