SuperCS commited on
Commit
2336cc9
·
verified ·
1 Parent(s): 6c17566

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/utils/dummy_transformers_and_torch_and_note_seq_objects.py +17 -0
  2. exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/utils/dynamic_modules_utils.py +507 -0
  3. exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/utils/export_utils.py +209 -0
  4. exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/utils/hub_utils.py +573 -0
  5. exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/utils/import_utils.py +962 -0
  6. exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/utils/loading_utils.py +210 -0
  7. exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/utils/logging.py +340 -0
  8. exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/utils/model_card_template.md +24 -0
  9. exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/utils/outputs.py +138 -0
  10. exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/utils/peft_utils.py +376 -0
  11. exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/utils/pil_utils.py +67 -0
  12. exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/utils/remote_utils.py +425 -0
  13. exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/utils/source_code_parsing_utils.py +52 -0
  14. exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/utils/state_dict_utils.py +366 -0
  15. exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/utils/testing_utils.py +1601 -0
  16. exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/utils/torch_utils.py +334 -0
  17. exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/utils/typing_utils.py +91 -0
  18. exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/utils/versions.py +117 -0
  19. exp_code/1_benchmark/diffusers-WanS2V/tests/__init__.py +0 -0
  20. exp_code/1_benchmark/diffusers-WanS2V/tests/conftest.py +48 -0
  21. exp_code/1_benchmark/diffusers-WanS2V/tests/fixtures/custom_pipeline/pipeline.py +102 -0
  22. exp_code/1_benchmark/diffusers-WanS2V/tests/fixtures/custom_pipeline/what_ever.py +103 -0
  23. exp_code/1_benchmark/diffusers-WanS2V/tests/fixtures/elise_format0.mid +0 -0
  24. exp_code/1_benchmark/diffusers-WanS2V/tests/hooks/__init__.py +0 -0
  25. exp_code/1_benchmark/diffusers-WanS2V/tests/hooks/test_group_offloading.py +364 -0
  26. exp_code/1_benchmark/diffusers-WanS2V/tests/hooks/test_hooks.py +377 -0
  27. exp_code/1_benchmark/diffusers-WanS2V/tests/lora/__init__.py +0 -0
  28. exp_code/1_benchmark/diffusers-WanS2V/tests/lora/test_lora_layers_auraflow.py +137 -0
  29. exp_code/1_benchmark/diffusers-WanS2V/tests/lora/test_lora_layers_cogvideox.py +174 -0
  30. exp_code/1_benchmark/diffusers-WanS2V/tests/lora/test_lora_layers_cogview4.py +189 -0
  31. exp_code/1_benchmark/diffusers-WanS2V/tests/lora/test_lora_layers_flux.py +1054 -0
  32. exp_code/1_benchmark/diffusers-WanS2V/tests/lora/test_lora_layers_hunyuanvideo.py +264 -0
  33. exp_code/1_benchmark/diffusers-WanS2V/tests/lora/test_lora_layers_ltx_video.py +148 -0
  34. exp_code/1_benchmark/diffusers-WanS2V/tests/lora/test_lora_layers_lumina2.py +173 -0
  35. exp_code/1_benchmark/diffusers-WanS2V/tests/lora/test_lora_layers_mochi.py +143 -0
  36. exp_code/1_benchmark/diffusers-WanS2V/tests/lora/test_lora_layers_qwenimage.py +130 -0
  37. exp_code/1_benchmark/diffusers-WanS2V/tests/lora/test_lora_layers_sana.py +139 -0
  38. exp_code/1_benchmark/diffusers-WanS2V/tests/lora/test_lora_layers_sd.py +769 -0
  39. exp_code/1_benchmark/diffusers-WanS2V/tests/lora/test_lora_layers_sd3.py +191 -0
  40. exp_code/1_benchmark/diffusers-WanS2V/tests/lora/test_lora_layers_sdxl.py +681 -0
  41. exp_code/1_benchmark/diffusers-WanS2V/tests/lora/test_lora_layers_wan.py +144 -0
  42. exp_code/1_benchmark/diffusers-WanS2V/tests/lora/test_lora_layers_wanvace.py +217 -0
  43. exp_code/1_benchmark/diffusers-WanS2V/tests/lora/utils.py +0 -0
  44. exp_code/1_benchmark/diffusers-WanS2V/tests/models/__init__.py +0 -0
  45. exp_code/1_benchmark/diffusers-WanS2V/tests/models/autoencoders/__init__.py +0 -0
  46. exp_code/1_benchmark/diffusers-WanS2V/tests/models/autoencoders/test_models_asymmetric_autoencoder_kl.py +276 -0
  47. exp_code/1_benchmark/diffusers-WanS2V/tests/models/autoencoders/test_models_autoencoder_cosmos.py +86 -0
  48. exp_code/1_benchmark/diffusers-WanS2V/tests/models/autoencoders/test_models_autoencoder_dc.py +87 -0
  49. exp_code/1_benchmark/diffusers-WanS2V/tests/models/autoencoders/test_models_autoencoder_hunyuan_video.py +210 -0
  50. exp_code/1_benchmark/diffusers-WanS2V/tests/models/autoencoders/test_models_autoencoder_kl.py +468 -0
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/utils/dummy_transformers_and_torch_and_note_seq_objects.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file is autogenerated by the command `make fix-copies`, do not edit.
2
+ from ..utils import DummyObject, requires_backends
3
+
4
+
5
+ class SpectrogramDiffusionPipeline(metaclass=DummyObject):
6
+ _backends = ["transformers", "torch", "note_seq"]
7
+
8
+ def __init__(self, *args, **kwargs):
9
+ requires_backends(self, ["transformers", "torch", "note_seq"])
10
+
11
+ @classmethod
12
+ def from_config(cls, *args, **kwargs):
13
+ requires_backends(cls, ["transformers", "torch", "note_seq"])
14
+
15
+ @classmethod
16
+ def from_pretrained(cls, *args, **kwargs):
17
+ requires_backends(cls, ["transformers", "torch", "note_seq"])
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/utils/dynamic_modules_utils.py ADDED
@@ -0,0 +1,507 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2025 The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Utilities to dynamically load objects from the Hub."""
16
+
17
+ import importlib
18
+ import inspect
19
+ import json
20
+ import os
21
+ import re
22
+ import shutil
23
+ import sys
24
+ import threading
25
+ from pathlib import Path
26
+ from types import ModuleType
27
+ from typing import Dict, Optional, Union
28
+ from urllib import request
29
+
30
+ from huggingface_hub import hf_hub_download, model_info
31
+ from huggingface_hub.utils import RevisionNotFoundError, validate_hf_hub_args
32
+ from packaging import version
33
+
34
+ from .. import __version__
35
+ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging
36
+ from .constants import DIFFUSERS_DISABLE_REMOTE_CODE
37
+
38
+
39
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
40
+
41
+ # See https://huggingface.co/datasets/diffusers/community-pipelines-mirror
42
+ COMMUNITY_PIPELINES_MIRROR_ID = "diffusers/community-pipelines-mirror"
43
+ TIME_OUT_REMOTE_CODE = int(os.getenv("DIFFUSERS_TIMEOUT_REMOTE_CODE", 15))
44
+ _HF_REMOTE_CODE_LOCK = threading.Lock()
45
+
46
+
47
+ def get_diffusers_versions():
48
+ url = "https://pypi.org/pypi/diffusers/json"
49
+ releases = json.loads(request.urlopen(url).read())["releases"].keys()
50
+ return sorted(releases, key=lambda x: version.Version(x))
51
+
52
+
53
+ def init_hf_modules():
54
+ """
55
+ Creates the cache directory for modules with an init, and adds it to the Python path.
56
+ """
57
+ # This function has already been executed if HF_MODULES_CACHE already is in the Python path.
58
+ if HF_MODULES_CACHE in sys.path:
59
+ return
60
+
61
+ sys.path.append(HF_MODULES_CACHE)
62
+ os.makedirs(HF_MODULES_CACHE, exist_ok=True)
63
+ init_path = Path(HF_MODULES_CACHE) / "__init__.py"
64
+ if not init_path.exists():
65
+ init_path.touch()
66
+
67
+
68
+ def create_dynamic_module(name: Union[str, os.PathLike]):
69
+ """
70
+ Creates a dynamic module in the cache directory for modules.
71
+ """
72
+ init_hf_modules()
73
+ dynamic_module_path = Path(HF_MODULES_CACHE) / name
74
+ # If the parent module does not exist yet, recursively create it.
75
+ if not dynamic_module_path.parent.exists():
76
+ create_dynamic_module(dynamic_module_path.parent)
77
+ os.makedirs(dynamic_module_path, exist_ok=True)
78
+ init_path = dynamic_module_path / "__init__.py"
79
+ if not init_path.exists():
80
+ init_path.touch()
81
+
82
+
83
+ def get_relative_imports(module_file):
84
+ """
85
+ Get the list of modules that are relatively imported in a module file.
86
+
87
+ Args:
88
+ module_file (`str` or `os.PathLike`): The module file to inspect.
89
+ """
90
+ with open(module_file, "r", encoding="utf-8") as f:
91
+ content = f.read()
92
+
93
+ # Imports of the form `import .xxx`
94
+ relative_imports = re.findall(r"^\s*import\s+\.(\S+)\s*$", content, flags=re.MULTILINE)
95
+ # Imports of the form `from .xxx import yyy`
96
+ relative_imports += re.findall(r"^\s*from\s+\.(\S+)\s+import", content, flags=re.MULTILINE)
97
+ # Unique-ify
98
+ return list(set(relative_imports))
99
+
100
+
101
+ def get_relative_import_files(module_file):
102
+ """
103
+ Get the list of all files that are needed for a given module. Note that this function recurses through the relative
104
+ imports (if a imports b and b imports c, it will return module files for b and c).
105
+
106
+ Args:
107
+ module_file (`str` or `os.PathLike`): The module file to inspect.
108
+ """
109
+ no_change = False
110
+ files_to_check = [module_file]
111
+ all_relative_imports = []
112
+
113
+ # Let's recurse through all relative imports
114
+ while not no_change:
115
+ new_imports = []
116
+ for f in files_to_check:
117
+ new_imports.extend(get_relative_imports(f))
118
+
119
+ module_path = Path(module_file).parent
120
+ new_import_files = [str(module_path / m) for m in new_imports]
121
+ new_import_files = [f for f in new_import_files if f not in all_relative_imports]
122
+ files_to_check = [f"{f}.py" for f in new_import_files]
123
+
124
+ no_change = len(new_import_files) == 0
125
+ all_relative_imports.extend(files_to_check)
126
+
127
+ return all_relative_imports
128
+
129
+
130
+ def check_imports(filename):
131
+ """
132
+ Check if the current Python environment contains all the libraries that are imported in a file.
133
+ """
134
+ with open(filename, "r", encoding="utf-8") as f:
135
+ content = f.read()
136
+
137
+ # Imports of the form `import xxx`
138
+ imports = re.findall(r"^\s*import\s+(\S+)\s*$", content, flags=re.MULTILINE)
139
+ # Imports of the form `from xxx import yyy`
140
+ imports += re.findall(r"^\s*from\s+(\S+)\s+import", content, flags=re.MULTILINE)
141
+ # Only keep the top-level module
142
+ imports = [imp.split(".")[0] for imp in imports if not imp.startswith(".")]
143
+
144
+ # Unique-ify and test we got them all
145
+ imports = list(set(imports))
146
+ missing_packages = []
147
+ for imp in imports:
148
+ try:
149
+ importlib.import_module(imp)
150
+ except ImportError:
151
+ missing_packages.append(imp)
152
+
153
+ if len(missing_packages) > 0:
154
+ raise ImportError(
155
+ "This modeling file requires the following packages that were not found in your environment: "
156
+ f"{', '.join(missing_packages)}. Run `pip install {' '.join(missing_packages)}`"
157
+ )
158
+
159
+ return get_relative_imports(filename)
160
+
161
+
162
+ def resolve_trust_remote_code(trust_remote_code, model_name, has_remote_code):
163
+ trust_remote_code = trust_remote_code and not DIFFUSERS_DISABLE_REMOTE_CODE
164
+ if DIFFUSERS_DISABLE_REMOTE_CODE:
165
+ logger.warning(
166
+ "Downloading remote code is disabled globally via the DIFFUSERS_DISABLE_REMOTE_CODE environment variable. Ignoring `trust_remote_code`."
167
+ )
168
+
169
+ if has_remote_code and not trust_remote_code:
170
+ error_msg = f"The repository for {model_name} contains custom code. "
171
+ error_msg += (
172
+ "Downloading remote code is disabled globally via the DIFFUSERS_DISABLE_REMOTE_CODE environment variable."
173
+ if DIFFUSERS_DISABLE_REMOTE_CODE
174
+ else "Pass `trust_remote_code=True` to allow loading remote code modules."
175
+ )
176
+ raise ValueError(error_msg)
177
+
178
+ elif has_remote_code and trust_remote_code:
179
+ logger.warning(
180
+ f"`trust_remote_code` is enabled. Downloading code from {model_name}. Please ensure you trust the contents of this repository"
181
+ )
182
+
183
+ return trust_remote_code
184
+
185
+
186
+ def get_class_in_module(class_name, module_path, force_reload=False):
187
+ """
188
+ Import a module on the cache directory for modules and extract a class from it.
189
+ """
190
+ name = os.path.normpath(module_path)
191
+ if name.endswith(".py"):
192
+ name = name[:-3]
193
+ name = name.replace(os.path.sep, ".")
194
+ module_file: Path = Path(HF_MODULES_CACHE) / module_path
195
+
196
+ with _HF_REMOTE_CODE_LOCK:
197
+ if force_reload:
198
+ sys.modules.pop(name, None)
199
+ importlib.invalidate_caches()
200
+ cached_module: Optional[ModuleType] = sys.modules.get(name)
201
+ module_spec = importlib.util.spec_from_file_location(name, location=module_file)
202
+
203
+ module: ModuleType
204
+ if cached_module is None:
205
+ module = importlib.util.module_from_spec(module_spec)
206
+ # insert it into sys.modules before any loading begins
207
+ sys.modules[name] = module
208
+ else:
209
+ module = cached_module
210
+
211
+ module_spec.loader.exec_module(module)
212
+
213
+ if class_name is None:
214
+ return find_pipeline_class(module)
215
+
216
+ return getattr(module, class_name)
217
+
218
+
219
+ def find_pipeline_class(loaded_module):
220
+ """
221
+ Retrieve pipeline class that inherits from `DiffusionPipeline`. Note that there has to be exactly one class
222
+ inheriting from `DiffusionPipeline`.
223
+ """
224
+ from ..pipelines import DiffusionPipeline
225
+
226
+ cls_members = dict(inspect.getmembers(loaded_module, inspect.isclass))
227
+
228
+ pipeline_class = None
229
+ for cls_name, cls in cls_members.items():
230
+ if (
231
+ cls_name != DiffusionPipeline.__name__
232
+ and issubclass(cls, DiffusionPipeline)
233
+ and cls.__module__.split(".")[0] != "diffusers"
234
+ ):
235
+ if pipeline_class is not None:
236
+ raise ValueError(
237
+ f"Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:"
238
+ f" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in"
239
+ f" {loaded_module}."
240
+ )
241
+ pipeline_class = cls
242
+
243
+ return pipeline_class
244
+
245
+
246
+ @validate_hf_hub_args
247
+ def get_cached_module_file(
248
+ pretrained_model_name_or_path: Union[str, os.PathLike],
249
+ module_file: str,
250
+ cache_dir: Optional[Union[str, os.PathLike]] = None,
251
+ force_download: bool = False,
252
+ proxies: Optional[Dict[str, str]] = None,
253
+ token: Optional[Union[bool, str]] = None,
254
+ revision: Optional[str] = None,
255
+ local_files_only: bool = False,
256
+ ):
257
+ """
258
+ Prepares Downloads a module from a local folder or a distant repo and returns its path inside the cached
259
+ Transformers module.
260
+
261
+ Args:
262
+ pretrained_model_name_or_path (`str` or `os.PathLike`):
263
+ This can be either:
264
+
265
+ - a string, the *model id* of a pretrained model configuration hosted inside a model repo on
266
+ huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced
267
+ under a user or organization name, like `dbmdz/bert-base-german-cased`.
268
+ - a path to a *directory* containing a configuration file saved using the
269
+ [`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`.
270
+
271
+ module_file (`str`):
272
+ The name of the module file containing the class to look for.
273
+ cache_dir (`str` or `os.PathLike`, *optional*):
274
+ Path to a directory in which a downloaded pretrained model configuration should be cached if the standard
275
+ cache should not be used.
276
+ force_download (`bool`, *optional*, defaults to `False`):
277
+ Whether or not to force to (re-)download the configuration files and override the cached versions if they
278
+ exist.
279
+ proxies (`Dict[str, str]`, *optional*):
280
+ A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
281
+ 'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
282
+ token (`str` or *bool*, *optional*):
283
+ The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
284
+ when running `transformers-cli login` (stored in `~/.huggingface`).
285
+ revision (`str`, *optional*, defaults to `"main"`):
286
+ The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
287
+ git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
288
+ identifier allowed by git.
289
+ local_files_only (`bool`, *optional*, defaults to `False`):
290
+ If `True`, will only try to load the tokenizer configuration from local files.
291
+
292
+ <Tip>
293
+
294
+ You may pass a token in `token` if you are not logged in (`hf auth login`) and want to use private or [gated
295
+ models](https://huggingface.co/docs/hub/models-gated#gated-models).
296
+
297
+ </Tip>
298
+
299
+ Returns:
300
+ `str`: The path to the module inside the cache.
301
+ """
302
+ # Download and cache module_file from the repo `pretrained_model_name_or_path` of grab it if it's a local file.
303
+ pretrained_model_name_or_path = str(pretrained_model_name_or_path)
304
+
305
+ module_file_or_url = os.path.join(pretrained_model_name_or_path, module_file)
306
+
307
+ if os.path.isfile(module_file_or_url):
308
+ resolved_module_file = module_file_or_url
309
+ submodule = "local"
310
+ elif pretrained_model_name_or_path.count("/") == 0:
311
+ available_versions = get_diffusers_versions()
312
+ # cut ".dev0"
313
+ latest_version = "v" + ".".join(__version__.split(".")[:3])
314
+
315
+ # retrieve github version that matches
316
+ if revision is None:
317
+ revision = latest_version if latest_version[1:] in available_versions else "main"
318
+ logger.info(f"Defaulting to latest_version: {revision}.")
319
+ elif revision in available_versions:
320
+ revision = f"v{revision}"
321
+ elif revision == "main":
322
+ revision = revision
323
+ else:
324
+ raise ValueError(
325
+ f"`custom_revision`: {revision} does not exist. Please make sure to choose one of"
326
+ f" {', '.join(available_versions + ['main'])}."
327
+ )
328
+
329
+ try:
330
+ resolved_module_file = hf_hub_download(
331
+ repo_id=COMMUNITY_PIPELINES_MIRROR_ID,
332
+ repo_type="dataset",
333
+ filename=f"{revision}/{pretrained_model_name_or_path}.py",
334
+ cache_dir=cache_dir,
335
+ force_download=force_download,
336
+ proxies=proxies,
337
+ local_files_only=local_files_only,
338
+ )
339
+ submodule = "git"
340
+ module_file = pretrained_model_name_or_path + ".py"
341
+ except RevisionNotFoundError as e:
342
+ raise EnvironmentError(
343
+ f"Revision '{revision}' not found in the community pipelines mirror. Check available revisions on"
344
+ " https://huggingface.co/datasets/diffusers/community-pipelines-mirror/tree/main."
345
+ " If you don't find the revision you are looking for, please open an issue on https://github.com/huggingface/diffusers/issues."
346
+ ) from e
347
+ except EnvironmentError:
348
+ logger.error(f"Could not locate the {module_file} inside {pretrained_model_name_or_path}.")
349
+ raise
350
+ else:
351
+ try:
352
+ # Load from URL or cache if already cached
353
+ resolved_module_file = hf_hub_download(
354
+ pretrained_model_name_or_path,
355
+ module_file,
356
+ cache_dir=cache_dir,
357
+ force_download=force_download,
358
+ proxies=proxies,
359
+ local_files_only=local_files_only,
360
+ token=token,
361
+ )
362
+ submodule = os.path.join("local", "--".join(pretrained_model_name_or_path.split("/")))
363
+ except EnvironmentError:
364
+ logger.error(f"Could not locate the {module_file} inside {pretrained_model_name_or_path}.")
365
+ raise
366
+
367
+ # Check we have all the requirements in our environment
368
+ modules_needed = check_imports(resolved_module_file)
369
+
370
+ # Now we move the module inside our cached dynamic modules.
371
+ full_submodule = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule
372
+ create_dynamic_module(full_submodule)
373
+ submodule_path = Path(HF_MODULES_CACHE) / full_submodule
374
+ if submodule == "local" or submodule == "git":
375
+ # We always copy local files (we could hash the file to see if there was a change, and give them the name of
376
+ # that hash, to only copy when there is a modification but it seems overkill for now).
377
+ # The only reason we do the copy is to avoid putting too many folders in sys.path.
378
+ shutil.copyfile(resolved_module_file, submodule_path / module_file)
379
+ for module_needed in modules_needed:
380
+ if len(module_needed.split(".")) == 2:
381
+ module_needed = "/".join(module_needed.split("."))
382
+ module_folder = module_needed.split("/")[0]
383
+ if not os.path.exists(submodule_path / module_folder):
384
+ os.makedirs(submodule_path / module_folder)
385
+ module_needed = f"{module_needed}.py"
386
+ shutil.copyfile(os.path.join(pretrained_model_name_or_path, module_needed), submodule_path / module_needed)
387
+ else:
388
+ # Get the commit hash
389
+ # TODO: we will get this info in the etag soon, so retrieve it from there and not here.
390
+ commit_hash = model_info(pretrained_model_name_or_path, revision=revision, token=token).sha
391
+
392
+ # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the
393
+ # benefit of versioning.
394
+ submodule_path = submodule_path / commit_hash
395
+ full_submodule = full_submodule + os.path.sep + commit_hash
396
+ create_dynamic_module(full_submodule)
397
+
398
+ if not (submodule_path / module_file).exists():
399
+ if len(module_file.split("/")) == 2:
400
+ module_folder = module_file.split("/")[0]
401
+ if not os.path.exists(submodule_path / module_folder):
402
+ os.makedirs(submodule_path / module_folder)
403
+ shutil.copyfile(resolved_module_file, submodule_path / module_file)
404
+
405
+ # Make sure we also have every file with relative
406
+ for module_needed in modules_needed:
407
+ if len(module_needed.split(".")) == 2:
408
+ module_needed = "/".join(module_needed.split("."))
409
+ if not (submodule_path / module_needed).exists():
410
+ get_cached_module_file(
411
+ pretrained_model_name_or_path,
412
+ f"{module_needed}.py",
413
+ cache_dir=cache_dir,
414
+ force_download=force_download,
415
+ proxies=proxies,
416
+ token=token,
417
+ revision=revision,
418
+ local_files_only=local_files_only,
419
+ )
420
+ return os.path.join(full_submodule, module_file)
421
+
422
+
423
+ @validate_hf_hub_args
424
+ def get_class_from_dynamic_module(
425
+ pretrained_model_name_or_path: Union[str, os.PathLike],
426
+ module_file: str,
427
+ class_name: Optional[str] = None,
428
+ cache_dir: Optional[Union[str, os.PathLike]] = None,
429
+ force_download: bool = False,
430
+ proxies: Optional[Dict[str, str]] = None,
431
+ token: Optional[Union[bool, str]] = None,
432
+ revision: Optional[str] = None,
433
+ local_files_only: bool = False,
434
+ **kwargs,
435
+ ):
436
+ """
437
+ Extracts a class from a module file, present in the local folder or repository of a model.
438
+
439
+ <Tip warning={true}>
440
+
441
+ Calling this function will execute the code in the module file found locally or downloaded from the Hub. It should
442
+ therefore only be called on trusted repos.
443
+
444
+ </Tip>
445
+
446
+ Args:
447
+ pretrained_model_name_or_path (`str` or `os.PathLike`):
448
+ This can be either:
449
+
450
+ - a string, the *model id* of a pretrained model configuration hosted inside a model repo on
451
+ huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced
452
+ under a user or organization name, like `dbmdz/bert-base-german-cased`.
453
+ - a path to a *directory* containing a configuration file saved using the
454
+ [`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`.
455
+
456
+ module_file (`str`):
457
+ The name of the module file containing the class to look for.
458
+ class_name (`str`):
459
+ The name of the class to import in the module.
460
+ cache_dir (`str` or `os.PathLike`, *optional*):
461
+ Path to a directory in which a downloaded pretrained model configuration should be cached if the standard
462
+ cache should not be used.
463
+ force_download (`bool`, *optional*, defaults to `False`):
464
+ Whether or not to force to (re-)download the configuration files and override the cached versions if they
465
+ exist.
466
+ proxies (`Dict[str, str]`, *optional*):
467
+ A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
468
+ 'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
469
+ token (`str` or `bool`, *optional*):
470
+ The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
471
+ when running `transformers-cli login` (stored in `~/.huggingface`).
472
+ revision (`str`, *optional*, defaults to `"main"`):
473
+ The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
474
+ git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
475
+ identifier allowed by git.
476
+ local_files_only (`bool`, *optional*, defaults to `False`):
477
+ If `True`, will only try to load the tokenizer configuration from local files.
478
+
479
+ <Tip>
480
+
481
+ You may pass a token in `token` if you are not logged in (`hf auth login`) and want to use private or [gated
482
+ models](https://huggingface.co/docs/hub/models-gated#gated-models).
483
+
484
+ </Tip>
485
+
486
+ Returns:
487
+ `type`: The class, dynamically imported from the module.
488
+
489
+ Examples:
490
+
491
+ ```python
492
+ # Download module `modeling.py` from huggingface.co and cache then extract the class `MyBertModel` from this
493
+ # module.
494
+ cls = get_class_from_dynamic_module("sgugger/my-bert-model", "modeling.py", "MyBertModel")
495
+ ```"""
496
+ # And lastly we get the class inside our newly created module
497
+ final_module = get_cached_module_file(
498
+ pretrained_model_name_or_path,
499
+ module_file,
500
+ cache_dir=cache_dir,
501
+ force_download=force_download,
502
+ proxies=proxies,
503
+ token=token,
504
+ revision=revision,
505
+ local_files_only=local_files_only,
506
+ )
507
+ return get_class_in_module(class_name, final_module)
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/utils/export_utils.py ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import io
2
+ import random
3
+ import struct
4
+ import tempfile
5
+ from contextlib import contextmanager
6
+ from typing import List, Optional, Union
7
+
8
+ import numpy as np
9
+ import PIL.Image
10
+ import PIL.ImageOps
11
+
12
+ from .import_utils import BACKENDS_MAPPING, is_imageio_available, is_opencv_available
13
+ from .logging import get_logger
14
+
15
+
16
+ global_rng = random.Random()
17
+
18
+ logger = get_logger(__name__)
19
+
20
+
21
+ @contextmanager
22
+ def buffered_writer(raw_f):
23
+ f = io.BufferedWriter(raw_f)
24
+ yield f
25
+ f.flush()
26
+
27
+
28
+ def export_to_gif(image: List[PIL.Image.Image], output_gif_path: str = None, fps: int = 10) -> str:
29
+ if output_gif_path is None:
30
+ output_gif_path = tempfile.NamedTemporaryFile(suffix=".gif").name
31
+
32
+ image[0].save(
33
+ output_gif_path,
34
+ save_all=True,
35
+ append_images=image[1:],
36
+ optimize=False,
37
+ duration=1000 // fps,
38
+ loop=0,
39
+ )
40
+ return output_gif_path
41
+
42
+
43
+ def export_to_ply(mesh, output_ply_path: str = None):
44
+ """
45
+ Write a PLY file for a mesh.
46
+ """
47
+ if output_ply_path is None:
48
+ output_ply_path = tempfile.NamedTemporaryFile(suffix=".ply").name
49
+
50
+ coords = mesh.verts.detach().cpu().numpy()
51
+ faces = mesh.faces.cpu().numpy()
52
+ rgb = np.stack([mesh.vertex_channels[x].detach().cpu().numpy() for x in "RGB"], axis=1)
53
+
54
+ with buffered_writer(open(output_ply_path, "wb")) as f:
55
+ f.write(b"ply\n")
56
+ f.write(b"format binary_little_endian 1.0\n")
57
+ f.write(bytes(f"element vertex {len(coords)}\n", "ascii"))
58
+ f.write(b"property float x\n")
59
+ f.write(b"property float y\n")
60
+ f.write(b"property float z\n")
61
+ if rgb is not None:
62
+ f.write(b"property uchar red\n")
63
+ f.write(b"property uchar green\n")
64
+ f.write(b"property uchar blue\n")
65
+ if faces is not None:
66
+ f.write(bytes(f"element face {len(faces)}\n", "ascii"))
67
+ f.write(b"property list uchar int vertex_index\n")
68
+ f.write(b"end_header\n")
69
+
70
+ if rgb is not None:
71
+ rgb = (rgb * 255.499).round().astype(int)
72
+ vertices = [
73
+ (*coord, *rgb)
74
+ for coord, rgb in zip(
75
+ coords.tolist(),
76
+ rgb.tolist(),
77
+ )
78
+ ]
79
+ format = struct.Struct("<3f3B")
80
+ for item in vertices:
81
+ f.write(format.pack(*item))
82
+ else:
83
+ format = struct.Struct("<3f")
84
+ for vertex in coords.tolist():
85
+ f.write(format.pack(*vertex))
86
+
87
+ if faces is not None:
88
+ format = struct.Struct("<B3I")
89
+ for tri in faces.tolist():
90
+ f.write(format.pack(len(tri), *tri))
91
+
92
+ return output_ply_path
93
+
94
+
95
+ def export_to_obj(mesh, output_obj_path: str = None):
96
+ if output_obj_path is None:
97
+ output_obj_path = tempfile.NamedTemporaryFile(suffix=".obj").name
98
+
99
+ verts = mesh.verts.detach().cpu().numpy()
100
+ faces = mesh.faces.cpu().numpy()
101
+
102
+ vertex_colors = np.stack([mesh.vertex_channels[x].detach().cpu().numpy() for x in "RGB"], axis=1)
103
+ vertices = [
104
+ "{} {} {} {} {} {}".format(*coord, *color) for coord, color in zip(verts.tolist(), vertex_colors.tolist())
105
+ ]
106
+
107
+ faces = ["f {} {} {}".format(str(tri[0] + 1), str(tri[1] + 1), str(tri[2] + 1)) for tri in faces.tolist()]
108
+
109
+ combined_data = ["v " + vertex for vertex in vertices] + faces
110
+
111
+ with open(output_obj_path, "w") as f:
112
+ f.writelines("\n".join(combined_data))
113
+
114
+
115
+ def _legacy_export_to_video(
116
+ video_frames: Union[List[np.ndarray], List[PIL.Image.Image]], output_video_path: str = None, fps: int = 10
117
+ ):
118
+ if is_opencv_available():
119
+ import cv2
120
+ else:
121
+ raise ImportError(BACKENDS_MAPPING["opencv"][1].format("export_to_video"))
122
+ if output_video_path is None:
123
+ output_video_path = tempfile.NamedTemporaryFile(suffix=".mp4").name
124
+
125
+ if isinstance(video_frames[0], np.ndarray):
126
+ video_frames = [(frame * 255).astype(np.uint8) for frame in video_frames]
127
+
128
+ elif isinstance(video_frames[0], PIL.Image.Image):
129
+ video_frames = [np.array(frame) for frame in video_frames]
130
+
131
+ fourcc = cv2.VideoWriter_fourcc(*"mp4v")
132
+ h, w, c = video_frames[0].shape
133
+ video_writer = cv2.VideoWriter(output_video_path, fourcc, fps=fps, frameSize=(w, h))
134
+ for i in range(len(video_frames)):
135
+ img = cv2.cvtColor(video_frames[i], cv2.COLOR_RGB2BGR)
136
+ video_writer.write(img)
137
+
138
+ return output_video_path
139
+
140
+
141
+ def export_to_video(
142
+ video_frames: Union[List[np.ndarray], List[PIL.Image.Image]],
143
+ output_video_path: str = None,
144
+ fps: int = 10,
145
+ quality: float = 5.0,
146
+ bitrate: Optional[int] = None,
147
+ macro_block_size: Optional[int] = 16,
148
+ ) -> str:
149
+ """
150
+ quality:
151
+ Video output quality. Default is 5. Uses variable bit rate. Highest quality is 10, lowest is 0. Set to None to
152
+ prevent variable bitrate flags to FFMPEG so you can manually specify them using output_params instead.
153
+ Specifying a fixed bitrate using `bitrate` disables this parameter.
154
+
155
+ bitrate:
156
+ Set a constant bitrate for the video encoding. Default is None causing `quality` parameter to be used instead.
157
+ Better quality videos with smaller file sizes will result from using the `quality` variable bitrate parameter
158
+ rather than specifying a fixed bitrate with this parameter.
159
+
160
+ macro_block_size:
161
+ Size constraint for video. Width and height, must be divisible by this number. If not divisible by this number
162
+ imageio will tell ffmpeg to scale the image up to the next closest size divisible by this number. Most codecs
163
+ are compatible with a macroblock size of 16 (default), some can go smaller (4, 8). To disable this automatic
164
+ feature set it to None or 1, however be warned many players can't decode videos that are odd in size and some
165
+ codecs will produce poor results or fail. See https://en.wikipedia.org/wiki/Macroblock.
166
+ """
167
+ # TODO: Dhruv. Remove by Diffusers release 0.33.0
168
+ # Added to prevent breaking existing code
169
+ if not is_imageio_available():
170
+ logger.warning(
171
+ (
172
+ "It is recommended to use `export_to_video` with `imageio` and `imageio-ffmpeg` as a backend. \n"
173
+ "These libraries are not present in your environment. Attempting to use legacy OpenCV backend to export video. \n"
174
+ "Support for the OpenCV backend will be deprecated in a future Diffusers version"
175
+ )
176
+ )
177
+ return _legacy_export_to_video(video_frames, output_video_path, fps)
178
+
179
+ if is_imageio_available():
180
+ import imageio
181
+ else:
182
+ raise ImportError(BACKENDS_MAPPING["imageio"][1].format("export_to_video"))
183
+
184
+ try:
185
+ imageio.plugins.ffmpeg.get_exe()
186
+ except AttributeError:
187
+ raise AttributeError(
188
+ (
189
+ "Found an existing imageio backend in your environment. Attempting to export video with imageio. \n"
190
+ "Unable to find a compatible ffmpeg installation in your environment to use with imageio. Please install via `pip install imageio-ffmpeg"
191
+ )
192
+ )
193
+
194
+ if output_video_path is None:
195
+ output_video_path = tempfile.NamedTemporaryFile(suffix=".mp4").name
196
+
197
+ if isinstance(video_frames[0], np.ndarray):
198
+ video_frames = [(frame * 255).astype(np.uint8) for frame in video_frames]
199
+
200
+ elif isinstance(video_frames[0], PIL.Image.Image):
201
+ video_frames = [np.array(frame) for frame in video_frames]
202
+
203
+ with imageio.get_writer(
204
+ output_video_path, fps=fps, quality=quality, bitrate=bitrate, macro_block_size=macro_block_size
205
+ ) as writer:
206
+ for frame in video_frames:
207
+ writer.append_data(frame)
208
+
209
+ return output_video_path
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/utils/hub_utils.py ADDED
@@ -0,0 +1,573 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2025 The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+
17
+ import json
18
+ import os
19
+ import re
20
+ import sys
21
+ import tempfile
22
+ import warnings
23
+ from pathlib import Path
24
+ from typing import Dict, List, Optional, Union
25
+ from uuid import uuid4
26
+
27
+ from huggingface_hub import (
28
+ DDUFEntry,
29
+ ModelCard,
30
+ ModelCardData,
31
+ create_repo,
32
+ hf_hub_download,
33
+ model_info,
34
+ snapshot_download,
35
+ upload_folder,
36
+ )
37
+ from huggingface_hub.constants import HF_HUB_DISABLE_TELEMETRY, HF_HUB_OFFLINE
38
+ from huggingface_hub.file_download import REGEX_COMMIT_HASH
39
+ from huggingface_hub.utils import (
40
+ EntryNotFoundError,
41
+ RepositoryNotFoundError,
42
+ RevisionNotFoundError,
43
+ is_jinja_available,
44
+ validate_hf_hub_args,
45
+ )
46
+ from packaging import version
47
+ from requests import HTTPError
48
+
49
+ from .. import __version__
50
+ from .constants import (
51
+ DEPRECATED_REVISION_ARGS,
52
+ HUGGINGFACE_CO_RESOLVE_ENDPOINT,
53
+ SAFETENSORS_WEIGHTS_NAME,
54
+ WEIGHTS_NAME,
55
+ )
56
+ from .import_utils import (
57
+ ENV_VARS_TRUE_VALUES,
58
+ _flax_version,
59
+ _jax_version,
60
+ _onnxruntime_version,
61
+ _torch_version,
62
+ is_flax_available,
63
+ is_onnx_available,
64
+ is_torch_available,
65
+ )
66
+ from .logging import get_logger
67
+
68
+
69
+ logger = get_logger(__name__)
70
+
71
+ MODEL_CARD_TEMPLATE_PATH = Path(__file__).parent / "model_card_template.md"
72
+ SESSION_ID = uuid4().hex
73
+
74
+
75
+ def http_user_agent(user_agent: Union[Dict, str, None] = None) -> str:
76
+ """
77
+ Formats a user-agent string with basic info about a request.
78
+ """
79
+ ua = f"diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}"
80
+ if HF_HUB_DISABLE_TELEMETRY or HF_HUB_OFFLINE:
81
+ return ua + "; telemetry/off"
82
+ if is_torch_available():
83
+ ua += f"; torch/{_torch_version}"
84
+ if is_flax_available():
85
+ ua += f"; jax/{_jax_version}"
86
+ ua += f"; flax/{_flax_version}"
87
+ if is_onnx_available():
88
+ ua += f"; onnxruntime/{_onnxruntime_version}"
89
+ # CI will set this value to True
90
+ if os.environ.get("DIFFUSERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES:
91
+ ua += "; is_ci/true"
92
+ if isinstance(user_agent, dict):
93
+ ua += "; " + "; ".join(f"{k}/{v}" for k, v in user_agent.items())
94
+ elif isinstance(user_agent, str):
95
+ ua += "; " + user_agent
96
+ return ua
97
+
98
+
99
+ def load_or_create_model_card(
100
+ repo_id_or_path: str = None,
101
+ token: Optional[str] = None,
102
+ is_pipeline: bool = False,
103
+ from_training: bool = False,
104
+ model_description: Optional[str] = None,
105
+ base_model: str = None,
106
+ prompt: Optional[str] = None,
107
+ license: Optional[str] = None,
108
+ widget: Optional[List[dict]] = None,
109
+ inference: Optional[bool] = None,
110
+ ) -> ModelCard:
111
+ """
112
+ Loads or creates a model card.
113
+
114
+ Args:
115
+ repo_id_or_path (`str`):
116
+ The repo id (e.g., "runwayml/stable-diffusion-v1-5") or local path where to look for the model card.
117
+ token (`str`, *optional*):
118
+ Authentication token. Will default to the stored token. See https://huggingface.co/settings/token for more
119
+ details.
120
+ is_pipeline (`bool`):
121
+ Boolean to indicate if we're adding tag to a [`DiffusionPipeline`].
122
+ from_training: (`bool`): Boolean flag to denote if the model card is being created from a training script.
123
+ model_description (`str`, *optional*): Model description to add to the model card. Helpful when using
124
+ `load_or_create_model_card` from a training script.
125
+ base_model (`str`): Base model identifier (e.g., "stabilityai/stable-diffusion-xl-base-1.0"). Useful
126
+ for DreamBooth-like training.
127
+ prompt (`str`, *optional*): Prompt used for training. Useful for DreamBooth-like training.
128
+ license: (`str`, *optional*): License of the output artifact. Helpful when using
129
+ `load_or_create_model_card` from a training script.
130
+ widget (`List[dict]`, *optional*): Widget to accompany a gallery template.
131
+ inference: (`bool`, optional): Whether to turn on inference widget. Helpful when using
132
+ `load_or_create_model_card` from a training script.
133
+ """
134
+ if not is_jinja_available():
135
+ raise ValueError(
136
+ "Modelcard rendering is based on Jinja templates."
137
+ " Please make sure to have `jinja` installed before using `load_or_create_model_card`."
138
+ " To install it, please run `pip install Jinja2`."
139
+ )
140
+
141
+ try:
142
+ # Check if the model card is present on the remote repo
143
+ model_card = ModelCard.load(repo_id_or_path, token=token)
144
+ except (EntryNotFoundError, RepositoryNotFoundError):
145
+ # Otherwise create a model card from template
146
+ if from_training:
147
+ model_card = ModelCard.from_template(
148
+ card_data=ModelCardData( # Card metadata object that will be converted to YAML block
149
+ license=license,
150
+ library_name="diffusers",
151
+ inference=inference,
152
+ base_model=base_model,
153
+ instance_prompt=prompt,
154
+ widget=widget,
155
+ ),
156
+ template_path=MODEL_CARD_TEMPLATE_PATH,
157
+ model_description=model_description,
158
+ )
159
+ else:
160
+ card_data = ModelCardData()
161
+ component = "pipeline" if is_pipeline else "model"
162
+ if model_description is None:
163
+ model_description = f"This is the model card of a 🧨 diffusers {component} that has been pushed on the Hub. This model card has been automatically generated."
164
+ model_card = ModelCard.from_template(card_data, model_description=model_description)
165
+
166
+ return model_card
167
+
168
+
169
+ def populate_model_card(model_card: ModelCard, tags: Union[str, List[str]] = None) -> ModelCard:
170
+ """Populates the `model_card` with library name and optional tags."""
171
+ if model_card.data.library_name is None:
172
+ model_card.data.library_name = "diffusers"
173
+
174
+ if tags is not None:
175
+ if isinstance(tags, str):
176
+ tags = [tags]
177
+ if model_card.data.tags is None:
178
+ model_card.data.tags = []
179
+ for tag in tags:
180
+ model_card.data.tags.append(tag)
181
+
182
+ return model_card
183
+
184
+
185
+ def extract_commit_hash(resolved_file: Optional[str], commit_hash: Optional[str] = None):
186
+ """
187
+ Extracts the commit hash from a resolved filename toward a cache file.
188
+ """
189
+ if resolved_file is None or commit_hash is not None:
190
+ return commit_hash
191
+ resolved_file = str(Path(resolved_file).as_posix())
192
+ search = re.search(r"snapshots/([^/]+)/", resolved_file)
193
+ if search is None:
194
+ return None
195
+ commit_hash = search.groups()[0]
196
+ return commit_hash if REGEX_COMMIT_HASH.match(commit_hash) else None
197
+
198
+
199
+ def _add_variant(weights_name: str, variant: Optional[str] = None) -> str:
200
+ if variant is not None:
201
+ splits = weights_name.split(".")
202
+ splits = splits[:-1] + [variant] + splits[-1:]
203
+ weights_name = ".".join(splits)
204
+
205
+ return weights_name
206
+
207
+
208
+ @validate_hf_hub_args
209
+ def _get_model_file(
210
+ pretrained_model_name_or_path: Union[str, Path],
211
+ *,
212
+ weights_name: str,
213
+ subfolder: Optional[str] = None,
214
+ cache_dir: Optional[str] = None,
215
+ force_download: bool = False,
216
+ proxies: Optional[Dict] = None,
217
+ local_files_only: bool = False,
218
+ token: Optional[str] = None,
219
+ user_agent: Optional[Union[Dict, str]] = None,
220
+ revision: Optional[str] = None,
221
+ commit_hash: Optional[str] = None,
222
+ dduf_entries: Optional[Dict[str, DDUFEntry]] = None,
223
+ ):
224
+ pretrained_model_name_or_path = str(pretrained_model_name_or_path)
225
+
226
+ if dduf_entries:
227
+ if subfolder is not None:
228
+ raise ValueError(
229
+ "DDUF file only allow for 1 level of directory (e.g transformer/model1/model.safetentors is not allowed). "
230
+ "Please check the DDUF structure"
231
+ )
232
+ model_file = (
233
+ weights_name
234
+ if pretrained_model_name_or_path == ""
235
+ else "/".join([pretrained_model_name_or_path, weights_name])
236
+ )
237
+ if model_file in dduf_entries:
238
+ return model_file
239
+ else:
240
+ raise EnvironmentError(f"Error no file named {weights_name} found in archive {dduf_entries.keys()}.")
241
+ elif os.path.isfile(pretrained_model_name_or_path):
242
+ return pretrained_model_name_or_path
243
+ elif os.path.isdir(pretrained_model_name_or_path):
244
+ if os.path.isfile(os.path.join(pretrained_model_name_or_path, weights_name)):
245
+ # Load from a PyTorch checkpoint
246
+ model_file = os.path.join(pretrained_model_name_or_path, weights_name)
247
+ return model_file
248
+ elif subfolder is not None and os.path.isfile(
249
+ os.path.join(pretrained_model_name_or_path, subfolder, weights_name)
250
+ ):
251
+ model_file = os.path.join(pretrained_model_name_or_path, subfolder, weights_name)
252
+ return model_file
253
+ else:
254
+ raise EnvironmentError(
255
+ f"Error no file named {weights_name} found in directory {pretrained_model_name_or_path}."
256
+ )
257
+ else:
258
+ # 1. First check if deprecated way of loading from branches is used
259
+ if (
260
+ revision in DEPRECATED_REVISION_ARGS
261
+ and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME)
262
+ and version.parse(version.parse(__version__).base_version) >= version.parse("0.22.0")
263
+ ):
264
+ try:
265
+ model_file = hf_hub_download(
266
+ pretrained_model_name_or_path,
267
+ filename=_add_variant(weights_name, revision),
268
+ cache_dir=cache_dir,
269
+ force_download=force_download,
270
+ proxies=proxies,
271
+ local_files_only=local_files_only,
272
+ token=token,
273
+ user_agent=user_agent,
274
+ subfolder=subfolder,
275
+ revision=revision or commit_hash,
276
+ )
277
+ warnings.warn(
278
+ f"Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead.",
279
+ FutureWarning,
280
+ )
281
+ return model_file
282
+ except: # noqa: E722
283
+ warnings.warn(
284
+ f"You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(weights_name, revision)} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(weights_name, revision)}' so that the correct variant file can be added.",
285
+ FutureWarning,
286
+ )
287
+ try:
288
+ # 2. Load model file as usual
289
+ model_file = hf_hub_download(
290
+ pretrained_model_name_or_path,
291
+ filename=weights_name,
292
+ cache_dir=cache_dir,
293
+ force_download=force_download,
294
+ proxies=proxies,
295
+ local_files_only=local_files_only,
296
+ token=token,
297
+ user_agent=user_agent,
298
+ subfolder=subfolder,
299
+ revision=revision or commit_hash,
300
+ )
301
+ return model_file
302
+
303
+ except RepositoryNotFoundError as e:
304
+ raise EnvironmentError(
305
+ f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier "
306
+ "listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a "
307
+ "token having permission to this repo with `token` or log in with `hf auth login`."
308
+ ) from e
309
+ except RevisionNotFoundError as e:
310
+ raise EnvironmentError(
311
+ f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for "
312
+ "this model name. Check the model page at "
313
+ f"'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions."
314
+ ) from e
315
+ except EntryNotFoundError as e:
316
+ raise EnvironmentError(
317
+ f"{pretrained_model_name_or_path} does not appear to have a file named {weights_name}."
318
+ ) from e
319
+ except HTTPError as e:
320
+ raise EnvironmentError(
321
+ f"There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{e}"
322
+ ) from e
323
+ except ValueError as e:
324
+ raise EnvironmentError(
325
+ f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it"
326
+ f" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a"
327
+ f" directory containing a file named {weights_name} or"
328
+ " \nCheckout your internet connection or see how to run the library in"
329
+ " offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'."
330
+ ) from e
331
+ except EnvironmentError as e:
332
+ raise EnvironmentError(
333
+ f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from "
334
+ "'https://huggingface.co/models', make sure you don't have a local directory with the same name. "
335
+ f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory "
336
+ f"containing a file named {weights_name}"
337
+ ) from e
338
+
339
+
340
+ def _get_checkpoint_shard_files(
341
+ pretrained_model_name_or_path,
342
+ index_filename,
343
+ cache_dir=None,
344
+ proxies=None,
345
+ local_files_only=False,
346
+ token=None,
347
+ user_agent=None,
348
+ revision=None,
349
+ subfolder="",
350
+ dduf_entries: Optional[Dict[str, DDUFEntry]] = None,
351
+ ):
352
+ """
353
+ For a given model:
354
+
355
+ - download and cache all the shards of a sharded checkpoint if `pretrained_model_name_or_path` is a model ID on the
356
+ Hub
357
+ - returns the list of paths to all the shards, as well as some metadata.
358
+
359
+ For the description of each arg, see [`PreTrainedModel.from_pretrained`]. `index_filename` is the full path to the
360
+ index (downloaded and cached if `pretrained_model_name_or_path` is a model ID on the Hub).
361
+ """
362
+ if dduf_entries:
363
+ if index_filename not in dduf_entries:
364
+ raise ValueError(f"Can't find a checkpoint index ({index_filename}) in {pretrained_model_name_or_path}.")
365
+ else:
366
+ if not os.path.isfile(index_filename):
367
+ raise ValueError(f"Can't find a checkpoint index ({index_filename}) in {pretrained_model_name_or_path}.")
368
+
369
+ if dduf_entries:
370
+ index = json.loads(dduf_entries[index_filename].read_text())
371
+ else:
372
+ with open(index_filename, "r") as f:
373
+ index = json.loads(f.read())
374
+
375
+ original_shard_filenames = sorted(set(index["weight_map"].values()))
376
+ sharded_metadata = index["metadata"]
377
+ sharded_metadata["all_checkpoint_keys"] = list(index["weight_map"].keys())
378
+ sharded_metadata["weight_map"] = index["weight_map"].copy()
379
+ shards_path = os.path.join(pretrained_model_name_or_path, subfolder)
380
+
381
+ # First, let's deal with local folder.
382
+ if os.path.isdir(pretrained_model_name_or_path) or dduf_entries:
383
+ shard_filenames = [os.path.join(shards_path, f) for f in original_shard_filenames]
384
+ for shard_file in shard_filenames:
385
+ if dduf_entries:
386
+ if shard_file not in dduf_entries:
387
+ raise FileNotFoundError(
388
+ f"{shards_path} does not appear to have a file named {shard_file} which is "
389
+ "required according to the checkpoint index."
390
+ )
391
+ else:
392
+ if not os.path.exists(shard_file):
393
+ raise FileNotFoundError(
394
+ f"{shards_path} does not appear to have a file named {shard_file} which is "
395
+ "required according to the checkpoint index."
396
+ )
397
+ return shard_filenames, sharded_metadata
398
+
399
+ # At this stage pretrained_model_name_or_path is a model identifier on the Hub
400
+ allow_patterns = original_shard_filenames
401
+ if subfolder is not None:
402
+ allow_patterns = [os.path.join(subfolder, p) for p in allow_patterns]
403
+
404
+ ignore_patterns = ["*.json", "*.md"]
405
+
406
+ # If the repo doesn't have the required shards, error out early even before downloading anything.
407
+ if not local_files_only:
408
+ model_files_info = model_info(pretrained_model_name_or_path, revision=revision, token=token)
409
+ for shard_file in original_shard_filenames:
410
+ shard_file_present = any(shard_file in k.rfilename for k in model_files_info.siblings)
411
+ if not shard_file_present:
412
+ raise EnvironmentError(
413
+ f"{shards_path} does not appear to have a file named {shard_file} which is "
414
+ "required according to the checkpoint index."
415
+ )
416
+
417
+ try:
418
+ # Load from URL
419
+ cached_folder = snapshot_download(
420
+ pretrained_model_name_or_path,
421
+ cache_dir=cache_dir,
422
+ proxies=proxies,
423
+ local_files_only=local_files_only,
424
+ token=token,
425
+ revision=revision,
426
+ allow_patterns=allow_patterns,
427
+ ignore_patterns=ignore_patterns,
428
+ user_agent=user_agent,
429
+ )
430
+ if subfolder is not None:
431
+ cached_folder = os.path.join(cached_folder, subfolder)
432
+
433
+ # We have already dealt with RepositoryNotFoundError and RevisionNotFoundError when getting the index, so
434
+ # we don't have to catch them here. We have also dealt with EntryNotFoundError.
435
+ except HTTPError as e:
436
+ raise EnvironmentError(
437
+ f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load {pretrained_model_name_or_path}. You should try"
438
+ " again after checking your internet connection."
439
+ ) from e
440
+
441
+ cached_filenames = [os.path.join(cached_folder, f) for f in original_shard_filenames]
442
+ for cached_file in cached_filenames:
443
+ if not os.path.isfile(cached_file):
444
+ raise EnvironmentError(
445
+ f"{cached_folder} does not have a file named {cached_file} which is required according to the checkpoint index."
446
+ )
447
+
448
+ return cached_filenames, sharded_metadata
449
+
450
+
451
+ def _check_legacy_sharding_variant_format(folder: str = None, filenames: List[str] = None, variant: str = None):
452
+ if filenames and folder:
453
+ raise ValueError("Both `filenames` and `folder` cannot be provided.")
454
+ if not filenames:
455
+ filenames = []
456
+ for _, _, files in os.walk(folder):
457
+ for file in files:
458
+ filenames.append(os.path.basename(file))
459
+ transformers_index_format = r"\d{5}-of-\d{5}"
460
+ variant_file_re = re.compile(rf".*-{transformers_index_format}\.{variant}\.[a-z]+$")
461
+ return any(variant_file_re.match(f) is not None for f in filenames)
462
+
463
+
464
+ class PushToHubMixin:
465
+ """
466
+ A Mixin to push a model, scheduler, or pipeline to the Hugging Face Hub.
467
+ """
468
+
469
+ def _upload_folder(
470
+ self,
471
+ working_dir: Union[str, os.PathLike],
472
+ repo_id: str,
473
+ token: Optional[str] = None,
474
+ commit_message: Optional[str] = None,
475
+ create_pr: bool = False,
476
+ subfolder: Optional[str] = None,
477
+ ):
478
+ """
479
+ Uploads all files in `working_dir` to `repo_id`.
480
+ """
481
+ if commit_message is None:
482
+ if "Model" in self.__class__.__name__:
483
+ commit_message = "Upload model"
484
+ elif "Scheduler" in self.__class__.__name__:
485
+ commit_message = "Upload scheduler"
486
+ else:
487
+ commit_message = f"Upload {self.__class__.__name__}"
488
+
489
+ logger.info(f"Uploading the files of {working_dir} to {repo_id}.")
490
+ return upload_folder(
491
+ repo_id=repo_id,
492
+ folder_path=working_dir,
493
+ token=token,
494
+ commit_message=commit_message,
495
+ create_pr=create_pr,
496
+ path_in_repo=subfolder,
497
+ )
498
+
499
+ def push_to_hub(
500
+ self,
501
+ repo_id: str,
502
+ commit_message: Optional[str] = None,
503
+ private: Optional[bool] = None,
504
+ token: Optional[str] = None,
505
+ create_pr: bool = False,
506
+ safe_serialization: bool = True,
507
+ variant: Optional[str] = None,
508
+ subfolder: Optional[str] = None,
509
+ ) -> str:
510
+ """
511
+ Upload model, scheduler, or pipeline files to the 🤗 Hugging Face Hub.
512
+
513
+ Parameters:
514
+ repo_id (`str`):
515
+ The name of the repository you want to push your model, scheduler, or pipeline files to. It should
516
+ contain your organization name when pushing to an organization. `repo_id` can also be a path to a local
517
+ directory.
518
+ commit_message (`str`, *optional*):
519
+ Message to commit while pushing. Default to `"Upload {object}"`.
520
+ private (`bool`, *optional*):
521
+ Whether to make the repo private. If `None` (default), the repo will be public unless the
522
+ organization's default is private. This value is ignored if the repo already exists.
523
+ token (`str`, *optional*):
524
+ The token to use as HTTP bearer authorization for remote files. The token generated when running `hf
525
+ auth login` (stored in `~/.huggingface`).
526
+ create_pr (`bool`, *optional*, defaults to `False`):
527
+ Whether or not to create a PR with the uploaded files or directly commit.
528
+ safe_serialization (`bool`, *optional*, defaults to `True`):
529
+ Whether or not to convert the model weights to the `safetensors` format.
530
+ variant (`str`, *optional*):
531
+ If specified, weights are saved in the format `pytorch_model.<variant>.bin`.
532
+
533
+ Examples:
534
+
535
+ ```python
536
+ from diffusers import UNet2DConditionModel
537
+
538
+ unet = UNet2DConditionModel.from_pretrained("stabilityai/stable-diffusion-2", subfolder="unet")
539
+
540
+ # Push the `unet` to your namespace with the name "my-finetuned-unet".
541
+ unet.push_to_hub("my-finetuned-unet")
542
+
543
+ # Push the `unet` to an organization with the name "my-finetuned-unet".
544
+ unet.push_to_hub("your-org/my-finetuned-unet")
545
+ ```
546
+ """
547
+ repo_id = create_repo(repo_id, private=private, token=token, exist_ok=True).repo_id
548
+
549
+ # Create a new empty model card and eventually tag it
550
+ if not subfolder:
551
+ model_card = load_or_create_model_card(repo_id, token=token)
552
+ model_card = populate_model_card(model_card)
553
+
554
+ # Save all files.
555
+ save_kwargs = {"safe_serialization": safe_serialization}
556
+ if "Scheduler" not in self.__class__.__name__:
557
+ save_kwargs.update({"variant": variant})
558
+
559
+ with tempfile.TemporaryDirectory() as tmpdir:
560
+ self.save_pretrained(tmpdir, **save_kwargs)
561
+
562
+ # Update model card if needed:
563
+ if not subfolder:
564
+ model_card.save(os.path.join(tmpdir, "README.md"))
565
+
566
+ return self._upload_folder(
567
+ tmpdir,
568
+ repo_id,
569
+ token=token,
570
+ commit_message=commit_message,
571
+ create_pr=create_pr,
572
+ subfolder=subfolder,
573
+ )
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/utils/import_utils.py ADDED
@@ -0,0 +1,962 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2025 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """
15
+ Import utilities: Utilities related to imports and our lazy inits.
16
+ """
17
+
18
+ import importlib.util
19
+ import inspect
20
+ import operator as op
21
+ import os
22
+ import sys
23
+ from collections import OrderedDict, defaultdict
24
+ from itertools import chain
25
+ from types import ModuleType
26
+ from typing import Any, Tuple, Union
27
+
28
+ from huggingface_hub.utils import is_jinja_available # noqa: F401
29
+ from packaging.version import Version, parse
30
+
31
+ from . import logging
32
+
33
+
34
+ # The package importlib_metadata is in a different place, depending on the python version.
35
+ if sys.version_info < (3, 8):
36
+ import importlib_metadata
37
+ else:
38
+ import importlib.metadata as importlib_metadata
39
+ try:
40
+ _package_map = importlib_metadata.packages_distributions() # load-once to avoid expensive calls
41
+ except Exception:
42
+ _package_map = None
43
+
44
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
45
+
46
+ ENV_VARS_TRUE_VALUES = {"1", "ON", "YES", "TRUE"}
47
+ ENV_VARS_TRUE_AND_AUTO_VALUES = ENV_VARS_TRUE_VALUES.union({"AUTO"})
48
+
49
+ USE_TF = os.environ.get("USE_TF", "AUTO").upper()
50
+ USE_TORCH = os.environ.get("USE_TORCH", "AUTO").upper()
51
+ USE_JAX = os.environ.get("USE_FLAX", "AUTO").upper()
52
+ USE_SAFETENSORS = os.environ.get("USE_SAFETENSORS", "AUTO").upper()
53
+ DIFFUSERS_SLOW_IMPORT = os.environ.get("DIFFUSERS_SLOW_IMPORT", "FALSE").upper()
54
+ DIFFUSERS_SLOW_IMPORT = DIFFUSERS_SLOW_IMPORT in ENV_VARS_TRUE_VALUES
55
+
56
+ STR_OPERATION_TO_FUNC = {">": op.gt, ">=": op.ge, "==": op.eq, "!=": op.ne, "<=": op.le, "<": op.lt}
57
+
58
+ _is_google_colab = "google.colab" in sys.modules or any(k.startswith("COLAB_") for k in os.environ)
59
+
60
+
61
+ def _is_package_available(pkg_name: str, get_dist_name: bool = False) -> Tuple[bool, str]:
62
+ global _package_map
63
+ pkg_exists = importlib.util.find_spec(pkg_name) is not None
64
+ pkg_version = "N/A"
65
+
66
+ if pkg_exists:
67
+ if _package_map is None:
68
+ _package_map = defaultdict(list)
69
+ try:
70
+ # Fallback for Python < 3.10
71
+ for dist in importlib_metadata.distributions():
72
+ _top_level_declared = (dist.read_text("top_level.txt") or "").split()
73
+ # Infer top-level package names from file structure
74
+ _inferred_opt_names = {
75
+ f.parts[0] if len(f.parts) > 1 else inspect.getmodulename(f) for f in (dist.files or [])
76
+ } - {None}
77
+ _top_level_inferred = filter(lambda name: "." not in name, _inferred_opt_names)
78
+ for pkg in _top_level_declared or _top_level_inferred:
79
+ _package_map[pkg].append(dist.metadata["Name"])
80
+ except Exception as _:
81
+ pass
82
+ try:
83
+ if get_dist_name and pkg_name in _package_map and _package_map[pkg_name]:
84
+ if len(_package_map[pkg_name]) > 1:
85
+ logger.warning(
86
+ f"Multiple distributions found for package {pkg_name}. Picked distribution: {_package_map[pkg_name][0]}"
87
+ )
88
+ pkg_name = _package_map[pkg_name][0]
89
+ pkg_version = importlib_metadata.version(pkg_name)
90
+ logger.debug(f"Successfully imported {pkg_name} version {pkg_version}")
91
+ except (ImportError, importlib_metadata.PackageNotFoundError):
92
+ pkg_exists = False
93
+
94
+ return pkg_exists, pkg_version
95
+
96
+
97
+ if USE_TORCH in ENV_VARS_TRUE_AND_AUTO_VALUES and USE_TF not in ENV_VARS_TRUE_VALUES:
98
+ _torch_available, _torch_version = _is_package_available("torch")
99
+
100
+ else:
101
+ logger.info("Disabling PyTorch because USE_TORCH is set")
102
+ _torch_available = False
103
+ _torch_version = "N/A"
104
+
105
+ _jax_version = "N/A"
106
+ _flax_version = "N/A"
107
+ if USE_JAX in ENV_VARS_TRUE_AND_AUTO_VALUES:
108
+ _flax_available = importlib.util.find_spec("jax") is not None and importlib.util.find_spec("flax") is not None
109
+ if _flax_available:
110
+ try:
111
+ _jax_version = importlib_metadata.version("jax")
112
+ _flax_version = importlib_metadata.version("flax")
113
+ logger.info(f"JAX version {_jax_version}, Flax version {_flax_version} available.")
114
+ except importlib_metadata.PackageNotFoundError:
115
+ _flax_available = False
116
+ else:
117
+ _flax_available = False
118
+
119
+ if USE_SAFETENSORS in ENV_VARS_TRUE_AND_AUTO_VALUES:
120
+ _safetensors_available, _safetensors_version = _is_package_available("safetensors")
121
+
122
+ else:
123
+ logger.info("Disabling Safetensors because USE_SAFETENSORS is set")
124
+ _safetensors_available = False
125
+
126
+ _onnxruntime_version = "N/A"
127
+ _onnx_available = importlib.util.find_spec("onnxruntime") is not None
128
+ if _onnx_available:
129
+ candidates = (
130
+ "onnxruntime",
131
+ "onnxruntime-cann",
132
+ "onnxruntime-directml",
133
+ "ort_nightly_directml",
134
+ "onnxruntime-gpu",
135
+ "ort_nightly_gpu",
136
+ "onnxruntime-migraphx",
137
+ "onnxruntime-openvino",
138
+ "onnxruntime-qnn",
139
+ "onnxruntime-rocm",
140
+ "onnxruntime-training",
141
+ "onnxruntime-vitisai",
142
+ )
143
+ _onnxruntime_version = None
144
+ # For the metadata, we have to look for both onnxruntime and onnxruntime-x
145
+ for pkg in candidates:
146
+ try:
147
+ _onnxruntime_version = importlib_metadata.version(pkg)
148
+ break
149
+ except importlib_metadata.PackageNotFoundError:
150
+ pass
151
+ _onnx_available = _onnxruntime_version is not None
152
+ if _onnx_available:
153
+ logger.debug(f"Successfully imported onnxruntime version {_onnxruntime_version}")
154
+
155
+ # (sayakpaul): importlib.util.find_spec("opencv-python") returns None even when it's installed.
156
+ # _opencv_available = importlib.util.find_spec("opencv-python") is not None
157
+ try:
158
+ candidates = (
159
+ "opencv-python",
160
+ "opencv-contrib-python",
161
+ "opencv-python-headless",
162
+ "opencv-contrib-python-headless",
163
+ )
164
+ _opencv_version = None
165
+ for pkg in candidates:
166
+ try:
167
+ _opencv_version = importlib_metadata.version(pkg)
168
+ break
169
+ except importlib_metadata.PackageNotFoundError:
170
+ pass
171
+ _opencv_available = _opencv_version is not None
172
+ if _opencv_available:
173
+ logger.debug(f"Successfully imported cv2 version {_opencv_version}")
174
+ except importlib_metadata.PackageNotFoundError:
175
+ _opencv_available = False
176
+
177
+ _bs4_available = importlib.util.find_spec("bs4") is not None
178
+ try:
179
+ # importlib metadata under different name
180
+ _bs4_version = importlib_metadata.version("beautifulsoup4")
181
+ logger.debug(f"Successfully imported ftfy version {_bs4_version}")
182
+ except importlib_metadata.PackageNotFoundError:
183
+ _bs4_available = False
184
+
185
+ _invisible_watermark_available = importlib.util.find_spec("imwatermark") is not None
186
+ try:
187
+ _invisible_watermark_version = importlib_metadata.version("invisible-watermark")
188
+ logger.debug(f"Successfully imported invisible-watermark version {_invisible_watermark_version}")
189
+ except importlib_metadata.PackageNotFoundError:
190
+ _invisible_watermark_available = False
191
+
192
+ _torch_xla_available, _torch_xla_version = _is_package_available("torch_xla")
193
+ _torch_npu_available, _torch_npu_version = _is_package_available("torch_npu")
194
+ _transformers_available, _transformers_version = _is_package_available("transformers")
195
+ _hf_hub_available, _hf_hub_version = _is_package_available("huggingface_hub")
196
+ _kernels_available, _kernels_version = _is_package_available("kernels")
197
+ _inflect_available, _inflect_version = _is_package_available("inflect")
198
+ _unidecode_available, _unidecode_version = _is_package_available("unidecode")
199
+ _k_diffusion_available, _k_diffusion_version = _is_package_available("k_diffusion")
200
+ _note_seq_available, _note_seq_version = _is_package_available("note_seq")
201
+ _wandb_available, _wandb_version = _is_package_available("wandb")
202
+ _tensorboard_available, _tensorboard_version = _is_package_available("tensorboard")
203
+ _compel_available, _compel_version = _is_package_available("compel")
204
+ _sentencepiece_available, _sentencepiece_version = _is_package_available("sentencepiece")
205
+ _torchsde_available, _torchsde_version = _is_package_available("torchsde")
206
+ _peft_available, _peft_version = _is_package_available("peft")
207
+ _torchvision_available, _torchvision_version = _is_package_available("torchvision")
208
+ _matplotlib_available, _matplotlib_version = _is_package_available("matplotlib")
209
+ _timm_available, _timm_version = _is_package_available("timm")
210
+ _bitsandbytes_available, _bitsandbytes_version = _is_package_available("bitsandbytes")
211
+ _imageio_available, _imageio_version = _is_package_available("imageio")
212
+ _ftfy_available, _ftfy_version = _is_package_available("ftfy")
213
+ _scipy_available, _scipy_version = _is_package_available("scipy")
214
+ _librosa_available, _librosa_version = _is_package_available("librosa")
215
+ _accelerate_available, _accelerate_version = _is_package_available("accelerate")
216
+ _xformers_available, _xformers_version = _is_package_available("xformers")
217
+ _gguf_available, _gguf_version = _is_package_available("gguf")
218
+ _torchao_available, _torchao_version = _is_package_available("torchao")
219
+ _bitsandbytes_available, _bitsandbytes_version = _is_package_available("bitsandbytes")
220
+ _optimum_quanto_available, _optimum_quanto_version = _is_package_available("optimum", get_dist_name=True)
221
+ _pytorch_retinaface_available, _pytorch_retinaface_version = _is_package_available("pytorch_retinaface")
222
+ _better_profanity_available, _better_profanity_version = _is_package_available("better_profanity")
223
+ _nltk_available, _nltk_version = _is_package_available("nltk")
224
+ _cosmos_guardrail_available, _cosmos_guardrail_version = _is_package_available("cosmos_guardrail")
225
+ _sageattention_available, _sageattention_version = _is_package_available("sageattention")
226
+ _flash_attn_available, _flash_attn_version = _is_package_available("flash_attn")
227
+ _flash_attn_3_available, _flash_attn_3_version = _is_package_available("flash_attn_3")
228
+ _kornia_available, _kornia_version = _is_package_available("kornia")
229
+
230
+
231
+ def is_torch_available():
232
+ return _torch_available
233
+
234
+
235
+ def is_torch_xla_available():
236
+ return _torch_xla_available
237
+
238
+
239
+ def is_torch_npu_available():
240
+ return _torch_npu_available
241
+
242
+
243
+ def is_flax_available():
244
+ return _flax_available
245
+
246
+
247
+ def is_transformers_available():
248
+ return _transformers_available
249
+
250
+
251
+ def is_inflect_available():
252
+ return _inflect_available
253
+
254
+
255
+ def is_unidecode_available():
256
+ return _unidecode_available
257
+
258
+
259
+ def is_onnx_available():
260
+ return _onnx_available
261
+
262
+
263
+ def is_opencv_available():
264
+ return _opencv_available
265
+
266
+
267
+ def is_scipy_available():
268
+ return _scipy_available
269
+
270
+
271
+ def is_librosa_available():
272
+ return _librosa_available
273
+
274
+
275
+ def is_xformers_available():
276
+ return _xformers_available
277
+
278
+
279
+ def is_accelerate_available():
280
+ return _accelerate_available
281
+
282
+
283
+ def is_kernels_available():
284
+ return _kernels_available
285
+
286
+
287
+ def is_k_diffusion_available():
288
+ return _k_diffusion_available
289
+
290
+
291
+ def is_note_seq_available():
292
+ return _note_seq_available
293
+
294
+
295
+ def is_wandb_available():
296
+ return _wandb_available
297
+
298
+
299
+ def is_tensorboard_available():
300
+ return _tensorboard_available
301
+
302
+
303
+ def is_compel_available():
304
+ return _compel_available
305
+
306
+
307
+ def is_ftfy_available():
308
+ return _ftfy_available
309
+
310
+
311
+ def is_bs4_available():
312
+ return _bs4_available
313
+
314
+
315
+ def is_torchsde_available():
316
+ return _torchsde_available
317
+
318
+
319
+ def is_invisible_watermark_available():
320
+ return _invisible_watermark_available
321
+
322
+
323
+ def is_peft_available():
324
+ return _peft_available
325
+
326
+
327
+ def is_torchvision_available():
328
+ return _torchvision_available
329
+
330
+
331
+ def is_matplotlib_available():
332
+ return _matplotlib_available
333
+
334
+
335
+ def is_safetensors_available():
336
+ return _safetensors_available
337
+
338
+
339
+ def is_bitsandbytes_available():
340
+ return _bitsandbytes_available
341
+
342
+
343
+ def is_google_colab():
344
+ return _is_google_colab
345
+
346
+
347
+ def is_sentencepiece_available():
348
+ return _sentencepiece_available
349
+
350
+
351
+ def is_imageio_available():
352
+ return _imageio_available
353
+
354
+
355
+ def is_gguf_available():
356
+ return _gguf_available
357
+
358
+
359
+ def is_torchao_available():
360
+ return _torchao_available
361
+
362
+
363
+ def is_optimum_quanto_available():
364
+ return _optimum_quanto_available
365
+
366
+
367
+ def is_timm_available():
368
+ return _timm_available
369
+
370
+
371
+ def is_pytorch_retinaface_available():
372
+ return _pytorch_retinaface_available
373
+
374
+
375
+ def is_better_profanity_available():
376
+ return _better_profanity_available
377
+
378
+
379
+ def is_nltk_available():
380
+ return _nltk_available
381
+
382
+
383
+ def is_cosmos_guardrail_available():
384
+ return _cosmos_guardrail_available
385
+
386
+
387
+ def is_hpu_available():
388
+ return all(importlib.util.find_spec(lib) for lib in ("habana_frameworks", "habana_frameworks.torch"))
389
+
390
+
391
+ def is_sageattention_available():
392
+ return _sageattention_available
393
+
394
+
395
+ def is_flash_attn_available():
396
+ return _flash_attn_available
397
+
398
+
399
+ def is_flash_attn_3_available():
400
+ return _flash_attn_3_available
401
+
402
+
403
+ def is_kornia_available():
404
+ return _kornia_available
405
+
406
+
407
+ # docstyle-ignore
408
+ FLAX_IMPORT_ERROR = """
409
+ {0} requires the FLAX library but it was not found in your environment. Checkout the instructions on the
410
+ installation page: https://github.com/google/flax and follow the ones that match your environment.
411
+ """
412
+
413
+ # docstyle-ignore
414
+ INFLECT_IMPORT_ERROR = """
415
+ {0} requires the inflect library but it was not found in your environment. You can install it with pip: `pip install
416
+ inflect`
417
+ """
418
+
419
+ # docstyle-ignore
420
+ PYTORCH_IMPORT_ERROR = """
421
+ {0} requires the PyTorch library but it was not found in your environment. Checkout the instructions on the
422
+ installation page: https://pytorch.org/get-started/locally/ and follow the ones that match your environment.
423
+ """
424
+
425
+ # docstyle-ignore
426
+ ONNX_IMPORT_ERROR = """
427
+ {0} requires the onnxruntime library but it was not found in your environment. You can install it with pip: `pip
428
+ install onnxruntime`
429
+ """
430
+
431
+ # docstyle-ignore
432
+ OPENCV_IMPORT_ERROR = """
433
+ {0} requires the OpenCV library but it was not found in your environment. You can install it with pip: `pip
434
+ install opencv-python`
435
+ """
436
+
437
+ # docstyle-ignore
438
+ SCIPY_IMPORT_ERROR = """
439
+ {0} requires the scipy library but it was not found in your environment. You can install it with pip: `pip install
440
+ scipy`
441
+ """
442
+
443
+ # docstyle-ignore
444
+ LIBROSA_IMPORT_ERROR = """
445
+ {0} requires the librosa library but it was not found in your environment. Checkout the instructions on the
446
+ installation page: https://librosa.org/doc/latest/install.html and follow the ones that match your environment.
447
+ """
448
+
449
+ # docstyle-ignore
450
+ TRANSFORMERS_IMPORT_ERROR = """
451
+ {0} requires the transformers library but it was not found in your environment. You can install it with pip: `pip
452
+ install transformers`
453
+ """
454
+
455
+ # docstyle-ignore
456
+ UNIDECODE_IMPORT_ERROR = """
457
+ {0} requires the unidecode library but it was not found in your environment. You can install it with pip: `pip install
458
+ Unidecode`
459
+ """
460
+
461
+ # docstyle-ignore
462
+ K_DIFFUSION_IMPORT_ERROR = """
463
+ {0} requires the k-diffusion library but it was not found in your environment. You can install it with pip: `pip
464
+ install k-diffusion`
465
+ """
466
+
467
+ # docstyle-ignore
468
+ NOTE_SEQ_IMPORT_ERROR = """
469
+ {0} requires the note-seq library but it was not found in your environment. You can install it with pip: `pip
470
+ install note-seq`
471
+ """
472
+
473
+ # docstyle-ignore
474
+ WANDB_IMPORT_ERROR = """
475
+ {0} requires the wandb library but it was not found in your environment. You can install it with pip: `pip
476
+ install wandb`
477
+ """
478
+
479
+ # docstyle-ignore
480
+ TENSORBOARD_IMPORT_ERROR = """
481
+ {0} requires the tensorboard library but it was not found in your environment. You can install it with pip: `pip
482
+ install tensorboard`
483
+ """
484
+
485
+
486
+ # docstyle-ignore
487
+ COMPEL_IMPORT_ERROR = """
488
+ {0} requires the compel library but it was not found in your environment. You can install it with pip: `pip install compel`
489
+ """
490
+
491
+ # docstyle-ignore
492
+ BS4_IMPORT_ERROR = """
493
+ {0} requires the Beautiful Soup library but it was not found in your environment. You can install it with pip:
494
+ `pip install beautifulsoup4`. Please note that you may need to restart your runtime after installation.
495
+ """
496
+
497
+ # docstyle-ignore
498
+ FTFY_IMPORT_ERROR = """
499
+ {0} requires the ftfy library but it was not found in your environment. Checkout the instructions on the
500
+ installation section: https://github.com/rspeer/python-ftfy/tree/master#installing and follow the ones
501
+ that match your environment. Please note that you may need to restart your runtime after installation.
502
+ """
503
+
504
+ # docstyle-ignore
505
+ TORCHSDE_IMPORT_ERROR = """
506
+ {0} requires the torchsde library but it was not found in your environment. You can install it with pip: `pip install torchsde`
507
+ """
508
+
509
+ # docstyle-ignore
510
+ INVISIBLE_WATERMARK_IMPORT_ERROR = """
511
+ {0} requires the invisible-watermark library but it was not found in your environment. You can install it with pip: `pip install invisible-watermark>=0.2.0`
512
+ """
513
+
514
+ # docstyle-ignore
515
+ PEFT_IMPORT_ERROR = """
516
+ {0} requires the peft library but it was not found in your environment. You can install it with pip: `pip install peft`
517
+ """
518
+
519
+ # docstyle-ignore
520
+ SAFETENSORS_IMPORT_ERROR = """
521
+ {0} requires the safetensors library but it was not found in your environment. You can install it with pip: `pip install safetensors`
522
+ """
523
+
524
+ # docstyle-ignore
525
+ SENTENCEPIECE_IMPORT_ERROR = """
526
+ {0} requires the sentencepiece library but it was not found in your environment. You can install it with pip: `pip install sentencepiece`
527
+ """
528
+
529
+
530
+ # docstyle-ignore
531
+ BITSANDBYTES_IMPORT_ERROR = """
532
+ {0} requires the bitsandbytes library but it was not found in your environment. You can install it with pip: `pip install bitsandbytes`
533
+ """
534
+
535
+ # docstyle-ignore
536
+ IMAGEIO_IMPORT_ERROR = """
537
+ {0} requires the imageio library and ffmpeg but it was not found in your environment. You can install it with pip: `pip install imageio imageio-ffmpeg`
538
+ """
539
+
540
+ # docstyle-ignore
541
+ GGUF_IMPORT_ERROR = """
542
+ {0} requires the gguf library but it was not found in your environment. You can install it with pip: `pip install gguf`
543
+ """
544
+
545
+ TORCHAO_IMPORT_ERROR = """
546
+ {0} requires the torchao library but it was not found in your environment. You can install it with pip: `pip install
547
+ torchao`
548
+ """
549
+
550
+ QUANTO_IMPORT_ERROR = """
551
+ {0} requires the optimum-quanto library but it was not found in your environment. You can install it with pip: `pip
552
+ install optimum-quanto`
553
+ """
554
+
555
+ # docstyle-ignore
556
+ PYTORCH_RETINAFACE_IMPORT_ERROR = """
557
+ {0} requires the pytorch_retinaface library but it was not found in your environment. You can install it with pip: `pip install pytorch_retinaface`
558
+ """
559
+
560
+ # docstyle-ignore
561
+ BETTER_PROFANITY_IMPORT_ERROR = """
562
+ {0} requires the better_profanity library but it was not found in your environment. You can install it with pip: `pip install better_profanity`
563
+ """
564
+
565
+ # docstyle-ignore
566
+ NLTK_IMPORT_ERROR = """
567
+ {0} requires the nltk library but it was not found in your environment. You can install it with pip: `pip install nltk`
568
+ """
569
+
570
+
571
+ BACKENDS_MAPPING = OrderedDict(
572
+ [
573
+ ("bs4", (is_bs4_available, BS4_IMPORT_ERROR)),
574
+ ("flax", (is_flax_available, FLAX_IMPORT_ERROR)),
575
+ ("inflect", (is_inflect_available, INFLECT_IMPORT_ERROR)),
576
+ ("onnx", (is_onnx_available, ONNX_IMPORT_ERROR)),
577
+ ("opencv", (is_opencv_available, OPENCV_IMPORT_ERROR)),
578
+ ("scipy", (is_scipy_available, SCIPY_IMPORT_ERROR)),
579
+ ("torch", (is_torch_available, PYTORCH_IMPORT_ERROR)),
580
+ ("transformers", (is_transformers_available, TRANSFORMERS_IMPORT_ERROR)),
581
+ ("unidecode", (is_unidecode_available, UNIDECODE_IMPORT_ERROR)),
582
+ ("librosa", (is_librosa_available, LIBROSA_IMPORT_ERROR)),
583
+ ("k_diffusion", (is_k_diffusion_available, K_DIFFUSION_IMPORT_ERROR)),
584
+ ("note_seq", (is_note_seq_available, NOTE_SEQ_IMPORT_ERROR)),
585
+ ("wandb", (is_wandb_available, WANDB_IMPORT_ERROR)),
586
+ ("tensorboard", (is_tensorboard_available, TENSORBOARD_IMPORT_ERROR)),
587
+ ("compel", (is_compel_available, COMPEL_IMPORT_ERROR)),
588
+ ("ftfy", (is_ftfy_available, FTFY_IMPORT_ERROR)),
589
+ ("torchsde", (is_torchsde_available, TORCHSDE_IMPORT_ERROR)),
590
+ ("invisible_watermark", (is_invisible_watermark_available, INVISIBLE_WATERMARK_IMPORT_ERROR)),
591
+ ("peft", (is_peft_available, PEFT_IMPORT_ERROR)),
592
+ ("safetensors", (is_safetensors_available, SAFETENSORS_IMPORT_ERROR)),
593
+ ("bitsandbytes", (is_bitsandbytes_available, BITSANDBYTES_IMPORT_ERROR)),
594
+ ("sentencepiece", (is_sentencepiece_available, SENTENCEPIECE_IMPORT_ERROR)),
595
+ ("imageio", (is_imageio_available, IMAGEIO_IMPORT_ERROR)),
596
+ ("gguf", (is_gguf_available, GGUF_IMPORT_ERROR)),
597
+ ("torchao", (is_torchao_available, TORCHAO_IMPORT_ERROR)),
598
+ ("quanto", (is_optimum_quanto_available, QUANTO_IMPORT_ERROR)),
599
+ ("pytorch_retinaface", (is_pytorch_retinaface_available, PYTORCH_RETINAFACE_IMPORT_ERROR)),
600
+ ("better_profanity", (is_better_profanity_available, BETTER_PROFANITY_IMPORT_ERROR)),
601
+ ("nltk", (is_nltk_available, NLTK_IMPORT_ERROR)),
602
+ ]
603
+ )
604
+
605
+
606
+ def requires_backends(obj, backends):
607
+ if not isinstance(backends, (list, tuple)):
608
+ backends = [backends]
609
+
610
+ name = obj.__name__ if hasattr(obj, "__name__") else obj.__class__.__name__
611
+ checks = (BACKENDS_MAPPING[backend] for backend in backends)
612
+ failed = [msg.format(name) for available, msg in checks if not available()]
613
+ if failed:
614
+ raise ImportError("".join(failed))
615
+
616
+ if name in [
617
+ "VersatileDiffusionTextToImagePipeline",
618
+ "VersatileDiffusionPipeline",
619
+ "VersatileDiffusionDualGuidedPipeline",
620
+ "StableDiffusionImageVariationPipeline",
621
+ "UnCLIPPipeline",
622
+ ] and is_transformers_version("<", "4.25.0"):
623
+ raise ImportError(
624
+ f"You need to install `transformers>=4.25` in order to use {name}: \n```\n pip install"
625
+ " --upgrade transformers \n```"
626
+ )
627
+
628
+ if name in ["StableDiffusionDepth2ImgPipeline", "StableDiffusionPix2PixZeroPipeline"] and is_transformers_version(
629
+ "<", "4.26.0"
630
+ ):
631
+ raise ImportError(
632
+ f"You need to install `transformers>=4.26` in order to use {name}: \n```\n pip install"
633
+ " --upgrade transformers \n```"
634
+ )
635
+
636
+
637
+ class DummyObject(type):
638
+ """
639
+ Metaclass for the dummy objects. Any class inheriting from it will return the ImportError generated by
640
+ `requires_backend` each time a user tries to access any method of that class.
641
+ """
642
+
643
+ def __getattr__(cls, key):
644
+ if key.startswith("_") and key not in ["_load_connected_pipes", "_is_onnx"]:
645
+ return super().__getattr__(cls, key)
646
+ requires_backends(cls, cls._backends)
647
+
648
+
649
+ # This function was copied from: https://github.com/huggingface/accelerate/blob/874c4967d94badd24f893064cc3bef45f57cadf7/src/accelerate/utils/versions.py#L319
650
+ def compare_versions(library_or_version: Union[str, Version], operation: str, requirement_version: str):
651
+ """
652
+ Compares a library version to some requirement using a given operation.
653
+
654
+ Args:
655
+ library_or_version (`str` or `packaging.version.Version`):
656
+ A library name or a version to check.
657
+ operation (`str`):
658
+ A string representation of an operator, such as `">"` or `"<="`.
659
+ requirement_version (`str`):
660
+ The version to compare the library version against
661
+ """
662
+ if operation not in STR_OPERATION_TO_FUNC.keys():
663
+ raise ValueError(f"`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys())}, received {operation}")
664
+ operation = STR_OPERATION_TO_FUNC[operation]
665
+ if isinstance(library_or_version, str):
666
+ library_or_version = parse(importlib_metadata.version(library_or_version))
667
+ return operation(library_or_version, parse(requirement_version))
668
+
669
+
670
+ # This function was copied from: https://github.com/huggingface/accelerate/blob/874c4967d94badd24f893064cc3bef45f57cadf7/src/accelerate/utils/versions.py#L338
671
+ def is_torch_version(operation: str, version: str):
672
+ """
673
+ Compares the current PyTorch version to a given reference with an operation.
674
+
675
+ Args:
676
+ operation (`str`):
677
+ A string representation of an operator, such as `">"` or `"<="`
678
+ version (`str`):
679
+ A string version of PyTorch
680
+ """
681
+ return compare_versions(parse(_torch_version), operation, version)
682
+
683
+
684
+ def is_torch_xla_version(operation: str, version: str):
685
+ """
686
+ Compares the current torch_xla version to a given reference with an operation.
687
+
688
+ Args:
689
+ operation (`str`):
690
+ A string representation of an operator, such as `">"` or `"<="`
691
+ version (`str`):
692
+ A string version of torch_xla
693
+ """
694
+ if not is_torch_xla_available:
695
+ return False
696
+ return compare_versions(parse(_torch_xla_version), operation, version)
697
+
698
+
699
+ def is_transformers_version(operation: str, version: str):
700
+ """
701
+ Compares the current Transformers version to a given reference with an operation.
702
+
703
+ Args:
704
+ operation (`str`):
705
+ A string representation of an operator, such as `">"` or `"<="`
706
+ version (`str`):
707
+ A version string
708
+ """
709
+ if not _transformers_available:
710
+ return False
711
+ return compare_versions(parse(_transformers_version), operation, version)
712
+
713
+
714
+ def is_hf_hub_version(operation: str, version: str):
715
+ """
716
+ Compares the current Hugging Face Hub version to a given reference with an operation.
717
+
718
+ Args:
719
+ operation (`str`):
720
+ A string representation of an operator, such as `">"` or `"<="`
721
+ version (`str`):
722
+ A version string
723
+ """
724
+ if not _hf_hub_available:
725
+ return False
726
+ return compare_versions(parse(_hf_hub_version), operation, version)
727
+
728
+
729
+ def is_accelerate_version(operation: str, version: str):
730
+ """
731
+ Compares the current Accelerate version to a given reference with an operation.
732
+
733
+ Args:
734
+ operation (`str`):
735
+ A string representation of an operator, such as `">"` or `"<="`
736
+ version (`str`):
737
+ A version string
738
+ """
739
+ if not _accelerate_available:
740
+ return False
741
+ return compare_versions(parse(_accelerate_version), operation, version)
742
+
743
+
744
+ def is_peft_version(operation: str, version: str):
745
+ """
746
+ Compares the current PEFT version to a given reference with an operation.
747
+
748
+ Args:
749
+ operation (`str`):
750
+ A string representation of an operator, such as `">"` or `"<="`
751
+ version (`str`):
752
+ A version string
753
+ """
754
+ if not _peft_available:
755
+ return False
756
+ return compare_versions(parse(_peft_version), operation, version)
757
+
758
+
759
+ def is_bitsandbytes_version(operation: str, version: str):
760
+ """
761
+ Args:
762
+ Compares the current bitsandbytes version to a given reference with an operation.
763
+ operation (`str`):
764
+ A string representation of an operator, such as `">"` or `"<="`
765
+ version (`str`):
766
+ A version string
767
+ """
768
+ if not _bitsandbytes_available:
769
+ return False
770
+ return compare_versions(parse(_bitsandbytes_version), operation, version)
771
+
772
+
773
+ def is_gguf_version(operation: str, version: str):
774
+ """
775
+ Compares the current Accelerate version to a given reference with an operation.
776
+
777
+ Args:
778
+ operation (`str`):
779
+ A string representation of an operator, such as `">"` or `"<="`
780
+ version (`str`):
781
+ A version string
782
+ """
783
+ if not _gguf_available:
784
+ return False
785
+ return compare_versions(parse(_gguf_version), operation, version)
786
+
787
+
788
+ def is_torchao_version(operation: str, version: str):
789
+ """
790
+ Compares the current torchao version to a given reference with an operation.
791
+
792
+ Args:
793
+ operation (`str`):
794
+ A string representation of an operator, such as `">"` or `"<="`
795
+ version (`str`):
796
+ A version string
797
+ """
798
+ if not _torchao_available:
799
+ return False
800
+ return compare_versions(parse(_torchao_version), operation, version)
801
+
802
+
803
+ def is_k_diffusion_version(operation: str, version: str):
804
+ """
805
+ Compares the current k-diffusion version to a given reference with an operation.
806
+
807
+ Args:
808
+ operation (`str`):
809
+ A string representation of an operator, such as `">"` or `"<="`
810
+ version (`str`):
811
+ A version string
812
+ """
813
+ if not _k_diffusion_available:
814
+ return False
815
+ return compare_versions(parse(_k_diffusion_version), operation, version)
816
+
817
+
818
+ def is_optimum_quanto_version(operation: str, version: str):
819
+ """
820
+ Compares the current Accelerate version to a given reference with an operation.
821
+
822
+ Args:
823
+ operation (`str`):
824
+ A string representation of an operator, such as `">"` or `"<="`
825
+ version (`str`):
826
+ A version string
827
+ """
828
+ if not _optimum_quanto_available:
829
+ return False
830
+ return compare_versions(parse(_optimum_quanto_version), operation, version)
831
+
832
+
833
+ def is_xformers_version(operation: str, version: str):
834
+ """
835
+ Compares the current xformers version to a given reference with an operation.
836
+
837
+ Args:
838
+ operation (`str`):
839
+ A string representation of an operator, such as `">"` or `"<="`
840
+ version (`str`):
841
+ A version string
842
+ """
843
+ if not _xformers_available:
844
+ return False
845
+ return compare_versions(parse(_xformers_version), operation, version)
846
+
847
+
848
+ def is_sageattention_version(operation: str, version: str):
849
+ """
850
+ Compares the current sageattention version to a given reference with an operation.
851
+
852
+ Args:
853
+ operation (`str`):
854
+ A string representation of an operator, such as `">"` or `"<="`
855
+ version (`str`):
856
+ A version string
857
+ """
858
+ if not _sageattention_available:
859
+ return False
860
+ return compare_versions(parse(_sageattention_version), operation, version)
861
+
862
+
863
+ def is_flash_attn_version(operation: str, version: str):
864
+ """
865
+ Compares the current flash-attention version to a given reference with an operation.
866
+
867
+ Args:
868
+ operation (`str`):
869
+ A string representation of an operator, such as `">"` or `"<="`
870
+ version (`str`):
871
+ A version string
872
+ """
873
+ if not _flash_attn_available:
874
+ return False
875
+ return compare_versions(parse(_flash_attn_version), operation, version)
876
+
877
+
878
+ def get_objects_from_module(module):
879
+ """
880
+ Returns a dict of object names and values in a module, while skipping private/internal objects
881
+
882
+ Args:
883
+ module (ModuleType):
884
+ Module to extract the objects from.
885
+
886
+ Returns:
887
+ dict: Dictionary of object names and corresponding values
888
+ """
889
+
890
+ objects = {}
891
+ for name in dir(module):
892
+ if name.startswith("_"):
893
+ continue
894
+ objects[name] = getattr(module, name)
895
+
896
+ return objects
897
+
898
+
899
+ class OptionalDependencyNotAvailable(BaseException):
900
+ """
901
+ An error indicating that an optional dependency of Diffusers was not found in the environment.
902
+ """
903
+
904
+
905
+ class _LazyModule(ModuleType):
906
+ """
907
+ Module class that surfaces all objects but only performs associated imports when the objects are requested.
908
+ """
909
+
910
+ # Very heavily inspired by optuna.integration._IntegrationModule
911
+ # https://github.com/optuna/optuna/blob/master/optuna/integration/__init__.py
912
+ def __init__(self, name, module_file, import_structure, module_spec=None, extra_objects=None):
913
+ super().__init__(name)
914
+ self._modules = set(import_structure.keys())
915
+ self._class_to_module = {}
916
+ for key, values in import_structure.items():
917
+ for value in values:
918
+ self._class_to_module[value] = key
919
+ # Needed for autocompletion in an IDE
920
+ self.__all__ = list(import_structure.keys()) + list(chain(*import_structure.values()))
921
+ self.__file__ = module_file
922
+ self.__spec__ = module_spec
923
+ self.__path__ = [os.path.dirname(module_file)]
924
+ self._objects = {} if extra_objects is None else extra_objects
925
+ self._name = name
926
+ self._import_structure = import_structure
927
+
928
+ # Needed for autocompletion in an IDE
929
+ def __dir__(self):
930
+ result = super().__dir__()
931
+ # The elements of self.__all__ that are submodules may or may not be in the dir already, depending on whether
932
+ # they have been accessed or not. So we only add the elements of self.__all__ that are not already in the dir.
933
+ for attr in self.__all__:
934
+ if attr not in result:
935
+ result.append(attr)
936
+ return result
937
+
938
+ def __getattr__(self, name: str) -> Any:
939
+ if name in self._objects:
940
+ return self._objects[name]
941
+ if name in self._modules:
942
+ value = self._get_module(name)
943
+ elif name in self._class_to_module.keys():
944
+ module = self._get_module(self._class_to_module[name])
945
+ value = getattr(module, name)
946
+ else:
947
+ raise AttributeError(f"module {self.__name__} has no attribute {name}")
948
+
949
+ setattr(self, name, value)
950
+ return value
951
+
952
+ def _get_module(self, module_name: str):
953
+ try:
954
+ return importlib.import_module("." + module_name, self.__name__)
955
+ except Exception as e:
956
+ raise RuntimeError(
957
+ f"Failed to import {self.__name__}.{module_name} because of the following error (look up to see its"
958
+ f" traceback):\n{e}"
959
+ ) from e
960
+
961
+ def __reduce__(self):
962
+ return (self.__class__, (self._name, self.__file__, self._import_structure))
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/utils/loading_utils.py ADDED
@@ -0,0 +1,210 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import tempfile
3
+ from typing import Any, Callable, List, Optional, Tuple, Union
4
+ from urllib.parse import unquote, urlparse
5
+
6
+ import librosa
7
+ import numpy
8
+ import PIL.Image
9
+ import PIL.ImageOps
10
+ import requests
11
+
12
+ from .constants import DIFFUSERS_REQUEST_TIMEOUT
13
+ from .import_utils import BACKENDS_MAPPING, is_imageio_available
14
+
15
+
16
+ def load_image(
17
+ image: Union[str, PIL.Image.Image], convert_method: Optional[Callable[[PIL.Image.Image], PIL.Image.Image]] = None
18
+ ) -> PIL.Image.Image:
19
+ """
20
+ Loads `image` to a PIL Image.
21
+
22
+ Args:
23
+ image (`str` or `PIL.Image.Image`):
24
+ The image to convert to the PIL Image format.
25
+ convert_method (Callable[[PIL.Image.Image], PIL.Image.Image], *optional*):
26
+ A conversion method to apply to the image after loading it. When set to `None` the image will be converted
27
+ "RGB".
28
+
29
+ Returns:
30
+ `PIL.Image.Image`:
31
+ A PIL Image.
32
+ """
33
+ if isinstance(image, str):
34
+ if image.startswith("http://") or image.startswith("https://"):
35
+ image = PIL.Image.open(requests.get(image, stream=True, timeout=DIFFUSERS_REQUEST_TIMEOUT).raw)
36
+ elif os.path.isfile(image):
37
+ image = PIL.Image.open(image)
38
+ else:
39
+ raise ValueError(
40
+ f"Incorrect path or URL. URLs must start with `http://` or `https://`, and {image} is not a valid path."
41
+ )
42
+ elif isinstance(image, PIL.Image.Image):
43
+ image = image
44
+ else:
45
+ raise ValueError(
46
+ "Incorrect format used for the image. Should be a URL linking to an image, a local path, or a PIL image."
47
+ )
48
+
49
+ image = PIL.ImageOps.exif_transpose(image)
50
+
51
+ if convert_method is not None:
52
+ image = convert_method(image)
53
+ else:
54
+ image = image.convert("RGB")
55
+
56
+ return image
57
+
58
+
59
+ def load_video(
60
+ video: str,
61
+ convert_method: Optional[Callable[[List[PIL.Image.Image]], List[PIL.Image.Image]]] = None,
62
+ ) -> List[PIL.Image.Image]:
63
+ """
64
+ Loads `video` to a list of PIL Image.
65
+
66
+ Args:
67
+ video (`str`):
68
+ A URL or Path to a video to convert to a list of PIL Image format.
69
+ convert_method (Callable[[List[PIL.Image.Image]], List[PIL.Image.Image]], *optional*):
70
+ A conversion method to apply to the video after loading it. When set to `None` the images will be converted
71
+ to "RGB".
72
+
73
+ Returns:
74
+ `List[PIL.Image.Image]`:
75
+ The video as a list of PIL images.
76
+ """
77
+ is_url = video.startswith("http://") or video.startswith("https://")
78
+ is_file = os.path.isfile(video)
79
+ was_tempfile_created = False
80
+
81
+ if not (is_url or is_file):
82
+ raise ValueError(
83
+ f"Incorrect path or URL. URLs must start with `http://` or `https://`, and {video} is not a valid path."
84
+ )
85
+
86
+ if is_url:
87
+ response = requests.get(video, stream=True)
88
+ if response.status_code != 200:
89
+ raise ValueError(f"Failed to download video. Status code: {response.status_code}")
90
+
91
+ parsed_url = urlparse(video)
92
+ file_name = os.path.basename(unquote(parsed_url.path))
93
+
94
+ suffix = os.path.splitext(file_name)[1] or ".mp4"
95
+ video_path = tempfile.NamedTemporaryFile(suffix=suffix, delete=False).name
96
+
97
+ was_tempfile_created = True
98
+
99
+ video_data = response.iter_content(chunk_size=8192)
100
+ with open(video_path, "wb") as f:
101
+ for chunk in video_data:
102
+ f.write(chunk)
103
+
104
+ video = video_path
105
+
106
+ pil_images = []
107
+ if video.endswith(".gif"):
108
+ gif = PIL.Image.open(video)
109
+ try:
110
+ while True:
111
+ pil_images.append(gif.copy())
112
+ gif.seek(gif.tell() + 1)
113
+ except EOFError:
114
+ pass
115
+
116
+ else:
117
+ if is_imageio_available():
118
+ import imageio
119
+ else:
120
+ raise ImportError(BACKENDS_MAPPING["imageio"][1].format("load_video"))
121
+
122
+ try:
123
+ imageio.plugins.ffmpeg.get_exe()
124
+ except AttributeError:
125
+ raise AttributeError(
126
+ "`Unable to find an ffmpeg installation on your machine. Please install via `pip install imageio-ffmpeg"
127
+ )
128
+
129
+ with imageio.get_reader(video) as reader:
130
+ # Read all frames
131
+ for frame in reader:
132
+ pil_images.append(PIL.Image.fromarray(frame))
133
+
134
+ if was_tempfile_created:
135
+ os.remove(video_path)
136
+
137
+ if convert_method is not None:
138
+ pil_images = convert_method(pil_images)
139
+
140
+ return pil_images
141
+
142
+
143
+ def load_audio(
144
+ audio: Union[str, numpy.ndarray], convert_method: Optional[Callable[[numpy.ndarray], numpy.ndarray]] = None
145
+ ) -> numpy.ndarray:
146
+ """
147
+ Loads `audio` to a numpy array.
148
+
149
+ Args:
150
+ audio (`str` or `numpy.ndarray`):
151
+ The audio to convert to the numpy array format.
152
+ convert_method (Callable[[numpy.ndarray], numpy.ndarray], *optional*):
153
+ A conversion method to apply to the audio after loading it. When set to `None` the audio will be converted
154
+ to a specific format.
155
+
156
+ Returns:
157
+ `numpy.ndarray`:
158
+ A Librosa audio object.
159
+ `int`:
160
+ The sample rate of the audio.
161
+ """
162
+ if isinstance(audio, str):
163
+ if audio.startswith("http://") or audio.startswith("https://"):
164
+ audio = PIL.Image.open(requests.get(audio, stream=True, timeout=DIFFUSERS_REQUEST_TIMEOUT).raw)
165
+ elif os.path.isfile(audio):
166
+ audio, sample_rate = librosa.load(audio, sr=16000)
167
+ else:
168
+ raise ValueError(
169
+ f"Incorrect path or URL. URLs must start with `http://` or `https://`, and {audio} is not a valid path."
170
+ )
171
+ elif isinstance(audio, numpy.ndarray):
172
+ audio = audio
173
+ else:
174
+ raise ValueError(
175
+ "Incorrect format used for the audio. Should be a URL linking to an audio, a local path, or a PIL audio."
176
+ )
177
+
178
+ # audio = PIL.ImageOps.exif_transpose(audio)
179
+
180
+ if convert_method is not None:
181
+ audio = convert_method(audio)
182
+ else:
183
+ audio = audio.convert("RGB")
184
+
185
+ return audio, sample_rate
186
+
187
+
188
+ # Taken from `transformers`.
189
+ def get_module_from_name(module, tensor_name: str) -> Tuple[Any, str]:
190
+ if "." in tensor_name:
191
+ splits = tensor_name.split(".")
192
+ for split in splits[:-1]:
193
+ new_module = getattr(module, split)
194
+ if new_module is None:
195
+ raise ValueError(f"{module} has no attribute {split}.")
196
+ module = new_module
197
+ tensor_name = splits[-1]
198
+ return module, tensor_name
199
+
200
+
201
+ def get_submodule_by_name(root_module, module_path: str):
202
+ current = root_module
203
+ parts = module_path.split(".")
204
+ for part in parts:
205
+ if part.isdigit():
206
+ idx = int(part)
207
+ current = current[idx] # e.g., for nn.ModuleList or nn.Sequential
208
+ else:
209
+ current = getattr(current, part)
210
+ return current
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/utils/logging.py ADDED
@@ -0,0 +1,340 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2025 Optuna, Hugging Face
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Logging utilities."""
16
+
17
+ import logging
18
+ import os
19
+ import sys
20
+ import threading
21
+ from logging import (
22
+ CRITICAL, # NOQA
23
+ DEBUG, # NOQA
24
+ ERROR, # NOQA
25
+ FATAL, # NOQA
26
+ INFO, # NOQA
27
+ NOTSET, # NOQA
28
+ WARN, # NOQA
29
+ WARNING, # NOQA
30
+ )
31
+ from typing import Dict, Optional
32
+
33
+ from tqdm import auto as tqdm_lib
34
+
35
+
36
+ _lock = threading.Lock()
37
+ _default_handler: Optional[logging.Handler] = None
38
+
39
+ log_levels = {
40
+ "debug": logging.DEBUG,
41
+ "info": logging.INFO,
42
+ "warning": logging.WARNING,
43
+ "error": logging.ERROR,
44
+ "critical": logging.CRITICAL,
45
+ }
46
+
47
+ _default_log_level = logging.WARNING
48
+
49
+ _tqdm_active = True
50
+
51
+
52
+ def _get_default_logging_level() -> int:
53
+ """
54
+ If DIFFUSERS_VERBOSITY env var is set to one of the valid choices return that as the new default level. If it is
55
+ not - fall back to `_default_log_level`
56
+ """
57
+ env_level_str = os.getenv("DIFFUSERS_VERBOSITY", None)
58
+ if env_level_str:
59
+ if env_level_str in log_levels:
60
+ return log_levels[env_level_str]
61
+ else:
62
+ logging.getLogger().warning(
63
+ f"Unknown option DIFFUSERS_VERBOSITY={env_level_str}, has to be one of: {', '.join(log_levels.keys())}"
64
+ )
65
+ return _default_log_level
66
+
67
+
68
+ def _get_library_name() -> str:
69
+ return __name__.split(".")[0]
70
+
71
+
72
+ def _get_library_root_logger() -> logging.Logger:
73
+ return logging.getLogger(_get_library_name())
74
+
75
+
76
+ def _configure_library_root_logger() -> None:
77
+ global _default_handler
78
+
79
+ with _lock:
80
+ if _default_handler:
81
+ # This library has already configured the library root logger.
82
+ return
83
+ _default_handler = logging.StreamHandler() # Set sys.stderr as stream.
84
+
85
+ if sys.stderr: # only if sys.stderr exists, e.g. when not using pythonw in windows
86
+ _default_handler.flush = sys.stderr.flush
87
+
88
+ # Apply our default configuration to the library root logger.
89
+ library_root_logger = _get_library_root_logger()
90
+ library_root_logger.addHandler(_default_handler)
91
+ library_root_logger.setLevel(_get_default_logging_level())
92
+ library_root_logger.propagate = False
93
+
94
+
95
+ def _reset_library_root_logger() -> None:
96
+ global _default_handler
97
+
98
+ with _lock:
99
+ if not _default_handler:
100
+ return
101
+
102
+ library_root_logger = _get_library_root_logger()
103
+ library_root_logger.removeHandler(_default_handler)
104
+ library_root_logger.setLevel(logging.NOTSET)
105
+ _default_handler = None
106
+
107
+
108
+ def get_log_levels_dict() -> Dict[str, int]:
109
+ return log_levels
110
+
111
+
112
+ def get_logger(name: Optional[str] = None) -> logging.Logger:
113
+ """
114
+ Return a logger with the specified name.
115
+
116
+ This function is not supposed to be directly accessed unless you are writing a custom diffusers module.
117
+ """
118
+
119
+ if name is None:
120
+ name = _get_library_name()
121
+
122
+ _configure_library_root_logger()
123
+ return logging.getLogger(name)
124
+
125
+
126
+ def get_verbosity() -> int:
127
+ """
128
+ Return the current level for the 🤗 Diffusers' root logger as an `int`.
129
+
130
+ Returns:
131
+ `int`:
132
+ Logging level integers which can be one of:
133
+
134
+ - `50`: `diffusers.logging.CRITICAL` or `diffusers.logging.FATAL`
135
+ - `40`: `diffusers.logging.ERROR`
136
+ - `30`: `diffusers.logging.WARNING` or `diffusers.logging.WARN`
137
+ - `20`: `diffusers.logging.INFO`
138
+ - `10`: `diffusers.logging.DEBUG`
139
+
140
+ """
141
+
142
+ _configure_library_root_logger()
143
+ return _get_library_root_logger().getEffectiveLevel()
144
+
145
+
146
+ def set_verbosity(verbosity: int) -> None:
147
+ """
148
+ Set the verbosity level for the 🤗 Diffusers' root logger.
149
+
150
+ Args:
151
+ verbosity (`int`):
152
+ Logging level which can be one of:
153
+
154
+ - `diffusers.logging.CRITICAL` or `diffusers.logging.FATAL`
155
+ - `diffusers.logging.ERROR`
156
+ - `diffusers.logging.WARNING` or `diffusers.logging.WARN`
157
+ - `diffusers.logging.INFO`
158
+ - `diffusers.logging.DEBUG`
159
+ """
160
+
161
+ _configure_library_root_logger()
162
+ _get_library_root_logger().setLevel(verbosity)
163
+
164
+
165
+ def set_verbosity_info() -> None:
166
+ """Set the verbosity to the `INFO` level."""
167
+ return set_verbosity(INFO)
168
+
169
+
170
+ def set_verbosity_warning() -> None:
171
+ """Set the verbosity to the `WARNING` level."""
172
+ return set_verbosity(WARNING)
173
+
174
+
175
+ def set_verbosity_debug() -> None:
176
+ """Set the verbosity to the `DEBUG` level."""
177
+ return set_verbosity(DEBUG)
178
+
179
+
180
+ def set_verbosity_error() -> None:
181
+ """Set the verbosity to the `ERROR` level."""
182
+ return set_verbosity(ERROR)
183
+
184
+
185
+ def disable_default_handler() -> None:
186
+ """Disable the default handler of the 🤗 Diffusers' root logger."""
187
+
188
+ _configure_library_root_logger()
189
+
190
+ assert _default_handler is not None
191
+ _get_library_root_logger().removeHandler(_default_handler)
192
+
193
+
194
+ def enable_default_handler() -> None:
195
+ """Enable the default handler of the 🤗 Diffusers' root logger."""
196
+
197
+ _configure_library_root_logger()
198
+
199
+ assert _default_handler is not None
200
+ _get_library_root_logger().addHandler(_default_handler)
201
+
202
+
203
+ def add_handler(handler: logging.Handler) -> None:
204
+ """adds a handler to the HuggingFace Diffusers' root logger."""
205
+
206
+ _configure_library_root_logger()
207
+
208
+ assert handler is not None
209
+ _get_library_root_logger().addHandler(handler)
210
+
211
+
212
+ def remove_handler(handler: logging.Handler) -> None:
213
+ """removes given handler from the HuggingFace Diffusers' root logger."""
214
+
215
+ _configure_library_root_logger()
216
+
217
+ assert handler is not None and handler in _get_library_root_logger().handlers
218
+ _get_library_root_logger().removeHandler(handler)
219
+
220
+
221
+ def disable_propagation() -> None:
222
+ """
223
+ Disable propagation of the library log outputs. Note that log propagation is disabled by default.
224
+ """
225
+
226
+ _configure_library_root_logger()
227
+ _get_library_root_logger().propagate = False
228
+
229
+
230
+ def enable_propagation() -> None:
231
+ """
232
+ Enable propagation of the library log outputs. Please disable the HuggingFace Diffusers' default handler to prevent
233
+ double logging if the root logger has been configured.
234
+ """
235
+
236
+ _configure_library_root_logger()
237
+ _get_library_root_logger().propagate = True
238
+
239
+
240
+ def enable_explicit_format() -> None:
241
+ """
242
+ Enable explicit formatting for every 🤗 Diffusers' logger. The explicit formatter is as follows:
243
+ ```
244
+ [LEVELNAME|FILENAME|LINE NUMBER] TIME >> MESSAGE
245
+ ```
246
+ All handlers currently bound to the root logger are affected by this method.
247
+ """
248
+ handlers = _get_library_root_logger().handlers
249
+
250
+ for handler in handlers:
251
+ formatter = logging.Formatter("[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s")
252
+ handler.setFormatter(formatter)
253
+
254
+
255
+ def reset_format() -> None:
256
+ """
257
+ Resets the formatting for 🤗 Diffusers' loggers.
258
+
259
+ All handlers currently bound to the root logger are affected by this method.
260
+ """
261
+ handlers = _get_library_root_logger().handlers
262
+
263
+ for handler in handlers:
264
+ handler.setFormatter(None)
265
+
266
+
267
+ def warning_advice(self, *args, **kwargs) -> None:
268
+ """
269
+ This method is identical to `logger.warning()`, but if env var DIFFUSERS_NO_ADVISORY_WARNINGS=1 is set, this
270
+ warning will not be printed
271
+ """
272
+ no_advisory_warnings = os.getenv("DIFFUSERS_NO_ADVISORY_WARNINGS", False)
273
+ if no_advisory_warnings:
274
+ return
275
+ self.warning(*args, **kwargs)
276
+
277
+
278
+ logging.Logger.warning_advice = warning_advice
279
+
280
+
281
+ class EmptyTqdm:
282
+ """Dummy tqdm which doesn't do anything."""
283
+
284
+ def __init__(self, *args, **kwargs): # pylint: disable=unused-argument
285
+ self._iterator = args[0] if args else None
286
+
287
+ def __iter__(self):
288
+ return iter(self._iterator)
289
+
290
+ def __getattr__(self, _):
291
+ """Return empty function."""
292
+
293
+ def empty_fn(*args, **kwargs): # pylint: disable=unused-argument
294
+ return
295
+
296
+ return empty_fn
297
+
298
+ def __enter__(self):
299
+ return self
300
+
301
+ def __exit__(self, type_, value, traceback):
302
+ return
303
+
304
+
305
+ class _tqdm_cls:
306
+ def __call__(self, *args, **kwargs):
307
+ if _tqdm_active:
308
+ return tqdm_lib.tqdm(*args, **kwargs)
309
+ else:
310
+ return EmptyTqdm(*args, **kwargs)
311
+
312
+ def set_lock(self, *args, **kwargs):
313
+ self._lock = None
314
+ if _tqdm_active:
315
+ return tqdm_lib.tqdm.set_lock(*args, **kwargs)
316
+
317
+ def get_lock(self):
318
+ if _tqdm_active:
319
+ return tqdm_lib.tqdm.get_lock()
320
+
321
+
322
+ tqdm = _tqdm_cls()
323
+
324
+
325
+ def is_progress_bar_enabled() -> bool:
326
+ """Return a boolean indicating whether tqdm progress bars are enabled."""
327
+ global _tqdm_active
328
+ return bool(_tqdm_active)
329
+
330
+
331
+ def enable_progress_bar() -> None:
332
+ """Enable tqdm progress bar."""
333
+ global _tqdm_active
334
+ _tqdm_active = True
335
+
336
+
337
+ def disable_progress_bar() -> None:
338
+ """Disable tqdm progress bar."""
339
+ global _tqdm_active
340
+ _tqdm_active = False
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/utils/model_card_template.md ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ {{ card_data }}
3
+ ---
4
+
5
+ <!-- This model card has been generated automatically according to the information the training script had access to. You
6
+ should probably proofread and complete it, then remove this comment. -->
7
+
8
+ {{ model_description }}
9
+
10
+ ## Intended uses & limitations
11
+
12
+ #### How to use
13
+
14
+ ```python
15
+ # TODO: add an example code snippet for running this diffusion pipeline
16
+ ```
17
+
18
+ #### Limitations and bias
19
+
20
+ [TODO: provide examples of latent issues and potential remediations]
21
+
22
+ ## Training details
23
+
24
+ [TODO: describe the data used to train the model]
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/utils/outputs.py ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2025 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """
15
+ Generic utilities
16
+ """
17
+
18
+ from collections import OrderedDict
19
+ from dataclasses import fields, is_dataclass
20
+ from typing import Any, Tuple
21
+
22
+ import numpy as np
23
+
24
+ from .import_utils import is_torch_available, is_torch_version
25
+
26
+
27
+ def is_tensor(x) -> bool:
28
+ """
29
+ Tests if `x` is a `torch.Tensor` or `np.ndarray`.
30
+ """
31
+ if is_torch_available():
32
+ import torch
33
+
34
+ if isinstance(x, torch.Tensor):
35
+ return True
36
+
37
+ return isinstance(x, np.ndarray)
38
+
39
+
40
+ class BaseOutput(OrderedDict):
41
+ """
42
+ Base class for all model outputs as dataclass. Has a `__getitem__` that allows indexing by integer or slice (like a
43
+ tuple) or strings (like a dictionary) that will ignore the `None` attributes. Otherwise behaves like a regular
44
+ Python dictionary.
45
+
46
+ <Tip warning={true}>
47
+
48
+ You can't unpack a [`BaseOutput`] directly. Use the [`~utils.BaseOutput.to_tuple`] method to convert it to a tuple
49
+ first.
50
+
51
+ </Tip>
52
+ """
53
+
54
+ def __init_subclass__(cls) -> None:
55
+ """Register subclasses as pytree nodes.
56
+
57
+ This is necessary to synchronize gradients when using `torch.nn.parallel.DistributedDataParallel` with
58
+ `static_graph=True` with modules that output `ModelOutput` subclasses.
59
+ """
60
+ if is_torch_available():
61
+ import torch.utils._pytree
62
+
63
+ if is_torch_version("<", "2.2"):
64
+ torch.utils._pytree._register_pytree_node(
65
+ cls,
66
+ torch.utils._pytree._dict_flatten,
67
+ lambda values, context: cls(**torch.utils._pytree._dict_unflatten(values, context)),
68
+ )
69
+ else:
70
+ torch.utils._pytree.register_pytree_node(
71
+ cls,
72
+ torch.utils._pytree._dict_flatten,
73
+ lambda values, context: cls(**torch.utils._pytree._dict_unflatten(values, context)),
74
+ serialized_type_name=f"{cls.__module__}.{cls.__name__}",
75
+ )
76
+
77
+ def __post_init__(self) -> None:
78
+ class_fields = fields(self)
79
+
80
+ # Safety and consistency checks
81
+ if not len(class_fields):
82
+ raise ValueError(f"{self.__class__.__name__} has no fields.")
83
+
84
+ first_field = getattr(self, class_fields[0].name)
85
+ other_fields_are_none = all(getattr(self, field.name) is None for field in class_fields[1:])
86
+
87
+ if other_fields_are_none and isinstance(first_field, dict):
88
+ for key, value in first_field.items():
89
+ self[key] = value
90
+ else:
91
+ for field in class_fields:
92
+ v = getattr(self, field.name)
93
+ if v is not None:
94
+ self[field.name] = v
95
+
96
+ def __delitem__(self, *args, **kwargs):
97
+ raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.")
98
+
99
+ def setdefault(self, *args, **kwargs):
100
+ raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance.")
101
+
102
+ def pop(self, *args, **kwargs):
103
+ raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance.")
104
+
105
+ def update(self, *args, **kwargs):
106
+ raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance.")
107
+
108
+ def __getitem__(self, k: Any) -> Any:
109
+ if isinstance(k, str):
110
+ inner_dict = dict(self.items())
111
+ return inner_dict[k]
112
+ else:
113
+ return self.to_tuple()[k]
114
+
115
+ def __setattr__(self, name: Any, value: Any) -> None:
116
+ if name in self.keys() and value is not None:
117
+ # Don't call self.__setitem__ to avoid recursion errors
118
+ super().__setitem__(name, value)
119
+ super().__setattr__(name, value)
120
+
121
+ def __setitem__(self, key, value):
122
+ # Will raise a KeyException if needed
123
+ super().__setitem__(key, value)
124
+ # Don't call self.__setattr__ to avoid recursion errors
125
+ super().__setattr__(key, value)
126
+
127
+ def __reduce__(self):
128
+ if not is_dataclass(self):
129
+ return super().__reduce__()
130
+ callable, _args, *remaining = super().__reduce__()
131
+ args = tuple(getattr(self, field.name) for field in fields(self))
132
+ return callable, args, *remaining
133
+
134
+ def to_tuple(self) -> Tuple[Any, ...]:
135
+ """
136
+ Convert self to a tuple containing all the attributes/keys that are not `None`.
137
+ """
138
+ return tuple(self[k] for k in self.keys())
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/utils/peft_utils.py ADDED
@@ -0,0 +1,376 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2025 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """
15
+ PEFT utilities: Utilities related to peft library
16
+ """
17
+
18
+ import collections
19
+ import importlib
20
+ from typing import Optional
21
+
22
+ from packaging import version
23
+
24
+ from . import logging
25
+ from .import_utils import is_peft_available, is_peft_version, is_torch_available
26
+ from .torch_utils import empty_device_cache
27
+
28
+
29
+ logger = logging.get_logger(__name__)
30
+
31
+ if is_torch_available():
32
+ import torch
33
+
34
+
35
+ def recurse_remove_peft_layers(model):
36
+ r"""
37
+ Recursively replace all instances of `LoraLayer` with corresponding new layers in `model`.
38
+ """
39
+ from peft.tuners.tuners_utils import BaseTunerLayer
40
+
41
+ has_base_layer_pattern = False
42
+ for module in model.modules():
43
+ if isinstance(module, BaseTunerLayer):
44
+ has_base_layer_pattern = hasattr(module, "base_layer")
45
+ break
46
+
47
+ if has_base_layer_pattern:
48
+ from peft.utils import _get_submodules
49
+
50
+ key_list = [key for key, _ in model.named_modules() if "lora" not in key]
51
+ for key in key_list:
52
+ try:
53
+ parent, target, target_name = _get_submodules(model, key)
54
+ except AttributeError:
55
+ continue
56
+ if hasattr(target, "base_layer"):
57
+ setattr(parent, target_name, target.get_base_layer())
58
+ else:
59
+ # This is for backwards compatibility with PEFT <= 0.6.2.
60
+ # TODO can be removed once that PEFT version is no longer supported.
61
+ from peft.tuners.lora import LoraLayer
62
+
63
+ for name, module in model.named_children():
64
+ if len(list(module.children())) > 0:
65
+ ## compound module, go inside it
66
+ recurse_remove_peft_layers(module)
67
+
68
+ module_replaced = False
69
+
70
+ if isinstance(module, LoraLayer) and isinstance(module, torch.nn.Linear):
71
+ new_module = torch.nn.Linear(
72
+ module.in_features,
73
+ module.out_features,
74
+ bias=module.bias is not None,
75
+ ).to(module.weight.device)
76
+ new_module.weight = module.weight
77
+ if module.bias is not None:
78
+ new_module.bias = module.bias
79
+
80
+ module_replaced = True
81
+ elif isinstance(module, LoraLayer) and isinstance(module, torch.nn.Conv2d):
82
+ new_module = torch.nn.Conv2d(
83
+ module.in_channels,
84
+ module.out_channels,
85
+ module.kernel_size,
86
+ module.stride,
87
+ module.padding,
88
+ module.dilation,
89
+ module.groups,
90
+ ).to(module.weight.device)
91
+
92
+ new_module.weight = module.weight
93
+ if module.bias is not None:
94
+ new_module.bias = module.bias
95
+
96
+ module_replaced = True
97
+
98
+ if module_replaced:
99
+ setattr(model, name, new_module)
100
+ del module
101
+
102
+ empty_device_cache()
103
+ return model
104
+
105
+
106
+ def scale_lora_layers(model, weight):
107
+ """
108
+ Adjust the weightage given to the LoRA layers of the model.
109
+
110
+ Args:
111
+ model (`torch.nn.Module`):
112
+ The model to scale.
113
+ weight (`float`):
114
+ The weight to be given to the LoRA layers.
115
+ """
116
+ from peft.tuners.tuners_utils import BaseTunerLayer
117
+
118
+ if weight == 1.0:
119
+ return
120
+
121
+ for module in model.modules():
122
+ if isinstance(module, BaseTunerLayer):
123
+ module.scale_layer(weight)
124
+
125
+
126
+ def unscale_lora_layers(model, weight: Optional[float] = None):
127
+ """
128
+ Removes the previously passed weight given to the LoRA layers of the model.
129
+
130
+ Args:
131
+ model (`torch.nn.Module`):
132
+ The model to scale.
133
+ weight (`float`, *optional*):
134
+ The weight to be given to the LoRA layers. If no scale is passed the scale of the lora layer will be
135
+ re-initialized to the correct value. If 0.0 is passed, we will re-initialize the scale with the correct
136
+ value.
137
+ """
138
+ from peft.tuners.tuners_utils import BaseTunerLayer
139
+
140
+ if weight is None or weight == 1.0:
141
+ return
142
+
143
+ for module in model.modules():
144
+ if isinstance(module, BaseTunerLayer):
145
+ if weight != 0:
146
+ module.unscale_layer(weight)
147
+ else:
148
+ for adapter_name in module.active_adapters:
149
+ # if weight == 0 unscale should re-set the scale to the original value.
150
+ module.set_scale(adapter_name, 1.0)
151
+
152
+
153
+ def get_peft_kwargs(
154
+ rank_dict, network_alpha_dict, peft_state_dict, is_unet=True, model_state_dict=None, adapter_name=None
155
+ ):
156
+ rank_pattern = {}
157
+ alpha_pattern = {}
158
+ r = lora_alpha = list(rank_dict.values())[0]
159
+
160
+ if len(set(rank_dict.values())) > 1:
161
+ # get the rank occurring the most number of times
162
+ r = collections.Counter(rank_dict.values()).most_common()[0][0]
163
+
164
+ # for modules with rank different from the most occurring rank, add it to the `rank_pattern`
165
+ rank_pattern = dict(filter(lambda x: x[1] != r, rank_dict.items()))
166
+ rank_pattern = {k.split(".lora_B.")[0]: v for k, v in rank_pattern.items()}
167
+
168
+ if network_alpha_dict is not None and len(network_alpha_dict) > 0:
169
+ if len(set(network_alpha_dict.values())) > 1:
170
+ # get the alpha occurring the most number of times
171
+ lora_alpha = collections.Counter(network_alpha_dict.values()).most_common()[0][0]
172
+
173
+ # for modules with alpha different from the most occurring alpha, add it to the `alpha_pattern`
174
+ alpha_pattern = dict(filter(lambda x: x[1] != lora_alpha, network_alpha_dict.items()))
175
+ if is_unet:
176
+ alpha_pattern = {
177
+ ".".join(k.split(".lora_A.")[0].split(".")).replace(".alpha", ""): v
178
+ for k, v in alpha_pattern.items()
179
+ }
180
+ else:
181
+ alpha_pattern = {".".join(k.split(".down.")[0].split(".")[:-1]): v for k, v in alpha_pattern.items()}
182
+ else:
183
+ lora_alpha = set(network_alpha_dict.values()).pop()
184
+
185
+ target_modules = list({name.split(".lora")[0] for name in peft_state_dict.keys()})
186
+ use_dora = any("lora_magnitude_vector" in k for k in peft_state_dict)
187
+ # for now we know that the "bias" keys are only associated with `lora_B`.
188
+ lora_bias = any("lora_B" in k and k.endswith(".bias") for k in peft_state_dict)
189
+
190
+ lora_config_kwargs = {
191
+ "r": r,
192
+ "lora_alpha": lora_alpha,
193
+ "rank_pattern": rank_pattern,
194
+ "alpha_pattern": alpha_pattern,
195
+ "target_modules": target_modules,
196
+ "use_dora": use_dora,
197
+ "lora_bias": lora_bias,
198
+ }
199
+
200
+ return lora_config_kwargs
201
+
202
+
203
+ def get_adapter_name(model):
204
+ from peft.tuners.tuners_utils import BaseTunerLayer
205
+
206
+ for module in model.modules():
207
+ if isinstance(module, BaseTunerLayer):
208
+ return f"default_{len(module.r)}"
209
+ return "default_0"
210
+
211
+
212
+ def set_adapter_layers(model, enabled=True):
213
+ from peft.tuners.tuners_utils import BaseTunerLayer
214
+
215
+ for module in model.modules():
216
+ if isinstance(module, BaseTunerLayer):
217
+ # The recent version of PEFT needs to call `enable_adapters` instead
218
+ if hasattr(module, "enable_adapters"):
219
+ module.enable_adapters(enabled=enabled)
220
+ else:
221
+ module.disable_adapters = not enabled
222
+
223
+
224
+ def delete_adapter_layers(model, adapter_name):
225
+ from peft.tuners.tuners_utils import BaseTunerLayer
226
+
227
+ for module in model.modules():
228
+ if isinstance(module, BaseTunerLayer):
229
+ if hasattr(module, "delete_adapter"):
230
+ module.delete_adapter(adapter_name)
231
+ else:
232
+ raise ValueError(
233
+ "The version of PEFT you are using is not compatible, please use a version that is greater than 0.6.1"
234
+ )
235
+
236
+ # For transformers integration - we need to pop the adapter from the config
237
+ if getattr(model, "_hf_peft_config_loaded", False) and hasattr(model, "peft_config"):
238
+ model.peft_config.pop(adapter_name, None)
239
+ # In case all adapters are deleted, we need to delete the config
240
+ # and make sure to set the flag to False
241
+ if len(model.peft_config) == 0:
242
+ del model.peft_config
243
+ model._hf_peft_config_loaded = None
244
+
245
+
246
+ def set_weights_and_activate_adapters(model, adapter_names, weights):
247
+ from peft.tuners.tuners_utils import BaseTunerLayer
248
+
249
+ def get_module_weight(weight_for_adapter, module_name):
250
+ if not isinstance(weight_for_adapter, dict):
251
+ # If weight_for_adapter is a single number, always return it.
252
+ return weight_for_adapter
253
+
254
+ for layer_name, weight_ in weight_for_adapter.items():
255
+ if layer_name in module_name:
256
+ return weight_
257
+
258
+ parts = module_name.split(".")
259
+ # e.g. key = "down_blocks.1.attentions.0"
260
+ key = f"{parts[0]}.{parts[1]}.attentions.{parts[3]}"
261
+ block_weight = weight_for_adapter.get(key, 1.0)
262
+
263
+ return block_weight
264
+
265
+ for module_name, module in model.named_modules():
266
+ if isinstance(module, BaseTunerLayer):
267
+ # For backward compatibility with previous PEFT versions, set multiple active adapters
268
+ if hasattr(module, "set_adapter"):
269
+ module.set_adapter(adapter_names)
270
+ else:
271
+ module.active_adapter = adapter_names
272
+
273
+ # Set the scaling weight for each adapter for this module
274
+ for adapter_name, weight in zip(adapter_names, weights):
275
+ module.set_scale(adapter_name, get_module_weight(weight, module_name))
276
+
277
+
278
+ def check_peft_version(min_version: str) -> None:
279
+ r"""
280
+ Checks if the version of PEFT is compatible.
281
+
282
+ Args:
283
+ version (`str`):
284
+ The version of PEFT to check against.
285
+ """
286
+ if not is_peft_available():
287
+ raise ValueError("PEFT is not installed. Please install it with `pip install peft`")
288
+
289
+ is_peft_version_compatible = version.parse(importlib.metadata.version("peft")) > version.parse(min_version)
290
+
291
+ if not is_peft_version_compatible:
292
+ raise ValueError(
293
+ f"The version of PEFT you are using is not compatible, please use a version that is greater"
294
+ f" than {min_version}"
295
+ )
296
+
297
+
298
+ def _create_lora_config(
299
+ state_dict, network_alphas, metadata, rank_pattern_dict, is_unet=True, model_state_dict=None, adapter_name=None
300
+ ):
301
+ from peft import LoraConfig
302
+
303
+ if metadata is not None:
304
+ lora_config_kwargs = metadata
305
+ else:
306
+ lora_config_kwargs = get_peft_kwargs(
307
+ rank_pattern_dict,
308
+ network_alpha_dict=network_alphas,
309
+ peft_state_dict=state_dict,
310
+ is_unet=is_unet,
311
+ model_state_dict=model_state_dict,
312
+ adapter_name=adapter_name,
313
+ )
314
+
315
+ _maybe_raise_error_for_ambiguous_keys(lora_config_kwargs)
316
+
317
+ # Version checks for DoRA and lora_bias
318
+ if "use_dora" in lora_config_kwargs and lora_config_kwargs["use_dora"]:
319
+ if is_peft_version("<", "0.9.0"):
320
+ raise ValueError("DoRA requires PEFT >= 0.9.0. Please upgrade.")
321
+
322
+ if "lora_bias" in lora_config_kwargs and lora_config_kwargs["lora_bias"]:
323
+ if is_peft_version("<=", "0.13.2"):
324
+ raise ValueError("lora_bias requires PEFT >= 0.14.0. Please upgrade.")
325
+
326
+ try:
327
+ return LoraConfig(**lora_config_kwargs)
328
+ except TypeError as e:
329
+ raise TypeError("`LoraConfig` class could not be instantiated.") from e
330
+
331
+
332
+ def _maybe_raise_error_for_ambiguous_keys(config):
333
+ rank_pattern = config["rank_pattern"].copy()
334
+ target_modules = config["target_modules"]
335
+
336
+ for key in list(rank_pattern.keys()):
337
+ # try to detect ambiguity
338
+ # `target_modules` can also be a str, in which case this loop would loop
339
+ # over the chars of the str. The technically correct way to match LoRA keys
340
+ # in PEFT is to use LoraModel._check_target_module_exists (lora_config, key).
341
+ # But this cuts it for now.
342
+ exact_matches = [mod for mod in target_modules if mod == key]
343
+ substring_matches = [mod for mod in target_modules if key in mod and mod != key]
344
+
345
+ if exact_matches and substring_matches:
346
+ if is_peft_version("<", "0.14.1"):
347
+ raise ValueError(
348
+ "There are ambiguous keys present in this LoRA. To load it, please update your `peft` installation - `pip install -U peft`."
349
+ )
350
+
351
+
352
+ def _maybe_warn_for_unhandled_keys(incompatible_keys, adapter_name):
353
+ warn_msg = ""
354
+ if incompatible_keys is not None:
355
+ # Check only for unexpected keys.
356
+ unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
357
+ if unexpected_keys:
358
+ lora_unexpected_keys = [k for k in unexpected_keys if "lora_" in k and adapter_name in k]
359
+ if lora_unexpected_keys:
360
+ warn_msg = (
361
+ f"Loading adapter weights from state_dict led to unexpected keys found in the model:"
362
+ f" {', '.join(lora_unexpected_keys)}. "
363
+ )
364
+
365
+ # Filter missing keys specific to the current adapter.
366
+ missing_keys = getattr(incompatible_keys, "missing_keys", None)
367
+ if missing_keys:
368
+ lora_missing_keys = [k for k in missing_keys if "lora_" in k and adapter_name in k]
369
+ if lora_missing_keys:
370
+ warn_msg += (
371
+ f"Loading adapter weights from state_dict led to missing keys in the model:"
372
+ f" {', '.join(lora_missing_keys)}."
373
+ )
374
+
375
+ if warn_msg:
376
+ logger.warning(warn_msg)
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/utils/pil_utils.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List
2
+
3
+ import PIL.Image
4
+ import PIL.ImageOps
5
+ from packaging import version
6
+ from PIL import Image
7
+
8
+
9
+ if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"):
10
+ PIL_INTERPOLATION = {
11
+ "linear": PIL.Image.Resampling.BILINEAR,
12
+ "bilinear": PIL.Image.Resampling.BILINEAR,
13
+ "bicubic": PIL.Image.Resampling.BICUBIC,
14
+ "lanczos": PIL.Image.Resampling.LANCZOS,
15
+ "nearest": PIL.Image.Resampling.NEAREST,
16
+ }
17
+ else:
18
+ PIL_INTERPOLATION = {
19
+ "linear": PIL.Image.LINEAR,
20
+ "bilinear": PIL.Image.BILINEAR,
21
+ "bicubic": PIL.Image.BICUBIC,
22
+ "lanczos": PIL.Image.LANCZOS,
23
+ "nearest": PIL.Image.NEAREST,
24
+ }
25
+
26
+
27
+ def pt_to_pil(images):
28
+ """
29
+ Convert a torch image to a PIL image.
30
+ """
31
+ images = (images / 2 + 0.5).clamp(0, 1)
32
+ images = images.cpu().permute(0, 2, 3, 1).float().numpy()
33
+ images = numpy_to_pil(images)
34
+ return images
35
+
36
+
37
+ def numpy_to_pil(images):
38
+ """
39
+ Convert a numpy image or a batch of images to a PIL image.
40
+ """
41
+ if images.ndim == 3:
42
+ images = images[None, ...]
43
+ images = (images * 255).round().astype("uint8")
44
+ if images.shape[-1] == 1:
45
+ # special case for grayscale (single channel) images
46
+ pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
47
+ else:
48
+ pil_images = [Image.fromarray(image) for image in images]
49
+
50
+ return pil_images
51
+
52
+
53
+ def make_image_grid(images: List[PIL.Image.Image], rows: int, cols: int, resize: int = None) -> PIL.Image.Image:
54
+ """
55
+ Prepares a single grid of images. Useful for visualization purposes.
56
+ """
57
+ assert len(images) == rows * cols
58
+
59
+ if resize is not None:
60
+ images = [img.resize((resize, resize)) for img in images]
61
+
62
+ w, h = images[0].size
63
+ grid = Image.new("RGB", size=(cols * w, rows * h))
64
+
65
+ for i, img in enumerate(images):
66
+ grid.paste(img, box=(i % cols * w, i // cols * h))
67
+ return grid
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/utils/remote_utils.py ADDED
@@ -0,0 +1,425 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2025 HuggingFace Inc.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import io
17
+ import json
18
+ from typing import List, Literal, Optional, Union, cast
19
+
20
+ import requests
21
+
22
+ from .deprecation_utils import deprecate
23
+ from .import_utils import is_safetensors_available, is_torch_available
24
+
25
+
26
+ if is_torch_available():
27
+ import torch
28
+
29
+ from ..image_processor import VaeImageProcessor
30
+ from ..video_processor import VideoProcessor
31
+
32
+ if is_safetensors_available():
33
+ import safetensors.torch
34
+
35
+ DTYPE_MAP = {
36
+ "float16": torch.float16,
37
+ "float32": torch.float32,
38
+ "bfloat16": torch.bfloat16,
39
+ "uint8": torch.uint8,
40
+ }
41
+
42
+
43
+ from PIL import Image
44
+
45
+
46
+ def detect_image_type(data: bytes) -> str:
47
+ if data.startswith(b"\xff\xd8"):
48
+ return "jpeg"
49
+ elif data.startswith(b"\x89PNG\r\n\x1a\n"):
50
+ return "png"
51
+ elif data.startswith(b"GIF87a") or data.startswith(b"GIF89a"):
52
+ return "gif"
53
+ elif data.startswith(b"BM"):
54
+ return "bmp"
55
+ return "unknown"
56
+
57
+
58
+ def check_inputs_decode(
59
+ endpoint: str,
60
+ tensor: "torch.Tensor",
61
+ processor: Optional[Union["VaeImageProcessor", "VideoProcessor"]] = None,
62
+ do_scaling: bool = True,
63
+ scaling_factor: Optional[float] = None,
64
+ shift_factor: Optional[float] = None,
65
+ output_type: Literal["mp4", "pil", "pt"] = "pil",
66
+ return_type: Literal["mp4", "pil", "pt"] = "pil",
67
+ image_format: Literal["png", "jpg"] = "jpg",
68
+ partial_postprocess: bool = False,
69
+ input_tensor_type: Literal["binary"] = "binary",
70
+ output_tensor_type: Literal["binary"] = "binary",
71
+ height: Optional[int] = None,
72
+ width: Optional[int] = None,
73
+ ):
74
+ if tensor.ndim == 3 and height is None and width is None:
75
+ raise ValueError("`height` and `width` required for packed latents.")
76
+ if (
77
+ output_type == "pt"
78
+ and return_type == "pil"
79
+ and not partial_postprocess
80
+ and not isinstance(processor, (VaeImageProcessor, VideoProcessor))
81
+ ):
82
+ raise ValueError("`processor` is required.")
83
+ if do_scaling and scaling_factor is None:
84
+ deprecate(
85
+ "do_scaling",
86
+ "1.0.0",
87
+ "`do_scaling` is deprecated, pass `scaling_factor` and `shift_factor` if required.",
88
+ standard_warn=False,
89
+ )
90
+
91
+
92
+ def postprocess_decode(
93
+ response: requests.Response,
94
+ processor: Optional[Union["VaeImageProcessor", "VideoProcessor"]] = None,
95
+ output_type: Literal["mp4", "pil", "pt"] = "pil",
96
+ return_type: Literal["mp4", "pil", "pt"] = "pil",
97
+ partial_postprocess: bool = False,
98
+ ):
99
+ if output_type == "pt" or (output_type == "pil" and processor is not None):
100
+ output_tensor = response.content
101
+ parameters = response.headers
102
+ shape = json.loads(parameters["shape"])
103
+ dtype = parameters["dtype"]
104
+ torch_dtype = DTYPE_MAP[dtype]
105
+ output_tensor = torch.frombuffer(bytearray(output_tensor), dtype=torch_dtype).reshape(shape)
106
+ if output_type == "pt":
107
+ if partial_postprocess:
108
+ if return_type == "pil":
109
+ output = [Image.fromarray(image.numpy()) for image in output_tensor]
110
+ if len(output) == 1:
111
+ output = output[0]
112
+ elif return_type == "pt":
113
+ output = output_tensor
114
+ else:
115
+ if processor is None or return_type == "pt":
116
+ output = output_tensor
117
+ else:
118
+ if isinstance(processor, VideoProcessor):
119
+ output = cast(
120
+ List[Image.Image],
121
+ processor.postprocess_video(output_tensor, output_type="pil")[0],
122
+ )
123
+ else:
124
+ output = cast(
125
+ Image.Image,
126
+ processor.postprocess(output_tensor, output_type="pil")[0],
127
+ )
128
+ elif output_type == "pil" and return_type == "pil" and processor is None:
129
+ output = Image.open(io.BytesIO(response.content)).convert("RGB")
130
+ detected_format = detect_image_type(response.content)
131
+ output.format = detected_format
132
+ elif output_type == "pil" and processor is not None:
133
+ if return_type == "pil":
134
+ output = [
135
+ Image.fromarray(image)
136
+ for image in (output_tensor.permute(0, 2, 3, 1).float().numpy() * 255).round().astype("uint8")
137
+ ]
138
+ elif return_type == "pt":
139
+ output = output_tensor
140
+ elif output_type == "mp4" and return_type == "mp4":
141
+ output = response.content
142
+ return output
143
+
144
+
145
+ def prepare_decode(
146
+ tensor: "torch.Tensor",
147
+ processor: Optional[Union["VaeImageProcessor", "VideoProcessor"]] = None,
148
+ do_scaling: bool = True,
149
+ scaling_factor: Optional[float] = None,
150
+ shift_factor: Optional[float] = None,
151
+ output_type: Literal["mp4", "pil", "pt"] = "pil",
152
+ image_format: Literal["png", "jpg"] = "jpg",
153
+ partial_postprocess: bool = False,
154
+ height: Optional[int] = None,
155
+ width: Optional[int] = None,
156
+ ):
157
+ headers = {}
158
+ parameters = {
159
+ "image_format": image_format,
160
+ "output_type": output_type,
161
+ "partial_postprocess": partial_postprocess,
162
+ "shape": list(tensor.shape),
163
+ "dtype": str(tensor.dtype).split(".")[-1],
164
+ }
165
+ if do_scaling and scaling_factor is not None:
166
+ parameters["scaling_factor"] = scaling_factor
167
+ if do_scaling and shift_factor is not None:
168
+ parameters["shift_factor"] = shift_factor
169
+ if do_scaling and scaling_factor is None:
170
+ parameters["do_scaling"] = do_scaling
171
+ elif do_scaling and scaling_factor is None and shift_factor is None:
172
+ parameters["do_scaling"] = do_scaling
173
+ if height is not None and width is not None:
174
+ parameters["height"] = height
175
+ parameters["width"] = width
176
+ headers["Content-Type"] = "tensor/binary"
177
+ headers["Accept"] = "tensor/binary"
178
+ if output_type == "pil" and image_format == "jpg" and processor is None:
179
+ headers["Accept"] = "image/jpeg"
180
+ elif output_type == "pil" and image_format == "png" and processor is None:
181
+ headers["Accept"] = "image/png"
182
+ elif output_type == "mp4":
183
+ headers["Accept"] = "text/plain"
184
+ tensor_data = safetensors.torch._tobytes(tensor, "tensor")
185
+ return {"data": tensor_data, "params": parameters, "headers": headers}
186
+
187
+
188
+ def remote_decode(
189
+ endpoint: str,
190
+ tensor: "torch.Tensor",
191
+ processor: Optional[Union["VaeImageProcessor", "VideoProcessor"]] = None,
192
+ do_scaling: bool = True,
193
+ scaling_factor: Optional[float] = None,
194
+ shift_factor: Optional[float] = None,
195
+ output_type: Literal["mp4", "pil", "pt"] = "pil",
196
+ return_type: Literal["mp4", "pil", "pt"] = "pil",
197
+ image_format: Literal["png", "jpg"] = "jpg",
198
+ partial_postprocess: bool = False,
199
+ input_tensor_type: Literal["binary"] = "binary",
200
+ output_tensor_type: Literal["binary"] = "binary",
201
+ height: Optional[int] = None,
202
+ width: Optional[int] = None,
203
+ ) -> Union[Image.Image, List[Image.Image], bytes, "torch.Tensor"]:
204
+ """
205
+ Hugging Face Hybrid Inference that allow running VAE decode remotely.
206
+
207
+ Args:
208
+ endpoint (`str`):
209
+ Endpoint for Remote Decode.
210
+ tensor (`torch.Tensor`):
211
+ Tensor to be decoded.
212
+ processor (`VaeImageProcessor` or `VideoProcessor`, *optional*):
213
+ Used with `return_type="pt"`, and `return_type="pil"` for Video models.
214
+ do_scaling (`bool`, default `True`, *optional*):
215
+ **DEPRECATED**. **pass `scaling_factor`/`shift_factor` instead.** **still set
216
+ do_scaling=None/do_scaling=False for no scaling until option is removed** When `True` scaling e.g. `latents
217
+ / self.vae.config.scaling_factor` is applied remotely. If `False`, input must be passed with scaling
218
+ applied.
219
+ scaling_factor (`float`, *optional*):
220
+ Scaling is applied when passed e.g. [`latents /
221
+ self.vae.config.scaling_factor`](https://github.com/huggingface/diffusers/blob/7007febae5cff000d4df9059d9cf35133e8b2ca9/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py#L1083C37-L1083C77).
222
+ - SD v1: 0.18215
223
+ - SD XL: 0.13025
224
+ - Flux: 0.3611
225
+ If `None`, input must be passed with scaling applied.
226
+ shift_factor (`float`, *optional*):
227
+ Shift is applied when passed e.g. `latents + self.vae.config.shift_factor`.
228
+ - Flux: 0.1159
229
+ If `None`, input must be passed with scaling applied.
230
+ output_type (`"mp4"` or `"pil"` or `"pt", default `"pil"):
231
+ **Endpoint** output type. Subject to change. Report feedback on preferred type.
232
+
233
+ `"mp4": Supported by video models. Endpoint returns `bytes` of video. `"pil"`: Supported by image and video
234
+ models.
235
+ Image models: Endpoint returns `bytes` of an image in `image_format`. Video models: Endpoint returns
236
+ `torch.Tensor` with partial `postprocessing` applied.
237
+ Requires `processor` as a flag (any `None` value will work).
238
+ `"pt"`: Support by image and video models. Endpoint returns `torch.Tensor`.
239
+ With `partial_postprocess=True` the tensor is postprocessed `uint8` image tensor.
240
+
241
+ Recommendations:
242
+ `"pt"` with `partial_postprocess=True` is the smallest transfer for full quality. `"pt"` with
243
+ `partial_postprocess=False` is the most compatible with third party code. `"pil"` with
244
+ `image_format="jpg"` is the smallest transfer overall.
245
+
246
+ return_type (`"mp4"` or `"pil"` or `"pt", default `"pil"):
247
+ **Function** return type.
248
+
249
+ `"mp4": Function returns `bytes` of video. `"pil"`: Function returns `PIL.Image.Image`.
250
+ With `output_type="pil" no further processing is applied. With `output_type="pt" a `PIL.Image.Image` is
251
+ created.
252
+ `partial_postprocess=False` `processor` is required. `partial_postprocess=True` `processor` is
253
+ **not** required.
254
+ `"pt"`: Function returns `torch.Tensor`.
255
+ `processor` is **not** required. `partial_postprocess=False` tensor is `float16` or `bfloat16`, without
256
+ denormalization. `partial_postprocess=True` tensor is `uint8`, denormalized.
257
+
258
+ image_format (`"png"` or `"jpg"`, default `jpg`):
259
+ Used with `output_type="pil"`. Endpoint returns `jpg` or `png`.
260
+
261
+ partial_postprocess (`bool`, default `False`):
262
+ Used with `output_type="pt"`. `partial_postprocess=False` tensor is `float16` or `bfloat16`, without
263
+ denormalization. `partial_postprocess=True` tensor is `uint8`, denormalized.
264
+
265
+ input_tensor_type (`"binary"`, default `"binary"`):
266
+ Tensor transfer type.
267
+
268
+ output_tensor_type (`"binary"`, default `"binary"`):
269
+ Tensor transfer type.
270
+
271
+ height (`int`, **optional**):
272
+ Required for `"packed"` latents.
273
+
274
+ width (`int`, **optional**):
275
+ Required for `"packed"` latents.
276
+
277
+ Returns:
278
+ output (`Image.Image` or `List[Image.Image]` or `bytes` or `torch.Tensor`).
279
+ """
280
+ if input_tensor_type == "base64":
281
+ deprecate(
282
+ "input_tensor_type='base64'",
283
+ "1.0.0",
284
+ "input_tensor_type='base64' is deprecated. Using `binary`.",
285
+ standard_warn=False,
286
+ )
287
+ input_tensor_type = "binary"
288
+ if output_tensor_type == "base64":
289
+ deprecate(
290
+ "output_tensor_type='base64'",
291
+ "1.0.0",
292
+ "output_tensor_type='base64' is deprecated. Using `binary`.",
293
+ standard_warn=False,
294
+ )
295
+ output_tensor_type = "binary"
296
+ check_inputs_decode(
297
+ endpoint,
298
+ tensor,
299
+ processor,
300
+ do_scaling,
301
+ scaling_factor,
302
+ shift_factor,
303
+ output_type,
304
+ return_type,
305
+ image_format,
306
+ partial_postprocess,
307
+ input_tensor_type,
308
+ output_tensor_type,
309
+ height,
310
+ width,
311
+ )
312
+ kwargs = prepare_decode(
313
+ tensor=tensor,
314
+ processor=processor,
315
+ do_scaling=do_scaling,
316
+ scaling_factor=scaling_factor,
317
+ shift_factor=shift_factor,
318
+ output_type=output_type,
319
+ image_format=image_format,
320
+ partial_postprocess=partial_postprocess,
321
+ height=height,
322
+ width=width,
323
+ )
324
+ response = requests.post(endpoint, **kwargs)
325
+ if not response.ok:
326
+ raise RuntimeError(response.json())
327
+ output = postprocess_decode(
328
+ response=response,
329
+ processor=processor,
330
+ output_type=output_type,
331
+ return_type=return_type,
332
+ partial_postprocess=partial_postprocess,
333
+ )
334
+ return output
335
+
336
+
337
+ def check_inputs_encode(
338
+ endpoint: str,
339
+ image: Union["torch.Tensor", Image.Image],
340
+ scaling_factor: Optional[float] = None,
341
+ shift_factor: Optional[float] = None,
342
+ ):
343
+ pass
344
+
345
+
346
+ def postprocess_encode(
347
+ response: requests.Response,
348
+ ):
349
+ output_tensor = response.content
350
+ parameters = response.headers
351
+ shape = json.loads(parameters["shape"])
352
+ dtype = parameters["dtype"]
353
+ torch_dtype = DTYPE_MAP[dtype]
354
+ output_tensor = torch.frombuffer(bytearray(output_tensor), dtype=torch_dtype).reshape(shape)
355
+ return output_tensor
356
+
357
+
358
+ def prepare_encode(
359
+ image: Union["torch.Tensor", Image.Image],
360
+ scaling_factor: Optional[float] = None,
361
+ shift_factor: Optional[float] = None,
362
+ ):
363
+ headers = {}
364
+ parameters = {}
365
+ if scaling_factor is not None:
366
+ parameters["scaling_factor"] = scaling_factor
367
+ if shift_factor is not None:
368
+ parameters["shift_factor"] = shift_factor
369
+ if isinstance(image, torch.Tensor):
370
+ data = safetensors.torch._tobytes(image.contiguous(), "tensor")
371
+ parameters["shape"] = list(image.shape)
372
+ parameters["dtype"] = str(image.dtype).split(".")[-1]
373
+ else:
374
+ buffer = io.BytesIO()
375
+ image.save(buffer, format="PNG")
376
+ data = buffer.getvalue()
377
+ return {"data": data, "params": parameters, "headers": headers}
378
+
379
+
380
+ def remote_encode(
381
+ endpoint: str,
382
+ image: Union["torch.Tensor", Image.Image],
383
+ scaling_factor: Optional[float] = None,
384
+ shift_factor: Optional[float] = None,
385
+ ) -> "torch.Tensor":
386
+ """
387
+ Hugging Face Hybrid Inference that allow running VAE encode remotely.
388
+
389
+ Args:
390
+ endpoint (`str`):
391
+ Endpoint for Remote Decode.
392
+ image (`torch.Tensor` or `PIL.Image.Image`):
393
+ Image to be encoded.
394
+ scaling_factor (`float`, *optional*):
395
+ Scaling is applied when passed e.g. [`latents * self.vae.config.scaling_factor`].
396
+ - SD v1: 0.18215
397
+ - SD XL: 0.13025
398
+ - Flux: 0.3611
399
+ If `None`, input must be passed with scaling applied.
400
+ shift_factor (`float`, *optional*):
401
+ Shift is applied when passed e.g. `latents - self.vae.config.shift_factor`.
402
+ - Flux: 0.1159
403
+ If `None`, input must be passed with scaling applied.
404
+
405
+ Returns:
406
+ output (`torch.Tensor`).
407
+ """
408
+ check_inputs_encode(
409
+ endpoint,
410
+ image,
411
+ scaling_factor,
412
+ shift_factor,
413
+ )
414
+ kwargs = prepare_encode(
415
+ image=image,
416
+ scaling_factor=scaling_factor,
417
+ shift_factor=shift_factor,
418
+ )
419
+ response = requests.post(endpoint, **kwargs)
420
+ if not response.ok:
421
+ raise RuntimeError(response.json())
422
+ output = postprocess_encode(
423
+ response=response,
424
+ )
425
+ return output
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/utils/source_code_parsing_utils.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import ast
2
+ import importlib
3
+ import inspect
4
+ import textwrap
5
+
6
+
7
+ class ReturnNameVisitor(ast.NodeVisitor):
8
+ """Thanks to ChatGPT for pairing."""
9
+
10
+ def __init__(self):
11
+ self.return_names = []
12
+
13
+ def visit_Return(self, node):
14
+ # Check if the return value is a tuple.
15
+ if isinstance(node.value, ast.Tuple):
16
+ for elt in node.value.elts:
17
+ if isinstance(elt, ast.Name):
18
+ self.return_names.append(elt.id)
19
+ else:
20
+ try:
21
+ self.return_names.append(ast.unparse(elt))
22
+ except Exception:
23
+ self.return_names.append(str(elt))
24
+ else:
25
+ if isinstance(node.value, ast.Name):
26
+ self.return_names.append(node.value.id)
27
+ else:
28
+ try:
29
+ self.return_names.append(ast.unparse(node.value))
30
+ except Exception:
31
+ self.return_names.append(str(node.value))
32
+ self.generic_visit(node)
33
+
34
+ def _determine_parent_module(self, cls):
35
+ from diffusers import DiffusionPipeline
36
+ from diffusers.models.modeling_utils import ModelMixin
37
+
38
+ if issubclass(cls, DiffusionPipeline):
39
+ return "pipelines"
40
+ elif issubclass(cls, ModelMixin):
41
+ return "models"
42
+ else:
43
+ raise NotImplementedError
44
+
45
+ def get_ast_tree(self, cls, attribute_name="encode_prompt"):
46
+ parent_module_name = self._determine_parent_module(cls)
47
+ main_module = importlib.import_module(f"diffusers.{parent_module_name}")
48
+ current_cls_module = getattr(main_module, cls.__name__)
49
+ source_code = inspect.getsource(getattr(current_cls_module, attribute_name))
50
+ source_code = textwrap.dedent(source_code)
51
+ tree = ast.parse(source_code)
52
+ return tree
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/utils/state_dict_utils.py ADDED
@@ -0,0 +1,366 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2025 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """
15
+ State dict utilities: utility methods for converting state dicts easily
16
+ """
17
+
18
+ import enum
19
+ import json
20
+
21
+ from .import_utils import is_torch_available
22
+ from .logging import get_logger
23
+
24
+
25
+ if is_torch_available():
26
+ import torch
27
+
28
+
29
+ logger = get_logger(__name__)
30
+
31
+
32
+ class StateDictType(enum.Enum):
33
+ """
34
+ The mode to use when converting state dicts.
35
+ """
36
+
37
+ DIFFUSERS_OLD = "diffusers_old"
38
+ KOHYA_SS = "kohya_ss"
39
+ PEFT = "peft"
40
+ DIFFUSERS = "diffusers"
41
+
42
+
43
+ # We need to define a proper mapping for Unet since it uses different output keys than text encoder
44
+ # e.g. to_q_lora -> q_proj / to_q
45
+ UNET_TO_DIFFUSERS = {
46
+ ".to_out_lora.up": ".to_out.0.lora_B",
47
+ ".to_out_lora.down": ".to_out.0.lora_A",
48
+ ".to_q_lora.down": ".to_q.lora_A",
49
+ ".to_q_lora.up": ".to_q.lora_B",
50
+ ".to_k_lora.down": ".to_k.lora_A",
51
+ ".to_k_lora.up": ".to_k.lora_B",
52
+ ".to_v_lora.down": ".to_v.lora_A",
53
+ ".to_v_lora.up": ".to_v.lora_B",
54
+ ".lora.up": ".lora_B",
55
+ ".lora.down": ".lora_A",
56
+ ".to_out.lora_magnitude_vector": ".to_out.0.lora_magnitude_vector",
57
+ }
58
+
59
+
60
+ DIFFUSERS_TO_PEFT = {
61
+ ".q_proj.lora_linear_layer.up": ".q_proj.lora_B",
62
+ ".q_proj.lora_linear_layer.down": ".q_proj.lora_A",
63
+ ".k_proj.lora_linear_layer.up": ".k_proj.lora_B",
64
+ ".k_proj.lora_linear_layer.down": ".k_proj.lora_A",
65
+ ".v_proj.lora_linear_layer.up": ".v_proj.lora_B",
66
+ ".v_proj.lora_linear_layer.down": ".v_proj.lora_A",
67
+ ".out_proj.lora_linear_layer.up": ".out_proj.lora_B",
68
+ ".out_proj.lora_linear_layer.down": ".out_proj.lora_A",
69
+ ".lora_linear_layer.up": ".lora_B",
70
+ ".lora_linear_layer.down": ".lora_A",
71
+ "text_projection.lora.down.weight": "text_projection.lora_A.weight",
72
+ "text_projection.lora.up.weight": "text_projection.lora_B.weight",
73
+ }
74
+
75
+ DIFFUSERS_OLD_TO_PEFT = {
76
+ ".to_q_lora.up": ".q_proj.lora_B",
77
+ ".to_q_lora.down": ".q_proj.lora_A",
78
+ ".to_k_lora.up": ".k_proj.lora_B",
79
+ ".to_k_lora.down": ".k_proj.lora_A",
80
+ ".to_v_lora.up": ".v_proj.lora_B",
81
+ ".to_v_lora.down": ".v_proj.lora_A",
82
+ ".to_out_lora.up": ".out_proj.lora_B",
83
+ ".to_out_lora.down": ".out_proj.lora_A",
84
+ ".lora_linear_layer.up": ".lora_B",
85
+ ".lora_linear_layer.down": ".lora_A",
86
+ }
87
+
88
+ PEFT_TO_DIFFUSERS = {
89
+ ".q_proj.lora_B": ".q_proj.lora_linear_layer.up",
90
+ ".q_proj.lora_A": ".q_proj.lora_linear_layer.down",
91
+ ".k_proj.lora_B": ".k_proj.lora_linear_layer.up",
92
+ ".k_proj.lora_A": ".k_proj.lora_linear_layer.down",
93
+ ".v_proj.lora_B": ".v_proj.lora_linear_layer.up",
94
+ ".v_proj.lora_A": ".v_proj.lora_linear_layer.down",
95
+ ".out_proj.lora_B": ".out_proj.lora_linear_layer.up",
96
+ ".out_proj.lora_A": ".out_proj.lora_linear_layer.down",
97
+ "to_k.lora_A": "to_k.lora.down",
98
+ "to_k.lora_B": "to_k.lora.up",
99
+ "to_q.lora_A": "to_q.lora.down",
100
+ "to_q.lora_B": "to_q.lora.up",
101
+ "to_v.lora_A": "to_v.lora.down",
102
+ "to_v.lora_B": "to_v.lora.up",
103
+ "to_out.0.lora_A": "to_out.0.lora.down",
104
+ "to_out.0.lora_B": "to_out.0.lora.up",
105
+ }
106
+
107
+ DIFFUSERS_OLD_TO_DIFFUSERS = {
108
+ ".to_q_lora.up": ".q_proj.lora_linear_layer.up",
109
+ ".to_q_lora.down": ".q_proj.lora_linear_layer.down",
110
+ ".to_k_lora.up": ".k_proj.lora_linear_layer.up",
111
+ ".to_k_lora.down": ".k_proj.lora_linear_layer.down",
112
+ ".to_v_lora.up": ".v_proj.lora_linear_layer.up",
113
+ ".to_v_lora.down": ".v_proj.lora_linear_layer.down",
114
+ ".to_out_lora.up": ".out_proj.lora_linear_layer.up",
115
+ ".to_out_lora.down": ".out_proj.lora_linear_layer.down",
116
+ ".to_k.lora_magnitude_vector": ".k_proj.lora_magnitude_vector",
117
+ ".to_v.lora_magnitude_vector": ".v_proj.lora_magnitude_vector",
118
+ ".to_q.lora_magnitude_vector": ".q_proj.lora_magnitude_vector",
119
+ ".to_out.lora_magnitude_vector": ".out_proj.lora_magnitude_vector",
120
+ }
121
+
122
+ PEFT_TO_KOHYA_SS = {
123
+ "lora_A": "lora_down",
124
+ "lora_B": "lora_up",
125
+ # This is not a comprehensive dict as kohya format requires replacing `.` with `_` in keys,
126
+ # adding prefixes and adding alpha values
127
+ # Check `convert_state_dict_to_kohya` for more
128
+ }
129
+
130
+ PEFT_STATE_DICT_MAPPINGS = {
131
+ StateDictType.DIFFUSERS_OLD: DIFFUSERS_OLD_TO_PEFT,
132
+ StateDictType.DIFFUSERS: DIFFUSERS_TO_PEFT,
133
+ }
134
+
135
+ DIFFUSERS_STATE_DICT_MAPPINGS = {
136
+ StateDictType.DIFFUSERS_OLD: DIFFUSERS_OLD_TO_DIFFUSERS,
137
+ StateDictType.PEFT: PEFT_TO_DIFFUSERS,
138
+ }
139
+
140
+ KOHYA_STATE_DICT_MAPPINGS = {StateDictType.PEFT: PEFT_TO_KOHYA_SS}
141
+
142
+ KEYS_TO_ALWAYS_REPLACE = {
143
+ ".processor.": ".",
144
+ }
145
+
146
+
147
+ def convert_state_dict(state_dict, mapping):
148
+ r"""
149
+ Simply iterates over the state dict and replaces the patterns in `mapping` with the corresponding values.
150
+
151
+ Args:
152
+ state_dict (`dict[str, torch.Tensor]`):
153
+ The state dict to convert.
154
+ mapping (`dict[str, str]`):
155
+ The mapping to use for conversion, the mapping should be a dictionary with the following structure:
156
+ - key: the pattern to replace
157
+ - value: the pattern to replace with
158
+
159
+ Returns:
160
+ converted_state_dict (`dict`)
161
+ The converted state dict.
162
+ """
163
+ converted_state_dict = {}
164
+ for k, v in state_dict.items():
165
+ # First, filter out the keys that we always want to replace
166
+ for pattern in KEYS_TO_ALWAYS_REPLACE.keys():
167
+ if pattern in k:
168
+ new_pattern = KEYS_TO_ALWAYS_REPLACE[pattern]
169
+ k = k.replace(pattern, new_pattern)
170
+
171
+ for pattern in mapping.keys():
172
+ if pattern in k:
173
+ new_pattern = mapping[pattern]
174
+ k = k.replace(pattern, new_pattern)
175
+ break
176
+ converted_state_dict[k] = v
177
+ return converted_state_dict
178
+
179
+
180
+ def convert_state_dict_to_peft(state_dict, original_type=None, **kwargs):
181
+ r"""
182
+ Converts a state dict to the PEFT format The state dict can be from previous diffusers format (`OLD_DIFFUSERS`), or
183
+ new diffusers format (`DIFFUSERS`). The method only supports the conversion from diffusers old/new to PEFT for now.
184
+
185
+ Args:
186
+ state_dict (`dict[str, torch.Tensor]`):
187
+ The state dict to convert.
188
+ original_type (`StateDictType`, *optional*):
189
+ The original type of the state dict, if not provided, the method will try to infer it automatically.
190
+ """
191
+ if original_type is None:
192
+ # Old diffusers to PEFT
193
+ if any("to_out_lora" in k for k in state_dict.keys()):
194
+ original_type = StateDictType.DIFFUSERS_OLD
195
+ elif any("lora_linear_layer" in k for k in state_dict.keys()):
196
+ original_type = StateDictType.DIFFUSERS
197
+ else:
198
+ raise ValueError("Could not automatically infer state dict type")
199
+
200
+ if original_type not in PEFT_STATE_DICT_MAPPINGS.keys():
201
+ raise ValueError(f"Original type {original_type} is not supported")
202
+
203
+ mapping = PEFT_STATE_DICT_MAPPINGS[original_type]
204
+ return convert_state_dict(state_dict, mapping)
205
+
206
+
207
+ def convert_state_dict_to_diffusers(state_dict, original_type=None, **kwargs):
208
+ r"""
209
+ Converts a state dict to new diffusers format. The state dict can be from previous diffusers format
210
+ (`OLD_DIFFUSERS`), or PEFT format (`PEFT`) or new diffusers format (`DIFFUSERS`). In the last case the method will
211
+ return the state dict as is.
212
+
213
+ The method only supports the conversion from diffusers old, PEFT to diffusers new for now.
214
+
215
+ Args:
216
+ state_dict (`dict[str, torch.Tensor]`):
217
+ The state dict to convert.
218
+ original_type (`StateDictType`, *optional*):
219
+ The original type of the state dict, if not provided, the method will try to infer it automatically.
220
+ kwargs (`dict`, *args*):
221
+ Additional arguments to pass to the method.
222
+
223
+ - **adapter_name**: For example, in case of PEFT, some keys will be prepended
224
+ with the adapter name, therefore needs a special handling. By default PEFT also takes care of that in
225
+ `get_peft_model_state_dict` method:
226
+ https://github.com/huggingface/peft/blob/ba0477f2985b1ba311b83459d29895c809404e99/src/peft/utils/save_and_load.py#L92
227
+ but we add it here in case we don't want to rely on that method.
228
+ """
229
+ peft_adapter_name = kwargs.pop("adapter_name", None)
230
+ if peft_adapter_name is not None:
231
+ peft_adapter_name = "." + peft_adapter_name
232
+ else:
233
+ peft_adapter_name = ""
234
+
235
+ if original_type is None:
236
+ # Old diffusers to PEFT
237
+ if any("to_out_lora" in k for k in state_dict.keys()):
238
+ original_type = StateDictType.DIFFUSERS_OLD
239
+ elif any(f".lora_A{peft_adapter_name}.weight" in k for k in state_dict.keys()):
240
+ original_type = StateDictType.PEFT
241
+ elif any("lora_linear_layer" in k for k in state_dict.keys()):
242
+ # nothing to do
243
+ return state_dict
244
+ else:
245
+ raise ValueError("Could not automatically infer state dict type")
246
+
247
+ if original_type not in DIFFUSERS_STATE_DICT_MAPPINGS.keys():
248
+ raise ValueError(f"Original type {original_type} is not supported")
249
+
250
+ mapping = DIFFUSERS_STATE_DICT_MAPPINGS[original_type]
251
+ return convert_state_dict(state_dict, mapping)
252
+
253
+
254
+ def convert_unet_state_dict_to_peft(state_dict):
255
+ r"""
256
+ Converts a state dict from UNet format to diffusers format - i.e. by removing some keys
257
+ """
258
+ mapping = UNET_TO_DIFFUSERS
259
+ return convert_state_dict(state_dict, mapping)
260
+
261
+
262
+ def convert_all_state_dict_to_peft(state_dict):
263
+ r"""
264
+ Attempts to first `convert_state_dict_to_peft`, and if it doesn't detect `lora_linear_layer` for a valid
265
+ `DIFFUSERS` LoRA for example, attempts to exclusively convert the Unet `convert_unet_state_dict_to_peft`
266
+ """
267
+ try:
268
+ peft_dict = convert_state_dict_to_peft(state_dict)
269
+ except Exception as e:
270
+ if str(e) == "Could not automatically infer state dict type":
271
+ peft_dict = convert_unet_state_dict_to_peft(state_dict)
272
+ else:
273
+ raise
274
+
275
+ if not any("lora_A" in key or "lora_B" in key for key in peft_dict.keys()):
276
+ raise ValueError("Your LoRA was not converted to PEFT")
277
+
278
+ return peft_dict
279
+
280
+
281
+ def convert_state_dict_to_kohya(state_dict, original_type=None, **kwargs):
282
+ r"""
283
+ Converts a `PEFT` state dict to `Kohya` format that can be used in AUTOMATIC1111, ComfyUI, SD.Next, InvokeAI, etc.
284
+ The method only supports the conversion from PEFT to Kohya for now.
285
+
286
+ Args:
287
+ state_dict (`dict[str, torch.Tensor]`):
288
+ The state dict to convert.
289
+ original_type (`StateDictType`, *optional*):
290
+ The original type of the state dict, if not provided, the method will try to infer it automatically.
291
+ kwargs (`dict`, *args*):
292
+ Additional arguments to pass to the method.
293
+
294
+ - **adapter_name**: For example, in case of PEFT, some keys will be prepended
295
+ with the adapter name, therefore needs a special handling. By default PEFT also takes care of that in
296
+ `get_peft_model_state_dict` method:
297
+ https://github.com/huggingface/peft/blob/ba0477f2985b1ba311b83459d29895c809404e99/src/peft/utils/save_and_load.py#L92
298
+ but we add it here in case we don't want to rely on that method.
299
+ """
300
+ try:
301
+ import torch
302
+ except ImportError:
303
+ logger.error("Converting PEFT state dicts to Kohya requires torch to be installed.")
304
+ raise
305
+
306
+ peft_adapter_name = kwargs.pop("adapter_name", None)
307
+ if peft_adapter_name is not None:
308
+ peft_adapter_name = "." + peft_adapter_name
309
+ else:
310
+ peft_adapter_name = ""
311
+
312
+ if original_type is None:
313
+ if any(f".lora_A{peft_adapter_name}.weight" in k for k in state_dict.keys()):
314
+ original_type = StateDictType.PEFT
315
+
316
+ if original_type not in KOHYA_STATE_DICT_MAPPINGS.keys():
317
+ raise ValueError(f"Original type {original_type} is not supported")
318
+
319
+ # Use the convert_state_dict function with the appropriate mapping
320
+ kohya_ss_partial_state_dict = convert_state_dict(state_dict, KOHYA_STATE_DICT_MAPPINGS[StateDictType.PEFT])
321
+ kohya_ss_state_dict = {}
322
+
323
+ # Additional logic for replacing header, alpha parameters `.` with `_` in all keys
324
+ for kohya_key, weight in kohya_ss_partial_state_dict.items():
325
+ if "text_encoder_2." in kohya_key:
326
+ kohya_key = kohya_key.replace("text_encoder_2.", "lora_te2.")
327
+ elif "text_encoder." in kohya_key:
328
+ kohya_key = kohya_key.replace("text_encoder.", "lora_te1.")
329
+ elif "unet" in kohya_key:
330
+ kohya_key = kohya_key.replace("unet", "lora_unet")
331
+ elif "lora_magnitude_vector" in kohya_key:
332
+ kohya_key = kohya_key.replace("lora_magnitude_vector", "dora_scale")
333
+
334
+ kohya_key = kohya_key.replace(".", "_", kohya_key.count(".") - 2)
335
+ kohya_key = kohya_key.replace(peft_adapter_name, "") # Kohya doesn't take names
336
+ kohya_ss_state_dict[kohya_key] = weight
337
+ if "lora_down" in kohya_key:
338
+ alpha_key = f"{kohya_key.split('.')[0]}.alpha"
339
+ kohya_ss_state_dict[alpha_key] = torch.tensor(len(weight))
340
+
341
+ return kohya_ss_state_dict
342
+
343
+
344
+ def state_dict_all_zero(state_dict, filter_str=None):
345
+ if filter_str is not None:
346
+ if isinstance(filter_str, str):
347
+ filter_str = [filter_str]
348
+ state_dict = {k: v for k, v in state_dict.items() if any(f in k for f in filter_str)}
349
+
350
+ return all(torch.all(param == 0).item() for param in state_dict.values())
351
+
352
+
353
+ def _load_sft_state_dict_metadata(model_file: str):
354
+ import safetensors.torch
355
+
356
+ from ..loaders.lora_base import LORA_ADAPTER_METADATA_KEY
357
+
358
+ with safetensors.torch.safe_open(model_file, framework="pt", device="cpu") as f:
359
+ metadata = f.metadata() or {}
360
+
361
+ metadata.pop("format", None)
362
+ if metadata:
363
+ raw = metadata.get(LORA_ADAPTER_METADATA_KEY)
364
+ return json.loads(raw) if raw else None
365
+ else:
366
+ return None
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/utils/testing_utils.py ADDED
@@ -0,0 +1,1601 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import functools
2
+ import glob
3
+ import importlib
4
+ import importlib.metadata
5
+ import inspect
6
+ import io
7
+ import logging
8
+ import multiprocessing
9
+ import os
10
+ import random
11
+ import re
12
+ import struct
13
+ import sys
14
+ import tempfile
15
+ import time
16
+ import unittest
17
+ import urllib.parse
18
+ from collections import UserDict
19
+ from contextlib import contextmanager
20
+ from io import BytesIO, StringIO
21
+ from pathlib import Path
22
+ from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Set, Tuple, Union
23
+
24
+ import numpy as np
25
+ import PIL.Image
26
+ import PIL.ImageOps
27
+ import requests
28
+ from numpy.linalg import norm
29
+ from packaging import version
30
+
31
+ from .constants import DIFFUSERS_REQUEST_TIMEOUT
32
+ from .import_utils import (
33
+ BACKENDS_MAPPING,
34
+ is_accelerate_available,
35
+ is_bitsandbytes_available,
36
+ is_compel_available,
37
+ is_flax_available,
38
+ is_gguf_available,
39
+ is_kernels_available,
40
+ is_note_seq_available,
41
+ is_onnx_available,
42
+ is_opencv_available,
43
+ is_optimum_quanto_available,
44
+ is_peft_available,
45
+ is_timm_available,
46
+ is_torch_available,
47
+ is_torch_version,
48
+ is_torchao_available,
49
+ is_torchsde_available,
50
+ is_transformers_available,
51
+ )
52
+ from .logging import get_logger
53
+
54
+
55
+ if is_torch_available():
56
+ import torch
57
+
58
+ IS_ROCM_SYSTEM = torch.version.hip is not None
59
+ IS_CUDA_SYSTEM = torch.version.cuda is not None
60
+ IS_XPU_SYSTEM = getattr(torch.version, "xpu", None) is not None
61
+ else:
62
+ IS_ROCM_SYSTEM = False
63
+ IS_CUDA_SYSTEM = False
64
+ IS_XPU_SYSTEM = False
65
+
66
+ global_rng = random.Random()
67
+
68
+ logger = get_logger(__name__)
69
+ logger.warning(
70
+ "diffusers.utils.testing_utils' is deprecated and will be removed in a future version. "
71
+ "Determinism and device backend utilities have been moved to `diffusers.utils.torch_utils`. "
72
+ )
73
+ _required_peft_version = is_peft_available() and version.parse(
74
+ version.parse(importlib.metadata.version("peft")).base_version
75
+ ) > version.parse("0.5")
76
+ _required_transformers_version = is_transformers_available() and version.parse(
77
+ version.parse(importlib.metadata.version("transformers")).base_version
78
+ ) > version.parse("4.33")
79
+
80
+ USE_PEFT_BACKEND = _required_peft_version and _required_transformers_version
81
+ BIG_GPU_MEMORY = int(os.getenv("BIG_GPU_MEMORY", 40))
82
+
83
+ if is_torch_available():
84
+ import torch
85
+
86
+ # Set a backend environment variable for any extra module import required for a custom accelerator
87
+ if "DIFFUSERS_TEST_BACKEND" in os.environ:
88
+ backend = os.environ["DIFFUSERS_TEST_BACKEND"]
89
+ try:
90
+ _ = importlib.import_module(backend)
91
+ except ModuleNotFoundError as e:
92
+ raise ModuleNotFoundError(
93
+ f"Failed to import `DIFFUSERS_TEST_BACKEND` '{backend}'! This should be the name of an installed module \
94
+ to enable a specified backend.):\n{e}"
95
+ ) from e
96
+
97
+ if "DIFFUSERS_TEST_DEVICE" in os.environ:
98
+ torch_device = os.environ["DIFFUSERS_TEST_DEVICE"]
99
+ try:
100
+ # try creating device to see if provided device is valid
101
+ _ = torch.device(torch_device)
102
+ except RuntimeError as e:
103
+ raise RuntimeError(
104
+ f"Unknown testing device specified by environment variable `DIFFUSERS_TEST_DEVICE`: {torch_device}"
105
+ ) from e
106
+ logger.info(f"torch_device overrode to {torch_device}")
107
+ else:
108
+ if torch.cuda.is_available():
109
+ torch_device = "cuda"
110
+ elif torch.xpu.is_available():
111
+ torch_device = "xpu"
112
+ else:
113
+ torch_device = "cpu"
114
+ is_torch_higher_equal_than_1_12 = version.parse(
115
+ version.parse(torch.__version__).base_version
116
+ ) >= version.parse("1.12")
117
+
118
+ if is_torch_higher_equal_than_1_12:
119
+ # Some builds of torch 1.12 don't have the mps backend registered. See #892 for more details
120
+ mps_backend_registered = hasattr(torch.backends, "mps")
121
+ torch_device = "mps" if (mps_backend_registered and torch.backends.mps.is_available()) else torch_device
122
+
123
+ from .torch_utils import get_torch_cuda_device_capability
124
+
125
+
126
+ def torch_all_close(a, b, *args, **kwargs):
127
+ if not is_torch_available():
128
+ raise ValueError("PyTorch needs to be installed to use this function.")
129
+ if not torch.allclose(a, b, *args, **kwargs):
130
+ assert False, f"Max diff is absolute {(a - b).abs().max()}. Diff tensor is {(a - b).abs()}."
131
+ return True
132
+
133
+
134
+ def numpy_cosine_similarity_distance(a, b):
135
+ similarity = np.dot(a, b) / (norm(a) * norm(b))
136
+ distance = 1.0 - similarity.mean()
137
+
138
+ return distance
139
+
140
+
141
+ def check_if_dicts_are_equal(dict1, dict2):
142
+ dict1, dict2 = dict1.copy(), dict2.copy()
143
+
144
+ for key, value in dict1.items():
145
+ if isinstance(value, set):
146
+ dict1[key] = sorted(value)
147
+ for key, value in dict2.items():
148
+ if isinstance(value, set):
149
+ dict2[key] = sorted(value)
150
+
151
+ for key in dict1:
152
+ if key not in dict2:
153
+ return False
154
+ if dict1[key] != dict2[key]:
155
+ return False
156
+
157
+ for key in dict2:
158
+ if key not in dict1:
159
+ return False
160
+
161
+ return True
162
+
163
+
164
+ def print_tensor_test(
165
+ tensor,
166
+ limit_to_slices=None,
167
+ max_torch_print=None,
168
+ filename="test_corrections.txt",
169
+ expected_tensor_name="expected_slice",
170
+ ):
171
+ if max_torch_print:
172
+ torch.set_printoptions(threshold=10_000)
173
+
174
+ test_name = os.environ.get("PYTEST_CURRENT_TEST")
175
+ if not torch.is_tensor(tensor):
176
+ tensor = torch.from_numpy(tensor)
177
+ if limit_to_slices:
178
+ tensor = tensor[0, -3:, -3:, -1]
179
+
180
+ tensor_str = str(tensor.detach().cpu().flatten().to(torch.float32)).replace("\n", "")
181
+ # format is usually:
182
+ # expected_slice = np.array([-0.5713, -0.3018, -0.9814, 0.04663, -0.879, 0.76, -1.734, 0.1044, 1.161])
183
+ output_str = tensor_str.replace("tensor", f"{expected_tensor_name} = np.array")
184
+ test_file, test_class, test_fn = test_name.split("::")
185
+ test_fn = test_fn.split()[0]
186
+ with open(filename, "a") as f:
187
+ print("::".join([test_file, test_class, test_fn, output_str]), file=f)
188
+
189
+
190
+ def get_tests_dir(append_path=None):
191
+ """
192
+ Args:
193
+ append_path: optional path to append to the tests dir path
194
+ Return:
195
+ The full path to the `tests` dir, so that the tests can be invoked from anywhere. Optionally `append_path` is
196
+ joined after the `tests` dir the former is provided.
197
+ """
198
+ # this function caller's __file__
199
+ caller__file__ = inspect.stack()[1][1]
200
+ tests_dir = os.path.abspath(os.path.dirname(caller__file__))
201
+
202
+ while not tests_dir.endswith("tests"):
203
+ tests_dir = os.path.dirname(tests_dir)
204
+
205
+ if append_path:
206
+ return Path(tests_dir, append_path).as_posix()
207
+ else:
208
+ return tests_dir
209
+
210
+
211
+ # Taken from the following PR:
212
+ # https://github.com/huggingface/accelerate/pull/1964
213
+ def str_to_bool(value) -> int:
214
+ """
215
+ Converts a string representation of truth to `True` (1) or `False` (0). True values are `y`, `yes`, `t`, `true`,
216
+ `on`, and `1`; False value are `n`, `no`, `f`, `false`, `off`, and `0`;
217
+ """
218
+ value = value.lower()
219
+ if value in ("y", "yes", "t", "true", "on", "1"):
220
+ return 1
221
+ elif value in ("n", "no", "f", "false", "off", "0"):
222
+ return 0
223
+ else:
224
+ raise ValueError(f"invalid truth value {value}")
225
+
226
+
227
+ def parse_flag_from_env(key, default=False):
228
+ try:
229
+ value = os.environ[key]
230
+ except KeyError:
231
+ # KEY isn't set, default to `default`.
232
+ _value = default
233
+ else:
234
+ # KEY is set, convert it to True or False.
235
+ try:
236
+ _value = str_to_bool(value)
237
+ except ValueError:
238
+ # More values are supported, but let's keep the message simple.
239
+ raise ValueError(f"If set, {key} must be yes or no.")
240
+ return _value
241
+
242
+
243
+ _run_slow_tests = parse_flag_from_env("RUN_SLOW", default=False)
244
+ _run_nightly_tests = parse_flag_from_env("RUN_NIGHTLY", default=False)
245
+ _run_compile_tests = parse_flag_from_env("RUN_COMPILE", default=False)
246
+
247
+
248
+ def floats_tensor(shape, scale=1.0, rng=None, name=None):
249
+ """Creates a random float32 tensor"""
250
+ if rng is None:
251
+ rng = global_rng
252
+
253
+ total_dims = 1
254
+ for dim in shape:
255
+ total_dims *= dim
256
+
257
+ values = []
258
+ for _ in range(total_dims):
259
+ values.append(rng.random() * scale)
260
+
261
+ return torch.tensor(data=values, dtype=torch.float).view(shape).contiguous()
262
+
263
+
264
+ def slow(test_case):
265
+ """
266
+ Decorator marking a test as slow.
267
+
268
+ Slow tests are skipped by default. Set the RUN_SLOW environment variable to a truthy value to run them.
269
+
270
+ """
271
+ return unittest.skipUnless(_run_slow_tests, "test is slow")(test_case)
272
+
273
+
274
+ def nightly(test_case):
275
+ """
276
+ Decorator marking a test that runs nightly in the diffusers CI.
277
+
278
+ Slow tests are skipped by default. Set the RUN_NIGHTLY environment variable to a truthy value to run them.
279
+
280
+ """
281
+ return unittest.skipUnless(_run_nightly_tests, "test is nightly")(test_case)
282
+
283
+
284
+ def is_torch_compile(test_case):
285
+ """
286
+ Decorator marking a test that runs compile tests in the diffusers CI.
287
+
288
+ Compile tests are skipped by default. Set the RUN_COMPILE environment variable to a truthy value to run them.
289
+
290
+ """
291
+ return unittest.skipUnless(_run_compile_tests, "test is torch compile")(test_case)
292
+
293
+
294
+ def require_torch(test_case):
295
+ """
296
+ Decorator marking a test that requires PyTorch. These tests are skipped when PyTorch isn't installed.
297
+ """
298
+ return unittest.skipUnless(is_torch_available(), "test requires PyTorch")(test_case)
299
+
300
+
301
+ def require_torch_2(test_case):
302
+ """
303
+ Decorator marking a test that requires PyTorch 2. These tests are skipped when it isn't installed.
304
+ """
305
+ return unittest.skipUnless(is_torch_available() and is_torch_version(">=", "2.0.0"), "test requires PyTorch 2")(
306
+ test_case
307
+ )
308
+
309
+
310
+ def require_torch_version_greater_equal(torch_version):
311
+ """Decorator marking a test that requires torch with a specific version or greater."""
312
+
313
+ def decorator(test_case):
314
+ correct_torch_version = is_torch_available() and is_torch_version(">=", torch_version)
315
+ return unittest.skipUnless(
316
+ correct_torch_version, f"test requires torch with the version greater than or equal to {torch_version}"
317
+ )(test_case)
318
+
319
+ return decorator
320
+
321
+
322
+ def require_torch_version_greater(torch_version):
323
+ """Decorator marking a test that requires torch with a specific version greater."""
324
+
325
+ def decorator(test_case):
326
+ correct_torch_version = is_torch_available() and is_torch_version(">", torch_version)
327
+ return unittest.skipUnless(
328
+ correct_torch_version, f"test requires torch with the version greater than {torch_version}"
329
+ )(test_case)
330
+
331
+ return decorator
332
+
333
+
334
+ def require_torch_gpu(test_case):
335
+ """Decorator marking a test that requires CUDA and PyTorch."""
336
+ return unittest.skipUnless(is_torch_available() and torch_device == "cuda", "test requires PyTorch+CUDA")(
337
+ test_case
338
+ )
339
+
340
+
341
+ def require_torch_cuda_compatibility(expected_compute_capability):
342
+ def decorator(test_case):
343
+ if torch.cuda.is_available():
344
+ current_compute_capability = get_torch_cuda_device_capability()
345
+ return unittest.skipUnless(
346
+ float(current_compute_capability) == float(expected_compute_capability),
347
+ "Test not supported for this compute capability.",
348
+ )
349
+
350
+ return decorator
351
+
352
+
353
+ # These decorators are for accelerator-specific behaviours that are not GPU-specific
354
+ def require_torch_accelerator(test_case):
355
+ """Decorator marking a test that requires an accelerator backend and PyTorch."""
356
+ return unittest.skipUnless(is_torch_available() and torch_device != "cpu", "test requires accelerator+PyTorch")(
357
+ test_case
358
+ )
359
+
360
+
361
+ def require_torch_multi_gpu(test_case):
362
+ """
363
+ Decorator marking a test that requires a multi-GPU setup (in PyTorch). These tests are skipped on a machine without
364
+ multiple GPUs. To run *only* the multi_gpu tests, assuming all test names contain multi_gpu: $ pytest -sv ./tests
365
+ -k "multi_gpu"
366
+ """
367
+ if not is_torch_available():
368
+ return unittest.skip("test requires PyTorch")(test_case)
369
+
370
+ import torch
371
+
372
+ return unittest.skipUnless(torch.cuda.device_count() > 1, "test requires multiple GPUs")(test_case)
373
+
374
+
375
+ def require_torch_multi_accelerator(test_case):
376
+ """
377
+ Decorator marking a test that requires a multi-accelerator setup (in PyTorch). These tests are skipped on a machine
378
+ without multiple hardware accelerators.
379
+ """
380
+ if not is_torch_available():
381
+ return unittest.skip("test requires PyTorch")(test_case)
382
+
383
+ import torch
384
+
385
+ return unittest.skipUnless(
386
+ torch.cuda.device_count() > 1 or torch.xpu.device_count() > 1, "test requires multiple hardware accelerators"
387
+ )(test_case)
388
+
389
+
390
+ def require_torch_accelerator_with_fp16(test_case):
391
+ """Decorator marking a test that requires an accelerator with support for the FP16 data type."""
392
+ return unittest.skipUnless(_is_torch_fp16_available(torch_device), "test requires accelerator with fp16 support")(
393
+ test_case
394
+ )
395
+
396
+
397
+ def require_torch_accelerator_with_fp64(test_case):
398
+ """Decorator marking a test that requires an accelerator with support for the FP64 data type."""
399
+ return unittest.skipUnless(_is_torch_fp64_available(torch_device), "test requires accelerator with fp64 support")(
400
+ test_case
401
+ )
402
+
403
+
404
+ def require_big_gpu_with_torch_cuda(test_case):
405
+ """
406
+ Decorator marking a test that requires a bigger GPU (24GB) for execution. Some example pipelines: Flux, SD3, Cog,
407
+ etc.
408
+ """
409
+ if not is_torch_available():
410
+ return unittest.skip("test requires PyTorch")(test_case)
411
+
412
+ import torch
413
+
414
+ if not torch.cuda.is_available():
415
+ return unittest.skip("test requires PyTorch CUDA")(test_case)
416
+
417
+ device_properties = torch.cuda.get_device_properties(0)
418
+ total_memory = device_properties.total_memory / (1024**3)
419
+ return unittest.skipUnless(
420
+ total_memory >= BIG_GPU_MEMORY, f"test requires a GPU with at least {BIG_GPU_MEMORY} GB memory"
421
+ )(test_case)
422
+
423
+
424
+ def require_big_accelerator(test_case):
425
+ """
426
+ Decorator marking a test that requires a bigger hardware accelerator (24GB) for execution. Some example pipelines:
427
+ Flux, SD3, Cog, etc.
428
+ """
429
+ import pytest
430
+
431
+ test_case = pytest.mark.big_accelerator(test_case)
432
+
433
+ if not is_torch_available():
434
+ return unittest.skip("test requires PyTorch")(test_case)
435
+
436
+ import torch
437
+
438
+ if not (torch.cuda.is_available() or torch.xpu.is_available()):
439
+ return unittest.skip("test requires PyTorch CUDA")(test_case)
440
+
441
+ if torch.xpu.is_available():
442
+ device_properties = torch.xpu.get_device_properties(0)
443
+ else:
444
+ device_properties = torch.cuda.get_device_properties(0)
445
+
446
+ total_memory = device_properties.total_memory / (1024**3)
447
+ return unittest.skipUnless(
448
+ total_memory >= BIG_GPU_MEMORY,
449
+ f"test requires a hardware accelerator with at least {BIG_GPU_MEMORY} GB memory",
450
+ )(test_case)
451
+
452
+
453
+ def require_torch_accelerator_with_training(test_case):
454
+ """Decorator marking a test that requires an accelerator with support for training."""
455
+ return unittest.skipUnless(
456
+ is_torch_available() and backend_supports_training(torch_device),
457
+ "test requires accelerator with training support",
458
+ )(test_case)
459
+
460
+
461
+ def skip_mps(test_case):
462
+ """Decorator marking a test to skip if torch_device is 'mps'"""
463
+ return unittest.skipUnless(torch_device != "mps", "test requires non 'mps' device")(test_case)
464
+
465
+
466
+ def require_flax(test_case):
467
+ """
468
+ Decorator marking a test that requires JAX & Flax. These tests are skipped when one / both are not installed
469
+ """
470
+ return unittest.skipUnless(is_flax_available(), "test requires JAX & Flax")(test_case)
471
+
472
+
473
+ def require_compel(test_case):
474
+ """
475
+ Decorator marking a test that requires compel: https://github.com/damian0815/compel. These tests are skipped when
476
+ the library is not installed.
477
+ """
478
+ return unittest.skipUnless(is_compel_available(), "test requires compel")(test_case)
479
+
480
+
481
+ def require_onnxruntime(test_case):
482
+ """
483
+ Decorator marking a test that requires onnxruntime. These tests are skipped when onnxruntime isn't installed.
484
+ """
485
+ return unittest.skipUnless(is_onnx_available(), "test requires onnxruntime")(test_case)
486
+
487
+
488
+ def require_note_seq(test_case):
489
+ """
490
+ Decorator marking a test that requires note_seq. These tests are skipped when note_seq isn't installed.
491
+ """
492
+ return unittest.skipUnless(is_note_seq_available(), "test requires note_seq")(test_case)
493
+
494
+
495
+ def require_accelerator(test_case):
496
+ """
497
+ Decorator marking a test that requires a hardware accelerator backend. These tests are skipped when there are no
498
+ hardware accelerator available.
499
+ """
500
+ return unittest.skipUnless(torch_device != "cpu", "test requires a hardware accelerator")(test_case)
501
+
502
+
503
+ def require_torchsde(test_case):
504
+ """
505
+ Decorator marking a test that requires torchsde. These tests are skipped when torchsde isn't installed.
506
+ """
507
+ return unittest.skipUnless(is_torchsde_available(), "test requires torchsde")(test_case)
508
+
509
+
510
+ def require_peft_backend(test_case):
511
+ """
512
+ Decorator marking a test that requires PEFT backend, this would require some specific versions of PEFT and
513
+ transformers.
514
+ """
515
+ return unittest.skipUnless(USE_PEFT_BACKEND, "test requires PEFT backend")(test_case)
516
+
517
+
518
+ def require_timm(test_case):
519
+ """
520
+ Decorator marking a test that requires timm. These tests are skipped when timm isn't installed.
521
+ """
522
+ return unittest.skipUnless(is_timm_available(), "test requires timm")(test_case)
523
+
524
+
525
+ def require_bitsandbytes(test_case):
526
+ """
527
+ Decorator marking a test that requires bitsandbytes. These tests are skipped when bitsandbytes isn't installed.
528
+ """
529
+ return unittest.skipUnless(is_bitsandbytes_available(), "test requires bitsandbytes")(test_case)
530
+
531
+
532
+ def require_quanto(test_case):
533
+ """
534
+ Decorator marking a test that requires quanto. These tests are skipped when quanto isn't installed.
535
+ """
536
+ return unittest.skipUnless(is_optimum_quanto_available(), "test requires quanto")(test_case)
537
+
538
+
539
+ def require_accelerate(test_case):
540
+ """
541
+ Decorator marking a test that requires accelerate. These tests are skipped when accelerate isn't installed.
542
+ """
543
+ return unittest.skipUnless(is_accelerate_available(), "test requires accelerate")(test_case)
544
+
545
+
546
+ def require_peft_version_greater(peft_version):
547
+ """
548
+ Decorator marking a test that requires PEFT backend with a specific version, this would require some specific
549
+ versions of PEFT and transformers.
550
+ """
551
+
552
+ def decorator(test_case):
553
+ correct_peft_version = is_peft_available() and version.parse(
554
+ version.parse(importlib.metadata.version("peft")).base_version
555
+ ) > version.parse(peft_version)
556
+ return unittest.skipUnless(
557
+ correct_peft_version, f"test requires PEFT backend with the version greater than {peft_version}"
558
+ )(test_case)
559
+
560
+ return decorator
561
+
562
+
563
+ def require_transformers_version_greater(transformers_version):
564
+ """
565
+ Decorator marking a test that requires transformers with a specific version, this would require some specific
566
+ versions of PEFT and transformers.
567
+ """
568
+
569
+ def decorator(test_case):
570
+ correct_transformers_version = is_transformers_available() and version.parse(
571
+ version.parse(importlib.metadata.version("transformers")).base_version
572
+ ) > version.parse(transformers_version)
573
+ return unittest.skipUnless(
574
+ correct_transformers_version,
575
+ f"test requires transformers with the version greater than {transformers_version}",
576
+ )(test_case)
577
+
578
+ return decorator
579
+
580
+
581
+ def require_accelerate_version_greater(accelerate_version):
582
+ def decorator(test_case):
583
+ correct_accelerate_version = is_accelerate_available() and version.parse(
584
+ version.parse(importlib.metadata.version("accelerate")).base_version
585
+ ) > version.parse(accelerate_version)
586
+ return unittest.skipUnless(
587
+ correct_accelerate_version, f"Test requires accelerate with the version greater than {accelerate_version}."
588
+ )(test_case)
589
+
590
+ return decorator
591
+
592
+
593
+ def require_bitsandbytes_version_greater(bnb_version):
594
+ def decorator(test_case):
595
+ correct_bnb_version = is_bitsandbytes_available() and version.parse(
596
+ version.parse(importlib.metadata.version("bitsandbytes")).base_version
597
+ ) > version.parse(bnb_version)
598
+ return unittest.skipUnless(
599
+ correct_bnb_version, f"Test requires bitsandbytes with the version greater than {bnb_version}."
600
+ )(test_case)
601
+
602
+ return decorator
603
+
604
+
605
+ def require_hf_hub_version_greater(hf_hub_version):
606
+ def decorator(test_case):
607
+ correct_hf_hub_version = version.parse(
608
+ version.parse(importlib.metadata.version("huggingface_hub")).base_version
609
+ ) > version.parse(hf_hub_version)
610
+ return unittest.skipUnless(
611
+ correct_hf_hub_version, f"Test requires huggingface_hub with the version greater than {hf_hub_version}."
612
+ )(test_case)
613
+
614
+ return decorator
615
+
616
+
617
+ def require_gguf_version_greater_or_equal(gguf_version):
618
+ def decorator(test_case):
619
+ correct_gguf_version = is_gguf_available() and version.parse(
620
+ version.parse(importlib.metadata.version("gguf")).base_version
621
+ ) >= version.parse(gguf_version)
622
+ return unittest.skipUnless(
623
+ correct_gguf_version, f"Test requires gguf with the version greater than {gguf_version}."
624
+ )(test_case)
625
+
626
+ return decorator
627
+
628
+
629
+ def require_torchao_version_greater_or_equal(torchao_version):
630
+ def decorator(test_case):
631
+ correct_torchao_version = is_torchao_available() and version.parse(
632
+ version.parse(importlib.metadata.version("torchao")).base_version
633
+ ) >= version.parse(torchao_version)
634
+ return unittest.skipUnless(
635
+ correct_torchao_version, f"Test requires torchao with version greater than {torchao_version}."
636
+ )(test_case)
637
+
638
+ return decorator
639
+
640
+
641
+ def require_kernels_version_greater_or_equal(kernels_version):
642
+ def decorator(test_case):
643
+ correct_kernels_version = is_kernels_available() and version.parse(
644
+ version.parse(importlib.metadata.version("kernels")).base_version
645
+ ) >= version.parse(kernels_version)
646
+ return unittest.skipUnless(
647
+ correct_kernels_version, f"Test requires kernels with version greater than {kernels_version}."
648
+ )(test_case)
649
+
650
+ return decorator
651
+
652
+
653
+ def deprecate_after_peft_backend(test_case):
654
+ """
655
+ Decorator marking a test that will be skipped after PEFT backend
656
+ """
657
+ return unittest.skipUnless(not USE_PEFT_BACKEND, "test skipped in favor of PEFT backend")(test_case)
658
+
659
+
660
+ def get_python_version():
661
+ sys_info = sys.version_info
662
+ major, minor = sys_info.major, sys_info.minor
663
+ return major, minor
664
+
665
+
666
+ def load_numpy(arry: Union[str, np.ndarray], local_path: Optional[str] = None) -> np.ndarray:
667
+ if isinstance(arry, str):
668
+ if local_path is not None:
669
+ # local_path can be passed to correct images of tests
670
+ return Path(local_path, arry.split("/")[-5], arry.split("/")[-2], arry.split("/")[-1]).as_posix()
671
+ elif arry.startswith("http://") or arry.startswith("https://"):
672
+ response = requests.get(arry, timeout=DIFFUSERS_REQUEST_TIMEOUT)
673
+ response.raise_for_status()
674
+ arry = np.load(BytesIO(response.content))
675
+ elif os.path.isfile(arry):
676
+ arry = np.load(arry)
677
+ else:
678
+ raise ValueError(
679
+ f"Incorrect path or url, URLs must start with `http://` or `https://`, and {arry} is not a valid path"
680
+ )
681
+ elif isinstance(arry, np.ndarray):
682
+ pass
683
+ else:
684
+ raise ValueError(
685
+ "Incorrect format used for numpy ndarray. Should be an url linking to an image, a local path, or a"
686
+ " ndarray."
687
+ )
688
+
689
+ return arry
690
+
691
+
692
+ def load_pt(url: str, map_location: Optional[str] = None, weights_only: Optional[bool] = True):
693
+ response = requests.get(url, timeout=DIFFUSERS_REQUEST_TIMEOUT)
694
+ response.raise_for_status()
695
+ arry = torch.load(BytesIO(response.content), map_location=map_location, weights_only=weights_only)
696
+ return arry
697
+
698
+
699
+ def load_image(image: Union[str, PIL.Image.Image]) -> PIL.Image.Image:
700
+ """
701
+ Loads `image` to a PIL Image.
702
+
703
+ Args:
704
+ image (`str` or `PIL.Image.Image`):
705
+ The image to convert to the PIL Image format.
706
+ Returns:
707
+ `PIL.Image.Image`:
708
+ A PIL Image.
709
+ """
710
+ if isinstance(image, str):
711
+ if image.startswith("http://") or image.startswith("https://"):
712
+ image = PIL.Image.open(requests.get(image, stream=True, timeout=DIFFUSERS_REQUEST_TIMEOUT).raw)
713
+ elif os.path.isfile(image):
714
+ image = PIL.Image.open(image)
715
+ else:
716
+ raise ValueError(
717
+ f"Incorrect path or url, URLs must start with `http://` or `https://`, and {image} is not a valid path"
718
+ )
719
+ elif isinstance(image, PIL.Image.Image):
720
+ image = image
721
+ else:
722
+ raise ValueError(
723
+ "Incorrect format used for image. Should be an url linking to an image, a local path, or a PIL image."
724
+ )
725
+ image = PIL.ImageOps.exif_transpose(image)
726
+ image = image.convert("RGB")
727
+ return image
728
+
729
+
730
+ def preprocess_image(image: PIL.Image, batch_size: int):
731
+ w, h = image.size
732
+ w, h = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8
733
+ image = image.resize((w, h), resample=PIL.Image.LANCZOS)
734
+ image = np.array(image).astype(np.float32) / 255.0
735
+ image = np.vstack([image[None].transpose(0, 3, 1, 2)] * batch_size)
736
+ image = torch.from_numpy(image)
737
+ return 2.0 * image - 1.0
738
+
739
+
740
+ def export_to_gif(image: List[PIL.Image.Image], output_gif_path: str = None) -> str:
741
+ if output_gif_path is None:
742
+ output_gif_path = tempfile.NamedTemporaryFile(suffix=".gif").name
743
+
744
+ image[0].save(
745
+ output_gif_path,
746
+ save_all=True,
747
+ append_images=image[1:],
748
+ optimize=False,
749
+ duration=100,
750
+ loop=0,
751
+ )
752
+ return output_gif_path
753
+
754
+
755
+ @contextmanager
756
+ def buffered_writer(raw_f):
757
+ f = io.BufferedWriter(raw_f)
758
+ yield f
759
+ f.flush()
760
+
761
+
762
+ def export_to_ply(mesh, output_ply_path: str = None):
763
+ """
764
+ Write a PLY file for a mesh.
765
+ """
766
+ if output_ply_path is None:
767
+ output_ply_path = tempfile.NamedTemporaryFile(suffix=".ply").name
768
+
769
+ coords = mesh.verts.detach().cpu().numpy()
770
+ faces = mesh.faces.cpu().numpy()
771
+ rgb = np.stack([mesh.vertex_channels[x].detach().cpu().numpy() for x in "RGB"], axis=1)
772
+
773
+ with buffered_writer(open(output_ply_path, "wb")) as f:
774
+ f.write(b"ply\n")
775
+ f.write(b"format binary_little_endian 1.0\n")
776
+ f.write(bytes(f"element vertex {len(coords)}\n", "ascii"))
777
+ f.write(b"property float x\n")
778
+ f.write(b"property float y\n")
779
+ f.write(b"property float z\n")
780
+ if rgb is not None:
781
+ f.write(b"property uchar red\n")
782
+ f.write(b"property uchar green\n")
783
+ f.write(b"property uchar blue\n")
784
+ if faces is not None:
785
+ f.write(bytes(f"element face {len(faces)}\n", "ascii"))
786
+ f.write(b"property list uchar int vertex_index\n")
787
+ f.write(b"end_header\n")
788
+
789
+ if rgb is not None:
790
+ rgb = (rgb * 255.499).round().astype(int)
791
+ vertices = [
792
+ (*coord, *rgb)
793
+ for coord, rgb in zip(
794
+ coords.tolist(),
795
+ rgb.tolist(),
796
+ )
797
+ ]
798
+ format = struct.Struct("<3f3B")
799
+ for item in vertices:
800
+ f.write(format.pack(*item))
801
+ else:
802
+ format = struct.Struct("<3f")
803
+ for vertex in coords.tolist():
804
+ f.write(format.pack(*vertex))
805
+
806
+ if faces is not None:
807
+ for tri in faces.tolist():
808
+ f.write(format.pack(len(tri), *tri))
809
+ format = struct.Struct("<B3I")
810
+ return output_ply_path
811
+
812
+
813
+ def export_to_obj(mesh, output_obj_path: str = None):
814
+ if output_obj_path is None:
815
+ output_obj_path = tempfile.NamedTemporaryFile(suffix=".obj").name
816
+
817
+ verts = mesh.verts.detach().cpu().numpy()
818
+ faces = mesh.faces.cpu().numpy()
819
+
820
+ vertex_colors = np.stack([mesh.vertex_channels[x].detach().cpu().numpy() for x in "RGB"], axis=1)
821
+ vertices = [
822
+ "{} {} {} {} {} {}".format(*coord, *color) for coord, color in zip(verts.tolist(), vertex_colors.tolist())
823
+ ]
824
+
825
+ faces = ["f {} {} {}".format(str(tri[0] + 1), str(tri[1] + 1), str(tri[2] + 1)) for tri in faces.tolist()]
826
+
827
+ combined_data = ["v " + vertex for vertex in vertices] + faces
828
+
829
+ with open(output_obj_path, "w") as f:
830
+ f.writelines("\n".join(combined_data))
831
+
832
+
833
+ def export_to_video(video_frames: List[np.ndarray], output_video_path: str = None) -> str:
834
+ if is_opencv_available():
835
+ import cv2
836
+ else:
837
+ raise ImportError(BACKENDS_MAPPING["opencv"][1].format("export_to_video"))
838
+ if output_video_path is None:
839
+ output_video_path = tempfile.NamedTemporaryFile(suffix=".mp4").name
840
+
841
+ fourcc = cv2.VideoWriter_fourcc(*"mp4v")
842
+ h, w, c = video_frames[0].shape
843
+ video_writer = cv2.VideoWriter(output_video_path, fourcc, fps=8, frameSize=(w, h))
844
+ for i in range(len(video_frames)):
845
+ img = cv2.cvtColor(video_frames[i], cv2.COLOR_RGB2BGR)
846
+ video_writer.write(img)
847
+ return output_video_path
848
+
849
+
850
+ def load_hf_numpy(path) -> np.ndarray:
851
+ base_url = "https://huggingface.co/datasets/fusing/diffusers-testing/resolve/main"
852
+
853
+ if not path.startswith("http://") and not path.startswith("https://"):
854
+ path = os.path.join(base_url, urllib.parse.quote(path))
855
+
856
+ return load_numpy(path)
857
+
858
+
859
+ # --- pytest conf functions --- #
860
+
861
+ # to avoid multiple invocation from tests/conftest.py and examples/conftest.py - make sure it's called only once
862
+ pytest_opt_registered = {}
863
+
864
+
865
+ def pytest_addoption_shared(parser):
866
+ """
867
+ This function is to be called from `conftest.py` via `pytest_addoption` wrapper that has to be defined there.
868
+
869
+ It allows loading both `conftest.py` files at once without causing a failure due to adding the same `pytest`
870
+ option.
871
+
872
+ """
873
+ option = "--make-reports"
874
+ if option not in pytest_opt_registered:
875
+ parser.addoption(
876
+ option,
877
+ action="store",
878
+ default=False,
879
+ help="generate report files. The value of this option is used as a prefix to report names",
880
+ )
881
+ pytest_opt_registered[option] = 1
882
+
883
+
884
+ def pytest_terminal_summary_main(tr, id):
885
+ """
886
+ Generate multiple reports at the end of test suite run - each report goes into a dedicated file in the current
887
+ directory. The report files are prefixed with the test suite name.
888
+
889
+ This function emulates --duration and -rA pytest arguments.
890
+
891
+ This function is to be called from `conftest.py` via `pytest_terminal_summary` wrapper that has to be defined
892
+ there.
893
+
894
+ Args:
895
+ - tr: `terminalreporter` passed from `conftest.py`
896
+ - id: unique id like `tests` or `examples` that will be incorporated into the final reports filenames - this is
897
+ needed as some jobs have multiple runs of pytest, so we can't have them overwrite each other.
898
+
899
+ NB: this functions taps into a private _pytest API and while unlikely, it could break should
900
+ pytest do internal changes - also it calls default internal methods of terminalreporter which
901
+ can be hijacked by various `pytest-` plugins and interfere.
902
+
903
+ """
904
+ from _pytest.config import create_terminal_writer
905
+
906
+ if not len(id):
907
+ id = "tests"
908
+
909
+ config = tr.config
910
+ orig_writer = config.get_terminal_writer()
911
+ orig_tbstyle = config.option.tbstyle
912
+ orig_reportchars = tr.reportchars
913
+
914
+ dir = "reports"
915
+ Path(dir).mkdir(parents=True, exist_ok=True)
916
+ report_files = {
917
+ k: f"{dir}/{id}_{k}.txt"
918
+ for k in [
919
+ "durations",
920
+ "errors",
921
+ "failures_long",
922
+ "failures_short",
923
+ "failures_line",
924
+ "passes",
925
+ "stats",
926
+ "summary_short",
927
+ "warnings",
928
+ ]
929
+ }
930
+
931
+ # custom durations report
932
+ # note: there is no need to call pytest --durations=XX to get this separate report
933
+ # adapted from https://github.com/pytest-dev/pytest/blob/897f151e/src/_pytest/runner.py#L66
934
+ dlist = []
935
+ for replist in tr.stats.values():
936
+ for rep in replist:
937
+ if hasattr(rep, "duration"):
938
+ dlist.append(rep)
939
+ if dlist:
940
+ dlist.sort(key=lambda x: x.duration, reverse=True)
941
+ with open(report_files["durations"], "w") as f:
942
+ durations_min = 0.05 # sec
943
+ f.write("slowest durations\n")
944
+ for i, rep in enumerate(dlist):
945
+ if rep.duration < durations_min:
946
+ f.write(f"{len(dlist) - i} durations < {durations_min} secs were omitted")
947
+ break
948
+ f.write(f"{rep.duration:02.2f}s {rep.when:<8} {rep.nodeid}\n")
949
+
950
+ def summary_failures_short(tr):
951
+ # expecting that the reports were --tb=long (default) so we chop them off here to the last frame
952
+ reports = tr.getreports("failed")
953
+ if not reports:
954
+ return
955
+ tr.write_sep("=", "FAILURES SHORT STACK")
956
+ for rep in reports:
957
+ msg = tr._getfailureheadline(rep)
958
+ tr.write_sep("_", msg, red=True, bold=True)
959
+ # chop off the optional leading extra frames, leaving only the last one
960
+ longrepr = re.sub(r".*_ _ _ (_ ){10,}_ _ ", "", rep.longreprtext, 0, re.M | re.S)
961
+ tr._tw.line(longrepr)
962
+ # note: not printing out any rep.sections to keep the report short
963
+
964
+ # use ready-made report funcs, we are just hijacking the filehandle to log to a dedicated file each
965
+ # adapted from https://github.com/pytest-dev/pytest/blob/897f151e/src/_pytest/terminal.py#L814
966
+ # note: some pytest plugins may interfere by hijacking the default `terminalreporter` (e.g.
967
+ # pytest-instafail does that)
968
+
969
+ # report failures with line/short/long styles
970
+ config.option.tbstyle = "auto" # full tb
971
+ with open(report_files["failures_long"], "w") as f:
972
+ tr._tw = create_terminal_writer(config, f)
973
+ tr.summary_failures()
974
+
975
+ # config.option.tbstyle = "short" # short tb
976
+ with open(report_files["failures_short"], "w") as f:
977
+ tr._tw = create_terminal_writer(config, f)
978
+ summary_failures_short(tr)
979
+
980
+ config.option.tbstyle = "line" # one line per error
981
+ with open(report_files["failures_line"], "w") as f:
982
+ tr._tw = create_terminal_writer(config, f)
983
+ tr.summary_failures()
984
+
985
+ with open(report_files["errors"], "w") as f:
986
+ tr._tw = create_terminal_writer(config, f)
987
+ tr.summary_errors()
988
+
989
+ with open(report_files["warnings"], "w") as f:
990
+ tr._tw = create_terminal_writer(config, f)
991
+ tr.summary_warnings() # normal warnings
992
+ tr.summary_warnings() # final warnings
993
+
994
+ tr.reportchars = "wPpsxXEf" # emulate -rA (used in summary_passes() and short_test_summary())
995
+ with open(report_files["passes"], "w") as f:
996
+ tr._tw = create_terminal_writer(config, f)
997
+ tr.summary_passes()
998
+
999
+ with open(report_files["summary_short"], "w") as f:
1000
+ tr._tw = create_terminal_writer(config, f)
1001
+ tr.short_test_summary()
1002
+
1003
+ with open(report_files["stats"], "w") as f:
1004
+ tr._tw = create_terminal_writer(config, f)
1005
+ tr.summary_stats()
1006
+
1007
+ # restore:
1008
+ tr._tw = orig_writer
1009
+ tr.reportchars = orig_reportchars
1010
+ config.option.tbstyle = orig_tbstyle
1011
+
1012
+
1013
+ # Adapted from https://github.com/huggingface/transformers/blob/000e52aec8850d3fe2f360adc6fd256e5b47fe4c/src/transformers/testing_utils.py#L1905
1014
+ def is_flaky(max_attempts: int = 5, wait_before_retry: Optional[float] = None, description: Optional[str] = None):
1015
+ """
1016
+ To decorate flaky tests (methods or entire classes). They will be retried on failures.
1017
+
1018
+ Args:
1019
+ max_attempts (`int`, *optional*, defaults to 5):
1020
+ The maximum number of attempts to retry the flaky test.
1021
+ wait_before_retry (`float`, *optional*):
1022
+ If provided, will wait that number of seconds before retrying the test.
1023
+ description (`str`, *optional*):
1024
+ A string to describe the situation (what / where / why is flaky, link to GH issue/PR comments, errors,
1025
+ etc.)
1026
+ """
1027
+
1028
+ def decorator(obj):
1029
+ # If decorating a class, wrap each test method on it
1030
+ if inspect.isclass(obj):
1031
+ for attr_name, attr_value in list(obj.__dict__.items()):
1032
+ if callable(attr_value) and attr_name.startswith("test"):
1033
+ # recursively decorate the method
1034
+ setattr(obj, attr_name, decorator(attr_value))
1035
+ return obj
1036
+
1037
+ # Otherwise we're decorating a single test function / method
1038
+ @functools.wraps(obj)
1039
+ def wrapper(*args, **kwargs):
1040
+ retry_count = 1
1041
+ while retry_count < max_attempts:
1042
+ try:
1043
+ return obj(*args, **kwargs)
1044
+ except Exception as err:
1045
+ msg = (
1046
+ f"[FLAKY] {description or obj.__name__!r} "
1047
+ f"failed on attempt {retry_count}/{max_attempts}: {err}"
1048
+ )
1049
+ print(msg, file=sys.stderr)
1050
+ if wait_before_retry is not None:
1051
+ time.sleep(wait_before_retry)
1052
+ retry_count += 1
1053
+
1054
+ return obj(*args, **kwargs)
1055
+
1056
+ return wrapper
1057
+
1058
+ return decorator
1059
+
1060
+
1061
+ # Taken from: https://github.com/huggingface/transformers/blob/3658488ff77ff8d45101293e749263acf437f4d5/src/transformers/testing_utils.py#L1787
1062
+ def run_test_in_subprocess(test_case, target_func, inputs=None, timeout=None):
1063
+ """
1064
+ To run a test in a subprocess. In particular, this can avoid (GPU) memory issue.
1065
+
1066
+ Args:
1067
+ test_case (`unittest.TestCase`):
1068
+ The test that will run `target_func`.
1069
+ target_func (`Callable`):
1070
+ The function implementing the actual testing logic.
1071
+ inputs (`dict`, *optional*, defaults to `None`):
1072
+ The inputs that will be passed to `target_func` through an (input) queue.
1073
+ timeout (`int`, *optional*, defaults to `None`):
1074
+ The timeout (in seconds) that will be passed to the input and output queues. If not specified, the env.
1075
+ variable `PYTEST_TIMEOUT` will be checked. If still `None`, its value will be set to `600`.
1076
+ """
1077
+ if timeout is None:
1078
+ timeout = int(os.environ.get("PYTEST_TIMEOUT", 600))
1079
+
1080
+ start_methohd = "spawn"
1081
+ ctx = multiprocessing.get_context(start_methohd)
1082
+
1083
+ input_queue = ctx.Queue(1)
1084
+ output_queue = ctx.JoinableQueue(1)
1085
+
1086
+ # We can't send `unittest.TestCase` to the child, otherwise we get issues regarding pickle.
1087
+ input_queue.put(inputs, timeout=timeout)
1088
+
1089
+ process = ctx.Process(target=target_func, args=(input_queue, output_queue, timeout))
1090
+ process.start()
1091
+ # Kill the child process if we can't get outputs from it in time: otherwise, the hanging subprocess prevents
1092
+ # the test to exit properly.
1093
+ try:
1094
+ results = output_queue.get(timeout=timeout)
1095
+ output_queue.task_done()
1096
+ except Exception as e:
1097
+ process.terminate()
1098
+ test_case.fail(e)
1099
+ process.join(timeout=timeout)
1100
+
1101
+ if results["error"] is not None:
1102
+ test_case.fail(f"{results['error']}")
1103
+
1104
+
1105
+ class CaptureLogger:
1106
+ """
1107
+ Args:
1108
+ Context manager to capture `logging` streams
1109
+ logger: 'logging` logger object
1110
+ Returns:
1111
+ The captured output is available via `self.out`
1112
+ Example:
1113
+ ```python
1114
+ >>> from diffusers import logging
1115
+ >>> from diffusers.testing_utils import CaptureLogger
1116
+
1117
+ >>> msg = "Testing 1, 2, 3"
1118
+ >>> logging.set_verbosity_info()
1119
+ >>> logger = logging.get_logger("diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.py")
1120
+ >>> with CaptureLogger(logger) as cl:
1121
+ ... logger.info(msg)
1122
+ >>> assert cl.out, msg + "\n"
1123
+ ```
1124
+ """
1125
+
1126
+ def __init__(self, logger):
1127
+ self.logger = logger
1128
+ self.io = StringIO()
1129
+ self.sh = logging.StreamHandler(self.io)
1130
+ self.out = ""
1131
+
1132
+ def __enter__(self):
1133
+ self.logger.addHandler(self.sh)
1134
+ return self
1135
+
1136
+ def __exit__(self, *exc):
1137
+ self.logger.removeHandler(self.sh)
1138
+ self.out = self.io.getvalue()
1139
+
1140
+ def __repr__(self):
1141
+ return f"captured: {self.out}\n"
1142
+
1143
+
1144
+ def enable_full_determinism():
1145
+ """
1146
+ Helper function for reproducible behavior during distributed training. See
1147
+ - https://pytorch.org/docs/stable/notes/randomness.html for pytorch
1148
+ """
1149
+ from .torch_utils import enable_full_determinism as _enable_full_determinism
1150
+
1151
+ logger.warning(
1152
+ "enable_full_determinism has been moved to diffusers.utils.torch_utils. "
1153
+ "Importing from diffusers.utils.testing_utils is deprecated and will be removed in a future version."
1154
+ )
1155
+ return _enable_full_determinism()
1156
+
1157
+
1158
+ def disable_full_determinism():
1159
+ from .torch_utils import disable_full_determinism as _disable_full_determinism
1160
+
1161
+ logger.warning(
1162
+ "disable_full_determinism has been moved to diffusers.utils.torch_utils. "
1163
+ "Importing from diffusers.utils.testing_utils is deprecated and will be removed in a future version."
1164
+ )
1165
+ return _disable_full_determinism()
1166
+
1167
+
1168
+ # Utils for custom and alternative accelerator devices
1169
+ def _is_torch_fp16_available(device):
1170
+ if not is_torch_available():
1171
+ return False
1172
+
1173
+ import torch
1174
+
1175
+ device = torch.device(device)
1176
+
1177
+ try:
1178
+ x = torch.zeros((2, 2), dtype=torch.float16).to(device)
1179
+ _ = torch.mul(x, x)
1180
+ return True
1181
+
1182
+ except Exception as e:
1183
+ if device.type == "cuda":
1184
+ raise ValueError(
1185
+ f"You have passed a device of type 'cuda' which should work with 'fp16', but 'cuda' does not seem to be correctly installed on your machine: {e}"
1186
+ )
1187
+
1188
+ return False
1189
+
1190
+
1191
+ def _is_torch_fp64_available(device):
1192
+ if not is_torch_available():
1193
+ return False
1194
+
1195
+ import torch
1196
+
1197
+ device = torch.device(device)
1198
+
1199
+ try:
1200
+ x = torch.zeros((2, 2), dtype=torch.float64).to(device)
1201
+ _ = torch.mul(x, x)
1202
+ return True
1203
+
1204
+ except Exception as e:
1205
+ if device.type == "cuda":
1206
+ raise ValueError(
1207
+ f"You have passed a device of type 'cuda' which should work with 'fp64', but 'cuda' does not seem to be correctly installed on your machine: {e}"
1208
+ )
1209
+
1210
+ return False
1211
+
1212
+
1213
+ # Guard these lookups for when Torch is not used - alternative accelerator support is for PyTorch
1214
+ if is_torch_available():
1215
+ # Behaviour flags
1216
+ BACKEND_SUPPORTS_TRAINING = {"cuda": True, "xpu": True, "cpu": True, "mps": False, "default": True}
1217
+
1218
+ # Function definitions
1219
+ BACKEND_EMPTY_CACHE = {
1220
+ "cuda": torch.cuda.empty_cache,
1221
+ "xpu": torch.xpu.empty_cache,
1222
+ "cpu": None,
1223
+ "mps": torch.mps.empty_cache,
1224
+ "default": None,
1225
+ }
1226
+ BACKEND_DEVICE_COUNT = {
1227
+ "cuda": torch.cuda.device_count,
1228
+ "xpu": torch.xpu.device_count,
1229
+ "cpu": lambda: 0,
1230
+ "mps": lambda: 0,
1231
+ "default": 0,
1232
+ }
1233
+ BACKEND_MANUAL_SEED = {
1234
+ "cuda": torch.cuda.manual_seed,
1235
+ "xpu": torch.xpu.manual_seed,
1236
+ "cpu": torch.manual_seed,
1237
+ "mps": torch.mps.manual_seed,
1238
+ "default": torch.manual_seed,
1239
+ }
1240
+ BACKEND_RESET_PEAK_MEMORY_STATS = {
1241
+ "cuda": torch.cuda.reset_peak_memory_stats,
1242
+ "xpu": getattr(torch.xpu, "reset_peak_memory_stats", None),
1243
+ "cpu": None,
1244
+ "mps": None,
1245
+ "default": None,
1246
+ }
1247
+ BACKEND_RESET_MAX_MEMORY_ALLOCATED = {
1248
+ "cuda": torch.cuda.reset_max_memory_allocated,
1249
+ "xpu": getattr(torch.xpu, "reset_peak_memory_stats", None),
1250
+ "cpu": None,
1251
+ "mps": None,
1252
+ "default": None,
1253
+ }
1254
+ BACKEND_MAX_MEMORY_ALLOCATED = {
1255
+ "cuda": torch.cuda.max_memory_allocated,
1256
+ "xpu": getattr(torch.xpu, "max_memory_allocated", None),
1257
+ "cpu": 0,
1258
+ "mps": 0,
1259
+ "default": 0,
1260
+ }
1261
+ BACKEND_SYNCHRONIZE = {
1262
+ "cuda": torch.cuda.synchronize,
1263
+ "xpu": getattr(torch.xpu, "synchronize", None),
1264
+ "cpu": None,
1265
+ "mps": None,
1266
+ "default": None,
1267
+ }
1268
+
1269
+
1270
+ # This dispatches a defined function according to the accelerator from the function definitions.
1271
+ def _device_agnostic_dispatch(device: str, dispatch_table: Dict[str, Callable], *args, **kwargs):
1272
+ if device not in dispatch_table:
1273
+ return dispatch_table["default"](*args, **kwargs)
1274
+
1275
+ fn = dispatch_table[device]
1276
+
1277
+ # Some device agnostic functions return values. Need to guard against 'None' instead at
1278
+ # user level
1279
+ if not callable(fn):
1280
+ return fn
1281
+
1282
+ return fn(*args, **kwargs)
1283
+
1284
+
1285
+ # These are callables which automatically dispatch the function specific to the accelerator
1286
+ def backend_manual_seed(device: str, seed: int):
1287
+ from .torch_utils import backend_manual_seed as _backend_manual_seed
1288
+
1289
+ logger.warning(
1290
+ "backend_manual_seed has been moved to diffusers.utils.torch_utils. "
1291
+ "diffusers.utils.testing_utils is deprecated and will be removed in a future version."
1292
+ )
1293
+ return _backend_manual_seed(device, seed)
1294
+
1295
+
1296
+ def backend_synchronize(device: str):
1297
+ from .torch_utils import backend_synchronize as _backend_synchronize
1298
+
1299
+ logger.warning(
1300
+ "backend_synchronize has been moved to diffusers.utils.torch_utils. "
1301
+ "diffusers.utils.testing_utils is deprecated and will be removed in a future version."
1302
+ )
1303
+ return _backend_synchronize(device)
1304
+
1305
+
1306
+ def backend_empty_cache(device: str):
1307
+ from .torch_utils import backend_empty_cache as _backend_empty_cache
1308
+
1309
+ logger.warning(
1310
+ "backend_empty_cache has been moved to diffusers.utils.torch_utils. "
1311
+ "diffusers.utils.testing_utils is deprecated and will be removed in a future version."
1312
+ )
1313
+ return _backend_empty_cache(device)
1314
+
1315
+
1316
+ def backend_device_count(device: str):
1317
+ from .torch_utils import backend_device_count as _backend_device_count
1318
+
1319
+ logger.warning(
1320
+ "backend_device_count has been moved to diffusers.utils.torch_utils. "
1321
+ "diffusers.utils.testing_utils is deprecated and will be removed in a future version."
1322
+ )
1323
+ return _backend_device_count(device)
1324
+
1325
+
1326
+ def backend_reset_peak_memory_stats(device: str):
1327
+ from .torch_utils import backend_reset_peak_memory_stats as _backend_reset_peak_memory_stats
1328
+
1329
+ logger.warning(
1330
+ "backend_reset_peak_memory_stats has been moved to diffusers.utils.torch_utils. "
1331
+ "diffusers.utils.testing_utils is deprecated and will be removed in a future version."
1332
+ )
1333
+ return _backend_reset_peak_memory_stats(device)
1334
+
1335
+
1336
+ def backend_reset_max_memory_allocated(device: str):
1337
+ from .torch_utils import backend_reset_max_memory_allocated as _backend_reset_max_memory_allocated
1338
+
1339
+ logger.warning(
1340
+ "backend_reset_max_memory_allocated has been moved to diffusers.utils.torch_utils. "
1341
+ "diffusers.utils.testing_utils is deprecated and will be removed in a future version."
1342
+ )
1343
+ return _backend_reset_max_memory_allocated(device)
1344
+
1345
+
1346
+ def backend_max_memory_allocated(device: str):
1347
+ from .torch_utils import backend_max_memory_allocated as _backend_max_memory_allocated
1348
+
1349
+ logger.warning(
1350
+ "backend_max_memory_allocated has been moved to diffusers.utils.torch_utils. "
1351
+ "diffusers.utils.testing_utils is deprecated and will be removed in a future version."
1352
+ )
1353
+ return _backend_max_memory_allocated(device)
1354
+
1355
+
1356
+ # These are callables which return boolean behaviour flags and can be used to specify some
1357
+ # device agnostic alternative where the feature is unsupported.
1358
+ def backend_supports_training(device: str):
1359
+ from .torch_utils import backend_supports_training as _backend_supports_training
1360
+
1361
+ logger.warning(
1362
+ "backend_supports_training has been moved to diffusers.utils.torch_utils. "
1363
+ "diffusers.utils.testing_utils is deprecated and will be removed in a future version."
1364
+ )
1365
+ return _backend_supports_training(device)
1366
+
1367
+
1368
+ # Guard for when Torch is not available
1369
+ if is_torch_available():
1370
+ # Update device function dict mapping
1371
+ def update_mapping_from_spec(device_fn_dict: Dict[str, Callable], attribute_name: str):
1372
+ try:
1373
+ # Try to import the function directly
1374
+ spec_fn = getattr(device_spec_module, attribute_name)
1375
+ device_fn_dict[torch_device] = spec_fn
1376
+ except AttributeError as e:
1377
+ # If the function doesn't exist, and there is no default, throw an error
1378
+ if "default" not in device_fn_dict:
1379
+ raise AttributeError(
1380
+ f"`{attribute_name}` not found in '{device_spec_path}' and no default fallback function found."
1381
+ ) from e
1382
+
1383
+ if "DIFFUSERS_TEST_DEVICE_SPEC" in os.environ:
1384
+ device_spec_path = os.environ["DIFFUSERS_TEST_DEVICE_SPEC"]
1385
+ if not Path(device_spec_path).is_file():
1386
+ raise ValueError(f"Specified path to device specification file is not found. Received {device_spec_path}")
1387
+
1388
+ try:
1389
+ import_name = device_spec_path[: device_spec_path.index(".py")]
1390
+ except ValueError as e:
1391
+ raise ValueError(f"Provided device spec file is not a Python file! Received {device_spec_path}") from e
1392
+
1393
+ device_spec_module = importlib.import_module(import_name)
1394
+
1395
+ try:
1396
+ device_name = device_spec_module.DEVICE_NAME
1397
+ except AttributeError:
1398
+ raise AttributeError("Device spec file did not contain `DEVICE_NAME`")
1399
+
1400
+ if "DIFFUSERS_TEST_DEVICE" in os.environ and torch_device != device_name:
1401
+ msg = f"Mismatch between environment variable `DIFFUSERS_TEST_DEVICE` '{torch_device}' and device found in spec '{device_name}'\n"
1402
+ msg += "Either unset `DIFFUSERS_TEST_DEVICE` or ensure it matches device spec name."
1403
+ raise ValueError(msg)
1404
+
1405
+ torch_device = device_name
1406
+
1407
+ # Add one entry here for each `BACKEND_*` dictionary.
1408
+ update_mapping_from_spec(BACKEND_MANUAL_SEED, "MANUAL_SEED_FN")
1409
+ update_mapping_from_spec(BACKEND_EMPTY_CACHE, "EMPTY_CACHE_FN")
1410
+ update_mapping_from_spec(BACKEND_DEVICE_COUNT, "DEVICE_COUNT_FN")
1411
+ update_mapping_from_spec(BACKEND_SUPPORTS_TRAINING, "SUPPORTS_TRAINING")
1412
+ update_mapping_from_spec(BACKEND_RESET_PEAK_MEMORY_STATS, "RESET_PEAK_MEMORY_STATS_FN")
1413
+ update_mapping_from_spec(BACKEND_RESET_MAX_MEMORY_ALLOCATED, "RESET_MAX_MEMORY_ALLOCATED_FN")
1414
+ update_mapping_from_spec(BACKEND_MAX_MEMORY_ALLOCATED, "MAX_MEMORY_ALLOCATED_FN")
1415
+
1416
+
1417
+ # Modified from https://github.com/huggingface/transformers/blob/cdfb018d0300fef3b07d9220f3efe9c2a9974662/src/transformers/testing_utils.py#L3090
1418
+
1419
+ # Type definition of key used in `Expectations` class.
1420
+ DeviceProperties = Tuple[Union[str, None], Union[int, None]]
1421
+
1422
+
1423
+ @functools.lru_cache
1424
+ def get_device_properties() -> DeviceProperties:
1425
+ """
1426
+ Get environment device properties.
1427
+ """
1428
+ if IS_CUDA_SYSTEM or IS_ROCM_SYSTEM:
1429
+ import torch
1430
+
1431
+ major, _ = torch.cuda.get_device_capability()
1432
+ if IS_ROCM_SYSTEM:
1433
+ return ("rocm", major)
1434
+ else:
1435
+ return ("cuda", major)
1436
+ elif IS_XPU_SYSTEM:
1437
+ import torch
1438
+
1439
+ # To get more info of the architecture meaning and bit allocation, refer to https://github.com/intel/llvm/blob/sycl/sycl/include/sycl/ext/oneapi/experimental/device_architecture.def
1440
+ arch = torch.xpu.get_device_capability()["architecture"]
1441
+ gen_mask = 0x000000FF00000000
1442
+ gen = (arch & gen_mask) >> 32
1443
+ return ("xpu", gen)
1444
+ else:
1445
+ return (torch_device, None)
1446
+
1447
+
1448
+ if TYPE_CHECKING:
1449
+ DevicePropertiesUserDict = UserDict[DeviceProperties, Any]
1450
+ else:
1451
+ DevicePropertiesUserDict = UserDict
1452
+
1453
+ if is_torch_available():
1454
+ from diffusers.hooks._common import _GO_LC_SUPPORTED_PYTORCH_LAYERS
1455
+ from diffusers.hooks.group_offloading import (
1456
+ _GROUP_ID_LAZY_LEAF,
1457
+ _compute_group_hash,
1458
+ _find_parent_module_in_module_dict,
1459
+ _gather_buffers_with_no_group_offloading_parent,
1460
+ _gather_parameters_with_no_group_offloading_parent,
1461
+ )
1462
+
1463
+ def _get_expected_safetensors_files(
1464
+ module: torch.nn.Module,
1465
+ offload_to_disk_path: str,
1466
+ offload_type: str,
1467
+ num_blocks_per_group: Optional[int] = None,
1468
+ ) -> Set[str]:
1469
+ expected_files = set()
1470
+
1471
+ def get_hashed_filename(group_id: str) -> str:
1472
+ short_hash = _compute_group_hash(group_id)
1473
+ return os.path.join(offload_to_disk_path, f"group_{short_hash}.safetensors")
1474
+
1475
+ if offload_type == "block_level":
1476
+ if num_blocks_per_group is None:
1477
+ raise ValueError("num_blocks_per_group must be provided for 'block_level' offloading.")
1478
+
1479
+ # Handle groups of ModuleList and Sequential blocks
1480
+ unmatched_modules = []
1481
+ for name, submodule in module.named_children():
1482
+ if not isinstance(submodule, (torch.nn.ModuleList, torch.nn.Sequential)):
1483
+ unmatched_modules.append(module)
1484
+ continue
1485
+
1486
+ for i in range(0, len(submodule), num_blocks_per_group):
1487
+ current_modules = submodule[i : i + num_blocks_per_group]
1488
+ if not current_modules:
1489
+ continue
1490
+ group_id = f"{name}_{i}_{i + len(current_modules) - 1}"
1491
+ expected_files.add(get_hashed_filename(group_id))
1492
+
1493
+ # Handle the group for unmatched top-level modules and parameters
1494
+ for module in unmatched_modules:
1495
+ expected_files.add(get_hashed_filename(f"{module.__class__.__name__}_unmatched_group"))
1496
+
1497
+ elif offload_type == "leaf_level":
1498
+ # Handle leaf-level module groups
1499
+ for name, submodule in module.named_modules():
1500
+ if isinstance(submodule, _GO_LC_SUPPORTED_PYTORCH_LAYERS):
1501
+ # These groups will always have parameters, so a file is expected
1502
+ expected_files.add(get_hashed_filename(name))
1503
+
1504
+ # Handle groups for non-leaf parameters/buffers
1505
+ modules_with_group_offloading = {
1506
+ name for name, sm in module.named_modules() if isinstance(sm, _GO_LC_SUPPORTED_PYTORCH_LAYERS)
1507
+ }
1508
+ parameters = _gather_parameters_with_no_group_offloading_parent(module, modules_with_group_offloading)
1509
+ buffers = _gather_buffers_with_no_group_offloading_parent(module, modules_with_group_offloading)
1510
+
1511
+ all_orphans = parameters + buffers
1512
+ if all_orphans:
1513
+ parent_to_tensors = {}
1514
+ module_dict = dict(module.named_modules())
1515
+ for tensor_name, _ in all_orphans:
1516
+ parent_name = _find_parent_module_in_module_dict(tensor_name, module_dict)
1517
+ if parent_name not in parent_to_tensors:
1518
+ parent_to_tensors[parent_name] = []
1519
+ parent_to_tensors[parent_name].append(tensor_name)
1520
+
1521
+ for parent_name in parent_to_tensors:
1522
+ # A file is expected for each parent that gathers orphaned tensors
1523
+ expected_files.add(get_hashed_filename(parent_name))
1524
+ expected_files.add(get_hashed_filename(_GROUP_ID_LAZY_LEAF))
1525
+
1526
+ else:
1527
+ raise ValueError(f"Unsupported offload_type: {offload_type}")
1528
+
1529
+ return expected_files
1530
+
1531
+ def _check_safetensors_serialization(
1532
+ module: torch.nn.Module,
1533
+ offload_to_disk_path: str,
1534
+ offload_type: str,
1535
+ num_blocks_per_group: Optional[int] = None,
1536
+ ) -> bool:
1537
+ if not os.path.isdir(offload_to_disk_path):
1538
+ return False, None, None
1539
+
1540
+ expected_files = _get_expected_safetensors_files(
1541
+ module, offload_to_disk_path, offload_type, num_blocks_per_group
1542
+ )
1543
+ actual_files = set(glob.glob(os.path.join(offload_to_disk_path, "*.safetensors")))
1544
+ missing_files = expected_files - actual_files
1545
+ extra_files = actual_files - expected_files
1546
+
1547
+ is_correct = not missing_files and not extra_files
1548
+ return is_correct, extra_files, missing_files
1549
+
1550
+
1551
+ class Expectations(DevicePropertiesUserDict):
1552
+ def get_expectation(self) -> Any:
1553
+ """
1554
+ Find best matching expectation based on environment device properties.
1555
+ """
1556
+ return self.find_expectation(get_device_properties())
1557
+
1558
+ @staticmethod
1559
+ def is_default(key: DeviceProperties) -> bool:
1560
+ return all(p is None for p in key)
1561
+
1562
+ @staticmethod
1563
+ def score(key: DeviceProperties, other: DeviceProperties) -> int:
1564
+ """
1565
+ Returns score indicating how similar two instances of the `Properties` tuple are. Points are calculated using
1566
+ bits, but documented as int. Rules are as follows:
1567
+ * Matching `type` gives 8 points.
1568
+ * Semi-matching `type`, for example cuda and rocm, gives 4 points.
1569
+ * Matching `major` (compute capability major version) gives 2 points.
1570
+ * Default expectation (if present) gives 1 points.
1571
+ """
1572
+ (device_type, major) = key
1573
+ (other_device_type, other_major) = other
1574
+
1575
+ score = 0b0
1576
+ if device_type == other_device_type:
1577
+ score |= 0b1000
1578
+ elif device_type in ["cuda", "rocm"] and other_device_type in ["cuda", "rocm"]:
1579
+ score |= 0b100
1580
+
1581
+ if major == other_major and other_major is not None:
1582
+ score |= 0b10
1583
+
1584
+ if Expectations.is_default(other):
1585
+ score |= 0b1
1586
+
1587
+ return int(score)
1588
+
1589
+ def find_expectation(self, key: DeviceProperties = (None, None)) -> Any:
1590
+ """
1591
+ Find best matching expectation based on provided device properties.
1592
+ """
1593
+ (result_key, result) = max(self.data.items(), key=lambda x: Expectations.score(key, x[0]))
1594
+
1595
+ if Expectations.score(key, result_key) == 0:
1596
+ raise ValueError(f"No matching expectation found for {key}")
1597
+
1598
+ return result
1599
+
1600
+ def __repr__(self):
1601
+ return f"{self.data}"
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/utils/torch_utils.py ADDED
@@ -0,0 +1,334 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2025 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """
15
+ PyTorch utilities: Utilities related to PyTorch
16
+ """
17
+
18
+ import functools
19
+ import os
20
+ from typing import Callable, Dict, List, Optional, Tuple, Union
21
+
22
+ from . import logging
23
+ from .import_utils import is_torch_available, is_torch_npu_available, is_torch_version
24
+
25
+
26
+ if is_torch_available():
27
+ import torch
28
+ from torch.fft import fftn, fftshift, ifftn, ifftshift
29
+
30
+ BACKEND_SUPPORTS_TRAINING = {"cuda": True, "xpu": True, "cpu": True, "mps": False, "default": True}
31
+ BACKEND_EMPTY_CACHE = {
32
+ "cuda": torch.cuda.empty_cache,
33
+ "xpu": torch.xpu.empty_cache,
34
+ "cpu": None,
35
+ "mps": torch.mps.empty_cache,
36
+ "default": None,
37
+ }
38
+ BACKEND_DEVICE_COUNT = {
39
+ "cuda": torch.cuda.device_count,
40
+ "xpu": torch.xpu.device_count,
41
+ "cpu": lambda: 0,
42
+ "mps": lambda: 0,
43
+ "default": 0,
44
+ }
45
+ BACKEND_MANUAL_SEED = {
46
+ "cuda": torch.cuda.manual_seed,
47
+ "xpu": torch.xpu.manual_seed,
48
+ "cpu": torch.manual_seed,
49
+ "mps": torch.mps.manual_seed,
50
+ "default": torch.manual_seed,
51
+ }
52
+ BACKEND_RESET_PEAK_MEMORY_STATS = {
53
+ "cuda": torch.cuda.reset_peak_memory_stats,
54
+ "xpu": getattr(torch.xpu, "reset_peak_memory_stats", None),
55
+ "cpu": None,
56
+ "mps": None,
57
+ "default": None,
58
+ }
59
+ BACKEND_RESET_MAX_MEMORY_ALLOCATED = {
60
+ "cuda": torch.cuda.reset_max_memory_allocated,
61
+ "xpu": getattr(torch.xpu, "reset_peak_memory_stats", None),
62
+ "cpu": None,
63
+ "mps": None,
64
+ "default": None,
65
+ }
66
+ BACKEND_MAX_MEMORY_ALLOCATED = {
67
+ "cuda": torch.cuda.max_memory_allocated,
68
+ "xpu": getattr(torch.xpu, "max_memory_allocated", None),
69
+ "cpu": 0,
70
+ "mps": 0,
71
+ "default": 0,
72
+ }
73
+ BACKEND_SYNCHRONIZE = {
74
+ "cuda": torch.cuda.synchronize,
75
+ "xpu": getattr(torch.xpu, "synchronize", None),
76
+ "cpu": None,
77
+ "mps": None,
78
+ "default": None,
79
+ }
80
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
81
+
82
+ try:
83
+ from torch._dynamo import allow_in_graph as maybe_allow_in_graph
84
+ except (ImportError, ModuleNotFoundError):
85
+
86
+ def maybe_allow_in_graph(cls):
87
+ return cls
88
+
89
+
90
+ # This dispatches a defined function according to the accelerator from the function definitions.
91
+ def _device_agnostic_dispatch(device: str, dispatch_table: Dict[str, Callable], *args, **kwargs):
92
+ if device not in dispatch_table:
93
+ return dispatch_table["default"](*args, **kwargs)
94
+
95
+ fn = dispatch_table[device]
96
+
97
+ # Some device agnostic functions return values. Need to guard against 'None' instead at
98
+ # user level
99
+ if not callable(fn):
100
+ return fn
101
+
102
+ return fn(*args, **kwargs)
103
+
104
+
105
+ # These are callables which automatically dispatch the function specific to the accelerator
106
+ def backend_manual_seed(device: str, seed: int):
107
+ return _device_agnostic_dispatch(device, BACKEND_MANUAL_SEED, seed)
108
+
109
+
110
+ def backend_synchronize(device: str):
111
+ return _device_agnostic_dispatch(device, BACKEND_SYNCHRONIZE)
112
+
113
+
114
+ def backend_empty_cache(device: str):
115
+ return _device_agnostic_dispatch(device, BACKEND_EMPTY_CACHE)
116
+
117
+
118
+ def backend_device_count(device: str):
119
+ return _device_agnostic_dispatch(device, BACKEND_DEVICE_COUNT)
120
+
121
+
122
+ def backend_reset_peak_memory_stats(device: str):
123
+ return _device_agnostic_dispatch(device, BACKEND_RESET_PEAK_MEMORY_STATS)
124
+
125
+
126
+ def backend_reset_max_memory_allocated(device: str):
127
+ return _device_agnostic_dispatch(device, BACKEND_RESET_MAX_MEMORY_ALLOCATED)
128
+
129
+
130
+ def backend_max_memory_allocated(device: str):
131
+ return _device_agnostic_dispatch(device, BACKEND_MAX_MEMORY_ALLOCATED)
132
+
133
+
134
+ # These are callables which return boolean behaviour flags and can be used to specify some
135
+ # device agnostic alternative where the feature is unsupported.
136
+ def backend_supports_training(device: str):
137
+ if not is_torch_available():
138
+ return False
139
+
140
+ if device not in BACKEND_SUPPORTS_TRAINING:
141
+ device = "default"
142
+
143
+ return BACKEND_SUPPORTS_TRAINING[device]
144
+
145
+
146
+ def randn_tensor(
147
+ shape: Union[Tuple, List],
148
+ generator: Optional[Union[List["torch.Generator"], "torch.Generator"]] = None,
149
+ device: Optional[Union[str, "torch.device"]] = None,
150
+ dtype: Optional["torch.dtype"] = None,
151
+ layout: Optional["torch.layout"] = None,
152
+ ):
153
+ """A helper function to create random tensors on the desired `device` with the desired `dtype`. When
154
+ passing a list of generators, you can seed each batch size individually. If CPU generators are passed, the tensor
155
+ is always created on the CPU.
156
+ """
157
+ # device on which tensor is created defaults to device
158
+ if isinstance(device, str):
159
+ device = torch.device(device)
160
+ rand_device = device
161
+ batch_size = shape[0]
162
+
163
+ layout = layout or torch.strided
164
+ device = device or torch.device("cpu")
165
+
166
+ if generator is not None:
167
+ gen_device_type = generator.device.type if not isinstance(generator, list) else generator[0].device.type
168
+ if gen_device_type != device.type and gen_device_type == "cpu":
169
+ rand_device = "cpu"
170
+ if device != "mps":
171
+ logger.info(
172
+ f"The passed generator was created on 'cpu' even though a tensor on {device} was expected."
173
+ f" Tensors will be created on 'cpu' and then moved to {device}. Note that one can probably"
174
+ f" slightly speed up this function by passing a generator that was created on the {device} device."
175
+ )
176
+ elif gen_device_type != device.type and gen_device_type == "cuda":
177
+ raise ValueError(f"Cannot generate a {device} tensor from a generator of type {gen_device_type}.")
178
+
179
+ # make sure generator list of length 1 is treated like a non-list
180
+ if isinstance(generator, list) and len(generator) == 1:
181
+ generator = generator[0]
182
+
183
+ if isinstance(generator, list):
184
+ shape = (1,) + shape[1:]
185
+ latents = [
186
+ torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype, layout=layout)
187
+ for i in range(batch_size)
188
+ ]
189
+ latents = torch.cat(latents, dim=0).to(device)
190
+ else:
191
+ latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype, layout=layout).to(device)
192
+
193
+ return latents
194
+
195
+
196
+ def is_compiled_module(module) -> bool:
197
+ """Check whether the module was compiled with torch.compile()"""
198
+ if is_torch_version("<", "2.0.0") or not hasattr(torch, "_dynamo"):
199
+ return False
200
+ return isinstance(module, torch._dynamo.eval_frame.OptimizedModule)
201
+
202
+
203
+ def unwrap_module(module):
204
+ """Unwraps a module if it was compiled with torch.compile()"""
205
+ return module._orig_mod if is_compiled_module(module) else module
206
+
207
+
208
+ def fourier_filter(x_in: "torch.Tensor", threshold: int, scale: int) -> "torch.Tensor":
209
+ """Fourier filter as introduced in FreeU (https://huggingface.co/papers/2309.11497).
210
+
211
+ This version of the method comes from here:
212
+ https://github.com/huggingface/diffusers/pull/5164#issuecomment-1732638706
213
+ """
214
+ x = x_in
215
+ B, C, H, W = x.shape
216
+
217
+ # Non-power of 2 images must be float32
218
+ if (W & (W - 1)) != 0 or (H & (H - 1)) != 0:
219
+ x = x.to(dtype=torch.float32)
220
+ # fftn does not support bfloat16
221
+ elif x.dtype == torch.bfloat16:
222
+ x = x.to(dtype=torch.float32)
223
+
224
+ # FFT
225
+ x_freq = fftn(x, dim=(-2, -1))
226
+ x_freq = fftshift(x_freq, dim=(-2, -1))
227
+
228
+ B, C, H, W = x_freq.shape
229
+ mask = torch.ones((B, C, H, W), device=x.device)
230
+
231
+ crow, ccol = H // 2, W // 2
232
+ mask[..., crow - threshold : crow + threshold, ccol - threshold : ccol + threshold] = scale
233
+ x_freq = x_freq * mask
234
+
235
+ # IFFT
236
+ x_freq = ifftshift(x_freq, dim=(-2, -1))
237
+ x_filtered = ifftn(x_freq, dim=(-2, -1)).real
238
+
239
+ return x_filtered.to(dtype=x_in.dtype)
240
+
241
+
242
+ def apply_freeu(
243
+ resolution_idx: int, hidden_states: "torch.Tensor", res_hidden_states: "torch.Tensor", **freeu_kwargs
244
+ ) -> Tuple["torch.Tensor", "torch.Tensor"]:
245
+ """Applies the FreeU mechanism as introduced in https:
246
+ //arxiv.org/abs/2309.11497. Adapted from the official code repository: https://github.com/ChenyangSi/FreeU.
247
+
248
+ Args:
249
+ resolution_idx (`int`): Integer denoting the UNet block where FreeU is being applied.
250
+ hidden_states (`torch.Tensor`): Inputs to the underlying block.
251
+ res_hidden_states (`torch.Tensor`): Features from the skip block corresponding to the underlying block.
252
+ s1 (`float`): Scaling factor for stage 1 to attenuate the contributions of the skip features.
253
+ s2 (`float`): Scaling factor for stage 2 to attenuate the contributions of the skip features.
254
+ b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
255
+ b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
256
+ """
257
+ if resolution_idx == 0:
258
+ num_half_channels = hidden_states.shape[1] // 2
259
+ hidden_states[:, :num_half_channels] = hidden_states[:, :num_half_channels] * freeu_kwargs["b1"]
260
+ res_hidden_states = fourier_filter(res_hidden_states, threshold=1, scale=freeu_kwargs["s1"])
261
+ if resolution_idx == 1:
262
+ num_half_channels = hidden_states.shape[1] // 2
263
+ hidden_states[:, :num_half_channels] = hidden_states[:, :num_half_channels] * freeu_kwargs["b2"]
264
+ res_hidden_states = fourier_filter(res_hidden_states, threshold=1, scale=freeu_kwargs["s2"])
265
+
266
+ return hidden_states, res_hidden_states
267
+
268
+
269
+ def get_torch_cuda_device_capability():
270
+ if torch.cuda.is_available():
271
+ device = torch.device("cuda")
272
+ compute_capability = torch.cuda.get_device_capability(device)
273
+ compute_capability = f"{compute_capability[0]}.{compute_capability[1]}"
274
+ return float(compute_capability)
275
+ else:
276
+ return None
277
+
278
+
279
+ @functools.lru_cache
280
+ def get_device():
281
+ if torch.cuda.is_available():
282
+ return "cuda"
283
+ elif is_torch_npu_available():
284
+ return "npu"
285
+ elif hasattr(torch, "xpu") and torch.xpu.is_available():
286
+ return "xpu"
287
+ elif torch.backends.mps.is_available():
288
+ return "mps"
289
+ else:
290
+ return "cpu"
291
+
292
+
293
+ def empty_device_cache(device_type: Optional[str] = None):
294
+ if device_type is None:
295
+ device_type = get_device()
296
+ if device_type in ["cpu"]:
297
+ return
298
+ device_mod = getattr(torch, device_type, torch.cuda)
299
+ device_mod.empty_cache()
300
+
301
+
302
+ def device_synchronize(device_type: Optional[str] = None):
303
+ if device_type is None:
304
+ device_type = get_device()
305
+ device_mod = getattr(torch, device_type, torch.cuda)
306
+ device_mod.synchronize()
307
+
308
+
309
+ def enable_full_determinism():
310
+ """
311
+ Helper function for reproducible behavior during distributed training. See
312
+ - https://pytorch.org/docs/stable/notes/randomness.html for pytorch
313
+ """
314
+ # Enable PyTorch deterministic mode. This potentially requires either the environment
315
+ # variable 'CUDA_LAUNCH_BLOCKING' or 'CUBLAS_WORKSPACE_CONFIG' to be set,
316
+ # depending on the CUDA version, so we set them both here
317
+ os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
318
+ os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":16:8"
319
+ torch.use_deterministic_algorithms(True)
320
+
321
+ # Enable CUDNN deterministic mode
322
+ torch.backends.cudnn.deterministic = True
323
+ torch.backends.cudnn.benchmark = False
324
+ torch.backends.cuda.matmul.allow_tf32 = False
325
+
326
+
327
+ def disable_full_determinism():
328
+ os.environ["CUDA_LAUNCH_BLOCKING"] = "0"
329
+ os.environ["CUBLAS_WORKSPACE_CONFIG"] = ""
330
+ torch.use_deterministic_algorithms(False)
331
+
332
+
333
+ if is_torch_available():
334
+ torch_device = get_device()
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/utils/typing_utils.py ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2025 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """
15
+ Typing utilities: Utilities related to type checking and validation
16
+ """
17
+
18
+ from typing import Any, Dict, List, Set, Tuple, Type, Union, get_args, get_origin
19
+
20
+
21
+ def _is_valid_type(obj: Any, class_or_tuple: Union[Type, Tuple[Type, ...]]) -> bool:
22
+ """
23
+ Checks if an object is an instance of any of the provided types. For collections, it checks if every element is of
24
+ the correct type as well.
25
+ """
26
+ if not isinstance(class_or_tuple, tuple):
27
+ class_or_tuple = (class_or_tuple,)
28
+
29
+ # Unpack unions
30
+ unpacked_class_or_tuple = []
31
+ for t in class_or_tuple:
32
+ if get_origin(t) is Union:
33
+ unpacked_class_or_tuple.extend(get_args(t))
34
+ else:
35
+ unpacked_class_or_tuple.append(t)
36
+ class_or_tuple = tuple(unpacked_class_or_tuple)
37
+
38
+ if Any in class_or_tuple:
39
+ return True
40
+
41
+ obj_type = type(obj)
42
+ # Classes with obj's type
43
+ class_or_tuple = {t for t in class_or_tuple if isinstance(obj, get_origin(t) or t)}
44
+
45
+ # Singular types (e.g. int, ControlNet, ...)
46
+ # Untyped collections (e.g. List, but not List[int])
47
+ elem_class_or_tuple = {get_args(t) for t in class_or_tuple}
48
+ if () in elem_class_or_tuple:
49
+ return True
50
+ # Typed lists or sets
51
+ elif obj_type in (list, set):
52
+ return any(all(_is_valid_type(x, t) for x in obj) for t in elem_class_or_tuple)
53
+ # Typed tuples
54
+ elif obj_type is tuple:
55
+ return any(
56
+ # Tuples with any length and single type (e.g. Tuple[int, ...])
57
+ (len(t) == 2 and t[-1] is Ellipsis and all(_is_valid_type(x, t[0]) for x in obj))
58
+ or
59
+ # Tuples with fixed length and any types (e.g. Tuple[int, str])
60
+ (len(obj) == len(t) and all(_is_valid_type(x, tt) for x, tt in zip(obj, t)))
61
+ for t in elem_class_or_tuple
62
+ )
63
+ # Typed dicts
64
+ elif obj_type is dict:
65
+ return any(
66
+ all(_is_valid_type(k, kt) and _is_valid_type(v, vt) for k, v in obj.items())
67
+ for kt, vt in elem_class_or_tuple
68
+ )
69
+
70
+ else:
71
+ return False
72
+
73
+
74
+ def _get_detailed_type(obj: Any) -> Type:
75
+ """
76
+ Gets a detailed type for an object, including nested types for collections.
77
+ """
78
+ obj_type = type(obj)
79
+
80
+ if obj_type in (list, set):
81
+ obj_origin_type = List if obj_type is list else Set
82
+ elems_type = Union[tuple({_get_detailed_type(x) for x in obj})]
83
+ return obj_origin_type[elems_type]
84
+ elif obj_type is tuple:
85
+ return Tuple[tuple(_get_detailed_type(x) for x in obj)]
86
+ elif obj_type is dict:
87
+ keys_type = Union[tuple({_get_detailed_type(k) for k in obj.keys()})]
88
+ values_type = Union[tuple({_get_detailed_type(k) for k in obj.values()})]
89
+ return Dict[keys_type, values_type]
90
+ else:
91
+ return obj_type
exp_code/1_benchmark/diffusers-WanS2V/src/diffusers/utils/versions.py ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """
15
+ Utilities for working with package versions
16
+ """
17
+
18
+ import importlib.metadata
19
+ import operator
20
+ import re
21
+ import sys
22
+ from typing import Optional
23
+
24
+ from packaging import version
25
+
26
+
27
+ ops = {
28
+ "<": operator.lt,
29
+ "<=": operator.le,
30
+ "==": operator.eq,
31
+ "!=": operator.ne,
32
+ ">=": operator.ge,
33
+ ">": operator.gt,
34
+ }
35
+
36
+
37
+ def _compare_versions(op, got_ver, want_ver, requirement, pkg, hint):
38
+ if got_ver is None or want_ver is None:
39
+ raise ValueError(
40
+ f"Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider"
41
+ f" reinstalling {pkg}."
42
+ )
43
+ if not ops[op](version.parse(got_ver), version.parse(want_ver)):
44
+ raise ImportError(
45
+ f"{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}"
46
+ )
47
+
48
+
49
+ def require_version(requirement: str, hint: Optional[str] = None) -> None:
50
+ """
51
+ Perform a runtime check of the dependency versions, using the exact same syntax used by pip.
52
+
53
+ The installed module version comes from the *site-packages* dir via *importlib.metadata*.
54
+
55
+ Args:
56
+ requirement (`str`): pip style definition, e.g., "tokenizers==0.9.4", "tqdm>=4.27", "numpy"
57
+ hint (`str`, *optional*): what suggestion to print in case of requirements not being met
58
+
59
+ Example:
60
+
61
+ ```python
62
+ require_version("pandas>1.1.2")
63
+ require_version("numpy>1.18.5", "this is important to have for whatever reason")
64
+ ```"""
65
+
66
+ hint = f"\n{hint}" if hint is not None else ""
67
+
68
+ # non-versioned check
69
+ if re.match(r"^[\w_\-\d]+$", requirement):
70
+ pkg, op, want_ver = requirement, None, None
71
+ else:
72
+ match = re.findall(r"^([^!=<>\s]+)([\s!=<>]{1,2}.+)", requirement)
73
+ if not match:
74
+ raise ValueError(
75
+ "requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but"
76
+ f" got {requirement}"
77
+ )
78
+ pkg, want_full = match[0]
79
+ want_range = want_full.split(",") # there could be multiple requirements
80
+ wanted = {}
81
+ for w in want_range:
82
+ match = re.findall(r"^([\s!=<>]{1,2})(.+)", w)
83
+ if not match:
84
+ raise ValueError(
85
+ "requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,"
86
+ f" but got {requirement}"
87
+ )
88
+ op, want_ver = match[0]
89
+ wanted[op] = want_ver
90
+ if op not in ops:
91
+ raise ValueError(f"{requirement}: need one of {list(ops.keys())}, but got {op}")
92
+
93
+ # special case
94
+ if pkg == "python":
95
+ got_ver = ".".join([str(x) for x in sys.version_info[:3]])
96
+ for op, want_ver in wanted.items():
97
+ _compare_versions(op, got_ver, want_ver, requirement, pkg, hint)
98
+ return
99
+
100
+ # check if any version is installed
101
+ try:
102
+ got_ver = importlib.metadata.version(pkg)
103
+ except importlib.metadata.PackageNotFoundError:
104
+ raise importlib.metadata.PackageNotFoundError(
105
+ f"The '{requirement}' distribution was not found and is required by this application. {hint}"
106
+ )
107
+
108
+ # check that the right version is installed if version number or a range was provided
109
+ if want_ver is not None:
110
+ for op, want_ver in wanted.items():
111
+ _compare_versions(op, got_ver, want_ver, requirement, pkg, hint)
112
+
113
+
114
+ def require_version_core(requirement):
115
+ """require_version wrapper which emits a core-specific hint on failure"""
116
+ hint = "Try: pip install transformers -U or pip install -e '.[dev]' if you're working with git main"
117
+ return require_version(requirement, hint)
exp_code/1_benchmark/diffusers-WanS2V/tests/__init__.py ADDED
File without changes
exp_code/1_benchmark/diffusers-WanS2V/tests/conftest.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2025 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ # tests directory-specific settings - this file is run automatically
16
+ # by pytest before any tests are run
17
+
18
+ import sys
19
+ import warnings
20
+ from os.path import abspath, dirname, join
21
+
22
+
23
+ # allow having multiple repository checkouts and not needing to remember to rerun
24
+ # 'pip install -e .[dev]' when switching between checkouts and running tests.
25
+ git_repo_path = abspath(join(dirname(dirname(__file__)), "src"))
26
+ sys.path.insert(1, git_repo_path)
27
+
28
+ # silence FutureWarning warnings in tests since often we can't act on them until
29
+ # they become normal warnings - i.e. the tests still need to test the current functionality
30
+ warnings.simplefilter(action="ignore", category=FutureWarning)
31
+
32
+
33
+ def pytest_configure(config):
34
+ config.addinivalue_line("markers", "big_accelerator: marks tests as requiring big accelerator resources")
35
+
36
+
37
+ def pytest_addoption(parser):
38
+ from .testing_utils import pytest_addoption_shared
39
+
40
+ pytest_addoption_shared(parser)
41
+
42
+
43
+ def pytest_terminal_summary(terminalreporter):
44
+ from .testing_utils import pytest_terminal_summary_main
45
+
46
+ make_reports = terminalreporter.config.getoption("--make-reports")
47
+ if make_reports:
48
+ pytest_terminal_summary_main(terminalreporter, id=make_reports)
exp_code/1_benchmark/diffusers-WanS2V/tests/fixtures/custom_pipeline/pipeline.py ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2025 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ # limitations under the License.
16
+
17
+
18
+ from typing import Optional, Tuple, Union
19
+
20
+ import torch
21
+
22
+ from diffusers import DiffusionPipeline, ImagePipelineOutput, SchedulerMixin, UNet2DModel
23
+
24
+
25
+ class CustomLocalPipeline(DiffusionPipeline):
26
+ r"""
27
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
28
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
29
+
30
+ Parameters:
31
+ unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image.
32
+ scheduler ([`SchedulerMixin`]):
33
+ A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of
34
+ [`DDPMScheduler`], or [`DDIMScheduler`].
35
+ """
36
+
37
+ def __init__(self, unet: UNet2DModel, scheduler: SchedulerMixin):
38
+ super().__init__()
39
+ self.register_modules(unet=unet, scheduler=scheduler)
40
+
41
+ @torch.no_grad()
42
+ def __call__(
43
+ self,
44
+ batch_size: int = 1,
45
+ generator: Optional[torch.Generator] = None,
46
+ num_inference_steps: int = 50,
47
+ output_type: Optional[str] = "pil",
48
+ return_dict: bool = True,
49
+ **kwargs,
50
+ ) -> Union[ImagePipelineOutput, Tuple]:
51
+ r"""
52
+ Args:
53
+ batch_size (`int`, *optional*, defaults to 1):
54
+ The number of images to generate.
55
+ generator (`torch.Generator`, *optional*):
56
+ A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
57
+ deterministic.
58
+ eta (`float`, *optional*, defaults to 0.0):
59
+ The eta parameter which controls the scale of the variance (0 is DDIM and 1 is one type of DDPM).
60
+ num_inference_steps (`int`, *optional*, defaults to 50):
61
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
62
+ expense of slower inference.
63
+ output_type (`str`, *optional*, defaults to `"pil"`):
64
+ The output format of the generate image. Choose between
65
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
66
+ return_dict (`bool`, *optional*, defaults to `True`):
67
+ Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
68
+
69
+ Returns:
70
+ [`~pipelines.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if
71
+ `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the
72
+ generated images.
73
+ """
74
+
75
+ # Sample gaussian noise to begin loop
76
+ image = torch.randn(
77
+ (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size),
78
+ generator=generator,
79
+ )
80
+ image = image.to(self.device)
81
+
82
+ # set step values
83
+ self.scheduler.set_timesteps(num_inference_steps)
84
+
85
+ for t in self.progress_bar(self.scheduler.timesteps):
86
+ # 1. predict noise model_output
87
+ model_output = self.unet(image, t).sample
88
+
89
+ # 2. predict previous mean of image x_t-1 and add variance depending on eta
90
+ # eta corresponds to η in paper and should be between [0, 1]
91
+ # do x_t -> x_t-1
92
+ image = self.scheduler.step(model_output, t, image).prev_sample
93
+
94
+ image = (image / 2 + 0.5).clamp(0, 1)
95
+ image = image.cpu().permute(0, 2, 3, 1).numpy()
96
+ if output_type == "pil":
97
+ image = self.numpy_to_pil(image)
98
+
99
+ if not return_dict:
100
+ return (image,), "This is a local test"
101
+
102
+ return ImagePipelineOutput(images=image), "This is a local test"
exp_code/1_benchmark/diffusers-WanS2V/tests/fixtures/custom_pipeline/what_ever.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2025 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ # limitations under the License.
16
+
17
+
18
+ from typing import Optional, Tuple, Union
19
+
20
+ import torch
21
+
22
+ from diffusers import SchedulerMixin, UNet2DModel
23
+ from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
24
+
25
+
26
+ class CustomLocalPipeline(DiffusionPipeline):
27
+ r"""
28
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
29
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
30
+
31
+ Parameters:
32
+ unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image.
33
+ scheduler ([`SchedulerMixin`]):
34
+ A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of
35
+ [`DDPMScheduler`], or [`DDIMScheduler`].
36
+ """
37
+
38
+ def __init__(self, unet: UNet2DModel, scheduler: SchedulerMixin):
39
+ super().__init__()
40
+ self.register_modules(unet=unet, scheduler=scheduler)
41
+
42
+ @torch.no_grad()
43
+ def __call__(
44
+ self,
45
+ batch_size: int = 1,
46
+ generator: Optional[torch.Generator] = None,
47
+ num_inference_steps: int = 50,
48
+ output_type: Optional[str] = "pil",
49
+ return_dict: bool = True,
50
+ **kwargs,
51
+ ) -> Union[ImagePipelineOutput, Tuple]:
52
+ r"""
53
+ Args:
54
+ batch_size (`int`, *optional*, defaults to 1):
55
+ The number of images to generate.
56
+ generator (`torch.Generator`, *optional*):
57
+ A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
58
+ deterministic.
59
+ eta (`float`, *optional*, defaults to 0.0):
60
+ The eta parameter which controls the scale of the variance (0 is DDIM and 1 is one type of DDPM).
61
+ num_inference_steps (`int`, *optional*, defaults to 50):
62
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
63
+ expense of slower inference.
64
+ output_type (`str`, *optional*, defaults to `"pil"`):
65
+ The output format of the generate image. Choose between
66
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
67
+ return_dict (`bool`, *optional*, defaults to `True`):
68
+ Whether or not to return a [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple.
69
+
70
+ Returns:
71
+ [`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if
72
+ `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the
73
+ generated images.
74
+ """
75
+
76
+ # Sample gaussian noise to begin loop
77
+ image = torch.randn(
78
+ (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size),
79
+ generator=generator,
80
+ )
81
+ image = image.to(self.device)
82
+
83
+ # set step values
84
+ self.scheduler.set_timesteps(num_inference_steps)
85
+
86
+ for t in self.progress_bar(self.scheduler.timesteps):
87
+ # 1. predict noise model_output
88
+ model_output = self.unet(image, t).sample
89
+
90
+ # 2. predict previous mean of image x_t-1 and add variance depending on eta
91
+ # eta corresponds to η in paper and should be between [0, 1]
92
+ # do x_t -> x_t-1
93
+ image = self.scheduler.step(model_output, t, image).prev_sample
94
+
95
+ image = (image / 2 + 0.5).clamp(0, 1)
96
+ image = image.cpu().permute(0, 2, 3, 1).numpy()
97
+ if output_type == "pil":
98
+ image = self.numpy_to_pil(image)
99
+
100
+ if not return_dict:
101
+ return (image,), "This is a local test"
102
+
103
+ return ImagePipelineOutput(images=image), "This is a local test"
exp_code/1_benchmark/diffusers-WanS2V/tests/fixtures/elise_format0.mid ADDED
Binary file (14.2 kB). View file
 
exp_code/1_benchmark/diffusers-WanS2V/tests/hooks/__init__.py ADDED
File without changes
exp_code/1_benchmark/diffusers-WanS2V/tests/hooks/test_group_offloading.py ADDED
@@ -0,0 +1,364 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2025 HuggingFace Inc.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import contextlib
16
+ import gc
17
+ import unittest
18
+
19
+ import torch
20
+ from parameterized import parameterized
21
+
22
+ from diffusers.hooks import HookRegistry, ModelHook
23
+ from diffusers.models import ModelMixin
24
+ from diffusers.pipelines.pipeline_utils import DiffusionPipeline
25
+ from diffusers.utils import get_logger
26
+ from diffusers.utils.import_utils import compare_versions
27
+
28
+ from ..testing_utils import (
29
+ backend_empty_cache,
30
+ backend_max_memory_allocated,
31
+ backend_reset_peak_memory_stats,
32
+ require_torch_accelerator,
33
+ torch_device,
34
+ )
35
+
36
+
37
+ class DummyBlock(torch.nn.Module):
38
+ def __init__(self, in_features: int, hidden_features: int, out_features: int) -> None:
39
+ super().__init__()
40
+
41
+ self.proj_in = torch.nn.Linear(in_features, hidden_features)
42
+ self.activation = torch.nn.ReLU()
43
+ self.proj_out = torch.nn.Linear(hidden_features, out_features)
44
+
45
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
46
+ x = self.proj_in(x)
47
+ x = self.activation(x)
48
+ x = self.proj_out(x)
49
+ return x
50
+
51
+
52
+ class DummyModel(ModelMixin):
53
+ def __init__(self, in_features: int, hidden_features: int, out_features: int, num_layers: int) -> None:
54
+ super().__init__()
55
+
56
+ self.linear_1 = torch.nn.Linear(in_features, hidden_features)
57
+ self.activation = torch.nn.ReLU()
58
+ self.blocks = torch.nn.ModuleList(
59
+ [DummyBlock(hidden_features, hidden_features, hidden_features) for _ in range(num_layers)]
60
+ )
61
+ self.linear_2 = torch.nn.Linear(hidden_features, out_features)
62
+
63
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
64
+ x = self.linear_1(x)
65
+ x = self.activation(x)
66
+ for block in self.blocks:
67
+ x = block(x)
68
+ x = self.linear_2(x)
69
+ return x
70
+
71
+
72
+ # This model implementation contains one type of block (single_blocks) instantiated before another type of block (double_blocks).
73
+ # The invocation order of these blocks, however, is first the double_blocks and then the single_blocks.
74
+ # With group offloading implementation before https://github.com/huggingface/diffusers/pull/11375, such a modeling implementation
75
+ # would result in a device mismatch error because of the assumptions made by the code. The failure case occurs when using:
76
+ # offload_type="block_level", num_blocks_per_group=2, use_stream=True
77
+ # Post the linked PR, the implementation will work as expected.
78
+ class DummyModelWithMultipleBlocks(ModelMixin):
79
+ def __init__(
80
+ self, in_features: int, hidden_features: int, out_features: int, num_layers: int, num_single_layers: int
81
+ ) -> None:
82
+ super().__init__()
83
+
84
+ self.linear_1 = torch.nn.Linear(in_features, hidden_features)
85
+ self.activation = torch.nn.ReLU()
86
+ self.single_blocks = torch.nn.ModuleList(
87
+ [DummyBlock(hidden_features, hidden_features, hidden_features) for _ in range(num_single_layers)]
88
+ )
89
+ self.double_blocks = torch.nn.ModuleList(
90
+ [DummyBlock(hidden_features, hidden_features, hidden_features) for _ in range(num_layers)]
91
+ )
92
+ self.linear_2 = torch.nn.Linear(hidden_features, out_features)
93
+
94
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
95
+ x = self.linear_1(x)
96
+ x = self.activation(x)
97
+ for block in self.double_blocks:
98
+ x = block(x)
99
+ for block in self.single_blocks:
100
+ x = block(x)
101
+ x = self.linear_2(x)
102
+ return x
103
+
104
+
105
+ # Test for https://github.com/huggingface/diffusers/pull/12077
106
+ class DummyModelWithLayerNorm(ModelMixin):
107
+ def __init__(self, in_features: int, hidden_features: int, out_features: int, num_layers: int) -> None:
108
+ super().__init__()
109
+
110
+ self.linear_1 = torch.nn.Linear(in_features, hidden_features)
111
+ self.activation = torch.nn.ReLU()
112
+ self.blocks = torch.nn.ModuleList(
113
+ [DummyBlock(hidden_features, hidden_features, hidden_features) for _ in range(num_layers)]
114
+ )
115
+ self.layer_norm = torch.nn.LayerNorm(hidden_features, elementwise_affine=True)
116
+ self.linear_2 = torch.nn.Linear(hidden_features, out_features)
117
+
118
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
119
+ x = self.linear_1(x)
120
+ x = self.activation(x)
121
+ for block in self.blocks:
122
+ x = block(x)
123
+ x = self.layer_norm(x)
124
+ x = self.linear_2(x)
125
+ return x
126
+
127
+
128
+ class DummyPipeline(DiffusionPipeline):
129
+ model_cpu_offload_seq = "model"
130
+
131
+ def __init__(self, model: torch.nn.Module) -> None:
132
+ super().__init__()
133
+
134
+ self.register_modules(model=model)
135
+
136
+ def __call__(self, x: torch.Tensor) -> torch.Tensor:
137
+ for _ in range(2):
138
+ x = x + 0.1 * self.model(x)
139
+ return x
140
+
141
+
142
+ class LayerOutputTrackerHook(ModelHook):
143
+ def __init__(self):
144
+ super().__init__()
145
+ self.outputs = []
146
+
147
+ def post_forward(self, module, output):
148
+ self.outputs.append(output)
149
+ return output
150
+
151
+
152
+ @require_torch_accelerator
153
+ class GroupOffloadTests(unittest.TestCase):
154
+ in_features = 64
155
+ hidden_features = 256
156
+ out_features = 64
157
+ num_layers = 4
158
+
159
+ def setUp(self):
160
+ with torch.no_grad():
161
+ self.model = self.get_model()
162
+ self.input = torch.randn((4, self.in_features)).to(torch_device)
163
+
164
+ def tearDown(self):
165
+ super().tearDown()
166
+
167
+ del self.model
168
+ del self.input
169
+ gc.collect()
170
+ backend_empty_cache(torch_device)
171
+ backend_reset_peak_memory_stats(torch_device)
172
+
173
+ def get_model(self):
174
+ torch.manual_seed(0)
175
+ return DummyModel(
176
+ in_features=self.in_features,
177
+ hidden_features=self.hidden_features,
178
+ out_features=self.out_features,
179
+ num_layers=self.num_layers,
180
+ )
181
+
182
+ def test_offloading_forward_pass(self):
183
+ @torch.no_grad()
184
+ def run_forward(model):
185
+ gc.collect()
186
+ backend_empty_cache(torch_device)
187
+ backend_reset_peak_memory_stats(torch_device)
188
+ self.assertTrue(
189
+ all(
190
+ module._diffusers_hook.get_hook("group_offloading") is not None
191
+ for module in model.modules()
192
+ if hasattr(module, "_diffusers_hook")
193
+ )
194
+ )
195
+ model.eval()
196
+ output = model(self.input)[0].cpu()
197
+ max_memory_allocated = backend_max_memory_allocated(torch_device)
198
+ return output, max_memory_allocated
199
+
200
+ self.model.to(torch_device)
201
+ output_without_group_offloading, mem_baseline = run_forward(self.model)
202
+ self.model.to("cpu")
203
+
204
+ model = self.get_model()
205
+ model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3)
206
+ output_with_group_offloading1, mem1 = run_forward(model)
207
+
208
+ model = self.get_model()
209
+ model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=1)
210
+ output_with_group_offloading2, mem2 = run_forward(model)
211
+
212
+ model = self.get_model()
213
+ model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=1, use_stream=True)
214
+ output_with_group_offloading3, mem3 = run_forward(model)
215
+
216
+ model = self.get_model()
217
+ model.enable_group_offload(torch_device, offload_type="leaf_level")
218
+ output_with_group_offloading4, mem4 = run_forward(model)
219
+
220
+ model = self.get_model()
221
+ model.enable_group_offload(torch_device, offload_type="leaf_level", use_stream=True)
222
+ output_with_group_offloading5, mem5 = run_forward(model)
223
+
224
+ # Precision assertions - offloading should not impact the output
225
+ self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading1, atol=1e-5))
226
+ self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading2, atol=1e-5))
227
+ self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading3, atol=1e-5))
228
+ self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading4, atol=1e-5))
229
+ self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading5, atol=1e-5))
230
+
231
+ # Memory assertions - offloading should reduce memory usage
232
+ self.assertTrue(mem4 <= mem5 < mem2 <= mem3 < mem1 < mem_baseline)
233
+
234
+ def test_warning_logged_if_group_offloaded_module_moved_to_accelerator(self):
235
+ if torch.device(torch_device).type not in ["cuda", "xpu"]:
236
+ return
237
+ self.model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3)
238
+ logger = get_logger("diffusers.models.modeling_utils")
239
+ logger.setLevel("INFO")
240
+ with self.assertLogs(logger, level="WARNING") as cm:
241
+ self.model.to(torch_device)
242
+ self.assertIn(f"The module '{self.model.__class__.__name__}' is group offloaded", cm.output[0])
243
+
244
+ def test_warning_logged_if_group_offloaded_pipe_moved_to_accelerator(self):
245
+ if torch.device(torch_device).type not in ["cuda", "xpu"]:
246
+ return
247
+ pipe = DummyPipeline(self.model)
248
+ self.model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3)
249
+ logger = get_logger("diffusers.pipelines.pipeline_utils")
250
+ logger.setLevel("INFO")
251
+ with self.assertLogs(logger, level="WARNING") as cm:
252
+ pipe.to(torch_device)
253
+ self.assertIn(f"The module '{self.model.__class__.__name__}' is group offloaded", cm.output[0])
254
+
255
+ def test_error_raised_if_streams_used_and_no_accelerator_device(self):
256
+ torch_accelerator_module = getattr(torch, torch_device, torch.cuda)
257
+ original_is_available = torch_accelerator_module.is_available
258
+ torch_accelerator_module.is_available = lambda: False
259
+ with self.assertRaises(ValueError):
260
+ self.model.enable_group_offload(
261
+ onload_device=torch.device(torch_device), offload_type="leaf_level", use_stream=True
262
+ )
263
+ torch_accelerator_module.is_available = original_is_available
264
+
265
+ def test_error_raised_if_supports_group_offloading_false(self):
266
+ self.model._supports_group_offloading = False
267
+ with self.assertRaisesRegex(ValueError, "does not support group offloading"):
268
+ self.model.enable_group_offload(onload_device=torch.device(torch_device))
269
+
270
+ def test_error_raised_if_model_offloading_applied_on_group_offloaded_module(self):
271
+ pipe = DummyPipeline(self.model)
272
+ pipe.model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3)
273
+ with self.assertRaisesRegex(ValueError, "You are trying to apply model/sequential CPU offloading"):
274
+ pipe.enable_model_cpu_offload()
275
+
276
+ def test_error_raised_if_sequential_offloading_applied_on_group_offloaded_module(self):
277
+ pipe = DummyPipeline(self.model)
278
+ pipe.model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3)
279
+ with self.assertRaisesRegex(ValueError, "You are trying to apply model/sequential CPU offloading"):
280
+ pipe.enable_sequential_cpu_offload()
281
+
282
+ def test_error_raised_if_group_offloading_applied_on_model_offloaded_module(self):
283
+ pipe = DummyPipeline(self.model)
284
+ pipe.enable_model_cpu_offload()
285
+ with self.assertRaisesRegex(ValueError, "Cannot apply group offloading"):
286
+ pipe.model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3)
287
+
288
+ def test_error_raised_if_group_offloading_applied_on_sequential_offloaded_module(self):
289
+ pipe = DummyPipeline(self.model)
290
+ pipe.enable_sequential_cpu_offload()
291
+ with self.assertRaisesRegex(ValueError, "Cannot apply group offloading"):
292
+ pipe.model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3)
293
+
294
+ def test_block_level_stream_with_invocation_order_different_from_initialization_order(self):
295
+ if torch.device(torch_device).type not in ["cuda", "xpu"]:
296
+ return
297
+
298
+ model = DummyModelWithMultipleBlocks(
299
+ in_features=self.in_features,
300
+ hidden_features=self.hidden_features,
301
+ out_features=self.out_features,
302
+ num_layers=self.num_layers,
303
+ num_single_layers=self.num_layers + 1,
304
+ )
305
+ model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=1, use_stream=True)
306
+
307
+ context = contextlib.nullcontext()
308
+ if compare_versions("diffusers", "<=", "0.33.0"):
309
+ # Will raise a device mismatch RuntimeError mentioning weights are on CPU but input is on device
310
+ context = self.assertRaisesRegex(RuntimeError, "Expected all tensors to be on the same device")
311
+
312
+ with context:
313
+ model(self.input)
314
+
315
+ @parameterized.expand([("block_level",), ("leaf_level",)])
316
+ def test_block_level_offloading_with_parameter_only_module_group(self, offload_type: str):
317
+ if torch.device(torch_device).type not in ["cuda", "xpu"]:
318
+ return
319
+
320
+ def apply_layer_output_tracker_hook(model: DummyModelWithLayerNorm):
321
+ for name, module in model.named_modules():
322
+ registry = HookRegistry.check_if_exists_or_initialize(module)
323
+ hook = LayerOutputTrackerHook()
324
+ registry.register_hook(hook, "layer_output_tracker")
325
+
326
+ model_ref = DummyModelWithLayerNorm(128, 256, 128, 2)
327
+ model = DummyModelWithLayerNorm(128, 256, 128, 2)
328
+
329
+ model.load_state_dict(model_ref.state_dict(), strict=True)
330
+
331
+ model_ref.to(torch_device)
332
+ model.enable_group_offload(torch_device, offload_type=offload_type, num_blocks_per_group=1, use_stream=True)
333
+
334
+ apply_layer_output_tracker_hook(model_ref)
335
+ apply_layer_output_tracker_hook(model)
336
+
337
+ x = torch.randn(2, 128).to(torch_device)
338
+
339
+ out_ref = model_ref(x)
340
+ out = model(x)
341
+ self.assertTrue(torch.allclose(out_ref, out, atol=1e-5), "Outputs do not match.")
342
+
343
+ num_repeats = 4
344
+ for i in range(num_repeats):
345
+ out_ref = model_ref(x)
346
+ out = model(x)
347
+
348
+ self.assertTrue(torch.allclose(out_ref, out, atol=1e-5), "Outputs do not match after multiple invocations.")
349
+
350
+ for (ref_name, ref_module), (name, module) in zip(model_ref.named_modules(), model.named_modules()):
351
+ assert ref_name == name
352
+ ref_outputs = (
353
+ HookRegistry.check_if_exists_or_initialize(ref_module).get_hook("layer_output_tracker").outputs
354
+ )
355
+ outputs = HookRegistry.check_if_exists_or_initialize(module).get_hook("layer_output_tracker").outputs
356
+ cumulated_absmax = 0.0
357
+ for i in range(len(outputs)):
358
+ diff = ref_outputs[0] - outputs[i]
359
+ absdiff = diff.abs()
360
+ absmax = absdiff.max().item()
361
+ cumulated_absmax += absmax
362
+ self.assertLess(
363
+ cumulated_absmax, 1e-5, f"Output differences for {name} exceeded threshold: {cumulated_absmax:.5f}"
364
+ )
exp_code/1_benchmark/diffusers-WanS2V/tests/hooks/test_hooks.py ADDED
@@ -0,0 +1,377 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2025 HuggingFace Inc.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import gc
16
+ import unittest
17
+
18
+ import torch
19
+
20
+ from diffusers.hooks import HookRegistry, ModelHook
21
+ from diffusers.training_utils import free_memory
22
+ from diffusers.utils.logging import get_logger
23
+
24
+ from ..testing_utils import CaptureLogger, torch_device
25
+
26
+
27
+ logger = get_logger(__name__) # pylint: disable=invalid-name
28
+
29
+
30
+ class DummyBlock(torch.nn.Module):
31
+ def __init__(self, in_features: int, hidden_features: int, out_features: int) -> None:
32
+ super().__init__()
33
+
34
+ self.proj_in = torch.nn.Linear(in_features, hidden_features)
35
+ self.activation = torch.nn.ReLU()
36
+ self.proj_out = torch.nn.Linear(hidden_features, out_features)
37
+
38
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
39
+ x = self.proj_in(x)
40
+ x = self.activation(x)
41
+ x = self.proj_out(x)
42
+ return x
43
+
44
+
45
+ class DummyModel(torch.nn.Module):
46
+ def __init__(self, in_features: int, hidden_features: int, out_features: int, num_layers: int) -> None:
47
+ super().__init__()
48
+
49
+ self.linear_1 = torch.nn.Linear(in_features, hidden_features)
50
+ self.activation = torch.nn.ReLU()
51
+ self.blocks = torch.nn.ModuleList(
52
+ [DummyBlock(hidden_features, hidden_features, hidden_features) for _ in range(num_layers)]
53
+ )
54
+ self.linear_2 = torch.nn.Linear(hidden_features, out_features)
55
+
56
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
57
+ x = self.linear_1(x)
58
+ x = self.activation(x)
59
+ for block in self.blocks:
60
+ x = block(x)
61
+ x = self.linear_2(x)
62
+ return x
63
+
64
+
65
+ class AddHook(ModelHook):
66
+ def __init__(self, value: int):
67
+ super().__init__()
68
+ self.value = value
69
+
70
+ def pre_forward(self, module: torch.nn.Module, *args, **kwargs):
71
+ logger.debug("AddHook pre_forward")
72
+ args = ((x + self.value) if torch.is_tensor(x) else x for x in args)
73
+ return args, kwargs
74
+
75
+ def post_forward(self, module, output):
76
+ logger.debug("AddHook post_forward")
77
+ return output
78
+
79
+
80
+ class MultiplyHook(ModelHook):
81
+ def __init__(self, value: int):
82
+ super().__init__()
83
+ self.value = value
84
+
85
+ def pre_forward(self, module, *args, **kwargs):
86
+ logger.debug("MultiplyHook pre_forward")
87
+ args = ((x * self.value) if torch.is_tensor(x) else x for x in args)
88
+ return args, kwargs
89
+
90
+ def post_forward(self, module, output):
91
+ logger.debug("MultiplyHook post_forward")
92
+ return output
93
+
94
+ def __repr__(self):
95
+ return f"MultiplyHook(value={self.value})"
96
+
97
+
98
+ class StatefulAddHook(ModelHook):
99
+ _is_stateful = True
100
+
101
+ def __init__(self, value: int):
102
+ super().__init__()
103
+ self.value = value
104
+ self.increment = 0
105
+
106
+ def pre_forward(self, module, *args, **kwargs):
107
+ logger.debug("StatefulAddHook pre_forward")
108
+ add_value = self.value + self.increment
109
+ self.increment += 1
110
+ args = ((x + add_value) if torch.is_tensor(x) else x for x in args)
111
+ return args, kwargs
112
+
113
+ def reset_state(self, module):
114
+ self.increment = 0
115
+
116
+
117
+ class SkipLayerHook(ModelHook):
118
+ def __init__(self, skip_layer: bool):
119
+ super().__init__()
120
+ self.skip_layer = skip_layer
121
+
122
+ def pre_forward(self, module, *args, **kwargs):
123
+ logger.debug("SkipLayerHook pre_forward")
124
+ return args, kwargs
125
+
126
+ def new_forward(self, module, *args, **kwargs):
127
+ logger.debug("SkipLayerHook new_forward")
128
+ if self.skip_layer:
129
+ return args[0]
130
+ return self.fn_ref.original_forward(*args, **kwargs)
131
+
132
+ def post_forward(self, module, output):
133
+ logger.debug("SkipLayerHook post_forward")
134
+ return output
135
+
136
+
137
+ class HookTests(unittest.TestCase):
138
+ in_features = 4
139
+ hidden_features = 8
140
+ out_features = 4
141
+ num_layers = 2
142
+
143
+ def setUp(self):
144
+ params = self.get_module_parameters()
145
+ self.model = DummyModel(**params)
146
+ self.model.to(torch_device)
147
+
148
+ def tearDown(self):
149
+ super().tearDown()
150
+
151
+ del self.model
152
+ gc.collect()
153
+ free_memory()
154
+
155
+ def get_module_parameters(self):
156
+ return {
157
+ "in_features": self.in_features,
158
+ "hidden_features": self.hidden_features,
159
+ "out_features": self.out_features,
160
+ "num_layers": self.num_layers,
161
+ }
162
+
163
+ def get_generator(self):
164
+ return torch.manual_seed(0)
165
+
166
+ def test_hook_registry(self):
167
+ registry = HookRegistry.check_if_exists_or_initialize(self.model)
168
+ registry.register_hook(AddHook(1), "add_hook")
169
+ registry.register_hook(MultiplyHook(2), "multiply_hook")
170
+
171
+ registry_repr = repr(registry)
172
+ expected_repr = "HookRegistry(\n (0) add_hook - AddHook\n (1) multiply_hook - MultiplyHook(value=2)\n)"
173
+
174
+ self.assertEqual(len(registry.hooks), 2)
175
+ self.assertEqual(registry._hook_order, ["add_hook", "multiply_hook"])
176
+ self.assertEqual(registry_repr, expected_repr)
177
+
178
+ registry.remove_hook("add_hook")
179
+
180
+ self.assertEqual(len(registry.hooks), 1)
181
+ self.assertEqual(registry._hook_order, ["multiply_hook"])
182
+
183
+ def test_stateful_hook(self):
184
+ registry = HookRegistry.check_if_exists_or_initialize(self.model)
185
+ registry.register_hook(StatefulAddHook(1), "stateful_add_hook")
186
+
187
+ self.assertEqual(registry.hooks["stateful_add_hook"].increment, 0)
188
+
189
+ input = torch.randn(1, 4, device=torch_device, generator=self.get_generator())
190
+ num_repeats = 3
191
+
192
+ for i in range(num_repeats):
193
+ result = self.model(input)
194
+ if i == 0:
195
+ output1 = result
196
+
197
+ self.assertEqual(registry.get_hook("stateful_add_hook").increment, num_repeats)
198
+
199
+ registry.reset_stateful_hooks()
200
+ output2 = self.model(input)
201
+
202
+ self.assertEqual(registry.get_hook("stateful_add_hook").increment, 1)
203
+ self.assertTrue(torch.allclose(output1, output2))
204
+
205
+ def test_inference(self):
206
+ registry = HookRegistry.check_if_exists_or_initialize(self.model)
207
+ registry.register_hook(AddHook(1), "add_hook")
208
+ registry.register_hook(MultiplyHook(2), "multiply_hook")
209
+
210
+ input = torch.randn(1, 4, device=torch_device, generator=self.get_generator())
211
+ output1 = self.model(input).mean().detach().cpu().item()
212
+
213
+ registry.remove_hook("multiply_hook")
214
+ new_input = input * 2
215
+ output2 = self.model(new_input).mean().detach().cpu().item()
216
+
217
+ registry.remove_hook("add_hook")
218
+ new_input = input * 2 + 1
219
+ output3 = self.model(new_input).mean().detach().cpu().item()
220
+
221
+ self.assertAlmostEqual(output1, output2, places=5)
222
+ self.assertAlmostEqual(output1, output3, places=5)
223
+ self.assertAlmostEqual(output2, output3, places=5)
224
+
225
+ def test_skip_layer_hook(self):
226
+ registry = HookRegistry.check_if_exists_or_initialize(self.model)
227
+ registry.register_hook(SkipLayerHook(skip_layer=True), "skip_layer_hook")
228
+
229
+ input = torch.zeros(1, 4, device=torch_device)
230
+ output = self.model(input).mean().detach().cpu().item()
231
+ self.assertEqual(output, 0.0)
232
+
233
+ registry.remove_hook("skip_layer_hook")
234
+ registry.register_hook(SkipLayerHook(skip_layer=False), "skip_layer_hook")
235
+ output = self.model(input).mean().detach().cpu().item()
236
+ self.assertNotEqual(output, 0.0)
237
+
238
+ def test_skip_layer_internal_block(self):
239
+ registry = HookRegistry.check_if_exists_or_initialize(self.model.linear_1)
240
+ input = torch.zeros(1, 4, device=torch_device)
241
+
242
+ registry.register_hook(SkipLayerHook(skip_layer=True), "skip_layer_hook")
243
+ with self.assertRaises(RuntimeError) as cm:
244
+ self.model(input).mean().detach().cpu().item()
245
+ self.assertIn("mat1 and mat2 shapes cannot be multiplied", str(cm.exception))
246
+
247
+ registry.remove_hook("skip_layer_hook")
248
+ output = self.model(input).mean().detach().cpu().item()
249
+ self.assertNotEqual(output, 0.0)
250
+
251
+ registry = HookRegistry.check_if_exists_or_initialize(self.model.blocks[1])
252
+ registry.register_hook(SkipLayerHook(skip_layer=True), "skip_layer_hook")
253
+ output = self.model(input).mean().detach().cpu().item()
254
+ self.assertNotEqual(output, 0.0)
255
+
256
+ def test_invocation_order_stateful_first(self):
257
+ registry = HookRegistry.check_if_exists_or_initialize(self.model)
258
+ registry.register_hook(StatefulAddHook(1), "add_hook")
259
+ registry.register_hook(AddHook(2), "add_hook_2")
260
+ registry.register_hook(MultiplyHook(3), "multiply_hook")
261
+
262
+ input = torch.randn(1, 4, device=torch_device, generator=self.get_generator())
263
+
264
+ logger = get_logger(__name__)
265
+ logger.setLevel("DEBUG")
266
+
267
+ with CaptureLogger(logger) as cap_logger:
268
+ self.model(input)
269
+ output = cap_logger.out.replace(" ", "").replace("\n", "")
270
+ expected_invocation_order_log = (
271
+ (
272
+ "MultiplyHook pre_forward\n"
273
+ "AddHook pre_forward\n"
274
+ "StatefulAddHook pre_forward\n"
275
+ "AddHook post_forward\n"
276
+ "MultiplyHook post_forward\n"
277
+ )
278
+ .replace(" ", "")
279
+ .replace("\n", "")
280
+ )
281
+ self.assertEqual(output, expected_invocation_order_log)
282
+
283
+ registry.remove_hook("add_hook")
284
+ with CaptureLogger(logger) as cap_logger:
285
+ self.model(input)
286
+ output = cap_logger.out.replace(" ", "").replace("\n", "")
287
+ expected_invocation_order_log = (
288
+ ("MultiplyHook pre_forward\nAddHook pre_forward\nAddHook post_forward\nMultiplyHook post_forward\n")
289
+ .replace(" ", "")
290
+ .replace("\n", "")
291
+ )
292
+ self.assertEqual(output, expected_invocation_order_log)
293
+
294
+ def test_invocation_order_stateful_middle(self):
295
+ registry = HookRegistry.check_if_exists_or_initialize(self.model)
296
+ registry.register_hook(AddHook(2), "add_hook")
297
+ registry.register_hook(StatefulAddHook(1), "add_hook_2")
298
+ registry.register_hook(MultiplyHook(3), "multiply_hook")
299
+
300
+ input = torch.randn(1, 4, device=torch_device, generator=self.get_generator())
301
+
302
+ logger = get_logger(__name__)
303
+ logger.setLevel("DEBUG")
304
+
305
+ with CaptureLogger(logger) as cap_logger:
306
+ self.model(input)
307
+ output = cap_logger.out.replace(" ", "").replace("\n", "")
308
+ expected_invocation_order_log = (
309
+ (
310
+ "MultiplyHook pre_forward\n"
311
+ "StatefulAddHook pre_forward\n"
312
+ "AddHook pre_forward\n"
313
+ "AddHook post_forward\n"
314
+ "MultiplyHook post_forward\n"
315
+ )
316
+ .replace(" ", "")
317
+ .replace("\n", "")
318
+ )
319
+ self.assertEqual(output, expected_invocation_order_log)
320
+
321
+ registry.remove_hook("add_hook")
322
+ with CaptureLogger(logger) as cap_logger:
323
+ self.model(input)
324
+ output = cap_logger.out.replace(" ", "").replace("\n", "")
325
+ expected_invocation_order_log = (
326
+ ("MultiplyHook pre_forward\nStatefulAddHook pre_forward\nMultiplyHook post_forward\n")
327
+ .replace(" ", "")
328
+ .replace("\n", "")
329
+ )
330
+ self.assertEqual(output, expected_invocation_order_log)
331
+
332
+ registry.remove_hook("add_hook_2")
333
+ with CaptureLogger(logger) as cap_logger:
334
+ self.model(input)
335
+ output = cap_logger.out.replace(" ", "").replace("\n", "")
336
+ expected_invocation_order_log = (
337
+ ("MultiplyHook pre_forward\nMultiplyHook post_forward\n").replace(" ", "").replace("\n", "")
338
+ )
339
+ self.assertEqual(output, expected_invocation_order_log)
340
+
341
+ def test_invocation_order_stateful_last(self):
342
+ registry = HookRegistry.check_if_exists_or_initialize(self.model)
343
+ registry.register_hook(AddHook(1), "add_hook")
344
+ registry.register_hook(MultiplyHook(2), "multiply_hook")
345
+ registry.register_hook(StatefulAddHook(3), "add_hook_2")
346
+
347
+ input = torch.randn(1, 4, device=torch_device, generator=self.get_generator())
348
+
349
+ logger = get_logger(__name__)
350
+ logger.setLevel("DEBUG")
351
+
352
+ with CaptureLogger(logger) as cap_logger:
353
+ self.model(input)
354
+ output = cap_logger.out.replace(" ", "").replace("\n", "")
355
+ expected_invocation_order_log = (
356
+ (
357
+ "StatefulAddHook pre_forward\n"
358
+ "MultiplyHook pre_forward\n"
359
+ "AddHook pre_forward\n"
360
+ "AddHook post_forward\n"
361
+ "MultiplyHook post_forward\n"
362
+ )
363
+ .replace(" ", "")
364
+ .replace("\n", "")
365
+ )
366
+ self.assertEqual(output, expected_invocation_order_log)
367
+
368
+ registry.remove_hook("add_hook")
369
+ with CaptureLogger(logger) as cap_logger:
370
+ self.model(input)
371
+ output = cap_logger.out.replace(" ", "").replace("\n", "")
372
+ expected_invocation_order_log = (
373
+ ("StatefulAddHook pre_forward\nMultiplyHook pre_forward\nMultiplyHook post_forward\n")
374
+ .replace(" ", "")
375
+ .replace("\n", "")
376
+ )
377
+ self.assertEqual(output, expected_invocation_order_log)
exp_code/1_benchmark/diffusers-WanS2V/tests/lora/__init__.py ADDED
File without changes
exp_code/1_benchmark/diffusers-WanS2V/tests/lora/test_lora_layers_auraflow.py ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2025 HuggingFace Inc.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ import sys
16
+ import unittest
17
+
18
+ import torch
19
+ from transformers import AutoTokenizer, UMT5EncoderModel
20
+
21
+ from diffusers import (
22
+ AuraFlowPipeline,
23
+ AuraFlowTransformer2DModel,
24
+ FlowMatchEulerDiscreteScheduler,
25
+ )
26
+
27
+ from ..testing_utils import (
28
+ floats_tensor,
29
+ is_peft_available,
30
+ require_peft_backend,
31
+ )
32
+
33
+
34
+ if is_peft_available():
35
+ pass
36
+
37
+ sys.path.append(".")
38
+
39
+ from .utils import PeftLoraLoaderMixinTests # noqa: E402
40
+
41
+
42
+ @require_peft_backend
43
+ class AuraFlowLoRATests(unittest.TestCase, PeftLoraLoaderMixinTests):
44
+ pipeline_class = AuraFlowPipeline
45
+ scheduler_cls = FlowMatchEulerDiscreteScheduler
46
+ scheduler_classes = [FlowMatchEulerDiscreteScheduler]
47
+ scheduler_kwargs = {}
48
+
49
+ transformer_kwargs = {
50
+ "sample_size": 64,
51
+ "patch_size": 1,
52
+ "in_channels": 4,
53
+ "num_mmdit_layers": 1,
54
+ "num_single_dit_layers": 1,
55
+ "attention_head_dim": 16,
56
+ "num_attention_heads": 2,
57
+ "joint_attention_dim": 32,
58
+ "caption_projection_dim": 32,
59
+ "pos_embed_max_size": 64,
60
+ }
61
+ transformer_cls = AuraFlowTransformer2DModel
62
+ vae_kwargs = {
63
+ "sample_size": 32,
64
+ "in_channels": 3,
65
+ "out_channels": 3,
66
+ "block_out_channels": (4,),
67
+ "layers_per_block": 1,
68
+ "latent_channels": 4,
69
+ "norm_num_groups": 1,
70
+ "use_quant_conv": False,
71
+ "use_post_quant_conv": False,
72
+ "shift_factor": 0.0609,
73
+ "scaling_factor": 1.5035,
74
+ }
75
+ tokenizer_cls, tokenizer_id = AutoTokenizer, "hf-internal-testing/tiny-random-t5"
76
+ text_encoder_cls, text_encoder_id = UMT5EncoderModel, "hf-internal-testing/tiny-random-umt5"
77
+ text_encoder_target_modules = ["q", "k", "v", "o"]
78
+ denoiser_target_modules = ["to_q", "to_k", "to_v", "to_out.0", "linear_1"]
79
+
80
+ @property
81
+ def output_shape(self):
82
+ return (1, 8, 8, 3)
83
+
84
+ def get_dummy_inputs(self, with_generator=True):
85
+ batch_size = 1
86
+ sequence_length = 10
87
+ num_channels = 4
88
+ sizes = (32, 32)
89
+
90
+ generator = torch.manual_seed(0)
91
+ noise = floats_tensor((batch_size, num_channels) + sizes)
92
+ input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator)
93
+
94
+ pipeline_inputs = {
95
+ "prompt": "A painting of a squirrel eating a burger",
96
+ "num_inference_steps": 4,
97
+ "guidance_scale": 0.0,
98
+ "height": 8,
99
+ "width": 8,
100
+ "output_type": "np",
101
+ }
102
+ if with_generator:
103
+ pipeline_inputs.update({"generator": generator})
104
+
105
+ return noise, input_ids, pipeline_inputs
106
+
107
+ @unittest.skip("Not supported in AuraFlow.")
108
+ def test_simple_inference_with_text_denoiser_block_scale(self):
109
+ pass
110
+
111
+ @unittest.skip("Not supported in AuraFlow.")
112
+ def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self):
113
+ pass
114
+
115
+ @unittest.skip("Not supported in AuraFlow.")
116
+ def test_modify_padding_mode(self):
117
+ pass
118
+
119
+ @unittest.skip("Text encoder LoRA is not supported in AuraFlow.")
120
+ def test_simple_inference_with_partial_text_lora(self):
121
+ pass
122
+
123
+ @unittest.skip("Text encoder LoRA is not supported in AuraFlow.")
124
+ def test_simple_inference_with_text_lora(self):
125
+ pass
126
+
127
+ @unittest.skip("Text encoder LoRA is not supported in AuraFlow.")
128
+ def test_simple_inference_with_text_lora_and_scale(self):
129
+ pass
130
+
131
+ @unittest.skip("Text encoder LoRA is not supported in AuraFlow.")
132
+ def test_simple_inference_with_text_lora_fused(self):
133
+ pass
134
+
135
+ @unittest.skip("Text encoder LoRA is not supported in AuraFlow.")
136
+ def test_simple_inference_with_text_lora_save_load(self):
137
+ pass
exp_code/1_benchmark/diffusers-WanS2V/tests/lora/test_lora_layers_cogvideox.py ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2025 HuggingFace Inc.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import sys
16
+ import unittest
17
+
18
+ import torch
19
+ from parameterized import parameterized
20
+ from transformers import AutoTokenizer, T5EncoderModel
21
+
22
+ from diffusers import (
23
+ AutoencoderKLCogVideoX,
24
+ CogVideoXDDIMScheduler,
25
+ CogVideoXDPMScheduler,
26
+ CogVideoXPipeline,
27
+ CogVideoXTransformer3DModel,
28
+ )
29
+
30
+ from ..testing_utils import (
31
+ floats_tensor,
32
+ require_peft_backend,
33
+ require_torch_accelerator,
34
+ )
35
+
36
+
37
+ sys.path.append(".")
38
+
39
+ from .utils import PeftLoraLoaderMixinTests # noqa: E402
40
+
41
+
42
+ @require_peft_backend
43
+ class CogVideoXLoRATests(unittest.TestCase, PeftLoraLoaderMixinTests):
44
+ pipeline_class = CogVideoXPipeline
45
+ scheduler_cls = CogVideoXDPMScheduler
46
+ scheduler_kwargs = {"timestep_spacing": "trailing"}
47
+ scheduler_classes = [CogVideoXDDIMScheduler, CogVideoXDPMScheduler]
48
+
49
+ transformer_kwargs = {
50
+ "num_attention_heads": 4,
51
+ "attention_head_dim": 8,
52
+ "in_channels": 4,
53
+ "out_channels": 4,
54
+ "time_embed_dim": 2,
55
+ "text_embed_dim": 32,
56
+ "num_layers": 1,
57
+ "sample_width": 16,
58
+ "sample_height": 16,
59
+ "sample_frames": 9,
60
+ "patch_size": 2,
61
+ "temporal_compression_ratio": 4,
62
+ "max_text_seq_length": 16,
63
+ }
64
+ transformer_cls = CogVideoXTransformer3DModel
65
+ vae_kwargs = {
66
+ "in_channels": 3,
67
+ "out_channels": 3,
68
+ "down_block_types": (
69
+ "CogVideoXDownBlock3D",
70
+ "CogVideoXDownBlock3D",
71
+ "CogVideoXDownBlock3D",
72
+ "CogVideoXDownBlock3D",
73
+ ),
74
+ "up_block_types": (
75
+ "CogVideoXUpBlock3D",
76
+ "CogVideoXUpBlock3D",
77
+ "CogVideoXUpBlock3D",
78
+ "CogVideoXUpBlock3D",
79
+ ),
80
+ "block_out_channels": (8, 8, 8, 8),
81
+ "latent_channels": 4,
82
+ "layers_per_block": 1,
83
+ "norm_num_groups": 2,
84
+ "temporal_compression_ratio": 4,
85
+ }
86
+ vae_cls = AutoencoderKLCogVideoX
87
+ tokenizer_cls, tokenizer_id = AutoTokenizer, "hf-internal-testing/tiny-random-t5"
88
+ text_encoder_cls, text_encoder_id = T5EncoderModel, "hf-internal-testing/tiny-random-t5"
89
+
90
+ text_encoder_target_modules = ["q", "k", "v", "o"]
91
+
92
+ @property
93
+ def output_shape(self):
94
+ return (1, 9, 16, 16, 3)
95
+
96
+ def get_dummy_inputs(self, with_generator=True):
97
+ batch_size = 1
98
+ sequence_length = 16
99
+ num_channels = 4
100
+ num_frames = 9
101
+ num_latent_frames = 3 # (num_frames - 1) // temporal_compression_ratio + 1
102
+ sizes = (2, 2)
103
+
104
+ generator = torch.manual_seed(0)
105
+ noise = floats_tensor((batch_size, num_latent_frames, num_channels) + sizes)
106
+ input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator)
107
+
108
+ pipeline_inputs = {
109
+ "prompt": "dance monkey",
110
+ "num_frames": num_frames,
111
+ "num_inference_steps": 4,
112
+ "guidance_scale": 6.0,
113
+ # Cannot reduce because convolution kernel becomes bigger than sample
114
+ "height": 16,
115
+ "width": 16,
116
+ "max_sequence_length": sequence_length,
117
+ "output_type": "np",
118
+ }
119
+ if with_generator:
120
+ pipeline_inputs.update({"generator": generator})
121
+
122
+ return noise, input_ids, pipeline_inputs
123
+
124
+ def test_simple_inference_with_text_lora_denoiser_fused_multi(self):
125
+ super().test_simple_inference_with_text_lora_denoiser_fused_multi(expected_atol=9e-3)
126
+
127
+ def test_simple_inference_with_text_denoiser_lora_unfused(self):
128
+ super().test_simple_inference_with_text_denoiser_lora_unfused(expected_atol=9e-3)
129
+
130
+ def test_lora_scale_kwargs_match_fusion(self):
131
+ super().test_lora_scale_kwargs_match_fusion(expected_atol=9e-3, expected_rtol=9e-3)
132
+
133
+ @parameterized.expand([("block_level", True), ("leaf_level", False)])
134
+ @require_torch_accelerator
135
+ def test_group_offloading_inference_denoiser(self, offload_type, use_stream):
136
+ # TODO: We don't run the (leaf_level, True) test here that is enabled for other models.
137
+ # The reason for this can be found here: https://github.com/huggingface/diffusers/pull/11804#issuecomment-3013325338
138
+ super()._test_group_offloading_inference_denoiser(offload_type, use_stream)
139
+
140
+ @unittest.skip("Not supported in CogVideoX.")
141
+ def test_simple_inference_with_text_denoiser_block_scale(self):
142
+ pass
143
+
144
+ @unittest.skip("Not supported in CogVideoX.")
145
+ def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self):
146
+ pass
147
+
148
+ @unittest.skip("Not supported in CogVideoX.")
149
+ def test_modify_padding_mode(self):
150
+ pass
151
+
152
+ @unittest.skip("Text encoder LoRA is not supported in CogVideoX.")
153
+ def test_simple_inference_with_partial_text_lora(self):
154
+ pass
155
+
156
+ @unittest.skip("Text encoder LoRA is not supported in CogVideoX.")
157
+ def test_simple_inference_with_text_lora(self):
158
+ pass
159
+
160
+ @unittest.skip("Text encoder LoRA is not supported in CogVideoX.")
161
+ def test_simple_inference_with_text_lora_and_scale(self):
162
+ pass
163
+
164
+ @unittest.skip("Text encoder LoRA is not supported in CogVideoX.")
165
+ def test_simple_inference_with_text_lora_fused(self):
166
+ pass
167
+
168
+ @unittest.skip("Text encoder LoRA is not supported in CogVideoX.")
169
+ def test_simple_inference_with_text_lora_save_load(self):
170
+ pass
171
+
172
+ @unittest.skip("Not supported in CogVideoX.")
173
+ def test_simple_inference_with_text_denoiser_multi_adapter_block_lora(self):
174
+ pass
exp_code/1_benchmark/diffusers-WanS2V/tests/lora/test_lora_layers_cogview4.py ADDED
@@ -0,0 +1,189 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2025 HuggingFace Inc.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import sys
16
+ import tempfile
17
+ import unittest
18
+
19
+ import numpy as np
20
+ import torch
21
+ from parameterized import parameterized
22
+ from transformers import AutoTokenizer, GlmModel
23
+
24
+ from diffusers import AutoencoderKL, CogView4Pipeline, CogView4Transformer2DModel, FlowMatchEulerDiscreteScheduler
25
+
26
+ from ..testing_utils import (
27
+ floats_tensor,
28
+ require_peft_backend,
29
+ require_torch_accelerator,
30
+ skip_mps,
31
+ torch_device,
32
+ )
33
+
34
+
35
+ sys.path.append(".")
36
+
37
+ from .utils import PeftLoraLoaderMixinTests # noqa: E402
38
+
39
+
40
+ class TokenizerWrapper:
41
+ @staticmethod
42
+ def from_pretrained(*args, **kwargs):
43
+ return AutoTokenizer.from_pretrained(
44
+ "hf-internal-testing/tiny-random-cogview4", subfolder="tokenizer", trust_remote_code=True
45
+ )
46
+
47
+
48
+ @require_peft_backend
49
+ @skip_mps
50
+ class CogView4LoRATests(unittest.TestCase, PeftLoraLoaderMixinTests):
51
+ pipeline_class = CogView4Pipeline
52
+ scheduler_cls = FlowMatchEulerDiscreteScheduler
53
+ scheduler_classes = [FlowMatchEulerDiscreteScheduler]
54
+ scheduler_kwargs = {}
55
+
56
+ transformer_kwargs = {
57
+ "patch_size": 2,
58
+ "in_channels": 4,
59
+ "num_layers": 2,
60
+ "attention_head_dim": 4,
61
+ "num_attention_heads": 4,
62
+ "out_channels": 4,
63
+ "text_embed_dim": 32,
64
+ "time_embed_dim": 8,
65
+ "condition_dim": 4,
66
+ }
67
+ transformer_cls = CogView4Transformer2DModel
68
+ vae_kwargs = {
69
+ "block_out_channels": [32, 64],
70
+ "in_channels": 3,
71
+ "out_channels": 3,
72
+ "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
73
+ "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
74
+ "latent_channels": 4,
75
+ "sample_size": 128,
76
+ }
77
+ vae_cls = AutoencoderKL
78
+ tokenizer_cls, tokenizer_id, tokenizer_subfolder = (
79
+ TokenizerWrapper,
80
+ "hf-internal-testing/tiny-random-cogview4",
81
+ "tokenizer",
82
+ )
83
+ text_encoder_cls, text_encoder_id, text_encoder_subfolder = (
84
+ GlmModel,
85
+ "hf-internal-testing/tiny-random-cogview4",
86
+ "text_encoder",
87
+ )
88
+
89
+ @property
90
+ def output_shape(self):
91
+ return (1, 32, 32, 3)
92
+
93
+ def get_dummy_inputs(self, with_generator=True):
94
+ batch_size = 1
95
+ sequence_length = 16
96
+ num_channels = 4
97
+ sizes = (4, 4)
98
+
99
+ generator = torch.manual_seed(0)
100
+ noise = floats_tensor((batch_size, num_channels) + sizes)
101
+ input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator)
102
+
103
+ pipeline_inputs = {
104
+ "prompt": "",
105
+ "num_inference_steps": 1,
106
+ "guidance_scale": 6.0,
107
+ "height": 32,
108
+ "width": 32,
109
+ "max_sequence_length": sequence_length,
110
+ "output_type": "np",
111
+ }
112
+ if with_generator:
113
+ pipeline_inputs.update({"generator": generator})
114
+
115
+ return noise, input_ids, pipeline_inputs
116
+
117
+ def test_simple_inference_with_text_lora_denoiser_fused_multi(self):
118
+ super().test_simple_inference_with_text_lora_denoiser_fused_multi(expected_atol=9e-3)
119
+
120
+ def test_simple_inference_with_text_denoiser_lora_unfused(self):
121
+ super().test_simple_inference_with_text_denoiser_lora_unfused(expected_atol=9e-3)
122
+
123
+ def test_simple_inference_save_pretrained(self):
124
+ """
125
+ Tests a simple usecase where users could use saving utilities for LoRA through save_pretrained
126
+ """
127
+ for scheduler_cls in self.scheduler_classes:
128
+ components, _, _ = self.get_dummy_components(scheduler_cls)
129
+ pipe = self.pipeline_class(**components)
130
+ pipe = pipe.to(torch_device)
131
+ pipe.set_progress_bar_config(disable=None)
132
+ _, _, inputs = self.get_dummy_inputs(with_generator=False)
133
+
134
+ output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
135
+ self.assertTrue(output_no_lora.shape == self.output_shape)
136
+
137
+ images_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
138
+
139
+ with tempfile.TemporaryDirectory() as tmpdirname:
140
+ pipe.save_pretrained(tmpdirname)
141
+
142
+ pipe_from_pretrained = self.pipeline_class.from_pretrained(tmpdirname)
143
+ pipe_from_pretrained.to(torch_device)
144
+
145
+ images_lora_save_pretrained = pipe_from_pretrained(**inputs, generator=torch.manual_seed(0))[0]
146
+
147
+ self.assertTrue(
148
+ np.allclose(images_lora, images_lora_save_pretrained, atol=1e-3, rtol=1e-3),
149
+ "Loading from saved checkpoints should give same results.",
150
+ )
151
+
152
+ @parameterized.expand([("block_level", True), ("leaf_level", False)])
153
+ @require_torch_accelerator
154
+ def test_group_offloading_inference_denoiser(self, offload_type, use_stream):
155
+ # TODO: We don't run the (leaf_level, True) test here that is enabled for other models.
156
+ # The reason for this can be found here: https://github.com/huggingface/diffusers/pull/11804#issuecomment-3013325338
157
+ super()._test_group_offloading_inference_denoiser(offload_type, use_stream)
158
+
159
+ @unittest.skip("Not supported in CogView4.")
160
+ def test_simple_inference_with_text_denoiser_block_scale(self):
161
+ pass
162
+
163
+ @unittest.skip("Not supported in CogView4.")
164
+ def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self):
165
+ pass
166
+
167
+ @unittest.skip("Not supported in CogView4.")
168
+ def test_modify_padding_mode(self):
169
+ pass
170
+
171
+ @unittest.skip("Text encoder LoRA is not supported in CogView4.")
172
+ def test_simple_inference_with_partial_text_lora(self):
173
+ pass
174
+
175
+ @unittest.skip("Text encoder LoRA is not supported in CogView4.")
176
+ def test_simple_inference_with_text_lora(self):
177
+ pass
178
+
179
+ @unittest.skip("Text encoder LoRA is not supported in CogView4.")
180
+ def test_simple_inference_with_text_lora_and_scale(self):
181
+ pass
182
+
183
+ @unittest.skip("Text encoder LoRA is not supported in CogView4.")
184
+ def test_simple_inference_with_text_lora_fused(self):
185
+ pass
186
+
187
+ @unittest.skip("Text encoder LoRA is not supported in CogView4.")
188
+ def test_simple_inference_with_text_lora_save_load(self):
189
+ pass
exp_code/1_benchmark/diffusers-WanS2V/tests/lora/test_lora_layers_flux.py ADDED
@@ -0,0 +1,1054 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2025 HuggingFace Inc.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ import copy
16
+ import gc
17
+ import os
18
+ import sys
19
+ import tempfile
20
+ import unittest
21
+
22
+ import numpy as np
23
+ import safetensors.torch
24
+ import torch
25
+ from parameterized import parameterized
26
+ from PIL import Image
27
+ from transformers import AutoTokenizer, CLIPTextModel, CLIPTokenizer, T5EncoderModel
28
+
29
+ from diffusers import FlowMatchEulerDiscreteScheduler, FluxControlPipeline, FluxPipeline, FluxTransformer2DModel
30
+ from diffusers.utils import load_image, logging
31
+
32
+ from ..testing_utils import (
33
+ CaptureLogger,
34
+ backend_empty_cache,
35
+ floats_tensor,
36
+ is_peft_available,
37
+ nightly,
38
+ numpy_cosine_similarity_distance,
39
+ require_big_accelerator,
40
+ require_peft_backend,
41
+ require_torch_accelerator,
42
+ slow,
43
+ torch_device,
44
+ )
45
+
46
+
47
+ if is_peft_available():
48
+ from peft.utils import get_peft_model_state_dict
49
+
50
+ sys.path.append(".")
51
+
52
+ from .utils import PeftLoraLoaderMixinTests, check_if_lora_correctly_set # noqa: E402
53
+
54
+
55
+ @require_peft_backend
56
+ class FluxLoRATests(unittest.TestCase, PeftLoraLoaderMixinTests):
57
+ pipeline_class = FluxPipeline
58
+ scheduler_cls = FlowMatchEulerDiscreteScheduler()
59
+ scheduler_kwargs = {}
60
+ scheduler_classes = [FlowMatchEulerDiscreteScheduler]
61
+ transformer_kwargs = {
62
+ "patch_size": 1,
63
+ "in_channels": 4,
64
+ "num_layers": 1,
65
+ "num_single_layers": 1,
66
+ "attention_head_dim": 16,
67
+ "num_attention_heads": 2,
68
+ "joint_attention_dim": 32,
69
+ "pooled_projection_dim": 32,
70
+ "axes_dims_rope": [4, 4, 8],
71
+ }
72
+ transformer_cls = FluxTransformer2DModel
73
+ vae_kwargs = {
74
+ "sample_size": 32,
75
+ "in_channels": 3,
76
+ "out_channels": 3,
77
+ "block_out_channels": (4,),
78
+ "layers_per_block": 1,
79
+ "latent_channels": 1,
80
+ "norm_num_groups": 1,
81
+ "use_quant_conv": False,
82
+ "use_post_quant_conv": False,
83
+ "shift_factor": 0.0609,
84
+ "scaling_factor": 1.5035,
85
+ }
86
+ has_two_text_encoders = True
87
+ tokenizer_cls, tokenizer_id = CLIPTokenizer, "peft-internal-testing/tiny-clip-text-2"
88
+ tokenizer_2_cls, tokenizer_2_id = AutoTokenizer, "hf-internal-testing/tiny-random-t5"
89
+ text_encoder_cls, text_encoder_id = CLIPTextModel, "peft-internal-testing/tiny-clip-text-2"
90
+ text_encoder_2_cls, text_encoder_2_id = T5EncoderModel, "hf-internal-testing/tiny-random-t5"
91
+
92
+ @property
93
+ def output_shape(self):
94
+ return (1, 8, 8, 3)
95
+
96
+ def get_dummy_inputs(self, with_generator=True):
97
+ batch_size = 1
98
+ sequence_length = 10
99
+ num_channels = 4
100
+ sizes = (32, 32)
101
+
102
+ generator = torch.manual_seed(0)
103
+ noise = floats_tensor((batch_size, num_channels) + sizes)
104
+ input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator)
105
+
106
+ pipeline_inputs = {
107
+ "prompt": "A painting of a squirrel eating a burger",
108
+ "num_inference_steps": 4,
109
+ "guidance_scale": 0.0,
110
+ "height": 8,
111
+ "width": 8,
112
+ "output_type": "np",
113
+ }
114
+ if with_generator:
115
+ pipeline_inputs.update({"generator": generator})
116
+
117
+ return noise, input_ids, pipeline_inputs
118
+
119
+ def test_with_alpha_in_state_dict(self):
120
+ components, _, denoiser_lora_config = self.get_dummy_components(FlowMatchEulerDiscreteScheduler)
121
+ pipe = self.pipeline_class(**components)
122
+ pipe = pipe.to(torch_device)
123
+ pipe.set_progress_bar_config(disable=None)
124
+ _, _, inputs = self.get_dummy_inputs(with_generator=False)
125
+
126
+ output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
127
+ self.assertTrue(output_no_lora.shape == self.output_shape)
128
+
129
+ pipe.transformer.add_adapter(denoiser_lora_config)
130
+ self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in transformer")
131
+
132
+ images_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
133
+
134
+ with tempfile.TemporaryDirectory() as tmpdirname:
135
+ denoiser_state_dict = get_peft_model_state_dict(pipe.transformer)
136
+ self.pipeline_class.save_lora_weights(tmpdirname, transformer_lora_layers=denoiser_state_dict)
137
+
138
+ self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
139
+ pipe.unload_lora_weights()
140
+ pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"))
141
+
142
+ # modify the state dict to have alpha values following
143
+ # https://huggingface.co/TheLastBen/Jon_Snow_Flux_LoRA/blob/main/jon_snow.safetensors
144
+ state_dict_with_alpha = safetensors.torch.load_file(
145
+ os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")
146
+ )
147
+ alpha_dict = {}
148
+ for k, v in state_dict_with_alpha.items():
149
+ # only do for `transformer` and for the k projections -- should be enough to test.
150
+ if "transformer" in k and "to_k" in k and "lora_A" in k:
151
+ alpha_dict[f"{k}.alpha"] = float(torch.randint(10, 100, size=()))
152
+ state_dict_with_alpha.update(alpha_dict)
153
+
154
+ images_lora_from_pretrained = pipe(**inputs, generator=torch.manual_seed(0)).images
155
+ self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in denoiser")
156
+
157
+ pipe.unload_lora_weights()
158
+ pipe.load_lora_weights(state_dict_with_alpha)
159
+ images_lora_with_alpha = pipe(**inputs, generator=torch.manual_seed(0)).images
160
+
161
+ self.assertTrue(
162
+ np.allclose(images_lora, images_lora_from_pretrained, atol=1e-3, rtol=1e-3),
163
+ "Loading from saved checkpoints should give same results.",
164
+ )
165
+ self.assertFalse(np.allclose(images_lora_with_alpha, images_lora, atol=1e-3, rtol=1e-3))
166
+
167
+ def test_lora_expansion_works_for_absent_keys(self):
168
+ components, _, denoiser_lora_config = self.get_dummy_components(FlowMatchEulerDiscreteScheduler)
169
+ pipe = self.pipeline_class(**components)
170
+ pipe = pipe.to(torch_device)
171
+ pipe.set_progress_bar_config(disable=None)
172
+ _, _, inputs = self.get_dummy_inputs(with_generator=False)
173
+
174
+ output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
175
+ self.assertTrue(output_no_lora.shape == self.output_shape)
176
+
177
+ # Modify the config to have a layer which won't be present in the second LoRA we will load.
178
+ modified_denoiser_lora_config = copy.deepcopy(denoiser_lora_config)
179
+ modified_denoiser_lora_config.target_modules.add("x_embedder")
180
+
181
+ pipe.transformer.add_adapter(modified_denoiser_lora_config)
182
+ self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in transformer")
183
+
184
+ images_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
185
+ self.assertFalse(
186
+ np.allclose(images_lora, output_no_lora, atol=1e-3, rtol=1e-3),
187
+ "LoRA should lead to different results.",
188
+ )
189
+
190
+ with tempfile.TemporaryDirectory() as tmpdirname:
191
+ denoiser_state_dict = get_peft_model_state_dict(pipe.transformer)
192
+ self.pipeline_class.save_lora_weights(tmpdirname, transformer_lora_layers=denoiser_state_dict)
193
+
194
+ self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
195
+ pipe.unload_lora_weights()
196
+ pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"), adapter_name="one")
197
+
198
+ # Modify the state dict to exclude "x_embedder" related LoRA params.
199
+ lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"))
200
+ lora_state_dict_without_xembedder = {k: v for k, v in lora_state_dict.items() if "x_embedder" not in k}
201
+
202
+ pipe.load_lora_weights(lora_state_dict_without_xembedder, adapter_name="two")
203
+ pipe.set_adapters(["one", "two"])
204
+ self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in transformer")
205
+ images_lora_with_absent_keys = pipe(**inputs, generator=torch.manual_seed(0)).images
206
+
207
+ self.assertFalse(
208
+ np.allclose(images_lora, images_lora_with_absent_keys, atol=1e-3, rtol=1e-3),
209
+ "Different LoRAs should lead to different results.",
210
+ )
211
+ self.assertFalse(
212
+ np.allclose(output_no_lora, images_lora_with_absent_keys, atol=1e-3, rtol=1e-3),
213
+ "LoRA should lead to different results.",
214
+ )
215
+
216
+ def test_lora_expansion_works_for_extra_keys(self):
217
+ components, _, denoiser_lora_config = self.get_dummy_components(FlowMatchEulerDiscreteScheduler)
218
+ pipe = self.pipeline_class(**components)
219
+ pipe = pipe.to(torch_device)
220
+ pipe.set_progress_bar_config(disable=None)
221
+ _, _, inputs = self.get_dummy_inputs(with_generator=False)
222
+
223
+ output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
224
+ self.assertTrue(output_no_lora.shape == self.output_shape)
225
+
226
+ # Modify the config to have a layer which won't be present in the first LoRA we will load.
227
+ modified_denoiser_lora_config = copy.deepcopy(denoiser_lora_config)
228
+ modified_denoiser_lora_config.target_modules.add("x_embedder")
229
+
230
+ pipe.transformer.add_adapter(modified_denoiser_lora_config)
231
+ self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in transformer")
232
+
233
+ images_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
234
+ self.assertFalse(
235
+ np.allclose(images_lora, output_no_lora, atol=1e-3, rtol=1e-3),
236
+ "LoRA should lead to different results.",
237
+ )
238
+
239
+ with tempfile.TemporaryDirectory() as tmpdirname:
240
+ denoiser_state_dict = get_peft_model_state_dict(pipe.transformer)
241
+ self.pipeline_class.save_lora_weights(tmpdirname, transformer_lora_layers=denoiser_state_dict)
242
+
243
+ self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
244
+ pipe.unload_lora_weights()
245
+ # Modify the state dict to exclude "x_embedder" related LoRA params.
246
+ lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"))
247
+ lora_state_dict_without_xembedder = {k: v for k, v in lora_state_dict.items() if "x_embedder" not in k}
248
+ pipe.load_lora_weights(lora_state_dict_without_xembedder, adapter_name="one")
249
+
250
+ # Load state dict with `x_embedder`.
251
+ pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"), adapter_name="two")
252
+
253
+ pipe.set_adapters(["one", "two"])
254
+ self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in transformer")
255
+ images_lora_with_extra_keys = pipe(**inputs, generator=torch.manual_seed(0)).images
256
+
257
+ self.assertFalse(
258
+ np.allclose(images_lora, images_lora_with_extra_keys, atol=1e-3, rtol=1e-3),
259
+ "Different LoRAs should lead to different results.",
260
+ )
261
+ self.assertFalse(
262
+ np.allclose(output_no_lora, images_lora_with_extra_keys, atol=1e-3, rtol=1e-3),
263
+ "LoRA should lead to different results.",
264
+ )
265
+
266
+ @unittest.skip("Not supported in Flux.")
267
+ def test_simple_inference_with_text_denoiser_block_scale(self):
268
+ pass
269
+
270
+ @unittest.skip("Not supported in Flux.")
271
+ def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self):
272
+ pass
273
+
274
+ @unittest.skip("Not supported in Flux.")
275
+ def test_modify_padding_mode(self):
276
+ pass
277
+
278
+ @unittest.skip("Not supported in Flux.")
279
+ def test_simple_inference_with_text_denoiser_multi_adapter_block_lora(self):
280
+ pass
281
+
282
+
283
+ class FluxControlLoRATests(unittest.TestCase, PeftLoraLoaderMixinTests):
284
+ pipeline_class = FluxControlPipeline
285
+ scheduler_cls = FlowMatchEulerDiscreteScheduler()
286
+ scheduler_kwargs = {}
287
+ scheduler_classes = [FlowMatchEulerDiscreteScheduler]
288
+ transformer_kwargs = {
289
+ "patch_size": 1,
290
+ "in_channels": 8,
291
+ "out_channels": 4,
292
+ "num_layers": 1,
293
+ "num_single_layers": 1,
294
+ "attention_head_dim": 16,
295
+ "num_attention_heads": 2,
296
+ "joint_attention_dim": 32,
297
+ "pooled_projection_dim": 32,
298
+ "axes_dims_rope": [4, 4, 8],
299
+ }
300
+ transformer_cls = FluxTransformer2DModel
301
+ vae_kwargs = {
302
+ "sample_size": 32,
303
+ "in_channels": 3,
304
+ "out_channels": 3,
305
+ "block_out_channels": (4,),
306
+ "layers_per_block": 1,
307
+ "latent_channels": 1,
308
+ "norm_num_groups": 1,
309
+ "use_quant_conv": False,
310
+ "use_post_quant_conv": False,
311
+ "shift_factor": 0.0609,
312
+ "scaling_factor": 1.5035,
313
+ }
314
+ has_two_text_encoders = True
315
+ tokenizer_cls, tokenizer_id = CLIPTokenizer, "peft-internal-testing/tiny-clip-text-2"
316
+ tokenizer_2_cls, tokenizer_2_id = AutoTokenizer, "hf-internal-testing/tiny-random-t5"
317
+ text_encoder_cls, text_encoder_id = CLIPTextModel, "peft-internal-testing/tiny-clip-text-2"
318
+ text_encoder_2_cls, text_encoder_2_id = T5EncoderModel, "hf-internal-testing/tiny-random-t5"
319
+
320
+ @property
321
+ def output_shape(self):
322
+ return (1, 8, 8, 3)
323
+
324
+ def get_dummy_inputs(self, with_generator=True):
325
+ batch_size = 1
326
+ sequence_length = 10
327
+ num_channels = 4
328
+ sizes = (32, 32)
329
+
330
+ generator = torch.manual_seed(0)
331
+ noise = floats_tensor((batch_size, num_channels) + sizes)
332
+ input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator)
333
+
334
+ pipeline_inputs = {
335
+ "prompt": "A painting of a squirrel eating a burger",
336
+ "control_image": Image.fromarray(np.random.randint(0, 255, size=(32, 32, 3), dtype="uint8")),
337
+ "num_inference_steps": 4,
338
+ "guidance_scale": 0.0,
339
+ "height": 8,
340
+ "width": 8,
341
+ "output_type": "np",
342
+ }
343
+ if with_generator:
344
+ pipeline_inputs.update({"generator": generator})
345
+
346
+ return noise, input_ids, pipeline_inputs
347
+
348
+ def test_with_norm_in_state_dict(self):
349
+ components, _, denoiser_lora_config = self.get_dummy_components(FlowMatchEulerDiscreteScheduler)
350
+ pipe = self.pipeline_class(**components)
351
+ pipe = pipe.to(torch_device)
352
+ pipe.set_progress_bar_config(disable=None)
353
+
354
+ _, _, inputs = self.get_dummy_inputs(with_generator=False)
355
+
356
+ logger = logging.get_logger("diffusers.loaders.lora_pipeline")
357
+ logger.setLevel(logging.INFO)
358
+
359
+ original_output = pipe(**inputs, generator=torch.manual_seed(0))[0]
360
+
361
+ for norm_layer in ["norm_q", "norm_k", "norm_added_q", "norm_added_k"]:
362
+ norm_state_dict = {}
363
+ for name, module in pipe.transformer.named_modules():
364
+ if norm_layer not in name or not hasattr(module, "weight") or module.weight is None:
365
+ continue
366
+ norm_state_dict[f"transformer.{name}.weight"] = torch.randn(
367
+ module.weight.shape, device=module.weight.device, dtype=module.weight.dtype
368
+ )
369
+
370
+ with CaptureLogger(logger) as cap_logger:
371
+ pipe.load_lora_weights(norm_state_dict)
372
+ lora_load_output = pipe(**inputs, generator=torch.manual_seed(0))[0]
373
+
374
+ self.assertTrue(
375
+ "The provided state dict contains normalization layers in addition to LoRA layers"
376
+ in cap_logger.out
377
+ )
378
+ self.assertTrue(len(pipe.transformer._transformer_norm_layers) > 0)
379
+
380
+ pipe.unload_lora_weights()
381
+ lora_unload_output = pipe(**inputs, generator=torch.manual_seed(0))[0]
382
+
383
+ self.assertTrue(pipe.transformer._transformer_norm_layers is None)
384
+ self.assertTrue(np.allclose(original_output, lora_unload_output, atol=1e-5, rtol=1e-5))
385
+ self.assertFalse(
386
+ np.allclose(original_output, lora_load_output, atol=1e-6, rtol=1e-6), f"{norm_layer} is tested"
387
+ )
388
+
389
+ with CaptureLogger(logger) as cap_logger:
390
+ for key in list(norm_state_dict.keys()):
391
+ norm_state_dict[key.replace("norm", "norm_k_something_random")] = norm_state_dict.pop(key)
392
+ pipe.load_lora_weights(norm_state_dict)
393
+
394
+ self.assertTrue(
395
+ "Unsupported keys found in state dict when trying to load normalization layers" in cap_logger.out
396
+ )
397
+
398
+ def test_lora_parameter_expanded_shapes(self):
399
+ components, _, _ = self.get_dummy_components(FlowMatchEulerDiscreteScheduler)
400
+ pipe = self.pipeline_class(**components)
401
+ pipe = pipe.to(torch_device)
402
+ pipe.set_progress_bar_config(disable=None)
403
+
404
+ _, _, inputs = self.get_dummy_inputs(with_generator=False)
405
+ original_out = pipe(**inputs, generator=torch.manual_seed(0))[0]
406
+
407
+ logger = logging.get_logger("diffusers.loaders.lora_pipeline")
408
+ logger.setLevel(logging.DEBUG)
409
+
410
+ # Change the transformer config to mimic a real use case.
411
+ num_channels_without_control = 4
412
+ transformer = FluxTransformer2DModel.from_config(
413
+ components["transformer"].config, in_channels=num_channels_without_control
414
+ ).to(torch_device)
415
+ self.assertTrue(
416
+ transformer.config.in_channels == num_channels_without_control,
417
+ f"Expected {num_channels_without_control} channels in the modified transformer but has {transformer.config.in_channels=}",
418
+ )
419
+
420
+ original_transformer_state_dict = pipe.transformer.state_dict()
421
+ x_embedder_weight = original_transformer_state_dict.pop("x_embedder.weight")
422
+ incompatible_keys = transformer.load_state_dict(original_transformer_state_dict, strict=False)
423
+ self.assertTrue(
424
+ "x_embedder.weight" in incompatible_keys.missing_keys,
425
+ "Could not find x_embedder.weight in the missing keys.",
426
+ )
427
+ transformer.x_embedder.weight.data.copy_(x_embedder_weight[..., :num_channels_without_control])
428
+ pipe.transformer = transformer
429
+
430
+ out_features, in_features = pipe.transformer.x_embedder.weight.shape
431
+ rank = 4
432
+
433
+ dummy_lora_A = torch.nn.Linear(2 * in_features, rank, bias=False)
434
+ dummy_lora_B = torch.nn.Linear(rank, out_features, bias=False)
435
+ lora_state_dict = {
436
+ "transformer.x_embedder.lora_A.weight": dummy_lora_A.weight,
437
+ "transformer.x_embedder.lora_B.weight": dummy_lora_B.weight,
438
+ }
439
+ with CaptureLogger(logger) as cap_logger:
440
+ pipe.load_lora_weights(lora_state_dict, "adapter-1")
441
+
442
+ self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in denoiser")
443
+
444
+ lora_out = pipe(**inputs, generator=torch.manual_seed(0))[0]
445
+
446
+ self.assertFalse(np.allclose(original_out, lora_out, rtol=1e-4, atol=1e-4))
447
+ self.assertTrue(pipe.transformer.x_embedder.weight.data.shape[1] == 2 * in_features)
448
+ self.assertTrue(pipe.transformer.config.in_channels == 2 * in_features)
449
+ self.assertTrue(cap_logger.out.startswith("Expanding the nn.Linear input/output features for module"))
450
+
451
+ # Testing opposite direction where the LoRA params are zero-padded.
452
+ components, _, _ = self.get_dummy_components(FlowMatchEulerDiscreteScheduler)
453
+ pipe = self.pipeline_class(**components)
454
+ pipe = pipe.to(torch_device)
455
+ pipe.set_progress_bar_config(disable=None)
456
+ dummy_lora_A = torch.nn.Linear(1, rank, bias=False)
457
+ dummy_lora_B = torch.nn.Linear(rank, out_features, bias=False)
458
+ lora_state_dict = {
459
+ "transformer.x_embedder.lora_A.weight": dummy_lora_A.weight,
460
+ "transformer.x_embedder.lora_B.weight": dummy_lora_B.weight,
461
+ }
462
+ with CaptureLogger(logger) as cap_logger:
463
+ pipe.load_lora_weights(lora_state_dict, "adapter-1")
464
+
465
+ self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in denoiser")
466
+
467
+ lora_out = pipe(**inputs, generator=torch.manual_seed(0))[0]
468
+
469
+ self.assertFalse(np.allclose(original_out, lora_out, rtol=1e-4, atol=1e-4))
470
+ self.assertTrue(pipe.transformer.x_embedder.weight.data.shape[1] == 2 * in_features)
471
+ self.assertTrue(pipe.transformer.config.in_channels == 2 * in_features)
472
+ self.assertTrue("The following LoRA modules were zero padded to match the state dict of" in cap_logger.out)
473
+
474
+ def test_normal_lora_with_expanded_lora_raises_error(self):
475
+ # Test the following situation. Load a regular LoRA (such as the ones trained on Flux.1-Dev). And then
476
+ # load shape expanded LoRA (such as Control LoRA).
477
+ components, _, _ = self.get_dummy_components(FlowMatchEulerDiscreteScheduler)
478
+
479
+ # Change the transformer config to mimic a real use case.
480
+ num_channels_without_control = 4
481
+ transformer = FluxTransformer2DModel.from_config(
482
+ components["transformer"].config, in_channels=num_channels_without_control
483
+ ).to(torch_device)
484
+ components["transformer"] = transformer
485
+
486
+ pipe = self.pipeline_class(**components)
487
+ pipe = pipe.to(torch_device)
488
+ pipe.set_progress_bar_config(disable=None)
489
+
490
+ logger = logging.get_logger("diffusers.loaders.lora_pipeline")
491
+ logger.setLevel(logging.DEBUG)
492
+
493
+ out_features, in_features = pipe.transformer.x_embedder.weight.shape
494
+ rank = 4
495
+
496
+ shape_expander_lora_A = torch.nn.Linear(2 * in_features, rank, bias=False)
497
+ shape_expander_lora_B = torch.nn.Linear(rank, out_features, bias=False)
498
+ lora_state_dict = {
499
+ "transformer.x_embedder.lora_A.weight": shape_expander_lora_A.weight,
500
+ "transformer.x_embedder.lora_B.weight": shape_expander_lora_B.weight,
501
+ }
502
+ with CaptureLogger(logger) as cap_logger:
503
+ pipe.load_lora_weights(lora_state_dict, "adapter-1")
504
+
505
+ self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in denoiser")
506
+ self.assertTrue(pipe.get_active_adapters() == ["adapter-1"])
507
+ self.assertTrue(pipe.transformer.x_embedder.weight.data.shape[1] == 2 * in_features)
508
+ self.assertTrue(pipe.transformer.config.in_channels == 2 * in_features)
509
+ self.assertTrue(cap_logger.out.startswith("Expanding the nn.Linear input/output features for module"))
510
+
511
+ _, _, inputs = self.get_dummy_inputs(with_generator=False)
512
+ lora_output = pipe(**inputs, generator=torch.manual_seed(0))[0]
513
+
514
+ normal_lora_A = torch.nn.Linear(in_features, rank, bias=False)
515
+ normal_lora_B = torch.nn.Linear(rank, out_features, bias=False)
516
+ lora_state_dict = {
517
+ "transformer.x_embedder.lora_A.weight": normal_lora_A.weight,
518
+ "transformer.x_embedder.lora_B.weight": normal_lora_B.weight,
519
+ }
520
+
521
+ with CaptureLogger(logger) as cap_logger:
522
+ pipe.load_lora_weights(lora_state_dict, "adapter-2")
523
+
524
+ self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in denoiser")
525
+ self.assertTrue("The following LoRA modules were zero padded to match the state dict of" in cap_logger.out)
526
+ self.assertTrue(pipe.get_active_adapters() == ["adapter-2"])
527
+
528
+ lora_output_2 = pipe(**inputs, generator=torch.manual_seed(0))[0]
529
+ self.assertFalse(np.allclose(lora_output, lora_output_2, atol=1e-3, rtol=1e-3))
530
+
531
+ # Test the opposite case where the first lora has the correct input features and the second lora has expanded input features.
532
+ # This should raise a runtime error on input shapes being incompatible.
533
+ components, _, _ = self.get_dummy_components(FlowMatchEulerDiscreteScheduler)
534
+ # Change the transformer config to mimic a real use case.
535
+ num_channels_without_control = 4
536
+ transformer = FluxTransformer2DModel.from_config(
537
+ components["transformer"].config, in_channels=num_channels_without_control
538
+ ).to(torch_device)
539
+ components["transformer"] = transformer
540
+
541
+ pipe = self.pipeline_class(**components)
542
+ pipe = pipe.to(torch_device)
543
+ pipe.set_progress_bar_config(disable=None)
544
+
545
+ logger = logging.get_logger("diffusers.loaders.lora_pipeline")
546
+ logger.setLevel(logging.DEBUG)
547
+
548
+ out_features, in_features = pipe.transformer.x_embedder.weight.shape
549
+ rank = 4
550
+
551
+ lora_state_dict = {
552
+ "transformer.x_embedder.lora_A.weight": normal_lora_A.weight,
553
+ "transformer.x_embedder.lora_B.weight": normal_lora_B.weight,
554
+ }
555
+ pipe.load_lora_weights(lora_state_dict, "adapter-1")
556
+
557
+ self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in denoiser")
558
+ self.assertTrue(pipe.transformer.x_embedder.weight.data.shape[1] == in_features)
559
+ self.assertTrue(pipe.transformer.config.in_channels == in_features)
560
+
561
+ lora_state_dict = {
562
+ "transformer.x_embedder.lora_A.weight": shape_expander_lora_A.weight,
563
+ "transformer.x_embedder.lora_B.weight": shape_expander_lora_B.weight,
564
+ }
565
+
566
+ # We should check for input shapes being incompatible here. But because above mentioned issue is
567
+ # not a supported use case, and because of the PEFT renaming, we will currently have a shape
568
+ # mismatch error.
569
+ self.assertRaisesRegex(
570
+ RuntimeError,
571
+ "size mismatch for x_embedder.lora_A.adapter-2.weight",
572
+ pipe.load_lora_weights,
573
+ lora_state_dict,
574
+ "adapter-2",
575
+ )
576
+
577
+ def test_fuse_expanded_lora_with_regular_lora(self):
578
+ # This test checks if it works when a lora with expanded shapes (like control loras) but
579
+ # another lora with correct shapes is loaded. The opposite direction isn't supported and is
580
+ # tested with it.
581
+ components, _, _ = self.get_dummy_components(FlowMatchEulerDiscreteScheduler)
582
+
583
+ # Change the transformer config to mimic a real use case.
584
+ num_channels_without_control = 4
585
+ transformer = FluxTransformer2DModel.from_config(
586
+ components["transformer"].config, in_channels=num_channels_without_control
587
+ ).to(torch_device)
588
+ components["transformer"] = transformer
589
+
590
+ pipe = self.pipeline_class(**components)
591
+ pipe = pipe.to(torch_device)
592
+ pipe.set_progress_bar_config(disable=None)
593
+
594
+ logger = logging.get_logger("diffusers.loaders.lora_pipeline")
595
+ logger.setLevel(logging.DEBUG)
596
+
597
+ out_features, in_features = pipe.transformer.x_embedder.weight.shape
598
+ rank = 4
599
+
600
+ shape_expander_lora_A = torch.nn.Linear(2 * in_features, rank, bias=False)
601
+ shape_expander_lora_B = torch.nn.Linear(rank, out_features, bias=False)
602
+ lora_state_dict = {
603
+ "transformer.x_embedder.lora_A.weight": shape_expander_lora_A.weight,
604
+ "transformer.x_embedder.lora_B.weight": shape_expander_lora_B.weight,
605
+ }
606
+ pipe.load_lora_weights(lora_state_dict, "adapter-1")
607
+ self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in denoiser")
608
+
609
+ _, _, inputs = self.get_dummy_inputs(with_generator=False)
610
+ lora_output = pipe(**inputs, generator=torch.manual_seed(0))[0]
611
+
612
+ normal_lora_A = torch.nn.Linear(in_features, rank, bias=False)
613
+ normal_lora_B = torch.nn.Linear(rank, out_features, bias=False)
614
+ lora_state_dict = {
615
+ "transformer.x_embedder.lora_A.weight": normal_lora_A.weight,
616
+ "transformer.x_embedder.lora_B.weight": normal_lora_B.weight,
617
+ }
618
+
619
+ pipe.load_lora_weights(lora_state_dict, "adapter-2")
620
+ self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in denoiser")
621
+
622
+ lora_output_2 = pipe(**inputs, generator=torch.manual_seed(0))[0]
623
+
624
+ pipe.set_adapters(["adapter-1", "adapter-2"], [1.0, 1.0])
625
+ lora_output_3 = pipe(**inputs, generator=torch.manual_seed(0))[0]
626
+
627
+ self.assertFalse(np.allclose(lora_output, lora_output_2, atol=1e-3, rtol=1e-3))
628
+ self.assertFalse(np.allclose(lora_output, lora_output_3, atol=1e-3, rtol=1e-3))
629
+ self.assertFalse(np.allclose(lora_output_2, lora_output_3, atol=1e-3, rtol=1e-3))
630
+
631
+ pipe.fuse_lora(lora_scale=1.0, adapter_names=["adapter-1", "adapter-2"])
632
+ lora_output_4 = pipe(**inputs, generator=torch.manual_seed(0))[0]
633
+ self.assertTrue(np.allclose(lora_output_3, lora_output_4, atol=1e-3, rtol=1e-3))
634
+
635
+ def test_load_regular_lora(self):
636
+ # This test checks if a regular lora (think of one trained on Flux.1 Dev for example) can be loaded
637
+ # into the transformer with more input channels than Flux.1 Dev, for example. Some examples of those
638
+ # transformers include Flux Fill, Flux Control, etc.
639
+ components, _, _ = self.get_dummy_components(FlowMatchEulerDiscreteScheduler)
640
+ pipe = self.pipeline_class(**components)
641
+ pipe = pipe.to(torch_device)
642
+ pipe.set_progress_bar_config(disable=None)
643
+ _, _, inputs = self.get_dummy_inputs(with_generator=False)
644
+
645
+ original_output = pipe(**inputs, generator=torch.manual_seed(0))[0]
646
+
647
+ out_features, in_features = pipe.transformer.x_embedder.weight.shape
648
+ rank = 4
649
+ in_features = in_features // 2 # to mimic the Flux.1-Dev LoRA.
650
+ normal_lora_A = torch.nn.Linear(in_features, rank, bias=False)
651
+ normal_lora_B = torch.nn.Linear(rank, out_features, bias=False)
652
+ lora_state_dict = {
653
+ "transformer.x_embedder.lora_A.weight": normal_lora_A.weight,
654
+ "transformer.x_embedder.lora_B.weight": normal_lora_B.weight,
655
+ }
656
+
657
+ logger = logging.get_logger("diffusers.loaders.lora_pipeline")
658
+ logger.setLevel(logging.INFO)
659
+ with CaptureLogger(logger) as cap_logger:
660
+ pipe.load_lora_weights(lora_state_dict, "adapter-1")
661
+ self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in denoiser")
662
+
663
+ lora_output = pipe(**inputs, generator=torch.manual_seed(0))[0]
664
+
665
+ self.assertTrue("The following LoRA modules were zero padded to match the state dict of" in cap_logger.out)
666
+ self.assertTrue(pipe.transformer.x_embedder.weight.data.shape[1] == in_features * 2)
667
+ self.assertFalse(np.allclose(original_output, lora_output, atol=1e-3, rtol=1e-3))
668
+
669
+ def test_lora_unload_with_parameter_expanded_shapes(self):
670
+ components, _, _ = self.get_dummy_components(FlowMatchEulerDiscreteScheduler)
671
+
672
+ logger = logging.get_logger("diffusers.loaders.lora_pipeline")
673
+ logger.setLevel(logging.DEBUG)
674
+
675
+ # Change the transformer config to mimic a real use case.
676
+ num_channels_without_control = 4
677
+ transformer = FluxTransformer2DModel.from_config(
678
+ components["transformer"].config, in_channels=num_channels_without_control
679
+ ).to(torch_device)
680
+ self.assertTrue(
681
+ transformer.config.in_channels == num_channels_without_control,
682
+ f"Expected {num_channels_without_control} channels in the modified transformer but has {transformer.config.in_channels=}",
683
+ )
684
+
685
+ # This should be initialized with a Flux pipeline variant that doesn't accept `control_image`.
686
+ components["transformer"] = transformer
687
+ pipe = FluxPipeline(**components)
688
+ pipe = pipe.to(torch_device)
689
+ pipe.set_progress_bar_config(disable=None)
690
+
691
+ _, _, inputs = self.get_dummy_inputs(with_generator=False)
692
+ control_image = inputs.pop("control_image")
693
+ original_out = pipe(**inputs, generator=torch.manual_seed(0))[0]
694
+
695
+ control_pipe = self.pipeline_class(**components)
696
+ out_features, in_features = control_pipe.transformer.x_embedder.weight.shape
697
+ rank = 4
698
+
699
+ dummy_lora_A = torch.nn.Linear(2 * in_features, rank, bias=False)
700
+ dummy_lora_B = torch.nn.Linear(rank, out_features, bias=False)
701
+ lora_state_dict = {
702
+ "transformer.x_embedder.lora_A.weight": dummy_lora_A.weight,
703
+ "transformer.x_embedder.lora_B.weight": dummy_lora_B.weight,
704
+ }
705
+ with CaptureLogger(logger) as cap_logger:
706
+ control_pipe.load_lora_weights(lora_state_dict, "adapter-1")
707
+ self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in denoiser")
708
+
709
+ inputs["control_image"] = control_image
710
+ lora_out = control_pipe(**inputs, generator=torch.manual_seed(0))[0]
711
+
712
+ self.assertFalse(np.allclose(original_out, lora_out, rtol=1e-4, atol=1e-4))
713
+ self.assertTrue(pipe.transformer.x_embedder.weight.data.shape[1] == 2 * in_features)
714
+ self.assertTrue(pipe.transformer.config.in_channels == 2 * in_features)
715
+ self.assertTrue(cap_logger.out.startswith("Expanding the nn.Linear input/output features for module"))
716
+
717
+ control_pipe.unload_lora_weights(reset_to_overwritten_params=True)
718
+ self.assertTrue(
719
+ control_pipe.transformer.config.in_channels == num_channels_without_control,
720
+ f"Expected {num_channels_without_control} channels in the modified transformer but has {control_pipe.transformer.config.in_channels=}",
721
+ )
722
+ loaded_pipe = FluxPipeline.from_pipe(control_pipe)
723
+ self.assertTrue(
724
+ loaded_pipe.transformer.config.in_channels == num_channels_without_control,
725
+ f"Expected {num_channels_without_control} channels in the modified transformer but has {loaded_pipe.transformer.config.in_channels=}",
726
+ )
727
+ inputs.pop("control_image")
728
+ unloaded_lora_out = loaded_pipe(**inputs, generator=torch.manual_seed(0))[0]
729
+
730
+ self.assertFalse(np.allclose(unloaded_lora_out, lora_out, rtol=1e-4, atol=1e-4))
731
+ self.assertTrue(np.allclose(unloaded_lora_out, original_out, atol=1e-4, rtol=1e-4))
732
+ self.assertTrue(pipe.transformer.x_embedder.weight.data.shape[1] == in_features)
733
+ self.assertTrue(pipe.transformer.config.in_channels == in_features)
734
+
735
+ def test_lora_unload_with_parameter_expanded_shapes_and_no_reset(self):
736
+ components, _, _ = self.get_dummy_components(FlowMatchEulerDiscreteScheduler)
737
+
738
+ logger = logging.get_logger("diffusers.loaders.lora_pipeline")
739
+ logger.setLevel(logging.DEBUG)
740
+
741
+ # Change the transformer config to mimic a real use case.
742
+ num_channels_without_control = 4
743
+ transformer = FluxTransformer2DModel.from_config(
744
+ components["transformer"].config, in_channels=num_channels_without_control
745
+ ).to(torch_device)
746
+ self.assertTrue(
747
+ transformer.config.in_channels == num_channels_without_control,
748
+ f"Expected {num_channels_without_control} channels in the modified transformer but has {transformer.config.in_channels=}",
749
+ )
750
+
751
+ # This should be initialized with a Flux pipeline variant that doesn't accept `control_image`.
752
+ components["transformer"] = transformer
753
+ pipe = FluxPipeline(**components)
754
+ pipe = pipe.to(torch_device)
755
+ pipe.set_progress_bar_config(disable=None)
756
+
757
+ _, _, inputs = self.get_dummy_inputs(with_generator=False)
758
+ control_image = inputs.pop("control_image")
759
+ original_out = pipe(**inputs, generator=torch.manual_seed(0))[0]
760
+
761
+ control_pipe = self.pipeline_class(**components)
762
+ out_features, in_features = control_pipe.transformer.x_embedder.weight.shape
763
+ rank = 4
764
+
765
+ dummy_lora_A = torch.nn.Linear(2 * in_features, rank, bias=False)
766
+ dummy_lora_B = torch.nn.Linear(rank, out_features, bias=False)
767
+ lora_state_dict = {
768
+ "transformer.x_embedder.lora_A.weight": dummy_lora_A.weight,
769
+ "transformer.x_embedder.lora_B.weight": dummy_lora_B.weight,
770
+ }
771
+ with CaptureLogger(logger) as cap_logger:
772
+ control_pipe.load_lora_weights(lora_state_dict, "adapter-1")
773
+ self.assertTrue(check_if_lora_correctly_set(pipe.transformer), "Lora not correctly set in denoiser")
774
+
775
+ inputs["control_image"] = control_image
776
+ lora_out = control_pipe(**inputs, generator=torch.manual_seed(0))[0]
777
+
778
+ self.assertFalse(np.allclose(original_out, lora_out, rtol=1e-4, atol=1e-4))
779
+ self.assertTrue(pipe.transformer.x_embedder.weight.data.shape[1] == 2 * in_features)
780
+ self.assertTrue(pipe.transformer.config.in_channels == 2 * in_features)
781
+ self.assertTrue(cap_logger.out.startswith("Expanding the nn.Linear input/output features for module"))
782
+
783
+ control_pipe.unload_lora_weights(reset_to_overwritten_params=False)
784
+ self.assertTrue(
785
+ control_pipe.transformer.config.in_channels == 2 * num_channels_without_control,
786
+ f"Expected {num_channels_without_control} channels in the modified transformer but has {control_pipe.transformer.config.in_channels=}",
787
+ )
788
+ no_lora_out = control_pipe(**inputs, generator=torch.manual_seed(0))[0]
789
+
790
+ self.assertFalse(np.allclose(no_lora_out, lora_out, rtol=1e-4, atol=1e-4))
791
+ self.assertTrue(pipe.transformer.x_embedder.weight.data.shape[1] == in_features * 2)
792
+ self.assertTrue(pipe.transformer.config.in_channels == in_features * 2)
793
+
794
+ @unittest.skip("Not supported in Flux.")
795
+ def test_simple_inference_with_text_denoiser_block_scale(self):
796
+ pass
797
+
798
+ @unittest.skip("Not supported in Flux.")
799
+ def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self):
800
+ pass
801
+
802
+ @unittest.skip("Not supported in Flux.")
803
+ def test_modify_padding_mode(self):
804
+ pass
805
+
806
+ @unittest.skip("Not supported in Flux.")
807
+ def test_simple_inference_with_text_denoiser_multi_adapter_block_lora(self):
808
+ pass
809
+
810
+
811
+ @slow
812
+ @nightly
813
+ @require_torch_accelerator
814
+ @require_peft_backend
815
+ @require_big_accelerator
816
+ class FluxLoRAIntegrationTests(unittest.TestCase):
817
+ """internal note: The integration slices were obtained on audace.
818
+
819
+ torch: 2.6.0.dev20241006+cu124 with CUDA 12.5. Need the same setup for the
820
+ assertions to pass.
821
+ """
822
+
823
+ num_inference_steps = 10
824
+ seed = 0
825
+
826
+ def setUp(self):
827
+ super().setUp()
828
+
829
+ gc.collect()
830
+ backend_empty_cache(torch_device)
831
+
832
+ self.pipeline = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
833
+
834
+ def tearDown(self):
835
+ super().tearDown()
836
+
837
+ del self.pipeline
838
+ gc.collect()
839
+ backend_empty_cache(torch_device)
840
+
841
+ def test_flux_the_last_ben(self):
842
+ self.pipeline.load_lora_weights("TheLastBen/Jon_Snow_Flux_LoRA", weight_name="jon_snow.safetensors")
843
+ self.pipeline.fuse_lora()
844
+ self.pipeline.unload_lora_weights()
845
+ # Instead of calling `enable_model_cpu_offload()`, we do a accelerator placement here because the CI
846
+ # run supports it. We have about 34GB RAM in the CI runner which kills the test when run with
847
+ # `enable_model_cpu_offload()`. We repeat this for the other tests, too.
848
+ self.pipeline = self.pipeline.to(torch_device)
849
+
850
+ prompt = "jon snow eating pizza with ketchup"
851
+
852
+ out = self.pipeline(
853
+ prompt,
854
+ num_inference_steps=self.num_inference_steps,
855
+ guidance_scale=4.0,
856
+ output_type="np",
857
+ generator=torch.manual_seed(self.seed),
858
+ ).images
859
+ out_slice = out[0, -3:, -3:, -1].flatten()
860
+ expected_slice = np.array([0.1855, 0.1855, 0.1836, 0.1855, 0.1836, 0.1875, 0.1777, 0.1758, 0.2246])
861
+
862
+ max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), out_slice)
863
+
864
+ assert max_diff < 1e-3
865
+
866
+ def test_flux_kohya(self):
867
+ self.pipeline.load_lora_weights("Norod78/brain-slug-flux")
868
+ self.pipeline.fuse_lora()
869
+ self.pipeline.unload_lora_weights()
870
+ self.pipeline = self.pipeline.to(torch_device)
871
+
872
+ prompt = "The cat with a brain slug earring"
873
+ out = self.pipeline(
874
+ prompt,
875
+ num_inference_steps=self.num_inference_steps,
876
+ guidance_scale=4.5,
877
+ output_type="np",
878
+ generator=torch.manual_seed(self.seed),
879
+ ).images
880
+
881
+ out_slice = out[0, -3:, -3:, -1].flatten()
882
+ expected_slice = np.array([0.6367, 0.6367, 0.6328, 0.6367, 0.6328, 0.6289, 0.6367, 0.6328, 0.6484])
883
+
884
+ max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), out_slice)
885
+
886
+ assert max_diff < 1e-3
887
+
888
+ def test_flux_kohya_with_text_encoder(self):
889
+ self.pipeline.load_lora_weights("cocktailpeanut/optimus", weight_name="optimus.safetensors")
890
+ self.pipeline.fuse_lora()
891
+ self.pipeline.unload_lora_weights()
892
+ self.pipeline = self.pipeline.to(torch_device)
893
+
894
+ prompt = "optimus is cleaning the house with broomstick"
895
+ out = self.pipeline(
896
+ prompt,
897
+ num_inference_steps=self.num_inference_steps,
898
+ guidance_scale=4.5,
899
+ output_type="np",
900
+ generator=torch.manual_seed(self.seed),
901
+ ).images
902
+
903
+ out_slice = out[0, -3:, -3:, -1].flatten()
904
+ expected_slice = np.array([0.4023, 0.4023, 0.4023, 0.3965, 0.3984, 0.3965, 0.3926, 0.3906, 0.4219])
905
+
906
+ max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), out_slice)
907
+
908
+ assert max_diff < 1e-3
909
+
910
+ def test_flux_xlabs(self):
911
+ self.pipeline.load_lora_weights("XLabs-AI/flux-lora-collection", weight_name="disney_lora.safetensors")
912
+ self.pipeline.fuse_lora()
913
+ self.pipeline.unload_lora_weights()
914
+ self.pipeline = self.pipeline.to(torch_device)
915
+
916
+ prompt = "A blue jay standing on a large basket of rainbow macarons, disney style"
917
+
918
+ out = self.pipeline(
919
+ prompt,
920
+ num_inference_steps=self.num_inference_steps,
921
+ guidance_scale=3.5,
922
+ output_type="np",
923
+ generator=torch.manual_seed(self.seed),
924
+ ).images
925
+ out_slice = out[0, -3:, -3:, -1].flatten()
926
+ expected_slice = np.array([0.3965, 0.4180, 0.4434, 0.4082, 0.4375, 0.4590, 0.4141, 0.4375, 0.4980])
927
+
928
+ max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), out_slice)
929
+
930
+ assert max_diff < 1e-3
931
+
932
+ def test_flux_xlabs_load_lora_with_single_blocks(self):
933
+ self.pipeline.load_lora_weights(
934
+ "salinasr/test_xlabs_flux_lora_with_singleblocks", weight_name="lora.safetensors"
935
+ )
936
+ self.pipeline.fuse_lora()
937
+ self.pipeline.unload_lora_weights()
938
+ self.pipeline.enable_model_cpu_offload()
939
+
940
+ prompt = "a wizard mouse playing chess"
941
+
942
+ out = self.pipeline(
943
+ prompt,
944
+ num_inference_steps=self.num_inference_steps,
945
+ guidance_scale=3.5,
946
+ output_type="np",
947
+ generator=torch.manual_seed(self.seed),
948
+ ).images
949
+ out_slice = out[0, -3:, -3:, -1].flatten()
950
+ expected_slice = np.array(
951
+ [0.04882812, 0.04101562, 0.04882812, 0.03710938, 0.02929688, 0.02734375, 0.0234375, 0.01757812, 0.0390625]
952
+ )
953
+ max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), out_slice)
954
+
955
+ assert max_diff < 1e-3
956
+
957
+
958
+ @nightly
959
+ @require_torch_accelerator
960
+ @require_peft_backend
961
+ @require_big_accelerator
962
+ class FluxControlLoRAIntegrationTests(unittest.TestCase):
963
+ num_inference_steps = 10
964
+ seed = 0
965
+ prompt = "A robot made of exotic candies and chocolates of different kinds."
966
+
967
+ def setUp(self):
968
+ super().setUp()
969
+
970
+ gc.collect()
971
+ backend_empty_cache(torch_device)
972
+
973
+ self.pipeline = FluxControlPipeline.from_pretrained(
974
+ "black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16
975
+ ).to(torch_device)
976
+
977
+ def tearDown(self):
978
+ super().tearDown()
979
+
980
+ gc.collect()
981
+ backend_empty_cache(torch_device)
982
+
983
+ @parameterized.expand(["black-forest-labs/FLUX.1-Canny-dev-lora", "black-forest-labs/FLUX.1-Depth-dev-lora"])
984
+ def test_lora(self, lora_ckpt_id):
985
+ self.pipeline.load_lora_weights(lora_ckpt_id)
986
+ self.pipeline.fuse_lora()
987
+ self.pipeline.unload_lora_weights()
988
+
989
+ if "Canny" in lora_ckpt_id:
990
+ control_image = load_image(
991
+ "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/flux-control-lora/canny_condition_image.png"
992
+ )
993
+ else:
994
+ control_image = load_image(
995
+ "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/flux-control-lora/depth_condition_image.png"
996
+ )
997
+
998
+ image = self.pipeline(
999
+ prompt=self.prompt,
1000
+ control_image=control_image,
1001
+ height=1024,
1002
+ width=1024,
1003
+ num_inference_steps=self.num_inference_steps,
1004
+ guidance_scale=30.0 if "Canny" in lora_ckpt_id else 10.0,
1005
+ output_type="np",
1006
+ generator=torch.manual_seed(self.seed),
1007
+ ).images
1008
+
1009
+ out_slice = image[0, -3:, -3:, -1].flatten()
1010
+ if "Canny" in lora_ckpt_id:
1011
+ expected_slice = np.array([0.8438, 0.8438, 0.8438, 0.8438, 0.8438, 0.8398, 0.8438, 0.8438, 0.8516])
1012
+ else:
1013
+ expected_slice = np.array([0.8203, 0.8320, 0.8359, 0.8203, 0.8281, 0.8281, 0.8203, 0.8242, 0.8359])
1014
+
1015
+ max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), out_slice)
1016
+
1017
+ assert max_diff < 1e-3
1018
+
1019
+ @parameterized.expand(["black-forest-labs/FLUX.1-Canny-dev-lora", "black-forest-labs/FLUX.1-Depth-dev-lora"])
1020
+ def test_lora_with_turbo(self, lora_ckpt_id):
1021
+ self.pipeline.load_lora_weights(lora_ckpt_id)
1022
+ self.pipeline.load_lora_weights("ByteDance/Hyper-SD", weight_name="Hyper-FLUX.1-dev-8steps-lora.safetensors")
1023
+ self.pipeline.fuse_lora()
1024
+ self.pipeline.unload_lora_weights()
1025
+
1026
+ if "Canny" in lora_ckpt_id:
1027
+ control_image = load_image(
1028
+ "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/flux-control-lora/canny_condition_image.png"
1029
+ )
1030
+ else:
1031
+ control_image = load_image(
1032
+ "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/flux-control-lora/depth_condition_image.png"
1033
+ )
1034
+
1035
+ image = self.pipeline(
1036
+ prompt=self.prompt,
1037
+ control_image=control_image,
1038
+ height=1024,
1039
+ width=1024,
1040
+ num_inference_steps=self.num_inference_steps,
1041
+ guidance_scale=30.0 if "Canny" in lora_ckpt_id else 10.0,
1042
+ output_type="np",
1043
+ generator=torch.manual_seed(self.seed),
1044
+ ).images
1045
+
1046
+ out_slice = image[0, -3:, -3:, -1].flatten()
1047
+ if "Canny" in lora_ckpt_id:
1048
+ expected_slice = np.array([0.6562, 0.7266, 0.7578, 0.6367, 0.6758, 0.7031, 0.6172, 0.6602, 0.6484])
1049
+ else:
1050
+ expected_slice = np.array([0.6680, 0.7344, 0.7656, 0.6484, 0.6875, 0.7109, 0.6328, 0.6719, 0.6562])
1051
+
1052
+ max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), out_slice)
1053
+
1054
+ assert max_diff < 1e-3
exp_code/1_benchmark/diffusers-WanS2V/tests/lora/test_lora_layers_hunyuanvideo.py ADDED
@@ -0,0 +1,264 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2025 HuggingFace Inc.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import gc
16
+ import sys
17
+ import unittest
18
+
19
+ import numpy as np
20
+ import torch
21
+ from transformers import CLIPTextModel, CLIPTokenizer, LlamaModel, LlamaTokenizerFast
22
+
23
+ from diffusers import (
24
+ AutoencoderKLHunyuanVideo,
25
+ FlowMatchEulerDiscreteScheduler,
26
+ HunyuanVideoPipeline,
27
+ HunyuanVideoTransformer3DModel,
28
+ )
29
+
30
+ from ..testing_utils import (
31
+ Expectations,
32
+ backend_empty_cache,
33
+ floats_tensor,
34
+ nightly,
35
+ numpy_cosine_similarity_distance,
36
+ require_big_accelerator,
37
+ require_peft_backend,
38
+ require_torch_accelerator,
39
+ skip_mps,
40
+ torch_device,
41
+ )
42
+
43
+
44
+ sys.path.append(".")
45
+
46
+ from .utils import PeftLoraLoaderMixinTests # noqa: E402
47
+
48
+
49
+ @require_peft_backend
50
+ @skip_mps
51
+ class HunyuanVideoLoRATests(unittest.TestCase, PeftLoraLoaderMixinTests):
52
+ pipeline_class = HunyuanVideoPipeline
53
+ scheduler_cls = FlowMatchEulerDiscreteScheduler
54
+ scheduler_classes = [FlowMatchEulerDiscreteScheduler]
55
+ scheduler_kwargs = {}
56
+
57
+ transformer_kwargs = {
58
+ "in_channels": 4,
59
+ "out_channels": 4,
60
+ "num_attention_heads": 2,
61
+ "attention_head_dim": 10,
62
+ "num_layers": 1,
63
+ "num_single_layers": 1,
64
+ "num_refiner_layers": 1,
65
+ "patch_size": 1,
66
+ "patch_size_t": 1,
67
+ "guidance_embeds": True,
68
+ "text_embed_dim": 16,
69
+ "pooled_projection_dim": 8,
70
+ "rope_axes_dim": (2, 4, 4),
71
+ }
72
+ transformer_cls = HunyuanVideoTransformer3DModel
73
+ vae_kwargs = {
74
+ "in_channels": 3,
75
+ "out_channels": 3,
76
+ "latent_channels": 4,
77
+ "down_block_types": (
78
+ "HunyuanVideoDownBlock3D",
79
+ "HunyuanVideoDownBlock3D",
80
+ "HunyuanVideoDownBlock3D",
81
+ "HunyuanVideoDownBlock3D",
82
+ ),
83
+ "up_block_types": (
84
+ "HunyuanVideoUpBlock3D",
85
+ "HunyuanVideoUpBlock3D",
86
+ "HunyuanVideoUpBlock3D",
87
+ "HunyuanVideoUpBlock3D",
88
+ ),
89
+ "block_out_channels": (8, 8, 8, 8),
90
+ "layers_per_block": 1,
91
+ "act_fn": "silu",
92
+ "norm_num_groups": 4,
93
+ "scaling_factor": 0.476986,
94
+ "spatial_compression_ratio": 8,
95
+ "temporal_compression_ratio": 4,
96
+ "mid_block_add_attention": True,
97
+ }
98
+ vae_cls = AutoencoderKLHunyuanVideo
99
+ has_two_text_encoders = True
100
+ tokenizer_cls, tokenizer_id, tokenizer_subfolder = (
101
+ LlamaTokenizerFast,
102
+ "hf-internal-testing/tiny-random-hunyuanvideo",
103
+ "tokenizer",
104
+ )
105
+ tokenizer_2_cls, tokenizer_2_id, tokenizer_2_subfolder = (
106
+ CLIPTokenizer,
107
+ "hf-internal-testing/tiny-random-hunyuanvideo",
108
+ "tokenizer_2",
109
+ )
110
+ text_encoder_cls, text_encoder_id, text_encoder_subfolder = (
111
+ LlamaModel,
112
+ "hf-internal-testing/tiny-random-hunyuanvideo",
113
+ "text_encoder",
114
+ )
115
+ text_encoder_2_cls, text_encoder_2_id, text_encoder_2_subfolder = (
116
+ CLIPTextModel,
117
+ "hf-internal-testing/tiny-random-hunyuanvideo",
118
+ "text_encoder_2",
119
+ )
120
+
121
+ @property
122
+ def output_shape(self):
123
+ return (1, 9, 32, 32, 3)
124
+
125
+ def get_dummy_inputs(self, with_generator=True):
126
+ batch_size = 1
127
+ sequence_length = 16
128
+ num_channels = 4
129
+ num_frames = 9
130
+ num_latent_frames = 3 # (num_frames - 1) // temporal_compression_ratio + 1
131
+ sizes = (4, 4)
132
+
133
+ generator = torch.manual_seed(0)
134
+ noise = floats_tensor((batch_size, num_latent_frames, num_channels) + sizes)
135
+ input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator)
136
+
137
+ pipeline_inputs = {
138
+ "prompt": "",
139
+ "num_frames": num_frames,
140
+ "num_inference_steps": 1,
141
+ "guidance_scale": 6.0,
142
+ "height": 32,
143
+ "width": 32,
144
+ "max_sequence_length": sequence_length,
145
+ "prompt_template": {"template": "{}", "crop_start": 0},
146
+ "output_type": "np",
147
+ }
148
+ if with_generator:
149
+ pipeline_inputs.update({"generator": generator})
150
+
151
+ return noise, input_ids, pipeline_inputs
152
+
153
+ def test_simple_inference_with_text_lora_denoiser_fused_multi(self):
154
+ super().test_simple_inference_with_text_lora_denoiser_fused_multi(expected_atol=9e-3)
155
+
156
+ def test_simple_inference_with_text_denoiser_lora_unfused(self):
157
+ super().test_simple_inference_with_text_denoiser_lora_unfused(expected_atol=9e-3)
158
+
159
+ # TODO(aryan): Fix the following test
160
+ @unittest.skip("This test fails with an error I haven't been able to debug yet.")
161
+ def test_simple_inference_save_pretrained(self):
162
+ pass
163
+
164
+ @unittest.skip("Not supported in HunyuanVideo.")
165
+ def test_simple_inference_with_text_denoiser_block_scale(self):
166
+ pass
167
+
168
+ @unittest.skip("Not supported in HunyuanVideo.")
169
+ def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self):
170
+ pass
171
+
172
+ @unittest.skip("Not supported in HunyuanVideo.")
173
+ def test_modify_padding_mode(self):
174
+ pass
175
+
176
+ @unittest.skip("Text encoder LoRA is not supported in HunyuanVideo.")
177
+ def test_simple_inference_with_partial_text_lora(self):
178
+ pass
179
+
180
+ @unittest.skip("Text encoder LoRA is not supported in HunyuanVideo.")
181
+ def test_simple_inference_with_text_lora(self):
182
+ pass
183
+
184
+ @unittest.skip("Text encoder LoRA is not supported in HunyuanVideo.")
185
+ def test_simple_inference_with_text_lora_and_scale(self):
186
+ pass
187
+
188
+ @unittest.skip("Text encoder LoRA is not supported in HunyuanVideo.")
189
+ def test_simple_inference_with_text_lora_fused(self):
190
+ pass
191
+
192
+ @unittest.skip("Text encoder LoRA is not supported in HunyuanVideo.")
193
+ def test_simple_inference_with_text_lora_save_load(self):
194
+ pass
195
+
196
+
197
+ @nightly
198
+ @require_torch_accelerator
199
+ @require_peft_backend
200
+ @require_big_accelerator
201
+ class HunyuanVideoLoRAIntegrationTests(unittest.TestCase):
202
+ """internal note: The integration slices were obtained on DGX.
203
+
204
+ torch: 2.5.1+cu124 with CUDA 12.5. Need the same setup for the
205
+ assertions to pass.
206
+ """
207
+
208
+ num_inference_steps = 10
209
+ seed = 0
210
+
211
+ def setUp(self):
212
+ super().setUp()
213
+
214
+ gc.collect()
215
+ backend_empty_cache(torch_device)
216
+
217
+ model_id = "hunyuanvideo-community/HunyuanVideo"
218
+ transformer = HunyuanVideoTransformer3DModel.from_pretrained(
219
+ model_id, subfolder="transformer", torch_dtype=torch.bfloat16
220
+ )
221
+ self.pipeline = HunyuanVideoPipeline.from_pretrained(
222
+ model_id, transformer=transformer, torch_dtype=torch.float16
223
+ ).to(torch_device)
224
+
225
+ def tearDown(self):
226
+ super().tearDown()
227
+
228
+ gc.collect()
229
+ backend_empty_cache(torch_device)
230
+
231
+ def test_original_format_cseti(self):
232
+ self.pipeline.load_lora_weights(
233
+ "Cseti/HunyuanVideo-LoRA-Arcane_Jinx-v1", weight_name="csetiarcane-nfjinx-v1-6000.safetensors"
234
+ )
235
+ self.pipeline.fuse_lora()
236
+ self.pipeline.unload_lora_weights()
237
+ self.pipeline.vae.enable_tiling()
238
+
239
+ prompt = "CSETIARCANE. A cat walks on the grass, realistic"
240
+
241
+ out = self.pipeline(
242
+ prompt=prompt,
243
+ height=320,
244
+ width=512,
245
+ num_frames=9,
246
+ num_inference_steps=self.num_inference_steps,
247
+ output_type="np",
248
+ generator=torch.manual_seed(self.seed),
249
+ ).frames[0]
250
+ out = out.flatten()
251
+ out_slice = np.concatenate((out[:8], out[-8:]))
252
+
253
+ # fmt: off
254
+ expected_slices = Expectations(
255
+ {
256
+ ("cuda", 7): np.array([0.1013, 0.1924, 0.0078, 0.1021, 0.1929, 0.0078, 0.1023, 0.1919, 0.7402, 0.104, 0.4482, 0.7354, 0.0925, 0.4382, 0.7275, 0.0815]),
257
+ }
258
+ )
259
+ # fmt: on
260
+ expected_slice = expected_slices.get_expectation()
261
+
262
+ max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), out_slice)
263
+
264
+ assert max_diff < 1e-3
exp_code/1_benchmark/diffusers-WanS2V/tests/lora/test_lora_layers_ltx_video.py ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2025 HuggingFace Inc.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import sys
16
+ import unittest
17
+
18
+ import torch
19
+ from transformers import AutoTokenizer, T5EncoderModel
20
+
21
+ from diffusers import (
22
+ AutoencoderKLLTXVideo,
23
+ FlowMatchEulerDiscreteScheduler,
24
+ LTXPipeline,
25
+ LTXVideoTransformer3DModel,
26
+ )
27
+
28
+ from ..testing_utils import floats_tensor, require_peft_backend
29
+
30
+
31
+ sys.path.append(".")
32
+
33
+ from .utils import PeftLoraLoaderMixinTests # noqa: E402
34
+
35
+
36
+ @require_peft_backend
37
+ class LTXVideoLoRATests(unittest.TestCase, PeftLoraLoaderMixinTests):
38
+ pipeline_class = LTXPipeline
39
+ scheduler_cls = FlowMatchEulerDiscreteScheduler
40
+ scheduler_classes = [FlowMatchEulerDiscreteScheduler]
41
+ scheduler_kwargs = {}
42
+
43
+ transformer_kwargs = {
44
+ "in_channels": 8,
45
+ "out_channels": 8,
46
+ "patch_size": 1,
47
+ "patch_size_t": 1,
48
+ "num_attention_heads": 4,
49
+ "attention_head_dim": 8,
50
+ "cross_attention_dim": 32,
51
+ "num_layers": 1,
52
+ "caption_channels": 32,
53
+ }
54
+ transformer_cls = LTXVideoTransformer3DModel
55
+ vae_kwargs = {
56
+ "in_channels": 3,
57
+ "out_channels": 3,
58
+ "latent_channels": 8,
59
+ "block_out_channels": (8, 8, 8, 8),
60
+ "decoder_block_out_channels": (8, 8, 8, 8),
61
+ "layers_per_block": (1, 1, 1, 1, 1),
62
+ "decoder_layers_per_block": (1, 1, 1, 1, 1),
63
+ "spatio_temporal_scaling": (True, True, False, False),
64
+ "decoder_spatio_temporal_scaling": (True, True, False, False),
65
+ "decoder_inject_noise": (False, False, False, False, False),
66
+ "upsample_residual": (False, False, False, False),
67
+ "upsample_factor": (1, 1, 1, 1),
68
+ "timestep_conditioning": False,
69
+ "patch_size": 1,
70
+ "patch_size_t": 1,
71
+ "encoder_causal": True,
72
+ "decoder_causal": False,
73
+ }
74
+ vae_cls = AutoencoderKLLTXVideo
75
+ tokenizer_cls, tokenizer_id = AutoTokenizer, "hf-internal-testing/tiny-random-t5"
76
+ text_encoder_cls, text_encoder_id = T5EncoderModel, "hf-internal-testing/tiny-random-t5"
77
+
78
+ text_encoder_target_modules = ["q", "k", "v", "o"]
79
+
80
+ @property
81
+ def output_shape(self):
82
+ return (1, 9, 32, 32, 3)
83
+
84
+ def get_dummy_inputs(self, with_generator=True):
85
+ batch_size = 1
86
+ sequence_length = 16
87
+ num_channels = 8
88
+ num_frames = 9
89
+ num_latent_frames = 3 # (num_frames - 1) // temporal_compression_ratio + 1
90
+ latent_height = 8
91
+ latent_width = 8
92
+
93
+ generator = torch.manual_seed(0)
94
+ noise = floats_tensor((batch_size, num_latent_frames, num_channels, latent_height, latent_width))
95
+ input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator)
96
+
97
+ pipeline_inputs = {
98
+ "prompt": "dance monkey",
99
+ "num_frames": num_frames,
100
+ "num_inference_steps": 4,
101
+ "guidance_scale": 6.0,
102
+ "height": 32,
103
+ "width": 32,
104
+ "max_sequence_length": sequence_length,
105
+ "output_type": "np",
106
+ }
107
+ if with_generator:
108
+ pipeline_inputs.update({"generator": generator})
109
+
110
+ return noise, input_ids, pipeline_inputs
111
+
112
+ def test_simple_inference_with_text_lora_denoiser_fused_multi(self):
113
+ super().test_simple_inference_with_text_lora_denoiser_fused_multi(expected_atol=9e-3)
114
+
115
+ def test_simple_inference_with_text_denoiser_lora_unfused(self):
116
+ super().test_simple_inference_with_text_denoiser_lora_unfused(expected_atol=9e-3)
117
+
118
+ @unittest.skip("Not supported in LTXVideo.")
119
+ def test_simple_inference_with_text_denoiser_block_scale(self):
120
+ pass
121
+
122
+ @unittest.skip("Not supported in LTXVideo.")
123
+ def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self):
124
+ pass
125
+
126
+ @unittest.skip("Not supported in LTXVideo.")
127
+ def test_modify_padding_mode(self):
128
+ pass
129
+
130
+ @unittest.skip("Text encoder LoRA is not supported in LTXVideo.")
131
+ def test_simple_inference_with_partial_text_lora(self):
132
+ pass
133
+
134
+ @unittest.skip("Text encoder LoRA is not supported in LTXVideo.")
135
+ def test_simple_inference_with_text_lora(self):
136
+ pass
137
+
138
+ @unittest.skip("Text encoder LoRA is not supported in LTXVideo.")
139
+ def test_simple_inference_with_text_lora_and_scale(self):
140
+ pass
141
+
142
+ @unittest.skip("Text encoder LoRA is not supported in LTXVideo.")
143
+ def test_simple_inference_with_text_lora_fused(self):
144
+ pass
145
+
146
+ @unittest.skip("Text encoder LoRA is not supported in LTXVideo.")
147
+ def test_simple_inference_with_text_lora_save_load(self):
148
+ pass
exp_code/1_benchmark/diffusers-WanS2V/tests/lora/test_lora_layers_lumina2.py ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2025 HuggingFace Inc.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import sys
16
+ import unittest
17
+
18
+ import numpy as np
19
+ import pytest
20
+ import torch
21
+ from transformers import AutoTokenizer, GemmaForCausalLM
22
+
23
+ from diffusers import (
24
+ AutoencoderKL,
25
+ FlowMatchEulerDiscreteScheduler,
26
+ Lumina2Pipeline,
27
+ Lumina2Transformer2DModel,
28
+ )
29
+
30
+ from ..testing_utils import floats_tensor, is_torch_version, require_peft_backend, skip_mps, torch_device
31
+
32
+
33
+ sys.path.append(".")
34
+
35
+ from .utils import PeftLoraLoaderMixinTests, check_if_lora_correctly_set # noqa: E402
36
+
37
+
38
+ @require_peft_backend
39
+ class Lumina2LoRATests(unittest.TestCase, PeftLoraLoaderMixinTests):
40
+ pipeline_class = Lumina2Pipeline
41
+ scheduler_cls = FlowMatchEulerDiscreteScheduler
42
+ scheduler_classes = [FlowMatchEulerDiscreteScheduler]
43
+ scheduler_kwargs = {}
44
+
45
+ transformer_kwargs = {
46
+ "sample_size": 4,
47
+ "patch_size": 2,
48
+ "in_channels": 4,
49
+ "hidden_size": 8,
50
+ "num_layers": 2,
51
+ "num_attention_heads": 1,
52
+ "num_kv_heads": 1,
53
+ "multiple_of": 16,
54
+ "ffn_dim_multiplier": None,
55
+ "norm_eps": 1e-5,
56
+ "scaling_factor": 1.0,
57
+ "axes_dim_rope": [4, 2, 2],
58
+ "cap_feat_dim": 8,
59
+ }
60
+ transformer_cls = Lumina2Transformer2DModel
61
+ vae_kwargs = {
62
+ "sample_size": 32,
63
+ "in_channels": 3,
64
+ "out_channels": 3,
65
+ "block_out_channels": (4,),
66
+ "layers_per_block": 1,
67
+ "latent_channels": 4,
68
+ "norm_num_groups": 1,
69
+ "use_quant_conv": False,
70
+ "use_post_quant_conv": False,
71
+ "shift_factor": 0.0609,
72
+ "scaling_factor": 1.5035,
73
+ }
74
+ vae_cls = AutoencoderKL
75
+ tokenizer_cls, tokenizer_id = AutoTokenizer, "hf-internal-testing/dummy-gemma"
76
+ text_encoder_cls, text_encoder_id = GemmaForCausalLM, "hf-internal-testing/dummy-gemma-diffusers"
77
+
78
+ @property
79
+ def output_shape(self):
80
+ return (1, 4, 4, 3)
81
+
82
+ def get_dummy_inputs(self, with_generator=True):
83
+ batch_size = 1
84
+ sequence_length = 16
85
+ num_channels = 4
86
+ sizes = (32, 32)
87
+
88
+ generator = torch.manual_seed(0)
89
+ noise = floats_tensor((batch_size, num_channels) + sizes)
90
+ input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator)
91
+
92
+ pipeline_inputs = {
93
+ "prompt": "A painting of a squirrel eating a burger",
94
+ "num_inference_steps": 2,
95
+ "guidance_scale": 5.0,
96
+ "height": 32,
97
+ "width": 32,
98
+ "output_type": "np",
99
+ }
100
+ if with_generator:
101
+ pipeline_inputs.update({"generator": generator})
102
+
103
+ return noise, input_ids, pipeline_inputs
104
+
105
+ @unittest.skip("Not supported in Lumina2.")
106
+ def test_simple_inference_with_text_denoiser_block_scale(self):
107
+ pass
108
+
109
+ @unittest.skip("Not supported in Lumina2.")
110
+ def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self):
111
+ pass
112
+
113
+ @unittest.skip("Not supported in Lumina2.")
114
+ def test_modify_padding_mode(self):
115
+ pass
116
+
117
+ @unittest.skip("Text encoder LoRA is not supported in Lumina2.")
118
+ def test_simple_inference_with_partial_text_lora(self):
119
+ pass
120
+
121
+ @unittest.skip("Text encoder LoRA is not supported in Lumina2.")
122
+ def test_simple_inference_with_text_lora(self):
123
+ pass
124
+
125
+ @unittest.skip("Text encoder LoRA is not supported in Lumina2.")
126
+ def test_simple_inference_with_text_lora_and_scale(self):
127
+ pass
128
+
129
+ @unittest.skip("Text encoder LoRA is not supported in Lumina2.")
130
+ def test_simple_inference_with_text_lora_fused(self):
131
+ pass
132
+
133
+ @unittest.skip("Text encoder LoRA is not supported in Lumina2.")
134
+ def test_simple_inference_with_text_lora_save_load(self):
135
+ pass
136
+
137
+ @skip_mps
138
+ @pytest.mark.xfail(
139
+ condition=torch.device(torch_device).type == "cpu" and is_torch_version(">=", "2.5"),
140
+ reason="Test currently fails on CPU and PyTorch 2.5.1 but not on PyTorch 2.4.1.",
141
+ strict=False,
142
+ )
143
+ def test_lora_fuse_nan(self):
144
+ for scheduler_cls in self.scheduler_classes:
145
+ components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
146
+ pipe = self.pipeline_class(**components)
147
+ pipe = pipe.to(torch_device)
148
+ pipe.set_progress_bar_config(disable=None)
149
+ _, _, inputs = self.get_dummy_inputs(with_generator=False)
150
+
151
+ if "text_encoder" in self.pipeline_class._lora_loadable_modules:
152
+ pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
153
+ self.assertTrue(
154
+ check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
155
+ )
156
+
157
+ denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
158
+ denoiser.add_adapter(denoiser_lora_config, "adapter-1")
159
+ self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
160
+
161
+ # corrupt one LoRA weight with `inf` values
162
+ with torch.no_grad():
163
+ pipe.transformer.layers[0].attn.to_q.lora_A["adapter-1"].weight += float("inf")
164
+
165
+ # with `safe_fusing=True` we should see an Error
166
+ with self.assertRaises(ValueError):
167
+ pipe.fuse_lora(components=self.pipeline_class._lora_loadable_modules, safe_fusing=True)
168
+
169
+ # without we should not see an error, but every image will be black
170
+ pipe.fuse_lora(components=self.pipeline_class._lora_loadable_modules, safe_fusing=False)
171
+ out = pipe(**inputs)[0]
172
+
173
+ self.assertTrue(np.isnan(out).all())
exp_code/1_benchmark/diffusers-WanS2V/tests/lora/test_lora_layers_mochi.py ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2025 HuggingFace Inc.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import sys
16
+ import unittest
17
+
18
+ import torch
19
+ from transformers import AutoTokenizer, T5EncoderModel
20
+
21
+ from diffusers import AutoencoderKLMochi, FlowMatchEulerDiscreteScheduler, MochiPipeline, MochiTransformer3DModel
22
+
23
+ from ..testing_utils import (
24
+ floats_tensor,
25
+ require_peft_backend,
26
+ skip_mps,
27
+ )
28
+
29
+
30
+ sys.path.append(".")
31
+
32
+ from .utils import PeftLoraLoaderMixinTests # noqa: E402
33
+
34
+
35
+ @require_peft_backend
36
+ @skip_mps
37
+ class MochiLoRATests(unittest.TestCase, PeftLoraLoaderMixinTests):
38
+ pipeline_class = MochiPipeline
39
+ scheduler_cls = FlowMatchEulerDiscreteScheduler
40
+ scheduler_classes = [FlowMatchEulerDiscreteScheduler]
41
+ scheduler_kwargs = {}
42
+
43
+ transformer_kwargs = {
44
+ "patch_size": 2,
45
+ "num_attention_heads": 2,
46
+ "attention_head_dim": 8,
47
+ "num_layers": 2,
48
+ "pooled_projection_dim": 16,
49
+ "in_channels": 12,
50
+ "out_channels": None,
51
+ "qk_norm": "rms_norm",
52
+ "text_embed_dim": 32,
53
+ "time_embed_dim": 4,
54
+ "activation_fn": "swiglu",
55
+ "max_sequence_length": 16,
56
+ }
57
+ transformer_cls = MochiTransformer3DModel
58
+ vae_kwargs = {
59
+ "latent_channels": 12,
60
+ "out_channels": 3,
61
+ "encoder_block_out_channels": (32, 32, 32, 32),
62
+ "decoder_block_out_channels": (32, 32, 32, 32),
63
+ "layers_per_block": (1, 1, 1, 1, 1),
64
+ }
65
+ vae_cls = AutoencoderKLMochi
66
+ tokenizer_cls, tokenizer_id = AutoTokenizer, "hf-internal-testing/tiny-random-t5"
67
+ text_encoder_cls, text_encoder_id = T5EncoderModel, "hf-internal-testing/tiny-random-t5"
68
+
69
+ text_encoder_target_modules = ["q", "k", "v", "o"]
70
+
71
+ @property
72
+ def output_shape(self):
73
+ return (1, 7, 16, 16, 3)
74
+
75
+ def get_dummy_inputs(self, with_generator=True):
76
+ batch_size = 1
77
+ sequence_length = 16
78
+ num_channels = 4
79
+ num_frames = 7
80
+ num_latent_frames = 3
81
+ sizes = (2, 2)
82
+
83
+ generator = torch.manual_seed(0)
84
+ noise = floats_tensor((batch_size, num_latent_frames, num_channels) + sizes)
85
+ input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator)
86
+
87
+ pipeline_inputs = {
88
+ "prompt": "dance monkey",
89
+ "num_frames": num_frames,
90
+ "num_inference_steps": 4,
91
+ "guidance_scale": 6.0,
92
+ # Cannot reduce because convolution kernel becomes bigger than sample
93
+ "height": 16,
94
+ "width": 16,
95
+ "max_sequence_length": sequence_length,
96
+ "output_type": "np",
97
+ }
98
+ if with_generator:
99
+ pipeline_inputs.update({"generator": generator})
100
+
101
+ return noise, input_ids, pipeline_inputs
102
+
103
+ def test_simple_inference_with_text_lora_denoiser_fused_multi(self):
104
+ super().test_simple_inference_with_text_lora_denoiser_fused_multi(expected_atol=9e-3)
105
+
106
+ def test_simple_inference_with_text_denoiser_lora_unfused(self):
107
+ super().test_simple_inference_with_text_denoiser_lora_unfused(expected_atol=9e-3)
108
+
109
+ @unittest.skip("Not supported in Mochi.")
110
+ def test_simple_inference_with_text_denoiser_block_scale(self):
111
+ pass
112
+
113
+ @unittest.skip("Not supported in Mochi.")
114
+ def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self):
115
+ pass
116
+
117
+ @unittest.skip("Not supported in Mochi.")
118
+ def test_modify_padding_mode(self):
119
+ pass
120
+
121
+ @unittest.skip("Text encoder LoRA is not supported in Mochi.")
122
+ def test_simple_inference_with_partial_text_lora(self):
123
+ pass
124
+
125
+ @unittest.skip("Text encoder LoRA is not supported in Mochi.")
126
+ def test_simple_inference_with_text_lora(self):
127
+ pass
128
+
129
+ @unittest.skip("Text encoder LoRA is not supported in Mochi.")
130
+ def test_simple_inference_with_text_lora_and_scale(self):
131
+ pass
132
+
133
+ @unittest.skip("Text encoder LoRA is not supported in Mochi.")
134
+ def test_simple_inference_with_text_lora_fused(self):
135
+ pass
136
+
137
+ @unittest.skip("Text encoder LoRA is not supported in Mochi.")
138
+ def test_simple_inference_with_text_lora_save_load(self):
139
+ pass
140
+
141
+ @unittest.skip("Not supported in CogVideoX.")
142
+ def test_simple_inference_with_text_denoiser_multi_adapter_block_lora(self):
143
+ pass
exp_code/1_benchmark/diffusers-WanS2V/tests/lora/test_lora_layers_qwenimage.py ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2025 HuggingFace Inc.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ import sys
16
+ import unittest
17
+
18
+ import torch
19
+ from transformers import Qwen2_5_VLForConditionalGeneration, Qwen2Tokenizer
20
+
21
+ from diffusers import (
22
+ AutoencoderKLQwenImage,
23
+ FlowMatchEulerDiscreteScheduler,
24
+ QwenImagePipeline,
25
+ QwenImageTransformer2DModel,
26
+ )
27
+
28
+ from ..testing_utils import floats_tensor, require_peft_backend
29
+
30
+
31
+ sys.path.append(".")
32
+
33
+ from .utils import PeftLoraLoaderMixinTests # noqa: E402
34
+
35
+
36
+ @require_peft_backend
37
+ class QwenImageLoRATests(unittest.TestCase, PeftLoraLoaderMixinTests):
38
+ pipeline_class = QwenImagePipeline
39
+ scheduler_cls = FlowMatchEulerDiscreteScheduler
40
+ scheduler_classes = [FlowMatchEulerDiscreteScheduler]
41
+ scheduler_kwargs = {}
42
+
43
+ transformer_kwargs = {
44
+ "patch_size": 2,
45
+ "in_channels": 16,
46
+ "out_channels": 4,
47
+ "num_layers": 2,
48
+ "attention_head_dim": 16,
49
+ "num_attention_heads": 3,
50
+ "joint_attention_dim": 16,
51
+ "guidance_embeds": False,
52
+ "axes_dims_rope": (8, 4, 4),
53
+ }
54
+ transformer_cls = QwenImageTransformer2DModel
55
+ z_dim = 4
56
+ vae_kwargs = {
57
+ "base_dim": z_dim * 6,
58
+ "z_dim": z_dim,
59
+ "dim_mult": [1, 2, 4],
60
+ "num_res_blocks": 1,
61
+ "temperal_downsample": [False, True],
62
+ "latents_mean": [0.0] * 4,
63
+ "latents_std": [1.0] * 4,
64
+ }
65
+ vae_cls = AutoencoderKLQwenImage
66
+ tokenizer_cls, tokenizer_id = Qwen2Tokenizer, "hf-internal-testing/tiny-random-Qwen25VLForCondGen"
67
+ text_encoder_cls, text_encoder_id = (
68
+ Qwen2_5_VLForConditionalGeneration,
69
+ "hf-internal-testing/tiny-random-Qwen25VLForCondGen",
70
+ )
71
+ denoiser_target_modules = ["to_q", "to_k", "to_v", "to_out.0"]
72
+
73
+ @property
74
+ def output_shape(self):
75
+ return (1, 8, 8, 3)
76
+
77
+ def get_dummy_inputs(self, with_generator=True):
78
+ batch_size = 1
79
+ sequence_length = 10
80
+ num_channels = 4
81
+ sizes = (32, 32)
82
+
83
+ generator = torch.manual_seed(0)
84
+ noise = floats_tensor((batch_size, num_channels) + sizes)
85
+ input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator)
86
+
87
+ pipeline_inputs = {
88
+ "prompt": "A painting of a squirrel eating a burger",
89
+ "num_inference_steps": 4,
90
+ "guidance_scale": 0.0,
91
+ "height": 8,
92
+ "width": 8,
93
+ "output_type": "np",
94
+ }
95
+ if with_generator:
96
+ pipeline_inputs.update({"generator": generator})
97
+
98
+ return noise, input_ids, pipeline_inputs
99
+
100
+ @unittest.skip("Not supported in Qwen Image.")
101
+ def test_simple_inference_with_text_denoiser_block_scale(self):
102
+ pass
103
+
104
+ @unittest.skip("Not supported in Qwen Image.")
105
+ def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self):
106
+ pass
107
+
108
+ @unittest.skip("Not supported in Qwen Image.")
109
+ def test_modify_padding_mode(self):
110
+ pass
111
+
112
+ @unittest.skip("Text encoder LoRA is not supported in Qwen Image.")
113
+ def test_simple_inference_with_partial_text_lora(self):
114
+ pass
115
+
116
+ @unittest.skip("Text encoder LoRA is not supported in Qwen Image.")
117
+ def test_simple_inference_with_text_lora(self):
118
+ pass
119
+
120
+ @unittest.skip("Text encoder LoRA is not supported in Qwen Image.")
121
+ def test_simple_inference_with_text_lora_and_scale(self):
122
+ pass
123
+
124
+ @unittest.skip("Text encoder LoRA is not supported in Qwen Image.")
125
+ def test_simple_inference_with_text_lora_fused(self):
126
+ pass
127
+
128
+ @unittest.skip("Text encoder LoRA is not supported in Qwen Image.")
129
+ def test_simple_inference_with_text_lora_save_load(self):
130
+ pass
exp_code/1_benchmark/diffusers-WanS2V/tests/lora/test_lora_layers_sana.py ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2025 HuggingFace Inc.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ import sys
16
+ import unittest
17
+
18
+ import torch
19
+ from transformers import Gemma2Model, GemmaTokenizer
20
+
21
+ from diffusers import AutoencoderDC, FlowMatchEulerDiscreteScheduler, SanaPipeline, SanaTransformer2DModel
22
+
23
+ from ..testing_utils import floats_tensor, require_peft_backend
24
+
25
+
26
+ sys.path.append(".")
27
+
28
+ from .utils import PeftLoraLoaderMixinTests # noqa: E402
29
+
30
+
31
+ @require_peft_backend
32
+ class SanaLoRATests(unittest.TestCase, PeftLoraLoaderMixinTests):
33
+ pipeline_class = SanaPipeline
34
+ scheduler_cls = FlowMatchEulerDiscreteScheduler(shift=7.0)
35
+ scheduler_kwargs = {}
36
+ scheduler_classes = [FlowMatchEulerDiscreteScheduler]
37
+ transformer_kwargs = {
38
+ "patch_size": 1,
39
+ "in_channels": 4,
40
+ "out_channels": 4,
41
+ "num_layers": 1,
42
+ "num_attention_heads": 2,
43
+ "attention_head_dim": 4,
44
+ "num_cross_attention_heads": 2,
45
+ "cross_attention_head_dim": 4,
46
+ "cross_attention_dim": 8,
47
+ "caption_channels": 8,
48
+ "sample_size": 32,
49
+ }
50
+ transformer_cls = SanaTransformer2DModel
51
+ vae_kwargs = {
52
+ "in_channels": 3,
53
+ "latent_channels": 4,
54
+ "attention_head_dim": 2,
55
+ "encoder_block_types": (
56
+ "ResBlock",
57
+ "EfficientViTBlock",
58
+ ),
59
+ "decoder_block_types": (
60
+ "ResBlock",
61
+ "EfficientViTBlock",
62
+ ),
63
+ "encoder_block_out_channels": (8, 8),
64
+ "decoder_block_out_channels": (8, 8),
65
+ "encoder_qkv_multiscales": ((), (5,)),
66
+ "decoder_qkv_multiscales": ((), (5,)),
67
+ "encoder_layers_per_block": (1, 1),
68
+ "decoder_layers_per_block": [1, 1],
69
+ "downsample_block_type": "conv",
70
+ "upsample_block_type": "interpolate",
71
+ "decoder_norm_types": "rms_norm",
72
+ "decoder_act_fns": "silu",
73
+ "scaling_factor": 0.41407,
74
+ }
75
+ vae_cls = AutoencoderDC
76
+ tokenizer_cls, tokenizer_id = GemmaTokenizer, "hf-internal-testing/dummy-gemma"
77
+ text_encoder_cls, text_encoder_id = Gemma2Model, "hf-internal-testing/dummy-gemma-for-diffusers"
78
+
79
+ @property
80
+ def output_shape(self):
81
+ return (1, 32, 32, 3)
82
+
83
+ def get_dummy_inputs(self, with_generator=True):
84
+ batch_size = 1
85
+ sequence_length = 16
86
+ num_channels = 4
87
+ sizes = (32, 32)
88
+
89
+ generator = torch.manual_seed(0)
90
+ noise = floats_tensor((batch_size, num_channels) + sizes)
91
+ input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator)
92
+
93
+ pipeline_inputs = {
94
+ "prompt": "",
95
+ "negative_prompt": "",
96
+ "num_inference_steps": 4,
97
+ "guidance_scale": 4.5,
98
+ "height": 32,
99
+ "width": 32,
100
+ "max_sequence_length": sequence_length,
101
+ "output_type": "np",
102
+ "complex_human_instruction": None,
103
+ }
104
+ if with_generator:
105
+ pipeline_inputs.update({"generator": generator})
106
+
107
+ return noise, input_ids, pipeline_inputs
108
+
109
+ @unittest.skip("Not supported in SANA.")
110
+ def test_modify_padding_mode(self):
111
+ pass
112
+
113
+ @unittest.skip("Not supported in SANA.")
114
+ def test_simple_inference_with_text_denoiser_block_scale(self):
115
+ pass
116
+
117
+ @unittest.skip("Not supported in SANA.")
118
+ def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self):
119
+ pass
120
+
121
+ @unittest.skip("Text encoder LoRA is not supported in SANA.")
122
+ def test_simple_inference_with_partial_text_lora(self):
123
+ pass
124
+
125
+ @unittest.skip("Text encoder LoRA is not supported in SANA.")
126
+ def test_simple_inference_with_text_lora(self):
127
+ pass
128
+
129
+ @unittest.skip("Text encoder LoRA is not supported in SANA.")
130
+ def test_simple_inference_with_text_lora_and_scale(self):
131
+ pass
132
+
133
+ @unittest.skip("Text encoder LoRA is not supported in SANA.")
134
+ def test_simple_inference_with_text_lora_fused(self):
135
+ pass
136
+
137
+ @unittest.skip("Text encoder LoRA is not supported in SANA.")
138
+ def test_simple_inference_with_text_lora_save_load(self):
139
+ pass
exp_code/1_benchmark/diffusers-WanS2V/tests/lora/test_lora_layers_sd.py ADDED
@@ -0,0 +1,769 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2025 HuggingFace Inc.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ import gc
16
+ import sys
17
+ import unittest
18
+
19
+ import numpy as np
20
+ import torch
21
+ import torch.nn as nn
22
+ from huggingface_hub import hf_hub_download
23
+ from safetensors.torch import load_file
24
+ from transformers import CLIPTextModel, CLIPTokenizer
25
+
26
+ from diffusers import (
27
+ AutoPipelineForImage2Image,
28
+ AutoPipelineForText2Image,
29
+ DDIMScheduler,
30
+ DiffusionPipeline,
31
+ LCMScheduler,
32
+ StableDiffusionPipeline,
33
+ )
34
+ from diffusers.utils.import_utils import is_accelerate_available
35
+
36
+ from ..testing_utils import (
37
+ Expectations,
38
+ backend_empty_cache,
39
+ load_image,
40
+ nightly,
41
+ numpy_cosine_similarity_distance,
42
+ require_peft_backend,
43
+ require_torch_accelerator,
44
+ slow,
45
+ torch_device,
46
+ )
47
+
48
+
49
+ sys.path.append(".")
50
+
51
+ from .utils import PeftLoraLoaderMixinTests, check_if_lora_correctly_set # noqa: E402
52
+
53
+
54
+ if is_accelerate_available():
55
+ from accelerate.utils import release_memory
56
+
57
+
58
+ class StableDiffusionLoRATests(PeftLoraLoaderMixinTests, unittest.TestCase):
59
+ pipeline_class = StableDiffusionPipeline
60
+ scheduler_cls = DDIMScheduler
61
+ scheduler_kwargs = {
62
+ "beta_start": 0.00085,
63
+ "beta_end": 0.012,
64
+ "beta_schedule": "scaled_linear",
65
+ "clip_sample": False,
66
+ "set_alpha_to_one": False,
67
+ "steps_offset": 1,
68
+ }
69
+ unet_kwargs = {
70
+ "block_out_channels": (32, 64),
71
+ "layers_per_block": 2,
72
+ "sample_size": 32,
73
+ "in_channels": 4,
74
+ "out_channels": 4,
75
+ "down_block_types": ("DownBlock2D", "CrossAttnDownBlock2D"),
76
+ "up_block_types": ("CrossAttnUpBlock2D", "UpBlock2D"),
77
+ "cross_attention_dim": 32,
78
+ }
79
+ vae_kwargs = {
80
+ "block_out_channels": [32, 64],
81
+ "in_channels": 3,
82
+ "out_channels": 3,
83
+ "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
84
+ "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
85
+ "latent_channels": 4,
86
+ }
87
+ text_encoder_cls, text_encoder_id = CLIPTextModel, "peft-internal-testing/tiny-clip-text-2"
88
+ tokenizer_cls, tokenizer_id = CLIPTokenizer, "peft-internal-testing/tiny-clip-text-2"
89
+
90
+ @property
91
+ def output_shape(self):
92
+ return (1, 64, 64, 3)
93
+
94
+ def setUp(self):
95
+ super().setUp()
96
+ gc.collect()
97
+ backend_empty_cache(torch_device)
98
+
99
+ def tearDown(self):
100
+ super().tearDown()
101
+ gc.collect()
102
+ backend_empty_cache(torch_device)
103
+
104
+ # Keeping this test here makes sense because it doesn't look any integration
105
+ # (value assertions on logits).
106
+ @slow
107
+ @require_torch_accelerator
108
+ def test_integration_move_lora_cpu(self):
109
+ path = "stable-diffusion-v1-5/stable-diffusion-v1-5"
110
+ lora_id = "takuma104/lora-test-text-encoder-lora-target"
111
+
112
+ pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16)
113
+ pipe.load_lora_weights(lora_id, adapter_name="adapter-1")
114
+ pipe.load_lora_weights(lora_id, adapter_name="adapter-2")
115
+ pipe = pipe.to(torch_device)
116
+
117
+ self.assertTrue(
118
+ check_if_lora_correctly_set(pipe.text_encoder),
119
+ "Lora not correctly set in text encoder",
120
+ )
121
+
122
+ self.assertTrue(
123
+ check_if_lora_correctly_set(pipe.unet),
124
+ "Lora not correctly set in unet",
125
+ )
126
+
127
+ # We will offload the first adapter in CPU and check if the offloading
128
+ # has been performed correctly
129
+ pipe.set_lora_device(["adapter-1"], "cpu")
130
+
131
+ for name, module in pipe.unet.named_modules():
132
+ if "adapter-1" in name and not isinstance(module, (nn.Dropout, nn.Identity)):
133
+ self.assertTrue(module.weight.device == torch.device("cpu"))
134
+ elif "adapter-2" in name and not isinstance(module, (nn.Dropout, nn.Identity)):
135
+ self.assertTrue(module.weight.device != torch.device("cpu"))
136
+
137
+ for name, module in pipe.text_encoder.named_modules():
138
+ if "adapter-1" in name and not isinstance(module, (nn.Dropout, nn.Identity)):
139
+ self.assertTrue(module.weight.device == torch.device("cpu"))
140
+ elif "adapter-2" in name and not isinstance(module, (nn.Dropout, nn.Identity)):
141
+ self.assertTrue(module.weight.device != torch.device("cpu"))
142
+
143
+ pipe.set_lora_device(["adapter-1"], 0)
144
+
145
+ for n, m in pipe.unet.named_modules():
146
+ if "adapter-1" in n and not isinstance(m, (nn.Dropout, nn.Identity)):
147
+ self.assertTrue(m.weight.device != torch.device("cpu"))
148
+
149
+ for n, m in pipe.text_encoder.named_modules():
150
+ if "adapter-1" in n and not isinstance(m, (nn.Dropout, nn.Identity)):
151
+ self.assertTrue(m.weight.device != torch.device("cpu"))
152
+
153
+ pipe.set_lora_device(["adapter-1", "adapter-2"], torch_device)
154
+
155
+ for n, m in pipe.unet.named_modules():
156
+ if ("adapter-1" in n or "adapter-2" in n) and not isinstance(m, (nn.Dropout, nn.Identity)):
157
+ self.assertTrue(m.weight.device != torch.device("cpu"))
158
+
159
+ for n, m in pipe.text_encoder.named_modules():
160
+ if ("adapter-1" in n or "adapter-2" in n) and not isinstance(m, (nn.Dropout, nn.Identity)):
161
+ self.assertTrue(m.weight.device != torch.device("cpu"))
162
+
163
+ @slow
164
+ @require_torch_accelerator
165
+ def test_integration_move_lora_dora_cpu(self):
166
+ from peft import LoraConfig
167
+
168
+ path = "stable-diffusion-v1-5/stable-diffusion-v1-5"
169
+ unet_lora_config = LoraConfig(
170
+ init_lora_weights="gaussian",
171
+ target_modules=["to_k", "to_q", "to_v", "to_out.0"],
172
+ use_dora=True,
173
+ )
174
+ text_lora_config = LoraConfig(
175
+ init_lora_weights="gaussian",
176
+ target_modules=["q_proj", "k_proj", "v_proj", "out_proj"],
177
+ use_dora=True,
178
+ )
179
+
180
+ pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16)
181
+ pipe.unet.add_adapter(unet_lora_config, "adapter-1")
182
+ pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
183
+
184
+ self.assertTrue(
185
+ check_if_lora_correctly_set(pipe.text_encoder),
186
+ "Lora not correctly set in text encoder",
187
+ )
188
+
189
+ self.assertTrue(
190
+ check_if_lora_correctly_set(pipe.unet),
191
+ "Lora not correctly set in unet",
192
+ )
193
+
194
+ for name, param in pipe.unet.named_parameters():
195
+ if "lora_" in name:
196
+ self.assertEqual(param.device, torch.device("cpu"))
197
+
198
+ for name, param in pipe.text_encoder.named_parameters():
199
+ if "lora_" in name:
200
+ self.assertEqual(param.device, torch.device("cpu"))
201
+
202
+ pipe.set_lora_device(["adapter-1"], torch_device)
203
+
204
+ for name, param in pipe.unet.named_parameters():
205
+ if "lora_" in name:
206
+ self.assertNotEqual(param.device, torch.device("cpu"))
207
+
208
+ for name, param in pipe.text_encoder.named_parameters():
209
+ if "lora_" in name:
210
+ self.assertNotEqual(param.device, torch.device("cpu"))
211
+
212
+ @slow
213
+ @require_torch_accelerator
214
+ def test_integration_set_lora_device_different_target_layers(self):
215
+ # fixes a bug that occurred when calling set_lora_device with multiple adapters loaded that target different
216
+ # layers, see #11833
217
+ from peft import LoraConfig
218
+
219
+ path = "stable-diffusion-v1-5/stable-diffusion-v1-5"
220
+ pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float16)
221
+ # configs partly target the same, partly different layers
222
+ config0 = LoraConfig(target_modules=["to_k", "to_v"])
223
+ config1 = LoraConfig(target_modules=["to_k", "to_q"])
224
+ pipe.unet.add_adapter(config0, adapter_name="adapter-0")
225
+ pipe.unet.add_adapter(config1, adapter_name="adapter-1")
226
+ pipe = pipe.to(torch_device)
227
+
228
+ self.assertTrue(
229
+ check_if_lora_correctly_set(pipe.unet),
230
+ "Lora not correctly set in unet",
231
+ )
232
+
233
+ # sanity check that the adapters don't target the same layers, otherwise the test passes even without the fix
234
+ modules_adapter_0 = {n for n, _ in pipe.unet.named_modules() if n.endswith(".adapter-0")}
235
+ modules_adapter_1 = {n for n, _ in pipe.unet.named_modules() if n.endswith(".adapter-1")}
236
+ self.assertNotEqual(modules_adapter_0, modules_adapter_1)
237
+ self.assertTrue(modules_adapter_0 - modules_adapter_1)
238
+ self.assertTrue(modules_adapter_1 - modules_adapter_0)
239
+
240
+ # setting both separately works
241
+ pipe.set_lora_device(["adapter-0"], "cpu")
242
+ pipe.set_lora_device(["adapter-1"], "cpu")
243
+
244
+ for name, module in pipe.unet.named_modules():
245
+ if "adapter-0" in name and not isinstance(module, (nn.Dropout, nn.Identity)):
246
+ self.assertTrue(module.weight.device == torch.device("cpu"))
247
+ elif "adapter-1" in name and not isinstance(module, (nn.Dropout, nn.Identity)):
248
+ self.assertTrue(module.weight.device == torch.device("cpu"))
249
+
250
+ # setting both at once also works
251
+ pipe.set_lora_device(["adapter-0", "adapter-1"], torch_device)
252
+
253
+ for name, module in pipe.unet.named_modules():
254
+ if "adapter-0" in name and not isinstance(module, (nn.Dropout, nn.Identity)):
255
+ self.assertTrue(module.weight.device != torch.device("cpu"))
256
+ elif "adapter-1" in name and not isinstance(module, (nn.Dropout, nn.Identity)):
257
+ self.assertTrue(module.weight.device != torch.device("cpu"))
258
+
259
+
260
+ @slow
261
+ @nightly
262
+ @require_torch_accelerator
263
+ @require_peft_backend
264
+ class LoraIntegrationTests(unittest.TestCase):
265
+ def setUp(self):
266
+ super().setUp()
267
+ gc.collect()
268
+ backend_empty_cache(torch_device)
269
+
270
+ def tearDown(self):
271
+ super().tearDown()
272
+ gc.collect()
273
+ backend_empty_cache(torch_device)
274
+
275
+ def test_integration_logits_with_scale(self):
276
+ path = "stable-diffusion-v1-5/stable-diffusion-v1-5"
277
+ lora_id = "takuma104/lora-test-text-encoder-lora-target"
278
+
279
+ pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float32)
280
+ pipe.load_lora_weights(lora_id)
281
+ pipe = pipe.to(torch_device)
282
+
283
+ self.assertTrue(
284
+ check_if_lora_correctly_set(pipe.text_encoder),
285
+ "Lora not correctly set in text encoder",
286
+ )
287
+
288
+ prompt = "a red sks dog"
289
+
290
+ images = pipe(
291
+ prompt=prompt,
292
+ num_inference_steps=15,
293
+ cross_attention_kwargs={"scale": 0.5},
294
+ generator=torch.manual_seed(0),
295
+ output_type="np",
296
+ ).images
297
+
298
+ expected_slice_scale = np.array([0.307, 0.283, 0.310, 0.310, 0.300, 0.314, 0.336, 0.314, 0.321])
299
+ predicted_slice = images[0, -3:, -3:, -1].flatten()
300
+
301
+ max_diff = numpy_cosine_similarity_distance(expected_slice_scale, predicted_slice)
302
+ assert max_diff < 1e-3
303
+
304
+ pipe.unload_lora_weights()
305
+ release_memory(pipe)
306
+
307
+ def test_integration_logits_no_scale(self):
308
+ path = "stable-diffusion-v1-5/stable-diffusion-v1-5"
309
+ lora_id = "takuma104/lora-test-text-encoder-lora-target"
310
+
311
+ pipe = StableDiffusionPipeline.from_pretrained(path, torch_dtype=torch.float32)
312
+ pipe.load_lora_weights(lora_id)
313
+ pipe = pipe.to(torch_device)
314
+
315
+ self.assertTrue(
316
+ check_if_lora_correctly_set(pipe.text_encoder),
317
+ "Lora not correctly set in text encoder",
318
+ )
319
+
320
+ prompt = "a red sks dog"
321
+
322
+ images = pipe(prompt=prompt, num_inference_steps=30, generator=torch.manual_seed(0), output_type="np").images
323
+
324
+ expected_slice_scale = np.array([0.074, 0.064, 0.073, 0.0842, 0.069, 0.0641, 0.0794, 0.076, 0.084])
325
+ predicted_slice = images[0, -3:, -3:, -1].flatten()
326
+
327
+ max_diff = numpy_cosine_similarity_distance(expected_slice_scale, predicted_slice)
328
+
329
+ assert max_diff < 1e-3
330
+
331
+ pipe.unload_lora_weights()
332
+ release_memory(pipe)
333
+
334
+ def test_dreambooth_old_format(self):
335
+ generator = torch.Generator("cpu").manual_seed(0)
336
+
337
+ lora_model_id = "hf-internal-testing/lora_dreambooth_dog_example"
338
+
339
+ base_model_id = "stable-diffusion-v1-5/stable-diffusion-v1-5"
340
+
341
+ pipe = StableDiffusionPipeline.from_pretrained(base_model_id, safety_checker=None)
342
+ pipe = pipe.to(torch_device)
343
+ pipe.load_lora_weights(lora_model_id)
344
+
345
+ images = pipe(
346
+ "A photo of a sks dog floating in the river", output_type="np", generator=generator, num_inference_steps=2
347
+ ).images
348
+
349
+ images = images[0, -3:, -3:, -1].flatten()
350
+ expected = np.array([0.7207, 0.6787, 0.6010, 0.7478, 0.6838, 0.6064, 0.6984, 0.6443, 0.5785])
351
+
352
+ max_diff = numpy_cosine_similarity_distance(expected, images)
353
+ assert max_diff < 1e-4
354
+
355
+ pipe.unload_lora_weights()
356
+ release_memory(pipe)
357
+
358
+ def test_dreambooth_text_encoder_new_format(self):
359
+ generator = torch.Generator().manual_seed(0)
360
+
361
+ lora_model_id = "hf-internal-testing/lora-trained"
362
+
363
+ base_model_id = "stable-diffusion-v1-5/stable-diffusion-v1-5"
364
+
365
+ pipe = StableDiffusionPipeline.from_pretrained(base_model_id, safety_checker=None)
366
+ pipe = pipe.to(torch_device)
367
+ pipe.load_lora_weights(lora_model_id)
368
+
369
+ images = pipe("A photo of a sks dog", output_type="np", generator=generator, num_inference_steps=2).images
370
+
371
+ images = images[0, -3:, -3:, -1].flatten()
372
+
373
+ expected = np.array([0.6628, 0.6138, 0.5390, 0.6625, 0.6130, 0.5463, 0.6166, 0.5788, 0.5359])
374
+
375
+ max_diff = numpy_cosine_similarity_distance(expected, images)
376
+ assert max_diff < 1e-4
377
+
378
+ pipe.unload_lora_weights()
379
+ release_memory(pipe)
380
+
381
+ def test_a1111(self):
382
+ generator = torch.Generator().manual_seed(0)
383
+
384
+ pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/Counterfeit-V2.5", safety_checker=None).to(
385
+ torch_device
386
+ )
387
+ lora_model_id = "hf-internal-testing/civitai-light-shadow-lora"
388
+ lora_filename = "light_and_shadow.safetensors"
389
+ pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
390
+
391
+ images = pipe(
392
+ "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
393
+ ).images
394
+
395
+ images = images[0, -3:, -3:, -1].flatten()
396
+ expected = np.array([0.3636, 0.3708, 0.3694, 0.3679, 0.3829, 0.3677, 0.3692, 0.3688, 0.3292])
397
+
398
+ max_diff = numpy_cosine_similarity_distance(expected, images)
399
+ assert max_diff < 1e-3
400
+
401
+ pipe.unload_lora_weights()
402
+ release_memory(pipe)
403
+
404
+ def test_lycoris(self):
405
+ generator = torch.Generator().manual_seed(0)
406
+
407
+ pipe = StableDiffusionPipeline.from_pretrained(
408
+ "hf-internal-testing/Amixx", safety_checker=None, use_safetensors=True, variant="fp16"
409
+ ).to(torch_device)
410
+ lora_model_id = "hf-internal-testing/edgLycorisMugler-light"
411
+ lora_filename = "edgLycorisMugler-light.safetensors"
412
+ pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
413
+
414
+ images = pipe(
415
+ "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
416
+ ).images
417
+
418
+ images = images[0, -3:, -3:, -1].flatten()
419
+ expected = np.array([0.6463, 0.658, 0.599, 0.6542, 0.6512, 0.6213, 0.658, 0.6485, 0.6017])
420
+
421
+ max_diff = numpy_cosine_similarity_distance(expected, images)
422
+ assert max_diff < 1e-3
423
+
424
+ pipe.unload_lora_weights()
425
+ release_memory(pipe)
426
+
427
+ def test_a1111_with_model_cpu_offload(self):
428
+ generator = torch.Generator().manual_seed(0)
429
+
430
+ pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/Counterfeit-V2.5", safety_checker=None)
431
+ pipe.enable_model_cpu_offload(device=torch_device)
432
+ lora_model_id = "hf-internal-testing/civitai-light-shadow-lora"
433
+ lora_filename = "light_and_shadow.safetensors"
434
+ pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
435
+
436
+ images = pipe(
437
+ "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
438
+ ).images
439
+
440
+ images = images[0, -3:, -3:, -1].flatten()
441
+ expected = np.array([0.3636, 0.3708, 0.3694, 0.3679, 0.3829, 0.3677, 0.3692, 0.3688, 0.3292])
442
+
443
+ max_diff = numpy_cosine_similarity_distance(expected, images)
444
+ assert max_diff < 1e-3
445
+
446
+ pipe.unload_lora_weights()
447
+ release_memory(pipe)
448
+
449
+ def test_a1111_with_sequential_cpu_offload(self):
450
+ generator = torch.Generator().manual_seed(0)
451
+
452
+ pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/Counterfeit-V2.5", safety_checker=None)
453
+ pipe.enable_sequential_cpu_offload(device=torch_device)
454
+ lora_model_id = "hf-internal-testing/civitai-light-shadow-lora"
455
+ lora_filename = "light_and_shadow.safetensors"
456
+ pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
457
+
458
+ images = pipe(
459
+ "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
460
+ ).images
461
+
462
+ images = images[0, -3:, -3:, -1].flatten()
463
+ expected = np.array([0.3636, 0.3708, 0.3694, 0.3679, 0.3829, 0.3677, 0.3692, 0.3688, 0.3292])
464
+
465
+ max_diff = numpy_cosine_similarity_distance(expected, images)
466
+ assert max_diff < 1e-3
467
+
468
+ pipe.unload_lora_weights()
469
+ release_memory(pipe)
470
+
471
+ def test_kohya_sd_v15_with_higher_dimensions(self):
472
+ generator = torch.Generator().manual_seed(0)
473
+
474
+ pipe = StableDiffusionPipeline.from_pretrained(
475
+ "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None
476
+ ).to(torch_device)
477
+ lora_model_id = "hf-internal-testing/urushisato-lora"
478
+ lora_filename = "urushisato_v15.safetensors"
479
+ pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
480
+
481
+ images = pipe(
482
+ "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
483
+ ).images
484
+
485
+ images = images[0, -3:, -3:, -1].flatten()
486
+ expected = np.array([0.7165, 0.6616, 0.5833, 0.7504, 0.6718, 0.587, 0.6871, 0.6361, 0.5694])
487
+
488
+ max_diff = numpy_cosine_similarity_distance(expected, images)
489
+ assert max_diff < 1e-3
490
+
491
+ pipe.unload_lora_weights()
492
+ release_memory(pipe)
493
+
494
+ def test_vanilla_funetuning(self):
495
+ generator = torch.Generator().manual_seed(0)
496
+
497
+ lora_model_id = "hf-internal-testing/sd-model-finetuned-lora-t4"
498
+
499
+ base_model_id = "stable-diffusion-v1-5/stable-diffusion-v1-5"
500
+
501
+ pipe = StableDiffusionPipeline.from_pretrained(base_model_id, safety_checker=None)
502
+ pipe = pipe.to(torch_device)
503
+ pipe.load_lora_weights(lora_model_id)
504
+
505
+ images = pipe("A pokemon with blue eyes.", output_type="np", generator=generator, num_inference_steps=2).images
506
+
507
+ image_slice = images[0, -3:, -3:, -1].flatten()
508
+
509
+ expected_slices = Expectations(
510
+ {
511
+ ("xpu", 3): np.array(
512
+ [
513
+ 0.6544,
514
+ 0.6127,
515
+ 0.5397,
516
+ 0.6845,
517
+ 0.6047,
518
+ 0.5469,
519
+ 0.6349,
520
+ 0.5906,
521
+ 0.5382,
522
+ ]
523
+ ),
524
+ ("cuda", 7): np.array(
525
+ [
526
+ 0.7406,
527
+ 0.699,
528
+ 0.5963,
529
+ 0.7493,
530
+ 0.7045,
531
+ 0.6096,
532
+ 0.6886,
533
+ 0.6388,
534
+ 0.583,
535
+ ]
536
+ ),
537
+ ("cuda", 8): np.array(
538
+ [
539
+ 0.6542,
540
+ 0.61253,
541
+ 0.5396,
542
+ 0.6843,
543
+ 0.6044,
544
+ 0.5468,
545
+ 0.6349,
546
+ 0.5905,
547
+ 0.5381,
548
+ ]
549
+ ),
550
+ }
551
+ )
552
+ expected_slice = expected_slices.get_expectation()
553
+
554
+ max_diff = numpy_cosine_similarity_distance(expected_slice, image_slice)
555
+ assert max_diff < 1e-4
556
+
557
+ pipe.unload_lora_weights()
558
+ release_memory(pipe)
559
+
560
+ def test_unload_kohya_lora(self):
561
+ generator = torch.manual_seed(0)
562
+ prompt = "masterpiece, best quality, mountain"
563
+ num_inference_steps = 2
564
+
565
+ pipe = StableDiffusionPipeline.from_pretrained(
566
+ "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None
567
+ ).to(torch_device)
568
+ initial_images = pipe(
569
+ prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
570
+ ).images
571
+ initial_images = initial_images[0, -3:, -3:, -1].flatten()
572
+
573
+ lora_model_id = "hf-internal-testing/civitai-colored-icons-lora"
574
+ lora_filename = "Colored_Icons_by_vizsumit.safetensors"
575
+
576
+ pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
577
+ generator = torch.manual_seed(0)
578
+ lora_images = pipe(
579
+ prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
580
+ ).images
581
+ lora_images = lora_images[0, -3:, -3:, -1].flatten()
582
+
583
+ pipe.unload_lora_weights()
584
+ generator = torch.manual_seed(0)
585
+ unloaded_lora_images = pipe(
586
+ prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
587
+ ).images
588
+ unloaded_lora_images = unloaded_lora_images[0, -3:, -3:, -1].flatten()
589
+
590
+ self.assertFalse(np.allclose(initial_images, lora_images))
591
+ self.assertTrue(np.allclose(initial_images, unloaded_lora_images, atol=1e-3))
592
+
593
+ release_memory(pipe)
594
+
595
+ def test_load_unload_load_kohya_lora(self):
596
+ # This test ensures that a Kohya-style LoRA can be safely unloaded and then loaded
597
+ # without introducing any side-effects. Even though the test uses a Kohya-style
598
+ # LoRA, the underlying adapter handling mechanism is format-agnostic.
599
+ generator = torch.manual_seed(0)
600
+ prompt = "masterpiece, best quality, mountain"
601
+ num_inference_steps = 2
602
+
603
+ pipe = StableDiffusionPipeline.from_pretrained(
604
+ "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None
605
+ ).to(torch_device)
606
+ initial_images = pipe(
607
+ prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
608
+ ).images
609
+ initial_images = initial_images[0, -3:, -3:, -1].flatten()
610
+
611
+ lora_model_id = "hf-internal-testing/civitai-colored-icons-lora"
612
+ lora_filename = "Colored_Icons_by_vizsumit.safetensors"
613
+
614
+ pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
615
+ generator = torch.manual_seed(0)
616
+ lora_images = pipe(
617
+ prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
618
+ ).images
619
+ lora_images = lora_images[0, -3:, -3:, -1].flatten()
620
+
621
+ pipe.unload_lora_weights()
622
+ generator = torch.manual_seed(0)
623
+ unloaded_lora_images = pipe(
624
+ prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
625
+ ).images
626
+ unloaded_lora_images = unloaded_lora_images[0, -3:, -3:, -1].flatten()
627
+
628
+ self.assertFalse(np.allclose(initial_images, lora_images))
629
+ self.assertTrue(np.allclose(initial_images, unloaded_lora_images, atol=1e-3))
630
+
631
+ # make sure we can load a LoRA again after unloading and they don't have
632
+ # any undesired effects.
633
+ pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
634
+ generator = torch.manual_seed(0)
635
+ lora_images_again = pipe(
636
+ prompt, output_type="np", generator=generator, num_inference_steps=num_inference_steps
637
+ ).images
638
+ lora_images_again = lora_images_again[0, -3:, -3:, -1].flatten()
639
+
640
+ self.assertTrue(np.allclose(lora_images, lora_images_again, atol=1e-3))
641
+ release_memory(pipe)
642
+
643
+ def test_not_empty_state_dict(self):
644
+ # Makes sure https://github.com/huggingface/diffusers/issues/7054 does not happen again
645
+ pipe = AutoPipelineForText2Image.from_pretrained(
646
+ "stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16
647
+ ).to(torch_device)
648
+ pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
649
+
650
+ cached_file = hf_hub_download("hf-internal-testing/lcm-lora-test-sd-v1-5", "test_lora.safetensors")
651
+ lcm_lora = load_file(cached_file)
652
+
653
+ pipe.load_lora_weights(lcm_lora, adapter_name="lcm")
654
+ self.assertTrue(lcm_lora != {})
655
+ release_memory(pipe)
656
+
657
+ def test_load_unload_load_state_dict(self):
658
+ # Makes sure https://github.com/huggingface/diffusers/issues/7054 does not happen again
659
+ pipe = AutoPipelineForText2Image.from_pretrained(
660
+ "stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16
661
+ ).to(torch_device)
662
+ pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
663
+
664
+ cached_file = hf_hub_download("hf-internal-testing/lcm-lora-test-sd-v1-5", "test_lora.safetensors")
665
+ lcm_lora = load_file(cached_file)
666
+ previous_state_dict = lcm_lora.copy()
667
+
668
+ pipe.load_lora_weights(lcm_lora, adapter_name="lcm")
669
+ self.assertDictEqual(lcm_lora, previous_state_dict)
670
+
671
+ pipe.unload_lora_weights()
672
+ pipe.load_lora_weights(lcm_lora, adapter_name="lcm")
673
+ self.assertDictEqual(lcm_lora, previous_state_dict)
674
+
675
+ release_memory(pipe)
676
+
677
+ def test_sdv1_5_lcm_lora(self):
678
+ pipe = DiffusionPipeline.from_pretrained(
679
+ "stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16
680
+ )
681
+ pipe.to(torch_device)
682
+ pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
683
+
684
+ generator = torch.Generator("cpu").manual_seed(0)
685
+
686
+ lora_model_id = "latent-consistency/lcm-lora-sdv1-5"
687
+ pipe.load_lora_weights(lora_model_id)
688
+
689
+ image = pipe(
690
+ "masterpiece, best quality, mountain", generator=generator, num_inference_steps=4, guidance_scale=0.5
691
+ ).images[0]
692
+
693
+ expected_image = load_image(
694
+ "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/lcm_lora/sdv15_lcm_lora.png"
695
+ )
696
+
697
+ image_np = pipe.image_processor.pil_to_numpy(image)
698
+ expected_image_np = pipe.image_processor.pil_to_numpy(expected_image)
699
+
700
+ max_diff = numpy_cosine_similarity_distance(image_np.flatten(), expected_image_np.flatten())
701
+ assert max_diff < 1e-4
702
+
703
+ pipe.unload_lora_weights()
704
+
705
+ release_memory(pipe)
706
+
707
+ def test_sdv1_5_lcm_lora_img2img(self):
708
+ pipe = AutoPipelineForImage2Image.from_pretrained(
709
+ "stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16
710
+ )
711
+ pipe.to(torch_device)
712
+ pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
713
+
714
+ init_image = load_image(
715
+ "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape.png"
716
+ )
717
+
718
+ generator = torch.Generator("cpu").manual_seed(0)
719
+
720
+ lora_model_id = "latent-consistency/lcm-lora-sdv1-5"
721
+ pipe.load_lora_weights(lora_model_id)
722
+
723
+ image = pipe(
724
+ "snowy mountain",
725
+ generator=generator,
726
+ image=init_image,
727
+ strength=0.5,
728
+ num_inference_steps=4,
729
+ guidance_scale=0.5,
730
+ ).images[0]
731
+
732
+ expected_image = load_image(
733
+ "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/lcm_lora/sdv15_lcm_lora_img2img.png"
734
+ )
735
+
736
+ image_np = pipe.image_processor.pil_to_numpy(image)
737
+ expected_image_np = pipe.image_processor.pil_to_numpy(expected_image)
738
+
739
+ max_diff = numpy_cosine_similarity_distance(image_np.flatten(), expected_image_np.flatten())
740
+ assert max_diff < 1e-4
741
+
742
+ pipe.unload_lora_weights()
743
+
744
+ release_memory(pipe)
745
+
746
+ def test_sd_load_civitai_empty_network_alpha(self):
747
+ """
748
+ This test simply checks that loading a LoRA with an empty network alpha works fine
749
+ See: https://github.com/huggingface/diffusers/issues/5606
750
+ """
751
+ pipeline = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
752
+ pipeline.enable_sequential_cpu_offload(device=torch_device)
753
+ civitai_path = hf_hub_download("ybelkada/test-ahi-civitai", "ahi_lora_weights.safetensors")
754
+ pipeline.load_lora_weights(civitai_path, adapter_name="ahri")
755
+
756
+ images = pipeline(
757
+ "ahri, masterpiece, league of legends",
758
+ output_type="np",
759
+ generator=torch.manual_seed(156),
760
+ num_inference_steps=5,
761
+ ).images
762
+ images = images[0, -3:, -3:, -1].flatten()
763
+ expected = np.array([0.0, 0.0, 0.0, 0.002557, 0.020954, 0.001792, 0.006581, 0.00591, 0.002995])
764
+
765
+ max_diff = numpy_cosine_similarity_distance(expected, images)
766
+ assert max_diff < 1e-3
767
+
768
+ pipeline.unload_lora_weights()
769
+ release_memory(pipeline)
exp_code/1_benchmark/diffusers-WanS2V/tests/lora/test_lora_layers_sd3.py ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2025 HuggingFace Inc.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ import gc
16
+ import sys
17
+ import unittest
18
+
19
+ import numpy as np
20
+ import torch
21
+ from transformers import AutoTokenizer, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel
22
+
23
+ from diffusers import (
24
+ FlowMatchEulerDiscreteScheduler,
25
+ SD3Transformer2DModel,
26
+ StableDiffusion3Img2ImgPipeline,
27
+ StableDiffusion3Pipeline,
28
+ )
29
+ from diffusers.utils import load_image
30
+ from diffusers.utils.import_utils import is_accelerate_available
31
+
32
+ from ..testing_utils import (
33
+ backend_empty_cache,
34
+ is_flaky,
35
+ nightly,
36
+ numpy_cosine_similarity_distance,
37
+ require_big_accelerator,
38
+ require_peft_backend,
39
+ require_torch_accelerator,
40
+ torch_device,
41
+ )
42
+
43
+
44
+ sys.path.append(".")
45
+
46
+ from .utils import PeftLoraLoaderMixinTests # noqa: E402
47
+
48
+
49
+ if is_accelerate_available():
50
+ from accelerate.utils import release_memory
51
+
52
+
53
+ @require_peft_backend
54
+ class SD3LoRATests(unittest.TestCase, PeftLoraLoaderMixinTests):
55
+ pipeline_class = StableDiffusion3Pipeline
56
+ scheduler_cls = FlowMatchEulerDiscreteScheduler
57
+ scheduler_kwargs = {}
58
+ scheduler_classes = [FlowMatchEulerDiscreteScheduler]
59
+ transformer_kwargs = {
60
+ "sample_size": 32,
61
+ "patch_size": 1,
62
+ "in_channels": 4,
63
+ "num_layers": 1,
64
+ "attention_head_dim": 8,
65
+ "num_attention_heads": 4,
66
+ "caption_projection_dim": 32,
67
+ "joint_attention_dim": 32,
68
+ "pooled_projection_dim": 64,
69
+ "out_channels": 4,
70
+ }
71
+ transformer_cls = SD3Transformer2DModel
72
+ vae_kwargs = {
73
+ "sample_size": 32,
74
+ "in_channels": 3,
75
+ "out_channels": 3,
76
+ "block_out_channels": (4,),
77
+ "layers_per_block": 1,
78
+ "latent_channels": 4,
79
+ "norm_num_groups": 1,
80
+ "use_quant_conv": False,
81
+ "use_post_quant_conv": False,
82
+ "shift_factor": 0.0609,
83
+ "scaling_factor": 1.5035,
84
+ }
85
+ has_three_text_encoders = True
86
+ tokenizer_cls, tokenizer_id = CLIPTokenizer, "hf-internal-testing/tiny-random-clip"
87
+ tokenizer_2_cls, tokenizer_2_id = CLIPTokenizer, "hf-internal-testing/tiny-random-clip"
88
+ tokenizer_3_cls, tokenizer_3_id = AutoTokenizer, "hf-internal-testing/tiny-random-t5"
89
+ text_encoder_cls, text_encoder_id = CLIPTextModelWithProjection, "hf-internal-testing/tiny-sd3-text_encoder"
90
+ text_encoder_2_cls, text_encoder_2_id = CLIPTextModelWithProjection, "hf-internal-testing/tiny-sd3-text_encoder-2"
91
+ text_encoder_3_cls, text_encoder_3_id = T5EncoderModel, "hf-internal-testing/tiny-random-t5"
92
+
93
+ @property
94
+ def output_shape(self):
95
+ return (1, 32, 32, 3)
96
+
97
+ @require_torch_accelerator
98
+ def test_sd3_lora(self):
99
+ """
100
+ Test loading the loras that are saved with the diffusers and peft formats.
101
+ Related PR: https://github.com/huggingface/diffusers/pull/8584
102
+ """
103
+ components = self.get_dummy_components()
104
+ pipe = self.pipeline_class(**components[0])
105
+ pipe = pipe.to(torch_device)
106
+ pipe.set_progress_bar_config(disable=None)
107
+
108
+ lora_model_id = "hf-internal-testing/tiny-sd3-loras"
109
+
110
+ lora_filename = "lora_diffusers_format.safetensors"
111
+ pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
112
+ pipe.unload_lora_weights()
113
+
114
+ lora_filename = "lora_peft_format.safetensors"
115
+ pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
116
+
117
+ @unittest.skip("Not supported in SD3.")
118
+ def test_simple_inference_with_text_denoiser_block_scale(self):
119
+ pass
120
+
121
+ @unittest.skip("Not supported in SD3.")
122
+ def test_simple_inference_with_text_denoiser_multi_adapter_block_lora(self):
123
+ pass
124
+
125
+ @unittest.skip("Not supported in SD3.")
126
+ def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self):
127
+ pass
128
+
129
+ @unittest.skip("Not supported in SD3.")
130
+ def test_modify_padding_mode(self):
131
+ pass
132
+
133
+ @is_flaky
134
+ def test_multiple_wrong_adapter_name_raises_error(self):
135
+ super().test_multiple_wrong_adapter_name_raises_error()
136
+
137
+
138
+ @nightly
139
+ @require_torch_accelerator
140
+ @require_peft_backend
141
+ @require_big_accelerator
142
+ class SD3LoraIntegrationTests(unittest.TestCase):
143
+ pipeline_class = StableDiffusion3Img2ImgPipeline
144
+ repo_id = "stabilityai/stable-diffusion-3-medium-diffusers"
145
+
146
+ def setUp(self):
147
+ super().setUp()
148
+ gc.collect()
149
+ backend_empty_cache(torch_device)
150
+
151
+ def tearDown(self):
152
+ super().tearDown()
153
+ gc.collect()
154
+ backend_empty_cache(torch_device)
155
+
156
+ def get_inputs(self, device, seed=0):
157
+ init_image = load_image(
158
+ "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
159
+ )
160
+ if str(device).startswith("mps"):
161
+ generator = torch.manual_seed(seed)
162
+ else:
163
+ generator = torch.Generator(device="cpu").manual_seed(seed)
164
+
165
+ return {
166
+ "prompt": "corgi",
167
+ "num_inference_steps": 2,
168
+ "guidance_scale": 5.0,
169
+ "output_type": "np",
170
+ "generator": generator,
171
+ "image": init_image,
172
+ }
173
+
174
+ def test_sd3_img2img_lora(self):
175
+ pipe = self.pipeline_class.from_pretrained(self.repo_id, torch_dtype=torch.float16)
176
+ pipe.load_lora_weights("zwloong/sd3-lora-training-rank16-v2")
177
+ pipe.fuse_lora()
178
+ pipe.unload_lora_weights()
179
+ pipe = pipe.to(torch_device)
180
+
181
+ inputs = self.get_inputs(torch_device)
182
+
183
+ image = pipe(**inputs).images[0]
184
+ image_slice = image[0, -3:, -3:]
185
+ expected_slice = np.array([0.5649, 0.5405, 0.5488, 0.5688, 0.5449, 0.5513, 0.5337, 0.5107, 0.5059])
186
+
187
+ max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), image_slice.flatten())
188
+
189
+ assert max_diff < 1e-4, f"Outputs are not close enough, got {max_diff}"
190
+ pipe.unload_lora_weights()
191
+ release_memory(pipe)
exp_code/1_benchmark/diffusers-WanS2V/tests/lora/test_lora_layers_sdxl.py ADDED
@@ -0,0 +1,681 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2025 HuggingFace Inc.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ import copy
16
+ import gc
17
+ import importlib
18
+ import sys
19
+ import time
20
+ import unittest
21
+
22
+ import numpy as np
23
+ import torch
24
+ from packaging import version
25
+ from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
26
+
27
+ from diffusers import (
28
+ ControlNetModel,
29
+ EulerDiscreteScheduler,
30
+ LCMScheduler,
31
+ StableDiffusionXLAdapterPipeline,
32
+ StableDiffusionXLControlNetPipeline,
33
+ StableDiffusionXLPipeline,
34
+ T2IAdapter,
35
+ )
36
+ from diffusers.utils import logging
37
+ from diffusers.utils.import_utils import is_accelerate_available
38
+
39
+ from ..testing_utils import (
40
+ CaptureLogger,
41
+ backend_empty_cache,
42
+ is_flaky,
43
+ load_image,
44
+ nightly,
45
+ numpy_cosine_similarity_distance,
46
+ require_peft_backend,
47
+ require_torch_accelerator,
48
+ slow,
49
+ torch_device,
50
+ )
51
+
52
+
53
+ sys.path.append(".")
54
+
55
+ from .utils import PeftLoraLoaderMixinTests, check_if_lora_correctly_set, state_dicts_almost_equal # noqa: E402
56
+
57
+
58
+ if is_accelerate_available():
59
+ from accelerate.utils import release_memory
60
+
61
+
62
+ class StableDiffusionXLLoRATests(PeftLoraLoaderMixinTests, unittest.TestCase):
63
+ has_two_text_encoders = True
64
+ pipeline_class = StableDiffusionXLPipeline
65
+ scheduler_cls = EulerDiscreteScheduler
66
+ scheduler_kwargs = {
67
+ "beta_start": 0.00085,
68
+ "beta_end": 0.012,
69
+ "beta_schedule": "scaled_linear",
70
+ "timestep_spacing": "leading",
71
+ "steps_offset": 1,
72
+ }
73
+ unet_kwargs = {
74
+ "block_out_channels": (32, 64),
75
+ "layers_per_block": 2,
76
+ "sample_size": 32,
77
+ "in_channels": 4,
78
+ "out_channels": 4,
79
+ "down_block_types": ("DownBlock2D", "CrossAttnDownBlock2D"),
80
+ "up_block_types": ("CrossAttnUpBlock2D", "UpBlock2D"),
81
+ "attention_head_dim": (2, 4),
82
+ "use_linear_projection": True,
83
+ "addition_embed_type": "text_time",
84
+ "addition_time_embed_dim": 8,
85
+ "transformer_layers_per_block": (1, 2),
86
+ "projection_class_embeddings_input_dim": 80, # 6 * 8 + 32
87
+ "cross_attention_dim": 64,
88
+ }
89
+ vae_kwargs = {
90
+ "block_out_channels": [32, 64],
91
+ "in_channels": 3,
92
+ "out_channels": 3,
93
+ "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
94
+ "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
95
+ "latent_channels": 4,
96
+ "sample_size": 128,
97
+ }
98
+ text_encoder_cls, text_encoder_id = CLIPTextModel, "peft-internal-testing/tiny-clip-text-2"
99
+ tokenizer_cls, tokenizer_id = CLIPTokenizer, "peft-internal-testing/tiny-clip-text-2"
100
+ text_encoder_2_cls, text_encoder_2_id = CLIPTextModelWithProjection, "peft-internal-testing/tiny-clip-text-2"
101
+ tokenizer_2_cls, tokenizer_2_id = CLIPTokenizer, "peft-internal-testing/tiny-clip-text-2"
102
+
103
+ @property
104
+ def output_shape(self):
105
+ return (1, 64, 64, 3)
106
+
107
+ def setUp(self):
108
+ super().setUp()
109
+ gc.collect()
110
+ backend_empty_cache(torch_device)
111
+
112
+ def tearDown(self):
113
+ super().tearDown()
114
+ gc.collect()
115
+ backend_empty_cache(torch_device)
116
+
117
+ @is_flaky
118
+ def test_multiple_wrong_adapter_name_raises_error(self):
119
+ super().test_multiple_wrong_adapter_name_raises_error()
120
+
121
+ def test_simple_inference_with_text_denoiser_lora_unfused(self):
122
+ if torch.cuda.is_available():
123
+ expected_atol = 9e-2
124
+ expected_rtol = 9e-2
125
+ else:
126
+ expected_atol = 1e-3
127
+ expected_rtol = 1e-3
128
+
129
+ super().test_simple_inference_with_text_denoiser_lora_unfused(
130
+ expected_atol=expected_atol, expected_rtol=expected_rtol
131
+ )
132
+
133
+ def test_simple_inference_with_text_lora_denoiser_fused_multi(self):
134
+ if torch.cuda.is_available():
135
+ expected_atol = 9e-2
136
+ expected_rtol = 9e-2
137
+ else:
138
+ expected_atol = 1e-3
139
+ expected_rtol = 1e-3
140
+
141
+ super().test_simple_inference_with_text_lora_denoiser_fused_multi(
142
+ expected_atol=expected_atol, expected_rtol=expected_rtol
143
+ )
144
+
145
+ def test_lora_scale_kwargs_match_fusion(self):
146
+ if torch.cuda.is_available():
147
+ expected_atol = 9e-2
148
+ expected_rtol = 9e-2
149
+ else:
150
+ expected_atol = 1e-3
151
+ expected_rtol = 1e-3
152
+
153
+ super().test_lora_scale_kwargs_match_fusion(expected_atol=expected_atol, expected_rtol=expected_rtol)
154
+
155
+
156
+ @slow
157
+ @nightly
158
+ @require_torch_accelerator
159
+ @require_peft_backend
160
+ class LoraSDXLIntegrationTests(unittest.TestCase):
161
+ def setUp(self):
162
+ super().setUp()
163
+ gc.collect()
164
+ backend_empty_cache(torch_device)
165
+
166
+ def tearDown(self):
167
+ super().tearDown()
168
+ gc.collect()
169
+ backend_empty_cache(torch_device)
170
+
171
+ def test_sdxl_1_0_lora(self):
172
+ generator = torch.Generator("cpu").manual_seed(0)
173
+
174
+ pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
175
+ pipe.enable_model_cpu_offload()
176
+ lora_model_id = "hf-internal-testing/sdxl-1.0-lora"
177
+ lora_filename = "sd_xl_offset_example-lora_1.0.safetensors"
178
+ pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
179
+
180
+ images = pipe(
181
+ "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
182
+ ).images
183
+
184
+ images = images[0, -3:, -3:, -1].flatten()
185
+ expected = np.array([0.4468, 0.4061, 0.4134, 0.3637, 0.3202, 0.365, 0.3786, 0.3725, 0.3535])
186
+
187
+ max_diff = numpy_cosine_similarity_distance(expected, images)
188
+ assert max_diff < 1e-4
189
+
190
+ pipe.unload_lora_weights()
191
+ release_memory(pipe)
192
+
193
+ def test_sdxl_1_0_blockwise_lora(self):
194
+ generator = torch.Generator("cpu").manual_seed(0)
195
+
196
+ pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
197
+ pipe.enable_model_cpu_offload()
198
+ lora_model_id = "hf-internal-testing/sdxl-1.0-lora"
199
+ lora_filename = "sd_xl_offset_example-lora_1.0.safetensors"
200
+ pipe.load_lora_weights(lora_model_id, weight_name=lora_filename, adapter_name="offset")
201
+ scales = {
202
+ "unet": {
203
+ "down": {"block_1": [1.0, 1.0], "block_2": [1.0, 1.0]},
204
+ "mid": 1.0,
205
+ "up": {"block_0": [1.0, 1.0, 1.0], "block_1": [1.0, 1.0, 1.0]},
206
+ },
207
+ }
208
+ pipe.set_adapters(["offset"], [scales])
209
+
210
+ images = pipe(
211
+ "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
212
+ ).images
213
+
214
+ images = images[0, -3:, -3:, -1].flatten()
215
+ expected = np.array([00.4468, 0.4061, 0.4134, 0.3637, 0.3202, 0.365, 0.3786, 0.3725, 0.3535])
216
+
217
+ max_diff = numpy_cosine_similarity_distance(expected, images)
218
+ assert max_diff < 1e-4
219
+
220
+ pipe.unload_lora_weights()
221
+ release_memory(pipe)
222
+
223
+ def test_sdxl_lcm_lora(self):
224
+ pipe = StableDiffusionXLPipeline.from_pretrained(
225
+ "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
226
+ )
227
+ pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
228
+ pipe.enable_model_cpu_offload()
229
+
230
+ generator = torch.Generator("cpu").manual_seed(0)
231
+
232
+ lora_model_id = "latent-consistency/lcm-lora-sdxl"
233
+
234
+ pipe.load_lora_weights(lora_model_id)
235
+
236
+ image = pipe(
237
+ "masterpiece, best quality, mountain", generator=generator, num_inference_steps=4, guidance_scale=0.5
238
+ ).images[0]
239
+
240
+ expected_image = load_image(
241
+ "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/lcm_lora/sdxl_lcm_lora.png"
242
+ )
243
+
244
+ image_np = pipe.image_processor.pil_to_numpy(image)
245
+ expected_image_np = pipe.image_processor.pil_to_numpy(expected_image)
246
+
247
+ max_diff = numpy_cosine_similarity_distance(image_np.flatten(), expected_image_np.flatten())
248
+ assert max_diff < 1e-4
249
+
250
+ pipe.unload_lora_weights()
251
+ release_memory(pipe)
252
+
253
+ def test_sdxl_1_0_lora_fusion(self):
254
+ generator = torch.Generator().manual_seed(0)
255
+
256
+ pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
257
+ lora_model_id = "hf-internal-testing/sdxl-1.0-lora"
258
+ lora_filename = "sd_xl_offset_example-lora_1.0.safetensors"
259
+ pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
260
+
261
+ pipe.fuse_lora()
262
+ # We need to unload the lora weights since in the previous API `fuse_lora` led to lora weights being
263
+ # silently deleted - otherwise this will CPU OOM
264
+ pipe.unload_lora_weights()
265
+
266
+ pipe.enable_model_cpu_offload()
267
+
268
+ images = pipe(
269
+ "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
270
+ ).images
271
+
272
+ images = images[0, -3:, -3:, -1].flatten()
273
+ # This way we also test equivalence between LoRA fusion and the non-fusion behaviour.
274
+ expected = np.array([0.4468, 0.4061, 0.4134, 0.3637, 0.3202, 0.365, 0.3786, 0.3725, 0.3535])
275
+
276
+ max_diff = numpy_cosine_similarity_distance(expected, images)
277
+ assert max_diff < 1e-4
278
+
279
+ release_memory(pipe)
280
+
281
+ def test_sdxl_1_0_lora_unfusion(self):
282
+ generator = torch.Generator("cpu").manual_seed(0)
283
+
284
+ pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
285
+ lora_model_id = "hf-internal-testing/sdxl-1.0-lora"
286
+ lora_filename = "sd_xl_offset_example-lora_1.0.safetensors"
287
+ pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
288
+ pipe.fuse_lora()
289
+
290
+ pipe.enable_model_cpu_offload()
291
+
292
+ images = pipe(
293
+ "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=3
294
+ ).images
295
+ images_with_fusion = images.flatten()
296
+
297
+ pipe.unfuse_lora()
298
+ generator = torch.Generator("cpu").manual_seed(0)
299
+ images = pipe(
300
+ "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=3
301
+ ).images
302
+ images_without_fusion = images.flatten()
303
+
304
+ max_diff = numpy_cosine_similarity_distance(images_with_fusion, images_without_fusion)
305
+ assert max_diff < 1e-4
306
+
307
+ release_memory(pipe)
308
+
309
+ def test_sdxl_1_0_lora_unfusion_effectivity(self):
310
+ pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
311
+ pipe.enable_model_cpu_offload()
312
+
313
+ generator = torch.Generator().manual_seed(0)
314
+ images = pipe(
315
+ "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
316
+ ).images
317
+ original_image_slice = images[0, -3:, -3:, -1].flatten()
318
+
319
+ lora_model_id = "hf-internal-testing/sdxl-1.0-lora"
320
+ lora_filename = "sd_xl_offset_example-lora_1.0.safetensors"
321
+ pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
322
+ pipe.fuse_lora()
323
+
324
+ generator = torch.Generator().manual_seed(0)
325
+ _ = pipe(
326
+ "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
327
+ ).images
328
+
329
+ pipe.unfuse_lora()
330
+
331
+ # We need to unload the lora weights - in the old API unfuse led to unloading the adapter weights
332
+ pipe.unload_lora_weights()
333
+
334
+ generator = torch.Generator().manual_seed(0)
335
+ images = pipe(
336
+ "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
337
+ ).images
338
+ images_without_fusion_slice = images[0, -3:, -3:, -1].flatten()
339
+
340
+ max_diff = numpy_cosine_similarity_distance(images_without_fusion_slice, original_image_slice)
341
+ assert max_diff < 1e-3
342
+
343
+ release_memory(pipe)
344
+
345
+ def test_sdxl_1_0_lora_fusion_efficiency(self):
346
+ generator = torch.Generator().manual_seed(0)
347
+ lora_model_id = "hf-internal-testing/sdxl-1.0-lora"
348
+ lora_filename = "sd_xl_offset_example-lora_1.0.safetensors"
349
+
350
+ pipe = StableDiffusionXLPipeline.from_pretrained(
351
+ "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
352
+ )
353
+ pipe.load_lora_weights(lora_model_id, weight_name=lora_filename, torch_dtype=torch.float16)
354
+ pipe.enable_model_cpu_offload()
355
+
356
+ start_time = time.time()
357
+ for _ in range(3):
358
+ pipe(
359
+ "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
360
+ ).images
361
+ end_time = time.time()
362
+ elapsed_time_non_fusion = end_time - start_time
363
+
364
+ del pipe
365
+
366
+ pipe = StableDiffusionXLPipeline.from_pretrained(
367
+ "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
368
+ )
369
+ pipe.load_lora_weights(lora_model_id, weight_name=lora_filename, torch_dtype=torch.float16)
370
+ pipe.fuse_lora()
371
+
372
+ # We need to unload the lora weights since in the previous API `fuse_lora` led to lora weights being
373
+ # silently deleted - otherwise this will CPU OOM
374
+ pipe.unload_lora_weights()
375
+ pipe.enable_model_cpu_offload()
376
+
377
+ generator = torch.Generator().manual_seed(0)
378
+ start_time = time.time()
379
+ for _ in range(3):
380
+ pipe(
381
+ "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
382
+ ).images
383
+ end_time = time.time()
384
+ elapsed_time_fusion = end_time - start_time
385
+
386
+ self.assertTrue(elapsed_time_fusion < elapsed_time_non_fusion)
387
+
388
+ release_memory(pipe)
389
+
390
+ def test_sdxl_1_0_last_ben(self):
391
+ generator = torch.Generator().manual_seed(0)
392
+
393
+ pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
394
+ pipe.enable_model_cpu_offload()
395
+ lora_model_id = "TheLastBen/Papercut_SDXL"
396
+ lora_filename = "papercut.safetensors"
397
+ pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
398
+
399
+ images = pipe("papercut.safetensors", output_type="np", generator=generator, num_inference_steps=2).images
400
+
401
+ images = images[0, -3:, -3:, -1].flatten()
402
+ expected = np.array([0.5244, 0.4347, 0.4312, 0.4246, 0.4398, 0.4409, 0.4884, 0.4938, 0.4094])
403
+
404
+ max_diff = numpy_cosine_similarity_distance(expected, images)
405
+ assert max_diff < 1e-3
406
+
407
+ pipe.unload_lora_weights()
408
+ release_memory(pipe)
409
+
410
+ def test_sdxl_1_0_fuse_unfuse_all(self):
411
+ pipe = StableDiffusionXLPipeline.from_pretrained(
412
+ "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
413
+ )
414
+ text_encoder_1_sd = copy.deepcopy(pipe.text_encoder.state_dict())
415
+ text_encoder_2_sd = copy.deepcopy(pipe.text_encoder_2.state_dict())
416
+ unet_sd = copy.deepcopy(pipe.unet.state_dict())
417
+
418
+ pipe.load_lora_weights(
419
+ "davizca87/sun-flower", weight_name="snfw3rXL-000004.safetensors", torch_dtype=torch.float16
420
+ )
421
+
422
+ fused_te_state_dict = pipe.text_encoder.state_dict()
423
+ fused_te_2_state_dict = pipe.text_encoder_2.state_dict()
424
+ unet_state_dict = pipe.unet.state_dict()
425
+
426
+ peft_ge_070 = version.parse(importlib.metadata.version("peft")) >= version.parse("0.7.0")
427
+
428
+ def remap_key(key, sd):
429
+ # some keys have moved around for PEFT >= 0.7.0, but they should still be loaded correctly
430
+ if (key in sd) or (not peft_ge_070):
431
+ return key
432
+
433
+ # instead of linear.weight, we now have linear.base_layer.weight, etc.
434
+ if key.endswith(".weight"):
435
+ key = key[:-7] + ".base_layer.weight"
436
+ elif key.endswith(".bias"):
437
+ key = key[:-5] + ".base_layer.bias"
438
+ return key
439
+
440
+ for key, value in text_encoder_1_sd.items():
441
+ key = remap_key(key, fused_te_state_dict)
442
+ self.assertTrue(torch.allclose(fused_te_state_dict[key], value))
443
+
444
+ for key, value in text_encoder_2_sd.items():
445
+ key = remap_key(key, fused_te_2_state_dict)
446
+ self.assertTrue(torch.allclose(fused_te_2_state_dict[key], value))
447
+
448
+ for key, value in unet_state_dict.items():
449
+ self.assertTrue(torch.allclose(unet_state_dict[key], value))
450
+
451
+ pipe.fuse_lora()
452
+ pipe.unload_lora_weights()
453
+
454
+ assert not state_dicts_almost_equal(text_encoder_1_sd, pipe.text_encoder.state_dict())
455
+ assert not state_dicts_almost_equal(text_encoder_2_sd, pipe.text_encoder_2.state_dict())
456
+ assert not state_dicts_almost_equal(unet_sd, pipe.unet.state_dict())
457
+
458
+ release_memory(pipe)
459
+ del unet_sd, text_encoder_1_sd, text_encoder_2_sd
460
+
461
+ def test_sdxl_1_0_lora_with_sequential_cpu_offloading(self):
462
+ generator = torch.Generator().manual_seed(0)
463
+
464
+ pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
465
+ pipe.enable_sequential_cpu_offload()
466
+ lora_model_id = "hf-internal-testing/sdxl-1.0-lora"
467
+ lora_filename = "sd_xl_offset_example-lora_1.0.safetensors"
468
+
469
+ pipe.load_lora_weights(lora_model_id, weight_name=lora_filename)
470
+
471
+ images = pipe(
472
+ "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
473
+ ).images
474
+
475
+ images = images[0, -3:, -3:, -1].flatten()
476
+ expected = np.array([0.4468, 0.4087, 0.4134, 0.366, 0.3202, 0.3505, 0.3786, 0.387, 0.3535])
477
+
478
+ max_diff = numpy_cosine_similarity_distance(expected, images)
479
+ assert max_diff < 1e-3
480
+
481
+ pipe.unload_lora_weights()
482
+ release_memory(pipe)
483
+
484
+ def test_controlnet_canny_lora(self):
485
+ controlnet = ControlNetModel.from_pretrained("diffusers/controlnet-canny-sdxl-1.0")
486
+
487
+ pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
488
+ "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet
489
+ )
490
+ pipe.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors")
491
+ pipe.enable_sequential_cpu_offload()
492
+
493
+ generator = torch.Generator(device="cpu").manual_seed(0)
494
+ prompt = "corgi"
495
+ image = load_image(
496
+ "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
497
+ )
498
+ images = pipe(prompt, image=image, generator=generator, output_type="np", num_inference_steps=3).images
499
+
500
+ assert images[0].shape == (768, 512, 3)
501
+
502
+ original_image = images[0, -3:, -3:, -1].flatten()
503
+ expected_image = np.array([0.4574, 0.4487, 0.4435, 0.5163, 0.4396, 0.4411, 0.518, 0.4465, 0.4333])
504
+
505
+ max_diff = numpy_cosine_similarity_distance(expected_image, original_image)
506
+ assert max_diff < 1e-4
507
+
508
+ pipe.unload_lora_weights()
509
+ release_memory(pipe)
510
+
511
+ def test_sdxl_t2i_adapter_canny_lora(self):
512
+ adapter = T2IAdapter.from_pretrained("TencentARC/t2i-adapter-lineart-sdxl-1.0", torch_dtype=torch.float16).to(
513
+ "cpu"
514
+ )
515
+ pipe = StableDiffusionXLAdapterPipeline.from_pretrained(
516
+ "stabilityai/stable-diffusion-xl-base-1.0",
517
+ adapter=adapter,
518
+ torch_dtype=torch.float16,
519
+ variant="fp16",
520
+ )
521
+ pipe.load_lora_weights("CiroN2022/toy-face", weight_name="toy_face_sdxl.safetensors")
522
+ pipe.enable_model_cpu_offload()
523
+ pipe.set_progress_bar_config(disable=None)
524
+
525
+ generator = torch.Generator(device="cpu").manual_seed(0)
526
+ prompt = "toy"
527
+ image = load_image(
528
+ "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/toy_canny.png"
529
+ )
530
+
531
+ images = pipe(prompt, image=image, generator=generator, output_type="np", num_inference_steps=3).images
532
+
533
+ assert images[0].shape == (768, 512, 3)
534
+
535
+ image_slice = images[0, -3:, -3:, -1].flatten()
536
+ expected_slice = np.array([0.4284, 0.4337, 0.4319, 0.4255, 0.4329, 0.4280, 0.4338, 0.4420, 0.4226])
537
+ assert numpy_cosine_similarity_distance(image_slice, expected_slice) < 1e-4
538
+
539
+ @nightly
540
+ def test_sequential_fuse_unfuse(self):
541
+ pipe = StableDiffusionXLPipeline.from_pretrained(
542
+ "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
543
+ )
544
+
545
+ # 1. round
546
+ pipe.load_lora_weights("Pclanglais/TintinIA", torch_dtype=torch.float16)
547
+ pipe.to(torch_device)
548
+ pipe.fuse_lora()
549
+
550
+ generator = torch.Generator().manual_seed(0)
551
+ images = pipe(
552
+ "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
553
+ ).images
554
+ image_slice = images[0, -3:, -3:, -1].flatten()
555
+
556
+ pipe.unfuse_lora()
557
+
558
+ # 2. round
559
+ pipe.load_lora_weights("ProomptEngineer/pe-balloon-diffusion-style", torch_dtype=torch.float16)
560
+ pipe.fuse_lora()
561
+ pipe.unfuse_lora()
562
+
563
+ # 3. round
564
+ pipe.load_lora_weights("ostris/crayon_style_lora_sdxl", torch_dtype=torch.float16)
565
+ pipe.fuse_lora()
566
+ pipe.unfuse_lora()
567
+
568
+ # 4. back to 1st round
569
+ pipe.load_lora_weights("Pclanglais/TintinIA", torch_dtype=torch.float16)
570
+ pipe.fuse_lora()
571
+
572
+ generator = torch.Generator().manual_seed(0)
573
+ images_2 = pipe(
574
+ "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2
575
+ ).images
576
+ image_slice_2 = images_2[0, -3:, -3:, -1].flatten()
577
+
578
+ max_diff = numpy_cosine_similarity_distance(image_slice, image_slice_2)
579
+ assert max_diff < 1e-3
580
+ pipe.unload_lora_weights()
581
+ release_memory(pipe)
582
+
583
+ @nightly
584
+ def test_integration_logits_multi_adapter(self):
585
+ path = "stabilityai/stable-diffusion-xl-base-1.0"
586
+ lora_id = "CiroN2022/toy-face"
587
+
588
+ pipe = StableDiffusionXLPipeline.from_pretrained(path, torch_dtype=torch.float16)
589
+ pipe.load_lora_weights(lora_id, weight_name="toy_face_sdxl.safetensors", adapter_name="toy")
590
+ pipe = pipe.to(torch_device)
591
+
592
+ self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet")
593
+
594
+ prompt = "toy_face of a hacker with a hoodie"
595
+
596
+ lora_scale = 0.9
597
+
598
+ images = pipe(
599
+ prompt=prompt,
600
+ num_inference_steps=30,
601
+ generator=torch.manual_seed(0),
602
+ cross_attention_kwargs={"scale": lora_scale},
603
+ output_type="np",
604
+ ).images
605
+ expected_slice_scale = np.array([0.538, 0.539, 0.540, 0.540, 0.542, 0.539, 0.538, 0.541, 0.539])
606
+
607
+ predicted_slice = images[0, -3:, -3:, -1].flatten()
608
+ max_diff = numpy_cosine_similarity_distance(expected_slice_scale, predicted_slice)
609
+ assert max_diff < 1e-3
610
+
611
+ pipe.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
612
+ pipe.set_adapters("pixel")
613
+
614
+ prompt = "pixel art, a hacker with a hoodie, simple, flat colors"
615
+ images = pipe(
616
+ prompt,
617
+ num_inference_steps=30,
618
+ guidance_scale=7.5,
619
+ cross_attention_kwargs={"scale": lora_scale},
620
+ generator=torch.manual_seed(0),
621
+ output_type="np",
622
+ ).images
623
+
624
+ predicted_slice = images[0, -3:, -3:, -1].flatten()
625
+ expected_slice_scale = np.array(
626
+ [0.61973065, 0.62018543, 0.62181497, 0.61933696, 0.6208608, 0.620576, 0.6200281, 0.62258327, 0.6259889]
627
+ )
628
+ max_diff = numpy_cosine_similarity_distance(expected_slice_scale, predicted_slice)
629
+ assert max_diff < 1e-3
630
+
631
+ # multi-adapter inference
632
+ pipe.set_adapters(["pixel", "toy"], adapter_weights=[0.5, 1.0])
633
+ images = pipe(
634
+ prompt,
635
+ num_inference_steps=30,
636
+ guidance_scale=7.5,
637
+ cross_attention_kwargs={"scale": 1.0},
638
+ generator=torch.manual_seed(0),
639
+ output_type="np",
640
+ ).images
641
+ predicted_slice = images[0, -3:, -3:, -1].flatten()
642
+ expected_slice_scale = np.array([0.5888, 0.5897, 0.5946, 0.5888, 0.5935, 0.5946, 0.5857, 0.5891, 0.5909])
643
+ max_diff = numpy_cosine_similarity_distance(expected_slice_scale, predicted_slice)
644
+ assert max_diff < 1e-3
645
+
646
+ # Lora disabled
647
+ pipe.disable_lora()
648
+ images = pipe(
649
+ prompt,
650
+ num_inference_steps=30,
651
+ guidance_scale=7.5,
652
+ cross_attention_kwargs={"scale": lora_scale},
653
+ generator=torch.manual_seed(0),
654
+ output_type="np",
655
+ ).images
656
+ predicted_slice = images[0, -3:, -3:, -1].flatten()
657
+ expected_slice_scale = np.array([0.5456, 0.5466, 0.5487, 0.5458, 0.5469, 0.5454, 0.5446, 0.5479, 0.5487])
658
+ max_diff = numpy_cosine_similarity_distance(expected_slice_scale, predicted_slice)
659
+ assert max_diff < 1e-3
660
+
661
+ @nightly
662
+ def test_integration_logits_for_dora_lora(self):
663
+ pipeline = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
664
+
665
+ logger = logging.get_logger("diffusers.loaders.lora_pipeline")
666
+ logger.setLevel(30)
667
+ with CaptureLogger(logger) as cap_logger:
668
+ pipeline.load_lora_weights("hf-internal-testing/dora-trained-on-kohya")
669
+ pipeline.enable_model_cpu_offload()
670
+ images = pipeline(
671
+ "photo of ohwx dog",
672
+ num_inference_steps=10,
673
+ generator=torch.manual_seed(0),
674
+ output_type="np",
675
+ ).images
676
+ assert "It seems like you are using a DoRA checkpoint" in cap_logger.out
677
+
678
+ predicted_slice = images[0, -3:, -3:, -1].flatten()
679
+ expected_slice_scale = np.array([0.1817, 0.0697, 0.2346, 0.0900, 0.1261, 0.2279, 0.1767, 0.1991, 0.2886])
680
+ max_diff = numpy_cosine_similarity_distance(expected_slice_scale, predicted_slice)
681
+ assert max_diff < 1e-3
exp_code/1_benchmark/diffusers-WanS2V/tests/lora/test_lora_layers_wan.py ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2025 HuggingFace Inc.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import sys
16
+ import unittest
17
+
18
+ import torch
19
+ from transformers import AutoTokenizer, T5EncoderModel
20
+
21
+ from diffusers import (
22
+ AutoencoderKLWan,
23
+ FlowMatchEulerDiscreteScheduler,
24
+ WanPipeline,
25
+ WanTransformer3DModel,
26
+ )
27
+
28
+ from ..testing_utils import (
29
+ floats_tensor,
30
+ require_peft_backend,
31
+ skip_mps,
32
+ )
33
+
34
+
35
+ sys.path.append(".")
36
+
37
+ from .utils import PeftLoraLoaderMixinTests # noqa: E402
38
+
39
+
40
+ @require_peft_backend
41
+ @skip_mps
42
+ class WanLoRATests(unittest.TestCase, PeftLoraLoaderMixinTests):
43
+ pipeline_class = WanPipeline
44
+ scheduler_cls = FlowMatchEulerDiscreteScheduler
45
+ scheduler_classes = [FlowMatchEulerDiscreteScheduler]
46
+ scheduler_kwargs = {}
47
+
48
+ transformer_kwargs = {
49
+ "patch_size": (1, 2, 2),
50
+ "num_attention_heads": 2,
51
+ "attention_head_dim": 12,
52
+ "in_channels": 16,
53
+ "out_channels": 16,
54
+ "text_dim": 32,
55
+ "freq_dim": 256,
56
+ "ffn_dim": 32,
57
+ "num_layers": 2,
58
+ "cross_attn_norm": True,
59
+ "qk_norm": "rms_norm_across_heads",
60
+ "rope_max_seq_len": 32,
61
+ }
62
+ transformer_cls = WanTransformer3DModel
63
+ vae_kwargs = {
64
+ "base_dim": 3,
65
+ "z_dim": 16,
66
+ "dim_mult": [1, 1, 1, 1],
67
+ "num_res_blocks": 1,
68
+ "temperal_downsample": [False, True, True],
69
+ }
70
+ vae_cls = AutoencoderKLWan
71
+ has_two_text_encoders = True
72
+ tokenizer_cls, tokenizer_id = AutoTokenizer, "hf-internal-testing/tiny-random-t5"
73
+ text_encoder_cls, text_encoder_id = T5EncoderModel, "hf-internal-testing/tiny-random-t5"
74
+
75
+ text_encoder_target_modules = ["q", "k", "v", "o"]
76
+
77
+ @property
78
+ def output_shape(self):
79
+ return (1, 9, 32, 32, 3)
80
+
81
+ def get_dummy_inputs(self, with_generator=True):
82
+ batch_size = 1
83
+ sequence_length = 16
84
+ num_channels = 4
85
+ num_frames = 9
86
+ num_latent_frames = 3 # (num_frames - 1) // temporal_compression_ratio + 1
87
+ sizes = (4, 4)
88
+
89
+ generator = torch.manual_seed(0)
90
+ noise = floats_tensor((batch_size, num_latent_frames, num_channels) + sizes)
91
+ input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator)
92
+
93
+ pipeline_inputs = {
94
+ "prompt": "",
95
+ "num_frames": num_frames,
96
+ "num_inference_steps": 1,
97
+ "guidance_scale": 6.0,
98
+ "height": 32,
99
+ "width": 32,
100
+ "max_sequence_length": sequence_length,
101
+ "output_type": "np",
102
+ }
103
+ if with_generator:
104
+ pipeline_inputs.update({"generator": generator})
105
+
106
+ return noise, input_ids, pipeline_inputs
107
+
108
+ def test_simple_inference_with_text_lora_denoiser_fused_multi(self):
109
+ super().test_simple_inference_with_text_lora_denoiser_fused_multi(expected_atol=9e-3)
110
+
111
+ def test_simple_inference_with_text_denoiser_lora_unfused(self):
112
+ super().test_simple_inference_with_text_denoiser_lora_unfused(expected_atol=9e-3)
113
+
114
+ @unittest.skip("Not supported in Wan.")
115
+ def test_simple_inference_with_text_denoiser_block_scale(self):
116
+ pass
117
+
118
+ @unittest.skip("Not supported in Wan.")
119
+ def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self):
120
+ pass
121
+
122
+ @unittest.skip("Not supported in Wan.")
123
+ def test_modify_padding_mode(self):
124
+ pass
125
+
126
+ @unittest.skip("Text encoder LoRA is not supported in Wan.")
127
+ def test_simple_inference_with_partial_text_lora(self):
128
+ pass
129
+
130
+ @unittest.skip("Text encoder LoRA is not supported in Wan.")
131
+ def test_simple_inference_with_text_lora(self):
132
+ pass
133
+
134
+ @unittest.skip("Text encoder LoRA is not supported in Wan.")
135
+ def test_simple_inference_with_text_lora_and_scale(self):
136
+ pass
137
+
138
+ @unittest.skip("Text encoder LoRA is not supported in Wan.")
139
+ def test_simple_inference_with_text_lora_fused(self):
140
+ pass
141
+
142
+ @unittest.skip("Text encoder LoRA is not supported in Wan.")
143
+ def test_simple_inference_with_text_lora_save_load(self):
144
+ pass
exp_code/1_benchmark/diffusers-WanS2V/tests/lora/test_lora_layers_wanvace.py ADDED
@@ -0,0 +1,217 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2025 HuggingFace Inc.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import os
16
+ import sys
17
+ import tempfile
18
+ import unittest
19
+
20
+ import numpy as np
21
+ import safetensors.torch
22
+ import torch
23
+ from PIL import Image
24
+ from transformers import AutoTokenizer, T5EncoderModel
25
+
26
+ from diffusers import AutoencoderKLWan, FlowMatchEulerDiscreteScheduler, WanVACEPipeline, WanVACETransformer3DModel
27
+ from diffusers.utils.import_utils import is_peft_available
28
+
29
+ from ..testing_utils import (
30
+ floats_tensor,
31
+ is_flaky,
32
+ require_peft_backend,
33
+ require_peft_version_greater,
34
+ skip_mps,
35
+ torch_device,
36
+ )
37
+
38
+
39
+ if is_peft_available():
40
+ from peft.utils import get_peft_model_state_dict
41
+
42
+ sys.path.append(".")
43
+
44
+ from .utils import PeftLoraLoaderMixinTests # noqa: E402
45
+
46
+
47
+ @require_peft_backend
48
+ @skip_mps
49
+ @is_flaky(max_attempts=10, description="very flaky class")
50
+ class WanVACELoRATests(unittest.TestCase, PeftLoraLoaderMixinTests):
51
+ pipeline_class = WanVACEPipeline
52
+ scheduler_cls = FlowMatchEulerDiscreteScheduler
53
+ scheduler_classes = [FlowMatchEulerDiscreteScheduler]
54
+ scheduler_kwargs = {}
55
+
56
+ transformer_kwargs = {
57
+ "patch_size": (1, 2, 2),
58
+ "num_attention_heads": 2,
59
+ "attention_head_dim": 8,
60
+ "in_channels": 4,
61
+ "out_channels": 4,
62
+ "text_dim": 32,
63
+ "freq_dim": 16,
64
+ "ffn_dim": 16,
65
+ "num_layers": 2,
66
+ "cross_attn_norm": True,
67
+ "qk_norm": "rms_norm_across_heads",
68
+ "rope_max_seq_len": 16,
69
+ "vace_layers": [0],
70
+ "vace_in_channels": 72,
71
+ }
72
+ transformer_cls = WanVACETransformer3DModel
73
+ vae_kwargs = {
74
+ "base_dim": 3,
75
+ "z_dim": 4,
76
+ "dim_mult": [1, 1, 1, 1],
77
+ "latents_mean": torch.randn(4).numpy().tolist(),
78
+ "latents_std": torch.randn(4).numpy().tolist(),
79
+ "num_res_blocks": 1,
80
+ "temperal_downsample": [False, True, True],
81
+ }
82
+ vae_cls = AutoencoderKLWan
83
+ has_two_text_encoders = True
84
+ tokenizer_cls, tokenizer_id = AutoTokenizer, "hf-internal-testing/tiny-random-t5"
85
+ text_encoder_cls, text_encoder_id = T5EncoderModel, "hf-internal-testing/tiny-random-t5"
86
+
87
+ text_encoder_target_modules = ["q", "k", "v", "o"]
88
+
89
+ @property
90
+ def output_shape(self):
91
+ return (1, 9, 16, 16, 3)
92
+
93
+ def get_dummy_inputs(self, with_generator=True):
94
+ batch_size = 1
95
+ sequence_length = 16
96
+ num_channels = 4
97
+ num_frames = 9
98
+ num_latent_frames = 3 # (num_frames - 1) // temporal_compression_ratio + 1
99
+ sizes = (4, 4)
100
+ height, width = 16, 16
101
+
102
+ generator = torch.manual_seed(0)
103
+ noise = floats_tensor((batch_size, num_latent_frames, num_channels) + sizes)
104
+ input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator)
105
+ video = [Image.new("RGB", (height, width))] * num_frames
106
+ mask = [Image.new("L", (height, width), 0)] * num_frames
107
+
108
+ pipeline_inputs = {
109
+ "video": video,
110
+ "mask": mask,
111
+ "prompt": "",
112
+ "num_frames": num_frames,
113
+ "num_inference_steps": 1,
114
+ "guidance_scale": 6.0,
115
+ "height": height,
116
+ "width": height,
117
+ "max_sequence_length": sequence_length,
118
+ "output_type": "np",
119
+ }
120
+ if with_generator:
121
+ pipeline_inputs.update({"generator": generator})
122
+
123
+ return noise, input_ids, pipeline_inputs
124
+
125
+ def test_simple_inference_with_text_lora_denoiser_fused_multi(self):
126
+ super().test_simple_inference_with_text_lora_denoiser_fused_multi(expected_atol=9e-3)
127
+
128
+ def test_simple_inference_with_text_denoiser_lora_unfused(self):
129
+ super().test_simple_inference_with_text_denoiser_lora_unfused(expected_atol=9e-3)
130
+
131
+ @unittest.skip("Not supported in Wan VACE.")
132
+ def test_simple_inference_with_text_denoiser_block_scale(self):
133
+ pass
134
+
135
+ @unittest.skip("Not supported in Wan VACE.")
136
+ def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self):
137
+ pass
138
+
139
+ @unittest.skip("Not supported in Wan VACE.")
140
+ def test_modify_padding_mode(self):
141
+ pass
142
+
143
+ @unittest.skip("Text encoder LoRA is not supported in Wan VACE.")
144
+ def test_simple_inference_with_partial_text_lora(self):
145
+ pass
146
+
147
+ @unittest.skip("Text encoder LoRA is not supported in Wan VACE.")
148
+ def test_simple_inference_with_text_lora(self):
149
+ pass
150
+
151
+ @unittest.skip("Text encoder LoRA is not supported in Wan VACE.")
152
+ def test_simple_inference_with_text_lora_and_scale(self):
153
+ pass
154
+
155
+ @unittest.skip("Text encoder LoRA is not supported in Wan VACE.")
156
+ def test_simple_inference_with_text_lora_fused(self):
157
+ pass
158
+
159
+ @unittest.skip("Text encoder LoRA is not supported in Wan VACE.")
160
+ def test_simple_inference_with_text_lora_save_load(self):
161
+ pass
162
+
163
+ def test_layerwise_casting_inference_denoiser(self):
164
+ super().test_layerwise_casting_inference_denoiser()
165
+
166
+ @require_peft_version_greater("0.13.2")
167
+ def test_lora_exclude_modules_wanvace(self):
168
+ scheduler_cls = self.scheduler_classes[0]
169
+ exclude_module_name = "vace_blocks.0.proj_out"
170
+ components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
171
+ pipe = self.pipeline_class(**components).to(torch_device)
172
+ _, _, inputs = self.get_dummy_inputs(with_generator=False)
173
+
174
+ output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
175
+ self.assertTrue(output_no_lora.shape == self.output_shape)
176
+
177
+ # only supported for `denoiser` now
178
+ denoiser_lora_config.target_modules = ["proj_out"]
179
+ denoiser_lora_config.exclude_modules = [exclude_module_name]
180
+ pipe, _ = self.add_adapters_to_pipeline(
181
+ pipe, text_lora_config=text_lora_config, denoiser_lora_config=denoiser_lora_config
182
+ )
183
+ # The state dict shouldn't contain the modules to be excluded from LoRA.
184
+ state_dict_from_model = get_peft_model_state_dict(pipe.transformer, adapter_name="default")
185
+ self.assertTrue(not any(exclude_module_name in k for k in state_dict_from_model))
186
+ self.assertTrue(any("proj_out" in k for k in state_dict_from_model))
187
+ output_lora_exclude_modules = pipe(**inputs, generator=torch.manual_seed(0))[0]
188
+
189
+ with tempfile.TemporaryDirectory() as tmpdir:
190
+ modules_to_save = self._get_modules_to_save(pipe, has_denoiser=True)
191
+ lora_state_dicts = self._get_lora_state_dicts(modules_to_save)
192
+ self.pipeline_class.save_lora_weights(save_directory=tmpdir, **lora_state_dicts)
193
+ pipe.unload_lora_weights()
194
+
195
+ # Check in the loaded state dict.
196
+ loaded_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))
197
+ self.assertTrue(not any(exclude_module_name in k for k in loaded_state_dict))
198
+ self.assertTrue(any("proj_out" in k for k in loaded_state_dict))
199
+
200
+ # Check in the state dict obtained after loading LoRA.
201
+ pipe.load_lora_weights(tmpdir)
202
+ state_dict_from_model = get_peft_model_state_dict(pipe.transformer, adapter_name="default_0")
203
+ self.assertTrue(not any(exclude_module_name in k for k in state_dict_from_model))
204
+ self.assertTrue(any("proj_out" in k for k in state_dict_from_model))
205
+
206
+ output_lora_pretrained = pipe(**inputs, generator=torch.manual_seed(0))[0]
207
+ self.assertTrue(
208
+ not np.allclose(output_no_lora, output_lora_exclude_modules, atol=1e-3, rtol=1e-3),
209
+ "LoRA should change outputs.",
210
+ )
211
+ self.assertTrue(
212
+ np.allclose(output_lora_exclude_modules, output_lora_pretrained, atol=1e-3, rtol=1e-3),
213
+ "Lora outputs should match.",
214
+ )
215
+
216
+ def test_simple_inference_with_text_denoiser_lora_and_scale(self):
217
+ super().test_simple_inference_with_text_denoiser_lora_and_scale()
exp_code/1_benchmark/diffusers-WanS2V/tests/lora/utils.py ADDED
The diff for this file is too large to render. See raw diff
 
exp_code/1_benchmark/diffusers-WanS2V/tests/models/__init__.py ADDED
File without changes
exp_code/1_benchmark/diffusers-WanS2V/tests/models/autoencoders/__init__.py ADDED
File without changes
exp_code/1_benchmark/diffusers-WanS2V/tests/models/autoencoders/test_models_asymmetric_autoencoder_kl.py ADDED
@@ -0,0 +1,276 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2025 HuggingFace Inc.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import gc
17
+ import unittest
18
+
19
+ import torch
20
+ from parameterized import parameterized
21
+
22
+ from diffusers import AsymmetricAutoencoderKL
23
+ from diffusers.utils.import_utils import is_xformers_available
24
+
25
+ from ...testing_utils import (
26
+ Expectations,
27
+ backend_empty_cache,
28
+ enable_full_determinism,
29
+ floats_tensor,
30
+ load_hf_numpy,
31
+ require_torch_accelerator,
32
+ require_torch_gpu,
33
+ skip_mps,
34
+ slow,
35
+ torch_all_close,
36
+ torch_device,
37
+ )
38
+ from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin
39
+
40
+
41
+ enable_full_determinism()
42
+
43
+
44
+ class AutoencoderKLTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
45
+ model_class = AsymmetricAutoencoderKL
46
+ main_input_name = "sample"
47
+ base_precision = 1e-2
48
+
49
+ def get_asym_autoencoder_kl_config(self, block_out_channels=None, norm_num_groups=None):
50
+ block_out_channels = block_out_channels or [2, 4]
51
+ norm_num_groups = norm_num_groups or 2
52
+ init_dict = {
53
+ "in_channels": 3,
54
+ "out_channels": 3,
55
+ "down_block_types": ["DownEncoderBlock2D"] * len(block_out_channels),
56
+ "down_block_out_channels": block_out_channels,
57
+ "layers_per_down_block": 1,
58
+ "up_block_types": ["UpDecoderBlock2D"] * len(block_out_channels),
59
+ "up_block_out_channels": block_out_channels,
60
+ "layers_per_up_block": 1,
61
+ "act_fn": "silu",
62
+ "latent_channels": 4,
63
+ "norm_num_groups": norm_num_groups,
64
+ "sample_size": 32,
65
+ "scaling_factor": 0.18215,
66
+ }
67
+ return init_dict
68
+
69
+ @property
70
+ def dummy_input(self):
71
+ batch_size = 4
72
+ num_channels = 3
73
+ sizes = (32, 32)
74
+
75
+ image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
76
+ mask = torch.ones((batch_size, 1) + sizes).to(torch_device)
77
+
78
+ return {"sample": image, "mask": mask}
79
+
80
+ @property
81
+ def input_shape(self):
82
+ return (3, 32, 32)
83
+
84
+ @property
85
+ def output_shape(self):
86
+ return (3, 32, 32)
87
+
88
+ def prepare_init_args_and_inputs_for_common(self):
89
+ init_dict = self.get_asym_autoencoder_kl_config()
90
+ inputs_dict = self.dummy_input
91
+ return init_dict, inputs_dict
92
+
93
+ @unittest.skip("Unsupported test.")
94
+ def test_forward_with_norm_groups(self):
95
+ pass
96
+
97
+
98
+ @slow
99
+ class AsymmetricAutoencoderKLIntegrationTests(unittest.TestCase):
100
+ def get_file_format(self, seed, shape):
101
+ return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy"
102
+
103
+ def tearDown(self):
104
+ # clean up the VRAM after each test
105
+ super().tearDown()
106
+ gc.collect()
107
+ backend_empty_cache(torch_device)
108
+
109
+ def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False):
110
+ dtype = torch.float16 if fp16 else torch.float32
111
+ image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype)
112
+ return image
113
+
114
+ def get_sd_vae_model(self, model_id="cross-attention/asymmetric-autoencoder-kl-x-1-5", fp16=False):
115
+ revision = "main"
116
+ torch_dtype = torch.float32
117
+
118
+ model = AsymmetricAutoencoderKL.from_pretrained(
119
+ model_id,
120
+ torch_dtype=torch_dtype,
121
+ revision=revision,
122
+ )
123
+ model.to(torch_device).eval()
124
+
125
+ return model
126
+
127
+ def get_generator(self, seed=0):
128
+ generator_device = "cpu" if not torch_device.startswith(torch_device) else torch_device
129
+ if torch_device != "mps":
130
+ return torch.Generator(device=generator_device).manual_seed(seed)
131
+ return torch.manual_seed(seed)
132
+
133
+ @parameterized.expand(
134
+ [
135
+ # fmt: off
136
+ [
137
+ 33,
138
+ Expectations(
139
+ {
140
+ ("xpu", 3): torch.tensor([-0.0343, 0.2873, 0.1680, -0.0140, -0.3459, 0.3522, -0.1336, 0.1075]),
141
+ ("cuda", 7): torch.tensor([-0.0336, 0.3011, 0.1764, 0.0087, -0.3401, 0.3645, -0.1247, 0.1205]),
142
+ ("mps", None): torch.tensor(
143
+ [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824]
144
+ ),
145
+ }
146
+ ),
147
+ ],
148
+ [
149
+ 47,
150
+ Expectations(
151
+ {
152
+ ("xpu", 3): torch.tensor([0.4400, 0.0543, 0.2873, 0.2946, 0.0553, 0.0839, -0.1585, 0.2529]),
153
+ ("cuda", 7): torch.tensor([0.4400, 0.0543, 0.2873, 0.2946, 0.0553, 0.0839, -0.1585, 0.2529]),
154
+ ("mps", None): torch.tensor(
155
+ [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089]
156
+ ),
157
+ }
158
+ ),
159
+ ],
160
+ # fmt: on
161
+ ]
162
+ )
163
+ def test_stable_diffusion(self, seed, expected_slices):
164
+ model = self.get_sd_vae_model()
165
+ image = self.get_sd_image(seed)
166
+ generator = self.get_generator(seed)
167
+
168
+ with torch.no_grad():
169
+ sample = model(image, generator=generator, sample_posterior=True).sample
170
+
171
+ assert sample.shape == image.shape
172
+
173
+ output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
174
+
175
+ expected_slice = expected_slices.get_expectation()
176
+ assert torch_all_close(output_slice, expected_slice, atol=5e-3)
177
+
178
+ @parameterized.expand(
179
+ [
180
+ # fmt: off
181
+ [
182
+ 33,
183
+ [-0.0340, 0.2870, 0.1698, -0.0105, -0.3448, 0.3529, -0.1321, 0.1097],
184
+ [-0.0344, 0.2912, 0.1687, -0.0137, -0.3462, 0.3552, -0.1337, 0.1078],
185
+ ],
186
+ [
187
+ 47,
188
+ [0.4397, 0.0550, 0.2873, 0.2946, 0.0567, 0.0855, -0.1580, 0.2531],
189
+ [0.4397, 0.0550, 0.2873, 0.2946, 0.0567, 0.0855, -0.1580, 0.2531],
190
+ ],
191
+ # fmt: on
192
+ ]
193
+ )
194
+ def test_stable_diffusion_mode(self, seed, expected_slice, expected_slice_mps):
195
+ model = self.get_sd_vae_model()
196
+ image = self.get_sd_image(seed)
197
+
198
+ with torch.no_grad():
199
+ sample = model(image).sample
200
+
201
+ assert sample.shape == image.shape
202
+
203
+ output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
204
+ expected_output_slice = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice)
205
+
206
+ assert torch_all_close(output_slice, expected_output_slice, atol=3e-3)
207
+
208
+ @parameterized.expand(
209
+ [
210
+ # fmt: off
211
+ [13, [-0.0521, -0.2939, 0.1540, -0.1855, -0.5936, -0.3138, -0.4579, -0.2275]],
212
+ [37, [-0.1820, -0.4345, -0.0455, -0.2923, -0.8035, -0.5089, -0.4795, -0.3106]],
213
+ # fmt: on
214
+ ]
215
+ )
216
+ @require_torch_accelerator
217
+ @skip_mps
218
+ def test_stable_diffusion_decode(self, seed, expected_slice):
219
+ model = self.get_sd_vae_model()
220
+ encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64))
221
+
222
+ with torch.no_grad():
223
+ sample = model.decode(encoding).sample
224
+
225
+ assert list(sample.shape) == [3, 3, 512, 512]
226
+
227
+ output_slice = sample[-1, -2:, :2, -2:].flatten().cpu()
228
+ expected_output_slice = torch.tensor(expected_slice)
229
+
230
+ assert torch_all_close(output_slice, expected_output_slice, atol=2e-3)
231
+
232
+ @parameterized.expand([(13,), (16,), (37,)])
233
+ @require_torch_gpu
234
+ @unittest.skipIf(
235
+ not is_xformers_available(),
236
+ reason="xformers is not required when using PyTorch 2.0.",
237
+ )
238
+ def test_stable_diffusion_decode_xformers_vs_2_0(self, seed):
239
+ model = self.get_sd_vae_model()
240
+ encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64))
241
+
242
+ with torch.no_grad():
243
+ sample = model.decode(encoding).sample
244
+
245
+ model.enable_xformers_memory_efficient_attention()
246
+ with torch.no_grad():
247
+ sample_2 = model.decode(encoding).sample
248
+
249
+ assert list(sample.shape) == [3, 3, 512, 512]
250
+
251
+ assert torch_all_close(sample, sample_2, atol=5e-2)
252
+
253
+ @parameterized.expand(
254
+ [
255
+ # fmt: off
256
+ [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]],
257
+ [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]],
258
+ # fmt: on
259
+ ]
260
+ )
261
+ def test_stable_diffusion_encode_sample(self, seed, expected_slice):
262
+ model = self.get_sd_vae_model()
263
+ image = self.get_sd_image(seed)
264
+ generator = self.get_generator(seed)
265
+
266
+ with torch.no_grad():
267
+ dist = model.encode(image).latent_dist
268
+ sample = dist.sample(generator=generator)
269
+
270
+ assert list(sample.shape) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]]
271
+
272
+ output_slice = sample[0, -1, -3:, -3:].flatten().cpu()
273
+ expected_output_slice = torch.tensor(expected_slice)
274
+
275
+ tolerance = 3e-3 if torch_device != "mps" else 1e-2
276
+ assert torch_all_close(output_slice, expected_output_slice, atol=tolerance)
exp_code/1_benchmark/diffusers-WanS2V/tests/models/autoencoders/test_models_autoencoder_cosmos.py ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2025 HuggingFace Inc.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import unittest
16
+
17
+ from diffusers import AutoencoderKLCosmos
18
+
19
+ from ...testing_utils import enable_full_determinism, floats_tensor, torch_device
20
+ from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin
21
+
22
+
23
+ enable_full_determinism()
24
+
25
+
26
+ class AutoencoderKLCosmosTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
27
+ model_class = AutoencoderKLCosmos
28
+ main_input_name = "sample"
29
+ base_precision = 1e-2
30
+
31
+ def get_autoencoder_kl_cosmos_config(self):
32
+ return {
33
+ "in_channels": 3,
34
+ "out_channels": 3,
35
+ "latent_channels": 4,
36
+ "encoder_block_out_channels": (8, 8, 8, 8),
37
+ "decode_block_out_channels": (8, 8, 8, 8),
38
+ "attention_resolutions": (8,),
39
+ "resolution": 64,
40
+ "num_layers": 2,
41
+ "patch_size": 4,
42
+ "patch_type": "haar",
43
+ "scaling_factor": 1.0,
44
+ "spatial_compression_ratio": 4,
45
+ "temporal_compression_ratio": 4,
46
+ }
47
+
48
+ @property
49
+ def dummy_input(self):
50
+ batch_size = 2
51
+ num_frames = 9
52
+ num_channels = 3
53
+ height = 32
54
+ width = 32
55
+
56
+ image = floats_tensor((batch_size, num_channels, num_frames, height, width)).to(torch_device)
57
+
58
+ return {"sample": image}
59
+
60
+ @property
61
+ def input_shape(self):
62
+ return (3, 9, 32, 32)
63
+
64
+ @property
65
+ def output_shape(self):
66
+ return (3, 9, 32, 32)
67
+
68
+ def prepare_init_args_and_inputs_for_common(self):
69
+ init_dict = self.get_autoencoder_kl_cosmos_config()
70
+ inputs_dict = self.dummy_input
71
+ return init_dict, inputs_dict
72
+
73
+ def test_gradient_checkpointing_is_applied(self):
74
+ expected_set = {
75
+ "CosmosEncoder3d",
76
+ "CosmosDecoder3d",
77
+ }
78
+ super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
79
+
80
+ @unittest.skip("Not sure why this test fails. Investigate later.")
81
+ def test_effective_gradient_checkpointing(self):
82
+ pass
83
+
84
+ @unittest.skip("Unsupported test.")
85
+ def test_forward_with_norm_groups(self):
86
+ pass
exp_code/1_benchmark/diffusers-WanS2V/tests/models/autoencoders/test_models_autoencoder_dc.py ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2025 HuggingFace Inc.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import unittest
17
+
18
+ from diffusers import AutoencoderDC
19
+
20
+ from ...testing_utils import (
21
+ enable_full_determinism,
22
+ floats_tensor,
23
+ torch_device,
24
+ )
25
+ from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin
26
+
27
+
28
+ enable_full_determinism()
29
+
30
+
31
+ class AutoencoderDCTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
32
+ model_class = AutoencoderDC
33
+ main_input_name = "sample"
34
+ base_precision = 1e-2
35
+
36
+ def get_autoencoder_dc_config(self):
37
+ return {
38
+ "in_channels": 3,
39
+ "latent_channels": 4,
40
+ "attention_head_dim": 2,
41
+ "encoder_block_types": (
42
+ "ResBlock",
43
+ "EfficientViTBlock",
44
+ ),
45
+ "decoder_block_types": (
46
+ "ResBlock",
47
+ "EfficientViTBlock",
48
+ ),
49
+ "encoder_block_out_channels": (8, 8),
50
+ "decoder_block_out_channels": (8, 8),
51
+ "encoder_qkv_multiscales": ((), (5,)),
52
+ "decoder_qkv_multiscales": ((), (5,)),
53
+ "encoder_layers_per_block": (1, 1),
54
+ "decoder_layers_per_block": [1, 1],
55
+ "downsample_block_type": "conv",
56
+ "upsample_block_type": "interpolate",
57
+ "decoder_norm_types": "rms_norm",
58
+ "decoder_act_fns": "silu",
59
+ "scaling_factor": 0.41407,
60
+ }
61
+
62
+ @property
63
+ def dummy_input(self):
64
+ batch_size = 4
65
+ num_channels = 3
66
+ sizes = (32, 32)
67
+
68
+ image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
69
+
70
+ return {"sample": image}
71
+
72
+ @property
73
+ def input_shape(self):
74
+ return (3, 32, 32)
75
+
76
+ @property
77
+ def output_shape(self):
78
+ return (3, 32, 32)
79
+
80
+ def prepare_init_args_and_inputs_for_common(self):
81
+ init_dict = self.get_autoencoder_dc_config()
82
+ inputs_dict = self.dummy_input
83
+ return init_dict, inputs_dict
84
+
85
+ @unittest.skip("AutoencoderDC does not support `norm_num_groups` because it does not use GroupNorm.")
86
+ def test_forward_with_norm_groups(self):
87
+ pass
exp_code/1_benchmark/diffusers-WanS2V/tests/models/autoencoders/test_models_autoencoder_hunyuan_video.py ADDED
@@ -0,0 +1,210 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2025 HuggingFace Inc.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import unittest
17
+
18
+ import torch
19
+
20
+ from diffusers import AutoencoderKLHunyuanVideo
21
+ from diffusers.models.autoencoders.autoencoder_kl_hunyuan_video import prepare_causal_attention_mask
22
+
23
+ from ...testing_utils import (
24
+ enable_full_determinism,
25
+ floats_tensor,
26
+ torch_device,
27
+ )
28
+ from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin
29
+
30
+
31
+ enable_full_determinism()
32
+
33
+
34
+ class AutoencoderKLHunyuanVideoTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
35
+ model_class = AutoencoderKLHunyuanVideo
36
+ main_input_name = "sample"
37
+ base_precision = 1e-2
38
+
39
+ def get_autoencoder_kl_hunyuan_video_config(self):
40
+ return {
41
+ "in_channels": 3,
42
+ "out_channels": 3,
43
+ "latent_channels": 4,
44
+ "down_block_types": (
45
+ "HunyuanVideoDownBlock3D",
46
+ "HunyuanVideoDownBlock3D",
47
+ "HunyuanVideoDownBlock3D",
48
+ "HunyuanVideoDownBlock3D",
49
+ ),
50
+ "up_block_types": (
51
+ "HunyuanVideoUpBlock3D",
52
+ "HunyuanVideoUpBlock3D",
53
+ "HunyuanVideoUpBlock3D",
54
+ "HunyuanVideoUpBlock3D",
55
+ ),
56
+ "block_out_channels": (8, 8, 8, 8),
57
+ "layers_per_block": 1,
58
+ "act_fn": "silu",
59
+ "norm_num_groups": 4,
60
+ "scaling_factor": 0.476986,
61
+ "spatial_compression_ratio": 8,
62
+ "temporal_compression_ratio": 4,
63
+ "mid_block_add_attention": True,
64
+ }
65
+
66
+ @property
67
+ def dummy_input(self):
68
+ batch_size = 2
69
+ num_frames = 9
70
+ num_channels = 3
71
+ sizes = (16, 16)
72
+
73
+ image = floats_tensor((batch_size, num_channels, num_frames) + sizes).to(torch_device)
74
+
75
+ return {"sample": image}
76
+
77
+ @property
78
+ def input_shape(self):
79
+ return (3, 9, 16, 16)
80
+
81
+ @property
82
+ def output_shape(self):
83
+ return (3, 9, 16, 16)
84
+
85
+ def prepare_init_args_and_inputs_for_common(self):
86
+ init_dict = self.get_autoencoder_kl_hunyuan_video_config()
87
+ inputs_dict = self.dummy_input
88
+ return init_dict, inputs_dict
89
+
90
+ def test_enable_disable_tiling(self):
91
+ init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
92
+
93
+ torch.manual_seed(0)
94
+ model = self.model_class(**init_dict).to(torch_device)
95
+
96
+ inputs_dict.update({"return_dict": False})
97
+
98
+ torch.manual_seed(0)
99
+ output_without_tiling = model(**inputs_dict, generator=torch.manual_seed(0))[0]
100
+
101
+ torch.manual_seed(0)
102
+ model.enable_tiling()
103
+ output_with_tiling = model(**inputs_dict, generator=torch.manual_seed(0))[0]
104
+
105
+ self.assertLess(
106
+ (output_without_tiling.detach().cpu().numpy() - output_with_tiling.detach().cpu().numpy()).max(),
107
+ 0.5,
108
+ "VAE tiling should not affect the inference results",
109
+ )
110
+
111
+ torch.manual_seed(0)
112
+ model.disable_tiling()
113
+ output_without_tiling_2 = model(**inputs_dict, generator=torch.manual_seed(0))[0]
114
+
115
+ self.assertEqual(
116
+ output_without_tiling.detach().cpu().numpy().all(),
117
+ output_without_tiling_2.detach().cpu().numpy().all(),
118
+ "Without tiling outputs should match with the outputs when tiling is manually disabled.",
119
+ )
120
+
121
+ def test_enable_disable_slicing(self):
122
+ init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
123
+
124
+ torch.manual_seed(0)
125
+ model = self.model_class(**init_dict).to(torch_device)
126
+
127
+ inputs_dict.update({"return_dict": False})
128
+
129
+ torch.manual_seed(0)
130
+ output_without_slicing = model(**inputs_dict, generator=torch.manual_seed(0))[0]
131
+
132
+ torch.manual_seed(0)
133
+ model.enable_slicing()
134
+ output_with_slicing = model(**inputs_dict, generator=torch.manual_seed(0))[0]
135
+
136
+ self.assertLess(
137
+ (output_without_slicing.detach().cpu().numpy() - output_with_slicing.detach().cpu().numpy()).max(),
138
+ 0.5,
139
+ "VAE slicing should not affect the inference results",
140
+ )
141
+
142
+ torch.manual_seed(0)
143
+ model.disable_slicing()
144
+ output_without_slicing_2 = model(**inputs_dict, generator=torch.manual_seed(0))[0]
145
+
146
+ self.assertEqual(
147
+ output_without_slicing.detach().cpu().numpy().all(),
148
+ output_without_slicing_2.detach().cpu().numpy().all(),
149
+ "Without slicing outputs should match with the outputs when slicing is manually disabled.",
150
+ )
151
+
152
+ def test_gradient_checkpointing_is_applied(self):
153
+ expected_set = {
154
+ "HunyuanVideoDecoder3D",
155
+ "HunyuanVideoDownBlock3D",
156
+ "HunyuanVideoEncoder3D",
157
+ "HunyuanVideoMidBlock3D",
158
+ "HunyuanVideoUpBlock3D",
159
+ }
160
+ super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
161
+
162
+ # We need to overwrite this test because the base test does not account length of down_block_types
163
+ def test_forward_with_norm_groups(self):
164
+ init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
165
+
166
+ init_dict["norm_num_groups"] = 16
167
+ init_dict["block_out_channels"] = (16, 16, 16, 16)
168
+
169
+ model = self.model_class(**init_dict)
170
+ model.to(torch_device)
171
+ model.eval()
172
+
173
+ with torch.no_grad():
174
+ output = model(**inputs_dict)
175
+
176
+ if isinstance(output, dict):
177
+ output = output.to_tuple()[0]
178
+
179
+ self.assertIsNotNone(output)
180
+ expected_shape = inputs_dict["sample"].shape
181
+ self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
182
+
183
+ @unittest.skip("Unsupported test.")
184
+ def test_outputs_equivalence(self):
185
+ pass
186
+
187
+ def test_prepare_causal_attention_mask(self):
188
+ def prepare_causal_attention_mask_orig(
189
+ num_frames: int, height_width: int, dtype: torch.dtype, device: torch.device, batch_size: int = None
190
+ ) -> torch.Tensor:
191
+ seq_len = num_frames * height_width
192
+ mask = torch.full((seq_len, seq_len), float("-inf"), dtype=dtype, device=device)
193
+ for i in range(seq_len):
194
+ i_frame = i // height_width
195
+ mask[i, : (i_frame + 1) * height_width] = 0
196
+ if batch_size is not None:
197
+ mask = mask.unsqueeze(0).expand(batch_size, -1, -1)
198
+ return mask
199
+
200
+ # test with some odd shapes
201
+ original_mask = prepare_causal_attention_mask_orig(
202
+ num_frames=31, height_width=111, dtype=torch.float32, device=torch_device
203
+ )
204
+ new_mask = prepare_causal_attention_mask(
205
+ num_frames=31, height_width=111, dtype=torch.float32, device=torch_device
206
+ )
207
+ self.assertTrue(
208
+ torch.allclose(original_mask, new_mask),
209
+ "Causal attention mask should be the same",
210
+ )
exp_code/1_benchmark/diffusers-WanS2V/tests/models/autoencoders/test_models_autoencoder_kl.py ADDED
@@ -0,0 +1,468 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2025 HuggingFace Inc.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import gc
17
+ import unittest
18
+
19
+ import torch
20
+ from parameterized import parameterized
21
+
22
+ from diffusers import AutoencoderKL
23
+ from diffusers.utils.import_utils import is_xformers_available
24
+
25
+ from ...testing_utils import (
26
+ backend_empty_cache,
27
+ enable_full_determinism,
28
+ floats_tensor,
29
+ load_hf_numpy,
30
+ require_torch_accelerator,
31
+ require_torch_accelerator_with_fp16,
32
+ require_torch_gpu,
33
+ skip_mps,
34
+ slow,
35
+ torch_all_close,
36
+ torch_device,
37
+ )
38
+ from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin
39
+
40
+
41
+ enable_full_determinism()
42
+
43
+
44
+ class AutoencoderKLTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
45
+ model_class = AutoencoderKL
46
+ main_input_name = "sample"
47
+ base_precision = 1e-2
48
+
49
+ def get_autoencoder_kl_config(self, block_out_channels=None, norm_num_groups=None):
50
+ block_out_channels = block_out_channels or [2, 4]
51
+ norm_num_groups = norm_num_groups or 2
52
+ init_dict = {
53
+ "block_out_channels": block_out_channels,
54
+ "in_channels": 3,
55
+ "out_channels": 3,
56
+ "down_block_types": ["DownEncoderBlock2D"] * len(block_out_channels),
57
+ "up_block_types": ["UpDecoderBlock2D"] * len(block_out_channels),
58
+ "latent_channels": 4,
59
+ "norm_num_groups": norm_num_groups,
60
+ }
61
+ return init_dict
62
+
63
+ @property
64
+ def dummy_input(self):
65
+ batch_size = 4
66
+ num_channels = 3
67
+ sizes = (32, 32)
68
+
69
+ image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
70
+
71
+ return {"sample": image}
72
+
73
+ @property
74
+ def input_shape(self):
75
+ return (3, 32, 32)
76
+
77
+ @property
78
+ def output_shape(self):
79
+ return (3, 32, 32)
80
+
81
+ def prepare_init_args_and_inputs_for_common(self):
82
+ init_dict = self.get_autoencoder_kl_config()
83
+ inputs_dict = self.dummy_input
84
+ return init_dict, inputs_dict
85
+
86
+ def test_enable_disable_tiling(self):
87
+ init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
88
+
89
+ torch.manual_seed(0)
90
+ model = self.model_class(**init_dict).to(torch_device)
91
+
92
+ inputs_dict.update({"return_dict": False})
93
+
94
+ torch.manual_seed(0)
95
+ output_without_tiling = model(**inputs_dict, generator=torch.manual_seed(0))[0]
96
+
97
+ torch.manual_seed(0)
98
+ model.enable_tiling()
99
+ output_with_tiling = model(**inputs_dict, generator=torch.manual_seed(0))[0]
100
+
101
+ self.assertLess(
102
+ (output_without_tiling.detach().cpu().numpy() - output_with_tiling.detach().cpu().numpy()).max(),
103
+ 0.5,
104
+ "VAE tiling should not affect the inference results",
105
+ )
106
+
107
+ torch.manual_seed(0)
108
+ model.disable_tiling()
109
+ output_without_tiling_2 = model(**inputs_dict, generator=torch.manual_seed(0))[0]
110
+
111
+ self.assertEqual(
112
+ output_without_tiling.detach().cpu().numpy().all(),
113
+ output_without_tiling_2.detach().cpu().numpy().all(),
114
+ "Without tiling outputs should match with the outputs when tiling is manually disabled.",
115
+ )
116
+
117
+ def test_enable_disable_slicing(self):
118
+ init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
119
+
120
+ torch.manual_seed(0)
121
+ model = self.model_class(**init_dict).to(torch_device)
122
+
123
+ inputs_dict.update({"return_dict": False})
124
+
125
+ torch.manual_seed(0)
126
+ output_without_slicing = model(**inputs_dict, generator=torch.manual_seed(0))[0]
127
+
128
+ torch.manual_seed(0)
129
+ model.enable_slicing()
130
+ output_with_slicing = model(**inputs_dict, generator=torch.manual_seed(0))[0]
131
+
132
+ self.assertLess(
133
+ (output_without_slicing.detach().cpu().numpy() - output_with_slicing.detach().cpu().numpy()).max(),
134
+ 0.5,
135
+ "VAE slicing should not affect the inference results",
136
+ )
137
+
138
+ torch.manual_seed(0)
139
+ model.disable_slicing()
140
+ output_without_slicing_2 = model(**inputs_dict, generator=torch.manual_seed(0))[0]
141
+
142
+ self.assertEqual(
143
+ output_without_slicing.detach().cpu().numpy().all(),
144
+ output_without_slicing_2.detach().cpu().numpy().all(),
145
+ "Without slicing outputs should match with the outputs when slicing is manually disabled.",
146
+ )
147
+
148
+ def test_gradient_checkpointing_is_applied(self):
149
+ expected_set = {"Decoder", "Encoder", "UNetMidBlock2D"}
150
+ super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
151
+
152
+ def test_from_pretrained_hub(self):
153
+ model, loading_info = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy", output_loading_info=True)
154
+ self.assertIsNotNone(model)
155
+ self.assertEqual(len(loading_info["missing_keys"]), 0)
156
+
157
+ model.to(torch_device)
158
+ image = model(**self.dummy_input)
159
+
160
+ assert image is not None, "Make sure output is not None"
161
+
162
+ def test_output_pretrained(self):
163
+ model = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy")
164
+ model = model.to(torch_device)
165
+ model.eval()
166
+
167
+ # Keep generator on CPU for non-CUDA devices to compare outputs with CPU result tensors
168
+ generator_device = "cpu" if not torch_device.startswith(torch_device) else torch_device
169
+ if torch_device != "mps":
170
+ generator = torch.Generator(device=generator_device).manual_seed(0)
171
+ else:
172
+ generator = torch.manual_seed(0)
173
+
174
+ image = torch.randn(
175
+ 1,
176
+ model.config.in_channels,
177
+ model.config.sample_size,
178
+ model.config.sample_size,
179
+ generator=torch.manual_seed(0),
180
+ )
181
+ image = image.to(torch_device)
182
+ with torch.no_grad():
183
+ output = model(image, sample_posterior=True, generator=generator).sample
184
+
185
+ output_slice = output[0, -1, -3:, -3:].flatten().cpu()
186
+
187
+ # Since the VAE Gaussian prior's generator is seeded on the appropriate device,
188
+ # the expected output slices are not the same for CPU and GPU.
189
+ if torch_device == "mps":
190
+ expected_output_slice = torch.tensor(
191
+ [
192
+ -4.0078e-01,
193
+ -3.8323e-04,
194
+ -1.2681e-01,
195
+ -1.1462e-01,
196
+ 2.0095e-01,
197
+ 1.0893e-01,
198
+ -8.8247e-02,
199
+ -3.0361e-01,
200
+ -9.8644e-03,
201
+ ]
202
+ )
203
+ elif generator_device == "cpu":
204
+ expected_output_slice = torch.tensor(
205
+ [
206
+ -0.1352,
207
+ 0.0878,
208
+ 0.0419,
209
+ -0.0818,
210
+ -0.1069,
211
+ 0.0688,
212
+ -0.1458,
213
+ -0.4446,
214
+ -0.0026,
215
+ ]
216
+ )
217
+ else:
218
+ expected_output_slice = torch.tensor(
219
+ [
220
+ -0.2421,
221
+ 0.4642,
222
+ 0.2507,
223
+ -0.0438,
224
+ 0.0682,
225
+ 0.3160,
226
+ -0.2018,
227
+ -0.0727,
228
+ 0.2485,
229
+ ]
230
+ )
231
+
232
+ self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-2))
233
+
234
+
235
+ @slow
236
+ class AutoencoderKLIntegrationTests(unittest.TestCase):
237
+ def get_file_format(self, seed, shape):
238
+ return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy"
239
+
240
+ def tearDown(self):
241
+ # clean up the VRAM after each test
242
+ super().tearDown()
243
+ gc.collect()
244
+ backend_empty_cache(torch_device)
245
+
246
+ def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False):
247
+ dtype = torch.float16 if fp16 else torch.float32
248
+ image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype)
249
+ return image
250
+
251
+ def get_sd_vae_model(self, model_id="CompVis/stable-diffusion-v1-4", fp16=False):
252
+ revision = "fp16" if fp16 else None
253
+ torch_dtype = torch.float16 if fp16 else torch.float32
254
+
255
+ model = AutoencoderKL.from_pretrained(
256
+ model_id,
257
+ subfolder="vae",
258
+ torch_dtype=torch_dtype,
259
+ revision=revision,
260
+ )
261
+ model.to(torch_device)
262
+
263
+ return model
264
+
265
+ def get_generator(self, seed=0):
266
+ generator_device = "cpu" if not torch_device.startswith(torch_device) else torch_device
267
+ if torch_device != "mps":
268
+ return torch.Generator(device=generator_device).manual_seed(seed)
269
+ return torch.manual_seed(seed)
270
+
271
+ @parameterized.expand(
272
+ [
273
+ # fmt: off
274
+ [
275
+ 33,
276
+ [-0.1556, 0.9848, -0.0410, -0.0642, -0.2685, 0.8381, -0.2004, -0.0700],
277
+ [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824],
278
+ ],
279
+ [
280
+ 47,
281
+ [-0.2376, 0.1200, 0.1337, -0.4830, -0.2504, -0.0759, -0.0486, -0.4077],
282
+ [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131],
283
+ ],
284
+ # fmt: on
285
+ ]
286
+ )
287
+ def test_stable_diffusion(self, seed, expected_slice, expected_slice_mps):
288
+ model = self.get_sd_vae_model()
289
+ image = self.get_sd_image(seed)
290
+ generator = self.get_generator(seed)
291
+
292
+ with torch.no_grad():
293
+ sample = model(image, generator=generator, sample_posterior=True).sample
294
+
295
+ assert sample.shape == image.shape
296
+
297
+ output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
298
+ expected_output_slice = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice)
299
+
300
+ assert torch_all_close(output_slice, expected_output_slice, atol=3e-3)
301
+
302
+ @parameterized.expand(
303
+ [
304
+ # fmt: off
305
+ [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]],
306
+ [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]],
307
+ # fmt: on
308
+ ]
309
+ )
310
+ @require_torch_accelerator_with_fp16
311
+ def test_stable_diffusion_fp16(self, seed, expected_slice):
312
+ model = self.get_sd_vae_model(fp16=True)
313
+ image = self.get_sd_image(seed, fp16=True)
314
+ generator = self.get_generator(seed)
315
+
316
+ with torch.no_grad():
317
+ sample = model(image, generator=generator, sample_posterior=True).sample
318
+
319
+ assert sample.shape == image.shape
320
+
321
+ output_slice = sample[-1, -2:, :2, -2:].flatten().float().cpu()
322
+ expected_output_slice = torch.tensor(expected_slice)
323
+
324
+ assert torch_all_close(output_slice, expected_output_slice, atol=1e-2)
325
+
326
+ @parameterized.expand(
327
+ [
328
+ # fmt: off
329
+ [
330
+ 33,
331
+ [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814],
332
+ [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824],
333
+ ],
334
+ [
335
+ 47,
336
+ [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085],
337
+ [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131],
338
+ ],
339
+ # fmt: on
340
+ ]
341
+ )
342
+ def test_stable_diffusion_mode(self, seed, expected_slice, expected_slice_mps):
343
+ model = self.get_sd_vae_model()
344
+ image = self.get_sd_image(seed)
345
+
346
+ with torch.no_grad():
347
+ sample = model(image).sample
348
+
349
+ assert sample.shape == image.shape
350
+
351
+ output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
352
+ expected_output_slice = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice)
353
+
354
+ assert torch_all_close(output_slice, expected_output_slice, atol=3e-3)
355
+
356
+ @parameterized.expand(
357
+ [
358
+ # fmt: off
359
+ [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]],
360
+ [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]],
361
+ # fmt: on
362
+ ]
363
+ )
364
+ @require_torch_accelerator
365
+ @skip_mps
366
+ def test_stable_diffusion_decode(self, seed, expected_slice):
367
+ model = self.get_sd_vae_model()
368
+ encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64))
369
+
370
+ with torch.no_grad():
371
+ sample = model.decode(encoding).sample
372
+
373
+ assert list(sample.shape) == [3, 3, 512, 512]
374
+
375
+ output_slice = sample[-1, -2:, :2, -2:].flatten().cpu()
376
+ expected_output_slice = torch.tensor(expected_slice)
377
+
378
+ assert torch_all_close(output_slice, expected_output_slice, atol=1e-3)
379
+
380
+ @parameterized.expand(
381
+ [
382
+ # fmt: off
383
+ [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]],
384
+ [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]],
385
+ # fmt: on
386
+ ]
387
+ )
388
+ @require_torch_accelerator_with_fp16
389
+ def test_stable_diffusion_decode_fp16(self, seed, expected_slice):
390
+ model = self.get_sd_vae_model(fp16=True)
391
+ encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64), fp16=True)
392
+
393
+ with torch.no_grad():
394
+ sample = model.decode(encoding).sample
395
+
396
+ assert list(sample.shape) == [3, 3, 512, 512]
397
+
398
+ output_slice = sample[-1, -2:, :2, -2:].flatten().float().cpu()
399
+ expected_output_slice = torch.tensor(expected_slice)
400
+
401
+ assert torch_all_close(output_slice, expected_output_slice, atol=5e-3)
402
+
403
+ @parameterized.expand([(13,), (16,), (27,)])
404
+ @require_torch_gpu
405
+ @unittest.skipIf(
406
+ not is_xformers_available(),
407
+ reason="xformers is not required when using PyTorch 2.0.",
408
+ )
409
+ def test_stable_diffusion_decode_xformers_vs_2_0_fp16(self, seed):
410
+ model = self.get_sd_vae_model(fp16=True)
411
+ encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64), fp16=True)
412
+
413
+ with torch.no_grad():
414
+ sample = model.decode(encoding).sample
415
+
416
+ model.enable_xformers_memory_efficient_attention()
417
+ with torch.no_grad():
418
+ sample_2 = model.decode(encoding).sample
419
+
420
+ assert list(sample.shape) == [3, 3, 512, 512]
421
+
422
+ assert torch_all_close(sample, sample_2, atol=1e-1)
423
+
424
+ @parameterized.expand([(13,), (16,), (37,)])
425
+ @require_torch_gpu
426
+ @unittest.skipIf(
427
+ not is_xformers_available(),
428
+ reason="xformers is not required when using PyTorch 2.0.",
429
+ )
430
+ def test_stable_diffusion_decode_xformers_vs_2_0(self, seed):
431
+ model = self.get_sd_vae_model()
432
+ encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64))
433
+
434
+ with torch.no_grad():
435
+ sample = model.decode(encoding).sample
436
+
437
+ model.enable_xformers_memory_efficient_attention()
438
+ with torch.no_grad():
439
+ sample_2 = model.decode(encoding).sample
440
+
441
+ assert list(sample.shape) == [3, 3, 512, 512]
442
+
443
+ assert torch_all_close(sample, sample_2, atol=1e-2)
444
+
445
+ @parameterized.expand(
446
+ [
447
+ # fmt: off
448
+ [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]],
449
+ [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]],
450
+ # fmt: on
451
+ ]
452
+ )
453
+ def test_stable_diffusion_encode_sample(self, seed, expected_slice):
454
+ model = self.get_sd_vae_model()
455
+ image = self.get_sd_image(seed)
456
+ generator = self.get_generator(seed)
457
+
458
+ with torch.no_grad():
459
+ dist = model.encode(image).latent_dist
460
+ sample = dist.sample(generator=generator)
461
+
462
+ assert list(sample.shape) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]]
463
+
464
+ output_slice = sample[0, -1, -3:, -3:].flatten().cpu()
465
+ expected_output_slice = torch.tensor(expected_slice)
466
+
467
+ tolerance = 3e-3 if torch_device != "mps" else 1e-2
468
+ assert torch_all_close(output_slice, expected_output_slice, atol=tolerance)